
Condenseur à air pour une installation de froid positif centralisée.

Groupe condenseur à air pour une chambre froide.
Il est évident que sous nos latitudes les températures extérieures (même avec le réchauffement climatique comme « épée de Damoclès ») restent fraîches et donnent raison aux concepteurs d’adopter une stratégie de refroidissement des condenseurs par air.
La répartition des points de température et d’humidité au cours de l’année sur le diagramme psychométrique ci-dessous montre qu’une grosse majorité des points températures du climat Belge se situe sous les 20 °C, avec un maximum du nombre d’heures aux alentours des 6-7 °C. Cette constatation signifie que la température de condensation, pour un écart de température entre le fluide dans sa phase de condensation et l’entrée du condenseur idéalement de 12°C (optimum de dimensionnement des condenseurs), se situe aux alentours des 8°C.
Actuellement, les équipements frigorifiques permettraient de pouvoir travailler avec des températures de condensation de l’ordre de 20°C; ce qui signifie que l’air pourrait suffire durant une bonne partie de l’année pour amener le fluide frigorigène à cette température.

Climat heure par heure en Belgique.

Fréquence des températures pour une année type.
Le gaz chaud du réfrigérant cède sa chaleur à l’air traversant le condenseur et passe à l’état liquide. L’entretien du condenseur à air est limité. Il n’y a aucun risque de gel en hiver. Mais le coefficient d’échange avec l’air étant faible, le condenseur sera volumineux, et donc lourd et encombrant.
Les températures de condensation sont directement liées aux conditions de température extérieure : la pression de condensation sera forte en été (dégradation du COP de la machine frigorifique), mais plus faible en hiver, entraînant d’ailleurs un besoin de régulation adaptée pour un fonctionnement correct.
L’exemple suivant donne une idée de la répercussion sur les consommations électriques du compresseur qu’entraine une augmentation de la température de condensation.
Exemple
Soit un groupe de condensation composé d’un compresseur semi-hermétique et d’un condenseur. La puissance utile nécessaire est de l’ordre de 22 kW. Un logiciel de fabricant de compresseurs donne des courbes caractéristiques en fonction des données de prédimensionnement suivantes :
- type de fluide réfrigérant : R134A ;
- température d’évaporation : – 10°C ;
- température de condensation : 40 °C ;
- surchauffe de 5 K
Puissance frigorifique
La puissance frigorifique disponible au niveau du compresseur passe de 22.8 à 21.2 [KW] en augmentant la température de condensation de 5K (27 à 32 °C); ce qui correspond à une baisse de puissance de l’ordre de 8 %.

Puissance électrique absorbée par le moteur
Dans un même temps, la puissance électrique absorbée par le moteur électrique passe de 9 à 9.4 lorsque l’on augmente la température de condensation de 5 K (27 à 32 °C); ce qui correspond à une augmentation de puissance de l’ordre de 4 %.

COP
Enfin, le COP quant à lui passe de 2.53 à 2,25 lorsque l’on augmente la température de condensation de 5 K (27 à 32 °C); ce qui correspond à une d’efficacité énergétique de l’ordre de 12 %. Si on simplifie le problème en considérant une relation linéaire entre le COP et la température de condensation, chaque augmentation de 1 K de la température de condensation réduit l’efficacité du compresseur de l’ordre de 2 %.

|
Choix du ventilateur
La circulation forcée de l’air nécessite des ventilateurs dont la consommation électrique n’est pas négligeable. De plus, ils constituent une source de bruits, par frottement de l’air sur les pales du ventilateur, mais aussi par frottement de l’air sur les ailettes de l’échangeur.
Deux types de ventilateurs sont utilisés :
- pour les commerces, principalement le ventilateur hélicoïdal (ou axial);
- le ventilateur centrifuge.
Ventilateur hélicoïdal

Le ventilateur hélicoïdal (ou axial) est choisi pour des appareils placés à l’air libre, là où le bruit ne constitue pas une nuisance pour le voisinage. Le niveau sonore dépend de la vitesse de rotation du ventilateur. Dans les emplacements exposés, le régime ne doit pas dépasser 500 t/min.
Si des ventilateurs existants sont trop bruyants, on peut les munir d’amortisseurs de bruit cylindriques (tenir compte de la perte de charge).
Ventilateur centrifuge

Le ventilateur centrifuge est souvent utilisé pour des appareils placés à l’intérieur d’un immeuble, raccordé à l’extérieur par des gaines (le ventilateur centrifuge peut vaincre des pertes de charges plus élevées).
Si le bruit du ventilateur dépasse les valeurs admissibles, on peut le munir d’amortisseurs de bruit.
La vitesse de passage de l’air est comprise généralement entre 2 et 4 m/s. Cette information dans le catalogue constructeur est un indice qualité puisque si elle se rapproche de 2 m/s, on a plus de garanties que l’appareil fera peu de bruit et que la consommation du ventilateur sera limitée (en fait, le constructeur a dû écarter davantage les ailettes pour faciliter le passage de l’air, donc l’appareil demandera plus de matière, sera plus volumineux et… sera plus cher : la qualité se paie !).
Complément de puissance par aspersion d’eau
Conception classique
Nombreuses sont les installations où, en exploitation, on voit fleurir des réseaux de tuyaux d’aspersion d’eau de ville servant à refroidir les batteries de condensation lors des périodes chaudes ou carrément caniculaires.
Est-ce un défaut de conception, de dimensionnement à la base ou un manque d’entretien régulier des batteries ?
Le débat est ouvert.

Système D des techniciens en période de canicule.
Mais l’idée de choisir un condenseur à air et de se dire que de temps en temps en période chaude on déploie des systèmes d’aspersion d’eau n’est pas un sacrilège. Cela dit, ces systèmes, bien qu’efficaces, restent du domaine de « l’amateurisme ». De plus, aux températures de condensation de l’ordre de 35-40°C, l’eau de ville de dureté (exprimé en degrés Français °F) élevée (ou incrustante au niveau entartrage) risque de réduire l’efficacité de l’échange du condenseur.
Donc méfiance !
Conception professionnelle et énergétique
Si dès le départ la volonté est de prévoir, lors des périodes caniculaires, un système permettant de maintenir une température de condensation acceptable :
- sans approcher le niveau de déclenchement haute pression HP du compresseur (le condenseur n’arrive plus à évacuer la charge thermique);
- en garantissant un taux de compresseur HP/BP raisonnable, et par conséquent une efficacité énergétique intéressante;
il est nécessaire de se diriger vers des condenseurs adiabatiques permettant de réduire la température d’entrée de l’air de refroidissement par aspersion de matelas d’eau. Cette technique, selon le fabricant permet de réduire la température de l’air de l’ordre de 5 à 7°C lorsque la température de l’air est supérieure à 24°C.

Condenseur adiabatique.
(Source : Balticare).
Cependant, dans un souci de conception énergétique, à savoir réduire la température de condensation au maximum des possibilités techniques des équipements du cycle frigorifique (Δde pression suffisant de part et d’autre du détendeur par exemple), l’utilisation de l’eau comme vecteur de refroidissement est la solution idéale sachant que les condenseurs « évaporatifs » donnent de bons résultats et s’adaptent petit à petit au marché du secteur commercial en terme de puissance de condensation.
Récupération d’eau de pluie
La récupération d’eau de pluie peut s’avérer intéressante pour aider les condenseurs à travailler dans de meilleures conditions en période chaude par aspersion de la batterie de condensation. Outre le fait que la récupération d’eau de pluie reste une approche durable au sens large du terme (utilisation de l’eau de pluie pour les sanitaires, volume tampon en cas de forte pluie, …), elle permettrait de pallier en période de canicule au manque d’efficacité des condenseurs à air. À l’heure actuelle, les condenseurs « adiabatiques » qui sont mis au point pour réduire significativement les températures d’entrée d’air aux condenseurs, pourraient utiliser l’eau de pluie.
En conception, la récupération d’eau de pluie est envisageable pour tous les types de commerce. En particulier, pour les supérettes, les supermarchés et les hypermarchés, cette récupération est envisageable d’autant plus que les surfaces de toiture sont importantes. La mise en place d’une telle installation nécessite néanmoins de l’espace :
-
- en zone rurale, cela pose peu de problèmes même dans le cas d’une rénovation importante;
- en zone urbaine, c’est au cas par cas en fonction de’ l’espace disponible.
Pour les moyennes et grandes surfaces, la récupération d’eau de pluie pourrait très bien s’organiser autour d’une citerne d’eau de pluie enterrée ou posée au niveau du parking sans trop compromettre la capacité de stationnement.
Quant au risque de développement de légionelles qu’entraînerait l’évaporation d’eau au niveau d’un condenseur adiabatique, par exemple, le risque semble réduit par le fait que l’évaporation de l’eau se situe aux alentours des 24°C lorsque la température de l’air extérieur est de l’ordre de 30°C par exemple. Il est toutefois conseillé de demander aux différents constructeurs de ce type de condenseur les résultats des tests bactériologiques effectués dans le cadre de cette problématique.
Sous-dimensionnement du compresseur
Le choix d’un condenseur adiabatique permet de réduire les températures de condensation surtout en période de canicule. Pourquoi, alors ne pas en profiter pour sous-dimensionner le compresseur ? En effet, comme le montre l’exemple suivant, pour une température de condensation moindre, un compresseur légèrement sous-dimensionné pourra donner une puissance frigorifique égale tout en consommant moins d’électricité.
Comme montré dans l’exemple, l’auteur et le maître d’ouvrage pourraient partir du principe que l’on réduit de 5 K par exemple la température de condensation pour le dimensionnement du compresseur. Cette décision permettrait de choisir un compresseur de taille plus petite avec, pour la même puissance frigorifique disponible, des performances énergétiques plus intéressantes.
Exemple,
Données
Soit un groupe de condensation composé d’un compresseur semi-hermétique et d’un condenseur. La puissance utile nécessaire est de l’ordre de 25 kW. Un logiciel de fabricant de compresseurs donne les valeurs consignées dans le tableau suivant en fonction des données de prédimensionnement suivantes :
- type de fluide réfrigérant : R134A ;
- température d’évaporation : – 10°C ;
- surchauffe de 5 K
|
Température de condensation
|
|
43 °C
|
35 °C
|
Taile du compresseur
|
Modèle standard de gamme
|
Modèle juste en dessous
|
Puissance frigorifique [kW] |
|
|
Puissance absorbée par le moteur [kW] |
|
|
Débit de fluide réfrigérant [kg/h] |
|
|
Sous-refroidissement [K] |
|
|
COP |
|
|
Les résultats du tableau nous montrent que pour une même puissance frigorifique et par le choix d’un compresseur de puissance plus faible, mais travaillant aussi à une température de condensation plus faible (35 °C au lieu de 43 °C), les performances de la seconde machine sont meilleures :
- la puissance absorbée est plus faible et, par conséquent, le COP est meilleur;
- le débit de fluide frigorigène est plus faible. On peut donc considérer que la charge de fluide frigorigène sera plus faible (impact sur l’environnement positif).
Conclusion
Il serait intéressant de comparer les prix de deux tailles différentes de compresseurs de même gamme. Si leur prix est identique (le modèle surdimensionné est dans une gamme plus standard que celui de plus faible puissance par exemple), il y a intérêt à choisir celui de la taille supérieure et de reporter le surinvestissement sur la régulation du condenseur par température flottante. En effet :
- En période de canicule, le compresseur ne risque pas de tomber en sécurité haute pression et sera dans sa plage de puissance où la performance énergétique est bonne. On ne sera pas nécessairement obligé d’asperger les condenseurs avec de l’eau de ville (surcoût), …
- Pour des conditions climatiques de mi-saison et de période froide, la température de condensation pourra être adaptée et, par conséquent, soulager le compresseur par un taux de compression réduit (donc un meilleur rendement volumétrique et énergétique).
|
Abaisser la température de l’air extérieur
Configuration externe
Aussi, l’emplacement du condenseur doit éviter un réchauffement local de l’air de refroidissement. Par exemple, un condenseur placé sur une toiture couverte de roofing noir entraînera une surchauffe locale de l’air de plusieurs degrés en période d’ensoleillement … Le placement de gravier blanc sur la toiture sera favorable.
L’emplacement du condenseur devra éviter un ensoleillement direct de l’échangeur. Si le placement à l’ombre est impossible, le placement d’un système d’ombrage permettra d’abaisser le niveau de température.
Configuration interne

Il faut éviter également qu’un recyclage de l’air ne se fasse autour du condenseur : de l’air chaud se mélange à l’air froid, la température de l’air d’aspiration augmente, … de même que la température de condensation.
C’est pourtant parfois une solution réalisée pour la limitation du niveau de bruit, puisque les parois latérales peuvent être couvertes d’absorbant acoustique… Qu’il est difficile de concilier toutes les contraintes…!
Dans la mesure du possible, il faut donc proscrire le placement du condenseur dans un local fermé. Si c’est le cas (pour des condenseurs de chambres frigorifiques, par exemple), il faut assurer une forte ventilation du local et même parfois sa climatisation, si on veut que la température de l’air du local reste suffisamment basse pour pouvoir continuer à refroidir les condenseurs sans faire monter la pression de condensation. On conviendra que cette situation est aberrante sur le plan énergétique !
Récupération de la chaleur de condensation
Il faut garder à l’esprit que l’optimisation du cycle frigorifique passe principalement par :
- l’abaissement de la température de condensation dans les limites climatiques possibles;
- l’augmentation de la température d’évaporation dans les limites permettant d’assurer la conservation des aliments.
Groupe condenseur à proximité du meuble frigorifique
Pour les machines frigorifiques de petite taille, le condenseur est souvent incorporé ou à proximité immédiate de la machine frigorifique; ce qui signifie que le groupe frigorifique se situe souvent dans l’ambiance du magasin. On utilise souvent des groupes de condensation qui comprennent à la fois :
- le compresseur;
- le condenseur à air;
- les sécurités et la régulation;
- les connexions fluidiques des lignes liquides et d’aspiration.

Groupe de condensation.
(Source : Danfoss).
Ce type d’équipement convient en général pour des installations de faible puissance (commerce de détail, chambre froide de boucherie).
En gardant en mémoire le grand principe de la température de condensation minimal à maintenir, une récupération de la chaleur est possible pour chauffer directement un local. Ainsi, un supermarché Delhaize utilise le principe de récupération de la chaleur de condensation :
- En période froide, la chaleur du condenseur du groupe frigorifique (armoires de congélation) est soufflée sous le meuble frigorifique dans l’allée froide et contribue à réchauffer l’ambiance. C’est vrai que la température de condensation est élevée et, par conséquent, la performance du compresseur dégradé, mais elle est plus ou moins compensée par la chaleur récupérée afin d’assurer un confort dans les zones de vente.
- En été, la chaleur est évacuée à l’extérieur par un jeu de clapets.
Configuration |
Type de groupe de condensation |
Type de meuble |
Déperdition de l’enveloppe |
Énergie finale Consommée chaudière
[kWh/h] |
Energie finale
électrique consommée
[kWh/h] |
Energie primaire
consommée
[kWh/h] |
Coût de l’énergie [€/h] |
kg/h de CO2 |
1 |
incorporé
|
fermé |
faible |
0 |
5.6 |
14.7 |
0.6 |
3.7 |
2 |
incorporé
|
fermé |
forte |
9.3 |
5.6 |
23.1 |
1 |
5.8
|
3 |
externe
|
fermé |
forte |
20 |
1.4 |
23.7 |
1.2 |
5.9 |
4 |
incorporé
|
ouvert |
forte |
0 |
12 |
31.6 |
1.32 |
7.9 |
5 |
externe
|
ouvert |
forte |
35.6 |
4.8 |
48.2 |
2.3 |
12.1 |

Condenseur à l’extérieur
Pour les machines frigorifiques de taille importante (supérette, supermarché, hypermarché, …), nécessitant des équipements tels que les centrales de compresseurs, la configuration classique est le placement du ou des condenseurs à l’extérieur (en toiture, à l’ombre d’un mur, …). En effet, thermiquement parlant, la gestion d’une telle quantité de chaleur dans une configuration interne serait impossible.
En ce qui concerne la récupération de chaleur sur ce type d’installation, vu que le condenseur est en dehors des zones de vente, on ne peut pas directement récupérer la chaleur des condenseurs dans les zones de vente. Le placement d’un équipement intermédiaire (ballon tampon par exemple) entre le compresseur et le condenseur permet la désurchauffe des gaz à la sortie des compresseurs. La chaleur de désurchauffe peut donc être utilisée pour chauffer un ballon d’eau. Un problème surgit cependant : la quantité de chaleur récupérée par désurchauffe est faible par rapport à la chaleur de condensation. Il est dès lors nécessaire de dimensionner le ballon afin de provoquer la phase de condensation dans le ballon. C’est pour cette raison que l’on ne peut concevoir une récupération de la chaleur de condensation
- qu’à basse température (30-40°C);
- qu’avec un ballon de récupération surdimensionné.
L’eau chaude qui en ressort peut servir :
- à préchauffer directement l’eau chaude sanitaire;
- à chauffer les zones de vente par un chauffage au sol par exemple.