Échangeur à caloduc

Échangeur à caloduc


Principe

Le caloduc est un superconducteur de chaleur fonctionnant en cycle fermé selon le principe évaporation – condensation, avec retour de liquide soit par gravité, soit par capillarité.

Schéma principe échangeur à caloduc - 01.

Son intérêt provient de la valeur très élevée de la chaleur latente de changement de phase comparée à la chaleur spécifique.

Il est constitué d’une enceinte hermétiquement scellée, contenant un fluide frigorigène. Le choix du fluide caloporteur dépend de la température de travail prévue.

Schéma principe échangeur à caloduc - 02.

Caloduc.

Le flux d’air chaud circulant dans la partie inférieure du tube cède sa chaleur au fluide liquide et le porte à ébullition. La vapeur ainsi formée monte dans la partie haute du tube où elle se trouve en contact avec l’air froid. Le gaz va se condenser sur la paroi interne du tube en cédant sa chaleur de condensation, puis va retomber naturellement par gravité dans la partie inférieure pour un nouveau cycle.

De nombreux caloducs toujours en fonctionnement travaillent avec un fluide frigorigène de la catégorie des chlorofluorocarbures (CFC) actuellement interdits dans les nouveaux matériels.

La disposition verticale est caractéristique du type à gravité. Il existe également des tubes horizontaux où la circulation se fait par capillarité. Ce dernier système est alors réversible et peut donc fonctionner en été.

Ce type de récupérateur se caractérise par sa faible masse, l’absence de pièces en mouvement et un encombrement réduit. Les conduits d’air repris et d’air neuf doivent cependant être proches.

Concernant le fonctionnement, une régulation est à prévoir, de même il faut également prévoir un entretien du récupérateur.


Facteur influençant le rendement

Soit le diagramme suivant fourni par un constructeur :

Graphe de performance.

Ce diagramme est conçu en fonction d’une température entre l’air vicié et l’air neuf de 30°C mais peut cependant s’appliquer également avec une bonne fiabilité dans toute la plage comprise entre 20°C et 40°C. Le diagramme ci-dessus suppose que les débits d’air neuf et d’air vicié sont identiques.

Le rendement de récupération est donc fonction ici :

  • du débit d’air,
  • de la taille de l’échangeur.

> l’efficacité thermique se situe généralement entre 50-60 %.


Avantages – Désavantages

Avantages

  • Faible encombrement,
  • peu de maintenance,
  • système statique (pas d’énergie d’appoint),
  • réversibilité pour le type horizontal à capillarité.

Désavantages

  • Amenée et évacuation d’air doivent être adjacentes,
  • régulation de température limitée,
  • risque de givre mais seuil assez bas,
  • en cas de panne, il y a risque de contamination de l’air par le fluide frigorigène,
  • pas réversible, donc pas de fonctionnement d’été possible pour le type gravitaire.

Régulation

Tous les types de récupérateurs nécessitent un système de régulation :

  • En hiver pour éviter le gel du côté de l’air extrait : si l’échange est tel que la température de l’air extrait chute sous 0°C, il faut réduire le transfert de chaleur pour éviter le givre de l’échangeur.
  • En mi-saison et en été pour éviter la surchauffe de l’air à la sortie du récupérateur : il faut réduire l’échange pour éviter que la température de l’air neuf devienne telle qu’elle contribue à surchauffer l’ambiance intérieure.

Pour les échangeurs verticaux, la régulation antigel s’effectue par by-pass d’une partie de l’air neuf qui est injecté directement sans passer par le récupérateur. On limite ainsi la diminution de température de l’air rejeté. C’est en fonction de l’état de l’air repris que les diagrammes des fabricants permettent de déterminer les conditions pour lesquelles on risque d’atteindre la limite de gel. Il faut en outre tenir compte de cette possibilité de by-pass pour dimensionner la batterie de préchauffe complémentaire placée sur l’air neuf.

Pour réguler les échangeurs caloducs horizontaux, on le dispose sur une balance, de légères inclinaisons de +- 5 à 10 degrés accélérant le retour des condensats (augmentation de puissance) ou le ralentissement (diminution de puissance) progressivement. On parle de régulation par basculement.


Entretien

Le contrôle de l’état de propreté de l’équipement de récupération est primordial.

En effet, l’encrassement des surfaces d’échange a deux conséquences néfastes sur la récupération : la réduction du coefficient d’échange de chaleur et la réduction des débits d’air.

Le tableau ci-dessous donne, pour les caloducs, les différents points à contrôler lorsque l’on fait la maintenance :

Caloducs

v

1 État des surfaces d’échange (nettoyage régulier)

X

2 Contrôle des éventuelles fuites d’air
fuites externes

X

fuites internes

X

fuites au niveau du clapet de by-pass

X

3 Contrôle de la régulation
régulation à bascule

X

régulation du/des clapets de by-pass

X

régulation antigel

X

4 Contrôle du fluide caloporteur
contrôle du remplissage du circuit

X


Exemple

En vue de comparer les différents systèmes de récupération, nous développons ici le calcul du rendement de l’installation pour les différents systèmes de récupération présentés.

Prenons comme exemple une installation de traitement d’air d’un immeuble de bureaux, fonctionnant en tout air neuf, 10 heures/jour, 5 jours/semaine.

Les groupes de pulsion et d’extraction GP/GE sont de même débit : 21 000 m³/h – section de 1 525 x 1 525 mm, soit une vitesse d’air de 2,5 m/s.

Dans le cas d’un échangeur à caloduc, on déduit du catalogue du constructeur :

  • le choix d’un caloduc en Cu/Al avec 8 rangs,
  • le fonctionnement dans les conditions extrêmes :

  • l’évolution dans le diagramme de l’air humide :

On constate qu’une part de l’énergie thermique transmise à l’air neuf provient de la condensation de la vapeur d’eau de l’air extrait. Celui-ci ne reçoit aucune humidité et évolue donc à humidité absolue constante.

  • l’efficacité thermique instantanée :

ε= t2 – t/ t– t= (9,6 – (- 10)) / (22 – (- 10)) = 0,61 = 61 %

L’équipement sélectionné a entraîné les températures de sortie des fluides. On en déduit que le récupérateur a donné un accroissement de température de l’air neuf de 61 % de l’écart maximal entre les fluides, soit 0.61 x 32° = 19,6°.

Remarque : en réalité, le rendement thermique (rapport des enthalpies) donnerait :

η = h– h/ h– h= (13,5 – (- 6,5)) / (41 – (- 6,5)) = 0,42 = 42 %

Seulement 42 % du transfert maximal (en chaleur sensible et latente) est réalisé par le récupérateur).

La puissance maximale récupérée représente :

Pmax. réc. = 0,34 [W/(m³/h).°C] x 21 000 [m³/h] x (9,6° – (- 10°)) = 136 [kW]

0,34 [W/(m³/h).°C] = chaleur spécifique de l’air

Cette puissance pourra être déduite de la puissance de la chaudière à installer.

L’efficacité thermique, calculée dans les conditions extrêmes (- 10°C), reste sensiblement identique aux autres températures de la saison de chauffe. Aussi, la température moyenne extérieure en journée étant de 8°C, la puissance moyenne récupérée sera de :

Pmoy. réc. = 136 [kW] x (22° – (8°)) / (22° – (- 10°)) = 60 [kW]

Cela entraîne une économie thermique de

Eréc = 60 [kW] x 10 [h/j] x 5 [j/sem]. x 35 [sem] / 0,8 = 130 870 [kWh]

Le facteur 0.8 correspond au rendement saisonnier de la production de chaleur pour une installation de chauffage nouvelle et dont les conduites sont isolées. On prendrait 0.7 pour une installation plus ancienne. 35 semaines correspondent à la durée de la saison de chauffe.

Suite à la présence du récupérateur (pertes de charge complémentaires), les puissances des ventilateurs sont modifiées comme suit :

Avant  

Après

 

GE GP GE GP
2,2 kW 5,2 kW 4,4 kW 6,6 kW

Eclairage à deux composantes

Eclairage à deux composantes

Une première composante assure un éclairage général direct ou indirect de faible éclairement (environ 300 lux sur le plan de travail); une deuxième composante assure l’appoint directement sur la place de travail.

Avantages

Ce système est énergétiquement le plus intéressant : il associe un faible niveau d’éclairement général et des luminaires ponctuels, en fonction des besoins.

Inconvénients

L’inconvénient de l’éclairage ponctuel est qu’il peut générer des contrastes, des ombres marquées ainsi que des réflexions gênantes. Ceci dit, le fait de veiller à une bonne uniformité permet de limiter les effets néfastes des contrastes.

Prescriptions relatives à l’éclairage dans les écoles

Prescriptions relatives à l'éclairage dans les écoles


Principe

Il est utile de pouvoir connaître les niveaux d’éclairement recommandé suivant l’ergonomie de travail (le confort de la tâche de travail).Dans la norme NBN EN 12464-1, on établit une nomenclature dans laquelle on retrouve pour différents locaux des bâtiments du tertiaire, entre autres, les paramètres suivants :

Dans la nomenclature ci-dessous, on reprend les principaux types de locaux.

Écoles maternelles et garderies

Type d’intérieur, tâche ou activité Em (lux) UGR Uo Ra Plan de travail
Salle de jeux 300 22 0,4 80

0.1 m au-dessus du sol.

Crèches

300 22 0,40 80

0.5 m au dessus du sol par défaut.

Salles de travaux manuels

300 19 0,60 80

0.5 m au dessus du sol par défaut.


Bâtiments scolaires

Type d’intérieur, tâche ou activité

Em (lux) UGR Uo Ra

 

Remarques

 

Plan de référence

Salle de classe en primaire et secondaire

300 19 0,60 80 un contrôle de l’éclairage est recommandé

0.85 m du sol par défaut.

Salle de classe pour les cours du soir et enseignement aux adultes

500 19 0,60 80 un contrôle de l’éclairage est recommandé

Auditorium, salle de conférence

500 19 0,60 80 un contrôle de l’éclairage est recommandé 

Tableau noir, vert et blanc

500 19 0,70 80

1. éviter les réflexes spéculaires

2. un éclairement vertical convenable est recommandé pour l’enseignant/présentateur

Le plan vertical du tableau.

Table de démonstration

500 19 0,70 80

Pour les salles de conférence 750 lux

0.85 m du sol par défaut.

Salle d’art

500 19 0,60 80

Salle d’art dans les écoles des beaux-Arts

750 19 0,70 80

 

5000 K ≤ Tcp 6500 K

 

Salle de dessin industriel

750 16 0,70 80

Salle de travaux pratiques et laboratoire

500 19 0,60 80

Salle de travaux manuels

500 19 0,60 80

Atelier d’enseignement

500 19 0,60 80

Salle de pratique musicale

300 19 0,60 80

Salle de pratique informatique

300 19 0,60 80

Laboratoire de langues

300 19 0,60 80

Atelier et salle de préparation

500 22 0,60 80

Hall d’entrée

200 22 0,40 80

0.1 m du sol.

Zones de circulation et couloirs

100 25 0,40 80

Escaliers

150 25 0,40 80

Salle commune pour étudiants et salle de réunion

200 22 0,40 80

0.85 m du sol par défaut.

Salles des professeurs

300 19 0,60 80

Bibliothèque : rayonnages

200 19 0,60 80

plans verticaux des rayonnages.

Bibliothèque : salle de lecture

500 19 0,60 80

0.85 m du sol par défaut.

Réserves pour le matériel des professeurs

100 25 0,40 80

Hall de sport, gymnases et piscines

300 22 0,60 80

 

voir EN 12193

 

0.1 m du sol.

Cantine scolaire

200 22 0,40 80

0.85 m du sol par défaut.

Cuisine

500 22 0,60 80

Types de programmateur d’intermittence

Types de programmateur d'intermittence

Pratiquer une intermittence du chauffage durant les périodes d’inoccupation du bâtiment conduit toujours à des économies d’énergie. Celles-ci seront plus ou moins importantes en fonction du type de bâtiment (inertie, isolation) et de la durée d’inoccupation. Elles dépendent aussi du type de programmateur utilisé. L’ordre dans lequel ces derniers sont décrits ici correspond à une gradation dans le potentiel d’économie d’énergie réalisable. Les programmateurs peuvent agir soit directement sur la chaudière dans le cas d’un circuit de distribution unique et/ou sur la régulation des circuits secondaires.


Abaissement de courbe de chauffe

Ce type de programmateur est encore extrêmement répandu dans nos chaufferies.

Il est appliqué sur bon nombre de régulateurs travaillant sur base d’une sonde extérieure. Dans ces derniers, la température de l’eau de chauffage est régulée en fonction de la température via une courbe de chauffe.

Le ralenti de chauffage consiste alors en un changement de courbe de chauffe programmé (souvent en fonction d’une horloge hebdomadaire) pour les périodes d’inoccupation.

Les régulateurs proposent généralement un déplacement parallèle de la courbe de chauffe pour le ralenti via :

  • un potentiomètre gradué en température d’eau. Pour des corps de chauffe dimensionnés pour un régime d’eau 90/70°, on considère souvent qu’une variation de température d’eau de 4 .. 5°C entraîne une variation de température ambiante de 1°C,
  • un potentiomètre gradué en température ambiante. Cette grandeur est indicative puisqu’aucune sonde intérieure ne permet de vérifier la température ambiante qui sera atteinte durant le ralenti,
  • un potentiomètre gradué de 0 à 10,
  • un boîtier de dialogue (appareils digitaux).

Potentiomètres basés sur la température ambiante ou sur la température d’eau.

En fonction du type de régulateur, le déplacement de ralenti proposé correspond,

  • soit à une translation par rapport à la courbe réelle de jour qui a été définie,
  • soit à une translation par rapport à la courbe de base du régulateur qui correspond au point pivot préréglé du régulateur.

Abaissement de la courbe de chauffe par rapport à la courbe de base du régulateur ou par rapport à la courbe de chauffe réelle de jour

Il est donc important de vérifier dans le mode d’emploi du régulateur le type de réglage qui est pratiqué.

Avec un tel mode de régulation, on parle de ralenti et non de coupure nocturne car, en période d’inoccupation, on continue toujours à fournir de la chaleur au bâtiment, moins qu’en période d’occupation, mais en quantité suffisante pour ne pas permettre un abaissement rapide de la température intérieure.

La relance du chauffage se fait :

  • Soit avec la température d’eau définie par la courbe de chauffe de jour. Dans ce cas, la puissance maximale n’est pas appliquée, ce qui rallonge la période de remise en température du bâtiment.
  • Soit avec une température dite « de régime accéléré », ce qui diminue le temps de relance.

Notons que, pour protéger de la condensation les chaudières dont la température d’eau ne peut descendre en dessous d’une certaine valeur, des régulateurs permettent une limitation basse de la température de départ de l’eau (par exemple 50°C). Si c’est la cas et si le réglage de la température d’eau s’effectue directement au niveau de la chaudière, il n’y aura quasi plus de ralenti de nuit lorsque la température extérieure dépasse un certain seuil.

Courbe de chauffe appliquée à une chaudière « basse température » ne pouvant descendre en-dessous de 50°C. Le ralenti nocturne est réalisé par un abaissement de la température d’eau de la chaudière de 20°C. À partir d’une température extérieure d’environ 0°C, l’intensité du ralenti diminue. Le ralenti disparaît lorsque la température extérieure dépasse 7°C.


Coupure et relance à heures fixes

Ce type de programmateur assure à heures fixes (en fonction d’une horloge quotidienne, hebdomadaire ou annuelle) :

  • le fonctionnement normal du chauffage en période d’occupation, régulé par exemple en fonction de la température extérieure,
  • l’arrêt complet du chauffage (arrêt des chaudières, fermeture des vannes mélangeuses, arrêt des circulateurs, …) en fin de période d’occupation,
  • la relance du chauffage à allure réduite pendant la période d’inoccupation si la température intérieure, mesurée par une sonde d’ambiance, descend en dessous d’une valeur limite (par exemple 16° en semaine et 14° le week-end),
  • la relance du chauffage, à pleine puissance.

Ce type de programmation permet l’arrêt complet du chauffage et la remise rapide en température du bâtiment. Un inconvénient subsiste : la coupure et la relance s’effectuent à heures fixes. Or le temps d’abaissement et de remontée de la température intérieure varie en fonction de la température extérieure, en fonction de la température atteinte pendant la coupure, en fonction de la chaleur emmagasinée dans le bâtiment durant l’occupation, …


Optimiseurs

Par rapport aux programmateurs assurant une coupure et une relance à heures fixes, les optimiseurs font varier le moment de ces dernières en fonction de différents paramètres.

Sur base de la température extérieure

Le moment de la coupure et de la relance varie en fonction de la température extérieure. Lorsqu’il fait plus chaud, le refroidissement du bâtiment est plus lent. L’heure de coupure est donc avancée automatiquement. De même, la température intérieure atteinte durant l’inoccupation et l’énergie nécessaire à la relance est plus faible. L’heure de la relance est donc retardée.

Ce type d’optimiseur ne mesurant pas la température intérieure présente une certaine imprécision en ce qui concerne le moment précis où la température intérieure d’occupation sera atteinte.

Sur base de la température extérieure et intérieure

L’adjonction de la température intérieure atteinte durant l’inoccupation comme paramètre de décision pour enclencher la relance permet une plus grande précision dans la définition de l’heure de relance. Cela limite les risques d’inconfort et optimalise le temps de coupure et donc l’énergie économisée.

La paramétrisation de ce type de programmateur reste délicate, en effet, il faut procéder par essais – erreurs, puisque plusieurs paramètres importants restent inconnus de l’utilisateur : l’inertie thermique du bâtiment, le degré de surpuissance du chauffage, ….

Autoadaptation

On parle d' »optimiseurs autoadaptatifs ».

Le programmateur adapte automatiquement ses paramètres de réglage au jour le jour, en fonction des résultats qu’il a obtenu les jours précédents. Par rapport à l’optimiseur décrit ci-avant et bien réglé, l’optimiseur autoadaptatif n’apportera pas d’économie d’énergie complémentaire. Son rôle est de faciliter (l’utilisateur ne doit plus intervenir) et donc d’optimaliser le réglage.

Exemple.

Lors de la relance matinale, le but définit à l’optimiseur est d’atteindre la température de 20°C au moment de l’occupation du bâtiment.

Le premier jour, comme l’optimiseur ne connaît pas le bâtiment, ni la surpuissance de l’installation, il démarrera l’installation uniquement en se basant sur la température extérieure et la température intérieure.

Dès lors, il est plus que probable que la température de consigne diurne soit atteinte trop tôt.

Le lendemain, l’optimiseur décalera automatiquement le moment de la relance. Ainsi de suite, jusqu’à ce qu’il trouve seul le bon réglage.

On peut considérer qu’il faut 4 jours à un optimiseur autoadaptatif pour définir correctement la loi qui relie la température extérieure, la température intérieure et le moment de la relance.

L’optimiseur fera le même exercice pour anticiper le moment de la coupure, tout en garantissant le confort des occupants.


Comparaison de l’économie réalisée en fonction du type de programmateur

La consommation d’une installation de chauffage est proportionnelle à la différence de température entre l’intérieur et l’extérieur. Plus cette différence diminue, moins on consommera.

Graphiquement, on peut représenter la consommation de chauffage comme suit :

Image de la consommation de chauffage sans intermittence et avec intermittence.

On voit donc que plus la température intérieure chute et plus le temps pendant lequel cette température est basse est important, plus l’économie d’énergie réalisée grâce à l’intermittence est importante.

Comparons l’évolution de la température intérieure (donc l’évolution de l’économie d’énergie) en fonction du programmateur choisi (cas de la mi-saison) :

Abaissement de la température de l’eau.
La réduction de température intérieure est lente, de même que la relance.

Coupure complète et relance à heures fixes.
Le moment où la température de consigne d’occupation est atteinte dépend de la saison.

Optimiseur.
Les moments de la coupure et de la relance sont adaptés soit automatiquement, soit par réglage de l’utilisateur. La précision du réglage et la différence d’économie entre les 3 types d’optimiseurs dépendent de ce dernier.

Comparaison qualitative entre les types de programmateur.


Dérogation

Il est souvent nécessaire dans le cas d’immeubles tertiaires de prévoir une possibilité de dérogation sur le fonctionnement de ralenti.

Un exemple de dérogation particulièrement intéressant est la possibilité de relancer l’installation pour une durée limitée (par exemple, 2 heures). Après cette période l’installation repasse en mode automatique, évitant ainsi tout oubli. Si l’occupant est encore présent, il peut remettre l’installation en dérogation et obtiendra de nouveau 2 heures de chauffage.

Lampes incandescentes

Lampes incandescentes


Comment fonctionne une lampe incandescente ?

Schéma principe lampes incandescentes.

Le courant électrique passe dans le filament en tungstène et le porte à une température élevée par effet Joule. Le filament devient incandescent : il émet de la lumière ainsi que de la chaleur. Des atomes de tungstène sont éjectés du filament par sublimation et sont déposés au niveau de la surface interne de l’ampoule en verre plus froide. Il s’ensuit un noircissement de l’ampoule après un temps d’utilisation relativement court.
Une des parades au noircissement est l’augmentation de la surface des ampoules à incandescence. Raison pour laquelle ce type d’ampoule est de taille importante par rapport aux lampes halogènes par exemple.
Le flux lumineux des lampes à incandescence peut être diminué ou augmenté par variation de la tension (« dimming« ). Cette modulation se fera cependant avec une diminution de la température de couleur et du rendement lumineux.


Itinéraire d’une fin programmée

Depuis septembre 2009, l’utilisation de la lampe à incandescence est en chute libre ! En effet, par rapport à d’autres types de lampe, la lampe à incandescence est très énergivore. Pour cette raison, elle a été retirée progressivement du marché.

Type Puissance 2009 2010 2011 2012 2013 2014 2015 2016
Incandescente Claire
15 W Classe E* Classe E* Classe E* Classe C* Second niveau d’exigences de fonctionnalité Réexamen Classe B
25 W Classe E* Classe E* Classe E* Classe C* Classe B
40 W Classe E* Classe E* Classe E* Classe C* Classe B
60 W Classe E* Classe E* Classe C* Classe C* Classe B
75 W Classe E* Classe C* Classe C* Classe C* Classe B
100 W Classe C* Classe C* Classe C* Classe C* Classe B
Non – claire
Classe A Classe A Classe A Classe A Classe A

Disponibilité

* Classe E pour les culots 514, 515, 519 (linolites)

Indisponibilité

Réglementation 

 Pour en savoir plus sur les classes énergétiques des lampes

Données

 Pour connaitre les caractéristiques des lampes à incandescence

Données 

Pour consulter un récapitulatif des caractéristiques des différents types de lampe

Quand les élèves s’y mettent!

Des projets d’économie d’énergie pris en charge par les élèves… ça marche !

Voici quelques exemples de projets suivis par l’équipe « COREN » dans le cadre du programme d’éducation à l’environnement « Écoles pour demain ».


Le programme « écoles pour demain »

Concrètement, lorsque l’école adhère à ce programme, une classe de l’enseignement secondaire supérieur est sélectionnée.
Coren réalise avec les élèves un éco-bilan de l’école : déchets, eau, transport, énergie, …
Des projets d’amélioration sont proposés par les élèves, puis réalisés par eux tout au long de l’année.

Nous avons repris ci-dessous quelques projets « énergie »


Institut d’Enseignement  Secondaire Paramédical Provincial à Mons

Le projet

En collaboration avec le service technique de l’école, les élèves, très motivés, ont mesuré la luminosité dans les classes et les corridors. Ils ont supprimé les points lumineux inutiles, ceci pour adapter l’éclairage aux besoins réels dans chaque local.

Les résultats concrets

  • mise en évidence de niveaux d’éclairage inappropriés dans les classes,
  • étude plus approfondie réalisée par un bureau technique,
  • rénovation progressive des luminaires permettant d’améliorer le confort visuel et de réaliser de substantielles économies d’énergie (10 400 € sur une année scolaire).

Ce  qu’ils en disent

« Les éco-gestionnaires de par leurs actions, les informations dans les classes, leur participation aux portes ouvertes de l’école deviennent peu à peu indispensables à la vie de la communauté scolaire toute entière… ».
Coren

Coordonnées de contact

IESPP
Bld. Kennedy, 2a
7000 MONS
tel : 065 32 89 00

Direction : Mme Dupont-Lecomte ; Éco-gestionnaire : Mme Ruelle ; Groupes éco-gestion dans les classes de 4ème, 5ème et 6ème; Lauréat prix « EPO ».


Institut St Joseph à Visé

Le projet

Diminuer la consommation électrique de l’école, objectif atteint en utilisant ses propres ressources : la section électricité de l’école.

Après audit, l’équipe « économie d’énergie » décide d’améliorer les installations électriques dans quelques classes. Quand les élèves s’y mettent, les idées lumineuses foisonnent…

Les résultats concrets

  • réalisation d’affiches et de pictogrammes placés dans les classes pour rappeler aux élèves d’éteindre les lumières quand ils quittent les classes,
  • réalisation de schémas des installations existantes,
  • réalisation de schémas de nouvelles installations plus rationnelles : placement d’un interrupteur par classe et d’une lampe rouge extérieure avertissant que la lumière n’est pas éteinte,
  • mise en œuvre et évaluation des modifications.

Ce  qu’ils en disent

« C’était chouette de tout réaliser nous-mêmes… ».

Coordonnées de contact

Institut St Joseph, implantation de l’Institut du Sacré – Cœur
Rue de la Trairie, 27
4600 Visé
Tel : 041 79 24 05
Fax : 041 79 67 66

Direction : Mr. Brandt; Éco-gestionnaires : Mr. Fiume – Mme Surlemont ; Classe de 6ème ; Lauréat prix « EPO ».


Institut Communal Enseignement Technique à Bastogne

Le projet

Sur base des connaissances acquises dans le cadre de leur enseignement technique, les élèves ont étudié et repensé une partie de l’installation électrique de l’école. Ils ont également analysé de près la facture électrique !

Il leur a fallu convaincre l’économat et le service de la Commune de Bastogne de l’intérêt de l’opération.

Les résultats concrets

  • installation de minuteries pour l’éclairage des vestiaires et des toilettes,
  • mise en place et programmation par horloge du boiler électrique alimentant les douches du vestiaire,
  • installation de boutons-poussoirs supplémentaires dans les couloirs,
  • installation de batteries de condensateurs de compensation.

Ce  qu’ils en disent

« Mieux gérer le gaspillage dans l’école, améliorer les conditions de travail et la sécurité des élèves, c’est certainement la façon la plus intelligente de préparer les comportements écologiques des adultes de demain ».
Coren.

Coordonnées de contact

ICET
Rue des remparts, 57
6600 Bastogne
tel : 061 21 14 44
Direction : Mr. Flock ; Éco-gestionnaire : Mr. Lhote ; 5ème section électro-mécanique ; Label « EPO » avec mention spéciale du jury.

Sonde COV

Sonde COV


Domaine d’application

Il s’agit d’une sonde de qualité de l’air, permettant notamment de réguler la ventilation en fonction des besoins. La mesure des Composés Organiques Volatiles (« mixed-gas sensors » ou VOC en anglais) est surtout réalisée dans les lieux fortement pollués par la présence de fumée de tabac ou d’odeurs.

La sonde présente en effet une grande sensibilité aux odeurs d’origine humaine, à la fumée de cigarette et aux émissions provenant des matériaux d’ameublement et de décoration, aux produits d’entretien ménager,… Bref, aux bonnes comme aux mauvaises odeurs! Il ne faut donc pas interpréter trop vite l’emballement du ventilateur lorsque la secrétaire rentre dans son bureau : c’est seulement la puissance de son parfum !

Elle permet une mesure simple, peu onéreuse, bien adaptée aux applications qui réclament une évaluation non sélective des polluants dans les bâtiments. Sa concurrente directe est la sonde CO2 plus fidèle pour détecter le nombre de personnes présentes dans un local, par exemple.


Fonctionnement

La sonde COV utilise le principe de Taguchi. Elle dispose d’un semi-conducteur (le plus souvent du dioxyde d’étain), mis en température par une résistance chauffante.

La surface du semi-conducteur est recouverte d’une très fine couche d’oxydes métalliques. Il s’y produit une oxydation des gaz et vapeurs, d’autant plus prononcée que le matériau est poreux et présente une surface d’échange importante. Sa résistance électrique varie en fonction de la quantité de molécules de composés organiques en contact. Le spectre des molécules auquel cet élément est sensible est très large, cette faible sélectivité (faible mais non nulle) la rend adaptée aux émanations humaines, à la fumée de tabac et à bien d’autres composés.

Suite à la variation de la résistance électrique du semi-conducteur, une simple mesure de tension électrique permet de connaître la quantité de gaz et de vapeur en présence.


Présentation

Il existe deux modèles de sondes COV : celles qui s’installent en paroi, dans le local et celles qui prennent place dans les conduits aérauliques.

Leurs présentations et leurs encombrements sont similaires à celles des sondes de température.


Emplacement

Il est préférable de choisir une sonde à placer en conduit aéraulique et de l’installer dans le conduit de reprise d’air. Ainsi, la mesure est plus représentative de la qualité d’air moyenne du local et la sonde n’est moins soumise aux perturbations locales et à l’empoussièrement.

Il convient toutefois de prendre quelques précautions. Les sondes ne doivent pas être installées ni trop loin, ni trop près de la grille de reprise, de façon à

  • éviter les dépôts sur la partie sensible de la sonde,
  • ne pas augmenter par trop le temps de réponse,
  • éviter les risques de condensation de vapeur d’eau sur la sonde,
  • garder un accès aisé.

Dans le cas où la sonde est placée dans le local, on sera attentif à

  • les éloigner des portes et fenêtres (pour éviter l’influence de l’air extérieur),
  • éviter les coins (mauvaise circulation de l’air).

Output

Ces sondes délivrent un signal analogique standard de type 0 – 10 V, proportionnel à la présence de composés organiques volatiles. Leur réponse est quelquefois exprimée en 0 – 100 % de qualité d’air.


Fiabilité

Des études ont montré une perte de sensibilité du semi-conducteur lors de son vieillissement. Par ailleurs, il semblerait que les conditions de température et d’humidité ambiante aient une influence sur la réponse.

Mise sue le marché au début des années 80, ces sondes ont connus des problèmes de jeunesses mais leur fiabilité s’est accrue depuis lors.

Les durées de remise en régime de ces sondes, d’une quinzaine de minutes au maximum, sont suffisantes pour recouvrer une réponse correcte et stable après interruption de l’alimentation électrique même de longue durée (plus d’une dizaine d’heures), contrairement aux indications des notices techniques.


Coût

Le prix moyen d’une sonde de COV est de 225 €.


Maintenance

Les mesures de composés organiques volatiles à semi-conducteurs requièrent un étalonnage fréquent bien qu’il ne soit pas toujours spécifié par les constructeurs. Une périodicité de 6 mois au plus est conseillée.

Le choix du mélange de référence est ouvert.

Le ré-étalonnage nécessite de prendre des précautions quant au choix du mélange de référence. Quelques notices techniques de fournisseurs préconisent de réaliser un étalonnage pour une concentration de méthane de 1 000 ppm. Il semble que l’acétone puisse être utilisée pour simuler les odeurs corporelles et le monoxyde de carbone pour la fumée de tabac.

Auditer rapidement une installation de chauffage

Production de chaleur

Repérer le problème

 Projet à étudier

 Rentabilité

Le rendement de combustion est-il supérieur :

– à 88 % s’il s’agit d’une ancienne chaudière ?

– à 91 % s’il s’agit d’une nouvelle chaudière ?

– à 98 % s’il s’agit d’une chaudière à condensation ?

Si non, analyse de l’attestation d’entretien :

1. le pourcentage de CO2 des fumées est-il inférieur à 12% en fuel ou 10% en gaz ?

2. existe-t-il un régulateur de tirage sur la cheminée et est-il correctement réglé ? (Une dépression dans la cheminée > 20 Pa est un indice de tirage trop important).

3. la chaudière est-elle « propre » (pas encrassée) ? (température fumée < 200°C, entretien régulier)

4. la chaudière est-elle exempte de traces d’inétanchéité à l’air ? (fumées noires, rouille le long de la jaquette, vision de la flamme à travers la jaquette)

5. la puissance du brûleur est-elle inférieure à celle de la chaudière ?
(Calculer les puissances à partir de l’attestation d’entretien. Indice d’un brûleur trop puissant : la flamme tape trop fort au fond.
Remarque : la question ne se pose pas pour les chaudières atmosphériques).

6. la ventilation de la chaufferie est-elle suffisante ?

7. la chaudière et le brûleur ont-ils moins de 25 ans ?

La performance doit être améliorée.

Si le rendement reste inférieur à 88% après avoir effectué les améliorations possibles (régler le brûleur, colmater et nettoyer la chaudière, réguler le tirage, diminuer la puissance du brûleur), remplacer le brûleur et/ou la chaudière.

+ + +

Remplacer la chaudière et le brûleur : gain jusqu’à 15 % de la consommation totale.

Remplacer le brûleur : gain de 3 à 10 %.

Placer un régulateur de tirage : de 1 à 3 %.

Diminuer la puissance du brûleur existant (mettre un gicleur de plus petit calibre) : de 1 à 2  %.

La chaudière est-elle une ancienne chaudière gaz atmosphérique ? Remplacer la chaudière par une chaudière munie d’un brûleur à air pulsé ou d’un ventilateur d’extraction sur les fumées.

+ + +

Investissement rentabilisé en 5 ans si maintien de la chaudière en température.

L’isolant de la chaudière est-il détérioré, voire absent ?

Le corps de la chaudière est-il bien isolé ? entièrement et supérieur à 3 cm ?

La jaquette est-elle froide au contact de la main ? inférieure à 35 °C ?

Réisoler la jaquette.

Remplacer la chaudière.

+ +

Remplacer la chaudière et le brûleur : jusqu’à 15 % de la consommation totale.

Le brûleur est-il à deux allures et ces allures sont-elles bien régulées en cascade ? (ex : consigne d’aquastat de 1ère allure > consigne d’aquastat de 2ème  allure + 10°C) Modifier la régulation de l’enclenchement des étages du brûleur.

+ + +

Gain : 2..3 % de rendement.

L’aspiration d’air du brûleur est-elle fermée à l’arrêt ? Corriger le raccordement électrique du brûleur.

Débloquer le clapet pour qu’il se ferme.

Remplacer le brûleur.

+ + +

Gain : 2 .. 3 % de rendement.

Chaudière surdimensionnée ?

La puissance du brûleur est-elle inférieur à celle de la chaudière ?

Le brûleur est-il trop puissant ? la flamme tape au fond du foyer ?

Rapport consommation [kWh] / puissance [kW]   < 1000  h (bâtiment bien isolé) … 1 500 h (bâtiment ancien) ?

Les cycles de fonctionnement du brûleur sont-ils longs ? (sup à 4 min. en hiver) ?

Diminuer la puissance du brûleur (modifier le gicleur en restant dans les limites admises).

Diminuer la puissance chaudière lors du remplacement de la chaudière et/ou du brûleur.

+ + +

Investissement plus faible lors du remplacement.

Si chaudière à condensation, la température de l’eau de retour est-elle < 50°C ? Améliorer le réseau hydraulique pour valoriser la chaudière à condensation.

Diminuer la vitesse de circulation, éviter les soupapes différentielles, placer des circulateurs à vitesse variable.

Adapter la régulation de la production d’eau chaude sanitaire combinée.

+ +

… 6…% de la consommation de chauffage.

Si l’installation est composée de plusieurs chaudières :

– Sont-elles régulées en cascade ?

– Sont-elles équipées de vannes d’isolement motorisées ? ou d’un circulateur propre avec un clapet anti-retour ?

– le maintien en température de toutes les chaudières est-il évité ?

Réguler les chaudières en cascade

+ +

 

S’il existe des besoins de chaleur et d’électricité continus et simultanés, sont-ils valorisés par une installation  de cogénération ? Évaluer la faisabilité d’un projet de cogénération

+ +


Distribution de chaleur

 Repérer le problème

 Projet à étudier

 Rentabilité

Les conduites et les vannes traversant les locaux non chauffés en permanence (chaufferie, gaines techniques, faux-plafonds, …) sont-elles isolées ? Isoler les conduites (ainsi que les vannes) dans les locaux non chauffés en permanence (gaines techniques, faux-plafonds, …).

+ + +

TR = moins d’un an

Gain = 90 % des pertes de la conduite.

La vitesse des circulateurs est-elle trop élevée ?

Par grand froid (T° < 0°C), la différence de température entre le départ et le retour des circuits est-elle > 15°C?

La somme des puissances électriques des circulateurs est-elle inférieure à 2 millièmes de la puissance des chaudières ?

Réduire de vitesse les circulateurs à plusieurs vitesses.

+ + +

gain : … 40…%  de la consommation électrique des circulateurs.

Si l’installation est équipée :

  • de radiateurs avec vannes thermostatiques,
  • de ventilo-convecteurs avec vannes 2 voies,
  • ou d’autres unités terminales à débit variable,

la pompe de circulation est-elle à vitesse variable ?

En cas de remplacement de circulateur, placer des circulateurs à vitesse variable.

+

gain : 40 … 50 %  de la consommation du circulateur.

Les locaux en bout de circuit de chauffage sont-ils aussi bien chauffés que les autres ?

Des locaux défavorisés (difficiles à chauffer) ou présentant de problèmes d’inconfort indiquent un problème d’équilibrage du réseau.

Equiper le départ des circuits de vannes d’équilibrage et les radiateurs/ventilo-convecteurs de tés de réglage, puis équilibrer l’installation.

+ +

Amélioration du confort, l’économie dépend de la surchauffe existante pour satisfaire les occupants des locaux mal chauffés (1°C de trop…7 à 8 % de surconsommation).

Le circuit hydraulique est-il découpé par zones de besoins homogènes ? ou faut-il chauffer tout un bâtiment ou toute une zone pour quelques locaux occupés ?

(Circuits séparés en fonction de l’orientation et de l’usage des locaux : horaires d’utilisation, température de consigne, etc.. et régulation distincte par circuit).

Adapter le découpage du réseau aux besoins des locaux et placer une régulation par zone.

+

Dépend de l’ampleur des zones chauffées inutilement.

Certaines parties du réseau sont-elles corrodées ?

L’appoint d’eau est-il inférieur à 1 litre par kW installé par an ?

Évaluer l’état mécanique du réseau de distribution

+

 


Émission de chaleur

 Repérer le problème

 Projet à étudier

 Rentabilité

Les allèges sont-elles isolées ?

Les allèges sont-elles vitrées ?

Coller un isolant avec couverture réfléchissante au dos du radiateur

+ + +

TR = de 1 à 3 ans

La surface inférieure des planchers chauffant est-elle isolée ? Placer un isolant sous les planchers chauffant

+ + +

TR = de 1 à 3 ans

Les radiateurs sont dégagés et libres d’obstacles ?

Les occupants évitent-ils d’encombrer les équipements ?

Libérer les radiateurs des entraves au bon passage et à la bonne diffusion de la chaleur

+ + 

Effet immédiat!

La température de surface du radiateur est-elle homogène ? est-il chaud en bas et froid en haut ? Purger l’air présent

+ + 

La température de surface du radiateur est-elle homogène ? est-il froid en bas et chaud en haut ? Augmenter le débit d’alimentation

+ + 


Régulation

 Repérer le problème

 Projet à étudier

 Rentabilité

La régulation du chauffage a-t-elle un programme de jour et un programme de nuit ? Arrêter l’installation de chauffage la nuit et le week-end, avec un contrôle de température par thermostat d’ambiance.

+ + +

Gain  de 5 à 30 %, suivant la situation de départ.

Le nombre de jours programmables des horloges correspond-il au mode d’occupation des locaux ?

(Peut-on faire une programmation différente un jour de semaine et le week-end, peut-on programmer à l’avance les journées de congé, …?).

Remplacer l’horloge afin de pouvoir programmer le fonctionnement de l’installation conformément à l’utilisation du bâtiment.

+ + +

Gain de 5 à 15 %.

Les horaires appliqués correspondent-ils réellement à l’occupation ? Adapter les horaires de la régulation aux horaires d’occupation réels du bâtiment

+ + +

Les circulateurs sont-ils arrêtés lorsqu’il n’y a pas de besoins de chauffage ?

(En été, en coupure de nuit,etc., lorsque les vannes mélangeuses sont fermées).

Arrêter les circulateurs lorsqu’il n’y a pas de besoin de chauffage.

+ +

Gain de 50 % de la consommation des circulateurs.

La température ambiante de consigne en chauffage est-elle respectée dans les différents locaux ? Corriger le réglage des courbes de chauffe.

+ + +

1°C de trop…7 à 8 % de surconsommation.

Les radiateurs des locaux ensoleillés ou à forte occupation sont-ils équipés de vannes thermostatiques ? Placer des vannes thermostatiques dans les locaux où il y a surchauffe.

+ +

1°C de trop…7 à 8 % de surconsommation.

De l’eau est-elle régulièrement ajoutée au réseau ?

Le vase d’expansion sonne-t-il « plein » (et non « creux »)  ?

(Signe d’une fuite de l’installation et, à terme, d’un risque de corrosion).

Remédier à la cause de l’insuffisance d’eau, trouver l’origine de la fuite. Évite l’ajout d’eau trop fréquent dans la chaudière, entraînant une corrosion de l’installation et une surconsommation due à l’entartrage.

Audit complet avec classement des mesures à prendre ?

L’audit d’un bâtiment existant

Pour le Responsable Énergie ouverture d'une nouvelle fenêtre !

Évaluer (bâtiments non climatisés)

Évaluer (bâtiments climatisés)

Pour l’auditeur (xls)

Caculs (bâtiments non climatisés)

Calculs (bâtiments climatisés)

Évaluer l’efficacité énergétique de la régulation

Évaluer l'efficacité énergétique de la régulation

Pertes de régulation.


Le point de départ : le relevé de l’installation

Pour analyser la régulation d’un bâtiment, pour imaginer de nouvelles solutions et en discuter avec le gestionnaire de l’installation de chauffage voire l’installateur, il est très utile de commencer par tracer le schéma hydraulique de l’installation de chauffage. C’est un schéma simplifié reprenant les chaudières, les tuyauteries, les corps de chauffe, … sur lequel on pourra ensuite greffer les équipements de régulation. Notons que l’on parle ici de « schéma hydraulique » parce que ce sont les installations de chauffage à eau chaude qui sont actuellement les plus fréquemment rencontrées, mais le raisonnement est similaire pour les installations de chauffage à air chaud.

Idéalement, un tel schéma doit déjà exister et se trouver dans la chaufferie. L’installateur en a généralement une copie. À défaut, …il faudra le recomposer ! Ce travail est mis à jour à chaque modification de l’installation. Mieux, il est placé dans une double pochette plastique de protection, avec le carnet d’entretien de l’installation. Dans ce carnet sont notées toutes les interventions effectuées sur l’installation de chauffage, les plaintes des occupants, les modifications de réglage qui ont suivi, … Quelle mine d’informations pour un nouvel intervenant !

Pour réaliser le schéma, la tâche consiste « à suivre les tuyaux » et à dresser un plan simplifié du réseau.

Exemple : principe de régulation d’une installation existante et son schéma hydraulique. Voici typiquement le type de schéma de principe d’une installation que l’on a à sa disposition ou que l’on doit générer soi-même.

On reconnaît :

  • La température de l’eau (3) des circuits A, B, C est régulée par une vanne 3 voies en fonction de sondes extérieures (1) et (10).
  • La température du collecteur (5) est automatiquement calculée en fonction de la température du circuit secondaire le plus demandeur.
  • Les chaudières et leur circulateur sont commandés en cascade en fonction des besoins (6).
  • Un régulateur optimiseur (2) gère le ralenti nocturne du circuit A (circuit nord).
  • Un thermostat d’ambiance (12) permet une programmation séparée du circuit B.
  • Le ralenti nocturne du circuit C (circuit Sud) est géré par un régulateur optimiseur (11). Ce régulateur dispose d’une sonde solaire en complément de la température extérieure communiquée par le régulateur au Nord.
  • Un contact est utilisé pour la coupure de deux ventilateurs d’extraction situés dans la salle de sports située au Sud également.
  • Une vanne de zone deux voies (15a), commandée par un thermostat d’ambiance et par une horloge pour le circuit D (réfectoire à usage limité).
  • Une vanne de zone deux voies (15b) pour les circuits E et F (locaux administratifs), commandée par une simple horloge, étant entendu que la température de départ est régulée dès la sortie de chaudière. Des vannes thermostatiques sont présentes dans les locaux pour une régulation complémentaire.
  • À noter qu’une soupape différentielle stabilise la pression des réseaux D et E et que le circulateur est coupé si les deux vannes de zone sont fermées.
  • En pratique, il est plus aisé de comprendre la logique qui règne dans cet « amas de tuyaux » si l’ensemble de l’installation est décomposé en 3 niveaux :
  1. Production de chaleur,
  2. Distribution de chaleur : découpage du bâtiment en zones disposant d’un circuit d’alimentation distinct et distribution vers chaque zone,
  3. Émission de chaque corps de chauffe.

On retrouve alors les 3 niveaux de régulation qui y sont associés :

  • Production : régulation de la chaudière (ou de la cascade de chaudières) et régulation de la température de la boucle primaire,
  • Distribution : régulation de la température de chaque départ,
  • Émission : « finition » de la régulation, par exemple via les vannes thermostatiques.

Techniques

Des symboles conventionnels existent pour représenter les divers équipements. En les utilisant, on simplifie les représentations et on utilise un langage commun aux hommes de métier.
Exemple :

Voici, à titre d’exemple, le schéma d’une installation comportant 1 chaudière et 3 circuits consommateurs, un circuit de chauffage pour radiateurs en façade Nord, un circuit pour radiateurs en façade Sud (avec présence d’une sonde d’ensoleillement) et un circuit pour l’échangeur d’eau chaude sanitaire.


La campagne de mesure : un outil pour tous

Dans les grandes installations modernes, les mesures et l’historique des différents capteurs alimentant le système de régulation sont parfois disponibles. Nous ne traiterons pas ce cas ici. En effet, nous nous concentrerons uniquement sur la situation la plus courante, situation où l’installation est éventuellement équipée de capteurs, mais dont l’historique de mesure n’est disponible par l’utilisateur.

     

Les deux premières photographies montrent des capteurs qui mesurent la température de départ de deux circuits de chauffage. Pour information, ces capteurs sont connectés à la régulation électronique de l’installation (voir dernière photo) qui maintient cette température de départ à un certain niveau. Nous supposons ci-dessous que l’historique de ces capteurs intégrés à la régulation n’est pas disponible par l’utilisateur.

Sur base du schéma de principe de l’installation, il est opportun de placer plusieurs sondes de température pour vérifier le comportement de cette installation, pour réaliser son diagnostic. Il s’agit essentiellement de mesurer :

  • La température de départ et de retour de certains circuits de chauffage en mesurant la température de la surface métallique des conduites. Si la température de départ est régulée de manière climatique, la présence d’une sonde permet de vérifier si la température de départ correspond bien aux paramètres de la courbe de chauffe, voire si la courbe de chauffe est correctement fixée. La température de retour peut aussi présenter un certain intérêt. Dans le cas des chaudières à condensation, on peut vérifier que la température de retour vers la chaudière est généralement inférieure au point de rosée du gaz (~ 55 °C) ou du mazout (~ 47.5 °C). Cela permet donc de vérifier que la chaudière condense effectivement ! La pratique montre que dans beaucoup d’installations les chaudières à condensation ne condensent pas parce que la température de retour n’est pas suffisamment basse.
  • La température dans différentes zones thermiques au moyen de sondes de température ambiante. On peut détecter la présence d’une température trop basse, synonyme d’inconfort, ou une température trop élevée par rapport à la consigne, synonyme de surconsommation voire d’inconfort. En outre, on peut vérifier si l’intermittence du chauffage correspond bien à l’horaire d’occupation du bâtiment.
  • La mesure de la température extérieure toujours au moyen d’une sonde de température ambiante. Néanmoins, il faudra être vigilant et la placer à l’ombre pour que la mesure ne soit pas faussée par le rayonnement du soleil.

     

La première et la deuxième figure montrent une sonde « temporaire » de mesure de la température de surface d’une conduite placée par un auditeur : le capteur est maintenu contre la conduite au moyen d’une bande en velcro assurant ainsi une bonne mesure. La dernière figure montre un type de sonde de température ambiante voire de température extérieure. Comme on le voit, ces capteurs ne sont pas équipés d’alimentation électrique, mais de piles si bien qu’avec leur taille réduite, ils peuvent être facilement placés au sein de l’installation de chauffage.

À l’heure actuelle, le prix des sondes mesurant la température est devenu très abordable. Au regard des économies d’énergie qu’une optimisation de la régulation peut engendrer, l’investissement dans ces appareils de mesure est souvent négligeable. En outre, les sondes sont fournies avec un logiciel qui permet de traiter très facilement les données. Il permet d’extraire les données de la sonde et de l’importer vers un ordinateur ainsi que de visualiser très facilement ces données pour effectuer son diagnostic. La paramétrisation des sondes est souvent très simple et très intuitive. Les sondes possèdent une mémoire d’enregistrement assez importante pour permettre de collecter plusieurs semaines voire plusieurs mois de mesures (suivante le laps de temps entre chaque mesure de température réalisée). Il n’est pas nécessaire de « veiller » en permanence sur l’installation de mesure pendant la campagne.  Par conséquent, la campagne de mesure n’est pas onéreuse et n’est pas une question des spécialistes !

Reprenons l’exemple ci-dessus

Dans cette installation, on est en présence d’une chaudière dont le brûleur est régulé pour maintenir le départ à un certain niveau de température. La boucle primaire alimente deux circuits qui correspondent aux pièces de la façade Nord et Sud. La température de départ de chaque circuit est régulée en fonction de la température extérieure (régulation climatique) et d’une vanne 3 voie. Des capteurs de température sont déjà présents pour cette régulation, mais les valeurs mesurées sont non accessibles.

Dans ce cas, une manière efficace de vérifier le fonctionnement réel de cette installation est de placer des sondes de température de surface juste en aval des vannes 3 voies sur les 2 circuits de chauffage ainsi qu’une sonde de température à l’extérieur du bâtiment. En outre, si on peut placer une ou plusieurs sondes dans les pièces relatives aux circuits Nord et Sud, on aura une bonne idée du confort rencontré dans le bâtiment, de l’adéquation entre la température de départ des circuits de chauffage et le confort (ou la surchauffe) rencontré. Finalement, si la chaudière possède un mode de régulation spécifique, notamment en ce qui concerne la gestion de l’eau chaude sanitaire, on peut placer des capteurs sur le collecteur primaire afin de vérifier si la température de la chaudière évolue correctement suivant ce mode de régulation.


La chaleur fournie est-elle adéquate en intensité ?

Ou le respect de la température de consigne …

Souvent en présence d’une régulation climatique

Dans la plupart des installations de chauffage dans le secteur tertiaire, la température de l’eau distribuée dans le bâtiment est régulée en fonction de la température extérieure (c’est-à-dire par une régulation climatique) au moyen :

Ce mode de régulation est intéressant, car il permet de limiter les pertes des circuits de distribution et parfois des chaudières. En outre, il est presque indispensable pour permettre un fonctionnement correct des vannes thermostatiques. Appliqué seul, la régulier climatique est cependant rarement suffisante, d’autant plus que son réglage laisse souvent à désirer.

Concevoir

Pour en savoir plus sur le choix du mode de régulation.

Techniques

Pour comprendre le réglage d’un régulateur avec courbe de chauffe.

Absence de régulation locale

Tout d’abord, le chauffage n’est totalement efficace que si les besoins de tous les locaux desservis avec une même température d’eau, ont des besoins identiques :

  • même exposition ;
  • mêmes apports internes ;
  • même surdimensionnement des émetteurs.

Dans le cas contraire, il est impossible, sans régulation locale complémentaire, même avec le réglage global le plus fin, de contenter tout le monde, d’éviter les surchauffes locales et une régulation par « ouverture des fenêtres ». Ces éléments sont source de surconsommation voire d’inconfort.

Si sur un même circuit de distribution, il existe des locaux soumis à des apports de chaleur gratuits (nombre d’occupants élevés, ensoleillement, équipement plus important, ….), pratiquement, seules des vannes thermostatiques peuvent y limiter l’émission de chaleur et permettre des économies d’énergie.

Améliorer

Placer des vannes thermostatiques.

Mauvais réglage de la courbe de chauffe

Bien souvent la température de l’eau envoyée dans l’installation est trop élevée. Il y a plusieurs raisons à cela :

  • Le réglage des courbes de chauffe est effectué de façon « standard » par le chauffagiste ou la société en charge de la régulation (à l’installation ou la maintenance), sans connaître réellement le comportement thermique du bâtiment, les caractéristiques des émetteurs et le souhait des occupants.
  • À chaque plainte, le responsable technique du bâtiment modifie le réglage de la courbe, le plus souvent au hasard, en redressant la courbe ou en changeant le déplacement parallèle (afin d’obtenir une température de départ plus élevée). Souvent, aucun historique des réglages successifs n’est tenu, il est donc impossible d’optimiser la température d’eau pour toute la saison de chauffe.
  • Ou tout simplement, la régulation est absente. Le gestionnaire du bâtiment modifie manuellement la température de la chaudière ou la position des vannes trois voies dont le moteur est inopérant en fonction des saisons.

Calculs

Tracer la courbe de chauffe programmée sur le régulateur.
Histoire vraie : une installation de chauffage d’une piscine sans régulation (globale et locale).

Le gestionnaire de cette installation tourne manuellement, chaque matin, les vannes mélangeuses, en fonction de sa perception du climat (il ne dispose même pas d’un thermomètre). Pour la régulation de chaque local, les occupants ouvrent ou ferment plus ou moins leur fenêtre.

La régulation a, en fait, été déconnectée, il y a plusieurs années, suite à un litige avec le chauffagiste. Rien ne fut entrepris depuis.

Une bonne part des moteurs de vanne sont « hors service » et certaines vannes même fermées laissent passer de l’eau chaude. Ceci a pour conséquence de chauffer certaines zones même en été.

Or il faut savoir que chaque bâtiment doit avoir une courbe de chauffe unique, en fonction,

  • des caractéristiques des émetteurs ;
  • de la température intérieure souhaitée ;
  • des caractéristiques thermiques du bâtiment.

Cette courbe de chauffe doit être réglée une fois pour toutes et reste valable quelle que soit la saison. Elle ne doit être modifiée que si un des 3 paramètres ci-dessus est modifié, par exemple, si on remplace les anciennes menuiseries par des doubles vitrages.

Améliorer

Régler les courbes de chauffe.

Ordre de grandeur

Il est difficile de chiffrer l’impact énergétique de tels défauts de régulation. Celui-ci n’est cependant pas négligeable. Pour s’en convaincre, on peut retenir l’ordre de grandeur suivant :

Dans un local dont la température de consigne est de 20 °C

un degré de trop = 7 .. 8 % de surconsommation !


La chaleur fournie est-elle adéquate suivant les lieux ?

Situation fréquente : les horaires d’occupation des locaux ne correspondent pas avec le découpage du réseau hydraulique.

  • Certains locaux doivent être chauffés en dehors des heures d’occupation du reste du bâtiment (réunion en soirée, conciergerie, salle de sport d’une école, …) et imposent le chauffage inutile de l’ensemble.
  • Certains locaux ne doivent pas être chauffés en permanence durant la journée (internat dans une école, bibliothèque ouverte 1 jour par semaine, …), mais le sont, car ils ne disposent pas d’une régulation particulière.

On peut évaluer grossièrement l’impact énergétique de telles situations :

Exemple.

Considérons une école chauffée 24 h sur 24 à cause de la conciergerie qui occupe 10 % de la surface totale. Si on imagine que la coupure du chauffage dans ce type d’établissement permet une économie de 30 %, l’économie totale réalisable si on dissocie le chauffage de la conciergerie de celui de l’école peut être estimée à :

0,3 x 0,9 = 0,27 ou 27 %

Différentes solutions peuvent être envisagées, avec des coûts extrêmement variables :

  • modifier les circuits hydrauliques ;
  • placer des vannes de zones ;
  • placer des vannes thermostatiques programmables ;
  • modifier l’occupation des locaux.

Cette dernière solution est souvent oubliée. Pourtant, une réorganisation des horaires ou des lieux d’activités permet d’éviter de gros investissements. Par exemple, pourquoi ne pas essayer d’organiser la réunion hebdomadaire du club de scrabble dans l’aile du bâtiment de toute façon chauffée pour les internes ?

Améliorer

Redécouper la régulation des différentes zones.

La chaleur fournie est-elle adéquate dans le temps ?

Utilité de l’intermittence

On entend encore parfois la réflexion : « Cela ne sert à rien de couper le chauffage durant la nuit, la chaleur économisée est repayée en début de journée suivante pour recharger les murs ! » C’est faux !


Image de la consommation de chauffage sans intermittence et avec intermittence.

La consommation d’un bâtiment est proportionnelle à la différence de température sur l’année entre l’intérieur et l’extérieur. On voit donc que l’on ne peut faire que des économies en coupant l’installation de chauffage quand le bâtiment est inoccupé.

On a toujours intérêt à couper le chauffage la nuit. Il est vrai que la décharge des murs devra être compensée par une surconsommation en début de journée pour les remettre à température. Mais le gain énergétique provient de la diminution des déperditions nocturnes. Et donc, plus la température intérieure descendra, plus l’économie augmentera.

Au pire, la coupure n’entraînera quasi pas de diminution de la température intérieure (cas d’un bâtiment fort inerte et très isolé) et l’économie d’énergie sera quasi nulle. Mais jamais on ne consommera plus.

Théories

Il est difficile d’évaluer précisément l’économie que l’on réalisera en pratiquant une intermittence du chauffage.

Par exemple, si avant la pratique de l’intermittence, un bâtiment était chauffé 24h/24 et qu’avec cette pratique, ce bâtiment n’est plus chauffé que deux heures par jour, la nouvelle consommation ne sera pas de 2/24ème, mais bien du tiers ou de la moitié de ce qu’elle était initialement. Pourquoi ? À cause de l’inertie du bâtiment …

Pour en savoir plus sur les éléments qui influencent l’économie réalisée.

 Abaissement de la courbe de chauffe

Dans la plupart des installations de chauffage, l’intermittence de chauffage (de nuit, de week-end) s’effectue par un abaissement de la courbe de chauffe : en fonction d’une horloge, la température de l’eau circulant dans l’installation est abaissée par rapport à la température d’eau de jour.

Pratiquer de la sorte est le mode de ralenti le moins efficace (et pourtant, il est encore installé fréquemment de nos jours).

En effet, en période d’inoccupation, on continue toujours à chauffer le bâtiment, mais avec de l’eau moins chaude. La chute de température dans le bâtiment est donc nettement plus lente que si on coupait entièrement l’installation jusqu’à ce que la température intérieure d’inoccupation soit atteinte.

Comparaison qualitative entre les types de mode d’intermittence :
évolution de la température intérieure en fonction de l’horaire d’occupation 8 .. 18h.

L’économie réalisée par l’intermittence dépend évidemment du temps de coupure possible.

Exemple.

Prenons l’exemple d’une école ouverte de 8h00 à 18h00, 182 jours par an. Le temps d’inoccupation durant la saison de chauffe est de près de 70 % !

Les économies réalisables en y pratiquant l’intermittence du chauffage avec un optimiseur sont de l’ordre de (à nuancer en fonction du degré d’isolation et de l’inertie thermique du bâtiment) :

  • 30 % par rapport au bâtiment chauffé en continu,
  • 15 à 20 % si le bâtiment dispose déjà d’un abaissement de température d’eau,

Vérification des horloges

Mise à l’heure

Dans de nombreuses chaufferies (principalement dans les bâtiments où aucune personne n’est désignée pour suivre quelque peu le fonctionnement de l’installation), les horloges des régulateurs ne sont simplement pas à l’heure ! … Parce qu’il y a eu une coupure de courant, parce que l’on a oublié le changement d’heure en hiver ou en été, ….

Horloge quotidienne

Beaucoup d’horloges anciennes sont quotidiennes, non hebdomadaires, encore moins annuelles. Cela ne correspond pas toujours au mode d’occupation du bâtiment. Par exemple, une horloge quotidienne dans une école entraîne la mise en route de l’installation durant les week-ends, alors que le bâtiment est inoccupé …

Horaires appliqués

Lorsque le moment de la relance et de la coupure est programmé par le gestionnaire (ou le chauffagiste), ce dernier prend souvent ses précautions de manière à éviter les plaintes de occupants et programme un temps de relance exagéré et une coupure, bien après la fin des activités.

Parfois ces horaires trop importants de fonctionnement se justifient par des défauts hydrauliques dans l’installation.

Par exemple, dans une installation déséquilibrée, on avance le moment de la relance pour satisfaire le dernier circuit (celui où il fait toujours froid …). Or le problème ne provient pas du moment choisi pour la relance, mais d’un dysfonctionnement hydraulique de l’installation et il est résolu au prix d’une surconsommation.

Évaluer

Pour en savoir plus sur le diagnostic de l’inconfort.

En résumé

Vérifiez si les horaires appliqués correspondent bien à l’occupation et s’ils ne peuvent être réduits … Cela sera peut-être l’occasion de constater que les régulateurs ont été mis en dérogation sur la marche de jour permanente et non sur la marche liée à l’horloge, sans que l’on sache depuis quand ni qui a effectué cette manœuvre ..

Choix de la température d’eau

Potentiomètres basés sur la température ambiante ou sur la température d’eau.

Savez-vous ce que vous réglez en choisissant la consigne de nuit ?

À ce niveau, tous les régulateurs sont différents. Certains prennent comme référence la température intérieure supposée, d’autres la température d’eau. Certains effectuent un abaissement de la température d’eau par rapport au réglage réel de jour, d’autres par rapport à une courbe de chauffe de référence.

Le seul moyen de régler le régulateur en connaissance de cause est de compulser le mode d’emploi du régulateur ou s’il a disparu, d’interroger le fabricant.

Ayons en outre en tête que 4 .. 5 °C de diminution de la température d’eau équivaut à une diminution de la température ambiante d’environ 1 °C.

Vérifier le ralenti réel

Est-on réellement sûr qu’un ralenti du chauffage a lieu lorsque le bâtiment est inoccupé ? Quelqu’un s’est-il déjà promené dans les bâtiments durant le week-end ? Y fait-il réellement froid ?

Cette expérience est parfois riche d’enseignements.

Avec un régulateur qui abaisse la température de l’eau durant l’inoccupation, on ne contrôle pas la température intérieure atteinte en période de ralenti. Est-ce 16 °C, 18 °C, 14 °C … ? Comme on l’a vu, cela a pourtant une importance non négligeable sur la consommation.

Exemple.

Voici une situation que l’on peut rencontrer et pour laquelle, il n’y aura pas de ralenti alors qu’il est pourtant programmé au niveau de la régulation centrale.

Régulation en place :

En journée, le réglage de la courbe de chauffe est trop élevé. La surchauffe qui devrait en résulter est masquée par la présence des vannes thermostatiques. Le mauvais réglage de la courbe de chauffe de jour implique également une courbe de nuit trop élevée. Malheureusement, les vannes thermostatiques ne possèdent pas de consigne de nuit qui pourrait ajuster le tir et laisseront passer un débit maximum dans les radiateurs si la consigne de jour n’est pas atteinte durant la nuit.

Il en résultera un abaissement nocturne de température minime, voire quasi nul.

Le seul véritable moyen de le contrôler est pratiquer un enregistrement de la température intérieure dans plusieurs locaux représentatifs.

 

Enregistreurs de température.

La vérification du bon fonctionnement du ralenti nocturne reste également d’application même l’intermittence est gérée automatiquement par un optimiseur. En effet celui-ci est très sensible aux perturbations, notamment hydrauliques et risque de fonctionner de façon erronée, sans que le gestionnaire ne s’en aperçoive (relance trop fortement anticipée, …). Il est donc bon que le gestionnaire vérifie régulièrement les paramètres du régulateur (températures d’eau, heures de relance, de coupure, …) et juge de leur cohérence.

Évaluer

Pour en savoir plus sur les problèmes hydrauliques qui risquent de perturber un optimiseur.

Améliorer

Améliorer le ralenti nocturne.

Pas trop de calculs, des projets ! Une horloge s’amortit généralement en moins de temps qu’il en faut pour réaliser les calculs… alors, n’hésitons pas à en placer  !

Découvrez cet exemple de régulation de chauffage à l’académie de dessin de Molenbeek.

Mesurer le rendement de combustion

Mesurer le rendement de combustion


Expression du rendement de combustion

En pratique, on exprime souvent le rendement de combustion par la formule de Siegert :

ηcomb = 100 – f x (Tfumées – Tamb) / %CO2

où :

  • Tfumées = la température des fumées à la sortie de la chaudière [°C]
  • Tamb = température ambiante de la chaufferie [°C]
  • %CO= la teneur en CO2 des fumées [%]
  • f = facteur dépendant principalement du type de combustible (mazout : f  = .. 0,57 ..; gaz naturel : f  = .. 0,47 ..)

On relève les trois éléments clés de cette formule qui doivent être mesurés :

  1. La température des fumées.
  2. La température ambiante de la chaufferie, qui correspond à la température de l’air aspiré par le brûleur. La différence de température entre l’air de la chaufferie et les fumées symbolise la chaleur perdue dans la cheminée.
  3. Le pourcentage de CO2. Le pourcentage de CO2 contenu dans les fumées se calcule à partir de la mesure de la quantité d’oxygène encore présente dans celles-ci , par la formule :

%CO2 = %CO2max x (21 – %O2) / 21

où :

  • %O= la teneur en oxygène mesurée dans les fumées [%].
  • %CO2max = la teneur en CO2 des fumées si la combustion était idéale (pour le fuel : 15,2 % et pour le gaz : 11,9 %).

Évaluer

Interpréter une mesure de rendement de combustion.

Mesure manuelle

Anciennement, le rendement de combustion était calculé au moyen un coffret de contrôle de combustion.

Celui-ci comprend :

  • Un mesureur de CO2. Une certaine quantité de fumées est aspirée à la sortie de la chaudière (par un trou dans la buse de raccordement). Les fumées sont mélangées à un réactif qui peut absorber une certaine quantité de CO2. L’absorption du CO2 crée un vide dans l’appareil de mesure qui déplace le liquide de la colonne centrale, le long d’une échelle graduée.

Orifice dans la buse de raccordement à la cheminée pour la mesure du rendement de combustion.

  • Un thermomètre gradué à bimétal à introduire dans la buse de raccordement à la cheminée.
  • Un opacimètre. Il s’agit d’une pompe qui permet d’aspirer les fumées au travers d’un papier filtre. Le noircissement du papier filtre est comparé à une échelle de référence.
  • Un déprimomètre.

Pompe permettant d’aspirer la fumée au travers d’un papier filtre.

La mesure manuelle du rendement de combustion n’est pas complexe. Les étapes successives sont cependant relativement longues et demandent une certaine rigueur dans la mesure. Par exemple, le thermomètre doit aboutir au centre du conduit de raccordement et sa position doit être ajustée pour se situer au point le plus chaud. De plus le temps de réponse d’un thermomètre bimétal est long. Il faut donc attendre au minimum 5 minutes pour avoir une stabilisation, ce que peu de personnel d’entretien applique …

Le rendement de combustion ainsi calculé est plus élevé qu’il ne l’est en réalité.

Un autre exemple : le réactif utilisé pour la mesure du CO2 a également une certaine durée de vie après laquelle il doit être remplacé, ce qui n’est pas toujours fait …


Analyseur de combustion électronique

Régler précisément un brûleur en mesurant, en parallèle, le rendement de combustion de façon manuelle, est quasi inconcevable.

Il faut prélever .. agiter .. contrôler .. calculer .. régler .. prélever .. agiter .. contrôler .. calculer .. régler…

Cela montre tout l’intérêt des analyseurs de combustion électroniques.

Photo analyseur de combustion électronique.

Ces appareils permettent de mesurer, en une seule manipulation, la température des fumées, le pourcentage d’O2, de CO, de NOx, l’excès d’air et calculent en direct le pourcentage de CO2, l’excès d’air et le rendement de combustion.

Photo analyseur de combustion électronique.

Le coût d’un appareil de ce type est de l’ordre de 750 à 1 000 €.

Eté 2008 : Brieuc.
22-08-2008 : 1er passage de mise en page [liens internes, tdm, en bref !, rapide passage général sur la mise en page de la feuille] – Sylvie
24-09-2008 : WinMerge ok – Sylvie

Évaluer la rentabilité d’une amélioration [ECS]

Évaluer la rentabilité d'une amélioration [ECS]


Quelques ratios de consommation

Le point de départ consiste sans doute à évaluer les m³ d’eau chaude sanitaire consommés.

Il est extrêmement variable d’une institution à l’autre.

Dans la littérature spécialisée, on retrouve soit des ratios moyens par bâtiments types (bureaux, hôpitaux, …) soit des débits tirés des points de puisage que l’on peut additionner pour générer le débit total.

Données

Pour accéder à des ratios de consommation en eau chaude sanitaire.

Ces chiffres sont très approximatifs. Aussi, seul un compteur est réellement efficace dans ce domaine.

Mesures

Pour accéder aux techniques de mesure en eau chaude sanitaire.

Remarque.

Il est fréquent d’additionner les besoins d’eau chaude à 60°C. Si la consommation se fait à une autre température (soit X °C), la formule suivante permet la conversion :

Consommation équivalente à 60°C = Consommation à X °C x (X – 10) / (50)

Par exemple, 100 litres puisés à 45°C génèrent une consommation équivalente de 70 litres à 60°C puisque :

100 x (45 – 10) / (50) = 70

Cette relation est basée sur le fait que l’eau de ville entre dans le bâtiment à 10 °C en moyenne annuelle (5 °C en hiver et 15°C en été).


Budget annuel d’eau chaude sanitaire

Le coût de l’eau froide

En France, le prix moyen du m³ d’eau était de 1,5 € en 1991. Il est passé à 2,5 € en 1997. Soit une hausse de 60 % alors que, sur la même période, l’indice général des prix progressait de 11 %.

En première approximation, une augmentation similaire a eu lieu dans nos régions. Elle est, notamment, la conséquence des nouvelles exigences européennes en matière de préservation de l’environnement et, tout particulièrement, d’épuration des eaux usées.

Aujourd’hui (2016), le prix de l’eau a atteint 4 à 5 €/m³ !

Le coût du chauffage de l’eau

Que coûte le chauffage d’un m³ d’eau ? Partons de l’idée que l’eau est chauffée de 10°C (température moyenne du réseau) à 45°C (température moyenne d’utilisation).

Physiquement, le chauffage d’1 m³ d’eau requiert :

Énergie nette = Volume [m³] x Cap. Therm. de l’eau [kWh/m³.K] x (T°eau chaude – T°eau froide) [K]

Énergie nette = 1 [m³] x 1,163 [kWh/m³.K] x (45 – 10) [K]

Energie nette = 40,7 kWh/m³

Le prix de revient du kWh variant entre 0,0625 € (chauffage fuel ou gaz, rendement compris, ou chauffage électrique de nuit au tarif Haute Tension) et 0,16 € (chauffage électrique de jour au tarif Basse Tension), le coût du chauffage d’1 m³ d’eau chaude sanitaire est donc compris entre 2,5 et 6,5 € par an.

Au total (eau + chauffage), un prix de revient de 7 à 11 € du m³ est à considérer, suivant les cas.

Pour simplifier, retenons pour un bâtiment tertiaire, un prix moyen de 9 € du m³, moitié pour l’eau, moitié pour son chauffage.

Cela met la douche (40 l à 45°C) à 0,36 € et le bain (150 l à 45°C) à 1,35 € !

Le budget annuel de l’eau chaude sanitaire

Sur base de la consommation annuelle, il est possible de calculer le coût (eau + chauffage) qui lui est lié :

Coût = consommation d’eau [m³/an] x 9 [€/m³]

Prenons un exemple simple : la consommation domestique et donc le budget « eau chaude sanitaire » d’un ménage.

On estime à 35 litres à 60°C/jour/personne, les consommations en eau chaude domestique. Soit pour une année :

35 [litres/jour/pers] x 4 [pers/ménage] x 330 [jours/an] x 0,001 [m³/litre] = 46,2 [m³/an]

L’énergie pour chauffer cette eau s’exprime par :

46,2 [m³/an] x 1,163 [kWh/m³.K] x (60 – 10) [K] = 2 687 kWh/an

Le prix de revient du kWh variant entre 0,0625 € (chauffage fuel ou gaz, rendement compris) et 0,16 € (chauffage électrique de jour), le coût du chauffage de l’eau chaude sanitaire d’un ménage est donc situé entre 168 et 430 € par an.

Ce à quoi il faut ajouter les 46,2 x 4,5 = 208 € d’achat de l’eau froide.

Cette évaluation est très approximative. Elle peut cacher des coûts nettement plus élevés si le rendement de production est désastreux (… ce qui est parfois le cas en été !).
On se base alors sur les formules :

Energie brute = Energie nette / Rendement global de l’installation d’ECS

Coût = Energie brute x Coût du kWh

Toute la difficulté réside dans l’estimation du rendement de l’installation existante. Pour faciliter les calculs, un petit logiciel est à disposition.

Calculs

Pour accéder à un logiciel d’évaluation du coût de l’eau chaude sanitaire.

Rentabilité d’une amélioration

Une amélioration est financièrement rentable si l’investissement consenti est remboursé par l’économie réalisée, dans un temps court, et en tout cas inférieur à la durée de vie probable de la nouvelle installation.

Une amélioration est toujours écologiquement rentable.

Investissement

Le prix de revient d’une installation d’eau chaude sanitaire (matériel et main d’œuvre) est spécifique à l’installation et à son contexte.

Il faut tenir compte également des modifications éventuelles aux équipements annexes : l’installation électrique, l’installation de chauffage, le génie civil éventuel,…

Cet investissement peut être amorti dans le temps en fonction de la durée de vie des équipements.

Dans le programme RAVEL (Suisse), on propose les durées de vie suivantes pour les équipements :

Durée d’amortissement

Chauffe-eau (électrique, à gaz, à serpentin, avec pompe à chaleur)

15 ans
Petite cogénération au gaz naturel 15 ans

Installation solaire

20 ans

Conduites d’eau froide

40 ans

Conduites d’eau chaude

25 ans

Coût de maintenance

Les frais annuels d’entretien et de maintenance (ou frais d’exploitation, sans le coût de l’énergie) comprennent les charges salariales ainsi que le coût du matériel de maintenance et d’entretien (y compris service, nettoyage et surveillance).

Dans le programme RAVEL (Suisse), on propose d’évaluer ce poste sous forme d’un pourcentage de l’investissement :

Coût de maintenance

Accumulateur électrique

2 %

Chauffe-eau à gaz

3 %

Accumulateur à serpentin

2 %

Accumulateur avec pompe à chaleur

3 %

Petite cogénération au gaz naturel

7 %

Installation solaire

2 %

Conduites d’eau froide

1 %

Conduites d’eau chaude

2 %

Économie d’énergie liée à l’amélioration

Pour évaluer la consommation prévisible après intervention, il est possible d’appliquer la même démarche que dans l’évaluation de la situation initiale.

Calculs

Pour calculer le coût de l’eau chaude sanitaire après amélioration.

L’économie s’en déduit. Le temps de retour simple de l’investissement (exprimé en années) se dégage du rapport :

Temps de retour = Investissement / (économie d’énergie et d’exploitation)

Quelques situations simplifiées

La rentabilité de certains investissements simples peut être évaluée au moyen des petits logiciels ci-dessous :

Calculs

Pour évaluer la rentabilité de l’isolation des conduits.

Calculs

Pour évaluer la rentabilité de l’isolation d’un ballon.

Liaisons froides [cuisine collective]

Liaisons froides [cuisine collective]

En liaison froide, les plats sont préparés en cuisine centrale. Après cuisson, les denrées subissent une réfrigération rapide avant d’être stockées à basse température. Suivant la durée de conservation recherchée (quelques jours ou quelques mois), on procède à une liaison froide positive ou une liaison froide négative.


Liaison froide positive

Les plats se conservent au maximum pendant 6 jours*.

  • Après confection, les plats sont conditionnés en rations individuelles ou en plats collectifs, dans des barquettes fermées par thermosoudage.
  • Une cellule de refroidissement rapide abaisse la température au cœur des aliments de +65°C à +10°C en moins de 2 heures (y compris la durée de manutention).
  • Les barquettes sont placées dans une armoire ou chambre de stockage à une température oscillant entre 0 et +3°C.
  • Le transport à destination des restaurants satellites s’effectue en véhicules réfrigérants (+3°C)  ou isothermes.
  • Sur chaque site, les produits sont entreposés en armoire réfrigérée (+3°C).
  • Avant consommation, ils subissent un réchauffement rapide à au moins 65°C à cœur, en moins d’une heure.

* : plus précisément, les plats se conservent :

  • 3 jours, en règle générale.
  • 5 jours pour certains produits.
  • 1 jour pour certains produits tels que les crevettes.

Pour en savoir plus, voir « HACCP pour PME – Gemploux ».


Liaison froide négative

Elle est aussi appelée liaison surgelée.
Les plats se conservent pendant plusieurs mois.

  • Après confection, les plats sont conditionnés en rations individuelles ou en plats collectifs, dans des barquettes fermées par thermosoudage.
  • Une cellule de refroidissement rapide abaisse la température au cœur des aliments de +65°C à +10°C en moins de 2 heures (y compris la durée de manutention).
  • Les plats passent dans un tunnel de refroidissement rapide qui porte les températures des aliments de +10°C à -18°C en moins de 3 heures après la fin de la cuisson.
  • Le transport à destination des restaurants satellites s’effectue en véhicules réfrigérants (-18°C).
  • Sur chaque site, les produits sont stockés à -18°C.
  • Avant consommation, ils subissent un réchauffement rapide à au moins 65°C, en moins d’une heure.

Remarque : plutôt que de passer dans une cellule de refroidissement rapide puis un tunnel de refroidissement, les aliments peuvent aussi simplement passer dans une cellule de congélation rapide.


Avantages

C’est un mode de préparation très hygiénique. Les qualités nutritives sont conservées.

La fabrication et la consommation peuvent être dissociées dans le temps et dans l’espace. Ce qui permet une production en continu et donc une meilleure répartition des tâches sur la journée et sur la semaine de travail.

Elle permet d’ajuster les quantités préparées à celles commandées et limite donc les pertes.

Elle augmente le choix des consommateurs.

Elle permet le regroupement des achats (incidence sur les prix)


Inconvénients

L’investissement en équipement est élevé (environ 30 % supérieur à celui nécessaire à une liaison chaude). On ne peut pas tout servir. On ne peut pas servir de frites par exemple.

Conditions à respecter dans les locaux de cuisine collective

Conditions à respecter dans les locaux de cuisine collective


Températures d’ambiance à garantir

Les valeurs ci-dessous nous ont été communiquées par un fabricant

Local Température

Local des préparation froide

16°C

Local de cuisson

18 à 26°C

Pâtisserie

20 à 26°C

Boucherie

16°C

Laverie

18 à 23°C

Stockage produits secs

16°C

Niveaux d’éclairement

Les niveaux d’éclairement repris dans le tableau ci-dessous correspondent à des minima recommandés par le Codex Alimentarius (Directives internationales recommandées pour la pratique – CAC/RCP1 – 1969 – rev. 1 1979 – pt 4.4.6. – Éclairage).

Local Éclairement (lux)

Réception

250 à 500

Stockage

125 à 250

Préparations froides / Préparations chaudes

500 à 600

Boucherie

500 à 600

Pâtisserie

500 à 600

Légumerie

500 à 600

Laverie

250 à 500

Bureau du chef

250 à 500

Local des déchets

60 à 125

Distribution

250 à 500

Facteur de température

Facteur de température


Le facteur de température τ d’une paroi

Définition

Le facteur de température τ  d’une paroi d’un local détermine la différence entre la température intérieure de surface oi) en un point quelconque de la surface intérieure et la température extérieure e) lorsque la différence de température entre l’ambiance intérieure i) et l’ambiance extérieure e) du local est égale à 1 K.

 

(1)

Exemple :

Le facteur τ caractérise une paroi :

Soit,
Rm : la résistance thermique de la paroi entre ses deux faces.
RT : la résistance thermique totale de la paroi (R= R+ Re + Ri).

où,

Si nous représentons en abscisse la résistance thermique des différentes partie de la paroi (au lieu de son épaisseur), l’évolution de la température est donnée par une droite reliant les points dont les coordonnées sont (0,ηe) et (RTi).

Evolution de la température dans une paroi de résistance thermique Rm pour une température intérieure ηi

Il résulte de la figure ci-dessus que :

Le facteur de température τ exprimé de cette façon est indépendant des condition réelles de température i et ηe) et il est donc entièrement déterminé par une configuration (matériaux et épaisseur) de paroi.
Le facteur de température τ caractérise donc une paroi ou n’importe quel élément de construction !

Calcul du coefficient de transmission thermique U d’une paroi à partir des températures ambiantes et de surface

=
=>
=
=

0,125 U

=
=
=
=
U =

Paramètres qui influencent la température intérieure de surface oi) de la paroi :

Les deux schémas ci-dessous montrent que pour une température extérieure e) donnée, la température intérieure de surface des parois oi) augmente lorsque :

  • La température intérieure augmente.
    On constate, en effet, que pour ηi2 >ηi1 :
    ηoi 2A > ηoi 1A
    et ηoi 2B > ηoi 1B
  • La résistance thermique de la paroi augmente.
    On constate, en effet, que :
    et ηoi 1B > ηoi 1A pour ηi1
    et ηoi 2B > ηoi 2A pour ηi2

Evolution de la température dans les deux parois A et B de résistance thermique Rm différente (RmA < RmB) pour deux valeurs de température intérieure ηi (ηi2 >ηi1).


Le facteur de température t d’un élément de construction ou d’un pont thermique

Le facteur de température (τ) en un point d’un détail constructif ou d’un pont thermique est la différence entre la température intérieure de surface oi) en ce point et la température extérieure e) lorsque la différence de température entre l’ambiance intérieure i) et l’ambiance extérieure e) du local est égale à 1 K.

Or, comme montré ci-dessus, le facteur de température τ est indépendant des condition réelles de température i et ηe) : il est entièrement déterminé par la configuration (matériaux et épaisseur) du détail constructif. La connaissance de la configuration précise d’un détail constructif nous suffit donc pour calculer le facteur τ en plusieurs points.

Exemple.

τ1 = 0,585;
τ2 = 0,8;
τ3 = 0,91;
τ4 = 0,455;
τ5 = 0,61;
τ6 = 0,55;
τ7 = 0,6;
τ8 = 0,84.

Remarques.

  • Au droit d’éléments de construction ou de ponts thermiques complexes, il est difficile de calculer les facteurs de température manuellement. Ces calculs se font par programmes informatiques (basés, par exemple, sur la méthode des éléments finis ou des différences finies). Les facteurs de température ci-dessus ont été calculés à l’aide du programme KOBRU 82.
  • Pour les calculs des facteurs de température, comme condition limite supplémentaire, on a supposé que le pont thermique est caractérisé par une valeur de résistance d’échange thermique superficiel intérieur (Ri) d’environ 0,2 m²K/W (au lieu de Ri = 0,125 m²K/W), pour tenir compte du fait que les ponts thermiques les plus nuisibles se situent généralement dans les angles des locaux ou derrière des meubles où l’apport de chaleur venant du local peut se faire moins facilement.
  • De nombreux ponts thermiques tels que celui repris ci-dessus, ont été calculés. Les résultats sont sont repris dans la NIT 153.

Le facteur de température minimum (τmin) d’un détail constructif ou d’un pont thermique est la différence entre la température intérieure de surface minimum oi min) du détail constructif et la température extérieure e) lorsque la différence de température entre l’ambiance intérieure i) et l’ambiance extérieure e) du local est égale à 1 K.

τmin caratérise le détail constructif ou le pont thermique !
Exemple.

τmin = τ4 = 0,455

Remplacer les lampes

Remplacer les lampes


Suppression de lampes

Lorsque le niveau d’éclairement est trop élevé, la réduction de celui-ci peut s’obtenir par la suppression d’une lampe sur deux (par exemple) dans les luminaires existants.

La faisabilité de cette action doit être confirmée par un contrôle du mode de câblage interne des luminaires : il faut un ballast, un starter et un condensateur par lampe.
Exemple.

Circuit avec 1 ballast pour 2 lampes : il est impossible de supprimer une lampe.

Circuit compensé avec un ballast capacitif  et un ballast inductif : la suppression d’une lampe fera chuter le cos φ du luminaire.

La suppression complète de certains luminaires est, quant à elle, plus délicate et peut nuire à l’uniformité de l’éclairement.


Remplacer les lampes au coup par coup ou en une fois ?

On remplace simplement les lampes par des lampes ayant un meilleur rendement lumineux. Les professionnels parlent de « relamping »

  • Soit toutes les lampes sont remplacées en une fois, ce qui demande un investissement plus élevé mais qui sera rapidement rentabilisé.
  • Soit les lampes sont remplacées lorsqu’elles sont défectueuses. Dans ce cas, l’investissement est faible, mais l’économie d’énergie mettra un certain temps pour devenir significative.

Critères de remplacement des lampes à incandescence

Critère énergétique


Critère énergétique

Le retrait programmé des lampes les plus énergivores comme la lampe à incandescence classiques et certaines lampes halogènes  « indésirables » marque un tournant important dans l’histoire de l’éclairage.

Indépendamment du fait que ce type de lampes n’existe plus ou n’existera plus à court terme, il n’est pas inutile, d’un point de vue énergétique, d’envisager leur remplacement prématuré par des lampes plus performantes.

Actuellement, la venue sur le marché des lampes (ou luminaires) LED bouscule complètement le marché de l’éclairage. En effet, les lampes de type fluocompactes ne sont plus la seule alternative au remplacement des lampes à incandescence de type classique ou halogène.

 

Source : Commission Européenne 2009.

Cependant, l’énergie n’est pas le seul critère qui doit motiver la décision de remplacer les lampes à incandescence. D’autres critères entre en ligne compte comme le confort, l’environnement, la pérennité, …

Critère de confort

La philosophie d’Énergie+ est toujours la même depuis la parution de la première version, à savoir : « à confort égal, une économie d’énergie est toujours profitable ! ». Dans bien des projets de rénovation partielle du système éclairage, la performance énergétique est recherchée (et insidieusement la performance économique) sans se soucier du confort lumineux.

Exemple : lorsqu’une lampe à incandescence placée dans un luminaire est remplacée rapidement par une lampe fluocompacte sans tenir compte du réflecteur du luminaire, des différences photométriques des deux luminaires, du rendu de couleur, de la température de couleur de la lampe, …,  le résultat est rarement à la hauteur des ambitions de départ.

Photométrie du luminaire

L’association d’une lampe avec un luminaire donne une photométrie différente de celle de la lampe seule. En d’autres termes, une photométrie de luminaire a été établie avec une lampe bien précise. Le fait de remplacer cette lampe par une autre non identique modifie nécessairement la répartition du flux lumineux.

La figure suivante est un peu « caricaturale » mais déjà rencontrée à plusieurs reprises et pas uniquement au niveau des maisons unifamiliales !

Schéma principe photométrie du luminaire.

Rendu de couleur

Face au rendu de couleur, les sources lumineuses ne sont pas égales. Si pour une application bien précise, le rendu de couleur avait une importance capitale, bien des lampes classées comme peu énergivores ne concurrencent pas les lampes à incandescence qui, par définition, ont un rendu de couleur de 100. Dans ce cas bien précis le choix entre différentes lampes se réduit à « peau de chagrin ».

Température de couleur

Il est important aussi de conserver la température de couleur de la lampe remplacée sachant que, dans le cas contraire, l’ambiance risque d’être plus froide par exemple.

Critère de sécurité et d’environnement

En général, c’est la teneur en mercure des lampes fluorescentes qui devra interpeler le gestionnaire du bâtiment tertiaire. Ce n’est pas un critère d’exclusion, mais plutôt de réflexion par rapport aux précautions à prendre par les services de maintenance et aux filières de recyclages existantes.
Une réflexion similaire peut être menée pour les lampes LED. En effet, l’utilisation de terres rares et de substances toxiques dans la fabrication des LEDs interpelle par rapport à l’environnement.

Critère de pérennité

La durée de vie de la lampe est importante aussi dans la décision à prendre quant au remplacement d’une lampe par une autre plus performante. De manière générale, les nouvelles sources lumineuses comme les lampes fluocompactes et LED ont des durées de vie nettement plus longue que les lampes à incandescence et les lampes halogènes.

Critère du nombre d’allumages

Pour certaines applications comme pour les luminaires des cages d’escalier sur détection de présence, le nombre d’allumages et d’extinctions peut être important. Certaines sources lumineuses comme les fluocompactes sont très sensibles à ce type de sollicitation. Les LED, par contre, ne ressentent que très peu les cycles d’allumage et d’extinction.

Critère du dimming

Certaines lampes comme les fluocompactes sont sensibles au dimming qui accélère le vieillissement prématuré de ce type de lampe.

Données

Pour accéder à un tableau récapitulatif des principales caractéristiques des différentes lampes.

Remplacement des lampes à incandescence

Lampe à incandescence ⇒⇒ Lampe halogène classe B et C

Photo lampe à incandescence.     Photo lampe halogène.

Lorsque l’indice de rendu de couleur a une importance primordiale dans l’application souhaitée, le remplacement de la lampe à incandescence par une lampe halogène peut être envisagé. En effet la lampe halogène consomme moins d’énergie que la lampe à incandescence. De plus, de nouveaux systèmes dans la lampe halogène permettent de récupérer une partie des infrarouges émis pour les renvoyer sur les filaments : la chaleur qui était perdue initialement est donc récupérée. Une économie d’énergie de l’ordre de 30 % est à la portée de ce type de lampe. La lampe halogène est un peu plus chère que l’incandescence classique, c’est vrai, mais possède une durée de vie plus longue (de 2 à 4 ans à raison de 3 heures d’allumage par jour). Les fonctionnalités de l’halogène sont identiques à celles de la lampe à incandescence. Par exemple, le dimming ne change pas. Enfin, l’halogène est aujourd’hui la solution basse consommation la moins chère du marché.

Lampe à incandescence ⇒⇒ Lampe fluocompacte

Photo lampe à incandescence.     Photo lampe fluocompacte.

Une lampe à incandescence (efficacité lumineuse : 10 – 12 lm/W) peut être tout simplement remplacée par une lampe fluorescente compacte (efficacité lumineuse : de l’ordre de 100 lm/W).

Ainsi, pour une durée d’éclairage de 8 à 9 heures par jour, le remplacement d’une lampe à incandescence de 60 W par une lampe économique de 13 W est amorti en plus ou moins 1 an (pour un prix du kWh de 0,15 €). À cette économie s’ajoute la diminution des frais de maintenance grâce à l’augmentation de la durée de vie des lampes (10 fois supérieure à celle des lampes incandescentes).

Pour le remplacement d’une même lampe incandescente, les fabricants proposent souvent des lampes fluocompactes de puissance moindre (exemple : remplacement d’une lampe incandescente de 60 W par une fluocompacte de 11 W). Ces propositions sont valables en début de vie des lampes. Cependant le flux lumineux des lampes fluocompactes chute relativement fort durant leur durée de vie. C’est pourquoi il est conseillé de choisir une lampe fluocompacte ayant au départ un flux lumineux supérieur à celui de la lampe incandescente existante.

Pour peu que la taille de la lampe fluocompacte soit compatible avec le luminaire, on peut augmenter un niveau d’éclairement insuffisant en augmentant la puissance recommandée dans le tableau ci-dessus (exemple : une lampe fluocompacte de 25 W en remplacement d’une lampe incandescente de 60 W). Il faudra cependant se méfier de l’augmentation du risque d’éblouissement avec l’augmentation du flux lumineux.

Calculs

Pour estimer la rentabilité du remplacement de vos lampes incandescentes.

La lampe fluocompacte existe en lumière chaude et en lumière froide. Pour obtenir une qualité de lumière identique à celle de la lampe à incandescence, il faut opter pour une fluocompacte dont la température de couleur correspond à une lumière chaude. Aussi, la lampe fluocompacte possède un indice de rendu des couleurs de 80 (minimum imposé par la norme NBN EN 12464).

Lors du remplacement de la lampe à incandescence par une lampe fluocompacte, il faudra aussi être vigilant par rapport :

  • au temps d’allumage pour obtenir 100 % du flux lumineux ;
  • à la température à laquelle la lampe est soumise. Rien ne sert de placer une fluocompacte dans un luminaire externe ;
  • à la photométrie du luminaire existant ;
  • de la présence de mercure ;
  •  …

Enfin, un des inconvénients de la lampe fluocompacte est qu’on ne peut pas avoir tout à fait les mêmes usages qu’avec la lampe à incandescence classique sachant qu’elle n’aime pas le dimming. En effet, celui-ci :

  • augmente le vieillissement prématuré de la fluocompacte ;
  • diminue le rendu de couleur ;
  • noirci rapidement les parois du tube.

Lampe à incandescence ⇒⇒ Lampe LED

Photo lampe à incandescence.     Photo lampe LED.

Incontestablement, la lampe à LEDs est promise à un « brillant » avenir. En effet, ce type de lampe cumule les principaux avantages suivants :

  • Une durée de vie théorique très longue (de l’ordre de 50 000 heures voire plus). La durée pratique actuelle de la lampe serait de l’ordre de 20 000 à 30 000 heures. Mais aucun fabricant n’est à même d’avancer des chiffres précis. La technologie est encore trop jeune en LED d’éclairage. Ceci dit, le remplacement d’une lampe à incandescence  par une lampe LED résout le problème de la faible durée de vie de la lampe à incandescence (1 000 à 2 000 heures suivant les conditions d’emploi) ;
  • Un nombre d’allumage et d’extinction très important (⇒ ∞).
  • Une très bonne efficacité dans le froid). La lampe à incandescence, elle, n’aime pas trop les grandes variations de température.

Des petits bémols actuels (qui peuvent évoluer favorablement dans un avenir proche) à mettre au passif de la lampe LED par rapport à l’incandescence sont :

  • Le rendu de couleur Ra n’est pas « tip top ». Supérieur à 80 % d’accord, mais plus faible que celui de la lampe à incandescence.
  • Ce type de lampe à culot présuppose que le « driver » se trouve dans la lampe même. En général, le « driver » se trouve dans le culot.

Exemple d’étude thermique réalisée : les « entailles » pratiquées dans le globe sont des dissipateurs de chaleur : que se passe-t-il si on renverse la lampe la tête en bas comme c’est le cas dans beaucoup configuration d’éclairage  ? La dissipation thermique est-elle suffisante ? Ces points d’interrogation sont en cours d’étude à l’heure actuelle.

  • L’esthétique de la lampe dite « blanche » pourrait paraître peu enviable aux yeux de certaines personnes. Question de goût ! Ceci dit, les fabricants travaillent à la résolution de ce problème. De par la présence des « radiateurs » de globe, la photométrie est sensiblement différente de celle d’une lampe à incandescence. À voir si le résultat est acceptable.

Photo lampe LED éteinte.Photo lampe LED allumée.

Lampe LED éteinte et allumée.

  • Le prix actuel de ce type de lampe est naturellement élevé. Question de temps ? À suivre !

Remplacement des tubes fluorescents

Tubes 38 mm (T12) ⇒⇒ Tubes 26 mm (T8)

Photo tubes 38 mm (T12).Photo tubes 26 mm (T8).

Puissances Économie escomptée
de l’ordre de 8 %
Avant Après
20 W 18 W
40 W 36 W
65 W 58 W

Il est intéressant de remplacer les tubes fluorescents de Ø 38 mm (ancienne génération) par des Ø 26 mm qui ont une efficacité lumineuse supérieure. Ils ont la même longueur, le même culot et utilisent les mêmes ballasts (à l’exception des tubes fluorescents à allumage rapide). Ils sont donc directement interchangeables.

BE : ballast électronique
BC : ballast conventionnel (électromagnétique)

Source : Laborelec.

De même les tubes rapid-start ne peuvent être simplement remplacés par des tubes de ∅ 26 mm car ils nécessitent des auxiliaires différents.

Lorsque le niveau d’éclairement est insuffisant, le remplacement par des lampes à meilleure efficacité lumineuse permet, à puissance égale, une augmentation du flux lumineux.

On trouve encore des tubes fluorescents dits « standards » (c’est-à-dire avec un mauvais rendu de couleur). Leur remplacement par des tubes type 830 ou 840 ne diminuera pas la consommation énergétique, mais augmentera le flux lumineux d’environ 15 %, avec l’avantage de rendre aux occupants leur « teint naturel ».

Calculs

Pour estimer la rentabilité du remplacement de vos tubes fluorescents.

Tubes 26 mm (T8) ⇒⇒ Tubes 16 mm (T5)

Photo tubes 26 mm (T8).Photo tubes 16 mm (T5).

Y a t-il un intérêt particulier à remplacer les lampes T8 par des lampes T5 ? A priori non, pour la simple raison qu’il faut modifier tout l’équipement du luminaire. En effet, les tubes de ∅16 mm sont plus courts que ceux de ∅ 38 mm et de ∅ 26 mm, ce qui impose de remplacer également les luminaires.

Description

T8 T5
Puissance (W) 18 36 58 14 28 35
Longueur (mm) 600 1 200 1 500 550 1 150 1 450

Même si l’efficacité lumineuse des lampes T5 (à une température ambiante de 35°C) est meilleure que celle des lampes T8 (à une température ambiante de 25 °C) et sachant que les conditions d’ambiance sont différentes d’un projet à l’autre, il ne faut pas tirer de conclusion hâtive en privilégiant une lampe plutôt que l’autre. Cependant, on voit apparaître sur le marché des kits de remplacement des lampes T12 ou T8 par des T5. Ces kits sont équipés d’un ensemble compact tel que décrit dans la figure suivante :

Exemple de solution proposée par un fabricant
Toutefois, le placement de ces adaptateurs T8-T5 n’est pas une solution à proposer dans des projets professionnels (marquages CE et ENEC ne sont plus valables ; la durée de vie de ces adaptateurs n’est pas prouvée ; la photométrie du luminaire change (risque d’éblouissement) ; le flux lumineux de la lampe T5 diffère du flux de la lampe T8 d’origine (risque de problème de niveau d’éclairement).

Tubes 26 mm (T8) ⇒⇒ Tubes LED

Photo tubes 26 mm (T8).Photo tube LED.

Une alternative au remplacement d’un tube T8 par un tube T5 est le tube LED. En effet, le tube LED (s’il est de bonne qualité) offre les avantages d’avoir une plus grande durée de vie et une consommation plus faible, et d’être moins sensible aux cycles d’allumage/extinction. On effectue, dans ce cas, le remplacement du luminaire équipé d’un tube fluorescent T8 et d’un ballast conventionnel (électromagnétique) par un tube LED à driver intégré. Notons aussi que le tube est exempt de mercure contrairement aux tubes fluorescents (par contre les LED contiennent d’autres produits rares et nocifs).

Mais attention ! Le placement de tubes LED dans un luminaire existant conçu pour tube TL fait que les marquages CE et ENEC ne sont plus valables.  Les exigences de qualité et de sécurité prescrites par les normes ne sont donc plus garanties. Une normalisation est cependant en cours.

De plus on fera attention à la photométrie du luminaire équipé du tube LED qui sera sensiblement différente du luminaire initialement équipé d’un tube fluorescent. De plus, il faudra aussi être attentif à la luminance du tube LED (surtout dans le cas du tube clair). Mal adapté au luminaire d’origine, le tube LED pourrait causer un inconfort dû à l’éblouissement.

Il faudra aussi peut-être adapter le luminaire pour évacuer la chaleur afin de ne pas compromettre la durée de vie du tube (par le placement d’un ventilateur par exemple). Les nouveaux luminaires résolvent ce problème par un système de refroidissement « passif » (sorte de « dissipateur à lamelles » similaire à ceux utilisés pour les  processeurs d’ordinateur).

Enfin, le marché du LED est envahi de produits de bonne comme de médiocre qualité. Avant, le marché de l’éclairage était contrôlé par des professionnels de l’éclairage. Actuellement, des électroniciens se lancent dans l’aventure de l’éclairage avec plus ou moins de réussite. Sachant que le métier de l’éclairage est tout à fait spécifique et demande beaucoup de « savoir-faire » : prudence, prudence, …


Remplacement des lampes au mercure haute pression par des lampes au sodium

Si on dispose au départ d’une installation avec lampes à vapeur de mercure haute pression (efficacité lumineuse 50 lm/W), on peut envisager de remplacer ces lampes par d’autres lampes à décharge haute pression ayant une efficacité lumineuse plus élevée.

Si le niveau d’éclairement actuel est suffisant, on remplacera les lampes au mercure haute pression par des lampes de plus faible puissance.

Ce type de rénovation est cependant parfois délicat

  • Les réflecteurs des luminaires sont conçus pour une position bien précise du brûleur de la lampe. Or celui-ci varie en fonction du type de lampe. Changer de lampe implique donc un léger changement de la répartition lumineuse et peut-être une augmentation des risques d’éblouissement.
  • Le changement de lampe implique un changement d’ambiance (indice de rendu des couleurs différents). Si on veut conserver une uniformité de style, il est conseillé de changer toutes les lampes en même temps et non lors de chaque défectuosité. Ceci implique un investissement plus ou moins important.

Le remplacement de lampes au mercure par des lampes au sodium implique en principe une modification des auxiliaires électriques :

  • La puissance des nouvelles lampes étant nettement plus faible, le courant baisse aussi fortement, ce qui nécessite d’utiliser un nouveau ballast.
  • Les lampes au sodium demandent une tension d’amorçage nettement supérieure aux lampes au mercure. Il faut donc adjoindre au circuit un nouvel amorceur.

Pour faciliter ces changements, il existe des kits de conversion comprenant ballast et starter, qui s’intègrent facilement dans le circuit électrique du luminaire.

Pour obtenir un bon rendu des couleurs, on peut utiliser des lampes aux iodures métalliques fonctionnant sur ballast pour lampes au sodium haute pression ou de lampes au sodium haute pression « confort » (IRC = ± 65).

Puissances

Économie escomptée

Avant

80 W

125 W

250 W

Après

50 W

70 ou 100 W

100 ou 150 W

38 %

20 à 44 %

40 à 60 %

Calculs

Pour estimer la rentabilité du remplacement de vos lampes au mercure HP.

Lampes iodures métalliques compatibles aux ballasts pour lampes sodium HP

Il existe maintenant sur le marché des lampes aux iodures (ou halogénures) métalliques pouvant remplacer directement les lampes au sodium ou au mercure en gardant les auxiliaires d’origine. Ce remplacement a surtout pour but d’améliorer :

          

Lampe au sodium ⇒⇒ Lampe aux iodures métalliques

Photo lampe au sodium.Photo lampe aux iodures métalliques.

Lampes sodium haute pression et iodure métallique.

Si l’on doit effectuer le remplacement des lampes sodium HP pour des raisons de confort (efficacité visuelle due à la température de couleur de la lumière plus élevée), on prendra en considération les caractéristiques suivantes :

Lampe aux iodures métalliques 250 W 400 W
Ballast
pour lampe au sodium HP
pour lampe au sodium HP
Puissance de la lampe (W)
295
445
Perte du ballast (W)
21-26
28-30
Flux lumineux (lm)
23 000
38 000
Efficacité lumineuse (lm/W)
78
85
Couleur de température (K)
4 000
3 900

Enfin, lorsque l’on envisage le montage d’une lampe aux iodures métalliques sur un luminaire équipés d’un ballast existant pour lampe au sodium, il faut être conscient de la réduction de la durée de vie de la lampe :

Lampes halogènes

Eté 2008 : Brieuc.
22-10-2008 : 1er passage de mise en page [liens internes, tdm, en bref !, rapide passage général sur la mise en page de la feuille] – Sylvie
22-10-2008 : WinMerge ok – Sylvie
30-03-2009 : Application des nouveaux styles de mise en page. Julien.
08-03- 2013 : actualisation, Didier D et Olivier

Comment fonctionne une lampe halogène ?

La lampe halogène fonctionne sur le même principe qu’une lampe à incandescence : elle produit de la lumière visible à partir d’un filament de tungstène porté à incandescence. Pour éviter une dégradation très rapide du filament, celui-ci est placé dans une ampoule à verre de quartz (pour les hautes températures) renfermant des gaz halogénés à haute pression comme l’iode et le brome.

A la différence de la lampe à incandescence, les atomes de tungstène expulsés du filament par sublimation sont captés par le gaz halogène évitant le dépôt du tungstène sur la paroi intérieure de l’ampoule.
En effet, les atomes de tungstène et les halogènes forment directement des halogénures de tungstène qui par convection naturelle se déplace librement et migre vers le filament plutôt que vers le point froid que constitue la paroi intérieure de l’ampoule de verre.
Sous l’effet de la chaleur, les halogénures de tungstène se dissocient permettant aux atomes de tungstène de se fixer sur le filament et les halogènes d’être libres pour le cycle suivant.
Cette caractéristique de la lampe halogène lui permet de travailler avec une surface d’ampoule beaucoup plus petite.

La lampe halogène fonctionne soit à très basse tension (12 V par exemple), soit à la tension du réseau (230 V).

Types et caractéristiques générales

Lampe à la tension du réseau

À la tension du réseau 230 V, la lampe est directement raccordée au réseau. Lorsqu’elle possède un culot à visser, elle peut directement remplacer une lampe à incandescence.

Lampe à très basse tension

En très basse tension, la lampe doit être raccordée au réseau 230 V au moyen d’un transformateur.
Par rapport à la lampe « tension du réseau », l’efficacité énergétique d’une lampe à très basse tension est plus élevée, mais son équipement est plus contraignant (il faut un transformateur) et en cas de dimming, le gradateur est plus compliqué…
Remarque : une lampe basse tension ne consomme pas moins qu’une lampe alimentée en 230 V. C’est sa puissance qui est déterminante. Ainsi, une lampe 50 Watts-25 Volts et une lampe 50 Watts-230 Volts consomment toutes deux 1 kWh en 20 heures de fonctionnement.

Les lampes à très basse tension sans réflecteur

Il faut éviter de toucher cette lampe (la capsule) : une trace de graisse provoque la destruction de la lampe lors de l’allumage (par mesure de précaution, frotter la lampe à l’alcool avant l’emploi).

Les lampes à très basse tension avec réflecteur

Ce type de lampe, plus connue sous le nom de lampe « dichroïque », est directement équipé d’un réflecteur performant.

Gradation du flux lumineux

La gradation du flux lumineux (dimming) est possible par variation de la tension d’alimentation.
À sa tension nominale, la lampe halogène ne noircit pas avec le temps. Il n’y a donc pas de diminution du flux lumineux avec l’âge.
Par contre, le fonctionnement des lampes halogènes à très basse tension provoque, lui, un noircissement de l’ampoule. Pour remédier à cet inconvénient, il est conseillé de faire fonctionner de temps en temps les lampes à leur tension nominale pour rétablir le cycle halogène.

Traitement de la chaleur émise par la lampe

Toutes les sources lumineuses à incandescence produisent des ondes visibles, mais aussi des ondes infrarouges (chaleur) pouvant créer un problème dans le cas d’éclairage de produits alimentaires ou d’étoffes fragiles. Le réflecteur dichroïque peut sélectionner les diverses ondes de lumière et ne réfléchir que les ondes du spectre visible. Les ondes infrarouges sont, à l’inverse, filtrées par le réflecteur. Une lampe à réflecteur dichroïque rejette donc les rayons infrarouges vers l’arrière.

Données

pour connaitre les caractéristiques des lampes halogènes 

Données

pour consulter un récapitulatif des caractéristiques des différents types de lampe

Itinéraire d’une fin programmée

Petit à petit les lampes inefficaces sont retirées du marché.
Actuellement, certaines lampes halogènes échappent au retrait du marché. Ce sont essentiellement les lampes à incandescences dites de type amélioré (classe énergétique C au minimum) comme :

  • Les lampes halogènes au xénon (classe C) ;
  • Les lampes halogènes à revêtement infrarouge (classe B).
Type Puissance 2009 2010 2011 2012 2013 2014 2015 2016
Hallogène Claire 12 V
5 W Classe E Classe E Classe E Classe C Second niveau d’exigences de fonctionnalité

 

Réexamen

 

Classe B
10 W Classe E Classe E Classe E Classe C Classe B
25 W Classe E Classe E Classe E Classe C Classe B
40 W Classe E Classe E Classe C Classe C Classe B
60 W Classe E Classe C Classe C Classe C Classe B
75 W Classe C Classe C Classe C Classe C Classe B
100 W Classe C Classe C Classe C Classe C Classe B
Claire 230 V
25 W Classe E Classe E Classe E Classe C Classe B**
40 W Classe E Classe E Classe C Classe C Classe B**
60 W Classe E Classe C Classe C Classe C Classe B**
75 W Classe C Classe C Classe C Classe C Classe B**
100 W Classe C Classe C Classe C Classe C Classe B**
200 W Classe C Classe C Classe C Classe C Classe B**
300 W Classe C Classe C Classe C Classe C Classe B**
500 W Classe C Classe C Classe C Classe C Classe B**
Non – claire Classe A Classe A Classe A Classe A Classe A

Disponibilité

** Classe pour les culots G9 et R7

Disponibilité réduite

Indisponibilité

Réglementation

Pour en savoir plus sur les classes énergétiques des lampes 

Données

pour connaitre les caractéristiques des lampes halogènes

Données

pour consulter un récapitulatif des caractéristiques des différents types de lampe

Choisir l’enveloppe de la chambre froide [Concevoir – Froid alimentaire]

Choix constructif

Pour la construction de la chambre, on a intérêt à utiliser les éléments de raccords préfabriqués prévus par les fabricants des panneaux isolants (par exemple les éléments d’angles) en s’assurant qu’ils suppriment tous ponts thermiques.

En effet, si on n’utilise pas ces raccords, on risque de créer des ponts thermiques tels que ceux représentés ci-dessous.

     

On peut également supprimer ces ponts thermiques sur site lors de la construction en procédant à quelques adaptations qui consistent à couper la tôle ou à injecter des produits isolants.

Cette opération est néanmoins plus délicate et plus difficile à contrôler.

      

D’autre part, il vaut mieux aussi travailler avec la modulation des panneaux par rapport à l’espace disponible. Car il est préférable d’avoir une chambre un peu plus petite mais réalisée soigneusement avec des pièces d’origine, que d’avoir une chambre (un peu) plus grande, mais bricolée en adaptant mal les raccords entre éléments préfabriqués qui auraient été découpés sur place avec le peu de précision que l’on devine.


Choix du coefficient de transmission thermique des parois

Importance relative de l’isolation des parois

Les apports par les parois ne constituent qu’une petite part dans les apports globaux d’une chambre froide. Cette part est plus ou moins importante selon le type et l’utilisation de la chambre froide.

Si le bilan frigorifique de la chambre ou de la cellule de congélation montre que, dans la puissance frigorifique totale, il y a une part importante d’apports thermiques par les parois, il faut s’intéresser d’autant plus près à l’isolation thermique et faire attention au vieillissement de l’isolant (les isolants perdent leurs qualités au cours du temps).

C’est par exemple le cas d’une chambre de conservation de longue durée, à température constante, dans laquelle les denrées sont introduites à la bonne température.

Choix de la valeur du coefficient de transmission thermique des parois

De manière générale, la valeur à atteindre pour le coefficient de transmission thermique (k) des parois des enceintes de conservation dépend de l’écart de température à maintenir entre la température intérieure de la chambre et la température extérieure.
Elle est de l’ordre de :

  • 0,350 à 0,263 W/m²K en stockage réfrigéré,
  • 0,263 à 0,162 W/m²K en stockage surgelé.

Avec des parois en polyuréthane (les plus courants pour les chambres froides démontables modulables) d’une masse volumique de 30 kg/m³ et d’un coefficient de conductivité thermique (λ) de 0,028 W/mK. Cela correspond à des épaisseurs de panneaux de :

  • 7 à 10 cm en stockage réfrigéré,
  • 10 à 17 cm en stockage surgelé.

 k [W/m2K] = 1/R; R = 1/αint + e/λ +1/αext

Où :

  • les coefficients d’échange superficiel αint = α ext = 8 [W/m2xK], e = l’épaisseur de l’isolant [m]

De manière plus précise, le coefficient de de transmission thermique doit permettre :

  • d’éviter les condensations superficielles
  • d’assurer un bon rapport coûts d’exploitation/investissement

Les condensations superficielles

Pour des raisons sanitaires (crasses, moisissures), et aussi pour éviter les corrosions des parties métalliques des chambres froides et des tuyauteries, il faut éviter les condensations.

La résistance thermique doit conduire à des températures de surface extérieure qui empêchent cette condensation dans une ambiance humide.

Calculs

Si vous voulez calculer l’épaisseur nécessaire des parois pour éviter les condensations superficielles, et ce en fonction de l’orientation de la paroi, de la température extérieure, de l’humidité relative extérieure, de la température intérieure et de la valeur lambda de l’isolant.

Remarque : en général, l’épaisseur ainsi calculée sera plus faible que les épaisseurs recommandées ci-dessus. Mais cette épaisseur est calculée avec un isolant de bonne qualité et en début de vie.

Les gains annuels suite à une meilleure isolation

Les apports thermiques par les parois vont dépendre du coefficient de transmission thermique de l’isolant, de son épaisseur, de la surface extérieure (en m²) et de la différence de température entre l’intérieur et l’extérieur.

Si pour une chambre donnée, on augmente l’épaisseur de l’isolant, cela a donc pour conséquence une diminution des déperditions.

Ce qui a un triple effet sur les coûts :

  • les coûts des consommations électriques diminuent,
  • le coût d’investissement de l’enceinte augmente,
  • le coût d’investissement de la machine frigorifique diminue.

La fonction qui cumule ces trois variables, en fonction de l’épaisseur de l’isolant, possède en principe une courbe « creuse » au plus bas de laquelle on trouve l’optimum d’isolation thermique.

Pour trouver cet optimum, il faudrait connaître la variation de ces différents coûts par rapport à l’épaisseur de l’isolant. Il faudrait également faire intervenir des facteurs comme l’évolution du prix de l’énergie, les taux d’intérêts, les taux d’inflation et la durée de l’amortissement.

Ce calcul est complexe et nous ne l’abordons pas ici.

Néanmoins, on peut calculer la diminution de pertes par les parois due à une augmentation de l’épaisseur de l’isolant et l’économie d’énergie approximative que cela engendre au niveau des consommations. Cette économie est à mettre en rapport avec le surcoût dû à l’augmentation de l’épaisseur de l’isolant (à demander à l’entrepreneur).

Calculs

Si vous voulez faire ce calcul.
Remarque.

Le vieillissement des isolants est inéluctable, bien que ce chapitre ne soit pas abordé en toute franchise par les fabricants. On voit parfois apparaître des condensations sur des parois sandwiches en PUR après une dizaine d’années d’utilisation des chambres froides.
En tout état de cause, vu les nombreux phénomènes en cause dans la dégradation des isolations thermiques au cours du temps (et notamment les nombreux percements, la détérioration des joints et les dégâts faits aux parois par les utilisateurs eux-mêmes), il est prudent de tabler sur un accroissement de la valeur lambda de 20 à 30 % sur 10 ans.

Pour compenser cet effet, on peut augmenter l’épaisseur de l’isolant pour que l’isolation reste suffisante à la fin de la durée d’amortissement des installations.

Sans cette précaution, et si les apports par les parois forment l’essentiel de la puissance frigorifique, la machine risque d’être de plus en plus sollicitée au cours du temps, ce qui raccourcit sa durée de vie, et elle aura de plus en plus de difficultés à maintenir les consignes de température intérieures.


Faut-il isoler la dalle du sol ?

La chambre froide négative avec pièce habitée en-dessous

Le sol des chambres froides négatives est en général isolé pour les chambres vendues toutes faites. Pour les autres, le sol doit être isolé sur chantier.

En effet sans cela il y a un risque certain de condensation sur le plafond de la pièce du dessous. L’épaisseur d’isolation thermique doit donc être calculée pour éviter la condensation sur cette surface.

Calculs

Si vous voulez calculer de manière simplifiée l’épaisseur d’isolant minimale nécessaire pour le sol de votre chambre froide négative afin d’éviter la condensation sur le plafond de la pièce située sous celle-ci.

Il est également impératif d’isoler le sol au niveau efficacité énergétique. En effet, les apports thermiques par cette paroi et les consommations qui en découlent vont être importantes s’il ne l’est pas, vu qu’il y a une grande différence de température entre l’extérieur et l’intérieur.

La chambre froide négative sur terre-plein

Le sol des chambres froides négatives est en général isolé pour les chambres vendues toutes faites.

Pour les autres, il est impératif, pour des raisons d’économies d’énergie, d’isoler le sol sur chantier car les apports thermiques par cette paroi et les consommations qui en découlent vont être importantes s’il ne l’est pas, vu qu’il y a une grande différence de température entre l’extérieur et l’intérieur.

Exemple.

Soit une chambre froide négative (-18°C) sur terre-plein, de dimensions (largeur x profondeur x hauteur) = (2.7 x 2.4 x 2.4) m³. Le sol sous la chambre est humide à 1 m de profondeur.

Sans isolation au niveau de la dalle, les déperditions par cette surface sont de 58 W. Avec 15 cm de polyuréthane (0.028 W/mK), les déperditions par cette paroi ne sont plus que de 19 W.

D’autre part, sans isolation de sol, il existe un danger de gel du sol s’il y a présence d’eau à faible profondeur. Si le sol commence à geler, les nodules de gel vont augmenter en épaisseur et finalement soulever et déformer le sol de la chambre. Il peut également y avoir un danger de condensation ou de givrage sur le sol extérieur autour de la chambre froide et le long des parois de la chambre froide. Ce mouillage du sol peut engendrer un risque de glissement pour le personnel de manutention.

Une bonne isolation du sol évite ces problèmes.

Il est à noter que les mesures décrites ci-dessous permettent également d’écarter ces risques mais utilisées seules, ces mesures ne sont pas satisfaisantes au niveau efficacité énergétique.

Ces mesures sont :

  • Le drainage du sol.

 

  • Un vide sanitaire bien ventilé par de l’air à température positive et le plus sec possible. Le cas du vide sanitaire doit être étudié pour que de la condensation n’apparaisse pas au plafond du vide, ce qui serait un risque pour les armatures de la dalle qui supporte la chambre froide.

 

  • Un chauffage sous le sol (câbles électriques ou tuyaux de circulation d’eau, éventuellement connectés par un échangeur au condenseur de la machine). Dans ce cas, la puissance du chauffage doit être ajoutée aux apports par le sol.

Gonflement du sol sous une chambre froide.

Système de chauffage pour éviter le gel du sol.

Source : Défauts de la construction, Kluwer Editorial, n°B1110 – 15 et 16.

Calculs

Si vous voulez estimer la puissance chauffante à installer sous le sol d’une chambre froide négative pour éviter le gel.

Mais attention, ce tableau est à manipuler avec la plus grande prudence. En effet :

  1. Les valeurs du lambda des sols secs et humides sont des hypothèses qui sont issues de la littérature pour des sols moyens. L’idéal serait de les vérifier pour le cas d’espèce.
  2. Certaines données à introduire ne sont pas indépendantes : la température en profondeur dépend évidemment de la température de la chambre froide, de l’importance de l’isolation thermique du plancher et de la profondeur de l’humidification du sol du terre-plein.
  3. Cette température en profondeur est variable au cours du temps, avant de se stabiliser quand l’ensemble de la masse est mis en régime.
  4. Cette température en profondeur peut varier entre l’hiver et l’été, surtout dans des zones situées au bord des entrepôts.
  5. L’humidification des sols peut aussi varier au cours du temps (selon l’efficacité du drainage).
  6. Si on ne chauffe pas la dalle, le gel pourrait se produire dans le sol, même si l’humidification du terre-plein ne monte pas jusque sous le béton du plancher.

Toutes ces raisons justifient pourquoi on doit utiliser le tableau en faisant une série de simulations raisonnables avec des données variables, pour aboutir à des valeurs maximalistes en isolation ou en chauffage.

La chambre froide positive

L’isolation des chambres froides positives est en option pour les chambres vendues toutes faites.
Pour les autres ce même choix est à faire.
Dans les 3 cas suivants, on choisit d’isoler le sol :

  1. Si on utilise la chambre avec des mises en régime fréquentes. L’isolation du sol permet d’avoir une constante de temps de l’air de l’ambiance beaucoup plus courte et la mise en régime en sera d’autant plus rapide, avec beaucoup moins d’énergie nécessaire.
  2. Si on veut une homogénéité de la température aux environs du sol qui est souvent encombré par des dépôts de marchandises, ce qui conduit à des panaches de chaleur localisés.
  3. Si le sol est en contact avec une source chaude importante (comme un four posé sur le sol près de la chambre) qui transmet de la chaleur par conduction du sol par-dessous les parois verticales de la chambre. Bien sûr, cette situation est à éviter absolument pour des raisons énergétiques.

Dans les autres cas, le choix entre un sol isolé ou non se fait en fonction :

  • Du danger de provoquer de la condensation sur le plafond de la pièce du dessous lorsqu’il y en a une.
    Ce risque est moins important qu’avec une chambre froide négative.

Calculs

Si vous voulez calculer de manière simplifiée si un isolant de sol est nécessaire dans votre chambre froide pour éviter la condensation sur le plafond de la pièce située sous celle-ci, et dans ce cas, quelle doit être l’épaisseur de celui-ci.
  • De l’augmentation des consommations électriques par rapport à celles de la même chambre dont le sol est isolé.

Aspects constructifs d’un plancher isolé

L’isolation de sol génère une marche à l’entrée de la chambre. Si la chambre est petite, on peut s’en accommoder. Les chariots restent à l’extérieur de la chambre et la manutention ne nécessite que quelques pas.

Dans le cas contraire, il y a trois possibilités :

  • la chape isolée qui évite la différence de niveau,
  • le décaissé dans la dalle,
  • une pente devant la porte.

La chape isolée

Pour des raisons évidentes de facilité de construction et de rapidité d’utilisation après construction, il vaut mieux utiliser des panneaux isolants dont la surface supérieure est un platelage en multiplex bakélisé ou une plaque métallique antidérapante.

Les constructeurs de ces panneaux en donnent les valeurs des résistances à la compression et au poinçonnement sous charge ponctuelle.

Si ces valeurs sont dépassées par les charges que l’on veut mettre en ouvre dans la chambre en projet, il faut alors passer à la réalisation d’une dalle flottante sur l’isolation thermique.

Dans ce type de conception, il y a 3 points à respecter :

  1. Il faut que l’isolant qui supporte le sol, soit suffisamment résistant pour porter le poids de la dalle augmenté des charges d’entreposage et de manutention.
  2. Il faut que la compressibilité de l’isolant sous cette charge soit inférieure à une certaine valeur. Le C.S.T.C. (dans sa revue trimestrielle n°1/2, 1988, pg. 50) propose (dL – dB) inférieur ou égal à 3 mm, avec :
    • dL : épaisseur de livraison sous charge de 25 kg/m²,
    • dB : épaisseur sous charge de 200 kg/m² après une sollicitation temporaire d’environ 2 minutes sous 5 000 kg/m². Bien entendu, ces dispositions sont valables pour des charges réparties de l’ordre de 300kg/m². Elles sont donc à adapter aux vraies charges de la chambre projetée. Mais elles ne devraient de toute façon pas être diminuées.

    Il est évident que la compressibilité de l’isolant dépend de sa masse volumique. Le C.S.T.C. préconise dans le cas du polyuréthane (PUR), une masse volumique minimale de 30 kg/m³.
    Remarquons que la masse volumique influence la valeur lambda de l’isolant : masse volumique plus élevée => lambda plus élevé, donc moindre qualité isolante.

    Sans les précautions ci-dessus, l’affaissement de l’isolation sous la charge de la dalle de sol, se traduirait par des problèmes périphériques de joints avec les parois verticales, et aussi par des différences de niveau aux endroits de passage vers l’extérieur.

  1. La dalle de sol doit être armée, l’armature calculée selon les charges.Le béton doit être le plus sec possible au moment de sa mise en œuvre, pour éviter l’éclatement du béton en cas de mise en régime trop rapide. L’idéal est d’attendre 3 semaines avant d’entamer le refroidissement.
Exemple de plancher isolé d’une chambre froide négative.


Le décaissé dans la dalle

Le décaissé est délicat à réaliser. Il demande une bonne préparation au niveau de la conception et une bonne coordination de l’exécution, si plusieurs entreprises successives doivent intervenir.

On prendra grand soin à réaliser l’obturation des joints à l’extérieur, au pied des parois, pour éviter que de l’eau n’aille se faire piéger dans la fosse, sous l’isolant.

C’est notamment pour cette raison que cette fosse doit être raccordée à l’égout.


L’étanchéité des parois

Pourquoi la chambre doit-elle être étanche à l’air et à la diffusion de vapeur ?

L’étanchéité à l’air et à la diffusion de vapeur va permettre de limiter :

  • Les apports thermiques.
  • Les entrées d’air humide et de vapeur. Ces entrées sont provoquées par la différence de pression (on ne peut pas facilement rouvrir la porte d’un congélateur ménager qu’on vient de fermer) et de température entre l’extérieur et l’intérieur.
    L’humidité va se condenser dans les chambres froides positives, ou va se congeler dans les chambres froides négatives.
    Dans les deux cas, cela entraîne des ennuis à plus ou moins court terme :

    1. Mouillage de l’isolation thermique qui perd ses qualités isolantes.
    2. Apparition de glace en expansion avec danger de déformation des panneaux, pour les chambres froides négatives.

Cela entraîne la dégradation des propriétés de la chambre à terme et donc un vieillissement accéléré.

Comment rendre la chambre étanche

  • La réalisation des joints doit être soignée.

 

  • Un pare-vapeur qui doit être placé du côté où la pression de vapeur est la plus élevée, c’est-à-dire ordinairement du côté le plus chaud. En principe, c’est la feuille métallique du panneau isolant préfabriqué, qui joue le rôle de pare-vapeur.
    Mais ce pare-vapeur doit être placé d’une manière continue et sans percements. Quelques trous dans le pare-vapeur réduisent son efficacité d’une manière dramatique.

 

  • Tout percement des parois dans les chambres doit être rebouché soigneusement par une matière imperméable à la vapeur (mousse à cellules fermées).

 

  • Les portes doivent posséder des joints souples qui doivent obturer très correctement les espaces entre la porte et son encadrement dormant. Un défaut de ces joints, ou une déformation de la porte, entraîne, surtout dans le cas des chambres négatives, l’apparition de glace sur les bords du cadre dormant. Cette glace empêche les joints de bien jouer leur rôle et, en plus, elle peut arriver à provoquer la déformation de la porte qu’on force en fermant. C’est le cercle vicieux.

Mesures supplémentaires à prendre avec une bonne étanchéité

La bonne étanchéité des chambres et des portes, entraîne des conséquences importantes :

  • Les entrées d’air ne se font plus que par les ouvertures de portes et il peut être nécessaire de contrôler la qualité de l’air pour les travailleurs qui sont enfermés dans les chambres (certaines denrées « respirantes »,de même que les travailleurs dégagent du CO2). Il faudrait donc, dans ce cas, assurer le renouvellement de l’air par un système de ventilation mécanique contrôlée.

 

  • Pour les grandes chambres froides négatives, la dépression causée par le refroidissement rapide de l’air introduit par une ouverture de porte, provoque une poussée de l’air extérieur sur toutes les parois de la chambre; ce qui peut créer des déformations dans les panneaux verticaux et le plafond voire leur effondrement, surtout pour des plafonds dont les panneaux ont des portées très grandes sans être efficacement supportés par une structure.
    C’est pourquoi il faut prévoir des soupapes de décompression qui permettent des passages d’air pour équilibrer les pressions à tout moment. Cela permet d’ouvrir les portes sans problème (voir l’exemple de la porte du congélateur ménager ci-dessus).
    Bien entendu, si de l’air extérieur chaud et humide passe à travers les soupapes vers l’intérieur de la chambre, on devra éviter le gel des soupapes (froides), en les chauffant par une résistance électrique. Il faut donc prévoir une arrivée de courant pour brancher ces soupapes.
    Mais il peut aussi se produire des surpressions dans les chambres froides négatives.
    Là encore, les soupapes de décompression vont jouer leur rôle en laissant sortir l’air intérieur pour éviter de mettre la chambre en surpression par rapport à l’extérieur, ce qui occasionnerait des déformations des parois vers l’extérieur.
    Il est essentiel que les clapets de ces soupapes soient toujours bien libres pour tout mouvement de l’air, soit vers l’extérieur, soit vers l’intérieur.

La porte et « ses accessoires »

La porte de par ces ouvertures apporte des quantités importantes de chaleur et constitue donc un poste important dans le bilan thermique d’une chambre.

De même, elle est à l’origine de quantités considérables de vapeur d’eau.

Dans les chambres positives, une partie de cette vapeur, entraînée par l’air chaud qui monte, se condense en eau sur les parties froides intérieures des parois au-dessus des portes, ce qui peut créer des égouttements gênants.

Dans les chambres froides négatives, une partie de cette vapeur d’eau se fait piéger sous forme de givre au-dessus des portes. Au départ, ce givre a une masse volumique assez faible (+ 200 kg/m³) et prend beaucoup de volume en s’accumulant à chaque ouverture. Au cours du temps, ce givre va se densifier en glace et prendre de plus en plus de poids, ce qui conduit à des masses importantes, collées à la structure au-dessus des portes. A la longue, cela peut entraîner des déformations, si la structure n’est pas assez forte pour supporter ces masses de glace.

Il faut donc régulièrement aller briser la glace si la chambre travaille en continu. Si la chambre froide est arrêtée de temps en temps pour nettoyage, la fonte de cette accumulation de glace, produira beaucoup d’eau et prendra du temps.

Ainsi, les temps d’ouverture doivent être réduits autant que possible. Quand on travaille à l’intérieur de la chambre ou quand on y fait des allées et venues, il est recommandé de refermer la porte contre son ébrasement, même sans l’encliqueter.

Des accessoires peuvent aider à limiter les effets négatifs des ouvertures de portes :

  • Un système de fermeture automatique.

 

  • Des lamelles plastiques d’obturation des baies.

 

  • Des portes vitrées isolées permettent de trouver les aliments avant d’entrer et de ne pas perdre de temps à chercher dans la chambre froide, portes ouvertes. Ce qui représente une économie d’énergie mais également une amélioration du confort pour les travailleurs.
    Les vitrages doivent être en plexy pour éviter les bris de vitre.Le coefficient d’isolation thermique est inférieur à celui du reste de la porte mais il doit être suffisant pour éviter l’apparition de condensation.
    En ce qui concerne les surconsommations énergétiques, les surfaces de ces vitrages sont souvent petites et sont donc négligeables dans l’ensemble.

 

  • Il existe des alarmes qui sonnent tant que la porte est ouverte, ce qui pousse la personne à sortir au plus vite (bien que le froid devrait suffire…!!)

Dans le même ordre d’idée, une chambre froide positive peut avantageusement servir d’espace tampon entre la chambre froide négative et l’extérieur.


La capacité thermique de la chambre

Associée à l’isolation thermique, la capacité thermique de la chambre froide détermine sa constante de temps.

La constante de temps de la chambre frigorifique permet d’estimer, en première approximation, la façon dont elle va se comporter en régime transitoire (c’est-à-dire entre deux paliers de température).

Une constante de temps courte indique que l’on aura des variations rapides de température, et une constante de temps longue, indique l’inverse.

Le choix entre une constante de temps longue (ou une inertie thermique importante pour une isolation déjà choisie) et une constante de temps courte (ou une inertie thermique faible pour une isolation thermique déjà choisie) se fait en fonction de :

  • la volonté de maintenir les marchandises à bonne température
  • la fréquence des mises en régime de la chambre froide

La volonté de maintenir les marchandises à bonne température

Les responsables des cuisines collectives vivent avec l’inquiétude de pannes des installations frigorifiques qui peuvent avoir des conséquences importantes sur l’utilisation des denrées stockées, dans le souci de respecter l’arrêté royal du 13 juillet 2014 relatif à l’hygiène des denrées alimentaires.

Bien que les contrats de maintenance puissent prévoir des délais d’intervention très courts, il n’empêche qu’en cas de panne de l’installation, le maintien des aliments stockés le plus longtemps possible, aussi près que possible de la température de stockage, doit être un critère supplémentaire pour le choix de l’inertie thermique de la chambre (et de l’épaisseur d’isolant).

Le stockage d’énergie frigorifique dans une chape de sol refroidie peut ralentir la montée en température de la chambre parce que sa constante de temps est très longue (24 heures et plus) et que sa capacité thermique est importante. De plus, vu que le coefficient de conductivité thermique d’une chape est élevé, la prise d’énergie frigorifique dans la chape n’en sera que meilleure, ce qui tendra à stabiliser la température. Ceci plaide en faveur de la présence d’une chape placée par-dessus l’isolation des chambres froides, même pour les chambres froides positives.

Evidemment, la présence d’une quantité importante de denrées stockées refroidies jouera le même rôle, mais au détriment de leur qualité, car c’est leur surface extérieure qui va d’abord se réchauffer. Et surtout s’ils sont les seuls à jouer le rôle de capacité thermique.

La fréquence des mises en régime de la chambre froide

Avec une chambre à grande inertie thermique dans la chape, il faut éviter de les laisser remonter trop souvent à la température ambiante extérieure. Sinon, une partie importante de la puissance de l’évaporateur va être « détournée » pendant un temps très long par la chaleur qui s’évacue de la dalle de sol, au détriment de la chaleur à évacuer des denrées, si ce travail est à faire en même temps.

Comprendre la libéralisation du marché du gaz et de l’électricité

Comprendre la libéralisation du marché du gaz et de l'électricité

Marché libéralisé ?

Auparavant, tout client raccordé au réseau de distribution d’électricité ou de gaz, n’avait pas d’autre choix que de se fournir en énergie auprès de son distributeur.

L’ouverture à la concurrence des marchés de l’électricité et du gaz naturel est un processus européen, qui est en cours de mise en œuvre en Wallonie.

Lorsqu’un client est éligible, il peut choisir librement son fournisseur d’énergie. Il est cependant toujours raccordé au réseau de son distributeur, appelé dorénavant Gestionnaire de Réseau de Distribution GRD.

Ce client a des contacts avec son gestionnaire de réseau pour ce qui concerne le raccordement au réseau, les installations de mesure de la consommation, le relevé des données de mesure, les pannes et coupures éventuelles, etc… Les relations entre les différentes parties sont, notamment, régies par les règlements techniques relatifs à la gestion des réseaux, règlements disponibles sur le site de la CWaPE (ouverture d'une nouvelle fenêtre ! www.cwape.be).

La nouvelle organisation, tant au niveau du marché du gaz que du marché de l’électricité, implique une séparation des métiers.

Schématiquement, les relations s’organisent comme suit :

La distribution est assurée par le Gestionnaire de Réseau de Distribution (GRD), qui :

  • gère le raccordement au réseau
  • veille à la continuité et à la qualité de l’approvisionnement (quel que soit le fournisseur)
  • est responsable des mesures et du comptage de l’énergie consommée.

Le tableau ci-dessous reprend les différents gestionnaires de réseau de distribution désignés en Région wallonne :

  • GASELWEST (c/o EANDIS)
  • ORES – Namur (ex IDEG)
  • ORES – Hainaut Electricité (ex IEH)
  • ORES – Hainaut Gaz (ex IGH)
  • ORES – Est (ex INTEREST)
  • ORES – Luxembourg (ex INTERLUX)
  • ORES – Verviers (ex INTERMOSANE)
  • ORES – Brabant wallon (ex SEDILEC)
  • ORES – Mouscron (ex SIMOGEL)
  • PBE (c/o INFRAX)
  • RESEAU D’ENERGIES DE WAVRE
  • RESA

Si vous souhaitez actualiser cette liste des gestionnaires de réseau de distribution d’électricité ou connaitre leurs coordonnées de contact, consultez le site de la CWaPE ( ouverture d'une nouvelle fenêtre ! www.cwape.be).

La fourniture d’électricité ou de gaz est assurée par un fournisseur possédant une licence délivrée par le Ministre wallon de l’Énergie.

Seuls les fournisseurs possédant une licence sont autorisés à fournir de l’électricité et/ou du gaz en Wallonie.

Voici la liste des organismes qui ont obtenu une licence de fourniture d’électricité en Région wallonne :

  • ARCELORMITTAL ENERGY SCA **
  • ASPIRAVI ENERGY nv
  • AXPO FRANCE & BENELUX sa *
  • BELGIAN ECO ENERGY sa
  • BELPOWER INTERNATIONAL sa
  • BIOWANZE sa **
  • COCITER scrl
  • COMFORT ENERGY sa
  • DANSKE COMMODITIES A/S
  • DIRECT ENERGIE BELGIUM sa (marque POWEO)
  • E.ON BELGIUM sa *
  • EDF LUMINUS
  • ELECTRABEL sa *
  • ELECTRABEL CUSTOMER SOLUTIONS sa
  • ELEGANT sprl
  • ELEXYS sa
  • ENDESA ENERGIA sa *
  • ENECO BELGIË bv
  • ENERGIE 2030 Agence sa
  • ENERGIE DER NEDERLANDEN bv *
  • ENERGY CLUSTER sa
  • ENI GAS & POWER sa
  • ENI S.p.A.
  • ENOVOS LUXEMBOURG sa *
  • EOLY sa
  • ESSENT BELGIUM nv
  • GETEC ENERGIE AG
  • KLINKENBERG ENERGY sa
  • LAMPIRIS sa
  • OCTA+ ENERGIE sa
  • POWER ONLINE sa (marque MEGA)
  • POWERHOUSE bv *
  • RECYBOIS sa **
  • RENOGEN sa *
  • SCHOLT ENERGY CONTROL sa *
  • SEVA sa **
  • SOCIETE EUROPENNE DE GESTION DE L’ENERGIE sa **
  • SOLVAY ENERGY SERVICES SAS *
  • TOTAL GAS & POWER BELGIUM sa
  • TOTAL GAS & POWER LIMITED *
  • TREVION nv
  • VENTS D’HOUYET sca à finalité sociale
  • VERDESIS sa **
  • VLAAMS ENERGIEBEDRIJF nv
  • XYLOWATT sa **

* Activités commerciales orientées « grosses entreprises ».
** Fourniture d’électricité limitée à des clients déterminés à la société.

Si vous souhaitez actualiser cette liste des fournisseurs d’électricité ou de gaz en région wallonne ou connaitre leurs coordonnées de contact, consultez le site de la CWaPE ( ouverture d'une nouvelle fenêtre ! www.cwape.be).


Qui est éligible ?

Depuis le 1er janvier 2007, tous les consommateurs sont éligibles, ce qui signifie qu’ils peuvent choisir librement leur fournisseur d’électricité.


Faut-il faire une démarche pour être éligible ?

NON, si vous êtes un client électricité Haute-Tension ou assimilé ou si votre consommation annuelle de gaz est supérieure à 0,12 GWh, votre gestionnaire de réseau vous a déjà notifié que vous remplissiez les conditions d’éligibilité.  Vous n’avez pas d’autre démarche à entreprendre pour être éligible.  Vous êtes libre de choisir ou non votre fournisseur d’électricité et/ou de gaz.
OUI, si vous êtes un client professionnel (c’est-à-dire non domestique) non automatiquement éligible.
Vous ne pouvez devenir éligible que si vous possédez un compteur exclusivement destiné à enregistrer votre consommation d’électricité ou de gaz pour les besoins de votre activité professionnelle.
Tout client professionnel qui souhaite devenir éligible doit en faire la demande expresse en le notifiant, par recommandé avec accusé de réception, à son gestionnaire de réseau d’électricité ou de gaz.
Cette notification doit contenir les éléments suivants:

  • vos nom et prénom,
  • l’adresse complète du site de consommation pour lequel un compteur à usage exclusivement professionnel est installé,
  • une déclaration sur l’honneur attestant que la consommation visée est exclusivement destinée à l’usage professionnel,
  • le cas, échéant, les coordonnées du ou des fournisseurs que vous avez choisi(s).

En réponse à votre demande, le gestionnaire de réseau doit vous notifier votre code EAN, qui est un code qui définit de manière univoque votre point de raccordement. A partir du moment où ce code vous est notifié, vous devenez effectivement éligible.
Le délai endéans lequel le gestionnaire de réseau doit vous notifier le code EAN est de 30 jours à dater de l’accusé de réception de votre demande.
Si vous exercez votre activité professionnelle sur plusieurs sites, disposant d’un compteur spécifique chacun, il conviendra d’identifier dans votre demande tous les sites pour lesquels vous souhaitez devenir éligible.

L’éligibilité oblige-t-elle à choisir un fournisseur ?

En devenant éligible pour l’électricité et/ou le gaz, vous pouvez ou non exercer votre éligibilité, c’est-à-dire choisir librement votre fournisseur.

Il n’est pas nécessaire de prendre une décision hâtive.

Tant que vous n’exercez pas votre éligibilité

Vous ne choisissez donc pas de fournisseur. Votre gestionnaire de réseau vous en a désigné un d’office. Dans sa lettre vous notifiant que vous deveniez éligible, le gestionnaire de réseau a du vous indiquer notamment qui est votre fournisseur désigné et communiquer la liste des fournisseurs titulaires d’une licence de fourniture. Le fournisseur désigné applique ses tarifs propres, qui peuvent différer des tarifs antérieurs.

Moyennant préavis de 1 mois (à dater du premier jour du mois qui suit), vous pouvez à tout moment quitter ce régime pour exercer votre éligibilité. Si vous signez un contrat avec ce fournisseur désigné, vous serez considéré comme ayant exercé votre éligibilité.

Dès que vous exercez votre éligibilité

En exerçant votre éligibilité, vous décidez de conclure un contrat avec le fournisseur de votre choix. Dans ce cas, vous êtes lié avec votre fournisseur pour la durée prévue par le contrat et compte tenu des éventuelles clauses de résiliation anticipée. 


À qui s’adresser en cas de problèmes ?

Votre fournisseur est votre interlocuteur privilégié pour toute question concernant votre fourniture en électricité ou en gaz.

En cas de panne résultant d’un problème technique sur le réseau ou en cas de fuite de gaz, contactez votre gestionnaire de réseau (GRD) dont le numéro de téléphone doit être indiqué sur la facture de votre fournisseur.

Si vous estimez être lésé dans vos droits, il vous est recommandé d’exposer votre position à votre fournisseur ou à votre gestionnaire de réseau selon le cas, afin de tenter d’aboutir à une solution à l’amiable au différend qui vous oppose.

Vous pouvez également saisir le service de médiation du Service Public Fédéral Économie, PME, Classes moyennes et Énergie ( ouverture d'une nouvelle fenêtre ! www.mineco.fgov.be).

En ce qui concerne des litiges relatifs à l’accès aux réseaux de distribution et à l’application des règlements techniques relatifs à la gestion du réseau de transport local ainsi qu’à la gestion des réseaux de distribution d’électricité et de gaz, il est loisible aux parties de saisir le service de conciliation et d’arbitrage instauré auprès de la CWaPE. ( ouverture d'une nouvelle fenêtre ! www.cwape.be).

Si le litige persiste, des voies de recours légales existent. Les cours et tribunaux sont compétents dans tous les cas.

Évaluer l’efficacité énergétique des équipements

Évaluer l'efficacité énergétique des équipements


1ère analyse : calculer la puissance installée

Une valeur de référence

Actuellement, un éclairage performant fournit un éclairement de 100 lux avec une puissance installée (y compris la puissance des auxiliaires éventuels) inférieure à :

  • 1.5 à 2 W/m².100 lux  pour les bureaux, écoles, ateliers,…
  • 3.5 W/m².100 lux pour les commerces
  • 0.5 W/m².10 lux en éclairage extérieur

Cette valeur dépend évidemment de la forme de la pièce et de la couleur des parois.

Ainsi, un éclairage correct fournit un éclairement de 400 lux (par exemple pour une classe) avec une puissance installée (y compris les auxiliaires éventuels) de : 7,5 … 10 W/m² au sol .

Il n’est pas rare de rencontrer dans les anciennes installations une puissance installée supérieure à 25 W/m², pour un niveau d’éclairement identique.

Calcul de la puissance spécifique

Calculs

Pour calculer la puissance électrique installée.

Données

 Pour connaitre les valeurs d’éclairement requis par usage.

Note : la valeur de la puissance spécifique est à calculer sur toute la surface du local (sans déduction de la zone périphérique (la zone périphérique – souvent un pourtour de 0,5 m où se trouvent les armoires – peut être appliquée pour le calcul de niveau d’éclairement).

Si la valeur de la puissance spécifique est fortement supérieure aux valeurs ci-dessus, une rénovation de l’installation d’éclairage dans un but de rentabilité financière sera à envisager. A remarquer, cependant, que la rentabilité financière reste une notion aléatoire en fonction de la fonction des bâtiments.

Cette étude de rentabilité tiendra notamment compte du temps de fonctionnement des lampes. En première approximation, on considérera rentable un remplacement si les puissances installées sont :

  • proche du double des valeurs de référence pour des durées d’utilisation annuelle moyenne de 2 000 h/an ;
  • proche du quadruple pour des durées d’utilisation annuelle moyenne de 1 000 h/an.

2ème analyse : repérer les indices d’une installation peu performante

1er indice : des lampes peu performantes

Pour 1 Watt de puissance électrique, le flux lumineux délivré diffère en fonction du type de lampe.

Les anciennes lampes à incandescence ont ainsi un rendement lumineux (W/lumen)  nettement inférieur aux lampes fluorescentes. (La présence d’un réflecteur interne diminue encore ce rendement).

Parmi les lampes fluorescentes, les tubes de 38 mm de diamètre (ancienne génération) ont un rendement de 50 % inférieur aux tubes de 26 mm ou de 16 mm (nouvelle génération). Les tubes fluorescents à allumage rapide, dits « rapid start », ont également un mauvais rendement. Ces derniers sont reconnaissables à la bande métallique se trouvant tout le long du tube.

Autrement dit, pour délivrer un même flux lumineux de 2 200 lm, il faudra un tube fluorescent (Ø 16 mm) de 21 W ou une lampe à incandescence de 150 W !!!!

Les lampes à  faible efficacité lumineuse

Photo lampe à incandescence.     Photo lampe halogène.

La lampe à incandescence et la lampe halogène.

 Lampes performantes

Photo tubes fluorescents.     Photo lampes fluocompactes.     Photo ampoule halogénure métallique.     Photo Bulb LED..

Les tubes fluorescents, les fluocompactes , l’Halogénure métallique et le Bulb LED.

Note : les fluocompactes et bulbs LED à auxiliaires intégrés (p.ex. socket E27) ont un rendement de +/- 50 lm/W et donc pas très élevé. (par rapport aux lampes fluorescentes et halogénures métalliques avec un rendement de +/- 100 m/W).

Données

 Ppour connaitre les valeurs d’efficacité énergétique de différentes lampes.
Remarque pour l’éclairage extérieur

Les lampes fluorescentes, malgré leur efficacité lumineuse nominale importante, ne sont pas toujours adaptées à une utilisation extérieure :

  • Chute de l’efficacité avec la température extérieure (certaines lampes ne s’allument même plus sous une certaine température).
  • Difficulté de maîtrise du flux lumineux étant donné la taille des lampes.
  • Absorption de la lumière émise d’une lampe par l’autre dans les luminaires multilampes.

Elles ne seront utilisées que lorsque l’on désire créer des lignes lumineuses (ex : dans les tunnels, quais de gare, …), moyennant l’utilisation de luminaires spécialement étudiés.

On préférera dès lors les lampes au sodium basse pression et les halogénures métalliques. Actuellement, les luminaires LED envahissent nos espaces externes. Bonne ou mauvaise chose ? Effectivement, oui ! La lampe LED (ou luminaire LED) plus que sûrement une lampe d’avenir pour l’éclairage externe sachant que :

  • les niveaux d’éclairement exigés sont souvent plus bas pour les abords des bâtiments tertiaires et, par conséquent, le nombre de lumen nécessaire n’est pas trop élevé (ce qui convient bien aux sources LED actuelles) ;
  • les températures basses de nos campagnes donnent la possibilité au LED de pouvoir s’exprimer entièrement. En effet, les LED « raffolent » des températures basses pour donner leur plein flux lumineux.

 

2ème indice : des luminaires peu performants

Mauvais contrôle de la lumière

Le rendement d’un luminaire est mauvais lorsqu’une partie importante de la lumière émise par la lampe est absorbée par :

Absence de réflecteur (tube nu)
pertes = 50 %.

Réflecteur peint (blanc…)
pertes = 50 %.

Diffuseur en micro-grille
pertes = 75 %.

Diffuseur prismatique
pertes = 60 %.

    

Diffuseur opalin
pertes = 70 %.

Luminaire indirect
pertes = 50 %.

Notons aussi que le luminaire perd en efficacité s’il est disposé ou dirigé hors de la zone à éclairer.

En éclairage extérieur, les luminaires considérés comme éblouissants, c’est-à-dire ne contrôlant pas la diffusion de la lumière, sont aussi ceux qui ont le plus mauvais rendement :

Absence de réflecteur, diffuseur opalin.

Lampes moins adaptées

Un même luminaire peut parfois être équipé de différents types de lampes. Or, le type de lampe peut parfois affecter le rendement du luminaire.

Par exemple pour certains types de luminaires, une lampe ovoïde, ayant une surface extérieure, plus importante et de surcroît mat, risque d’absorber une partie de la lumière qu’elle a émise.

  

3ème indice : des ballasts peu performants

Les ballasts traditionnels ou électromagnétiques (appelés aussi inductifs) ont une consommation équivalente à 20 % de la consommation de la lampe fluorescente. Cette consommation est de 14 % pour les ballasts électromagnétiques « faibles pertes ».

Quant aux ballasts électroniques, ils ont des faibles pertes (de l’ordre de 10 % de la puissance de la lampe) et même avec certaines lampes fluorescentes ils sont en mesure de diminuer la puissance de celles-ci en améliorant leur efficacité énergétique. Attention, l’utilisation de ballasts électroniques est cependant délicate dans les locaux équipés de matériels électroniques de mesure (laboratoire, hôpital,…).

Enfin, les ballasts gradables ou dimmables intégrés dans un système d’éclairage régulé tenant compte de l’apport de lumière naturelle peuvent contribuer à réduire encore leur perte de manière fictive. Les chiffres annoncés par certains constructeurs sont à considérer au cas par cas au niveau des systèmes et des types de lampes.

À noter aussi, comme le montre le graphe précédent, que les consommations du ballast ne sont pas nécessairement proportionnelles aux niveaux de dimming.

Ballasts électromagnétiques
faible perte et normal.

Ballast électronique.

 Données

Plus d’infos sur la classification énergétique des ballasts.

Améliorer

Remplacer les lampes.

Améliorer

Remplacer les optiques.

Améliorer

Remplacer les ballasts.

Concevoir

Choisir un luminaire.

Transmission lumineuse des matériaux

Transmission lumineuse des matériaux


Caractéristiques lumineuses

Lorsque la lumière visible du soleil est interceptée par une paroi, une partie de la lumière est réfléchie (RL) vers l’extérieur, une partie est absorbée (AL) par les matériaux, une partie est transmise à l’intérieur.

Le pourcentage de lumière transmis est appelé transmission lumineuse de la paroi, TL (les sigles LTA ou Tv sont également employés).

L’éventuel air chaud emprisonné entre la protection solaire et le vitrage n’a pas d’impact sur la quantité de lumière transmise à l’intérieur d’un local. Dans la description des différents types de protection, on considérera donc la transmission lumineuse de la protection seule et non de l’ensemble vitrage + protection.

Exemple (ci-contre) : la transmission lumineuse d’un simple vitrage clair = 0,9.


Caratéristiques énergétiques

Le facteur solaire (facteur g).

La transmission lumineuse et le facteur solaire sont souvent liés dans le sens où un vitrage sélectif, par exemple, permet de réduire la transmission de la composante IR du rayonnement solaire au prix du placement d’une ou plusieurs couches d’oxyde métallique en surface de vitrage. Cette ou ces couches influencent la transmission lumineuse du vitrage.

Comprendre la sensation de froid liée à la régulation

Comprendre la sensation de froid liée à la régulation


Préalable : schéma de l’installation

Comme pour l’évaluation de l’efficacité énergétique de la régulation, la compréhension du fonctionnement de l’installation est indispensable pour orienter les recherches. Pour cela, il faut dresser le schéma hydraulique de l’installation ainsi que le schéma de sa régulation : comment se distribue la chaleur au départ de la chaufferie, et quel régulateur commande quelle partie de l’installation ?

 Exemple : principe de régulation d’une installation existante

On reconnaît :

  • La température de l’eau (3) des circuits A, B, C est régulée par une vanne 3 voies en fonction de sondes extérieures (1) et (10).
  • La température du collecteur (5) est automatiquement calculée en fonction de la température du circuit secondaire le plus demandeur.
  • Les chaudières et leur circulateur sont commandés en cascade en fonction des besoins (6).
  • Un régulateur optimiseur (2) gère le ralenti nocturne du circuit A (circuit nord).
  • Un thermostat d’ambiance (12) permet une programmation séparée du circuit B.
  • Le ralenti nocturne du circuit C (circuit Sud) est géré par un régulateur optimiseur (11). Ce régulateur dispose d’une sonde solaire en complément de la température extérieure communiquée par le régulateur au Nord.
  • Un contact est utilisé pour la coupure de deux ventilateurs d’extraction situés dans la salle de sports située au Sud également.
  • Une vanne de zone deux voies (15a), commandée par un thermostat d’ambiance et par une horloge pour le circuit D (réfectoire à usage limité).
  • Une vanne de zone deux voies (15b) pour les circuits E et F (locaux administratifs), commandée par une simple horloge, étant entendu que la température de départ est régulée dès la sortie de chaudière. Des vannes thermostatiques sont présentes dans les locaux pour une régulation complémentaire.
  • À noter qu’une soupape différentielle stabilise la pression des réseaux D et E et que le circulateur est coupé si les deux vannes de zone sont fermées.

Vérification des paramètres de la régulation centrale

On entend par « paramètres de la régulation centrale » :

  • le réglage de la température de l’eau distribuée dans les différents circuits,
  • le réglage des périodes de marche et de ralenti.

Température de l’eau distribuée dans les différents circuits

Dans la plupart des installations de chauffage du secteur tertiaire, la température de l’eau distribuée dans les différents circuits est régulée en fonction de la température extérieure, suivant une correspondance appelée courbe de chauffe.

courbe de chauffe

Courbe de chauffe standard : lorsque la température extérieure est de 3°C, la température de l’eau est réglée sur 70°C.

Un mauvais réglage des différentes courbes, c’est-à-dire une température d’eau trop basse, provoquera un inconfort dans certaines zones du bâtiment.

A priori, si la cause de l’inconfort est une température d’eau trop basse, le manque de chaleur se fera ressentir dans une bonne partie des locaux desservis par le circuit incriminé.

En principe, chaque bâtiment (ou zone de bâtiment) a une courbe de chauffe qui lui correspond (fonction de son degré d’isolation, de sa température de consigne et du surdimensionnement de ses corps de chauffe). C’est pourquoi, il est impossible pour un chauffagiste ne vivant pas dans le bâtiment de régler la bonne courbe. C’est aussi pourquoi il est impossible de dire ici quelle doit être la bonne température de l’eau. Tout au plus, peut-on comparer la courbe réelle  à la courbe standard avec laquelle la température de l’eau équivaut à :

  • 90°C lorsque la température extérieure est de – 10°C (température minimum de dimensionnement),
  • 20°C lorsque la température extérieure est de 20°C (il n’y a plus de besoin de chauffage et donc plus de puissance à fournir).

Techniques

Régler une courbe de chauffe.

Attention cependant, le principe de la régulation centralisée est qu’elle fournit les mêmes conditions de fonctionnement à tous les locaux raccordés sur un même circuit. Elle ne donnera donc satisfaction à tout le monde que si tous ces locaux ont des besoins semblables : même orientation, mêmes apports internes, même degré de surdimensionnment des émetteurs. Si ce n’est pas le cas, la tendance sera d’augmenter la température de l’eau de manière à satisfaire les plus défavorisés. Il en résultera des surchauffes pour les autres et le plus souvent une régulation de leur température ambiante par ouverture des fenêtres. Parfois donc, la seule régulation de la température d’eau distribuée à partir d’une sonde extérieure n’est pas suffisante. Il faudra lui adjoindre une régulation locale complémentaire (vannes thermostatiques) ou une compensation par mesure de la température intérieure (thermostat d’ambiance dans un local témoin).

Périodes de marche et de ralenti

Lorsque l’installation ne comprend pas d’optimiseur, le gestionnaire de l’installation doit fixer le moment de la relance et de la coupure au niveau d’une horloge.

Ces moments sont peut-être mal choisis. Ceci est cependant rarement le cas, le gestionnaire prenant ses précautions pour satisfaire les locaux les plus défavorisés.

Par contre, il n’est pas rare de rencontrer en chaufferie, des horloges n’étant pas à l’heure, à la suite d’une coupure de courant ou à la suite d’un oubli du changement d’heure. Si l’horloge est à l’heure d’été, l’installation sera relancée une heure trop tôt en hiver (de novembre à mars), causant ainsi une certaine surconsommation; si l’horloge est à l’heure d’hiver, l’installation sera relancée une heure trop tard en mi-saison (d’avril à octobre). Cette situation n’aura généralement guère de conséquence car le gestionnaire aura défini le moment de la relance pour les conditions les plus rudes.


Emplacement des sondes extérieures

La plupart des régulations centralisées se basent sur une mesure de la température extérieure. Si la mesure réalisée n’est pas représentative des besoins réels, il en résultera un inconfort.

Il faut donc rechercher l’emplacement de la sonde extérieure et voir si sa position lui permet une mesure correcte des conditions extérieures communes à tous les locaux.

Les sondes extérieures doivent être placées :

  • À mi-hauteur de la zone dont elles doivent être témoins.
  • Sans être masquées (balcon, toiture, … ).
  • Éloignées de toute source de chaleur perturbatrice (soleil, corps de cheminée, grille de ventilation, … ) qui entraînerait une diminution non souhaitée de la température d’eau.

Schéma emplacement des sondes extérieures.

Emplacements recommandés et déconseillés d’une sonde extérieure.

Si la sonde extérieure doit être représentative pour l’ensemble du bâtiment, elle doit être positionnée au nord ou au nord-ouest. En effet, une sonde placée par exemple à l’est entraînera la coupure prématurée du chauffage le matin en cas d’ensoleillement, ce qui ne permettra jamais au bâtiment de se réchauffer suffisamment. Une sensation de froid sera donc ressentie durant toute la journée. Inversement si la sonde est placée vers l’ouest, la coupure du chauffage suite à l’ensoleillement de fin d’après-midi ne sera pas préjudiciable puisque le bâtiment aura emmagasiné de la chaleur durant toute la journée.

Améliorer

Un mauvais emplacement de la sonde ou la présence de perturbations extérieures importantes et non contrôlables peuvent être atténués en compensant le régulateur climatique.

N’oublions pas, en outre, qu’une sonde peut être défectueuse !


Emplacement des sondes intérieures

Comme pour les sondes extérieures, les mesures prises par un thermostat d’ambiance doivent être représentatives de la zone qu’il doit réguler :

  • Il ne doit pas être caché (derrière une armoire, une affiche, …). Si c’est le cas, cela conduira soit à des surchauffes et une surconsommation (thermostat situé dans une zone moins influencée par les sources de chaleur), soit à un manque de chaleur (thermostat situé dans une zone directement influencée par les sources de chaleur).
  • Il doit être situé dans un local représentatif des besoins des autres locaux situés sur le même circuit. S’il est dans un local bénéficiant d’apports de chaleur plus importants (nombre d’occupants élevés, ordinateurs, ensoleillement, …), il diminuera la fourniture de chaleur des autres locaux, y créant un inconfort.

Photo emplacement des sondes intérieures. Photo emplacement des sondes intérieures.

Sonde d’ambiance cachée derrière un porte-manteau ou une affiche.


Emplacement des vannes thermostatiques

La régulation de la fourniture de chaleur dans chaque local peut être affinée au moyen de vannes thermostatiques  Ici aussi, il est important que la sonde de la vanne thermostatique reflète fidèlement la température effective du local. Ainsi :

  • L’air doit pouvoir circuler aisément autour d’elle : il ne faut pas la masquer par une tenture, un cache-radiateur, …
  • Elle ne doit pas subir l’influence de la chaleur dégagée par le radiateur, par exemple en étant située dans le flux d’air chaud ascendant.

Schéma emplacement des vannes thermostatiques.

Emplacements recommandés et déconseillés d’une vanne thermostatique.

Le cas échéant, il faut recourir à l’emploi de bulbes à distance (télé sonde).

Photo bulbes à distance.

Vanne thermostatique avec bulbe séparé (pouvant être placé) à distance : la mesure de température est prise à distance de la vanne qui échapper à l’influence du corps de chauffe.

Choisir un chauffage électrique : généralités

Choisir un chauffage électrique : généralités


Choix du principe de fonctionnement

Un chauffage électrique pour quel usage ?

A priori, suite à son bilan écologique défavorable, l’électricité ne devrait pas être utilisée pour le chauffage des locaux. Dans le meilleur des cas, une centrale électrique TGV (turbine-gaz-vapeur) produit de l’électricité avec un rendement de 55 %. Alors que les rendements de production des chaudières au gaz sont de 92 %, voir nettement plus s’il s’agit d’une chaudière à condensation.

Et le coût du kWh électrique de jour (pointe de puissance comprise), est environ le double de celui du kWh thermique gaz ou fuel, ce qui est également dissuasif.

Seule l’utilisation d’une pompe à chaleur peut dans certains cas valoriser utilement l’énergie électrique et rattraper le mauvais rendement des centrales.

Toutefois, la force de l’énergie électrique est de pouvoir fournir un complément ponctuel, sans pertes.

Par exemple :

  • Chauffer à l’électricité un local de garde durant la nuit, afin de pouvoir stopper l’installation de chauffage principale.
  • Équiper un local d’accueil de vitres chauffantes, afin de donner aux personnes une chaleur par rayonnement, et d’éviter de chauffer l’entièreté du hall.
  • Donner un appoint ponctuel rapide dans un lieu à occupation temporaire, pour augmenter la température de confort (salles de bains d’un lieu d’hébergement, par exemple).

Incompatibilités

Le chauffage électrique ne convient pas aux locaux présentant une atmosphère explosive ou inflammable. Ceux-ci doivent être équipés d’un appareillage spécial.

Les systèmes à accumulation dynamique, qui font circuler l’air du local sur le noyau porté à haute température, ne conviennent pas aux applications où l’air ambiant contient régulièrement des solvants comme les salons de coiffure, cordonneries, garages, laboratoires, et bureaux en communication avec de tels locaux. En effet ces solvants se décomposent à haute température, ce qui peut provoquer, en fonction de leur nature, des émissions d’odeur, des cendres, ou une corrosion extrêmement rapide des composants métalliques.

Un phénomène analogue, mais sans conséquence, se produit lorsque des travaux de peinture, encollage de revêtement de sol, cirage de meubles sont effectués dans un local chauffé par accumulateurs dynamiques. La décomposition des solvants provoque l’émission d’une odeur « de mazout ». Ce phénomène transitoire s’élimine aisément par une aération du local (couper le thermostat).

Direct ou accumulation ?

Dans le cas du chauffage direct, la production et l’émission de chaleur se font à l’endroit même et au moment même de la demande.

Les appareils les plus répandus sont les convecteurs, et en moindre mesure, on rencontre aussi les panneaux radiants. Les systèmes de chauffage par plafonds et sols sont également des techniques courantes.

convecteurs   panneaux radiants

chauffage par plafonds et sols

chauffage par plafonds et sols

Schéma chauffage par plafonds
  1. Recouvrement du plafond.
  2. Élément chauffant.
  3. Élément constitutif du plafond.
  4. Isolation thermique.
  5. Voliges.

Le chauffage direct présente plusieurs avantages :

  • un rendement élevé (absence de pertes de distribution),
  • une grande précision du réglage de température,
  • un faible investissement.

Mais son coût est très élevé puisque la consommation est essentiellement facturée au prix de jour du kWh et pour une faible part seulement au prix de nuit. De plus, l’appareil risque fort d’être enclenché au moment de la pointe de puissance du bâtiment (pointe quart-horaire). Or chaque kiloWatt enclenché à ce moment va générer un supplément de 10 Euros environ à la facture mensuelle. C’est le problème des chaufferettes installées dans les locaux où il y a insuffisance de chaleur.

C’est typiquement un usage d’appoint qui doit lui être réservé, dans des locaux à usage intermittent.

Le chauffage à accumulation, lui, repose sur le fait que le producteur/distributeur, disposant de périodes où la demande est moindre, peut offrir un prix de kWh nettement plus avantageux. Le courant prélevé dans les heures creuses est utilisé pour produire de la chaleur qui sera momentanément stockée dans un accumulateur. La chaleur accumulée est ensuite restituée au moment de la demande de chaleur. Pour le chauffage des bâtiments, on rencontre essentiellement les radiateurs à accumulation et le chauffage à accumulation par le sol .

Photo radiateurs à accumulation.

Photo chauffage à accumulation par le sol.

Si le prix est plus avantageux, le chauffage à accumulation présente des inconvénients :

  • de par son inertie, la régulation (et donc le rendement) se dégrade fortement,
  • l’investissement est nettement plus élevé que le chauffage direct.

Évaluer

Pour évaluer l’efficacité énergétique d’un chauffage électrique à accumulation : cliquez ici !

C’est un système qu’il ne faut pas installer si le bâtiment présente une occupation variable et des apports solaires importants (grandes baies vitrées).

Il faut vérifier si le poids des accumulateurs de grosse puissance est compatible avec la charge au sol admissible. La pression sous les pieds de certains accumulateurs peut, en effet, s’avérer incompatible avec la tenue d’un plancher.


Choix d’un appareil direct

Le critère de choix essentiel est de déterminer le mode de transmission de la chaleur.
On peut avoir :

  • un émetteur fortement convectif (c’est l’air qui est chauffé et qui communique sa chaleur à l’ambiance),
  • fortement radiatif (c’est une onde qui chauffe tous les matériaux autour le lui),
  • ou mixte (la carcasse émet une onde mais un effet convectif est donné par effet cheminée ou par un ventilateur).

Photo radiateur électrique

Schéma principe radiateur électrique

Émetteur radiatif et convectif .

D’une manière générale, si le local à équiper est bien isolé, ce choix sera de peu d’importance. Par contre, si les déperditions sont élevées, il faut bien étudier la question car la puissance à apporter étant élevée, soit le débit d’air chaud sera élevé, soit la température de rayonnement sera forte. Deux situations inconfortables.

A priori, c’est le chauffage par rayonnement (à la plus basse température possible) qui sera le plus confortable.

Par contre, l’air chauffé est ressenti comme sec et porteur d’une odeur, surtout au démarrage de l’appareil (brûlure des poussières).

Il est surtout à éviter si le local est de grande hauteur : une stratification des températures aura lieu, l’air chaud restant coincé au plafond.

Le chauffage par rayonnement de plafond est par contre à éviter car pour son confort thermique, l’homme aime d’avoir « chaud aux pieds et frais à la tête ». Tout le contraire, donc… Une puissance maximale de 100 W/m² sera installée, avec une température de surface de 30 à 35°C. C’est faible et cela limite donc l’application à un local récent et isolé. Il ne se justifie que dans un atelier industriel où, le chauffage de l’air étant impossible, un chauffage par rayonnement à haute température peut se faire.

        

Un chauffage par l’air entraîne de fortes déperditions par les toitures.

Un chauffage par rayonnement permet un apport localisé.


Choix d’un appareil à accumulation

  

Qui peut prédire le temps qu’il fera demain ? Dans nos contrées, il faut avouer qu’il n’est pas évident de savoir s’il fera ensoleillé ou non le lendemain…

Or, dans un bâtiment d’aujourd’hui, bien isolé, le chauffage n’est plus nécessaire lorsque le soleil est présent. Il doit s’arrêter.

Que faire alors de la chaleur accumulée durant la nuit ? Elle s’écoulera malgré tout en bonne partie provoquant de la surchauffe et des pertes énergétiques.

Accumulation dans le sol

L’accumulation dans le sol est un système de chauffage statique. Il en porte donc tous les défauts (impossibilité de gérer la décharge en fonction des besoins réels de la pièce).

En reprenant ici l’analyse générale du choix de l’émetteur de chauffage, il ne convient absolument pas pour une école dont le temps d’inoccupation et les apports de chaleur gratuits (élèves, ensoleillement) sont importants. Pas plus pour un restaurant. Il ne convient pas non plus pour tout local fortement ensoleillé.

Exemple

Vu l’inertie de ce système (temps de réponse de plusieurs heures), et pour profiter du courant de nuit, il sera nécessaire d’enclencher le chauffage dès 2 heures du matin. Cette heure n’aura pu être sélectionnée que sur base de la température de nuit, en supposant que « plus il fait froid la nuit, plus les besoins de chauffage le jour seront importants ».

A 7 heures, le sol est chargé.

Si le soleil apparaît à 9 heures, il sera impossible de stopper la fourniture de chaleur. Les apports solaires entraîneront de la surchauffe dans les locaux. En architecture solaire passive, le sol constitue le premier lieu de stockage de l’énergie solaire. Toute l’énergie solaire accumulée en journée étant restituée en soirée. Avec un chauffage par le sol, le réservoir déborde déjà avant l’arrivée du soleil.

Par opposition, dans un système de chauffage par radiateurs, la vanne thermostatique fermera l’alimentation en eau chaude des radiateurs.

Par contre, il convient dans les locaux de grande hauteur (atrium, local avec mezzanine, …) pour lesquels la stratification des températures devient importante dans le cas d’un chauffage par convection. Par exemple pour assurer une température minimum de base, laissant à des convecteurs directs le rôle de l’appoint. Mais si la surface de chauffe est importante, va-t-on choisir un système dont le coût d’exploitation est si élevé ?

Quelques critères de qualité :

  • Les écarts de température à la surface du sol, même lors de l’emploi d’un recouvrement céramique, doivent rester en dessous de la valeur normalisée de 1,5 K.
  • La température de contact au sol devrait être limitée à 26,5°C. Le sol est ainsi en mesure de dissiper 70 W au m², ce qui est peu.
  • Si la puissance requise n’est pas disponible par le sol, le complément sera obtenu par un chauffage additionnel (convecteurs ou chauffage d’appoint dans le sol le long des murs). Le cas échéant, lors de l’emploi de chauffage additionnel dans le sol, limité aux zones périphériques de la pièce, la température de contact au sol pourra atteindre 34°C, permettant ainsi de dissiper une puissance de 150 W au m².
  • Une isolation correctement dimensionnée sera prévue sous la dalle. La CEG (Communauté de l’Electricité) recommande un minimum de 4 cm si le local inférieur est chauffé à la même température, 6 cm si le local du dessous n’est pas chauffé, 8 cm si c’est de l’air libre ou le sol. Dans le cas de l’air libre (vide ventilé, par exemple), il nous semble qu’un minimum de 12 cm serait préférable.

Calculs

Pour estimer la perte d’un chauffage par le sol situé au dessus dune cave, en fonction du degré d’isolation : cliquez ici !

Chauffage par accumulateurs

Les différents types d’accumulateurs se distinguent essentiellement par le mode de restitution de la chaleur,

  • depuis l’accumulateur statique, très peu isolé, qui va se refroidir naturellement tout au long de la journée,
  • jusqu’à l’accumulateur dynamique qui va tenter de retenir, grâce à son isolation, la chaleur accumulée. Lorsque la sonde d’ambiance est inférieure à la consigne et que la programmation le permet, il enclenche un petit ventilateur interne pour évacuer par convection la chaleur du noyau.

Sans hésiter, le choix du deuxième type d’accumulateur doit être fait. Idéalement, l’accumulateur ne devrait « s’user que si l’on sen sert » : il ne devrait perdre de la chaleur que lorsqu’il y a une demande.

La réalité, même avec l’accumulateur dynamique, est malheureusement toute autre. Dans nos simulations informatiques, nous avons constaté que lorsque la demande a été nulle en journée (soleil, réunion de travail, …), à 22h00 l’accumulateur dynamique a perdu près de 50 % de son énergie (par décharge statique au travers l’enveloppe isolante) ! Le rendement moyen saisonnier peut descendre jusqu’à 70 % si la charge n’est pas bien gérée et que des apports gratuits (internes et externes) sont présents dans le local.

D’ailleurs, il suffit de mettre sa main sur la paroi pour constater qu’il s’agit d’un véritable radiateur (le noyau peut être chauffé jusqu’à 800°C).

Lors de la sélection, il est très important de privilégier l’épaisseur de l’isolant, … et tant pis pour l’encombrement !

L’emplacement des appareils sera choisi de manière à assurer un rayonnement calorifique et un brassage d’air optimal dans le local, de préférence sous une fenêtre pour en compenser le rayonnement froid. Deux ou plusieurs appareils seront préférés à un seul plus puissant en raison de la meilleure répartition de chaleur qu’ils assurent.

Choix de la régulation

La régulation est le cerveau de l’appareil et donc la source des gaspillages éventuels. On ne saurait trop recommander une régulation automatique de la charge en fonction de la température extérieure.

Et pourtant, on rencontre couramment des accumulateurs avec réglage manuel à 3 positions. Par simplification, ils sont souvent réglés sur la position la plus élevée, afin de prévenir toute période froide éventuelle du lendemain. En pratique, ils entraînent une décharge statique plus élevée que nécessaire et donc une perte de rendement.

Un dispositif automatique de régulation de charge est de toute façon obligatoire dans les cas suivants :

  • en tarif exclusif nuit lorsque la puissance totale installée en accumulation est supérieure ou égale à 12 kW;
  • dans tous les cas d’application d’accumulation en tarif trihoraire ou hors-pointes, indépendamment de la puissance installée;
  • l’accumulation par le sol.

D’expérience, les installateurs règlent les appareils de telle sorte que jamais leur client ne puissent se plaindre d’avoir froid. Autrement dit, ils favorisent une charge élevée. Tout particulièrement si le bâtiment n’est plus occupé en fin de journée, il sera utile de revoir les paramètres de cette régulation de telle sorte que « l’appareil soit froid en fin de journée ». Quitte à jouer de temps à autre avec la résistance directe d’appoint, si une réunion est programmée un soir…

Pour plus de détails sur la régulation des appareils, cliquez ici !

Améliorer

Pour plus de détails sur l’adaptation des paramètres de réglage, cliquez ici !

Choix du tarif

Il nous est très difficile de discuter du meilleur tarif applicable au secteur tertiaire. Et donc d’optimaliser le choix des accumulateurs en fonction du tarif.

En effet, nous avons peu d’expérience d’audit de bâtiments tertiaires chauffés à l’électricité. Et les informations disponibles sont souvent orientées pour le domestique.

La philosophie de base est bien sûr la suivante :

  • Si le stockage a lieu à 100 % la nuit (durée de charge de 9 heures), le tarif (dit « exclusif nuit ») sera le moins cher mais l’investissement dans les appareils aussi. Ceux-ci seront également très encombrants.
  • Si une relance est possible en journée (tarif à Effacement en Heures de Pointe, tarif Trihoraire), le prix sera un peu plus élevé mais l’accumulation sera plus réduite dans les appareils, plus petits, moins coûteux à l’achat.

Il faudra juger au cas par cas, en simulant le fonctionnement le plus probable des appareils. Assurément, il est utile d’en discuter avec un représentant du distributeur avant un investissement dans des accumulateurs.

Consommation 

Pour plus de détails sur la logique des tarifs optionnels à horaires restreints en Basse Tension, cliquez ici !
On y apprendra que ne peuvent en bénéficier que les appareils raccordés de manière permanente sur un circuit séparé, avec un comptage distinct (appareils de chauffage électrique à accumulation).

Il y aura donc un autre compteur, pour les autres équipements, en fonctionnement permanent, avec une tarification de base ou bihoraire.

Le Tarif Exclusif de Nuit est applicable durant 9 heures de nuit (fixées par le distributeur) + toute la journée le dimanche avec une faculté pour le distributeur de couper durant les heures les plus chargées.

Avec le Tarif à Effacement en Heures de Pointe, les appareils raccordés sur ce compteur peuvent consommer toute la journée, mais… l’alimentation des appareils peut être interrompue par le distributeur, sans préavis, par commande à distance. La durée des interruptions journalières est au maximum de 15 heures. Elles se situent normalement au cours des mois de novembre à février. La durée totale des interruptions ne dépassera pas 500 heures par an.

Consommation 

Pour plus de détails sur la logique du tarif exclusif nuit en Haute Tension, cliquez ici !
On y apprendra que le tarif « exclusif nuit » peut être demandé en Haute Tension également. Il est destiné aux applications utilisant, entre autres, le principe de l’accumulation et dont les prélèvements d’énergie, enregistrés séparément, se font exclusivement durant les heures de nuit (soit 9 heures chaque jour, fixées par le distributeur).

À noter que ce tarif exclusif de nuit peut, à la demande du client, être étendu aux samedis, dimanches et jours fériés légaux nationaux.

Consommation 

Pour plus de détails sur les montants des différents tarifs, cliquez ici !

Qualité de la mise en œuvre

Lors de la mise en œuvre d’un système de chauffage électrique, certains points nécessitent une attention toute particulière.
(Source : d’après Le code de bonne pratique pour la réalisation des installations de chauffage électrique – Communauté de l’Electricité – CEG).

  1. Le chauffage électrique met en œuvre des puissances électriques importantes dont les durées d’enclenchement atteignent plusieurs heures. Un soin tout particulier doit donc être apporté au serrage des connexions et à la qualité des composants de commutation vu leur plus grande sollicitation. Il ne faut en effet pas perdre de vue que l’échauffement des contacts est proportionnel au carré de l’intensité.En pratique, on veillera :
    • à dimensionner suffisamment les coffrets électriques de façon à éviter des échauffements internes importants,
    • à installer des borniers correctement dimensionnés et dont le système de serrage reste fiable dans le temps (les barrettes de raccordement de type « éclairage » sont interdites).
  2. Au niveau du tableau de répartition, calculer les puissances par phase afin d’équilibrer au mieux l’installation.
  3. La plupart des appareils de chauffage appartiennent à la classe 1. Les conducteurs de terre doivent donc y être raccordés.
    Respecter scrupuleusement les sections minimales de ce conducteur et sa couleur jaune-vert.
    Respecter le bleu pour tous les conducteurs neutres.
    Conserver les mêmes couleurs pour tous les circuits de même nature (ex. : brun = élément d’appoint, gris = ventilateur, etc.).
  4. Lorsque différents circuits d’alimentation concernent le même appareil (ex. : puissance sur exclusif nuit, ventilateur sur tarif jour, régulation) :
    • Éviter de placer dans une même canalisation des circuits alimentés par des différentiels différents (inductions transitoires possibles entre circuits).
    • Ne pas mélanger les neutres.
    • Éviter la juxtaposition de câbles de sondes à d’autres circuits.
  5. Pour les appareils installés dans des locaux humides prévoir une coupure multipolaire et un différentiel 30 mA. Respecter le degré d’étanchéité IPX1 et l’installation hors volume de protection (voir RGIE).
  6. Préférer un récepteur de télécommande à une horloge de commutation (qui, à terme, présente un risque de dérèglement).
    Faire constater son basculement effectif pendant la période prévue et la commutation des circuits qui en dépendent.
  7. Prévoir suffisamment de jeu dans les câbles de raccordement d’appareils de chauffage fixes pour permettre leur déplacement nécessaire en cas de remplacement éventuel de pièces et d’intervention de maintenance.
  8. Des modifications réalisées dans une installation existante et des renforcements de puissance nécessitent un contrôle par un organisme agréé avec remise en conformité de l’ensemble de l’installation (suivant les modalités définies dans le R.G.I.E).
  9. Avant la mise sous tension de l’installation, procéder aux tests d’isolement des différents circuits.
    Après la mise sous tension, réaliser les tests fonctionnels des composants, vérifier la tension des circuits (principalement tri – et tétraphasés) et contrôler, à la pince ampèremétrique, l’intensité de courant des circuits par les circuits de puissance.
  10. Lors de l’installation d’accumulateurs de grosse puissance, on veillera à la compatibilité de leur poids avec la charge au sol admissible. La pression sous les pieds de certains accumulateurs peut, en effet, s’avérer incompatible avec la tenue d’un plancher. De plus, ces accumulateurs doivent éventuellement être fixés à la paroi selon les indications du constructeur.
  11. Cas particulier du chauffage par le sol :
    • Les câbles doivent être placés dans du béton ou une masse conductrice.
    • La composition du béton à utiliser est également importante pour la dissipation thermique et la capacité d’accumulation de la dalle.
    • Dans tous les cas, il convient d’informer le professionnel en revêtements de sol pour qu’il tienne compte du type de chauffage dans le choix de ses matériaux.
    • Une surveillance lors de la pose de la dalle est indispensable pour s’assurer que les câbles ne soient pas endommagés pendant l’opération (coup de pelle, brouette, pompe à béton, etc…)
    • Des tests d’isolement doivent être réalisés entre l’âme du câble et son blindage et/ou la terre, avant et juste après la pose de la dalle, pour pouvoir intervenir immédiatement en cas de défaut. La tension arrivant sur le câble doit être contrôlée au voltmètre (une erreur de raccordement pourrait amener 400 V sur le câble et entraîner sa destruction rapide).
      La mise à température de la dalle ne peut se faire que progressivement (par pas de 5 degrés par jour) et après le temps de séchage du béton (généralement 21 jours).
  12. Consigner par écrit les réglages initiaux et prévoir la place nécessaire pour les modifications ultérieures et les dates auxquelles elles seront éventuellement effectuées.
  13. Être présent lors de la mise en service par l’installateur et exiger un mode d’emploi clair et précis.

Et dans les bâtiments à basse énergie voire passifs ?

Éthique énergétique

On pourrait penser que le fait de diminuer les besoins de chaleur par 5 voire par 10 dans les bâtiments à basse énergie ou passifs justifierait l’usage de l’électricité comme système de chauffage. Il n’en est rien, au niveau belge en tout cas ! En effet, ce facteur de conversion de l’énergie finale (sur la facture électrique) en énergie primaire est de 2.5. La facture illustre notamment le mauvais rendement des centrales comme déjà décrit plus haut.

En supposant qu’un bâtiment passif soit équipé d’un système de chauffage électrique, le critère des besoins net en énergie de chauffage est de 15 kWh.m-2.an-1. Ce bâtiment équipé :

  • d’une chaudière gaz à condensation pourrait consommer, pour un rendement saisonnier de 102 %, de l’ordre de 14.7 kWh.m-2.an-1 en énergie primaire ;
  • d’un chauffage électrique consommerait 37.5 kWh.m-2.an-1 à la centrale électrique.

Si on considère que les consommations de chauffage sont grosso modo proportionnelles au niveau d’isolation du bâtiment, pour arriver au passif, on peut concevoir que 20 cm d’isolant dans les murs sont nécessaires (c’est un ordre de grandeur, mais cela reste du cas par cas !). Si ce bâtiment est chauffé avec des radiateurs électriques, cela équivaudrait  à concevoir un bâtiment avec 8 cm d’isolant dans les murs et équipé d’une chaudière à condensation.

Chauffage électrique
dans un bâtiment passif.

Chaudière à condensation
dans un bâtiment PEB par exemple.

Chauffage direct ou à accumulation ?

Pour les inconditionnels du chauffage électrique non convaincus par le développement réalisé ci-avant, autant choisir la moins mauvaise des solutions.

Pour des bâtiments à basse énergie et passifs, le choix d’un système de chauffage électrique direct prend toute son importance. En effet, le chauffage électrique direct étant très réactif par rapport au chauffage à accumulation, en mi-saison le chauffage direct permettra d’éviter la surchauffe et les surconsommations liées à cette surchauffe.

Zones à risque de contamination élevé de l’hôpital

Zones à risque de contamination élevé de l'hôpital


Niveau de propreté particulaire et bactérienne de l’air

En fonction de la zone, le traitement d’air doit répondre en tout ou en partie aux objectifs suivants :

  • limiter la concentration dans l’air des particules, des virus et des bactéries,
  • éliminer les gaz dangereux (gaz anesthésique, …) et explosifs,
  • éviter les contaminations entre différentes zones (contaminations croisées).

Le maintien de la qualité de l’air ne se résume donc pas à l’apport d’air neuf hygiénique. Il faut en outre supprimer tout risque d’aérobiocontamination soit au départ de certains locaux du bâtiment (zones septiques), soit venant de l’extérieur.

La pression relative entre les locaux, la filtration, le recyclage de l’air et la désinfection des équipements jouent donc un rôle tout aussi important que l’apport d’air neuf.

L’importance de chacune de ces « missions » varie en fonction du risque de contamination que l’on rencontre dans les différentes zones du bâtiment. On parle de zones à risque classées de 2 à 4 en fonction du risque de aérobiocontamination encouru, tant pour les patients que pour la communauté hospitalière (norme EN ISO 14644 et EN ISO 14698). La norme NF S90-351 s’inspire de ces deux normes européennes pour donner des recommandations en termes de conception, d’exploitation, de maintenance et d’utilisation des installations de traitement d’air pour les établissements de santé.

Évaluer

Afin d’évaluer le risque de contamination de la zone considérée en fonction de l’activité, les taux de renouvellement d’air et les pressions différentielles qui en découlent.

Confort des occupants

Le niveau du confort d’une zone à risque contrôlé passe aussi par l’évaluation du confort des malades, du personnel soignant et des visiteurs. Les consignes de température, du taux d’humidité, de la vitesse de déplacement d’air, fonction du type d’intervention réalisée, sont à respecter et à contrôler en période d’occupation de la zone, surtout en présence d’apports calorifiques importants.

Tout spécialement, un taux minimum d’humidité relative doit être maintenu pour éviter les risques d’explosion des gaz anesthésiants.

Théories

Afin d’évaluer le niveau de confort à atteindre dans les locaux.

« Tout air neuf » ou « recyclage » ?

Comme dans toute autre zone, il est nécessaire d’assurer le confort respiratoire des occupants. De plus, les filtres de la chaine de traitement de l’air ne peuvent pas arrêter les polluants chimiques tels que les gaz anesthésiants. C’est pour cette raison, en plus de l’élimination des polluants dus à la présence humaine, qu’il est nécessaire d’effectuer un apport d’air neuf. Les taux de brassage importants servent en grande partie à atteindre le niveau de propreté souhaité au niveau particulaire et bactérien.

La conception moderne des « zones à risque » a fortement évolué malgré l’imprécision qui règne au niveau des réglementations. C’est aux salles blanches industrielles que l’on doit cette avancée majeure. Ce n’est que suite au développement catastrophique des infections nosocomiales qu’on s’est intéressé de près aux systèmes de ventilation et climatisation dans les hôpitaux et à leur normalisation.

La phobie du recyclage est encore bien présente dans les mentalités mais tend à laisser la place à une intégration certaine de ce principe dans les nouveaux projets de conception; ce qui est favorable du point de vue de l’énergie, de l’environnement et du portefeuille du maître d’ouvrage.

Dans la conception des zones à risque ci-dessous, nous avons pris l’option de ne considérer que le système à recyclage.

À noter également que le système d’humidification n’est pas repris dans les schémas. Un humidificateur à vapeur en sortie de caisson est recommandé pour les qualités hygiéniques de ce système.


Zones à risque contrôlé

1. Introduction

Source d’informations

Les recommandations reprises ci-après sont principalement issues du guide « Traitement de l’air en milieu hospitalier » élaboré par des médecins et des spécialistes du traitement de l’air, à l’initiative d' »UNICLIMA » (Union intersyndicale française des constructeurs de matériel aéraulique, thermique, thermodynamique et frigorifique).

Les configurations de climatisation des salles d’opération montrées ci-dessous sont parfois extrêmes mais montrent le souci de contrôler au maximum le risque de contamination. Dans la pratique, en Belgique, les configurations sur le terrain sont en général plus simples sauf demande expresse du maître d’ouvrage.

2. Zones à risque modéré de biocontamination

(zones à risque 2)

Zones à risque 2 

Zones pour patients à risque infectieux modéré : médecine interne ou spécialisée, rééducation fonctionnelle, maternité, pédiatrie, long et moyen séjour, psychiatrie, consultations externes, hôpitaux de jour à orientation infectieuse.

Objectif d’épuration : classe ISO 8 (moins de 3 500 000 particules > 0,5 μ m par m³ d’air).

L’air est pulsé mécaniquement dans chaque local au moyen de diffuseurs classiques et en partie repris par un recycleur propre au local ou au groupe de locaux concernés. Le dernier étage de filtration est d’efficacité minimum EU10 (95 % DOP ou H11) avec un préfiltre EU7 (85 % OPA ou F7). Une surpression des salles est assurée par un débit d’air neuf introduit plus élevé que celui extrait.

Ventilation des zones à risques 2 :
1/3 de l’air est extrait en partie haute pour éliminer les gaz anesthésiques plus légers que l’air.

3. Zones à haut risque de biocontamination

(zone à risques 3)

Zones à risques 3

Zones pour patients à haut risque infectieux : réanimation, soins intensifs, explorations fonctionnelles vasculaires, néonatalogie, hémodialyse, hématologie, chimiothérapie, chirurgie, blocs opératoires conventionnels (chirurgie digestive propre ou contaminée, chirurgie gynécologique, obstétricale, urologique, ORL).

Objectif d’épuration : classe ISO 7 (moins de 350 000 particules > 0,5 μ m par m³ d’air).

Il est reconnu que la principale source de contamination bactérienne est l’équipe chirurgicale elle-même. C’est donc dans les environs du champ opératoire que l’on retrouve la plus grande concentration de micro-organismes.

Utiliser une ventilation en flux turbulent, c’est-à-dire avec des diffuseurs traditionnels semblables à ceux utilisés dans les zones à risques 2 a pour conséquence de diluer rapidement la charge contaminante au travers de la pièce entière et rend donc le contrôle des risques plus difficile. La solution préconisée pour les zones à risques 2, solution par ailleurs bon marché, est donc à prendre avec précaution dans ce cas.

On lui préférera la solution du plafond soufflant à basse vitesse : l’air neuf est pulsé par un plafond soufflant à déplacement d’air à basse vitesse et couvrant la zone de plus haut risque. Il est repris en partie vers un recycleur spécifique au local ou à un groupe de salles semblables. Ce mode de pulsion entraîne un écoulement dirigé d’une vitesse inférieure à 0,25 m/s. Le mouvement transversal turbulent est très faible, de même que le mélange avec l’air ambiant. L’entraînement par déplacement d’air crée alors une véritable barrière dynamique autour de la zone de « plus haut risque ».

Le dernier étage de filtration est d’efficacité minimum EU13 (99,99 % OP ou H14). Ce filtre est placé le plus près possible du plafond diffusant (éventuellement à l’intérieur de ce dernier) avec un préfiltre EU8 (95 % OPA ou F8).

La plupart des normes internationales recommandent d’assurer une surpression dans les salles d’opération. Celle-ci est obtenue par un débit d’air neuf introduit supérieur à celui extrait. La norme allemande DIN 1946 prévoit, elle, la possibilité d’inverser cette pression relative dans le cas d’opérations septiques. Dans ce cas, l’air extrait doit aussi être filtré par un filtre absolu.

Le maintien des débits et des pressions dans le temps est important dans ce type de local, et ce malgré  l’encrassement des filtres. Ceci peut se faire en équipant le ventilateur dune variation de vitesse du ventilateur.

Un taux d’air neuf de 5 vol/h est souvent considéré comme suffisant pour la dilution des gaz anesthésiques.

Parmi les différents types de plafond soufflant existants, les critères de choix sont

  • la protection du patient,
  • le confort des occupants (vitesse d’air dans la zone occupée et niveau sonore),
  • l’absence de turbulence,
  • la facilité de maintenance,
  • le coût.

Ventilation des zones à risques 3 :
1/3 de l’air est extrait en partie haute pour éliminer les gaz anesthésiques plus légers que l’air.

Plafond soufflant en inox à une vitesse de 0,2 m/s, équipé d’un filtre H13 ou H14 et d’une dalle aveugle étanche pour le passage du scyalitique

   Photo bouche de pulsion à jet.

Lorsque la conception architecturale de la salle d’opération ne permet pas le placement d’un plafond soufflant, on peut disposer les bouches de pulsion à jet dirigé de très faible vitesse sur le mur perpendiculaire à la table d’opération, dans le coin supérieur de la salle.

 4. Zones à très haut risque de biocontamination

(zone à risques 4)

Zones à risques 4

Zones pour patients à très haut risque infectieux : cancérologie, onco-hématologie, greffés, prématurés, brûlés, blocs opératoires aseptiques (orthopédie, cardio-vasculaire, neurochirurgie, ophtalmologie).

Objectif d’épuration : classe ISO 5 (moins de 3 500 particules > 0,5 μ m par m³ d’air).
Le flux laminaire ou flux unidirectionnel est le système actuellement le plus efficace pour fournir de l’air stérile autour d’un malade à protéger ou de la plaie chirurgicale. Il assure en parallèle une liberté de mouvement suffisante au corps médical.

Pour garantir une efficacité optimale, il faut

  • le moins de turbulence possible,
  • une vitesse d’air comprise entre 0,3 et 0,6 m/s pour garantir la stabilité du flux,
  • un espace réduit entre le soufflage et la zone à protéger,
  • tenir compte des perturbations possibles (luminaires, …) et des mouvements de l’équipe chirurgicale.

Le degré de filtration recommandé est semblable à celui des zones à risques 3. Ici aussi, une surpression des salles est assurée par un débit d’air neuf introduit et non extrait.

Étant donné les importants taux de renouvellement d’air recommandés (200 à 600 vol/h), il est évidemment recommandé de circonscrire le plus exactement possible la zone à protéger, le reste de la salle ne subissant pas de traitement particulier.

On peut ainsi concevoir des flux verticaux ou horizontaux, totaux ou partiels. Dans tous les cas, une partie de l’air devra être extraite pour éliminer les gaz dangereux (gaz anesthésiques).

Salles d’opération à flux laminaire horizontal

 

Flux total : tout le local est balayé par le flux d’air repris sur la paroi opposée.
Remarque : sur le schéma, le chirurgien est mal situé par rapport au flux d’air qu’il risque de contaminer…

Flux partiel :
les filets d’air sont guidés par des parois verticales parallèles et la reprise se fait du côté du panneau filtrant.

L’avantage d’un tel système est la possibilité pour l’équipe chirurgicale de ne pas porter de heaume.

L’inconvénient réside dans la disposition obligatoire du personnel et des équipements en aval de la plaie par rapport au sens du flux.

Salles d’opération à flux laminaire vertical

Photo salle d'opération à flux laminaire vertical.

Le flux laminaire total avec plancher entièrement perforé n’est pas utilisable dans les hôpitaux à cause des exigences de désinfection. On utilise donc un flux partiel couvrant la zone de plus haut risque. La zone couverte est de l’ordre de 3 m sur 3 m. Cette dimension permet aux parois verticales (descendant jusqu’à 1,6 m du sol, avec éventuellement rideaux souples en PVC) guidant le flux de ne pas gêner l’équipe chirurgicale. La reprise se fait en périphérie du flux laminaire.

Flux vertical alimenté par une centrale de traitement d’air.

Flux vertical autonome avec ventilateurs incorporés.

Les avantages d’un tel système sont d’une part la liberté de mouvement de l’équipe chirurgicale et les débits d’air à traiter moindre que dans le cas d’un flux horizontal (zone à traiter moindre).

L’inconvénient est le port du heaume conseillé pour garantir la qualité de l’air.

Chambres stériles

Photo chambres stériles.

Les chambres stériles peuvent être ventilées soit par un flux laminaire horizontal, soit vertical, suivant les typologies recommandées pour les salles d’opération. La zone à protéger sera restreinte au lit du patient, éventuellement à la zone destinée à recevoir le personnel soignant.

5. Zones à risque pour la collectivité hospitalière

Zones à risques

Zones où il faut protéger la collectivité hospitalière des risques infectieux : chirurgie septique (urologie voie basse, gynécologie, endoscopie), chirurgie très septique (proctologie, abcès, préparation opératoire, zone d’urgence, soins intensifs avec malades infectieux, traitement du matériel côté sale, laboratoire de manipulation de prélèvements biologiques ou germes).

Objectif : Protection de l’environnement hospitalier par confinement, maîtrise des flux d’air et filtration.

Les prescriptions relatives aux zones à risques pour le patient doivent être complétées en tenant compte des risques pour la collectivité hospitalière. En fonction du degré de risque pour celle-ci, la protection doit comprendre

  • Un confinement, c’est-à-dire un isolement du patient et de l’équipe de soins de l’environnement extérieur par des cloisons et des portes fermées, et l’isolation du patient de l’équipe de soins par des cloisons (cabines stériles) et des vêtements spéciaux (scaphandres).
  • Une mise en dépression de la zone contaminée complétant le confinement. Selon les risques, un sas en surpression est souvent nécessaire. Dans le cas de très haut risque, le ventilateur d’extraction doit être doublé pour prévenir tout risque de panne et donc d’arrêt de l’installation. Dans tous les cas, le fonctionnement du ventilateur d’extraction doit être asservi au fonctionnement du ventilateur de pulsion.
  • Une maîtrise des flux d’air évitant les zones inertes et entraînant le plus rapidement les particules contaminées vers le réseau d’extraction. La disposition des locaux est en ce sens importante.
  • Un réseau d’extraction complètement indépendant de ceux des autres locaux.
  • Une filtration de l’air extrait au moyen d’un filtre absolu. Ce filtre doit être doublé en cas de très haut risque pour prévenir toute défaillance d’un des filtres.

Principe aéraulique du traitement d’air dans une zone à très haut risque pour le patient (flux laminaire vertical) et pour la collectivité hospitalière (sas, double filtration, double ventilateur).

Lorsque le risque de contamination pour la collectivité hospitalière est modéré, il n’est pas nécessaire de maintenir les locaux d’hébergement ou de traitement en dépression. Il s’agit d’une simple mise en quarantaine. Il faut simplement, dans ce cas, rester vigilant quant à la circulation des personnes, du matériel et à la séparation des zones. Le réseau de ventilation recyclage et extraction doit cependant être indépendant pour la zone où on identifie ce risque.


Récupération de chaleur sur l’air extrait

On l’a vu ci-dessus, la plus grosse récupération de chaleur se fait par un taux de recyclage important pouvant dépasser 70 % de flux total d’air pulsé. Les conditions pour pouvoir effectuer ce recyclage sont que l’air recyclé provienne de la même salle que celle dans laquelle il est injecté et que l’air recyclé soit filtré avec la même efficacité que l’air neuf.

On considère souvent que la récupération de chaleur sur l’air extrait n’est financièrement intéressante que lorsque l’on travaille en « tout air neuf », ce qui n’est jamais le cas dans les solutions techniques présentées ci-dessus. On peut cependant envisager une récupération de chaleur sur l’air extrait lorsque les débits d’air neuf sont importants (jusqu’à 15 vol/h).

Concevoir

Choix d’un récupérateur de chaleur.

Il est déconseillé d’utiliser des échangeurs à plaques. En effet, ils sont difficiles à désinfecter, l’agent désinfectant pénétrant mal entre les interstices de faible dimension. L’aluminium est en outre fragile vis-à-vis de ces produits, ce qui risque de provoquer des fuites, donc des contaminations qui ne seront jamais détectées. Si de tels échangeurs sont utilisés, il faut respecter une hiérarchie correcte des pressions entre le conduit d’air neuf et le conduit d’air extrait. Cette pression relative doit être contrôlée régulièrement (un pressostat d’alarme peut signaler toute modification), de même que la concentration de contaminant dans l’air neuf.

Les échangeurs avec fluide calorifique intermédiaire (eau glycolée) ont des rendements de récupération moindre par rapport aux autres systèmes. Cependant, puisqu’il n’y a pas de contact direct entre l’air vicié et l’air neuf, les risques de contamination croisée sont éliminés.

Les échangeurs du récupérateur doivent être disposés au niveau de la pulsion entre les deux premiers étages de filtration, pour qu’ils soient protégés de l’encrassement et pour ne contaminent pas l’air distribué. Les échangeurs sur l’air extrait peuvent aussi être protégés par un filtre pour éviter un encrassement trop rapide.


Autres prescriptions de la norme DIN 1946 pour les salles d’opération

Voici d’autres recommandations, notamment issues de la norme DIN 1946

  • Les unités de traitement d’air devraient être composés de panneaux en acier galvanisé double paroi et avec des composants facilement démontables pour être stérilisés.
  • Les batteries froides devraient être en acier inoxydable avec des ailettes en aluminium, protégées par une peinture epoxy.
  • Les unités de traitement d’air devraient être capables de fonctionner à débit réduit lorsque les salles sont inoccupées, assurant en permanence une pressurisation suffisante. En mode veille, seule la pression de la salle est surveillée. On travaille alors en tout air neuf, sans contrôle de température ni d’humidité. Elles doivent pour cela être équipées de moteurs à vitesse variable.
  • Les unités de traitement d’air devraient pouvoir assurer une surpression et une dépression dans les salles d’opération en fonction du type d’intervention (aseptique ou septique) et pouvoir facilement passer dune situation à une autre. Ceci est possible en utilisant des ventilateurs à vitesse variable.
  • Les systèmes centralisés et décentralisés (unités montées et réglées en usine) peuvent être utilisés pour traiter l’air des salles d’opération. Cette seconde solution permet une meilleure flexibilité de chaque salle (fonction du type d’intervention et des exigences de chaque chirurgien) et une meilleure fiabilité. Le système de contrôle et la programmation de ces systèmes est réalisé en usine, ce qui limite les risques liés à l’installation et au réglage.

Armoire de climatisation de haute précision.

Évaluer l’hygiène des mets

Évaluer l'hygiène des mets

L’arrêté royal relatif à l’hygiène des denrées alimentaires est en vigueur depuis le 13 juillet 2014.

L’arrêté explique, entre autres, les dispositions d’hygiène pour tous les exploitants du secteur alimentaire notamment concernant l’infrastructure, l’équipement, la température et l’hygiène du personnel.

En outre, des inspecteurs du Ministère de la Santé Publique / Inspection générale des denrées alimentaire sont chargés de venir vérifier le respect de l’arrêté.

De manière à respecter l’arrêté, de nombreux établissements ont entrepris ou doivent envisager la rénovation de leur cuisine.

Par exemple, une disposition des locaux qui ne permet pas de séparer circuits « sales » et « propres » va engendrer une révision complète de la cuisine collective. On en profite bien souvent pour remplacer les équipements désuets.

Pour évaluer les équipements, des mesures à l’intérieur de ceux-ci doivent être réalisées. Un appareil qui ne permet plus d’atteindre les températures respectant la chaîne du chaud ou du froid, par exemple, risque de devoir être remplacé.

Dans des cas tels que ceux-là, c’est l’occasion de penser « à long terme », de penser « économies d’énergie ».

Nous n’abordons donc ici que ce qui pourrait engendrer une rénovation lourde ou le remplacement de gros équipements (ayant une influence sur les consommations énergétiques). Le diagnostic n’est donc pas aussi complet que celui qui serait fait par un inspecteur de l’hygiène des denrées alimentaires. Il ne comporte, par exemple, pas les exigences quant au petit matériel, …

Évaluer

Pour évaluer l’infrastructure et le respect de l’hygiène des mets.

Évaluer

Pour évaluer le respect de la chaine du chaud et de la chaine du froid.

Installations alimentées en gaz combustible avec canalisation

Installations alimentées en gaz combustible avec canalisation


Texte coordonné de la norme NBN D51-003 (3ème édition mai 1993) et de ses Addendum 1 (A.R. 8 septembre 1997) et NBN D 51-003/A2 (A.R. 14 décembre 1999)

IMPORTANT
Ce document ne remplace pas la norme NBN D 51-003 et les addenda 1 et 2. La norme NBN D 51-003 et ses addenda 1 et 2 sont les seuls documents de référence officiels qui sont homologués par Arrêté Royale.

FEVRIER 2000


Sommaire

1 GENERALITES
1.1 Objet d’application
1.2 Domaine
1.3 Exécution des travaux
2 TERMINOLOGIE
3 INSTALLATIONS INTERIEURES
3.1 Matériaux
3.2 Robinets d’arrêt et de sectionnement
3.3 parcours et accessibilité des tuyauteries
3.4 Mise en ouvre
3.5 Montage des tuyauteries
3.6 Essais et contrôles de l’installation neuve
3.7 Purge
3.8 Extensions, modifications et remplacements
3.9 Nettoyage
3.10 Identification des tuyauteries
3.11 Protection extérieure des tuyauteries
3.12 Dimensions de tuyauteries et perte de pression admissible
4 ÉVACUATION DES PRODUITS DE LA COMBUSTION ET AERATION DES LOCAUX POURVUS D’APPAREILS A GAZ
4.1 Généralités
4.2 Dispositions pour l’immeuble
4.3 Ventilation des locau
4.4 Evacuation des produits de la combustion
5 PLACEMENT, RACCORDEMENT ET ENTRETIEN DES APPAREILS D’UTILISATION
5.1 Locaux
5.2 Placement des appareils d’utilisation
5.3 Raccordement des appareils aux installations intérieures
5.4 Robinet d’arrêt de gaz
5.5 Diamètre nominal des robinets d’arrêt de gaz
5.6 Tuyauteries de raccordement aux installations intérieures
5.7 Mise en service
5.8 Entretien
6 BRANCHEMENT
6.1 Partie extérieure du branchement
6.2 Traversée du mur extérieur
6.3 Partie intérieure du branchement
6.4 Compteur
6.5 Raccordement de l’installation intérieure au compteur
6.6 La pression dans la partie intérieure du branchement du bâtiment est inférieure ou égale à 100 mbar
6.7 La pression dans la partie intérieure du branchement du bâtiment dépasse 100 mbar
6.8 Mise en service d’installations neuves
ANNEXE
Exemples de calcul pour des installation intérieures à basse pression

DOCUMENTS A CONSULTER

Les éditions des normes sont celles en vigueur au moment de la parution de ce dossier. Le lecteur est toutefois invité à consulter les éditions plus récentes lorsqu’elles existent.
NBN 69 – Couleurs conventionnelles pour l’identification des tuyauteries transportant des fluides liquides ou gazeux dans les installations terrestres et à bord des navires – 1972
NBN586 – Filetage – Filetage ISO au pas du gaz pour raccordement sans joint d’étanchéité dans le filet et ses calibres -1962
NBN A 25-103 – Tubes en acier d’usage courant – Tubes filetables – 1979
NBN A 25-104 – Tubes en acier d’usage courant – Tubes à extrémités lisses, non filetables – 1979
NBN B 61-001 – Chaufferies et cheminées – 1986
NBN C 20-001 -Degrés de protection procurée par des enveloppes-1972
NBN D 04-002 – Tuyaux flexibles à embouts mécaniques pour le raccordement d’appareils à usage domestique alimentés en gaz combustible plus léger que l’air, distribué par canalisations sous une pression maximale de 200 mbar – 1992
NBN D 08-001 – Appareils de production instantanée d’eau chaude pour usages sanitaires utilisant les combustibles gazeux (norme européenne EN 26) – 1981
NBN D 50-001 -Dispositifs de ventilation dans les bâtiments d’habitation – 1991
NBN D 51-001 – Locaux de détente de gaz naturel-1972
NBN D 51-004 – Installations alimentées en gaz combustible plus léger que l’air distribué par canalisation – Installations particulières – 1992
NBN E 03-101 – Filetage – Filetage de tuyauterie pour raccordement à joint d’étanchéité dans le filet – Terminologie, désignation, dimensions et tolérances – 1986
NBN EN 10242 – Raccords de tuyauterie filetés en fonte malléable – 1995
Les normes de la série NBN F 31 – Produits d’apport pour le soudage
NBNP 12-101 – Tubes en cuivre pour travaux de bâtiment – 1974
NBN EN 10.208-1 – Tubes en acier pour conduites de fluides combustibles – Conditions techniques de livraison – Partie 1: Tubes de la classe de prescription A – 1998
EN 437 – Gaz d’essais – Pressions d’essais – Catégories d’appareils – 1993
EN 483 – Chaudières de chauffage central utilisant les combustibles gazeux – Chaudières des types C dont le débit calorifique nominal est inférieur ou égal à 70 kW – 1999
NBN EN 751-1; 751-2, 751-3 -Matériaux d’étanchéité pour raccords filetés en contact des gaz de la 1ère, 2ème et 3ème famille et de l’eau chaude – 1997 – Partie 1 : composition d’étanchéité anaérobie – Partie 2 : composition d’étanchéité non durcissante – Partie 3 : bandes en PTFE non ftittées.


1. GÉNÉRALITÉS

 1.1 Objet

La présente norme fixe les conditions générales applicables aux installations intérieures neuves ou parties neuves d’installations intérieures pour l’utilisation du gaz combustible plus léger que l’air, distribué par canalisations.
Cette norme est applicable sans préjudice des dispositions légales existant en la matière.

1.2 Domaine d’application

La norme énonce les conditions techniques et de sécurité qui sont d’application pour :
1.2.1 Les installations intérieures neuves ou parties neuves d’installations dont la pression maximale de service admissible (PMSA) est de 100 mbar et dont :

  • le diamètre nominale des canalisations est inférieur ou égal à DN 50;
  • les canalisations ne sont pas enterrées.

1.2.2 L’installation et la mise en service des appareils d’utilisation dans les installations définies sous 1.2.1. L’installation d’appareils type A, B ou C autres que ceux cités dans la norme est interdite.
1.2.3 Le raccordement des installations intérieures de gaz au réseau du distributeur.
Remarque.
Les installations :

  • dont la pression maximale de service admissible (PMSA) est de 100 mbar et dont :
  • soit le diamètre nominal des canalisations est supérieur à DN 50,
  • soit les canalisations sont enterrées,
  • dont la PMSA est supérieure à 100 mbar et inférieure ou égale à 15 bar,

sont couvertes par la norme NBN D51-004.

Exécution des travaux

1.3.1 Le branchement est réalisé par le distributeur de gaz. Ce dernier, en accord avec le maître de l’ouvrage fixe les conditions d’aménagement du bâtiment nécessaires à la réalisation du branchement.
1.3.2 L’installation intérieure est réalisée par un installateur.
1.3.3 Les appareils d’utilisation sont installés et mis en service par un installateur qui s’assure en même temps que les dispositions du chapitre 4 sont respectées. Il le consigne dans un document.


2. TERMINOLOGIE

Air comburant :
Air nécessaire à la combustion ( air de combustion stoechiométrique et excès d’air de combustion).

Appareil d’utilisation :

Appareil alimenté en gaz et raccordé à l’installation intérieure.
Les appareils sont classés :

  • en types, suivant la conception de l’évacuation des produits de la combustion et de l’admission en air comburant;
  • en catégories, suivant le ou les gaz utilisés.

– Appareil à circuit de combustion non étanche :

Un appareil à circuit de combustion non étanche est un appareil à combustion qui reçoit directement son air comburant du local dans lequel il est installé et dont les produits de combustion sont amenés soit à l’extérieur par un conduit d’évacuation, soit rendus dans le local.

– Appareil à circuit de combustion étanche :

Un appareil à circuit de combustion étanche est un appareil à combustion dont le circuit de combustion (amenée de l’air comburant, combustion même et évacuation des produits de combustion), est complètement fermé vis-à-vis du local, dans lequel il est installé.

– Circuit des produits de combustion d’un appareil :

Circuit comprenant la chambre de combustion, l’échangeur de chaleur et le circuit d’évacuation des produits de combustion, jusqu’au conduit d’évacuation inclus.

– Appareil d’utilisation – types (1) :

(1) Définitions conformes aux normes européennes – sources : EN 437 et EN 48.

Appareil type A :

Appareil non raccordé à un conduit d’évacuation ou à un dispositif d’évacuation des produits de la combustion.
Les chauffe-eau type A équipés d’un dispositif destiné à empêcher le fonctionnement prolongé en atmosphère viciée (dispositif de contrôle d’atmosphère) sont identifiés par un indice complémentaire « AS » (p.ex. appareil type AAS).

Appareil type B :

Appareil destiné à être raccordé à un conduit d’évacuation, l’air comburant étant prélevé directement dans le local où est installé l’appareil.

Appareil type B:

Appareil du type B équipé d’un coupe-tirage antirefouleur dans le circuit des produits de combustion.
Les appareils type B1, munis d’un dispositif destiné à empêcher le fonctionnement prolongé en atmosphère viciée (dispositif de contrôle d’atmosphère) sont identifiés par un indice complémentaire « AS » (p.ex. Appareil type B11AS)-
Les appareils type B1 munis d’un dispositif de contrôle de l’évacuation des produits de combustion, sont identifiés par un indice complémentaire « BS » (p.ex. Appareil type B11BS).
Les appareils B1 destinés à être raccordés à une installation VMC-gaz et munis d’un dispositif de sécurité adéquat de contrôle de l’évacuation des produits de combustion, sont identifiés par un indice complémentaire « CS » (p.ex. Appareil B11CS).

– Appareil type B11 :

Appareil du type B1 sans ventilateur dans le circuit des produits de la combustion ou d’amenée d’air.

– Appareil type B12 :

Appareil du type B1 avec ventilateur en aval de la chambre de combustion et en amont du coupe-tirage antirefouleur.

– Appareil type B13 :

Appareil du type B1 avec ventilateur en amont de la chambre de combustion.

– Appareil type B14 :

Appareil du type B1 avec ventilateur en aval de la chambre de combustion et en aval du coupe-tirage antirefouleur.

– Appareil type B:

Appareil du type B ne comportant pas de coupe-tirage antirefouleur dans le circuit des produits de combustion.

– Appareil type B21 :

Appareil du type B2 sans ventilateur.

– Appareil type B22 :

Appareil du type B2 avec ventilateur en aval de la chambre de combustion.

– Appareil type B23 :

Appareil du type B2 avec ventilateur en amont de la chambre de combustion.

Appareil type C :

Les appareils de type C sont des appareils pour lesquels le circuit de combustion est étanche vis-à-vis des parties habitables du bâtiment dans lequel l’appareil est installé.
Les conduits d’amenée d’air et d’évacuation des produits de combustion et le terminal incluant toute pièce de raccordement qui est utilisée pour raccorder l’appareil à une cheminée ou à un système de conduit font partie de l’appareil. Ils amènent l’air frais au brûleur depuis l’extérieur des parties habitables du bâtiment et évacuent les produits de combustion vers l’extérieur.
Les appareils sont classés suivant le mode d’amenée d’air et d’évacuation des produits de combustion en plusieurs types.
Les types sont définis par deux indices :

– Type d’installation de l’appareil :

Le premier indice est basé sur les possibilités d’installation de l’appareil selon son mode d’amenée d’air et d’évacuation des produits de combustion.

Type C:

L’appareil de type C est raccordé par ses conduits à un terminal installé horizontalement sur un mur ou sur un toit. Les orifices des conduits sont concentriques ou suffisamment proches pour être exposés à des conditions de vent similaires.

Type C:

L’appareil de type C est raccordé par ses conduits, éventuellement au travers d’une pièce de raccordement, à un système de conduit collectif constitué d’un conduit unique pour à la fois l’amenée d’air comburant et l’évacuation des produits de combustion.

Type C:

L’appareil de type C est raccordé par ses conduits à un terminal installé verticalement. Les orifices des conduits sont concentriques ou suffisamment proches pour être exposés à des conditions de vent similaires.

Type C:

L’appareil de type C est raccordé par ses conduits, éventuellement au travers d’une pièce de raccordement, à un système de conduit collectif constitué d’un conduit pour l’amenée d’air comburant et d’un conduit pour l’évacuation des produits de combustion. Les orifices de ce système de conduit collectif sont concentriques ou suffisamment proches pour être exposés à des conditions de vent similaires.

Type C:

L’appareil de type C est raccordé par ses conduits séparés à deux terminaux dans des zones de pression différente.

Type C:

L’appareil de type C est destiné à être raccordé à un système d’amenée d’air comburant et d’évacuation des produits de combustion approuvé et commercialisé séparément.

Type C:

L’appareil de type C est raccordé au travers de ses conduits verticaux et d’un coupe-tirage situé dans les combles, à un conduit secondaire. L’air comburant est pris dans les combles.

Type C8 :

L’appareil de type C est raccordé par ses conduits, éventuellement au travers d’une pièce de raccordement, à un terminal d’amenée d’air et à une cheminée individuelle ou collective.

– Présence et position d’un ventilateur

Le deuxième indice est basé sur la présence et la position d’un ventilateur intégré à l’appareil.
Un appareil de type C qui ne comprend pas de ventilateur est identifié par le deuxième indice « 1 » (par exemple C11).
Un appareil de type C qui comprend un ventilateur en aval de la chambre de combustion / échangeur de chaleur est identifié par le deuxième indice « 2 » (par exemple C12).
Un appareil de type qui comprend un ventilateur en amont de la chambre de combustion / échangeur de chaleur est identifié par le deuxième indice « 3 » (par exemple C13).

– Appareil d’utilisation – catégories (1) :

(1) Définitions conformes aux normes européennes – sources : EN 437 et EN 483.

Catégorie I :

Les appareils de catégorie I sont conçus exclusivement pour l’utilisation de gaz d’une seule famille ou d’un seul groupe.
Appareils conçus pour l’utilisation de gaz de la deuxième famille (gaz naturel) :
Catégorie I2E+ :
Appareils utilisant uniquement les gaz du groupe E de la deuxième famille, et fonctionnant sans intervention sur l’appareil avec un couple de pressions. Le dispositif de régulation de pression de gaz de l’appareil, s’il existe, n’est pas opérationnel entre les deux pressions normales du couple de pressions.
Catégorie I2E(s)B :
Appareils susceptibles d’utiliser uniquement les gaz du groupe E de la deuxième famille dans les même conditions que les appareils de la catégorie 12E,; toutefois, les appareils sont munis d’un dispositif de régulation de pression de gaz, qui est réglé et scellé par le fabricant dans la position correspondant à l’utilisation de G 20 à 20 mbar.
Catégorie I2E(R)B :
Appareils susceptibles d’utiliser uniquement les gaz du groupe E de la deuxième famille dans les même conditions que les appareils de la catégorie 12E,; toutefois, les appareils sont munis d’un dispositif de régulation de pression gaz, qui est réglé par le fabricant dans la position correspondant à l’utilisation du G 20 à 20 mbar. Néanmoins un réglage spécifique pour le G 25 à 25 mbar peut être effectué in situ par l’installateur, si les appareils sont installés à demeure sur un réseau alimenté en permanence en gaz de la plage Ei (gaz L).
Appareils conçus pour l’utilisation de gaz de la troisième famille (gaz de pétrole liquéfiés) :
Catégorie I3+ :
Appareils susceptibles d’utiliser les gaz de la troisième famille (propane et butane) et fonctionnant sans intervention sur l’appareil avec un couple de pressions; toutefois, pour certaines types d’appareils spécifiés dans les normes particulières, un réglage d’air primaire peut être autorisé pour le passage du butane au propane et inversement; aucun dispositif de régulation de pression de gaz n’est admis dans l’appareil.
Catégorie I3P :
Appareils utilisant uniquement les gaz du groupe P de la troisième famille (propane) à la pression d’alimentation fixée.

Catégorie II :

Les appareils de catégorie II sont conçus pour l’utilisation de gaz de deux familles.
Appareils conçus pour l’utilisation de gaz des deuxième et troisième famille (gaz naturel et gaz pétrole liquéfiés) :
Catégorie II2E+3+ :
Appareils susceptibles d’utiliser les gaz du groupe E de la deuxième famille et les gaz de la troisième famille; l’utilisation des gaz de la deuxième famille se fait dans les mêmes conditions que pour la catégorie 12E,; l’Utilisation des gaz de la troisième famille se fait dans les mêmes conditions que pour la catégorie I3+.
Appareils conçus pour l’utilisation des gaz de la deuxième famille (gaz naturel) admis en Belgique :
· Catégorie I2E+ : tous les appareils
· Catégorie I2E(s)B :

  • appareils avec assistance mécanique pour l’arrivée d’air de combustion et/ou l’évacuation des produits de combustion (p.ex. brûleurs à prémélange),
  • tubes rayonnants infrarouge sombre,

· Catégorie I2E(R)B :

  • brûleurs à air soufflé,
  • appareils dont la puissance nominale est supérieure à 70 kW,

· Catégorie II2E+3+ et II2E+3P :

  • appareils de cuisson,
  • appareils de chauffage individuel (radiateurs).

Branchement (1) :

(1) Pour la facilité, les pressions maximales de service admissibles sont indiquées en valeurs arrondies, exprimées en mbar ou en bar, étant entendu que seules les valeurs exactes fixées dans l’Arrêté Royale du 28 juin 1971 (Moniteur du 15 septembre 1971), ont force de loi.

La tuyauterie et les accessoires constituant le raccordement à la canalisation de distribution de gaz en amont du compteur.
Les branchements sont subdivisés en :

  1. Branchement à basse pression :
    Branchement dont la pression maximale de service admissible ne dépasse pas 100 mbar.
  2. Branchement à moyenne pression, catégorie A :
    Branchement dont la pression maximale de service admissible est supérieur à 100 mbar et ne dépasse pas 500 mbar.
  3. Branchement à moyenne pression, catégorie B :
    Branchement dont la pression maximale de service admissible est supérieur à 500 mbar et ne dépasse pas 5 bar.
  4. Branchement à moyenne pression, catégorie C :
    Branchement dont la pression maximale de service admissible est supérieur à 5 bar et ne dépasse pas 15 bar.
  5. Branchement à haute pression :
    Branchement dont la pression maximale de service admissible dépasse 15 bar.
(Voir tableau 2 en fin du chapitre 2).

Clapet stabilisateur de tirage :

Dispositif statique ou mobile, réglable ou non, qui limite te tirage d’un conduit en permettant à un niveau déterminé du conduit, l’entrée d’un débit variable d’air de dilution.

Compteur divisionnaire :

Compteur inséré dans l’installation intérieure.

Conduit d’amenée d’air :

Conduit assurant l’arrivée d’air nécessaire à la ventilation des locaux et/ou l’amenée d’air comburant.

Conduit d’évacuation :

Conduit qui mène les produits de la combustion à l’extérieur du bâtiment.

  • Conduit d’évacuation intégré :
    Conduit d’évacuation qui fait partie de la construction du bâtiment.
  • Conduit d’évacuation intégré individuel :
    Conduit d’évacuation intégré auquel n’est raccordé qu’un seul appareil.
  • Conduit d’évacuation intégré collectif :
    Conduit d’évacuation intégré auquel sont raccordés plusieurs appareils utilisant le même combustible.
  • Conduit d’évacuation autonome :
    Conduit d’évacuation qui est indépendant du bâtiment.
  • Conduit d’évacuation autonome individuel :
    Conduit d’évacuation autonome auquel n’est raccordé qu’un seul appareil.
  • Conduit d’évacuation autonome collectif :
    Conduit d’évacuation autonome auquel sont raccordés plusieurs appareils utilisant le même combustible.
  • Conduit d’évacuation collectif polyvalent (intégré ou autonome) :
    Conduit d’évacuation collectif auquel sont raccordés des appareils utilisant des combustibles différents.

Conduit de raccordement :

Conduit qui raccorde l’appareil d’utilisation au conduit d’évacuation.

Conduit de ventilation haute :

Conduit destiné à l’évacuation de l’air vicié d’un local par mise en communication directe de la partie supérieure du local avec l’ambiance extérieure.

Débit calorifique :

Produit du débit volumique ou débit massique par le pouvoir calorifique du gaz (supérieur ou inférieur) rapportés aux mêmes conditions de référence.
Dispositif de raccordement au conduit vertical commun :
Dispositif pour les appareils du type C4 qui permet le raccordement des conduits d’amenée d’air comburant et d’évacuation des produits de combustion de l’appareil au conduit verticale commun.

Ecrêteur :

Détendeur-régulateur basse-pression, qui régule automatiquement la pression en aval de celui-ci, à une pression limitée dans une plage fixée, éventuellement précédé d’un dispositif de sécurité de coupure de gaz.

Evacuation mécanique :

Evacuation des produits de la combustion d’un appareil d’utilisation par un conduit à tirage mécanique assurée par une force motrice d’origine extérieure au conduit.

Extension :

Tout prolongement de la tuyauterie d’une installation existante.

Fourreau :

Pièce scellée dans la traversée d’une paroi pour le passage de tuyauteries.

Gaine :

Dans une construction, espace réservé au passage de tuyauteries, et où éventuellement on pose aussi des compteurs et des robinets d’arrêt.

Gaz combustible plus léger que l’air :

Gaz combustible dont la densité relative est inférieure à 1.

Installation :

Ensemble de la tuyauterie, de la robinetterie et des appareils de contrôle et d’utilisation.

Installation intérieure :

La tuyauterie et ses accessoires en aval du compteur.

Installateur :

Au sens de la présente norme, on entend par installateur celui qui a réalisé l’installation, c’est-à-dire :

  1. toute personne physique ou morale qui, pour son propre compte ou de manière habituelle et indépendante, exécute pour le compte de tiers tous travaux de placement, réparation, transformation ou entretien d’installation de chauffage de locaux individuels alimentés par le gaz et dont l’exercice de l’activité professionnelle est réglementé par l’Arrêté Royale du 14 janvier 1975;ainsi que
  2. toute autre personne physique ou morale qui, pour son propre compte ou pour le compte de tiers, exécute tous travaux d’installation intérieure, d’installation et/ou de raccordement d’appareils à gaz (même lorsqu’ils constituent un service effectué par une entreprise spécialisée en poêlerie ou dans la vente d’appareils à gaz, s’ils se font à partir d’un point de raccordement préexistant et même s’ils font partie d’installations de chauffage central alimenté au gaz).

Local d’habitation :

Tout local pouvant servir de lieu de séjour, de loisir, de travail ou de repos.
Ne sont pas considérés comme local d’habitation :

  • les salles de bains et W-C.;
  • les caves, buanderies, débarras, couloirs, dégagements, escaliers, garages et magasins;
  • les locaux affectés exclusivement à l’usage de cuisine.

Local séparé :

Local sans communication directe et sans ouverture de transfert communiquant avec les autres
locaux de l’habitation (p.e. garage adjacent avec entrée par l’extérieur).

Mise en service :

Ensemble des opérations à faire avant l’utilisation d’une installation ou d’un appareil, pour s’assurer de son bon fonctionnement.

Nettoyage de l’installation :

Opération servant à évacuer les corps étrangers pouvant se trouver dans les tuyauteries.

Ouverture de transfert :

Une ouverture de transfert est une ouverture ou une fente permanente permettant le passage libre d’air d’un espace intérieur vers un autre espace intérieur, sans dispositif de fermeture.
L’ouverture de transfert se place uniquement dans les parois intérieures ou dans ou autour les portes intérieures. Une ouverture de transfert est à la fois une ouverture d’alimentation pour un local ou espace et ouverture d’évacuation pour le local ou l’espace voisin.

Parcours de tuyauterie :

Chemin suivi par la tuyauterie.

Perte de pression :

Diminution de pression entre deux points donnés de l’installation, lorsque le gaz y passe à un débit fixé.

Pressions (1) :

(1) Extrait de l’Arrêté Royale du 28 juin 1971 (Moniteur Belge du 15 septembre 1971).
  1. Pression : la pression effective, c’est-à-dire la pression comptée au-dessus de la pression atmosphérique, si le terme « pression » n’est pas précisé autrement.
  2. Pression maximale de service : la pression maximale à laquelle une canalisation ou un branchement est ou sera effectivement exploité.
  3. Pression maximale de service admissible : la pression maximale à laquelle une canalisation ou un branchement peut être exploité conformément aux dispositions légales.
  4. Pression d’épreuve en usine : la pression à laquelle sont effectivement essayés en usine tes tubes, appareils accessoires et éléments de raccordement.
  5. Pression d’épreuve sur chantier : la pression à laquelle sont effectuées sur chantier l’épreuve de résistance et l’épreuve d’étanchéité.

Puissance nominale :

Puissance utile indiquée par le fabricant et renseignée sur la plaque signalétique.

Raccord mécanique à sertissage :

Raccord dans lequel l’assemblage est réalisé par la compression d’une bague métallique sur la paroi extérieure du tube.

Raccordement des installations intérieures de gaz au réseau de distribution :

Branchement.

Régulateur de pression de gaz :

Dispositif permettant d’obtenir en aval une pression de gaz sensiblement constante (pression de consigne), lorsque la pression supérieure en amont varie entre des limites définies.

Résistance à haute température – Type RHT :

Aptitude que possède un accessoire, un appareillage ou un assemblage, lorsqu’il est soumis à un programme thermique, à garder son étanchéité par rapport à l’atmosphère (étanchéité externe) et éventuellement, pour certains éléments obturateurs, l’étanchéité de la sortie par rapport à l’entrée (étanchéité interne).
L’accessoire, l’appareillage ou l’assemblage répondant à ce programme thermique est dit du « type résistant à haute température ».

Respiration des membranes :

Mise en communication avec l’air libre de la partie des membranes de manostats, régulateurs de
pression,… qui n’est pas en contact avec le gaz.

Robinet d’arrêt :

Robinet de l’installation situé directement en amont d’un appareil d’utilisation.

Robinet à boisseau foncé :

Robinet dont la partie opposée à l’organe de manœuvre est fermée de façon indémontable.

Robinet de sectionnement :

Robinet permettant d’isoler une partie de l’installation.

Section :

Surface utile d’un orifice ou d’un conduit. Sauf indication contraire, les sections indiquées dans la présente norme sont des sections libres nettes.

Terminal :

Dispositif des appareils de type C disposé à l’extérieur du bâtiment, sur lequel sont raccordés le conduit d’évacuation des produits de combustion et le conduit d’amenée d’air comburant.

Tracé des tuyauteries :

Indication du parcours futur des tuyauteries.

Tubage :

Tuyauterie, en général souple, introduite dans un conduit d’évacuation existant, pour l’améliorer ou l’isoler thermiquement.

Ventilation (1) :

(1) Définitions conformes au norme NBN D50-001 (1991) : « Dispositifs de ventilation dans les bâtiments d’habitation ».

La ventilation est le renouvellement de l’air nécessaire aux locaux ou espaces d’une habitation par mise en communication avec l’ambiance extérieure.

– Ventilation naturelle :

La ventilation naturelle est le renouvellement d’air qui résulte de l’influence du vent ou de l’influence des différences de températures entre l’air intérieur et l’air extérieur (système A voir NBN D50-001).

– Ventilation mécanique :

La ventilation mécanique est le renouvellement d’air produit par un ventilateur rnotorisé. Une ventilation mécanique peut être assuré par un seul ventilateur central ou par plusieurs ventilateurs.
La ventilation mécanique peut être réalisée :

  • soit par une alimentation mécanique d’air extérieur et une évacuation libre de l’air vicié (système B – voir NBN D 50-001);
  • soit par une alimentation libre d’air extérieur et évacuation mécanique de l’air vicié (système C – voir NBN D 50-001);
  • soit une alimentation en air extérieur et une évacuation de l’air vicié mécaniques (système D – voir NBN D 50-001).

– Ventilation mécanique contrôlée (VMC) :

Ventilation mécanique réalisée par extraction à l’aide d’un système de conduits collectifs, dont le débit de ventilation est contrôlé.

– Ventilation mécanique contrôlée gaz (VMC gaz) :

Ventilation mécanique contrôlée dont le conduit d’évacuation de l’air vicié peut servir également de conduit d’évacuation des produits de la combustion des appareils d’utilisation, qui y sont raccordés.

Vide technique :

Espace entre le sol et le plancher du rez-de-chaussée, qui est continu et ventilé, d’au moins 0,20 m de hauteur, dans un bâtiment n’ayant pas de cave.

Vide technique accessible :

Espace sanitaire ayant au moins 0,60 m de hauteur libre, ayant un accès, et ventilé par au moins deux orifices.

TABLEAU 1 – Résumé

Type appareil Evacuation PdC amenée d’air combustion CT AR Type d’air de combustion et évacuation PdC Position ventilateur
CDA =AS TTB=BS VMC=CS

 

Norme d’installation
A

 

A1

 

Non
Air de combustion pris dans le local d’installation
Non
amenée d’air de combustion et évacuation PdC par le local d’installation
1
Sans
AS
Uniquement
A2
2
Aval CH de C
AS
AS
A3
3
Amont CH de C
AS
Admis
B B11
Oui
Oui
1
A raccorder à une évacuation avec tirage naturel
1
sans
AS/BS/CS
uniquement
AS/BS/CS
admis
B12
2
Av. CH de C am. CT AR
AS/BS/CS
B13
3
Amont CH de C
AS/BC/CS
B14
4
Aval CT AR
AS/BS/CS
à raccorder à un conduit individuel et étanche
B21
Non
2
A raccorder à une évacuation avec tirage naturel
1
sans
Interdit
B22
2
Aval CH de C
à raccorder à un conduit individuel et étanche
B23
3
Amont CH deC
C
C11
Oui
Appareil étanche

 

1
débouché sur une paroi verticale dans une zone de même pression
1
sans
localisation du débouché du terminal
C12
2
Aval CH de C
C13
3
Amont CH deC
C21
2
conduit commun mixte amenée d’air évacuation PdC
1
sans
C22
2
Aval CH de C
C23
3
Amont CH deC
C31
3
débouché sur une paroi horizontale dans une zone de même pression
1
sans
localisation du débouché du terminal
C32
2
Aval CH de C
C33
3
Amont CH deC
C41
Air de combustion pris à l’extérieur
4
Système

Collectif étanche

1
sans
interdit
C42
2
Aval CH de C
système agréé Technigas ou UBatg (CLV, 3CE, LAS)
C43
3
Amont CH deC
C51
5
conduits séparés dans zones de pression différentes
1
sans
interdit
C52
2
Aval CH de C
C53
3
Amont CH deC
C61
6
appareil étanche seul, sans conduits, sans terminal
1
sans
interdit
C62
2
Aval CH de C
C63
3
Amont CH deC
C71
oui (dans le grenier)
7

air du grenier

Evacuation en toiture

1
sans
interdit
C72
2
Aval CH de C
C73
3
Amont CH deC
C81
Non
8

Air de l’extérieur

Evacuation par une cheminée

1
sans
interdit
C82
2
Aval CH de C
C83
3
Amont CH deC

Tableau 2 – Pression maximale de service admissible (résumé)

Branchement

Pression maximale de service admissible (PMSA) – bar

basse pression

PMSA < 0,1

moyenne pression

A

< 0,1 PMSA < 0,5

B

0,5 < PMSA < 5
c
5 < PMSA < 15

haute pression

PMSA > 15

3. INSTALLATIONS INTÉRIEURES

3.1 Matériaux

3.1.1 Les matériaux à utiliser sont
(1) :
(1) Des tubes et accessoires en polyéthylène (PE) sont également admis, mais uniquement dans les parties enterrées de l’installation qui doivent répondre aux spécifications de la norme NBN D 51-004.

a) pour les tubes : l’acier et le cuivre.
  • Les tubes en acier (2) répondent aux prescriptions des normes NBN A 25-103, NBN A 25-104 ou EN 10.208-1 (voir 3.5.1.2)(2) Les tubes galvanisés répondant à une norme spécifique sont autorisés, la galvanisation ne constituant qu’un mode de protection contre la corrosion du tube dont les caractéristiques répondent aux normes citées.
  • Les tubes en cuivre répondent aux prescriptions de la norme NBN P 12-101. Ils ont une épaisseur nominale de paroi de 1 mm minimum.
b) pour les raccords et accessoires de tuyauterie : le cuivre, le laiton, l’acier, la fonte malléable.
  • Les raccords en fonte malléable sont du type renforcé (à bourrelet) et répondent aux prescriptions de la norme NBN E 29-003.
  • Les raccords en cuivre, en laiton ou en acier ont une résistance mécanique compatible avec les sollicitations auxquelles ils sont soumis, notamment de par leur mode d’assemblage : soudage, serrage, vissage, compression.
  • Les raccords mécaniques à sertissage sont entièrement métalliques.

c) pour la robinetterie : les alliages de cuivre, la fonte et l’acier.

3.1.2
Lorsque l’installation comporte des organes assemblés par soudure, seuls les matériaux parfaitement soudables sont mis en œuvre

Pour des assemblages soudés ou brasés, la température de fusion du matériau d’assemblage est au minimum de 450°C pour les assemblages de la canalisation en amont du robinet d’arrêt de l’appareil d’utilisation.

3.1.3
Sont admis d’autres matériaux que ceux qui sont cités, s’ils offrent les mêmes garanties de sécurité.

3.2 Robinets d’arrêt et de sectionnement

Les robinets d’arrêt et de sectionnement sont de construction robuste.
Pour pouvoir remplir en tout temps leur fonction, ils présentent une résistance appropriée aux sollicitations mécaniques, thermiques et chimiques auxquelles ils peuvent être soumis en fonctionnement normal.
Les robinets d’arrêt et de sectionnement installés à l’intérieur des bâtiments, sont soit du type résistant à haute température (type RHT – voir chapitre 7 de NBN D 51-004), soit protégés efficacement contre une élévation anormale de la température.
Les robinets d’arrêt et de sectionnement à tournant conique répondent aux prescriptions de la norme NBN… (1)
Les robinets d’arrêt et de sectionnement dont le corps est en métaux ferreux répondent aux spécifications de la norme NBN…(2)
Leur manouvre est aisée (quart de tour) et leur construction est telle que l’on puisse constater sans équivoque s’ils sont « ouverts » ou « fermés ».

L’emploi de clefs amovibles est déconseillé.

(1) En attendant la publication d’une norme belge, le cahier des charges de l’Association Royale des Gaziers Belges (ARGB) « Robinets d’arrêt à tournant conique » peut servir à définir les qualités des robinets d’arrêt.

(2) En attendant la publication d’une norme générale relative aux robinets métalliques, le cahier des charges de l’ARGB « Cahier des charges pour la robinetterie dont le corps est en métaux ferreux utilisée dans la distribution ou lors d’applications au gaz combustible plus léger que l’air distribué par canalisations » peut servir à définir les qualités des robinets.

3.3 Parcours et accessibilité des tuyauterie

3.3.1 Il est conseillé que les tuyauteries soient apparentes ou montées dans des gaines, ouvertes au moins à l’extrémité supérieure, permettant leur accès pour l’entretien et les réparations.

Dans les autres cas, il doit être possible d’accéder aisément aux raccords devant servir aux débouchages éventuels.

3.3.2 Sauf précautions adéquates, les tuyauteries en acier encastrées dans les murs ou posées dans la chape ne sont pas en contact avec l’ossature, l’armature ou toute autre tuyauterie (voir 3.11.2).
Le nombre de raccords ou de soudures est réduit au minimum.
Aux changements de diamètre extérieur de l’installation, soit du fait de raccords filetés, soit du fait de soudures protubérantes, des précautions adéquates sont prises pour permettre un léger mouvement.

Les raccords mécaniques à sertissage ne peuvent être ni encastrés ni noyés dans la chape.

3.3.3 Les tuyauteries ne peuvent pas emprunter les vides d’air entre deux parois. Elles peuvent emprunter les espaces sanitaires, mais elles ne peuvent comporter des raccords mécaniques que dans les espaces sanitaires accessibles.

Le nombre de raccords doit être réduit au minimum compatible avec la longueur commerciale des tubes, et avec les changements de direction.

3.3.4 Le passage de tuyauteries dans des conduits d’évacuation de produits de combustion, dans des caniveaux d’eau ou dans des regards d’égouts ainsi que dans des conduits d’aération et de ventilation, de conditionnement d’air et dans les gaines d’ascenseur et dans les gaines de chute (ordures ménagères, papier, linge,… ) est interdit.

Les tuyauteries ne peuvent passer dans des éléments creux (poteries alvéolées, briques creuses,hourdis…) que si elles sont protégées efficacement contre la corrosion.

3.4 Mise en œuvre

3.4.1 Disposition de l’installation de tuyauteries
Le parcours des tuyauteries est indiqué sur les plans.
Le tracé des tuyauteries est fait suivant des lignes droites avec le moins possible de changements de direction, partout où la disposition des lieux le permet.
Les tuyauteries horizontales apparentes sont au moins à 5 cm au-dessus du niveau fini des planchers.
Pour les changements de direction les courbes sont préférées aux coudes.
Il est prévu un nombre suffisant de raccords de nettoyage, en particulier aux points bas des tuyauteries verticales.
Il est recommandé de prévoir quelques tés bouchonnés dans l’installation en vue d’éventuelles extensions ou de futur raccordement d’appareils.
Les robinets sont toujours facilement accessibles et manœuvrables.
Chaque tuyauterie ou robinet en attente de raccordement d’un appareil est efficacement obturé au moyen d’un bouchon ou d’un bonnet, métallique et vissé, même si le robinet du compteur est scellé en position fermée.
Des robinets de sectionnement sont placés quand l’installation présente un grand développement.
Les tuyauteries sont conçues pour résister aux sollicitations normales transmises par les éléments constructifs de l’immeuble.
3.4.2 Conditions particulières aux colonnes montantes
lorsque les compteurs sont groupés dans un local technique, tes tuyauteries situées entre le local technique et les différents logements doivent former une nappe unique pour chaque ensemble de locaux superposés à desservir.
Les tuyauteries ne peuvent être posées en nappes superposées que si elles restent accessibles.
Lorsqu’une colonne montante dessert plusieurs unités d’occupation (appartement, bureau, etc.), un robinet de sectionnement est prévu pour isoler chaque unité.

Ce robinet peut être celui qui précède le compteur éventuel de l’unité d’occupation.

3.4.3 Compteurs divisionnaires

Les compteurs divisionnaires, placés dans les installations intérieures, sont précédés d’un robinet de sectionnement.

3.5 Montage des tuyauteries

3.5.1 Assemblage
3.5.1.1 Avant leur assemblage, l’installateur vérifie la propreté intérieure des tubes et l’absence de bavure.

3.5.1.2 Les éléments des tuyauteries de l’installation intérieure sont assemblés :
  • par raccords à filets; seuls les tubes en acier filetables (NBN  A 25-103 et EN 10.208-1) peuvent être utilisés;
  • par soudure avec un métal d’apport dont le température de fusion est au moins 450’C;
  • par brides, dont le matériau d’étanchéité est conforme au 3.5.2.2;
  • par raccords mécaniques à sertissage entièrement métalliques dont la bague de sertissage n’est pas fendue; les assemblages par raccord mécanique à sertissage ne sont admis que jusqu’au diamètre extérieur 28 mm et pour les tubes en cuivre.
  • par raccords trois pièces métalliques (raccord union) à joint conique dont l’étanchéité principale est assurée par un contact métal sur métal constitué par des surfaces coniques ou sphéroconiques (c’est le cas par exemple lors de l’interposition d’un joint torique placé dans un logement fermé après serrage); les raccords trois pièces en fonte malléable répondent aux spécifications de la norme NBN EN 10242.
3.5.1.3 Sauf spécification contraire dans la norme, les filetages des assemblages par raccord à filet des tubes, raccords, robinets et pièces spéciales sont conformes à la norme NBN E 03-101.

Le filetage extérieur est conique et le filetage intérieur cylindrique.
3.5.1.4 Les assemblages à filetage cylindrique long, ainsi que les nipples à filetage cylindrique sont interdits.
3.5.1.5 Les tuyauteries, les organes d’assemblage, les appareils et les compteurs sont montés de telle façon qu’ils ne subissent pas d’effort mécanique permanent nuisible.
3.5.1.6 Dans un assemblage par raccord mécanique par sertissage de tubes en cuivre, la bague de sertissage doit posséder deux épaulements qui empêchent un écrasement excessif du tube en cuivre et permettent à la bague de se positionner correctement dans l’axe du tube en fin de serrage. L’écrou de serrage doit réaliser le soutien du tube en dehors de la bague de sertissage, sur une longueur utile au moins égale à 0,7 fois le diamètre extérieur du tube.

3.5.1.7 Assemblages soudés
Le soudeur doit avoir des connaissances suffisantes concernant le matériel et les techniques de soudage utilisés et avoir reçu une formation pratique des différentes techniques utilisées dans l’assemblage des tuyauteries (1)

(1) La spécification BECETEL « Exigences pour le contrôle des assemblages soudés en acier pour les installations intérieures de distribution de gaz combustible plus léger que l’air distribué par canalisation » peut servir à définir les qualités des soudeurs chargés de réaliser des assemblages soudés sur des installations BP.

3.5.1.7.1 Assemblages soudés de tubes et accessoires en acier

Ceux-ci sont réalisés :

    • soit par assemblage bout à bout,
    • soit par slip-joint.

Les accessoires et robinets en acier sont exécutés dans un acier reconnu de qualité soudable, approprié au procédé de mise en œuvre et ayant des caractéristiques comparables à celles des tubes en acier.

Seuls des matériaux parfaitement soudables entre eux sont mis en œuvre

Le métal d’apport doit être approprié au procédé de soudage (au gaz, arc électrique,… ), aux matériaux de base et à la méthode de soudage utilisée (montante, descendante,… ).

Le métal d’apport pour le soudage au gaz ou à l’arc répond aux nonnes de la série NBN F 31.

3.5.1.7.2 Assemblages brasés de tubes et accessoires en cuivre ou alliage de cuivre

Les assemblages brasés sont réalisés au moyen de brasure forte.

Le métal d’apport doit être approprié au brasage.

L’accessoire utilisé est du type à emboîtement du tube et est approprié au brasage.

3.5.1.8 On peut déroger à l’obligation d’avoir une étanchéité assurée par un contact métal sur métal lorsque l’assemblage ou l’accessoire est du type résistant à haute température (type RHT – voir chapitre 7 de la norme NBN D 51-004).

3.5 2 Étanchéité

3.5.2.1 pour joints filetés :

Les produits utilisés en vue d’assurer l’étanchéité des assemblages filetés doivent répondre aux exigences des normes NBN EN 751-1, NBN EN 751-2 et NBN EN 751-3.

L’emploi de filasse hygroscopique (par exemple chanvre naturel) est interdit.

3.5.2.2 Pour brides :

Les joints d’étanchéité sont choisis en fonction de l’emplacement de l’installation. À l’intérieur des bâtiments, l’assemblage doit être du type résistant à haute température (type RHT – Voir chapitre 7 de la norme NBN D 51-004).

3.6 Essais et contrôles de l’installation neuve

Avant l’application des enduits et des peintures éventuelles, l’installateur soumet l’installation neuve au contrôle suivant :

les installations intérieures (y compris les compteurs divisionnaires) sont éprouvées à l’aide d’air ou de gaz inerte (p. ex. azote) sous une pression de 100 mbar durant te temps nécessaire au badigeonnage des raccords, soudures, robinets, etc… au moyen d’un produit moussant.

Pour cette épreuve il est formellement interdit d’utiliser des gaz combustibles (tels que les gaz de pétrole liquéfié, butane ou propane) ou de l’oxygène.

L’épreuve est réputée satisfaisante si aucune bulle n’apparaît.

3.7 Purge

Il n’est procédé à la mise en service d’une installation qu’après avoir purgé celle-ci de l’air qu’elle peut contenir.

Cette purge s’exécute soit au moyen d’un tuyau débouchant à l’extérieur du bâtiment, soit par le brûleur, facilement accessible, d’un appareil, en ayant soin de maintenir une flamme d’allumage à proximité de celui-ci et en ventilant le local. Le brûleur doit rester allumé pendant un temps suffisant pour être sûr que l’installation est complètement purgée (risque de poches d’air).

3.8 Extensions, modifications et remplacements

3.8.1 Toute extension de la tuyauterie est considérée comme une partie neuve de l’installation.

Cette partie subit le même contrôle qu’au 3.6.

3.8.2 Le raccordement de la partie neuve à la partie ancienne, de même que tout raccordement d’appareil, est contrôlé lors de la mise sous gaz, à la pression de distribution, en badigeonnant le raccord au moyen d’un produit moussant. Aucune bulle ne peut apparaître.

3.8.3 Lors du remplacement d’un appareil, même sans modification ou extension de l’installation de gaz, les règles concernant les appareils d’utilisation et relatives aux installations neuves sont d’application (en particulier les prescriptions de 4.4 et 4.4.1.1.13).

3.9 Nettoyage

Pour nettoyer l’installation :

  • le robinet du compteur est fermé,
  • la sortie du compteur est déconnectée de la tuyauterie et protégée contre toute introduction de corps étrangers,
  • les appareils sont déconnectés de la tuyauterie,
  • le nettoyage est fait par soufflage d’air ou de gaz inerte (azote,… ) pour libérer la tuyauterie de toute particule non adhérente,
  • l’emploi d’oxygène ou de gaz combustible est interdit,
  • après nettoyage, la sortie du compteur et les appareils sont reconnectés,
  • les tuyauteries sont ensuite soigneusement purgées et l’étanchéité est vérifiée.

3.10 Identification des tuyauteries

L’éventuelle identification de tuyauteries de gaz est réalisée par l’application de la teinte ocre jaune définie par le norme NBN 69.

3.11 Protection extérieure des tuyauteries

3.11.1

Les tuyauteries sont réalisées au moyen de matériaux résistant à la corrosion, ou protégées contre la corrosion. Cette protection doit présenter les qualités suivantes :

  • elle doit protéger la tuyauterie d’une manière efficace,
  • elle ne peut pas avoir d’action nuisible sur les matériaux qui sont en contact avec elle,
  • elle doit résister à l’action éventuelle des matériaux avec lesquels elle est en contact.

Les tuyauteries emmurées ou en chape sont protégées par un revêtement en matière synthétique conforme à la norme NBN – … (1). Il doit bien adhérer au métal, être exempt de pore, durable et compatible avec les matériaux avec lesquels il est en contact. Cet enrobage est soit réalisé en usine, soit appliqué lors de la pose de la tuyauterie.

Avant d’appliquer le revêtement, la tuyauterie doit être nettoyée, de manière à éliminer complètement toute trace d’humidité ou de corps étrangers pouvant nuire à l’adhérence et aux propriétés du revêtement.

(1) en attendant la publication de la norme, les prescriptions d’agrément de l’UBAtc « Système de protection anticorrosive de canalisations métalliques » peuvent servir à définir les qualités des revêtements.

3.11.2 Tuyauteries en acier

Les tubes galvanisés ne peuvent pas être assemblés par soudage.

Les tuyauteries galvanisées installées dans une ambiance où une condensation importante est à prévoir, sont protégées de plus contre la corrosion par un revêtement conforme aux spécifications de 3.1 1. 1.

Les précautions nécessaires sont prises pour éviter la création de couples galvaniques nuisibles à la liaison entre deux métaux de nature différente.

3.11.3 Tuyauteries en cuivre

Les tuyauteries en cuivre emmurées ou en chape sont toujours enrobées en usine.

Elles sont de plus protégées mécaniquement contre l’écrasement et la perforation accidentelle, par exemple par un ruban en acier de 2 mm d’épaisseur minimum.

3.11.4 Fourreaux

A la partie supérieure de la traversée d’un plancher exposé à l’humidité (eau de nettoyage), la protection des tuyauteries est assurée par les fourreaux présentant une saillie d’au moins 5 cm au-dessus du plancher.

L’espace annulaire est rempli d’une manière suffisamment plastique pour en assurer l’étanchéité.

3.11.5 Traversée des murs

Les ouvertures pratiquées dans les murs extérieurs en vue du passage des tuyauteries sont bouchées d’une manière étanche.

L’emploi du plâtre, de ciment volcanique, de mortier à base de laitier ou de toute autre matière corrosive est interdit.

3.12 Dimensions de tuyauteries et perte de pression admissible

La perte de pression mesurée entre l’orifice de sortie du compteur et chacun des appareils d’utilisation, non compris le robinet d’arrêt, ne peut pas dépasser 1 mbar compte tenu du degré de fonctionnement simultané des appareils et de la dénivellation entre le compteur et les appareils d’utilisation.

Selon que le compteur se trouve à un niveau inférieur ou supérieur par rapport à l’appareil d’utilisation, l’effet de la dénivellation constitue donc un gain ou une perte de pression supplémentaire, à ajouter ou à déduire de la perte de pression admissible totale.

4. ÉVACUATION DES PRODUITS DE LA COMBUSTION ET AERATION DES LOCAUX POURVUS D’APPAREILS A GAZ

 4.1 Généralités

Le présent chapitre traite de l’évacuation des produits de la combustion des appareils alimentés en gaz plus léger que l’air, distribué par canalisations, ainsi que de l’aération des locaux pourvus de tels appareils.

Le but de chapitre est essentiellement de définir :

  • les conditions à réaliser pour assurer une alimentation correcte en air comburant,
  • la manière dont les produits de combustion doivent être évacués, suivant le type d’appareil utilisé,
  • les règles à respecter pour le raccordement des appareils aux conduits d’évacuation des produits de la combustion,
  • la manière de réaliser un conduit autonome lorsqu’il n’existe pas de cheminée disponible.

Il n’appartient pas à la présente norme de préciser les dispositions constructives des cheminées, dont la réalisation incombe au constructeur du bâtiment.

Par ailleurs, lors de l’emploi de conduits collectifs, certaines règles sont à respecter afin d’éviter des perturbations dans l’évacuation des produits de la combustion d’un ou plusieurs des appareils qui y sont raccordés.

Les nouvelles chaufferies sont conformes à la norme NBN B 61-001 lorsque la puissance calorifique utile totale du ou des générateur(s) qui y est (sont) installé(s), est égale ou supérieure à 70 kW.

Lorsque le débit calorifique du ou des générateur(s) qui y est (sont) installé(s) est inférieur à 70 kW, les matériaux utilisés pour les conduits d’évacuation doivent répondre aux exigences de l’article 9.5 de la norme NBN B 61-001.

Les locaux dans lesquels sont installés des appareils étanches (type C) ne doivent pas comporter d’amenée d’air comburant. Il suffit de prévoir une ventilation minimale dans le local pour évacuer la chaleur dégagée par les équipements de chauffe et les odeurs éventuelles.

Toutefois, dans les locaux abritant un ou des appareils étanches dont le débit calorifique total est égal ou supérieur à 70 kW, il y a lieu de prévoir la ventilation suivante :

  • ventilation haute: section au moins égale au quart de la section totale des conduits

d’évacuation avec un minimum de 200 cm²;

  • ventilation basse : section au moins égale à la moitié de la section de la ventilation haute avec un minimum de 200 cm².

4.2 Dispositions pour l’immeuble

Les conduits d’évacuation des produits de la combustion incorporés à l’immeuble sont conformes aux prescriptions réglementaires.

4.3 Ventilation des locaux

4.3.1 Amenée d’air

4.3.1.1 Généralités

Dans les locaux où sont installés des appareils à circuit de combustion non étanche, des dispositions sont prises pour assurer le remplacement de l’air absorbé par la combustion.

L’amenée d’air doit être suffisante et permanente. Dans les nouvelles constructions et lors de rénovations importantes d’unités d’habitation, il y a lieu de respecter les principes de ventilation décrits dans la nonne NBN D 50-001. Dans les constructions existantes la norme NBN D 50-001 peut servir de guide sur la manière d’assurer la ventilation des locaux.

Un même orifice ne peut pas servir à la fois d’amenée d’air et d’évacuation d’air pour un même local sauf dans le cas d’un soupirail unique situé en haut de local, pour autant que :

  • la profondeur du local à partir de la paroi extérieure où se trouve le soupirail ne dépasse pas 5 m,
  • la section libre du soupirail est au moins 5 fois celle calculée au 4.3.1.5.

4.3.1.2 Air comburant

Une combustion complète, libérant une quantité de chaleur de 4,186 MJ (1 000 kcal) nécessite environ 1 m³ d’air.

Tableau 3 – Valeurs indicatives pour les quantités d’air comburant nécessaires

Type d’appareil

Débit d’air comburant (l/s. kW)

B1*

1

B2*

0,5

feu ouvert
4

4.3.1.3 Locaux dans lesquelles un orifice d’arrivée d’air doit être prévu

Le volume d’air à introduire dans les locaux est fonction :

  • du nombre total d’appareils et de leur consommation;
  • de l’utilisation simultanée des appareils;
  • de la destination et du volume des locaux.

Un orifice d’arrivée d’air extérieur est prévu dans chaque local où est installé un appareil à circuit de combustion non étanche. Cet orifice d’arrivée d’air peut être une ouverture de transfert si par au maximum une deuxième ouverture de transfert, le local est mis en communication avec un local prévu d’un orifice d’arrivée d’air directement de l’extérieur.

4.3.1.4 Emplacement des orifices d’amenée d’air

Les orifices d’amenée d’air doivent déboucher à la partie inférieure du local; ils ne peuvent pas être obturés. Ils sont disposés de manière à éviter toute gène pour les occupants.

Toutefois, lorsque l’évacuation des produits de combustion se fait par un conduit d’évacuation, les orifices d’amenée d’air peuvent déboucher à la partie supérieure du local.

4.3.1.5 Section des orifices d’amenée d’air

La section nette de ces orifices est calculée comme ci-après.

Elle ne peut être inférieure à 150 cm².

Tableau 4 – Section des orifices d’arrivée d’air

Type d’appareil

Section ( cm² / kW )

direct de l’extérieur par 1 orifice de transfert par 2 orifices de transfert

B1 *

6 8 10

B2*

3 4 5

feu ouvert

20 28 35

A*

13 18 23

Pour le calcul de la section d’amenée d’air, il n’est pas tenu compte des cuisinières et des réchauds domestiques.

4.3.2 Evacuation de l’air des locaux

lorsque dans la présente norme un dispositif d’évacuation de l’air est demandé dans un local, il doit répondre aux exigences suivantes :

4.3.2.1 lorsque l’évacuation de l’air du local est assurée par un orifice, celui-ci se trouve à la partie supérieure du local, aussi haut que possible, et débouche directement à l’air libre; cet orifice est toujours situé plus haut que le niveau de sortie des produits de combustion d’appareils qui ne seraient pas raccordés à un conduit d’évacuation des produits de combustion.

4.3.2.2 lorsque l’évacuation est assurée par un conduit de ventilation haute, le départ de ce conduit est toujours situé à la partie supérieure du local, aussi haut que possible et en tout cas au-dessus du niveau de sortie des produits de combustion provenant d’appareils qui ne seraient pas raccordés à un conduit d’évacuation des produits de combustion.

Le parcours du conduit est aussi vertical et rectiligne que possible.

Le débouché du conduit ne peut se trouver dans une zone en surpression statique nuisible et répond aux spécifications de la norme NBN D 50-001.

Les matériaux utilisés pour le conduit résistent aux effets thermiques, mécaniques et chimiques auxquels ils sont exposés.

4.3.2.3 La ventilation haute, qui doit satisfaire aux dispositions de 4.3.2.2, peut être assurée par un conduit d’évacuation des produits de la combustion à condition :

  • qu’il n’y soit raccordé que des appareils gaz équipés de brûleurs atmosphériques munis d’un coupe-tirage antirefouleur,
  • et lorsque ce conduit a été conçu pour ce mode d’utilisation.

Si dans le même local est installé un appareil gaz non raccordé à un conduit d’évacuation des produits de combustion, le bord inférieur du coupe-tirage antirefouleur doit être situé plus haut que le niveau de sortie des produits de combustion de l’appareil non raccordé.

4.3.2.4 La ventilation haute peut également être assurée par le conduit d’évacuation lorsque le conduit est muni d’un orifice débouchant le plus près possible du plafond et à condition:

  • qu’il n’y soit raccordé que des appareils équipés de brûleurs atmosphériques munis d’un coupe-tirage antirefouleur dont la puissance totale est inférieure à 70 kW par local,

et :

  • soit le conduit d’évacuation est individuel,
  • soit les appareils sont raccordés à un tronçon vertical individuel incorporé au conduit d’évacuation collectif, ce tronçon ayant une hauteur minimale de 2,5 m et l’orifice de ventilation débouchant dans le même tronçon de raccordement vertical individuel.

4.3.2.5 lorsque l’évacuation de l’air du local est assurée par une ventilation mécanique (par exemple par la hotte de cuisine), les dispositions sont prises afin d’empêcher que la dépression créée dans le local ne perturbe le fonctionnement correct d’un appareil (ou des appareils) installés dans ce local; ceci peut se réaliser par exemple :

  • en majorant la section de l’orifice d’arrivée d’air frais, en calculant cette section sur base du débit à assurer;
  • en rendant impossible le fonctionnement simultané de la ventilation mécanique et de l’appareil ou des appareils; toutefois lorsque la ventilation du local est assurée de manière continue par des moyens mécaniques, il n’est pas autorisé de subordonner le fonctionnement de l’appareil (des appareils) au fonctionnement de l’extraction mécanique.

4.4 Evacuation des produits de combustion

Tous les appareils sont raccordés à un conduit d’évacuation des produits de combustion.

Cependant, ce raccordement n’est pas obligatoire pour :

  1. les appareils à circuit étanche où l’évacuation des produits de combustion se fait directement à l’air libre;
  2. les cuisinières, réchauds, réfrigérateurs et certains petits appareils artisanaux (par ex. brûleurs bunsen);
  3. les chauffe-eau du type AAS installés en vue d’un usage intermittent (p.ex. ne dépassant pas 10 min. toutes les demi-heures en usage continu ou intermittent); ce type de chauffe-eau ne peut pas être utilisé pour alimenter une douche, une baignoire, une baignoire sabot ou une utilisation équivalente, même installé dans une salle de bains, salle de douche ou cabinet de toilette;
  4. les machines à laver et les sèche-linge domestiques du type AAS;
  5. les autres appareils artisanaux à fonctionnement intermittent conformément aux conditions d’emploi et d’installation.

L’évacuation des produits de combustion des appareils repris sous 2 à 5 ci-avant est régie par les règles édictées sous 4.4.3.

4.4.1 Evacuation des produits de combustion par tirage naturel des appareils du type B

4.4.1.1 Généralités

4.4.1.1.1 Règles générales

Chaque appareil est raccordé à un conduit d’évacuation intégré individuel.

1) Toutefois il peut être fait usage d’un conduit d’évacuation autonome individuel (voir 4.4.1.3) :

  • si l’appareil est installé dans une chaufferie en toiture,

ou

 

 

    • si les dispositions locales ne permettent pas de disposer d’un conduit d’évacuation intégré individuel.

 

Remarques explicatives :

Un ensemble composé de plusieurs générateurs peut être assimilé à un générateur unique pour autant que les conditions ci-après soient remplies simultanément :

a) les différents générateurs font partie d’un ensemble spécialement conçu pour fonctionner comme une seule unité,

b) ‘ensemble est équipé d’origine en usine

 

      • soit d’un collecteur des produits de combustion spécialement conçu par le fabricant pour assurer dansn’importe quelle condition (utilisation totale ou partielle de la puissance installée) une évacuation correcte des produits de combustion, la combustion des générateurs restant en toute circonstance optimale;
      • soit d’une évacuation unique assurant les mêmes fonctions;

 

c) le bon fonctionnement de l’ensemble générateurs/collecteur a été contrôlé préalablement en laboratoire et fait l’objet d’un certificat délivré par ce laboratoire (voir norme NBN…. en préparation)(1) ;

d) la puissance minimale de démarrage à froid est au moins égale à 25% de la puissance calorifique utile to de l’ensemble des générateurs.

· Un générateur à gaz et un générateur utilisant un autre combustible peuvent être raccordés au même conduit d’évacuation collectif polyvalent si leur fonctionnement simultané est rendu impossible.

(1)en attendant la publication de la norme belge, le cahier des charges de l’Association Royale des Gaziers Belges (ARGB) « Exigences pour les ensembles composés de chaudières montées en batterie et fonctionnant en cascade » pe servir à définir les critères en matière d’évacuation des produits de combustion.

2) Les appareils du type B1*, installés dans un local d’habitation ou dans un autre local d’habitation (grenier, cave, garage,… ) doivent être du type B1*AS, B1*BS ou B1*CS. Seuls les appareils installés soit en plein air soit dans un local séparé de l’habitation et pourvu d’une ventilation appropriée directement vers l’extérieur peuvent être du type B1*.

Les appareils des types B14BS, B22 et B23 peuvent être raccordés à un conduit individuel, pour autant que :

 

      • le raccordement entre l’appareil et le conduit individuel est du type étanche (voir 4.4.2.1),
      • le conduit individuel est du type étanche (voir 4.4.2.1).

 

Si tel n’est pas le cas, il y a lieu de prévoir un tubage étanche de la sortie de l’appareil jusqu’au débouché extérieur.

Il est interdit de raccorder des appareils des type B14BS, B22 et B23 à un conduit d’évacuation collectif.

3) Un appareil du type C42 (OU C43) peut être utilisé comme un appareil du type B22 (ou B23) moyennant les prescriptions suivantes :

 

      • l’appareil du type C42 (OU C43) doit être du type avec corps de chauffe complètement entouré par l’air comburant,
      • le conduit de raccordement de l’appareil au conduit d’évacuation doit être livré par le fabricant avec l’appareil et doit être du type étanche (voir 4.4.2. 1),
      • l’appareil doit être raccordé à un conduit d’évacuation individuel étanche (sinon il y a lieu de tuber la cheminée sur toute la longueur, de l’appareil au débouché).

 

4.4.1.1.2 Exception à la règle générale

Cas des locaux n’abritant que des appareils équipés de brûleurs atmosphériques dont la puissance calorifique utile totale est inférieure à 70 kW par local.

Si les dispositions locales ne permettent pas de raccorder chaque appareil à un conduit d’évacuation individuel, il peut être fait usage d’un conduit d’évacuation collectif, à condition de respecter les prescriptions de 4.4.1.6.

4.4.1.1.3 Section

La section doit être telle que le tirage s’amorce normalement quel que soit le régime de fonctionnement de l’appareil raccordé.

4.4.1.1.4 Étanchéité

L’étanchéité doit être telle qu’aucun dégagement des produits de combustion ne puisse se produire dans les locaux traversés.

4.4.1.1.5 Parcours

Le parcours suivi se rapproche autant que possible de la verticale à partir de la sortie de l’appareil. Les changements brusques de direction et de section doivent être évités.

4.4.1.1.6 Débouché

Le débouché du conduit d’évacuation des produits de combustion ne peut pas se trouver dans une zone en surpression statique nuisible.

4.4.1.1.7 Isolation

Les matériaux utilisés et l’isolation apportée sont tels qu’un refroidissement exagéré ne soit pas à craindre.

Dans les constructions neuves, il n’est pas admis d’utiliser des produits isolants susceptibles de subir un tassement, par exemple des produits en vrac.

Le conduit doit, de préférence, ne pas comporter de parois extérieures.

4.4.1.1.8 Vacuité du conduit

Avant le raccordement d’un appareil, le conduit d’évacuation doit être propre et en bon état de fonctionnement.

Si un conduit a été utilisé précédemment pour d’autres combustibles, il doit être ramoné.

4.4.1.1.9 Raccordement

La base de tout parcours vertical comporte un collecteur des dépôts des produits de combustion avec un tampon de nettoyage.

4.4.1.1.10 Matériaux

Les matériaux utilisés sont non combustibles et présentent toutes garanties de résistance mécanique à une température de 250°C, et résistent à l’action chimique des produits de combustion.

Pour les appareils conçus et réalisés de telle manière que la température des produits de combustion ne puisse pas dépasser 90°C, il peut être fait usage d’autres matériaux, à condition que le conduit reste visible sur toute sa longueur et qu’il porte l’indication permanente de la température maximale autorisée.

4.4.1.1.11 Choix des appareils

Les appareils de production d’eau chaude instantanée de tout type, dont la puissance est inférieure ou égale à 10,46 kW (150 kcal/min.) ne peuvent alimenter, ni servir à l’alimentation, d’une baignoire, une baignoire sabot ou toute utilisation équivalente.

4.4.1.1.12 Implantation

Une chaudière de chauffage central alimentée en gaz naturel ne peut être installée ni dans une chambre à coucher, ni dans un local d’habitation de moins de 8 ml.

4.4.1.1.13 Chauffe-eau raccordé à un conduit d’évacuation

Les chauffe-eau (max. 8,7 kW) raccordés à un conduit d’évacuation, doivent être équipés d’un dispositif destiné à empêcher le fonctionnement prolongé en atmosphère viciée identique à celui imposé pour le chauffe-eau du type AAS; indiqués par BIIAS-

4.4.1.1.14 Aspirateur statique

Le débouché de la cheminée peut comporter un aspirateur statique. Celui-ci ne peut toutefois pas comporter des parties réglables ou mobiles.

4.4.1.2 Conduit de raccordement des appareils type B

4.4.1.2.1 Assemblage

Le conduit de raccordement est de construction homogène. Si celui-ci est un tuyau en tôle métallique agrafé, soudé par points ou rivé, le joint longitudinal n’est pas placé à la génératrice inférieure du raccordement.

4.4.1.2.2 Emboîtement

L’extrémité évasée des tuyaux à emboîtement est toujours dirigée vers le haut.

4.4.1.2.3 Matériaux

Les matériaux utilisés pour le conduit de raccordement résistent aux effets thermiques, mécaniques et chimiques auxquels ils sont exposés.

4.4.1.2.4 Protection

Si les matériaux environnants l’exigent, une protection efficace contre le risque d’incendie est réalisée.

4.4.1.2.5 Pente

Le conduit de raccordement a une pente légèrement montante de l’appareil vers le conduit d’évacuation.

Si le conduit de raccordement a une longueur inférieure à 0,50 m, il peut être horizontal.

4.4.1.2.6 Mise en œuvre

L’exécution du raccordement est telle qu’il offre le minimum de résistance au passage des produits de combustion; les changements de direction sont à éviter.

En cas d’impossibilité, les changements de direction sont réalisés au moyen de courbes.

Le conduit de raccordement ne fait pas saillie dans le conduit d’évacuation.

Le conduit de raccordement de l’appareil est réalisé de façon qu’aucun dépôt ne puisse l’obstruer.

Le conduit de raccordement ne peut pas comporter un dispositif coupe-tirage autre que celui qui est prévu d’origine sur l’appareil.

Pour des appareils avec un débit calorifique égal ou inférieure à 70 kW, équipés d’une buse d’évacuation verticale, le raccordement doit répondre aux exigences suivantes :

 

      • à partir de la buse d’évacuation, il faut d’abord un tronçon vertical d’au moins 0,50 m;
      • après ce tronçon, le raccordement peut être effectué directement au conduit d’évacuation avec un coude de 90°; lorsque ce coude ne peut être raccordé directement au conduit d’évacuation et qu’un tronçon horizontal supplémentaire est nécessaire, la longueur de ce tronçon ne peut dépasser un quart de la hauteur effective de tirage du conduit d’évacuation, avec un maximum de 2 m (un coude supplémentaire dans le tronçon horizontal est compté comme une partie horizontale de 0,50 m).

 

4.4.1.2.7 Isolation thermique

Le conduit est protégé contre tout refroidissement excessif.

4.4.1.2.8 Section

La section du conduit de raccordement est au moins équivalente à celle de la sortie de l’appareil.

Elle est régulière et constante. En cas de tirage naturel, elle ne peut pas être modifiée par un dispositif fixe ou mobile.

4.4.1.2.9 Clapet stabilisateur de tirage

Le clapet stabilisateur de tirage par admission d’air dans le raccordement n’est toléré que si l’appareil est muni d’un brûleur du type à air soufflé; dans ce cas le clapet est installé dans le même local que l’appareil.

4.4.1.3 Conduit d’évacuation autonome

4.4.1.3.1 Principe

Les principes énoncés au paragraphe 4.4.1.1 sont d’application pour les conduits d’évacuation autonomes.

4.4.1.3.2 Fixation

Les conduits d’évacuation autonomes réalisés en éléments emboîtés ne présentent pas de stabilité; on l’assure par des supports adéquats.

4.4.1.3.3 Emboîtement

L’emboîtement des différentes tuyauteries est réalisé proprement; elles ne peuvent se déboîter spontanément. On veille à avoir l’emboîture des tuyaux toujours tournée vers le haut.

Si des tuyaux agrafés, soudés par points ou rivés sont utilisés, le joint longitudinal n’est jamais placé à la partie inférieure du tuyau.

4.4.1.3.4 Prescriptions

Les prescriptions de 4.4.1.2.3, 4.4.1.2.4, 4.4.1.2.6 et 4.4.1.2.7 sont d’application.

4.4.1.4 Tubage

Avant de procéder au tubage, il y a lieu de ramoner le conduit d’évacuation.

Le matériau utilisé pour le tubage doit résister aux sollicitations mécaniques, thermiques et chimiques auxquelles il peut être soumis normalement.

La section nette du tubage est telle que l’évacuation correcte des produits de combustion soit garantie.

Ce type de conduit d’évacuation ne présente pas de stabilité; on l’assure par des supports adéquats.

4.4.1.5 Conduit d’évacuation intégré des produits de combustion

Le conduit d’évacuation intégré fait partie de la construction du bâtiment.

4.4.1.6 Raccordement de plusieurs appareils du type B11BS à un conduit d’évacuation collectif.

Seuls les appareils type B11Bs peuvent être raccordés à un conduit d’évacuation collectif.

4.4.1.6.1 Les appareils sont placés au même niveau du bâtiment

Plusieurs appareils situés au même niveau du bâtiment peuvent être raccordés à un conduit d’évacuation collectif pour autant qu’ils soient placés dans le même local.

Le raccordement est réalisé :

 

      • soit directement : la différence de hauteur entre les centres des raccordements doit alors être égale ou supérieure à deux fois la valeur du plus grand diamètre, avec un minimum de 0,50 m;
      • soit par l’intermédiaire d’un raccordement collecteur

 

Le raccordement est réalisé de manière à respecter chacune des conditions suivantes :

 

      1. le fonctionnement de l’un des appareils ne peut gêner celui des autres;
      2. si tous les appareils sont mis simultanément en fonctionnement, aucune perturbation de tirage ne peut apparaître au niveau d’un quelconque de ceux-ci;
      3. lorsqu’un ou plusieurs appareils sont à l’arrêt, aucun refoulement des produits de combustion ne peut se produire au niveau de leur coupe-tirage antirefouleur par suite du fonctionnement de ceux qui sont en service.

 

4.4.1.6.2 Les appareils sont situés a des niveaux différents du bâtiment

plusieurs appareils situés à des niveaux différents du bâtiment peuvent être raccordés à un conduit d’évacuation collectif, lorsque le raccordement est réalisé de manière à respecter chacune des conditions suivantes :

 

      1. le fonctionnement de l’un des appareils ne peut gêner celui des autres;
      2. si tous les appareils sont mis simultanément en fonctionnement, aucune perturbation de tirage ne peut apparaître au niveau d’un quelconque de ceux-ci;
      3. lorsqu’un ou plusieurs appareils sont à l’arrêt, aucun refoulement des produits de combustion ne peut se produire au niveau de leur coupe-tirage antirefouleur par suite du fonctionnement de ceux qui sont en service.

 

De plus, l’une des conditions suivantes doit être remplie :

 

      1. le raccordement au conduit d’évacuation est direct; dans ce cas, le nombre des appareils est limité à trois et la différence de niveau entre l’axe de raccordement de l’appareil le plus haut et le débouché du conduit d’évacuation est d’au moins 4 m;
      2. le raccordement est réalisé au moyen d’un tronçon de raccordement vertical (incorporé ou non au conduit), d’une hauteur minimale de 2,50 m pour chaque appareil, et la distance verticale entre l’axe de la sortie de l’appareil situé au niveau le plus élevé et le débouché du conduit d’évacuation est d’au moins 4 m; dans ce cas, le nombre d’appareils raccordés au conduit d’évacuation collectif est limité à cinq;
      3. le raccordement est réalisé dans des locaux qui ne servent pas d’habitation, qui ne sont jamais en dépression et qui de plus :

 

      • ont un volume de plus de 100 ml, ou
      • sont fortement ventilés, ou
      • sont plus petits mais en communication directe et sans obstacle avec d’autres locaux fortement ventilés;

 

dans ce cas, le nombre d’appareils raccordés au conduit collectif n’est pas limité.

4.4.1.7 Evacuation de l’eau par le conduit d’évacuation

Si l’appareil est un appareil à condensation, le conduit d’évacuation est pourvu d’un tuyau en matière résistant aux corrosions, raccordé à la cavité se trouvant sous l’orifice de nettoyage. Ce tuyau comporte un coupe-odeur et son écoulement est visible.

4.4.2 Evacuation mécanique des produits de combustion des appareils du type B

4.4.2.1 Système individuel

lorsque l’évacuation des produits de combustion est réalisée au moyen d’un dispositif à tirage mécanique externe à l’appareil, le fonctionnement de l’appareil doit être subordonné à ce tirage mécanique. Les appareils munis d’un dispositif de contrôle d’évacuation (type B11BS ou Blics) répondent à cette exigence. Dans ce cas, il est admis d’incorporer un diaphragme dans le raccordement d’évacuation des produits de combustion.

Le tirage mécanique ne peut perturber le bon fonctionnement des autres conduits éventuels (évacuation et ventilation).

La section du conduit d’évacuation doit être telle que le conduit soit en dépression sur toute sa longueur.

Si dans des circonstances locales particulières, il n’est pas possible d’assurer la dépression du conduit, le conduit d’évacuation doit être du type étanche, c’est-à-dire pouvant garantir un débit de fuite d’air inférieur à 0,3 M³ /h lors d’un essai sous une pression de 150 Pa (p.ex. conduit agrée GASTEC).

4.4.2.2 Système collectif

a)Si l’immeuble est équipé d’une ventilation mécanique contrôlée (VMC), les appareils d’utilisation peuvent être raccordés directement à la VMC si les conditions ci-après sont remplies :

  1. la VMC a été conçue (sections, débits, pressions, arrivée d’air)(‘) pour évacuer également les produits de combustion des appareils d’utilisation raccordés (VMCgaz) (2); dans ce cas le raccordement des appareils au conduit d’évacuation collectif peut être direct, le nombre maximum d’appareils pouvant être raccordés au même conduit d’évacuation collectif dépendant du calcul;
  2. si dans des circonstances locales particulières, il n’est pas possible d’assurer la dépression du conduit, le conduit d’évacuation doit être du type étanche c’est-à-dire pouvant garantir un débit de fuite d’air inférieur à 0,3 M³ /h par raccordement, lors d’un essai sous une pression de 150 PA;
  3. les appareils doivent être du type B11CS,c’est-à-dire comportant d’origine les dispositifs de sécurité nécessaires pour être raccordés à une VMC-gaz (appareils version VMCgaz);
  4. lorsqu’il y a un risque de refoulement en cas d’arrêt de l’extraction (par exemple par tirage thermique dans le conduit vertical) ou du fait d’une extraction défectueuse et insuffisante, l’installation VMC-gaz doit comporter un dispositif de sécurité collective (DSC) qui :

 

  • détecte l’arrêt de l’extracteur ou une extraction insuffisante, et
  • provoque dans ce cas, la mise à l’arrêt de tous les appareils d’utilisation raccordés, par l’intermédiaire d’un relais électrique placé au niveau de chaque appareil;

 

  • les matériaux du conduit d’évacuation des systèmes VMC-gaz doivent répondre aux mêmes exigences que les conduits d’évacuation des produits de combustion.

 

b) Lorsque le conduit d’évacuation collectif de l’immeuble est équipé d’un extracteur mécanique destiné à évacuer les produits de combustion, les appareils d’utilisation peuvent être raccordés au conduit d’évacuation collectif, condition de respecter les mêmes clauses de sécurité que celles citées au point c) ci-dessus pour le système VMC-gaz, le débit d’extraction étant calculé pour évacuer uniquement les produits de combustion des appareils d’utilisations raccordés.

(1) voir N13N D 50-001.

(2) Les notes d’information technique du CSTC – NIT 106 et 109 « Code de bonne pratique -ventilation mécanique contrôlée », peuvent servir pour le calcul des installations VMC-gaz

4.4.3 Evacuation des produits de combustion des appareils non reliés à un conduit d’évacuation

4.4.3.1 Les mêmes dispositions que celles qui sont citées sous 4.3.2 sont applicables.

4.4.3.2 Un orifice ou un conduit de ventilation haute est prévu dans les locaux d’un volume égal ou inférieur à 12 m³ si un chauffe-eau de type AAS y est installé (voir § 4.4 point 3).

La section de cet orifice est calculée comme indiqué sous 4.4.3.3.

4.4.3.3 La section nette des orifices ou conduits est au minimum de 13 CM² par 1 kW de débit calorifique total des appareils, avec un minimum de 150 cm².

Pour le calcul du débit calorifique total, il n’est pas tenu compte des cuisinières et des réchauds domestiques.

4.4.3.4 L’évacuation des produits de combustion peut être assurée :

  • soit par un orifice (voir 4.3.2.1),
  • soit par un conduit de ventilation haute (voir 4.3.2.2, 4.3.2.3 et 4.3.2.4).

ce dispositif d’évacuation doit répondre aux exigences de 4.3.2.

4.4.4 Evacuation des produits de combustion des appareils à combustion étanche du type C

4.4.4.1 Généralités

  • Les appareils du type C sont livrés par le fabricant avec leurs conduits d’amenée d’air comburant et d’évacuation des produits de combustion, et leur terminal et constituent un ensemble fonctionnellement indissociables. Ils doivent être installés conformément aux instructions du fabricant contenues dans la notice technique d’installation.
  • L’emplacement du débouché du terminal est choisi de telle sorte que les produits de combustion puissent se disperser librement dans l’atmosphère sans entrer en contact avec une paroi ou un obstacle et sans qu’ils ne pénètrent à l’intérieur par un ouvrant (fenêtre, porte,… ) ou un orifice de ventilation.
  • Seuls les appareils du type C8 peuvent être raccordés à un conduit d’évacuation intégré (cheminée).

4.4.4.2 Système individuel

a) Appareils type C1* et C5*

Un espace suffisant est aménagé devant et à proximité du débouché du terminal; les distances minimales entre le débouché et un ouvrant dans une paroi (porte, fenêtre, prise d’air) sont au moins égales aux valeurs mentionnées dans le tableau ci-après :

Débit calorifique

Distance minimale

Q

kW

 

à l’horizontale

m

à la verticale

m

< 40

0,4 (1)

1,0 (1)
40 < Q < 70

0,6

1,2
> 70

0,1 . Q1/2

0,2 . Q1/2

(1) Remarque : si le terminal est situé près d’une fenêtre faisant partie du local dans lequel est installé un appareil destiné uniquement à chauffer ce local, les distances horizontale et verticale peuvent être ramenées à 0,20 m.

La distance minimale entre les débouchés de deux terminaux est au moins égale à l’addition des distances déterminées pour chaque appareil dans le tableau ci-dessus.

Les appareils dont les conduits d’amenée d’air et/ou d’évacuation des produits de combustion sont horizontaux, ont ces conduits à peu près perpendiculaires à la paroi qu’ils traversent.

Lorsque le débouché du terminal s’effectue à moins de 2,20 m au-dessus du sol et dans un endroit accessible, il y a lieu de prévoir autour du dispositif de sortie, un système de protection adéquat afin d’éviter des brûlures.

L’installation d’appareils type C51 est interdite.

b) Appareils type C3*

Le raccordement de l’appareil aux conduits d’amenée d’air comburant et d’évacuation des produits de combustion verticaux et au terminal, est réalisé conformément aux instructions du fabricant de l’appareil et uniquement avec du matériel prescrit par ce dernier.

4.4.4.3 Système commun

a) Appareils type C2*

Conditions d’installations à l’étude (1).

(1) Les appareils type C2* ne sont actuellement pas commercialisés en Belgique, leur installation exigeant un conduit d’évacuation particulier, qui également n’est pas d’usage en Belgique.

b) Appareils C4*

Seuls des appareils type C42 et C43, d’un débit calorifique maximal de 35 kW et spécialement prévus à cet effet, peuvent être raccordés à un système commun vertical débouchant en toiture.

Ce système commun pour appareils étanches doit notamment (2).

(2) Le système commun pour appareils étanches des type C42 et C43 doit être agréé en Belgique (UBatg ou Technigaz) ou dans un pays de l’Union Européenne.

  • être spécialement conçu pour ce type d’application;
  • posséder deux conduits séparés;
  • être réalisé en matériaux non combustibles présentant toutes les garanties de résistance mécanique à une température de 250°C et résistant à l’action chimique des produits de combustion;
  • être installé conformément aux instructions du fabricant du système commun;
  • être conçu pour un nombre maximal d’appareils, nombre qu’il est interdit de dépasser lors de l’installation des appareils;
  • être étanche (par exemple avec joint d’étanchéité approprié de façon à garantir un débit de fuite d’air inférieur à 3,0 M³/h par raccordement et sur une longueur correspondant à 2 étages);
  • assurer en toutes circonstances l’amenée d’air frais et l’évacuation des produits de&#9;combustion, sans que le fonctionnement de l’un ou plusieurs des appareils puissent gêner celui des autres;
  • posséder un terminal, qui rend le fonctionnement du système insensible à If orientation et à la force du vent;
  • être conçu pour pouvoir être surveillé.

De plus ce conduit commun doit posséder :

  • un marquage indiquant de façon visible en position d’installation quels types d’appareils peuvent y être raccordés et leur débit calorifique maximal;
  • une notice d’installation reprenant ces mêmes renseignements, ainsi que les caractéristiques du conduit de raccordement au conduit vertical (entre le conduit commun et l’appareil). Il est notamment précisé si l’appareil doit posséder des conduits de raccordement concentriques ou séparés, quels sont leurs diamètres et s’il est admis de raccorder ou non un ou des appareils à condensation.

L’installateur doit s’assurer que seuls des appareils spécialement adaptés et conçus pour être montés sur ce système de conduits communs (type et caractéristiques de l’appareil, appareils à condensation ou non, diamètre des conduits d’amenée d’air et d’évacuation des produits de combustion, conduits de raccordement concentrique ou séparés, nombre total d’appareils admis à être raccordé,… ) soient installés.

L’installation d’appareils type C41 est interdite.

c) Autres appareils type C

L’installation des appareils du type C, autres que ceux cités ci-dessus, est interdite en Belgique.

4.4.4.4 Implantation

Les appareils du type C peuvent être installés dans tous les types de locaux et quelle qu’en soit le volume, sans nécessiter un apport d’air comburant complémentaire dans le local.

5. PLACEMENT, RACCORDEMENT ET ENTRETIEN DES APPAREILS D’UTILISATION

5.1 Locaux

Les locaux dans lesquels les appareils sont placés doivent répondre aux prescriptions du chapitre 4.

5.2 Placement des appareils d’utilisation

Le placement de l’appareil comprend :

  • le raccordement à l’installation intérieure et
  • le raccordement au conduit d’évacuation des produits de combustion lorsque celui-ci est exigé.

L’installateur doit se conformer aux notices d’installation et d’emploi obligatoirement fournies par le constructeur de l’appareil, conformément aux normes belges relatives aux appareils

5.3 Raccordement des appareils aux installations intérieures

Avant de le raccorder, l’installateur s’assure que l’appareil est porteur du marquage CE pour la Belgique et qu’il est approprié :

  • au gaz distribué et à la pression correspondante, c’est-à-dire qu’il s’agit d’un appareil appartenant à la catégorie I2F+, 12E(S)13, 12E(R)B, 112E+3+ OU I12E+3P;
  • au conduit de raccordement.

5.4 Robinet d’arrêt de gaz

Chaque appareil est immédiatement précédé d’un robinet d’arrêt, à raccord situé en aval, facilement accessible et manouvrable, monté sur la tuyauterie et permettant de déconnecter l’appareil.

Lors du placement, le robinet doit rester en position ouverte jusqu’après montage et des précautions sont prises pour éviter l’introduction d’impuretés qui, en adhérant à la graisse, rayent les parties mobiles du robinet. Pour éviter toute déformation du robinet, l’installateur utilise une clé plate adaptée à la partie polygonale se trouvant du côté du tube à visser.

5.5 Diamètre nominal des robinets d’arrêt de gaz

Le tableau 3 reprend, à titre indicatif, en fonction du débit horaire, le diamètre nominal du robinet d’arrêt de gaz.

Tableau 3

Appareils

débit m³/h

Diamètre nominal du robinet

réchaud

0,5

1/2

cuisinière

1,2 à 1,7

1/2

Four

0,5

1/2

Radiateur et appareil de chauffage

0,5 à 2

1/2

Chauffe-eau jusqu’à 10,46 kW (150 kcal/min ou 6 l/min.*)

1,5

1/2

Chauffe-bain et générateur jusqu’à 24 kW (325 kcal/min. ou 13 l/min.*)

3,5

1/2 ou 3/4

Chauffe-bain et générateur jusqu’à 28kW (400 kcal/min. ou 16 l/min.*)

4

3/4 ou 1

Chauffe-bain et générateur jusqu’à45 kW (650 kcal/min. ou 26l/min.*)
7
3/4 ou 1
Générateur jusqu’à 70 kW
10
1 ou 5/4
Appareil de production d’eau chaude à accumulation
0,5 à 2
1/2
*) Ancienne désignation usuelle des appareils instantanés de production d’eau chaude (chauffe-eau et chauffe-bain) donnant le débit d’eau chaude par minute pour une élévation de température de 25°C

5.6 Tuyauteries de raccordement aux installations intérieures

Le raccordement des appareils en aval du robinet d’arrêt est fait :

  • soit au moyen de matériaux métalliques conformes au 3. 1. 1;
  • soit au moyen d’un flexible métallique résistant à haute température (type RHT – voir chapitre 7 de la norme NBN D 51-004), conforme à la NBN… (en préparation (1)) ce flexible métallique est placé de telle sorte qu’il ne subisse ni écrasement, ni traction, ni rayon de courbure inférieur à celui stipulé par le fabricant.

(1) en attendant la publication de la norme, le cahier des charges de l’Association Royale des Gaziers Belges (ARGB) « Cahier des charges pour les flexibles métalliques pour les installations situées à l’intérieur des bâtiments et alimentés en gaz combustible plus léger que l’air distribué par canalisations pour une pression nominale PN 0,2 » peut servir à définir les qualités des flexibles métalliques.

Toutefois, pour les appareils domestiques non fixes par destination, tels que réchauds et cuisinières, le raccordement peut se faire au moyen d’un tuyau flexible à embouts mécaniques répondant aux prescriptions de la norme NBN D 04-002.

Le montage de ce flexible dans l’installation intérieure est réalisé comme suit :

  • un robinet d’arrêt spécial « cuisinière » est monté à l’extrémité rigide de l’installation intérieure, en amont du flexible; le côté du robinet destiné à être raccordé à l’embout à écrou libre du flexible doit être muni d’un filetage de tuyauterie extérieur cylindrique ISO 228/1 – G 1/2 A (NBN 586) avec portée de joint plat d’une largeur minimale de 2,5 mm;
  • l’embout fixe du tuyau flexible est monté sans joint sur le raccord d’entrée de l’appareil; l’étanchéité est réalisée dans le filetage au moyen d’un produit d’étanchéité, comme défini en 3.5.2. 1;
  • l’embout à écrou libre du tuyau flexible est monté avec joint plat d’étanchéité du côté de l’installation intérieure, sur la partie à filetage extérieur cylindrique du robinet d’arrêt.

Des appareils mobiles tels que les brûleurs bunsen, et analogues, ne comportant pas de robinet d’arrêt d’appareil, peuvent également être raccordés au moyen d’un flexible à condition qu’il existe un robinet d’arrêt en amont de celui-ci et que ce flexible ne reste jamais sous pression lorsque l’appareil est à l’arrêt.

5.7 Mise en service

La première mise en service de chaque appareil comporte :

  • la vérification de l’étanchéité du raccordement de l’appareil par badigeonnage, à la pression de fonctionnement;
  • la vérification du fonctionnement de l’appareil;
  • l’explication du fonctionnement et la remise de la notice d’emploi et d’entretien à l’usager.

5.8 Entretien

Les appareils, les conduits d’évacuation des produits de combustion et les ventilations doivent être vérifiés régulièrement et, si nécessaire, entretenus.

La périodicité de cet entretien est fonction de l’emploi fréquent ou non de l’appareil et de son environnement.

6. BRANCHEMENT

6.1 Partie extérieure du branchement

Les branchements sont établis conformément aux dispositions de l’Arrêté Royal du 28 juin 1971, déterminant les mesures de sécurité à prendre lors de l’établissement et de l’exploitation des installations de distribution de gaz par canalisations.

Les branchements comportent un dispositif extérieur au bâtiment permettant d’interrompre la fourniture du gaz dans les cas suivants :

  1. branchement de diamètre nominal 80 mm et plus;
  2. bâtiments fréquentés par beaucoup de personnes (écoles, homes de vieillards, hôpitaux, grands magasins, ou similaires);
  3. la pression dans le branchement est supérieure à 500 mbar.

6.2 Traversée du mur extérieur

Le maître de l’ouvrage prévoit, à l’endroit convenu avec le distributeur de gaz, une ouverture dans le mur pour la traversée du branchement.

Cette ouverture est exclusivement réservée à la canalisation de gaz, et doit être soigneusement obturée après placement du branchement.

6.3 Partie intérieure du branchement

6.3.1 Elle doit être aussi courte que possible et toujours accessible.

Pour les immeubles à logements multiples, le branchement peut être prolongé par un collecteur auquel sont raccordés les compteurs.

6.3.2 La pression de service dans la partie du branchement intérieure au bâtiment est limitée à 5 bar.

6.4 Compteur

6.4.1 Les compteurs sont installés dans un endroit sec, aéré et aisément accessible.

6.4.2 Tout compteur est précédé d’un robinet d’arrêt installé par le distributeur.

6.4.3 Le placement est faite de manière telle que la lecture de l’index soit aisée.

6.5 Raccordement de l’installation intérieure au compteur

Le raccordement est fait de manière telle que la tuyauterie n’exerce pas d’effort susceptible de détériorer le compteur.

6.6 La pression dans la partie du branchement intérieure du bâtiment est inférieure ou égale à 100 mbar

La partie intérieure du branchement ou les installations intérieures comportent éventuellement un (des) régulateur(s) de pression pour ramener la pression de distribution à la pression de service des appareils d’utilisation.

6.7 La pression dans la partie intérieure du branchement du bâtiment dépasse 100 mbar

6.7.1 Généralités

lorsque la pression dans la partie du branchement intérieure du bâtiment est supérieure à 100 mbar un régulateur de pression pourvu d’un dispositif de sécurité est placé.

Le dispositif de sécurité limite la pression dans l’installation intérieure à la pression maximale de service admissible. Les conduits d’échappement des soupapes éventuelles débouchent à l’extérieur ou à un endroit où le gaz se dissipe sans danger.

La respiration des membranes peut se faire dans le local pour autant qu’il soit ventilé d’une façon efficace et permanente comme indiqué au 6.7.3 ci-après.

Un dispositif obturateur précède le régulateur de pression et remplace éventuellement le robinet d’arrêt du compteur.

6.7.2 Régulateur de pression d’un débit maximal de 25 m³/h

L’emplacement du régulateur de pression répond aux exigences établies pour le placement du compteur.

6.7.3 Régulateur de pression d’un débit compris entre 25 m³/h et 100 m³/h

6.7.3.1 Généralités

Le régulateur de pression est installé dans un local – éventuellement constitué par une armoire exclusivement réservé aux installations de détente et de comptage.

6.7.3.2 Ventilation

Le local est ventilé de façon efficace et permanente.

Cette ventilation est à établir pour chaque cas particulier en fonction de l’emplacement du local et de l’environnement.

À titre indicatif, les dispositions suivantes peuvent convenir :

Solution 1 :

La ventilation est obtenue par au moins deux orifices communiquant avec l’extérieur.

L’un de ces orifices est situé dans le bas du local. La distance entre son bord supérieur et le sol n’excède pas 50 cm.

L’autre orifice est près du plafond du local. La distance entre son bord supérieur et le plafond n’excède pas 10 cm.

La section libre totale des orifices d’amenée d’air frais et celles des orifices d’évacuation d’air vicié est, pour chacun des orifices, d’au moins 0,2 % de là surface horizontale limitée par les parois du local, avec un minimum de 100 cm²l.

Solution 2 :

La ventilation est obtenue par un seul orifice dans le haut du local (dans le plafond ou dans une paroi vertical), communiquant directement avec l’extérieur, et ayant une section d’au moins 1 % de la surface horizontale limitée par les parois du local avec un minimum de 500 cm² et d’une hauteur minimale de 30 cm.

La distance entre le bord supérieur de l’orifice et le plafond n’excède pas 10 cm.

Solution 3 :

Si le local comporte au moins deux parois extérieures la ventilation est obtenu par plusieurs orifices dont au moins un par paroi, écartés le plus possible, communiquant avec l’extérieur et situés près du plafond, la distance entre le bord supérieur des orifices et le plafond n’excèdent pas 10 cm.

La section de ces orifices est déterminée suivant la solution 1.

Dans les solutions 1 et 2, la communication des orifices avec l’extérieur peut être assurée par des conduits.

6.7.3.3 Appareillage électrique

L’appareillage électrique répond au degré de protection IPX3 (appareil protégé contre la chute d’eau en pluie) suivant la norme NBN C 20-001. Les câbles sont du type VFVB ou équivalent.

L’interrupteur est omnipolaire et se trouve à l’extérieur du local.

6.7.4 Régulateur de pression d’un débit dépassant 100 m³/h

Le régulateur de pression est installé dans un local conforme aux prescriptions de la norme NBN D 51-001.

Le comptage de gaz est admis dans ce local.

6.8 Mise en service d’installation neuves

Essai préalable à la mise en service d’installations neuves.

À l’ouverture du compteur, le distributeur de gaz s’assure que les installations intérieures de gaz sont étanches à la pression de distribution.

L’installation est considérée comme étanche si, après avoir vérifié sur place que le compteur enregistre, aucun débit n’est constaté après une durée d’observation de 10 min.

 

Déflecteurs de lumière naturelle

Déflecteurs de lumière naturelle

By Julian A. Henderson – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=19588365


Les stores réfléchissants

Schéma principe stores réfléchissants - 01.

Les stores réfléchissants actuels sont utilisés dans le double but d’ombrager un espace du rayonnement solaire direct et de rediriger la lumière naturelle vers le fond du local.

Ces stores peuvent être fixes ou mobiles. Les stores réfléchissants peuvent être considérés comme un développement compact d’un light shelf. Cependant, les lamelles ombragent la fenêtre moins complètement et redirigent moins efficacement la lumière vers le fond de la pièce qu’un light shelf.

 Schéma principe stores réfléchissants - 02.

Il existe des stores réfléchissants dont l’inclinaison des lames peut être variable en fonction de leur emplacement dans la fenêtre : la partie supérieure de la fenêtre redirige la lumière vers le plafond, alors que la zone inférieure produit un ombrage du même type que les stores vénitiens conventionnels.

Le schéma ci-contre accentue le principe. Cette configuration a pour but de laisser pénétrer la lumière naturelle à l’intérieur du local, même lorsque les occupants ferment complètement les stores.


Les vitrages directionnels

Les vitrages directionnels redirigent très efficacement les rayons solaires directs vers le fond d’une pièce. Ils peuvent aussi être employés pour rediriger la lumière zénithale vers le bas d’un atrium ou vers une salle en sous-sol. Cependant, sous ciel gris, le niveau lumineux en fond de local est inférieur à celui d’un double vitrage classique. Les panneaux directionnels sont utilisés en configurations fixes et mobiles.

Schéma principe vitrages directionnels.Schéma principe vitrages prismatiques.

Les vitrages prismatiques peuvent soit rediriger la lumière naturelle plus profondément dans le bâtiment soit exclure la lumière d’un espace. Bien qu’ils soient habituellement transparents, ils obscurcissent la vue vers l’extérieur. Il vaut donc mieux les utiliser pour la partie supérieure d’une fenêtre afin de ne pas couper la vue des occupants vers l’extérieur.

La lumière naturelle peut également être déviée par des éléments acryliques concaves disposés verticalement à l’intérieur d’un double vitrage. Ce vitrage doit être positionné au-dessus de l’angle de vision. Dans nos régions, la meilleure orientation pour ce type de vitrage est le sud.


Les laser-cut panels

Schéma principe laser-cut panels.

Le laser-cut panel est un système de redirectionnement de la lumière produit par des coupures réalisées par un laser dans un matériau acrylique. Ces panneaux assurent une bonne visibilité vers l’extérieur. Placés verticalement, ils induisent une déflexion de la lumière provenant des angles d’incidence élevés (> 30°) alors qu’ils transmettent la lumière à de faibles incidences. Placés horizontalement, ils agissent en tant que protection solaire. Ils peuvent être employés comme système fixe ou mobile. Pour éviter certains risques d’éblouissement, il faut qu’ils soient situés au-dessus du niveau visuel. Le laser-cut panel coûte encore très cher.


Les systèmes holographiques

Schéma principe systèmes holographiques.

Les systèmes holographiques ne sont encore qu’au début de leur développement. Le procédé holographique consiste en une couche de matériau diffractant qui est choisie pour rediriger la lumière selon un angle spécifique, en fonction de l’angle d’incidence de la lumière. Il s’agit d’un système pratique en rénovation puisqu’il suffit d’ajouter un film à une fenêtre classique. Ils peuvent également être employés pour obtenir un effet décoratif coloré.


Les déflecteurs diffusants dans des ouvertures zénithales

Pour améliorer l’effet produit par l’ajout d’une ouverture zénithale, il est utile de concevoir un système de déflecteurs blancs diffusants au niveau du plafond. Si ces déflecteurs sont verticaux, l’éclairement lumineux dans l’espace est amélioré. Des déflecteurs inclinés diminuent le niveau d’éclairement maximum mais, par contre, uniformisent l’éclairage. Les deux figures ci-dessous montrent un exemple de déflecteurs verticaux conçus pour une orientation est-ouest d’un lanterneau et un exemple de déflecteurs inclinés conçus pour une dent de scie orientée vers le sud.

Schéma déflecteurs diffusants dans des ouvertures zénithales.Schéma déflecteurs diffusants dans des ouvertures zénithales.

Valoriser la fraîcheur de l’environnement [Climatisation]

Valoriser la fraîcheur de l'environnement


Valoriser la fraicheur de l’air extérieur

Le potentiel lié à la fraicheur extérieure

L’isolation des bâtiments élargit la période de refroidissement en mi-saison et en été. Ce besoin peut être pour une bonne part résolu en valorisant l’air extérieur lorsqu’il est plus frais que la consigne intérieure.

En moyenne, la température extérieure à Uccle est 98 % du temps inférieur à 24°C et ne dépasse 27° que 40 heures par an. En outre, en été, dans notre pays, la température nocturne minimale est inférieure de plus de 8°C à la température maximum diurne, et cette température extérieure nocturne est toujours inférieure aux plages de confort. Il existe donc un pouvoir rafraîchissant naturel important de l’air extérieur, sans traitement et donc sans coût énergétique autre que son transport.

Les profils de températures moyennes à Uccle montrent que la température extérieure est généralement inférieure à la température de confort.

Ce pouvoir rafraîchissant est cependant limité par deux facteurs : la faible capacité frigorifique de l’air extérieur et la quantité d’air pouvant être valorisée, qui est limitée par l’encombrement des gaines de ventilation, la taille des ouvertures en façade, le risque de générer un courant air.

Ainsi, imaginons un local à 26°C avec une charge thermique (élevée) de 60 W/m² (ordinateur, éclairage, occupants, ensoleillement, …) ou 20 W/m³ (si la hauteur sous plafond est de 3 m). La température de l’air extérieur est de 20°C. Calculons le débit nécessaire pour évacuer la chaleur d’un m³ du local :

débit = 20 [W/m³] / (0,34 [W/(m³/h).K] x 6 [K]) = 9,8 [renouv./h]

où,

  • 0,34 W/m³.K est le pouvoir calorifique de l’air et 6 K est la différence de température entre l’intérieur et l’extérieur

Il faudrait donc un taux de renouvellement horaire de 9,8 : chaque heure, l’air du local serait renouvelé 10 fois ! en dehors de la difficulté technique, cela génère un climat peu confortable…

En pratique, la fraîcheur de l’air extérieur peut être valorisée de trois façons : par une ventilation intensive naturelle (free cooling naturel), par l’intégration d’air frais dans le système de conditionnement d’air (free cooling mécanique), et par le refroidissement direct des boucles d’eau froide (free chilling).

Données

En savoir plus sur le climat belge ?

L’exploitation de l’air extérieur par ventilation naturelle (free cooling naturel)

La  ventilation intensive estivale (ou free cooling naturel), vise le refroidissement passif du bâtiment par l’ouverture de sa façade. L’objectif est soit de compenser en journée les charges internes et solaires, soit de « décharger » et refroidir pendant la nuit la masse du bâtiment, afin que cette masse puisse limiter la montée en température le lendemain.

La ventilation intensive est efficace en journée si l’air extérieur n’excède pas la température intérieure, mais n’est pas non plus trop froid, pour éviter la sensation de courant d’air, ce qui limite son usage en mi-saison. De plus, il restera toujours les 40 heures, soit de 5 à 10 journées de travail par an, où la ventilation ne ferait qu’empirer les choses puisque la température extérieure est supérieure à la température intérieure. Le refroidissement par ventilation de jour peut donc être une solution en mi-saison, mais a ses limites en été.

Le refroidissement par ventilation de nuit par contre conserve son efficacité toute l’année, sauf canicule extrême. Malgré tout, pour qu’un free cooling permette de se passer de climatisation en journée, il faut assurer durant la nuit, un taux de renouvellement d’air nettement plus important que le taux de ventilation hygiénique : au minimum 4 [vol/h] par rapport à 1 [vol/h].

Au-delà de l’économie d’énergie qui en résulte, c’est une certaine qualité de vie qui est recherchée : absence de système sophistiqué de climatisation, … et plaisir de pouvoir ouvrir sa fenêtre et d’entrer plus en contact avec l’environnement extérieur.

Techniques 

En savoir plus sur la ventilation intensive d’été ?

L’intégration  de l’air frais dans le système de conditionnement d’air (free cooling mécanique)

La climatisation est parfois nécessaire (charges thermiques élevées, consignes intérieures strictes de température et d’humidité, …).

On sera alors attentif au fait que le système installé n’exclue pas le refroidissement naturel : dès que la température extérieure descend, elle doit pouvoir supplanter la climatisation mécanique. Idéalement, celle-ci ne devrait plus servir que dans les périodes de canicule.

Tout particulièrement, dans les locaux refroidis toute l’année (locaux intérieurs, locaux enterrés, …) et dans les locaux à forte occupation de personnes (salles de conférence, locaux de réunion, …), il est dommage de faire fonctionner la climatisation en hiver et en mi-saison. On privilégiera les systèmes « tout air » à débit variable.

Durant les nuits d’été, le bâtiment peut facilement être refroidi par le balayage de l’air extérieur (l’installation fonctionne alors en « tout air neuf »). Et en mi-saison, l’air extérieur assure seul le refroidissement par mélange avec l’air recyclé.

Bien sûr, la consommation du ventilateur ne doit pas dépasser celle de la machine frigorifique ! La perte de charge du réseau de ventilation (pulsion, extraction et recyclage) doit rester faible. Il faut prévoir la place pour de larges conduits.

Concevoir

En savoir plus sur le choix du mode de gestion du débit d’air neuf ?

L’utilisation de l’air frais comme source froide d’une installation de refroidissement (free chilling)

Aussi curieux que cela puisse paraître, de nombreuses machines frigorifiques fonctionnent en hiver. Pour assurer le refroidissement de la salle informatique, pour refroidir le cœur du bâtiment surchauffé par les équipements, …

La première réaction est d’imaginer de scinder la production de froid : une petite machine couvre les besoins permanents de la salle informatique, par exemple. Et la grosse machine est mise à l’arrêt en hiver, tout en pouvant jouer le rôle de groupe de sécurité en cas de défaillance de la première.

La deuxième réaction est d’analyser si le circuit d’eau glacée ne pourrait pas être refroidi directement par l’air extérieur, en by-passant la machine frigorifique. Si le fonctionnement est continu tout l’hiver, cela en vaut sûrement la peine (c’est le cas pour un groupe qui refroidirait des locaux de consultations situés en sous-sol d’un hôpital, par exemple).

Lorsque la température extérieure descend sous les 8 à 10°C, on peut fabriquer de l’eau glacée sans utiliser le groupe frigorifique. L’eau peut-être directement refroidie par l’air extérieur. La machine frigorifique est alors  mise à l’arrêt.

L’économie d’énergie est évidente ! La rentabilité du projet est d’autant plus élevée que les besoins de refroidissement sont importants en hiver et que l’installation s’y prête.

Toutes sortes de configurations sont possibles en intercalant dans la boucle d’eau glacée soit un aérorefroidisseur (en parallèle ou en série avec le groupe frigorifique) soit une tour de refroidissement (ouverte ou fermée) ou encore un échangeur à plaque couplé avec une tour de refroidissement.

Aérorefroidisseur monté en série avec un évaporateur

Concevoir

En savoir plus sur la mise  en place d’un free-chilling ?

Valoriser la fraicheur du sol

Le sol présente un potentiel important pour rafraichir les bâtiments. Sa température est, en été, moins élevée et surtout plus stable que celle de l’air extérieur. Une masse de sable, d’argile ou de roche présente en outre une capacité calorifique importante.

La température moyenne mensuelle est amortie et déphasée par rapport aux températures extérieures. Le sol présente donc un potentiel de rafraichissement particulièrement intéressant au printemps et en été, lorsque la température extérieure est plus élevée.

Les propriétés thermiques du sol dépendent des propriétés de ses constituants et de leurs proportions. Quelques ordres de grandeur :

nature des constituants Conductivité thermique (W/m°c) Capacité calorifique volumique Cp(Wh/m3°c) Diffusivité thermique (m2/h
constituants minéraux 2,92 534 0,0054
constituants organiques 0,25 697 0,00036
eau 0,59 1 163 0,00050
air 0,025 0,34 0,0756

Frédéric Chabert « Habitat enterré » (1980).

La conductivité thermique des sols varie de 1 à 5 selon qu’il est sec ou saturé. La capacité thermique moyenne des sols varie elle de 1 à 3.

L’exploitation de la fraicheur du sol se fait en y organisant un échange de chaleur par le passage contrôlé d’air ou d’eau. Lorsqu’il s’agit d’un échangeur air-sol, on parle de puits canadiens ou provençaux. Lorsqu’il s’agit d’un échangeur eau-sol, on parle de geocooling, une appellation qui, strictement, devrait également recouvrir les puits canadiens.

Parmi les diverses solutions d’échangeur eau-sol, notons l’exploitation du sol sous la dalle de fondation (attention à la puissance qui peut rester alors faible…),

ou dans les pieux de fondation :

Des échangeurs de type forage vertical, indépendants de la structure du bâtiment, sont également possibles.

Une autre possibilité est d’utiliser l’eau des nappes phréatiques souterraine au moyen, en la pompant pour la conduire vers un échangeur de chaleur eau-eau, mais cette technique peut générer des problèmes de nature hydraulique dans le sol (déséquilibres des nappes phréatiques, pollutions).

Un des grands intérêts des techniques de geocooling est que le niveau de température concerné (de 5 à 15°C) est intéressant tant :

  • Pour le refroidissement direct : un échange de chaleur, par l’intermédiaire de boucles d’eau, entre le bâtiment est le sol), en vue d’alimenter un système de refroidissement par dalle ou par plafond froid.
  • Pour le refroidissement indirect : valoriser le sol comme source froide de la machine frigorifique, quel que soit le système de distribution et d’émission dans le bâtiment.
  • Que pour le chauffage par pompes à chaleur. En pratique, on n’envisagera pas de valorisation thermique du sol uniquement pour le refroidissement estival. L’investissement en pompages ou forage ne se fera que si le sol peut être valorisé au maximum de son potentiel, c’est-à-dire tant en refroidissement l’été qu’en chauffage l’hiver. Le géocooling est donc intimement lié à la géothermie.

Pour en savoir plus :

Concevoir

Choisir une production de froid « alternative » : geocooling

Concevoir

Choisir un système rayonnant sur boucle d’eau froide : plafond froid et dalle active.

Concevoir

Le choix de la source de chaleur du chauffage par pompe à chaleur.

Techniques

Le géocooling.

Valoriser la physique de l’air humide

Le contenu énergétique de l’air est lié à la fois à sa température et à son humidité. En effet, la présence de vapeur d’eau dans l’air représente une forme d’énergie latente, égale à la quantité d’énergie nécessaire pour vaporiser ou condenser cette eau. La somme de l’énergie sensible (liée à la température) et de l’énergie latente (liée à l’humidité) est appelée enthalpie. Cette quantité d’énergie est importante, puisque la chaleur de vaporisation d’un litre d’eau est de 2 257 kJ/kg (à la pression atmosphérique et à 100 °C). Soit 5,4 fois plus que pour chauffer le litre d’eau de 0 à 100 °C ! Elle est cependant limitée par la quantité maximale de vapeur que l’air peut contenir, qui dépend de sa température.

Le diagramme psychrométrique est l’outil indispensable pour visualiser et mesurer ces quantités d’énergie. L’enthalpie est représentée sur l’axe diagonal à gauche du diagramme. On constate que le niveau d’enthalpie est équivalent pour un air à 30 °C et 30 % d’humidité relative et pour un air à 17 °C et 100 % d’humidité relative. Autrement dit, si l’on arrive à créer des transferts entre l’énergie sensible et l’énergie latente d’une masse d’air, on devrait être en mesure de créer de l’air froid (et humide) au départ d’air chaud (et sec). Et cela sans grande consommation d’énergie, puisque l’enthalpie de l’air serait conservée.

Comment réaliser ce petit miracle ? Simplement en humidifiant l’air.
En pratique, deux types d’applications ont été développées pour valoriser ce principe physique.
Le premier dispositif se trouve dans l’architecture vernaculaire de nombreuses cultures, mais fut particulièrement développé par les Perses. Ils combinaient des tours à vent (« bagdir ») avec locaux servant de glacières (« yakh-chal ») souvent reliées à un canal souterrain (« qanat »). Par cet ensemble de dispositifs, ils étaient capables de conserver des aliments et rafraîchir des bâtiments dans un climat particulièrement chaud. Marco-Polo, lors de son premier voyage en orient, se serait vu offrir des glaces en plein été !

Plus récemment, l’idée de refroidir de l’air par humidification a été appliquée dans des groupes de traitement d’air. On parle alors de refroidissement adiabatique. Une différence majeure avec la solution imaginée par les Persans : ici c’est l’air extrait du bâtiment que l’on refroidit par humidification. Un échangeur de chaleur air-air permet ensuite de rafraîchir l’air neuf au contact de l’air extrait. Nos ambiances sont déjà suffisamment humides en été que pour éviter d’y pulser un air saturé !

Pour en savoir plus :

Théories

Les grandeurs hygrométriques.

Concevoir

Choisir une production de froid « alternative » : refroidissement adiabatique et climatisation solaire.


Valoriser le soleil

Paradoxalement, la chaleur du soleil peut être utilisée pour rafraichir un bâtiment… pour autant que l’on dispose de l’équipement adéquat.

Généralement, produire du froid implique l’usage d’une machine frigorifique. Celle-ci se compose de deux échangeurs de chaleur (condenseur et évaporateur), d’un détendeur et d’un compresseur électrique. Pas de place pour l’énergie solaire là-dedans, si ce n’est au travers de capteurs photovoltaïques.

Mais il existe un autre type de machine frigorifique, dit « à ab/adsorption« . Là, l’échange thermique est basé à la fois sur la vaporisation d’un réfrigérant (de l’eau) et sur la capacité de certaines substances à absorber la vapeur d’eau pour la restituer à un niveau de pression différent lorsqu’ils sont échauffés. Le cycle de cette matière absorbant joue le rôle du compresseur dans une machine frigorifique traditionnelle, tout en demandant une alimentation en chaleur plutôt qu’en électricité. Or, qui dit soleil dit chaleur ! La combinaison de capteurs solaires thermiques et d’une machine frigorifique à ab/adsorption constitue ce que l’on appelle une « climatisation solaire », une idée séduisante si les besoins de froid du bâtiment sont liés aux gains solaires.
Pour en savoir plus :

Concevoir

Choisir une production de froid « alternative » : refroidissement adiabatique et climatisation solaire.

Image par défaut pour la partie Concevoir

Zones intérieures (local aveugle, salle de réunion)

Zones intérieures (local aveugle, salle de réunion)


Principe

Les particularités des locaux intérieurs sont

  • de ne pas avoir de parois en contact avec l’extérieur et donc pas de déperditions en hiver, pas plus que d’apports solaires en été,
  • d’être en permanence en demande de refroidissement puisque les occupants et les équipements internes (dont l’éclairage) génèrent une chaleur qui ne peut s’échapper naturellement : sans intervention, la température ne ferait qu’augmenter …
  • d’être, dans le cas d’un local de réunion, en demande d’un traitement thermique uniquement lorsqu’il y a présence des occupants (90 % de la demande est créée par les occupants et l’éclairage).

La solution traditionnelle, souvent appliquée lorsqu’il s’agit d’un local isolé, consiste à placer un climatiseur dans le local. Mais cette solution ne peut être généralisée pour un ensemble de locaux « aveugles » puisqu’il n’y a pas un accès facile vers l’extérieur pour l’évacuation de la charge thermique (difficile de placer les condenseurs en façade).

Une solution plus centralisée est nécessaire.

On pense alors au placement de ventilo-convecteurs sur une boucle d’eau glacée, avec production de froid et condenseur en toiture. Mais deux aberrations énergétiques sont présentes :

  1. Durant tout l’hiver, on va refroidir artificiellement le cœur du bâtiment, sans profiter de l’air froid extérieur.
  2. On va évacuer la chaleur à l’extérieur alors que les locaux en façade ont besoin de chauffage …

Deux solutions apparaissent alors

  1. La solution « tout air » qui se fonde principalement sur l’idée que l’air extérieur froid peut répondre aux besoins de refroidissement une grande majorité du temps.
  2. La solution « fluide réfrigérant variable » qui se base sur l’idée que la chaleur extraite des locaux centraux peut être récupérée dans les locaux périphériques.

La solution « tout air »

Partons de plusieurs constats pour élaborer une réponse adaptée :

Un réseau d’air hygiénique est nécessaire pour apporter de l’air neuf aux occupants :

Un apport de 30 m³/h par personne est requis. Si une personne occupe 10 m², elle vit dans 30 m³ d’air (hauteur sous plafond de 3 m). Lui apporter de l’air hygiénique entraîne donc un renouvellement d’air du local de 1 volume par heure. Autrement dit, si les locaux font X m³, le débit d’air neuf nécessaire sera de X m³/h.

La solution la plus simple consisterait à placer un réseau d’extraction mécanique dans les locaux, laissant l’air entrer naturellement sous les portes (ou par des grilles dans les portes), via les couloirs. C’est économique à l’investissement, mais peu efficace en pratique, car le débit réel sera fonction de l’étanchéité globale du bâtiment…

Un réseau d’air pulsé paraît impératif pour atteindre une bonne qualité d’air intérieur.

Refroidir les locaux par de l’air froid suppose un débit d’air nettement plus élevé que celui de l’air hygiénique.

En effet, l’air ne peut être soufflé avec un écart de température par rapport à l’ambiance supérieur à 10°C (si l’ambiance est de 24°C, la pulsion sera de 14°C minimum).

Dans ces conditions chaque m³ d’air apporte 3,4 W de refroidissement. Or une personne et son éclairage génèrent 20 W/m² de chaleur, soit 6,7 W/m³ (si hauteur sous plafond de 3 m). Il faudra donc :

6,7 [W/m³local] / 3,4 [W/m³air] = 2 [m³air/m³local],

soit un renouvellement horaire minimal de 2 volumes par heure.

Et bien souvent, de nombreux équipements bureautiques dégagent une chaleur nettement plus importante encore. Si bien que le taux de brassage de l’ambiance par de l’air froid est en général situé entre 4 et 6. Autrement dit, si les locaux font X m³, le débit d’air froid nécessaire sera de 4X … à … 6X m³/h.

En Belgique, la température extérieure est 98 % du temps inférieure à 24°C.

Il existe donc un pouvoir rafraîchissant naturel important de l’air extérieur, sans traitement et donc sans coût énergétique autre que son transport. Logiquement, on pense dès lors à mettre en œuvre un système « tout air », c’est-à-dire une installation où le rafraîchissement est transporté par l’air, installation qui serait apte à transporter cet air froid « gratuit ».

Le free cooling de nuit peut décharger les parois de la chaleur accumulée en journée.

L’air extérieur de nuit est, lui, toujours rafraîchissant, en été comme en hiver (même en période de canicule, la température de nuit avoisine les 15°C). Mais cet air n’est efficace que pour autant que son débit soit suffisamment élevé : un taux de renouvellement d’air minimum de 4 volumes/heure est nécessaire. Ici encore, l’intérêt de mettre en place une installation « tout air » est manifeste.

Seul bémol à cette proposition, le free-cooling nocturne utilise l’inertie du bâtiment comme « réservoir tampon » : en fin de nuit d’été, le bâtiment est déchargé de sa chaleur en l’amenant à une température de 22°C, et en fin de journée on laisse flotter la température jusqu’à 26°C, par exemple. Dans ce cas, le free-cooling peut effectivement procurer des économies au système de climatisation. Ceci entraîne une fluctuation des températures intérieures qu’il faut être prêt à accepter.

En Belgique, la température extérieure est 65 % du temps inférieure à 14°C, soit inférieure à la température de pulsion.

On souhaite profiter du froid extérieur, mais il est impossible d’injecter de l’air à 0°C dans les locaux ! Il y a nécessité de préchauffer l’air pulsé. Or on travaille avec des débits d’air élevés (4 à 6 renouvellements horaires). Le coût du pré-chauffage de l’air risque d’anéantir les économies réalisées sur le refroidissement !

Deux solutions se présentent alors

  • Soit on recycle partiellement l’air extrait : c’est la chaleur des locaux eux-mêmes qui préchauffent « gratuitement » l’air neuf, par mélange. Par exemple, les 4 renouvellements horaires sont constitués de 3/4 d’air recyclé et de 1/4 d’air neuf.
    Inconvénient : l’air de tous les locaux est repris, mélangé et redistribué dans les différents locaux, ce qui peut poser problème…
  • Soit on place un échangeur de chaleur sur l’air extrait : puisqu’il s’agit seulement d’un préchauffage de l’air, un échangeur à plaques ou un double échangeur à eau glycolée peut transférer la chaleur de l’extraction vers la pulsion, sans mélange entre l’air neuf et l’air vicié, en atteignant les puissances requises.

Chaque local nécessite une régulation spécifique

L’enclenchement d’un photocopieur, la tenue d’une réunion, … crée des besoins variables entre les différents locaux. Une régulation individualisée doit être proposée.

De plus, le coût du transport de l’air n’est pas négligeable dans une installation « tout air ». Il est donc intéressant de ne pulser que les débits nécessaires : pulser la moitié du débit nominal génère le huitième de la consommation électrique du ventilateur.

Ces deux constats étant faits, le conditionnement d’air à Volume d’Air Variable (VAV) apparaît comme la solution la plus adéquate. Le thermostat de chaque local agit sur le clapet modulant l’arrivée d’air. Une sonde de pression placée dans la gaine commande la vitesse des ventilateurs de pulsion et d’extraction.

Le cas particulier des bureaux paysagers

La particularité des grandes plates-formes de bureaux paysagers, c’est d’avoir dans le même local à la fois une zone centrale (où la chaleur est excédentaire) et des zones en façades (où les parois froides génèrent de l’inconfort). Dans ce cas, on prévoit simultanément la pulsion d’air frais en zone centrale et l’apport de chaleur par des radiateurs en allège des fenêtres. La régulation de ces deux flux contradictoires doit être soignée afin qu’il n’y ait pas destruction d’énergie : une plage neutre doit être réservée entre chauffage et refroidissement (par exemple, les vannes thermostatiques de radiateurs sont réglées sur 21°C et l’ouverture du débit d’air froid ne commence qu’à 23°C). Entre 21 et 23°C, le corps humain est situé dans sa plage de confort optimale.

Les inconvénients d’une telle solution

L’investissement à consentir au départ est loin d’être négligeable :

  • les conduits sont volumineux et encombrants, donc coûteux en argent et en espace,
  • la régulation est plus élaborée, et donc coûteuse et pas toujours facile à la mise au point et à la maintenance.

Il sera donc utile de chiffrer le budget énergétique d’une telle solution et de parler en terme de coût global sur 15 ans. Notamment pour comparer cette solution à la traditionnelle boucle d’eau glacée sur laquelle sont greffés les ventilo-convecteurs.

C’est le rôle du bureau d’études, car la situation est spécifique à chaque projet.

Études de cas 

Un exemple d’une telle démarche a été réalisé pour le cas de 4 locaux de consultation à l’hôpital de Chimay.

La solution « fluide réfrigérant variable »

L’approche se construit sur les éléments suivants :

1.  Nouvelles possibilités technologiques des compresseurs

On connaît le fabuleux « rendement » thermodynamique d’une machine frigorifique récente : pour faire 3 kWh de froid, il suffit de 1 kWh électrique au compresseur. Il en résulte alors 4 kWh de chaleur rejetés au condenseur. Si ces 4 kWh sont récupérés dans des locaux demandeurs de chaleur, le bilan théorique s’impose de lui-même : avec 1 kWh au compresseur, on réalise 7 kWh utiles : 3 de refroidissement et 4 de chauffage !

Si dans le bâtiment, en parallèle avec la demande de refroidissement du cœur du bâtiment, il y a une demande de chauffage des locaux périphériques, la solution thermodynamique est alléchante !

Mais la difficulté, c’est qu’en été tous les locaux sont demandeurs de froid. L’échangeur du local en façade doit alors passer du mode « condenseur » à un fonctionnement en « évaporateur ».

On a bien essayé la solution de placer des pompes à chaleur réversibles sur une boucle d’eau commune à tous les locaux, mais sans trouver la souplesse de la solution actuelle de la climatisation à « fluide réfrigérant variable » qui supprime tout vecteur intermédiaire.

Ici, dans le cas idéal où il y aurait égalité entre la demande de froid et la demande de chaud, toute la chaleur évacuée dans les locaux à refroidir est transférée vers les locaux à chauffer :

Installation en équilibre.

2.  Séparation des fonctions

À l’usage, la séparation des fonctions « apport d’air neuf » et « apport de chaud ou de froid » présente des avantages de facilité de régulation et de qualité hygiénique.

3.  Pas de fluide intermédiaire

C’est le fluide frigorifique qui circule entre les échangeurs et le compresseur. En quelque sorte, c’est l’ensemble du bâtiment qui travaille « en détente directe et en condensation directe ».

4.  Une régulation très fine en fonction de la demande

Rien n’est plus souple que du fluide frigorigène pour s’adapter aux besoins. Chaque échangeur est autonome dans la régulation de son local.

De plus, la régulation en place est étudiée pour limiter au maximum toute consommation d’énergie excessive.

Par exemple : une boucle d’eau glacée au régime 7°-12° va condenser inutilement la vapeur d’eau présente dans le local. Avec un système « fluide réfrigérant variable », l’humidité du local est mesurée en permanence et la température de l’évaporateur sera réglée « au plus haut » en fonction des besoins de froid du local, évitant ainsi toute condensation inutile.

5. Inconvénients

  • L’apport d’air neuf hygiénique n’est pas résolu. De plus, il n’existe pas de production d’eau chaude par une chaudière pour alimenter les batteries de chauffe d’un éventuel groupe central de traitement de l’air hygiénique. L’apport d’air neuf va demander une installation spécifique dont on devra soigneusement étudier la régulation pour que de l’énergie ne soit pas « cassée » : il ne faudrait pas simultanément préchauffer l’air neuf à 20°C et refroidir le local !
  • La technique est encore relativement neuve dans nos régions (malgré une large expérience au Japon)…
  • Il faut franchir le problème lié à la circulation du fluide frigorigène dans les locaux, malgré l’étanchéité des installations actuelles et la non-toxicité des fluides utilisés. Comment retrouver une fuite si les conduits circulent dans tous les faux plafonds ? L’évolution va dans le sens d’un confinement des équipements utilisant le fluide frigorigène et d’un transport du froid par de l’eau ou de l’air dans le bâtiment. Il semble que la technique du DRV soit d’ailleurs interdite au Luxembourg, pour des raisons environnementales.
  • La technologie est assez sophistiquée, bourrée d’électronique, et seul le fabricant peut réellement intervenir sur l’installation… Certains craindront alors le coût des contrats de maintenance, d’autres diront que nos voitures ont suivi la même évolution… sans que cela nous pose trop de problèmes. Des logiciels d’auto-diagnostic permettent la gestion automatique.
  • Si l’ensemble de l’installation travaille en mode « froid », le rendement du compresseur n’atteint pas celui d’une grosse machine frigorifique à vis, par exemple…

A nouveau, un bilan énergétique détaillé et annuel est nécessaire, mais il faut avouer que dans cette technique nouvelle, les bureaux d’études sont relativement dépourvus d’outils fiables d’évaluation… et les fabricants ne nous proposent aucun rapport d’évaluation neutre.

Au minimum, on essayera d’établir un planning des périodes de chauffe et de refroidissement des différents locaux pour visualiser les recouvrements. Si une récupération de la chaleur des locaux intérieurs est prévisible une bonne partie de l’année (salle informatique au centre du bâtiment, par exemple), le DRV se justifie.


Conclusions

Un local « intérieur » est en permanence demandeur de rafraîchissement.

Une simple ventilation ne suffit pas.

La solution traditionnelle par ventilos-convecteurs sur boucle d’eau glacée ne permet pas d’utiliser l’air frais extérieur présent les 3/4 du temps dans nos régions. Si elle est cependant adoptée, on sera attentif à prévoir une possibilité de refroidissement direct de l’eau glacée par free-chilling.

Deux solutions sont possibles :

1° Une installation « tout air » à débit variable (VAV)

  • elle permet d’utiliser l’air neuf extérieur, de jour comme de nuit,
  • elle va limiter le défaut des installations « tout air » : la forte consommation des ventilateurs,

mais,

  • elle demande de préchauffer l’air extérieur en hiver, soit via un recyclage partiel de l’air repris (d’où problème de mélange de l’air des différents locaux), soit via un récupérateur de chaleur sur l’air extrait.

Concevoir

Pour aller plus loin dans la conception d’une installation VAV.

2° Une installation à « fluide réfrigérant variable » avec récupération de chaleur

  • en hiver, elle permet de récupérer la chaleur extraite des locaux à refroidir pour les donner aux locaux en demande de chaleur,
  • elle garantit la performance énergétique d’une technologie de pointe (compresseur, régulation, …),

mais,

  • la technique sous-entend la présence d’un réseau de fluide dans les locaux.

Concevoir 

Pour aller plus loin dans la conception d’une installation DRV.

Un bilan énergétique annuel devrait départager ces solutions. Il doit être établi au cas par cas par un bureau d’études mais celui-ci va manquer de données fiables sur la performance moyenne annuelle des équipements.

21-08-2008 : comparaison du contenu ok ! [sylvie]

Gérer l’énergie électrique – mesures techniques

Gérer l'énergie électrique - mesures techniques


Décaler les consommations en heures creuses

Cette gestion consiste à minimiser les coûts de l’énergie en reportant en dehors des heures de pointe ou de préférence pendant les heures creuses toute consommation qui peut l’être sans créer de gêne.

Le décalage peut se faire par horloge, par délesteur/optimiseur ou par sensibilisation.

Gérer

Si vous voulez en savoir plus sur la sensibilisation des utilisateurs.

En cuisine collective, plusieurs postes peuvent être décalés dans le temps :

  • Le chauffage de l’eau peut se faire dans un chauffe-eau à accumulation.
  • Avec une liaison froide, la préparation (cuisson et refroidissement rapide) et donc la ventilation peuvent également être décalées.

 


Diminuer la pointe quart-horaire

Graphique pointe quart horaire.

La diminution de la pointe quart-horaire permet de diminuer la facture électrique.

Bien souvent le moment de la pointe quart-horaire du bâtiment correspond au fonctionnement de la cuisine. Ainsi l’action directe sur celle-ci est tout à fait efficace.

Exemple.

Dans un home pour enfants, la pointe globale, celle de la cuisine hors laverie, celle de la laverie et celle du bâtiment hors cuisine ont été mesurées séparément. On constate que le moment de la pointe globale correspond effectivement à celle de la cuisine et aussi à celle de la laverie.

La diminution de la pointe quart-horaire au niveau de la cuisine peut se faire par sensibilisation. Par exemple, une mesure continue de la pointe dans la cuisine avec visualisation de celle-ci par le personnel, peut motiver celui-ci à postposer l’allumage d’un appareil de quelques minutes si la pointe est déjà élevée.

Gérer

Si vous voulez en savoir plus sur la sensibilisation des utilisateurs.

Elle peut aussi se faire par délesteur/optimiseur. Dans certains cas, le délesteur constitue aussi une solution lorsque la puissance disponible n’est pas suffisante et que l’on ne veut pas investir dans un nouveau transformateur.

Que peut-on délester ?

Actuellement, les fabricants délestent tous les appareils de cuisson (sauf les fours à micro-ondes), les lave-vaisselle et les chambres froides.

Remarque : le délestage du lave-vaisselle ne peut éventuellement être intéressant que si le lavage est instantané.

Les temps de coupure admissibles dépendent du type d’appareil :

Un appareil à grande inertie peut être coupé plus longtemps qu’un appareil à moins grande inertie; un appareil « ouvert » qui fonctionne quasi en permanence à sa pleine puissance (ex. : une plaque de cuisson) ne peut être coupé aussi longtemps qu’un appareil fermé qui utilise sa puissance maximale pour la montée en température puis « séquentiellement » pour son maintien en température (exemple : la marmite).

Exemple de quelques temps de coupure proposés par un fabricant :

  • Le four : 3 minutes.
  • Une sauteuse en inox : 1 minute.
  • Les plaques de cuisson : 20 à 30 secondes.
  • La friteuse : 15 secondes.

Les résistances qui chauffent un liquide instantanément ne peuvent être délestées sous peine de ne plus respecter les températures de consigne. Par contre, une résistance qui chauffe une masse d’eau peut l’être. Le chauffage de l’eau prendra simplement un peu plus de temps. Ainsi un chauffe-eau à accumulation peut être délesté. Un chauffe-eau instantané ne peut l’être sans effet négatif.

Attention… !

Au niveau des différents équipements, les connexions sont parfois prévues par le fabricant.
Si elles ne le sont pas il est toujours possible de les réaliser a posteriori. Mais dans ce cas, il faut toujours veiller à ce que le délestage se fasse au bon endroit et ne perturbe pas le cycle de fonctionnement.

Exemple.

Un délestage a été réalisé sur une machine à café.

La machine était prévue pour prendre 10 litres d’eau à chaque préparation de café. Les 10 litres étaient ensuite chauffés par une résistance interne. Une fois la température de l’eau atteinte, celle-ci « passait » sur le café. Le café était ensuite maintenu chaud par une deuxième résistance de maintien en température.

La machine a été délestée après avoir pris 3 litres. Après délestage elle a repris 10 litres et l’eau a débordé. Cette machine ne possédait pas de connexion de délestage. Le délestage a été réalisé sur le programmateur alors qu’il aurait dû être réalisé sur la résistance de chauffage de l’eau.

Actuellement, la plupart des machines à café ne possèdent plus de réservoir. L’eau est prise au robinet et directement chauffé en passant dans une résistance. Ce type de machine ne peut pas être délesté car l’eau arriverait froide sur le café. Seul la résistance de maintien pourrait être délestée, mais sa puissance est tellement faible que cela n’en vaut pas la peine.

Le choix des appareils délestés doit donc être réalisé par une personne connaissant bien le cycle de fonctionnement des appareils.

Fonctions d’un délesteur pour cuisines collectives

Un délesteur pour cuisines collectives doit permettre des temps de coupure très courts (de l’ordre de la dizaine de secondes). Il doit également assurer un « dialogue » avec les équipements permettant d’imposer certaines contraintes techniques.
Exemples.

  • Un matériel de cuisson ne doit pas être délesté dans sa phase de montée en température.
  • Pour les matériels frigorifiques, il faut éviter les « court-cycles », c’est-à-dire que le temps d’arrêt ne peut durer moins d’un certain temps (quelques minutes) de manière à ce que le fluide frigorigène se repositionne correctement dans le circuit frigorifique.

Les contraintes ci-dessus sont, par exemple, respectées, par un délesteur qui permet :

  • De reconnaître le temps de montée en température. Le délesteur mesure le temps entre la mise en route d’un appareil et le premier arrêt commandé par le thermostat. Il sait qu’il ne doit jamais délester avant ce délai.
  • De déterminer des temps minimum de fonctionnement entre les arrêts. Ces temps sont introduits par l’utilisateur pour les différents équipements.

Outre ces caractéristiques spécifiques, un délesteur pour cuisines collectives doit présenter les mêmes possibilités qu’un autre délesteur, telles que la possibilité d’introduire des plages où certains appareils ne peuvent être délestés, des priorités, etc.

Remarque : en France, « la pointe quart-horaire » n’est pas d’un quart d’heure mais de dix minutes. Il existe des délesteurs spécifiques aux cuisines collectives fabriquées en France. Si votre choix se porte sur un délesteur français, il faut, bien sûr, veiller à ce que ce dernier s’adapte correctement à la pointe quart-horaire de votre région.

Influence d’un délesteur sur le résultat

S’il est évident que le délesteur/optimiseur de charge permet de réduire la facture de manière parfois considérable, celui-ci a également un impact sur les températures atteintes lors du processus de fonctionnement de chaque appareil. Cet impact, quoique relativement faible, peut être perçu négativement par le cuisinier ou le responsable hygiène.

Exemple : le délestage d’un appareil de cuisson.

Le délestage se fait au niveau de la résistance de chauffage. Il ne se fait jamais en période de montée en température. Il se fait toujours au moment où le thermostat commande une remise en route de la résistance. Le délesteur demande à la résistance de postposer son action de quelques secondes. La température va donc diminuer plus que si l’appareil n’était pas délesté. Après le relestage, la température va remonter jusqu’à la température exigée par le thermostat.

Résultat : s’il y a délestage, la température moyenne sera légèrement plus faible.

Remarque : pour compenser la baisse de la température moyenne, on pourrait songer à augmenter la température de consigne. Mais le délesteur ne peut pas exercer d’autres actions sur l’appareil de cuisson que l’arrêt ou la remise en route des résistances. En effet, son rôle n’est pas de réglementer la cuisson.

Exemple : le délestage d’un appareil frigorifique.

Les appareils frigorifiques sont raccordés à un module de délestage et non à un module d’optimisation. C’est-à-dire que le module déleste l’appareil sans « dialogue » avec celui-ci. Cependant le délesteur agit de manière à éviter les court-cycles c’est-à-dire que le temps d’arrêt respecte un temps minimum de manière à ce que le fluide frigorigène se repositionne correctement dans le circuit frigorifique.

Le délesteur agit directement sur le compresseur.

Résultat : s’il y a délestage, la température moyenne sera légèrement plus élevée que sans délestage. Ainsi, si la température de consigne est réglée juste au niveau de la température maximale réglementaire, il y a un risque de la dépasser en cas de délestage.

On pourrait songer à baisser la température de consigne par rapport aux températures réglementaires de manière à pouvoir délester sans risque. Dans ce cas, il risque d’y avoir plus de mise en glace et donc plus de dégivrages. Nous n’avons pas fait de mesures comparatives de consommations et de pointe quart-horaire mais il serait intéressant de les faire…!

Exemple : le délestage d’un lave-vaisselle à déplacement.

Le délestage d’un lave-vaisselle se fait comme celui d’un appareil de cuisson par un module d’optimisation au niveau des résistances

en tenant compte de la demande du thermostat.

Un délestage sur la résistance de la cuve de remplissage au moment du chauffage avant lavage va simplement allonger la durée de chauffage. Il ne va pas agir sur le niveau de température atteint en fin de chauffage de l’eau de remplissage.

Par contre, si le délesteur agit sur cette même résistance une fois le lavage commencé (la résistance sert alors à maintenir la température de l’eau de lavage), le délesteur va diminuer quelque peu la température par rapport à la consigne.

Enfin, il n’est pas recommandé de délester la résistance de rinçage sauf si cette résistance est sur-dimensionnée et que la consigne de température pour l’eau de rinçage est plus élevée que celle de la valeur recommandée (ce qui est bien sûr peu probable). En effet, une fois le lavage commencé, de l’eau de rinçage est demandée en continu. Cette eau est réchauffée dans un boiler de très petite capacité munie d’une grande puissance. Un délestage ne permettrait plus d’atteindre les températures demandées.

En conclusion, pour s’assurer que le délestage reste acceptable au niveau des processus de fonctionnement de chaque appareil, il est important de procéder à des réajustements après avoir réglé une première fois les différents paramètres sur le délesteur.

Exemples.

  • Sur une chambre froide, on fera des enregistrements de températures avant et après avoir installé le délesteur et on comparera ces températures aux températures réglementaires.
  • Après avoir raccordé un délesteur sur un four, un cuisinier se plaint d’un rôti trop peu cuit. Il faut alors réajuster les paramètres en diminuant, par exemple, le temps maximum de coupure ou en augmentant le temps minimum entre les coupures.

Rentabilité d’un délesteur

S’il est certain que le délestage permet de diminuer la facture électrique en diminuant la valeur de la pointe quart-horaire, il est plus difficile de quantifier le gain. Celui-ci dépend du nombre d’appareils raccordés et des différentes consignes.

Certains fabricants parlent d’un coefficient de foisonnement (rapport entre la puissance maximale appelée et la puissance installée) de 0,7 sans gestion de la charge qui passerait à 0,6 avec gestion de la charge. Le délestage permet, dans ce cas de diminuer la pointe quart-horaire de 15 %.

Pour d’autres fabricants :

Puissance de délestage =

(puissance non gérée x coefficient de foisonnement de la charge non gérée)
+
(puissance gérée x coefficient de foisonnement de la charge gérée x coefficient de foisonnement de délestage)

Avec un coefficient de foisonnement de délestage moyen de 0,65.

Remarque  : c’est également à cette valeur qu’ils règlent la puissance maximale du délesteur.

La diminution de la pointe quart-horaire de la cuisine dépend, dans ce cas, de la proportion de la puissance totale gérée par le délesteur.

En outre, la présence d’un délesteur de charge entraîne généralement un abaissement de la consommation d’énergie vu que l’alimentation des appareils est coupée et qu’ils continuent à fonctionner par inertie. Cette  diminution est d’environ 5 %.

Enfin, le délesteur peut avoir une fonction « horloge ».

La rentabilité d’un délesteur de charge est très variable, mais en pratique et selon les fabricants, des temps de retour compris entre 2 mois et 2 ans sont très courant

Exemple : La cuisine du centre commercial Migros à Lys.s

(source : Cuisine et électricité – Ravel).

Les courbes de charge ci-dessous montrent la somme des charges journalières des équipements de force, de chaleur et de froid.

Ces appareils se prêtent particulièrement bien à une gestion de puissance.

Courbe de charge sans délesteur de charge.

Le délesteur a permis de limiter la pointe à 55 kW.

L’économie réalisée par l’installation du délesteur de charge varie entre  2 500 et 3 375 €/an. L’installation a coûté 9 375 €. Le temps de retour est donc d’environ 3 ans (33 à 45 mois).

Exemple : Une cuisine professionnelle…

(source : Sicotronic).

Une cuisine professionnelle comprend 12 consommateurs moyens tels que sauteuses, marmites, fours « combinés », fourneaux, machines à laver la vaisselle et 3 consommateurs constants (ventilation et buffets chauds).

La consommation moyenne annuelle était de 225 000 kWh. La pointe quart-horaire moyenne était d’environ 150 kW. L’installation d’un délesteur a réduit la consommation d’énergie annuelle d’environ 5 %, soit une consommation « résiduelle » de l’ordre de 210 000 kWh. La pointe de puissance est réduite d’environ 35 % et devient inférieure à 100 kW.

La facture d’énergie est diminuée de plus ou moins 20 %  et le temps de retour de l’investissement est inférieur à 2 ans.

Exemple : Une société de restauration collective ….

Depuis 1988, une société française de restauration collective, spécialiste de la restauration scolaire gère, parmi d’autres, une cuisine « tout électrique » à Brétigny-Sur-Orge dans le cadre d’un contrat de concession de 18 ans. Depuis, la production de la cuisine a fortement augmenté. La cuisine prépare aujourd’hui 4 000 repas/jour (1 300 pour ses besoins propres et 2 700 pour des clients extérieurs).

À partir de 1997, les matériels et, surtout, la puissance souscrite ne suffirent plus. Des disjonctions se produisaient en plein hiver, quand tous les appareils, y compris de chauffage, fonctionnaient à plein régime. Les repas allant ainsi en augmentant, les responsables de la cuisine ont décidé d’investir dans de nouveaux équipements. Mais la puissance disponible de 250 kW ne suffisait dès lors plus. Il devenait impératif d’investir dans un nouveau transformateur dont le coût dépassait les 37 500 € et de souscrire un tarif vert, plus onéreux qu’un tarif jaune auprès de la société de distribution d’électricité.

La société a alors décidé d’investir dans un délesteur. Le délesteur gère aujourd’hui la puissance électrique de 10 appareils : 3 fours combinés de 20 niveaux (deux au format GN 1/1 et un au format GN 1/1), 4 sauteuses dont une de 80 dm², un four de remise en température et 2 centrales de chauffage d’air neuf. La puissance totale de ces appareils dépasse 400 kW et la totalité de la puissance électrique installée sur la cuisine dépasse 650 kW. Or grâce au délesteur, la puissance appelée ne dépasse jamais 180 kW (coefficient de foisonnement de 0,3 !).

La société a ainsi gagné sur deux plans : elle a fait l’économie d’un transformateur et elle gagne sur la facture électrique.

La société a chiffré le coût énergétique d’un repas fabriqué dans une de leur cuisine équipée d’un optimiseur. Le coût moyen s’élève à 8 c€ (HTVA). (Dans de nombreuses cuisines, ce coût atteint encore les 16,5 c€).

Ce coût inclut les coûts de cuisson, de réfrigération, de conditionnement, de traitement de l’air, de l’éclairage, etc. Il ne comprend pas les frais de transport vers les restaurants satellites.

Si l’on ne peut investir tout de suite dans un délesteur (optimiseur)…

Dans le cas où l’on ne veut pas investir immédiatement dans un délesteur, on a toutefois intérêt à tirer un (des) câble(s) vers chaque appareil pouvant être délesté un jour. Cette mesure représente des frais très faibles lors de l’installation ou lors d’une rénovation, mais peut être coûteuse lors d’une réalisation a posteriori.


Installer des compteurs

Les dépenses d’énergie propres aux cuisines sont rarement connues. Bien souvent, il n’y a pas de comptage et encore moins de facturations spécifiques.

Afin d’optimiser la conduite des installations au niveau énergétique, on a intérêt à prévoir le placement de compteurs ou d’enregistreurs de charge dès la conception de la cuisine collective. Ils permettront aussi de diagnostiquer d’éventuels dysfonctionnements des installations.

Lorsqu’un délesteur associé à un logiciel de suivi des consommations est installé, celui-ci assure bien sûr cette fonction.

Belle rénovation des châssis

Belle rénovation des châssis


Introduction

Le Centre Public d’Action Sociale de Charleroi possède un large parc immobilier dont la maintenance et les projets de rénovation sont assurés par un Service Technique composé de 50 personnes. Le patrimoine bâti du CPAS compte 10 Maisons de Repos et de Soins pour un total de 875 lits, une centaine de logements ainsi que 15 bâtiments administratifs. C’est à cette dernière catégorie qu’appartient le centre de formation communément appelé « Passage 45 » situé dans le haut de la Ville de Charleroi.


Les activités du « Passage 45 »

Cette ancienne clinique psychiatrique construite sur la fin des années quarante est aujourd’hui un Centre de Ressources pour l’Intégration dédié à l’insertion sociale et professionnelle des personnes aidées par le CPAS de Charleroi. Un nombre considérable d’activités et de formations s’y déroulent tout au long de l’année. Pas moins de 50 à 150 personnes fréquentent ce lieu quotidiennement.


Une rénovation bien nécessaire

Photo bâtiment.

Ce bâtiment de près de 2.400 m² pour l’ensemble de ses trois niveaux comptait encore sur ses vieux châssis d’origine en acier et équipés de simple vitrage. De plus, les façades étaient marquées par les décennies écoulées : les linteaux en béton nécessitaient une rénovation et, comme tous les vieux bâtiments urbains, les revêtements étaient noircis.

En 2002, les travaux de rénovation des châssis et des façades ont débuté. Les 131 fenêtres furent déposées, les linteaux reconditionnés et les façades sablées et rejointoyées. Au total, ce sont 462 m² d’ouverture qui furent équipés de nouveaux châssis en aluminium thermolaqué à coupure thermique. On trouve un double vitrage solaire et à basse émissivité présentant un coefficient de transmission thermique U de 1,3 W/m²K. L’ensemble châssis et vitrage a un coefficient de transmission thermique U de l’ordre de 2 W/m²K.

On notera que lors de la conception des châssis, il a été pris en compte la future rénovation intérieure des locaux lors de laquelle des faux plafonds seront placés. C’est pourquoi les impostes des fenêtres sont aveugles pour coïncider avec le niveau des futurs faux plafonds.

Cette opération est tout bénéfice pour les occupants car l’inétanchéité des anciens châssis et la sensation de froid en hiver procurée par le simple vitrage étaient une source d’inconfort considérable. La consommation d’énergie y a trouvé également son compte !


Un manteau d’hiver pour la toiture

Deux années au préalable, en 2000, la couverture de la toiture plate fut remplacée et à cette occasion une isolation fut mise en œuvre. L’ancienne couche d’étanchéité fut enlevée et un isolant en verre cellulaire de 8 cm d’épaisseur mis en œuvre sur la chape de béton avant le placement de la nouvelle étanchéité (une double membrane bitumeuse).


Bilan des consommations

En 1999, avant la réalisation de ces deux interventions (isolation toiture + remplacement des châssis), la consommation annuelle normalisée de mazout était de l’ordre de 58 000 l.
L’économie d’énergie, mesurée en 2003, suite à la réalisation de ces travaux est de 20 000 l. En effet, la consommation annuelle normalisée est aujourd’hui descendue aux alentours des 38 000 l.
L’économie d’énergie réalisée est déjà très intéressante, mais l’aurait été plus encore si la couche d’isolant placée en toiture avait eu une épaisseur plus importante et si les fenêtres avaient été thermiquement plus performantes. En 2016, on aurait posé au moins 16 à 20 cm d’isolant en toiture. Le Uw des fenêtres en PVC avec des vitrages normalement performants aurait été de 1.45 W/m²K au lieu de 2 W/m²K

En détail

Châssis en aluminium

  1. Première frappe (étanchéité principale à l’eau).
  2. Chambre de décompression drainée.
  3. Récupération des eaux et évacuation vers l’extérieur.
  4. Deuxième frappe avec joint périphérique continu (étanchéité principale à l’air).
  5. Chambre pour loger la quincaillerie.
  6. Troisième frappe (amélioration acoustique).

Extrait de la brochure « Types de chassis » éditée par la Région wallonne.

Économique

Investissement global pour la rénovation des façades (reconditionnement des bétons des linteaux, sablage des façades, enlèvement des vieux châssis et pose des nouveaux châssis) : 465 000 € TVAC.

Investissement global pour la rénovation de la toiture plate (enlèvement ancienne couverture, pose isolation et nouvelle membrane d’étanchéité) : 71 000 € TVAC.

Des subsides peuvent être sollicités auprès de la DGTRE (UREBA) pour ce type d’investissement.

Informations complémentaires

Alain BROHEZ
Service Technique
CPAS de Charleroi
Tél : 071 233 112
Email : brohezalain@cpascharleroi.be Cette étude de cas provient des Sucess Stories réalisées par l’ICEDD, Institut de conseils et d’études en développement durable en 2004.

Rénovation du collège Don Bosco à Woluwe-Saint-Lambert [éclairage]

Rénovation du collège Don Bosco à Woluwe-Saint-Lambert [éclairage]


Objectif de la rénovation

Pour le père Guy Lambrechts, responsable technique du bâtiment, un bon éclairage est indispensable à la bonne perception par les élèves des informations transmises par les professeurs.
De plus, il est conscient que même si les élèves peuvent s’adapter à un mauvais éclairage, c’est à terme qu’ils en subiront les conséquences.

Soucieux de la santé de ces élèves, il place le confort comme objectif principal de la rénovation. Si en plus, des économies d’énergies sont réalisées, elles seront bien sûr les bienvenues !


Le bâtiment du collège Don Bosco et l’installation  d’éclairage existante

Description

Photo bâtiment.

Situé à Woluwe-Saint-Lambert, le bâtiment présente un plan en « T ». Dans les deux branches horizontales du T, se trouvent les classes, quelques bureaux et les cages d’escaliers. Dans la branche verticale du « T », se trouvent les locaux « annexes » tels que salles de gym, théâtre etc.

BoscoNiv01234.GIF (2790 octets)

La démarche à suivre lors d’une rénovation d’éclairage est expliquée pour une aile de classes.

Plan bâtiment.

 L’installation actuelle

Les classes Les luminaires sont de type opalin encastrés. Ils sont intégrés dans le maillage du faux plafond constitué de dalles carrées de 60 cm en laine de roche. Il y a 4 tubes de 18 Watts (diam. : 26 mm) par luminaire et 2 ballasts électromagnétiques.
Le câblage des luminaires est intégré dans les faux plafonds.
Les interrupteurs sont alimentés par l’intérieur des cloisons en bois ou par des conduites apparentes.
Les couloirs Les luminaires sont ronds, de type opalin. Ils sont montés en saillie sur le faux plafond.
Les lampes sont des tubes circulaires, de 1 x 22 W. Il y a 1 ballast électromagnétique par luminaire.
Le faux plafond fixe a été percé pour alimenter les luminaires.
Les luminaires sont commandés par des interrupteurs à deux directions

 Utilisation des locaux et gestion de commande

Les classes Il n’y a que des cours de jour dans le collège. Il n’y a donc pas de cours du soir pour adultes. Ces derniers, plus âgés, nécessiteraient un éclairement plus important.
Il n’y a pas d’écrans d’ordinateur dans ces classes et il n’est pas prévu d’en installer. Les tableaux sont des « tableaux verts », mats. Il n’y a pas d’éclairage propre au tableau.
Les classes, ayant des baies vitrées sur toute leur longueur, bénéficient de beaucoup d’éclairage naturel. L’orientation sud-est, engendre beaucoup de problèmes d’éblouissement ou de reflets. En présence de soleil, les cours se donnent tentures fermées et luminaires allumés !
Les classes sont occupées de 8 h 30 à 15 h 30, avec interruption d’1 h à midi. Après l’occupation, les locaux sont fermés à clefs, et l’éclairage est éteint. Les locaux ne restent donc en principe pas éclairés en dehors des heures de cours. Le nombre d’heures de cours est de 28 h/semaine pendant 38 semaines/an.
Les parois sont fixes et il n’est pas prévu de les modifier dans un délai proche : s’il y a changement du nombre d’élèves, il y a adaptation du mobilier de la classe plutôt que modification des cloisons.
Les couloirs Les couloirs bénéficient de beaucoup de lumière du jour. Cette lumière suffirait amplement à partir d’une certaine heure et jusqu’à une certaine heure variant au cours des saisons. L’éclairage est allumé le matin au début des cours et ensuite il reste bien souvent allumé…
Les interrupteurs sont souvent cassés.

Évaluation du confort existant

Les classes

L’éclairement – Des mesures ont été prises au niveau des bancs, au moyen d’un luxmètre, en divers points et sans apport de lumière extérieure (tentures fermées).

L’ éclairement est en moyenne :

  • Sur les plans de travail : de 200 lux, variant de 140 à 240 lux.
    Cette valeur est à comparer à l’éclairement moyen minimum recommandé de 300 lux pour les classes où il n’y a que des cours du jour.
  • Sur le tableau : de 110 lux (de 105 à 115 lux)
    Cette valeur est à comparer à l’éclairement minimum moyen recommandé de 500 lux minimum.

L’indice de rendu des couleurs (IRC) – Les indications suivantes ont été relevées sur les lampes : Philips – TDL/18 W/33.
L’ I.R.C.est donc de classe 2, ce qui correspond à un rendu des couleurs compris entre 60 et 80 sur une échelle de 100, ce qui est trop faible. On recommande un I.R.C. supérieur à 80 dans les classes.

L’éblouissement – Les luminaires opalins, sans être très éblouissants, ne sont pas adaptés au travail dans les classes. On recommande plutôt des luminaires avec ventelles.
Les élèves du dernier rang ont dans leur champ de vision plusieurs rangées de luminaires, et subissent, à terme, les désagréments de l’éblouissement.

Les réflexions – Le test du miroir montre qu’il peut y avoir des reflets sur les bancs situés sous les luminaires, lorsque des surfaces brillantes sont utilisées (papier glacé par exemple). Néanmoins, ces réflexions sont dues à l’emplacement des luminaires, et vu la disposition serrée des bancs dans une classe, on ne peut échapper à ces réflexions. Au contraire, avec des luminaires opalins, ces réflexions sont moins importantes qu’avec d’autres luminaires.

La stabilité de l’éclairage – Le clignotement dû à l’utilisation de ballasts conventionnels peut aussi être source d’inconfort à long terme.

Les ombres portées – Il n’y a pas d’ombre portée sur les bancs. L’ombre provenant du corps est compensée par l’éclairage provenant de l’avant, l’ombre provenant de la main est compensée par l’éclairage provenant de l’autre côté.

Enfin, les luminaires opalins, salis par le temps, sont devenus jaunes. Ce qui laisse à désirer au niveau de l’esthétique.
Vu l’état vieillot des classes, il est prévu de les rafraîchir et dans ce contexte, il serait tout à fait inadéquat de laisser les luminaires actuels.

Les couloirs

L’éclairement – L’éclairement est en moyenne de 60 lux variant de 50 à 75 lux.
Cet éclairement est à comparer à la valeur de 100 lux recommandée dans les couloirs.

Néanmoins, le couloir bénéficie pendant quasi toutes les heures de cours d’un éclairage naturel. Un éclairement de 60 lux permet de circuler et sera donc suffisant dans ces conditions.

L’indice de rendu des couleurs (IRC) – Les indications suivantes ont été relevées sur les lampes : « General Electric FC8T9 – CW Rapid Start Cool white »
Selon le catalogue, l’ I.R.C.est donc de 58, ce qui est est suffisant, puisqu’on recommande un I.R.C. compris entre 40 et 60 (classe d’IRC 3) dans les couloirs.

L’éblouissement – On recommande plutôt des luminaires à ventelles dans les circulations. Cependant, les luminaires opalins ne sont pas franchement éblouissants. De plus les couloirs ne servent qu’au passage.

Même si l’installation dans les couloirs n’est pas idéale, le manque de confort, à lui seul, n’est pas suffisant pour justifier une rénovation.


Évaluation de l’efficacité énergétique

Puissance installée

Une classe avec 2,3 ou 4 baies vitrées dispose respectivement de 2, 3 ou 4 rangées de luminaires. On peut donc calculer la puissance spécifique de n’importe quelle classe.
Une classe avec 3 baies vitrées a une largeur de 6,6 m et une profondeur de 7,7 m. Elle est éclairée par 3 rangées de 3 luminaires de 4 x 18 W.

Puissance spécifique = 3 x 3 x 4 x 21,5*/7,7 x 6,6 = 15,23 W/m²

* : consommation de la lampe avec ballast conventionnel (2 lampes par ballast).

Cette valeur est à comparer à la valeur de référence de 2,5 W/m²/100 lux, soit 7,5 W/m² (pour 300 lux).

Le couloir de 36 m de long et de 2 m 50 de large est éclairé par 8 luminaires de 1 x 22 W.

Puissance spécifique = 8 x 22 x 1,2*/36 x 2,5 = 2,35 W/m²

* : tient compte de la consommation du ballast.

Cette valeur est à comparer à la valeur de référence  de 2,5 W/m² (pour 100 lux), (ou 1,5 W pour 60 lux).

Gestion de commande

En observant le mode d’utilisation des locaux et la présence d’éclairage naturel, nous nous sommes posé la question suivante :

« Arrive-t-il qu’un local (ou partie de local) soit éclairé inutilement ou qu’il soit éclairé au-dessus du niveau nécessaire ? »

Nous avons relevé les « disfonctionnements » suivants

  • Les classes bénéficient de beaucoup d’éclairage naturel. Les luminaires sont allumés au matin et restent parfois sous tension alors que l’éclairage naturel est suffisant.
  • Dans les couloirs, il n’y a pas de minuteries. L’éclairage reste donc souvent allumé inutilement pendant les heures de cours lorsque la lumière du jour suffit, ou après le nettoyage le soir.

Démarche de rénovation

Le collège dispose de son propre installateur.

La démarche a comporté deux étapes :

  1. Des propositions d’installation sont demandées à plusieurs fabricants. Ces propositions seront accompagnées d’une étude photométrique (= étude visant à donner les isolux d’une installation, l’éclairement moyen et l’uniformité). Les différents critères à respecter seront précisés dans la demande. Ces critères concernent aussi bien les niveaux à atteindre pour l’étude photométrique que les critères de qualité du matériel. Les propositions des fabricants doivent être accompagnées de fiches techniques des luminaires ou de catalogues, ainsi que d’une remise de prix.
    Les  études photométriques permettent de choisir la ou les installations qui conviennent au projet en question. Le dimensionnement de l’installation consiste à fixer pour un type de luminaire donné, la puissance unitaire des luminaires et l’emplacement de ceux-ci. En effet, une étude photométrique si elle est réalisée avec le même type de luminaire et avec les mêmes données de base (facteurs de réflexion, coefficient de maintenance, etc.) doit, en principe, être indépendante du fabricant qui la réalise. Seul le rendement de l’appareil du fabricant en question peut changer le résultat final. En pratique, nous avons constaté des différences entre fabricants allant jusqu’à 10 %.
    Les catalogues ou fiches techniques nous ont permis de repérer les marques répondant à nos critères de qualité au niveau du matériel.
    Enfin, les remises de prix nous ont permis de choisir, entre ces marques ; les installations les moins chères.
  2. Pour les installations retenues, on a demandé, à l’installateur, un prix de placement. Ce prix de placement plus le prix des luminaires ont permis de déterminer l’installation placée la moins chère.
    Remarque : si l’installateur avait été client de la marque retenue, il aurait été plus intéressant de lui laisser faire la demande de prix. Il aurait alors bénéficié d’un prix « bon client » et il nous aurait remis un prix « matériel + placement ». Mais ici, l’installateur avait l’habitude de travailler avec un fabricant dont le matériel ne garantissait pas tous les critères de qualité que nous exigions.

Une autre façon de procéder aurait été de lui demander le prix sans imposer de marque mais en précisant les critères de qualité que nous exigions du matériel.


Demande de prix

Étude préalable

Voici les principaux éléments de l’étude préalable

  • Dans les classes, les luminaires sont alimentés par les faux plafonds et l’emplacement des nouveaux luminaires n’est donc pas limité à celui de l’installation actuelle. Si les luminaires sont remplacés par un autre type de luminaire, des dalles d’un autre local seront récupérées pour combler les vides.
  • Les classes bénéficient de beaucoup d’éclairage naturel. Il serait donc intéressant de pouvoir commander les luminaires rangée par rangée.
  • Dans ce projet, un éclairage spécifique du tableau est doublement recommandé, car il permettra l’amélioration du confort des élèves et la compensation des reflets du soleil sur le tableau.
  • Sans connaître l’installation, il n’est pas possible de déterminer s’il est financièrement plus intéressant d’opter pour des luminaires avec ballast électronique ou conventionnel. Aussi avons-nous demandé une étude photométrique avec ballasts électroniques, mais les prix ont été demandés pour les 2 types de ballast.
  • Dans les classes où il n’y a que des cours du jour et donc uniquement de jeunes élèves, un éclairement moyen de 300 lux est suffisant. Cette valeur est la valeur minimale de l’éclairement moyen recommandé, mais elle a été jugée suffisante dans notre cas, car l’école bénéficie de beaucoup d’éclairage naturel. Si l’on tient compte d’une uniformité (Umin./Umoy.) de 0,8, l’éclairement minimal (en tous points) est de 240 lux.
  • La zone de travail correspond à l’ensemble de la surface du local dont on a retiré 50 cm le long des parois, sauf le long de celle avec fenêtres car les bancs sont placés contre ces parois.

Modèle de courrier aux fabricants

Monsieur,

Concerne : rénovation de l’installation d’éclairage du collège Don Bosco

Je suis chargée de la rénovation dont il est question ci-dessus.

Pourriez-vous me remettre une étude photométrique sur base de vos produits.

Dans les classes, les luminaires formant l’éclairage général seront soit de types « en saillie », soit de type « à encastrer », et dans ce cas, ils devront s’intégrer dans le maillage du faux plafond constitué de dalles carrées de 60 cm en laine de roche. La distance entre luminaires devra donc être un multiple de 60 cm.
Ils seront à ventelles blanches avec un angle de défilement maximum de 65°.
Les luminaires « en saillie » seront placés, de préférence, parallèlement aux fenêtres.
Le tableau aura son propre éclairage. On placera des luminaires à réflecteur asymétrique avec tubes fluorescents.
L’éclairage sera réparti sur toute la longueur du tableau vert (longueur = 4 m).
Il sera placé suffisamment près du tableau pour ne pas éblouir l’enseignant.

Dans l’étude, les luminaires seront équipés de ballasts électroniques.

Dans les classes, l’éclairement moyen sera de 300 lux. Le calcul de cet éclairement devra se faire avec uniquement l’éclairage général allumé. L’éclairement minimal (c’est-à-dire en tous points) est de 240 lux sur la zone de travail.
Dans les classes, la zone de travail correspond à la surface du local, de laquelle on retire une bande 50 cm le long de toutes les parois sauf celle avec baies vitrées.

Sur le tableau, l’éclairement moyen recommandé est de 500 lux avec une uniformité (Emin./Emoy.) de 0,5.

Les calculs d’éclairement se feront sur une grille minimale correspondant à la norme NBN L 14 – 002.
Le plan utile se trouve à 80 cm dans les classes et au niveau du sol dans les couloirs. Le facteur de dépréciation doit être pris égal à 0,88.
L’étude photométrique se fera avec des tubes fluorescents de type 840 (IRC compris entre 80 et 90 et température de couleur de 4 000 K).
Les coefficients de réflexion des parois seront de 0,7 (plafond), 0,5 (murs), 0,3 (sol).

L’étude doit être accompagnée des fiches techniques des luminaires ou d’un catalogue.

Pourriez-vous également me remettre votre meilleur prix pour le … au plus tard. Le prix sera donné pour les luminaires avec ballasts électroniques et pour les luminaires avec ballasts conventionnels.
Nous disposons de notre propre équipe de placement. Pouvez-vous, dès lors, nous accorder votre remise ‘installateur’ et nous remettre votre meilleur prix net.

Je vous remercie, et vous prie de croire, Monsieur, en l’assurance de ma meilleure considération.

Annexe : un plan à l’échelle 1/100° avec les luminaires actuels.

Études photométriques

Pour l’éclairage général, 3 installations nous ont été proposées. Voici les éléments essentiels de leur étude photométrique :

Luminaires encastrés de 3 x 18 W
Classes de 6,7 m x 7,8 m

3 rangées (parallèles aux fenêtres) de 2 luminaires

Classes de 4,3 m x 7,8 m

3 rangées (parallèles aux fenêtres) de 2 luminaires

Local 2,2 m x 7,8 m

3 rangées (parallèles aux fenêtres) de 1 luminaire

bosco_3fen_3x18w.GIF (2005 octets) bosco_2fen_3x18w-b.GIF (2004 octets) bosco_1fen_3x18w.GIF (1855 octets)
Éclairement moyen 302 lux 430 lux 315 lux
Éclairement minimum dans la zone de travail 231 lux
(dans les coins, sinon 273 lux)
227 lux
(dans les coins, sinon 251 lux)
228 lux
(dans les coins, sinon 241 lux)
Puissance spécifique 6,2 W/m² 9,66 W/m² 9,44 W/m²
Luminaires de 1x58W et de 1x36W, selon le local
Classes de 6,7 m x 7,8 m

3 rangées (parallèles aux fenêtres) de 2 luminaires de 1 x 58 W

Classes de 4,3 m x 7,8 m

3 rangées (parallèles aux fenêtres) de 2 luminaires de 1 x 36 W

Local 2,2 m x 7,8 m

3 rangées (parallèles aux fenêtres) de 1 luminaire de 1 x 58 W

bosco_3fen_1x58w.GIF (1983 octets) bosco_2fen_1x36w.GIF (1947 octets) bosco_1fen_1x58w.GIF (1807 octets)
Éclairement moyen 325 lux 299 lux 340 lux
Éclairement minimum dans la zone de travail 251 lux 233 lux
(dans les coins, sinon 257 lux)
272 lux
Puissance spécifique 6,43 W/m² 6,44 W/m² 9,79 W/m²
Luminaires de 2 x 36 W ou 2 x 58 W selon le local
Classes de 6,7 m x 7,8 m

2 rangées (parallèles aux fenêtres) de 3 luminaires de 2 x 36 W

Classes de 4,3 m x 7,8 m

2 rangées (parallèles aux fenêtres) de 2 luminaires de 2 x 36 W

Local 2,2 m x 7,8 m

2 rangées (parallèles aux fenêtres) de 1 luminaire de 2 x 58 W

bosco_3fen_2x36w-b.GIF (1993 octets) bosco_2fen_2x36w.GIF (1942 octets) bosco_1fen_2x58w.GIF (1832 octets)
Éclairement moyen 354 lux 333 lux 377 lux
Éclairement minimum dans la zone de travail 251 lux 233 lux
(dans les coins, sinon 254 lux)
265 lux
Puissance spécifique 8,27 W/m² 8,59 W/m² 8,39 W/m²

Pour l’éclairage spécifique du tableau, une seule bonne solution nous a été proposée : 2 luminaires avec 1 lampe de 58 W et réflecteur satiné à distribution asymétrique avec ventelles blanches.

Ces luminaires sont placés à 1 m 10 du tableau. Ils permettent d’atteindre, avec l’éclairage général allumé, un éclairement moyen de 250 à 300 lux. Ce niveau n’est pas celui recommandé par les normes mais ce dernier n’est quasi pas atteignable avec des luminaires classiques pour tableaux.

Vérification de la qualité des luminaires

Pour toutes les offres retenues, nous avons ensuite vérifié les différents critères de qualité du matériel. Cette vérification se fait dans les catalogues ou sur les fiches techniques.

Nous avons vérifié les critères suivants :

  • le rendement des luminaires est de minimum  70 % (luminaires à ventelles planes),
  • le réflecteur est en aluminium satiné,
  • l’indice de protection est de minimum IP20,
  • la résistance aux chocs est d’au moins 0,5 joule,
  • les luminaires sont de classe I (nous disposons d’un conducteur de terre),
  • les autres appareils du réseau électrique doivent être protégés contre les signaux haute fréquence. Les luminaires doivent porter le label « énec »,

  • l’accès aux lampes et à ses équipements doit être aisé. Exemple : diffuseur rabattable et décrochable des 2 côtés sans outils.

N.B. : Il n’y avait aucune vérification à faire au niveau de l’inflammabilité, vu que les luminaires seront montés soit sur un faux plafond traditionnel (à lamelles métalliques ou sur un faux plafond en gyproc).

Prix nets des luminaires

  • luminaire à ventelles blanches 1 x 36 W et ballast électronique : 52 € (HTVA), (27,275  € avec ballast conventionnel),
  • luminaire à ventelles blanches 1 x 58 W et ballast électronique : 56,25 € (HTVA), (33,55 € avec ballast conventionnel),
  • luminaire à ventelles blanches 2 x 36 W et ballast électronique :  53,8 € (HTVA), (34,6 € avec ballast conventionnel),
  • luminaire à ventelles blanches 2 x 58 W et ballast électronique :  57,8 € (HTVA), (40,3 € avec ballast conventionnel),
  • luminaire à ventelles blanches 3 x 18 W et ballast électronique : 164,2 € (HTVA),  (136,2 € avec ballast conventionnel),
  • luminaire avec réflecteur satiné à distribution asymétrique 1 x 58 W : 69,6 € (HTVA), (48,9 € avec ballast conventionnel).

Prix du placement

  • démontage d’un appareil + placement d’un luminaire en saillie : 62,5 € (HTVA),
  • démontage d’un appareil + placement d’un luminaire encastré : 25 € (HTVA).

Prix total : luminaires + placement

Solution 1 Luminaires encastrés de 3 x 18 W :

3 x (3 x 2 x (164,2 + 25)) + 3 x (3 x 2 x (164,2 + 25)) + 1 x (3 x 1 x (164,2+ 25)) = 7188,7 €

Solution 2 Luminaires de 1 x 58 W et de 1 x 36 W, selon le local :

3 x (3 x 2 x (56,25 + 62,5) + 3 x (3 x 2 x (56,25 + 62,5)) + 1 x (2 x 1 x (56,25 + 62,5)) = 4436 €

Solution 3 Luminaires de 2 x 36 W :

3 x (2 x 3 x (53,8 + 62,5) + 3 x (2 x 2 x (53,8 + 62,5) + 1 x (2 x 1 x (53,8 + 62,5)) = 3729,6 €


Choix de l’installation

Choix des luminaires

La première solution a pour avantage de pouvoir réaliser une commande séparée pour 3 rangées parallèles aux fenêtres et ainsi de mieux profiter de l’apport en éclairage naturel. Mais le coût est trop élevé.

La 2° solution a l’avantage également de proposer 3 rangées de luminaires. Elle est moins chère que la première solution mais plus chère que la 3°.

La 3° solution est la moins chère mais ne possède que 2 rangées.

Suite au calcul du temps de retour d’une commande de l’éclairage en 3 rangées parallèles, on a choisi de ne pas réaliser cette commande séparée. Dès lors, on a proposé au responsable technique la 3° installation pour l’éclairage général.

De plus, deux luminaires de 1 x 58 watts seront placés devant le tableau.

Choix des ballasts

Un calcul de rentabilité a été réalisé pour une classe de grandeur moyenne : de 4,3 m x 7,8 m.

Le surinvestissement pour un luminaire avec ballast électronique par rapport à un luminaire avec ballast conventionnel n’est récupéré qu’en 10 ans, grâce à la diminution des consommations.

Le responsable technique ne les a donc pas retenus.

Remarque sur le tableau de calcul

  • Le prix du ballast est compris dans le prix du luminaire. Dans le calcul, on a donc compté 0 € pour un ballast conventionnel, et pour le ballast électronique, on a compté la différence entre le luminaire avec ballast électronique et celui avec ballast conventionnel, de laquelle on retire la prime accordée par le distributeur pour l’utilisation de ballasts électroniques.
    Prime : 75 € par  kW installé initialement : 75 x (6 x 4 x 21,5/1 000)/6 = 6,45 € .
    Prix du ballast électronique : (53,8 – 34,6) – 6,45 = 12,75 €.
  • Le nombre de jours d’utilisation annuels = 38 x 5/2. La division par 2 tient compte de la proportion de temps où l’éclairage est allumé par rapport au temps où les locaux sont occupés.

Calculs

Pour reproduire vous même les calculs,

cliquez ici !

(Dans ce programme, il vous sera demandé d’insérer le prix que vous payez par kWh électrique consommé. Si vous ne le connaissez pas, vous pouvez l’estimer grâce aux informations reprises dans la théorie « coût moyen du kWh électrique économisé« ).


Calcul de rentabilité

Chiffrer le potentiel d’économie sur l’installation d’éclairage

Exemple : une classe de 6,6 m x 7,7 m (50,8 m²)
un niveau d’éclairement moyen recommandé de 300 lux
une durée d’occupation annuelle de 28 h/sem, 38 sem/an
une durée d’utilisation de l’éclairage de 532 h/an*

Ancienne installation

Nouvelle installation

Équipement 9 luminaires avec :
un globe opalin
4 lampes de 18 W type 340
ballast inductif
6 luminaires avec :
ventelles blanches
2 lampes de 36 W type 840
ballast électronique

Performance énergétique

Puissance installée (ballasts compris)

9 x 4 x 18 x 1,2** = 778 W

6 x 2 x 36 W = 432 W

Puissance spécifique

778 W/50,8 m2 = 15,3 W/m2 ou 10,2 W/m2/100 lux

432 W/50,8 m2 = 8,5 W/m2
ou 1,8 W/m2/100 lux

Niveau d’éclairement estimé

200 lux

354 lux

Coût énergétique

0,778 W x 532 h x 0,11 €/kWh = 46,6 €/an

0,432 W x 532 h x 0,11 €/kWh = 25,85 €/an

Coûts annuels de maintenance

Durée de vie des lampes 8 000 h 16 000 h
Coût d’achat des lampes 9 x 4 x 2,5 € x 532 h/8 000 h = 3,6 €/an 6 x 2 x 3,7 € x 532 h/16 000 h = 1,45 €/an
Coût de la main d’œuvre de remplacement des lampes

0 €/an***

0 €/an***

Économie annuelle

Économie totale

46,58 + 3,56 + 0*** – 25,85 – 1,45 – 0*** = 22,83 €

Investissement

Achat des luminaires 6 x 53,8 € = 322,8 €
Achat des lampes 6 x 2 x 3,7 €  = 44,1 €
Montage 6 x 62,5 € = 375 €
Prime – 75 x 0,778 = – 58,35 €
Investissement total 6758,55 €

Rentabilité

Temps de retour

30 ans

* tient compte de la proportion de temps où l’éclairage est allumé par rapport au temps où les locaux sont occupés,

** tient compte de la consommation du ballast,

*** les lampes sont remplacées par le père Lambrechts lui-même.


Choix de la gestion de commande

Pour chacun des « disfonctionnements » de la gestion de commande actuelle, relevés dans le diagnostic, on cherchera une solution parmi les différents suivants :

  • horloge générale,
  • zonage et commande séparée des différentes zones,
  • éclairage à 2 composantes (éclairage ponctuel) permettant un niveau d’éclairement général plus faible,
  • commande séparée des différentes rangées d’éclairage parallèles aux fenêtres,
  • minuteries,
  • détecteurs de présence,
  • dimming en fonction de la lumière du jour.

Un calcul de rentabilité permet de décider des éléments retenus.

Malheureusement, à l’heure actuelle, il n’existe pas de logiciel pour évaluer les économies réalisables par la gestion en fonction de la lumière du jour dans toutes les circonstances !

Choix de la gestion de commande

Dysfonctionnement n°1. Les classes bénéficient de beaucoup d’éclairage naturel. L’éclairage naturel vient des 2 côtés : d’un côté, il y a des baies en façade avant, de l’autre côté la paroi entre classe et couloir est vitrée sur la partie supérieure, le couloir possédant lui-même une paroi vitrée en façade arrière. Cependant, les luminaires sont allumés au matin et reste parfois sous tension lorsque l’éclairage naturel est suffisant.

> Commande des luminaires par rangées parallèles aux fenêtres

Nous n’avons pas envisagé le dimmage de l’éclairage en fonction de l’éclairage naturel car le temps de retour de cette rénovation est généralement élevé. De plus, le temps d’occupation est ici très faible, ce qui augmente encore le temps de retour. Enfin, les budgets d’une école sont limités.

Dysfonctionnement n°2.  Les couloirs bénéficient de beaucoup de lumière du jour. Cet éclairage naturel suffit amplement à partir d’une certaine heure (au plus tard à 9 h 00) et jusqu’à une certaine heure (au plus tôt à 16 h 00) variant au cours des saisons.
L’éclairage est allumé le matin à l’heure du début des cours.
Les luminaires actuels sont commandés par des interrupteurs à deux directions (donc pas de minuterie).
Ils restent donc souvent allumés inutilement pendant les heures de cours ou après le nettoyage le soir.

> Placement d’une horloge sur le circuit des luminaires des couloirs

Cette horloge pourrait être couplée à des détecteurs de présence au plafond permettant un contrôle après les heures de classe.
Cette solution aurait l’avantage de supprimer les interrupteurs qui sont souvent démolis dans les couloirs.
Cet élément de gestion ne fera ici que peu d’économie d’énergie. Nous n’avons donc pas fait de calcul de rentabilité.

Calculs de rentabilité

Commande par « rangées » parallèles aux fenêtres

Nous avons estimé qu’on pouvait gagner un tiers de la consommation annuelle de l’installation d’éclairage.

Le surcoût de placement par l’installateur du collège pour le câblage des luminaires en trois rangées et 3 interrupteurs plutôt qu’en une seule est de 87,5 €.

Nous avons fait un calcul de rentabilité pour les classes de 6,7 m x 7,8 m :

Gain annuel

1/3 x (3 x 2 x 56 x 532) x 0,11/1 000 = 6,7 €

Coût de placement

87,5 €

Temps de retour

13 ans

Horloge sur le circuit des couloirs

On a estimé que le placement de l’horloge permettrait de gagner 1 h/jour d’éclairage sur les 9 couloirs du bâtiment.

Le coût d’une horloge placée est de 62,5 €.

Gain annuel

9 x 8 x 30* x 1 x 5 x 38 x 0,11/1 000 = 46,175 €

* consommation d’une lampes 22 W avec son ballast.

Coût

62,5 €

Temps de retour

1,35 an

Conclusions

Les temps de retour d’une rénovation de l’installation d’éclairage sont très longs. Ceci était prévisible vu le faible temps d’utilisation de celle-ci.

C’est donc uniquement l’amélioration du confort qui a motivé la rénovation de l’installation d’éclairage des classes. Et aussi, ne l’oublions pas, le plaisir de donner un look nouveau à la classe !

Au niveau de la gestion de commande, seul le placement de l’horloge vaut la peine d’être envisagé pour des raisons de rentabilité.
Les détecteurs de présence seront placés pour pouvoir contrôler la présence après les heures de cours.

Seule une étude de l’éclairage a été réalisée ici. Cette étude devrait être complétée par une autre consistant à envisager le remplacement des tentures actuelles par des protections solaires. Celles-ci devraient avoir une transmission lumineuse suffisamment faible pour supprimer l’éblouissement, et suffisamment élevée pour que la diminution de la lumière pénétrant à l’intérieur du local ne rende pas obligatoire l’utilisation de la lumière artificielle.

Rendement d’une installation de chauffage central

Rendement d'une installation de chauffage central


Définition

Le rendement global d’une installation de chauffage central est le rapport entre les besoins réels en chauffage et la consommation annuelle :

ηglobal = besoins réels [kWh] / consommation annuelle [kWh]

Le ηglobal est donc le reflet de toutes les pertes liées à l’installation de chauffage :

ηglobal = ηproduction x ηdistribution x ηémission x ηrégulation

ηglobal = 100 % – % pertes de production – % pertes de distribution – % pertes d’émission – % pertes de régulation

> ηproduction

Au niveau de la chaudière, les pertes consistent en :

  • Des pertes par les fumées. L’entièreté de la chaleur contenue dans le combustible n’est pas transmise à l’eau. En effet, les fumées sont évacuées à une température relativement élevée.
  • Des pertes par rayonnement. Une partie de la chaleur de la flamme est transmise à des parois de la chaudière, non en contact avec de l’eau. Cette chaleur est perdue vers la chaufferie.
  • Des pertes à l’arrêt. En dehors des périodes de fonctionnement du brûleur, la chaudière perd sa chaleur vers la chaufferie, au travers de ses parois. De plus, si le foyer de la chaudière reste ouvert, un courant d’air refroidit le corps de la chaudière et évacue sa chaleur vers la cheminée.

> ηdistribution

Lorsque des conduits de distribution d’eau chaude parcourent des locaux non chauffés (chaufferie, vide ventilé, couloir, grenier, extérieur, …), ceux-ci perdent une partie de leur chaleur et celle-ci ne peut être récupérée utilement pour le bâtiment.

Il en va de même pour les vannes, circulateurs,… situés dans des endroits ne devant pas être chauffés.

> ηémission

Une partie de la chaleur émise par les émetteurs de chaleur (radiateurs, chauffage par le sol, …) est directement perdue sans avoir pu profiter au local.

Par exemple, un radiateur placé sur une paroi extérieure rayonne directement vers cette dernière. De même, un radiateur placé en dessous d’une fenêtre augmente la température de l’air le long de cette dernière et donc accentue ses déperditions.

> ηrégulation

Toute décalage (en puissance et en temps) entre la fourniture de chaleur et les besoins instantanés constitue une perte.

Par exemple, lorsque l’émission de chaleur ne se réduit pas à l’apparition du soleil dans un local.

Par exemple, l’inertie du bâtiment et de l’installation impliquent que la température intérieure ne se réduit pas instantanément lors de la mise au ralenti de l’installation. La remise en régime n’est pas, non plus instantanée, et demande d’anticiper l’occupation.


Ordre de grandeur

Type d’installation

Rendements en %
global = ηproduction x ηdistribution x ηémission x ηrégulation)

ηproduction

ηdistribution

ηémission

ηrégulation

ηglobal

Très ancienne chaudière surdimensionnée ou très peu performante, longue boucle de distribution (années 60-70) 75 .. 80 % 80 .. 85 % 90 .. 95 % 85 .. 90 % 46 .. 58 %
Ancienne chaudière bien dimensionnée, courte boucle de distribution 80 .. 85 % 90 .. 95 % 95 % 90 % 62 .. 69 %
Chaudière haut rendement, courte boucle de distribution, radiateurs isolés au dos, régulation par sonde extérieure, vannes thermostatiques, … (années 90 et début 2000) 90 .. 93 % 95 % 95 .. 98 % 95 % 77 .. 82 %
Chaudière mazout à condensation actuelle, bien dimensionnée et qui condense 97 .. 98 % 95 % 95 .. 98 % 95 % 83 .. 87 %
Chaudière gaz à condensation actuelle, bien dimensionnée et qui condense 101 .. 103 % 95 % 95 .. 98 % 95 % 87 .. 91 %

Découvrez cet exemple de remplacement du système de chauffage (chauffage central à mazout) à la Maison de Repos et de Soins Ferdinand Nicolay à Stavelôot.

Gestion des installations par bus de terrain


Objectif

L’objectif d’une telle installation est double :

> Flexibilité : dans les bâtiments tertiaires, les extensions et modifications dans l’utilisation des réseaux entraînent de fréquents recâblages. Les câbles s’ajoutent aux câbles et leur densité devient telle que les nouvelles interventions sont de plus en plus longues et coûteuses.

> Gestion énergétique : les occupants des bâtiments tertiaires ne sont guère soucieux de la gestion des installations techniques. Ce n’est d’ailleurs pas leur mission. Il faut donc pallier à cette déresponsabilisation en créant la fonction de « concierge automatique », tout en ne perturbant pas le confort des occupants.

Une installation électrique traditionnelle montre ses limites par rapport à ces deux objectifs, principalement en ce qui concerne la flexibilité.


Principe général

Ce qui différencie une installation électrique pilotée par un réseau de communication et une installation « traditionnelle » est la séparation entre les circuits de puissance et les circuits de commande.

En effet, dans une installation traditionnelle, les organes de commande font partie intégrante du circuit de distribution « courant fort ». Il n’existe qu’un seul circuit : commande et puissance sont mélangées.

Dans une installation avec réseau de communication, on distingue deux réseaux physiquement séparés :

  1. la distribution d’énergie aux équipements. C’est le circuit de puissance;
  2. le pilotage et la commande des équipements. C’est le circuit de commande.


Circuit de commande

Le circuit de commande est réalisé à partir d’un câble (de type paire torsadée, coaxial, ondes radios, …) appelé « bus » ou « bus de terrain ».

Ce support de communication permet à tous les produits connectés (équipements, capteurs, actionneurs) d’échanger des informations suivant un « protocole de communication » déterminé (ensemble de règles de communication).

Dans une version avec câblage filaire, l’ensemble des participants au réseau sont connectés en parallèle aux deux mêmes conducteurs du bus, ce qui limite et simplifie le câblage, ce dernier parcourant le bâtiment en étoile, en arborescence, en boucle, …

Le protocole de communication permet aux participants au réseau de communiquer entre eux : qui prend la parole ? Comment on communique ? Avec qui ? Avec quelle autorité ? … C’est ainsi que chaque produit, capteur ou actionneur relié au réseau possède suffisamment d’intelligence pour détecter seul un changement d’état et de transmettre, en fonction de son programme, le message adéquat. Les capteurs et les actionneurs sont donc devenus communicants.

Dans un tel système, les capteurs sont des donneurs d’ordre (boutons-poussoirs, interrupteurs, régulateurs, sondes, …). Les actionneurs représentent les sorties du système qui font office d’interfaces de puissance pour piloter les équipements terminaux.

Actionneur : module à 4 sorties permettant la transmission de la commande vers 4 équipements.

L’intelligence des réseaux modernes de communication est répartie.

Les automates de la première génération nécessitaient un raccordement en étoile vers les participants. Chaque capteur ou actionneur était uniquement raccordé à l’automate qui gérait le fonctionnement. Les évolutions électroniques ont permis des solutions plus simples à câbler et à utiliser.

Grâce à leur électronique interne, chaque émetteur et récepteur d’ordre est devenu autonome. Il dispose en interne d’une capacité de communication et d’une mémoire reprogrammable qui lui permettent d’émettre des ordres, d’en recevoir, de les interpréter et de les exécuter. N’importe quel produit peut communiquer avec n’importe quel autre.

 

Les capteurs sont composés d’un module standard de communication avec le bus qui contient toute l’intelligence décentralisée. Sur ce module peut se placer n’importe quel type de capteur : simple interrupteur, interrupteur à plusieurs sortie, dimmer, détecteur de présence, thermostat, … . Ils sont tous interchangeables ce qui permet une grande flexibilité.

Exemple : le codage d’un signal dans le système

bus EIB.

Pour dialogueur entre eux, les produits échangent des informations traduites en signaux binaires (0-1). Ces données sont transmises en mode série et se superposent à la tension d’alimentation du bus (29 V DC). La transmission s’effectue en mode différentiel. Les données sont émises simultanément sur les deux conducteurs du bus, garantissant une très bonne immunité aux perturbations, d’autant plus que le système est isolé de la terre.

L’unité d’information élémentaire (le bit) se présente sous forme d’un signal de type alternatif de 5 V pour le 0 et d’un blanc pour le 1.

Exemple : schéma de raccordement de l’éclairage de bureaux.

La commande de l’éclairage est constituée de boutons-poussoirs dans chaque bureau. Un bouton-poussoir général permet au gardiennage une extinction centralisée.

Les circuits de puissance et de commande sont câblés comme suit :

La configuration du système va consister à relier les différents organes de commande et les équipements.

La première étape est l’identification des entrées et des sorties. Dans les systèmes simples, la sélection des émetteurs et des récepteurs d’ordre pour l’élaboration des liens de configuration est obtenue grâce à des boutons-poussoirs de validation au niveau d’un module de configuration raccordé au bus. On définit ainsi qui commande quoi. Il faut ensuite spécifier comment s’effectue la commande. Cela peut se faire sur les produits directement ou à l’aide d’un outil de configuration.

Module de configuration branché sur le bus.

Porte de communication pouvant se placer sur le module de communication d’un capteur et permettant de brancher un ordinateur portable sur le bus pour la configuration.

Par exemple, il y aurait deux types de commande à paramétrer :

  • La fonction marche/arrêt pour les boutons-poussoirs de chaque bureau (inversion d’état à chaque appui);
  • La fonction d’extinction pour toutes les sorties éclairage du même niveau par le bouton-poussoir central.

La configuration consiste donc à associer à chaque organe de commande une ou plusieurs sorties et à définir le type d’action souhaitée.

De câblée et figée dans une installation est opérationnelle, la relation entre l’organe de commande et les récepteurs se transforme, dans une installation communicante, en un système basé sur des liens logiques, souples et évolutifs.

Cette notion d’adressage logique permet des modifications aisées, la plupart du temps sans aucune intervention sur le câblage.


LON bus, EIB bus, … ?

Actuellement, deux standards de communication semblent se développer : le LON bus et le EIB bus.

On parle de « standards » car ces systèmes sont reconnus par un ensemble de fabricants de matériel électrique et permettent donc à de nombreuses marques de se raccorder sur un même réseau et de communiquer ensemble.

Tous les éléments portant le label « LON Mark » sont compatibles. Il en va de même pour les éléments portant le label « EIB ».

Ceci en opposition avec un système dit « propriétaire » qui ne peut fonctionner qu’avec les équipements de la marque qu’il l’a créé.

Le label « EIB » a été créé par un ensemble de fabricants de matériel électrique. Il est développé par une association indépendante. Par exemple si le fabricant « x » désire créer un module de comptage compatible EIB, il doit attendre que l’association développe le protocole de communication de ce module, s’il n’existe pas encore. Ceci a comme désavantage que les fabricants ne peuvent créer librement de nouvelles fonctionnalités à leur système, mais comme avantage que tous les produits portant le label EIB sont directement raccordables entre eux et entièrement compatible, sans programmation.

Le label « LON Mark » a été créé par un ensemble de fabricants de matériel HVAC. Dans le cas de ce standard, les fabricants peuvent directement créer leurs applications suivant un protocole commun. La compatibilité entre les équipements de marques différentes n’est pas toujours totale puisque les fabricants désirent souvent garder un certain secret de fabrication. Le raccordement d’éléments de marques différentes sur un bus « LON » demande donc souvent un certain travail de programmation pour rendre l’ensemble compatible.

Type de bus Caractéristiques
EIB Compatibilité directe sans programmation.

Toute nouvelle application doit attendre le développement par une association centralisatrice.

Potentialités pour la gestion des équipements HVAC limitées (en cours de développement).

LON Mark Facilité pour les fabricants de créer de nouvelles applications.

La compatibilité globale demande une programmation.

Orienté HVAC.

Signalons qu’un regroupement vient de se finaliser entre le système EIB et les systèmes de bus BATIBUS et EHS pour créer un standard commun sous le nom de Konnex (ou « KNX »).

Il est possible de raccorder ensemble un réseau EIB, un réseau LON et des applications conçues avec un bus propriétaire. Cela demande l’utilisation d’interface de communication et une programmation au niveau d’un système de supervision pour rendre l’ensemble compatible. Il y a encore peu de temps, cela semblait relativement ardu à mettre en œuvre, mais une standardisation semble petit à petit se développer via les standards « BACnet » ou « OPC ».

Schéma d’intégration de différents protocoles de communication au sein d’un système de gestion complet du bâtiment.


Immotique

On comprend aisément que le réseau communiquant peut déborder de la simple gestion des équipements électriques. On peut rajouter dans un système de gestion complet d’un bâtiment : la régulation d’accès au bâtiment, le contrôle anti-infraction, le contrôle incendie, la gestion des protections solaires, le contrôle des fluides dans les hôpitaux, …

Exemple : schéma de gestion complet des installations techniques. 

Modèles d’isolation – plancher léger avec aire de foulée

Modèles d'isolation - plancher léger avec aire de foulée

L’isolation du plancher léger de combles circulables peut se faire par divers systèmes :


Panneaux semi-rigide entre les gîtes

L’isolant semi-rigides est généralement de la laine minérale.

Il est posé entre les gîtes, sur le plafond de l’étage inférieur.

La largeur de l’isolant est légèrement supérieure à l’espace disponible entre les gîtes (1 ou 2 cm). De cette façon l’isolant est bien maintenu hermétiquement contre les gîtes et les courants d’air accidentels sont évités.

L’isolant peut occuper toute la hauteur de l’espace entre les gîtes ou une partie seulement.

Lorsqu’un pare-vapeur est nécessaire, celui-ci est fixé sous les gîtes avant la réalisation du plafond.

Finalement, l’aire de foulée est placée au-dessus du gîtage.

Isolant semi-rigide entre gîtes d’un plancher circulable.

  1. Gîte.
  2. Isolant (remplissage partiel).
  3. Pare-vapeur.
  4. Finition du plafond.
  5. Isolant (remplissage complet).
  6. Aire de foulée.

Matelas souples à languettes entre les gîtes

Le matelas souple muni d’un pare-vapeur est un matelas de laine minérale revêtu, par exemple, de papier kraft et de kraft-aluminium sur la face chaude (côté inférieur). Le kraft aluminium fait office de pare-vapeur. Il dépasse de quelques cm les bords du matelas isolant (languettes).

Le matelas isolant est placé par dessous. Les languettes sont agrafées à la face inférieure des gîtes en se recouvrant partiellement. Les plafonds sont finalement mis en place.

L’isolant peut occuper toute la hauteur de l’espace entre les gîtes ou une partie seulement.

L’aire de foulée peut être posée avant ou après l’isolant.

Remarque : la largeur du matelas doit être adaptée à l’entre-axe des gîtes.

Matelas de laine minérale en rouleau à languettes.

Matelas isolant avec languettes entre gîtes d’un plancher circulable.

  1. Gîte.
  2. Isolant souple.
  3. Papier Kraft.
  4. Languettes superposées agrafées.
  5. Pare-vapeur en Kraft-Aluminium.
  6. Finition du plafond.
  7. Aire de foulée.

Panneaux rigides entre les gîtes

L’isolant rigide est généralement de la mousse synthétique (PUR, PIR, XPS, EPS).

Il est posé entre les gîtes, sur le plafond de l’étage inférieur.

L’isolant étant rigide, il est difficile de l’ajuster exactement avec les gîtes. Pour cette raison, la largeur de l’isolant mis en œuvre est légèrement inférieure à l’espace disponible entre les gîtes (1 ou 2 cm). Ainsi, une mousse de polyuréthane peut être injectée facilement entre l’isolant et la gîte.

Cette mousse assure une continuité de l’isolant jusqu’à la gîte et une protection contre les courants d’air accidentels.

L’isolant peut occuper toute la hauteur de l’espace entre les gîtes ou une partie seulement.

Lorsque un pare-vapeur est nécessaire, celui-ci est fixé sous les gîtes avant la réalisation du plafond.

Finalement, l’aire de foulée est placée au dessus du gîtage.

Panneaux isolants rigides entre gîtes d’un plancher circulable .

  1. Gîte.
  2. Pare-vapeur.
  3. Finition du plafond.
  4. Isolant rigide.
  5. Aire de foulée.
  6. Mousse injectée.

Flocons ou granulés d’isolant entre les gîtes

Le matériau isolant utilisé est constitué de granulés de perlite ou de polystyrène expansé, ou de flocons de laine minérale posés en vrac entre les gîtes, sur le plafond de l’étage inférieur.

Lorsque un pare-vapeur est nécessaire, celui-ci est fixé sous les gîtes avant la réalisation du plafond.

Finalement, l’aire de foulée est placée au dessus du gîtage.

Isolant posé en vrac entre les gîtes d’un plancher circulable.

  1. Gîte.
  2. Pare-vapeur
  3. Finition du plafond.
  4. Isolant en vrac.
  5. Aire de foulée.

Isolation semi-rigide entre lambourdes sur une plaque de support

L’isolant semi-rigide est généralement de la laine  minérale.

Sur le gîtage est posé un plancher destiné à supporter l’isolant. Le pare-vapeur éventuel est déroulé soigneusement sur ce plancher.

Des lambourdes d’une épaisseur au moins équivalente à celle de l’isolant sont ensuite placées à intervalle régulier sur le plancher support et son pare-vapeur éventuel.

L’espace entre les lambourdes est déterminé par la largeur des panneaux isolants prévus (largeur de panneau moins +/- 2 cm).

De cette façon l’isolant est bien maintenu hermétiquement contre les lambourdes et les courants d’air accidentels sont évités.

Si pour des raisons techniques, l’entredistance entre les lambourdes devaient être différents, la largeur des panneaux doit être adaptée.

L’étanchéité sera assurée par le pare-vapeur s’il existe, sinon à l’air par le plafond ou la plaque de support de l’isolant.

Finalement, l’aire de foulée est fixée à la face supérieure des lambourdes.

Isolation entre lambourdes au-dessus du gîtage d’un plancher circulable .

  1. Lambourdes.
  2. Isolant.
  3. Pare-vapeur.
  4. Plancher support de l’isolant.
  5. Aire de foulée.
  6. Finition du plafond.

Isolation rigide sur une plaque de support

L’isolant rigide est généralement de la mousse synthétique (PUR, PIR XPS, EPS).

Sur le gîtage est posé un plancher destiné à supporter l’isolant. Le pare-vapeur éventuel est déroulé soigneusement sur ce plancher.

L’isolant est ensuite déposé de façon continue, les panneaux étant parfaitement jointifs.

L’étanchéité à l’air sera assurée par le pare-vapeur s’il existe, sinon par le plafond ou la plaque de support de l’isolant.

L’aire de foulée est posée soit directement sur l’isolant, soit, lorsqu’il s’agit de planches en bois, sur des lattes posées sur l’isolant. Le plancher de bois est cloué sur ces lattes.

Isolation continue au-dessus du gîtage d’un plancher circulable.

  1. Aire de foulée.
  2. Isolant.
  3. Pare-vapeur.

Évaluer les gains et la rentabilité du remplacement des châssis

Évaluer les gains et la rentabilité du remplacement des châssis

Les gains se situent au niveau de :


La diminution de la facture énergétique

Le remplacement des fenêtres par des fenêtres plus performantes permet d’économiser beaucoup d’énergie.
Un calcul de rentabilité financière du remplacement d’un vitrage par un vitrage plus performant au niveau énergétique devrait, en principe, tenir compte de l’amélioration du coefficient de transmission thermique U (anciennement k), mais également de la diminution des facteurs solaire g(anciennement FS) et de transmission lumineuse TL ainsi que de l’amélioration de l’étanchéité à l’air de la menuiserie et de ses raccords.

Nous ne tiendrons compte, dans le calcul qui suit que de l’amélioration du coefficient de transmission thermique.

Exemple.

Soit un bâtiment de bureaux non climatisé datant de 1965 et situé à Uccle. La température intérieure est maintenue à 20°C en journée. Le bâtiment est équipé d’une installation de chauffage au mazout dont le rendement est évalué à 70 %. On dispose de châssis en bois simple vitrage. Les fenêtres ont des dimensions de 3 m 50 x 2 m. On les remplace par des châssis en bois à vitrage à haut rendement. On estime à 290 €/m² le prix de revient moyen des châssis haut rendement (matériel et placement, TVA comprise).

Calculs

Si vous voulez accéder aux détails des formules utilisées ci-dessous.

Évaluer

Pour calculer le coefficient de transmission thermique (Uw), à partir du coefficient de transmission thermique du châssis (Uf) et du vitrage (Ug).

Gain énergétique annuel :

  • Coefficient de transmission thermique (U) moyen pour l’ensemble de la fenêtre simple vitrage (dont 20% de châssis) :

Ufen = 0,7 UVC + 0,3 Uch + 3 U=
0,8 x 5,8 + 0,2 x 1,8 + 0 = 5,0  W/m²K.

  • Coefficient de transmission thermique (U) moyen pour l’ensemble de la fenêtre haut rendement :

Ufen = 0,7 UVC + 0,3 Uch + 3 U=
0,8 x 1,1 + 0,2 x 1,8 + 3 x 0,07 = 1,45 W/m²K.

  • δU = 3,55 W/m²K.
  • La température équivalente moyenne intérieure est de (20° – 3°(intermittence) – 3° (apports gratuits)) = 14°C.
  • La température équivalente extérieure est de 6,5°C.
  • La durée de la période de chauffe est de 242 jours, soit 5 800 heures.
  • Le gain énergétique annuel par m² de fenêtre remplacée est donc de :

(ΔU x S x Δ Tm) / η) x durée de chauffe =
3,55 x 1 x 7,5 x 5 800 / 0,7 = 220  600 Wh =
221 kWh, soit 22,1 litre de gasoil.

Exemple de rentabilité

  • Avec un prix du gasoil de 0,8 € par litre, l’économie financière annuelle par m² de fenêtre est de 17,7 €.
  • Le temps de retour de l’isolation est donc de (290 / 17,7) = 16 ans.
  • À noter que si le bâtiment est chauffé jour et nuit (hôpital, maison de repos) et que l’on considère une température moyenne intérieure de 21°C, l’économie monte à 33,8 litre de gasoil/m² et le temps de retour descend à 11 ans.
  • Si le bâtiment est situé en Ardennes, le temps de retour descend à 12 ans (bureau) ou 8 ans (hôpital).
  • Si l’institution (bureau d’une administration ou home) obtient la prime UREBA de 30 %, (ou une autre prime et déduction fiscale pour les bureaux privés), le prix du châssis descend à 203 €/m², et donc les temps de retour descendent à :
Bureau Home
Brabant 11 ans 7,5 ans
Ardennes 8,5 ans 5,5 ans
  • Si le chantier est important et qu’une négociation est possible, le prix peut encore descendre. Voici les résultats de statistiques établies sur 35 chantiers (source UREBA- prix HTVA) :

  • Ces évaluations n’intègrent pas l’économie éventuelle complémentaire liée à l’amélioration de l’étanchéité des châssis.

Calculs

Si vous voulez calculer vous-même la rentabilité du remplacement de vos fenêtres.
Dans le programme de calcul ci-dessus, il vous sera demandé le coefficient de transmission thermique de la fenêtre (U) avant et après remplacement. Les valeurs nécessaires peuvent être calculées à partir des caractéristiques du vitrage et du châssis.

Évaluer

Il vous sera également demandé d’évaluer le rendement de votre installation de chauffage.
Vous trouverez des indications concernant les valeurs à considérer pour une installation à eau chaude. Pour le chauffage électrique, le rendement est de 95  %.

En dehors du contexte d’un remplacement obligatoire, le remplacement d’un simple vitrage par un double, n’est pas très « rentable ». Cependant, vu l’évolution des coûts prévisibles de l’énergie dans les années futures et l’accroissement de confort engendré par un vitrage plus performant, une amélioration progressive paraît être un placement logique pour un gestionnaire de patrimoine.


L’amélioration du confort

Le remplacement des fenêtres va augmenter la température de surface côté intérieur des fenêtres, augmentant ainsi le confort thermique pour les occupants, et réduisant les risques de condensation de surface et donc les problèmes d’hygiène.

Vous pouvez évaluer la température de surface côté intérieure de la fenêtre à l’aide de la formule :

ηoi = ηi – (U x 0,125 x (ηi – ηe))

avec :

  • ηi : température intérieure (en °C),
  • ηe : température extérieure (en °C),
  • U : coefficient de transmission thermique de la fenêtre (en W/m²K),
  • ηoi : température de surface côté intérieur de la fenêtre (en °C).

Par exemple, s’il fait 0° à l’extérieur et 20°C à l’intérieur, la température du simple vitrage sera de 5,5°C. Elle passera à 17° avec un double vitrage isolant !

Remarque : le calcul de cette température ne tient pas compte du rayonnement direct du soleil sur la vitre. La formule n’est donc valable que lorsqu’il n’y a pas de soleil direct sur la fenêtre ou pour une orientation nord.


La protection du bâtiment

Le remplacement des vieux châssis par des châssis plus performants permet d’éviter la condensation superficielle sur ceux-ci. Celle-ci se forme sur les vitrages et les châssis peu performants. L’eau ainsi formée risque d’engendrer des tâches ou de la moississure sur les mastics et châssis, sur les tablettes et allèges, dues aux gouttelettes ruisselantes.

Néanmoins, ne perdons pas de vue qu’un vitrage peu performant constitue le lieu privilégié de la formation prioritaire de condensation. Lorsqu’il est remplacé par un vitrage plus performant, la condensation risque de se « déplacer » vers d’autres parois mal isolées (linteau ou retour de baie, par exemple). Or celles-ci risquent d’être plus sensibles aux moisissures (un papier peint constitue un terrain plus nourrissant qu’une vitre).

Ce phénomène se produira d’autant plus que l’ancien châssis constituait une « passoire » en matière d’étanchéité, assurant donc la ventilation du bâtiment. Une fois les châssis renouvelés, le bâtiment sera plus étanche et le taux d’humidité intérieur risque d’augmenter. La condensation sur les parois froides ne se produira pas si ces parois ne présentent pas de ponts thermiques ou si la ventilation est bien assurée.

Dans les vieux bâtiments, un remplacement des châssis doit donc être accompagné d’une réflexion sur la gestion de l’humidité par un système de ventilation (placement d’une hotte, d’un ventilateur d’extraction d’air, tout particulièrement à proximité de buanderies, de salles de douches, de cuisines collectives,…).


La diminution des rejets polluants

Du point de vue environnemental, le remplacement des vitrages réduit fortement les rejets de gaz polluants (CO2, SO2, NOX, …)

Exemple.

Le remplacement des vitrages dont il est question dans

l’exemple ci-dessus (supposons une surface de vitrage de 100 m²), permet de diminuer les rejets annuels (chauffage au mazout) :

  • d’environ 221 kWh/m² x 100 m² x 0,264 kg CO2/kWh = 5  834 kg de CO2
  • d’environ 221 kWh/m² x 100 m² x 0,169 mg NOx/kWh = 3,7 kg de NOx

Enduits extérieurs

Enduits extérieurs


Les types d’enduits

Il existe trois grands groupes d’enduits applicables sur les panneaux isolants : les enduits minéraux, les enduits résineux et les enduits aux silicates et aux silicones.

L’enduit faisant partie d’un système isolant-enduit sera de préférence prédosé en usine. Il est composé de charges, d’eau, d’un ou plusieurs liants, et éventuellement d’adjuvants et de pigments.

Le liant d’un enduit minéral est le ciment ou la chaux, ou encore un mélange des deux.
Le liant d’un enduit résineux est constitué d’un ou de plusieurs types de résines.
Le liant d’un enduit aux silicates et aux silicones est un liant silicieux.

Les enduits minéraux sont plus épais que les enduits synthétiques ou aux silicates et aux silicones.

Les enduits utilisés sur les panneaux isolants sont généralement « décoratifs » et diffèrent par leur aspect et leur couleur. Ils peuvent être lisse, crépi, roulé, peigné, gratté, lavé, projeté, etc.

Les enduits appliqués sur isolant sont munis d’un treillis de renforcement, synthétique ou métallique, résistant aux alcalis et à la corrosion.


Les précautions à prendre

L’isolation extérieure couverte d’un enduit est un système qui combine l’usage de plusieurs produits. Chaque système doit avoir été étudié et testé par son fabricant. Il devrait idéalement faire l’objet d’un agrément technique. Le système doit être mis en œuvre en respectant les prescriptions du fabricant et de l’agrément technique éventuel. Les limites d’utilisations prescrites doivent également être respectées.
Le système doit être appliqué dans son ensemble : isolant, enduit, fixation, armature, finition, accessoires, détails techniques, etc.

Le support doit être vérifié et préparé avant pose du système.

La date limite d’utilisation des matériaux livrés sera vérifiée à la réception.

Le transport et le stockage se feront dans les emballages d’origine, en tenant compte des précautions prescrites.

Les enduits préfabriqués proviendront par façade d’un même lot de fabrication afin d’éviter les différences de teintes surtout si l’enduit est coloré.

Des protections seront utilisées contre les conditions climatiques défavorables.

L’enduit ne pourra être appliqué dans des conditions extrêmes. Outre les limites expresses imposées par le fabricant ou l’agrément technique, l’enduit ne sera pas appliqué :

  • lorsque la température risque de monter au-dessus de + 30 °C ou de descendre en dessous de + 5 °C pendant l’application ou le durcissement;
  • lorsque le mur est en plein soleil;
  • par vent sec;
  • par pluies battantes;
  • lorsque le support est humide ou gelé.

L’entretien de l’enduit

Les facteurs extérieurs peuvent, avec le temps, altérer l’aspect de l’enduit et le dégrader par endroit.

On déterminera d’abord les causes éventuelles des désordres. Les fines fissures stabilisées sont pontées avant application d’un enduit de réparation. Les parties désolidarisées (qui sonnent creux) décapées et refaites.

Les algues et mousses sont éliminées à l’aide de produits appropriés et les matières mortes sont brossées.

Les efflorescences sont éliminées à sec.

L’enduit est ensuite brossé à sec ou nettoyé au jet d’eau.

On applique généralement une peinture perméable à la vapeur d’eau, adaptée à l’enduit. On peut également appliquer une couche supplémentaire d’enduit si la couche existante possède les qualités mécaniques nécessaires et permet l’adhérence de la nouvelle couche.

Les microfissures stabilisées sont colmatées par une peinture à base de ciment ou une fine couche d’enduit.


Les informations utiles

La note d’information technique (NIT) n° 209 du CSTC concerne les enduits posés, entre autres, sur des panneaux d’isolation thermique.

Protections intégrées aux vitrages doubles

Protections intégrées aux vitrages doubles

Store vénitien inséré dans un vitrage double.


Certaines caractéristiques de ces types de store sont tout à fait semblables à celles des autres stores enroulables (en particulier les stores intérieurs réfléchissants) ou vénitiens. Nous ne décrirons donc ici que les propriétés propres à l’insertion de ces produits à l’intérieur du double vitrage.


Les stores enroulables réfléchissants

Description

Photo stores enroulables réfléchissants.

Un store en toile réfléchissante se déroule dans l’espace intérieur du double vitrage. L’épaisseur de la lame d’air doit alors être au minimum de 12 mm.

Facteur solaire

D’une manière générale : FS associé à un double vitrage = .. 0,12 ..

Transmission lumineuse

D’une manière générale : TL = 0,03 ..0,04

Pouvoir isolant

Le coefficient U d’un double vitrage clair standard (remplissage air) peut diminuer de près de 35 % grâce au déploiement de la protection.


Les stores vénitiens

Description

Photo stores vénitiens.

Des lames orientables sont montées horizontalement à l’intérieur du double vitrage.

Facteur solaire

D’une manière générale : FS associé à un double vitrage = .. 0,17 ..
Le degré de protection dépend de l’inclinaison des lames par rapport aux rayons du soleil.
Exemple :

Pouvoir isolant

Lorsque les lamelles sont orientées en position verticale, le coefficient U d’un double vitrage peut diminuer de 20 à 30 % (en fonction de la couleur des lamelles) grâce à la protection. Une orientation des lames à 45° réduit ce gain de moitié.

Moduler la protection par rapport aux besoins

Contrairement aux stores vénitiens extérieurs ou intérieurs, les stores vénitiens intégrés ne peuvent être remontés. La modulation de la protection est réalisée uniquement par l’orientation des lamelles.

Comprendre la sensation de froid liée à la production

Comprendre la sensation de froid liée à la production


Sous-dimensionnement du générateur de chaleur

Cela est excessivement rare mais ça arrive !

En effet, il faut savoir que la plupart des installations de chauffage existantes sont surdimensionnées, même fortement surdimensionnées.

Évaluer

On peut vérifier le dimensionnement d’une chaudière en calculant le temps de fonctionnement annuel du brûleur et en comparant ce chiffre à un temps estimé correct en fonction du type de bâtiment. Cette estimation ne peut se faire qu’en connaissant la puissance du brûleur et la consommation annuelle de combustible. Pour approfondir cette méthode d’évaluation.

Encrassement de la chaudière

L’encrassement d’une chaudière diminue l’échange de chaleur entre les fumées et l’eau. Les fumées sont donc évacuées plus chaudes vers la cheminée (1 mm de suie dans la chaudière équivaut à une augmentation de 50°C de la température des fumées). Il en résulte :

  • une perte de rendement,
  • une perte de puissance de la chaudière.

En principe, l’encrassement étant un phénomène dynamique, l’inconfort qui y serait lié doit s’amplifier en attendant l’entretien des installations.

L’encrassement excessif des installations peut avoir comme cause :

  • des démarrages de brûleur trop fréquents liés à un surdimensionnement de l’installation ou un différentiel de régulateur trop faible,
  • l’encrassement de la chaufferie, le brûleur aspirant son air dans celle-ci. Nous avons, par exemple, rencontrés des brûleurs dont l’amenée d’air est partiellement obturée par les pluches issues de la buanderie voisine,
  • un manque de ventilation de la chaufferie, entraînant une mauvaise combustion,
  • un mauvais réglage de la combustion.

Évaluer

Pour en savoir plus sur les causes de démarrage trop fréquents du brûleur

Évaluer

Pour en savoir plus sur les causes d’une mauvaise combustion

Réglementations

Pour en savoir plus sur les exigences de ventilation des chaufferies

Cas particulier de la pompe à chaleur

Un défaut de puissance

Une pompe à chaleur sur l’air extérieur présente l’important défaut de produire d’autant moins de chaleur qu’il ne fait froid à l’extérieur… Or c’est précisément à ce moment que le bâtiment demande une forte puissance de chauffe.

Si cela apparaît fréquemment en période de très grands froids, ce problème ne peut se résoudre que par l’adjonction d’un appoint, appoint électrique direct (donc coûteux à l’exploitation) ou appoint thermique par une chaudière (en mode monovalent ou bivalent).

Concevoir

Pour en savoir plus sur la conception de l’appoint de la pompe à chaleure

Le problème du dégivrage

Si le froid apparaît plutôt pour des températures extérieures avoisinant les 5°C, on soupçonnera le phénomène de dégivrage :

  1. le fluide frigorigène présente une température en dessous de 0°C
  2. la vapeur d’eau contenue dans l’air ambiant condense et puis prend en glace, obstruant alors l’échangeur
  3. le cycle est temporairement inversé pour faire fondre la glace
  4. de l’air froid est pulsé dans les locaux.

À noter que ce phénomène est moins crucial en période de gel car l’air est plus sec et la glace apparaît sous forme de cristaux qui s’envolent avec l’air pulsé.

Si l’appareil est modulaire, une solution peut consister à décaler les périodes de dégivrage des différents modules de la PAC.

Améliorer

Pour en savoir plus sur l’amélioration du fonctionnement de la pompe à chaleur

Choisir un préparateur instantané à plaques

Choisir un préparateur instantané à plaques


Choix de la source de chaleur

Le préparateur instantané a pour qualité essentielle d’assurer de l’eau chaude sanitaire en quantité voulue à n’importe quel moment de la journée.

Source de la chaleur

Un préparateur électrique est très difficilement réalisable, vu l’importance de la puissance nécessaire (un préparateur 12 litres/minute requiert une puissance de 24 kW, soit une ligne de 100 A environ !). Pour s’en convaincre, il suffit de penser au percolateur à café. Avec 1 kW de puissance, il arrive tout juste à réaliser un fin filet d’eau bouillante… C’est parfait pour conserver l’arôme du café… mais c’est inimaginable pour assurer les douches en parallèle après le match de foot ! Et puis, ce serait en courant de jour…

Clairement, l’échangeur instantané s’associe à une chaudière à fuel ou gaz.


Préparateur instantané « pur »

Le chauffage de l’eau se fait dans un échangeur à plaques très compact. Une boucle d’eau chaude sanitaire sera presque automatiquement associée au projet pour lisser les variations de la température de l’eau.

La régulation de cette température se fait via le réglage d’une vanne trois voies au primaire. Cette vanne doit être très « nerveuse » pour réagir rapidement à des variations de la demande. Une régulation PID est nécessaire.

Schéma principe de l'échangeur à plaques.

Ce type de préparation génère un faible encombrement et une faible charge au sol.

Par contre, elle oblige à un maintien en température de la chaudière à haute température. Ce n’est pas heureux en été et cela va à l’encontre de l’évolution actuelle vers une régulation à température glissante (une chaudière « à la température juste nécessaire »). À ce titre, un ballon accumulateur est quand à lui chauffé une ou deux fois dans la journée et la température de la chaudière redescend le reste du temps.

Pour plus de détails, voir dans les critères de choix du mode de préparation d’eau chaude.

On voit donc qu’un préparateur instantané pur ne se justifie que pour rencontrer des besoins importants et assez continus (piscine par exemple).

Puissance

La production instantanée demande généralement une puissance de générateur très importante. Pour dimensionner cette installation, cliquez ici !

Dans le cas d’une production d’ECS combinée au chauffage, il sera peut être nécessaire de surdimensionner la chaudière uniquement pour l’ECS. Ce qui serait une mauvaise utilisation de l’investissement consenti. On préférera compléter l’installation par un ballon d’appoint : c’est le semi-instantané.

Rendement de distribution

Lors du calcul de la puissance d’installation, on admet que, pendant la durée du prélèvement maximal, le rendement de distribution est égal à 1 (pas de mise en température du volume mort, les déperditions étant faibles par rapport à l’énergie fournie).


Préparateur semi-instantané

Photo préparateur semi-instantané.

Pour améliorer la stabilité de la température d’eau chaude, il est possible d’augmenter le volant tampon de la boucle en mettant un réel ballon en série. Deux schémas sont possibles :

  • Soit l’échangeur est inclus dans le ballon :

Schéma préparateur semi-instantané avec échangeur est inclus dans le ballon.

  • Soit le ballon est placé en appoint et se met en service dès que la température de 60 °C par exemple n’est plus atteinte au départ de la boucle. La vanne s’ouvre et le circulateur se met en fonction. Son débit horaire est égal à 4 fois la capacité du ballon.

Cette capacité permet, en cas de soutirage important, d’assister le préparateur instantané par le préchauffage « préventif » d’une réserve.
Dans le même esprit, le schéma ci-dessous nous paraît plus simple et donc probablement meilleur :

Ce type d’installation est capable d’assurer avec souplesse la fourniture de besoins assez variables.

Plus le réservoir sera important, plus la puissance de chauffe pourra être réduite. Une régle de bonne pratique montre qu’avec une capacité tampon (en litres) de 5 x Puissance exprimée en kW, on peut diminuer de moitié la puissance par rapport à la puissance instantanée.

Exemple. En logement collectif, le débit de pointe de soutirage d’eau chaude est pris à 50 litres pour 10 minutes par appartement. Un coefficient de simultanéité prend en compte le fait que tous les appartements ne sont pas en demande en même temps :

Nbre de logements

10 20 39 50 75 100 200

Coeff simultanéité

0,50 0,40 0,36 0,31 0,29 0,27 0,24

Pour un parc de 50 logements, en production instantanée, on installera : 50 logements x 50 litres x 1,16 Wh/l.K x (60 – 10) K x 0,31 / [(1/6) h x 1 000] = 270 kW. Mais si un ballon de 600 litres est associé, la puissance installée sera réduite à 135 KW.

D’une manière générale, il existe une infinité de combinaisons « puissance de chauffe – volume de stockage », répartie sur une courbe d’égale satisfaction des besoins.

Calculs

Pour déterminer la courbe « puissance-volume » qui répond à un profil de besoin d’eau chaude particulier, cliquez ici !

Détails d’installation

La gestion des fluctuations de température

C’est un des inconvénients de ce type de système : il faut une réponse immédiate et à juste température. Un temps de réponse de l’ordre d’une dizaine de secondes est parfois requis.

Un régulateur progressif est nécessaire : le mode PI est nécessaire pour les échangeurs de faible capacité, comme les échangeurs à plaques. Une régulation fine (PID) est parfois à prévoir pour le réglage de la vanne 3 voies. La constante de temps de la sonde doit être réduite et la vitesse du moteur élevée. Les constructeurs de ces échangeurs spécifient les caractéristiques que doivent présenter les régulateurs.

Et malgré tout, on reste limité par le temps de réponse des éléments mécaniques de l’installation qui rend les fluctuations inévitables. Il est déconseillé d’utiliser ce type de système dans un bâtiment ayant un profil de puisage discontinu.

La sonde de température sera dédoublée par une sonde de sécurité qui interrompt impérativement l’alimentation du primaire en cas de dépassement d’un seuil de température.

Le raccordement sur une chaudière à condensation

On sera attentif à sélectionner un modèle sur base d’un retour à la plus basse température possible, par exemple au régime (donc surdimensionner un peu la surface de l’échangeur).

Mais il semble qu’avec un préparateur instantané, la condensation reste difficile. La production d’eau chaude sanitaire, surtout depuis les mesures anti-légionelles, semble un frein aux techniques de chauffage basse température d’aujourd’hui. Ne faudrait-il pas de plus en plus privilégier des productions indépendantes ? Dans ce cas, le chauffage instantané est mal placé suite à la puissance qu’il demande…

La résistance à la corrosion

La température élevée au niveau des surfaces d’échange conduit à la formation rapide de tartre.

Lorsque l’on sait que le dépôt calcaire est exponentiellement lié à la température de chauffage de l’eau, cet inconvénient limité par l’action de la vanne trois voies qui évite que la température au primaire de l’échangeur soit en permanence à la valeur maximale.

Ce système est cependant mal adapté à un réseau d’eau dure. Il est alors recommandé d’effectuer un traitement anti-tartre par injection de phosphates ou adoucisseur d’eau.

Consommation d’électricité et de combustible en cuisine collective

Consommation d'électricité et de combustible en cuisine collective


Appareils électriques

Appareils

Puissance
kW

Temps d’utilisation
h/j

Degré d’utilisation
%

Lave-vaisselle
Bain-marie
Plaque de cuisson
Rôtissoire
Boiler
Four à convection (1)
Friteuse
Coupe-légumes
Chambre froide
Armoire réfrigérateur
Vitrine réfrigérante
Marmite
Percolateur
Tapis roulant
Chauffe-assiettes (2)
Micro-ondes
Mixer
Refroidisseur de crème
Chariots chauffants (3)
Cuit-vapeur
Grille-pain
Destructeur alimentaire
Chambre congélation
Congélateur armoire
Congélateur bahut
Bouilloire
Appareil chauffant
Lampe chauffante
Cuisson
Plaque
Mijoteur
Chauffe plats
Four

3
2
3
1

6
2,5
0,2
0,8
0,1

8
2

4,2
8
0,7

1,0
0,8
0,8
0,3
1,5

2,5

5

à
à
à
à

à
à
à
à
à






87
4
9
15

38
75
2
2,6
0.4
1.5
40
10
0,2
1,6
2
0,6
2
6
24
1,8
1,1
3,7
2,0
2,0
6,4
6
1,6

4,5

11

1
3,5

8
1
0,1
0,1

0,5

1

0,4

2,5
1
0,3

2


1





9
4,5
3,5

24
1,5
0,9
0,4
24
24
24
1
2
2
2,5
1
0,3
2,5
3,5
2,5
1,4
2
24
24
24
2
4,5
4

0,4
0,4

0,4

15 – 40 (4)
60 – 100
40 – 80
40 – 80
10
40 – 60
60 – 70
100
40 – 60
40
60
60
50
100
60 – 90
40 – 60
100
100
50 – 70
30 – 100
100
100
60 – 70
60
60
10
100
100

60 – 70
60 – 70
80 – 90
70

(1) Four à air pulsé.
(2) Pile où les assiettes de service sont réchauffées.
(3) Chariots où les aliments refroidis sont rapidement portés à température.
(4) 15 % à remplir d’eau chaude, 40 % à remplir d’eau froide.

Source : Novem – 1993.

Lave-vaisselle : puissance en kW

Capacité

Avec approvision.
en eau froide

Avec approvision.
en eau chaude

144 assiettes/h
900 assiettes/h
1900 ass./h (avec zone sèche)
3000 ass./h (avec zone sèche)

5
13

55

73

2
10

50

64

Source : Rendisk/Novem 1993.


Appareils au gaz

Appareil

Puissance
kW

Temps d’utilisa.
h/j

Degré d’utilisat.
%

Rendement
%

Plaque cuisson
Plaque gd modèle
Four convection
Friteuse
Marmite
Four à rayonn.
Fours :
Normal
Puissant
Chauffe-plats

3
1
6
2,5
8
5

4,1
6,1
3






9
15
38
75
40
15

2

0,1
1

0,4
0,4
0,4



3,5
5
1,5
0,9
2,5
1

30 – 50
30 – 50
70
60 – 70
60
60 – 70

60 – 70
60 – 70
80 – 90

50
50
70 – 80
50 – 60
70 – 80
70 – 80

50
50
50

Source : Novem – 1993.


Exemples d’utilisation de ces tableaux

Friteuse

Données

  • Une friteuse électrique ayant une puissance de 3 kW.
  • La friteuse est utilisée 2 jours par semaine, 52 semaines par an.
  • Le temps d’utilisation par jour n’est pas connu.

Question

Quelle est la consommation électrique annuelle ?

Calcul

Puissance P = 3 kW
Temps d’utilisation t = 0,5 h/j (tableau appareils électriques) 2 j/semaine et 52 semaines/an
Degré d’utilisation b = 0,65 (partie du tableau appareils électriques)
E = P x t x b = 3 x 0,5 x 2 x 52 x 0,65 = 101 kWh/a

Plaque de cuisson

Données

  • Une plaque de cuisson au gaz ayant une puissance nominale de 7 kW.
  • La plaque est utilisée chaque jour.
  • Le temps d’utilisation par jour n’est pas connu.

Question

Quelle est la consommation énergétique annuelle ?

Calcul

Puissance P = 7 kW
Temps d’utilisation t = 3 h/j (tableau appareils au gaz) 365 j/an
Degré d’utilisation b = 0,4 (partie du tableau appareils au gaz)
Rendement estimé ? = 0,5 (partiel)
PCS gaz naturel Hs = 9,77 kWh/m³
Qv.gaz = P x t x b/Hs x ? = 7 x 3 x 365 x 0,4/9,77 x 0,5 = 156,9 m³/a

Un brûleur de cuisinière puissant

Données

  • Un brûleur puissant de cuisinière au gaz,
  • la contribution nominale n’est pas connue,
  • le brûleur est utilisé 280 jours par an,
  • le temps d’utilisation par jour n’est pas connu.

Question

Quelle est la consommation énergétique annuelle ?

Calcul

Puissance P = 6,1 kW (tableau appareils au gaz)
Temps d’utilisation t = 0,4 h/j (tableau appareils au gaz) 280 j/an
Degré d’utilisation b = 0,65 (partie du tableau appareils au gaz)
Rendement ? = 0,5
Qv.gaz = P x t x b/Hs = 6,1 x 0,4 x 280 x 0 65/9,77 x 0,5 = 22,73 m³/a

Découvrez cet exemple de réduction des consommations énergétiques dans la cuisine de l’ULB-Solbosch.

Évaluer le confort acoustique

Évaluer le confort acoustique

Valeurs recommandées

Quel est le confort acoustique à atteindre dans les locaux ?

Le confort acoustique est généralement déterminé à partir du niveau NR (Noise Rating) atteint dans le local.

NR 20

Conditions excellentes d’écoute.

NR 25

Très bonnes conditions d’écoute.

NR 20 – 30

Condition de séjour, de repos, de sommeil.

NR 30 – 35

Bonnes conditions d’écoute.

NR 35 – 40

Conditions d’écoute normales, commerces.

NR 40 – 45

Conditions d’écoute modérées.

NR 45 – 55

Conditions de travail acceptables avec un minimum de compréhension de la parole.

NR 50 – 70

Atelier.

Quel est le niveau de bruit maximum imposé par la législation ?

Article 58.5 du RGPT

À propos des installations de ventilations artificielles ou de climatisation des locaux de travail fermés, il est précisé que « ces installations doivent être conçues de manière à éviter qu’ils ne produisent du bruit ou des vibrations qui soient une source de gêne ou d’inconfort pour les travailleurs« . Les ventilateurs d’un évaporateur dans une ambiance à basse température tels que les ateliers de boucherie peuvent devenir vite des sources de nuisance sonore.

La réglementation belge ne prévoit des mesures particulières (surveillance médicale, moyens de protection,…) que lorsque le niveau d’exposition personnelle dépasse une pression acoustique de 85 dB(A), circonstances rencontrées dans les ambiances industrielles comme les locaux techniques des compresseurs par exemple.

Ce seuil est ramené à 80 dB(A) dans le projet de directive européenne.

Les installations de ventilation et de climatisation et de froid alimentaire ne sont donc pas concernées. Pour plus d’informations à ce sujet, on consultera la brochure Bruit – Stratégie d’évaluation et de prévention des risques du Ministère fédéral de l’Emploi et du Travail.

AR 16 janvier 2006 (Ministère Fédéral de l’Emploi et du Travail)

L’article 6 de cet ouverture d'une nouvelle fenêtre ! Arrêté Royal (PDF) relatif à la Protection de la santé et de la sécurité des travailleurs contre les risques liés au bruit sur le lieu de travail (M.B. 15.2.2006), définit les valeurs limites d’exposition et les valeurs d’exposition déclenchant l’action par rapport au niveau d’exposition quotidienne au bruit et à la pression acoustique de crête sont fixées à :

  1. valeurs limites d’exposition :
    LEX, 8h = 87 dB(A) et Pcrête = 200 Pa respectivement (140 dB(C) par rapport à 20 μPa);
  2. valeurs d’exposition supérieures délenchant l’action :
    LEX, 8h = 85 dB(A) et Pcrête = 140 Pa respectivement (137 dB(C) par rapport à 20 μPa);
  3. valeurs d’exposition inférieures délenchant l’action :
    LEX, 8h = 80 dB(A) et Pcrête = 112 Pa respectivement (135 dB(C) par rapport à 20 μPa).

Sans rentrer dans les détails, ses valeurs limites sont rarement rencontrées dans le secteur commercial. Néanmoins, on sera attentif au niveau de bruit qui pourrait être présent à proximité des compresseurs frigorifiques.

Norme NBN EN 13779

La norme européenne NBN EN 13779 (Les systèmes de ventilation pour les bâtiments – critères de conception de l’ambiance intérieure) propose une plage de confort acoustique avec une valeur par défaut (en général la valeur médiane), sur base de niveaux de pression acoustique à respecter dans les locaux :

Type de bâtiment

Type de local

Niveau de pression acoustique en dB(A)

Plage type

Valeur par défaut

Résidentiel

salle de séjour

25-40

32

chambre

20-35

26

Établissements dédiés aux enfants

écoles maternelles, crèches

30-45

40

Lieux publics

auditoriums

30-35

33

bibliothèques

28-35

30

cinémas

30-35

33

tribunaux

30-40

35

musées

28-35

30

Lieux commerciaux

magasins de détail

35-50

40

grands magasins

40-50

45

supermarchés

40-50

45

grandes salles d’ordinateurs

40-60

50

petites salles d’ordinateurs

40-50

45

Hôpitaux

couloirs

35-45

40

salles d’opération

30-48

40

salles de consultation

25-35

30

chambre de nuit

20-35

30

chambre de jour

25-40

30

Hôtels

accueil

35-45

40

salles de réception

35-45

40

chambres (pendant la nuit)

25-35

30

chambres (pendant le jour)

30-40

35

Bureaux

petits bureaux

30-40

35

salles de conférence

30-40

35

bureaux paysagés

35-45

40

bureaux compartimentés (cabines)

35-45

40

Restauration

cafétéria

35-50

40

restaurants

35-50

45

cuisines

40-60

55

Écoles

salles de classe

30-40

35

couloirs

35-50

40

gymnases

35-45

40

salle des professeurs

30-40

35

Sport

stades couverts

35-50

45

piscines

40-50

45

Général

toilettes

40-50

45

vestiaires

40-50

45


Comment évaluer sa situation ?

Distinguer le type de bruit

Au départ, il est important de bien distinguer le type de bruit qui pose problème en fonction du mode de propagation : bruit aérien ou bruit solidien.

  

Bruit aérien.

  

Bruit solidien.

Bruit aérien créé par l’écoulement turbulent de l’air

Essentiellement,

  • le frottement de l’air sur les pales des ventilateurs (ventilateurs d’évaporateur et de condenseur),
  • le passage à trop grande vitesse de l’air de climatisation dans les conduites par exemple;

Ce bruit (plutôt dans les aigus) se transmet aux locaux par l’air du réseau de distribution. Si c’est une bouche que l’on soupçonne de produire du bruit, on peut la démonter et examiner si le bruit subsiste.

Améliorer

Pour insérer un silencieux dans le réseau d’air, placer des bouches avec absorbeur acoustique, diminuer la vitesse de rotation du ventilateur, …

Bruit solidien (ou bruit d’impact) créé par les vibrations

On distingue,

  • les vibrations des ventilateurs des évaporateurs,
  • les vibrations du compresseur du groupe frigorifique associé qui ne serait pas monté sur plots antivibratiles,
  • les vibrations des ventilateurs du condenseur ou de la tour de refroidissement,

Ce bruit (plutôt dans les graves) se transmet aux locaux par la structure du bâtiment (planchers de béton,…), par les parois de séparation des locaux techniques, par la structure de la gaine de climatisation elle-même.

Améliorer

Pour insérer des plots antivibratiles entre l’équipement et son support, insérer des manchettes acoustiques, …

Bruit en provenance de l’extérieur

Il est possible également que l’origine du bruit soit extérieure au bâtiment (bruit routier, par exemple). On sera alors très attentif à l’étanchéité de l’enveloppe.

Étanchéité de l’enveloppe

On pense, avec raison, que la fenêtre est le point faible de la façade. Mais généralement, ce n’est pas la vitre qui est le point le plus critique, mais les ouvertures entre les battants (absence de joints souples) et au droit de la fixation du dormant (mauvais resserrage). Le remplacement d’un simple vitrage par un nouveau châssis double vitrage améliore fortement l’isolement acoustique aux bruits extérieurs, non pas tellement par le doublement de la vitre, mais bien par l’amélioration de l’étanchéité à l’air. Pour rendre le vitrage lui-même plus isolant, il faut installer un double vitrage dont les épaisseurs des 2 vitres sont différentes.

Bruits liés à la ventilation et la climatisation

On sera attentif également à l’existence de grilles de ventilation naturelle pouvant créer un pont acoustique avec l’extérieur. Un traitement particulier est généralement décidé lorsque le bruit moyen en façade Leq dépasse 70 dB(A).

Concevoir

Installer un système de ventilation double flux.

Améliorer

Placer des grilles d’entrée d’air avec absorbeur acoustique.

Concevoir

Diminuer la vitesse de rotation du ventilateur du condenseur.

Relevé au sonomètre du niveau sonore global

Pour évaluer quantitativement la gêne acoustique, il y a lieu de procéder à une mesure du niveau de bruit à l’aide d’un sonomètre.

Schéma principe du sonomètre.

Les résultats seront pondérés par un filtre « A »afin de s’adapter à la sensibilité de l’oreille humaine.

Un appareil de classe 3 est suffisant pour une évaluation des problèmes en interne. Notons que la NBN S 01-401 définit les conditions générales à observer au cours des mesures pour les bruits extérieurs et pour les bruits intérieurs (distance du sonomètre par rapport au sol, au mur, au fenêtre, dans les locaux de séjour et de repos, les écoles, les bureaux, les salles diverses, …).

Si l’on souhaite vérifier la qualité d’isolement apportée par une paroi au passage des bruits aériens, un acousticien peut générer un bruit d’un côté de la paroi, et enregistrer le spectre sonore de l’autre côté. La différence représente l’affaiblissement acoustique de la paroi. Il est alors possible de comparer cette valeur à celle requise par la NBN S 01-401.

Améliorer

Procéder à un doublage acoustique de la cloison.

Si l’on souhaite vérifier la qualité d’isolement apportée par un plancher au passage des bruits solidiens, un acousticien peut générer un bruit (une masse d’un poids donné qui tombe d’une hauteur donnée), d’impact normalisé et enregistrer le spectre sonore de l’autre côté. A nouveau l’affaiblissement de la paroi s’en déduira et sera comparé à la valeur requise par la norme.

Améliorer

Insérer un matériau résilient (plots antivibratiles, chape flottante,…).

Analyse du spectre de fréquence

Un bruit est un mélange d’une multitude de sons de fréquences différentes. Comme la lumière qui est un mélange de plusieurs couleurs. Le relevé du spectre sonore par un spécialiste peut lui permettre de retrouver l’équipement qui est à l’origine du bruit.

Vérifications rapides sur l’installation

  • Vérifier la présence de manchettes souples entre le caisson de ventilation et les gaines de distribution. Celles-ci doivent être suffisamment souples pour ne pas transmettre les vibrations du ventilateur, mais pas trop lâches pour ne pas obstruer le passage de l’air.
  • Vérifier la présence de plots antivibratiles sous le caisson de ventilation.
  • Vérifier la présence d’un silencieux entre le ventilateur et le réseau de distribution.

Réglage du débit des ventilateurs

Réglage du débit des ventilateurs


Principe

Pour rappel (Règles de similitude), le débit d’un ventilateur varie proportionnellement à la variation de sa vitesse, la pression proportionnellement au carré de sa vitesse et la puissance proportionnellement au cube de sa vitesse.
Ainsi, il existe plusieurs techniques de régulation du débit :


Régulation par étranglement

Il s’agit là du système le plus simple et le moins onéreux pour faire varier un débit. Grâce à un registre (appelé registre de laminage) placé dans un conduit d’air, on peut augmenter ou diminuer la perte de charge de l’installation. Le positionnement du registre peut se faire tant manuellement qu’automatiquement au moyen d’un servomoteur.

Régulateur automatique de débit.

Par exemple, si le registre se ferme, le point de fonctionnement de l’installation va passer de 1 à 2 par suite du laminage, ce qui va conduire à une modification de la courbe caractéristique du circuit (elle se redresse). Pour les ventilateurs à courbe caractéristique fort pentue, on constate qu’une augmentation de perte de charge relativement importante va entraîner une diminution de débit comparativement faible, ce débit-volume passant de q1 à q2. Pour avoir un réglage significatif, le clapet d’étranglement devra souvent fonctionner proche de la fermeture, avec les risques de bruit important que cela comporte. Le rectangle hachuré compris entre de p2 et p3 est considéré comme la perte du système de réglage par rapport au réglage optimum représenté par le point de fonctionnement 3.

Schéma principe régulation par étranglement.

Le ventilateur à aubes recourbées vers l’avant, ayant une courbe caractéristique plus plate, est mieux adapté à une régulation par étranglement que le ventilateur à aubes recourbées vers l’arrière, pour lequel la puissance absorbée ne diminue que peu à cause de l’augmentation de pression statique.

Dans le cas de ventilateurs hélicoïdes, ce type de régulation peut devenir problématique lorsque le point de fonctionnement se déplace encore plus vers la gauche, car on peut atteindre facilement la zone de fonctionnement instable.

Si, pour un ventilateur, on choisit une régulation par étranglement, il faut alors veiller à ce que le point de fonctionnement le plus fréquent se trouve dans la zone de rendement optimal. Dans tous les cas, il faut choisir le débit maximal si possible à droite de la plage de rendement optimale. On reste ainsi dans le voisinage de ce dernier, lorsque la courbe caractéristique du circuit se déplace vers la gauche.


Réglage par by-pass

Le by-pass consiste à court-circuiter une partie du débit de ventilation via un conduit de dérivation, pour diminuer le débit alimentant les locaux.

Schéma principe réglage par by-pass.

Lorsque le registre de by-pass s’ouvre, le débit dans le réseau principal chute de q1 à q2. Le débit passant dans le by-pass est égal à (q3 – q2). Le rectangle hachuré compris entre (q3 – q2) est considéré comme la perte de ce système de réglage.


Régulation par aubage mobile de prérotation

Un aubage mobile de prérotation (appelé aussi distributeur, ventelles, aubes directrices) est un dispositif muni d’ailettes orientables au moyen d’un servomoteur. Il permet d’incliner les filets de fluide gazeux avant leur entrée dans la roue.

Aubage de prérotation sur l’ouïe d’aspiration.

Si le sens de prérotation de la veine de fluide est le même que le sens de rotation de la roue, on peut réduire le débit par rapport au débit nominal. Pour les ventilateurs hélicoïdes, on peut aussi opposer les deux sens de rotation. Dans ce cas, il y a augmentation du débit par rapport au débit nominal. Ce dernier réglage ne fonctionne pas pour les ventilateurs centrifuges.

La régulation par ventelles ne convient que pour des ventilateurs centrifuges à aubes recourbées vers l’arrière ou des ventilateurs hélicoïdes. Dans le cas de ventilateurs centrifuges à aubes recourbées vers l’avant, le mouvement rotatoire influencerait beaucoup trop l’écoulement tridimensionnel dans la roue, ce qui entraînerait une trop forte diminution du rendement.

Il existe différents types d’aubages mobiles de prérotation : intégré en amont du pavillon d’aspiration ou directement monté dans ce dernier.

Ventilateur centrifuge avec aubage de prérotation axial.

Ventilateur centrifuge à double ouïe d’aspiration avec aubage de prérotation radial.

A chaque angle de prérotation correspond une nouvelle courbe caractéristique du ventilateur qui va se situer en dessous de la courbe caractéristique correspondant à un aubage entièrement ouvert.

Schéma principe régulation par aubage mobile de prérotation.

Si son angle de positionnement est nul, l’aubage de prérotation est réputé ouvert. S’il est égal à 90°, il est réputé fermé. Des mesures ont montré qu’entre les courbes caractéristiques d’un ventilateur sans aubage de prérotation et avec aubage incorporé en position d’ouverture maximale la différence était si faible qu’on pouvait facilement la négliger dans la pratique.

Un aubage de prérotation permet d’obtenir n’importe quelle courbe de réglage. Toutefois, et afin de conserver une caractéristique de réglage aussi sensible que possible, la courbe de réglage désirée doit pouvoir être obtenue avec un angle de calage de l’aubage ne dépassant pas 80°. En fonction du point de détermination de la courbe de réglage, cette position est obtenue pour un débit se situant entre 50 et 60 % du débit maximal. Notons en outre que lorsque la prérotation initiale est trop importante, l’entrée dans la roue ne peut plus se faire sans à-coups, si bien que les pertes deviennent encore plus importantes et qu’il faut alors compter sur une diminution du rendement. C’est pour cela que l’utilisation la plus rentable d’un aubage de prérotation se situe, à vitesse de rotation constante, entre 60 % et 100 % du débit nominal.

Pour obtenir un plus grande plage de réglage, on peut combiner des aubages de prérotation et des moteurs à deux vitesses. Pour des raisons de sensibilité de la régulation, on veillera à ce que le passage sur la plus petite vitesse de rotation s’effectue avant que l’angle de calage de l’aubage de prérotation n’atteigne 80°.


Réglage de la vitesse de rotation du ventilateur par variation de vitesse du moteur

La vitesse de rotation (n) d’un moteur asynchrone dépend de la fréquence du réseau (f), du nombre de paires de pôles du moteur (P) et du glissement (s) :

n [tr/min] = f [Hz ] x 60 x (1-s [-]) / P [-]

La régulation de la vitesse de rotation se fait en pratique en modifiant un de ces 3 paramètres.

Modification du nombre de paires de pôles

Il existe trois manières de modifier le nombre de paires de pôles d’un moteur asynchrone à cage d’écureuil. Le stator peut être équipé :

  • avec deux bobinages séparés ou plus ;
  • avec un bobinage à nombre de pôles commutable ;
  • avec une combinaison des deux solutions ci-dessus.
Nombre de paires de pôles Vitesse synchrone à 50 Hz [tr/min]
1 3 000
2 1 500
3 1 000
4 750
1 + 2 3 000 / 1 500
2 + 3 1 500 / 1 000
3 + 4 1 000 / 750
2 + 3 + 4 1 500 / 1 000 / 750
3 + 4 + 5 1 000 / 750 / 600

Théoriquement, les combinaisons de vitesse de rotation sont illimitées. Cependant, pour des raisons de place, on voit rarement un nombre de paires de pôles supérieur à 4 (8 pôles) en combinaison avec d’autres bobinages. Autrement, les moteurs deviendraient trop gros pour une puissance donnée. Pour cette raison, il faudrait plus souvent envisager d’utiliser deux moteurs différents, directement reliés aux deux extrémités de l’arbre du ventilateur.

 Bobinages séparés

Les moteurs à bobinages séparés sont plus gros à puissance égale.

Par exemple, les moteurs à deux bobinages séparés utilisés en technique de ventilation peuvent délivrer à la grande vitesse, en première approximation, le 80 % de la puissance que pourrait délivrer un moteur de même taille à un seul bobinage, tournant au même régime.

Le rendement d’un moteur à plusieurs bobinages, fonctionnant à la grande vitesse, est toujours un peu plus faible que le rendement d’un moteur à un seul bobinage délivrant la même puissance et tournant à la même vitesse.

De plus, avec plusieurs bobinages, la vitesse la plus élevée a le meilleur rendement. Pour les autres vitesses, le rendement est plus faible, il diminue avec l’augmentation du nombre de pôles.

Commutation entre deux séries de pôles : petite vitesse et grande vitesse.

 Pôles commutables

Il existe plusieurs possibilités de rendre un bobinage commutable et obtenir ainsi une meilleure utilisation de la taille du moteur. Par souci de simplicité du système de commutation, on utilise en pratique soit le couplage Lindstrôm-Dahlander ou le couplage à modulation d’amplitude de pôle (PAM).

Le couplage Dahlander permet un rapport de nombre de paires de pôles de 1 : 2. Le couplage PAM autorise d’autres possibilités et permet une meilleure utilisation de la taille du moteur.

Commutation des raccordements des moteurs Dahlander : raccordement en série (petite vitesse), raccordement en parallèle (grande vitesse).

Commutateurs de vitesse pour moteur à pôles séparés ou moteur Dalhander.

Modification du glissement

Pour augmenter le glissement d’un moteur, il faut augmenter l’écart entre le champ magnétique tournant et la vitesse de rotation du moteur. Le principe de base, commun à tous ces systèmes est de faire chuter la tension, la fréquence et le nombre de pôles restants identiques.

Pour cela, on utilise des transformateurs (appelés auto-transformateurs) commandés par servomoteur ou des systèmes de hachage par triacs/thyristors (appelés régulateurs de vitesse électroniques).

Variateurs de tension manuel et automatique.

La grande majorité de ces systèmes équipent seulement de petits ventilateurs. Ils permettent un réglage de 0 à 100 %.

Attention, il faut cependant que le moteur soit au départ conçu pour fonctionner à tension variable. En effet sur les moteurs standards, la baisse de tension a pour conséquence une augmentation de l’intensité inadmissible pour le moteur.

Le système de réglage par hachage de phase crée des harmoniques qui non seulement perturbent le fonctionnement du moteur, mais polluent le réseau de distribution. Le réglage par transformateur ne crée par contre pas d’harmonique.

Le prix est le principal avantage de ces systèmes de régulation.

Les systèmes par transformateurs permettent une adaptation du régime par paliers, alors que les systèmes à hachage de phase autorisent un réglage progressif continu. Il faut toutefois prendre garde à ne pas démarrer sur un petit régime au risque de détruire le moteur.

Les performances énergétiques de ces systèmes ne sont pas bonnes, quoique quand même préférables à par exemple une régulation par étranglement ou by-pass.

Convertisseurs de fréquence

La régulation de vitesse la plus favorable du point de vue consommation d’énergie est celle obtenue avec un convertisseur de fréquence.

Gamme de convertisseurs de fréquence.

Les convertisseurs de fréquence comportent généralement les éléments suivants

  • Un redresseur transformant la tension alternative 50 Hz du réseau en tension continue.
  • Un onduleur transformant la tension continue fournie par le redresseur en une tension alternative (mono- ou triphasée) de fréquence réglable alimentant le ou les moteurs. Cette tension n’est pas une vraie sinusoïde : la sinusoïde est « reconstituée » par des trains d’impulsions de longueur modulée et de hauteur fixe.
  • L’amplitude de la tension est par ailleurs également réglable. C’est ce qui permet d’ajuster le cos φ pour les faibles charges et d’optimaliser les caractéristiques de démarrage en fonction du couple demandé.
  • Un régulateur permettant de piloter le convertisseur au moyen d’un signal de consigne variable. Ceci permet de faire dépendre la vitesse de n’importe quelle loi choisie en fonction de l’application. Par exemple :
    • vitesse fonction d’une différence de pression;
    • vitesse fonction d’une température;
    • vitesse fonction d’une différence de température.

Mis à part le réglage de la vitesse, le convertisseur de fréquence présente les avantages suivants :

  • Grande fiabilité.
  • Permet le contrôle du démarrage du moteur (couple et intensité de courant). De ce fait, les contacteurs de démarrage étoile-triangle et leur commande ne sont pas nécessaires (économie de matériel, de place dans le tableau et de main-d’œuvre, dans le cas d’installations nouvelles).
  • Permet de fixer des limites hautes et basses de vitesse, pour définir une plage de réglage.
  • La vitesse nominale correspondant aux 50 Hz du réseau peut être dépassée.
  • Le cos φ est bon (environ 0,9). Une compensation n’est donc pas nécessaire.
  • Permet d’éviter des entraînements intermédiaires (poulies- courroies).
  • Offre la possibilité d’utiliser un convertisseur de puissance plus faible que la puissance nominale du moteur (adaptation à la puissance nécessaire dans les conditions réelles d’utilisation).
  • Peut régler la vitesse de plusieurs moteurs.
  • Accroît la longévité des roulements.
  • Permet de résoudre les problèmes de bruits dus à la mise en résonance de certaines parties de l’installation en ne modifiant que légèrement la vitesse de rotation.
Les inconvénients peuvent être (plus ou moins importants selon les marques) :
  • création d’harmoniques et d’interférences radio. Ceux-ci peuvent être gênants pour :
    • Le réseau où ils engendrent des perturbations, nuisibles en particulier pour l’informatique. L’adjonction d’un filtre peut être nécessaire (coût supplémentaire).
    • Les moteurs, car ils provoquent une augmentation des pertes par effet Joule, donc une élévation de température pouvant nécessiter une diminution de la puissance ou l’adjonction d’un ventilateur supplémentaire à vitesse fixe, surtout aux basses vitesses (< à 30 % du régime nominal). Ce « déclassement », de l’ordre de 10 %, peut être ramené à 5 % par l’utilisation de filtre antiharmonique.
  • En principe, le marquage CE garantit l’absence de ce type de problème et le respect de la directive européenne EMC. Cependant, la conformité des appareils portant ce marquage n’est pas vérifiée par un organisme tiers mais apposé par le fabricant.
  • Le rendement du convertisseur n’est pas de 100 % ; il est moindre à faible charge (0,75 à 20 Hz, par exemple) qu’à la puissance nominale où il peut dépasser 0,95. En outre lorsque le ventilateur est arrêté, il vaut la peine de mettre également hors service le convertisseur, de manière à supprimer les pertes de veille qui deviennent non négligeables lorsqu’on considère la consommation annuelle.

  • Sollicitation plus importante des isolants du moteur à cause des ondes de tension à flanc raide et à fréquence élevée, servant à générer la sinusoïde.

Lors d’une demande de prix et pour les comparaisons du matériel proposé par les différents fournisseurs, il faut être attentif aux possibilités de réglage et de signalisation offertes ainsi qu’au degré des inconvénients. En particulier, si le montage d’un filtre d’harmoniques est nécessaire, il peut renchérir sensiblement l’équipement.

Il existe 2 principaux types de convertisseurs de fréquence : le convertisseur à circuit intermédiaire piloté en fonction d’un courant et le convertisseur à circuit intermédiaire piloté en fonction d’une tension.

Pour autant que la puissance ne dépasse pas 500 kW, les deux systèmes sont d’un coût d’investissement à peu près identique.

Par contre, du point de vue rendement, celui d’un convertisseur à circuit intermédiaire tension est meilleur dans une plage de réglage allant de 100 % à 60 % de la vitesse de rotation nominale, alors qu’un convertisseur à circuit intermédiaire intensité est plus intéressant pour la plage de réglage allant de 60 % à 30 % de la vitesse de rotation nominale.


Variation de l’angle de calage des aubes des ventilateurs hélicoïdes

Si l’on excepte les petits ventilateurs régulés par transformateur, le système de régulation consistant à agir sur l’angle de calage des aubes de la roue constitue le moyen le plus courant de régulation d’un ventilateur hélicoïde.

La modication de positionnement des aubes peut se faire soit manuellement à l’arrêt (réglage à la mise en route), soit mécaniquement en cours de marche grâce à un servomoteur approprié. Toutefois, lorsqu’on parle de régulation par variation de l’angle de calage, on sous-entend presque toujours le positionnement automatique des aubes, opération qui s’effectue généralement au moyen de systèmes de type pneumatique.

À chaque angle de calage des aubes de la roue correspond, à vitesse de rotation constante, une nouvelle courbe caractéristique de ventilateur.

Toute diminution de l’angle de calage a pour conséquence de faire chuter le gain total de pression et, par conséquent, le débit. Mais contrairement à ce qui se passe avec un système de régulation par aubage de prérotation, le rendement varie peu sur une très large plage de mesure.

Il en résulte que, rapporté à la puissance nécessaire sur l’arbre du ventilateur, la puissance absorbée est très favorable.

Un autre avantage du système à aubage de prérotation provient de ce qu’il est tout à fait possible de faire varier le débit-volume entre 100 % et 0 %. Lorsque l’on désire maintenir un débit constant, ce mode de réglage ne pose aucun problème.

Il n’y a en fait que si on veut maintenir une pression constante qu’il faut prendre des précautions pour éviter la limite de pompage. Pour cela, il existe divers équipements de contrôle permettant d’éviter tout débordement dans la zone de pompage. Si le point de fonctionnement venait à se rapprocher de la zone critique, il y aurait immédiatement correction de l’angle de calage des aubes de telle façon que ce point de fonctionnement revienne vers la zone stable.

Quant à l’entretien, il est des plus réduits puisqu’il se résume à assurer une lubrification par bague de graissage.


Comparaison

Critères de comparaison

Les critères de choix d’un système de réglage sont en autres :

  • la plage de réglage,
  • l’économie d’énergie,
  • le bruit.

Plage de réglage

Plage de réglage des différents systèmes de régulation des ventilateurs

Plage possible Plage recommandée
Ventilateurs centrifuges et hélicoïdes Etranglement 100 à 70 % 100 à 90 %
By-pass 100 à 0 % 100 à 80 %
Prérotation 100 à 40 % 100 à 60 %
Boîte de vitesse 100 à 10 % 100 à 20 %
Vitesse du moteur 100 à 20 % 100 à 20 %
Ventilateurs hélicoïdes Calage des aubes 100 à 0 % 100 à 0 %

Tous les modes de réglage ne conviennent pas en fonction de la courbe de réglage choisie. En effet, lorsque le point de fonctionnement se déplace fortement vers la gauche, on risque de tomber dans la zone de fonctionnement instable du ventilateur, provoquant ainsi des bruits nuisant au confort.

Ce sera le cas par exemple :

  • Lorsque l’on désire maintenir une pression constante à la sortie du ventilateur par exemple par variation de vitesse.
  • Lorsque l’on régule par étranglement un ventilateur hélicoïde.
  • Lorsque l’on fait varier les débits par variation de vitesse et que l’on désire maintenir une pression constante dans un local (cas des salles blanches). Dans ce cas, seul la variation de l’angle de calage des aubes et les aubages de prérotation peuvent convenir sur une grande plage de réglage du débit.

Réglage par variation de vitesse dans les installations à pression externe constante.

Réglage par aubage de prérotation dans les installations à pression externe constante.

Efficacité énergétique

Pour obtenir un même débit, la puissance absorbée par le moteur peut être tout à fait différente en fonction du système de réglage choisi.

Ces courbes ont été établies pour des ventilateurs centrifuges à aubes arrières. Elles ne sont donc qu’indicatives pour les autres ventilateurs. La variation de l’angle de calage des aubes des ventilateurs hélicoïdes a été intégrée au graphe à titre de comparaison.

La régulation par registre de laminage ne conduit pas à des économies d’énergie importantes. Étant donné son faible coût d’investissement, elle peut cependant être utilisée pour de très faibles diminutions de débit et dans le cas de ventilateurs à aubes recourbées vers l’avant. Notons cependant que pour des petits ventilateurs, la régulation par étranglement peut, dans certains cas, être énergétiquement meilleure que la régulation de la vitesse de rotation (la différence peut être de 15 %), car les pertes de celle-ci pour des petits moteurs et de petits écarts par rapport au débit nominal, peuvent être plus grandes.

Une régulation par by-pass n’a pas sa place dans le cadre d’une utilisation rationnelle de l’énergie électrique, parce que si ce système permet de diminuer le débit dans le réseau de gaines, celui du ventilateur augmente entraînant, avec lui une augmentation de la puissance absorbée et de la consommation. L’augmentation de puissance absorbée peut être très conséquente et surcharge même dans certains cas le moteur.

La régulation par aubage mobile de prérotation permet une diminution importante de la puissance absorbée. Cependant, plus le débit diminue par rapport au débit nominal, plus le rendement du ventilateur diminue. Cette diminution est raisonnable pour les petites variations de débit. Pour des plus grandes plages de réglage la régulation par variation de vitesse est donc préférable.

La solution de réglage la plus élégante pour un ventilateur est celle par régulation de la vitesse de rotation. En effet, lorsque le réglage du débit doit suivre la courbe caractéristique du circuit de distribution, la variation de vitesse du ventilateur permet au ventilateur de toujours travailler à son meilleur rendement. Par contre, lorsque la pression doit rester constante, l’économie d’énergie est moins intéressante.

Sauf pour les très faibles variations de débit, c’est la solution du convertisseur de fréquence qui est énergétiquement le plus efficace. Les solutions par transformateurs ou modification du nombre de pôles présente de plus mauvais rendements (quoique meilleurs que le laminage et le by-pass).

Les progrès actuels et futurs dans le domaine de la régulation des moteurs donnent les meilleures chances d’avenir au ventilateur avec réglage de la vitesse de rotation.

Pour les ventilateurs hélicoïdes, la variation de l’angle de calage des aubes présente de très bon rendements. On peut dire que, du point de vue puissance absorbée, une régulation par variation de l’angle de calage des aubes se situe entre une régulation par aubage de prérotation et une régulation du moteur.

Classification des modes de réglage (dans l’ordre décroissant)

Économie d’énergie Investissement
1 calage des aubes 1 variation de vitesse
2 variation de vitesse 2 calage des aubes
3 aubage de prérotation 3 aubage de prérotation
4 registre 4 registre

Bruit

Schéma bruit.

Les registres d’étranglement posent clairement des problèmes de bruit et ne doivent donc être utilisés que pour de faibles réduction de débit. Cet inconvénient s’ajoute à la mauvaise efficacité énergétique du système.

Les aubages de prérotation, énergétiquement efficaces, peuvent aussi poser des problèmes de bruit.

Le comportement acoustique d’un système de régulation de ventilateur hélicoïde par variation de l’angle de calage des aubes est excellent et se rapproche de celui d’un système de régulation de la vitesse d’un moteur.

La diminution de la vitesse du ventilateur est quant à elle très favorable à la diminution de la puissance sonore.

Notons que le bruit du groupe moto-ventilateur ne peut être réduit à une valeur inférieure à celle du bruit du seul moteur utilisé.

Débit d’air variable

Débit d'air variable


Principe de fonctionnement

Pourquoi une variation du débit ?

Situons-nous en été. Comment répondre aux variations de charge d’un local ? Que se passe-t-il lorsque le soleil perce enfin l’épaisse couche nuageuse et fait monter la température ?

Un système de conditionnement d’air « classique » délivre un air plus froid (de 20°, l’air passe à 16°C, par exemple). Le débit d’air pulsé reste le même, mais la température diminue. On parle alors de « système à débit d’air constant ».

Une alternative consiste à garder la température constante tout l’été (16°C par exemple) mais à augmenter le débit d’air pulsé. On parle de « système à Débit d’Air Variable ». DAV disent les Français, VAV disent les anglophones (que l’on traduit en Volume d’Air Variable).

Dans un système « tout air-VAV », le débit d’air varie donc entre le minimum hygiénique pour les occupants et le maximum nécessaire pour reprendre toutes les charges du local (soleil, bureautique, personnes,…).

En pratique, le débit varie entre 30 et 100 % du débit nominal. La variation de débit est faite en agissant :

  • soit sur un volet motorisé,
  • soit directement sur les bouches de soufflage (conçues pour le débit variable).

Qui dit variation de débit, dit perturbation de la pression du réseau…

Si les bouches se ferment, la pression de gaine va augmenter. Toute la distribution de l’air en sera perturbée. Dès lors, on modulera la vitesse des ventilateurs pour maintenir une pression de gaine constante. Et par la même occasion, la consommation des ventilateurs en sera diminuée (voir aussi « la gestion de la ventilation à la demande« ).

Si la température est constante (16° par exemple), comment chauffer en hiver ?

Si l’installation doit aussi chauffer les locaux en hiver, le problème se complique !

On rencontre alors les variantes :

  • – monogaine
    • – avec chauffage par radiateurs indépendants
    • – avec chauffage par batterie terminale
  • – double gaine (une d’air froid et une d’air chaud)

Quel intérêt majeur par rapport aux systèmes à débit constant ?

Lorsque l’on sait que le coût du transport de l’air représente de 20 à 40 % du coût d’exploitation, le débit d’air variable se justifie certainement.

Encore faut-il que la réduction du débit d’air dans les locaux entraîne effectivement la réduction de la consommation du(es) ventilateur(s) ! Ainsi, certains systèmes créent un by-pass dans le faux plafond :  lorsque le débit pulsé diminue, l’air non utilisé est renvoyé en centrale…

Une installation VAV est particulièrement bien placée pour une utilisation optimale des énergies gratuites :

  • En hiver, de l’air frais extérieur peut alimenter les zones à rafraîchir sans nécessiter l’enclenchement des groupes frigorifiques.
  • En été, une ventilation nocturne peut décharger le bâtiment de la chaleur accumulée en journée.

Remarque : pour diminuer les sections de gaine, il est possible de distribuer l’air sous haute pression, à des vitesses variant entre 5 et 15 m/s.


Domaine d’application

Dans sa version simple (modulation du débit sans visée thermique si ce n’est pas le free cooling), une installation VAV peut s’appliquer à un grand nombre de situation : il s’agit ni plus ni moins d’un réseau de ventilation mécanique avec une capacité de moduler les débits local (ou groupe de local) par local. L’encombrement est limité puisque basé sur le débit hygiénique éventuellement légèrement majoré (+50 à +100%). Seul l’investissement dans les clapets de réglage et le système de gestion et d’optimisation est un frein.

Si par contre le VAV est la base d’un système de climatisation tout air, on rencontre les limites propre à cette approche du refroidissement : les gaines sont dimensionnées pour pouvoir refroidir tout le bâtiment avec de l’air. Un tel système de climatisation par l’air est encombrant et coûteux. Il ne justifie que lorsqu’une alimentation en air hygiénique importante est nécessaire, donc une présence nombreuse d’occupants. Si de plus cette présence est variable dans le temps, si les charges thermiques sont variables, il sera opportun de pouvoir moduler le débit : c’est l’objet du VAV.

On rencontre tout particulièrement cette application thermique du VAV dans les grands bureaux paysagers, ou dans les larges plateformes avec locaux de réunion, salles de conférences au centre du bâtiment : un apport d’air neuf est nécessaire en permanence. De plus, le refroidissement du centre du bâtiment est nécessaire toute l’année. Du free cooling est alors possible et permet d’éviter d’enclencher les groupes frigorifiques en hiver, voire en mi-saison. Les coûts d’exploitation en seront fortement réduits.

A la limite, c’est le concepteur qui devra organiser la fonction des locaux pour créer des zones thermiquement homogènes.

Les installations VAV « à bypass » (l’air non utilisé est renvoyé en centrale) sont à rejeter puisque le traitement de l’air reste total. On peut juste l’admettre dans le cas d’une grande zone à débit d’air constant (une grande usine) à côté de laquelle sont situés quelques locaux (les bureaux à coté de l’usine). Dans ce cas, un VAV à bypass sur l’alimentation des bureaux est compréhensible.


Différentes variantes technologiques

On distingue différentes variantes technologiques :

Les systèmes VAV mono gaine sans réchauffage terminal

Shéma principe systèmes VAV mono gaine sans réchauffage terminal.

On ne pulse que de l’air froid en été (entre 12 et 18°C) et de l’air chaud en hiver (entre 25 et 40°C). L’air est préparé en centrale et chaque local régule le débit d’air juste nécessaire en fonction de la température souhaitée, avec un débit minimum ajusté au débit d’air hygiénique.

Le plus simple est d’avoir une consigne fixe pour chaque saison et le passage d’une consigne à l’autre est réalisé par un thermostat extérieur : il y a basculement pour une température extérieure de +15°C, par exemple.

Les systèmes VAV mono gaine avec réchauffage terminal

L’idée est de prévoir un circuit d’air froid pour tous les locaux, à débit variable, complété par des batteries de chauffe pour les locaux périphériques.

Trois principes sont possibles :

> 1° soit l’apport de chaleur est réalisé par des corps de chauffe traditionnels (radiateurs, convecteurs).

Généralement, ces corps de chauffe sont placés en périphérie du bâtiment, le long des façades, pour vaincre les déperditions par les parois. Le système VAV assure la ventilation hygiénique toute l’année, refroidit le cœur du bâtiment en hiver et refroidit tout le bâtiment en été.

Schéma principe systèmes VAV mono gaine avec réchauffage terminal- 01.

>  2° soit les batteries de chauffe sont placées en série sur la gaine d’air.

Schéma principe systèmes VAV mono gaine avec réchauffage terminal- 02.

Une régulation spécifique est nécessaire :

Schéma régulation.

Par exemple, si la sonde d’ambiance détecte une température inférieure à 21°C, la vanne de chaud est ouverte à 100 % et le débit d’air est réduit au seuil minimal hygiénique. Lorsque la température intérieure approche de 23°, la vanne chaud se ferme progressivement. Lorsque la température dépasse 23°, la vanne chaud est fermée et le débit d’air frais augmente progressivement jusqu’à atteindre le débit maximal à 24°C. Ici encore, l’insertion d’une zone neutre entre chaud et froid sera énergétiquement préférable.

En pratique, la batterie de chauffe est souvent intégrée dans la boîte de détente. Elle est alimentée en eau chaude, ou remplacée par une résistance électrique.

> 3° soit les batteries sont placées en parallèle par rapport au local :

Schéma principe systèmes VAV mono gaine avec réchauffage terminal- 03.

La régulation est complétée par l’enclenchement du ventilateur d’air recyclé lorsque le chauffage est enclenché :

Schéma régulation.

Chaque batterie chaude voit son débit modulé en fonction du thermostat d’ambiance de la zone qu’elle alimente.


Avantages

  • Lors de la conception, un grand avantage du système à débit d’air variable est de pouvoir diminuer les dimensions de la centrale de traitement.Comparons les systèmes :
    • Avec un système à débit d’air constant, chaque zone sera dimensionnée avec un débit d’air permettant de répondre à la charge frigorifique extrême; dans le caisson de traitement d’air central, on devra traiter (en permanence !) le total des débits maximaux de toutes les zones !
    • Par contre, avec le système VAV, on va tenir compte du fait que le soleil tourne autour du bâtiment et que la charge maximale de la zone Ouest survient lorsque la zone Est est à faible demande; la centrale de préparation sera dimensionnée sur base du cumul instantané possible entre toutes les zones,… ce qui est déjà nettement plus raisonnable !

    Il en résulte une économie du coût d’investissement (par rapport à un système à débit constant de même puissance).

  • L’avantage énergétique suit directement : pourquoi pulser en permanence le débit maximal dans chaque zone ? Tout particulièrement en mi-saison, pourquoi pulser un maximum d’air à une température « neutre » (20°C) alors les besoins sont nuls (la température ambiante est dans la zone neutre) ? La force du VAV est de réduire la vitesse du ventilateur à ce moment et de ne pulser que le débit d’air hygiénique. La consommation du ventilateur (proportionnelle au cube du débit d’air pulsé) est fortement réduite.Il en résulte une économie du coût d’exploitation (par rapport à un système à débit constant de même puissance). Le chiffre de 20 % d’économie thermique et électrique (ventilateur) est couramment cité, entre un VAV simple (sans réchauffage terminal) et un système unizone à débit constant.
  • L’avantage acoustique lui est lié encore : la grande vitesse (et donc les niveaux sonores les plus élevés) est réservée aux charges extrêmes. Ce qui est particulièrement apprécié par les occupants.
  • Par rapport aux installations de type « air-eau » (ventilo-convecteurs,…), le VAV permet également de réaliser du free cooling des bâtiments en hiver et en mi-saison : l’air extérieur vient directement refroidir le bâtiment, sans participation du groupe frigorifique.

Inconvénients

  • Le réglage d’un débit d’air est moins aisé que le réglage d’une température. Il semble que sur le terrain la mise au point d’une installation VAV donne parfois quelques cheveux blancs ! Tout particulièrement, le réglage des registres d’air neuf paraît délicat.
  • Le coût d’installation reste élevé, au moins par rapport à une installation de ventilos-convecteurs.
  • L’encombrement n’est pas négligeable, comme pour toutes les installations « tout air ». Les gaines dans chaque zone sont dimensionnées pour transporter le débit maximum, correspondant à la charge extrême de l’été…

  • L’air extérieur gratuit de l’hiver doit être préchauffé dès que sa température devient inférieure à la température de pulsion. Et ce chauffage finit par coûter fort cher. Un recyclage de l’air extrait permet de supprimer ce budget mais n’est pas toujours souhaité pour des raisons hygiéniques. Un récupérateur de chaleur lui est préféré, mais il suppose d’en faire l’investissement.

Évaluer la motivation des collaborateurs

Évaluer la motivation des collaborateurs


Ils ne font pas ce que je leur demande !… Pourquoi ?

Des collaborateurs ne feront pas ce que vous leur demandez parce que :

  • la tâche leur apparaît sans intérêt, ils ne savent pas très bien pourquoi on leur demande une tâche, ce que vous leur demandez leur apparaît impossible à réaliser par manque de temps par exemple … (voir « Ils sont si peu motivés. Pourquoi ?« );
  • ils ont développé un « pouvoir stratégique » tel qu’ils peuvent se permettre de ne pas faire ce qu’on leur demande (voir « Tout est bloqué. Pourquoi ?« );
  • vous n’avez pas auprès d’eux une crédibilité suffisante pour qu’ils fassent ce que vous leur demandez;
  • dans votre équipe, il ne règne pas une très bonne ambiance, le manque d’écoute est manifeste, la communication est mauvaise, il y a des tensions;
  • le travail en équipe est rare, les personnes se concertent peu pour leur travail;
  • les personnes n’ont pas été associées à la décision et ce que vous leur demandez leur apparaît comme « venant des hautes sphères » et beaucoup trop éloigné de la réalité quotidienne.

L’un ou l’autre de ces éléments font partie de votre quotidien ou peut-être même  tous ensemble… Vous avez alors de grandes chances de ne pas vous faire entendre.

Plus les personnes sont associées tôt et en groupe aux décisions, plus la mise en œuvre de la décision est aisée.

C’est la règle à retenir. Elle est fort simple mais son application pose beaucoup de problèmes : la gestion participative fait rarement partie de la culture de nos organisations, le phénomène de manipulation est très souvent craint dans la gestion participative et de plus, elle est parfois mise en œuvre si maladroitement que beaucoup de personnes n’ont, jusqu’à présent, exploré que ses effets négatifs. Enfin, la gestion participative démotive aussi certaines personnes qui trouvent ce processus trop long par rapport aux  bénéfices qu’elles pensent en retirer.

Gérer

Pour agir et gérer les conflits.

Gérer

Pour agir et déjouer les blocages institutionnels

Ils ne sont pas d’accord avec moi !… Pourquoi ?

Pour explorer cette question, il est utile de se rappeler qu’en matière de communication humaine, « LA CARTE N’EST PAS LE TERRITOIRE »

Pour expliquer cette phrase, nous allons prendre une image. Le territoire de la Belgique peut être REPRÉSENTÉ par beaucoup de cartes différentes : carte des routes, carte des cours d’eau, carte IGN, carte du relief… Toutes les cartes sont justes : la même réalité est représentée de plusieurs façons différentes sans qu’on puisse dire qu’une des cartes est meilleure qu’une autre EN SOI. Toutefois, chacune d’entre elles est plus appropriée pour atteindre un objectif particulier : se déplacer en voiture, en bateau, se balader dans la nature …

La communication humaine fonctionne à peu près de la même façon. Quand nous expliquons notre manière de voir les choses à quelqu’un, nous utilisons notre carte du monde qui nous permet (croyons-nous) d’atteindre un objectif. Notre interlocuteur n’a pas nécessairement la même carte et pas non plus le même objectif, il ne comprendra peut-être pas très bien ce que nous lui voulons. Il nous trouvera certainement très « illogique », voire même borné ! C’est un peu comme si on utilisait une carte IGN de la région de Chastres pour aller de Anvers à Arlon !

Si vous voulez comprendre la logique de quelqu’un d’autre, il faut avant tout se dire que cette logique en est une, même si ce n’est pas la vôtre et même si vous la condamnez.

Votre jugement de valeur ne retire pas le caractère logique au raisonnement ou au comportement de l’autre, même si votre propre raisonnement est également logique.

Gérer

Pour agir, faire entendre son avis et convaincre la hiérarchie.

Gérer

Pour agir en aidant au changement des comportements.

Ils disent qu’on a toujours fait ainsi !… Pourquoi ?

Nos comportements sont habituels, cela veut dire qu’ils se déroulent souvent automatiquement sans que nous ayons besoin de réfléchir (sauf quand nous les apprenons). Et nos habitudes sont résistantes au changement.

Exemple

manger avec des couverts est une (bonne !) habitude pour un adulte. Pour un enfant de deux ans, c’est un exploit et il lui faut toute une période d’adaptation pour apprendre à le faire. Une fois que l’habitude est prise de manger avec des couverts, on a bien de la peine souvent à manger avec les doigts dans ces pays où la bonne habitude est de manger dans le même plat avec tout le monde ! Et pourtant, d’un certain point de vue, c’est tellement plus simple de manger avec ses doigts.

Nos habitudes sont donc :
apprises :

les habitudes ne font pas partie de notre patrimoine génétique ! C’est une habitude de venir travailler en chemisier en hiver, mais ce n’est pas irréversible !

persistantes :

une fois installée, une habitude nous simplifie la vie, c’est en tous cas l’objectif que nous poursuivons en l’acquérant : quand nous faisons quelque chose par habitude, nous n’avons plus besoin de nous encombrer l’esprit avec l’élaboration de nouvelles procédures ou de nouveaux apprentissages. Parce qu’elles ont pour fonction de nous simplifier la vie, les habitudes sont résistantes aux changements.

générales :

une fois prise, l’habitude a tendance à se généraliser et à justifier notre point de vue. Quand on a eu trop chaud dans les bureaux pendant des années, on supporte mal les variations de température et on invoque l’habitude de la chaleur constante pour garantir sa santé et la qualité de son travail.

En fait, rien n’est plus efficace qu’une habitude ! Mais les gens ne montrent pas plus de mauvaise volonté pour l’URE que pour d’autres  changements qui leur sont demandés. Ils sont enfermés dans ces habitudes qui ne changeront que si on leur laisse le temps d’en apprendre d’autres et si une information appropriée, bien organisée et crédible circule à propos de ce qu’il est important de changer, pourquoi il faut le faire et comment on peut y parvenir.

Gérer

Pour agir et gérer les conflits.

Gérer

Pour agir et organiser une campagne de sensibilisation.

Il est si difficile de collaborer entre services !… Pourquoi ?

On peut répondre à cette question de deux manières différentes et parfois complémentaires.

  1. Il est clair que le « service économie d’énergie » et le « service travaux » peuvent avoir des points communs et bien des objectifs convergents. Il est évident aussi qu’ils sont effectivement interdépendants. Il est évident enfin que c’est plus efficace quand les deux se mettent à collaborer.
    Mais quand deux services, à l’intérieur d’une même organisation, poursuivent des buts d’ordre différent (buts de mission et buts de système, voir « Tout est bloqué. Pourquoi ?« ), ils sont parfois en conflit.
  2. Dans chaque institution, vous avez aussi un « esprit maison ». C’est ce qu’on appelle souvent « la culture de l’institution ». Ce concept de culture d’entreprise désigne le système de valeurs, de normes, des modes de penser, l’ensemble des règles que l’on observe sans trop pouvoir les dire. Plus ou moins partagé par les membres, il sous-tend les manières d’organiser le travail, d’envisager les collaborations, le rôle de la hiérarchie, de l’institution …

Comme la culture d’un peuple, la culture d’une institution est très résistante aux changements. Elle évolue très lentement, en fonction des circonstances extérieures et de l’évolution des mentalités à l’intérieur. Mais il faut aussi un acteur au moins qui porte ces changements. Les changements rapides ou importants surviennent le plus souvent après des bouleversements de l’organisation (reprise, fusion, décentralisation, réorientation …).

La prise en compte de cet aspect de la culture est cruciale pour réussir un projet URE.

Par exemple, beaucoup de projets généreux ou rentables n’ont pu dépasser le stade de la conception parce qu’ils ne prenaient pas en considération les lenteurs et pesanteurs des valeurs qui imprègnent toute organisation.

C’est souvent le manque d’interaction entre les personnes de différents services qui accentue les conflits. Dans ce cas, on confond souvent problème et personne et les deux obstacles évoqués ci-dessous paraissent insurmontables.

Gérer

 Pour agir et déjouer les blocages institutionnels.

Évaluer l’efficacité du chauffage électrique

Évaluer l'efficacité du chauffage électrique


  

Des résistances électriques d’appoints, parfois intégrés dans une bouche de pulsion d’air ou dans une unité terminale, peuvent générer des consommations très élevées.


Évaluer le confort

Surchauffe ?

Si l’installation de chauffage actuelle entraîne des surchauffes dans les locaux, on peut penser que ce soit du à l’usage d’accumulateurs statiques. Ils se chargent durant la nuit et se déchargent statiquement pendant toute la journée. Pour assurer une température suffisante en fin de journée, on a alors tendance à charger trop fort les appareils la nuit.

L’impact énergétique n’est cependant pas négligeable. Dans un local dont la température de consigne est de 20°C :

un degré de trop = 7 .. 8 % de surconsommation !

Tout au contraire, les accumulateurs dynamiques présentent une isolation plus forte de leur paroi et une décharge organisée par un ventilateur, uniquement lorsque le thermostat et la programmation le commandent. Il faut donc évaluer l’économie réalisable et la comparer au coût de remplacement des appareils.

Si les appareils en place sont déjà des accumulateurs dynamiques, c’est le paramétrage du régulateur de charge qui doit être revu.

Améliorer

Pour la modification des paramètres de réglage de la charge.

Fluctuation de température ?

Cette fois, c’est probablement parce que le thermostat est du type « tout ou rien ». On le remplacera avantageusement par un régulateur électronique équipé d’un différentiel très faible et travaillant par régulation proportionnelle (= il commence à diminuer l’intensité du chauffage à partir du moment où la température d’ambiance se rapproche de la consigne). Il faut également vérifier la position du thermostat qui n’est peut-être pas fidèle des besoins réels du local.

Concevoir

Pour plus d’informations sur les thermostats électroniques et leur emplacement.

Manque de chaleur ?

Deux possibilités :

  • Les paramètres de fonctionnement du régulateur de charge doivent être revus,
  • À défaut, il s’agirait d’un manque de puissance installée.

Avant de le remplacer par un appareil plus puissant (donc consommant plus), on étudiera les possibilités de réduction des déperditions. Un remplacement de vitrages par exemple. Le confort en sera amélioré.

Concevoir

Pour plus d’informations sur les paramètres de fonctionnement des régulateurs de charge.

Évaluer l’efficacité énergétique

Il faut distinguer l’efficacité à la production (en centrale) et l’efficacité à l’utilisation (dans le bâtiment).

Une mauvaise efficacité à la production

Si l’on regarde les choses globalement, suite à son bilan écologique défavorable, l’électricité ne devrait pas être utilisée pour le chauffage des locaux. Au Danemark, le chauffage électrique est interdit depuis 1985 ! Dans le meilleur des cas, une centrale électrique TGV (Turbine-Gaz-Vapeur) produit de l’électricité avec un rendement de 55 %. Alors que les rendements de production des chaudières au gaz sont de 92 %, voir nettement plus s’il s’agit d’une chaudière à condensation.

Passer par une centrale électrique pour faire de la chaleur, c’est vraiment utiliser un très mauvais vecteur intermédiaire. En comparaison, passer par de l’eau chaude est proportionnellement beaucoup plus efficace. On pourrait donc réserver la production d’électricité à des missions plus nobles (télécommunication, bureautique, éclairage, moteurs, …).

Une excellente efficacité à l’utilisation … directe

Cependant, l’efficacité énergétique de l’appareil électrique à l’utilisation est très proche des 100 %. Du moins s’il s’agit d’un appareil de chauffage direct.

Une efficacité très relative à l’utilisation par accumulation

Si la chaleur est stockée la nuit dans des accumulateurs électriques, le rendement à l’utilisation s’écroule : si les besoins sont faibles ou nuls en journée (présence de soleil, apports des occupants, …), une partie de la chaleur stockée la nuit sera malgré tout utilisée en journée.

Même dans un accumulateur dynamique, s’il n’y a pas de demande en journée, la décharge du noyau sera de 50 % environ en fin de journée, pratiquement en pure perte (surchauffe en présence de soleil, par exemple). C’est la haute température du noyau (plusieurs centaines de degrés) et la faiblesse de l’isolation qui en sont responsables.

Voici les résultats d’une analyse comparative faite dans le secteur domestique (immeuble d’appartements) dans le cadre du projet « connaissance des émissions de CO2 » – septembre 2001. L’étude consistait à comparer différents systèmes de chauffage sur un même bâtiment (niveau K55), par simulation informatique.

x

Rendement global de l’installation

(toutes pertes comprises)

Polluant CO2

[kg/an]

Polluant NOx

[kg/an]

Énergie primaire
f=2,7 (*)[kWh/an]
Énergie primaire
f=1,8 (*)[kWh/an]
Mazout chaudière HR 78 % 1 474 0,7 5 628 5 578
Gaz naturel chaudière HR 77 % 1 122 0,9 5 724 5 675
chaudière modulante 83 % 1 035 0,3 5 276 5 235
chauffage urbain 58 % 1 457 1,5 7 428 7 364
Électricité direct 93 % 1 611 2,1 13 198 8 798
mixte (accu+direct) 86 % 1 690 2,2 14 272 9 515
Pompe à chaleur eau/eau 216 % 731 0,9 5 686 3 791

(*) f = 2,7 est basé sur le rendement moyen des centrales électriques,
(*) f = 1,8 est basé sur le rendement des meilleures centrales (TGV Turbine-Gaz-Vapeur).

Comment évaluer la performance de son appareil ?

Idéalement, l’accumulateur ne doit délivrer de la chaleur que lorsqu’il y a une demande dans le local. Il devrait, de plus, être froid en fin de journée.

Pour vérifier l’efficacité énergétique d’un accumulateur, il faut analyser s’il dispose :

  • d’une forte isolation des parois,
  • d’une régulation de charge en fonction de la température extérieure,
  • d’une décharge dynamique (ventilateur qui extrait la chaleur lorsque le thermostat est en demande,
  • d’un programmateur horaire, journalier et hebdomadaire,

et qu’il est réglé pour ne charger que l’énergie juste nécessaire le lendemain.

À l’opposé, on trouvera l’accumulateur statique

  • dont le niveau de charge est manuel (bouton à 3 positions), tenant peu compte des évolutions climatiques,
  • dont la chaleur s’écoulera tout au long de la journée, sans contrôle.

Le chauffage par le sol fait partie des accumulateurs statiques. Il lui est impossible d’éviter le chauffage du local, même si le soleil brille et qu’une réunion s’y produit. Avec la chaleur, bonjour l’ambiance !

Choisir le combustible : bois, gaz et fuel

Lors de la conception une nouvelle installation où du remplacement de chaudières, trois combustibles sont généralement mis en balance : le bois, le fuel et le gaz naturel. Différents arguments peuvent faire pencher le décideur vers l’une ou l’autre de ces solutions. En voici la synthèse :

L’efficacité énergétique

Si l’on devait classer les chaudières en fonction de leur efficacité énergétique, on obtiendrait le résultat suivant :

  1. les chaudières à condensation au gaz ou au fioul,
  2. les chaudières traditionnelles gaz ou fuel à brûleur pulsé, chaudières gaz à brûleur à prémélange modulant et les chaudières bois-énergie,
  3. les chaudières gaz atmosphériques.

Les technologies des chaudières gaz à condensation permettent d’atteindre des rendements normalisés de 110 % du PCI. Les chaudières au mazout à condensation permettent d’atteindre un rendement de 106 % du PCI. Ces deux valeurs correspondent à 99 % du PCSet sont donc équivalentes. Si l’on considère que le rendement actuel normalisé des chaudières basse température oscille entre 93 et 96 %, qu’il s’agisse de fuel, de gaz ou de bois. Le gain réalisé en optant pour le gaz à condensation tourne autour des 15 %, une économie non négligeable.

Concevoir

Pour en savoir plus sur le choix d’une chaudière, cliquez ici !

L’impact environnemental

Chez l’utilisateur final et à technologie égale, la combustion du gaz produit 25 % de CO2 en moins que la combustion du fuel (pour une consommation énergétique équivalente). A lui seul, cet argument permet de recommander le gaz par rapport au mazout dans le cadre d’une politique de réduction de l’émission des gaz à effet de serre.

En ce qui concerne la biomasse, sa combustion a un impact neutre sur l’émission de CO2. On peut s’en rendre compte en considérant le cycle de carbone. Néanmoins, cet argument n’est vrai que si le bois est issu d’une forêt gérée de manière durable ou si la biomasse est de type « agrocombustible » (pour en savoir plus, consultez notre page « bois-énergie »). Dans l’affirmative, on voit l’énorme potentiel que représente la biomasse pour réduire les émissions de CO2. Même en considérant le cycle complet du bois, c’est-à-dire l’extraction, le conditionnement ainsi que le transport en plus de la combustion, on voit que l’émission de CO2 pour une même production d’énergie est nettement inférieure aux autres vecteurs énergétiques.

Mais le CO2 n’est pas le seul impact à considérer. Si l’on regarde d’autres émissions, on constate que le gaz est le combustible le moins polluant chez l’utilisateur : émission de CO2, de SO2, de suies et de NOx moins élevée. Suivant le type d’émission auquel on s’intéresse, le mazout et le bois sont plus ou moins polluants. En termes d’émission de NOx, les deux vecteurs énergétiques se valent. En fait, le bois émet moins de SO2 mais plus de particules fines (poussières).

Globalement, il faut noter une tendance progressive à exclure les combustions fossiles dans certains territoires. Pointons quelques exemples : l’Energieagenda des Pays-bas prévoit la déconnexion du réseau gaz de 170 000 maisons par an à partir de 2017, pour une disparition totale du chauffage gaz en 2050 ; le Pacte énergétique belge approuvé par le Fédéral et les trois Régions stipule l’interdiction de vente de chaudières mazout à partir de 2035 ; enfin, la Norvège interdit l’utilisation du fuel pour le chauffage dès 2020, pour tous les bâtiments.

L’investissement

On peut comparer les différents postes à financer pour les trois combustibles :

 

Poste de raccordement au gaz, citernes à mazout, … au-delà du prix existe la question d’encombrement.

Gaz Fuel Bois
Chaudière et brûleur.
Raccordement à la cheminée.

Tuyauterie d’alimentation du brûleur, filtre à gaz, robinet d’isolement.

Tuyauterie d’alimentation du brûleur, filtre à fuel, pompe à fuel.

Système de transport vers la chaudière.

Raccordement au réseau gaz (dont le coût est négociable).

Cuve à fuel (enterrée, en cave ou extérieure).

Pièce de stockage et système d’extraction.

Équipements de protection : détection des fuites de gaz, vannes électromagnétiques.

Clapet coupe-feu pour isoler la chaudière.

Si chaudière à condensation, évacuation des condensats.

Si chaudière à condensation, évacuation des condensats.

Décendrage et si chaudière à condensation, évacuation des condensats.

Le coût des chaudières gaz et mazout est semblable, quel que soit le système choisi. La différence de coût est en tout cas minime par rapport au coût global de l’installation. Les technologies à condensation sont plus chères que les chaudières traditionnelles, mais leur surcoût est rentabilisé par les économies d’énergie réalisées.
Les installations au bois sont significativement plus chères que leurs homologues gaz et fuel. Cette différence est essentiellement due au prix de la chaudière, d’une part, et au coût de l’installation de stockage et de transport (du stockage vers la chaudière). Dans certains cas, il faut même construire un nouveau bâtiment pour pouvoir réaliser ce stockage de combustible. En conclusion, l’investissement pour une installation au bois dépend fortement du contexte, mais de manière générale, on peut dire que l’on est dans un ordre de grandeur supérieur par rapport au gaz et au mazout.

 

Le volume de stockage

Le pouvoir calorifique des combustibles par unité de volume est fort différent. Pour obtenir le même contenu énergétique, le volume de combustible correspondant sera aussi différent. Par conséquent, cela aura une influence sur le volume de stockage et sur la fréquence d’approvisionnement. On peut retenir les ordres de grandeur suivants pour obtenir un contenu énergétique :

Un mètre cube de mazout équivaut approximativement à 3 *map de pellets, à 6 stères de bois et 12 map de plaquettes.

*map : Mètre cube Apparent de Plaquettes.

En conclusion, la viabilité d’un projet basé sur le bois-énergie dépend aussi du potentiel du site pour réaliser une installation de stockage : si la place est disponible ou si une pièce peut être réaménagée en zone de stockage. On voit que l’approche avec des plaquettes demande le plus de place.

Le coût du combustible

Les coûts de fourniture en combustible sont variables sur base saisonnière (augmentation de la demande en hiver) et en fonction de phénomènes globaux (géopolitiques notamment, qui influent sur le cours du pétrole). Sur le long terme, l’Observatoire des prix de l’APERE (http://www.apere.org/fr/observatoire-prix) permet d’identifier deux tendances :
  1. Le fuel et le gaz ont des évolutions parallèles, mais décalées dans le temps. Le prix du mazout est plus volatil et son évolution précède celle du gaz : lorsque le mazout est plus cher, le prix du gaz a tendance à monter, et vice-versa. Ces dernières années, l’écart ne dépasse pas 1.5c€ par kWh (tarif particulier).
  2. Le prix du bois est moins élevé que celui du fuel et de gaz, mais très sensible à sa forme : le prix des pellets est proche de celui des énergies fossiles, tandis que les plaquettes sont sensiblement moins chères (de l’ordre de 3 c€/kWh), soit presque moitié moins.

 

L’approvisionnement et le suivi des consommations

Le fuel ainsi que le bois sont disponibles sur tout le territoire, ce qui n’est actuellement pas le cas pour le gaz naturel.

Réseau de distribution du gaz naturel en Belgique (source : Tractebel).

Le gaz permet de ne pas se soucier de l’approvisionnement. De plus, par sa facturation mensuelle, en fonction d’un compteur volumétrique, le suivi régulier des consommations et la détection d’une dérive éventuelle sont nettement plus faciles avec le gaz.
Avec le fuel, il est pratiquement impossible de réaliser une comptabilité  énergétique régulière si on ne prévoit pas un ou des compteurs fuel sur les brûleurs. Le suivi, par exemple mensuel, demande cependant le relevé des compteurs. Sans cela, seul un suivi annuel est possible, et encore faut-il une mesure précise des stocks en cuve au moment des livraisons.
Avec le bois, les grandes chaudières peuvent être équipées d’un système de comptage de la consommation. En outre, les silos textiles peuvent être équipés d’un système de pesage.

Consommation 

Pour en savoir plus sur la comptabilité énergétique : cliquez ici !

Le contrôle

Réglementairement, les chaudières sont soumises à une obligation de contrôle. Les dispositions légales sont décrites dans l’Arrêté Royal du 29 janvier 2009 ainsi que sa modification du 18 juin 2009.
La fréquence minimale de ces entretiens dépend du type de combustible. On est sur une base annuelle pour les combustibles solides (bois) et liquides (fuel), pour une base trisannuelle pour les chaudières au gaz. Celles-ci sont en effet moins sujettes à l’encrassement.

Autres utilisations

Le gaz naturel peut avantageusement être utilisé pour d’autres usages comme les cuisines collectives, en remplacement de l’électricité ou du propane.

Cuisines collectives 

Pour en savoir plus sur le choix du vecteur énergétique en cuisine collective : cliquez ici !

Synthèse des avantages et inconvénients

Critère Pour le gaz Pour le fuel Pour le bois
Rendement Élevé avec condensation Élevé avec condensation
Approvisionnement Réseau Partout Partout
Investissement Plus élevé
Volume de stockage Connexion au réseau + si pellets à +++ si plaquettes
Prix du combustible Moins cher
Émission de CO2 Inférieur de 25 % par rapport au mazout Combustion neutre à certaines conditions
Émission de NOx + +
Émission de SO2 + +
Émission de particules fines + ++
Suivi des consommations Facile Par dispositif adhoc Par dispositif adhoc

Le choix final dépend, pour chaque projet, du poids que le décideur donne à l’un ou l’autre des critères cités ici.

  Exemple chiffré

Exemple :

Pour une question de facilité, on considère un bâtiment de type domestique. On suppose qu’il consomme actuellement 200 [GJ/an] ou 55 555 [kWh/an].

Les responsables de ce bâtiment désirent installer une nouvelle chaufferie. Se pose donc la question : « quel type de vecteur énergétique » ? Il est difficile d’évaluer les prix futurs de l’énergie. Suivant l’hypothèse que l’on choisit, les résultats sont significativement différents. Le lecteur est donc invité à réaliser l’exercice par lui-même sur base des prix qui lui sont applicables. À titre d’exemple, on utilisera ici une moyenne sur les cinq dernières années espérant conserver ainsi la tendance relative entre les différents vecteurs énergétiques.

Type de chaudière

Consommation future estimée

Gain par rapport au moins avantageux

Chaudière gaz à condensation
(rendement saisonnier de 101 %).
55 555 [kWh/an] / 1,01 = 55 005 [kWh/an]

9 [%]

Chaudière gaz haut rendement
(rendement saisonnier de 92 %).
55 555 [kWh/an] / 0,92 = 60 386 [kWh/an]

0 [%]

Chaudière fuel à condensation (rendement saisonnier de 97 %). 55 555 [kWh/an] / 0,97 = 57 273 [kWh/an]

5 [%]

Chaudière fuel haut rendement
(rendement saisonnier de 92 %).
55 555 [kWh/an] / 0,92 = 60 386 [kWh/an]

0 [%]

Chaudière au bois haut rendement (rendement saisonnier de 92 %). 55 555 [kWh/an]/0,92 = 60 386 [kWh/an]

0 [%]

 

Type de chaudière

Facture future estimée (prix indicatif particulier 2018 (HTVA))

Gain par rapport au moins avantageux

Chaudière gaz à condensation. 55 005 [kWh/an] x 7 [cents €/kWh] =
3 850 [€/an]

9 [%]

Chaudière gaz haut rendement. 60 386 [kWh/an] x 7 [cents €/kWh] =
4 227 [€/an]

0 [%]

Chaudière fuel à condensation. 57 273 [kWh/an] x 7 [cents €/kWh] =
4 009 [€/an]

9 [%]

Chaudière fuel haut rendement. 60 386 [kWh/an] x 7 [cents €/kWh] =
4 227 [€/an]

0 [%]

Chaudière au bois haut rendement : pellets. 60 386 [kWh/an] x 5 [cents €/kWh] =
3 019 [€/an]

29 [%]

Chaudière au bois haut rendement : plaquettes. 60 386 [kWh/an] x 3 [cents €/kWh] =
1 812 [€/an]

57 [%]

Type de chaudière

Émission de CO2 future estimée : basé uniquement sur la combustion

Gain par rapport au moins avantageux

Chaudière gaz à condensation. 55 005 [kWh/an] x 0,202 [kg CO2/kWh] = 11 [tonnes CO2/an]

31 [%]

Chaudière gaz haut rendement. 60 386 [kWh/an] x 0,202 [kg CO2/kWh] = 12.2 [tonnes CO2/an]

23,2 [%]

Chaudière fuel à condensation. 57 273 [kWh/an] x 0,263 [kg CO2/kWh] = 15 [tonnes CO2/an]

5,5 [%]

Chaudière fuel haut rendement. 60 386 [kWh/an] x 0,263 [kg CO2/kWh] = 15.9 [tonnes CO2/an]

0 [%]

Chaudière au bois haut rendement : pellets. 60 386 [kWh/an] x 0 [kg CO2/kWh] = 0 [tonnes CO2/an]

100 [%]

Chaudière au bois haut rendement : plaquettes. 60 386 [kWh/an] x 0 [kg CO2/kWh] = 0 [tonnes CO2/an]

100 [%]

Type de chaudière

Émission de CO2 future estimée : basé sur le cycle complet du combustible

Gain par rapport au moins avantageux

Chaudière gaz à condensation. 55 005 [kWh/an] x 0,235 [kg CO2/kWh] = 12.9 [tonnes CO2/an]

34,5 [%]

Chaudière gaz haut rendement. 60 386 [kWh/an] x 0,235 [kg CO2/kWh] = 14.2 [tonnes CO2/an]

27,9 [%]

Chaudière fuel à condensation. 57 273 [kWh/an] x 0,327 [kg CO2/kWh] = 18.7 [tonnes CO2/an]

5,1 [%]

Chaudière fuel haut rendement. 60 386 [kWh/an] x 0,327 [kg CO2/kWh] = 19.7 [tonnes CO2/an]

0 [%]

Chaudière au bois haut rendement : pellets. 60 386 [kWh/an] x 0.047 [kg CO2/kWh] = 2.8 [tonnes CO2/an]

85,7 [%]

Chaudière au bois haut rendement : plaquettes. 60 386 [kWh/an] x 0.022 [kg CO2/kWh] = 1.3 [tonnes CO2/an]

93,4 [%]

 

Cahier des charges 

Vecteur énergétique.
photo humidificateur

Améliorer énergétiquement un humidificateur existant

photo humidificateur

Remarque : si l’analyse conclut à la nécessité du remplacement de l’appareil, on consultera les critères de choix d’un humidificateur.

Décentraliser l’humidification

D’une manière générale, on vérifiera si l’humidification décentralisée d’une zone limitée dans le bâtiment au moyen d’un petit générateur de vapeur électrique ne pourrait pas suffire. L’humidification n’est-elle pas nécessaire uniquement au niveau du local informatique ou des zones contrôlées ?
Les humidificateurs autonomes à vapeur sont particulièrement souples à ce sujet.
À noter que certains locaux ne nécessitent pas d’humidification : une salle de restaurant, une cafétéria, une salle d’archives, …


Diminuer le taux de renouvellement d’air

Le besoin d’humidification est directement lié au taux de renouvellement d’air puisque c’est l’air neuf qu’il faut humidifier en hiver. Il y a donc lieu de définir précisément les besoins réels en apport d’air neuf.

Évaluer

Comment évaluer la qualité de l’air

Si un local nécessite un taux de renouvellement horaire de 5 sans obligation de contrôler le taux d’humidité, alors que les autres locaux n’ont besoin que d’un taux de 1 mais avec nécessité d’humidifier, il peut être intéressant de concevoir deux installations différentes.

Gérer

Comment réduire les débits d’air.

Diminuer la consigne d’humidification

Plus la consigne d’humidité souhaitée dans les locaux est élevée, plus la consommation liée à l’humidification est importante.

À titre d’exemple, en passant d’une consigne de 20°C 50 % HR à 20°C 60 % HR, le coût de l’humidification augmente de plus de 60% et le coût total du traitement de l’air est augmenté de 6,5 % si l’eau est froide dans l’humidificateur (chaleur de vaporisation prise sur l’air) et de 11 % si l’humidification est réalisée par un humidificateur électrique à vapeur…

Il faut donc limiter le taux d’humidité au minimum assurant le confort, à savoir 40 %. C’est d’ailleurs le taux minimal à respecter selon le RGPT.
Attention, il s’agit bien de la consigne d’humidité ambiante qui est fixée à 40%. Celle-ci peut être mesurée dans l’ambiance ou dans la reprise (si la température de l’air repris est représentative de l’ambiance – ce n’est pas le cas lorsque l’extraction se fait au travers des luminaires). Souvent, on retrouve des consignes d’humidité de l’air pulsé. Il est clair que le réglage de celles-ci doit tenir compte de la production d’humidité interne du local de manière à ne pas dépasser les 40% ambiants.
On sera par ailleurs attentif aux groupes de traitement d’air régulés suivant le principe du point de rosée. En effet, si la régulation ne comprend pas de gestion de l’humidificateur en fonction de l’humidité ambiante (c’est courant), il y aura souvent une humidification excessive. Cela dépendra de la consigne de rosée programmée.

Améliorer

Comment limiter l’humidification de l’air neuf ? Cliquez ici !

Adapter le débit de déconcentration

La fréquence des purges de déconcentration est un des éléments coûteux d’une installation d’humidification : coûteux en eau, coûteux en énergie s’il s’agit d’un humidificateur à vapeur. En effet, dans ce cas, c’est de l’eau bouillante qui va être rejetée à l’égout…
À défaut de calcul du débit de déconcentration, ou lorsque la dureté de l’eau est variable dans le temps, on aura tendance à augmenter la fréquence des purges…
Il est dès lors utile d’investir dans un humidificateur équipé d’un régulateur de fréquence des purges en fonction de la dureté de l’eau.
Pour chiffrer l’intérêt de ce régulateur, on peut suivre le raisonnement suivant :

  • Les pertes de chaleur peuvent être calculées sur base de x litres/h envoyés à l’égout, chaque litre chauffé de 10° à 100° demandant 0,1 kWh.
  • Le rendement de l’humidificateur est le rapport entre la chaleur nécessaire à la vaporisation de l’eau et la chaleur totale fournie.
  • Sans régulateur, le rendement d’un humidificateur à vapeur est de l’ordre de 85 %.
  • Avec un régulateur, le rendement atteint 94 %.
Exemple.

Soit une installation de 40 kg/h de vapeur (et donc 40 x 0,75 = 30 kW). en moyenne annuelle, on estime que l’installation fonctionne à 50 % de puissance durant 1 000 heures.

La perte de rendement de 9 % entraîne un surcroît de consommation de :

0,09 x 0,50 x 30 x 1 000 = 1 350 kWh/an

Sur base d’un prix du kWh à 0,1 €, on obtient :

1 350 x 0,1 = 135 €/an


Adapter le régulateur aux besoins

Si le système de régulation est en mode on-off, il travaillera généralement avec un différentiel de 5 %. Or une consigne est généralement réglée par l’occupant en fonction de sa valeur minimale. Comme tout supplément d’humidité entraîne un supplément de consommation, autant placer un système sensible qui n’entraînera pas de dépassement vers le haut de l’humidité intérieure.
Trois types de régulateurs sont disponibles : régulateur on-off, régulateur proportionnel (P) ou régulateur proportionnel-intégral (PI). Le diagramme ci-dessous (issu d’un constructeur) permet de choisir le type de régulateur et la bande proportionnelle du système en % HR, en fonction :

  • De la précision attendue (plus la tolérance est faible, plus on aura tendance à sélectionner un PI avec petite bande proportionnelle).
  • De la quantité relative d’humidité absolue à fournir (plus celle-ci est grande, plus on sélectionnera un appareil PI fiable, puisqu’on est proche de la saturation).

Schéma système de régulation est en mode on-off

Le remplacement d’un régulateur ON-OFF existant par un PI ne s’amortit pas sur la réduction des consommations, mais en cas de renouvellement du matériel, autant réserver le régulateur ON-OFF à un rôle de sécurité limite haute.


Remplacer la régulation par point de rosée d’un laveur d’air

L’utilisation des humidificateurs par pulvérisation avec recyclage d’eau était souvent associée à une régulation dite « par point de rosée ». La fiabilité des hygrostats étant autrefois sujette à caution, on prévoyait une régulation sur base de la température en sortie d’humidificateur, température égale au point de rosée du point de soufflage. On parlait de régulation par « point de rosée ».

Schéma de la régulation par "point de rosée

Cette régulation est tout à fait correcte en hiver, mais pose des problèmes en mi-saison et en été, avec des consommations d’énergie importantes. Il arrive de rencontrer des installations où humidification et batterie froide fonctionnent simultanément…

Quelles solutions ?

  • Dans un premier temps, il importe d’abaisser la température de rosée en hiver et de la relever en été. Cela peut s’imaginer manuellement ou automatiquement par la régulation.
  • On peut également stopper le fonctionnement de la batterie froide pour des besoins de déshumidification en commandant la batterie froide en fonction des besoins de l’ambiance uniquement.
  • On peut limiter le temps de fonctionnement de l’humidificateur en le commandant en tout ou rien sur base d’un hygrostat dans l’ambiance ou placé dans l’extraction. Des légères fluctuations d’humidité et de température se produiront cependant dans le local.
  • On peut étudier la possibilité de travailler à débit d’eau variable, notamment à partir d’un humidificateur rotatif …
  • Puisque le laveur d’air ne pose pas de problèmes en hiver, il reste la solution d’imposer un arrêt total de l’humidification au-dessus d’un seuil de température extérieure : de 5°C à 8°C, par exemple. Le respect d’une consigne fixe de 50 % HR ne pourra plus être assuré, mais l’occupant ne s’en rendra pas compte, puisque le confort est assuré dès 40 % HR …

Techniques

Pour plus de détails, cliquez sur l’analyse d’une régulation par point de rosée.

Récupérer la chaleur sur eau glacée [Climatisation – Améliorer]

Récupérer la chaleur sur eau glacée [Climatisation - Améliorer]

Groupe de production d’eau glacée à condensation à air.


Objectifs de la récupération

Objectif prioritaire : transférer la chaleur extraite du bâtiment vers le préchauffage de l’air neuf

Suite à l’isolation des bâtiments et à la chaleur interne (éclairage, bureautique, …), la température d’équilibre d’un bâtiment d’aujourd’hui se situe autour des 10°C extérieurs. Autrement dit, au-dessus de 10°C, le bâtiment devra être refroidi. De l’eau glacée est produite et circule dans les pièces à refroidir.

Par ailleurs, au même moment, l’air hygiénique de ventilation doit être préchauffé jusque …16°C… pour éviter des courants d’air froids sur les occupants.

Conclusion : pour transférer la chaleur de l’un vers l’autre, il faut travailler avec des émetteurs de froid à la plus haute température possible. Par exemple, les ventilo-convecteurs travailleront au régime 12°C – 17°C, les plafonds froids travailleront au régime 15°C – 17°C, voire idéalement 17°C – 19°C.

Ainsi l’eau, une fois réchauffée en passant dans le plafond, peut utilement donner sa chaleur vers l’air neuf. Seule, la consommation d’une pompe est encore nécessaire.

Si des locaux internes, des locaux informatiques, … sont demandeurs de froid durant toute l’année, ce principe est encore davantage à mettre en place.

Objectif secondaire : augmenter la température à l’évaporateur de la machine frigorique

Un deuxième objectif est d’exploiter l’énergie frigorifique de telle sorte que la température d’eau glacée soit la plus élevée possible à l’évaporateur. En moyenne, chaque degré gagné à l’évaporateur augmente de 3 % le rendement de la machine frigorifique.


Principes hydrauliques de base

Exploiter l’énergie frigorifique en fonction de la température

Le bâtiment admet des besoins d’eau froide à des températures différentes.

La batterie froide du caisson de traitement d’air sera généralement alimentée à 6°C :

  • parce que l’on voudrait déshumidifier l’air en été,
  • pour limiter le nombre de rang et donc la perte de charge sur l’air à l’échangeur.

Par contre, les unités terminales (ventilo-convecteurs, plafonds froids, …) ne devraient pas déshumidifier l’air, et ont tout avantage à travailler à haute température pour favoriser la récupération de chaleur.

Exemple.

Soit le réseau alimentant la batterie de froid du caisson de préparation de l’air neuf (débit = 50) et le réseau d’eau glacée (débit = 100).

Si les deux réseaux sont au régime 7°C – 12°C, la température moyenne à l’évaporateur est de 9,5°C.

Si le réseau d’eau glacée passe au régime 12°C – 17°C, la température moyenne à l’évaporateur passe à 10,75°C, soit une hausse de 1,25°C.

Cet impact est faible, mais il aura lieu durant toute la vie de l’installation, et il se cumulera aux pertes par tuyauteries plus élevées et à la consommation de latente plus forte également.

Disposer les échangeurs frigorifiques en série et préférer le couplage en injection (ou en dérivation)

Pour augmenter la température à l’évaporateur, on peut penser à deux solutions :

  • Freiner le débit à l’évaporateur : ce n’est possible que dans une certaine limite car il faut irriguer en permanence la machine frigorifique avec un débit minimal. À défaut de débit suffisant à l’évaporateur, la machine se mettra en sécurité.
  • Placer les équipements en série en fonction de leur température de travail : l’alimentation des unités terminales sera greffée en série, après la batterie froide du caisson de traitement d’air.

Exemple de récupération de chaleur sur plafonds froids

Lorsque les plafonds fonctionnent en mi-saison et que l’air extérieur est suffisamment froid, la machine frigorifique est arrêtée et l’eau des plafonds est refroidie naturellement par l’air extérieur, en utilisant la batterie froide comme batterie de préchauffage de l’air neuf.

Fonctionnement estival normal :

Fonctionnement en récupération :

> Avantages : pas de pertes de charges supplémentaires (pas de batterie de récupération supplémentaire) et bénéfice d’une grosse batterie pour la récupération puisque c’est la batterie froide.
> Inconvénients : il y a nécessité de préchauffe anti-gel (donc perte d’intérêt pour les très basses températures) et régulation difficile si les puissances en jeu ne sont pas du même ordre (si la puissance de refroidissement de l’air neuf est trop faible par rapport aux besoins des plafonds, le groupe s’enclenche et la récupération est perdue). Il faut en outre rester dans les limites de débit de la machine frigorifique, puisqu’avec un tel schéma, le débit irriguant l’évaporateur est réduit (on travaille avec une différence de température nettement plus importante au niveau de l’évaporateur).

Ce schéma convient bien lorsqu’une préparation d’air neuf importante est envisagée (salles de conférences, salles de réunions, …).

Conclusions : Cet exemple montre la nécessité d’une analyse fine des besoins thermiques du bâtiment dès le début du projet. Pour parcourir  d’analyse un exemple de ce type.

Diminuer les consommations de la pompe à vide

Diminuer les consommations de la pompe à vide


Contrôle de température de l’anneau liquide

Le liquide de refroidissement alimentant la pompe à vide sert à créer l’étanchéité dans le corps de pompe en formant un anneau liquide par centrifugation.

La température de l’anneau liquide influence la qualité du vide :

  • Pour un anneau liquide à 15°C, la tension de vapeur est de 17 mbar et le vide maximum que l’on peut atteindre est de l’ordre de 25 mbar.
  • Pour un anneau liquide à 35 °C, la tension de vapeur est de 57 mbar et le vide maximum que l’on peut atteindre est de l’ordre de 70  mbar.

De plus, elle agit sur la tenue mécanique dans le temps de la pompe à vide.

D’un point de vue énergétique, il va de soi qu’un mauvais contrôle de la température de l’anneau liquide, indépendamment des problèmes d’échauffement ponctuel dû à l’extraction d’un mélange de condensats chauds et de vapeur, allonge les temps de vide. Il s’ensuit non seulement une consommation électrique supplémentaire de la pompe à vide mais aussi un risque d’abandon du processus de stérilisation.

Cycle classique de stérilisation.

Le cycle ci-dessus montre que la pression de vide est de l’ordre de 70 [mbar]. Dans beaucoup de refroidissements de stérilisation, on adopte des valeurs de vide de l’ordre de 50 [mbar]; la température de l’anneau liquide alors ne doit pas dépasser 30 [°C]. Il est donc impératif de contrôler correctement la température par la gestion du débit d’appoint en eau adoucie de l’anneau liquide.


Récupération du liquide de refroidissement

 1. Circuit ouvert

Schéma circuit ouvert.

Dans un circuit ouvert, c’est la température de l’eau du réseau d’eau adoucie qui conditionne directement la performance de l’anneau liquide.

La température moyenne recommandée est de 15 [°C]; ce qui veut dire qu’indépendamment de la grande quantité de liquide de refroidissement consommée, la qualité du vide est bonne toute l’année.

Théories

Pour en savoir plus sur les débits de liquide de refroidissement de la pompe à vide.

Dans un circuit ouvert, un cycle de stérilisation peut demander à la pompe à vide de consommer en moyenne de l’ordre de 200 [L]; ce qui représente naturellement des consommations énormes au bout d’une année pour un service de Stérilisation Centrale.

2. Circuit semi-fermé ou semi-ouvert

Principe

Schéma circuit semi-fermé ou semi-ouvert.

Dans ce type de circuit, l’amélioration possible est de travailler à la température la plus basse possible sans augmenter trop le débit d’appoint qui pénaliserait la consommation d’eau.

L’optimisation de la consommation de liquide de refroidissement passe donc par le choix de la température maximum garantissant le vide souhaité sans risque de refus du système du cycle engagé.

Exemple.

Théories

Pour en savoir plus sur l’optimisation de la température du liquide de refroidissement de la pompe à vide.

En considérant que l’on ne veut pas dépasser une température d’entrée de la pompe à vide de 20 [°C], le calcul donne une température de sortie de pompe de :

sortie = 20 [°C] + 12 [°C] = 32 [°C]

Les 12 [°C], tenant compte de la chaleur de compression dégagée dans la pompe et l’augmentation de température due au mélange du liquide de refroidissement, des condensats et de la vapeur issus de la chambre de stérilisation, est une température moyenne.

On en déduit le débit d’appoint :

Débitappoint = 0,152 [m³/cycle]

Dans cet exemple, on montre que, théoriquement, il est possible de diminuer la consommation de l’appoint d’eau d’un tiers de celle nécessaire pour un circuit ouvert (de l’ordre de 229 litres).

Évaluer

 Pour en savoir plus sur l’évaluation des coûts rapportés aux différentes consommations.

Soit financièrement 30 % de 3 395 [€/an]

ou une économie de 1 018 €/an

Régulation

La régulation d’un tel système peut se réaliser simplement en pilotant une électrovanne 2 voies en fonction de la température de l’eau dans la cuve tampon :

  • Lorsque la température de l’eau dans le circuit augmente, l’électrovanne 2 voies s’ouvre et refroidit le volume d’eau. En pratique, une cuve tampon est placée entre le retour et l’appoint d’eau froide.
  • À l’inverse, quand la température de l’eau de la cuve diminue, l’électrovanne se ferme.

On est donc en présence d’un système simple permettant de réduire la consommation d’eau de l’anneau liquide de la pompe à vide.

3. Circuit fermé

Principe

Schéma circuit fermé.

Le placement d’un tel système dans une installation existante en circuit ouvert nécessite :

  • de bien dimensionner l’échangeur,
  • de prévoir quand même un appoint d’eau pour absorber les pointes de température en début de phase de vide.

Dimensionnement

L’échangeur doit être dimensionné pour réagir de manière instantanée à la surchauffe de début de phase de vide. En effet, à ce moment les condensats peuvent être très chauds.

Exemple.

Théories

Pour en savoir plus sur l’optimisation de la température du liquide de refroidissement de la pompe à vide.

En considérant que l’on ne veut pas dépasser une température d’entrée de la pompe à vide de 20 [°C], le calcul donne une température de sortie de pompe de :

sortie = 20 [°C] + 12 [°C] = 32 [°C]

Les 12 [°C] tenant compte de la chaleur de compression dégagée dans la pompe et l’augmentation de température due au mélange du liquide de refroidissement, des condensats et de la vapeur issus de la chambre de stérilisation.

On en déduit en fonction du débit d’eau de l’anneau liquide (229 [litres/cycle]) la puissance de l’échangeur à placer:

Puissanceéchang eur = 8,5 [kW]

Sur base de la puissance calculée, on peut envisager :

  • De réchauffer l’eau osmosée d’entrée du générateur. Mais un simple échangeur eau/eau risque par moment de ne pas être suffisant et nécessite un appoint d’eau côté circuit pompe à vide.
  • De profiter de l’eau glacée des ventilo-convecteurs de la stérilisation (souvent présent) pour réaliser une petite dérivation vers un petit échangeur.

Pour la seconde solution, quel serait l’impact énergétique :

Théories

Pour connaître tous les détails de calcul du bilan énergétique.

Évaluer

Pour connaître tous les détails de l’évaluation des coûts énergétiques et de consommation.

En considérant que :

  • la puissance de l’échangeur est Péchangeur = 8,5 [kW];
  • nombre de cycle par an nbcycle= 6 291 [cycle/an];
  • temps moyen par cycle tmoyen = 0,75 [h/cycle];
  • temps moyen de pompage par cycle tpompage = 0,5 x 0,75 [h/cycle];
  • le COP de la machine frigorifique = 3

L’énergie annuelle nécessaire pour refroidir l’anneau liquide est de:

Qannuelle [kWh] = Péchangeur  [kW] x nbcycle [cycle/an] x tpompage [h/cycle]

=

Qannuelle [kWh] = 8,5 [kW] x 6 291 [cycle/an] x 0,38 [h/cycle]

Qannuelle  = 20 320 [kWh/an]

On en déduit la consommation électrique du compresseur de la machine frigorifique :

Qélectrique [kWh/an] = Qannuelle [kW] / COP

Qélectrique  = 20 320 / 3 = 6 773 [kWh/an]

Soit une dépense électrique au compresseur de :

dépense = 6 773 [kWh/an] x 0,11 [€/kWh]

dépense = 745  [€/an]

Sachant que la dépense annuelle en liquide de refroidissement pour alimenter l’anneau liquide de la pompe à vide est de 3 395 [€/an] en cycle ouvert.

Conclusion

Le placement d’un échangeur branché sur une boucle d’eau glacée a les avantages et les inconvénients suivants :

(+) réduction drastique des consommations d’eau par rapport au circuit ouvert (d’où l’amortissement assez rapide de l’échangeur à plaque et de sa régulation).

(-) nécessité d’une boucle d’eau glacée en stérilisation.

Acoustique et vitrage

L’indice d’affaiblissement acoustique pondéré Rw

La capacité d’un vitrage à empêcher la transmission des sons aériens provenant de l’extérieur est évaluée par son indice d’affaiblissement acoustique appelé R (dB). Celui-ci est obtenu en laboratoire et correspond pour chaque bande d’octaves à la différence entre les niveaux de pression acoustique régnant dans les locaux d’émission et de réception.

En reportant, pour chaque bande d’octaves, les valeurs de l’indice d’affaiblissement acoustique dans un graphique, on obtient le spectre d’isolation acoustique d’un vitrage.

On peut voir que l’affaiblissement acoustique d’un vitrage est assez complexe puisqu’il varie en fonction de la fréquence.
C’est pourquoi, pour caractériser la qualité acoustique d’un vitrage, on utilise un coefficient unique défini dans la norme européenne EN-ISO 717 : l’indice d’affaiblissement pondéré Rw.

Comment définir Rw ?

La norme définit une courbe type de référence donnée dans le graphe ci-dessous.

Courbe de référence ISO 717.

Cette courbe est superposée au spectre d’isolation acoustique du vitrage et est progressivement abaissée (par pas de 1 dB) jusqu’à ce qu’elle « colle » avec la caractéristique R (le spectre d’isolation) calculée ou mesurée en laboratoire.
Elle « colle » lorsque l’écart défavorable moyen (que l’on calcule en divisant la somme des écarts défavorables par 16, le nombre total de bandes de fréquence du spectre) approche 2 sans le dépasser. À ce moment, on lit la valeur de la courbe à 500 Hz : c’est la valeur Rw du vitrage.

Exemple.

Prenons les mesures du simple vitrage de 4 mm. La courbe de référence a été décalée jusqu’à ce que l’écart défavorable soit de 2 dB.

On caractérisera ce vitrage par un indice Rw de 32 dB (valeur à 500 Hz).

Remarque : les performances d’un vitrage in situ sont toujours inférieures à celles obtenues en laboratoire.


La valeur d’affaiblissement acoustique complète d’un vitrage : Rw (C;Ctr)

Le concept d’indicateur à valeur unique doit être considéré avec prudence !

En effet, les performances acoustiques d’un vitrage peuvent s’avérer être très faibles pour certaines fréquences.

On remarque, par exemple, que l’isolation acoustique que procure un double vitrage est relativement mauvaise à la fréquence critique des feuilles de verres (3 200 Hertz) et dans les basses et moyennes fréquences (bruit de trafic lent). Ce deuxième puits de résonance s’explique par le fait que le double vitrage se comporte comme un système acoustique du type MASSE/RESSORT/MASSE. La lame d’air jouant le rôle de ressort, son épaisseur est généralement trop faible pour créer un ressort suffisamment souple et le système fait entrer le verre en résonance.
Ainsi, la valeur de l’affaiblissement annoncée par l’indice Rw n’est plus représentative des performances du vitrage à ces fréquences.

La norme a donc mis en place deux facteurs correctifs à appliquer à l’indice Rw pour corriger sa valeur lorsque le vitrage est en présence :

  • d’un bruit rose (hautes et moyennes fréquences) : Rw + C
  • d’un bruit de trafic (basses et moyennes fréquences) : Rw + Ctr

La valeur d’affaiblissement acoustique complète d’un vitrage est donc donnée par : Rw (C;Ctr)

Exemple.

Un double vitrage ordinaire clair (4/15air/4) est caractérisé par un indice d’affaiblissement acoustique : 30(- 1; – 4).
Cela signifie que, en cas de bruits courants, l’affaiblissement Rw vaut 30 dB.
Par contre en présence de sources de bruit comprenant des hautes fréquences, par exemple un trafic routier rapide, les performances du vitrage ne sont plus que de 29 dB (Rw + C) et en présence de trafic urbain lent caractérisé par des basses fréquences l’indice d’affaiblissement acoustique descend à 26 dB (Rw + Ctr).

Le tableau suivant donne des exemples de choix d’adaptation pour déterminer l’indicateur à valeur unique à utiliser en fonction de l’origine du bruit.

Source de bruit

Type « trafic rapide » Rw + C

Type « trafic « lent » Rw + Ctr

Jeux d’enfants XXX
Activités domestiques (conversations, musique, radio, télévision) XXX
Musique de discothèque XXX
Trafic routier rapide (> 80 km/h) XXX
Trafic routier lent (p.ex. : trafic urbain) XXX
Trafic ferroviaire de vitesse moyenne à rapide XXX
Trafic ferroviaire lent
Trafic aérien (avion à réaction) de courte distance XXX
Trafic aérien (avion à réaction) de longue distance XXX
Avions à hélices XXX
Entreprises produisant un bruit de moyennes ou hautes fréquences XXX
Entreprises produisant un bruit de moyennes ou basse fréquences XXX

Régime de dimensionnement

Régime de dimensionnement


Un équipement de chauffage (chaudière, radiateur ou batterie de chauffage) est « dimensionné en régime 90/70 »

Que signifie cette expression ?

Prenons l’exemple d’un radiateur :

Pour assurer le confort (température de consigne de 20°C) dans un local, pour une température extérieure extrême de – 10°C (température dite « de base », fonction de la région), le calcul des déperditions indique qu’il faut un radiateur de 2 000 W.

Si on choisit un radiateur de 2 000 W dimensionné en régime 90/70, cela signifie que l’eau entre dans le radiateur à 90°C, qu’elle cède 2 000 W de chaleur au local à 20°C, et sort avec une température de 70°C.

Si on choisit un radiateur de 2 000 W dimensionné en régime 70/50, cela signifie que, si on alimente le radiateur avec de l’eau à 70°C, celle-ci cédera 2 000 W de chaleur au local à 20°C, et ressortira avec une température de 50°C.

Évidement, la différence de température entre le local et la température moyenne du radiateur est plus faible :(60°C – 20°C) au lieu de (80°C – 20°C). Pour fournir la même puissance, la surface du radiateur deviendra plus importante.

Or la puissance émise par un radiateur varie en fonction de la différence de température entre le local et la température moyenne du radiateur, le tout exposant 1,3.

La surface du radiateur dimensionné en régime 70/50 sera de :

1 / ( (60 [°C] – 20 [°C]) / (80 [°C] – 20 [°C]) ) Exp 1,3 = 1,69 ou 169 [%]

Notons que la norme NBN EN 442-1 (1996) propose que la puissance nominale des radiateurs et convecteurs reprise par le fabricant pour caractériser leur matériel, soit calculée pour une différence de température de 50°C entre l’eau du radiateur et l’air ambiant, soit un régime 80/60.

La surface du radiateur dimensionné en régime 80/60 sera de :

1 / ( (70 [°C] – 20 [°C]) / (80 [°C] – 20 [°C]) ) Exp 1,3 = 1,26 ou 126 [%]

Choisir les bouches de pulsion et d’extraction

Choisir les bouches de pulsion et d'extraction

Bouches de ventilation (de gauche à droite) :
diffuseur plafonnier multicône circulaire et carré, diffuseur plafonnier à jet hélicoïdal,
plafonnier perforé, diffuseur linéaire, grille murale à double déflecteur.


Grandeurs caractéristiques conditionnant le confort

On peut résumer la qualité d’une installation de diffusion d’air en 3 phrases :

  • on se sent bien (qualité d’air et confort thermique),
  • on n’entend rien (confort acoustique),
  • on ne voit rien (intégration architecturale).

Cela se traduit par une série de critères à respecter tant pour diffusion d’air traité (systèmes de climatisation tout air) que pour la diffusion d’air hygiénique.

Bouches de pulsion

Le choix des bouches de pulsion et de leur position va fortement conditionner le confort dans le local. Il est donc important de ne pas choisir au hasard (comme prendre une bouche de telle taille parce que celle-ci correspond à l’ouverture existante dans le faux plafond…). La diffusion de l’air est complexe. L’idéal est donc de se référer aux spécialistes en la matière (bureau d’études, fabricant,…).

Exemples.

Alors que la vitesse résiduelle de l’air (vitesse au point 1) augmente lorsque la distance entre deux diffuseurs plafonniers à distribution radiale diminue, c’est parfois l’inverse avec des diffuseurs hélicoïdaux.

Un jet d’air horizontal est dévié vers le haut s’il est chaud et vers le bas s’il est froid. De même, un jet vertical vers le bas est freiné s’il est chaud …

Ceci montre la difficulté de choisir une bouche qui doit fonctionner aussi bien en chaud qu’en froid : la direction du jet ou la vitesse de l’air doit pouvoir être modifiée en fonction de la saison, vers le bas en hiver, vers le haut en été.

  

La vitesse de l’air à la sortie des diffuseurs plafonniers, liée à leur taille doit avoir une valeur minimum d’environ 2 m/s. Si ce n’est pas le cas, l’air froid ne profitera pas de l’effet Coanda et chutera verticalement, provoquant un courant d’air.

Schéma principe de l'effet Coanda.

Grandeurs caractéristiques

Quatre grandeurs vont ensuite guider le choix d’une bouche de pulsion : le débit, le bruit, la vitesse et la température. Les valeurs citées ci-après sont issues, soit de la pratique, soit de la norme DIN 1946 (vitesse dans la zone d’occupation).

Le débit demandé

En fonction de la pression dont on dispose en amont du diffuseur, on peut estimer le débit fourni par la bouche à partir des abaques des fabricants.

La production acoustique

Les grilles de distribution génèrent des bruits de sifflement provenant essentiellement de la vitesse d’air au travers de celles-ci. Ce bruit dépend de 4 paramètres :

  • le débit d’air aspiré ou rejeté,
  • la section efficace de passage de l’air,
  • la géométrie de la grille, et son type,
  • la présence éventuelle d’un registre de réglage de débit.

A priori, on choisira la bouche qui présente la puissance acoustique la plus faible pour le débit désiré, sachant cependant que la qualité acoustique de la bouche (annoncée par le constructeur) ne garantit pas le niveau sonore à lui seul. En effet, c’est parfois le bruit du ventilateur et des turbulences liées aux coudes du réseau que l’on entend au travers de la bouche. Un calcul complet de l’acoustique de l’installation doit alors être fait pour s’assurer qu’un silencieux ne doit pas être inséré. Notons également que les grilles peuvent aussi jouer le rôle d’atténuateur du niveau sonore (principalement des basses fréquences) provenant des gaines, lorsqu’elles sont correctement dimensionnées. Il y a réflexion des ondes sur les ailettes.

Calculs

Pour visualiser un exemple de ce type de calcul, cliquez ici !

Pour vérifier la qualité acoustique de la bouche choisie, on peut se référer au niveau de confort acoustique « NR » recommandé dans le local considéré. Dans un bureau, on recommande, dans la zone de travail, un niveau NR 35 ou NR 40. Ceci signifie en première approximation que la puissance acoustique émise par la bouche ne doit pas dépasser 40 à 45 dB(A).

Attention, cette valeur est issue de la pratique et n’a rien de scientifique. Elle est cependant proche de la réalité. Elle se base sur les hypothèses suivantes :

  • le niveau NR est voisin de dB(A) – 5, pour les types de bruit couramment rencontrés en ventilation,
  • dans la plupart des locaux, les bruits provenant du réseau de distribution compensent l’atténuation du bruit dans le local (absorption par les matériaux, atténuation avec la distance), ce qui signifie que la puissance émise par la bouche correspond plus ou moins au niveau sonore dans le local,
  • lorsque l’on se trouve sous une bouche, l’influence acoustique des bouches voisines est souvent négligeable, étant donné l’atténuation en fonction de la distance.

Remarque : parfois, le niveau NR ou NC (NR = NC + 2) est directement repris sur les abaques des fabricants de bouches.

La vitesse résiduelle en zone d’occupation

La zone d’occupation est souvent représentée par la surface du local de laquelle on a soustrait une bande de 50 cm le long des murs intérieurs et de 1 m le long des murs extérieurs, ce sur une hauteur de 1,8 m. Cette hauteur peut être plus faible si de toute façon les occupants sont toujours assis (dans un auditoire, …).

Dans cette zone, la vitesse de l’air ne peut dépasser 0,2 m/s (0,28 dans les locaux de passage) et le long des murs, à 1,8 m, elle ne peut dépasser 0,4 m/s :

Schéma sur la vitesse résiduelle en zone d'occupation.

Lorsque le taux de renouvellement d’air nécessaire dans un local est important ou lorsque la hauteur sous plafond est faible (< 2,5 m), il n’est plus possible de trouver des diffuseurs plafonniers à distribution radiale dont la vitesse d’air dans la zone d’occupation soit inférieure à 0,2 m/s. Dans ce cas, il faudra se tourner vers des diffuseurs à jet hélicoïdal qui favorisent pour un même débit, un brassage plus rapide entre l’air ambiant et l’air pulsé.

Diffuseurs à jet hélicoïdal. Diffuseurs à jet hélicoïdal.

Notons que le cahier des charges type 105 pour les bâtiments de l’état définit des valeurs de vitesse d’air nettement plus sévères (vitesse d’air à 19°C maximum de 0,1 m/s dans une zone d’occupation de 2 m de haut) qui s’avèrent souvent difficiles à réaliser.

La portée

La portée est la longueur du jet pour laquelle on obtient une vitesse résiduelle donnée (généralement de l’ordre de 0,2 à 0,25 m/s).

Lorsque l’on pulse de l’air froid le long du plafond au moyen de grilles murales ou de diffuseurs plafonniers, il faut que la portée couvre au moins 80 % de la zone à traiter tout en ne dépassant pas cette dernière.

Schéma sur la portée du jet.

Portée inférieure à 80 % de la zone à traiter : la surchauffe persiste en bout de zone.

Schéma sur la portée du jet.

Portée supérieure à 80 % de la zone à traiter : toute la zone est refroidie.

Schéma sur la portée du jet.

Portée supérieure à la zone à traiter : le jet froid risque de gêner les occupants avant son mélange à l’air ambiant.

Attention, avec un système VAV, il faut vérifier qu’au débit minimum, la portée ne descende pas en dessous de 50 à 70 % de la zone à traiter.

Lorsque l’on pulse de l’air chaud sous le plafond, celui-ci aura tendance à stagner en partie supérieure du local, créant une stratification des températures et un manque de chaleur en zone d’occupation. Au-delà d’une hauteur sous plafond de 3 m, il faut dès lors utiliser des diffuseurs détruisant cette stratification : soufflage vertical, à forte induction, diffuseurs hélicoïdaux. Ceci montre la difficulté de choisir une bouche fonctionnant soit en refroidissement, soit en chauffage :

Soufflage chaud provoquant une stratification en partie haute.

Soufflage chaud vertical détruisant la stratification.

La différence de température dans la zone d’occupation

Lorsque l’air pulsé rentre dans la zone d’occupation, la différence de température entre le jet d’air pulsé et l’air ambiant ne peut être trop importante, sous peine de ressentir des variations d’ambiance thermique dans le local.

Dans la zone d’occupation, la différence de température entre l’air pulsé et l’air ambiant ne peut dépasser :

  • 1,5°C avec de l’air pulsé chaud
  • 1°C avec de l’air froid

Turbulence

Une autre grandeur caractérise le confort d’un occupant par rapport aux mouvements d’air, c’est la variation de la vitesse de l’air en un point donné ou la turbulence de l’air.

Cette donnée n’intervient cependant pas dans le choix des bouches car elle dépend de l’aménagement intérieur du local. L’inconfort, s’il y en a un, ne peut donc être constaté qu’a posteriori.

En résumé

En résumé

Grandeurs à respecter Où ? Combien ?
Débit zone d’occupation selon les besoins
Puissance acoustique au niveau la bouche max : 45 dB(A)
Vitesse de l’air zone d’occupation
(à 1,8 m de haut)
max : 0,2 m/s
le long des murs
(à 1,8 m de haut)
max : 0,4 m/s
Écart de température dans l’air ambiant zone d’occupation max : + 1,5°C (chauffage)
zone d’occupation max : – 1°C (en refroidissement)

Exemple

Diffuseur de taille 600.

La combinaison de ces quatre grandeurs peut être vérifiée dans des abaques parfois repris dans les catalogues des fabricants.

Exemple : pour un diffuseur de la marque x de taille 600.

Données de départ
  • Débit d’air à pulser par bouche, q = 1 080 [m³/h]
  • Différence de température entre l’air pulsé et l’ambiance, ΔTz = – 6 [°C]
  • Écart entre 2 diffuseurs, A = 6,5 [m]
  • Écart entre plafond (3 m de haut) et zone d’occupation (1,8 m de haut), H1 = 1,2 [m]
  • Écart entre diffuseur et mur, X = 4 [m]

Abaque 1 : Calcul de la puissance acoustique au droit de la bouche et de la différence de pression nécessaire à l’obtention du débit désiré

  • Puissance acoustique émise par la bouche, LWA = 39 [dB(A)]
  • La différence de pression nécessaire au niveau de la bouche pour obtenir un débit de 1 080 m³/h, Δpt = 20 [Pa]

Abaque 2 : Calcul de l’écart de température entre l’air pulsé et l’air ambiant à l’entrée dans la zone d’occupation, ΔTL

  • Distance horizontale et verticale pour soufflage entre 2 diffuseurs, L = A/2 + H1 = 4,45 [m]
  • Pour une bouche de taille 600, ΔTL/ΔTz = 0,15
  • ΔTL = – 6° x 0,15 = – 0,9 [°C] (valeur recommandée : ΔTL < – 1 [°C])

Abaque 3 : Calcul des vitesses de l’air au droit de la zone d’occupation

  • Écart entre 2 diffuseurs, A = 6,5 [m]
  • Écart entre plafond et zone de séjour, H1 = 1,2 [m]
  • Vitesse de l’air dans la zone de séjour, VH1 = 0,12 [m/s] (valeur recommandée : VH1 < 0,2 [m/s])
  • Distance horizontale et verticale pour le soufflage le long du mur, L = X + H1 = 5,2 [m]
  • Vitesse de l’air le long du mur, VL = 0,22 [m/s] (valeur recommandée : VL < 0,4 [m/s])

Bouches d’extraction

Une bouche d’extraction est choisie en fonction de son débit et de sa production acoustique, suivant des abaques semblables à celles des bouches de pulsion.

En extraction la vitesse de l’air dans le local n’est pas un critère important. En effet, la vitesse décroît très vite dès que l’on s’éloigne de la bouche.

Schéma sur bouches d'extraction en soufflage.      Schéma sur bouches d'extraction en aspiration.

La configuration de la bouche d’extraction a donc peu d’influence sur la distribution de l’air dans le local, pour peu que le local ne se trouve pas en dépression (il faut que le débit pulsé soit légèrement supérieur au débit repris). Si c’est le cas, la bouche d’extraction risque d’ « aspirer » directement l’air pulsé avant qu’il n’ait balayé le local.

Problème d’efficacité de la pulsion dans un local en dépression : la bouche d’extraction « aspire » directement l’air pulsé.

Répartition du flux d’air dans un local en surpression : bon balayage du local.


Température de pulsion

Idéalement, pour ne pas créer d’inconfort, l’air neuf de ventilation doit être pulsé à une température neutre. Par exemple : 20°C. Il doit donc être préchauffé durant une bonne partie de l’année.

Cependant, les besoins en refroidissement des locaux apparaissent bien avant que la température extérieure n’atteigne les 20°C. Dans les bâtiments modernes, le point d’équilibre entre les besoins en chauffage et en refroidissement se situe bien souvent aux environs des 12°C.

Dans ce cas, dans un local refroidi avec un système indépendant du système de ventilation (ventilo-convecteurs, plafonds froids, …), il y a de fortes chances, en mi-saison, que l’on détruise de l’énergie : en chauffant l’air neuf jusqu’à 20°C et ensuite en refroidissant l’ambiance avec l’unité terminale de climatisation.

Pour éviter ce gaspillage, il faut pouvoir pulser l’air neuf, en mi-saison, à la température la plus fraîche possible, sans créer d’inconfort. Une température de pulsion inférieure à 16°C semble être un seuil à ne pas dépasser dans ce type de local.

Dans ce cas, des bouches de pulsion à haut taux d’induction peuvent devenir nécessaires (bouches à jet hélicoïdal).

Concevoir

La simulation du traitement d’un local de bureau type a montré que la consommation globale du local chutait de 10% lorsque la consigne de pulsion de l’air neuf était fixée à 16°C en période de refroidissement, au lieu de 21°C.

Pour en savoir plus, cliquez ici !

Concevoir

La simulation du traitement d’un local de bureau type a montré que la consommation globale du local chutait de 10% lorsque la consigne de pulsion de l’air neuf était fixée à 16°C en période de refroidissement, au lieu de 21°C.

Pour en savoir plus sur le traitement de l’air neuf en association avec :


Implantation des bouches de pulsion et d’extraction

Diffuseur ou grille ?

La première question que l’on se pose est : existe-t-il un faux plafond ou un faux plancher dans le local et/ou dans les couloirs ?

S’il y a un faux plafond dans le local, on choisira souvent comme bouches, des diffuseurs plafonniers. Ceux-ci permettront une meilleure répartition de la distribution d’air dans les locaux. Si on dispose uniquement d’une gaine technique dans les couloirs, on placera des grilles dans les retombées des faux plafonds, aucun gainage ne parcourant les locaux.

Schéma sur le principe des diffuseurs plafonniers.

Deux possibilités de positionnement des bouches dans un local : en faux plafond (étage supérieur), dans les retombées des faux plafonds (étage inférieur).

Effet Coanda

Lorsque l’on pulse de l’air parallèlement au plafond, le jet d’air à tendance, sous certaines conditions, à « se coller » à ce dernier. C’est ce qu’on appelle l’effet Coanda.

Schéma sur l'effet Coanda.

Lorsque l’on pulse de l’air froid, ce phénomène doit être pris en compte lors du choix des bouches car :

  • Il modifie la portée des bouches par rapport à un jet totalement libre.
  • Il permet d’éviter qu’un jet d’air froid ne « tombe » sur les occupants. Pour que cela fonctionne correctement, il faut une vitesse de sortie d’air suffisante (minimum : 2 m/s) et il faut tenir compte des obstacles éventuels (luminaires, poutres, meubles, …) pouvant rabattre le jet d’air sur les occupants.

Position et portée par rapport aux fenêtres

Schéma sur la position et portée par rapport aux fenêtres.    Schéma sur la position et portée par rapport aux fenêtres.

Schéma sur la position et portée par rapport aux fenêtres.

Lorsque l’on pulse de l’air froid en direction d’une baie ensoleillée, la portée du jet sera réduite. À l’inverse, si la pulsion se fait dans l’autre sens, la direction du jet sera allongée. Ces deux situations poseront des problèmes d’inconfort.

Il est donc conseillé, soit de décentrer les diffuseurs symétriques, soit de sélectionner un diffuseur orienté vers la fenêtre ayant une portée supérieure.

Combinaison entrée et sortie d’air

L’emplacement des bouches de pulsion et d’extraction joue un rôle important sur la qualité du brassage de l’air d’un local. Il faut éviter :

  • que l’air pulsé soit directement aspiré par la reprise avant d’avoir pu céder ces calories ou frigories;
  • que des zones mortes occupées ne soit pas traitées.

À titre indicatif, voici une série de configurations et les résultats auxquels elles conduisent a priori. Attention, les mouvements d’air décrits ne sont qu’illustratifs. Les conditions de diffusion peuvent varier en fonction de la vitesse et de la portée de l’air pulsé et du degré de surpression dans le local. Rappelons cependant que si le local est en dépression (débit extrait supérieur au débit pulsé), il y a de fortes chances pour que l’air pulsé soit court-circuité par la bouche d’extraction, créant des zones mortes importantes.

Légende
Pulsion Extraction
Grande vitesse
Petite vitesse

Soufflage en partie haute

Bonne diffusion de l’air

Diffusion de l’air médiocre

Bon :
soufflage horizontal en haut à grande vitesse, reprise en bas sur le même mur .

Médiocre :
soufflage horizontal en haut à faible vitesse et faible portée, reprise en bas sur le même mur (création d’une zone morte).

Bon :
soufflage horizontal en haut à grande vitesse, reprise en haut sur le même mur.

Médiocre :
soufflage horizontal en haut à grande vitesse, reprise en haut sur le mur opposé (by-pass d’une partie du débit).

Bon : 
soufflage horizontal en haut à faible vitesse, reprise en bas sur le mur opposé.

Médiocre :
soufflage horizontal en haut à grande vitesse, reprise en bas sur le mur opposé (création d’une zone morte).

Bon :
soufflage sous plafond sous angle moyen, reprises hautes symétriques.

Médiocre :
soufflage sous plafond sous angle moyen, reprises basses symétriques (création de zones mortes au plafond).

Bon :
soufflage sous plafond sous 180°, reprises basses symétriques.

Médiocre :
soufflage sous plafond sous 180°, reprises hautes symétriques (by-pass d’une partie du débit). Si la bouche de pulsion a une portée importante, le problème diminue.

Bon :
soufflage sous plafond sous 180°, reprise concentrique.

Médiocre :
soufflage sous plafond sous 180° à faible débit, reprises hautes symétriques (by-pass d’une partie du débit).

Soufflage en partie basse

Bonne diffusion de l’air

Diffusion de l’air médiocre

Bon :
soufflage vertical grande vitesse en bas de mur, reprise au sol à l’opposé.

Médiocre :
soufflage vertical à grande vitesse, reprise en haut du même côté (by-pass d’une partie du débit et création d’une zone morte).

Très bon :
soufflage au sol à grande vitesse, reprise au sol du même côté.

Médiocre :
soufflage vertical à grande vitesse, reprise en haut du mur opposé (création d’une zone morte au centre).

Bon : 
soufflage horizontal en bas de mur à vitesse moyenne, reprise en haut sur le mur opposé (petit risque de zone morte).

Médiocre :
deux soufflages verticaux à grande vitesse, reprise au centre du plafond (balayage latéral correct mais création de deux zones mortes au centre).

Bon :
soufflage horizontal en bas de mur à faible vitesse, reprise en haut sur le mur opposé par lent déplacement d’air.

Médiocre :
soufflage vertical à vitesse moyenne, reprise en haut du mur opposé (création de zone morte).

Bon : 
soufflage horizontal en bas de mur à faible vitesse, reprise au bas du mur opposé par lent déplacement d’air (flux laminaire dans les salles blanches).

Médiocre :
soufflage vertical à vitesse moyenne, reprise au sol du côté opposé (risque de création de deux zones mortes).

Bon : 
soufflage au bas d’un mur ou près de la zone de travail à très faible vitesse, reprise en haut par tirage thermique (principe du « déplacement »).


Acoustique

La configuration du réseau de distribution en amont de la bouche joue aussi un rôle sur le bruit émis par une bouche.

En présence d’un clapet de réglage

Si un registre de réglage de débit d’air est nécessaire, il doit se situer à une distance d’au moins trois fois le diamètre du conduit d’air par rapport à l’orifice de soufflage. Le bruit du registre n’est pas réduit mais bien les turbulences à l’entrée de la bouche et donc le bruit engendré par celle-ci.

Schéma sur le principe du clapet de réglage. Schéma sur le principe du clapet de réglage.

Les clapets de réglage doivent se trouver à plus de 3 diamètres de conduit par rapport à la bouche de pulsion.

Règle de bonne pratique.
En général, si l’on maintient une différence de pression maximale de 100 PA (100 PA = 10 mm de Colonne d’Eau) aux bornes d’un clapet, le bruit généré reste très faible.

En présence d’un coude

Un conduit d’air relié à une bouche de soufflage doit être rectiligne sur une longueur d’au moins trois diamètres. Un conduit coudé provoque un flux d’air inégal à sa sortie et par conséquent du bruit car la vitesse devient très élevée à certains endroits de la bouche.

Une bouche de pulsion doit se trouver à plus de 3 diamètres de conduit par rapport à un coude.


Réglage

Certaines bouches possèdent un organe de réglage permettant d’ajuster leur débit à la juste valeur.

Si le réglage est accessible facilement (ou pas trop difficilement) aux utilisateurs, celui-ci risque d’être manipulé (principalement si le personnel ressent un inconfort). Des déséquilibres en découleront et ainsi, probablement, qu’un inconfort pour certains bureaux.

Pour éviter cet inconvénient, il faut soit que les bouches ne soient pas déréglables, soit disposer au droit des bouches un élément autoréglable maintenant le débit plus ou moins constant quelque que soit la pression du réseau. Ceci permet maintenir un débit correct dans les locaux, même si un occupant a décidé de boucher sa grille de ventilation.

Photo sur élément autoréglable d'une bouche.

Élément autoréglable maintenant un débit constant malgré la fermeture d’autres bouches.

Ces éléments ont en outre l’avantage de faciliter la mise au point du réseau. Le gain ainsi réalisé en main-d’œuvre compense largement l’investissement.


Propreté des diffuseurs

Malgré les précautions prises pour la filtration de l’air, au bout de plusieurs mois de fonctionnement, il peut se former des traces noires que l’on doit pouvoir nettoyer facilement. De plus, le fonctionnement ne doit pas être compromis si de la poussière se glisse entre les parties mobiles et les parties fixes de l’appareil.

La propreté des diffuseurs est particulièrement importante dans les locaux de soins. Ils doivent donc être de forme aérodynamique pour ne pas présenter d’obstacle pouvant retenir et accumuler les poussières. Leur conception devra aussi faciliter les opérations régulières de nettoyage.

Remarque.

Les plenums de soufflage sont aussi déconseillés car ils rendent le réglage des débits et des pressions plus difficile et peuvent provoquer des refoulements d’air.

Robinetterie

Robinetterie


Le mitigeur mécanique de lavabo avec limitation

Photo mitigeur mécanique de lavabo avec limitation.

  • Coût moyen
    85 € (contre 70 pour les mitigeurs mécaniques classiques).
  • Économie
    m³ sur l’année pour une famille de 4 personnes.
  • Temps de retour
    < 1 an.
  • Fonctionnement
    Le réglage de la température se fait de manière classique. Par contre, la manette possède une limitation pour le réglage du débit vers 8 litres/mn (butée ou point dur) qui demande un effort, ou un geste supplémentaire, pour atteindre la pleine ouverture du mitigeur (au moins 12 litres/mn).
  • Conseils d’utilisation
    Pas de remarque particulière.
  • Normes
    EN 817.

Le mitigeur électronique

Photo mitigeur électronique.

  • Coût moyen
    180 €.
    L’économie reste difficilement appréciable.
  • Fonctionnement
    Une cellule électronique détecte la présence des mains de l’usager et commande l’ouverture du débit. Le réglage en température se fait de manière classique grâce à la manette de commande. Une fois les mains en dehors du champ de détection, l’écoulement est stoppé.
  • Conseils d’utilisation
    Les points faibles de ces robinetteries sont les électro-vannes. Il est donc conseillé de placer des filtres en amont afin de protéger la robinetterie contre les particules qui pourraient nuire à son bon fonctionnement.
  • Application
    Ce type d’équipement est plus approprié aux collectivités ou aux établissements recevant du public.
  • Normes
    Aucune.

L’aérateur

Photo aérateur.

  • Coût moyen
    5 €.
  • Économie
    12 m³ sur l’année pour une famille de 4 personnes.
  • Temps de retour
    < 1 an.
  • Fonctionnement
    L’aérateur standard (sans limiteur de débit) permet l’obtention d’un jet régulier et participe à l’amélioration des caractéristiques acoustiques.
    L’adjonction d’un limiteur de débit permet par exemple de réduire le débit lors de la pleine ouverture de la robinetterie à un débit voisin de 6 litres/mn pour certains limiteurs (il existe plusieurs modèles de limiteur avec différents débits associés : 8 litres/mn, …). Le limiteur de débit est constitué d’une pastille qui change de forme suivant la pression qui est exercée par la vitesse de l’écoulement afin de réduire la section de passage pour les débits élevés.
  • Conseils d’utilisation
    Nettoyer régulièrement afin d’éliminer les dépôts calcaires.
  • Normes
    EN 246.

Le réducteur de pression

Photo réducteur de pression.

  • Coût moyen
    30 €.
    L’économie reste difficilement appréciable.
  • Fonctionnement
    Le réducteur de pression est composé d’une membrane élastomère sur laquelle vient s’exercer la pression de l’eau et la pression du ressort qui permet le réglage précis de la pression aval (ex.: entre 1,5 et 5,5 bars). La valeur de la pression est alors le résultat de l’équilivre entre les forces exercées sur la membrane.
  • Conseils d’utilisation
    Ne pas installer le réducteur de pression sur un by-pass car l’équilibre des pressions est alors possible en cas de mauvaise étanchéité de la vanne de by-pass.
    De plus, son montage sur la seule production d’eau chaude sanitaire est déconseillé car le déséquilibre des pressions qu’il entraîne (entre les réseaux d’eau froide et d’eau chaude) empêche le bon fonctionnement des robinetteries.
  • Normes
    EN 1567.

Le mitigeur mécanique de douche

Photo mitigeur mécanique de douche

  • Coût moyen
    50 €.
  • Économie
    2 m³ sur l’année pour une famille de 4 personnes.
  • Temps de retour
    < 1 an.
  • Fonctionnement
    Le réglage de la température et du débit est classiquement obtenu grâce à la manette. Pour ce qui est des robinetteries avec limitation de débit au niveau de la cartouche, un point « dur » ou une butée, délimite deux zones de fonctionnement : une zone économique (de 0 à environ 5 litres/mn), et une zone de confort (jusqu’à environ 12 litres/mn).
  • Conseils d’utilisation
    Eviter la fermeture rapide.
  • Norme
    EN 817.

Le mitigeur thermostatique de douche

Photo mitigeur thermostatique de douche.

  • Coût moyen
    100 €.
  • Économie
    4 m³ sur l’année pour une famille de 4 personnes.
  • Temps de retour
    4 ans.
  • Fonctionnement
    Le thermostatique est équipé d’un réglage en température et d’un réglage en débit. La température est maintenue constante par une action simultanée, indirecte et progressive, sur les deux vannes d’arrivée d’eau froide et d’eau chaude. L’ensemble du système est piloté par un élément de détection de température très sensible (bilame ou cartouche à cire dilatable).

    D’autre part, le thermostatique est souvent équipé d’une butée en température qui évite ainsi les risques de brûlure.

  • Conseils d’utilisation
    Veiller à ce que la robinetterie thermostatique soit bien équipée de clapets de non-retour. La mise en place de filtre en amont, voire d’un adoucisseur, est conseillée dans le cas d’une eau entartrante.
  • Norme
    EN 111.

Choisir le pare-vapeur pour le plancher des combles

Isoler le plancher des combles, pare-vapeur.

concevoir 

Le choix du pare-vapeur se fait comme pour une toiture neuve.

Remarque.

Il est parfois impossible de poser correctement le pare-vapeur. C’est le cas, par exemple, lorsque l’on pose l’isolant entre les gîtes par le haut sans toucher à la finition du plafond. Alors, la sous-toiture et la couverture devront être réalisées à l’aide de matériaux qui permettent de se passer de pare-vapeur et cela en tenant compte de la classe de climat intérieur.

On veillera cependant toujours à vérifier l’étanchéité à l’air de la finition intérieure.

Choisir la régulation du chauffage électrique

Radiateur électrique.

Il est possible de modifier et d’optimiser
les paramètres de régulation d’un accumulateur électrique.


La régulation de température ambiante

Chaque local chauffé est pourvu d’un thermostat d’ambiance qui enclenche et déclenche la restitution de chaleur et ce en fonction de la température ambiante.

Un faible différentiel

Un thermostat d’ambiance est caractérisé par son différentiel statique (différence en K ou en °C) entre le point d’enclenchement et le point de déclenchement.
Afin de tendre vers un confort optimal, le choix se portera de préférence sur un thermostat d’ambiance dont le différentiel statique ne dépassera pas :

  • 0,3 K pour un thermostat mural,
  • 0,8 K pour un thermostat incorporé à l’appareil.

Cela entraîne une variation de température dans le local au point le plus défavorable (différentiel dynamique) de 2 K maximum.

Un thermostat à restitution progressive

On discerne deux types de thermostats :

  • les thermostats électromécaniques, à commande « tout ou rien »,
  • les thermostats électroniques, à commande « tout ou rien » ou à commande de restitution progressive, proportionnelle à la différence entre la consigne affichée et la température ambiante mesurée.

Cette dernière solution (qui correspond à une régulation proportionnelle) est à privilégier, toujours pour diminuer la fluctuation de la température intérieure.

Emplacement du thermostat

Dans le cas d’un thermostat d’ambiance incorporé à l’appareil, l’emplacement du thermostat est automatiquement lié à l’emplacement de l’appareil de production de chaleur.

Il y a lieu de noter que dans le cas où la production de chaleur pour un même local se répartit entre plusieurs appareils, les thermostats incorporés seront mis au maximum, et la température ambiante sera gérée par un seul thermostat d’ambiance mural qui commande tous les appareils simultanément ou par le thermostat d’ambiance d’un des appareils dès lors que la commande des autres appareils en est rendue tributaire (maître/esclave).

Dans le cas d’un thermostat d’ambiance mural, il trouvera son emplacement en suivant les règles ci-après :

  • sur un mur intérieur,
  • à une hauteur située entre 1 m 40 et 1 m 50 au-dessus du sol,
  • éloigné de toute source de chaleur et/ou de froid,
  • jamais dans un coin du local afin d’éviter de se retrouver dans une couche d’air statique,
  • hors de la portée des rayons solaires.

A éviter :

Mauvais emplacement du thermostat- 1  Mauvais emplacement du thermostat- 2

  • La sonde ne peut être soumise à l’ensoleillement.
  • La sonde ne peut être influencée par une source de chaleur interne (éclairage, …)

Mauvais emplacement du thermostat- 3Mauvais emplacement du thermostat- 4

  • La sonde ne peut pas être placée sur un mur extérieur.
  • La sonde ne peut être placée contre une cheminée.

Mauvais emplacement du thermostat- 5Mauvais emplacement du thermostat- 6

La sonde ne peut être placée dans un endroit clos, peu influencé par l’air ambiant (dans une niche, derrière une tenture, …)

Raccordement du thermostat

Il y a lieu de suivre pour le raccordement les indications données par le constructeur, tout en observant les recommandations suivantes :

  • Un thermostat mural, dont le câblage est amené au travers d’un tube encastré, peut voir son fonctionnement perturbé par l’effet cheminée qui pourrait se créer dans ce tube. Il est donc recommandé d’obturer l’extrémité du tube (silicone, mastique ou autre).
  • La puissance de coupure d’un thermostat d’ambiance est souvent limitée, afin d’éviter l’auto-échauffement et la perte de précision. Il faut dès lors vérifier les caractéristiques du thermostat vis-à-vis de la puissance à commander. Le cas échéant, la puissance sera commandée au travers d’un relais de puissance qui, lui, est commandé par le thermostat.
  • L’alimentation du thermostat doit être conforme aux prescriptions du constructeur. Certains thermostats nécessitent un raccordement phase et neutre ou deux phases, afin de garantir leur précision.

Choix de la consigne

Afin d’assurer une consommation d’énergie minimale tout en conservant un confort optimal, la consigne du thermostat d’ambiance sera abaissée de 5 K lors d’une non-occupation prolongée du local (pendant plusieurs heures par jour).

Si la non-occupation du local se prolonge pendant plusieurs jours, la consigne du thermostat sera placée sur une valeur entre 10 et 12°C afin d’assurer une protection antigel et d’éviter les phénomènes de condensation.
Cette fonction d’abaissement de température peut être réalisée

  • en manuel : les abaissements de température sont réalisés par l’utilisateur en modifiant la consigne au thermostat.
  • en automatique :
    • au moyen d’horloges (incorporées dans le thermostat ou centralisées dans le coffret de distribution), à programme journalier ou hebdomadaire,
    • au moyen d’éléments de programmation spécifiques,
    • ou au travers de systèmes intelligents émanant de la domotique.

Dans tous les cas, un mode d’emploi complet doit être exigé de l’installateur.

Régulation de la résistance d’appoint

Dans le cas de l’accumulation dynamique, le thermostat d’ambiance commande le ventilateur incorporé dans l’accumulateur.

Si l’accumulateur est équipé d’une résistance d’appoint, celle-ci ne pourra fonctionner qu’avec le ventilateur et pour autant que la charge résiduelle dans le noyau accumulateur soit inférieure à 20 à 30 % (protection incorporée dans l’accumulateur en série avec la résistance d’appoint).

Pour rappel : l’enclenchement de la résistance d’appoint est tributaire d’un interrupteur incorporé au thermostat et est visualisé au moyen d’un témoin.

En application trihoraire, les résistances d’appoint sont interdites.


La régulation de charge

Régulation manuelle ou automatique ?

On ne saurait trop recommander une régulation automatique de la charge en fonction de la température extérieure. Et pourtant, on rencontre couramment des accumulateurs avec réglage manuel à 3 positions. Par simplification, ils sont souvent réglés sur la position la plus élevée, afin de prévenir toute période froide éventuelle du lendemain. En pratique, ils entraînent une décharge statique plus élevée que nécessaire et donc une perte de rendement.

Un dispositif automatique de régulation de charge est obligatoire dans les cas suivants :

  • en tarif exclusif nuit lorsque la puissance totale installée en accumulation est supérieure ou égale à 12 kW,
  • dans tous les cas d’application d’accumulation en tarif trihoraire ou hors-pointes, indépendamment de la puissance installée,
  • dans le cas de l’accumulation par le sol.

Le dispositif automatique de régulation de charge tiendra nécessairement compte :

  • de la température extérieure,
  • du niveau de charge résiduelle dans le noyau accumulateur,
  • du régime horaire et du report de charge vers la fin de la période principale de charge (nuit).

Lorsque la puissance totale est inférieure à 12 kW, le thermostat de charge incorporé à l’accumulateur sera opérationnel en fonction manuelle. Il sera toutefois donné préférence à un dispositif automatique simplifié qui tient compte de la température extérieure et du niveau de charge résiduelle dans le noyau accumulateur.

Eléments constitutifs d’une régulation automatique de charge

En général, une régulation automatique de charge se compose des éléments suivants :

  • une sonde de mesure de la température extérieure,
  • un régulateur central,
  • un interface d’acquisition d’informations de la situation tarifaire,
  • des éléments de commande d’enclenchement de la puissance en fonction de la charge résiduelle du noyau et du niveau autorisé par le régulateur central (thermostat de charge).

Il est à noter que les thermostats de charge sont incorporés aux accumulateurs. S’il s’agit de chauffage par le sol, ils sont localisés dans le coffret de distribution mais disposent d’une sonde de mesure de charge résiduelle incorporée dans la masse accumulatrice.

Emplacement de la sonde extérieure

Emplacement de la sonde extérieure - 1Emplacement de la sonde extérieure - 2

  • S’il n’y a qu’une sonde pour le bâtiment, on la posera sur une façade nord-ouest ou nord-est.
  • Elle sera placée à une hauteur de 2 m à 2 m  0 au-dessus du niveau du sol ou accessible à partir d’une fenêtre.

A éviter :

Mauvais emplacement de la sonde extérieure - 1Mauvais emplacement de la sonde extérieure - 2

  • La sonde ne peut être soumise à l’ensoleillement direct.
  • La sonde ne peut être placée contre une cheminée..

Mauvais emplacement de la sonde extérieure - 3Mauvais emplacement de la sonde extérieure - 4

  • La sonde ne peut être placée au dessus d’une fenêtre.
  • La sonde ne peut être placée au dessus d’une sortie de ventilation.

Remarques.

  • Les caractéristiques de la sonde extérieure doivent être adaptées à celles du régulateur central.
  • Le percement du mur extérieur pour le passage du câblage de la sonde sera rendu étanche.

Le régulateur central

Le régulateur central peut être composé d’un ou de plusieurs modules et est généralement incorporé dans le coffret de distribution. Il y a lieu de se conformer aux prescriptions du constructeur en ce qui concerne le câblage et l’emplacement.

Les courbes caractéristiques de fonctionnement sont déterminées comme suit avec les définitions suivantes :

θext

Température extérieure.

θ1

Température de la zone climatique pour laquelle l’installation est dimensionnée.

θc

Température de confort de la pièce principale.

E1

Pour 100 % de charge requise (- 20°C à + 5°C).

E2

Pour 0 % de charge requise (+ 12°C à + 20°C).

E3

Durée après laquelle la charge optimale devrait être réalisée (4 … 9 h).
SEH Temps d’auto-maintien (= E3 – 1 h).

tF

Durée de la période principale de charge.

tF

E3

SEH

régime excl. nuit

8 h de charge 8 h 7 h 6 h
8 h + 1 h de charge 8 h 7 h 6 h
9 h de charge 9 h 8 h 7 h

régime trihoraire

7 h + 9 h de charge 7 h 6 h 5 h

Remarque.
Si pendant la période délimitée par SEH une interruption de la charge se produit, le régulateur se maintient à la consigne atteinte au début de l’interruption, arrête son cycle de temps, et redémarre dès retour du courant de charge en reprenant au niveau atteint au début de l’interruption.

TU

Durée après laquelle le régulateur passe de la caractéristique nocturne à la caractéristique diurne :

TU = E3 + 2 h en exclusif nuit
TU = E3 + 1 h en hors-pointes

E22 ou E10

Niveau de départ de la caractéristique diurne (0 – 100 %).
Depuis 1995, ce paramètre s’appelle E10.

UMD

Durée du cycle interne du régulateur (normalement 22 h en exclusif nuit et 21 h en hors-pointes).

E4

Temps après lequel la consigne tend vers 0 % de charge.
Depuis 1995, E4 indique le niveau de charge au moment UMD (0 – 100 %), par exemple E4 = 20 %.

E1 S

Choix de la caractéristique diurne :

E1 S = 0 : la charge diurne est autorisée.
E1 S = 1 : la charge diurne est interrompue si la ηext > E1 (par exemple : + 5°C en hors-pointes).

A. Courbe caractéristique en fonctionnement exclusif de nuit (9 h de charge)
Réglages types.

E1

= η1

E2

= C – 2°C

E3

= tF – 1 h = 8 h

SEH

= E3 – 1 h = 7 h (sur certains régulateurs, limité à 6 h)

E4

= 26 h (ou 20 %)

E1 S

= 0

TU

= E3 + 2 h = 10 h

UMD

= 22 h

E22

= E10 = 85 %

Niveau de charge souhaité du noyau - 1

Niveau de charge souhaité du noyau.

Remarque.
Dans le cas où le temps de charge est limité à 8 h, il y a lieu d’adapter certains réglages : E3 = 7 h, SEH = 6 h, TU = 9 h; les autres réglages restant identiques.

B. Courbe caractéristique en fonctionnement trihoraire (7 h + 9 h de charge)

Réglages types :

E1

= C – (ηC – η1) / 2

E2

= C – 2°C

E3

= tF – 1 h = 6 h

SEH

= E3 – 1 h = 5 h

E4

= 30 h (ou 40 %)

E1 S

= 1

TU

= E3 + 1 h = 7 h

UMD

= 21 h

E22

= E10 = 100 %

Situation 1 : ηext > 5°C (les charges de jour sont interdites).

Niveau de charge souhaité du noyau - 2

Niveau de charge souhaité du noyau.

Situation 2 : ηext < 5°C

Niveau de charge souhaité du noyau - 3

Niveau de charge souhaité du noyau.


Information concernant les périodes tarifaires

Le distributeur d’énergie met les contacts nécessaires, libres de potentiel, à disposition :

  • un contact signale la période principale de charge,
  • l’autre sert à l’indication des périodes de pointes.

Il y a lieu de se conformer aux prescriptions du constructeur.


Thermostat de charge

Thermostat de charge thermomécanique

Principe de fonctionnement du thermostat de charge thermomécanique.

Principe de fonctionnement du thermostat de charge thermomécanique.

Le thermostat de charge est incorporé dans chaque accumulateur et veille à ce que le noyau se charge jusqu’à une certaine température. La contenance calorifique du noyau est proportionnelle à la température de celui-ci.

La majorité des thermostats de charge actuellement mis en œuvre sont du type thermomécanique (cf. la représentation ci-dessus). Ils sont actionnés par un signal résultant de la somme des températures du noyau et d’une sonde pilote (charge simulée).

L’élément actif d’un thermostat de charge est un soufflet (5) sensible à la somme des pressions provenant des deux sondes de température et qui enclenche ou déclenche l’alimentation électrique (7) des résistances du noyau (8). La sonde qui représente la charge du noyau (1) est incorporée dans l’isolation du noyau. La sonde pilote (2) est entourée d’une résistance pilote chauffante (3) qui est alimentée par le signal du régulateur de charge.

Le bouton de réglage manuel (6) permet de régler manuellement la charge entre 0 et 100 % dans le cas où l’accumulateur n’est pas piloté par un régulateur de charge. Si l’accumulateur est piloté par un régulateur de charge, le bouton de réglage (6) doit être positionné sur 100 %. Toute modification de cette indexation aura une influence négative sur le niveau de charge demandé par le régulateur.

En présence d’un signal de commande, le thermostat de charge déclenchera à un niveau déterminé de température du noyau. Pour un signal maximal sur la résistance pilote correspond une charge autorisée dans le noyau de 0 %; pour un signal minimal sur la résistance pilote correspond une charge autorisée dans le noyau de 100 %. Tout signal intermédiaire autorise un niveau de charge intermédiaire et proportionnel.

L’accumulateur contient, outre le thermostat de charge, également un thermostat de sécurité (9), afin de limiter la température du noyau à une valeur maximale en cas de défaillance du thermostat de charge.

Le signal pilote provenant du régulateur de charge est habituellement géré dans un mode 80 % ED (signal à modulation par Durée d’Enclenchement (ED)).
Exemple ED = 20 %

Un signal de 2,0 sec (20 % ED) autorise une charge de noyau de 75 %.

Le signal appliqué est basé sur une tension 230 V – 50 Hz. Le signal au sein d’une période de 10 sec est actif pendant maximum 8 s, soit 80 % de la période.
Un signal d’une durée d’enclenchement de 8 sec (80 % ED) simule au niveau de la sonde pilote une charge de 100 % et autorise dès lors une charge de 0 % dans le noyau.
Un signal d’une durée d’enclenchement de 0 sec (0 % ED) simule au niveau de la sonde pilote une charge de 0 % et autorise une charge du noyau de 100 %.

Thermostat de charge électronique

Le principe de fonctionnement est similaire lorsque le thermostat de charge est électronique.
Dans ce cas, la sonde de mesure de la charge du noyau peut être en contact direct avec le noyau (par ex. sonde Pt 100). La sonde pilote disparaît et le signal pilote est pris en compte directement par le comparateur électronique. Ce dispositif électronique permet d’inclure une vérification automatique du bon fonctionnement du régulateur de charge en incluant un signal pilote minimal de 2 %, 0 % ED est signe de défaillance de la régulation de charge. Le comparateur du thermostat de charge pourra dans ce cas avoir un comportement positif c-à-d. absence de signal (0 % ED) provoquant 100 % de charge ou un comportement négatif c-à-d. absence de signal (0 % ED) provoquant le blocage de charge.
Cette dernière solution, la plus récente sur le marché va dans le sens de l’URE et attire immédiatement l’attention de l’utilisateur sur une défaillance du système de régulation.

Régulation de charge pour le chauffage par le sol

Le principe de la régulation pour le chauffage par accumulation par le sol est comparable à la régulation pour les accumulateurs.

Au lieu d’un thermostat de charge incorporé à l’accumulateur, la régulation se compose d’une sonde de chaleur résiduelle incorporée dans la dalle accumulatrice et d’un thermostat ou régulateur de zone connecté directement au régulateur de charge central.

On disposera d’autant d’unités sonde + thermostat correspondant que de zones de température à régler.
Au niveau du régulateur de zone, il est possible d’ajuster la température de la dalle correspondant à 100 % de charge. En général, la température maximum de la dalle sera réglée de 55 à 60°C.

Le régulateur central sera soit un module spécifique pour régulation sol dont le signal de sortie sera en courant continu, soit un régulateur classique pour accumulation combiné à un convertisseur transformant le signal ED en signal DC proportionnel. Afin d’éviter tout dysfonctionnement, on placera dans la zone principale un thermostat de sécurité qui coupera la charge de toutes les zones si la température correspondant à la charge maximale est dépassée.

Les circuits de puissance sont enclenchés/déclenchés par des contacteurs ou relais adéquats qui sont pilotés par les régulateurs de zone.

Ampli de groupe

L’ampli de groupe amplifie le signal ED afin de pouvoir piloter un nombre d’accumulateurs supérieur à celui normalement admis par le régulateur central (voir les spécifications du constructeur).

Il permet aussi d’adapter le signal ED dans une fourchette de – 30 à + 10 %. Cette faculté permet dans le cadre de grands ensembles ou d’immeubles à appartements de corriger le niveau de charge autorisé par le régulateur central pour un groupe d’accumulateurs. On pourra ainsi en installant un ampli de groupe par appartement, corriger le niveau de charge appartement par appartement, afin d’ajuster la régulation à la demande individuelle. Ceci permet de gérer le confort individuel dans chacun des appartements avec un seul régulateur central.

(Source : d’après « Le code de bonne pratique pour la réalisation des installations de chauffage électrique » – Communauté de l’Electricité – CEG).

Évaluer la consommation d’un système de climatisation « tout air »

Évaluer la consommation d'un système de climatisation "tout air"


Préalable

Nous nous proposons de réaliser le bilan annuel d’une installation de climatisation en « tout air », en prenant l’exemple d’une salle d’opération d’un hôpital. Nous mettons en parallèle un système avec et sans recyclage de l’air intérieur pour effectuer la comparaison des bilans dans les deux cas.

Pour maintenir le confort de l’occupant et la qualité de l’air qu’il respire, il est nécessaire de contrôler d’une part la température et l’humidité ambiantes, pour ce faire, l’analyse se fera sur une année climatique type.

L’année climatique type caractérise le climat qu’il fait dans une région bien particulière (par exemple à Uccle). Les températures et les humidités moyennes sont collectées heure par heure et ce pendant plusieurs années. Chaque point heure donne la température et l’humidité moyenne.

Sur base des points heures climatiques, il est intéressant de déterminer comment réagissent théoriquement les équipements composant un système de climatisation tout air neuf.

D’autre part, dans le cas où un recyclage de l’air est prévu, il sera également nécessaire de contrôler les débits d’air neuf et les taux de renouvellement.

Un savant dosage entre :

  • un débit d’air neuf minimum afin de respecter les règlements et normes en vigueur sur la qualité de l’air respirable;
  • un taux de brassage du volume ambiant minimum afin de répondre à une qualité particulaire et bactériologique de l’air à atteindre (suivant l’activité exercée dans la zone considérée);
  • et un recyclage maximum de l’air extrait afin de mélanger cet air avec l’air neuf au point le plus proche possible des conditions d’ambiance interne. Un recyclage théorique de 100 %, sans déperdition ni apport, n’entraînerait aucune consommation de la part du système de climatisation;

permettrait de réduire les consommations de manière draconienne.


Apports internes, externes et les déperditions

1. Chaleur sensible

Les apports internes

Ils sont de deux ordres, à savoir :

  • liés à l’activité humaine (chaleur du corps des occupants);
  • et à la chaleur dégagée par les équipements médicaux et de bureautique.

Les apports externes

Ils dépendent de la qualité (isolation) et la mise en œuvre des matériaux constituants l’enveloppe de la zone considérée en période chaude.

Les déperditions

Elles dépendent de la qualité (isolation) et la mise en œuvre des matériaux constituants l’enveloppe de la zone considérée en période froide.

Bilan

Il est nécessaire de tenir compte de ces apports et déperditions afin de règler la température de soufflage qui est fonction  :

  • du taux de renouvellement exprimé en [volume/h];
  • le volume de la salle en [m³];
  • de la capacité thermique volumique de l’air ρc = 0,34 [Wh/m³K];
  • de la température ambiante désirée pendant l’opération;
  • du bilan des apports et des pertes.

La température de soufflage est exprimée par :

soufflage = ambiante– Bilan / (qx c x volume x taux de renouvellement) [°C]

Exemple.

Soit :

  • un apport interne de 3 kW et des déperditions et apports externes négligeables (courant dans les salles d’opération par exemple);
  • une température fixée à 20°C;
  • un taux de renouvellement de 30 vol/h;
  • un volume de local de 150 m³;

On détermine la température de soufflage :

soufflage = 20 – 3 000 / (0.34 x 30 x 150)

soit T°soufflage = 18° C

2. Chaleur latente

En considérant que dans les hôpitaux les occupants sont très nombreux, il est intéressant d’évaluer l’apport d’eau dans l’air par transpiration et par conséquent de déterminer la valeur de la chaleur latente de vaporisation.

Exemple.

Soit :

  • un apport d’eau de 80 geau /h par personne;
  • la salle d’opération est occupée par 10 personnes;
  • le débit de ventilation est de 4 500 m³/h en tout air neuf .

pour un débit de 4 500 m³/h, l’apport dans la salle est de l’ordre de:

Apport d’eau  = apport par personne x nombre de personne / qx ρ  [kWh/an]

Apport d’eau = 80 [geau / h] x 10 / (4 500 [m³/h] x 1.2 [kg/m³air])

= 0,15 geau / kgair

ou,

La chaleur de vaporisation/condensation étant de 2 500 kJ/kg environ, la correspondance est donnée par :

800 [g/h] x 2 500 [J/g]  / 3 600 [s/h] = 555  [Watts]

À titre de comparaison, en une heure suivant le graphique ci-dessous, la batterie froide déshumidifie l’air extérieur de 9 [geau /kgair]

Soit 9 [geau /kgair] x 1.2 [kg/m³] x 4 500 [m³/h] x 2 500 [J/g]  / 3 600 [s/h]

 = 33 750 [Watts]

En conclusion, on devra légèrement déshumidifier plus pour tenir compte des apports d’eau interne. Mais quand on compare les puissances en présence, il ne sera pas nécessaire de surdimensionner la batterie froide pour englober les apports d’eau dans la déshumidification de l’air extérieur surtout à des débits aussi importants.

3. Profil d’occupation

Au niveau d’une salle d’opération, il est intéressant de se pencher sur son profil d’occupation sachant qu’en période :

  • D’occupation, il est nécessaire de respecter les débits définis afin de respecter la classe de propreté particulaire et bactérienne et les débits hygiéniques de confort des utilisateurs.
  • D’inoccupation et en considérant qu’il n’y a peu ou plus de source de contamination, on se contente de maintenir une surpression afin de conserver aussi la classe de propreté mais avec des débits réduits au minimum.

Pourquoi différentier les deux modes d’occupation ?
Tout simplement pour :

  • montrer l’importance dans les bilans énergétique et économique de réduire les débits en période d’inoccupation;
  • de tenir compte de l’absence d’apport interne quand la zone est inactive.
Lundi Mardi Mercredi Jeudi Vendredi Samedi Dimanche
8-18 18-8 8-18 18-8 8-18 18-8 8-18 18-8 8-18 18-8 8-18 18-8 8-18 18-8

avec les débits d’air neuf suivants :

 4 500 m³/h
 900 m³/h

Tout air neuf ou air recyclé ?

Le traitement de l’air est variable au cours de l’année suivant les conditions climatiques extérieures mais également intérieures si un recyclage est présent. La maîtrise des débits dans un système de recyclage est déterminante des consommations des équipements.

On analyse quelques cas de figure théoriques :

Les graphes des cas traités ci-dessous représentent 5 zones distinctes divisant la représentation de l’ensemble des binômes température-humidité extérieurs heure par heure au cours d’une année climatique type (sans canicule et froid sibérien). Pour amener l’air extérieur à une température de soufflage fixe, pour les différents points il est nécessaire de :

 Préchauffer et d’humidifier
 Préchauffer
 Refroidir, déshumidifier et post-chauffer
 Refroidir et déshumidifier sans post-chauffer
 Refroidir et humidifier


Au niveau énergétique, le choix du recyclage dans les zones de l’hôpital où les débits mis en présence sont importants saute aux yeux. C’est nettement moins évident au niveau de la garantie de la classe de qualité particulaire et bactérienne. Pourtant, l’expérience montre que ce concept, pour autant qu’il soit parfaitement maîtrisé en terme de maintenance et de monitoring, offre cette garantie. Les rapports des analyses particulaires et bactériennes placent les systèmes à recyclage avec filtration absolue terminale dans des meilleures classes.

Analyse des effets du recyclage

Sur le diagramme de l’air humide ci-dessus, le point M représente l’équilibre du mélange de l’air recyclé et de l’air neuf. Ce point se « ballade » sur la droite reliant les points d’ambiance et extérieure. Son emplacement sur cette droite est fonction du rapport des masses d’air mises en présence au point de mélange suivant les lois :

TM = (TE x qair neuf + TA x qrecyclé)/(qair neuf + qair recyclé) [°C]

XM = (XE x qair neuf + XA x qrecyclé)/(qair neuf + qair recyclé) [geau / kgair]

Cas SANS recyclage de l’air intérieur : débit de 4500 m³/h d’air neuf

Schéma cas SANS recyclage de l'air intérieur - 01.Schéma cas SANS recyclage de l'air intérieur - 02.

  • En période chaude, il est nécessaire de refroidir l’air extérieur, de le déshumidifier et dans certains cas de le post-chauffer; il y a donc destruction de l’énergie,
  • En période froide, il est nécessaire de le chauffer et de l’humidifier.

Partons des points-heures représentatifs d’une année climatique type dans un diagramme de l’air humide. En d’autres termes, chaque point ( 8 760 points de l’année) représentera une heure pendant laquelle la température et l’humidité sont précisées.

La densité et la surface qu’occupent les nuages de points de couleurs différentes traduisent l’importance des périodes pendant lesquelles il est nécessaire de climatiser l’air extérieur pour l’amener aux conditions d’ambiance de la salle d’opération.


Pour un fonctionnement en « tout air neuf », on voit tout de suite qu’il y a beaucoup de périodes où :

  • il faut chauffer et humidifier,
  • il faut refroidir, déshumidifier et post-chauffer.

Cas AVEC recyclage de l’air intérieur : débit de 900 m³/h d’air neuf et débit de recyclage de 3 600 m³/h

Schéma cas AVEC recyclage de l'air intérieur.

Le diagramme de l’air humide suivant traduit les résultats obtenus où l’on observe la concentration de plus en plus importante des points de mélange à l’entrée de la centrale de traitement d’air. La valeur de 900 m³/h n’est pas choisie par hasard! En effet, dans la pratique on considère que le taux d’air neuf minimum doit être de l’ordre de 20 %. La norme suisse SWKI (1987) préconise, quant à elle, un débit d’air neuf de 80 m³/h.personne; soit si on considère 10 personnes maximum par salle (comme vu dans certains cahiers des charges de bureaux d’étude spécialisés), on obtient 800 m³/h de débit d’air neuf.

Dans la figure ci-dessus, les valeurs de débit d’air neuf (900 m³/h) et de débit de recyclage sont choisis sur base de la bonne pratique où on limite le taux de recyclage à 80 %. En fonction de la valeur qu’indiquerait une sonde de qualité d’air (sonde CO2 ou sonde COV), on pourrait augmenter le taux de recyclage jusqu’à atteindre un apport d’air neuf minimum permis par les réglementations ou normes en vigueur (soit 80 m³/h.personne ou 800 m³/h si l’on prend un maximum de 10 personnes).


On voit tout de suite l’intérêt du recyclage. En effet, Plus le recyclage est important plus le point de mélange se rapproche du point d’ambiance; en d’autres termes, si le recyclage était de 100 %, il n’y aurait qu’un léger appoint de froid à donner pour compenser les apports internes (pour rappel, dans ce cas-ci, les déperditions sont négligeables).

Dans le graphe ci-dessus, suite au mélange entre air recyclé et air neuf, on voit tout de suite que les périodes où il faut :

  • chauffer et humidifier sont réduites à peu de chose,
  • déshumidifier et post-chauffer deviennent négligeable.

Par exemple, si la zone à climatiser est en demande de refroidissement et que l’air extérieur est plus frais, il est utile de mélanger l’air recyclé avec l’air neuf pour obtenir la bonne température de soufflage dans la zone.

L’efficacité de ce système est aussi dû au fait que le recyclage partiel de l’air extrait permet de valoriser aussi bien l’énergie sensible que l’énergie latente (chaleur et humidité).


Bilan énergétique

Il s’agit ici d’estimer les consommations de chauffage, d’humidification, de refroidissement et de déshumidification de l’air d’une salle d’opération en fonction des débits d’air neuf et de recyclage en assurant toujours un taux de renouvellement optimal dans la salle en période d’occupation et minimum en période d’inoccupation afin de maintenir une surpression minimum nécessaire.

Soit un système de climatisation « à recyclage » de salle d’opération où l’on prend en compte un certain nombre de données et d’hypothèses.

Données

  • une salle de taille normale de 150 m³ (50 m² au sol);
  • avec un taux de renouvellement de 30 (classe ISO 7), soit un débit de 4500 m³/h;
  • en Belgique, le RGPT impose une évacuation des gaz anesthésiants par une aspiration murale spécifique branchée directement au respirateur patient. Ce qui veut dire, qu’en gros, l’apport d’air neuf est lié à l’activité humaine et non à la dilution des polluants anesthésiques;
  • une température d’ambiance de 20° C;
  • le bloc opératoire travaille uniquement les jours ouvrables (5 jours/sem) et de 8h00 à 18h00. En dehors des heures, on considère que les débits sont réduits;
  • les apports internes sont de l’ordre de 3  kW (personnes, luminaires, monitoring, …) en période d’occupation et nul en période d’inoccupation;
  • le COP de la machine frigorifique utilisée dans l’hôpital est de 2.5;
  • le prix du kWh électrique est de 16 c€;
  • le prix du kWh thermique est de 6,22 c€;
  • un hôpital moyen en Belgique de 200 lits comporte de l’ordre de 4 salles d’opération;
  • la consommation électrique moyenne d’un hôpital de 200 lits est de l’ordre de 1,9 GWh/an;
  • la consommation thermique moyenne du même hôpital est de l’ordre de 3.5 GWh/an.

Hypothèses

  • on considère que la salle est au milieu du bloc opératoire et qu’elle est sans fenêtre. Vu que:
    • on prévoit des sas d’entrée et de sortie et des portes commandées automatiquement;
    • on renforce l’isolation des parois (panneau sandwich, par exemple);
    • les locaux directement adjacents sont à la même température que la salle;

    par conséquent, les déperditions à travers des parois en hiver et les apports externes en été sont négligeables.

  • sans vouloir faire de jaloux, on se base sur les données climatiques d’ Uccle pour une année type (sans tenir compte de la canicule par exemple ou d’un froid sibérien).
  • les consommations électriques des ventilateurs sont équivalentes dans les cas traités; ce qui veut dire qu’elles n’interviennent pas dans la comparaison des bilans énergétiques.
  • les apports internes sont constants.

Cas où il n’y a pas de recyclage

Avec un débit en « tout air neuf » de :

  • 4 500 m³/h en période d’occupation;
  • 900 m³/h (20 %) en période d’inoccupation.

Calculs

Pour déterminer les consommations en « tout air neuf » introduisez dans le tableau des données un débit d’air neuf

  • de 4500 m³/h sur les 4 500 m³/h désirés dans la salle;
  • de 900 m³/h

Cas où il y a un recyclage

Avec :

  • 3  600 m³/h d’air recyclé et 900 m³/h d’air neuf en période d’occupation;
  • 900 m³/h (20 % du débit nominal) d’air 100 % recyclé en période d’inoccupation.

Calculs 

Pour déterminer les consommations en « tout air neuf » introduisez dans le tableau des données un débit d’air neuf:

  • de 900 m³/h sur les 4 500 m³/h désirés dans la salle en période d’occupation;
  • de 900 m³/h sur les 900 m³/h en période d’inoccupation.

Le résultat des calculs donne :

Besoin

Sur 4500 m³/h
AVEC recyclage :

900 m³/h d’air neuf et 3600 m³/h d’air recyclé en période d’occupation 900 m³/h d’air 100 % recyclé en période d’inoccupation

SANS recyclage :

4500 m³/h de « tout air neuf » en période d’occupation 900 m³/h d’air neuf en période d’inoccupation

Besoin énergétique électrique (kWh/an)
Jour Nuit WE Total Jour Nuit WE Total

Refroidissement et déshumidification

7 019

0

0

7 019

13 959

3 121

2 333

19 413

Humidification

3 152

0

0

3 152

15 440

4 476

3 028

22 944

Total

10 171

0

0

10 171

29 399

7 597

5 361

42 357

Besoin énergétique thermique (kWh/an)
Chauffage et post-chauffe

4 941

0

0

4 941

36 014

14 288

9 203

59 505

Et traduit sous forme graphique et regroupé par type d’énergie:

Énergies mises en jeu lors de la climatisation « tout air » de la salle d’opération.

Le résultat est édifiant car on divise les consommations par 6 lorsque l’on recycle l’air intérieur. Il est certain que l’approche est fortement simplifiée en période d’inoccupation. En effet, on n’a pas tenu compte des déperditions qui, même si elles sont minimes, augmentent :

  • le travail de la batterie froide en période chaude (apports dus à l’inertie du bâtiment qui risquent d’être transférés de l’extérieur vers l’intérieur de la salle à travers les parois);
  • le travail de la batterie chaude en période froide (déperditions de l’intérieur vers l’extérieur de la salle au travers des parois et des grilles de fuite contrôlée.

Le résultat final en période d’inoccupation n’est donc pas nul mais faible.

Remarque.
En recyclage les fuites contrôlées entre la zone à risque et les locaux adjacents est primordiales afin de toujours maintenir une surpression dans cette zone par rapport au « monde extérieur » et donc de garantir la classe de propreté désirée.


Bilan économique

Comme précédemment, on considère les coûts liés aux consommations électriques d’une part et thermiques d’autre part.

Consommations électriques

Le tableau des coûts énergétiques électriques donne :

Besoins électriques
Sur 4 500 m³/h
AVEC recyclage :

900 m³/h d’air neuf et 3600 m³/h d’air recyclé en période d’occupation 900 m³/h d’air 100 % recyclé en période d’inoccupation

SANS recyclage :

4500 m³/h de « tout air neuf » en période d’occupation 900 m³/h d’air neuf en période d’inoccupation

Coûts [€/an] Coûts [€/an]

Refroidissement et déshumidification [kWh/an]  / COP * 0.16 [€/kWh] * 4 salles

1 796

4 969

Humidification [kWh/an] *  0.11 [€/kWh] * 4 salles

2 017

14 685

Total pour les 4 salles

3 813

19 654

Consommations thermiques

Le tableau des coûts énergétiques thermiques donne :

Besoins électriques
Sur 4 500 m³/h
AVEC recyclage :

900 m³/h d’air neuf et 3600 m³/h d’air recyclé en période d’occupation 900 m³/h d’air 100 % recyclé en période d’inoccupation

SANS recyclage :

4500 m³/h de « tout air neuf » en période d’occupation 900 m³/h d’air neuf en période d’inoccupation

Coûts [€/an] Coûts [€/an]

Chauffage et post-chauffe [kWh/an] / 0.8 * 0.0325 € * 4 salles

1 537

18 507

Synthèse

Sous forme graphique, on retrouve la comparaison des coûts des consommations énergétiques :


Comparaison des coûts des consommations d’énergie « tout air neuf / air recyclé ».


Conclusions

Synthèse : recyclage ou pas recyclage ?

En final, on obtient les résultats suivants pour 4 salles d’opération :

Bilan

Sur 4 500 m³/h
Économies
AVEC recyclage :

900 m³/h d’air neuf et 3600 m³/h d’air recyclé en période d’occupation 900 m³/h d’air 100 % recyclé en période d’inoccupation

SANS recyclage :

4500 m³/h de « tout air neuf » en période d’occupation 900 m³/h d’air neuf en période d’inoccupation

Besoin énergétique électrique 40 684 kWh/an 169 428 kWh/an 128 744 kWh/an
Besoin énergétique thermique 19 764 kWh/an 238 020 kWh/an 218 256 kWh/an
Consommation électrique 3 813 €/an 19 654 €/an 15 841 €/an
Consommation thermique 1 537 €/an 18 507 €/an 16 970 €/an
Total 5 350 €/an 38 161 €/an  32 811 €/an
Hôpital 469 454 €/an 469 454 €/an
Ratio 1,1 % 8,1 %

Le tableau de synthèse ci-dessus montre l’intérêt d’optimiser le débit de recyclage en permanence puisqu’on peut diviser les consommations par 6,5.

Le budget de fonctionnement énergétique des salles d’opération est, quant à lui, divisé par 7, et passe de 38 161 Euros/an à 5 350 Euros/an.

Un fonctionnement en tout air neuf est donc économiquement à éviter, même avec des systèmes de récupération de chaleur !

Et l’hygiène dans tout ça ?

Quantité minimale d’air neuf à apporter

Il est difficile de savoir quelle valeur de référence prendre sachant qu’en Belgique :

  • Le RGPT impose l’évacuation des gaz d’anesthésie par une prise d’extraction directe sur le circuit patient du respirateur (ce qui réduit la quantité d’air neuf à apporter et d’air vicié à extraire).
  • Le RGPT et la réglementation wallonne demandent un apport d’air neuf de 30 m³/h.pers.
  • Les normes relatives à l’apport d’air neuf dans les locaux à risque de contamination, et notamment dans les salles d’opération, varient en fonction des pays. Il est difficile de nous prononcer pour l’une ou l’autre des prescriptions. Il semble cependant que les normes allemandes DIN 1946/4, suisse SWKI (1987) et française NF S90-351 soient souvent reconnues comme les plus adéquates. La norme suisse est souvent citée comme référence en matière d’apport d’air neuf (80 m³/h.pers) par les professionnels.

Le « tout air neuf » ne garantit-il pas une meilleure qualité hygiénique ?

Ce sujet est très controversé et chacun peut avoir sa propre opinion. Il est quand même nécessaire de considérer ce qui suit :

  • La qualité particulaire et bactérienne de l’air est essentiellement fonction de la classe des filtres.
  • L’expérience montre que le recyclage, pour autant que la maintenance s’exécute dans les règles de l’art, permet d’obtenir des qualités de filtration supérieures à celles obtenues avec du « tout air neuf » (d’après l’expérience de certains responsables techniques d’hôpitaux);
  • Il faut quand même rester prudent avec cette dernière affirmation. Effectivement, si le patient est non infecté, on recycle de l’air plus stérile que l’air extérieur mais par contre si le patient est infecté, l’air recyclé risque d’être contaminé (d’où la recommandation de passer en mode « tout air neuf » en cas d’activité contaminante à l’intérieur de la zone).

À l’heure actuelle, la France, l’Allemagne, les États- Unis, la Suisse et l’Italie admettent le recyclage (il n’y a pas de norme officielle en Belgique).

Dans la norme NF S90-351, les systèmes de traitement d’air avec recyclage sont décrits avec des restrictions bien particulières comme :

  • Le volume d’air extrait d’une salle ou zone contrôlée doit être réinjecté dans la même salle ou zone afin d’éviter les biocontaminations croisées.
  • Le réseau de recyclage et l’environnement doit être protégé par un dispositif de filtration au niveau des grilles d’extraction de la salle ou de la zone.

Celle-ci conduit en général à régler la différence entre l’air neuf hygiénique ou de sécurité souhaité, et le taux de brassage minimum nécessaire à l’épuration de l’air ambiant par :

  • un recyclage partiel de l’air extrait,
  • sa filtration,
  • et son mélange avec de l’air neuf.

Dans les locaux à haute protection, on préfère ainsi la mise en œuvre de « recycleurs » individuels, telles que les armoires climatiques, afin d’éviter les contaminations croisées et les pertes énergétiques importantes.

Mesurer l’étanchéité d’un bâtiment

Mesurer l'étanchéité d'un bâtiment


La mesure de pressurisation – Taux de ventilation à 50 Pa

En Belgique, les règles pour obtenir un essai de pressurisation de qualité et conforme sont décrites par la STS-P 71-3Étanchéité à l’air des bâtiments, Essai de pressurisation qui est publiée par le SPF Économie, P.M.E., Classes moyennes et Énergie.

La mesure de pressurisation consiste à mesurer le débit d’air qui s’infiltre à travers les différentes ruptures d’étanchéité des parois du bâtiment (mauvaise jonction des isolants, prises électriques, jonction mur/menuiserie, …). Cette mesure est en passe de devenir essentiel, en effet les bâtiments sont de plus en plus efficaces énergétiquement et la part des coûts énergétiques due aux pertes par étanchéité à l’air des parois est proportionnellement plus importante.

Pour la mesure de pressurisation, on remplace une ou plusieurs des portes extérieures par un panneau comportant un ou plusieurs ventilateurs. On ouvre ensuite toutes les portes et fenêtres intérieures et on referme toutes les portes et fenêtres extérieurs.

Le local est alors mis en surpression ou dépression par injection ou aspiration de l’air dans le bâtiment.
En pratique, le débit du ventilateur (Q) est réglé de façon à établir une différence de pression entre l’intérieur et l’extérieur de 50 Pa.

Le résultat d’une mesure de pressurisation est caractérisé par la valeur n50 :

n50 = Q50/V

avec,

  • n50 = le renouvellement d’air pour une différence de pression de 50 Pa (1/h),
  • Q50 = le débit d’air (m³/h) insufflé par le ventilateur pour une différence de pression de 50 Pa,
  • V = le volume du bâtiment (m³).


Taux de ventilation saisonnier moyen

Étant donné qu’une différence de pressions de 50 Pa sur un élément de façade ne se produit que par vent très fort, la valeur n50 n’a pas directement de signification pratique. Le taux de ventilation réel d’un bâtiment est une fonction complexe de l’étanchéité à l’air globale, de la localisation des fuites et des conditions climatiques (vitesse et direction du vent, écart de températures entre l’ambiance intérieure et extérieure, … ).
En fait, on peut admettre la règle approximative suivante : le taux de ventilation saisonnier moyen de base s’élève à environ 1/20 du taux de ventilation n50 mesuré. Cette proportion peut varier entre 1/10 et 1/30 suivant le cas.


Autre mesure

Il existe une seconde méthode pour mesurer l’étanchéité à l’air globale d’un bâtiment : la méthode du gaz traceur. Cette mesure permet de déterminer le débit de ventilation dans les conditions climatiques régnant au moment de la mesure (vent, température).
Eté 2008 : Brieuc.
22-08-2008 : 1er passage de mise en page [liens internes, tdm, en bref !, rapide passage général sur la mise en page de la feuille] – Sylvie
02-09-2008 : WinMerge ok – Sylvie

Comportement au feu des matériaux

Comportement au feu des matériaux


La classification

La réaction au feu d’un matériau de construction est l’ensemble de ses propriétés considérées en relation avec la naissance et le développement d’un incendie.

La norme française NF P92-501, la norme britannique BS 476 part 7, et la norme néerlandaise NEN 6067 décrivent des catégories décrivent des méthodes d’essai qui permettent de répartir les matériaux en catégories en fonction soit de leur sensibilité sous l’influence d’une source de chaleur (NF), soit de leur faculté à propager les flammes lorsqu’ils sont en position horizontale (BS et EN).


Les prescriptions

Le maître de l’ouvrage a toujours intérêt à prendre un maximum de précautions contre les risques d’incendie.

Dans certains cas, ces précautions sont obligatoires.

Les normes de base en matière de prévention contre l’incendie, auxquelles les bâtiments nouveaux doivent satisfaire depuis le 01 janvier 1998 sont l’A.R. du 07.07.1994, modifié par l’A.R. du 19.12.1997.

Elles ne concernent cependant pas les maisons unifamiliales, les bâtiments de moins de trois niveaux ayant une superficie totale inférieure ou égale à 100 m² et les bâtiments industriels.

Les bâtiments sont répartis en 3 catégories en fonction de la hauteur h entre le niveau fini du plancher de l’étage le plus élevé et le niveau le plus bas de la voirie entourant le bâtiment. Une toiture comprenant exclusivement des locaux techniques n’intervient pas dans le calcul de la hauteur.

Bâtiment élevé h > 25 m
Bâtiment moyen 10 m < ou = h < ou = 25 m
Bâtiment Bas h < 10 m

 

En ce qui concerne les bâtiments annexes (construction, auvent, encorbellement, avancée de toiture, …), si des façades vitrées les dominent, les matériaux superficiels de la couverture sont de classe A1 sur une distance d’au moins 8 m pour les bâtiments élevés et d’au moins 6 m pour les bâtiments moyens et bas.

Certains bâtiments ne sont soumis à aucune exigence.

Il s’agit :

  • des maisons unifamiliales ;
  • des bâtiments de moins de 100 m² comptant maximum deux étages ;
  • des bâtiments industriels ;
  • des travaux d’entretien.

Les membranes bitumineuses

Le comportement au feu des membranes bitumineuses est peu satisfaisant et varie suivant les produits.
Il dépend :

    • de la présence ou non d’une protection en paillettes d’ardoise ;
    • de la combustibilité spécifique de l’armature en polyester ;
    • du pourcentage de charges minérales ;
    • du type de bitume utilisé ;
    • du comportement des liants à température élevée.

Aussi, pour améliorer le comportement au feu des membranes bitumineuses, des minéraux et des produits chimiques ont été mélangés au liant et les armatures ont été modifiées.

On a ainsi obtenu des membranes dites « ANTI-FEU« .

Les membranes synthétiques

On remarque que parmi les 13 sortes de membranes synthétiques reprises dans la NIT 151 du CSTC, seules quatre bénéficient d’un agrément technique ATG : PVC, EPDM, CPE et PIB. Parmi celles-ci, deux seulement sont utilisées de manière significative, un plastomère :

le PVC (12 % du marché belge), et un élastomère : l’EPDM (8 % du marché belge).

L’EPDM a un comportement peu satisfaisant au feu. Il existe cependant une qualité auto-extinguible (NO-FLAM) qui est un mélange d’élastomère avec des retardateurs de flammes.

Le PVC a un comportement satisfaisant au feu.


Les supports

Extrait de la NIT 215 du CSTC.

Si le feu provient de l’intérieur, c’est avant tout la résistance au feu du plancher de toiture qui est déterminante. Dans le cas d’une épaisse chape de béton, l’inflammabilité éventuelle des matériaux de toiture n’exerce que peu d’influence, voire aucune, sur l’évolution de l’incendie, sauf au droit des percements de toiture comme les coupoles et les évacuations d’air.

En présence de planchers de toiture en bois et en métal, l’inflammabilité de l’écran pare-vapeur, de l’isolation et de leurs adhésifs joue un rôle important. Il est préconisé, dans ce cas d’utiliser des matériaux ignifuges pour réaliser la finition du plafond.

Par ailleurs, la présence, sur des planchers de toiture à joints ouverts, de bitume fondu ou d’un isolant fondu peut occasionner une propagation rapide de l’incendie, celui-ci pouvant même gagner les autres bâtiments.

Évaluer les bénéfices d’une rénovation

Évaluer les bénéfices d'une rénovation


Notion de rentabilité financière

Le  sujet qui risque de fâcher plus d’une personne ! La notion de rentabilité financière est aléatoire en fonction de l’activité des occupants du bâtiment considéré et des coûts des consommations électriques qui sont très volatils. En effet, elle diverge selon que le bâtiment abrite un commerçant franchisé ou une administration par exemple :

  • Le commerçant va tabler sur son espérance de vie qui est de l’ordre de 2-3 ans (dur dur !). C’est du moins la manière de calculer d’un certain nombre de commerçants franchisés pour réaliser un investissement rentable dans l’énergie. Réflexion que l’on entend souvent : « Si le temps de retour simple sur investissement dans l’énergie n’est pas inférieur à 2-3 ans, je ne me lance pas dans l’aventure ! ».  Le problème est que les investissements procurant une rentabilité de cet ordre sont assez rares dans le domaine de l’énergie, surtout aux prix pratiqués par les fournisseurs d’énergie. Bref, il faut surtout avoir la foi. De plus l’énergie n’est pas encore assez chère pour motiver les indécis !
  • L’administration communale, par exemple, va plutôt tabler sur une rentabilisation de l’investissement sur la durée de vie de l’équipement.

La rentabilité est donc vraiment une notion perçue de manière très différente par les acteurs du secteur tertiaire. Bien conscient que ce discours pourrait être pris comme une vision utopiste d’un « doux rêveur », il faut, malgré tout, privilégier les investissements qui offrent des rentabilités les plus courtes possible, d’accord, mais sans viser impérativement des valeurs extrêmes qui éliminent tout espoir d’investir dans l’énergie. Il faut, actuellement tenir compte aussi tant pour les commerces que pour les institutions non marchandes de la notion d’image verte qui devient importante en termes de marketing.


Diminution des consommations électriques

Calculs

Pour évaluer le budget maximum à allouer à une rénovation, tout en garantissant un temps de retour correct.

(Dans ce programme, il vous sera demandé d’insérer le prix que vous payez par kWh électrique consommé. Si vous ne le connaissez pas, vous pouvez l’estimer grâce aux informations reprises dans la théorie « coût moyen du kWh électrique économisé« ).


Amélioration du confort et de la sécurité

La rénovation peut avoir comme objectif l’amélioration du confort visuel de l’esthétique d’un lieu voire même de la sécurité des usagers.

Dans ces cas, le projet peut ne pas être énergétiquement rentable. Par exemple, en cas de niveaux d’éclairement actuel insuffisant (c’est souvent le cas dans des classes ou l’on retrouve régulièrement 200 lux au lieu de 400), il faudra alors essayer, grâce à des technologies performantes (nouvelles lampes, nouveaux optiques, …), d’atteindre ces objectifs sans consommation supplémentaire.


Diminution des frais d’entretien et de climatisation

Les frais d’entretien diminuent grâce à

  • Une diminution du nombre de lampes installées.
  • Une augmentation de la durée de vie des lampes.

Notons aussi que, l’utilisation de ballasts électroniques permet de doubler la durée de vie des lampes fluorescentes.

Pour les bâtiments climatisés, une dissipation de chaleur plus faible des luminaires permet des économies supplémentaires sur les frais de climatisation : on estime qu’une puissance excédentaire en éclairage de 1 kW entraîne, pour chaque heure d’utilisation, une surconsommation de :

1 kWh + 0,2 kWh + 0,4 kWh = 1,6 kWh

(lampe + ballast + climatisation = surconsommation électrique).


Diminution des rejets polluants

Du point de vue environnemental, le relighting réduit fortement les rejets de gaz polluants (CO2, NOx, …). lors de la production d’électricité.

Exemple.

Dans une classe de 7 m x 8 m dont le niveau d’éclairement est suffisant (temps d’occupation de 1 000 h/an), le remplacement de luminaires à diffuseur opalin par des luminaires haut rendement permet de diminuer les rejets annuels

  • de CO2 de près de 129 kg,
  • de SO2 de 0,3 kg,
  • de NOx de 1 kg

De plus, les nouvelles lampes à fluorescence contiennent 5 fois moins de mercure que les anciennes (3 mg au lieu de 15 mg).

Les lampes à fluorescence récentes contiennent 5 fois moins de mercure que les anciennes (3 mg au lieu de 15 mg).

Les LEDs sont quant à elles exemptes de mercure mais nécessitent l’utilisation de terres rares.

Impositions du RGPT en matière d’éclairage

Impositions du RGPT en matière d'éclairage


Art.60.

[Dans les locaux où la nature du travail l’exige, l’éclairage artificiel comprend une installation d’éclairage général destinée à uniformiser la lumière dans toute l’étendue du local, ainsi qu’à éviter les ombres dangereuses ou gênantes.]
[…]
Si son intensité n’est pas suffisante pour l’accomplissement aisé des travaux, il sera complété par un système d’éclairage local.

[Toutefois lorsque le travail nécessite, à l’endroit où il s’effectue, un éclairement d’une valeur supérieure à 200 lux, celle-ci pourra être obtenue au moyen d’un éclairage artificiel local complémentaire, à la condition qu’à elle seule, l’installation d’éclairage général susdite assure dans tous les cas, au même endroit un éclairement minimum de 200 lux.]

Art.61.

Dès la tombée du jour, les cours, hangars et chantiers en plein air, seront pourvus d’un éclairage artificiel d’une intensité suffisante pendant tout le temps où les travailleurs sont appelés à y travailler ou y circuler.

[L’éclairage artificiel doit avoir des caractéristiques spectrales telles qu’il ne modifie pas les couleurs des signaux de sécurité.]

Art.62.

[Le tableau ci-après indique, pour les différents lieux, travaux et appareils, la valeur minimum, exprimée en lux, que doit atteindre l’éclairement, sauf le cas des opérations visées à l’article 59, alinéa 1.
Cet éclairement est celui du plan de travail ou, si celui-ci ne peut être nettement défini, d’un plan horizontal situé à 0,85 m au-dessus du sol.
Toutefois, dans les lieux visés aux littéras a), b) et c) du tableau ci-après, cet éclairement est celui, mesuré au niveau du sol, du plan perpendiculaire au flux lumineux.

a) 2 lux :
Gares de triage, des chemins de fer, aux endroits où le personnel est appelé à circuler, à l’exception des chantiers de triage proprement dits.

b) 10 lux :
Chantiers de triage proprement dits des gares de chemins de fer, c’est-à-dire chantiers allant de la bosse de triage incluse jusque et y compris les derniers aiguillages de dispersion. Cours et passages extérieurs.

c) 20 lux :
Lieux suivants, situés à l’extérieur des bâtiments: postes de transformation électrique, quais de chargement ou de déchargement en inactivité ainsi que tous autres endroits analogues.

d) 50 lux :
Lieux suivants situés à l’intérieur des bâtiments : passages autres que ceux se trouvant dans les grands magasins de vente, couloirs, escaliers, entrepôts, dépôts et magasins de matériaux bruts ou volumineux, garages ainsi que tous autres endroits analogues. Chambres froides.
Travaux ne nécessitant aucune perception des détails: manutention de matières grossières (charbon, cendres, etc.), triage Sommaire, broyage de produits argileux, travaux grossiers ou de gros œuvre dans les chantiers navals et de génie civil ainsi que tous autres travaux analogues.

e) 100 lux :
Travaux ne nécessitant qu’une perception légère des détails: fabrication de produits semi-finis de fer ou d’acier, travaux grossiers d’assemblage, mouture de grains, déballage, triage et cardage de la laine ainsi que tous autres travaux analogues.
Salles de machines, chaufferies, ascenseurs et monte-charge, services d’emballage, locaux de réception ou d’expédition de marchandises, quais de chargement ou de déchargement en activité, dépôts et magasins de matériaux moyens ou fins ainsi que tous autres endroits analogues.
Vestiaires, lavatories, lavabos, réfectoires et autres endroits analogues.

f) 200 lux:
Travaux nécessitant une perception modérée des détails: travaux ordinaires d’assemblage, façonnage mécanique, travail des textiles et des cuirs non teints mise en conserve d’aliments, découpage des viandes, travail du bois sur établi, laminage et cisaillage de pièces de grandes dimensions, montage et débosselage de carrosseries ainsi que tous autres travaux analogues.

Passages dans les grands magasins de vente.

g) 300 lux :
Travaux nécessitant une perception assez poussée des détails : travail ordinaire sur machines, tests de précision, classification des farines, finissage des cuirs, travail des cotonnades, des lainages, des soies et fibres artificielles non teints, travaux de bureau de toute nature, y compris la dactylographie lorsque celle-ci s’effectue de manière intermittente, travaux de confection à l’exception de la couture et du contrôle de finition, travaux de réparation dans les garages ainsi que tous autres travaux analogues.

Tableaux de connexion, appareils de pesage, claviers et autres appareils ou installations analogues.

h) 500 lux :
Travaux nécessitant une perception poussée des détails durant de longues périodes de temps : travaux d’assemblage de précision, travaux de précision sur machines, polissage et biseautage du verre, travaux de précision dans les verreries, travaux de dessin et de mécanographie, travail de dactylographie lorsque celui-ci s’effectue de manière permanente, travail des textiles et des cuirs teints, travaux fins de soudage ainsi que tous autres travaux analogues.

Comptoirs de vente.

Travaux nécessitant une perception très poussée des détails : travail des cotonnades, des lainages, des soies et des fibres artificielles teints, travaux de dessin ou de monographie exigeant un éclairement particulièrement élevé, ainsi que tous autres travaux analogues.

j) 1 000 lux :
Travaux nécessitant une perception extrêmement fine des détails : travaux d’assemblage de grande précision, essais d’instruments très délicats, travaux de bijouterie et d’horlogerie, classification et triage des tabacs, composition et lecture des épreuves dans les imprimeries, couture et contrôle de la finition dans les ateliers de confection, montage de pièces extrêmement fines, préparation, dosage et mélange de couleurs ainsi que tous autres travaux analogues.

[[Lorsqu’il est impossible de localiser, avec précision l’endroit du travail ou le plan de ce dernier, l’éclairement à prévoir peut, sur avis du Comité de sécurité, d’hygiène et d’embellissement des lieux de travail, ou à défaut de celui-ci, du service de sécurité, d’hygiène et d’embellissement des lieux de travail, être déterminé et mesuré conformément à la norme NBN 255 – code de bonne pratique de l’éclairage dans l’industrie. L’avis de ce comité, ou à défaut de celui-ci, dudit service, est également requis pour décider de la valeur de l’éclairement à prévoir dans les cas non énumérés au présent article.]]

Art.63.

Toute installation et tout appareil d’éclairage général ou local devront être conçus et disposés de manière à éviter les éblouissements dangereux ou gênants, les phénomènes de stroboscopie, le surchauffement des locaux et la viciation de l’air.

Art.63. bis Éclairage de sûreté

Les établissements qui doivent être pourvus d’un éclairage artificiel, doivent être équipés d’un éclairage de sûreté suffisant pour permettre l’évacuation des personnes lorsque l’éclairage artificiel fait défaut.

Dans les bâtiments où séjournent habituellement plus de cent personnes, l’éclairage de sûreté doit s’allumer automatiquement dès que l’éclairage général fait défaut. Dans ce cas, il doit être alimenté :
  • soit par une batterie d’accumulateurs électriques,
  • soit par un raccordement au réseau public à basse tension, lorsque l’éclairage général est alimenté par le courant d’un transformateur statique raccordé au réseau à haute tension et installé dans l’établissement ou à proximité de celui-ci,
  • soit par un groupe électrogène.

Rendement d’une chaudière

Date : page réalisée sous l’hégémonie Dreamweaver

Auteur : les anciens

Eté 2008 : Brieuc.

Notes : 06.02.09

  • Winmerge : ok – Sylvie
  • Mise en page [liens internes, tdm, en bref !, passage général sur la mise en page de la feuille] – Sylvie

Lorsque l’on caractérise les performances d’une chaudière, il faut distinguer le rendement de la chaudière lorsque le brûleur est en fonctionnnement, c’est le rendement nominal ou utile et le rendement global sur toute la saison de chauffe, c’est le rendement saisonnier. Ce dernier prend en compte non seulement les performances pendant les périodes de marche, mais aussi pendant les périodes d’arrêt du brûleur.

Rendement nominal ou rendement utile

Le rendement utile ηutile d’une chaudière est son rendement instantané lorsque le brûleur fonctionne. C’est le rapport entre la puissance contenue dans le combustible et la puissance thermique transmise à l’eau de chauffage

ηutile = P/ Pa

où,

  • P= puissance contenue dans le combustible = débit de combustible x son pouvoir calorifique PCI (ou PCS)
  • P= puissance utile de la chaudière ou puissance fournie à l’eau de chauffage

Il s’agit d’un rendement instantané qui peut varier en fonction des conditions d’exploitation de la chaudière (température de l’eau, puissance du brûleur par rapport à la puissance de la chaudière). Le fabricant de chaudières doit pouvoir fournir sa valeur à charge nominale et dans des conditions de combustion idéales (rendement nominal) dans leur documentation technique.
La différence entre la puissance utile fournie à l’eau (Pu) et la puissance contenue dans le combustible est constituée de pertes :

  • Vers la cheminée. Les fumées de combustion sont évacuées encore chaudes. Cette chaleur est perdue.
  • Vers la chaufferie. La chaudière est comme un gros radiateur qui émet de la chaleur vers l’ambiance de la chaufferie.

Pertes d’une chaudière lorsque son brûleur est en fonctionnement.

Le rendement utile d’une chaudière peut donc s’exprimer sous la forme:

ηutile = (P– Pertes fumées – Pertes ambiance) / Pa

En pratique, on utilise souvent la forme :

ηutile = ηcomb – %qr

où,

    • ηcomb = rendement de combustion [%]
    • %qr = pourcentage de réduction due aux pertes vers l’ambiance durant le fonctionnement du brûleur

Pertes par les fumées et rendement de combustion

Les pertes par les fumées proviennent

  • De la chaleur sensible contenue dans les fumées qui sont nettement plus chaudes que l’air aspiré dans la chaufferie.
  • De la chaleur latente, si la vapeur d’eau contenue dans les fumées n’est pas entièrement condensée. Cette perte est prise en compte dans le rendement chiffré si on compare l’énergie fournie au Pouvoir Calorifique Supérieur.
  • Des imbrûlés issus d’un mauvais mélange entre l’air et le combustible, provoquant la production de CO au lieu de CO2 (la chaleur dégagée est alors inférieure à celle fournie par une combustion complète).

Le rendement de combustion se définit comme :

ηcomb = (P– Pertes fumées) / Pa

où,

  • Pa = puissance contenue dans le combustible = débit de combustible x PCI (ou PCS)

Le rendement de combustion est le plus souvent calculé par rapport au pouvoir calorifique inférieur (PCI) du combustible. Il en résulte des rendements souvent supérieurs à 100 % pour les chaudières à condensation.
Le rendement de combustion est l’image de la qualité de la combustion et de l’échange entre thermique entre les fumées et le fluide caloporteur.
En pratique, on exprime souvent le rendement de combustion par la formule de Siegert :

ηcomb = 100 – f x (Tfumées – Tamb) / %CO2

où :

  • Tfumées = la température des fumées à la sortie de la chaudière [°C]
  • Tamb = température ambiante de la chaufferie [°C]
  • %CO2 = la teneur en CO2 des fumées [%]
  • f = facteur dépendant principalement du type de combustible (mazout : f = .. 0,57 ..; gaz naturel : f = .. 0,47 ..)

On relève les deux éléments clés de cette formule

  • La température des fumées. Plus celle-ci est élevée, plus il y a de perte de chaleur vers la cheminée, et moins bon est l’échange entre l’eau et les fumées.
  • Le pourcentage de CO2 contenu dans les fumées qui symbolise la transformation complète du combustible.

Evolution du contenu des fumées avec l’excès d’air [%] de combustion.

Pertes par l’ambiance

Les pertes vers l’ambiance proviennent de l’échange thermique par rayonnement et convection entre la chaudière et son environnement. Ces pertes proviennent d’une part de la masse d’eau chaude présente dans la chaudière et d’autre part des parties non irriguées de la chaudière qui s’échauffent directement sous le rayonnement de la flamme. On parle dans ce dernier cas de pertes par parois sèches.
Les pertes par l’ambiance sont fonction notamment de la température moyenne de l’eau dans la chaudière, de la configuration de cette dernière et de son degré d’isolation (attention aux surfaces non isolées telles que les portes ou le socle). Elles sont donc en partie dépendantes de la vétusté de la chaudière et de sa régulation.

  1. Chaudière au charbon convertie au fuel.
  2. Chaudière gaz atmosphérique.
  3. Chaudière fuel ou gaz à brûleur pulsé.

Pertes vers l’ambiance totales (pertes par parois sèches + pertes par parois irriguées) des anciennes chaudières lorsque le brûleur est en action, en pourcentage de la puissance de la chaudière.

Source : le Recknagel.

Rendement saisonnier

Le rendement saisonnier ηsais est le rapport entre l’énergie totale transmise à l’eau de chauffage durant toute la saison de chauffe Qu et l’énergie contenue dans le combustible consommé durant cette période Q:

ηsais = Q/ Qa

C’est ce rendement qui permet de chiffrer les performances globales de la chaudière. La consommation en combustible est directement à celui-ci.

Pertes à l’arrêt

La puissance des chaudières étant dimensionnée pour des températures extérieures extrêmes, celles-ci fonctionneront la plupart du temps à charge partielle. Dans ce cas, le brûleur, à l’exception des brûleurs modulants, alternera les périodes de fonctionnement et les périodes d’arrêt, de manière à obtenir la puissance moyenne nécessaire.
Le rendement nominal ne représentant que les performances de la chaudière durant le fonctionnement du brûleur, il importe d’introduire la notion de rendement saisonnier qui prendra également en compte les pertes de la chaudière durant les périodes d’arrêt de ce dernier.
Lorsque le brûleur est à l’arrêt, la chaudière conserve une certaine température. Dès lors, elle échangera de la chaleur :

  • Par rayonnement et convection, avec l’ambiance de la chaufferie (on peut la considérer comme un gros radiateur). Remarquons que cette perte est inférieure aux pertes vers l’ambiance décrites ci-dessus. En effet lorsque le brûleur est en fonctionnement, certaines parties de la chaudière non en contact avec l’eau, s’échauffent par le rayonnement de la flamme (porte, le bas de la chaudière s’il n’est pas irrigué, …), ce qui augmente les pertes totales vers l’ambiance..
  • Par convection interne vers la cheminée. On parle de pertes par balayage. En effet, si l’amenée d’air du brûleur reste ouverte à l’arrêt (brûleur à air pulsé gaz ou fuel sans clapet d’air automatique ou brûleur gaz atmosphérique), l’intérieur chaud de la chaudière est en permanence parcouru par un courant d’air qui évacue sa chaleur vers la cheminée par tirage naturel.

Pertes à l’arrêt d’une chaudière.

Ces deux types de perte constituent les pertes à l’arrêt ou d’entretien de la chaudière. Les pertes d’entretien d’une chaudière s’expriment au travers d’un pourcentage de la puissance nominale de la chaudière : le coefficient d’entretien ou de pertes à l’arrêt q:

Pertes à l’arrêt [kW] = qx Puissance nominale chaudière [kW]

Le coefficient qE d’une chaudière est repris dans sa documentation technique en fonction de sa température de fonctionnement.
qE varie en fonction de cette température, approximativement, suivant la formule :

qE2 = qE1 x ( (Tchau 2 – Tamb) / (Tchau 1 – Tamb) ) 1,25

où,

  • qE2, qE1 = les coefficients de perte à l’arrêt pour une température d’eau de chaudière respectivement de Tchau 2 et Tchau 1 et une température de chaufferie de Tamb.

Expression du rendement saisonnier

On peut exprimer le rendement saisonnier d’une chaudière par la formule de Dittrich :

ηsais = ηutile / (1 + qx (nT/n– 1))

où,

  • ηutile = rendement utile (quand le brûleur fonctionne)
  • nT = nombre total d’heures de la saison de chauffe [h] (environ 5 800 heures en moyenne Belgique et environ 6 500 heures dans l »entre Sambre et Meuse » et en haute Belgique)
  • nB = nombre d’heures de fonctionnement du brûleur durant l’année [h]
  • nB/nT = temps de fonctionnement du brûleur / temps d’utilisation de la chaudière, est aussi appelé facteur de charge de la chaudière

Facteurs d’influence du rendement saisonnier

Le rendement saisonnier augmente :

  • quand le réglage de la combustion est optimal (augmentation du rendement de combustion),
  • quand la température de l’eau diminue (augmentation de l’échange entre les fumées et l’eau et diminution des pertes à l’arrêt),
  • quand la puissance du brûleur est la plus proche possible des besoins (augmentation du facteur de charge et diminution des temps d’arrêt de la chaudière), c’est-à-dire, en ne surdimensionnant pas le brûleur, en utilisant un brûleur 2 allures ou modulant).

Par exemple, un brûleur modulant (gaz ou fuel) qui pourrait faire varier sa puissance entre 0 et 100 % (matériel n’existant pas sur le marché), fonctionnerait en permanence, supprimant ainsi les temps d’attente de la chaudière. Le facteur de charge de la chaudière serait égal à 1 et le rendement saisonnier serait égal au rendement utile, c’est-à-dire quasi égal au rendement de combustion (aux pertes vers l’ambiance près).

Exemple.

Une ancienne chaudière de 500 kW équipée d’un brûleur d’une puissance de 450 kW a un rendement de combustion mesuré de 88,7 %.

Ses pertes vers l’ambiance sont estimées à 1 %.

Son brûleur n’est pas équipé d’un clapet d’air se refermant à l’arrêt. Ses

pertes à l’arrêt sont estimées à 2 % (1,5 % pour les pertes par balayage et 0,5 % pour les pertes vers la chaufferie).

La consommation du bâtiment est de 39 000 litres de fuel par an. Le temps de fonctionnement du brûleur est donc de :

39 000 [litres/an] x 10 [kWh/litre] / 450 [kW] = 867 [h/an]

pour une saison de chauffe de 5 800 h/an.Le rendement saisonnier de cette chaudière est donc estimé à :

ηsais = (88,7 [%] – 1 [%]) / (1 + 0,02 x
(5 800 [h/an] / 867 [h/an] – 1)) = 78,7 [%]

Si on rénovait l’installation en l’équipant d’une chaudière moderne redimensionnée de 250 kW. Les pertes à l’arrêt de la nouvelle chaudière sont de 0,2 %. Le rendement utile annoncé par le constructeur est de 93 %.

Comme la puissance de la chaudière a été divisée par 1,8, le temps de fonctionnement sera augmenté dans la même proportion :

n= 867 [h/an] x 1,8 = 1 560 [h/an]

Le rendement saisonnier de cette chaudière sera donc estimé à :

ηsais = (93 [%]) / (1 + 0,002 x (5 800 [h/an] /
1 560 [h/an] – 1)) = 92,5 [%]

Grâce à cette rénovation, la consommation énergétique sera abaissée à :

39 000 [litres/an] / 92,5 [%] x 78,7 [%] = 33 181 [litres/an]

Calculs

Pour estimer le rendement saisonnier de votre propre installation (sur base du climat moyen d’Uccle), cliquez ici !

Calculs

Pour estimer le rendement saisonnier de votre propre installation (sur base du climat moyen de St Hubert), cliquez ici !

Pertes au démarrage et à l’arrêt du brûleur

Attention, la mesure du rendement de combustion ne prend en compte la qualité de combustion que lorsque le brûleur est en régime. Elle néglige les pertes qui apparaissent lors de l’allumage et de l’arrêt du brûleur.
Dans la pratique et, même avec un brûleur le plus finement réglé, il est impossible d’éviter, à certains moments, la formation de CO, d’imbrûlés et d’émissions polluantes comme les NOx. Ces derniers sont évidemment toxiques et leur formation diminue légèrement le rendement de combustion moyen et accélère l’encrassement de la chaudière.
Ils apparaissent inévitablement au démarrage et à l’arrêt du brûleur. Au démarrage, par exemple, on injecte du combustible qui doit s’enflammer. Les premières gouttes ne pourront le faire correctement car elles ne se trouveront pas dans les conditions idéales de mélange et de température. Un phénomène semblable se déroule à l’arrêt pour les dernières gouttes injectées.
Il est difficile de chiffrer les pertes et les émissions polluantes complémentaires que cela engendre. Il faut cependant avoir en tête celles-ci seront d’autant plus importantes que le nombre de cycles de marche/arrêt des brûleurs est élevé.

Chambres d’hospitalisation

Chambres d'hospitalisation


Zones à risque de contamination faible

Dans les zones à risques 1 (voir norme NF S90-351) , c’est-à-dire concrètement sans risque d’aérobiocontamination (chambre sans risque d’infection, certaines consultations, radiologie, hémodyalise, ergothérapie, locaux administratifs, pharmacie, …), la ventilation se traite sans exigence particulière en terme de filtration et de pression.

Dans ces zones on fait en général appel uniquement à un apport d’air neuf hygiénique. Si après avoir étudié la possibilité de réduire les apports internes et externes la climatisation s’avère vraiment nécessaire, on fera appel à d’autres systèmes de climatisation que la climatisation « tout air ».

Cependant, une restriction par rapport à la climatisation des zones hospitalières dites classiques est à souligner : au coup par coup l’aspect hygiène par rapport au patient sera pris en compte.

La bonne question à se poser est la suivante :

« N’est-il pas prévu, maintenant ou à terme, d’avoir dans cette zone des patients à risque ? »


Analyse de la demande

La spécificité des chambres d’hôpital apparaît comme suit :

  • un découpage en nombreux locaux indépendants mais au profil d’occupation assez constant,
  • une demande très variable entre les locaux, suite à une localisation sur des façades différentes,
  • le souhait de l’occupant de pouvoir intervenir sur la consigne intérieure,
  • le souci de limiter la consommation d’une chambre non occupée.

Et les exigences acoustiques sont particulièrement sévères. La norme européenne EN 13779: 2004 propose trois niveaux de confort acoustique à respecter dans les locaux (minimum – par défaut- minimum) :

Type de bâtiment

Type de local

dB(A)
 

 

Hôpitaux couloir 35/40/45
 

 

salle d’opération 35/40/48
 

 

salle commune 25/30/35
 

 

chambre d’hôtel (nuit) 20/30/35
 

 

chambre d’hôtel (jour) 25/35/40

Évaluer

Pour en savoir plus sur l’ évaluation du niveau de bruit, cliquez ici !


Choix du système de conditionnement d’air

Remarque préliminaire
Il serait prétentieux de prétendre énoncer en quelques lignes tous les critères constituant la démarche conceptuelle qui conduit au choix d’un système de climatisation dans les zones à risque de contamination faible.

La solution résulte en effet de la concertation étroite entre le Maître de l’Ouvrage (décideur, techniciens, hygiéniste, …), l’Architecte, l’Ingénieur de bureau d’études et tous les partenaires qui forment l’équipe de projet. Cette concertation se situe à la fin de la phase d’avant-projet de l’étude du bâtiment et résulte du meilleur compromis entre critères parfois contradictoires :

  • hygiène hospitalière,
  • coût d’investissement et d’exploitation,
  • optimalisation de l’usage des surfaces,
  • mobilité aux variations de programme,
  • esthétique externe et interne (le bâtiment doit être beau à voir et à vivre !),
  • confort au sens large (climatique, acoustique, visuel,…),
  • etc…

À noter qu’au plus tôt se constitue cette équipe de projet, plus l’ensemble des contraintes sera pris en considération à temps.

Tout au plus pouvons-nous ici évoquer avec prudence les quelques critères principaux habituels et l’ébauche de solutions classiques mais nullement « passe-partout ».

1° Choix d’un système « tout air »

Un système « tout air » paraît exclu :

  • peu de souplesse d’exploitation s’il est à débit constant,
  • consommation élevée du transport de l’air,
  • impossibilité de recycler l’air venant des chambres, et donc consommation élevée du fonctionnement en tout air neuf,

En fait, le besoin en air neuf des chambres est faible si on le rapporte aux m² utilisés. Un système où l’air serait le vecteur des apports de chaleur et de froid ne semble donc pas se justifier ici.

Si ce système est malgré tout retenu (avec une batterie terminale de réchauffage pour chaque chambre), il est essentiel de prévoir une batterie de récupération de chaleur entre l’air extrait et l’air pulsé, au risque d’alourdir encore le coût d’investissement puisque les conduits d’extraction devront au minimum être raccordés entre eux pour placer le récupérateur dans le tronçon commun.

2° choix d’une solution par ventilo-convecteurs

Photo ventilo-convecteur. Les avis sont très partagés quant à l’utilisation de ventilo-convecteur. En effet, les hygiénistes demeurent très prudents par rapport à la formation de légionelles au niveau de la batterie froide et d’algues au niveau du bac de récupération des condensats.

La solution classiquement adoptée est d’installer deux boucles d’eau (eau chaude et eau glacée) entre tous les locaux, avec comme unité terminale un ventilo-convecteur dans chaque chambre.

On rencontre le ventilo soit monté en allège de fenêtre, soit placé en soffite (généralement au-dessus du petit couloir qui longe la salle de bain : l’air est repris dans le ventilo qui le souffle dans la chambre).

Schéma principe ventilo-convection.

Les avantages du ventilo-convecteur sont nombreux :

  • Une autonomie de fonctionnement local par local, tant en ce qui concerne la mise en service que le réglage individuel de la température.
  • Une rapidité de remise en température du local grâce au transfert thermique par convection.
  • Un fonctionnement thermique en recyclage local, qui permet d’éviter la pollution (la contamination dans le cas d’un hôpital) d’une chambre à l’autre.
  • La liberté pour chaque occupant de démarrer ou d’arrêter l’unité de sa chambre à sa guise et de choisir la vitesse du ventilateur qui lui convient.
  • Un prix d’investissement limité grâce à un équipement fabriqué en grande série.
  • A taux d’occupation réduit, la gérance de l’hôpital a la possibilité d’arrêter les unités correspondant aux chambres non occupées, moyennant le report des commandes à la réception (GTC). Elle peut décider de préchauffer ou de prérefroidir la chambre avant l’arrivée de l’occupant sur base d’un lien automatique avec le fichier de réservation (mais c’est futuriste).

Comme inconvénient au système, on peut noter la nécessité de maintenir une bonne partie de l’année les deux boucles de distribution d’eau chaude et froide en circulation dans le bâtiment. Il ne faut absolument pas négliger l’importance des pertes permanentes liées à ces deux réseaux et soigner tout spécialement à l’isolation efficace des tuyauteries.

Egalement, la solution par ventilo-convecteur ne permet pas de traiter l’humidité de l’air qui peut devenir fort sec en hiver. Il est possible d’insérer des petits atomiseurs d’eau à ultrasons dans les ventilos, mais cette solution est relativement coûteuse. On peut également apporter l’humidité nécessaire par un humidificateur inséré dans le réseau d’air de ventilation, pour autant que celui-ci soit préchauffé.

 3° Choix d’un système à plafond rafraîchissant

Photo panneaux rayonnants froids. La climatisation par panneaux rayonnants froids ne paraît pas opportune dans le conditionnement d’air des chambres. En effet, la présence d’humidité suite à la salle de bain attenante risque d’entraîner de la condensation sur le plafond, même si le système est régulé pour stopper la circulation d’eau froide à ce moment.

De plus, ce système n’apporte qu’une solution pour le refroidissement et devrait être complété par un réseau de radiateur pour apporter la chaleur en hiver. Le placement d’un faux plafond n’est pas justifié pour un autre usage (éclairage, câblage,…).

Même en rénovation, il semble coûteux de placer un tel réseau alors que seuls les apports solaires sont à vaincre de façon épisodique.

Les poutres froides ne sont pas non plus adéquates car elles entraîneraient un grand inconfort dans des locaux de faible hauteur. De plus, elles suscitent une interrogation par rapport à l’hygiène des ailettes.

4° Choix d’un système à débit de fluide réfrigérant variable

Une installation à fluide réfrigérant variable (VRV, VRF, … selon les marques) peut également être d’application pour une structure hospitalière. Elle dispose des mêmes avantages que la solution par ventilo-convecteur : souplesse nécessaire, possibilité de gestion centralisée tout en fournissant à chaque occupant une télécommande pour actionner la cassette, …

Deux avantages spécifiques apparaissent par rapport à la solution classique des ventilos :

  • L’absence de boucles d’eau chaude et froide parcourant tout le bâtiment.
  • La possibilité en mi-saison de récupérer la chaleur excédentaire d’une façade (par exemple à l’Est) pour réchauffer la façade encore en demande (par exemple à l’Ouest) ou de récupérer la chaleur extraite de locaux techniques intérieurs pour réchauffer les chambres périphériques en demande.

Si le bâtiment présente simultanément des besoins de chaleur et des besoins de refroidissement durant une bonne partie de l’année, ce système paraît le plus avantageux. Mais encore faut-il s’assurer qu’au sein d’une même zone gérée par le même réseau, de l’énergie soit transférable. Ainsi, il semble difficile d’alimenter les chambres du 4ème étage par la chaleur dégagée par les locaux de réunion du rez-de-chaussée. Il faudrait que les réseaux soient dans ce cas verticaux, ce qui doit poser de nombreux problèmes pratiques.

Un point faible réside probablement dans le chauffage « par pompe à chaleur » en plein hiver. Quel est à ce moment le COP de l’installation ? Le compresseur fonctionnant de jour, le prix de revient du kWh électrique est environ 3 x plus élevé que le kWh issu d’une chaudière au gaz traditionnelle, par exemple. Il faut donc que le COP global dépasse 3 pour y trouver avantage.

Le taux d’humidité en hiver n’est pas non plus contrôlé avec ce système.

Nous n’avons pas pu, jusqu’ici, obtenir de données permettant d’évaluer la performance effective de l’échange entre locaux et le COP moyen annuel d’un tel système, ni le lire dans un rapport d’un organisme indépendant.


Quelques critères en détail

Voici les principaux critères à prendre en compte :

Le coût d’investissement

Si le prix moyen d’une installation avoisine les 125 €/m² (contre 40 €/m² pour une simple installation de chauffage), l’échelle des prix en fonction du type d’équipement et du niveau de régulation qui lui est associé peut être évalué comme suit :

Installations  « détente directe »

Investissement
€/m²

Window 75 – 95
Split system 100 – 200
Débit réfrigérant variable* 150 – 300

Installations « sur boucle d’eau »

Investissement
€/m²

Ventilo – 2 tubes 110 – 140
Ventilo – 2 tubes/2 fils 115 – 155
Ventilo – 4 tubes 125 – 190
Pompe à chaleur sur boucle 100 – 215

Le coût d’exploitation énergétique

Le coût d’exploitation est directement fonction des charges à vaincre : un immeuble fort vitré et avec des apports internes élevés (ce qui est le cas des hôpitaux) consommera beaucoup plus que son équivalent équipé de protections solaires extérieures, par exemple … C’est donc d’abord le bâtiment qui crée la consommation !

On peut cependant établir une échelle entre les systèmes suivant leur performance énergétique :

Installations  « détente directe »

Coût énergie

Window

élevé

Split system moyen
Débit réfrigérant variable faible

Installations « sur boucle d’eau »

 

 

Coût énergie

Ventilo – 2 tubes moyen
Ventilo – 2 tubes/2 fils moyen à élevé
Ventilo – 4 tubes moyen
Pompe à chaleur sur boucle faible à élevé

Quels sont les critères qui permettent de distinguer une installation à faible consommation énergétique ?

  • Une installation ne devrait jamais consommer du chaud et du froid simultanément, pour éviter de détruire l’énergie; en aucun cas, on ne doit pas concevoir une installation dont la régulation fonctionnerait par mélange.
  • Lorsque le bâtiment requiert du chaud et du froid simultanément (un grand local informatique refroidi en hiver, des plateaux très étendus et fort équipés dont il faut en permanence refroidir la partie centrale, …), on aura intérêt à concevoir une installation qui peut récupérer la chaleur extraite de ces locaux pour la restituer dans les locaux en demande de chaleur (chambres en périphérie). Les installations à débit de réfrigérant variable et les pompes à chaleur sur boucle d’eau sont performantes à ce niveau. Dans les installations plus classiques (ventilos), une récupération de chaleur au condenseur des groupes frigorifiques est également possible et moins contraignante.
  • Les résistances chauffantes électriques prévues dans les installations peuvent entraîner des dépenses importantes vu le coût du kWh électrique par rapport au kWh thermique. On sera attentif à ne sélectionner une installation de ventilos 2 tubes/2 fils que dans un bâtiment très isolé (besoins de chaleur très limités suite aux apports gratuits).

Calculs

Un petit outil de simulation permet de visualiser globalement l’impact du choix du vecteur énergétique de chauffage sur un local type (même si les hypothèses sont celles d’un bureau, avec des apports internes élevés).
  • Enfin, quelle que soit l’installation, la qualité de la régulation est déterminante : c’est un budget à ne pas raboter ! on pense tout particulièrement au ventilo-convecteur qui est le pire ou le meilleur des équipements, … selon la régulation qui lui est associée !

Le coût de maintenance

Les prix donnés à titre indicatif ci-dessous correspondent à un contrat annuel de maintenance sur devis (les prix les plus bas correspondent aux surfaces traitées les plus grandes). Normalement, il faudrait leur ajouter le prix du renouvellement périodique des équipements défectueux. Ainsi, les installations en « détente directe » sont généralement plus fragiles, ce qui implique un remplacement plus fréquent des composants.

Installations « détente directe »

€/m²
Window très faible
Split system 3 – 7,5
Débit réfrigérant variable

Installations « sur boucle d’eau »

€/m²

Ventilo – 2 tubes 3 – 5
Ventilo – 2 tubes/2 fils 3 – 5
Ventilo – 4 tubes 3 – 5
Pompe à chaleur sur boucle 4,75 – 6,25

Le confort thermique

Installations  « détente directe »

Confort thermique
Window faible
Split system faible
Débit réfrigérant variable bon

Installations « sur boucle d’eau »

Confort thermique
Ventilo – 2 tubes moyen
Ventilo – 2 tubes/2 fils moyen
Ventilo – 4 tubes bon
Pompe à chaleur sur boucle moyen

Le confort acoustique

Quel que soit le système de climatisation choisi, le critère de performance acoustique sera déterminant, et cela tant à l’intérieur qu’à l’extérieur :

  • Les ventilos ou cassettes seront choisis en fonction de leur qualité acoustique et de manière à pouvoir dissiper la puissance requise à moyenne vitesse. Idéalement, pour réduire encore le niveau sonore, on installera le module de traitement d’air en dehors du local (dans un faux plafond, dans un placard technique, …) et l’air traité sera conduit vers le local par une gaine, ce qui permet un affaiblissement acoustique optimal.
  • Le placement des unités extérieures sera bien étudié pour éviter la propagation du bruit vers les chambres (placement en toiture ? placement à l’écart du bâtiment ? …).

Remarque : on rencontre parfois le placement du groupe frigorifique en sous-sol, dans un local technique insonorisé. L’objectif de réduction du niveau acoustique est atteint. Mais la consommation du compresseur risque d’augmenter si le condenseur n’est pas correctement refroidi…! De toute façon, c’est l’air extérieur qui est le refroidisseur final. Aussi, le traitement en sous-sol va entraîner un refroidissement par de l’eau (sélection d’une machine frigorifique équipée d’un condenseur à eau), cette eau étant elle-même refroidie ultérieurement dans une tour de refroidissement en toiture.

Installations  « détente directe »

Confort acoustique
Window faible
Split system bon
Débit réfrigérant variable bon

Installations « sur boucle d’eau »

Confort acoustique
Ventilo – 2 tubes bon
Ventilo – 2 tubes/2 fils bon
Ventilo –  4 tubes bon
Pompe à chaleur sur boucle faible

La centralisation des équipements

Si la surface des locaux à climatiser est limitée (rénovation de quelques locaux,par exemple), un système à « détente directe » (voire plusieurs équipements décentralisés) sera suffisant et nettement moins coûteux.

Si une installation centralisée bénéficie de l’effet de taille en terme de prix d’investissement, il n’y a peu d’effet majeur à l’exploitation (efficacité frigorifique meilleure pour les grosses puissances mais pertes en ligne et pertes en régulation plus élevées…).

L’encombrement

Les ventilo-convecteurs seront souvent insérés dans le faux plafond face à la salle de bain, afin de ne pas occuper de place au sol.


Choix de la ventilation associée

Que l’on choisisse une solution décentralisée ou que l’on choisisse des ventilo-convecteurs, un apport d’air neuf doit être envisagé.

Ce dernier, imposé par la réglementation wallonne pour garantir une qualité de l’air suffisante, est dès lors fourni par une installation en simple ou double flux.

Ventilation 

Pour définir la configuration à adopter le choix du système d’apport d’air neuf.

Ventilation 

Pour choisir le mode de gestion (régulation du système).

Remarquons que dans les immeubles nouveaux (et donc isolés), l’apport d’air neuf devient une part essentielle dans la consommation énergétique (tant en chaud qu’en froid) en regard des déperditions.

Puisque de toute façon une extraction doit être prévue dans les sanitaires, la question devient : apport d’air par des grilles de ventilation dans les châssis, ou apport par une gaine de distribution d’air (qui permet le préchauffage de l’air) ?

La ventilation double flux est le seul moyen de contrôler au plus juste les apports d’air et donc de contrôler cette consommation.

La ventilation simple flux, quant à elle, reste en partie influencée par les conditions atmosphériques.

En quelque sorte, c’est le standing souhaité qui tranchera.


Choix du mode de régulation

La régulation locale

Il est très difficile de contenter tous les patients sachant qu’en terme de confort chacun est un cas particulier. La configuration locale est donc conseillée d’autant plus que l’on pourra par détection de présence gérer le profil d’occupation de chaque local et, par conséquent, réduire les consommations.

Schéma principe de régulation locale.

Exemple de régulation de plafond froid.

Les avancées technologiques actuelles permettent de disposer d’automates adaptés à la régulation HVAC avec une modularité, une puissance et intégration en « mode bus » impressionnante. Pour cette raison, les sondes peuvent être locales et reliées, via un bus à un automate de zone assurant les commandes et les régulations individuelles.

Photo automate.

La régulation et supervision centrale

Vu les possibilités actuelles de programmation du traitement des chambres en fonction de la réservation, la mise en place d’une GTC, Gestion Technique Centralisée, semble aujourd’hui requise pour un bâtiment hospitalier.

Qualité de l’air

Qualité de l'air


Les risques d’inconfort

L’être humain passe entre 80% et 90% de son temps dans un espace intérieur clos et y respire de l’air intérieur bien souvent plus pollué que l’air extérieur.

Par exemple, si le taux de ventilation d’une salle de réunion est insuffisant, l’air y est rapidement vicié par de multiples agents. En effet, le gaz carbonique (CO2) produit par les occupants, les micro-organismes et matières odorantes dont ils sont porteurs,… maintiennent chaque personne dans une ambiance de plus en plus malsaine : la respiration est moins active, une fatigue prématurée apparaît. Le risque de contamination augmente, …

L’homme au repos ne consomme qu’environ 0,5 m³ d’air par heure pour respirer. Selon le type d’activité, ce taux peut atteindre 5 m³/h, alors que pour rencontrer le niveau de qualité requis, le taux de ventilation d’un local doit être au minimum de 22 m³/h par personne.

Les diverses substances de contamination et de pollution sont d’ordre biologique (germes pathogènes, pollens, spores), physique (particules radioactives, les poussières) ou chimique (composés organiques volatiles, matières odorantes, le gaz carbonique,  fumée de tabac).

Certaines de ces substances peuvent être détectées immédiatement, d’autres ne sont pas décelables par les sens, même lorsque leur concentration dépasse la limite admissible.

À courte durée d’exposition, ces polluants peuvent provoquer irritations, nausées, maux de tête, … Mais à longue durée d’exposition, ils peuvent entrainer des pathologies plus graves et aller jusqu’au développement de certains cancers. En plus, actuellement, les effets combinés de ces polluants sont très peu connus.

La qualité de l’air intérieur est influencée principalement par :

  • L’environnement extérieur
  • Les matériaux de construction : revêtements, installations techniques, …
  • L’occupation du bâtiment : respiration, entretien, …
  • Le mobilier et les appareils électroménagers

En outre, le manque de ventilation et l’humidité, augmente le risque et la contamination biologique de l’air des espace intérieur.


Les polluants

Germes pathogènes

Le rassemblement d’un grand nombre de personnes dans un même local, réunies à une faible distance les unes des autres, augmente la possibilité d’une contamination par la densité de dispersion des facteurs de maladie. Il s’agit de micro-organismes comme les bactéries et les virus.

Allergènes

Certains pollens et spores de champignons peuvent provoquer des réactions de type allergique, des irritations et même de l’asthme, même chez des personnes peu sensibles. S’il est difficile d’échapper aux pollens (sauf filtration de l’air fourni), un mode constructif adéquat et une bonne ventilation doivent permettre d’éviter toute présence de champignons dans les bâtiments. Les acariens, blattes et moisissures peuvent aussi proliférer dans un bâtiment sous certaines conditions favorables. Ils sont également responsables de maladies allergiques chez les occupants.

Radon

Le radon est un gaz naturel inerte et radioactif, dépourvu d’odeur, de couleur ou de gout. Des concentrations trop importantes peuvent se rencontrer dans les bâtiments. Elles sont surtout dues à une forte radioactivité du sous-sol en certains endroits et principalement au sud du sillon Sambre et Meuse. Elles sont aussi présentes en doses plus faibles dans des matériaux à base de schiste. Il est toxique pour la santé et serait responsable de 9% des décès européens par cancer pulmonaire ce qui correspond à peu près au niveau du tabagisme passif.

Poussières

Il est important d’éviter l’empoussiérage des locaux. La mise en suspension des poussières est d’autant plus facile que l’air est plus sec : cette situation se produit en période de chauffe. Elles ont pour conséquence principale une irritation des voies respiratoires. Dans le cas de poussières d’asbeste, leur inhalation peut provoquer un cancer.

Composés organiques volatiles

L’utilisation et le stockage de matériaux organiques dans la construction et le mobilier, d’aérosols et produits de bricolage (colles, vernis, solvants, peintures,…) augmentent la concentration dans l’air des produits organiques nuisibles: le formaldéhyde contenu notamment dans certains panneaux d’aggloméré en est un exemple. En général, on ne connaît que peu de choses au sujet des caractéristiques d’émission et des effets sur la santé de ces matériaux. Il est donc difficile d’établir des valeurs seuils et des débits de ventilation adéquats. En outre, la source de ces substances étant en grande partie constituée de mobiliers et traitements de finition des surfaces, il est difficile d’en faire une estimation a priori. Enfin, il est probable que des effets de cocktails se produisent entre ces substances modifiant sensiblement leurs impacts sanitaires. Toutefois, ils sont suspectés de favoriser les allergies et l’asthme et d’avoir des effets irritant. Peu de composes de cette famille, à l’exception du formaldéhyde et du benzène qui à long terme sont cancérigènes, ont fait l’objet d’études importantes.

Matières odorantes

Les matières gazeuses odorantes provenant des cuisines, lieux d’aisance, locaux à forte densité d’occupation, vêtements,… sont des particules organiques complexes et particulièrement désagréables. Les odeurs sont surtout détectées par les personnes entrant dans un local : en effet, dans certaines limites, l’occupant s’accoutume aux odeurs.

Gaz carbonique

En respirant, chaque individu produit du gaz carbonique (CO2). L’homme au repos rejette dans le local environ 20 litres/h de gaz carbonique pour 500 litres/h d’air expiré.

La concentration normale en CO2 est de 300 ppm. A proprement parler, le gaz carbonique n’est pas dangereux pour la santé tant que sa teneur dans l’air ne dépasse pas 5 000 à 6 000 ppm. Une augmentation de CO2 expiré correspond à une diminution de la teneur en oxygène (O2) de l’air mais ceci n’a aucune conséquence sur le niveau d’oxygène nécessaire aux besoins respiratoires. Toutefois, un tel niveau réduit l’approvisionnement en oxygène du sang ce qui contribue à diminuer la concentration dans un premier temps et à l’apparition de maux de tête ensuite.

Le CO2 est avant tout considéré comme un traceur des polluants humains. En effet, si on sent que l’air d’un local où il règne une teneur en CO2 de 1 500 ppm n’est pas « frais », cela est dû aux autres effluents humains dont l’émission est parallèle à l’émission de CO2.

Le monoxyde de carbone

Le monoxyde de carbone ou CO est un gaz inodore et incolore produit lors d’une combustion incomplète. Si l’appareil de combustion (chauffe-bains, poêles, chaudières, convecteurs à pétrole…) ou la chaufferie n’est pas correctement ventilée (par exemple si le conduit des fumées ou les grilles d’aération sont obturés ou que l’appareil est mal entretenu ou vétuste), le CO se retrouve dans l’air intérieur du bâtiment. Une fois respiré, il remplace l’oxygène transporté dans le sang et provoque une carence en oxygène qui peut aller jusqu’à la mort.

Les oxydes d’azotes

Les oxydes d’azote (NOx) sont des gaz provenant de la combustion fossile, ils peuvent entrainer des irritations des voies respiratoires. C’est un facteur aggravant pour les personnes sensibles.

Fumée de tabac

Bien qu’il est interdit de fumer dans les lieux publics fermés depuis le 1er juillet 2011 en Belgique, la fumée de tabac reste encore un polluant de l’air courant. Elle a les caractéristiques d’une matière odorante et des poussières dues aux particules imbrûlées du tabac. Les fumées de tabac contiennent, entre autres, des goudrons, responsables des cancers, et du monoxyde de carbone. Les conséquences d’une ambiance enfumée sont l’irritation des voies respiratoires et des yeux ainsi que le risque d’apparition de maladies des poumons et du pharynx (asthme, infections,…).

Humidité

La vapeur d’eau n’est pas un polluant en soi mais l’humidité relative va jouer un rôle aggravant dans la qualité de l’air. En effet, plus l’air est sec, plus les irritations respiratoires seront favorisées et au contraire, plus l’air est humide, plus le développement des allergènes, moisissures et acariens sera favorisé.


Les teneurs admissibles

Le radon

La Belgique s’aligne sur les recommandations européennes en fixant la concentration maximale admissible pour le radon à 400 Bq/m³ d’air. À partir de cette valeur, il est conseillé d’agir. Dans le cas des nouvelles construction, la valeur ne doit pas dépasser les 200 Bq/m³ d’air.

Le formaldéhyde

La concentration maximale admissible est de 0,125 mg/m³ d’air pour le formaldéhyde.

Les matières odorantes

Pour les matières odorantes, il est pratiquement impossible d’en faire une évaluation et d’établir des valeurs limites : elles sont surtout détectées par des personnes entrant dans un local. Pour savoir si un bouquet d’odeurs est admissible, il faut aussi considérer la destination du local et la durée d’occupation. Dans les locaux scolaires, par exemple, occupés plusieurs heures par jour pendant de nombreuses années à un âge décisif pour le développement des individus, il faut prendre des mesures plus sévères que dans des locaux occupés occasionnellement. Dans le cas particulier de la présence d’odeurs corporelles, la concentration en gaz carbonique (CO2) est un indicateur fiable. En effet, sa production est quasi proportionnelle à la production des odeurs corporelles.

Le CO2

On distingue déjà l’air vicié d’un local de l’air extérieur « frais » quand la teneur en CO2 s’élève à 0,15 % en volume (ou 1 500 ppm). La limite maximale dictée par l’annexe C3 de la PEB est de 1 000 ppm. Cette valeur sert de base pour définir les taux de ventilation des locaux.

Pour les lieux de travail, l’Arrêté royal du 10 octobre 2012 (modifié par celui du 25 mars 2016) concernant les exigences de base générales demande de ne pas dépasser une concentration de CO2 de 800 ppm.

Les germes pathogènes, poussières d’asbeste et fumée de tabac

Concernant les germes pathogènes, les poussières d’asbeste (amiante) et la fumée de tabac, aucune présence de ces substances n’est admise, en principe, dans les locaux de travail.


Les taux de renouvellement d’air

Il existe une relation entre le débit d’air frais et le pourcentage prévisible de personnes insatisfaites (PPD) par la qualité de l’air ambiant. Le graphe ci-après donne ce pourcentage en fonction du volume d’air de ventilation en m3/h et par occupant.

Une concentration de CO2 maximale de 0,15 % (ou 1 500 ppm) en volume correspond à un renouvellement d’air de 20 m³/h par personne, soit un pourcentage prévisible d’insatisfaits de près de 25 %. Les normes internationales suggèrent de n’admettre que 20 % maximum de personnes insatisfaites, ce qui correspond à un renouvellement d’air de 30 m³/h par personne.

Dans des locaux à usage particulier, ces valeurs de référence peuvent être différentes : par exemple dans une chambre d’hôpital, pour limiter les risques de contamination, il faut prendre un renouvellement d’air de 50 m³/h par personne. Par ailleurs, lorsqu’il est permis de fumer, il faut au minimum doubler les taux de renouvellement d’air proposés.

Le Règlement Général pour la Protection du Travail (RGPT) dans son article 56 du titre II, imposait une introduction d’air neuf et une évacuation d’air vicié de 30 m³/h et par travailleur présent dans le local (pour un volume minimum du local de 10 m³ par personne). Aujourd’hui, l’Arrêté royal fixant les exigences de base générales auxquelles les lieux de travail doivent répondre et qui remplace en partie le RGPT garde cette même imposition

La norme belge NBN B 62-003 003 (qui devrait, à terme, être remplacée par la norme européenne NBN EN 12831 (2003))  portant sur le « calcul des déperditions calorifiques des bâtiments » envisage des renouvellements d’air de 10 m³/h et par personne dans les locaux où l’on ne fume pas et de 20 m³/h et par personne dans les locaux où l’on fume. Cette ancienne norme focalisée sur le dimensionnement des installations en chauffage est donc en contradiction avec celles traitant explicitement de la qualité des ambiances. Ces valeurs ne doivent donc pas être prises comme référence.

Norme européenne EN 13779

La norme européenne EN 13779 (Ventilation dans les bâtiments non-résidentiels – Exigences de performances pour les systèmes de ventilation et de conditionnement d’air, 2007) propose différentes classes en fonction de la qualité de l’air souhaitée.

L’annexe C3 de la PEB impose,  quant à elle, au minimum une classe de qualité INT3 (qualité d’air intérieur modéré).

Ces débits sont relatifs à des locaux dont la pollution principale est d’origine humaine. Dans le cas contraire, des débits différents peuvent être appliqués. Ce peut être le cas, par exemple, en présence de photocopieurs ou d’imprimantes laser, grands émetteurs de polluants.

Conduits d’air

Conduits d'air


Matériaux

Il existe des gaines de distribution en :

  • acier galvanisé,
  • aluminium,
  • inox,
  • matière synthétique,
  • ciment (les conduits en Eternit et boisseau ont une rugosité de 1,5 à 2 fois supérieure aux conduits galvanisés et donc des pertes de charge nettement plus élevées).

Forme et type de conduit

Les conduits cylindriques

Avantages

  • Demandant moins de matière pour une même section, ils sont plus légers et plus économiques.
  • Ils sont faciles et rapides à poser.
  • Ils se prêtent bien aux changements de direction en plan et en élévation.
  • Leur étanchéité est très bonne, particulièrement si les raccords entre conduits se fait avec double joint.

Inconvénients

  • Les piquages et le placement de bouches en parois sont plus compliqués.
  • Leur encombrement en hauteur est plus important

Photo conduits cylindriques.

Conduit circulaire avec joint aux raccords.

Les conduits rectangulaires

Avantages

  • L’encombrement en hauteur peut être plus réduit.
  • Les piquages et les bouches en flanc de conduit sont faciles à réaliser.
  • Les coudes peuvent facilement être équipés d’aubes directrices.

Schéma conduits rectangulaires.

Inconvénients

  • La quantité de matière utilisée est plus importante. Le réseau est donc plus lourd et plus coûteux.
  • Pour une même section, la perte de charge linéaire est donc aussi plus élevée pour un même débit.
  • La déformation des conduits est plus rapide.
  • L’étanchéité du réseau dépend très fort de la mise en œuvre et de la qualité des joints. Il est presque impossible d’atteindre l’étanchéité des conduits circulaires.

 Adhésif d’étanchéité des conduits rectangulaires.

Les conduits oblongs

Ils sont un compromis entre les conduits circulaires et les conduits rectangulaires : ils sont faciles à placer et étanches et ils prennent moins de place en hauteur que les conduits circulaires.

Photo conduits oblongs.

Les conduits autoportants et isolants

Avantages

  • L’isolation du conduit est directement intégrée.

Inconvénients

  • Ce type de conduit est plus complexe et donc plus fragile, lors de sa mise en place et son nettoyage.

Photo conduits autoportants et isolants.

Conduits d’isolant

Les conduits souples ou semi-rigides

Les conduits souples ne sont pas recommandés car ils entrainent de pertes de charge importante par rapport à des conduits rigides.

Avantages

  • Ils sont utiles pour les raccords difficiles au niveau des bouches ou autres appareils.
  • Les vibrations et le bruit du au déplacement de l’air sont plus facilement absorbé ce qui en fait des conduits intéressant pour atteindre des performances acoustiques plus élevées.

Inconvénients

  • Les conduits souples entrainent des pertes de charge plus importantes qu’un conduit rigide ou semi-rigide.
  • De part le matériau utilisé, ce type de conduit est généralement fragile ce qui ne facilite pas son nettoyage.
  • Si l’intérieur du conduit n’est pas lisse, l’encrassement sera plus important.

Les conduits diffusants

Photo conduits diffusants.

Manchon perforé permettant la pulsion d’un débit d’air important  à très haute vitesse (chaque trou sert de buse de soufflage).
La vitesse élevée de sortie assure un mélange rapide  avec l’air ambiant par induction (ventilation des grands halls).

Avantages

  • Grâce aux perforations de la parois ou au textile, l’air est diffusé de façon homogène dans le local.
  • Ils combinent distribution et diffusion de l’air permettant ainsi de faire l’économie d’une ou de bouche(s) de pulsions.

Inconvénients

  • Ce type de conduit ne peut évidemment être utilisé que pour la pulsion et la diffusion de l’air, il devra donc être apparents et directement dans le local à désservir en air frais.
  • Ils ne peuvent pas être isolé thermiquement ou recouvert.

Coudes, changements de section, piquages

 La forme des coudes, changements de direction, de section ou dérivations jouent un rôle important dans les pertes de charge du réseau de distribution.


Emplacement

Apparents

Avantages

  • La hauteur sous plafond est conservée.
  • Participe à l’esthétique de l’architecture ?
  • Les conduits n’entravent pas le gain énergétique du à l’inertie de la dalle.
  • Il est possible de placer un conduit diffusant et donc de se passer de bouche de pulsion.

Inconvénients

  • C’est rarement au goût des architectes… et des occupants.
  • Les conduits apparents participent à l’encombrement du local d’autant plus que le plafond est bas.

Dans un faux plafond ou plancher ou encastrés dans les murs

Avantages

  • Les conduits sont cachés au même titre que toutes les autres techniques.

Inconvénients

  • Pour effectuer le contrôle et le nettoyage des gaines, certaines parties doivent restées accessibles grâce à une trappe ou un plafond/plancher amovible.
  • Le faux plafond/plancher isole l’ambiance intérieur de la dalle et ne permet pas de faire participer activement son inertier.

Dans la chape

Avantages

  • L’inertie de la dalle est disponible.
  • Les conduits sont non-visibles.
  • L’étanchéité est assurée par la chape.

Inconvénients

  • Le réseau n’est plus accessible pour entretien, réparation, rénovation ou remplacement !

Isolation thermique

Dans le cas d’une ventilation double flux avec récupérateur de chaleur, il est utile d’isoler les conduits situé entre le groupe de ventilation et l’enveloppe extérieur du bâtiment, que le groupe soit situé à l’intérieur ou à l’extérieur du volume protégé. Cela pour limiter les pertes de chaleurs, et donc s’assurer la récupération maximale, et les risques de condensation.

Pour limiter les pertes thermiques lorsque le réseau véhicule de l’air chaud ou de l’air froid, il existe des conduits isolés thermiquement. L’isolant peut être apposé après pose des conduits. Les conduits peuvent également être directement composés du matériau isolant. Dans ce cas, une attention particulière sera portée sur la tenue mécanique de la surface interne du conduit qui ne doit pas présenter de rugosité excessive (augmentation des pertes de charge) et résister à l’arrachement.

Dans le cas de conduits véhiculant de l’air froid, les risques de condensation lors de la traversée d’un local plus chaud que l’air transporté sont éliminés au moyen d’un film pare-vapeur (tissu imprégné, film plastique ou métallique). Il existe des isolants déjà revêtus de tels films. Dans ce cas les joints doivent se refermer au moyen de ruban adhésif.

Il existe également des conduits rectangulaires directement composés de panneaux de laine minérale. Ceux-ci sont d’office enrobés d’un film pare-vapeur. Ces conduits ont par la même occasion des caractéristiques d’absorption acoustique.

Conduits composés de panneaux de laine minérale.

Isolant (épaisseur 25 mm) pour conduit
recouvert d’une feuille d’aluminium.


Isolation acoustique

Un système de ventilation est source de bruit. Les nuisances acoustiques sont principalement dues au fonctionnement du ventilateur et au déplacement de l’air dans les conduits.

Ainsi pour éviter la propagation de ces nuisances divers solutions sont possibles :

  • Isoler acoustiquement les conduits diminue le rayonnement du bruit dans les pièces.
  • Utiliser des supports anti-vibratiles pour le groupe de ventilation limite la propagation des bruits structurels.
  • Placer des dispositifs particulier tels que les absorbeurs acoustiques atténue le bruit transmis dans les conduits.
  • Concevoirle réseau sans obstacles réduit les turbulences et donc les sources de nuisances acoustiques.
  • Limiter la vitesse de l’air dans les conduits terminaux.
  • Disposer le groupe de ventilation dans un endroit reculé des pièces de séjour ou de travail.

Étanchéité à l’air

La norme NBN EN 12237 définit des classes d’étanchéité à l’air pour les conduits de ventilation en fonction d’un taux de fuite maximale admissible.

Le réseau de conduits doit être étanche à l’air pour limiter au maximum les fuites d’air afin :

  • de garantir les débits d’air définis,
  • d’éviter des sources de nuisances acoustiques,
  • de se protéger contre un encrassement ou de la condensation supplémentaire,

Il faut donc faire particulièrement attention aux endroits d’assemblage et de raccord entre les conduits entre eux et entre les conduits et un composants du système de ventilation : privilégier les joints montés en usine prévu dès la fabrication du conduits, assurer l’étanchéité finale par ruban adhésif (1,5 fois le contour du conduit) si nécessaire, limiter les découpes et les percements des conduits,…


Normalisation des sections

Le standard Eurovent 2/3 fixe la section des conduits de ventilation à des valeurs standards :

Conduits circulaires

Série des diamètres intérieurs (mm)

63 80 100 125 160 200 250
315 400 500 630 800 1 000 1 250

Rapport de grandeur entre 2 diamètres successifs

Diamètres (mm) 1,26
Sections (m²) 1,58
Vitesses (m/s) 1,58
Pressions dynamiques (Pa) 2,51
Pertes de charge linéaires (PA/m) 3,16

Conduits rectangulaires

Les conduits rectangulaires sont donnés en fonction de leurs côtés. La norme précise également la section obtenue Ac en m², le diamètre hydraulique dh en mm, le diamètre équivalent de en mm et l’aire de surface latérale Ai en m²/m.

  • dh = le diamètre du conduit circulaire ayant les mêmes pertes de charge pour une vitesse d’air identique.
  • de = le diamètre du conduit circulaire ayant les mêmes pertes de charge pour un débit identique (avec les mêmes coefficients de frottement).

Le standard Eurovent 2/3 fournit également les correspondances entre les dimensions des conduits rectangulaires, dh, de, Ac et ai sous forme d’abaques.

Grand coté
(mm)

Petit côté (mm)

100 150 200 250 300 400 500 600 800 1 000 1 200
200 0,020 0,030 0,040 Ac
133 171 200 dh
149 186 218 de
0,60 0,70 0,80 ai
250 0,025 0,038 0,050 0,063 Ac
143 188 222 250 dh
165 206 241 273 de
0,70 0,80 0,90 1,00 ai
300 0,030 0,045 0,060 0,075 0,090 Ac
150 200 240 273 300 dh
180 224 262 296 327 de
0,80 0,90 1,00 1,10 1,20 ai
400 0,040 0,060 0,080 0,100 0,120 0,160 Ac
160 218 267 308 343 400 dh
205 255 299 337 373 436 de
1,00 1,10 1,20 1,30 1,40 1,60 ai
500 0,075 0,100 0,125 0,150 0,200 0,250 Ac
231 286 333 375 444 500 dh
283 331 374 413 483 545 de
1,30 1,40 1,50 1,60 1,80 2,00 ai
600 0,090 0,120 0,150 0,180 0,240 0,300 0,360 Ac
240 300 353 400 480 545 600 dh
307 359 406 448 524 592 654 de
1,50 1,60 1,70 1,80 2,00 2,20 2,40 ai
800 0,160 0,200 0,240 0,320 0,400 0,480 0,640 Ac
320 381 436 533 615 686 800 dh
410 463 511 598 675 745 872 de
2,00 2,10 2,20 2,40 2,60 2,80 3,20 ai
1 000 0,250 0,300 0,400 0,500 0,600 0,800 1,000 Ac
400 462 571 667 750 889 1 000 dh
512 566 662 747 825 965 1 090 de
2,50 2,60 2,80 3,00 3,20 3,60 4,00 ai
1 200 0,360 0,480 0,600 0,720 0,960 1,200 1,440 Ac
480 600 706 800 960 1 091 1 200 dh
614 719 812 896 1 049 1 184 1 308 de
3,00 3,20 3,40 3,60 4,00 4,40 4,80 ai
1 400 0,560 0,700 0,840 1,120 1,400 1,680 Ac
622 737 840 1 018 1 167 1 292 dh
771 871 962 1 125 1 270 1 403 de
3,60 3,80 4,00 4,40 4,80 5,20 ai
1 600 0,640 0,800 0,960 1,280 1,600 1,920 Ac
640 762 873 1 067 1 231 1 371 dh
819 925 1 022 1 195 1 350 1 491 de
4,00 4,20 4,40 4,80 5,20 5,60 ai
1 800 0,900 1,080 1,440 1,800 2,160 Ac
783 900 1 108 1 286 1 440 dh
976 1 078 1 261 1 424 1 573 de
4,60 4,80 5,20 5,60 6,00 ai
2 000 1,000 1,200 1,600 2,000 2,400 Ac
800 923 1 143 1 333 1 500 dh
1 024 1 131 1 323 1 494 1 650 de
5,00 5,20 5,60 6,00 6,40 ai

Normalisation de l’étanchéité

Le standard EUROVENT 2/2 est basée sur des tests réalisés en laboratoire et sur site sur des conduits mis en œuvre suivant les codes de bonne pratique. Elle concerne le taux de fuite dans les conduits allant de la sortie de la centrale de traitement d’air aux éléments terminaux.

Un certain degré de fuite dans les réseaux de ventilation est inévitable (et toléré sauf évidemment dans les réseaux transportant des gaz dangereux). Il est en outre reconnu que le transport, le stockage et la mise en œuvre est source d’agravation des risques de fuite.

EUROVENT 2/2 définit des classes d’étanchéité basées sur le rapport entre la quantité de fuite dans les conduits et la surface du réseau de distribution d’air, bien que les fuites proviennent principalement des joints.

Classe d’étanchéité à l’air des conduits de ventilation selon EUROVENT 2/2

Mesure sur des conduits installés

Taux de fuite
[l.s-1.m-2]
p = pression statique d’essai [Pa]
Surface de fuite équivalente en cm² par m² de conduit

Classe EUROVENT

0.009 x p0,65 <…< 0.027 x p0,65

0.21 <…< 0.64

A

0.003 x p0,65 <…< 0.009 x p0,65

0.07 <…< 0.21

B

< 0.003 x p0,65

< 0.07

C

Mesure en laboratoire

Taux de fuite
[l.s-1.m-2]
p = pression statique d’essai [Pa]

Surface de fuite équivalente en cm² par m² de conduit

Classe EUROVENT

0.0045 x p0,65 <…< 0.0135 x p0,65

0.21 <…< 0.64

A

0.0015 x p0,65 <…< 0.0045 x p0,65

0.07 <…< 0.21

B

< 0.0015 x p0,65

< 0.07

C

Concevoir la fenêtre dans le versant isolé

Concevoir la fenêtre dans le versant isolé


Exemples

Fenêtre dans toiture isolée entre chevrons ou fermettes

Schéma fenêtre dans toiture isolée entre chevrons ou fermettes.   Schéma fenêtre dans toiture isolée entre chevrons ou fermettes.

  1. Contre latte.
  2. latte.
  3. Tuiles.
  4. Solin au-dessus des tuiles à la base du châssis.
  5. Raccord de la sous-toiture au châssis.
  6. Partie mobile de la fenêtre.
  7. Vitrage isolant.
  8. Étanchéité en plomb ou chéneau encastré.
  9. Raccord sous-toiture châssis.
  10. Chéneau en amont de la fenêtre.
  11. Isolation thermique.
  12. Etanchéité à l’air et à la vapeur.
  13. Volige de pied.
  14. Partie fixe de la fenêtre.
  15. Sous-toiture.
  16. Chevron.
  17. Finition intérieure devant espace technique.
  18. Cadre isolant.

Fenêtre dans toiture« Sarking »

Schéma fenêtre dans toiture"Sarking". 

  1. Chevron ou fermette.
  2. Panneau isolant.
  3. Isolation entre chevrons.
  4. Raccord de la sous-toiture au châssis.
  5. Contre latte.
  6. Latte.
  7. Latte d’arrêt.
  8. Joint de mastic souple.
  9. Volige de pied.
  10. Couverture.
  11. Support de finition.
  12. Isolation de remplissage.
  13. Ouvrant.
  14. Dormant.
  15. Bavette.
  16. Chéneau en amont de la fenêtre.
  17. Couloir métallique d’étanchéité.
  18. Finition intérieure.
  19. Cadre isolant.

Continuité de la fonction « couverture »

Raccord amont

Le raccord entre le châssis et la toiture est réalisé par une tôle pliée formant chéneau. Celle-ci est fournie avec le châssis. La tôle est supportée, par une volige de l’épaisseur des lattes, d’une part; elle est fixée au châssis d’autre part.
L’étanchéité entre la tôle et la toiture est assurée par la pente, celle entre la tôle et le châssis, par un raccord avec le capot de recouvrement de la traverse supérieure du dormant de la fenêtre. La tôle est parfois munie d’un joint souple d’étanchéité qui sera comprimé par les éléments de couverture.

Les eaux récupérées par le chéneau sont renvoyées latéralement vers les côtés du châssis.

Raccords latéraux

Ces raccords se font également par des tôles pliées, soit continues sur toute la hauteur du châssis, soit en plusieurs pièces. Elles sont supportées d’une part par les lattes, d’autre part par le châssis. La tôle est parfois munie d’un joint souple d’étanchéité qui sera comprimé par les éléments de couverture. L’étanchéité entre la tôle et le châssis est assurée par le capot de recouvrement des montants latéraux du dormant de la fenêtre.

Raccord aval

Le raccord se fait au moyen d’une tôle pliée (éléments de couverture plats) ou d’une bavette en plomb éléments de couverture ondulés) posées sur les éléments de couverture et épousant parfaitement leur forme. L’étanchéité entre la tôle ou la bavette et le châssis est assurée par le capot de recouvrement de la traverse inférieure du dormant de la fenêtre.


Continuité de la fonction « sous-toiture »

Cas d’une toiture avec sous-toiture

Une toiture isolée entre les chevrons ou fermettes est par exemple une toiture avec sous-toiture.

En partie supérieure, l’étanchéité entre la sous-toiture et le châssis est réalisée par une tôle pliée ou une membrane souple. Elle est placée sous la sous-toiture au-dessus du chevron, d’une part et contre le châssis (sous le raccord assurant la continuité de la fonction « couverture ») d’autre part.

Sur les côtés du châssis, le même principe est appliqué à la différence que la pièce de raccord est posée au-dessus de la sous-toiture.

A la base du châssis, aucun raccord n’est nécessaire sauf en cas de faible pente.

Cas d’une toiture sans sous-toiture

Une toiture « Sarking » est par exemple une toiture sans sous-toiture.

Une membrane souple est posée :

  • d’une part, sur le panneau isolant,
  • et d’autre part, sur tout le pourtour du dormant (sous le raccord assurant la continuité de la fonction « couverture »)

Cette membrane assure également l’étanchéité à l’air.

Au raccord amont, l’étanchéité est renforcée par une latte d’arrêt avec joint en mastic souple, fixée sur le panneau isolant. La latte légèrement en pente doit déborder latéralement du châssis pour évacuer les eaux de ruissellement.


Continuité de la fonction « isolation »

L’isolation doit être posée correctement jusque contre le châssis. Il ne peut pas y avoir de vide entre le châssis en bois et le matériau d’isolation. Pour y arriver, une isolation de remplissage est parfois nécessaire.


Continuité de la fonction « pare-vapeur » et « finition intérieure »

Le pare-vapeur éventuel doit être raccordé de manière étanche contre le châssis. Il en va de même de la finition intérieure de manière à supprimer tout risque de courant d’air à travers la toiture.

Vases d’expansion

Rôle du vase d’expansion

Le vase d’expansion sert dans un premier temps à compenser les variations de volume que subit la masse d’eau de l’installation suite aux fluctuations de température.

Exemple.

Une ancienne installation est équipée de radiateurs à panneaux et d’une chaudière en fonte de 400 kW. Sa contenance en eau est estimée à 4 000 [l].

Le volume d’expansion de l’eau en passant de 10°C (eau de ville) à 90°C est de 142 [l].

Le deuxième rôle du vase d’expansion est de maintenir la pression dans l’installation quand celle-ci est complètement refroidie. Dans ce cas, la pression du vase doit empêcher une dépression dans l’installation et ainsi la pénétration d’air source de corrosion.


Vase d’expansion fermé à pression variable

Un vase d’expansion fermé est constitué, dans une enveloppe fermée, d’un volume d’air et d’un volume d’eau séparés par une membrane.

Avant remplissage de l’installation par de l’eau, le vase d’expansion est « gonflé » à une certaine pression d’air (pression calculée lors du dimensionnement).

Lorsque l’on remplit l’installation d’eau, cette dernière envahit une partie du vase jusqu’à ce qu’une pression minimale dans l’installation (pression mesurée par le manomètre de l’installation et également calculée lors du dimensionnement). Le volume d’eau ainsi contenu dans le vase servira de volume de réserve à l’installation.

Lorsque l’installation est mise en route, l’eau chauffée se dilate et le volume d’eau dans le vase augmente, comprimant l’air. La pression dans l’installation augmente donc.

C’est pourquoi on parle de vase d’expansion « à pression variable ».

Vase d’expansion avec membrane et à vessie

   

Vase d’expansion à membrane ou à vessie.

Il existe des vases d’expansion à membrane ou à vessie. La deuxième solution est plus durable car elle présente moins de risque d’inétanchéité notamment car elle ne présente pas de joint avec la paroi du vase.


Vase d’expansion fermé à pression constante

Un vase d’expansion fermé à pression constante est également constitué.

Vase d’expansion à pression variable et à pression constante.


Vase d’expansion ouvert

Il existe encore dans certaines anciennes installations, des vases d’expansion « ouvert ».

Il s’agit de réservoirs disposés au point le plus haut de l’installation. Ils sont ouverts à l’air libre et constituent une réserve d’eau pour l’installation. Ce système a comme inconvénient une absorption permanente d’oxygène par l’eau de chauffage. Celle-ci est d’autant plus importante qu’une circulation importante est entretenue dans le vase.

À ce titre, il est évident que ce type de vase d’expansion doit être remplacé par un système fermé.

Aéraulique

Aéraulique


À quoi sert un ventilateur ? Notion de perte de charge

Un ventilateur fournit à l’air l’énergie nécessaire pour se déplacer d’un point à un autre (le plus souvent au travers de conduits) en lui imprimant une certaine vitesse.

L’énergie contenue dans un petit volume d’air « V » (de masse « m ») comprend :

  • l’énergie potentielle due à la gravité : mgh,
  • l’énergie cinétique due à la vitesse « v » de l’air : mv²/2,
  • l’énergie de pression due à la pression interne « p » de l’air : pV.

On peut également exprimer ces 3 termes sous forme d’une somme de pressions, constituant la pression totale du petit volume d’air :

  • la pression liée au poids de la colonne d’air : ρgh,
  • la pression dynamique liée à la vitesse de l’air : ρv²/2,
  • la pression statique liée à la pression interne de l’air : p.

Le premier terme étant négligé, on peut exprimer que la pression totale d’un petit volume d’air en mouvement est égale à sa pression dynamique plus sa pression statique.

Le ventilateur fournit donc l’énergie nécessaire pour compenser la différence de pression totale de l’air entre la prise extérieur et la bouche de pulsion (ou dans le sens inverse dans le cas d’une extraction) ; c’est-à-dire, pour mettre l’air en vitesse dans le conduit et vaincre les pertes par frottement dans celui-ci. Cette différence de pression totale est appelée « hauteur manométrique » du ventilateur. La perte de pression totale liée à la résistance du réseau de distribution à l’écoulement d’un débit d’air donné est appelée, quant à elle, « perte de charge » du réseau.


Courbe caractéristique du réseau de distribution

La résistance du réseau de distribution dépend d’une part de sa configuration (longueur et forme des conduits, changements de direction, obstacles comme les registres, les batteries, les filtres, …) et d’autre part de la vitesse de l’air qui y circule. En effet, la résistance, ou autrement dit les pertes de charge, représente le frottement de l’air dans les conduits. Ce dernier augmente avec la vitesse de l’air.

Pour chaque type de circuit, on peut ainsi tracer une courbe qui représente la perte de charge en fonction du débit d’air, image de la vitesse.

Schéma perte de charge en fonction du débit d'air


Point de fonctionnement

Si l’on branche un ventilateur sur un circuit de ventilation, il stabilisera son débit à une valeur pour laquelle la pression qu’il fournit équivaut à la résistance du circuit. Ce point est le seul point de fonctionnement possible. Il correspond à l’intersection des courbes caractéristiques du ventilateur et du circuit. Il définit la hauteur manométrique et le débit fournis par le ventilateur lorsque, fonctionnant à une vitesse donnée, il est raccordé au réseau considéré.

Schéma courbes caractéristiques du ventilateur.

Évaluer le respect de la chaîne du chaud et de la chaîne du froid

Évaluer le respect de la chaîne du chaud et de la chaîne du froid


Recommandations

Processus

Température

Particularités

RÉCEPTION MARCHANDISES

Véhicule de livraison :

– de réfrigération

1 à 4°C Température dans l’enceinte de chargement.

– de congélation

– 18 à – 20°C

Produits :

– réfrigérés

< 7°C, préf. 1 à 4°C > 10°C : inacceptable

– volaille réfrigérée

< 4°C > 7°C  : inacceptable

– hachis

2°C > 5°C  : inacceptable

– surgelés

– 18 à – 20°C > 15°C : inacceptable
STOCKAGE

Local de stockage :

– réfrigérateur (frigo)

1 à 4 °C Sonde à l’endroit le plus chaud

– congélateur

– 18 à – 20 °C Sonde à l’endroit le plus chaud

– frigo à légumes

10 à 15 °C Sonde à l’endroit le plus chaud

– conservation au sec

max. 23 °C Température la plus élevée par une journée d’été chaude

Produits :

– réfrigérés

< 7 °C, préf. 1 à 4 °C Température au cœur des produits entreposés depuis plus de 24 heures

– surgelés

– 18 à – 20 °C Température à l’extérieur des produits
PRÉPARATION

Traitement thermique

> 70 °C

saignant : 52 °C

à point : 60 °C

Température à cour du produit

Écarts autorisés pour des raisons culinaires

Maintenir les plats chauds

>  65 °C Température à cour du produit

Plats froids

< 7°C Température à cour du produit

Huile de friture

Max. 180 °C

Bain-marie

80 à 85 °C

Réfrigérer

<  7 °C, préf. 1 à 4 °C Température à cour du produit

Local de travail réfrigéré

12 à 15 °C

Réchauffer

< 70°C Température à cour du produit
NETTOYAGE

Lave-vaisselle

Pré-rincer : 35 à 45 °C

Laver : 60 à 65 °C

Post-rincer : 80 à 90 °C


Comment évaluer votre situation

Mesurer la température du produit

Température superficielle

Lors du contrôle à l’arrivée, la température superficielle de certains produits peut être contrôlée sans endommager l’emballage. À cet effet, le thermomètre sera doté d’un élément thermosensible plat.

Température à cœur

Pour mesurer la température à cour d’un produit (température au centre du produit), il faut un thermomètre ayant un élément thermosensible suffisamment long. Pour effectuer de telles mesures, on n’utilisera jamais un thermomètre en verre, étant donné qu’en cas de bris du thermomètre, le verre ou le mercure peut contaminer les denrées alimentaires.

Après avoir mesuré la température d’un produit, la partie thermosensible du thermomètre doit être soigneusement nettoyée et désinfectée pour éviter de contaminer le produit suivant.

Mesurer la température des enceintes de réfrigération et de congélation

Dans chaque enceinte de réfrigération ou de congélation, l’élément thermosensible du thermomètre doit être appliqué de manière à mesurer la température à l’endroit le plus chaud (par exemple, ne pas mesurer près de l’entrée d’air froid).

Il est nécessaire de vérifier chaque année le bon fonctionnement des mesureurs de température dans l’enceinte de réfrigération ou de congélation. On peut effectuer soi-même la vérification à l’aide d’un thermomètre étalonné que l’on placera à titre de contrôle dans l’enceinte de réfrigération ou de congélation. En cas d’écarts importants entre la mesure de contrôle et la température indiquée par le thermomètre dans l’enceinte de réfrigération ou de congélation, les thermomètres doivent être remplacés ou réparés.

Mesurer la température de l’huile de friture

Pour vérifier le bon fonctionnement du thermostat de la friteuse, il faut un thermomètre ayant une plage de température suffisamment étendue (jusqu’à environ 220°C).

Le contrôle hebdomadaire de la température de huile s’effectue comme suit :

  • régler le thermostat (sur 180°C par exemple),
  • porter l’huile à température,
  • effectuer la mesure de contrôle de la température de l’huile avec un thermomètre étalonné, réparer ou remplacer le thermostat en cas d’écarts.

Évaluer l’efficacité énergétique du poste laverie

Évaluer l'efficacité énergétique du poste laverie


Analyse quantitative

Cette analyse est purement indicative, elle ne peut constituer à elle seule un critère de décision.

En effet, il est très difficile de donner des valeurs de consommation de référence car elles varient très fort en fonction de facteurs indépendants de l’énergie (hygiène, organisation, choix culinaires, etc).

Ainsi, si on compare, du point de vue énergétique, sa cuisine avec d’autres cuisines, on ne peut valablement porter de jugement de valeur que si les concepts de base choisis sont identiques.

L’analyse quantitative doit donc être complétée par l’analyse qualitative.

Ainsi, supposons par exemple, pour une cuisine, que l’on aboutisse aux deux conclusions suivantes :

  • Analyse quantitative : le poste « laverie » est globalement peu performant (en Wh/repas).
  • Analyse qualitative : le lavage se fait pendant le service à table, le lave-vaisselle à déplacement sans récupération de chaleur est souvent à moitié plein.

Ces deux conclusions se recoupent : si le poste « laverie » est peu performant, c’est justement, dans l’exemple, parce que le lavage se fait pendant le service à table et parce que le lave-vaisselle à déplacement sans récupération de chaleur est souvent à moitié plein. La conclusion de l’analyse qualitative vient justifier la conclusion de l’analyse quantitative.

L’analyse quantitative peut aussi venir trouver sa justification dans les concepts de base influençant les consommations.

En revanche, l’évaluation de sa propre situation (mesure ou estimation) permet de mieux comprendre où passe l’énergie de sa cuisine et donc de concevoir une stratégie d’amélioration fondée sur l’analyse des facteurs de consommation (et non pas sur la comparaison avec un modèle moyen et irréel).

  • Une valeur de référence
  • Évaluer sa propre situation

Une valeur de référence

Nous avons relevé les ratios suivants, dans des cuisines considérées comme correctes. Ces valeurs peuvent encore être améliorées (parfois de 20 à 30 %) mais certaines autres cuisines les dépassent largement (parfois d’un facteur 2 ou plus).
Cette valeur est valable pour une gamme de cuisines collectives allant de 50 à 400 repas par service. Au-delà, ce ratio peut diminuer.

Laverie vaisselle : 70 Wh/repas

Évaluer sa propre situation

À partir de mesures

On peut mesurer la consommation des différents lave-vaisselle lors du fonctionnement de ceux-ci. Pour être représentative d’une moyenne,l’opération doit être répétée plusieurs jours de suite.

Les mesures peuvent être réalisées sur chaque appareil mais nécessitent alors l’intervention d’un électricien vu que les appareils ne sont pas raccordés à une prise mais de façon fixe. Elles peuvent aussi être réalisées à partir du tableau électrique où l’on trouve un départ par lave-vaisselle.

S’il existe un compteur électrique spécifique à la cuisine, une autre solution consiste à isoler l’utilisation des lave-vaisselle. Il n’est pas possible d’arrêter toutes les chambres froides. Dans un premier temps, on mesure la consommation de celles-ci toutes autres consommations à l’arrêt (cuisson, ventilation, lave-vaisselle). Dans un second temps, on mesure la somme des consommations de la laverie et des chambres froides et on en retire la consommation des secondes.

Par estimation : à partir de la connaissance d’un cycle de lavage

On trouve les données propres à la machine (quantité d’eau de remplissage, débits d’eau de rinçage, puissances internes) dans les documents des fournisseurs.

Exemple pour une machine à capot devant laver 1 800 assiettes par service :

1. Avant le service vaisselle (remplissage) :

– chauffage de 22 litres d’eau de 10°C à 65°C (alimentation à l’eau froide de remplissage) avec une résistance de 2 kW.

Énergie [kWh] = m [kg] x c [Wh/kg/°C] x (T2-T1) [°C] / 1 000

Où,

  • m : masse
  • c : chaleur spécifique de l’eau
  • T2-T1 : différence de température entre l’eau de remplissage et l’eau de lavage (60°C).

Énergie = 22 x 1.163 x 55 / 1 000 = 1,4 kWh.

NB : durée de chauffe = 1,4 / 2 = 0,7, soit 42 minutes.

2. Pendant le lavage :

– surchauffer 3 litres d’eau de 10°C à 85°C (alimentation à l’eau froide de rinçage) avec une résistance de 9 kW.

Énergie = 3 x 1.163 x (85-10) / 1 000 = 0,26 kWh.

N.B. : durée de chauffe = (0,26 / 9) x 60 x 60 = 104 secondes.

– Lavage, rinçage et évacuation de 3 litres d’eau par le trop plein avec les graisses. Fonctionnement de la pompe (1 kW) pendant le cycle choisi : 60, 90 ou 210 secondes.

En 90 secondes, la pompe consomme :

1 x 90 secondes / 60 / 60 = 0,025 kWh.

– Un nouveau cycle est prêt à recommencer.

Soit au total une consommation de 0,285 kWh par cycle de lavage.

CONSOMMATION TOTALE :

Si un panier peut contenir 18 pièces, il faudra 100 cycles de lavage, soit une consommation totale de 29,9 kWh (1,4 + 0,285 x 100).

N.B. : Ce calcul permet aussi de calculer la contribution du lave-vaisselle à la pointe quart-horaire :

Si on considère que 20 secondes sont nécessaires à la manutention entre les cycles de lavage, un cycle dure 110 secondes (90 + 20) (le surchauffeur fonctionne déjà pendant que la pompe fonctionne). 8 cycles sont donc possibles en 15 minutes. Pour la pointe quart-horaire, on doit donc considérer la plus grande des deux puissances suivantes :

1. remplissage : 2 kW
2. lavage : 8 x 0,285 kWh / (1/4) h = 9,12 kW.


Analyse qualitative

Une surconsommation d’énergie, par rapport au service rendu, est le résultat d’une insuffisance d’efficacité : soit au niveau de la quantité d’eau de lavage, soit au niveau de la température de l’eau, soit dans la conduite du processus.

Les indices permettant de repérer des anomalies sont expliqués un à un. Ils servent à remplir une grille d’évaluation.
L’analyse qualitative de l’efficacité énergétique du poste « laverie » se fait en passant en revue chacun des points de lavage de la vaisselle.

  • Repérer les indices d’un bon/mauvais appareil
  • Grille d’évaluation – exemple

Repérer les indices d’un bon/mauvais appareil

L’efficacité énergétique du poste laverie dépend des paramètres ci-dessous. Les premiers concernent l’appareil proprement dit, les suivants concernent la gestion de la laverie.

La fuite d’énergie

Les appareils bien calorifugés sont plus efficaces (isolation,lamelles).

Maintenance

Les résistances des lave-vaisselle ne doivent pas être entartrées sinon les températures de lavage et de rinçage ne sont plus respectées et la consommation est trop importante.

La récupération d’énergie

  • Recyclage : certains appareils utilisent pour le lavage (et le prélavage) une eau qui a préalablement servi au rinçage à chaud.

Le dimensionnement

Un matériel trop grand par rapport aux quantités à laver consomme trop d’énergie. La surcapacité s’apprécie ici par le pourcentage de paniers ou de convoyeurs insuffisamment remplis, et non sur le nombre de paniers lavés à l’heure. La présence d’un détecteur sur un lave-vaisselle à déplacement automatique permet de diminuer l’impact d’un convoyeur mal rempli.

Les tunnels de lavage sont intéressants par la réduction des pertes de chaleur entre les phases d’un cycle de lavage (récupération d’eau et de chaleur) mais nécessitent d’être alimentés en vaisselle en continu, sous peine de reperdre les gains d’énergie.

L’alimentation du lave-vaisselle

Certains lave-vaisselle utilisent de l’eau apportée à la bonne température depuis une chaufferie performante. Il y a là une source d’économie possible, mais non certaine (pertes en tuyauteries, en ballons de stockage). L’économie peut être financière, si la source d’énergie de la chaufferie est moins chère que celle du lave-vaisselle

LA GESTION DE LA LAVERIE

La conduite

La réduction des temps d’attente entre les cycles est un facteur important d’économie d’énergie, ce dans les machines qui stockent ou recyclent l’eau chaude.

Le choix des horaires

Un lavage différé permet de décaler la consommation du lave-vaisselle en dehors de la période où a lieu la pointe quart-horaire et diminue ainsi la facture électrique. En effectuant le lavage de la vaisselle durant les heures creuses, on bénéficie alors d’un prix plus avantageux pour le kWh.

Évaluer

Pour comprendre la logique tarifaire du distributeur – Haute Tension.

Évaluer

Pour comprendre la différence entre heures creuses et heures pleines.

La plonge manuelle

Pour les restaurants qui la pratiquent (pour différentes raisons) il est notoire que la consommation d’énergie peut être deux à cinq fois plus forte qu’avec un lave vaisselle automatique.

Grille d’évaluation – exemple

Dans les grilles d’évaluation chacun des paramètres cités ci-dessus a été affecté d’une pondération (incidence quantitative) sous la forme d’un nombre d’étoiles.

Une grille d’évaluation est complétée pour chaque point de lavage de la vaisselle. L’utilisateur remplit les cases blanches.

LE POSTE LAVERIE Type Machine à capot.
Caractéristiques 5 litres par cycle, 40 casiers/heure.
Puissance 8 kW
% de la vaisselle 100 %
Efficacité énergétique / Paramètres Incidence Note (0 à +/- 3)* Bilan Décision
Fuite d’énergie * – 2 – 20 non
Maintenance ** + 2 + 40
Recyclage *** + 3 + 90
Récupérateur ** 0 /
Dimensionnement *** 0 /
Alimentation * + 3 + 30

GESTION DE LA LAVERIE :

Temps d’attente * – 2 – 20 oui
Horaires *** – 2 – 60 oui
Plonge manuelle ***** 0 / oui

* : La note résulte d’un examen de l’appareil concerné et de son utilisation.

Exemple : 0 signifie « sans objet » par rapport aux critiques écrits dans le texte correspondant.


Concepts de base ayant une influence sur les consommations

Il y a d’autres facteurs que l’efficacité énergétique des lave-vaisselle et la façon de les utiliser qui influencent les consommations du poste.

Ce sont d’autres considérations que l’énergie qui conduisent au choix de ces concepts.

Nous avons relevé les points suivants :

Le nombre de plats et le type de distribution

Il est certain qu’une institution où l’on propose une entrée, un potage un plat consistant et un café et où la distribution nécessite un plateau, aura un poste laverie bien plus énergivore que celle qui se contente de servir un plat consistant et où le service se fait à table.

La vaisselle jetable

Certaines institutions choisissent pour des raisons de personnel d’utiliser de la vaisselle jetable ou donnent la vaisselle à laver à l’extérieur.

Adoucisseur d’eau [ECS]

Adoucisseur d'eau [ECS]


L’adoucisseur échangeur d’ions

Au départ, la présence de calcaire

L’eau est un solvant très efficace ! au contact de l’atmosphère elle capte du CO2 et devient légèrement acide (H2CO3). Par percolation au travers des sols, elle entre en contact avec la roche calcaire CaCO3, qu’elle dissout.

Schéma l'eau sous ces différentes formes.

Le carbonate de calcium CaCO3 présent dans l’eau va précipiter sur les parois lors d’une montée en température de celle-ci.
Photo adoucisseur.

L’adoucisseur est dès lors un appareil destiné à capter les ions Ca++ et Mg++ présents dans l’eau en les fixant sur une résine cationique. En effet, l’eau passe au travers d’une cartouche contenant des millions de petites billes de résine, chargées d’ions sodium.

Adoucisseur.

  1. Distributeur d’eau et de solution de régénération
  2. Résine échangeuse d’ions
  3. Plancher à buses (crépines) avec fentes de 0,4 mm

Par exemple, il peut s’agir de la zéolithe, silicate d’Al et de Na :

Na2O . Al2O3. n SiO2. m H2O

On dira en abrégé : Na2Z

Schéma principe principe adoucisseur.

Au passage de l’eau sur cette résine, les ions calcium seront captés :

Na2Z + Ca++  –>  CaZ + 2 Na+

ou encore :

Na2Z + Ca(HCO3)2 –>  CaZ + 2 Na(HCO3)

De même pour les ions magnésium :

Na2Z + Mg(HCO3)2 –>  MgZ + 2 Na(HCO3)

Remarque : le sel sodique produit (Na (HCO3)) passera dans l’eau mais ne contribuera pas à la dureté de l’eau; si la température augmente, il ne se dépose pas.

Régénération

Lorsque la résine est saturée en ion Ca++, il faut les éliminer et replacer les ions Na+. C’est la phase de régénération :

CaZ + 2 NaCl  –>  Na2Z + CaCl2

Schéma principe principe régénération.

Prolifération de micro-organismes

Les échangeurs d’ions offrent, comme d’autres filtres, de bonnes conditions de prolifération aux micro-organismes en raison de l’importante surface de leurs pores internes. Si aucune mesure n’est appliquée, on constate donc souvent une augmentation de la teneur en bactéries de l’eau traitée. La prolifération microbienne peut être combattue de façon efficace par l’adjonction d’environ 1 % de résine échangeuse d’ions imprégnée d’argent.

La corrosion des eaux trop adoucies

L’eau adoucie présente une concentration en calcium proche de zéro. Dès lors, l’équilibre calco-carbonique rend l’eau très agressive (les dépôts calcaires protecteurs sont rapidement dissous). On conseille dès lors de ne pas adoucir l’eau en dessous des 15°F, soit grâce à un réglage de l’adoucisseur, soit par le placement d’un bypass qui réalise un mélange entre de l’eau traitée et de l’eau totalement adoucie.

Attention à la propreté des sels

Si des impuretés sont mélangées au sel de régénération (bacs restant ouverts…), elles pourront servir de nutriments aux bactéries et tout particulièrement à la légionelle !


Les inhibiteurs de tartre

Le principe consiste à inhiber l’entartrage plutôt qu’à éliminer le calcium, par l’injection d’un produit chimique, tel que le polyphosphate qui va se dissoudre dans l’eau et enrober chaque ion calcium d’un « manteau » d’ion phosphate. La croissance des cristaux calcaires est freinée et/ou leur adhésion est empêchée sur les parois.

Mais ce produit est avalé avec l’eau par le consommateur… le contrôle de la concentration doit être rigoureux !

De plus, les polyphosphates n’agissent plus si l’eau est trop chaude.

Le CSTB en France a réalisé récemment une étude sur ce sujet.


Les systèmes physique et/ou magnétique

L’appareil agit par effet électrique et/ou magnétique et transforme le calcium en aragonite (une variété cristalline du carbonate de calcium), plus stable et donc donnant moins lieu à des dépôts.

Certains de ces systèmes ont des effets réels mais variables en fonction de divers paramètres (température, débit, intensité électrique,….) si bien qu’il est difficile de prévoir avec certitude le résultat de leur action dans des conditions particulières.

Pour plus d’informations sur ces différentes techniques, on consultera utilement le Cours – conférence n°51 du CSTC – « la corrosion et les tubes métalliques utilisés pour la distribution d’eau dans les bâtiments ».

Réglementations et labels pour chaudières

Réglementations et labels pour chaudières


Arrêtés Royaux du 11 mars 88, du 18 mars 97 et du 3 juillet 92 : combustibles gazeux et liquides

Rendement minimal

Les A.R. du 11 mars 88 et du 18 mars 97 imposent que toutes les chaudières pour combustibles gazeux et liquides vendues en Belgique aient un rendement utile minimal à pleine charge et à 30 % de charge. L’A.R. du 18 mars 1997 concernent les chaudières dont la puissance est inférieure à 400 kW.

 

Rendement utile instantané minimum à pleine charge (figure de gauche) et à charge partielle (figure de droite) pour des chaudières standard, imposé par les A.R. du 11 mars 88 et du 18 mars 97, comparé aux exigences des labels « Optimaz » et « HR+ ».

     

Rendement utile instantané minimum à pleine charge (figure de gauche) et à charge partielle (figure de droite) pour des chaudières à condensation imposé par les A.R. du 11 mars 88 et du 18 mars 97, comparé aux exigences des labels « Optimaz-élite » , « HR+ » et « HRtop ».

Marquage CE

L’A.R. du 3 juillet 1992 stipule que seuls les appareils gaz porteurs du marquage CE peuvent être mis sur le marché en Belgique. Ce marquage CE inclus le respect des exigences minimales de rendement.

Si la chaudière n’est pas équipée d’usine de son propre brûleur, l’ensemble chaudière/brûleur doit avoir obtenu le marquage CE. Il en va de même pour les chaudières équipées d’un condenseur séparé ne faisant pas partie intégrante de la chaudière (n’étant pas sous le même habillage). L’ensemble brûleur/chaudière/condenseur doit être marqué CE.


Arrêté Royal du 17 juillet 2009 : combustibles liquides et gazeux

L’A.R du 17 juillet 2009 modifiant l’arrêté royal du 8 janvier 2004 réglementant le niveau des émissions des oxydes d’azote (NOx) et du monoxyde de carbone (CO) pour les chaudières de chauffage central et les brûleurs alimentés en combustibles liquides ou gazeux dont la puissance calorifique est inférieure ou égale à 400 kW vendus en Belgique.

Pour les combustibles gazeux, les limites d’émission imposées sont les suivantes :

Combustible gazeux À partir du 1er janvier 2010 À partir du 1er janvier 2012

mgNOx/kWh

mgCO/kWh

mgNOx/kWh

mgCO/kWh

(1) Chaudière murale mesurés conformément à la norme NBN EN 297 ou 483 ou 656
Puissance <= 400 kW

<= 70

<= 110

<= 70

<= 110

(2) Chaudière sol mesurés conformément à la norme NBN EN 297 ou 483 ou 656
Puissance <= 400 kW

<= 100

<= 110

<= 70

<= 110

(3) Brûleur à air soufflé mesurés conformément à la norme NBN EN 676
Puissance <= 70 kW

<= 100

<= 110

<= 70

<= 110

70 kW < Puissance <= 400kW

<= 120

<= 110

<= 100

<= 110

(4) Générateur d’air chaud mesurés conformément à la norme NBN EN 621, 778, 1020 ou 1319
avec brûleur atmosphérique

<= 200

<= 300

<= 150

<= 110

avec brûleur prémix

<= 150

<= 110

<= 100

<= 110

avec brûleur automatique à air soufflé <= 70 kW

<= 100

<= 110

<= 70

<= 110

avec brûleur automatique à air soufflé 70 < P <= 400 kW

<= 120

<= 110

<= 100

<= 110

Appareils alimentés en propane valeur des  points 1 à 4 du tableau majorée d’un facteur 1.3 pour le NOx et de 1.1 pour le CO

Pour les combustibles liquides, les limites d’émission imposées sont les suivantes (notamment pour le gasoil de chauffage et le gasoil de chauffage extra) :

Chaudière liquide A partir du 1er janvier 2010 A partir du 1er janvier 2012
mgNOx/kWh mgCO/kWh Indice de suie mgNOx/kWh mgCO/kWh Indice de suie.
(1) Chaudière mesurés conformément à la norme NBN EN 303-4, 303-2, 304
Puissance <= 70 kW

<= 120

<= 60

<= 115

<= 60

70 < Puissance <= 400 kW

<= 185

<= 110

<= 150

<= 100

(2) Générateur d’air chaud mesurés conformément à la norme NBN EN 13832
Puissance <= 70 kW

<= 120

<= 60

<= 115

<= 60

70 < Puissance <= 400 kW

<= 185

<= 110

<= 150

<= 100

(3) Brûleur mesurés conformément à la norme NBN EN 267
à air soufflé Puissance <= 70 kW

<= 120

<= 60

<= 1

<= 115

<= 60

<= 0.5

à air soufflé 70 < P <= 400 kW

<= 185

<= 110

<= 1

<= 150

<= 110

<= 0.5

à air soufflé et à gazéification Puissance <= 70kW

<= 120

<= 60

<= 0.5

<= 115

<= 60

<= 0.3

à air soufflé et à gazéification 70 < P <= 400 kW

<= 185

<= 110

<= 0.5

<= 150

<= 110

<= 0.3

À titre de comparaison, voici les valeurs prônées par l’ancienne réglementation (8 janvier 2004) :

Type de chaudière ou de brûleur

Émissions maximales admises [mg/kWh]

NOx

CO

Gaz atmosphérique
P < 400 kW

150 110
Gaz à brûleur pulsé
P < 400 kW
120 110
Fuel à brûleur pulsé
P < 70 kW
120 110
Fuel à brûleur pulsé
70 kW < P < 400 kW
185 110

Label Optimaz et Optimaz-elite

Le Centre d’Information des Combustibles Liquides (CEDICOL) a créé les labels « Optimaz » pour les ensembles chaudière-brûleur et « Optimaz-Elite » pour les variantes à condensation .

Logo Label Optimaz.    Logo Label Optimaz Elite.

Etiquette obligatoirement portée par les ensembles chaudière-brûleur possédant un label « Optimaz » et « Optimaz-Elite ».

Les exigences imposées par Optimaz sont les suivantes :

  • Rendement de combustion minimal (selon la formule de Siegert):
    • de 93 % pour le label Optimaz en régime de température 80/60
    • de 95 % pour le label Optimaz-élite en régime de température 80/60
    • de 97.5 % pour le label Optimaz-élite en régime de tempéture 50/30
  • Pourcentage de CO2 dans les fumées minimal de 12,5 %.
  • Emission maximale de NOx s’élève à :
    • Puissance < 70 kW : 120 mg/kWh
    • Puissance > 70 kW : 185 mg/kWh
  • Emission maximale de CO s’évèle à 110 mg/kWh
  • Indice de Bacharach maximal de 1.
  • Consommation d’entretien, dT étant le différence de température entre l’ambiance et la température de la chaudière :
    • Chaudière sans production d’ECS : 0.008 Pn (0.8%) pour les puissances < 70 kW et 0.006 Pn (0.6%) pour les puissances supérieures
    • Chaudière à ECS séparé ou pouvant être déconnecté : 0.43 W/l de perte d’entretien du ballon de stockage
    • Chaudière à ECS ne pouvant être déconnecté : 0.008 Pn + 0.43 V où V est le volume d’ECS intégré à la chaudière
    • Chaudière à ECS à production rapide (instantané) : 0.008 Pn (0.8%) pour les puissances < 70 kW et 0.006 (0.6%) pour les puissances supérieures
  • Rendement utile à pleine charge de
    • 87.5 + (1,5 log Pn) pour le label Optimaz en régime de température 80/60
    • 91 + (log Pn) pour le label Optimaz-élite en régime de température 80/ 60
  • Rendement utile à 30 % de charge (en fonctionnement continu) de
    • 87,5 + (1,5 log Pn) pour le label Optimaz en régime de température 50/30
    • 97 + (log Pn) pour le label Optimaz-élite en régime de température 50/30
  • Garantie minimale sur l’appareil de 5 ans sur le bloc de chauffage et de 2 ans sur les pièces détachées.

CEDICOL édite la liste des combinaisons ayant obtenu le label.

Le label Optimaz n’a pas des exigences très sévères par rapport aux exigences légales du 18 mars 1997 et par rapport aux meilleurs équipements sur le marché. En ce qui concerne le label Optimaz-Elite, il ne demande pas un rendement supérieur à la législation. Néanmoins, ces labels permettent d’avoir une certaine garantie sur la qualité du matériel choisi. Il ne permet cependant pas de comparer les équipements entre eux puisqu’aucune valeur chiffrée n’est fournie avec « l’étiquette Optimaz ».


Label HR+ et HR Top

Les distributeurs de gaz appliquent un label HR+ (chaudières traditionnelles) et HR top (chaudières à condensation), censés promouvoir le matériel particulièrement peu énergivore.

 Logo label HR.  Logo label HR Top.

Label HR+ pour les chaudières gaz traditionnelles et HR Top pour les chaudières gaz à condensation.

Il faut cependant savoir que les chaudières possédant le label HR+ ne sont, théoriquement, nullement plus performantes que les autres. En effet, les performances à atteindre pour obtenir ces labels ne sont autres que les performances réglementaires (A.R. du 11 mars 88 et du 18 mars 97) pour les puissances inférieures à 400 kW. C’est les performances minimales auxquelles doivent répondre toutes les chaudières vendues chez nous, quel que soit leur type. Comme on le voit, le label « HR+ » ne permettent pas de distinguer les chaudières gaz performantes des autres. Le labels « HR+ » apportent cependant la garantie que ces performances sont réellement respectées puisque contrôlées par le laboratoire de l’Association Royale de Belgique des Professionnels du Gaz (ARGB). Pour les chaudières ne possédant pas de label, il faut souvent se fier à la bonne foi du fabricant.

Le label HR top donne des garanties sur le rendement utile supérieures à la législation mentionnée ci-dessus. Le rendement doit être de 95% à puissance nominal (température moyenne de l’eau à 70°C) et de 107% en charge partielle (30% de Pn et une température de retour de 30°C) , lorsque la condensation à lieu. Ces valeurs commencent à être réellement contraignantes.

En matière d’émissions, les labels HR garantissent également que la concentration en CO et NOx dans les produits de combustion privés d’air de vapeur d’eau ne dépasse pas certains niveaux : 110 mgCO/kWh pour les deux labels, 150mgNOx/kWh pour le HR+ et 70mgNOx/kWh pour le HRtop.


Label Ange Bleu : « Der Blaue Engel »

L’institut allemand d’assurance qualité et de certification (RAL) décerne le label à des chaudières à pellets dont la puissance ne dépasse pas 50 kW et les poêles dont la puissance ne dépasse pas 15 kW. Ces appareils doivent répondre à une série de critères relatifs à la performance et à l’émission de gaz nocifs. En outre, les chaudières doivent répondre à la norme DIN EN 303-5 en ce qui concerne le comportement structurel et la sécurité, les poêles aux normes DIN 18 894 ou DIN EN 14785.

   Logo label Ange Bleu.

Label Ange Bleu pour les poêles et chaudières à pellets .

Pour les chaudières, le rendement doit être supérieur à 90% en pleine charge et à 88% à charge partielle. En ce qui concerne les poêles, le rendement doit être supérieur à 90% aussi bien en pleine charge qu’en charge partielle. Cela donne donc des garanties réelles concernant les performances de ces appareils puisque qu’elles doivent être mesurées par un laboratoire agrée indépendant. Néanmoins, on voit que les puissances considérées restent relativement limitées.

Domaine d’application Rendement pleine charge (Pn) Rendement charge partielle (0.3 Pn) Electricité auxiliaires NOx pleine charge (mg/m³) CO pleine charge (mg/m³) CO charge partielle (mg/m³) Poussières pleine charge (mg/m³) Substances organiques pleine charge (mg/m³) Substances organiques charge partielle (mg/m³)
Chaudière à pellets P < 50 kW >= 90% >= 88% <= 1% Pn 150 90 200 20 5 5
Poêle à pellets P < 15 kW >= 90% >= 90% <= 1% Pn 150 180 400 25 10 15

Norme DIN 4702, partie 8

La norme allemande DIN 4702, partie 8, propose une méthode normalisée pour chiffrer le rendement saisonnier théorique d’une chaudière. Elle consiste en une mesure en laboratoire du rendement journalier (tenant donc compte du rendement utile et des pertes à l’arrêt), dans cinq conditions représentatives d’un moment de la saison de chauffe.

La moyenne entre ces cinq mesures donne un rendement normalisé représentatif du rendement saisonnier réel. En comparant les équipements des fabricants appliquant cette méthode, on peut se faire une idée plus précise de l’économie que l’on peut faire en choisissant l’un ou l’autre matériel : elle est proportionnelle au rapport des rendements.

Vlarem II bis

La réglementation flamande en matière de protection de l’environnement « VLAREM Titre IIbis » classe toutes les installations considérées comme « incommodes » :

  • classe 3 : installation sujette à une obligation de déclaration. S’y retrouvent les chaudières ou groupe de chaudières de 300 à 500 kW.
  • classe 2 : installation sujette à une obligation de demande d’exploitation. S’y retrouvent les chaudières ou groupe de chaudières de 500 à 5 000 kW.
  • classe 1 : installation sujette à une obligation de demande d’exploitation. S’y retrouvent les chaudières ou groupe de chaudières de plus de 5 000 kW.

Il définit également les limites d’émission que ne peuvent dépasser les installations de chauffage de plus de 100 kW :

Nouvelles installations
(permis d’exploitation de ou après 01/01/96)

Émission de :
[en mg/Nm³]

NOx

Poussières

SO2

CO

Fuel 250 150 350 175
Gaz 150 5 35 100

Nouvelles installations
(permis d’exploitation avant 01/01/96)

Émission de :
[en mg/NM³]
NOx Poussières

SO2

CO

Fuel 450 150 1 700 200
Gaz 350 5 35 100

 

Repérer l’origine de la surchauffe

Repérer l'origine de la surchauffe


Prédisposition du bâtiment à la surchauffe ?

En théorie

L’ensemble des apports thermiques ne contribue pas instantanément à l’élévation de la température ambiante d’un local.

Ainsi, par exemple, le flux solaire, est d’abord absorbé par les matériaux constituant le local. Ensuite, au fur et à mesure de l’accumulation, la capacité d’absorption des matériaux diminue. Au début, la chaleur réellement cédée au local est donc nettement inférieure aux apports instantanés par ensoleillement. La chaleur cédée au local augmente ensuite progressivement pour devenir maximale au bout d’un certain temps. Lorsque l’ensoleillement a cessé, toute la chaleur emmagasinée par les parois est progressivement restituée.

Plus le bâtiment aura une grande inertie thermique, c’est-à-dire une structure lourde, plus le maximum d’apports réels dus au soleil sera faible, et plus il sera retardé par rapport au flux instantané traversant le vitrage.

Comparaison entre la chaleur instantanée due à l’ensoleillement et la chaleur réellement restituée au local, pour des bâtiments à forte et faible inertie.

Exemple.

puissance calorifique maximum effectivement transmise à un local par une journée ensoleillée de juillet (en W/m² – vitrage simple clair)

Orientation

Puissance instantanée maximum transmise au travers du vitrage

Puissance maximum restituée au local

Bâtiment léger

Bâtiment moyen

Bâtiment lourd

est 515 391 298 273
sud 187 182 151 143
ouest 515 396 309 288

En pratique

Les bâtiments à faible inertie thermique, c’est-à-dire légers, seront donc beaucoup plus sensibles aux surchauffes.

Bâtiment à forte inertie thermique ?

Bâtiment à faible inertie thermique ?

Exemple.

  • murs épais,
  • bâtiment moyennement vitré,
  • murs intérieurs lourds.

 

Exemple.

  • structure métallique,
  • vitrages importants,
  • cloisons intérieures légères,
  • faux plafonds,
  • sol recouvert de moquette ,
  • isolation par l’intérieur.
Une surchauffe est rare dans ce type de bâtiment. Il y a de fortes chances que ce soit l’installation de chauffage et sa régulation qui soient responsables du problème. La solution est souvent aisée. Ce type de bâtiment est très sensible aux apports de chaleur, internes (ex : les personnes) ou externes (ex : le soleil). Il y fait vite froid en hiver et vite chaud en été. Il faudra analyser de près les solutions et jouer sur plusieurs facteurs simultanément. Il n’y a pas de solution miracle !

Circonstances d’apparition de la surchauffe

Si la surchauffe apparaît surtout en été, il faut passer en revue tous les apports de chaleur possibles (internes ou externes), pour en circonscrire les principaux.

Calculs

Pour comparer le poids relatif des différents apports de chaleur dans un local, accédez au calcul du bilan thermique d’été.

Si la surchauffe apparaît surtout durant la saison de chauffe, on soupçonne d’abord l’installation de chauffage de ne pas fonctionner adéquatement, soit parce qu’elle est mal conçue, soit parce qu’elle est mal régulée, notamment en fonction des apports de chaleur gratuits.

Pour affiner les recherches, nous vous proposons de passer en revue les différentes sources de surchauffe possibles :


Le soleil au travers des vitrages

L’énergie solaire transmise aux locaux par l’intermédiaire des vitrages peut entraîner la surchauffe de l’air par effet de serre.
Même sans cela, avec une température ambiante acceptable, le confort thermique des occupants peut être détérioré par le rayonnement direct du soleil et le rayonnement chaud du vitrage ensoleillé.

Les facteurs favorisant les apports solaires sont :

La taille et l’orientation des fenêtres

Voici la puissance calorifique transmise au travers d’un double vitrage clair en juin, par ciel serein :

Des fenêtres de grande taille auront un impact important sur la surchauffe si elles sont orientées :

> à l’est : les apports solaires sont maximum en matinée, parfois avant l’arrivée des occupants.

> au sud : les apports solaires sont plus importants en hiver, car le soleil est bas sur l’horizon. Cependant les apports d’été seront plus durement ressentis car ils s’ajoutent à une température de l’air plus importante.

> à l’ouest : les apports sont maximum en fin d’après-midi. Ce cas est le plus critique, car les apports importants dus à la faible hauteur du soleil se cumulent à la chaleur emmagasinée durant toute la journée.

Le facteur solaire du vitrage

Tous les vitrages ne laissent pas passer la même quantité de rayonnement solaire. Cette caractéristique se traduit par le facteur solaire du vitrage (FS). Plus le facteur solaire est élevé, plus le rayonnement pouvant traverser le vitrage est important.

Exemple.

  • vitrage simple clair : FS = 0,86
  • vitrage double clair : FS =0,76
  • vitrage réfléchissant : FS =de 0,10 à 0,63

Le soleil au travers de la toiture ?

Le rayonnement solaire frappe la surface de la toiture. Celle-ci s’échauffe progressivement. La chaleur ainsi accumulée est alors réémise en partie à l’intérieur du bâtiment, en partie à l’extérieur. 

Pour les locaux situés sous une toiture, l’échauffement de celle-ci sous l’action du soleil, peut entraîner un apport important de chaleur si

  • la toiture a une structure légère et donc peu d’inertie thermique,
  • la toiture n’est pas isolée,
  • la toiture est recouverte d’un revêtement de couleur sombre.
Exemples.

Gains solaires transmis au travers d’une toiture plate ensoleillée.

Types de matériaux

Coefficient U

Couleur sombre

Couleur claire

Déphasage

Polystyrène (PS) 10 cm 0.33 W/m²K 9 W/m² 6 W/m² 1.7 h
Tôle d’acier 2 mm 4.61 W/m²K 121 W/m² 79 W/m² 0.2 h
Tôle d’acier 2 mm + PS 8 cm 0.41 W/m²K 11 W/m² 7 W/m² 2.9 h
Bois 2 cm + PS 8 cm 0.35 W/m²K 9 W/m² 6 W/m² 6.2 h
Béton 20 cm 3.41 W/m²K 68 W/m² 46 W/m² 7.2 h
Béton 20 cm + PS 6 cm 0.5 W/m²K 10 W/m² 7 W/m² 7.8 h

Les occupants ?

Alors qu’une occupation normale des locaux (par exemple 1 personne pour 15 m² de bureau) n’entraînera pas des apports excessifs, une densité d’occupation plus importante comme par exemple celle d’une salle de conférence, de réunion, de cours,… contribuera de façon significative à l’augmentation de la température ambiante.

La quantité de chaleur évacuée est fonction de l’individu et de son activité.

Le tableau suivant représente les gains internes dus aux occupants. Les valeurs sont données pour un homme adulte de taille moyenne. Ces valeurs peuvent être revues à la baisse pour une femme (- 20 %) et un enfant (- 20 à – 40 %).

Température de confort en fonction de l’activité.

Apports en chaleur sensible dus aux occupants en W/personne

Type d’activité Température du local
17°C 19°C 21°C 23°C 25°C 27°C 29°C
Assis au repos
– salles de spectacle
93 86 79 73 67 59 45
Assis travail léger ou debout au repos
– locaux scolaires
102 94 86 78 70 60 46
Assis, travail modéré
– travail de bureau
109 100 90 82 72 61 46
Debout, travail léger
– travail de montage
– magasin, banque
119 108 95 84 73 61 48
Travail modéré
– vendeur actif
– marche réduite
143 117 103 89 75 63 48
Travail actif
marche
– supermarchés
142 126 111 96 81 65 51
Travail intense
– serveur très actif
– salles de gymnastique
172 153 137 119 104 87 72
Travail pénible
– marche rapide
– effort de poussée
208 189 172 153 138 119 100

Les équipements ?

L’accumulation des équipements tels que ordinateurs, imprimantes, photocopieuses, machines à café,….(allumés en permanence), monitoring en tout genre dans les salles d’examen des hôpitaux peut à elle seule imposer un refroidissement. On peut considérer qu’un bureau devient fortement équipé lorsque chaque occupant possède son ordinateur et son imprimante ou plusieurs appareils médicaux de monitoring.

Les puissances liées à ces apports internes « gratuits » sont en première approximation de :

  • 20 W/m² si occupants + éclairage général.
  • 30 W/m² si occupants + éclairage + un PC par personne.
  • 40 W/m² si occupants + éclairage + un PC et une imprimante laser par personne.

Évaluer

Pour évaluer la qualité énergétique des équipements de bureau.

L’éclairage artificiel ?

Un éclairage surabondant peut contribuer fortement aux surchauffes :

  • Si la puissance d’éclairage installée est importante. Dans certains immeubles, les anciennes installations peuvent atteindre une puissance de 25-30 W/m². La valeur que l’on peut atteindre dans les installations performantes est de l’ordre de 1,5 W/m²/100 Lux (dans des bureaux, cela correspond à 12 W/m²).
  • Si l’éclairage artificiel reste en permanence allumé durant la journée.

Évaluer

Pour évaluer la qualité énergétique de l’éclairage.

La ventilation ?

Lorsque la température extérieure diurne est plus élevée que la température intérieure, la ventilation des locaux augmente la charge thermique à éliminer. Il faut donc se limiter dans ce cas à assurer une ventilation hygiénique, soit par exemple 30 m³/h/personne dans un bureau.

Évaluer

Pour évaluer la qualité de la ventilation.

Le chauffage ?

En période de chauffe, une installation de chauffage correcte doit dispenser sa chaleur en fonction des besoins réels.
Un excédent par rapport à ceux-ci peut conduire à une surchauffe plus ou moins grande :

  • soit parce que les besoins ont diminué par suite d’apports de chaleur gratuits ou d’un réchauffement du climat et que la fourniture de chaleur ne s’est pas adaptée,
  • soit parce que le réglage hydraulique de l’installation est déficient,
  • soit la technologie des émetteurs est inadéquate au type d’occupation des locaux.

Circonscrire les recherches

Pour circonscrire les recherches, il convient d’examiner les circonstances dans lesquelles les surchauffes apparaissent :

Circonstances d’apparition de la surchauffe

Pistes
Dans tous les locaux alors que ceux-ci ont des orientations et des occupations différentes. Mauvaise

régulation centrale du chauffage.

Dans un ou quelques locaux et souvent liée à un manque de chaleur dans d’autres locaux. Mauvais

équilibrage de la distribution.

Liée à un mauvaise répartition des températures dans le local. Technologie des émetteurs inadéquate.
Liée à l’apparition du soleil ou à la réunion de nombreuses personnes. Piste 1 :

régulation inadéquate.

Piste 2 :

technologie des émetteurs inadéquate.

Piste 3 : apports gratuits trop importants.

Si les deux premières pistes s’avèrent erronées (ex : présence de vannes thermostatiques et chauffage peu inerte), il est possible que les apports gratuits de chaleur (soleil, occupants) soient tels que la surchauffe persiste. Il faudra donc s’attacher à les limiter. Dans cette situation, la surchauffe se retrouvera inévitablement aussi en été.

Après une modification de la disposition ou de la taille des locaux. Mauvais

dimensionnement des émetteurs.

Après une modification du réseau de distribution du chauffage (ajout ou retrait d’un circuit de radiateurs sur une installation existante). Mauvais

équilibrage de la distribution

Accompagnée d’une fluctuation de la température intérieure. Piste 1 :

technologie des émetteurs inadéquate.

Piste 2 : mauvaise

régulation locale du chauffage.

Piste 3 : mauvais

dimensionnement des émetteurs.

L’absence de régulation en fonction des apports gratuits

Pour maintenir la température d’un local dans des limites acceptables, il est important que la puissance de chauffe émise dans ce dernier diminue lorsque des apports de chaleur gratuits apparaissent (soleil, personnes).

Exemple.

Par exemple, un local de bureau de 30 m² nécessite une puissance de chauffe maximum (par -10°C de température extérieure) de 1 000 W.
Le local est orienté au sud. Ayant peu d’inertie thermique, les apports solaires au travers des vitrages (6 m²) peuvent atteindre au mois de janvier 350 W/m² de vitrage ou 2 100 W. Si aucune régulation locale ne stoppe la fourniture de chaleur à ce moment, une surchauffe importante est inévitable.

Vanne thermostatique, sonde extérieure et sonde d’ensoleillement.

La régulation la plus souvent utilisée dans ce cas est la vanne thermostatique. Son rôle est de diminuer le débit d’eau chaude alimentant les émetteurs, en fonction des apports de chaleur externes ou internes, pour maintenir une température constante dans le local. La simple présence de telles vannes sur les émetteurs n’est cependant pas une garantie de fonctionnement correct. En effet celui-ci dépend d’une coopération des occupants, ce qui n’est pas une certitude dans des lieux publics !

La présence d’autres équipements dans l’installation de chauffage seront des indices permettant d’écarter l’hypothèse d’une absence de régulation en fonction des apports gratuits. Ainsi le réseau de distribution de chauffage peut être dissocié en fonction de l’orientation et de l’occupation des locaux. Une façade soumise à l’ensoleillement peut être équipée de son propre circuit de chauffage commandé par sa propre sonde extérieure associé éventuellement à une sonde d’ensoleillement.

Mauvais réglage de la régulation centrale

Une installation de chauffage est dimensionnée pour garantir le confort des occupants pour une température extérieure voisine de -10°C. Cette température n’est en fait atteinte que très rarement durant la saison de chauffe. La température moyenne régnant durant celle-ci est plutôt proche de 5°C.

La régulation de l’installation a donc pour objectif de diminuer la puissance de chauffe pour que la fourniture de chaleur corresponde aux besoins réels. Cette régulation est souvent réalisée à un niveau central, en modifiant la température de l’eau distribuée

  • soit au niveau de la chaudière,
  • soit au niveau des circuits de distribution.

Variation de puissance d’un radiateur avec la variation de sa température d’eau.

Si la surchauffe se fait ressentir un peu partout dans le bâtiment, sans circonstance particulière (comme l’ensoleillement), on peut soupçonner que la température de l’eau qui alimente les émetteurs soit trop élevée, suite à :

  • une défectuosité de la sonde de température extérieure,
  • une courbe de chauffe trop élevée,
  • une erreur de programmation des horaires ou des températures de consigne.

Si l’installation de chauffage est en outre équipée d’une régulation locale, telle que vannes thermostatiques, l’effet d’une température d’eau trop élevée sera diminué.

Le déséquilibre de l’installation

Un réseau de distribution de chauffage est dit équilibré lorsque la perte de charge du circuit hydraulique conduisant à chaque émetteur est identique.

Réseau de distribution équilibré :
la résistance hydraulique de chaque branche est identique.

Un des circuits présentant une résistance hydraulique moindre aura tendance à court-circuiter une partie du débit, privant les autres circuits. Il est dès lors possible que le débit nécessaire ne soit pas atteint dans certains corps de chauffe, la température ambiante souhaitée n’est alors pas obtenue. Le réseau de distribution est hydrauliquement déséquilibré.

Réseau de distribution déséquilibré :
le premier radiateur court-circuite la majorité du débit.

La tendance souvent remarquée dans cette situation est d’augmenter la consigne de température (au niveau de la courbe de chauffe ou du thermostat d’ambiance) pour assurer le confort dans le local le plus froid. Il est résultera une surchauffe dans les locaux jusqu’alors correctement chauffés.

Pour repérer un déséquilibre, on peut sentir la répartition des températures dans les radiateurs : un radiateur chaud dans sa partie supérieure, mais froid dans sa partie inférieure présente un débit d’alimentation insuffisant (au contraire, une partie supérieure froide traduit une présence d’air à purger).

Détecter la mauvaise irrigation d’un radiateur.

Un déséquilibre hydraulique chronique dans une installation, par exemple dans une installation neuve, est le résultat d’une installation mal dimensionnée ou mal réglée lors de sa mise en route.

Par contre, un déséquilibre peut apparaître subitement, à la suite de :

  • l’embouage d’une partie de l’installation ou le blocage d’un élément par des boues,
  • l’extension des circuits par des piquages sur les circuits existants,
  • le placement de vannes thermostatiques sur une partie seulement de l’installation, ayant pour conséquence l’augmentation des pertes de charge dans une partie du circuit,
  • la modification de la régulation (exemple : le placement d’un optimiseur) qui peut entraîner des interférences entre les circuits et un mauvais fonctionnement des vannes mélangeuses lorsque l’installation ne possède pas de collecteur bouclé.

La technologie des émetteurs

Certains types d’émetteurs seront plus susceptibles de conduire à des surchauffes :

  • les émetteurs très peu inertes tels que les convecteurs dynamiques,
  • les émetteurs très inertes tels que le chauffage par le sol.

Émetteurs peu inertes

Les convecteurs très peu inertes chauffent l’ambiance uniquement par convection.

Chaque demande de chauffage (généralement commandée par une sonde d’ambiance) entraîne une montée en température très rapide de l’air ambiant.

Inversement, la chute de la température sera rapide dès la commande d’arrêt du thermostat.

Cette situation conduit à des fluctuations de température (alternance de périodes fort chaudes et fort froides) qui sont d’autant plus importantes que

  • La puissance de l’émetteur est surdimensionnée par rapport aux besoins réels.
  • Le différentiel du thermostat (différence de température commandant l’enclenchement et le déclenchement de l’appareil) est grand.

Émetteurs inertes

Les émetteurs très inertes, c’est-à-dire comportant une masse chaude très importante (dalle pour le chauffage par le sol, grand volume d’eau et fonte pour certains radiateurs), ne peuvent diminuer suffisamment rapidement leur puissance d’émission lorsque des apports gratuits importants apparaissent (ensoleillement, occupants).

Exemple : le chauffage par le sol. La chaleur y est véhiculée par de l’eau à une température de 40 à 50°C. Par la circulation de cette eau, c’est l’entièreté de la masse du sol (dalle de béton, carrelage) qui est portée à température et qui rayonne sa chaleur vers l’ambiance, avec une température moyenne de surface variant entre 24° C et 29°C. Lorsque le soleil apparaît dans le local, il est impossible de refroidir immédiatement cette masse. La température dans le local va donc augmenter. Heureusement, l’émission de chaleur s’arrêtera automatiquement lorsque la température de l’air ambiant aura atteint la température de surface du sol. Cependant la masse du sol étant déjà chaude, sa capacité d’absorber une partie du rayonnement solaire incident est fortement amoindrie. L’impact direct du soleil sur la température ambiante en sera donc plus important.

Le surdimensionnement des émetteurs

Lorsque l’installation de chauffage est régulée de façon centrale (par exemple en fonction de la température extérieure ou en fonction d’un thermostat d’ambiance situé dans un local témoin), un confort identique sera atteint dans tous les locaux si les émetteurs possèdent un degré de surdimensionnement semblable par rapport aux besoins.

Exemples. Les radiateurs d’un bâtiment ont été dimensionnés suivant la méthode erronée des cubages. Lorsque le confort est atteint dans les locaux en bout d’aile ayant deux ou trois murs extérieurs, les locaux centraux, ayant une paroi extérieure seront surchauffés. De même, un changement de répartition des locaux, par déplacement des cloisons, peut entraîner une surpuissance de chauffage dans certains et un manque de puissance dans d’autres.

De plus, des émetteurs trop puissants permettent une montée rapide en température de l’air ambiant. S’ils sont régulés en fonction des conditions intérieures (vannes thermostatiques, sonde d’ambiance), leur temps d’action est donc très court et les fluctuations importantes (d’autant plus s’ils sont peu inertes).

Découvrez cet exemple de bâtiment dont les problèmes de surchauffage ont été pris en compte : la Maison de Repos et de Soins du CPAS de Tournai.

Charges thermiques internes pour les commerces

Charges thermiques internes pour les commerces


L’apport des occupants

L’homme apporte chaleur sensible (par notre corps à 37 °C) et chaleur latente (par notre production de vapeur d’eau en respiration et transpiration).

Différentes valeurs sont données dans la littérature. La norme DIN 1946-2 (VDI-Lüftungsregeln) est intéressante dans le sens où, pour une plage de température qui correspond bien aux ambiances de zones de vente, elle donne des valeurs de chaleur sensible et latente et des apports d’eau des personnes pour des activités allant du repos au travail lourd.

DIN 1946-2 : du repos à l’activité légère
Température d’ambiance [°C] Chaleur totale [W] Chaleur sensible [W] Chaleur latente  [W] Apports en eau [g/h]
18 125 100 25 35
21 120 95 25 35
22 120 90 30 40
23 120 85 35 50
24 115 75 40 60
25 115 75 40 60
26 115 70 45 65
DIN 1946-2 : activité légère à soutenue
Température d’ambiance [°C] Chaleur totale [W] Chaleur sensible [W] Chaleur latente  [W] Apports en eau [g/h]
18 190 125 65 95
21 190 115 75 110
22 190 105 85 125
23 190 100 90 135
24 190 95 95 140
25 190 85 100 145
26 190 85 105 150
DIN 1946-2 : activité lourde
Température d’ambiance [°C] Chaleur totale [W] Chaleur sensible [W] Chaleur latente  [W] Apports en eau [g/h]
18 270 155 115 165
21 270 140 130 185
22 270 120 150 215
23 270 115 155 225
24 270 110 160 230
25 270 105 165 240
26 270 95 175 250

En période froide

La personne présente à la caisse, pour une température de 21 °C fournit donc 95 Watts de chaleur gratuite au local. Par ailleurs, elle disperse 35  grammes d’eau dans l’ambiance chaque heure. Dans une certaine mesure, la contribution des apports des personnes dans le magasin peut être intéressante.

Par exemple, si on considère que 100 clients se trouvent présents dans une moyenne surface, on arrive, pour une activité légère (c’est le cas des clients qui se déplacent dans le magasin), à des apports de l’ordre de :

115 [W] x 100  = 11 500  [Watts]

En période chaude

La vapeur d’eau risque d’être condensée, sur la batterie froide du ventilo-convecteur ou sur l’évaporateur des meubles frigorifiques. La chaleur de condensation correspondante devra être comptabilisée dans le bilan thermique de la machine frigorifique. La chaleur de vaporisation/condensation étant de 2 500 kJ/kg environ, la correspondance est donnée pour un client évoluant dans une ambiance de 26 °C par :

(150 [g/h] x 2 500 [J/g] ) / 3 600 [s/h] = 105 [Watts]

En conclusion

  • La présence d’un client apporte 115  Wh, chaque heure, en diminution des besoins de chauffage d’hiver dans un magasin à 21 °C.
  • Le même client (fidélité oblige) augmente de 190 Wh, chaque heure, les besoins de refroidissement d’une zone de vente climatisé par la présence de froid alimentaire, dans un magasin maintenu à 26 °C.

L’apport des équipements par usage

Si la consommation des nouveaux appareils d’éclairage a été fortement réduite ces dernières années, par contre, celle due à la prolifération des équipements par usage a augmenté de manière spectaculaire.

La quantité totale de chaleur libérée par ce type d’équipement est déterminée par l’utilisation/allumage de l’équipement. Les charges moyennes réelles dépendent de la configuration et de l’occupation des zones de vente. Des campagnes de mesure dans certains magasins ont montré la contribution de ces apports internes à l’augmentation des consommations de climatisation ou de froid alimentaire.

La cuisson rapide, par exemple, s’est fortement développée que ce soit dans les commerces de détail comme dans les grandes et les moyennes surfaces.

Les sources l’ADEME en France nous permettent d’interpréter les appels de puissance dues aux appareils se trouvant dans la zone de vente et risquant de perturber le fonctionnement des meubles frigorifiques.

Type d’usage Puissance moyenne des usages du magasin [W]
Four de la boulangerie 20 000
Chambre de pousse de la boulangerie 300
Emballeuse boucherie 330
Etiqueteuse boucherie 15
Photomaton 100
sonorisation 35
Caisse 20
Portique anti-vol 90

Source : ENERTECH, « Diagnostic électrique d’un supermarché de moyenne surface, avril 2001.

Dans cette étude très détaillée, on a tenté de dégager l’impact des apports internes sur le froid alimentaire. Le graphique suivant illustre la démarche :

Profil des consommations en période chaude (source ENERTECH).

Profil des consommations en période froide (source ENERTECH).

  • à l’éclairage ;
  • à l’occupation ;
  • l’ouverture des portes ;
  • les déperditions du bâtiment;

Seule un essai réel dans des conditions identiques en combinant entre eux les différents apports internes permettrait d’identifier la contribution de chacun d’eux. C’est difficilement envisageable dans un commerce en exploitation.

Seule la simulation thermique dynamique peut nous aider.


L’apport de l’éclairage

Puissance spécifique

Pour les zones de vente des commerces, on peut atteindre des valeurs de puissance spécifique de l’ordre de 20 W/m². En effet, les niveaux d’éclairement sont assez élevés et frôlent les 1 000 lux. En effet, les commerçants exigent en général ce niveau d’éclairement pour :

  • réaliser des éclairages d’accentuation;
  • de compenser l’atténuation du niveau d’éclairement dû à la hauteur assez importante des zones de vente.

Éclairage général : de l’ordre de 20  W/m²

Éclairage asymétrique permettant d’éclairer de manière uniforme les rayonnages verticaux. L’éclairage général est tenu à bonne distance des meubles frigorifiques afin d’éviter que la chaleur qu’il dégage n’entre pas en ligne de compte dans le bilan énergétique des frigos. Il faut néanmoins se méfier, car indirectement à travers l’induction du rideau d’air des meubles frigorifiques ouverts (par exemple), les luminaires s’ils sont peu performants peuvent contribuer à réchauffer la température ambiante de la zone de vente et, par conséquent, influencer l’évaporateur des meubles.

Éclairage d’accentuation  : 20 à 50 W/m²

L’éclairage d’accentuation ne fait pas bon ménage avec les meubles frigorifiques pour la simple raison qu’il est en général près ou fait partie intégrante des meubles et communique directement sa chaleur.

Gestion de l’éclairage

Le nombre d’heures d’utilisation de l’éclairage dépend de son mode de gestion.

  • Avec une gestion centralisée de l’éclairage, le nombre d’heures d’utilisation maximum est atteint : l’éclairage est allumé à l’ouverture par les membres du personnel les premiers sur les lieux de travail et éteint en fin de journée par une centrale. On admet que l’éclairage est utilisé minimum 12 heures par jour, 6 jours par semaine et durant 52 semaines.
  • Avec une gestion par zones ou en différentiant l’éclairage de travail et celui de vente, la gestion peut être décomposée en plusieurs paliers de puissance au cours de la journée :
      • les premiers membres du personnel (réapprovisionneur, boucher, boulanger, …) utilisent uniquement l’éclairage de travail;
      • pendant les heures d’ouverture, l’éclairage maximum est allumé

Source : Dapesco (implantation Delhaize Mutsaart).

    • Avec une bonne gestion individualisée ainsi qu’une liaison éclairage naturel, l’éclairage est allumé et éteint en fonction de la lumière naturelle disponible. Le système automatique éteignant l’éclairage est muni d’un retardateur.

Source : IDEA (implantation Sainsbury Greenwich).

Faut-il ajouter une sous-toiture lors de l’isolation du versant existant ?

Faut-il ajouter une sous-toiture lors de l'isolation du versant existant ?

  1. Lattes
  2. Contre-lattes
  3. Faut-il une sous-toiture ?
  4. Isolant
  5. Charpente
  6. Pare-vapeur
  7. Finition du plafond


On dispose d’une bonne sous-toiture

Une bonne sous-toiture possède les caractéristiques adéquates dont il est question ci-dessous, mais doit également être posée correctement.

De telles sous-toitures peuvent avoir été placées en prévision d’une isolation ultérieure en vue d’un aménagement des combles.

concevoir

Au cas où l’on dispose d’une bonne sous-toiture correctement posée, on peut poser l’isolant entre les chevrons et on procède comme pour une toiture neuve.

Les caractéristiques d’une bonne sous – toiture :

La sous-toiture doit être :

  • étanche à l’eau et résistante à l’humidité,
  • résistante au gel,
  • durable,
  • de préférence, ininflammable,
  • perméable à la vapeur,
  • de préférence, capillaire,
  • de préférence rigide.

Vu que l’on peut trouver beaucoup de matériaux répondant aux premières exigences, la qualité d’une sous-toiture se mesure surtout par sa réponse aux trois dernières exigences, à savoir :

La perméabilité à la vapeur

La sous-toiture doit être plus perméable à la vapeur que la finition intérieure sous l’isolant, car, même si la toiture est munie d’un pare-vapeur parfaitement mis en œuvre :

  • Le pare-vapeur peut être perforé par la pose d’équipements sans que l’on s’en rende compte.
  • Les matériaux et le bois en particulier peuvent contenir de l’humidité résiduelle.

La capillarité

Par effet « buvard », une sous-toiture capillaire permet de limiter, voir de supprimer « l’égouttement » en cas d’infiltration ou de condensation sur la sous-toiture froide (phénomène du sur-refroidissement).

Une sous-toiture micro-perforée n’est qu’une succession de pleins et de trous. Les pleins étant froids, une condensation s’y produira.
Une sous-toiture capillaire est préférable pour retenir l’eau en attendant qu’elle s’évapore !

La rigidité

Il existe des sous-toitures rigides, comme les plaques renforcées aux fibres organiques et des sous-toitures souples comme les membranes plastiques microperforées ou non.
Une sous-toiture rigide a, pour avantage, de :

  • permettre le contact entre elle et l’isolant et ainsi assurer une bonne étanchéité à l’air,
  • ne pas réduire le vide au-dessus de la sous-toiture sous la poussée de l’isolant,
  • diminuer la charge de vent sur les éléments de couverture,
  • ne pas produire de vibrations bruyantes par temps venteux.

Les exemples de « bonne » sous-toiture

Une sous-toiture de type fibres ciment-cellulose ou fibres de bois sont de bonnes sous-toitures : elles sont perméables à la vapeur, capillaires et rigides.

Les non-tissés en fibre de verre ou en matière synthétique représentent de bonnes sous-toitures si elles sont bien posées et que tous les autres composants de la toiture sont également correctement placés.

La sous – toiture doit être correctement posée

La sous-toiture doit être posée de manière continue et avec recouvrements entre les plaques ou les membranes.

Discontinuité dans la sous-toiture.

Il ne peut y avoir aucune perforation de la sous-toiture.

La sous-toiture doit aboutir à l’extérieur du bâtiment, dans la gouttière par exemple, sans créer de poches intérieures.

Mauvaise pose de la sous-toiture au niveau de la gouttière.

Il ne peut y avoir aucun obstacle qui empêche l’eau de couler sur la sous-toiture vers la gouttière.

Photo sous-toiture.

concevoir

A chaque interruption de la sous-toiture (cheminée, lanterneau, lucarne, …), les eaux infiltrées sous les éléments de couverture doivent être déviées vers la gouttière.

On dispose d’une bonne sous-toiture mais endommagée localement

La sous-toiture doit être réparée localement avant de poser l’isolant.

Suivant les sous-toitures, les méthodes de réparations locales varient. On sera toujours attentif à :

  • ne pas créer de poche de stagnation,
  • ramener l’eau sur la sous-toiture située en aval,
  • effectuer des réparations solides et stables dans le temps,
  • utiliser des matériaux compatibles avec la sous-toiture existante.

On ne dispose pas de sous-toiture

Faut-il en placer une par l’intérieur ?

Non !

En raison de la complexité de la méthode et du manque d’expérience dans le domaine, l’addition d’une sous-toiture à la toiture existante est, à ce jour, peu recommandée.

Par l’intérieur, il n’est quasiment pas possible de réaliser une sous-toiture continue entre chevrons.
Une interruption dans la sous-toiture donne lieu à un point préférentiel d’infiltration d’eau.

De plus, pour assurer correctement son rôle d’évacuation de l’eau, la sous-toiture doit aboutir à l’extérieur du bâtiment, dans la gouttière par exemple, sans créer de poches intérieures. Or en cas de rénovation sans retirer la couverture, le raccord correct de la sous-toiture à la gouttière est difficilement envisageable.

Comment raccorder la sous-toiture à la gouttière sans démonter la couverture ?

  1. Volige
  2. Lattes
  3. Contre-lattes
  4. Gouttière
  5. Sous-toiture
  6. Mur plein
  7. Isolant.

En réalité, la seule bonne solution consiste à retirer la couverture et à placer une sous-toiture par l’extérieur.

Il existe une solution peu fiable qui consiste à ne pas placer de sous-toiture et à choisir un matériau isolant hydrophobe, non capillaire posé de manière parfaitement jointive afin, qu’en cas d’infiltration, l’eau ne stagne pas et ne pénètre pas dans l’isolant. On évite ainsi qu’il perde sa capacité isolante et qu’il se détériore.

Dans le cas d’une laine minérale, un pare-vapeur doit être posé de manière impeccable et faire office de coupe-vent (les effets du vent peuvent se faire sentir fortement dans une toiture).
Au cas où l’eau passerait en-dessous de l’isolation au travers d’un joint mal fermé, cette légère infiltration serait arrêtée par le pare-vapeur et sécherait par la suite.

Dans le cas d’une mousse de polystyrène, celui-ci remplit, à lui seul les fonctions de sous-toiture, d’isolant et de pare-vapeur.
Enfin, toujours pour éviter les infiltrations d’air, il est préférable de choisir une finition en plâtre plutôt qu’en lambris ou planchettes.

Une précaution … !

Pour isoler sans sous-toiture, les pentes minimales doivent être respectées. Il faut être absolument certain du bon état de la couverture : elle doit assurer à elle seule la fonction d’étanchéité de la toiture. Il faut régulièrement surveiller tout envol ou rupture d’une tuile ou d’une ardoise, car lorsque les dégâts sont visibles à l’intérieur, il est souvent trop tard.

Autrement dit, cette solution n’est pas sans risque et doit être évitée ! En effet, il est difficile de contrôler toute pénétration d’eau (en cas d’intempérie, …), et si cette pénétration d’eau était sans conséquence néfaste avant l’isolation de la toiture, celle-ci pourrait endommager toute la finition intérieure de même que la charpente après isolation.

Remarque : le texte ci-dessus est inspiré d’un texte non officiel et non publié : Toiture inclinée – Questions techniques – Placement d’une sous-toiture en rénovation / Guichets de l’Énergie d’Ottignies / Août 1995. Il a été écrit suite à une étude faites sur le sujet par le Guichet de l’Energie d’Ottignies.


On ne dispose pas d’une bonne sous-toiture

On peut se trouver en présence d’une sous-toiture qui ne correspond pas aux caractéristiques d’une « bonne » sous-toiture. Il peut s’agir de feuilles de matière synthétique (micro-perforées ou non), de papier bitumé ou de papier revêtu d’une feuille d’aluminium ou synthétique, de membranes bitumineuses, etc.

Si la sous-toiture est trop peu perméable à la vapeur, il faut placer un pare-vapeur plus efficace sous l’isolant.

Question ?

Peut-on percer une sous-toiture existante pour augmenter sa perméabilité à la vapeur ?

  • c’est inutile, la condensation se fera sur la sous-toiture autour des trous,
  • il y a risque d’infiltration par les trous,
  • il y a risque de courant d’air sous la sous-toiture.

On dispose d’un voligeage

Le voligeage n’est pas considéré comme une sous toiture étanche.

On devra alors enlever la couverture et poser sur le voligeage une sous-toiture souple mais perméable à la vapeur et capillaire, et replacer la couverture après pose de contre-lattes et de lattes.

concevoir

Ensuite, on placera l’isolant par l’intérieur entre les chevrons comme on le ferait pour une nouvelle toiture.

  1. Pare-vapeur
  2. Chevron ou fermette (existant)
  3. Voligeage (existant)
  4. Sous-toiture
  5. Contre-latte
  6. Latte
  7. Couverture
  8. Gouttière (existante)

Initialement, la gouttière est fixée sur le voligeage. La sous-toiture que l’on vient poser sur le voligeage aboutira donc généralement correctement dans la gouttière.

On peut aussi choisir de ne pas poser de sous-toiture mais cette solution présente des risques.

Choisir le modèle d’isolation pour le plancher des combles

Cas d’un plancher lourd

La composition du plancher existant n’a pas d’influence sur le choix du modèle d’isolation.

Cependant, l’isolation sous le plancher lourd étant à éviter, tous les autres modèles vont surélever le plancher avec toutes ses conséquences : diminution de la hauteur sous toiture; diminution de la hauteur des baies (portes); selon la disposition, nécessité d’une marche supplémentaire …

Schéma l'isolation sous le plancher lourd.

concevoir 

Cette contrainte mise à part, le choix du modèle avec aire de foulée,ou sans, se fait donc comme pour une toiture neuve.

Cas d’un plancher léger

Le choix du modèle d’isolation se fait en fonction des différents critères ci-dessous. C’est au concepteur de décider ceux qui sont prioritaires.


L’efficacité énergétique

L’efficacité énergétique de l’isolation d’un plancher de comble dépend évidemment de l’épaisseur et du coefficient de conductivité thermique (λ) de l’isolant.

Elle dépend aussi de la continuité de l’isolant. Ainsi une isolation posée entre gîtes de 4 cm d’épaisseur écartés de 36 cm ne couvre que 90 % du plancher, le reste étant couvert par les gîtes nettement moins isolants.

Un modèle où l’isolant couvre l’ensemble du plancher sans discontinuité, tel qu’un matelas de laine minérale qui enveloppe l’ensemble du plancher ou un isolant posé au-dessus du plancher,est donc plus efficace au niveau énergétique.


La composition et l’état du plancher léger existant + besoin ou non d’un pare-vapeur + besoin ou non d’une aire de foulée

Selon le modèle d’isolation, l’isolant se pose par le haut (sur le plafond de l’étage inférieur) ou par le dessous du plancher. Le modèle se choisit donc en fonction de la composition existante du plancher ou des éléments du plancher que l’on veut garder visibles.
Le pare-vapeur devant être posé sous l’isolant, la nécessité d’en poser un, détermine aussi le choix du modèle.
Enfin, si l’on souhaite une aire de foulée, il faut adapter le modèle pour pouvoir la supporter.

Choix du modèle d’isolation en fonction de la composition du plancher existant

Plancher existant

Plancher sans aire de foulée, avec plafond.

Plancher avec aire de foulée, sans plafond.

Plancher avec aire de foulée et plafond.

Modèle sans pare-vapeur

Modèle initial :
Plancher sans aire de foulée, avec plafond Plancher avec aire de foulée, sans plafond Plancher avec aire de foulée et plafond
On ne rajoute pas d’aire de foulée :

Matelas semi-rigide entre gîtes.

Ou éventuellement, panneaux rigides de mousse synthétique.

Panneaux de semi-rigide, panneaux rigides ou flocons entre gîtes.
L’aire de foulée est retirée puis replacées après pose de l’isolant.

Panneaux semi-rigide, panneaux rigides ou flocons entre gîtes.

 

Matelas isolant souple recouvrant le plafond en contournant les gîtes

On rajoute une aire de foulée :

Panneaux semi-rigide, panneaux rigides ou flocons entre gîtes.

Modèle avec pare-vapeur

Modèle initial :

Plancher sans aire de foulée, avec plafond Plancher avec aire de foulée,
sans plafond
Plancher avec aire de foulée
et plafond
On ne rajoute pas d’aire de foulée :

Matelas souples à languettes entre gîtes.

On ne rajoute pas d’aire de foulée :
 

 

Panneaux isolant souple, semi-rigide ou rigide posé au-dessus d’un support.
On pose un plancher destiné à supporter l’isolant, le pare-vapeur est déroulé sur le plancher, l’isolant est posé sur le pare-vapeur.

 

 

Panneaux isolant souple, semi-rigide ou rigide posé au-dessus du plancher

On rajoute une aire de foulée :

 

On rajoute une aire de foulée :

 

Isolation semi-rigide entre lambourdes au-dessus du plancher ou panneaux rigides au-dessus du plancher

Isolation semi-rigide entre lambourdes au-dessus du plancher ou panneaux rigides au-dessus du plancher


La régularité de l’entredistance entre les gîtes

Les modèles utilisant les matelas à languettes (exemple : matelas à languettes entre les gîtes sans aire de foulée) ne conviennent pas pour les planchers à structure irrégulière car les rouleaux d’isolant ont des largeurs standards.

Les modèles utilisant des panneaux semi-rigides, rigides ou des flocons, par contre, s’adaptent bien à des structures irrégulières.

Découpe d’un panneau semi-rigide pour adapter sa largeur.

  1. On découpe le panneau suivant la diagonale.
  2. On fait glisser les moitiés pour diminuer la largeur.
    ou
  3. On fait glisser les moitiés pour augmenter la largeur.
  4. Enfin, on enlève les pointes qui dépassent.

Le besoin de disposer d’un espace technique important

Les modèles où l’isolant est posé par-dessus le plancher (Exemple : isolation entre lambourdes au-dessus du plancher avec aire de foulée) permettent de profiter de l’espace entre les gîtes comme gaine technique.

Ces modèles d’isolation surélèvent le plancher avec toutes ses conséquences : diminution de la hauteur sous toiture, diminution de la hauteur des baies (portes), selon la disposition, nécessité d’une marche supplémentaire…

Schéma modèles où l'isolant est posé par-dessus le plancher.


La régularité du support de l’isolant

Les modèles qui utilisent des panneaux de laine souple ou semi-rigide ou des flocons permettent de rattraper des irrégularités plus ou moins fortes de la surface de support de l’isolant.

Les modèles qui utilisent les panneaux rigides nécessitent un support relativement plane.

Protections extérieures

Protections extérieures


Brise-soleil.

Stores vénitiens.

Stores enroulables.


Les brise-soleil

Description

Les brise-soleil sont composés généralement de lames en aluminium disposées sur un châssis. La position de la protection peut être :

Photo brise-soleil.

  • Horizontale, perpendiculaire au plan de la fenêtre, pour les fenêtres orientées au sud,
  • verticale, perpendiculaire au plan de la fenêtre pour les fenêtres orientées à l’est ou à l’ouest,
  • parallèle au plan de la fenêtre, soit directement devant la fenêtre (on peut parler dans ce cas de claustra), soit écartée de celle-ci.

La combinaison des possibilités précédentes est envisageable.

Facteur solaire

FS associé à du double vitrage clair = .. 0,09 .. lorsque le vitrage est complètement ombré.

Transmission lumineuse et éblouissement

Contrairement aux protections déployées devant les vitrages, la vue du monde extérieur reste pratiquement inchangée. La pénétration de lumière à l’intérieur du local reste importante. En effet la composante réfléchie (par le sol et les bâtiments voisins) de la lumière du soleil n’est pratiquement pas interceptée tandis que les lames diffusent une partie de sa composante directe.

L’éblouissement, par vue directe du soleil ou par réflexion du rayonnement solaire par l’environnement, n’est cependant pas maitrisable à toute période de l’année.

Pouvoir isolant

Un brise soleil ne permet pas d’augmenter le pouvoir isolant de la fenêtre.

Moduler la protection par rapport aux besoins

Le degré de protection dépend :

  • De la position de la protection par rapport à la fenêtre,
  • de la hauteur du soleil,
  • du rapport entre la largeur de la protection et la hauteur ou longueur (en position verticale) de la fenêtre,
  • de l’espacement et de l’orientation des lames.

Exemple : la figure ci-dessous représente la protection réalisée par un brise-soleil horizontal, pour une fenêtre orientée au sud, au mois de juin, à 16 h.

Une protection adéquate ne pourra être obtenue que grâce à une étude précise tenant compte des risques de surchauffe et d’éblouissement dus à l’ensoleillement en fonction de la position du soleil et de la saison. Une amélioration de la situation peut être obtenue par une combinaison de protections horizontale et verticale. Il est à noter qu’il est possible de rendre amovibles des parties entières de la protection pour s’adapter aux conditions. Cependant cette solution n’est guère souple et généralement coûteuse car non standard.

Concevoir

Pour obtenir une méthode de dimensionnement des protections fixes.

Possibilité de ventilation naturelle des locaux

Les brise-soleil autorisent tout à fait la ventilation naturelle des locaux grâce à l’ouverture des fenêtres.

Résister aux contraintes mécaniques et à l’encrassement

Les brise-soleil sont prévus pour résister aux charges du vent et des autres perturbations atmosphériques. Un entretien minimum est indispensable sous peine de voir l’aluminium perdre ses caractéristiques esthétiques. En principe, les systèmes sont résistants à la corrosion.

Placement possible en rénovation sur une fenêtre existante

Le placement de brise-soleil est technologiquement possible en rénovation. Cependant le projet devrait être prévu dès la conception du bâtiment puisque la structure architecturale du bâtiment se trouve modifiée.

Intimité des occupants

Les protections qui ne se déploient pas devant les fenêtres ne peuvent soustraire au regard l’intérieur des locaux. Si l’intimité des occupants devient un objectif primordial, ce type de protection doit être installée sous forme de claustra.


Les stores vénitiens à lamelles

Description

Photo store vénitien à lamelles.

Les stores vénitiens extérieurs sont composés de lamelles généralement en aluminium. L’ensemble du store peut être remonté et les lamelles peuvent être orientées grâce à un système de câbles ou de chaînes.

Facteur solaire

FS associé à du double vitrage clair = .. 0,08 ..
La protection dépend de l’orientation donnée aux lamelles.

Transmission lumineuse

Schéma transmission lumineuse.

L’orientabilité des lamelles permet une variation de la transmission lumineuse. Selon l’inclinaison, les réflexions entre lamelles permettent alors un éclairage naturel du local plus ou moins important tout en protégeant les occupants du rayonnement direct du soleil.

Une orientation judicieuse des lames favorisera une répartition plus équitable de la lumière dans les locaux, diminuant l’éblouissement auprès des fenêtres et diffusant la lumière à l’intérieur (figure ci-contre).

La réflexion de la lumière par les lamelles dépendra du type et de la couleur du matériau de surface utilisé (réflexion spéculaire ou diffuse).
À titre d’exemple : la transmission lumineuse au travers d’un double vitrage clair muni de stores à lamelles inclinés à 45° varie entre 5 % (couleur sombre des lamelles) et 10 % (couleur clair).

Pouvoir isolant

L’inétanchéité de la protection supprime souvent tout effet d’isolation supplémentaire.

Moduler la protection par rapport aux besoins

La modulation de la protection est la propriété principale des stores à lames orientables. L’adaptation aux besoins peut se faire tant par retrait (latéral ou vertical en fonction du type de store) que par inclinaison des lamelles.

La manipulation des protections peut être réalisée grâce à des manivelles ou peut être motorisée, ce qui en facilite l’utilisation. Une automatisation est également possible.

Possibilité de ventilation naturelle des locaux

L’ouverture des fenêtres lorsque les stores sont abaissés ne pose pas de problème :

  • La position extérieure laisse toute liberté à l’ouvrant.
  • La résistance mécanique de la protection anti-tempête (patins latéraux) rend le système insensible aux courants d’air éventuels.

Résister aux contraintes mécaniques et à l’encrassement

Les extrémités des lamelles peuvent être munies de patins coulissant dans deux rails latéraux. Cette disposition confère à l’ensemble une bonne résistance mécanique, notamment aux vents. Cependant, les grands vents peuvent provoquer une vibration des lames et un bruit important. Certains produits possèdent également un système antivol de verrouillage en position fermée.

Placement possible en rénovation sur une fenêtre existante

Le store, en position remontée, occupe une place non négligeable (15 à 40 cm). Son placement devant une fenêtre existante fera donc perdre une partie de sa surface utile lorsque le store n’est pas abaissé. Pour éviter cet inconvénient, il est possible de fixer le dispositif devant le linteau.

En tout état de cause, l’aspect extérieur du bâtiment se verra modifié.

Vision au travers et intimité des occupants

En fonction de l’orientation des lamelles, il est souvent possible de conserver une vue de l’intérieur vers l’extérieur tout en limitant les indiscrétions.


Les stores en toiles enroulables (screen)

Description

Photo stores en toiles enroulables.

Les stores enroulables sont composés d’une toile qui se déploie devant la fenêtre. La protection est complètement amovible.

Généralement seules les extrémités de la partie inférieure de la toile coulissent soit dans des rails latéraux, soit le long de câbles tendus.

La manipulation des stores se fait depuis l’intérieur des locaux au moyen de manivelles. Elle peut être motorisée et automatisée.

Facteur solaire

FS associé à du double vitrage clair = 0,05 .. 0,15

Le degré de protection dépend du coefficient d’ouverture, du type de maillage (les spécialistes distinguent le sergé du natté) et de la couleur de la toile.

Transmission lumineuse

D’une manière générale : TL : 0,04 .. 0,26 pour le store seul

Tout comme le facteur solaire, la transmission lumineuse dépend du coefficient d’ouverture ainsi que de la teinte du store. Plus la protection sera claire, plus sa transmission lumineuse sera importante.

Pouvoir isolant

Le pouvoir isolant d’une fenêtre peut être augmenté par la présence d’un store extérieur (amélioration du coefficient U de la fenêtre jusqu’à 20 %).

Tout dépendra cependant de la perméabilité du store. De plus, son déploiement durant la nuit implique sa résistance aux conditions hivernales (vent, pluie, …) et au vandalisme. L’efficacité dépend d’une collaboration totale des occupants ou une automatisation intégrant les différents paramètres atmosphériques.

Moduler la protection par rapport aux besoins

La protection par store enroulable est par définition modulable. En fonction de la saison ou de l’heure de la journée, le store peut être abaissé ou relevé partiellement ou entièrement en fonction des besoins en apports solaires. Cette modulation peut être gérée par l’occupant de façon manuelle ou motorisée (il existe aussi des systèmes avec télécommande) ou de façon automatique grâce à un régulateur.

Possibilité de ventilation naturelle des locaux

L’ouverture des fenêtres reste physiquement possible lorsque le store est baissé. Cependant, les courants d’air engendrés par une ventilation naturelle importante risquent de détériorer rapidement la protection.

Résister aux contraintes mécaniques et à l’encrassement

Les stores enroulables extérieurs sont sensibles au vent.

Leur tenue mécanique n’est généralement plus garantie lorsque la vitesse du vent est supérieure à environ 10 m/s (36 km/h).

Placement possible en rénovation sur une fenêtre existante.

Vision au travers et intimité des occupants

Les stores extérieurs modifient la vue de et vers l’intérieur de la pièce.

Pour les stores enroulables de type toile (screen), cette propriété dépendra à la fois de la couleur et du coefficient d’ouverture de la toile : à même coefficient d’ouverture, une toile foncée permettra une meilleur vue au travers. A même couleur, une toile avec un coefficient d’ouverture plus élevé permettra une meilleure vue au travers.

Exemple : vues au travers de différentes protections solaires enroulables de type « toile »

Vue au travers de jour depuis l’intérieur Vue au travers de nuit depuis l’extérieur
Noir
Coefficient d’ouverture  (C.O.) : 3.3
Noir
C.O.:19.8
Blanc
C.O. :4.3
Blanc
C.O. :12.1
Source : Projet PROSOLIS UCL-CSTC financé le SPW). Publié dans CSTC Contact 2014/3. Outil d’aide au choix des protections solaires disponible sur : ouverture d'une nouvelle fenêtre ! www.prosolis.be.


Les éléments architecturaux, les auvents, les stores ou volets projetés à l’italienne

Ces divers types de protection associent les propriétés des brise-soleil et des stores enroulables. Nous ne décrirons donc ici que leurs caractéristiques les plus marquantes.

Les éléments architecturaux

Schéma éléments architecturaux - 01.Schéma éléments architecturaux - 02.

Les éléments architecturaux sont des éléments fixes intégrés dans la structure du bâtiment comme, par exemple, des surplombs.

Par définition, ils doivent être projetés dès la conception du bâtiment. Leur utilisation en rénovation est donc extrêmement limitée.

Leur performance est semblable aux brise-soleil, certaines configurations pouvant être conçues pour favoriser la transmission de la lumière naturelle à l’intérieur des locaux.

Schéma éléments architecturaux - 03.

Les auvents

Photo auvent.

Les auvents (appelés aussi marquises ou tentes solaires) sont des toiles enroulables déployées à l’horizontale.

Ils offrent une protection tout à fait variable en fonction des besoins mais sont sensibles au vent.

Les stores ou volets projetés à l’italienne

Photo store ou volet projeté.

Ces systèmes permettent de combiner les propriétés des protections enroulables verticales et des protections horizontales.

L’emploi de volets peut contribuer à l’isolation nocturne de l’enveloppe pour autant qu’ils soient étanches lors de leur fermeture (réduction jusqu’à 20 % des déperditions par le vitrage).

Les volets joueront également un rôle de protection face aux intrusions et vandalisme (suppression de la vue vers l’intérieur).

Réguler les débits d’air dans le système

Réguler les débits d'air dans le système


Diminution permanente des débits

Avant, très généralement, un ventilateur est installé lors de la construction du bâtiment ou lors d’une rénovation importante. Ensuite, il tourne dans les conditions d’installation initiales pendant toute sa durée de vie. En cas de défaillance, il est remplacé par un modèle de même type, sans que l’on se pose la question de savoir si un modèle avec d’autres caractéristiques ne conviendrait pas mieux …

Or, lors de la sélection du ventilateur, le point de fonctionnement souhaité est déterminé théoriquement en définissant le débit nécessaire et en calculant les pertes de charge du circuit pour ce débit. Ce calcul est souvent approximatif surtout s’il s’agit d’un circuit ancien, modifié à plusieurs reprises. Il s’en suit que « par mesure de sécurité », les pertes de charge sont surévaluées et que le ventilateur choisi fournit un débit plus grand que nécessaire. La perte de charge réelle est en effet inférieure à celle qui a servi de base à la sélection.  De même, les besoins thermiques ne restent pas constants en fonction des saisons. Il est dès lors judicieux de s’interroger sur la nécessité de maintenir un régime de fonctionnement identique tout au long de l’année.

Si les débits relevés dans le bâtiment sont plus importants que les valeurs recommandées, il est possible à faible coût de diminuer la vitesse du ventilateur de façon permanente :

D2 = (n1 / n2) x D1 (changement de la poulie du ventilateur)

D2 = (n2 / n1) x D1 (changement de la poulie du moteur)

  • D1 et n1 = diamètre de la poulie et vitesse de rotation d’origine
  • D2 et n2 = diamètre de la nouvelle poulie et nouvelle vitesse de rotation.
  • Si le moteur du ventilateur possède plusieurs vitesses, une commutation sur une vitesse inférieure peut s’avérer suffisante. Cette commutation peut être automatique en fonction du moment de la journée.
    Par exemple : passage en petite vitesse en journée dans la cafétéria d’un hôpital.

Ces actions sont rapidement rentabilisées, d’une part par la diminution des besoins de chauffage de l’air neuf et d’autre part par la diminution de la consommation électrique du ventilateur (la consommation électrique varie comme le cube de la vitesse de rotation (règles de similitude)).

Exemple.

Situation de départ Situation révisée
Vitesse (tr/min) 2 000 1 000
Débit d’air (m³/h) 21 600 (1 000 / 2 000) x 21 600 = 10 800
Pertes de charge (kPa) 1,4 (1 000 / 2 000)² x 1,4 = 0,35
Puissance absorbée par le ventilateur (kW) 12,2 (1 000 / 2 000)³ x 12,2 = 1,52

Soit une économie électrique de 88 % !

Attention, une modification de la vitesse de rotation du ventilateur fait varier la charge électrique du moteur. Il convient donc de mesurer l’intensité absorbée par le moteur après chaque modification de poulie et de contrôler qu’elle reste dans les limites indiquées sur sa plaque.

Calculs

Pour estimer la rentabilité d’une modification des débits de ventilation dans votre situation.

Arrêt de la ventilation

Le contrôle du temps de fonctionnement est ce que l’exploitant peut gérer le plus facilement lui-même. Les interventions sont simples, les gains en énergie et usure du matériel souvent énormes. Il faut donc se demander si la durée de ventilation appliquée est nécessaire.

Dans le choix de ce mode de gestion, certaines précautions de base sont à prendre

  • Adapter le nombre d’heures de fonctionnement et l’horaire d’exploitation lorsque les besoins et les affectations des locaux changent.
  • Contrôler régulièrement la programmation de l’horloge (suspendre une étiquette à proximité avec l’horaire valable).
  • Modifier l’horaire en fonction des saisons si nécessaire.
Exemples.

  • Dans une installation de ventilation simple flux (grilles dans les menuiseries et extraction dans les sanitaires), l’extraction peut être automatiquement réduite durant les périodes d’inoccupation (une coupure complète risque de provoquer la propagation d’odeurs). Cette remarque peut conduire à prévoir des extractions à deux vitesses. Il est alors souhaitable de réaliser un zonage des besoins d’extraction afin que les zones intéressées puissent entrer dans un programme d’occupation des lieux fixé à l’avance (vertical ou horizontal).
  • Dans une installation double flux (pulsion dans les locaux et extraction dans les sanitaires, les extractions sanitaires peuvent passer en régime réduit en période d’inoccupation et dans le même temps les introductions d’air neuf sont arrêtées. Il y a alors une légère dépression dans l’ensemble des locaux intéressés. Les installations peuvent être sous le contrôle d’une ou plusieurs horloges pour la programmation des différents régimes de marche (hors gel, relance, marche normale).
  • Une horloge commande le passage de grande vitesse à petite vitesse dans un réfectoire, en fonction de l’horaire de la journée

Le temps de retour de telles opérations est souvent inférieur à 1 an.

Exemple.

Un ventilateur sanitaire extrait 1 000 m³/h, dans un immeuble de bureaux occupé de 8 à 18 h. Par rapport à un fonctionnement en continu, l’adaptation des horaires de ventilation à l’occupation permet d’économiser :

En électricité :

0,25 [W/(m³/h)] x 1 000 [m³/h] x 4 130 [h/an] =
1 032 [kWh/an]

où :

  • 0,25 W/(m³/h) est un ordre de grandeur de puissance absorbée pour une extraction seule (pour installation double flux, la puissance absorbée par les ventilateurs varient de 0,25 (installation performante) à 0,75 W (installation moyenne) par m³/h d’air transporté)).
  • 4 130 h/an est le nombre d’heures d’inoccupation des bureaux durant la saison de chauffe (35 semaines/an ou 5 880 h/an).

En chauffage :

0,34 [W/m³.K] x 1 000 [m³/h] x (16 [°C] – 5 [°C])
x 4 130 [h/an]/ 0,7 / 1 000 
=
15 446 [kWh/an] ou 1 544 litres de fuel ou m³ de gaz par an

où :

  • 16° est la température de consigne de chauffage en période de ralenti et 5° la température extérieure moyenne nocturne durant la saison de chauffe.

L’économie financière totale s’élève de 1125,5 [€/an] (à 0,622 €/litre de fuel et 0,16 €/kWh en heures creuses).

L’investissement à consentir pour une horloge programmable est de l’ordre de quelques dizaines d’euros.

Cependant, il est à noter qu’en période d’occupation, une ventilation minimale doit toujours être maintenue même en-dehors de la présence des occupants, par exemple la nuit. Un arrêt complet de la ventilation hygiénique ne doit être envisager que dans le cas d’une période d’inoccupation plus longue : vacances, inoccupation du bâtiment, …

Calculs

Pour estimer la rentabilité d’une modification de l’horaire de ventilation dans votre situation.

Gestion de la ventilation à la demande

La gestion de la ventilation à la demande consiste à moduler les débits de ventilation en fonction du taux d’occupation des locaux. Un capteur (détection de présence, sonde CO2, …) commande soit les bouches de distribution de l’air, soit directement la vitesse du ventilateur.

Concevoir

Pour choisir le mode de régulation et les capteurs.

L’investissement à consentir pour adapter l’installation existante (bouches réglables, réglage du débit du ventilateur, …) rend la gestion de la ventilation à la demande (c’est-à-dire par sonde de qualité d’air ou détection de présence) difficilement rentable dans les immeubles de bureaux classiques. Elle ne peut se justifier que pour des débits gérés par sondes et des temps de fonctionnement à régime réduit suffisamment importants (salle de conférence, salle de réunion, piscine, …). Dans les autres cas, il faut se contenter de systèmes très simples comme la simple horloge sur l’extraction.

Calculs

Pour estimer la rentabilité d’une gestion de la ventilation à la demande dans votre situation.

Systèmes de ventilation

Systèmes de ventilation


La ventilation des cuisines collectives

La norme prEN 16282, actuellement en projet, regroupe certaines recommandations de la VDI 2052 et de l’HACCP. Elle traite des composants de la ventilation des cuisines commerciales et recommande de disposer d’une extraction et d’une pulsion propres à la cuisine pour tout local contenant plus de 25 kW en appareils de cuisine. Les systèmes avec transfert décrits plus loin après ne sont donc plus conçus actuellement. La ventilation de la cuisine collective doit se faire de manière indépendante des autres locaux du bâtiment.

Chacun des systèmes ci-dessous peut être réalisé avec un système à simple flux (extraction mécanique et prise d’air naturelle) ou à double flux.


Le système indépendant

Chaque local possède son extraction et sa prise d’air. Il s’agit du système préconisé par les normes et règles d’hygiène de l’AFSCA (norme HACCP).

Schéma système de ventilation indépendant.

 


Le système avec transfert

L’air vicié est extrait dans la cuisine et l’air frais est introduit dans les autres locaux. L’équilibre se fait par des grilles de transfert entre les locaux. Les normes en matière d’hygiène déconseillent le transfert d’air entre la zone de repas et de cuisine pour les installations supérieures à 25 kW pour une question d’hygiène.

Schéma système de ventilation avec transfert.

 


Le système avec transfert et amenée/extraction d’air complémentaires

Le troisième système combine les deux précédents : l’air vicié est extrait dans la cuisine et l’air frais est introduit dans les autres locaux. Des grilles permettent le transfert (partiel) de l’air entre les locaux. Chaque local dispose, en plus, d’une amenée ou d’une extraction d’air complémentaire de manière à pouvoir fonctionner en système indépendant lorsque l’autre local n’est pas ou que partiellement utilisé.

Schéma système de ventilation avec transfert et amenée/extraction d'air complémentaires

Ce troisième système est très pratique car il permet d’équilibrer les débits à tout moment de la journée. Toutefois dans la pratique, aucun transfert d’air ne sera fait entre la zone restaurant et la zone des cuisines. Les deux locaux seront ventilés séparément pour éviter que des polluants contenus dans l’air de la zone de repas ne viennent contaminer celui de la cuisine et par conséquent les aliments.

Envisager le financement par un tiers investisseur

Envisager le financement par un tiers investisseur


Principe du tiers investisseur

A priori, un tiers investisseur réalise le projet de rénovation à la place du gestionnaire et lui promet de se faire rembourser via les économies générées. Après 5 ans (par exemple), l’investissement est remboursé et les nouvelles économies sont au bénéfice du gestionnaire.
Voici les modalités décrites par un tiers – investisseur du marché :

  1. « Le tiers investisseur prend en charge la gestion technique, administrative et financière de toutes les phases d’un programme d’investissement.
  2. Le tiers investisseur n’exerce aucune activité de fourniture de matériels, d’équipements, de biens consommables ou de main d’œuvre, ces activités sont obligatoirement sous-traitées par le tiers investisseur aux entreprises existantes du secteur. Sur base d’un cahier de charges, le tiers investisseur lance auprès des sous-traitants des appels d’offres afin de faire jouer les règles de la concurrence.
  3. Dans un projet, le suivi des performances, la détermination des valeurs réalisées et, le cas échéant, l’identification des interventions correctrices relèvent de la responsabilité du tiers investisseur.
  4. Le financement intégral du programme d’investissement est pris en charge par le tiers investisseur. Ce financement comprend :
    • le coût des études et des services d’ingénierie nécessaires,
    • les factures de tous les entrepreneurs et sous-traitants travaillant sur le projet,
    • les frais relatifs au financement intercalaire,
    • les honoraires du tiers investisseur ».

Avantages

Ce système est attractif !

Ainsi, si votre bâtiment est particulièrement consommateur d’énergie (avec une chaudière sur laquelle on viendrait cuire un œuf tellement son isolation est mauvaise, par exemple !), mais que vous ne disposez pas d’argent pour rénover, un investisseur extérieur fait les travaux pour vous, se paye grâce aux économies réalisées et « vous rend » votre installation 5 ans plus tard.

Voici ce qu’annonce un tiers investisseur du marché :

  1. « Le remboursement du Coût Total de Réalisation du Projet (C.T.R.P.) augmenté des frais de financement s’effectue proportionnellement aux performances réalisées, avec la garantie d’un temps de remboursement maximum fixé. Ainsi, le Client cesse d’être débiteur des sommes correspondant aux performances réalisées dès le remboursement du programme et au plus tard à l’échéance de la durée maximale de remboursement prévue par contrat, même si le coût total du programme n’est pas intégralement remboursé.
  2. Le budget du programme d’investissement, hors intérêts intercalaires, est arrêté à un montant maximum garanti par le tiers investisseur. Tout dépassement de ce budget est intégralement supporté par le tiers investisseur.
  3. Le financement du programme d’investissement n’entraîne ni gage sur les équipements, ni aucune restriction quant au transfert de propriété de ceux-ci au Client. Le Client devient propriétaire des constructions, des installations ou des équipements au fur et à mesure de la mise en œuvre des matériaux et de leur incorporation au sol ou à l’ouvrage en construction ».

Organisation pratique

Voici les modalités décrites par un tiers investisseur du marché :

  1. Le tiers investisseur assume le rôle de Maître de l’Ouvrage délégué, en ce compris la représentation et la défense des intérêts du Client dans les relations avec l’architecte et les entrepreneurs.
  2. La gestion des achats, y compris les comparatifs des fournisseurs, les discussions des prix et le paiement des fournisseurs, relève de la responsabilité du tiers investisseur.
  3. Les états d’avancement des travaux et l’évolution des frais engagés sont présentés régulièrement au Client.
  4. L’étude économique et financière du projet est réalisée par le tiers investisseur.
  5. Le montage financier et la mise à disposition des fonds. ce qui entraîne une grande vitesse de réaction et une souplesse dans l’approche des données.
  6. La transparence totale des coûts et le travail à livre ouvert. À tout moment, le Client connaît le détail des frais engagés.
  7. Le remboursement est liée à la performance et aux économies effectivement obtenues.
  8. La fin des paiements est acquise par le Client dès qu’une des limites suivantes est atteinte :
    • remboursement complet du Coût Total de Réalisation du Projet,
    • fin de la durée maximale de remboursement prévue par le contrat.

    Dans le deuxième cas, le solde éventuellement restant dû – si la performance était insuffisante – est à charge du tiers investisseur.

  9. La possibilité est offerte au Client de rembourser à tout moment l’investissement ou le solde restant dû sans indemnité de remploi; ceci permet au Client d’économiser des frais financiers s’il possède les fonds nécessaires.
  10. Le tiers investisseur offre à son Client les garanties d’un entrepreneur enregistré.

Inconvénients

Il n’y a pas de miracles !… Le tiers investisseur est une société qui doit vivre comme tout le monde et donc l’ensemble des services offerts doivent être remboursés, y compris les intérêts bancaires, y compris le risque lié à leurs engagements…

Tout le service de gestion proposé doit également être financé…

De plus, vu le prix actuel de l’énergie, l’idée que l’investissement va être remboursé sur quelques années d’économies d’énergie est difficile à vérifier dans la pratique… Aussi, le tiers investisseur propose un remboursement mensuel complémentaire. Prenons un exemple simple à euros constants :

L’investissement est de 375 000 € (intérêts inclus) et l’économie d’énergie prévue est de 50 000 €/an : un complément mensuel de l’ordre de 2000 €/mois sera demandé afin que tout soit remboursé en 5 ans (5 x 50 000  + 5 x 12 x 2000).

En pratique, le gestionnaire payera environ 6000 €/mois au tiers investisseur : 4000 € économisés sur l’énergie et 2000 € de « loyer ».

L’engagement du tiers investisseur porte sur l’évaluation du potentiel d’économie : il garantit que l’économie sera bien de 4000 €/mois, minimum. Sans quoi, il paye la différence.

Alors que se passe-t-il lorsque l’hiver est particulièrement froid ? L’économie d’énergie risque d’être réduite à peu de choses… Que rembourser ? Le tiers investisseur a prévu le coup et va estimer, par une règle de trois calculée sur base des degrés-jours du lieu ( = « du froid qu’il a fait »), ce qu’on aurait du consommer si on avait toujours l’ancienne installation ! Et il demandera de le payer sur base de la différence !

On le voit, il faut bien se mettre d’accord sur la manière d’évaluer les consommations (mesure de la consommation réelle et évaluation de la consommation ramenée à une année climatique moyenne). De même qu’il est utile de réfléchir à l’avance aux conséquences d’une modification des consommations prévisibles dans les prochaines années (augmentation du personnel, construction d’une annexe, achat d’équipements, …).
La phrase inscrite dans les « principes » du tiers investisseur prend à présent une autre signification :

« Dans un projet, le suivi des performances, la détermination des valeurs réalisées et, le cas échéant, l’identification des interventions correctrices, relèvent de la responsabilité du tiers investisseur ».

On comprend que pour le tiers investisseur la mission est délicate : il n’est pas gestionnaire du bâtiment et pourrait se voir injustement pénalisé si vous laissez vos fenêtres ouvertes…

Mais que l’arbre ne cache pas la forêt ! Si le contrat est clair et prévoit une évaluation précise et acceptée par chaque partie, chacun aura intérêt à réussir, ce qui est gage de réussite !


Un exemple

Nous avons suivi le cas d’un home pour enfants du Brabant Wallon où plusieurs bâtiments (répartis sur 7 ha) étaient alimentés par une boucle d’eau chaude enterrée. Selon nos estimations, 30 % de l’énergie étaient perdus par la longue boucle, mal isolée. De plus, des fuites étaient régulièrement réparées, à grands frais…

Le principe de la boucle était peu souple (besoins des bâtiments en chauffage très variables…). Et le coût de rénovation de la boucle semblait exorbitant. Le conseil d’administration aurait difficilement accepté un tel investissement…

Un tiers investisseur a dès lors proposé de construire 7 petites chaufferies (une par pavillon). L’investissement a été remboursé moitié par les économies (les 30 % se sont révélés exacts !), moitié par une indemnité mensuelle jugée acceptable par la direction. Celle-ci a par ailleurs apprécié que le tiers investisseur soit responsable du suivi technique du projet (réalisation du cahier des charges et suivi des travaux), comme garantie de bonne fin pour les deux partenaires !

Cinq ans plus tard, le home disposait d’une installation remise à neuf, et des économies énergétiques non négligeables. Sans compter la suppression de l’incertitude liée à une rupture éventuelle de la boucle en plein hiver… !

Désordres thermiques

Désordres thermiques


Qu’est-ce qu’un désordre thermique ?

Sous l’effet de la chaleur, les matériaux utilisés dans les bâtiments se dilatent. En se refroidissant, ils se contractent.

L’ importance de la dilatation est proportionnelle à la température et varie d’un matériau à l’autre.

Si le matériau peut se dilater librement, il n’entraînera pas de contraintes internes dans les éléments constitutifs du bâtiment.

Dans le cas contraire, et lorsque les variations de température sont importantes, lorsque les différences de températures entre éléments constitutifs sont importantes, ou lorsque les coefficients de dilatation varient fortement d’un matériau à l’autre, des contraintes excessives amèneront des désordres, sous forme de déformation ou de rupture.

La rupture ou la déformation peuvent apparaître :

  • soit dans le matériau lui-même,
  • soit au joint avec un autre matériau,
  • soit aussi dans un élément voisin dont la résistance mécanique est plus faible.

Coefficients de dilatation thermique des matériaux.


Le cas des toitures plates

Un toit plat sans isolation thermique est déjà fortement sollicité par les variations de la température en sa partie supérieure. Les tensions thermiques sont cependant tempérées par la chaleur provenant de l’intérieur du bâtiment.

Si la toiture est isolée, et que l’isolant est correctement placé sur la face extérieure de la toiture (toiture chaude ou toiture inversée), celle-ci bénéficie de la stabilité de température intérieure du bâtiment. Les contraintes thermiques deviennent alors négligeables.

Par contre, si l’isolant est placé sous la face intérieure de la toiture, les variations thermiques sont augmentée, et le support ou le béton de pente subissent donc des chocs thermiques importants et peuvent se fissurer. Il peuvent également entraîner des désordres dans les parois latérales contiguës et dans la membrane d’étanchéité.


Le cas des métaux

Certains accessoires de toiture comme les finitions de rives, les évacuations, etc., sont réalisés en métal.

Comme tous les matériaux, les métaux se dilatent à la chaleur.

Des joints de dilatation doivent donc être prévus lorsque les pièces dépassent certaines longueurs.

Facteur de lumière du jour

Facteur de lumière du jour


Définition du facteur lumière du jour

En éclairage naturel, l’exigence d’éclairement peut se traduire en valeur de « facteur de lumière du jour » (FLJ).

Ce facteur est le rapport de l’éclairement naturel intérieur reçu en un point (généralement le plan de travail ou le niveau du sol) à l’éclairement extérieur simultané sur une surface horizontale, en site parfaitement dégagé, par ciel couvert. Il s’exprime en %.

Dans les conditions de ciel couvert (ciel normalisé par la Commission Internationale de l’Éclairage), les valeurs du facteur de lumière du jour sont indépendantes de l’orientation des baies vitrées, de la saison et de l’heure du jour.

Schéma facteur lumière du jour.

FLJ

– de 1 %

1 à 2 %

2 à 4 %

4 à 7 %

7 à 12 %

+ de 12 %

Très faible

Faible

Modéré

Moyen

Élevé

Très élevé

Zone
considérée

Zone éloignée des fenêtres
(distance environ 3 à 4 fois
la hauteur de la fenêtre)

A proximité des fenêtres
ou sous des lanterneaux

Impression de clarté

Sombre à peu éclairé

Peu éclairé à clair

Clair à très clair

Impression visuelle du local

Cette zone ………. semble être séparée ……… de cette zone

Ambiance

Le local semble être refermé sur lui-même

Le local s’ouvre vers l’extérieur

Confort de travail non adapté pour un travail permanent adapté à moins de 50 % des heures de travail adapté à plus de 50 % des heures de travail mais risques d’éblouissement

Le facteur de lumière du jour moyen

À défaut de simulation informatique, il existe des formules approchées pour estimer le Facteur de Lumière du Jour moyen d’un local. Nous reprenons ci-dessous celle proposée par le BRE.

FLJmoy = Sf x TL x a / (St x (1 – RxR))

où :

  • Sf = surface nette de vitrage ( = ouverture de baies moins 10% pour les châssis).
  • TL = facteur de transmission lumineuse du vitrage, dont on déduit 10 % pour saleté.
  • a = angle du ciel visible depuis la fenêtre, exprimé en degrés. Par exemple, il vaut 90° si aucun masque n’est créé par des bâtiments ou l’environnement en face de la fenêtre. Il vaut 60° si un bâtiment crée un ombrage entre le sol et les 30 premiers degrés (cas 2 ci-dessous).

  • St = surface totale de toutes les parois du local, y compris celle des vitrages
  • R = facteur de réflexion moyen des parois du local (prendre 0,5 par défaut)
Exemple.

Supposons un local de 4 m (largeur) x 5 m (profondeur) x 3 m (hauteur). La surface vitrée est de 3 m sur 1,5 m.

  • Sf = 0,9 x 3 x 1,5 = 4,05
  • TL = 0,75 x 0,9 = 0,675
  • a = 90°
  • St = 2 x (4 x 3 + 4 x 5 + 3 x 5) = 94
  • R = 0,5

D’où : FLJ = 4,05 x 0,675 x 90 / (94 x (1 – 0,5 x 0,5)) = 3,5, ce qui est correct en matière de qualité d’éclairage naturel. Mais à noter que si un bâtiment voisin s’établit en face et que l’angle de vision du ciel se réduit à 60° le FLJ tombe à 2,6…

Plans de coupe d’un luminaire

Plans de coupe d'un luminaire


Pour décrire les caractéristiques photométriques d’un luminaire, les fabricants définissent différents plans « C » et angles « ϒ » suivant lesquels on peut observer un luminaire.

Plan longitudinal

Plan transversal

Plans diagonaux
C90, C270 C0, C180 C30, C45, C60

   

Luminaire intérieur, coupe transversale et longitudinale.

Identifier une surchauffe liée à l’installation de chauffage

Identifier une surchauffe liée à l'installation de chauffage

En période de chauffe, une installation de chauffage correcte doit dispenser sa chaleur en fonction des besoins réels. Par exemple, si des apports de chaleur gratuits se manifestent, la pleine puissance du chauffage n’est plus nécessaire. Il faut donc veiller à ce qu’elle soit réduite en conséquence.

Un excédent de puissance par rapport aux besoins conduit inévitablement à une surchauffe source d’inconfort mais aussi de surconsommation. Il est difficile de chiffrer cette dernière. Elle n’est en tous cas nullement négligeable. Pour s’en convaincre, on peut retenir l’ordre de grandeur suivant :

dans un local dont la température de consigne est de 20°C,

un degré de trop = 7 .. 8 % de surconsommation !

Il est donc important de combattre toute surchauffe et d’éliminer la régulation par ouverture des fenêtres courante dans les institutions tertiaires.

En période de chauffe, on peut rechercher les causes de surchauffe imputables directement ou indirectement à l’installation de chauffage au niveau :

Évaluer

La distribution.

Évaluer

Les corps de chauffe.

Évaluer

La régulation.

Cheminée et ventilation : NBN 61-001 et 61-002

 

 

Attention : les NBN B61-001 et B61-002 de 2019 ont été abrogées le 8 avril 2021 et sont remplacées par les NBN/DTD B61-001 et NBN/DTD B 61-002 : 2021 à cette même date. En raison du nouvel AR du 02-02-2021 (MB du 15-02-2021) relatif au fonctionnement du NBN, c’est désormais la présence sur le e-shop du NBN qui officialise cette situation.

Depuis lors, il s’avère :

  • que certains aspects ne sont plus couverts, ou le sont de manière incomplète ;
  • qu’à partir des normes européennes (EN) il y a certaines références à des réglementations nationales qui n’existent pas en Belgique ;
  • que la faisabilité pratique et le contrôle sur le terrain sont sujets à interprétation.

Pour cette raison, la suivante a été décidée par les différentes parties prenantes impliquées dans ces normes :

  • le retrait des normes NBN B 61-001:2019 et NBN B 61-002:2019 ;
  • la publication d’une solution temporaire sous forme d’un document technique NBN/DTD ;
  • et la publication ultérieure d’une (de) nouvelle(s) norme(s).

La conséquence de ce fait est que durant la période depuis ce retrait jusqu’à la mise à disposition de la (des) nouvelles norme(s), les documents techniques NBN/DTD B 61-001 :2021 et NBN/DTD B 61-002 :2021 valent comme code de bonnes pratiques.

Les éléments suivants concernent les normes NBN B 61-001:2019 et NBN B 61-002:2019 telles que rédigées avant leur retrait. 

 

Les prescriptions générales en matière d’espace de l’installation de chauffage sont essentiellement basées sur les normes NBN B 61-001 pour les installations de puissances supérieures ou égales à 70 kW et NBN B 61-002 pour les installations de puissances inférieures à 70 kW. Ces prescriptions concernent les espaces d’installation, les amenées d’air ainsi que l’évacuation des fumées. Ces normes sont complètes mais relativement indigestes à lire si bien qu’un résumé est proposé dans cette page.


Besoin d’une chaufferie ? Où placer son installation de chauffage ?

Par le terme chaufferie, on désigne un ensemble de locaux constitué d’un local de chauffe, de la soute à combustible et des locaux auxiliaires éventuels qui les desservent.

Un tel local est nécessaire pour les puissances supérieures à 70 kW. Pour les puissances inférieures, il faut se référer à la norme NBN B 61-002 où la réponse est différenciée suivant les cas de figure : si la puissance est supérieure ou inférieure à 30 kW et si l’appareil de combustion est étanche ou non-étanche. Une chaudière non-étanche est une chaudière qui prend son air de combustion dans le local où elle se situe.

  • P < 30 kW :
    • Appareil de combustion étanche : les chaudières peuvent être installées dans des espaces qui ont des fonctions autres que celle d’espace d’installation pour chaudière de chauffage central pour autant que les niveaux de bruit ne dépassent pas le maximum admis (c’est-à-dire selon la norme NBN S 01-401).
    • Appareil de combustion non-étanche : les chaudières sont installées de préférence dans un espace qui n’est pas désservi par le système de ventilation du bâtiment. Dans le cas contraire, cela se fait sous des conditions énoncées par la norme.
  • 30kW < P < 70 kW :
    • Appareil de combustion étanche : les chaudières peuvent être installées dans des espaces qui ont des fonctions autres que celle d’espace d’installation pour chaudière de chauffage central pour autant que le niveaux de bruit ne dépassent pas le maximum admis (c’est-à-dire selon la norme NBN S 01-401).
    • Appareils de combustion non-étanches pour maisons unifamiliales : les chaudières ne peuvent pas être installées dans un espace qui a une fonction d’habitation (ex. living, cuisine, chambre, chambre à coucher).
    • Appareils de combustion non-étanches pour autres bâtiments : les chaudières doivent être placées dans une chaufferie.
  • P > 70 kW : une chaufferie est systématiquement requise.

Débouché de cheminée :

La norme NBN B61-001 relative aux installations de puissances supérieures à 70 kW date de 1987. Suivant la technologie de l’époque, la norme suppose que c’est le tirage naturel de la cheminée qui assure l’évacuation des gaz de combustion. Il en découle une série de contraintes à appliquer sur les débouchés de cheminée pour que l’évacuation des fumées ne soit pas perturbée par l’influence du vent ou des obstacles voisins. Ces contraintes sont d’application quelque soit le type de chaudière considéré.

La norme NBN B61-002 relative aux installations de puissances inférieures à 70 kW est beaucoup plus récente, c’est-à-dire avril 2006. Elle contient dès lors une distinction suivant la configuration de la chaudière. On distingue notamment la présence ou non d’un ventilateur pour forcer le débit dans la chaudière. Dans ce cas de figure, le débit d’extraction est par définition assuré par ce ventilateur. Il reste néanmoins le cas des chaudières non-étanches, c’est-à-dire qui puisent leur air de combustion au sein de la pièce où elles se trouvent, où l’évacuation des fumées est réalisée par tirage naturel (sans ventilateur). Dans ce cas de figure, des contraintes sont introduites sur la position des débouchés de cheminée, de nouveau pour éviter la perturbation par des obstacles voisins ou du vent.

Puissance > 70 kW et tout type de chaudière : NBN B 61-001

Pour que l’évacuation des fumées ne soit pas perturbée par l’influence de vent et des obstacles voisins, le débouché de cheminée doit respecter certaines règles quant à son emplacement :

Coupe horizontale de l’environnement de la cheminée : le débouché de la cheminée est pris comme repère.

Un bâtiment est un obstacle pour la cheminée

  1. s’il se situe à moins de 30 m de la cheminée,
  2. et s’il est plus haut que le débouché,
  3. et s’il est vu par la cheminée dans un plan horizontal sous un angle de plus de 23°C.

Prenons, l’exemple de le figure ci-dessus : 1 est un obstacle s’il est plus haut que la cheminée, 2 et 3 ne sont pas des obstacles. Le bâtiment sur lequel se trouve la cheminée peut également être considéré comme un obstacle.

 

Définition des zones d’influence du vent pour une toiture plate (gauche) et inclinée (droite).

Pour l’influence du vent, il faut définir 3 zones telles que représentées ci-dessus :

  1. Aucun débouché ne peut se trouver dans la zone 3 (à cause de surpressions éventuelles induites par le vent).
  2. Dans la zone 2, seuls sont autorisés des débouchés dont la souche est surmontée d’un aspirateur statique et pour une chaudière d’une puissance inférieure à 1 400 kW.
  3. Tous les débouchés sont autorisés dans la zone 1 (parce que le vent n’a pas d’influence).

De plus, avec les toitures dont la pente est supérieure ou égale à 23°, la cheminée doit se trouver le plus près possible du faîte. Pour les toitures plates ou de pente inférieure à 23°, la cheminée peut être située à un endroit quelconque de la toiture.

Pour les chaudières gaz atmosphériques disposées dans une chaufferie en toiture, le débouché de la cheminée doit être plus haut que sa sortie de la toiture, de 1,5 m.

La norme NBN B61- 001 définit également les emplacements à respecter pour que l’évacuation des fumées ne perturbe pas le voisinage.

Puissance < 70 kW pour chaudière non-étanche à tirage naturel : NBN B 61-002

Dans ce cas de figure, on trouve aussi des contraintes concernant la position du débouché de cheminée. Un bâtiment est un obstacle pour une cheminée

  1. s’il se situe à une distance inférieure à 15 m de la cheminée,
  2. et si l’obstacle est situé, dans un plan horizontal perpendiculaire au conduit d’évacuation, à l’intérieur d’un angle supérieur à 30°C,
  3. et si la partie supérieure de l’obstacle se trouve dans un angle d’élévation de plus de 10° par rapport au plan horizontal.

Schéma coupe horizontale et verticale de l'environnement de la cheminée.

Coupe horizontale (figure haut) et verticale (figure bas) de l’environnement de la cheminée : le débouché de la cheminée est pris comme repère. Sur la figure du haut, le bâtiment 1 peut être un obstacle s’il se trouve dans un angle d’élévation supérieur à 10° par rapport au plan horizontal. Les bâtiments 2 et 3 ne constituent pas des obstacles.

De manière équivalent à la norme NBN B61-001, on définit 3 zones concernant l’influence du vent :

  1. Aucun débouché ne se trouver dans la zone 3 (à cause de surpressions éventuelles induite par le vent)
  2. Dans la zone 2, seuls sont autorisés des débouchés dont la souche est surmontée d’un dispositif anti-refouleur (par exemple, un aspirateur statique).
  3. Tous les débouchés sont autorisés dans la zone 1 (parce que le vent n’a pas d’influence).

De nouveau, avec les toitures dont la pente est supérieure à 23°, la cheminée doit se trouver le plus près possible du faîte.


Dimensionnement d’une cheminée :

Quelque soit la niveau de puissance et donc la norme utilisée pour dimensionner le conduit de cheminée, la philosophie reste identique. A la base, la calcul du diamètre du conduit de cheminée dépend de nombreux paramètres qui reflètent la complexité de la physique entrant en jeu. On trouve notamment l’influence de :

  • la longueur et la hauteur du conduit de raccordement,
  • la hauteur de la cheminée,
  • les résistances aérauliques locales comme les coudes, les tés, le couronnement de cheminée, …
  • la nature de la surface du conduit dont la rugosité,
  • l’isolation et l’inertie du conduit,
  • le type de chaudière et sa puissance,
  • le rendement de combustion,
  • le taux de CO2 compris dans les fumées,
  • la température des gaz de combustion.

Un tel calcul n’est pas à la portée de tout le monde, c’est une question d’expert. Néanmoins, des valeurs de diamètres ont été pré-calculées dans les normes pour certains jeux de valeur des paramètres cités ci-dessus. Ce sont des paramètres par défaut définis dans les normes. Cela donne lieu à des abaques permettant de fixer directement la section requise pour un conduit de cheminée en fonction du type de chaudière.

Ces abaques restent valables tant que les conditions de fonctionnement réelles sont plus favorables que les conditions de calcul (de ces abaques). Dans le cas contraire, il faudra procéder à un calcul spécifique à la configuration qui sera réalisé par un spécialiste.

Puissances > 70 kW : norme NBN B61-001 et normes DIN

Mis à part les générateurs à gaz à brûleurs atmosphériques, il y a lieu de prévoir un conduit par générateur. Ce conduit est droit et vertical. Deux coudes d’au plus 15°C sont toutefois tolérés.

La norme NBN B61-001 donne des abaques permettant de calculer la section requise pour un conduit de cheminée, en fonction du type de chaudière (à foyer en surpression ou en dépression, gaz atmosphérique).

Détermination du diamètre de la cheminée pour une chaudière en dépression selon la norme NBN B61-001.

Hypothèses : une température de fumée de 220°C, une ventilation de la chaufferie conforme à la norme, un raccordement chaudière-cheminée au plus égal au 1/4 de la hauteur utile de la cheminée, avec un maximum de 7 m, un maximum de 2 coudes à 90° arrondis dans ce raccordement et une entrée directe dans la cheminée, une cheminée de rugosité = 0,002 m, un coefficient de transmission thermique des parois inférieur à 2 W/m²K, une température extérieure de 15°C, une température de chaufferie de 20°C, une dépression nulle à la sortie des chaudières en surpression.

Les conditions d’établissement de ces abaques correspondent à des chaudières de type ancien (la norme NBN B61-001 date de 1987). C’est pourquoi CEDICOL reprend, lui, les abaques contenus dans les normes DIN allemandes pour les chaudières à brûleur pulsé fonctionnant en dépression ou en surpression. Ces abaques ont été établis pour une température des fumées à la sortie de la chaudière de 160 °C.

      

Détermination du diamètre de la cheminée pour une chaudière en dépression (gauche) et surpression (droite).

Hypothèses : une température de fumée de 160°C, un conduit convenablement isolé et à faible inertie thermique, un raccordement chaudière-cheminée au plus égal au 1/4 de la hauteur utile de la cheminée, avec un maximum de 7 m (source : CEDICOL).

Puissance < 70 kW : norme NBN B61-002

La norme donne des abaques permettant le dimensionnement d’un conduit d’évacuation des produits de combustion desservant une seule chaudière de chauffage central. Ces valeurs ont été établies pour certains types de chaudières, à savoir :

  • à brûleur atmosphérique au gaz combustible,
  • à brûleur à air soufflé au gaz ou au fuel léger.

Ces abaques ont été calculées sur base de la norme EN 13384-1. À titre illustratif, il s’agit des conditions suivantes :

  • l’amenée d’air comburant est calculée de façon à ce que la différence de pression (perte de charge) sur l’orifice ou le conduit ne dépasse pas 3 Pa,
  • le conduit de raccordement vers le conduit d’évacuation n’est pas isolé thermiquement, à une pente montante avec une longueur horizontale maximale de 0.5m et ne peut comporter qu’un coude de 90° comme changement de direction,
  • le conduit d’évacuation est vertical sur toute sa longueur et sa hauteur de tirage est d’au moins 4 m, a une résistance thermique d’au moins 0,4 m².K/W sur toute sa longueur, n’est pas muni d’une protection contre la pluie et il ne se trouve pas dans une zone de surpression statique (zone de type 3).

L’utilisation des abaques/tableaux est la suivante :

  1. En fonction du type de chaudière, de la température des produits de combustion et éventuellement de la dépression nécessaire à la sortie de la chaudière, on cherche l’abaque correspondante.
  2. Dans cette abaque, on détermine l’intervalle dans lequel doit se situer le diamètre du conduit en fonction de la puissance nominale de la chaudière et de la hauteur de tirage : Dmin, le diamètre minimal et Dmax, le diamètre maximal.
  3. Dans le cas d’un conduit circulaire, on choisit de préférence un diamètre proche de (Dmin+Dmax)/2. Dans le cas de conduits rectangulaires de coté a x b (b étant le coté le plus long), il faut déterminer a et b suivant la relation : 4 (a x b)/(2 (a+b)) = (Dmin+Dmax)/2.

Ventilation de la chaufferie : P > 70 kW, norme NBN B61-001

Dans le cas d’une puissance installée supérieure à 70 kW, la norme en vigueur est la NBN B61-001. Dans cette norme, on considère un cas général de chaudière non-étanche dont l’évacuation des produits de combustion est réalisé par tirage naturel. Typiquement, on trouve donc en présence d’une ventilation basse et haute, naturelle ou mécanique, pour assurer la ventilation de la chaufferie.

Section de la ventilation basse suivant la NBN B61-001

Section de ventilation basse naturelle suivant la NBN B61-001

Section de ventilation basse requise en [dm²]

P = puissance totale installée en [kW];

n = nombre de grilles et de coudes à 90° que compte le conduit de ventilation basse

n Hauteur cheminée > 6 m Hauteur cheminée < 6 m
P < 1 200 kW 1 200 kW < P < 12 000 kW P > 12 000 kW P < 1 200 kW 1 200 kW < P < 12 000 kW P > 12 000 kW
< 3 P / 17,5 2 P à calculer 1,5 x P / 17,5 3 P à calculer
4 1,1 x P / 17,5 2,2 P 1,65 x P / 17,5 3,3 P
5 1,2 x P / 17,5 2,4 P 1,8 x P / 17,5 3,6 P
> 5 à calculer à calculer

Selon la norme NBN B61-001, la ventilation basse naturelle est toujours préférée à la ventilation mécanique quand ce choix est possible.

Dans le cas de ventilation basse mécanique, le fonctionnement des générateurs est asservi à l’existence du flux d’air pour la ventilation basse.

Si la ventilation basse est mécanique, le débit d’air à respecter est de 2 m³/h par 1.16 kW de puissance calorifique utile nominale des équipements de chauffe installés.

Lorsque les brûleurs automatiques puisent directement leur air de combustion à l’extérieur du local de chauffe, la ventilation basse reste nécessaire. La section de celle-ci est déterminée en vue d’assurer un débit d’air suffisant pour évacuer les gaz nocifs éventuels et la chaleur dégagée par les appareils.

Section de ventilation haute suivant la NBN B61-001

L’évacuation haute se fait toujours de manière naturelle. L’évacuation d’air vicié du local de chauffe s’effectue par un conduit dont une extrémité débouche au ras du plafond du local de chauffe, et l’autre à l’extérieur au-dessus du toit, à un endroit situé en dehors des zones susceptibles d’être en surpression par rapport au local de chauffe. Le conduit de ventilation haute est rectiligne.

Si la hauteur de la cheminée est supérieure à 6 m et que le conduit de ventilation haute est intégré à celle-ci, la section du conduit de ventilation doit être d’au moins :

0,25 x section de la cheminée

Conduit de ventilation haute intégrée à un ensemble cheminée.

Dans les autres cas, la section du conduit de ventilation doit être d’au moins :

0,33 x section de ventilation basse

Si la ventilation basse est mécanique, la section minimale de la ventilation haute est calculée comme s’il y avait une ventilation basse naturelle.
Dans tous les cas, la section de ventilation haute doit être au minimum de :

2 dm²

Ventilation basse et haute combinées suivant la NBN B61-001

Lorsqu’au moins deux parois verticales du local de chauffe sont extérieures et opposées, les ventilations basse et haute peuvent être réalisées par deux orifices , un dans chacune des deux parois. Chacun a une section minimale égale à celle imposée dans le général de la ventilation basse naturelle. Le bord supérieur de ces orifices se trouve à ras du plafond.

Dans les chaufferies de moins de 450 kW, un soupirail unique peut remplacer les ventilations hautes et basses dans les chaufferies pour autant que :

  • La profondeur du local à partir de la paroi extérieure ne dépasse pas 5 m,
  • La section libre du soupirail soit égale à 5 fois la section nette prévue normalement pour la ventilation basse (sans tenir compte des majorations pour grilles et coudes supplémentaires),
  • Le bord supérieur du débouché du soupirail se trouve à ras du plafond.

Ventilation de la chaufferie : P < 70 kW et norme NBN B61-002

Dans le cas de puissances inférieures à 70 kW, il faut se référer à la norme NBN B61-002. Cette norme date de 2006 et tient compte des différentes configurations de chaudière. On trouve, d’une part, les chaudières non-étanches qui puisent leur air de combustion dans le local où elles se situent et, d’autre part, les chaudières étanches par rapport au local où elles sont installées.

L’objectif de la ventilation de la chaufferie n’est pas identique dans les deux cas. De manière générale, la ventilation de la chaufferie a pour objectif de pouvoir évacuer la chaleur dégagée par les chaudières et les tuyauterie. La norme spécifie qu’il faut limiter la température du local à 40°C. Le début minimal à assurer pour réaliser cette fonction est 0.72 m³/h par kW avec un minimum de 25,2 m³/h. Ce débit doit être respecté aussi bien pour les chaudières étanches que non-étanches.

Dans le cas des chaudières non-étanche, la ventilation de la chaufferie a aussi pour objectif de fournir le débit d’air nécessaire pour assurer une combustion optimale dans la chaudière. Une amenée d’air est toujours nécessaire, soit par orifices ou par conduits, dans le cas des chaudières non-étanches. Cette amenée doit se faire directement de l’extérieur et non pas au travers d’une ouverture de transfert provenant d’un autre local.

On différencie alors les différents cas :

Chaudière étanche :

  • Ventilation naturelle du local de chauffe :
    • P [kW] / V [m³] > 35 : la section de l’orifice d’amenée et de l’orifice d’évacuation des pertes de chaleur est de 1cm²/kW avec un minimum de 50 cm².
    • P [kW] / V [m³] < 35 : il n’est pas nécessaire de prendre des dispositions spéciales pour évacuer les pertes de chaleur.
  • Ventilation mécanique :
    • Amenée mécanique ou naturelle et évacuation mécanique :  si la chaudière ou le conduit d’évacuation est muni d’un ventilateur et que la partie en aval du ventilateur est étanche.

Chaudière non-étanche :

  • Ventilation naturelle du local de chauffe :
    • S’il s’agit d’un orifice d’amenée d’air : la section est donnée par le tableau suivant avec un minimum de 50 cm².
Type d’appareil Section amenée Section  évacuation
Valeur minimale 50 cm² 50 cm²
Chaudière à gaz avec coupe-tirage antirefouleur (gaz naturel, propane, butane), chaudière au charbon et à pellets 6 cm²/kW 2 cm²/kW
Chaudière au fuel léger et chaudière gaz sans coupe-tirage antirefouleur (gaz naturel, propane, butane) 3 cm²/kW 1 cm²/kW
Chaudière à bûches de bois 30 cm²/kW 10 cm²/kW
    • S’il s’agit d’un conduit d’amenée d’air, le diamètre est calculé pour pouvoir assurer le débit d’air neuf suffisant pour la combustion à une vitesse inférieure à 1m/s (une vitesse supérieure générerait des problèmes acoustiques). Dans le cas de chaudière à tirage naturel, la différence de pression sur le conduit d’amenée d’air ne peut dépasser 3 Pa. Si la chaudière est équipée d’un ventilateur, la limite est fixée en fonction des caractéristiques de celui-ci.
    • La section du conduit de ventilation haute ou de l’orifice d’évacuation est d’au moins 1/3 de la section d’amenée d’air avec un minimum de 50 cm².
  • Ventilation mécanique :
    • Amenée mécanique et évacuation naturelle : uniquement pour des appareils non-étanches sans coupe-tirage.
    • Amenée mécanique ou naturelle et évacuation mécanique : si la chaudière ou le conduit d’évacuation est muni d’un ventilateur et la partie en aval du ventilateur est étanche.

Évaluer l’efficacité du refroidissement

Évaluer l'efficacité du refroidissement


Analyse de la performance du bâtiment

Pourquoi analyser d’abord le bâtiment ?

Imaginons un seau d’eau percé dont on demande de maintenir en permanence le niveau d’eau : le premier réflexe consistera à boucher les trous !

De même en conditionnement d’air, une installation efficace, c’est d’abord un bâtiment efficace ! Si l’éclairage est éteint, la climatisation devra moins fonctionner !

Il existe diverses mesures permettant de limiter les besoins thermiques. En voici quelques-unes avec leur impact énergétique sur un plateau de bureau-type.

Limiter les apports solaires

Photo protections solaires.

Placer des stores extérieurs mobiles (facteur solaire de 0,2) > – 12 % sur la consommation thermique totale du bâtiment.

Photo fenêtre double vitrage à basse émissivité.

Placer un double vitrage à basse émissivité et avec un facteur solaire de 0,4 >– 13 %

Améliorer l’étanchéité de la façade

Si l’on fait baisser le taux d’infiltration d’un immeuble de bureaux-type de 0,3 à 0,1 vol/h > – 2 % sur la consommation thermique totale du bâtiment.

Exemple : il est utile d’évaluer l’intérêt du placement d’un sas à l’entrée du bâtiment, ou à la périphérie des zones climatisées (salle d’opération, p.ex.), surtout si elles sont en surpression.

Limiter les apports internes

Les équipements et l’éclairage représentent à eux seuls 40 % de la consommation d’un immeuble type et plus de 50 % des coûts énergétiques. En été, toute économie est double : elle se fait sur la consommation de l’équipement et sur la consommation de la climatisation qui extrait la chaleur apportée par l’équipement.


Analyse de la pertinence des consignes et de leur programmation

Température et taux d’humidité

Les niveaux des consignes de température et d’humidité doivent être évalués.

Par exemple, voici les économies réalisées sur un immeuble de bureaux-type :

Adopter une consigne de climatisation en été à 25°C au lieu de 24°C (surtout si plafonds froids rayonnants) > – 7 % sur la consommation thermique totale du bâtiment.

Limiter l’humidification pour obtenir une ambiance à 40 % d’humidité relative en hiver > – 14 % sur la consommation thermique totale du bâtiment.

La réalisation de zones neutres,

  • entre chauffage et refroidissement,
  • entre humidification et déshumidification,

est également une garantie de bonne utilisation des équipements. Si l’on demande de chauffer une ambiance en dessous de 21,9°C et de refroidir au dessus de 22,1°C, à coup sûr l’installation va se mettre à « pomper » entre le chaud et le froid.

La programmation horaire des équipements mérite également une évaluation.

Il est, en effet, inutile d’apporter de l’air neuf hygiénique (a fortiori de l’air traité, c’est-à-dire chauffé et humidifié) dans le bâtiment, lorsque le bâtiment est inoccupé (sauf si l’on veut faire du free cooling de nuit). On sera particulièrement attentif aux périodes de relance des installations de chauffage. Trop souvent, la ventilation est mise en action en même temps que le chauffage (enclenchement des ventilateurs, ouverture des volets d’air neuf). Or, durant toute la période de remise de température du bâtiment, la ventilation constitue une déperdition importante et inutile puisqu’il ne faut assurer le confort respiratoire de personne.

Améliorer

Pour en savoir plus sur l’adaptation de la consigne de température.

Améliorer

Pour en savoir plus sur l’adaptation de la consigne d’humidité.

Débits d’air neufs

Les débits d’air neufs seront utilement comparés aux besoins réels du bâtiment : ils ont été définis par le bureau d’études sur base de plans et donc d’une utilisation théorique du bâtiment. Régulièrement, il est utile de vérifier l’adéquation des débits à la présence effective des occupants.

Le traitement de l’air neuf représente 29 % de la consommation thermique totale du bâtiment-type. Toute réduction de 10 % des débits d’air va générer 3 % d’économie sur le montant total.

Améliorer

Pour en savoir plus sur l’adaptation des débits d’air neufs.

Analyse du risque de destruction de l’énergie froide et chaude

Il est très fréquent de constater des destructions énergétiques entre du fluide (eau, air) froid et du fluide chaud.

Des installations thermiques dont les régulations se chevauchent

Exemples de destruction d’énergie :

  • les radiateurs apportent de la chaleur en façade … alors que de l’air refroidi en centrale est pulsé par les bouches d’apport d’air neuf.
  • l’air neuf hygiénique est réchauffé en centrale, puis est pulsé dans un local … refroidi par des ventilo-convecteurs. Ce sera souvent le cas si l’air neuf est pulsé à 20°C, voire parfois 22°C. En effet, pour des températures extérieures inférieures à ces valeurs, la plupart des ventilo-convecteurs produisent déjà du froid

Il est possible de corriger ce problème en adaptant les consignes. Ainsi, la simulation sur un immeuble de bureaux-type montre que pulser de l’air neuf à 16°C dès que le local est en mode refroidissement (au lieu de 21°C) génère > – 10 % sur la consommation thermique totale du bâtiment.

Concevoir

Pour en savoir plus sur l’analyse des besoins thermiques pour un immeuble de bureaux

Des réseaux dont les pertes se renforcent

Photo ventilos-convecteurs.

Les installations de ventilos-convecteurs à 4 tubes entraînent la circulation d’eau glacée et d’eau chaude dans les faux plafonds et gaines techniques. Il est utile d’arrêter cette circulation en dehors des périodes de fonctionnement du bâtiment.

Améliorer

Pour en savoir plus sur la régulation des ventilo-convecteurs.

Une mauvaise exploitation du traitement d’air en centrale

Le fonctionnement en mi-saison d’un groupe de traitement d’air n’est pas toujours aisé à gérer. Il est utile de faire vérifier l’installation, et tout particulièrement sa régulation, par un spécialiste.

Tout particulièrement, il est utile de vérifier :

  • que humidification et déshumidification ne fonctionnent pas en même temps (sic !),
  • que la déshumidification est réalisée avec une batterie suffisamment froide que pour entraîner la réelle condensation de l’humidité de l’air,
  • que les vannes de chaud et de froid ne détruisent pas leur effet mutuellement.

Ce dernier problème survient souvent lorsque :

  • l’humidification est réalisée au moyen d’un laveur d’air et régulée suivant le principe dit du « point de rosée« . Dans ce cas, en mi-saison, il est possible de l’on refroidisse l’air extérieur pour respecter la consigne de point de rosée pour le réchauffer ensuite pour respecter la consigne de pulsion :

L’air extérieur (E) est refroidi et déshumidifié (Y), ensuite humidifié (X) et réchauffé (S) pour respecter la température de consigne de pulsion.

Techniques

Il importe donc d’analyser le mode de régulation du groupe de traitement d’air pour y déceler les risques de fonctionnement simultané des batteries chaudes et froides. Pour en savoir plus sur la régulation par point de rosée.
  • lorsque l’on cherche à déshumidifier l’air en été, en commandant la batterie de refroidissement en fonction d’une sonde d’humidité, on sera bien souvent obligé de postchauffer l’air après la déshumidification pour atteindre une température de pulsion acceptable pour le confort des occupants.

Gérer

Pour en savoir plus sur l’audit de l’exploitation d’une installation de climatisation.

Analyse de l’humidification

La plupart du temps, nous vivons dans des bâtiments dont l’air n’est pas humidifié.

Une humidification se justifie pourtant par période de temps froid : l’air extérieur de ventilation, une fois réchauffé dans le bâtiment, est alors très sec (à la limite, c’est aux sports d’hiver que l’on prend conscience de la sécheresse de l’air par température extérieure très froide).

Mais dès la mi-saison, l’humidification ne se justifie plus.

Dans l’analyse par simulation d’un immeuble de bureaux-type, l’humidification de l’air afin d’obtenir 50 % d’humidité relative en permanence représente 15,6 % de la consommation thermique totale du bâtiment.

Concevoir

Pour en savoir plus sur l’analyse des besoins thermiques pour un immeuble de bureaux.

Or les critères de confort thermique, résumés dans le graphe ci-dessous, donnent à penser qu’un taux d’humidité ambiante de 40 % est suffisant pour le confort des occupants (exigences du RGPT).

1. Zone à éviter vis-à-vis des problèmes de sécheresse.
2 et 3 : Zones à éviter vis-à-vis des développements de bactéries et de micro-champignons.
3. Zone à éviter vis-à-vis des développements d’acariens.
4. Polygone de confort hygrothermique.

Dans le cas d’une climatisation de confort, il est donc énergivore et inutile de pousser l’humidification au-delà de cette valeur :

  • Si l’humidification est commandée au moyen d’une consigne d’humidité relative (dans l’ambiance ou dans la gaine de reprise d’air), il faut vérifier si la consigne programmée est proche de 40 %.
  • Si l’humidification est commandée par une sonde installée dans la gaine de pulsion, la consigne doit être inférieure à 40 % puisqu’il faut tenir compte de l’apport en humidité des occupants.
  • Si l’humidification n’est pas commandée par une sonde d’humidité mais uniquement via une régulation par point de rosée, il faut s’assurer que la consigne de rosée soit suffisamment basse en hiver pour éviter une humidification excessive. Par exemple, un point de rosée réglé à 14°C (valeur couramment rencontrée) et une température de pulsion de 20°C, l’air sera amené dans le local avec une humidité relative de 58 %.

Techniques

Mais l’optimalisation d’une régulation par point de rosée n’est pas une chose simple, si on veut limiter l’humidification et ne jamais détruire d’énergie. Pour en savoir plus sur la régulation par point de rosée.
  • Pour éviter tout risque d’humidification excessive en mi-saison, autant que l’humidificateur soit automatiquement mis à l’arrêt. Cela pourra être le cas dès que la température extérieure dépasse 5 .. 8°C. Dans ce cas la teneur en eau de l’air extérieur est suffisante pour assurer le confort sans humidification complémentaire.

Exemple.

En stoppant l’humidification lorsque la température extérieure dépasse 8°C et en limitant la teneur en eau de l’air pulsé à 4 greau/kgair, pour obtenir une ambiance à plus ou moins 40 % d’humidité relative, une économie très importante peut être réalisée, avec un minimum de conséquence sur le confort.

Par rapport à une humidification en action durant toute la saison de chauffe et une teneur en eau de l’air pulsé limitée à 7 greau/kgair (équivaut à un air pulsé à 20°C et 50 % d’humidité relative), cette limitation de l’humidification entraîne, sur un bâtiment type, une économie de :

  • 90 % sur la consommation énergétique liée à l’humidification,
  • soit, 14 % sur la consommation thermique totale du bâtiment.

Améliorer

Pour en savoir plus sur l’adaptation de la consigne d’humidité.

Analyse de la récupération de chaleur sur l’air extrait

Récupération de chaleur sur l’air extrait

Imaginons une installation fonctionnant en « tout air neuf ».

Le coût d’une installation en « tout air neuf » est très élevé puisque le chauffage est assuré, en plein hiver, par de l’air extérieur qu’il faut réchauffer à grands frais.

Exemple : pour apporter 1,5 kW de chaleur utile au local, un apport de 3,5 kW est demandé au caisson de traitement d’air : 2 kW pour porter l’air de 6° à 22°C, puis 1,5 kW pour l’amener à 40°C (la température de 6°C correspond à la température moyenne de l’air extérieur).

Remarque : en toute exactitude, les 270 m³/h à 6°C se dilatent en passant à 40°C.

Pour diminuer les coûts d’exploitation d’une installation « tout air », une bonne partie de cet air peut être recyclé.

Exemple : 60 m³/h sont conservés pour l’apport d’air hygiénique et 210 m³/h extraits des bureaux à 22°C sont recyclés. La puissance de chauffe redescend à 1,9 kW :

À défaut de ne pouvoir recycler l’air extrait du bâtiment (risques hygiéniques), il est peut-être possible de placer un récupérateur de chaleur sur l’air extrait. La puissance de chauffe devient alors 2,9 kW.

Améliorer

Pour en savoir plus sur l’intérêt d’un récupérateur de chaleur.

Choisir la gestion de l’humidité

Choix du contrôle de l’humidité

1. Critère de choix

L’impacte de la consigne d’humidité sur la consommation des équipements de climatisation n’est pas négligeable. Le choix de fixer cette consigne est lié essentiellement au type d’activité prévu dans la zone considérée. Certaines activités, notamment en chirurgie, nécessitent de travailler à humidité constante.

Si les utilisateurs ne précisent pas la consigne d’humidité à appliquer, il est intéressant de laisser varier cette valeur dans une plage donnée. La norme NF S90-351 recommande une plage de variation de l’humidité entre 45 et 65 %. Énergétiquement parlant, on peut entrevoir la possibilité de réaliser des économies sur l’humidification et la déshumidification d’une part, le chauffage et le refroidissement d’autre part.

Le choix de la plage de 45-65 % n’est pas un hasard :

  • 45 % constitue la limite basse d’humidité relative où il est nécessaire d’humidifier la zone afin de réduire le risque d’explosion lié à la libération éventuelle de gaz lors de l’utilisation du bistouri en chirurgie abdominale par exemple;

 

  • 65 % constitue la limite haute d’humidité relative où il est nécessaire de déshumidifier la zone afin de réduire le risque de développement de germes pathogènes.

Évaluer

Pour en savoir plus sur l’évaluation des paramètres de confort.

2. Orientations

La consigne d’humidité ambiante est fixe

Vu les débits mis en jeu, ce choix conduit à une débauche de consommation des équipements de traitement de l’air :

  • En période chaude, il est nécessaire de refroidir et déshumidifier plus que nécessaire avec dans la plupart des cas le besoin de post-chauffer; Il y a donc destruction de l’énergie.

 

  • En période froide, il est nécessaire d’humidifier plus.

Le diagramme de l’air humide suivant met en évidence la classification des points-heures représentatifs d’une année climatique type. En d’autres termes chaque point (en moyenne 8 760 points sur un an) représente une heure pendant laquelle la température et l’humidité sont relevées et figées.

Points-heures d’une année climatique type à Uccle..

La densité et la surface qu’occupent les nuages de points de couleurs différentes traduisent l’importance des périodes pendant lesquelles il est nécessaire de traiter l’air extérieur pour l’amener aux conditions d’ambiance de la zone à risque de contamination élevé.

On voit tout de suite qu’il y a beaucoup de périodes où :

  • il faut chauffer et humidifier,
  • il faut déshumidifier et post-chauffer.

Évaluer

Pour en savoir plus sur le contrôle théorique de l’humidité d’une salle d’opération en « tout air neuf ».

La consigne d’humidité est variable dans une fourchette prédéfinie

Points-heures d’une année climatique type à Uccle.

Dans le graphe ci-dessus, on voit tout de suite que les périodes où il faut :

  • chauffer et humidifier sont réduites,
  • déshumidifier et post-chauffer sont moins importantes.

Évaluer

Pour en savoir plus sur le contrôle théorique de l’humidité d’une salle d’opération en « tout air neuf ».

3. Choix

Le choix énergétique s’orientera naturellement vers la solution où l’on peut éviter au maximum le contrôle de l’humidité autour d’une valeur fixe. Les résultats suivants en attestent.

Les graphiques ci-dessous représentent la consommation théorique des équipements de l’installation de climatisation d’une salle d’opération classique au cours d’une année type et en période d’occupation.

Consommation des équipements de l’installation de climatisation.

Consommation de l’installation de climatisation par type d’énergie.

Sur base du bilan présenté à travers les graphiques ci-dessus, on constate que le choix de la gestion de l’humidité ambiante variable dans une plage admissible par les occupants, et en accord avec les normes de confort et d’hygiène, s’impose (économie de 30 à 40 % en tout air neuf).

L’exercice est le même pour les zones à risque contrôlé élevé à recyclage.

Ici le bilan peut être encore plus probant: pour les mêmes conditions, c’est-à-dire passer d’une consigne fixe à 50 % d’humidité relative ambiante à une fourchette de variation de 40 à 70 % (selon le RGPT), entraîne une diminution de la consommation de l’ordre de 60 % sachant cependant, que dans l’absolu, les quantités d’énergie mises en jeu sont beaucoup plus faibles.

Dans une configuration de terrain, il est nécessaire de laisser le choix au chirurgien de pouvoir programmer sa consigne d’humidité fixe si cela s’impose mais avec l’option par défaut de la création prédéfinie d’une plage de variation admissible de l’humidité.


Choix de la régulation associée

On peut sans grand problème réguler l’humidité ambiante par un jeu de sondes d’humidité :

  • à la sortie de la centrale de climatisation,
  • et dans la reprise.

En humidification

En fonction de l’écart entre l’humidité relative mesurée sur l’air extrait et la valeur de consigne réglable sur le régulateur, il y a action sur l’humidificateur. Un limiteur maximal d’humidité relative de l’air soufflé limite, par exemple, le débit de vapeur pulvérisé. Une sonde de sécurité (en option) commande directement l’arrêt de l’humidificateur.

D’autres types de régulation moins onéreuse au niveau de l’investissement existent. Néanmoins, si elles sont mal réglées, elles génèrent une surconsommation non négligeable :

Techniques

Pour en savoir plus sur la régulation d’un humidificateur par point de rosée.

En déshumidification

C’est le même régulateur qui agit en cascade sur la batterie froide, pour la déshumidification.

Les régulateurs sont actuellement :

  • soit des régulateurs classiques préprogrammés,

 

  • soit des automates programmables adaptés à la gestion HVAC des bâtiments. On les choisira en s’assurant de la possibilité de programmer des plages d’humidité d’ambiance, sachant qu’en général les régulateurs classiques n’intègrent qu’une consigne fixe de 50 % HR avec une précision de + ou moins x % par exemple.
Exemple.

 Soit une consigne d’humidification fixe de HR 50 % à + 10 % :

  • La limite haute à laquelle le régulateur réagit pour donner l’ordre de déshumidifier est de HR = 60 %. À partir de ce moment, la batterie froide fonctionne jusqu’au moment où l’humidité ambiante est revenue à une valeur de 50 %,

 

  • la limite basse est de 40 %. C’est à ce moment que le régulateur commande l’humidificateur pour ramener la valeur de l’humidité ambiante à 50 %.

On se rend compte que l’énergie mise en jeu est importante pour ramener l’humidité ambiante à sa valeur de consigne.

>  Soit une consigne d’humidification variable entre 40 % et 60 %

Ce mode de régulation est énergétiquement intéressant !

Le régulateur peut être :

  • Centralisé dans le local technique à côté de la centrale de climatisation. Il peut aussi être programmé en local ou à distance, via un bus de communication, à partir d’une GTC (gestion technique centralisée). La commande à distance à partir de la zone à climatiser est souvent une option.

 

  • Local avec intégration de la sonde d’humidité. Cette configuration peut permettre aux utilisateurs de la commande de la consigne d’humidité.

Techniques

Pour en savoir plus sur la régulation de la déshumidification.

La limite haute de l’humidité

Dans le cas d’un humidificateur à vapeur, il y a toujours un risque de souffler du brouillard : saturation de l’air en eau. Une détérioration rapide des conduites s’en suivrait. Il est donc impératif de placer une limite haute d’humidité dans le conduit de pulsion.


Choix des composants associés

1. L’humidificateur

Le choix de l’humidificateur en zone à risque de contamination élevé est délicat. En général, les concepteurs préfèrent jouer la carte de la sécurité, à savoir l’humidificateur à vapeur. Ce choix, en effet, est prudent puisqu’il élimine pratiquement tous les problèmes de contamination.

Mis à part le critère d’hygiène, en conception énergétique plus la plage de régulation de l’humidité est grande, plus le dimensionnement de l’humidificateur sera faible !

Il est important quand même de mentionner les autres types d’humidificateur età chacun de se faire sa propre opinion.

Techniques

Pour en savoir plus sur :

2. La batterie de déshumidification

La batterie froide remplit les deux fonctions, à savoir :

  • le refroidissement de l’air,
  • et sa déshumidification.

En conception énergétique, le choix de la batterie de déshumidification sera influencé entre autres par la nécessité de déshumidifier jusqu’à une valeur d’humidité de consigne fixe.

3. Les sondes d’humidité

Dans la conception moderne des zones à risque de contamination élevé, le contrôle de l’humidité pose moins de problèmes qu’auparavant. En effet, les sondes d’humidité ou hygromètres actuels sont devenus fiables et permettent, associées à des automates, de réguler de manière optimum l’humidité de l’ambiance.

Dans la conception énergétique, il est intéressant soit de combiner dans l’algorithme de régulation les données enregistrées par des sondes d’humidité et de température ou soit de carrément considérer les sondes enthalpiques.

4. Les régulateurs

Dans les projets modernes, les régulateurs sont des automates programmables reliés entre eux et, éventuellement, à un superviseur (GTC) par un bus de communication. À l’heure actuelle, il est rare de voir des conceptions où les régulateurs sont pneumatiques. En effet, les coûts d’investissement (centrale de production d’air comprimé), d’exploitation (système de régulation à fuite contrôlée) sont importants et la précision ne vaut pas celle d’une installation électronique.

Four à convection forcée et four combiné air-vapeur (électrique)

Four à convection forcée et four combiné air-vapeur (électrique)


Principe

Le four est une enceinte close et calorifugée comportant des éléments chauffants, de l’air et/ou de la vapeur permettant de cuire, rôtir, griller et gratiner.

Le brassage mécanique de l’air accélère les échanges thermiques. La cuisson peut, de ce fait, être réalisée sans préchauffage, à des températures inférieures de 50 à 60°C, à celle des fours classiques.

L’air chaud étant homogénéisé dans toute l’enceinte, la cuisson est régulière sur plusieurs niveaux. Ce qui permet de fabriquer des fours de très grande capacité.
Il existe deux types d’appareils :

  • Les fours à convection forcée simple : l’air chauffé est brassé par ventilation mécanique directement dans l’enceinte du four.
  • Les fours à convection forcée dirigée : c’est le même principe que le précédent, mais la circulation d’air est obtenue par un système de soufflage et de reprise d’air, ce qui accroît l’efficacité.

L’utilisation de la vapeur accroît encore les performances de ces matériels qui deviennent alors équivalents à des cuiseurs à vapeur sans pression.

Four à convection forcée.

Four combiné air et vapeur.


Description

Composants techniques de base

Ils comprennent le plus généralement :

  • Une enceinte de forme parallélipipédique isolée thermiquement par un isolant en fibre minérale ou par des matériaux composites. Une ou deux portes avec ou sans hublot à axe de rotation vertical ou horizontal.
  • Des résistances blindées, disposées différemment selon la technique de distribution d’air, soit en épingle à cheveux verticalement sur la paroi arrière, soit en double circuit sur le pourtour du fond, soit verticalement sur une paroi latérale.
  • Un ou plusieurs ventilateurs à flux axial ou tangentiel.
  • Des plaques de protection qui favorisent la diffusion de l’air chaud dans l’enceinte.
  • Des clayettes mobiles qui facilitent un bon chargement ou des chariots qui simplifient les manutentions et l’entretien.

  • Un filtre mécanique pour protéger le ventilateur et les résistances de la projection de matières grasses.

 Composants spécifiques à certains modèles

Des composants complémentaires augmentent les performances :

  • Un humidificateur, pour éviter déshydratation et perte de poids.
  • Un système de production de vapeur, pour le four combiné. La vapeur produite par un générateur de vapeur est amenée dans la chambre de cuisson. Par l’intermédiaire d’un ventilateur, elle est transmise pour assurer une cuisson uniforme des aliments.

fourvapeurventilateur45x35.jpg (9756 octets)

  • Un volet réglable pour permettre l’évacuation des vapeurs.
  • Un dispositif d’interruption du fonctionnement de l’appareil à l’ouverture des portes, pour limiter les déperditions.
  • Des parois intérieures amovibles ou auto-nettoyantes pour faciliter l’entretien.
  • Une porte double vitrage pour limiter les déperditions.
  • Une sonde de température à cœur pour une grande précision des cuissons.

Volet réglable pour l’évacuation des vapeurs.

Dispositif d’interruption à l’ouverture des portes.

Porte double vitrage.

foursondetemperature35x27.jpg (5952 octets)

Sonde de température.


Commande et régulation

Du plus simple au plus sophistiqué, citons :

  • Un ou plusieurs thermostats réglant la température jusqu’à 250°C.
  • Un programmateur pouvant être lié à une alarme de fin de cuisson.
  • Enfin, un système électronique qui permet de gérer toutes les fonctions du four : température, accélération de l’air, production de vapeur, alarme de fin de cuisson.
    La programmation permet de régler la cuisson avec air et vapeur en fonctionnement simultané ou indépendant durant une partie de la cuisson ou sa totalité.
    Le tableau de programmation à régulation tactile offre un avantage sur le plan du nettoyage, donc de l’hygiène.
  • Certains fours sont équipés d’un régulateur électronique qui hache la demande d’énergie. Il correspond en quelque sorte à un petit délesteur interne.


Gamme

La gamme des appareils est très étendue, les puissances électriques varient de 2 à 150 kW.

La puissance est proportionnelle à la capacité de chargement (environ 300 W/kg) ou 500 W par clayette GN1/1 et aux performances du matériel.

Un supplément de puissance de l’ordre de 50 % est nécessaire pour satisfaire aux conditions de remise en température des plats cuisinés à l’avance, réfrigérés ou surgelés (arrêté du 26-6-1974 / France) : montée en température de + 3 °C à + 65 °C en moins d’une heure.

Par exemple :

  • cuisson : 12 kW
  • remise en température : 18 kW


Utilisation

Ces fours sont désormais des équipements de base des cuisines professionnelles de tous secteurs.

Ces appareils permettent de réaliser des cuissons à l’air chaud comme dans des fours classiques traditionnels ainsi que des cuissons à la vapeur ou des cuissons mixtes air et vapeur.

  • cuire les viandes, volailles, poissons, légumes, pâtisseries,
  • rôtir et gratiner,
  • remettre en température les plats réfrigérés et surgelés ou sous-vide,
  • cuire des aliments en sachets sous-vide à une température précise au degré près (basse température) (combiné air/vapeur).


Efficacité énergétique

Il est toujours souhaitable d’utiliser le four à sa capacité maximale, sans gêner la circulation d’air.
Lorsqu’il y a des chariots, ceux-ci sont chargés à l’extérieur du four avant d’être enfournés ce qui réduit les temps d’ouverture de l’enceinte et donc les pertes et facilite les manutentions.

Laverie vaisselle – les grands systèmes d’organisation

Laverie vaisselle - les grands systèmes d'organisation

Le lavage de la vaisselle peut se concevoir selon 4 schémas de base. Ces 4 possibilités peuvent aussi se mixer sur une même exploitation. Cela permet de coller au plus près aux besoins et particularités de l’entreprise.


Le lavage instantané de la vaisselle

Il s’agit de synchroniser 3 opérations :

  • le rythme de dépose,
  • le débit des tris,
  • le débit de la machine à laver.

C’est le rythme de dépose qui impose les 2 autres débits.
Au fur et à mesure de son arrivée, la vaisselle est :

  • soit, triée dans les paniers qui sont introduits dans la machine une fois qu’ils sont remplis, pour les machines à paniers,
  • soit, introduite directement dans la machine, pour les machines à convoyeur (sauf pour les couverts qui sont (dans certains cas) d’abord triés dans des paniers, puis introduits dans la machine).

Pour respecter ce système, la laverie doit être dimensionnée de façon à absorber les pointes d’activité du service sans créer de bouchon et de gêne pour le client. Cela engendre un surdimensionnement.
C’est néanmoins la solution la plus utilisée car la vaisselle est lavée dès son utilisation.

Avantages

  • lavage plus facile car les restes n’ont pas le temps de se déshydrater et de s’accrocher à la vaisselle,
  • manutentions limitées,
  • durée du lavage courte,
  • bonne rotation de la vaisselle,
  • diminution des surfaces et des volumes dus au stockage de la vaisselle propre.

Inconvénients

  • investissement élevé et non utilisation du lave-vaisselle à sa pleine charge (consommations inutiles),
  • nombre d’employés important à l’heure du service,
  • appel de puissance électrique simultané avec la cuisine aux heures de pointe.


Le lavage différé partiel

Cette solution consiste à trier la vaisselle sale dès sa dépose. Cependant, une partie du lavage est différée.

Ce système d’organisation nécessite de prévoir des zones tampon.

Il est utilisé pour faire face à certains contextes :

Adaptation du débit d’arrivée de la vaisselle sale au débit de la machine

Alors que le débit de la machine est programmable et régulier, l’arrivée de vaisselle sale est fonction du passage des clients. La dépose est faible pendant une partie du service.

Pendant cette durée, seul le triage est assuré avec mise en casiers par un effectif réduit. Dès que le flot des consommateurs devient plus élevé, le lavage est mis en route. La vaisselle mise en attente est lavée soit au départ, soit pendant les creux de service.

Avantages

  • durée du lavage courte
  • utilisation de la machine optimisée,
  • manutentions relativement limitées.

Inconvénients

  • difficultés possibles de lavage dues aux aliments secs collés à la vaisselle.

La machine est sous-dimensionnée

On prolonge la durée en différant une partie du lavage vers la fin ou après le service.

Avantages

  • investissement est plus faible,
  • manutentions relativement limitées.

Inconvénient

  • la durée du lavage est plus longue avec un coût d’exploitation plus élevé.


Le lavage différé total

Cette organisation est utilisée très souvent par la restauration hospitalière mais elle s’applique dans certains autres cas :

  • service avec restaurants pavillonnaires ou situés à différents niveaux,
  • selfs avec petit nombre de rationnaires,
  • capacités d’investissement limitées,
  • organismes n’utilisant pas de personnel à temps partiel ou ayant des difficultés à en trouver,
  • volonté de décaler le fonctionnement du lave-vaisselle des autres équipements de manière à ne pas augmenter la pointe quart-horaire.

Avantages

  • économies d’énergie,
  • pendant le service tout le personnel se consacre au service du client,
  • investissement limité,
  • possibilité d’utilisation de personnel à temps complet exclusivement.

Inconvénients

  • lavage difficile et plus lent dû au dessèchement des aliments sur la vaisselle,
  • stock important de vaisselle,
  • quantité importante de matériel de stockage pour la vaisselle sale et propre,
  • double manutention.


Le lavage différé séquentiel

Ce système a été mis au point par les sociétés de restauration de cafétérias. Il s’agit de faire réaliser par un même personnel en salle à manger les tâches de débarrassage des tables avec pétri et dépose sur chariot ou convoyeur mécanisé et ensuite le lavage en laverie. Lorsque le convoyeur est rempli de vaisselle sale, un signal appelle le personnel en laverie pour assurer la séquence de lavage. Ces 2 séquences sont fonction du débit des clients.
Ce système d’organisation nécessite une bonne organisation.

Avantage

  • personnel limité travaillant sans temps morts.

Inconvénients

  • risque d’encombrement des tables par des plateaux souillés,
  • tri de la vaisselle devant les clients ce qui n’est pas toujours agréable.


Tableau récapitulatif

Lavage instantané

Schéma principe lavage instantané.

Lavage différé partiel

Schéma principe lavage différé partiel.

Lavage différé total

Schéma principe lavage différé total.

Lavage différé séquentiel (fréquent dans les restaurants de cafétérias)

Schéma principe lavage différé séquentiel.

Puissance active et puissance réactive

Puissance active et puissance réactive

KW ou kWh ?

Le kW (kilo-Watt) est une unité de puissance, le kWh (kilo-Watt-heure) est une unité de travail ou d’énergie.

On dira d’une lampe qui développe une puissance lumineuse de 60 Watts, qu’elle est moins puissante qu’une lampe de 100 watts.

Mais on dira également que sa consommation en 24 heures est de :

60 W x 24 h = 1440 Wh = 1,44 kWh

On traduit là l’énergie consommée pendant un temps donné.

D’une manière générale,

Énergie =  Travail = Consommation

Énergie = Puissance x Temps

De même,

Puissance = Énergie / Temps

Exemple

Chauffer 100 litres d’eau de 0 à 100 °C demande 11,6 kWh d’énergie calorifique. Cette quantité est indépendante du temps.

Mais chauffer cette eau en 1 heure demandera moins de puissance que si le chauffage doit être réalisé dans un préparateur d’eau chaude en 6 minutes :

  • dans le 1er cas : Puissance = 11,6 kWh / 1 h = 11,6 kW
  • dans le 2e cas : Puissance = 11,6 kWh / 0,1 h = 116 kW !


Puissance active et cos phi

Dans les circuits à courant continu, l’expression de la puissance électrique est très simple :

Puissance = Tension x  Courant

P = U x I

1 watt = 1 volt x 1 ampère

Exemple

Une machine à café qui demande 3 ampères sous 220 volts développe une puissance de :

P = U x I = 220 x 3 = 660 watts.

Sa consommation énergétique, si elle chauffe en continu durant 2 heures, sera de :

660 x 2 =  1320 Wh = 1,32 kWh

Dans les circuits à courant alternatif, le calcul est un peu plus complexe. En alternatif, il existe trois types de récepteur : des résistances, des inductances, des condensateurs. Or, seule la résistance va effectivement développer de la puissance !

En moyenne, une inductance pure (un bobinage de moteur) ou un condensateur pur ne consomment rien au réseau, ils ne font pas tourner le disque du compteur. Et pourtant, ils appellent du courant !

On pourrait comparer cette situation à celle d’un ressort qui doit être tendu par une force oblique : la composante perpendiculaire au chemin de déplacement « F » ne produit aucun effet, aucun travail. Et pourtant, la force est bien réelle !

Lorsqu’une installation appelle 10 ampères au réseau, il ne faudra considérer dans ce courant que la composante qui est en phase avec la tension, qui agit en synchronisme avec le réseau : on parle de composante active ou de courant actif. C’est ce courant qui va développer de la puissance, encore appelée puissance « active ».

De là, la formule de la puissance en alternatif :

Puissance = Tension x Courant actif

P = U x I x cos φ

où « φ » (ou « phi ») est le déphasage du courant par rapport à la tension.

Exemple
Une lampe fluorescente est alimentée sous 220 volts alternatif. Un courant total de 0,3 ampère est mesuré. La lampe comporte un récepteur résistif, le tube lumineux, et un récepteur inductif, le ballast.

Le courant total sera déphasé de phi = 60°. Il est constitué par la somme de la composante en phase avec la tension pour le tube (Iw) et de la composante déphasée de 90° pour le ballast (Ib).

φ

La puissance est donnée par :

  • P = U x I x cos phi
  • P = 220 x 0,3 x cos 60°
  • P = 220 x 0,3 x 1/2
  • P = 33 watts

C’est la puissance « active » développée par la lampe.

Le facteur « cos phi » s’appelle « facteur de puissance« . Il est indiqué sur la plaquette électrique de la plupart des machines électriques.


Puissance réactive

La puissance réactive n’a de puissance… que le nom !

En fait, la seule puissance au sens mécanique du terme (l’expression d’un travail réalisé dans un temps donné), c’est la puissance active qui la fournit.

La puissance réactive Q est définie par analogie à la puissance active P :

Q = U x I x sin j

Elle s’exprime en VAr ou VAR, abréviation de « volt-ampère-réactif ».

Son intérêt provient du fait qu’elle permet d’évaluer l’importance des récepteurs inductifs (moteurs, lampes fluorescentes, ….) et des récepteurs capacitifs (condensateurs, …) dans l’installation.

Les compteurs récemment installés vont d’ailleurs enregistrer distinctement la puissance réactive inductive et la puissance réactive capacitive.

Exemple 

Une lampe fluorescente est alimentée sous 220 volts en alternatif. Un courant total de 0,3 ampère est mesuré. La lampe comporte un récepteur résistif, le tube lumineux, et un récepteur inductif, le ballast.

Le courant total sera déphasé de phi = 60° . Il est constitué par la somme de la composante en phase avec la tension pour le tube (Iw) et de la composante déphasée de 90° pour le ballast (Ib).

φ

La puissance réactive est donnée par :

  • Q = U x I x sin phi
  • Q = 220 x 0,3 x sin 60°
  • Q = 220 x 0,3 x 0.87
  • Q = 220 x 0,26
  • Q = 57 VARs

De même, l’énergie réactive est exprimée par le produit de la puissance réactive et du temps. Ainsi, le fonctionnement de la lampe durant 3 heures entraînera :

En. réactive = Q x T = 57 VAR x 3 h = 171 VARh

Si un condensateur est placé en parallèle sur l’installation, et qu’il est dimensionné de telle sorte qu’il appelle un courant exactement égal à celui du ballast, alors :

φ

  • Le courant capacitif est en opposition de phase par rapport au courant inductif (le courant capacitif est 90° en avance et le courant inductif est 90° en retard sur la tension) –> leur somme est nulle.
  • Le courant total est équivalent au courant résistif dans le tube; il vaut donc 0,15 ampère.
  • Avant le placement du condensateur :
    • courant total = 0,3 ampère
    • puissance active = U x I x cos phi = 220 x 0,3 x cos 60° = 33 watts
    • puissance réactive = U x I x sin phi = 220 x 0,3 x sin 60° = 57 VARs.
  • Après le placement du condensateur :
    • courant total = 0,15 ampère
    • puissance active = U x I x cos phi = 220 x 0,15 x cos 0° = 33 watts
    • puis. réactive inductive = U x Ib x sin phi = 220 x 0,26 x sin (-90°) = -57 VARs
    • puis. réactive capacitive = U x Ic x sin phi = 220 x 0,26 x sin 90° = 57 VARs

puissance réactive totale = U x I x sin phi = 220 x 0,15 x sin 0° = 0 VARs

Conclusions

Le placement du condensateur a permis de diminuer le courant, sans modifier la consommation d’énergie du circuit ! Le condensateur a redressé le cos phi de l’installation, c’est un « condensateur de compensation ».


Puissance apparente

Le produit de la tension par le courant s’appelle puissance apparente.

Puissance apparente = S = U x I

Elle est exprimée en VA (volt-ampère)

Cette grandeur a peu de signification physique. Elle n’exprime en aucune façon la puissance développée par un circuit alternatif ( = puissance active). Elle a la même expression que celle de la puissance développée par un circuit continu, de là, le terme de puissance « apparente ».

Quand est-elle utilisée ?

La puissance apparente est utilisée pour quantifier la capacité de puissance d’un transformateur.

Par exemple, un transformateur qui peut délivrer 1 000 ampères sous 220 volts sera appelé un transfo de 220 kVA (kilo-volt-ampères). Il se peut que ce transfo débite 220 kW, … si le cos phi de l’installation vaut 1, si l’installation est globalement purement résistive. Mais si l’installation présente un facteur de puissance de 0,8, la puissance développée par le transfo sera de 220 x 1 000 x 0,8 = 176 kW.

Le fournisseur ne peut présager des caractéristiques de l’installation de son client : il annoncera donc un transfo de 220 kVA !

A signaler enfin que cette caractéristique ne présage pas des tensions d’utilisation entrée – sortie. Par exemple, 220 kVA, cela peut-être

  • au primaire, 100 000 volts et 2,2 ampères,
  • au secondaire, 220 volts et 1 000 ampères.


Pointe Quart-horaire

Dans la tarification Haute Tension, le distributeur souhaite rémunérer l’investissement matériel qu’il a consenti pour fournir à son client l’énergie demandée.

Le client A qui consomme 1 000 kWh, à raison de 1 000 kW durant 1 heure, sera plus difficile à satisfaire que le client B qui consomme 1 000 kWh à raison d’1 kW durant 1 000 heures !

Le distributeur va donc mesurer la puissance maximale appelée par l’installation durant le mois de facturation, pour lui en imputer le coût.

On pourrait penser que c’est la pointe maximale du mois qui va être retenue… Non ! En réalité, le compteur va enregistrer les consommations tous les 1/4 d’heures. En divisant l’énergie consommée par le temps écoulé (15 minutes), il va déterminer la puissance moyenne appelée durant ce 1/4 d’heure. C’est le maximum de ces puissances moyennes qui servira de base à la facturation. C’est la pointe 1/4 horaire du mois !

kW = kWh max en 15 minutes / 15 minutes

Exemples.

  • Une résistance chauffante de 2 kW fonctionne en continu près de la secrétaire : l’impact sur la pointe 1/4 horaire mensuelle est de 2 kW.
  • Un ascenseur de 20 kW est appelé 3 fois dans le 1/4 d’heure, pour une utilisation de 1 minute : son impact sur la pointe est de 20 x 3 x 1 / 15 = 4 kW (c’est sa puissance moyenne dans le 1/4 d’heure).
  • Une secrétaire est dans son bureau. La seule consommation électrique à cet instant est l’éclairage (240 W). À un moment donné, elle allume son ordinateur (300 W). Cela se passe 5′ après l’impulsion de changement de 1/4 d’heure d’Electrabel. 5′ plus tard, elle allume en plus sa « chauferette » électrique (1 200W). L’énergie demandée par les activités de la secrétaire sur 15′ est 210 Wh. Son impact sur la pointe 1/4 horaire mensuelle est de 840 W.

Attention !, … il suffit d’une fois sur le mois…

  • Dans un hôpital de Namur, la société de maintenance effectuait les essais des machines frigorifiques une fois par mois, lors de la pointe du matin, au moment où la cuisine « tire » un maximum…  Il a suffit de décider de faire les essais l’après-midi pour diminuer sensiblement la facture !

Condensation interne par diffusion de vapeur

Condensation interne par diffusion de vapeur

La condensation interne, c’est-à-dire au sein d’un élément de construction, se produit si, à un endroit de cet élément, la pression de vapeur réelle devient égale à la tension de saturation correspondant à la température régnant à cet endroit. Ce phénomène résulte des différences de pression de vapeur et de température de part et d’autre de ou dans l’élément.


La diffusion de vapeur et condensation

Tout comme la chaleur qui se déplace des zones de température plus élevée vers les zones de température plus basse, la vapeur d’eau se déplace des zones à forte concentration en vapeur vers les zones à faible concentration en vapeur. On parle de diffusion de vapeur.

Quand on considère un bâtiment, il existe toujours une différence de pression de vapeur entre l’intérieur et l’extérieur à l’intérieur, on exerce des activités diverses produisant de l’humidité (production de vapeur par les occupants, plantes, lessive, cuisson, nettoyage) augmentant ainsi la quantité de vapeur d’eau contenue dans l’air. En hiver la pression partielle de vapeur intérieure est supérieure à celle correspondant au climat extérieur. La diffusion crée, dans ce cas, un flux de vapeur à travers la paroi, de l’intérieur vers l’extérieur.

Schéma principe diffusion de vapeur et condensation.

Il se produira donc de la condensation interne dans une paroi s’il y a une différence de température et de pression de vapeur dans cette paroi et que, localement, la pression de vapeur est égale à la tension de saturation.

La condensation interne par diffusion de vapeur a pour effet de créer dans la construction des zones mouillées en permanence et donc une perte d’isolation thermique et, éventuellement, une dégradation des parois (apparition de moisissures,…).

Contrairement à la condensation de surface, la condensation interne n’est pas visible directement.


Risque principal

L’air chaud à une plus grande capacité à contenir de la vapeur d’eau. En hiver, la pression de vapeur résultante est souvent supérieure à l’intérieur qu’à l’extérieur. Ce différentiel de pression de vapeur engendre, comme nous venons de le voir, une migration de vapeur par diffusion vers l’extérieur. Au fur et à mesure qu’elle traverse les différents matériaux constituant l’enveloppe, la vapeur se rapproche de l’extérieur et se refroidit progressivement. Si la température du point de rosée est atteinte, la vapeur se condense. On parle alors de condensation d’hiver. L’humidité peut dégrader les matériaux et avoir des conséquences sur la durabilité de la paroi et de ses performances ainsi que sur le confort et la santé des habitants.

Si on veut éviter la condensation interne dans une paroi constituée de plusieurs couches de matériaux différents (pour lesquels le risque de condensation interne apparait derrière, ou dans, l’isolant voire, dans le voisinage de la paroi porteuse (par exemple une maçonnerie plus froide), il faut que la perméabilité à la vapeur de ceux-ci augmente de l’intérieur vers l’extérieur.

Si ce n’est pas possible (par exemple avec certaines techniques d’isolation par l’intérieur), il faut poser un pare-vapeur du côté chaud de la paroi pour provoquer une chute de la pression de vapeur avant l’isolant.

Les outils de validation classiques (statiques) conduisent presque systématiquement à placer une membrane étanche à la vapeur (et à l’air) du côté chaud de la paroi en cas d’isolation par l’intérieur. Cependant, cette solution n’est pas toujours la meilleure comme le montre le paragraphe suivant.

Risque de condensation en hiver s’il n’y a pas de membrane pour réguler la vapeur …

Photo : J. Lstiburek in Isolation thermique par l’intérieur des murs existants en briques pleines – SPW 2011.

Remarque : dans une paroi constituée d’un seul matériau,  il n’y a pas de risque de condensation interne.


Risque secondaire

En été et au printemps, la température et l’humidité relative de l’air extérieur sont parfois plus élevées qu’à l’intérieur, la pression de vapeur peut donc être plus élevée à l’extérieur qu’à l’intérieur (entrainant un flux d’humidité vers l’intérieur). L’humidité présente dans les matériaux de la paroi a alors tendance à migrer vers l’intérieur. Si elle est bloquée par une éventuelle membrane, la vapeur qui migre vers l’intérieur ne peut alors plus s’évaporer vers l’intérieur. Au contraire, elle peut condenser en arrivant contre celle-ci. (Au final,  c’est le potentiel de séchage du mur qui est affaibli, et l’humidité risque alors de s’accumuler).

On parle alors de « condensations d’été ». Elles apparaissent entre la membrane et l’isolant provoquant alors une perte de performance de l’isolant humidifié et des risques de moisissures s’il y a du bois ou des matériaux organiques dans cette couche du mur.

Pour éviter ce problème, on place des membranes dites « intelligentes », aussi appelées à mu variable, qui permettent de réduire ce type de risque.

Risque de condensation internes en été si une membrane empêche trop la migration de vapeur vers l’intérieur.

Exemple de moisissures à l’arrière de la membrane de régulation.

Photo : Künzel in Isolation thermique par l’intérieur des murs existants en briques pleines – SPW 2011.


Évaluation par méthode statique : le cas de  la toiture plate avec couverture bitumineuse

Ce type de couverture est pratiquement étanche à la vapeur d’eau et se trouve du côté extérieur de l’isolation. L’apparition de condensation interne entre l’isolation et la couverture est donc possible. Toutefois, si la structure portante offre suffisamment de résistance à la diffusion de vapeur et si la différence de pression de vapeur entre l’intérieur et l’extérieur est celle que l’on trouve normalement dans les habitations, la formation de condensation reste limitée et ne conduit pas à des problèmes.

Pour déterminer s’il y a risque d’apparition de condensation interne, il faut déterminer les températures au droit de chaque plan de séparation entre couches. A chacune de ces températures correspond une tension de vapeur maximale. On en déduit l’évolution de la tension de vapeur maximale. Si cette courbe coupe celle de l’évolution de la pression de vapeur, il y a condensation.

Dans l’exemple calculé ci-après, nous voyons que la courbe de la tension de saturation (qui a la même allure que celle de l’évolution de la température) coupe la courbe de pression de vapeur.

Caractéristiques des
matériaux
d(m)  λ(W/(m x K)) μ (-)

C1 : Roofing

0,01 0,17 2 000

C2 : Mousse PUR

0,05 0,03 30

C3 : Béton de pente

0,10 0,35 10

C4 : Béton

0,12 2,00 70

C5 : Enduit

0,015 0,70 20
Conditions limites  Extérieur Intérieur
θ (C°) 0 20
Φ (%) 90 50
Pv (Pa) 550 1 170

 

 

 avec Rt = 2,27 m² x K/W.

Exemple :

 avec, (μd)t = 31,2 m/s

Exemple :

La situation représentée ci-dessus n’est toutefois pas possible du point de vue des lois physiques. En effet, la pression de vapeur dans la zone de condensation serait supérieure à la pression de saturation, ce qui est impossible.

On peut démontrer que dans le cas de condensation interne, l’évolution physiquement correcte de la pression de vapeur est donnée par la tangente du point (Zt, pvi) à la courbe de saturation et la tangente du point (0, pve) à la courbe de saturation.

Exemple.

1. Considérons la paroi suivante :

  1. Enduit extérieur.
  2. Maçonnerie.
  3. Isolation.
  4. Enduit intérieur.

2. Déterminons l’évolution de la pression de vapeur dans le système d’axes (Z,pv) :

3. Déterminons l’évolution de la température dans la paroi en régime stationnaire; on en déduit ensuite la courbe la tension de saturation.

4. Évolution de la pression de vapeur réelle (tracer les tangentes) :

La quantité de condensat par plan de condensation est donnée par la différence d’inclinaison entre les tangentes entrante et sortante de pression de vapeur. S’il n’y a qu’un seul plan de condensation, on peut écrire :

Cette approche, est appelée méthode de Glaser; elle est un outil intéressant pour l’étude des détails de construction du point de vue de la physique du bâtiment mais très restricteur car elle conduit souvent à placer des membranes très étanches à la vapeur sans tenir compte du risque secondaire associé. Elle ne permet pas non plus de valider l’intérêt de membrane dite intelligente.


Cas 2 : Influence de la position du pare-vapeur sur le risque principal de condensation interne

La position du pare-vapeur dans un élément de construction est très importante. Le pare-vapeur joue un rôle identique à celui de l’isolant thermique dans l’évolution de la température. La paroi est divisée en deux zones bien distinctes : celle du côté extérieur du pare-vapeur réagissant à la pression de vapeur extérieure et celle du côté intérieur du pare-vapeur réagissant à la pression de vapeur intérieure. Pratiquement toute la différence de pression de vapeur entre l’intérieur et l’extérieur se situe donc au droit du pare-vapeur.

Prenons comme exemple une paroi homogène offrant une certaine résistance thermique.

Cet élément ne donnera pas lieu à de la condensation interne. L’évolution de la tension de vapeur réelle (courbe p ci-dessous) reste en tout point inférieure à la tension de vapeur maximale (courbe pvs).

Si la face extérieure reçoit une finition très imperméable à la vapeur, la courbe pvs reste identique puisque l’évolution de la température ne change pas, mais l’évolution de la pression de vapeur (courbe pv) change.
Il y aura condensation interne juste derrière la couche pare-vapeur.

La pose d’une couche étanche à la vapeur, du côté intérieur, remédie à la situation. La tension de vapeur maximale (pvs) reste toujours supérieure à l’évolution de la pression de valeur réelle (pv).
Cet exemple montre que la couche pare-vapeur doit toujours se trouver du côté chaud de l’élément de construction.


Cas 3 : Influence de la position de l’isolation sur le risque principal de condensation interne

Prenons le même exemple et examinons la position de la couche d’isolation. La résistance à la diffusion de vapeur de l’isolation est considérée comme négligeable par rapport à celle du reste de la paroi.

Ce qui change, c’est la tension de vapeur maximale puisque la présence de l’isolation influence l’évolution de la température dans la paroi.

Si l’isolation se trouve du côté intérieur, la tension de vapeur calculée est supérieure à la tension maximale au droit de l’interface isolation-brique. Il en résulte une condensation interne.

La mise en œuvre d’un pare-vapeur efficace du côté intérieur peut remédier au problème.

La mise en œuvre de l’isolation du côté extérieur empêche également la formation de condensation interne pour autant que l’isolation ne reçoive pas une finition étanche à la vapeur.


Cas 4 :  La condensation interne  dans les châssis en bois

La condensation interne ne concerne que les châssis en bois, elle n’est pas à craindre dans d’autres types de châssis (Alu, PVC, polyuréthane….).

La condensation interne par diffusion de vapeur à travers le bois a pour effet de créer dans le châssis des zones mouillées en permanence et donc une perte d’isolation thermique et, éventuellement, une dégradation du châssis si elle n’est pas détectée à temps.

Contrairement à la condensation de surface, la condensation interne n’est pas facilement détectable directement.

Indice de présence de condensation interne ?

Un écaillage ou un cloquage de la peinture peut révéler la présence de condensation interne.

On vérifiera l’état du bois sous la peinture.

Il y a des risques de condensation interne lorsque la résistance à la diffusion de vapeur de la finition intérieure est inférieure à celle de la finition extérieure.
En effet, en période froide, la température à l’intérieur du châssis en bois diminue très régulièrement de l’intérieur vers l’extérieur. Par contre la pression de vapeur ne diminue que très lentement jusqu’à ce qu’elle atteigne la finition extérieure à partir de laquelle elle chute brusquement. Ainsi la pression de vapeur à l’intérieur de châssis risque de dépasser la pression de saturation. Il y a condensation.

Schéma condensation interne  dans les châssis en bois.

  • pvs : pression de vapeur de saturation.
  • pv : pression de vapeur.

Cette situation se rencontre lorsque :

  • La finition intérieure a une perméabilité à la vapeur supérieure (le cas des finitions non filmogènes) à celle de la finition extérieure (le cas des peintures ou vernis).
  • Les finitions intérieures et extérieures sont toutes deux des peintures, et que le nombre de couches intérieures est inférieure au nombre de couches extérieures.

Source : certains passages de cette feuille sont extraits du guide Isolation thermique par l’interieur des murs existants en briques pleines réalisé par Arnaud Evrard, Aline Branders et André De Herde (Architecture et Climat-2010) dans le cadre de la recherche ISOLIN, financée par le département Énergie et Bâtiment durable du Service Public de Wallonie. Disponible sur le site : energie.wallonie.be

Tubes fluorescents

Tubes fluorescents

T5 : 16 mm – T8 : 26 mm – T9 : 29 mm – T12 : 38 mm.


Comment fonctionne un tube fluorescent ?

Photo tube fluorescent.

Schéma principe tube fluorescent.

Les lampes fluorescentes font partie des lampes à décharge. Elles fonctionnent par décharge d’un courant électrique dans une atmosphère gazeuse.

Les lampes fluorescentes utilisent de la vapeur de mercure sous basse pression.

Lorsqu’on met le tube sous tension, des électrons sont émis par les deux électrodes de tungstène. Lors de leur trajet au travers du tube, ils entrent en collision avec les atomes de mercure. Il en résulte une libération d’énergie sous forme de rayonnement ultraviolet invisible. Ce rayonnement est absorbé par la couche fluorescente présente sur la face interne du tube et converti en rayonnement visible.

La composition chimique de la couche fluorescente placée à l’intérieur du tube influence la couleur de la lumière émise et l’indice de rendu des couleurs de la lampe.

Comme toutes les lampes à décharge, le tube fluorescent a besoin pour fonctionner d’un starter, d’un ballast et d’un condensateur pour compenser le mauvais cos φ.

L’ensemble de ces 3 éléments peut être remplacé par un ballast électronique.

Techniques

Pour en savoir plus sur le principe d’allumage d’un tube fluorescent  !

Types et caractéristiques générales

Les différents diamètres

Il existe 3 grands types de tubes fluorescents sur le marché :

Photo types de tubes fluorescents.

  • T12 ou T38 : de diamètre 38 mm,
    efficacité lumineuse = 40 à 70 lm/W;
  • T8 ou T26 : de diamètre 26 mm,
    efficacité lumineuse = 65 à 95 lm/W (à 25°C de température ambiante);
  • T5 ou T16 : de diamètre 16 mm,
    efficacité lumineuse = 85 à 105 lm/W (à 35°C de température ambiante).

Les tubes de diamètre de 38 mm (T12) n’existent pratiquement plus. Les tubes T5 offrent, quant à eux, des possibilités de design plus important des luminaires de par la concentration de la lumière dans une source de dimension réduite.

La température de fonctionnement des lampes

Températures faibles

Le flux lumineux et l’efficacité lumineuse chutent très fort avec la température ambiante, à tel point que certaines lampes ne s’allument plus en dessous de 0°C.

Températures ambiantes

Beaucoup d’encre a coulé concernant la révolution énergétique qu’a apportée le développement du tube fluorescent T5 par rapport au T8. À notre avis, le besoin d’une autre esthétique de la part des architectes a été primordial dans le développement du T5.

Reste un point nébuleux !

À savoir la comparaison de l’efficacité énergétique des tubes T5 par rapport aux T8 est tributaire de la température de régime du tube dans son environnement (soit la température ambiante). Le graphique suivant montre clairement que la lampe T5 donne son flux maximum à une température de 35 °C tandis que la lampe T8 l’atteint à 25 °C.

Et donc même si le flux lumineux des T5 présentée par les fabricants est supérieure (d’environ 90%) à celui des T8 (à puissance équivalente), dans un même local (soit à même température ambiante), les T5 et T8 présenteront sensiblement le même flux lumineux !

Puissances et dimensions

Type de lampe

Puissances courantes

Flux lumineux

Longueurs

T12

20

de 1 050 à 4 800 lm

59

40 120
65 150

T8

18

de 1 350 à 5 200 lm

59

36 120
58 150

T5

14

de 1 350 à 4 900 lm

55

21 85
24 55
28 115
35 145
49 145
54 145
80 145

Pour les T8, les lampes de puissances différentes sont de longueurs différentes et ne sont donc pas interchangeables.

En ce qui concerne les T5, certaines lampes de puissances différentes sont de même longueur comme par exemple les 14 et 24 W ou les 35, 49, 54 et 80 W.

Attention : même si les dimensions des lampes sont identiques, le remplacement d’une lampe de 49 W, par exemple, par une lampe de 54 W ne pourra s’effectuer vu que les ballasts sont spécifiques à leur lampe.

L’indice de rendu des couleurs et température de couleur

La lumière des tubes fluorescents est souvent considérée comme froide et peu agréable. Cette remarque, valable pour les tubes d’ancienne génération (IRC = 65), n’est plus d’application avec les tubes actuels (IRC > 85). Ceux-ci présentent, en effet, une grande gamme de températures de couleur et d’IRC. Il est donc possible de choisir un tube ayant des caractéristiques presque semblables aux lampes à incandescence.

La dénomination à trois chiffres (930 … 865) semble devenir un standard pour tous les types de lampes fluorescentes. Le premier chiffre indique la classe de rendu de couleur (9 = Ra > 90, 8 = 90 > Ra > 80, …). Les deux derniers chiffres représentent la température de couleur (30 = 3 000 K, …).

Les tubes fluorescents de la gamme IRC = 2 sont aussi appelés tubes fluorescents « standards », les autres tubes fluorescents « nouvelle génération » ou encore « triphosphores ».

L’efficacité lumineuse d’un tube fluorescent dépend également de son indice de rendu de couleur. Ci-dessous, une gamme de lampes fluorescentes présente sur le marché. On constate que l’efficacité lumineuse est maximale pour un IRC de 85 (classe 1B).

IRC

lm/W

62 (classe 2)

79

80 (classe 1B) 85
80 (classe 1B) 94
85 (classe 1B) 90

85 (classe 1B)

95

91 (classe 1A) 80

95 (classe 1A)

61

98 (classe 1A)

65

98 (classe 1A)

61

La durée de vie

La durée de vie des tubes fluorescents dépend du type de ballast qui leur est associé. Avec un ballast électronique avec préchauffage des électrodes, la durée de vie utile des tubes de 16 ou 26 mm de diamètre et de classe 1B, atteint environ 16 000 h. Dans les autres cas (ballast électromagnétique ou électronique sans préchauffage), elle est voisine de 10 000 h (8 000 h pour un montage inductif et 12 000 h pour un montage capacitif).

Dans les derniers cas ci-dessus, le nombre d’allumages aura également une influence importante sur la durée de vie des lampes. Le graphique suivant montre qu’une lampe allumée et éteinte toutes les 15 minutes a une durée de vie 3 fois plus courte qu’une lampe fonctionnant par plages de 10 h. Dans le cas des lampes à ballast électronique avec préchauffage, l’augmentation de la fréquence d’allumage diminue nettement moins la durée de vie (perte de 0,02 h par allumage).

Notons également qu’il existe une gamme de tubes de 16 et 26 mm de diamètre dite de longue durée dont la durée de vie utile atteint 30 000 voire 40 000 h.

Schéma durée de vie tubes fluorescents.

Gradation du flux lumineux

Pour pouvoir moduler le flux lumineux des tubes fluorescents, on doit les équiper de ballasts électroniques graduables (appelés aussi dimmables).

Données

pour connaitre les caractéristiques des tubes fluorescents !

Données

pour consulter un récapitulatif des caractéristiques des différents types de lampe  !

Principes de régulation : P – PI – PID

Principes de régulation : P - PI - PID


La régulation par « tout ou rien » ou « On-Off »

Chaque fois qu’il y a « régulation », il y a adaptation de la fourniture de chaleur aux besoins réels du bâtiment. L’existence d’une sonde, d’un capteur d’ambiance permet d’avoir le feedback de la situation et de fournir l’intensité voulue. Il y a comparaison entre la consigne attendue et la valeur atteinte et de cet écart naît une action correctrice.

Schéma principe régulation par "tout ou rien" ou "On-Off".

Prenons l’exemple d’une régulation de la température ambiante par un groupe frigorifique. Supposons une consigne placée à 24°C.

Si la température ambiante dépasse la valeur de consigne (24,05°C), le régulateur le détecte et ferme l’interrupteur.

Le compresseur est enclenché à 100 % et la température du local redescend.

Si une température de 23,95°C suffisait pour arrêter le groupe frigorifique, un risque de « pompage » apparaîtrait : le compresseur passerait de « marche » à « arrêt », puis à « marche », … avec une telle fréquence que le matériel en souffrirait. On prévoit dès lors le placement d’un différentiel, dont la valeur est réglable par le technicien.

Par exemple : le compresseur s’enclenche à 24°C et s’arrête à 23°C.

Ceci se repère sur le schéma de régulation par les flèches montante (enclenchement) et descendante (déclenchement).

Plus le différentiel est élevé plus la machine travaillera dans de bonnes conditions (longues plages de travail propices à un bon rendement du compresseur), mais plus la température oscillera dans le local … Ceci diminue le confort et généralement augmente la consommation (ici, la vraie température moyenne de consigne est de 23,5°).

Et ce phénomène est amplifié par l’inertie du local : le local a un temps de repos tel que le différentiel réel est peut être de 1,6°C (22,7 à 24,3°C, par exemple).

Ce différentiel dépend du type d’application. Ainsi, la régulation d’une résistance chauffante électrique peut se concevoir avec un différentiel beaucoup plus court : une résistance accepte sans dommage une alimentation très « hachée », avec un enclenchement à 20,9° et un déclenchement à 21,1°, par exemple, pour une consigne à 21°.


La régulation Proportionnelle (P)

Schéma principe régulation Proportionnelle (P).

Imaginons un meilleur système : une vanne 3 voies mélangeuse qui modulerait la température d’alimentation d’un radiateur pour que celui-ci reçoive la température d’eau juste nécessaire, telle que l’émission de chaleur du radiateur soit justement égale aux déperditions de la pièce. C’est dans ce cas que la température d’ambiance serait stable.

Soit une consigne fixée à 20°C. Supposons au départ une température ambiante inférieure à la consigne, il faut chauffer.

Supposons que la vanne soit toute ouverte pour 17°C (écart de 3° par rapport à la consigne). De l’eau très chaude arrive, la température ambiante monte et arrive à 18,5°. L’écart est alors de 1,5°C et la vanne n’est plus ouverte qu’à 50 %.

Hélas, arrivée à 19°C, plus rien ne bouge : la température du local est stabilisée et l’ouverture de la vanne aussi : elle est ouverte au tiers de sa valeur maximale.

Pourquoi ?

Avec une ouverture au tiers, elle fournit de l’eau à une température telle que l’émission du radiateur compense exactement les pertes du local. La température reste à 19°C, l’écart reste de 1°C par rapport à la consigne, et cet écart entraîne 33 % d’ouverture ! Tout est stable et le restera.

Il est d’ailleurs impossible que l’on atteigne les 20°C souhaités ! Si c’était le cas, l’écart serait nul, la vanne serait fermée, le local se refroidirait puisque les déperditions continuent, . donc l’écart ne resterait pas nul !

C’est le problème d’une régulation proportionnelle à l’écart par rapport à la consigne : puisqu’il faut du chauffage, il faut que la vanne soit ouverte, il faut donc qu’un écart subsiste. La température se stabilisera sur 19°C, au lieu des 20°C demandés.

Ne pourrait-on « tricher » sur la consigne ?

Pourquoi ne pas indiquer 19° sur le régulateur au lieu de 20°C ? Hélas non : imaginons qu’il fasse – 10°C à l’extérieur, le chauffage aura besoin de toute la puissance de chauffe, la vanne devra être ouverte à 100 %. la température ambiante va donc se stabiliser sur 17°C . Il faudrait donc adapter l’indication du régulateur en fonction de la température extérieure, ce qui est impossible.

On comprend pourquoi les constructeurs de vannes thermostatiques n’indiquent pas la température de consigne mais bien des chiffres 1-2-3-4-5 : le fonctionnement d’une vanne thermostatique répond à une régulation proportionnelle.

S’il fait froid, si la température de consigne n’est pas atteinte, la poche de gel de la vanne va se contracter et de l’eau alimentera le radiateur. Puisque le local perd de la chaleur, la vanne devra rester ouverte en permanence.

De combien devra-t-elle être ouverte ? Le constructeur ne pourrait le dire puisqu’elle dépend de l’importance des déperditions et donc de la température extérieure. Il a seulement pu intelligemment améliorer quelque peu la régulation proportionnelle en plaçant la consigne au milieu de la page d’ouverture : la valeur de la consigne est réglée pour une ouverture est de 50 %. L’écart à la consigne est ainsi diminué en moyenne.

Nouvelle idée : ne pourrait-on pas diminuer la plage de température qui génère l’ouverture de la vanne ?

En reprenant la situation de la page précédente, si la vanne était 100 % ouverte en dessous de 19°C, elle se stabiliserait à 33 % de sa valeur pour une température ambiante de 19, 66°C. C’est effectivement une possibilité : on dit que l’on réduit la bande proportionnelle de 3 à 1°C.

Mais cette solution a ses limites : avec une bande proportionnelle trop courte, le système va se mettre à osciller, passant de trop ouvert à trop fermé, parfois sans pouvoir se stabiliser. On dit que le système « pompe », incapable de se stabiliser.

Calculs

Pour vous convaincre de tout ceci, utilisez le petit logiciel établi sur Excel et testez diverses valeurs pour vous familiariser avec cette régulation proportionnelle présente dans tout le monde de la technique.
Même une chasse de WC est un régulateur proportionnel : le débit d’eau est admis lorsque le flotteur descend, lorsqu’un écart existe par rapport à la consigne de niveau d’eau.

Chance : sauf une fuite permanente, les pertes du système sont nulles la plupart du temps car le flotteur se stabilise sur le niveau demandé !


La régulation Proportionnelle – Intégrale (PI)

En agissant avec une force proportionnelle à l’écart entre l’ambiance et la consigne, un écart subsiste en permanence. On décide dès lors que la force d’intervention aura deux composantes. La première, c’est la force proportionnelle à l’écart, comme dans la première solution ci-dessus. Mais une deuxième force la complète : une force proportionnelle à l’intégration de l’écart dans le temps, c’est-à-dire proportionnelle à la somme de tous les écarts mesurés en permanence.

Si la température se stabilise à 19°C, de par la composante proportionnelle, un écart de 1°C subsiste. Tous les « pas de temps », le régulateur va mesurer cet écart et l’additionner à la valeur d’une case « mémoire ». L’ouverture de la vanne sera donnée par la somme des 2 composantes. Tant que la consigne ne sera pas atteinte, la composante Intégrale augmentera, la vanne s’ouvrira un peu plus, jusqu’à atteindre cette fois la consigne.

Une fois celle-ci atteinte, l’écart est nul et la composante intégrale n’est plus modifiée (puisqu’elle additionne une valeur « 0 »).Si la consigne est dépassée, l’écart sera négatif et la composante intégrale diminuera.

Dans le fond, cette composante intégrale ne pourrait-elle travailler seule ? Non, elle est trop lente pour réagir efficacement à des variations de la demande thermique. Il faudrait diminuer son pas de temps (diminuer le « temps d’intégration ») mais alors à nouveau le système devient instable.

C’est bien le mariage des 2 actions (P et I) qui est le plus adéquat pour répondre à la demande : la composante P fait le gros du travail, puis la composante I affine dans le temps. C’est le mode de régulation souvent rencontré dans les systèmes thermiques à eau.

À nouveau le logiciel peut vous permettre de tester la régulation I et PI avec diverses valeurs des paramètres de réglage.


La régulation Proportionnelle – Intégrale – Dérivée (PID)

Dans les installations de conditionnement d’air, le fluide à réguler peut être de l’air. Or, n’ayant que peu de capacité thermique, l’air verra sa température varier très rapidement en fonction de la position de la vanne de réglage. Il faut donc ajouter une 3ème composante à la grandeur de réglage : une force dont la valeur est d’autant plus grande que l’écart varie rapidement, c’est-à-dire d’autant plus grande que la « dérivée » de l’écart par rapport au temps est élevée.

La valeur de la « grandeur réglée », la température de l’eau de radiateur (ou ici l’ouverture de la vanne) sera le résultat d’une addition de 3 grandeurs : une composante proportionnelle à l’écart existant (P), une composante proportionnelle à l’intégrale de l’écart dans le temps (I) et une composante proportionnelle à la dérivée de l’écart (D).

Reste à affiner les bandes proportionnelles, temps d’intégration et temps de dérivation pour adapter l’importance respective de ces 3 composantes . C’est le travail du « metteur au point » de l’installation de régulation qui affine les valeurs de base réglées d’usine.

 

Effet Coanda

Effet Coanda

Lorqu’un jet d’air est envoyé parallèlement au plafond, à une certaine distance de celui-ci, la veine d’air a tendance à y adhérer. C’est ce qu’on appelle l’effet COANDA. Ce phénomène est dû au tourbillon et à la dépression locale créés à la sortie de la bouche. Il n’est possible que si la distance entre la bouche et le plafond ne dépasse pas 30 à 50 fois l’épaisseur du jet.

Le même phénomène se produit lorsque l’on pulse de l’air sous le plafond sous un angle par rapport au plafond inférieur à 45°. L’écoulement de deux jets voisins est soumis au même phénomène.

Agrément technique des matériaux (ATG)


Qu’est-ce qu’un agrément technique ?

Suivant l’UBAtc :

L’agrément technique (ATG en abrégé) est une appréciation favorable de l’aptitude à l’emploi dans la construction, des procédés, matériaux, éléments ou équipements non traditionnels.

L’ATG ne dégage toutefois pas :

  • l’utilisateur ou le prescripteur de ses obligations légales et contractuelles;
  • le fabricant de sa responsabilité vis-à-vis du produit.

Contrairement aux normes NBN qui revêtent une portée générale, un ATG ne s’applique qu’à un produit de construction donné, confectionné par un fabricant bien déterminé, et n’est valable que pour une durée limitée (3 ans).

Dans la plupart des cas, l’agrément ATG est suivi avec certification.

Le produit ou le système de construction agréé reçoit un label qui implique qu’il a fait l’objet de l’évaluation favorable, consignée dans un document appelé « agrément technique ».

« Appréciation favorable »

Ce terme implique la délivrance d’un avis technique détaillé lors de l’octroi de l’agrément, compte tenu de l’état des connaissances scientifiques. Cet avis exempte les produits agréés des essais de contrôle préalablement à leur mise en œuvre, pour autant que la conformité avec l’agrément soit vérifiée.

« Aptitude à l’emploi dans la construction »

Cela signifie que l’appréciation s’opère sur la base d’une application bien précise et que sont analysées tant les propriétés intrinsèques du produit que les conditions d’utilisation et les performances réelles.

« Non traditionnels »

Il s’agit de procédés, matériaux, éléments ou équipements dont la qualité n’a pas encore reçu la sanction de l’expérience ou du temps et n’est pas encore définie par les normes.

« Suivi avec certification »

Ce système consiste en un contrôle régulier par un délégué de l’UBAtc, de la conformité des produits aux conditions stipulées dans l’agrément.


Qui attribue un agrément technique ?

L’agrément technique et le label ATG sont délivrés par l’UBAtc.
Cette organisation détermine si le produit considéré est susceptible de recevoir un agrément technique, désigne les membres du groupe spécialisé qui sera chargé du dossier, et attribue l’agrément.

Adresse :
Secrétariat de l’UBAtc
Direction Agrément et Spécifications
Rue de la Loi, 155
B-1040 Bruxelles
Site internet : ouverture d'une nouvelle fenêtre ! http://www.ubatc.be


Les matériaux agréés

L’UBAtc et l’Institut Belge de Normalisation éditent, sur CD-Rom, le répertoire complet des ATG et des licences BENOR en vigueur.

Il peut être obtenu gratuitement auprès du :
Ministère des Communications et de l’Infrastructure (MCI)
Administration de la Réglementation de la Circulation et de l’Infrastructure
Direction Agrément et Spécifications (DAS)
Rue de la Loi, 155
B-1040 Bruxelles
Tél : 02/287.31.54
Fax : 02/287.31.51


Valeurs λ utiles et R utiles des matériaux isolants agréés

L’usage des valeurs λ (conductivité thermique) et R (résistance thermique) est réglementé par la NBN B 62-002 (+ addenda).

Dans le cas d’un matériau muni d’un agrément ATG ou non dont on ne connaît pas la marque exacte, on utilise les valeurs de λou R par défaut tabulées dans l’annexe VII de la PEB.

Dans le cas d’un matériau agréé connu, on peut utiliser les valeurs λU ou Ru reprises dans son agrément technique, ou déduites des valeurs λD ou RD qui s’y trouvent. Les valeurs ainsi obtenues sont généralement plus favorables.

Pour ces matériaux agréés, il existe sur le site Web de l’UBAtc une page qui indique les valeurs λ ou R, par fabriquant, par type de matériau et par application.

Améliorer l’étanchéité à l’air

Schéma de l'étanchéité à l'air de l'enveloppe

Impact de l’étanchéité à l’air

Toute infiltration d’air génère une consommation supplémentaire de chaleur en hiver, de froid en été. Elle peut être estimée en considérant qu’elle augmente la consommation liée au taux d’air neuf du bâtiment. En plus de son impact sur la consommation énergétique, l’étanchéité à l’air peut être responsable d’autres désagréments tels qu’une réduction de l’isolation acoustique, une détérioration des performances hygrothermiques des matériaux isolants ou encore l’apparition de courants d’air près des fuites.


Améliorer l’étanchéité au niveau des parties courantes des parois

Au niveau des parties courantes des parois délimitant le volume protégé, toute fissure doit être colmatée.
Les matériaux poreux utilisés en construction (briques, blocs de béton, laines minérales, …), s’ils ne sont pas enduits, sont perméables à l’air.
De plus, il arrive que les joints des maçonneries ne soient pas correctement réalisés : les joints verticaux sont partiellement remplis mais ce défaut est camouflé par rejointoyage augmentant encore la perméabilité de l’ensemble de la maçonnerie. À titre d’exemple, des mesures d’étanchéité sur des maisons en murs creux en blocs de béton non plafonnés sont donné des débits d’environ 0.5 m³/(h.m²). 
Pour améliorer l’étanchéité à l’air de l’enveloppe, ces matériaux doivent être protégés d’une couche étanche à l’air : un enduit (cimentage ou plafonnage), des plaques de plâtres enrobées correctement rejointoyées. Une couche de peinture épaisse et filmogène peut aussi convenir. Une fois traités, les valeurs de débit à 50 Pa varient de 0 à 1.3 m³/(h.m²) en fonction du type et de la qualité de traitement, avec une moyenne de 0.3 m³/(h.m²) (moyenne sur 89 mesures faites par 8 auteurs différents)((Projet AirPath50 – Martin Prignon & Geoffrey Van Moeseke)).
Exemple.

Suite à une mesure de pressurisation sur un bâtiment en blocs non enduits et donc peu étanche, on a obtenu un n50 = 10/heure. L’application d’une couche de peinture épaisse sur les blocs a réduit le n50 à 1/heure.

Remarque : un pare-vapeur est plus ou moins étanche à la vapeur d’eau suivant sa nature, mais est également à l’air. 

 


Améliorer l’étanchéité aux raccords des éléments de façade ou au niveau des percements

Les jonctions telles que les raccords entre les éléments de la construction (façade/toiture, façade/plancher au niveau de la plinthe, …) ou les percements (passage de conduite, baie vitrée, portes, caisson de volet, boîtiers électriques, …) sont toujours des points délicats. On doit vérifier la parfaite jonction du raccord entre les différents éléments de construction ou entre la paroi et le percement dès que ce dernier touche la ou les couche(s) de la façade qui assure l’étanchéité à l’air. Si cette jonction présente des espaces, il faut les colmater.


Améliorer l’étanchéité du raccord mur-châssis

Photo étanchéité du raccord mur-châssis

Avec les châssis anciens, le joint entre le châssis et la maçonnerie était habituellement réalisé au moyen d’un mortier au ciment, souvent fendillé avec le temps et donc insuffisamment étanche.
On peut réfectionner ce joint. On procède en 4 étapes :

  1. On dégage le joint existant (mortier ou mastic), y compris l’éventuel fond de joint.
  2. On nettoie et on dégraisse les lèvres du joint.
  3. On réalise un fond de joint (pour autant que l’espace vide soit suffisant), par exemple, en plaçant un préformé de bourrage à cellules fermées.
    Dans le cas d’un mur plein, il est conseillé de créer une chambre de décompression entre le resserrage extérieur avec le gros œuvre et le resserrage intérieur.
    L’injection de mousse de polyuréthane n’est pas conseillée car, de par son caractère expansif, peu provoquer des dégâts (arrachement, …).
  4. On applique sur ce fond de joint un mastique élastique (exemple : mastic silicone) en veillant à assurer un bon contact entre les lèvres.

Améliorer l’étanchéité des châssis

Remarque : dans ce paragraphe, l’étanchéité à l’eau a été traitée en même temps que l’étanchéité à l’air ces deux-ci étant difficilement dissociables.

Une mauvaise étanchéité des châssis peut être due à :

Une classe de résistance à l’air et à l’eau du châssis insuffisante par rapport aux solicitations :

En effet, le STS définit des niveaux de performance d’étanchéité à l’eau (PE2, PE3, PE4, PEE ) et à l’air ( PA2, PA2B, PA3 ) des châssis à atteindre en fonction de la hauteur du châssis par rapport au sol.
S’il s’agit de châssis standards ces niveaux de performance sont signalés par l’agrément technique.

Hauteur par rapport au sol Perméabilité à l’air Étanchéité à l’eau
0 à 10 m

10 à 18 m

18 à 25 m

25 à 50 m

> 50 m

PA2B (1) (3)

PA2B (3)

PA3

PA3

PA3

PE2 (2)

PE3

PE3

PE4

PEE

  • (1) Si il n’y a pas d’exigence particulière du point de vue thermique et/ou acoustique, on se contentera d’un niveau PA2.
  • (2) Si le bâtiment a une exposition sévère (digue de mer), on prend un châssis de résistance PE3, et on le signale dans le cahier spécial des charges.
  • (3) Si on est en présence de locaux avec air conditionné, un niveau PA3 s’avèrera nécessaire.

Si les performances des menuiseries sont inadaptées à l’exposition et à la hauteur par rapport au sol, il n’est pas toujours possible d’y apporter les améliorations nécessaires (ajout d’une barrière d’étanchéité, modification du profil…).
Dans ce cas, seul un remplacement du châssis peut être envisagé.

Concevoir

Pour en savoir plus sur le choix des châssis.

Une mauvaise étanchéité entre dormant et ouvrant

Un mauvais fonctionnement de la double ou triple barrière d’étanchéité :
Remarque : des infiltrations d’eau et d’air sont inévitables malgré un bon dispositif d’étanchéité dans certains types d’ouvrants, au sein desquels l’interruption des joints d’étanchéité au droit des charnières est obligatoire.

Concevoir

Pour connaître les risques d’infiltration en fonction du type d’ouvrant.

Dans les anciens châssis, la forme des profilé ménageant une ou deux frappes constituait l’unique dispositif de joint entre dormant et ouvrant.
Dans ce cas et en cas de problème d’étanchéité, il est possible de réaliser un joint souple sur la frappe la plus intérieure de l’ouvrant, soit en mousse compressible, soit en mastic silicone épousant la forme des châssis.
Dans les châssis plus récents en bois, on peut ajouter également un tel type de joint sur la deuxième ou la troisième frappe.
Les fuites d’étanchéité peuvent être dues au vieillissement du préformé, dans ce cas, celui-ci doit être remplacé.
Remarque : lors de l’entretien des châssis en bois, le traitement du bois ne doit pas recouvrir le préformé, sinon ce dernier est rendu inefficace.
Il est indispensable de souder ou de recoller les joints d’étanchéité présentant une discontinuité dans les angles. En effet, la continuité du joint dans ces zones est particulièrement délicate : le joint peut facilement se défaire à cet endroit.
Dans tous les cas, il faut que le joint soit continu et reste dans un même plan sur tout le pourtour de l’ouvrant.

Un mauvais drainage

Le drainage de la chambre de décompression peut s’avérer insuffisant. Des conduits de drainages peuvent être rajoutés dans le dormant.
On veillera à réaliser des conduits d’inclinaison et de diamètres identiques à ceux existants. Normalement, les conduits seront situés près des angles et équidistants de +/- 50 cm.

Schéma du drainage de la chambre de décompression

Un mauvais réglage ou/et entretien des quincailleries.

Un bon réglage des quincailleries permet d’assurer un écrasement du préformé de -/+ 2 mm et garantit ainsi un bon fonctionnement de la barrière d’étanchéité.

Une déformation excessive du châssis lors de sa manipulation ou par la dilatation thermique.

Cette déformation engendre principalement un défaut d’étanchéité entre le dormant et l’ouvrant car ailleurs (c.-à-d.. entre la maçonnerie et le châssis et entre le châssis et la vitre), les joints sont extensibles.
On améliore la raideur du châssis en rapportant des profilés à la face intérieure ou extérieure.

Une mauvaise étanchéité entre le cadre et le vitrage

Schéma de la mauvaise étanchéité entre le cadre et le vitrage

Dans les anciens châssis, un mastic durci et non élastique, posé généralement du côté extérieur, assurait la fixation du vitrage dans son cadre. Des petits clous assuraient la stabilité du vitrage en attendant la pose du mastic.
Les anciens mastics doivent être remplacés par des mastics souples après nettoyage et retraitement des châssis. On peut également d’abord rajouter des parecloses.
Pour les châssis récents en bois, on vérifie et éventuellement on remplace les joints, les parcloses, et l’emplacement des cales.
Pour les châssis PVC, aluminium ou polyuréthane, le joint autour des vitrages est généralement colmaté à l’aide d’un préformé d’étanchéité en néoprène, par exemple. Il doit être vérifié et remplacé s’il est abîmé.
Si on constate une insuffisance de drainage de la feuillure, on peut ajouter des conduits de drainage. L’opération est plus délicate que celle d’ajouter des conduits de drainage à la chambre de décompression car elle se fait dans l’ouvrant du châssis et toute erreur de disposition peut entraîner des infiltrations d’eau de rejet en aval de l’étanchéité à l’air du profilé.

Schéma de la mauvaise étanchéité entre le cadre et le vitrage

Si le vitrage est remplacé, il faut prévoir un nouveau type de joint et vérifier la présence de drainage de la feuillure.

Une mauvaise étanchéité des assemblages

Les assemblages peuvent être rendus étanches par des injections de mastic fluide ou de colle.


Améliorer l’étanchéité au niveau des ouvertures

Les halls d’entrée sans sas

L’air conditionné en été et l’air chauffé en hiver s’échappent joyeusement… ! Le coût généré par cette fuite est variable en fonction de la durée d’ouverture.

À titre de repère, un trou permanent d’1 m² dans une enveloppe (vitre brisée, par exemple) génère un passage d’air à la vitesse moyenne de 1 m/s. Ce m³ qui s’échappe par seconde va entraîner une consommation hivernale de :

1 [m³/s] x 3 600 [s/h] x 5 800 [h/saison chauffe] x 0,34 [Wh/m³.K] x (15° – 6°) / 1 000 = 63 000 [kWh/an]

où :

  • 15° est la température moyenne intérieure, tenant compte d’un abaissement nocturne et d’un apport équivalent de 3° par les apports « gratuits »,
  • 6° est la température moyenne extérieure hivernale dans le centre de la Belgique,
  • 0,34 Wh/m³xK est la capacité thermique de l’air.

Soit un équivalent de +/- 2 500 € par an et par m² d’ouverture permanente, si la chaleur est fournie par du combustible fuel à 0,375 €/litre.

Une solution consiste à créer un sas avec doubles portes ouvrantes automatiques, ou avec porte tournante, thermiquement plus efficace mais plus contraignante à l’usage.

Photo ouvre-porte automatique

Solution minimale : le ferme-porte automatique.


Cas particulier des bâtiments climatisés

Ce problème est moins important dans les bâtiments conditionnés dès leur origine : des châssis étanches, voire fixes, auront été prévus.

De plus, les locaux sont souvent maintenus en surpression (débit de pulsion > débit d’extraction) : l’air extérieur ne peut pénétrer et les courants d’air sont exclus.

Quelques cas particuliers sont cependant à prendre en considération :

Les halls d’entrée sans sas

L’air conditionné (et donc coûteux…) s’échappe joyeusement ! Le coût généré par cette fuite est variable en fonction de la durée d’ouverture.

A titre de repère, un trou permanent d’1 m² dans une enveloppe (vitre brisée, par exemple) génère un passage d’air à la vitesse moyenne de 1 m/s. Ce m³ qui s’échappe par seconde va entraîner une consommation hivernale de :

1 [m³/s] x 3 600 [s/h] x 5 800 [h/saison chauffe] x 0,34 [Wh/m³.K] x (15° – 6°) / 1 000 = 63 000 [kWh/an]

où :

  • 15° est la température moyenne intérieure, tenant compte d’un abaissement nocturne et d’un apport équivalent de 3° par les apports « gratuits »,
  • 6° est la température moyenne extérieure hivernale dans le centre de la Belgique,
  • 0,34 Wh/m³.K est la capacité thermique de l’air.

Soit un équivalent de +/- 2500 € par an et par m² d’ouverture permanente, si la chaleur est fournie par du combustible fuel à 0,375 €/litre.

Une solution consiste à créer un sas avec doubles portes ouvrantes automatiques, ou avec porte tournante, thermiquement plus efficace mais plus contraignante à l’usage.

Les climatiseurs mobiles

Photo climatiseur mobile  Photo climatiseur mobile

Il arrive qu’un climatiseur de local soit installé dans l’urgence !
Pour évacuer la chaleur au condenseur, une solution peu onéreuse consiste faire passer soit le manchon d’air, soit les conduits de fluide frigorigène, par un coin de la fenêtre… qui de ce fait reste entrouverte !

En été, comme un serpent qui se mort la queue, la climatisation se fatigue à refroidir l’air chaud … dont elle a favorisé l’entrée !

Les bâtiments partiellement conditionnés

Un bloc opératoire d’un hôpital, une salle de conférence d’un immeuble de bureaux, … sont parfois des zones climatisées distinctement. L’étanchéité de cette zone par rapport au reste du bâtiment est nécessaire pour limiter les consommations.

Exemple.

Dans un centre hospitalier de Mouscron, seul le quartier opératoire était conditionné et mis en surpression. En pratique, cette surpression n’était pas atteinte puisque les couloirs communiquaient avec le restant de l’hôpital. Le responsable technique a fait placer des portes automatiques coulissantes (du type entrée de grand magasin) afin d’améliorer l’étanchéité de la zone et de diminuer les consommations.

Mur plein

Mur plein


Le mur plein traditionnel

Le mur plein traditionnel de façade se compose le plus souvent, de l’intérieur vers l’extérieur :

  • D’un enduit mural à base de chaux et/ou de plâtre de 1,5 cm d’épaisseur.
  • D’une maçonnerie en terre cuite d’une brique d’épaisseur (19 cm) ou d’une brique et demie (29 cm). Pour des constructions plus anciennes et/ou situées dans certaines régions du pays, la maçonnerie peut être constituée de moellons de pierre naturelle. Dans ce cas, l’épaisseur est généralement plus importante.
  • D’un revêtement extérieur éventuel constitué par un enduit à base de chaux ou de ciment (épaisseur 2 cm) ou par un bardage (ardoises naturelles ou artificielles, …).

Mur plein en brique et mur plein en pierre.

  1. Enduit intérieur.
  2. Maçonnerie de briques.
  3. Enduit extérieur facultatif.
  4. Maçonnerie de moellons.

Le mur monolithique récent

Le mur monolithique récent se compose généralement de l’intérieur vers l’extérieur :

  • D’une finition intérieure constituée d’un enduit mince (quelques mm d’épaisseur) lorsque les tolérances dimensionnelles sur les matériaux et l’exécution sont faibles ou d’un enduit à base de chaux ou de plâtre de 1 ou 1,5 cm d’épaisseur lorsque les tolérances sont plus importantes.
  • D’une maçonnerie composée de blocs de grand format en terre cuite allégée, en béton de granulats d’argile expansé ou en béton cellulaire de 19, 29 ou 39 cm d’épaisseur, maçonnés ou collés entre eux.
  • D’une protection extérieure sous forme d’un enduit minéral (environ 2 cm d’épaisseur) ou résineux ou d’un bardage en bois, en fibro-ciment, en matière plastique, …

Mur plein en bloc de grand format

  1. Finition intérieure.
  2. Maçonnerie en blocs légers.
  3. Finition extérieure.

Remarque : le béton léger composé d’argile expansé (λ = 0,17 W/mxK) et le béton cellulaire (λ = 0,15 à 0,30 W/mxK) sont des matériaux moins conducteur de la chaleur que la plupart des matériaux de construction, mais ne peuvent néanmoins pas être considérés comme des isolants proprement dits.


L’étanchéité à l’eau de pluie du mur plein

Le mur plein traditionnel d’une brique

Pour être considéré comme étanche à la pluie, un mur plein traditionnel d’une brique d’épaisseur doit être protégé par un enduit imperméable à sa face extérieure.
En effet, dans une maçonnerie en brique, l’eau s’infiltre par les défauts des joints ou entre joints et briques ainsi que par les microfissures présentes dans les briques. D’autre part, les briques et les joints absorbent l’eau par capillarité. Ainsi, un mur d’une brique, surtout s’il est exposé aux pluies battantes, ne peut, à lui seul, empêcher les infiltrations.

Le mur plein traditionnel d’une brique et demie

Dans un mur plein traditionnel d’une brique et demie, le mortier présent dans le joint central peut servir de coupure capillaire vis-à-vis des briques, c.-à-d.. qu’il interrompt le passage de l’eau au travers des matériaux. Ce qui améliore son étanchéité à l’eau de pluie. Celle-ci est d’autant meilleure que la maçonnerie peut jouer le rôle de paroi-tampon, càd. qu’elle est constituée de matériaux capillaires (en général, les maçonneries de parement plus légères).

Vue en plan d’une maçonnerie d’1 1/2 brique d’épaisseur.

Le mur traditionnel en moellons

Les murs de façade en moellons, même de forte épaisseur, ne sont pas étanches aux pluies battantes.

Le mur monolithique récent

Du fait de la dimension plus importante des blocs, ceux-ci sont mis en œuvre selon une épaisseur d’un demi ou d’un bloc; Il n’y a donc pas de joint central qui puisse assurer l’étanchéité à la pluie; celle-ci doit donc être assurée par un enduit extérieur étanche.
Les enduits ne sont, en général, pas complètement étanches, mais ils absorbent peu l’eau et sèchent rapidement.

Mais attention, vu que l’on se trouve ici en présence d’une simple barrière d’étanchéité (par opposition à la double barrière d’étanchéité du mur creux), de petits défauts d’exécution ou de petites dégradations peuvent compromettre cette étanchéité.

Remarque.

  1. L’absorption de l’eau de pluie par l’enduit est faible et donc l’eau de pluie ruisselle rapidement et en grande quantité le long de la façade. Les menuiseries et leurs joints doivent donc être parfaitement étanches à l’eau.
  2. Alors qu’un bardage ou un enduit de qualité et en bon état protège une maçonnerie extérieure contre les infiltrations de pluie, les peintures et hydrofuges de surface ne permettent pas d’assurer l’étanchéité à l’eau des façades.

Comportement à la condensation superficielle

Pour limiter le risque de condensation superficielle sur une paroi, il faut que le facteur τ de cette paroi soit le plus élevé possible.

Selon la NIT 153 du CSTC, il faut que τ > 0,7. Néanmoins, celle-ci concerne plus spécifiquement les logements et la valeur de 0,7 a été fixée en fonction des températures minimales et des humidités que l’on retrouvent dans ceux-ci. Pour les bureaux, par exemple, cette valeur pourrait sans doute être plus faible, car la production de vapeur est moins importante et, en général, on dispose d’une ventilation. Dès lors, dans le cas des bâtiments du secteur tertiaire, il vaut mieux évaluer le risque de condensation superficielle à partir des conditions réelles.

Néanmoins cette valeur peut servir de point de repère. Elle correspond à un coefficient de transmission thermique de la paroi U < 1,69 W/m²xK.

Dans les tableaux ci-dessous, on voit qu’en général, le coefficient de transmission thermique d’un mur plein traditionnel en pierre ou en brique dépasse cette valeur. Ces murs peuvent présenter de la condensation superficielle, même pour un climat intérieur normal (classe de climat intérieur < IV).

On y voit également que pour un mur plein monolithique récent, le risque de condensation superficielle existe si le mur est constitué de blocs de béton lourd ou mi-lourd, ou encore en silico-calcaire et ce à fortiori dans les angles ou derrière les meubles (hi < 5 W/m²xK), du fait de la moins bonne circulation de l’air dans ces zones. Pour une maçonnerie sèche en blocs de béton léger et/ou en terre cuite allégée d’une épaisseur supérieure à 19 cm, il n’y a pas de risque de condensation superficielle.

Coefficient de transmission thermique U (W/m²xK) des murs pleins traditionnels, calculés selon l’annexe VII de la PEB
Épaisseur 19 cm Épaisseur 29 cm Épaisseur 39 cm
Sec Humide Sec Humide Sec Humide

Maçonnerie de briques en terre cuite

1100 < ρ ≤ 1200

1,44 2,28 1,05 1,76 0,83 1,43

Maçonnerie de briques en terre cuite

1800 < ρ ≤ 1900

2,11 3,06 1,63 2,51 1,32 2,13
Maçonnerie en bloc silico-calcaire

1100 < ρ ≤ 1200

1,59 2,59 1,18 2,04 0,93 1,69
Maçonnerie en bloc silico-calcaire 1800 < ρ ≤ 1900 2,69 3,74 2,17 3,25 1,82 2,88
Maçonnerie en bloc béton avec granulat ordinaire 1800 < ρ ≤ 1900 2,87 3,32 3,36 2,78 2,00 2,39
Béton d’argile expansé 1100 < ρ ≤ 1200 1,68 2,07 1,25 1,57 0,99 1,26
Béton d’argile expansé 1600 < ρ ≤ 1700 1,68 2,75 1,80 2,20 1,48 1,83

Comportement à la condensation interne

Le mur plein traditionnel

Sans revêtement extérieur (enduit, peinture), le risque de condensation interne est nul.

Pour qu’il y ait un risque de condensation interne en hiver dans un mur plein traditionnel, il faut que le mur soit protégé par un enduit extérieur et que la résistance à la diffusion de vapeur de celui-ci soit sensiblement plus élevée que celle des enduits extérieurs courants (minéraux ou résineux), et que le climat intérieur soit anormalement élevé (classe de climat intérieur IV); sans ça, le risque est très faible.

Le mur monolithique récent

Pour les murs en blocs légers protégés par un enduit extérieur, la résistance à la diffusion de vapeur de ce dernier est plus élevée que celle de la maçonnerie et le risque de condensation interne à l’interface entre la maçonnerie et l’enduit extérieur est théoriquement réel. Mais pratiquement, pour des classes de climat intérieur normales (< IV), l’inertie hydrique de ces matériaux est telle que la condensation interne ne se forme pas ou qu’elle n’est pas résiduelle annuellement.

Comportement thermique du bâtiment en maçonnerie pleine

Le mur plein traditionnel

Le mur traditionnel, vu qu’il est composé de matériaux lourds, offre une bonne inertie thermique. Le risque de surchauffe en été à l’intérieur du bâtiment est diminué. Il faut un certain temps pour réchauffer ou refroidir le bâtiment.

Le mur monolithique récent

L’utilisation de blocs légers engendre une diminution de l’inertie thermique par rapport à un mur plein traditionnel lourd. Le risque de surchauffe en été augmente. Le bâtiment se réchauffe et se refroidit plus vite.


Comportement aux fissurations du mur plein

Le mur plein traditionnel

Vu le faible coefficient de dilatation thermique des matériaux mis en œuvre, la grande inertie thermique et la relativement bonne déformabilité de la maçonnerie, les écarts de températures annuels au sein de ces murs ne vont avoir pour seules conséquences que quelques micro-fissures.

Évolution de la température au sein du mur plein lourd lors d’une journée d’été et lors d’une journée d’hiver.

  1. Enduit intérieur
  2. Mur plein traditionnel.

Les variations de température journalières ont, a fortiori, une influence négligeable.

Le mur monolithique récent

Évolution de la température au sein du mur en bloc léger lors d’une journée d’été et lors d’une journée d’hiver.

  1. Enduit intérieur
  2. Maçonnerie en blocs de béton léger
  3. Enduit extérieur.

L’enduit extérieur subit des variations de température été-hiver importantes.
Le risque qu’il se fissure est réel au voisinage des baies et aux endroits où il est appliqué sur des matériaux de nature différente. Dans ce cas, il est préférable d’armer la maçonnerie afin de mieux répartir ses déformations.

Le risque de fissuration est moindre pour un enduit de couleur claire.

Connaître les paramètres pour le dimensionnement de l’éclairage

Connaître les paramètres pour le dimensionnement de l'éclairage


La zone de calcul

Schéma zone de calcul.

Selon la norme NBN EN 12464-1, trois zones sont définies :

  • la zone de travail où la tâche visuelle est réalisée (le bureau : zone à 500 lux dans l’exemple),
  • la zone environnante immédiate à la zone de travail (zone à 300 lux dans l’exemple).
  • la zone de fond qui représente le reste de la surface du local.

Attention : pour le calcul de la puissance spécifique  en W/m²/100 lux il faut considérer toute la surface du local (aussi bien pour le calcul de la puissance totale de tous les luminaires que pour le niveau d’éclairement moyen à hauteur du plan de travail.)

La zone de travail

Dans la zone de travail, l’éclairement moyen recommandé est à maintenir sur la surface de référence ou plan utile pendant toute la durée de vie de l’installation d’éclairage.  Cette surface est celle où la tâche visuelle s’exécute comme par exemple :

  • la table à dessin,
  • le bureau,
  • le desk de réception,
  • le banc d’écolier,
  • le tableau,
  • l’établi,

On définit dans la zone de travail un niveau d’éclairement en fonction de la tâche effectuée.

Ces différentes valeurs sont données dans les normes.

Données

Pour connaitre les valeurs d’éclairement recommandé en fonction de l’usage, cliquez ici.

Où 20 lux représentent le seuil de perception; les autres valeurs étant séparées par un facteur approximatif de 1.5 et représentant la plus petite différence significative entre deux niveaux d’éclairement.

20 30 50 75 100 150 200 300 500 750 1 000 1 500 2 000 3 000 5 000

La zone environnante immédiate

Dans la zone environnante immédiate (bande de 0.5 m autour de la zone de travail), l’éclairement recommandé et l’uniformité doivent être en relation avec ceux de la zone de travail selon le tableau ci-dessous :

Éclairement de la tâche
en lux
Éclairement des zones environnantes immédiates
en lux
>= 750
500
300
200
150
100
<= 50
500
300
200
150
E tâche
E tâche
E tâche
Uniformité : > = 0.4 à 0.6 Uniformité : > = 0.4

On retiendra donc que dans cette zone, les niveaux d’éclairement peuvent être diminués d’un facteur de l’ordre de 1.5 à 1,666 avec une uniformité de 0.4.

La zone de fond

On pourrait définir la zone de fond comme l’espace couvrant le local, diminué des zones de travail et environnantes immédiate. Dans cette zone, le niveau d’éclairement doit être au moins égal au tiers de celui de la zone environnante immédiate avec une uniformité moyenne de 0.1.

Quelques exemples selon l’usage

Une caisse de grande surface

Schéma éclairage caisse de grande surface.

Un couloir

Schéma éclairage couloir.

Une chambre d’hospitalisation

 


Le plan de référence

La surface de référence est constituée par le plan sur lequel s’effectue normalement le travail.

La hauteur du plan de référence est donc à définir en fonction de l’ergonomie et de l’activité menée de manière courante au niveau de la zone de travail considérée :

Surface de référence par rapport au sol Tâche effectuée
Debout Assis Couché
Horizontale Lecture, écriture sur un guéridon dans un couloir d’hospitalisation (h = 1 m).
Marche dans un couloir (h = 0,10 m).
Écriture, lecture sur un bureau (h = 0.7 m sur un bureau standard et h = 0.85 m sur un plan de travail de laboratoire). Examen médical sur une table d’examen (h = 0.85 m).
Verticale Écriture au tableau. Lecture au tableau.
Inclinée Lecture d’un livre par un patient dans un hôpital en position couchée (h = 1 m avec une inclinaison de 75°).

Quelques exemples selon l’usage

Bureau

Il peut être à une hauteur de 0.75 m pour un plan de travail normal.

Schéma éclairage exemples selon l’usage, bureau.

Caisse de grande surface

Le plan sera horizontal et situé à la même hauteur que la caisse.

Schéma éclairage exemples selon l’usage, caisse de grande surface.

Chambre d’hospitalisation

Schéma éclairage exemples selon l’usage, chambre d’hospitalisation.


L’éclairement moyen minimum

On trouve dans les normes des valeurs de niveaux d’éclairement en fonction de la tâche exécutée.

Pour connaitre  les valeurs d’éclairements moyens recommandés suivant l’activité du local : cliquez ici !

Les valeurs Em calculées dans les zones de travail, environnantes immédiates et de fond seront fournies par l’auteur du projet et, dans la mesure du possible, se rapprocheront de la valeur d’éclairement recommandé.
En début d’installation (dépréciation nulle), on limitera le surdimensionnement de l’installation (les cahiers des charges énergétiques préconisent de ne pas dépasser 20 % de surdimensionnement) afin de préserver l’efficacité énergétique de l’installation d’éclairage.

Exemple d’éclairement recommandé : 500 lux

+

500 lux

600 lux (+ 20 %)

> 600 lux


L’uniformité

Zone de travail

L’uniformité de l’éclairement recommandée dans la zone est précisée dans les normes.

Données

Pour connaitre les valeurs d’uniformité recommandées, cliquez-ici.

Zone environnante immédiate et de fond

Dans ces zones, l’uniformité est respectivement de 0,4 et 0,1.


Le coefficient de réflexion des parois

Si les couleurs des parois sont définies une fois pour toutes, et particulièrement si les parois sont de couleur foncée, les coefficients de réflexion choisis pour le dimensionnement devront correspondre à ces couleurs. Mais en général les couleurs ne sont pas fixes, et pour autant que les couleurs soient relativement claires, il vaut mieux faire les calculs avec des valeurs par défaut.

Données

Pour connaître les coefficients de réflexion par défaut ou correspondants  à la couleur et à la matière de vos parois, cliquez ici !

Concevoir

Pour savoir comment choisir la couleur des parois

Le facteur de maintenance

L’installation doit fournir les niveaux d’éclairement requis durant toute sa durée de vie. Pour tenir compte de la diminution du flux lumineux avec l’âge (diminution du flux des lampes, encrassement des lampes et luminaires), le dimensionnement de l’installation doit intégrer la notion de facteur de maintenance « FM » (facteur de maintenance = 1 – facteur de dépréciation) qui surdimensionne l’installation d’origine.

On remarque cependant que ces facteurs ne couvrent pas la perte de flux en fin de vie utile. Or les lampes sont censées être remplacées après cette période. En pratique, l’éclairement, en fin de vie, sera donc inférieur aux valeurs recommandées.

Ces facteurs permettent néanmoins d’éviter un surdimensionnement trop important de l’installation neuve (et donc une surconsommation, voire parfois un inconfort).


La grille de calcul

Dans la zone de travail, les niveaux d’éclairement moyen  sont calculés suivant un quadrillage au moins aussi fin que les recommandations des normes.

Exemple pour les halls omnisports

Les mesures doivent se faire selon un maillage spécifique généralement rectangulaire et recouvrant toute l’aire de référence au niveau du sol. Les éclairements sont calculés et mesurés au centre des mailles. Le pas maximum est déterminé en pratique par la formule suivante :

p = 0,2 . 5 EXP (log d)

où :

  • EXP = exposant,
  • d est la plus grande dimension de l’aire de référence,
  • p est le pas maximum du maillage.
    Dans le cas de l’exemple (d = 28 m), on trouve p = 2 m.

Le nombre de points sur la longueur est donné par le nombre entier impair le plus proche du rapport d/p; soit 28/2 = 14. On peut choisir 13 ou 15; la norme donnera 13. Dans l’exemple, on a choisi 15 pour tenir compte d’une zone de sécurité débordante de 1 m.

Dans la mesure du possible, on essaye de prendre une maille carrée.

Dans la pratique, pour éviter un maillage excessif, on définit un maillage réduit de commun accord entre l’auteur de projet et le maître d’ouvrage. Cela peut être, par exemple, un maillage de « un point sur deux ». On peut s’aider aussi des valeurs reprises dans les tableaux de la norme EN 12193.


En pratique ?

De nombreux outils sont disponibles. Après avoir déterminé le type de type de lampe, de ballast et de luminaire à utiliser, les outils suivants permettent par exemple de dimensionner l’installation (nombre et position des appareils) :

DIALux et RELUX

Ces logiciels de calcul sont gratuits. Ils sont neutres et indépendants vis-à-vis des fabricants et permettent de simuler un système d’éclairage en tenant compte des caractéristiques réelles de la plupart des produits disponibles sur le marché.

Ces logiciels permettent de vérifier que le système d’éclairage répondra bien aux exigences de confort visuel. Il permet ainsi de calculer les niveaux d’éclairement, l’uniformité et l’UGR.

 DIALux

Pour accéder au site de DIALux, ouverture d'une nouvelle fenêtre ! cliquez ici !

RELUX,

Pour accéder au site de RELUX, ouverture d'une nouvelle fenêtre ! cliquez ici !

Les outils proposés par les fabricants de luminaires

L’étape intermédiaire entre l’utilisation des fichiers Excel et celui des logiciels DIALux et RELUX, est le recours aux logiciels proposés sur le site des constructeurs de luminaires. Ceux-ci permettent d’utiliser les caractéristiques réelles des appareils. Les résultats se limitent souvent à la valeur de l’éclairement moyen réalisé.

Le recours à un professionnel de l’éclairage

L’utilisation des logiciels plus poussés (Dialux et RELUX) nécessite une certaine expérience. Les professionnels de l’éclairage seront sûrement d’une aide utile lors de cette phase de dimensionnement.

Choisir le préchauffage de l’air neuf


Batterie à eau chaude ou résistance électrique ?

Une batterie à eau chaude est constituée d’un échangeur alimenté en eau chaude au départ d’une chaudière. La régulation se fait en agissant soit sur le débit d’eau (vanne deux voies, vanne trois voies en division), soit sur la température de l’eau (vanne trois voies en mélange) au départ d’une sonde placée dans la gaine de soufflage. La deuxième solution demande une pompe supplémentaire mais rend le réglage plus facile car la variation de puissance de la batterie est pratiquement proportionnelle à la température, tandis que dans le premier cas, la puissance échangée varie peu avec le débit lorsque celui-ci est proche du débit nominal et varie rapidement pour les faibles débits. Il faut en outre prévoir une sécurité antigel de la batterie forçant l’ouverture de la vanne, arrêtant la ventilation, fermant le clapet d’air neuf et enclenchant une alarme en fonction d’un thermostat situé après la batterie (alarme si la température de l’air pulsé chute sous 5°C).

Trois modes de régulation d’une batterie de préchauffe à eau chaude.

La solution de la résistance électrique est la plus simple, donc la moins chère à l’investissement. Par contre, elle conduit à un surcoût parfois important à l’exploitation.

Batteries électriques terminales.

Comparons le coût du préchauffage de l’air neuf avec une batterie à eau chaude et une résistance électrique pour un immeuble de bureaux de 50 personnes :

Type de préchauffage Batterie à eau chaude Résistance électrique
Débit d’air neuf. 1 500 [m³/h]
Durée de fonctionnement annuelle. 2 600 [h/an]
Température de soufflage. 16 [°C]
Consommation pour le préchauffage de l’air. 9 460 [kWh/an]
(rendement du système : 70 %).
6 620 [kWh/an]
(rendement du système : 100 %).
Coût du préchauffage. 588,4 [€/an]
(à 0,622 €/litre de fuel).
1059,2 [€/an]
(à 0,16 €/kWh).

Avec un gain de 500 €/an, le surcoût de la batterie à eau chaude raccordée à la chaudière existante peut rapidement être rentabilisé.

Calculs

Pour adapter ces valeurs à votre propre situation, cliquez ici !
Remarque : utilisation d’une pompe à chaleur réversible ?

Une alternative à l’utilisation d’une batterie électrique consiste à placer un échangeur en détente directe : pompe à chaleur en hiver et machine frigorifique en été. Le fonctionnement d’une pompe à chaleur est certainement plus performant que celui d’une résistance directe. Et en période de forte chaleur, un air prérefroidi peut être distribué dans les locaux. Mais :

  • Un tel système ne se conçoit qu’au sein d’un caisson de préparation d’air centralisé,
  • une température de pulsion commune à l’ensemble des locaux devra être trouvée,
  • le risque est alors grand de « casser » de l’énergie (en mi-saison, réchauffer l’air neuf à 22°C et … refroidir le local où cet air est pulsé !),
  • idéalement, il faudrait pulser de l’air à 16°C en hiver et refroidir l’air uniquement lorsque la température extérieure dépasse 24°C. Ce n’est que dans ce cas que l’air frais extérieur pourra être valorisé (free cooling).

Ce qu’il ne faut jamais faire : régler la température de l’air pulsé à une température « neutre » de 20°C …


Récupération passive de la chaleur

Il est possible de préchauffer l’air neuf hygiénique par récupération de chaleur :

  • Sur une zone tampon du bâtiment. Par exemple, une prise d’air placée dans un atrium captera de l’air déjà préchauffé par le bâtiment et/ou le soleil.
  • Sur un puits canadien dans le sol pour capter l’énergie géothermique. Un chauffage de 5 à 10 degrés est possible en hiver, mais également, un refroidissement de 5 à 10 degrés est possible en été !

Récupérateur de chaleur

Une partie du préchauffage de l’air extérieur peut être repris par un récupérateur de chaleur entre l’air extrait et l’air pulsé (échangeur à plaques, rotatif, à eau glycolée, …). Par exemple, si la température intérieure est de 20°C et que la température extérieure est de 0°C, un récupérateur de chaleur peut amener la température de l’air neuf aux environs des 10°C.

En milieu hospitalier, pour une question d’hygiène et de contamination croisée, on évitera l’échangeur de chaleur où les airs extraits et d’admission empruntent le même gainage (échangeur à accumulation croisée par exemple).

La récupération de chaleur sur l’air extrait est une solution énergétiquement très intéressante. Elle permet de récupérer de 50 à 95 % (en fonction du type du récupérateur choisi) de l’énergie rejetée par l’extraction d’air.

Dans une installation existante, étant donné les coûts élevés d’achat et de placement d’un récupérateur, l’augmentation de la consommation des ventilateurs avec les pertes de charge supplémentaires, la rentabilité à court terme du placement d’un récupérateur peut être difficile, sauf

  • pour des débits élevés (plus de 10 000 m³/h),
  • avec un usage permanent de l’installation.

Dans une nouvelle installation, dans la mesure où la récupération de chaleur fait partie de la conception initiale, la puissance de chauffage pourra être réduite et le surcoût initial sera rapidement amorti.

Concevoir

Pour choisir un récupérateur de chaleur, cliquez ici !

Calculs

Pour estimer le gain réalisable par le placement d’un récupérateur de chaleur, cliquez ici !

Il faut également tenir compte du fait que le récupérateur ne peut à lui tout seul reprendre l’entièreté des besoins en préchauffage :

  • Premièrement, parce qu’en plein hiver, la température de l’air neuf atteinte risque d’être insuffisante. Si on récupère 50 % de l’énergie rejetée, la température atteinte, par – 10°C extérieur, ne sera que de 5°C (pour une température de l’air rejeté de 20°C).
  • Ensuite parce que par grand froid, l’air rejeté, en cédant sa chaleur, risque de descendre en dessous de 0°C, entraînant des risques de givre sur la batterie d’échange. Pour éviter cela, une régulation du récupérateur (exemple : cas d’un échangeur à eau glycolée) est nécessaire, ralentissant l’échange lorsque la température de l’air rejeté descend trop, c’est-à-dire par grand froid et donc lorsque les besoins en préchauffage sont les plus importants.

Il est donc, la plupart du temps, nécessaire de doubler le récupérateur par une batterie de préchauffage traditionnelle.

Schéma sur récupérateur et une batterie de préchauffage traditionnelle.

Pour éviter la formation de glace sur l’échangeur du conduit d’air rejeté, un by-pass avec vanne trois voies limite le transfert de chaleur lorsque l’air rejeté se refroidit trop.


Récupération de chaleur sur le condenseur d’une machine frigorifique

Lorsque le bâtiment traité possède une installation frigorifique devant fonctionner même en hiver, on pourrait imaginer de récupérer la chaleur évacuée au niveau du condenseur pour préchauffer l’air neuf de ventilation.

Cette idée paraît intéressante, puisqu’il s’agirait en fait d’un transfert de chaleur des zones à refroidir vers les zones à chauffer.

Dans la pratique, cependant, cette récupération de chaleur ne semble pas forcément engendrer des économies d’énergie. En effet :

  • La température de condensation de la machine frigorifique ne permet pas de produire de l’eau à très haute température (aux environs de 40°C). Une batterie de préchauffage travaillant à cette température devra être surdimensionnée et présentera donc des pertes de charge supérieures, synonymes de consommations électriques supplémentaires. Augmenter la température de condensation de la machine frigorifique aurait également une conséquence néfaste car cela détériorerait l’efficacité frigorifique.
  • Souvent, en plein hiver, le fonctionnement de la machine frigorifique sera réduit, voire nul, alors que les besoins de préchauffage augmentent. Une batterie traditionnelle complémentaire sera donc nécessaire pour assurer un préchauffage correct à l’arrêt du condenseur. On se retrouve donc avec 2 batteries provoquant des pertes de charge importantes et permanentes.

Concevoir

Pour plus de détails sur la récupération de chaleur au condenseur d’une machine frigorifique, cliquez ici !

Sélection d’une batterie

Lors de la sélection d’une batterie à eau chaude, l’objectif « URE » est de minimiser sa perte de charge côté « air » et par là, la consommation du ventilateur.

Une batterie chaude est d’abord sélectionnée pour fournir la puissance désirée en fonction du régime de température d’eau souhaité.

Batteries à eau chaude.

Pour une même puissance fournie, plus le régime de température choisi pour le dimensionnement est bas, plus la batterie possédera un nombre de rangs important et donc plus sa perte de charge sera importante. Il est donc conseillé de dimensionner les batteries chaudes pour un régime de température de 90°/70° de manière à limiter au maximum ces pertes de charge. Une régulation de la température d’eau en fonction des conditions climatiques permet en outre de limiter les pertes de distribution (et de production) de l’eau chaude.

De même, il faut être conscient qu’un installateur essayera souvent de diminuer le coût de la batterie sans se soucier de la conséquence sur la consommation du ventilateur. Il faut donc être attentif à lui imposer de minimiser les pertes de charge côté air lors de la sélection.

Échangeur à eau glycolée

Échangeur à eau glycolée


Principe

Le récupérateur à eau glycolée est constitué de deux batteries, en général constituées de tubes en cuivre et d’ailettes en aluminium (éventuellement cuivre/cuivre ou l’ensemble en acier galvanisé), placées l’une dans le groupe d’extraction, l’autre dans le groupe de pulsion.

La distance entre ailettes est de 1,6 mm à 6 mm ce qui, vu la longueur habituelle des échangeurs, nécessite tant sur l’air neuf que sur l’air repris, un filtre de classe G3 monté chaque fois en amont de l’échangeur.

Etant donné l’encombrement non seulement de chaque échangeur mais également du filtre et des pièces de transformations entre l’échangeur et les conduits aérauliques en amont et en aval ainsi que la place nécessaire pour changer le filtre et nettoyer l’échangeur, on doit pouvoir disposer d’une longueur totale de 3,5 à 4 m, distance dont on ne dispose pas toujours pour l’installation, après coup, d’un échangeur, d’où la nécessité de veiller préalablement à ce point. Par ailleurs il est toujours judicieux de prévoir l’isolation thermique des pièces de raccordement aux conduits aérauliques.

Les batteries de pulsion et d’extraction sont reliées entre elles par un circuit de tuyauteries comprenant des vannes d’isolement, une pompe de circulation, un vase d’expansion, un orifice de remplissage et divers appareils de mesure (thermomètres et manomètre).

Dans le circuit ainsi constitué circule de l’eau glycolée (antigel). Ce fluide caloporteur sert de vecteur de transport des calories puisées dans l’air extrait (chaud, par ex : 20°C) vers l’air neuf (froid, par ex : – 10°C).

En descendant en dessous du point de rosée, la chaleur latente de la vapeur d’eau contenue dans l’air extrait peut être récupérée. Ce système n’assure cependant pas de transfert d’humidité. Il n’y a aucune contamination de l’air frais par l’air vicié.

Les circuits d’extraction et de pulsion peuvent être éloignés l’un de l’autre, ce qui peut être très avantageux.

Pour éviter la formation de glace sur l’échangeur de chaleur du conduit d’air rejeté, il faut éviter de refroidir trop l’air. Un by-pass avec vanne 3 voies sur le circuit d’eau permet de limiter la quantité de chaleur récupérée. Dans le calcul des frais d’exploitation, il faut tenir compte :

  • des pertes de charge créées par la présence des échangeurs dans les gainages et donc de la consommation d’énergie supplémentaire des ventilateurs,
  • de la consommation d’énergie de la pompe de circulation.

Le rendement est directement lié au nombre de tubes et de rangs des échangeurs. Il existe ainsi des récupérateurs à eau glycolée à haute performance dont les dimensions ont été majorées.

Puisque l’échange de chaleur se fait via l’utilisation d’un fluide intermédiaire (2 échangeurs en cascade et donc deux D T° ), le rendement maximum est assez faible.

Généralement, à cause de l’accroissement des pertes de charge avec l’augmentation de la surface d’échange, les rendements les plus élevés ne correspondent pas aux économies les plus importantes.

Le récupérateur à eau glycolée nécessite également une régulation pour éviter les surchauffes en été et les problèmes de gel en hiver.

De même, un entretien régulier concernant le circuit hydraulique du récupérateur doit être prévu.


Facteur influençant le rendement

Prenons un exemple :

Soit un groupe de ventilation de 5 000 m³/h de section 78 x 78 cm soit 0.6 m². Le débit et la section de passage impliquent une vitesse d’air dans la batterie de 2,3 m/s (5 000 / (0,6 * 3 600)).

Sur le catalogue d’un constructeur, on sélectionne deux batteries, modèle 3-1, une sur l’air rejeté et une sur l’air frais (3 indique le nombre de rang de tube – 1 indique en mm l’espacement entre les ailettes).

Le graphique donne à partir des points 1 et 3 (débit), les points 2 et 4. À partir du point 4 une verticale est abaissée jusqu’à la courbe Van/Vav, rapport entre le Volume d’air neuf et le Volume d’air vicié (ici on choisit Van / Vav = q/ q= 0,9), le point 5 est obtenu.

À l’intersection de la verticale au point 2 et de l’horizontale au point 5, on trouve la valeur du rendement du récupérateur. Ici, +/- 61 %.

Graphe rendement du récupérateur.

Courbes de rendement.

On constate que l’efficacité de l’échange augmente si :

  • l’espacement entre les ailettes est réduit,
  • le volume d’air extrait est grand par rapport au volume d’air neuf,
  • le nombre de rang est élevé.

> l’efficacité thermique se situe généralement entre 40 – 80 %.


Avantages – Désavantages

Avantages

  • Les flux d’air neuf et d’air rejeté sont totalement séparés, il n’y a donc pas de risque de contamination,
  • flexibilité dans la disposition des gaines d’air neuf et d’air évacué,
  • régulation de température très simple à réaliser par une vanne 3 voies,
  • groupement possible de plusieurs installations (la source de chaleur ne doit pas forcément provenir de l’installation de ventilation).

Désavantages

  • Transfert de chaleur latente limité car la température du fluide glycolé est peu souvent en dessous de la température de rosée de l’air extrait,
  • l’énergie consommée pour la pompe eau glycolée réduit le rendement net de récupération. Une valeur de 5 % est un ordre de grandeur,
  • perte de charge relativement importante,
  • rendement généralement faible,
  • la boucle d’eau demande une surveillance et un entretien supplémentaire vu le risque de corrosion et la présence d’une pompe de circulation,
  • la présence de glycol comme antigel accroît la perte de charge côté eau et réduit le transfert de chaleur,
  • coûts importants pour des petites installations,
  • sans mesures appropriées, il y a risque de givre sur l’air extrait.

Régulation

Tous les types de récupérateurs nécessitent un système de régulation :

  • En hiver pour éviter le gel du côté de l’air extrait : si l’échange est tel que la température de l’air extrait chute sous 0°C, il faut réduire le transfert de chaleur pour éviter le givre de l’échangeur.
  • En mi-saison et en été pour éviter la surchauffe de l’air à la sortie du récupérateur : il faut réduire l’échange pour éviter que la température de l’air neuf devienne telle qu’elle contribue à surchauffer l’ambiance intérieure.

En demi-saison

La grandeur de réglage auxiliaire prépondérante est alors la température de soufflage. On utilise alors comme ensemble régleur une vanne à 3 voies. S’il faut réduire la puissance de l’échangeur, on diminue alors le débit d’eau glycolée en circulation dans l’échangeur sur l’air neuf. Dans les cas extrêmes, la vanne se ferme complètement et la pompe de circulation s’arrête.

En été

Lorsqu’en été la température extérieure augmente, la différence avec la température de reprise augmente également car même si l’on admet une température intérieure plus élevée, cette dernière augmente moins vite que la température extérieure. Il est donc tout à fait judicieux de récupérer du « froid » de l’air repris pour le transférer à l’air neuf. La pompe de circulation est alors mise en route en fonction de l’écart de température entre la température de l’air neuf et celle de l’air repris. La vanne 3 voies fonctionne alors en réglage simple (passage direct de l’eau sans mélange ni dérivation).

En hiver

Lorsque la température extérieure est basse, la température du fluide intermédiaire pourrait tomber en dessous de 0°C. En fonction de l’état de l’air repris, il n’est pas impossible que l’échangeur de chaleur sur lequel circule l’air repris se mette à geler. Pour éviter une telle situation et ses graves conséquences, on prévoit un thermostat antigel qui n’est autre qu’une sonde de température placée sur le conduit aéraulique en amont de l’échangeur. En fonction de ses indications, la vanne 3 voies réagit de façon à réduire le débit-masse de fluide intermédiaire qui circule dans l’échangeur de chaleur traversé par l’air neuf, d’où une diminution de la quantité de chaleur transférée. Il est donc bien évident que la puissance de la batterie de réchauffage classique prévue en aval de l’échangeur sur l’air soufflé doit être augmentée en conséquence.


Entretien

Le contrôle de l’état de propreté de l’équipement de récupération est primordial.

En effet, l’encrassement des surfaces d’échange a deux conséquences néfastes sur la récupération : la réduction du coefficient d’échange de chaleur et la réduction des débits d’air.

Le tableau ci-dessous donne, les différents points à contrôler lorsque l’on fait la maintenance :

Échangeur à boucle d’eau

v
1 État des surfaces d’échange (nettoyage régulier)

X

2 Contrôle des éventuelles fuites d’air
fuites externes

X

3 Contrôle de la régulation
régulation sur le circuit caloporteur

X

régulation antigel

X

4 Contrôle du fluide caloporteur
contrôle de la teneur en antigel (glycol)

X

contrôle du remplissage du circuit

X

contrôle du débit

X

contrôle de la purge

X


Exemple

En vue de comparer les différents systèmes de récupération, nous développons ici le calcul du rendement de l’installation pour les différents systèmes de récupération présentés.

Prenons comme exemple une installation de traitement d’air d’un immeuble de bureaux, fonctionnant en tout air neuf, 10 heures/jour, 5 jours/semaine.

Les groupes de pulsion et d’extraction GP/GE sont de même débit : 21 000 m³/h – section de 1 525 x 1 525 mm, soit une vitesse d’air de 2,5 m/s.

Dans le cas d’un échangeur à eau glycolée, on déduit du catalogue du constructeur :

  • le choix de batteries avec boucle d’eau glycolée, en Cu/Al, avec 8 rangs,
  • le fonctionnement dans les conditions extrêmes :

  • l’évolution dans le diagramme de l’air humide :

  • l’efficacité thermique instantanée :

ε= t– t/ t– t= (3,8 – (- 10)) / (22 – (- 10)) = 0,43 = 43 %

L’équipement sélectionné a entraîné les températures de sortie des fluides. On en déduit que le récupérateur a donné un accroissement de température de l’air neuf de 43 % de l’écart maximal entre les fluides, soit 0,43 x 32° = 13,8°.

Remarque : en réalité, le rendement thermique (rapport des enthalpies) donnerait :

η = h– h/ h– h= (7,5 – (- 6,5)) / (41 – (- 6,5)) = 0,30 = 30 %

Seulement 30 % du transfert maximal (en chaleur sensible et latente) est réalisé par le récupérateur).

La puissance maximale récupérée représente :

Pmax. réc. = 0,34 [W/(m³/h).°C] x 21 000 [m³/h] x (3,8 – (-10°)) = 96 [kW]

0,34 [W/(m³/h).°C] = chaleur spécifique de l’air

Cette puissance pourra être déduite de la puissance de la chaudière à installer.

L’efficacité thermique, calculée dans les conditions extrêmes (- 10°C), reste sensiblement identique aux autres températures de la saison de chauffe. La température moyenne extérieure en journée étant de 8°C, la puissance moyenne récupérée sera de :

Pmoy. réc. = 96 [kW] x (22° – (8°)) / (22° – (- 10°)) = 96 x 0,44 = 42 [kW]

Cela entraîne une économie thermique de :

Eréc = 42 [kW] x 10 [h/j] x 5 [j/sem] x 35 [sem] / 0,8 = 92 140 [kWh]

Le facteur 0.8 correspond au rendement saisonnier de la production de chaleur pour une installation nouvelle, dont les conduites sont isolées. On prendrait 0.7 pour une installation plus ancienne. 35 semaines correspondent à la durée de la saison de chauffe.

Suite à la présence du récupérateur (pertes de charge complémentaires), les puissances des ventilateurs sont modifiées comme suit :

Avant Après
GE GP GE GP
2,2 kW 5,2 kW 4,5 kW 6,8 kW

ce à quoi il faut ajouter une puissance de 0,6 kW pour le circulateur de la boucle.

Chauffage électrique direct

Chauffage électrique direct

Modèle chauffe-serviette, esthétique mais dont la puissance est limitée puisque la surface d’émission et la température le sont…


Les convecteurs et ventilo-convecteurs

Les convecteurs sont des appareils de chauffage direct dont l’émission de chaleur se fait essentiellement par air chaud, soit par convection naturelle, soit par convection forcée par ventilateur (on parle alors de ventilo-convecteur).

Convecteurs

Un convecteur se présente sous forme d’un boîtier métallique comportant des ouvertures d’entrée et de sortie d’air placées respectivement en bas et en haut de l’appareil.

L’air en contact avec l’élément chauffant placé en bas de l’appareil s’échauffe, se dilate et monte sous l’action d’un phénomène de tirage (effet de cheminée). Cet air chaud pénètre ensuite dans le local via les sorties d’air en haut de l’appareil.

L’élément chauffant dont la puissance est généralement comprise entre 400 W et 3 000 W peut se présenter soit comme résistance nue (sous forme d’épingles ou d’un spirale), soit comme résistance blindée, souvent pourvue d’ailettes.

Généralement les convecteurs sont équipés d’un thermostat incorporé de type électromécanique ou de type électronique pour les appareils haut de gamme.

Les convecteurs de sol, par contre, utilisent des thermostats muraux. Les « convecteurs de sol » (500 W à 1 500 W) s’incorporent dans la chape du local à chauffer et s’installent souvent au droit des portes-fenêtres ou dans des locaux où l’installation d’appareils muraux est impossible par manque de place.

Photo convecteurs de sol.

Ventilo-convecteurs

Dans les ventilo-convecteurs, le flux d’air chaud (vertical ou horizontal) est généré par un ventilateur axial ou centrifuge.

Par le débit d’air relativement important, la taille des appareils est réduite et on obtient rapidement une température homogène dans le local (par exemple une salle de bains).

Ils sont souvent équipés d’un commutateur de puissance, d’un thermostat incorporé et parfois d’une horloge de programmation ou d’une minuterie.

La puissance des appareils domestiques muraux ou portables varie généralement de 1 à 3 kW pour le domestique.

Aérotherme industriel électrique.

Les aérothermes utilisés en tertiaire ou en industrie sont des ventilo-convecteurs de grande puissance (3 à 50 kW) qui fonctionnent suivent le même principe.


Les appareils à rayonnement

Les appareils à rayonnement émettent au moins 50 % de leur puissance de chauffe sous forme de rayonnement. Une classification des appareils à rayonnement peut être faite en fonction de la température de l’élément chauffant.

Panneaux radiants

Il s’agit d’appareils dont la face avant fait fonction de surface rayonnante. Cette surface est soit accessible (max. 110°C), soit située derrière une grille de protection (dans ce cas, la surface rayonnante est portée à plus ou moins 200°C).

Photo panneaux radiants.

La résistance chauffante peut se présenter sous différentes formes :

  • résistance placée à l’arrière de la surface rayonnante,
  • circuit résistif métallique sur film isolant placé à l’arrière de la surface rayonnante,
  • circuit résistif métallique apposé directement sur tôle émaillée double face.

Les panneaux radiants muraux (jusqu’à 3 000 W) sont souvent équipés d’un thermostat incorporé et d’un commutateur de puissance.

Les panneaux radiants de type plafonnier peuvent être suspendus ou même incorporés dans des faux plafonds (tout comme des armatures d’éclairage) et sont commandés par thermostat mural.

Radiateurs infrarouges

Ces appareils sont composés d’un élément chauffant apparent (résistance portée à 500 …1 000°C, placée dans un tube en quartz ou en acier) et d’un réflecteur en métal poli qui sert à diriger le rayonnement infrarouge vers la zone à chauffer.

Photo radiateurs infrarouges.

Ils sont utilisés pour le chauffage intermittent de petits locaux tels que les salles de bains (1 000 à 2 000 W) ou le chauffage de grands espaces (3 000 à 6 000 W) tels que entrepôts, ateliers ou églises.


Les surfaces radiantes

 Il s’agit de systèmes travaillant à des températures de rayonnement très basses (25 à 40°C). Puisque la densité de chaleur émise se situe entre 50 et 200 W/m², des superficies importantes sont nécessaires.

Chauffage direct par le sol

Domaine d’application : comme chauffage principal de maisons ou chauffage de base pour des pièces telles que salles de bains, etc.

Le chauffage direct par le sol se différencie du chauffage à accumulation par le sol uniquement par une couche de béton plus fine et une répartition plus rapide de la chaleur produite.

Photo chauffage direct par le sol.

La puissance installée par unité de surface lors d’un chauffage sol direct, est limitée à environ 130 W/m². Ainsi, la température de surface du sol ne dépasse jamais 29°C.

La température au niveau des câbles chauffants est consignée par un régulateur de température mécanique ou électronique. Ce dispositif peut être complété par un thermostat d’ambiance. La température limite de la dalle mesurée à hauteur des câbles chauffants doit, selon les besoins et l’installation, être réglée entre 40 et 50°C.

La sonde du régulateur de température est posée dans un tube de protection en cuivre ou métal traité, et doit se trouver au même niveau que les nappes chauffantes à distance égale entre les conducteurs chauffants.

L’enclenchement se fait en fonction de la composition du sol, environ 30 minutes avant l’occupation de la pièce. Le déclenchement se fait environ 30 minutes avant de quitter le local (de manière à tenir compte de la lenteur du système).

Plafond chauffant

Le système se compose d’un élément chauffant, essentiellement sous forme de film souple, placé entre un isolant thermique (destiné à éviter les pertes de chaleur vers le haut) et un parement (de préférence pas trop isolant).

Schéma principe plafond chauffant.

  1. Recouvrement du plafond.
  2. Elément chauffant.
  3. Elément constitutif du plafond.
  4. Isolation thermique.
  5. Voliges.

Les films chauffants peuvent se classer selon deux technologies :

  1. Les films métallisés constitués d’un ruban métallique résistif disposé entre deux pellicules assurant l’isolation électrique.
  2. Les films graphités constitués d’une couche ou d’un tissu imprégné de carbone et placés entre deux pellicules assurant l’isolation électrique. Des électrodes en cuivre sont fixées de part et d’autre de la zone conductrice. Ces films sont disponibles en rouleaux de différentes largeurs et densités de puissance.

La puissance maximale se situe généralement à 100 W/m² pour une température maximale de surface de 30 à 35°C.

La régulation de température se fait de préférence à l’aide d’un thermostat mural mesurant la température résultante du local.

Autres systèmes

D’application plutôt marginale on peut citer le chauffage par les murs et parois, dans lesquels on incorpore des résistances ou des films chauffants. Le système utilise notamment des tôles émaillées (comme pour les panneaux radiants à faible puissance) dont la face avant forme le revêtement décoratif de la paroi.

Des vitres chauffantes sont parfois utilisées en cas de grandes surfaces vitrées : vérandas, terrasses de restaurants,… mais aussi pour servir de parois pour un stand d’accueil dans un hall. Il s’agit d’un double vitrage avec deux films métallisés côté intérieur (lame d’air) des vitres.
Le film métallique de la vitre intérieure (côté local à chauffer) sert d’élément chauffant (maximum 250 W/m², température de surface intérieure de 40°C); l’autre film sert de couche réfléchissante et renvoie le rayonnement de chaleur vers le local à chauffer.

Source : d’après Le code de bonne pratique pour la réalisation des installations de chauffage électrique – Communauté de l’Electricité – CEG.