Impacts environnementaux : focus sur les fenêtres

Dans cette page, nous proposons une comparaison des impacts environnementaux des parois reprises dans la bibliothèque de TOTEM durant l’été 2023, afin d’identifier de bonnes pratiques en termes de choix constructifs. En particulier, nous nous intéressons aux toitures.

Recommandations avant comparaison:

 

Ca change vite

Les bibliothèques TOTEM s’enrichissent régulièrement, les EPD (déclaration environnementale de produit)  se multiplient… L’exercice fait ici est donc vrai pour en un temps t, et l’analyse peut changer rapidement. Cependant, puisqu’il ne s’agit pas de trouver un « meilleur élève », mais d’identifier des tendances, l’exercice vaut la peine.

Travailler à l’échelle de l’élément

Totem préconise la comparaison à partir du niveau hiérarchique correspondant aux éléments, de façon à considérer matériaux mis en œuvre ! En effet, si l’on comparait par exemple deux matériaux non mis en œuvre (deux isolants par exemple), on négligerait l’impact des matériaux additionnels nécessaires à celle-ci (fixation, mortier éventuel,…), et l’on pourrait mal estimer la durée de vie des matériaux, qui elle aussi peut dépendre des conditions de mise en œuvre .

Nous travaillons donc ici sur base des bibliothèques d’éléments prédéfinis dans TOTEM (planchers, murs, toitures,…). Il s’agit donc de bien de discuter de complexes multicouches, et non de matériaux individuellement.

Peut-on comparer des éléments n’ayant pas la même valeur U ?

L’impact environnemental de l’énergie consommée durant la phase d’utilisation de l’élément est pris en compte dans le score environnemental global. Une telle comparaison est donc possible, pour autant que l’on s’en tienne à une comparaison de l’impact sur l’ensemble des étapes du cycle de vie. Cela n’aurait évidemment aucun sens de comparer uniquement la phase de fabrication de parois n’ayant pas la même performance thermique.

Précisons cependant que la méthode de calcul utilisée pour l’évaluation de l’énergie consommée « in use » est discutable car relativement simpliste (méthode des degrés jours), et que l’impact de cette énergie n’est pas le même selon le type de système énergétique considérée (chauffage gaz ? pompe à chaleur ?). Les comparaisons qui sont faite sont donc à nuancer et contextualiser.

Peut-on comparer des éléments n’ayant pas la même durée de vie ?

Si l’on travaille à l’échelle des éléments, TOTEM uniformise les durées de vie à 60 ans, en intégrant un rythme de remplacement des éléments qui ne vivraient pas autant. La comparaison est donc possible.

Si vous voulez en savoir plus sur les hypothèses de calcul de TOTEM, dont la durée de vie, nous vous recommandons la video ci-dessous :

Peut-on comparer des élément n’ayant pas le même statut (Neuf ><Réno) ?

Oui et non. Il est intéressant de regrouper ces deux type d’éléments, pour mettre en évidence l’intérêt relative de la conservation d’éléments ou de composants existants. Mais une fois cela établi, c’est la comparaison d’éléments similaires qui a le plus d’intérêt pratique.


Vue générale sur les fenêtres

Le graphique ci-dessous représente l’ensemble des fenêtres répertoriés dans la bibliothèque TOTEM. En abscisse sont reprises les valeurs U (W/m2K) et en ordonnée le score agrégé de performance environnementale en millipoints par unité fonctionnelle.

Notons d’abord que plusieurs de ces fenêtres ne respectent pas l’exigence minimale U=< 1.5 W/m²K. Si l’on se concentre sur les autres, on remarque ne assez grande variabilité de score environnemental, puisque celui-ci varie entre 43 et 74 mPt/UF.

Comparaison d’éléments : les fenêtres prédéfinies de la bibliothèque TOTEM

Quelles tendances identifier ?

  • Premièrement, les fenêtres avec châssis bois présentent le meilleur score environnemental, que ce soit en simple ou, encore mieux, en triple vitrage. Le bois-alu arrive deuxième, et le PVC troisième. Le châssis aluminium ferme la marche.
  • Deuxièmement, le passage au triple vitrage permet systématiquement d’améliorer le score environnemental global, à matériau de châssis équivalent. L’ordre de grandeur de ce bénéfice est cependant inférieur à celui d’un changement de matériau de châssis. Par exemple, passer d’un châssis aluminium double vitrage à un aluminium triple vitrage vous fera gagner une dizaine de millipoints, alors que le passage vers un châssis bois double vitrage vous en fait gagner près de 20.

Attention cependant, ce chapitre de la bibliothèque TOTEM ne contient que peu de points. L’analyse sera donc à refaire lorsque cette bibliothèque se sera enrichie.


Vers une trop grande complexité de vitrages ?

Pour compléter l’analyse générale ci-dessous, nous pouvons nous trouver vers les recherche du dr. Jean Souviron((Jean Souviron. Glazing Beyond Energy Efficiency: An Environmental Analysis of the Socio-Technical Trajectory of Architectural Glass. Architecture, space management. Université Libre de Bruxelles (U.L.B.), Belgium, 2022. English.)), dont la thèse de doctorat porte sur l’analyse de cycle de vie des vitrages. En particulier, il analyse la tendance à la complexification des technologies de vitrages ces dernières décennies (doublement puis triplement des feuilles de verre, ajout de couches basses émissivité, remplissages gazeux, etc.) et s’interroge sur le bilan environnemental de ces vitrages dans un scénario de rénovation énergétique de bureaux : est-ce que les bénéfices des ces technologies lors de l’utilisation du bâtiment surpassent le coût environnemental d’une production plus complexe ? Ceci en se basant sur une analyse détaillée des cycles de production et des potentiels de récupérations et recyclage des vitrages.

Pour vous la faire courte, voici ses principales conclusions :

  • le meilleur vitrage est … celui qu’on ne produit pas. avant de se questionner sur quel vitrage pour remplacer ceux en fin de vie, il convient de se pencher sur la nécessité de ces vitrages, dnas une logique de réduction globale des quantités de matières utilisées. A noter cependant qu’il centre sont travail sur la rénovation des murs rideaux, pour lesquels effectivement la quantité de verre peut être mise en question. La situation est différente pour une architecture de fenêtres.

The most significant (impact) would be to minimise the production of flat glass due to the energy-intensive nature of float plants and their dependence on fossil fuels.

  • l’impact environnemental des vitrages est grevé par une grande difficulté à recycler les produits développés aujourd’hui, principalement du fait des difficultés à dissocier les composants des complexes de vitrage.

This means that the design of insulating glass units itself should be revised so that they provide sufficient acoustic and thermal insulation, while the materials from which they are made can be easily separated.

  • Sur la valeur ajoutée des vitrages « complexes », il pointe l’énorme incertitude qui entoure les analyses de cycle de vie actuelles, dans un contexte climatique changeant, un mix énergétique en transition, une variété d’hypothèses d’utilisation et de gains internes ou de systèmes HVAC et, potentiellement, une remise en question des ambiances intérieures à maintenir dans les bâtiments à l’avenir.

If the hypotheses and the definition of the life cycle scenarios can significantly change the conclusions of an LCA, how can the uncertainties related to the socio-technical trajectory of buildings be better taken into account?

  • Pour en venir au choix des complexes de vitrage dans une situation donnée, ses résultats indiquent une … équivalence de consommations énergétique globale pour les simples (sg), double (dg) et triples vitrages (tg). Signe que les vraies pistes de réduction d’impact ne sont peut-être pas dans un choix de technologie.
Figure 4.29 de la thèse du dr. Jean Souviron, montrant la consommation d’énergie totale sur le cycle de vie de différentes solutions de vitrages simple (sg), double (dg) ou triple (tg), pour une application de bureau et différentes solutions d’ombrage

Incohérent avec ce qui précède ? Non, nous ne le pensons pas. L’incertitude des analyses de cycle de vie est aujourd’hui encore grande, tout le monde le reconnais. Des résultats non convergents sont donc « attendus ». A ce stade des connaissances, les ACV peuvent donner des indications, pas des certitudes. Et dans le cas présent, concluons qu’aucune tendance claire en fonction de l’une ou l’autre technologie ne se dégage au niveau des vitrages « classiques » (résultats du dr. Souviron) et qu’au niveau des châssis, le bois semble tirer son épingle du jeu (résultats TOTEM).

Cet article a été révisé pour la dernière fois en été 2023. Les données et analyses présentées reflètent l’état des connaissances et des ressources disponibles à ce moment-là. Le domaine de la construction et de l’évaluation environnementale évoluant rapidement, nous encourageons nos lecteurs à vérifier si des mises à jour ou des compléments d’information ont été publiés depuis.

Impacts environnementaux : focus sur les toitures

Dans cette page, nous proposons une comparaison des impacts environnementaux des parois reprises dans la bibliothèque de TOTEM durant l’été 2023, afin d’identifier de bonnes pratiques en termes de choix constructifs. En particulier, nous nous intéressons aux toitures.

Recommandations avant comparaison

Ca change vite

Les bibliothèques TOTEM s’enrichissent régulièrement, les EPD (déclaration environnementale de produit)  se multiplient… L’exercice fait ici est donc vrai pour en un temps t, et l’analyse peut changer rapidement. Cependant, puisqu’il ne s’agit pas de trouver un « meilleur élève », mais d’identifier des tendances, l’exercice vaut la peine.

Travailler à l’échelle de l’élément

Totem préconise la comparaison à partir du niveau hiérarchique correspondant aux éléments, de façon à considérer matériaux mis en œuvre ! En effet, si l’on comparait par exemple deux matériaux non mis en œuvre (deux isolants par exemple), on négligerait l’impact des matériaux additionnels nécessaires à celle-ci (fixation, mortier éventuel,…), et l’on pourrait mal estimer la durée de vie des matériaux, qui elle aussi peut dépendre des conditions de mise en œuvre .

Nous travaillons donc ici sur base des bibliothèques d’éléments prédéfinis dans TOTEM (planchers, murs, toitures,…). Il s’agit donc de bien de discuter de complexes multicouches, et non de matériaux individuellement.

Peut-on comparer des éléments n’ayant pas la même valeur U ?

L’impact environnemental de l’énergie consommée durant la phase d’utilisation de l’élément est pris en compte dans le score environnemental global. Une telle comparaison est donc possible, pour autant que l’on s’en tienne à une comparaison de l’impact sur l’ensemble des étapes du cycle de vie. Cela n’aurait évidemment aucun sens de comparer uniquement la phase de fabrication de parois n’ayant pas la même performance thermique.

Précisons cependant que la méthode de calcul utilisée pour l’évaluation de l’énergie consommée « in use » est discutable car relativement simpliste (méthode des degrés jours), et que l’impact de cette énergie n’est pas le même selon le type de système énergétique considérée (chauffage gaz ? pompe à chaleur ?). Les comparaisons qui sont faite sont donc à nuancer et contextualiser.

Peut-on comparer des éléments n’ayant pas la même durée de vie ?

Si l’on travaille à l’échelle des éléments, TOTEM uniformise les durées de vie à 60 ans, en intégrant un rythme de remplacement des éléments qui ne vivraient pas autant. La comparaison est donc possible.

Si vous voulez en savoir plus sur les hypothèses de calcul de TOTEM, dont la durée de vie, nous vous recommandons la video ci-dessous :

Peut-on comparer des élément n’ayant pas le même statut (Neuf ><Réno) ?

Oui et non. Il est intéressant de regrouper ces deux type d’éléments, pour mettre en évidence l’intérêt relative de la conservation d’éléments ou de composants existants. Mais une fois cela établi, c’est la comparaison d’éléments similaires qui a le plus d’intérêt pratique.


Vue générale sur les toitures plates

Le graphique ci-dessous représente l’ensemble des toitures plates répertoriés dans la bibliothèque TOTEM. En abscisse sont reprises les valeurs U (W/m2K) et en ordonnée le score agrégé de performance environnementale en millipoints par unité fonctionnelle de chaque complexe de paroi.

Avant de commencer, pointons qu’un élément en béton cellulaire affichant un score dépassant les 250 mPt/UF a été supprimé du graphique. Alors que tous les autres éléments restent sous la barre des 100 mPt / UF, celui-là venait écraser les résultat et complexifier la lecture.

Cet élément (ID ET969) a été fortement impacté par une récente mise à jour, qui l’a fait passer 13,95 mPt/UF à 256,84 mPt/UF. Il est donc passé du « podium » à « l’élimination ».

Comparaison d’éléments : les toitures plates prédéfinies de la bibliothèque TOTEM

Qu’observons nous ?

  • Les éléments de charpente en bois scorent généralement mieux que les charpente en acier ou en béton. Sachant que le bois a cette capacité de stocker du CO2 pendant une partie de son cycle de vie, ce meilleur score par rapport à d’autre éléments structurels en maçonnerie ou métallique était attendu. On ne voit pas ici les nuances qu’il a fallu apporter dans l’analyse des murs extérieures à ossature bois.
  • Indépendamment du cas exceptionnel pointé plus haut, les éléments préfabriqués en béton (Dalle TT ou poutres en béton précontraint) affichent des scores variables dont certains voisins de bons profilés de charpente en bois. Par exemple, l’élément ET270 « TP_Dalle TT_Béton précontraint_BIB_Neuf_01 » affiche un score respectable de 15,4 mPt/UF, très proche de l’élément ET286 « TP_Solives et arbalétriers_Bois résineux_BIB_Neuf_04 » pour un même U= 0.23 W/m²K.

Podium des toitures plates

Voici les trois compositions de paroi présentant le meilleur score environnemental parmi les toitures plates :

  • Une toiture avec profilés FIJ et flocons de cellulose (référence TOTEM : TP_Profilés FJI 350_Bois lamellé_BIB_Neuf_01, ID  ET275) : U=0.13 W/m²K pour 9,9 mPt/UF et 28cm
C1 : Feuille d’étanchéité en EPDM ; C2 : Panneau de laine de roche (60 mm) ; C3 : Feuille d’étanchéité PP – LDPE ; C4 : Panneau OSB vissé ; C5 : Profilés en bois résineux ; C6 : couche composée : Profilés FJI 350 en bois lamellé – OSB (5%), combiné à des flocons de cellulose (95%) (240 mm) ; C7 : Lattes en bois résineux ; C8 : Panneau en plâtre ; C9 : Peinture acrylique
  • Une toiture avec solives en bois résineux et flocons de cellulose (référence TOTEM TP_Solives bois résineux_BIB_Neuf_02, (ID  ET273) : U=0.17 W/m² K pour 11,42 mPt/UF et 39 cm
C1 : Feuille d’étanchéité en EPDM ; C2 : Panneau de laine de roche (60 mm) ; C3 : Feuille d’étanchéité PP – LDPE ; C4 : Panneau OSB vissé ; C5 : Profilés en bois résineux ; C6 : couche composée : solives en bois résineux (22%), combiné à flocons de cellulose (78%) (225 mm) ; C7 : Lattes en Bois résineux ; C8 : Panneau en plâtre ; C9 : Peinture acrylique
  • Une variante de la précédente avec isolation en laine de roche uniquement par au-dessus (référence TOTEM TP_Solives bois résineux_BIB_Neuf_04, ID  ET286) : U=0.23 W/m²K pour 14,09 mPt/UF et 46cm

 

C1 : Feuille d’étanchéité EPDM ; C2 : Panneau de laine de roche (130 mm) ; C3 : Feuille d’étanchéité PP – LDPE ; C4 : Panneau OSB vissé ; C5 : Profilés en bois résineux ; C6 : Solives en bois résineux ; C7 : Lattes en bois résineux ; C8 : Panneau en fibre-gypse ; C9 : Papier peint

 

Le trio de tête est donc constitué de parois bois, et deux d’entre elles proposent une isolation en flocons de cellulose. Mais il nous semble nécessaire de mentionner que le 4ème meilleur score est atteint par une paroi béton (Référence TOTEM : TP_Dalle TT_béton précontraint_BIB_Neuf_01,  ID  ET273) : U=0.24 W/m²K pour 15,4 mPt/UF et 53cm:

C1 : Feuille d’étanchéité EPDM ; C2 : Panneau PUR (100 mm) ; C3 : Feuille d’étanchéité en bitume ; C4 : Enduit épais en béton maigre ; C5 : Béton coulé sur site ; C6 : Dalle TT en béton précontraint ; C7 : Enduit épais en plâtre ; C8 : Peinture acrylique

 


Vue générale sur les toitures en pente

Comparaison d’éléments : les toitures en pente prédéfinies de la bibliothèque TOTEM

On retrouve ici des éléments d’analyse similaires à ceux des murs extérieurs :

  • Il n’y a pas de corrélation évidente entre niveau U et score environnemental. Si les toitures « passives » (U<0,15W/m2K) ont de bons résultats environnementaux, on trouve également des parois à U=0,15W/m2K dont le score est très haut.
  • Les ossatures métalliques sont globalement à exclure.
  • Les ossatures bois présentent une grande variété de scores, signe que le mode constructif ne fait pas tout.
  • Plus spécifique aux toitures : les fermes semblent plus intéressantes que les fermettes.

Podium des toitures en pente

Voici les trois compositions de paroi présentant le meilleur score environnemental parmi les toitures inclinées :

  • Une toiture « passive » avec profilés FJI et laine de roche (référence TOTEM TI_Fermes en forme de A_Bois résineux_BIB_Neuf_02, ID  ET298) : U=0.11 W/m²K pour 8.54 mPt/UF et 68cm
C1 : Tuiles céramique non émaillée ; C2 et C3 : Lattes en bois résineux ; C4 : Panneau en fibre de bois ; C5 : Couche composée : profilés FJI en bois lamellé (5%), combiné à un matelas de laine de roche (95%) (360 mm) ; C6 : Poutres en bois résineux ; C7 : Feuille d’étanchéité PP – LPDE ; C8 : Lattes en bois résineux ; C9 : Panneau en plâtre ; C10 : Peinture acrylique
  • Une toiture avec profilés FJI et flocons de cellulose (référence TOTEM TI_Fermes en forme de A_Bois résineux_BIB_Neuf_03, ID  ET299) : U=0.17 W/m²K pour 9.23 mPt/UF et 56 cm
C1 : Tuiles céramique non émaillée ; C2 et C3 : Lattes en bois résineux ; C4 : Panneau en fibre de bois ; C5 : Couche composée : profilés FJI en bois lamellé (5%), combiné à un matelas de laine de roche (95%) (240 mm) ; C6 : Poutres en bois résineux ; C7 : Feuille d’étanchéité PP – LPDE ; C8 : Lattes en bois résineux ; C9 : Panneau en plâtre ; C10 : Peinture acrylique
  • Une toiture avec profilés FJI et laine de verre (référence TOTEM TI_Pannes bois résineux_BIB_Neuf_15, ID  ET323) : U=0.24 W/m²K pour 10.24 mPt/UF et 48 cm
C1 : Tuiles céramique non émaillée ; C2: Lattes en bois résineux ; C3 : Feuille d’étanchéité PE ; C4 : Panneau de toiture ouvert : 12mm particules + 170mm laine de verre ; C5 : Papier peint ; C6 : Poutres en bois résineux

Ces parois sont assez proches dans leur nature, la principale différence étant le choix du matériau isolant, avec le matelas de laine de roche (360mm) en pole position, devant la cellulose (240mm) et la laine de verre (170mm). Notons que les valeurs U atteintes ne sont pas identiques, la meilleur paroi étant aussi la plus isolante (U=0,11 W/m2K).

Cet article a été révisé pour la dernière fois en été 2023. Les données et analyses présentées reflètent l’état des connaissances et des ressources disponibles à ce moment-là. Le domaine de la construction et de l’évaluation environnementale évoluant rapidement, nous encourageons nos lecteurs à vérifier si des mises à jour ou des compléments d’information ont été publiés depuis.

Impacts environnementaux : focus sur les murs extérieurs

Dans cette page, nous proposons une comparaison des impacts environnementaux des parois reprises dans la bibliothèque de TOTEM durant l’été 2023, afin d’identifier de bonnes pratiques en termes de choix constructifs. En particulier, nous nous intéressons aux murs extérieurs.

Recommandations avant comparaison

Ca change vite

Les bibliothèques TOTEM s’enrichissent régulièrement, les EPD (déclaration environnementale de produit) se multiplient… L’exercice fait ici est donc vrai pour en un temps t, et l’analyse peut changer rapidement. Cependant, puisqu’il ne s’agit pas de trouver un « meilleur élève », mais d’identifier des tendances, l’exercice vaut la peine.

Travailler à l’échelle de l’élément

Totem préconise la comparaison à partir du niveau hiérarchique correspondant aux éléments, de façon à considérer matériaux mis en œuvre ! En effet, si l’on comparait par exemple deux matériaux non mis en œuvre (deux isolants par exemple), on négligerait l’impact des matériaux additionnels nécessaires à celle-ci (fixation, mortier éventuel,…), et l’on pourrait mal estimer la durée de vie des matériaux, qui elle aussi peut dépendre des conditions de mise en œuvre .

Nous travaillons donc ici sur base des bibliothèques d’éléments prédéfinis dans TOTEM (planchers, murs, toitures,…). Il s’agit donc de bien de discuter de complexes multicouches, et non de matériaux individuellement.

Peut-on comparer des éléments n’ayant pas la même valeur U ?

L’impact environnemental de l’énergie consommée durant la phase d’utilisation de l’élément est pris en compte dans le score environnemental global. Une telle comparaison est donc possible, pour autant que l’on s’en tienne à une comparaison de l’impact sur l’ensemble des étapes du cycle de vie. Cela n’aurait évidemment aucun sens de comparer uniquement la phase de fabrication de parois n’ayant pas la même performance thermique.

Précisons cependant que la méthode de calcul utilisée pour l’évaluation de l’énergie consommée « in use » est discutable car relativement simpliste (méthode des degrés jours), et que l’impact de cette énergie n’est pas le même selon le type de système énergétique considérée (chauffage gaz ? pompe à chaleur ?). Les comparaisons qui sont faite sont donc à nuancer et contextualiser.

Peut-on comparer des éléments n’ayant pas la même durée de vie ?

Si l’on travaille à l’échelle des éléments, TOTEM uniformise les durées de vie à 60 ans, en intégrant un rythme de remplacement des éléments qui ne vivraient pas autant. La comparaison est donc possible.

Si vous voulez en savoir plus sur les hypothèses de calcul de TOTEM, dont la durée de vie, nous vous recommandons la video ci-dessous :

Peut-on comparer des élément n’ayant pas le même statut (Neuf ><Réno) ?

Oui et non. Il est intéressant de regrouper ces deux type d’éléments, pour mettre en évidence l’intérêt relative de la conservation d’éléments ou de composants existants. Mais une fois cela établi, c’est la comparaison d’éléments similaires qui a le plus d’intérêt pratique.


Vue générale

Le graphique ci-dessous représente l’ensemble des murs extérieures (79) répertoriés dans la bibliothèque TOTEM. En abscisse sont reprises les valeurs U (W/m2K) et en ordonnée le score agrégé de performance environnementale en millipoints par unité fonctionnelle de chaque complexe de paroi.

Les différents types de murs extérieurs sont regroupés selon le matériau de l’élément porteur du mur. Par exemple, on retrouve un groupe (vert) d’ossatures bois, un groupe (rouge) de mur en maçonnerie composé de briques isolantes, un groupe (bleu) de mur dont l’ossature est de l’acier, … Les points violets – de plus petite taille que les autres points colorés – représentent les complexes de parois de type RENO. Il s’agit dans ce cas-ci de murs extérieurs en briques.

Comparaison d’éléments : les 79 murs extérieurs prédéfinis de la bibliothèque TOTEM

Que peut-on observer en première lecture ?

  • Presque tous les murs issus de la bibliothèque TOTEM ont des valeurs U réglementaires ou améliorées. La bibliothèque est donc composée d’éléments prédéfinis représentatifs de parois neuves ou lourdement rénovées mais non représentatives du bâti « à rénover ». Pour le devenir, ces éléments prédéfinis sont modifiables par l’utilisateur lorsque ceux-ci sont mobilisés au sein d’un projet. En consultation (en lecture seule), il ne sont pas modifiables. La volonté de Totem est d’étoffer des éléments prédéfinis « reno » présents dans la bibliothèque, mais à l’heure actuelle ces éléments sont encore marginaux.
  • Les scores environnementaux sont assez dispersées mais on pressent l’émergence de certains clusters. Les éléments en ossature acier (points bleus) apparaissent d’emblée comme les « moins bons élèves » tandis que les points représentant des éléments en lamellé-collé, des éléments en briques, des éléments en ossature bois, des éléments de maçonnerie constitués de blocs creux s’agglutinent dans le « bon peloton ». Ce peloton correspond aux points qui tendent à rejoindre le bas du graphique, entre 10 et 20 mPt/UF.
  • Les éléments situés vers le coin inférieur gauche du graphique conjuguent un faible impact environnemental (score bas en mPt) ainsi qu’une petite valeur U (bonne isolation). On voit que les parois les plus isolées ne sont pas nécessairement les moins impactantes, sans pour autant moins bien « performer » que les autres, signe que la question de l’impact environnemental ne se limite pas à une question d’isolation : les autres éléments de la paroi ont un rôle important dans la discussion.

Il ne faut néanmoins pas aller trop vite sur l’idée de clusters. Si certains groupes de parois semblent se distinguer par des impacts relativement faibles (lamellé-collé, briques), on voit bien que tous les éléments d’une même sous-catégorie ne scorent pas de façon homogène. Comme l’atteste par exemple cet élément en lamellé-collé qui se détache du « bon peloton » et affiche un score plus impactant.


Zoom sur les parois PEB conformes

Intéressons-nous maintenant aux éléments présentant une bonne valeur U proche de la réglementation actuelle ( < ou égal 0,24 W/m²K).

Le graphique ci-dessous présente un zoom sur quelques « brochettes » d’éléments tirées de la figure précédente, constituées d’empilements d’éléments autour des valeurs U suivantes: 0.22 W/m²K, 0.23 W/m²K et 0.24 W/m²K.

Comparaison de murs extérieurs présentant un U proche de la réglementation en vigueur.

On constate d’emblée un empilement hétérogène des valeurs qui ne permet pas de tirer de grandes généralité. Des supposés « bons élèves » peuvent présenter un score très haut. On s’attendrais par exemple à ce que toutes les parois « bois » aient un score en mPt/UF bas, mais ce n’est pas le cas.

Il faut regarder en détail afin d’identifier dans leur groupe respectif les parois qui se distinguent de façon trop impactantes. Par exemple, dans le groupe des éléments en ossature bois, celles qui ont un score haut le doivent à chaque fois à une des couches du complexe de paroi (une isolation en laine de mouton, un bardage plastique ou des profilés alu pour plaques de revêtement en céramique émaillée). Une première conclusion s’impose: il ne suffit pas de définir l’élément structurel de la paroi pour atteindre un faible score, mais de bien réfléchir le complexe de paroi dans son ensemble.

Ceci dit, les ossatures d’acier se distinguent assez nettement dans le haut de la pile (allant de 28 à 71 mPt/UF), du fait de l’impact très lourd de la production de l’acier…


Podium

Le meilleur élément de la figure est ce point mauve apparaissant à la base de la « brochette » 0.22 W/m²K). Il s’agit d’une paroi de briques pleines en terre cuite « Reno ». Cela veut dire que certains composants de cet élément n’ont pas le même statut que celui de la majorité des éléments prédéfinis : les phases de production et chantier ne sont pas considérées pour ceux-ci. C’est donc une situation particulière.

En dehors de ce cas particulier, les éléments sur le podium sont :

  • une structure en lamellé-collé isolée en cellulose et avec un enduit extérieur posé sur un panneau de fibre de bois (référence TOTEM : ME_Profilés FJI 250_Bois lamellé_BIB_Neuf_02, ID ET44) : U=0.17 W/m²K pour 9,68 mPt/UF et 32 cm
C1 : Enduit épais : enduit traditionnel; C2 : Panneau de fibre de bois (18 mm); C3 : Couche composée : Profilés FJI 250 (5%), combinés à des flocons de cellulose insufflé sur site (95%) (240 mm); C4 : Panneau OSB vissé; C5 : Feuille d’étanchéité PP – PE; C6 : Lattes en bois résineux; C7 : Panneau en plâtre; C8 : Peinture acrylique
  • La paroi « biosourcée » type : Une ossature bois isolée par ballots de paille, avec enduits d’argile intérieures et extérieures (référence TOTEM : ME_Ossature_Bois résineux_BIB_Neuf_01, ID  ET103) : U=0.14 W/m² K pour 9,98 mPt / UF et 53 cm
C1 : Enduit épais : Mortier de chaux-trass ; C2 : Couche composée : Ossature en bois résineux (11%), combinés à des ballots de paille (89%) (480 mm) ; C3 : Enduit à l’argile
  • Une paroi maçonnée avec isolé collé EPS et revêtement en plaquette (référence TOTEM : ME_Briques isolantes_terre cuite_BIB_Neuf_09, ID  ET77) : U=0.22 W/m²K pour 11,17 mPt / UF et 33 cm
C1 : Plaquettes de terre cuite ; C2 : Enduit épais ; C3 : Panneau EPS (150 mm) ; C4 : Briques isolantes en terre cuite ; C5 : Enduit plâtre ; C6 : Papier peint

 


Maçonnerie ou ossature bois ?

La présence d’une paroi en maçonnerie dans notre podium invite à s’intéresser plus largement au nuage de points rouges. Celui-ci performe plutôt bien, chacun de ces points étant situés à la base de chaque « brochette ». La construction en maçonnerie n’est pas antinomique avec réduction d’impact environnemental global.

Le graphique suivant reprend l’ensemble des parois en maçonnerie de briques isolantes et des parois ossature bois, pour comparaison.

Comparaison d’éléments à base briques isolantes ou d’ossature bois

Difficile de tirer une généralité, mais nous voyons que certains éléments en ossature-bois affichent des scores intéressants, à la fois en terme de performance environnementale et de performance énergétique. Ceux-là présentent des isolations en paille, laine de roche ou cellulose). Mais d’autres sont bien moins intéressant. Le point isolé (44mPt/UF) présente une isolation en granulés de liège expansé, mais ne nous y laissons pas prendre : ce n’est nullement la couche isolante qui est impactante dans cet élément, mais bien la couche de revêtement intérieure en céramique ! Le graphique affichant le détail par composant est très instructif en la matière lorsqu’il s’agit de se rendre compte de ce qui est impactant au sein de l’élément.

Nous constatons également que le nuage de points des parois en briques isolantes est relativement homogène avec un score qui s’échelonne entre 11 mPt/UF pour celle isolée avec de l’EPS (polystyrène expansé) et 16 mPt /UF pour celle isolée en XPS (polystyrène extrudé). Cette famille a donc l’avantage d’une relative prévisibilité des performances. Par contre, elle présente un moindre potentiel de réemploi des composants, vu l’emploi fréquent de colles pour les isolants et revêtements.

Score agrégé de performance environnementale

La multiplicité des scores d’impact environnemental lorsqu’ils sont pris de manière individuelle constitue rarement une bonne base pour la prise de décision. C’est pourquoi, TOTEM permet de visualiser le profil environnemental d’un élément ou du bâtiment à l’aide d’un score agrégé. L’agrégation de tous les impacts environnementaux en un score unique s’inscrit dans cette logique « decision- making » et permet aux utilisateurs d’effectuer une sélection orientée vers la prise de décision quant aux solutions de construction.

 

Pondération selon la méthode PEF

Au sein du logiciel TOTEM, il est donc possible de calculer un score unique pour l’ensemble des dix-neuf indicateurs environnementaux. Dans la suite logique de la mise à jour de la norme EN 15804 + A2 en juillet 2021 sur laquelle TOTEM s’aligne, il a été décidé d’abandonner l’ancienne approche de monétisation et d’appliquer l’approche de pondération PEF (Performence Environmental Footprint). La méthodologie PEF calcule, sur base des indicateurs environnementaux caractérisés, un score unique au moyen d’une étape de normalisation suivie d’une étape de pondération.

L’approche de la pondération PEF comprend deux étapes : normalisation et pondération, qui sont ensuite regroupée dans une agrégation.

Normalisation

La normalisation vise à calculer l’ampleur du phénomène de l’indicateur de catégorie par rapport à un système de référence.  Pour chaque indicateur environnemental, les valeurs caractérisées sont divisées par leurs facteurs de normalisation respectifs, exprimés en impact global annuel par habitant (sur la base d’une valeur globale pour l’année de référence 2010). Les résultats normalisés sont donc logiquement sans dimension.

TOTEM applique les facteurs de normalisation proposés par la plateforme européenne sur l’analyse du cycle de vie (EPLCA 2019). Par exemple, le facteur de normalisation pour le changement climatique est de 8,1 X 10³ kg CO2 eq./personne par an. L’ensemble des facteurs de normalisation utilisé dans la méthode PEF a été élaboré à partir de données statistiques sur les émissions et les ressources utilisées dans le monde pendant un an par habitant.

Pondération

Dans un deuxième temps, les valeurs normalisées sont pondérées en les multipliant par des facteurs de pondération afin de refléter l’importance relative perçue des catégories d’impact environnemental considérées. Par exemple, le facteur de pondération pour le changement climatique est de 21,06 %.

Les facteurs de pondération proposés sont calculés sur la base d’une combinaison d’ensembles de pondération :

  • un ensemble de pondérations provenant d’une enquête publique (25 %)
  • un ensemble de pondérations dérivé d’une enquête menée auprès d’experts en ACV (25 %), et
  • une approche hybride combinant des critères fondés sur des preuves (par exemple, l’étendue, la durée, la réversibilité des impacts…) et un jugement d’expert (50 %). Pour tenir compte de la robustesse des indicateurs d’impact, un facteur de correction (sur une échelle de 0,1 à 1) est appliqué aux facteurs de pondération afin de réduire l’importance des catégories d’impact dont la robustesse est faible (degré d’incertitude trop grande, données peu représentatives,…).

Agrégation

Après pondération, les résultats des différents indicateurs environnementaux peuvent être additionnés pour obtenir une note globale unique (exprimée en millipoints dans TOTEM). Le tableau ci-dessus un aperçu des facteurs de normalisation et de pondération.

Après normalisation et pondération, les scores peuvent être agrégés en un seul score. Dans les tableaux de résultats de Totem, un « facteur d’agrégation » par indicateur d’impact est donné sur la base de la combinaison des facteurs de normalisation et de pondération du PEF. Ces facteurs d’agrégation sont calculés en multipliant l’inverse de chaque facteur de normalisation avec son facteur de pondération correspondant et puis en multipliant par 1000 pour la conversion de Pt en millipoints.

Si vous voulez en savoir plus sur le score environnemental unique de Totem, nous vous recommandons la video ci-dessous :


Ventilation des résultats

Disposer d’un score unique permet de combiner des impacts différent, mais ne bride pas toute capacité d’analyse plus fouillée. Totem propose différentes décompositions des résultats, par indicateurs, composant, ou étape du cycle de vie.

Impact par indicateur

La figure ci-illustre la décomposition de l’impact environnemental d’un élément choisi en exemple est issu de la bibliothèque de TOTEM. Il s’agit d’un élément correspondant à la description suivante: Élément de toiture en pente / Recouvrement en ardoise_Fibre-ciment | Poutres_Bois résineux (172 mm – entraxe 400 mm) | Matelas_Laine de roche (170 mm) | Panneau_Plâtre.

Cette figure permet d’identifier facilement les impacts les plus impactant dans le score global de cet élément : dans ce cas, il s’agit de la contribution u changement climatique, de l’épuisement des ressources abiotiques et des émissions de particules fines.

Si vous voulez en savoir plus sur les différents indicateurs environnementaux utilisés dans TOTEM, nous vous recommandons la video ci-dessous :

Impact par composant

Le même exemple peut être analysé par composant :

On voit ici que 46% de l’impact est lié aux pertes de chaleur par transmission associée à cette paroi, et que le deuxième élément le plus impactant est lié au recouvrement en ardoise, ce qui suggère de mettre en question ce choix de recouvrement avant d’autres composants, tels que le matériau isolant (5% de l’impact uniquement dans ce cas).

Impact par étape du cycle de vie

Cette troisième visualisation permet de voir que la phase B6, représentant l’énergie de chauffage associée à l’élément, est de loin dominante. Deux autres phases se détachent : A1-A3, qui couvre la production des éléments, et B4, qui représente le remplacement de certains éléments durant le cycle de vie. Les étapes de transport et de fin de vie pèsent par contre peu, ce qui relativise les incertitudes pesant sur les scénarios de réemploi, recyclage ou traitement en fin de vie.

Tout au LED

Actuellement, en termes d’éclairage, on s’oriente en majorité vers la technologie LED. Celle-ci est en plein essor et ne cesse de s’améliorer au fil des années. Les arguments les plus souvent énoncés en faveur des LED sont leur grande efficacité lumineuse, leur durée de vie extrêmement longue et leur faible consommation électrique.

Technologie miracle ? Pas tout à fait…. Autant les LEDs paraissent meilleurs que la concurrence sur le plan performanciel et énergétique, il n’est pas de même en termes de confort visuel et d’impact sur la santé.


Le LED aujourd’hui

Aujourd’hui, les lampes à LED sont particulièrement performantes et beaucoup plus économes en énergie que les technologies classiques.

À titre d’exemple, le tableau comparatif ci-dessous provient d’une étude scientifique((L.T. Doulos et al. Minimizing energy consumption for artificial lighting in a typical classroom of a Hellenic public school aiming for near Zero Energy Building using LED DC luminaires and daylight harvesting systems, Energy and Buildings, Volume 194, 2019, Pages 201-217))  et met en évidence les dernières avancées en termes de LED par rapport à un luminaire classique à tube fluorescent. Les résultats peuvent évidemment dépendre selon les produits testés.

LED (AC supply) LED (DC supply) T5 2x35W
Puissance (W) 41.0 50.5 76.0
Efficacité lumineuse (lm/W) 116.1 107.6 62.0
Puissance spécifique (W/m2) 3.16 3.90 5.86
Nombres de luminaires utilisés 4 4 4
Puissance totale installée (W) 164 202 304
Consommation annuelle (kWh) 255.8 315.1 474.2
Eclairement (lx) 302 322 308

On remarque que les luminaires LED sont aujourd’hui largement plus efficaces en termes de consommation électrique, à niveau d’éclairement similaire.Il est donc très intéressant de se tourner vers des solutions 100% LED dans des projets de rénovation visant le zéro-carbone, d’autant plus que l’efficacité lumineuse retenue pour les luminaires ci-dessus n’est pas le plein potentiel de la technologie.


Effets sanitaires

Face à la constante amélioration de la technologie LED, l’ANSES (Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail) a récemment publié un nouveau rapport étudiant les effets sanitaires de ces systèmes sur la population. Les LED sont caractérisées par un spectre de lumière plus riche en lumière bleue et plus pauvre en lumière rouge que d’autres sources lumineuses, créant un déséquilibre spectral particulièrement nocif pour nos yeux. De plus, “les lumières à LED peuvent être plus éblouissantes que les lumières émises par d’autres technologies (incandescence, fluo-compactes, halogènes, etc.)” (ANSES, p.355). “Enfin, les LED sont très réactives aux fluctuations de leur courant d’alimentation. De ce fait, selon la qualité du courant injecté, des variations de lumière peuvent apparaître, suivant la fréquence et le niveau de ces variations.” (ANSES, p.355)

Le rapport étudie donc différents effets sanitaires :

  • les effets de la lumière bleue sur les rythmes circadiens (perturbation de l’horloge circadienne) ;
  • les effets de la lumière bleue sur le sommeil et sur la vigilance (retard de sommeil et altération de la quantité et qualité du sommeil) ;
  • les effets de la lumière bleue et des différents types de LED sur l’œil (phototoxicité, sécheresse oculaire, myopisation) ;
  • les effets de la lumière bleue sur la peau ;
  • les effets de la modulation temporelle de la lumière sur la santé ;
  • les effets liés à l’éblouissement.”((Source: https://www.anses.fr/fr/system/files/AP2014SA0253Ra.pdf – p.356))

Afin de protéger la population de tous ces effets sanitaires, l’ANSES émet une série de recommandations liées à l’utilisation de lumières à LED. Certaines sont de l’ordre de futures recherches à mener ou de suggestions d’évolutions réglementaires tandis que d’autres sont de l’ordre de bonnes pratiques à prendre en compte directement dans des projets de relighting. On retiendra les deux principales :

  • Limiter au plus possible l’exposition à des lumières froides (> 4000 K)
  • Exclure les lampes LED nues du champ de vision

Toutefois, les difficultés des LED ciblées dans l’étude sont surtout liées au lien entre lumière bleue et endormissement. Elles sont donc peu pertinentes dans les écoles.

Pour plus d’informations, celles-ci sont reprises dans le document « Effets sur la santé humaine et sur l’environnement (faune et flore) des diodes électroluminescentes (LED) » en page 363 : https://www.anses.fr/fr/system/files/AP2014SA0253Ra.pdf


Le LED en rénovation

Avant de se lancer dans un projet de rénovation de l’éclairage de l’école, il faut impérativement passer par l’étape d’analyse et de diagnostic de la situation existante. Pour cela, il est préférable de faire appel à un bureau spécialisé en éclairage. Cependant, il existe quelques outils sur le site de Rénover mon école qui vous permettront de réaliser un rapide diagnostic de l’installation lumineuse de vos salles de classe. Les pages suivantes sur Energie+ peuvent également être utiles :

Le site internet de Rénover mon école regroupe une grande partie des questions générales à se poser lors de la rénovation de l’éclairage. Attention que les informations mentionnées en termes d’objectifs et de techniques ne sont plus de toute fraîcheur… En plus de cela, elles ne visent pas l’objectif zéro-carbone qui nous intéresse dans ce dossier.

Pour plus d’infos concernant le passage au LED, consultez la page suivante.

Que faire donc dans notre cas ?

Procéder à un relighting de l’école dans une démarche zéro carbone nécessite de faire attention à deux points principaux :

  • Viser une puissance faible
  • Avoir une gestion efficace

En termes de puissance...

Comme vu plus haut, le LED offre de faibles puissances et donc a fortiori de meilleures performances énergétiques. C’est donc principalement vers cette technologie qu’il faut se tourner lorsqu’on envisage le relighting d’un bâtiment scolaire.

L’emplacement des luminaires dans le local a toute son importance en termes de puissance. Un moins grand nombre de luminaires, mais bien situés afin de garantir une uniformité de l’éclairement, permettra de réduire la puissance totale et donc la consommation en carbone.

La question de la gestion….

C’est principalement sur ce point qu’il est utile d’insister lorsque l’on conçoit un relighting d’une école. 35% de la facture énergétique des écoles correspond à l’électricité consommée par l’éclairage. Bien souvent, cela est dû à une mauvaise gestion du système d’éclairage. Il est impératif de rendre les occupants des locaux conscients de leurs décisions en limitant au maximum l’allumage automatique de lampes par exemple. L’extinction automatique, le zonage ou encore le dimming des lampes sont autant de principes qu’il est nécessaire de prendre en compte dans une démarche zéro-carbone. Pour plus d’informations sur ces techniques, consultez les pages suivantes :

De plus, une attention particulière doit être portée sur le programme de maintenance  afin  de garantir la pérennité du projet de relighting.

Rénover pour consommer…plus ?

Il est nécessaire de pointer la faiblesse actuelle en termes de niveaux d’éclairage dans les écoles. Les installations vétustes et inconfortables ne respectent souvent pas les normes visées lors de projets de relighting ou de constructions neuves. Dès lors, il se peut qu’après rénovation, le système d’éclairage consomme plus qu’auparavant. Cependant, au profit d’un meilleur confort visuel, qui s’avère bénéfique en de nombreux points pour tous.

Réemploi des systèmes existants

Lors de nouvelles constructions, il est facile et logique de concevoir l’ensemble de l’éclairage sur un système électrique approprié à la technologie LED. Mais est-il aussi simple d’adapter un système d’éclairage existant à la technologie LED? Dans un souci d’économie financière, est-il possible dans un projet de rénovation scolaire de garder les luminaires existants en y changeant simplement les tubes ?

Les luminaires existants de type tube T5 ou T8 sont toujours équipés de ballasts électroniques ou ferromagnétiques. Dans les deux cas, il est possible, moyennant certaines manipulations (voir article G0W), de passer d’une technologie de tube fluorescent vers des tubes LED. Il est donc tout à fait envisageable de maintenir les luminaires existants lors d’un projet de relighting au LED. Cependant, les lampes LED ayant des niveaux de luminance élevés, il est impératif d’utiliser des mécanismes optiques adaptés. On favorisera donc des mécanismes de réfraction ou de transmission à la place de mécanismes de réflexion.

À proscrire : mécanismes de réflexion

À recommander : mécanismes de réfraction


Recommandations

Les situations de relighting sont très différentes en fonction de l’usage des espaces à rénover. La disposition des luminaires, le type de luminaire, la température de lumière ou encore le mode de gestion de l’éclairage sont autant de paramètres qui varient en fonction de l’utilisation de l’espace.

Le site de Rénover mon école reprend, sur les deux pages suivantes, les grandes recommandations à prendre en compte pour des classes, des espaces de circulations, des bureaux ou encore des réfectoires : 

Résoudre les nœuds constructifs dans le cas d’une isolation par l’intérieur

A cause de la présence des planchers et murs intérieurs qui se raccordent aux différentes parois de l’enveloppe du volume protégé (façades, toitures, planchers, …) assurer la continuité de la couche d’isolant thermique est quasiment impossible à coût raisonnable.

Le raccord du plancher avec la façade, tous deux étant isolés par l’intérieur, ne pose pas de difficulté. C’est également le cas entre la toiture et la façade.

Les principales difficultés seront donc localisées au droit des raccords entre les parois intérieures et les parois de l’enveloppe. Dans le cas des façades, deux solutions existent cependant :

Les nœuds constructifs entre les fenêtres et les façades (appuis de fenêtre, linteaux, piédroits) nécessitent parfois des petites adaptations.

Raccord plancher-façade

En rénovation, la mise en œuvre de l’isolation du plancher et de la jonction avec le mur n’est pas évidente et lourde. Il faut vraiment se trouver dans un cas de figure où la rénovation :

  • est perçue comme un nouveau projet de mise en œuvre d’une dalle flottante;
  • tient compte des différentes épaisseurs composant le nouveau plancher afin d’éviter les problèmes qu’entraîne une surépaisseur (hauteurs de portes, de la première marche d’escalier, …).

Jonction avec le plancher sur local non chauffé ou sur terre-plein – Isolation sous chape

  • Placer un film d’étanchéité (4) contre le bas du mur + enduit existants (1 + 2) et contre la dalle existante (3). Ce film va protéger l’isolant de sol contre l’humidité ascensionnelle. Il n’est nécessaire que si on se trouve en présence d’une dalle contre terre et qu’aucune étanchéité n’a été prévue sous la dalle lors de la construction ; dans le doute, mieux vaut le placer. Prévoir un recouvrement de minimum 30 cm entre bandes.
  • Si la face supérieure de la dalle existante n’est pas plane, réaliser une chape d’égalisation avant d’y poser le film d’étanchéité ou l’isolation.
  • Placer un isolant thermique (5) sur la dalle (ou sur chape d’égalisation) : panneaux posés sur le sol de manière jointive ou isolant expansé projeté sur le sol ; l‘isolant choisi doit résister à la compression.
  • Placer l’isolant (6) en périphérie de la chape. Cet isolant assure :
    • La continuité de la couche isolante entre le sol et le mur et évite la création d’un pont thermique à la jonction sol-mur.
    • La désolidarisation de la chape des autres éléments lourds (dalle et mur). On crée ainsi une dalle flottante qui atténue la propagation du bruit.
  • Placer une membrane d’étanchéité (7) sur l’isolation du sol et contre l’isolant périphérique de la chape pour éviter que les eaux de mise en œuvre de la chape et les eaux de lavage du sol ne s’y infiltrent. Cette membrane remonte contre le mur existant.
  • Couler une chape armée (8) sur l’isolant de sol.
  • Poser un film d’étanchéité (9) contre le mur enduit existant et sur la chape. Celui-ci va protéger le pied de paroi contre les eaux de nettoyage.
  • Placer soit l’isolant (10), l’éventuel pare-vapeur (11) et la finition (12), soit un panneau composite (13) sur le mur enduit existant.
  • Une mousse isolante (14) est injectée sous le panneau isolant, puis arasée. Cette mousse va assurer la continuité de l’isolation au bas du panneau. En effet, lors du placement des panneaux, ceux-ci sont butés contre le plafond, le jeu entre la hauteur du panneau et du mur apparaît donc en bas de panneau au niveau du sol.
  • La partie du film d’étanchéité (9) posée temporairement sur la chape et destiné à protéger le pied de paroi contre les eaux de nettoyage est relevée contre la finition intérieure de la cloison de doublage.
  • On pose la finition de sol (carrelage, par exemple) (15).
  • On place la plinthe (16) avec joint d’étanchéité (17).

Jonction avec le plancher sur local non chauffé ou sur terre-plein – Panneaux isolants composites

Seuil et linteau – cas du panneau isolant revêtu d’un enduit

  1. Mur existant.
  2. Enduit existant.
  3. Dalle existante.
  4. Chape d’égalisation.
  5. Film d’étanchéité (contre l’humidité ascensionnelle).
  6. Film d’étanchéité (protection du pied de paroi).
  7. Isolant thermique.
  8. Pare-vapeur éventuel.
  9. Finition.
  10. Panneau composite.
  11. Isolant thermique.
  12. Couche pouvant recevoir la finition.
  13. Panneau composite emboîté par languette et rainures.
  14. Fermeture des raccords au moyen d’un enduit pour éviter toute infiltration d’eau dans la couche isolante.
  15. Finition : revêtement souple.

Plancher en bois entre étages

Dans le cas d’un plancher en bois, l’extrémité de celui-ci qui vient s’encastrer dans la maçonnerie atteint des températures plus basses qu’avant isolation par l’intérieur. Alors qu’il est possible d’éviter le transfert de vapeur interne au travers du mur par l’usage d’un pare-vapeur, il n’existe pas de moyen efficace pour éviter ce transfert au niveau du plancher. Ainsi, il y a risque de condensation à proximité des têtes de solives et possibilité de pourrissement.

  1. Plancher.
  2. Solive.
  3. Risque : condensation ⇒ solution : nouveau support latéral appuyé sur ses extrémités.

Le projet de recherche Renofase, mené par la Région Flamande a pour objectif de soutenir les projets de rénovation de son parc immobilier et d’en assurer une réalisation performante et de qualité. Dans son dernier rapport, portant sur l’isolation par l’intérieur, elle propose le , offrant sous forme schématique une multitude de solutions afin de résoudre les ponts thermiques aux jonctions avec des planchers ou avec des murs de refend. Pour supprimer ces ponts, beaucoup de solutions peuvent être envisagées :

Possibilités de réduction des ponts thermiques
Isolation continue Appliquer l’isolation du retour Augmenter l’épaisseur de l’isolation intérieure Appliquer l’isolation extérieure locale
++ SOLUTION OPTIMALE

 

– Souvent impossible à réaliser avec une isolation intérieure.

 

– Une connexion structurelle entre les deux éléments de construction est souvent nécessaire, ce qui peut entraîner des ponts thermiques.

 

! Attention à l’isolation acoustique : les fuites acoustiques doivent être évitées.

 

Les matériaux d’isolation rigides peuvent être interrompus par des isolants souples au point de raccordement.

+ SOLUTION STANDARD

 

Dimensionnement : longueur de l’isolation de retour standard 60 cm à partir de la surface intérieure du mur existant ; en l’étendant à 100 cm à partir de la surface extérieure, le nœud du bâtiment est accepté par la PEB

 

– Impact sur la forme de la surface du mur ou du plancher à l’intérieur (parfois non possible ou souhaité)

 

+ Peut être utile de le combiner avec l’intégration de techniques (conduit de tuyaux, éclairage, …)

+ Impact visuel minimal

 

– Perte d’espace relativement importante

 

– Une simulation thermique est toujours nécessaire pour déterminer l’épaisseur minimale de l’isolation (car elle dépend de l’épaisseur de la paroi et des propriétés du matériau).

 

– Cette solution permet d’éviter les dommages (facteur de température

suffisamment élevé) mais les pertes d’énergie ne sont réduites que de manière limitée

Dimensionnement : la règle de base « chemin de moindre résistance > 1 m » peut être utilisée pour rendre le nœud de bâtiment acceptable pour les PEB.

 

+ Impact visuel et perte d’espace minimaux

 

– Impact sur l’aspect de la façade, donc pas toujours possible ;

 

+ Parfois, cela permet à la fois de résoudre un pont thermique et d’apporter une valeur ajoutée architecturale

 

! Attention aux contraintes thermiques dans la maçonnerie

Quelques variantes
La maçonnerie existante est remplacée localement par une maçonnerie isolante.

 

! Attention : la maçonnerie isolante peut devenir humide : l’impact de celle-ci doit être pris en compte (impact sur la valeur lambda, le transport capillaire de l’humidité, la durabilité…).

Continuez sur l’ensemble du mur ou du plancher et combinez avec une isolation ou une absorption acoustique.

 

Afin de limiter les pertes d’énergie, des matériaux super-isolants et isolants peuvent être utilisés dans les premiers 20 à 50 cm du mur.

 

– Attention : la dalle de plancher peut devenir relativement froide en hiver ; les contraintes thermiques d’impact doivent être vérifiées ; pas de tuyaux sensibles au gel dans le plancher.

 

L’épaississement peut être limité à une bande de chaque côté de la paroi intérieure ou du plancher.

 

+ Peut être utilement combiné avec l’intégration de techniques (conduite, éclairage, …)

Peut être intégré dans des éléments de façade décoratifs nouveaux ou existants (par exemple, dans le cas de bâtiments patrimoniaux) et/ou être associé à une isolation à retour limité, par exemple.

 

Isolation autour de la baie

Pour ne pas provoquer de pont thermique et de risque de condensation superficielle autour de la baie, l’isolation thermique doit être prolongée jusqu’à la menuiserie.

  1. Mur existant avec enduit de finition.
  2. Isolant thermique (posé entre lattes par exemple).
  3. Pare-vapeur éventuel.
  4. Panneau de finition.
  5. Retour d’isolation collé à la maçonnerie (épaisseur de minimum 2 cm).Si après avoir disqué l’enduit de finition existant, il n’y a pas assez de place pour le retour d’isolation, il faut remplacer le châssis par un châssis à dormant plus large.
  6. Prolongement du pare-vapeur jusqu’à la menuiserie ou pose d’un isolant peu perméable à la vapeur (mousse synthétique, par exemple).
  7. Joint souple d’étanchéité pour empêcher toute infiltration d’air intérieur derrière l’isolant.
  8. Nouvelle tablette.

Pour augmenter les performances thermiques du retour d’isolation, la finition autour de la baie peut être réalisée en bois (ébrasement et tablette).

  1. Joint souple d’étanchéité.
  2. Ébrasement et chambranle en bois.
  3. Finition angle.

Travaux annexes

Remarque: cette partie sinspire de la brochure Méthodes de modification du gros-œuvre isolation thermique dun bâtiment existant” et du projet de recherche Renofase mené par la Région Flamande

Jonction mur-plancher étanche à l’air 

Pour éviter tout risque de condensation interne, les systèmes d’isolation par l’intérieur doivent garantir une parfaite étanchéité à l’air. La ruine des parois peut avoir lieu lorsque de l’air chargé en humidité pénètre derrière la couche d’isolation et condense sur l’arrière de celle-ci.

 

Couche étanche à l’air((DOBBELS F, RenoFase WP4 – Detaillering van binnenisolatie, WTCB, 2017, p.31-32))
Matériau isolant étanche à l’air, placé correctement. Panneau préfabriqué avec membrane intégrée (la feuille ne dépasse pas des bords du panneau). Membrane placée séparément entre la finition et l’isolant (la membrane peut dépasser des bords). Revêtement en plâtre
Possibilités de finitions étanches à l’air
Solutions alternatives
Points d’attention

 

Les installations électriques (prises et interrupteurs)

Elles sont disposées dans un espace technique (ménagé entre l’isolant (ou le pare-vapeur) et la finition.

Détail en plan et en coupe :

  1. Isolant posé entre lattes
  2. Pare-vapeur placé sans interruption
  3. Latte fixée à la maçonnerie
  4. Latte supplémentaire servant d’entretoise
  5. Tube électrique
  6. Boîtier électrique

Les canalisations d’eau

Les canalisations encastrées avant rénovation (isolation par l’intérieur) sont réchauffées par l’ambiance intérieure.

Si aucune précaution n’est prise lorsqu’on isole par l’intérieur, la maçonnerie, et avec elle, la canalisation sont directement exposées au climat extérieur et donc au gel.

Il existe différentes solutions pour protéger la canalisation contre le gel.

Solution n°1: déplacer le tuyau et le laisser apparent.

Solution n° 2: (peu pratique) agrandir la saignée dans laquelle se trouve la canalisation et introduire un isolant thermique (mousse expansée, par exemple.)

Solution n° 3: déplacer le tuyau et le placer dans un espace technique ménagé entre l’isolant (ou le pare-vapeur) et la finition.

Attention: ne pas traverser le pare-vapeur avec le tuyau!

Les radiateurs

Les radiateurs doivent être déplacés et fixés à la nouvelle paroi. Dans ce cas, la structure doit être renforcée.
Le radiateur peut également être posé sur un pied fixé au sol.

  1. Tablette
  2. Isolant imperméable à la vapeur collé à la maçonnerie
  3. Isolation entre lattes
  4. Pare-vapeur
  5. Radiateur
  6. Joint d’étanchéité (mastic)
  7. Canalisation de chauffage
  8. Renfort (lattes bois)

Concernant les tuyaux des radiateurs, ceux-ci peuvent soit rester là où ils sont et être prolongés pour alimenter la nouvelle position du radiateur ou alors ils peuvent être déplacés dans le même plan que les corps de chauffe.

Si on garde le tuyau à sa place :

  • Insuffler de la mousse isolante autour du tuyau.

  • Glisser de l’isolant derrière le tuyau.

Si on peut déplacer le tuyau :

Sol

Lorsque l’isolation des murs est prolongée par l’isolation du sol, cela exige de créer une marche au niveau de l’accès aux autres locaux.

Remplacement des châssis

L’organigramme ((DOBBELS F, RenoFase WP4 – Detaillering van binnenisolatie, WTCB, 2017, p.201)) ci-dessous proposé par Renofase, évoque les différentes solutions envisageables pour le placement de nouveaux châssis dans le cas d’une isolation par l’intérieur.

Si vous souhaitez savoir comment évaluer le risque de condensation à partir des données propres à votre bâtiment.

Si vous souhaitez voir, par un exemple, comment évaluer concrètement le risque de condensation au droit d’un pont thermique dans un immeuble de bureau.

isolation d'une école

Réduire les consommations d’énergie de chauffage dans une démarche zéro-carbone

 

Comme mentionné en introduction du dossier consacré à la rénovation des écoles, l’énergie de chauffage dans une école représente en moyenne 60 à 70% des consommations totales. Cette part importante du poste chauffage est liée d’une part à une faible performance énergétique des bâtiments.

Dans le cas de rénovations de bâtiments scolaires dans une démarche zéro carbone, il est prioritaire de réduire cette consommation excessive de carbone liée à l’énergie de chauffe. Pour cela, des solutions « classiques »  peuvent être envisagées (changement combustible, remplacement de la chaudière…). Ou alors, dans une démarche plus innovante, nous proposons 3 pistes de réflexion afin d’atteindre l’objectif de neutralité carbone souhaité :

  • Repenser les besoins
  • Optimiser les performances énergétiques de l’enveloppe
  • Compenser les besoins résiduels avec une production propre

Repenser les besoins

Face aux enjeux énergétiques auxquels nous faisons face aujourd’hui, il s’avère de plus en plus clairement qu’un changement radical de nos pratiques et de nos standards de confort thermique s’impose afin de réduire les émissions de carbone liées à notre consommation d’énergie.

Qui dit repenser les besoins thermiques, dit aussi repenser les attentes thermiques des occupants. Celles-ci reposent habituellement sur un modèle classique d’espaces chauffés à une température standard de 20°, par un système de chauffage centralisé alimentant en chaleur l’ensemble du bâtiment. Cependant, dans une optique zéro-carbone, il est intéressant de retourner le modèle en se basant sur un principe visant à “chauffer les personnes, pas le bâtiment”. Ou encore, en poussant cette réflexion à l’extrême, il serait également envisageable de ne plus avoir recours à un contrôle permanent sur l’ambiance, mais uniquement à un apport ponctuel à certains moments critiques (relance…). Ceci est particulièrement vrai dans les école où la densité d’occupants constitue un apport thermique significatif.

  Effet du chauffage par air                                           Ce dont nous avons besoin

Une vue de l’esprit ? Pas si sûr : la théorie du confort adaptatif met en évidence l’existence, moyennant la présence d’opportunités adaptatives dans le bâtiment, de plages de températures dites “confortables” plus larges que celles dont nous avons l’habitude. Cette théorie est généralement appliquée uniquement pour la réponse aux surchauffe, faute d’études suffisante en hiver. Mais elle mérite d’être explorée.

Selon cette théorie, il serait possible de réduire les besoins thermiques à l’école en offrant aux occupants des capacités d’adaptation pour corriger localement leur ressenti. On ne parle donc pas ici de simplement placer une vanne thermostatique, mais des mettre à dispositions des solutions individuelles et proches du corps, regroupées sous l’appellation “systèmes de confort personnels (PCS)”.


Optimiser les performances énergétiques de l’enveloppe

Comme mentionné plus haut, agir sur les flux de chaleur intérieur-extérieur passe par un travail accru sur les niveaux d’isolation et d’étanchéité de l’enveloppe. Néanmoins, dans une optique zéro-carbone, “isoler plus” rime inévitablement avec “plus de carbone”. En effet, ce qui peut paraître négligeable dans un contexte global de faible efficacité énergétique devient significatif, voire prépondérant au regard de l’objectif de sobriété et d’efficacité à atteindre.

Il en va ainsi de l’énergie grise. Négligeable dans une construction courante au regard de l’énergie utilisée pour l’exploitation du bâtiment tout au long de son cycle de vie, elle devient significative pour une construction performante énergétiquement. Bien que le choix de matériaux durables – excepté leurs performances d’isolation thermique – ne soit pas une obligation pour viser les normes QZen ou plus ambitieux, il y trouve un champ d’application tout à fait opportun.

Personne n’aura pu y échapper, aujourd’hui, la tendance en termes d’isolation tend vers “toujours plus”. En effet, au cours de ces dernières années, les réglementations concernant les niveaux U des parois ne cessent de se renforcer, visant des niveaux de conductibilité thermique toujours plus faibles.

Réduire les échanges de chaleur entre intérieur et extérieur dans une démarche zéro carbone nécessite donc de trouver un réel équilibre entre le coût en carbone des matériaux utilisés pour améliorer l’isolation et la consommation en carbone liée à l’énergie de chauffage.

L’idée vous intéresse ? Consultez notre article « améliorer l’enveloppe dans une démarche zéro-carbone« .


Combiner les deux, pour se passer de chauffage ?

En poussant les deux pistes ci-dessus à l’extrême, pourrait-on envisager de se passer complètement de chauffage ? Nous avons étudié cela sur base de simulations thermiques dynamiques, en considérant une salle de classe typique. Celles-ci ont porté sur l’influence du changement d’orientation de la classe et sur le changement de position dans le bâtiment. Voici nos conclusions :

  • Il est possible de se passer d’un contrôle permanent sur l’ambiance dans des classes mitoyennes de tous les côtés (graphique SB et SBS ci-dessous), à condition que celles-ci soient composées de parois performantes et étanches. Dans le meilleur des cas, ces classes pourraient bénéficier d’une simple relance du chauffage au matin avant l’arrivée des élèves pour ainsi garder une température optimale (entre 18° et 20°) à l’intérieur tout au long de la journée. Pour tous les autres locaux de classes (graphiques SI et SIS), ne bénéficiant pas d’une position favorable, un besoin de chauffage permanent reste indispensable, malgré une amélioration des performances de l’enveloppe et une exposition favorable((HANDRIEU R, Validation par modélisation thermique d’une stratégie de rénovation énergétique d’écoles centrée sur l’autonomie thermique des salles de classes, Faculté d’architecture, ingénierie architecturale, urbanisme, Université catholique de Louvain, 2020. Prom. : Geoffrey Van Moeseke)).

Classe non mitoyenne orientée « ouest »                   Classe mitoyenne orientée « ouest » 

Classe non mitoyenne orientée « sud »                     Classe mitoyenne orientée « sud » 

  • Si l’on veut se passer de chauffage dans la classe, des concessions doivent être faites ; soit sur la qualité de l’air, soit sur la température ambiante, soit sur les deux en même temps. Nous estimons qu’il est préférable de mettre la priorité sur une ambiance saine dans la classe. La qualité de l’air (graphique de droite ci-dessous) ayant un impact plus important sur les performances que la baisse de température (graphique de gauche) ((HANDRIEU R, Validation par modélisation thermique d’une stratégie de rénovation énergétique d’écoles centrée sur l’autonomie thermique des salles de classes, Faculté d’architecture, ingénierie architecturale, urbanisme, Université catholique de Louvain, 2020. Prom. : Geoffrey Van Moeseke)).

  • Il ne faut pas négliger l’impact de systèmes d’apport de chaleur alternatifs. Si l’on prend par exemple le cas d’une installation de batteries de chauffe sur le système de ventilation complétée par des panneaux rayonnants et des systèmes de chauffe individuels, il devient possible de se passer d’un contrôle continu sur l’ambiance, même pour des locaux de classe en situation moins favorable (graphique SI ci-dessous). Il s’avère même, grâce à ces apports ponctuels de chaleur, envisageable de se passer complètement de chauffage pour des classes complètement mitoyennes (graphiques SB) ((HANDRIEU R, Validation par modélisation thermique d’une stratégie de rénovation énergétique d’écoles centrée sur l’autonomie thermique des salles de classes, Faculté d’architecture, ingénierie architecturale, urbanisme, Université catholique de Louvain, 2020. Prom. : Geoffrey Van Moeseke)).

Supprimer le chauffage dans les écoles est une utopie qui permet de remettre en questions beaucoup de pratiques concernant les activités scolaires, l’organisation des espaces et les besoins thermiques. Se passer d’un contrôle permanent sur l’ambiance est une opportunité pour créer un programme scolaire en adéquation avec les activités pédagogiques et l’environnement naturel qui l’entoure. Agir sur le besoin de chauffage des occupants est un projet éducationnel intégrant des éléments d’architecture. Ces considérations poussent donc à concevoir nos écoles de manière différente, en réfléchissant aux usages, au degré d’ouverture, et aux besoins en chaleur de chaque espace((Siraut,  Astrid.  Vers une école sans chauffage : adaptabilité de la construction et des occupants. p.67, Faculté d’architecture, ingénierie architecturale, urbanisme, Université catholique de Louvain, 2020. Prom. : Geoffrey Van Moeseke – http://hdl.handle.net/2078.1/thesis:24912 )).

 

Stratégie hiver (fermé)                                        Stratégie été (ouvert) 

Imagination de composition architecturale selon les ambiances thermiques et les besoins scolaires  


Compenser les besoins résiduels avec une production renouvelable

Une fois les deux pistes précédentes prises en compte et les besoins thermiques de l’école considérablement diminués, il est nécessaire de se focaliser sur les technologies. Aussi réduites soient-elles, les consommations en énergie de chauffage de l’école devront être assurées par des techniques cohérentes avec l’objectif zéro-carbone de l’école. A ce titre, toute combustion d’énergie fossile doit être proscrite. Cela laisse donc deux possibilités : la biomasse et l’électricité par l’intermédiaire d’une pompe à chaleur, mais dans les deux cas, sous certaines conditions seulement. Quelles sont-elles ?

Pour la biomasse, il faut s’assurer que la ressource brûlée est effectivement “neutre en carbone”, ce qui n’est pas si évident. Pour en savoir plus, allez consulter la rubrique « impact environnemental et socio-économique » de cet article. En plus de cela, le mode de production d’énergie doit être soit très efficace en termes de rejet de carbone, soit avoir un très haut rendement (chaudière bois-énergie), soit être une cogénération. Attention toutefois à la complexité des systèmes de cogénération, qui rendent l’application en milieu scolaire difficile (à moins de passer via un tiers investisseur).

Dans le cas présent d’installations de chauffage dans des écoles à optique zéro-carbone, les technologies de biomasse s’y prêtent relativement bien. Au-delà des avantages et inconvénients évoqués ici, la biomasse offre un potentiel communautaire non négligeable par le développement de synergies territoriales autour de modes de chauffage. Pour en savoir plus sur les communautés d’énergies, consultez cet article.

Pour l’électricité, il faut s’assurer que celle-ci provienne le plus possible d’une source renouvelable. Idéalement, le besoin électrique sera compensé par une production sur site, pour obtenir un bilan annuel équilibré. On parlera alors de bâtiment zéro-énergie (ZEB). Cela nous amène à envisager des sources de production renouvelables , qui sont traitées plus loin dans ce dossier.Et bien sûr, pas question de se contenter de résistances thermiques pour alimenter un réseau de chauffage central. La pompe à chaleur est la condition sine qua non du recours à l’électricité pour le chauffage.

Les pompes à chaleur peuvent, en étant multipliées et fonctionnant par zone, offrir des gammes de puissance suffisantes afin de répondre aux besoins d’une école. Cependant, tout comme pour la biomasse, les systèmes peuvent prendre beaucoup de place et générer du bruit. Une étude préliminaire sur l’implantation des unités extérieures sur le site de l’école est donc impérative. En fonction du site de l’école, cette technologie permet également de tirer parti des techniques de géothermie afin de proposer une production d’énergie au bilan carbone neutre. La pompe à chaleur offre donc de nombreux avantages en termes de neutralité carbone de l’école, mais à quel prix ? Des études de faisabilité et de rentabilité sont indispensables avant de se lancer dans de tels projets pour une école.

La place des énergies renouvelables à l’école


Quel intérêt pour une école ?

La production d’énergie renouvelable sur le site par des technologies peu émettrices en carbone  reste la meilleure manière pour des écoles d’atteindre le net zéro énergie et donc le net zéro carbone.

Une bonne utilisation de ces technologies renouvelables peut permettre de combattre les pics d’énergie de pointe, de compenser le talon de consommation de l’école, ou encore, dans les meilleurs cas, de couvrir l’ensemble des besoins en énergie de l’établissement. Il faut cependant éviter de tomber dans le travers d’un système renouvelable devant compenser des performances thermiques limitées d’un bâtiment ! Il est et sera toujours mieux de chercher à se passer d’un appoint d’énergie que de la produire de manière renouvelable.

De plus, la présence et la visibilité de sources de production d’énergie renouvelable sur le site de l’école s’accompagnent de potentiels pédagogiques non négligeables.


Quelle puissance nécessaire ? 

En moyenne, les écoles en Wallonie consomment en électricité 200 kWh/élève par an. Pour les écoles de taille moyenne, la consommation annuelle en électricité (sans ventilation) revient donc à 80 000 kWh.

Si l’on considère une réduction de 20% de celle-ci grâce à des actions comme celles proposées par le défi Génération 0 Watt, on peut considérer des consommations se situant autour des 160 kWh/élève par an comme base de travail.

Certains établissements ayant effectué un travail beaucoup plus important peuvent atteindre des consommations bien plus basses, de l’ordre de 50 kWh/élève par an. On peut majorer ces chiffres de 7 à 13 kWh/an par élève lorsqu’on ajoute un système de ventilation simple ou double flux.

Le tableau ci-dessous reprend les consommations électriques et thermiques théoriques moyennes en fonction du degré de rénovation. Ceci permet donc d’une part de se situer par rapport aux autres établissement et d’autre part d’évaluer le potentiel d’efficacité d’une production d’énergie renouvelable.

Actuel Actuel 0 Watt

(-20%)

Rénovation presque passive Rénovation passive
Electrique (sans chauffage) 200 kWh/élève.an

25kWh/m².an

160 kWh/élève

20kWh/m².an

50 kWh/élève

6kWh/m².an

25 kWh/élève

3 kWh/m².an

Thermique 1100 kWh/élève

138kWh/m².an

Même que l’actuel car 0 Watt agit sur la consommation électrique surtout. 240 kWh/élève

30 kWh/m².an

120 kWh/élève

15 kWh/m².an

VMC / / 10 kWh/élève 7 kWh/élève

Quelle technologie choisir pour une école ?

Il existe plusieurs sources de production d’énergie renouvelable. Les panneaux photovoltaïques et l’éolien sont les plus propices à être utilisés dans des bâtiments scolaires. Dans ce type de bâtiment, il est impératif d’utiliser des technologies qui soient faciles en maintenance et en entretien afin qu’elles puissent faire profiter au mieux de leur plein potentiel. La cogénération est donc plus délicate, mais pas à exclure pour autant.

Bien que la dimension technique soit probablement la plus efficace dans la diminution des émissions de carbone, elle peut facilement entraîner l’effet inverse. En effet, il est nécessaire pour les écoles d’avoir des responsables énergie et des équipes pédagogiques formées en amont du passage à l’action, pour une mise en place efficiente des systèmes. Equiper les écoles d’installations très performantes mais complexes à gérer ne fonctionne pas. Les écoles ne possèdent actuellement pas de gestionnaires techniques capables d’assurer la gestion de ces systèmes. La rénovation zéro carbone de manière générale est donc une tâche très complexe qui fait appel à toute une série de technologies et qui nécessite une sensibilisation et un renforcement des compétences des parties prenantes.

  • Panneaux photovoltaïques

Le photovoltaïque est la technologie la plus adaptée pour des écoles, elle demande peu de maintenance et offre un rendement efficace pour les consommations électriques d’une école. Mais attention que les panneaux photovoltaïques prennent énormément d’espace ! De grandes surfaces de toiture sont donc nécessaires pour une installation optimale.

A titre d’exemple :

  • Si l’école consomme 160 kWh/élève par an -> 64 000 kWh par an pour une école de 400 élèves

Il faudra environ 600 m² de panneaux (plus de 300 panneaux) ((https://www.ef4.be/fr/pv/composants-dun-systeme/dimensionnement-projet-photovoltaique.html)).

  • Si l’école consomme 50 kwh/élève par an après rénovation -> 20 000 kWh par an pour une école de 400 élèves

Il faudra presque 200 m² de panneaux (une centaine de panneaux).

Pour plus d’informations sur la technologie photovoltaïque, consultez les pages suivantes :

Éolien

Une autre possibilité de production d’énergie verte pour l’école est le petit éolien. C’est une technologie qu’on rencontre moins mais qui n’est toutefois pas à négliger. Elle permet, avec relativement peu de moyens, de compenser des besoins électriques faibles. En effet, le petit éolien trouve sa place dans des écoles de petite taille ou dans des écoles ayant déjà réduit considérablement leurs besoins en électricité.

A titre d’exemple :

  • 2 éoliennes de puissance 5kW (10 à 12m de haut) qui tournent pendant 2000 h/an (5h30 par jour) chacune à puissance nominale peuvent produire 20 000 kWh par an. Soit l’équivalent d’une école de 400 élèves consommant en électricité 50 kWh/élève.

Cependant, la majorité du temps, l’éolienne ne fonctionne pas à puissance nominale, le vent n’étant généralement pas suffisant pour garantir cela. Du coup, il faudra une puissance installée supérieure avec des éoliennes qu’avec des centrales classiques pour atteindre une même production d’énergie annuelle. Il est possible recalculer le nombre d’heures que l’éolienne doit tourner à puissance nominale pour débiter la même production électrique annuelle (avec un vent dont la vitesse varie). Typiquement, la production annuelle électrique d’une petite éolienne en Wallonie correspond à 11 % du temps à puissance nominale.

Les petites éoliennes ((Images provenant de https://neonext.fr/eolienne-skystream/)) ne sont pas toujours à axe horizontal comme sur les images ci-dessus. On retrouve de plus en plus d’éoliennes à axe vertical, principalement en milieu urbain. Elles s’y adaptent particulièrement bien car elles peuvent fonctionner avec des vents venant de toutes les directions. De plus, elles sont relativement silencieuses, peuvent facilement s’intégrer à l’architecture des bâtiments, permettent de placer la génératrice au niveau du sol et ne nécessitent pas de mécanisme d’orientation((https://energie.wallonie.be/fr/vade-mecum-pour-l-implantation-d-eoliennes-de-faible-puissance-en-wallonie.html?IDD=77455&IDC=6170)).

Les projets de petit éolien permettent donc d’organiser son indépendance énergétique moyennant certaines formalités. Les démarches administratives, les contraintes urbanistiques ou encore les limites techniques sont autant d’obstacles qui peuvent freiner les porteurs de projets à s’orienter vers ce type de production d’énergie. Le vade-mecum de la Région Wallonne pour l’implantation d’éoliennes à faible puissance vous accompagnera dans toutes vos démarches et questions relatives à cette technologie. Vous pouvez également prendre connaissance de ce projet de construction d’éolienne par des élèves pour leur école à Verviers.

Pour encore plus d’informations sur la technologie éolienne, consultez les pages suivantes :

  • Cogénération

Elle permet de couvrir relativement aisément les besoins en électricité d’une école. Cependant, la cogénération n’est pas la technologie la plus adaptée dans ce contexte car elle demande trop de maintenance et de gestion. A ce jour, les écoles n’ont pas de personnel spécialisé ou de gestionnaire technique attitré pour gérer le fonctionnement d’installations comme celles-ci.

Toutefois, il peut être intéressant pour une école d’avoir recours à la cogénération par le biais d’un tiers investisseur. Celui-ci s’occupe des études préliminaires, de l’installation et de la maintenance, sans que l’école ne doive intervenir. Ou encore, l’école peut se greffer à des réseaux de chaleurs existants dans son quartier/sa commune, dont l’énergie partagée est produite via des technologies de cogénération.


Place de l’école dans des communautés d’énergie

La production d’énergie renouvelable au sein de l’école offre de nombreux avantages, dont celui d’offrir le potentiel de créer des communautés d’énergies. Les installations de production d’énergie dans les écoles produisent occasionnellement un grand surplus d’énergie, qu’il est bénéfique de faire profiter au plus grand nombre. Le regroupement autour d’un projet de communauté d’énergie permet ce partage.

Les écoles ont un rôle moteur au sein de ces communautés. Les établissements scolaires, par leur caractère éducatif, pédagogique, social et institutionnel, participent à stimuler et activer la société.  En adoptant un comportement exemplaire en faveur de la transition énergétique, les écoles deviennent également des vitrines qui portent un rôle exemplatif auprès des pouvoirs publics (particulièrement les écoles du réseau officiel).

Par ailleurs, la communauté d’énergie permet à l’école un retour sur investissement plus rapide des installations de production d’énergie. En effet, l’école profite d’un bénéfice en revendant son surplus d’énergie à un prix supérieur au prix du kWh renvoyé sur le réseau.

Pour plus d’informations à ce sujet n’hésitez pas à consulter la page consacrée aux communautés d’énergie.


Exemple de communauté d’énergie

Depuis 2020, une école de la commune de Ganshoren à Bruxelles a établi un projet de communauté d’énergie renouvelable autour de partage d’électricité. Celle-ci est produite tant par des panneaux disposés sur le toit de l’école (34,77 kWc) ainsi que chez un particulier (2,4 kWc) habitant dans le quartier de l’école.

Les surplus d’électricité venant de ces deux sources de production permettent d’alimenter en électricité verte une quinzaine de résidents du quartier ayant été équipés de compteurs intelligents.

Le surplus d’énergie autoconsommée est actuellement en grande partie complété par de l’électricité complémentaire venant de fournisseurs.

L’autoconsommation du surplus est vouée à de nombreuses améliorations, au fur et à mesure que les membres de la communauté s’habituent à une nouvelle gestion de leurs consommations électriques.

Pour plus d’informations sur le projet : https://nosbambins.be/

Choisir le système de ventilation dans les classes

© Architecture et climat 2023.

  1. Air neuf
  2. Air rejeté
  3. Prise d’air extérieur
  4. Bouches de pulsion
  5. Reprise d’air via grille de transfert
  6. Réseau de gainage
  7. Bouches d’extraction
  8. Silencieux
  9. Ventilateur
  10. Récupérateur de chaleur
  11. Filtres

L’objectif principal de la ventilation des salles de classe est de créer des conditions environnementales intérieures qui réduisent le risque de problèmes de santé chez les élèves et minimisent leur inconfort, afin d’éliminer tout effet négatif sur l’apprentissage.

Des expériences récentes montrent que des taux de ventilation inadéquats dans les salles de classe peuvent entraîner une prévalence élevée de symptômes de santé aigus, réduire la vitesse à laquelle les tâches linguistiques et mathématiques typiques du travail scolaire sont exécutées par les élèves, et peut réduire les progrès de l’apprentissage tels que mesurés par le nombre d’élèves qui réussissent les tests standard de mathématiques et de langues. Elle peut également accroître l’absentéisme, ce qui est susceptible d’avoir des conséquences négatives sur l’apprentissage. Ces effets donnent lieu à des coûts socio-économiques importants.

Malgré cet ensemble croissant de preuves, la plupart des données publiées dans la littérature scientifique indiquent que la ventilation des salles de classe dans de nombreuses écoles est encore inadéquate et que les taux d’apport d’air extérieur dans les écoles sont considérablement plus faibles que dans les bureaux, voire dans de nombreux cas plus faibles que ceux observés dans les habitations.


Quel débit choisir dans une classe ?

Les taux de ventilation sont réglementés par le code de bien-être au travail et par des arrêtés royaux. Le minimum régional imposé par la PEB est clair, il vise un débit de 22 m3/h par personne. Le code du bien-être au travail demande quant à lui minimum 40 m3/h par personne, ce qui permet d’atteindre moins de 800 PPM dans une classe de taille moyenne (24 enfants). Cependant, le deuxième chiffre clé de la directive est le seuil limite de 900 PPM. Assurer un débit de 32m3/h par personne permet de supposer celui-ci respecté.

La directive du code du bien-être au travail propose également une dérogation pour pouvoir se limiter à un débit de 25 m3/h ou 1200 PPM. Cette dérogation demande une analyse de risques des polluants dans la classe et un plan d’action sur quelques années. Les sources de polluants sont nombreuses dans les classes (colles, revêtements, peintures, produits d’entretien…), rendant cette dérogation difficilement applicable. Si toutefois, vous envisagez une telle dérogation, adressez-vous au conseiller en prévention compétent.


Performances du système double-flux

Seul des systèmes de ventilation mécanique à double flux permettent de respecter ces débits réglementaires. Grâce à une récupération de la chaleur des flux sortants, le système D limite l’inconfort et les besoins de chauffe dans les classes, le rendant particulièrement adapté à la démarche zéro-carbone.

Le système de ventilation double flux, c’est-à-dire équipé d’une pulsion et d’une extraction mécanique ainsi qu’un échangeur de chaleur, est le meilleur en terme de maîtrise des débits dans les locaux.

© Architecture et climat 2023.

  1. Air neuf
  2. Air rejeté
  3. Air vicié

Ce système est pratiquement indispensable dans les écoles en site urbain.

La distribution de l’air neuf est assurée par un réseau de conduits placé par exemple dans les faux plafonds des zones de circulation.

La diffusion de l’air neuf à l’intérieur de chaque classe est obtenue par une ou plusieurs bouches, soit murales, soit plafonnières.

© Architecture et climat 2023.

  1. Classe
  2. Couloir

L’extraction et le transfert se font comme pour le système simple flux. Vu l’importance des débits mis en jeu, l’extraction peut ne pas se limiter aux seuls sanitaires et se distribuer sur une partie des espaces de circulation, ceci pour éviter des courants d’air dans les sanitaires. Dans certains cas, l’extraction (ou une partie de celle-ci) pourra se faire directement dans les classes.

Concrètement, le choix du double flux par rapport au simple flux sera guidé par :

  • le souhait de garantir une répartition correcte des flux d’air,
  • le besoin de se protéger de l’ambiance extérieure (bruit et pollution),
  • le souhait de récupérer l’énergie de l’air extrait par un récupérateur de chaleur,

le besoin d’augmenter la température de l’air neuf.

Comme dit précédemment, la principale difficulté réside en l’encombrement des réseaux, qu’il n’est pas toujours possible d’intégrer dans un bâtiment existant. Dans certain cas, une décomposition du bâtiment en différentes zones équipées chacune de leur propre groupe et réseau de ventilation peut simplifier le problème :  une ventilation avec pulsion et extraction mécanique là où c’est possible, une simple extraction ailleurs.Il peut aussi être préférable d’opter pour des systèmes D de ventilation décentralisés, limitant l’encombrement causé par les gaines et les consommations électriques.

Pour les principes généraux sur les systèmes centralisés/décentralisés, consultez la page suivante: Choisir un système de ventilation centralisé ou décentralisé

Si vous souhaitez aller plus loin dans la gestion de la ventilation afin de prévenir la dispersion d’agents pathogènes, n’hésitez à consulter l’article réalisé en juillet 2020 durant la pandémie du COVID-19.


Ventilation décentralisée ou centralisée dans la classe?

Avantages

Ventilation décentralisée

  • Appropriation de la machine localement par les utilisateurs des classes, principalement les professeurs.
  • Permet de gérer les machines séparément, classe par classe, en fonction des besoins spécifiques de chacune. Cette modulation maximum permet de faire de fortes économies d’énergie.
  • Permet un investissement par étape. Les projets de rénovation ou les projets à petit budgets pourront donc en bénéficier plus facilement.
  •  Les gainages sont fortement limités, diminuant les consommations liées aux pertes de charges et les coûts d’entretien.

Ventilation centralisée

  • Ce sont des technologies qui ont quelques années déjà. Leur durabilité est donc garantie par une réparabilité quasi assurée.
  • Les travaux de maintenance sont centralisés en un seul endroit, au cœur de l’installation.
Inconvénients
  • La maintenance doit être faite sur chaque machine.
  • C’est une technologie encore très récente, rendant la question de la réparabilité difficile à évaluer. La technologie est vouée à se développer grandement, les pièces la constituant changeront donc probablement rapidement.
  • Nécessite de multiples percements en façade pour alimenter les groupes
  • Ce sont des installations complexes qui nécessitent une gestion attentive.
  • Les écoles font souvent appel à des sociétés extérieures pour la maintenance, car elles ne veulent pas prendre cette responsabilité, ce qui représente des coûts importants.
  • Les gainages sont très importants, nécessitant énormément de place.
  • Les groupes et gaines qui sont situés en extérieur périssent rapidement sous l’effet des intempéries.

Que prévoir comme régulation?

  • Une régulation sur base d’un horaire par local, pour éviter toute consommation en soirée et week-end. Pour affiner cela, possibilité d’une modulation du débit sur base d’une mesure CO² par classe, ce qui est bien plus simple dans un système décentralisé : en cas d’absences, de travail en plus petits groupes ou autres, réduire le débit permet d’éviter un air trop sec et de limiter le bruit généré par le système de ventilation.
  • Si possible : une modulation du débit dans la programmation, pour éviter le tout ou rien, car un fonctionnement à pleine charge risque d’être bruyant.Par exemple, demander un démarrage à débit réduit pour une concentration CO² de 500ppm, avec une montée progressive jusqu’au débit de dimensionnement lorsque la concentration atteint la cible de 900ppm.
  • Avoir une possibilité de dérogation (on/off) par local, moyennant une action simple de l’utilisateur, est recommandée. Cela permet de répondre à des besoins ponctuels imprévisible, et évite bien des frustrations. Une fonction de retour à la normale après un temps raisonnable doit évidemment suivre la dérogation.
  • Modifier la régulation pour la belle saison : ne démarrer par exemple que lorsque la concentration intérieure atteint le seuil de 900ppm. En combinant cette mesure à un message vers les enseignants du type “il fait beau, on ouvre les fenêtres ! “. L’idée étant d’éviter la consommation d’énergie liée aux ventilateurs ne laissant aux occupants la gestion de la qualité de l’air que par l’ouverture des fenêtres, la VMC restant en « backup » si, pour une raison ou l’autre, la qualité d’air n’est pas suffisante.Placer un afficheur CO² dans les classes peut être utile en soutient à la responsabilisation des occupants.

A ne pas oublier : les classes sont souvent sujettes à la surchauffe en fin de printemps et dans les premières semaines de l’année. Le décalage du calendrier scolaire vers le mois d’août va renforcer ce risque. Pour limiter cela, il faut pouvoir combiner des protections solaires et l’ouverture des fenêtres, ce qui n’est pas toujours évident. Dès lors, une fonction « Free-Cooling » sur la VMC est utile : un enclenchement de la ventilation au débit correspondant à une classe occupée lorsque la température intérieure monte (25 … 26°C°) alors que la température extérieure reste agréable.

Enfin, pensez à exiger un système qui vous permette un suivi à distance : visualisation des courbes de débits brassés, de qualité d’air, température et humidité dans les classes, avec des alarmes programmables et, si possible, une possibilité de modification des paramètres de régulation à distance


Autres systèmes

Si la réalisation d’un système D n’est pas envisageable dans le projet de rénovation, il existe d’autres moyens pour ventiler la classe. Toutefois, ces stratégies sont nettement moins efficaces et ne permettront pas d’atteindre les débits réglementaires. De plus, sans système D, il n’y a pas de récupération de chaleur possible, ce qui accentuera sensiblement les besoins de chaleur de l’école et donc indirectement les factures liées à la consommation énergétique de chauffage.

Limites de la ventilation par ouverture des fenêtres

La ventilation par ouverture des fenêtres est bien souvent l’unique moyen de ventilation utilisé dans la majorité des écoles actuelles, malgré qu’elle réponde difficilement aux critères d’hygiène et de confort exigés :

  • Le confinement de l’air d’une salle de classe normalement occupée et ventilée par ouverture des fenêtres aux intercours est atteint après un quart d’heure d’occupation. De plus, la ventilation est totalement liée à la bonne volonté des occupants.
  • L’ouverture des fenêtres engendre d’importants mouvements d’air froid, ce qui rend quasiment impossible la ventilation continue en période d’occupation, c’est-à-dire pendant la production des polluants. Durant cette période les inétanchéités des fenêtres sont, par contre, insuffisantes pour assurer les débits d’air recommandés

Ventilation simple flux avec extraction sanitaire

Lorsque l’ambiance extérieure (bruit et pollution limités) le permet, la solution la plus simple à mettre en œuvre est le système simple flux avec extraction sanitaire.

© Architecture et climat 2023.

  1. Air neuf
  2. Air vicié
  • L’air neuf est de préférence introduit dans les bureaux au moyen de grilles autoréglables placées en façade dans les menuiseries ou la maçonnerie.

 Grille intégrée entre le vitrage et la menuiserie    Grille verticale intégrée dans la menuiserie

  • L’air vicié est évacué dans les sanitaires au moyen d’un ventilateur d’extraction.
  • Les transferts d’air entre classes et sanitaires se font, soit par un détalonnage des portes, soit par des passages appropriés avec grilles à chevrons ou autre.

Grille de transfert d’air

Exemple

Dans une école du Brabant wallon, l’air neuf est introduit dans les classes par des ouvertures auto réglables et transféré sous les portes vers les sanitaires.

Les circuits d’extraction (conduits et ventilateurs) sont, dans la plupart des cas, communs à plusieurs niveaux. Ils sont généralement conçus suivant le principe du “parapluie”. Les conduits verticaux empruntent les gaines techniques également verticales et les conduits horizontaux passent dans l’épaisseur des faux plafonds. Ces ensembles desservent à chaque niveau une ou plusieurs zones sanitaires.

Étant donné l’absence de conduit de distribution vers chaque classe, l’espace nécessaire aux locaux techniques et aux conduits d’air est peu important. Ceci prend toute son importance en regard des hauteurs de faux plafonds qui n’ont pas à tenir compte du passage de conduits d’air.

Ce système appliqué aux écoles présente comme inconvénients :

  • La nécessité d’un nombre important de grilles d’amenée d’air auto réglables : par exemple, une classe de 60 m² demande un débit de ventilation de : 8,6 [m³/h.m²] x 60 [m²] = 516 [m³/h]. Or le débit maximum obtenu par grille est de l’ordre de 30 à 180 m³/h par mètre courant (sous 2 Pa). Il faut donc intégrer de 5 à 20 m de grilles dans la façade, ce qui n’est pas toujours évident. Une alternative est d’utiliser ne fenêtre robotisée comme amenée d’air.
  • La transmission de bruit possible au travers des grilles de transfert.
  • Le risque de courants d’air froid dus au débit d’air frais introduit dans la classe. L’utilisation de fenêtres robotisées, basée sur une sonde CO², permettrait de moduler le débit aux besoins réels, réduisant (un peu) le risque de courant d’air. On peut même envisager de coupler cette robotisation à une sonde d’absence et une horloge, pour assurer une ventilation maximale pendant les récréations.
  • Le risque de perturbation du flux d’air en fonction de l’ouverture des fenêtres et des portes.
  • L’absence de filtration de l’air neuf en milieu urbain.

A lire également afin d’aller plus loin sur cette thématique : Les différents systèmes de ventilation expliqué aux responsables énergie

isolation d'une école

Isolation par l’intérieur ou par l’extérieur pour une classe ?

Les principes, avantages, inconvénients et fonctionnements des techniques d’isolation par l’intérieur et par l’extérieur sont déjà exposés sur Energie + et sur le site du CSTC.Pour en savoir plus, consultez les pages suivantes :


Quel est le mieux pour mon école ?

Si de gros travaux sont prévus et que l’école bénéficie d’un budget important, l’isolation par l’extérieur reste la solution la plus efficace. Elle offre une meilleure uniformité à l’enveloppe et permet donc plus facilement de limiter les déperditions de chaleur ((Dobbels F. RenoFase WP4 – Detaillering van binnenisolatie, WTCB, 2017)).

L’isolation par l’intérieur, quant à elle, est une solution intéressante dans le cas de rénovations de bâtiments scolaires où il n’est pas possible de prévoir une isolation par l’extérieur (généralement pour des raisons urbanistiques). Cependant, c’est une technique à exécuter avec beaucoup de prudence car les risques causés par sa mauvaise exécution peuvent être dévastateurs pour le bâtiment.

L’isolation par l’intérieur possède quelques avantages par rapport à l’isolation classique par l’extérieur. Premièrement,elle ne requiert pas de permis pour la réaliser. Ce sont donc des travaux qui peuvent être rapides à exécuter. Deuxièmement, cette technique permet des interventions plus localisées, local par local. Le phasage ou l’étalement des travaux d’isolation dans le temps permet donc une plus grande flexibilité pour les projets de rénovation de bâtiments scolaires. Une attention mérite d’être portée sur l’isolation par l’intérieur lorsque des travaux sont déjà prévus dans des locaux de l’école. Que ce soit un changement des châssis, une amélioration de l’acoustique ou encore une réparation importante suite à un dégât des eaux, l’isolation par l’intérieur se combine facilement avec ce genre d’interventions. Attention toutefois qu’une réflexion sur l’isolation par l’intérieur ne peut avoir lieu sans une bonne gestion des débits de ventilation des locaux en question.

L’isolation par l’intérieur s’accompagne de quelques conséquences ayant un impact plus direct sur les locaux de l’école que l’isolation par l’extérieur.

  • Elle engendre une diminution de la surface habitable des locaux

A titre d’exemple, dans une classe de 56 m², accueillant 25 enfants, on décide d’ajouter20 cm de laine minérale à des murs en maçonnerie non isolés pour passer d’un U de 1,73 W/m²K à un U de 0,2 W/m²K.

Ceci provoque une perte de 3 m², engendrant donc une diminution de la capacité d’accueil de la classe, correspondant à .

 

  • Les tuyauteries et techniques doivent être modifiées et/ou déplacées. Ces modifications peuvent être l’occasion de repenser le système de chauffage. Pourquoi ne pas utiliser la ventilation pour se chauffer? Ou encore, pourquoi ne pas se passer complètement de chauffage dans ces classes? Pour en savoir plus sur ces alternatives, consultez la page suivante. Toucher au système de chauffage pour l’isolation d’un seul local est peu pertinent car souvent ces systèmes fonctionnent en réseau et ne permettent pas de modifier celui-ci facilement. Dès lors, il est plus intéressant de réfléchir aux projets d’isolation par l’intérieur par “zone” de bâtiment et non par local individuel.
  • Les locaux perdent en inertie après une isolation de ce type. Cependant cette perte d’inertie peut être nuancée. Les plafonds et les planchers représentent souvent de grandes surfaces “lourdes” qui le restent après isolation par l’intérieur. Pour une classe aux dimensions similaires à celle représentée plus haut, l’isolation par l’intérieur des deux murs extérieurs comprenant des fenêtres représente une perte d’environ 25 % de la surface lourde. La perte d’inertie est donc négligeable par rapport aux gains thermiques.

Est-ce que ça vaut vraiment la peine ?

Malgré ces conséquences, isoler par l’intérieur peut vraiment améliorer la situation. Cela peut valoir la peine dans pas mal de cas. Pour se lancer dans l’isolation par l’intérieur, deux critères peuvent rentrer en compte.

  1. Surface : les grandes surfaces de murs extérieurs seront les premières à pouvoir être isolés car elles sont relativement simples. Leur isolation peut donc nettement améliorer le confort de la classe.
  2. Complexité technique : il est évident qu’isoler les contours des châssis est plus complexe qu’une surface plane.  Cependant, si un changement de châssis est prévu, il est recommandé de pratiquer les travaux d’isolation par l’intérieur en même temps car ceux-ci nécessiteront de toute façon un retravail des raccords (Exemple: le cas 1 ci-dessous représente une grande complexité pour peu de résultats. Cependant, si les châssis doivent être remplacés, alors il est tout à fait pertinent d’isoler l’allège en dessous).

Cas 1 : classe mitoyenne avec larges fenêtres

Cas 2 : classe mitoyenne avec petites fenêtres

Cas 3 : classe avec 3 façades extérieures

Cas 4 : classe avec 2 façades extérieures


Fausses idées à démonter

Isoler uniquement certains murs ne sert à rien car, après isolation, toute la chaleur passera par les murs non isolés.

Ce n’est pas parce qu’un mur est isolé qu’un autre verra plus de chaleur le traverser. Le flux traversant le mur non isolé ne change pas. Il reste dépendant de sa valeur U et de la différence de température entre les ambiances de part et d’autre de la paroi. Néanmoins, isoler l’ensemble reste toujours la solution idéale.

Isoler certains murs et d’autres non va concentrer toute la condensation sur les parties non isolées.

En effet, si de la condensation apparaît sur les surfaces, elle prendra place uniquement sur les murs froids (non isolés). Cette condensation peut provoquer des problèmes si l’humidité relative de l’air dépasse un certain seuil. Cependant, la priorité avant d’isoler des murs est de maîtriser l’ambiance intérieure en ventilant correctement les locaux. Dès lors, grâce à cette ventilation, l’ambiance ne pourra plus atteindre ces seuils d’humidité, le risque de condensation est donc supprimé.


Quelques principes à respecter…

Attention toutefois car l’isolation par l’intérieur ne vaut la peine que si certains principes sont respectés. De manière générale, on peut rappeler 3 grands principes.

Avant toute chose, il est impératif de traiter tout type de problème d’humidité! Comme l’expliquent les articles mentionnés plus haut, rajouter une couche isolante sur la face intérieure d’un mur a des conséquences importantes sur son comportement hygrothermique. Dès lors, il est impératif de démarrer sur une bonne base, avec un mur sain. Les dommages liés à l’humidité se produisent généralement lorsque des matériaux sensibles à l’humidité sont en contact direct avec celle-ci. La présence de tâches, d’efflorescences, de fissures ou encore d’écaillages sur les murs existants sont autant de signaux révélateurs d’humidité. Le mur doit être complètement sec et exempt de toute trace d’humidité lorsqu’on pose l’isolation par l’intérieur.

Photo de gauche : Humidité ascensionnelle.
Photo de droite : Tache d’humidité dans l’enduit intérieur.

Source : rapport CSTC – « Isolation des murs existants par l’intérieur – diagnostic »((Isolation des murs existants par l’intérieur – diagnostic – les dossiers du CSTC 2012/4.16, 2013))

  • Principe 1 : Contrôle du climat intérieur

Une bonne gestion du climat intérieur a toute son importance dans l’apparition ou non de dommages au niveau des zones sous-isolées.  L’ampleur des dégâts est caractérisée par la température ambiante et par l’humidité relative de l’air intérieur. Pour éviter tout risque lié à une isolation par l’intérieur, le bâtiment doit appartenir à la classe de climat intérieur 1 ou 2. Ces classes de confort sont facilement atteintes grâce à des systèmes de ventilation mécanique.

  • Principe 2 : Réduire ponts thermiques

Les ponts thermiques sont les principales failles des systèmes d’isolation par l’intérieur. Ils sont parfois complexes à éliminer mais de nombreuses solutions existent pour les combattre. Une mauvaise gestion des ponts thermiques peut entraîner des moisissures dues à la condensation ainsi que d’importantes pertes d’énergie. Attention cependant que tous les ponts thermiques ne doivent pas nécessairement être réglés.Si l’école bénéficie d’un système de ventilation efficace atteignant les débits réglementaires, les risques liés aux ponts thermiques peuvent être amoindris.

Les principales situations à risques auxquelles il faut faire attention sont les pourtours des menuiseries extérieures, les pieds de murs et fondations ou encore la jonction des planchers des étages avec les murs extérieurs.Des pistes de résolution de ces situations à risque sont proposées sur cette page.

  • Principe 3 : Eviter fuites d’air

Pour éviter tout risque de condensation interne, les systèmes d’isolation par l’intérieur doivent garantir une parfaite étanchéité à l’air. La ruine des parois peut avoir lieu lorsque de l’air chargé en humidité pénètre derrière la couche d’isolation et condense sur l’arrière de celle-ci.

Dans la réalisation d’une enveloppe étanche à l’air, les situations à risque sont les suivantes: le passage des techniques à travers l’enveloppe et les joints entre différents éléments ou matériaux. Des pistes de résolution de ces situations à risque sont proposées sur cette page.


Par quoi commencer?

L’isolation par l’intérieur est donc une technique à envisager pour la rénovation de l’enveloppe des écoles lorsqu’il n’est pas possible d’isoler par l’extérieur. Certes, elle propose plus de faiblesses que la technique d’isolation par l’extérieur et nécessite le respect strict de certains principes, mais si un diagnostic adéquat préalable est effectué sur l’enveloppe, l’isolation par l’intérieur peut permettre de réduire sensiblement les besoins en chaleur dans l’école.  Le diagnostic de la situation existante est la première étape à réaliser en vue de l’isolation d’un mur existant par l’intérieur((Isolation thermique par l’intérieur des murs existants en briques pleines – Isolin – SPW – Wallonie et Architecture et Climat – 2010)).

Pour en savoir plus sur le traitement de certains nœuds constructifs à régler dans votre école, consultez la page suivante.

Norme ISO 16890 : classification des filtres à air utilisés dans les systèmes de ventilation générale


Depuis plus de dix ans, les études montrent que les particules fines sont la cause de maladies et de décès prématurés en constante hausse. D’après une étude de l’Agence de l’environnement, la pollution aux particules fines à provoquer en 2019 307.00 décès prématurés dans l’Union européenne ((Health impacts of air pollution in Europe, European Environment Agency, 15 Nov 2021)). Pour s’en protéger, les bâtiments sont équipés de filtres à air destinés à limiter la présence de ces particules dans nos intérieurs. L’Organisation mondiale de la Santé a mené des études conduisant à la nécessité de réformer le système de classification de ces filtres à air ((Lignes directrices OMS relatives à la qualité de l’air – Organisation mondiale de la Santé 2021 – https://apps.who.int/iris/bitstream/handle/10665/346555/9789240035423-fre.pdf)). Une nouvelle norme mondiale est donc entrée en vigueur en 2017 : la norme ISO 16890. Pour comprendre les tenants et les aboutissants de cette nouvelle norme, il est important de savoir quels sont les risques engendrés par les particules fines, notamment sur la santé humaine, il est aussi nécessaire de connaître les normes existantes au moment de cette réforme et leurs lacunes par rapport aux problèmes de pollution.


Nocivité des particules fines

Nous passons environ 70% de notre temps à l’intérieur et nous respirons 15 kg d’air par jour ((Health impacts of air pollution in Europe, European Environment Agency, 15 Nov 2021)). Il est donc important de soigner la qualité de l’air de nos bâtiments. De plus, l’air circule moins abondamment en intérieur qu’en extérieur, les concentrations en particules nocives sont dès lors plus importantes. C’est pourquoi il est important d’équiper les systèmes de ventilation de filtres performants, afin d’assurer une qualité d’air intérieur la plus saine possible.

Un air pollué est chargé de particules de différentes tailles pouvant pénétrer le corps humain notamment par les voies respiratoires. Plus ces particules sont fines plus elles atteignent les organes en profondeur, les plus fines pouvant pénétrer jusque dans le sang, les alvéoles pulmonaires et même atteindre le cerveau causant de graves dommages. Les risques principaux pour la santé sont des maladies respiratoires et cardiovasculaires. En Allemagne, des recherches menées entre 2007 et 2014 attribuent 45.300 décès prématurés à la pollution par les particules fines dans l’air extérieur ((Sources of particulate matter air pollution and its oxidative potential in Europe, Kaspar Rudolf Daellenbach et al., Nature, 19 novembre 2020)). L’OMS dénombre 4,2 millions de décès prématurés dans le monde dus à cette pollution pour la seule année 2016. En 2019, l’OMS estimait à 99% le taux de la population mondiale vivant dans des endroits où les seuils de la qualité de l’air n’étaient pas respectés. Devant ce constat, elle préconise une amélioration de la classification des filtres à air de ventilation générale afin d’uniformiser les normes au niveau mondial et de les rendre plus précises. Ces filtres sont utilisés sur des équipements de chauffage, de ventilation et de conditionnement d’air des bâtiments, ils ont pour fonction de réduire la concentration des particules en suspension dans l’air.


Filtres à air : le point sur les anciennes normes

En 2002, la norme européenne EN 779 avait été mise en place pour règlementer les protocoles de tests des filtres à air. Mise à jour en 2012, elle classait les filtres en 9 catégories de G1 à F9 selon leurs capacités de filtration. Ces catégories correspondaient à la quantité de particules de 0,4 micron filtrées. Cette norme était européenne et chaque région du monde avait la sienne ce qui rendait la comparaison entre les filtres impossible au niveau international et entravait le commerce mondial.

Les méthodes utilisées pour les essais et les protocoles de classification avaient tendance à surestimer les capacités de filtration des filtres. L’OMS a donc demandé une uniformisation du système de classification au niveau mondial ainsi que des normes plus précises, c’est pourquoi la nouvelle norme ISO 16890 est entrée en vigueur en 2017 ((ISO 16890-1 -Filtres à air de ventilation générale — Partie 1: Spécifications techniques, exigences et système de classification fondé sur l’efficacité des particules en suspension (ePM) – https://www.iso.org/obp/ui/#iso:std:iso:16890:-1:ed-1:v1:fr)).


Quels sont les changements apportés par la nouvelle norme ISO 16890 ?

ISO signifie Organisation internationale de normalisation, il s’agit d’une fédération mondiale d’organismes nationaux de normalisation, elle agit donc à l’échelle mondiale en incluant des membres internationaux. Les travaux de l’ISO peuvent inclure des organisations nationales, gouvernementales et non gouvernementales. La nouvelle norme en vigueur a donc été élaborée par cette organisation internationale.

Le but principal de cette nouvelle norme était d’obtenir de meilleurs résultats en matière de tests et de catégorisation des filtres. Pour ce faire, la norme ISO 16890 décrit en détails l’équipement, les matériaux, les spécifications techniques, les exigences, les qualifications et les modes opératoires à utiliser pour la réalisation des essais en laboratoire et la classification des filtres à air. Ainsi, tous les filtres à air mis sur le marché à travers le monde répondent maintenant aux mêmes exigences, mesurées grâce aux mêmes protocoles.

Ces protocoles sont détaillés dans les quatre parties de la norme ISO 16890 :

  • L’ISO 16890-1 décrit les spécifications techniques, les exigences et le système de classification fondé sur l’efficacité contre les particules en suspension.
  • L’ISO 16890-2 explique le mesurage de l’efficacité spectrale et de la résistance des filtres à l’écoulement de l’air.
  • L’ISO 16890-3 détermine l’activité gravimétrique et la résistance à l’écoulement de l’air par rapport à la quantité de poussière retenue.
  • L’ISO 16890-4 donne la méthode de conditionnement à utiliser pour déterminer l’efficacité spectrale minimum d’essai.

Nouvelle catégorisation des particules en suspension

Les particules en suspension sont désignées par PM et sont désormais classées en trois catégories en fonction de leur taille : les PM1 dont le diamètre aérodynamique est compris entre entre 0,3 et 1 micron, les PM2,5 pour un diamètre allant jusqu’à 2,5 microns et les PM10 dont le diamètre peut aller jusqu’à 10 microns.

Les plus grosses de ces particules, les PM10 peuvent être des pollens ou des poussières du désert, les PM2,5 sont souvent des bactéries, des champignons et leurs spores ou même des poussières de toner. Quant aux plus fines, les PM1, il s’agit des gaz d’échappement, des nanoparticules et même des virus. Enfin, on retrouve dans les particules plus grossières, le sable ou les cheveux par exemple.


Classification des filtres à air

La classification des filtres se fait sur le même barème. Pour exemple, un filtre retenant des particules de 0,9 micron sera dénommé ePM1.

Pour être classé dans une catégorie, un filtre doit pouvoir séparer au moins 50% des particules de la granulométrie correspondante. Le résultat obtenu pendant les tests est toujours arrondi aux 5% inférieurs. Pour exemple, un filtre bloquant 78% des poussières de 2,5 microns sera nommé ePM2,5 (75%).

Les filtres séparant moins de 50% des particules en suspension sont catégorisés comme grossiers. Les filtres séparant plus de 99% des particules sont soumis à une autre norme, l’ISO 29464. Les filtres utilisés dans les épurateurs d’air portatifs ne font pas partie du domaine d’application de l’ISO 16890.


Méthodes de tests

Le calcul de l’efficacité de filtration a aussi changé. Avec l’ancienne norme EN 779, le protocole de test consistait à mélanger les poussières émises à un aérosol de DEHS, autrement dit d’huile afin de charger l’échantillon à mesurer. Cette méthode n’était que moyennement efficace. La norme ISO 16890 introduit une nouvelle poussière fine, l’ISO-A2 et ajoute des aérosols de sel, KCL en plus des aérosols DEHS. Les aérosols KCL sont utilisés pour les mesures concernant les particules de plus d’1 micron. Les mesures sont ainsi plus réalistes et permettent de mesurer l’impact après filtration, ce qui était impossible avant.

De plus, le nouveau protocole est plus exigeant : l’efficacité moyenne du filtre est calculée en faisant la moyenne de l’efficacité initiale et de l’efficacité conditionnée des éléments. L’efficacité initiale est calculée selon les modes opératoires sur les éléments non conditionnés décrits dans la norme ISO 16890-2 et l’efficacité conditionnée est calculée selon les modes opératoires décrits dans la norme ISO 16890-4.

Étant donné que les critères de classification ne sont pas les seuls à avoir changé, mais que les modes opératoires des tests ont aussi été modifiés, il est difficile de comparer les anciennes normes aux nouvelles. On peut quand même dire que les ePM1 et ePM2,5, ont des performances équivalentes aux anciens F7, F8 et F9, F9 étant le niveau le plus élevé de performance de filtration de l’air. Les ePM10 les moins performants peuvent être comparés aux anciens M5 et M6 alors que les filtres classés grossiers aujourd’hui équivalent à peu près à ceux anciennement classés G3 et G4. N’oublions pas que les nouvelles normes amènent aussi une nouvelle catégorisation plus précise en précisant le pourcentage de particules de la granulométrie concernée qui sont stoppées par le filtre.

Comparaison des classifications 
Ancienne norme Nouvelle norme
F7, F8, F9 ePM1 et ePM2,5
M5 et M6 ePM10
G3 et G4 Grossiers

L’importance du débit d’air

Les particules fines ne proviennent pas seulement de l’air extérieur, certaines sont produites directement à l’intérieur des bâtis. C’est pourquoi, la capacité des éléments filtrants à retenir une bonne quantité de particules ne suffit pas à garantir un air sain dans un bâtiment, une bonne circulation de l’air et un débit d’air suffisant sont nécessaires pour permettre le renouvellement de l’air intérieur en air propre. Les filtres choisis doivent donc être dimensionnés en fonction du type de bâtiment équipé et de sa surface.


Des contreparties 

Il est important de noter qu’un élément plus filtrant est susceptible de consommer plus d’énergie, selon l’usage et les besoins, il est important d’inclure dans ses critères de choix d’un filtre sa consommation d’énergie, bien que cet aspect ne doive pas passer avant la performance pour la préservation de la santé. Le choix des matériaux peut avoir un impact sur la consommation d’énergie, certains matériaux sont donc à privilégier par rapport à d’autres à performances égales. Par exemple, des éléments filtrants confectionnés à partir de fibre de verre de haute qualité peuvent offrir une filtration contre les très petites particules tout en permettant une consommation d’énergie maitrisée.


Les avantages de la nouvelle norme ISO 16890

Tout le monde bénéficie des apports de cette nouvelle norme, d’abord les acheteurs et les utilisateurs de filtres à air car ils influent de manière positive sur la qualité de l’air et par là sur la santé humaine. Les industriels du secteur ont plus de faciliter à comparer les produits entre eux et certains espèrent que cela stimule l’innovation. Les produits les moins performants pourront progressivement être identifiés et éventuellement retirés du marché. En uniformisant la catégorisation des filtres à air, la valeur d’un produit est plus évidente et donc plus facile à expliquer en fonction des besoins des clients et évite les confusions passées dues aux tentatives de comparaisons entre les différentes méthodes de tests.


En conclusion

Avec la nouvelle norme ISO 16890 de nouveaux protocoles de tests plus exigeants ont été mis en place pour atteindre de meilleures performances afin d’améliorer la qualité de l’air intérieur. Ces nouveaux modes opératoires ont été préconisés par l’OMS afin qu’ils soient en meilleure adéquation avec la réalité actuelle ((Lignes directrices OMS relatives à la qualité de l’air – Organisation mondiale de la Santé 2021 – https://apps.who.int/iris/bitstream/handle/10665/346555/9789240035423-fre.pdf)). Le nouveau système de classification permet de mieux distinguer la qualité d’un filtre entre les quatre catégories existantes : ePM1, ePM2,5, ePM10 et grossier. Cette réforme du système de catégorisation des filtres à air de ventilation générale est mondiale et doit s’appliquer partout depuis 2018. Elle apporte une réponse à la situation présente et au taux de pollution général sur la planète, il est possible que de nouvelles adaptations doivent être faites d’ici quelques années si les quantités de particules fines et ultrafines continuent d’augmenter à travers le globe.

Afin de compléter le sujet, n’hésitez à consulter notre article : prévenir la dispersion d’agents pathogènes.

les matériaux de construction

Limiter les impacts de l’utilisation des matériaux de construction

L’analyse multicritère des impacts d’un matériau ou d’une solution est un exercice complexe.

Si on privilégie le réemploi et qu’on choisit des matériaux

  • fabriqués partir de matières premières renouvelables (et renouvelées !) et/ou ou à partir de matières recyclées ;
  • peu transformés (surtout thermiquement) ;
  • peu ou pas traité, n’utilisant pas de produits toxiques ;
  • résistants et réparables ;
  • issus de filières locales et d’entreprises qui respectent leurs travailleurs ;
  • assemblés mécaniquement ;
  • réutilisables ou recyclables en fin de vie.

Alors, on est dans le bon ! Analysons tout ceci de façon détaillée : ici

Plus d’info sur les hypothèses et la méthode d’évaluation ?

Plus d’info sur les outils d’évaluation des impacts environnementaux des matériaux ?

Des critères pour privilégier les matériaux durables

Approcher globalement la question de la ventilation 

Cet article est, pour une large part, basé sur un document réalisé par la NAV (Netwerk ArchitectenVlaanderen) , l’organisation flamande des architectes, dans le cadre du projet d’amélioration de la qualité de l’air intérieur, en particulier dans les bâtiments scolaires initié par le département flamand de l’environnement en collaboration avec le VITO (Vlaamse Instelling voor Technologisch Onderzoek), l’institut flamand de recherche technologique. Cet ouvrage n’existe qu’en néerlandais et peut intégralement être téléchargé via ce lien.

Afin de concevoir un système de ventilation performant, il convient d’éviter ou de limiter drastiquement la présence d’agents tels que le CO2 et l’humidité émis par les personnes présentes, les polluants qui viennent de l’extérieur, les virus et les bactéries. Nous allons voir quelles sont les étapes et les aspects selon lesquels le type de ventilation est choisi.


1. Approche générale

Les professionnels du secteur de la construction doivent tout d’abord faire un état de la situation actuelle et/ou future du bâtiment à construire.

L’utilisateur

Le client  doit être rencontré afin :

  • de l’informer de l’intérêt d’une ventilation efficace en faisant bien la distinction entre ventilation et système de refroidissement de l’air (climatisation, ventilateur, etc.) ;
  • de lui demander son niveau d’exigence en terme non seulement de confort, mais aussi de facilité de prise en main, d’utilisation et de maintenance du (des) système(s) de ventilation proposé(s) ;
  • de s’accorder sur un budget basé sur le coût de l’appareil, son installation, son entretien, ses réparations, maintenances et sa consommation en énergie ;
  • de déterminer le type d’activités prévues selon les pièces et leur taille ainsi que le type d’utilisateurs .

La situation existante

Pour évaluer le système de ventilation adéquat pour évacuer et remplacer l’air « vicié », il faudra calculer le débit d’évacuation de l’air impropre, de renouvellement et d’amélioration de la qualité d’air sain par personne. Pour ce faire, le responsable du bâtiment (responsable énergie ou technicien) devra prendre en compte l’environnement extérieur, l’environnement intérieur ainsi que la ventilation existante.

L’environnement extérieur

Il fera un état des lieux des sources et densité d’agents extérieurs polluants tels que :

  • Les gaz d’échappement liés à un trafic lourd et fréquent de véhicules à proximité,
  • l’activité agricole ou industrielle à proximité,
  • la pollution sonore et olfactive.

Certains types de ventilation tels que des grilles d’aération ne constituent pas une solution au renouvellement de l’air sain si la densité de ces agents extérieurs est trop élevée. Par exemple, l’aération des chambres d’un internat qui surplombe une autoroute, fait face à une forêt ou un littoral sera adapté à l’environnement extérieur.

L’environnement intérieur

Selon la densité moyenne d’occupants et le type d’activités, le responsable du bâtiment doit analyser les types d’agents émis en interne :

  • Des polluants émis par les futurs matériaux de construction,
  • des polluants émis par les matières utilisées pour la décoration et le parachèvement,
  • des bactéries, virus ou émissions de CO2 émis par les occupants,
  • l’humidité de source humaine, végétale ou liée aux installations existantes.

La ventilation existante

L’analyse de ces mêmes circonstances est incontournable en cas de rénovation du système de ventilation. Y seront ajoutées des questions concernant le bâtiment dans son ensemble, le système de ventilation et l’ampleur de la rénovation.

Le bâtiment

  • Quel est l’état de son enveloppe actuelle ? (fissures et fentes impliquant tantôt une perte d’énergie tantôt de la condensation, de l’humidité et de la moisissure) ;
  • Quels sont les matériaux de construction déjà présents ?

Le système de ventilation existant

La rénovation ou l’extension du système de ventilation  déjà en place fera l’objet d’une analyse globale.

L’ampleur de la rénovation

Le responsable du bâtiment devra faire une série d’inspections de la ventilation existante afin d’y apporter des améliorations plus ou moins radicales selon l’ampleur de la rénovation prévue par l’institution concernée.

Cela passera inévitablement par un calcul des débits et flux déjà présents. Selon les superficies et les volumes, quelle quantité d’air se renouvelle chaque heure ? Quelle est la complexité du bâtiment existant ?

Pour connaître tous ces détails, il est primordial d’avoir fait le point sur les questions liées aux utilisateurs du bâtiment déjà existant. On en revient alors aux mêmes questions que celles abordées précédemment sur les futurs utilisateurs. La question est d’autant plus simple que l’usager et ses habitudes sont déjà connus. D’autres aspects tels que la possible utilisation du bâtiment pendant les travaux doivent être mis sur la table.

Enfin, une modernisation importante de la ventilation peut s’avérer coûteuse en cas de bâtiments complexes. Cela peut impliquer une décentralisation des systèmes de ventilation  pour augmenter le rythme et l’efficacité du renouvellement de l’air, en diminuer le volume sonore ou disperser des odeurs indésirables. Dans ce cas, il faut repasser par la case budget afin d’être le plus en accord possible avec l’institution concernée.


Les matériaux de construction

Que ce soit pour une rénovation ou une nouvelle construction, les matériaux doivent faire l’objet d’une analyse minutieuse avant de choisir un système de ventilation adéquat.

L’amiante

Des isolants en amiante non friable sont parfois encore présentes, notamment, pour protéger canalisations et tuyauteries. Elles dégagent ses fibres dans l’air et contaminent y compris les locaux qui n’étaient pas directement parachevés ou isolés à l’amiante.

Le retrait de l’amiante doit se faire dans de strictes conditions de sécurité pour les ouvriers, décrites par l’AGW du 17 juillet 2003 .

Les nouveaux matériaux de construction

Bien que les matériaux d’aujourd’hui soient le fruit de progrès en termes d’écologie, d’isolation et de durabilité, il subsiste encore de nombreux revêtements volatiles dont les évaporations sont tantôt minimales, tantôt significatives. Ces émissions peuvent persister jusqu’à plusieurs mois voire plusieurs années après les travaux. C’est pourquoi un choix de matériaux à faibles émissions ou un délai préalable à l’emménagement dans ces locaux sont à prévoir.

Citons deux exemples :

  • L’augmentation temporaire de concentration de polluants issus de certaines peintures va retomber à un seuil sain peu de temps après son application à condition de bien ventiler les pièces concernées.
  • Certaines résines utilisées contre l’humidité émettent des hydrocarbures qui polluent encore plusieurs années après leur installation.

Voici 2 liens utiles à consulter si vous souhaitez approfondir votre connaissance sur le sujet :

-> Les recommandations en matière de qualité et de renouvellement de l’air intérieur : comment limiter les polluants intérieurs ?


2. Concevoir le système de ventilation

Un système de renouvellement de l’air efficace doit garantir un air sain et confortable dans chaque classe, quelles que soient son utilisation, sa dimension et son occupation. Le gestionnaire du projet va calculer quels sont les débits prescrits en fonction des superficies, volumes et le type d’occupation prévu.

Il va croiser ses calculs afin de concevoir une construction à la fois étanche ET ventilée ! C’est pourquoi, pour des raisons sanitaires évidentes, il est important de passer par des experts en la matière pour contribuer à l’amélioration de la qualité de l’air dans les classes.

Vous trouverez les infos générales sur le dimensionnement des systèmes de ventilation sur la  page suivante.

Examinons ici la situation spécifique des salles de classe.

Voici un tableau récapitulatif provenant du décret flamand sur l’énergie qui prescrit les débits d’air par heure et par personne selon le volume de chaque type de pièce. Les exigences sont identiques à celles d’application en Wallonie.

Ces exigences doivent être combinées avec les prescriptions :

  • Du Code du Bien-être au travail, dont l’article 3 stipule que « L’employeur prend les mesures techniques et/ou organisationnelles nécessaires pour veiller à ce que la concentration de CO2 dans les locaux de travail soit généralement inférieure à 900 ppm ou qu’un débit minimal de ventilation de 40 m3/h par personne présente soit respecté ».
  • De la directive fédérale sur la qualité de l’air intérieur sur les lieux de travail , qui indique un débit de conception de minimum 25 m³/h par personne dans un local à pollution limitée.

De l’analyse au système de ventilation adapté

Une grille de lecture reprenant les étapes d’inspection de l’état actuel de la ventilation et des mesures à prendre en cas de besoins. Cette grille de lecture divise le processus en trois temps :

  1. La détermination du type de bâtiment – ancien ou neuf,
  2. une analyse des risques
  3. et enfin, la détermination de l’humidité de l’air idéale.

Ancien ou nouveau bâtiment

Construire un nouveau bâtiment permettra de ne pas passer par une étude de l’analyse des risques existants. Une fois les volumes, surfaces et occupations connus, on conçoit les systèmes de ventilation en parallèle.

Pour les rénovations ou les extensions, l’analyse se subdivise par zone :

  • Zones humides ;
  • espaces de circulation ;
  • zones spéciales ;
  • locales pour déchets ménagers ;
  • salles techniques ;
  • cuisine ;
  • salles de classe avec fonction spéciale.

Pour chacun de ces locaux, des valeurs sont prescrites et l’audit pourra justifier deux types de mesures à mettre en place par le pouvoir organisateur :

  1. Des actions techniques (rénovation, entretien, maintenance, réparation, etc.).
  2. Des actions organisationnelles permanentes ou l’occupation limitée d’un lieu dans le temps.

Une analyse des risques

Une première analyse de risques doit se faire sur base des sources citées plus haut : occupation, situation existante, environnement intérieur et extérieur afin de bien définir quel(s) type(s) de  ventilation est de mise selon :

  • L’occupation de personnes,
  • les matériaux existants,
  • la ventilation et traitement de l’air actuels,
  • l’entretien des ventilations,
  • le système de chauffage.

La détermination de l’humidité de l’air idéale

La stabilité d’un air ni trop humide ni trop sec dépend de l’occupation de chaque local.

On distingue :

  • L’occupation humaine : où les personnes passent le plus de temps,
  • l’occupation non humaine : où les personnes n’effectuent qu’un court passage,
  • les zones spéciales : cages d’ascenseurs, locaux techniques ou laboratoires.

Selon le Code du bien-être au travail, les valeurs usuellement retenues entre 40 et 60 % d’humidité peuvent être revues entre 35 et 70 % si le pouvoir organisateur sait justifier qu’aucun agent chimique ou biologique ne viendra atteindre la santé de ses occupants.

Par exemple, pour les locaux sanitaires, la ventilation doit prévoir un renouvellement de l’air de 25 m³/h par personne pour des urinoirs, 50 m³/h par personne pour des WC ou encore 75 m³/h par personne pour des douches.

Ces plages sont suffisamment larges pour ne pas justifier l’installation de déshumidification dans les salles de classe. A priori, il n’est pas nécessaire non plus de prévoir d’humidification. Cependant, si le groupe de ventilation n’est pas conçu pour ajuster son débit en cas, par exemple, de sous occupation des locaux, le risque d’un assèchement inconfortable est réel. Il pourrait alors être prudent de disposer, dans l’école, de quelques humidificateurs mobiles pour corriger des problèmes ponctuels.


Des mesures face aux contaminants

Suite à l’analyse des risques, des mesures doivent être prises par les instances dirigeantes ou le pouvoir organisateur dans le cas d’une école afin de démontrer que les locaux garantissent une faible émission. Pour éradiquer ou diminuer drastiquement les contaminants (virus, CO2 et bactéries) ces mesures sont prises en concertation avec le personnel compétent en matière de sécurité .

Prévoir un plan d’action

Si l’analyse des risques le justifie, un plan d’action doit être mis en place par les instances dirigeantes ou le pouvoir organisateur afin de contribuer à l’amélioration de la qualité de l’air des différentes pièces et plus généralement du bâtiment public dans son ensemble en termes de :

  • Répartition de l’air,
  • fluctuation des températures,
  • nuisances sonores ,
  • vibrations,
  • entretien des installations de ventilation.

Une fois les actions définies, le type de ventilation pourra alors être choisi parmi 4 systèmes différents :A, B, C ou D :

  • Les ventilations A et B sont naturelles, mais le contrôle limité sur leur fonctionnement engendre des pertes énergétiques.
  • La ventilation C se base sur un renouvellement naturel de l’air combiné à une ventilation mécanique. Il est généralement conseillé pour les bâtiments scolaires.
  • La ventilation D réutilise la chaleur de l’air pollué avant de le rejeter vers l’extérieur. C’est un système qui correspond aux maisons dites « passives ».

Selon nous, l’expérience montre à suffisance que seuls les systèmes de ventilation mécanique avec récupération de chaleur sont en mesure d’assurer une qualité d’air adéquate sans générer d’inconfort thermique majeur. Ils sont donc à privilégier.


3. La ventilation : son installation et son exécution

Une fois le type de ventilation défini en fonction de tous les facteurs cités plus haut, viennent les phases d’installation et d’exécution.

L’emplacement des systèmes de ventilation

Indiqué sur le plan de rénovation ou de construction, le système de ventilation doit se situer dans un endroit accessible à l’installation et à l’entretien. Son emplacement doit être choisi aussi en fonction des nuisances sonores possibles ou thermiques .

L’emplacement des entrées et sorties d’air

Les entrées et sorties d’air peuvent se faire par différents moyens :

  • Grilles d’aspiration et d’extraction de l’air vers l’extérieur,
  • ouvertures qui permettent le passage de l’air entre une pièce sèche et une pièce humide,
  • conduits en gaines galvanisées à placer dans des puits, plafonds suspendus ou apparents dans des locaux occupés ou pas. Le dimensionnement des ouvertures naturelles ou mécaniques doit être conçu afin de ne pas gêner les occupants des locaux concernés.

Aussi, un plan en 3D permettra d’estimer les conséquences du poids de l’appareillage sur la résistance structurelle du bâtiment et autres installations :

  • Plafonds, planchers et poutres,
  • canalisations,
  • murs extérieurs et porteurs,
  • installations électriques.

Le but est d’éviter l’influence des systèmes de chauffage et refroidissement sur la ventilation. Afin d’optimiser l’équilibre entre, d’une part, les extractions ou les entrées d’air et, d’autre part, les changements thermiques qui en résultent, toute l’installation doit être pensée pour compenser ou compléter le système thermique choisi.


4. Le suivi et la maintenance

Tel que nous venons de le voir, l’installation d’un système de ventilation visant à améliorer l’air dans les différentes pièces ne peut se faire qu’en passant par une série d’étapes qui impliquent des aspects aussi bien quantitatifs que qualitatifs. C’est pourquoi tous les acteurs de ce processus se doivent de connaître tous les détails de l’installation une fois terminée.

Installé dans les faux plafonds, occultés derrière des parois ou accessibles via des locaux techniques, le système de ventilation n’est pas toujours accessible à des personnes non compétentes. Parfois, le but est d’éviter aux utilisateurs de modifier l’équilibre savamment calculé par les professionnels du secteur. Ils risqueraient de provoquer des effets indésirables sur le confort, le bien-être et la santé des occupants.

Le concepteur doit donc donner à son client les éléments nécessaires afin qu’il comprenne, surveille, nettoie et entretienne convenablement son installation . Parmi eux, citons entre autres les plans d’exécution, les fiches techniques des matériaux, les rapports d’inspection, de démarrage et les schémas électriques de la ventilation. Une fiche reprenant les coordonnées des entreprises et des responsables doit également être fournie à l’utilisateur final.

Si vous souhaitez aller plus loin dans la gestion de la ventilation afin de prévenir la dispersion d’agents pathogènes , n’hésitez à consulter l’article réalisé en juillet 2020 durant la pandémie du COVID-19.