Vannes thermostatiques

Vannes thermostatiques


Principe de fonctionnement

Eléments d’une vanne thermostatique :

  1. Sonde de température ou bulbe thermostatique (poche de gaz).
  2. Poignée de réglage pour fixer le point de consigne.
  3. Tige de transmission.
  4. Ressort de rappel.
  5. Clapet de réglage.

Généralement, la sonde de température (ou bulbe thermostatique) est logée dans la poignée de la vanne. Cette sonde est composée d’un liquide, d’un gel ou d’un gaz qui se dilate ou se contracte en fonction de la température qui l’environne.

Des repères de consigne sont repris sur la poignée de la vanne (*, 1, 2, 3, 4, 5). En général, la consigne 3 correspond à plus ou moins 20°C et *, au maintien « hors gel ».

La position du clapet de réglage est déterminée par l’équilibre entre la poche de gaz et le ressort de rappel : lorsque la température mesurée est inférieure au point de consigne, le bulbe thermostatique se contracte, le ressort entraîne une ouverture du clapet de réglage et le débit est augmenté dans le radiateur. L’inverse se produit quand la température mesurée est trop élevée.


Les erreurs de manipulation courantes

Comprendre ce principe de fonctionnement, c’est éviter les erreurs de manipulation :

Exemples.

  • Dans un local inoccupé, la consigne des vannes thermostatiques a été réglée sur *. À l’arrivée des occupants, le chauffage ne sera pas relancé plus rapidement si l’on met la consigne sur 5 que sur 3. En effet, dans les deux cas, le bulbe thermostatique mesure un écart de température important entre sa consigne et la température ambiante et le clapet de réglage de la vanne est ouvert en grand. Le risque, en plaçant la consigne de température sur 5, est de chauffer le local en permanence à 24°C, voire plus.
  • Dans un local occupé, l’expérience des occupants montre que la bonne température est atteinte avec une consigne de 3. Un jour, la température intérieure est insuffisante. Dans ce cas, cette dernière ne sera par améliorée si la consigne est mise sur 4. En effet, s’il fait trop froid alors que la consigne n’a pas été modifiée, la vanne est déjà ouverte en grand et le débit dans le radiateur est déjà maximal. Le coupable n’est donc pas la vanne mais plutôt la régulation centrale qui, par exemple, envoie de l’eau trop froide. Mettre la vanne sur 4 n’augmentera pas le débit du radiateur. Par contre, lorsque la régulation centrale sera corrigée, le local sera surchauffé.
  • Le raisonnement inverse est aussi valable : si, subitement, il fait trop chaud (par exemple, à cause de l’ensoleillement), mettre la vanne sur 1 ne changera rien puisque le clapet de la vanne est en principe déjà fermé. Par contre, si on laisse les vannes sur cette consigne, la relance matinale ne pourra se faire puisque les clapets se fermeront rapidement.

 En conclusion

Une vanne thermostatique n’est pas un interrupteur. La consigne d’une vanne doit être réglée à la température de consigne voulue par les occupants. À partir de ce moment, la vanne va travailler toute seule pour maintenir cette consigne.

Mettre la vanne sur 5 ou sur 1 si on a trop froid ou trop chaud ne sert à rien et risque de conduire à une surconsommation ou à un inconfort.

Quelle consigne ?

Ou pourquoi la plupart des vannes ne sont-elles pas graduées en °C (16, 18, 20, 22, 24°C) ?

Tout dépend de la capacité de la vanne à mesurer de façon fidèle la température ambiante du local. La vanne est inévitablement influencée par la chaleur dégagée par le radiateur, par la température de son eau, par le rayonnement froid d’un mur, …

De plus, assurer 20°C en hiver demande le passage de plus d’eau chaude qu’assurer 20°C en mi-saison. Du moins si la température de l’eau de chauffage n’est pas régulée en fonction de la température extérieure.

C’est ainsi que 20°C de température ambiante correspondra à une consigne de 3 pour une vanne, à une consigne de 2,5 pour une autre, à une consigne de 3,5 pour une troisième. D’une manière générale, la consigne de base assurant le confort dans des bureaux, des classes, … est de l’ordre de 3.


Emplacement des vannes thermostatiques

Les vannes thermostatiques doivent mesurer une température la plus représentative de la température réelle du local. La tête de la vanne, comprenant l’élément thermostatique, ne doit pas être échauffée par le corps de chauffe. On peut repérer comme influences parasites :

  • les coins de murs,
  • l’air chaud s’élevant des tuyauteries ou du radiateur,
  • un radiateur épais,
  • des tablettes ou caches décoratifs,
  • des tentures,

Si les conditions adéquates ne sont pas réunies, il sera nécessaire d’utiliser des vannes thermostatiques avec bulbe à distance.

Positionnements incorrects et corrects d’une vanne thermostatique.


Types de vanne thermostatique

Ci-dessus est présenté le fonctionnement d’une vanne thermostatique de base dont le réglage de la consigne est laissé à l’entière responsabilité de l’occupant du local.

Les vannes peuvent présenter des fonctionnalités complémentaires. On retrouve ainsi :

Modèle standard avec sonde thermostatique et réglage libre incorporés.
Modèle avec sonde thermostatique séparée (pouvant être placée à distance) et réglage libre incorporé.
Modèle standard avec sonde thermostatique séparée (pouvant être placée à distance) et réglage libre à distance.
Modèle à horaire programmable : une résistance électrique sur pile et commandée par horloge trompe la vanne qui se referme en période d’inoccupation.
Modèle avec préréglage du débit pour équilibrer les différents radiateurs.
Modèle institutionnel avec bague antivol (l’organe de fixation n’est pas accessible à l’occupant) et blocage de la plage de réglage.
Modèle institutionnel avec réglage bloqué et inaccessible pour l’occupant.

Coût des vannes

Voici l’ordre de grandeur de prix des équipements de régulation des locaux, prix catalogue, HTVA.

Pour les vannes thermostatiques, il faut rajouter un coût d’environ 10 € pour le corps de vanne (qui doit de toute façon exister) ou 15 € pour un corps de vanne avec organe d’équilibrage intégré.

Description

Prix approximatif
€ HTVA

Élément thermostatique standard 13 .. 18
Élément thermostatique avec bulbe à distance
24
Élément thermostatique institutionnel 25
Élément thermostatique institutionnel avec bulbe à distance 31
Élément thermostatique institutionnel avec environnement critique 30
Élément thermostatique avec bulbe et réglage à distance 65 .. 70
Élément thermostatique programmable 117
Régulation de température ambiante par vanne 2 voies
Régulateur digital de température ambiante avec horloge 180
Servomoteur 52
Corps de vanne 2 voies ( 3/4’’ ) 15
Montage mural, avec sonde à distance
160

Évaluer l’efficacité énergétique du poste froid

Évaluer l'efficacité énergétique du poste froid


Analyse quantitative

Cette analyse est purement indicative, elle ne peut constituer à elle seule un critère de décision.

En effet, il est très difficile de donner des valeurs de consommation de référence car elles varient très fort en fonction de facteurs indépendants de l’énergie (hygiène, organisation, choix culinaires, etc).

Ainsi, si on compare, du point de vue énergétique, sa cuisine avec d’autres cuisines, on ne peut valablement porter de jugement de valeur que si les concepts de base choisis sont identiques.

L’analyse quantitative doit donc être complétée par l’analyse qualitative.

Ainsi, supposons par exemple, pour une cuisine, que l’on aboutisse aux deux conclusions suivantes :

  • Analyse quantitative : le poste « froid » est globalement peu performant (en Wh/repas).
  • Analyse qualitative : les chambres sont de mauvaise qualité, les interventions sont mal organisées.

Ces deux conclusions se recoupent : si le poste « froid » est peu performant, c’est justement, dans l’exemple, parce que les chambres sont de mauvaises qualités et les interventions mal organisées. La conclusion de l’analyse qualitative vient justifier la conclusion de l’analyse quantitative.

L’analyse quantitative peut aussi venir trouver sa justification dans les concepts de base influençant les consommations.

En revanche, l’évaluation de sa propre situation (mesure ou estimation) permet de mieux comprendre où passe l’énergie de sa cuisine et donc de concevoir une stratégie d’amélioration fondée sur l’analyse des facteurs de consommation (et non pas sur la comparaison avec un modèle moyen et irréel).

Une valeur de référence

Nous avons relevé les ratios suivants, dans des cuisines considérées comme correctes. Ces valeurs peuvent encore être améliorées (parfois de 20 à 30 %) mais certaines autres cuisines les dépassent largement (parfois d’un facteur 2 ou plus). Ces valeurs sont valables pour une gamme de cuisines collectives allant de 50 à 400 repas par service. Au-delà ces ratios peuvent diminuer.

Conservation 70  Wh/repas
Cellule de refroidissement rapide 50 Wh/repas (cellule mécanique)

Influence du type de liaison (chaude ou froide positive)

La consommation d’énergie pour le stockage froid (sur trois jours) est souvent trois à quatre fois plus faible que celle du refroidissement rapide. Il n’y a donc quasi pas de différence pour les consommations de conservation par repas entre une liaison chaude et une liaison froide).

Évaluer sa propre situation

> À partir de mesures :
On peut mesurer la consommation des appareils utilisés pour le poste froid. Pour être représentative d’une moyenne l’opération doit être répétée plusieurs jours de suite. Les mesures peuvent être réalisées à partir du tableau électrique. On y repère les différents départs vers les compresseurs, les chambres froides proprement dites, les cellules de refroidissement et de congélation rapides, etc.

S’il existe un compteur électrique spécifique à la cuisine, une autre solution consiste à lire les consommations sur celui-ci en supprimant temporairement, si c’est possible, les consommations des autres postes (cuisson, ventilation, laverie).


Analyse qualitative

Hormis dans les cellules de refroidissement cryogéniques, l’énergie électrique est très largement utilisée pour la production de froid.

La consommation du poste froid dépend :

  • du bon fonctionnement de la production frigorifique,
  • de la quantité de froid nécessaire à la baisse de température des denrées (si elles sont apportées à température supérieure à celle du stockage),
  • de la perte de froid (à travers les parois des chambres froides ou à l’occasion de l’ouverture des portes).

Les indices permettant de repérer des anomalies sont expliqués et servent à remplir une grille d’évaluation. L’analyse qualitative de l’efficacité énergétique du poste « froid » se fait en passant en revue chacun des appareils utilisés.

  • Repérer les indices d’un bon/mauvais appareil
  • Grilles d’évaluation

Repérer les indices d’un bon/mauvais appareil

L’efficacité énergétique d’un appareil du poste « froid » dépend des paramètres ci-dessous. Les premiers concernent l’appareil proprement dit, les suivants concernent la façon de l’utiliser.

Refroidissement du compresseur

Les compresseurs frigorifiques sont refroidis par l’air ou par l’eau.

  • Eau perdue : noter négativement les appareils où l’eau de refroidissement est rejetée à l’égout, et leur préférer un refroidissement par de l’eau en circuit fermé, ou par de l’air.
    On peut donc envisager de récupérer la chaleur du condenseur pour préchauffer de l’eau à partir d’une puissance de compresseur de 20 kW (beaucoup de compresseurs de chambre frigorifique ne dépassent pas 600 W).
  • Ambiance : en refroidissement par air, noter si le condenseur est placé dans un endroit bien ventilé.

Le transfert de froid

  • Brassage : les appareils qui brassent l’air dans la chambre froide ont une plus grande efficacité énergétique.
  • Le dégivrage des appareils consomme de l’énergie : un bon dégivrage est un dégivrage qui ne dure pas plus longtemps que nécessaire et après lequel il n’y a plus de givre sur l’évaporateur. Un dégivrage qui utilise partiellement la circulation d’air plutôt que la résistance chauffante est plus intéressant au niveau énergétique. Pour les joints de portes, par contre, la résistance chauffante s’impose.
  • Un dégivrage par inversion de cycle est également intéressant au niveau énergétique, mais vu les complications qu’il engendre au niveau du circuit frigorifique, il est réservé aux très grandes cuisines.

La fuite d’énergie

Les appareils bien calorifugés sont plus efficaces.

En Belgique, il existe encore de nombreuses chambres froides installées depuis longtemps non isolées.

Il y a grandement intérêt à avoir un plancher isolé (obligatoire pour le froid négatif). On veillera à la bonne étanchéité des parois et des portes.

Le dimensionnement

  • Le surdimensionnement : un matériel trop grand par rapport aux quantités à stocker perd plus d’énergie : parois plus importantes, compresseur trop puissant, renouvellements d’air plus importants, etc. Ce sera particulièrement important pour les locaux de travail réfrigérés (préparations froides). Mais si une chambre froide a été surdimensionnée, il vaut mieux qu’elle soit remplie. Cela permet, lors des ouvertures de portes, d’une part de mieux maintenir les marchandises à la bonne température (confort), et d’autre part de diminuer les apports d’air chaud (économies d’énergie).
    Remarque : de moins en moins d’aliments nécessitent un stockage réfrigéré : on utilise des fruits ionisés, du lait UHT, etc. De plus, le ravitaillement se fait de plus en plus fréquemment rendant les stocks de moins en moins importants. Les chambres froides sont alors surdimensionnées, provoquant des consommations trop importantes.
  • Le sousdimensionnement est une source de surconsommation à partir du moment où il entraîne une rotation trop rapide des produits, avec comme conséquence une ouverture trop fréquente des portes.

Le nombre de chambres froides

Hormis les questions d’hygiène alimentaire, le nombre de chambres froides doit être suffisant pour ne pas avoir à ouvrir trop souvent les portes de chacune d’elles et pour éviter de stocker à basse température ce qui supporterait une température plus élevée dans une chambre réservée à ces produits.

Les apports thermiques parasites

Toute source chaude parasite (rayonnement du soleil direct, appareil de cuisson, éclairage à grosse consommation) proche de la chambre froide engendre une consommation supplémentaire.

L’installation frigorifique

Tous les compresseurs frigorifiques n’ont pas la même efficacité : cela dépend du dimensionnement, des réglages, de la charge en fluide frigorigène (nature et pression du fluide), de la technologie de compression (à piston, à vis etc) et de la régulation de puissance selon les besoins (variateur de vitesse par exemple).

Évaluer

Vous trouverez plus de détails concernant l’évaluation de l’installation frigorifique dans la partie climatisation.

Attention ! Si l’installation d’une chambre froide positive est fort similaire à celle de la climatisation, l’installation d’une chambre froide négative est différente par ses températures beaucoup plus basses.

Le binôme temps/température :

Il s’agit de conduire le FROID au bon moment, à la bonne température, et sur la bonne durée.

La durée de conservation

Une durée de conservation excessive est surconsommatrice.
Ainsi, la rotation des produits sera de préférence rapide, sans pour autant tomber dans l’excès inverse.

La fréquence des chargements des produits

Une ouverture de porte engendre une entrée d’air chaud et d’humidité, de l’éclairage, de la chaleur corporelle.

On a intérêt à veiller à ce que l’ouverture des portes pour le chargement ne soit pas trop fréquente. Pour un réfrigérateur « de jour »,  le chargement et le déchargement ont des fréquences très proches, mais pour un stockage « viande », on préférera charger une seule fois pour plusieurs jours.

Le choix des horaires

Quand c’est possible, on a intérêt à regrouper les opérations pour limiter la fréquence d’ouverture des portes.

Pour le chargement, éviter les heures où la chaleur et l’humidité sont au maximum à proximité des chambres froides.

La durée des interventions

La porte doit être refermée le plus vite possible et « rester contre » quand les interventions à l’intérieur de la chambre sont longues et pour autant qu’il n’y ait pas de risque de se faire enfermer.

On peut parfois réduire le temps d’intervention en modifiant l’organisation des rayonnages, en étiquetant plus lisiblement, en plaçant correctement les lampes, etc.

La température intérieure

Le réglage des températures doit être conforme aux règles d’hygiène, sans excès. Il est inutile de stocker des fruits ou des pommes de terre à + 3 °C.

Grille d’évaluation – Exemple

Dans les grilles d’évaluation chacun des paramètres cités ci-dessus a été affecté d’une pondération (incidence quantitative) sous la forme d’un nombre d’étoiles.

Une grille d’évaluation est complétée pour chaque appareil du poste froid. L’utilisateur remplit les cases blanches.

POSTE FROID Type d’appareil : Chambre froide
Caractéristiques : Viande – 6°C
Pondération en % du volume : 20 %
Puissance du compresseur : 360 W
Efficacité énergétique / Paramètres Incidence Note
(0 à +/- 3)*
Bilan Décision
Refroidissement du compresseur 1 **** + 1 + 40
Refroidissement du compresseur 2 ** 0 /
Transfert du froid 1 * + 3 + 30
Transfert du froid 2 (dégivrage) * – 3 – 30 A voir
Fuite d’énergie * 3 – 30 A voir
Sur dimensionnement *** + 2 + 60
Sous dimensionnement * + 2 + 20
Nombre de chambres * + 3 + 30
Apports thermiques parasites ** – 3 – 60 oui
Qualité du groupe – 1
BINÔME TEMPS/TEMPERATURE
Durée de conservation * + 3 + 30
Fréquence des chargements ** + 2 + 40
Horaires * – 1 – 10 oui
Durée des interventions *** – 2 – 60 oui
Réglage température * + 3 + 30

*  La note résulte d’un examen de l’appareil concerné et de son utilisation.

Exemple : si une marmite fonctionne toujours avec couverte, le confinement est noté + 3.
0 signifie « sans objet » par rapport aux critiques écrits dans le texte correspondant.


Concepts de base ayant une influence sur les consommations

Il y a d’autres facteurs que l’efficacité énergétique des appareils de conservation et de refroidissement ou congélation rapide et la façon de les utiliser qui influence les consommations du poste.

Ce sont d’autres considérations que l’énergie qui conduisent au choix de ces concepts.

Nous avons relevé les points suivants :

L’hygiène

Une cuisine ne respectant pas l’hygiène risque de consommer moins qu’une cuisine la respectant : interruption dans la chaîne du froid, non respect des températures de consigne, etc.

Le nombre de plats froids

Il est certain qu’une institution où l’on propose une entrée froide, une glace comme dessert aura un poste froid bien plus énergivore.

De plus, les préparations froides nécessitent des locaux de travail réfrigérés.

La liaison surgelée

Les surgelés nécessitent un stockage consommateur d’énergie.

Les produits frais

Ils nécessitent des chambres froides de plus grande dimension.

Le local des déchets

Il est parfois réfrigéré aussi.
On pourra en limiter la taille et la fréquence d’ouverture des portes, et donc la consommation :

  • Si l’on choisit de cuisiner des produits peu générateurs de déchets (les produits frais en génèrent beaucoup).
  • Si les emballages non souillés (cartons) sont préalablement séparés des emballages souillés (boîtes, sachets) et des déchets d’aliments.

Fluides frigorigènes [Climatisation]

Fluides frigorigènes [Climatisation]


L’impact environnemental

Depuis quelques décennies, l’impact des fluides frigorigènes sur l’environnement est devenu un enjeu majeur. En effet, de par la présence de fuites au niveau du circuit frigorifique, la responsabilité de ces fluides dans la destruction de la couche d’ozone et l’augmentation de l’effet de serre n’est plus à démontrer.

Trou d’ozone au pôle sud.

Que ce soit en conception, en rénovation ou même en maintenance, les fuites de fluides sont donc à éviter. Elles dépendent essentiellement de la qualité :

  • du choix et de la mise en œuvre des équipements (soudures et connexions des conduites de distribution par exemple);
  • de l’optimisation du cycle frigorifique;
  • de la maintenance;

En France, en 1997, une étude a montré que le taux de fuites annuelles pouvait atteindre 30 % de la quantité totale en poids (ou en masse) de fluides frigorigènes présent dans les installations frigorifiques des grandes surfaces (Réf.: Zéro fuite – Limitation des émissions de fluides frigorigènes, D. Clodic, Pyc Éditions, 1997).

Depuis lors, les réglementations se sont attaquées à ces problèmes :

  • Suite au protocole de Montréal (1987) les fluides frigorigènes CFC (chlorofluorocarbures, principaux responsables de la destruction de la couche d’ozone) ont été définitivement abandonnés et remplacés progressivement par les HCFC.
  • Les réglementations européennes 2037/2000, 842/2006 et 517/2014 ont notamment imposé :
    •  l’interdiction d’utilisation des HCFC à fort impact sur l’effet de serre (GWP ou global Warming Potential);
    • le remplacement progressif des HFC à haut GWP;
    • le confinement des installations frigorifiques permettant de réduire la quantité de fluide frigorigène;
    • des contrôles réguliers d’étanchéité des installations;
    •  …

Indices d’impact

Pour établir l’impact des fluides frigorigènes sur la couche d’ozone et l’effet de serre, trois indices principaux ont été définis :

  • ODP : Ozone Depletion Potential;
  • GWP : Global Warming Potential;
  • TEWI : Total Equivalent Warming Impact.

ODP (Ozone Depletion Potential)

C’est un indice qui caractérise la participation de la molécule à l’appauvrissement de la couche d’ozone. On calcule la valeur de cet indice par rapport à une molécule de référence, à savoir soit R11 ou R12 qui ont un ODP = 1.

GWP (Global Warming Potential)

C’est un indice qui caractérise la participation de la molécule à l’effet de serre. On calcul la valeur de cet indice par rapport à une molécule de référence, à savoir le CO2, et pour des durées bien déterminées (20, 100, 500 ans). Le CO2 à un GWP = 1.

TEWI (Total Equivalent Warming Impact)

Le TEWI est un concept permettant de valoriser le réchauffement planétaire (global warming) durant la vie opérationnelle d’un système de réfrigération par exemple, utilisant un fluide frigorigène déterminé en tenant compte de l’effet direct dû aux émissions de fluide frigorigène et à l’effet indirect dû à l’énergie requise pour faire fonctionner le système.

À titre indicatif, il est donné par la formule :

TEWI = (GWP x L x n) + (GWP x m[1-C]) + n x E x β

Où :

  • GWP : global warming potential;
  • L : émissions annuelles de fluide en kg;
  • n : durée de vie du système en années;
  • m : charge en fluide frigorigène en kg;
  • C : facteur de récupération / recyclage compris entre 0 et 1;
  • E : consommation annuelle d’énergie en kWh;
  • β : émission de CO2 en kg / kWh.

Voici, pour chaque fluide frigorigène, le Ozone Depletion Potential (potentiel de destruction de la couche d’ozone) et le Global Warming Potential (potentiel de participation au réchauffement climatique) sur 100 ans :

ODP GWP100
R717 Amoniac 0 0
R744 CO2 0 1
R290 Propane 0 20
R32 HFC, fluide pur 0 675
R134a HFC, fluide pur 0 1 430
R407C HFC, mélange 0 1 800
R22 HCFC 0,05 1 810
R410A HFC, mélange 0 2 100
R427A HFC, mélange 0 2 100
R417A HFC, mélange 0 2 300
R422D HFC, mélange 0 2 700
R125 HFC, fluide pur 0 3 500
R404A HFC, mélange 0 3 900
R12 CFC 0,82 10 900

Source : 4ème rapport de l’IPCC (Intergovernmental Panel on Climate Change).


Les fluides frigorigènes fluorés

Fluides frigorigènes fluorés

Les fluides frigorigènes fluorés sont en grande partie responsables de la destruction de la couche d’ozone et contribuent à augmenter l’effet de serre. Les interactions entre les deux phénomènes sont réelles mais d’une grande complexité.

On en distingue plusieurs types :

  • CFC;
  • HCFC;
  • HFC.

CFC (chlorofluorocarbures) (interdits de production depuis janvier 1995)

Ce sont des molécules composées de carbone, de chlore et de fluor. Elles sont stables; ce qui leur permet d’atteindre la stratosphère sans trop de problèmes. À ce stade, en se transformant elles contribuent à la destruction de la couche d’ozone.

R-11 Groupes centrifuges « basse pression ».
R-12 Essentiellement froid domestique et climatisation automobile, mais aussi dans les groupes refroidisseurs d’eau centrifuges.
R-13 Rares utilisations en froid très basse température.
R-14 Rares utilisations en froid très basse température.
R-113 Abandonné avant son interdiction.
R-114 Pompes à chaleur et climatisation de sous-marin.
R-115 Fluide pas utilisé seul, mais dans le R-502, mélange azéotropique très utilisé en froid commercial basse température.

HCFC (hydrochlorofluorocarbures) (utilisation interdite au Ier Janvier 2015)

Ce sont des molécules composées de carbone, de chlore, de fluor et d’hydrogène. Elles sont moins stables que les CFC et détruisent l’ozone dans une moindre mesure. Elles sont appelées substances de transition.

R-22 Fluide frigorigène le plus souvent utilisé, aussi bien en froid industriel qu’en climatisation.
R-123 Remplace le R-11 dans les groupes centrifuges.
R-124 Essentiellement utilisé dans certains mélanges.

HFC (hydrofluorocarbures) (utilisation réduite progressivement jusqu’en 2030)

Ce sont des molécules composées de carbone, de fluor et d’hydrogène. Elles ne contiennent pas de chlore et donc ne participent pas à la destruction de la couche d’ozone. Par contre, les HFC présentent un Global Warming Potential (contribution à l’effet de serre) sur 100 ans élevé.

R-134a

(Solkane)

Fluide frigorigène qui a remplacé le R-12 en froid domestique et en climatisation automobile.

En application « chauffage », il présente l’avantage de faire fonctionner les pompes à chaleur à haute température (généralement jusqu’à 65 °C) et à relativement basse pression. Son utilisation est compatible avec une production d’eau chaude pour radiateurs en lieu et place d’une chaudière.

C’est également un composant majeur de la plupart des mélanges de remplacement.

R-125 N’est jamais utilisé pur en raison de sa pression critique trop faible (66°C). Il entre dans la composition de nombreux mélanges compte tenu de son pouvoir « extincteur ».
R-32,
R-152a
R-143a
Inflammables et donc utilisés uniquement en mélange avec d’autres composants qui « neutralisent » leur inflammabilité.

Mélange de fluides frigorigènes

On peut les classer en fonction du type de composants fluorés qu’ils contiennent.
Ils se distinguent également par le fait que certains mélanges sont :

  • Zéotropes : au cours d’un changement d’état (condensation, évaporation), leur température varie.
  • Azéotropes : ils se comportent comme des corps purs, sans variation de température lors du changement d’état.

Il va de soi que les frigoristes apprécient cette propriété d’azéotropie pour le fonctionnement de la machine frigorifique.

Le R407C (R134a : 52 % + R125 : 25 % + R32 : 23 %)

Le R407C est un fluide non azéotrope (il est composé de plusieurs fluides) afin d’obtenir sa température de changement d’état.

Ce fluide frigorigène présente les particularités suivantes :

  • Il est ininflammable.
  • Lors des changements de phase, la température « glisse » d’environ 5 K car les températures d’évaporation et de condensation des fluides frigorigènes qui le constituent sont différentes. Ceci rend les réglages plus difficiles et impose des échangeurs à contre-courant pour tirer le meilleur parti de ce fluide.
  • En cas de micro-fuite, le composé ayant les molécules les plus volatiles s’échappe préférentiellement. Il en résulte un fluide frigorigène déséquilibré. Il est dès lors nécessaire de vider entièrement l’installation avant de la recharger, le gaz retiré étant recyclé.
  • Les pressions sont moindres avec ce fluide frigorigène.
  • Il est moins performant que le R410A …
Le R410A (R32 : 50 % + R125 : 50 %)

Le R410A présente de meilleures qualités thermodynamiques que le R407C et le R22. D’autre part, l’étanchéité des installations est plus élevée avec le R410A, les pertes de pression sont donc faibles et les vitesses de fonctionnement peuvent être élevées. Les composants sont dès lors plus compacts.

Le R410A est cependant toxique ! De plus, il se comporte comme un réfrigérant mono-moléculaire lorsqu’il change de phase : le passage d’un état à un autre se produit à température quasiment constante (le glissement de température est négligeable). On ne doit donc pas vider complètement l’installation avant de la recharger.Pour terminer, les pressions de fonctionnement sont 60 % plus élevées que dans le cas du R22. Ceci limite donc son utilisation aux températures de condensation moyennes : maximum 45 °C.

Le R404A (R143a : 52 % + R125 : 44 % + R134a : 4 %)

Le R404A présente des caractéristiques communes avec le R410A (il se comporte aussi comme un fluide quasi-azéotropique) mais sa pression de fonctionnement est plus basse. Sa particularité est de ne pas beaucoup s’échauffer pendant la compression. La température des vapeurs surchauffées en sortie de compresseur reste donc modérée, ce qui convient parfaitement à la mise en œuvre des PAC fluide/fluide.


Les fluides à bas « effet de serre »

Ils sont considérés comme moins inquiétants pour l’environnement, car à la fois sans action sur l’ozone stratosphérique et d’un faible impact sur l’effet de serre.

Ils présentent tous des inconvénients, soit au niveau sécurité, soit au niveau thermodynamique.

L’ammoniac (NH3) ou R-717

L’ammoniac présente de nombreux avantages en tant que fluide frigorigène :

  • Impact environnemental nul (ODP et GWP100 nuls);
  • très bon coefficient de transfert de chaleur;
  • efficacité énergétique élevée (au moins aussi bonne que le R22, meilleure dans certaines conditions);
  • le gaz ammoniac est plus léger que l’air;
  • faibles pertes de charge;
  • fuites aisément détectables;
  • faible prix de revient et faibles frais d’entretien des installations;
  • très difficilement inflammable, limite d’explosion élevée et petits champs d’explosion;
  • chimiquement stable;
  • aisément absorbable dans l’eau;
  • pas très sensible à l’humidité dans le circuit;
  • naturel donc biodégradable;
  • grâce à sa haute température critique, il permet de réaliser des températures de condensation très élevées et de concevoir des PAC à haute température.

Les COP obtenus avec ce fluide frigorigène peuvent être équivalents à ceux obtenus avec des HFC.

L’ammoniac est par contre toxique (mais pas cumulativement dans le temps) et irritable. Il peut être explosif dans des cas exceptionnels (les limites inférieure et supérieure d’inflammabilité doivent être très proches l’une de l’autre). Il sera également explosif dans des locaux non aérés où il se crée un mélange d’air, d’azote et d’ammoniac. Les locaux doivent donc absolument être ventilés et le passage de l’air doit également être totalement libre. De plus, le NH3 corrode facilement le cuivre et ses alliages ainsi que le zinc. Les installateurs sont donc obligés d’utiliser de l’acier. Pour terminer, l’ammoniac n’étant pas miscible et soluble dans les huiles minérales, il faut prévoir un séparateur d’huile après le compresseur.

Les installations à l’ammoniac l’utilisent liquide et sa quantité est réduite : la quantité de gaz perdu par fuites est donc faible.

Il est à l’heure actuelle principalement utilisé dans le froid industriel.

Les hydrocarbures (HC) comme R-290 R-600a

Il s’agit essentiellement du propane (R-290), du butane (R-600) et de l’isobutane (R-600a).

Ces fluides organiques présentent de bonnes propriétés thermodynamiques, mais sont dangereux par leur inflammabilité. Le monde du froid s’est toujours méfié de ces fluides, même s’ils sont réapparus récemment dans des réfrigérateurs et des mousses isolantes. Leur utilisation future paraît peu probable en climatisation, vu le coût de la mise en sécurité aussi bien mécanique qu’électrique. En PAC, on l’utilise donc dans des quantités les plus faibles possible (maximum 3 kg pour les applications résidentielles), de préférence à l’extérieur des bâtiments.

Le dioxyde de carbone (CO2) ou R-744

Fluide inorganique, non toxique, non inflammable, mais moins performant au niveau thermodynamique. Son usage implique des pressions élevées et des compresseurs spéciaux.

Il possède cependant de bonnes qualités en application PAC pour le chauffage ou l’eau chaude sanitaire. Il est peu coûteux, et sa récupération et son recyclage sont simples à mettre en œuvre.

Actuellement, les spécialistes s’y intéressent à nouveau de par :

  • son faible impact sur l’environnement (ODP = 0, GWP = 1);
  • son faible volume massique entraînant des installations à faible volume (fuites réduites);

Il a la particularité de posséder une température critique basse à 31 °C  pour une pression de 73,6 bar.

À noter que l’utilisation de ce type de réfrigérant entraîne aussi des contraintes non négligeables telles que la nécessité de travailler :

  • à des pressions élevées (80 voire plus de 100 bar);
  • en transcritique qui demande une maîtrise de la condensation en phase gazeuse (gaz cooler);

L’eau (H2O)

Fluide inorganique, bien entendu sans toxicité. Même si sa grande enthalpie de vaporisation est intéressante, il ne se prête pas à la production de froid sous 0°C. Il est peu adapté au cycle à compression et ses applications sont rares.

Synthèse

Frigorigène Fluide naturel ODP3 GWP (100ans) valeurs IPCC 3 GWP (100ans) valeurs WMO 4 Temp. critique (°C) Pression critique (MPa) Inflammabilité Toxicité Coût relatif Puissance volumétrique
R290

(HC) CH3CH2CH3

Oui 0 20 20 96,7 4,25 Oui Non 0,3 1,4
R717 (Ammoniac NH3) Oui 0 <1 <1 132,3 11,27 Oui Oui 0,2 1,6
R 744 (CO2) Oui 0 1 1 31,1 7,38 Non Non 0,1 8,4
R718 (H2O) Oui 0 0

Caractéristiques environnementales des fluides frigorigènes naturels.


Nomenclature

Les fluides frigorigènes sont soumis à une nomenclature qui se veut internationale. L’ASHRAE, une des plus utilisées, désigne les fluides frigorigènes par la lettre R associée à 2,3 ou 4 chiffre + une lettre (R134a par exemple).

Le tableau ci-dessous montre la méthode de désignation des fluides réfrigérants :

R-WXYZ§

Nomenclature

Appellation courante

R12

R134a

R1270

Appellation pour la détermination de la formule

R-0012

R-0134a

R-1270

CFC

W = Nombre d’insaturation

Carbone = Carbone (C=C)

C=C (double liaison)

0

0

1

X = nombre de Carbone -1

nombre d’atomes de Carbone C = X + 1

1

2

3

Y = nombre de Hydrogène +1

nombre d’atomes d’Hydrogène H = Y – 1

0

2

6

Z = nombre de Fluor

nombre d’atomes de Fluor F = Z

2

4

0

R401A

nombre d’atomes de Chlore Cl*

2

0

0

Formule chimique

C Cl2F2

C2H2F4

CH3 CH=CH2

Si § = A-E => symétrie

Si § = a-b => asymétrie (avec a moins asymétrique que b)

symétrie de la molécule

symétrique

asymétrique

symétrique

Calcul du nombre d’atomes de chlore : Pour les molécules saturées (w = 0), Le nombre d’atomes de chlore s’obtient à partir de la formule suivante : Cl = 2.(C = 1) – H – F.

Adoucisseur d’eau [Stérilisation]

Adoucisseur d'eau [Stérilisation]


L’adoucisseur échangeur d’ions

Au départ, la présence de calcaire

L’eau est un solvant très efficace ! au contact de l’atmosphère elle capte du CO2 et devient légèrement acide (H2CO3). Par percolation au travers des sols, elle entre en contact avec la roche calcaire CaCO3, qu’elle dissous.

Schéma l'eau sous ces différentes formes.

Le carbonate de calcium CaCO3 présent dans l’eau va précipiter sur les parois lors d’une montée en température de celle-ci.

Photo adoucisseurs.

L’adoucisseur est dès lors un appareil destiné à capter les ions Ca++ et Mg++ présents dans l’eau en les fixant sur une résine cationique. En effet, l’eau passe au travers d’une cartouche contenant des millions de petites billes de résine, chargées d’ions sodium.

Principe adoucisseurs.

Adoucisseur.

  1. Distributeur d’eau et de solution de régénération
  2. Résine échangeuse d’ions
  3. Plancher à buses (crépines) avec fentes de 0,4 mm

Par exemple, il peut s’agir de la zéolithe, silicate d’Al et de Na :

Na2O . Al2O3. n SiO2. m H2O

On dira en abrégé : Na2Z

Schéma principe adoucisseurs.

Au passage de l’eau sur cette résine, les ions calcium seront captés :

Na2Z + Ca++  –>  CaZ + 2 Na+

ou encore :

Na2Z + Ca(HCO3)2 –>  CaZ + 2 Na(HCO3)

De même pour les ions magnésium :

Na2Z + Mg(HCO3)2 –>  MgZ + 2 Na(HCO3)

Remarque : le sel sodique produit (Na (HCO3)) passera dans l’eau mais ne contribuera pas à la dureté de l’eau; si la température augmente, il ne se dépose pas.

Régénération

Lorsque la résine est saturée en ion Ca++, il faut les éliminer et replacer les ions Na+. C’est la phase de régénération :

CaZ + 2 NaCl  –>  Na2Z + CaCl2

Schéma principe régénération.

Prolifération de micro-organismes

Les échangeurs d’ions offrent, comme d’autres filtres, de bonnes conditions de prolifération aux micro-organismes en raison de l’importante surface de leurs pores internes. Si aucune mesure n’est appliquée, on constate donc souvent une augmentation de la teneur en bactéries de l’eau traitée. La prolifération microbienne peut être combattue de façon efficace par l’adjonction d’environ 1 % de résine échangeuse d’ions imprégnée d’argent.

La corrosion des eaux trop adoucies

L’eau adoucie présente une concentration en calcium proche de zéro. Dès lors, l’équilibre calco-carbonique rend l’eau très agressive (les dépôts calcaires protecteurs sont rapidement dissous). On conseille dès lors de ne pas adoucir l’eau en dessous des 15°F, soit grâce à un réglage de l’adoucisseur, soit par le placement d’un bypass qui réalise un mélange entre de l’eau traitée et de l’eau totalement adoucie.

Attention à la propreté des sels

Si des impuretés sont mélangées au sel de régénération (bacs restant ouverts…), elles pourront servir de nutriments aux bactéries et tout paraticulièrement à la légionelle !


Les inhibiteurs de tartre

Le principe consiste à inhiber l’entartrage plutôt qu’à éliminer le calcium, par l’injection d’un produit chimique, tel que le polyphosphate qui va se dissoudre dans l’eau et enrober chaque ion calcium d’un « manteau » d’ion phosphate. La croissance des cristaux calcaires est freinée et/ou leur adhésion est empêchée sur les parois.

Mais ce produit est avalé avec l’eau par le consommateur… le contrôle de la concentration doit être rigoureux !

De plus, les polyphosphates n’agissent plus si l’eau est trop chaude.

Le CSTB en France a réalisé récemment une étude sur ce sujet.


Les systèmes physique et/ou magnétique

L’appareil agit par effet électrique et/ou magnétique et transforme le calcium en aragonite (une variété cristalline du carbonate de calcium), plus stable et donc donnant moins lieu à des dépôts.

Certains de ces systèmes ont des effets réels mais variables en fonction de divers paramètres (température, débit, intensité électrique,….) si bien qu’il est difficile de prévoir avec certitude le résultat de leur action dans des conditions particulières.

Pour plus d’informations sur ces différentes techniques, on consultera utilement le Cours – conférence n°51 du CSTC – « la corrosion et les tubes métalliques utilisés pour la distribution d’eau dans les bâtiments ».

Régulation de puissance des groupes frigorifiques [Froid alimentaire]

Régulation de puissance des groupes frigorifiques [Froid alimentaire]

Source : Carrefour Mons (variateur de vitesse des compresseurs).


Vue d’ensemble

Généralités

Plus encore que dans un cycle thermodynamique ouvert, les équipements composant un cycle fermé sont liés les uns aux autres. En d’autres termes dès qu’un des éléments du circuit modifie son régime de fonctionnement, les autres doivent y répondre presque instantanément.

Les principales modifications de régime se retrouvent au niveau des équipements suivants :

  • L’évaporateur est soumis en permanence à l’influence du climat régnant dans l’enceinte de la zone réfrigérée (chambre froide, meuble frigorifique ouvert ou fermé, …).
  • Le condenseur, quant à lui, doit souvent évacuer la chaleur prise par l’évaporateur à l’ambiance et la chaleur de compression du compresseur à l’extérieur soumis aux variations climatiques que nous connaissons tous et donc variables. Cette chaleur est souvent appelée la chaleur de réjection.

Sans régulation des différents équipements, le cycle frigorifique serait instable de par les variations quasi permanentes des climats tant interne qu’externe.

Dans ce qui suit, on considère un circuit frigorifique simple sans la présence d’une boucle secondaire qui caractérise de plus en plus les installations modernes de puissance frigorifique importante. On entend donc par  » circuit frigorifique simple » une installation composée :

  • d’un évaporateur à air;
  • d’un condenseur à air.

Le schéma ci-dessous illustre, de manière générale, les grands principes de la régulation des différents composants du circuit frigorifique en fonction de la réaction de l’évaporateur et du condenseur suivant respectivement les variations climatiques internes de la zone à réfrigérer et externes.

Régulation complète du cycle frigorifique.

Régulation de la charge frigorifique à l’évaporateur

Côté application

La charge frigorifique au niveau de l’évaporateur varie régulièrement en fonction de différents événements par exemple :

  • Les ouvertures et fermetures incessantes des portes des chambres frigorifiques ou des meubles frigorifiques fermés.

  • Les chargements et déchargements des denrées plus ou moins saturées en humidité.

  • La variation du climat par rapport aux meubles frigorifiques ouverts.

  • Pour un ensemble d’applications frigorifiques branchées sur une même boucle de fluide caloporteur (eau glycolée, CO2, …), toutes les applications n’ont pas la même demande au même moment; ce qui signifie que l’évaporateur général desservant la boucle sera en régime variable permanent.

La chaleur prise à l’ambiance frigorifique par l’évaporateur est d’abord assurée par le déplacement naturel ou forcé de l’air sur les ailettes de l’évaporateur.

Dans les moyennes et grandes installations de réfrigération, l’échange de chaleur entre l’air de l’ambiance et le fluide frigorigène n’est pas toujours direct. Une boucle de fluide caloporteur peut assurer le transfert de la charge frigorifique.

Détente directe (échange direct entre l’air et le fluide frigorigène).

Boucle à fluide caloporteur (échange indirect entre l’air et le fluide frigorigène).

L’air échange donc sa charge thermique, au travers des ailettes de l’évaporateur en direct au fluide frigorigène, indirectement par l’intermédiaire d’un fluide caloporteur. Mais on s’éloigne un peu du circuit simple.

Côté application (vitrine, meuble ouvert ou fermé, …), l’échange avec l’évaporateur s’effectue par convection (naturelle ou forcée) ou par conduction :

  • Pour certaines applications particulières, l’échange est naturel par convection. La régulation de l’échange thermique est plus aléatoire. L’ouverture d’une vitrine par exemple, risque de perturber rapidement le flux d’air et par conséquent l’échange avec l’évaporateur.

 Vitrine en convection naturelle.

  • Pour la plupart des applications, l’échange est en convection forcée par une ventilation mécanique. Le premier organe que l’on rencontre au niveau de la régulation de l’échange thermique (ou plus exactement enthalpique) est le ventilateur. Dans la majorité des cas, le ventilateur fonctionne :

    • en tout ou rien sur base d’une température de consigne dans l’espace à réfrigérer
    • en continu.

Meuble ouvert en convection forcée.

Il peut être intéressant en convection forcée, surtout pour les installations de puissance importante de travailler avec une vitesse variable au niveau des ventilateurs. Par exemple, dans les chambres froides en période d’inactivité,  la demande de frigories devient faible. Pour éviter de faire fonctionner le ventilateur en tout ou rien en le sollicitant par des démarrages fréquents, il serait intéressant de réduire la vitesse des ventilateurs par variation de fréquence.

Côté fluide frigorigène : l’évaporateur

La régulation de la charge frigorifique côté du fluide frigorigène est très complexe. On pourrait en première approximation dire que l’organe principal de régulation de l’échange au niveau de l’évaporateur est réalisé par le détendeur. En effet, il régule le débit de remplissage de l’évaporateur en mesurant l’image de la surchauffe (surchauffe = température sortie évaporateur – température d’évaporation).

Contrairement à ce que l’on prétendait auparavant, la valeur de la surchauffe optimale n’est pas fixe par rapport à la charge frigorifique. La valeur minimale de surchauffe stable traduit l’adaptation de la surchauffe en fonction de la charge frigorifique.

Régulation par détendeur électronique en fonction de la valeur minimale de surchauffe stable.

On peut retrouver différents types de détendeurs permettant le remplissage de l’évaporateur quelle que soit sa charge :

  • Le détendeur thermostatique. Ce type de détendeur offre une régulation de la surchauffe linéaire en fonction de la charge frigorifique.
  • Le détendeur électronique, associé avec une régulation numérique, permet d’adapter la valeur de la surchauffe pour « coller » au profil de la courbe idéale donnée par la valeur minimale de surchauffe stable.

Dans tous les cas, la régulation optimale du détendeur est primordiale pour la machine frigorifique surtout au niveau des consommations énergétiques et de la sécurité du compresseur.

Côté fluide frigorigène : le compresseur

La gestion du remplissage de l’évaporateur étant assurée par le détendeur, l’alimentation en fluide frigorigène du détendeur est réalisée par le compresseur qui agit comme une pompe volumétrique :

  • Si l’évaporateur est en demande de frigories, le détendeur s’ouvre pour pallier à cette demande. Le circuit étant fermé le compresseur doit lui aussi répondre à l’appel de puissance frigorifique par une augmentation de son débit.
  • À l’inverse, si l’évaporateur n’est plus en demande de frigories, le détendeur se referme. Le compresseur, quant à lui n’a plus de raison d’alimenter le détendeur et donc diminue son débit ou s’arrête.

Beaucoup de systèmes de régulation ont été développés afin d’optimiser l’alimentation en fluide frigorigène de l’évaporateur (via le détendeur). La plupart des systèmes sont repris ci-dessous :

  • La régulation « tout ou rien » par marche/arrêt du compresseur;
  • La régulation « tout ou rien » par vidange de l’évaporateur (ou « pumpdown »);
  • La régulation « progressive » de la pression d’évaporation;
  • La régulation par « étages » ou « en centrale »;
  • La régulation par variation de vitesse ou « INVERTER »;
  • L’obturation de l’orifice d’aspiration;
  • La régulation par injection des gaz chauds;
  • La régulation par « tiroir » des compresseurs à vis;

Régulation de la charge de réjection au condenseur

On entend par charge de réjection, le total de la chaleur extraite du milieu à réfrigérer et de la chaleur de compression du compresseur.

Côté fluide frigorigène : le compresseur

Le condenseur ne participe qu’indirectement à l’évacuation de la charge frigorifique de l’évaporateur. Il ne détermine que le niveau énergétique auquel la chaleur extraite au niveau de l’évaporateur, augmentée de la chaleur de compression, sera rejetée à l’extérieur.
Le niveau énergétique est conditionné par l’extérieur (température externe) :

  • Plus il est haut (en période chaude), plus le compresseur devra fournir un travail (travail de compression) important pour rejeter cette chaleur à l’extérieur; le taux de compression HP/BP (Haute Pression / Basse Pression) augmente, la consommation énergétique augmente et l’efficacité énergétique du compresseur se dégrade.
  • À l’inverse, plus il est bas (en période froide), moins l’effort à fournir par le compresseur est important.

Il est donc très important de réduire le niveau énergétique de rejet de la chaleur au niveau du condenseur par la réduction de la température de condensation.

On sent plus ses jambes lorsqu’on monte deux étages plutôt q’un.

Rappelons qu’un abaissement de la température de condensation de 1 °C correspond plus ou moins à 2 % d’économie de la consommation électrique du compresseur (travail de compression). De même, comme l’illustre la figure ci-dessous.

Côté fluide frigorigène : le détendeur

Relation puissance frigorifique-pression au détendeur.

L’abaissement de la température, et donc de la pression de condensation (pression et température sont intimement liées par une loi propre à chaque fluide frigorigène), n’est pas sans conséquence sur le fonctionnement du détendeur :

  • Le détendeur thermostatique a besoin d’une différence de pression pour réguler correctement l’admission à l’évaporateur du fluide frigorigène. D’après certains catalogues de fabricants, la différence de pression idéale de part et d’autre du détendeur est de l’ordre de 10 bars, ce qui correspond, pour un fluide frigorigène tel que le R134A, à une différence de température de l’ordre de 55 °C. Pour une application nécessitant une température à l’évaporateur de – 10 °C (froid positif par exemple), la température idéale au condenseur, pour que le détendeur soit dans des conditions optimales de fonctionnement, devrait être de 45 °C : le compresseur travaillera dans des mauvaises conditions (taux de compression HP/BP élevé).
  • Le détendeur électronique n’est pas soumis aux mêmes restrictions. D’une part, en aval il remplit mieux l’évaporateur en suivant au plus près la valeur minimale de surchauffe stable, d’autre part, il supporte mieux les variations de pression engendrées par une régulation flottante de la pression de condensation en entraînant moins de perturbations quant à la gestion du débit de remplissage de l’évaporateur.

Côté fluide de refroidissement : le condenseur

Le second principe de réduction de consommation énergétique de la machine frigorifique est l’abaissement de la température de condensation. La combinaison d’un détendeur électronique (supportant les basses pressions de condensation) et d’une régulation de la pression de condensation en fonction des conditions climatiques externes permet d’atteindre cet objectif.

Auparavant, on considérait pratiquement que la limite technique stable de fonctionnement du groupe frigorifique était acquise pour une température de condensation minimale de 20°C; ce qui signifie que tout le pouvoir rafraîchissant du fluide de refroidissement tel que l’air externe ou l’eau sous une valeur de pression de condensation de 15 – 16 °C n’était pas réalisable. La venue du détendeur électronique maintenant le permet.

Concrètement, pour que la pression de condensation soit la plus faible possible, on utilise au maximum le pouvoir rafraîchissant du fluide de refroidissement externe :

  • Dans le cas de l’air, on peut considérer que dans notre pays on doit pouvoir exploiter la température moyenne externe de 6 – 7 °C pour arriver à abaisser correctement la température de condensation.
  • Dans le cas de l’eau (plus rare en réfrigération commerciale), son pouvoir rafraîchissant étant beaucoup plus important que l’air, l’abaissement de la température de condensation ne pose pas trop de problèmes.

La régulation du détendeur

Suivant la technologie des détendeurs, la régulation de la surchauffe est optimisée ou pas :

  • Les détendeurs thermostatiques, de par la simplicité de leur technologie, ne peuvent que très difficilement optimiser la valeur de la surchauffe en fonction de la charge de l’évaporateur.
  • Les détendeurs électroniques, permettent par une mesure de pression et de température à la sortie de l’évaporateur (prise en compte de la perte de charge dans l’évaporateur) de réguler de manière optimale cette valeur de surchauffe en fonction de la charge de l’évaporateur.

Valeur minimale de surchauffe stable

Afin d’alimenter l’évaporateur de manière optimale, même si la charge frigorifique est variable en permanence côté application, c’est le détendeur qui endosse le rôle de régulateur de débit dans l’évaporateur côté fluide frigorigène. La régulation du débit de fluide est basée sur la mesure permanente de la surchauffe à sortie de l’évaporateur. Il existe une valeur minimale de surchauffe stable en fonction de la charge frigorifique de l’évaporateur qui garantit l’optimisation de la capacité frigorifique de l’évaporateur tout en soulageant le travail de compression du compresseur. La figure ci-dessous montre la loi qui lie la surchauffe à la valeur Q0 de la charge opérationnelle de l’évaporateur :

 Valeur minimale de surchauffe stable.

La régulation du détendeur thermostatique

Jusqu’il y a peu, la technologie vraiment éprouvée était le détendeur thermostatique. À l’heure actuelle, la plupart des installations de petite à moyenne puissance utilisent encore cette technologie. La régulation du débit d’alimentation de l’évaporateur et, par conséquent, de la surchauffe obéi à une loi proportionnelle en fonction de la charge frigorifique demandée à l’évaporateur. Sur la figure suivante on voit tout de suite que la régulation de la surchauffe selon la courbe de la valeur minimale de surchauffe stable est impossible entraînant une mauvaise gestion du remplissage de l’évaporateur :

  • À gauche de la courbe, la régulation par le détendeur est problématique, car le fluide, pour certains débits, est encore liquide à la sortie de l’évaporateur risquant d’envoyer ce liquide au niveau du compresseur.
  • À droite de la courbe, la puissance frigorifique maximale de l’évaporateur ne peut être atteinte sachant que le fluide est déjà vaporisé dans l’évaporateur (idéalement, la dernière goutte liquide de fluide doit être évaporée juste à la sortie de l’évaporateur).

Régulation de la surchauffe avec un détendeur thermostatique.

La régulation des détendeurs électroniques

Les nouvelles technologies permettent de suivre au plus près la courbe des valeurs minimales de surchauffe stable en associant des détendeurs électroniques à des régulateurs analogiques ou digitaux. La figure suivante montre une régulation électronique optimisée qui assure en permanence un bon remplissage de l’évaporateur. On remarquera que la régulation assure toujours que le fluide reste bien vaporisé dans l’évaporateur en évitant d’envoyer du liquide au niveau du compresseur (on reste à droite de la courbe).

 Régulation de la surchauffe avec un détendeur thermostatique.


La consigne flottante de basse pression

Il ne faut pas oublier, qu’en général, plus de la moitié du temps sur la semaine, les apports aux meubles, vitrines, …, et chambres frigorifiques sont limités vu que l’activité commerciale est réduite voire nulle. Il en résulte que la température de consigne de l’évaporateur pourrait être remontée sans pour autant dégrader les denrées alimentaires.

Les températures de consigne que l’on rencontre couramment dans les applications de froid positif sont de  – 10 – 12 °C en journée en pleine activité (ouverture et fermeture des portes des vitrines fermées par exemple).

Le fait de remonter la consigne de température d’évaporation à – 5 °C en soirée, par exemple, suffit à maintenir les températures de conservation des denrées à cœur. Le gros avantage est que :

  • Les consommations énergétiques du compresseur diminuent (+- 2 à 3 % par K).
  • Le nombre de dégivrages est réduit.
  • Les denrées sont moins soumises aux variations de température entre les régimes jour et nuit (moins de déshydratation).

La régulation du compresseur

Le compresseur est une pompe volumétrique, il doit adapter son débit aux demandes du détendeur.

La régulation du compresseur est très importante sachant qu’une grande partie de l’énergie consommée par le groupe frigorifique est due à l’énergie électrique consommée par le moteur du compresseur. Cette régulation se base sur la pression d’aspiration qui traduit les demandes de l’évaporateur en froid.

En effet :

  • En cas de demande de froid de l’évaporateur, la surchauffe augmentant, le détendeur va réagir en s’ouvrant et en augmentant le débit de remplissage de l’évaporateur. Vu que le compresseur n’a pas changé son débit d’alimentation, la surchauffe ne peut pas être régulée et continue à augmenter du fait que le détendeur n’est plus alimenté par le compresseur. Au niveau de la conduite d’aspiration des compresseurs, la pression d’aspiration augmente autorisant le compresseur à augmenter son débit jusqu’à une certaine valeur (rétablissement de la valeur de surchauffe correcte en fonction de la charge frigorifique de l’évaporateur).
  • À l’inverse, en cas de réduction de la demande de froid de l’évaporateur, la diminution de la pression d’aspiration réduit le débit du compresseur.

Plusieurs techniques, bonnes ou mauvaises, récentes ou pas permettent de réguler le débit ou le temps de fonctionnement du compresseur, à savoir la régulation :

  • tout ou rien par marche / arrêt du compresseur
  • tout ou rien par marche / arrêt du compresseur et par vidange de l’évaporateur (pump down);
  • par étage de compression;
  • par variation de vitesse du compresseur;
  • par la mise hors service de cylindres;
  • par l’obturation de l’orifice d’aspiration;
  • par « tiroir » pour les compresseurs à vis;

La régulation « tout ou rien » par marche / arrêt du compresseur

Ce type de régulation est ancien et basique. Elle régule encore beaucoup d’installation notamment les petites puissances. Elle ne se base pas sur la mesure de la pression d’aspiration qui traduit la demande de l’évaporateur en fluide frigorigène, mais sur la consigne de température de l’ambiance de la zone à réfrigérer.

Appliquons le principe d’une régulation par « tout ou rien » à une machine frigorifique.

  • Le thermostat d’ambiance agit directement sur l’alimentation du compresseur. En général, il agit en parallèle sur l’électrovanne placée sur la ligne liquide.
  • Les pressostats de sécurité (pressostats HP et BP) peuvent également agir sur le compresseur et sur l’électrovanne de la ligne liquide, mais en cas de fonctionnement anormal cette fois.

C’est de cette manière, simple et fiable, que sont régulées certaines armoires à groupe frigorifique incorporé, …

Pour les machines plus puissantes, il y aurait un risque trop élevé d’échauffement des bobinages du moteur.

La régulation « tout ou rien » par vidange de l’évaporateur (ou « pumpdown »)

Le principe consiste à arrêter le fonctionnement du compresseur par le pressostat BP, suivant la cascade d’événements suivants :

  • Supposons que le niveau de froid soit atteint dans l’ambiance : le thermostat coupe l’alimentation de l’électrovanne sur la ligne liquide.
  • Le fluide frigorifique ne peut plus alimenter l’évaporateur.
  • Le peu de fluide qui s’y trouve encore s’évapore.
  • Comme le compresseur continue d’aspirer les vapeurs, la pression chute.
  • Le pressostat BP détecte l’insuffisance de pression et arrête le compresseur.

La remise en marche suit la même logique :

  • La sonde d’ambiance informe le thermostat d’une remontée en température.
  • Le thermostat alimente l’électrovanne qui s’ouvre.
  • Le fluide frigorigène envahit l’évaporateur.
  • La pression remonte.
  • Le compresseur se remet en marche sous l’impulsion du pressostat BP et le cycle continue.

Remarques.

  1. On constate cette fois que deux pressostats BP seront nécessaires : un pressostat BP d’arrêt ou de mise en marche du compresseur et un pressostat de sécurité qui intervient en cas de fonctionnement anormal.
  2. Suivant les schémas électriques :
    • soit le pressostat n’autorise le redémarrage que s’il y a demande de froid (mise en série des interrupteurs),
    • soit le pressostat enclenche le compresseur même s’il n’y a pas de demande de froid, ce qui est à éviter, car cela entraîne des démarrages trop fréquents.

L’avantage de ce type de régulation est qu’il va vider l’évaporateur et le circuit basse pression de la majorité du fluide frigorifique. Or celui-ci risquait de se condenser à l’arrêt du groupe, de former des gouttes de liquide, gouttes dangereuses au redémarrage (coups de liquide au compresseur).

De plus, cette technique abaisse la pression du carter du compresseur. Le fluide frigorifique dissous dans l’huile, s’évapore en bonne partie grâce à cette basse pression. Et lors du redémarrage, l’émulsion de l’huile sera plus faible. Ceci ne permet pas de couper le chauffage de l’huile du carter pour autant.

  1. Ce type de régulation est couramment utilisé, particulièrement lorsqu’il est nécessaire de vider l’évaporateur du fluide frigorifique avant l’arrêt.

On le rencontre dans les groupes frigorifiques dont l’évaporateur travaille à « détente directe » (batterie de caissons de traitement d’air), dans les groupes de production d’eau glacée, …

La régulation par « étages »

Comme pour les cascades de chaudières, le principe consiste à découper la tâche par palier !

La régulation de la puissance frigorifique s’effectue par la mise en parallèle successive des compresseurs (cascade) sur base de la pression d’aspiration à l’entrée des compresseurs.

 Cascade de compresseurs.

Comme le montre la figure ci-dessus, les niveaux de pression d’aspiration pour la mise en service des différents étages de compression constituant la centrale sont différents de ceux pour la mise hors service de manière à réduire la sollicitation des compresseurs.

La régulation de la vitesse de rotation ou système « INVERTER »

La puissance frigorifique peut aussi être régulée par la variation de vitesse du compresseur. Ce type de système représente l’avenir de la régulation de puissance frigorifique des compresseurs tant au niveau des petites que des grandes puissances.

 Régulation par variation de fréquence.

Le contrôle traditionnel par mode MARCHE/ARRET entraîne des fluctuations de la température à l’évaporateur nuisibles aux denrées et des mauvaises conditions de rendement du compresseur.

Les compresseurs dont on fait varier la vitesse vont comprimer un volume de fluide variable et ainsi adapter leur puissance frigorifique à la charge thermique des espaces réfrigérés. Quand un écart est mesuré entre le point de consigne et la température du meuble frigorifique, par exemple, le système de régulation agit sur la vitesse de rotation du compresseur qui voit son débit se modifier et, par conséquent adapter la puissance frigorique de la machine. Ce mode de régulation est appelé « INVERTER ». Il permet une variation de vitesse du compresseur sans pertes importantes de rendement.

Notons que le démarrage du compresseur se fait toujours à basse vitesse, contrairement au fonctionnement MARCHE/ARRET. La pointe de courant nécessaire au démarrage est ainsi fortement réduite.

La technologie INVERTER est actuellement au point. Cependant, dans certains anciens modèles, elle présente encore quelques inconvénients tels les parasites qu’elle induit dans le réseau électrique. Mais actuellement, les variateurs de fréquences sont équipés de filtres permettant d’éliminer les harmoniques nuisibles au réseau d’alimentation électrique.

Dans ce but, la technique traditionnelle du compresseur alternatif (piston et vilebrequin), d’une fiabilité légendaire, est progressivement remplacée par :

Le compresseur rotatif

  • rendement similaire,
  • niveau sonore moindre,
  • fonctionnement à vitesse variable.

Le compresseur scroll

  • rendement plus élevé,
  • niveau sonore encore plus faible,
  • fonctionnement à vitesse variable.

La mise hors service de cylindres

Le réglage de la puissance frigorifique peut se faire par la mise hors service d’un ou de plusieurs cylindres de compresseurs à pistons. Pour supprimer l’action d’un piston, il suffit de maintenir ouverte en permanence la soupape d’aspiration. C’est une méthode très répandue.

Un tel système est simple et fiable, moyennement efficace sur le plan énergétique. Les cylindres tournant à vide ont pour conséquence que, pour une puissance de réfrigération de 50 % par exemple, la machine absorbe encore environ 65 % de la puissance d’entraînement.

Avantage : pour éviter les pointes de courant de démarrage, il est possible de démarrer à vide le compresseur.

Par contre, la variation de la puissance n’est pas continue (sauts de puissance). Et, autre inconvénient, l’usure de la machine est pratiquement identique à vide ou en charge.

L’obturation de l’orifice d’aspiration

Dans les compresseurs à pistons, un obturateur commandé par une électrovanne bouche l’entrée d’un ou de plusieurs cylindres, réduisant ainsi le débit et donc la puissance de la machine frigorifique. Ce système provoque un échauffement du compresseur, ce qui n’est énergétiquement pas favorable, et entraîne le besoin de laisser au moins un ou deux cylindres sans obturateur.

La régulation « par tiroir » des compresseurs à vis

Les compresseurs à vis sont munis d’un dispositif qui rend leur puissance réglable dans une plage allant de 100 à 10 %. Le rendement reste satisfaisant, du moins jusqu’à 50 % de la charge nominale. En dessous, le rendement se dégrade et il faut donc éviter ces fonctionnements à basse puissance. L’intérêt de ne pas surdimensionner les installations reste déterminant.

Le principe consiste à limiter la course de la vis : en délaçant un « tiroir », c.-à-d. un élément du stator déplaçable par translation comme un tiroir, on modifie la section d’entrée du volume aspiré et donc on module le débit.

Un tel mécanisme permet d’assurer également le démarrage à vide de la machine.


La régulation de l’évaporateur

La régulation « progressive » de la pression d’évaporation

Comment adapter la puissance frigorifique à la charge réelle de l’ambiance ? La régulation par « tout ou rien » du compresseur entraîne un nombre élevé d’enclenchements et de déclenchements du compresseur, et une fluctuation de la température intérieure des meubles frigorifiques ou des chambres froides.

On cherche dès lors une adaptation plus progressive de la puissance frigorifique aux besoins des espaces réfrigérés.

Le régulateur de pression d’évaporation

Imaginons une charge assez faible. Le compresseur va aspirer les vapeurs, mais celles-ci sont peu importantes. La pression à l’aspiration va diminuer, entraînant une diminution de température d’évaporation, et même un risque de gel de l’évaporateur.

On introduit alors un régulateur de pression entre l’évaporateur et le compresseur, un robinet qui va laminer les vapeurs de fluide frigorigène et créer une perte de charge : la pression dans l’évaporateur restera constante, mais la pression côté compresseur va baisser fortement.

On parle d’ailleurs d’un « robinet à pression constante. Il assure le « laminage des vapeurs aspirées ».

La puissance frigorifique va diminuer, mais les températures à la sortie du compresseur vont s’élever (parfois jusqu’à 100°C).

Bien sûr, si la charge augmente, la vanne s’ouvre et le débit de fluide augmente. A charge thermique maximale, le robinet est totalement ouvert.

Le régulateur de pression d’évaporation prévient contre le risque de gel de l’évaporateur, en supprimant le risque d’avoir une pression si basse que l’évaporateur ne prenne en glace.

Mais le rendement énergétique de la machine s’en trouve dégradé… Et pourtant ce type de régulation est fréquemment employé, lorsque la réduction de puissance n’excède pas 40 à 50 %

La régulation par injection des gaz chauds

Le principe consiste à reboucler les gaz chauds sortis du compresseur vers l’entrée de l’évaporateur, juste après le détendeur. Un régulateur de capacité (ou de puissance) maintient la pression d’évaporation à la grandeur préréglée. Tandis que le détendeur régule toujours la surchauffe à la sortie de l’évaporateur, donc la température des vapeurs en sortie de l’évaporateur reste constante.

Tout ceci permet de rendre constant le débit de frigorigène qui traverse l’évaporateur.

Lorsque la charge thermique diminue (= lorsque le besoin de refroidir les locaux est faible), le régulateur de capacité s’ouvre (il maintient la pression en injectant du fluide frigorigène) et des vapeurs, chaudes, mais détendues, constituent une charge thermique complémentaire de l’évaporateur. (voir aussi « fonctionnement global de la machine frigorifique« ).

Bien sûr, avec un tel système, la puissance de l’évaporateur peut varier pratiquement de 0 à 100 % !

Mais ce fonctionnement est pervers : si le besoin de froid diminue, et que le compresseur pourrait « être mis au chômage », on réinjecte de la chaleur pour donner du travail au compresseur !!!

Comparaison : imaginons une pompe qui vide un réservoir « bas » vers un réservoir « haut ». De peur du risque qu’elle se désamorce si elle n’a plus assez d’eau à pomper, on lui réinjecte de l’eau venant du réservoir haut ». Ainsi, elle peut continuer à fonctionner sans problème !

Il faut qualifier cette technique de « pur anéantissement d’énergie ». En effet, la puissance absorbée reste la même lorsque la puissance de réfrigération diminue. De plus, elle provoque un échauffement du moteur. Elle se rencontre assez souvent, car elle met en œuvre un matériel peu coûteux. Dans la mesure du possible, il faut mettre ce système hors service dans les installations existantes.


La régulation du condenseur

Deux types de régulation sont généralement envisagés au niveau de la régulation du condenseur :

  • la régulation à pression (ou température) de condensation constante.
  • la régulation à pression (ou température) de condensation flottante.

Régulation avec pression de condensation constante.

Régulation avec pression de condensation flottante.

Pour des pressions d’évaporation fixes (c’est le but du jeu), la régulation du condenseur est surtout influencée par le choix du détendeur :

  • le détendeur thermostatique est sensible aux variations de pression de condensation;
  • le détendeur électronique s’accommode mieux des variations de pression de condensation.

Association avec un détendeur thermostatique

Les détendeurs thermostatiques sont encore très présents dans les installations de froid commercial même neuves. Ce type de détendeur travaille essentiellement avec un condenseur dont la pression de condensation est fixe. La pression de condensation mesurée à l’entrée du condenseur est régulée en faisant varier de débit d’air par exemple par un système « tout ou rien » au niveau de l’alimentation électrique du ventilateur comme le montre la figure suivante.

Le détendeur thermostatique a besoin d’une pression de condensation suffisante afin qu’il puisse fonctionner de manière optimale. En pratique, une différence de pression de l’ordre de 10-12 bars est nécessaire au détendeur thermostatique afin d’alimenter correctement l’évaporateur.

Exemple.

Un commerçant a besoin d’un meuble frigorifique à application positive. La température d’évaporation est fixée à -10°C utilisant du R134a comme fluide frigorigène.

Un détendeur pris dans un catalogue de fabricant connu dans le domaine donne les valeurs de puissance frigorifique dans le tableau suivant :

Température de condensation [°C] Puissance frigorique du détendeur [kW]
10 10.2
15 12.85
20 14.85
25 16.4
30 17.7
35 18.7
40 19.4
45 19.9
50 20.2
55 20.2

En analysant le tableau et la courbe ci-dessus, on voit que :

  • Pour optimiser le fonctionnement du détendeur et, par conséquent, garantir un bon remplissage de l’évaporateur, la température de condensation doit être de l’ordre de 45°C (puissance frigorifique maximale).
  • Lorsqu’on descend trop bas en pression, l’efficacité du détendeur thermostatique diminue fortement.

Pression ou température de condensation fixe

Dans un système simple, où la consigne de température est fixée à 45 °C  (correspond à une pression de condensation mesurable de 10,5 bar), la performance du détendeur est correcte. Par contre, le compresseur, quant à lui, a un taux de compression HP/BP de l’ordre de 6 (sachant que la pression à l’aspiration est de l’ordre de 1.7 bar);or on sait que les performances énergétiques des compresseurs diminuent pour des taux de compression HP/BP élevés.

Pression ou température de condensation flottante

En supposant que ce soit réalisable dans la pratique, un système à pression de condensation flottante en fonction des conditions climatiques est envisagé.Si la température de condensation est abaissée à 20 °C (correspond à une pression de condensation mesurable de 4,7 bar) sachant que la température externe de l’air est de 12°C par exemple, la puissance frigorifique du détendeur diminuera de l’ordre de 25 %. Par contre, le taux de compression HP/BP du compresseur passera de 6 à 2,7 (soit une réduction théorique du travail de compression de l’ordre de 55 %.

Malheureusement, dans la pratique, en plus de la réduction de capacité frigorifique du détendeur thermostatique de 25 % à basse pression de condensation, la régulation du remplissage de l’évaporateur par ce type de détendeur n’est pas optimale (la régulation ne suit pas la valeur minimale de surchauffe stable). Ce qui veut dire que même si le taux de compression HP/BP du compresseur s’améliore de 55 %, l’efficacité globale détendeur thermostatique-évaporateur n’est pas idéale. L’effet sur la consommation du compresseur ne se fera que très peu sentir.

Dans le tableau qui suit, on résume les avantages et les inconvénients d’un tel système :

(+)

  • Réduction du taux de compression HP/BP dû à la diminution de la pression de condensation (55 %).

(-)

  • Perte d’efficacité au niveau du détendeur (25 %) de par la diminution de pression de condensation.
  • Perte d’efficacité au niveau de la gestion du remplissage de l’évaporateur en fonction de la surchauffe (caractéristique intrinsèque au détendeur thermostatique).

Association avec un détendeur électronique

Les détendeurs électroniques commencent à s’implanter dans le secteur du froid commercial sachant qu’ils peuvent diminuer drastiquement les consommations énergétiques du compresseur. Aussi ils supportent mieux les variations de pression entre leur entrée et leur sortie que les détendeurs thermostatiques. Ce qui signifie qu’il accepte mieux les basses pressions de condensation.

La pression de condensation mesurée à l’entrée du condenseur est régulée en faisant varier le débit d’air, non plus par un système « tout ou rien » au niveau de l’alimentation électrique du ventilateur, mais plutôt par un système à variation de fréquence permettant de faire varier la vitesse du ventilateur de manière continue en profitant du pouvoir rafraîchissant de l’air extérieur pour abaisser la pression de condensation.

Exemple.

Un commerçant a toujours besoin d’un meuble frigorifique à application positive. La température d’évaporation est fixée à -10 °C utilisant du R134a comme fluide frigorigène .

Un détendeur pris dans un catalogue de fabricant connu dans le domaine donne les valeurs de puissance frigorifique dans le tableau suivant :

Température de condensation [°C] Puissance frigorique du détendeur [kW]
10 13.65
15 15.5
20 16.9
25 17.9
30 18.9
35 19.7
40 20.1
45 20.4
50 20.5
55 20.1..

En analysant le tableau et la courbe ci-dessus, on voit que :

  • Pour optimiser le fonctionnement du détendeur et, par conséquent, garantir un bon remplissage de l’évaporateur, la température de condensation doit être de l’ordre de 45 °C (puissance frigorifique maximale).
  • Lorsqu’on descend trop bas en pression, l’efficacité du détendeur électronique diminue.

Pression ou température de condensation fixe

Dans un système simple, où la consigne de température est fixée à 45 °C  (corresponds à une pression de condensation mesurable de 10,5 bar), la performance du détendeur est correcte. Par contre, le compresseur, quant à lui, a un taux de compression HP/BP de l’ordre de 6 (sachant que la pression à l’aspiration est de l’ordre de 1.7 bar);or on sait que les performances énergétiques des compresseurs diminuent pour des taux de compression HP/BP élevés.

Pression ou température de condensation flottante

Par l’utilisation d’un régulateur numérique, la pression de condensation est rendue flottante en fonction des conditions climatiques. Si la température de condensation est abaissée à 20°C (corresponds à une pression de condensation mesurable de 4,7 bar) sachant que la température externe de l’air est de 12°C par exemple, la puissance frigorifique du détendeur diminuera de l’ordre de 15 %. Le taux de compression HP/BP du compresseur passera toujours de 6 à 2,7 (soit une réduction théorique du travail de compression de l’ordre de 55 %; ce qui est déjà meilleur que le détendeur thermostatique.

De plus, contrairement au détendeur thermostatique, le détendeur électronique adapte mieux la surchauffe par rapport à la valeur minimale de surchauffe stable.

Dans le tableau qui suit, on résume les avantages et les inconvénients d’un tel système :

(+)

  • Réduction du taux de compression HP/BP dû à la diminution de la pression de condensation (55 %).
  • Amélioration de la gestion de la surchauffe permettant d’optimiser le remplissage de l’évaporateur en fonction de charge frigorifique nécessaire.

(-)

  • Légère perte d’efficacité au niveau du détendeur de par la diminution de pression de condensation.

La régulation généralisée

Comme on l’a vu ci-dessus, la régulation de chaque équipement d’une machine frigorifique influence celle des autres équipements en complexifiant fortement l’installation. C’était un problème il y a quelques années. Pour cette raison, les constructeurs de machines frigorifiques ont été amenés à développer des solutions centralisées au moyen de régulateurs capables de gérer une grande quantité de paramètres, d’entrées, de sortie, …

À l’heure actuelle, on trouve de plus en plus de solutions gérées par des GTC (Gestion Technique Centralisée) ou superviseur à même de surveiller, de réguler, de communiquer avec des régulateurs de tout un parc d’applications frigorifiques imposant.

Régulation de la machine frigorifique avec supervision de toute la régulation.

Mesurer le niveau d’éclairement

Mesurer le niveau d'éclairement


Appareil de mesure : le luxmètre

Les niveaux d’éclairement se mesurent grâce à un luxmètre.
Le prix d’un tel appareil varie en fonction de son degré de précision, de sa plage de mesure, de la possibilité de raccorder une cellule photoélectrique séparée, de la possibilité d’enregistrer des valeurs et d’en calculer la moyenne, de mesurer un éclairement discontinu ou d’intégrer dans le temps un éclairement variable, …

Un luxmètre bon marché est généralement suffisant pour évaluer la qualité d’une d’installation.


Calcul de l’éclairement moyen intérieur

Pour déterminer le niveau d’éclairement moyen d’un local à l’aide d’un luxmètre, il faut effectuer diverses mesures d’éclairement ponctuel selon la méthodologie définie par la norme NBN L 14 – 002, et en établir une moyenne arithmétique.

  1. La surface du local est divisée en un certain nombre de rectangles élémentaires de dimensions égales.
  2. Les éclairements ponctuels sont mesurés au centre de chaque rectangle.
  3. L’éclairement moyen sur l’ensemble de la surface considérée est la moyenne arithmétique des valeurs mesurées.

Emoy = (E1 + E2 + … + En) / n

indice du local K :

K = (a x b) /h (a + b)

avec,

  • a et b =  largeur et longueur du local,
  • h =  hauteur utile de l’installation.
K Nbre minimum de points de mesure
moins de 1

1 .. 1,9

2 .. 2,9

3 et plus

4

9

16

25


Calcul de l’éclairement moyen extérieur

Pour déterminer, à l’aide d’un luxmètre, le niveau d’éclairement moyen d’un espace extérieur, il faut effectuer, sur une zone reproductible, diverses mesures d’éclairement ponctuel et en établir une moyenne arithmétique.

L’emplacement et le nombre de points de mesure sont déterminés suivant un quadrillage régulier dont la taille des mailles est obligatoirement inférieure ou égale à la hauteur de feu des luminaires divisée par 2.

Conditions impératives de mesure :

  • la cellule de mesure doit être parfaitement horizontale,
  • la cellule de mesure doit être à l’abri de toute ombre portée,
  • le temps doit être sec (les gouttelettes peuvent fausser la mesure).

Puissance absorbée par les lampes fluorescentes et les auxiliaires


Il est intéressant de connaître la puissance installée d’un luminaire équipé de lampes fluorescentes. En effet, elle ne se limite pas uniquement à la puissance de la lampe. Il faut tenir compte aussi du ballast.

Pour se faire une idée de la valeur de ces puissances totales avec un regard critique au niveau énergétique, on peut se référer à la classification CELMA. CELMA étant établi par une association européenne de fabricant de ballast sur base de la directive européenne 2000/55/CE.

Classification énergétique des ballasts selon CELMA
(Fédération des Associations Nationales de Fabricants de Luminaires et de composants Electrotechniques pour Luminaires de l’Union Européenne).
Type de lampe Puissance de la lampe en W Puissance lampe + ballast (W)
Ballast électronique dimmable Ballast électronique Ballast faibles pertes Ballast standard
T5-E (16 mm) 50 Hz Haute fréquence A1 (pour un dimming à 0 % ou pour un flux de lampe à 100 %)  

A1 (pour un dimming à 75 % ou pour un flux de lampe à 25 %)

A2 A3 B1 B2 C D
14 < 18 < 9.5 < 17 < 19
24 < 28 < 14 < 26 < 28
28 < 34 < 17 < 32 < 34
35 < 42 < 21 < 39 < 42
39 < 46 < 23 < 43 < 46
49 < 58 < 29 < 55 < 58
54 < 63 < 31.5 < 60 < 63
80 < 92 < 47.5 < 88 < 92
T8 (26 mm) 15 13.5 < 18 < 9 < 16 < 18 < 21 < 23 < 25 ≥ 25
18 16 < 21 < 10.5 < 19 < 21 < 24 < 26 < 28 ≥ 28
36 32 < 38 < 19 < 36 < 38 < 41 < 43 < 45 ≥ 45
58 50 < 59 < 29.5 < 55 < 59 < 64 < 67 < 70 ≥ 70
TC Fluocompact à broche 5 4.5 < 8 < 4 < 7 < 8 < 10 < 12 < 14 ≥ 14
7 6.5 < 10 < 5 < 9 < 10 < 12 < 14 < 16 ≥ 16
9 8 < 12 < 6 < 11 < 12 < 14 < 16 < 18 ≥ 18
11 11 < 15 < 7.5 < 14 < 15 < 16 < 18 < 20 ≥ 20

Source : CELMA
(Fédération des Associations Nationales de Fabricants de Luminaires et de composants Électrotechniques pour Luminaires de l’Union Européenne).

*  Pourquoi une lampe de 58 W ne consomme-t-elle plus que 55 W  lorsqu’elle est équipée d’un ballast électronique de classe A2 ?

La présence d’un ballast électronique augmente l’efficacité énergétique d’une lampe. Ainsi, pour un même flux lumineux, une lampe de 58 W ne consommera en réalité que 50 W,  la perte du ballast étant de 5 W.

Remarque : les valeurs de puissance données dans la classe A1 sont très faibles par rapport aux autres classes. Il y a une explication à cela au vu des hypothèses de départ prises.

Pour bien comprendre le mode de détermination des puissances en classe A1, on prend un exemple :

Soit un tube T8 de 36 W; on note que la valeur de la puissance de la lampe + le ballast doit être < 19 W. Les hypothèses de départ sont les suivantes:

  • au réglage à 100 % du flux lumineux, le ballast satisfait au moins aux exigences de la classe A3, soit < 38 W,
  • au réglage à 25 % du flux lumineux, la puissance totale d’entrée est < à 50 % de la puissance au réglage à 100 % du flux lumineux, soit < 19 W,
  • le ballast doit être capable de réduire le flux lumineux à 10 % ou moins du flux lumineux maximum.

On retiendra que la présentation ci-dessus peut prêter à confusion dans le sens où l’on pourrait croire que l’ensemble ballast + lampe de la classe A1 a une très faible puissance.

Il n’en est rien !

Le ballast électronique dimmable est même moins performant que le ballast électronique de la classe A2 lorsqu’il est « dimmé »pour une valeur de 100 % du flux lumineux.

[/fusion_text][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]

Composants d’un luminaire

Composants d'un luminaire

Un luminaire sert à répartir, filtrer ou transformer la lumière des lampes. Il peut être composé de :

  • L’armature :
    permet l’assemblage des différents composants du luminaire (réflecteurs, ventelles, platine, diffuseur,…) et la fixation du luminaire au plafond ou au mur.
  • Le réflecteur :
    réfléchi la lumière émise par la lampe et la dirige selon des directions préférentielles.
  • Les ventelles :
    protègent l’œil des éblouissements en empêchant la vue directe de la lampe.
  • Le diffuseur ou protecteur :
    remplace parfois les ventelles et protège la lampe de l’ambiance. On parle aussi de « vasque ».
  • La platine :
    permet la fixation des auxiliaires électriques (ballasts, starters,…).

L’ensemble des dispositifs chargés de contrôler la lumière émise (réflecteurs, ventelles) est aussi appelé « optique« .


Luminaire intérieur pour tubes fluorescents

Photo luminaire intérieur pour tubes fluorescents - 1.     Photo luminaire intérieur pour tubes fluorescents - 2.

Photo luminaire intérieur pour tubes fluorescents - 3.


Luminaire intérieur pour lampes à décharge

Luminaire « en cloche »

Photo luminaire intérieur pour lampes à décharge.


Exemples de luminaire intérieur pour LED

Luminaire de type « dowmlight »

Photo luminaire intérieur pour LED.

L’alimentation (ou  « driver ») de ce module « downlight » LED n’est pas intégrée. On l’appelle l’alimentation déportée.

Photo alimentation (ou  "driver") pour LED.

À ce niveau, on mesure toute l’ambiguïté de la différentiation du module LED et du luminaire LED. Le module ci-contre qui équipe le luminaire est aussi composé d’une multitude de LED.

Photo luminaire plafonnier composé d’une multitude de LED.

Luminaire plafonnier composé d’une multitude de LED montées sur un support plat. A l’heure actuelle, ce type de luminaire est une alternative au luminaire à tube fluorescent. Il est cependant trop tôt pour mesurer l’impact de ce type de luminaire sur le marché.


Luminaire intérieur pour lampe fluocompacte

Photo luminaire intérieur pour lampe fluocompacte.

Dans ce type de luminaire, le ballast électronique n’est pas intégré. On dit qu’il est déporté ou externe.


Luminaire extérieur

Photo luminaire extérieur.

Le luminaire est soit fixé à un mur via une console, soit posé sur le sol via un mât ou un poteau.

Zonage des commandes

Zonage des commandes


Principe

Le zonage consiste à répartir la distribution électrique et à regrouper les commandes en tenant compte :

  • De la présence d’éclairage individuel : celui-ci retarde l’allumage de l’éclairage général.
  • Des zones de même activité ou même période d’occupation : les appareils d’une même zone sont utilisés en fonction de l’occupation, indépendamment de la zone voisine.
  • De l’éclairage naturel du local : les appareils « côté intérieur » (ou locaux aveugles) sont commandés séparément des appareils « côté vitrages », ces derniers étant enclenchés selon les besoins en complément de l’éclairage naturel.

                       

  • Des activités secondaires : pour les activités se déroulant en dehors des heures normales (nettoyage ou gardiennage), un éclairage réduit suffit souvent amplement.
Exemple.

  • Une ou deux lampes sont seulement nécessaires dans les couloirs d’hôpitaux durant la nuit.

Éclairage de nuit.

Éclairage de jour.

  • Dans un parking, on peut dissocier les heures de pointe et les périodes de circulations intermittentes pour lesquels un éclairage de balisage et de sécurité suffit.

Technologie classique de zonage

Schéma Technologie classique de zonage.

Schéma Technologie classique de zonage.

La mise en œuvre de ces commandes dans une installation existante non adaptée est simple, mais nécessite cependant un recâblage de l’installation avec intégration d’interrupteurs et contacteurs complémentaires.

Une mise en œuvre plus professionnelle dans les bâtiments tertiaires de moyenne voire de grandes tailles est le système à connexion rapide qui révolutionne fortement le monde du câblage structuré en courant fort. A priori, ce type de câblage n’a pas d’influence sur l’aspect énergétique de l’éclairage, mais mérite tout de même d’être signalé.

Le zonage de l’installation d’éclairage accompagné de commandes manuelles ne portera ses fruits que si on obtient la collaboration des utilisateurs. Dans le cas contraire, on doit avoir recours à des dispositifs de commande automatique.


Zonage par adressage

Les nouvelles techniques de zonage, au travers de « l’immotique« , permettent de rendre un bâtiment de moyenne ou de grande importance plus flexible par rapport au changement de configuration des locaux.

Énergétiquement parlant, cette technologie évoluée de zonage des luminaires et des commandes ne change rien par rapport à la technique classique de zonage.


Zonage par programmation / par adressage dans le SmartBuilding

Dans les smartbuilding ou les bâtiments disposant d’immotique pour l’éclairage, la flexibilité est quasi-totale. Chaque sonde, chaque luminaire, chaque interrupteur est un objet (au sens informatique) pouvant être réassocié, reconfiguré en fonction des besoins.

programmation et adressage dans le smartbuilding

L’interrupteur n’est plus un robinet qui coupe ou non mécaniquement la tension dans le réseau de courant fort sur lequel il est physiquement placé. Dans ce cas-ci, l’alimentation électrique des objets est devenue indépendante de leur contrôle : l’ensemble des objets se situe sur un réseau de communication commun de sorte que les objets puissent recevoir des ordres de n’importe quel autre appareil. L’avantage majeur étant que les interactions entre objets peuvent évoluer par simple changement de la programmation.

Par exemple, si les deux pièces dessinées ci-dessus ne venaient à faire qu’un seul plateau, alors, il suffirait de modifier la programmation pour que l’interrupteur A active et éteigne l’ensemble des 32 luminaires ou une partie en fonction de la présence d’éclairement naturel.

Zonage par programmation

Si, au contraire, chaque carré devait-être scindé en 3 espaces, il suffirait de répartir les interrupteurs sans-fils dans chaque pièce et les réassocier informatiquement aux bons luminaires.

Généralement, une fois le système installé, ceci peut être réalisé via des interfaces conviviales de ce type, sans passer par du code informatique.

box domotique de progrmmation

Leynew DL103 – Leynew.com ©

Ventilation simple flux

© Architecture et climat 2023.

  1. Amenée d’air naturel
  2. Reprise d’air via grille de transfert
  3. Extraction mécanique
  4. Gestion
  5. Réseau de gainage
  6. Silencieux
  7. Ventilateur

Principe

On parle de ventilation simple flux lorsque soit l’amenée d’air (pulsion), soit l’évacuation d’air (extraction) est réalisée grâce à un ventilateur (systèmes B ou C, pour la norme NBN D50-001).

La ventilation « simple flux » la plus rencontrée, consiste à créer un mouvement de circulation de l’air dans le bâtiment de telle sorte que l’air neuf entre naturellement par les locaux « propres » (bureaux, chambres d’hôtel,…) et que l’air soit extrait par un ventilateur dans les locaux « humides » (sanitaires, buanderies,…) ou « viciés » (WC, cuisines,…). L’air chemine ainsi à travers plusieurs locaux par ordre croissant de pollution, en passant sous les portes ou par des grilles de transfert.

Pour que cela se passe effectivement ainsi, il faut :

  • Que les locaux humides ou viciés soient mis en dépression par rapport au reste du bâtiment. Des extracteurs d’air (ou ventilateurs d’extraction) aspirent l’air des sanitaires, de la cafétéria, … on parle donc d’évacuation mécanique.
  • Que des ouvertures soient placées en façade (grilles dans les fenêtres ou dans les murs), pour diffuser de l’air dans les locaux « propres ».

Photo ouvertures en façade.    Photo ouvertures en façade.

  • Que le transfert de l’air entre les locaux avec alimentation et les locaux avec évacuation soit organisé : fentes sous les portes, grilles dans les portes, transfert par les couloirs,…

Photo grilles dans les portes.

Si le bâtiment est important, on le découpera préalablement en zones de ventilation distinctes.
Voici quelques exemples :

Amenée d’air

Transfert

Évacuation

bureaux

couloirs

sanitaires, cafétéria

chambre d’hôtel

sanitaires

salle de sports

couloirs

vestiaires

salle de restaurant

cuisine collective, zone fumeurs

Une telle organisation permet « d’utiliser l’air deux fois », et donc d’avoir des débits importants tout en conservant une consommation limitée.

Certains locaux peuvent aussi avoir un système de ventilation complet et autonome. C’est par exemple le cas d’une pièce qui comprend à la fois des amenées d’air naturelle et une extraction d’air par un ventilateur. L’air extrait est directement rejeté à l’extérieur par un conduit sans passer par une autre pièce.


Exemples

Ventilation de bureaux

© Architecture et climat 2023.

  1. Air neuf
  2. Air vicié
  • Des grilles sont prévues dans les châssis (une par module ou une par fenêtre).
  • Des portes limitent la zone en dépression (y compris la cage d’escalier).
  • Des extractions complémentaires peuvent être disposées dans les couloirs si le débit recommandé des sanitaires est inférieur à celui des bureaux.
  • Pour un hôtel ou un hôpital, chaque chambre avec sanitaire est autonome au niveau de sa ventilation (extraction dans chaque sanitaire).

Ventilation d’une cuisine collective

© Architecture et climat 2023.

  1. Restaurant
  2. Cuisine
  3. Vers extracteur
  • L’air est extrait dans la cuisine par une hotte au-dessus des appareils de cuisson.
  • L’air est introduit naturellement dans le restaurant (il pourrait aussi être introduit dans la cuisine même).


Avantages

  • La ventilation par simple extraction d’air est simple, et peu coûteuse à l’exploitation.
  • Elle demande peu de place utile dans les locaux techniques.
  • En général, la présence de faux plafonds peut être évitée, puisqu’il n’y a pas de distribution d’air dans les locaux. Une évacuation par conduit vertical n’est pas non plus nécessaire. Elle s’applique donc très bien à la rénovation.
  • Les débits d’air extraits sont contrôlés.
  • La mise au point est facile et se limite au réglage des débits extraits au moyen des bouches.

Inconvénients

La ventilation par simple extraction d’air n’est pas adaptée aux bâtiments profonds et de grande hauteur. Pas plus que pour ceux situés dans des environnements bruyants et pollués :

  • On rejette directement vers l’extérieur de l’air aux conditions intérieures, ce qui induit des pertes énergétiques importantes.
  • L’air neuf n’est pas filtré et les grilles d’amenée d’air peuvent laisser filtrer les bruits extérieurs, ce qui peut être délicat en site urbain ou fortement pollué.
  • Les débits réels d’air neuf sont parfois éloignés des valeurs théoriques. En effet, l’air extrait ne provient pas toujours de l’endroit souhaité, c’est à dire des grilles situées dans les locaux dits « propres ». Il suffit que quelqu’un ouvre sa fenêtre pour déstabiliser la distribution des flux, … ou que les portes vers la cage d’escalier restent toujours ouvertes… ! De plus, le vent peut perturber la ventilation en créant une pression différentielle entre les façades. Les façades exposées voient leur débit augmenter et les façades à l’abri voient leur débit diminuer (ou même s’inverser!). Ce système ne s’applique donc qu’aux bâtiments peu élevés et de taille moyenne.

  • Les grilles d’ouvertures peuvent engendrer un inconfort, par exemple en plein hiver, sauf si la grille d’ouverture est placée à une hauteur supérieure à 1,80 m par rapport au sol.

  • Les ouvertures entre locaux, favorisent le passage de bruits pouvant être très gênants. Un traitement acoustique des grilles doit alors être prévu. Mais en pratique, la présence d’absorbeur acoustique dans une ouverture augmente son épaisseur et sous-entend généralement que la grille doit être placée dans l’épaisseur du mur (et non dans le vitrage ou dans la porte).
  • Une simple extraction ne permet pas de réaliser du free cooling, en journée ou la nuit, les débits d’extraction étant généralement très insuffisants.
  • Les débits nécessaires pour les sanitaires sont généralement inférieurs à ceux requis pour la ventilation des bureaux. Il faudra soit augmenter les débits dans les locaux sanitaires, soit prévoir des extracteurs supplémentaires dans les espaces de circulation.
  • Enfin, les ouvertures dans les façades ne sont pas toujours du goût des architectes !

Régulation

Il est plus qu’utile d’adapter le fonctionnement de la ventilation la nuit et le week-end. Arrêt ? Allure réduite ? Un contrôle du ventilateur par horloge peut être envisagé. Si le bâtiment est à taux d’occupation très variable, le fonctionnement du ventilateur devrait être asservi à la détection d’une sonde COV ou CO2, c’est à dire aux besoins réels d’air neuf ! On parle de ventilation « à la demande ».


Préchauffage de l’air neuf

Ventiler c’est la plupart du temps introduire de l’air frais ou froid à la température extérieur dans le bâtiment. Pour garantir le confort thermique des occupants, il est souvent nécessaire de préchauffer un minimum l’air entrant.

Dans le cas d’une ventilation simple flux par extraction, la solution la plus simple pour le chauffage consiste à placer des corps de chauffe alimentés en eau chaude. Ventilation et chauffage sont alors régulés tout à fait distinctement.

Si, pour des raisons de confort, la ventilation est intégrée dans le corps de chauffe (grille dans le mur en façade au dos du convecteur, par exemple), une précaution anti-gel devra être trouvée :

  • par une fermeture automatique de la grille (cher à l’investissement),
  • par un maintien d’une température d’eau minimale en période de gel extérieur (cher à l’exploitation, sauf si cela participe au maintien hors gel des locaux),
  • par le choix d’un corps de chauffe électrique (cher à l’exploitation suite au prix du kWh électrique).

Dans le cas d’une ventilation simple flux par pulsion, l’air induit dans le bâtiment peut passer par un caisson de traitement d’air où l’air peut être remonté en température grâce à des batteries de chauffe électriques ou à eau chaude.


Récupération de chaleur

Ventiler c’est aussi rejeter à l’extérieur de l’air chaud à température intérieur. Dans un soucis d’économie d’énergie, il est utile de récupérer cette chaleur au maximum.

Cependant, dans le cas de la ventilation simple flux, l’air entrant ne peut être réchauffé par l’air sortant grâce à une récupérateur de chaleur comme dans une ventilation double flux.

Actuellement, le seul moyen de récupérer la chaleur extraite du bâtiment par l’air de ventilation, dans le cas d’un simple flux par extraction, est de placer une pompe à chaleur air/eau sur le conduit d’extraction qui récupéra les calories contenues dans l’air pour chauffer l’eau chaude sanitaire ou de chauffage à basse température. La différence de température entre la source froide et chaude de la PAC étant réduite (par rapport à la température extérieure), le COP n’en sera que meilleur.

Système tout air, à débit constant, double gaine

Système tout air, à débit constant, double gaine

Dans les années 70, pour gérer les particularités locales on a développé un réseau « tout air » double conduit (un d’air chaud et un d’air froid), avec boîte de mélange à l’entrée des locaux : quel coût d’investissement et quel gaspillage énergétique (on « détruit » l’énergie produite lors du mélange) !

Il s’agit donc là d’une technique qui n’est plus guère rencontrée aujourd’hui.

Ce système était utilisé lorsqu’un débit d’air élevé et constant est souhaité, que les besoins des locaux sont extrêmement variables d’une zone à l’autre (on ne souhaite pas la même température par exemple), et que le système doit répondre avec une très grande rapidité aux variations de charges (on n’est pas soumis au même ensoleillement par exemple).

En pratique, il a été peu utilisé dans les bureaux (l’inertie des bureaux ne demande généralement pas une grande souplesse), parfois en secteur hospitalier, plus souvent dans le secteur industriel avec exigences élevées de régulation. On a aussi pu le trouver dans des bâtiments spécifiques tels que des complexes de cinéma.


Principe de fonctionnement

Le système de conditionnement d’air « tout air, à débit constant, double gaine » est un système où deux niveaux de température d’air sont préparés en centrale, puis distribués par deux gaines distinctes vers le/les locaux. On l’appelle également « dual duct ».

En pratique, un caisson central assure un premier niveau de préparation de l’air (par exemple jusque 16°), puis une batterie de post-chauffe et une de refroidissement préparent de l’air chaud et de l’air froid, distribués dans deux gaines différentes. Des boîtes de mélange sont prévues à l’entrée de chaque local, ou zone de locaux ayant des besoins similaires. Chaque registre de mélange est piloté par un thermostat d’ambiance. Ce mélange est destructeur d’énergie. Les réseaux double gaine doivent donc être évités dans une approche URE.
En voici un exemple :

Ce système constitue une branche de la grande famille du conditionnement d’air « tout air » :

– débit constant

  • monogaine
    • unizone
      • basse pression
      • haute pression (avec boîte de détente)
    • multizone
      • basse pression
      • haute pression (avec boîte de détente)
  •  double gaine multizone (avec boîte de mélange)
    • basse pression
    • haute pression (avec boîte de détente)

– débit variable

  • avec chauffage par radiateurs indépendants
  • avec chauffage par batterie à eau chaude

Comme on le voit, il existe de nombreuses variantes !

Expliquons chacun des termes :

>  « tout air »

L’air est le fluide caloporteur de chaleur, de froid, ou d’humidité. Ainsi :

  • si en hiver le local présente des déperditions, l’air sera pulsé à 28°C, par exemple,
  • si en été, le local subit des apports solaires, l’air sera pulsé à 16°C,
  • si, dans la salle de cinéma, le film très suggestif provoque beaucoup de dégagement de vapeur de la part des spectateurs, l’air sera pulsé très sec !

>  « débit constant »

Le débit est fixé par le ventilateur (qui ne dispose que d’une seule vitesse de rotation).

La régulation est réalisée par action sur la température et le taux d’humidité de l’air pulsé.

>  « double gaine »

Les pièces climatisées sont alimentées par deux gaines, par exemple une gaine d’air chaud à 35°C, et une gaine d’air froid à 16°C.

>  « multi-zones »

Le système « double gaine » est forcément multi-zones : on crée plusieurs zones dans le bâtiment, chaque zone pouvant recevoir un air traité spécifiquement en fonction de ses besoins.

Remarque : une zone peut comprendre plusieurs locaux.

> « basse ou haute pression »

On parle de basse pression du ventilateur  :

  • si pression < 800 Pa, ou 80 mmCE
  • si vitesse dans les gaines < 7 m/s

On parle de réseau haute pression si la vitesse dans les conduits atteint de 12 à 16 m/s


Détails technologiques du traitement de l’air

L’air est d’abord pré-traité en centrale : mélange éventuel de l’air neuf et de l’air repris, filtration, préchauffage éventuel de l’air (notamment pour éviter tout risque de gel de la batterie froide) et pulsion dans deux caissons.

Un caisson est équipé d’un échangeur de postchauffe et si nécessaire d’un système d’humidification (généralement un humidificateur à vapeur) : c’est le préparateur du réseau chaud.

Un deuxième caisson est équipé d’une batterie froide, assurant éventuellement la déshumidification : c’est le préparateur du réseau froid.

Le chauffage de l’air est assuré

  • soit par batterie électrique,
  • soit par batterie d’eau chaude préparée en chaufferie.

Le refroidissement de l’air est assuré

  • soit par l’évaporateur d’un groupe frigorifique (système à détente directe),
  • soit par de l’eau glacée préparée par un groupe de production frigorifique.

Les parois des caissons sont à double enveloppe en tôle d’acier galvanisé ou peint. Un isolant acoustique et thermique de 25 mm d’épaisseur minimale est fixé entre les deux tôles.

À l’entrée de chaque local, ou de chaque zone de locaux, les deux flux d’air sont mélangés dans une « boîte de mélange » terminale. Le débit total est donc constant, c’est la proportion d’air chaud et d’air froid qui varie.


Variantes technologiques

Réseau sous haute pression

Pour réduire les sections, on augmente la vitesse de l’air dans les gaines. Les pertes de charge augmentent et obligent à travailler à haute pression au ventilateur. Des dispositifs de détente sont alors associées aux boîtes de mélange.

La pression du ventilateur est généralement >  1 000 PA, ou 100 mmCE et la vitesse dans les gaines > 10 m/s.

A débit égal, doubler la vitesse de l’air dans les gaines (par rapport au système basse pression) permet de diminuer par deux la section nécessaire. Mais les frottements de l’air sur les parois des gainages sont proportionnels au carré de la vitesse. Et donc le ventilateur doit vaincre des pertes de charges beaucoup plus élevées, pouvant à la limite atteindre 2 000 PA Aussi, actuellement, pour des raisons d’économie d’énergie (et de bruit), on ne dépasse plus 15 m/s, ce qui génère des pressions de ventilateur de 500 à 1 500 PA.

Après passage dans une boîte de détente, l’air est diffusé par les bouches de soufflage.

Les boîtes de détente sont généralement des boîtes insonorisées, comportant un organe déprimogène (tôle perforée par exemple). Un régulateur maintient le débit à valeur constante.

À ces pressions, des précautions sérieuses sont à prendre en matière acoustique, notamment au niveau des appareils terminaux (amortisseur de bruit).

Recyclage partiel

En vue de diminuer les coûts d’exploitation, l’air extrait peut être recyclé partiellement. On part de l’idée que l’on ne peut faire du froid et du chaud en même temps et que donc un des 2 échangeurs est à l’arrêt.

Dès lors, en été la batterie froide refroidit et la batterie chaude est à l’arrêt. Dans le réseau chaud circule de l’air mélangé entre l’air recyclé et l’air extérieur (chaud).

En hiver, seule la batterie chaude fonctionne. Et dans le réseau froid circule de l’air mélangé entre l’air recyclé et l’air extérieur (froid).

Et en mi-saison ? Que faire lorsque des locaux ont des demandes différentes ? Astuce : les deux batteries fonctionnent mais la batterie de chaud est alimentée par l’eau de condensation du groupe frigorifique qui produit l’eau glacée !

Récupération de la chaleur sur l’air extrait

Pour récupérer l’énergie contenue dans l’air extrait tout en évitant généralement tout risque de contamination, l’air sortant croise l’air neuf entrant dans un échangeur de chaleur.

Et toute combinaison des variantes précédentes …

Il est bien entendu possible de combiner les différentes variantes reprises ci-dessus.


Avantages

  • Possibilité d’adapter individuellement les ambiances suivant les locaux,
  • rapidité de la réponse du système à la demande des locaux,
  • possibilité d’utilisation d’air extérieur pour le refroidissement gratuit (free cooling),
  • contrôle de l’humidité relative en centrale et de l’empoussièrement.

Inconvénients

  • Le débit d’air est constant. Or il est dimensionné pour la situation extrême, généralement celle de l’été, en période de canicule avec un soleil de plomb ! Conclusions : de tels débits entraînent une consommation élevée des ventilateurs et, dans certains cas, de l’inconfort … toute l’année !
  • La consommation élevée du ventilateur devient très élevée dans le cas des installations haute pression.
  • L’encombrement de la centrale, des caissons de préparation terminaux et du double réseau de gaines (gros débits, section importante des conduites d’air neuf, d’air pulsé et d’air extrait).
Exemple.

Une salle de spectacles est maintenue à 20°C. De l’air chaud est pulsé à 30°C. Les déperditions du local sont de 20 kWatts. Quelle sera la section de la conduite nécessaire ?

La capacité calorifique de l’air étant de 0,34 Wh/m³.K, le débit est donné par :

débit = puissance / 0,34 x DT° (en m³/h).

Ici, débit = 20 000 / 0,34 x 10 = 5 882 m³/h = 1,63 m³/s

Sur base d’une vitesse de 8 m/s, la section devient 1,63 / 8 = 0,2 m², soit une section de 40 cm x 50 cm, ou une conduite circulaire de 0,5 m de diamètre !

La même puissance est transportée par de l’eau dans une tuyauterie de 1,75 cm de diamètre ! (vitesse : 1 m/s)

C’est pour limiter cet encombrement que l’on a recours à une conception de réseau de gaines sous haute pression. L’encombrement est plus limité mais reste toujours plus élevé que pour le système mixte eau + air, par exemple.

  • Intégration obligatoire dès la conception du bâtiment.
  • Coût d’exploitation très important :
    • Risque de « casser » de l’énergie : le réseau de froid prépare l’air à une température correspondant aux besoins du local le plus demandeur (le local informatique, exposé au Sud, par exemple !). Dès lors, tous les autres locaux devront mélanger cet air froid avec de l’air du réseau chaud…!  Une régulation centrale doit piloter le tout « intelligemment », et profiter de l’air extérieur lorsque sa température peut être valorisée, sans quoi les coûts d’exploitation sont catastrophiques ! (à noter qu’un tel système qui ferait du chaud et du froid simultanément est interdit en France, sauf si le fluide chauffant est de récupération, par exemple sur le condenseur de la machine frigorifique).
    • Il n’est pas possible de moduler le débit d’air neuf en fonction de la présence ou non d’occupants dans chacune des zones.
    • Des fuites d’un réseau vers l’autre apparaissent toujours dans la boîte de mélange où de 3 à 10 % du débit total est perdu malgré la fermeture du clapet.
    • Les batteries électriques sont peu coûteuses à l’investissement mais très onéreuses à l’usage, à l’opposé des batteries d’eau chaude qui sont coûteuses à l’investissement (deux tubes).
    • Le recyclage de l’air paraît aléatoire, puisque l’air extrait sera issu d’un mélange, sauf en plein hiver et en plein été… Une étude de rentabilité s’impose !
  • Si la vitesse de déplacement de l’air est augmentée pour diminuer les sections, le niveau de bruit sera nettement plus élevé et demandera un traitement acoustique sérieux.
  • Nécessité d’équipements de plus grande solidité pour résister aux pressions, si variante en haute pression.
  • Enfin, et ce n’est pas négligeable, le coût d’investissement de départ est très élevé !

Très honnêtement, avec de tels inconvénients, y a-t-il encore intérêt à avoir un système avec traitement centralisé ?

Taux d’éblouissement d’inconfort – UGR

Taux d'éblouissement d'inconfort - UGR


L’éblouissement d’inconfort provenant directement des luminaires doit être quantifié par l’auteur du projet en utilisant la méthode tabulaire d’évaluation du taux d’éblouissement unifié UGR de la CIE.

Sans rentrer dans les détails, le facteur UGR donne une idée de l’éblouissement d’inconfort dans le champ visuel de l’observateur par rapport à la luminance de fond (éblouissement provoqué par l’association de plusieurs luminaires dans un environnement considéré). Ce facteur UGR varie de 10 à 30. Plus la valeur du facteur est élevée, plus la probabilité d’éblouissement d’inconfort est importante.

Des valeurs de référence définissent des classes de qualité :

28 Zone de circulation
25 Salle d’archives, escaliers, ascenseur
22 Espace d’accueil
19 Activités normales de bureau
16 Dessins techniques, postes de travail CAD

Les facteurs suivants jouent un rôle important dans la détermination de la valeur UGR :

  • la forme et les dimensions du local,
  • la clarté de la surface (luminance) des parois, des plafonds, des sols et des autres surfaces étendues,
  • le type de luminaire et de protection,
  • la luminance de la lampe,
  • la répartition des luminaires dans le local,
  • la ou les positions de l’observateur.

Les valeurs de l’UGR données dans la norme EN 12464-1 sont des valeurs maximales à ne pas dépasser.

Exemple.

Type d’intérieur, tâche ou activité Em (lux) UGR Ra Remarques Plan de référence
Classement, transcription 300 19 80 0.85 m du sol par défaut
Écriture , dactylographie, lecture, traitement de données 500 19 80
Dessin industriel 750 16 80
Postes de travail de conception assistée par ordinateur (CAO) 500 19 80 Un contrôle de l’éclairage est recommandé
Salle de conférence et de réunion 500 19 80
Réception 300 22 80
Archives 200 25 80 plans verticaux des rayonnages

On voit tout de suite que l’exigence de confort est moindre (UGR élevé = plus éblouissant) dans des locaux peu fréquentés ou pour des tâches nécessitant moins de concentration visuelle.

Certains fabricants proposent des tableaux simplifiés de détermination des valeurs UGR mais limités à des locaux simples pour une seule famille de luminaires donnée.

Par exemple, le logiciel « Dialux » est capable de calculer l’UGR en un point du plan donné, mais ce calcul prend, néanmoins, beaucoup de temps.

À titre indicatif, la formule de calcul de l’UGR est donnée :

UGR = 8 log (0.25/Lb x Σω/p²)

où :

  • Lp est la luminance de fond exprimée en candela/m² et représente l’éclairement vertical indirect au niveau de l’œil de l’observateur.
  • L est la luminance contenant les parties lumineuses de chaque luminaire dans la direction de l’observateur en candela/m².
  • ωest l’angle solide (stéradian) des parties lumineuses de chaque luminaire au niveau de l’œil de l’observateur.
  • P est l’indice de position de Guth fourni dans des tables spécifiques et représente la position d’un luminaire par rapport à l’axe vertical.

Un problème d’inconfort thermique ou lumineux ? N’hésitez pas à tester notre nouvel outil de diagnostic afin de trouver la solution à votre problématique.

Choisir les meubles frigorifiques

Choisir les meubles frigorifiques


Les critères de choix liés à la vente des denrées

Bien évidemment, la toute première fonction d’un meuble frigorifique est de mettre en valeur des denrées afin qu’elles soient vendues. Les principaux critères de choix des meubles frigorifiques par rapport à la motivation de vente sont liés aux types :

  • de denrées vendues;
  • de vente;
  • de magasin;
  • de système frigorifique;
  • de service.

Adaptation aux denrées vendues

Photo supermarché primeur.  Photo supermarché zone froide.  Photo supermarché frigo.

Le choix des meubles frigorifiques liés aux types de denrées dépend principalement :

  • de la nature des denrées elle-même, des emballages et du conditionnement;
  • de la compatibilité des matériaux du meuble en contact avec les denrées;
  • de la température de conservation nécessaire (imposée suivant les denrées);
  • du mode de distribution du froid;
  • du volume utile de stockage;
  • de la hauteur minimale de chargement adaptée aux produits;

Adaptation à la forme de vente

Les meubles frigorifiques seront différents suivant :

  • la politique commerciale soutenue aboutissant généralement au libre-service ou service traditionnel;
  • qu’il s’agit d’alimentation générale ou spécialisée.

Adaptation à la surface de vente

Il faut prendre en compte :

  • la grandeur du commerce, sa géométrie, le flux possible des clients,
  • la présence ou non de « caddy’s »;
  • les conditions d’ambiance (température, humidité, …);
  • la disposition des autres rayonnages;
  • le « design » général du magasin;

Adaptation au système frigorifique

Le système frigorifique est lié à la configuration du magasin (en site urbain, rural, toiture plate, surface disponible à l’arrière du commerce ou pas, cave ventilée, …). En effet, on ne peut pas se permettre, par exemple, de placer des condenseurs ou des compresseurs bruyants à l’extérieur en site résidentiel sans prendre des précautions préalables.

L’adaptation des meubles au système frigorifique suit la même logique :

  • groupe incorporé au meuble ou pas;
  • groupe de froid centralisé en toiture;
  • condenseur à air ou à eau;

Adaptation au service

Il faut enfin tenir compte :

  • de la robustesse;
  • de la fiabilité;
  • de la durée de vie;
  • accessibilité avant arrière;
  • souplesse d’utilisation;
  • facilité de maintenance préventive et corrective;

Les critères de choix liés aux coûts

Il est important de citer les critères de choix liés aux différents coûts qu’il est nécessaire de prévoir avant de choisir tel ou tel type de meuble frigorifique.

Les coûts

Les principaux coûts sont naturellement :

  • L’investissement qui comprend les meubles frigorifiques proprement dits, les systèmes frigorifiques, l’installation, la réception, … On en déduit un coût global d’investissement annuel comprenant l’investissement lui-même et l’intérêt annuel du capital immobilisé.
  • L’exploitation qui inclut le coût de l’énergie, les entretiens, le loyer annuel par rapport à la surface occupée par les meubles, les montants de police d’assurance couvrant les équipements et la perte des denrées. Sur le même principe que l’investissement, on en déduit un coût d’exploitation annuel.

Le coût total annuel est donné par la formule suivante :

coût total annuel = coût global d’investissement annuel + coût d’exploitation annuel

Les critères de choix spécifiques

Les critères de choix des meubles frigorifiques self-service se présentent sous forme de ratios spécifiques :

Le ratio « chargement » exprimé par la relation :

chargement = coût total annuel / surface horizontale de chargement (2) [€/m²]

Le ratio « exposition » exprimé par la relation :

exposition = coût total annuel / surface d’exposition (3) [€/m²]

Le ratio « ouverture » exprimé par la relation :

ouverture = coût total annuel / l’ouverture d’exposition (4) [€/m²]

Le ratio « volume » exprimé par la relation :

volume = coût total annuel / volume utile [€/m³]


Les critères globaux de choix liés à l’énergie

Lors de projets de conception, l’aspect énergétique était auparavant négligé au profit naturellement de la vente. Vu l’augmentation constante des prix de l’énergie électrique et par une prise de conscience timide des problèmes d’environnement que cause la production de froid, c’est l’instant, le moment de réfléchir aux choix futurs permettant d’allier quatre éléments indissociables  :

  • la qualité du froid alimentaire;
  • la vente;
  • le confort des clients et du personnel;
  • l’énergie.

Une ou des solutions radicales ?

Existe-t-il un bon compromis entre ces quatre facteurs ? Il existe une ou plusieurs solutions ! Le problème est qu’elles sont évidentes, mais semblent bloquer les commerçants et les responsables « marketing » des grandes et moyennes surfaces dans leur choix de meubles frigorifiques.

Peu importe les moyens et techniques mis en œuvre, mais il suffit de prévoir le confinement ou l’enfermement du froid dans une boîte isolée pour améliorer directement l’efficacité énergétique du froid alimentaire. Certains magasins (ils se reconnaîtront) appliquent ce principe depuis déjà longtemps, d’autres se lancent timidement.

Confinement de l’ensemble du froid alimentaire ou pas ?

Confinement des produits frais dans une enceinte bien isolée

Photo supermarché zone froide.   Photo supermarché zone froide et primeur.

Meuble frigorifique ouvert.

Confinement et isolation légère (double vitrage).

Photo supermarché zone froide et primeur.

Confinement et isolation importante (enceinte opaque).

Là où on arrive à l’optimum énergétique et thermique, c’est lorsque les produits frais sont confinés dans des espaces réfrigérés et isolés des zones de vente classique tempérée. En terme de confort, naturellement, ce n’est pas l’idéal bien que finalement ce n’est qu’une question d’organisation (prévoir une petite laine en été ne pose pas beaucoup de problème). Les pionniers dans ce domaine sont bien connus et adoptent ce principe depuis des années voire plus d’une décennie. On peut dire que ce concept est passé dans les mœurs aujourd’hui. Au vu des personnes rencontrées dans ce type de magasin, toutes les couches de la population y sont représentées. Ce n’est pas nécessairement une question de « standing » comme certains pourraient le laisser entendre.

Confinement des produits frais dans une enceinte légèrement isolée et vitrée

Un autre concept a vu le jour il n’ y a pas longtemps. Dans un premier temps, on pourrait dire que la solution est mauvaise. A bien y regarder, elle se situe juste entre :

  • les meubles frigorifiques ouverts qui absorbent un maximum de chaleur de l’ambiance de vente global au point que même en période chaude dans certains commerces on soit obligé de chauffer;
  • et l’enceinte fermée et isolée du reste de l’ambiance globale de vente.

Ce concept serait-il le bon vieux compromis à la belge ?

(+)

  • confinement des denrées dans une enceinte séparée du reste des surfaces de vente réduisant ainsi le risque de devoir chauffer ces surfaces par apport de froid trop important comme on l’observe pour l’instant avec la prolifération des meubles frigorifiques ouverts;
  • la « cage » de verre est une approche marketing intéressante. Bien qu’il y fasse froid, l’impression d’inconfort est moins présente que dans une ambiance totalement occulte;
  • si l’on pousse le concept plus loin on pourrait envisager de placer l’éclairage en dehors de l’espace en verre et, par conséquent de réduire les apports de chaleur produits par les luminaires.

(-)

  • l’isolation du vitrage est relativement faible. On pourrait espérer réaliser un coefficient de transmission thermique U des parois de l’ordre de 1,1 [W/m².K]. À noter qu’une isolation de 6 cm donne, elle, de l’ordre de 0,4 [W/m².K];
  • les ouvertures auraient pu être des lamelles verticales ou des portes automatiques, mais pas des rideaux d’air mettant en jeu des consommations électriques supplémentaires au niveau des ventilateurs.

Meubles ouverts ou fermés ?

Meubles frigorifiques négatifs horizontaux

Meubles frigorifiques négatifs horizontaux  Meubles frigorifiques négatifs horizontaux, détail.  Meubles frigorifiques négatifs horizontaux, détail.

Le choix de fermeture simple en plexiglas sur les gondoles négatives montre une solution rapidement rentable, car elle permet de réduire les consommations énergétiques de l’ordre de 30 à 40 % par rapport à un choix de meubles ouverts. Cette solution a été retenue en amélioration par une chaîne de distribution en Belgique sans observer de baisse du chiffre d’affaire significative. Dès lors, en conception, il semble plus évident de se lancer directement dans cette voie. En effet, ce qui rebute tout un chacun est le changement. Donc si cela marche en rénovation, il ne doit pas y avoir d’obstacle majeur en nouvelle conception.

Meubles frigorifiques positifs verticaux

C’est là que les anciens Belges s’empoignèrent, car le « client roi » doit pouvoir apprécier les denrées sans contrainte d’ouverture et de fermeture de porte. La question qui se pose immédiatement est de savoir pourquoi une méthode qui semble marcher avec le froid négatif ne fonctionne pas pour le froid positif. Est-ce une question :

  • d’éducation à la consommation : on comprend que le froid négatif doit être confiné parce que les crèmes glacées fondent s’il n’y a pas de confinement du froid et que le froid positif peut être assimilé à la climatisation où les fenêtres peuvent rester ouvertes;
  • d’investissement : le nombre de mètres linéaires de ce type de meubles frigorifiques étant important cela peut éventuellement rebuter les gérants de se lancer;

C’est une des questions qui reste en suspend.

Photo meubles frigorifiques positifs verticaux.  Photo meubles frigorifiques positifs verticaux.

Choix énergétique progressivement intéressant
Une des solutions intéressantes dans un magasin biologique d’une commune bruxelloise est le choix de placer des lamelles en matière plastique quasi transparentes. Cette technique, selon le gérant du magasin n’a pas l’air de freiner l’achat de denrées. Pour être tout à fait objectif, il est hésitant à protéger l’ensemble de ces meubles par ce type de confinement.

Si on considère que ces lamelles arrivent au même degré de protection que les rideaux de nuit, on peut considérer que les réductions de consommations énergétiques peuvent atteindre aussi 30 à 40 %.

Exemple.

En analysant le graphique suivant issu d’une simulation (TRNSYS) de 50 mètres linéaires de meubles frigorifiques ouverts et verticaux maintenant aux frais des produits laitiers, on constate qu’en retirant les 7 000 [W] d’apport interne dû à l’éclairage pendant l’ouverture du magasin, le simple fait de placer des rideaux de nuit, on réduit de l’ordre de 40 % la demande en puissance de l’évaporateur à la machine de froid

simulation (TRNSYS) de 50 mètres linéaires de meubles frigorifiques ouverts et verticaux

Si l’on considère que les protections de jour peuvent être assimilées à celle de nuit au niveau de la performance, on peut effectivement réduire de 40 % (dans ce cas-ci) les consommations énergétiques de l’installation de froid alimentaire.

Le choix délibéré de meubles frigorifiques verticaux positifs fermés par des portes vitrées pose naturellement le problème des prix.


Le choix des meubles

On n’insistera jamais assez sur la priorité à donner sur le choix de meuble frigorifique fermé !

Le choix des meubles frigorifiques s’inscrit presque toujours dans un cadre de sur-mesure pour les commerces de détail. Pour les moyennes et grandes surfaces, ce choix peut se réaliser dans des gammes plus standards. Quoi qu’il en soi, la motivation première, comme on l’a vu, est toujours liée à la conservation des denrées dans un environnement « hostile » pour elles.

Selon les différents critères énoncés ci-avant, un choix de meubles frigorifiques se dégage. Les fabricants classent en général les meubles selon :

  • la température de conservation positive ou négative (quelle valeur) ?
  • le type ouvert mixte ou fermé, vertical ou horizontal ?
  • l’aménagement interne avec combien d’étagères, avec ou sans éclairage des tablettes, …?
  • équipé d’un convection forcée ou pas ?
  • équipé de porte vitrée, de rideau de nuit, de combien de cordons chauffants ?

Pour les marques reconnues sur le marché des meubles frigorifiques, la classification EUROVENT aide à standardiser les catalogues. Les fabricants classent donc les meubles par rapport :

  • aux conditions d’ambiance de la zone de vente dans laquelle le meuble sera placé (classe d’ambiance);
  • aux conditions de conservation des denrées au sein du meuble (régime de température des « paquets les plus chauds, les plus froids, …);
  • à leurs dimensions (nombre de mètres linéaires, hauteur, …);
  • au nombre d’étagères;
  • à la présence d’éclairage;

Évaluer

Pour en savoir plus sur le classement des meubles frigorifiques ouverts selon EUROVENT, cliquez ici !

 Évaluer

Pour en savoir plus sur le classement des meubles frigorifiques fermés selon EUROVENT, cliquez ici !

Température

La puissance frigorifique est donc toujours liée à une température d’évaporation qui permet de tenir la température de consigne au sein du meuble frigorifique. Le tableau suivant donne un aperçu des températures d’évaporation couramment rencontrées dans le froid alimentaire en fonction des températures de conservation.

Type de meuble Température de service interne au meuble frigorifique [°C] Température de l’évaporateur[°C]
Froid positif + 6/+8 – 3 à – 5
+ 4/+ 6 – 4 à – 10
+ 2/+ 4 – 6 à – 12
0/+ 2 – 8 à – 14
Froid négatif – 18/- 20 – 30 à – 35
– 23/- 25 – 33 à – 38

Appréhender les dépenses énergétiques

L’évaluation du bilan thermique et énergétique permet de préciser la puissance frigorifique nécessaire pour combattre les agressions thermiques du meuble. La puissance frigorifique appliquée à des meubles linéaires et rapportée au mètre linéaire en [W/ml] est un ratio important souvent utilisé par les professionnels pour comparer la performance de différents meubles de même type, mais de marque différente (voir certification EUROVENT). Dans le cadre d’un dimensionnement, les bureaux d’étude ou fabricants s’appuient sur ces valeurs.

Évaluer

Pour en savoir plus sur l’évaluation du bilan énergétique des meubles frigorifiques, cliquez ici !

Pour se rendre bien compte de l’impact de son choix de meuble frigorifique en froid positif et négatif, il est nécessaire de rappeler brièvement les différents apports qui influencent les consommations énergétiques des meubles, à savoir :

  • les apports externes;
  • les apports internes.

Apports externes

Les agressions externes représentent une bonne partie des apports thermiques. Elles sont dues aux conditions d’ambiance (température et humidité) des zones de vente entourant les meubles.

On retrouve principalement :

  • les apports de chaleur par les parois (convection de surface et conduction au travers des parois);
  • les apports de chaleur par les ouvertures libres via ou pas le rideau d’air (induction de l’air de l’ambiance);
  • les apports de chaleur par rayonnement des parois de l’ambiance avec celle du meuble.

Apports internes

Pour maintenir le meuble à température et dans des bonnes conditions de fonctionnement ainsi que pour rendre les denrées attrayantes, des apports internes sont produits.
On retrouve principalement :

  • les apports de chaleur par l’éclairage ;
  • les apports de chaleur par l’intégration des moteurs des ventilateurs dans le réseau de distribution d’air du meuble (le moteur chauffe);
  • les apports de chaleur des cordons chauffants ;
  • les apports de chaleur ponctuels par les systèmes de dégivrage .

Évaluation théorique des consommations journalières

L’évaluation théorique du bilan énergétique journalier prend en compte les modifications de régime des apports thermiques tels que l’éclairage pendant la journée, la réduction de l’induction lors de la mise en place du rideau de nuit après la fermeture du magasin, les dégivrages, …, sur une période de 24 heures. Cette période est la même que celle utilisée par ouverture d'une nouvelle fenêtre ! EUROVENT pour caractériser les meubles frigorifiques.

Meuble frigorifique vertical positif : bilan énergétique journalier.

Meuble frigorifique négatif : bilan énergétique journalier.

EUROVENT ouverture d'une nouvelle fenêtre ! site

Les certifications énergétiques sont en général des initiatives volontaires de la part des constructeurs pour permettre aux bureaux d’études, fournisseurs et utilisateurs de choisir correctement leurs équipements en comparant des pommes avec des pommes dans le cadre d’une concurrence saine. Une certification est accordée à un fabricant lorsque l’équipement testé selon un protocole de mesure préétabli, identique pour tous les équipements de la même famille et basé sur les normes EN en vigueur.

Caractéristiques certifiées

Logo Eurovent
Dans le domaine de l’HVACR (Heating Ventilation Air Conditioning and Refrigeration), une certification qui donne une bonne garantie de qualité notamment au niveau énergétique est EUROVENT. Les exigences des fabricants, à savoir la puissance, la consommation d’énergie et le niveau sonore sont correctement évalués dans le cadre de la demande de certification, et ce, conformément aux normes EN en vigueur.

Pour les meubles frigorifiques, la certification EUROVENT porte plus particulièrement sur les caractéristiques de performances énergétiques suivantes :

  • la consommation d’énergie électrique de réfrigération REC (du groupe de froid) en [kWh/j];
  • la consommation d’énergie électrique directe DEC (avec 12 heures d’éclairage) en  [kWh/j]. Attention que pour les meubles à groupe de condensation incorporé, DEC est égale à la somme de toutes les énergies électriques consommées par le meuble frigorifique incluant l’énergie du compresseur ;
  • la consommation d’énergie électrique totale TEC en [kWh/j], avec :
    • TEC pour les meubles à groupe de condensation séparé = REC + DEC ;
    • TEC pour les meubles à groupe de condensation incorporé = DEC.

Évaluer

Pour en savoir plus sur l’évaluation des performances énergétiques des meubles frigorifiques ouverts, cliquez ici !

Évaluer

Pour en savoir plus sur l’évaluation des performances énergétiques des meubles frigorifiques fermés, cliquez ici !

Valeurs européennes moyennes TEC / TDA

Le tableau ci-dessous donne un exemple des valeurs moyennes des consommations pour le marché européen. Les valeurs ont été collectées et moyennées par le groupe WG14 d’Eurovent / Cecomaf sur la base des chiffres fournis par les fabricants et l’expérience terrain.

Les valeurs ont été établies pour les classes de température des paquets M définies en laboratoire :

Famille de meubles Classe de température du meuble (classe de l’ambiance + denrée) Moyenne européenne TEC /TDA [kWh/jour.m²]
Pour meubles à groupe de condensation incorporé
IHC1, IHC2, IHC3, IHC4 3H2 8,2
3H2 9,6
IVC1, IVC2, (IVC3) 3H2 17,3
3H2 21,0
IVC4 3M1 13,9
IHF1, IHF3, IHF4 3L3 21,5
3L1 36,0
IHF5, IHF6 3L1 17,8
IVF4 3L1 30,5
IYF1, IYF2, IYF3, IYF4 3L3 32,3
IYM6 3H2/3L1 25,3
Pour meubles à groupe de condensation séparé (à groupe extérieur)
RHC1 3H 6,2
RHC1 3M2 6,7
RHC3, RHC4 3H 5,5
RHC3, RHC4 3M2 5,8
RVC1, RVC2 3H 10,1
RVC1, RVC2 3M2 12,3
RVC1, RVC2 3M1 13,4
RVC3 3H 13,8
RHF3, RHF4 3L3 13
RVF4 3L1 28,5
RVF1 3L3 29
  • H = horizontal
  • V= vertical
  • Y = combiné
  • C = réfrigéré
  • F = surgelé
  • M = multi-température
  • A = assisté
  • S = libre service
  • R = groupe de condensation séparé
  • I = groupe de condensation incorporé

Source EUROVENT.

Consommation énergétique certifiée

Actuellement, la plupart des constructeurs, comme le montre le chapitre précédent, se fient aux résultats donnés par la certification EUROVENT. La méthode d’essai est très précise et permet, entre autres, de déterminer :

  • la qualité du meuble pour maintenir les températures escomptées à l’intérieur du volume utile de chargement ;
  • les consommations énergétiques globales.

Les essais sont réalisés dans des conditions de températures et d’humidité précises.

Exemple.

Un meuble RVC1 travaillant dans une classe de température 3H2 signifie que :

  • le type d’application est 1; à savoir : Réfrigéré, semi-vertical
  • la température et l’humidité de l’ambiance dans laquelle est plongé le meuble est :
Classes de climat des chambres test Température sèche [°C] Humidité relative [%] Point de rosée [°C] Humidité absolue [gd’eau/kgair sec]
0 20 50 9,3 7,3
1 16 80 12,6 9,1
2 22 65 15,2 10,8
3 25 60 16,7 12
4 30 55 20 14,8
5 27 70 21,1 15,8
6 40 40 23,9 18,8
7 35 75 30 27,3
8 23,9 55 14,3 10,2
  • les températures souhaitées au niveau des denrées sont :
Classe de température des paquets tests La plus haute température du paquet test le plus chaud doit être < [°C] La plus basse température du paquet test le plus froid doit être > [°C] La plus basse température du paquet test le plus chaud doit être < [°C]
L1 -15 -18
L2 -12 -18
L3 -12 -15
M1 5 -1
M2 7 -1
H1 10 +1
H2 10 -1
  • pour un type de meuble précis, on détermine la consommation énergétique moyenne :
Famille de meubles Classe de température du meuble (classe de l’ambiance + denrée) Moyenne européenne TEC /TDA [kWh/jour.m²]
Pour meubles à groupe de condensation séparé
RVC1, RVC2 3H 10,1
  • H = horizontal
  • V= vertical
  • Y = combiné
  • C = réfrigéré
  • F = surgelé
  • M = multi-température
  • A = assisté
  • S = libre service
  • R = groupe de condensation séparé
  • I = groupe de condensation incorporé

Source EUROVENT.

La valeur de 10,1 [kWh/jour.m²] est donc une consommation moyenne établie pour l’ensemble des meubles verticaux positifs à groupe de froid séparé et à étagères.

Lorsqu’on analyse de plus près un cas spécifique de meuble, EUROVENT donne les valeurs suivantes pour un RCV1 3H2 :

Modèle Réfrigérant Agencement interne Nombre d’étagères Rideau de nuit DEC pour 12 heures d’éclairage [kWh/jour] REC [kWh/jour] Surface totale d’exposition

TDA [m²]

TEC/TDA [kWh/jour.m²]
R404A TNLS (ou étagères horizontales non éclairées 1 ou 2 non 6,46 27,7 2,73 12,5

Sachant que ce type de meuble a une ouverture TDA de 2,73 [m²] pour une longueur L de 2,95 [m], on peut évaluer la puissance moyenne absorbée par le meuble. Soit :

Pmoyen = TEC x (TDA / L) / 24 [kW/ml] (où ml = mètre linéaire)

Pmoyen = 12,5 [kWh/jour.m²] x (2,73 [m²] / 2,1 [m]) / 24 [h/jour]

Pmoyen = 0,670 [kW/ml]

Tout ceci signifie que les essais aboutissant à une certification du meuble frigorifique sont réalisés dans des conditions d’ambiance tout à fait particulières. Cette certification est naturellement nécessaire pour permettre aux bureaux d’études en technique spéciale ou au maître d’ouvrage de pouvoir comparer les meubles de même classe ou de même famille ensemble. Les résultats des mesures des consommations énergétiques sont des moyennes, mais ne représentent pas les consommations réelles en fonction des conditions ambiantes de température et d’humidité variables à l’intérieur du commerce.


Puissance frigorifique nécessaire

Une fois le choix des meubles effectué, on peut déterminer assez aisément par les catalogues la puissance frigorifique nécessaire pour son application. Cette puissance conditionnera la valeur de la puissance de l’évaporateur et naturellement celle du compresseur associé.

Exemple.

Un commerçant aimerait investir dans un meuble frigorifique vertical ouvert pour une application en froid positif. Un catalogue de fabricant propose différentes longueurs disponibles pour ce type d’application. La proposition suivante fait l’affaire du commerçant : 3H1 MNLS L250.

Puissance

Classe 3 – 25°C / 60 % d’humidité relative
Type de meuble Classe de conservation Aménagements internes Température d’évaporation [°C] W/m Puissance frigorifique [W]
L125* …. L250 L375
3M2 HLNS -8 1 245 1 555 3 110 5 495
3H2 -4 1 120 1 400 2 810 4 950
3M1 HLNS -9 1 695 2 120 4 240 6 355
3M2 HLNS -6 1 460 1 825 3 650 5 480
MNLS -8 1 715 2 145 4 285 6 425
3H1 HLNS -3 1 380 1 720 3 450 5 170
MNLS -4 1 535 1 915 3 840 5 755
  • HNLS = avec étagères non éclairées
  • MNLS = avec miroir et étagères non éclairées

* Longueur de meuble [L125 = 125 cm]

Source Constan.

On se rend compte que la puissance frigorifique spécifique du meuble retenu est de 1 535 [W/m].

Remarque : énergie

Dans le cadre d’une campagne de dimensionnement énergétique, on prévoit de déterminer, sur base de la puissance spécifique donnée dans le catalogue, la consommation énergétique journalière [kWh/jour.m²] du meuble et de la comparer à la valeur moyenne européenne TEC/TDA pour le même type de meuble. Le site d’EUROVENT donne pour ce type de meuble une consommation TEC/TDA de 9,05 [kWh/jour.m²] à comparer à la valeur européenne moyenne TEC/TDA qui est de 13,8 [kWh/jour.m²]. A première vue, ce type de meuble répond correctement aux critères énergétiques donnés par EUROVENT.

Attention qu’il est important de connaître la puissance des meubles éclairage compris. En effet, le calcul du TEC/TDA tient compte de la consommation de l’éclairage à raison de 12 heures par jour. Or dans l’exemple pris, les consommations d’éclairage sous les étagères ne sont pas reprises. Le constructeur renseigne :

  • une puissance supplémentaire à ajouter à la puissance froid de 30 [W/ml]. Pour ce type de meuble, si on considère 5 étagères, le supplément de puissance dû à l’éclairage est de 30 [W/ml] x 5 = 150 [W/ml]. Le catalogue nous renseigne une hauteur de meuble de 1,8 [m]. La valeur de la consommation pour 12 heures de fonctionnement par jour de l’éclairage est alors de :

TEC / TDA = ((150 [W/ml] x 12 [heures/jour]) / 1,8 [m]) + 9,05 [kWh/m².jour]

TEC / TDA = 1 000 [Wh/m².jour] + 9,05 [kWh/m².jour]

TEC / TDA = 10,05 [kWh/m².jour]

On constate que le rapport TEC/TDA du meuble considéré reste toujours en deçà de la valeur de 13,8 [kWh/jour.m²] proposée par EUROVENT.

  • une température d’évaporation à abaisser en fonction de la présence ou pas d’éclairage. pour chaque lampe présente sous les étagères, il faut abaisser la température d’évaporation de l’ordre de 0,5°C avec une limite basse de -10°C.

Puissance spécifique pour différents types de meubles

Suivant le type de meuble frigorifique, la puissance spécifique est la puissance frigorifique à l’évaporateur par mètre linéaire de meuble, unité souvent rencontrée dans le froid alimentaire.

Comme on l’a vu plus haut, une manière souvent utilisée pour classifier les meubles frigorifiques, est de se baser sur la puissance frigorifique spécifique ou la puissance frigorifique par mètre linéaire ou par module de porte en fonction des conditions classiques définies par EUROVENT (température d’ambiance de 25°C et une humidité relative de 60 %).

Meuble frigorifique à applications positives

Famille de meubles Surface d’exposition [m²/ml] Température de service [°C] Puissance frigorifique spécifique [kW/ml]
Vitrine service par le personnel en convection naturelle 0,8 2 à 4 0,2 à 0,25
Vitrine service par le personnel en convection forcée 0,25 à 0,28
Comptoir horizontal self-service en convection 0,9 0 à 2 0,4 à 0,43
Meuble vertical self-service en convection forcée 1,3 4 à 6 1,2 à 1,3

Meuble frigorifique à applications négatives

Famille de meubles Type de rideau d’air Surface d’exposition [m²/ml] ou [m²/porte] Température de service [°C] Puissance frigorifique spécifique [kW/ml]
Gondole self-service en convection forcée horizontale, asymétrique, laminaire 0,8 -18 à -20 0,42 à 0,45
Vitrine service par le personnel en convection forcée horizontal, asymétrique, laminaire 1,1 -23 à -25 0,63 à 0,67
Meuble vertical self-service en convection verticale, à 3 flux parallèles, turbulents 1,1 -18 à -20 1,9 à 2,1
Meuble vertical self-service en convection forcée portes vitrées, rideau d’air interne turbulent 0,84 -23 à -25 0,8 0,86

Variation des paramètres de dimensionnement par rapport à la classe d’ambiance

Cas d’un type de meuble vertical positif

La puissance frigorifique et la température d’évaporation varient en fonction de la température et du taux d’humidité de l’ambiance dans laquelle les meubles seront placés (classe d’ambiance). En général, la classe d’ambiance qui est prise comme référence pour les essais en laboratoire (EUROVENT utilise cette classe) est la classe 3 (25°C, 60 % d’humidité relative).

Exemple.

Le tableau suivant montre les variations de puissance et de température et sert de référence au dimensionnement dans ce cas-ci des meubles verticaux positifs ouverts.

Illustration meubles verticaux positifs ouverts.. Φ0: puissance frigorifique en classe 3

T0 : température d’évaporation en classe 3

Tmin : température de service en classe 3

Classe d’ambiance Température d’ambiance Humidité d’ambiance Facteur de correction de la puissance frigorifique Correction de la température d’évaporation
[°C] [% HR]
2 22 65 Φ0x 0,88 T0+ 1,5°C Tmin+ 1,5°C
3 25 60 Référence
4 30 55 Φ0x 1,22 T0– 2,5°C Tmin– 2,5°C
6 27 70

Source Constan.

Cas d’un type de meuble mixte négatif

La puissance frigorifique et le nombre de dégivrages varient en fonction de la température et du taux d’humidité de l’ambiance dans laquelle les meubles seront placés (classe d’ambiance). Tout comme les meubles à applications positives, la classe d’ambiance qui est prise comme référence pour les essais en laboratoire (EUROVENT utilise cette classe) est la classe 3 (25°C, 60 % d’humidité relative).

Exemple.

Le tableau suivant montre les variations et de nombre de dégivrages et sert de référence au dimensionnement dans ce cas-ci des meubles verticaux mixtes négatifs.

Illustration meubles verticaux mixtes négatifs.

Φ0: puissance frigorifique en classe 3

T0 : température d’évaporation en classe 3

Tmin : température de service en classe 3

Classe d’ambiance Température d’ambiance Humidité d’ambiance Facteur de correction de la puissance frigorifique Correction de la température d’évaporation Dégivrage
[°C] [% HR]
2 22 65 Φ0x 0,96 Référence 1
3 25 60 Référence 1
4 30 55 Φ0x 1,2 2
6 27 70

 Source Constan.

 


Le choix des portes des meubles fermés

Si vos optez pour un choix de meuble frigorifique fermé, les problèmes de conservation des denrées et de consommation énergétique se simplifient énormément. Beaucoup diront que c’est aux dépens de la vente, de l’ergonomie, de la convivialité, … Il n’empêche, par une campagne de sensibilisation bien orchestrée, la réduction des consommations énergétiques couplée avec un accroissement de la garantie de qualité de conservation des denrées, dues au choix de meubles fermés peut se révéler être un outil marketing « puissant ».

La sensibilisation à l’énergie serait-elle une force de vente ? Tout pourrait porter à y croire.

Les fermetures vitrées permettent de voir les denrées. Mais il faut être correct, le rapport entre les denrées et le client n’est pas aussi puissant que lorsqu’on choisit un meuble ouvert (besoin de « toucher » très facilement les denrées).

Illustration meuble frigorifique fermé.

Meuble vertical fermé self-service.

Pour les convaincus, le choix d’un meuble équipé d’une porte vitrée, même pour les applications positives, doit prendre en compte la qualité du vitrage et des châssis de porte dans le sens où :

  • ils garantissent le confinement de l »espace froid;
  • ils maîtrisent les problèmes de condensation au niveau des points froids.

Les vitrages

Les vitrages sont choisis pour éviter à la fois la condensation interne et externe, et réduire les apports externes de l’ambiance de vente par radiation principalement.

Plusieurs types de vitrage existent sur le marché. Par exemple, un fabricant de verre propose le vitrage suivant :

  • Le vitrage est double;
  • la face 2 est une couche à la fois basse émissivité et soumise à une tension DC (courant continu) permettant de réduire les risques de condensation sur la face 1;
  • attention que le fabricant n’aborde pas le risque de condensation sur la face 4 du vitrage lors de l’ouverture de la porte. Une hypothèse peut être émise en supposant que par convection la couche chauffante transmette sa chaleur à la face 3 et ensuite par conduction à la face 4.

On veillera donc à se renseigner :

  • quelles sont les consommations énergétiques des couches conductrices des vitrages ?
  • l’application de la tension aux bornes de la couche est-elle permanente ou peut-elle être interrompue lorsque la porte reste fermée en certains temps ?

En effet, tout apport prolongé de chaleur se répercute sur le bilan thermique et énergétique du meuble favorisant naturellement la surconsommation de la machine frigorifique.

Répartition des températures sur la face 2 du vitrage.

  

Connexions des alimentations des couches conductrices.

Source : Schott.

Les châssis

Les châssis sont aussi soumis au risque de condensation et de gel pour les meubles à application négative; raison pour laquelle les châssis sont équipés, eux aussi, de cordons chauffants évitant le blocage des portes au niveau des joints de porte. Il est intéressant de se renseigner si l’alimentation électrique des cordons chauffants est permanente ou pas.

Photo cordons chauffants de châssis.

Alimentation cordon chauffant.

Source Constan.


Le choix du type de rideau d’air des meubles ouverts

Comme souvent mentionné le point faible des meubles frigorifiques ouverts est naturellement la difficulté de maintenir une température interne basse au sein du meuble par rapport à une ambiance des zones de vente de l’ordre de 20°C, soit un écart de température pouvant aller jusqu’à 50°C voire plus dans certaines conditions.

       Illustration rideau d'air des meubles ouverts.

Ecart de température au niveau des meubles frigorifiques positif et négatif.

Si la décision finale ne sait pas échapper au choix d’un meuble frigorifique ouvert, il faudra prévoir en base un rideau d’air performant surtout pour les meubles verticaux qui sont beaucoup plus sensibles aux variations du taux d’induction de l’air ambiant.

Évaluer

Pour en savoir plus sur l’évaluation des performances énergétiques du rideau d’air, cliquez ici !

Le choix du type de rideau d’air est principalement fonction de :

  • la position de l’ouverture du meuble (horizontale, verticale, inclinée, …);
  • la longueur de l’ouverture;
  • l’écart de température

Les fabricants proposent généralement le choix entre un rideau d’air simple ou double tout en sachant que le rideau d’air double augmente le nombre de ventilateurs dans le meuble afin de maintenir un taux d’induction correct (un taux d’induction souvent rencontré dans la pratique se situe aux alentours des 0,1 à 0,2).

Exemple.

Le tableau suivant montre, pour un type de meuble vertical positif ouvert, les caractéristiques des ventilateurs dimensionnés pour assurer la stabilité du ou des rideaux d’air.

Illustration meuble vertical positif ouvert.

Standard

Nombre de rideaux d’air Longueur du meuble [cm] Nombre de ventilateurs Puissance des ventilateurs [W]
1 125 2 76
188 2 76
250 3 114
375 4 152
2 125 3 114
188 5 190
250 6 228
375 9 342

Source Constan.

Suivant l’exemple ci-dessus, on constate que le choix du type de rideau d’air n’est donc pas anodin puisque dans certains cas la puissance des ventilateurs est plus que doublé. À noter qu’en principe la puissance frigorifique de l’évaporateur ne doit pas être renforcée puisque les ventilateurs supplémentaires sont placés en dehors de l’enceinte froide du meuble et ne participent donc pas à l’augmentation des apports internes.

Selon les dires d’un installateur, l’efficacité des doubles rideaux n’est pas probante. Néanmoins, la prudence nécessite que lors d’un projet d’acquisition de meubles frigorifiques le commerçant demande des précisions quant à la puissance frigorifique du meuble par rapport à la consommation électrique supplémentaire des ventilateurs du second rideau.

Exemple.

Le tableau suivant montre, pour un type de meuble vertical positif ouvert, les puissances frigorifiques spécifiques pour un simple ou un double rideau d’air.

Classe 3 – 25°C / 60 % d’humidité relative
Type de meuble Classe de conservation Aménagements internes Température d’évaporation [°C] Puissance froid spécifique [W/m]
rideau simple 3M2

HLNS

-8

1 390
3H2

-4

1 200
rideau double 3M1 HLNS -9 1 630
3M2 HLNS -6 1 370
MNLS -8 1 610
3H1 HLNS -3 1 295
MNLS -4 1 445
  • HNLS = avec étagères non éclairées
  • MNLS = avec miroir et étagères non éclairées

Source Constan.

On constate que le rideau double nécessite une puissance frigorifique plus importante de l’ordre de 15 % dans ce cas-ci.


Le choix du système de dégivrage

Quand on parle de système de dégivrage, on parle surtout d’un système d’optimisation du fonctionnement du meuble frigorifique  par rapport au dégivrage nécessaire :

  • dans le cas des applications positives, un régulateur intégré au meuble permettra l’optimisation du temps de coupure de l’alimentation de l’évaporateur;
  • dans le cas des applications négatives, le même régulateur permettra d’optimiser le temps d’alimentation de la résistance électrique.

Des techniques comme la détection de la fin du palier de fusion de la glace ou du givre par exemple, permettent de réduire au maximum ce temps de dégivrage.


Le choix de la protection de nuit des meubles ouverts

L’ouverture des meubles frigorifiques sur la zone de vente est un enjeu majeur sur la gestion à la fois thermique et énergétique du meuble. Tout serait beaucoup plus simple si ces ouvertures étaient fermées par des portes isolées. Seulement, comme maintes fois signalées, l’ouverture libre des meubles est un argument visiblement de poids pour la vente. Les différentes parades pour limiter les apports par les ouvertures sont reprises dans le tableau suivant en s’inspirant de la littérature (Meubles et vitrines frigorifiques, G. Rigot; PYC édition; 2000) :

Type de meuble Type d’application Période de jour période de nuit Réduction des consommations énergétiques
Horizontal négative rideau d’air rideau de nuit 8 à 15 %
couvercle simple 15 à 30 %
couvercle isolé 25 à 45 %
Vertical positif rideau d’air rideau de nuit 12 à 30 %
porte vitrée
négatif porte vitrée porte vitrée 25 à 30 %

Rideau de nuit

En partant du principe que pour certaines applications, l’ouverture du meuble doit rester libre, les constructeurs de meubles ont développé la protection de nuit ou « rideau de nuit ».

Photo rideau de nuit".

Le fait de tirer le rideau de nuit à la fermeture du magasin transforme, en simplifiant, les apports par induction et rayonnement au travers du rideau d’air du meuble en apports par pénétration au travers d’une paroi mince ; la face interne de la paroi étant fortement ventilée (résistance thermique d’échange superficiel Ri de l’ordre de 0,43 m².K/W) et la paroi externe peu ventilée (résistance thermique d’échange superficiel Re de l’ordre de 0,125 m².K/W). Pour une épaisseur de rideau faible (rideau synthétique l’épaisseur e de l’ordre de 3 mm) la résistance thermique du rideau est faible (R1 = e/λ de l’ordre de 1). La résistance thermique totale de la paroi RT est donnée par la relation suivante :

RT = Re + R1 + Ri [m².K/W]

RT = 0,043 + 0.125 + faible

RT ~ 0,125 [m².K/W]

Le coefficient de transmise thermique global U de la paroi s’exprime par la relation suivante :

U = 1 / RT

U = 1 / 0,125

U ~ 8 à 10  [W/m².K]

La simulation du passage d’un régime d’induction de journée à un régime par pénétration au travers du rideau de nuit en laissant l’éclairage allumé la nuit donne les résultats suivants :Graphique de simulation du passage d'un régime d'induction de journée.

On constate que la réduction des apports par induction est de l’ordre de 37 %. Des monitorings effectués dans le cadre de campagnes de mesures énergétiques menées par Enertech pour l’Ademe en France ont montré que la principale consommation de nuit des meubles frigorifiques ouverts positifs était due à l’induction. En effet, les meubles, à l’époque du monitoring n’étaient pas équipés de rideau de nuit. Leurs estimations de réduction de la consommation énergétique de nuit avec la pose de « couverture de nuit » était de l’ordre de :

  • 35 % en période chaude;
  • 28 % en période froide.

Ces informations recoupent d’autres résultats de campagne de mesure des consommations énergétiques.


Le choix de l’éclairage

Photo éclairage meubles frigorifiques.

L’éclairage intensif des meubles est-il un critère de vente ?

On sait aussi que les apports internes comme l »éclairage régissent la puissance frigorifique nécessaire au maintien des températures au sein des meubles. La présence d’éclairage au sein du meuble non seulement représente une consommation électrique en soi mais nuit aussi à la consommation énergétique des groupes de production de froid. En simplifiant, le commerçant passe deux fois à la caisse. Pour tant soi peu que l’efficacité de la production de froid ne soit pas optimisée, sa consommation énergétique sera double.

Éclairage de tablette au sein du meuble.

Le placement d’éclairage dans l’enceinte même réfrigérée est une mauvaise chose en soi. En effet, la plupart du temps, les constructeurs de meubles frigorifiques utilisent des lampes fluorescentes. Le problème est que ce type de lampes a une basse efficacité lumineuse aux basses températures comme le montre la figure suivante :

Efficacité lumineuse en fonction de la température ambiante.

Composition fronton.

Extrait d’une étude de cas

En réalisant le monitoring des consommations hebdomadaires essentiellement électriques des installations de froid alimentaire, on peut tout de suite évaluer l’influence de l’éclairage des meubles sur leur bilan énergétique.

L’étude de cas réalisée par Enertech pour l’Ademe (France) sur un supermarché de 1 500 m² nous enseigne un certain nombre de choses par rapport à cet éclairage.

Les courbes hebdomadaires et journalières nous informent que les consommations de froid positif sont principalement influencées ici par l’éclairage et le climat. En effet, on voit que l’allumage de l’éclairage perturbe nettement la production de froid. Les fronts raides descendant et montant sur le temps de midi montrent cette influence. Il faut toutefois rester prudent car on voit nettement que le climat intervient (surtout en période chaude comme c’est le cas ici).

La simulation dynamique réalisée au moyen de TRNSYS nous montre que l’éclairage est responsable de l’augmentation des consommations énergétique à hauteur de ~10 %.

Actuellement, certaines grandes surfaces effectuent des essais afin de voir quel est l’impact de la suppression de l’éclairage dans les meubles frigorifiques sur la vente. Les résultats ne sont pas encore disponibles.Les luminaires placés en dehors de l’enceinte réfrigérée, quant à eux, sont plus efficaces dans le sens où ils n’interviennent pas comme apports internes dans le bilan frigorifique du meuble mais en plus fonctionnent dans une plage de température où le flux lumineux est meilleur.

Check-list d’un cahier des charges [isolation de la toiture plate]

La rénovation de la toiture plate est programmée. Voici les points essentiels que doit contenir le cahier des charges.
On sera attentif à 4 aspects du projet :

Le choix des techniques

Exigences

Pour en savoir plus

L’isolant doit idéalment se trouver du côté extérieur par rapport au support. (Pas de toiture froide ! ) (l’isolation à l’intérieur de la structure est délicate à réaliser).

Concevoir

Préférer le lestage aux autres formes de protection, si la pente et la capacité portante du support le permettent.

Concevoir

Toujours protéger la membrane d’étanchéité des rayonnements UV, sauf si celle-ci les supporte et ne risque pas de provoquer la corrosion des accessoires métalliques situés en aval.

Concevoir

Préférer un système d’étanchéité bicouche à un système monocouche, surtout si les conséquences d’une infiltration risquent d’être graves.

Concevoir

Préférer la toiture chaude à la toiture inversée.

Concevoir

Si la membrane d’étanchéité existante est neuve, envisager la toiture inversée ou combinée.

Concevoir

Une toiture inversée doit être lestée, il faut vérifier la capacité portante du support.

Concevoir

  • La pente minimale pour une toiture chaude doit être de 2 cm/m.
  • La pente minimale pour une toiture inversée doit être de 3 cm/m.
  • La pente maximale pour une toiture lestée au gravier est de 5 cm/m.
  • La pente maximale pour une étanchéité collée à la colle bitumineuse à froid est de 15 cm/m.
  • La pente d’une toiture jardin est de préférence nulle.

Concevoir

Vérifier si un pare-vapeur est nécessaire, et dans ce cas, le prescrire.

Concevoir

Compartimenter l’isolant d’une toiture chaude, sauf ci celui-ci est du verre cellulaire.

Concevoir

Réduire les ponts thermiques.

Concevoir


Le choix des matériaux

Exigences

Pour en savoir plus

Prescrire des matériaux agréés BENOR ou bénéficiant d’un agrément technique UBAtc.

Réglementations

Seule la mousse de polystyrène extrudé convient actuellement pour l’isolation thermique des toitures inversées.

Concevoir

Si un pare-vapeur est nécessaire dans une toiture chaude, il sera de même nature que la membrane d’étanchéité.

Concevoir

Utiliser de la colle à froid plutôt que coller au bitume chaud ou plutôt que souder à la flamme, lorsqu’il y a des risques importants en cas d’incendie.

Concevoir

Préférer l’usage du verre cellulaire complètement étanche à la vapeur, pour l’isolation thermique de locaux à température élevée et forte humidité relative (Classe de climat IV).

Techniques

Ne pas poser d’isolant à base de polystyrène sous une membrane d’étanchéité bitumineuse.

Concevoir

Préférer les membranes bitumineuses aux membranes synthétiques si on ne dispose pas d’un personnel de pose spécialisé et qualifié.

Concevoir

Choisir un isolant dont la résistance mécanique est compatible avec les contraintes d’usage de la toiture.

Concevoir


Le dimensionnement des matériaux

Exigences

Pour en savoir plus

Pour être sûr d’obtenir un coefficient de conductivité thermique U répondant aux exigences de la réglementation, il faut calculer l’épaisseur minimale nécessaire en fonction du type d’isolant choisi.

Concevoir

Pour que le pare-vapeur soit efficace, il faut que sa résistance à la diffusion de vapeur µd ait une longueur minimale en fonction du type d’isolant, du type de support et de la classe de climat intérieur des locaux couverts.

 Concevoir 

Le système d’accrochage du complexe de toiture (isolation-étanchéité) doit être dimensionné en fonction de l’action du vent.
L’action du vent est plus importante le long des rives et aux angles de la toiture plate.
Le poids du lestage doit atteindre au moins 1.5 fois l’action du vent.
La résistance utile des fixations et des colles est indiquée par les fabricants sur bases d’essais réalisés suivant les directives UEAtc.

 Concevoir 


Les recommandations de bonne pratique

Exigences

Pour en savoir plus

Faire respecter les codes de bonne pratique, les normes, les prescriptions des fabricants et les prescriptions des agréments techniques UBAtc.

Réglementations

Vérifier le taux d’humidité du support avant réalisation et étudier les possibilités de séchage.

Évaluer

Soigner la continuité de l’isolant et sa pose.

Concevoir

Ne jamais enfermer d’humidité dans l’isolant de la toiture chaude.

Evaluer

Vérifier la compatibilité des matériaux entre eux.

Concevoir

Ne pas surchauffer les matériaux (isolant, étanchéité, métaux, …) qui perdent leurs propriétés ou s’enflamment.

Concevoir

Poser correctement un pare-vapeur continu.

Concevoir

Exiger et vérifier l’absence totale de courant d’air à travers la toiture.

Concevoir

Toujours souder les joints des membranes d’étanchéité bitumineuse.

Concevoir

Protéger les étanchéités des agressions mécaniques.

Concevoir

Prévoir un contrat d’entretien périodique lié à la garantie décennale.

Améliorer

Isolation dans la coulisse

Isolation dans la coulisse


En conception : le mur creux à remplissage intégral

Lors du montage du mur creux à remplissage intégral, les panneaux isolants doivent être placés de manière à être jointifs entre eux mais également avec les châssis de fenêtres, avec les fondations et avec la toiture.

Le mode de construction traditionnellement utilisé en Belgique consiste à élever les maçonneries par tronçons en commençant par le parement, puis par le mur intérieur et en incluant l’isolant au fur et à mesure. Cette technique permet de dresser le mur extérieur par tronçon à partir des dalles aux différents niveaux du bâtiment et permet donc l’économie d’un échafaudage placé à l’extérieur pour le montage du parement (*).

Cette technique de construction permet de réaliser un travail correct du point de vue thermique. En effet, de par le fait que la coulisse est « bourrée » d’isolant, le remplissage intégral du creux d’un mur souffre peu des erreurs de pose; il faudrait vraiment une (mauvaise) volonté délibérée de l’entrepreneur pour que des erreurs de mise en œuvre puissent avoir une influence réelle sur le coefficient de transmission thermique réel du mur (déchets de mortiers laissés entre les panneaux, absence de protection contre les pluies en cours de chantiers, etc.).

Cependant, aucun contrôle visuel de la qualité d’exécution de l’isolation n’est possible avec cette technique.

Un contrôle de la qualité de l’isolation, de sa fixation, ainsi qu’un contrôle des crochets de liaison et des membranes d’étanchéité qui doivent être placées en attente n’est possible que lorsque la paroi est réalisée de la manière suivante :

  • on construit d’abord le mur porteur intérieur sur toute sa hauteur,
  • on y applique et fixe le matériau isolant,
  • on construit enfin l’ensemble du parement.

(Cette méthode est, par ailleurs, la seule acceptable pour le mur creux à remplissage partiel).

(*) L’économie d’échafaudage dépend de l’organisation de l’entrepreneur. Certains entrepreneurs disposent de leurs propres échafaudages, d’autres doivent les louer. En principe, l’échafaudage est, de toute façon, nécessaire par la suite pour le jointoyage a posteriori de la façade. Mais cet échafaudage peut être plus léger. Pour diverses raisons, le jointoiement au fur et à mesure du montage du mur est à déconseiller au profit du jointoiement ultérieur, et ce, d’autant plus dans le cas d’un mur isolé pour lequel des exigences plus strictes sont formulées quant à la qualité des briques et du mortier mis en œuvre (« Eclatement de joints de mortier ». Revue CSTC n°1, janvier-mars 1986. Bruxelles.).


En conception : le mur creux à remplissage partiel

Lors du montage du mur creux à remplissage partiel, les panneaux isolants doivent être placés de manière à être jointifs entre eux mais également avec les châssis de fenêtres, avec les fondations et avec la toiture.

Pour réaliser correctement le remplissage partiel de la coulisse, on procède de la manière suivante :

  • on construit d’abord le mur porteur intérieur sur toute sa hauteur,
  • on y applique et fixe le matériau isolant,
  • on construit enfin l’ensemble du parement.

Il faut, non seulement, que les panneaux soient correctement pressés l’un contre l’autre mais aussi que ces panneaux soient plaqués contre le mur intérieur grâce à des ancrages spéciaux.

Une pose négligée de l’isolant dans la cadre d’un remplissage partiel du creux détériore fortement le coefficient de transmission thermique réel d’une paroi. En effet, l’espace disponible dans le creux du mur autorise, en cas de pose négligée, une rotation spontanée de l’air autour des panneaux, même lorsque ces derniers sont quasi jointifs dans le plan vertical. Un espace de 5 mm suffit à obtenir cet effet néfaste.

Pour illustrer ce propos, voici des résultats de mesures de coefficients de transmission thermique (U) moyens réels, effectués par la KUL, sur des murs creux où la mise en œuvre de l’isolant a été soignée et sur les mêmes murs creux où la mise en œuvre a été exécutée sans soin particulier et ce, pour des murs creux isolés avec remplissage partiel.

Uthéorique (W/m²xK) Upratique (W/m²xK)
Pas d’isolant dans le mur creux 1,34 1,35

Remplissage partiel du creux

Pose correcte de l’isolant. 0,42 à 0,49 0,54 à 0,61
Pose déficiente de l’isolant. 0,42 à 0,49 0,99

En conclusion

L’application et la fixation de l’isolant au mur intérieur préalablement à la construction du parement doit tendre à se généraliser sur tous les chantiers. Cette méthode de construction est d’ailleurs recommandée par la norme NBN B 24-401(**).

(**) : « Il est conseillé de maçonner d’abord la feuille intérieure (mur portant) et ensuite la feuille extérieure (parement) pour garantir un bon placement de l’isolation et une exécution des joints sans bavure ».

(**) « Exécution des maçonneries ». IBN. Bruxelles – juin 1981.


En rénovation : l’isolation par injection

Principe

Des mousses obtenues par moussage sur chantier de deux composants sont injectées au moyen d’un pistolet dans la coulisse du mur creux au travers de petits orifices pratiqués dans le mur extérieur. Ces mousses se gélifient en place dans la minute qui suit l’injection. Les orifices sont refermés.

Les différents isolants utilisés sont :

  • la mousse d’urée-formaldéhyde (UF),
  • la mousse de polyuréthanne (PUR),
  • les perles de polystyrène expansé (injectés en même temps qu’une colle).

Avantages

L’isolation thermique s’adapte aux interstices de forme irrégulière.

Inconvénients

La mousse d’urée-formaldéhyde (UF) peut provoquer des allergies chez certaines personnes. Si elle est mise en œuvre, il faut assurer une parfaite étanchéité à l’air de la paroi interne du mur.

La mousse d’urée-formaldéhyde (UF) est légèrement capillaire. Cependant cette légère capillarité ne donne pas obligatoirement lieu à des problèmes, car son retrait important permet à l’eau qui aurait traversé le mur de parement de s’écouler sans atteindre l’isolant.

Le contrôle du remplissage est assez difficile à réaliser (éventuellement par thermographie).

L’injection doit être réalisée prudemment par du personnel formé pour maîtriser les pressions exercées par l’expansion de l’isolant sur les faces internes de la coulisse.


En rénovation : le remplissage par insufflation des isolants en vrac

Principe

Un matériau isolant en vrac est insufflé par une machine dans la coulisse du mur creux, soit par des orifices percés dans l’une des parois, soit par le haut depuis les combles. Les éventuels orifices sont ensuite refermés.

Les différents isolants utilisés sont :

  • la laine minérale (de roche ou de verre) hydrofugée en flocons,
  • des perles de polystyrène expansé,
  • des perles de perlite siliconée.

Avantages

Le produit isolant est mis en place à l’état sec.

Inconvénients

Les isolants en vrac se tassent avec le temps.

Le contrôle du remplissage est assez difficile à réaliser (éventuellement par thermographie).

Échangeur à plaques instantané

Échangeur à plaques instantané


Technologies

Un échangeur instantané à plaques est, par définition, un préparateur d’eau chaude sans capacité de stockage. C’est l’eau du réseau de chauffage (en provenance de la chaudière) qui chauffe l’eau sanitaire dans un serpentin tubulaire, au moment des besoins.

Schéma principe échangeur à plaques instantané.

Les capacités de chauffage sont fabuleuses… pour autant que la chaudière suive !

Exemple.

Pour un débit au primaire de 14 m³/h au régime 90/45°C, on peut réchauffer environ 230 litres par minutes, de 10 à 55°C.

Mais la puissance chaudière doit être de :

14 m³/h x 1,16 kWh/m³ x (90 – 45) = 730 kW !

Soit l’équivalent de la puissance de chauffage de 30 habitations domestiques…

Et l’alimentation hydraulique doit suivre entre la chaudière et l’échangeur.

De plus, la régulation doit être très souple pour suivre instantanément les variations de la demande. De là, l’adjonction fréquente d’un ballon tampon :

Pour résoudre à la fois ce besoin élevé de puissance et cette régulation sensible, on greffe un ballon tampon sur le secondaire de l’installation.

Échangeur extérieur à la chaudière

On rencontre généralement des serpentins tubulaires en cuivre ou des échangeurs à plaques. Ces échangeurs comportent souvent des tôles déflectrices formant chicanes, dispositifs servant à améliorer les échanges des deux circuits d’eau.

Le raccordement se fait sur l’aller du circuit de chauffage, comme tout corps de chauffe.

Échangeur incorporé à la chaudière

Si la capacité de la chambre d’eau est suffisamment importante, on l’utilise parfois comme échangeur de chaleur.

Les branchements sur la chaudière sont alors réalisés de telle façon qu’en hiver, lorsqu’il y a soutirage d’importantes quantités d’eau chaude sanitaire, c’est toute la puissance de la chaudière qui serve au réchauffage de cette eau. On parle de régulation en « eau chaude sanitaire prioritaire ».


Avantages et inconvénients

Les avantages

Les avantages d’une préparation instantanée sont liés à l’absence de stockage :

  • Le faible encombrement.
    C’est un argument-clef si la place disponible est particulièrement réduite.
  • La faible charge au sol.
    C’est un argument si la chaudière est prévue sous toiture.
  • L’absence de pertes par stockage.
    Cet argument tend à devenir négligeable, vu l’isolation poussée des ballons récents.
  • La bonne performance hygiénique.
    L’eau chaude ne stagnant pas dans le préparateur, les risques de propagation de la légionelle sont réduits.
  • Le faible coût d’investissement.
    Cette technique est relativement peu onéreuse à installer.

Les inconvénients

Les inconvénients du préparateur instantané sont plus nombreux :

  • La fluctuation de la température de l’eau au niveau de l’utilisateur.
    Malgré une régulation fine (PID) (à prévoir absolument), on reste limité par le temps de réponse des éléments mécaniques de l’installation qui rend les fluctuations inévitables. Il est déconseillé d’utiliser ce type de système dans un bâtiment ayant un profil de puisage discontinu.
  • Le rendement de production dégradé de la chaudière.
    Avec une chaudière combinée chauffage-ECS, il est indispensable de maintenir la chaudière en permanence à température élevée (min 70°C) pour garantir un temps de réponse minimum lorsqu’une demande apparaît. Ceci interdit une régulation en température glissante des chaudières et n’est donc pas optimum énergétiquement, principalement avec les anciennes chaudières ou même avec des chaudières gaz atmosphériques récentes dont les pertes à l’arrêt sont importantes.
  • Le fonctionnement du brûleur en cycles courts.
    Étant donné l’absence de réservoir tampon, chaque puisage va entraîner la mise en route de l’installation pour des temps très courts. Les temps de fonctionnement du brûleur seront donc brefs, ce qui est défavorable pour le rendement de combustion et la pollution atmosphérique.
  • La puissance élevée du générateur.
    La production instantanée demande généralement une puissance de générateur très importante. Dans le cas d’une production d’ECS combinée au chauffage, il peut être nécessaire de surdimensionner la chaudière uniquement pour l’ECS. Ce qui serait une mauvaise utilisation de l’investissement consenti.
  • La puissance des circulateurs.
    La perte de charge des échangeurs instantanés demande des pompes plus puissantes dont la consommation électrique n’est pas à négliger.
  • L’entartrage.
    La température élevée au niveau des surfaces d’échange conduit à la formation rapide de tartre (inconvénient limité par l’action de la vanne trois voies qui évite que la température au primaire de l’échangeur soit en permanence à la valeur maximale).

Évaluer la qualité du cycle de stérilisation

Évaluer la qualité du cycle de stérilisation


Principe de base

La base de la stérilisation s’appuie sur la qualité extrêmement élevée de ses cycles. En démarrant chaque journée dans le service de stérilisation, les opérateurs, avant de « produire » des charges stérilisées, procèdent à une série de tests de qualité sur les autoclaves :

  • Le test de vide pour s’assurer qu’il n’y a pas d’entrée d’air au niveau des joints des portes, des électro-vannes, de la distribution de vide, … afin d’éviter une contamination extérieure lors des phases de prétraitement et de sèchage.
  • Le test couramment appelé « Bowie & Dick » (charge standard composée de linge difficile à stériliser) permettant d’évaluer la qualité de la vapeur et de son pouvoir stérilisant pendant un cycle réel.

Il est donc nécessaire de disposer de matériels performants et sensibles ainsi des « matières premières » de haute qualité tels que :

  • l’eau osmosée,
  • la vapeur,
  • l’eau adoucie,
  • le vide.

Qualité de la vapeur

Le résultat du processus de stérilisation est très influencé, entre autre, par la qualité de la vapeur produite par le générateur. La production d’une vapeur de qualité irréprochable dépend naturellement de la qualité de l’eau d’alimentation du générateur.

1. Corps indésirables dans la vapeur

Selon certains constructeurs, il est important pour l’efficacité de la vapeur dans le cycle de stérilisation de réduire au maximum les traces :

  • De particules solides tels que les résidus de soudage et de graphite (importance de la mise en œuvre du système), les paillettes de rouille (importance de la maintenance), …
  • De liquides (sauf l’eau naturellement).
  • De gaz tels que l’hydrazine (N2H4: max 0,01 mg/kg de vapeur), l’ammoniac (NH3: max 5 mg/kg de vapeur) et naturellement l’air qui constituent un isolant entre la vapeur et les micro-organismes.
  • D’autres résidus chimiques issus du traitement de l’eau en amont du générateur tels que les sels minéraux (max 1 mg/kg de vapeur).

2. Les condensats de vapeur

L’analyse des condensats de la vapeur donne une idée sur la qualité de la vapeur utilisée dans le cycle et de la quantité de résidus. Selon la norme EN 285: 1996 (Stérilisation, stérilisation à la vapeur d’eau, grands stérilisateurs), les concentrations en résidus ne devraient pas dépasser les valeurs reprises ci-dessous :

Qualité des condensats (valeurs maximum)
Valeur Unité
SiO2 0,01 mg/kg de condensat
fer 0,1
cadmium 0,005
plomb 0,05
autres métaux lourds 0,1
chlorure 0,1
phosphate 0,1
conductivité < 3 µSiemens/cm (à 20°C)
pH 5-7
dureté <0,1 ou 0.18 dH ou °F

Il est clair que la plupart des résidus repris dans le tableau ci-dessus influence surtout les résultats de la stérilisation proprement dite.

En ce qui concerne l’agressivité et la corrosivité de la vapeur responsable de la détérioration du système de stérilisation et de son efficacité énergétique, il est nécessaire de contrôler régulièrement et de respecter les valeurs de conductivité, du pH et de la dureté des condensats.

3. Température

La température de la vapeur est fonction du cycle choisi lui-même programmé selon la nature de la charge (caoutchouc, linge, plastique, instruments métalliques, …). Les pertes au travers des parois du système sont proportionnelles à cette température; il sera nécessaire d’en tenir compte dans l’évaluation du bilan énergétique sachant que l’énergie perdue sera plus importante par cycle compte tenu des températures importantes mais aussi du temps de retour à la normale en fin de cycle.

4. Pression et saturation de la vapeur

Une fois le cycle sélectionné, la température est fixée. Pour que l’effet de la vapeur sur les micro-organismes soit radical, celle-ci doit impérativement être saturée; ce qui fixe la valeur de la pression à respecter en fonction de la température.

Une surchauffe de la vapeur lors de la phase « plateau » dans le cycle de stérilisation peut compromettre l’efficacité du pouvoir de destruction des micro-organismes sachant que c’est surtout l’humidification (pouvoir mouillant) de la charge à stériliser qui influence le score létale.

La table de Regnault donne les valeurs de correction de la pression en fonction des écarts de température de manière à garder en permanence une vapeur saturée sèche (titre x = 1):

T °C Table de Regnault : pressions relatives
0,0 0,1 0,2 0,9
133 2,958 2,965 2,974 3,035
134 3,044 3,053 3,062 3,125
135 3,134 3,143 3,152 3,217

Dans la pratique, on ne tolèrera pas une surchauffe de 5°C pendant plus de 5 minutes au cœur d’une charge à stériliser.

5. Comment évaluer la qualité de la vapeur?

Au niveau de la maintenance technique

On évaluera régulièrement la qualité de la vapeur par une analyse des condensats afin de mettre en évidence des problèmes de corrosion, d’entartrage, … De manière très simple, on peut contrôler au niveau de l’évacuation à l’égout du trop plein du séparateur (si existant) :

  • s’il existe des traces de rouille ou de boue visible dans l’échantillon pris,
  • la dureté du condensat.

Au niveau du processus de stérilisation

Selon la norme EN 554 : 1995 (Stérilisation de dispositifs médicaux – Validation et contrôle de routine pour la stérilisation à la vapeur d’eau), à chaque cycle, il est nécessaire de contrôler les températures et les pressions en fonction du temps pendant toute la durée de chaque phase. Pour s’assurer le respect des programmes de stérilisation, le régulateur de l’autoclave ajuste en permanence les niveaux de pressions et températures en fonction des données qu’il reçoit des sondes de la chambre de stérilisation. À chaque phase du cycle correspond des passages obligés pour les températures et les pressions. Tant que ces points de passages ne sont pas respectés, il est impossible d’accéder à la phase suivante, ou pire encore, on risque l’annulation pur et simple du cycle.

Exemple.

Durant la phase plateau, la norme EN 554 fixe un certain nombre de critères.

Les températures et les pressions doivent :

  • rester constante pendant toute la durée de la phase,
  • être contenues dans les limites de température; à savoir :
    • température comprise entre la valeur de consigne et une limite supérieure de + 3°C par rapport à la consigne,
    • pas de variation de température supérieure à 1°C sur chaque sonde,
    • pas de différences de température entre deux sondes supérieures à 2°C.

Le temps d’équilibrage des sondes de température doit être :

  • Inférieur à 15 s si le volume de l’autoclave est < 800 litres.
  • Inférieur à 30 s si le volume de l’autoclave est > 800 litres.

Il est bien entendu que la régulation de la pression par rapport à la température fait en sorte de maintenir la vapeur dans des conditions de saturation très strictes.

Tout ça pour dire qu’il est difficile d’obtenir une qualité de vapeur irréprochable. A signaler aussi que la même exigence est demandée durant les autres phases tel que le maintien du vide pendant un certain temps dans la phase de prétraitement ou de séchage.

Au niveau de la validation

Actuellement, la validation du cycle et la traçabilité des charges stérilisées font partie du quotidien en stérilisation centrale. Entre autres, des programmes de validation comparent les cycles de stérilisation enregistrés à la fois par le périphérique du régulateur (ou ordinateur de bord) et par un enregistreur embarqué (appelé mouchard ou spoutnik) à l’endroit censé être le plus pollué et sensible de l’autoclave (au niveau de la purge des condensats).

Le cycle peut être invalide lorsque les écarts de température et de pression entre les enregistrements de l’ordinateur de bord et du spoutnik sont trop importants.

À noter que les enregistrements du spoutnik sont rapatriés sur ordinateur central via une connection informatique classique (RS232, USB, …).


Qualité de l’eau d’alimentation

1. L’eau osmosée

La qualité de l’eau pour la stérilisation doit être élevée afin de garantir :

  • L’élimination des micro-organismes dès son admission dans le générateur sachant qu’après sa transformation en vapeur le risque de trouver des micro-organismes dans la vapeur est quasi nul,

Cette qualité est obtenue en traitant l’eau « de ville » par l’intermédiaire d’abord d’un adoucisseur puis d’un osmoseur inverse.

De nouveau, la norme EN 285 donne des valeurs recommandées pour la qualité de l’eau osmosée :

Qualité de l’eau osmosée (valeurs maximum)
Valeur Unité
SiO2 1 mg/l d’eau osmosée
fer 0,2
cadmium 0,005
plomb 0,05
autres métaux lourds 0,1
chlorure 2
phosphate 0,5
conductivité < 15 µSiemens/cm (à 20°C)
pH 5-7
dureté <0,1 ou 0.18 dH ou °F

De plus, pour éviter le risque que la vapeur dans le générateur ne dé-ionise l’eau, la conductivité ne sera jamais inférieure à 0,5 µS/cm.

Enfin, la température de stockage de l’eau osmosée avant l’injection dans le générateur de vapeur n’excédera pas 60°C.

L’évaluation de la conductivité de l’eau à la sortie de l’osmoseur inverse est réalisée au moyen d’un conductivimètre.

 

2. L’eau adoucie

L’eau adoucie sert à la fois de « dégrossissage » pour la préparation de l’eau osmosée mais surtout pour l’alimentation de l’anneau liquide de la pompe à vide assurant l’étanchéité et le refroidissement de la pompe. Cette eau adoucie est préparée au niveau d’un adoucisseur (qui l’eut cru!) réduisant la dureté de l’eau de nos région à 4-8 °F.

L’évaluation de la dureté ou la mesure du titre hydrotimétrique TH de l’eau s’effectue au moyen de tigettes colorimétriques où la valeur mesure en °F donne :

  • < 10 pour une eau douce,
  • 10 à 15 pour une eau légèrement dure,
  • 15 à 25 pour une eau dure,
  • > 25 pour une eau très dure.

photo test dureté de l'eau.


Qualité du vide

La réussite d’un cycle de stérilisation passe aussi par qualité du vide nécessaire pour les phases de prétraitement et de sèchage. En stérilisation, on peut atteindre des vides de l’ordre 30 mbar à l’aide, en général, d’une pompe à vide à anneau liquide. La qualité du vide est fonction essentiellement du type de liquide utilisé pour former l’anneau liquide (lié à sa tension de vapeur) et de sa température.

On retrouve souvent des pompes à anneau liquide à eau adoucie :

À anneau liquide.

(+)

  • supporte les mélanges de gaz et de liquide;
  • simple de conception donc de prix abordable;
  • résiste bien à la corrosion;
  • évite l’utilisation de huile et par conséquent les vapeurs d’huile nocives.

(-)

  • consommation d’eau importante;
  • le mélange à la sortie de la pompe est contaminé;
  • la pression de vide est limitée à 30 mbar et se dégrade vite avec la température du fluide de l’anneau liquide.

Il est nécessaire d’utiliser de l’eau adoucie car les températures au sein de la pompe à vide peuvent atteindre des valeurs ponctuelles de l’ordre de 60-70°C. Elle peut donc être entartrante (mais le risque est faible).

L’évaluation de la qualité du vide se fait au niveau :

  • Des enregistrements réalisés par l’ordinateur de bord en analysant si la pompe tire le vide rapidement ou qu’il lui faut un temps de plus en plus long pour atteindre la valeur requise (encore qu’il faut différentier le mauvais fonctionnement de la pompe de la fuite dans le système).

  • De la température de l’eau de l’anneau liquide. En effet, plus la température de l’eau est élevée, plus la vaporisation de l’eau de l’anneau liquide est importante et moins l’étanchéité est bonne (le vide est moins poussé).

Toiture chaude

Toiture chaude


Généralités

La toiture chaude désigne la toiture plate dont l’isolant est placé sur le support sans lame d’air entre les différentes couches.

L’isolant est recouvert par la membrane d’étanchéité, qui le protège. Il reste donc sec et conserve ainsi toutes ses caractéristiques thermiques.

Dans la plupart des cas un écran pare-vapeur doit être interposé entre le support et l’isolant. (En cas de rénovation, il peut s’agir de l’ancienne étanchéité que l’on décide de conserver).

Le lestage n’est pas nécessaire. L’isolant et la membrane peuvent être fixés mécaniquement ou par collage. Il est dans ce cas relativement léger, et peut être appliqué sur des structures existantes qui ne supportent pas une augmentation de charge.


Cas particulier : la toiture compacte

Dans une toiture compacte, l’isolant en plaques de verre cellulaire est directement collé sur le support dans un bain de bitume chaud. Les joints entre les plaques sont remplis de bitume. L’étanchéité est ensuite collée en adhérence totale sur l’isolant, soit à la flamme, soit au bitume chaud.

 

Cette toiture forme un ensemble étanche exempt de couche susceptible de véhiculer l’air ou l’eau. En cas de défectuosité locale, l’eau ne s’infiltre pas. Les désordres sont limités.
On peut en général renoncer au pare-vapeur du fait que l’isolant et les joints entre plaques sont étanches à la vapeur.

Circulateurs [Chauffage]

Circulateurs [Chauffage]


Les pompes in-line et les circulateurs à rotor noyé

Dans les installations de chauffage, on peut retrouver 2 types de circulateurs :

  • Les circulateurs à rotor noyé se retrouvent dans toutes les installations. Ils sont montés directement sur la tuyauterie. Le moteur est, en partie, directement refroidi par l’eau de l’installation. Ils sont sans entretien et de coût modeste. Leur rendement est cependant faible mais une partie de leur perte est récupérée par l’eau de chauffage.
  • Les pompes in-line sont aussi directement montées sur la tuyauterie mais le moteur n’est plus refroidi par l’eau du réseau de chauffage. Elles sont pourvues d’une garniture mécanique qui sépare la pompe du moteur. Le refroidissement est assuré par un ventilateur. Les pompes in-line se retrouvent principalement dans les grandes installations de chauffage ou dans les installations de refroidissement pour lesquelles la perte du moteur devient une charge calorifique supplémentaire à compenser.

Circulateur à rotor noyé et pompe in-line (les deux types de circulateur existent en version électronique).


Courbes caractéristiques

Les performances des circulateurs sont répertoriées sous forme de courbes caractéristiques reprises dans la documentation des fabricants. Attention, les données ainsi reprises sont le résultat de mesures qui, faute d’une normalisation en la matière, peuvent différer d’un fabricant à un autre.

On retrouve, dans les courbes caractéristiques, la hauteur manométrique totale (en mCE ou en bar) que peut fournir le circulateur en fonction du débit, pour chaque vitesse possible du circulateur.

On peut retrouver en parallèle, la puissance électrique absorbée par le moteur, soit sous forme de graphe pour chacun des points de fonctionnement possibles, soit sous forme de tableaux, pour chaque vitesse. Dans ce dernier cas, il est difficile de savoir à quel point de fonctionnement correspond cette puissance (est-ce ou non pour la zone de rendement maximal ?). Il n’y a pas de norme et chaque fabricant peut adopter une règle différente.

Courbes caractéristiques d’un circulateur électronique. On y repère les courbes de régulation (ici, diminution linéaire de la hauteur manométrique avec le débit) et pour chaque point de fonctionnement, on peut établir la puissance électrique absorbée. On y repère les courbes caractéristiques correspondant au régime de ralenti (de nuit). Rem : P1 correspond à la puissance électrique absorbée par le moteur, P2, à la puissance transmise par le moteur à la roue et P3, à la puissance transmise à l’eau.

Courbes caractéristiques d’un circulateur standard à 3 vitesses.

Vitesse P1 [W] In [A]
3 960 1,8
2 590 1,05
1 250 0,47

Puissance et courant nominal absorbés par le circulateur en fonction de sa vitesse.


Les circulateurs standards

On entend par « circulateur standard », un circulateur à rotor noyé dont la vitesse de rotation est réglée manuellement et reste fixe quelles que soient les conditions d’exploitation de l’installation.

On retrouve des circulateurs à 1 ou plusieurs vitesses (3 ou 4), équipés d’un moteur monophasé ou triphasé.

Circulateur à trois vitesses.

Courbes caractéristiques d’un circulateur à 3 vitesses.

Certains circulateurs (c’est valable également pour les circulateurs électroniques) peuvent être équipés d’une coquille isolante sur mesure qui diminue ses déperditions calorifiques.

On peut également y joindre un « display » permanent qui permet de visualiser en temps réel les caractéristiques électriques de fonctionnement telles que la puissance absorbée, l’ampérage, la consommation et les heures de fonctionnement, …

Circulateur équipé d’un module d’affichage des caractéristiques de fonctionnement.


Les circulateurs électroniques ou à vitesse variable

Les circulateurs électroniques ou « à vitesse variable » sont des circulateurs dont la vitesse peut être régulée en continu en fonction de la variation de pression régnant dans le circuit de distribution.

Circulateur avec convertisseur de fréquence intégré.

La régulation de vitesse est intégrée directement dans le circulateur. Elle se fait par cascade d’impulsions pour les petits circulateurs ou au moyen d’un convertisseur de fréquence (technologie semblable à celle utilisée en ventilation) pour les circulateurs de plus de 200 W.

Mode de régulation

Lorsque sous l’effet d’apports de chaleur gratuits, les vannes thermostatiques (où les vannes 2 voies de zone) se ferment, la pression dans le réseau augmente avec une influence néfaste sur le fonctionnement des vannes restées ouvertes.

Les circulateurs électroniques vont automatiquement adapter leur vitesse en fonction de la fermeture des vannes de régulation (donc en fonction des besoins thermiques). Deux types de régulation sont possibles dans ce type d’équipement :

  • soit la vitesse de rotation du circulateur est adaptée automatiquement pour maintenir la pression constante dans le circuit, quel que soit le degré d’ouverture des vannes des régulations,
  • soit la vitesse de rotation du circulateur est adaptée automatiquement en fonction de l’ouverture des vannes de régulation, en diminuant de façon linéaire la pression du circuit. Cette deuxième option est énergétiquement plus intéressante. En effet, si des vannes thermostatiques se ferment, le débit circulant dans le réseau diminue, entraînant une baisse des pertes de charge dans les tronçons communs. Le circulateur peut donc diminuer sa hauteur manométrique,
  • soit la vitesse est commandée par la température extérieure ou la température de l’eau. Dans les installations à débit constant (sans vanne thermostatique), la régulation du circulateur diminue linéairement la pression du circulateur quand la température de l’eau véhiculée diminue. Ce type de régulation peut être utilisée pour accélérer la coupure et la relance de l’installation (notamment pour un chauffage par le sol).

Utilisation d’un circulateur à vitesse variable : le circulateur diminue sa vitesse automatiquement pour assurer le maintien d’une pression différentielle constante en un point choisi du réseau. La solution de la prise de pression entre le départ et le retour en un point du circuit n’est pas standard pour les circulateurs à rotor noyé. La plupart de ceux-ci ne sont, en fait, pas équipés de prises de pression. Le régulateur interne à l’appareil travaille en fonction d’une mesure du courant absorbé, image de sa hauteur manométrique.


Evolution du débit du circulateur lorsque les vannes thermostatiques se ferment : le point de fonctionnement passe de B à A. Si on diminue la vitesse du circulateur en maintenant une pression constante dans le réseau : le point de fonctionnement passe de B à D. La consommation électrique du circulateur étant proportionnelle à la surface (hauteur manométrique x débit) diminue proportionnellement au débit.

Evolution du débit du circulateur, si on diminue la vitesse du circulateur en diminuant linéairement la pression dans le réseau : le point de fonctionnement passe de B à E. La consommation électrique du circulateur étant proportionnelle à la surface (hauteur manométrique x débit) diminue proportionnellement au débit.

Théories

Pour en savoir plus sur la régulation de vitesse des circulateurs en fonction de la fermeture des vannes thermostatiques.

Régime jour/nuit

Certains circulateurs électroniques permettent également la programmation d’un régime jour et d’un régime nuit. Cette dernier correspond à une vitesse de rotation fortement réduite.

Pour les circulateurs électroniques traditionnels, la commande du régime de nuit se fait par la régulation centrale de l’installation. Pour les nouveaux circulateurs à aimant permament, la régulation est intégrée au circulateur. Celui-ci diminue sa vitesse s’il mesure, en son sein, une baisse de température d’eau de 10 .. 15°C pendant 2 h. Il revient au régime normal si la température de l’eau augmente d’une dizaine de degré.

Programmation et visualisation des paramètres

Les circulateurs électroniques peuvent être programmés par télécommande infrarouge : mode et paramètre de régulation.

Photo télécommande infrarouge circulateurs électroniques.

Ces télécommandes permettent en outre un contrôle des paramètres de fonctionnement des pompes : hauteur monométrique, débit, vitesse de rotation, température de l’eau véhiculée, puissance absorbée, … .

Coût

Le coût d’un circulateur électronique dépend de la puissance installée : pour les circulateurs de moins de 200 W, la différence de prix, par rapport à un circulateur traditionnel est faible (de l’ordre de 40 %). dès 250 W, la variation de vitesse implique plus que le doublement du prix.

Prix des circulateurs de la marque « x » (à titre indicatif).


Les circulateurs à moteur synchrone ou à aimant permanent

Les circulateurs traditionnels sont équipés d’un moteur électrique asynchrone ayant un rendement souvent médiocre.

Il existe maintenant sur le marché des circulateurs à rotor noyé équipé d’un moteur synchrone à commande électronique.

   

Roue et moteur d’un circulateur à moteur synchrone.

Nous ne disposons actuellement pas d’information neutre concernant les performances énergétiques de ce type de matériel. De l’avis des différents fabricants, ce type de moteur couvrira dans quelques années tout le marché.

Exemple.

Pour un point de fonctionnement de 10 m³/h et 6 mCE, voici la puissance électrique absorbée, mentionnée par les catalogues de la marque x, pour deux circulateurs de la même taille :

Circulateur électronique standard
(ancienne génération)

470 W

Circulateur électronique à aimant permanent

380 W

Soit une économie de 20 %.

Pour un point de fonctionnement de 15 m³/h et 5 mCE, voici la puissance électrique absorbée, mentionnée par les catalogues de la marque y, pour deux circulateurs de la même taille :

Circulateur électronique standard
(ancienne génération)

570 W

Circulateur électronique à aimant permanent

420 W

Soit une économie de 26 %. Notons que dans ce deuxième exemple, en plus du moteur, la configuration hydraulique de la roue du circulateur a également été optimalisée pour augmenter le rendement.

Délester les charges de certains équipements

Délester les charges de certains équipements


Principe du délesteur

Lorsque l’évolution de la mesure de la pointe quart-horaire atteint un niveau critique (après les 10 premières minutes du 1/4 d’heure, par exemple), la décision de déclencher certains équipements doit être prise. C’est le rôle d’un automatisme, appelé « délesteur« . Avec rapidité et fiabilité , il commande le déclenchement et le réenclenchement des équipements pré-programmés. C’est cette fiabilité qui est recherchée à la place ou en plus des mesures organisationnelles humaines, toujours susceptibles d’un oubli…

Photo délesteur.

Délesteur 4 sorties.

La fiabilité du système de mesure de la pointe 1/4 horaire du délesteur est suffisante pour ne pas rater une pointe.

La figure ci-dessous illustre ce principe, réalisé par un délesteur automatique.

 

Cette mise à l’arrêt ou au ralenti n’est effectuée que lorsque la puissance totale prélevée, intégrée sur la période de mesure, dépasse ou risque de dépasser le seuil limite de puissance fixé. Les décisions de déclencher et de réenclencher les équipements délestables sont prises en fonction d’un programme pré-établi avec le gestionnaire.


Que délester ?

Les équipements à considérer pour le délestage sont ceux dont l’importante inertie thermique permet de supporter des coupures d’alimentation plus ou moins longues sans mettre en péril la sécurité et la santé des occupants et sans dégradation de leur confort.

Les équipements non liés directement à une activité médicale

  • groupes frigorifiques en dehors des zones médicalisées,
  • résistances électriques de chauffage des locaux,
  • les appareils de cuisson à forte inertie dans une cuisine (chauffe – plats, percolateur, …). Attention, dans ce cas
  • les équipements de production suivi d’un « buffer » (volume tampon), par exemple pour la production d’eau glacée ou d’eau chaude sanitaire.

Mais aussi :

  • certains extracteurs de ventilation, par exemple dans des parkings dont une sonde CO peut interdire le délestage,
  • certains groupes de conditionnement d’air, par exemple pendant les heures des repas (11 h 30 à 13 h 30),
  • systèmes de remise à température des repas dans les unités de soins (réduction de l’appel de puissance en fonction du cycle de température,

Les équipements directement liés à une activité médicale

Ce type d’équipement « ne peut pas être délestés » pour la simple raison que la sécurité et la santé du patient sont en jeu. Tant pis pour la réduction de la facture énergétique à ce niveau ! Cependant, ce n’est pas une raison pour ne pas assurer une gestion énergétique saine de ces équipements par la recherche de l’URE et par un entretien adéquat.

On retrouve en général les équipements suivants:

  • les groupes frigorifiques des salles d’opération, de radiologie, …
  • les groupes de ventilation des salles d’opération, de radiologie, …
  • les pompes à vide,
  • les compresseurs médicaux,

Remarques

Une attention particulière doit être portée aux fonctionnements des équipements munis d’une programmation. Il ne faut, en effet, pas que la coupure de l’alimentation électrique perturbe cette dernière. Prenons l’exemple des percolateurs de grande capacité. Ces derniers présentent une puissance importante et on peut imaginer stopper leur utilisation durant les heures de pointes. Cependant, sur certains modèles, le programme recommence à zéro à chaque coupure. Cela signifie qu’ils se remplissent à nouveau d’eau, ce qui peut provoquer des débordements …

La puissance totale des appareils délestés doit évidemment être nettement supérieure à la diminution de puissance souhaitée. Par exemple, si la puissance raccordée au délesteur est le double de la puissance à délester, cela signifie que les équipements ne fonctionneront que la moitié du temps durant la période de pointe. Dans le cas du délestage des équipements de cuisine, certains bureaux d’études préconisent de raccorder au délesteur, une puissance au minimum 5 fois supérieure (les équipements délestables fonctionneront en moyenne 80 % du temps en période de pointe). Cela se définit évidemment au cas par cas en fonction de la durée et de l’ampleur de la période de pointe.

Exemple : une bâche d’eau glacée peut être utilisée dans le but de constituer un grand réservoir tampon, permettant,

  • d’augmenter le temps de fonctionnement des compresseurs (qui sont souvent surdimensionnés, puisque calculés pour les charges extrêmes de l’été …);
  • de délester le groupe frigorifique au moment de la pointe quart-horaire.

Ainsi, au CHR de Mouscron, un ancien réservoir à eau chaude sanitaire est utilisé comme réservoir d’eau glacée, ce qui permet au gestionnaire de couper sa machine frigorifique lors de la pointe !

Études de cas

La gestion de la pointe quart horaire aux Facultés Notre Dame de la Paix à Namur.

Rentabilité

Actuellement, un certain nombre d’appareils sont disponibles sur le marché avec un coût total d’acquisition (délesteur, logiciel, installation et écolage) inférieur à 5 000 €.

Le temps de retour simple (exprimé en années) est défini comme le rapport entre l’investissement consenti pour un délesteur et la réduction de consommation réalisée au bout d’une année.

Un outil de calcul vous permet indirectement d’évaluer l’impact d’une gestion de charge sur votre facture.

Calculs

Le programme de simulation du profil de consommation d’un bâtiment : cliquez ici !

Vous pouvez modifier le mode d’utilisation de certains équipements et visualiser l’impact sur la facture électrique.

Transformateurs

Transformateurs

Transformateur sec et transformateur à huile minérale


Principe général de fonctionnement d’un transformateur

Transformateur monophasé

D’une manière simplifiée, un transformateur est composé d’un noyau magnétique (acier doux au silicium) sur lequel sont disposés deux enroulements en cuivre : l’enroulement branché sur la source d’énergie est le « primaire » et l’enroulement branché vers les récepteurs est le « secondaire ».

Les deux enroulements ont un nombre de spires (tours) différents : le plus grand est l’enroulement « haute tension (HT) » et le plus petit, l’enroulement « basse tension (BT) ».

Transformateur monophasé.

Le rapport de transformation de la tension est proportionnel au rapport entre le nombre de spires de chaque enroulement.

Transformateur triphasé

Un transformateur triphasé est composé d’un noyau à trois branches sur lesquelles sont combinés les enroulements primaires et secondaires, de façon concentrique ou alternée.

Transformateur triphasé.


Pertes d’un transformateur

Les pertes d’un transformateur se composent des pertes à vide et des pertes en charge.

Les pertes à vide (ou pertes « fer ») se produisent au sein du noyau ferromagnétique. Elles sont constantes quel que soit le régime de charge du transformateur, c’est-à-dire quelle que soit la consommation du bâtiment qui y est raccordé.

Les pertes en charge (ou pertes « en court-circuit » ou pertes « cuivre ») sont, elles, dues à l’effet Joule (perte par échauffement des fils ou feuillards parcourus par un courant), augmentées des pertes additionnelles (pertes supplémentaires occasionnées par les courants parasites dans les enroulements et pièces de construction). Elles varient avec le carré du courant ou de la puissance débitée (si la tension reste constante).

Remarque : la dénomination « pertes cuivre » date de l’époque où tous les enroulements étaient réalisés en cuivre. C’est encore le cas pour les très petites puissances. Pour les autres transformateurs, les constructeurs se sont tournés vers l’aluminium. C’est pourquoi, on parle maintenant de « pertes en court-circuit ».

On exprime donc les pertes totales d’un transformateur par :

W = Wfe + Wcu x (S/Sn

où :

  • W = pertes totales du transformateur en charge réelle [W]
  • Wfe = pertes fer (constantes) [W]
  • Wcu = pertes en court-circuit à la charge nominale [W]
  • S= puissance nominale du transformateur [VA]
  • S = charge appliquée aux bornes [VA]
Exemple.

Soit un transformateur de 500 kVA, ayant des pertes fer de 730 W et des pertes en court-circuit à pleine charge de 4 550 W.

Sous un cos φ de 0,9, et une charge du transformateur de 300 kW, les pertes totales sont :

W = 730 [W] + 4 550 [W] x ((300 [kW] / 0,9) / 500 [kVA])² = 2 752 [W]


Transformateurs secs

Transformateur sec enrobé : les enroulements BT et les enroulements sont concentriques et enrobés dans une résine époxy.

Les transformateurs secs sont constitués de bobinages enveloppés d’une résine époxy.
Ils peuvent alors être disposés dans une enveloppe de protection (IP 315 ou IP 235) qui permet d’isoler le transformateur du monde extérieur et d’assurer l’évacuation de la chaleur au travers de ses parois.

Les transformateurs secs présentent les meilleures garanties de sécurité contre l’incendie et contre la pollution (pas de fuite de liquide, pas de vapeurs nocives en cas d’incendie).

Les transformateurs secs peuvent être installés dans une enveloppe de protection (IP 315 ou IP 235) ou sans protection.
Dans ce cas, ils doivent être protégés contre les contacts directs.


Transformateurs à huile minérale

Dans ce type d’équipement, appelé aussi transformateurs immergés, le transformateur est disposé dans un bain d’huile qui assure l’isolation et le refroidissement.

Ces transformateurs sont moins onéreux et ont des pertes moindres. Ils présentent cependant des risques d’incendie et de pollution :

  • Un défaut interne peut provoquer une surpression et une déformation de la cuve telles que des fuites d’huile peuvent apparaître. Suivant les circonstances, cela peut entraîner l’inflammation de l’huile ou encore une explosion.
  • Les fuites d’huile peuvent aussi provenir d’un joint défectueux ou de la rupture d’une canalisation. Les huiles qui se répandent peuvent polluer la nappe phréatique. Il faut donc prévoir sous le transformateur une fosse d’évacuation ou un bac de rétention d’huile.
  • La combustion des huiles dégage des produits toxiques et génère des fumées opaques gênant l’intervention des secours.

Il y a encore quelques années, on commercialisait des transformateurs dits « à l’askarel ». L’huile de ces transformateurs contenait des PCB. Ces substances dégagent des émanations nocives lors d’incendies et présentent à grande concentration des dangers pour la santé humaine. C’est pourquoi la directive européenne 96/59/CE se prononce pour l’élimination des appareils contaminés ou contenant des PCB.

En 1985, l’explosion d’un transformateur à l’askarel dans un immeuble à appartement français produit des molécules toxiques (furanes et dioxines). Depuis, l’acquisition, la vente et la mise en service de transformateurs neufs au PCB ont été interdites en France.

En application de cette directive, la Région wallonne a réglementé l’élimination des transformateurs à l’askarel existants, pour au plus tard, fin 2005.

Vitrages isolants thermiques

Vitrages isolants thermiques


Le double vitrage à verre clair

Le double vitrage est constitué de deux feuilles de verre assemblées et scellées en usine, séparées par un espace hermétique clos renfermant de l’air ou un autre gaz déshydraté.

  1. Feuilles de verre.
  2. Air et/ou gaz déshydraté.
  3. Espaceur fixant l’espace entre les feuilles de verre.
  4. Ouverture pour l’absorption d’humidité.
  5. Première barrière d’étanchéité en polyisobuthylène.
  6. Dessicant.
  7. Seconde barrière d’étanchéité en polyuréthane, silicone ou polysulfure.

Le dessicant introduit dans l’espaceur est destiné à assécher le gaz emprisonné à la fermeture du vitrage et à absorber la vapeur d’eau éventuelle. Le bon fonctionnement des barrières d’étanchéité et du dessicant conditionne la durée de vie du vitrage.

La composition des doubles vitrages est donnée par 3 valeurs (en mm). Exemple : 4/12/4 : l’épaisseur de la feuille de verre extérieure / l’épaisseur de l’espaceur / l’épaisseur de la feuille de verre intérieure.

La garantie d’efficacité des doubles vitrages prévue dans les (ATG) est de 10 ans. Mais la durée de vie réelle est bien supérieure.

Les modes de transmission de chaleur

L’intérêt du dispositif est de bénéficier du pouvoir isolant apporté par la lame d’air ou de gaz, et de faire baisser de la sorte le coefficient de transmission thermique U de l’ensemble du vitrage.

La transmission de chaleur dans la lame d’air se fait par convection, rayonnement et conduction. Elle se fait par conduction et rayonnement dans le verre. La présence de la lame d’air permet de limiter les pertes de chaleur par conduction, la conductivité thermique de l’air (0.025 W/m.K (à 10°C)) étant nettement inférieure à celle du verre (1 W/m.K).

Caractéristiques énergétiques

Lorsqu’un rayonnement incident est intercepté par une paroi, une partie est réfléchie vers l’extérieur, une partie est absorbée par le matériau, une partie est transmise à l’intérieur. La transmission solaire du double vitrage est légèrement plus faible que celle du vitrage simple, car la chaleur qui traverse le vitrage est absorbée et réfléchie par deux couches et non une seule.

Les schémas suivants donnent les coefficients de transmission thermique U et le facteur solaire FS d’un double vitrage et d’un simple vitrage :

   

Simple vitrage et double vitrage.

Améliorer la performance du double vitrage ?

Une des manières de réduire le coefficient de conductivité thermique d’un double ou triple vitrage est de travailler sur l’espace interstitiel. La première idée consiste à augmenter l’épaisseur de la lame d’air. Effectivement, l’isolation augmente dans les premiers millimètres, puis l’isolation reste pratiquement constante au-delà de 14 mm. Pourquoi ? Dans le premier temps, l’air constitue un matelas, mauvais conducteur de la chaleur, mais une fois que l’épaisseur d’air s’accroît, des boucles d’échange convectives se forment entre la vitre chaude et la vitre froide… Un double châssis écarté de 20 cm n’isole pas mieux qu’un double vitrage ordinaire.

On a alors pensé à remplacer l’air par un gaz moins conducteur : l’Argon, le Krypton, … Effectivement, cela apporte un « + » à l’effet d’isolation. Mais impossible de descendre en dessous d’un U de 2,5 W/m²K.

Et pourquoi pas le vide ? Effectivement, un vide d’air permet une absence de convection et de conduction. Mais mécaniquement, les deux vitres ont du mal à résister à la pression atmosphérique et se brisent. Il faut alors placer des écarteurs… qui sont eux-mêmes des conducteurs de chaleur… Cette technique est à l’étude, mais n’a pas d’application industrielle aujourd’hui.

Reste à diminuer la transmission de chaleur par rayonnement : c’est l’idée du vitrage à basse émissivité dont nous reparlerons ci-dessous.

Caractéristique lumineuse

Le double vitrage assure un aspect neutre en réflexion et une grande transparence. Il est caractérisé par un coefficient de transmission lumineuse élevé, mais néanmoins inférieur à celui d’un simple vitrage.

Simple vitrage, TL = 90 %.

Double vitrage, TL = 81 %.


Le double vitrage « à basse émissivité »

Principe

Ce vitrage est aussi appelé vitrage à haut rendement ou vitrage super isolant. En anglais, il se nomme vitrage low-E et en France, on l’appelle vitrage à Isolation Renforcée (VIR).

L’objectif est d’augmenter le pouvoir isolant du double vitrage, c.-à-d. de diminuer son coefficient de transmission thermique U (anciennement « k »).

Vous avez dit : « émissivité » ?

Quand de la chaleur ou de l’énergie solaire est absorbée par un vitrage, elle est réémise par le vitrage, soit par convection d’air le long de sa surface, soit par radiation de la surface du vitrage vers les autres surfaces plus froides. Par conséquent, la réduction de la chaleur émise par les vitrages sous forme de radiation peut améliorer fortement ses propriétés isolantes.

La capacité d’un matériau à émettre de la chaleur de manière radiative est appelée son émissivité. Ce coefficient d’émissivité varie en fonction de la longueur d’onde du signal émis. Les fenêtres, ainsi que les matériaux que l’on trouve à l’intérieur d’un bâtiment, émettent typiquement des radiations sous forme d’infrarouges de très grande longueur d’onde. A savoir enfin que pour une longueur d’onde donnée, le coefficient d’absorption d’un matériau est égal au coefficient d’émissivité.

Les vitrages standards ont une émissivité de 0.84 sur l’entièreté du spectre. Cela signifie qu’ils émettent 84 % de l’énergie possible pour un objet à cette température. Cela signifie également qu’en ce qui concerne les rayonnements à grande longueur d’onde qui frappent la surface du verre, 84 % est absorbé et seulement 16 % est réfléchi.

Par comparaison, les couches basse-émissivité ont un coefficient d’émissivité de 0.04.

Les vitrages sur lesquels on a déposé de telles couches émettront seulement 4 % de l’énergie possible à cette température, donc absorberont seulement 4 % du rayonnement de grande longueur d’onde qui les atteint.

Autrement dit, ils réfléchiront 96 % du rayonnement infrarouge de grande longueur d’onde.

Application

Le rayonnement des matériaux du bâtiment est émis à une longueur d’onde plus élevée que ceux qui composent le spectre solaire ou le spectre d’émission des éclairages de vente.

Ondes électromagnétiques correspondant au rayonnement solaire et au rayonnement des matériaux.

La couche basse émissivité est, en général, une couche métallique, en argent par exemple, déposée sous vide et qui doit être placée à l’intérieur du double vitrage vu sa fragilité. Elle bloquera une partie du transfert de chaleur par rayonnement, diminuant ainsi le flux total de chaleur au travers de la fenêtre.

Importance de la position de la couche basse émissivité

La position de la couche basse émissivité dans un double vitrage n’affecte en rien le facteur U (ou k) de celui-ci. Donc, en ce qui concerne les pertes de chaleur par transmission, il n’y a absolument aucune différence que la couche basse émissivité soit placée en position 2 ou en position 3.

Numérotation des vitrages.

La surface d’un vitrage, dans un double ou un triple vitrage, est référencée par un nombre, commençant par le numéro 1 pour la surface extérieure du vitrage extérieur vers la surface intérieure du vitrage intérieur. La surface intérieure d’un double vitrage porte donc le numéro 4.

Par contre, le facteur solaire FS (ou le facteur de transmission de l’énergie incidente) du vitrage est influencé par la position de la couche. En effet, en plus de sa capacité à inhiber les transferts d’infrarouges à grande longueur d’onde, une couche basse émissivité absorbe aussi une certaine quantité de l’énergie solaire incidente. Cette énergie absorbée est transformée en chaleur, provoquant ainsi un échauffement du vitrage.

Si l’on cherche à diminuer la chaleur incidente (FS faible), la couche basse émissivité sera placée en face 2, la chaleur absorbée par le vitrage étant alors essentiellement réémise vers l’extérieur; ce qui devrait pouvoir théoriquement réduire les apports externes pour les meubles frigorifiques fermés. En analysant le marché des fabricants de meubles frigorifiques, il semble que ce type d’application ne soit pas développée.

Si vous êtes en possession de données contredisant ce qui précède, n’hésitez pas à nous les communiquer !

Eclairage indirect

Eclairage indirect

Une surface, le plafond ou les murs sont utilisés comme réflecteur pour diffuser la lumière.

Avantages

La diffusion de la lumière par le plafond et une répartition uniforme des luminances offrent une bonne protection contre  l’éblouissement. En éclairage d’ambiance, l’indirect peut donner des ambiances lumineuses intéressantes.

Inconvénients

Vu que la lumière est réfléchie avant d’atteindre la tâche à éclairer, ce mode d’éclairage a un moins bon rendement et demande, à niveau d’éclairement égal, une puissance installée supérieure à celle du système direct.

L’éclairement dépend fortement des coefficients de réflexion des parois sur lesquelles la lumière est réfléchie.

Il faut donc porter une attention toute particulière à l’entretien des surfaces du local afin que le rendement ne diminue pas au cours du temps.

Ainsi, lors d’un remplacement de luminaires, un rafraîchissement du plafond peut être nécessaire.

De plus les luminaires indirects sont, par leur disposition, fortement soumis aux poussières et autres saletés (insectes morts, …). Cet inconvénient devient délicat lorsqu’une partie translucide permet une diffusion de lumière vers le bas et que les insectes viennent s’y accumuler (cas des luminaires « lumière douce »).

Ce type d’éclairage ne produit pas d’ombre. Il peut donc être monotone et rendre difficile la perception d’objets tridimensionnels.

Enfin, il faut veiller à ne pas utiliser des sources trop lumineuses qui rendent le plafond éblouissant.

Prescriptions relatives à l’éclairage dans les bureaux

Prescriptions relatives à l'éclairage dans les bureaux


Principe

Il est utile de pouvoir connaître les niveaux d’éclairement recommandé suivant l’ergonomie de travail (le confort de la tâche de travail).

Dans la norme NBN EN 12464-1, on établit une nomenclature dans laquelle on retrouve pour différents locaux des bâtiments du tertiaire, entre autres, les paramètres suivants :


Zone de circulation

Type d’intérieur, tâche ou activité Em (lux) UGR Uo Ra Remarques
Circulation et couloir 100 28 0,40 40 1. Éclairement à 0.1 m au dessus du sol,

2. Ra et UGR identiques pour les zones adjacentes,

3. 150 lux s’il y a des véhicules sur l’itinéraire,

4. L’éclairage des sorties et des entrées doit comporter une zone de transition pour éviter les changements rapides d’éclairement entre l’intérieur et l’extérieur de jour ou de nuit,

5. Des précautions sont généralement prises pour éviter l’éblouissement des conducteurs et des piétons.

Escaliers, escaliers roulants, tapis roulants 100 25 0,40 40 Les marches nécessitent un contraste accentué.
Élévateurs, ascenseurs 100 25 0,40 40 Le niveau d’éclairement devant l’ascenseur devrait être de 200 lux.
Allées centrales : occupées 150 22 0,40 60 Éclairement au niveau du sol.

Bureaux

 

Type d’intérieur, tâche ou activité

 

Em (lux) UGR Uo Ra  

Remarques

 

 

Plan de référence

 

Classement, transcription 300 190 0,40 80  

0.85 m du sol par défaut.

 

Écriture , dactylographie, lecture, traitement de données 500 19 0,60 80
Dessin industriel 750 16 0,70 80
Postes de travail de conception assistée par ordinateur (CAO) 500 19 0,60 80  

 

Salle de conférence et de réunion 500 19 0,60 80 Un contrôle de l’éclairage est recommandé.
Réception 300 22 0,60 80
Archives 200 25 0,40 80  

 

Plans verticaux des rayonnages.

Choisir l’alimentation du lave-vaisselle : eau chaude, eau froide ?

Un lave-vaisselle doit être alimenté deux fois : une fois au remplissage avant le service, une seconde fois pour l’eau de rinçage lorsque le cycle de lavage de la vaisselle est commencé.

Pour l’eau de remplissage, le lave-vaisselle peut être alimenté à l’eau chaude ou à l’eau froide. Selon le cas, la résistance interne de lavage va ensuite soit maintenir l’eau à 60°C, soit porter l’eau à cette température.

Pour l’eau de rinçage, la lave-vaisselle peut aussi être alimenté soit en eau chaude, soit en eau froide sauf si le lave-vaisselle possède un récupérateur de chaleur ou une pompe à chaleur. Dans ce cas, le lave-vaisselle est alimenté en eau froide au rinçage puisque le récupérateur ou la pompe à chaleur « se charge » de réchauffer l’eau froide de la température du réseau de distribution à environ 45 °C (récupérateur) ou 75 °C (pompe à chaleur). La résistance interne de rinçage (le surchauffeur) est dimensionnée selon le cas pour porter l’eau de rinçage à 85 °C.

Dans tous les cas où le lave-vaisselle peut être alimenté soit à l’eau chaude, soit à l’eau froide, le choix se fait en fonction du prix auquel on peut obtenir le kWhfuel ou le kWhgaz, d’une part et le kWhélectrique, d’autre part.

Les prix du kWhfuel et du kWhgaz sont indépendants de la période d’utilisation. Ils sont calculés à partir du coût du litre de fuel et du m³ de gaz (10 kWh équivalent environ à 1 litre de fuel et à 1 m³ de gaz) et du rendement de la chaudière. À titre indicatif, en février 2001, 1 m³ de gaz valait 0,3 à 0,325 € pour le tarif ND3.

Le prix du kWh électrique dépend fortement de la période d’utilisation mais également de la tarification de l’établissement. Le prix moyen du kWh électrique varie en fonction de la période d’utilisation. Pour d’autres tarifications, on peut calculer le prix moyen du kWh à partir de la valeur des différents termes intervenant dans la facturation.

Audit

Pour comprendre la tarification électrique.

Remarque : vu les considérations ci-dessus concernant la résistance de rinçage calculée en fonction de l’alimentation en eau chaude ou froide et de la présence ou non d’un récupérateur ou d’une pompe à chaleur, ces paramètres doivent être connus avant de choisir le lave-vaisselle.

Calculs

Si vous voulez accéder à un programme vous permettant, entre autres, de calculer ce que peut vous faire gagner en consommations électriques une alimentation à l’eau chaude du lave-vaisselle adapté à votre propre établissement.

Choisir les tuyauteries des installations frigorifiques [Concevoir – Froid alimentaire]

Choisir les tuyauteries des installations frigorifiques

Les conduites d’aspiration

Outre la nécessité de concevoir les conduites d’aspiration de manière correcte par rapport au retour d’huile vers le compresseur, il est nécessaire, dans un souci énergétique :

  • de limiter les pertes de charge entre l’évaporateur et le compresseur;
  • d’isoler suffisamment.

Limitation des pertes de charge

La figure ci-dessous montre clairement l’influence des pertes de charge sur le fonctionnement du compresseur. En effet, des pertes de charge importantes dans la conduite d’aspiration augmentent le travail de compression du compresseur (le taux de compression HP/BP augmente).

Variation des pertes de charge dans la conduite d’aspiration.

La longueur, les déviations et les changements de niveaux des canalisations influencent les pertes de charge et les retours d’huile au compresseur. Dans cette optique, une judicieuse implantation des moto-compresseurs et condenseurs, par rapport aux chambres froides, doit être étudiée avec soin comme par exemple :

  • la proximité du compresseur par rapport à l’évaporateur;
  • si le compresseur ne peut être près des meubles ou des chambres frigorifiques, il est nécessaire de prévoir un tracé des conduites le plus rectiligne possible.

Isolation des conduites

Le manque d’isolation, tout comme les pertes de charge augmente le travail de compresseur pour amener le fluide frigorigène à la pression de condensation.
Cet aspect est d’autant plus important que les conduites sont longues, car plus elles le sont, plus les apports par la canalisation d’aspiration seront importants, et cela nuit au rendement et à la puissance de l’installation.

 Influence de l’isolation de la conduite d’aspiration.

Les conduites liquides

Isolation des conduites

Le but premier de l’isolation des conduites et des accessoires de la ligne liquide est d’éviter le « flash gaz » (le liquide sortant du condenseur se vaporise à nouveau au contact de parois chaudes) au niveau du détendeur, dans le cas où le sous-refroidissement à la sortie du condenseur ne serait pas suffisant (sous dimensionnement du condenseur par exemple).

Energétiquement parlant, un sous-refroidissement du fluide frigorigène est bénéfique pour le cycle. Donc, dans le cas où la ligne liquide traverse une zone chaude, on a intérêt à isoler les conduites pour éviter le « flash gaz » et y gagner énergétiquement.

La figure ci-dessous montre clairement l’influence de l’isolation de la ligne liquide sur l’échange frigorifique dans l’évaporateur.

Influence de l’isolation de la conduite liquide.

Cet aspect est de nouveau d’autant plus important que les conduites sont longues, car plus elles le sont, plus les apports par la canalisation liquide seront importants.

Débit d’eau de déconcentration d’un humidificateur à recyclage

Débit d'eau de déconcentration d'un humidificateur à recyclage


Débit d’évaporation

Soit :

  • x= humidité absolue de l’air avant humidification (en kgeau / kgair sec)
  • x= humidité absolue de l’air après humidification (en kgeau / kgair sec)
  • q= débit volumique de l’air (en m³/s)
  • r = poids volumique de l’air (en kg/m³)

Le débit d’eau évaporée De est donné par :

D= r x qv x (x2 – x1)  [en kgeau/s]

Si qv est exprimé en m³/h, débit horaire plus réaliste, le débit d’eau évaporée De sera lui aussi exprimé en kgeau/h.


Débit d’eau de déconcentration

Un constructeur propose l’abaque ci-dessous :

Elle permet d’extraire FB, coefficient de déconcentration. Sa valeur précise le pourcentage d’eau de déconcentration Dd à prévoir en fonction du débit d’évaporation De.

D= FB x De (en kgeau/s)

Ainsi, une valeur de FB égale à 0,5 signifie que 50 % du débit d’évaporation doit être ajouté pour déconcentrer l’eau chargée en sels. Un coefficient supérieur à 2 sous-entend que les caractéristiques de l’eau sont telles qu’il faille travailler avec un humidificateur à eau perdue ! En pratique, vu le coût d’une telle solution, on adoptera une autre technique d’humidification.


Exemple

Soit un débit d’air de 8 600 m³/h traversant un humidificateur à évaporation.

Caractéristiques

  • avant humidification, humidité absolue de 2 geau / kgair sec
  • après humidification, humidité absolue de 10,5 geau / kgair sec
  • pH de l’eau du réseau : 7,1
  • concentration en ion calcium (Ca)2+ : 100 ppm (100 mg/l)
  • concentration en ion bicarbonate (HCO3)– : 100 ppm (100 mg/l)

Estimation du débit d’eau évaporée

Pour un air aux alentours de 20°C, on prendra un poids volumique de 1,2 kg/m³, d’où

D= r x qv x (x– x1) = 1,2 x 8 600 x (0,0105 – 0,002) = 87,7 kg/h = 87,7 litres/h

Estimation du débit de déconcentration

De l’abaque, on déduit un coefficient FB égal 0,3.
D’où, D= 0,3 x 87,7 = 26,3 litres/h

Débit total d’eau consommée

Dtot = 87,7 + 26,3 = 114 litres/h.

Évaluer l’absence de courant d’air

Évaluer l'absence de courant d'air


Valeurs recommandées

La norme européenne NBN EN 13779 (2007) et l’annexe C3 de la PEB

Ces normes proposent une plage de variation de vitesse avec une valeur par défaut en fonction de la température intérieure.

Paramètres

Situation

Plage type

Valeur par défaut

Vitesse de l’air [m/s]
Température d’air locale = 20°C
0,1 à 0,16
< 0,13
Température d’air locale = 21°C
0,1 à 0,17
< 0,14
Température d’air locale = 22°C
0,11 à 0,18
< 0,15
Température d’air locale = 24°C
0,13 à 0,21
< 0,17
Température d’air locale = 26°C
0,15 à 0,25
< 0,20

Un mouvement d’air n’est en moyenne ressenti par une personne que si sa vitesse est supérieure à 0,2 m/s : à ce moment, il est considéré comme un courant d’air.

Exemple.

Température optimale de l’air nécessaire dans la zone d’occupation d’un bureau pour garantir le confort en fonction de la vitesse de l’air (température des parois = 19°C)
0,15 m/s 21°C
0,4 m/s 23°C
1 m/s 25°C
Pourcentage probable de personnes ressentant un inconfort en fonction de la vitesse de l’air (température de l’air = 19°C)
0,15 m/s 6 %
0,4 m/s 12 %
1 m/s 25 %

Comment évaluer sa situation ?

Il est très difficile de mesurer les vitesses d’air dans des locaux. L’évaluation de l’inconfort lié aux courants d’air est donc purement qualitative. Pour se faire une opinion, il faut interroger les occupants, s’asseoir dans leur position de travail, … Un truc cependant, si en plaçant la main à 20 cm de l’ouverture incriminée, aucun mouvement d’air n’est ressenti, on peut considérer qu’il n’y a pas de problème de courant d’air.

Voici quelques situations pouvant poser problème :

Courants d’air dus aux infiltrations

Les courants d’air se font principalement ressentir au niveau des joints de fenêtre et de porte. Un cas typique conduisant à l’établissement d’un courant d’air est celui où une série de portes non étanches sépare un local donnant sur une façade en surpression et un local donnant sur une façade en dépression : c’est le cas habituel d’un plateau de bureaux séparés par un couloir central. Cet effet de courant d’air se fait d’autant plus ressentir que le radiateur placé devant la fenêtre ne couvre pas toute la largeur de celle-ci et ne compense pas l’infiltration d’air froid.

Le même phénomène se présente lorsqu’il y a des portes donnant sur l’extérieur et non protégées par un sas.

Des courants d’air peuvent aussi apparaître pour les bureaux situés aux étages inférieurs d’une tour lorsqu’il y a possibilité d’un mouvement ascensionnel de l’air chaud, par exemple, via une cage d’escalier ouverte sur plusieurs niveaux.

Tous ces mouvements d’air inconfortables sont facilement détectables avec la main. On peut aussi les mesurer objectivement grâce à un anémomètre à fil chaud.

Courants d’air dus au système de ventilation

Grilles placées trop bas

Schéma grilles placées trop bas.

Lorsque les grilles de ventilation en contact avec l’extérieur sont placées à hauteur d’homme, il peut y avoir des sensations de courant d’air. Par contre, ce ne sera sûrement pas le cas si les grilles sont situées à 1,8 m de haut (en partie supérieure des châssis plutôt que dans le bas).

Débits d’air pulsé importants

Si la ventilation est de type purement hygiénique, c’est-à-dire que l’air ne sert pas aussi à la climatisation, les débits pulsés mécaniquement dans les locaux ne sont généralement pas suffisants pour être ressentis par les occupants.
Cependant, ces débits peuvent augmenter dans des locaux à forte concentration comme les auditoires, les salles de réunion,…

Dans ce cas, le débit pulsé par bouche risque d’entraîner des vitesses d’air trop élevées. C’est un problème de choix des bouches. Le placement de bouches hélicoïdales permet un meilleur brassage de l’air avec des vitesses moindres.

Débits d’air pulsé trop faibles

Schéma débits d'air pulsé trop faibles.

Lorsque l’air pulsé sert aussi à la climatisation, la vitesse de l’air à la sortie des diffuseurs plafonniers doit avoir une valeur minimum d’environ 2 m/s. Si ce n’est pas le cas, l’air ne profitera pas de l’effet Coanda et chutera verticalement, provoquant un courant d’air.

Ici aussi le problème est lié à un mauvais choix de bouches. Paradoxalement, les bouches ont été choisies trop grandes, c’est-à-dire que leur vitesse de sortie est trop faible. Le courant d’air se fera ressentir sous la bouche.

Plafonniers trop rapprochés

Schéma plafonniers trop rapprochés.

Lorsque des diffuseurs plafonniers sont placés côte à côte, le flux d’air de chacun se rencontrant, le jet d’air résultant est propulsé vers le sol. Si les bouches sont trop rapprochées, la vitesse de ce jet risque d’être trop importante dans la zone d’occupation. Le courant d’air se fera ressentir entre les bouches.

Plafond trop bas

Un plafond bas (2,4 m) demande des bouches à forte induction (plafonnier hélicoïdal) pour lesquelles l’air se mélange très vite avec l’air ambiant. Dans le cas contraire, la vitesse de l’air pulsé risque d’être trop importante dans la zone d’occupation.

Absence de préchauffage

La sensation de courant d’air est aussi liée à la température de l’air pulsé. Pour les débits d’air importants, un défaut de préchauffage de l’air neuf peut donc être inconfortable. La température critique d’inconfort est évidemment liée à la vitesse et à le direction du jet d’air.

Organiser la maintenance d’ECS

Organiser la maintenance d'ECS


Contrôles

Pendant la première année de service

Lors de la mise en service, on vérifiera la fonction de commutation du thermostat.

Même si le réglage d’origine est de 60°C, on vérifiera la température. On déterminera en outre la température désirée avec l’utilisateur.

La température peut se mesurer d’une part sur le thermomètre du boiler (s’il en existe un) et d’autre part sur le point de soutirage le plus proche du chauffe-eau (robinetterie de puisage) au moyen d’un thermomètre. On tiendra compte des pertes des conduites. Un écart de température entre le réglage du thermostat, l’affichage de la température sur le boiler et la mesure de la température au robinet est normal; il est surtout dû à la stratification régnant dans le réservoir au moment de la comparaison.

On vérifiera en outre le fonctionnement de la soupape de sûreté :

  • bref soulagement du ressort de pression sur la vanne de sécurité (rinçage);
  • contrôle visuel de la soupape de sûreté pour détecter si elle goutte au réchauffage de l’eau.

  

Groupe de sécurité et soupape de sûreté.

Après 1-2 années de service

  • contrôle du niveau de température,
  • contrôle de l’entartrage du réservoir et des corps de chauffe,
  • actionner de temps à autre la manette du groupe de sécurité, afin d’éviter qu’il ne s’encrasse ou ne s’entartre,
  • contrôle de l’anode de protection en magnésium.

Pour procéder au contrôle d’un réservoir électrique, déposer les fusibles, fermer les conduites d’eau froide (vanne d’arrêt), vidanger le chauffe-eau (robinet de vidange) et ouvrir un robinet d’eau chaude pour faire appel d’air.

Après avoir vidangé le chauffe-eau, démonter le capot de protection. Avant de démonter la flasque, dé-raccorder le thermostat et la mise à terre.

La batterie électrique peut maintenant être retirée du chauffe-eau. Bien noter sa position. Après avoir déposé la batterie, on pourra déposer et remplacer rejoint d’étanchéité.

Le passage est maintenant libre pour contrôler la cuve intérieure.


Détartrage d’un réservoir électrique

Avec des chauffe-eau modernes à surfaces intérieures lisses et température de l’eau de 60°C au maximum, il se forme normalement peu de dépôt de calcaire à l’intérieur de la cuve.

Pour le détartrage, on procédera comme suit :

  • Aspirer le calcaire au fond de la cuve avec un aspirateur.
  • Brosser les parois du réservoir.
  • Détacher le tartre de l’élément chauffant par un léger martèlement (par exemple avec un marteau en nylon) ou en grattant légèrement (tournevis, pas d’outil tranchant).
  • Avant de procéder au remontage, nettoyer les deux surfaces d’étanchéité (siège du joint d’étanchéité sur la cuve intérieure et flasque).

On évitera absolument les détartrages chimiques, sauf exceptionnellement en l’absence d’une ouverture (flasque).

Selon la composition de l’eau et avec des températures supérieures à 60° C, les précipitations de calcaire dans l’eau augmentent massivement.

Pour réduire ces précipitations à un minimum et favoriser une exploitation optimale de l’énergie, la température de l’eau sera limitée à 60°C.

Un détartrage régulier (tous les 5 ans environ) du chauffe-eau est néanmoins nécessaire. La fréquence dépend de la qualité de l’eau (composition de celle-ci).

Les détartrages seront signalés par l’apposition d’une étiquette sur le chauffe-eau.


Anodes

Comment protéger une enceinte métallique ? En la mettant en contact avec un matériau plus fragile que lui ! On parle d’ailleurs d’une anode sacrificielle qui va se corroder, laissant la cuve intacte.

Même si la plupart des chauffe-eau commercialisés sont revêtus d’une couche de protection, ils sont souvent équipés en usine d’anodes en magnésium pour garantir une protection supplémentaire du matériau du réservoir.

Lors de chaque contrôle, on vérifiera l’anode et on procédera à son remplacement lorsque l’usure atteint 60 %.

Les anodes sont disponibles dans 2 versions :

  1. anodes à tige,
  2. anodes à chaîne.

On utilise des anodes à chaîne lorsque la place disponible dans la partie supérieure du chauffe-eau n’autorise pas l’introduction d’une anode à tige.

Lors de la mise en place de l’anode, on veillera à garantir un bon contact avec l’accumulateur (masse).


Conduites

Isolation

Avec les années, des défauts de l’isolation thermique peuvent se traduire par des pertes thermiques, raison pour laquelle on procédera périodiquement à un contrôle visuel des conduites et de leur isolation. Au besoin, on complétera ou on remplacera les zones endommagées.

Rinçages

Avec des installations d’eau chaude bien conçues, un bon rinçage est garanti par les soutirages. On évitera ou on éliminera des colonnes peu ou pas utilisées.

Les rinçages sous pression sont compliqués et coûteux. On les utilise principalement pour éliminer les produits de la corrosion dans les conduites. Ce mode de rinçage doit être planifié et contrôlé par un spécialiste. L’exécution d’un rinçage sous pression sera confiée exclusivement à une entreprise spécialisée.

S’il existe un pot de décantation (récupération des boues circulant dans le réseau), généralement situé avant la pompe de recyclage de la boucle, il faudra prévoir une fois par semestre d’ouvrir le robinet de chasse pour éliminer les boues récupérées.

Pot de décantation.


Robinetterie

Circulateur de la boucle de circulation

De nombreuses installations d’eau chaude pêchent par leur circulateur : puissance trop élevée, vitesse d’écoulement trop élevée, etc.

Avec des installations existantes, on peut dans la plupart des cas remplacer le circulateur existant par un modèle plus petit. En procédant à cette opération de substitution, on posera un organe de régulation et un clapet antiretour.

Améliorer

Pour plus d’informations sur l’adaptation du circulateur.

Robinetterie d’arrêt

La robinetterie d’arrêt sera vérifiée quant aux défauts suivants :

  • étanchéité des joints;
  • accessibilité;
  • isolation thermique.

Si ces points sont en ordre, on ne rencontre normalement pas de problème avec la robinetterie d’arrêt.

Robinetterie de puisage

Une robinetterie de puisage qui goutte provoque des pertes d’eau et d’énergie qu’il ne faut pas sous-estimer. Une robinetterie qui n’est pas étanche sera donc immédiatement réparée.

Exception ! Une robinetterie à « écoulement libre goutte » pendant le réchauffage (dilatation de l’eau).

Une robinetterie à débit trop élevée peut provoquer une consommation excessive. En l’occurrence, on vérifiera si :

n’est pas une solution plus économique en termes énergétiques. Moyennant une bonne information, de telles mesures peuvent contribuer très efficacement à l’exploitation économique d’une installation.

Améliorer

Pour plus d’informations sur le choix de la robinetteriez ici.

Source : programme Ravel- Suisse.

Évaluer les charges thermiques dues aux équipements

Évaluer les charges thermiques dues aux équipements

Exemple.

Pour visualiser l’importance thermique que peuvent avoir les équipements de bureau, voici une simulation du comportement d’un bureau standard.

Ce bureau de 30 m² au sol ne profite donc pas d’apport solaire. Une température de confort y est maintenue été comme hiver par un système de climatisation. Les consignes qui y sont associées sont :

En hiver,

  • en période d’occupation : Tint = 20°C
  • en période d’inoccupation : Tint = 15°C

En été,

  • en période d’occupation : Tint = 25°C
  • en période d’inoccupation : Tint = 30°C

Les horaires de fonctionnement sont :

  • occupation : de 8 à 18 h en semaine (260 jours par an).
  • ralenti : de 17 à 7 h en semaine et 24h sur 24 les week-ends.

En période d’occupation, des apports internes sont fournis par :

  • Cas 1 
    • 2 personnes (2 x 70 W),
    • 2 lampes individuelles (2 x 18 W),
    • éclairage général de 13 W/m² (390 W).
  • Cas 2 
    • 2 personnes (2 x 70 W),
    • 2 lampes individuelles (2 x 18 W),
    • 2 ordinateurs (2 x 160 W),
    • éclairage général de 13 W/m² (390 W).
  • Cas 3 
    • 2 personnes (2 x 70 W),
    • 2 lampes individuelles (2 x 18 W),
    • 2 ordinateurs (2 x 160 W),
    • 1 imprimante (120 W),
    • 1 photocopieur (160 W),
    • éclairage général de 13 W/m² (390 W).
Consommations en climatisation et en chauffage durant une année
Cas Consom. chaudière
(1)
Consom. climatiseur
(2)
T° max. atteinte sans clim.
(3)
Coût exploit. en chauffage
(4)
Coût exploit. en refroidis.
(5)
Coût exploit. total
1 798 kWh 216 kWh 30°C 27,93 € 24,3 € 52,225 €
2 330 kWh 439 kWh 32.4°C 11,55 € 49,38 € 61 €
3 110 kWh 714 kWh 35.6°C 3,85 € 80,32 € 84,175 €
  1. Le rendement de l’installation de chauffage est estimé à 0,7.
  2. L’efficacité frigorifique du climatiseur est estimée à 2,5 (cop = 3,5).
  3. En été.
  4. À 3,5 c€/kWh.
  5. À 11,25 c€/kWh (prix moyen HT).

En hiver, lorsque les gains internes deviennent importants, les charges en chauffage diminuent. Cependant, il n’y a aucun gain, que du contraire, puisque l’on substitue une énergie électrique à une énergie fossile nettement moins chère. En été, les charges en climatisation augmentent fortement avec la charge interne. Ainsi, chaque kWatt d’équipement supplémentaire coûtera environ, 11,25 c€ par heure pour sa consommation propre plus 4 c€ pour la consommation supplémentaire du climatiseur.

Lorsque les gains de chaleur internes (occupants, éclairage, équipements) et les gains externes (soleil) sont maîtrisés et lorsque le bâtiment présente une inertie thermique suffisante, il est tout à fait possible de se passer de climatisation pour garantir le confort des occupants.

Le tableau suivant permet de se faire une idée de la puissance frigorifique qu’il faudrait installer dans un local en fonction notamment de ses équipements.

Il est évident que lorsqu’un appareil est la plupart du temps en mode stand-by (imprimantes, photocopieur, fax), c’est la puissance consommée dans ce mode qui sera prise en considération et non sa puissance maximum de fonctionnement.

Bilan thermique d’un local (source : CARRIER)
Description Quantité Unité Watts Max Coefficient Total
1. Fenêtres exposées au soleil
(ne prendre qu’une seule orientation même temps)
NE ou S 6 x 200 x 0,2 = 240
E, SE ou SO x 250 x =
O x 300 x =
NO x 180 x =
Coupoles horizontales – x 400 x =
2. Toutes fenêtres non comprises en 1. x 60 x 1 =
3. Murs exposés au soleil
(prendre la même orientation qu’en 1.)
NO + E + SE x 20 x =
O + SO x 30 x =
S 8 x 25 x 0,6 = 120
4. Tous les murs non compris en 3. x 8 x 1 =
5. Murs intérieurs et cloisons
(tous les murs ou cloisons intérieurs adjacents à un local non climatisé)
x 5 x 1 =
6. Plafond ou Toiture
(prendre l’un ou l’autre)
local non climatisé au-dessus x 4 x =
plafond avec combles au-dessus x 30 x =
toit plat nu lourd x 40 x =
toit plat nu léger x 50 x =
toit plat et lourd x 30 x =
faux plafond léger x 50 x =
7. Plancher local non climatisé en-dessous x 5 x 1 =
sur chaufferie x 20 x 1 =
sur caves ou vide x 0 x 1 =
8. Ouverture permanente à rue x 200 x 1 =
à local non climatisé x 110 x 1 =
9. Éclairage et appareils électriques en fonctionnement 636 ou 60 W x 1 x 1 = 636 ou 60
Tubes TL 390 W x 1,25 x 1 = 390
10. Occupants 2 pers x 70 x 1 = 140
11. Ventilation naturelle (0,5 à 1 vol/h) 21 m³/h x 2 x 1 = 42
ou fumeurs pers x 170 x 1 =
ou mécanique m³/h x 2 x 1 =
Total en Watts 1568 ou 992
Coefficient de déshumidification de la batterie X 1,2
Puissance sélectionnée en Watts   1881 ou 1190
COEFFICIENTS

  1. pas de protection solaire : 1,0protection solaire intérieure : 0,6protection solaire extérieure : 0,2vitre réfléchissante : 0,6 à 0,2
  2. mur léger isolé : 0,6mur lourd : 0,8mur lourd isolé : 0,5
  3. toit isolé >= 50 mm : 0,3autres cas : 1,0

Comme nous le verrons dans la suite, la mise en veille des équipements permet de diminuer fortement leur consommation, par la même occasion leur production de chaleur.

Exemple : L’exemple repris dans le tableau de dimensionnement représente le bureau décrit ci-dessus (cas 3), auquel on a adjoint des apports solaires. Dans celui-ci, il serait possible par une technique de mise en veille de diminuer de près de 40 % (1 190 W au lieu de 1 881 W), la puissance frigorifique nécessaire pour y maintenir une température 24°C par 30°C extérieur.

Un ordre de grandeur : Si on admet une très légère surchauffe en été, on peut en cas de mise en veille efficace se passer de climatisation. On estime généralement que dans les immeubles de bureaux, une climatisation devient nécessaire en été lorsque la somme des apports de chaleur dépasse 50 W/m² au sol.

Exemple : Dans l’exemple ci-dessus (bureau de 30 m²), la mise en veille des équipements fait chuter les apports de chaleur de 1 568 W à 992 W, c’est à dire de 52 W/m² à 33 W/m².

Évaluer l’efficacité de la production frigorifique

Évaluer l'efficacité de la production frigorifique


L’efficacité de la production frigorifique

Un indice de mesure d’efficacité : le COP

De l’analyse du fonctionnement thermodynamique de la machine frigorifique, on déduit son efficacité énergétique. C’est le rapport entre la quantité de chaleur absorbée par l’évaporateur et la quantité d’énergie électrique totale absorbée par l’installation, soit principalement le compresseur mais également les équipements annexes (ventilateurs, pompes de circulation d’eau, … )

Efficacité théorique d’une machine frigorifique.

Le bilan énergétique d’une machine frigorifique apparaît sur le diagramme : toute l’énergie captée dans le bâtiment par l’évaporateur (II), plus l’énergie utilisée par le compresseur (I), doit être évacuée par le condenseur vers l’air extérieur (I + II).

L’installation de réfrigération sera donc énergétiquement efficace si elle demande peu d’énergie électrique au compresseur pour atteindre une puissance frigorifique donnée à l’évaporateur.

Appliquons ceci à un climatiseur :

Évaluer l’efficacité frigorifique d’un appareil, c’est établir le rapport entre énergie frigorifique fournie et énergie électrique absorbée par le compresseur.

Quelle valeur de COP atteindre ?

On trouvera dans le tableau ci-dessous, les valeurs recommandées par le standard ARI.

Type d’équipement

COP min. recommandé (kWr/kWe)
Climatiseurs de fenêtre 2,8
Split systèmes
    – Jusqu’à 4 kWr
– Supérieur à 4 kWr
2,8
3,0
Conditionneurs d’air monobloc

À refroidissement par air

    – Jusqu’à 10 kWr
– Supérieur à 10 kWr

À refroidissement par eau

 

2,5
2,9

3,5

Groupes de production d’eau glacée à pistons

À refroidissement par air

– Jusqu’à 100 kWr
– Supérieur à 100 kWr

À refroidissement par eau

    – Jusqu’à 10 kWr
– Supérieur à 10 kWr

 

 

3,0
3,0

 

3,7
4,0

Groupes de production d’eau glacée à vis

À refroidissement par air

À refroidissement par eau

    – Jusqu’à 800 kWr
– Supérieur à 800 kWr

 

4,5

 

4,6
5,0

Groupes de production d’eau glacée centrifuges

À refroidissement par air

    – Jusqu’à 800 kWr
– Supérieur à 800 kWr

A refroidissement par eau

    – Jusqu’à 800 kWr
– Supérieur à 800 kWr

3,8
3,84,5
4,7
  • Conditions standard pour climatiseurs, splits et systèmes monoblocs à refroidissement par air (standard ARI 510) : conditions intérieures = 27°C, 50% HR; conditions extérieures = 35°C bulbe sec et 24°C bulbe humide.
  • Conditions standard pour groupes de production d’eau glacée à refroidissement par eau (standard ARI 550-92) : température départ / retour eau glacée = 6,7°C / 12,2°C ; température entrée/sortie eau de condensation = 29,4°C / 35,0°C.

Une évaluation dans les conditions nominales grâce aux catalogues

A priori, le catalogue du fabricant permet d’évaluer cette situation dans les conditions nominales.

Exemple : voici les spécifications techniques d’un climatiseur réversible présent sur le marché.

Unité intérieure FHYB35FJ
Unité extérieure RY35D7

Puissance frigorifique

kcal/h 3 100
Btu/h 12 300
kW

3,60

Puissance calorifique

kcal/h 3 500
Btu/h 14 00
kW

4,10

Puissance absorbée

rafraîchissement

kW

1,51

chauffage

kW

1,33

On y repère :

– l’efficacité frigorifique, E.F. ou coefficient de performance COPfroid

puissance frigorifique / puissance absorbée = 3,6 kW / 1,5 kW = 2,4 

– l’energy efficiency ratio, E.E.R

puissance frigorifique / puissance absorbée = 12,3 Btu/h / 1,5 kW = 8,2 

Et si l’on souhaite utiliser l’appareil en mode chauffage :

– le coefficient de performance au condenseur, COPchaud

puissance calorifique / puissance absorbée = 4,1 kW / 1,3 kW = 3,2

Remarques.
1. Il ne faut pas confondre COPfroid et COPchaud ! Le COPchaud est le rapport entre l’énergie thermique délivrée au condenseur et l’énergie électrique demandée par le compresseur (c’est un terme qui vient de l’évaluation du rendement d’une pompe à chaleur). Alors que le COPfroid part de la chaleur captée à l’évaporateur. La confusion étant fréquente, il n’est pas inutile lorsque l’on compare le rendement des machines dans les documentations de constructeurs, de vérifier ce qui se trouve derrière l’appellation COP.

2. Il est intéressant de s’inquiéter également de l’efficacité globale de la machine frigorifique installée, c’est à dire du rapport entre le froid produit et l’ensemble de toutes les consommations électriques, y compris les ventilateurs aux échangeurs, les pompes, les tours de refroidissement,… Une machine frigorifique, avec une efficacité excellente, placée sur le toit d’un immeuble de plusieurs étages, peut voir son efficacité fortement chuter si la machine est placée en cave et que le condenseur est refroidi via un gainage d’air traversant les étages ! La consommation du ventilateur sera alors importante dans le bilan final.

Exemple.

Dans l’ouvrage « Diagnostic énergétique des installations frigorifiques industrielles » (ADEME + EDF), on propose un COP compresseur optimal de 4,8 pour un régime 13°/7°. Ce COP descend à 3,9 si on prend l’ensemble du système en compte (consommation des auxiliaires), et à 3,7 si le régime devient 11°/5° (baisse de 6 % du rendement suite à l’abaissement de 2°C à l’évaporateur).

3. L’énergie mécanique des ventilateurs et des pompes se dégrade en chaleur. Donc, non seulement le COP se dégrade par la consommation électrique des auxiliaires, mais aussi la puissance frigorifique disponible diminue.

4. À défaut de mesures spécifiques, on peut prendre une valeur de COPfroid de 4 (c’est la valeur choisie par le CSTC dans le cadre de l’élaboration de la future Réglementation flamande EPR, pour évaluer la consommation d’une machine frigorifique). À cette valeur s’ajoute une consommation globale de 8 [MJ/m².an] pour la consommation des pompes associées au système de refroidissement (soit 2,2 [kWh/m².an]). Cette valeur est réduite de moitié si une régulation de vitesse est appliquée aux pompes.

Exemple d’application

L’éclairage de 10 000 m² de bureaux entraîne aujourd’hui une puissance électrique de 125 kW (sur base de 12,5 W/m²), mais demande 31 kW complémentaires si la charge thermique de l’éclairage est reprise par une installation de conditionnement d’air, sur base d’un COPfroid de 4.

À noter que des compresseurs à vis génèrent des COP dépassant 5 ou 6, mais ce coefficient est généralement établi pour des conditions extérieures très favorables et il n’intègre pas la consommation des ventilateurs, de la tour de refroidissement, …

Comment évaluer l’efficacité énergétique d’une machine en fonctionnement ?

La procédure est complexe, il faut l’admettre. Mais pour une grande partie des installations à condensation par air, il est possible de mesurer approximativement le Delta T° des échangeurs et d’en déduire le COP de l’installation. La précision est suffisante pour déceler des anomalies à l’installation.

Les mesures seront réalisées pendant un temps « stable », la température extérieure étant de 20 à 30°C car l’installation doit être bien chargée, le compresseur doit fonctionner à plein régime, tous les ventilateurs étant en fonctionnement continu.

On mesure :

  • la température de l’air aspiré par le condenseur Ta (en °C) et la température de l’air à la sortie du condenseur Ts (le plus près de la sortie possible, pour éviter que cet air soit déjà mélangé avec de l’air ambiant),
  • la température de l’air aspiré par l’évaporateur et la température de l’air refoulé par l’évaporateur,
  • avec un anémomètre, la vitesse de l’air parcourant chacune des batteries (en m/sec),
  • avec un kWh-mètre, l’énergie absorbée par le compresseur uniquement Qa (en kWh), et éventuellement l’énergie absorbée par la totalité de l’installation Qt en kWh,
  • le temps de fonctionnement du compresseur t (en heures),
  • la surface frontale du condenseur S, c.-à-d. la surface aspirant l’air (en m²).

On calcule alors :

Puissance condenseur = S x v x 1,2 x (Ts – ta) [kW]

Le facteur 1,2 est la chaleur volumique de l’air (1,2 kJ/m³.K), et doit éventuellement être corrigée en fonction de la température.

Puissance absorbée = Qa / t [kW]

Puissance totale = Qt / t [kW]

La puissance évaporateur, l’EE (COPfroid) et le COPchaud se calculent alors aisément.

Finalement, on mesure au manomètre (demander à un frigoriste) la pression d’aspiration et de refoulement du compresseur.

En connaissant le réfrigérant, on peut déduire des tables thermodynamiques la température d’évaporation T0 [en °C] et de condensation Tc [en °C]. Sur base de ces mesures, il est possible de déduire le point de fonctionnement de l’appareil et de vérifier son adéquation avec les données du constructeur et les données du concepteur de l’installation.

Cette méthode est précise à moins de 10 %, en fonction de la précision des mesures. Pour l’avenir, il est important de bien noter les mesures et les résultats obtenus, pour vérification ultérieure et suivi de l’évolution du matériel.

En fait, ce n’est pas tant l’exactitude absolue des mesures qui compte, que la possibilité de comparer les valeurs d’une mesure à l’autre et de repérer une dérive, un jeu dans les clapets, … L’intervention à temps du fabricant permet alors de sérieuses économies.


Le bilan énergétique annuel

Si l’estimation ponctuelle du COP de la machine frigorifique n’est déjà pas simple, réaliser le bilan énergétique annuel de l’appareil est vraiment complexe.

Qui consomme de l’énergie ?

  • le compresseur Cc,
  • les auxiliaires permanents Cp (ventilateurs, pompes, etc.),
  • les auxiliaires non permanents Cnp (résistances de carter, etc.),
  • le dégivrage éventuel Cd (notons qu’il augmente aussi les besoins de froid en produisant de la chaleur à l’évaporateur qu’il faudra compenser par un fonctionnement supplémentaire du compresseur en cycle froid),
  • les pertes en réseau qui augmentent les besoins de froid, donc la durée de fonctionnement du compresseur (consommation intégrée dans cc).

La consommation globale annuelle de l’installation est :

C = cc + Cp + Cnp + Cd (kWh)

Des conditions de fonctionnement très variables

Pour évaluer ces consommations, il ne suffit pas, hélas, de multiplier la puissance des consommateurs par leur temps de fonctionnement…

En effet, la puissance du compresseur est fonction de ses conditions d’utilisation, donc des besoins de froid réels au cours d’une saison. À tout besoin de froid correspond une condition de fonctionnement de l’installation (température d’évaporation, température de condensation) et la chose se complique lorsque le fluide de refroidissement du condenseur n’a pas une température constante tout au long de la saison (ce qui est quasiment toujours le cas).

Pour déterminer la consommation d’énergie d’une installation, il est donc nécessaire d’intégrer tout au long de l’année les puissances absorbées à chaque régime de marche de tous les éléments consommant de l’énergie. Pour cela, il faut déterminer la variation des besoins de froid et le nombre d’heures correspondant à chacun de ses besoins; ceux-ci seront spécifiques à chaque installation. Le calcul est donc complexe …

En pratique, c’est un compteur électrique qui pourra totaliser les consommations, et l’historique du régulateur numérique qui pourra établir le fonctionnement sur une saison.

Reprenons cependant l’exemple d’une installation frigorifique dont le bilan thermique est décrit dans l’ouvrage de J. Bernier (« L’itinéraire d’un frigoriste » paru chez PYC- Éditions) : l’analyse est intéressante pour visualiser l’origine des consommations d’une installation.

L’installation fonctionne toute l’année avec des besoins maximum de froid (Besoin de Froid = BF) de 10 kW. Pour simplifier, on répartira la puissance frigorifique par pas de 1 kW.

Le tableau ci-dessous illustre le calcul de consommation de cette installation fictive. Par exemple, l’installation a fonctionné durant 400 heures à 6 kW-froid, avec une température de condensation de 40°C.

 

BF – Besoin de Froid (kW)

 

10 9 8 7 6 5 4 3 2 1
 

Durée totale heures

 

800 1 500 2 000 1 500 1 000 700 500 300 260 200
 

Durée heures condensation 50°

 

600 1 000 1 300 700 300 200 100
 

Durée heures condensation 40°

 

200 400 500 600 400 300 200 80 60 50
 

Durée heures condensation 30°

 

100 200 200 300 200 200 220 200 150

Exemple de répartition sur l’année des besoins de froid
et des temps de fonctionnement à chaque régime (en heures).

On remarquera que le nombre d’heures de la deuxième ligne correspond à un total de 8 760 heures, soit une année. Les lignes 3, 4 et 5 indiquent la répartition de ces heures en fonction du régime de fonctionnement du compresseur, lui-même fonction de la température extérieure.

Nous allons mettre en situation le compresseur et déterminer ainsi ses consommations partielles à chaque régime de marche. La température d’évaporation est supposée constante à – 10°C.

Consommation du compresseur

La puissance frigorifique et la puissance absorbée d’un compresseur varient suivant les températures d’évaporation et de condensation. La figure ci-dessous illustre ces variations pour notre exemple. La puissance frigorifique au régime extrême – 10/+ 50°C est de 11 kW. (On notera que les courbes utilisées correspondant aux conditions réelles de surchauffe et de sous refroidissement, et non aux conditions nominales données par le constructeur).

Reprenons maintenant notre tableau de fréquences que nous allons compléter avec :

  • la puissance absorbée à chaque régime,
  • le taux de fonctionnement (pourcentage temps de marche horaire),
  • le nombre d’heures de fonctionnement.

Cependant, il faut savoir que pour les faibles taux de fonctionnement, le rendement de production de froid s’écroule littéralement. C’est normal, iI ne doit pas seulement couvrir le BF, mais aussi la mise à température du circuit, qui après chaque arrêt se réchauffe complètement.

Exemple d’affaiblissement de la Production de froid en fonction
du taux d’utilisation du compresseur (Rendement de production de froid RPF).

Ainsi, l’installation étudiée doit assurer pendant 50 heures une puissance froid de 1 kW lorsque la condensation se produit à 40°C. La figure ci-dessus prévoit à ce régime 13,2 kW frigorifique. Le taux de fonctionnement sera de 1 kW/ 13,2 kW, soit 7,5 %. Mais à un tel taux de charge, le rendement de production de froid est de 80 %. Si bien que le temps de fonctionnement réel sera de :

50 heures x 1 kW / (0,80 x 13,2 kW) = 5 heures

D’une manière générale, le nombre d’heures de fonctionnement du compresseur hc à chaque fonctionnement partiel est égal à :

hc = nh x BF / (RPF x Qo)

où,

  • hc, le nombre d’heures de fonctionnement du compresseur
  • NH, le nombre d’heures d’utilisation
  • BF, le besoin de froid
  • RPF, le rendement de production de froid
  • Qo, la puissance frigorifique disponible à l’évaporateur

La consommation totale annuelle du compresseur est égale à la somme de toutes les consommations partielles, aux divers régimes.

 

Besoin de Froid – BF (kW)

 

10 9 8 7 6 5 4 3 2 1
 

Régime : – 10°/50°

 

 

Nbre heures utilisat. NH

 

600 1 000 1 300 700 300 200 100
 

Puissance frigo Qo (kW)

 

11 11 11 11 11 11 11
 

Taux fonct. (%)

 

90 82 73 64 55 45 36
 

Rendement RPF (%)

 

100 100 100 99 99 98 98
 

Puissance absorbée (kW)

 

6 6 6 6 6 6 6
 

Heures fonct. hc

 

545 818 945 445 164 92 37
 

Consommation cc (kWh)

 

3 270 4 908 5 670 2 670 984 552 222
 

Régime : – 10°/40°

 

 

Nbre heures utilisat. NH

 

200 400 500 600 400 300 200 80 60 50
 

Puissance frigo Qo (kW)

 

13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2
 

Taux fonct. (%)

 

76 68 61 53 45 38 30 23 15 7.5
 

Rendement RPF (%)

 

100 99 99 99 98 98 97 95 91 80
 

Puissance absorbée (kW)

 

5.6 5.6 5.6 5.6 5.6 5.66 5.6 5.6 5.6 5.6
 

Heures fonct. hc

 

152 275 306 321 185 116 62 19 10 5
 

Consommation cc (kWh)

 

851 1 542 1 713 1 800 1 039 649 347 107 56 28
 

Régime : – 10°/30°

 

 

Nbre heures utilisat. NH

 

100 200 200 300 200 200 220 200 150
 

Puissance frigo Qo (kW)

 

15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2
 

Taux fonct. (%)

 

59 53 46 39 33 26 20 13 6.5
 

Rendement RPF (%)

 

99 99 98 98 97 95 92 89 75
 

Puissance absorbée (kW)

 

5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3
 

Heures fonct. hc

 

60 106 94 121 68 55 47 30 13
 

Consommation cc (kWh)

 

317 563 498 640 359 294 250 157 70

Calcul de la consommation annuelle du compresseur

En additionnant toutes les consommations partielles, on trouve pour notre exemple :

cc = 29 556 kWh/an (soit 106 400 MJ/an)

De la même manière, le temps total de fonctionnement annuel du compresseur est égal à la somme des temps de fonctionnement partiels aux divers régimes : hc = 5 091 heures.

Consommation des auxiliaires permanents

Comme leurs noms l’indiquent, ces auxiliaires consommateurs d’énergie fonctionnent en permanence. Dans notre exemple, le ventilateur de l’évaporateur fonctionne en permanence, soit 8 760 heures par an.

Il absorbe 500 W et va donc consommer par an :

Cp = 0,5 kW x 8 760 h = 4 380 kWh/an

Consommation des auxiliaires non permanents

Ce sont les auxiliaires asservis au fonctionnement du compresseur (ventilateur de condenseur, vanne magnétique départ liquide, résistance de carter, etc.)

Pour notre exemple, le ventilateur de condenseur absorbe 300 W et est asservi au compresseur. La bobine de l’électrovanne absorbe 10 W. Le compresseur comporte en outre une résistance de carter (non régulée) qui consomme 20 W quand le compresseur est à l’arrêt.

Nous avons vu que le compresseur fonctionnait 5 091 heures par an. Les auxiliaires non permanents vont donc consommer :

Cnp = (0,3 + 0,01) x 5 091 + 0,02 x (8 760 – 5 091)

Cnp = 1 651 kWh/an

Consommation du dégivrage

Estimer sans observation les consommations d’un dégivrage n’est pas chose toujours facile car leur fréquence est très variable. Pour notre exemple, nous estimerons en moyenne quatre dégivrages par jour de 15 minutes (0,25 heure) à l’aide dune résistance électrique de 6 kW, ce qui conduit à une consommation annuelle de :

Cd = 6 x 0,25 x 365 x 4 = 2 188 kWh/an

Récapitulation des consommations annuelles

La consommation totale annuelle est égale à la somme des consommations de tous les composants de l’installation soit :

C = 29 556 + 4 380 + 1 651 + 2 188 = 37 775 kWh/an ( soit 136 000 MJ)

Traduire en coût une telle consommation dépend essentiellement du régime tarifaire appliqué : entre 11 et 16 c€/kWh, généralement. Tout dépend du moment de fonctionnement de l’installation : jour ? jour durant la pointe ? nuit ? … .

Quelle efficacité énergétique ?

Déterminons l’énergie froid utilisée sur l’année. Il suffit d’intégrer les besoins de froid sur l’année, donc de totaliser les produits des besoins frigorifiques par le temps, pour les 3 régimes de marche.

 

BF – Besoin de Froid (kW)

 

10 9 8 7 6 5 4 3 2 1
 

Nbre d’heures régime : – 10°/50°C

 

600 1 000 1 300 700 300 200 100
 

Nbre d’heures régime : – 10°/50° C

 

200 400 500 600 400 300 200 80 60 50
 

Nbre d’heures régime : – 10°/50°C

 

100 200 200 300 200 200 220 200 150
Total heures 800 1 500 2 000 1 500 1 000 700 500 300 260 700
BF x heures (kWh) 8 000 13 500 16 000 10 500 6 000 3 500 2 000 900 520 200

Exemple de calcul simplifié de l’énergie froid annuelle

L’énergie froid annuelle nécessaire est la somme des chiffres de la dernière ligne du tableau soit :

EF annuel = 61 120 kWh (220 000 MJ)

L’efficacité énergétique moyenne annuelle de l’installation frigorifique est le rapport entre l’énergie froid produite et l’énergie électrique consommée soit, pour notre exemple :

EEmoy = 61 120 / 37 775 = 1,62

On est loin de la valeur nominale de 2,9 pour le cop au fonctionnement (- 10°C (évaporateur) / + 30°C (condenseur) sur base des données du catalogue (15,2 kW / 5,3 kW) !

Plus l’installation sera performante, bien réglée, et bien entretenue et plus ce coefficient sera élevé, ce qui veut donc dire tout simplement que moins l’installation sera gourmande en énergie électrique.

Remarque : ce coefficient EEmoy de 1,62 correspond à une installation frigorifique (« froid négatif ») et pas une installation de climatisation puisque la température d’évaporation est de – 10°C . Généralement, une installation de climatisation aura une température d’évaporation positive, et le EEmoy sera plus élevé.


Le diagnostic d’une installation existante

Les signes de surconsommation énergétique d’une installation frigorifique :

  • L’augmentation des temps de fonctionnement du compresseur, dont les causes sont :
    • soit le manque de fluide frigorigène,
    • soit l’encrassement des échangeurs (condenseur et évaporateur),
    • soit encore le mauvais état du compresseur.
    Le placement d’un compteur horaire de fonctionnement sur l’alimentation du compresseur est un petit investissement qui permettra de déceler une dérive de consommation.
  • La diminution de la température d’évaporation, dont la cause principale est l’encrassement des échangeurs.
  • L’augmentation du nombre de démarrages pour les petites installations (compresseurs hermétiques des split-systems par exemple) ou du nombre de cylindres ou de compresseurs en service. Ceci est généralement dû à un encrassement du condenseur, à des fuites de réfrigérant ou à une mauvaise alimentation de réfrigérant liquide des détendeurs. Ils ne peuvent être pris en compte que si les autres paramètres restent constants, c’est-à-dire pour des conditions ambiantes identiques (même demande au point de vue température et humidité relative) et pour des conditions extérieures identiques (température de condensation, apports internes et externes).

Les tests à effectuer

Les tests à effectuer consistent :

  • Soit à donner des indications sur un fonctionnement anormal de l’installation (mesure du courant absorbé en fonctionnement continu et comparaison avec le courant nominal, comptage des heures de fonctionnement, mesure du débit de l’eau de la tour de refroidissement et du débit d’eau glacée,…).
  • Soit à vérifier l’efficacité énergétique de l’installation frigorifique, c’est-à-dire le rapport entre la puissance électrique absorbée et la puissance frigorifique fournie.

Certaines grosses installations comportent deux compteurs d’énergie qui intègrent le débit de fluide frigorigène et le delta T° avec lequel soit l’évaporateur, soit le condenseur travaillent. Ceci permet de connaître les consommations thermiques sur une période donnée (parfois, c’est sur la boucle d’eau glacée que se trouve le compteur d’énergie).

L’énergie du compresseur peut alors être déduite puisque l’on sait que les relations suivantes sont toujours vérifiées :

Puissance évaporateur + puissance compresseur = puissance condenseur

Énergie évaporateur + énergie compresseur = énergie condenseur

Pour vérifier la qualité de l’installation, il faut établir ce bilan à plusieurs régimes de fonctionnement et le comparer à la courbe d’efficacité en fonction de la charge du constructeur.

Chaque installation est particulière et il est donc difficile de comparer sa consommation à des ratios standards. Les seules références sont : soit celles données par le constructeur, soit l’installation elle-même, à une période antérieure, lorsqu’elle était soumise à une charge similaire.

Remarque.
Une des principales consommation énergétique est liée à la mise en dérogation des fonctions automatiques de régulation. Dès lors, en entrant dans le chaufferie, un coup d’oeil vers l’armoire électrique renseignera l’auditeur : bouton vert = marche, bouton orange = dérogation, bouton rouge = arrêt.


La rentabilité énergétique des interventions de maintenance

La rentabilité énergétique des opérations de contrôle et de maintenance n’est pas évidente à chiffrer.

Toutefois, on peut donner les  économies suivantes (chiffres établis sur base de l’expérience de la société SECA mais qui n’ont pas fait l’objet de mesures en laboratoire),  :

  • Nettoyages réguliers (au moins annuel) des condenseurs à air et des évaporateurs directs : rentabilité de 10 à 30 %
    • 10 % dans le cas d’un encrassement faible,
    • 30 % si ce nettoyage n’a jamais été réalisé.
  • Nettoyage des échangeurs fluide frigorigène – eau (évaporateur et condenseur) : rentabilité de 15 à 25 %

L’absence d’entretien peut créer des surconsommations importantes :

  • dégradation de la qualité de l’eau du circuit de condensation, absence d’installation d’adoucissement et de traitement anti-algues : surconsommation de 5 à 20 %;
  • engorgement des filtres déshydrateurs sur le circuit de fluide frigorigène : surconsommation de 10 à 15 %;
Exemple.

Voici les résultats dune simulation informatique réalisée par Mr De Smet de l’ABF.

Soit une machine frigorifique conçue pour fonctionner 16 heures sur 24 au régime – 10°/40° avec des gaz aspirés à + 10°, et avec un sous-refroidissement liquide de 6 K.

Elle présente un manque d’entretien et une dégradation de l’isolation. Elle fonctionne à – 15° (évaporateur partiellement pris en glace), à + 50° (condenseur encrassé), avec une température d’aspiration des gaz de + 15° (isolation des conduites endommagée).

Résultats : elle devra tourner 23h/24 pour un même bilan frigorifique et consommera 39 % d’énergie en plus.

En appliquant ceci à un groupe de 7,5 CV en fonctionnement 4 000 heures par an, cela entraîne une surconsommation de 6 789 kWh/an, soit un surcoût annuel de 1086 € (à 0,16 €/kWh) De quoi faire entretenir l’installation convenablement !


L’analyse de la puissance frigorifique installée

Pas besoin d’un camion si une camionnette suffit ! Une installation surdimensionnée génère des pertes de fonctionnement supplémentaires…

Comment évaluer les puissances frigorifiques nécessaires ? Quels sont les ratios ?

On considère généralement qu’une climatisation devient nécessaire dans un local si l’ensemble des apports thermiques dépasse 50 W/m² au sol.

Pour refroidir un local (bureau, par ex), on installera une puissance frigorifique de 60 à 80 W/m² utile (hors circulations) lorsque les besoins sont limités :

  • Soit parce que des mesures particulières ont été prises pour limiter les apports solaires (stores extérieurs) ou les charges internes (éclairage performant, bureautique avec gestion des puissances,…).
  • Soit parce qu’il s’agit d’un bâtiment ancien, à forte inertie, pour lequel on souhaite simplement compenser les charges nouvelles apportées par le développement de la bureautique.

On atteindra des puissances de 80 à 120 W/m² lorsque des apports solaires non maîtrisés viennent s’ajouter aux charges internes. Un cas critique apparaît dans les locaux d’angle puisque ceux-ci cumulent les apports solaires de 2 orientations différentes de façade (au pire : un local avec des baies vitrées au Sud et à l’Ouest…).

Des valeurs dépassant 150 W/m² apparaissent lorsque des charges ponctuelles supplémentaires sont placées

  • salle informatique,
  • salle de réunion ou de formation,

Calculs

Pour se faire une première idée des puissances frigorifiques en jeu dans un local, et l’importance relative de chaque source de chaleur, un logiciel d’évaluation est à disposition : cliquez ici !

L’intérêt d’une récupération de chaleur au condenseur

Principe

Une machine frigorifique extrait la chaleur excédentaire du bâtiment et la rejette à l’extérieur.

Si des besoins de chauffage (de locaux, d’eau chaude sanitaire, …) sont présents simultanément dans le bâtiment, il semble alors logique de tenter de récupérer la chaleur sur le condenseur de la machine frigorifique.

Par exemple, un supermarché Delhaize à Bruxelles évacue la chaleur du condenseur du groupe frigorifique (armoires de congélation) en créant un rideau d’air chaud à l’entrée du magasin. En été, la chaleur est déviée en toiture par un clapet.

Domaines d’application

Dans le bâtiment tertiaire, cette technique est moins évidente qu’elle n’en a l’air :

  • parce que des besoins de réfrigération constants toute l’année existent peu,
  • parce que les besoins de chauffage et de refroidissement apparaissent généralement en opposition (lorsque les besoins de froid augmentent, les besoins de chauffage diminuent…).

Seul un local informatique présente des besoins de refroidissement permanent, été comme hiver. Mais ce local est traité généralement à partir d’une machine indépendante et celle-ci pourra être refroidie directement par l’air extérieur, en by-passant la machine frigorifique (technique de free-chilling).

Enfin, si l’on imagine un transfert directement au niveau des locaux (refroidir le cœur du bâtiment et réchauffer les locaux en façades), le système DRV (Débit de Réfrigérant Variable) dispose d’une version avec récupération d’énergie apte à réaliser ce type de transfert.

Il n’empêche que si le bâtiment comprend simultanément des besoins de froid (centrale frigorifique de la cuisine collective) et des besoins de chauffage (eau chaude sanitaire des douches), il semble clair qu’une récupération d’énergie doit être étudiée par un bureau d’études.

Des ballons de préchauffage de l’eau chaude sanitaire pré-équipés d’un échangeur en série avec le condenseur de la machine frigorifique existent sur le marché.

Améliorer

Pour plus d’infos : la mise en place d’une récupération de chaleur au condenseur.

La technique du free-chilling peut-elle s’appliquer ?

Le principe de base du free-chilling est simple :

Lorsque la température extérieure descend sous les … 12°…10°…, l’eau est directement refroidie par l’air extérieur et la machine frigorifique est mise à l’arrêt.

Schéma principe de base du free-chilling.

Quelles sont les installations adaptées au free-chilling ?

L’économie d’énergie est évidente si des besoins de refroidissement existent en hiver.

L’intérêt est augmenté si les échangeurs des unités terminales travaillent à « haute » température : ce sera le cas de plafonds froids, ou de ventilos-convecteurs surdimensionnés pour travailler au régime 12°-17°,… Si l’installation demande une puissance de refroidissement faible (de l’ordre de 60 W/m²), on peut même faire travailler les plafonds froids au régime 17° – 19°C, ce qui permet un refroidissement par l’air extérieur pendant un plus long moment de l’année.

De plus, si l’installation dispose déjà d’un refroidissement à eau, une adaptation sera aisée : l’investissement est alors pratiquement nul !

Améliorer

Pour plus d’infos : la mise en place d’un free-chilling.

Y a-t-il intérêt à placer un stockage de froid ?

Deux techniques sont possibles

  • insérer une bâche d’eau glacée dans le circuit (sorte de très grand ballon tampon),
  • créer un stock de glace la nuit et la faire fondre en journée afin de refroidir l’eau glacée du bâtiment.

Photo stockage de froid.

L’intérêt d’un stockage de froid

D’emblée, soyons clairs : si la bâche d’eau glacée permet d’améliorer le rendement du compresseur (augmentation de la durée de fonctionnement des compresseurs), le stockage de froid ne génère lui aucune économie d’énergie.

Pourtant, le stockage de froid est intéressant à plus d’un titre :

Diminution de la facture électrique

  • Le kWh frigorifique produit la nuit et/ou en dehors des heures de pointe revient nettement moins cher.
  • Si la réserve de froid est utilisée au moment de la pointe ¼ horaire du bâtiment, les compresseurs peuvent être délestés, ce qui permet de réelles économies financières sur le coût de la pointe.
  • Mais lorsque la machine frigorifique « fait de la glace », la température à l’évaporation descend. Elle travaille avec un moins bon rendement que lors du régime normal de préparation de l’eau glacée ! Ceci est partiellement contrebalancé par le fait que la température de condensation va également pouvoir diminuer, suite aux températures plus fraîches de la nuit.
  • La puissance de la machine frigorifique descend à 60 % … 70 % de sa valeur nominale lorsqu’elle prépare de l’eau glacée. Par exemple, voici l’évolution pour une machine particulière : la puissance lors de la charge de nuit est donc réduite à 324 kW / 458 kW = 71 % de la valeur nominale.

Diminution de la puissance frigorifique installée

  • Pour les nouvelles installations, il y aura diminution de la puissance frigorifique installée, par étalement de la charge dans le temps, et donc diminution de l’investissement initial en machines frigorifiques et équipements annexes.
  • Pour les installations existantes, on peut augmenter la charge frigorifique sans augmentation de la puissance électrique installée (c’est intéressant pour des bâtiments en rénovation dont on souhaite augmenter l’équipement bureautique, sans devoir augmenter la puissance du transformateur).

Réduction de l’encombrement des condenseurs/tours de refroidissement en toiture

Photo condenseurs/tours de refroidissement en toiture.

C’est un avantage lié à l’absence de placement d’une machine frigorifique supplémentaire, mais il faut prévoir la place du stockage lui-même…

Le stockage thermique est volumineux et sera donc généralement limité à une part de la consommation journalière.

Réserve stratégique de froid en cas de rupture de la machine frigorifique

  • possibilité d’un secours partiel (quelques heures seulement…) en cas de panne de la machine frigorifique ou d’interruption de la fourniture d’énergie électrique, seules les pompes étant alimentées par le groupe de secours. C’est une sécurité parfois recherchée pour les salles ordinateur ou télécommunication.

La rentabilité d’un stockage de glace

La rentabilité d’un stockage de glace s’établit par le rapport entre le surcoût au niveau de l’installation frigorifique et l’économie financière réalisée.

Le surcoût est estimé entre 20 et 30 % de l’installation frigorifique initiale. Cette estimation comprend :

  • Les bacs à glace : on peut compter 30 €/kWh de stockage pour une petite installation de 2 000 kWh, 25 €/kWh pour une installation de 5 000 kWh, 20 €/kWh pour une belle installation de 10 000 kWh.
  • Les équipements annexes : pompes, échangeurs,…
  • L’installation de régulation plus complexe pour la gestion des cycles charge-décharge.
  • La déduction du prix de la machine frigorifique que l’on a pu économiser.

Ce qui est difficile à chiffrer et qui constitue un frein majeur du développement du stockage de nuit, c’est le volume nécessaire dans le bâtiment pour entreposer les bacs !…

L’économie financière est essentiellement résultante de l’écrêtage de la pointe quart-horaire. L’économie réalisée sur le coût moindre du kWh de nuit par rapport au kWh de jour est proportionnellement plus faible.

Par exemple, prenons le tarif « binôme A – Éclairage » :

Le prix du kWh de jour est de 6,23 c€/kWh (HTVA) contre 4,33 c€/kWh la nuit. En passant dune production de jour vers une production de nuit, l’économie est donc de 21 %. Mais le fait de produire de la glace engendre un abaissement de la température d’évaporation, et le compresseur n’apprécie pas !

Ainsi, un compresseur qui voit la température d’évaporation passer de + 2°C à – 5°C voit son rendement baisser de 20 % environ. Si, parce qu’un échangeur intermédiaire supplémentaire est placé, la température d’évaporation passe à – 10°C, le rendement chute de 30 %… ! En y ajoutant quelques pertes inévitables par les parois des bacs, et les consommations des pompes,… tout le bénéfice est mangé !

Il n’empêche que les installations à – 5°C sont possibles et que l’on peut sélectionner des machines frigorifiques capables de valoriser la faible température nocturne (et donc la faible température de condensation).

Mais c’est sur le coût de la pointe de puissance que le gros de l’économie doit être trouvé (7,8 €/kW de pointe, chaque mois) ! Le temps de retour du projet pour une installation électrique de 500 kW et plus descend sous les 3 ans, d’après les fournisseurs.

Chaque scénario doit être étudié sérieusement. Ainsi, un bâtiment avec une prédominance de consommation électrique en été aura avantage à choisir le tarif horo-saisonnier. Dans ce cas, le délestage du groupe frigorifique durant le 4 mois d’hiver sera très rentable : 13,5 €/kW HTVA. Mais c’est également le moment où la demande de froid est la plus faible… L’équipement peut-il s’amortir sur ces mois d’hiver ?

Améliorer

Pour plus d’infos : la mise en place d’un stockage de froid.

 

Entretenir le système de distribution de l’air

Entretenir le système de distribution de l'air


Périodicité des inspections et entretiens

L’encrassement du système et des conduits de ventilation est fonction :

  • du niveau et du type d’activité dans la zone desservie,
  • du profil d’occupation de cette zone,
  • du niveau d’étanchéité de la zone (sas présents on au contraire la zone est ouverte à tout vent),
  • de la pollution de l’air extérieur,
  •  …

Deux types d’inspection et d’entretien peuvent être réalisés : l’un par l’utilisateur qui s’occupera principalement le nettoyage et dépoussiérage des parties directement accessibles du système, le remplacement des filtres et le contrôle des bruits venant du ventilateur, l’autre par l’installateur qui agira sur les parties plus techniques ou moins accessibles de l’installation (conduits, ventilateurs, récupérateur de chaleur,…). Suivant le type d’entretien, la fréquence de contrôle peut être plus ou moins longue :

Pour un contrôle et un entretien régulier par l’utilisateur tous les 3 à 12 mois

Pour un contrôle et un entretien périodique plus important par l’installateur tous les 1 à 4 ans

Dans son étude OPTIVENT, le CSTC préconise à titre indicatif différentes fréquences de contrôle suivant le composants de l’installation de ventilation à entretenir :

Composants Fréquence
Inspection Nettoyage Remplacement
Ouvertures d’alimentation naturelle 3 mois 1 ans
Prises d’air 3 mois 1 ans
Filtres 1 mois 3 mois 1 ans
Échangeur de chaleur 1 ans 3 ans
Ventilateurs protégés par un filtre 1 ans 3 ans
Ventilateurs non protégés 1 ans 1 ans
Conduits rigides 3 ans 9 ans
Conduits flexibles 3 ans 9 ans
Bouches de ventilation 3 mois 1 ans
Ouvertures d’évacuation naturelle 3 mois 1 ans
Conduits d’évacuation naturelle 3 ans 9 ans

Entretien des batteries, échangeurs de chaleur et conduits

Au fil des ans, les poussières et impuretés se déposent dans toutes les parties de l’installation.

Quand la température et l’humidité sont favorables, cette poussière constitue un bouillon de culture idéal pour une importante flore microbiologique. Cela devient souvent critique aux abords des batteries de chauffe et de refroidissement.

Il en résulte aussi une perte de rendement, une augmentation de la corrosion et du danger d’incendie.

Une inspection visuelle des équipements est donc nécessaire. Pour faciliter celle-ci, un nombre suffisant d’ouvertures doit être prévu pour atteindre les endroits difficilement accessibles (conduits en faux plafond). À partir de ces ouvertures, il est possible d’utiliser des techniques endoscopiques. Suite à ces examens (qui peuvent être complété par une analyse biologique de l’air), les installations seront nettoyées et éventuellement désinfectées.

Lorsque les éléments de l’installation sont facilement accessibles, leur nettoyage ne pose pas de problème.

Trappe de visite pour conduit circulaire.

Pour éviter l’encrassement des canaux, il est recommandé de contrôler, nettoyer et désinfecter ces groupes à intervalles réguliers.

Les batteries

Les batteries de réchauffe et de refroidissement des conduits sont nettoyées via des panneaux d’accès existants ou nouvellement aménagés. En fonction du degré d’encrassement des batteries, différentes concentrations d’agents dégraissants et de désinfectants peuvent être utilisées.

Batterie encrassée suite à une mauvaise filtration.

Les échangeurs de chaleur

Comme les ventilateurs, les échangeurs à plaques doivent être entretenus par un professionnel mais suivant les instructions et recommandations de l’installateur, l’entretien de l’échangeur peut se faire au moyen d’un aspirateur ou d’un pistolet à air comprimé, certains peuvent être nettoyé par immersion dans l’eau (attention à le sécher correctement après).

Les conduits

Il est à noter que les conduits flexibles sont difficilement nettoyable au contraire des conduits rigides. C’est en partie d’ailleurs pourquoi ils ne sont pas recommandés, puisqu’à défaut de pouvoir être nettoyé régulièrement, leur remplacement sera nécessaire.

En ce qui concerne le nettoyage des conduits rigides, on a le choix entre des méthodes conventionnelles, de type essentiellement manuel, et des techniques mécaniques plus avancées. La brosse rotative reste l’élément le plus couramment utilisé.

Le nettoyage des conduits suivant la méthode traditionnelle est une opération à haut coefficient de main-d’œuvre, et par conséquent onéreuse. Avant de pouvoir commencer les travaux de nettoyage proprement dits, diverses opérations préliminaires s’imposent. Dans la plupart des cas, le faux plafond doit être démonté.

En revanche, des techniques modernes permettent de nettoyer l’installation facilement :

  • Tous les 8 à 10 m. de petits trous de 25 mm de diamètre sont percés dans les conduits d’aération. Ces trous peuvent ensuite être obturés au moyen de bouchons et être reliés directement au faux plafond.
  • Avant le début des opérations de nettoyage, les conduits d’aération sont contrôlés visuellement grâce à une technique endoscopique via les petites ouvertures.
  • Ce contrôle permet de faire le point sur la quantité d’impuretés accumulées.
  • Le nettoyage du réseau se déroule comme suit. Une portion de conduit de 30 à 50 m de long est isolée du reste du réseau. Un puissant appareillage à vide lui est connecté. Un gicleur actionné par air comprimé est introduit dans les petites ouvertures. Les impuretés qui recouvrent l’intérieur des conduits d’aération sont balayées et éliminées par soufflement.

    Mise en dépression des conduits de ventilation.

     

    Robot d’inspection des conduits.

  • Dans certains cas, le gicleur est monté sur un petit robot équipé d’une caméra. Un plus en matière de maniabilité qui garantit une meilleure inspection.
  • En cas d’encrassement tenace, des brosses rotatives actionnées par air comprimé sont utilisées pour détacher les particules de poussière au préalable.
  • Les impuretés sont rassemblées et filtrées dans l’appareillage à vide. Après traitement grâce à un système de filtrage au rendement de 99,97 %, l’air d’extraction est renvoyé dans l’atmosphère. Le réseau de conduits étant soumis à une pression négative pendant le nettoyage, le risque de contamination de l’espace environnant est nul.
  • Les systèmes sont conçus spécialement pour nettoyer les canaux de ventilation avec un maximum d’efficacité et de rapidité sans que la structure existante de l’installation ne doive faire l’objet d’importantes modifications.
  • La plupart du temps, les systèmes conviennent pour tous les types de réseaux, les installations ne devant n’être ni démontées, ni mises hors service.

Entretien des ventilateurs

En Suisse, on recommande la périodicité d’entretien des ventilateurs suivante :

  • Quotidiennement : observer les bruits, les vibrations du ventilateur, l’échauffement des paliers, les jauges et appareils de mesure.
  • Mensuellement : vérifier l’alignement et la tension des courroies et graisser les paliers des ventilateurs.
  • Semestriellement : vérifier les joints de l’arbre du ventilateur, les registres d’entrée et de sortie, les pales d’entrée, vidanger et remplacer l’huile des paliers lubrifiés.
  • Annuellement : vérifier les canalisations de graissage pour s’assurer que la graisse ou l’huile s’écoule bien, vérifier les accessoires du ventilateur, régler les appareils de mesure.

De manière générale, l’entretien des ventilateurs doit de préférence être effectué par un professionnel. Mais, conformément aux instructions du fabricants, il est possible de le nettoyer au moyen d’un aspirateur et d’une brosse douce pour les aubes et ailettes. Et ce après le débranchement de son alimentation !

Graisser les ventilateurs

Les composants de ventilateurs, tels les accouplements, les paliers, les bielles et les supports doivent être graissés avec les lubrifiants appropriés, aux intervalles recommandés par le fabricant. Les composants dureront ainsi plus longtemps et le rendement du ventilateur en est augmenté.

Nettoyer les ventilateurs

Pour bien fonctionner, les ventilateurs, tout particulièrement ceux qui déplacent de l’air pollué ou chargé de poussière, doivent être nettoyés à intervalles réguliers. L’accumulation des saletés sur les pales et à l’intérieur du carter augmente les pertes de pression statique et réduit ainsi l’efficacité du ventilateur : les arêtes des aubes sont moins vives et le ventilateur perd également de sa puissance. Cette perte de puissance signifie que l’air aura de la difficulté à se rendre dans les derniers locaux.

Régler le niveau de bruits et de vibrations du ventilateur

Plusieurs facteurs causent le bruit et la vibration

  • déséquilibre de la roue du ventilateur,
  • paliers mal ajustés,
  • isolation insuffisante,
  • mauvais centrage des joints de l’axe,
  • corrosion entre l’axe et le palier.

L’équilibre des roues des ventilateurs est ajusté en usine, avant leur installation. Si les contrepoids ne sont plus sur la roue ou si les pales sont écaillées, manquantes ou usées, il y a déséquilibre des roues et réduction du rendement du ventilateur.
Les paliers des ventilateurs endommagés peuvent causer du bruit, de la vibration, une augmentation de la friction et une grande tolérance entre les composants et ainsi réduire la performance des ventilateurs.

On isole le ventilateur en fixant des isolateurs à ressort ou en caoutchouc au niveau des supports. Si les isolateurs ne sont pas suffisamment robustes pour un service donné, le ventilateur est mal soutenu et les raccords souples de la gaine peuvent se déformer et augmenter la résistance au débit.

Un changement dans les vibrations peut être un avertissement qu’un problème se développe avant que le rendement du ventilateur ne soit sérieusement affecté. Dans ce cas, il est bon d’analyser les caractéristiques d’une vibration anormale pour identifier la source du problème et prendre les mesures correctives appropriées.


Entretien des filtres

Les filtres sont les points essentiels garantissant la qualité de l’air pulsé dans les locaux. Les performances intrinsèques des filtres jouent évidemment un rôle important, leur entretien encore plus.

Après un certain temps de fonctionnement (environ 3 000 heures), la perte de charge d’un filtre augmente rapidement dû à son colmatage. Il en résulte :

  • Une diminution du débit pulsé et une diminution de la puissance absorbée par le ventilateur. On consomme donc moins, mais le débit de l’installation peut chuter en dessous d’un minimum admissible, la répartition volontaire des zones en surpression et en dépression peut être modifiée, sans que l’on s’en rende compte.
  • Des risques d’infiltrations d’impuretés dans l’installation (air non filtré passant par les espaces presque inévitables existant entre les éléments actifs des filtres et leurs supports).
  • Si le ventilateur maintient un débit constant, il en découle une surconsommation qui peut après un certain temps être équivalente au coût d’un nouveau filtre.

Une gestion efficace du remplacement des filtres doit comporter un manomètre mesurant en permanence la perte de charge des filtres. Lorsque la perte de charge maximum admissible par le fabricant du filtre est atteinte, le filtre doit être changé. Cette valeur est la limite à partir de laquelle le fabricant ne garantit plus les performances de son filtre et/ou sa résistance mécanique.

La mesure de perte de charge s’effectue avec un manomètre différentiel avec une prise de pression en amont et en aval du filtre. On utilise parfois des manomètres à aiguille avec une aiguille de contrôle à la valeur « filtre sale ».

La perte de charge maximale admissible doit être inscrite sur ou à côté du manomètre.

Remarquons qu’il est fréquent de découvrir des groupes dont les filtres ont été enlevés en raison de leur inaccessibilité ou tout simplement à cause de la dimension particulière de certains filtres, pour un système donné, qui ne sont plus tenus en magasin. Il en résulte une accumulation de matière qui peut réduire fortement l’efficacité des composants du système.

Les filtres doivent donc être inspecter et nettoyer de façon régulière (1 à 3 mois), selon les indications de l’installateur, au moyen d’un aspirateur. Il convient de faire attention a ne pas endommager les parties poreuses et de le replacer correctement en vérifiant son étanchéité à l’air afin que l’entièreté de l’air soit filtré.

Suite à son encrassement, à l’augmentation des pertes de charges décrites ci-dessus, aux odeurs et aux entretiens successifs qui peuvent l’abimer, un filtre voit ses performances baissées et il est recommandé de le remplacer une fois par an. Si possible, celui-ci se fera au début de la saison de chauffe.

En secteur hospitalier, la mise en œuvre de l’entretien :

dans les zones à risque de contamination faible

Elle peut s’effectuer avec des moyens conventionnels de protection du travailleur.

dans les zones à risque de contamination élevé

Dans ce type de zones, l’entretien des filtres absolus est délicat à la fois,

  • Pour le réseau de distribution et l’ambiance, car la remise en suspension éventuelle de germes augmente le risque de contamination post-maintenance de l’ensemble. Un protocole de maintenance sera mis au point par les responsables techniques et les médecins hygiénistes de manière garantir la qualité particulaire et bactérienne du système.
  • Et pour l’intervenant technique lui-même. Les dispositions prévues et formulées par le responsable de la sécurité et de l’hygiène des travailleurs seront à appliquer.

Une certification sera nécessaire après intervention afin de rétablir les classes particulaires et bactériennes de la zone et de l’installation (selon la norme NF S90-351).
On y effectuera dans la zone (local et bouche de pulsion et d’extraction) et si nécessaire dans l’installation (gaine, caisson, filtres terminaux, …) :

  • un comptage particulaire;
  • une mesure des pressions différentielles;
  • des prélèvements afin d’évaluer le niveau de contamination bactériologique.

La fréquence des entretiens des filtres absolus est difficile à établir vu que l’on ne sait pas quel est leur niveau d’encrassement dans le temps.
Elle dépend essentiellement :

  • du niveau de propreté de l’activité menée dans la zone,
  • des taux de renouvellement,
  • du profil d’occupation de la zone,
  • de l’étanchéité du système de traitement de l’air,

On n’exclura pas la nécessité, en cas de contamination, de faire fonctionner en recyclage (si existant) toute l’installation avec un puissant désinfectant.


Entretien des prises d’air, des bouches de ventilation et des ouvertures d’alimentation naturelle

Les prises d’air, les bouches de ventilation et les ouvertures d’alimentation naturelle sont les premiers dispositifs en contact avec l’air intérieur ou extérieur. Ils sont donc directement soumis à la pollution et aux poussières de l’air ambiant. Ces dispositifs sont généralement facilement accessibles et peuvent être nettoyer par l’utilisateur.

Si le dispositif le peut, il convient de le démonter pour en faciliter l’entretien. Attention, dans le cas des bouches réglables, il faut le bloquer en position réglée ou s’assurer de pouvoir la remonter et la régler dans la bonne position une fois le nettoyage effectué. Par exemple, en prenant note des débits de conceptions et de la position de réglage.

Le nettoyage s’effectue à l’aide d’un aspirateur et d’un chiffon humide.

Pour les grilles de ventilation naturelle, il ne faut pas oublier de nettoyer l’intérieur et l’extérieur.

Bouche d’extraction sanitaire dans un immeuble de bureaux.


Inspection des courroies

Défaut d’entretien d’une courroie.

Comme surveillance de base, il y a deux contrôles principaux que le personnel d’exploitation peut faire facilement et doit faire lui-même régulièrement, 3 à 4 fois/an.

Tension des courroies

Schéma tension des courroies - 01.

  • Une courroie trop tendue use rapidement les paliers et la courroie et augmente les pertes de la transmission. Le débit d’air n’augmente pas lorsque la courroie est trop tendue. Une courroie trop tendue siffle souvent au démarrage. Ce phénomène apparaît cependant aussi si la courroie est insuffisante pour la charge à transmettre.
  • Lorsque la courroie n’est pas assez tendue, les pertes de la transmission augmentent et le débit d’air transporté diminue, car la courroie patine. Il est possible qu’en fin de compte on ne consomme pas plus d’énergie électrique qu’avant, car la diminution de débit peut compenser l’augmentation des pertes de la transmission; par contre, il est sûr que la prestation réalisée par l’installation est diminuée du fait de la perte de débit d’air.
    Une tension insuffisante de courroie entraîne un battement de celle-ci.
    Il faut savoir que 80 % de tout l’allongement que subit la courroie au cours de sa vie survient pendant les 15 à 20 premières heures de fonctionnement !

Voici un truc indicatif pour régler la tension d’une courroie : il faut tracer 2 repères sur une partie droite de la courroie non tendue, avec l’interdistance L0 la plus grande possible. La distance entre repères L1 après tension ne doit pas dépasser :

L= 1,006 L0 pour un entraxe inférieur à deux fois le diamètre de la plus grande poulie,

L= 1,008 L0 pour un entraxe supérieur à deux fois le diamètre de la plus grande poulie.

Schéma tension des courroies - 02.

Usure des courroies

L’usure des courroies augmente aussi les pertes par transmission et peut, le cas échéant, par patinage faire diminuer le débit d’air transporté. Dans le cas des courroies multiples, il faut toujours changer tout le jeu de courroies en même temps et ne prendre que des jeux de courroies appairées. Malgré cela, elles n’ont jamais toujours la même tension, donc le même rendement, ce qui crée des pertes supplémentaires.

Alignement des poulies

Toujours veiller au bon alignement des poulies. Un défaut d’alignement des poulies se marque par une usure latérale des courroies et la présence de poussière noire autour de la transmission.

Usure des poulies

Avec le temps, la gorge est marquée par l’usure (création d’un décrochement sur les faces de gorges); son profil est donc modifié et elle doit être changée.


Spécificités en milieu hospitalier

L’entretien de la distribution d’air en milieu hospitalier est tout à fait particulier du moins dans les zones à risque de contamination modéré ou élevé. Dans les autres départements de l’hôpital, les installations de ventilation seront traitées de la même manière que dans les autres bâtiments du tertiaire.

Dans les zones contrôlées de l’hôpital, il devient de plus en plus courant d’effectuer un contrôle régulier particulaire et microbiologique afin de lutter contre les infections nosocomiales. En Belgique les normes sont basées sur les normes ISO :

ISO 14644 (partie 1 et 2), « Salles propres et environnements maîtrisés apparentés » :

  • Partie I : « Classification de la propreté de l’air ».
  • Partie II : « Spécifications pour les essais et la surveillance en vue de démontrer le maintien de la conformité avec la Partie I ».

ISO 14698 (partie 1 et 2), « Salles propres et environnements maîtrisés apparentés » :

  • Partie I : « Maîtrise de la biocontamination – principes généraux ».
  • Partie II : « Maîtrise de la biocontamination – évaluation et interprétation des données de biocontamination ».

L’intérêt de ces normes est qu’elles donnent une base de performance des différentes installations de traitement d’air des zones contrôlées en définissant :

  • la fréquence des essais et des mesurages,
  • la nature des contrôles à réaliser,
  • la description des méthodes d’essai et de mesurage.

L’intérêt des contrôles est d’établir :

  • Une classification particulaire afin de voir l’efficacité de la chaine de distribution d’air et surtout de la chaine de filtration.
  • Un niveau de contamination biologique et par conséquent mettre en évidence les risques de contamination par éléments pathogènes susceptibles d’engendrer des infections nosocomiales.

Concevoir une installation frigorifique : critères généraux

Concevoir une installation frigorifique : critères généraux


Limiter le surdimensionnement

On connaît le besoin de limiter la puissance d’une installation. Parole d’un installateur : « aucun système de climatisation ne peut apporter le confort si la puissance frigorifique spécifique est élevée ». Mais on ne reviendra pas ici sur cette nécessité de limiter le besoin de froid (limitation des surfaces vitrées, placement de protections solaires, …).

Pour un bâtiment donné, l’objectif est ici de limiter la sur-puissance de l’installation et de ses composants auxiliaires (pompes, ventilateurs, tours de refroidissement,…) et donc d’établir le calcul des charges sur base de paramètres de dimensionnement corrects.

Évaluer

Pour en savoir plus sur l’impact énergétique du surdimensionnement de l’installation frigorifique, cliquez ici !

On peut comprendre qu’un bureau d’études souhaite se protéger de toute contestation ultérieure (manque de puissance). Dans ce but, la tendance est d’utiliser des coefficients de sécurité maximaux… et de surdimensionner l’installation. Par contre, le maître d’ouvrage peut expressément « prendre sur lui » les risques éventuels d’inconfort et préciser au bureau d’études qu’il souhaite des critères plus précis de dimensionnement.

S’il souhaite limiter l’investissement initial et la consommation future, le maître d’ouvrage pourra demander que le dimensionnement des installations de conditionnement d’air soit réalisé :

Sur base de température et humidité extérieures réalistes :

Les valeurs extrêmes qui servent au dimensionnement pour l’été sont souvent de 30°C et 50 % HR (c’est la valeur proposée par l’AICVF, Association des Ingénieurs en Climatique, Ventilation et Froid, pour le Nord de la France), parfois même 32°C est choisi « par sécurité ». Or, le fabricant Carrier (dont la méthode de calcul pour le dimensionnement fait autorité dans le monde entier) propose 28° et 40 % HR pour Lille et 30° et 40% pour Reims.

Il est important de dissocier les valeurs de dimensionnement des valeurs limites de fonctionnement. On peut sélectionner un équipement capable de ne pas déclencher en dessous de 35, voire 40°C. Ainsi, l’appareil dimensionné pour donner sa puissance nominale pour 30° fonctionnera à 40°, tout en ne fournissant pas temporairement toute la puissance requise (40°C = lors d’une période de canicule, où en plus l’air serait localement chauffé par la présence d’une toiture en roofing noir et d’un mur stoppant tout balayage par le vent !).

Par exemple, si on dimensionne sur 30°C, la centrale de traitement d’air risque de ne pas avoir la puissance suffisante par 32°C extérieurs, et donc de pulser l’air hygiénique à 17°C au lieu de 16°C, mais les ventilo-convecteurs (qui ont été dimensionnés avec une incidence très faible de la température extérieure et en choisissant le modèle « juste au-dessus dans la gamme des appareils ») pourront compenser localement ce léger déficit.

De plus, l’IRM atteste que la température à Uccle ne dépasse jamais 30°C sur une année type-moyenne (. Cette température n’est dépassée que quelques jours par an durant les années « chaudes ».

Répartition des conditions climatiques à Uccle sur base de l’année-type moyenne de l’IRM. Un point correspond à 1 h. Cela signifie l’heure pour laquelle la charge énergétique extérieure est la plus grande (correspond à l’enthalpie maximale) correspond à l’enthalpie du point (30°C et 50%).
Dimensionner sur base d’un point correspondant à 30°C, 40% ne laisse « échapper » que quelques heures par an.

Un cahier des charges qui impose un dimensionnement sur base de 30° et 40%, voire même, 28° et 40% HR limitera les consommations durant toute la vie des équipements.

C’est le responsable du bureau d’études qui demandera au fournisseur de sélectionner un appareil qui ne déclenche pas par action du pressostat de sortie du compresseur pour une température trop faible.

Sur base de température et humidité intérieures « enveloppes » qui réservent une « zone neutre » :

Les puissances frigorifiques seront établies sur base d’une température de consigne minimale de 24°C en période de refroidissement, le critère énergétique optimum étant de 26°C. L’AICVF propose une température de l’air de 25°C, saufs locaux particuliers.

À noter que la température de 26°C n’est pas pour autant la température de consigne permanente. C’est la température de dimensionnement pour une température extérieure extrême. Cela signifie que, par très forte chaleur extérieure, le bâtiment pourrait « monter » jusqu’à 26°C. Or, les occupants venant d’une température élevée à l’extérieur apprécieront que l’écart thermique ne soit pas trop important.

Dans le cas de la technique de climatisation par plafonds froids, une température d’air de 26°C génère un confort équivalent à une température de 24°C obtenue avec un système classique du type ventilo-convecteur, grâce à l’effet de rayonnement frais sur les têtes des occupants.

Un tel niveau de consigne permet l’existence d’une zone neutre entre la consigne d’hiver et la consigne d’été, gage de ne pas voir les productions de chaud et de froid fonctionner simultanément dans le bâtiment.

Sur base de besoins d’air de ventilation limités

Le respect du RGPT est souvent la base du calcul 30 [m³/h.pers] mais la norme européenne NBN EN 13779: 2004 (Ventilation dans les bâtiments non résidentiels-Spécifications des performances pour les systèmes de ventilation et de climatisation) peut constituer une nouvelle référence de base opposable. Il propose 3 débits d’air neuf à respecter en fonction de la qualité de l’ambiance à respecter (dans des locaux dont la pollution principale est d’origine humaine) pour les locaux sans fumeur en fonction de la qualité d’air souhaitée :

Norme européenne EN 13779: 2004
pour les locaux sans fumeur.

Catégorie de qualité d’air

Débit d’air neuf
Excellente qualité
(niveau ambiant de CO2 < 400 ppm au dessus du niveau extérieur).
> 54 [m³/h.pers]
Qualité moyenne
(niveau ambiant de CO2 400-600 ppm au dessus du niveau extérieur).
de 36 à 54 [m³/h.pers]
Qualité acceptable
(niveau ambiant de CO2 600-1 000 ppm au dessus du niveau extérieur).
de 22 à 36 [m³/h.pers]
Faible qualité
(niveau ambiant de CO2 > 1 000 ppm au dessus du niveau extérieur).
< 22 [m³/h.pers]

Sur base de taux d’occupation des locaux prédéfinis en fonction de leur usage

Il est important d’informer le bureau d’études de l’occupation des personnes la plus réaliste. En cas de doute, on sollicitera la mise en place d’une gestion de la ventilation en fonction des besoins.

Sur base de niveaux d’apports internes prédéfinis en fonction du niveau d’équipement

L’équipement prévisible des locaux doit lui aussi être défini avec soin si l’on ne désire pas que le bureau d’études se base sur des valeurs standards qui sont parfois bien au-delà de la réalité : le 25 W/m² pris traditionnellement pour estimer les charges de la bureautique par exemple, n’est plus atteint aujourd’hui, sauf dans des secteurs spécifiques comme le secteur bancaire.

Sur base de besoins de déshumidification limités

Traditionnellement, sauf indication contraire, le bureau d’études dimensionne sur base d’un taux d’humidité de 50 % intérieur. Or le corps humain n’est pas sensible à l’humidité dans la fourchette de 35 à 65 % HR. La déshumidification d’été est donc coûteuse, d’autant qu’elle risque de générer l’enclenchement de la post-chauffe pour ne pas pulser un air trop froid dans l’ambiance. Ce qui est dommageable au niveau énergétique.

Un dimensionnement basé sur une humidité intérieure de 60 % est suffisant et recommandé.

Remarque : dans la technique des plafonds froids, un taux d’humidité particulièrement bas est requis pour limiter le risque de condensation dans les locaux.

Sur base de coefficients de foisonnement réalistes

Sur les puissances moyennes d’équipements, sur les taux d’occupation, . des coefficients de foisonnement peuvent être appliqués sur base de l’idée que tout le monde n’est pas toujours présent en même temps. Une étude réaliste des taux d’occupation prévisible est nécessaire.

Sur base d’un fonctionnement 24h/24 en période de canicule

Le temps de fonctionnement supposé de l’installation frigorifique va influencer les résultats (fonctionnement 12h/24 ? 16h/24 ? 24h/24 ?). Un dimensionnement sur base d’un fonctionnement 24h/24 va diminuer la puissance installée (et donc le coût d’investissement) et donc permettre un meilleur rendement durant toute l’année.

La régulation de base travaillera au régime 8h00 – 18h00 et, en cas de canicule, la régulation prolongera automatiquement la période de fonctionnement (en fonction du maximum atteint par la température extérieure, par exemple).

Exemple.

1. En collaboration avec le bureau d’études de Tractebel, un test à été fait sur un immeuble de bureaux pour tester l’impact de la période de fonctionnement des équipements. Les résultats sont très variables en fonction de l’inertie du bâtiment :

Inertie
Durée de fonct. équip.
Facteur solaire baies
Puiss. en W/m²
Puissance relatives
Différence
lourd
12h/24
0,8
99
100 %
lourd
16h/24
0,8
86
87 %
– 13 %
lourd
24h/24
0,8
84
85 %
– 15 %
Inertie
Durée de fonct. équip.
Facteur solaire baies
Puiss. en W/m²
Puissance relatives
Différence
léger
12h/24
0,8
113
100 %
léger
16h/24
0,8
112
99 %
– 1 %
léger
24h/24
0,8
112
99 %
– 1 %

L’acceptation de faire fonctionner les équipements pendant 16h/24 au lieu de 12 lors de pointes de chaleur permet de sous-dimensionner les équipements de 13 %, si l’inertie du bâtiment est élevée. L’impact est inexistant sur les bâtiments légers.

2. L’impact de l’inertie sur la valeur de la puissance installée nous a motivés à creuser ce paramètre. Voici les résultats (toujours valable pour l’immeuble étudié) :

Inertie
Durée de fonct. équip.
Facteur solaire baies
Puiss. en W/m²
Puissance relatives
Différence
lourd
24h/24
0,8
85
100 %
moyen
24h/24
0,8
91
108 %
+ 8 %
léger
24h/24
0,8
111
132 %
+ 32 %

Un bâtiment léger va majorer la puissance frigorifique de l’ordre de 30 % !

3. Voyant l’intérêt de nos lecteurs passionnés par l’étude, divers compléments ont été encore testés pour relativiser les impacts :

La prise en compte d’un facteur d’occupation du bâtiment de 80 % permet de sous-dimensionner les équipements de 9 %. (dans les tableaux ci-dessus le facteur d’occupation était de 100 %)

Une réduction drastique du facteur solaire des baies permet de sous-dimensionner les équipements frigorifiques de 42 %.

La couleur des parois extérieures est sans influence sur le dimensionnement.


Prévoir les outils de gestion

À l’image d’un moteur diesel, une installation frigorifique sera d’autant plus efficace qu’elle travaille sur des longues périodes, sans arrêts successifs.

A l’aide d’une horloge, il sera utile de pouvoir minimiser le temps de marche du système de réfrigération en fonction des périodes d’occupation du bâtiment et de la charge de refroidissement. Si l’on prévoit un système de régulation numérique, il peut être imaginé de rendre ces temps de fonctionnement dépendants de la température extérieure. Par période de forte chaleur, on pourra alors laisser fonctionner les équipements 24h/24.

Attention : l’horloge ne doit pas redémarrer l’installation en période de tarif électrique défavorable, pour limiter le coût de la pointe de puissance quart-horaire.

Pour permettre cette gestion lorsque parmi les utilisateurs, certains demandent une production de froid permanente, il peut être intéressant de dissocier les productions de manière à éviter de faire fonctionner en continu, notamment en hiver, une machine frigo beaucoup trop puissante par rapport aux besoins.


Créer un réseau d’eau glacée qui favorise une température élevée à l’évaporateur

Un régime de fonctionnement qui s’adapte aux besoins réels du bâtiment

Le bureau d’études dimensionne l’installation afin qu’elle puisse répondre aux conditions extrêmes de température extérieure (30°C) et d’ensoleillement (ciel serein).

Souvent, pour limiter le coût d’investissement, il prévoit pour la boucle d’eau glacée un régime départ 6° – retour 11°.

Or la boucle d’eau glacée circule dans un bâtiment à 22°…24°C. Elle présente donc des pertes tout au long de son parcours. En rehaussant la température de départ de l’eau, on diminue le Delta T° et donc les pertes des tuyauteries.

De plus, l’air ambiant condense en dessous de 12°C environ. Beaucoup d’énergie du compresseur sera donc consacrée à déshumidifier l’air dans les échangeurs, déshumidification qui n’est souvent pas nécessaire.

Enfin, le compresseur verra son travail diminuer si la température d’évaporation est augmentée.

Faire travailler le réseau d’eau froide au régime 12° – 17° est donc beaucoup plus efficace.

Comment ? Divers concepts d’installation sont possibles afin de mieux « coller » aux besoins variables.

Adopter des échangeurs à haute température

Il faut « faire du froid » avec l’équipement « le plus chaud possible » !

Photo plafond froid.

Le plafond froid est très performant à ce sujet : il profite de l’importante surface qui lui est donnée pour faire du froid avec de l’eau comprise entre 15 et 18°C.

Photo ventilo-convecteur.

Le ventilo-convecteur peut être également efficace pour autant qu’il soit choisi pour fonctionner au régime 12° – 17°C. Mais l’échangeur du ventilo devra alors être surdimensionné. Donc un coût d’investissement et un encombrement plus importants.

Photo unité terminale du système de climatisation à DRV.

L’ unité terminale du système de climatisation à Débit de Réfrigérant Variable est également très performante puisque la régulation numérique va adapter la température de refroidissement aux besoins effectifs de déshumidification de la pièce : la température du fluide frigorigène ne descendra à 6°C que lorsque le local sera en demande de déshumidification.

Réaliser une température glissante par vanne 3 voies sur le départ de la boucle d’eau glacée

Par exemple, adopter les régimes suivants pour le départ de l’eau froide : 6° en été, 9° en mi-saison, 12° en hiver.

Pour que cette solution convienne, il faut que le profil de consommation du bâtiment soit fortement lié à l’évolution de la température extérieure. En climatisation, c’est le cas lorsque les besoins de réfrigération sont ceux liés au traitement de l’air neuf. Par contre, les apports dus aux machines, à l’éclairage, aux personnes sont constants. Les apports solaires sont plus ou moins liés à l’évolution de la température extérieure (c’est en été que température et soleil sont au maximum) mais le soleil peut être important certaines journées d’avril…

En mi-saison, l’installation pourra toujours répondre à un apport solaire momentané, mais proportionnellement avec une puissance maximale plus faible puisque la température de départ de l’eau glacée sera plus élevée. Cette régulation peut se faire, soit manuellement (2 ou 3 adaptations par an), soit automatiquement. Dans ce cas, il faudra trouver l’emplacement du capteur qui sera fidèle des besoins de l’installation.

Parallèle : en chauffage, un régulateur avec courbe de chauffe adapte la température de départ en fonction de la sonde extérieure.

Exemple.

Soit le réseau alimentant la batterie de froid du caisson de préparation de l’air neuf (débit = 50) et le réseau d’eau glacée (débit = 100).

Si les deux réseaux sont au régime 7 – 12, la température moyenne à l’évaporateur est de 9,5°C.

Si le réseau d’eau glacée passe au régime 12 – 17, la température moyenne à l’évaporateur passe à 10,75°C, soit une hausse de 1,25°C.

Cet impact est faible, mais il aura lieu durant toute la vie de l’installation, et il se cumulera aux pertes par tuyauteries plus élevées et à la consommation de latente plus forte également.

Réaliser des réseaux d’eau froide distincts, avec une modulation par vanne 3 voies sur chaque départ

Si l’installation comporte plusieurs types de locaux dont les besoins sont différents, cela se complique !

Par exemple, imaginons qu’il existe un local à apports internes importants et constant (salle informatique par exemple) et dont la puissance des émetteurs est juste suffisante : il devront toujours être alimentés à 6°. Si par ailleurs, plusieurs locaux plein sud avec larges baies vitrées présentent des besoins liés à la température extérieure et à l’ensoleillement, une modulation de la température de départ de ce circuit sera intéressante.

On peut alors réaliser des circuits différents commandés à des températures différentes, via des vannes trois voies motorisées. Ici, on ne modulera que la température du circuit « locaux plein sud ».

Parallèle : en chauffage, il apparaît normal de séparer les circuits en zones thermiquement homogènes (façade Sud, façade Nord,…), puis de moduler la température de départ de chaque circuit en fonction des besoins de la zone qu’il alimente. Ne disposer que d’une seule boucle d’eau glacée à 6°, c’est un peu comme si le chauffage n’était alimenté que par une seule boucle à 90°… !

Réguler les équipements terminaux sur le débit, en fonction de la température de retour

En thermique, il existe deux manières de réguler : agir sur le débit ou agir sur la température.

Moduler le débit sous-entend conserver une température constante.

En chauffage, le régime de température adopté lors du dimensionnement du matériel est élevé : généralement 90° – 70°. Ceci entraîne un écart de température élevé par rapport à l’ambiance et donc des pertes de maintien élevée. On aura donc tout intérêt à réguler sur la température.

En réfrigération, par contre, le régime classique 6° – 11° ou 7° -12° présente peu d’écart par rapport à l’ambiance. De plus, le débit est important (à puissance égale, il faut 4 fois plus de débit pour transporter du froid que du chaud puisque le Delta T° est 4 fois plus petit) et sa modulation est plus aisée. Si les besoins sont fort variables, on sera dès lors plus facilement tenté par une régulation sur le débit, avec une température de départ constante, une température de retour la plus élevée possible… et des économies d’énergie sur le transport de l’eau par l’utilisation d’une pompe à vitesse variable. Cependant, un débit minimum dans l’évaporateur est requis par le constructeur, sous peine de le geler à certains endroits. L’installation devra comprendre un by-pass de recyclage ou un découplage hydraulique par une bouteille casse-pression.

Cette technique nécessite des éléments terminaux (comme les ventilo-convecteurs, les centrales d’air, les sous-stations, …) régulés avec des vannes deux voies. Lorsque les besoins diminuent, le débit total de la boucle diminue également. Pour maintenir la pression constante aux bornes des équipements, on utilise des pompes à débit variable pilotées soit par la température de retour, soit par la pression.

Par opposition à la possibilité de régulation sur sonde extérieure, on réalise ici une régulation sur boucle fermée plus fidèle aux besoins du bâtiment. Pour l’évaporateur, ce n’est plus la température de départ qui est augmentée, mais la température moyenne de fonctionnement (régime 6° – 14° par exemple). La température moyenne à l’évaporateur est donc augmentée, ce qui est favorable.

Placer les consommateurs en série en fonction de leur température de fonctionnement

Pour augmenter la température à l’évaporateur, on peut penser à trois solutions :

  • Augmenter la température de départ de la machine frigo : cela sera possible si tous les utilisateurs demandent une température d’eau plus élevée.
  • Freiner le débit à l’évaporateur : c’est limiter car il faut irriguer en permanence la machine frigorifique à un débit minimal (voire constant) imposé. À défaut de débit insuffisant à l’évaporateur, la machine se mettra en sécurité.
  • Placer les échangeurs frigorifiques en série en fonction de leur température de travail : l’alimentation des unités terminales sera greffée en série, après la batterie froide du caisson de traitement d’air.

De plus, on préférera un couplage en injection car il permet de couper l’alimentation d’un échangeur sans perturber le reste de l’installation.

Schéma de couplage a injection.

Une seule condition de bon fonctionnement : le débit de la boucle primaire doit toujours être >> débit de chaque boucle partielle (pour éviter toute inversion dans le by-pass).


Insérer un réservoir tampon

Un ballon tampon amplifie l’inertie thermique de l’installation, ce qui prolonge la durée de fonctionnement des compresseurs. Il permet de résoudre le problème de l’anti-court cycle (c’est-à-dire la temporisation du démarrage si l’installation vient de s’arrêter) et de prolonger la durée de vie du matériel en diminuant le nombre de démarrages par heure ou par jour.

De plus, cela permet également de réguler le compresseur en fonction de la température du ballon-tampon, ce qui est une bonne solution.

On dimensionne un ballon tampon de telle sorte que son stockage corresponde à 5 à 10 minutes de la consommation en eau glacée.

Schéma bâche tampon simple.

On peut amplifier encore cette possibilité en insérant une bâche à eau glacée dans l’installation. Cette solution peut permettre de diminuer la pointe quart-horaire de l’installation par délestage des groupes frigorifiques.


Choisir une régulation numérique

Quel intérêt ?

La régulation numérique (ou digitale) est en plein essor ces dernières années. Cette fois, ce n’est plus le câblage qui va déterminer les séquences mais bien le programme inclus dans l’automate programmable ou le régulateur du groupe.

Il s’agit en fait d’une gestion globale du système qui vient se superposer aux équipements décrits ci-dessus.

La régulation d’ensemble en sera fortement améliorée :

  • Possibilité de modifier les points de consignes, les horaires de fonctionnement,… à distance.
  • Régulation modulante de la température par l’usage d’un détendeur électronique.
  • Possibilité de réaliser un délestage du groupe au moment de la pointe ¼ horaire du bâtiment.
  • Visualisation meilleure du fonctionnement par mesure des pressions et des températures tout au long du cycle.
  • Estimation des performances, de l’énergie consommée …

Il suffit d’imaginer la difficulté d’un technicien appelé pour résoudre une panne pour comprendre tout l’intérêt d’enregistrer différents paramètres de l’installation.

Exemple d’entretien prévisionnel.

Les pressions d’entrée et de sortie d’un compresseur et les mesures des températures d’entrée et de sortie du frigorigène de cette machine ont été repérés lors de la mise au point de l’installation. Si la température de refoulement est plus élevée qu’elle ne le devrait, c’est que ce compresseur a un problème d’étanchéité de clapet. Il faut agir.

Exemple de délestage.

Chez Delhaize, on met en place un délesteur de charge sur les groupes frigorifiques de telle sorte que ceux-ci ne s’enclenchent pas simultanément au démarrage des fours à pain, lorsque le bâtiment est en période de pointe électrique.

L’inertie des équipements frigorifiques est telle que l’arrêt de quelques minutes ne pose pas de difficulté majeure. Et l’économie tarifaire est appréciable !

Quels paramètres faut-il superviser dans une GTC de machine frigorifique ?

La réponse est fonction de l’importance de l’installation et de la qualité du personnel d’intervention pour en exploiter les résultats. On trouvera dans la maintenance des installations frigorifiques une liste de paramètres qui peuvent être suivis.

Améliorer

Pour en savoir plus sur la maintenance de l’installation frigorifique, cliquez-ici !

Cuiseur à vapeur électrique

Le cuiseur à vapeur est aussi appelé « autoclave ».

Cuiseur à vapeur électrique


Principe et efficacité énergétique

Le cuiseur à vapeur se présente sous la forme d’un compartiment calorifugé étanche, en acier inoxydable ou aluminium, dans lequel la cuisson s’effectue avec ou sans pression, à travers des tiroirs perforés ou paniers montés sur glissières contenant les aliments à cuire.

La rapidité de cuisson du cuiseur à vapeur repose sur une réalité physique : un gramme de vapeur d’eau est capable de transmettre beaucoup plus de chaleur et plus rapidement qu’un gramme d’eau chaude à même température.

De plus, pour un cuiseur avec pression, la température d’ébullition est beaucoup plus élevée rendant également la cuisson plus rapide : pour une pression de 0 bar, on obtient une température de 99°C, alors que pour une pression de 0,5 bars, de 110 °C et pour 1 bar, de 120°C.
Les pressions sont qualifiées de basses lorsqu’elles sont inférieures ou égales à 0,5 bars et élevées lorsqu’elles se situent dans la plage de 0,5 à 7 bars.

En augmentant la température de cuisson de 15°C, par exemple, on augmente la consommation, mais on réduit le temps de cuisson de moitié (Le bilan global d’un autocuiseur par rapport à une marmite est d’environ 20 % plus favorable  : on consomme 30 % de moins car cuisson plus rapide mais 10 % de plus car température plus élevée).

Remarque : si pour des aliments solides, le fait d’avoir une haute température permet de faire pénétrer plus rapidement la chaleur à l’intérieur de l’aliment, pour les aliments liquides cela n’est pas nécessaire. De même, il vaut mieux cuire du riz ou des pâtes à plus basse température qu’à haute température. Le temps ne sera pas beaucoup plus long. La chaleur pénètre facilement à l’intérieur de petits éléments entourés d’eau.

Enfin, un autocuiseur est étanche, les pertes de chaleur sont donc limitées.


Description

Le cuiseur à vapeur humide (cuiseur sans pression)

(vapeur à température au plus égale à la température de vaporisation).

L’eau placée en partie basse de la chambre de cuisson, portée à ébullition, produit de la vapeur, à une température inférieure à 100°C (on est toujours en présence d’eau + vapeur saturée).

Le chauffage de l’eau est assuré par des résistances électriques blindées immergées ou situées au fond de la cuve.

Le cuiseur à vapeur sèche ou surchauffée (cuiseur à pression)

L’eau chauffée par un générateur autonome alimente en vapeur la chambre de cuisson, à une température supérieure à 100°C. Cette vapeur surchauffée ne contient aucune gouttelette d’eau en suspension (température supérieure à la température de vaporisation).
Le chauffage de l’eau du générateur est assuré par thermoplongeur immergé.

La pression de la vapeur utilisée varie suivant les appareils de 0,5 à 7 bars.

L’alimentation en eau de l’appareil peut être automatique ou manuelle avec possibilité d’adoucisseur incorporé.

Les cuiseurs à vapeur aussi bien sans pression qu’avec pression reçoivent des récipients perforés.

Composants spécifiques à certains modèles

Certains modèles possèdent une régulation qui permet de régler la pression de 0 à 1 bar et ainsi d’adapter exactement le mode de cuisson aux produits à cuire avec un seul appareil : sans pression, basse pression, haute pression.


Commande et régulation

L’appareil est muni d’un commutateur.

La pression de vapeur est contrôlée par pressostat.

Une minuterie permet l’automaticité de fonctionnement et assure à la fin de la cuisson la mise à l’air libre (décompression).

Un dispositif électrique à réarmement manuel arrête le chauffage en cas de manque d’eau.

Une soupape de sécurité libère l’excès de vapeur en cas de surpression.

Le verrouillage automatique de la porte est assuré quand l’appareil est sous pression.


Gamme

Les capacités peuvent aller de 10 à 500 litres.

Les appareils peuvent être à chambre unique ou à compartiments, à une ou deux enceintes.

Puissances moyennes de 6 à 40 kW et plus.


Utilisation

Le cuiseur à vapeur peut accomplir des cuissons habituellement réalisées dans les marmites ou les rondeaux. Il sert à décongeler, cuire, étuver et blanchir.

Les collectivités utilisent généralement des modèles à faible pression.

Le modèle à moyenne pression est davantage utilisé en hôtellerie, diététique et petite restauration où l’on recherche la qualité plutôt qu’une production importante.


Avantages

Gain de temps, le temps de cuisson est en moyenne divisé par trois.

Respect de la structure des mets fragiles (cervelles, choux-fleurs, poissons).

Conservation de la valeur diététique : vitamines, sels minéraux et substances nutritives.

Respect des couleurs et saveurs naturelles

Réduction de la perte de poids.

Puissances frigorifiques des chambres froides

Puissances frigorifiques des chambres froides


Chambre froide positive

Au niveau d’un avant-projet, les puissances frigorifiques suivantes peuvent être considérées (les valeurs ci-dessous nous ont été communiquées par un fabricant) :

Paramètres de base :

  • Température chambre froide : + 2 °C
  • Température ambiance : + 32 °C
  • Température d’évaporation : – 5 °C
  • Réfrigérant : R 134A
Volume chambre froide (m3) Puissance frigorifique (W)
1,8 400
2,3 500
3,8 690
5 850
7 960
11 1 440
16 1 790
20 2 010
24 2 800
28 2 950
38 3 745
45 4 300
55 4 900
70 5 700
92 7 600
103 8 200
120 9 100
165 12 300


Chambre froide négative

Au niveau d’un avant-projet, les puissances frigorifiques suivantes peuvent être considérées (les valeurs ci-dessous nous ont été communiquées par un fabricant) :

Paramètres de base :

  • Température congélateur : –  20 °C
  • Température ambiance : + 32 °C
  • Température d’évaporation : – 30 °C
  • Réfrigérant : R 404A
Volume chambre froide (m3) Puissance frigorifique (W)
2,5 780
4,2 1 050
6,5 1 240
9 1 470
14 2 320
18 2 880
32 3 780
45 4 750
62 6 140

Nous venons de lancer note page LinkedIn. Afin d’être informé des dernières actualités sur Energie+, n’hésitez à suivre notre page LinkedIN !

Formation de moisissures

Formation de moisissures


Conditions au développement de moisissures

Le texte ci-dessous est extrait de la Note d’Information Technique (NIT) n° 153 (Problèmes d’humidité dans les bâtiments) du ouverture d'une nouvelle fenêtre ! CSTC.

Qu’est-ce qu’une moisissure ?

Des spores de moisissures, dont les dimensions sont généralement inférieures à 10 microns, sont normalement présentes dans l’air, au même titre que les bactéries.  Leur concentration dans l’air extérieur est de l’ordre de 10spores par m3 d’air, bien qu’elle soit plus faible après une période de pluie ou pendant des périodes de grand froid, et plus élevée aux alentours des bois, des parcs, etc.

La concentration en spores de moisissures dans l’air intérieur est en général un peu moins forte que dans l’air extérieur.

Il existe normalement de nombreuses variétés de spores de moisissures, certaines apparaissent dans des proportions plus diverses que d’autres selon la saison. Selon leur type, les moisissures sont gris verdâtre, brun foncé ou noirâtre.

En se développant, les moisissures produisent d’autres spores, de sorte que leur prolifération peut être très rapide.

Conditions nécessaires au développement de moisissures

La formation de moisissures sur une surface ne se produit que dans des conditions favorables. Il faut notamment :

  • Une quantité d’oxygène suffisante.
  • Des conditions de température adéquates.  Bien que les moisissures puissent se développer à des températures comprises entre 0 et 60°C, la température optimale pour un développement rapide se situe entre 5 et 25°C. Il est important que les variations de température ne soient pas trop importante.
  • Un fond nourrissant approprié.
  • Une humidité suffisante.

Les deux premières conditions ne posent pas de problèmes dans les bâtiments.  En effet, de l’oxygène s’y trouve en suffisance et la température se situe la plupart du temps dans les limites les plus favorables. D’où l’importance des deux dernières conditions : fond nourrissant approprié et humidité suffisante.

Fond nourrissant

Pour leur développement, les moisissures ont besoin de faibles quantités de matières organiques décomposables comme les sucres, les graisses et surtout la cellulose.

Même dans des bâtiments très propres, les traces de souillure sur les parois sont suffisamment nombreuses pour permettre le développement de moisissures.

Il va de soi que les endroits présentant une accumulation de salissures ou de poussières constituent des emplacements de prédilection pour le développement de moisissures.

Certaines sortes de papiers peints et surtout la colle cellulosique avec laquelle ils sont posés, ainsi que certains types de peintures semblent être à des degrés divers de bons fonds nourrissants pour les moisissures.

Présence d’humidité

L’organe reproducteur des moisissures contient environ 95 % d’eau. L’eau est une condition essentielle au développement des moisissures. Celles-ci puisent l’humidité nécessaire principalement dans le support sur lequel elles se développent.

Des variations importantes de la teneur en humidité ne donnent pas lieu, en général, à un développement de moisissures, c’est-à-dire que le développement de moisissures est rarement lié à la pénétration d’eau de pluie.


Condensation de surface ou formation de moisissures ?

La condensation superficielle apparaît lorsque l’humidité relative, à la surface d’une paroi, atteint 100 %. La formation de moisissures sur une paroi peut déjà se produire à partir dune humidité relative de 80 % si le matériau en contact avec l’air humide est hygroscopique. Ceci s’explique par le fait qu’un matériau hygroscopique absorbe une grande quantité d’humidité pour des humidités relatives de l’air situées en dessous du niveau de saturation.

Système tout air, à débit constant, mono-gaine

Système tout air, à débit constant, mono-gaine


Principe de fonctionnement

Le système de conditionnement d’air « tout air, à débit constant, mono-gaine » est un système où l’air est préparé (chauffé, refroidi, humidifié,…) en centrale dans un caisson de traitement d’air, puis envoyé par un réseau de gaines vers le/les locaux.

En voici un exemple, appliqué à une zone :

Il constitue une branche de la grande famille du conditionnement d’air « tout air » :

– débit constant

  • monogaine

    • unizone  
    • multizone
  • double gaine multizone (avec boîte de mélange)
    • basse pression
    • haute pression (avec boîte de détente)

– débit variable

  • avec chauffage par radiateurs indépendants
  • avec chauffage par batterie à eau chaude

Comme on le voit, il existe de nombreuses variantes !

Expliquons chacun des termes :

>  « tout air » :

L’air est le fluide caloporteur de chaleur, de froid, ou d’humidité.
Par exemple :

  • si en hiver le local présente des déperditions, l’air pourra être pulsé à 28°C,
  • mais si en été, le local subit des apports solaires, l’air pourra être pulsé à 16°C,
  • et si, dans la salle de cinéma, le film très suggestif provoque beaucoup de dégagement de vapeur de la part des spectateurs, l’air sera pulsé très sec !

>  « débit constant »

Le débit est fixé par le ventilateur (qui ne dispose que d’une seule vitesse de rotation).

La régulation est réalisée par action sur la température et le taux d’humidité de l’air pulsé.

>  « mono-gaine » ou « double gaine »

Un seul réseau de gaines est créé, et donc un seul niveau de température est disponible pour la(les) pièce(s) climatisée(s). A l’inverse, les réseaux double gaine véhiculent simultanément de l’air chaud et de l’air froid, le mélange étant effectué à l’arrivée dans le local. Ce mélange est destructeur d’énergie. Les réseaux double gaine doivent donc être évités dans une approche URE.

>  « uni-zone ou multi-zones »

Uni-zone : il n’existe qu’une seule zone à traiter (une salle de conférences, par exemple),

Multi-zones : on crée plusieurs zones dans le bâtiment, chaque zone pouvant recevoir un air traité spécifiquement en fonction de ses besoins.

Remarque : une zone peut comprendre plusieurs locaux.

>  On peut aussi faire une distinction selon le niveau de pression « basse ou haute »

On parle de basse pression du ventilateur

  • si pression < 800 Pa, ou 80 mmCE
  • si vitesse d’air dans les gaines comprises entre 2 et 7 m/s

On parle de réseau haute pression si la vitesse dans les conduits atteint de 12 à 16 m/. Ces vitesses entrainant des consommations excessives des ventilateurs, on ne travaille aujourd’hui plus en haute pression lorsque le débit est constant.

Une unité de toiture (ou « roof top ») aurait pu être classée dans les installations « tout air, à débit constant, mono-gaine ». Elle présente la spécificité d’être équipée d’un refroidissement à détente directe.

 


Domaine d’application

Le système « tout air » a de l’intérêt lorsqu’un débit d’air élevé et constant est souhaité : on pense par exemple aux salles de spectacles où de toute façon on doit apporter de l’air aux personnes …
Le système « tout air – unizone » a de l’intérêt lorsque

  • Un seul local est à climatiser, généralement de grand volume : salle de spectacles, salle d’opération, salle de réunion, …
  • Il existe plusieurs locaux dont le fonctionnement thermique est similaire et pour lesquels un respect strict des consignes de température n’est pas imposé : plusieurs bureaux similaires sur une même façade, …
  • Il y a présence de locaux à chauffage très intermittent comme des salles de réunion, de spectacles,… : dans ce cas, la variante avec système de chauffage complémentaire par radiateurs permet d’assurer un chauffage de base entre 10 et 15°C en période de non-occupation, et une mise en confort très rapide dès l’arrivée des personnes (ou par horloge). Ce système est économique et supprime la surchauffe des locaux en période de forte occupation grâce aux possibilités de ventilation et de rafraîchissement, et à la faible charge des parois.

Le système « tout air – multizone » a de l’intérêt dans le cas où les charges thermiques varient mais que les locaux peuvent être regroupés en plusieurs zones de fonctionnement thermique similaire (et pour lesquels une modulation limitée des consignes de température est requise) : le placement de batteries terminales permettra alors de répondre plus précisément aux besoins.

Pourrait-on l’appliquer à un complexe de plusieurs salles de cinéma ? Probablement pas puisqu’il faudra chauffer la salle où deux nostalgiques regardent un film de Ingmar Bergmann, et refroidir la salle voisine où 350 personnes regardent avec passion « Titanic : le retour » où le bateau resurgit du fond des mers (tiens, cela me donne une idée…)


Détails technologiques de la centrale de traitement

Le chauffage de l’air est assuré

  • soit par batterie électrique,
  • soit par batterie d’eau chaude préparée en chaufferie.

Le refroidissement de l’air est assuré

  • soit par l’évaporateur d’un groupe frigorifique (système à détente directe),
  • soit par de l’eau glacée préparée par un groupe de production frigorifique.

L’humidification est réalisée :

Un réseau de pulsion distribue l’air traité et un réseau d’extraction en assure la reprise. En général, le débit de pulsion est légèrement supérieur au débit d’extraction afin de maintenir les locaux en surpression.

Constitution du caisson de traitement d’air.

Les parois sont à double enveloppe en tôle d’acier galvanisé ou peint. Un isolant acoustique et thermique de 25 mm d’épaisseur minimale est fixé entre les deux tôles.


Variantes technologiques

Réchauffage batteries terminales

Que faire si le bâtiment présente des zones différentes ? Par exemple des bureaux placés sur des façades différentes… Une première solution consiste à placer les batteries terminales en tête des différentes zones pour adapter la fourniture aux besoins.

Généralement, on rencontre soit des batteries alimentées eau chaude, soit des batteries électriques. Ceci ne répond qu’aux besoins variables de l’hiver… À noter qu’il est possible de placer une batterie de froid complémentaire à l’entrée de l’une ou l’autre zone, mais l’avantage d’une centralisation du traitement disparaît progressivement …

Chauffage par radiateurs

Le chauffage peut être assuré indépendamment, par un réseau de radiateurs en allège des fenêtres par exemple. Mais la régulation de la température des ambiances n’est pas toujours simple car il peut y avoir conflit entre les deux systèmes.

Recyclage partiel

En vue de diminuer les coûts d’exploitation, l’air extrait peut être recyclé partiellement.

Des registres motorisés modulent les débits d’air recyclé et d’air rejeté. Le débit d’air neuf peut donc varier mais sans jamais descendre sous le débit minimal d’air neuf hygiénique en période d’occupation.

Récupération de la chaleur sur l’air extrait

Pour récupérer l’énergie contenue dans l’air extrait tout en évitant généralement tout risque de contamination, l’air sortant croise l’air neuf entrant dans un échangeur de chaleur.

Humidification par humidificateur à vapeur

Dans ce cas, la batterie de post-chauffe peut être supprimée.

Réseau sous haute pression

Pour réduire l’encombrement, l’air est préparé en centrale dans le caisson de traitement d’air, puis conduit à haute vitesse vers le/les locaux.  On parle alors de système « tout air, à débit constant, mono gaine, uni-zone, haute pression » !

La pression du ventilateur est généralement > 1 000 PA (ou 100 mmCE) et la vitesse dans les gaines > 10 m/s.

A débit égal, doubler la vitesse de l’air dans les gaines (par rapport au système basse pression) permet de diminuer par deux la section nécessaire. Mais les frottements de l’air sur les parois des gainages sont proportionnels au carré de la vitesse. Et donc le ventilateur doit vaincre des pertes de charges beaucoup plus élevées, pouvant à la limite atteindre 2 000 PA. En pratique, on évite donc cette technologie aujourd’hui.

Après passage dans une boîte de détente, l’air est diffusé par les bouches de soufflage.

Les boîtes de détente sont généralement des boîtes insonorisées, comportant un organe déprimogène (tôle perforée par exemple). Un régulateur maintient le débit à valeur constante.

À ces pressions, des précautions sérieuses sont à prendre en matière acoustique, notamment au niveau des appareils terminaux (amortisseur de bruit).

Toute combinaison des variantes précédentes

À titre d’exemple, on rencontre ainsi des installations « tout air, à débit constant, mono gaine, multi-zones, haute pression »


Avantages

  • Simplicité globale,
  • facilité de dimensionnement,
  • régulation simple, fiable et centralisée,
  • fonctionnement stable, donc coût de maintenance réduit,
  • pas d’alimentation en eau chaude ou froide dans les locaux, sauf si la variante avec batteries de réchauffage en eau chaude est choisie,
  • faible niveau sonore, sauf avec les installations haute pression,
  • possibilité d’utilisation d’air extérieur pour le refroidissement gratuit (free cooling),
  • contrôle de l’humidité relative en centrale et de l’empoussièrement.

Inconvénients

  • Le débit d’air est constant. Or il est dimensionné pour la situation extrême, généralement celle de l’été, en période de canicule avec un soleil de plomb ! Conclusions : de tels débits entraînent une consommation élevée des ventilateurs et, dans certains cas, de l’inconfort toute l’année !
  • La consommation élevée du ventilateur devient très élevée dans le cas des installations à Haute Pression.
  • L’encombrement de la centrale et du réseau de gaines (gros débits, section importante des conduites d’air neuf, d’air pulsé et d’air extrait),
Exemple.

Une salle de spectacles est maintenue à 20°C. De l’air chaud est pulsé à 30°C. Les déperditions du local sont de 20 kWatts. Quelle sera la section de la conduite nécessaire ?

La capacité calorifique de l’air étant de 0,34 Wh/m³.K, le débit est donné par :

débit = puissance / 0,34 x DT° (en m³/h)

Ici, débit = 20 000 / 0,34 x 10 = 5 882 m³/h = 1,63 m³/s

Sur base d’une vitesse de 8 m/s, la section devient 1,63 / 8 = 0,2 m², soit une section de 40 cm x 50 cm, ou une conduite circulaire de 0,5 m de diamètre !

La même puissance est transportée par de l’eau dans une tuyauterie de 1,75 cm de diamètre ! (vitesse : 1 m/s)

C’est pour limiter cet encombrement que l’on a recours à une conception de réseau de gaines sous haute pression. L’encombrement est plus limité mais reste toujours plus élevé que pour le système mixte eau + air, par exemple.

  • Intégration obligatoire dès la conception du bâtiment.
  • Si uni-zone, température et humidité de soufflage uniques, d’où, si plusieurs locaux :
    • Un manque de précision dans le respect des consignes.
    • Une surconsommation suite à l’absence de régulation par pièce.
  • Si multi-zone :
    • Risque de « casser » de l’énergie : le caisson de préparation primaire refroidit l’air en fonction des besoins de la zone la plus demandeuse et les batteries de post-chauffe des autres zones devront réchauffer l’air par la suite… On détruit donc de l’énergie.
      (À noter qu’un tel système est d’ailleurs interdit en France, sauf si le fluide chauffant est de récupération, par exemple sur le condenseur de la machine frigorifique).
    • Il n’est pas possible de moduler le débit d’air neuf en fonction de la présence ou non d’occupants dans chacune des zones.
    • Si l’air doit pouvoir être refroidi et réchauffé distinctement dans chaque zone, une batterie de chauffe et un groupe de refroidissement peuvent être ajoutés pour chaque zone, mais le coût d’installation devient prohibitif.
    • Un compromis peut consister à installer une batterie froide terminale uniquement pour la zone la plus demandeuse de froid.
    • Les batteries électriques sont peu coûteuses à l’investissement mais très onéreuses à l’usage, à l’opposé des batteries d’eau chaude qui sont coûteuses à l’investissement (deux tubes).

En résumé, il n’y a pas de solution idéale en multi-zone. Une régulation centrale doit piloter le tout « intelligemment », sans quoi les coûts d’exploitation sont catastrophiques !

  • Si la vitesse de déplacement de l’air est augmentée pour diminuer les sections, le niveau de bruit sera nettement plus élevé et demandera un traitement acoustique sérieux.
  • Equipements de plus grande solidité pour résister aux pressions, si variante en haute pression.

Exemple de régulation

Citons en exemple le cas de salles de réunion intérieures alimentées par un réseau d’air commun. Comme les salles n’ont pas de surface déperditive, le concepteur n’a envisagé que des batteries froides locales.

La température de pulsion est réglée pour éviter l’inconfort même lorsqu’une salle est peu occupée. Résultat : on chauffe l’air neuf et on refroidit l’ambiance dans les salles à forte occupation. Si une batterie chaude n’est pas installée dans chaque salle, l’algorithme à imaginer pour limiter la destruction d’énergie doit être du type (source : MATRIciel sa, 2010) :

Légende

  • Text  = température extérieure
  • Text_cons_NC  = température extérieure de non chauffage (arrêt du besoin de chauffage du bâtiment) – Paramétrable (par défaut : 15°C)
  • Treprise = température de l’air mesurée dans la reprise commune vers le GE
  • Hzvent = fréquence d’alimentation des ventilateurs de pulsion et d’extraction (liés)
  • Vroue = vitesse de la roue de récupération de chaleur sur l’air extrait (de 0% = sans récupération, 100% = récupération maximale)
  • Tpuls_GP = température de pulsion mesurée à la sortie du GP
  • Tpuls_GP_min_hiver = consigne de température de pulsion minimale de l’air dans les salles en hiver, à la sortie du GP – Paramétrable (par défaut : 16°C)
  • Tpuls_GP_min_été = consigne de température de pulsion minimale de l’air dans les salles en été à la sortie du GP – Paramétrable (par défaut : 16°C)
  • Tamb_min = température ambiante mesurée sur les sondes d’ambiance des salles. Valeur minimale des mesures
  • Tamb_cons_hiver = température de consigne ambiante des salles en hiver – Paramétrable (par défaut : 20°C)
  • Thors_gel = température de pulsion correspondant à la protection anti-gel des batteries du GP – Paramétrable (par défaut : 5°C)
  • Tamb = température ambiante mesurée par la sonde d’ambiance d’une salle
  • Tamb_cons_été = température ambiante de consigne maximale à ne pas dépasser dans les salles – Paramétrable (par défaut : 25°C)
  • %HR reprise = humidité relative mesurée dans la reprise
  • %HR reprise_cons = consigne d’humidité relative mesurée dans la reprise – Paramétrable (par défaut : 40%)

En hiver

Condition générale : Text  < Text_cons_NC et Text  < Treprise + 1°C

Permanent

  • Enclenchement chaudière
  • Modulation de la température d’eau de départ en fonction de la température extérieure (courbe de chauffe)
  • Arrêt groupe de froid
  • Arrêt circuit batterie froide

En horaire d’occupation

  • Enclenchement GP/GE
  • Libération circuit batterie chaude
  • Hzvent = 50 Hz
  • Vroue = 0%
  • Si Tpuls_GP < Tpuls_GP_min_hiver
    Ou Tamb_min < Tamb_cons_hiver
    Ou Tpuls_GP < Thors_gel : cascade avec (chronologiquement) :
  1.  Modulation de la récupération de chaleur avec limite Vroue = 100%
  2. action sur la batterie chaude du GP
  • par salle : si Tamb > Tamb_cons_été : action sur le ventilo-convecteur
  • Si %HRreprise < %HR reprise_cons : action sur humidificateur vapeur

En horaire d’inoccupation (nuits et week-ends)

  • Arrêt GP/GE
  • Arrêt ventilo-convecteurs
  • Fermeture vanne batterie chaude, arrêt circulateur (avec protection hors gel)

En période de relance (inoccupation)

Sans objet.

En mi-saison

Condition générale : Text  > Text_cons_NC et Text  < Treprise + 1°C

Permanent

  • Arrêt chaudière
  • Arrêt circuit batterie chaude
  • Arrêt groupe de froid
  • Arrêt circuit batterie froide
  • Arrêt humidification

En horaire d’occupation

  • Enclenchement GP/GE
  • Hzvent = 50 Hz
  • Vroue = 0%
  • Si Tpuls_GP < Tpuls_GP_min_hiver
    Ou Tamb_min < Tamb_cons_hiver
    Ou Tpuls_GP < Thors_gel : Modulation de la récupération de chaleur avec limite Vroue = 100%
  • par salle : si Tamb > Tamb_cons_été : action sur le ventilo-convecteur

En horaire d’inoccupation (nuits et week-ends)

  • Arrêt GP/GE
  • Arrêt ventilo-convecteurs

En période de relance (inoccupation)

Sans objet

En été

Condition générale : Text  > Text_cons_NC et Text  > Treprise + 1°C

Permanent

  • Libération groupe de froid
  • Arrêt chaudière
  • Arrêt circuit batterie chaude
  • Arrêt humidification

En horaire d’occupation

  • Enclenchement GP/GE
  • Libération circuit batterie froide
  • Hzvent = 50 Hz
  • Vroue = 100%
  • Si Tpuls_GP > Tpuls_GP_min_été : action sur la batterie froide du GP
    par salle : si Tamb > Tamb_cons_été : action sur le ventilo-convecteur

En horaire d’inoccupation (nuits et week-ends)

  • Arrêt groupe de froid
  • Arrêt GP/GE
  • Arrêt ventilo-convecteurs
  • Fermeture vanne batterie froide, arrêt circulateur

En période de relance (inoccupation)
Sans objet.

Évaluer la qualité de l’air en cuisine

Évaluer la qualité de l'air en cuisine


Recommandations : les critères de qualité de l’air

Source d’informations
Les valeurs qui suivent pour les différents critères de qualité de l’air sont issues du « guide de la ventilation des cuisines professionnelles » élaboré entre autres par les syndicats français UNICLIMA et le Syneg.

1. Le confort thermique

La température ambiante

Dans les cuisines collectives des températures de 20°C en hiver et de 28°C en été sont considérées comme acceptables. Ceci impose, en principe, de chauffer l’air en hiver et de le rafraîchir en été (dans le cas d’une pulsion mécanique).

Si la climatisation est inexistante, on autorise une température intérieure telle que la différence de température entre l’extérieure à l’ombre et l’intérieure soit limitée à 6°C. En cas de température élevée à l’extérieure, les températures intérieures autorisées sont, de ce fait, relativement élevées. Dans ce cas, la sensation de chaleur est diminuée par la vitesse de l’air.

L’asymétrie de rayonnement

Le confort dans un local dépend non seulement de la température de l’air mais aussi de la température des parois. De plus, des températures de parois fort différentes dans un même local peuvent engendrer un inconfort.

Dans une cuisine, l’asymétrie de rayonnement entre les appareils de cuisson et les parois environnantes est considérable puisque la différence de température de rayonnement est en général très supérieure à 20°C.

La vitesse de l’air

Évaluer

 Vous trouverez les valeurs admises pour la vitesse de l’air.

L’humidité relative de l’air

Compte tenu des dégagements de vapeur d’eau, il est difficile de limiter l’humidité relative. On veille essentiellement à éviter les problèmes de condensation sur les parois.

On tolère jusqu’à 70 % d’humidité relative avec une augmentation du poids d’eau dans l’air de 5 g./kg d’air sec entre l’air introduit et l’air ambiant.

Synthèse des critères à respecter

  • en hiver, température ambiante supérieure à 20°C,
  • en été, écart de température entre l’extérieur et l’intérieur limité à 6°C,
  • vitesse de l’air comprise entre 0,3 et 0,5 m/s,
  • humidité relative : 70 %,
  • gradient vertical de température < 3 K/m.

Remarque : certains fabricants ont comme repère une puissance d’équipement de 100 W/m². Au-delà de cette valeur, il est très difficile d’obtenir une ventilation satisfaisante.

2. Les dégagements gazeux

Outre la gêne thermique et un inconfort, les dégagements gazeux peuvent engendrer, une intoxication du personnel.

En outre la concentration en gaz carbonique (CO2) doit être limitée à 1 000 ppm.

Évaluer

Si vous voulez en savoir plus sur les concentration maximum en CO2.

Comment évaluer sa situation

Par mesure des différents paramètres de qualité de l’air ou par estimation.

Pour évaluer sa situation on mesure la température et l’humidité à l’intérieur du local.

Évaluer

Pour savoir comment évaluer la vitesse de l’air dans le locale.

Concevoir

Au niveau de l’asymétrie de rayonnement, une bonne isolation des parois verticales des appareils de cuisson et une introduction de l’air neuf directement au niveau des cuisiniers, sont des indices d’une minimisation de cette source d’inconfort.

On peut aussi mesurer les concentrations en CO2 avec un détecteur de CO2 ou un chromatographe.

Par comparaison des débits extraits et pulsés avec les valeurs recommandées et par évaluation de l’efficacité de la hotte

Comparaison des débits extraits et pulsés avec les valeurs recommandées

On peut mesurer les débits d’extraction et de pulsion dans la cuisine.

Au niveau de l’extraction, les mesures de débits s’effectuent au niveau de chaque filtre et au niveau de la gaine. On les effectue à l’aide d’un appareil appelé anémomètre.

1. Contrôle de l’aspiration des filtres

L’anémomètre est placé devant chaque filtre afin de noter la vitesse de passage de l’air. On reporte ensuite les résultats dans un tableau du type de celui ci-dessous :

Zone d’aspiration

S (surface) [m²] v (vitesse) [m/s] Débit horaire = S x v x 3 600 [m³/h]

Grillade :

  Filtre n°1

xxx xxx xxx

  Filtre n°2

xxx xxx xxx

Friteuse :

  Filtre n°3

xxx xxx xxx

Total débit avant filtrage

xxx xxx xxx

2. Contrôle du débit de la gaine

L’anémomètre placé ensuite à l’intérieur de la gaine en différents points donne la vitesse moyenne de passage de l’air.

Le débit après filtrage est donné en effectuant le même calcul :

v x S x 3 600 [m³/h]

Où :

  • S = section de la gaine [m²],
  • v = vitesse moyenne de passage de l’air [m/s].

3. Comparaison avec les valeurs recommandées

On vérifie la concordance des débits avant filtrage, après filtrage, pour chacun des appareils.

Concevoir

Pour en savoir plus sur le choix des débits de ventilation.

La connaissance du débit d’extraction permet également de calculer la vitesse frontale de l’air au niveau de la hotte.

Pour bien évacuer les graisses, cette vitesse doit être suffisante. Au dessus d’une friteuse par exemple, elle doit être de = 0,5 m/s pour une hotte à extraction simple.

Évaluation de l’efficacité de la hotte

Pour déterminer l’efficacité d’une hotte, on libère un gaz traceur (N2O) juste au-dessus des plaques de cuisson. On mesure la concentration au niveau du conduit d’extraction. On compare ensuite cette mesure à la concentration idéale. Celle-ci est obtenue en injectant directement le gaz traceur dans le conduit d’extraction.

Le rendement de captation S (en %) = (Cx – C0) / (Créf. – C0)

Où  :

  • Cx = concentration à l’extraction en gaz traceur émis à la plaque de cuisson.
  • Créf. = concentration à l’extraction en gaz traceur injecté directement dans le conduit.
  • C0 = concentration dans l’air ambiant.

L’efficacité de captage est fonction du débit d’extraction et du système utilisé  (hotte basse, hotte hautes, plafonds filtrants, hotte à induction) et de sa qualité.

Moins bon et meilleur rendements.

Rendement d’un luminaire intérieur

Rendement d'un luminaire intérieur

Le rendement total ηt d’un luminaire est le rapport entre le flux lumineux émis par le luminaire et le flux lumineux des lampes.

Il est d’autant plus bas qu’il y a des éléments (ventelles, globe opalin ou prismatique) devant les lampes afin d’éviter l’éblouissement ou pour favoriser l’esthétique.

Données

Pour voir des exemples de rendement d’un luminaire.

Attention, le rendement total d’un luminaire ne focalisant pas la lumière vers le bas, c’est-à-dire vers le plan de travail (luminaire à diffuseur opalin, lumière douce, …), n’est pas exactement représentatif du rendement utile du luminaire. En effet une partie de la lumière est diffusée vers les murs ou les plafonds. Il en résulte une perte supplémentaire (qui dépend du facteur de réflexion des parois) non considérée dans la notion de rendement total. Pour comparer ce type de luminaire avec les luminaires purement directs, la notion de rendement inférieur η i (quantifiant le flux lumineux dirigé vers le bas) peut donc également être une indication de l’efficacité du luminaire.

La norme Française UTE C71-121 impose aux fabricants de notifier le rendement inférieur ηi et le rendement supérieur ηs sous la forme :

ηi [A à J] + ηs T

Les lettres A à J permettent d’indiquer le type de répartition du flux inférieur. On utilise les lettres A à E pour les distributions intensives et les lettres F à J pour les distributions extensives. La lettre T désigne toujours la composante indirecte.

Le rendement total ηt du luminaire vaut simplement :

ηt = ηi + ηs

Par exemple, un luminaire caractérisé par un rendement UTE de :

0.75 D + 0.10 T

émettra vers le bas avec un rendement lumineux de 75 % et selon un flux assez intensif, et vers le haut avec un rendement lumineux de 10 %. Le rendement lumineux total du luminaire vaut ici 85 %.

Rendement de 100 % ou plus ?

On voit des rendements de luminaires équipés de lampe T5 supérieurs à 100% et des rendements de luminaires à LED de 100 %.

Explication T5 :

La lampe T5 a son flux maximal à 35 °C. La norme impose une température de 25 °C pour les tests en labo. Les fabricants utilisent un facteur de correction pour compenser cette différence de t° (car ils disent qu’à la lampe, il y aura bien les 35 °C.)

Exemple courbe photométrique d’un luminaire pour T5 à rendement > 100%

Explication LED :

Le module LED fait partie du luminaire, il n’y a plus moyen de mesurer la source sans le luminaire donc on met le rendement à 100 %. Si un diffuseur est placé dans un luminaire à LED, la diminution du rendement du luminaire à LED peut être mesurée et le rendement sera alors inférieur à 100 %.

Exemple courbe photométrique d’un luminaire à LED à rendement 100 %

Régulation des chaudières

Régulation des chaudières


Régulation par aquastat

Les chaudières sont systématiquement équipées d’un aquastat de sécurité. Il mesure la température de l’eau de la chaudière et se déclenche sur une élévation anormale de température de l’eau à la sortie.

Beaucoup d’anciennes chaudières sont régulées directement par un deuxième aquastat réglable manuellement qui commande directement le brûleur de la chaudière pour maintenir une température constante au départ de la chaudière.

Cet aquastat peut être situé sur le collecteur de départ raccordé à la chaudière. Il peut aussi être raccordé à un régulateur à étages pour commander en cascade un brûleur 2 allures ou à une régulateur PI ou PID pour commander un brûleur modulant.

Avec ce mode de régulation simplifié, la température des chaudières et du circuit primaire reste constante toute l’année. Il s’applique aux chaudières qui doivent être maintenues à haute température pour éviter les risques de condensation.

Ces chaudières ne supportent généralement pas des températures de retour inférieures à 55 .. 60°C, températures qui sont possibles lorsque les circuits secondaires sont régulés en fonction de la température extérieure.

Pour éviter cela, une pompe de recyclage vient puiser de l’eau dans le départ pour réchauffer le retour. Le débit recyclé est ainsi de l’ordre du tiers du débit nominal de la chaudière.

Deux techniques de recyclage peuvent être utilisées : 


Régulation en fonction de la température extérieure (régulation en température glissante)

On parle de régulation en température glissante de la chaudière ou de régulation climatique.

Une sonde mesure la température extérieure (appelée sonde extérieure). Un régulateur définit la température que doit avoir l’eau au départ de la chaudière en fonction de celle-ci. La loi qui établit la correspondance entre la température extérieure et la température de l’eau est appelée « courbe de chauffe ».

Par exemple : pour une température extérieure de 3°C, la température de l’eau sera de 70°C.

La courbe de chauffe est réglable sur le régulateur. Elle dépend de la température de confort souhaitée, du niveau d’isolation du bâtiment et du surdimensionnement des corps de chauffe.

L’intérêt de ce type de régulation est de diminuer la température moyenne de la chaudière sur l’ensemble de la saison de chauffe (elle sera de l’ordre de 40 .. 45°C) et d’améliorer son rendement saisonnier.

Il n’est applicable qu’aux chaudières « très basse température » dont la température d’eau peut descendre sans provoquer de condensations préjudiciables. Il est également possible de fixer une limite basse (par exemple, 50°C) en-dessous de laquelle, la température de l’eau ne peut pas descendre pour protéger la chaudière. Au-dessus de cette température, la température d’eau est fonction de la température extérieure.

Courbe de chauffe avec limite basse à 50°C.


Régulation par thermostat d’ambiance

Ce mode de régulation est appliqué pour les installations de petite puissance (installation sans circuit primaire, avec un unique circuit de distribution dans le bâtiment).

Un thermostat d’ambiance placé dans un local témoin commande directement la mise en route du brûleur. Il peut aussi commander en parallèle le fonctionnement du circulateur de l’installation, avec une temporisation (il faut une circulation dans la chaudière au démarrage du brûleur et le circulateur évacue la chaleur de la chaudière à l’arrêt).

Ce mode de régulation ne peut s’appliquer qu’aux chaudières pouvant fonctionner à basse température. En effet, on peut schématiser l’évolution de la température dans la chaudière comme suit :

Lors de la relance matinale, le thermostat d’ambiance enclenche le fonctionnement du brûleur, la température de l’eau augmente dans la chaudière, en parallèle de la température ambiance. En général, la chaudière atteindra sa température maximale (fixée par son aquastat) avant que la consigne du thermostat ne soit atteinte. La relance se fait donc à puissance maximale, ce qui est favorable à une relance rapide et économe en énergie.

Lorsque la température intérieure de consigne est atteinte, le brûleur est coupé. la température dans la chaudière diminue. Cette diminution s’accompagne d’une diminution de puissance des corps de chauffe, jusqu’au moment où le thermostat d’ambiance est en demande. Le brûleur se remet en route et la température de l’eau augmente de nouveau jusqu’à ce que le thermostat soit satisfait, et ainsi de suite.

La chaudière va finalement se stabiliser à une température d’eau moyenne dépendant de la puissance à fournir par les corps de chauffe et donc dépendante des conditions climatiques. En mi-saison, cette température risque d’être basse, ce qui impose d’utiliser une chaudière « très basse température ».

On obtient donc une « simili régulation en température glissante ».


Régulation de plusieurs chaudières ou de brûleurs à plusieurs allures en cascade

La régulation en cascade s’applique à des installations équipées de plusieurs chaudières ou de brûleurs à deux allures (fuel ou gaz), c’est-à-dire à des installations dont la puissance totale est fractionnée en plusieurs unités.

Elle consiste à n’enclencher un étage de puissance que lorsque celui-ci est nécessaire.

Principe de fonctionnement

Régulation en cascade de 3 chaudières. Ici la cascade se fait suivant le principe « première allumée – première arrêtée » qui permet d’équilibrer naturellement les temps de fonctionnement de chaque chaudière.

Un régulateur climatique ou un aquastat à température constante fixe une température d’eau à fournir.

Au démarrage, le premier étage de puissance s’enclenche (première allure du brûleur ou première chaudière). Si après un certain temps programmable, la consigne de température n’est pas atteinte, un deuxième étage de puissance vient en complément (deuxième allure du brûleur ou deuxième chaudière), puis un troisième si nécessaire.

Lorsque la température de consigne est dépassée, un premier étage de puissance s’arrête (par exemple, le premier allumé). Si après un certain temps, la consigne est toujours dépassée, un deuxième étage s’arrête également. Si la température descend en dessous de la consigne, un étage complémentaire est réenclenché.

La puissance mise en œuvre suit ainsi les besoins. En effet, si la petite puissance est suffisante pour maintenir la consigne (en mi-saison), les autres étages ne seront pas enclenchés.

Exemple.

Dans le cas de deux chaudières équipées chacune d’un brûleur 2 allures, on dispose de 4 étages de puissance qui peuvent s’enclencher suivant la séquence :

  • chaudière 1, allure 1
  • puis chaudière 1, allure 2
  • puis chaudière 2, allure 1
  • puis chaudière 2, allure 2

ou la séquence :

  • chaudière 1, allure 1
  • puis chaudière 2, allure 1
  • puis chaudière 1, allure 2
  • puis chaudière 2, allure 2

La première solution a l’avantage de limiter la nombre de démarrages de brûleur à « froid », synonymes de mauvaises combustions transitoires. Par contre, elle ne favorise pas le fonctionnement des brûleurs en première allure, c’est-à-dire avec le meilleur rendement de combustion.

Le compromis peut donc être trouvé dans la description faite par le cahier des charges type 105 de la Régie des bâtiments (1990) où on recommande que l’enclenchement se fasse suivant la séquence :

  • chaudière 1, allure 1
  • puis chaudière 1, allure 2
  • puis chaudière 2, allure 1
  • puis chaudière 2, allure 2

et le déclenchement suivant la séquence :

  • chaudière 2, allure 2
  • puis chaudière 1, allure 2
  • puis chaudière 2, allure 1
  • puis chaudière 1, allure 1

 Intérêt

L’intérêt de la régulation en cascade se situe au niveau de :

  • L’adaptation au plus juste la puissance mise en œuvre aux besoins thermiques du bâtiment, de manière à obtenir un temps de fonctionnement des brûleurs le plus long possible. En effet, plus le temps de fonctionnement d’un brûleur est long par rapport au temps d’utilisation d’une chaudière meilleur sera son rendement (diminution du temps d’attente de la chaudière et donc de ses pertes à l’arrêt (augmentation du facteur de charge) et diminution des émissions polluantes associées au démarrage des brûleurs).
  • Dans le cas de plusieurs chaudières régulées en cascade : l’élimination des pertes à l’arrêt des chaudières non nécessaires en arrêtant leur irrigation à l’arrêt du brûleur par fermeture automatique d’une électrovanne et l’arrêt du circulateur de la chaudière si elle en possède un.
  • Dans le cas de brûleurs 2 allures : l’augmentation du rendement de combustion. En effet, en petite allure, la puissance du brûleur diminuant par rapport à la surface d’échange, les fumées sont évacuées plus froides vers la cheminée et donc les pertes par les fumées diminuent. Un gain de 2 .. 2,5 % sur le rendement de combustion peut être obtenu lorsque la puissance du brûleur est de l’ordre de 60 .. 70 % de la puissance de la chaudière.

On l’aura compris, la régulation en cascade des chaudières peut améliorer le rendement saisonnier de l’installation de production de chaleur.

Exemple.

Un bâtiment nécessite une puissance de chauffage de 800 kW.

Voici le temps de fonctionnement simulé du(des) brûleur(s) en fonction du découpage de la puissance choisi, pour une durée de la saison de chauffe de 5 800 heures/an :

Nombre de chaudières Type de brûleur Temps de fonctionnement du (des) brûleur(s) à chaque allure [h/an]
1 de 800 [kW] 1 allure 2 009
(all 1 : 800 [kW])
1 de 800 [kW] 2 allures (60 % / 100 %) 2 754
(all 1 : 480 [kW])
374
(all 2 : 800 [kW])
2 de 400 [kW] 2 allures (60 % / 100 %) 4 210
(ch 1 – all1 : 240 [kW])
417
(ch 1 – all2 : 400 [kW])
1 725
(ch 2 – all1 : 240 [kW])
40
(ch 2 – all2 : 400 [kW])

Voici le rendement saisonnier de l’installation obtenu avec différentes combinaisons de chaudières, en fonction des pertes à l’arrêt de celles-ci. Les hypothèses prises pour la simulation sont :

  • une puissance de chauffe non surdimensionnée,
  • un rendement de combustion de 92% en grande allure de brûleur et de 94% en petite allure,
  • une séquence de régulation de la cascade suivant l’ordre : « chaudière 1, petite allure, puis chaudière 2, petite allure, puis chaudière 1, grande allure, puis chaudière 2, grande allure ».

Calcul du rendement saisonnier de la production de chaleur en fonction du choix de la combinaison de chaudières.

L’écart affiché entre les différentes solutions s’accentue lorsque l’installation est surdimensionnée (ici on a dimensionné la ou les chaudières au plus juste) et que les chaudières présentent des pertes à l’arrêt importantes (par exemple, pour les chaudières gaz atmosphériques).

On constate que, théoriquement, posséder plusieurs chaudières régulées en cascade mais qui restent irriguées en permanence ne sert quasi à rien d’un point de vue énergétique (si on ne tient pas compte de la production d’imbrûlés et autres émissions polluantes).

L’écart de rendement saisonnier entre les différentes solutions s’amenuise lorsque les pertes à l’arrêt des chaudières diminuent (arrêt de la circulation d’air dans la chaudière à l’arrêt et isolation performante). Il peut même devenir nul ou négatif en fonction des conditions de fonctionnement. La différence est de moins de 0,5 % sur la consommation annuelle pour des chaudières modernes à faibles pertes à l’arrêt, équipées d’un brûleur 2 allures.

En pratique

Voici différents modes de régulation possibles :

Décalage des aquastats de chaudière

Ce mode de régulation est souvent appliqué sur d’anciennes installations et n’apporte quasi pas d’économie.

Il s’agit de décaler la consigne de l’aquastat de chaque chaudière, de quelques degrés (par exemple 80°C pour une chaudière et 70°C pour l’autre).

Ordre d’enclenchement des chaudières avec une régulation de cascade basée sur des aquastats de départ.

Lorsque les besoins thermiques deviennent importants (par exemple à la relance matinale), la température dans les chaudières va chuter en dessous de 70°C. Le brûleur des deux chaudières va donc s’enclencher.
Lorsque les besoins vont diminuer, la température dans les chaudières va augmenter. Lorsqu’elle dépasse 70°C, une première chaudière s’arrête. Si elle dépasse 80°C, la deuxième chaudière s’arrête. Si la température retombe en dessous de 80°C, seule cette dernière chaudière va démarrer. Si malgré le fonctionnement de celle-ci, la température d’eau continue à chuter en dessous de 70°C, la deuxième chaudière va venir au secours de la première.

Ce système présente un avantage : il ne demande pas l’adjonction d’un régulateur particulier puisque l’on travaille avec les aquastats des chaudières.

Par contre il présente trois inconvénients majeurs, qui le rendent quasi inintéressant d’un point de vue énergétique :

  • Il impose l’irrigation permanente de toutes les chaudières. On perd donc un des intérêts de la régulation en cascade : la suppression des pertes à l’arrêt des chaudières non nécessaires.
  • La température de départ est faible si la puissance demandée est élevée et élevée si la puissance demandée en faible. Même si les vannes mélangeuses corrigent le tir par après, c’est une situation énergétiquement défavorable.
  • Les aquastats doivent avoir des consignes suffisamment décalées sous peine de voir les chaudières fonctionner en parallèle et non en cascade. En effet, si la température de retour des circuits descend en dessous de la température de consigne de la chaudière à l’arrêt, le brûleur de cette dernière s’enclenchera d’office puisqu’il mesurera une température de chaudière trop basse.

Régulation en fonction de la température de départ du collecteur

Ce mode de régulation est le plus courant.

Ici, on mesure la température commune à toutes les chaudières, sur le départ du collecteur (ne pas placer la sonde entre les chaudières). Ceci a comme avantage de permettre l’arrêt de l’irrigation des chaudières à l’arrêt et donc de diminuer les pertes.

Le fonctionnement de la cascade peut être géré par des relais temporisés ou un programmateur électronique qui enclenchent et déclenchent les différentes chaudières.

Coffret de gestion de cascade analogique.

Les nouveaux régulateurs gèrent de façon « intelligente » l’enclenchement des chaudières. Par exemple, en fonction de la courbe d’évolution de la température de l’eau par rapport à la consigne, le régulateur prendra ou non la décision d’enclencher une nouvelle chaudière, évitant ainsi tout enclenchement de courte durée.

Régulation en fonction de la température de retour du collecteur

Lorsque les besoins en chauffage augmentent, la température de retour diminue, à débit d’eau constant.

Lorsque la température de retour chute, la chaudière suivante de la séquence est enclenchée.

Exemple.

Prenons une chaufferie composée de 3 chaudières dimensionnées pour un régime de température 90°/70°. La différence entre le départ et le retour est de 20°C lorsque les besoins sont maximaux.

Si la température de départ est maintenue en permanence à 90°C, on peut déterminer la température de retour qui correspond à la puissance de chaque étage de la cascade :

20 [°C] / 3 [chaudières] = 7 [°C]

Une chaudière est nécessaire lorsque la température de retour est supérieure à :

90 [°C] – 7 [°C] = 83 [°C]

Deux chaudières sont nécessaires lorsque la température de retour est comprise en 83 [°C] et :

90 [°C] – 7 [°C] – 7 [°C] = 76 [°C]

En dessous de 76 [°C], la troisième chaudière s’enclenche.

Si la température de départ du collecteur est régulée en fonction de la température extérieure, la consigne de retour à maintenir, varie également.

Notons qu’avec une régulation en cascade en fonction de la température de retour, en absence de besoin, la température circulant dans la boucle primaire sera égale à la température de retour (70°C). Par contre cette température sera égale à la température de départ (90°C) dans le cas d’une régulation en fonction de la température de départ, ce qui est plus défavorable d’un point de vue énergétique.

Régulation en fonction de la chaleur fournie

Il existe également des régulateurs de mise en cascade qui se basent sur la quantité de chaleur fournie aux utilisateurs, par exemple, en mesurant les temps de fonctionnement des brûleurs.

Les chaudières modulaires

Les chaudières sont quasiment raccordées en série : si la température demandée au départ du collecteur n’est pas atteinte, la deuxième chaudière est enclenchée (ouverture de la vanne d’isolement et mise en route du circulateur). L’eau préchauffée dans la première chaudière transite alors dans la deuxième chaudière.

On peut ainsi associer une série de chaudières sur un même collecteur.

Une des caractéristiques de ce système est que la température demandée au départ du collecteur est toujours inférieure à la température maximale des chaudières puisque l’eau chaude issue de (des) la chaudière(s) est en permanence mélangée avec une partie de l’eau froide issue des retours vers le collecteur.

Un fonctionnement correct de ce type d’installation est assez aléatoire. Il demande donc un dimensionnement minutieux des différentes parties.

Précautions

Idéalement, pour fonctionner correctement, une régulation en cascade des chaudières doit comprendre :

Isolation hydraulique des chaudières à l’arrêt

Le principal intérêt de la cascade repose sur l’élimination des pertes à l’arrêt des chaudières non nécessaires. Pour cela, l’irrigation de ces chaudières doit être stoppée au moyen d’une vanne d’isolement motorisée (2 ou 3 voies). Si chaque chaudière possède son propre circulateur de charge, l’arrêt de celui-ci n’est pas suffisant. En effet, il ne faut pas négliger le débit qui peut circuler au travers d’un circulateur à l’arrêt, du fait de la pression différentielle présente dans l’installation. Une vanne d’isolement motorisée ou un clapet anti-retour complémentaire est donc nécessaire.

L’arrêt de la circulation dans les chaudières à l’arrêt a également un intérêt au niveau du bon fonctionnement de l’installation. En effet, si on maintient « ouvertes » les chaudières à l’arrêt, de l’eau de retour transitent par celles-ci et puis se mélange à l’eau chaude de départ, ce qui perturbe la régulation puisque l’on n’atteint plus la température désirée.

Vannes d’isolement à ouverture lente

L’isolation hydraulique d’une chaudière à l’arrêt est la plupart du temps réalisée par une vanne motorisée d’isolement à 2 voies. Cette vanne est généralement à vitesse lente. A la mise en route, on évite ainsi un choc thermique dans une chaudière froide subitement alimentée par des retours chauds. De plus, quand la chaudière est froide, on évite d’injecter brutalement de l’eau froide dans l’installation.

Vanne d’isolement motorisée.

C’est la fin de course de la vanne d’isolement donne l’autorisation de mise en route du brûleur, ce qui permet :

  • à la chaudière de se réchauffer progressivement au contact de l’eau chaude de l’installation,
  • à une chaudière ne pouvant pas travailler en très basse température de démarrer sans condenser, puisque la température de l’eau au démarrage du brûleur sera déjà supérieure à 60°C.

Cette précaution n’est pas nécessaire pour certaines chaudières à forte capacité en eau (qui peuvent fonctionner à débit nul) avec lesquelles, il est possible de mettre la chaudière en température avant l’ouverture de la vanne.

Lorsque chaque chaudière possède sa pompe de charge, il est conseillé d’enclencher la pompe avant l’ouverture de la vanne d’isolement pour éviter une perturbation dans le réseau, consécutive à l’injection brutale du débit total de la chaudière.

Temporisation à l’enclenchement

Lors de la mise en service d’une chaudière, on ne peut quasiment pas éviter une baisse de température de l’eau d’alimentation des circuits, ce qui pose des problèmes pour le régulateur de la cascade. Celui-ci à tendance à compenser cette baisse de température par la mise en route d’une chaudière supplémentaire (qui aggravera encore plus la situation). Une temporisation adéquate doit être prévue, sinon on risque de voir s’enclencher inutilement plus de chaudières que nécessaire et faire ainsi chuter le rendement saisonnier de l’installation.

La temporisation de mise en marche des chaudières dépend de leur inertie thermique. Elle peut être réglée à :

  • 3 .. 10 minutes pour les chaudières peu inertes,
  • 10 .. 30 minutes pour une chaudière à forte capacité en eau.

Chaudière équipée d’un by-pass de recyclage maintenant une température de retour minimale vers la chaudière.

Dans le cas de chaudières équipées d’un by-pass de recyclage avec circulateur, on peut éviter ce problème en mettant en marche le brûleur de la chaudière et le circulateur avant l’ouverture de la vanne d’isolement. Lorsque la température de retour minimale pour la chaudière est atteinte, la vanne d’isolement commence à s’ouvrir. Ce fonctionnement évite un refroidissement brutal de la température d’alimentation des circuits et facilite le contrôle de la cascade en évitant les enclenchements intempestifs de chaudières. L’inconvénient est que, durant sa remontée en température, la chaudière passe par une courte période pendant laquelle elle condense, ce qui peut être préjudiciable à certaines chaudières fonctionnant au fuel.

Evacuation de la chaleur résiduelle de la chaudière

Lorsqu’une chaudière est mise hors circuit, la circulation d’eau est maintenue pendant le temps nécessaire au dégagement de la chaleur accumulée dans la chaudière. Ce temps de circulation varie entre 2 et 15 minutes selon l’inertie thermique de la chaudière. Généralement cette temporisation est assurée par la vanne motorisée d’isolement dont le temps de fermeture est d’environ 5 minutes, ce qui est parfois insuffisant, notamment pour les chaudières à forte inertie.

On peut aussi imaginer que la vanne ne se referme que lorsque la température mesurée à la sortie de la chaudière est égale à la température de retour commune. Attention, dans ce cas, il y aura, au départ du collecteur une chute progressive de la température de départ puisque celle-ci sera le résultat d’un mélange entre de l’eau en provenance de la chaudière en fonctionnement et de l’eau de retour transitant par la chaudière à l’arrêt. La temporisation à l’enclenchement des chaudières doit permettre tout redémarrage intempestif de la chaudière mise à l’arrêt.

Pour les chaudières de forte puissance, la vanne motorisée d’isolement peut être modulante et se fermer progressivement pour maintenir la température de sortie à une valeur choisie. Cela permet d’évacuer la chaleur accumulée dans la chaudière sans perturber la température d’alimentation du réseau.

Inversion de l’ordre de cascade

L’ordre d’enclenchement des chaudières dans la cascade peut être modifié pour assurer un nombre équivalent d’heures de fonctionnement de chaque chaudière (rem : la circulation est généralement maintenue permanente dans la première chaudière de la cascade).

L’inversion de l’ordre de cascade peut être modifié manuellement, à l’aide d’une horloge ou de façon cyclique par un module d’inversion automatique inclus dans le régulateur.

Les avantages de l’inversion sont :

  • la réduction de l’encrassement de la chaudière qui serait sollicitée en permanence,
  • la non-déterioration de la chaudière qui serait maintenue à l’arrêt durant une longue période.

Ce principe d’inversion ne prévaut cependant pas :

  • pour les chaufferies composées comprenant une chaudière traditionnelle et une chaudière à condensation. Cette dernière doit en permanence être prioritaire car elle présente toujours un meilleur rendement utile..
  • pour les chaufferies composées de chaudières de puissance différentes. Dans ce cas l’enclenchement des chaudières dépendra de l’ampleur des besoins à satisfaire.

Fonctionnement prioritaire en première allure

Lorsque l’on dispose de plusieurs chaudières équipées de brûleurs 2 allures, on a tout intérêt à favoriser l’ordre d’enclenchement suivant (par exemple, pour 2 chaudières) :

  • chaudière 1, allure 1
  • puis chaudière 2, allure 1
  • puis chaudière 1, allure 2
  • puis chaudière 2, allure 2

plutôt que :

  • chaudière 1, allure 1
  • puis chaudière 1, allure 2
  • puis chaudière 2, allure 1
  • puis chaudière 2, allure 2

En effet, la première solution augmente le temps de fonctionnement des brûleurs en première allure, allure qui présente un meilleur rendement de combustion (2 à 2,5 % de gain entre la première et la deuxième allure).

Commutation automatique en cas de défaut

Si une chaudière ne peut démarrer pour un défaut de son brûleur ou de sa pompe, l’appel automatique à une autre chaudière permet de ne pas interrompre le service.

Interdiction de fonctionnement d’une chaudière en fonction de la température extérieure

Cette fonction permet de ne pas appeler systématiquement toutes les chaudières au moment des remontées en température et d’éviter des démarrages de trop courte durée en mi-saison.

Par exemple, si à chaque relance, toutes les chaudières sont mises en route, les chaudières devenues inutiles en journée mettront un temps certain à se refroidir. Elles présenteront ainsi des pertes à l’arrêt qui se rapprocheront d’une installation dont toutes les chaudières sont en permanence irriguées.

Attention cependant quand l’installation comprend un optimiseur pour gérer le ralenti nocturne. En effet, celui-ci sera perturbé s’il compte sur une puissance constante à la relance.

Limitation basse de la puissance des brûleurs en première allure

Les fabricants de chaudières définissent, par rapport à chaque chaudière, une puissance minimale en dessous de laquelle un brûleur ne peut pas descendre. Cette puissance est généralement de 60% de la puissance nominale de la chaudière. La raison de cette exigence est d’éviter les risques de condensation des fumées. En effet plus la puissance de la flamme est petite par rapport à la surface d’échangeur, plus les fumées pourront se refroidir jusqu’à ce qu’elles atteignent leur température de condensation.

20-08-2008 : comparaison du contenu ok ! [sylvie]

Évaluer l’infrastructure et le respect de l’hygiène des mets

Évaluer l'infrastructure et le respect de l'hygiène des mets


Dispositions des locaux

La cuisine

Le plan de la cuisine indique l’emplacement des différents locaux les uns par rapport aux autres et le cheminement des matières premières et ingrédients durant le stockage, la préparation et la distribution des denrées alimentaires (= le principe de la marche en avant).
Le plan doit répondre aux exigences suivantes :

  • Il y a une séparation stricte entre les zones « sales » (telles que locaux d’entreposage, local de déballage, endroit pour nettoyer les légumes, local vide poubelles) et les zones « propres » (endroit pour préparer les plats froids et chauds). Les lignes « sales » et « propres » ne peuvent pas se croiser. C’est le principe de « la marche en avant« .
  • La cuisine se compose de locaux séparés pour nettoyer les légumes, préparer les plats froids, préparer les plats chauds et faire la vaisselle. Ces locaux sont disposés suivant le principe de la marche en avant.
  • La procédure de réception des marchandises, jusqu’à sa conclusion, doit être organisée de manière à ce que les fournisseurs n’entrent pas dans les locaux de préparation.

Par manque de place dans les cuisines, les erreurs suivantes peuvent se produire :

  • lignes « sales » et « propres » qui se croisent,
  • pas de séparation entre zones de travail « sales  » et « propres ».
    Exemple : le nettoyage des salades et la préparation d’une assiette froide se fait au même endroit.
    Exemple : découper du poulet cru sur une planche et ensuite sur la même planche découper des tomates sans avoir nettoyer et désinfecter la planche.

Les solutions définitives se traduisent en général par des modifications constructives, qui sont souvent de nature radicale et non réalisables dans l’immédiat. Dès lors, des mesures organisationnelles s’imposent afin d’améliorer provisoirement la situation, comme éviter le croisement des lignes « sale » et « propre » ou prendre des mesures préventives contre la contamination de la nourriture et/ou du matériel.

Ces mesures peuvent consister à :

  • Dissocier dans le temps les opérations « sales » et « propres », froides et chaudes par exemple en prévoyant une séparation nette entre le service des snacks froids et des boissons, le service des repas chauds, le nettoyage des légumes, le lavage du matériel et de la vaisselle sale, etc..
  • Prévoir une opération de nettoyage et de désinfection intermédiaire entre la fin du traitement des produits crus et le début du traitement des produits préparés.
  • Ne pas organiser l’approvisionnement des locaux d’entreposage pendant l’activité de préparation des aliments.
  • Toujours couvrir les produits préparés lors de leurs transport et conservation.

Le restaurant

La disposition du restaurant ou de la cantine doit être telle qu’elle permette de servir les repas de manière efficiente et hygiénique.

Le flux de retour de la vaisselle sale en provenance du restaurant ne peut pas transiter par la zone de délivrance des plats aux consommateurs et ne peut pas croiser la ligne de préparation des plats (« Contamination croisée« ).

Si cela s’avère impossible, il faut veiller à éviter la contamination croisée entre la vaisselle sale et les plats servis par dissociation dans le temps et par une opération de nettoyage.

La note horéca – « La ventilation dans l’horéca » du CSTC précise ce qui suit :

Si le restaurant ou la cafétéria a une superficie de plus de 50 m² et qu’il est autorisé d’y fumer, un emplacement distinct doit être réservé aux fumeurs. Cet emplacement ne peut s’élever à plus de la moitié de la superficie totale de l’endroit fermé. Cet emplacement ne doit pas spécialement être séparé matériellement du reste du lieu fermé, mais doit alors être indiqué par tous moyens permettant de le situer.

Un bon aménagement consiste à éviter que l’atmosphère enfumée ne soit entraînée vers la zone non-fumeurs. Étant donné que l’air se déplace d’une zone à haute pression vers une zone à basse pression, la zone fumeurs doit se trouver à l’endroit où la pression est la plus basse (près de l’endroit où l’air sort).

Remarque : ce dernier paragraphe ne fait pas directement partie de l’arrêté sur l’hygiène des denrées alimentaires. En effet, celui-ci donne des obligations de résultats et non de moyens. Les moyens sont par contre mieux précisés par les différents arrêtés sur la ventilation dans l’horéca.

Les installations sanitaires

Les toilettes ne peuvent en aucun cas avoir des portes ou des fenêtres qui communiquent directement avec les cuisines (il faut toujours qu’il y ait au moins 2 portes entre le WC et la cuisine à moins que ce WC soit très éloigné de la cuisine).

Stockage des déchets

Pour le stockage des déchets, un local séparé de l’endroit où l’on prépare les aliments doit être prévu. Les dispositifs de transport et de stockage des déchets doivent être conçus de manière à éviter toute contamination des denrées alimentaires et de l’eau potable.


Finition des locaux

Les exigences en matière de finition des locaux s’appliquent à tous les locaux où sont préparés et conservés des aliments.

Les sols

Les sols doivent être réalisés dans un matériau qui n’absorbe pas l’humidité, qui soit facile à nettoyer et antidérapant (à l’état sec et mouillé). On donnera la préférence à un sol sans joints (ou avec le moins de joints possible).

Jonction avec les égouts :

Les sols doivent être suffisamment inclinés afin que l’eau de rinçage et de nettoyage puisse s’écouler facilement vers les puisards, soit directement soit via des rigoles ouvertes. Les puisards doivent être munis d’un siphon et d’une grille amovible facile à nettoyer.

On vérifiera donc, lors du diagnostic, qu’il n’y a pas d’eau stagnante, ou que lors du nettoyage le sol est convenablement raclé, que les grilles du système d’évacuation sont propres, qu’il y a un panier permettant de récupérer les déchets.

Jonction avec les parois :

Il sera plus facile de nettoyer le sol si les plinthes à la jonction entre les murs et le sol sont arrondies (plinthes sanitaires).

Les parois

La finition des parois doit être telle qu’elles puissent être nettoyées facilement et qu’elles n’offrent pas d’endroits propices à l’accumulation de la saleté ou de refuges pour les animaux nuisibles :

  • Les parois doivent être dures, lisses et imperméables à l’eau, jusqu’à une hauteur convenable (il n’est donc pas toujours nécessaire de prévoir ce type de revêtement jusqu’au plafond).
  • On peut, par exemple, utiliser un hydrofuge dans le ciment de jointoyage pour rendre celui-ci imperméable à l’eau de condensation, à la vapeur et à l’eau de nettoyage.
  • La couleur des parois sera, de préférence, claire afin de voir la saleté.
  • En cas de carrelage, l’espace entre et derrière les carreaux doit être bien rempli afin de ne pas créer de milieux propices à la prolifération d’insectes nuisibles (entre autres les cafards).

Équipements fixés aux parois :

Les tuyaux de décharge et les canalisations sont, de préférence, enfouis dans le mur ou dans le sol. Si les canalisations sont fixées sur la paroi, la distance entre la canalisation et la paroi doit être suffisamment grande afin de pouvoir nettoyer la paroi derrière la canalisation.

Les portes, fenêtres, stores

Exigences concernant les portes :

  • Finition lisse et bon entretien.
  • De préférence à fermeture automatique et bien isolées (pas exigé par la législation).
  • Portes de communication, de préférence, sans boutons ni poignées pour éviter le dépôt de bactéries (pas exigé par la législation).

Exigences concernant les fenêtres :

  • Si les fenêtres peuvent s’ouvrir, elles doivent être munies de moustiquaires qui peuvent facilement être enlevées pour le nettoyage.
  • Elles doivent bien fermer.
  • Les tablettes intérieures seront, de préférence, en pente pour éviter qu’elles ne servent de surface de rangement (pas obligatoire).
  • Comme chacun le sait les rayons du soleil qui pénètrent par les fenêtres font remonter la température des locaux; c’est pourquoi, si l’on veut garder une température fraîche dans les locaux d’entreposage, il n’est pas judicieux de placer des fenêtres, à moins qu’elles ne soient situées au Nord. S’il y en a, elles seront calfeutrées. Si les rayons du soleil peuvent pénétrer à l’intérieur, il faut prévoir des stores. On évitera également d’installer dans ces locaux des stores intérieurs, comme des lamelles horizontales par exemple, parce qu’ils sont difficiles à nettoyer.

Les plafonds

Les plafonds doivent être conçus de manière à prévenir la condensation, afin d’empêcher le développement de moisissures et l’écaillage, et l’accumulation de la saleté. Ils doivent être faciles à nettoyer. L’angle entre la cloison et le plafond sera légèrement arrondi (pas exigé) afin que le nettoyage s’effectue sans encombre. Ils doivent être sans intervalle. En effet, les espaces entre les lamelles permettent à la crasse et aux insectes de s’accumuler de se développer et éventuellement de retomber par la suite dans les aliments.

Les petites modifications au niveau de la finition des locaux doivent être réalisées à court terme. Les carreaux et plinthes détachés, les grilles rouillées des puisards etc. doivent être immédiatement réparés ou remplacés. En effet, les carrelages cassés ou manquants au sol favorisent la stagnation de l’eau et de la crasse et permettent un développement des micro-organismes.

Si aucune modification ne peut être réalisée, il faut prendre des mesures provisoires, telles qu’accorder plus de soin et plus de temps au nettoyage.


Ventilation

Évaluer

Si vous désirez plus d’information concernant l’évaluation de la qualité de l’air.

La ventilation doit être suffisante pour éviter que la température augmente de manière exagérée dans les locaux, cette ventilation doit permettre d’évacuer les vapeurs de cuisson et d’éviter la formation de la condensation.
La direction du courant d’air ne peut aller d’une zone sale vers une zone propre.

Un système de ventilation artificiel doit satisfaire aux conditions suivantes :

  • La bouche de ventilation doit être munie d’une grille ou d’une autre protection en matériau anticorrosion.
  • Les filtres et autres parties de l’installation doivent être facilement accessibles pour les besoins d’entretien et de nettoyage.

Il est fortement conseillé d’installer au-dessus des appareils de cuisson une hotte qui aspire efficacement les vapeurs d’eau et de graisse. Il faut éviter que les condensats et la graisse ne retombent (Cette mesure n’est pas imposée par l’arrêté. En effet, ce dernier donne une obligation de résultats et non de moyens.).

Ventilation du restaurant

La note horéca – « La ventilation dans l’horéca » du CSTC qui explique les différentes lois sur la ventilation dans l’horéca, dit :

Dans tous les locaux où il est effectivement autorisé de fumer (y compris les locaux de moins de 50 m2), l’A.R. du 15 mai 1990 prescrit l’installation d’un système d’extraction des fumées ou d’un système d’aération. Le débit minimal d’air de ce système sera de : S x 15 (m³/h), avec S = superficie (en m²) de la zone de fumeurs. Si la partie fumeurs et celle de non-fumeurs ont une liaison directe, cette disposition est d’application à la superficie totale des lieux (A.M. du 9 janvier 1991). La surface comprend la superficie occupée par un comptoir ou un bar et la superficie de service à l’arrière de ceux-ci. Par contre la superficie des lieux non accessibles aux publics (cuisine, débarras) ainsi que la superficie des lieux intermédiaires, escaliers et autres qui ne sont normalement pas utilisés pour la consommation ne sont pas compris dans cette surface.

Néanmoins, selon le CSTC, la valeur de 15 m³/hxm² risque d’être trop faible et il vaut mieux également respecter les normes ASHRAE 62-89 qui préconisent un débit d’air dans une salle à manger de 36 m³/personne ce qui, avec une moyenne de 70 personnes par 100 m², correspond à un débit de 25 m³/hxm².

Si le système a une source d’air extérieur, il faut contrôler régulièrement que le passage de l’air n’est pas obstrué.

Le système de ventilation doit se trouver dans un bon état d’entretien. Les filtres doivent être contrôlés régulièrement et ils doivent être remplacés périodiquement conformément aux spécifications du fabricant.


Éclairage

Il est très important de disposer d’un bon éclairage sur toute l’étendue du local de travail.

Cet éclairage doit satisfaire aux exigences suivantes :

  • L’éclairage naturel ou artificiel doit être direct et ne peut projeter d’ombres sur le plan de travail.
  • Il faut un éclairement suffisant : 540 lux sur toutes les tables de travail, 220 lux dans les locaux de travail et 110 lux dans tous les autres locaux sont une bonne indication.

Évaluer

Si vous voulez savoir comment évaluer le niveau d’éclairement dans votre local (cas des bureaux).
  • Tous les dispositifs d’éclairage doivent être protégés de façon à éviter la pollution des denrées alimentaires en cas de bris de verre.

Évaluer

Si vous voulez savoir comment évaluer le rendu des couleurs de l’éclairage de votre local (cas des bureaux).

Eau potable

Les cuisines doivent être raccordées à l’alimentation en eau potable.

Il faut prévoir un système d’eau qui fasse suffisamment d’eau potable très chaude.

La glace doit être préparée avec de l’eau potable.

En ce qui concerne l’eau non potable, utilisée pour la production de vapeur, le refroidissement, l’extinction des incendies ou pour d’autres applications où aucun contact n’est possible avec les denrées alimentaires, les mesures suivantes doivent être prises :

  • alimentation via des canalisations à part, sans possibilité de reflux dans le réseau d’alimentation en eau potable,
  • apposition d’une inscription clairement visible: « eau non potable » (on peut, par exemple, utiliser des tuyaux de couleurs différentes ou apposer dessus des autocollants d’une couleur spécifique).

La vapeur utilisée en contact direct avec les denrées alimentaires ne peut contenir aucune substance susceptible de présenter un danger pour la santé ou de contaminer le produit.


Évacuation des eaux usées

Les installations doivent être équipées d’un système d’évacuation des eaux usées en bon ordre de marche. Il doit toujours être en bon état et être bien entretenu :

  • Toutes les conduites d’évacuation des eaux (y compris les égouts) doivent avoir suffisamment de capacité pour pouvoir faire face aux charges de pointe.
  • Elles doivent être conçues de manière à empêcher la pollution de l’eau potable.

Il ne doit donc jamais y avoir de l’eau stagnante.

Lors du diagnostic, on vérifiera donc qu’il n’y a pas d’eau stagnante et pas d’odeurs qui se dégagent par cet endroit.

La plupart des eaux usées évacuées sont chargées en graisse. Pour éviter de compromettre les chances d’épuration correcte, on place en général un dégraisseur à la sortie des cuisines.


Enceinte réfrigérée / réfrigérateur

Toutes les enceintes réfrigérées doivent être équipées de parois imperméables à l’eau.

Lors du diagnostic, l’étanchéité de l’enceinte sera vérifiée.

Le nombre d’enceintes réfrigérées doit être suffisant pour permettre un stockage séparé des produits (séparation des produits sales et propres et des produits crus et préparés).

La capacité du groupe frigorifique doit permettre d’atteindre une température de réfrigération de +4°C. (La réglementation sur les denrées à réfrigérer exige +7°C mais des denrées comme la viande hachée et le poisson frais se conservent nettement mieux à des températures plus basses : 2° à 0°C).

Toutes les enceintes réfrigérées doivent être équipées d’un thermomètre précis à 1°C près, placé au point le plus chaud de l’enceinte ou d’un autre dispositif d’enregistrement de la température (par exemple, système d’alarme automatique) (A.R. 04/02/1980).

Dans la réglementation française, les plats cuisinés à l’avance, après réfrigération, doivent être conservés dans une chambre spécifique dont la température est enregistrée en permanence (0 à 3°C). Les graphiques de température doivent être conservés durant un mois.
Les plats sont placés sur des chariots, paniers ou clayettes.

On privilégiera les périodes de stockage courtes.
Les aliments entrés les premiers dans le congélateur serviront les premiers à la consommation (gestion de stock FIFO (« first in, first out »))

Dans les petites cuisines qui ne disposent que d’une seule ou deux chambre(s) froide(s) et où il faut ranger tous les produits ensemble voici des propositions de rangement.

Chambre froide à 8°C

Étages supérieurs :

  • produits laitiers non stérilisés (ceux pour lesquels une température inférieure de stockage n’est pas requise),
  • semi-conserves.

Étagères intermédiaires :

  • fruits bruts.

Étagères inférieures :

  • légumes bruts,
  • œufs en coquille.

Chambre froide à température inférieure ou égale à + 3°C
Étagères supérieures :

  • pâtisseries,
  • plats cuisinés réfrigérés. Viandes précuites,
  • préparations froides prêtes à consommer.

Étagères intermédiaires : 

  • Charcuteries cuites et/ou séchées

Étagères inférieures :

  • denrées animales crues,
  • viandes de boucherie, volailles,
  • charcuteries crues.

Le tout est, de préférence, emballé.

Si on ne dispose que d’une chambre froide il faut bien évidemment qu’elle puisse assurer la température la plus basse.

Un manque d’espace d’entreposage réfrigéré peut être résolu de deux manières seulement :

  • extension des enceintes réfrigérées et acquisition de réfrigérateurs,
  • adapter la préparation aux capacités de stockage, privilégier les cycles de stockage courts (travailler avec le stock d’une journée, par exemple)

Enceinte de congélation / congélateur

Les produits surgelés achetés doivent être stockés dans une enceinte ou une armoire de congélation atteignant une température de congélation de -18°C ou moins. Les produits de même nature sont regroupés par zones. Toutes les enceintes de congélation doivent être dotées d’un thermomètre. Pour les enceintes de congélation supérieures à 10 m³, la loi impose un système d’enregistrement automatique de la température. Les enregistrements de la température ainsi obtenus doivent être datés et conservés pendant au moins 1 an (A.M. 28 01 1993).

On privilégiera également les périodes de stockage courtes.
Les aliments entrés les premiers dans le congélateur serviront les premiers à la consommation (gestion de stock FIFO (« first in, first out »)).

La capacité du congélateur (maintien d’une température de congélation de -18°C ou moins) doit être suffisante. En cas d’écart, une adaptation s’impose.

Un manque de capacité de stockage ne peut être comblé que par :

  • l’extension de l’enceinte de congélation,
  • ou en modifiant la fréquence d’achat.

Installations sanitaires, vestiaires et douches

Il faut prévoir suffisamment de toilettes. Il faut compter au moins 1 cabinet pour 15 travailleurs employés en même temps (voir RGPT – Art 96). Les toilettes doivent être équipées d’une chasse d’eau et être raccordées à un système d’évacuation efficace des eaux usées.

Les toilettes (tant pour le personnel que pour les clients), doivent être correctement éclairées et ventilées. La présence de lavabos est indispensable et leur nombre doit être suffisant. Il faut compter un lavabo pour quatre cabinets ou urinoirs (RGPT – Art.93).

Pour le personnel, il est conseillé de prévoir des vestiaires et des douches bien aérées.


Local de stockage pour les déchets

Les déchets et les restes d’aliments doivent être stockés dans des conteneurs à ordures qui ferment bien et qui sont disposés dans un local séparé, suffisamment éloigné des locaux d’entreposage et des cuisines.

La température dans les locaux où sont disposés ces conteneurs à ordures doit être maintenue aussi basse que possible (par exemple en la situant au nord plutôt qu’en plein soleil); il faut veiller à une bonne ventilation et à une protection efficace contre les insectes et les rongeurs.

Les conteneurs et le local même doivent être faciles à nettoyer et à désinfecter.


Armoire de rangement pour le matériel d’entretien

Pour les produits d’entretien et de désinfection et le matériel d’entretien, il faut prévoir un emplacement ou une armoire à part séparé des cuisines et du local d’entreposage.


Dispositifs pour l’hygiène des mains

Dans les cuisines, il est nécessaire de prévoir un (ou plusieurs) lavabo(s) réservé(s) au lavage des mains. Ces points d’eau sont alimentés, de préférence, avec de l’eau courante chaude et froide de qualité potable. Les lavabos sont équipés de robinets que l’on touche le moins possible (robinets commandés par le genou, le coude, à œil électrique, etc.).

Il est interdit de mettre une installation de séchage des mains par soufflage d’air dans les locaux où les denrées alimentaires ne sont pas emballées ou protégées. L’utilisation d’essuie-mains communs est également défendue.

Les mêmes dispositifs doivent être prévus dans les toilettes (tant pour les clients que pour le personnel).

S’il n’y a pas de lavabo spécifique pour le lavage des mains dans les cuisines, il faut en prévoir un. Une solution provisoire consiste à aménager un évier en lavabo qui sera exclusivement utilisé pour l’hygiène des mains.


Appareils

La directive CE sur les machines (89/392/CEE) stipule que les nouvelles machines servant à la préparation et à la transformation des denrées alimentaires doivent être conçues et réalisées de manière à éviter tout risque de contamination. Les nouvelles machines qui satisfont à cette directive doivent porter le label de conformité CE (Conformité européenne).

Les appareils doivent répondre aux critères ci-dessous :

  • Pour les nouveaux appareils, le label de conformité CE est requis,
  • Fabriqués dans un matériau facile à nettoyer et à désinfecter,
  • La conception et la construction doivent permettre un nettoyage et une désinfection simples et rigoureux : différentes parties faciles à démonter, pas d’angles ni de bords coupants ou inaccessibles, …
  • Fonctionnement doit être impeccable et efficace,
  • Pour les appareils de cuisson et de production de froid : atteindre les températures réglées,
  • Les matériels de refroidissement et réchauffage et conservation doivent avoir un isolement suffisant permettant un maintien de la température à court des produits lors de l’ouverture des portes ou du retrait temporaire de la source de chaleur ou de froid,
  • L’ensemble du matériel doit être capable de traiter les volumes fabriqués dans l’établissement

De plus, l’établissement devra contrôler l’engagement du fournisseur sur l’aptitude du matériel à répondre aux exigences spécifiées.

Pour faciliter le nettoyage les appareils sont posés directement sur le sol ou respectent une surélévation libre d’au moins 15 cm ou encore sont mobiles. De même, les appareils sont scellés au mur ou respectent un espace d’au moins 20 cm entre l’appareil et le mur ou entre chaque appareil afin de pouvoir nettoyer efficacement entre et derrière les appareils.

En cas d’écart par rapport aux exigences fixées pour les appareils, les mesures à prendre dépendent de leur état. Les mesures provisoires permettant d’éviter la contamination des aliments consistent à :

  • Accorder plus de soin et plus de temps au nettoyage.
  • Modifier l’organisation de la préparation des plats.

Appareils de distribution

En cas de buffet, il faut prévoir les appareils nécessaires pour maintenir les plats froids et chauds à la bonne température, tels que bains-marie qui permettent de garder les plats chauds à une température supérieure à 65°C et réfrigérateurs/comptoirs frigorifiques pour les plats froids.

Choisir le vecteur énergétique

Photo cuisinière gaz.
Photo cuisinière électrique.

Une cuisine professionnelle est obligatoirement électrique pour une partie de ces équipements :

  • la conservation par le froid,
  • la ventilation,
  • l’éclairage.

Le choix d’une seconde énergie se pose au niveau de la cuisson (et de la laverie). Ce choix se fait en fonction de plusieurs critères :


La disponibilité

La vapeur

Certaines institutions disposent déjà d’un circuit vapeur basse pression (0,3 bar par exemple) pour une ancienne cuisine ou haute pression (3 bar par exemple) pour le chauffage. Malgré l’attrait énergétique de la vapeur, elle est de moins en moins utilisée.

Le gaz

Dans certaines parties de la région wallonne, le gaz de ville n’est pas distribué. Dans ce cas, il est possible d’utiliser les gaz de pétrole liquéfié (propane et butane), mais ce gaz revient plus cher que le gaz de ville et présentent des dangers de par sa manutention.

D’autre part, le gaz peut être disponible (à la rue) mais pas distribué dans le bâtiment. Il faut alors prévoir des coûts d’installation supplémentaires pour les conduites, le compteur et le détendeur.

L’électricité

L’électricité est toujours disponible, mais dans certains cas, la puissance disponible n’est pas suffisante au réaménagement de la cuisine. Dans ce cas, l’utilisation du gaz ou de la vapeur, si ces énergies sont disponibles, permet d’éviter le remplacement du transformateur.


Les coûts d’utilisation et les coûts d’investissement

Le coût global sur la durée de vie des appareils comporte les composantes suivantes :

  • les coûts d’investissement des appareils,
  • les coûts d’installation,
  • les coûts énergétiques,
  • les coûts d’entretien.

Ces différentes composantes sont variables selon que les appareils fonctionnent à l’électricité ou au gaz :

Les coûts d’investissement des appareils

Les appareils au gaz sont en général de 10 à 15 % plus chers que les appareils à l’électricité.

Les coûts d’installation

Ils sont plus importants pour les installations au gaz que pour celles à l’électricité.

En effet, les réglementations à respecter sont relativement lourdes.

Les installations aux gaz doivent respecter la norme NBN D51-003 relative aux « Installations alimentées en gaz combustible plus léger que l’air distribué par canalisation », ainsi que le cahier des charges de l’ARGB sur l’aération des grandes cuisines équipées d’appareils au gaz naturel.

Remarque : pour les gaz de pétrole liquéfié (les LPG), il n’y a pas d’équivalent normatif à la NBN D51-003. En l’absence de norme, il faut se référer, pour les règles de bonnes pratiques, au guide édité par FEBUPRO (la FEdération du BUtane et du PROpane) pour l’installateur et le revendeur de LPG.

Le dossier technique sur les installations alimentées en gaz combustible plus léger que l’air, distribué par canalisations de l’ARGB dit : « Lorsque l’évacuation de l’air du local est assuré par une ventilation mécanique (par exemple par la hotte de cuisine), les dispositions sont prises afin d’empêcher que la dépression créée dans le local ne perturbe le fonctionnement correct d’un appareil (ou des appareils) installé(s) dans ce local… » Or, les règles de bonne pratique veulent que les débits à introduire égalent 90 % des débits extraits de manière à maintenir une légère dépression dans les locaux où l’air est extrait pour empêcher la propagation des polluants vers les autres locaux.

Les appareils de cuisson au gaz dans les cuisines collectives sont, en général, pourvus d’une sortie pour les gaz brûlés (= appareils de type B). Ainsi, pour respecter la réglementation ci-dessus, cette sortie doit être raccordée à un conduit d’évacuation menant à une cheminée qui mène les gaz jusqu’à l’extérieur du bâtiment via un extracteur.

Remarque : on rencontre beaucoup de cuisines où cette réglementation n’est pas respectée. Les coûts de l’installation au gaz deviennent trop importants et la cuisine au gaz ne peut plus rivaliser avec la cuisine électrique…, disent les personnes qui ne respectent pas cette réglementation…!

Il existe encore d’autres réglementations à respecter (ex. : détection de fuite de gaz reliée à une alarme, ouverture de la vanne gaz liée au fonctionnement de la hotte (France), … ) que nous n’avons pas pu toutes répertorier ici.

Les coûts énergétiques

Les coûts liés à l’énergie dépendent du rendement des appareils et du coût du kWh.

Le rendement des appareils au gaz est en pleine évolution. Actuellement pour certains nouveaux équipements, le rendement des appareils au gaz est quasi équivalent à celui des appareils électriques.

Quant au coût de l’énergie, le coût du kWh électrique est en général plus élevé que celui du gaz. Mais ça n’est pas toujours le cas : heures creuses (liaison froide), cogénération, … Le coût du kWh est donc à calculer en fonction de votre situation.

Cogénération 

Si vous voulez en savoir plus sur la cogénération, cliquez ici  !

Le coût du kWh gaz varie également en fonction des consommations et du temps. À titre indicatif, en février 2001, 1 m3 de gaz valait 0,3 à 0,325 € pour le tarif ND3. (1 m3 de gaz équivaut à environ 10 kWh).

Les coûts d’entretien

Les appareils au gaz demandent un entretien plus important que les appareils à l’électricité. Cependant, il semblerait que certains grossistes proposent des contrats d’entretien après vente qui ne sont pas plus chers pour les appareils au gaz que pour les appareils électriques.

La comparaison des coûts de revient entre une installation au gaz ou à l’électricité se fait donc en comparant les différents coûts ci-dessus en fonction de ses propres tarifs et des devis remis par les grossistes, les installateurs et les firmes de maintenance des appareils.

Quant aux appareils à la vapeur, nous n’avons pas de détails quant aux différentes composantes du coût. Mais l’utilisation de la vapeur pour les appareils de cuisine (marmites, lave-vaisselle, etc.) n’est apparemment intéressante que si l’on dispose déjà d’une installation de vapeur.

Il faut, dans ce cas, veiller à ce que l’installation soit en bon état. En effet, ces installations sont souvent âgées et présentent des fuites.


Le besoin de garder une cuisine fonctionnelle même en cas de panne électrique

Si la cuisine doit être fonctionnelle même en cas de panne de courant (ce qui est très rare) et que l’on ne dispose pas d’un groupe de sécurité, on choisira le gaz, pour une partie au moins, des appareils.

Dans ce cas, il faudra veiller à ce que les sécurités présentes sur les appareils soient mécaniques (elles sont souvent électriques).


Les goûts et habitudes du chef-coq

Certains chefs coq préfèrent cuisiner au gaz plutôt qu’à l’électricité …

Choisir le pare-vapeur pour la toiture à versants

Schéma technique sur le pare-vapeur.

  1. Lattes
  2. Contre-lattes
  3. Sous-toiture
  4. Isolant
  5. Charpente
  6. Pare-vapeur
  7. Finition du plafond

Pourquoi faut-il un pare-vapeur ?

À l’intérieur des locaux, il y a toujours production de vapeur (par les occupants, par les plantes, par le nettoyage, etc.). La pression partielle de vapeur intérieure est donc toujours supérieure à celle présente à l’extérieur. Ainsi la vapeur d’eau va migrer vers l’extérieur au travers de la toiture.

Vu que la résistance à le diffusion de vapeur de certains isolants (laines minérales, par exemple) est très faible par rapport à celle de la sous-toiture, la pression de vapeur du côté inférieur de celle-ci est quasi identique à la pression de vapeur intérieure; elle est donc relativement élevée. Or, après avoir traversé l’isolant, cette vapeur d’eau va rencontrer une paroi froide. Il y a donc un grand risque de condensation interne d’abord sur la face inférieure de la sous-toiture, et ensuite dans l’isolant.

Schéma sur le principe de condensation interne.

Le pare-vapeur, placé du côté intérieur de l’isolant, va, grâce à sa grande résistance à la diffusion de vapeur, diminuer la pression de vapeur du côté froid de l’isolant. Ainsi l’air en contact avec la paroi froide que constitue la sous-toiture est déjà fortement déchargé de sa charge de vapeur. Il n’y a plus de risque de condensation.

Exemple.

Sans pare-vapeur :

Schéma technique sans pare-vapeur.

Avec pare-vapeur :  

Schéma technique avec pare-vapeur.

P.S. : les diagrammes ne tiennent pas compte de la couche d’air (peu influente) en  dessous des tuiles.

calculs

Si vous voulez vous-même évaluer la présence de condensation interne dans une toiture, cliquez ici !

Faut-il toujours un pare-vapeur ?

Non, pas toujours, car :

Schéma sur le principe de condensation.Schéma sur le principe de condensation.

La vapeur qui passe par un joint non rebouché
entre 2 plaques de gyproc est … 100 … 1 000 fois plus importante
que la vapeur qui traverse la plaque elle-même.

Il est donc toujours intéressant de prévoir un écran étanche à l’air.

Si le passage de canalisation est nécessaire, celles-ci passeront dans un vide technique aménagé entre un écran étanche à l’air et la finition intérieure.


Quel pare-vapeur choisir ?

Classe du pare-vapeur

Le choix de la classe du pare-vapeur se fait en fonction :

  • du type d’isolant (plus ou moins perméable à la vapeur),
  • du type de sous-toiture,
  • du matériau de couverture,
  • du climat intérieur des locaux.

Lorsque l’isolant offre une résistance suffisante à la diffusion de vapeur, le pare-vapeur n’est pas nécessaire à condition que les joints soient étanches à l’air.

Lorsqu’on utilise un isolant perméable à la vapeur (laines minérales) ou des isolants étanches à l’air, sans être certain de la qualité des joints, on applique les prescriptions du tableau ci-dessous.

Sous-toiture Classe de climat intérieur Tuiles Ardoises Bardeaux bitumés sur voliges Tôles ondulées
Terre cuite Béton Métal Naturelles Synthétiques
Aucune I /
II, III E1 E1 E1 /
Capillaire I /
II, III /
Non capillaire en bandes I /
II, III E1 E1 E1 E1 E1 / E1
Non caplillaire continue I
II, III E2 E2 E2 E2 E2 E2 E2
Eléments de toiture isolants* I
II, III E1 E1 E1 E1 E1 E2 E1
IV A examiner au cas par cas. Il importe cependant d’assurer une étanchéité à l’air parfaite. La pose d’un support et d’un E3 sur les chevrons est généralement nécessaire. Une isolation sous les chevrons laissant un vide entre l’isolant et la sous-toiture ne convient pas.

(/) : non applicable.
(-) : un écran d’étanchéité à l’air suffit
(*) : la qualité de l’écran pare-vapeur des éléments préfabriqués de toiture est normalement de niveau E1 ou supérieure.

Source : Toitures en tuiles plates – Conception et mise en œuvre – NIT 186 du CSCT – Décembre 1992 – tableau 17 pg. 60.

Forme

Le pare-vapeur peut être :

  • intégrés aux panneaux préfabriqués,
  • incorporé à la finition,
  • fixé aux laines minérales,
  • indépendant.

Conseils de mise en œuvre

> Le pare-vapeur doit être placé sur toute la surface de la toiture sans oublier les éventuelles parties verticales, ossature-bois et lucarnes.

> Il faut bien fermer les joints entre les plaques, les panneaux ou les feuilles souples (selon le cas).

  • Dans le cas de plaques de finition avec pare-vapeur intégré, la fermeture des joints est assurée par :1. l’injection d’un silicone,
    2. la pose d’un enduit de finition.

    Pare-vapeur, conseil de mise en oeuvre 01.

    1. Panne.
    2. Pare-vapeur.
    3. Chevrons.
    4. Finition en plâtre.
    5. Fermeture du pare-vapeur avec une injection de silicone.
    6. Fermeture du joint entre panneaux avec un enduit de finition.

Remarque : les joints entre les plaques de finition et les pannes sont réalisés de la même manière.

  • Dans le cas d’une laine minérale munie d’un pare-vapeur, la pose de celui-ci se fait en même temps que celle de l’isolant.
  • Dans le cas d’un pare-vapeur posé indépendamment sous l’isolant, celui-ci est d’abord agrafé sur la partie inférieure des chevrons, des fermes ou des contre-chevrons.Entre deux lés, on prévoit un recouvrement de 50 mm minimum rendu étanche à l’air et la vapeur au moyen d’un ruban adhésif simple ou double face ou d’une latte de serrage.

Ruban adhésif.

Latte de serrage.

Les joints d’un pare-vapeur en matériau bitumineux sont collés ou soudés.

> Il faut soigner les raccords du pare-vapeur avec la maçonnerie, la charpente et les châssis :

  • soit en comprimant le pare-vapeur entre un joint souple et une latte, le tout cloué ou vissé;
  • soit au moyen d’un ruban adhésif double face adhérant parfaitement au bois et à la maçonnerie;
  • soit au moyen d’un joint de silicone (uniquement entre pare-vapeur et charpente). Ce joint sera éventuellement caché par la finition.

Pare-vapeur, conseil de mise en oeuvre 02.

Joint silicone.

  1. Panne.
  2. Chevron.
  3. Pare-vapeur.
  4. Contre-latte.
  5. Sous-toiture.
  6. Latte.
  7. Couverture.
  8. Joint-colle.

Pare-vapeur, conseil de mise en oeuvre 03.

Joint souple + latte fixée.

  1. Pare-vapeur.
  2. Latte.
  3. Joint souple.

> Il faut veiller à ne pas perforer le pare-vapeur :

  • Les canalisations (eau, électricité, …) sont, si nécessaire, logées dans un vide technique obtenu, par exemple, par la pose d’un lattage entre le pare-vapeur et la finition intérieure. La création de ce vide permet, en plus, le cas échéant, de rectifier la planéité de la finition. Celle-ci est couramment réalisée à l’aide de matériaux plans assez rigides : planches rainurées languettées (bois, MDF, PVC…), panneaux bois, plaques de plâtre (rejointoyées ou enduites).

Pare-vapeur, conseil de mise en oeuvre 04.

  1. Finition du plafond.
  2. VIDE TECHNIQUE.
  3. Lattes.
  4. Pare-vapeur.
  5. Isolants.
  6. Isolants.
  7. Contre-lattes.
  8. Lattes.
  9. Couverture.
  • Le pare-vapeur doit rester continu derrière les éléments encastrés dans la finition (spots, prises de courant, interrupteurs, points d’arrivée d’eau, …).
  • Pour les spots, la chaleur produite peut dégrader les matières sensibles tels que les mousses synthétiques, les feuilles de polyéthylène (PE), … et provoquer des incendies. Il faut donc soit choisir des matériaux pouvant résister à ces températures, soit les protéger en interposant un écran adéquat.

> Si l’on superpose deux couches d’isolant, il ne peut y avoir de pare-vapeur entre les deux couches.

Pare-vapeur, conseil de mise en oeuvre 05.

  1. Première couche d’isolant.
  2. Deuxième couche d’isolant.
  3. Pare-vapeur.

Choisir l’implantation de la zone froide [Concevoir – Froid alimentaire]

Une part de l’énergie frigorifique va servir à refroidir (et donc assécher) l’air extérieur jusqu’à la température de consigne des meubles frigorifiques, de la chambre froide, des ateliers de boucherie, …

Cette part d’énergie peut être élevée dans l’ensemble du bilan frigorifique si cet air est chaud et humide.

Ainsi, dans un projet de conception ou de rénovation conséquent, il sera important de respecter une certaine hiérarchisation des priorités :

  • L’implantation des zones « froide » par rapport au contexte externe (l’orientation du bâtiment, présence d’autres bâtiments ou pas , milieu rural ou urbain, ..).

 

  • L’implantation des zones « froide » par rapport au contexte interne (présence d’apports internes tels que fours, rôtissoires, … à proximité directe des chambres froides, des ateliers de boucherie, des meubles frigorifiques, …).

 

  • Le confinement des zones « froide » par rapport aux zones adjacentes (chambre fermée, chambre semi-fermée, meuble frigorifique ouvert, …).

Contexte externe

L’implantation des zones « froide » dans le commerce par rapport à l’orientation du bâtiment est primordiale dans le sens où on peut maîtriser l’impact des apports solaires de façon plus simple. Par la même occasion, on pourra placer, dans les limites de faisabilité (autorisations urbanistiques, voisinage, …), les condenseurs côté nord. Le placement des condenseurs sous abri de préférence le long des façades nord permet de naturellement lui procurer de l’ombre.

Condenseur à l’ombre d’une façade (orientation nord).

Contexte interne

L’implantation des zones « froide » dans le commerce par rapport aux zones dites « chaudes » doit être prise en compte. L’influence directe des zones, l’une par rapport à l’autre, risque de compromettre le bilan énergétique par une destruction de l’énergie (on chauffe et on refroidit en même temps dans la même zone). Il faut donc, dans la mesure du possible, éloigner les sources chaudes des zones froides.

Confinement

Les zones non accessibles au public

Même si les zones froides sont bien positionnées par rapport à l’environnement externe et interne, il va de soi que leur confinement est impératif et permet de réduire de manière appréciable les besoins frigorifiques. L’idéal réside dans le choix d’une isolation performante des parois délimitant la zone « froide » par rapport aux autres zones de vente dites « chaudes ».

Le confinement des zones non accessibles au public peut être facilement obtenu sachant que :

  • la conception des parois « sandwich » est maîtrisée par les fabricants;
  • les accès entre les zones (réserve générale et chambre froide par exemple) peuvent être contrôlés efficacement par des portes étanches munies de joints performants et gérés par des alarmes.

Sécurité de porte de chambre frigorifique.

Si cela ne gêne pas l’utilisation, une zone tampon ou un sas avec des portes-va-et-vient peut être créé devant les portes des frigos pour disposer d’un espace qui aurait une température moyenne et une humidité relative plus basses.

Exemple.

Soit une chambre froide négative de dimensions intérieures : L = 4 m, l = 4 m, h = 3 m.
L’air intérieur a les caractéristiques suivantes : t° = -18°C, HR = 50 %.
La chambre est « sollicitée » pendant 8 h/jours.
Il y a 10 interventions par heure; pendant chacune d’elle, la porte est laissée ouverte pendant 10 secondes.

L’air extérieur a les caractéristiques suivantes : t° = 35°C, HR = 90 %.

Avec cette utilisation, il y a un renouvellement de 15,7 volumes par jour. L’énergie nécessaire pour refroidir et assécher l’air par les ouvertures de portes est de 40,5 kWh par jour (pendant la période d’utilisation).

Avec une meilleure implantation, l’air extérieur a les caractéristiques suivantes : t° = 22°C, HR = 50 %.

Avec cette utilisation, il y a un renouvellement de 12 volumes par jour. L’énergie nécessaire pour refroidir et assécher l’air par les ouvertures de portes est de 13,4 kWh par jour (pendant la période d’utilisation).

Soit une économie de (40,5 – 13,4) = 27,1 kWh/jour.

Avec un COP global moyen de 2,5 et un prix moyen de 0,11 € du kWh, cela représente une économie de (27,1 [kWh] / 2,5) x 0,11 [€] x 260  [jours], soit 342 € par an pour une seule chambre froide.

À cela, il faut ajouter le gain d’énergie électrique pour les dégivrages (environ 6,3 kWh).

Les zones accessibles au public

Il n’en va pas de même pour les zones accessibles aux clients (comme les self-services dans les superettes, les super et hypermarchés). On tentera de minimiser les échanges de chaleur entre les zones « froides » et « chaudes » par le confinement.

Le confinement idéal des denrées alimentaires, tant au niveau thermique qu’énergétique, s’impose de lui-même :

  • par l’adaptation du concept de chambre frigorifique au grand public (parois isolées);
  • par la réduction des échanges thermiques au niveau des accès.

Il va de soi que le confinement se réalise au détriment du confort des clients.

« Quoique ? Une petite laine ne ferait-elle pas l’affaire en été »?

   

  • Meuble frigorifique ouvert.
  • Confinement et isolation légère (double vitrage).

Confinement et isolation importante (enceinte opaque).

Rentabilité de l’isolation d’une paroi

Rentabilité de l'isolation d'une paroi

Attention !
L’évaluation ci-dessous est applicable à d’anciens bâtiments non climatisés. Elle n’est pas valable pour des bâtiments neufs bien isolés et climatisés.

Calculs

Si vous voulez accéder à un programme de calcul qui effectue les calculs ci-dessous.

Évaluation de l’économie énergétique annuelle engendrée par l’isolation d’une paroi en contact avec l’extérieur

Principe de base

On détermine une température moyenne intérieure et une température moyenne extérieure pour la saison de chauffe.

La quantité de chaleur traversant 1 m² de paroi donnée est alors estimée avant et après isolation.

L’économie d’énergie annuelle par unité de surface de déperdition est la différence entre les 2 pertes de chaleur durant la saison de chauffe.

Économie d’énergie annuelle

L’économie d’énergie annuelle =
((ΔU x S x ΔTm) / η) x durée de chauffe 

Avec :

  • S = la surface de la paroi; elle est fixée à 1 m²
  • Tm = Tint. moy. – Text. moy. = écart entre les températures moyennes intérieures et extérieures
  • η = rendement global de l’installation de chauffage

Détaillons quelques paramètres :

Le coefficient de transmission thermique de la paroi

Les valeurs des coefficients de transmission thermiques ont été calculées pour certaines parois types. Elles ont été calculées de manière plus complète dans l’ouvrage : « Parois courantes : catalogue de coefficients k’ de la Région wallonne » – Aménagement du territoire, Logement, Patrimoine et Énergie (DGO4).

La température intérieure moyenne du bâtiment (Tint moy.)

Tint. moy. = Température moyenne des locaux en journée – réduction pour les coupures de nuit et de week-end – réduction pour les apports gratuits.

Les valeurs que l’on peut considérer pour les coupures
(nuits, W.E., congés scolaires) sont données dans le tableau suivant :

Type de bâtiment : Réduction (°C)
Hôpitaux, homes, maisons de soins 0°C
Immeuble d’habitation avec réduction nocturne 1,5°C
Bâtiment administratif, bureaux 3°C
École avec cours du soir 4,5°C
École sans cours du soir et de faible inertie 6°C

La réduction pour les apports gratuits (équipements internes, personnes, soleil, …) est estimée en moyenne entre 2 et 3°C.

Cette réduction doit être adaptée en fonction des caractéristiques physiques du bâtiment : elle doit être augmentée si l’inertie et l’isolation sont fortes, si les apports internes sont grands (ordinateur, éclairage, occupation, …) et diminuée si le bâtiment est peu vitré, par exemple.

 La température extérieure moyenne (Text. moy.)

C’est la température extérieure moyenne, durant la saison de chauffe. Le tableau ci-dessous donne sa valeur équivalente entre le 15 septembre et le 15 mai pour quelques endroits de notre région :

Région

Text. moy.

Uccle 6,5°C
Hastière 5,5°C
Libramont 3,5°C
Mons 6°C
Saint Vith 2,7°C

La durée de chauffe

La durée de la saison de chauffe peut être uniformisée du 15 septembre au 15 mai, soit 242 jours, soit 5 800 heures. Les températures extérieures moyennes ci-dessus sont calculées fictivement en considérant que la saison de chauffe est partout de 242 jours.

Tout se passe donc comme si…

Tout se passe donc comme si durant 242 jours la température de Uccle est de 6,5°C; que la température intérieure d’un bureau (maintenu à 20°C durant la journée) est en permanence de 14°C (20°C – 3°C – 3°C). La différence de température est donc de (14°C – 6,5°C), soit 7,5°C.

Rendement global de l’installation de chauffage

La notion de rendement global d’une installation de chauffage traduit son efficacité énergétique.

Le rendement représente le pourcentage d’énergie consommée qui est réellement utile au confort des occupants, le complément de consommation servant à compenser les pertes au niveau de la production, de la distribution, de l’émission et de la régulation.

Des ordres de grandeur de ce rendement peuvent être donnés en fonction du type de chaudière et de l’installation ainsi que de sa régulation.

Exemple.

Un m² de mur de briques pleines de 29 cm (U = 2,3 W/m² K) constitue la paroi d’un local de bureau chauffé à 20°C à Uccle. Le mur est isolé avec 6 cm de laine minérale (U = 0,5 W/m² K). Le rendement global de l’installation de chauffage est évalué à 70 %.

L’économie d’énergie annuelle

= (ΔU x S x ΔTm x durée de chauffe) / 0,7

= [(2,3 – 0,5) x 1 x [(20 – 3 – 3) – 6,5)] x 5 800 h] / 0,7

= (1,8 x 7,5 x 5 800) / 0,7

= 111 857 Wh

= 112 kWh

Sachant qu’1 m³ de gaz équivaut énergétiquement à 1 litre de mazout et à 10 kWh,

L’économie d’énergie annuelle par m²

= 11,2 litres de mazout ou 11,2 m³ de gaz.


Évaluation de la rentabilité d’une isolation de paroi en contact avec l’extérieur

Pour évaluer la rentabilité financière de l’isolation d’une paroi, on met en balance, d’une part le gain annuel financier provenant des économies d’énergie suite à l’isolation, d’autre part, le coût de revient de cette amélioration. Ce calcul est simplifié : il ne tient pas compte du manque à gagner de l’argent dépensé pour payer la rénovation qui aurait pu être placé en banque.

Exemple : évaluation de la rentabilité de l’isolation du mur de l’exemple

ci-dessus.

Lorsqu’on isole 1 m² de mur, l’économie annuelle est de 11,2 litres de gasoil. Avec un prix du gasoil de 0,8 € par litre, l’économie financière annuelle est de 9 €.

Si l’on estime le coût d’une isolation de mur par l’extérieur à 62 à 75 € par m², le temps de retour est de 7 à 8 ans.

La rentabilité peut être améliorée par des subventions.
Elle est augmentée largement si le bâtiment est situé en Ardenne (Text. moy.plus basse) ou si le chauffage est plus continu (cas des hôpitaux, des piscines, des homes où la tint moy. est plus élevée).

Indépendamment des aspects budgétaires, le confort thermique sera amélioré dans les locaux, du point de vue environnemental, les rejets de gaz polluants seront diminués… ce qui ne se chiffre pas financièrement…!

Calculs

Si vous voulez accéder à un programme de calcul qui effectue les calculs ci-dessus pour votre propre situation.

Dimensionner le chauffage électrique

Dimensionner le chauffage électrique


Appareils de chauffage direct

Pour un appareil de chauffage direct, le dimensionnement est relativement simple : la puissance de chauffe P (kW) doit être au moins égale aux déperditions calorifiques Pn, déperditions normalisées calculées suivant la NBN B62-003.

On prévoit un léger surdimensionnement pour pouvoir atteindre plus rapidement la température de confort lors de la mise en température : P = 1,1 à 1,5 Pn, à moduler d’après le type de local. Par exemple : living 10 %, chambre à coucher 20 %, salle de bains 50 %.

Ce surdimensionnement n’entraîne que peu de conséquences énergétiques si la régulation de l’appareil est suffisamment précise et rapide.


Appareils de chauffage à accumulation

Un dimensionnement en puissance et en capacité de stockage.

Le dimensionnement présente un double aspect :

  • d’une part, il faut déterminer la puissance électrique des résistances Pe,
  • d’autre part, il faut choisir un noyau accumulateur capable d’accumuler et de restituer l’énergie calorifique Q nécessaire au cours de 24 heures.

Cette fois, le surdimensionnement de l’appareil peut porter à conséquence puisqu’une charge de nuit excessive entraînera des pertes par les parois supplémentaires. Sauf si une régulation précise limite cette charge. Le surdimensionnement entraîne alors seulement un investissement inutile.

Les besoins énergétiques Q [kWh] sont déterminés à partir des déperditions calorifiques du local, diminuées des gains thermiques gratuits provenant des apports énergétiques internes ou externes (éclairage, machines, soleil, … ). Pour un local du type « séjour », on démontrera plus loin que Q = 20 x Pn, [kWh].

La puissance électrique théorique des résistances PE [kW] doit être suffisante pour produire l’énergie requise Q en tenant compte du nombre d’heures de charge disponibles de nuit comme de jour : Q = PEx t (t = durée totale de charge).

La taille du noyau doit être adaptée à la quantité de chaleur à accumuler par cycle de 24 h et à la demande de chaleur (puissance calorifique à délivrer en fonction du schéma horaire de charge et de décharge de l’appareil).
En pratique, le dimensionnement des accumulateurs se fera de préférence suivant la méthode décrite dans la norme CEI, Publication 531, appendice B. Cette méthode est basée directement sur les mesures de performance d’accumulateurs décrites dans la même norme et effectuées au calorimètre.

Nous en reprenons ci-dessous la logique, car elle est suivie par les installateurs électriciens.

A. Informations préliminaires, comme données de base des calculs

  1. L’utilisateur donne un profil quotidien de la demande de chaleur.
  2. Les déperditions nettes résultantes Pr sont calculées comme égales à la Puissance normalisée Pn (suivant la NBN B62-003) diminuée des gains thermiques gratuits Pg.
  3. Le programme Journalier de charge est donné par le distributeur d’électricité.
  4. Le constructeur des appareils donne les caractéristiques de réponse de ses appareils (P)

B. Méthode de calcul

1. Profil journalier de la température du local concerné

Exemple pour le secteur de l’hébergement :

Diagramme de la température journalière.

2. Calcul de la demande de chaleur journalière

Les déperditions nettes résultantes Pr sont calculées comme égales à la Puissance normalisée Pn (suivant la NBN B62-003) diminuée des gains thermiques gratuits Pg

Exemple : Pn = 1 000 W, Pr = Pn – Pg

Demande de chaleur journalière.

A tout instant, la puissance de restitution P de l’appareil doit au moins être égale à Pr. Dans l’exemple, le cas le plus défavorable a été examiné, c-à-d. en supposant des gains thermiques Pg = 0 pendant la journée (d’où une puissance de chauffe P = 1 kW). Pendant la nuit, le facteur d’abaissement de Pr est de 0,56, dû aux diminutions des déperditions par abaissement de la température, fermeture des rideaux, stores, etc. ainsi que par diminution du taux de ventilation.

Du graphique de demande de chaleur, résulte la quantité totale journalière Q requise pour chauffer le local :

Q = Qjour + Qnuit = 15 [h] x Pn + 9 [h] x 0,56 x Pn

Q = 15 [h] x 1 [kW] + 9 [h] x 0,56 [kW]

Q = 20 kWh ou Q = 20 [h] x Pn

On parlera d’une durée nominale de chauffe tn égale à 20 heures.

Remarques

  • La valeur de 0,56 est arbitraire, elle arrondit simplement les calculs et d’obtenir un stockage égal à 20 h de fonctionnement à la puissance nominale (c.-à-d. la puissance par – 10°C extérieurs).
  • Le même raisonnement, appliqué au secteur tertiaire (bureaux) génère un stockage égal à 18 heures de puissance nominale (TN = 18 h).
  • Le choix d’annuler les gains gratuits de la journée va surdimensionner l’appareil.
  • Pour un local présentant des déperditions calorifiques de 1 000 W par une température extérieure de – 10°C et une température intérieure de 20°C, tout en tenant compte de 5 K de chaleur gratuite (base des calculs de consommation par la méthode des degrés-jours 15/15), Q se calcule comme suit :

Q = 24 [h] x 1 [kW] x ((20 – 5) – (- 10) / (20 – (10))

Q = 20 kWh

3. Diagramme journalier de charge ou de mise à disposition de l’alimentation des accumulateurs

Supposons les indices suivants :

  • 1 = tarif de nuit
  • 2 = tarif jour hors-pointes
  • 0 = pas de charge autorisée

Appelons :

  • durée totale nuit = t1
  • durée totale jour hors-pointes = t2

> Exemple 1 : 9 heures de charges (accumulation classique).

Accumulation classique.

> Exemple 2 : 8 h + 1 h de charges (accumulation classique avec relance).

Accumulation classique avec relance.

> Exemple 3 : 7 h + 9 h de charges (accumulation hors-pointes).

Accumulation hors-pointes.

4. Calcul de la puissance électrique théorique des résistances PE

PE = Q / (t1 + t2)

Pour l’exemple 1 : Pe1 = 20 kWh / 9 h = 2,22 kW
Pour l’exemple 2 : Pe2 = 20 kWh / 9 h = 2,22 kW
Pour l’exemple 3 : Pe3 = 20 kWh / 16 h = 1,25 kW

5. Détermination du facteur accumulateur fs

Pour comprendre ce que signifie ce facteur accumulateur, partons d’un cas imaginaire : le noyau se charge totalement, puis se décharge pendant 20 heures (hébergement) ou 18 heures (bureaux). La capacité d’accumulation devrait être égale à Q.

En réalité, la charge se fait en parallèle avec la décharge : à peine l’accumulateur monte en température, que déjà il se décharge partiellement par ses parois. En pratique, il ne devra donc stocker qu’une fraction de Q. Cette fraction est appelée FS.

Notre appareil imaginaire avait un FS = 1 et un appareil direct aura un FS = 0, puisqu’il se décharge aussi vite qu’il se charge.

Les facteurs accumulateurs standard en Belgique sont déterminés par les distributeurs d’énergie électrique :

  • exclusif nuit (9 h de charge) –> FS = 0,75
  • exclusif nuit + relance diurne (8 h + 1 h de charge) –> FS = 0,67
  • trihoraire (7 h + 9 h de charge hors pointe) –> FS = 0,35

6. Sélection de l’appareil dans le catalogue des fournisseurs

Le constructeur donne la réponse de ses appareils, pour un facteur accumulateur et un type de noyau donnés.

Exemple 1 : Accumulation classique 9 h (FS = 0,75)

Type de Noyau Résistance Pr [kW] Puissance normalisée couverte Pn,
si TN = 18 h
Puissance normalisée couverte Pn,
si TN = 20 h

A

2 1,0 0,9

B

3 1,5 1,35

C

4 2,0 1,8

Exemple 2 : Accumulation hors-pointes 7 h + 9 h (FS = 0,35)

Type de Noyau Résistance Pr [kW] Puissance normalisée couverte Pn,
si TN = 18 h
Puissance normalisée couverte Pn,
si TN = 20 h

A

1,3 1,15 1,05
1,6 1,30 1,20

B

1,8 1,60 1,44
2,4 2,10 2,07

C

2,7 2,40 2,16
3,2 2,75 2,45

Application : supposons que le local à chauffer présente des déperditions Pn (parois + ventilation) calculée à 1,15 kW. Il s’agit d’une occupation permanente (hébergement) donc TN = 20 h.

En raccordement exclusif nuit, l’appareil choisi sera un noyau de type B, équipé d’une puissance électrique réelle de 3 kW.

En raccordement hors-pointes, l’appareil choisi sera un noyau de type A, équipé d’une puissance électrique réelle de 1,6 kW.


Accumulation dans le sol

Le chauffage par accumulation électrique de nuit dans le sol nous paraît tellement inadapté dans la construction d’aujourd’hui qu’il ne nous paraît pas utile d’en décrire ici le dimensionnement.

Nous renvoyons cependant le lecteur intéressé à l’ouvrage cité ci-dessous, qui décrit très précisément la méthode de dimensionnement.
(Source : d’après « Le code de bonne pratique pour la réalisation des installations de chauffage électrique » – Communauté de l’Electricité – CEG).

Choisir la protection extérieure

En fonction du type de toiture

Toiture inversée

Les parties courantes

La couche isolante d’une toiture inversée est actuellement réalisée uniquement à l’aide de mousse de polystyrène extrudé. Ce matériau ne résiste pas au rayonnement ultraviolet, en outre, il doit être lesté pour éviter son soulèvement sous l’effet du vent ou par flottaison.

Les seules protections qui conviennent dans ce cas sont donc les protections lourdes :

Les remontées d’étanchéité en rives

Remontées d'étanchéité en rives.

Lorsque la membrane d’étanchéité utilisée doit être protégée des rayonnements UV (voir plus loin), les remontées d’étanchéité qui ne peuvent être protégées par la protection lourde doivent l’être par une protection légère.

Toiture chaude

Les parties courantes

Tous les systèmes de protection sont possibles pour les toitures chaudes.

Le choix de la protection ne dépendra plus que de la nature de l’étanchéité et de la force portante du support.

Si le support le permet, on préférera une protection lourde qui protège mieux la membrane des chocs thermiques, à cause de l’inertie thermique de la protection, et dispense d’accrocher l’étanchéité.

Si le support ne le permet pas, on se contentera d’une protection légère.

Les remontées d’étanchéité en rives

lorsque la membrane d’étanchéité utilisée doit être protégée des rayonnements UV, les remontées d’étanchéité qui ne peuvent être protégées par la protection lourde doivent l’être par une protection légère.


La pente de la toiture

Les protections légères peuvent être appliquées quelle que soit la pente de la toiture.

Les protections lourdes ne conviennent que pour les toitures relativement horizontales, ainsi :

  • lorsque la pente de la toiture dépasse 5 %, la membrane ne peut être protégée par du gravier,
  • lorsque la pente de la toiture dépasse 10 %, la membrane ne peut être protégée par des dalles.

La nature de la membrane d’étanchéité

En fonction de leur nature, les membranes d’étanchéité devront ou pas être protégées des rayonnements solaires.

Membranes bitumineuses

S’il s’agit d’une membrane à base de bitume SBS une protection contre les rayons UV est indispensable, ce qui n’est pas le cas avec une membrane à base de bitume APP.
Une protection des membranes APP est cependant nécessaire lorsque les évacuations d’eaux pluviales situées en aval sont métalliques pour éviter leur oxydation (oxydation des accessoires de toiture).
La protection légère est généralement constituée de paillettes d’ardoise appliquées en usine. Elle peut également être assurée par une couche de peinture compatible avec la membrane.
Plus rarement, la membrane est revêtue d’une feuille de cuivre ou d’aluminium.

Membranes synthétiques

La majorité des membranes synthétiques offrent une résistance suffisante aux rayons UV et aux chocs thermiques.
Seules les membranes en PVC, doivent être stabilisées aux UV lorsqu’elles risquent d’être exposées à ceux-ci.
Attention ! Le lestage en gravier ralentit l’évacuation de l’eau pluviale et peut devenir un foyer de micro-organismes qui favorisent le vieillissement de certains PVC.

En fonction de la capacité portante du support

Seule une toiture dont la capacité portante est suffisante pourra supporter une protection lourde. Sinon seule une protection légère peut convenir.

Exemples de poids de lestage :


En fonction de l’utilisation de la toiture

Toiture inaccessible sauf pour l’entretien

Lorsque la toiture n’est pas prévue pour la circulation des piétons ou des véhicules, la protection de l’étanchéité peut être légère ou lourde.

Toiture accessible pour la circulation piétonne

Ces toitures doivent être capables de supporter la charge d’utilisation, et la protection circulable.

Celle-ci sera du type protection lourde : carrelage sur chape, dalles sur plots, dalles drainantes, pavage sur gravillon, asphalte coulé ou revêtement drainant pour terrain de sport.
L’étanchéité peut également être recouverte d’un plancher ou d’un caillebotis en bois. Il ne s’agit pas d’une protection lourde. Elle ne fait pas office de lestage de l’étanchéité. Celle-ci doit donc être fixée en conséquence.

Toiture carrossable

Ces toitures doivent supporter la charge de circulation, et la protection carrossable.

Celle-ci sera du type protection lourde.

Les dalles sur plots de grand format, l’asphalte coulé et les enrobés hydrocarbonnés admettent une circulation légère.

Les pavements sur asphalte coulé permettent la circulation de camions légers.

Seules les dalles fractionnées en béton armé permettent le charroi lourd.

Toitures jardins

Pour des raisons esthétiques, la protection de l’étanchéité et son accrochage peuvent être assurées par des plantations et leur substrat.

On sera attentif à plusieurs aspects :

  • La force portante du support doit être suffisante. Un jardin de toiture peut peser de 25 à 200 kg/m² voire plus dans certains cas de végétation intensive.
  • L’étanchéité doit être protégée mécaniquement des coups de bêche accidentels.
  • La membrane d’étanchéité doit être conçue pour résister aux racines.
  • La réserve d’eau doit être suffisante pour être capable d’assurer l’alimentation des plantes choisies.
  • L’épaisseur de terre doit être adaptée aux plantes choisies.
Thermographie

Améliorer les corps de chauffe

Thermographie

Thermographie de 2 façades.
A gauche avec les radiateurs devant les allèges non isolées
et à droite devant une allège isolée.

Isoler les allèges derrière les radiateurs

La perte de chaleur à travers une paroi extérieure est multipliée par 2 si elle se trouve derrière un radiateur. On a donc intérêt à augmenter l’isolation de cette partie de paroi. Si la place le permet (il faut laisser un espace de 3 cm entre le radiateur et la paroi), il est recommandé de coller sur la face intérieure une plaque isolante de 2 cm d’épaisseur, recouverte d’une feuille d’aluminium.

Exemple.

Reprenons l’exemple suivant :

Avec la présence du radiateur, une allège composée d’un mur plein de 24 cm (ancienne construction) perd sur la saison de chauffe (pour 1 m² de paroi) :

2,6 [W/m²K] x 1 [m²] x (24 [°C] – 6 [°C]) x 5 800 [h/an] / 0,7
= 388 [kWh/an] ou 39 [litres fuel ou m³ gaz/an]

où :

  • 2,6 [W/m²K] = le coefficient de transmission thermique (k ou U) du mur de brique non isolé
  • 24 [°C] = température moyenne intérieure au dos du radiateur durant la saison de chauffe
  • 6 [°C] = température moyenne extérieure durant la saison de chauffe (région de Mons)
  • 5 800 [h/an] = durée de la saison de chauffe
  • 0,7 = le rendement global de l’installation de chauffage existante

Si on place un isolant de 0,5 cm recouvert d’une feuille d’aluminium au dos du radiateur (collé au mur), le coefficient de transmission thermique (k) du mur passe à 1,4 W/m²K et la perte devient :

1,4 [W/m²K] x 1 [m²] x (24 [°C] – 6 [°C]) x 5 800 [h/an] / 0,7 = 208 [kWh/an]

L’économie est donc de 180 kWh/m².an (environ 18 litres de fuel par m² ou 4 €/an), ce qui rentabilise rapidement l’investissement consenti (environ 3 €/m²).

Exemple.

Il est très intéressant de supprimer les allèges vitrées
(surtout ici constituées de simples vitrages) par des panneaux opaques isolants.


Diminuer la température des chauffages à air chaud

Les corps de chauffe favorisant le transfert de chaleur par convection (bouche d’air chaud, convecteur, ventilo-convecteur, aérotherme, …) provoquent une stratification des températures (principalement dans les locaux de grande hauteur) et surchauffent ainsi inutilement la partie haute du local. Cette stratification est d’autant plus importante que la température de l’air et donc de l’eau d’alimentation du système est importante.

On a donc tout intérêt à diminuer au maximum la température de l’eau alimentant les convecteurs ou les batteries d’air chaud. Avec une limite : ne pas créer d’inconfort par courant d’air trop frais.


Dégager les corps de chauffe

Tous les éléments enveloppant un corps de chauffe (tablettes, alcôves décoratives, livres ou vêtements que l’on dépose sur les radiateurs, tentures recouvrant les corps de chauffe) sont des entraves à l’émission de chaleur. En soi, cette entrave ne provoque pas une consommation complémentaire mais risque de conduire à un inconfort.

Évaluer

Pour en savoir plus sur l’inconfort lié aux émetteurs.

Si cet inconfort pousse les gestionnaires à augmenter la température de l’eau de l’installation et peut-être à surchauffer certaines zones du bâtiment, cela va évidemment à l’encontre de l’efficacité énergétique.

Mais où se trouve le corps de chauffe…?

On a donc toujours intérêt à éliminer tous les obstacles présents sur les corps de chauffe.

L’émission d’un radiateur ne sera guère altérée si les dimensions des niches suivantes sont respectées :

Dimension minimales à respecter pour les cache-radiateurs :
3 [cm] < a1 < 5 [cm]
a2 > 2 [cm]
10 [cm] < b1 = c1
b2 = c3 = p et
6 [cm] < b2 = c3 = p < 12 [cm]
c2 = h


Placer des déstratificateurs

Dans les ateliers de grandes hauteurs, des ventilateurs de déstratification peuvent être placés pour renvoyer l’air chaud vers le bas et homogénéiser la température du local.

Ouille, ça est haut, chef !

–> le chauffage des radiateurs monte en toiture…

…d’où l’usage d’un ventilateur de déstratification.

Check-list pour une installation [Ventilation URE]

Voici un résumé des points essentiels qui garantissent une installation de ventilation énergétiquement efficace et confortable.

On sera attentif à 3 aspects du projet :

Paramètres de dimensionnement

Exigences

Pour en savoir plus

Le débit d’air doit correspondre aux exigences des réglementations en vigueur (ni plus, ni moins).

Concevoir

Idéalement, les pertes de charge du réseau de distribution double flux ne doivent pas dépasser 900 Pa (recommandation SIA pour les installations très performantes).

Concevoir

La vitesse de l’air dans les conduits doit être limitée pour limiter les pertes de charge et la production acoustique.

Concevoir

Le niveau acoustique dans les locaux ne doit pas dépasser (grand standing/moyen/minimal):

Concevoir


Choix de matériel

Exigences

Pour en savoir plus

Tout bâtiment neuf doit comporter un dispositif de ventilation avec au minimum des amenées d’air neuf naturelles ou mécaniques dans les locaux de travail et une extraction d’air vicié dans les sanitaires (ventilation simple ou double flux).

Concevoir

Idéalement, une pulsion d’air neuf doit être accompagnée d’un préchauffage (T° de 12 .. 16°C), pour éviter les risques de courant d’air et les risques de condensation sur les conduits et d’une humidification en hiver.

Concevoir

Le debit nominal des amenées d’air doit correspondre aux réglementations pour une différence de pression de 2 Pa.

Concevoir

Pour éviter les risques de courant d’air, les grilles d’amenées d’air naturelles doivent comporter un système autoréglable maintenant le débit dans une plage acceptable.

Concevoir

Pour éviter les courants d’air, les grilles d’amenées d’air naturelles doivent être disposées à plus de 1,8 m de haut et de préférence au-dessus d’un corps de chauffe.

Concevoir

Le coefficient k des grilles d’amenées d’air en position fermée ne doit guère dépasser 3 W/m²K.

Concevoir

Dans les ambiances extérieures bruyantes, des grilles d’amenées d’air naturelles peuvent être équipées d’une isolation accoustique.

Concevoir

Pour assurer un balayage correct de locaux, des dispositifs de transfert (grilles ou détalonnage des portes) doivent être prévus entre les locaux nécessitant un apport d’air neuf et les locaux d’où l’air est évacué.

Concevoir

Pour éviter les risques de courant d’air, les bouches de pulsion doivent être choisies telles que :

En résumé

Grandeurs à respecter

Où ? Combien ?
Débit zone d’occupation selon les besoins
Puissance acoustique au niveau de la bouche max : 45 dB(A)
Vitesse de l’air zone d’occupation
(à 1,8 m de haut)
max : 0,2 m/s
le long des murs
(à 1,8 m de haut)
max : 0,4 m/s
Écart de température dans l’air ambiant zone d’occupation max : + 1,5°C
(chauffage)
zone d’occupation max : – 1°C
(en refroidissement)

Concevoir

Les entrées et les sorties d’air doivent être disposées de manière à garantir un balayage correct des locaux et l’évacuation des polluants.

Concevoir

Si les bouches de pulsion peuvent être fermées (automatiquement par détection de présence ou manuellement par les occupants), un système d’autoréglage des débits doit être prévu sur chacune des bouches.

Concevoir

Aucune perturbation ne doit être prévue aux abords des bouches (registre, coude, …) sous peine d’une production acoustique importante.

Concevoir

Les ventilateurs à aubes recourbées vers l’arrière sont en général à privilégier. Les ventilateurs à aubes recourbées vers l’avant ne sont permis que pour des débits inférieurs à 5 000 m³/h.

Concevoir

Le ventilateur choisi doit avoir le rendement maximum au point de fonctionnement.

Exigences du cahier des charges 105 :

Puissance utile Rendement minimum
> 7,5 kW 80 %
7,5 kW >  > 3,5 kW 75 %
3,5 kW >  > 2 kW 70 %

 

Concevoir

Le ventilateur choisi doit avoir une pression dynamique minimum au point de fonctionnement.

Exigences du cahier des charges 105 :

Type de ventilateur % de pression dynamique max par rapport à la pression totale
centrifuge à aubes inclinées vers l’avant 20 %
centrifuge à aubes inclinées vers l’arrière 10 %

Concevoir

L’entraînement direct des ventilateurs avec convertisseur de fréquence présente moins de perte que l’entraînement par courroies.

Concevoir

Dans le cas d’un entraînement par courroies, il faut choisir les poulies les plus grandes possibles ou augmenter le rendement de transmission.

Concevoir

Pour des puissances inférieures à 1 kW, les moteurs à courant continu ont de meilleurs rendements que les moteurs asynchrones.

Concevoir

Pour limiter les pertes de charge, la section du raccord entre le ventilateur et le réseau doit être comprise entre 87,5 % et 107,5 % de la section de sortie du ventilateur et l’angle du raccord ne peut dépasser 15° pour un convergent et 7° pour un divergent. La pièce de transformation doit être placée à une distance du ventilateur supérieure à deux fois le diamètre de sa roue.

Concevoir

Le réseau de distribution doit être dessiné pour en diminuer la longeur et donc pour limiter la hauteur manométrique du ventilateur : préférer les branches parallèles au réseau en série.

Concevoir

Le réseau ne peut comporter de brusques changements de section ou de direction. Des aubes directrices peuvent être disposées dans les coudes présents dans le local technique.

Concevoir

Les conduits circulaires avec joints aux raccords sont préférables aux conduits rectangulaires (meilleure étanchéité, facilité de placement, pertes de charge moindres).

Concevoir

La vitesse de l’air au niveau des batteries doit rester dans une plage allant de 2 à 4 m/s.

Concevoir

Les conduits ne doivent pas passer à travers des locaux à haut niveau sonore.

Concevoir

Des tresses de laine minérale ou un mastic à élasticité permanente doivent être placés entre les conduits et les murs ou planchers traversés pour limiter la transmission acoustique.

Concevoir

Des fixations souples (couche élastique en Néoprène, par exemple) sont requises autour du caisson de traitement et pour le conduit principal.

Concevoir

Un filtre à poches (à partir de 85 % OPA (F7)) placé sur l’entrée d’air neuf est nécessaire et suffisant.

Concevoir

La perte de charge initiale des filtres ne doit pas dépasser 90 Pa pour un filtre F6 et 120 Pa pour un filtre F7.

Concevoir

Le filtre à poches choisi devra avoir le média filtrant le plus épais possible.

Concevoir

L’étanchéité du pourtour des filtres doit être soignée.

Concevoir

Les filtres doivent être faciles d’accès pour l’entretien.

Concevoir

Un manomètre différentiel doit mesurer en permanence la perte de charge des filtres et fournir une alarme si celle-ci dépasse la pression recommandée par le fabricant. Un affichage à proximité du filtre doit reprendre les données telles que type de filtre, pertes de charge initiale et finale, date du dernier remplacement …

Concevoir

Les prises d’air et les rejets d’air extérieurs doivent respecter une série de conditions quant à leur emplacement pour garantir la qualité de l’air neuf et éviter les gênes pour le voisinage.

Concevoir

Le préchauffage de l’air se fera de préférence au moyen d’une batterie à eau chaude et non d’une batterie électrique.

Concevoir

Un récupérateur sur l’air extrait est à conseillé d’un point de vue énergétique. De préférence (si possible) : un échangeur à plaque pour les petits débits (.. 5 000 .. m³/h), un échangeur rotatif pour les grands débits (.. 20 000 .. m³/h).

Concevoir

La régulation du récupérateur en mi-saison (surchauffe) et en hiver (givre) doit se faire de façon modulante pour maximaliser les temps de récupération.

   Concevoir 


Systèmes de commande

Exigence

Pour en savoir plus

Dans les bâtiments à horaire de travail fixe, la ventilation doit être coupée par une horloge en période d’inoccupation (maintien d’un débit minimum dans les sanitaires).

Concevoir

Dans les salles de réunion ou de conférence à taux d’occupation variable et ventilation double flux indépendante, une sonde CO2 peut gérer la vitesse du ventilateur en fonction de l’occupation.

Concevoir

Dans des bâtiments avec des locaux à occupation variable, la ventilation peut être liée à un détecteur de présence dans chaque local.

Concevoir

Dimensionner un réseau de ventilation

Dimensionner un réseau de ventilation

Le dimensionnement d’un réseau de ventilation consiste à calculer le diamètre de chaque conduit et d’en déduire la hauteur manométrique à fournir par le ventilateur.


Exemple de base

Les différentes méthodes de dimensionnement seront appliquées ci-après à l’exemple de réseau de distribution suivant :

Le débit à fournir par le ventilateur est de 12 600 m³/h. Il se répartit en 5 bouches de pulsion :

Bouche Débit pulsé
Bouche a 3 600 [m³/h]
Bouche b 1 800 [m³/h]
Bouche c 1 800 [m³/h]
Bouche d 3 600 [m³/h]
Bouche e 1 800 [m³/h]

Pour pulser le débit souhaité, les bouches doivent être alimentées sous une pression de 50 Pa.


Méthode des pertes de charge constantes par branche

Cette méthode consiste à fixer la perte de charge linéaire dans la branche du réseau la plus résistante (a priori, la plus longue), par exemple à une valeur de 1 Pa/m (valeur courante de compromis entre les problèmes acoustiques liés à une vitesse trop élevée de l’air et l’investissement lié à la taille des conduits). Ensuite, en partant de la bouche la plus défavorisée, on égalise la perte de charge de chacune des branches parallèles, ce qui permet d’en déterminer le diamètre. On obtient ainsi en final un réseau directement équilibré.

Suivant des tables reprises dans la littérature, les accidents de parcours (coudes, changements de section, tés, bifurcations, …) sont assimilés à une longueur de conduite équivalente, c’est-à-dire ayant la même perte de charge.

En reprenant l’exemple de base :

Tronçon E-a

On fixe dans ce tronçon la perte de charge linéaire à 1 Pa/m. Connaissant la longueur des conduits et la longueur équivalente des accidents, on déduit immédiatement la perte de charge du tronçon. Ensuite, connaissant la perte de charge linéaire et le débit véhiculé par un tronçon, on peut immédiatement calculer sa section en fonction du débit, en se référant aux abaques couramment rencontrés dans la littérature (fonction de la forme du conduit et de sa composition).

L’exemple est ici donné pour des conduits circulaires. Il est semblable pour des conduites rectangulaires.

Tronçon

Débit

q

Longueur

Dp lin

Dp

Σ Dp

Diam

Vitesse

[m³/h]

[m³/s]

[m]

[Pa/m]

[Pa]

[Pa]

[mm]

[m/s]

E-F 12 600 3,5 1 1 1 1
F-G 12 600 3,5 2 1 2 3 710 8,85
G 12 600 3,5 7 1 7 10 710 8,85
G-H 12 600 3,5 3 1 3 13 710 8,85
H 12 600 3,5 7 1 7 20 710 8,85
H-I 12 600 3,5 4 1 4 24 710 8,85
I 12 600 3,5 7 1 7 31 710 8,85
I-J 5 400 1,5 8 1 8 39 506 7,47
J 5 400 1,5 5 1 5 44 506 7,47
J-K 5 400 1,5 1 1 1 45 506 7,47
K 5 400 1,5 5 1 5 50 506 7,47
K-L 3 600 1 9 1 9 59 430 6,89
L 3 600 1 4 1 4 63 430 6,89
L-a 3 600 1 2 1 2 65 430 6,89
a 3 600 1 (50) 115

Tronçon K-b

En E, la pression est de 115 Pa. En K, elle est de 115 – 45 = 70 Pa.

Pour que le réseau soit équilibré, la perte de charge du tronçon K-b doit être identique à la perte de charge du tronçon K-a, à savoir 70 – 50 = 20 Pa

La longueur du tronçon K-b est de 9 m, à laquelle vient s’ajouter la longueur équivalente du coude (6 m), ce qui donne une longueur de 15 m pour une perte de charge de 20 Pa, soit une perte de charge linéaire de 1,33 Pa

On en déduit comme pour le tronçon précédent le diamètre des conduits en fonction du débit véhiculé.

Tronçon

Débit

q

Longueur

Dp lin

Dp

Σ Dp

Diam

Vitesse

[m³/h]

[m³/s]

[m]

[Pa/m]

[Pa]

[Pa]

[mm]

[m/s]

K-M 1 800 0,5 7 1,33 9 9 308 6,73
M 1 800 0,5 6 1,33 8 17 308 6,73
M-b 1 800 0,5 2 1,33 3 20 308 6,73
b 1 800 0,5 (50) 70

Tronçon I-c

En I, la pression est de 115 – 31 = 84 Pa.

Pour que le réseau soit équilibré, la perte de charge du tronçon I-c doit être identique à la perte de charge du tronçon K-a, à savoir 84 – 50 = 34 Pa.

Le tronçon I-c comporte 13 m de section droite et 25 m de longueur équivalente due aux coudes et changement de section, ce qui donne une longueur de 38 m pour une perte de charge de 34 Pa, soit une perte de charge linéaire de 0,97 Pa On en déduit comme pour les tronçons précédents le diamètre des conduits en fonction du débit.

Tronçon

Débit

q

Longueur

Dp lin

Dp

Σ Dp

Diam

Vitesse

[m³/h]

[m³/s]

[m]

[Pa/m]

[Pa]

[Pa]

[mm]

[m/s]

I-N 7 200 2 2 0,97 2 2 571 7,82
N 7 200 2 6 0,97 6 8 571 7,82
N-O 7 200 2 1 0,97 1 9 571 7,82
O 7 200 2 6 0,97 6 15 571 7,82
O-P 7 200 2 3 0,97 3 17 571 7,82
P 7 200 2 4 0,97 4 21 571 7,82
P-Q 3 600 1 3 0,97 3 24 433 6,81
Q 1 800 0,5 3 0,97 3 27 328 5,93
Q-R 1 800 0,5 3 0,97 3 30 328 5,93
R 1 800 0,5 3 0,97 3 33 328 5,93
R-c 1 800 0,5 1 0,97 1 34 328 5,93
c 1 800 0,5 (50) 84

Tronçon P-e

En P, la pression est de 84 – 22 = 62 Pa.

Pour que le réseau soit équilibré, la perte de charge du tronçon PE doit être identique à la perte de charge du tronçon P-c, à savoir 62 – 50 = 12 Pa.

Le tronçon PE comporte 6 m de section droite et 4 m de longueur équivalente due au coude, ce qui donne une longueur de 10 m pour une perte de charge de 12 Pa. La perte de charge linéaire est donc de 1,26 Pa.

Tronçon

Débit

q

Longueur

Dp lin

Dp

Σ Dp

Diam

Vitesse

[m³/h]

[m³/s]

[m]

[Pa/m]

[Pa]

[Pa]

[mm]

[m/s]

P-S 3 600 1 5 1,26 6 6 410 7,56
S 3 600 1 4 1,26 5 11 410 7,56
S-e 3 600 1 1 1,26 1 13 410 7,56
e 3 600 1 50 63

Tronçon Q-d

En Q, la perte de charge du tronçon Q-d doit être identique à la perte de charge du tronçon Q-c, à savoir 10 PA Le tronçon PE comporte 1 m de section droite et 3 m de longueur équivalente due au piquage, ce qui donne une longueur de 4 m pour une perte de charge de 10 Pa, soit une perte de charge linéaire de 2,43 Pa.

Tronçon

Débit

q

Longueur

Dp lin

Dp

Σ Dp

Diam

Vitesse

[m³/h]

[m³/s]

[m]

[Pa/m]

[Pa]

[Pa]

[mm]

[m/s]

Q 1 800 0,5 3 2,43 7 7 273 8,55
Q-d 1 800 0,5 1 2,43 2 10 273 8,55
d 1 800 0,5 50 60

Tronçon A-E

La pression nécessaire au niveau de la prise d’air extérieure est de 40 Pa La perte de charge du filtre est de 45 Pa (modification de section comprise). On se fixe dans ce premier tronçon une perte de charge de 0,5 Pa/m.

Tronçon

Débit

q

Longueur

Dp lin

Dp

Σ Dp

Diam

Vitesse

[m³/h]

[m³/s]

[m]

[Pa/m]

[Pa]

[Pa]

[mm]

[m/s]

A 12 600 3,5 (40) 40
A-B 12 600 3,5 4 0,5 2 42 815 6,70
B 12 600 3,5 8 0,5 4 46 815 6,70
B-C 12 600 3,5 2 0,5 1 47 815 6,70
C-D 12 600 3,5 (45) 92
D-E 12 600 3,5 (0,5) 92,5

Dimensionnement du ventilateur

Le ventilateur doit donc fournir un débit de 12 600 m³/h, avec une pression de 115 + 92,5 = 207,5 Pa


Méthode de la vitesse constante dans la branche la plus résistante

Plutôt que de se fixer une perte de charge linéaire constante dans le tronçon le plus défavorisé (E-a), on peut y fixer une vitesse (exemple : 6,5 m/s).

Puisque l’on connaît la vitesse dans ce tronçon, on peut calculer automatiquement les sections et les diamètres des conduits en fonction du débit véhiculé puisque :

Section = Débit / Vitesse

La perte de charge de chaque section est alors déterminée par des abaques en fonction du type de conduit choisi.

Une fois que l’on a déterminé les sections du premier tronçon, les sections et les pertes de charge de chaque tronçon sont calculées comme dans la méthode précédente.


Méthode des pertes de charge linéaires ou des vitesses dans toutes les branches

Pour simplifier le calcul, on peut également fixer soit la perte de charge linéaire, soit la vitesse dans l’entièreté du réseau de distribution. Les bouches sont alors choisies en fonction de la pression disponible en amont. Si cette pression est trop importante, il faudra diminuer la section du conduit du tronçon ou installer un registre de réglage. Cette méthode est plus simple mais demande quand même le calcul des pressions disponibles à chaque bouche. Leur choix et leur ajustement sont en outre plus complexes.


Outils informatiques

La complexité des réseaux peut rendre fastidieux le calcul d’un réseau complet, surtout si on veut multiplier les essais de manière à optimaliser la solution, en terme d’investissement, de consommation énergétique, de bruit, ….

Heureusement, il existe sur le marché des programmes informatiques qui intègrent les différentes méthodes de calcul et qui fournissent également comme résultats, les surfaces de réseau, son poids, les déperditions en fonction de la température du fluide transporté, des vitesses d’air et des matériaux.

Projet OPTIVENT

Pour les installations résidentielles, le CSTC a développé récemment lors du projet OPTIVENT un outil de calcul informatique gratuit permettent de concevoir, dimensionner et équilibrer un réseau de ventilation.

 

Choisir le châssis

Paramètres du bâtiment influençant le choix des châssis

Tâchons de mettre en évidences les principaux critères de choix des châssis à partir des sollicitations auxquelles ils seront soumis.

Ces sollicitations sont fonctions de plusieurs paramètres du bâtiment dont les principaux sont les suivants :

Son implantation

  • On veillera à prendre des précautions acoustiques suffisantes et adéquates (différentes selon que l’on se trouve en milieu rural ou urbain)

Son orientation

  • En Belgique, les pluies les plus intenses se manifestent généralement par un vent de sud-ouest. Une bonne étanchéité à l’eau et à l’air y est indispensable ainsi qu’une protection contre le ruissellement d’eau des châssis situés dans le plan de la façade.
  • En cas d’orientations ensoleillées, on évitera les châssis sensibles aux rayonnements. On préférera les teintes claires de châssis aux teintes foncées.
    Des éléments de protections solaires peuvent être prévus ( dépassants de toiture, balcons,…).

La hauteur du châssis par rapport au sol

Celle-ci aura une influence sur :

  • Les degrés d’exposition aux vents et aux pluies, et donc au soin à apporter à l’étanchéité à l’eau et à l’air du châssis.
  • Le niveau de sécurité à prévoir. En effet des précautions sont à prendre pour des châssis situés aux rez-de-chaussée ou pour les châssis facilement accessibles. (escaliers de secours extérieurs…)
  • L’accessibilité des châssis pour l’entretien des châssis et des vitrages.

La présence d’éléments de protection

Tels un dépassement de toiture, un balcon, …, permettent d’atténuer les sollicitations du vent, de l’eau et du soleil. Cela permet plus de liberté dans le choix du type de châssis.

La présence de châssis en toiture

Dans une toiture, les châssis sont sollicités principalement par l’action combinée de la neige, du vent, de l’eau et de leur poids propre. Une attention particulière sera portée à la double barriére d’étanchéité, et à la résistance mécanique du châssis.

De plus, on veillera à garantir l’accessibilité du châssis pour l’entretien par un type d’ouvrant adéquat. Cela n’étant pas toujours réalisable facilement, on préférera des châssis nécessitant peu d’entretien.


Les caractéristiques thermiques désirées

Pour le choix des châssis, il faudra être attentif à 2 caractéristiques thermiques des châssis

Le niveau d’isolation thermique

Les paramètres intervenants dans le degré d’isolation thermique des châssis sont :

Le coefficient de transmission thermique du matériau constituant le châssis

Un châssis est caractérisé thermiquement par son coefficient de transmission thermique Uf. Plus le coefficient transmission thermique est bas, plus le châssis est isolant.

La réglementation thermique impose des valeurs de coefficients de transmission thermique maximaux.

On peut cependant recommander d’aller plus loin comme le font certains labels volontaires.

Si le caractère isolant du châssis (considéré seul) a son importance dans le cadre de l’utilisation rationnelle de l’énergie, généralement la surface du châssis est réduite par rapport à la surface du vitrage. Aussi, l’influence de la valeur du Uf sur la valeur U de l’ensemble de la fenêtre est également réduite. Le châssis intervient donc peu dans l’isolation globale d’un immeuble, sauf si celui-ci comporte beaucoup de fenêtres.

Évaluer

 

Pour évaluer le coefficient de transmission thermique d’une fenêtre en fonction du coefficient de transmission thermique des châssis et des vitrages, cliquez ici  !

En comparant les différents matériaux possible pour les châssis et les valeurs de transmission thermique associées, On constate que :

  • Le bois a une valeur d’isolation supérieure à celle de l’aluminium et du PVC. De plus, il a l’avantage d’être un produit naturel biodégradable, stable thermiquement, recyclable et isolant.
    Mais ses caractéristiques naturelles entraînent un risque d’imperfections (veine, trou d’insectes) et un besoin d’entretiens fréquents.
  • Les châssis en PVC atteignent des valeurs très basses, et attrayantes… si l’aspect de ce matériau est apprécié. De plus, le PVC est très sensible aux fluctuations thermiques à cause son coefficient de dilatation élevé. Certaines précautions sont donc à prendre lors du choix de ce matériau.
  • Les châssis en métal présentent une faible valeur isolante mais leur performance thermique dépendra largement de la taille de la fenêtre et du détail du profilé. Actuellement, on ne conçoit plus d’utiliser un châssis en métal sans coupure thermique. Certains châssis pourvus d’un agrément thermique donnent des valeurs inférieures (et donc meilleures) à celles reprises dans les normes.
  • Les châssis composites font de plus en plus leur apparition sur le marché. Composé de plusieurs matériaux différents, ils permettent de combinés les avantages propres à chacun (meilleure isolation thermique intérieure, capot en aluminium pour l’estétisme extérieur, finition intérieure en bois,…).

Le type d’ouvrant

Le châssis fixe est évidemment optimal thermiquement parlant car il permet une réduction maximale des fuites et des courants d’air. Cependant pour des raisons de ventilation, de confort et d’entretien, un châssis ouvrant est souvent nécessaire.

D’un point de vue thermique, la présence d’un ouvrant modifiera :

  • La valeur du Uw car selon le type d’ouvrant les proportions de vitrage et de châssis varient. En pratique le calcul du Uw est basé sur une moyenne acceptable.
  • L‘étanchéité à l’air, influençant directement les performances thermiques de l’enveloppe du bâtiment.

De plus, il est évident que le choix d’un châssis très isolant dont le raccord à la maçonnerie n’est pas étanche à l’air ou muni d’une grille de ventilation défectueuse, n’a pas de sens au niveau énergétique.
Dès lors, on veillera :

  • Dès la conception du châssis, à définir le type de grille de ventilation et sa position au sein du châssis. On veillera à choisir un dispositif compatible avec le niveau d’isolation thermique, acoustique du reste de la fenêtre.
  • A soigner le raccord du châssis à la maçonnerie, de façon à assurer une continuité du degré d’isolation au sein de la façade.

La stabilité thermique des châssis

Certains matériaux tels le PVC et l’aluminium, ont un coefficient de dilatation élevé, entraînant une plus grande sensibilité aux fluctuations de température. Dès lors, des désordres importants et non prévus lors de la conception des châssis, peuvent apparaître dans les châssis de grandes dimensions.

Pour avoir une idée…. un profilé en PVC de 3 m de longueur soumis à un écart de température de 50° subit une déformation potentielle comprise entre 9 et 13,5 mm.

En cas d’orientations ensoleillées, on préférera donc le bois ou le polyuréthane moins sensible aux fluctuations de température.

En cas d’utilisation de châssis en PVC, il faut savoir que,

  • Dès la conception de la fenêtre et de son installation, il faudra prévoir un jeu périphérique suffisant et utiliser des joints d’étanchéité et des fixations adéquates.
  • Des renforcements en acier galvanisé sont conseillés (… ce qui va malheureusement accroître la conductivité thermique de globale de cette menuiserie).
  • Les couleurs de ce type de châssis sont restreintes aux tons pâles, les couleurs foncées trop exposées se déformeraient excessivement.

Les châssis en polyuréthane sont très stables thermiquement mais des contraintes internes importantes nécessitent cependant un soin tout particulier à la réalisation des angles.

Idéalement, pour tous les matériaux utilisés pour la réalisation des châssis, des éléments de protections solaires sont conseillés (dépassants de toiture, balcons,…) car aucun d’eux n’est parfaitement stable face aux fluctuations de température.


L’étanchéité à l’eau et à l’air recommandée

Concernant les châssis, les STS définissent des niveaux de performance d’étanchéité à l’eau (PE2, PE3, PE4, PEE ) et à l’air ( PA2, PA2B, PA3 ) recommandés en fonction de la hauteur du châssis par rapport au sol.

Voici un tableau (selon les STS 52) reprenant les valeurs de perméabilité à l’air et d’étanchéité à l’eau recommandées, en fonction de la hauteur du châssis par rapport au sol :

Hauteur par rapport au sol Perméabilité à l’air Étanchéité à l’eau
0 à 10 m

10 à 18 m

18 à 25 m

25 à 50 m

> 50 m

PA2B (1) (3)

PA2B (3)

PA3

PA3

PA3

PE2 (2)

PE3

PE3

PE4

PEE

(1) Si il n’y a pas d’exigence particulière du point de vue thermique et/ou acoustique, on se contentera d’un niveau PA2.

(2) Si le bâtiment a une exposition sévère (digue de mer), on prendra un châssis de résistance PE3, et on le signalera dans le cahier spécial des charges.

(3) Si on est en présence de locaux avec air conditionné, un niveau PA3 s’avérera nécessaire.

Selon les STS 52 [5] le cahier spécial des charges peut, pour des raisons d’uniformisation ou d’aspect, prescrire le même niveau de performance pour tous les châssis du bâtiment en se basant sur les éléments de construction les plus exposés.


L’effet esthétique recherché

Les châssis des fenêtres contribuent très fortement à l’expression architecturale des façades. Ils se différencient au niveau :

De l’aspect et des couleurs

Le châssis en bois

L’aspect est naturel et chaleureux. De nombreuses variétés de bois peuvent être utilisées offrant une gamme de couleurs très variées.

Techniques

Pour connaître les couleurs des différents types de bois, cliquez-ici !

Le bois requiert cependant beaucoup d’entretien et les produits de préservation sont parfois appliqués au détriment de l’aspect physique. (Vernis, enduits peuvent modifier les couleurs et l’aspect du bois..).

Le bois offre comme avantage incontestable que les éléments de menuiserie sont faciles à réparer et les rayures peuvent être enlevées par simple ponçage.

Le châssis en PVC

C’est le matériau le plus économique … mais l’aspect artificiel et synthétique est inévitable malgré des modèles possibles en « imitation texture ou teinte bois ».

De nombreux tons sont disponibles mais la gamme est restreinte aux tons pâles en raison de la grande sensibilité du PVC aux fluctuations de température.

Un inconvénient esthétique réside aussi dans le risque de jaunissement de certains châssis au soleil.

De plus, la couleur peut difficilement être modifiée ou retouchée en cas de rayure. En effet, le fait de peindre ces châssis peut modifier leur absorption d’énergie sous le soleil et augmenter les risques de déformation du châssis.

Le châssis en aluminium

L’ aspect peut être soit métallique soit laqué. Il existe une grande diversité de couleurs possibles par laquage. Le matériau est moins sujet aux rayures, qui sont par contre difficiles à enlever.

Le châssis en polyuréthane

Le polyuréthane est très sensible aux rayonnements UV. Il faut le protéger avec une peinture performante qui lui donne un aspect laqué.

Le châssis en acier

Les possibilités de laquage offrent un grand choix de couleurs.

Le châssis composites

Ceux-ci permettent le cumul des avantages de plusieurs matériaux associés (pouvoir isolant, esthétisme des finitions,…).

Formes et dimensions possibles

Le bois et le polyuréthane permettent les formes les plus variées contrairement au PVC et à l’aluminium qui se prêtent moins facilement aux formes courbes et particulières.

Le matériau utilisé pour le châssis détermine également son encombrement. Les profilés en PVC sont plus larges que les profilés en bois, métalliques ou PUR ce qui « alourdi » l’élancement du châssis et influence le rendement lumineux, surtout des petits châssis.

Les châssis en aluminium peuvent présenter un profil fin et plat, des arêtes vives et permettent de réaliser des constructions élevées de par leur grande solidité. Ce type de châssis est souvent associé aux constructions modernes…

Contrainte d’encombrement liée au type d’ouvrant

La largeur des montants du châssis varie d’un type d’ouvrant à l’autre.

Le châssis fixe sera sans conteste le plus mince mais il empêche le plaisir du contact direct avec l’air extérieur…

L’encombrement vers l’intérieur est le plus grand pour les ouvrants à la française et les oscillo-battants.

Par souci d’uniformisation, on peut imposer la largeur maximale à l’ensemble des profilés de châssis de la façade.


Les facilités d’entretien

En fonction du type de matériau

Le bois présente le plus d’inconvénients à ce sujet. En effet, il doit subir un traitement de conservation comprenant une protection et une finition.
Malgré ce traitement, le bois sera toujours sensible aux effets de l’humidité entraînant des risques de pourrissement et de travail excessif du bois. Les menuiseries en bois devront donc, de plus, être entretenues régulièrement par des lasures ou des peintures.

Techniques 

Pour en savoir plus sur les traitements et entretiens des menuiseries en bois, cliquez-ici !

Les autres matériaux ( aluminium, acier, PVC, polyuréthane) nécessitent comme entretien un simple nettoyage au moins annuel. À défaut, la saleté peut s’incruster au point d’empêcher toute rénovation d’aspect.

Le polyuréthane présente comme avantage d’être antistatique et donc de ne pas attirer la poussière.

En fonction du type d’ouvrant

Pour l’entretien, il faut assurer l’accessibilité aux châssis par l’intérieur et par l’extérieur.

Dans le cas d’un châssis fixe, un accès externe doit être possible si le châssis si ne se situe pas au rez-de-chaussée (coursives de services, possibilité de fixer un chariot de nettoyage,…)

En fonction du type d’ouvrant certains châssis sont plus faciles à entretenir que d’autres :

Pivot à axe vertical Pivot à axe horizontal Coulissante
à la française à l’anglaise pivotant simple pivotant à axe horizontal à visière oscillo-battant basculante coulissante guillotine
bon difficile bon

car s’ouvre à 180°

bon

car s’ouvre à 180°

difficile bon bon

si s’ouvre à 180°

difficile difficile

Evaluant les facilités d’entretien selon le type d’ouvrant.

De plus, lorsqu’on dispose d’un châssis ouvrant, il faudra précéder régulièrement au réglage des quincailleries pour assurer une compression suffisante du préformé d’étanchéité.


Le degré de sécurité souhaité

Lors du choix des châssis, on accroît la protection anti-effraction en prévoyant des types d’ouvrants adaptés aux sollicitations, sachant que :

  • Les châssis fixes sont évidemment les plus sûrs en matière d’effraction. Ils ne nécessitent aucune mesure particulière.
  • Les châssis ouvrants offrent des résistances à l’effraction différentes selon le type d’ouvrant.
Pivot à axe vertical Pivot à axe horizontal Coulissante
à la française à l’anglaise pivotant simple pivotant à axe horizontal à visière oscillo-battant basculante coulissante guillotine
bonne mauvaise mauvaise mauvaise mauvaise bonne bonne bonne mauvaise
  • Des profilés de résistance et de rigidité adaptées aux sollicitations, les châssis en acier et aluminium offrent une excellente résistance à l’effraction de par leur solidité.
  • Une fixation au gros œuvre et des parcloses adaptées.
  • Une quincaillerie ralentissant l’effraction. Selon le type de châssis, les dispositifs anti-effraction peuvent être plus ou moins conséquents (poignée verrouillable, protection anti-forage, verrou..). Ce qui a une influence non négligeable sur le prix du châssis.

Remarque : si une grille de ventilation doit être intégrée au châssis, on veillera à ce que son dispositif de sécurité soit d’un degré équivalent au degré de sécurité recherché pour le châssis.


Résistance mécanique et longévité en cas d’usage intensif

Les châssis ne constituent pas un élément porteur de la façade, mais doivent cependant offrir une résistance mécanique suffisante vis-à-vis des contraintes extérieures, telles les pressions causées par le vent, et des déformations des profilés sous leur poids propre.

La résistance mécanique vis-à-vis des contraintes extérieures

Les valeurs de références

Les châssis de tous types sont capables de reprendre des contraintes importantes à condition d’être étudiés pour cela.

Les STS définissent des niveaux de résistance mécanique à atteindre par les châssis en fonction de la hauteur du châssis par rapport au sol.

Ces niveaux doivent être établis au cours de tests réglementés de résistance, réalisés sur un échantillonnage des châssis commandés. S’il s’agit de châssis standards agréés, ces niveaux de performance sont indiqués dans les agréments techniques.

On s’assurera de choisir un châssis atteignant la performance demandée.

Hauteur par rapport au sol Résistance mécanique
0 à 10 m

10 à 18 m

18 à 25 m

25 à 50 m

> 50 m

PV1 (1)

PV1B

PV2

PV2

PV3

(1) si le bâtiment a une exposition sévère (digue de mer), on prendra un châssis de résistance PV2, et on le signalera dans le cahier spécial des charges.

Résistances mécaniques propres au matériau

Les châssis en aluminium et en acier sont les plus solides, ce qui limite les risques d’apparition de flèche. Ils permettent dès lors de réaliser les profilés les plus élancés. Les châssis en acier offrent aussi une très bonne résistance au feu.
Cependant, ils sont également les plus lourds et sont donc déconseillés en toiture inclinée où le poids propre du châssis est à prendre en compte.

La résistance mécanique du PVC est située entre celle du bois et celle de l’aluminium. Cependant, lorsque les châssis de ce type de châssis sont amenés à fermer de grandes baies, il convient de les rigidifier. Les châssis en PVC de certaines marques peuvent être renforcés par des profils métalliques. D’autres prévoient des renforcements uniquement pour certaines pièces en fonction des sollicitations auxquelles elles sont soumises. La raideur du PVC utilisé (de type A ou B) a une influence sur la nécessité de prévoir des renforcements

L’agrément technique

L’avantage indéniable qu’ont les matériaux synthétiques et métalliques (alu, acier, PVC, polyuréthane) sur le bois est d’être produits en usine, le client peut ainsi obtenir certaines garanties de fabrication établies par un agrément technique, tel l’agrément UBATC, accompagnant le produit. Celui-ci certifiera la qualité des matériaux utilisés et les performances techniques propres au profilé du châssis.
A notre connaissance, dans le cas de châssis en bois, les menuisiers ne disposent pas d’un agrément technique. Le bois fourni peut différer du bois commandé tant il existe d’espèces de bois. De plus, aucune garantie n’existe quant à la qualité du traitement qu’aura subi le bois en atelier. Le choix d’un menuisier compétent et fiable est donc primordial.

Concevoir sans agrément technique

Si le maître d’ouvrage souhaite faire poser des châssis ne disposant pas d’un agrément technique, il a intérêt à confier leur fabrication à une firme connue possédant de bonnes références. Il faut en effet savoir que tant les bois que les matériaux synthétiques peuvent être de qualité très différentes.
Le cahier spécial des charges devra être clair quant aux qualités des matériaux et des performances exigées.

Pour le contrôle des performances, il est prudent de prescrire la réalisation d’un essai de laboratoire agréé (coût 5 000 à 7 000 €), surtout si la menuiserie présente un caractère inhabituel (système d’ouverture spécial, grandes dimensions).

Longévité des châssis

La durée de vie des châssis en bois dépend fortement du soin porté à son entretien. Les produits de traitement du bois sont de plus en plus performants, ce qui en assure la longévité.

L’aluminium ne s’altère pas de façon significative, il ne sera pas sujet à la corrosion ni à des dégradations chimiques.

Les châssis en matière synthétique tels le PVC ou le polyuréthane, semblent bien résister avec le temps mais ne sont utilisés que depuis 35 ans, on ignore encore comment ils vieillissent.
Les châssis en PVC, surtout ceux de couleur foncée, sont sensibles aux ultraviolets. Des déformations du châssis dû au phénomène de dilatation thermique peuvent être la cause de fatigue et de fissuration au sein du châssis. Les châssis en PVC ne se corrodent pas.


Le coût

Pour avoir une rapide idée, voici une fourchette de prix en fonction des matériaux choisis par m² de baie.

Il est évident que d’autres facteurs interviennent dans le prix d’un châssis : sa forme, le type d’ouvrant et de quincaillerie, la pose d’un éventuel dispositif de sécurité, l’accessibilité du chantier, …

Châssis en bois – type de bois

Dark Red Meranti 150 190 €/m² de baie
Merbau 170 230 €/m² de baie
Afzélia 200 300 €/m² de baie
Il faut y rajouter les traitements du bois :
Couche d’imprégnation + 2 couches 12 14 €/m² de baie
Couche supplémentaire 4 5 €/m² de baie

Châssis en PVC

PVC 170 220 €/m² de baie
PVC renforcé 185 240 €/m² de baie

Châssis en polyuréthane (PUR laqué)

250 320 €/m² de baie

Châssis en aluminium laqué avec coupure thermique

245 315 €/m² de baie

Pour tous les types de châssis, on ajoutera :

Le coût des joints périphériques entre le châssis et les parois 3.5 5 €/m² de baie

Les fourchettes de prix mentionnées sont données à titre indicatif. Les prix prévoient la fourniture et la mise en œuvre hors TVA. Ils concernent les ouvrages courants.

Découvrez ces exemples de rénovation de châssis : l’Institut Saint-Joseph à Templeuve et le Passage 45 à Charleroi.

Recommandations générales [bureautique]

Recommandations générales [bureautique]


Diminuer la consommation de fonctionnement

      

La première étape est de choisir des équipements qui, à fonctions semblables, consomment le moins possible dans les différents modes de fonctionnement des équipements.

à savoir les modes :

  • « Marche » où l’équipement produit réellement une tâche (impression d’un document, réception d’un fax, lancement d’un programme de calcul, …) et consomme de l’énergie mais pendant un temps relativement court par rapport aux autres modes de fonctionnement.
  • « Prêt » des fax, des imprimantes, des scanner, …, où l’équipement consomme beaucoup d’énergie pendant un long laps de temps sans produire de travail bien précis (élément chauffant maintenu à température par exemple).
  • « Attente » où l’équipement consomme moins d’énergie qu’en mode « prêt ». Cette fonction est en générale propre aux équipements labellisés.
  • « Arrêt » où certains équipements ont toujours leur alimentation sous tension et, par conséquent, consomme aussi de l’énergie (perte à vide des transformateurs par exemple).

Afin d’éviter des dérives importantes de consommation électrique de la part des constructeurs, différents garde-fous ont été mis en place comme les labels de qualité. En faisant labelliser ses équipements (label Energy Star, par exemple), le constructeur garantit une consommation de fonctionnement optimisée selon des critères bien précis exigés par les organismes de labellisation.

On comparera donc les caractéristiques techniques des différents appareils présents sur le marché dans les différents modes de fonctionnement sachant que sur 24 heures :

  • Le mode « marche » est relativement peu actif pour la plupart des équipements (sauf pour les serveurs, les photocopieuses en réseau, …).
  • Les équipements sont souvent en mode « prêt » (ready) ou « attente » (standby) la journée.
  • La nuit, les équipements ne sont pas débranchés (la fiche électrique des appareils reste connectée à la prise d’alimentation).

Indépendamment de toutes ces considérations, il vient tout de suite à l’esprit que la première mesure est, en fin de journée, de carrément débrancher les alimentations électriques des prises de courant après avoir éteint proprement les équipements (shutdown correct) soit en enlevant la fiche de la prise de courant, soit par l’intermédiaire des interrupteurs des blocs multiprises, … En effet, les appareils consomment de l’énergie même lorsqu’ils éteints mais branchés.


Favoriser la mise en veille

Le comportement des utilisateurs vis-à-vis des équipements de bureautique est justifié par la facilité de travail, donc la productivité.

Pour pallier ce fait, ce sont les équipements eux-mêmes qui doivent gérer leur propre fonctionnement. Pour être efficace et non contraignante pour les utilisateurs, cette gestion doit comporter trois étapes principales :

  • En cas de non utilisation prolongée, les équipements doivent automatiquement se mettre dans un mode attente ou veille (standby) caractérisé par une consommation de maintien minimum.
  • Lorsque les appareils sont à nouveau utilisés, leur retour en mode de fonctionnement opérationnel doit s’effectuer en un temps très réduit (de quelques secondes) et ce, sans commande volontaire de la part de l’utilisateur.
  • En dehors des heures d’occupation normales des locaux (ex : nuit, W-E), les équipements doivent être complètement à l’arrêt.

Ce genre d’auto gestion est configuré par défaut sur les appareils labellisés (Energy Star par exemple).

La minute à forte plus-value

En moyenne un poste de travail constitué d’une UC, d’un écran (14 ou 15) consomme 250 kWh/an (459 kVAh/an), ce qui représente un coût de l’ordre de 28,75 €/an. Dans l’environnement Windows 95, 2000, XP, …, pour les ordinateurs, il faut environ 1 minute pour configurer son poste de travail en mode économiseur d’énergie en cas de non-utilisation réelle. Grâce à ce geste il est possible d’économiser 13,8 €/an (c’est un minimum). À ce niveau l’heure de configuration en mode veille rapporte 828 € !

Attention ! il ne faut pas confondre l’économiseur d’énergie avec l’économiseur d’écran !


Éviter les pollutions harmoniques dues aux équipements

Les perturbations harmoniques sont causées par l’introduction sur le réseau de charges non linéaires comme les équipements intégrant de l’électronique de puissance. Plus généralement, tous les équipements incorporant des redresseurs et de l’électroniques de découpage déforment les courants et créent des variations de tension sur le réseau basse tension et dans certaines conditions sur le réseau haute tension (les distributeurs n’aiment pas du tout cela : déclenchement intempestif des équipements, échauffement, …).

Plus la quantité d’équipements à risques de pollution harmoniques sont nombreux plus le risque d’incidents sur le réseau augmente.

Les conséquences peuvent être immédiates sur certains appareils : problèmes de synchronisation, de commutation, disjonctions intempestives. De plus, on augmente le risque de diminuer la durée de vie de certains équipements.

Étant donné l’aspect dynamique du réseau électrique (c’est-à-dire que son impédance évolue en permanence), il n’est pas conseillé d’opter vers des solutions de type filtre passif c’est-à-dire « batteries de condensateurs« . Les orientations techniques les plus souhaitables sont la mise en place sur le réseau perturbé de filtres actifs encore appelés Correcteurs de Facteur de Puissance.
Dans tous les cas, il est vivement conseillé de procéder à une étude approfondie du niveau de pollution harmonique sur son réseau électrique afin de choisir une des solutions les plus appropriées.

Etanchéités

Etanchéités

Par étanchéité, on entend la couche ou l’ensemble des couches rendant la construction étanche à l’eau de pluie, à la neige et à l’eau de fonte des neiges.

On distingue les types d’étanchéités suivants :


Les membranes bitumineuses

La membrane bitumineuse est actuellement l’étanchéité la plus utilisée sur le marché belge (+/- 80 %).

Une membrane bitumineuse est constituée d’une armature enrobée de bitume.

L’étanchéité des toitures plates s’obtient par la pose d’une ou plusieurs membranes bitumineuses superposées dont les lés sont soudés latéralement les uns aux autres et en bouts.

On parlera d’un système « monocouche » lorsqu’une seule épaisseur de membrane est posée, et d’un système « multicouche » lorsque plusieurs membranes, généralement deux (système bicouche), sont superposées.

Le système multicouche offre plus de garanties d’étanchéité que le système monocouche qui nécessite un soin particulier lors de l’exécution et donc une main-d’œuvre spécialisée et une surveillance régulière et exigeante.

On distingue la couche supérieure des éventuelles sous-couches.

La couche supérieure

La couche supérieure (la seule couche dans le cas d’un système monocouche) d’une étanchéité bitumineuse doit résister au vieillissement dû aux rayonnements solaires et aux sollicitations mécaniques et thermiques.

C’est la raison pour laquelle elle sera toujours armée d’un voile de polyester, et le bitume utilisé sera amélioré par addition de polymères qui en augmenteront considérablement les performances. Elle doit posséder un agrément technique avec certification (ATG). Son épaisseur sera d’au moins 4 mm. Les bitumes utilisés sont appelés bitumes améliorés, bitumes polymères ou bitumes modifiés.

Les polymères additionnés peuvent être de deux types :

  • les plastomères (APP, polypropylène atactique) qui mélangés à raison d’environ 30 % donnent au bitume des propriétés plastiques,
  • les élastomères (SBS, styrène-butadiène-styrène) qui mélangés à raison d’environ 12 % donnent au bitume des propriétés élastiques.

D’autres polymères font actuellement leur apparition.

La (les) sous-couche(s) éventuelle(s)

Les matériaux à base de bitume soufflé donnent de bon résultats comme sous-couche ou couche intermédiaire.

Ils peuvent être armés d’un voile de verre, d’une feuille d’aluminium ou d’un voile de polyester.

Types de sous-couches et couches intermédiaires (NIT 215 du CSTC).

Membrane Armature
type Kg/m² ép. mm perforations. type g/m²
VP50/16 1.6 non V.verre > 50
VP45/30 3 oui (3 – 6 %) V.verre > 45
VP40/15 1.5 oui (12 – 18 %) V.verre > 40
V3 3 3 non V.verre > 50
V4 4 4 non V.verre > 50
ALU3 3 3 non Aluminium > 250
P150/16 1.6 non V.polyester > 150
EP2 1.25 2 non V.polyester > 150
P3 3 3 non V.polyester
P4 4 4 non V.polyester > 150

Les types V3, V4, P3 et P4 peuvent être en bitume oxydé ou en bitume amélioré, APP ou SBS.


Les étanchéités synthétiques

Les matériaux utilisés sont également appelés « hauts polymères ».

Ils se composent principalement de produits de polymérisation d’hydrocarbures insaturés provenant de la pétrochimie.

Ils ont de bonnes caractéristiques mécaniques. Ils résistent bien au froid, à la chaleur, aux produits chimiques et aux influences atmosphériques.

Les étanchéités synthétiques sont posées en une seule épaisseur (système monocouche).

La pose varie selon le produit. C’est pourquoi la plupart des fabricants de membranes synthétiques ne confient la pose de leur système qu’à des entreprises dont ils ont formé les ouvriers. Vu que le système est monocouche, des erreurs au niveau de l’assemblage des lés provoqueraient directement des fuites.

Parmi les 13 sortes de membranes synthétiques reprises ci-dessous, seules, quatre bénéficient d’un agrément technique ATG : le PVC, l’EPDM, le CPE et le PIB. Parmi celles-ci, deux seulement sont utilisées de manière significative, un plastomère : le PVC (12 % du marché belge), et un élastomère : l’EPDM (8 % du marché belge). Il semble cependant que leur utilisation devient plus fréquente, surtout en ce qui concerne l’EPDM.

Les étanchéités synthétiques sont de trois types :

  • les élastomères
  • les élastomères thermoplastiques
  • les plastomères

Les élastomères

IIR Butil  copolymère d’isoprène et d’isobutylène vulcanisé

Couramment appelé BUTIL, d’épaisseur 1.5 et 2 mm, de couleur noire, il a un comportement satisfaisant au feu. Il ne résiste pas très bien aux solvants organiques. Il résiste bien au bitume. Il résiste bien aux influences climatiques, mais il a tendance à se déformer sous l’influence de la chaleur en été. Il résiste de manière satisfaisante au poinçonnement.

Il sera posé en adhérence totale, en adhérence partielle ou en pose libre lestée.

L’adhérence au support se fait par collage à l’aide de colle à chaud à base de bitume et de butyl, ou à l’aide de colle de contact.

La jonction des lés se fait sur chantier à l’aide de « gumtape » et de colle. En atelier la jonction des lés se fait par soudure à chaud et bande adhésive (bâches préassemblées en usine).

EPDM  Copolymère d’éthylène, de propylène et de diène-monomère vulcanisé

Également appelé EPT, d’épaisseur minimale 1.1 mm, de couleur noire ou grise, il est actuellement le plus utilisé des hauts polymères élastomères sous forme de membrane. Aux États-Unis, l’EPDM contrôle un tiers du marché des toitures plates. Il a un comportement peu satisfaisant au feu. Il existe une qualité auto-extinguible qui est un mélange d’élastomères et de retardateurs de flamme. L’EPDM ne résiste pas très bien aux solvants organiques. Il résiste bien au bitume. Il résiste bien aux influences climatiques, mais il a tendance à se déformer sous l’influence de la chaleur en été. Il résiste de manière satisfaisante au poinçonnement. Actuellement, les problèmes de pose et de rejointoiement connus jadis, ont été résolus, et le produit bénéficie d’une grande longévité.

Il sera posé en adhérence totale, en adhérence partielle ou en pose libre lestée.

L’adhérence au support se fait par collage à l’aide de colle à chaud à base de bitume et d’EPDM, à laide de colle de contact, ou à l’aide de bitume lorsque les feuilles sont pourvues d’une couche dorsale constituée d’un voile qui sert à réaliser l’adhérence avec le bitume..

La jonction des lés se fait sur chantier à l’aide de « gumtape » et de colle. En atelier la jonction des lés se fait par soudure à chaud et bande adhésive (bâches préassemblées en usine).

Des membranes EPDM pourvues en leur sous-face d’une couche de bitume SBS existent. Elles peuvent être soudées au chalumeau.

CR  Polychloroprène vulcanisé

Membrane en caoutchouc munie d’une couche dorsale en voile de verre destinée à améliorer l’adhérence de la colle. Elle existe en 1.0, 1.2, 1.5 et 2.0 mm d’épaisseur et est de couleur noire. Elle a un comportement satisfaisant au feu. Sa résistance aux solvants organiques est satisfaisante. Elle résiste bien au bitume. Les données dont on dispose ne permettent pas de donner un jugement sur sa résistance aux influences climatiques. Elle ne résiste pas très bien au poinçonnement.

Elle sera posée en adhérence totale.

L’adhérence au support se fait par collage à l’aide de bitume ou à l’aide de colle de contact.

La jonction des lés se fait à l’air chaud + bande de soudure ou à la colle à froid.

CSM  Polyéthylène chlorosulfoné partiellement vulcanisé

La membrane est constituée de polyéthylène chlorosulfoné partiellement vulcanisé calendré sur une armature en polyester, avec possibilité latente de complète vulcanisation. Elles ne deviennent complètement élastomère qu’après la pose des feuilles. Son épaisseur minimale est de 1.2 mm armature comprise. Elle existe en gris, noir, blanc ou beige. Elle est autoextinguible. Elle ne résiste pas très bien aux solvants organiques. Elle ne résiste pas très bien au poinçonnement. Elle résiste bien au bitume. Elle résiste bien aux influences climatiques.

Elle sera posée en adhérence totale ou en pose libre lestée. Elle peut également être fixée mécaniquement.

L’adhérence au support se fait par collage à l’aide de bitume, à l’aide de colle de contact ou à l’aide de colle en dispersion.

La jonction des lés se fait à l’air chaud + bande de soudure ou à la colle à froid.

NBR  Caoutchouc nitrile vulcanisé

La membrane est munie d’une couche dorsale en voile de verre. Elle a une épaisseur de 1.1 ou 1.5 mm. Elle est de couleur noire. Elle a un comportement peu satisfaisant au feu. Elle résiste bien aux solvants organiques et aux bitumes. Elle résiste bien aux influences climatiques. Les données dont on dispose ne permettent pas de donner un jugement sur sa résistance au poinçonnement.

Elle sera posée en adhérence totale ou en pose libre lestée.

L’adhérence au support se fait par collage à l’aide de bitume ou à laide de colle de contact.

La jonction des lés se fait à l’aide de colle à deux composants.

Les élastomères thermoplastiques

TPV Elastomère thermoplastique vulcanisé

Membranes, composées d’un assemblage de polymères élastomères et plastomères vulcanisés. Elles peuvent être teintées dans la masse. Elles ont une épaisseur minimale de 1.1 mm. Elles possèdent une bonne résistance aux rayons UV et aux produits chimiques. Elles présentent une élasticité comparable au caoutchouc.

Il sera posé en adhérence totale, en adhérence partielle ou en pose libre lestée.

L’adhérence au support se fait par collage à l’aide de colle à chaud à base de bitume et d’EPDM, à l’aide de colle à froid, ou par fixation mécanique.

La jonction des lés se fait par soudage thermique.

TPO Polyoléfine thermoplastique

Membranes réalisées à l’aide de copolymères de polypropylène. Elles ne contiennent aucun plastifiant. Elles possèdent une bonne résistance aux rayons UV et aux produits chimiques. Elles ont une épaisseur minimale de 1.2 mm.

Il sera posé en adhérence totale, en adhérence partielle ou en pose libre lestée.

Les membranes en TPO peuvent être soit fixées mécaniquement, soit être posées en semi-indépendance à l’aide de colle à froid ou de bitume chaud, soit être posées librement et lestées.

La jonction des lés se fait par soudure homogène à l’air chaud.

Les plastomères

PIB  Polymère non vulcanisé de polyisobutylène

Actuellement les membranes PIB sont toujours doublées sur leur face inférieure d’une armature épaisse en feutre de polyester. Elles ont une épaisseur minimale de 1.5 mm. Elles sont de couleur noire. Elles ont un comportement peu satisfaisant au feu et des mesures complémentaires s’imposent. Elles résistent bien aux bitumes, mais pas aux solvants organiques. Elles résistent bien aux influences climatiques. Elles résistent bien au poinçonnement. Le produit existe depuis assez longtemps et a prouvé sa fiabilité.

Elles seront posées en adhérence totale, en adhérence partielle ou en pose libre lestée.

L’adhérence au support se fait par collage à l’aide de bitume ou à l’aide de colle à froid.

La jonction des lés se fait à l’aide de bandes d’étanchéité auto-adhésive, et par soudure par gonflement pour les joints transversaux.

EVA  Copolymère d’acétate de vinyle et d’éthylène non vulcanisé

Les membranes VAE ont une épaisseur minimale de 1.2 mm (couche de feutre non comprise). Elles sont de couleur blanche. Elles ont un comportement peu satisfaisant au feu et des mesures complémentaires s’imposent. Elles résistent bien aux bitumes, mais pas aux solvants organiques. Elles résistent bien aux influences climatiques. Les données dont on dispose ne permettent pas de donner un jugement sur sa résistance au poinçonnement.

Elles seront posées en adhérence totale ou en pose libre lestée.

L’adhérence au support se fait par collage à l’aide de bitume ou à l’aide de colle de contact.

La jonction des lés se fait par soudure par gonflement ou par soudure à air chaud.

ECB  Copolymère d’acétate de polyvinyle et d’éthylène non vulcanisé, et bitume

Membrane extrudée d’un mélange homogène d’un copolymère EVA non vulcanisé et de bitume. Il n’y a pas d’armature. La membrane est pourvue d’une couche dorsale en voile de verre ou en polyester destinée à améliorer l’adhérence de la colle. L’épaisseur de la membrane est généralement de 2 mm. Elle est de couleur noire. Elle a un comportement peu satisfaisant au feu et des mesures complémentaires s’imposent. Elle résiste bien aux bitumes, mais pas aux solvants organiques. Elle résiste bien aux influences climatiques. Elle résiste bien au poinçonnement.

Elle sera posée en adhérence totale, en adhérence partielle ou en pose libre lestée. Elle peut également être fixée mécaniquement.

L’adhérence au support se fait par collage à l’aide de bitume.

La jonction des lés se fait par soudure à air chaud.

Lors de la pose, la surface de ce matériau est visqueuse. Cette caractéristique disparaît après quelques semaines d’exposition.

CPE  Polymère de polyéthylène chloré non vulcanisé et exempt de plastifiant

Le CPE est très semblable au PVC. Une différence se trouve dans le fait que le mélange des polymères utilisés est chimiquement extrêmement stable. Il ne subit pas de perte de plastifiant. Il est cependant moins souple que le PVC.

Ces membranes sont soit des membranes simples, soit des membranes composées de deux membranes incorporant ou non une armature en polyester tissé, soit des membranes composées de deux membranes avec un feutre de polyester extérieur. L’épaisseur minimale de la membrane est de 1.2 mm. La face supérieure est de couleur grise. La face inférieure est grise ou noire. Elles ont un comportement satisfaisant au feu. Elles résistent bien aux bitumes et aux solvants organiques. Elles résistent bien aux influences climatiques. Elles résistent bien au poinçonnement lorsqu’elles sont armées.

Elle sera posée en adhérence totale, en adhérence partielle ou en pose libre lestée. Elle peut également être fixée mécaniquement.

L’adhérence au support se fait par collage à l’aide de bitume. Il peut également se faire à la colle de contact lorsque la membrane est pourvue d’un feutre de polyester extérieur.

La jonction des lés se fait toujours par soudure à l’air chaud. Lorsque la membrane est pourvue d’une armature tissée, le joint est mastiqué au moyen d’une pâte à base de CPE.

PVC  Polymère de chlorure de polyvinyle avec plastifiant

La membrane de est de type 1 lorsque le plastifiant est monomère, ou bien de type 2 lorsque le plastifiant est polymère.

Afin d’éviter l’important retrait caractéristique du PVC, on n’utilise que des membranes armées de fibre de verre (sans retrait) ou armée de polyester (avec faible retrait). Les feuilles sont constituées de deux couches entre lesquelles l’armature est calendrée.

Le PVC armé a une épaisseur minimale de 1.2 mm. Le PVC non armé a une épaisseur minimale de 1.5 mm.

Les étanchéités en PVC résistent ou non aux rayonnements UV. En cas d’absence de lestage sur l’étanchéité, il faut placer une membrane résistante aux UV. La composition des membranes et les techniques d’exécution ayant évolué, le PVC est devenu actuellement une étanchéité fiable.

La membrane de type 1 sera généralement grise ou beige. La membrane de type 2 aura des faces inférieures et supérieures de couleurs différentes. Elles ont un comportement satisfaisant au feu. Les membranes de type 2 résistent bien aux bitumes et aux solvants organiques, ce qui n’est pas le cas des membranes de type 1. Elles résistent bien aux influences climatiques lorsqu’elles sont stabilisées aux UV. Elles résistent bien au poinçonnement.

Lorsqu’une membrane en PVC ne résiste pas au bitume, il faut poser une couche de séparation entre le PVC et les matériaux bitumeux.

Les membranes en TPO peuvent être soit fixées mécaniquement, soit être posées en semi-indépendance à l’aide de colle à froid ou de bitume chaud, soit être posées librement et lestées.

La jonction des lés se fait par soudure par gonflement ou par soudure à air chaud. Dans les deux cas, le joint est mastiqué au moyen d’une pâte en PVC.


Les feuilles métalliques

Les feuilles métalliques (zinc, cuivre, ou plomb) peuvent être utilisées en toiture plate et en toiture inclinée.

Illustration feuille métallique.

Feuilles métalliques sur plateforme en bois.

Dans le cas de la toiture plate, les feuilles métalliques sont soudées entre elles. La surface totale de la plate-forme ne peut dépasser 15 m² et la longueur ne peut dépasser 6.75 m à cause des contraintes liées à la dilatation.

La pente de la plate-forme sera obligatoirement comprise entre 1 % et 5 %.

Les feuilles reposent sur un voligeage aéré en sous-face.


Les enduits d’étanchéité

Le système consiste à épandre sur la toiture des résines synthétiques (polyuréthanne, acrylique, polyméthylmétacrylate, polyester, … ) en y incorporant des armatures (textile polyester). On forme ainsi, in situ, une membrane sans raccord.
Suivant le type, l’armature et la finition supérieure, elle peut être non circulable, circulable aux piétons ou circulable aux véhicules légers.
Différents aspects de finition sont possibles (couleur, rugosité, …).

 

Étanchéité liquide armée.

Avantages

  • On évite le problème de jonction entre les lés.
  • L’étanchéité peut épouser la forme de toitures compliquées.
  • Certaines étanchéités ainsi mises en œuvre conviennent comme surface circulable (terrasses circulables).

Inconvénients

  • Ces techniques demandent l’intervention d’un personnel très qualifié.
  • Elles requièrent, pour leur mise en œuvre, des conditions atmosphériques particulièrement favorables.
  • Prix élevé pour des toitures simples.
  • Épaisseur faible de certains systèmes.
  • Résistance limitée aux eaux stagnantes.

Les revêtements épais

L’asphalte coulé est un mélange correctement dosé de bitume en poudre et d’agrégats : asphalte naturel, sable, filler.

Il est appliqué sans compactage en une couche de plusieurs centimètres.

Étanchéité en asphalte coulé.

Le mélange doit être exempt de cavités et de matériaux gélifs.

Ce type d’étanchéité constitue une bonne couche d’usure et de répartition des charges pour la circulation piétonne.

Il ne faut pas confondre l’asphalte coulé avec les enrobés hydrocarbonnés. Ceux-ci contiennent des graviers et des cavités. Ce ne sont pas des revêtements d’étanchéité.

Lampes fluocompactes

Eté 2008 : Brieuc.
22-10-2008 : 1er passage de mise en page [liens internes, tdm, en bref !, rapide passage général sur la mise en page de la feuille] – Sylvie
22-10-2008 : WinMerge ok – Sylvie
30-03-2009 : Application des nouveaux styles de mise en page. Julien.
11-03- 2013 : actualisation, Didier D et Olivier

Comment fonctionne une lampe fluocompacte ?

Une lampe fluocompacte fonctionne comme un tube fluorescent mais le tube est replié de manière à la rendre plus compacte. On trouve sur le marché des lampes fluocompactes à profusion.

Types et caractéristiques générales

Sur le marché, on retrouve trois grandes familles de lampes fluocompactes :

Les lampes dites « économiques » à culot à visser sont les lampes les plus répandues dans le commerce grand public. Elles ont plus une vocation de lampes de rénovation ou de remplacement de la lampe à incandescence. Ces lampes économiques « PL » ont toute leur électronique incorporée et sont de faible puissance. Certains modèles peuvent être dimmables.

Les lampes fluocompactes à culot à broches (plus professionnelles) sont souvent utilisées dans des luminaires de type « Downlight » équipés d’optiques performantes. Ces lampes PL fonctionnent avec ballast non incorporé. Le ballast peut être électronique dimmable ou pas (4 broches) ou conventionnel (2 broches).

Certains constructeurs innovent en présentant des séries de lampes fluocompactes capables d’équiper les luminaires à lampe halogène. Certains modèles sont dimmables.
Voici un récapitulatif des différents modèles efficaces.

Caractéristiques des lampes fluocompactes à broches

Les avantages des lampes à culot à broches sont

  • Un plus grand choix de température de couleur et d’IRC.
  • La possibilité de conserver le ballast (durée de vie de 30 000 h) lors du remplacement de la lampe (durée de vie de 8 000 h, ou 13 000 h avec ballast électronique).

L’utilisation d’un ballast électronique assure un allumage instantané de la lampe, sans clignotement, ni temps d’échauffement.
Certaines lampes fluocompactes encore plus proches des tubes fluorescents atteignent des durées de vie plus importantes : durée de vie moyenne de 10 000 h ou 16 000 h (avec ballast électronique) et durée de vie utile de 5 000 h ou 8 000 h (ballast électronique).
Ces lampes ont été conçues pour être placées en ligne comme les tubes fluorescents, mais pour avoir un flux lumineux plus important pour un même encombrement.
Ce sont les seules lampes fluocompactes qui existent dans la gamme de classe 1A.

Influence de la température ambiante

Le flux lumineux et l’efficacité lumineuse des lampes fluocompactes chutent très fort avec la température ambiante. À tel point que certaines lampes ne s’allument plus en dessous de 0°C ! Il est donc déconseillé de les utiliser à l’extérieur. Néanmoins les lampes enfermées dans un globe ou à 4 tubes résistent mieux au froid que les lampes à 2 tubes, car la chaleur y est mieux conservée.

Lampes dans un globe, lampes à 3 tubes, lampes à 2 tubes.

Utilisant la même technologie que les tubes fluorescents, leur durée de vie dépend du nombre d’allumages et du ballast utilisé.

Données

pour connaitre les caractéristiques des lampes fluocompactes : cliquez ici !

Données

pour consulter un récapitulatif des caractéristiques des différents types de lampe : cliquez ici !

Fin des lampes inefficaces

Petit à petit les lampes inefficaces sont retirées du marché.
Actuellement, seules les lampes fluocompactes les plus performantes (classes A) sont encore disponibles.

Réglementations

Pour en savoir plus sur les classes énergétiques des lampes : cliquez ici !

Données

pour connaitre les caractéristiques des lampes fluocompactes : cliquez ici !

Données

pour consulter un récapitulatif des caractéristiques des différents types de lampe : cliquez ici !

Boîte de détente [ventilation]

Boîte de détente [ventilation]


Principe de fonctionnement

Imaginons que l’on veuille faire passer beaucoup d’air dans une paille, en soufflant. La vitesse de l’air va augmenter. Les forces de frottement aussi. Notre bouche devra donc augmenter le niveau de pression pour y arriver. Et un sifflement va apparaître.

De même, pour diminuer l’encombrement des conduits, on souhaite parfois transporter beaucoup d’air dans de faibles sections. Il faudra que la vitesse augmente. Le ventilateur va augmenter la pression en sortie. Mais il est alors impossible de propulser cet air directement au travers d’une bouche de local, sous peine de créer un sifflement, qui risque d’altérer le confort de travail du personnel.

La boîte de détente est l’élément qui permet de détendre l’air à la sortie d’un réseau de ventilation ou de conditionnement d’air à haute vitesse, avant de le diffuser dans un local.

Schéma principe boîte de détente.

Si en plus, on souhaite moduler les débits en fonction des besoins du local (VAV), on profitera de la boîte de détente comme organe de régulation. La boîte de détente sera alors au débit d’air ce que la vanne thermostatique est au débit d’eau.

Schéma principe boîte de détente - 02.


Détails technologiques

Une boîte de détente en VAV est constituée d’un clapet de réglage avec servomoteur et d’un caisson de détente. Celui-ci est réalisé en tôle d’acier galvanisée, tapissé intérieurement d’un matelas de laine minérale (isolation thermique et acoustique).

Schéma principe boîte de détente en VAV.

Chaque boîte remplit deux fonctions

  • adapter le débit d’air aux besoins,
  • garantir un débit d’air constant.

Malheureusement, la pression n’est pas stable dans le réseau, et à une position donnée du clapet ne correspond pas toujours une même valeur de la vitesse de l’air dans la bouche. Aussi, selon les fabricants, divers systèmes complémentaires sont utilisés pour s’assurer de l’adéquation du débit aux besoins, quelles que soient les variations de pression dans le réseau.

Voici deux exemples :

  • Des soufflets, sensibles à la pression existante dans la conduite, seront « gonflés » ou « déprimés », pour stabiliser le débit.
  • Un capteur de pression dynamique sera inséré, puisque celle-ci est proportionnelle au carré de la vitesse, la vitesse réelle du fluide sera connue. Un actionneur pourra modifier la position du siège du clapet et la consigne de débit sera ajustée.

Les servomoteurs peuvent être actionnés par :

  • de l’électricité (24 V alternatif),
  • de l’air comprimé (source externe),
  • l’air du système lui-même.

Le débit de fuite d’une boîte de détente ne peut excéder 3 % de son débit nominal, réglé sous la pression différentielle maximale admissible de la boîte.

Le réglage de la boîte de détente se fait généralement entre 30 et 100 % du débit nominal. En dessous de 30 %, la distribution de l’air froid ne se fait plus correctement (plus d’effet Coanda) et un risque de courant d’air apparaît.

Il existe des boîte dont on peut annuler le débit (fermeture totale), mais leur coût en est nettement plus élevé et est réservé aux zones occupées de façon intermittente et dans lesquelles le conditionnement d’air peut être arrêté.

Sauteuse électrique

Sauteuse électrique


Principe

Une sauteuse est un matériel analogue à une poêle qui permet de cuire, à grande échelle, les aliments avec de l’huile ou de l’eau.

C’est une cuve cylindrique ou rectangulaire peu profonde, généralement basculante, destinée à la préparation des viandes, etc.

La braiseuse à pression est appréciée pour la cuisine diététique ou d’hôpital.


Description

Une sauteuse comporte :

  • Une cuve, en général rectangulaire, dont la profondeur est de l’ordre de 20 cm.
    Le matériau le plus couramment utilisé est l’acier doux de forte épaisseur (supérieure à 10 mm) qui assure une bonne répartition de chaleur et une bonne planéité de cette surface.
  • Des résistances électriques généralement blindées, plaquées à l’aide de brides sous la surface utile.
    L’ensemble du fond est isolé (isolants thermiques haute température) pour une bonne orientation de la chaleur vers la surface de travail et un rendement optimal de l’appareil.
  • Éventuellement un système pour basculement manuel (volant à vis sans fin ou levier) ou assisté (hydraulique, électrique ou pneumatique).

Il existe deux types de matériels :

  • sauteuse basculante : récupération des aliments aisée, nettoyage facilité, coûts et encombrement plus grand,
  • sauteuse fixe, de préférence avec un robinet d’écoulement.

Les performances des appareils sont définies par :

  • le temps de montée en température,
  • les températures moyennes aux réglages minimal et maximal,
  • la consommation spécifique en kWh/h.


Commande et régulation

L’appareil est équipé d’un doseur d’énergie et d’un limiteur de température.
Le premier permet un réglage continu de 10 à 100 % de la puissance, tandis que le second limite à 220°C la température de surface (garantie d’hygiène).

Ces commandes, d’un accès aisé, peuvent être placées sur l’appareil en face avant ou situées en position murale, à proximité.


Gamme

La puissance est de 0,2 à 0,3 kW par dm2 pour les modèles à résistances (des modèles à induction sont susceptibles d’apparaître sur le marché).

Le modèle le plus courant est celui de 50 dm2 de surface correspondant à une puissance de 10 à 15 kW (résistances).
Autres modèles : 30, 40 et jusqu’à 70 dm2.

À titre indicatif, on peut prévoir :

  • 1 sauteuse de 50 dm2 pour 300 rationnaires,
  • 2 sauteuses de 50 dm2 pour 600 rationnaires,
  • 3 sauteuses de 50 dm2 pour 1 000 rationnaires.


Utilisation

Essentiellement polyvalente grâce à ses caractéristiques techniques (épaisseur du fond et régulation fine), la sauteuse permet une large utilisation : sauté de petites pièces, dorage de pièces plus grosses, pochage, braisage, mais aussi cuisson à l’étouffée, réduction de sauces, maintien en température.

À partir d’une certaine quantité de mets préparés, la sauteuse peut remplacer les tables de cuisson (gain d’énergie, suppression de la batterie de cuisine).

Elle s’utilise aussi en complément des fours à convection forcée (braisage avant cuisson, sauces … ).

Le déglaçage des sauces et le nettoyage de la cuve se font directement par le robinet d’alimentation.
Il faut donc prévoir une amenée d’eau et une conduite d’évacuation des eaux usées.

Concevoir le raccord entre le bas du versant isolé et le mur

Concevoir le raccord entre le bas du versant isolé et le mur


Isolation entre chevrons – cas d’une gouttière pendante

Schéma - isolation entre chevrons - gouttière pendante

  1. Sablière.
  2. Pare-vapeur.
  3. Isolant.
  4. Sous-toiture rigide.
  5. Contre-latte.
  6. Lattes.
  7. Couverture.
  8. Planche de rive.
  9. Chevron.
  10. Voliges.
  11. Gouttière.
  12. Finition intérieure.
  13. Latte de pied.
  14. Peigne.
  15. Bande de raccord de la gouttière.
  16. Tuile de pied à bord recourbé.
  17. Crochet.

Continuité de la fonction de la couverture (étanchéité à la pluie)

La couverture a pour objectif d’arrêter l’eau et de l’évacuer vers la gouttière.

Comment placer la gouttière pendante pour éviter les risques d’infiltrations ?

> Des voliges sont fixées entre ou sur les chevrons ou fermettes avec découpes éventuelles de ces derniers. Celles-ci vont servir de support à la gouttière.
Des planches de rive viennent fermer l’espace sous la toiture.

> La gouttière proprement dite prolongée par une bande de raccord est agrafée sur les voliges prévues à cet effet. L’extrémité de la bande de raccord doit se trouver au moins 80 mm plus haut que le côté extérieur de la gouttière.

Remarque : la bande de raccord de gouttière peut être indépendante de la gouttière pour autant qu’il n’existe pas de risque de remontée d’eau.

> Dans le cas de tuiles, la position et l’épaisseur de la première latte en pied de toiture est déterminée en fonction de la position des tuiles de pied :

  • le débordement de ces tuiles par rapport à la gouttière doit être d’environ 1/3 de la largeur de la gouttière;
  • la pente de ces tuiles doit être la même que celle des autres tuiles.

Attention, la bande de raccord de la gouttière et la sous-toiture ne peuvent être perforées lors du clouage de cette latte.

> Une bande métallique ou synthétique (ou peigne plastique) protège la latte de pied contre la pluie et évite la pénétration d’oiseaux ou d’insectes.

  1. Ardoises.
  2. Lattes.
  3. Contre-lattes.
  4. Sous-toiture.
  5. Volige.
  6. Peigne.

> Contrairement aux prescriptions, il n’est en général pas donné de pente aux gouttières pendantes, et ce pour des raisons de pratique et d’esthétique. Cette dérogation n’entraîne, en général, pas de problème en pratique.

Continuité de la fonction de la sous-toiture (évacuation des eaux infiltrées ou condensées)

> La sous-toiture doit aboutir dans la gouttière.

> Le recouvrement minimal entre la sous-toiture et la bande de raccord de la gouttière est de 60 mm en projection verticale

Continuité de l’isolation

La continuité de l’isolation exige une bonne coordination entre les corps de métier.

En effet, dans le cas d’une isolation entre chevrons, l’isolant de toiture est posé après la sous-toiture et la couverture.

Or, la jonction correcte de l’isolant entre le mur et la toiture ne peut être réalisée que par l’extérieur, et la sous-toiture déjà posée condamne l’accès à cette zone.

Aussi, une partie de l’isolant, celle située au-dessus du mur de façade et raccordée à l’isolant de la façade, doit être posée juste avant la pose de la sous-toiture.

Continuité du pare-vapeur et raccord de la finition intérieure de toiture avec celle des murs

Le pare-vapeur doit être correctement raccordé contre la face intérieure du mur de façade. La finition fixée sous le pare-vapeur est raccordée de manière étanche avec la finition intérieure du mur de façade de façon à supprimer tout risque de courant d’air à travers la toiture.


Isolation entre fermettes – cas d’un chéneau et de combles non utilisés

Schéma - isolation entre fermettes - chéneau et de combles non utilisés

  1. Panne sablière.
  2. Volige.
  3. Planche de rive.
  4. Fond de chéneau.
  5. Fermette.
  6. Sous-toiture.
  7. Contre-latte.
  8. Lattes.
  9. Couverture.
  10. Double latte.
  11. Bande métallique ou synthétique.
  12. Porte à faux de la tuile de pied.
  13. Bande de raccord de la gouttière.
  14. Pare-vapeur.
  15. Vide technique.
  16. Finition intérieure.
  17. Echelle de corniche.
  18. Plafond de rive.
  19. Étanchéité du chéneau.
  20. Comble perdu.

Une échelle de corniche en bois mise à plat au-dessus du mur porteur ou de la dalle permet de réaliser le support du chéneau en porte-à-faux. Elle remplace ou supporte la sablière.

Continuité de la fonction de la couverture (étanchéité à la pluie)

La couverture a pour objectif d’arrêter l’eau et de l’évacuer vers la gouttière.

Comment placer la gouttière pour éviter les risques d’infiltrations ?

Des cales posées sur l’échelle vont servir à donner la pente au chéneau.
Des voliges sont fixées entre ou sur les chevrons ou fermettes (avec découpes de ces dernières dans le second cas). Celles-ci vont servir de support à la bande de raccordement du chéneau.
Des planches (planche de rive, plafond de rive + moulure de finition, fond de chéneau, …) viennent former la corniche assurant par la même occasion la fermeture du bâtiment au pied du versant de la toiture.

Le caisson en bois de la corniche est pourvu d’une étanchéité métallique, en plastique rigide ou en matériaux souples d’étanchéité tels que le bitume polymère armé de polyester et/ou de fibre de verre.

De plus, comme dans le cas précédent :

> L’extrémité de la bande de raccordement de la gouttière doit se trouver au moins 80 mm plus haut que le côté extérieur de la gouttière.

> La hauteur de la première pièce de support des éléments de couverture (liteaux, voliges) en pied de toiture, est adaptée de manière à leur conserver la même pente.
Attention, la bande de raccord de la gouttière et la sous-toiture ne peuvent être perforées lors du clouage de cette pièce.

> Dans le cas de tuiles, la position de la première de latte en pied de toiture est déterminée de manière à ce que la tuile de pied déborde au-dessus du chéneau.

> Une bande métallique ou synthétique (ou peigne plastique) protège la latte de pied contre la pluie et évite la pénétration d’oiseaux ou d’insectes.

Continuité de la fonction de la sous toiture (évacuation des eaux infiltrées ou condensées)

Comme dans le cas précédent :

> La sous-toiture doit aboutir dans la gouttière.

> Le recouvrement minimal entre la sous-toiture et la bande de raccord du chéneau est de 60 mm en projection verticale.

Continuité de l’isolation

L’échelle de corniche permet de réaliser une jonction continue entre l’isolation du mur et de la toiture (ici, la dalle des combles).

Continuité du pare-vapeur et raccord de la finition intérieure de toiture avec celle des murs

Le pare-vapeur doit être correctement raccordé contre la face intérieure du mur de façade. La finition fixée sous le pare-vapeur est raccordée de manière étanche avec la finition intérieure du mur de façade de façon à supprimer tout risque de courant d’air à travers la toiture.


Toiture « Sarking » – cas d’une gouttière pendante

Au niveau du raccord, la continuité, de la fonction de la couverture, est assurée de la même manière que pour une toiture traditionnelle (isolée par l’intérieur).

Par contre la continuité des fonctions :

  • de la sous-toiture;
  • de l’isolation thermique;
  • et de l’étanchéité à la vapeur et à l’air,

est spécifique à la toiture « Sarking », vu que le panneau isolant assure, à lui seul, ces différentes fonctions.

Cette technique impose de tenir compte de l’épaisseur supplémentaire apportée par l’isolant.

Schéma - Toiture "Sarking" - gouttière pendante.

  1. Panne sablière.
  2. Chevron ou fermette.
  3. Planche de rive.
  4. Cale de bois.
  5. Panneaux isolants.
  6. Isolant entre chevrons ou fermette.
  7. Sous-toiture éventuelle.
  8. Contre-latte.
  9. Lattes.
  10. Latte plâtrière.
  11. Couverture.
  12. Gouttière.
  13. Bavette indépendante.
  14. Peigne.
  15. Finition intérieure.

Une cale en bois est fixée sur le chevron en bas de versant, celle-ci servira à poser le premier panneau isolant.

Des planches (planches de rive, …) viennent fermer l’espace sous la toiture. La gouttière est fixée dans la planche de rive.

Continuité de la fonction de la sous-toiture

Pour assurer la continuité de la fonction de la sous-toiture des panneaux isolants en bas de versant, une bavette indépendante est engravée dans la partie supérieure du panneau sur une profondeur minimum de 30 mm. Elle est maintenue en place par un joint continu de mastic souple. La bavette est constituée d’un matériau rigide (cuivre, zinc, aluminium).

Continuité de l’isolation

Afin d’assurer la continuité de l’isolation entre celle du mur et celle de la toiture, via la panne sablière, des panneaux d’isolation complémentaires doivent être placés sur la panne sablière, entre les chevrons.

Étanchéité à l’air

Ces panneaux d’isolation complémentaire doivent également assurer l’étanchéité à l’air au niveau de bas de versant. Sinon, des dispositions spéciales sont à prévoir.


Toiture « Sarking » – cas d’un chéneau

Au niveau du raccord, la continuité, de la fonction de la couverture, est assurée de la même manière que pour une toiture traditionnelle (isolée par l’intérieur).

Par contre la continuité des fonctions :

  • de la sous-toiture;
  • de l’isolation thermique;
  • et de l’étanchéité à la vapeur et à l’air,

est spécifique à la toiture « Sarking », vu que le panneau isolant assure, à lui seul, ces différentes fonctions.

Cette technique impose de tenir compte de l’épaisseur supplémentaire apportée par l’isolant.

Schéma - Toiture "Sarking" - cas d'un chéneau.

  1. Mur de parement extérieur.
  2. Mur porteur intérieur.
  3. Isolation.
  4. Ossature corniche.
  5. Panne sablière.
  6. Chevron ou fermette.
  7. Cale de pente.
  8. Fond de chéneau.
  9. Volige.
  10. Panneaux isolants.
  11. Isolant entre chevrons ou fermettes.
  12. Sous-toiture.
  13. Contre-latte.
  14. Latte.
  15. Peigne.
  16. Bavette indépendante.
  17. Couverture.
  18. Planche de rive.
  19. Plafond de rive.
  20. Chéneau.
  21. Finition intérieure.

Une volige est fixée sur le chevron en bas de versant, celle-ci servira à poser le premier panneau isolant.

Continuité de la fonction de la sous-toiture

Pour assurer la continuité de la fonction de la sous-toiture des panneaux isolants en bas de versant, une bavette indépendante est engravée dans la partie supérieure du panneau sur une profondeur minimum de 30 mm. Elle est maintenue en place par un joint continu de mastic souple. La bavette est constituée d’un matériau rigide (cuivre, zinc, aluminium).

Continuité de l’isolation

Afin d’assurer la continuité de l’isolation entre celle du mur et celle de la toiture, via la panne sablière, des panneaux d’isolation complémentaires doivent être placés sur la panne sablière, entre les chevrons.

Étanchéité à l’air

Ces panneaux d’isolation complémentaire doivent également assurer l’étanchéité à l’air au niveau de bas de versant. Sinon, des dispositions spéciales sont à prévoir.

Concevoir une cuisine collective

Concevoir une cuisine collective

Dans une cuisine, on élabore de la nourriture. Il s’agit donc de produits qui doivent pouvoir être consommés sans danger; les règles d’hygiène sont inséparables de la fabrication des repas.

Le tracé du plan d’une cuisine collective doit respecter trois règles de base pour satisfaire à des conditions hygiéniques :


Déterminer des secteurs par fonction

En cuisine, certaines activités sont salissantes et d’autres sont soumises à une propreté rigoureuse : il est donc indispensable de prévoir autant d’aires distinctes de travail, qu’il y a de tâches différentes à exécuter. Ces zones de travail doivent être disposées dans un ordre logique et reliées entre elles par des circuits séparés.

On distingue 8 fonctions principales :

  • réception des marchandises,
  • stockage de ces marchandises,
  • préparation des aliments,
  • cuisson,
  • conservation des aliments préparés,
  • distribution,
  • élimination des déchets,
  • lavage de la batterie de cuisine et de la vaisselle sale.

Schéma plan cuisine.

Plan d’une cuisine collective : exemple.


Réaliser des circuits courts

Chaque agent doit effectuer le minimum de déplacements entre les zones de travail et à l’intérieur de ces zones.
Les communications entre les différents secteurs doivent permettre une circulation aisée et rapide.

Tous les appareils, les plans de travail, les outils d’exécution doivent être à portée de main.


Respecter le principe de la marche en avant

Les zones de travail doivent communiquer entre elles en respectant le principe de la marche en avant.

Ce principe concerne le cheminement des produits depuis la zone de réception jusqu’à l’assiette du consommateur. A aucun moment, un produit contaminant ne doit couper un circuit propre.

Cette règle concerne tous les circuits : denrées, déchets, vaisselle propre et sale.

Schéma principe de la marche en avant.

Il importe par exemple que :

  • Les déchets de triage des légumes, de parage des viandes, et les sacs à poubelles ne traversent pas le secteur des préparations froides.
  • Les emballages vides, les déchets de viande ou de légumes soient amenés au local à poubelles, sans pénétrer dans le secteur de préparation en cuisine.
  • En bout de chaîne, pour rejoindre le même local à poubelles, les déchets de salles à manger et de plonge soient acheminés en aval du secteur cuisine sans recouper le secteur distribution.
  • La même précaution soit prise pour le déplacement de la vaisselle propre, qui doit être enlevée du secteur vaisselle par une porte différente de celle par où est introduite la vaisselle sale.

De ceci, découlent trois idées directrices :

  • Élimination des déchets en amont des secteurs de préparation culinaire, en aval du secteur distribution.
  • Convergence des déchets vers un seul local de récupération.
  • Un circuit d’évacuation des déchets ne doit jamais venir croiser un circuit de préparation des aliments.

Pour aboutir au résultat obtenu, il faut considérer tous les éléments de l’ensemble sans exception, y compris les couloirs, dégagements, ascenseurs.

Cette règle facile à énoncer est plus difficile à respecter dans la pratique. Elle est absolument essentielle au plan de l’hygiène.

Entretenir la toiture plate

Entretenir la toiture plate

Cet entretien, sera de préférence pris en charge par l’entrepreneur qui a réalisé l’étanchéité, afin qu’un défaut d’entretien ne puisse être invoqué en cas de demande d’intervention dans le cadre de la garantie décennale.

Il comprend :

Après l’hiver

  • Une inspection générale et une réparation éventuelle touchant à l’apparence de l’étanchéité (plis, affaissement, vieillissement, décollement, …).
  • L’entretien des avaloirs, des tuyaux de descente, de l’éventuelle couche de protection, des solins, des profilés, des joints, etc.
  • La mise en œuvre éventuelle d’une couche de protection supplémentaire aux endroits à circulation intense.

Après la chute des feuilles

  • L’élimination des feuilles mortes.
  • L’enlèvement des mousses, des végétations, des objets étrangers, etc.
  • Pour les toitures lestées, la correction, si nécessaire, du lestage.

Toute circulation inutile sur les toitures sera interdite, ou soumise à des précautions suffisantes pour éviter le percement de l’étanchéité et/ou l’écrasement de l’isolant.

L’appui des outils ou des installations de chantier sur la toiture sera conçu de façon à prévenir tout désordre.

En cas d’accès nécessaires fréquents (pour l’entretien d’installations techniques par exemple), des passages circulables seront aménagés.

Évaluer l’efficacité énergétique d’une fenêtre

Évaluer l'efficacité énergétique d'une fenêtre


Évaluer le coefficient de transmission thermique d’une fenêtre

D’un point de vue énergétique, les portes et les fenêtres constituent les points sensibles d’un bâtiment.

Dans le cas de bâtiments anciens, les pertes de chaleur au droit des ouvertures se font à travers les vitrages, à travers les châssis, mais aussi au niveau des différents joints (châssis-vitrage, châssis-gros œuvre) et au droit des autres constituants de la baie (seuil, encadrement, caisses à volets, grille de ventilation…).

Leurs performances thermiques dépendent donc également de leur étanchéité à l’air.

Évaluer

Pour  évaluer l’étanchéité à l’air globale d’un bâtiment y compris l’étanchéité à l’air des châssis.

La réglementation PEB fournit une formule simplifiée permettant d’évaluer l’efficacité énergétique d’une fenêtre en tenant compte de l’efficacité du châssis et du vitrage tout en supposant une bonne étanchéité à l’air.

Données

 Pour connaitre les valeurs caractéristiques standards de différents types de vitrage.

Données

Pour connaitre les valeurs caractéristiques standards de différents types de châssis :

Évaluer

 Pour évaluer le coefficient de transmission thermique du vitrage Ug.

Évaluer

 Pour évaluer le coefficient de transmission thermique du châssis Uf.

Remarque.
Ces formules sont basées sur l’hypothèse que le vitrage occupe en moyenne 70 à 75 % de la surface de la fenêtre et que l’on a, en moyenne, une longueur de 3 mètres courants d’intercalaire par m² de vitrage.

Pour les fenêtres de toit, les valeurs de calcul Uf tabulées ne peuvent être directement utilisées, car elles ne sont valables que pour des encadrements posés verticalement (avec Rsi=0,13). Pour une fenêtre de toiture faisant un angle compris entre 0° et 60° avec l’horizontale, il y a lieu d’appliquer la correction suivante (Rsi = 0.10).

Uf,r = (1/Uf – 0.03)-1

Où Uf,r est la valeur corrigée de Uf.

Les valeurs du coefficient de transmission thermique U linéaire de l’intercalaire sont fonction du type de châssis et de vitrages.

Le coefficient Ur d’une grille de ventilation (obturable) peut être défini expérimentalement (selon NBN EN 12412-2) ou calculé suivant la NBN EN ISO 10077-2. Il est également possible d’utiliser la valeur par défaut de 6,0 W/m²K pour toutes les grilles.

Le coefficient Ψ peut être déterminé avec précision au départ d’un calcul numérique suivant la NBN EN ISO 10077-2 ou d’un essai selon la NBN EN 12412-2. Si aucune information précise n’est connue, on peut utiliser les valeurs du tableau suivant.

Remarque.
Les calculs du coefficient de transmission U d’une fenêtre sont basés sur une moyenne acceptable dans la pratique. Cependant en théorie, la forme, le type d’ouvrant, les divisions augmentant le périmètre d’intercalaire, modifient le coefficient de transmission thermique de la fenêtre et devraient entrer en ligne de compte…

Dans le tableau ci-dessous, les calculs décrits ci-dessus ont été effectués pour différents types de châssis et de vitrages rencontrés dans les bâtiments existants grâce au fichier Excel.

Châssis Vitrage avec intercalaires isolants
Double vitrage clair Double vitrage peu émissif Triple vitrage peu émissif
Air Air Argon Krypton Krypton
Type de châssis Ug = 2,9 Ug = 1,75 Ug = 1,3 Ug = 1,1 Ug = 0,5
Bois ép. 70 mm Feuillus Uf = 2,08 2,8 2,03 1,71 1,57 1,15
Résineux Uf = 1,78 2,71 1,94 1,62 1,48 1,06
Métallique Sans coupure thermique (1;1) Uf = 5,9 3,83 3,12 2,8 2,66 2,24
Avec coupure thermique 10 mm Uf = 4,19 3,47 2,72 2,41 2,27 1,85
Avec coupure thermique 20 mm Uf = 3,28 3,19 2,45 2,13 1,99 1,57
Avec coupure thermique 30 mm Uf = 2,97 3,10 2,36 2,04 1,90 1,48
PVC avec ou sans renforts métalliques 2 chambres Uf = 2,2 2,84 2,07 1,75 1,61 1,19
3 chambres Uf = 2 2,78 2,01 1,69 1,55 1,13
4 chambres Uf = 1,8 2,72 1,95 1,63 1,49 1,07
5 chambres Uf = 1,6 2,66 1,89 1,57 1,43 1,01
PUR, avec noyau métallique et remplissage de 5 mm de PUR Uf = 2,8 3,02 2,25 1,93 1,79 1,37

Valeur de référence

Une fenêtre est caractérisée par un coefficient de transmission thermique  Uw. Plus ce coefficient est petit plus le vitrage est isolant. La réglementation PEB impose des valeurs  maximales de coefficients thermiques  pour les fenêtres.
Ces valeurs peuvent être vues comme un « garde-fou ». D’autres labels volontaires recommandent d’ailleurs des performances thermiques plus élevées.

Aires de jeu des terrains de sport

Aires de jeu des terrains de sport


La norme européenne EN 12193 sur l’éclairage des installations sportives définit un certain nombre de paramètres :

Dimension du tracé de jeu, de l’aire principale et de l’aire totale de différents terrains

Type de sport

Tracé de jeu, PA et TA

Surfaces

Longueur (m)

Largeur (m)

Badminton

Tracé de jeu
PA
TA (max)

13,4
18
6,1
10,5

Basket-ball

Tracé de jeu
PA
TA

28
32
15
19

Danse

Escrime

PA
TA(max)

14
18
2
5

Football

Tracé de jeu
PA
TA

30 à 40
44
18,5 à 20
18,6 à 24

Gymnastique

PA

32 à 50 22 5 à 25

Handball

Tracé de jeu
PA
TA

40
44
20
24

Judo

PA
TA

10
17
10
17

Karaté

PA
TA

8
11
8
11

Nettball

Tracé de jeu
PA
TA

30,5
37,5
15,3
22,5

Tennis de table

Tracé de jeu
PA

2,74
9
1,525
4,5

Tennis

Tracé de jeu
PA
TA

23,77
36
10,97
18

Volley-ball

Tracé de jeu
PA
TA

18
24
9
15

L’aire de référence

Les calculs d’éclairement, et les uniformités qui s’en suivent, devront se faire sur base d’un maillage dont les points d’intersection sont appelés « points de maillage ».

Les calculs se font au centre des mailles appelés « points de calculs ».

L’aire de référence couvre l’ensemble des points de maillage.

On trouve deux façons de définir l’aire de référence :

Soit l’aire principale d’un terrain de sport spécifique, possède un certain nombre fixe de points de calcul, en longueur et en largeur. L’aire de référence correspond alors à l’aire principale.

Voici le nombre de points de calcul selon la norme EN 12193 sur l’éclairage des installations sportives.

Type de sport

Tracé de jeu, PA et TA

Surfaces

Nbre de points de calcul…

Longu. (m)

Larg.(m)

…dans la longueur

Dans la largeur

Badminton

Tracé jeu
PA
TA (max)

13,4
18
6,1
10,5
11
11
5
7

Basket-ball

Tracé jeu
PA
TA

28
32
15
19
13
15
7
9

Danse

Escrime

PA
TA(max)

14
18
2
5
11
11
3
3

Football

Tracé jeu
PA
TA

30 à 40
44
18,5 à 20
18,6 à 24
13 à 15
15

Gymnastique

PA

32 à 50 22,5 à 25 15 à 17 9

Handball

Tracé jeu
PA
TA

40
44
20
24
15
15
7
9

Judo

PA
TA

10
17
10
17
11
11
11
11

Karaté

PA
TA

8
11
8
11
9
11
9
11

Nettball

Tracé jeu
PA
TA

30,5
37,5
15,3
22,5
13
15
7
9

Tennis de table

Tracé jeu
PA

2,74
9
1.525
4.5
9 3

Tennis

Tracé jeu
PA
TA

23,77
36
10,97
18
15 7

Volley-ball

Tracé jeu
PA
TA

18
24
9
15
13 9

> soit, il existe une distance fixe entre les points de maillage. L’ensemble des mailles couvrent alors une surface plus grande que la PA qui est l’aire de référence.

Schéma points de maillage.

Ces distances fixes sont données par l’Association Générale des Fédérations Internationales de Sports.

Type de sport Distance entre les points de calculs (m)
Badminton 2
Basket-ball 2
Danse 2
Escrime 2
Football 2
Gymnastique 2
Handball 2
Judo 1
Karaté 1
Nettball 2
Tennis de table 2
Tennis 2 (4 pour TPA)
Volley-ball 2

Il faut alors calculer le nombre de points de calcul et les surfaces de références correspondantes

  • Nombre de points de calcul en longueur (ou largeur) =
    (longueur (ou largeur)de la surface/distance entre les points de calcul) arrondi à l’unité supérieure.
  • Longueur (ou largeur) de la surface de référence =
    nombre de points de calcul en longueur (ou en largeur) x distance entre les points de calcul.

Exemple.

Netball : Longueur de la PA/distance entre les points de calcul = 30,5/2 = 15,25

Nombre de points de calcul en longueur sur la PA = 16

Longueur de référence pour la PA = 16 x 2 = 32 m

Choisir les débits de ventilation

Choisir les débits de ventilation


Calcul des débits – Généralités

D’une manière générale, il y a deux bilans à faire dans un local :

  1. Un bilan des puissances dégagées par les appareils ou l’occupation spécifique des locaux de la cuisine. Les méthodes à choisir pour calculer ces différents débits correspondant à ce bilan sont données ci-dessous pour chacun des types de locaux.
  2. Un bilan classique des déperditions et apports calorifiques qui comptabilise les puissances dégagées par :
  • les échanges par les parois,
  • les échanges par les baies vitrées,
  • les apports internes (les occupants, l’éclairage, …),
  • etc.

Si d’après ce bilan, il y a un apport significatif en chaleur créant une augmentation de la température ambiante souhaitée, il faudra augmenter l’apport d’air neuf (ces débits ne peuvent donc pas être des débits de transfert) par rapport aux débits de ventilation dont il est question au point 1.


Le local de cuisson

Photo cuisine collective. En Belgique, il n’existe malheureusement pas de norme indiquant les débits de ventilation dans les cuisines collectives.

D’autres part, il existe de nombreuses méthodes de calcul des débits. Ces méthodes donnent des résultats très différents.

De manière à rapprocher les débits à extraire des débits réels nécessaires, nous pensons que les méthodes à appliquer sont celles qui tiennent compte des appareils installés : de leurs types et de leurs puissances. Nous recommandons donc la méthode en fonction de la puissance des appareils pour autant que cette méthode soit adaptée aux appareils actuels. Certains fabricants disposent de tables de calculs correspondant à cette méthode qui tiennent compte, non seulement des appareils de cuisson actuels, mais également de l’efficacité de leur hotte ou plafond filtrant. Cette méthode tient compte de la chaleur (sensible et latente) réellement dégagée par les appareils de cuisson. Elle permet donc de calculer des débits suffisants pour évacuer l’air vicié mais non exagérés par rapport à ce besoin.

Cette méthode considère un facteur de simultanéité et en donne des valeurs forfaitaires selon le cas. Cependant, il est préférable que celui-ci soit choisi en fonction de l’utilisation réelle des appareils de cuisson bien connue par le chef-coq.

Spécificités dans les cuisines avec appareils au gaz

Dans le cas d’une cuisine avec des appareils au gaz, on veillera à respecter au moins les valeurs préconisées par la NBN D51-003. Cette norme a été expliquée dans un dossier technique de l’ARGB. Les débits à respecter sont repris dans la partie qui concerne l’aération.

Il existe également des débits préconisés par le cahier des charges de l’ARGB sur l’aération des grandes cuisines.

Nous avons demandé à l’ARGB si les débits devaient respecter la NBN D51-003 et/ou le cahier des charges de l’ARGB dont il est question ci-dessus, nous n’avons pas eu de réponse de leur part.


La laverie

Photo lave-vaisselle.

Comme pour le local de cuisson, il existe de nombreuses méthodes pour calculer les débits à extraire dans les laveries.

Dans l’absolu, la méthode qui permet le mieux de se rapprocher des débits réellement nécessaires est celle qui tient compte de la chaleur (sensible et latente) dégagée par le lave-vaisselle.

Malheureusement, ces chiffres ne sont pas connus pour les différents types de lave-vaisselle actuels (à panier statique, à déplacement, alimentés en eau froide, alimentés en eau chaude, avec récupérateur de chaleur, avec pompe à chaleur, etc.).

Il y a donc lieu de suivre les recommandations des fabricants.

Influence d’une pompe à chaleur sur les débits d’évacuation :

La pompe à chaleur traite l’ensemble du local en absorbant chaleur et humidité (absolue).
Il reste cependant nécessaire de prévoir une extraction, mais celle-ci peut-être nettement moins importante.


Les locaux annexes

Photo restaurant

Il existe des débits spécifiques pour les locaux annexes. Ces valeurs nous ont été fournies par un fabricant.

Diminuer les charges thermiques externes aux meubles

Diminuer les charges thermiques externes aux meubles


L’apport des occupants

Est-ce un problème ?

L’homme apporte chaleur sensible (par notre corps à 37°C) et chaleur latente (par notre production de vapeur d’eau en respiration et transpiration).

Ces valeurs varient en fonction de la température ambiante.

En période froide

En hiver, le client déambulant dans un magasin dont l’ambiance est à 21°C, fournit de l’ordre de 115 Watts de chaleur gratuite au local. La valeur de 115 Watts est élevée par rapport au fait, qu’en période froide, les clients viennent de l’extérieur qui est plus froid. En réalité, si l’on veut aller au fond des choses, l’inertie des vêtements fait en sorte que pendant un certain temps les clients ont tendance à :

  • refroidir l’ambiance de la zone de vente plutôt que de la réchauffer;
  • retarder la production d’eau par transpiration.

Par ailleurs, le corps humain disperse aussi théoriquement 110 g/h d’eau dans l’atmosphère. Cet apport d’eau :

  • ne modifie pratiquement pas la température du magasin vu que les déperditions au travers des parois sont importantes en hiver;
  • contribue à humidifier l’ambiance qui parfois peut être sèche en période froide. Toutefois, attention de ne pas condenser cet apport d’eau au niveau des évaporateurs des meubles frigorifiques, des chambres froides, …

En période chaude

Par contre, en été, la vapeur d’eau délivrée augmente (105 gr/h à 26°C) et sera condensée sur la batterie froide de l’évaporateur, par exemple.

La chaleur de condensation correspondante devra être comptabilisée dans le bilan thermique de la machine frigorifique.

Peut-on diminuer ces consommations ?

À vrai dire oui, le seul véritable effet bénéfique qui risque de contenter tout le monde est d’isoler les meubles frigorifiques par des parois ad hoc et de fermer les ouvertures par des portes ou par des systèmes ingénieux comme le montre la figure ci-dessous. C’est vrai qu’il faut rester conscient que les portes, les couvercles, les ventelles, … peuvent représenter un frein à la vente. Néanmoins, via une sensibilisation bien orchestrée, la fermeture des meubles frigorifiques ouverts, le renforcement des isolations des meubles fermés peuvent devenir un outil de marketing important.

Source : magasin Bioshanti Bruxelles.

En période froide

Bien que tout apport de chaleur au meuble frigorifique lui soit néfaste, en période froide et pour un confort correct à sa proximité, l’apport des personnes est bénéfique pour l’installation de chauffage.

En période chaude

En période chaude, il est difficile d’empêcher les gens de transpirer ! Quoique…

Il faudrait suggérer au commerçant qu’il conseille à ses clients une petite sieste salutaire pour diminuer le métabolisme et donc cette coûteuse charge thermique pour l’évaporateur et in fine pour la machine frigorifique  !


L’apport des équipements environnants

Est-ce un problème ?

Toute charge électrique (éclairage, caisse électronique, four de boulangerie, …) dans une zone équipée de meubles frigorifiques est payée plus d’une fois : une fois pour effectuer le travail attendu plus une partie pour évacuer ce travail qui s’est transformé en énergie calorifique.

Exemple.

20 lampes de 60 Watts éclairant des meubles linéaires vont entièrement convertir l’énergie qu’elles utilisent en chaleur. Il faudra donc évacuer partiellement 1 200 W, ou 1,2  kW de chaleur au niveau de l’évaporateur du meuble frigorifique… !

Meubles frigorifiques ouverts

Les apports de chaleur des équipements externes aux meubles se transmettent :

  • par induction continue au travers du rideau d’air (température plus élevée de l’air ambiant);
  • par conduction continue au travers des parois (différence des températures de part et d’autre des parois plus élevées);
  • par radiation directe de la composante infrarouge IR de la source de chaleur.

Meubles frigorifiques fermés

Les apports de chaleur des équipements externes aux meubles se transmettent :

  • par induction lors de l’ouverture des portes
  • par conduction continue au travers des parois pour les meubles frigorifiques fermés.

Production frigorifique

La chaleur transmise par les équipements externes aux meubles frigorifiques doit être évacuée par l’évaporateur. Via le cycle frigorifique de la production de froid cette chaleur se retrouve évacuée à l’extérieur par le condenseur.

Peut-on diminuer ces consommations ?

Dans les magasins existants, on s’arrangera pour :

  • éloigner le plus possible les sources de chaleur pouvant influencer les meubles frigorifiques.
Exemple.

Le classique des classiques est la rôtissoire de poulet que les bouchers disposent à l’extérieur de manière à ne pas réchauffer l’ambiance où se trouvent les comptoirs frigorifiques ouverts.

En période chaude

Cette méthode éprouvée est énergétiquement intéressante puisque, d’une part la source de chaleur est en dehors de la zone climatisée, d’autre part la rôtissoire risque de consommer moins si elle est placée en plein soleil.

En période froide

Par contre, cette méthode est moins intéressante. Idéalement, il faudrait que :

  • la boucherie soit ouverte sur l’extérieur (eh oui ! cela existe toujours, mais rarement) afin de profiter de la température extérieure pour refroidir les comptoirs frigorifiques naturellement;
  • la rôtissoire soit placée dans une partie de la boucherie nécessitant de la chaleur (ce qui est plus dur à trouver) ou du moins que la chaleur soit évacuée vers une partie du commerce en demande de chaud.
  • remplacer les sources d’éclairage à basse efficacité énergétique (incandescence, halogène, …) par des plus efficaces.

Évaluer

Pour évaluer la qualité de l’éclairage existant et examiner les améliorations possibles.

La rentabilité des interventions sur ces équipements est améliorée par l’économie complémentaire faite sur le coût d’exploitation des installations de froid alimentaire.

Luminance moyenne d’un luminaire

Luminance moyenne d'un luminaire


La luminance moyenne (en cd/m²) d’un luminaire représente sa brillance et quantifie les risques d’éblouissement. Elle est définie en fonction de l’angle de vision du luminaire par rapport à la verticale (angle d’élévation).

Luminaire intérieur, coupe transversale et longitudinale.

Les fournisseurs reprennent ces grandeurs sous forme de tableau ou sous forme d’abaque (dans le plan C90 en trait continu et dans le plan C0 en pointillés). Elles sont données soit pour la totalité du flux lumineux émis par les lampes (en lm), soit ramenés à 1 000 lm. Dans ce dernier cas, il faudra multiplier les valeurs par le flux lumineux des lampes /1 000 pour obtenir les valeurs réelles.

Exemple de fiche technique d’un luminaire :

Exemple de fiche technique d'un luminaire 

Choisir le système de ventilation dans les espaces médicalisés


Principe général

Dans les zones non médicalisées, on se rapproche de la conception des bâtiments classiques du tertiaire tels que les bâtiments ou les plateaux de bureaux administratifs ou médicaux. Dans ces zones la ventilation naturelle peut être envisagée pour autant qu’elle n’interfère pas avec la ventilation mécanique des autres zones (zones administratives intégrées dans des zones médicalisées par exemple).


Configuration la plus courante

Généralement, la ventilation dans les unités d’hospitalisation à risque de contamination faible est une ventilation mécanique à distribution de type horizontale :

  • La prise d’air pour le groupe de traitement peut se faire à l’étage considéré ou en toiture.
  • La distribution est composée d’un réseau de conduits horizontaux placés dans le faux plafond des zones de circulation (faux plafonds du couloir) et distribuant l’air neuf au droit de chaque chambre.

  • La diffusion de l’air neuf à l’intérieur de chaque chambre est alors obtenue par une grille murale placée au niveau de la retombée des faux plafonds des circulations ou de l’entrée.
  • Le transfert d’air entre la chambre et la salle d’eau se fait, soit par un détalonnage des portes, soit par des passages appropriés avec grilles à chevrons ou autre.

Grille de transfert d’air.

  • L’extraction de l’air vicié se fait, via la salle d’eau et le réseau de conduits horizontal, en bout de plateau ou à travers des conduits verticaux en toiture.

Le système à distribution verticale est à éviter dans les unités d’hospitalisation et dans les hôpitaux en général de manière à éviter la biocontamination croisée entre étages dont la spécialité médicale est différente (la pneumologie pourrait-elle partager le même réseau de ventilation que la maternité ?).

© Architecture et climat 2023.

Ventilation double flux verticale.

  1. Air neuf
  2. Air rejeté
  3. Air vicié

Équilibre amenée d’air neuf – évacuation d’air vicié

Les normes de ventilation n’impose pas d’équilibrer les débits d’extraction et d’amenée d’air. C’est cependant le moyen de garantir que les débits d’air neuf prévus soient effectivement introduits dans le bâtiment : l’air ne rentrera pas s’il ne peut sortir !

La norme doit donc être considérée comme une ligne de conduite reprenant les exigences minimales à respecter. Elle ne garantit en aucun cas le débit réel de ventilation du bâtiment.

Dans la mesure du possible, il faut donc essayer d’équilibrer les débits d’amenée et d’évacuation d’air, tout en laissant un léger surplus d’amenée d’air par rapport à l’extraction pour maintenir les chambres en surpression et éliminer les entrées d’air parasites venant du couloir et de l’extérieur.

Bouches de pulsion et d’extraction

Bouches de pulsion et d'extraction

Exemples de bouche de pulsion (de gauche à droite) : diffuseur plafonnier multicône circulaire et carré, diffuseur plafonnier à jet hélicoïdal, plafonnier perforé, diffuseur linéaire, buse de soufflage, grille murale à double déflecteur, bouche de sol.


Techniques de diffusion

Les bouches regroupent les ouvertures qui, en ventilation mécanique, permettent de diffuser l’air neuf pulsé dans les locaux ou d’en évacuer l’air vicié. Dans les descriptions qui suivent, l’accent est mis sur les bouches de pulsion car se sont elles qui conditionnent en grande partie le confort obtenu dans le local. De plus, la plupart des bouches de pulsion peuvent également fonctionner en extraction.

Il existe deux techniques de diffusion d’air : la diffusion par mélange et la diffusion par déplacement.

Diffusion par mélange

Ce sont les grilles et les diffuseurs. L’air soufflé est mélangé plus ou moins rapidement avec l’air ambiant par induction, pour obtenir une température et une concentration en polluants homogènes dans le local.

      

    

Bouches de pulsion (de gauche à droite) : diffuseur plafonnier multicône carré, diffuseur plafonnier à jet hélicoïdal, plafonnier perforé, diffuseur linéaire, buse de soufflage, grille murale à double déflecteur, bouche de sol.

Avantages

Inconvénients

Grande variété de matériel. Difficulté de brassage en grande hauteur (surtout en chauffage).
Variété de positionnement possible (plafond, murs, sol). Sélection spécifique dans le cas d’un système de climatisation VAV à forte variation de débit.
Dilution de la pollution avant son évacuation.

Diffusion par déplacement

Fonctionnement d’une bouche à déplacement.

Ce sont les bouches à déplacement. L’air froid est soufflé à basse vitesse, s’échauffe au contact de sources chaudes (occupants, matériel informatique, éclairage, …), s’élève entraînant les calories et les polluants et est extrait en partie haute du local.

    

Bouches à déplacement semi-circulaire, encastrable et de contremarche.

Avantages

Inconvénients

Économie d’énergie, surtout dans les locaux de grand volume ou hauteur, puisqu’on ne traite que la zone d’occupation. Permet difficilement le chauffage et ne s’applique à la ventilation hygiénique que dans des cas biens spécifiques (salles d’opération, …)
Bonne évacuation des polluants, sans dilution (industrie, restaurants, …) Intégration architecturale à étudier.
Peu de risques de courant d’air (faible vitesse d’air).
Convient bien au VAV.
Permet de ne pas tenir compte d’une partie des charges liées à l’éclairage (partie convective) dans l’estimation des charges thermiques à évacuer car celles-ci sont directement évacuées en partie haute sans influencer l’ambiance.
Particulièrement silencieux.

Les bouches à déplacement s’appliquent particulièrement bien aux locaux à plafond haut, comportant de nombreuses sources de chaleur (usines, salles de réunion, théâtre, cinéma, hall d’hôtel).

Attention cependant, il est fortement déconseillé d’utiliser ces bouches pour y pulser de l’air chaud. Étant donné, la faible vitesse de l’air, celui-ci montera directement au plafond.

Etude de cas.

Dans un auditoire d’un Institut Supérieur de Liège équipé de bouches à déplacement, les occupants se plaignaient d’un manque permanent de chaleur. Pour diagnostiquer le problème, un fumigène fut placé dans le groupe.

On a constaté que, dès la sortie des bouches (placées en bas de l’auditoire), l’air chaud montait au plafond, sans se mélanger à l’air ambiant. Il passait au-dessus de la tête des occupants avant d’être repris par les bouches d’extraction (en haut de la salle). On image très bien le bonheur du marchand de chaussettes norvégiennes qui a élu domicile en face de l’auditoire …

En fait, on a simplement choisi ici des bouches prévues pour la pulsion d’air froid pour faire du chauffage.

En effet, en mode « refroidissement », l’air frais aurait longé les gradins, se réchauffant au contact des étudiants avant d’être évacué.


Grandeurs caractéristiques d’une bouche

Le débit

Le débit, exprimé en m³/s ou en m³/h dans leur gamme normale d’utilisation. La plage de débit possible d’une bouche en fonction de la différence de pression entre l’amont et l’aval de la bouche (perte de charge de la bouche) est représentée par sa courbe caractéristique (débit-perte de charge).

Exemple d’abaque reprenant la perte de charge [Δpt]  nécessaire en fonction
du débit [q]  désiré et la puissance acoustique [LWA] associée.

Dans le cas de diffuseurs à recyclage interne, il sera précisé quel est le débit réaspiré dans le local et mélangé à l’air arrivant du conduit avant son éjection. Cette donnée permet d’envisager l’emploi d’un air plus froid ou plus chaud utilisé comme air primaire, auquel s’ajoutera l’air secondaire repris dans le local.

La puissance acoustique

Les bouches sont caractérisées par une production de bruit due au passage de l’air. Les catalogues reprennent aussi le niveau de la puissance acoustique LWA(en dB(A)) émise par la bouche dans le local en fonction du débit. En association avec les courbes de puissance acoustique, on retrouve aussi parfois  dans les abaques relatifs aux bouches, le niveau LWNR (Noise Rating) ou LWNC illustrant le niveau de « confort acoustique » de la bouche (LW signifiant « puissance acoustique », il s’agit de la mesure au niveau même de la bouche et non dans le local).

Certaines bouches intègrent aussi une fonction d’insonorisation par rapport aux bruits véhiculés dans les réseaux de distribution.

La direction du jet d’air

Les différentes bouches de pulsion se caractérisent aussi par la direction du jet d’air :

  • Pulsion parallèle au plafond, favorisant l’effet Coanda (grilles, diffuseurs à soufflage horizontal).
  • Pulsion hélicoïdale qui est aussi une pulsion parallèle au plafond, mais favorisant le brassage d’air (diffuseurs hélicoïdaux).
  • Pulsion directionnelle favorisant la pénétration du jet d’air dans le local (bouche à longue portée).
  • Pulsion parallèle au sol pour extraire les polluants au niveau de leur source (diffuseurs à déplacement).

Les grilles de soufflage ou de reprise

En général, les grilles pulsent l’air de façon unidirectionnelle. Elles sont utilisées pour des débits soufflés à faible vitesse car elles se prêtent bien, par leur principe, à la réalisation de bouches de section de passage importante. On distingue :

  • des grilles de distribution d’air à ailettes fixes,
  • des grilles de distribution d’air à ailettes réglables, en un étage. Ces ailettes peuvent n’être réglées qu’une fois pour toutes, avant ou après montage ou, plus rarement, être réglées par les utilisateurs,
  • des grilles à deux étages d’ailettes disposés l’un devant l’autre, dans des directions perpendiculaires afin de pouvoir diriger le jet ou régler la distribution dans n’importe quelle direction,

Grille à deux étages d’ailettes.

  • des grilles montées dans un cadre circulaire, à ailettes éventuellement réglables,
  • des persiennages à volets pivotant sous l’effet d’une surpression.

Les grilles d’amenée d’air sont de type murale (exemple : dans les retombés des faux plafonds), ou de type plafonnier s’il existe des faux plafonds dans le local. Chaque bouche, avec généralement un plénum de détente, est raccordée au circuit de soufflage par un conduit souple en tête duquel est installé un registre de réglage des débits.

Beaucoup de grilles proposées par les constructeurs conviennent aussi bien à la reprise qu’au soufflage, avec des pressions en général légèrement différentes. Certaines sont cependant spécialement prévues pour la reprise. Elles peuvent comporter des volets de réglage, des grillages de protection, des filtres, …


Les diffuseurs

Le principe du diffuseur est de répartir l’air pulsé de façon plus homogène dans le local (diffusion multidirectionnelle). La frontière n’est pas nette entre les grilles et les diffuseurs, car certaines grilles assurent une diffusion et certains diffuseurs dits « linéaires » ont l’aspect d’une grille.

Diffuseurs à jet rectiligne

Photo diffuseurs à jet rectiligne.

Suivant leurs formes, les diffuseurs à jet rectiligne comportent un certain nombre de cônes (ou pyramides) coaxiaux. Les diffuseurs à plusieurs cônes sont parfois prévus pour obtenir une modification du jet par un déplacement relatif de certains cônes.

Géométriquement, on peut les classer en diffuseurs circulaires, carrés, ou linéaires. Tous peuvent être montés en plafonnier. Dans ce cas, ils pulsent généralement l’air parallèlement au plafond par effet Coanda.

Effet Coanda avec un diffuseur plafonnier.

Les diffuseurs linéaires peuvent être montés en paroi ou en allège. On monte parfois en allège des diffuseurs demi-circulaires, ou triangulaires.

Diffuseurs à jet hélicoïdal ou jet torique

Il existe des diffuseurs provoquant un flux d’air hélicoïdal entraînant un mélange rapide entre l’air ambiant et l’air pulsé et donc une homogénéisation des températures : le fort taux d’induction de la bouche réduit la portée du jet d’air tout en permettant des grands taux de renouvellement d’air, avec peu de courant d’air.

Diffuseur hélicoïdal favorisant le mélange rapide entre l’air pulsé et l’air ambiant.

Diffuseurs à recyclage interne

Il existe des diffuseurs à recyclage interne. La disposition des cônes crée un effet d’aspiration par induction de l’air du local qui est mélangé à l’air amené par le conduit : si le rapport de mélange est de 0,5, on peut ainsi souffler dans une ambiance de 20°C de l’air à 15°C obtenus par mélange avec un air primaire arrivant à 10°C ou de l’air à 25°C à partir d’air primaire à 30°C, ce qui permet d’augmenter le débit d’air neuf, par exemple pour réaliser du free cooling diurne, sans créer de différences de températures élevées entre ambiance et soufflage.

Pulsion et extraction combinée

Il est aussi possible de pulser et d’extraire au travers d’un même diffuseur. Certains diffuseurs circulaires sont ainsi prévus pour évacuer dans leur partie centrale l’air repris dans le local et l’envoyer dans un circuit en dépression. Ce système donne une bonne homogénéisation des ambiances et permet de juxtaposer les gaines de pulsion et de reprise.

Schéma principe pulsion et extraction combinée.

Extraction combinée à l’éclairage

L’extraction et l’éclairage peuvent aussi être combinés. L’intérêt de ces systèmes est de capter une partie du dégagement de chaleur (partie convective) de l’éclairage à sa source et de l’évacuer directement.

Luminaire avec extraction intégrée vers un plenum.

Luminaire pour tubes T5 avec extraction sur les bords.


Les bouches à déplacement

Le principe des bouches à déplacement est d’augmenter fortement la surface de diffusion de l’air pour permettre de souffler des débits importants à très faible vitesse sans inconfort dans la zone occupée (tant au niveau des vitesses d’air que de la puissance sonore). Elles sont principalement utilisées dans la pulsion d’air refroidi. Elles fonctionnent mal avec la ventilation purement hygiénique car les débits sont trop faibles et ne fonctionnent pas en chauffage car l’air chaud à basse vitesse monte directement vers le plafond.

Elles sont constituées de panneaux en tôle perforée ou de manchon en matériaux poreux (« chaussette »), placés soit en plafond soit contre les murs.

Manchon poreux permettant une diffusion  d’un débit d’air important à très faible vitesse
(agroalimentaire, salles propres, …) .

Lorsqu’un panneau mural ou une bouche au sol pulse lentement de l’air plus froid que l’air ambiant, cet air neuf va se répartir au sol. Les sources de chaleur (machines, appareils électriques, personnes, …) vont le réchauffer. L’air va alors s’élever et être évacué en partie haute du local, en évacuant avec lui les polluants. La faible vitesse de l’air élimine toute sensation de courant d’air.

Fonctionnement d’une bouche à déplacement.

L’emplacement des bouches par rapport aux sources de chaleur est important. En effet, si de trop nombreuses sources de chaleur se succèdent (bureaux en rangées), les plus éloignées de la bouche risquent de ne pas profiter de l’air frais.

Les diffuseurs à déplacement sont aussi utilisés dans le cas de ventilation dite « à flux laminaire ». Dans ce cas, ils prennent la forme de plafond ou de panneau soufflant spécialement conçus pour les applications de diffusion à basses vitesses, inférieures à 0,6 m/s (certains ateliers, laboratoires, hôpitaux).

La faible vitesse de soufflage de ces diffuseurs engendre un flux sans turbulence et donc limite fort le mélange entre l’air neuf et l’air ambiant environnant. Une barrière dynamique de protection est ainsi créée entre la zone ventilée et son environnement.

Flux laminaire dans une salle d’opération :  pulsion verticale à faible vitesse au dessus de la table d’opération

Flux laminaire au passage d’un scialytique
dans une salle d’opération.

Les différents plafonds soufflants se distinguent par leur vitesse de soufflage (inférieure à 0,1 m/s, entre 0,18 et 0,25 m/s, entre 0,3 et 0,6 m/s), par le débit d’air traité, par l’uniformité et la stabilité du flux, par la présence en périphérie du plafond soufflant d’un rideau d’air complémentaire permettant d’augmenter l’effet de barrière dynamique.

Les panneaux en tôle perforée peuvent également convenir pour la reprise. Il faut être attentif à leur facilité de nettoyage, principalement s’ils sont de couleur claire.

Etude de cas.

Dans un auditoire d’un Institut Supérieur de Liège équipé de bouches à déplacement, les occupants se plaignaient d’un manque permanent de chaleur. Pour diagnostiquer le problème, un fumigène fut placé dans le groupe.

On a constaté que, dès la sortie des bouches (placées en bas de l’auditoire), l’air chaud montait au plafond, sans se mélanger à l’air ambiant. Il passait au-dessus de la tête des occupants avant d’être repris par les bouches d’extraction (en haut de la salle). On image très bien le bonheur du marchand de chaussettes norvégiennes qui a élu domicile en face de l’auditoire …

En fait, on a simplement choisi ici des bouches prévues pour la pulsion d’air froid pour faire du chauffage.

En effet, en mode « refroidissement », l’air frais aurait longé les gradins, se réchauffant au contact des étudiants avant d’être évacué.


Les fentes de diffusion

Phot fentes de diffusion.

Alors que les grilles les plus allongées ont un rapport longueur/hauteur inférieur à 10, il existe des diffuseurs étroits et longs conçus pour souffler une lame d’air très mince pouvant même être parallèle à la surface sur laquelle ils sont posés. Une application type de ces fentes de soufflage est la pulsion le long de vitrages pour éviter des condensations en hiver : la vitesse d’éjection choisie fixe la perte de charge. Si elle est de 8 m/s, elle sera de 40 Pa environ si l’entrée dans la fente est correctement dessinée.

Ce type de bouche convient aussi pour la reprise.


Les bouches orientables à vitesse de soufflage élevée

Photo bouches orientables à vitesse de soufflage élevée.

Buse de soufflage à longue portée.

Les mouvements d’air sont créés par des jets de faible diamètre soufflant à des vitesses comprises entre de 10 et 20 m/s. La grande vitesse de pulsion induit un brassage important entre l’air ambiant et l’air pulsé, ce qui homogénise rapidement les températures. On utilise ces bouches dans les grands halls quand la distance entre le diffuseur et la zone de travail est grande (atrium, halls de sport, de stockage, …). Le fait que le jet soit orientable permet en outre de les prévoir dans des installations complexes où il est difficile de préjuger des mouvements d’air. En général, il faut éviter la position verticale. En effet, en pulsion froide, cela risque de provoquer une chute d’air froid et en pulsion chaude, le jet risque d’être freiné. Une position proche de l’horizontale est généralement conseillée, tout en tenant compte que la différence de température entre l’air soufflé et l’air ambiant dévient le jet soit vers le haut (air chaud), soit vers le bas (air froid).

Leurs débits s’échelonnent de 80 à 3 000 m³/h sous des pressions statiques de 50 à 200 PA pour des diamètres d’orifice de 100 à 400 mm.

Il existe également des manchons souples perforés dont chaque trou fait office d’une buse à haute vitesse et donc forte induction.

Photo manchons souples perforés.

Manchon perforé permettant la pulsion d’un débit d’air important  à très haute vitesse (chaque trou sert de buse de soufflage).
La vitesse élevée de sortie assure un mélange rapide  avec l’air ambiant par induction (ventilation des grands halls).


Les systèmes de réglage

Ajustage manuel au montage

Certaines bouches possèdent des persiennes ou volets réglables par déformation ou pivotement pour ajuster les débits en intensité et direction, mais ne possèdent pas de commande extérieure de ce réglage.

Lorsque le réglage direct de la bouche n’est pas possible, il existe aussi des bouches combinées à un registre placé en amont qui permet un ajustement des débits.

registre2.jpg (10895 octets)

Registre réglable disposé en amont d’un diffuseur.
Le réglage du registre est accessible au travers du diffuseur.

Réglage par commande manuelle en cours de fonctionnement

La bouche peut comporter un levier ou un bouton modifiant la perte de charge par action sur des volets. La commande peut être séparée de la bouche et agir à distance par câble ou par commande électrique. Les volets réglables sont parfois montés dans le plénum ou le conduit alimentant la bouche.

Dans un ensemble tertiaire, il n’est cependant pas souhaitable que l’utilisateur puisse changer le débit de la bouche de son local. En effet, il risque de dérégler tous les débits de l’installation, phénomène que l’on rencontre lorsque l’on régule les débits de ventilation en fonction de la demande dans un système de ventilation multizone.


Les bouches automatiques

La gestion des débits de ventilation en fonction des besoins locaux demande l’utilisation soit de registres motorisés à l’entrée de chaque local, soit de bouches permettant un réglage en fonction d’une grandeur représentative (sous le contrôle d’un détecteur de présence, d’un thermostat, d’un hygrostat ou d’une horloge).

On peut répertorier 4 types de bouches (aussi bien en extraction qu’en pulsion) :

  • Les bouches régulées en tout ou rien
  • Les bouches évaluant le nombre de présences
  • Les bouches hygroréglables
  • Les bouches autoréglables

Les bouches régulées en tout ou rien

Certaines bouches intègrent directement un registre motorisé. Celui-ci peut être commandé en tout ou rien au départ d’une sonde de présence ou tout autre capteur représentatif des besoins de ventilation (signal 0-10 V).

Photo bouche avec détecteur infrarouge.

Certaines bouches possèdent directement leur propre détecteur infrarouge.

Il est également possible de régler manuellement le débit de la bouche en position ouverte, en fonction du nombre de personnes moyen se trouvant généralement dans le local

 Les bouches évaluant le nombre de présences

Photo bouches avec compteur de présences.

Il existe des bouches intégrant un comptage du nombre de personnes présentes dans un local.

détecteur infrarouge compte le nombre de mouvements dans une pièce : chaque fois qu’une personne passe d’un segment de détection à un autre, le système comptabilise un mouvement. Le programme interne de l’appareil convertit ce nombre de mouvements en nombre de personnes et donc en débit d’air à fournir. Des repères disposés sur la face de la bouche indiquent le débit fourni par l’appareil.

 Les bouches hygroréglables

Photo bouches hygroréglables.

Les bouches hygroréglables possèdent un volet mobile dont l’ouverture est commandée par un élément sensible au taux d’humidité ambiant (tresse en nylon). La variation de débit est ainsi proportionnelle à l’humidité ambiante. Ces bouches s’utilisent donc principalement pour l’extraction dans les locaux humides tels que toilettes, salle de bain ou cuisine.

Certaines bouches possèdent également une commande (électrique ou mécanique) court-circuitant l’élément hygroréglable et permettant un débit de pointe durant une période minutée.

Cette technologie est également appliquée dans des grilles d’amenée d’air naturelle.

 Les bouches autoréglables

Photo bouches autoréglables.

Lorsque, dans un système de ventilation mécanique, il est possible de faire varier l’ouverture des bouches en fonction des besoins, des variations de pression et de débit apparaissent inévitablement au niveau des bouches restées ouvertes.

Pour éviter l’augmentation de débit et donc de bruit avec l’augmentation de pression, il existe des bouches autoréglables. Elles contiennent une membrane souple disposée dans le flux d’air qui ajuste automatiquement l’ouverture en fonction de la vitesse de l’air : lorsque la pression dans les conduits augmente, la membrane se gonfle. Elle réduit ainsi la section de la bouche et maintient le débit nominal.

Fonctionnement de la membrane de régulation
en fonction de la pression dans le conduit de distribution.

Le débit pulsé ou repris par ces bouches reste ainsi constant sur une large plage de pression.

Débit d’air fourni par une bouche autoréglable
en fonction de la pression.

La membrane de régulation peut aussi être insérée dans le conduit en amont de la bouche.

Comprendre la sensation de froid liée aux corps de chauffe

Comprendre la sensation de froid liée aux corps de chauffe


Entraves à l’émission de chaleur

Désordres

Tout ce qui fait obstacle au transfert de chaleur entre le radiateur et le local rendra difficile le maintien de températures acceptables :

  • Un meuble, un rideau ou des objets quelconques (livres, …) peuvent nuire à la circulation naturelle de l’air autour de l’élément chauffant.
  • Les radiateurs peuvent être cachés par une boite décorative n’offrant pas assez d’ouvertures pour le passage de l’air. Il arrive aussi que le dessus de la boite soit obstrué par divers objets.
  • Le registre d’un convecteur peut être en position fermée.

Solutions

  • On enlève ce qui nuit à la libre circulation de l’air. Dans le cas des boites de recouvrement, celles-ci doivent être munies d’un maximum d’ouvertures surtout au bas et sur le dessus; elles ne doivent pas servir de tablettes.
  • En période froide, les registres des convecteurs doivent être ouverts au maximum. Il serait utile d’en expliquer le fonctionnement à l’occupant.

L’émission d’un radiateur ne sera guère altérée si les niches respectent les dimensions minimales suivantes :

Dimension minimales à respecter pour les cache-radiateurs :
3 [cm] < a1 < 5 [cm]
a2 > 2 [cm]
10 [cm] < b1 = c1
b2 = c3 = p et
6 [cm] < b2 = c3 = p < 12 [cm]
c2 = h


Mauvaise circulation de l’eau dans les émetteurs

Désordres

  • La vanne d’admission de l’eau chaude peut être fermée et même bloquée dans cette position. Le corps de chauffe est alors complètement froid, alors que la conduite d’alimentation sur laquelle il est raccordé est chaude.
  • De l’air peut s’être accumulé dans l’élément chauffant et empêche l’eau d’y circuler librement. Cela se caractérise par des bruits d’écoulement dans les radiateurs et par une répartition inégale des températures sur sa surface : un radiateur sera froid dans sa partie supérieure et chaud dans sa partie inférieure.

Schéma sur mauvaise circulation de l'eau dans les émetteurs.

Solutions

  • Si une vanne d’admission (manuelle ou automatique) est fermée, il faut l’ouvrir et en expliquer le fonctionnement à l’utilisateur. Si la vanne d’admission d’eau est brisée ou difficile à utiliser, il est préférable de la remplacer.
  • On purge les éléments chauffants de l’air qu’ils contiennent. Attention cependant, si de l’air est présent dans de nombreux émetteurs, purger implique de compenser l’air évacué par un ajout d’eau pour maintenir une pression correcte. Si la présence d’air est un problème récurrent de l’installation, il faut absolument en chercher la cause et y remédier. En effet la présence d’air et l’ajout systématique d’eau (agressive car contenant de l’oxygène) est source de corrosion interne pour l’ensemble de l’installation.

Évaluer

Pour en savoir plus sur les causes de présence d’air dans une installation, cliquez ici !

Un sous-dimensionnement des émetteurs

Lorsque les émetteurs ont été dimensionnés suivant la même règle (par ailleurs erronée) des « W/m³ », il est possible que les émetteurs des locaux comprenant plus de parois (murs, plafond, plancher) en contact avec l’extérieur soient sous-dimensionnés.

Indice : température d’entrée et de sortie de l’émetteur

Si les températures d’entrée et de sortie des émetteurs du local incriminé (température d’eau que l’on peut mesurer sur les tuyaux au moyen d’un thermomètre de contact ou un thermomètre infra rouge) sont identiques que celles des émetteurs des autres locaux sans problème, alors il y a de fortes chances que l’on soit en présence d’un sous-dimensionnement des émetteurs. Attention cette mesure doit se faire avec toutes les vannes ouvertes (thermostatiques ou manuelles).

  

Mesure de la température d’entrée et de sortie d’un radiateur.

Si l’écart de température est nettement plus grand, cela indique plutôt un manque de débit (déséquilibre). Si l’écart est nettement plus petit, c’est du côté de la présence d’air dans l’émetteur  qu’il faudra regarder.

Vérification de la puissance installée

Si on connaît la puissance nominale des radiateurs installés, on peut comparer celle-ci aux déperditions du local.

La meilleure solution est de recalculer ces déperditions suivant la norme NBN B62-003 et de comparer les résultats à la puissance installée.

Calculs

Pour évaluer la puissance de radiateurs existants

Calculs

 Pour estimer les déperditions d’un local

Ces déperditions sont en fait les pertes de chaleur maximales au travers des parois (murs, plafond, plancher) en contact avec l’extérieur ou des locaux non chauffés auxquelles on ajoute les pertes par ventilation.

Attention aux mauvaises solutions

Si l’inconfort dans un local provient d’un manque de puissance des émetteurs. La seule solution est de remplacer le radiateur.

Il est peu utile et même dangereux d’augmenter le débit du circulateur dans l’espoir d’augmenter la puissance d’un radiateur. En effet, si le radiateur fonctionne déjà à sa puissance nominale, une augmentation de débit dans celui-ci n’augmentera la puissance que de façon minime (une augmentation de débit de 150 % n’entraîne qu’une augmentation de puissance de 7-8 %).

Émission d’un radiateur [en % de la puissance nominale], en fonction du débit [en % du débit nominal] lorsque le radiateur est alimenté à sa température nominale.

Par contre ceci risque de déséquilibrer l’installation et entraîner une diminution de débit et de puissance plus importante chez d’autres utilisateurs, ce qui peut s’accompagner de nouvelles plaintes.


La présence d’une paroi froide non compensée

La présence de parois froides dans un local sera source d’inconfort pour l’occupant, principalement par grands froids. Cet effet peut être marqué pour les places de travail situées près de simples vitrages, d’un mur non isolé, …

C’est pour compenser cet effet que l’on place généralement les émetteurs devant les murs extérieurs et en allège de fenêtre.


Si le manque de chaleur est accompagné de fluctuations de température

Les ventilo-convecteurs très peu inertes chauffent l’ambiance uniquement par convection.
Chaque demande de chauffage (généralement commandée par un thermostat d’ambiance placé dans le local) entraîne une montée en température très rapide de l’air ambiant. Inversement, la chute de la température sera rapide dès la commande d’arrêt du thermostat.

Cette situation conduit à des fluctuations de température (alternance de périodes fort chaudes et fort froides) qui sont d’autant plus importantes que :

  • la puissance de l’émetteur est surdimensionnée par rapport aux besoins réels (puissance à vérifier donc),
  • le différentiel du thermostat (différence de température commandant l’enclenchement et le déclenchement de l’appareil) est grand.

 

Évolution dans le temps de la température intérieure en fonction du différentiel de température du thermostat et du degré de surdimensionnement des émetteurs.

Un première amélioration peut ainsi consister en la diminution de la vitesse du ventilateur, ce qui aura pour effet de diminuer la puissance émise.

Réparer le pare-vapeur

Réparer le pare-vapeur


Sauf dans certains cas, le pare-vapeur n’est plus visible lorsque le bâtiment est achevé.

S’il est visible, il est facile d’apprécier son état et de le réparer en cas désordre.

Lorsque le pare-vapeur n’est pas visible, c’est l’humidité excessive dans les différentes couches de la couverture qui sera le symptôme principal d’une défectuosité ou d’une mauvaise qualité de celui-ci. Cette humidité peut entraîner des coulées qui permettront d’établir un diagnostic. En cas de doute des sondages à travers la toiture seront nécessaires.

Théories

Pour en savoir plus sur la condensation interne.

Dans le cas d’une toiture chaude, toutes les couches constituant la toiture doivent être enlevées jusqu’au support et remplacées.

Dans le cas d’une isolation par l’intérieur, il fautr démonter les finitions, enlever le pare-vapeur, enlever l’isolant mouillé et vérifier le support.

Les supports en bois doivent être traités de façon curative et préventive contre les insectes et les champignons.

La protection des supports métalliques contre la corrosion, doit être vérifiée et restaurée si nécessaire.

Luminance moyenne de différentes lampes

Luminance moyenne de différentes lampes

La luminance moyenne d’une lampe est fonction de son flux lumineux et de sa surface apparente. Les valeurs données ci-dessous sont des ordres de grandeur. Elles varient entre autre en fonction de la forme, de la puissance, du type de verre (clair ou opalin), ….

  • plus son flux lumineux est élevé, plus sa luminance augmente,
  • plus sa surface apparente (surface vue) est petite, plus sa luminance augmente.

Grandeurs caractéristiques

Soleil au zénith : de l’ordre de 1 000 000 000 cd/m².

Ciel clair : de 1 000 à 20 000 cd/m².


Lampes  fluorescentes

Tube fluorescent / T8 (Ø : 26 mm)

Photo tube fluorescent. ⇒ ± 10 000 à 15 000 (cd/m²)

Tube fluorescent / T5 (Ø : 16 mm)

Photo tube fluorescent. ⇒ ± 17 000 à 33 000 (cd/m²)

Lampes fluocompacte

Photo lampe fluocompacte. ⇒ ± 20 000 à 70 000 (cd/m²)

Lampes  au sodium haute pression

Photo lampes  au sodium haute pression.

⇒ De l’ordre de 300 000 (cd/m²).


Lampe aux iodures métalliques

Photo lampe aux iodures métalliques. Photo lampe aux iodures métalliques.

⇒ Entre 200 000 et 500 000 (cd/m²) ….
Voire plus suivant la puissance et quelles soient clair ou opaline.


Lampes  au mercure haute pression

Photo lampe  au mercure haute pression.

⇒  ± de l’ordre de 120 000 (cd/m²).


Lampes  halogènes

Photo lampe  halogène.Photo lampe  halogène.

⇒  9 000 à 480 000 (cd/m²)
Voire plus suivant la puissance et quelles soient clair ou opaline.


Sources  LED

Photo source  LED.

⇒ La luminance peut monter à plus de 30 000 000 cd/m²
pour des LED de puissance élevée et nues.

Améliorer une climatisation « tout air » à débit constant

Diminution du débit d’air neuf

Moduler le débit d’air neuf en fonction de la présence des occupants et/ou de la température de l’air extérieur

Si le système dispose d’un recyclage de l’air extrait, il est possible de commander l’ouverture du registre d’air neuf en fonction de la présence effective des occupants : sonde de présence, sonde CO2, sonde de qualité d’air, … Le poste « chauffage de l’air neuf » étant le premier poste en terme de consommation de l’installation, on imagine les économies substantielles possibles.

Cette sonde peut également être placée dans la reprise pour bénéficier de la valeur moyenne de plusieurs locaux.

En période de relance, stopper l’air neuf

Également, il est possible de stopper totalement l’arrivée d’air neuf en période de relance du bâtiment (avant l’arrivée des occupants). Cette technique permet de diminuer la puissance installée des chaudières.


Fonctionnement en free cooling

Le taux d’air neuf doit être fonction des températures intérieures et extérieures et des besoins en refroidissement. Ainsi, si en mi-saison, un besoin de refroidissement se fait sentir et que la température extérieure est inférieure à la température intérieure, l’augmentation du taux d’air neuf doit permettre de valoriser le pouvoir rafraîchissant de l’air extérieur: c’est le « free cooling ».

Le registre d’air neuf peut donc s’ouvrir soit pour apporter l’air neuf minimal, soit pour refroidir l’ambiance. Le régulateur de qualité d’air devra être informé de la demande du régulateur de température et il prendra la demande la plus exigeante pour agir sur le servo-moteur du registre d’air neuf.

Vérifier le fonctionnement en free-cooling de l’installation

L’avantage indiscutable d’une installation à air est de pouvoir valoriser l’air frais gratuit extérieur. Il sera donc très utile de vérifier que le fonctionnement de la régulation ouvre à 100 % les registres d’air neuf lorsque la température extérieure est inférieure à la consigne ambiante et que le local est en demande de froid.

Voici comment devrait se comporter la régulation.

Le débit d’air neuf pulsé doit être établi sur base de la comparaison des températures extérieures, intérieures ambiantes et intérieures de consigne, avec le maintien d’un taux minimum hygiénique ou mieux encore établi sur base de la comparaison des enthalpies de l’air intérieur et de l’air extérieur :

  • Lorsque la température intérieure ambiante est inférieure à la température de consigne, le taux d’air neuf doit être maintenu au minimum hygiénique qui peut être variable en fonction du taux d’occupation.
  • Lorsque la température intérieure ambiante est supérieure à la température intérieure de consigne et que la température extérieure est inférieure à la température intérieure ambiante, l’augmentation du débit d’air neuf doit être prioritaire au fonctionnement de la batterie froide.
  • Lorsque la température intérieure ambiante est supérieure à la température intérieure de consigne et que la température extérieure est supérieure à la température intérieure ambiante, le taux d’air neuf est ramené au minimum hygiénique.

Réhabiliter le système

Réhabiliter un système classique à débit constant en système à débit variable.

Les installations « tout air » à débit constant sont extrêmement coûteuses suite au risque de produire simultanément du chaud et du froid (dans les systèmes multizones), mais aussi suite à la consommation électrique des ventilateurs fonctionnant à vitesse constante : entre 10 et 30 % de l’énergie transportée. Il suffit d’imaginer le moment où le bâtiment est sans demande, que de l’air à 22° est pulsé… avec un débit correspondant à celui calculé pour vaincre la pire période caniculaire !

Le principe du VAV (débit d’air variable) est nettement plus efficace.

Son application est sans doute fort coûteuse : rénovation des bouches de distribution, adaptation de la vitesse variable aux ventilateurs de pulsion et d’extraction, renouvellement de la régulation… Si le régime de haute pression, autrefois nécessaire pour le fonctionnement des bouches terminales, n’est plus automatiquement requis, le bilan financier risque d’être lourd.

On peut imaginer qu’une réflexion globale s’impose et que les avantages des autres types de systèmes doivent alors être étudiés.

Concevoir

Pour en savoir plus sur la climatisation des bureaux, les critères de choix généraux entre systèmes.

Si un de nos lecteurs a réalisé ce type de rénovation, nous serions heureux de pouvoir être informés de son expérience.

Réhabiliter un système classique à deux conduits à débit constant en système à débit variable.

La technique de climatisation en « dual duct » schématisée ci-dessus est très énergivore. Il est opportun d’envisager sa rénovation. Une technique possible est de la transformer en système VAV à deux conduits.

En pratique :

  • La variation de débit est faite uniquement sur l’air froid.

 

  • Lorsque les apports calorifiques sont maximaux, le volet d’air froid est ouvert à 100% alors que le volet d’air chaud est fermé.

 

  • Lorsque les apports diminuent, le débit d’air froid diminue jusqu’à un débit minimum de soufflage.

 

  • Lorsque des besoins de chauffage apparaissent, on ouvre le volet d’air chaud et on mélange alors l’air froid et l’air chaud comme dans un système classique à deux conduits (l’air froid est à ce moment de l’air extérieur « gratuit »).

Si tout n’est pas résolu, la consommation d’énergie est diminuée par ce système.

Différents schémas sont présentés dans le tome 4 de la collection « climatisation et conditionnement d’air » de Bouteloup aux éditions CFP.

Remarque : dans tous les cas, il y a lieu de bannir la simultanéité d’utilisation d’air chaud et d’air froid. En période de refroidissement partiel, l’air correspondant à la gaine « chaude » ne doit être que de l’air recyclé, la batterie de chauffe ne pouvant pas être sollicitée.


Optimaliser la régulation par point de rosée

Souvent les groupes de traitement d’air (simple ventilation, groupe CAV ou VAV) équipés d’un humidificateur à pulvérisation ou à ruissellement sont régulés suivant le principe dit du « point de rosée« .

Cette régulation est tout à fait correcte en hiver, mais pose des problèmes en mi-saison et en été, avec des consommations d’énergie importantes. Il arrive de rencontrer des installations où humidification et batterie froide fonctionnent simultanément…

Reprenons les solutions déjà mentionnées dans l’ « amélioration de l’humidificateur » :

  • Dans un premier temps, il importe d’abaisser la température de rosée en hiver et de la relever en été. Cela peut s’imaginer manuellement ou automatiquement par la régulation.
  • On peut également stopper le fonctionnement de la batterie froide pour des besoins de déshumidification en commandant la batterie froide en fonction des besoins de l’ambiance uniquement.
  • On peut limiter le temps de fonctionnement de l’humidificateur en le commandant en tout ou rien sur base d’un hygrostat dans l’ambiance ou placé dans l’extraction. Des légères fluctuations d’humidité et de température se produiront cependant dans le local.
  • On peut étudier la possibilité de travailler à débit d’eau variable, notamment à partir d’un humidificateur rotatif …
  • Puisque le laveur d’air ne pose pas de problèmes en hiver, il reste la solution d’imposer un arrêt total de l’humidification au-dessus d’un seuil de température extérieure : de 5°C à 8°C, par exemple. Le respect d’une consigne fixe de 50 % HR ne pourra plus être assuré, mais l’occupant d’un bureau ne s’en rendra pas compte, puisque le confort est assuré dès 40 % HR …

Techniques

Pour plus de détails sur l’analyse d’une régulation par point de rosée.

Évaluer le confort fourni par la production d’eau chaude sanitaire

Évaluer le confort fourni par la production d'eau chaude sanitaire


Disponibilité

Accès à des locaux sanitaires

L’arrêté royal du 10 octobre 2012 fixant les exigences de base générales auxquelles les lieux de travail doivent répondre précise dans ses articles 51 et suivants, les différents équipements sanitaires qui doivent être mis à disposition par l’employeur.

En particulier, il précise les obligations de placement de douches avec eau chaude et froide pour les travailleurs soumis à des chaleurs excessives, effectuant un travail salissant ou en contact avec agents chimiques ou biologiques dangereux.

La température de l’eau est de 36°C à 38°C et les travailleurs ne sont pas exposés aux courants d’air.

Délais d’attente de l’eau chaude

La recommandation Suisse (SIA 385/3) précise les délais d’attente de l’eau chaude au point de soutirage :

Délais d’attente au soutirage

Éviers de cuisine

7 s

Lavabos

10 s

Douches

10 s

Baignoires

15-20 s

Si le temps d’attente est trop élevé, on envisagera :

  • soit une production décentralisée,
  • soit le placement d’une boucle de circulation, solution plus énergivore puisque des pertes d’énergie apparaîtront aux tuyaux.

Pour évaluer l’amélioration qui en résulterait, un petit logiciel calcule le temps d’attente en fonction du type de tuyau, de son diamètre et du débit du point de puisage. La quantité d’eau froide qui s’écoule correspond à la quantité d’eau chaude qui sera « emprisonnée » dans le tuyau à la fermeture du robinet. On peut donc évaluer la perte énergétique correspondante.

Deux litres d’eau sont nécessaire pour
se laver les mains, mais 4 litres d’eau chaude vont rester dans le tuyau et se refroidir…

Calculs

Pour calculer le débit d’eau perdu à l’ouverture du robinet

En multipliant cette opération x fois par jour, x jours par an, on évalue le nombre de m³ annuellement chauffés en pure perte. Le coût approximatif de 9 € par m³ d’eau chaude (moitié pour l’eau, moitié pour son chauffage) permet d’évaluer l’intérêt énergétique de décentraliser la production.

Améliorer

Pour plus d’informations sur la décentralisation de la production.

Concevoir

Pour plus d’informations sur la conception d’une boucle de circulation.

Accessibilité du point d’eau

L’accessibilité des patients ou du personnel soignant à mobilité réduite fait partie aussi du confort au sens large du terme.

Indépendamment du confort lié aux critères classiques de température, de débit, …, la possibilité :

  • d’accéder facilement à l’espace douche,
  • de se mouvoir aisément dans cet espace,
  • d’utiliser les pommeaux de douche, les robinets, … Sans problème majeur,

est un plus non négligeable dont il faut tenir compte dans les hôpitaux.


Débit

Débits recommandés

Un débit suffisant doit être assuré. Il est facile de mesurer le débit d’un point de puisage en mesurant le temps mis à remplir un seau de 10 litres par exemple puis de comparer à des valeurs réglementaires.

Voici les unités de raccordement selon les directives suisses W3, édition 1992.

Application

Débit par raccordement

UR- Unité de Raccordement équivalente

en litre/s en litre/min

Lavabos, bidets, lavabos-rigoles, réservoirs de chasse d’eau.

0,1 6 1

Éviers, vidoirs, lavabos muraux scolaires, douches pour salons de coiffure, lave-vaisselle domestique, chauffe-eau instantané à gaz, cuves à lessive.

0,2 12 2

Robinetteries de douche de puissance moyenne, chauffe-eau instantanés à gaz.

0,3 18 3

Grands éviers, vidoirs indépendants, vidoirs muraux, robinetteries de bain, machines à laver automatiques jusqu’à 6 kg, chauffe-eau instantanés à gaz, urinoirs à rinçage automatique.

0,4 24 4

Robinet de jardin et de garage.

0,5 30 5
Raccordements 3/4″ :

  • éviers pour grandes cuisines
  • baignoires à grande capacité
  • douches
0,8 48 8

Voici ensuite les sections de tuyauteries correspondantes pour l’acier galvanisé DIN 2440/44 :

Nombre max dur

6 16 40 160 300 600 1 600

DN (mm)

15 20 25 32 40 50 65

Tubes filetés (pouce)

1/2″ 3/4″ 1″ 1 1/4″ 1 1/2″ 2″ 2 1/2″

Di (mm)

16 21.6 27.2 35.9 41.8 53 68.8

Des tableaux similaires existent pour d’autres matériaux dans la W3.

Débit trop faible suite à la présence de calcaire ?

Dépôt sur les surfaces d’évaporation dont les pommeaux de douche ? Blocage des boutons poussoirs ? …

Un dépôt de calcaire, soit dans l’échangeur de chaleur, soit dans les conduites d’apport d’eau chaude augmente les pertes de charge et le débit peut devenir insuffisant.

En fonction de l’analyse de la dureté de l’eau, on jugera de la nécessité de l’adoucir.

Concevoir

Pour plus d’informations sur le choix parmi les techniques de traitement de l’eau et le dimensionnement de l’installation.

Débit trop élevé suite à une ancienne robinetterie ?

Aujourd’hui, on tente de diminuer les consommations par la réduction des débits. Les robinetteries modernes le permettent en réalisant un mélange, émulsion d’air et d’eau (par exemple, pomme de douche à faible débit ou mousseur de robinet).

Avertissements !

Certains rapports d’hygiène hospitalière mettent en cause l’utilisation des mousseurs de robinet dans le développement des foyers de légionelles. C’est pour cette raison qu’il faudra éviter de placer ce genre d’économiseur dans les unités de soins ou dans toutes les zones médicalisées de l’hôpital.

Dans les autres zones, une décision collégiale sera prise entre tous les intervenants.

Améliorer

Pour plus d’informations sur les techniques de réduction des débits.

Température

Consignes de température recommandées

La sensation de la chaleur de l’eau dépend de l’usage, et dans une moindre mesure de la saison.

Pour les soins corporels, une température comprise entre 37 et 45°C est souhaitable. Pour l’alimentation des douches en entreprise, l’AR du 10/10/2012 demande une température comprise entre 36 et 38°C [Art.N1 annexe 1].

Pour les travaux de nettoyage, une température de 50 à 55°C est recommandée.

Au-delà de 60°C, un risque de brûlure apparaît.

Dans une optique de réduction des consommations, un abaissement des températures est souhaitable, mais la gestion de la légionelle peut modifier ce raisonnement …

Concevoir

Pour plus d’informations sur le contrôle de la légionelle.

Si la température d’eau souhaitée n’est pas atteinte, on soupçonnera un manque de puissance.

Fluctuations de la température ?

La température de l’eau varie avec le débit, c’est à dire avec le nombre de puisages simultanés (qui n’a pas connu le coup de la douche qui devient froide lorsque le voisin arrive… juste au moment où il faut rincer le shampoing !?).

Si la préparation se fait par un préparateur instantané (échangeur à plaques, par exemple), il est possible que ce soit la vitesse de réglage de la vanne mélangeuse qui soit à l’origine du problème. Il est possible soit de lui mettre une vanne plus rapide (avec une régulation PI), soit d’adjoindre un ballon tampon à l’installation.

Concevoir

Pour plus d’informations sur la conception des préparateurs instantanés.

Également, l’emploi d’un mitigeur thermostatique de douche est fortement recommandé pour limiter ce problème, sans l’éliminer totalement car on est limité par sa vitesse de réponse.

À noter qu’il est possible qu’ un appareil de production instantané au gaz ne se mette pas en route pour de très faibles débits, ce qui impose souvent inutilement l’ouverture en grand des points de puisage.

Insuffisance de la température ? Analyse de l’origine du problème

Au départ, un manque d’eau chaude …

En tout premier lieu, il faut observer les circonstances exactes d’apparition du problème : où et quand apparaît l’inconfort ?

Voici 3 questions qui peuvent orienter les débats :

Les problèmes sont-ils récents ou ont-ils toujours existés ?

S’ils ont toujours existé, c’est la conception de l’installation qui est en cause (dimensionnement des équipements, mauvais dessin de l’installation, …). S’ils sont récents, il faut repérer les circonstances d’apparition des plaintes.

Par exemple, le repiquage d’un nouveau circuit sur l’installation existante peut perturber le fonctionnement hydraulique de celle-ci, des travaux sur l’installation peuvent provoquer un transfert de sédiments et bloquer des éléments, un échangeur peut s’entartrer progressivement, un circulateur tomber en panne,…

Les problèmes sont-ils saisonniers ?

S’ils n’apparaissent qu’en hiver, c’est que la collaboration avec le chauffage se passe mal.

S’ils apparaissent aussi en été, ce sera plutôt l’appareil de production d’eau chaude seul qui sera mis en cause. Par exemple, la puissance de l’échangeur est peut-être insuffisante.

Y-a-t-il des problèmes pour tous les utilisateurs ?

Si seuls les utilisateurs les plus éloignés de la production sont concernés, c’est du côté de la distribution d’eau chaude qu’il faut chercher. Si par contre, tous les points de puisage sont touchés, c’est la production qui devrait être suspectée.

Si le manque d’eau chaude survient pour tous les utilisateurs lorsque les demandes d’eau sanitaire et de chauffage sont maximales (c’est-à-dire, en plein hiver, au moment des douches ou des bains), on peut se poser la question : « en quoi le chauffage peut-il influencer la production d’eau chaude » ?

Premièrement, une puissance insuffisante des chaudières ne permettra pas aux échangeurs d’être alimentés à la bonne température. C’est la cause directement souvent retenue par un installateur de chauffage.

Un deuxième phénomène peut cependant intervenir. En plein hiver, les vannes (mélangeuses, thermostatiques, …) sont pour la plupart ouvertes en grand. La demande en débit des circuits de chauffage est donc maximum. Si leurs circulateurs ont été surdimensionnés, les débits appelés risquent d’être trop importants. Les échangeurs sanitaires peuvent alors être privés d’un débit suffisant.

Cas vécus.

1. Un home pour handicapés près de Hannut est confronté à une insuffisance d’eau chaude lorsque des puisages simultanés ont lieu dans les différents locaux sanitaires du bâtiment. L’installateur appelé pour avis préconise… un remplacement d’une chaudière par un modèle plus puissant, bien sûr !

L’audit évalue les puissances en jeu et met hors de cause la chaudière. Il révèle qu’il s’agit en réalité d’un problème hydraulique : le débit d’eau chaude pour transférer la chaleur de la chaudière vers l’échangeur à plaques était insuffisant.

Études de cas

Pour plus d’informations cet audit

2. Un autre centre d’accueil pour étudiants à Liège est lui aussi confronté à une insuffisance d’eau chaude à certains moments de la journée, mais cette fois c’est la consommation exorbitante qui pousse le gestionnaire à agir. Il place des réducteurs de débit sur tous les points de puisage (douches et robinets) et le résultat est double : l’eau arrive toujours chaude et la consommation globale est réduite !

Analyse de la puissance disponible

La méthode la plus exacte pour savoir si la puissance de chauffage est suffisante est de refaire le dimensionnement du système de production et de comparer avec la puissance en place.

Concevoir

Pour plus d’informations sur le dimensionnement des préparateurs d’eau chaude.

Mais plus simplement, une évaluation grossière peut avoir lieu comme suit :

Installation par accumulation

On totalise les besoins d’eau chaude sur le temps de récupération (= de réchauffage) du ballon :

  • Si le ballon n’est chauffé que la nuit, son volume doit être suffisant pour vaincre les besoins en eau de l’ensemble de la journée.
  • S’il est réchauffé par un échangeur interne, il faut évaluer la puissance de chauffe de l’échangeur et vérifier que le temps de chauffage du volume d’eau est inférieur au temps de récupération prévu.

Temps de chauffage [h] = (Volume d’eau [m³] x 1,16 [kWh/m³.K] x Delta T°) / puissance échangeur [kW]

Exemple.

Un ballon de 500 litres présente de temps en temps une insuffisance en matière d’eau chaude. Le puisage de pointe est de 450 litres d’eau à 55°C par heure et cela peut se produire plusieurs heures d’affilée. La puissance du serpentin intérieur est de 12 kW.

Vérifions :

Temps de chauffage = 0,45 x 1,16 x (55 – 10) / 12 = 1,95 heures

Ce temps est trop long, le ballon ne pourra remonter en température…

Si le manque de puissance est limité, il est possible d’augmenter la température de stockage de l’eau, … ce qui diminuera partiellement sa performance énergétique (augmentation des pertes).

Préparation instantanée

On totalise les besoins simultanés d’eau chaude sur une période de 10 minutes (= 1/6 heure), par exemple. Puis on compare la puissance correspondante à celle du préparateur :

Puissance nécessaire [kW] = (Volume d’eau [m³] x 1,16 [kWh/m³.K] x Delta T° [K]) / (1/6) [h]

Exemple.

Un préparateur d’eau chaude instantané paraît insuffisant en température. Le puisage de pointe est de 150 litres d’eau à 45°C en 10  minutes. La puissance de l’échangeur est de 45 kW.

Vérifions :

Puissance nécessaire = 0,15 x 1,16 x (45 – 10) / (1/6) = 37 kW

Sa puissance théorique est suffisante. Serait-il entartré ? Non, car ce serait le débit qui serait alors trop faible et non la température. Serait-il alimenté au primaire par une eau à trop basse température ? C’est plus probable, le constructeur a certainement pris une température nominale très élevée pour annoncer les 45 kW…

Une régulation par « priorité ECS » est-elle mise en place ?

La puissance demandée par le chauffage de l’eau chaude est souvent très élevée. Il est normal qu’au moment du réchauffage de l’eau, le chauffage des locaux soit arrêté temporairement. L’inertie du bâtiment est telle que la baisse de température ne sera pas ressenti par les occupants. On parle de « priorité Eau Chaude Sanitaire ».

En cas d’insuffisance de puissance, il est utile de vérifier si ce type de régulation a bien été mis en place

Améliorer

Pour plus d’informations sur la décentralisation de la production.


Qualité de l’eau

Mesure de la dureté de l’eau

On commencera par analyser le TH de l’eau, Titre Hydrotimétrique, qui caractérise la dureté totale de l’eau. Ce TH exprime la somme des ions Calcium Ca++ et Magnésium Mg++, responsables de la dureté de l’eau.

L’unité de mesure est le degré français °F. Ainsi, 1° F = 10 mg CaCO3/litre. L’échelle suivante permet de juger de la tendance de l’eau à déposer des sels :

eau très douce : < 7,5°F

douce : 7,5 à 15°F

assez dure : 15 à 20°F

dure : 20 à 30°F

très dure : > 30°F

La compagnie des eaux peut fournir cette valeur. Sinon, il existe des kits de mesure que les sociétés de maintenance utilisent et qui sont en vente chez les marchands d’adoucisseurs. Un pharmacien peut également faire cette mesure.

Concevoir

Pour plus d’informations sur le choix parmi les techniques de traitement de l’eau, et le dimensionnement de l’installation.

Détection de la légionelle

L’unité de mesure est l’UFC/l (Unité Formant Colonie).

Le seuil indicatif de 10³ UFC/l a été proposé par l’OMS (Organisation Mondiale de la Santé). Il semble qu’en dessous de ce seuil, on n’a qu’exceptionnellement le développement de maladie.

Le Comité Supérieur d’Hygiène Belge quant à lui a adopté le même seuil de 10³ UFC/l.

Si la concentration de légionelles est supérieure à ce seuil, il faut procéder à un contrôle approfondi. On prélève alors un grand nombre d’échantillons, y compris aux robinets , robinets de vidange, vases d’expansion,… afin d’identifier les foyers.

Dans la procédure allemande, si les 10 000 UFC/l sont atteints, la contamination est jugée importante et un contrôle immédiat approfondi est requis. Si les 100 000 UFC/l sont dépassés, la contamination est jugée très importante et l’emploi de l’installation doit être limité (arrêt des douches, par exemple) afin de procéder à une désinfection immédiate de l’installation.

Au delà d’un traitement de choc pour assainir une installation polluée (choc thermique, désinfection chimique), le technicien devra se baser sur une conception correcte du réseau (réseaux bouclés, température élevée).

Concevoir

Pour plus d’informations sur la conception du réseau d’eau chaude sanitaire.
Image par défaut pour la partie Concevoir

Choisir la distribution de vapeur

Image par défaut pour la partie Concevoir

Choix du réseau

Le choix du réseau de distribution de vapeur est principalement lié à la centralisation ou pas des générateurs de vapeur.

Configuration locale

Dans ce cas, le générateur de vapeur se trouve souvent sous l’autoclave et chaque autoclave possède son propre générateur. La compacité est importante vu qu’il est nécessaire de favoriser l’espace pour les zones de travail du personnel de Stérilisation Centrale.

On peut synthétiser les avantages et inconvénients suivant :

(+)

  • la proximité du générateur par rapport à l’autoclave limite les longueurs des conduites de distribution et donc les déperditions au travers des parois;
  • le générateur étant dédicacé à l’autoclave, les débits de vapeur nécessaires sont faibles et ne nécessitent pas des canalisations de grosse section; ce qui limite les déperditions au travers des parois;
  • les condensats formés par les déperditions des conduites sont naturellement ramenés au générateur par gravitation; ce qui réduit les pertes de condensats au niveau des purgeurs;

(-)

  • la compacité de l’installation pose des problèmes d’isolation des conduites;
  • une panne du générateur entraîne souvent l’abandon du cycle et l’indisponibilité de l’autoclave;
  • problème de maintenance;

Configuration centralisée

Si la stérilisation centrale dispose d’un local technique annexe à proximité immédiate, on peut très bien envisager le regroupement des générateurs dans ce local afin de diminuer la puissance installée sachant qu’il est rare de voir tous les stérilisateurs du parc fonctionner ensembles.

On peut synthétiser les avantages et inconvénients suivant :

(+)

  • gain de place pour la maintenance de l’installation (détection aisée des fuites au niveau de la distribution);
  • une panne d’un générateur n’empêche pas de continuer le cycle du stérilisateur;
  • centralise la source de chaleur en dehors de la zone d’occupation;

(-)

  • la conduite mère est de forte section (2″ par exemple); ce qui veut dire que les déperditions sont plus importantes et qu’il faut mieux l’isoler;
  • la longueur importante de la conduite mère augmente les déperditions;
  • les difficultés techniques et d’encombrement augmentent pour le tracé de la conduite mère sachant qu’il est important de récupérer la quantité de condensats produite par les déperditions des parois par gravitation naturelle (nécessité d’espace dans les faux-plafonds pour bénéficier d’une pente vers le générateur);
  • nécessité de multiplier les points de purge et les casse-vide;

Alternative

Dès le début du projet , il est possible de demander au concepteur de prévoir une conduite mère reliant les générateurs locaux entre eux afin d’augmenter la sécurité d’alimentation en vapeur et de pouvoir réduire légèrement la puissance installée des générateurs.

Nous manquons d’étude de cas en la matière. S’il y a des expériences heureuses ou pas en terme de dimensionnement, il serait intéressant pour tout le monde qu’elles figurent ici !


Choix des matériaux

La tenue dans le temps des conduites d’alimentation en vapeur dépend de la qualité de la vapeur et, par conséquent de la qualité de l’eau. Si l’eau est de qualité médiocre (corrosive et agressive par exemple), on risque de détériorer rapidement les équipements du réseau de vapeur. Par sécurité, les matériaux utilisés pour la fabrication de ces équipements, y compris la distribution, seront en acier inoxydable type 316 Ti.


Isolation des conduites

L’isolation des conduites de la distribution de vapeur est importante pour limiter :

  • les déperditions et, par conséquent, les pertes énergétiques,
  • la production de condensats et, par conséquent, la surconsommation d’eau.

L’illustration ci-dessus montre à quel point il est important d’isoler correctement les conduites même si certains mentionneront que l’isolation cache les fuites de vapeur; ce qui est un mauvais prétexte pour ne pas isoler.

Divers matériaux d’isolation des conduites existent dans le commerce comme, par exemple, la fibre de laine minérale en longueur préformée, le caoutchouc, … On sera attentif, dans le cas précis de la vapeur, à la tenue des propriétés de l’isolant à des températures de l’ordre de 150 °C.

Matériaux Température de tenue maximale [°C]
Laine minérale de l’ordre de 650
Caoutchouc 175
Polyuréthane 135

Calculs

Pour en savoir plus sur la rentabilité de l’isolation des conduites.

Les équipements annexes

Attention à l’isolation des vannes et des équipements susceptibles de provoquer des déperditions énergétiques non négligeables.

Choisir la cellule de refroidissement ou de congélation rapide [Concevoir – cuisine collective]

Quand doit-on choisir une cellule de refroidissement rapide ?

Dans toute cuisine où l’on a opté pour une liaison froide, il est recommandé d’abaisser la température au cœur des aliments de + 65 °C à + 10 °C en moins de 2 heures. La cellule de refroidissement rapide est l’équipement idéal pour atteindre ces performances. Il ne s’agit pas d’une obligation, mais d’une bonne pratique de fabrication qui est recommandée si l’on veut refroidir des aliments cuits en toute sécurité et si on veut prouver que des procédures de sécurité sont appliquées conformément a l’arrêté royal relatif à l’hygiène des denrées alimentaires.

Cette bonne pratique provient, en fait, d’une réglementation qui s’applique aux établissements de transformation de la viande : arrêté royal relatif aux conditions générales et spéciales d’exploitation des abattoirs et d’autres établissements.

Il convient de noter que le choix de la liaison froide peut se faire pour l’ensemble des menus ou pour une partie seulement. Il existe, par exemple, certaines cuisines collectives qui proposent chaque jour des plats végétariens en plus du menu du jour, mais pour ne pas avoir à fabriquer chaque jour deux plats, les plats végétariens sont préparés un jour par semaine, par exemple, en liaison froide.


Choix du procédé de production du froid

Il existe deux procédés de production du froid dans une cellule de refroidissement rapide :

Les coûts d’utilisation d’une cellule de froid mécanique sont nettement (10 x) plus faibles que ceux d’une cellule de froid cryogénique. Ils sont d’environ 0,1 €/repas pour la seconde. Par contre les coûts d’investissement pour une cellule cryogénique sont nettement plus faibles que pour une cellule mécanique.

Pour une utilisation régulière de la cellule, la cellule mécanique sera donc beaucoup plus intéressante. Dans le seul cas d’une utilisation occasionnelle, une cellule cryogénique peut être intéressante.

En milieu hospitalier, l’azote liquide est souvent utilisé en quantité importante (génétique, laboratoire classique, …). Dans ce cas, il est intéressant de considérer l’option de refroidissement rapide cryogénique sachant qu’en exploitation les prix seront réduits par rapport à un usage exclusif pour la cuisine.

Lorsque le refroidissement rapide est utilisé régulièrement, il paraît risqué de n’avoir qu’une seule cellule. En cas de panne, la préparation est bloquée. On peut alors songer à investir dans une cellule de refroidissement mécanique principale et une deuxième cellule cryogénique de dépannage.

Parmi les fluides utilisés pour le froid cryogénique, vu la très faible température d’ébullition de l’azote, celui-ci est utilisé lorsque les distances à parcourir entre le lieu de stockage du fluide et le lieu de production du froid sont grandes.
Il faut cependant veiller à bien calorifuger les conduites.

Le dioxyde de carbone (CO2) sera utilisé lorsque ces distances sont plus courtes.


Précautions d’utilisation

Pour obtenir un fonctionnement satisfaisant et économique, on place les préparations sur les clayettes ou les supports prévus à cet effet, afin de favoriser la circulation de l’air, et d’utiliser la cellule à sa capacité nominale.


Capacité et puissance frigorifique des cellules

La capacité (kg) doit correspondre à celle des appareils de cuisson, c’est-à-dire qu’elle doit permettre de refroidir le nombre de repas qui peuvent être préparés en une seule fois par les autres appareils de cuisson.

Remarquons que le nombre de repas à refroidir ne correspond pas nécessairement à la totalité des repas du service. La liaison froide peut n’être utilisée que pour une partie des repas (Exemple : plats végétariens).

L’ensemble des mets préparés pourra ainsi être refroidi dès la fin de la cuisson. En effet, selon la réglementation, « la durée de refroidissement entre la fin de la cuisson et une température à cœur de 10 °C doit être inférieure ou égale à deux heures. »

D’autre part, la cellule pourra ainsi être utilisée à sa pleine capacité. Ce qui permet de travailler au meilleur rendement possible.

La puissance frigorifique de l’appareil dépend de la durée que prend le refroidissement ou la congélation, de la capacité désirée et de la température à atteindre.

Le besoin en frigories est donné par la quantité de chaleur qu’il faut retirer des aliments pour les faire passer de 65 °C à 10 °C (ou – 18 °C).

Le calcul ci-dessous est statique et purement théorique. Il est donné à titre indicatif. En réalité, pour correspondre à la réalité, le calcul devrait être fait en dynamique. Statique, le bilan ci-dessous néglige les apports de chaleur par conduction au travers des parois, relativement négligeables par rapport à la chaleur à extraire des aliments.

En refroidissement rapide.

Q = m x Cs x δt

  • Q = besoin en frigories (en kWh),
  • m  = poids des aliments dans la cellule (kg),
  • Cs= chaleur spécifique des aliments (kWh/kg°C),
  • δt = différence entre la température à l’entrée et à la sortie des aliments (10°C) (K).

En congélation rapide.

Q = (m x Cs x δt) + (m x Cl) + (P1 x Cs‘ x δt’)

Où :

  • Q = besoin en frigories (en kWh),
  • m  = poids des aliments dans la cellule (kg),
  • Cs = chaleur spécifique au-dessus de 0°C des aliments (kWh/kg°C),
  • Cl = chaleur latente nécessaire au changement d’état du constituant liquide des aliments (passage à l’état solide) (kWh/kg),
  • Cs‘ = chaleur spécifique en-dessous de 0°C des aliments (kWh/kg°C),
  • δt = différence entre la température à l’entrée des aliments et 0°C (K),
  • δt’ = différence entre 0°C et la température de sortie des aliments (-18°C) (K),

La puissance frigorifique de l’évaporateur.

P(W) = Q (kWh) / t (h)

  • t = temps maximum légal – temps nécessaire au conditionnement des aliments.

Temps maximum légal = 2 h pour le refroidissement de 65°C à 10°C et 3 h pour le passage de 10 °C à – 18 °C (congélation).

Exemple.

1. Soit une cellule de congélation rapide, d’une capacité de 20 kg; la congélation doit se faire en 4 h.

Q = 20 x 1,04 x 65 + 20 x 80 + 20 x 0,53 x 18 = 3 143 (Wh) (soit 157 Wh par kg)
P =  3 143  /  4 = 785 W (soit 40 W/ kg.)

2. Soit une cellule de refroidissement rapide, d’une capacité 20 kg; le refroidissement doit se faire en 1h30.

Q = 20 x 1,04 x 55 = 1 144 Wh (soit 57 Wh/kg.)
P = 1 144/1h30 = 762 W/h (soit 38 Wh/kg).

En réalité la puissance calculée ci-dessus en statique est une moyenne. Or, la puissance nécessaire varie en fonction du temps, selon une courbe d’allure exponentielle, et la puissance maximale est demandée à l’évaporateur en début de processus (c’est alors que les Δt sont les plus importants). La puissance frigorifique des cellules correspond donc à cette puissance maximale.

Voici les puissances électriques que nous avons relevées dans la documentation d’un fournisseur :

Remarque : entre la puissance frigorifique et la puissance électrique, il y a le COP.

Cellule à clayette – surgélation et refroidissement rapide
Capacité par cycle (kg) Puissance électrique installée (W)
7 2 100
15 2 280/450*
25 4 000/580*
50 6 100/580*

* version équipée sans groupe frigorifique (à distance).

Cellule à chariots – surgélation et refroidissement rapide
Capacité par cycle (kg) Puissance électrique installée (W)
En surgélation En refroidissement
65 65 3 200/900*
80 110 5 400/4 300*
160 220 9 600/6 600*
240 330 11 500*
320 440 14 000*
480 660 20 000*

* version équipée sans groupe non comprise l’alimentation du groupe frigorifique (à distance).

Choisir l’éclairage de la cabine d’ascenseur

Critères de choix

Niveau d’éclairement

La norme NBN EN 81-1, préconise un niveau d’éclairementEm de 50 [lux] dans la cabine. Seulement, la norme ne précise pas à quelle hauteur doit être réalisé ce niveau d’éclairement. Pour s’éclaircir les idées, la norme EN 12464-1 (lumière et éclairage des lieux de travail) donne des éléments de réponse : l’ascenseur n’est pas à proprement parler un lieux de travail mais la norme obéit à une logique intéressante du choix du plan de travail, à savoir dans ce cas-ci, le niveau du sol.

En pratique, comme dans les couloirs par exemple, le plan de travail se situe à une hauteur de 10 [cm] au dessus du sol; à ce niveau, il faut 50 [lux].

Uniformité

La norme NBN EN 81-1ne précise pas non plus l’uniformitédu niveau d’éclairement. La norme EN 12464-1 vient de nouveau à notre secours : soit une uniformité de 0,7

Éblouissement

L’éblouissement d’une source lumineuse visible dans les cabines d’ascenseurs peut être important dans le sens où le plafond est relativement bas et, par conséquent, la source lumineuse proche du champ de vision.

Efficacité énergétique

L’efficacité énergétique de l’éclairage dans des lieux de travail du secteur tend à atteindre 1,25 W/m².50 lux en éclairage direct et 3 W/m².50 lux en éclairage indirect. Dans les cabines d’ascenseurs on essayera dans la mesure du possible de tendre vers ces valeurs.


Choix de l’éclairage

Choix du système d’éclairage

Pour respecter les critères de confort et d’efficacité énergétique de l’installation d’éclairage, le choix entre un système direct, indirect ou mixte est loin d’être évident. Effectivement, pour atteindre un niveau d’éclairement de 50 [lux] au-dessus du sol avec une uniformité correcte, l’éclairage direct est idéal mais éblouissant. Par contre, dans le cas d’un éclairage indirect supprime l’éblouissement. Mais pour peu que les parois internes de la cabine soient sombres, le niveau d’éclairement de 50 [lux] sera difficile à atteindre avec une efficacité énergétique idéale pour ce système.

En restant raisonnable l’éclairage mixte est un bon compromis.

Choix des lampes

D’emblée dans le choix des lampes on tiendra compte de la gestion de l’éclairage qui influence le nombre d’allumage et d’extinction :

 

Pour un éclairage permanent ou dont la gestion s’effectue par une horloge (coupure de l’éclairage en dehors des heures d’occupation), le choix des tubes fluorescentsou des lampes fluocompactesest judicieux dans le sens où leur efficacité lumineuse est très bonne (de l’ordre de 95 [lm/w]) et leur durée de vie moyenne importante (de l’ordre de 10 000 à  15 000 heures).

Par contre, pour une gestion en fonction de la demande (détection de présence par exemple), le tube fluorescent (n’aime pas les allumages répétitifs) est remplacé par des lampes halogènes qui présentent une efficacité lumineuse (de l’ordre de 15 à 30 [lm/W]) moindre mais supportent mieux les allumages répétitifs. Ici la durée de vie est moins bonne que dans le cas des tubes fluorescents (2 000 à 4 000 heures).

Maintenant les constructeurs d’ascenseurs incluent dans leur équipement d’éclairage standard, les lampes LED atteignant, à l’heure actuelle, une efficacité lumineuse entre 25 et 35 [lm/W] pour une durée de vie entre 20 et 30 000 heures. Ce type de lampe a de l’avenir mais reste relativement cher pour l’instant.

Choix du ballast

Dans le cas du choix de lampes fluorescentes, le ballast qui accompagne ce type de lampe doit être de bonne qualité. Il sera au minimum de type électronique.

Choix des luminaires

Dans le choix des luminaires, on privilégiera l’éclairage direct.

Dans le cas d’un éclairage permanent ou semi permanent le luminaire sera :

  • ouvert,
  • équipés d’un réflecteur en aluminium de bonne qualité,
  • dont l’angle de défilement des ventelles est limité et positionnés dans le local de manière à éviter les éblouissements directs des patients couchés,
  • équipés d’une lampe fluorescente.

Dans le cas d’un éclairage adapté à l’occupation de la cabine le luminaire sera :

  • ouvert,
  • équipés d’un réflecteur en aluminium de bonne qualité,
  • équipés d’une lampe halogène.

L’éclairage indirect est une option que proposent les fabricants d’ascenseurs. Dans ce cas, les parois doivent de préférence être claires de manière à atteindre une efficacité énergétique de 3 [W/m².50 lux) lorsqu’elles sont combinées avec une lampes types tube fluorescent.

En ce qui concerne l’éclairage mixte, il peut représenter un bon compromis pour atteindre le bon niveau d’éclairement au sol sans trop éblouir et en concervant une efficacité énergétique convenable.

Concevoir

Pour en savoir plus sur le choix des composants des luminaires.

Choix de la gestion

Lorsque le choix de la motorisation se porte sur un système performant (« gearless » ou sans réducteur de vitesse par exemple), la consommation de l’éclairage entre autre devient importante. Non seulement il faut choisir un éclairage performant mais aussi une gestion adaptée à la fréquentation des ascenseurs.

Évaluer

Pour en savoir plus sur l’évaluation de la consommation des appareils d’éclairage lorsqu’ils sont gérés en fonction de l’occupation.

Trois cas de figure sont à prendre en considération dans la gestion des luminaires :

  • l’éclairage permanent jour et nuit pendant toute l’année,
  • l’éclairage est permanent pendant les heures d’occupation de l’immeuble, et coupé en dehors,
  • l’éclairage est commandé par détection de présence au sein de la cabine.

Suivant le type de gestion, l’exemple suivant montre que les consommations sont très différentes.

Exemple.

On considère deux types de luminaire dans la cabine classique de 8 personnes (640 [kg]) :

  • Un luminaire de bonne qualité équipé d’un tube fluorescent TL8 de 36 [W] avec une efficacité lumineuse de 90 [lm/W] et utilisé dans le cas d’un allumage permanent ou d’une gestion semi permanente. En effet, le TL est intéressant à partir du moment où les allumages et extinctions sont peu nombreux.

 

  • Un luminaire de bonne qualité équipé d’une lampe halogène de 40 [W] avec une efficacité lumineuse de 20 [lm/W] et utilisé dans le cas d’une gestion en fonction de l’occupation de la cabine (par détection de présence par exemple). Ce type de lampe supporte mieux les allumages et extinctions fréquentes que les tubes fluorescents ou les lampes fluocompactes.

On simplifie l’exemple en prenant différents paramètres standards :

  • le nombre moyen de courses journalières pour les bâtiments du tertiaire est compris entre 300 et 1 200 [courses/jour],
  • le temps moyen d’une course est aux alentours des 20 [s],
  • le nombre annuel de jour d’occupation est de l’ordre de 240 [jours],
  • le temps moyen d’occupation de l’immeuble est de 10 [h/jour].

De plus les hypothèses suivantes sont prises :

  • on ne tient pas compte de la durée de vie et du vieillissement de la lampe halogènes soumise à des allumages et des extinctions fréquentes,
  • le temps moyen d’une course est constant en fonction du nombre de courses.

Les résultats sont consignés dans le tableau ci-dessous et donnent le graphique suivant :

Nombre de course/jour
Temps d’occupation des ascenseurs [h]
Consommation annuelle de l’éclairage [kWh/an]
Tube fluorescent allumé en permanence
Tube fluorescent allumé pendant l’occupation de l’immeuble
Lampe halogène allumé pendant l’occupation de la cabine
300
1,7
315,4
86,4
72,0
400
2,2
315,4
86,4
96,0
500
2,8
315,4
86,4
120,0
600
3,3
315,4
86,4
144,0
700
3,9
315,4
86,4
168,0
800
4,4
315,4
86,4
192,0
900
5,0
315,4
86,4
216,0
1 000
5,6
315,4
86,4
240,0
1 100
6,1
315,4
86,4
264,0
1 200
6,7
315,4
86,4
288,0

On constate que rapidement la gestion par détection de présence dans la cabine d’ascenseur équipant la lampe halogène devient vite énergivore lorsque la fréquentation dépasse les 400 [courses/jour].

Ce qui signifie que la gestion idéale dans un immeuble :

  • n’est pas l’éclairage permanent (c’est évident),
  • à fréquentation importante (hôtels, bureaux, hôpitaux, …) est la gestion semi-permanente où l’éclairage est éteint en dehors des heures d’occupation courante,
  • à faible fréquentation faible (ascenseurs réservés aux professeurs dans les écoles par exemple) est la gestion par occupation de la cabine.

Gestion en fonction de l’occupation de l’immeuble

Dans certains types d’immeubles comme les bureaux administratifs, les hôpitaux, les hébergements dont la fréquentation des ascenseurs est importante (dans ce cas-ci > 400 [courses/jour], on placera le contact d’une horloge hebdomadaire en parallèle sur celui d’un détecteur de présence dans le circuit d’alimentation de l’éclairage de cabine de l’ascenseur.

Gestion en fonction de l’occupation de la cabine

Dans d’autres types d’immeubles comme les écoles dont la fréquentation des ascenseurs est faible (dans ce cas-ci < 400 [courses/jour], on placement le contact d’un détecteur de présence dans le circuit d’alimentation de l’éclairage de cabine de l’ascenseur.

Plancher des combles en résumé

Plancher des combles en résumé


Lorsque les combles ne sont prévus pour être chauffés, le plancher de celui-ci constitue la limite supérieure de l’espace protégé. C’est donc à ce niveau que doit être posé l’isolant et son pare-vapeur éventuel. Ce qui permet :

On distingue les planchers légers

(en général, constitués d’une structure en bois supportant un plancher en bois et/ou un plafond en plâtre), des planchers lourds (en général, constitué de béton ou de terre-cuite).

Dans les deux cas, on précisera si le plancher des combles doit être circulable, pour permettre le rangement d’objets par exemple.


Les planchers légers

[1]   léger sans aire de foulée

  1. Gîte.
  2. Isolant.
  3. Pare-vapeur.
  4. Finition du plafond.

[2]  Plancher léger avec aire de foulée

  1. Gîte.
  2. Isolant (remplissage partiel).
  3. Pare-vapeur.
  4. Finition du plafond.
  5. Isolant (remplissage complet).
  6. Aire de foulée.


Les planchers lourds

[1]  Plancher lourd sans aire de foulée

  1. Isolant.
  2. Pare-vapeur.
  3. Support lourd.
  4. Finition du plafond.

[2]  Plancher lourd avec aire de foulée

  1. Aire de foulée.
  2. Lambourde (facultative).
  3. Isolant.
  4. Pare-vapeur.
  5. Support lourd.
  6. Finition du plafond.

Comprendre la sensation de froid liée à la distribution

Comprendre la sensation de froid liée à la distribution


Déséquilibre de l’installation

« Il fait toujours froid dans le bureau situé au bout du couloir ».

Si on a vérifié que l’émetteur (radiateur, convecteur) de ce bureau était correctement dimensionné, il est fort à parier que le problème se situe au niveau du débit d’eau chaude qui parvient jusqu’à ce local.

Circulateur trop petit ?

Bien que cela puisse arriver, il est rare qu’un circulateur soit insuffisant ou que cette insuffisance soit la cause d’un inconfort. En effet :

Émission d’un radiateur (en % de la puissance nominale), en fonction du débit (en % du débit nominal) lorsque le radiateur est alimenté à sa température nominale. Par exemple, si le débit chute à 50 % du débit nominal, la puissance ne chute que de 20 %. Pour que le radiateur perde 50 % de sa puissance, il faut que le débit soit diminué de 80 %.

  • Un débit légèrement inférieur au débit nominal du corps de chauffe n’entraîne généralement pas une diminution importante de la puissance émise. Par exemple, une diminution de débit de 30 % n’entraîne une chute de puissance que de 5 %. Inversement, augmenter le débit de la pompe n’apportera qu’un très faible gain de chaleur aux utilisateurs concernés, tout en risquant de perturber les autres locaux jusqu’alors sans problème.
  • Dans les anciennes installations, les circulateurs sont presque toujours largement surdimensionnés (les pertes de charge dans les réseaux de chauffage ont été surestimées, une marge de sécurité a encore été prise sur la calcul, sans compter l’imprécision supplémentaire qui est de mise si l’on remplace un circulateur dont on ne connaît plus les caractéristiques de dimensionnement). Cela est confirmé par une étude Suisse sur plusieurs centaines de bâtiments qui a montré que le débit des installations de chauffage était en moyenne 2,5 fois surdimensionné par rapport aux besoins.

Ce n’est donc qu’en dernier recours que l’on redimensionnera le circulateur en recalculant les pertes de charge du circuit le plus défavorisé.

Déséquilibre ?

Nombreuses sont les installations de chauffage qui présentent des problèmes de manque de chaleur dans les locaux situés en bout de circuit.

Très souvent, la cause de cet inconfort réside dans un déséquilibre de l’installation : les premiers radiateurs « court-circuitent » le débit d’eau chaude, privant ainsi les derniers émetteurs d’un débit suffisant.

Schéma déséquilibre de l'installation.

Lorsque l’installation est déséquilibrée, les premiers radiateurs court-circuitent le débit d’eau. Le manque de débit dans les derniers radiateurs entraîne un manque de chaleur.

La cause de cette mauvaise répartition des débits (appelée déséquilibre) est l’inégalité des pertes de charge entre les différents chemins que peut prendre l’eau dans l’installation : les circuits les plus éloignés de la chaufferie présentent généralement des pertes de charge plus importantes que les circuits proches de celle-ci. Or l’eau étant « fainéante », elle préférera prendre le chemin le plus facile, c’est-à-dire où la résistance hydraulique (ou les pertes de charge) est la plus faible.

Il en résulte un manque de débit dans les circuits éloignés suffisamment important pour créer un inconfort

Améliorer

Pour éviter ce problème, il faut égaler la résistance hydraulique de chaque circuit, en « freinant » l’eau dans les circuits les plus favorisés. On parle alors d’équilibrage de l’installation. Pour en savoir plus, cliquez ici !

Un indice pour diagnostiquer un déséquilibre

Pour repérer un déséquilibre hydraulique, on peut sentir la répartition des températures dans les radiateurs : un radiateur chaud dans sa partie supérieure mais froid dans sa partie inférieure présente un débit d’alimentation insuffisant (une partie supérieure froide traduit une présence d’air à purger).

Déséquilibre récent ?

Si l’apparition d’une insuffisance de chaleur dans une zone particulière du bâtiment est récente, il faut en rechercher les causes du côté d’une modification de l’installation :

  • embouage d’une partie de l’installation ou blocage d’un élément par des boues,
  • extension des circuits par des repiquages sur les circuits existants,
  • placement de vannes thermostatiques sur une partie seulement de l’installation, ce qui augmente les pertes de charge sur cette partie (si des vannes thermostatiques sont placées sur l’entièreté des corps de chauffe, l’augmentation générale des pertes de charge peut parfois imposer de changer le circulateur pour en augmenter la hauteur manométrique),
  • modification de la régulation (par exemple, placement d’un optimiseur) qui entraînerait des interférences entre les circuits et un mauvais fonctionnement des vannes mélangeuses.

Schéma modification de la régulation.

Si on « repique » un nouveau circuit sur une installation existante et que celui-ci a une perte de charge plus faible que le reste du tronçon sur lequel il est raccordé, l’eau aura tendance à favoriser ce nouveau chemin au détriment du reste de l’installation. Il faut donc prévoir, dans le nouveau circuit, un élément de réglage pour y « freiner » le débit.


Incompatibilité des débits avec un circuit primaire bouclé

Le phénomène

Dans un circuit comprenant un circuit primaire en boucle fermée ou une bouteille casse-pression, ce phénomène apparaît lorsque le débit appelé par l’ensemble des circuits secondaires (qui alimentent le bâtiment) est supérieur au débit que fournit le circuit primaire.

Dans ce cas, une circulation inverse va se créer dans la boucle ou la bouteille casse-pression :

  • Dans le cas d’une boucle fermée, le circuit proche de la boucle va puiser de l’eau froide dans le circuit retour. Il n’atteindra donc jamais sa température de consigne. Et augmenter cette dernière ne servira à rien.
  • Dans le cas de la bouteille casse-pression, c’est l’entièreté du collecteur de départ qui puisera de l’eau froide de retour et aucun des circuits n’atteindra sa consigne.

Circulation inverse dans une boucle fermée lorsque le débit secondaire est supérieur au débit primaire.

Circulation inverse dans une bouteille casse-pression lorsque le débit secondaire est supérieur au débit primaire.

Quand cela se produit-il ?

Lors des fortes demandes de chaleur

Lors des fortes demandes de chaleur (par grand froid ou lors des relances), lorsque toutes les chaudières sont en fonctionnement, que toutes les vannes mélangeuses sont ouvertes et que les circulateurs des circuits secondaires ont été surdimensionnés par rapport aux besoins (ce qui est fréquent !).

Par exemple, cela a pour conséquence lors des relances que certaines zones de bâtiment n’atteindront jamais leur température de consigne. Le gestionnaire aura alors tendance d’avancer le moment de la relance ou d’augmenter les consignes de température d’eau, ce qui ne résoudra rien et entraînera une surconsommation. Cela peut également avoir un impact sur le fonctionnement des optimiseurs. En effet, si la température de confort n’est pas atteinte à temps, ceux-ci vont avancer le moment de la relance, peut-être, jusqu’à ce qu’il n’y ait plus du tout de ralenti.

Dans cet exemple, on aura tendance à incriminer l’optimiseur, alors que la cause du désordre est hydraulique.

En mi-saison

Imaginons le cas d’une installation dont la température du circuit primaire et des circuits secondaires est régulée en fonction de la température extérieure. En mi-saison, une ou plusieurs chaudières se mettent à l’arrêt, ce qui réduit le débit primaire. Par contre, si la température d’eau demandée à la sortie des chaudières est proche de la température demandée au niveau des circuits secondaires, les vannes mélangeuses sont ouvertes en grand, demandant le débit maximum.

Dans ce cas, le débit de la boucle primaire devient inférieur au débit secondaire. Pour compenser le manque de débit d’eau chaude qui en résulte, la pompe du (ou des) dernier(s) circuit(s) de la boucle va puiser de l’eau dans la partie « retour » du collecteur créant une circulation inverse dans la boucle (de B vers A). Ce (ou ces) circuit(s) ne sera(ont) alors pas alimenté(s) à la bonne température, ce qui créera un inconfort pour les occupants.

Le problème est semblable dans une installation avec bouteille casse-pression si la prise de température du circuit primaire est située avant la bouteille.

Circuit primaire avec bouteille casse-pression et régulation en cascade des chaudières en fonction d’une prise de température en amont de la bouteille casse-pression.

Détection du problème

La température au départ du ou des circuits incriminés (avant la vanne mélangeuse) est nettement inférieure que la température du collecteur à la sortie des chaudières. Cette différence de température peut être constatée par simple contact de la main ou grâce à un thermomètre (de contact ou sur la conduite).

Attention aux mauvaises solutions

Une chaudière supplémentaire

On pourrait avoir l’impression que la puissance des chaudières ne suffit pas lors des fortes demandes. Cependant, ceci est une fausse solution. En effet, bien que le problème soit résolu, il ne l’est pas par l’augmentation de la puissance de production mais par l’augmentation du débit primaire.

Un clapet anti-retour ou une vanne fermée dans le bypass

Pour le bon fonctionnement global de l’installation, il est interdit de fermer le bypass sous peine de perturbations et de déséquilibres importants.

Une pompe plus grosse pour le dernier circuit

Ici aussi, on pourrait imaginer que le problème vienne d’un sous-dimensionnement de la pompe du dernier circuit. Cependant, installer une pompe plus grosse ne ferait qu’accentuer le problème, puisqu’on ne ferait que puiser plus d’eau froide sur le retour.

Déconnection de la cascade de chaudières

Si la cascade est régulée en fonction des conditions extérieures, on aurait tendance à déconnecter la régulation en cascade pour permettre à toutes les chaudières de fonctionner en parallèle. Ceci est une très mauvaise solution car on perdrait tout l’intérêt de posséder une cascade.

Les solutions adéquates

Si le problème est lié à un surdimensionnement des pompes secondaires, c’est-à-dire si le problème persiste en mi-saison, même lorsque l’on force le fonctionnement en parallèle des chaudières (déconnection momentanée de la régulation en cascade, on améliorera la situation en « freinant » le débit puisé par les circuits secondaires :

  • soit idéalement par des pompes plus petites ou en diminuant la vitesse des pompes existantes,
  • soit en plaçant des vannes d’équilibrage à l’entrée des circuits, ce qui permettrait de diminuer les débits puisés dans les premiers circuits, augmentant ainsi la quantité d’eau chaude disponible pour le dernier circuit.

Améliorer

Réduire la vitesse des circulateurs ou équilibrer l’installation.

Si le problème est lié à la régulation atmosphérique des chaudières (en fonction de la température extérieure), c’est-à-dire s’il n’apparaît qu’en mi-saison lorsqu’une des chaudières est à l’arrêt (et isolée par l’arrêt de son circulateur et/ou d’une vanne d’isolement), on améliorera la situation :

  • soit en augmentant la température de consigne des chaudières (augmentation de la courbe de chauffe). 10 .. 15 °C d’écart entre la consigne des chaudières et la consigne des circuits secondaires peut être suffisant;
  • soit, dans le cas d’une bouteille casse-pression, en déplaçant la mesure de température commandant les chaudières, après la bouteille.

Dans les deux cas, cela aura malheureusement pour conséquence d’augmenter la température de départ des chaudières et donc leurs pertes.

Calculs

Pour visualiser la possibilité d’incompatibilité des débits qui apparaissent lorsque l’on est en présence d’une installation équipée d’un collecteur bouclé ou d’une bouteille casse-pression et de plusieurs chaudières régulées en cascade, cliquez ici !

Interférence entre les circuits avec des pompes de recyclage

Le phénomène

Souvent dans les circuits en boucle ouverte, une pompe de recirculation est installée en bypass sur la ou les chaudières pour garantir un débit et une température minimum de retour pour les chaudières.

Si la perte de charge dans la chaudière est plus importante que la hauteur manométrique à débit nul de la pompe de recyclage (chaudière à faible contenance en eau), il est possible que le sens de la circulation s’inverse dans le bypass malgré le fonctionnement de la pompe. Ceci peut arriver lorsque la demande de débit est importante (toutes les vannes 3 voies sont ouvertes, à la relance matinale, par grand froid, ou si en mi-saison, la température de la chaudière et identique à la température demandée par les circuits). Dans ce cas, il se produira un mélange d’eau chaude et froide à la sortie de la chaudière. La température de l’eau distribuée sera donc inférieure à la température espérée et le bâtiment n’atteindra jamais sa température de consigne.

Circulation inverse dans le by-pass, malgré le fonctionnement de la pompe de recyclage.

Attention, ce problème peut être inexistant avec des anciennes chaudières ayant des pertes de charge faibles (grand volume en eau) et apparaître subitement lors d’un remplacement de chaudières, si les nouvelles chaudières sont à faible contenance en eau.

Détection du problème

La température au début du circuit de distribution est inférieure à la température de la chaudière.

Attention aux mauvaises solutions

Le placement d’une vanne anti-retour sur le bypass est une mauvaise solution.

Le circulateur risque de tourner dans son jus au moment de l’inversion de débit, ce qui peut entraîner sa détérioration par cavitation.

Les solutions adéquates

Courbe caractéristique d’un circulateur.

  • Changer de circulateur pour que sa hauteur manométrique à débit nul soit supérieure à la perte de charge maximale de la chaudière (quand le débit est maximal).
  • Le circulateur de recirculation peut être mis en série sur le retour des chaudières.

Placement du circulateur de recyclage sur le retour des chaudières.

Calculs

Exemple de calcul d’une pompe de recyclage.

Mauvais fonctionnement des vannes de régulation : les vannes 2 ou 3 voies oscillent tout le temps

Si les vannes de régulation 2 ou 3 voies oscillent continuellement, le problème n’est pas à rechercher au niveau du régulateur mais au niveau de la disposition du circuit hydraulique.

Mauvais dimensionnement des vannes

Une première cause d’oscillation des vannes est leur mauvais dimensionnement. Un dimensionnement au « pif » d’une vanne de régulation conduit généralement la vanne à travailler dans des conditions limites (par exemple proche de sa fermeture) pour lesquelles seul un fonctionnement en tout ou rien lui sera possible.

Dans une nouvelle installation, il faut donc bien veiller à ce que le bureau d’études ou l’installateur dimensionne correctement les vannes en fonction du débit nominal du circuit et des pertes de charge.

Circuit primaire ouvert

Dans le cas d’un circuit sans pompe primaire, lors de l’ouverture d’une vanne 3 voies, la modification des caractéristiques hydrauliques de l’installation oblige les autres vannes 3 voies à réagir pour compenser cette modification.

Ce problème apparaît souvent lorsqu’on équipe une ancienne installation avec collecteur non bouclé, et sans régulation, d’une régulation par circuit avec vannes mélangeuses et sonde extérieure.

Solution

Il faut dissocier les circuits primaires et secondaires par l’installation, idéalement d’une bouteille casse pression ou d’un bypass, simple tuyau légèrement plus gros que les tuyauteries de distribution oi l’installation d’un ou plusieurs pompes primaires calculées en fonction du débit nominal des chaudières et de leur perte de charge.

Chauffage par le sol

Chauffage par le sol


Principe général

Le chauffage par le sol consiste à chauffer l’entièreté de la surface de plancher à une température maximale de 29 °C. La transmission de chaleur vers l’ambiance se fait alors principalement par rayonnement (de 20 à 30 % de convection).

Deux sources d’énergie peuvent être utilisées :

  • L’électricité, par exemple sous la forme d’une « feuille chauffante » parcourue par un courant et placée sous le revêtement de sol.
  • L’eau chaude, sous forme d’une conduite qui parcourt la chape de plancher suivant un maillage plus ou moins serré.

Chauffage par le sol électrique.

Chauffage par le sol à eau chaude.

Pour éviter des pertes de chaleur importante vers le dessous du plancher, celui-ci doit présenter une isolation suffisante.

Calculs

 Pour estimer la perte d’un chauffage par le sol situé au-dessus d’une cave, en fonction du degré d’isolation (xls)


Intégration dans le plancher

On distingue :

  • Le chauffage par le sol au mouillé dans lequel les tuyaux de chauffage sont entièrement noyés dans la chape de béton (chape de 5 cm). Ce système est a priori le moins cher. C’est celui qui présente le plus d’inertie thermique (toute la masse de béton est chaude), il ne permet guère l’intermittence et réagit difficilement aux apports de chaleur gratuits (ensoleillement).

Chauffage par le sol noyé dans la chape.

  • Le chauffage par le sol demi-sec dans lequel les tuyaux de chauffage sont posés sur un isolant comportant des rainures. Un treillis de protection est placé par dessus. Celui-ci sert aussi de distributeur de chaleur. Un chape est coulée par dessus. Ce système permet une meilleure diffusion de la chaleur (moins de perte vers le bas) et un durée de vie plus importante des conduites.

Conduit de chauffage disposé entre plots.

  • Le chauffage par le sol à sec. Ici aussi, les tuyaux de chauffage sont disposés dans un isolant préformé. Des profilés métalliques sont placés au-dessus et en dessous des tuyaux et des plaques en acier recouvrent l’ensemble. Une chape n’est plus nécessaire. Le revêtement de sol peut être placé directement sur les plaques en acier. Ce système peut être considéré comme le meilleur, car il permet une dilatation sans contraintes des tuyaux et présente une inertie thermique réduite.

Chauffage par le sol d’une salle de sport :
le système est intégré dans un plancher amortisseur.

Ces planchers rayonnants à faibles inertie sont généralement appréciés pour le chauffage dans des bâtiments fortement isolés pour sa réactivité et en rénovation pour sa faible hauteur.

Ils sont généralement composés d’un tuyau en polyéthylène réticulé, clipsé dans un diffuseur, le tout est posé sur un support (bois ou  isolant généralement). Le plancher est ensuite recouvert d’un revêtement (carrelage, parquet).

Ce système peut également être utilisé comme rafraîchissement en été avec par exemple l’utilisation d’une pompe à chaleur réversible.

Schéma principe plancher rayonnant à faible inertie.

  1. Sous structure;
  2. support (mdf, isolant,…);
  3. – 5.  diffuseur en aluminium;
  4. tube en polyéthylène réticulé;
  5. revêtement final (collé plein bain).


Tuyaux pour chauffage par le sol

La plupart des installations (90 % des planchers chauffants) sont équipées de tuyaux en polyéthylène réticulé repris sous les sigles PE-X ou PER.

Réticulé ?

Afin de pouvoir utiliser le polyéthylène dans des applications à haute température et forte pression, il faut améliorer les caractéristiques du matériau. C’est le but de la « réticulation ». La réticulation est un procédé chimique ou physique qui consiste à créer des liaisons chimiques entre les chaînes de molécules pour créer une structure en trois dimensions extrêmement résistante et insensible aux griffes.

La qualité finale du matériau dépend de la qualité de la réticulation : un degré de réticulation trop élevé rend le matériau cassant; un degré trop bas diminue la température maximale admissible. Il faut en outre que la réticulation soit homogène dans le matériau.

Trois types de polyéthylène

Il existe trois types de polyéthylène : HDPE (Polyéthylène Haute Densité), MDPE (Polyéthylène Moyenne Densité), LDPE Polyéthylène Basse Densité). Le HDPE est le plus utilisé pour la réticulation et est à conseillé pour la chauffage par le sol.

Il faut éviter les MDPE et LDPE, voire même les polyéthylènes non réticulés qui existent aussi sur le marché, mais qui présente une résistance nettement inférieure au PE-X HDPE.

Le PE-X est perméable à l’oxygène, ce qui constitue un risque de corrosion pour les éléments en acier de l’installation. C’est pourquoi les tuyaux destinés à l’utilisation en chauffage doivent être pourvus d’une barrière anti-oxygène. Cette protection est généralement extérieure et en matière synthétique.

Actuellement, les tubes en matière synthétique connaissent une application sans cesse croissante dans les installations de chauffage. C’est pourquoi, pour garantir l’adéquation du matériau choisi à l’application, il est recommandé de s’appuyer sur les systèmes disposant d’un agrément technique de l’UBAtc.


Régulation

On peut imaginer deux principaux modes de régulation pour le chauffage par le sol :

  • en fonction de la température extérieure,
  • en fonction de la température intérieure.

Il est également possible de maintenir une température d’eau constante dans l’installation (par exemple, 30°C), quelles que soient les conditions climatiques. Ce mode de conduite ne peut cependant convenir que si le chauffage par le sol n’est qu’un chauffage d’appoint (de base) et que la majorité de la puissance de chauffe est fournie par un autre système (radiateurs, convecteurs).

La régulation en fonction de la température intérieure est à déconseiller car elle conduit presqu’inévitablement à de l’inconfort.

Exemple.

Au moment de la relance matinale, il existe un écart important entre la température ambiante et la consigne. La sonde demande une production d’énergie maximale. Lorsque la température ambiante est atteinte, la masse du plancher a accumulé trop d’énergie, ce qui induit une température excessive dans la pièce.

Les apports d’énergie gratuite (soleil, personnes, …) sont détectés par la régulation mais l’inertie thermique du plancher retarde l’effet de la coupure. Il est possible qu’au moment où cet effet se fait réellement ressentir (2 à 3 heures plus tard), les apports aient disparus. Il y aura alors un manque d’émission qui , à son tour, ne pourra être compensé que très lentement.

Il est donc préférable de prévoir une régulation de la température d’eau en fonction de la température extérieure. Cependant, cette dernière ne donnera pleinement satisfaction que si les apports de chaleur par l’ensoleillement ne sont pas prépondérants et si l’usage du bâtiment n’est pas fortement intermittent.

Si ces conditions ne sont pas remplies, même le meilleur régulateur ne pourra donner satisfaction, principalement pour les systèmes à très forte inertie thermique (tuyaux noyés dans une chape).

Mettre en place un stockage d’énergie frigorifique [Climatisation – améliorer]

Mettre en place un stockage d'énergie frigorifique


Choix entre les différentes technologies

L’objectif est de fabriquer et de stocker l’énergie frigorifique avant son utilisation, par exemple la nuit.

Deux types de technologie existent sur le marché :

  • soit des réservoirs d’eau très froide, sortes d’énormes ballons « tampon », qui sont des réservoirs à « chaleur sensible« .
    Le bac constitue une réserve d’eau à 5°C, un tampon mis en série dans l’installation. On pourra en disposer facilement au moment de la pointe. Mais la capacité de stockage est faible… L’objectif est seulement de délester le groupe frigorifique durant quelques minutes sur le quart d’heure critique.
  • soit des réservoirs de glace, sous forme de barres de glace ou sous forme de nodules, qui sont des réservoirs à « chaleur latente« .
       

    L’installation (et sa régulation) est plus coûteuse, mais nettement plus efficace ! Il est possible de stocker 80 fois plus d’énergie dans un litre d’eau qui gèle que dans un litre d’eau que l’on refroidit d’1 degré ! Le projet est alors véritablement de diminuer l’équipement frigorifique (au lieu de deux machines de 300 kW, c’est une machine de 300 kW et un stockage de glace qui est installé) et de réaliser un écrêtage de la puissance électrique durant plusieurs heures.


Avantages et inconvénients

Avantages

  • Le kWh frigorifique produit la nuit et/ou en dehors des heures de pointe revient nettement moins cher.
  • Si la réserve est utilisée au moment de la pointe ¼ horaire du bâtiment, les compresseurs peuvent être délestés, ce qui permet de réelles économies financières sur le coût de la pointe.
  • Nouvelles installations : diminution de la puissance frigorifique installée, par étalement de la charge dans le temps, et donc diminution de l’investissement initial en machines frigorifiques et équipements annexes.
  • Installations existantes : augmentation de la charge frigorifique sans augmentation de la puissance électrique installée (c’est intéressant pour des bâtiments en rénovation dont on souhaite augmenter l’équipement bureautique, sans devoir augmenter la puissance du transformateur).
  • Diminution de l’encombrement des tours de refroidissement en toiture.
  • Augmentation de la durée de fonctionnement des compresseurs (à la limite, fonctionnement 24 h/24), ce qui améliore leur rendement moyen.
  • Possibilité d’un secours partiel (quelques heures seulement…) en cas de panne de la machine frigorifique ou d’interruption de la fourniture d’énergie électrique, seules les pompes étant alimentées par le groupe de secours. C’est une sécurité parfois recherchée pour les salles informatiques.
  • Pour les grands bâtiments, le réservoir d’eau obligatoire pour la protection incendie peut parfois être utilisé comme bâche d’eau glacée.

Inconvénients

  • Aucun gain sur le bilan énergétique thermique ! Même plutôt quelques pertes de frigories durant le stockage … C’est essentiellement une opération tarifaire, financière et non énergétique.
  • Lorsque la machine frigorifique « fait de la glace », la température à l’évaporation descend. Elle travaille avec un moins bon rendement que lors du régime normal de préparation de l’eau glacée ! Ceci est partiellement contrebalancé par le fait que la température de condensation va également pouvoir diminuer, suite aux températures plus fraîches de la nuit.
  • La puissance de la machine frigorifique descend à 60 % … 70 % de sa valeur nominale lorsqu’elle prépare de l’eau glacée.

Par exemple, voici l’évolution pour une machine particulière : la puissance lors de la charge de nuit est donc réduite à 324 kW / 458 kW = 71 % de la valeur nominale.

  • L’installation est plus complexe et nécessitera une régulation pour la gestion des cycles charge-décharge.
  • Le stockage thermique est volumineux et sera donc généralement limité à une part de la consommation journalière.

La démarche à suivre

Le choix de la mise en place d’un stockage de froid nécessite d’analyser correctement le profil de consommation du circuit froid.

Fixer les objectifs du stockage

De multiples combinaisons entre capacité de stockage, puissance de déstockage et puissance frigorifique sont possibles.

Il est donc utile de préciser les objectifs visés par le stockage : diminution de la pointe quart-horaire ? Diminution de la puissance frigorifique installée ? Réduction de l’encombrement des condenseurs/tours de refroidissement en toiture ? Réserve stratégique de froid en cas de rupture de la machine frigorifique ?…

On distingue de multiples stratégies d’utilisation.

Par exemple :
Un stockage total de la charge frigorifique durant la nuit.

Un stockage partiel pour limiter la pointe frigorifique.

Un stockage partiel avec une utilisation spécifique à la gestion de la pointe quart horaire.

Seul un bilan financier global (coût d’investissement initial et coût d’exploitation associé) de chaque configuration peut permettre de sélectionner la combinaison optimale.

Vérifier l’encombrement

Les réservoirs de stockage sont parfois adoptés parce qu’ils permettent une diminution de l’encombrement des tours de refroidissement en toiture.

Par contre, ils nécessitent de la place à l’intérieur du bâtiment… Dans certains cas, le stockage est enterré dans le sol, devant le bâtiment ou sous celui-ci.

On tiendra compte également du poids supplémentaire sur la structure du bâtiment, ainsi que des pressions d’eau atteintes suivant la configuration du réseau.

Etablir le profil des charges

Au contraire des systèmes de refroidissement classiques où il suffit de connaître la puissance de refroidissement maximale pour pouvoir faire son choix, l’accumulation de glace exige un profil de charge.

Il s’agit d’une présentation graphique (ou sous forme de tableau) de la charge de froid demandée en fonction du temps, et ce pour la journée de l’année où la charge de refroidissement est la plus importante (journée de référence, celle servant de base à la conception).

Le profil de charges est, en général, sous forme d’une courbe en cloche, dont la surface représente de 60 à 80 % de la surface du rectangle dans lequel la courbe s’inscrit. Ce pourcentage est appelé « facteur de simultanéité ». Plus ce facteur est bas, plus le rendement de l’installation sera défavorable.

Si la puissance maximale atteinte varie en fonction de la saison, la forme du diagramme reste relativement stable.

Etablir un scénario de charge et de décharge

Qui fait quoi et à quel moment ?

Voici 2 exemples :

  • L’objectif est de réduire la pointe électrique : le délesteur de charge arrête la machine frigorifique au moment critique et le réservoir prend le relais.
  • L’objectif est de garantir du froid en cas de panne du secteur : pour la sécurité du refroidissement du local informatique, un réservoir restera en permanence en glace, en stand-by pour le cas où… Dans ce cas, le groupe électrogène de secours doit seulement alimenter la pompe qui va envoyer l’eau glacée sur la glace.

Le dimensionnement des équipements et leur régulation est fonction des objectifs recherchés…


La sélection du groupe frigorifique

Une machine frigorifique capable de préparer de la glace se distingue de celle destinée uniquement à la préparation de l’eau glacée :

  • La préparation de la glace requiert une température à l’évaporateur de plusieurs degrés sous zéro (de – 4° à – 10°C, en fonction du type de stockage choisi), alors que l’eau glacée se prépare généralement avec une température d’évaporation réglée sur + 2°C.
  • Si le stockage de l’énergie frigorifique est partiel, la même machine produira la glace la nuit et l’eau glacée le jour. Elle doit donc pouvoir s’adapter aux deux températures d’évaporation différentes.
  • La machine frigorifique travaillant de nuit, la machine doit être prévue pour pouvoir travailler avec une température de condensation réduite et profiter ainsi d’un coefficient de performance (« COPfroid » ou « efficacité frigorifique ») amélioré (les machines standards fonctionnent avec des températures de condensation élevées en permanence). En général, ceci suppose la présence d’un détendeur électronique, capable de s’adapter aux fluctuations de température de condensation.
  • Le système choisi requiert parfois la mise en place d’un fluide secondaire, type eau glycolée.

Même s’il est possible d’utiliser les machines standards, il sera toujours utile de procéder à une analyse spécifique pour ce type d’application. Notamment pour sélectionner le type de fluide frigorigène adapté à la fluctuation de température souhaitée, tant à l’évaporateur qu’au condenseur.

On sera particulièrement attentif à l’isolation des équipements  : une isolation étanche à la vapeur pour éviter la condensation et la formation de glace. Cette isolation doit être scellée avant les essais.


La répartition des charges frigorifiques

La charge frigorifique doit être répartie entre la machine frigorifique et le stockage.

À titre d’exemple, considérons le profil de charge suivant :

Les besoins effectifs journaliers sont de 750 kWh. Une puissance maximale de 100 kW n’est requise que durant 2 heures sur un total de 10 heures d’exploitation.

On distingue deux principes de sélection des équipements :

Accumulation complète (Full Storage)

Dans le cas de ce système, on stocke dans la glace toute la quantité de froid nécessaire pour une journée complète. La machine frigorifique est arrêtée en journée et seule la glace en cours de fonte assure le refroidissement.

Il en résulte un système d’accumulation de glace très imposant, mais les coûts d’exploitation sont faibles (toute l’énergie est produite au tarif de nuit).

La puissance de la machine frigorifique est déterminée par le rapport entre l’énergie totale à accumuler (ici 750 kWh) et la durée de la période de production en Heures Creuses (ici 14 heures).

750 kWh / 14 h = 54 kW

Ce système est rarement appliqué, à cause du coût d’investissement et de l’espace disponible très élevés.

Accumulation partielle (Partial Storage)

Dans ce système, la même machine frigorifique réalise :

  • la préparation de glace durant la nuit,
  • le refroidissement partiel de l’eau glacée durant la journée, en étant alors secondée par la fonte de la glace.

La machine frigorifique fonctionnera donc 24 heures sur 24 lors de la journée de référence. Elle est alors dimensionnée en fonction de la charge de froid totale sur les 24 heures (ici 750 kWh en 24 heures) plutôt que sur la base de la charge de pointe (ici 100 kW).

En appelant :

    • Pc = puissance compresseur en direct
    • Pr = puissance réduite du compresseur la nuit = f x PC
    • f  = 3 % par °C d’abaissement de la température à l’évaporateur (valeur typique), soit une perte de puissance de 30 à 35 % en fonctionnement de nuit par rapport au fonctionnement de jour
    • En = énergie frigorifique journalière
    • Td = Temps de fonctionnement de la machine en direct
    • Ts = Temps de fonctionnement de la machine en phase de stockage de glace

La machine sera dimensionnée par :

en = Td x PC + Ts x Pr

d’où :

  • en = Td x PC + Ts x f x PC
  • PC = en / (Td + Ts x f )
Exemple de sélection

Pour expliquer la méthode de sélection, nous avons choisi de recourir à un exemple d’une installation selon le principe de fonte interne.

* A supposer

  • une charge de pointe de 1 000 kW,
  • un régime de température de 12°C / 7°C,
  • un refroidissement nécessaire entre 8 heures du matin et 18 heures (soit 10 heures),
  • une charge de refroidissement totale 8 000 kWh.

* Il est demandé

La sélection d’un système d’accumulation de glace pour une machine frigorifique aussi petite que possible.

* Solution

La plus petite machine frigorifique est celle qui tourne 24 heures sur 24.

Pour faire de la glace, la machine frigorifique produira du glycol à une température négative (ex : – 5°C). Mais, pendant la journée, la machine frigorifique fonctionnera à des températures positives dans la mesure où elle devra seulement pré-refroidir le glycol à 12°. Sa puissance étant limitée, la glace assurera le post-refroidissement.

Les caractéristiques de fonctionnement de la machine frigorifique ne sont donc pas identiques pour la production de glace et pendant la journée. La nuit, lors de la fabrication de la glace, la machine présente une puissance de l’ordre de 65 à 70 % de la puissance nominale. Cette valeur de 70 % n’est qu’indicative et devra donc être vérifiée a posteriori avec les fournisseurs de la machine frigorifique en fonction des températures d’évaporation et de condensation réelles.

Dans notre exemple, nous avons un temps de fabrication de glace de 14 heures et un temps de fonte de 10 heures. La machine frigorifique fonctionnera donc 10 heures à 100 % de capacité et 14 heures à 70 % de capacité. La quantité totale de froid à fournir est de 8 000 kWh. Dès lors, si nous comparons le froid produit au froid nécessaire, nous obtenons :

(10 h x 100 % de cap.) + (14 h x 70 % de cap.) = 8 000 kWh

cap. x (10 + 14 x 0,7) = 8 000 kWh

cap. = 404 kW

La machine frigorifique fournira donc 404 kW pendant la fonte et 70 % de cette valeur pendant la fabrication de glace, soit 283 kW.

La puissance de stockage de glace nécessaire est alors égale au temps de fabrication multiplié par la puissance de production de froid pendant la fabrication, soit :

14 heures x 283 kW = 3 960 kWh.

On trouve la même puissance de stockage en soustrayant de la charge totale de froid de 8 000 kWh la puissance de froid fournie par la machine frigorifique pendant la fonte :

8 000 kWh – (10 h x 404 kW) = 3 960 kWh.

*Conclusions

Il faut un appareil d’accumulation de glace d’une puissance de stockage minimale de 3 960 kWh.

Si le réservoir présente une capacité de 50 kWh/m³, il faudra prévoir un stockage de :

3 960 / 50 = 80 m³

Attention à la température de restitution de la glace !

La méthode de sélection ci-dessus est une première approche simplifiée !

Ainsi, il faut également vérifier si l’appareil d’accumulation de glace peut garantir la puissance de fonte souhaitée à la température demandée (ce n’est pas tout d’avoir les kWh, encore faut-il qu’ils soient restitués à une température suffisamment basse !).

Pour des applications exploitant le principe de la fonte externe, cela ne pose généralement pas de problème dans la mesure où un réservoir peut être complètement fondu en 2 heures à une température d’eau de 1 à 2°C. Dans le cas de la fonte interne, en revanche, il est conseillé d’examiner cet aspect avec le fabricant, étant donné que la puissance de fonte est nettement inférieure et dépend en outre dans une large mesure de la quantité de glace restante. Généralement, on admet dans le cas de la fonte interne que la puissance de fonte restante est d’autant plus faible que la quantité de glace restante est petite. Mais cette situation est améliorée si une pompe à air pulse des bulles d’air au fond du réservoir. L’agitation est favorable à l’homogénéité des températures, notamment par bris de la glace en fin de fonte interne.

Dans notre exemple, la puissance de fonte la plus importante à fournir est de :

1 000 kW – 404 kW = 596 kW
(puissance de pointe – capacité de la machine frigorifique).

Comparé à la puissance de stockage de l’appareil d’accumulation de glace (3 960 kWh), il s’agit d’un temps de fonte « équivalent » de 6,2 heures. Avec les systèmes de fonte interne couramment utilisés, on peut alors s’attendre à des températures de fonte autour de 5°C. Cela convient donc pour la température demandée de l’ordre de 6°C.

Le fournisseur dispose de logiciels de dimensionnement plus élaborés qui vérifieront si la température lors de la décharge reste compatible avec la demande.

Études de cas 

Un exemple d’analyse de l’évolution de la température, issue d’un logiciel de ce type, est donné dans les études de cas.

Le dimensionnement du réservoir de stockage

Capacité d’un stockage eau

La chaleur sensible de l’eau est de 1,163 kWh/m³.K.

La capacité de stockage dépend dès lors du régime de fonctionnement :

  • En régime 5°/12°C, un m³ d’eau stocké à 5° dispose d’un delta T° = 7°C, soit une réserve de 8,14 kWh/m³.
  • En régime 5°/15°C, un m³ d’eau stocké à 5° dispose d’un delta T° = 10°C, soit une réserve de 11,63 kWh/m³.

Pour stocker 1 000 kWh, il faudra 123 m³ sous un delta T° = 7°C, et 86 m³ sous un delta T° = 10°C.

Capacité d’un stockage glace

La chaleur latente de cristallisation de l’eau est de 93 kWh/m³ (en eau), soit de 84,5 kWh/m³ (en glace). en quelle sorte, on pourrait parler d’une capacité de stockage équivalente, en chaleur sensible, à un delta T° de l’ordre de 80°C ! Et cette propriété peut encore être renforcée par l’addition d’un sel eutectique dans l’eau.

Mais en pratique, l’entièreté d’un m³ de stockage ne se transforme pas en glace, ne fût-ce que pour pouvoir encore laisser passer le fluide caloporteur.

Aux valeurs de stockage en chaleur latente, on peut ajouter la chaleur sensible, en eau et en glace, fonction des niveaux de température atteints.

Les valeurs moyennes suivantes peuvent être prises :

Capacité de stockage

Volume pour 1 000 kWh

Bac à eau chal. latente 40 kWh/m³ 25 m³
chal. sensible et latente 50 kWh/m³ 20 m³
Bac à glace chal. Latente 48 kWh/m³ 21 m³
chal. Sensible et latente 58 kWh/m³ 17 m³
Nodules chal. Latente 40 à 50 kWh/m³ 25 à 20 m³
chal. Sensible et latente 50 à 60 kWh/m³ 20 à 17 m³

On constate que, en moyenne, un m³ de stockage en « glace » emmagasine 4 à 6 fois plus de froid qu’une bâche de stockage en « eau glacée ».

Ces valeurs permettent de dimensionner grossièrement le système. Les fabricants disposent d’outils de simulation permettant d’affiner ce calcul.

Études de cas 

Un exemple de dimensionnement pour une installation de 500 kW frigorifique est donné dans les études de cas.

Les schémas d’installation

Stockage d’eau glacée

Les schémas d’installation diffèrent en fonction de la place relative du ballon par rapport au chiller.

 Pour plus d’informations :  cliquez ici !

Stockage de glace

Les schémas de principe sont basés sur trois types de configuration :

  • Stockage en série avec la charge, la machine frigorifique étant en aval des bacs de stockage.
  • Stockage en série avec la charge, la machine frigorifique étant en amont des bacs de stockage.
  • Stockage en parallèle avec la charge.

Voici différents schémas possibles extraits de l’ouvrage « Production de chaud et de froid » de Bouteloup chez Pyc Éditions.

Stockage de glace dans des réservoirs à faisceaux tubulaires.

Pour plus d’informations :  cliquez ici !

Stockage de glace en parallèle avec réservoir à nodules.

Pour plus d’informations :  cliquez ici !

Études de cas 

Un exemple de schéma d’une installation existante est donné dans les études de cas.

Régulation du système stockage-chiller

La régulation du système « stockage – machine frigorifique » est fonction de divers paramètres :

  • l’importance relative du stockage par rapport aux besoins journaliers,
  • la configuration du système (série amont, série aval, parallèle),
  • les objectifs stratégiques (puissance frigorifique minimale, gestion de la pointe ¼ horaire, conservation d’une réserve de froid permanente pour la salle ordinateur en cas de défaillance du groupe frigorifique,…),

Si le stockage est total, la gestion est simple : le stockage assure les besoins journaliers totaux. Une simple vanne trois voies motorisée ajuste l’offre à la demande. Dans certains cas, il est même possible de profiter des Heures Creuses du week-end pour précharger le stockage au maximum.

Si le stockage est partiel, on distingue deux possibilités :

  • Chiller prioritaire : la machine frigorifique assure la charge permanente de base, tout en disposant de l’appoint du stockage pour vaincre les pointes. Ce système permet de charger le compresseur de façon constante, ce qui est l’idéal pour son rendement.
  • Stockage prioritaire : la charge de base est couverte par la décharge du stockage. La machine frigorifique est prévue pour couvrir les pointes de la journée. Ce système, qui suppose une capacité de stockage plus importante, valorise davantage les kWh frigorifiques produits la nuit, mais pénalise la machine frigorifique dans son fonctionnement direct.

Quelques schémas d’installation pratiques sont proposés dans la publication « Production de chaud et de froid » de Bouteloup chez Pyc Éditions.

Exemples de scénarios possibles avec une GTC

> « Stockage total » : pour les mois de novembre, décembre, janvier et février, le stockage a été dimensionné pour fournir seul les besoins de froid. L’installation fonctionnant en tarif horo-saisonnier, il est très important de limiter au maximum les pointes de puissance. La machine frigorifique sera donc délestée.
> « Priorité stockage » : en mi-saison, la priorité est donnée à la décharge du stockage, avec appoint de la machine frigorifique en fin de journée et durant les pointes.
> « Priorité chiller » : en été, c’est la machine frigorifique qui assure la base et le stockage est utilisé pour couvrir les pointes grâce à la rapidité de l’apport frigorifique qu’il permet. Lorsque vient la fin de la journée, le système bascule en mode « déstockage uniquement » afin de vider l’excédent. La décision de basculer est prise par la GTC en fonction de divers paramètres. Suivant les cas on prendra en compte : l’épaisseur de glace restante, la température extérieure, l’ensoleillement, l’heure dans la journée, l’historique des deux derniers jours, l’historique de l’année précédente,… Un tel modèle, mis au point progressivement, permet des économies importantes à terme. Toute la difficulté consistant à conserver une réserve de froid suffisante pour une pointe éventuelle !
> « Charge nocturne » : cette charge peut être démarrée « au plus tard », afin d’être juste suffisante en début de journée. Un historique peut permettre d’optimaliser le moment de la relance en fonction des besoins.
> Le fin du fin : si l’on prévoit quelques besoins de relance de chauffage dans le bâtiment en début de journée, une récupération de la chaleur sur le condenseur de la machine frigorifique est possible; la préparation du froid de l’après-midi génère le petit coup de chaleur du matin, le stockage faisant office de réservoir tampon entre ces deux besoins !

Évaluation de la rentabilité

La rentabilité d’un stockage de glace s’établit par le rapport entre le surcoût au niveau de l’installation frigorifique et l’économie financière réalisée.

Le surcoût est estimé entre 20 et 30 % de l’installation frigorifique initiale. Cette estimation comprend :

  • Les bacs à glace : on peut compter 30 €/kWh de stockage pour une petite installation de 2 000 kWh, 25 €/kWh pour une installation de 5 000 kWh, 20 €/kWh pour une belle installation de 10 000 kWh.
  • Les équipements annexes : pompes, échangeurs,…
  • La déduction du prix de la machine frigorifique que l’on a pu économiser.

Ce qui est difficile à chiffrer et qui constitue un frein majeur du développement du stockage de nuit, c’est le volume nécessaire dans le bâtiment pour entreposer les bacs !…

L’économie financière est essentiellement résultante de l’écrêtage de la pointe quart-horaire. L’économie réalisée sur le coût moindre du kWh de nuit par rapport au kWh de jour est proportionnellement plus faible.

En effet, prenons le tarif « binôme A – Éclairage » :

Le prix du kWh de jour est de 6,25 c€/kWh (HTVA) contre 4,33 c€/kWh la nuit. En passant d’une production de jour vers une production de nuit, l’économie est donc de 31 %. Mais le fait de produire de la glace engendre un abaissement de la température d’évaporation, et le compresseur n’apprécie pas !

Ainsi, un compresseur qui voit la température d’évaporation passer de + 2°C à – 5°C voit son rendement baisser de 20 % environ. Si, parce qu’un échangeur intermédiaire supplémentaire est placé, la température d’évaporation passe à – 10°C, le rendement chute de 30 %… ! En y ajoutant quelques pertes inévitables par les parois des bacs, et les consommations des pompes,… tout le bénéfice est mangé !

Il n’empêche que les installations à – 5°C sont possibles et que l’on peut sélectionner des machines frigorifiques capables de valoriser la faible température nocturne (et donc la faible température de condensation).

Mais c’est sur le coût de la pointe de puissance que le gros de l’économie doit être trouvé (8 €/kW de pointe, chaque mois) ! Le temps de retour du projet pour une installation électrique de 500 kW et plus descend sous les 3 ans, d’après les fournisseurs.

Chaque scénario doit être étudié sérieusement. Ainsi, un bâtiment avec une prédominance de consommation électrique en été aura avantage à choisir le tarif horo-saisonnier. Dans ce cas, le délestage du groupe frigorifique durant les 4 mois d’hiver sera très rentable : 14 €/kW HTVA. Mais c’est également le moment où la demande de froid est la plus faible… L’équipement peut-il s’amortir sur ces mois d’hiver ?


La réception du matériel

Lors de la réception du matériel, il sera bon de vérifier :

Au niveau du circuit hydraulique :

  • la concentration en glycol à plusieurs endroits du circuit,
  • l’isolation des circuits et des vannes,
  • la stabilité hydraulique (équilibrage) dans tous les modes de fonctionnement du réseau, avant même d’enclencher le groupe frigorifique,
  • les débits et les pertes de charge dans diverses configurations (pour vérifier notamment si on a tenu compte de la viscosité du glycol lors de la sélection des pompes),
  • les points repris dans la régulation et la stratégie de commande choisie,
  • la protection du circuit secondaire éventuel (boucle d’eau glacée vers les ventilos, par exemple) contre tout risque de gel.

Au niveau du stockage :

  • le niveau d’eau dans le réservoir,
  • le débit et les températures lors de la charge et de la décharge.

Au niveau de la machine frigorifique :

  • la charge effective du stockage dans les conditions prévues et les températures d’évaporation spécifiées, et ceci dans le temps prévu.

Plusieurs essais sous des régimes différents seront nécessaires. On tiendra compte du fait que lors de la première mise en charge, la température initiale du bac est plus élevée que celle en régime (généralement autour des 5°C). Le premier temps de charge sera donc plus long.


La maintenance

La maintenance d’un stockage de glace est faible. On suivra les recommandations du fabricant, dont la vérification régulière de la concentration en eau glycolée.

La présence de vannes d’isolement doit permettre de démanteler facilement le réservoir de stockage sans interrompre le restant du circuit.

Si l’isolation doit être remplacée, on sera attentif à sécher au préalable soigneusement la zone traitée et à rétablir l’étanchéité au passage de la vapeur d’eau afin d’éviter la corrosion ultérieure des installations.

Théorie des supports antivibratiles

Théorie des supports antivibratiles


Fréquence propre et résonance d’un système

Tirez sur une masse suspendue au bout d’un élastique, puis lâchez la : elle reviendra à la position de repos avec une fréquence qui sera toujours identique. Lancez une balançoire d’enfant, l’amplitude va se réduire progressivement jusqu’à l’arrêt, mais la fréquence d’oscillation restera constante.

Cette fréquence d’oscillation avec laquelle un système élastique quelconque (mécanique, acoustique, …) revient à sa position d’équilibre après avoir été sorti de celle-ci par une force extérieure, est appelée fréquence propre du système.

Si la fréquence d’excitation est égale à la fréquence propre du système, celui-ci « entre en résonance » et le mouvement a tendance à s’amplifier, entraînant des oscillations parfois dangereuses. Quand on pousse une balançoire, on s’arrange pour se synchroniser avec la fréquence propre de la balançoire, pour ne pas la recevoir dans la figure, d’une part, mais surtout pour amplifier le mouvement. Sans le savoir, celui qui pousse « entre en résonance » avec la balançoire… !

D’autres exemples :

  • Le pont suspendu de Tacoma aux États-Unis qui est entré en résonance avec les rafales de vent et qui a été détruit.
  • Un verre mis en vibration par un diapason posé à côté.
  • La vibration de « vieilles » voitures à certaines vitesses de rotation du moteur.


Fonctionnement d’un support antivibratile

Pour réduire la propagation des vibrations de certains appareils (compresseurs, ventilateurs,…) à la structure du bâtiment, on insère des supports élastiques entre l’équipement et la dalle qui le supporte. On parle de « Silentblocs » ou de « supports antivibratiles ».

L’ensemble « équipement-support » constitue un système « masse-ressort », soumis aux lois de la mécanique des vibrations, et disposant dès lors d’une fréquence propre.

On admet généralement que le système ne dispose que d’un seul degré de liberté : il produit des efforts uniquement verticaux sur son support. Dans ce cas, la fréquence propre de vibration du système est donnée par :

fo = (1/2π) x (k/m) 1/2

où,

  • k est la raideur du ressort constitué par les plots antivibratiles (rapport de l’effort transmis sur le déplacement correspondant, exprimé en N/m)
  • m est la masse de l’équipement et de son socle éventuel en kg.

Si le plot élastique est souple et la masse de l’équipement est élevée, le rapport k/m sera faible et donc la fréquence propre sera basse.

Si la fréquence d’excitation de la machine est proche de la fréquence propre du système, il y aura résonance et amplification des déplacements.

Amplification de la vibration en fonction du rapport entre la fréquence d’excitation de la machine et la fréquence propre du système

Par contre, pour permettre une bonne atténuation des vibrations, la fréquence propre du système antivibratile doit être 3 à 4 fois inférieure à la fréquence excitatrice.

Pour dimensionner correctement les plots antivibratiles, il faudra donc connaître :

  • La masse de l’équipement et la répartition de cette masse sur son assise, afin de répartir la position des plots pour qu’ils donnent la même fréquence propre.
  • La fréquence excitatrice liée à la vitesse de rotation du moteur ; s’il s’agit d’une machine tournante, la fréquence excitatrice est déduite de la vitesse de rotation N par la relation f = N/60 [Hz].
Exemple.

Un ventilateur tournant à une vitesse de rotation de 1 500 tours/minute provoque des vibrations de 25 Hz (puisque rotation de 25 tours/seconde). Les plots devront être calculés sur une fréquence propre de 6 à 8 Hz.


En pratique

En pratique, on rencontre :

  • des ressorts, utilisés pour toutes les fréquences propres mais surtout lorsqu’elles sont inférieures à 8 Hz,
  • des plots à base de poudre de liège mélangée à un élastomère, pour des fréquences propres supérieures à 8 Hz,
  • des plots à base d’élastomères, pour les fréquences propres supérieures à 12 Hz,
  • un système de « dalle flottante », c’est-à-dire la construction d’un socle de béton sur un matelas de laine minérale ou de mousse plastique souple, pour les fréquences propres moyennes ou aiguës.

Évaluer la consommation des fax

Évaluer la consommation des fax

Puissance en fonction du mode de fonctionnement

Le marché étant tellement vaste, on se réfère à une étude menée par ouverture d'une nouvelle fenêtre ! Energy Star qui intègre sur son site un module de calcul des consommations de différents équipements de bureautique.

Les tableaux et les graphiques ci-dessous montrent des puissances moyennes pour des fax couramment rencontrés sur le marché en intégrant 4 modes de fonctionnement (actif, prêt, attente et arrêt).

La différence des puissances dissipées entre les modes « attente » et « prêt » est :

  • En mode « attente » (ou standby), le fax est en veille prolongée et il ne peut pas directement imprimer un fax entrant. Il y a donc très peu de puissance dissipée.
  • En mode « prêt » (ou ready), le fax est prêt à recevoir et à imprimer un document. L’élément chauffant est en fonction et dissipe de la puissance.
Type de fax Puissance moyenne [W]
(ouverture d'une nouvelle fenêtre ! source Energy Star)
Mode actif Mode Prêt Mode attente Mode arrêt
Fax conventionnel 350 30 0
Fax labellisé 350 30 15 0

Source Energy Star.

A priori, au niveau de la puissance, il n’y a pas de différence fondamentale entre un fax conventionnel et un fax labellisé.

Les différences se situent au niveau des temps de gestion dans les différents modes de fonctionnement.

Mode de fonctionnement

Une étude américaine (LBNL 2004 : Lawrence Berkeley National Laboratories) sur les consommations d’énergie électrique montre que les fax sont branches 365 jours/an.

Pour des équipements conventionnels et labellisés le nombre d’heures de fonctionnement par type de mode est repris ci-dessous sous forme de tableau et de graphique :

Type de fax Heure moyenne [h/an]
(ouverture d'une nouvelle fenêtre ! source Energy Star)
Mode actif Mode Prêt Mode attente Mode arrêt
Fax conventionnel 0,5 23,5 0 0
Fax labellisé 0,5 0 23,5 0

Source Energy Star.

Les constructeurs d’équipements labellisés basent l’économie d’énergie en réduisant au maximum la période où le fax est en mode « prêt » et par conséquent la période où la puissance dissipée par l’élément chauffant est importante.

Consommation énergétique

Voyons en termes d’énergie consommée ce que cela donne. Les résultats sont repris dans le tableau et sous forme graphique ci-dessous :

Type de fax Consommation moyenne [kWh/an]
(ouverture d'une nouvelle fenêtre ! source Energy Star)
Fonction basse énergie activée Fonction basse énergie pas activée Fonction basse énergie activée Fonction basse énergie pas activée
Toujours allumé Toujours allumé Éteint en fin de journée Éteint en fin de journée
Fax conventionnel 321 321
Fax labellisé 193 321 193 321

Source Energy Star.

Le fax est l’appareil par excellence qui fonctionne en permanence afin de recevoir 24 heures sur 24 des documents envoyés de l’extérieur (permet de tenir compte du décalage horaire pour déclencher un envoi de nuit vers un autre continent par exemple). On voit donc tout de suite l’efficacité de la fonction attente du fax labellisé. Toutefois, il faudra être attentif que cette fonction soit activée par défaut dès l’acquisition de l’équipement ou de ne pas oublier de la mettre en fonction.

Exemple.

Pour argumenter l’intérêt de posséder un équipement labellisé et activé, on peut

calculer l’économie moyenne annuelle sur un parc de x machines en considérant que :

  • Le nombre de jour de fonctionnement est de 365 jours/an,
  • la proportion de machines allumées 24h/24 est de 100 %,
  • la proportion d’équipements labellisés est de 90 %.

Et en reprenant les consommations énergétiques du tableau ci-dessus : On applique la formule suivante (Energy Star) : > Pour les équipements labellisés la consommation moyenne annuelle ramenée à un seul équipement est de :

(1 – 1) x 0,9 x kWh/anBEA/EFJ + (1 – 1) x (1 – 0,9) x kWh/anBEPA/EFJ

+ 1 x 0,9 x kWh/anBEA/TA + 1 x (1 – 0,9) x kWh/anBEPA/TA

=

(1 – 1) x 0,9 x 193 [kWh/an] + (1 – 1) x (1 – 9) x 321 [kWh/an]

+ 1 x 0,9 x 193 [kWh/an] + 1 x (1 – 0,9) x 321 [kWh/an]

=

205 [kWh/an]

> Pour les équipements non labellisés la consommation moyenne annuelle ramenée à un seul équipement est de :

(1 – 1) x kWh/anBEPA/EFJ + 1  x kWh/anBEPA/AT

=

(1 – 1) x 193 [kWh/an] + 1  x 321 [kWh/an]

=

321 [kWh/an]

L’économie est dès lors de :

1 – (205 [kWh/an] / 321 [kWh/an]) = 0,36 ou de 36 %.

Évaluer la consommation de l’humidification et la déshumidification

Évaluer la consommation de l'humidification et la déshumidification


Attention : tous les coûts indiqués dans ce fichier sont basés sur un prix du litre de fuel à 0,622 €.


Le coût d’un m³ traité en hiver

L’énergie nécessaire pour traiter (= chauffer et humidifier) un m³ d’air, est donnée par la différence d’enthalpie (= d’énergie) entre l’air extérieur « E » et l’air soufflé dans le local « S ».

Δ h = hS – hE [kJ/kg]

Schéma coût d'un m³ traité en hiver.

Les enthalpies de ces deux états de l’air sont indiqués dans le diagramme de l’air humide (il est également possible de réaliser le calcul de l’enthalpie à partir de la valeur de la température et de l’humidité relative).

Les valeurs des enthalpies sont exprimées kilo joule par kg. Pour obtenir la valeur exprimée en m³, il faudra multiplier celle-ci par la masse volumique ρ de l’air.

Question : quelle masse volumique prendre ? celle de l’air extérieur (froid et contracté) ou celle de l’air soufflé (chaud et dilaté) ? Pour éviter ce problème, les bureaux d’étude travaillent toujours avec les masses d’air (constantes) et non les volumes! La conversion vers les m³ ne se fait qu’au moment de dimensionner le ventilateur. Celui-ci étant souvent positionné à la sortie de caisson de traitement d’air, on prendra la masse volumique de l’air soufflé.

Le coût final du traitement de l’air est alors fonction du type d’énergie utilisé. Dans l’exemple ci-dessous (conditions moyennes), le coût du traitement de 1 000 m³/h varie entre 72,5 et 105,5 c€/heure.

Exemple.

Soit :

  • un air extérieur à 5°C et 70 % d’humidité relative : hE = 14,4 kJ/kg,
  • un point de soufflage à 30°C et 30 % d’humidité relative : hS = 50,4 kJ/kg.

Quelle est l’énergie nécessaire pour chauffer 1 000 m³/h ?
Et quel en est le coût ?

Δ h = h– hE = 50,4 – 14,4 = 36 [kJ/kg]

Sachant que l’air soufflé présente une masse volumique de 1,15 kg/m³ :

Δ h = 36 [kJ/kg] x 1,15 [kg/m³] = 41,4 [kJ/m³]

Si le débit d’air pulsé est de 1 000 m³/h, l’énergie à fournir par heure :

1 000 [m³/h] x 41,4 [kJ/m³] = 41 400 [kJ/h] = 41,4 [MJ/h]

Pour déterminer le coût de ce traitement, il faut distinguer selon le mode d’humidification :

Si l’humidification est réalisée par un humidificateur à eau froide (humidificateur à évaporation ou à pulvérisation), la chaleur de vaporisation de l’eau est donnée par le système de chauffage de l’air. En prenant un coût moyen de l’énergie thermique de 1,75 c€ le MJ (6,22 c€ le kWh), on obtient un coût horaire de :

41,4 [MJ/h] x 1,75 [c€/MJ] = 72,5 [c€/h]

Si l’humidification est réalisée par un humidificateur à vapeur autonome (alimentation électrique), il faudra dissocier l’énergie thermique nécessaire pour le chauffage de l’air, de l’énergie électrique nécessaire pour l’humidification. Le point intermédiaire « X » à la sortie de la batterie de chauffe et à l’entrée de l’humidificateur est situé (en bonne approximation) à l’horizontale de l’air extérieur E et sur la verticale de la température 30°C.

Le diagramme de l’air humide fournit un point de caractéristique X : 30° 15 % HR, enthalpie 39,6 kJ/kg. En prenant un coût moyen de l’énergie thermique de 1,75 c€ le MégaJoule (6,22 c€ le kWh) et un coût moyen de l’énergie électrique de 4,45 c€ le MégaJoule (16 c€ le kWh, en tenant compte du coût de la pointe de puissance), on obtient :

Chauffage de l’air (de 5°C 70 % HR à 30°C 15 % HR) :

1 000 [m³/h] x 1,15 [kg/m³] x (39,6 – 14,4) [kJ/kg] x 0,001 [MJ/kJ] x 1,75 [c€/MJ] = 50 [c€/h]

Humidification de l’air (de 30°C 15 % HR à 30°C 30 % HR) :

1 000 [m³/h] x 1,15 [kg/m³] x (50,4 – 39,6) [kJ/kg] x 0,001 [MJ/kJ] x 4,45 [c€/MJ] = 55,5 [c€/h]

Soit un total de 105,5 c€/h.


Le coût d’un m³ traité en été

L’énergie nécessaire pour traiter (= refroidir et déshumidifier) un m³ d’air est en principe donnée par la différence d’enthalpie (= d’énergie) entre l’air extérieur E et l’air soufflé S.

Δ h = h– hS [kJ/kg]

Toutefois, il se peut que le traitement de l’air en été suppose un refroidissement (avec déshumidification) suivi d’un post-chauffage. Dans ce cas, si X est le point caractéristique de l’air à la sortie de la batterie de refroidissement, on aura :

Δ h = énergie frigorifique + énergie calorifique = (h– hX) + (h– hX) [kJ/kg]

Les enthalpies de ces deux états de l’air sont indiqués dans le diagramme de l’air humide (il est également possible de réaliser le calcul de l’enthalpie à partir de la valeur de la température et de l’humidité relative).

Les valeurs des enthalpies sont exprimées par kg. Pour obtenir la valeur exprimée en m³, il faudra multiplier celle-ci par la masse volumique ρ de l’air.

Question : quelle masse volumique prendre ? celle de l’air extérieur (chaud et dilaté) ou celle de l’air soufflé (froid et contracté) ? Pour éviter ce problème, les bureaux d’étude travaillent toujours avec les masses d’air (constantes) et non les volumes ! La conversion vers les m³ ne se fait qu’au moment de dimensionner le ventilateur. Celui-ci étant souvent positionné à la sortie de caisson de traitement d’air, on prendra la masse volumique de l’air soufflé.

Le coût final du traitement de l’air est alors fonction du prix de l’énergie utilisée. Dans l’exemple ci-dessous (conditions moyennes), le coût du traitement de 1 000 m³/h est estimé à 99,5 c€/heure.

Exemple.

Soit,

  • un air extérieur E à 28°C et 70 % d’humidité relative : hE = 70,7 kJ/kg,
  • un point de soufflage S à 16°C et 70 % d’humidité relative : hS = 36 kJ/kg.

Quelle est l’énergie nécessaire pour refroidir 1 000 m³/h ?
et quel en est le coût ?

Imaginons un refroidissement et une déshumidification par passage dans une batterie froide alimentée au régime 6°C – 11°C (soit une température moyenne de 8,5°C). Le point caractéristique de l’air « X » en sortie de batterie sera situé à l’intersection entre la droite qui relie le point E au point Y (Y = 8,5°C et 100 % HR) et l’horizontale du point S. Le point X a pour caractéristiques : 10,5°C et 97 % HR, h= 31 kJ/kg.

On en déduit une énergie frigorifique :

Δ h = hE – hX = 70,7 – 31 = 39,7 kJ/kg

Mais pulser un air de 10,5°C dans un local entraînerait un risque d’inconfort ! Aussi, on le préchauffera jusqu’à 16°C, entraînant une énergie de chauffage de :

Δ h = hS– hX = 36 – 31 = 5 kJ/kg

Soit un total de 41,2 + 5 = 46,2 kJ/kg

Sachant que l’air soufflé présente une masse volumique de 1,20 kg/m³ :

Δ h = 46,2 kJ/kg x 1,20 kg/m3 = 55,4 kJ/m³

Si le débit d’air pulsé est de 1 000 m³/h, l’énergie à fournir par heure :

1 000 m³/h x 55,4 kJ/m3 = 55 400 kJ/h = 55,4 MJ/h

On constate qu’il y a « destruction de l’énergie », c’est-à-dire qu’il faut compter deux fois la différence d’enthalpie entre X et S : une fois pour le refroidissement et une deuxième fois suite au post-chauffage. Ceci est cependant obligatoire si l’on souhaite atteindre un tel niveau de déshumidification…

Pour déterminer le coût de ce traitement, il faut déterminer le prix de revient du kWh frigorifique. Supposons l’utilisation d’une machine frigorifique dont le COPfroid moyen réel (ou efficacité frigorifique) est de 2,5. Il faut donc 1 kWh électrique au compresseur pour extraire un 2,5 kWh thermique à l’évaporateur. S’il s’agit du courant électrique de jour (prix de revient moyen +/- 16 c€/kWh, pointe 1/4 horaire comprise), il en coûtera donc 6,4 c€ par kWh thermique extrait. Soit 1,8 c€/MJ.

Pour la partie chauffage, un coût moyen de l’énergie thermique de 1,75 c€ le MégaJoule (6,22 c€ le kWh) est proposé.

Le coût total devient donc :

1 000 [m³/h] x 1,20 [kg/m³] x (41,2 [kJ/kg] x 1,8 [c€/MJ] + 5 [kJ/kg] x 1,75 [c€/MJ]) x 0,001 [MJ/kJ] = 99,5 [c€/h]


Le coût de l’humidification

L’humidité de l’air constitue une bonne part de son énergie !

Par exemple, de l’air sec à 20°C possède une enthalpie (= énergie) de 20,1 kJ/kg. Mais le même air, humidifié à 50 % d’humidité relative, atteindra 38,5 kJ/kg. Cela s’explique par le fait que l’humidité est constituée par de l’eau à l’état vapeur et que la chaleur de vaporisation de l’eau est proportionnellement très élevée.

Le graphe ci-dessous montre l’évolution de l’enthalpie de l’air en fonction de son humidité relative.

L’humidification de l’air est donc fort énergétique. On aura donc toujours intérêt à diminuer la consigne du taux d’humidité relative en hiver (40 % HR, par exemple).

Mais, en hiver, il faut toujours humidifier l’air de chauffage…

En hiver, l’humidité absolue de l’air extérieur est toujours très faible. Imaginons qu’il vient de pleuvoir, que l’air extérieur est proche de la saturation (100 % HR). Pour une température extérieure de + 1°C, cela ne représente jamais qu’une humidité absolue de 4 grammes d’eau par kg d’air. Or, de l’air à 20°C et 50 % HR contient 7,5 grammes d’eau par kg d’air. Il faudra donc humidifier l’air extérieur après son chauffage et avant de le pulser dans le local.

Dans l’exemple ci-dessous, on montre que le passage de la consigne de 20°C 50 % HR à 20°C 60 % HR entraîne une augmentation des coûts de 6 à 11 %, alors que l’occupant ne percevra aucune différence en terme de confort.

Exemple.

Reprenons l’exemple développé pour le calcul du coût d’1 m³ traité en hiver. Les conditions de calcul étaient les suivantes :

soit,

  • un air extérieur « E » à 5°C et 70 % d’humidité relative,
  • un point de soufflage à 30°C et 30 % d’humidité relative.

Un tel point de soufflage correspond généralement à un immeuble de bureaux dans lequel on veut maintenir une ambiance « A » de 22°C et 50 % HR (l’humidité absolue de l’air soufflé est légèrement plus faible que l’ambiance, ce qui permet de compenser les apports en eau des occupants).

L’énergie demandée par le traitement de 10 000 m³/h est de

Chauffage de l’air (de 5°C 70 % HR à 30°C 15 % HR) :

1 000 m³/h x 1,15 kg/m³ x (39,6 – 14,4) kJ/kg x 0,001 MJ/kJ = 29 MJ/h

Humidification de l’air (de 30°C 15 % HR à 30°C 30 % HR) :

1 000 m³/h x 1,15 kg/m³ x (50,4 – 39,6) kJ/kg x 0,001 MJ/kJ = 12,4 MJ/h

Supposons que la consigne soit modifiée et que A’ (22°C et 60 % HR) soit demandé. On pulsera probablement un air de chauffage de 30°C et 37 % HR. L’enthalpie de ce nouveau point S’ est de 54,7 kJ/kg. Soit un nouveau calcul pour l’humidification de l’air.

1 000 m³/h x 1,15 kg/³ x (54,7 – 39,6) kJ/kg x 0,001 MJ/kJ = 15,1 MJ/h

Le bilan énergétique total est donc augmenté de 6,5 % pour une amélioration du confort imperceptible au niveau des occupants. Le coût total du traitement de l’air est augmenté de 6,5 % si l’eau est froide dans l’humidificateur (chaleur de vaporisation prise sur l’air) et de 11 % si l’humidification est réalisée par un humidificateur électrique à vapeur.

Le coût du taux d’air neuf

L’impact du taux de renouvellement d’air est non négligeable dans la facture énergétique d’un bâtiment.
Plaçons-nous dans les conditions moyennes de fonctionnement :

  • un bureau de 5 m x 4 m x 3 m  = 60 m³,
  • une consigne à 22°C et 50 % d’humidité relative (enthalpie de 43,2 kJ/kg),
  • de l’air extérieur à 6°C et 90 % d’humidité relative (enthalpie de 19,1 kJ/kg),
  • des besoins de chauffage liés aux seules déperditions par les parois estimés à 1 500 Watts pour le local.

Remarque : on néglige d’éventuels apports en eau dans le local.

Solution 1

Un chauffage par radiateur est installé et de l’air neuf hygiénique est prétraité (chauffé et humidifié) en centrale.
Un taux horaire de renouvellement de l’air de 1 est choisi, soit une pulsion de 60 m³/h. Cet air est porté aux conditions de l’ambiance soit 22°C et 50 % HR. La puissance demandée dans le caisson de traitement d’air sera de :

Puissance = débit x poids volumique de l’air x (différence des enthalpies)

Puissance = 60 [m³/h] x 1,1 [kg/m³] x (43,2 – 19,1) [kJ/kg] / 3 600 [s/h] = 442 [Watts]

Solution 2

On travaille en « tout air neuf » et le chauffage du local est apporté par l’air chaud pulsé.
Cette fois, le débit d’air sera nettement plus élevé que le débit d’air hygiénique. La valeur du débit est fonction de la température de pulsion choisie. Prenons une température de pulsion de 40°C.
Si les apports en eau du local sont négligés, on pulsera un air dont l’humidité absolue est identique à celle de la consigne du local, soit un air situé sur le diagramme de l’air humide à 40° et 18 % HR (enthalpie : 61,2 kJ/kg).
Précisons le débit de pulsion nécessaire pour vaincre les 1 500 W de déperditions :

Débit massique = déperditions/ (différence des enthalpies)

Débit massique = 1,5 [kW] / (61,2 – 43,2) [kJ/kg] = 0,083 [kg/s]

Exprimons ce débit en volume :

Débit volumique = débit massique x volume massique à 40°C

Débit volumique = 0,083 [kg/s] x 0,9 [m³/kg] x 3 600 [s/h] = 270 [m³/h]

Le taux de brassage s’en déduit :

Taux de brassage de l’air du local = 270 [m³/h] / 60 [m³] = 4,5

La puissance en centrale devient :

Puissance = débit massique x (différence des enthalpies)

Puissance = 0,083 [kg/s] x (61,2 – 19,1) [kJ/kg] = 3,51 kW !

Soit plus du double de la puissance nécessaire pour le local !
Pourquoi ? En fait, les 270 m³ d’air pulsé comportent 60 m³ d’air neuf hygiénique et 210 m³ d’air utilisé comme « fluide caloporteur ». Cet air étant froid, il faut d’abord le réchauffer à la température de consigne avant de pouvoir lui faire porter la charge thermique du local, ce qui est énergivore.

Solution 3

Si les conditions hygiéniques le permettent, on préférera une solution de recyclage partiel de l’air et d’apport d’air neuf minimal.
Supposons que 210 m³/h (0,065 kg/s) soient recyclés et 60 m³/h (0,018 kg/s) d’air neuf soient injectés, on obtiendra un air mélangé dont l’enthalpie est de :

Enthalpie du mélange = [0,065 x 43,2 + 0,018 x 19,1] / 0,083 = 37,9 [kJ/kg]

On peut alors calculer la puissance en centrale :

Puissance = 0,083 [kg/s] x (61,2 – 37,9) [kJ/kg] = 1,93 kW !

On y retrouve, en toute logique, la puissance de 1,5 kW correspondant aux déperditions des parois et la puissance de 0,43 kW pour le traitement des 60 m³/h d’air neuf…
Par rapport au « tout air neuf », le recyclage partiel de l’air a permis (3,51 – 1,93) / 3,51 = 45 % d’économie !
Remarque : sur le graphe, dans un souci de simplification, les débits ont été exprimés en m³/h en respectant la conservation de ces débits (210 + 60 = 270 m³/h). en réalité, seuls les débits massiques sont conservés (en kg/h).

Solution 4

Si les conditions hygiéniques ne permettent pas le recyclage partiel de l’air vicié, on peut envisager la récupération partielle de la chaleur par un échangeur placé sur l’air extrait.
Sur les 270 m³/h (0,065 kg/s) évacués, un rendement de 50 % est aisément réalisable. Supposons un transfert de chaleur latente uniquement (échangeur à plaques, par exemple). Si le rendement est de 50 %, l’augmentation de température sera de 50 % de l’écart entre les deux fluides (22°C – 6°C). L’air extérieur en sort à 14°C et 53 % HR, soit une enthalpie de 26,5 [kJ/kg].

On peut alors calculer la puissance en centrale :

Puissance = 0,083 [kg/s] x (61,2 – 26,6) [kJ/kg] = 2,9 kW

Par rapport au « tout air neuf », la récupération de chaleur sur l’air extrait a permis (3,51 – 2,9) / 3,51 = 17 % d’économie !
Remarque : on constate que la récupération est inférieure à la moitié de la chaleur évacuée car la chaleur latente de l’air extrait n’est pas récupérée.

Types de gestion du trafic [ascenseurs]

Types de gestion du trafic


Généralités

Dans les bâtiments tertiaires, il est nécessaire de doter les ascenseurs d’une « certaine intelligence » qui gère le trafic. Sans elle, le trafic serait complètement anarchique.

Une gestion de trafic a pour but premier :

  • D’analyser les évolutions du trafic.
  • D’anticiper le besoin en proposant des solutions rationnelles qui minimisent le nombre et la longueur des déplacements et optimisent le remplissage des cabines.

En seconde approche, il va de soi qu’une gestion de trafic efficace réduit les consommations énergétiques; c’est une bonne nouvelle pour tout le monde.

Parmi les systèmes qui existent sur le marché pour les ascenseurs uniques, on retrouve, par ordre croissant de performance, les gestions de trafic suivantes :

  • les manœuvres à blocage (très peu performantes),
  • les manœuvres collectives de descente,
  • les manœuvres collectives complètes,

Au niveau des batteries d’ascenseur (duplex, triplette, …), des manœuvres précédentes, ne sont intégrées dans la gestion de trafic, que les manœuvres collectives complètes. En plus, certains systèmes intègrent une supervision à manœuvres de destination.


Type de gestion pour un seul ascenseur

Manœuvre à blocage

La manœuvre à blocage ne permet pas de gérer le trafic de manière efficace. En effet, dans ce cas de figure, chaque appel de la cabine est pris en compte à la suite l’un de l’autre sans mémorisation. L’appel suivant n’est pris en compte que lorsque le trajet précédent est arrivé à destination. Ce système est primaire et heureusement n’est pratiquement plus utilisé.

Exemple.

Le scénario est le suivant :

3 personnes se situant au 6ème, 5ème et 3ème désirent descendre au rez-de-chaussée.

Pour simplifier, on considère que :

  • Le temps du trajet de la cabine est proportionnel à la hauteur et vaut 5 secondes par étage.
  • Le temps de chaque arrêt est de 5 secondes.
  • La puissance moyen en montée est de 1 500 W et en descente 750 W.

On voit tout de suite que l’efficacité tant au niveau trafic qu’énergétique n’est pas probante.

Manœuvre collective de descente

Ce type de gestion permet de réduire le temps de fonctionnement de l’ordre de 50 %. Étant plus évolué, il est à mémoire et permet de rationaliser le trafic à la descente.

Exemple.

Le scénario est le suivant :

Les 3 mêmes personnes se situant au 6ème, 5ème et 3ème désirent toujours descendre au rez-de-chaussée.

On considère toujours que :

  • Le temps du trajet de la cabine est proportionnel à la hauteur et vaut 5 secondes par étage.
  • Le temps de chaque arrêt est de 5 secondes.
  • la puissance moyen en montée est de 1 500 W et en descente 750 W.

L’efficacité du trafic est nettement améliorée tant au niveau de l’efficacité qu’au point de vue énergétique.

Manœuvre collective complète

Dans ce type de gestion de trafic, tant les appels pour la descente que pour la montée sont pris en considération, mémorisés et traités en temps réelle en fonction de la situation.

Exemple.

On compare une manœuvre collective complète avec une manœuvre collective de descente.

Le scénario est le suivant :

  • Deux groupes de personnes situées au 4ème et au rez-de-chaussée désirent monter au 6ème.
  • Deux autres groupes situés au au 6ème et 2ème désirent descendre au rez-de-chaussée.

On considère toujours que :

  • Le temps du trajet de la cabine est proportionnel à la hauteur et vaut 5 secondes par étage.
  • Le temps de chaque arrêt est de 5 secondes.
  • La puissance moyen en montée est de 1 500 W et en descente 750 W.

Manœuvre collective de descente :

Manœuvre collective complète :

De nouveau, l’efficacité du trafic est nettement améliorée.


Type de gestion pour une batterie d’ascenseurs

Lorsque plusieurs ascenseurs sont nécessaires pour assurer un trafic moyen plus élevé, il faut se tourner vers des systèmes de supervision collective sélective qui assurent les fonctions suivantes :

  • envoi immédiat des cabines atteignant la pleine charge,
  • non réponse aux appels locaux des cabines déjà remplies,
  • distribution dynamique de zones,
  • programmation distincte pour différentes séquences de trafic comme les pointes montées/descentes entre étages),
  • limitation du nombre de cabines en service en période creuse,

Ces superviseurs sont de véritables analyseur de trafic en temps réel doté d’une intelligence qui peut être basée sur différents types d’algorithmes informatiques.

Manœuvre collective complète

La manœuvre collective complète fonctionne aussi pour les batteries d’ascenseurs, si ce n’est qu’elle est plus sophistiquée et qu’elle répartit le trafic sur plusieurs ascenseurs avec la possibilité :

  • de sélectionner un des ascenseurs par rapport à l’appel le plus proche,
  • de programmer en fonction du trafic des destinations privilégiées,

Ce type de gestion fait appel à un algorithme basé sur une vieille « philosophie » de commande d’ascenseur à l’extérieur de la cabine :

  • L’appel de l’ascenseur pour la montée ou la descente s’effectue sur le palier.
  • Suite à cet appel, la supervision sélectionne un ascenseur et l’envoi à destination. L’utilisateur entre dans la cabine et sélectionne l’étage au niveau de la boîte à bouton.

   

Manœuvre à destination

Ce type de manœuvre est assez récente et se base sur une autre « philosophie ». L’algorithme fonctionne à partir d’un concept inverse à celui de la commande collective complète, c.à.d.  :

  • La commande de l’étage se compose à l’extérieur de l’ascenseur (souvent même avant le palier d’ascenseur dans le but de gagner du temps sur la période d’attente).
  • Le superviseur sélectionne la cabine se trouvant dans les meilleures conditions pour optimiser le débit de personne.

En rassemblant un maximum d’utilisateurs se rendant à la même destination dans le même ascenseur (ascenseur A,B ou C par exemple) et en limitant le nombre d’arrêt une fois la cabine remplie, le système tente de réduire les temps d’attente et de trajet.

Gestion classique.

Gestion à destination.

Mesurer le courant électrique

Mesurer le courant électrique

Pince ampèremétrique.


Appareil mobile : l’ampèremètre

Un ampèremètre mesure le courant qui s’écoule dans un conducteur. On le branche donc dans le circuit comme on branche un compteur de débit d’eau : en série.

Or, pour brancher l’instrument en série avec le consommateur, il faut desserrer les bornes et effectuer un câblage, travail interdit au profane !

1ère solution :

La mesure se fait en se servant de têtes de fusibles avec bornes de mesure. La cartouche montée, l’ampèremètre peut être raccordé aux douilles pour fiches.

2ème solution :

La pince ampèremétrique

En refermant celle-ci sur un conducteur, on peut mesurer des courants qui vont de 2 A à plus de 600 A, sans raccordement électrique.

Fonctionnement

Un conducteur parcouru par un courant crée un champ magnétique autour de lui. Ce champ magnétique induit une tension dans la bobine que constitue la pince. Cette tension, proportionnelle à la valeur du courant traversant le conducteur, est lue directement sur l’ampèremètre.

Photo pince ampèremétrique.Schéma principe pince ampèremétrique.

Attention : les pinces ampèremétriques ne fonctionnent que pour le courant alternatif !

Pour mesurer un courant triphasé avec un ampèremètre à pince, il faut mesurer chaque conducteur séparément. Il n’est pas possible de mesurer les conducteurs ensemble : les champs magnétiques s’annulent réciproquement, et l’indication est zéro !


Appareil intégré à l’installation électrique

Bien sûr il est possible d’intégrer un ampèremètre traditionnel à une installation fixe mais l’idée est plutôt ici d’utiliser des appareils délivrant un signal analogique standard de type 4 – 20 mA ou 0 – 10 V, proportionnel au courant mesuré. Ces appareils peuvent alors être raccordés à la régulation d’une installation, par exemple dans le cas d’une gestion de la pointe quart-horaire. Ils permettent un suivi en continu.

    

Le convertisseur (ou transducteur)

Pour la mesure de fortes intensités, il est associé à un TI ou « Transformateur d’Intensité » (celui-ci réduit l’intensité réellement mesurée grâce à l’introduction d’un transformateur ; par exemple, un TI 200/5A signifie une échelle de mesure pouvant atteindre 200 A alors que le courant réellement mesuré par l’appareil est au maximum de 5 Ampères).

Photo convertisseur.

Le convertisseur est caractérisé par l’intensité maximale mesurable.

Appareil analogique et appareil digital.

Pour une installation triphasée, un seul ampèremètre peut suffire pour autant qu’il soit associé à un commutateur pour balayer les différentes phases.

L’appareil à effet Hall

Il permet la mesure des réseaux de forte intensité électrique (à partir de 100 A). Son principe est similaire à celui de la pince ampèremétrique utilisée pour effectuer une mesure ponctuelle : le champ magnétique généré par la présence de courant dans le conducteur est proportionnel à l’intensité électrique.

L’analyseur de réseau

La mesure de l’intensité n’est alors qu’une des grandeurs électriques fournies par cet appareil. Il intègre un microprocesseur permettant le display de valeurs moyennes ou la mémorisation des valeurs de pointe.

Il fonctionne de manière autonome mais peut être raccordé à une régulation locale.

Eté 2008 : Brieuc.
22-08-2008 : 1er passage de mise en page [liens internes, tdm, en bref !, rapide passage général sur la mise en page de la feuille] – Sylvie
24-09-2008 : WinMerge ok – Sylvie

Mur creux

Mur creux


Pourquoi un mur creux ?

Schéma principe du mur creux.

Bien construit, le mur creux protège des infiltrations d’eau de pluie. Ce type de mur est utilisé dans les pays du Nord de l’Europe occidentale (Belgique, nord de la France, Pays-Bas, Nord de l’Allemagne, Angleterre, Écosse et les régions autour de la mer Baltique) en raison de la fréquence des pluies accompagnées de vent.

L’étanchéité du mur creux est assurée grâce à une double barrière.

Composition

Fonctions

1. Maçonnerie de parement
  • Barrière à la pluie
2. Creux
  • Rupture capillaire
  • Chambre de décompression
  • Évacuation de l’eau
3. Paroi intérieure enduite
  • Étanchéité à l’air

La maçonnerie de parement joue le rôle d’écran contre les pluies battantes mais n’offre pas une étanchéité totale. Elle absorbe l’eau, elle fait donc office de paroi-tampon et constitue une surface de séchage (par temps sec) de l’eau accumulée dans le mur.

La coulisse remplit la fonction de rupture capillaire, de chambre de décompression et de canal d’évacuation : elle interrompt le passage de l’eau au travers des matériaux, elle évite que l’eau qui a pu traverser la paroi extérieure ne soit projetée par le vent sur la paroi intérieure et permet à cette eau de s’écouler sur la face interne du parement.
La coulisse devra donc être drainée afin que l’eau soit renvoyée à l’extérieur, à hauteur de chaque interruption de coulisse dans le mur (baies de fenêtre et de porte, pied de façade).

La paroi intérieure enduite joue le rôle de barrière à l’air. Elle permet une mise en équilibre des pressions de part et d’autre de la maçonnerie de parement. En l’absence d’une barrière à l’air efficace, l’eau qui aurait traversé la maçonnerie de parement au droit d’une petite discontinuité pourrait être projetée au point d’atteindre la paroi intérieure lorsque celle-ci est exposée à des pluies accompagnées de vent.

  • D’utiliser, pour le mur intérieur porteur, des bloc de béton, moins cher et de pose plus rapide que les briques.
  • De réaliser le côté apparent des façades en brique et ainsi respecter une certaine tradition dans la manière de construire en Belgique.
  • D’isoler le mur tout en protégeant l’isolant des contraintes mécaniques et en conservant la capacité thermique de la paroi intérieure.

Remarque : en Belgique, le principe du mur creux n’a été appliqué, à grande échelle, qu’après la deuxième guerre mondiale, en substitution du mur d’une brique et demie (environ 27 cm d’épaisseur).


Description du mur creux

Schéma description du mur creux.

  1. Paroi extérieure.
  2. Coulisse.
  3. Paroi intérieure.
  4. Enduit.
  5. Crochet d’encrage.
  6. Isolant.

Ci-dessus, la paroi extérieure (1) constitue le « parement », son rôle est donc aussi esthétique.
On rencontre généralement :

  • des briques en terre cuite, éventuellement peintes ou émaillées,
  • des blocs de béton décoratifs hydrofugés ou de terre cuite,
  • des blocs de béton ou de terre cuite cimentés,
  • de la pierre naturelle.

La coulisse (2), outre les rôles essentiels qu’elle joue dans l’étanchéité à l’eau de pluie décrits ci-dessus, permet de recevoir un isolant (6). Dans le cas d’un remplissage partiel, ce dernier aura une épaisseur inférieure à la coulisse laissant, du côté extérieur, une lame d’air d’une épaisseur, de préférence, d’au moins 3 cm. Dans le cas d’un remplissage intégral, il aura une épaisseur égale à celle de la coulisse.

La paroi intérieure (3) sert généralement d’élément porteur à la construction, mais peut aussi faire office de fermeture entre les éléments de la structure.
On utilise, pour la réalisation de cette maçonnerie :

  • des blocs en terre cuite allégée ou non,
  • des blocs en béton lourd, mi-lourd ou léger,
  • des blocs silico-calcaires,
  • une ossature en bois.

L‘enduit (4) constitue une barrière à l’air qui réduit fortement les infiltrations d’air dans le bâtiment. S’il n’est pas possible d’appliquer l’enduit sur la face vue de la paroi intérieure (maçonnerie intérieure apparente), il faudra prévoir un enduit sur cette paroi intérieure mais du côté coulisse.

Les crochets d’ancrage (5) sont une liaison mécanique entre les deux parois, ils accrochent la paroi extérieure à l’élément porteur.


Les types de murs creux

  • Le mur creux non isolé.
  • Le mur creux isolé à remplissage partiel de la coulisse.
  • Le mur creux isolé à remplissage intégral de la coulisse

Schéma types de murs creux - 01.Schéma types de murs creux - 02.Schéma types de murs creux - 03.

  1. Paroi extérieure.
  2. Coulisse.
  3. Paroi intérieure.
  4. Enduit.
  5. Crochet d’encrage.
  6. Isolant.

Remplissage partiel

Au moment de la construction, on place dans le creux un matériau d’isolation dont l’épaisseur est inférieure à celle du creux, de façon à ce qu’il reste un matelas d’air de 3 cm entre la paroi extérieure et le matériau d’isolation.

Remplissage intégral

Lors de la construction, un matériau isolant d’une épaisseur égale à celle du creux est placé dans le creux.

Vide ventilé

La ventilation de la lame d’air est réalisée en laissant des joints verticaux ouverts en pied et en tête de maçonnerie de parement.

On distingue :


Comportement du mur creux à la pénétration à l’eau de pluie

La maçonnerie extérieure sert de tampon mais ne peut, à elle seule, assurer l’étanchéité à l’eau de pluie.

Infiltration de l’eau de pluie par le parement extérieur

Schéma infiltration de l'eau de pluie par le parement extérieur.

Une quantité importante d’eau de pluie s’infiltre par les joints de la maçonnerie (20 à 25 % de la surface totale) qui présentent des défauts, notamment par :

  • des joints verticaux mal remplis,
  • des fissures dans le mortier,
  • une perte d’adhérence du mortier aux briques
  • un mortier de qualité médiocre.

D’autre part, la brique absorbe par capillarité :

  • une partie de l’eau de pluie s’écoulant sur sa face extérieure,
  • l’eau qui s’est infiltrée par les microfissures du parement et dans les joints de la maçonnerie,
  • l’eau qui a traversé la paroi extérieure et qui ruisselle sur la face intérieure du parement.

Durant des pluies de longue durée, la brique peut atteindre la saturation. À ce moment, toute l’eau qui s’est infiltrée ruisselle le long de la face intérieure.

Contact avec l’eau en début d’absorption capillaire et saturation maximale.

Comportement du mur creux

Le rôle du mur creux consiste alors à empêcher le transfert de cette eau vers la paroi intérieure.

Pour limiter au maximum les risques d’infiltration de l’eau de pluie au travers du mur creux, les conditions suivantes doivent être remplies :

Schéma comportement du mur creux.

> La maçonnerie de parement sera réalisée avec soin, de préférence, au moyen de matériaux capillaires.

Une maçonnerie de parement capillaire ne donnera lieu à des écoulements d’eau significatifs dans la coulisse qu’après une exposition prolongée aux pluies battantes. À l’inverse, une maçonnerie de parement constituée de matériaux peu capillaires sera le siège, dans les mêmes conditions, de pénétrations d’eau rapides et abondantes dans la coulisse.

En effet, la faible capillarité des matériaux de parement, tels que les blocs de béton hydrofugé, ne leur permet pas d’absorber l’eau lorsqu’elle a pénétré dans la coulisse.

> Les joints doivent être bien fermés, le mortier être de bonne qualité.

> Une des faces de la paroi intérieure du mur creux doit être enduite, afin d’assurer une mise en équilibre des pressions de part et d’autre de la maçonnerie de parement.

> La largeur totale de la coulisse doit être suffisante. Elle doit être d’environ 6 cm dans le cas d’un mur creux non isolé. Dans le cas d’un mur creux isolé à remplissage partiel, la lame d’air restante doit être d’au moins 3 cm.

> Dans le cas d’un mur creux isolé avec remplissage intégral de la coulisse, l’isolant doit être non capillaire et hydrophobe c.-à-d. qu’il ne peut ni s’humidifier dans la masse, ni transférer l’eau qui aurait traversé la maçonnerie de parement.

Une idée reçue… En réalité…
Les laines minérales absorbent l’eau par capillarité. Le remplissage intégral favorise l’humidification des laines. Il en résulte une accumulation d’eau qui se propage vers l’intérieur du bâtiment. Les isolants thermiques et, en particulier, les laines minérales traitées grâce à un hydrofuge sont non capillaires. Une coulisse non remplie, partiellement ou totalement remplie reste une rupture capillaire. Il n’y a donc pas de propagation d’eau de pluie dans le bâtiment.

Remarque : le remplissage partiel permet, lui, l’utilisation de la plupart des isolants puisque l’isolation n’est pas en contact avec le parement humidifié.

> Les crochets doivent être inclinés vers l’extérieur (remplissage intégral d’isolant) ou munis de casse-gouttes (remplissage partiel d’isolant).

> La face extérieure du parement d’un mur à remplissage intégral de la coulisse par l’isolant, ne peut être peinte ou émaillée.

> Il ne doit pas y avoir de déchets de mortier dans la coulisse.

> Au droit de chaque interruption de la coulisse (pied des façades, linteau de fenêtre ou de porte, etc.), les eaux infiltrées doivent être drainées vers l’extérieur. Ce drainage est assuré, d’une part, par une membrane d’étanchéité placée en escalier vers l’extérieur, d’autre part, par des joints verticaux laissés ouverts juste au dessus de la membrane.

Les membranes d’étanchéité ne peuvent pas être perforées.

Drainage au niveau d’une baie de fenêtre.

  1. Joints verticaux ouverts.
  2. Linteaux.
  3. Membrane d’étanchéité.

Remarque : Dans les murs creux « modernes » (à opposer au mur creux ancien ci-dessous) mais non isolés datant des années 1950 -1960, les ponts thermiques sont assez nombreux : linteaux monolithes, contact entre la maçonnerie de parement et le mur intérieur au droit des baies, contact entre le seuil de fenêtre et le mur intérieur, etc. Dans ce type de mur, en plus des membranes placées à chaque interruption de coulisse, des barrières d’étanchéité étaient placées aux points de contact entre les parois extérieures et intérieures du mur creux de manière à empêcher le transfert d’humidité vers l’intérieur.

Exemples.

Appui de plancher et seuil de fenêtre.

Retour de baie.

Dans les murs creux « modernes » non isolés mais plus récents (1960 à 1970 -1980, date à partir de laquelle la pose d’un isolant dans la coulisse du mur est devenue courante) ou isolés (après 1980), ces contacts sont, en principe, évités.


Comportement à la condensation superficielle

Le mur creux non isolé

À l’intérieur du bâtiment, pour un climat intérieur normal (température entre 15 et 20°C et humidité relative entre 45 et 65 %), le risque de condensation à la surface d’un mur creux non isolé est pratiquement nul.
En outre, la condensation superficielle se manifeste en premier lieu au niveau du vitrage (simple ou double), qui est généralement plus froid que le mur.
Cette condensation doit être considérée comme un signe d’une humidité relative trop élevée, qui peut être néfaste si elle est fréquente et prolongée, et doit donc inciter à ventiler davantage, par exemple.

Le risque de condensation de surface devient toutefois réel si le coefficient de transmission thermique k de la façade est supérieur à 1,7 W/m²K; et ce plus particulièrement au dos des meubles, derrière des tentures ou encore dans des angles, là où la circulation d’air est moins intense et où, de ce fait, la température superficielle est plus basse, et le taux d’humidité relative plus élevé.

Remarques.

  1. La valeur de 1,7 W/m²K concerne les logements. Elle a été fixée en fonction des températures minimales et des humidités que l’on retrouve dans ceux-ci. Pour les bureaux, par exemple, cette valeur pourrait sans doute être plus élevée, car la production de vapeur est moins importante et qu’en général, on dispose d’une ventilation contrôlée. Dès lors, dans le cas des bâtiments du secteur tertiaire, il vaut mieux évaluer le risque de condensation superficielle à partir des conditions réelles.
  2. Même si la condensation superficielle favorise le développement de moisissure, son absence ne signifie pas nécessairement absence de moisissures. En effet, un taux d’humidité relative élevé (environ 80 %) peut entraîner une humidification des matériaux hygroscopiques comme les enduits, les papiers peints, etc. et provoquer des moisissures lorsque celles-ci y trouvent un fond nourrissant.

Le mur creux isolé

L’isolation d’un mur a pour effet d’augmenter la température des parois côté intérieur en hiver et permet donc de supprimer le risque de condensation superficielle.

Schéma principe mur creux isolé - 01.   Schéma principe mur creux isolé - 02.

Ainsi, le risque de condensation superficielle est quasi inexistant dans le cas d’un mur creux correctement isolé sauf dans les locaux non chauffés et mal ventilés ou encore au droit des ponts thermiques. Les ponts thermiques les plus courants dans les murs creux se situent au niveau des seuils de fenêtre, des linteaux, des appuis de dalles, des fondations, des balcons.

Exemple.

Linteau sans coupure thermique (= pont thermique).

Un air intérieur de 20°C ayant une humidité relative de 70 % contient 12,11 g/m³ de vapeur d’eau.

Près du châssis, sur la surface la plus froide, c.-à-d. pour une température d’environ 13°C, l’air est saturé avec 11,4 g/m³ de vapeur d’eau. Il y a donc condensation superficielle sur le linteau.

Linteau avec coupure thermique.

Conductivité thermique des matériaux utilisés :

  1. Brique de façade : λ = 0,9 W/mxK
  2. Isolant thermique :λ = 0,04 W/mxK
  3. Paroi intérieure : λ = 0,45 W/mxK
  4. Enduit intérieur : λ = 0,28 W/mxK
  5. Chape : λ = 1,5 W/mxK
  6. Béton : λ = 2,5 W/mxK
  7. Châssis : λ = 0,17 W/mxK
  8. Double vitrage : λ = 3 W/mxK

Sur le linteau, la surface la plus froide a une température d’environ 17°C. Dans ce cas, l’air est saturé avec 14,5 g/m³ de vapeur d’eau. Il n’y a donc pas de condensation superficielle au niveau du linteau.

Les effets d’un pont thermique sont d’autant plus importants que le bâtiment est bien isolé. En effet, la surface intérieure du pont thermique étant plus froide que celle des murs qui l’entourent, la vapeur d’eau (provenant des occupants, des plantes, éventuellement de la cuisson (cuisine collective) ou de la lessive (buanderie)) condense préférentiellement à ces endroits.

Néanmoins ces ponts thermiques peuvent être évités par une réalisation correcte et il n’y a alors plus de risque de condensation superficielle.


Comportement à la condensation interne

À l’intérieur d’un bâtiment, on exerce des activités diverses produisant de l’humidité (production de vapeur par les occupants, plantes, etc.) augmentant ainsi la quantité de vapeur d’eau contenue dans l’air. La pression partielle de vapeur intérieure est donc généralement supérieure à celle correspondant au climat extérieur. Il y donc diffusion de vapeur au travers de la façade de l’intérieur vers l’extérieur.

1er constat

La diffusion de vapeur est un processus très lent par lequel les molécules de vapeur d’eau traversent les pores des matériaux. Les quantités de vapeur transportées quotidiennement sont donc très faibles.

Exemples (mêmes conditions que ci-dessus / mur porteur en bloc de béton lourd (enduit) – parement en brique) :

Ces quantités de vapeur d’eau sont calculées à partir de la résistance à la diffusion Z de la paroi.

Remarques.

  1. La présence de laine minérale (coefficient de résistance à la diffusion de vapeur μ très faible) ne modifie pas le flux de vapeur d’eau au travers d’un mur creux; celle d’une mousse de polyuréthane (coefficient de résistance à la diffusion de vapeur μ plus élevé) provoque une diminution de moitié de ce flux, pour autant que les panneaux isolants soient bien jointifs.
  2. La quantité de vapeur d’eau diffusée par les murs est très faible, voire négligeable, en comparaison des quantités de vapeur d’eau transportées par la ventilation.

2ème constat

Que la coulisse soit partiellement, complètement ou pas du tout remplie d’isolant, la condensation interne, lorsqu’elle se produit, apparaît à la face interne de la maçonnerie de parement.

Une idée reçue… En réalité…

L’air chaud et humide venant de l’intérieur condense dans la coulisse. La condensation interne se produit sur la face interne du mur de parement et en plus tout à fait négligeable.

En conclusion

La condensation interne ne pose pas de problème spécifique vu que les quantités d’eau condensées sur la paroi interne de la maçonnerie de parement sont largement inférieures aux quantités ruisselant sur cette même face et provenant des pluies (4 à 10 kg d’eau/m² et par jour de pluie contre environ 150 g/m² par an de condensat).


Le transport de l’air dans un mur creux et son étanchéité à l’air

La quantité d’air qui traverse les matériaux des murs extérieurs est négligeable par rapport au transport de l’air par ventilation.

La présence d’une laine minérale dans la coulisse du mur creux n’a quasi pas d’influence sur le flux d’air au travers du mur creux; par contre celle d’une mousse synthétique diminue le flux d’air. Néanmoins, il faut pour cela que les joints entre panneaux soient bien fermés.

Enfin, la présence d’un enduit va elle aussi diminuer sensiblement le flux d’air.

Le tableau ci-dessous montre comment peut varier le flux d’air au travers d’un mur creux selon sa composition.

Schéma transport de l'air dans un mur creux.

Flux d’air (g/m²xjour) pour une différence de pression de 50 Pa
Sans enduit Avec enduit
Mur non isolé. +/- 350 +/- 80
Mur isolé avec une laine minérale. +/- 340 +/- 80
Mur isolé avec une mousse de polystyrène expansé. +/- 15 +/- 13

Pour qu’un bâtiment constitué de murs creux soit étanche à l’air, il faut :

  • Prévoir un enduit sur une des faces du mur porteur : plafonnage dans le cas le plus courant ou enduit de ciment du côté de la coulisse dans le cas d’une maçonnerie qui reste apparente pour des raisons esthétiques.
  • Bien fermer les joints des maçonneries intérieures et extérieures.
  • Placer des joints d’étanchéité à la jonction mur-châssis.
  • Installer des châssis qui ferment correctement.

Comportement du mur creux isolé aux fissurations

Lorsqu’un mur de façade est isolé, la différence de température entre l’intérieur et l’extérieur est reprise en grande partie par l’isolant.

Dès lors, lorsqu’on place un isolant dans la coulisse du mur creux, le parement est plus froid en hiver et plus chaud en été que le même mur sans isolation dans la coulisse. Sur une année le parement du mur creux isolé subit donc de plus grandes variations de températures. Il en est de même sur une journée.

Il ressort d’études sur l’évolution de la température au sein des murs de façade que les écarts de température été-hiver dans les maçonneries situées du côté extérieur par rapport à l’isolant thermique sont de l’ordre de 30 à 36 K, qu’il s’agisse d’une maçonnerie de parement ou d’un mur monolithique isolé par l’intérieur.

Par ailleurs, le rapport « Scheuren in woningen » du Stichting Bouwresearch montre que, selon la nature de la maçonnerie de parement, la fissuration peut déjà se produire pour des écarts de température compris entre 17 et 35 K.
De plus aux tensions dues aux variations de température, il convient d’ajouter celles résultant des alternances d’humidification et de séchage des parements.

De plus aux tensions dues aux variations de température, il convient d’ajouter celles résultant des alternances d’humidification et de séchage des parements.

On peut dès lors considérer que des fissures résultant de mouvements hygrothermiques (quelques dixièmes de millimètres à quelques millimètres) peuvent difficilement être évitées dans le parement d’un mur creux isolé.

Fissure verticale partant des angles des baies dans une façade.

Toutefois, le risque de fissuration est fonction des paramètres suivants :

  • la dimension de la façade,
  • le niveau d’exposition,
  • les caractéristiques mécaniques des matériaux constituant la maçonnerie,
  • la stabilité dimensionnelle de la maçonnerie (coefficient de dilatation, retrait hydraulique, etc.),
  • teinte du parement.

En outre, vu l’abaissement de la température moyenne d’hiver d’un mur creux isolé par rapport à un mur creux non isolé, le séchage est ralenti. L’humidification prolongée de la maçonnerie de parement peut favoriser une dégradation des matériaux par le gel. Les matériaux de la maçonnerie de parement doivent être non gélifs. Ceci est encore plus impératif si la maçonnerie de parement est recouverte d’une couche peu perméable à la vapeur (peinture, émail, …) qui, elle aussi freine le séchage.


Le mur creux ancien

Le mur creux ancien est un mur creux non isolé avec liaisons maçonnées. On le rencontre dans les constructions datant d’avant l’année 1939 environ.

Les 2 parties du mur extérieur sont écartées de l’ordre de 5 cm avec des liaisons maçonnées fréquentes entre elles notamment aux linteaux, sur le côté des baies et souvent au niveau des planchers.

Ces nombreux contacts ne sont pas toujours protégés par une barrière contre la pénétration des pluies, ce qui provoque des problèmes d’humidité. En outre, ces contacts constituent des ponts thermiques.

La ventilation de ces murs était obtenue par la pose de brique de ventilation en haut et en bas des pans de mur. Par forte pluie, ces briques peuvent constituer un accès facile à l’eau.

Évaluer le niveau d’éclairement

Évaluer le niveau d'éclairement


  

Sous un éclairement de 500 lux et de 50 lux.


Pourquoi un niveau minimum ?

Un niveau d’éclairement  minimum est nécessaire pour voir correctement et sans fatigue les objets et, ainsi, effectuer correctement (et parfois en toute sécurité) la tâche prévue. Parfois, notamment pour les salles de sport, l’éclairement vertical est aussi important que l’éclairement horizontal au sol.

Exemple pour une école

Dans les classes, un éclairement suffisant permettra une bonne vision nécessaire aux différentes tâches des élèves et facilitera l’accommodation rapide de l’œil pour passer de l’une à l’autre :

  • lecture ou écriture d’un document disposé sur la table,
  • lecture de ce qui est écrit au tableau (noir, vert ou blanc),
  • lecture de cartes ou de panneaux affichés,
  • regard prolongé vers le professeur ou vers un autre élève,
  • visualisation de films, de diapositives, d’émissions télévisées,
  • travail sur ordinateur,

   

   


Le niveau d’éclairement recommandé

Les niveaux d’éclairement  à garantir dans les locaux sont fixés par des recommandations émanant de normes et dans certains cas par des impositions réglementaires régissant la protection des travailleurs (RGPT).
L’éclairement moyen recommandé est fonction :

  • de la tâche à effectuer :
  • de la hauteur du plan de référence (plan de travail).

Données

Pour connaitre les valeurs d’éclairement à atteindre en fonction de la tâche à effectuer.

Données

Pour connaitre les spécifications complètes relatives à l’éclairage par type de bâtiment.

Comment évaluer sa situation ?

 Situation idéale, on dispose d’un luxmètre

Photo luxmètre.

Grâce à un luxmètre on peut directement mesurer le niveau d’éclairement en plusieurs points du local et établir ainsi une moyenne d’éclairement.

Cette méthodologie de mesure est détaillée dans la norme EN 12464-1. Si vous décidez d’utiliser le logiciel Dialux, celui-ci choisit pour vous en automatique le bon maillage.

À défaut, par estimation grossière

Schéma principe estimation grossière.

Le tableau qui suit permet de déterminer le niveau d’éclairement en fonction de la puissance installée et du type de luminaire.

Cette méthode s’applique à :

Puissance installée des lampes (sans les ballasts) en W/m²

Niveau d’éclairement au niveau de la tâche

Réglette nue ou simple réflecteur peint

Diffuseur opalin

Diffuseur prisma-
tique

Réflecteur peint et ventelles planes

Réflecteur et ventelles paraboliques en aluminium

4

150..170 70..80 90..110 120..150 + 180

6

220..260 100..120 140..160 180..220 + 380

8

280..340 140..160 180..210 240..280 + 480

10

350..420 170..200 230..270 300..350 + 600

12

430..500 200..240 280..320 360..430 + 640

14

500..580 240..280 320..380 420..500

16

570..670 270..320 370..440 490..570

18

650..750 300..360 420..490 550..650

20

720..840 330..390 460..550 610..720

22

790..920 370..430 500..590 670..790

24

860..990 410..480 550..650 730..860

26

900..1 080 440..510 600..700 790..930

28

1 000..1 200 470..550 650..760 900..1 000

30

1 100..1 220 510..600 690..810 920..1 100

32

1 140..1 340 540..630 740..870 1 000..1 140

En
W/m² pour
100 lux

2,3..2,9

4,8..6,1

3,7..4,4

2,7..3,3

1,5…2

Calculs

Il est possible d’adapter le tableau à sa situation propre. Pour évaluer plus précisément votre situation :


Et pour l’éclairage extérieur ?

Un niveau d’éclairement minimum est bien sûr aussi nécessaire pour distinguer correctement les obstacles, les autres usagers (et leurs intentions), la signalisation, …

Remarque : En éclairage intérieur, on parlera en termes  d’éclairement (lux). Ceci est en général représentatif de la performance visuelle à atteindre car on peut considérer que dans la plupart des locaux, les parois sont de couleur claire. Contre-exemple : on peut éclairer un local peint entièrement en noir avec 500 lux, on n’y verra rien ! De plus, à l’intérieur, il est difficile d’utiliser la luminance comme référence car la direction de vision y est souvent variable et cette grandeur est difficilement mesurable par le commun des mortels.

Par contre, en éclairage routier, la direction de regard est plus ou moins fixe (une personne assise au volant d’une voiture doit voir un obstacle se situant à une distance de 60 à 100 m). On exige donc des niveaux de luminance.

Dans les espaces extérieurs autres que les routes (piétonniers, …) ces données sont variables. On se permet donc de recommander des niveaux d’éclairement et non de luminance. Ceci a l’avantage d’être facilement mesurable grâce à un luxmètre.

Données

Pour connaitre les valeurs d’éclairement à atteindre en éclairage extérieure.

Un problème d’inconfort thermique ou lumineux ? N’hésitez pas à tester notre nouvel outil de diagnostic afin de trouver la solution à votre problématique.

Limiter les puissances installées

Limiter les puissances installées


Objectifs

La limitation du surdimensionnement des équipements n’est pas réalisée en vue de diminuer la pointe du courant de démarrage : cette pointe est de faible durée alors que le relevé de la pointe 1/4 horaire (utilisé pour la facturation) est établi sur la moyenne de la puissance appelée chaque 1/4 d’heure.

Ainsi, le démarrage d’un ascenseur provoque une forte pointe de courant ponctuelle, mais une faible consommation étalée sur le 1/4 d’heure.

Par contre, sélectionner un ascenseur de trop grande capacité engendrera un supplément de consommation permanent..

Également, l’ensemble des installations en amont sera surdimensionné. Et tout particulièrement le transformateur, dont les pertes à vide vont générer une consommation permanente non négligeable.


Nouvelles installations

On peut agir dès la conception de l’installation :

  • Éviter les surdimensionnements lors du calcul des installations ou lors de la sélection des équipements.
Par exemple, un calcul d’apports thermiques surévalués occasionnera :

  • une installation frigorifique surdimensionnée,
  • des temps de fonctionnement plus courts,
  • un rendement de fonctionnement plus faible.
  • Choisir des équipements à démarrage progressif ou séquentiel : il est préférable d’installer deux machines de puissance plus faible plutôt qu’une seule.
Exemple : les groupes frigorifiques, pour lesquels on préférera une cascade de compresseurs ou le choix d’un compresseur multiétagé.

Cette adaptation de la puissance aux besoins demande d’effectuer un bilan qui tient compte de coefficients réalistes de simultanéité des besoins.


Installations existantes

Sur une installation existante, sans modifier l’équipement existant,on peut éviter de démarrer simultanément des équipements, de manière à ne pas cumuler les consommations.

Il est donc important de programmer les différentes utilisations en tenant compte de ce critère.

Exemple : décalage des signaux de demande d’un ensemble de ventilo-convecteurs équipés de résistances chauffantes électriques.

Mais il est possible également de réévaluer l’importance des puissances installées des équipements. Si le bureau d’études a dimensionné l’installation sur base d’une utilisation probable du bâtiment, le responsable technique de l’exploitation est lui bien placé pour évaluer les besoins effectifs en fonction de l’utilisation réelle :

  • un ballon d’eau chaude sanitaire trop important,
  • une installation frigorifique dont on peut étager le travail du compresseur,
  • une installation d’éclairage dont l’intensité ne correspond plus aux besoins,
  • une installation de ventilation dont le débit peut être modulé par un variateur de vitesse,
  • un circulateur de chauffage surdimensionné, parce qu’une extension du bâtiment était envisagée autrefois,

Concevoir une nouvelle installation électrique et URE

Concevoir une nouvelle installation électrique et URE

Une installation électrique dans un nouveau bâtiment tertiaire est le plus souvent constituée :

  • d’un transformateur transformant la haute tension du distributeur en basse tension,
  • d’un raccordement vers le tableau électrique général basse tension (ou TGBT),
  • d’une distribution du TGBT vers les différents équipements comme les luminaires, les prises, …
  • d’équipements consommateurs (éclairage, bureautique, HVAC …)

Concevoir une nouvelle installation avec un regard URE :

  • C’est diminuer au maximum les pertes d’énergie en amont des utilisateurs. Il s’agit des pertes des transformateurs (pertes à vide et pertes en charge) et des pertes de distribution entre le transformateur et le TGBT. C’est par un choix et un dimensionnement correct des équipements qu’une optimalisation est possible.
  • C’est concevoir le réseau de distribution vers les équipements de manière à rendre possible une gestion du fonctionnement de ceux en fonction des besoins réels.
  • C’est enfin choisir les équipements les plus performants possibles.

Concevoir

Choix du transformateur.

Concevoir 

Dimensionnement des câbles de raccordement au bâtiment.

Concevoir 

Concevoir la distribution électrique interne.

Récapitulatif des caractéristiques des vitrages

Récapitulatif des caractéristiques des vitrages


Les vitrages thermiques et les vitrages permettant le contrôle solaire

Le tableau ci-dessous donne les caractéristiques des vitrages isolants et des vitrages permettant le contrôle solaire.

Type de vitrage Coefficient U
(W/m²K)
Transmission lumineuse TL % Facteur solaire FS %
(g)
Facteurs accoustiques Aspect en réflexion
Rw Rw
+ C
Rw
+ Ctr
Simple clair (8 mm) 5,8 90 86 32 31 30 neutre
Double clair 2.8 81 76 30 29 26 neutre
clair + basse émissivité 1,6 70 55 30 29 26 neutre
clair + absorbant 2,8 36 à 65 46 à 67 32 31 30 vert, bronze, bleu, rose, ….
clair + réfléchissant 2,8 7 à 66 10 à 66 32 31 30 argenté, métallique, doré, gris, vert, bleu,….
clair + basse émissivité et à contrôle solaire 1,6 71 40 neutre
clair + basse émissivité + gaz isolant 1 à 1,3 70 55 35 33 29 neutre
clair + basse émissivité et à contrôle solaire  + gaz isolant 1 à 1,3 71 40 neutre
Triple clair 1,9 74 68 neutre
clair + basse émissivité + gaz isolant 0,6-0,8 65-75 50-70 neutre
clair + basse émissivité (int) + contrôle solaire (ext) gaz isolant 0,6-0,8 60-70 30-40 neutre

Remarque : En ce qui concerne les valeurs des indicateurs à valeur unique Rw, on suppose que les doubles vitrages repris dans le tableau ne sont pas dissymétriques et que ces vitrages ne sont pas équipés de verre feuilletés ou de gaz acoustiques. Les valeurs données restent cependant approximatives. En effet, le niveau d’isolation acoustique est fonction aussi de l’épaisseur des verres et de l’espace existant entre les feuilles de verres.


Les vitrages acoustiques et les vitrages de sécurité

Ces vitrages acoustiques et de sécurité disposent souvent en plus de caractéristiques de contrôle solaire ou thermiques. Ici, ont été choisis des vitrages types à titre d’exemple, mais d’autres améliorations ou associations sont réalisables :

 

Type de vitrage

 

 

 

 

Coefficient U
(W/m²K)

 

 

Facteur solaire FS %

 

 

Transmission lumineuse TL %

Facteurs acoustiques : Aspect en réflexion
Rw Rw
+ C
Rw
+ Ctr

Sans couche basse émissivité

Vitrage thermique disymétrique
avec gaz (8/12argon/5)
2,65 70 78,5 38 36 32 neutre
Vitrage thermique feuilleté
(6/15air/55.2 PVB)
2,7 69 76,5 41 38 34 neutre, vert, bleu
Vitrage thermique feuilleté
(8/12air/44.2 PVB)
2,8 67 76,5 41 40 37 neutre, vert, bleu
Vitrage avec PVB amélioré
(12/20air/44.2 PVBa)
2,66 63 74 44 43 40 neutre, vert, bleu
Vitrage avec résine coulée
(44.1,5RC/20argon/55.1,5RC)
49 47 42 neutre,vert, bleu

Avec couche basse émissivité

Vitrage thermique feuilleté
(6/12air/44.1 PVBa)
1,6 35 68 38 37 33 neutre, vert, bleu
Vitrage thermique feuilleté
(6/12argon/44.1 PVBa)
1,3 35 68 38 37 33 neutre, vert, bleu
Vitrage thermique feuilleté
(10/12air/44.2 PVBa)
1,6 33 66 42 40 37 neutre, vert, bleu
Vitrage thermique feuilleté
(10/12argon/44.2 PVBa)
1,3 33 66 42 40 37 neutre, vert, bleu

Choisir l’emplacement des prises et des rejets d’air extérieurs

Prises d’air

Les prises d’air neuf doivent :

  • Être les plus proches possible de la centrale de traitement de l’air. On sait que les pertes de charge en aspiration sont plus faibles qu’en refoulement, car il s’agit d’une mise en vitesse; mais le dessin des prises d’air doit néanmoins être bien tracé, car la perte de charge existe, elle est une source de bruit et elle peut avoir une grande influence sur le fonctionnement des équipements placés en aval : ventilateurs, filtres, échangeurs.

Pour minimiser les pertes de charge,
il faut assurer un passage progressif entre l’espace infini extérieur
et la section du conduit d’aspiration.

  • Ne pas aspirer du côté de rues à fort trafic.

 

  • Éviter les effets de by-pass entre prise d’air neuf et évacuation d’air vicié. Les aspirations doivent naturellement être faites loin des zones de refoulement d’air vicié. Les prises d’air neuf doivent être faites plus bas que les sorties des rejets d’air vicié. De même, il faut s’éloigner des orifices d’évacuation des fumées de parking et tours aéroréfrigérantes, tout en tenant compte des vents dominants.

 

  • Pour limiter les charges calorifiques inutiles, éviter de disposer les prises d’air dans des endroits fortement ensoleillés (toitures, terrasses, façade ensoleillée, …) sans protection.

 

  • Résister aux intempéries. Pour cela, les aspirations se font en général du bas vers le haut, sinon sous la protection d’une visière assez longue, car l’aspiration a évidemment tendance à entraîner la pluie ou la neige. Ne pas oublier que neige et brouillard givrant peuvent très vite obturer les grillages de protection et faire se coller les uns aux autres les volets mobiles des registres automatiques ou autobasculants.

 

  • Limiter le transfert des bruits. Il est fréquent de confier aux prises d’air une fonction d’insonorisation permettant non seulement de réduire le bruit extérieur pénétrant dans l’installation, mais également le bruit de celle-ci partant vers l’extérieur, en particulier celui des ventilateurs.

 

  • Prévoir un accès pour le nettoyage. Celui-ci peut être fréquent puisque les grilles de prise d’air extérieur ne sont pas protégées par des filtres.

 

  • Ne pas permettre l’intrusion de rongeurs par exemple grâce à un grillage. Celui-ci sera réalisé avec une section de câble la plus faible possible pour limiter les pertes de charge à l’entrée.

La norme européenne EN 13779 définit certaines dispositions à respecter pour les prises d’air extérieures :

  • Le placement préférentiel de la prise d’air est face aux vents dominants.

 

  • Le dimensionnement de la prise d’air non protégée s’effectue sur base d’une vitesse d’air maximum de 2 m/s.

 

  • Les principales distances à respecter par rapport à la prise d’air sont reprises dans le tableau suivant :
Exigences EN 13779
en [m]
Distance au sol 1,5 x l’épaisseur de neige maximum
Distance minimale des sources polluantes (point de ramassage d’ordure, parking de plus de 3 voitures, …) 8

Rejets d’air

La norme européenne EN 13779 définit certaines dispositions à respecter pour les rejets d’air vers l’extérieur.
Si une bouche de rejet d’air est disposée sur un mur, elle doit respecter les prescriptions suivantes :

  • Les rejets d’air doivent se trouver à plus de 8 m d’un immeuble voisin.

 

  • Les rejets d’air doivent se trouver à plus de 2 m d’une prise d’air neuf située sur le même mur et de préférence au-dessus de celle-ci.

 

  • Le débit d’air par bouche ne peut dépasser 0,5  m³/s et la vitesse de l’air au droit de la bouche doit dépasser 5 m/s.

Si une de ces conditions n’est pas respectée, les rejets d’air doivent être installés en toiture.
L’Annexe C3 de la PEB complète la EN 13779 en imposant que dans le cas d’une ventilation naturelle, les bouches d’évacuation soient raccordées à un conduit d’évacuation qui débouche au-dessus du toit. Les conduits d’évacuation doivent avoir un tracé vertical autant que possible. Des déviations de maximum 30° par rapport à la verticale sont admises.


Combinaison rejet-entrée d’air

   

Distance minimum entre entrée et rejet d’air pour un air de ventilation courant à faible niveau de pollution (norme EN 13779).

Évacuations d’air naturelles

Évacuations d'air naturelles


Évacuations d’air naturelles : définition

Une évacuation d’air naturelle est définie dans la norme NBN D 50-001 relative à la ventilation des locaux d’hébergement comme :

Une « ouverture d’évacuation d’air réglable » ou « OER »

Les évacuations d’air naturelles ne comprennent pas de ventilateur. Elles sont obligatoirement composées de grilles ou bouches réglables disposées dans les locaux d’où l’air vicié est évacué, de conduits d’allure verticale et de débouchés en toiture.

Cette définition exclut tout autre mode courant d’évacuation utilisé tel que les fenêtres, les portes, les grilles en façade, les vasistas,… . En effet aucun de ces systèmes ne donne la garantie que l’air sera réellement évacué. Par exemple, il est possible qu’une grille disposée dans un façade en surpression (face aux vents dominants) ne puisse pas évacuer l’air naturellement vers l’extérieur.

Ces systèmes ne sont utilisés que pour la ventilation transversale de locaux spéciaux comme des greniers ou des garages.


Ouvertures d’évacuation

Les ouvertures d’évacuation naturelles sont des ouvertures disposées dans les locaux d’où l’air vicié doit être évacué. Elles sont raccordées à des conduits verticaux débouchant en toiture.

Il existe de simples grilles ou des bouches profilées.

La section libre de l’ouverture doit au minimum être de 140 cm² (70 cm² dans un WC) et pouvoir être réglée (en continu ou en 3 positions intermédiaires) entre la position complètement ouverte et la position complètement fermée.

En position complètement fermée, une bouche d’évacuation naturelle doit encore laisser passer un certain débit de fuite. Pour cela, il faut que la section nette résiduelle en position fermée soit égale à 3 .. 5 % de la section en position complètement ouverte.


Conduits verticaux

Les conduits d’évacuation naturelle doivent présenter un tracé le plus vertical possible. Ils ne peuvent comprendre de déviations brusques, de fortes courbes ou encore des élargissement ou des rétrécissements soudains. Des angles de maximum 30° par rapport à la verticale sont cependant admis.

Raccordements possibles de plusieurs bouches d’évacuation sur un même conduit vertical.

Un même conduit peut desservir plusieurs locaux superposés ou adjacents, soit directement, soit via des conduits secondaires, soit via des évacuations shunt. Les deux dernières solutions sont obligatoires si la hauteur du dernier plancher par rapport au plancher de l’entrée principale est supérieure à 13 m, ceci pour éviter les risques de refoulement de local vers l’autre.

Les conduits secondaires doivent aussi avoir un tracé aussi vertical que possible. Le tracé ne peut être incliné de plus de 30° par rapport à la verticale sur un tronçon de plus d’un mètre. Le raccord avec le conduit principal doit être le plus régulier possible.

La section des conduits doit être supérieure à 2,8 cm² par m³/h de débit évacué.


Débouchés en toiture

Les conduits d’évacuation naturelle doivent déboucher en toiture sans qu’il y ait de risque de refoulement ni de grande modification du tirage quelles que soient la direction et la force du vent.

Débouché de toiture anti refoulant.

L’évacuation ne peut être gênée par la pente de la toiture ou par des bâtiments élevés avoisinants.

Les zones autorisées pour l’emplacement d’un débouché de toiture dépendent des obstacles avoisinant le bâtiment concerné et de la toiture elle-même.

Vue en plan horizontal : un bâtiment voisin est considéré comme un obstacle
s’il est compris dans un angle de plus de 15°  par rapport au débouché de cheminée.

Vue en plan vertical : le débouché de cheminée doit avoir une hauteur minimum
en fonction de la pente de la toiture et de la distance au faîte.

Pente de toit < 23°.

Pente de toit < 23°.

Zone autorisée pour le placement d’un débouché
de cheminée (h1) en fonction des obstacles avoisinants (h2).

Mesurer les pertes à l’arrêt d’une chaudière

Mesurer les pertes à l'arrêt d'une chaudière

Les pertes à l’arrêt total d’une chaudière sont constituées des pertes vers l’ambiance et des pertes par balayage. Elles s’expriment par un coefficient de perte qE, pourcentage de la puissance nominale de la chaudière :

q[%] = q[%] +


Mesure des pertes vers l’ambiance, qA

Les pertes vers l’ambiance de la chaufferie dépendent de la température de la chaufferie et de la température de la chaudière. Une image de cette dernière est la température de ses parois que l’on peut mesurer au moyen d’un thermomètre de contact (à contact direct ou à infrarouge). On peut calculer les pertes à partir de cette mesure en utilisant la formule :

Perte [W] = 12 [W/m²°C] x Sparois [m²] x (Tparois [°C] – Tchaufferie [°C])

q[W] = Perte [W] / Puissance chaudière [W]

Exemple.

Mesure de la température de paroi d’une chaudière de 1979.

La mesure de température de surface d’une chaudière de 406 kW de 1979 maintenue en permanence à 70°C a donné les résultats suivants :

Il en résulte une perte de (la température de la chaufferie est de 20°C) :

Surface [m²]

Température de paroi [°C]

Perte [W]
(= 12 x Surface x (Tparoi – 20))
0,5 54 204
0,25 60 120
3,55 38 767
0,33 52 127
0,12 52 46
0,12 60 58

Total

1 322

Cette perte équivaut à 0,33 % de la puissance installée (= qA).

L’installation étant correctement dimensionnée, on peut estimer que le brûleur est à l’arrêt 4 000 heures par an (pour 1 800 h de fonctionnement).

L’énergie perdue vers la chaufferie, lorsque le brûleur est à l’arrêt s’élève donc à :

0,0033 x 406 [kW] (ou 1,322 [kW]) x 4 000 [h/an] = 5 288 [kWh/an] ou 529 [litres de fuel par an].


Pertes par balayage

Les pertes par balayage sont le résultat du courant d’air qui parcourt la chaudière à l’arrêt et évacue une partie de sa chaleur vers la cheminée.

Cas particulier des chaudières gaz atmosphériques

En première estimation on peut se dire que le débit d’air qui traverse une chaudière gaz atmosphérique est au maximum égal au débit d’air entraîné lors de la combustion.

Il faut au minimum 10 m³ d’air pour brûler 1 m³ de gaz naturel.

On peut donc se faire une idée de la perte maximale par balayage par les formules (en faisant l’hypothèse que l’air s’échappant dans la cheminée a atteint la température de l’eau dans la chaudière) :

Perte [W] = 0,34 [W/(m³/h).°C] x 10 [m³air/m³gaz] x Débit gaz [m³gaz/h] x (Tchaudière [°C] – Tchaufferie [°C])

Perte [W] = 0,34 [W/(m³/h).°C] x 10 [m³air/m³gaz] x Puissance chaudière [kW] / 10 [(m³gaz/h)/kW] x (Tchaudière [°C] – Tchaufferie [°C])

q[W] = Perte [W] / Puissance chaudière [W]

Exemple.

Une chaudière gaz atmosphérique de 100 kW est maintenue à une température moyenne de 70°C. La température dans la chaufferie est de 20°C.

Le débit de gaz de la chaudière est de :

Débit gaz = 100 [kW] / 10 [(m³gaz/h)/kW] = 10 [m³gaz/h]

La perte par balayage est estimée à :

Perte [W] = 0,34 [W/(m³/h).°C] x 10 [m³air/m³gaz] x 10 [m³gaz/h] x (70 [°C] – 20 [°C]) = 1 700 [W]

Soit 1,7 % de la puissance de la chaudière (= qB maximum).

Si l’installation est correctement dimensionnée, on peut faire l’hypothèse que son brûleur fonctionne durant 1/3 de la saison de chauffe (de 5 800 h). La chaudière est donc à l’arrêt et reste en température durant 3 900 h par an.

L’énergie perdue par balayage est donc de :

1 700 [W] x 3 900 [h/an] = 6 630 [kWh/an] ou 663 [litre fuel ou m³gaz par an]

Mesure du débit d’air pour les chaudières à brûleur pulsé

Il n’est pas évident de connaître le débit d’air « balayant » une chaudière à brûleur pulsé à l’arrêt. Celui-ci est en principe inférieur au débit d’air de combustion pulsé par le ventilateur du brûleur.

Il faut travailler par estimation.

Première estimation

En plaçant sa main devant l’entrée d’air du brûleur, on peut déjà ressentir un courant d’air significatif. Si on considère qu’un courant d’air à température de chaufferie est ressenti à partir d’une vitesse de 0,6 .. 1 m/s, on peut approximer la perte par balayage par la formule :

Perte [W] = 0,34 [W/(m³/h).°C] x 0,6 .. 1 [m/s] x 3 600 [s/h] x Surface amenée air [m²] x (Tchaudière [°C] – Tchaufferie [°C])

Deuxième estimation

Le débit de gaz au travers d’une section varie comme le carré de la pression.

Dès lors, si on connaît le débit de fumée et la dépression dans la cheminée lorsque le brûleur est en fonctionnement, on peut en déduire le débit d’air à l’arrêt par une mesure de dépression lorsque le brûleur est arrêté.

On détermine le débit de fumée par les formules (en partant du principe que la masse des fumées = la masse de l’air comburant + la masse du combustible) :

> pour le gaz :

Débit de fumée [kg/m³gaz] = 11,13 [kg air/m³gaz] x (1 + (Excès d’air [%] / 100)) + 0,827 [kg gaz/m³gaz]

> pour le fuel :

Débit de fumée [kg/litre fuel] = 12,75 [kg air/litre fuel] x (1 + (Excès d’air [%] / 100)) + 0,85 [kg fuel/litre fuel]

Pour utiliser ces formules, il faut donc connaître l’excès d’air. Celui-ci peut être mesuré directement dans le cadre de l’analyse des produits de combustion. Si on ne dispose pas de cette mesure, on peut se référer, pour les chaudières fuel, à la fiche d’entretien qui reprend le pourcentage de CO2 contenu dans les fumées :

> pour le gaz :

Excès d’air [%] = ( (11,9 [%] / %CO2 [%]) – 1 ) x 100

> pour le fuel :

Excès d’air [%] = ( (15,4 [%] / %CO2 [%]) – 1 ) x 100

À défaut, une valeur forfaitaire de 20 % est une valeur courante que l’on prend prendre en première approximation pour l’excès d’air.

Le débit de fumée (en [kg/m³gaz ou litre fuel]) ainsi déterminé doit être multiplié par le débit de combustible du brûleur (en [m³gaz/h ou litre fuel/h]).

Pour le fuel, on peut se référer à la fiche d’entretien et aux caractéristiques du gicleur. Pour le gaz, il faut relever le compteur gaz pendant la durée de fonctionnement du brûleur et diviser le volume de gaz mesuré par la durée de fonctionnement du brûleur en heure (on obtient des [m³/h]).

Débit de fumée [kg/h] = Débit de fumée [kg/m³gaz ou litre fuel] x débit de combustible [m³gaz/h ou litre fuel/h]

Ensuite, il faut connaître la dépression dans la cheminée lorsque le brûleur fonctionne et lorsque le brûleur est à l’arrêt.

Ces données ne peuvent être connues que par mesure. La dépression lorsque le brûleur fonctionne est également reprise sur la fiche d’entretien des chaudières fuel.

Évaluer

Pour en savoir plus sur l’interprétation de la fiche d’entretien des chaudières fuel.

On peut alors calculer le débit d’air traversant la chaudière à l’arrêt :

Connaissant le débit d’air, on peut calculer la perte par balayage :

Perte [W] = 0,28 [W/(kg/h).°C] x Débit d’air [kg air/h] x (Tchaudière [°C] – Tchaufferie [°C])

Exemple.

Sur une fiche d’entretien de chaudière fuel de 406 kW, on repère :

  • La dépression dans la cheminée lorsque le brûleur est en fonctionnement : 15 [Pa].
  • Les caractéristiques de l’alimentation en fuel : gicleur de 5 [gal/h] et pression de la pompe d’alimentation de 19 [bars].
  • La teneur en CO2 des fumées : 12,5 [%].

On peut calculer le débit de fumées :

  • Le débit de fuel :

5 [gal/h] x 3,78 [litres/gal] x
(19 [bars] / 7 [bars]) 1/2 = 31 [litres/h]

  • L’excès d’air :

( (15,4 [%] / 12,5 [%]) – 1) x 100 = 23 [%]

  • Le débit de fumée :

12,75 [kg air/litre fuel] x (1 + (23 [%] / 100))
+ 0,85 [kg fuel/litre fuel] = 16,5 [kg/litre fuel]

  • Le débit de fumée :

16,5 [kg/litre fuel] x 31 [litres/h] = 511 [kg/h]

Lorsque le brûleur est à l’arrêt, la dépression mesurée est de 10 Pa, pour une température de chaudière de 70 °C. On en déduit :

  • Le débit d’air :

511 [kg fumée/h] x (10 [Pa] /
15 [Pa]) 1/2 = 417 [kg air/h]

  • La perte par balayage :

0,28 [W/(kg/h).°C] x 417 [kg air/h]
x (70 [°C] – 20 [°C]) = 5 838 [W]

  • Le coefficient de perte par balayage :

5,838 [kW] / 406 [kW] = 1,4 [%]

Si la chaudière est à l’arrêt en température 4 000 heures sur la saison de chauffe, la perte encourue du fait du balayage est de :

0,014 x x 406 [kW] (ou 5,838 [kW]) x 4 000 [h/an] =
23 352 [kWh/an] ou 2 335 [litres de fuel par an]

Diminuer les charges thermiques internes

Diminuer les charges thermiques internes


L’apport des occupants

L’homme apporte chaleur sensible (par notre corps à 37°C) et chaleur latente (par notre production de vapeur d’eau en respiration et transpiration).

Ces valeurs varient en fonction de la température ambiante.

En hiver, l’occupant d’un bureau à 22°C fournit 85 Watts de chaleur gratuite au local. Par ailleurs, il disperse 47 grammes d’eau dans l’atmosphère chaque heure. Cet apport d’eau ne modifie pratiquement pas la température du local et ne constitue donc pas un apport complémentaire en hiver.

Par contre, en été, la vapeur d’eau délivrée augmente (70 gr/h à 26°C) et sera condensée sur la batterie froide du ventilo-convecteur, par exemple. La chaleur de condensation correspondante devra être comptabilisée dans le bilan thermique de la machine frigorifique.

Peut-on diminuer ces consommations ?

En hiver, l’apport des personnes est bénéfique pour l’installation de chauffage.

En été, il est difficile d’empêcher les gens de transpirer ! Quoique… il faudrait suggérer au patron une petite sieste salutaire pour diminuer le métabolisme et donc cette coûteuse charge thermique pour le climatiseur !

Plus sérieusement, il est parfois possible d’augmenter la température du fluide refroidissant (boucle d’eau glacée, par exemple), afin de limiter la charge thermique de condensation de la vapeur d’eau.

Dans un climatiseur de local par contre, on travaille « en détente directe », la température du fluide frigorigène (que l’on ne peut modifier) sera inférieure au point de rosée, et la condensation aura toujours lieu…


L’apport des équipements

Toute charge électrique (éclairage, bureautique, machine à café, …) dans un local refroidi est payée deux fois : une fois pour effectuer le travail attendu, une fois pour évacuer ce travail qui s’est transformé en énergie calorifique.

Par exemple : 100 lampes de 60 Watts vont entièrement convertir l’énergie qu’elles utilisent en chaleur. Il faudra donc évacuer 6 000 W, ou 6 kW de chaleur… !
  Puissance installée du compresseur est inférieure à la puissance frigorifique apportée à la pièce par le système de refroidissement !

en choisissant dans un catalogue un appareil de « 6 kW », on sélectionne un climatiseur dont l’évaporateur est capable d’apporter 6 kWh de froid (= de retirer 6 kWh de chaleur) au local en 1 heure de fonctionnement. Donc, « 6 kW » constitue sa puissance frigorifique.

Mais pour ce faire, curieusement, le compresseur demande une puissance électrique plus faible, de l’ordre de 2 kW. Après une heure, il aura consommé une énergie de 2 kWh (sur base d’une efficacité frigorifique de 3).

Et la facture d’énergie électrique en une heure sera de 8 kWh (6 kWh pour les lampes + 2 kWh pour la climatisation).

Quelle réduction des charges thermiques ?

Dans les bâtiments plus anciens, on peut généralement diminuer les puissances électriques utilisées pour l’éclairage des locaux et pour les équipements de bureautique notamment (ordinateur, photocopieuse, …). Une meilleure gestion de ces équipements peut également permettre de diminuer la consommation de la climatisation.

Évaluer

  Pour évaluer la qualité de l’éclairage existant.

Améliorer

 Pour examiner les améliorations possibles.

La rentabilité des interventions sur ces équipements est améliorée par l’économie complémentaire faite sur le coût d’exploitation de la climatisation.

Placer un climatiseur ou une protection solaire ?

Placer un climatiseur ou une protection solaire ?


Introduction

Si les apports solaires sont à l’origine de la surchauffe, il faut se demander, avant de climatiser si le placement de protections solaires sur les baies vitrées ne permettrait pas de résoudre le problème de façon plus économe.

Voici les résultats d’une simulation du comportement d’un bureau standard. On y a comparé les coûts d’achat et d’exploitation d’un climatiseur et d’un store extérieur.


Hypothèses de travail

Il s’agit d’un bureau de 30 m² de surface au sol, orienté au sud.
Une température de confort y est maintenue été comme hiver par un système de climatisation.

Consignes de température intérieure

en hiver en période d’occupation 20°C
en période d’inoccupation 15°C
en été en période d’occupation 25°C
en période d’inoccupation 30°C

Horaires de fonctionnement de l’installation de climatisation

occupation de 8 à 18h en semaine (260 jours par an)
ralenti de 17 à 7h en semaine et 24 h sur 24 les week-ends

Apports internes en période d’occupation

cas 1 : apports limités
  • 2 personnes (2 x 70 W)
  • 2 lampes individuelles (2 x 18 W)
  • éclairage général de 13 W/m² (390 W)
cas 2 : apports moyens
  • 2 personnes (2 x 70W)
  • 2 lampes individuelles (2 x 18 W)
  • 2 ordinateurs (2 x 160 W)
  • éclairage général de 13 W/m² (390 W)

Résultats de la simulation

Cas 2 (apports internes moyens)
Consommations en climatisation durant une année

surface du vitrage

[m²]

présence d’une protection solaire
(1)
consommation en froid
(2)[kWh/an]
température maximum atteinte sans climatisation
(3)[°C]
coût d’exploitation
(4)[€/an]
potentiel d’économie

[€/an]

4 non 456 33,5 52,5 38,8
oui 119 28,4 13,7
6 non 650 35,8 74,75 58,8
oui 139 28,8 16
8 non 826 38 95 77,2
oui 155 29,2 17,8
10 non 985 40,1 113,3 94
oui 168 29,6 19,3

(1) les protections solaires sont des protections extérieures mobiles. Leur déploiement intervient de mars à octobre lorsque le rayonnement solaire traversant le vitrage dépasse 100 W/m².

(2) l’efficacité frigorifique du climatiseur est estimée à 2,5.

(3) en juin.

(4) à 0,11 €/kWh.


Conclusions

Lorsque les gains internes ne sont pas trop importants (cas 1), on peut considérer que la surchauffe est principalement due aux apports solaires. Dans ce cas, en admettant un très léger inconfort (température intérieure maximum de 26°C lorsqu’il fait 32°C à l’extérieur), on peut envisager le placement de protections solaires sur les fenêtres et l’absence d’un climatiseur.

Pour illustrer ceci, comparons les coûts des deux solutions pour une fenêtre de 6 m² :

Solution

Coût d’investissement Coût d’exploitation Coût total sur 10 ans (3)
Protection solaire extérieure en toile 750 €
(1)
0 €/an 750 €
Climatiseur de fenêtre de 3 kW 875 €
(2)
44,05 €/an 1315,5 €

(1) le coût d’une protection solaire est estimé à 125 €/m² (attention ce coût est indicatif et peut varier fortement en fonction de la taille de la protection et de son degré d’automatisation).

2) le climatiseur de fenêtre est couramment le système le moins cher. En fonction de l’emplacement des éléments en fonction du confort recherché, des liaisons électriques et frigorifiques le coût d’investissement de la climatisation peut augmenter rapidement (on atteint rapidement 2500 €).

3) hors entretien.

Lorsqu’une partie importante de la surchauffe est due aux apports internes (cas 2), le placement de protections solaires seules ne permettra pas d’atteindre le confort voulu. Cependant, celles-ci diminueront souvent les besoins en froid et leur surcoût pourra être rentabilisé en moins de 10 ans (diminution de la puissance installée du climatiseur et des consommations). Par exemple, pour une fenêtre de 6 m² :

Solution

Coût d’investissement Coût d’exploitation Coût total sur 10 ans (3)
Protection solaire extérieure en toile et climatiseur de fenêtre de 1,5 kW 1 250 € 1,7 €/an 1267 €
Climatiseur de fenêtre de 3 kW, sans protection solaire 875 € 44,05 €/an 1 315,5 €

Lorsque chaque personne dispose d’un ordinateur, le placement de protections solaires seules ne permettra pas d’atteindre le confort voulu. Cependant, celles-ci diminueront souvent les besoins en froid et leur surcoût pourra être rentabilisé en moins de 10 ans (diminution de la puissance installée du climatiseur et des consommations). Pour maîtriser la température intérieure sans climatisation, il faudra en plus adopter une politique active de ventilation : le free cooling.

Évaluer le confort et l’efficacité du trafic [ascenseurs]

Évaluer le confort et l'efficacité du trafic [ascenseurs]


Confort des utilisateurs

Mis à part l’aspect sécurité des ascenseurs (un des équipements les plus contrôlés du bâtiment !), les exigences des utilisateurs sont fortes en ce qui concerne :

  • le temps d’attente acceptable sur les paliers d’ascenseur,
  • la densité de population acceptable dans la cabine d’ascenseur,
  • l’accélération et la décélération supportable lors des déplacements,
  • l’acoustique interne de la cabine,
  • la pression interne dans la cabine,
  • le seuil acceptable de vibrations de la cabine,
  • le niveau d’éclairement moyen de la cabine,
  • le niveau de ventilation,

Le temps d’attente moyen

Des études ont permis d’établir un temps moyen d’attente statistique par type de bâtiments, sous-entendant que la tolérance à l’attente de la cabine varie en fonction de l’immeuble dans lequel on se trouve (plus pressé au boulot ?). En effet, le temps d’attente acceptable est défini par un jugement de valeur basé, en partie, sur une évaluation du coût du temps perdu à l’attente (eh oui, c’est pour la pomme du patron !). Par conséquent, il peut être plus long dans le cas d’un immeuble résidentiel (là, ce n’est plus le patron qui paie !) que dans le cas d’un bâtiment tertiaire.

Type de bâtiment Temps d’attente moyen [s]
Bureau, hôpital, école, … 25-30
Résidentiel 50-80
Hébergement 40-70

Une manière simple d’évaluer le temps d’attente passe simplement par l’utilisation répétée d’un chronomètre à différents étages et de préférence en période d’affluence. Il suffit de démarrer le chrono au moment où l’on pousse sur le bouton d’appel d’étage et de l’arrêter dès l’instant où les portes de la cabine s’ouvrent à cet étage. En effectuant la moyenne des relevés, on sait tout de suite savoir si le temps d’attente moyen est raisonnable.

La densité de population

Une cabine d’ascenseur est un laboratoire social par excellence. On y voit tout de suite les niveaux de tolérance de proximité d’autrui. Basé de nouveau sur des études statistiques, la densité limite est de l’ordre de 5 personnes par m2.

Ce facteur est important dans le sens où l’auteur d’un projet d’implantation d’ascenseur dans un immeuble peut complètement se tromper en le sous-estimant. En effet, les occupants n’aimant pas d’être serrés, il arrive régulièrement que les utilisateurs prennent l’ascenseur suivant en constatant que la cabine les invitant à embarquer est trop remplie à leur goût; il en résulte une réduction de la capacité de transport.

C’est en période d’affluence que l’évaluation est la plus crédible. Un simple comptage discret du nombre de personnes présentes dans la cabine situe tout de suite la tolérance de proximité des collègues. Suite à ce comptage, si vraiment la cabine est peu remplie, il est nécessaire d’envisager une campagne de sensibilisation. À l’inverse, si les collègues sont serrés comme des sardines, il faut alors de concentrer sur l’évaluation de l’efficacité du trafic.

L’accélération et la décélération

Il est nécessaire de tenir compte des critères d’accélération ou de décélération dans une étude de confort sachant que la vitesse « de croisière » (pallier à vitesse constante) n’entre pas en ligne de compte dans l’évaluation de l’inconfort des utilisateurs.

Une valeur pratique souvent rencontrée au niveau de l’accélération des cabines est de 0,8 [m/s²].

L’utilisation de moteur électrique à deux vitesses est encore rencontrée régulièrement dans les immeubles d’un certain âge et tout le monde a déjà ressenti l’effet plus ou moins bien supporté :

  • du démarrage et du passage de petite en grande vitesse (sensation d’écrasement),
  • de l’arrêt (sensation d’apesanteur).

L’effet d’accélération, de décélération et les vibrations latérales de l’ascenseur se marquent au niveau :

  • du système vestibulaire de l’oreille interne,
  • du système pileux,
  • des récepteurs sensibles au niveau de la colonne vertébrale (particulièrement le cou),
  • des muscles compensant l’effet des variations de pression mécanique,
  • des organes internes qui se déplacent,
  • de la plante des pieds détectant le changement de poids du corps pendant les variations de vitesse.

Les constructeurs ont à leur disposition un profil type de courbe d’accélération et de décélération pour lequel les réponses du corps humain, face aux différentes sollicitations exercées par l’ascenseur, sont bonnes. Indépendamment des chiffres (variant en fonction de la vitesse à atteindre), c’est surtout le profil de l’accélération et la décélération qui est intéressant à analyser :

La courbe ci-dessus montre un profil de vitesse en fonction du temps qui répond bien aux critères de confort. Seules les techniques modernes peuvent intégrer ce type de courbe dans la commande des moteurs, tant en commande qu’en puissance (automate programmable, variateur de fréquence, …).

L’acoustique interne de la cabine

La norme NBN EN 81-1 ne définit pas les niveaux acoustiques à respecter dans la cabine de manière à limiter les nuisances sonores provenant de la trémie. Dans ce cas, on peut se référer à la norme NBN EN 13779 qui traite, entre autres, du confort acoustique dans les locaux des bâtiments tertiaires; une valeur normale du niveau acoustique se situe aux alentours des 40 dB.

Si des plaintes de nuisance sonore dans la cabine reviennent régulièrement aux oreilles du maître d’ouvrage, il est nécessaire d’effectuer une mesure au moyen d’un sonomètre.

La pression interne de la cabine

L’évolution de la pression interne dans la cabine peut être source de nuisance importante lorsque la cabine se déplace; par exemple, dans un conduit étroit à vitesse importante. En effet, la cabine subit une légère déformation par « effet piston » qui change la pression interne de la cabine et, par conséquent, la pression relative sur le tympan de l’oreille des utilisateurs. L’effet sur certains sujets sensibles est très inconfortable.

Le niveau d’éclairement moyen de la cabine

La norme NBN EN 81-1 définit les niveaux d’éclairement minimum dans la cabine; il doit être au minimum de 50 [lux]. En général, pour une question de confort esthétique, le niveau d’éclairement des cabines d’ascenseur est beaucoup plus important.

Pour effectuer une mesure du niveau d’éclairement Em, on utilise un luxmètre.

Il faut savoir que seul le niveau d’éclairement de la cabine est loin d’être suffisant pour affirmer que l’éclairage répond aux exigences de confort des utilisations. On citera :

  • le risque d’éblouissement,
  • la présence de reflets (dans le cas d’un habillage inox par exemple),
  • le rendu de couleur,

Théories

Pour en savoir plus sur les moyens d’évaluer les niveaux d’éclairement.

La ventilation hygiénique minimum

La norme NBN EN 81-1 (Règle de sécurité pour la construction et l’installation des ascenseurs. Partie 1 : ascenseur électrique) recommande de ventiler correctement les cabines et les gaines d’ascenseur. C’est une ventilation hygiénique propre au volume fermé de la gaine d’ascenseur et des locaux annexes. La norme prévoit des orifices de ventilation équivalant à 1 % des surfaces horizontales de la cabine (ventilation haute et basse de la cabine) et de la gaine (extraction haute dans la gaine).

La réglementation concernant la protection incendie précise que la section des orifices de ventilation de la gaine doivent être équivalentes à :

  • 1 % de la surface horizontale de la gaine dans le cas des ascenseurs avec salle des machines.
  • 4 % de la même surface dans le cas d’ascenseurs sans salle des machines.

La norme NBN EN 13779 qui traite essentiellement de la ventilation des bâtiments non-résidentiels ne reprend pas des valeurs de débit de ventilation de la cabine d’un ascenseur. Toutefois, la mesure de qualité de l’air au moyen d’une sonde CO2 permet d’être fixé en cas de plainte de maux de tête par exemple. La valeur maximale admissible est comprise entre 1 000 et 1 200 [ppm] (partie par million) de CO2 dans l’ambiance de la cabine.

Pour effectuer une mesure d’une telle concentration, on utilise une sonde CO2.


Efficacité du trafic

Lorsqu’un maître d’ouvrage ou un auteur de projet désire évaluer le trafic de ses ascenseurs, il est recommandé de faire appel aux constructeurs. Un monitoring des ascenseurs permet alors d’objectiver l’efficacité du trafic.

Les principaux critères d’efficacité sont :

  • au même titre que le confort, le temps d’attente moyen probable (le plus petit possible),
  • le débit, généralement calculé pour une durée de 5 minutes en heure de pointe et exprimé en % du nombre total d’occupants du bâtiment,
  • le profil de la courbe de vitesse dans le temps,
  • les destinations privilégiées,
  • l’automatisme des manœuvres,

L’efficacité du service de l’ascenseur dépend du type de bâtiment :

Type de bâtiment Temps d’attente moyen [s] Pourcentage de la population totale déplacée dans les 5 minutes (%)
Bureau, hôpital, école, … 25-30 12-15
Résidentiel 50-80 5-8
Hébergement 40-70 10-15

Temps d’attente

Ici, le temps d’attente acceptable est défini par un jugement de valeur basé sur une évaluation du coût du temps perdu à l’attente.

Son évaluation réelle est très complexe et nécessite l’utilisation de logiciels spécialisés basés sur des statistiques de fréquentation des ascenseurs.

Intuitivement on pourrait dire que le temps d’attente sera influencé par :

  • le type de bâtiment (mode de fonctionnement, type d’horaire, …),
  • la quantité moyenne de personnes présentes dans le bâtiment,
  • la capacité des ascenseurs (nombre admissible de personnes par cabine),
  • le nombre d’ascenseurs,
  • le rapport charge/vitesse,
  • le type d’accélération,

La liste est longue et ne tient pas compte des dysfonctionnements souvent présents dans les bâtiments tertiaires qui accueillent un large éventail de la population comme « utilisateur d’un jour » nerveux à l’idée de prendre l’ascenseur.

Exemple.

Un exemple classique d’allongement du temps d’attente indépendant de la commande d’un duplex d’ascenseurs (deux ascenseurs, une seule commande de trafic pour les deux) est l’utilisateur, désireux de se rendre à un étage supérieur, qui appuie sur les deux boutons d’appel pour monter et descendre dans l’espoir de réduire le temps d’attente.

C’est vrai qu’il risque peut-être de gagner un peu de temps d’attente mais sûrement pas de temps de déplacement. De plus, ce simple geste nuit énormément à l’efficacité du trafic dans le sens où :

  • Au lieu d’appeler un seul des ascenseurs, il les appelle tous les deux.
  • Chacun des ascenseurs a dans sa mémoire de commande un arrêt en plus.
  • L’utilisateur risque de prendre l’ascenseur qui descend et, par conséquent, il sera obligé de reprogrammer sa véritable destination.

Pourcentage de la population totale déplacée dans les 5 minutes

Ce pourcentage est un indicateur important pour évaluer la capacité propre des ascenseurs à absorber les débits de pointe.

La venue du travail à temps partiel a aussi changé la « donne » en modifiant le profil du trafic journalier en temps et en débit nécessaire.

Par exemple, la courbe journalière ci-dessous exprime ce changement de fréquentation des ascenseurs dans un immeuble de bureaux :

On voit que l’affluence maximum s’est déplacée vers 12 heures, alors qu’auparavant, elle était en début et fin de journée.

L’établissement de cette courbe est très difficile à obtenir mais néanmoins nécessaire; elle se base sur des statistiques de fréquentation des ascenseurs.

Profil des vitesses sur une course

Pour que l’on puisse réduire au maximum les temps de déplacement verticaux, les systèmes de motorisation doivent arriver à leur palier de vitesse aussi rapidement que possible; ce qui nécessite de produire des accélérations et décélérations brutales incompatibles, d’une part avec le confort des utilisateurs, d’autre part avec l’aspect énergétique. L’évaluation du profil de vitesse réelle avec celui du confort optimal est nécessaire.

Destinations privilégiées

L’observation des destinations privilégiées peut aussi rentrer dans les critères d’efficacité du trafic dans le sens où, sans restriction de certaines destinations peu fréquentées, le trafic peut être altéré.

Par exemple, si on considère un immeuble de bureau de 9 étages, équipé de deux ascenseurs, où :

  • la plupart des employés viennent à pied et entrent au niveau 0,
  • le parking au niveau -2 ne sert que pour quelques cadres.

Le niveau 0 est une destination privilégiée. Le niveau des parkings l’est aussi mais dans une beaucoup moindre mesure. En heure de pointe, un appel enregistré au parking pour la montée risque de perturber le trafic vers la montée à partir du niveau zéro.

La figure ci-dessous montre une amélioration simple du trafic par le blocage des appels des niveaux -1 et -2 sur un des deux ascenseurs.


Convergence et divergence des critères de confort et d’efficacité de trafic

Les points de vue, suivant que l’on se place au niveau des gestionnaires ou des utilisateurs, ne sont pas nécessairement convergents. Pour évaluer une situation et éviter les désagréments, il est nécessaire de maîtriser l’impact d’un critère sur un autre.

Le tableau suivant montre ces influences :

Critères Confort Efficacité du trafic
Le temps d’attente sur les paliers diminue.
Le temps de déplacement diminue.
La densité de population est grande.
L’accélération et la décélération augmentent.
La pression interne dans la cabine augmente. *
Les vibrations de la cabine augmentent. *

Le niveau d’éclairement moyen est faible.

*
Le niveau de ventilation est faible. *
*: sans influence

L’analyse du tableau montre que peu de critères sont convergents mis à part le temps d’attente sur les paliers et le temps de déplacement (à exploiter et optimiser au maximum).

Angle de défilement d’un luminaire

Angle de défilement d'un luminaire

L’angle de défilement d’un luminaire est l’angle sous lequel la source nue ne peut être vue par l’observateur. Il s’exprime en degrés.

On parle d’angle de défilement dans la direction transversale et dans la direction longitudinale.

Angle de défilement transversal et longitudinal d'un luminaire

Attention ! à ne pas confondre avec l’angle d’élévation utilisé dans la norme EN 12464-1 définit comme étant l’angle compris entre la normale verticale à l’axe de la lampe et une direction donnée pour laquelle on mesure une certaine luminance.

Choisir le système de ventilation dans les salles de sport


Apport d’air neuf

L’apport d’air neuf nécessaire à la respiration des occupants et à l’évacuation des polluants doit être calculé en fonction du nombre des occupants potentiels et non en fonction d’un taux de renouvellement d’air, comme c’est parfois fait. Calculer les débits d’air en fonction d’un taux de renouvellement d’air de l’ordre de 3 à 4 [vol/h] conduit à des surdébits importants donc à un surdimensionnement et une surconsommation importants.

En France, l’arrêté du 12 mars 76 (toujours d’application) impose un débit de débit de 25 [m³/h par sportif]. En Belgique, l’annexe C3 de la PEB impose une valeur minimale générale de 22 m³/h par personne, sans distinction entre spectateurs et sportifs, et un taux d’occupation minimal de 3.5 m²/personne.

Dans les vestiaires, l’annexe C3 de la PEB impose un débit minimum de 25 m³/h par WC ou de 15 m³/h par m² et un débit de 5 m³/h par m² pour les douches avec un minimum de 50 m³/h.

Exemple.

Considérons une salle de sport de 7 000 m³. L’occupation maximum de la salle est de 24 sportifs (une classe) et 50 spectateurs.

Méthode de dimensionnement des apports d’air neuf Dimensionnement Débit d’air à assurer Taux de renouvellement d’air
En fonction du nombre de personnes : 25 [m³/h.sportif] et 22 [m³/h.spectateur] 25 [m³/h.sportif] x 24 [sportifs] + 22 [m³/h.spectateur] x 50 [spectateurs] 1 700 m³/h] 0,24 [vol/h]
en fonction du taux de renouvellement d’air : 4 [vol/h] (valeur couramment rencontrée) 4 [vol/h] x 7 000 [m³] 28 000 [m³/h] 4 [vol/h]

Chauffage avec air recyclé

Dans les installations de chauffage à air, l’apport d’air de ventilation est souvent combiné au chauffage de la salle (chauffage par aérothermes avec prise d’air extérieure). Le débit d’air brassé par les émetteurs de chaleur est nettement plus élevé que les débits d’air hygiéniques recommandés. Il est donc important, pour des raisons d’économie d’énergie, de recycler une part importante de l’air de la salle, l’air neuf ne devant servir qu’à la ventilation hygiénique de la salle.

Le débit d’air neuf peut être surdimensionné uniquement pour les situations d’inconfort d’été ou de très forte affluence pour évacuer les calories excédentaires.


Modulation des apports d’air neuf

L’occupation d’une salle de sport est souvent variable (occupée en journée par une classe et en soirée par une compétition avec spectateur). Les débits d’air neuf nécessaires varient en conséquence. Il est dès lors intéressant de prévoir une possibilité d’adaptation des débits, soit automatique, soit manuelle. La ventilation doit en tout cas être arrêtée en période d’inoccupation.

Exemple.

Une salle de 44 x 22 m avec 150 places de gradins a une fréquentation maximum estimée à 300 personnes. En temps ordinaire, l’occupation ne dépasse pas 60 personnes (deux classes de collège). voici comment on pourrait envisager la ventilation :

Schéma sur une ventilation possible pour une occupation normale de 10 à 60 personnes.

Schéma sur une ventilation possible pour une occupation faible de 0 à 10 personnes.

Schéma sur une ventilation possible pour une occupation forte de 60 à 300 personnes.

Le souhait de moduler et d’arrêter la ventilation en fonction de l’occupation impose de pouvoir découpler le fonctionnement du chauffage et de la ventilation, par exemple lors de la relance du chauffage avant occupation.


Infiltrations d’air

Les apports d’air neuf incontrôlés coûtent cher et provoquent des inconforts par courant d’air froid. Sans attention particulière, ceux-ci peuvent rapidement être importants (effet cheminée entre les entrées et la toiture …).

On aura donc soin de créer des sas d’entrée ou des espaces tampons non chauffés (hall d’entrée) et de munir les portes de dispositifs de fermeture automatique.

Une attention particulière doit être portée à l’étanchéité des tourelles d’extraction à l’arrêt, surtout en combinaison avec un chauffage à air chaud. Elles doivent au minimum comprendre des clapets de fermeture automatiques à l’arrêt des ventilateurs. Les extracteurs en toitures sont d’ailleurs à déconseiller lorsque l’on utilise un chauffage à air chaud, sauf s’il est prévu de les faire uniquement fonctionner à la demande (par exemple pour limiter les surchauffes par très forte affluence).


Balayage

Le principe du balayage consiste à ventiler les locaux annexes (vestiaires, douches, sanitaires) avec de l’air en provenance de la salle. L’air neuf est introduit dans cette dernière et transféré vers les locaux annexes d’où il est extrait. Ceci permet en outre de préchauffer l’air neuf avant son introduction dans les vestiaires et limite ainsi les risques de courant d’air.
Régulation du chauffage

Améliorer la régulation [chauffage central]

Régulation du chauffage

Tout simplement, réguler les installations qui ne le sont pas

Trop d’installations anciennes ne possèdent encore aucune régulation : la température de l’eau dans la chaudière ou la position des vannes mélangeuses est modifiée manuellement en fonction de la saison. Il n’y a aucun réglage de la température ambiante, si ce n’est par l’ouverture des fenêtres.

Cette situation est évidemment inacceptable.

Si on part de rien, l’idéal serait de concevoir une régulation complète telle qu’on pourrait l’imaginer pour une nouvelle installation. Il faudra cependant être attentif au type de la ou des chaudières installées. Par exemple, peuvent-elles travailler à basse température ou encore fonctionner à débit nul ?

Concevoir

Pour en savoir plus sur les critères de choix du principe de régulation.

Une installation de régulation peut aussi être réhabilitée : remplacement des moteurs de vanne, remplacement des régulateurs, remplacement des sondes, ….

Études de cas 

La rénovation du Collège St Paul à Godinnes.

Le gain

Comme pour toutes les améliorations qui sont décrites ci-après, il est difficile de chiffrer précisément le gain énergétique qui résultera d’un remplacement complet de la régulation.

Cela dépend de la gravité réelle de la situation de départ (quelle est la température régnant réellement dans les différentes zones du bâtiment ?) et du degré de finesse de la nouvelle régulation.

Voici cependant un chiffre réaliste que l’on rencontre couramment dans la littérature et qui se base sur des situations vécues.

Le placement d’une régulation correcte sur une installation non régulée (c’est-à-dire sans ralenti nocturne et sans contrôle précis de la température intérieure) permet :

>> 30 % d’économie sur la facture annuelle de combustible.

Concevoir

Régulation des installations de chauffage.

Améliorer le ralenti nocturne

La pratique d’un ralenti nocturne par abaissement de la température d’eau est la technique de ralenti la moins efficace (et pourtant la plus couramment utilisée).

Évaluer

Pour évaluer l’efficacité énergétique du ralenti nocturne.

Il est intéressant de modifier le ralenti existant en adjoignant au régulateur existant un thermostat d’ambiance complémentaire placé dans un local témoin et associé à une horloge.

Le système

Lorsque l’horloge passe en horaire de nuit, l’installation est complètement coupée par action directe :

  • Soit sur la chaudière. Dans ce cas, la chaudière redescend en température.
  • Soit sur les vannes mélangeuses. Celles-ci se ferment et la chaudière est maintenue sur sa consigne.

Si la température intérieure mesurée par le thermostat d’ambiance passe sous la consigne de nuit (par exemple 16° en semaine et 14° le week-end), soit la chaudière se remet en marche, soit les vannes s’ouvrent pour maintenir cette consigne.

Exemple.

Si l’installation est équipée d’un régulateur analogique ne pouvant être compensé par une sonde de température intérieure, le schéma de principe de la nouvelle régulation peut être semblable à :

Au passage à l’horaire de nuit, le thermostat d’ambiance mesurera une température intérieure supérieure à sa consigne, son contact s’ouvrira, déconnectant la sonde extérieure. Pour le régulateur, cela équivaut à une mesure, par la sonde extérieure, d’une température infinie. Donc, soit la chaudière va se couper, soit les vannes mélangeuses vont se fermer.
Si durant la coupure, la température intérieure descend en dessous de la température de consigne du thermostat d’ambiance (par exemple 16°C), le contact du thermostat se ferme reconnectant la sonde extérieure. Le régulateur central se remet alors à fonctionner comme auparavant (en principe sur sa courbe de chauffe de nuit). Au passage à l’horaire de jour, la sonde extérieure se reconnecte et le régulateur central reprend sa fonction.

Si, d’origine, le régulateur peut être compensé par sonde intérieure, la sonde de compensation peut aussi bien servir au réglage de la courbe de chauffe de jour qu’à la coupure de nuit.

Ce sera également le cas si l’installation est équipée d’un régulateur digital. Toutes ces fonctions sont vraisemblablement déjà intégrées dans le régulateur. Il faut examiner avec le fabricant du régulateur ou l’installateur la possibilité d’adjoindre un thermostat d’ambiance de nuit dans le programme existant.

On peut également envisager une deuxième façon de travailler, légèrement moins performante. Il s’agit de placer une deuxième sonde extérieure, associée à une horloge. Si la température extérieure de nuit ne descend pas en dessous d’une certaine valeur à régler (par exemple 5°C), l’installation est complètement coupée. Si la température extérieure descend en dessous de cette valeur, le ralenti se fait par abaissement de la courbe de chauffe comme auparavant.

Une troisième possibilité, qui ne demande aucun investissement est d’abaisser au maximum la courbe de chauffe de nuit. Ainsi, durant la majeure partie de la saison de chauffe, la température d’eau demandée la nuit est inférieure à 20°C, ce qui équivaut à forcer la fermeture complète des vannes.
L’inconvénient de ces deux dernières solutions est l’absence de contrôle de la température ambiante nocturne.

Calculs

Pour visualiser l’abaissement de courbe minimal à régler sur votre régulateur.

Le gain

Il est difficile de chiffrer précisément l’économie réalisable en modifiant le mode de ralenti nocturne. Cela dépend d’une série de paramètres qui influencent le bilan thermique :

Exemple.

(Source : Guide pour la pratique de l’Intermittence du chauffage dans le tertiaire à occupation discontinue, ADEME, 1989)

Trois bâtiments, respectivement de 500 (1 niveau), 2 000 (2 niveaux) et 4 000 m² (4 niveaux) sont chauffés 10 h par jour et 5 jours par semaine.

Le niveau de surpuissance de l’installation de chauffage est assez élevé puisqu’il atteint 2 fois les déperditions (calculées avec un taux de ventilation réduit).

Trois niveaux d’isolation ont été repris :

  • peu isolé : simples vitrages, murs non isolés,
  • très isolé : doubles vitrages, murs avec 8 cm d’isolant,
  • bien isolé : niveau intermédiaire entre les 2 précédents.

Trois modes de coupure sont proposés :

Économie par rapport au fonctionnement continu
Mode de ralenti Isolation 500 m² 2 000 m² 4 000 m²

Abaissement de température d’eau

peu isolé 12,5 % 11,4 % 10,8 %
bien isolé 11,7 % 10,9 % 10,3 %
très isolé 10,2 % 9,5 % 8,3 %

Coupure (horloge)

faible inertie
(150 kg/m²)
peu isolé 37,7 % 31,9 % 29,5 %
bien isolé 33,8 % 29,6 % 26,6 %
très isolé 26,5 % 22,6 % 17,0 %
forte inertie
(400 kg/m²)
peu isolé 37,5 % 28,0 % 25,0 %
bien isolé 30,6 % 25,2 % 22,0 %
très isolé 21,9 % 18,2 % 13,7 %

Optimiseur

faible inertie
(150 kg/m²)
peu isolé 38,5 % 33,4 % 31,2 %
bien isolé 35,0 % 31,4 % 28,7 %
très isolé 28,6 % 25,1 % 20,1 %
forte inertie
(400 kg/m²)
peu isolé 38,2 % 31,2 % 28,6 %
bien isolé 33,4 % 28,7 % 25,8 %
très isolé 25,6 % 22,2 % 17,6 %

Prenons un ancien bâtiment lourd (fort inerte) et peu isolé, de 2 000 m². Ce bâtiment consomme 45 000 litres de fuel par an. Le gain possible en passant d’un abaissement nocturne à une coupure complète s’élève à :

45 000 [litres/an] x 28 [%] / (100 [%] – 11,4 [%]) = 14 221 [litres/an]

Pour tenir compte de l’éventuelle faible reproductibilité des pourcentages d’économie repris ci-dessus, on peut examiner le problème sous l’angle de la rentabilité de l’investissement.

Les modifications de régulation proposées pour passer d’un abaissement à une coupure nocturne ont un coût voisin de 750 € (à confirmer par devis, au cas par cas).

Avec un prix du fuel de 0,2116 €/litre et un temps de retour souhaité de 2 ans, cela représente une économie escomptée de :

750 [€] / 2 [ans] / 0,2116 [€/litre] = 1 772 [litres/an]

ou 1 772 [litres/an] / 45 000 [litres/an] = 4 [%]

Ceci est tout à fait faisable au vu des chiffres théoriques d’économie.

Améliorer le ralenti nocturne est donc rentable. Dès lors, il ne sert à rien d’affiner les calculs, n’hésitons pas à agir !

Les précautions

Si le thermostat d’ambiance agit directement sur la chaudière

Dans ce premier cas, il faut que la chaudière existante puisse retomber complètement en température et ensuite fonctionner à température réduite (car commandée par le thermostat d’ambiance de nuit) sans risquer l’apparition de condensation et de corrosion. Ce devrait être le cas si la courbe de chauffe agissait déjà sur la température de la chaudière.

Les anciennes chaudières en fonte ne posent pour cela, aucun problème. Ce n’est pas le cas pour les anciennes chaudières en acier qui, elles, sont sensibles à la corrosion.

Anciennes chaudières en fonte.

Il est évident que les chaudières modernes très basse température s’accommodent très bien de ce type de régulation.

Si un doute subsiste sur les capacités la chaudière à résister à ce mode de fonctionnement, le plus simple est d’interroger le fabricant de la chaudière ou son fournisseur : « est-ce que le brûleur de la chaudière dont je dispose peut être commandée par un thermostat d’ambiance, sachant que cela impliquera par moment un fonctionnement à très basse température ».

Notons qu’il faut être plus attentif avec les chaudières fonctionnant au fuel du fait de l’acidité plus importante des condensats qui peuvent apparaître.

En ce qui concerne le gaz, signalons également que l’ARGB, recommande que toutes les chaudières gaz atmosphériques soient coupées lorsqu’il n’y a plus de besoin de chauffage : les légères condensations des fumées qui résultent de la remontée en température s’évaporent rapidement.

Une exception cependant à cette règle : il faut faire attention avec les anciennes chaudières atmosphériques pour lesquelles de la condensation risque de tomber sur les rampes du brûleur et provoquer une mauvaise combustion et l’apparition d’imbrûlés.

Si le thermostat d’ambiance agit sur les vannes mélangeuses

Si la chaudière ne peut pas travailler en basse température, ce qui est le cas de beaucoup d’anciennes chaudières en acier, la coupure doit s’effectuer au niveau des vannes mélangeuses. Au passage à l’horaire de nuit, les vannes se ferment. Si la température intérieure descend en dessous de la température de consigne du thermostat, les vannes s’ouvrent pour maintenir cette consigne.

Au moment de la relance, le régulateur repasse dans son mode de fonctionnement normal, basé sur la courbe de chauffe de jour ou sur dans un premier temps, sur une température d’eau supérieure si le régulateur possède un mode « accéléré ».

Il faudra cependant être attentif à ne pas créer de choc thermique dans la chaudière au moment de la relance. En effet, si les vannes restent fermées toute la nuit, la température de l’eau dans les corps de chauffe et les conduites va chuter aux environs de 20°C. Lorsque les vannes s’ouvrent en grand, c’est le volume d’eau des circuits qui « déboule », à une température de 20°C, vers la chaudière qui, elle, est restée chaude.

En période de coupure, les vannes mélangeuses sont fermées et la chaudière est maintenue en température.

À l’ouverture des vannes, un train d’eau froide est envoyé vers la chaudière chaude.

Le risque encouru est double :

  • Tout d’abord, pour les chaudières en fonte, l’arrivée de l’eau froide en contact avec la fonte chaude risque de provoquer un choc thermique, une fatigue de la fonte et à terme une rupture de la chaudière.

 

  • Ensuite la chaudière va se remplir d’eau froide qu’elle devra remonter en température. Pendant une courte période, la chaudière fonctionnera à une température d’eau risquant de provoquer une importante condensation des fumées et donc de la corrosion dans la chaudière, surtout pour les anciennes chaudières en acier fonctionnant au fuel (les condensats issus de la combustion de ce dernier sont plus acides).

Deux solutions sont possibles pour prévenir ces problèmes :

  • Prévoir une ouverture progressive des vannes mélangeuses. Dans ce cas, l’eau froide se mélangera progressivement à l’eau chaude, ce qui évitera une chute brutale de la température.
Exemples : en pratique.

La fonction d’ouverture progressive des vannes mélangeuses est généralement intégrée dans les nouveaux régulateurs. En cas de doute, la confirmation peut être demandée au chauffagiste et/ou au fabricant.

Dans le cas d’un ancien régulateur, on peut équiper l’installation d’un régulateur qui commandera la fermeture progressive des vannes si la température de retour chute trop bas.

Un régulateur impulsionnel à 3 points réagit à la température d’eau de retour vers la (les) chaudière(s). Si la température de retour chute en dessous de la consigne, le régulateur envoie un impulsion de fermeture à (aux) vanne(s) mélangeuse(s) et vice-versa.

Raccordement électrique du régulateur 3 points : si la température de l’eau des circuits secondaires est supérieure à la consigne de leur courbe de chauffe ou si la température de retour vers les chaudières est trop basse, une impulsion est envoyée aux moteurs des vannes mélangeuses qui se ferment d’un cran. L’ouverture des vannes n’est possible que si, simultanément, la température des circuits secondaires est trop basse et la température de retour vers les chaudières est suffisante.

On peut aussi imaginer dans le cas d’une installation existante, un système plus simple où un simple thermostat limiteur court-circuite la commande d’ouverture de la vanne si la température de retour chute en dessous du minimum requis. Cette solution ne permet pas de refermer les vannes en cas de dépassement trop important.


Un thermostat limiteur se met en série avec la commande d’ouverture de la vanne 3 voies.

La troisième solution est de décaler dans le temps le moment de la relance de chaque circuit, ce qui permet un mélange progressif de l’eau froide de l’installation à l’eau chaude. La difficulté de cette solution étant qu’en cas de changement de gestionnaire, on oublie le pourquoi du décalage des horloges les unes par rapport aux autres. L’autre inconvénient est que l’on ne contrôle pas exactement la température de retour.

  • Prévoir, dans les circuits primaires en boucle ouverte, un circulateur de recyclage sur les chaudières qui renvoie une partie de l’eau chaude vers la chaudière lorsque la température de retour vers celle-ci est trop basse (en dessous de 55°C). Cette solution n’est cependant pas de idéale et ne fonctionne pas pour les installations déjà équipées d’une pompe de recyclage. En effet, il faut recycler un débit équivalent au débit de l’ensemble des circuits secondaires si l’on veut obtenir une température de 55°C en mélangeant de l’eau à 20°C avec de l’eau à 90°C. Or les pompes de recyclage sont couramment dimensionnées pour recycler 1/3 du débit nominal de la chaudière.

Évaluer 

Attention cependant, le dimensionnement de cette pompe de recyclage n’est pas arbitraire et un mauvais choix peut conduire à un fonctionnement erroné de l’installation. Pour en savoir plus sur les problèmes possibles.

Calculs 

 

Exemple de calcul d’une pompe de recyclage.

 

Attention, cependant, ajouter des sondes et des régulateurs sur une ancienne installation complexifie cette dernière. Cela implique d’une part une information de l’exploitant sur le nouveau fonctionnement de l’installation et d’autre part, de consigner par écrit, le mode d’emploi de celle-ci. Ce dernier point est important car les années passant ou si le personnel change, on ne saura plus à quoi servent les régulateurs et les sondes et l’installation ne sera plus gérée.

Tenant compte de cela, il vaut parfois mieux remplacer l’entièreté des anciens régulateurs par un équipement moderne permettant les différentes fonctions décrites ci-dessus.

Placement d’un optimiseur sur une installation existante

La technique de ralenti la plus performante, d’un point de vue énergétique, est l' »optimiseur« .

Il faut cependant être prudent lorsque l’on désire améliorer sa régulation en plaçant un tel équipement. En effet, celui-ci ne sera performant que s’il équipe une installation ne présentant pas de désordre hydraulique.

Exemples.

lorsque l’on dispose de pompes à vitesse variable, il est conseillé de rétrograder de vitesse durant la nuit. Cependant si l’optimiseur ne gère pas lui-même le changement de vitesse, il ne pourra jamais calculer correctement le moment de la relance puisque les caractéristiques du système ne sont pas constantes.

Ceci peut conduire à une anticipation de la relance telle qu’il n’existe plus de ralenti de nuit, bien que le responsable du bâtiment le croit effectif.

La présence d’incompatibilités hydrauliques entre les circuits peut empêcher certaines parties de bâtiment ou le bâtiment tout entier d’atteindre sa température de consigne de jour.

Ici aussi, l’optimiseur va anticiper la relance croyant erronément le moment de la relance en cause, jusqu’à ce que le ralenti disparaisse.

Dans ces deux exemples, on aura tendance à incriminer l’optimiseur, alors que la cause du désordre est hydraulique.

Concevoir

Gestion de l’intermittence.

Améliorer le réglage des courbes de chauffe

Un mauvais réglage de courbe de chauffe sera source soit d’un manque de chaleur, soit d’une surchauffe (donc d’une surconsommation).
Chaque bâtiment doit avoir une courbe de chauffe unique, fonction :

  • des caractéristiques des émetteurs,
  • de la température intérieure souhaitée,
  • des caractéristiques thermiques du bâtiment.

Trouver cette courbe n’est pas évident. Il faut procéder, en hiver et en mi-saison, à des ajustements en fonction des plaintes des occupants. Ces ajustements et leur résultat doivent être consignés jusqu’à ce que la bonne courbe soit trouvée.

On l’aura compris, il ne s’agit de « tourner les manettes », au hasard, dès qu’une plainte apparaît, sans prendre note de ce que l’on a fait. Ce n’est pas non plus au chauffagiste à régler cette courbe mais bien à une personne vivant dans le bâtiment et pouvant collationner les réactions des occupants à chaque modification du réglage.

Or, bien souvent on entend : « c’est le chauffagiste qui a réglé le régulateur et nous interdit d’y toucher ! ».

Calculs

Tracer la courbe de chauffe programmée sur le régulateur.

Techniques

Pour comprendre le réglage complet d’un régulateur avec courbe de chauffe.

Régulateur climatique analogique avec possibilité de correction par sonde de compensation.

Sur certains régulateurs climatiques, il est possible de raccorder un thermostat d’ambiance de compensation. Celui-ci mesurant la température intérieure dans un local témoin, ajuste automatiquement la température d’eau de départ par rapport à la courbe de chauffe réglée. Ce thermostat peut également servir de thermostat de coupure en régime de nuit. Cette « compensation » permet de résoudre le problème du réglage fin de la courbe de chauffe.

Elle pose cependant certains problèmes :

  • Son efficacité est liée au choix correct du local témoin, pour peu qu’il soit possible. C’est pourquoi une sonde de compensation ne peut pas être placée si le circuit dessert des locaux d’orientation différente ou avec des gains internes différents.

 

  • Elle ne fonctionne correctement que si la courbe de chauffe est déjà presque bien réglée. En effet, la plage de compensation est volontairement réduite pour éviter l’influence de comportements inadéquats des occupants du local témoin (ouverture des fenêtres, « occultation du thermostat », …).

Concevoir

Régulation des circuits de distribution.

Placer des vannes thermostatiques

Vanne thermostatique.

Attention, les vannes thermostatiques ne sont pas la « panacée universelle », et ne permettent pas de résoudre toutes les situations de confort et de surconsommation.

Il est important d’en comprendre le  fonctionnement pour en cerner l’utilité.

En résumé, une vanne thermostatique permet de limiter la puissance d’un corps de chauffe dans des locaux où les apports de chaleur (ensoleillement, occupation importante, bureautique, éclairage, …) sont supérieurs aux autres, variables et conduisent à des problèmes de surchauffe locale.

Exemple.

Par exemple, il faut préparer de l’eau pour l’ensemble des radiateurs de classes. Si dans un local 8 élèves sont présents, il doit faire bon. Si dans le local voisin 25 élèves sont présents, la température risque de s’élever rapidement (25 élèves x 100 Watts/élève = 2 500 Watts, soit l’équivalent d’un radiateur moyen chauffé à 80° !). Il est impératif de couper le chauffage dans ce local. On arriverait aux mêmes conclusions avec l’apport solaire par de larges baies vitrées.

Et c’est là qu’intervient la vanne thermostatique, comme régulatrice finale des apports.

Attention : elle ne peut agir que dans le sens de la réduction ! Aussi, il sera utile d’ajuster la régulation centrale sur les locaux les plus exigeants (locaux de coin, locaux sous la toiture, …).

Il existe sur le marché, des vannes qui peuvent s’adapter à la plupart des publics :

  • locaux où les occupants sont capables de gérer eux-mêmes le réglage des vannes (bureaux individuels, de 2 .. 3 personnes),
  • locaux où les occupants ne se sentent pas responsable du réglage (classes),
  • locaux où les vannes peuvent subir des détériorations (salles de sport, lieux publics, ….).

Il ne faut donc pas systématiquement rejeter cette solution sous prétexte que le public ne saura pas la gérer. Si un doute subsiste quant à la résistance mécanique par rapport au public visé, un essai peut être mené avec une ou deux vannes, avant de se lancer dans l’installation complète.

Il est clair que si on opte pour les vannes les plus simples dont le réglage est laissé à l’occupant, une information de ce dernier sera nécessaire, pour que le résultat escompté soit atteint.

Gérer

Pour télécharger des affiches de sensibilisation des occupants à l’utilisation des vannes thermostatiques.

Le gain

Ici aussi, il est impossible de chiffrer précisément le gain énergétique que l’on peut escompter du placement de vannes thermostatiques, ne fut-ce que parce qu’il est impossible de chiffrer précisément la situation de départ.

On peut cependant, par un rapide calcul, estimer l’intérêt de cette amélioration.

Exemple.

Ordre de grandeur : un degré de trop dans un local = 7 .. 8 % de surconsommation !

Prenons un immeuble de bureau de 1 000 m² dont la consommation annuelle est de 15 000 litres de fuel par an.
Dans la salle de réunion de 60 m², occupée 6 h/jour, 250 jours par an, il fait systématiquement 22°C au lieu de 20°C.
Quel est l’ordre de grandeur de l’économie que l’on peut réaliser en plaçant des vannes thermostatiques dans cette salle ?

« A la grosse louche » :

> Consommation de combustible imputable à la salle :

15 000 [litres/an] / 1 000 [m²] x 60 [m²] = 900 [litres/an]

> Estimation du pourcentage d’économie lié au placement de la vanne : réduction de 2 K en journée et de 1 K la nuit et le week-end (après la coupure du chauffage, la température intérieure reste plus chaude la nuit, suite à l’augmentation de la température intérieure le jour). Prenons 1,5 K en moyenne.

Économie réalisable par des vannes thermostatiques : 900 [litres/an] x 8 [%/K] x 1,5 [K] = 108 [litres/an] ou 32 [€/an] (à 0,30 [€/litre fuel]).

Économie à laquelle il faut rajouter l’amélioration du confort.

Le coût d’une vanne est de l’ordre de 12,5 .. 25 € pour une vanne thermostatique traditionnelle ou 25 .. 37,5 € pour une vanne « incassable ». Hors placement.

Le temps de retour réel dépend du nombre de radiateurs à équiper dans le local !

Précautions

Le placement de vannes thermostatiques dans un bâtiment demande certaines précautions.

Placement d’une soupape différentielle

Lorsqu’une vanne thermostatique se ferme, le débit d’eau est arrêté dans la branche qui va vers le radiateur. C’est comme lorsqu’un enfant bouche de son pouce l’embouchure du jet d’une fontaine, … les autres jets sortent plus fort ! En fait, c’est la pression qui monte dans le réseau et tous les autres radiateurs voient leur débit augmenter. Toutes les autres vannes vont se fermer un peu plus…

Imaginons que vers midi quelques vannes soient encore ouvertes : elles reçoivent toute la pression de la pompe, elles ne s’ouvrent que d’une fraction de millimètre… et se mettent à siffler !

Une vanne thermostatique ne doit pas sentir si sa voisine vient de se fermer. Il est donc utile de stabiliser la pression du réseau. C’est le rôle de la soupape à pression différentielle. Placée après le circulateur, elle lâche la pression lorsque les vannes se ferment. En quelque sorte, elle « déverse le trop plein vers le retour ».

Placement d’une soupape différentielle sur le départ du circuit pour compenser la fermeture des vannes thermostatiques.

Encore faut-il pouvoir calibrer le niveau de pression maintenu entre le départ et le retour… Si l’installation est nouvelle, le bureau d’études connaît la pression nominale nécessaire. Si l’installation est ancienne, on ne pourra y aller que par essai successif en diminuant progressivement la pression. La pression manométrique du milieu de la courbe du circulateur (voir catalogue du fournisseur) est également une indication.

Une solution d’aujourd’hui : le circulateur à vitesse variable

Courbes caractéristiques d’un circulateur à 3 vitesses.

Force est de constater que la solution de la vanne à pression différentielle n’est pas très élégante ! Créer une pression à la pompe et la lâcher juste après, sur le plan énergétique, c’est un peu pousser sur l’accélérateur et le frein en même temps !

Actuellement, il est possible d’installer  un circulateur à vitesse variable : la vitesse est régulée de telle façon que la pression du réseau reste constante. Si seulement quelques vannes sont ouvertes, il tournera à vitesse réduite. L’achat d’un circulateur avec régulateur de vitesse intégré est rapidement amorti durant l’exploitation car la consommation évolue en fonction du cube de la vitesse: une vitesse réduite de moitié, c’est une consommation électrique divisée par 8 !

Améliorer

Pour en savoir plus sur le placement de circulateurs à vitesse variable.

Vannes thermostatiques et thermostat d’ambiance

Un local abritant un thermostat d’ambiance ne peut jamais comporter de vanne thermostatique.

En effet, si la consigne du thermostat d’ambiance est plus élevée que la consigne des vannes, le thermostat ne sera jamais satisfait puisque les vannes thermostatiques se fermeront avant.

Dans le cas d’une installation dans laquelle le thermostat agit directement sur le brûleur, cette demande entraînera le fonctionnement permanent du brûleur jusqu’à ce que la température de la chaudière atteigne sa limite haute. En résumé, la chaudière fonctionnera en permanence à haute température, ce qui est énergétiquement moins efficace.

Si le thermostat agit sur une vanne mélangeuse, celle-ci restera en permanence en position ouverte, alimentant les circuits à température maximale.

Dans les deux cas, il peut en résulter une surconsommation et des surchauffes dans les autres locaux.

À l’inverse, si la consigne du thermostat est plus basse que la température de consigne des vannes thermostatiques, ces dernières resteront en permanence ouvertes en grand et deviennent donc inutiles.

En résumé, si un thermostat d’ambiance et des vannes thermostatiques sont présents dans un même local, ces dernières doivent en permanence être ouvertes au maximum pour permettre au thermostat de jouer son rôle pleinement.

Vannes thermostatiques et circuits corrodés

« Les vannes thermostatiques se bloquent souvent ! »

Voici un des arguments repris par les détracteurs des vannes thermostatiques.

En effet, le faible degré d’ouverture d’une vanne thermostatique (max : 2 mm), les rend sensibles aux dépôts de calcaire ou aux boues de l’installation. Leur application dans une installation existante présentant ces problèmes est donc délicate.

Ce n’est cependant pas pour cela qu’il faut rejeter d’office la solution des vannes thermostatiques. Mais au préalable, les problèmes d’entartrage et de corrosion doivent être combattus. Notons que cela devrait se faire, quels que soient les projets d’amélioration, car c’est l’ensemble de l’installation qui est en péril, y compris les chaudières :

  • suppression des fuites,
  • vérification ou modification du système d’expansion,
  • désembouage,
  • analyse et traitement d’eau,
  • ….

Améliorer 

Pour en savoir plus sur la surveillance d’une installation pour prévenir la corrosion et l’entartrage.

Vannes thermostatiques bloquées en début de saison de chauffe

Il faut éviter de laisser une vanne complètement fermée durant une longue période (c’est valable aussi bien pour une vanne thermostatique que pour une vanne manuelle), par exemple durant tout l’été.

En effet, la pression exercée sur le clapet de fermeture est telle que la vanne risque de rester « collée » lorsque l’on désirera l’ouvrir à nouveau.

Il est donc conseillé de toujours maintenir une certaine consigne à la vanne, par exemple en la réglant sur la position « antigel ». Dans ce cas, en été, elle se fermera, mais avec une pression nettement moindre que si elle est fermée manuellement.

Concevoir

Pour en savoir plus sur le choix d’une vanne thermostatique.

Concevoir

Régulation locale.

Réguler l’installation par zones homogènes

Situation fréquente : les besoins des locaux ne coïncident pas avec le découpage du réseau hydraulique !
Disposer de circuits hydrauliques distincts est indiqué lorsque :

  • Certains locaux profitent de beaucoup d’apports de chaleur gratuits (ensoleillement,…).
  • Certains locaux doivent être chauffés en dehors des heures d’occupation normale (salle de sport ou internat dans une école, salle de réunion, conciergerie, …).
  • Certains locaux ne doivent pas être chauffés en permanence durant la journée (salle de conférence, réfectoire, bibliothèque,…).

Que faire pour améliorer la situation si le bâtiment ne dispose que d’un seul circuit de chauffage ?

Situation 1 : certains locaux profitent d’apports gratuits importants

Les façades Nord et Sud sont alimentées par de l’eau à la même température. Des surchauffes apparaissent dans les locaux Sud dès l’apparition du soleil… mais les locaux Nord restent demandeurs. La régulation dite « de la fenêtre ouverte » est adoptée par les occupants du Sud !

Trois améliorations sont possibles :

  • Soit le placement de vannes thermostatiques sur tous les radiateurs au Sud.
  • Soit le placement sur le circuit de distribution de vannes de zones : ce sont des vannes 2 voies modulantes, commandées par une sonde d’ambiance située dans un local témoin.

Vannes 2 ou 3 voies motorisées.

  • Soit une modification du réseau de tuyauteries de telle sorte que chaque façade dispose de sa propre vanne trois voies.

Solution

Avantages

Inconvénients

Vannes thermostatiques Gestion individuelle avec prise en compte des situations particulières de chaque local. Chaque radiateur doit être équipé d’une vanne. Collaboration nécessaire des occupants (tentures, manteaux, … recouvrant les vannes).
Vannes de zones Peu de vannes à installer si le nombre de circuits à gérer est faible. Multiplication des vannes si le bâtiment est équipé de nombreuses colonnes montantes. Difficulté de choix du ou des locaux de référence. Pas de prise en compte des situations particulières (locaux avec beaucoup d’occupants, matériel de bureautique,…). Nécessité d’une collaboration des occupants du local de référence (ne pas ouvrir les fenêtres, ne pas changer la consigne, ne pas cacher la sonde par une affiche !).
Un nouveau circuit par façade Indépendance des zones. Travaux lourds. Pas de prise en compte des apports gratuits dus aux occupants (par exemple, si une classe est remplie, le chauffage doit pratiquement s’arrêter).

Une demande de prix à un installateur permettra de trancher entre les solutions.

Exemple.

Le chauffage est distribué par plateau

Situation de départ

> Solution : vannes thermostatiques sur tous les radiateurs sud

 

Situation de départ

> Solution : nouveau circuit sud au départ de la chaudière ou du collecteur

Le chauffage est distribué par colonnes montantes

Situation de départ

> Solutions :

  • vannes 2 voies modulantes sur chaque colonne montante de la façade sud avec un ou plusieurs locaux témoins,
  • nouveau collecteur reprenant toutes les colonnes de la façade sud,
  • vannes thermostatiques sur tous les radiateurs sud.

Situation 2 : certains locaux doivent être chauffés en dehors des heures d’occupation générales

Un exemple serait la présence, dans une école d’un internat ou d’une conciergerie qui imposerait un chauffage permanent de l’ensemble des bâtiments. A nouveau, deux solutions coexistent :

  1. La création de branches distinctes pour alimenter des zones aux besoins si différents.
  2. La séparation totale des circuits, avec le placement d’une petite chaudière spécifique pour la conciergerie ou l’ internat.
Exemple. L’évaluation de l’économie engendrée peut être évaluée grossièrement comme suit : admettons que l’école représente 80 % de la surface chauffée. La réalisation d’une intermittence de son chauffage entraînera 30 % d’économie. L’économie sur la consommation existante représente donc 30 % de 80 %, soit 24 % du total.

La deuxième solution est plus coûteuse mais la petite chaudière, avec son meilleur rendement de fonctionnement, apportera une économie supplémentaire.

Études de cas

Évaluation des installations de chauffage d’un centre d’hébergement.

Parfois, une réorganisation des horaires ou des lieux d’activités permet d’éviter de gros investissements.

Exemple. Par exemple, pourquoi ne pas essayer d’organiser la réunion hebdomadaire du club de Scrabble dans l’aile de bâtiment de toute façon chauffée pour les internes ?

Situation 3 : certains locaux ne doivent pas être chauffés en permanence durant la journée

Exemple. Imaginons, dans une école, deux zones thermiques situées sur un même circuit : la bibliothèque qui est dans l’aile des classes primaires. Elle n’est utilisée que deux fois par semaine sur le temps de midi, or la surface chauffée n’est pas négligeable …

Il faut analyser le type de raccordement des radiateurs.

> Cas 1 : tous les radiateurs du local sont situés sur une même conduite, en série et en bout de circuit

Dans ce cas, une simple vanne deux voies peut se placer sur la conduite départ vers les radiateurs. Elle est commandée par un thermostat présent dans un local témoin, thermostat comprenant une programmation horaire des températures. Dans l’exemple, deux heures avant l’ouverture de la bibliothèque, la vanne s’ouvrirait pour réchauffer le local. Une température minimale hors activité serait prévue pour éviter tout risque de gel. Si les radiateurs des classes primaires sont équipés de vannes thermostatiques, les radiateurs de la bibliothèque pourront rester avec leurs vannes ordinaires, toutes ouvertes, la régulation étant assurée par la vanne deux voies. Le coût du matériel à placer s’élève à environ 300 €.

> Cas 2 : les radiateurs du local sont situés sur des conduites distinctes

Dans ce cas une action peut être menée sur chaque vanne thermostatique,

  • Soit en plaçant des vannes thermostatiques programmables indépendantes. Leur prix de revient est de 100 € plus élevé que les vannes traditionnelles. Il faut également penser que les vannes thermostatiques sont fragiles (par rapport aux vannes institutionnelles) et qu’une personne de confiance doit être responsable de la programmation. Cela colle donc très bien pour la bibliothèque, beaucoup moins pour le local des scouts, malgré qu’il soit lui aussi à usage périodique.

Vanne thermostatique programmable : la tête est « trompée » par l’alimentation d’une résistance chauffante électrique. Lorsque le chauffage doit être coupé, la résistance chauffe le corps sensible de la vanne, celle-ci croit qu’il fait chaud dans le local et bloque l’alimentation du radiateur en fonction d’une horloge.

  • Soit en plaçant sur chaque alimentation de radiateur, une vanne servomoteur tout ou rien, régulée par un thermostat d’ambiance unique pour toutes les vannes. Si le régulateur revient à 200 €, le prix d’un servomoteur est d’environ 50 €. Si la bibliothèque dispose de 4 radiateurs répartis sur des circuits différents, le supplément de régulation est de 200 + 50 x 4 = 400 €.

 

Découvrez ces 2 exemples de régulation du chauffage : le Collège Saint Paul de Godinne et le Lycée « La retraire » à Bruxelles.

Friteuse électrique

Friteuse électrique


Principe

Une friteuse électrique est un appareil comportant un récipient calorifugé destiné à contenir un bain de matière grasse (huile ou graisse) dans lequel les aliments sont cuits par convection, conduction ou aspersion.

Le principe est de porter l’huile à une température suffisante pour saisir et cuire les aliments, sans jamais dépasser le niveau de température où l’huile « brûle » et se décompose.


Description

Schéma principe friteuse électrique.

Composants techniques de base

Une friteuse électrique comporte :

  • Une cuve : l’huile est chauffée par des résistances directement dans la cuve ou par un générateur, puis transférée dans la cuve.
  • Un ou plusieurs paniers destinés à contenir les produits.
  • Une zone froide située dans la partie basse du bassin d’huile, dans laquelle les particules d’aliments détachées lors de la cuisson viennent se déposer par suite d’une baisse très sensible des courants de convection.
    La zone froide évite que les particules ne carbonisent. La qualité du bain d’huile est ainsi préservée et les éléments chauffants sont maintenus rigoureusement propres, conservant un bon échange thermique. Le vidage du bain d’huile est facilité par un robinet placé dans le bas de la cuve.
    Selon les modèles, la zone froide est réalisée :

    • soit par les courants de convection naturelle produits dans l’huile par différence de température,
    • soit par circulation forcée de l’huile (par pompe), pour les modèles de grande capacité.

Composants spécifiques à certains modèles

Des compléments qui améliorent les performances :

  • un système de filtrage continu (on parle alors de friteuse « fry master »),
  • une possibilité d’utilisation modulable de un ou plusieurs paniers et des puissances variables à régler, selon que l’on cuit des produits frais, surgelés ou précuits sous-vide,
  • un pupitre de commande avec témoins lumineux contrôlant l’immersion des paniers,
  • un thermostat électronique assurant un contrôle de température au degré près,
  • un bac de vidange intégré.


Commande et régulation

Le contrôle de température s’opère :

  • soit par deux dispositifs : l’un pour la cuisson, l’autre pour la sécurité,
  • soit par un dispositif électronique assurant l’ensemble des régulations.


Gamme

Les friteuses sont généralement caractérisées par le volume de matière grasse utile correspondant à la zone de travail, exprimé en litres (cfr. capacité nominale indiquée par le constructeur).

Les valeurs courantes sont de 6, 9, 12, 15, 18, 21, 24, 30, 40, 60 litres utiles, correspondant à des capacités allant de 25 à 600 portions environ.

La puissance moyenne par litre d’huile utile est de l’ordre de 0,7 kW. Elle est nettement plus importante (au minimum 1 kW par litre d’huile) pour les friteuses destinées aux produits surgelés.

Les performances sont définies par la production horaire et la consommation spécifique théorique en kWh/h.

Selon la norme, la production horaire est la masse de pommes de terre crues qui peuvent être pochées en une heure. Les performances sont largement doublées avec les frites précuites.

Pour choisir le matériel, il faut tenir compte du nombre de convives (300 g de frites par convive), du mode de distribution, de la régularité de la consommation et de la production horaire annoncée par le constructeur et vérifiée par la norme.

On aura intérêt à fractionner l’équipement pour obtenir une certaine souplesse d’exploitation.


Utilisation

L’appareil est adapté aux cuissons d’aliments frais et d’aliments congelés.

L’opération comporte une ou deux phases selon le type d’aliment :

  • deux phases pour les frites non congelées : pochage à 150-160°C et dorage à 170-180°C,
  • une seule phase de cuisson de finition, à 160-180°C, pour les produits frais autres que les frites, pour les frites pochées à la vapeur, et pour les frites congelées.

L’usage du thermostat est donc limité à 180°C.


Entretien

Les corps gras sont des produits fragiles qui justifient certaines précautions :

  • un filtrage journalier pour éviter la coloration et préserver les qualités des corps gras,
  • l’entretien régulier de la cuve, pour éviter la carbonisation et les odeurs,
  • en non fonctionnement, entreposage des corps gras en chambre froide, pour éviter le rancissement ou l’oxydation.
Comment poser correctement de l'isolant ?

Comment poser correctement de l’isolant ? [toiture plate]

Comment poser correctement de l'isolant ?


 La toiture inversée

Étanchéité posée librement, en semi indépendance ou collée Isolant lesté

 La toiture chaude

Étanchéité lestée Isolant posé librement
Isolant posé en semi-indépendance (*)
Isolant fixé mécaniquement (*)
Étanchéité fixée mécaniquement à travers l’isolant Isolant posé librement
Isolant posé en semi-indépendance (*)
Isolant fixé mécaniquement (*)
Étanchéité collée Isolant collé
Isolant fixé mécaniquement

(*) pour faciliter la mise en œuvre.

 La toiture isolée à l’intérieur de la structure (délicat)

Étanchéité posée librement, en semi indépendance ou collée Isolant souple ou en vrac remplissant intégralement la cavité

Le collage au bitume chaud ne convient pas sur les tôles métalliques profilées sauf lorsque l’isolant est du verre cellulaire (CG).

La technique de pose à la colle bitumineuse à froid ne convient pas pour le polystyrène expansé (EPS).

La fixation mécanique est généralement utilisée sur des supports en bois ou en tôles profilées. Elle ne convient pas lorsque l’isolant est du verre cellulaire (CG).

Lorsque l’isolant et l’étanchéité sont uniquement collés, il convient de vérifier si l’isolant lui-même est capable de résister au délaminage et au pelage. Dans les autres cas (fixation mécanique et lestage) seuls la résistance de la fixation ou le poids du lestage servent à accrocher la couverture.

Concevoir

Pour en savoir plus sur l’accrochage 

L’isolant devra être posé de telle façon qu’il y ait le moins possible de ponts thermiques.

La meilleure façon de ne pas avoir de pont thermique en toiture est d’ éviter toute interruption de la couche isolante.

L’isolant sera donc si possible continu, d’épaisseur constante et sec.

Lorsqu’un pont thermique a été repéré, on tentera de le neutraliser.

Évaluer

Pour savoir comment repérer les ponts thermiques

Améliorer

Pour savoir comment neutraliser les ponts thermiques

Doubler le châssis

Doubler le châssis

Voici un exemple dans le cadre de la rénovation d’un bâtiment existant :

Photo bâtiment.   Photo châssis interieur.

Vue extérieure et intérieure de la façade après rénovation.

Photo châssis exterieur.

Cette opération peut être réalisée non seulement pour améliorer les performances thermiques de la fenêtre, mais aussi en cas de besoin d’un haut niveau d’isolation acoustique (aux bruits aériens).

Doublage du châssis existant par un nouveau châssis pourvu de vitrage isolant.

Dans le cas d’un placement du côté intérieur, l’ancien châssis forme une première barrière à la pluie et au vent, tandis que le nouveau assure la fonction d’étanchéité au vent et d’isolation thermique et/ou acoustique. Il est recommandé de prévoir un drainage correct de l’espace entre les deux châssis. Ce drainage servira d’évacuation des condensats éventuels et d’orifice de ventilation.

Améliorations énergétiques

Pour améliorer les performances énergétiques, la pose d’un double châssis se justifie lorsqu’on désire conserver le caractère architectural des façades et que les châssis existants, encore en bon état, ne permettent pas d’envisager la pose d’un vitrage isolant. Le châssis intérieur sera cependant, toujours visible de l’extérieur sauf si un voile (rideau) est placé entre les deux châssis. Cette solution est relativement onéreuse, en effet il faut pouvoir investir dans le placement d’un châssis vitré supplémentaire à ceux pré-existants.

La résistance thermique de l’ensemble de l’équipement est équivalente à la somme de la résistance thermique de la couche d’air entre les châssis (0,17 m².K/W) avec les résistances thermiques de chaque châssis. Cela donne des valeurs très appréciables surtout si le nouveau châssis est thermiquement très performant.

Améliorations acoustiques

Le double châssis se comporte comme un système acoustique du type MASSE/RESSORT/MASSE. La lame d’air entre les châssis jouant le rôle de ressort, permet d’absorber les vibrations sonores. L’espace entre les châssis doit former un ressort suffisamment souple de façon à empêcher le système de faire entrer les verres en résonnance.

L’isolation acoustique sera donc d’autant meilleure que l’espace prévu entre les deux châssis est grand.

On rencontre ce genre de dispositifs :

Châssis double en matière plastique et en bois.