Refroidissement adiabatique

Refroidissement adiabatique


Principe de base

Le principe est le suivant : si de l’air chaud et sec traverse un filet d’eau, il en provoque l’évaporation. La chaleur nécessaire à la vaporisation d’eau étant extraite de l’air. Celui-ci se refroidit.

Schéma principe de base.

Par exemple, de l’air à 20°C, 30 % HR traversant un nuage d’eau voit sa température atteindre 12°C en se chargeant d’humidité.

Le refroidissement adiabatique peut-être

  • direct : si l’air humidifié soit directement pulsé dans l’ambiance;
  • indirect : si de l’air pulsé ou un réseau d’eau est refroidi par échange avec l’air qui aura été humidifié.

Refroidissement indirect de l’air pulsé

Il existe des échangeurs à plaques dans lequel l’air vicié est refroidi par humidification. Un tel système permet d’exploiter le « pouvoir refroidissant » de l’humidification adiabatique, tout en évitant le problème de l’humidification de l’air neuf.

Photo d’une centrale de refroidissement adiabatique.

L’air vicié et l’air neuf passent dans un double échangeur à plaques. Dans l’échangeur, l’air vicié est humidifié. On combine donc deux phénomènes dans l’échangeur : le refroidissement adiabatique de l’air vicié et le refroidissement au contact avec l’air neuf. Remarquons les volets de by-pass (sur l’air neuf et l’air vicié) permettant une régulation de la puissance échangée.

Actuellement, nous manquons de données neutres pour juger des performances et de l’intérêt énergétique d’un tel équipement. Il semblerait que si l’humidification de l’air vicié est effectuée avant l’échangeur, le refroidissement complémentaire qui en résulte ne soit pas suffisant pour augmenter significativement l’énergie récupérée en période de climatisation. C’est apparemment l’intégration de l’humidificateur dans l’échangeur, qui augmenterait les performances du système. En effet, dans ce cas, l’eau s’évapore dans l’échangeur et refroidit aussi bien celui-ci que l’air vicié. Le fabricant de ce matériel annonce, dans les meilleures conditions, un refroidissement de l’air neuf de 10 °C.

En hiver, avec l’arrêt de l’humidification, on retrouve le fonctionnement d’un groupe « traditionnel » avec échangeur à plaques.


Refroidissement indirect d’un réseau d’eau

Il existe d’autres modes de refroidissement exploitant le principe de l’évaporation de l’eau, notamment associés à des machines frigorifiques avec possibilité de free chilling via aérorefroidisseur ou tour de refroidissement.

Schéma refroidissement indirect d’un réseau d’eau.

Photo d’un refroidisseur adiabatique.

Dans ce processus, quel que soit le mode d’humidification, le principe est toujours le même : les molécules d’eau passent progressivement à l’état de vapeur, provoquant ainsi par évaporation une diminution de la température d’air.

Son efficacité sera accrue si la surface de l’eau est grande, si le débit d’air à la surface de l’eau est important et si la température de l’air est élevée.

Enfin, il est indispensable d’assurer un contrôle et une maintenance très rigoureux des équipements, car :

  • les surfaces humides présentent un terrain favorable au développement des micro-organismes;
  • l’évaporation provoque des dépôts consécutifs à la cristallisation (sels minéraux, carbonates);
  • la ventilation de l’air favorise les dépôts de poussière.

Avantages et inconvénients

  • La solution simple permettant un refroidissement naturel en exploitant des équipements existants : groupe de ventilation, tour de refroidissement, …
  • Mais le pouvoir rafraîchissant est limité.
    • Le refroidissement de l’air est d’autant plus grand que le climat est chaud et sec (un tel système est donc inutile dans les régions où le climat est tropical, c’est-à-dire que l’air chaud est déjà chargé en humidité excessive. Chez nous, on se retrouve entre les deux …
    • Le refroidissement de l’eau ne sera lui possible que pour des températures extérieures typiques de la mi-saison, voire de nuit.
  • On parle donc bien de rafraîchissement et non de climatisation au sens de la fourniture d’une puissance de froid suffisante quels que soient les besoins.
  • Le dispositif ne peut être régulé avec précision, car il dépend de l’hygrométrie extérieure. Il est d’autant plus efficace que le climat est chaud et sec.
  • La consommation en eau non négligeable, nécessite qu’elle soit de bonne qualité pour éviter l’entartrage des tuyauteries, ainsi que les problèmes de légionelles. Pour éviter ce désagrément, un traitement d‘eau est nécessaire. Évidemment, l’utilisation de l’eau de pluie réduit l’impact sur la consommation en eau potable, mais nécessite la garantie du fabricant quant à la résistance de ses équipements.

Régulation

Les éléments qui constituent l’installation : filtres, surpresseur, pressostats de sécurité, pompe, électrovanne, rampes avec buses, échangeur, vannes de purge.

La régulation du refroidissement adiabatique repose principalement sur le contrôle des débits d’air et d’eau.

La régulation pour la ventilation d’air peut être de deux types :

Régulation par étage

Des étages de ventilation s’enclenchent les uns après les autres. Lorsque 100 % de la ventilation est en fonctionnement et que la température extérieure est supérieure à la valeur de consigne d’enclenchement de la brumisation haute pression, une électrovanne s’ouvre et un surpresseur se met en route.

Régulation par variations de fréquence

La variation de vitesse régulera jusqu’à ce que 100 % du débit de ventilation soit en fonctionnement (à 50 Hz l’électrovanne de la rampe s’ouvre et le système adiabatique fonctionne).

La régulation pour le débit d’eau projeté

Un brouillard d’eau efficace offre la plus grande surface d’échange possible avec l’air.
Cette surface d’échange est d’autant plus grande que le nombre de microgouttelettes pulvérisées est important. Pour obtenir un brouillard de qualité, l’eau est donc mise sous forte pression (100 bar) et accumule ainsi, une énergie importante. Le débit d’eau de brumisation est calculé précisément afin d’apporter à l’air la juste quantité d’eau.

 

Roue dessicante


Principe de fonctionnement

Les dispositifs à dessiccation (DEC : Desiccant Evaporative Cooling) sont des systèmes de déshydratation ou de refroidissement de l’air, utilisant de l’eau et une source de chaleur.

Ce procédé repose sur le principe physique suivant : l’évaporation de la vapeur d’eau dans l’air sec réduit la température et augmente l’humidité absolue de l’air.

La dessiccation exploite un double échange de frigories et d’humidité entre les flux d’air entrant (air de process) et sortant (air de régénération) d’un bâtiment. Cette circulation d’air est généralement assurée par une centrale de traitement d’air.

Schéma de fonctionnement d’une centrale d’air à roue dessicante.

Représentation de l’évolution de l’air dans un diagramme de l’air humide.

(1>2) L’air extérieur ou air pulsé (aussi appelé « air de process ») est aspiré au travers d’un filtre, puis traverse la « roue dessicante » ou « roue à dessiccation ». Cet échangeur rotatif contient un produit de sorption solide. Ce dernier absorbe la vapeur d’eau de l’air extérieur par adsorption. L’air extérieur est ainsi déshumidifié et en contreparti, voit sa température augmenter.

(2>3) L’air extérieur est alors refroidi par échange de chaleur avec l’air intérieur extrait ou simplement l’air extrait (aussi appelé « air de régénération »). Cet échange se fait au travers d’un échangeur de chaleur rotatif (non hygroscopique).

(6>7) Pour augmenter l’échange de chaleur et donc le refroidissement de l’air pulsé, on rafraîchit au préalable l’air extrait en l’humidifiant jusqu’à saturation. On abaisse ainsi le plus possible sa température, et on bénéficie au maximum du potentiel de refroidissement dans l’échangeur.

(7>8) en passant au travers de l’échangeur de chaleur, l’air extrait se voit donc réchauffé.

(8>9) Pour pouvoir fonctionner en continu, la roue dessicante doit être régénérée c’est-à-dire que l’humidité doit être évacuée du matériau adsorbant. Pour cela la portion de roue contenant l’humidité doit croiser le flux d’air extrait qui aura été préalablement réchauffé pour atteindre une température suffisante pour vaporiser les molécules d’eau retenues dans les pores de la roue.

(9>10) Enfin l’air chaud traverse et régénère la roue dessicante pour lui permettre de poursuivre le processus continu de déshumidification. Finalement, l’air rejeté, à l’aide d’un ventilateur, sort plus haute en température et plus chargé en humidité que l’air extérieur.

(3>5) L’air pulsé peut encore être arrosé d’eau au travers d’un humidificateur. L’eau va absorber les calories restantes dans l’air avant que celui-ci soit propulsé dans le bâtiment à refroidir par un ventilateur. Cette alternative permet de refroidir l’air pulsé mais pas de le déshumidifier. Pour ce faire, il est alors nécessaire de remplacer cet humidificateur par une batterie froide.

(4>5): Ce système est dit réversible, car il peut aussi bien être utilisé en refroidissement qu’en chauffage. En hiver, cela correspond à un mode de fonctionnement normal de réchauffement par système centralisé à air, en utilisant la roue de sorption comme récupérateur de chaleur, tout en complément des apports de la chaleur solaire. La présence d’une batterie chaude permet ainsi la régulation de température de chauffe en hiver.

Résumé du comportement de l’air illustré par le diagramme de l’air humide :

En théorie, dans le diagramme de l’air humide, l’évolution de l’air dans la roue dessicante se fait selon une courbe isenthalpique pour l’air soufflé et pour l’air repris (1>2 et 9>10).
Dans l’échangeur et dans le régénérateur (batterie chaude, apports solaires, …), les transferts de chaleur se font à humidité absolue constante (2>3, 7>8 et 8>9).
Entre l’air pulsé et l’air repris par la centrale de traitement, l’air subit les apports dus au local (personnes, lampes, ordinateurs, …) et voit sa température augmenter (5>6).
La combinaison de ces différentes évolutions permet d’obtenir un point de soufflage compatible avec le rafraîchissement du bâtiment.


Aspects technologiques

La roue à dessiccation – principe d’adsorption

La sorption est un phénomène physique qui consiste à fixer les molécules d’un élément à une surface généralement granulée et poreuse. Les matériaux dessicants attirent l’eau en formant à leur surface une zone à faible pression de vapeur.
La vapeur de l’air, ayant une pression plus élevée, se déplace de l’air vers la surface du matériau ce qui garantit une déshumidification de l’air.


Photo technologie roue dessicante rotative.


Schéma d’une roue à dessiccation avec section de purge
(séparation amont/aval).

La déshumidification s’effectue soit à travers un dispositif sur lequel est posé un matériau dessicant (on parle alors de « déshydratation en phase solide »), soit dans des échangeurs dans lesquels est pulvérisée une solution dessicante (« déshydratation en phase liquide »).

La sorption peut donc prendre place entre un gaz et un solide, auquel cas on parle d’adsorption, soit entre un gaz et un liquide, il s’agit dans ce cas du phénomène d’absorption. Raison pour laquelle les roues dessicantes sont appelées également des déshydrateurs à adsorption.

Photo d’un déshydrateur à adsorption  de la marque « Ventsys » fonctionnant selon le principe de la roue dessicante.

Actuellement les sorbants les plus utilisés sont le SiO2 (Silica-gel), LiCl (Chlorure de Lithium), Al2O3 (Alumine activée) et le LiBr (Bromure de Lithium).
Ces substances sont imprégnées sur une roue rotative en céramique à structure en nids d’abeilles.
Lorsque le matériau devient saturé, la roue continue à tourner lentement et la partie exempte d’humidité est régénérée par chauffage, au départ d’une source de chaleur disponible.

L’échangeur rotatif non hygroscopique

Un échangeur non hygroscopique est une roue à rotation lente, métallique à structure en nids d’abeilles à travers laquelle passent deux flux d’air de sens opposés produisant un échange sensible entre eux (humidité absolue constante).

L’avantage de ce type d’échangeur c’est qu’il a une perte de charge faible en comparaison de son efficacité, de plus il présente peu d’encombrement.

Pour éviter les fuites de l’air entre les sections de soufflage et de retour, il est préférable d’avoir une section de purge séparant les deux sections et d’avoir les ventilateurs en aval de l’échangeur.


Intérêts du procédé

  • L’intérêt environnemental de la roue dessicante se marque si la source de chaleur utilisée est de type renouvelable. Elle peut donc fonctionner avec des capteurs solaires thermiques (on parle alors de climatisation solaire), avec un réseau de chaleur urbain alimenté en permanence en été de manière renouvelable (biomasse, géothermie profonde (> 1 500 m), etc.), ou encore en valorisant des rejets thermiques de process industriel par exemple.
    L’utilisation de capteurs solaires comme source de chaleur possède comme principal avantage de pouvoir amener le plus de froid lorsqu’il fait le plus chaud. Ce système est d’autant plus intéressant que les apports solaires sont grands, et trouve donc en toute logique son intérêt en période estivale.
    Dans ces situations et afin de garantir une utilisation prolongée, par exemple lors des périodes non ensoleillées, il est également envisageable de stocker de la chaleur emmagasinée en journée dans des ballons tampons.
    Remarque : Afin d’assurer le bon fonctionnement du processus d’adsorption, il est nécessaire que la source de chaleur puisse fournir une température suffisante à la batterie de régénération. Cette température est d’environ 70 °C quand le climat extérieur est de 25 °C et 75 % HR.
    Remarque : une autre solution, conduisant à un coût d’investissement plus faible, utilise directement l’énergie solaire de régénération par le biais de capteurs à air (et non-circulation à eau), du fait que le réfrigérant est en contact direct avec l’atmosphère.

Schéma présentant le système à roue dessiccante couplé à une installation chauffage solaire.

  • L’utilisation d’eau comme fluide réfrigérant rend ces systèmes totalement inoffensifs pour l’environnement.
  • Les humidificateurs peuvent être alimentés via l’eau de pluie ou grâce à l’eau de ville. Dans ce dernier cas, il s’agit de consommation d’eau potable dont il convient d’évaluer l’ampleur économique et environnementale.
  • La compression du fluide caloporteur est thermique, avec absence de mouvements mécaniques, ce qui augmente leur durée de vie et réduit leur bruit. Cependant une maintenance soignée est obligatoire.
  • La qualité de l’air intérieur est améliorée par l’effet bactéricide des matériaux adsorbants.
  • Ce mode de climatisation ne suffit pas pour assurer une bonne rentabilité économique, en effet le coût d’investissement pour ce genre d’installation encombrante est souvent onéreux.  Le coût spécifique [€ /(m³/h)] des centrales de traitement d’air reste trop élevé pour de petits débits. Ces systèmes tout air neuf ne sont pas adaptés pour tous les bâtiments.

Remarque : le coût spécifique va de 8 €/(m³/h) pour une centrale de traitement de 20 000 m³/h jusqu’à 16 €/(m³/h) pour une centrale de traitement de 5 000 m³/h (coût brut source fournisseur). À titre de comparaison, le coût spécifique pour une centrale de traitement d’air à roue hygroscopique va de 3.5 €/(m³/h) pour une centrale de 20 000 m³/h jusqu’à 8 €/(m³/h) pour une centrale de 5 000 m³/h.

  • Dans le cas d’utilisation de panneaux solaires comme source de chaleur, la production frigorifique varie évidemment avec les apports solaires, le dispositif ne peut fonctionner qu’en journée. Il est cependant envisageable de stocker de la chaleur emmagasinée en journée dans des ballons tampons afin d’utiliser le dispositif pendant les périodes non ensoleillées. On ne dispose donc pas d’une véritable climatisation en ce sens que la puissance de froid peut ne pas être suffisante. On parle donc plutôt de « rafraîchissement ». Si l’on souhaite réellement disposer d’une puissance de froid suffisante quels que soient les besoins, il convient de surdimensionner le système de ventilation et de recourir à une source de chaleur d’appoint bien souvent fossile ou électrique. Dans ce cas, le bilan environnemental du système peut s’effondrer.
  • La complexité d’une installation réside dans la régulation des multiples circulations de fluides avec une source thermique peut-être variable et discontinue (apports solaires). Ainsi le bon fonctionnement du système peut s’avérer délicat à garantir sur la durée. Il faut optimiser le refroidissement et la régulation, éviter les pertes thermiques et les pertes de fluides, limiter la consommation électrique, éviter la surchauffe en période estivale, se protéger contre le gel.
  • Le système est peu performant dans les climats chauds et humides.
  • En hiver, il n’est pas possible de récupérer une grande part de l’énergie latente (humidité) telle que dans le cas d’un système à roue hygroscopique. Dès lors, le besoin d’énergie pour l’humidification est plus élevé.

Bilan énergétique

Évaluation statique de l’intérêt énergétique :
Comparaison entre un système de traitement d’air à roue hygroscopique et un système de traitement d’air à roue dessicante.

Exemple en hiver

  • Air repris à une température de 20°C et une humidité absolue de 6 g/kg
  • Air extérieur à une température de 5°C et une humidité absolue de 3 g/kg
  • Air pulsé après la roue à :
    • une température de 16.25°C et une humidité absolue de 5.25 g/kg dans le cas de la roue hygroscopique. Pour l’amener à 20°C et 6 g/kg, il faut donc l’équivalent de 5 kJ/kg d’énergie (chaud) et 0.75 g/kg d’air.
    • une température de 16.25°C et une humidité absolue de 3 g/kg dans le cas de la roue dessicante. Pour l’amener à 20°C et 6 g/kg, il faut donc l’équivalent de 11 kJ/kg d’énergie (chaud) et 3 g/kg d’air.

Pour un même mode de production d’énergie, le système à roue dessicante ne peut jamais être plus intéressant que le système à roue hygroscopique.  Il nécessite plus d’eau pour humidifier l’air et plus d’énergie pour compenser le rafraichissement dû à cet apport d’eau dans l’air.

Exemple en été

  • Air repris à une température de 25°C et une humidité absolue de 13 g/kg
  • Air extérieur à une température de 23°C et une humidité absolue de 15 g/kg
  • Pour une pulsion à une température de 16°C et une humidité absolue de 11 g/kg (point de pulsion de l’air dans le cas d’une climatisation par plafonds froids en régime 17-20°C), il faut :
    • l’équivalent de 17 kJ/kg d’énergie (froid) dans le cas de la roue hygroscopique.
    • l’équivalent de 32 kJ/kg d’énergie (chaud), 2 kJ/kg d’énergie (froid) et 11.5 g/kg d’air dans le cas de la roue dessicante.

Si on considère que l’énergie de refroidissement dans le cas de la roue hygroscopique est produite avec les caractéristiques suivantes :

  • 0.781 kWh d’énergie primaire / kWh d’énergie utile
  • 0.123 kg de CO² / kWh d’énergie utile
  • 0.043 € / kWh d’énergie utile

(facteurs de conversion : ESEER machine frigo de 3,2 ; 0,395 kg CO2/kWhélectrique ; 2,5 kWhprimaire/kWhélectrique ; 0,14€/kWhélectrique).

Il faut donc que l’énergie de régénération (chaud) dans le cas de la roue dessicante ait au minimum les caractéristiques suivantes pour être intéressante en été :

  • 0.36 kWh d’énergie primaire / kWh d’énergie utile
  • 0.058 kg de CO² / kWh d’énergie utile
  • 0.021 € / kWh d’énergie utile

On peut noter qu’un réseau urbain alimenté en biomasse répond à peine à ces critères,  sans compter qu’il faudrait en plus compenser les consommations supplémentaires en hiver et la consommation d’eau des humidificateurs !

De ce fait, si on la compare à un groupe de ventilation avec roue de  récupération hygroscopique, le bilan énergétique de la roue dessicante ne semble intéressant que dans très peu de cas où l’on peut considérer que la chaleur est entièrement d’origine renouvelable ou récupérée et l’eau de l’eau de pluie.
La performance d’une installation dessicante dépend :

  • De l’efficacité de l’échangeur rotatif : choix de la roue utilisée.
  • De la température de régénération : ce paramètre est utilisé afin de modifier la puissance froide délivrée par la centrale en mode desiccant cooling.
  • Des débits de ventilation : la variation du débit engendre une variation de la puissance froide, mais également une variation du rendement d’échange dans les roues. C’est pourquoi il est nécessaire d’utiliser le système dans la plage de débit pour lequel il est dimensionné.
  • De l’efficacité de l’humidificateur: sa modification permet de contrôler la température et l’humidité de l’air de soufflage. Cela peut être utile en cas d’humidité relative intérieure inconfortable.

Domaines d’utilisation

  • Les dispositifs à dessiccation apportent une solution bien adaptée dans les régions où les apports latents sont limités et sont particulièrement efficaces en climat assez sec.
    En effet, le seul problème provient des régions trop humides, où la roue n’est pas suffisante pour déshydrater l’air ambiant, car elle nécessite une température de régénération élevée, ce qui augmente la consommation du système en énergie primaire.
  • Les systèmes à dessiccation sont utilisés pour produire directement de l’air frais (déshumidification de l’air), et non pas pour refroidir l’eau de la boucle de refroidissement comme dans le cas des machines frigorifiques classiques. Une telle installation n’est donc pas envisageable pour rechercher de grands refroidissements. Ces dispositifs peuvent souffler de l’air à une température d’environ 10°C de moins que la température extérieure (suivant les débits d’air choisis).

Photo d’une installation DEC : desiccant evaporative cooling.

  • Ce procédé est plus spécialement applicable aux bâtiments neufs ou en réhabilitation lorsqu’une source thermique à faible coût est disponible pour régénérer l’adsorbant.
  • Enfin, les systèmes dessicants peuvent être valorisés dans les bâtiments ayant un objectif de bilan « Zéro énergie » dans lesquels une déshumidification de l’air est d’office nécessaire (utilisation de plafonds froids, d’îlots rayonnants). Pour ce faire, il est nécessaire de supprimer l’humidificateur adiabatique sur le chemin de l’air neuf.

Nouvelle technologie : les Lits dessicants liquide – (LDC : Liquid dessicant cooling)

Une technique développée, toute nouvelle sur le marché, utilise pour la dessiccation de l’air un sorbant liquide : une solution eau/bromure ou chlorure de lithium.
Par rapport à un système à dessiccation utilisant un sorbant solide, ce type de système présente plusieurs avantages :

  • un plus fort taux de déshumidification pour le même niveau de température;
  • une possibilité d’un haut niveau de stockage énergétique sous la forme de solution concentrée.

Ventilation intensive mécanique d’été

Date :juin 2014

Auteur : Geoffrey

Notes : mise en page – Sylvie

Ventilation intensive mécanique d’été


Principe

La ventilation intensive d’été, souvent appelée « free cooling » consiste à refroidir un bâtiment par ventilation en utilisant l’énergie gratuite de l’air extérieur lorsque celui-ci présente une température inférieure à la température intérieure :

  • En hiver, de l’air frais extérieur peut alimenter, en journée, les zones à rafraîchir sans nécessiter l’enclenchement des groupes frigorifiques.
  • En été, une ventilation nocturne peut décharger le bâtiment de la chaleur accumulée en journée

Selon le moment de la journée, on parle de free cooling de jour ou de nuit :

  • Le free cooling diurne consiste à surventiler les locaux avec de l’air extérieur plus frais que l’air intérieur. La capacité frigorifique de l’air extérieur étant faible, de grands débits d’air sont nécessaires.
  • Le free cooling nocturne consiste à rafraîchir les bâtiments la nuit grâce à de l’air extérieur. On parle de « décharge nocturne » du bâtiment puisqu’il évacue toute la chaleur excédentaire accumulée en journée.

On distingue une ventilation intensive naturelle ou mécanique, selon que le mouvement d’air soit généré par des forces naturelles (poussée d’Archimède ou force du vent) ou par un ventilateur.
Il faut également distinguer le débit d’air neuf hygiénique, du débit d’air de rafraîchissement d’un local :

  • La ventilation hygiénique ou permanente assure la qualité de l’air. Elle vise globalement les 30 m³/h d’air neuf nécessaires par personne (RGPT). Dans un bureau, cela entraîne un renouvellement horaire de 1 x par heure, puisque chaque occupant occupe +/- 10 m² au sol, et donc un volume de 30 m³.

Grille d’apport d’air hygiénique naturel … ou réseau d’air pulsé.

  • Le refroidissement naturel d’un local (ou free cooling) sous-entend un taux de renouvellement important de l’air du local. Dans des systèmes naturels (ouverture de fenêtre), on parle de 4/heure comme base de dimensionnement, 8 renouvellements/heure sont couramment rencontrés. Dans un système mécanique par contre on se limitera à environ 2 renouvellements horaire pour éviter un surdimensionnement exagéré des réseaux de distribution de l’air.


Un refroidissement gratuit ?

La conception d’un réseau de ventilation mécanique intensive n’est pas différente de celle d’un réseau de ventilation hygiénique mécanique (double flux) ou d’un système de climatisation « tout air« .

Souvent, c’est même un système de refroidissement « tout air » qui permettra d’organiser une ventilation intensive mécanique lorsque ce système est utilisé sans recyclage, récupération de chaleur ou traitement de l’air.

Cependant, vu l’importance des débits d’air à mettre en œuvre, le concepteur sera particulièrement attentif à limiter les pertes de charges du réseau, par un dimensionnement généreux des conduites, et la limitation des pertes de charges ponctuelles (filtres, groupes, organes divers). Le choix de l’efficacité énergétique du ventilateur sera également déterminant.

Oui mais… surdimensionner un réseau de ventilation mécanique, ce n’est pas un refroidissement gratuit, puisque la consommation électrique des ventilateurs est proportionnelle au débit : brasser plus d’air coute plus cher. En effet :

Consél = (qv / 3 600) x Δp x t / ηvent

où,

  • Consél = consommation énergétique du transport de l’air [Wh/an]
  • qv = débit d’air [m³/h]
  • 3 600 = 3 600 secondes par heure [s/h]
  • Δp = perte de charge (pulsion + extraction) [pa]
  • t = durée de fonctionnement [h/an]
  • ηvent = rendement total du système de ventilation (moyenne entre pulsion et extraction).

En fait, on peut obtenir un refroidissement gratuit si le coût du grand déplacement d’air en été est compensé par une réduction de ce coût en hiver. Cette réduction est possible grâce à la modulation du débit. En période de chauffe, seul le débit hygiénique est nécessaire, et non plus la pleine capacité de l’installation. Or, une réduction du débit dans un réseau donné entraîné une réduction proportionnellement plus importante des pertes de charges. Débit d’air et perte de charge sont en effet liés par une relation de type :

p1 / p2 = (n1 / n2)² = (q1 / q2

où,

  • q = débit volume (m³/h)
  • n = vitesse de rotation (tr/min)
  • p = gain de pression (Pa)

Faire une économie sur les ventilateurs en hiver n’est possible que si le réseau de ventilation est dimensionné sur les débit d’air « maximal » souhaité en free cooling, et non sur le débit hygiénique. Mettre en œuvre une ventilation intensive mécanique ‘URE’, ce n’est donc pas forcer un grand débit d’air en augmentant la vitesse au-delà des plages de fonctionnement ‘normales’.

Illustrons cela par un exemple : Soit un immeuble de bureaux de 5000m² demandant 10000 m³/h de ventilation hygiénique.

Scénario 1 : un réseau de ventilation dimensionné sur base des besoins hygiéniques présente une perte de charge globale de 900 Pa. Il fonctionne 12 h/jour, 5 jours par semaines, 52 semaines par an, soit 3 120 heures. Si le rendement du ventilateur est de 60 %, la consommation électrique sera :

Consél = (10 000 / 3 600) x 900 x 3 120 / 0.6 =13 000 kWh ou 2.6 kWh/m²

Scénario 2 : Le réseau est dimensionné pour pouvoir assurer le double du débit d’air hygiénique avec une perte de charge inchangée de 900 Pa. Il s’agit bien d’un surdimensionnement, et non du forçage d’un réseau de moindre capacité. Lorsqu’il ne fournit que l’air hygiénique (soit 50% de sa capacité), la perte de charge est réduite à 50%^2=25% de sa valeur nominale, soit 225 Pa. En supposant que, sur les 3120 heures de fonctionnement, le groupe fonctionne X heures en mode hygiénique est 3120-X heures en mode « free cooling », la consommation d’électricité totale sur l’année sera :

Consél = (10 000 / 3 600) x 225 x X / 0.6 +(20 000 / 3 600) x 900 x (3 120-X) / 0.6

Consél = 650 kW implique que X=1 783 heures

Dans cet exemple, le dédoublement de la capacité du réseau de ventilation pour un même niveau de perte de charge permet de libérer 3120-1783=1337 heures sur l’année de free cooling réellement gratuit.

En fait, le pourcentage du temps où le free cooling est gratuit dépend uniquement du facteur de surdimensionnement entre le débit hygiénique et le débit de conception du réseau de ventilation :

Dans cette figure, le % temps FC est la fraction maximale du temps d’utilisation qui peut être utilisé en mode free cooling sans induire de surconsommation d’électricité. Le ratio de surventilation est alors le rapport entre la quantité totale d’air pulsé sur l’année et la quantité correspondant au seul débit hygiénique.

Il n’est cependant pas toujours possible de surdimensionner un réseau de ventilation. On peut alors être tenté de forcer le débit, en augmentant la vitesse dans le réseau. Il s’en suit une augmentation de la consommation du ventilateur, qui peut être comparée au coût d’une installation de refroidissement traditionnelle.

Reprenons notre exemple avec le scénario 1 :

Dans ce bâtiment, extraire un kWh avec une machine frigorifique d’une efficacité EER de 3 aurait coûté :

Consomachine frigo= 1/3 = 0.33 kWhelec = 333 Wh

Dans ce réseau, brasser de l’air au débit hygiénique nous coûte

Puisél = (1 / 3 600) x 900 x 1 / 0.6 =0.41 W/m³/h

Doubler le débit d’air dans ce réseau fait passer les pertes de charges de 900 Pa à 3 600. Le coût du kWh pulsé dans ces conditions est de

Puisél = (1 / 3 600) x 3 600 x 1 / 0.6 =1.67 W/m3/h

Or, extraire 1 kWh thermique dans un bâtiment à 25°C nécessite au minimum, si l’air extérieur est à 15 °C :

Débit = 1 000 Wh / [0.34 (Wh/m³K) * (25 °C-15 °C)] = 294 m³ d’air

On voit clairement que la surventilation par forçage du débit est, dans ce cas-ci, moins intéressante que le recours à une machine frigorifique, puisqu’il nous coutera au minimum 294 m³*1.67 W/(m³/h) = 490 Wh, là où la machine frigorifique ne demanderait que 333 Wh.

Réglementation

Pour en savoir plus sur la performance énergétique des ventilateurs, norme :  EN13779  sur la ventilation des bâtiments non résidentiels.


Pertes de charge du réseau

La ventilation intensive implique de grands débit d’air. Lorsqu’elle est mécanique, on prévoira souvent entre 1.5 et 3 renouvellements horaires. Pas plus pour limiter les surdimensionnements. Or, la consommation électrique du ventilateur doit rester sous contrôle. Ces deux exigences ne peuvent se combiner que dans des réseaux à  « basse pression ».

Puissance absorbée, débit et rendement du ventilateur sont liés par l’expression :

P [W] = qV [m³/s] * Hm

où :

  • P = puissance absorbée au moteur du ventilateur [W]
  • qV = débit nominal à travers le ventilateur en [m³.s-1]
  • Hm est la hauteur manométrique [Pa]
  • η est le rendement nominal [-]

Théorie

Pour en savoir plus, le rendement d’un système de ventilation

En considérant un rendement moyen du ventilateur de l’ordre de 60%, on peut se donner une perte de charge maximale des réseaux de ventilation :

EN13779  :

Catégorie Puissance spécifique en W/m³.s Perte de charge maximale
SFP 1 < 500 < 300 Pa
SFP 2 500 – 750 300 – 450 Pa
SFP 3 750 – 1 250 450 – 750 Pa
SFP 4 1 250 – 2 000 750 – 1 200 Pa
SFP 5 > 2 000 > 1 200 Pa

Par exemples, la recherche d’une consommation spécifique inférieure à 1 200 W/(m3/s) implique des pertes de charge inférieures à :

Hm/η  < P / qV [W.m-3.s] < 1 200

Hm  < 1 200 * 0.6 = 720 Pa

C’est là une valeur raisonnablement facile à respecter… mais mieux vaut vérifier quand même !

Choisir un système de ventilation intensive (free cooling)

Choisir un système de ventilation intensive (free cooling)

Ventilation intensive mécanique ou naturelle ?

On peut envisager un système de ventilation intensive entièrement mécanique. La consommation électrique des ventilateurs risque cependant de compenser l’économie réaliser sur la machine frigorifique. Sans parler de l’encombrement des conduites. Ce type de système est équivalent à une climatisation « tout air » de type VAV qui valoriserait au maximum l’air extérieur non traité.

Concevoir

Pour plus d’infos techniques sur la conception des systèmes VAV

Selon les situations, les ventilations mécaniques et naturelles présentent chacune des avantages et/ou des inconvénients :

Coût d’investissement

Le free cooling, de jour comme de nuit, nécessite des débits de ventilation relativement importants. L’ installation de ventilation doit donc être dimensionnée pour gérer ces débits (conduits, ventilateurs, bouches, ….).

Si le bâtiment est déjà équipé d’un système de climatisation tout air ou si les débits de ventilation hygiénique sont importants (du fait de l’occupation, dans des salles de conférence, des auditoires, par exemple), un réseau mécanique ne représente peut-être pas un surcoût.

Par contre, lorsque la ventilation hygiénique est limitée, la possibilité d’organiser un free cooling mécanique entraîne un surdimensionnement, donc un surcoût important de l’installation.

Dans le cas d’une ventilation naturelle, si la réalisation d’un réseau de ventilation mécanique important est évitée, l’investissement pour organiser une ventilation naturelle n’est néanmoins pas nul. Des éléments particuliers doivent être prévus pour amener l’air dans le bâtiment sans risque d’effraction (grilles, fenêtres automatisées,…), éventuellement pour lui permettre de circuler (grilles de transfert, portes coupe-feu,…) et pour l’extraire (grilles d’extraction, cheminées,…).

Coût de fonctionnement

En ventilation naturelle, le transport de l’air s’effectue naturellement grâce aux différences de pression et/ou de température de l’air autour du bâtiment. Dans les systèmes de ventilation par effet de cheminée, un ventilateur d’extraction est parfois installé pour pourvoir au transport de l’air dans de mauvaises conditions climatiques. Pratiquement, ces ventilateurs sont peu ou pas utilisés.

En ventilation mécanique, le fonctionnement des ventilateurs pour le transport de l’air nécessite une énergie électrique non négligeable.

Par exemple, une étude réalisée sur un bâtiment du Sud de la France montre que la consommation des ventilateurs actionnés la nuit était similaire à la consommation des groupes frigorifiques en relance au matin en absence de free cooling (ceux-ci bénéficiant de l’efficacité frigorifique qui produit 2 à 3 kWh de froid pour 1 kWh au compresseur…).

Confort

En free cooling diurne naturel, l’amenée d’air frais directement dans les locaux peut se révéler inconfortable. Des solutions peuvent néanmoins être trouvées pour éviter cet inconfort, comme le montrent les trois exemples suivants réalisés dans des bâtiments anglais.

Exemples.

Dans le centre administratif de l’entreprise Powergen, l’air, en hiver, est introduit par les fenêtres hautes, et guidé, grâce à la forme particulière du plafond vers le centre du bâtiment. Le mélange de l’air frais extérieur avec l’air ambiant se fait donc sans inconfort.

Photo centre administratif de l'entreprise Powergen.

Dans le bâtiment environnemental du BRE, l’air de ventilation des bureaux paysagers parcourt des conduits intégrés dans le plafond, à température ambiante, avant de pénétrer le local au niveau du plafond. Il est donc légèrement réchauffé.

Powergen, schéma explicatif.

Powergen, schéma explicatif.

Enfin, dans le Queen’s building de l’Université De Monfort, l’air extérieur est introduit dans les auditoires au travers d’un absorbant acoustique et d’une batterie de préchauffe.

À cela s’ajoute le risque de sous-refroidissement du local et donc d’inconfort le matin, à l’arrivée des occupants, si les amenées d’air ne sont pas automatisées et refermées au cours de la nuit, quand le bâtiment est suffisamment refroidi.

En ventilation mécanique, lorsque l’on souhaite bénéficier de la fraîcheur de l’air extérieur, mais que celui-ci est trop froid pour être pulsé tel quel, il serait paradoxal de recourir à une batterie de chauffe. Une récupération de chaleur sur l’air extrait est alors tout indiquée. Éventuellement, un recyclage partiel de l’air extrait peut être envisagé.


Un ventilateur en renfort du tirage naturel : vers des systèmes hybrides ?

Pour renforcer le tirage lorsqu’il est trop faible ou pour limiter l’encombrement des cheminées de tirage naturel, il est possible d’organiser une pulsion forcée d’air frais extérieur : un extracteur est placé sur le sommet de la cheminée. Ici également, la température intérieure va fluctuer entre 21 et 25°C durant la journée, puisque le bâtiment stocke son froid la nuit et se réchauffe le jour. Mais au moins une garantie est donnée sur la réelle circulation de l’air.

Schéma de fonctionnement de la ventilation hybride dans les classes (École Tanga).


Disposer d’une masse thermique accessible

Le but de la ventilation nocturne est de refroidir la masse thermique du bâtiment durant la nuit et de diminuer ainsi les surchauffes en journée.

Ce sont les matériaux lourds de construction (béton, carrelage, …) qui constituent la principale masse thermique d’un bâtiment. En journée, ceux-ci absorbent les apports instantanés de chaleur (ensoleillement, …). Cette chaleur est restituée ensuite avec un décalage temporel, ce qui atténue fortement les hausses de température diurne dans le bâtiment. On parle d’inertie thermique du bâtiment. Prenons l’exemple d’une voiture. Celle-ci n’a aucune masse thermique. Dès que le soleil luit, la température intérieure monte très vite. À l’inverse, dès que le soleil disparaît, la température intérieure chute.

Évolution dans le temps de l’apport de chaleur dû à l’ensoleillement dans un local
avec ou sans inertie thermique : comparaison entre la chaleur instantanée transmise au travers du vitrage et la chaleur restituée au local.

Le but de la ventilation nocturne est de décharger au maximum, durant la nuit, la chaleur accumulée dans les matériaux du bâtiment et de permettre une forte absorption de chaleur durant la journée.
Pour que ce phénomène d’accumulation / restitution de chaleur soit possible, il faut :

  • D’une part, favoriser l’utilisation de matériaux de construction lourds pour assurer l’accumulation.
  • D’autre part, garantir le contact entre ceux-ci et l’air frais de ventilation pour évacuer la chaleur accumulée.

À défaut de quoi, on ne refroidirait que l’air ambiant du bâtiment, qui se réchaufferait au premier rayon de soleil (comme cela se passe dans une voiture …). Concrètement :

  • Au niveau du sol, le carrelage est préférable à la moquette, au plancher ou au faux plancher qui isolent par rapport à la masse du sol. …). Le passage des réseaux hydrauliques, électriques,informatiques… s’en trouve contrarié.
  • Au niveau des murs, des murs intérieurs en maçonnerie lourde absorbent nettement plus de chaleur que les cloisons légères. Mais des cloisons lourdes peuvent aller à l’encontre de la flexibilité souhaitée par un promoteur immobilier par exemple.
  • Au niveau des plafonds, l’emploi de faux plafonds est déconseillé.

La surface d’absorption manquante au plafond peut être fournie par les portes absorbantes acoustiques des armoires.

Exemple.

Les bureaux du bâtiment environnemental du BRE, par exemple, ne présentent pas de faux plafonds. La surface du plafond a même été augmentée artificiellement en lui donnant une forme sinusoïdale. L’énergie thermique stockée par le plafond est ainsi augmentée.

Phot des plafonds du bâtiment environnemental du BRE.

Cependant, les faux plafonds offrent d’importants avantages (coût par rapport à la finition d’un plafond « lourd », intégration des installations techniques, …) et permettent notamment d’améliorer l’acoustique des locaux. Un compromis peut être trouvé entre la fonctionnalité du faux plafond et la perte de masse thermique qu’il engendre. Il s’agit de plafonds semi-fermés comportant des ouvertures qui assurent un contact entre l’air intérieur et la structure du bâtiment.

Faux plafonds semi-ouverts permettant la circulation de l’air de ventilation.

Dans le centre administratif de l’entreprise Powergen en Angleterre, une autre solution a été utilisée pour assurer le confort acoustique : les « ailes » des éléments techniques suspendus (regroupant luminaires, détecteurs incendies, etc.) sont des absorbants acoustiques. La forme elliptique des creux du plafond focalise les ondes sonores vers ces absorbants.

Théories

Pour plus d’informations sur l’évolution thermique d’un local type sans inertie, cliquez ici !


Gérer la fluctuation inévitable de la température intérieure

Choisir un rafraichissement par ventilation intensive sans appoint d’une machine frigorifique implique inévitablement des fluctuations de température dans le bâtiment.

En été, le bâtiment est un réservoir « tampon », qui est « vidé de sa chaleur » la nuit jusqu’à atteindre 21°C, et dont la température augmente progressivement en journée jusqu’à 25°C. S’il fait plus de 25°C à l’extérieur, l’occupant doit vivre dans son local sans ouvrir la fenêtre, et se baser sur le « capital froid » emmagasiné durant la nuit.

En outre, il ne faut pas sous-refroidir le bâtiment, pour ne pas créer d’inconfort lors de l’arrivée des occupants, le matin. Une régulation automatique du free cooling s’impose si les utilisateurs ne peuvent assurer la gestion manuelle.

Dans tous les cas, les fluctuations de température doivent rester dans les plages de confort tolérées par le maître d’ouvrage. Or, dans un bâtiment se basant sur un système de reoifridissement par ventilation, l’approche du confort n’est pas la même que dans un bâtiment climatisé. La norme NBN EN 15251 donne à ce titre des indications utiles.

Pour en savoir plus :

Théories

Le confort thermique.

Réglementations 

La norme NBN EN 15251.

Comparer le chauffage simple et la climatisation

Comparer le chauffage simple et la climatisation
Il est possible de comparer, pour un bâtiment donné, la consommation et le niveau de confort générés par différents niveaux d’équipements. Nous reprenons ci-dessous un extrait d’un vaste travail de simulation réalisé par l’ISSO aux Pays-Bas (les conditions de climat extérieur sont donc relativement comparables à ceux de nos régions).

Voici les hypothèses de travail :

La simulation porte sur un bureau de 4,1 m de façade sur 5,2 m de profondeur et 2,7 m de hauteur. Les consignes sont de 22°C en hiver et 24°C en été. L’inertie des parois est moyenne (sol en béton, pas de faux plafond, cloisons intérieures légères, soit 59 kg/m²). Les apports internes correspondent à l’éclairage et la présence d’une personne et de son PC par zone de 12 m² (35 W/m²). Le pourcentage de vitrage par rapport à la façade est de 50 %. Les murs extérieurs sont équipés de 8 cm d’isolant. Le bureau simulé est entouré d’autres bureaux dont les consignes sont similaires (pas d’échange avec les bureaux voisins). Des stores extérieurs limitent les apports solaires à 20 % de leur valeur lorsque ceux-ci dépassent 300 W/m². Le taux de renouvellement d’air est de 3/h pour les systèmes 2 et 4, et 4/h pour le système 3. Les pertes de charge du circuit de ventilation sont de 1 600 Pa. Un échangeur de chaleur est placé sur l’air de ventilation et son rendement est estimé à 75 %. Le coût de l’humidification est intégré.

Dans ce cas, en intégrant les rendements de production des équipements, les consommations annuelles sont [en kWh/m²] :

SUD EST OUEST NORD
1 Radiateurs + ventilation naturelle Chauffage : 78
Transport : 1
Inconfort : 370 h
Chauffage : 81
Transport : 1
Inconfort : 400 h
Chauffage : 81
Transport : 1
Inconfort : 450 h
Chauffage : 83
Transport : 1
Inconfort : 310 h
2 Radiateurs + ventilation mécanique double flux Chauffage : 58
Transport : 22
Inconfort : 260 h
Chauffage : 59
Transport : 22
Inconfort : 280 h
Chauffage : 60
Transport : 22
Inconfort : 310 h
Chauffage : 61
Transport : 22
Inconfort : 230 h
3 Radiateurs + ventilation mécanique double flux + rafraîchissement* + free cooling de nuit** Chauffage : 70
Refroidissement : 7
Transport : 30
Inconfort : 25 h
Chauffage : 72
Refroidissement : 7
Transport : 31
Inconfort : 45 h
Chauffage : 73
Refroidissement : 7
Transport : 31
Inconfort : 60 h
Chauffage : 74
Refroidissement : 7
Transport : 30
Inconfort :  20 h
4 Conditionnement d’air
(installation 4 tubes avec éjecto-convecteurs)
Chauffage : 83
Refroidissement : 14
Transport : 29
Inconfort : 0 h
Chauffage : 83
Refroidissement : 13
Transport : 29
Inconfort : 0 h
Chauffage : 83
Refroidissement : 14
Transport : 29
Inconfort : 0 h
Chauffage : 83
Refroidissement : 11
Transport : 29
Inconfort : 0 h

*Par « rafraîchissement » en été, on entend ici une pulsion d’air « rafraîchit » correspondant à 4 renouvellements horaires :

  • refroidit à une température de 18 [°C], lorsque la température extérieure est < 23 [°C]
  • refroidit à une température de (T°ext – 5°), lorsque la température extérieure est > 23 [°C]

**Par « free cooling de nuit », on entend ici une pulsion d’air extérieur de ventilation correspondant à 4 renouvellements horaires, si T°ext < T°int  et si T°int > 20 [°C].

La rubrique « transport » représente l’énergie des circulateurs et ventilateurs.

Par « inconfort », on entend le nombre d’heures durant la période de travail où le PMV (Vote Moyen Prédictif) des occupants serait > 0,5. Autrement dit, le nombre d’heures où l’on peut s’attendre à des plaintes du personnel… On considère que si ce nombre d’heures est inférieur à 100 heures par an, il s’agit d’une gêne temporaire tout à fait acceptable. Au-delà de 200 h/an, des mesures de refroidissement sont nécessaires pour garder un climat intérieur correct.

Les kWh de refroidissement sont ceux demandés au compresseur. Ils intègrent donc le COP de la machine frigorifique. Les besoins de froid du bâtiment seraient plus élevés.

Pour transcrire ceci en coût, on peut adopter les hypothèses suivantes

  • le kWh thermique (chauffage) revient à 6,22 c€, sur base d’un prix du fuel de 0,622 €/litre.
  • le kWh électrique (froid et transport) revient à 16 c€, puisque l’installation fonctionne en journée, 10 h sur 24, uniquement durant les jours ouvrables (251 jours par an)

Le tableau devient [en €/m² ] :

SUD EST OUEST NORD
1 Radiateurs + ventilation naturelle Chauffage : 4,85
Transport : 0,16
Inconfort : 370 h
Chauffage : 5,04
Transport : 0,16
Inconfort : 400 h
Chauffage : 5,04
Transport : 0,16
Inconfort : 450 h
Chauffage : 5,16
Transport : 0,16
Inconfort : 310 h
2 Radiateurs + ventilation mécanique double flux Chauffage : 3,61
Transport : 3,52
Inconfort : 260 h
Chauffage : 3,67
Transport : 3,52
Inconfort : 280 h
Chauffage : 3,73
Transport : 3,52
Inconfort : 310 h
Chauffage : 3,79
Transport : 3,52
Inconfort : 230 h
3 Radiateurs + ventilation mécanique double flux + rafraîchissement* + free cooling de nuit** Chauffage : 4,35
Refroidissement : 1,12
Transport : 4,80
Inconfort : 25 h
Chauffage : 4,48
Refroidissement : 1,12
Transport : 4,80
Inconfort : 45 h
Chauffage : 4,54
Refroidissement : 1,12
Transport : 4,80
Inconfort : 60 h
Chauffage : 4,60
Refroidissement : 1,12
Transport : 4,80
Inconfort :  20 h
4 Conditionnement d’air
(installation 4 tubes avec éjecto-convecteurs)
Chauffage : 5,16
Refroidissement : 2,24
Transport : 4,64
Inconfort : 0 h
Chauffage : 5,16
Refroidissement : 2,08
Transport : 4,64
Inconfort : 0 h
Chauffage : 5,16
Refroidissement : 2,24
Transport : 4,64
Inconfort : 0 h
Chauffage : 5,16
Refroidissement : 1,76
Transport : 4,64
Inconfort : 0 h

Si les coûts sont à présent globalisés et ramenés à une échelle de 100 pour la situation 1 (radiateurs et ventilation naturelle) :

SUD EST OUEST NORD
1 Radiateurs + ventilation naturelle Coût : 100
Inconfort : 370 h/an
Coût : 104
Inconfort : 400 h/an
Coût : 104
Inconfort : 450 h/an
Coût : 105
Inconfort : 310 h/an
2 Radiateurs + ventilation mécanique double flux Coût : 146
Inconfort : 260 h/an
Coût : 144
Inconfort : 280 h/an
Coût : 145
Inconfort : 310 h/an
Coût : 146
Inconfort : 230  h/an
3 Radiateurs + ventilation mécanique double flux + rafraîchissement* + free cooling de nuit** Coût : 205
Inconfort : 25 h/an
Coût : 208
Inconfort : 45 h/an
Coût : 209
Inconfort : 60 h/an
Coût : 210
Inconfort :  20 h/an
4 Conditionnement d’air
(installation 4 tubes avec éjecto-convecteurs)
Coût : 240
Inconfort : 0 h/an
Coût : 237
Inconfort : 0 h/an
Coût : 240
Inconfort : 0 h/an
Coût : 231
Inconfort : 0 h/an

Analyse des résultats

Dans les hypothèses prises pour la simulation, le coût d’exploitation global généré par le système de conditionnement d’air est évalué à 6,5 €/m²/an. Il est 4 fois plus onéreux que le système par simples radiateurs, mais ce dernier n’est plus acceptable dans un bureau aux standards de construction actuels, si des mesures particulières de limitation des charges ne sont pas prises.

Le coût du transport de l’air de ventilation et de climatisation est également un poste majeur dans le bilan financier. Mais les hypothèses de dimensionnement choisies par l’équipe de recherche sont particulièrement défavorables au transport (taux de renouvellement d’air élevé et pertes de charge du réseau élevées) et favorables au bilan thermique (échangeur de chaleur sur l’air extrait pour préchauffer l’air de ventilation en hiver, et stores pour limiter les apports solaires d’été). Il n’empêche que le coût du transport est un poste à ne pas négliger et que le choix du système de climatisation sera déterminant à ce niveau.

Dans d’autres simulations de cette étude, il apparaît que seuls les bâtiments dont la charge interne est limitée à 20 W/m² (ce qui correspond à une situation d’absence d’équipement bureautique), peuvent encore se passer d’un système de refroidissement. C’est le cas du secteur domestique, mais pas du secteur des bureaux…

Concevoir

 Alors … la climatisation des bureaux, un mal nécessaire ?

Binning des LEDs

Binning des LEDs

Lors de la conception d’une lampe et d’un luminaire LED, les différentes unités LED sont prises parmi un lot. Les unités LED d’un même lot peuvent avoir des caractéristiques différentes en termes d’intensité et de couleur. Pour assurer une production de luminaire de mêmes caractéristiques photométriques et de température de couleur, les constructeurs ont mis au point le « binning ».
Le binning est caractérisé par le tri en fonction de critères spécifiques :

  • Tri selon la couleur ;
  • Tri selon le flux lumineux ;
  • Tri selon la tension directe.

Pour un « bin » de couleur déterminée, une qualité de lumière constante est garantie.

Température de couleur corrélée (Correlated Color Temperature : CCT)

Le CCT permet de qualifier une source lumineuse émettant de la lumière blanche comme chaude, neutre ou froide. Comme référence, le CCT se base sur l’émission de couleur du corps noir qui passe par différentes couleurs lorsqu’il est chauffé : du rouge (le plus froid) au bleu (le plus chaud).

Schéma températures de couleurs spécifiques ANSI.

Des températures de couleurs spécifiques ANSI ont été établies par rapport à des variations de couleurs autour de 8 valeurs de référence de CCT, à savoir :

ANSI C78.377A CCT Standard
CCT nominal (K) Variation du CCT (K)
2 700 2 725 + 145
3 000 3 045 + 175
3 500 3 465 + 245
4 000 3 985 + 275
4 500 4 503 + 243
5 000 5 028 + 283
5 700 5 665 + 355
6 500 6 530 + 510

Ellipses de MacAdam

Au-delà de la qualification d’une source comme étant chaude, neutre ou froide (CCT), il est très important pour les fabricants de LED de définir une variation maximale de température de couleur par rapport à une température cible caractérisant un luminaire LED. Cette précaution permet d’éviter de se retrouver dans un même espace avec une série de luminaires émettant une lumière différente.

Pour y arriver, les fabricants se servent des ellipses de MacAdam représentant un contour à l’intérieur duquel la variation des couleurs devient plus ou moins perceptible par l’œil.

% de population qui perçoit une différence.

L’échelle des ellipses de MacAdam est définie par une succession de SDMN (standard deviation of color matching) ou les dispersions  de couleurs :

  • À l’intérieur de l’ellipse 1 SDMC (« tep »), ne sont pas visibles ;
  • Entre les ellipses 2 et 4 SDMC sont légèrement visibles ;
  • Au-delà de l’ellipse, 5 SDMC sont franchement visibles.

Les huit températures de couleur (CCT) définies par ANSI ont, quant à elles, une dispersion de couleurs définies par des « boîtes » entourant l’ellipse 7 SDMC.

D’après ANSI, un lot de puce LED est considéré comme ayant la même température de couleur selon leur appartenance à l’ellipse 4 SDMC.

Types d’isolants : généralités

Types d'isolants : généralités

Un matériau est généralement considéré comme « isolant » lorsque son coefficient de conductivité thermique à l’état sec est inférieur ou égal à 0.07 W/mK.


Les grandes catégories d’isolants

Les isolants synthétiques

On regroupe sous ce nom les isolants tels que les mousses de polyuréthane et de polystyrène. Ces matériaux sont très défavorables. Issus de la chimie du chlore et du pétrole, ils sont produits à partir de matières non renouvelables et selon des procédés énergivores.

Ces isolants contiennent des substances qui appauvrissent la couche d’ozone (comme les HCFC) et libèrent des gaz toxiques et mortels en cas d’incendie. Des substituts aux CFC commencent à être utilisés et on a recours lors de la fabrication à de plus en plus de matériaux recyclés.

Dans cette catégorie, la mousse phénolique semble faire exception. Ces très bonnes caractéristiques thermiques associées à son caractère renouvelable, au faible rejet de polluant au long de sa durée de vie la rendent plus intéressante que les autres isolants synthétiques. Mais ce matériau récent ne possède pas encore réellement de filière de distribution et le retour pratique sur son utilisation et sa mise en œuvre est encore réduite.

Pour en savoir plus sur les isolants synthétiques : cliquez ici !

Les laines minérales

Ces isolants sont issus de matériaux abondants (roches volcaniques et sable) et présents en Europe. Ils sont souvent composés de matériaux recyclés. Tant que la teneur en liant reste inférieure à 5%, leur élimination se fait par mise en décharge comme matériaux inertes ou par recyclage complet (laine de roche). Leur procédé de fabrication est toutefois également très énergivore.

Pour en savoir plus sur les laines minérales.

Les isolants biosourcés

Ces isolants combinent généralement un matériau issu de sources renouvelables (végétaux, cellulose recyclée), et un mode de production peu énergivore.

Remarquons que la matière première est parfois peu abondante, ou disponible uniquement dans certaines régions (ex. liège).

En général, l’élimination des isolants « écologiques » peut se faire sans danger par compostage. Mais cela dépend du mode de fabrication. Par exemple, les isolants à base de chanvre ou de lin contiennent souvent du polyester.

Pour en savoir plus sur les isolants biosourcés.


Les formes d’isolant

Selon leur nature, les matériaux isolants présentent différentes formes, raideurs et résistances à la compression :

Formes Matériaux
Matelas semi-rigide ou souple : La laine de roche, la laine de verre, les fibres traitées organiques (chanvre, …) ou animales (laine, ….) …
Panneaux rigides : La mousse de polyuréthane, de polystyrène expansé ou extrudé, le verre cellulaire, les panneaux organiques (fibre de bois avec liant bitumineux ou caoutchouc, …), le liège …
Les flocons ou granulés : Les granulés de perlite ou de vermiculite, les granulés de polystyrène expansé, les granulés de liège, les flocons de laine minérale insufflés, les flocons de papier recyclé …

Les matériaux composites

Il existe des matériaux composites qui sont constitués de plaques juxtaposées de matériaux différents, isolants ou non.

Ces panneaux combinent les propriétés des matériaux qui les composent : résistance à la compression, imperméabilité à la vapeur, qualités thermiques, comportement au feu, comportement à l’humidité, aspect fini, etc.
Exemples :

Panneaux sandwiches autoportants avec ou sans armature de renforcement.

Panneaux de mousse PUR avec lestage ou surface circulable en béton.

Panneau complexe.

Panneaux complexes comprenant une couche d’isolant collé à une plaque de plâtre enrobé de carton avec interposition éventuelle d’un pare-vapeur entre le plâtre et l’isolant. L’isolant peut être de la mousse de polystyrène expansé ou extrudé, de la mousse de polyuréthanne, de la laine minérale.

Les isolants à pente intégrée

Les mousses synthétiques, le verre cellulaire, la laine de roche existent sous forme de panneaux dont les faces ne sont pas parallèles et forment un système permettant de faire varier l’épaisseur de l’isolant de façon continue. Des panneaux à double pente et des pièces spéciales de noues et d’arêtes sont en général également disponibles.

Isolant à pente intégrée sur une
toiture plate avant pose de l’étanchéité.

Grâce à ce système, il est possible de créer ou d’augmenter la pente de la couverture.

Les fabricants disposent généralement de services qui étudient la toiture et fournissent un plan de pose des isolants à pente intégrée.

Avantages

La réalisation ou la correction de la pente ne nécessite qu’une seule opération.

La charge sur le support est plus faible que s’il est fait usage d’un autre matériau pour réaliser la pente.

Inconvénients

L’épaisseur n’étant pas constante, l’isolation de la toiture plate le sera également. L’isolation devant être suffisante partout, une épaisseur suffisante d’isolant doit être prévue au point bas de la pente.

Pour former les pentes, une quantité importante d’isolant est donc nécessaire avec une conséquence sur le coût. À cela s’ajoutent les coûts liés aux difficultés de fabrication et d’études.


Quel isolant pour quel usage ?

Le tableau suivant présente une partie des choix envisageables pour isoler un bâtiment. Cette liste n’est bien entendue pas exhaustive. La colonne « choix traditionnel » montre ce qui est traditionnellement réalisé. Les deux autres colonnes, montre vers quelles solutions il faut se tourner lorsque l’on veut se rapprocher d’une démarche d’éco-construction.

Choix traditionnel

Choix plus écologique

Choix plus écologique

+

++

Dalle de sol

Polyuréthane

Polystyrène

Laine de roche haute densité

Verre cellulaire.

Argile expansé.

Double mur extérieur

Polyuréthane

Polystyrène

Laine minérale

Laine végétale et animale.

Chaux-chanvre (ossature bois).

Flocons de cellulose (ossature bois).

Toiture à versants

Laine minérale

Laine végétale et animale.

Chaux-chanvre (ossature bois).

Flocons de cellulose (ossature bois).

Toiture plate

Polyuréthane

Polystyrène

Laine minérale

Verre cellulaire.

Argile expansée.

Flocons de cellulose (ossature bois).

Tableau présentant les différentes solutions techniques d’isolation envisagées classiquement.


Caractéristiques principales des différents matériaux isolants

TYPE

Matériau

Masse

Conduct. therm.λi

Perm. à la vapeur µ moyen

Résist. à la compr.

Réact.
au feu

Kg/m³

W/mK

kg/cm²

 Minéral

MW

  Laine de roche

150 à 175

0.045

1.5

0.7 à 1.3 (*)

+

GW

 Laine de verre

13 à 60

0.045

1.5

0.2 (*)

+

CG

 Verre cellulaire

120 à 135

0.055

infini

7 à 16 (**)

+

EPB

 Perlite expansée

170

0.060

5 à 10

3,5 (*)

+

 Synthétique

PUR

 Polyuréthane

30

0.035

100

1.2 (*)

PIR

Polyisocyanurate

30

0.035

50

1.2 (*)

+

PF

Mousse phénolique

40

0.045***

80

1.2 (*)

+

EPS

 Polystyrène expansé

15 à 40

0.045

20 à 150

0.7 à 3.5 (*)

XPS

 Polystyrène extrudé

32 à 45

0.040

225

3 à 7 (*)

 Végétal

ICB

 Liège

100 à 120

0.050

12 à 28

+

Produits minces réfléchissants

PMR

 Multicouche composé de feuilles d’aluminium, mousses plastiques, polyéthylène, …

+ 70

0.050

12 à 28

+

(*) à 10 % de déformation (valeur moyenne)
(**) à la rupture
(***) pour les plaques en mousse résolique à cellules fermées revêtues, cette valeur est ramenée à 0,03 W/(mxK).

Remarques.

  • Les valeurs de λi sont tirées de l’annexe VII de la PEB. Elles correspondent à des matériaux non certifiés. Ces valeurs sont pessimistes.
  • Des valeurs plus favorables peuvent être considérées lorsque le matériau est connu quant à sa nature et certifié. Ces valeurs sont également données dans la NBN B 62-002/A1.
  • Lorsque les matériaux sont connus quant à leur nature, leur nom de marque et leur type et qu’ils sont certifiés, on considère leλi donné dans leurs certificats BENOR, ATG ou documents équivalents. Ces valeurs peuvent être beaucoup plus favorables que les précédentes, comme le montre le graphique ci-dessous.

Conductivité thermique maximale et minimale des isolants fournies par les spécifications techniques européennes de l’EOTA (European Organisation for Technical Approvals), les déclarations volontaires de qualité ATG (Agréments Techniques de l’UBAtc – Union Belge pour l’agrément technique dans la construction) ou les certificats Keymark du CEN (Comité Européen de Normalisation), quels que soient l’application et les autres facteurs d’influence éventuels.

Données

Pour connaitre les valeurs conductivité thermique d’autres matériaux : cliquez ici !


Coût des différents types d’isolant

Les coûts repris ci-dessous sont indicatifs des matériaux que l’on peut trouver facilement en Belgique en 2008. Il s’agit de tarifs moyens annoncés par quelques fournisseurs. En effet, les prix varient en fonction des quantités achetées.

Coût Unité Épaisseur

Polystyrène extrudé

7 à 25 € /m² hTVA 40 à 120 mm

Polystyrène expansé

5 à 15 € /m² hTVA 40 à 120 mm

Polyuréthane

6.5 à 27.5 € /m² hTVA 40 à 120 mm

Laine de verre

5 à 18 € /m² hTVA 40 à 180 mm

Laine de roche

5 à 18 € /m² hTVA 40 à 180 mm

Verre cellulaire

25 à 35 € /m² hTVA 40 à 60 mm

Perlite expansée pure

0.1 à 0.2 € /l hTVA /

Vermiculite expansée pure

0.1 à 0.2 € /l hTVA /

Argile expansé

7 à 12 € /m² hTVA 10 mm

Panneaux fibre de bois

7 à 24 € /m² hTVA 30 à 100 mm

Cellulose en vrac

0.13 € /l hTVA /

Laine de cellulose en vrac

0.25 € /l hTVA /

Laine de cellulose en panneaux

7 à 25 € /m² hTVA 40 à 160 mm

Liège en vrac

0.2 € /m² hTVA /

Liège en panneaux

5 à 12 € /kg hTVA 20 à 80 mm

Liège en rouleaux

5 à 15 € /m² hTVA 2 à 6 mm

Laine de chanvre

5 à 30 € /m² hTVA 5 à 200 mm

Feutre de jute

4.5 € /m² hTVA /

Laine de mouton

0.7 à 1.2 € /kg hTVA /


Impact sur la santé

L’impact des isolants sur la santé est encore difficilement estimable. En effet, si l’effet d’un composé est aujourd’hui connu, l’effet de la combinaison de produits toxiques est plus compliqué à analyser.  De plus pour déterminer les impacts des polluants, il y a toujours lieu de prendre en compte simultanément les trois paramètres suivants :

  • temps d’exposition
  • intensité de la pollution
  • sensibilité de la personne

En ce qui concerne les isolants synthétiques, ils dégagent tout au long de leur durée de vie des produits gazeux dangereux, mais comme ils ne sont pas en contact direct avec l’ambiance, on estime que leur impact est limité. Une chose reste sûre, ils ont le défaut de dégager des fumées très toxiques en cas d’incendie !

Les isolants fibreux ne posent pas non plus de problème une fois qu’ils ont été posés. Mais il faudra être très vigilant lors de leur mise en place, car leur structure fibreuse peut dans certains cas provoquer des problèmes pulmonaires suite à l’inhalation de particules fines. Cela dépendra du type de fibre et leur bio-persistance.  Ils ont le grand avantage d’être peu ou non combustible de par leur nature et leur structure, ou suite à un traitement au sel de bore.

Isolants minéraux

Isolants minéraux

On distingue généralement les laines minérales des isolants minéraux  à proprement dits.


Les laines d’origine minérale

La laine de roche (MW)

Photo laine de roche (MW).Photo laine de roche, détail.

Les fibres de la laine de roche sont obtenues par la fonte de la roche diabase. Elles sont liées à l’aide de résines synthétiques polymérisées pour former des rouleaux et des panneaux. Ceux-ci peuvent présenter différentes rigidités et finitions de surface. La laine de roche a une composition non uniforme (parties infibrées).

La laine de roche est totalement perméable à la vapeur d’eau, mais est non hygroscopique. Elle est non capillaire (n’absorbe pas l’eau). Elle est totalement perméable à l’air. Elle se caractérise par une bonne stabilité thermique, un bon comportement au feu. Elle est fort compressible et résiste mal au délaminage.

Les panneaux de laine de roche destinés aux toitures plates seront de densité importante (ρ= 150 à 175 kg/m³) et de fabrication particulière (sens des fibres) pour garantir une rigidité suffisante, et une résistance suffisante au délaminage. Ces panneaux sont surfacés de voile de verre et/ou de bitume.

La laine de verre (GW)

Photo laine de verre (GW).    Photo laine de verre, détail.

Les fibres de la laine de verre sont obtenues par la fonte de verre et de sable quartzeux. Elles sont traitées par un produit hydrofuge. Elles sont liées à l’aide d’un produit thermodurcissant pour former des rouleaux et des panneaux. Ceux-ci peuvent présenter différentes rigidités et finitions de surface. La laine de verre a une composition uniforme.

Tout comme la laine de roche, la laine de verre est totalement perméable à la vapeur d’eau, mais est non hygroscopique. Elle est non capillaire (n’absorbe pas l’eau). Elle est totalement perméable à l’air. Elle se caractérise par une bonne stabilité thermique, un comportement au feu légèrement moins bon que la laine de roche.

La laine de verre n’est plus utilisée pour les toitures plates à cause de sa faible résistance au délaminage et à la compression.


Les isolants minéraux

Le verre cellulaire (CG)

Photo verre cellulaire (CG).   Photo verre cellulaire, détail.

Le verre cellulaire est une mousse de verre obtenue par expansion de celui-ci lorsqu’il est en fusion. Les cellules ainsi formées contiennent un gaz inerte.

Son procédé de fabrication conduit à la production d’un isolant léger à cellules fermées. Le verre cellulaire est ainsi est complètement étanche à la vapeur d’eau, à l’eau et à l’air. Il se caractérise par une bonne stabilité thermique et un bon comportement au feu. Bien qu’incompressible, ce matériau est relativement fragile et nécessite un support régulier et rigide lorsqu’il est soumis à des contraintes mécaniques.

Disponible en panneaux ou en gros granulés, son seul défaut, en plus de son coût élevé, est d’être produit par des procédés de fabrication très énergivore.

La perlite expansée (EPB)

Photo perlite expansée (EPB).

La perlite expansée est obtenue à partir de pierre volcanique rhyolitique concassée et expansée à une température de +/- 900°C.

La perlite expansée est mélangée à des fibres cellulosiques et à un liant bitumineux pour former des panneaux mais peut aussi être utilisée en vrac.

La perlite expansée se caractérise par une grande résistance à la compression et au poinçonnement, un bon comportement au feu et une résistance limitée au pelage. Elle ne résiste pas à une humidification prolongée.

La vermiculite

Photo vermiculite.
Granule de vermiculite grossi.
(doc. Agroverm).

La vermiculite est produite à partir de mica expansé. Elle est disponible sous forme de granulés ou de panneaux. Comme la perlite, ce matériau peut être déversé en vrac ou être incorporé dans les mortiers, bétons allégés, enduits isolants et dans les blocs de constructions.

L’argile expansée

Elle est vendue en vrac, en panneaux ou incorporée dans des bétons allégés, des blocs de construction préfabriqués.

L’argile expansée présente un excellent classement au feu et offre une bonne résistance à l’humidité.

Photo argile expansée. 

Granules d’argile expansée et Granule d’argile expansée grossie et coupée (doc. TBF).

Gestion et commandes manuelles

Gestion et commandes manuelles


Les interrupteurs

Les interrupteurs constituent les organes de commande les plus simples dans une gestion d’occupation. Leur caractéristique principale est qu’ils restent en l’état ON ou OFF s’ils ne sont pas actionnés par l’occupant. Le changement d’état nécessite l’intervention de l’occupant.

L’occupant allume ou pas l’éclairage en fonction de sa sensibilité personnelle et des conditions d’ambiance du local dans lequel il se trouve. L’acte d’allumer ou d’éteindre est volontaire, ce qui devrait responsabiliser les occupants.

Différentes études ont montré que la responsabilisation de l’occupant est plus liée à l’allumage des luminaires quand il rentre dans un local qu’à leur extinction quand il le quitte. Leur perspective de perdurer dans une installation moderne qui tient compte de la gestion énergétique des consommations d’éclairage ne repose que sur la démarche volontaire d’éteindre les luminaires quand on quitte son boulot.

Schéma principe boutons interrupteurs.

Schéma principe boutons interrupteurs.

Dans les bâtiments tertiaires, on voit tout de suite la limite des interrupteurs si les occupants sont peu ou pas responsables.

On retrouve différents types d’interrupteur suivant la configuration du local : les interrupteurs simples et 2 directions existent toujours sur le marché.


Les boutons poussoir

Les boutons poussoirs, contrairement aux interrupteurs, n’ont qu’un seul état au repos : soit ON, soit OFF suivant leur type. Ils ne servent, par une simple impulsion, qu’à changer l’état d’un équipement intermédiaire de commande des luminaires comme, par exemple, les télérupteurs, les relais, les entrées digitales des automates (DI : Digital Input), …

Cette caractéristique leur permet aussi de pouvoir être couplés avec une détection d’occupation automatique.

L’idée est de combiner :

  • un allumage volontaire de l’éclairage à l’entrée de l’occupant dans son local ;
  • et une extinction manuelle ou automatique du même éclairage par détection d’absence lorsque l’occupant quitte son local (possibilité de temporisation).

Schéma principe boutons poussoir.


Les gradateurs ou « dimmer »

L’idée du contrôle du flux lumineux  est d’adapter la luminance ou, de manière plus pratique, le niveau d’éclairement du luminaire en fonction du besoin réel de « lux » dans un local. En effet, lorsque le local considéré bénéficie d’un appoint en éclairage naturel conséquent, par exemple, ou bien lorsque l’on souhaite projeter une présentation dans une salle de réunion, le maintien d’un flux lumineux à 100 %, d’une part, peut devenir une source d’inconfort visuel et, d’autre part, source de consommations énergétiques inutiles.

Schéma principe gradateurs ou "dimmer".

Grâce aux « dimmers », la tension d’alimentation peut-être réglée de 0 à 100 % en 230 V par exemple. La technique du contrôle manuel fait appel à la bonne volonté des occupants et nécessite une bonne dose de patience sachant que le climat de notre chère Belgique est très changeant, ce qui limite sérieusement son utilisation dans le contrôle du flux lumineux en fonction de la lumière naturelle de plusieurs luminaires. Il sera donc principalement utilisé dans les locaux où plusieurs tâches nécessitant des niveaux d’éclairement différents sont réalisées (salle de réunion et projection par exemple).

Variateurs de lumière (ou « dimmer »).

Techniques

 Pour en savoir plus sur les possibilités de gestion en fonction de l’apport en éclairage naturel.

Un problème d’inconfort thermique ou lumineux ? N’hésitez pas à tester notre nouvel outil de diagnostic afin de trouver la solution à votre problématique.

Gérer la ventilation des cabines et des gaines d’ascenseur

Gérer la ventilation des cabines et des gaines d’ascenseur


Niveau de ventilation à prévoir

Les cabines d’ascenseurs doivent garantir un apport d’air frais aux utilisateurs. Le seul moyen d’amener l’air hygiénique dans la cabine est de ventiler la gaine d’ascenseur. Les débits d’air sont difficiles à maîtriser sachant que les portes palières ne sont pas étanches, que l’effet cheminée est présent, que les déplacements de la cabine des ascenseurs circulant à une vitesse > 2 m/s perturbent l’aéraulique de la gaine… La seule chose qui soit certaine, c’est l’existence de déperditions thermiques, non négligeables, dues à cette ventilation hygiénique.

La ventilation, considérée comme hygiénique, est propre au volume occupé par les ascenseurs et ses locaux annexes, et ne doit pas servir à la ventilation des autres volumes. Pour assurer cette ventilation, la norme suggère de prévoir des orifices de ventilation pour la cabine, pour la gaine et pour le local des machines.

Cabine d’ascenseur

La directive ascenseurs 95/16/CE exige ceci : « Les cabines doivent être conçues et construites pour assurer une aération suffisante aux passagers, même en cas d’arrêt prolongé. » Annexe 1 chapitre 4.7).

Pour les cabines d’ascenseurs, les normes NBN EN 81-1 et 2 prévoient des orifices de ventilation équivalant à 1 % de la surface horizontale de la cabine (ventilation haute et basse).
Les interstices au niveau des portes de la cabine peuvent entrer, à concurrence de moitié, dans la surface de ventilation recommandée. Cette ventilation hygiénique ne doit pas nuire non plus au confort des utilisateurs dans la cabine sous forme de courant d’air, de différence de pression acoustique et/ou de bruit.

Gaine d’ascenseur

En ce qui concerne les gaines d’ascenseur, la norme NBN EN 81-1 recommande d’aménager en partie haute de la gaine des orifices de ventilation d’une surface minimale de 1 % de la section horizontale de la gaine.

La réglementation nationale en matière d’incendie est complémentaire et différencie deux cas pour la ventilation de la gaine :

  1. Si le compartiment ascenseur est doté d’une salle des machines, la section des orifices de ventilation est équivalente à 1 % de la surface horizontale de la gaine.
  2. Par contre, s’il n’y a pas de salle des machines (système « gearless« , par exemple), la section des orifices devient équivalente à 4 % de la surface horizontale de la gaine.

Les gaines d’ascenseur sont en général ventilées de manière naturelle. Par contre, les ascenseurs à gaines extérieures bénéficient d’une ventilation renforcée. En effet, ce sont souvent des ascenseurs panoramiques entièrement vitrés qui nécessitent, en été, d’être ventilés efficacement afin d’éviter les surchauffes (attention à la la consommation électrique des ventilateurs !).

Local des machines

En ce qui concerne la ventilation des salles des machines, elles doivent être ventilées convenablement afin que le moteur, l’appareillage ainsi que le câblage électrique, etc. soient aussi raisonnablement que possible à l’abri des poussières, des vapeurs nuisibles et de l’humidité.

Qu’elle soit au-dessus ou en-dessous de la gaine d’ascenseur, la motorisation constitue un apport interne de chaleur non négligeable.

Sur base des données d’un constructeur, le tableau ci-dessous donne une idée des déperditions de différents types de motorisation :

Type de motorisation Déperditions calorifiques [kW]
Hydraulique

4,5

Traction classique

3

Gearless + variateur de vitesse

1

Pour éviter la surchauffe dans la salle des machines, les apports internes doivent être évacués soit par la ventilation naturelle créée dans la gaine d’ascenseur et la salle des machines, soit par des extracteurs mécaniques. L’extraction forcée des apports internes vers l’extérieur constitue une perte thermique non-négligeable.

Exemple

Soit une salle des machines dont les dimensions sont de l’ordre de 15 [m²] au sol x 3 [m] de hauteur et équipée de 3 motorisations à traction pour des ascenseurs aux caractéristiques suivantes :

  • 630 kg,
  • 3 [kW] de déperditions thermiques.

En outre, on suppose que :

  • La température dans la gaine est en moyenne à 20 °C tout au long de l’année (la gaine est dans le volume chauffé) ;
  • La température de la salle des machines ne peut pas dépasser 27 °C (bon fonctionnement de l’électronique de régulation).
  • La capacité thermique volumique de l’air ρ c = 0,34 [Wh/m³K].

On calcule de manière simplifiée le débit qv nécessaire d’extraction pour maintenir la température de la salle des machines à 27 °C.

Soit :

qv [m³/h] = apports internes [W] / (0,34 [Wh/m³.K] x Δ t [K])

qv = 3 x 3 000 / (0,34 x (27 – 20))

qv  = 3 780 [m³/h]

ouverture d'une nouvelle fenêtre ! Suisse énergie a montré que, pour une configuration moyenne d’ascenseur, le débit de ventilation naturelle pouvait être évalué à 600 [m³/h].

En supposant que les configurations soient semblables, pour 3 ascenseurs identiques, on a 3 x 600 [m³/h] = 1 800 [m³/h] de ventilation naturelle vers le haut; ce qui signifie que le débit naturel n’est pas suffisant pour évacuer les calories produites par les apports des moteurs et qu’il faudra par moment faire appel à une ventilation mécanique (extracteur).


Contrôler le débit de ventilation de la gaine

Comme le montre une étude faite par ouverture d'une nouvelle fenêtre !Suisse énergie (mise en évidence des débits de ventilation dans les gaines d’ascenseur), le débit de ventilation d’une cage d’ascenseur de 12 [m] de haut d’un bâtiment de 4 étages, équipée de grilles de ventilation haute et basse de 1 225 [cm²] chacune, et dont les températures externes et internes étaient respectivement de 6 et 20 [°C], avoisinait les 600 [m³/h]; ce qui n’est pas négligeable. Toutefois, il est difficile d’évaluer les débits réels sachant que dans le projet :

  • l’orifice d’ouverture dans le pied de gaine d’ascenseur ne sera pas prévu,
  • les fuites au niveau des portes palières seront incontrôlables.

Évaluer

Pour en savoir plus sur l’estimation des débits de ventilation dans les gaines d’ascenseur.

Néanmoins,  ces pertes peuvent être considérablement réduites en contrôlant le débit d’extraction naturelle au sommet de la gaine.

Pour ce faire, depuis septembre 2012, la législation belge (par l’Arrêté royal du 21 septembre 2012) reconnait une solution qui consiste à munir l’ouverture de ventilation de clapets motorisés gérés intelligemment.  Ceux-ci s’ouvrent automatiquement en cas :

  • de besoin de ventilation (lorsque les occupants utilisent l’ascenseur) ;
  • d’incendie ;
  • de défaillance de la source d’énergie.

Ils sont généralement aussi asservis à un thermostat d’ambiance pour réguler la température dans la gaine (et ce, notamment, afin de garantir le bon fonctionnement des dispositifs de commande et de régulation des ascenseurs (à voir avec le constructeur au niveau des températures de commande)). Une ouverture manuelle doit de plus être prévue pour le service d’incendie.

Il faudra de plus tenir compte :

  • des prescriptions en matière d’incendie (clapet coupe-feu) ;
  • des risques de condensation par le placement d’un calorifugeage au niveau des volets ;
  • des contraintes d’étanchéité à l’air à garantir (clapet étanche à l’air en position fermée).

Codes flux [éclairage]

Codes flux [éclairage]

 

Les codes flux représentent l’image de la distribution lumineuse d’un luminaire.  Ils caractérisent le flux lumineux pour des angles solides matérialisés dans des cônes centrés sur l’axe principal du luminaire et d’angles d’ouverture α spécifiques.

Angles définissant les codes flux.

Les principaux codes flux sont :

  • FC1, FC2, FC3, FC4 et F pour les angles solides de π/2, π, ¾ π, 2 π et 4 π. Cela correspond aux angles  α de 41,4°, 60°, 75,5°, 90° et 180° respectivement ;
  • FC4, le flux lumineux émis dans l’angle solide 2 π ou l’ensemble du flux lumineux émis vers le bas ;
  • F, le flux lumineux émis dans l’angle solide 4 π ou le flux lumineux total émis par le luminaire ;
  • PHIS, le flux lumineux total issu de l’ensemble des lampes du luminaire.

Diagramme polaire.

Angles Correspondance des angles
Angle du cône 41, 4 ° 60° 75,5° 90° 180°
Angle solide ω /2 ¾ 2 4

 Codes flux CIE.

Exemple

Luminaire à
éclairage direct

Luminaire à
éclairage mixte direct

Données photométriques
Lumen [lm] Lumen [lm]
FC 1 2 535 FC 1 1 733
FC 2 3 730 FC 2 2 292
FC 3 3 755 FC 3 2 305
FC 4 3 760 FC 4 2 309
F 3 760 F 3 870
PHIS 5 000 PHIS 4 300
Code flux CIE
N 1 FC 1 / FC 4 0,67 N 1 FC 1 / FC 4 0,75
N 2 FC 2 / FC 4 0,99 N 2 FC 2 / FC 4 0,99
N 3 FC 3 / FC 4 1,00 N 3 FC 3 / FC 4 1,00
N 4  FC 4 / F 1,00 N 4 FC 4 / F 0,60
N 5 F / PHIS 0,75 N 5 N 5 0,90

 Remarques
Les données N2, N4 et N5 sont les données à introduire dans le logiciel PEB :

  • N2 représente la composante intensive du flux lumineux ;
  • N4 représente la composante directe du flux lumineux.

N5 représente le rapport entre le flux lumineux total F émis par le luminaire et le flux lumineux émis par toutes les lampes du luminaire, soit l’image du rendement du luminaire.

  • le flux lumineux émis vers le bas (FC 4 = 3 760 lm) est identique au flux lumineux total émis par le luminaire (F = 3 760 lm), ce qui est logique pour un luminaire à éclairage direct ;
  • N 5 = 75 %.
  • le flux lumineux total émis par le luminaire (F = 3 870 lm) est supérieur au flux lumineux émis vers le bas (FC 4 = 2 309 lm) ;
  • N 5 = 90 %.

Réduire les apports de chaleur dus à l’éclairage

Réduire les apports de chaleur dus à l'éclairage

L’entièreté de l’énergie électrique consommée par l’éclairage artificiel est dissipée sous forme de chaleur dans l’ambiance intérieure, par rayonnement, convection ou conduction. De plus, dans les bâtiments thermiquement performants, les lampes qui émettent beaucoup d’infrarouge (IR), indépendamment des surconsommations électriques qu’elles engendrent, participent souvent aux risques de surchauffe.

Calculs

Pour établir le bilan thermique d’un local et évaluer l’impact de l’éclairage sur la surchauffe.


La puissance installée

La puissance calorifique dégagée par l’éclairage équivaut à la puissance des lampes installées. Pour les lampes fluorescentes, il faudra également tenir compte des pertes des ballasts qui varient de 10 à 20 % de la puissance de la lampe.

Schéma puissance installée.


Le type de lampe

Toute l’énergie consommée par les lampes est transformée en chaleur par :

  • conduction (« par les solides »),
  • convection (« par les gaz, les liquides »),
  • rayonnement (lumière et autres radiations, infrarouge en particulier).

En fonction de la famille de lampes considérée, la répartition de ces divers apports sera différente. Il est essentiel de tenir compte de cette répartition pour éviter des élévations de température trop importantes.

Deux caractéristiques permettent de choisir correctement le type de lampe à utiliser :

  • le rendement des lampes : fraction de la quantité d’énergie transformée en lumière. Augmenté l’efficacité du système permet de limiter la puissance installée, et donc les apports de chaleurs.
  • la composition du spectre d’émission : on choisira des lampes dont le spectre comporte une faible proportion d’énergie thermique infrarouge par rapport à la fraction utile d’énergie lumineuse.

Pour éviter un apport calorifique trop important, on réalisera le système d’éclairage à partir de  tubes fluorescents.

Lampes à incandescence

Ces lampes émettent un rayonnement infrarouge important (de l’ordre de 75 % de la puissance de la lampe). Comme les infrarouges et les rayons lumineux se réfléchissent en même temps, les lampes à réflecteur et les projecteurs intensifs vont provoquer des élévations de température très importantes dans l’axe du faisceau.

Les lampes à rayonnement dirigé dites à « faisceau froid » ou dichroïque » limitent le rayonnement infrarouge direct. Le miroir de ces lampes conçu pour réfléchir la lumière, est transparent pour les radiations infrarouges indésirables. Lorsque l’on utilise ce genre de lampe, il faut s’assurer que le luminaire utilisé est susceptible de les recevoir car, sans précaution, elles provoquent un échauffement supplémentaire de la douille, du câblage et de la partie arrière du luminaire.

Le dégagement de rayonnement infrarouge de ce type de lampe en fait une source lumineuse peu efficace et justifie son retrait progressif du marché.

Lampes fluorescentes et lampes à décharge (haute pression)

Ces lampes émettent une très faible proportion de rayons infrarouges courts. Par contre, les tubes à décharge des halogénures métalliques et des sodiums haute pression émettent une quantité importante d’infrarouge moyen. En ce qui concerne les lampes fluorescentes, on ne fera attention qu’aux niveaux d’éclairement très élevés qui sont les seuls à produire un effet thermique direct perceptible.

Si l’effet calorifique du rayonnement de ces lampes est relativement faible, la transformation en chaleur de l’énergie électrique consommée (lampe et ballast)  ne doit pas être sous-estimée. L’élévation de la température des parois du luminaire vont transformer celui-ci en émetteur d’infrarouges longs susceptibles d’influencer la distribution thermique du local et/ou du meuble frigorifique.

LED

Les LED ne génèrent pas ou peu de rayonnement infrarouge (IR) ou ultraviolet (UV) dans le flux lumineux. Il est clair qu’elles génèrent de la chaleur, mais plutôt vers l’arrière de la lampe LED, ce qui facilite l’extraction. De ce fait, elles sont très intéressantes dans les musées ou dans les magasins de denrées alimentaires où des températures basses sont nécessaires.

Schéma chaleur dégagée par les LED.

Bilan énergétique de quelques lampes

Le tableau suivant donne les bilans énergétiques de quelques types de lampes.

Bilans énergétiques de quelques lampes (d’après C. Meyer et H. Nienhuis)

Type de lampe

Conduction et convection [%]

Rayonnement [%]

Rayonnement lumineux [%]

Puissance à installer par 100 lm [W]

UV

IR

Incandescentes 100 W

15

75

10

10

Fluorescentes rectilignes

71.5

0.5

(1)

28

1.4

Fluorescente compactes

80

0.5

(1)

19.5

1.8

Halogénures métalliques

50

1.5

24.5

24

1.3

Sodium haute pression

44

25

31

1

(1) Dans le cas de lampes fluorescentes dont la surface développée est importante, on pourrait séparer le rayonnement infrarouge (long). Pour les lampes fluocompactes cette distinction est inutile.

Exemple.

Par exemple si 2500 lm doivent être fournis, les bilans énergétiques des différentes installations deviennent :

Type de lampe

Conduction et convection [W]

Rayonnement [W]

Rayonnement lumineux [W]

UV

IR

Incandescentes 100 W

37.5

187.5

25

Fluorescentes rectilignes

25.025

0.
175

(1)

9.8

Fluorescente compactes

36

0.225

(1)

8.775

Halogénures métalliques

16.25

0.487

7.962

7.8

Sodium haute pression

12.1

6.875

8.525

(1) Dans le cas de lampes fluorescentes dont la surface développée est importante, on pourrait séparer le rayonnement infrarouge (long). Pour les lampes fluocompactes cette distinction est inutile.

Cet exemple montre bien l’intérêt d’utiliser des lampes à décharge. Leur faible coût d’achat, leur longue durée de vie, leur bon indice de rendu des couleurs font des lampes fluorescentes le choix le plus adapté.


Influence de l’inertie du local

Schéma influence de l'inertie du local.

L’inertie thermique du local permettra d’accumuler une partie de la chaleur instantanée dégagée par les luminaires. Cet impact est cependant faible (environ 10 % de réduction pour un local à forte inertie) et se fera principalement ressentir pour les lampes à incandescence (90 % de leur chaleur est dissipée par rayonnement).


Influence du type de plafond

Schéma influence du type de plafond - 01.

Des hauteurs sous plafond importantes diminuent également l’impact des luminaires grâce à la stratification des températures dans le local (l’air chaud s’accumule en dehors de la zone d’activité). Ce phénomène se fait principalement ressentir (jusqu’à 20 % de réduction) pour les lampes fluorescentes (60 % de leur chaleur est dissipée par convection) et lorsqu’une extraction d’air est organisée en plafond.

Schéma influence du type de plafond - 02.

Un phénomène semblable se fait ressentir lorsque les luminaires sont encastrés dans des faux plafonds servant de plénum de reprise pour la ventilation. Une partie de la chaleur émise est alors évacuée avant qu’elle puisse contribuer à la surchauffe du local.

Un problème d’inconfort thermique ou lumineux ? N’hésitez pas à tester notre nouvel outil de diagnostic afin de trouver la solution à votre problématique.

Choisir la gestion et la commande

Critères de choix

Au niveau énergétique, un projet de conception ou de rénovation importante de l’éclairage doit tenir compte :

  • De la sensibilisation à l’URE et de l’ergonomie ;
  • Du profil d’occupation des locaux et de l’évolution possible de ce profil au cours du temps ;
  • De l’apport de lumière naturelle ;
  • De la performance thermique de l’enveloppe du bâtiment et de lier le confort visuel au confort thermique ;
  • De la taille du ou des bâtiments constituant le parc immobilier. ;

Quels que soient les critères de choix du système,  sa configuration de base ne change pas. On a toujours besoin :

  • De câble d’alimentation ;
  • De luminaires ;
  • D’organes d’allumage et d’extinction des luminaires ;
  • D’organes de gestion.

Le développement de l’électronique et l’apparition de « l’immotique » dans les bâtiments tertiaires a permis de repenser la gestion des systèmes d’éclairage en tenant compte, à confort visuel optimal,  de l’énergie. L’acceptation de l’immotique par les occupants des locaux est souvent délicate sachant qu’en général, ils sont d’une part réfractaires au changement et d’autre part ils n’ont plus nécessairement la maîtrise du système.

Un système d’éclairage performant tenant compte de l’occupation et de la lumière naturelle permet de réduire sensiblement les consommations électriques. C’est d’autant plus vrai dans la conception de bâtiment à basse voire très basse énergie, car la part de consommation énergétique que prend l’éclairage devient très importante.


Sensibilité à l’URE et ergonomie

Sensibilité

La sensibilisation à l’URE (Utilisation Rationnelle de l’Énergie) et l’ergonomie influencent particulièrement le choix de la gestion de l’éclairage. Lorsque les occupants des locaux ont la « fibre énergétique », la gestion de l’éclairage peut être simple par le choix d’une gestion manuelle classique.

Elle est envisageable dans des espaces privés. Par contre, pour une gestion dans des espaces privés locatifs ou publics, on fera appel à de l’équipement automatique. En effet, dans ce type d’espace, il règne en général un esprit de déresponsabilisation des occupants qui sont « de passage ».

Exemple

Le choix d’une gestion de l’éclairage par un interrupteur à deux allumages pour réaliser un zonage dans un local de taille importante ne devrait pas poser un gros problème.

Ergonomie

Malgré une sensibilité avérée des occupants d’espace, l’ergonomie représente un facteur limitatif  au choix d’une gestion simple.

Exemple

« On connait tous l’inconvénient de gérer un groupe de  luminaires proche de la fenêtre par une gestion de type interrupteur simple. Notre cher climat en Belgique n’épargne pas notre patience ! ».

Lorsque le soleil joue à « cache-cache » avec la couche nuageuse, les variations de niveau d’éclairement voudraient que l’occupant éteigne et rallume les luminaires du côté de la fenêtre pour réduire la facture énergétique. Le gestionnaire risque de devoir dépenser les économies générées au profit des « psy d’entreprise ».

Arbitrage

Mise en garde : « un système de gestion automatique de l’éclairage ne fonctionne que s’il est parfaitement accepté par les occupants. L’imagination de ceux-ci est incroyable quand il s’agit de contrarier un système automatique ! Celui-ci doit donc être soit imperceptible, soit compris et accepté par les occupants ».

On conseille souvent de ne pas pousser trop loin la recherche d’économies au détriment de la liberté des utilisateurs et de la simplicité de la gestion. Dans les locaux de bureau, par exemple, les occupants doivent pouvoir allumer ou éteindre un luminaire, faire varier la puissance émise par un luminaire ou personnaliser leur ambiance de travail. Des solutions existent comme les dérogations manuelles sous forme de télécommande IR (Infrarouge) ou RF (Radio Fréquence).

Ainsi, dans les grands bureaux, il faut dans la mesure du possible donner la possibilité aux occupants de gérer l’éclairage au niveau de leur propre espace de travail.

L’utilisateur pourra être sensibilisé :

  • à la non-utilisation de l’éclairage artificiel général si l’éclairage naturel est suffisant,
  • à extinction de l’éclairage d’un local lorsqu’il quitte celui-ci.

Des exemples de gestions manuelles et automatiques

Exemple 1 : local à occupation brève et variable

Dans des locaux de type privés comme des locaux d’archives, techniques, …, une gestion manuelle  comme un interrupteur simple avec témoin lumineux est la solution. A l’inverse, les locaux comme les sanitaires et WC privés ou public seront équipés d’une détection de présence (avec éventuellement détection sonore) dans le blochet près de la porte.


Gestion manuelle.


Gestion automatique.

Calculs

Pour avoir une idée de la rentabilité d’un tel changement.!
Exemple 2 : local à occupation prolongée et à apport de lumière naturelle

Lorsque les occupants sont sensibilisés, on pourrait envisager un interrupteur à 2 allumages pour allumer/éteindre distinctement la rangée de luminaires côté fenêtre de celle côté couloir. Ceci dit, pour des variations importantes et aléatoires de l’éclairage naturel, une gestion semi-automatique par allumage volontaire à partir d’un bouton-poussoir et extinction par détection d’absence  sera préférée. À noter que la tête de détection intègre une sonde de luminosité.

Attention : s’il s’agit de lampes fluorescentes, il faudra équiper les luminaires de ballasts électroniques dimmables. S’il s’agit de LEDS, il faut prévoir des drivers dimmables.


Gestion manuelle par interrupteur à 2 allumages.

 
Gestion semi-automatique.

Calculs 

Pour avoir une idée de la rentabilité d’un tel changement.
Exemple 3 : locaux à occupation intermittente programmée

Dans les couloirs occupés de jour comme de nuit (couloir d’hospitalisation par exemple), pour les motivés par l’énergie, le placement d’une gestion manuelle comme un inverseur est une solution.

Si l’on veut s’orienter vers une gestion automatique, le placement d’une horloge centrale dans le tableau divisionnaire peut être envisagé.


Commande centrale manuelle (inverseur).


Gestion automatique du basculement de l’éclairage jour/nuit par horloge.


Taille et proportions des locaux

La taille et la proportion d’un local influencent aussi le choix de la gestion de l’éclairage. Dans les locaux de grande taille, le zonage est l’approche énergétique par excellence. En effet, il est avantageux de créer des zones bien distinctes dans :

  • Les salles de  sport de manière à ne pas éclairer les aires de jeux non occupées ;
  • Les couloirs afin d’éviter de l’éclairer sur toute sa longueur lorsqu’un occupant sort, par exemple de son bureau pour aller dans le bureau voisin sans traverser tout le couloir ;
  •  …
Exemple de zonage pour une salle de sport

Dans une salle omnisports, il est inutile d’éclairer toute la salle alors qu’un seul terrain est occupé. Il est important de prévoir un zonage, c’est-à-dire une commande séparée pour les différents terrains de la salle.

Les lignes de jeux s’entremêlent.

   

Il existe donc plusieurs manières de regrouper les luminaires qui seront commandés en une seule fois. On analysera donc chaque cas, en tenant compte de :

  • l’emplacement des lignes de jeux,
  • la fréquence d’occupation des différents terrains,
  • la possibilité d’emplacement des différentes commandes.

Voici un exemple possible de zonage :


Profils d’occupation

Les profils d’occupation des bâtiments tertiaires et de leurs locaux sont assez différents suivant l’usage (bureaux, sanitaires, classes, chambres d’hôpital, …). Le choix de la gestion de l’occupation varie surtout en fonction de la sensibilité des occupants à l’énergie, des coûts du système d’éclairage, …

Il existe sur le marché une multitude d’équipements pour gérer l’occupation des locaux. On pointera principalement :

Le choix entre ces différents équipements de gestion d’occupation est complexe. Indépendamment de la sensibilité des occupants à la gestion responsable de l’éclairage par rapport à l’énergie, ce choix doit s’opérer en fonction des fréquences d’occupation des locaux.

Voici quelques exemples de locaux que l’on rencontre régulièrement dans les bâtiments tertiaires (liste non exhaustive) :

Dans les locaux à temps d’occupation important

D’emblée, on ne conçoit pas qu’un local à temps d’occupation important soit sans baie vitrée.

L’occupation des bureaux, classes de cours, … peut-être avantageusement gérée par des boutons poussoirs d’allumage volontaire des luminaires et des détecteurs d’absence lorsqu’après un certain temps les locaux ne sont plus occupés. Cette gestion est très efficace et responsabilise souvent les occupants. En effet, en entrant dans le local, l’occupant juge si le niveau d’éclairement est  suffisant ou pas pour travailler. S’il le juge insuffisant, il peut donner une impulsion au bouton-poussoir qui allume les luminaires. Les boutons poussoirs modernes sont équipés d’un module électronique qui permet :

  • D’allumer par une première impulsion brève ;
  • D’éteindre par une nouvelle impulsion brève ;
  • A chaque impulsion prolongée, de dimmer vers plus ou moins de flux lumineux.

Dans les locaux à temps d’occupation court

Fréquentation importante : les circulations, …

Le passage fréquent, mais court en temps des locaux de circulation (couloirs, escaliers, local photocopieuse, sanitaire, …)  pourrait être géré par des simples détecteurs de mouvement. Cette technique permet de choisir des luminaires avec le détecteur de mouvement incorporé ce qui réduit fortement les longueurs des câbles d’alimentation  230 V et de commande  basse tension. La gestion de type « ancienne génération » par boutons-poussoirs et minuteries est toujours valable, mais nécessite de grandes longueurs de câbles. Au prix du kg de cuivre, le surcoût de l’électronique de gestion peut se justifier pleinement en faveur des nouvelles technologies. A remarquer que dans les circulations, le choix d’un luminaire supportant de nombreux allumages et extinctions sera primordial. On pense de plus en plus aux luminaires LED qui, théoriquement, supportent un « nombre infini » de commandes.

De plus en plus de sanitaires sont avantageusement équipés de détecteurs de mouvement et sonores. Ce type d’équipement permet de ne placer qu’un seul détecteur dans le sanitaire commun. Dans les WC, le simple fait de générer du bruit (peu importante la « source sonore »), réactive le détecteur qui évite à l’occupant du WC d’être plongé dans le noir avec toutes sortes de conséquences désagréables.

Fréquentation faible : locaux techniques, …

On pense aux locaux techniques, aux archives, aux « kots à balais », … Dans ce type de local, les interrupteurs classiques avec témoins d’allumage feront généralement « l’affaire ».


Apport d’éclairage naturel

Une gestion du flux lumineux en fonction de l’apport en éclairage naturel peut s’appliquer aux locaux éclairés naturellement lorsque le temps d’occupation journalière est important. En effet, lorsque les locaux sont utilisés de façon intermittente ou peu vitrés, le temps de valorisation de l’éclairage naturel se réduit, la rentabilité des systèmes de variation du flux lumineux aussi.

Parmi les systèmes de gestion existants, il faut privilégier ceux qui modifient les caractéristiques de flux lumineux de façon imperceptible pour les occupants, c’est-à-dire le dimming en fonction d’un capteur intérieur.

Cependant, n’excluons pas trop vite la bonne volonté des occupants en prévoyant un double allumage qui différencie la commande des luminaires côté fenêtre et côté intérieur.

Allumage différencié

Simplement, un des interrupteurs commande le luminaire côté fenêtre et l’autre le luminaire côté couloir. Ce système est basique et nécessite une certaine sensibilité à l’énergie des occupants. Dans notre chère Belgique, par temps d’alternance de nuage et de soleil, on comprend la limite de ce type de gestion.

Gestion par sonde de luminosité

À ce stade, le choix peut se porter sur des solutions simples, mais locales ou des solutions plus complexes et centrales (plus coûteuses aussi, c’est vrai !).

On pointera principalement le choix entre les sondes de luminosité intégrées :

  • au luminaire même ;
  • à la tête de détection de présence.

Dans le cas de la sonde de luminosité intégrée à la tête de détection de présence, le « dimming » du niveau d’éclairage des luminaires pourra être local ou central.

Dans le cas de l’usage de sonde de luminosité, il faudra prévoir un système d’horloge ou de détecteur pour éviter que la lumière reste allumée. (Si les lampes sont dimmées, l’occupant risque d’oublier d’éteindre en quittant le local (surtout en été)).

Gestion locale

La gestion locale gère directement les luminaires à partir d’un détecteur d’absence/présence équipé d’une sonde de luminosité par exemple.

Gestion centrale

La gestion centrale gère les luminaires par des modules 0-10V ou DALI (module sur rail DIN dans le tableau divisionnaire) via un bus de communication de type KNX.

 

En fonction des équipements de gestion de l’éclairage naturel, la flexibilité de reconversion des locaux est plus ou moins grande. Il est clair que le choix d’une gestion au travers d’un bus de communication offre plus de liberté d’adaptation de l’éclairage en cas de changement d’affectation des locaux.

Cette réflexion est tout à fait gratuite, mais c’est à voir au cas par cas !

Rentabilité d’un dimming

La rentabilité du système choisi dépendra de plusieurs facteurs décrits ci-dessous :

Orientation et environnement des locaux

Dimensions du local
l x L
Surface de fenêtres
Orientation Économie
Zone fenêtre Zone centrale Moyenne
3,6 x 5,4 6 NO 33 % 18 % 26 %
5,5 x 5,5 12 S et O 36 % 33 % 34 %
4,0 x 5,5 4 O 29 % 22 % 26 %
3,0 x 3,6 2,4 E 30 % 8 % 19 %
3,6 x 5,4 3,3 O 29 % 16 % 22 %
3,6 x 5,0 4,5 O 41 % 19 % 30 %

Identique au cas précédent, mais utilisateurs différent.

43 % 31 % 37 %

Mesures réelles de l’économie apportée par un dimming individuel des luminaires  par rapport à un fonctionnement à pleine puissance avec des ballasts électroniques non dimmables (fourniture de 500 lux sur le plan de travail), source : TNO.

L’environnement extérieur des façades influence fortement la rentabilité. Par exemple, si une façade est masquée par un autre bâtiment (rue étroite), les apports en éclairage naturel dans les premiers étages risquent d’être trop faibles pour justifier une gestion automatique, mais suffisante pour les étages supérieurs.

D’une manière générale une économie de 30 % est un chiffre que l’on peut considérer comme raisonnable pour le dimming complet d’un bureau.

Puissance totale gérée par une unité de commande

Le coût du système de gestion dépend en partie du coût de l’unité de commande (capteur, interface). Plus celui-ci est élevé, plus la puissance électrique totale commandée par un système devra être importante pour assurer une rentabilité suffisante.

Exemple.

Dans le cas d’une gestion indépendante de chaque luminaire, plus la puissance des lampes commandées par un ballast est faible, plus le coût d’investissement est important par rapport à l’économie escomptée : gérer une lampe de 36 W avec 1 ballast coûtera environ 3,25 € par watt commandé, tandis que gérer deux lampes de 58 W avec 1 ballast coûtera environ 1 € par watt.

De la présence d’une climatisation

La diminution de la puissance de l’éclairage en fonction de l’apparition du soleil permet de diminuer les coûts éventuels d’une climatisation ou de limiter les surchauffes.

Calculs

Pour estimer la rentabilité d’un système de gestion en fonction de votre situation.

Performance thermique du bâtiment

Mais que vient faire la performance thermique dans une histoire qui concerne l’éclairage ?
Tout simplement parce que dans un bâtiment performance thermiquement (à basse ou très basse énergie), la gestion de l’apport en éclairage naturel va de pair avec la gestion de la surchauffe au travers des baies vitrées par des stores. En effet, un savant compromis est nécessaire entre :

  • D’une part, le besoin de maximiser les apports de lumière naturelle afin d’optimiser le confort visuel et de réduire la facture énergétique d’électricité ;

 

  • D’autre part, la nécessité de maîtriser les apports solaires sources de surchauffe dans un bâtiment performant. Notons que le risque de surchauffe est intimement et principalement lié à l’orientation des baies vitrées.

Gestion de store

La gestion des stores et du niveau d’éclairement doivent donc être maîtrisés de concert. Pour y parvenir, le choix d’un système centralisé simplifie fortement cette gestion.
Un mode de gestion intéressant des stores est repris ci-dessous :

  • Gestion de la position des stores au travers du bus KNX en fonction des paramètres donnés par la station météo.

 

  • Le bouton-poussoir « store » de dérogation manuelle permet à l’occupant de garder la maîtrise de la position du store.

 

  • Le détecteur d’absence permet de « rendre la main » au système de gestion automatique lorsque l’occupant s’absente pour un temps donné.

Gestion HVAC

Gestion de la ventilation

Dans les bâtiments performants, le besoin d’échange de paramètres de commande ou de régulation entre les systèmes d’éclairage et HVAC (Heating Ventilation Air Conditioning)  est nécessaire.

La détection de présence dans une salle de réunion peut faire évoluer le taux de renouvellement d’air de zéro à 100 % (ON/OFF ou modulant) par la gestion de l’ouverture d’une boîte VAV. Pour ne pas démultiplier le nombre d’équipements de détection de présence, l’auteur de projet pourra rationaliser son choix de détecteur de présence. C’est d’autant plus vrai que les détecteurs de présence modernes offrent les fonctions suivantes :

  • Canal de commande en présence ou absence ainsi que du niveau d’éclairement des luminaires ;
  • Canal de commande en présence ou absence d’équipement HVAC.

Gestion des températures

Une sonde de température peut être couplée avec le bus KNX lorsque le bâtiment est inoccupé afin de gérer le store :

  • Abaissement du store en cas de canicule lorsque les températures intérieure et extérieure dépassent une certaine valeur ;
  • Relèvement du store en cas de grand froid et d’ensoleillement important ; ce qui permet de valoriser les apports solaires lorsque la température interne est en dessous de sa consigne.

Gestion du store en cas de canicule.

Gestion du store en cas d’apports solaires nécessaires importants.


Taille des bâtiments ou importance du parc immobilier

La taille du ou des bâtiments, la présence de plusieurs bâtiments sur un site, … influencera nécessairement le besoin de centralisation ou pas des gestions d’éclairage. On comprend aisément qu’un gestionnaire technique d’un parc important de bâtiments ait un besoin de supervision au travers d’une gestion technique centralisée (GTC). Ce genre d’installation passe impérativement par la mise en place d’un bus de communication.

Pour des bâtiments de petite taille, la centralisation n’est pas une fin en soi. On peut très bien avoir des systèmes d’éclairage performants énergétiquement parlant sans « sophistiquer » le système d’éclairage.
Voyons les deux configurations d’un système d’éclairage :

Système local

Dans les bâtiments de petite taille, envisager une GTC (gestion technique centralisée) n’est pas vraiment nécessaire.

Des solutions de gestion de l’éclairage et des stores (ou même HVAC) peuvent être envisagées avec un certain degré « d’immotisation » tout en restant dans la simplicité. Dans cette configuration, la gestion locale de l’éclairage est propre à chaque local. Dans un bâtiment simple, de petite taille et ne nécessitant pas beaucoup de souplesse d’aménagement des espaces, une gestion sophistiquée n’est pas nécessaire. De plus, la mise en place de ce type de gestion est relativement peu coûteuse.

Un bémol cependant (« eh oui, on ne peut pas gagner sur tous les fronts ! ») réside dans le manque de flexibilité de cette configuration. En effet, lorsque les espaces doivent être transformés (changement d’activité, d’usage, …), il est inévitable que l’installation d’éclairage doive être partiellement ou entièrement recâblée.

Système central

Dans des bâtiments plus complexes, plus grands ou encore dans des parcs immobiliers importants, le gestionnaire aura à disposition toute une palette de centralisation de la gestion de l’éclairage à l’échelle :

  • d’un étage d’immeuble ;
  • du bâtiment ;
  • d’un parc immobilier.

La gestion centrale nécessite à coup sûr de passer par un ou plusieurs de bus de communication avec, par exemple, les protocoles suivants:

  • DALI spécifiquement pour l’éclairage ;
  • KNX pour l’éclairage et /ou  le HVAC ;
  • TCP/IP pour la supervision.

La supervision ou GTC (gestion technique centralisée), permettra d’avoir une vue d’ensemble  de tous les paramètres de gestion de l’éclairage et, par la même occasion des autres systèmes (HVAC ou autres).

« Alors cerise sur le gâteau ou outil indispensable ? »

Ces systèmes sont naturellement plus onéreux que les systèmes locaux et donc l’incidence budgétaire sera étudiée au cas par cas. Cependant, une configuration centralisée, avec une vision énergétique par rapport au profil d’occupation, permet de réduire de manière importante les coûts de maintenance des locaux ainsi que les coûts de transformation (on ne doit pas systématiquement recâbler la gestion puisque le bus de communication est modulable) et, par après, d’adapter facilement la gestion suivant le nouveau profil d’occupation.


Organigramme de gestion

Voici un organigramme d’aide dans le choix de la gestion et de la commande de l’éclairage intérieur. Ces systèmes peuvent être intégrés dans une gestion centralisée, qui par son coût de câblage ne peut être envisagée que dans des bâtiments neufs ou des rénovations de grande ampleur.

1 Exemple : bureau paysager, classe, salle de réunion avec cloison amovible, salle de sport à plusieurs plateaux, … avec fenêtres orientées au nord

MINIMUM Zonage :

  • 1 zone = rangée de luminaires proches de la fenêtre,
  • 1 zone = autres rangées de luminaires,
  • 1 zone = éclairage point particulier (tableau de classe ou de salle de réunion, « table de réunion », …)
MINIMUM Interrupteur manuel on/off pour chaque zone.
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence par zone avec délai réglable.

Il s’avérera peu rentable dans le seul cas d’occupants « disciplinés » éteignant systématiquement les lampes en fin de journée. Cette gestion nécessite que les boutons poussoirs et les détecteurs « se parlent ». Elle peut être locale (l’intelligence est dans la tête de détection) ou centrale (régulateur dans un tableau divisionnaire ou GTC centrale pour les grands bâtiments tertiaires).

CONSEILLE La gestion en fonction de l’éclairage naturel se fera au moyen d’une ou plusieurs sondes de luminosité agissant sur un ou plusieurs ballasts électroniques dimmables (0-10V ou DALI). La ou les sondes de luminosité seront intégrées dans le ou les luminaires ou encore dans la ou les têtes de détection d’absence/présence

2 Exemple : bureau paysager, classe, salle de réunion avec cloison amovible, salle de sport à plusieurs plateaux, … avec autres orientations que les fenêtres au nord

MINIMUM Zonage :

  • 1 zone = rangée de luminaires proches de la fenêtre,
  • 1 zone = autres rangées de luminaires,
  • 1 zone = éclairage point particulier (tableau de classe ou de salle de réunion, « table de réunion », …)
MINIMUM Interrupteur manuel on/off pour chaque zone.
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence par zone avec délai réglable.
CONSEILLE La gestion en fonction de l’éclairage naturel se fera au moyen d’une ou plusieurs sondes de luminosité agissant sur un ou plusieurs ballasts électroniques dimmables (0-10V ou DALI). La ou les sondes de luminosité seront intégrées dans le ou les luminaires ou encore dans la ou les têtes de détection d’absence/présence.

3 Exemple : salle de réunion à cloison amovible et salle de sport sans fenêtre

MINIMUM Zonage : autant de zone qu’il y a d’espaces ou de plateaux distincts identifiables.
MINIMUM Interrupteur manuel on/off pour chaque zone.
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence par zone avec délai réglable.

4 Exemple : locaux techniques, archives, …

MINIMUM Zonage : autant de zone qu’il y a d’espaces ou de plateaux distincts identifiables.
MINIMUM Interrupteur manuel on/off pour chaque zone.
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence par zone avec délai réglable.

5 Exemple : Couloir, cage d’escalier, … avec baie vitrée

MINIMUM Zonage :

  • Par une ou plusieurs portions de couloir ;
  • Par un ou deux étages.
MINIMUM Boutons poussoirs commandant  un télérupteur de tableau avec minuterie d’extinction par zone
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence par zone avec délai réglable.

Alternative 1 :

  • Détecteur de mouvement  par étage pour les escaliers qui commande les luminaires de palier et des demi-étages directement supérieur et inférieur au palier considéré ;
  • Détecteur de mouvement par zone de couloir qui ne commande que les luminaires proches de sa couverture.

Alternative 2 :

  • détecteur de mouvement intégré au luminaire. « D’expérience, c’est une très bonne solution ! ».
CONSEILLE La gestion en fonction de l’éclairage naturel se fera au moyen d’une ou plusieurs sondes de luminosité agissant sur un ou plusieurs ballasts électroniques dimmables (0-10V ou DALI). La ou les sondes de luminosité seront intégrées dans le ou les luminaires ou encore dans une ou des têtes de détection de présence.

6 Exemple : Couloir, cage d’escalier, … sans baie vitrée

MINIMUM Zonage :

  • Par une ou plusieurs portions de couloir ;
  • Par un ou deux étages.
MINIMUM Boutons poussoirs commandant  un télérupteur de tableau avec minuterie d’extinction par zone.
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence par zone avec délai réglable.

Alternative 1 :

  • Détecteur de mouvement  par étage pour les escaliers qui commande les luminaires de palier et des demi-étages directement supérieur et inférieur au palier considéré ;
  • Détecteur de mouvement par zone de couloir qui ne commande que les luminaires proches de sa couverture.

Alternative 2 :

  • détecteur de mouvement intégré au luminaire. « D’expérience, c’est une très bonne solution ! ».

7 Exemple : bureau individuel, petite classe, salle de réunion, salle de sport à un seul plateau, … avec fenêtres orientées au nord

MINIMUM Interrupteur manuel on/off.
CONSEILLE Il sera intéressant de prévoir une gestion :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence avec délai réglable.
CONSEILLE La gestion en fonction de l’éclairage naturel se fera au moyen d’une ou plusieurs sondes de luminosité agissant sur un ou plusieurs ballasts électroniques dimmables (0-10V ou DALI). La ou les sondes de luminosité seront intégrées dans le ou les luminaires ou encore dans la ou les têtes de détection d’absence/présence.

8 Exemple : bureau individuel, classe, salle de réunion, salle de sport à un seul plateau, … avec autres orientations que les fenêtres au nord

MINIMUM Interrupteur manuel on/off.
CONSEILLE Il sera intéressant de prévoir une gestion :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence avec délai réglable.
CONSEILLE La gestion en fonction de l’éclairage naturel se fera au moyen d’une sonde de luminosité agissant sur un ou plusieurs ballasts électroniques dimmables(0-10V ou DALI). La sonde de luminosité sera intégrée dans un des luminaires et sera maître pour la gestion des autres luminaires. Ou encore, elle intégrera la tête de détection d’absence/présence.

9 Exemple : locaux techniques, archives, …

MINIMUM Interrupteur manuel on/off.

10 Exemple : sanitaire et WC

MINIMUM Interrupteur manuel on/off.
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Un détecteur de mouvement et éventuellement sonore avec délai réglable.

Des exemples de commande et gestion pour les classes

Des exemples de commande et gestion pour les classes


Les classes à aménagement fixe

Les classes sont généralement caractérisées par un taux élevé d’éclairage naturel. Il est donc très rare que l’éclairage artificiel doive, à lui seul, assurer l’éclairage d’un espace.

La commande de l’éclairage général d’une salle de classe peut ainsi s’effectuer par zones. Le plus logique est de piloter les lignes de luminaires parallèles aux baies vitrées de manière à pouvoir éteindre la plus proche de la lumière du jour quand la luminosité extérieure le permet.


Les classes à aménagement variable

Dans une classe à aménagement variable, la mise à disposition de plusieurs allumages permet une grande souplesse d’utilisation du local. Dans le cas d’une classe maternelle, par exemple, le zonage peut être fait selon les différentes « régions » de la classe, en créant différentes ambiances : le coin « lecture », le coin « sieste », le coin découverte, le coin bricolage, … Néanmoins, il risque d’être difficile à réaliser si l’implantation même des « coins » est sujette à modifications fréquentes…


Les salles de projection

Le zonage de l’éclairage en fonction des différentes activités est primordial. Il faudra pouvoir régler le niveau d’éclairement en fonction des différents moyens de projection utilisés, soit par l’utilisation de ballasts électroniques HF dimmables (c’est-à-dire permettant un réglage en continu du flux lumineux des lampes), soit par l’emploi de veilleuses commandées séparément. Dans le cas de grands auditoires, cette commande sera placée à proximité de l’orateur.


Le tableau

L’éclairage du tableau doit pouvoir être commandé séparément. En effet, il est très fréquent que l’éclairement dû à la lumière naturelle soit suffisant sur les tables et insuffisant sur le tableau. La consommation de l’éclairage du tableau est suffisamment faible pour qu’il puisse rester allumé pendant une grande partie des heures de cours.

Le bureau du professeur

Pendant le passage de diapositives, un éclairage situé dans le voisinage du bureau de l’enseignant lui permet d’être vu pendant sa présentation et de compulser ses notes. Ceci nécessite une commande séparée pour l’éclairage du bureau du professeur.

En résumé, pour les classes à aménagement fixe

Proposition de commande de l’éclairage pour une salle de classe, à deux portes d’entrée, utilisée le jour et le soir :

Schéma classes à aménagement fixe.

L’interrupteur commandant les rangées de luminaires les plus éloignées des fenêtres doit être mis en évidence, par exemple en étant de couleur rouge. Cela incitera les utilisateurs à d’abord allumer les deux rangées côté couloir, avant d’allumer éventuellement la rangée proche des fenêtres.

Un problème d’inconfort thermique ou lumineux ? N’hésitez pas à tester notre nouvel outil de diagnostic afin de trouver la solution à votre problématique.

Salles de sport

Salles de sport


Qualité de l’éclairage naturel

La qualité de l’éclairage naturel dans un hall de sports réside dans son aptitude à éclairer les surfaces de jeux le plus longtemps possible sans risque d’éblouissement et de surchauffe.

Spécifiquement dans les halls sportifs, il est intéressant d’exploiter la lumière zénithale de par la disponibilité de grandes surfaces peu encombrées par rapport aux façades.

En éclairage naturel zénithal, l’orientation a toute son importance. Par exemple, l’orientation au nord permet de bénéficier d’un éclairage « diffus » très important et constant sous nos latitudes. L’avantage de l’orientation au nord des baies vitrées réside aussi dans l’absence d’éblouissement direct du rayonnement solaire.


Étude en éclairage naturel

Lors de la conception d’un hall de sports, une attention toute particulière doit être apportée à la quantité et à la qualité de lumière du jour apportée aux plateaux sportifs.

À partir de la modélisation d’un hall de sports classique, l’influence de la proportion d’ouvertures en toiture et de l’orientation du bâtiment sur l’éclairage naturel du plateau sportif principal a été évaluée. Cette évaluation a été validée par une simulation dynamique d’éclairage naturel (réalisée à l’aide du logiciel Daysim).

Hypothèses

Lanterneau

L’éclairage naturel est réalisé via une ouverture zénithale située au faîte de la toiture. Cette ouverture consiste en un lanterneau en polycarbonate opalin à triple parois de 32 x 4 m (soit 128 m² de base) orienté le long de l’axe NNE-SSO (244° de décalage par rapport au nord).

Photo lanterneau 01.   Photo lanterneau 02.Photo lanterneau 03.

Ouverture zénithale classique : hall de sport de Grez-Doiceau.

Aucune baie vitrée n’est placée dans les parois verticales de la salle, à l’exception de la surface vitrée communiquant avec la cafétéria en partie supérieure des gradins.

Plateaux de sports

Les caractéristiques des plateaux sportifs sont les suivantes :

  • Dimensions principales de la pièce : 44,66 x 26,70 m
  • Hauteur du faîte de toiture : 12,73 m
  • Surface de calcul : 40 x 20 m (aire de jeu)
  • Aucun masque solaire lointain
  • Horaire d’occupation : de 9 à 23 h
  • Niveau d’éclairement souhaité : 300 lux
  • Transmission lumineuse du lanterneau opalin : 36 %
  • Facteurs de réflexion des parois :
    • Plafond : 60%
    • Murs : 70 % (sauf mur d’escalade : 52 %)
    • Sol (résine de polyuréthane coulée) : 50 %

Variables

Taille de l’ouverture

4 tailles de lanterneau zénithal sont simulées :

⇒ Très petit lanterneau

Proportion d’ouvertures en toiture : 6 %.

⇒ Petit lanterneau

Proportion d’ouvertures en toiture : 10 %.

⇒ Grand lanterneau

Proportion d’ouvertures en toiture : 17 %.

⇒ Très grand lanterneau

Proportion d’ouvertures en toiture : 23 %.

Orientation du bâtiment

8 décalages par rapport au nord sont simulés dynamiquement, de 0 à 360°, par pas de 45°. En effet, le lanterneau n’étant pas centré sur l’aire de jeu (voir image ci-dessous), on ne peut pas considérer qu’un décalage de 45° par rapport au nord donnera les mêmes résultats qu’un décalage de 225°.

Vue en plan du bâtiment décalé de 45° par rapport au nord. La surface de calcul est représentée en bleu.

Analyse des résultats

Les résultats sont évalués sur base d’une comparaison du facteur, de l’autonomie et de l’éclairement utile de lumière du jour.

Proportion d’ouvertures en toiture

Exemple de simulation pour une ouverture équivalent à 6 % de la surface de toiture :

⇒ Facteur lumière du jour

⇒ Autonomie lumière du jour – 300 lux (9h00 à 23h00).

⇒ Autonomie en lumière du jour – 100 < % < 2 000 lux (09h00 à 23h00)

Analyse des résultats

FLJ
(Facteur de Lumière du jour)*

DA
(Autonomie en Lumière du Jour)*

UDI
(Autonomie en lumière du jour utile)*

FLJ > 2 %

DA > 40 %

UDI > 50 %

(*)

  • FLJ moyen considéré comme bon si 3 % < FLJ > 5 %
  • DA moyen considérée comme bon si DA > 50 %
  • UDI moyen considérée comme bon si UDI > 50 %

À la lecture des résultats (voir graphique ci-dessous), on peut remarquer que, pour une même orientation du bâtiment :

  • Plus la proportion d’ouvertures en toiture augmente, plus le facteur de lumière du jour > 2 % augmente. Celui-ci tend cependant vers le maximum (100 %) à partir de 10 % d’ouvertures en toiture.
  • Plus la proportion d’ouvertures en toiture augmente, plus l’autonomie de lumière du jour maximum augmente. Cela signifie également que la consommation en éclairage artificiel diminue lorsqu’on augmente la proportion d’ouvertures.
  • L’éclairement de lumière du jour utile (de 100 à 2 000 lux) est maximal aux alentours de 10 % d’ouvertures en toiture.

Influence de la proportion d’ouvertures en toiture sur l’éclairage naturel du plateau sportif.

Augmenter de façon exagérée la proportion d’ouvertures en toiture n’est donc pas à conseiller, du point de vue de l’éclairage naturel, car ceci peut mener à un éclairement trop important qui augmentera le risque d’éblouissement pour les sportifs ; il faut trouver un juste équilibre entre l’éclairage naturel utile et la réduction des besoins en éclairage artificiel. Dans l’étude de cas qui nous concerne, cet optimum semble se situer aux environs de 10 % d’ouvertures en toiture.

Orientation du bâtiment

Les simulations dynamiques (voir graphique ci-dessous) montrent que, pour une même configuration des ouvertures, l’orientation du bâtiment a une grande influence sur l’éclairement de jour utile et sur l’autonomie de lumière du jour, et donc également sur les consommations en éclairage artificiel. Ces deux valeurs réagissent cependant de manière antinomique à la variation de l’orientation du bâtiment. Une fois de plus, du point de vue de l’éclairage naturel, il faut trouver un optimum entre un éclairement de lumière du jour réellement utile pour les activités sportives qui devront se dérouler sur le plateau et une autonomie de lumière du jour la plus élevée possible.

Influence de l’orientation du bâtiment sur l’éclairage naturel du plateau sportif (via un lanterneau zénithal décentré).

Les conclusions ci-dessus ne prennent en compte que les aspects liés à l’éclairage, mais il ne faut surtout pas oublier que les ouvertures pratiquées dans l’enveloppe du bâtiment sont également source de déperditions thermiques et de surchauffes estivales.

Il convient donc également de simuler le comportement thermique du plateau sportif en fonction de la proportion d’ouvertures en toiture et de l’orientation du bâtiment afin de savoir si l’optimum en termes d’éclairage correspond à l’optimum en termes thermiques.


Analyse thermique dynamique

Pour rappel, les simulations dynamiques en éclairage naturel donnent une idée du confort visuel et des consommations énergétiques en éclairage artificiel.

Des simulations thermiques dynamiques sont souvent nécessaires afin de vérifier que les options prises suite aux simulations dynamiques en éclairage naturel ne vont pas à l’encontre du bilan énergétique global qui associera les consommations électriques  en éclairage artificiel aux consommations dues au chauffage et éventuellement au refroidissement du bâtiment étudié.

Hypothèses

Outre les hypothèses prises lors des simulations en éclairage naturel (horaire d’occupation, orientation de base du bâtiment, volumétrie, …), les hypothèses suivantes sont prises :

  • la température de consigne en période d’occupation est de 17 °C ;
  • Un profil d’occupation classique de salle de sport (apports internes) ;

  • La ventilation est double flux avec récupération de chaleur ;

Variables

Au cours des différentes simulations, on fait varier :

  • tout comme dans les simulations en éclairage naturel, la surface du lanterneau et l’orientation du bâtiment ;
  • le type de vitrage ;
  • la performance de l’enveloppe du bâtiment :
U parois [W/(m².K)]

Type de paroi

Réglementaire Basse énergie Très basse énergie

Mur

Mur contre terre

Sol

Toiture

Vitrage

Lanterneau

0,5

0,9

0,9

0,3

1,1

1,3

0,25

0,25

0,25

0,2

1,1

1,1

0,15

0,15

0,15

0,15

0,7

0,7

Analyse des résultats

Surface de lanterneau

On remarque sur les graphiques ci-dessus que la consommation d’électricité pour l’éclairage artificiel du plateau sportif diminue fortement lorsque la proportion d’ouvertures en toiture varie de 0 à 5 %, puis décroit ensuite lentement au-delà de 5 %.

La consommation de chauffage, quant à elle, augmente de manière constante avec la proportion d’ouvertures tandis que la consommation de refroidissement ne commence à devenir significative qu’au-delà de 20 % d’ouvertures.

En mettant ces résultats en concordance avec les simulations d’éclairage naturel, on peut trouver un optimum commun aux deux simulations aux alentours de 10 % d’ouvertures en toiture. Cette valeur est, bien entendu, propre à l’étude de cas qui nous occupe ici ; il faut seulement retenir qu’il est important, lors de la conception des ouvertures, de prendre en compte les aspects thermiques en parallèle avec les aspects visuels.

Orientation du bâtiment

Le graphique ci-dessous montre que les besoins énergétiques de chauffage sont minimisés lorsque les locaux à température de consigne élevée (tels que les vestiaires) et avec de grandes ouvertures destinées à capter les apports solaires (tels que la cafétéria) sont orientés plein sud. Les besoins énergétiques de refroidissement étant faibles dans le cas des halls de sports, l’impact de l’orientation du bâtiment sur ceux-ci est très peu perceptible.

De plus, le modèle de simulation intégrant un lanterneau zénithal comme seule ouverture dans l’enveloppe extérieure du plateau sportif, l’orientation de celui-ci n’a quasiment aucun impact sur les besoins énergétiques du hall de sports.

En comparant ces résultats avec ceux des simulations d’éclairage naturel, on aperçoit que l’orientation préférentielle de notre modèle en termes thermiques est également celle qui apporte le plus grand éclairement de lumière du jour utile (de 100 à 2 000 lux) pour le plateau sportif.

Ceci constitue un argument supplémentaire en faveur de l’orientation nord-sud pour le hall de sports, avec les vestiaires et la cafétéria au sud et le plateau sportif au nord, malgré le fait que l’autonomie de lumière du jour soit minimale pour le plateau sportif lorsque le bâtiment est orienté de cette manière.

Type de vitrage

Le type de vitrage influence également les besoins en chauffage et en froid.

Dans le modèle considéré, un vitrage clair en toiture donnera plus d’apports solaires, mais risquera d’induire de la surchauffe, contrairement à un vitrage opalin.


Alternative d’éclairage naturel

D’autres configurations existent pour éclairer naturellement le plateau sportif modélisé. Deux sont proposées ci-dessous et sont ensuite comparées avec modèle initial (éclairé par un lanterneau zénithal opalin orienté NNE-SSO).

Configuration

Éclairage bilatéral nord et sud

Caractéristiques :

  • orientation : faîte dans l’axe est-ouest
  • transmission lumineuse du vitrage : 78 %
  • ouverture au nord : 44,66 x 1,79 m (80 m²)
  • ouverture au sud : 44,66 x 0,56 m (25 m²)

Éclairage bilatéral nord et sud

Caractéristiques :

  • transmission lumineuse du vitrage : 78 %
  • ouvertures au nord : 2 x 44,66 x 1,1 m (100 m²)
  • hauteur sous plafond : 8,6 m

Synthèse

Modèle 1

Éclairage zénithal opalin NNE-SSO

Modèle 2

Éclairage bilatéral nord et sud

Modèle 3

Éclairage par sheds au nord

FLJ > 2 %

Éclairement de lumière du jour utile
  • 31 % (100-2000 lx)
  • 27 % (> 2000 lx)
  • 38 % (100-2 000 lx)
  • 17 % (> 2 000 lx)
  • 55 % (100-2 000 lx)
  • 3 % (> 2 000 lx)
Autonomie de lumière du jour min-max
  • 30 à 60 %
  • 27 à 60 %
  • 33 à 56 %
Consommation d’éclairage avec et sans dimming
  • 39,3 MWh (sans dimming)
  • 35,0 MWh (avec dimming en fonction de l’apport en éclairage naturel)
  • 41,1 MWh (sans dimming)
  • 36,3 MWh (avec dimming en fonction de l’apport en éclairage naturel)
  • 40,6 MWh (sans dimming)
  • 35,1 MWh (avec dimming en fonction de l’apport en éclairage naturel)
Avantages
  • Très efficace par ciel couvert
  • Consommation d’éclairage artificiel plus faible (avec ou sans dimming)
  • Facilité d’entretien des vitrages
  • Consommation de chauffage plus faible grâce aux apports solaires
  • Consommations énergétiques cumulées (chaud, froid, éclairage) plus faibles
  • Éclairage naturel uniforme et constant sur l’aire de jeu
  • Aucun risque d’éblouissement des joueurs
  • Bon niveau d’éclairement de lumière du jour utile (de 100 à 2 000 lux)
Inconvénients
  • Aucune vue vers l’extérieur (à cause du polycarbonate opalin)
  • Dysfonctionnement thermique important tout au long de l’année (avec risque de surchauffe).
  • Risque d’éblouissement pour les sports tels que le badminton ou le volley-ball
  • Moins bon éclairement de lumière du jour utile (de 100 à 2 000 lux)
  • Faible facteur de lumière du jour
  • Risque d’éblouissement en l’absence de protections solaires
  • Consommation de chauffage plus élevée car apports solaires inexistants
  • Coût de construction plus élevé

Quantification en éclairage artificiel

Partant du principe que le confort lumineux doit être assuré en présence ou pas d’éclairage naturel, un complément d’éclairage artificiel est nécessaire. Normativement, le dimensionnement de l’éclairage artificiel s’effectue sans les apports de lumière naturelle. La démarche énergétique d’un système d’éclairage artificiel réside donc dans sa capacité à moduler la puissance installée en fonction de l’éclairage naturel. En effet, pour autant qu’il n’y ait pas d’éblouissement, meilleure l’autonomie en lumière du jour sera, moins fort sera le poids des consommations d’éclairage artificiel pour donner le complément de confort nécessaire.

Dans le cas de l’atelier considéré, le choix du type d’éclairage artificiel et surtout du type de luminaire, passe par une étude de type Dialux  permettant de comparer des luminaires entre eux.

Efficacité de l’installation d’éclairage

La salle est éclairée artificiellement au moyen de 4 rangées de 10 plafonniers industriels Zumtobel Copa A-B 1/400W HIT/HST E40 VVG KSP IP65 équipés d’une lampe de 400 W aux iodures métalliques à brûleur quartz. Ces luminaires peuvent également être équipés de lampes à vapeur de sodium haute pression.

Simulation Dialux

La simulation Dialux (logiciel gratuit) permet d’évaluer principalement le niveau d’éclairement moyen, l’uniformité de l’éclairement et l’efficacité énergétique (en W/m²).

Paramètres de simulation

  • Hauteur du point d’éclairage du 1er champ de luminaires: 7,28 m
  • Hauteur du point d’éclairage du 2e champ de luminaires : 8,98 m
  • Facteur d’entretien : 0,85
  • Surface de calcul :
    • Taille : 42 x 22 m (centrée sur le plateau sportif de 40 x 20 m)
    • Trame : 128 x 64 points

Position de la surface de calcul.

Résultats

En fonction du nombre de luminaires, de leurs caractéristiques lumineuses, de leur disposition au dessus des aires de jeux, …, les niveaux d’éclairement sont calculés dans Dialux.

Plan d’implantation des luminaires.

Courbes isolux.

Analyse des résultats

Niveau d’éclairement

Le niveau d’éclairement moyen calculé est de 876 lux (soit 745 lux après dépréciation). Ce niveau d’éclairement correspond au niveau moyen recommandé pour des compétitions nationales et internationales (750 lux). Il aurait pu être dimensionné entre 500 et 600 lux (après dépréciation) dans le cas bien précis de cette salle de compétition moyenne.

Uniformité d’éclairement et absence d’ombres

L’uniformité d’éclairement (Emin/Emoy) calculée est de 0,66. Une valeur supérieure ou égale à 0,7 aurait été préférable pour les compétitions (amateurs ou professionnelles).

Risque d’éblouissement

L’UGR maximum calculé dans les 2 directions du terrain est de 26. Cette valeur est peu représentative pour ce type de salle. En effet, étant donné qu’il s’agit d’un terrain omnisports, l’emplacement idéal et l’orientation des luminaires pour empêcher l’éblouissement par la vue des sources lumineuses sont impossibles.

Qualité de la lumière

Les lampes utilisées (aux iodures métalliques) ont des températures de couleur froides (3 200 à 5 600 K) qui s’équilibrent avec la lumière du jour lorsque l’éclairage artificiel est utilisé parallèlement à celle-ci. Elles ont également un bon indice de rendu des couleurs (65 à 90) qui permettra de bien distinguer les différentes lignes de jeux, à la fois pour les niveaux amateur et professionnel.

Couleur des lignes de jeux

Les tracés de jeu sont très contrastés par rapport au sol. Ceci facilite la perception visuelle (qu’aucun éclairage ne pourrait suppléer).

Efficacité énergétique

Rendement des équipements

Avec une puissance spécifique calculée de 2,73 W/m²/100 lux (20,33 W/m²), l’éclairage installé est performant (< 3 W/m²/100 lux) d’un point de vue énergétique. Ceci est principalement dû à l’utilisation de lampes aux iodures métalliques et de ballasts électroniques.

Qualité des parois

Les parois verticales de la salle sont réalisées en blocs de béton peints avec une couleur claire à l’exception des murs de la réserve de matériel sportif qui sont, quant à aux, peints avec une couleur plus foncée. L’uniformité d’éclairement pourrait éventuellement être améliorée si on les repeignait avec une couleur claire.

  

Gestion de la commande

La commande d’éclairage de cette salle est séparée en 2 zones mal réparties :

  • Zone 1 : 8 luminaires dans les 4 coins ;
  • Zone 2 : les 32 luminaires restant.

Il serait préférable de pouvoir commander l’allumage séparé des 3 à 5 aires de jeux (basket-ball, volley-ball et badminton) situées transversalement par rapport à l’aire de jeux principale (football en salle et handball) de manière à éviter que tous les terrains soient éclairés alors qu’un seul est occupé. Il serait également utile de pouvoir adapter le niveau d’éclairement des terrains au sport pratiqué, au niveau de jeu (loisir ou compétition) et à l’apport de lumière naturelle.

Façades des bureaux


Qualité de l’éclairage naturel

Confort lumineux

Dans une démarche de construction ou de rénovation durable, on privilégiera l’utilisation de la lumière naturelle à la place de l’éclairage artificiel. La qualité « spectrale » de la lumière naturelle ainsi que sa variabilité et ses nuances offrent une perception optimale des formes et des couleurs. L’éclairage artificiel doit être donc considéré comme un complément à la lumière naturelle.

En confort lumineux, l’objectif premier est de privilégier l’ouverture des espaces de travail vers la lumière naturelle tout en sachant qu’une trop grande ouverture des façades est souvent synonyme d’éblouissement. Cependant, l’éblouissement peut être assez facilement traité par un store interne.

Efficacité énergétique

D’un point de vue énergétique, l’utilisation de l’éclairage naturel comme « source » lumineuse est gratuite ; ce qui signifie que la facture électrique d’éclairage artificiel sera d’autant plus réduite que l’éclairage naturel exploité. De plus, en améliorant la qualité énergétique de l’enveloppe, que ce soit en conception ou en amélioration, les consommations énergétiques d’éclairage deviennent prépondérantes.

À titre d’exemple, les clefs de répartition énergétique pour un ancien bâtiment « passoire » et un nouveau bâtiment très performant  sont les suivantes :

Dans ce type de bâtiment « passoire », les consommations de chauffage et l’éclairage sont prédominants dans le sens où les parois sont très déperditives et l’installation d’éclairage peu performante.

Un bâtiment très performant et bien étudié au niveau de l’enveloppe limite ses dépenses énergétiques tant en chauffage qu’en refroidissement. Si l’installation électrique n’est pas performante (comme le montre cet exemple), les consommations d’éclairage en énergie primaire deviennent prépondérantes.

En absolu, on peut apprécier l’effort réaliser sur les consommations en énergie primaire. On réduit effectivement par 3 ces consommations primaires.

On se retrouve devant le défi, surtout pour le tertiaire, d’optimiser les consommations énergétiques d’éclairage en maximisant les apports gratuits d’éclairage naturel.

Attention cependant que dans bien des projets de conception ou de rénovation de bâtiments tertiaires, des trop grandes ouvertures génèrent des risques de surchauffe en été et des déperditions plus importantes en hiver. Le gestionnaire du bâtiment risque d’avoir la mauvaise surprise de payer une facture énergétique plus importante de climatisation en été et de chauffage en hiver. Cependant, les performances thermiques des vitrages actuels et le choix d’une bonne stratégie de protection solaire limitent l’impact respectivement des déperditions et des surchauffes sur le bilan énergétique global. Il en résulte que la consommation énergétique principale risque bien de devenir l’éclairage artificiel.

Critères

Bien des paramètres viennent influencer de manière plus ou moins significative la pénétration de la lumière dans les espaces de travail :

  • L’orientation des façades ;
  • La présence d’ombres reportées (bâtiments ou autres façades du bâtiment étudié faisant de l’ombre) ;
  • La taille, la forme et la position des baies vitrées dans les façades ;
  • La forme et les dimensions des trumeaux ;
  • Les caractéristiques des vitrages ;
  • La présence de protection solaire (fixe, mobile, …) ;
  •  …

Exemple d’analyse en autonomie en lumière du jour.

  1. Vitrage clair
  2. Vitrage sélectif
  3. Auvent
  4. Lamelles
  5. Ombre reportée

Pour un projet de taille importante, une étude par un bureau spécialisé est toujours intéressante sachant qu’il est possible d’optimiser conjointement les conforts lumineux et thermiques par des simulations dynamiques tenant compte de l’ensoleillement et du climat à tout moment de l’année et disponibles sous forme de bases de données type « météonorm » par exemple.


Influence de la modulation de façade

L’étude de cette influence porte sur un projet de conception d’un ensemble de plateaux de bureaux dans un immeuble tour. Une série de simulation dynamique en éclairage naturel (ECOTECH et DAYSIM) sont réalisées afin de mettre en évidence l’influence :

  • De la taille de la fenêtre ;
  • Du type de trumeaux ;
  • Du type de vitrage ;
  • Du type de cloisonnement interne ;
  • De l’épaisseur des trumeaux ;
  • De la hauteur des linteaux.

L’objectif des simulations est de réaliser un arbitrage entre différentes configurations de module de bureau. À chaque étape d’optimisation, l’arbitrage élimine les moins bonnes solutions.

Pour un bureau paysager ?

La modulation des façades influence la pénétration de la lumière naturelle dans l’espace de travail. C’est ce qu’on se propose d’étudier ici.

Base : taille de baie vitrée ⇒ deux fenêtres de 90 x 237 cm. Transmission lumineuse du vitrage TL = 50 %

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

1 < FLJ < 2 % Éloigné de la fenêtre DA < 20 %
3 % < FLJ < 5 % Proche de la fenêtre 50 % < DA

Les bureaux côté intérieur devront bénéficier régulièrement d’un système d’éclairage artificiel.

1re amélioration : taille de baie vitrée ⇒ une fenêtre de 180 x 237 cm et trumeau

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

1 < FLJ < 2 % Éloigné de la fenêtre 20 % < DA < 50 %
3 % < FLJ < 5 % Proche de la fenêtre 50 % < DA

Pour une même surface vitrée, une large fenêtre permet de laisser entrer plus facilement la lumière naturelle qu’une fenêtre étroite.

2e amélioration : trumeau de forme trapézoïdale

Tout en conservant la taille de la baie vitrée de 180 x 237 cm pour laquelle la pénétration de la lumière est la meilleure, on remplace un trumeau de section rectangulaire  par un trumeau de section trapézoïdale.

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

1 < FLJ < 3 % Éloigné de la fenêtre 30 % < DA < 50 %
3 % < FLJ < 5 % Proche de la fenêtre 50 % < DA

Les trumeaux trapézoïdaux améliorent légèrement la couverture des besoins d’éclairage par de l’éclairage artificiel. Cependant, on comprend aisément que la mise en œuvre de tel trumeaux risque de poser des problèmes.

3e amélioration : vitrage avec une transmission lumineuse de TL = 60 %

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

2,5 % < FLJ < 3 % Éloigné de la fenêtre 40 % < DA < 50 %
5 % < FLJ Proche de la fenêtre 50 % < DA

La configuration des modules de façade devient optimale. Cependant, pour les bureaux le long de la fenêtre, le risque d’éblouissement croît.

Que faut-il retenir ?

En conception, dans la modulation de façade, l’optimum de la couverture d’éclairage par la lumière naturelle (gratuite) passe par le choix d’une ouverture large pour les baies vitrées avec un vitrage de transmission lumineuse élevée. En rénovation, c’est du cas par cas ! Attention, cependant, que la limite d’ouverture à outrance des baies vitrées risque de provoquer de l’inconfort visuel (éblouissement) et thermique (surchauffe). Pour cette raison, l’étude doit souvent être complétée par des simulations thermiques dynamiques.

Pour un bureau individuel ?

La modulation des cloisons internes va aussi modifier le niveau d’exploitation de la lumière naturelle. Ici, un seul module de bureau est modélisé. Seule la position des parois varie. Pour ce type de configuration, les vitrages ont une transmission lumineuse TL de 50 %.

Base : taille de baie vitrée ⇒ deux fenêtres de 90 x 237 cm. Transmission lumineuse du vitrage TL = 50 %

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

0 < FLJ < 1,2 % Éloigné de la fenêtre DA < 20 %
FLJ < 3 % Proche de la fenêtre DA <  50 %

Le cloisonnement des plateaux de bureaux ne favorise pas l’entrée de la lumière dans le local individuel. Même la lumière naturelle n’apprécie pas l’individualisme !

1er amélioration : taille de baie vitrée ⇒ une fenêtre de 180 x 237 cm

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

1 < FLJ < 1,5 % Éloigné de la fenêtre DA < 20 %
3 % < FLJ Proche de la fenêtre 50 % < DA

Une ouverture plus large permet de bénéficier une qualité de lumière acceptable pour les plans de travail situé côté fenêtre.

Alternative : taille de baie vitrée ⇒ une fenêtre de 180 x 237 cm avec un positionnement des cloisons internes

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

0 < FLJ < 1,2% Éloigné de la fenêtre DA < 20 %
FLJ < 3 % Proche de la fenêtre DA <  50 %

Le cloisonnement désaxé du trumeau (centrée avec l’axe du châssis) n’est pas vraiment une bonne idée. En rénovation, par exemple, ce type d’aménagement de cloison se rencontre souvent. À éviter si possible !

Que faut-il retenir ?

Le cloisonnement des plateaux de bureaux au sens large du terme en bureaux individuel est, dans la mesure du possible, à éviter. On comprend bien que ce soit régulièrement impossible à envisager. Cependant, une ambiance chaleureuse de travail dans un paysager permet souvent d’optimiser le niveau de pénétration de la lumière naturelle.


Influence de l’épaisseur des trumeaux

L’épaisseur plus ou moins variable des trumeaux (ou l’épaisseur de la façade) crée un ombrage fluctuant. Cette influence est décrite ci-dessous pour des épaisseurs variant de 70 à 40 cm.

Épaisseur des trumeaux : 70 cm – Facteur de lumière du jour et Autonomie en lumière du jour

Épaisseur des trumeaux : 60 cm – Facteur de lumière du jour et Autonomie en lumière du jour

Épaisseur des trumeaux : 50 cm – Facteur de lumière du jour et Autonomie en lumière du jour

Épaisseur des trumeaux : 40 cm – Facteur de lumière du jour et Autonomie en lumière du jour

Analyse des résultats
Épaisseur des trumeaux de 70 cm
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

FLJ < 3 % Éloigné de la fenêtre DA < 50 %
  3 % < FLJ < 6 % Proche de la fenêtre 50 % < DA

Épaisseur des trumeaux de 60 cm.

FLJ < 3 % Éloigné de la fenêtre DA < 50 %
  3 % < FLJ < 6 % Proche de la fenêtre 50 % < DA

Épaisseur des trumeaux de 50 cm

FLJ < 3 % Éloigné de la fenêtre DA < 50 %
  3 % < FLJ < 6 % Proche de la fenêtre 50 % < DA

Épaisseur des trumeaux de 40 cm

FLJ < 3 % Éloigné de la fenêtre DA < 50 %
  6 %< FLJ Proche de la fenêtre 50 % < DA

Que faut-il retenir ?

Attention toutefois à l’épaisseur trop faible des trumeaux qui risque d’occasionner un risque d’éblouissement. Dans la construction ou la rénovation basse énergie, les épaisseurs des parois ont tendance à augmenter ; ce qui a pour conséquence de réduire la pénétration de la lumière dans les espaces mais de réduire les risques de surchauffe. Décidément, la Belgique est vraiment la championne du compromis !


Influence de l’orientation de la baie vitrée

Indépendamment du traitement, une façade sud a un éclairement plus élevé qu’une façade nord.
Au premier abord, il apparaitrait logique d’augmenter la surface vitrée au nord, pour compenser un éclairement plus faible. La lumière du nord est aussi plus faible, mais moins éblouissante et plus facile à contrôler.
Pour les orientations sud, est et ouest l’éblouissement et le risque de surchauffe nécessite de placer des stores qui baissés limiteront le niveau d’éclairement. À ce stade, de nouveau, tout est une question de compromis !

Autonomie en lumière de jour pour une orientation nord.

Pour une orientation nord, l’autonomie en lumière du jour est suffisante pour les espaces bureaux à proximité de la baie vitrée. Mais on voit tout de suite la limite de pénétration de la lumière naturelle à savoir : la mi-profondeur du local étudié.

Autonomie en lumière du jour pour une orientation sud.

Pour une orientation sud, la pénétration de la lumière naturelle est importante. On pourrait pratiquement équiper les espaces de bureaux sur toute la profondeur du local.

Intérêt du store pour une orientation sud.

Que faut-il retenir ?

  • Une orientation nord donne moins de lumière naturelle, mais plus stable dans le temps et absente d’éblouissement.
  • Une orientation sud donne beaucoup de lumière au risque même de générer des éblouissements. Un store est souvent nécessaire pour réduire ce risque. L’influence de la gestion du store se fait ressentir de manière significative pour les baies vitrées orientées au sud. Un bon compromis entre un apport de lumière naturelle réduit (orientation nord) et un éblouissement régulier (orientation sud sans store) est l’équipement des baies vitrées de stores automatiques. De plus, les stores en automatique ont l’avantage de traiter aussi les surchauffes en été.

Hypothèses de simulation

Les hypothèses prises pour réaliser les simulations sont les suivantes :

  • L’orientation de la façade est nord ;
  • Coefficients de réflexion considérés pour les parois internes :
    • Plafond : 70 %
    • Murs intérieurs : 50 %
    • Ébrasements : 50 %
    • Sol : 30 %
  • Les façades extérieures sont assimilées à des parois uniformes mates. Trois type de murs sont considérés dont les coefficients de réflexions sont :
    • Mur clair : 50 %
    • Mur moyen : 30 %
    • Mur foncé : 20 %
  • Disposition des zones de travail : les zones de travail mesurent 4 x 80 cm x 180 cm et sont situées à 80 cm de la face extérieure de la façade.
  • Surface nette éclairante = 2 x 2,37 x 0,90 = 4,266 m² par travée de 2,7 m
  • Surface nette façade intérieure = 2,735 x 2,70 = 7,385 m² par travée
  • Surface nette éclairante / surface nette façade intérieure = 58 % ;
  • (surface nette éclairante/surface nette façade intérieure) x transmission lumineuse du vitrage = 28,9 %.

Luminaires « downlight »

Downlight à LED

Downlight à fluocompacte.


Types de lampes adaptées

Lampe fluocompacte 4 broches.

Module LED.

Initialement, les luminaires « downlights » ont été développés  pour accueillir des lampes fluocompactes à broches de puissance réduite.  Actuellement, une alternative plus économique est le downlight à LED. Le luminaire complet est prévu uniquement pour y intégrer un module LED (éventuellement remplaçable).


Maitrise de la luminance

D’un point de vue de l’éblouissement direct ou indirect via les écrans d’ordinateurs, tout comme les luminaires pour les tubes fluorescents, les luminaires « downlight » suivent la norme EN 12464-1. Il existe des downlights équipés d’une optique spéciale (forme adaptée du réflecteur) pour limiter les luminances. Mais il existe également des grilles pour limiter les luminances (UGR < 19) des downlights.

Les downlights performants ont une luminance moyenne faible pour des angles ϒ supérieurs à leur angle de défilement (voir illustration ci-après). Ils sont caractérisés par des optiques en aluminium.

Pour les luminaires éclairant des postes de travail avec équipement de visualisation, la norme EN 12464-1 spécifie que pour des angles d’élévation supérieurs ou égales à 65°, la luminance moyenne des luminaires ne doit pas dépasser les valeurs reprises dans le tableau suivant et ce en fonction de la luminance moyenne propre des écrans concernés :

État de luminance élevé de l’écran Écran à haute luminance
L > 200 cd.m-2
Écran à luminance moyenne
L ≤ 200 cd.m-2
Cas A

(polarité positive et exigences normales concernant la couleur et le détail des informations affichées, comme pour les écrans utilisés dans les bureaux, pour l’éducation, etc.)

≤ 3 000 cd/m² ≤ 1 500 cd/m²
Cas B

(polarité négative et/ou exigences plus élevées concernant la couleur et le détail des  informations affichées, comme pour les écrans utilisés pour le contrôle des couleurs en conception assistée par ordinateur etc.)

≤ 1 500 cd/m² ≤ 1 000 cd/m²

 

Exemple.

Ce luminaire basse luminance répond à norme EN 12464-1 car la luminance est inférieure à 200 Cd/m² pour des angles d’élévation > 65° quel que soit le plan considéré.

L’angle de défilement dans l’axe longitudinal et l’axe transversal est de 60°.

Drivers LED


Généralités

L’équipement permettant l’alimentation de la LED est appelé couramment un « driver » de LED. L’alimentation s’effectue en courant continu dans le sens passant. La stabilité de l’alimentation de la LED dépend de la qualité du redresseur AC/DC et du filtre « lisseur » de tension. Suivant la qualité de ce dernier, la fluctuation du flux lumineux (papillotement) peut être source d’inconfort visuel sachant que la LED n’a qu’une très faible rémanence et, par conséquent, n’agit pas comme moyen de lissage supplémentaire.

« Driver » de LED.


Critère de qualité

Jusqu’il y a peu, on sous-estimait l’importance de l’alimentation par rapport à la source LED. Pourtant, les exigences principales par rapport à une bonne alimentation sont sévères :

  • La durée de vie doit être au moins la même que celle de la LED.
  • Le rendement de conversion AC/DC de l’alimentation doit être supérieur à 85 %  pour garantir une bonne efficacité énergétique (en lm/W) de l’ensemble LED/driver.
  • Le facteur de puissance (cos φ) doit être le plus proche possible de 1 et la distorsion (harmoniques) la plus faible possible de manière à réduire les pertes.
  • Les perturbations électromagnétiques émises doivent être faibles.

Mode de pilotage

Pilotage en courant continu DC

Le mode de pilotage des alimentations peut être de différents types :

  • pilotage en tension ;
  • pilotage en courant.

Relation courant-tension dans une LED.

Le pilotage en courant est souvent préféré au pilotage en tension pour les simples raisons :

  • Comme le montre la figure ci-dessus, une petite variation de la tension aux bornes de la LED peut entrainer une variation importante du courant qui traverse sa jonction avec un risque de détérioration accru.
  • Le flux lumineux est proportionnel au courant de jonction.
  • Les coordonnées chromatiques des LEDs blanches peuvent varier en fonction du courant d’alimentation.

Un pilotage en tension de plusieurs LED en parallèle (courant différent dans chaque LED) peut aussi entrainer des différences de courant entre chaque LED qui sont sensées donner la même lumière.

Influence du courant sur la chromatique.

Pilotage en PWM

Le pilotage en PWM (Pulse Width Modulation) est souvent utilisé dans le domaine de l’éclairage sachant que les LEDs sont très peu sensibles à ce type de modulation. L’avantage également est que ce pilotage permet de réaliser un dimming comme le montre la figure suivante.

Modulation du courant en fonction de la modulation de la largeur d’impulsion.


Influence du « dimming »

Efficacité de la LED

Lorsque le luminaire LED est « dimmé » par son alimentation, une variation de l’efficacité et du facteur de puissance (cos φ) de l’alimentation apparait.

Couleur de la LED

En fonction du niveau de courant, une dérive du spectre des LEDs est observé et différent suivant le mode de pilotage et le type de technologie des LEDs blanches, à savoir :

  • LED bleu + phosphore ;
  • RGB (3 LED’s Red-Green-Blue).

Sur base du graphique ci-dessus, on peut retirer les grandes lignes suivantes :

  • Une variation du courant d’alimentation provoque une plus grande dérive spectrale de la technologie RGB que celle au phosphore.
  • Le pilotage PWM, par rapport au pilotage continu (DC), permet de modifier facilement le flux de la LED sans trop changer ses coordonnées chromatiques.

Le contrôle simultané du niveau de rouge et de vert pour la technologie RGB en mode de pilotage DC paraît délicat et coûteux.


Alimentation intégrée ou déportée ?

Dans la mesure du possible, on préfèrera une alimentation déportée pour éviter d’influencer l’alimentation par la chaleur dégagée par la ou les LED(s) du luminaire. Cette configuration déportée devra tenir compte de l’adaptation :

  • De la puissance de l’alimentation en fonction de la puissance de LED nécessaire ;
  • De la valeur de courant à lui appliquer ;
  • Ainsi que de la longueur de câble entre l’alimentation et la LED.

Dans le cas d’alimentation intégrée ou embarquée dans le luminaire, l’alimentation sera soumise par conduction, ou même par convection, à l’échauffement des LEDs. Il y a lieu d’en tenir compte.

Exemple :

Photo ampoule LED.

Le type de lampe développé ci-contre dispose de 3 dissipateurs thermiques radiaux (un tous les 120°). L’alimentation se trouve entre le culot et l’ampoule. Entre 2 dissipateurs, une ou plusieurs LEDs sont placées. La raison d’être des dissipateurs au niveau de la partie « éclairante » de la lampe s’explique par la nécessité d’évacuer la chaleur vers le bas plutôt que vers le haut sachant que l’alimentation se trouve au-dessus de la source lumineuse lorsque la lampe est « tête en bas ».

Classes d’efficacité énergétique des lampes

Classes d'efficacité énergétique des lampes

Fig. 1 Pictogramme lié à la labellisation des lampes.

Ce règlement s’applique dès le 1er septembre 2013 aux lampes électriques telles que les lampes à filament , les lampes fluocompactes, les lampes à décharges à haute intensité et les lampes (et modules) LED (de plus de 30 lumens).

La réglementation définit les classes d’efficacité énergétique des lampes en fonction d’un critère de rendement. Ces classes (au nombre de 7) sont dénommées de A++ à E, la classe A++ ayant la meilleure efficacité énergétique. Les classes sont définies par un rapport entre une puissance absorbée par la lampe (et corrigée de la totalité des pertes de l’appareillage de commande) et une puissance de référence, nommée indice d’efficacité énergétique IEE. Les limites sont définies comme suit :

Classe d’efficacité énergétique Lampes non dirigées Lampes dirigées
A++ (le plus efficace) IEE ≤ 0.11 IEE ≤ 0.13
A+ 0.11 < IEE ≤0.17 0.13 < IEE ≤0.18
A 0.17 < IEE ≤0.24 0.18< IEE ≤0.40
B 0.24 < IEE ≤0.60 0.40 < IEE ≤0.95
C 0.60 < IEE ≤0.80 0.95 < IEE ≤1.20
D 0.80 < IEE ≤0.95 1.20 < IEE ≤1.75
E (le moins efficace) 0.95 < IEE 1.75 < IEE

Le règlement n°874/2012 doit être appliqué en parallèle aux règlements n°244/2009, n°859/2009, n°245/2009, n°347/2010 et n°1194/2012 qui concernent les exigences d’écoconception des lampes et des équipements correspondants.

⇒ Pour en savoir plus : ouverture d'une nouvelle fenêtre ! http://eur-lex.europa.eu

Caractéristiques des lampes LED

Caractéristiques des lampes LED

Puissances (W) Puissance driver (W) Puissance totale (W) Flux lumineux
(lm)
Efficacité lumineuse
(ballast non compris) (lm/W)
IRC T° de couleur
(K)
Durée vie utile/Durée vie moyenne (h)
Forme standard (type remplacement incandescente)
3 0,6 3,6 136 45 80-90 2 700-3 000 15 000-30 000
5 0,9 5,9 250 50
8 1,6 9,6 470 59
10 2 12 650 65
12 2,4 14,4 810 68
14,5 5,9 17,4 1 055 73

Techniques

Pour en savoir plus sur les LEDs et leur fonctionnement, cliquez-ici !

Caractéristiques des lampes au sodium basse pression

Caractéristiques des lampes au sodium basse pression

Puissances (W) Puissance ballast (W) Puissance totale (W) Flux lumineux
(lm)
Efficacité lumineuse
(ballast non compris) (lm/W)
IRC T° de couleur
(K)
Durée vie utile/Durée vie moyenne (h)
35 9,2 44,2 4 700 134 1 800 12 000
à
18 000
55 19 74 8 000 145
90 21 111 13 600 151
135 22,5 157,5 22 600 167
180 32 212 32 000 178

Caractéristiques des lampes au mercure haute pression

Caractéristiques des lampes au mercure haute pression

Puissances (W) Puissance ballast (W) Puissance totale (W) Flux lumineux
(lm)
Efficacité lumineuse
(ballast non compris) (lm/W)
IRC T° de couleur
(K)
Durée vie utile (h) Durée vie moyenne (h)
50 8 58 2 000 40 de
37
à
60
de
3 400
à
4 300
8 000
à
12 000
15 000
à
24 000
80 10 90 4 000 50
125 14 139 6 000 54
250 18 268 14 000 56
400 20 420 24 000 60
700 26 726 40 000 57
1 000 40 1 040 60 000 60

Caractéristiques des lampes au sodium haute pression

Caractéristiques des lampes au sodium haute pression

Puissances (W) Puissance ballast (W) Puissance totale (W) Flux lumineux
(lm)
Efficacité lumineuse
(ballast non compris) (lm/W)
Efficacité lumineuse (ballast compris) (lm/W) IRC T° de couleur
(K)
Durée vie utile (h) Durée vie moyenne (h)

Sodium standard

70 11 81 6 600 94 81 25 2 000 16 000 25 000
100 14 114 10 500 105 92
150 16 166 16 500 110 99
250 26 276 32 000 128 115
400 29 429 55 000 138 128

Sodium « confort » ou « de luxe »

150 16 166 13 000 86 78 65 2 150 13 000 25 000
250 26 276 23 000 92 83
400 29 429 38 000 95 89

Sodium « blanche »

35 6 41 1 300 37 31 83 2 500 13 000 25 000
50 11 61 2 300 46 37,7
100 15 115 5 000 48 41,7

Caractéristiques des lampes aux halogénures métalliques

Caractéristiques des lampes aux halogénures métalliques

Puissances (W) Puissance lampe (W) Puissance ballast (W) Flux lumineux
(lm)

Efficacité lumineuse
(ballast non compris) (lm/W)

Efficacité lumineuse (ballast compris) (lm/W)

IRC

T° de couleur
(K)

Durée vie utile (h)

Durée vie moyenne (h)

Standard (tube à décharge en quartz)

70

78 10,5 6 500 83 72

80

 

4 000

 

6 000
à
12 000
18 000

 

 

150

150 19 13 500

90

80  85

 

250

246 19,5 21 500

86

85 85 +/- 4 600

 

400 438 23 42 000 105 99
1 000 1 000 48 97 000 97 93  

 

2 000 2 000 96 20 5000 103 98

A brûleur céramique

20 1 700 85

+/- 85

 

3 000 6 000 10 000

35

39 8 3 440

89

74 3 000

 

70 73 13 6 800 97 82  3 000
ou
4 200
150 147 17 14 000 95 87 3 000
ou
4 200

Caractéristiques des lampes à induction

Caractéristiques des lampes à induction

Puissance du système (W) Flux lumineux
(lm)

Efficacité lumineuse
(lm/W)

IRC

T° de couleur
(K)

Durée vie (h)
(20 % de mortalité, 30 % de chute de flux)

 55

3 500 65

 80

2 700
3 000
4 000
60 000

 85

6 000

70

 80

165 12 000 70 80

Caractéristiques des lampes fluocompactes

Caractéristiques des lampes fluocompactes

Puissances (W) Flux lumineux
(lm)

Efficacité lumineuse
(ballast non compris) (lm/W)

IRC

T°de couleur
(K)

Durée vie utile (h)

Durée vie moyenne (h)

Lampe à culot à visser (1) (remplacement d’une lampe à incandescence) avec ballast conventionnel.

9

350 39 80 2 700  

 

15 000

 

13

550

42

18

850

47

25 1 200 48

Lampe à culot à visser (1) (remplacement d’une lampe à incandescence) avec ballast électronique.

5

240

48

80 2 700

 

20 000
7 400 57
11 640 58
15 900 60
20 1 260 63
23 1 600 70

Lampe à culot à broches (2) (2 ou 4).

5 250 50 80 à 90

 

2 700
3 0003 500
4 0006 500
6 000
10 000
(ballast électronique).
8 000
14 000
(ballast électronique).22 000 pour la version longue durée.
7 400 57
9 600 67
11 900 82
18 1 200 67
26 1 800 69
32 2 400 75
36 2 900 81
40 3 500 88
55 4 800 87

Caractéristiques des tubes fluorescents

Caractéristiques des tubes fluorescents

Puissances (W) Flux lumineux
(lm)

Efficacité lumineuse
(ballast non compris) (lm/W)

IRC

T°de couleur
(K)

Durée vie utile (h)

Durée vie moyenne (h)

Ø 26 mm ou T8, classe 1B, à 25°C

18

1 350

75

80 à 90

2 700
3 000
4 000
6 5001
16 000 avec ballast électronique préchauffage

(42 000 pour la version longue durée)

20 000 avec ballast électronique préchauffage

(50 000 pour la version longue durée)

36 3 350 93
58 5 200 90

Ø 26 mm ou T8, classe 2, à 25°C

18 1 100 64 60 à 80 2 900
4 000
5 000 14 000
36 2 600 83
58 4 125 83

Ø 16 mm ou T5, classe 1B HE, à 35°C

14 1 250 96 85 2 700
3 000
3 500
4 000
5 000
6 5001
19 000

(30 000 pour la version longue durée)

24 000

(45 000 pour la version longue durée)

21 1 920 100
28 2 600 104
35 3 300 104

Ø 16 mm ou T5, classe 1B HO, à 35°C

24 1 750 89 85 2 700
3 000
3 500
4 000
5 000, 6 5001
19 000

(30 000 pour la version longue durée)

24 000

(45 000 pour la version longue durée)

39 3 100 92
49 4 300 99
54 4 450 93
80 6 550 88

 1 Le flux lumineux  (et donc l’efficacité lumineuse) est légèrement plus faible pour une T° de couleur de 6 500 K.

Caractéristiques des lampes halogènes

Caractéristiques des lampes halogènes

Puissances (W) Flux lumineux
(lm)

Efficacité lumineuse
(lm/W)

IRC

T°de couleur
(K)

Durée vie moyenne (h)

Lampe halogène « tension du réseau » (finition claire).

40

490 12

100

3 000

2 000

60

820

14

120

2 250

19

160

3 100

19

400

9 000

23

1 000 22 000 22
2 000 44 000 22

Lampe halogène ECO « tension du réseau » (finition claire).

40 590 15 100 2 800 2 000
60 980 16
120 2 300 19
160 3 300 21

Caractéristiques des lampes à incandescence

Date :

  • page créée le 25/02/2013

Auteur :

  • Didier Darimont – relecture Olivier D.

Caractéristiques des lampes à incandescence

Pour les « fans » des lampes à incandescence, voici les caractéristiques des survivantes que l’on pourrait retrouver dans des stocks « clandestins ». En effet, malgré leur retrait du commerce européen, certains restaurateurs, par exemple, ont constitué des réserves (dignes de celles des écureuils) afin de garantir à leur client la même ambiance lumineuse ! Le débat est lancé !

Puissances (W) Flux lumineux
(lm)

Efficacité lumineuse
(lm/W)

IRC

T° de couleur
(K)

Durée vie moyenne (h)

 25

220 8,8

100

2 700

1 000

 40

415

10,4

 60

710

11,8

 75

935

12,5

 100

1 300

13

Rendement des luminaires

Rendement des luminaires


Classe de luminaire

Rendement inférieur (vers le bas)

Rendement total

min.

max.

min.

max.

Tube nu, avec réflecteur.

76

97

Luminaire à grilles, direct.

44

93

Luminaire mixte, sans distinction de réflecteurs ou d’optiques.

8

71

75

81

Luminaire à optique synthétique à structure prismatique.

35

84

Luminaire à optique opale.

29

75

Luminaire basse luminance.

60

84

Downlight.

24

92

Projecteur, 8 à 60 ° d’ouverture.

40

97

Armatures intérieures.

66

97

Cas particulier : LED

Les fabricants de luminaires LED, parlent directement en efficacité finale, c’est-à-dire qu’il donne la quantité finale de lumen par Watt sortant du luminaire LED. Cette efficacité prend également en compte la consommation du driver.

Remarque : L’efficacité « système lampe et luminaire » (autre que LED)  se trouve en prenant en compte l’efficacité de la lampe, la consommation de son ballast et le rendement du luminaire dans lequel il se trouve. À titre d’exemple, calculons l’efficacité finale un T8 36 w dans un luminaire d’un rendement de 93 %.
Soit un T8 – 36 W – 3 200 lm – consommation du ballast 1,5 W dans un luminaire de 93 %, son efficacité finale sera de  79 lm/W.

Schéma rendement d'un luminaire LED.

3 200 / (36 + 1.5) × 0,93 = 79 lm/W

Nombre d’heure de fonctionnement par usage

Nombre d'heure de fonctionnement par usage

Le tableau suivant indique, dans le cadre d’activités typiques, le nombre d’heures de fonctionnement de l’installation d’éclairage :

Types de bâtiment Heures de fonctionnement annuel par défaut
tD tN tO

Bureaux

2 250 250 2 500

Établissement scolaire

1 800 200 2 000

Établissement sanitaire

3 000 2 000 5 000

Hôtellerie

3 000 2 000 5 000

Restaurant

1 250 1 250 2 500

Établissement sportif

2 000 2 000 4 000

Commerces

3 000 2 000 5 000

Industrie

2 500 1 500 4 000

tD : temps d’utilisation à la lumière du jour.
tN : temps d’utilisation en l’absence de lumière du jour.
tO : temps de fonctionnement annuel en fonction de l’usage du bâtiment.

Choisir les luminaires – tableau récapitulatif

Lampes de bureau

Lampes de bureau

Luminaire mobile avec lampe fluo compacte ou led de faible puissance.

Pour l’éclairage local des postes de travail.

Projecteurs

Projecteurs

Luminaire orientable avec lampe halogène, fluo compacte, led ou à décharge.

Pour l’éclairage d’accentuation (musée, commerce, etc.)

Downlights

Downlights

Avec réflecteur en aluminium.

Pour l’éclairage décoratif, l’éclairage des espaces restreints ou l’illumination de cavités. Éviter les réflecteurs blancs.

Downlights Avec réflecteur en aluminium et diffuseur translucide. Idem que précédent mais avec besoin de limitation de l’éblouissement direct. À éviter au maximum et privilégier la version sans diffuseur.

Cloches

Cloches

Avec réflecteur en métal ou prismatique et avec ou sans diffuseur translucide ou verre de protection.

Pour l’éclairage des espaces à grande hauteur sous-plafond (commerces, etc.). Éviter au maximum les réflecteurs transparents et les diffuseurs translucides.

Plafonds lumineux

Plafonds lumineux

Avec diffuseur translucide.

Pour l’éclairage des locaux avec un besoin de limitation de l’éblouissement direct (soins de santés, etc.). L’usage à but uniquement décoratif est à éviter (bureau, etc.)

Luminaires sur pied

Luminaires sur pied

Luminaire d’appoint.

À utiliser comme appoint pour fournir localement l’intensité lumineuse demandée, mais à éviter si la composante indirecte et/ou la puissance sont trop élevées.

Appliques murales

Appliques murales

Appliques murales

Généralement avec diffuseur translucide.

Pour éclairage décoratif.

Réglettes et luminaires industriels

Réglettes et luminaires industriels

Tube nu.

Uniquement pour les pièces de service, peu utilisé, sans exigence de protection contre l’éblouissement.

Réglettes et luminaires industriels Avec réflecteur industriel de préférence miroité (éviter les réflecteurs peints). Pour l’éclairage général, hauteur sous plafond de 5m, avec ou sans ventelles en fonction des besoins en protection contre l’éblouissement direct.

Luminaires linéaires encastrés, plafonniers et suspensions

Luminaires linéaires encastrés Avec diffuseur translucide (ou prismatique). A éviter au maximum. Pour usage décoratif et un besoin de limitation de l’éblouissement direct.

plafonniers

Diffuseur translucide et réflecteur.

A éviter au maximum. Pour usage décoratif et un besoin de limitation de l’éblouissement direct.

Ventelles plates

Ventelles plates crantées.

Ventelles plates ou crantées en aluminium.

Pour l’éclairage général et limitation de l’éblouissement direct. Les ventelles blanches sont à éviter.

Ventelles paraboliques

Ventelles paraboliques en aluminium.

Pour l’éclairage général, avec présence d’écrans de visualisation et travail de haute précision.

Ventelles paraboliques avec fermeture en verre.

Ventelles paraboliques en aluminium et fermeture en verre.

Pour les salles blanches et travail de haute précision.

Luminaires étanches

Tube fluorescent nu

Tube fluorescent nu.

Uniquement pour les pièces de service humides, peu utilisées, sans exigence de protection contre l’éblouissement.

Réflecteur industriel miroité

Réflecteur industriel miroité.

Pour l’éclairage général des locaux humides ou poussiéreux, hauteur sous plafond de 4 à 5 m, avec ou sans ventelles en fonction du besoin de protection contre l’éblouissement direct. Les réflecteurs peints sont à éviter.

Vasque transparente,

Vasque transparente, structurée ou prismatique.

Pour l’éclairage général des locaux humides ou poussiéreux avec nécessité de résistance aux chocs extérieurs ou internes (bris de lampe).

Luminaires résistant aux chocs

Luminaire avec grille de protection en acier.

Luminaire à ventelles paraboliques en aluminium et grille de protection en acier.

Pour l’éclairage des salles de sport. Éviter les réflecteurs peints.

Photo, gestion de l'éclairage

Améliorer la commande et la gestion [Eclairage]

Photo, gestion de l'éclairage

Zonage et sensibilisation des utilisateurs

Mise en garde : un système de gestion de l’éclairage ne fonctionne que s’il est parfaitement accepté par les occupants. L’imagination de ceux-ci est incroyable quand il s’agit de contrarier un système automatique ! Celui-ci doit donc être soit imperceptible, soit compris et accepté par les occupants. C’est d’autant plus vrai en rénovation puisqu’il y a un  historique.<

On conseille souvent de ne pas pousser trop loin la recherche d’économies au détriment de la liberté des utilisateurs et de la simplicité du système. Dans les locaux de bureau, par exemple, les occupants doivent pouvoir allumer ou éteindre un luminaire, faire varier la puissance émise par un luminaire ou personnaliser leur ambiance de travail.

Dans un premier temps, on peut influencer ces comportements par l’information et la motivation de l’utilisateur, sans modifier le mode de commande de l’installation.

Dans ce cas, la collaboration des utilisateurs sera d’autant plus facile que ceux-ci disposent de commandes personnelles et ergonomiques. Ceci implique un zonage des commandes, et, par exemple, le rapatriement des commandes vers la table de travail ou l’utilisation de télécommandes à infrarouge.

Ou de télécommande sans fil et sans pile.
Ainsi, dans les grands bureaux, il faut dans la mesure du possible donner la possibilité aux occupants de gérer l’éclairage au niveau de leur propre zone de travail.
L’utilisateur pourra être sensibilisé :

  • A la non-utilisation de l’éclairage artificiel général si l’éclairage naturel est suffisant.
  • À l’extinction de l’éclairage d’un local lorsqu’il quitte celui-ci.

Temps minimum d’absence avant coupure

Dans un local équipé d’un éclairage fluorescent à ballast électromagnétique ou électronique sans préchauffage, il est préférable d’éteindre si l’inoccupation excède 15 à 30 minutes. Éteindre pour des absences plus courtes n’est pas économiquement rentable à cause de la diminution de la durée de vie des lampes avec l’augmentation du nombre d’allumages. Dans tous les autres cas (lampes incandescentes, fluorescentes avec ballast électronique à préchauffage, LEDS), une extinction est recommandée quelle que soit la durée de l’absence.

Note : souvent une installation d’éclairage à LED reste allumée inutilement car on pense que les LEDS ne consomment rien… un des avantages des LEDS est l’allumage et l’extinction immédiat et sans problèmes donc profitons de cet avantage pour encore économiser plus d’énergie !

Zonage

Exemple de zonage pour une salle de sport :

Dans une salle omnisports, il est inutile d’éclairer toute la salle alors qu’un seul terrain est occupé. Il est important de prévoir un zonage, c’est-à-dire une commande séparée pour les différents terrains de la salle.

Les lignes de jeux s’entremêlent.

   

Il existe donc plusieurs manières de regrouper les luminaires qui seront commandés en une seule fois.

On analysera donc chaque cas, en tenant compte de :

  • l’emplacement des lignes de jeux,
  • la fréquence d’occupation des différents terrains,
  • la possibilité d’emplacement des différentes commandes.

Voici un exemple possible de zonage :


Gestion horaire

Si l’horaire de travail est fixe, une horloge peut commander l’éclairage en tout ou rien par zone ou pour l’ensemble du bâtiment.

Dans les grands bureaux, les occupants se sentent moins concernés par la gestion de l’éclairage général. Ceci justifie une coupure générale en fonction d’un horaire.

Dans les petits bureaux, l’occupant est plus conscient de son rôle. Les systèmes automatiques auront donc moins d’impact. On peut alors préconiser des systèmes qui poussent l’utilisateur à prendre la décision d’allumer ou d’éteindre la lumière à plusieurs moments de la journée, par exemple par une extinction automatique suivant un horaire.

Attention, la coupure automatique de l’ensemble de l’éclairage est dangereuse si elle plonge tout le bâtiment dans le noir alors que des personnes sont encore présentes. Une solution peut être une extinction graduelle par groupes de luminaires avec possibilité de relance.

L’horaire peut intégrer le passage à un éclairage réduit pour les tâches d’entretien, par exemple la coupure de 2/3 des appareils.

Études de cas

Gestion de l’éclairage des Moulins de Beez.

Gestion en fonction de la présence

   

Dans certains cas, il est plus rentable d’investir dans un détecteur de présence que dans la rénovation de l’appareil d’éclairage. Ceci permet d’éviter un investissement important et de réaliser immédiatement des économies substantielles.

La détection de présence est recommandée dans les locaux où la présence de personnes est occasionnelle, comme par exemple dans les salles de réunion, dans les locaux d’archives d’archives (si un rayonnage n’implique pas un trop grand nombre de détecteurs) ou encore dans certains couloirs, …

a href= »https://www.energieplus-lesite.be/index.php?id=19073″>Pour estimer la rentabilité d’un détecteur de présence.(XLS)

Dans les couloirs et les escaliers, la détection de présence peut être remplacée par une simple minuterie.

L’utilisation de ces systèmes implique une certaine prudence dans les locaux où les mouvements des occupants sont faibles comme les bureaux. Les détecteurs peu sensibles risquent de ne pas détecter les mouvements légers engendrés par le travail sur ordinateur ou la lecture.

La rentabilité d’un détecteur de présence dépend :

  • Du temps de coupure supplémentaire par rapport au fonctionnement normal.
  • De la puissance électrique gérée par un détecteur.
  • De la présence de ballasts électromagnétiques. Ceux-ci impliquent une forte diminution de la durée de vie des lampes avec le nombre d’allumages. Ceci peut être évité avec des ballasts électroniques. Voir Le remplacement des ballasts.
  • Du coût du kWh : comme pour la gestion en fonction de l’éclairage naturel, l’énergie économisée grâce au détecteur n’est pas facturée au prix pratiqué pendant les heures pleines, mais risque de se rapprocher de celui des heures creuses.

Mise en garde

Toute gestion qui prévoit des séquences d’allumage/extinction en fonction de la présence n’est pas recommandée avec des lampes à décharge. En effet, après extinction des lampes, celles-ci nécessitent un certain temps avant de se refroidir. Si on essaie de la rallumer, le ballast va envoyer une tension élevée aux électrodes de la lampe. Cette tension ne suffira pas à allumer la lampe tant que celle-ci est chaude. Cette répétition va cependant user la lampe et diminuer sa durée de vie.

Les lampes à décharge haute pression doivent être utilisées avec des cycles de 8 à 12 h. Avec des cycles plus courts, la durée de vie des lampes diminue fortement. Pour des cycles de 3 heures, par exemple, la durée de vie des lampes chute à 50 %.

Avec des lampes à décharge haute pression, la gestion en fonction de la présence des occupants ne consiste pas à allumer l’installation en cas de présence et à l’éteindre en cas d’absence, mais à faire varier le flux lumineux d’un niveau bas en cas d’absence vers un niveau élevé en cas de présence.


Gestion en fonction de la lumière du jour

Une économie énergétique très importante peut être obtenue par la gestion automatisée de l’éclairage en fonction de l’éclairage naturel, accompagnée ou non d’une gestion en fonction de la présence dans certains locaux/zones.

Si les mesures réalisées sur le site montrent un apport important de lumière naturelle dans quelques locaux, il sera utile de jouer sur des capteurs de luminosités pour commander les lampes (on/off par des cellules crépusculaire ou dimmable en fonction de l’éclairage du jour).

Nous préférons des ballasts électroniques dimmables à une commande ON/OFF pour des raisons de confort visuel.

Pour la gradation en fonction de la lumière du jour, plusieurs systèmes sont disponibles sur le marché (par lampe, par groupe de lampes, extinction complet ou non, par local ou programmable par bâtiment entier (p.ex. avec des ballasts programmables DALI (Digital Adressable Lighting Interface…)).

Concevoir

la fenêtre comme capteur de lumière naturelle.

Gestion sans fil

Lorsque l’on veut améliorer la gestion des luminaires de manière approfondie, un frein à l’initiative réside dans la peur de devoir recâbler une partie ou l’ensemble de l’installation.

A l’heure actuelle, nombreuses sont les techniques issues de la domotique qui permettent de travailler en rénovation de gestion sans fil (ou à peu près). Il est vrai que ce genre de techniques reste coûteux à l’investissement et qu’il est toujours  nécessaire de bien analyser la rentabilité.

Il existe sur le marché des dizaines, voire plus, de techniques de commande et de gestion sans fil. À titre d’exemple, voici une manière de rénover le système de gestion de l’éclairage. Attention toutefois, que le changement de technologie de gestion de l’éclairage passe souvent par le remplacement complet du luminaire.

Avant

  • Les ballasts sont de type électromagnétique ;
  • Un interrupteur simple commande les deux luminaires.

Après

  • Les luminaires sont remplacés. Ils sont équipés d’un ballast électronique dimmable ;
  • L’interrupteur est « ponté ». on peut le remplacer par un cache de propreté ;
  • Le local est équipé d’un détecteur de présence /absence avec sonde de luminosité incorporée. On récupère l’alimentation 230 V des luminaires pour alimenter le détecteur et les luminaires ;
  • Une télécommande IR permet de gérer le détecteur. Quant au détecteur il peut piloter les luminaires en fonction de la présence/absence et de la lumière naturelle dans le local.

Ombres

Ombres


En fonction de sa direction, la lumière peut provoquer l’apparition d’ombres marquées qui risquent de perturber le travail effectué.

  

Lorsque la lumière provient du côté droit pour les droitiers et du côté gauche pour les gauchers.

Lorsque la lumière est dirigée dans le dos des occupants.

À l’inverse, une lumière non directionnelle, telle qu’on peut la créer avec un éclairage artificiel purement indirect, rendra difficile la perception des reliefs et peut rendre, par exemple, les visages désagréables à regarder.

Avec un éclairage directionnel et avec un éclairage diffus.

Une pénétration latérale de la lumière naturelle satisfait généralement à la perception tridimensionnelle du relief des objets et de leur couleur, grâce à sa directionnalité et à sa composition spectrale. Le cas est idéal mais le niveau d’éclairement diminue dès qu’on s’éloigne des fenêtres.

  • Composition correcte des ombres permettant une bonne perception des détails : combinaison d’éclairage direct et diffus.
  • Absence d’ombre effaçant tout relief : éclairage diffus.
  • Ombres dures pouvant modifier l’aspect des objets et donc représenter une source de danger : éclairage directionnel.

Eblouissement

Eblouissement


Généralités

L’éblouissement est dû à la présence, dans le champ de vision, de luminances excessives (sources lumineuses intenses) ou de contrastes de luminance excessifs dans l’espace ou dans le temps.

Suivant l’origine de l’éblouissement, on peut distinguer :

L’éblouissement direct produit par un objet lumineux (lampe, fenêtre, …) situé dans la même direction que l’objet regardé ou dans une direction voisine.

L’éblouissement par réflexion produit par des réflexions d’objets lumineux sur des surfaces brillantes (anciens écrans d’ordinateur, plan de travail, tableau …).

En éblouissement direct, on peut donc distinguer 2 types d’éblouissement :

  • D’une part, « l’éblouissement d’inconfort«  résulte de la vue en permanence de sources lumineuses de luminances relativement élevées. Cet éblouissement peut créer de l’inconfort sans pour autant empêcher la vue de certains objets ou détails.
  • D’autre part, « l’éblouissement invalidant«  est provoqué par la vue d’une luminance très élevée pendant un temps très court. Celui-ci peut, juste après l’éblouissement, empêcher la vision de certains objets sans pour autant créer de l’inconfort.

Le premier type d’éblouissement se rencontrera dans des locaux où l’axe du regard est toujours relativement proche de l’horizontale. C’est le cas dans les classes ou bureaux par exemple. Le deuxième cas se présente dans les salles de sport, par exemple, car l’axe de vision d’un sportif est constamment changeant et que celui-ci regarde vers le haut pour suivre les balles en hauteur.


En éclairage naturel

En éclairage naturel, l’éblouissement peut être provoqué par la vue directe du soleil, par une luminance excessive du ciel vu par les fenêtres, ou par des parois réfléchissant trop fortement le rayonnement solaire et provoquant des contrastes trop élevés par rapport aux surfaces voisines. Il est intéressant de noter qu’une plus grande ouverture à la lumière naturelle cause moins d’éblouissement qu’une petite car elle augmente le niveau d’adaptation des yeux et diminue le contraste de luminance.

Deux métriques sont couramment utilisées pour décrire l’éblouissement à la lumière naturelle : le Daylight Glare Probability (DGP) et le Daylight Glare Index (DGI).


En éclairage artificiel

En éclairage artificiel, l’éblouissement peut être provoqué par la vue directe d’une lampe ou par sa réflexion sur les parois polies des luminaires, sur les surfaces du local ou sur des objets.

L’éblouissement direct provoqué par un luminaire est d’autant plus fort pour une position donnée de l’observateur que :

  • la luminance du luminaire est élevée,
  • le fond sur lequel elle se détache est sombre,
  • l’angle compris entre la direction considérée et la verticale est important ; pratiquement, en dessous de 45° par rapport à la verticale, l’éblouissement devient négligeable,
  • le nombre de luminaires dans le champ visuel est important.

La position des luminaires et la répartition de la lumière qu’ils émettent sont donc fondamentales. D’autant que le degré de tolérance à l’éblouissement venant d’un luminaire (source lumineuse de petite taille) est plus faible que celui venant d’une fenêtre (source lumineuse de grande taille).

Température de couleur [Théories]

Température de couleur


La couleur de la lumière artificielle a une action directe sur la sensation de confort de l’ambiance lumineuse d’un espace. Elle n’influence cependant pas les performances visuelles.
Pour la qualifier, on définit la température de couleur (exprimée en Kelvins (K)). On parlera généralement de teinte chaude (température de couleur < 3 000 K) ou froide (température de couleur > 3 000 K). Plus une couleur est chaude visuellement, plus sa température thermique (en degré Kelvin) est donc faible.

Une lumière de couleur « chaude » est composée majoritairement de radiations rouges et oranges. C’est le cas des lampes à incandescence normales.

Les tubes fluorescents standards génèrent une lumière « froide » composée principalement de radiations vertes, violettes et bleues.

Ci-dessous, on illustre la variation de la sensation de confort de l’ambiance lumineuse d’un local en fonction de la température de couleur des tubes fluorescents choisis et ce pour un même niveau d’éclairement.

  • Éclairement de 300 lux lumière chaude.
  • Éclairement de 300 lux lumière froide.

De plus, les couleurs chaudes (rouge, orange) des objets sont plus agréables lorsqu’elles sont éclairées par une lumière chaude plutôt que par une lumière froide, mais par contre la lumière chaude tend à noircir les couleurs froides (bleu, violet). Ceci se manifeste particulièrement bien dans l’éclairage à incandescence classique.

Les radiations colorées émises par les objets et l’environnement peuvent aussi produire certains effets psycho-physiologiques sur le système nerveux. C’est ainsi que les couleurs de grandes longueurs d’onde (rouge, orange) ont un effet stimulant tandis que celles de courtes longueurs d’onde (bleu, violet) ont un effet calmant. Les couleurs intermédiaires (jaune, vert) ont, de même que le blanc, un effet tonique et favorable à la concentration. Les couleurs foncées et le gris ont par contre une action déprimante.

Enfin les couleurs peuvent contribuer dans une large mesure à modifier la dimension apparente des surfaces et des volumes. Les couleurs chaudes seront de préférence utilisées dans des locaux de dimensions exagérées tandis que les couleurs froides seront choisies pour les locaux de dimensions réduites.

Quelques températures de couleur sont reprises dans le tableau suivant :

 Tableau différentes températures de couleur.

Autonomie en lumière du jour

Autonomie en lumière du jour


Autonomie en lumière du jour

Le DA (Daylight Autonomy) est défini comme étant le pourcentage des heures occupées par an, où le niveau minimum d’éclairement requis peut être assuré par la seule lumière naturelle. Un objectif raisonnable est d’arriver à un temps d’utilisation de l’éclairage naturel d’au moins 50-60 % (pour un horaire de 8h00 à 18h00).

Une autonomie en lumière du jour de 60 % pour un lieu de travail occupé en semaine de 8 h à 18 h. et un éclairement minimum de 500 lux implique que l’occupant est en principe capable de travailler 60 % de l’année uniquement avec de l’éclairage naturel.

En première approximation, ceci entraîne un facteur de lumière du jour de 2,5 (exigence de 300 lux) à 4 % (exigence de 500 lux) dans les locaux de vie, et de 1,5 % dans les circulations et sanitaires (exigence de 100 lux).

Deux types d’autonomie en éclairage naturel doivent être distingués : l’autonomie statique et l’autonomie dynamique.
L’autonomie statique est basée sur l’évaluation du facteur de lumière du jour au point considéré et tient donc compte des conditions de ciel couvert. Elle ne considère ni le ciel clair ni intermédiaire, pas plus que les protections solaires.
Au contraire, l’autonomie dynamique en éclairage naturel est basée sur la prédiction de l’éclairement au point considéré, à chaque pas de temps (horaire ou inférieure) pour l’année entière. L’éclairement est donc prédit à partir d’un fichier météo.

Une majeur partie du contenu de cette page provient du rapport « Energy audit et inspection procedures » réalisé lors de la sous-tâche C de la tâche 50 de l’AIE (Agence Internationale de l’Énergie). Pour plus d’information, le rapport complet des méthodes d’audit et procédure d’inspection peut être téléchargé ici en français.


Autonomie diffuse en éclairage naturel

Cette métrique traduit le facteur lumière du jour en une estimation du pourcentage de temps durant lequel le niveau d’éclairement requis sera atteint grâce à la lumière naturelle. L’autonomie diffuse en éclairage naturel est basée sur des données météo horaires.

Un des avantages de cette métrique est qu’elle permet d’estimer les consommations annuelles d’éclairage électrique. Par exemple, si l’autonomie diffuse moyenne est de 64 %, le pourcentage de temps durant lequel les lampes seront allumées peut être estimé à 36%, des heures d’occupation.

Le DDA est hautement dépendant de l’orientation du local et de la localisation du bâtiment (la latitude est un facteur majeur). Comme elle est basée sur le niveau d’éclairement requis, l’autonomie diffuse en éclairage naturel est également liée à la fonction du local.

Cette métrique ne prend pas en compte la contribution du soleil. Cependant, comme beaucoup d’études ont montré que l’utilisation d’une protection solaire est assez imprévisible, il semble acceptable de compter sur l’éclairement diffus pour estimer avec un taux de confiance raisonnable, la contribution de l’éclairage naturel à l’éclairement intérieur. De plus, dans beaucoup de cas, quand le soleil frappe la façade, des systèmes d’ombrage appropriés sont déployés de manière à bloquer la pénétration du rayonnement solaire direct sans obscurcir la pièce et donc sans résulter en un allumage des lampes.


Autonomie dynamique en éclairage naturel

L’autonomie dynamique en éclairage naturel est basée sur la prédiction de l’éclairement au point considéré, à chaque pas de temps (horaire ou inférieure) pour l’année entière. L’éclairement est donc prédit à partir d’un fichier météo.

La notion d’autonomie dynamique en éclairage naturel est complétée par des modèles qui prédisent, pour chaque pas de temps, le statut du système de contrôle des protections solaires. Cette notion est appelée autonomie dynamique « effective » en éclairage naturel.

L’utilisation de l’autonomie dynamique est récente. Par conséquent, les valeurs cibles définies par les auteurs doivent être étudiée en profondeur est adaptées de manière à considérer le climat du site.

Par exemple, les critères de Rogers définissent que :

  • les espaces qui atteignent une autonomie dynamique comprise 40% et 60% sur plus de 60% de leur surface obtiennent un crédit de base ;
  • les espaces qui atteignent une autonomie dynamique comprise 60% et 80% sur plus de 60% de leur surface obtiennent un crédit additionnel ;
  • les espaces qui atteignent une autonomie dynamique de plus de 80% sur plus de 60% de leur surface obtiennent deux crédits additionnels.

Une autre cible peut être d’atteindre la moitié de l’autonomie d’un point extérieur non ombré, ayant le même profil d’occupation que le bâtiment étudié, pour la même localisation (Critère de Reinhart & Walkenhorst). Un espace est donc considéré comme éclairé naturellement s’il reçoit suffisamment de lumière naturelle durant au moins la moitié du temps durant laquelle le point extérieur obtient assez de lumière.

L’autonomie dynamique en éclairage naturel est basée sur le climat, elle est donc supposée être une des métriques les plus précises pour évaluer la disponibilité d’éclairage naturel dans un bâtiment. Cependant le calcul de cette valeur à plusieurs limites :

  • Le résultat obtenu pour une année entière est agrégé en une simple valeur, les informations temporelles sur l’évolution de la disponibilité de la lumière naturelle sont perdues. Toutefois, une manière de bénéficier de toute la puissance des métriques dynamiques basées sur le climat est de les représenter par des graphiques de type « carte temporelle » :

    Schéma informations temporelles sur l’évolution de la disponibilité de la lumière.

    Exemple de carte temporelle. ( Source: J. Mardaljevic)

  • La simulation est supposée modéliser le comportement humain de gestion des stores, ce qui implique une grande incertitude des résultats. Les simulations horaires sont cependant conformes à la réalité si le local est équipé de gestion automatique des protections solaires.
  • Les objectifs sont dépendants du climat, de l’occupation et du type de bâtiment et devraient être fixés pour chaque pays. Toutefois, cette métrique est intéressante pour faire des comparaisons entre diverses options de design.

Autonomie dynamique continue

L’autonomie dynamique continue est une métrique dérivée de l’autonomie dynamique. Cette métrique met en évidence la contribution bénéfique de la lumière naturelle, même à bas niveau. Elle modélise en quelque sorte l’autonomie qu’on obtiendrait dans un local équipé d’un système de gradation de l’éclairage électrique.

Comme pour l’autonomie dynamique, il n’existe actuellement pas de valeurs cibles. Ces valeurs devraient en principe dépendre du climat, de l’occupation et du type de bâtiment et devrait probablement être définies par pays.

Cependant, comparer la valeur de l’autonomie continue devrait permettre aux concepteurs de choisir parmi différentes options de configuration.

Autonomie dynamique maximale

L’autonomie maximale en éclairage naturel est définie comme le pourcentage d’heures d’occupations durant lesquelles du soleil direct entre dans le bâtiment ou que des niveaux excessif d’éclairage naturel sont atteints.

Le niveau maximum est fixé en fonction des objectifs établis pour le calcul de l’autonomie dynamique. Il vaut 10 fois cette valeur (c’est-à-dire que si l’objectif d’éclairement pour l’autonomie dynamique est de 300 lux, le niveau maximum acceptable sera de 3 000 lux). Cette manière de fixer la valeur maximum est la faiblesse de cette métrique car elle est intuitive, plutôt que basée sur des résultats expérimentaux.

Cependant, l’usage de l’autonomie maximale de manière à évaluer des situations critiques, quand trop de lumière naturelle pénètre dans le bâtiment, donne une première idée de l’endroit du local où de tels problèmes pourraient apparaître.

Autonomie dynamique spatiale

De manière à évaluer la qualité d’un espace éclairé naturellement, l’Illuminating Engineering Society (IES) a défini l’autonomie spatiale en éclairage naturel sDA. Cette métrique décrit la possibilité qu’un local profite de suffisamment de lumière naturelle, sur base d’une année.

L’autonomie spatiale en éclairage naturel est définie comme le pourcentage de la surface de travail qui atteint un niveau d’éclairement naturel minimum, pour une fraction donnée des heures d’utilisation du bâtiment, pour une année, c.-à-d., qui rencontre une certaine autonomie en éclairage naturel.

Les seuils recommandés sont 300 lux et 50 % des heures d’opération, de 8h00 à 18h00 (heure locale en tenant compte du changement d’heure d’été) et le sDA est donné en pourcents. Ainsi l’autonomie spatiale est calculée comme ceci :

sDA (300 lx, 50 %) =  (surface analysée avec un éclairement ≥ 300lx pour au moins 50% des heures d’utilisation) / (surface totale d’analyse) * 100

Selon IES, les valeurs cibles pour l’autonomie spatiale sont :

  • sDA (300 lx, 50 %) ≥ 55 % : valeur suffisante d’éclairage naturel ;
  • sDA (300 lx, 50 %) ≥ 75 % : valeur préférée d’éclairage naturel.

L’autonomie spatiale en éclairage naturel s’appuie sur des calculs basés sur des données climatiques. Elle tient donc en compte la contribution du ciel et du soleil ainsi que les systèmes d’ombrage dynamiques. Cependant, le sDA ne fournit aucune information sur un éventuel inconfort visuel. Celui-ci pourrait être évalué par le calcul de l’éblouissement annuel.


Useful Daylight Illuminance

L’UDI (Useful Daylight Illuminance) est le pourcentage des heures occupées par an où l’éclairement assuré par la seule lumière naturelle est compris entre 500 lx et 2 500 lx.

Cette valeur intègre le manque en lumière naturelle, mais également le risque de niveau d’éclairement trop élevé qui peut être associé à un inconfort des occupants et des apports solaires trop élevés.

À la place de fixer une valeur cible d’éclairement, l’UDI mesure la fréquence, sur un an, d’une gamme de niveaux d’éclairement atteints.

Quatre catégories sont définies.

  • un « UDI trop faible » caractérise un éclairement naturel insuffisant de moins de 100 lx ;
  • un « UDI supplémentaire » caractérise éclairement naturel entre 100 et 500 lux généralement suffisant mais qui peut être complété par de la lumière électrique ;
  • un « UDI autonome » caractérise un éclairement naturel entre 500 et 2 000  à 2 500 lux permettant d’être autonome vis-à-vis de l’éclairage électrique ;
  • un « UDI excédent » caractérise un éclairement naturel plus élevé que 2 000  à 2 500 lux entrainant un inconfort.

Ces limites peuvent être discutées en fonction de l’activité réalisée dans le local et de l’occupation. Ainsi, une autre considération est de définir les heures de l’année qui doivent être prises en compte.

Ce nombre peut être défini par les heures d’occupation du bâtiment ou par les heures d’éclairement naturel durant l’année.

Il n’existe actuellement pas de cible définie qui permettrait de certifier que si l’UDI est atteint sur une certaine superficie du local, le local est bien éclairé. En effet, les objectifs dépendent fortement du climat, de l’orientation, de l’application (travail sur pc, sur papier, dessin, …).

Cependant, l’UDI reste une métrique utile permettant de mettre en évidence les zones sur-éclairées (pour lesquelles un ombrage serait nécessaire) et sous-éclairées et permettant de comparer différentes configurations d’un bâtiment.


Lien avec l’éclairage artificiel : les courbes CIE

Plus le facteur de lumière du jour et l’autonomie en lumière du jour sont élevés, plus le temps d’utilisation des locaux avec la lumière naturelle est élevé, limitant ainsi la consommation d’éclairage artificiel.

Ainsi les courbes CIE donnent une indication de la disponibilité d’éclairement extérieur diffus uniquement selon la latitude ; l’orientation et le rayonnement direct ne sont toutefois pas pris en compte.

La figure suivante présente ces courbes liant latitude et éclairement extérieur  :

Pourcentage d’heures entre 9h00 et 17h00 où le niveau d’éclairement est disponible ou dépassé. (source : CIE – Commission Internationale de l’Éclairage).

Par exemple, pour un bâtiment de bureau situé à Uccle (50,8° Latitude Nord), dont l’éclairement total doit valoir 500 lux. Supposons qu’on mesure un facteur de lumière du jour de 6 % en un point. La valeur d’éclairement extérieur nécessaire pour atteindre 500 lux vaut donc 8 333 lux (= 500/0.06).

Si on trace une ligne horizontale à 8 333 lux, celle-ci rencontre la ligne verticale correspondant à la latitude au point A. Ce point est situé sur une courbe (non dessinée) qui correspond environ à 73 %.

Ce qui veut dire qu’un point du local ayant un facteur de lumière du jour de 6 % disposera de 500 lux pendant 73 % du temps de travail, en moyenne sur l’année.

Notons que cet abaque est relativement pessimiste puisqu’elle ne tient compte que d’un ciel couvert. On peut dire qu’elle convient assez bien pour des ouvertures orientées au Nord. Elle n’est pas très satisfaisante… mais l’analyse détaillée (dynamique) requiert des outils bien plus avancés qui restent pour l’instant au niveau de la recherche !

Lumière : généralités

Lumière : généralités


La lumière naturelle

Onde et particule

Lorsqu’on parle de lumière, on considère qu’elle est à la fois une particule élémentaire (photon) et une onde électromagnétique.

L’onde électromagnétique est caractérisée par :

  • Une amplitude ;
  • Une longueur d’onde (ou fréquence) ;
  • Une vitesse de propagation.

La relation suivant unit la longueur d’onde et la vitesse de propagation :

λ = C / F

où :

  • λ : longueur d’onde en nanomètre ;
  • C : est la vitesse en m.s-1 ;
  • F : fréquence en Hz.

Pour une vitesse de la lumière de 299,792,458 m.s-1 et une longueur d’onde de 380 nm (bleu) la fréquence de propagation est de :

F = 299,792,458 / 450 x 10-9 = 780 THz

À titre comparatif, le tableau suivant donne une idée des longueurs d’onde de différents types de rayonnement :

Longueur d’onde (dans le vide) Domaine Fréquence Commentaire
Plus de 10 m radio inférieure à 30 MHz
de 1 mm à 30 cm micro-onde (Wifi, téléphones portables, radar, etc.) de 1 GHz à 300 GHz incluse dans les ondes radio
de 780 nm à 500 µm infrarouge norme NF/en 1836
de 380 nm à 780 nm lumière visible de 350 THz à 750 THz rouge (620-780 nm)
orange (592-620 nm)
jaune (578-592 nm)
vert (500-578 nm)
bleu (446-500 nm)
violet (380-446 nm)
de 10 nm à 380 nm ultraviolet de 750 THz à 30 PHz
de 10-11 m à 10-8 m rayon X de 30 PHz à 30 EHz
< à 5 x 10-12 m Rayon γ (gamma) supérieure à 30 EHz

Remarque : le spectre de la lumière naturelle est changeant suivant l’état du ciel : en fonction de la présence ou pas de nuage, leur densité, leur forme, … le spectre lumineux évolue.

Spectre lumière naturelle.


Lumière blanche artificielle

En éclairage artificiel, on tente toujours de se rapprocher de la lumière naturelle qui est, par définition, une lumière blanche. C’est indispensable de s’en rapprocher pour une question principalement de confort visuel. On imagine difficilement pour des occupants de bâtiments tertiaires de travailler dans une ambiance de couleur jaune comme c’est le cas, par exemple, chez certains fabricants de téléviseur.

Spectre lampe à incandescence.

Lampe à incandescence : bon exemple de lumière blanche.

La lumière blanche artificielle qui se rapproche le plus de la lumière naturelle est donnée par la lampe à incandescence. Indépendamment des considérations énergétiques (cette lampe est amenée à disparaître à terme), la lampe à incandescence reste, sans conteste, la source de référence par rapport à la qualité visuelle d’une lampe artificielle.


Diagramme de chromaticité

Toutes les couleurs du spectre visible peuvent être représentées dans un diagramme de chromaticité de la Commission Internationale de l’Éclairage (CIE).

Diagramme de chromaticité

Quelques paramètres caractéristiques :

  • La courbe du fer à cheval représente les couleurs pures (teintes) de tout le spectre visible depuis le rouge (λ= 700 nm) jusqu’au violet (λ= 420 nm) ;
  • Le segment de droite qui joint les extrémités du fer à cheval représente les pourpres ;
  • le point de coordonnées (x=1/3 ;y = 1/3) est le blanc ;
  • la température de couleur pour le blanc est de 6 000 K ;
  • Le centre du fer à cheval focalise les différentes couleurs blanches. L’arc de cercle gradué de 10 000 à 1 500 K représente les températures de couleur qui caractérisent les différences sources lumineuses entre elles par rapport à la lumière blanche.

Température de couleur [Données]

Température de couleur


À ce niveau, les normes laissent généralement le libre choix de la température de couleur.

Cependant, en pratique et d’une manière générale sont préférées :

  • Les teintes chaudes (3 000 K)  pour l’éclairage des locaux de séjour, endroits de détente,…
  • Les teintes intermédiaires (4 000 K) sont recommandées dans la plupart des travaux techniques.
  • Les teintes froides (5 000 K) pour des éclairements élevés là où les performances visuelles sont importantes.

Des recommandations plus précises sont parfois renseignées ? :

Général

Type de local Température de couleur (K)
Classes entre 2 000 et 5 000 K blanc chaud à
blanc neutre
Salles de réunion entre 2 000 et 3 500 K blanc chaud
Ateliers entre 3 500 et 5 000 K blanc neutre
Ateliers graphiques supérieur à 3 500 K
(et de préférence > à 5 000 K)
lumière du jour froide

Usage médical

Type d’application Température de couleur
Dentisterie 4 000 à 5 600 K
Dermatologie 4 000 à 5 600 K
Chambres 3 000 K
Salles de garde 3 000 K
Consultations 3 000 à 4 000 K
Endoscopie 3 000 à 4 000 K
Ophtalmologie 3 000 à 4 000 K
Radiologie 3 000 à 4 000 K
Salles d’opération 4 000 K
Bloc opératoire 4 000 K
Laboratoire 3 000 à 5 000 K
Couloirs et escaliers 3 000 K
3 000 à 4 000 K

Lampes et luminaires LED

Lampes et luminaires LED


Terminologie

Puce (ou chip) LED

Puce (ou chip) LED

La puce LED est le composant semi-conducteur intégré dans une capsule appropriée permettant une connexion électrique ou un assemblage simplifié. Les puces LED peuvent être combinées entre elles sur un circuit imprimé.

Lampe LED

Lampe LED.

La lampe LED est un système complet conçu de manière à permettre le remplacement aisé des technologies traditionnelles moins efficaces (retrofit). Ces lampes reprennent pour cela les formes et les culots normalisés des lampes traditionnelles.

Module LED

Module LED.

Le module LED est constitué d’une ou plusieurs puces LED montées avec d’éventuels composants optiques, électriques ou thermiques (généralement externes).

Luminaire LED

Luminaire LED.
Luminaire encastré.

Luminaire LED.
Luminaire plafonnier.

Le luminaire LED est un système complet composé de puces LED, de lampe(s) à LEDs ou encore de module(s) LED, comprenant l’électronique, l’enveloppe, le câblage, etc. Il peut éventuellement être conçu pour recevoir des modules remplaçables.


Conception d’une lampe ou d’un luminaire LED

La plupart des constructeurs de lampes ou de luminaires sérieux ne font que concevoir les lampes ou les luminaires en se fournissant en unités LED chez les électroniciens. Afin d’assurer une homogénéité dans l’application, le choix des LEDs utilisés se fait suite à une sélection (appelée binning) en fonction de critères spécifiques de couleur, flux lumineux et tension.

Pour répondre aux attentes des marchés, les objectifs des constructeurs sont principalement :

  • de fournir un éventail de lampes et de luminaires avec un large panel de photométries différentes ;
  • d’obtenir une esthétique attrayante ;
  • d’optimiser les performances énergétiques (lm/W) ;
  • d’allonger la durée de vie (heures de fonctionnement);
  •   …

Des études sur la thermique sont impératives de manière à bien « drainer » la chaleur en dehors de la lampe ou du luminaire. Ces études influencent bien entendu la conception de la lampe ou du luminaire.


 Caractéristiques générales

Durée de vie des lampes et luminaires LED

Même si aujourd’hui une source LED (chip) seule peut atteindre une durée de vie de 50 000 h, cet objectif n’est pas encore atteint pour les applications intérieures (lampes et luminaires). Selon une étude du U.S. Department of Energy (Energy Savings Potential of Solid State Lighting in General Illumination Applications. 2012), on peut raisonnablement prévoir  l’évolution suivante dans le futur :

Évolution prévue de la durée de vie des applications LED.

Efficacité lumineuse des lampes et luminaires LED

L’efficacité lumineuse des lampes et luminaires à LEDs est bien différente de l’efficacité lumineuse annoncée pour les puces LED.
En effet, cette dernière est évaluée en test éclair et pour une température de jonction de 25°C (soit une température très basse par rapport à la température à laquelle la jonction est soumise en conditions d’utilisation réelle).

En réalité, l’efficacité lumineuse d’un luminaire LED est d’environ 20 % à 30 % plus faible que la valeur annoncée pour la chip LED.
Voici deux exemples :

Grâce à ces exemples, on se rend compte que l’efficacité lumineuse réelle des lampes et luminaires à LEDs est pour le moment équivalente à celle des lampes fluorescente :

Selon l’étude du U.S. Department of Energy, l’évolution des LEDs devrait permettre d’atteindre 200 lm/W vers 2020-2025.  De quoi alors surpasser tous les autres types de sources lumineuses !

Évolution prévue de l’efficacité lumineuse des applications LED.

Rendu des couleurs et température de couleurs

Avec les lampes et luminaires à LEDs, on peut obtenir un indice de rendu de couleur entre 60 et 98. De plus, il est possible, avec certains types de LED, de moduler la température de couleur de manière continue.


Aspect thermique

Malgré que le rayonnement lumineux de la LED ne génère pas d’infrarouge (et donc pas de chaleur dans le sens du flux lumineux), la dissipation de la chaleur de la jonction est un des problèmes majeurs des lampes et des luminaires à LEDs. En effet, entre  50 % et 70 % de la consommation d’une LED est transformée directement en chaleur qui doit être absolument évacuée sous peine de réduire l’efficacité lumineuse et la durée de vie.

Comparatif thermique entre une LED et une lampe à incandescence.

Des études de dissipation thermique, pour chaque modèle sont donc nécessaires pour pouvoir concevoir une lampe ou un luminaire à LEDs avec  son dissipateur de chaleur intégré.

Cas des lampes

La complexité de l’évacuation de la chaleur générée par les unités LED composant la lampe s’accentue vu la nécessité d’éviter le « drainage » de la chaleur vers l’arrière de la lampe. En effet, le risque est d’accumuler la chaleur de jonction au niveau de l’alimentation intégrée dans le culot. On dit que la lampe LED « claque » non pas par une surchauffe des unités LED mais plutôt de l’alimentation. D’où la nécessité d’évacuer la chaleur par l’avant de la lampe.

Exemple d’étude thermique d’une lampe LED.

Cas des luminaires

Dans le cas des luminaires, le problème de la surchauffe de l’alimentation peut être éliminé vu la possibilité de la déporter hors du luminaire. Il reste aux constructeurs à bien concevoir le dissipateur en fonction d’un luminaire prévu pour être monté en saillie ou encastré.

Étude thermique (source ETAP).


Aspect optique

De par sa taille réduite, l’association de puces LED, de lentille, de diffuseurs et de réflecteurs permet d’obtenir à peu près toutes les distributions lumineuses possibles.

Cependant, à cause de cette petite taille combinée à une puissance lumineuse en constante augmentation, la luminance de la source devient très importante et peut atteindre des valeurs de 10 à 100 millions de Cd/m². Les fabricants prévoient donc des systèmes optiques comme les lentilles, les réflecteurs ou/et des diffuseurs pour éviter l’exposition directe du regard et le risque d’éblouissement.

Type de lampe Luminance (Cd/m²)
Fluo linéaire – T8 14 000
Fluo linéaire – T5 15 000 – 33 000
Fluo compact 50 000
LED nue 100 000 000
Soleil 1 000 000 00
Suivant l’application, on peut obtenir les résultats suivants :

Des lentilles seules, par exemple, permettent de réduire la luminance de crête :

Des réflecteurs combinés avec un diffuseur permettent d’obtenir une lumière douce :

Sources LED

Sources LED

N.B. : cette page reprend uniquement la description du fonctionnement et des caractéristiques de la puce LED. Pour en savoir plus sur son application sous forme de lampe ou de luminaire.


Comment fonctionne une LED ?

Schéma description LED.

Une LED (Light Emitting Diode) est une diode électroluminescente qui émet de la lumière lorsqu’elle est parcourue par un courant continu dans le sens passant.

Schéma description LED - 02. Schéma description LED - 03.

Comme le montre la figure suivante, la quantité de lumière générée par la LED est  proportionnelle à l’intensité du courant qui la traverse.

Couleur des LEDs

Schéma couleur des LEDs.

La LED émet une lumière quasi monochromatique. Sa couleur dépend des caractéristiques des matériaux utilisés durant la production (composition des semi-conducteurs et de leur dopage, température de jonction, …). Il est ainsi possible de balayer toutes les couleurs du spectre visible.

En éclairage artificiel d’intérieur, on cherche cependant essentiellement à se rapprocher de la couleur de la lumière naturelle, à savoir la lumière blanche. Pour obtenir une lumière blanche, il est nécessaire de combiner plusieurs sources lumineuses de composantes. Ainsi, la couleur blanche peut être produite soit par mélange additif de LED rouges, vertes et bleues, soit par conversion d’un LED bleu au moyen de poudre phosphorescente, selon le même principe utilisé dans les tubes fluorescents. Ce dernier principe est généralement utilisé en éclairage intérieur.

Les LEDs pour l’éclairage

Avant de devenir incontournables dans le domaine de l’éclairage, les LEDs doivent encore relever plusieurs défis non négligeables en termes :


Caractéristiques générales

Il importe de bien distinguer la performance (et son potentiel d’évolution) d’une puce LED par rapport à celle d’une lampe LED et à celle d’un luminaire LED.

Si les performances (efficacité lumineuse, durée de vie, etc.) des puces LED sont intéressantes pour évaluer le potentiel intrinsèque de la technologie, elles sont inutiles pour comparer la technologie de l’éclairage LED par rapport aux autres technologies disponibles (notamment les lampes fluorescentes).

Sous différents aspects, la LED est très prometteuse sachant que ses performances énergétiques, sa durée de vie, … s’améliorent de jour en jour.

Techniques

Pour en savoir plus sur les applications LED (lampes et luminaires) et leurs performances.

Durée de vie d’un « chip » LED

La durée de vie des puces LED avoisine théoriquement les 50 000 heures, durée pendant laquelle le flux lumineux reste au-dessus de 70 % du flux initial.

Schéma durée de vie d'un "chip" LED.

Cependant, cette durée dépend de plusieurs paramètres comme le courant qui la traverse et, donc indirectement de la température. Les 50 000 heures sont atteignables pour autant que la température de jonction ne dépasse pas 80-85 °C.

L’absence de « pièce fragile » comme le filament de nombreuses lampes, permet d’augurer une durée de vie plus importante. Par contre, comme tout composant électronique, la chip LED est sensible aux influences électromagnétiques. Pour ne pas raccourcir sa durée de vie, il est important que les constructeurs prévoient une bonne connexion à la terre.

Ces valeurs élevées doivent être vues comme une démonstration du potentiel élevé de la technologie LED.

Efficacité lumineuse des chip LED

L’efficacité lumineuse (lm/W) représente un des critères essentiels d’une source lumineuse. Certains fabricants annoncent une efficacité lumineuse de l’ordre de 100 lm/W sous forme commerciale et de 200 lm/W en laboratoire. Le maximum théorique serait de 230 lm/W (pour une température de jonction de 25°C).
De même que pour la durée de vie, ces valeurs élevées doivent être vues comme une démonstration du potentiel élevé de la technologie LED.

La température de jonction influence aussi le flux lumineux de la puce LED et donc son efficacité lumineuse. C’est principalement pour cette raison que les LEDs conviennent particulièrement bien pour les applications à basse température (surgélation, réfrigération, …) sachant que le flux lumineux augmente avec l’abaissement de la température de jonction. De plus, pour les basses températures, la durée de vie augmente.

Flux lumineux de démarrage

Contrairement à la plupart des lampes fluorescentes qui mettent un certain temps à atteindre leur flux lumineux optimal, les LEDs l’atteignent  quasi instantanément. De plus, elles peuvent être commutées ON/OFF à chaud sans altération de leur durée de vie. Ce n’est pas le cas pour les lampes à décharge par exemple.

La gradation du flux lumineux

La gradation du flux lumineux des LEDs s’opère sur une large plage (presque 0 % à 100 %). Les pertes par gradation sont sensiblement les mêmes que pour les lampes fluorescentes équipées d’un ballast électronique performant.

Schéma gradation du flux lumineux.

À 0 % de flux lumineux, la consommation résiduelle est de l’ordre de 10-15 % de la puissance nominale.

Rayonnement IR et UV

Les LEDs ne génèrent pas ou peu de rayonnement infrarouge (IR) ou ultraviolet (UV) dans le flux lumineux. Il est clair qu’elles génèrent de la chaleur, mais en grande partie de manière convective et non radiative. Autrement dit, la chaleur n’est pas émise dans le sens du flux lumineux. De par ces propriétés, les lampes LED sont intéressantes dans le cas d’application comme pour l’éclairage des œuvres d’art, des denrées alimentaires, des vêtements, …

Par contre l’élimination de la chaleur reste un problème majeur pour toutes les applications LED. Pour en savoir plus, cliquez ici !


Métier de la LED

Dans le monde de la conception LED apparaissent deux métiers : les concepteurs de puces LED et les  concepteurs de luminaires ou lampes LEDs. Les premiers sont plutôt issus de l’industrie électronique, les seconds de la conception en éclairage (lampe ou luminaire). Dans ce domaine, à l’heure actuelle, il convient de prendre un certain recul par rapport à la tendance qu’ont les électroniciens à s’improviser professionnel de l’éclairage.

Techniques

pour en savoir plus sur les lampes et luminaires à LEDs.

Données

Pour connaitre les valeurs caractéristiques des lampes LED.

Données

Pour consulter un récapitulatif des caractéristiques des différents types de lampe.

Isoler un plancher inférieur sur sol par le bas

Isoler un plancher inférieur sur sol par le bas


Choix du système

> Le choix du système d’isolation par l’extérieur se fait en fonction des critères suivants :

  • les performances énergétiques ;
  • le prix.

Les différentes possibilités d’isolation à l’intérieur de la structure

Le freine-vapeur devra être mis en œuvre si nécessaire (à évaluer en fonction de la composition du plancher : nature et épaisseur des couches). Il est cependant toujours conseillé pour garantir l’étanchéité à l’air du plancher.

img.

Un freine vapeur est toujours conseillé pour assurer l’étanchéité à l’air.

Les performances énergétiques

Il faut profiter de tout l’espace disponible pour y introduire l’épaisseur maximale possible d’isolant. Le coût de la main-d’œuvre est identique. Seule la quantité d’isolant augmente.

La structure en bois ne pouvant être supprimée, la transmission thermique est plus importante à l’endroit de celle-ci. Il en est tenu compte dans l’évaluation du coefficient de transmission thermique (équivalent) du plancher. Malgré cela, à cause de l’épaisseur importante généralement disponible pour l’isolant, des performances élevées peuvent être atteintes.

Le prix

« Le nerf de la guerre…! »

La fourniture et la pose de l’isolant lui-même sont peu couteuses par rapport aux autres parties du plancher.

Isoler entre les éléments de structure d’un plancher inférieur [Concevoir]

Isoler entre les éléments de structure d’un plancher inférieur [Concevoir]


Choix du système

> Le choix du système d’isolation par l’extérieur se fait en fonction des critères suivants :

  • les performances énergétiques ;
  • le prix.

Les différentes possibilités d’isolation à l’intérieur de la structure

Le freine-vapeur devra être mis en œuvre si nécessaire (à évaluer en fonction de la composition du plancher : nature et épaisseur des couches). Il est cependant toujours conseillé pour garantir l’étanchéité à l’air du plancher.

Un freine vapeur est toujours conseillé pour assurer l’étanchéité à l’air.

Les performances énergétiques

Il faut profiter de tout l’espace disponible pour y introduire l’épaisseur maximale possible d’isolant. Le coût de la main-d’œuvre est identique. Seule la quantité d’isolant augmente.

La structure en bois ne pouvant être supprimée, la transmission thermique est plus importante à l’endroit de celle-ci. Il en est tenu compte dans l’évaluation du coefficient de transmission thermique (équivalent) du plancher. Malgré cela, à cause de l’épaisseur importante généralement disponible pour l’isolant, des performances élevées peuvent être atteintes.

Le prix

« Le nerf de la guerre…! »
La fourniture et la pose de l’isolant lui-même sont peu coûteuses par rapport aux autres parties du plancher.


Choix de l’isolant

Type d’isolant

L’isolant est placé dans les espaces laissés libres par la structure. Ces espaces sont généralement de dimensions et formes irrégulières. L’isolant doit donc être suffisamment souple pour épouser ces irrégularités. On utilisera donc des matelas isolants en laine minérale ou en matériaux naturels ou, si c’est possible (cavités bien fermées dans le bas), les mêmes matériaux déposés en vrac ou insufflés.

La migration de vapeur à travers le plancher devra être régulées par la pose, du côté intérieur d’un freine-vapeur étanche à l’air adapté à la finition extérieure et au type d’isolant posé (hygroscopique ou non).

Épaisseur de l’isolant

Les épaisseurs d’isolant sont déterminées en fonction de l’espace disponible. Idéalement, celui-ci doit être totalement rempli.

Conseils de mise en œuvre

> On évitera toute cavité dans l’isolant afin de ne pas créer de zones froides, des courants internes de convection ou d’aggraver les fuites d’air en cas de défectuosité du freine-vapeur. Les panneaux isolants doivent donc être posés de manière parfaitement jointive et appliqués contre les éléments de structure et les faces.

Isoler un plancher inférieur par le haut [Concevoir]

Isoler un plancher inférieur par le haut [Concevoir]


Choix du système

> Le choix du système d’isolation par l’intérieur se fait en fonction des critères suivant :

  • les performances à atteindre
  • l’esthétique recherchée
  • les performances énergétiques
  • le prix

Les performances à atteindre

L’étanchéité à l’air du plancher doit être assurée. Cela ne pose pas de gros problème lorsque le support est en béton coulé sur place. Il suffit dans ce cas de traiter les raccords de la dalle du plancher avec les murs périphériques. Par contre, lorsqu’il s’agit d’un plancher léger à ossature et éléments assemblés une couche spéciale d’étanchéité à l’air doit être prévue. Elle fait en même temps office de pare-vapeur et doit être posée entre l’isolant et la plaque circulable.

L’esthétique recherchée

Toutes sortes de finitions de sol sont possibles. Elles peuvent être lourdes (chape + finition) ou légères (panneau fin ou planches + finition éventuelle).

La raideur de l’isolant devra être adaptée au type de finition. Des joints de mouvement devront être prévus dans la finition pour éviter la rupture de celle-ci.

Si l’isolant est trop souple et ne résiste pas à l’écrasement, des lambourdes seront placées pour porter la plaque circulable.

Les performances énergétiques

Lorsque le plancher est posé sur sol, l’isolation peut éventuellement se limiter à la zone périphérique, le long des façades. (La résistance mécanique de la chape flottante devra être vérifiée en rive d’isolant).

Parfois l’espace disponible pour poser l’isolant est limité. Dans ce cas, l’isolant devra être le plus performant possible pour atteindre les valeurs souhaitées (λ le plus petit possible). Des isolants moins performants seront choisis lorsque la place disponible est suffisante et que d’autres de leurs caractéristiques sont intéressantes (étanchéité à l’eau, étanchéité à la vapeur, résistance à la compression, prix, caractère écologique, …).

Le prix

« Le nerf de la guerre…! »

Le coût de la finition dépendra des choix esthétiques et des performances attendues (résistance mécanique, résistance à l’eau, aspect, facilité d’entretien, …).


Choix de l’isolant

Type d’isolant

Les isolants mis en œuvre devront être adaptés aux contraintes spécifiques au projet (résistance à la compression, résistance à l’eau, …).

Lorsque le support est irrégulier, la pose d’un isolant en matelas souples ou projeté sur place est préférable pour épouser les défauts. Si l’isolant est rigide, il est nécessaire de régler le support avant de poser l’isolant.

Épaisseur de l’isolant

Les épaisseurs d’isolant sont calculées à partir des performances à atteindre.

Conseils de mise en œuvre

> Les panneaux isolants doivent être posés de manière parfaitement jointive et appliqués contre le plancher afin d’éviter les interruptions dans la couche isolante (= pont thermique).

> Il faut protéger et manipuler les panneaux isolants avec précautions pour éviter les écrasements, les déchirures, l’eau, la boue.


Détails d’exécution

L’isolation par le haut d’un plancher existant sera interrompue à chaque mur. À cet endroit il y a un risque de pont thermique. L’interposition d’un élément isolant entre le mur et la dalle est possible si le bâtiment n’est pas trop lourd.

Isoler un plancher inférieur par le bas [Concevoir]

Isoler un plancher inférieur par le bas [Concevoir]


Choix du système

> Le choix du système d’isolation par l’extérieur se fait en fonction des critères suivants :

  • les performances à atteindre ;
  • l’esthétique recherchée ;
  • les performances énergétiques ;
  • le prix.

Les performances à atteindre

Généralement la face extérieure des planchers est protégée de la pluie. On sera cependant attentif lorsque la plancher situé au-dessus de l’ambiance extérieure est raccordé au bas d’une façade. À cet endroit, un système doit être mis en œuvre pour éviter que les eaux de ruissellement atteignent le plafond (casse-goutte).

Schéma performances à atteindre.

L’esthétique recherchée

Lorsque la face inférieure du plancher n’est pas visible, il est inutile de revêtir l’isolant d’une finition.

Lorsque le plancher se trouve au-dessus de l’ambiance extérieure, il sera recouvert d’une finition en harmonie avec l’aspect extérieur du bâtiment et qui résiste aux agressions extérieures mécaniques et atmosphériques.

Lorsque le plancher est en même temps le plafond d’un espace adjacent non chauffé ou d’une cave, l’isolant pourra, soit rester apparent si les panneaux sont suffisamment rigides, soit être revêtu d’une finition pour environnement intérieur (planchettes, panneau, plaques de plâtre, enduit, …).

Les performances énergétiques

L’enduit isolant est difficile à mettre en œuvre au plafond et nécessite des épaisseurs excessives pour atteindre le coefficient de transmission thermique U réglementaire.

Les systèmes avec panneaux rigides peuvent être continus s’ils ne sont pas recouverts d’une finition.

Un système avec structure (finition inférieure supportée par une structure) présente une isolation discontinue et donc moins efficace pour une même épaisseur d’isolant.

Une structure métallique est déconseillée, car elle engendre des ponts thermiques.

Le prix

« Le nerf de la guerre…! »

Si l’isolant reste apparent, le coût des travaux dépendra principalement de la difficulté d’accès à la face inférieure du plancher (vide sanitaire de hauteur réduite).

Lorsque l’isolant est revêtu par une finition extérieure, le choix de cette finition (structure portante comprise) influencera fortement le coût des travaux.

Si on souhaite rendre les nœuds constructifs (appuis) conformes aux critères de la réglementation PEB en prolongeant de chemin de moindre résistance thermique, le coût des travaux annexe peut être considérable surtout si les appuis sont nombreux.


Choix de l’isolant

Type d’isolant

L’isolant est placé directement contre le plancher. Si l’isolant est souple, il épouse parfaitement la forme de son support même si celui-ci est un peu irrégulier. Si l’isolant est rigide, il est nécessaire de régler le support avant de poser l’isolant.

Un isolant perméable à l’air (laine minérale, par exemple) ne peut être choisi que si le support auquel il est fixé est lui-même étanche à l’air (plancher en béton, …).

Les produits minces réfléchissants (PMR), dont l’efficacité est beaucoup moins élevée que celle annoncée par les fabricants, sont à proscrire dans une isolation par l’extérieur puisqu’ils constituent un film pare-vapeur placé « du côté froid » du plancher, susceptible de provoquer une forte condensation sur la face interne (entre le plancher et l’isolant).

Épaisseur de l’isolant

Les épaisseurs  d’isolant sont calculées à partir des performances à atteindre..

Conseils de mise en œuvre

>Les panneaux isolants doivent être posés de manière parfaitement jointive et appliqués contre le plancher afin d’éviter les interruptions dans la couche isolante (= pont thermique) et les courants de convection.

Courants de convection.

Remarque : le risque de courants de convection est encore plus important lorsqu’il y a une lame d’air ventilée entre l’isolant et le parement extérieur.

> Il faut protéger et manipuler les panneaux isolants avec précautions pour éviter les écrasements, les déchirures, l’eau, la boue.


Choix de la finition

Cette finition ne sera généralement appliquée que lorsque la face inférieure du plancher est visible (environnement extérieur, cave ou espace adjacent non chauffé. Elle présentera les caractéristiques suivantes :

  • perméable à la vapeur d’eau pour éviter la condensation interstitielle ;
  • bonne résistance mécanique surtout en cas d’agression possible ;
  • aspect esthétique adapté ;

Détails d’exécution

L’isolation d’un plancher par le bas sera interrompue à chaque appui du plancher. À cet endroit il y a un risque de pont thermique. L’interposition d’un élément isolant entre le mur d’appui et la dalle est possible si le bâtiment n’est pas trop lourd.

Blocs isolants sous la dalle au dessus des murs de fondation.

Si cela n’est pas le cas, il est toutefois possible de prolonger à certains endroits le chemin que doit parcourir la chaleur pour sortir du volume protégé. Cette intervention reste généralement visible, mais est esthétiquement acceptable dans les caves, garages, locaux secondaires et vides sanitaires.

Allongement du chemin de moindre résistance thermique

Schéma allongement du chemin de moindre résistance thermique.

Concevoir le mur à ossature bois

Concevoir le mur à ossature bois


Choix de la finition extérieure

Les prescriptions d’urbanisme imposent l’intégration des nouveaux bâtiments aux immeubles existants. Souvent l’usage d’un parement en brique apparente est exigé. Dans ce cas le parement est placé devant le mur à ossature comme il le serait devant un mur porteur du mur creux. Un vide légèrement ventilé est ménagé entre le parement et la paroi légère.

Parement en briques devant le mur à ossature bois.

Le parement n’exprime pas le caractère léger du bâtiment, ce qui pourrait être considéré comme regrettable. De plus, la masse du parement qui serait utile pour limiter la surchauffe de l’espace intérieur est inaccessible à partir de celui-ci. Le parement fait uniquement office de protection contre la pluie.
Il peut être remplacé par un bardage en bois, en ardoises, en métal, … Le creux est fortement ventilé. La coulisse peut être partiellement remplie par un isolant supplémentaire qui renforce ainsi l’isolation de la paroi.

Bardage en bois devant un mur à ossature bois.

Un enduit extérieur décoratif étanche à l’eau et perméable à la vapeur d’eau peut également être appliqué directement sur cet isolant supplémentaire (à la place du bardage ou du parement). L’isolant et l’enduit doivent faire partie d’un même système d’isolation thermique extérieure développé, testé et homologué par un même fabricant.

Finition extérieure en cimentage

  1. Cimentage.
  2. Armature du cimentage.
  3. Isolant.
  4. Panneau extérieur de la structure bois.
  5. Isolant thermique dans la structure bois.
  6. Freine-vapeur + étanchéité à l’air.
  7. Vide technique avec ou sans isolant.
  8. Structure en bois.

Choix de la structure

La structure est généralement réalisée à l’aide de montants et de traverses en bois massif de section rectangulaire. L’essence choisie sera suffisamment durable pour cet emploi ou traité préventivement pour éviter toute attaque de champignons ou d’insectes.

Les sections auront au moins 14 cm de hauteur. Cette hauteur peut être plus importante de manière à ménager ainsi un espace plus épais pour placer l’isolant thermique et augmenter ainsi les performances. La stabilité de la paroi est aussi améliorée.

Afin de minimiser les transmissions thermiques, des poutres en I peuvent être utilisées pour les montants. Elle permet de diminuer les ponts thermiques induits par les montants et par conséquent d’augmenter la résistance thermique de la cloison.

Poutres « I » préfabriquées en bois.


Quel freine-vapeur ?

Du côté chaud de l’isolant, une couche freine vapeur est toujours nécessaire, ne fut-ce que pour assurer l’étanchéité à l’air de la paroi, essentielle pour assurer l’isolation thermique et éviter les problèmes de condensation interstitielle.

Des panneaux en OSB ou multiplex sont généralement placés de part et d’autre de la structure pour assurer le contreventement des parois. Ils constituent ainsi les caissons dans lesquels sera posé l’isolant éventuellement en vrac. Le panneau intérieur peut faire office de freine-vapeur à condition que sa perméabilité à la vapeur soit connue et que les joints entre les panneaux soient soigneusement rendus étanches à l’aide de bandes adhésives ou de mastic.

Panneaux intérieurs faisant office de freine-vapeur et étanchéité à l’air.

Si la paroi n’est pas pourvue de panneau intérieur, le contrôle de la diffusion de vapeur et de l’étanchéité à l’air sera réalisé à l’aide de membranes spécialement destinées à cette fonction. Leur perméabilité à la vapeur d’eau est, dans certains cas, variable en fonction de conditions hygrothermiques. Certaines peuvent servir de couche de confinement pour les isolants à insuffler.

Membrane freine-vapeur et étanchéité à l’air.

Le niveau de perméabilité à la vapeur des panneaux et des membranes devra être déterminé suite à des calculs réalisés par un bureau spécialisé de préférence à l’aide d’un logiciel de simulation dynamique. Ce logiciel calcule le transfert de chaleur et d’humidité dans la paroi en fonction de la température et du taux d’humidité intérieure, des conditions climatiques, de l’évaporation, de l’absorption, ainsi que de la perméabilité et de la capillarité des matériaux.


Quel pare-pluie ?

Lorsqu’il y a un creux ventilé entre la finition extérieure (bardage, parement, …) et  la paroi,  une couche de protection de l’isolant contre les infiltrations accidentelle est posée du côté froid de l’isolant. Elle doit être le plus perméable possible à la vapeur d’eau.

Des panneaux en OSB ou multiplex sont généralement placés de part et d’autre de la structure pour assurer le contreventement des parois. Ils constituent ainsi les caissons dans lesquels sera posé l’isolant éventuellement en vrac. Le panneau extérieur peut faire office de pare-pluie.

Panneaux faisant office de pare-pluie.

Si la paroi n’est pas pourvue de panneaux extérieurs de contreventement, des panneaux bitumés légers en fibre de bois ou des membranes souples très robustes, imperméables à l’eau et très perméables à la vapeur d’eau peuvent être utilisées et servir de pare-pluie et, en même temps, de couche de confinement pour les isolants à insuffler.

Pare-pluie souple.


Quel type d’isolant ?

L’isolant posé dans la structure doit pouvoir s’adapter facilement à la forme de celle-ci et être suffisamment raide pour ne pas se tasser sous son propre poids.

L’isolant sera donc idéalement :

soit, constitué de panneaux semi-rigides de fibres minérales ou organiques placés avant la pose d’une des faces  de la paroi ;

Isolant en matelas.

soit insufflé dans la paroi déjà munie de ses deux faces de coffrage (pare-pluie et pare-vapeur).

Isolant en vrac.

L’eau étant un très bon conducteur de chaleur, il faut éviter que l’isolant ne s’humidifie. La migration de vapeur et l’étanchéité à l’eau devront être correctement maîtrisées.

L’épaisseur d’isolant dépendra du type d’isolant choisi, de sa configuration dans la paroi et des performances thermiques à atteindre.


Le remplissage de l’espace technique intérieur par de l’isolant ?

L’espace technique ménagé entre le freine-vapeur et la finition intérieure peut être rempli d’isolant sans provoquer un risque de condensation interstitielle car l’épaisseur de cet espace est relativement réduite par rapport à celle de la structure isolée. De cette manière on augmente à peu de frais les performances thermiques du mur surtout si l’espace technique est relativement épais à cause de l’encombrement des installations prévues.

Remplissage du vide technique par de l’isolant

  1. Finition intérieure.
  2. Vide technique isolé.
  3. Freine-vapeur et étanchéité à l’air.
  4. Ossature bois avec isolant

Isolation à l’intérieur de la structure

Isolation à l'intérieur de la structure

Cette technique, délicate par la résolution des risques de condensation et ponts thermiques, consiste au placement d’isolation entre les éléments de structure.

Pompes à chaleur gaz

Pompes à chaleur gaz


PAC à moteur gaz

Principe

La pompe à chaleur à moteur gaz (GHP : Gas engine Heat Pump) s’apparente fort à la pompe à chaleur électrique traditionnelle. Les seules différences résident au niveau :

  • Du système d’entrainement du compresseur : le moteur électrique accouplé mécaniquement au compresseur est remplacé par un moteur à combustion à gaz.
  • De l’exploitation de la chaleur générée par le système d’entrainement :
    • Le moteur électrique a très peu de pertes (η de l’ordre de = 98 %). En d’autres termes, l’énergie électrique, au rendement près, est transformée totalement en énergie mécanique pour le compresseur.
    • Le moteur à gaz, quant à lui, a un rendement mécanique médiocre (45-50 %). Le solde de l’énergie de combustion du gaz est de la chaleur. L’intérêt de la pompe à chaleur à moteur à gaz réside dans la récupération de la chaleur de combustion.

Schéma de principe : PAC à moteur gaz.

Technologie

PAC à moteur gaz (source : Sanyo).

Moteur gaz

Moteur gaz (source : Aisin Toyota).

La technologie des pompes à chaleur à moteur gaz est développée depuis plusieurs décennies. Le moteur gaz est un moteur thermique à faible taux de compression de type volumétrique (cycle de Miller). Le gaz utilisé est soit le gaz naturel ou le LPG. Certains moteurs utilisent le propane. Comme le montre la figure ci-contre, ce fabricant propose un moteur 4 temps accouplé mécaniquement à des compresseurs au moyen d’une ou plusieurs courroies. La particularité de ce moteur est la récupération de la chaleur de combustion du gaz résiduelle au niveau du circuit de refroidissement. Un échangeur, placé au niveau du condenseur du circuit frigorifique permet le refroidissement du moteur et, par conséquent, la récupération de chaleur de combustion du moteur en supplément de celle échangée par le circuit frigorifique.

Circuit frigorifique

Les fabricants de PAC à moteur gaz proposent plusieurs configurations de circuit frigorifique. On retrouve généralement :

  • Le groupe VRV réversible à détente directe à 2 tubes permettant de travailler en mode « change-over » ou 3 tubes en mode « récupérateur d’énergie ».
  • la PAC à condenseur à eau. En général, c’est la même machine de base que l’unité externe des groupes VRV. Un condenseur à eau est directement branché sur le circuit frigorifique.

 (Source : Aisin Toyota).

Les compresseurs sont généralement des « scrolls ».  L’avantage de la pompe à chaleur à moteur gaz réside dans le fait que les compresseurs sont entrainés par un moteur à vitesse variable et, par conséquent, peuvent moduler le débit de fluide frigorigène (R410A par exemple).


PAC gaz à absorption

Principe

Tout part de la succession, dans un cycle fermé :

  • De l’absorption d’ammoniac (NH3) gazeux en présence d’eau pour donner une solution d’ammoniaque concentré (NH4OH). Elle s’accompagne de la libération d’une grande quantité de chaleur à température élevée.
  • Et de la désorption de cette même solution d’ammoniaque (NH4OH) qui permet la libération d’ammoniac (NH3) gazeux. La désorption demande de la chaleur.

À ce stade, rien de différencie ce système thermodynamique d’une chaudière gaz à eau chaude. Au lieu de chauffer de l’eau pure en circuit fermé, on chauffe une solution d’ammoniaque (NH4OH).

L’ingéniosité du principe vient de l’utilisation de l’ammoniac (NH3) dans un cycle frigorifique secondaire qui permettra de « pomper » la chaleur d’une source froide (au niveau de l’évaporateur) pour la restituer au niveau de la source chaude (condenseur) : cette chaleur est gratuite !

En combinant la libération de chaleur lors de l’absorption et la chaleur de condensation, le bilan énergétique est nettement positif !

Technologie

Schéma de principe (source Théma).

Générateur (ou déconcentrateur)

Au niveau du générateur, le brûleur chauffe la solution d’ammoniaque (NH4OH) de manière à libérer de l’ammoniac gazeux (NH3) à haute température. En partie haute du générateur, l’ammoniac est injecté dans le circuit principal de la PAC vers le condenseur. Il va de soi que la solution d’ammoniaque se déconcentre. En continuant de chauffer la solution sans rien changer, la production d’ammoniac gazeux risque de s’arrêter d’elle-même. Pour cette raison, il est nécessaire de régénérer (ou concentrer) la solution d’ammoniaque pauvre. C’est l’absorbeur qui s’en charge !

Absorbeur (ou concentrateur)

Dans l’absorbeur, la solution pauvre issue du générateur est projetée en fines gouttelettes sur l’ammoniac gazeux provenant de l’évaporateur de la machine thermodynamique. Il s’en suit un enrichissement de la solution d’ammoniaque avec, en prime, un dégagement de chaleur important (réaction exothermique). La solution d’ammoniaque riche régénérée peut être renvoyée au niveau du générateur. Le cycle de la PAC gaz est fermé !

Sans rien changé, l’efficacité énergétique de la PAC gaz serait vraiment médiocre ! L’ingéniosité du système réside dans la récupération au condenseur de la chaleur d’absorption. Concrètement, la solution riche d’ammoniaque passera par le condenseur de manière à céder sa chaleur à la source chaude.

Condenseur

Le condenseur de la PAC gaz à absorption est de conception un peu particulière. En réalité, c’est un double condenseur :

  • Un premier échangeur branché sur le circuit thermodynamique principal permet à l’ammoniac (NH3) gazeux de condenser et donc de céder sa chaleur à la source chaude (système de chauffage).
  • Un second échangeur raccordé au circuit secondaire permet à la phase liquide/gaz d’ammoniaque de céder, elle aussi, sa chaleur d’absorption.

Évaporateur

L’évaporateur de la PAC gaz à absorption est un évaporateur classique comme celui utilisé dans les PAC électriques.

Échangeurs secondaires

La chaleur d’absorption étant libérée à haute température, elle ne peut être, qu’en partie, transmise à la source chaude en demande de températures plus modestes. Pour cette raison, d’autres échangeurs placés en aval du condenseur permettront de successivement récupérer la chaleur d’absorption (intérêt de ces échangeurs).

Disponibilité sur le marché

Environnement

Parler du CO2 mais aussi de l’impact d’une fuite de NH3 dans l’air.


PAC gaz à adsorption

Principe

Le principe de fonctionnement de la pompe à chaleur à adsorption s’appuie sur les caractéristiques de la zéolithe, une céramique microporeuse très stable et non polluante. Cette zéolithe est capable de dégager de la chaleur lorsqu’elle adsorbe de l’eau (réaction exothermique lors du passage de la forme déshydratée à la forme hydratée). Lorsqu’elle est saturée, un brûleur à gaz évacue l’eau (désorption). L’emploi de la zéolithe permet de favoriser l’utilisation de l’énergie solaire même à basse température pour le chauffage, sachant que la réaction exothermique d’adsorption peut atteindre 85 °C avec de l’eau à 4 °C.

  • Phase d’adsorption : dans la partie basse de la pompe à chaleur, l’eau présente dans un réservoir sous vide est chauffée. Cette eau, même à basse température, se transforme  en vapeur et migre vers le haut du réservoir. La microporosité de la zéolithe permet de piéger une grande quantité de vapeur (adsorption). La chaleur d’adsorption est utilisée  au niveau de la source chaude (comme un plancher chauffant par exemple) ;
  • Phase de désorption : lorsque la zéolithe saturée d’eau, le minéral est chauffé. L’eau retenue dans la zéolithe est alors libérée sous forme de vapeur (désorption). Cette vapeur coule vers la partie inférieure de la pompe à chaleur, se condense à nouveau et libère de la chaleur. Une récupération de cette chaleur est mise en place. Le système peut redémarrer dans un nouveau cycle d’adsorption.

L’adsorption et la désorption sont des réactions physiques qui n’altèrent pas la structure de la zéolithe. L’alternance adsorption/désorption est alternative, mais peut fonctionner indéfiniment.

     

Phase de désorption puis d’adsorption (Source : www.gaz-naturel.ch).

Technologie

Le système est  conçu sur la base d’une chaudière à condensation, associée à un module à zéolithe sous vide comprenant des billes de céramique microporeuse, de l’eau et les composants hydrauliques.

A l’heure actuelle, certains constructeurs ont un programme de développe des PAC gaz à adsorption pour le résidentiel (maximum 10 kW). L’adsorbant utilisé est la zéolite (Une zéolithe, ou zéolite est un minéral microporeux appartenant au groupe des silicates).

Les sources froides peuvent, comme pour les pompes à chaleur classiques :

  • L’air ;
  • L’eau ;
  • La géothermie …

Comme le montrent les figures ci-dessus, la source froide de la pompe à chaleur à adsorption peut être aussi des panneaux solaires thermiques. Les efficacités saisonnières sont à préciser par le constructeur et à vérifier par des études neutres et en situation réelle. Sur papier, ce système paraît très intéressant sachant qu’on pourrait attendre des …


Point de comparaison des PAC’s

Principe et technologie

Bien que la machine gaz à absorption/adsorption semble assez différente de la machine frigorifique traditionnelle, le principe de base de fonctionnement reste le même :

  • circulation d’un fluide réfrigérant ;
  • évaporation du fluide avec production de froid ;
  • compression du fluide demandant un apport d’énergie ;
  • condensation du fluide avec production de chaleur.

La différence réside dans le moyen de comprimer le fluide :

  • mécanique dans le cas d’une machine électrique ou à moteur à gaz ;
  • thermochimique/thermophysique dans le cas de la machine à absorption/adsorption.

Le type d’énergie nécessaire à cette compression :

  • électrique dans le cas d’une PAC électrique ;
  • calorifique dans le cas d’une PAC gaz à absorption.

PAC électrique

Principe de la PAC électrique.

La pompe à chaleur électrique utilise le travail de compression du compresseur pour faire passer la chaleur gratuite disponible à basse température au niveau de l’évaporateur (source froide : l’air extérieur, l’eau d’une rivière ou d’une nappe phréatique, …) à une température plus élevée au niveau du condenseur (source chaude : l’air intérieur, l’eau chaude d’un chauffage à basse température comme le chauffage au sol, l’ECS, …). Le transfert de la chaleur est effectué grâce un fluide frigorigène via le compresseur. A la chaleur gratuite tirée de la source de froid est ajouté le travail de compression, cette énergie étant fournie par le moteur électrique du compresseur.

PAC à moteur gaz

Principe de la PAC à moteur gaz.

Toute chose restant égale, seul le moteur électrique accouplé mécaniquement au compresseur est remplacé par un moteur à combustion gaz.

PAC gaz à absorption

Principe de la PAC gaz à absorption.

Sur le même principe que la pompe à chaleur électrique, le transfert de la chaleur gratuite de la source froide à basse température vers la source chaude à température plus élevée, est assuré  grâce à un fluide frigorigène via, non pas un compresseur, mais un générateur de chaleur au gaz. C’est à ce stade que l’analogie s’arrête et que les deux systèmes diffèrent complètement.

Efficacité énergétique

Principe de comparaison

Une pompe à chaleur est énergétiquement efficace si elle demande peu d’énergie pour fournir une puissance calorifique donnée. Pour pouvoir assurer un point de comparaison énergétique entre les différents types de pompe, il est nécessaire, par rapport à leur production de chaleur, de considérer les consommations « primaires » d’énergie. C’est le cas surtout pour l’électricité ! En effet, l’électricité consommée au niveau de la pompe à chaleur est une énergie finale qui ne tient pas compte :

  • du rendement moyen des centrales électriques en Belgique ;
  • des pertes en lignes du réseau électrique.

L’énergie primaire à considérer est :

  • Le gaz disponible au niveau de la conduite d’alimentation du bâtiment. Les kWhPCI sont utilisés pour tenir compte d’une éventuelle phase de condensation (ηPCI > 100 %).
  • L’électricité disponible au niveau du câble d’alimentation du bâtiment multipliée 2.5. Ce coefficient a été adopté par la ouverture d'une nouvelle fenêtre ! CWaPE (Commission Wallonne Pour L’Énergie) se base sur un rendement moyen de 40 % pour les centrales électriques en Europe. En d’autres termes, un 1 kWh consommé au niveau de la pompe à chaleur, 2.5 kWh ont été consommés au niveau de la centrale électrique. Dans le cas de la PAC électrique, la performance se calcule par le rapport :

    Technologie

COP = Énergie utile (chaleur) / Énergie consommée (électricité)

Cependant, pour comparer des pommes entre elles par rapport à une PAC gaz à absorption par exemple, l’énergie primaire consommée pour produire de l’électricité nécessaire à alimenter le moteur électrique, doit être considérée. On parle alors de rapport d’énergie primaire REP défini comme suit :

REP (PER) = Énergie utile / (Énergie consommée / η centrale électrique)

La valeur intéressante pour les gestionnaires de bâtiments est la valeur du COPA ou ACOP, … (vive l’Europe !) qui exprime l’efficacité  annuelle mesurée en tenant compte de toutes les consommations de la machine par rapport à l’énergie qu’elle fournit. La performance annuelle est naturellement liée à l’efficacité instantanée au cours du temps qui, elle, peut varier en fonction de différents paramètres :

  • de la température de la source froide ;
  • de la température de la source chaude ;
  • du taux de charge de la pompe à chaleur.

PAC électrique

Dans le cas de la pompe à chaleur électrique dont le COP = 3, 1 kWh d’énergie électrique finale consommé, fournit à la distribution d’un système de chauffage 3 kWh. C’est bon pour la poche du consommateur (performance finale de 300 %) ! Mais en termes d’énergie primaire, seulement 3/2.5 soit 1.2 kWh est restitué à la source chaude (performance primaire de 120 %) ; ce qui reste meilleur que la performance d’une chaudière à condensation très efficace quand même (ηPCI = 108 %).

Bilan énergétique  (source : Thema).

La performance de la PAC électrique est influencée par les paramètres repris dans le tableau suivant :

Paramètres d’influence Niveau d’influence Remarque
Température de la source froide Forte Réduction des consommations de + 3 % par augmentation de 1 °C
Température de la source chaude Forte Réduction des consommations de + 3 % réduction de 1 °C
Taux de charge Moyenne En général, une PAC électrique travaillant à charge partielle réduit les consommations

Comme le montre le tableau précédent, la PAC électrique est très sensible aux types de source chaude et de source froide. On privilégiera le fonctionnement de la PAC à charge partielle par la réduction de la vitesse du compresseur (technique INVERTER).

PAC à moteur gaz

Bilan énergétique (source Théma).

Bilan énergétique et performance (Source : Aisin Toyota).

La PAC gaz à absorption a une efficacité énergétique définie comme suit :

COP = Énergie utile (chaleur) / Énergie consommée (consommation de gaz)

Comme le montre le graphique précédent, le constructeur annonce qu’en pointe (taux de charge faible) pour 1 kWh d’énergie primaire fourni (gaz), une pompe à chaleur à moteur à gaz restitue donc 1,43 kWh maximum, ce qui en fait un système de chauffage hautement intéressant par rapport à l’environnement.
La performance de la PAC à moteur gaz est influencée par les paramètres repris dans le tableau suivant :

Paramètres d’influence Niveau d’influence Remarque
Température de la source froide Faible
Température de la source chaude Moyenne
Taux de charge Forte 30 à 40 % d’influence

La modulation de puissance est très importante pour augmenter la performance de la PAC à moteur gaz. Sur un moteur à combustion, comme celui qui équipe ce type de PAC, la modulation de puissance ne pose aucun problème. Elle est donc principalement influencée par le dimensionnement en fonction des besoins de chaleur.

PAC gaz à absorption

Bilan énergétique  (source : Thema).

Certains constructeurs annoncent des performances de l’ordre de 150 %.

Tout comme la PAC à moteur gaz, la performance de la PAC gaz à absorption est influencée par les paramètres repris dans le tableau suivant :

Paramètres d’influence Niveau d’influence Remarque
Température de la source froide Faible
Température de la source chaude Moyenne
Taux de charge Forte

Comparatif des PAC gaz

Une étude très intéressante de l’IGU (International Gas Union : « Gas Heat Pumps, the renewable heating system for the future ? ») a montré qu’en moyenne, la performance des PAC gaz, toutes parques confondues, était plutôt aux alentours des 116 % avec une valeur à 120 % en cas de configuration de la PAC gaz avec des panneaux solaires thermiques.

Performance moyenne.

PAC électrique, PAC gaz même combat ?

Tout dépend des conditions de fonctionnement (taux de charge, températures des sources chaudes et froides, …) et des consommations des auxiliaires du niveau de dégivrage). Dans la littérature, on s’accorde à dire, qu’effectivement, pour les PAC électriques et gaz c’est le même combat !

Intérêt de la géothermie ?

Par contre, comme le montre la figure ci-dessus, les PAC gaz peuvent fortement se démarquer des PAC électriques au niveau du dimensionnement de la source froide. On voit tout de suite que l’évaporateur peut être de dimension plus faible :

  • Si la source froide est l’air externe, la taille de l’évaporateur et des ventilateurs sera plus faible d’où réduction de l’investissement pour la partie évaporateur. Il s’ensuit que les consommations des auxiliaires seront aussi réduites.
  • Si la source froide est l’eau, et plus spécifiquement, la géothermie, le dimensionnement du système de géothermie est presque divisé par 3.

Surtout dans le domaine de la conception et de l’exploitation de la géothermie qui, en règle générale, passe à la trappe pour une question d’investissement (grande quantité de sondes géothermiques, profondeur importante, …), l’association d’une PAC gaz avec une géothermie est très intéressante.

Évaluer l’association cogen et chaudière condensation


Intérêt énergétique, environnemental et financier

Y a-t-il un intérêt énergétique, environnemental et financier à associer une cogénération avec une chaudière à condensation ?

Dans ce qui suit, on tente d’y répondre par l’exploitation du logiciel d’étude de pertinence de cogénération de la Région Wallonne CogenSim.

Simulation

En partant du principe qu’une cogénération est dimensionnée pour produire la base du profil des besoins de chaleur, le solde étant fourni par une chaudière, plus cette chaudière sera performante, plus importante sera la réduction des consommations énergétiques pour fournir ce solde.

Une manière d’y arriver est de simuler une cogénération associée à une chaudière dont le rendement saisonnier évolue de 80 à 99 %.

Exemple

Les besoins de chaleur et d’électricité d’un bâtiment tertiaire sont représentés par les profils de chaleur suivants. Un exemple de profil de besoins est donné dans CogenSim.On constate que :

  • la puissance maximale correspondant au dimensionnement est de 1 000 kW, soit 100 % de taux de charge ;
  • le besoin de chaleur résiduelle en été est de l’ordre de 200 kW. Ce besoin résiduel est de l’ordre de grandeur d’un besoin d’ECS ;
  • le profil électrique montre que le bâtiment est occupé 7 jours sur 7 avec une réduction d’activité le weekend.

Besoin de chaleur.

Besoin d’électricité.

La monotone de chaleur permet de mieux visualiser la fréquence des puissances de chauffe nécessaires sur une année :

Monotone de chaleur.

Les hypothèses de simulation sont nombreuses. L’objectif dans cet exemple étant de ne pas vous assommer de chiffres, les principales sont reprises ci-dessous :

  • Vecteur énergétique : gaz.
  • Type de régulation :
    • l’injection d’électricité sur le réseau est autorisée ;
    • le rejet de chaleur est interdit.
  • Les certificats verts sont garantis par la RW au prix de 65 €.
  • Les prix de l’électricité avant cogénération : 150 €/MWh.
  • Les prix de l’électricité après cogénération : 157 €/MWh.
  • La vente d’électricité : 40 €/MWh.
  • Les prix du combustible avant cogénération : 60 €/MWh.
  • Les prix du combustible après cogénération : 32.8 €/MWh.
  • Le taux de charge minimum de la cogénération : on considère en général qu’une cogénération ne peut moduler sa puissance qu’entre 60 et 100 %.
  • Le taux de charge minimum et maximum : 40 et 60 %.
  • La capacité du ballon tampon : 10 000 litres.

 

Simulation

CogenSim a sélectionné une cogénération d’une puissance de 200 kWélectrique et 297 kWthermique. Les caractéristiques principales de la machine sont détaillées dans le tableau suivant :

Combustible
Puissance nominale électrique (hors auxiliaires électriques) 200 kW
Puissance appelée par les auxiliaires électriques 4 kW
Puissance nominale thermique 297 kW
Rendement électrique à charge nominale 35 %
Rendement électrique à mi-charge 31 %
Rendement thermique à charge nominale 52 %
Rendement moyen électrique 34 %
Rendement moyen chaleur 52 %
Rendement moyen de fonctionnement 86 %

Pour différentes valeurs de rendement (80, 85, 90 et 100 %), le bilan énergétique donne :

Bilan énergétique
Rendement de la chaudière associée 80 % 85 % 90 % 100 %

Sans cogénération

Énergie électrique consommée 4,956,554 4,956,554 4,956,554 4,956,554 kWhélectrique/an
Besoins thermiques nets 3,521,490 3,521,490 3,521,490 3,521,490 kWhth/an
Combustible consommé 4,401,862 4,142,929 3,912,766 3,521,842 kWhcombustible/an
Énergie électrique primaire consommée 12,391,385 12,391,385 12,391,385 12,391,385 kWhcombustible/an
Énergie primaire totale sans cogénération 16,793,247 16,534,314 16,304,151 15,913,227 kWhcombustible/an

Avec cogénération

Énergie primaire consommée par la cogénération 3,984,400 3,984,400 3,984,400 3,984,400 kWhcombustible/an
Chaleur utile produite par la cogénération 2,076,437 2,076,437 2,076,437 2,076,437 kWhth/an
Économie combustible correspondante pour la chaufferie 2,595,546 2,442,867 2,307,152 2,076,644 kWhcombustible/an
Chaleur utile encore à produire par la chaufferie 1,448,450 1,448,450 1,448,450 1,448,450 kWhth/an
Consommation correspondante par la chaufferie 1,810,562 1,704,059 1,609,389 1,448,595 kWhcombustible/an
Énergie électrique produite par la cogénération 1,358,704 1,358,704 1,358,704 1,358,704 kWhélectrique/an
dont énergie électrique revendue au réseau 110 110 110 110 kWhélectrique/an
dont énergie électrique auto-consommée 1,358,594 1,358,594 1,358,594 1,358,594 kWhélectrique/an
Énergie électrique consommée au niveau du réseau 3,597,960 3,597,960 3,597,960 3,597,960 kWhcombustible/an
Énergie primaire totale avec cogénération 14,789,863 14,683,360 14,588,690 14,427,896 kWhélectrique/an
Taux d’économie de CO2 12 % 11 % 11 % 9 %

Sur base des résultats obtenus et dans ce cas précis, on peut « tirer » les informations suivantes :

> Le bilan énergétique théorique est favorable à l’association d’une chaudière, quelle qu’elle soit, à une cogénération.

> Lorsqu’on tend vers le rendement d’une chaudière à condensation, les consommations en énergie primaire diminuent. En effet, le besoin thermique résiduel pris en charge par la chaudière génèrera une consommation d’autant plus faible que meilleur sera le rendement de la chaudière.

 

Quant au bilan économique, il est présenté dans le tableau suivant :

Bilan financier

Sans cogénération

Coûts 80 % 85 % 90 % 100 %
Montant facture électricité 743,483 743,483 743,483 743,483 €/an
Montant facture combustible 264,111 248 575 234, 65 21,310 €/an
Montant facture énergie globale 1,007,594 992,058 978,249 954,730 €/an

Avec cogénération

Coûts
Montant facture électricité 566,678 566,678 566,678 566,678 €/an
Montant facture combustible 347,443 341,068 335,401 325,776 €/an
Montant entretien pour la cogénération 22,328 22,328 22,328 22,328 €/an
Montant facture énergie globale 936,451 930,075 924,408 914,783 €/an
Gain
Rente de l’électricité injectée 4 4 4 4 €/an
Économie annuelle sans C.V. 71,144 77,519 83,186 92,811 €/an
Taux d’économie en CO2 32 % 32 % 32 % 32 %
Certificats verts 28 306 28 306 28 306 28 306 €/an
Économie annuelle avec C.V. 99,451 105,826 111,493 121,118 €/an
Investissement
Cogénérateur complet (hors installation) 197,181 197,181 197,181 197,181
Groupe cogénération & stockage de chaleur 205,772 205,772 205,772 205,772
Aide à l’investissement 1 % 1 % 1 % 1 %
Facteur de surinvestissement 50 % 50 % 50 % 50 %
Groupe cogénération NET 305,572 305,572 305,572 305,572
Chaudière 33,333 33,333 33,333 50,000
Temps de Retour Simple (TRS) 3.4 3.2 3.0 2.9 Années

L’analyse du bilan financier montre que l’augmentation du rendement de la chaudière permet d’améliorer la rentabilité financière de l’ensemble de l’installation.

Remarque
Attention qu’il existe deux taux d’économie en CO2. On les appellera librement le taux d’économie en CO2 énergétique et le taux d’économie en CO2 lié au calcul des certificats verts (production verte d’électricité) :

> Le taux d’économie en CO2 énergétique (énergie primaire) est exprimé par la formule suivante :

tCO2 énergétique    Eref + Q  –  F /  Eref  + Q %

Où,

  • Eref = émissions d’une centrale électrique de référence (kg CO2/an). Si la centrale de référence est une TGV (turbine gaz vapeur), le rendement de la CWaPE est de 55 %. Par conséquent, Eref = 456 kg CO2/MWh ;
  • Q  = émissions d’une chaudière de référence (kg CO2/an) ;
  • F = émissions de la cogénération (kg CO2/an).

> Le taux d’économie en CO2 (calcul CV) est exprimé par la formule suivante :

tCO2 énergétique    Eref + Q  –  F / Eref   %

Où,

  • Eref = émissions d’une centrale électrique de référence (kg CO2/MWh électrique.
  • Q  = émissions d’une chaudière de référence (kg CO2/ MWh électrique).
  • F = émissions de la cogénération (kg CO2/ MWh électrique).

Choisir le type de toiture

Actuellement, les toitures plates sont aussi fiables que les toitures inclinées. Le choix se fera donc sur base des exigences architecturales de fonctionnalité et d’esthétique.

 

Dans le cas des toitures inclinées il faut choisir, soit d’isoler les versants, soit d’isoler le plancher des combles.

Isolation dans le versant de toiture.

Isolation dans le plancher des combles.

Résoudre les noeuds constructifs – isolation dans l’épaisseur de la paroi

Résoudre les noeuds constructifs - isolation dans l’épaisseur de la paroi 


Ossatures légères

Les éléments de fixation et de structure répartis sur toute la surface de ces parois ne sont pas des nœuds constructifs mais sont pris en compte dans le calcul du coefficient de transmission thermique U de la paroi elle-même. Ils ne doivent généralement pas être traités.

Exemple.

Plancher léger inférieur.

Murs creux

Dans les bâtiments anciens, la coulisse est souvent interrompue. Ces interruptions constituent des ponts thermiques qui ne peuvent pas être supprimés.

Exemples.

Appui de plancher.

Seuil de fenêtre.

Retour de baie.

Dans ce cas, il est souhaitable de ne pas insuffler l’isolant dans la coulisse. Il est préférable d’isoler par l’extérieur.

Résoudre les noeuds constructifs – isolation par l’extérieur

C’est le cas le plus facile à résoudre. En effet, il est généralement possible d’assurer la continuité de l’isolant sans rencontrer d’obstacles provoquant l’interruption de celui-ci.

Les principales difficultés seront localisées au droit des balcons et des fondations. Il n’est généralement pas possible, à coût raisonnable, de démonter le nœud constructif et d’insérer une couche isolante. La seule solution alors possible est d’allonger le chemin de moindre résistance thermique en emballant l’élément qui ne peut pas être coupé.

Les nœuds constructifs entre les fenêtres et les façades (appuis de fenêtre, linteaux, piédroits) nécessitent parfois des petites adaptations.

Résoudre les noeuds constructifs - isolation par l'extérieur


Raccord entre le pied de façade et un plancher sur vide sanitaire accessible (ou cave)

Lorsque le vide sanitaire (ou la cave) est accessible, le plancher sera isolé par l’extérieur, c.-à-d.. par le dessous. L’isolant est collé ou fixé mécaniquement.
En rénovation, la continuité entre l’isolant du mur et celle du plancher n’est pas réalisable. Il faut donc neutraliser le pont thermique en augmentant la longueur des chemins dont la résistance thermique est plus faible.

La résistance thermique du chemin ‘B’ est beaucoup plus faible que celle des chemins ‘A’ et ‘C’.

De par sa longueur, la résistance thermique du chemin ‘B’ au travers des matériaux non isolants tels que maçonneries, dalles de plancher, etc. devient aussi importante que celle des chemins ‘A’ et ‘C’.

Dans les terrains humides, le panneau isolant doit être protégé par une membrane drainante. Un drain doit être placé au bas de cette membrane pour récolter et évacuer les eaux.
Si le vide sanitaire est en contact direct avec l’air extérieur, il faut, pour les mêmes raisons que ci-dessus, prolonger l’isolant sous la dalle, sur l’intérieur du mur de fondation.

  1. Mur existant.
  2. Plancher lourd existant avec isolant appliqué sur sa face inférieure.
  3. Vide sanitaire accessible (ou cave) en contact direct avec l’air extérieur.
  4. Isolation par l’extérieur du mur de façade (cas de panneaux isolants revêtus d’un enduit).
  5. Isolant thermique résistant à l’humidité (XPS, par exemple) fixé au mur enterré pour neutraliser le pont thermique au pied de façade.
  6. Panneaux de protection mécanique résistant à l’humidité.
  7. Retour d’isolation pour neutraliser le pont thermique entre l’intérieur du bâtiment et le vide sanitaire.

Raccord entre le pied de façade et un plancher sur terre plein (isolé par l’intérieur)

Comme dans le cas précédent la continuité entre l’isolant du mur et celle du plancher n’est pas réalisable. Il faut donc neutraliser le pont thermique en prolongeant l’isolant du pied de façade en dessous du niveau du plancher.

Dans les terrains humides, le panneau isolant doit être protégé par une membrane drainante. Un drain doit être placé au bas de cette membrane pour récolter et évacuer les eaux.

  1. Mur existant.
  2. Plancher isolé sur sol.
  3. Isolation par l’extérieur du mur de façade.
  4. Isolant thermique (XPS) fixé au mur enterré pour neutraliser le pont thermique au pied de façade.
  5. Membrane drainante.
  6. Panneau de protection mécanique résistant à l’humidité.
  7. Drain et empierrement protégé à l’aide d’un géotextile.

Raccord avec une toiture chaude côté rive

Techniques

Si vous voulez savoir comment réaliser une toiture chaude ?

  1. Pièce de bois fixée à la maçonnerie.
  2. Bande d’étanchéité de raccord. Celle-ci est placée de manière à favoriser l’écoulement de l’eau vers la partie couvrante (intérieure) de la toiture.
  3. Profilé de rive avec écarteur = casse-goutte fixé à la pièce de bois.

Raccord avec une toiture chaude côté gouttière pendante

Techniques

Si vous voulez savoir comment réaliser une toiture chaude ?

  1. Mur de façade
  2. Panneaux isolants
  3. Armature de la couche d’enrobage
  4. enduit de finition
  5. Profil d’nterruption
  6. Pièces de bois (échelle)
  7. isolant existant
  8. Planche de rive
  9. Crochets
  10. Gouttière
  11. Larmier rigide
  • Isolation du mur par l’extérieur : placer les panneaux isolants (2) sur le mur de façade existant (1), le profilé d’interruption (5) fixé à la maçonnerie, l’armature et la couche d’enrobage (3) et enfin l’enduit de finition (4).
  • Poser des pièces de bois (6) là où doivent venir les crochets de la gouttière. Elles sont placées de manière à ce que la planche de rive posée ultérieurement fasse casse-goutte. Leur épaisseur est inférieure à celle de l’isolant de manière à éviter les stagnations d’eaux.
  • Création de la toiture chaude à partir du support existant (7) : l’étanchéité existante est conservée pour servir de pare-vapeur. L’isolant thermique est posé; il est prolongé entre les pièces de bois qui vont servir de support aux crochets de la gouttière. Une nouvelle étanchéité est posée sur l’isolant.
  • La planche de rive (8) est fixée sur les pièces de bois.
  • Les crochets (9) + la gouttière (10) sont placés.
  • La membrane d’étanchéité est posée. Le larmier rigide (11) assure la continuité de l’étanchéité entre la membrane et la gouttière.

Raccord avec une toiture chaude côté rive avec acrotère

Techniques

Si vous voulez savoir comment réaliser une toiture chaude ?

  1. Maçonnerie pour surélever l’acrotère.
  2. Isolation du mur par l’extérieur (cas de panneaux isolants revêtus d’un enduit : isolant collé au support, armature et couche d’enrobage, enduit de finition.).
  3. Profilé d’interruption fixé dans la maçonnerie.
  4. Création d’une toiture chaude sur support existant : l’étanchéité existante est conservée comme pare-vapeur, isolant, nouvelle étanchéité, lestage éventuel.
  5. Chanfrein.
  6. L’isolation de l’acrotère assure la continuité de l’isolation.
  7. Bande d’étanchéité de raccord. Celle-ci est placée de manière à favoriser l’écoulement de l’eau vers la partie couvrante (intérieure) de la toiture.
  8. Profilé de rive avec écarteur = casse-goutte fixé à la maçonnerie.

Bruxelles Environnement a édité une vidéo illustrative de la mise en œuvre correcte de l’isolation d’un acrotère :

    Isolation : Isolation correcte de l’acrotère [Vidéo réalisée dans le cadre du projet Conclip, soutenu par Bruxelles Environnement].


Raccord avec le versant de toiture isolé entre les chevrons

 Améliorer

Si vous voulez savoir comment isoler le versant de la toiture existante ?

  1. Chevron ou fermette.
  2. Voligeage éventuel.
  3. Sous-toiture étanche à l’eau.
  4. Contre-latte.
  5. Lattes.
  6. Éléments de couverture.
  7. Planche de pied. Sa face supérieure doit se trouver dans le même plan que le bord supérieur des chevrons ou fermes.
  8. Planche de rive.
  9. Gouttière pendante.
  10. Peigne (protection de la latte de pied contre la pluie et contre la pénétration d’oiseaux ou d’insectes).
  11. Isolation de la toiture.
  12. Pare-vapeur.
  13. Plafond.
  14. Moulure décorative.
  15. Mur plein.
  16. Finition intérieure des murs.
  17. Isolation du mur par l’extérieur.
  18. Sous-enduit + armature + enduit de finition.

Raccord avec le versant de toiture isolé au-dessus des chevrons (toiture « Sarking »)

Améliorer

Si vous voulez savoir comment isoler le versant de la toiture existante ?

  1. Cale de bois pour empêcher le glissement des panneaux isolants.
  2. Panneaux isolants rigides au-dessus des chevrons ou des fermettes (Toiture « Sarking »).
  3. Contre-lattes.
  4. Bavette insérée partiellement dans le panneau isolant pour que les eaux infiltrées s’écoulent dans la gouttière.
  5. Mur isolé par l’extérieur (cas de panneaux isolants revêtus d’un enduit : isolant collé au support, armature et couche d’enrobage. Enduit de finition.)
  6. Profilé d’interruption fixé mécaniquement à la maçonnerie.
  7. Isolant de remplissage pour assurer le continuité de la couche isolante entre la toiture et le mur.

La baie de fenêtre

Seuil et linteau – cas du panneau isolant revêtu d’un enduit

  1. Mur existant + enduit intérieur.
  2. Arrêt d’enduit + mastic.
  3. Panneau isolant collé.
  4. Armature et mortier d’enrobage.
  5. Enduit de finition.
  6. Armature d’angle.
  7. Retour d’isolation au niveau du linteau (panneau collé revêtu des mêmes couches que le reste du mur existant).
  8. Seuil en tôle pliée.
  9. Retour d’isolation au niveau du seuil.

Retour d’isolation au niveau du seuil – étapes :

  • Le seuil en pierre existant est démonté.
  • Un support de forme adéquate pour laisser de la place à l’isolant sous le châssis (une poutrelle en acier en « U » par exemple) est placé sous le châssis pour le soutenir.
  • Une couche isolante (isolant compressible) est placée sous le châssis jusqu’au panneau isolant extérieur.
  • Un nouveau seuil plus fin (métallique par exemple) est placé en garantissant l’écoulement vers l’extérieur de l’eau évacuée par le châssis (le conduit de drainage doit se trouver en avant du « talon » du seuil).

Ébrasement de baie – cas du panneau isolant revêtu d’un enduit

      1. Mur existant + enduit intérieur.
      2. Arrêt d’enduit + mastic.
      3. Panneau isolant collé.
      4. Armature et mortier d’enrobage.
      5. Enduit de finition.
      6. Armature d’angle.
      7. Retour d’isolation au niveau de l’ébrasement (panneau collé revêtu des mêmes couches que le mur).

 Seuil et linteau – cas de l’isolant protégé par un bardage

      1. Retour d’isolation au niveau du linteau.
      2. Retour d’isolation au niveau du seuil de fenêtre.
      3. Retour au niveau de l’ébrasement de fenêtre.

Retour d’isolation au niveau du linteau et au niveau de l’ébrasement : des lattes sont fixées sur le linteau et sur l’ébrasement de fenêtre. L’isolant est posé entre les lattes. Le tout est recouvert d’une finition ( feuille métallique par exemple).

Retour d’isolation au niveau du seuil – étapes :

  1. Le seuil en pierre existant est démonté.
  2. Un support de forme adéquate pour laisser de la place à l’isolant sous le châssis (une poutrelle en acier en « U » par exemple) est placé sous le châssis pour le soutenir.
  3. Une couche isolante (isolant compressible) est placée sous le châssis jusqu’au panneau isolant extérieur.
  4. Un nouveau seuil plus fin (métallique par exemple) est placé en garantissant l’écoulement vers l’extérieur de l’eau évacuée par le châssis (le conduit de drainage doit se trouver en avant du « talon » du seuil).

Seuil et linteau – cas de la création d’un mur creux

      1. Mur existant + enduit intérieur.
      2. Isolant thermique (cas d’une coulisse intégralement remplie).
      3. Mur de parement neuf.
      4. Remplissage de l’espace qui était réservé au seuil d’origine par de la maçonnerie.
      5. Nouveau seuil de fenêtre.
      6. Isolant thermique assurant la continuité entre l’isolant du mur et le châssis.
      7. Support de fenêtre sans appui sur le seuil (patte en acier galvanisé fixée mécaniquement au mur porteur).
      8. Cornière.
      9. Linteau extérieur.
      10. Membrane d’étanchéité (avec bords latéraux relevés) et joints verticaux ouverts au-dessus du linteau afin d’évacuer l’eau infiltrée dans la coulisse.
      11. Nouvelle fenêtre.
      12. Joint d’étanchéité (Mastic).
      13. Mousse isolante injectée.
      14. Nouvelle tablette (bois par exemple).
      15. Joint d’étanchéité (fond de joint + mastic).
      16. Calfeutrement
      17. Nouvelle finition de l’encadrement intérieur.

Concevoir

Les principes à respecter sont les mêmes que ceux pour un seuil et un linteau d’un nouveau mur creux.

Lorsque les dimensions du dormant du châssis ne sont pas suffisantes pour revenir avec l’épaisseur des panneaux isolants sur les retours au niveau de l’ébrasement ou/et du linteau, il faut casser la maçonnerie.

Linteau – cas du panneau isolant revêtu d’un enduit

Ébrasement de baie – cas du panneau isolant revêtu d’un enduit

De même, si l’on souhaite conserver un seuil en pierre, il faut également casser la maçonnerie pour gagner de la place.
S’il n’est pas possible de casser la maçonnerie (linteau en béton, par exemple), il faut prévoir un châssis plus petit.

Remarque : de par son épaisseur, l’isolant posé à l’extérieur fait apparaître les châssis plus enfoncés dans la façade. De même, suivant la pose au niveau du linteau et du retour de baie, les dimensions du dormant du châssis peuvent paraître moins importantes.

Choisir le type de mur [concevoir l’isolation]

Chacune de ces techniques constructives présente des avantages et des inconvénients qui guideront le choix.


Le mur creux

Principe du mur creux.

Avantages

  • Le mur creux s’intègre généralement dans l’architecture traditionnelle de nos régions.
  • Il est efficace contre les infiltrations d’eau de pluie.
  • Son parement extérieur résiste bien aux agressions mécaniques.
  • Le mur porteur intérieur généralement massif (> 100 kg/m²) renforce l’inertie thermique du bâtiment diminuant ainsi les risques de surchauffe en été et permettant un stockage de chaleur en hiver.

Inconvénients

  • L’épaisseur de l’isolant est limitée par l’épaisseur disponible dans le creux du mur (en rénovation).
  • La stabilité des parements notamment au-dessus des grandes baies nécessite des appareillages qui sont sources potentielles de ponts thermiques et de coûts supplémentaires.

Techniques

Pour en savoir plus sur les caractéristiques du mur creux : cliquez ici  !

Concevoir

Pour en savoir plus sur la conception du mur creux : cliquez ici  !


Le mur plein non isolé

Principe du mur plein non isolé.

Ce type de mur ne sera généralement pas envisagé étant donné ses mauvaises performances thermiques. Même si le matériau utilisé est relativement isolant (béton cellulaire ou terre cuite allégée), les épaisseurs nécessaires pour atteindre ne fut-ce que les performances minimales exigées par la réglementation sont déjà très importantes (50 cm). Pour des performances plus ambitieuses, cette technique n’est pas adaptée.

Techniques

Pour en savoir plus sur les caractéristiques du mur plein : cliquez ici  !

Le mur isolé par l’extérieur

Principe du mur isolé par l’extérieur.

  1. Mur plein.
  2. Mortier de collage de l’isolant.
  3. Panneau d’isolation.
  4. Armature synthétique ou métallique + sous-couche de l’enduit.
  5. Enduit de finition.

Avantages

  • L’isolant est continu et enveloppe bien le bâtiment.
  • Des épaisseurs importantes sont possibles.
  • L’aspect extérieur peut être adapté aux exigences urbanistiques.
  • Le mur généralement massif (> 100 kg/m²) renforce l’inertie thermique du bâtiment diminuant ainsi les risques de surchauffe en été et permettant un stockage de chaleur en hiver.

Inconvénients

  • La face extérieure de la façade est relativement fragile aux agressions mécaniques.

Techniques

Pour en savoir plus sur les différents systèmes d’isolation par l’extérieur : cliquez ici  !

Concevoir

Pour en savoir plus sur la conception du mur isolé par l’extérieur cliquez ici  !

Le mur isolé par l’intérieur

Principe du mur mur isolé par l’intérieur.

Ce type de mur ne sera généralement pas envisagé pour une nouvelle construction à cause de la difficulté à gérer les ponts thermiques, le risque de condensation interstitielle dans la façade et l’affaiblissement de l’inertie thermique du bâtiment (défavorable pour la gestion des surchauffes estivales).


Le mur à ossature bois

Principe du mur à ossature bois.

Avantages

  • Le mur à ossature bois est fabriqué en atelier et sa pose sur chantier est très rapide.
  • L’espace disponible pour la pose de l’isolant est généralement important. La façade peut donc être très performante du point de vue thermique.
  • Son inertie thermique faible peut être un avantage pour les bâtiments à occupation occasionnelle (salles de fête, lieux de culte, …) car elle permet une mise à température rapide sans apport d’énergie excessif et stockage inutile de celle-ci.

Inconvénients

  • La faible inertie de la façade augmente les risques de surchauffe en été.
  • Certaines réglementations urbanistiques imposent des parements extérieurs en brique. Du point de vue constructif, ce parement lourd n’est pas nécessaire. Il est coûteux. Il trompe l’observateur sur la nature de la paroi. Une couche massive de matériau est placée  à l’extérieur de l’isolant alors qu’elle aurait éventuellement pu être utile à l’intérieur pour stabiliser la température.

Techniques

Pour en savoir plus sur les caractéristiques du mur à ossature : cliquez ici  !

Techniques

Pour en savoir plus sur l’isolation dans l’ossature : cliquez ici  !

Concevoir

Pour en savoir plus sur la conception du mur à ossature bois: cliquez ici  !

Le mur-rideau

Principe du mur-rideau.

Le mur-rideau est comparable à  une fenêtre de grande dimension avec d’éventuelles parties pleines (non transparentes). Les exigences thermiques réglementaires  ne sont pas sévères et peuvent généralement être respectées. Toutefois, si certains murs rideaux avec triples vitrages atteignent des performances intéressantes (U < 0.85 W/m²K), ces valeurs sont bien moins bonnes que celles obtenues par des murs traditionnels (U < 0.4 W/m²K). Il est donc préférable de n’opter pour les murs rideaux que lorsque de grandes surfaces vitrées sont nécessaires. Si ce n’est pas le cas, une façade légère en bois est plus indiquée si le choix d’une façade légère est fait.

Techniques

Pour en savoir plus sur les caractéristiques du mur rideau: cliquez ici  !

Concevoir

Pour en savoir plus sur la conception du mur rideau: cliquez ici  !

Régulation d’un ensemble chaudière/cogénérateur

Régulation d'un ensemble chaudière/cogénérateur


Régulation d’ensemble

Ordre de priorité

Monotone de chaleur.

Dans l’association d’une cogénération avec une ou plusieurs chaudières, l’objectif, comme on l’a déjà précisé, est que la cogénération fonctionne un maximum d’heures sur l’année. Elle devrait donc être « en tête » de cascade ! Attention toutefois qu’une cogénération ne peut, en général, moduler qu’entre 60 et 100 %  de son taux de charge thermique.

En supposant que l’étude donne un dimensionnement de la puissance du cogénérateur de l’ordre de 40 % de la puissance totale nécessaire au bâtiment, il ne pourra moduler qu’entre une valeur de 24 à 40 % de la puissance totale. Sous les 24 % de puissance, si la cogénération est mise en tête de cascade, elle va commencer à « pomper » avec pour effet d’accentuer son vieillissement prématuré, car elle ne supporte pas les séquences répétées marche/arrêt.

Zone 1

En réalité, pour un besoin inférieur à 24 % de la puissance totale, ce sont les autres chaudières qui doivent être en « tête » de cascade. Si la chaufferie est équipée d’une chaudière à condensation, pour autant qu’elle soit dans de bonnes conditions de condensation, c’est elle qui doit assurer le besoin de chaleur. Avec sa capacité à moduler de 10 % à 100 % de son taux de charge, avec un excellent rendement à faible charge, la chaudière à condensation est tout indiquée.

Zone 2

Dans la plage de 24 à 40 % de la puissance totale nécessaire, la cogénération doit fonctionner en priorité. Une régulation mal réglée peut être à l’origine de l’arrêt prolongé ou du « pompage » de la cogénération ; ce qui n’est pas le but recherché.

Zone 3

Pendant les périodes de grands froids, la cogénération ne sera pas suffisante pour assurer les besoins de chaleur du bâtiment considéré. Il sera nécessaire de lui adjoindre une chaudière afin de lui donner le « coup de pouce sauveur ». Cette opération est délicate en fonction du type de chaudière qui vient faire l’appoint. Un développement trop important de puissance de la part de la chaudière peut faire en sorte que la cogénération s’arrête voire pire qu’elle commence à « pomper » (marche/arrêt intempestifs à faible charge). Pour cette plage de fonctionnement, il sera nécessaire, si possible, de piloter les chaudières en puissance de manière à éviter de démarrer :

  • une chaudière classique avec brûleur à 2 allures en grande flamme ;
  • une chaudière plus récente avec brûleur modulant à 100 % de taux de charge.
Exemple

Situation avant :

  • un besoin thermique maximum de 600 kW ;
  • deux chaudières classiques HR de 300 kW chacune.

La configuration suivante est envisagée :

  • Une des deux chaudières est remplacée par une chaudière à condensation sans réduction de puissance par rapport à l’ancienne chaufferie. La chaudière à condensation peut moduler de 10 à 100 % de sa puissance nominale.
  • Une cogénération de 200 kW thermique équipée d’un ballon tampon est sélectionnée par l’étude de faisabilité. La cogénération peut moduler de 60 à 100 % de sa puissance thermique nominale.

Le graphique suivant donne un aperçu d’un type de régulation réalisable :

Cette régulation intelligente tente de maintenir les différents équipements de production de chaleur à leur meilleure efficacité énergétique optimale, à savoir :

  • De 0 à 24 % du besoin de chaleur : la chaudière à condensation module de 5 à 24 % du besoin total de chaleur (soit 10 à 48 % de son taux de charge). Dans cette plage, le rendement de la chaudière peut atteindre au mieux de l’ordre de 107 % sur PCI.
  • De 24 à 40 % du besoin de chaleur : la cogénération module de 60 à 100 % de son taux de charge.
  • De 40 à 90 % du besoin de chaleur : la cogénération est à 100 % de sa charge soit à son meilleur rendement (cogénération de qualité) et la chaudière à condensation module de 10 % à 100 % de son taux de charge.
  • De 90 à 100 % du besoin de chaleur : la cogénération et la chaudière à condensation restent à 100 % de leur taux de charge tandis que la chaudière existante donne le complément de chaleur pendant quelques heures par an, ce qui n’affecte que très peu le rendement saisonnier de l’ensemble des deux chaudières.

On notera ici toute l’importance du ballon tampon qui permet :

  • De réduire la puissance thermique de la cogénération.
  • D’éviter les cycles courts ou le pompage de la cogénération. De cette manière, on prolonge aussi la durée de vie de la cogénération sachant qu’elle est, non seulement liés au nombre d’heures de fonctionnement, mais aussi au nombre de démarrages.

Comment assurer la régulation d’ensemble ?

En réalité, la régulation ne doit pas être une « usine à gaz ».

Ce qui nous intéresse ici, sur base d’un ensemble d’équipements de production de chaleur, c’est de  « sélectionner le bon équipement au bon moment » en partant toujours de l’idée de choisir l’équipement qui donnera la meilleure performance énergétique à l’ensemble.

Voici un type de régulation d’ensemble qui pourrait être proposé.

Schéma de régulation ensemble chaudière(s)/cogénération.
Source Vadémécum : réussir l’intégration de l’hydraulique et de la régulation d’une cogénération dans une chaufferie, facilitateur cogénération 2014.

Chaque unité de production de chaleur ayant sa propre régulation interne, la complexité réelle de la régulation reste interne aux unités. Une régulation d’ensemble cohérente doit de plus être assurée de manière à ce que les équipements communiquent un minimum entre eux.

Il est donc nécessaire qu’un des régulateurs des chaudières puisse superviser le cogénérateur. Le superviseur peut par exemple être le régulateur d’une nouvelle chaudière à condensation.

Pour en savoir plus, le facilitateur Cogénération pour la Wallonie a publié un vadémécum « Réussir l’intégration de l’hydraulique et de la régulation d’une cogénération dans une chaufferie ». Il est disponible ici.

Techniques


Régulation interne de la cogénération

Le nombre d’heures de fonctionnement et le nombre de démarrages de la cogénération associée à un ballon tampon peut être influencé par la régulation :

  • du taux de charge du cogénérateur par rapport à sa puissance thermique nominale et au besoin de chaleur total ;
  • du taux de charge du ballon tampon.

Taux de charge du cogénérateur

La régulation interne du cogénérateur peut être réalisée selon le rapport entre le besoin instantané de chaleur (en kWth) et la puissance thermique nominale de la cogénération en dessous duquel la cogénération reste à l’arrêt. Pratiquement, cette régulation s’exprime par sa capacité à gérer la modulation de puissance de la cogénération. Une cogénération classique peut en général avoir une modulation de puissance entre 60 et 100 %.

Exemple

Soit :

  • une cogénération de 300 kW thermique ;
  • un rapport : besoin de chaleur/puissance nominale de la cogénération de 60 %.

A l’instant t, la cogénération est à l’arrêt. La cogénération redémarrera lorsque le besoin thermique sera de 300 x 0.6 = 180 kW.

Sur base de différentes simulations effectuées avec CogenSim, on peut montrer l’influence de ce type de régulation.

Les hypothèses sont les suivantes :

  • Les profils de chaleur et d’électricité sont ceux donnés par défaut dans CogenSim.
  • Plage de modulation de la cogénération : 100 à 60 %.
  • Le taux de charge maximum du ballon en dessous duquel la cogénération module dans sa plage de modulation : 60 %.
  • Le taux de charge minimum du ballon à partir duquel la cogénération redémarre : 40 %.

Dans les simulations on fait varier le rapport besoin thermique/puissance cogénérateur, soit 60 et 90.

Temps de fonctionnement (heures/an) Nombre de démarrages annuel
Taux de charge du cogénérateur (%) 0-39 40-49 50-59 60-69 70-79 80-89 90-99 100
Besoin/puissance cogénération
60% 1261 169 479 387 5714 21
90% 653 77 470 387 5709 1

 

On constate que :

  • Cette régulation permet de « grappiller » quelques heures de fonctionnement lorsqu’on dispose d’une cogénération qui peut démarrer à un taux de charge de 60 %.
  • Attention, cependant, que le nombre de démarrage augmente légèrement lorsqu’on passe de 90 à 60 %, ce qui sollicite le cogénérateur en accélérant son vieillissement.

Taux de charge du ballon

En dessous d’une certaine valeur de taux de charge maximum, la cogénération module en puissance. Plus ce taux de charge maximum est élevé, plus la cogénération commence à « pomper » (marche/ arrêt important). Ce qui nuit naturellement à longévité du cogénérateur.

Exemple

Les simulations sont de nouveau effectuées avec CogenSim.

Les hypothèses sont les suivantes :

  • La puissance thermique du cogénérateur : 300 kW thermiques.
  • La plage de modulation de la cogénération : 100 à 60 %.
  • Le rapport besoin de chaleur/puissance cogénérateur en dessous duquel la cogénération module en puissance : 60 %.
  • Le taux de charge minimum du ballon à partir duquel la cogénération redémarre : 40 %.

Dans les simulations on fait varier le taux de charge maximum du ballon en dessous duquel la cogénération module dans sa plage de modulation, soit 60 et 90 %.

Temps de fonctionnement (heures/an) Nombre de démarrages par an
Taux de charge du cogénérateur (%) 0-39 40-49 50-59 60-69 70-79 80-89 90-99 100
Taux de charge max du ballon à partir duquel la cogénération module (100 à 60 %)
60% 1261 169 479 387 5714 21
90% 789 117 464 338 6158 593

On constate que choisir un taux de charge maximum du ballon pas trop élevé (autour des 60 %) permet :

  • D’augmenter le nombre d’heures de fonctionnement du cogénérateur. En fait, la cogénération module beaucoup rapidement sa puissance par rapport aux besoins de chaleur au travers du ballon en « épousant » mieux le profil du besoin.
  • De réduire le nombre de démarrages de manière draconienne, ce qui allonge la durée de vie du cogénérateur.

Régulation individuelle des chaudières par rapport à la cogénération

Lorsqu’une ou plusieurs chaudières existantes sont en appoint de la cogénération, les régulations individuelles de chaque chaudière doivent être adaptées par rapport au cogénérateur. Souvent, on observera que lorsque le besoin de chaleur devient supérieur à la puissance thermique des cogénérateurs, on démarre une chaudière d’appoint sans modulation de puissance au niveau du brûleur. Le « boost » de puissance de la chaudière va tout de suite « affoler » la régulation du cogénérateur qui risque de s’arrêter rapidement. Il en résulte un risque non négligeable de « pompage » de la cogénération  altérant ainsi :

  • la rentabilité de la cogénération ;
  • la durée de vie de la cogénération tout en augmentant le risque de panne.

Immanquablement, la chaudière d’appoint devra démarrer, pour les anciens modèles en petite flamme et pour les modèles récents au minimum de la plage de modulation (à 10 % pour une chaudière à condensation par exemple).

Choisir une PAC en fonction de la performance de l’enveloppe

Choisir une PAC en fonction de la performance de l'enveloppe


Stratégie de chauffage et de refroidissement

Lorsque la performance de l’enveloppe d’un bâtiment augmente, pour une même surface nette ou un même volume de bâtiment, la quantité d’énergie nécessaire au chauffage devient faible.

« On peut passer d’une valeur de 200 kWh/m².an à 15 kWh/m².an lorsqu’on tend vers un bâtiment passif ! ».

Source : PMP (Plateforme Maison Passive).

De même, la puissance à mettre à disposition pour assurer les besoins de chaleur du bâtiment se voit réduite de manière significative.

« Les puissances mises en jeu pour combattre les déperditions au travers des parois et par ventilation et pour assurer la relance en cas d’intermittence (ou ralenti nocturne), passent de l’ordre de 70 W/m³ à 20 W/m³ voire moins encore ! ».

Le renforcement de l’isolation et de l’étanchéité d’un bâtiment interagit donc sur la puissance du système de chauffage. À première vue, pour autant que les fabricants de systèmes de chauffage  puissent proposer des équipements de faible puissance, il n’y a pas de restriction quant au choix de tel ou tel type de système de chauffage par rapport à la puissance.

Cependant, si le concepteur n’y prend pas garde, l’isolation d’un bâtiment n’engendre pas seulement que des réductions des besoins de chauffage. Il risque de générer aussi une augmentation des besoins de rafraichissement. D’un point de vue énergétique, si c’est le cas, il est primordial de produire du froid gratuitement ou à peu près !

La manière de produire le plus écologiquement du froid dans notre bonne Belgique est de faire appel au « free cooling » par ventilation naturelle. Ce n’est pas toujours possible !

En effet :

  • Le confort, dans certains cas, ne peut pas être assuré en permanence. On image difficilement qu’une chambre d’isolé dans un hôpital, de surcroit occupée la nuit, puisse être ventilée naturellement.
  • Certains maîtres d’ouvrage ne voient pas d’un bon œil de laisser des fenêtres ouvertes la nuit par souci de sécurité (même grillagée).
  • Les coûts d’une automatisation des systèmes d’ouvertures risquent d’être importants.
  • La régulation des systèmes d’ouverture n’est pas toujours évidente.

Le choix du « géocooling » comme moyen de refroidissement naturel s’impose donc. Cela tombe bien puisqu’avec le même système, on pourra produire du chaud par « géothermie » et du froid par « géocooling ». En effet, par le choix d’une pompe à chaleur géothermique eau/eau, réversible ou pas suivant le besoin de froid, on peut envisager la stratégie suivante :

  • En hiver,  la chaleur sera « pompée » du sol par la pompe à chaleur en travaillant en mode « chaud », le sol se refroidissant par la même occasion.
  • En été, le froid accumulé en hiver sera extrait du même sol soit par la pompe à chaleur travaillant en mode froid, soit par 2 pompes de circulation permettant de travailler de manière satisfaisante au niveau énergétique (c’est la seule consommation des pompes qui permet de refroidir le bâtiment).

Cependant, le choix de la géothermie, comme source froide pour des bâtiments à forte isolation, est dépendant aussi de l’équilibre entre les besoins de chaud et de froid de l’immeuble.
Un bâtiment en demande de chaleur :

  • Qui nécessite peu de besoins de froid sous forme de « géocooling », ne permettra pas de recharger le sol en chaleur en été. Il s’en suivra, dans certains cas, d’un appauvrissement de la capacité du sol à fournir de la chaleur. Dans certaines études (simulation PileSim), on remarque qu’après 15 à 20 ans, la température du sol reste très basse. Dans ces conditions, l’énergie du sol sera plus difficilement exploitable. Si c’est possible, le refroidissement pourra être pris en charge par un système de « free-cooling » de nuit sur l’air par exemple.
  • Équilibré par la même demande en refroidissement permettrait de pérenniser la source froide.

En pratique, un équilibre 50/50 entre les besoins de chaud et de froid permettra de garantir une géothermie optimale à long terme.


Influence sur le choix du type de source froide et son dimensionnement

Pour une même emprise au sol, un bâtiment tertiaire dont l’enveloppe est performante est moins gourmand en besoin de chauffage qu’un bâtiment de type « passoire ». Par conséquent, il « pompera » moins d’énergie à la source froide.

Source froide : l’air ou aérothermie

L’air est en quantité « infinie » autour du bâtiment ; ce qui signifie que l’influence du niveau d’isolation du bâtiment sur le choix de l’air comme source froide reste faible. Bien que ! Si on pousse le raisonnement à l’absurde, une concentration de bâtiments peu isolés dont le choix de leur système de chauffage se porterait sur une PAC air/eau par exemple, contribuerait à créer un micro climat plus froid qu’il ne serait si les bâtiments étaient peu isolés.

Donc, la performance de l’enveloppe du bâtiment influence l’air comme source froide, mais il faut pousser le raisonnement très loin !

Pour un bâtiment bien isolé, la taille de l’évaporateur pourra être plus petite. Attention toutefois que les évaporateurs sont une source de nuisance sonore dont il faudra tenir compte.

Source froide : le sol ou géothermie

Le sol est une ressource limitée en quantité et en temps. Pour des bâtiments peu « déperditifs », la géothermie peut être intéressante dans le sens où, pour une même empreinte au sol du bâtiment, plus celui-ci est isolé :

  • Moins il sera gourmand en puissance disponible et plus petite sera l’installation de géothermie.
  • Plus grande sera la disponibilité d’énergie dans le sol.

Influence de la performance du bâtiment sur la source froide géothermique.

L’augmentation de la performance de l’enveloppe d’un bâtiment permet de mieux exploiter un même volume de sol, c’est vrai ! Mais il est nécessaire de tenir compte comme décrit ci-avant de l’équilibre entre les besoins de chaleur et les besoins de refroidissement.

Une fois n’est pas coutume, c’est la source froide qui risque de conditionner le niveau d’isolation de l’enveloppe du bâtiment !

En effet :

  • Une enveloppe de bâtiment très performante entraine un déséquilibre entre les besoins Chaud/froid en faveur du besoin de froid : la source froide risque de se réchauffer au cours des années. Il s’ensuit une interrogation au niveau de l’écologique, de l’autorisation d’exploiter le sol, …
  • Une enveloppe de bâtiment peu performante inverse la tendance : la source froide se refroidit.

Il n’est donc pas dit, avec une technologie comme la géothermie, que le renforcement à outrance de la performance de l’enveloppe du bâtiment soit l’idéal. Comme tout est une question de compromis, dans ce cas particulier, on ne visera pas nécessairement le passif voire mieux. Mais c’est du cas par cas !

Un bureau d’étude spécialisé permettra, par simulation thermique dynamique, de trouver le réel équilibre pour optimiser l’exploitation de la géothermie. On en tiendra compte dès l’avant projet du bâtiment.

Source froide : l’eau ou hydrothermie

Tout comme le sol, l’eau comme source froide (hydrothermie) est une ressource limitée qui dépend, entre autres, du débit de renouvellement du volume d’eau pris comme source froide (plan d’eau, …). Le fait de rendre les bâtiments performants permettra de disposer d’une source froide de taille plus petite (le lac de Genval plutôt que l’Eau d’heure par exemple). Cependant, s’il existe un besoin de refroidissement du bâtiment, l’eau devra être en mesure d’absorber la chaleur extraite du bâtiment par le système de pompe à chaleur réversible. Ceci implique qu’en été :

  • le débit de renouvellement de la source froide soit suffisant ;
  • les réglementations en vigueur permettent un rejet de chaleur à température plus élevée que la température moyenne de la source froide.

Influence sur le choix du type de source chaude et son dimensionnement

Régime de température

Les émetteurs à eau

Pour une même volumétrie des locaux dans un bâtiment bien isolé, la puissance d’émission nécessaire sera plus faible. On pourra donc prévoir un régime de température plus faible, et par conséquent la performance énergétique de la PAC associée pourra être améliorée (de l’ordre de 3 % par °C de température de  gagné).

Exemple

On considère que la température de l’eau au niveau du condenseur se situe entre 35 et 45 °C pour – 8 °C extérieur dans le cas d’un bâtiment K45. Si on décide d’opter pour la conception d’un bâtiment plus performant (basse énergie ou passif), on pourrait avantageusement passer à des températures de condensation entre 25 et 30°C, soit un gain théorique de l’ordre de 30 % des consommations énergétiques.

Les émetteurs à air

Tout dépend du type d’émetteur :

  • En détente directe sur l’air hygiénique, les températures de condensation risque de devoir être aussi hautes que pour un bâtiment non isolé sachant que c’est de l’air externe que l’on réchauffe. Dans ce cas, le niveau de performance de l’enveloppe du bâtiment ne joue pas.
  • Pour des ventilo-convecteur à eau, cela revient au même que pour les radiateurs classiques : les températures de condensation seront sensiblement les mêmes (entre 25 et 30 °C par – 8 °C extérieur).

Inertie de l’émetteur

Dans un bâtiment dont l’enveloppe est performante, la faible inertie de l’émetteur est primordiale. En effet, en mi-saison, la surchauffe risque d’être dommageable si l’inertie de l’émetteur est importante. En effet, en cas de nuit froide, la dalle se chargera pour anticiper la journée qui suit. Malheureusement, le stockage de chaleur risque de ne servir à rien si les apports solaires pendant la journée sont élevés. La combinaison des apports solaires au travers des parois vitrées et des apports internes générés par la dalle de sol chauffante ne peuvent être évacués. Il s’ensuit une surchauffe importante des locaux.

Pour pallier à ce problème, on pense, par exemple, au plancher chauffant qui doit nécessairement être à faible inertie. L’émetteur dynamique à faible inertie, comme montré ci-dessous, permet de bien répondre aux besoins de réactivité d’un bâtiment performant. Tout dépendra naturellement du type de revêtement qui sera placé en finition au-dessus du plancher chauffant. Un matériau thermiquement isolant impliquera une augmentation de la température de l’eau de l’émetteur entrainant une dégradation de la performance de la pompe à chaleur. On rappelle qu’une augmentation de 1 °C de la température de condensation de la PAC entraine une dégradation de sa performance de l’ordre de 3 %.

Schéma principe du plancher chauffant.

Photo plancher chauffant.

Source Opal-système.


Influence sur le choix du type de compresseur

Les bâtiments qui présentent un niveau d’isolation important permettront le choix de pompe à chaleur de puissance raisonnable dans une gamme plus élargie. Au point que pour certains bâtiments tertiaires de petite taille, on pourrait même envisager d’étendre la gamme aux pompes à chaleur domestiques.

Quand on est en présence d’un bâtiment performant, le système de chauffage, quel qu’il soit, doit être très réactif à la relance et pouvoir moduler sur une plage de puissance large. On considère que la plage de variation de puissance des PAC (taux de charge) peut raisonnablement varier entre 30 et 100 %. L’idéal est donc de choisir des pompes à chaleur avec compresseur à vitesse variable (technologie INVERTER).

Concevoir une installation de cogénération avec une ou des chaudières à condensation

Concevoir une installation de cogénération avec une ou des chaudières à condensation


Besoins thermiques et électriques d’un bâtiment moderne

Besoins thermiques

La conception des bâtiments modernes n’a plus rien à voir avec nos chères constructions « passoires ». La venue de la PEB  bouleverse nos habitudes de constructions ; cela va dans le sens où les besoins thermiques diminuent fortement.

Les profils de chaleur évoluent aussi ! Il suffit d’analyser deux monotones de chaleur pour s’en convaincre. On se réfère à deux bâtiments de volume différent, mais ayant le même besoin de puissance de chauffe :

  • l’un, de grand volume est bien isolé et d’étanchéité correcte ;
  • l’autre de volume moyen est de type « passoire ».

Les monotones de chaleur sont représentées ci-dessous :

Schéma monotone de chaleur 01.

Bâtiment type passoire.

Bâtiment performant.

Le besoin de chaleur en puissance est représenté par la courbe et en énergie par l’aire sous la courbe. Les surfaces de couleur matérialisent le besoin de chaleur qui pourrait être pris en charge par une unité de cogénération. En comparant les deux aires de couleur, on se rend compte que :

  • Pour une même puissance de dimensionnement de cogénération, la prise en charge du besoin de chaleur par la cogénération dans un bâtiment énergétiquement performant est beaucoup plus faible.
  • Pour un même investissement, la production de chaleur et, par conséquent, d’électricité est moindre.

Il s’en suit qu’à puissance de cogénération égale, on observe une diminution de la rentabilité énergétique, environnementale et financière.
A méditer !

Comment déterminer les besoins de chaleur ?

Partir d’une feuille blanche pour envisager l’association d’une cogénération et de chaudières à condensation n’est pas nécessairement plus aisé qu’en rénovation. En effet, les profils de consommations de chaleur ne sont pas connus. Dès lors, il est impératif de déterminer ces profils de manière précise. Les simulations thermiques dynamiques peuvent aider le concepteur à établir ces besoins de chaleur en fonction :

  • des caractéristiques du bâtiment (volumétrie, orientation, composition des parois, inertie accessible, …) ;
  • des types et scénarios d’occupation (horaires, nombre de personnes, …) déterminant les consignes de température, les apports internes, … ;
  • du climat dans lequel le bâtiment se trouve (température, humidité, ensoleillement, vent, …) permettant d’évaluer les échanges thermiques du bâtiment avec l’extérieur, les apports solaires au travers des baies vitrées, …) ;
  •   …

Pour réaliser ce genre d’étude, il faut s’adresser à un bureau d’étude spécialisé qui établira un profil de besoins tel que celui exposé ci-après :

Profil de besoin de chaleur et de refroidissement en fonction de la température externe
(simulation type TRNSYS).

Profil annuel des besoins de chaleur et de refroidissement
(simulation type TRNSYS).

Comment déterminer les besoins d’électricité ?

Pour déterminer les besoins d’électricité, il existe des ratios relativement fiables. Une difficulté majeure dans l’établissement d’un profil de besoins électriques est d’imaginer les scénarios de commande et de régulation des équipements électriques. On donne comme exemple les variations des consommations électriques :

  • des luminaires en fonction de l’apport de lumière naturelle et d l’occupation ;
  • des ventilateurs de ventilation hygiéniques en fonction de la qualité de l’air ;
  • des ascenseurs en fonction du trafic ;
  • des process éventuels en fonction du « taux de charge » de la chaîne de production ;
  • des groupes de climatisations en fonction du climat et des apports internes ;
  •  …

Besoin d’électricité.

Profil de besoin électrique reconstitué à partir d’un scénario théorique.


Intérêt énergétique, environnemental et financier de l’association

Pour rappel, que ce soit en amélioration ou en conception, la cogénération est juste là pour produire un maximum d’énergie thermique et électrique locale sur base d’un profil de chaleur. L’appoint en chauffage, comme des chaudières à condensation, n’est là que pour :

  • prendre le relais en mi-saison lorsqu’on décide de ne pas faire fonctionner la cogénération ;
  • donner un « coup de pouce » en termes de puissance pendant les périodes froides ;
  • palier à une défectuosité de la cogénération.

Scénario de départ

Le gestionnaire d’un parc immobilier a décidé, pour son nouveau bâtiment de placer deux chaudières à condensation.

Mais aurait-il un intérêt à investir dans une cogénération ?

Avant de se lancer dans une entreprise de combinaison d’une cogénération avec une ou plusieurs chaudières à condensation, il est impératif de savoir s’il existe un intérêt énergétique, environnemental et financier réel à les associer. En d’autres termes :

> Vaut-il mieux se contenter :

  • de placer uniquement des chaudières à condensation  et d’optimiser l’installation tant au niveau hydraulique qu’au niveau de la régulation du système de chauffage, et ce dans le but d’optimiser uniquement le rendement saisonnier de la chaufferie ?
  • ou de continuer à « importer » de l’électricité à partir du réseau ?

> Ou faut-il viser directement l’association des chaudières avec un cogénérateur en considérant que sur site :

  • la cogénération consomme plus de combustible pour chauffer le bâtiment  et produire de l’électricité en local  ?
  • les chaudières consomment un solde de combustible lorsque la cogénération ne « tourne pas » ?
  • le réseau fournit le solde de besoin d’électricité ?

Dans ce qui suit on tente d’y répondre par l’exploitation du logiciel d’étude de pertinence de cogénération de la Région Wallonne CogenSim (version 3.11 ;  2011) :

Simulation

Le postula de départ est qu’une étude de faisabilité d’installation d’une cogénération a montré une rentabilité énergétique, environnementale et financière valable.

En partant du principe qu’une cogénération est dimensionnée pour produire la base d’un profil de besoin de chaleur, le solde étant fourni par une chaudière à condensation, plus cette chaudière sera performante, plus importante sera la réduction des consommations énergétiques pour fournir ce solde.

Une manière d’y arriver est de simuler une cogénération associée à une chaudière dont le rendement saisonnier évolue de 80 à 100 %.

Evaluer

Pour plus de renseignements sur le calcul de rentabilité de l’association d’une cogénération avec une ou plusieurs chaudières à condensation.

Il y a t-il un intérêt réel d’association ?

En préliminaire, il faut toutefois faire remarquer que le cas présenté ci-dessus est très favorable à l’investissement dans une cogénération. En effet, les profils des besoins de chaleur et d’électricité se complètent bien. Tous les projets ne sont pas toujours aussi heureux ! Par exemple, lorsque le besoin de chaleur est faible par rapport à la demande d’électricité, l’investissement dans une cogénération n’est pas toujours rentable. A voir donc au cas par cas !

Cogénération 

Pour plus de renseignements sur les cogénérateurs.

Niveau énergétique

En partant du principe, que pour les profils de chaleur et d’électricité établis pour le projet considéré, l’étude précise de faisabilité du placement d’une cogénération est envisageable énergétiquement, environnementalement et financièrement parlant, l’association d’une ou de plusieurs chaudières à condensation est un plus énergétique comme le montre le graphique suivant :

Évolution des consommations en énergie primaire.

Niveau environnemental

La réduction des émissions de gaz à effet de serre est liée aux consommations en énergie primaire. Dans le cas étudié dans la note de calcul, la réduction des émissions de CO2 est effective même pour une cogénération au gaz et sera d’autant meilleure que le rendement des chaudières d’appoint sera élevé. On privilégiera donc les chaudières à condensation. Le bilan environnemental sera naturellement influencé par le type de combustible utilisé par la cogénération. En effet, le nombre de certificats verts octroyés (CV) sera d’autant plus important que le combustible sera renouvelable (bois, huile végétale, …).

Niveau financier

Quant au bilan financier, il est en général lié aux éléments principaux suivants :

  • aux coûts imputés aux consommations des différents combustibles et aux frais de maintenance ;
  • à l’investissement :
    • dans l’installation de la cogénération et de la (des) chaudière(s) ;
    • dans la modification du circuit hydraulique primaire ;
    • dans l’adaptation de la régulation de la cascade cogénération/chaudière(s) ;
  • à l’octroi des primes et des certificats verts (CV) ;
  • à l’autoconsommation maximale de l’électricité produite par la cogénération (réduction de la facture électrique) ;
  • à la revente résiduelle d’électricité. Attention, qu’au global, il ne peut pas devenir producteur d’électricité.

Le bilan financier est très variable. La rentabilité de la cogénération provient du gain engendré sur la facture électrique et les CV. Le premier gain est très important d’où l’intérêt d’autoconsommer un maximum de l’électricité produite par la cogénération pour maximiser la rentabilité de l’installation.


Aspect hydraulique et de régulation

Condition de cohabitation

Ici, on part du principe que le bâtiment qui sera construit est un bâtiment énergétiquement performant répondant au moins aux exigences PEB.

Pour qu’une cogénération puisse cohabiter avec une ou plusieurs chaudières à condensation, il faut en même temps alimenter :

  • la chaudière à condensation avec un retour en chaufferie le plus froid possible (pour le gaz < 55 °C) ;
  • le cogénérateur avec un retour, dont la température, n’est pas inférieur à 60 °C mais pas supérieur à 70 °C. Même, la température d’eau de la plupart des moteurs n’excède pas plus de 65 °C.

C’est à ce niveau que les aspects de conception des circuits hydrauliques et de la régulation ainsi que la disposition des équipements, les uns par rapport aux autres, prennent toute leur importance.

On rappelle ici que la cogénération est en tête de cascade. Ce qui signifie que, si l’étude de faisabilité de la cogénération a été réalisée correctement, pendant 4 000-5 000 heures sur la saison de chauffe, elle doit fonctionner seule ou en parallèle avec la ou les chaudières.

Aspect hydraulique

Température de retour

On part du principe « qui peut le plus peut le moins » ; ce qui signifie qu’un retour froid des circuits secondaires peut être réchauffé et pas l’inverse !

C’est donc bien un retour le plus froid possible qui garantit une cohabitation harmonieuse de la cogénération et de la ou des chaudières à condensation !

Le retour froid en chaufferie est surtout conditionné par le mélange ou pas des retours des circuits secondaires dont les régimes de températures peuvent être totalement différents.

Ces régimes sont déterminés en fonction :

  • De la charge thermique par déperdition au travers des parois et par in/exfiltration ainsi que la charge thermique par ventilation hygiénique des différents locaux du bâtiment. Par exemple, pour un bâtiment dont la performance de l’enveloppe est élevée (isolation des parois, remplacement de châssis à  simple vitrage par des châssis à double vitrage à basse émissivité, placement de récupérateur de chaleur sur un système de ventilation à double flux, …), les régimes de températures pourraient être les suivants :
    • pour les circuits statiques, un régime 70-50 °C ;
    • pour les planchers chauffants, un régime 35-25 °C.
    • pour les batteries chaudes des systèmes de ventilation double flux avec récupérateur, un régime 45-35 °C.
  • De la présence ou pas d’un circuit d’ECS. On pourrait très bien envisager, pour une production d’ECS semi-instantanée, un régime 70-45 °C.

Configuration de collecteur

Suivant la température de retour des différents circuits secondaires, ceux-ci seront combinés ou pas au niveau du collecteur principal.

Un seul collecteur de retour (régime ECS : 70-45 °C).

     

Collecteur de retour haute et basse température (régime de température 70-60 °C).

Concevoir 

Pour plus de renseignements sur la conception correcte des circuits de distribution.

Techniques

Pour plus de renseignements sur les circuits hydrauliques associés à une chaudière à condensation.

Configuration des équipements de production

En conception, pour optimiser énergétiquement l’association d’un cogénérateur avec une ou plusieurs chaudières à condensation, le nombre de configurations hydrauliques des équipements de production est assez limité de par la complexité des projets.

La configuration hydraulique du circuit primaire est en général tributaire :

  • de la cohérence entre les régimes de températures des circuits secondaires ;
  • de l’évolution ou pas du nombre de circuits secondaires : le projet est-il prévu en plusieurs phases ou pas ?
  • et du type de chaudières disponibles sur le marché en fonction de la puissance. On envisagera, par exemple :
    • une chaudière à condensation avec un seul ou deux retours (échangeurs haute température et à condensation en série ou les deux échangeurs en parallèle) ;
    • une chaudière à grand ou faible volume d’eau ;
    • une chaudière nécessitant un débit minimum ou pas ;
    • une chaudière traditionnelle nécessitant un retour chaud (minimum de 60°C pour éviter la condensation dans l’échangeur).

Différentes configurations sont proposées par les fabricants. A quelques variantes près, elles se ressemblent. On considère ici, à titre d’exemple, trois associations caractéristiques de chaudières de différents types avec un cogénérateur. À noter que certains constructeurs de chaudières proposent maintenant des solutions complètes d’association de chaudières avec cogénérateur pilotée par une même régulation. En conception, il est intéressant d’opter pour une solution complète du même constructeur sachant qu’il est très important que la régulation porte sur l’ensemble de la chaufferie, y compris la cogénération.

Il est bien entendu que la règle de prudence est toujours d’application sachant que chaque projet est un cas particulier. Le responsable du projet fera toujours appel à un bureau d’étude spécialisé capable de maîtriser non seulement les techniques liées aux cogénérateurs, mais aussi celles faisant appel aux chaudières.

Exemple 1 : Deux chaudières à condensation et un cogénérateur à huile végétale

Schéma Deux chaudières à condensation et un cogénérateur à huile végétale.

Source : Sibelga.

Quelques explications :

Les circulateurs des circuits secondaires assurent la circulation du fluide caloporteur tant au primaire qu’au secondaire.

Le ballon tampon du cogénérateur est hydrauliquement en tête du retour. Vu que l’objectif premier est de maximiser le nombre d’heures de fonctionnement du cogénérateur, le ballon tampon est  le « fournisseur prioritaire » des besoins de chaleur.

Tant que la puissance du cogénérateur est suffisante, il est le seul producteur primaire de chaleur.

Une fois que le besoin de chaleur dépasse la puissance du cogénérateur, l’appoint est donné par la première chaudière à condensation. La vanne 3 voies permet l’irrigation du retour chaud tandis que la vanne 2 voies celle du retour froid. Ces deux vannes travaillent en tout ou rien et sont commandées par la régulation de la chaudière qui est en demande de production de chaleur.

Lorsque le besoin de chaleur devient très important, la seconde chaudière à condensation peut donner le solde de chaleur.

Exemple 2 : Une chaudière traditionnelle, une chaudière à condensation et un cogénérateur

Une chaudière traditionnelle, une chaudière à condensation et un cogénérateur

Source : Sibelga.

Quelques explications :

Les circulateurs des circuits secondaires assurent toujours la circulation du fluide caloporteur tant au primaire qu’au secondaire.

Le ballon tampon du cogénérateur est aussi hydrauliquement en tête de retour.

Tant que la puissance du cogénérateur est suffisante, il est le seul producteur primaire de chaleur.

Une fois que le besoin de chaleur dépasse la puissance du cogénérateur, l’appoint est donné par la chaudière à condensation. En fonction de l’ouverture des vannes de réglable 2 voies AK et 3 voies UV, l’appoint de la chaudière se répartit entre les échangeurs à haute et basse température de manière à favoriser au maximum la condensation.

Durant les périodes de grand froid, la chaudière traditionnelle peut aussi donner un « coup de pouce » par la modulation de la vanne 3 voies SK.

Exemple 3 : une chaudière à condensation à un seul retour et un cogénérateur

Schéma chaudière à condensation à un seul retour et un cogénérateur.

Source : Sibelga.

Quelques explications :

Les fabricants proposent de plus en plus des chaudières à condensation à un seul retour.

Dans ce cas-ci, lorsque la cogénération ne peut plus assurer les besoins de chaleur, la régulation centrale « libère » la chaudière à condensation en ouvrant la vanne 3 voies qui lui est associée. Cette vanne tout ou rien permet le passage du débit total dans la chaudière à condensation.

Aspect de régulation globale

Outre la régulation individuelle des équipements qui doit être optimale, la globalisation de la régulation tant au niveau de la cascade des chaudières que de la cogénération est primordiale. Dans des projets de conception, l’occasion est rêvée d’assurer cette globalisation, à savoir qu’il est nécessaire de considérer :

  • Les chaudières à condensation et le cogénérateur avec leur propre régulation « interne » .
  • La supervision d’ensemble de tous les équipements de manière à bien orchestrer l’ensemble de la cascade avec toujours comme objectif :
    • de privilégier le fonctionnement de la cogénération ;
    • de favoriser la condensation des chaudières lorsque celles-ci fonctionnent.

Pour bien réguler l’ensemble de l’association chaudières classiques/chaudières à condensation/cogénérateur, on considérera l’ordre de priorité suivant :

  • Chaudière à condensation pour les faibles besoins d’été par exemple. C’est intéressant de faire fonctionner la  chaudière à condensation à faible charge sachant que dans une plage de module de 10 à 50 % voire 60 %, ce type de chaudière est très performant au niveau énergétique (zone 1).
  • Cogénérateur un maximum de temps durant la saison de chauffe. Pendant cette période, il module entre 60 et 100 % de sa puissance thermique nominale. Suivant le profil de besoin, la quantité de démarrages du cogénérateur peut être limitée, « ce qui lui sauve la vie ! » (zone 2).
  • Cogénérateur travaillant à 100 % de son taux de charge et chaudière à condensation modulant de 10 à 100 %. À noter toutefois que pour quelques heures par an, la seconde chaudière peut donner un appoint (zone 3).

Techniques  

Pour plus de renseignements sur la régulation de l’association chaudières classiques/chaudière à condensation/ cogénérateur.

Dimensionner une installation de chauffage : principes généraux

Dimensionner une installation de chauffage : principes généraux


Dimensionnement de la production de chaleur

Le principe du dimensionnement

Durant la saison de chauffe, deux besoins de chauffe apparaissent :

  • Un transfert de chaleur s’effectue de l’ambiance intérieure chaude vers l’extérieur plus froid, au travers des parois.
  • De l’air hygiénique entre dans le bâtiment « neuf et froid »,… et sort « vicié et chaud ».

Ces pertes de chaleur sont appelées les déperditions du bâtiment.

Le but de l’installation de chauffage est de compenser ces déperditions pour maintenir la température intérieure constante. Dimensionner les systèmes de chauffage, c’est calculer la puissance utile nécessaire pour y parvenir lors des conditions extrêmes : lorsque la température extérieure est minimale, qu’il n’y a pas de soleil et que les apports internes sont nuls.

Les déperditions du bâtiment doivent être calculées suivant la norme NBN B 62-003. (nouvelle norme NBN EN 12831 : 2003).

Toutefois, le Cahier des Charges 105 de la Régie des Bâtiments (1990) ne prend en compte que la moitié des déperditions par infiltration calculées pour chaque local. En effet, celles-ci ne se manifestent jamais simultanément : selon la direction du vent, une façade est en surpression et la façade opposée est en dépression. Conséquence, seule une partie du bâtiment (environ la moitié) voit son air renouvelé par de l’air extérieur, l’autre se voit traversé par cet air déjà préchauffé.

Actuellement, la réglementation impose l’organisation d’une ventilation permanente :

  • S’il s’agit d’une ventilation permanente organisée naturellement, une règle similaire peut être d’application : les débits qui entrent dans les locaux munis d’orifice d’alimentation sont les mêmes que ceux qui sont évacués par les locaux en dépression, après passage dans les couloirs (« le même air est utilisé 2 fois »). Si bien que le taux de renouvellement d’air moyen β peut être pris égal à 0,5.
  • Si l’installation est mécanique, c’est l’entièreté du débit d’air neuf hygiénique qui doit être pris en compte.

Attention à la température extérieure de référence !

La température extérieure extrême pour laquelle il faut dimensionner l’installation est mentionnée dans la norme NBN B 62-003 (nouvelle norme NBN EN 12831 :2003), pour chaque commune de Belgique. Cette température, appelée « température de base », correspond à la « température extérieure moyenne journalière qui, en moyenne, n’est dépassée vers le bas que pendant un seul jour par an ».

C’est cette température qui doit servir de référence et non l' »impression » du chauffagiste qui pense qu’il fait souvent plus froid dans sa région, ou qui veut à tout prix que le confort soit garanti en cas de gel à – 20 °C comme on en rencontre tous les 30 ans.

En fait, un bâtiment a de l’inertie et ses besoins de chauffage sont sensibles à la T°moyenne jour/nuit. D’ailleurs, lorsque la température de – 10 °C est choisie, il s’agit d’une moyenne entre les extrémis jour et nuit. En fait, dimensionner pour « – 10 °C », c’est en réalité dimensionner pour – 15 °C la nuit et – 5 °C le jour, par exemple. Donc une installation calculée pour – 10 °C « tiendra » pour – 15 °C la nuit.

Températures extérieures minimales de base, en Belgique.

Faut-il surdimensionner la production de chaleur pour permettre l’intermittence ?

Lorsque l’on pratique un chauffage discontinu (coupure nocturne, de week-end, …), la relance de l’installation demande une surpuissance par rapport au fonctionnement continu. Cette surpuissance sera surtout fonction de l’inertie thermique du bâtiment (la masse des matériaux) qu’il faudra réchauffer. Et l’isolation renforcée des bâtiments récents augmente l’importance relative de la puissance de relance par rapport à la puissance des déperditions en régime permanent.

La norme NBN B62-003 (nouvelle norme NBN EN 12831 :2003) estime qu’il faut tenir compte de cette surpuissance dans le dimensionnement de la production de chaleur. Mais le calcul (emprunté à la norme allemande DIN 4701) est assez complexe et peut générer des surpuissances « exagérées » (selon « rapport n°1 » du CSTC).

Par contre, le cahier des charges type 105 de la Régie des Bâtiments, et nous penchons plutôt dans ce sens, préconise de choisir la puissance de la production correspondant aux déperditions du bâtiment et de dimensionner les émetteurs de chaleur à un régime de température d’eau inférieur à celui du générateur. Par exemple, en régime 80°/60° pour les émetteurs, si la production de chaleur est dimensionnée pour un régime de 90°/70°.

Durant la saison de chauffe

Cette méthode donne lieu à un surdimensionnement des émetteurs de 27 % en moyenne, ce qui est une surcapacité suffisante dans la plupart des situations de l’année, sachant que la production de chaleur est de toute façon surdimensionnée 364 jours par an !

En fait, sur la saison de chauffe, toute installation possède une surpuissance moyenne de 100 %. En effet, la température extérieure moyenne d’une saison de chauffe est de l’ordre de 6 °C (5 °C en Ardenne) et la température extérieure de base prise en compte pour le dimensionnement est en moyenne de – 10 °C. La différence de température entre intérieur et extérieur à vaincre est donc en moyenne de 20 °C – 5 °C = 15 °C, alors que l’installation a été dimensionnée pour une différence de 20 °C – (- 10 °C) = 30 °C, soit 2 fois plus.

Lors de la situation la plus critique

Il reste la situation la plus critique : on peut imaginer, par exemple, que le chauffage est coupé entre Noël et Nouvel An, que le bâtiment est seulement maintenu à 14 °C et qu’il gèle à – 10 °C le jour de la reprise…

Le surdimensionnement des émetteurs ne sera pas utile si la production de chaleur ne l’est pas.
Mais plusieurs critères vont renforcer la puissance de chauffe effective :

  • Lors de la sélection de la production de chaleur, la norme NBN D30-001 (1991) propose la répartition de puissance suivante :

Puissance calculée
Qtot [kW]

Nombre
minimum
de production de chaleur

Puissance utile de la production de chaleur

Production de chaleur 1

Production de chaleur  2

Production de chaleur 3

< 200

1

1,1 x Qtot

200 kW < .. < 600

2

0,6 x Qtot

0,6 x Qtot

> 600

3

0,33 x Qtot

0,33 x Qtot

0,5 x Qtot

3

0,39 x Qtot

0,39 x Qtot

0,39 x Qtot

de facto, la puissance de la (des) production (s) de chaleur sera surdimensionnée de 10 à 20 %,
  • Lors des calculs, des marges de sécurité sont prises sur la définition des caractéristiques thermiques des matériaux qui composent les parois.
  • La production de chaleur choisie dans un catalogue de fournisseur aura une puissance supérieure à la valeur calculée.
  • La ventilation mécanique des bâtiments doit être mise à l’arrêt en période d’inoccupation, et donc aussi pendant la relance. La ventilation mécanique représentant de l’ordre de 50 % de la puissance de chauffe d’un bâtiment bien isolé, c’est autant de puissance de relance qui se dégage. Si l’installation de ventilation est naturelle, une fermeture soit des grilles d’entrée d’air, soit des cheminées de sortie d’air est recommandée pour limiter les déperditions en période d’inoccupation. S’il s’agit d’un ancien bâtiment sans système de ventilation, portes et fenêtres resteront fermées durant la relance.
  • La régulation par optimisation relancera suffisamment tôt le chauffage, quitte par période exceptionnelle de gel intense, à ce que l’installation fonctionne en régime continu sans interruption.
  • Dès l’arrivée des occupants, des apports internes (éclairage, bureautique, …) viendront renforcer l’apport des corps de chauffe.
  • Les périodes de froid intense sont accompagnées de ciel serein et donc de soleil, permettant un éventuel complément de chauffe en milieu de matinée.

Et finalement, faudrait-il vraiment surdimensionner toute une installation pour une situation exceptionnelle pouvant nuire très temporairement à notre confort ?

Faut-il tenir compte des pertes de distribution ?

Non, le dimensionnement ne doit pas tenir compte des pertes dans le réseau de distribution. En effet, celles-ci sont en partie récupérées par le bâtiment et, lorsque les conduites parcourent des zones non chauffées, leur degré d’isolation est suffisant pour rendre les pertes négligeables.

Comment vérifier que le dimensionnement a été effectué correctement ?

Déperditions au travers des parois et pertes par ventilation

C’est le bureau d’études ou l’installateur qui doit effectuer le dimensionnement, c’est-à-dire calculer les déperditions du bâtiment suivant la norme NBN B62-003 (nouvelle norme NBN EN 12831 :2003). Pour cela, il a besoin de connaître :

  • La surface et la composition de toutes les parois qui entourent le volume chauffé du bâtiment : murs extérieurs, murs intérieurs en contact avec des locaux non chauffés, portes et fenêtres, planchers sur sol, sur cave, sur vide ventilé, toiture ou plafond sous grenier non chauffé, coupoles, …
  • Les températures de consigne de chacune des zones intérieures (la norme donne des valeurs indicatives à prévoir en fonction du type de local).

Ce qui signifie que si ces données n’ont pas été demandées, le dimensionnement n’a pas été réalisé selon les règles.

À titre de contrôle, on peut se faire une idée de la puissance à installer en utilisant le tableau suivant (attention, ce tableau ne peut être utilisé pour dimensionner, mais bien pour vérifier un calcul !) :

Puissance spécifique à installer [W/m³] pour une température intérieure de consigne de 19 °C, une température extérieure de base de – 8 °C et un taux de renouvellement d’air de 0,7 vol/h

Compacité du bâtiment
(Volume chauffé / Surface déperditive) [m]

Niveau global d’isolation

K35

K45

K70

K150

0,5

23,9

31,6

46,3

67,6

1

16,7

19,4

26,6

47,3

1,5

14,7

17

22,6

40,6

2

13,9

15,9

21,0

37,2

3

13,5

15,2

20,2

33,8

4

16,8

32,1

K35 = bâtiment basse énergie ;
K45 = bâtiment bien isolé (construire avec l’énergie) ;
K70 = bâtiment isolé des années 80 ;
K150 = bâtiment ancien et non isolé.

On se rend compte que l’on atteint qu’exceptionnellement une puissance de 60 W/m³. Ce ne sera que pour un petit bâtiment très peu compact (fort étalé et présentant beaucoup de recoins) et extrêmement mal isolé.

Calculs

Pour adapter ces valeurs à votre situation et contrôler le dimensionnement de votre nouvelle chaudière.

Cahier des charges

Dimensionnement de la production de chaleur. Puissance de la production combinée de chauffage et d’eau chaude sanitaire.

Puissance de relance

A la puissance nécessaire pour vaincre les déperditions au travers des parois et les pertes par ventilation, il faut adjoindre la puissance de relance en cas d’intermittence ou de ralenti nocturne. Comme le montre le tableau suivant (extrait de la norme  NBN EN 12831), la puissance de relance dépend principalement :

  • De l’inertie du bâtiment ;
  • De la chute prévue de la température intérieure lors du ralenti ;
  • Du temps de relance toléré pour atteindre le confort.
Temps de relance pour une durée maximale de ralenti de nuit de 12 heures frh
W/m²
Chute prévue de la température intérieure lors du ralenti
2K 3K 4K
Inertie du bâtiment
faible moyenne forte faible moyenne forte faible moyenne forte
1

2

3

4

18

9

6

4

23

16

13

11

25

22

18

16

27

18

11

6

30

20

16

13

27

23

18

16

36

22

18

11

27

24

18

16

31

25

18

16

L’addition des puissances dues aux déperditions des parois et des pertes par ventilations avec la puissance de relance détermine la puissance totale à prévoir pour le système de production de chaleur.


Influence de la performance de l’enveloppe du bâtiment

Facteurs d’influence

Le dimensionnement d’une installation de chauffage dépend donc :

  • de la charge thermique due aux déperditions au travers des parois ;
  • de la charge thermique due à la ventilation et aux in/exfiltrations ;
  • de la puissance de relance nécessaire en cas d’intermittence.

Au travers de différents exemples repris ci-dessous, on se propose d’étudier l’influence de l’amélioration de la performance de l’enveloppe d’un bâtiment.

Exemple 1

Soit un immeuble de bureau modélisé avec les caractéristiques suivantes :

  • Composé d’un sous-sol enterré sur la moitié de la surface au sol, d’un RDC + 2 ;
  • Empreinte au sol de 980 m² ;
  • 3 411 m² de surface nette totale ;
  • 10 233 m³ de volume intérieur ;
  • La hauteur sous plafond est de 2,5 m ;
  • Le bâtiment est équipé d’un système de ventilation double flux avec un récupérateur de chaleur de rendement thermique de 70 % ;
  • Le taux de renouvellement est de 1 vol/h ;
  • Le rendement moyen du récupérateur de chaleur sur l’air hygiénique est de 70 % ;
  • La compacité volumique du bâtiment (V/At) est de 3.3 ;
  • L’inertie du bâtiment est moyenne.

Sur base de la norme de dimensionnement NBN EN 12831 : 2003, on calcule les charges thermiques par transmission (déperditions des parois) et par renouvellement d’air, ainsi que la puissance de relance, et ce en fonction de l’évolution de la performance de l’enveloppe. On entend par performance de l’enveloppe, la prise en compte du niveau d’isolation des parois externes et de l’étanchéité du bâtiment. Une image parlante (mais à prendre avec des pincettes) est la valeur K du bâtiment.

Les hypothèses suivantes sont prises :

  • La température extérieure de dimensionnement est de – 8 °C ;
  • La température interne est de 20 °C ;
  • La moyenne de la température externe est de 8 °C ;
  • Le temps de relance est de 3 heures ;
  • En fonction de la performance de l’enveloppe, les hypothèses suivantes sont prises :
Niveau de performance de l’enveloppe Taux de renouvellement n50 (h-1) Rendement thermique du récupérateur (%) U moyen du bâtiment (W.m-2.K
K70 5 1.2
K45 2,5 70 0.8
K30 2 70 0.5
K19 0,6 70 0.3

Remarque : de manière tout à fait arbitraire, on considère que le bâtiment de type  K70, à l’époque, n’était pas équipé d’un récupérateur de chaleur.

Le graphique suivant donne une idée de l’évolution de la puissance de chauffe en fonction du niveau d’isolation du bâtiment.

Image de la performance de l’enveloppe.

Lorsque le niveau d’isolation augmente :

  • Les charges thermiques par transmission diminuent. En d’autres termes, le Umoyen du bâtiment  (W/m².K) s’améliore de par l’augmentation de l’épaisseur d’isolant dans les parois externes.
  • Les charges thermiques par ventilation et infiltration  diminuent sachant que :
    • Celles par ventilation du système de ventilation hygiénique restent constantes. En effet, on considère que les débits ne sont pas changés. Dans le cas du bâtiment K70, le système de ventilation n’étant pas équipé d’un récupérateur (courant sur les vieilles installations), la charge thermique augmente de 70 %.
    • Celles par infiltration diminuent. Effectivement, lorsqu’on améliore le niveau d’isolation, on peut considérer qu’un soin particulier doit être pris à réduire aussi le niveau d’infiltration.
  • Concernant la puissance de relance :
    • En absolu, elle diminue. En effet, par la pratique de l’intermittence ou de l’abaissement de la consigne de température de nuit, le bâtiment se refroidit. Plus l’enveloppe du bâtiment est performante, moins la chute de température interne sera conséquente et plus facile sera la relance.
    • En relatif, par rapport aux autres charges thermiques, elle augmente comme le montre les diagrammes ci-dessous :

Exemple 2

En décidant de réduire l’inertie du bâtiment (plancher et plafond en bois par exemple), l’influence de la puissance de relance sur la puissance totale de dimensionnement se réduit comme le montre le graphique suivant.

Image de la performance de l’enveloppe.

Exemple 3

A l’inverse, quand l’auteur de projet décide de renforcer l’inertie du bâtiment (plancher et plafond en béton), l’influence de la puissance de relance sur la puissance totale de dimensionnement augmente comme le montre le graphique suivant.

Image de la performance de l’enveloppe.

En résumé

L’augmentation de la performance énergétique de l’enveloppe :

En absolu, s’accompagne d’une réduction de la puissance de dimensionnement du système de chauffage. En effet :

  • Les déperditions au travers des parois sont réduites de par l’isolation croissante.
  • Le taux d’in/exfiltrations diminue. En d’autres termes, l’étanchéité du bâtiment s’améliore.
  • En cas d’intermittence, la puissance de relance diminue :
    • Pour un bâtiment à faible isolation, la coupure du chauffage en période nocturne ou le WE peut engendrer des variations de température entre le début et la fin de la coupure de l’ordre de 4 K.
    • Pour un bâtiment à forte isolation, toute autre chose restant égale (par exemple l’inertie), l’intermittence ou le ralenti nocturne provoque une réduction de la température interne limitée. Sur une période de 12 heures, on pourrait observer une chute de température de l’ordre de 2 K par exemple.

En relatif, met en évidence une augmentation significative de la part de puissance prise en charge pour la relance. Ce  qui signifie, qu’au cours d’une journée un bâtiment bien isolé :

  • Demandera tôt le matin une puissance de relance proche de la puissance nominale du système de chauffage, et ce pendant un temps relativement court.
    • Lorsque le bâtiment sera occupé, nécessitera une puissance très faible pour contrecarrer les déperditions relativement faibles pendant un temps plus long.

Moderniser une chaufferie existante en associant une chaudière à condensation et un cogénérateur

Moderniser une chaufferie existante en associant une chaudière à condensation et un cogénérateur


Intérêt énergétique, environnemental et financier

Pour rappel, que ce soit en rénovation ou en conception, la cogénération est juste là pour produire un maximum d’énergie thermique et électrique locale sur base d’un profil de chaleur. L’appoint en chauffage, via des chaudières à condensation par exemple, n’est là que pour :

  • Donner un « coup de pouce » en termes de puissance pendant les périodes froides ;
  • Prendre le relai en mi-saison lorsqu’on décide de ne pas faire fonctionner la cogénération ;
  • Palier à une défectuosité de la cogénération.

Scénario de départ

Le gestionnaire d’un parc immobilier décide de remplacer une des deux chaudières d’un bâtiment. Il pense naturellement à une chaudière à condensation. Mais aurait-il un intérêt à investir aussi dans une cogénération ?

Avant de se lancer dans une entreprise d’association d’une cogénération avec une ou plusieurs chaudières à condensation, il est impératif de savoir s’il existe un intérêt énergétique, environnemental et financier réel à les associer. En d’autres termes :
Vaut-il mieux se contenter :

  • De remplacer les anciennes chaudières par des chaudières à condensation et d’optimiser l’installation tant au niveau hydraulique qu’au niveau de la régulation du système de chauffage, et ce dans le but d’optimiser uniquement le rendement saisonnier de la chaufferie ?
  • De continuer à « importer » de l’électricité à partir du réseau ??

Ou faut-il viser directement l’association des chaudières avec un cogénérateur en considérant que sur site :

  • La cogénération  consomme plus de combustible pour chauffer le bâtiment  et produire de l’électricité en local  ?
  • Les chaudières consomment un solde de combustible lorsque la cogénération ne « tourne pas » ?
  • Le réseau fournit le solde de besoin d’électricité ?

En se lançant dans l’aventure de la cogénération, il faut bien être conscient qu’un cogénérateur doit tourner un maximum de temps et la ou les chaudières classiques ou à condensation doivent être considérées comme un appoint à la cogénération.

Dans ce qui suit, on tente d’y répondre par l’utilisation du logiciel d’étude de pertinence de cogénération de la Région Wallonne CogenSim (version 3.11 ;  2011) :

Simulation

Le postula de départ est qu’une étude de faisabilité d’installation d’une cogénération a démontré un intérêt énergétique, environnemental et financier intéressant.

On utilisera CogenSim comme logiciel de simulation. Comme point de départ les données suivantes sont nécessaires :

  • Le profil de chaleur est mesuré sur place pendant au moins 2 semaines complètes.
  • Le profil électrique obtenu sur base d’une analyse pertinente des enregistrements :
    • réalisés sur site et synchronisés avec l’analyse thermique ;
    • donnés par le fournisseur d’électricité.

Profil de puissance électrique quart horaire, profil électrique mensuel.

Profil de puissance électrique quart horaire, profil électrique hebdomadaire.

En partant du principe qu’une cogénération est dimensionnée pour assurer la base du profil de besoins de chaleur, le solde étant fourni par une chaudière, plus cette chaudière sera performante, plus importante sera la réduction des consommations énergétiques pour fournir ce solde.

Calculs

Pour plus de renseignements sur le calcul de rentabilité de l’association d’une cogénération avec une ou plusieurs chaudières à condensation.

Une manière d’y arriver est de simuler une cogénération associée à une chaudière dont le rendement saisonnier évolue de 80 à 99 %.

Y a-t-il un intérêt réel d’association ?

En préliminaire, il faut toutefois faire remarquer que le cas simulé dans la note de calcul est très favorable à l’investissement dans une cogénération. En effet, les profits des besoins de chaleur et d’électricité se complètent bien. Tous les projets ne sont pas toujours aussi favorables ! Par exemple, lorsque le besoin de chaleur est faible par rapport à la demande d’électricité, l’investissement dans une cogénération n’est pas toujours rentable.

A voir donc au cas par cas !

Concevoir

Pour plus de renseignements sur les cogénérateurs

Niveau énergétique

En partant du principe :

  • que pour les profils de chaleur et d’électricité mesurés précisément, l’étude précise de faisabilité du placement d’une cogénération est intéressante énergétiquement, environnementalement  et financièrement parlant ;
  • que le remplacement d’au moins une chaudière existante est acquis ;

l’association d’une ou de plusieurs chaudières à condensation au cogénérateur est un plus énergétique comme le montre le graphique suivant :

Évolution des consommations en énergie primaire.

Niveau environnemental

La réduction des émissions de gaz à effet de serre est liée à la différence des consommations en énergie primaire de la nouvelle chaudière et du cogénérateur par rapport à celles de l’ancienne chaudière et de la centrale électrique. Dans le cas étudié dans la note de calcul , la réduction des émissions de CO2 est effective même pour une cogénération au gaz et sera d’autant meilleure que le rendement des chaudières d’appoint sera élevé. On privilégiera donc les chaudières à condensation. Le bilan environnemental sera naturellement influencé par le type de combustible utilisé par la cogénération. En effet, le nombre de certificats verts octroyés (CV) sera d’autant plus important que le combustible sera renouvelable (bois, huile végétale, …).

Niveau financier

Quant au bilan financier, il est en général lié aux éléments principaux suivants :

  • aux coûts imputés aux consommations des différents combustibles et aux frais de maintenance ;
  • à l’investissement :
    • dans l’installation de la cogénération et de la (des) chaudière(s) ;
    • dans la modification du circuit hydraulique primaire ;
    • dans l’adaptation de la régulation de la cascade cogénération/chaudière(s) ;
  • à l’octroi des primes et des certificats verts (CV) ;
  • à l’autoconsommation maximale de l’électricité produite par la cogénération (réduction de la facture électrique) ;
  • à la revente résiduelle d’électricité. Attention à ne pas devenir producteur d’électricité.

Le bilan financier est très variable. La rentabilité de la cogénération provient du gain engendré sur la facture électrique et les CV. Le premier gain est très important d’où l’importance d’auto consommer un maximum l’électricité produite par la cogénération pour maximiser la rentabilité de l’installation.


Aspect hydraulique et de régulation

Condition de cohabitation

On rappelle ici que la cogénération est maître dans l’association cogérateur(s)/chaudière(s). Ce qui signifie que, si l’étude de faisabilité de la cogénération a été réalisée correctement, elle doit fonctionner pendant une partie non négligeable de la saison de chauffe (un ordre de grandeur de 4 à 5 000 heures est courant pour une rentabilité acceptable). Tout dépend naturellement du profil de chaleur du bâtiment considéré. La cohabitation n’est effective que lorsque le besoin de chaleur est supérieur à la puissance de la cogénération.

Pour qu’une cogénération puisse cohabiter avec une ou plusieurs chaudières à condensation, il faut en même temps alimenter :

  • La chaudière à condensation avec un retour en chaufferie le plus froid possible (pour le gaz < 55 °C) ;
  • Le cogénérateur avec un retour dont la température n’est pas inférieure à 60 °C.

C’est à ce niveau que les aspects d’adaptation des circuits hydrauliques et de la régulation ainsi que la disposition des équipements de production, les uns par rapport aux autres, prennent toute leur importance.

Avant d’entamer un projet de grand « chambardement » au niveau de la chaufferie, il faut d’abord savoir si, en fonction des différents besoins de chaleur, on peut ramener un retour d’eau « froid » au niveau de la chaufferie. Pour être franc, c’est important, mais pas fondamental ! En effet, que la chaudière à condensation condense ou pas, en général son rendement est meilleur que celui d’une chaudière classique (les échangeurs des chaudières à condensation sont surdimensionnés). Mais il serait quand même dommage d’investir dans une technologie pointue pour ne pas ou peu l’exploiter !

Le retour froid en chaufferie est, entre autres, conditionné par le régime de température des émetteurs. Ce régime est déterminé en fonction de la charge thermique par déperdition au travers des parois et par in/exfiltration ainsi que la charge thermique par ventilation hygiénique des différents locaux du bâtiment :

> Pour un « bâtiment passoire », les besoins thermiques sont importants. Pour les contrecarrer, il est nécessaire de produire de la chaleur à haute température (régime 90-70 °C). En période froide, un retour à 70 °C ne permettra pas à la chaudière de condenser pleinement.

> Pour un bâtiment dont la performance de l’enveloppe a été améliorée (isolation des parois, remplacement de châssis à simple vitrage par des châssis à double vitrage à basse émissivité, placement de récupérateur de chaleur sur un système de ventilation à double flux, …), les régimes de température pourront avantageusement être revus à la baisse  (régime 80-60 °C ou encore 70-50 °C).

Aspect hydraulique

Température de retour

Lorsqu’on peut envisager un retour froid au niveau de la chaufferie, il est souvent nécessaire de modifier le circuit (hydraulique des chaudières et de la distribution primaire). Vannes à 4 voies, bypass, …

En première approximation, on pourrait dire que si l’hydraulique permet de faire cohabiter une chaudière à condensation avec une chaudière classique à plus haute température, il n’y a pas de raison pour qu’elle ne puisse pas cohabiter avec une cogénération. En effet, les chaudières classiques et les cogénérations nécessitent un retour d’environ 60 °C minimum, et ce pour éviter justement la condensation des fumées de combustion qui leur est néfaste. À noter qu’une température de retour de 70 °C est un maximum.

Exemple de configuration hydraulique

L’exemple repris ici est une configuration parmi d’autres. En rénovation, c’est quasi du cas par cas. Il sera toujours nécessaire de faire appel à un bureau d’étude spécialisé maîtrisant à la fois les techniques liées à la cogénération et aux chaudières qu’elles soient traditionnelles ou à condensation.

Dans les chaufferies existantes d’un certain âge, on retrouve régulièrement la même configuration :

  • Deux chaudières traditionnelles à brûleur à deux allures travaillant sur sonde de température d’eau chaude de départ. Pour les chaudières plus récentes, elles pourraient être équipées d’un bruleur modulant piloté par une courbe de chauffe tout en prenant soin de ne pas atteindre la température de condensation dans l’échangeur.
  • Le collecteur est bouclé.
  • Deux pompes primaires en parallèle assurent le débit nominal.

Chaufferie existante : chaudières classiques.

Remplacement d’une chaudière existante par une chaudière à condensation et placement d’une cogénération.

En rénovation, on décide de remplacer une des chaudières traditionnelles par une chaudière à condensation. De plus, on décide d’y adjoindre une unité de cogénération.
Les modifications à apporter à l’hydraulique sont les suivantes :

  • L’hydraulique de la chaudière traditionnelle est modifiée : il est nécessaire de lui assurer un débit et une température de retour minimum.  Une vanne 3 voies-mélangeuse et un circulateur permettent d’y arriver.
  • Le cogénérateur et son ballon tampon sont en tête de cascade. C’est lui qui fournit la chaleur en priorité via le ballon tampon en modulant de 60 à 100 % de sa puissance thermique. Certains constructeurs sont contre la modulation de puissance, car il est vrai qu’elle dégrade principalement le rendement électrique : on perd de l’ordre de 1 à 2 %. Cependant le fait d’essayer d’atteindre les 100 % en permanence risque de faire « pomper » la cogénération (marche/arrêt successifs) ; ce qui réduit la durée de vie de la cogénération. Sans rentrer dans les détails, on parvient à limiter cet effet par la présence d’un ballon tampon bien dimensionné et du contrôle de son taux de charge.
  • La chaudière à condensation est positionnée hydrauliquement pour amener un appoint à la cogénération si le besoin de chaleur dépasse la puissance nominale de la cogénération. La chaudière à condensation est équipée de deux retours  permettant de différencier la haute et la basse température avant la dérivation vers l’ensemble ballon tampon/cogénérateur. La dérivation vers l’échangeur haute température passe d’abord vers l’installation de cogénération ; celle vers l’échangeur à condensation (basse température) est directe.
  • Le maintien des deux pompes primaires est inutile sachant que l’ancienne chaudière a maintenant son propre circulateur pour assurer la mise à température de son retour si nécessaire et que le ballon et la chaudière à condensation seront irrigués par les circulateurs secondaires. On notera toutefois que les circulateurs secondaires devront être remplacés de manière à adapter les débits et les hauteurs manométriques. Dans la même lignée, le bouclage sera supprimé. On restera toutefois attentif à ce que les circulateurs des circuits secondaires puissent assurer la prise en charge des pertes de charge du circuit primaire (collecteur principal, chaudière à condensation, …).
  • Attention que, dans le cas où le collecteur est éloigné, le bouclage de collecteur doit être maintenu, mais néanmoins « bridé » de manière à assurer, par un débit minimum, un maintien en température du collecteur.  Il s’ensuit qu’une pompe à débit variable doit remplacer les deux pompes de circulation existantes.

Exemple de configuration hydraulique délicate

Le positionnement hydraulique de la cogénération par rapport aux chaudières a toute son importance. Sans y prendre garde, on peut vite arriver à des situations qui, après coup, deviennent ingérables tant au niveau de l’équilibrage hydraulique que de la régulation comme, par exemple, une cogénération qui se « repique » sur une réserve en bout du collecteur principal :

Remplacement d’une chaudière existante par une chaudière à condensation et placement d’une cogénération  en bout de collecteur.

 En rénovation l’installateur et le maître d’ouvrage seront tentés d’utiliser un départ/retour  de réserve du collecteur pour installer la cogénération. En effet, cette configuration permet :

  • de s’en sortir à moindre coût au niveau de la modification de l’hydraulique de l’installation ;
  • de ne pas interrompre la production de chaleur. Par exemple lorsque les circuits de chauffage et d’ECS sont branchés sur le même collecteur et que l’ECS a un profil de puisage relativement continu (cas des hôpitaux).

Cette configuration est simple à mettre en œuvre, mais elle pose un certain nombre de problèmes difficiles à solutionner par la suite, à savoir :

  • des déséquilibres hydrauliques importants sont inévitables. On pourrait très bien se retrouver avec un « conflit » de production, les chaudières  et certains circuits de distribution devenant émetteurs ou l’inverse ;
  • des problèmes de régulation de cascade comme par exemple le « pompage » de la cogénération.

Aspect régulation

La globalisation de la régulation tant au niveau de la cascade des chaudières que de la cogénération est primordiale. Dans des projets existants, on trouve trop souvent des cogénérateurs avec leur propre régulation qui viennent se « greffer » sur une cascade existante de chaudières, elles-mêmes avec leur propre système de régulation. Travailler avec un seul fabricant garantit la compatibilité.

Pour bien réguler l’ensemble de l’association chaudières classiques/chaudières à condensation/cogénérateur, on considérera l’ordre de priorité suivant :

  • Zone 1 : priorité à une chaudière à condensation pour les faibles besoins de mi-saison par exemple. C’est intéressant de faire fonctionner la  chaudière à condensation à faible charge sachant que dans une plage de modulation de 10 à 50 % voire 60 %, ce type de chaudière est très performant au niveau énergétique.
  • Zone 2 : priorité au cogénérateur durant la saison de chauffe. Pendant cette période, il module entre 60 et 100 % de sa puissance thermique nominale. Suivant le profil de besoin, la quantité de démarrages peut être limitée, « ce qui lui sauve la vie ! » .
  • Zone 3 : le cogénérateur travaille à 100 % de son taux de charge et la chaudière à condensation module de 10 à 100 %. À noter toutefois que pour quelques heures par an, la seconde chaudière peut donner un appoint. = Zone 4.

Techniques

Pour plus de renseignements sur la régulation de l’association chaudières classiques/chaudière à condensation/ cogénérateur.

Évaluer l’efficacité des chaudières en association avec une cogen

Évaluer l'efficacité des chaudières en association avec une cogen


Évaluer l’efficacité énergétique primaire de l’association d’un cogénérateur avec une ou plusieurs chaudières

Rappel : intérêt de la cogénération

Au moment d’investir dans une cogénération, l’objectif du gestionnaire de bâtiments était de réduire sa facture énergétique et ses émissions de CO2 tout en bénéficiant d’incitants financiers sous forme de prime et de certificats verts (CV).

Rappelons que l’intérêt de la cogénération est de couvrir un maximum de besoins de chaleur du bâtiment tout en produisant localement de l’électricité. En général, on s’accorde à dire qu’un seuil de l’ordre de 4 500 heures/an permet d’avoir une certaine rentabilité financière, mais cela dépend fortement du profil du bâtiment analysé. Une cogénération est toujours associée à un système de chauffage. En effet, on rappelle qu’une cogénération est placée au sein d’une installation de chauffage pour produire une base des besoins thermiques d’énergie thermique et électrique, mais pas pour fournir un appoint de puissance. De plus, c’est un équipement qui reste fragile par rapport aux cycles marche/arrêt fréquents. La plupart des chaufferies existantes, où une cogénération a été placée, sont équipées de chaudières d’ancienne génération. Cependant, on commence à rencontrer des chaufferies où le gestionnaire a fait le pas d’associer une cogénération à une, voire plusieurs chaudières à condensation.

Evaluer

Pour en savoir plus sur l’intérêt d’associer une cogénération à une ou plusieurs chaudières à condensation.

Efficacité énergétique primaire

Lorsqu’on parle de l’association d’une cogénération avec un ensemble de chaudières, le rendement saisonnier thermique d’une chaufferie n’a plus beaucoup de sens sachant :

  • Qu’un cogénérateur produit de la chaleur avec un rendement thermique très mauvais (de l’ordre de 55 %).
  • Qu’une ou plusieurs chaudières à condensation sont dotées d’un très bon rendement thermique (de l’ordre de 102 à 107 % par exemple).
  • Qu’une installation de cogénération produit en plus de l’électricité.

En comparant les rendements thermiques et en se focalisant uniquement au niveau de la couverture des besoins de chaleur de la chaufferie, on pourrait conclure qu’on n’a pas du tout intérêt à produire de la chaleur avec un module de cogénération. L’intérêt est naturellement au niveau de l’efficacité énergétique primaire.

Efficacité énergétique primaire.

Pour pouvoir donner une idée de l’efficacité énergétique primaire de l’ensemble de la chaufferie cogénérateur/chaudières, il est nécessaire, vu la production d’électricité par la cogénération) de « ramener » toutes les considérations énergétiques au niveau du bilan en énergie primaire. L’idée est de comparer les consommations primaires de l’ensemble cogénérateur/chaudières par rapport aux consommations de chaleur et d’électricité que l’on aurait eu en considérant :

  • Que toute la chaleur est produite avec des chaudières du même type que celles qui donnent l’appoint à la cogénération et ce avec un rendement saisonnier similaire.
  • Que l’électricité est « importée » entièrement du réseau électrique.

Pour réaliser ce comparatif, il est nécessaire d’effectuer des mesures.

Mesures

En principe, lors de l’acquisition d’une installation de cogénération, des compteurs ont dû être placés sur les différents équipements (selon la ouverture d'une nouvelle fenêtre ! CWaPE) :

  • des compteurs de chaleur sur le circuit hydraulique du cogénérateur ;
  • un compteur électrique sur le réseau électrique du cogénérateur et ce afin de mesurer sa production électrique ;
  • des compteurs des consommations de combustible sur l’alimentation du cogénérateur et de chaque chaudière d’appoint.

Dans le cas contraire, il n’est pas trop tard pour en placer sachant que la gamme des compteurs de chaleur qui existe sur le marché est large et pour toutes les bourses (150 à 1 800 €).

Mesures

Pour en savoir plus sur la mesure de l’énergie thermique.

Compteurs de chaleur

En additionnant la mesure des compteurs de chaleur des chaudières d’appoint et du cogénérateur on peut reconstituer la consommation qu’auraient les mêmes chaudières d’appoint sans cogénérateur sur base de leur rendement saisonnier calculé comme suit :

ηchaudière = Σ Compteurs chaleur (kWhth) chaudières / Σ Consommation combustible (kWhth) chaudières

La consommation de chaleur qu’auraient produit les chaudières sans cogénérateur serait :

Consommation combustible (kWhth) chaudières sans cogen =
Σ Compteurs chaleur (kWhth) chaudières + Compteur chaleur cogen (kWhth) /
        ηchaudière

Compteurs électriques

De la même manière que les compteurs de chaleur, en additionnant la mesure des compteurs électriques du cogénérateur et de l’appoint du réseau, on peut reconstituer la consommation de combustible qu’aurait eu la centrale électrique pour produire l’ensemble de l’électricité sans le cogénérateur.

Consommation combustible (kWhth) centrale électrique sans cogen  =
Compteur électrique cogen (kWhélec) + Compteur électrique réseau (kWhélec) /
        0.4  (selon la ouverture d'une nouvelle fenêtre ! CWAPE )

Calcul de l’efficacité énergétique primaire

L’efficacité énergétique de l’association d’une cogénération et d’une ou de plusieurs chaudières se calcule comme suit :

(Consommation combustible (kWhth) centrale électrique + Σ Consommation combustible (kWhth) chaudières sans cogen) /
        (Consommation combustible cogen + Σ Consommation combustible (kWhth) chaudières + Consommation combustible (kWhth) centrale électrique)

Attention que ce calcul donne un ordre de grandeur de l’efficacité énergétique primaire sachant que le rendement calculé sur base de la performance des chaudières d’appoint avec cogénérateur est sous-estimé. En effet, les chaudières d’appoint produisent de la chaleur dans des conditions moins favorables que si elles étaient seules. En présence d’un cogénérateur, il est plus difficile de valoriser les bonnes performances d’une chaudière à condensation par exemple (les températures de retour d’eau risquent d’être plus chaudes).

Comptabilité énergétique

Pour gérer ces calculs et ces mesures, il est impératif de mettre au point une comptabilité énergétique qui permettra pratiquement au jour le jour de voir l’évolution des consommations et, par conséquent, de déceler des anomalies de fonctionnement en chaufferie.

Gérer

Pour en savoir plus sur la comptabilité énergétique.

Déceler les dysfonctionnements de la cogénération et des chaudières

Constat : la cogénération fonctionne très peu d’heures !

Lorsque la cogénération fonctionne un nombre d’heures nettement inférieur à ce que l’étude de faisabilité de cogénération prévoyait, on s’en rend compte souvent trop tard lorsque la période de garantie est terminée. En effet, il faut régulièrement tabler sur un voire un an et demi pour pouvoir établir la rentabilité énergétique, environnementale et financière de l’ensemble de la chaufferie, en ce compris la cogénération. Malgré tout, un diagnostic doit être réalisé. En effet, le problème peut être mineur et facile à résoudre.

Voici quelques pistes de pré-diagnostic avant de faire appel à l’installateur initial ou à un bureau d’étude en audit énergétique.
On pointera principalement :

  • Les profils des besoins de chaleur et d’électricité sont différents de ceux imaginés lors de l’étude de faisabilité.
  • La régulation de chaque équipement et de l’ensemble de la cascade des équipements, à savoir :
    • l’ordre de priorité de la cogénération par rapport à la ou les chaudières ;
    • la régulation individuelle de la cogénération ;
    • la régulation individuelle de chaque chaudière.
  • L’hydraulique de l’installation.

Évolution des profils des besoins

Le temps entre l’étude de faisabilité et la mise en service d’une installation de cogénération peut être important dans certains cas. En effet, pendant cette période, les profils des besoins de chaleur et d’électricité peuvent changer. Le gestionnaire de bâtiments peut très bien mener des actions URE, voire entreprendre des actions importantes :

  • d’isolation des parois, de la toiture, … ;
  • de remplacement de vitrage simple par des doubles vitrages à basse émissivité ;
  • de récupération de chaleur sur la ventilation hygiénique ;
  • de limitation des consommations d’eau chaude sanitaire ;
  • de réduction des consommations électriques sur l’éclairage, la bureautique, les moteurs de ventilation, … ;

C’est vrai que l’on (doit ?) peut tenir compte des actions URE dans les études de faisabilité ! Mais il reste difficile d’évaluer exactement dans quelle proportion les profils de consommations vont évoluer.

Toujours est-il que c’est une des causes possibles de manque de rentabilité énergétique de la cogénération. En effet, une diminution des besoins de chaleur fera en sorte que la cogénération s’arrêtera plus rapidement avec pour effet retardé de réduire le nombre d’heures de fonctionnement sur une année.

Pour pouvoir objectiver la part de réduction due aux actions URE, il est nécessaire d’avoir mis une comptabilité énergétique performante sur base des relevés des compteurs de chaleur et électriques.

Régulation et commande des équipements

Régulation de l’ensemble

Dans l’association d’une cogénération avec une ou plusieurs chaudières, l’objectif, comme on l’a déjà précisé, est que la cogénération fonctionne un maximum d’heures sur l’année. Elle devrait donc être « en tête » de cascade ! Attention toutefois qu’une cogénération ne peut, en général, moduler qu’entre 60 et 100 %  de son taux de charge thermique. En dehors des périodes de fonctionnement de la cogénération dans sa zone de modulation en puissance, il est nécessaire d’assurer les besoins de chaleur par les chaudières.

Suivant le schéma ci-dessus on établit la logique de cascade suivante :

Zone 1
Pour un besoin inférieur à 24 % de la puissance totale, ce sont les autres chaudières qui doivent être en « tête » de cascade. Si la chaufferie est équipée d’une chaudière à condensation, pour autant qu’elle soit dans des bonnes conditions de condensation, c’est elle qui doit assurer le besoin de chaleur. Avec sa capacité à moduler de 10 % à 100 % de son taux de charge, avec un excellent rendement à faible charge, la chaudière à condensation est tout indiquée.

Zone 2
Dans la plage de 24 à 40 % de la puissance totale nécessaire, la cogénération doit fonctionner en permanence. Si ce n’est pas le cas, le premier réflexe est de regarder au niveau de la régulation propre à la cogénération.

Zone 3
Pendant les périodes de grands froids, la cogénération ne sera pas suffisante pour assurer les besoins de chaleur du bâtiment considéré. Il sera nécessaire de lui adjoindre une chaudière afin de lui donner le « coup de pouce sauveur ». Cette opération est délicate en fonction du type de chaudière qui vient faire l’appoint. Un développement trop important de puissance de la part de la chaudière peut faire en sorte que la cogénération s’arrête.

Techniques

Pour plus de renseignements sur la régulation de l’association chaudières classiques/chaudière à condensation/ cogénérateur.

Pour différents besoins de chaleur, on peut évaluer si la cascade est correcte. Naturellement, il est nécessaire de choisir correctement les périodes pendant lesquelles on peut évaluer le fonctionnement de la régulation générale. Pendant ces périodes, sur base de la logique de régulation de cascade et en la croisant avec le taux de charge des différents équipements, on peut évaluer la bonne régulation de l’ensemble :

  • En mi-saison et en début d’été, le régulateur général doit privilégier la ou les chaudières à condensation. Si le régulateur général affiche la valeur de puissance des chaudières, une bonne régulation donnera un taux de charge (Puissance affichée / Puissance nominale de la ou des chaudières) compris entre 10 et 24 % de la puissance totale.
  • En hiver, lorsque la température externe n’est pas trop froide, la cogénération doit fonctionner seule. Une régulation correcte donnera un taux de charge (Puissance affichée / Puissance nominale du cogénérateur) compris entre 24 et 40 % de la puissance totale.
  • En période très froide, le taux de charge du cogénérateur doit être de 100 % pendant de longue période de fonctionnement et le taux de charge d’une voire deux chaudières comprit entre 10 et 100 %.

Régulation interne de la cogénération

La régulation interne de la cogénération est assez complexe en soi. Sans rentrer dans les détails, on donne ici quelques pistes de réflexion. Le nombre d’heures de fonctionnement et le nombre de démarrages de la cogénération associée à un ballon tampon peut être influencé par la régulation :

  • Selon le rapport entre le besoin instantané de chaleur (en kWth) et la puissance nominale de la cogénération en dessous duquel la cogénération reste à l’arrêt. Pratiquement, cette régulation s’exprime par sa capacité à gérer la modulation de puissance thermique de la cogénération. Une cogénération classique peut en général avoir une modulation de puissance entre 60 et 100 %.
  • Du taux de charge du ballon associé. En dessous d’une certaine valeur de taux de charge maximum, la cogénération module en puissance. Plus ce taux de charge maximum est élevé, plus la cogénération commence à « pomper » (marche/arrêt important). Ce qui nuit naturellement à longévité du cogénérateur.

Des indicateurs de bon fonctionnement de l’ensemble ballon tampon/cogénérateur sont :

  • Un écart de température entre le bas et haut du ballon suffisant pour permettre une modulation de puissance de la cogénération (de l’ordre de 20 K), autrement dit, une bonne stratification du ballon.
  • Pour éviter le pompage de la cogénération :
    • un différentiel suffisant entre la température donnée par la sonde du haut du ballon et la valeur de consigne de redémarrage de la cogénération (de l’ordre de 5 K) ;
    • un différentiel suffisant entre la température donnée par la sonde du bas du ballon et la valeur d’arrêt de la cogénération (de l’ordre de 5 K) ;

En première approche, on pourrait conseiller aux gestionnaires, lorsque la cogénération fonctionne seule, (période pas trop froide), d’évaluer de manière régulière le temps de fonctionnement de la cogénération et surtout le nombre d’arrêts- redémarrages, de démarrage :

  • un nombre trop important de démarrages ;
  • un temps de fonctionnement court ;
  • une mauvaise stratification dans le ballon ;
  •  …

devront décider les gestionnaires à faire appel soit à l’installateur, à la société de maintenance ou soit à un auditeur.

Régulation individuelle des chaudières d’appoint par rapport à la cogénération

Lorsqu’une ou plusieurs chaudières existantes sont en appoint de la cogénération, les régulations individuelles de chaque chaudière doivent être adaptées par rapport au cogénérateur. Souvent, on observera que lorsque le besoin de chaleur devient supérieur à la puissance thermique des cogénérateurs, on démarre une chaudière d’appoint sans modulation de puissance au niveau du brûleur. Le « boost » de puissance de la chaudière va tout de suite « affoler » la régulation du cogénérateur qui risque de s’arrêter rapidement. Il en résulte un risque non négligeable de « pompage » de la cogénération altérant ainsi :

  • la rentabilité de la cogénération ;
  • la durée de vie de la cogénération tout en augmentant le risque de panne.

Immanquablement, la chaudière d’appoint devra démarrer :

  • pour les anciens modèles en petite flamme ;
  • pour les modèles récents au minimum de la plage de modulation (à 10 % pour une chaudière à condensation par exemple).

Hydraulique de l’installation

Le regroupement des équipements de production de chaleur en amont du collecteur principal est primordial pour que le fonctionnement conjoint des chaudières et des cogénérateurs permette une optimisation énergétique de l’ensemble.

Une source de perturbation que l’on peut rencontrer sur des installations existantes est le placement d’une cogénération sur un départ/retour existant du collecteur. C’est en général la solution de facilité pour les raisons suivantes :

  • La modification hydraulique est réduite.
  • Il n’y a pas d’interruption dans le fonctionnement de l’installation de chauffage. Dans le cas où, par exemple, l’installation de chauffage doit produire en permanence de l’ECS. C’est le cas dans les hôpitaux où l’installation d’ECS n’a pas sa production propre. Ceci dit, il est toujours possible de trouver un compromis.

Les conséquences de cette configuration pourraient être les suivantes :

  • problème d’équilibrage des circuits;
  • difficulté de réguler correctement  l’association des chaudières avec les cogénérateurs.

Dans ce cas de figure, il y aura lieu de reconsidérer l’hydraulique en faisant appel à un auditeur spécialisé.

Exemple de configuration délicate :

Le schéma ci-dessous montre que l’installation du cogénérateur s’est réalisée à postériori. Probablement parce qu’un départ/retour était disponible en bout de collecteur, le circuit de l’installation de cogénération a été placé à l’opposé de la production de chaleur des chaudières.

Exemple de configuration correcte :

On voit ci-dessous que le cogénérateur et les chaudières sont placés d’un même côté par rapport à la distribution de chaleur.

S’assurer que les retours sont froids

Lorsque la chaudière d’appoint est une chaudière à condensation, en période de grand froid la cogénération fonctionnera en même temps que la chaudière à condensation. L’hydraulique de l’installation a toute son importance dans le sens où le retour d’eau chaude vers la chaufferie doit être :

  • le plus froid possible pour favoriser la condensation de la chaudière à condensation ;
  • adapté aux spécifications de température de retour minimale exigées par le constructeur de cogénération.

On se retrouve ici dans le même cas de cohabitation que celui de chaudières classiques avec une chaudière à condensation, avec une différence de taille : c’est la cogénération qui doit fonctionner un maximum d’heure par an et accessoirement la chaudière à condensation qui doit condenser en support de la cogénération en période froide ou en remplacement de la cogénération lorsque celle-ci ne fonctionne pas.

Cependant, énergétiquement parlant, l’idéal est que l’hydraulique soit conçue pour favoriser à tout moment des retours froids quitte à le réchauffer par un by-pass au niveau des chaudières classiques et du cogénérateur. L’inverse ne fonctionne pas !

Ce cas de figure peut arriver lorsqu’une chaudière classique, faisant partie d’un ensemble chaudières classiques/cogénération a été remplacée par une chaudière à condensation sans modification de l’hydraulique. Dans cette configuration, il y a des chances pour que la chaudière à condensation en appoint de la cogénération ne puisse pas condenser.

On pointera principalement :

  • un collecteur bouclé ;
  • une bouteille casse-pression pas ou mal régulée;
  •  …

Isoler entre les éléments de structure d’un plancher inférieur [Améliorer]

Isoler entre les éléments de structure d’un plancher inférieur [Améliorer]


Mesures préliminaires

Si le plancher présente des problèmes d’humidité, ceux-ci doivent d’abord être supprimés. En cas d’attaque par des insectes ou par des champignons, les parties atteintes doivent être enlevées et éliminées. Les parties saines et les nouvelles pièces doivent être traitées à l’aide de produits adaptés préventifs et curatifs si nécessaires. En effet, le fait de changer la composition du plancher entraîne une modification des conditions hygrothermiques des éléments. En outre, lorsque l’isolant et les finitions seront placés, il ne sera plus possible d’atteindre les parties cachées et il sera donc trop tard pour intervenir de manière économique.


Choix du système

> Le choix du système d’isolation par l’extérieur se fait en fonction des critères suivants :

  • la présence ou non d’une finition sur la face inférieure et l’accès à celle-ci ;
  • l’état des finitions existantes ;
  • les différentes possibilités ;
  • les performances énergétiques ;
  • le prix.

La finition sur la face inférieure

Lorsque la face inférieure du plancher est facilement accessible et qu’elle n’est pas recouverte d’une plaque de finition. L’accès est libre pour placer un isolant thermique. L’isolant devra être en panneaux suffisamment souple pour s’adapter à la forme des alvéoles et suffisamment compact pour pouvoir être fixé efficacement. Par le bas, la pose d’un isolant en vrac n’est pas possible. Après la pose des panneaux isolants, des plaques de finition peuvent être placées sur la face inférieure du plancher.

L’état des finitions existantes

En fonction de son état, on choisira la face à démonter (supérieure ou inférieure). Si les deux faces sont dans des états similaires, on comparera les coûts des interventions pour savoir laquelle sera démontée. Dans l’estimation du coût, il sera tenu compte des frais nécessités par la pose d’une barrière étanche à l’air.

Les différentes possibilités d’isolation à l’intérieur de la structure

Le freine-vapeur devra être mis en œuvre si nécessaire (à évaluer en fonction de la composition du plancher : nature et épaisseur des couches). Il est cependant toujours conseillé pour garantir l’étanchéité à l’air du plancher.

Les performances énergétiques

Il faut profiter de tout l’espace disponible pour y introduire l’épaisseur maximale possible d’isolant. Le coût de la main-d’œuvre est identique. Seule la quantité d’isolant augmente.

La structure en bois ne pouvant être supprimée, la transmission thermique est plus importante à l’endroit de celle-ci. Il en est tenu compte dans l’évaluation du coefficient de transmission thermique (équivalent) du plancher. Malgré cela, à cause de l’épaisseur importante généralement disponible pour l’isolant, des performances élevées peuvent être atteintes.

Le prix

« Le nerf de la guerre…! »
La fourniture et la pose de l’isolant lui-même sont peu couteux par rapport aux travaux annexes (démontage et remontage d’une des faces, réparation éventuelle de la structure, traitement du bois, pose d’une barrière d’étanchéité à l’air).


Choix de l’isolant

Type d’isolant

L’isolant est placé dans les espaces laissés libres par la structure. Ces espaces sont généralement de dimensions et formes irrégulières. L’isolant doit donc être suffisamment souple pour épouser ces irrégularités. On utilisera donc des matelas isolants en laine minérale ou en matériaux naturels ou, si c’est possible (cavités bien fermées dans le bas), les mêmes matériaux déposés en vrac ou insufflés.

La migration de vapeur à travers le plancher devra être régulées par la pose, du côté intérieur d’un freine-vapeur étanche à l’air adapté à la finition extérieure et au type d’isolant posé (hygroscopique ou non).

Épaisseur de l’isolant

Les épaisseurs d’isolant sont déterminées en fonction de l’espace disponible. Idéalement, celui-ci doit être totalement rempli.

Conseils de mise en œuvre

> On évitera toute cavité dans l’isolant afin de ne pas créer de zones froides, des courants internes de convection ou d’aggraver les fuites d’air en cas de défectuosité du freine-vapeur.   Les panneaux isolants doivent donc être posés de manière parfaitement jointive et appliqués contre les éléments de structure et les faces.

Isoler un plancher inférieur par le haut [Améliorer]

Isoler un plancher inférieur par le haut [Améliorer]


Mesures préliminaires

Si le plancher présente des problèmes d’humidité provenant des appuis ou du sol, l’isolant doit être étanche à l’eau. Un film étanche (eau et air) est placé sur l’isolant, en dessous de la surface circulable (chape avec finition).

Il faudra être attentif à ce que le traitement du plancher ne provoque pas l’apparition ou l’aggravation de problèmes d’humidité dans les murs en élévation au-dessus du plancher. Auquel cas la base des murs devra également être traitée (membrane étanche insérée ou injection d’un produit hydrofuge).


Choix du système

> Le choix du système d’isolation par l’intérieur se fait en fonction des critères suivant :

  • la possibilité d’alternative
  • les performances à atteindre
  • l’esthétique recherchée
  • les performances énergétiques
  • le prix

La possibilité d’alternative

Lorsque le plancher inférieur est posé sur le sol ou que sa face inférieure n’est pas accessible, la seule possibilité d’améliorer la résistance thermique de celui-ci est de l’isoler par le haut.

L’isolation éventuellement se limiter à la zone périphérique du plancher, le long des façades. (La résistance mécanique de la chape flottante devra être vérifiée en rive d’isolant).

Isolation périphérique horizontale.

Isolation périphérique verticale.

Les performances à atteindre

L’étanchéité à l’air du plancher doit être assurée. Cela ne pose pas de gros problème lorsque le support est en béton coulé sur place. Il suffit dans ce cas de traiter les raccords de la dalle du plancher avec les murs périphériques. Par contre, lorsqu’il s’agit d’un plancher léger à ossature et éléments assemblés une couche spéciale d’étanchéité à l’air doit être prévue. Elle fait en même temps office de pare-vapeur et doit être posée entre l’isolant et la plaque circulable.

L’esthétique recherchée

Toutes sortes de finitions de sol sont possibles. Elles peuvent être lourdes (chape + finition) ou légères (panneau fin ou planches + finition éventuelle).

La raideur de l’isolant devra être adaptée au type de finition. Des joints de mouvement devront être prévus dans la finition pour éviter la rupture de celle-ci.

Si l’isolant est trop souple et ne résiste pas à l’écrasement, des lambourdes seront placées pour porter la plaque circulable.

Les performances énergétiques

Parfois l’espace disponible pour poser l’isolant est limité (hauteur sous linteau des portes par exemple). Dans ce cas, l’isolant devra être le plus performant possible pour atteindre les valeurs souhaitées (λ le plus petit possible). Des isolants moins performants seront choisis lorsque la place disponible est suffisante et que d’autres de leurs caractéristiques sont intéressantes (étanchéité à l’eau, étanchéité à la vapeur, résistance à la compression, prix, caractère écologique, …).

Le prix

« Le nerf de la guerre…! »

L’isolation par le haut nécessite généralement la démolition du revêtement existant pour gagner de la hauteur disponible ou pour ne pas surcharger la dalle. Ce coût peut être important (enlèvement, évacuation, protections, réparation de la surface, nettoyage, …) Il est donc économiquement préférable, si possible, de poser la nouvelle isolation sur la finition existante.

Le coût de la finition dépendra des choix esthétiques et des performances attendues (résistance mécanique, résistance à l’eau, aspect, facilité d’entretien, …).

Plancher. Si l’isolant reste apparent, le coût des travaux dépendra principalement de la difficulté d’accès à la face inférieure du plancher (vide sanitaire de hauteur réduite).

Lorsque l’isolant est revêtu par une finition extérieure, le choix de cette finition (structure portante comprise) influencera fortement le coût des travaux.

Si on souhaite rendre les nœuds constructifs (appuis) conformes aux critères de la réglementation PEB en prolongeant de chemin de moindre résistance thermique, le coût des travaux annexe peut être considérable surtout si les appuis sont nombreux.


Choix de l’isolant

Type d’isolant

Les isolants mis en œuvre devront être adaptés aux contraintes spécifiques au projet (résistance à la compression, résistance à l’eau, …).

Lorsque le support est irrégulier, la pose d’un isolant en matelas souples ou projeté sur place est préférable pour épouser les défauts. Si l’isolant est rigide, il est nécessaire de régler le support avant de poser l’isolant.

Épaisseur de l’isolant

Les épaisseurs d’isolant sont calculées à partir des performances à atteindre.

Conseils de mise en œuvre

> Les panneaux isolants doivent être posés de manière parfaitement jointive et appliqués contre le plancher afin d’éviter les interruptions dans la couche isolante (= pont thermique).

> Il faut protéger et manipuler les panneaux isolants avec précautions pour éviter les écrasements, les déchirures, l’eau, la boue.


Détails d’exécution

L’isolation par le haut d’un plancher existant sera interrompue à chaque mur. À cet endroit le pont thermique est difficile à éviter. L’interposition d’un élément isolant entre le mur d’appui et la dalle est très difficile, voire impossible et de toute manière très coûteuse.

La présence éventuelle du sol sous la dalle réduit l’impact des ponts thermiques sauf à proximité des façades.
La finition du sol et des murs à proximité de ces ponts thermiques devra être capable de supporter une humidité importante éventuelle sans se détériorer.

Isoler un plancher inférieur par le bas [Améliorer]

Isoler un plancher inférieur par le bas [Améliorer]


Mesures préliminaires

Si le plancher présente des problèmes d’humidité provenant des appuis, ceux-ci doivent d’abord être supprimés. Une barrière étanche horizontale doit être placée dans les murs d’appui humides, en dessous de la face inférieure du plancher. Si cette barrière est inexistante ou mal positionnée, il faut la créer. Pour ce faire, une membrane étanche peut être placée en démontant la maçonnerie par petits tronçons. Cette méthode est la plus efficace, mais difficile et délicate à réaliser. Aussi, on peut créer cette barrière en injectant des produits hydrofuges dans la masse du mur.
On doit ensuite laisser au plancher le temps de sécher.


Choix du système

> Le choix du système d’isolation par l’extérieur se fait en fonction des critères suivants :

  • les performances à atteindre ;
  • l’esthétique recherchée ;
  • les performances énergétiques ;
  • le prix.

Les performances à atteindre

Généralement la face extérieure des planchers est protégée de la pluie. On sera cependant attentif lorsque la plancher situé au-dessus de l’ambiance extérieure est raccordé au bas d’une façade. À cet endroit, un système doit être mis en œuvre pour éviter que les eaux de ruissellement atteignent le plafond (casse-goutte).

L’esthétique recherchée

Lorsque la face inférieure du plancher n’est pas visible, il est inutile de revêtir l’isolant d’une finition.

Lorsque le plancher se trouve au-dessus de l’ambiance extérieure, il sera recouvert d’une finition en harmonie avec l’aspect extérieur du bâtiment et qui résiste aux agressions extérieures mécaniques et atmosphériques.

Lorsque le plancher est en même temps le plafond d’un espace adjacent non chauffé ou d’une cave, l’isolant pourra, soit rester apparent si les panneaux sont suffisamment rigides, soit être revêtu d’une finition pour environnement intérieur (planchettes, panneau, plaques de plâtre, enduit, …).

Les performances énergétiques

L’enduit isolant est difficile à mettre en œuvre au plafond et nécessite des épaisseurs excessives pour atteindre le coefficient de transmission thermique U réglementaire.

Les systèmes avec panneaux rigides peuvent être continus s’ils ne sont pas recouverts d’une finition.

Un système avec structure (finition inférieure supportée par une structure) présente une isolation discontinue et donc moins efficace pour une même épaisseur d’isolant.

Une structure métallique est déconseillée, car elle engendre des ponts thermiques.

Le prix

« Le nerf de la guerre…! »

Si l’isolant reste apparent, le coût des travaux dépendra principalement de la difficulté d’accès à la face inférieure du plancher (vide sanitaire de hauteur réduite).

Lorsque l’isolant est revêtu par une finition extérieure, le choix de cette finition (structure portante comprise) influencera fortement le coût des travaux.

Si on souhaite rendre les nœuds constructifs (appuis) conformes aux critères de la réglementation PEB en prolongeant de chemin de moindre résistance thermique, le coût des travaux annexe peut être considérable surtout si les appuis sont nombreux.


Choix de l’isolant

Type d’isolant

L’isolant est placé directement contre le plancher. Si l’isolant est souple, il épouse parfaitement la forme de son support même si celui-ci est un peu irrégulier. Si l’isolant est rigide, il est nécessaire de régler le support avant de poser l’isolant.

Un isolant perméable à l’air (laine minérale, par exemple) ne peut être choisi que si le support auquel il est fixé est lui-même étanche à l’air (plancher en béton, …).

Les produits minces réfléchissants (PMR), dont l’efficacité est beaucoup moins élevée que celle annoncée par les fabricants, sont à proscrire dans une isolation par l’extérieur puisqu’ils constituent un film pare-vapeur placé « du côté froid » du plancher, susceptible de provoquer une forte condensation sur la face interne (entre le plancher et l’isolant).

Épaisseur de l’isolant

Les épaisseurs d’isolant sont calculées à partir des performances à atteindre.

Conseils de mise en œuvre

> Les panneaux isolants doivent être posés de manière parfaitement jointive et appliqués contre le plancher afin d’éviter les interruptions dans la couche isolante (= pont thermique) et les courants de convection.

Courants de convection.

Remarque : le risque de courants de convection est encore plus important lorsqu’il y a une lame d’air ventilée entre l’isolant et le parement extérieur.

> Il faut protéger et manipuler les panneaux isolants avec précautions pour éviter les écrasements, les déchirures, l’eau, la boue.


  Choix de la finition

Cette finition ne sera généralement appliquée que lorsque la face inférieure du plancher est visible (environnement extérieur, cave ou espace adjacent non chauffé. Elle présentera les caractéristiques suivantes :

  • perméable à la vapeur d’eau pour éviter la condensation interstitielle ;
  • bonne résistance mécanique surtout en cas d’agression possible ;
  • aspect esthétique adapté ;

Détails d’exécution

L’isolation d’un plancher existant par le bas sera interrompue à chaque appui du plancher. À cet endroit le pont thermique est difficile à éviter. L’interposition d’un élément isolant entre le mur d’appui et la dalle est très difficile, voire impossible et de toute manière très coûteux.

Il est toutefois possible de prolonger à certains endroits le chemin que doit parcourir la chaleur pour sortir du volume protégé. Cette intervention reste généralement visible, mais est esthétiquement acceptable dans les caves, garages, locaux secondaires et vides sanitaires.

Allongement du chemin de moindre résistance thermique

Choisir la technique d’isolation d’un plancher

Les trois possibilités

Il existe trois moyens d’isoler un plancher existant. Ils ne sont pas applicables à tous les cas.

  1. Isolation par le bas : L’isolant est fixé sur la face inférieure du plancher et éventuellement recouvert d’un parachèvement.
  2. Isolation par le haut : L’isolant est posé sur le plancher et recouvert d’un revêtement devant permettre la circulation.
  3. Isolation entre les éléments de structure du plancher : L’isolant est placé entre les éléments de structure entre la surface de circulation et le parachèvement inférieur.

>> Le choix de la technique d’isolation d’un plancher se fait en fonction des critères ci-dessous :

La possibilité technique

L’isolation par le bas ne sera pas possible si le plancher est posé directement sur le sol.

L’isolation dans la structure n’est possible que pour les planchers à ossature.

L’isolation par le haut nécessite la pose d’une nouvelle finition et l’enlèvement éventuel de la finition existante. L’encombrement de l’isolant devra être pris en compte (hauteurs sous linteaux de portes ou plafonds diminuées, présence éventuelle de marches, …).

La qualité hygrothermique recherchée

Quelle que soit la méthode d’amélioration utilisée, il est difficile d’éviter les ponts thermiques aux appuis du plancher sur les murs de fondation et aux appuis des murs en élévation sur le plancher. En effet, à ces endroits la couche isolante est interrompue. La prolongation du chemin de moindre résistance thermique ou surtout l’insertion d’un élément isolant entre le mur et le plancher sont difficiles à réaliser en rénovation.

L’isolation par le bas du plancher.

L’isolation par le bas du plancher permet d’utiliser l’inertie thermique de celui-ci. Cela engendre des variations moins rapides du climat intérieur des locaux. L’inertie permet de stocker de la chaleur et de limiter les surchauffes. L’isolation par le haut, limite la capacité d’inertie à celle de la couche située au-dessus de l’isolant. (Aire de foulée).

L’utilité réelle d’isoler

L’isolation d’une paroi ne se justifie que par les déperditions thermiques à travers celle-ci. Dans un immeuble neuf, toutes les parois de l’enveloppe du volume protégé doivent être isolées. Le niveau d’isolation à atteindre dépendra d’un optimum économique (et écologique) à atteindre.

En rénovation, des priorités doivent être établies dans le choix des parois à améliorer thermiquement. Lorsque le coût des travaux est élevé, lorsque la surface du plancher est grande et lorsque celui-ci est directement posé sur le sol (environnement extérieur favorable), il faut vérifier si l’amélioration de l’isolation sur toute la surface est financièrement, thermiquement et écologiquement utile. Une isolation périphérique, si elle est réalisable, est souvent suffisante. L’investissement des moyens disponibles dans le traitement des autres parois (murs, façades) est parfois préférable.

Lorsque le plancher inférieur est situé au-dessus de l’ambiance extérieure ou d’un espace adjacent (cave, vide sanitaire ou local) fortement ventilé et que la pose de l’isolant par-dessous est possible, l’amélioration thermique du plancher est totalement justifiée.

La présence ou la prévision d’un chauffage par le sol

Lorsque le plancher inférieur est muni d’un chauffage intégré (chauffage par le sol) les déperditions thermiques à travers celui-ci sont beaucoup plus importantes. En effet, la face intérieure du plancher est à une température plus élevée que l’ambiance intérieure (30 à 35 °C au lieu de 20 °C) et la déperdition thermique est directement proportionnelle à la différence de température entre l’intérieur et l’extérieur. Dans ce cas il est particulièrement recommandé d’améliorer l’isolation thermique du plancher. Dans ce cas, l’isolant ne peut évidemment être placé au-dessus du plancher chauffant.

Ponts thermiques

Ponts thermiques


Généralités

Les ponts thermiques sont des points faibles dans l’isolation thermique de l’enveloppe du bâtiment.
À ces endroits, en hiver, la température superficielle de l’enveloppe est plus basse que celle des surfaces environnantes.

Ils découlent, en général de :

  • Contraintes constructives
  • Contraintes géométriques

Ils vont provoquer :

  • Des dépenses énergétiques
  • Un inconfort sur le plan de l’hygiène
  • La détérioration des matériaux

Pont thermique dû à des contraintes constructives

Les matériaux isolants ont généralement des capacités limitées en matière de résistance aux contraintes mécaniques.

Le principe de la continuité de la couche isolante n’a pas été respecté, ou n’a pu l’être dans certains cas, à certains endroits.

Il s’agit par exemple d’ancrages ou d’appuis entre d’éléments situés de part et d’autre de la couche isolante de la paroi.

L’isolant étant localement absent, le flux de chaleur est sensiblement plus dense dans ces parties de la paroi.

Pont thermique dû à des contraintes géométriques

Ce type de pont thermique est dû à la forme de l’enveloppe à un endroit.

A cet endroit, la surface de la face extérieure est beaucoup plus grande que la surface de la face intérieure.

La surface chauffée (intérieure) est plus petite que la surface de refroidissement (extérieure).

Dépenses énergétiques provoquées par les ponts thermiques

Dans le cas d’un bâtiment bien isolé, les ponts thermiques peuvent entraîner des déperditions de chaleur proportionnellement très importantes par rapport aux déperditions totales.

En outre, si on ne tient pas compte des déperditions dues aux ponts thermiques, l’installation de chauffage peut être sous-dimensionnée.
C’est surtout le cas lorsque le bâtiment est très bien isolé et lorsque les installations de chauffage sont dimensionnées de façon optimale.

Inconfort sur le plan de l’hygiène provoqué par les ponts thermiques

Les ponts thermiques provoquent une condensation en surface lorsque la température de celle-ci descend en dessous du point de rosée de l’air ambiant.

L’humidité de la paroi permet le développement de moisissures.

Celles-ci, outre leur aspect désagréable, dégagent des substances pouvant être odorantes et pouvant provoquer chez certaines personnes des phénomènes d’allergie.

Du point de vue hygiénique et confort les moisissures doivent donc être évitées.

Détérioration des matériaux provoquée par les ponts thermiques

Lorsque les quantités d’eau condensées sont importantes et ne peuvent être éliminées quotidiennement, elles pénètrent les revêtements et papiers peints, et provoquent leur détérioration.
Les carrelages, les revêtements plastiques, les peintures synthétiques à l’huile résistent mieux au détériorations.

Lorsque la condensation se fait dans le bois, celui-ci va pourrir plus ou moins vite en fonction de son essence et du traitement de protection dont il a bénéficié.

Si la condensation est importante, toute l’épaisseur de la paroi peut être fortement humide. La structure porteuse de la construction elle-même se dégrade sous l’effet de l’humidité permanente et éventuellement aussi du gel des matériaux.


Analyse des effets des ponts thermiques sur les flux de chaleur au travers d’une paroi

Isolation par l’extérieur d’un mur avec descente d’eau pluviale

Situation

Situation  n°1

Situation °2

L’architecte refuse de déplacer la descente d’eau pluviale; l’isolation extérieure y est interrompue.

La descente d’eaux pluviales est déplacée, l’isolation extérieure est continue.

Dessin des isothermes

Situation n°1

Situation n°2

Les températures de paroi intérieures sont d’environ 15°C.

Les températures de paroi intérieures sont plus élevées : environ 17°C.

Ligne de flux de chaleur

Situation n°1

Situation n°2

La chaleur s’échappe de manière importante par la discontinuité dans l’isolant.

La chaleur s’échappe de manière relativement identique par toutes les parties du mur.

Isolation par l’extérieur – Pourtour de baie vitrée

Situation n°1

Situation n°2

L’isolant n’est pas prolongé à l’intérieur de la baie.

L’isolant est prolongé à l’intérieur de la baie.

Situation n°1

Situation n°2

Les températures de paroi intérieures sont d’environ 16°C.

Les températures de paroi intérieures sont plus élevées : environ 18°C.

Situation n°1

Situation n°2

La chaleur s’échappe de manière importante par le retour de baie non isolé.

La chaleur s’échappe de manière relativement identique par toutes les parties du mur.

Définition, fonctions et types de planchers inférieurs

Définition, fonctions et types de planchers inférieurs


Définition du plancher

Nous appellerons plancher inférieur la paroi qui délimite le volume protégé. Les technologies relatives aux planchers dépendront de l’environnement extérieur et du type de support. Par contre, comme ils font partie de l’enveloppe du volume protégé, ils devront, quelque soit leur technologie, avoir une résistance thermique et une étanchéité à l’air suffisante.

Types d’environnement extérieur

Le sol

Le plancher peut être en contact avec le sol. Dans ce cas il peut soit supporter uniquement son propre poids et les charges découlant de son utilisation (dalle sur sol), soit il peut porter l’ensemble du bâtiment et des charges (radier).

Dalle sur sol.

Radier.

Le vide

Le plancher peut aussi porter au-dessus du vide en s’appuyant sur des parois verticales. Ce vide peut être l’air extérieur, un espace adjacent non chauffé (EANC), un vide sanitaire ou une cave.

Sur l’extérieur – Sur espace adjacent non chauffé (EANC) – Sur cave – Sur vide sanitaire.

Types de support

Les planchers non portants sur sol

Ces planchers sont directement posés sur le sol. Ils sont généralement en béton armé. Ils ne sont pas solidaires des murs et bougent librement par rapport à ceux-ci. Ils doivent résister à leur propre poids et aux charges d’utilisation.

Le plancher ne porte pas le bâtiment.

Les radiers

Le radier est une forme de fondation qui a la particularité de répartir le poids du bâtiment sur une grande surface lorsque la portance du sol est limitée. Ils servent ainsi de fondation continue à  l’ensemble des murs porteurs. Ils sont réalisés en béton armé. Les armatures sont beaucoup plus importantes que lorsqu’il s’agit d’un plancher non portant.

Le radier porte l’ensemble du bâtiment.

Les planchers autoportants

Le plancher inférieur du bâtiment peut aussi être appuyé sur les murs comme les autres planchers d’étages.

  • Les planchers autoportants lourds
    Ces planchers massifs sont réalisés en béton. Ils peuvent être totalement coulés sur place ou préfabriqués et solidarisés ensuite à l’aide d’une dalle de compression en béton armé.

Plancher en béton massif coulé sur place.

Eléments de plancher en béton armé.

Hourdis (poutrains + entrevoûts).

(4 schémas : BA, Hourdis, prédalles et poutrains + entrevoûts)

  • Planchers portants légers
    Ces planchers sont constitués d’une ossature en bois portant une aire de foulée en bois ou en panneaux de bois. Leur face inférieure pout être habillée ou non.

Plancher en bois.


Fonctions du plancher

Résistance mécanique (autoportant, non portant)

Lorsque le plancher est non portant, les armatures sont principalement technologiques. Elles ont pour fonction d’aider la dalle à répartir les charges d’utilisation sur le terrain et d’éviter une fissuration de celle-ci.

Lorsque le plancher est portant, il devra être calculé pour résister aux charges et empêcher des déformations qui dépassent les normes admises.

Résistance thermique

Lorsque le plancher est posé sur la terre ou est situé au-dessus d’une cave ou d’un vide sanitaire, la présence du sol constitue déjà une forme d’isolation thermique du plancher. La chaleur doit parcourir un long chemin dans le sol pour parvenir à l’extérieur. Cela n’est cependant pas suffisant pour que le bâtiment soit thermiquement performant (la réglementation PEB en Wallonie exige une  résistance thermique minimale de ce plancher).

La mise en œuvre d’une couche isolante est donc nécessaire. Elle peut être placée au-dessus de la dalle ou en dessous de celle-ci (contre la terre). Dans ce dernier cas, il est nécessaire d’employer un matériau isolant qui résiste à l’humidité et à la compression.

La chaleur doit traverser le sol pour atteindre l’environnement extérieur.

Le plancher est situé au-dessus d’un EANC ou de l’environnement extérieur, il doit être isolé au même titre que les autres parois de l’enveloppe du volume protégé (la réglementation PEB en Wallonie exige que le coefficient de transmission thermique U de ce  plancher ne dépasse certaines valeurs maximales).
L’isolant peut être placé sous le plancher, dans la structure portante d’un plancher léger ou sur le support, mais en dessous de l’aire de circulation (chape ou panneaux).

Isolation au-dessus du support.

  1. Finition intérieure
  2. Couche de séparation
  3. Isolant
  4. Étanchéité éventuelle (si terre-plein)
  5. Support existant

Isolation dans le support.

  1. Plancher
  2. Isolant
  3. Structure
  4. Finition intérieure

Isolation sous le support.

  1. Plancher existant
  2. Isolation
  3. Finition éventuelle

Protection contre l’humidité

Lorsque le plancher est situé au- dessus du vide, les problèmes d’humidité ne se posent généralement pas.

Plancher sur vide.

  1. Niveau du terrain
  2. Vide ventilé
  3. Humidité ascensionnelle
  4. Barrière d’étanchéité

Lorsque le plancher est posé directement sur le sol, des précautions doivent être prises.
Si le sol est suffisamment drainant et sec, aucun risque n’est à craindre. Sinon une couche d’étanchéité est à prévoir. Elle sera d’autant plus soignée qu’il y a un risque que le plancher se trouve occasionnellement ou en permanence sous le niveau de la nappe phréatique.

Plancher sur sol drainant.

  1. Dalle sur sol
  2. Sol drainant
  3. Humidité du sol
  4. Eaux de ruissellement (écartée)
  5. Terrain

Plancher sur sol humide.

  1. Niveau du terrain
  2. Nappe phréatique éventuelle
  3. Étanchéité

Attention une simple feuille de polyéthylène n’est pas à proprement parler une membrane d’étanchéité. Elle sert uniquement, lors de la mise en œuvre du béton coulé sur place, à éviter  que sa laitance ne se perdre dans le sol ou entre les panneaux isolants. Cette feuille est parfois remplacée par un béton de propreté.

Inertie thermique

Un plancher lourd non isolé ou isolé par le dessous représente une masse d’inertie thermique importante. Dans le cas des bâtiments légers à faible inertie, seul le sol permet une certaine stabilité thermique et réduit les risques de surchauffe.

Étanchéité à l’air et aux gaz (Méthane, Radon, …)

Comme les autres parois du volume protégé, les planchers doivent être le plus possible étanches à l’air pour éviter les déperditions thermiques inutiles et les désordres provoqués par des condensations internes à la paroi. Une bonne étanchéité à l’air sera plus facile à obtenir si le plancher est coulé sur place. L’éventuelle membrane d’étanchéité à l’eau permet également une étanchéité à l’air performante.

Dans le cas des planchers légers, une barrière d’étanchéité à l’air est nécessaire.
Dans certaines régions, des gaz toxiques (Méthane, Radon, …) s’échappent du sol. Une parfaite étanchéité à l’air du plancher est alors indispensable.

    

  1. Empêcher le Radon de rentrer dans le bâtiment.
  2. Permettre au Radon de s’échapper du sol sous le bâtiment.

Aperçu des modèles d’isolation de l’espace protégé [Enveloppe – toiture inclinée]

Les combles qui seront occupés et chauffés doivent être isolés de l’ambiance extérieure.

Le toit incliné est dans ce cas la limite de l’espace protégé. C’est donc à ce niveau que doit être posé l’isolant et son pare-vapeur éventuel.

L’isolant peut être situé entre les éléments de charpente et/ou en dessous de ceux-ci (isolation par l’intérieur), ou au-dessus des éléments de charpente (isolation par l’extérieur).

Isolation par l’intérieur :

    1. couverture
    2. contre-lattes
    3. lattes
    4. sous-toiture
    5. chevrons ou fermettes
    6. isolant
    7. pare-vapeur
    8. finition intérieure
    9. panne

[1]  Isolation entre chevrons ou fermettes

Isolation par l’extérieur :

[1]  Isolation au-dessus des chevrons ou des fermettes (« Sarking »)

    1. couverture
    2. contre-lattes
    3. lattes
    4. sous-toiture
    5. isolant
    6. pare-vapeur
    7. chevrons ou fermettes
    8. pannes

[2]  Isolation au-dessus des pannes à l’aide de panneaux préfabriqués

    1. couverture
    2. languette d’assemblage
    3. lattes
    4. panneau de toiture préfabriqué
    5. raidisseurs du panneau
    6. isolant du panneau
    7. pare-vapeur intégré éventuel
    8. plaque inférieure du panneau
    9. pannes

Aperçu des modèles d’isolation du plancher des combles [Enveloppe – Le plancher des combles ]

Lorsque les combles ne sont pas prévus pour être chauffés, le plancher de celui-ci constitue la limite supérieure de l’espace protégé. C’est donc à ce niveau que doit être posé l’isolant et son pare-vapeur éventuel. Ce qui permet :

On distingue les planchers légers (en général, constitués d’une structure en bois supportant un plancher en bois et/ou un plafond en plâtre), des planchers lourds (en général, constitué de béton ou de terre-cuite).
Dans les deux cas, on précisera si le plancher des combles doit être circulable, pour permettre le rangement d’objets par exemple.

Les planchers légers

[1]   léger sans aire de foulée

  1. Gîte.
  2. Isolant.
  3. Pare-vapeur.
  4. Finition du plafond.

[2]  Plancher léger avec aire de foulée

  1. Gîte.
  2. Isolant (remplissage partiel).
  3. Pare-vapeur.
  4. Finition du plafond.
  5. Isolant (remplissage complet).
  6. Aire de foulée.

Les planchers lourds

[1]  Plancher lourd sans aire de foulée

  1. Isolant.
  2. Pare-vapeur.
  3. Support lourd.
  4. Finition du plafond.

[2]  Plancher lourd avec aire de foulée

  1. Aire de foulée.
  2. Lambourde (facultative).
  3. Isolant.
  4. Pare-vapeur.
  5. Support lourd.
  6. Finition du plafond.

Longueur du chemin de moindre résistance thermique

Longueur du chemin de moindre résistance thermique

Il existe des situations dans lesquelles les couches isolantes ne peuvent pas se joindre directement et dans lesquelles il n’est pas possible d’intercaler un élément isolant (par exemple, pour des raisons de stabilité). La coupure thermique ne peut pas, dans de telles situations, être conservée. Cela ne signifie pas pour autant qu’on ait à faire à un détail mal étudié. La réglementation PEB prévoit en effet une possibilité d’obtenir quand même, sans coupure thermique, un nœud constructif suffisamment performant du point de vue thermique.

Le flux thermique suivra toujours le chemin le plus facile de l’intérieur vers l’extérieur. Si la coupure thermique n’est pas présente, alors cela signifie que le flux thermique suit le chemin vers l’extérieur qui passe par l’interruption des couches isolantes, ce que l’on appelle le chemin de moindre résistance.  Le chemin de moindre résistance ne passe donc jamais à travers une couche isolante.

Exemple : poutre extérieure.

Exemple : fondation.

Le chemin de moindre résistance est strictement défini comme le plus court trajet entre l’environnement intérieur, et l’environnement extérieur ou un espace adjacent non chauffé, et qui ne coupe nulle part une couche d’isolante ou un élément isolant d’une, ont la résistance thermique est plus grande, supérieure ou égale à la plus petite des deux résistances R1 et R2 (= les résistances thermiques des couches isolantes des parois). Cela signifie qu’on doit dessiner, sur le plan de coupe du nœud constructif, la ligne la plus courte, de l’intérieur vers l’extérieur ou vers un EANC qui ne coupe nulle part une couche isolante.  Si la longueur totale de cette ligne est inférieure à 1 mètre, alors il est alors recommandé d’ajouter de l’isolant, à condition que cet isolant présente une résistance thermique plus grande, supérieure ou égale à la plus petite des valeurs de R1 et R2.  Le chemin de moindre résistance doit contourner les « obstacles », ce qui l’allonge automatiquement et permet de satisfaire l’exigence pour le nœud constructif.

Exemple : poutre extérieure.

Exemple : fondation.

Dans le cadre de la réglementation PEB, on considère le nœud constructif comme suffisamment performant du point de vue thermique lorsque le chemin de moindre résistance est suffisamment long, à savoir, plus grand ou égal à 1 mètre. Lorsque c’est le cas, le flux thermique doit franchir une distance suffisamment grande et la déperdition thermique peut rester limitée.

Interposition d’éléments isolants

Interposition d'éléments isolants


Dans certains cas, les couches isolantes ne peuvent pas se raccorder directement l’une à l’autre. Il existe alors la possibilité d’intercaler des éléments isolants. Ces éléments isolants assument localement la fonction d’isolation thermique des couches isolantes, de manière à maintenir ainsi la coupure thermique, comme par exemple au raccord d’un toit plat avec un mur extérieur ou à un appui de fondation.

Élément isolant en verre cellulaire entre la couche
isolante de la façade et celle du plancher inférieur.

La réglementation PEB indique que pour que le nœud constructif soit conforme,  tous les éléments isolants doivent répondre simultanément aux trois exigences suivantes :

  1. La conductivité thermique λ de la couche isolante de l’élément isolant ne peut pas dépasser 0.2 W/m.k.
  2. La résistance thermique de l’élément isolant doit être plus grande que la moitié  de la résistance thermique de la couche isolante  des parois la moins thermiquement résistante ou être supérieure à 2 m²K/W.Cas particulier des châssis et portes
    Lorsqu’un châssis de fenêtre ou de porte joint l’élément isolant, il n’est pas tenu compte de la résistance thermique de la fenêtre, mais uniquement  de la résistance thermique de la couche isolante de la paroi opaque. La résistance thermique de l’élément isolant doit être plus grande que la moitié  de la résistance thermique de la couche isolante de cette paroi ou être supérieure à 1.5 m²K/W.
  3. L’épaisseur de contact entre l’élément isolant et la couche isolante de la paroi jointe doit être au moins égale à la moitié de l’épaisseur de la couche isolante de la paroi jointe ou de l’épaisseur de l’élément isolant.
    Si un élément isolant est accolé à un autre élément isolant, l’épaisseur de contact doit être au moins égale à la moitié de l’épaisseur de l’élément isolant le moins épais.
    Ces épaisseurs doivent être mesurées perpendiculairement aux couches isolantes.

 

L’épaisseur de contact minimale doit être respectée pour tous les raccords.

           Cas particulier des châssis et portes

  • Châssis de fenêtre ou de porte sans coupure thermique
    L’épaisseur de contact doit être au moins égale à la moitié de l’épaisseur de l’élément isolant ou de l’épaisseur du dormant du châssis mesurée perpendiculairement au plan du vitrage.

Exemple : coupe en plan du piédroit SANS coupure thermique.

  • Châssis avec coupure thermique
    L’élément isolant doit nécessairement être en contact direct avec la coupure thermique, et ce, sur toute l’épaisseur de la coupure thermique.

Exemple : coupe en plan du piédroit AVEC coupure thermique.

Continuité de l’isolant

Continuité de l'isolant

Pour qu’un nœud constructif soit considéré comme thermiquement performant, il suffit que la coupure thermique soit garantie. Cela signifie que les couches isolantes de 2 parois jointives de la surface de déperdition doivent s’accoler de manière toujours continue. Cela signifie au moins qu’on peut parcourir à l’aide d’un crayon les couches isolantes et les parties isolantes intercalées sans devoir relever ce crayon.

Continuité de l’isolant au raccord de deux façades.

La continuité des couches isolantes n’est garantie que si elles sont jointes directement l’une à l’autre avec une épaisseur de contact minimale.

Du point de vue thermique, la meilleure solution pour ces nœuds constructifs est de joindre au maximum les couches isolantes l’une à l’autre, ce qui signifie que l’épaisseur de contact entre les deux couches isolantes (d contact) doit être égale à l’épaisseur de la couche. Du point de vue pratique cette situation n’est pas toujours faisable. C’est pourquoi, la réglementation PEB prévoit la possibilité de s’écarter jusqu’à une certaine limite de cette situation thermiquement idéale.

L’épaisseur de contact doit être au moins égale à la moitié de l’épaisseur de la couche isolante la moins épaisse des parois qui se joignent. Ces épaisseurs doivent être mesurées perpendiculairement aux couches isolantes.


Exemple : coupe en plan à l’angle de deux façades.
Schéma coupe en plan à l’angle de deux façades.

Cas particulier des châssis et portes

Châssis de fenêtre ou de porte sans coupure thermique

L’épaisseur de contact doit être au moins égale à la moitié de l’épaisseur de la couche isolante de la paroi ou de l’épaisseur du dormant du châssis mesurée perpendiculairement au plan du vitrage.

Schéma châssis de fenêtre ou de porte sans coupure thermique.

Exemple : coupe en plan du piédroit d’une fenêtre SANS coupure thermique.

Châssis avec coupure thermique

La couche isolante de la paroi doit nécessairement être en contact direct avec la coupure thermique, et ce, sur toute l’épaisseur de la coupure thermique.

Schéma châssis avec coupure thermique.

Exemple : coupe en plan du piédroit d’une fenêtre AVEC coupure thermique.

Définition de la couche isolante dans le cadre de la prise en compte des nœuds constructifs

La couche isolante d’une paroi de la surface de déperdition est par définition la couche de matériau avec la plus grande résistance thermique.

La couche isolante peut également être constituée de plusieurs couches de matériaux, homogènes ou non (les membranes doivent être négligées). À condition que :

  • les couches accolées de matériaux se succèdent  ET
  • il n’y ait aucune couche d’air intercalée ET
  • chacune des couches de matériaux ait une valeur λ inférieure ou égale à 0.2 W/mK.

Dans ce cas, les couches isolantes doivent être considérées comme une couche isolante assemblée, avec une épaisseur d  égale à la somme des épaisseurs de chacune des couches di et la résistance thermique R égale à la somme des résistances thermiques de chacune des couches Ri

Pour l’application de la réglementation PEB relative aux nœuds constructifs, s’il y a plusieurs couches isolantes non accolées, une seule des couches isolantes est prise en considération. C’est celle qui a la plus grande résistance thermique qui sera considérée comme la couche isolante de la paroi.

Nœud constructif ponctuel

Nœud constructif ponctuel


On est en présence d’un nœud constructif ponctuel lorsque la couche isolante d’une paroi est interrompue ou réduite ponctuellement.

Exemples

  • Colonnes qui traversent la couche isolante d’un plancher au-dessus de l’extérieur, d’un parking, d’une cave… ;

Colonne dans un parking non chauffé.

  • Poutres perpendiculaires à une paroi qui en interrompent la couche isolante ;

 

Console supportant une coursive.

  • Points de fixation de capteurs solaires, mâts… qui traversent la couche isolante ;

 

  • Ancrages ponctuels de supports de maçonneries (par exemple supports ponctuels de cornières utilisées localement pour soutenir des maçonneries) ;

Exceptions

Ne sont pas considérés comme des nœuds constructifs ponctuels :

  • Les percements de paroi par des passages de canalisations (gaines de ventilation, conduits de fumée, évacuations d’eau pluviale et autres passages de conduite) ;

 

  • Les intersections de deux ou trois nœuds constructifs linéaires ;

 

  • L’interruption ponctuelle de la couche isolante d’une paroi en contact direct avec le sol.

 

Nœud constructif linéaire

Nœud constructif linéaire


Un nœud constructif linéaire peut se présenter aux deux endroits suivants :

  • Là où deux parois de l’enveloppe du volume protégé  se rejoignent ;
  • Là où, dans une même paroi de la surface de déperdition, la couche isolante est interrompue ou réduite linéairement.

Rencontre de deux parois

Ce type de nœud constructif linéaire peut être repéré sur un plan ou une coupe d’un bâtiment.

Là où deux parois de la surface de déperdition se rejoignent, qu’elles soient dans le même plan ou non, il s’agit toujours d’un nœud constructif, même si la coupure thermique est assurée dans le détail pour éviter la création d’un pont thermique.

Là ou deux parois seront considérées comme différentes dès :

  • qu’elles ne sont pas dans le même plan ;

Façade – angle extérieur.

Façade – angle intérieur.

Raccord façade – toiture.

Raccord façade – plancher inférieur.

  • que leurs compositions varient (matériaux différents par leur nombre, leurs natures et/ou leurs épaisseurs) ;

Composants variant par leurs nombres, ordres, natures, épaisseurs.

  • que leur environnement extérieur varie.

Environnements extérieurs différents.

Interruption linéaire de la couche isolante

Là où une couche isolante d’une paroi est entièrement ou partiellement interrompue linéairement par un matériau avec une conductivité thermique plus élevée, on parle d’un nœud constructif linéaire.

Élément de structure.

Descente d’eau.

Balcon (coupe).

Appui de mur intérieur (coupe).

Ce type de nœud constructif linéaire se présente uniquement dans un même plan, à savoir le plan de la paroi elle-même. La couche isolante ne peut, et c’est important, être interrompue que sur une distance maximale de 0.4 m. Cela signifie qu’en coupe, la plus courte distance entre les deux extrémités de l’interruption de la couche isolante complète ne peut être plus grande que 0.4 m.

L’interruption de l’isolant ne
peut pas dépasser 40 cm.

Si cette distance est plus grande que 0.4 m, alors l’interruption doit être considérée comme une paroi à part entière avec son propre coefficient de transmission thermique U et une superficie déterminée à partir des dimensions extérieures. De plus, il faut remarquer que dans ce cas, deux nœuds constructifs linéaires apparaissent le long des deux côtés de la nouvelle paroi, étant donné qu’à ces endroits, deux parois de la superficie de déperdition se joignent.

Exceptions

Ne sont pas considérés comme des nœuds constructifs linéaires :

  • L’interruption linéaire de la couche isolante d’une paroi en contact direct avec le sol.

Ceci N’est PAS un nœud constructif !

  • Les endroits où la couche isolante est entièrement conservée (pas d’interruption, pas d’amincissement/élargissement, pas de décalages, pas de changement de direction de la couche isolante) même si les autres couches de matériaux varient.

(Vue en plan).

(Vue en coupe).

 

Définition d’un noeud constructif

Définition d'un noeud constructif


Définition

Le terme « nœuds constructifs » désigne les endroits où les parois de l’enveloppe du volume protégé  se rejoignent (jonction) et les endroits où la couche isolante est interrompue localement linéairement ou ponctuellement (acrotères, fondations, raccords aux fenêtres, …)

On distinguera deux types de nœuds constructifs :

Ils ne sont pas à confondre avec les « interruptions linéaires et ponctuelles propres à une paroi » qui ne sont pas considérées comme des nœuds constructifs.

Ces interruptions sont réparties de manière régulière dans les différentes parois de l’enveloppe du volume protégé et sont directement prise en compte dans le coefficient de transmission thermique U de la paroi (montants et traverses en bois dans une paroi à ossature, crochets d’un mur creux, intercalaire d’un double vitrage, …)

Paroi à ossature.

Crochets de maçonnerie.

Intercalaire des vitrages.


Caractéristiques thermiques

Lorsqu’on considère une paroi extérieure avec une structure homogène et un coefficient de transmission thermique U bien déterminé et homogène, les isothermes (= lignes d’égale température) seront toujours parallèles au plan de la façade et les lignes de flux de chaleur perpendiculaires à celui-ci.

      

Une paroi extérieure avec une structure homogène présente des isothermes parallèles au plan de façade (au milieu) et des lignes de flux perpendiculaires au plan de façade (à droite).

Aux nœuds constructifs induits par une géométrie variante et/ou par la présence d’éléments constructifs de transmission thermique  différente, les isothermes et les lignes de flux diffèrent de ce modèle unidimensionnel et la méthode de calcul sur base des valeurs U n’est plus correcte.

    

À certains endroits de l’enveloppe les isothermes et les lignes de flux diffèrent du modèle unidimensionnel.

Un calcul numérique bi- ou tridimensionnel validé est nécessaire pour pouvoir déterminer avec précision le flux thermique par transmission à l’endroit des nœuds constructifs. À partir de là, on peut déduire le coefficient de transmission thermique linéaire ou ponctuel des nœuds constructifs, qui corrige le flux thermique par transmission calculé de manière unidimensionnelle.

Isolation à l’intérieur de l’ossature d’un plancher inférieur

Isolation à l’intérieur de l’ossature d’un plancher inférieur


Principe technique

On profite de l’espace disponible entre les éléments de l’ossature pour poser un maximum d’isolant.

  1. L’isolant peut être placé en matelas fabriqués en usine. Ceux-ci sont découpés à la forme des cavités présentes dans la paroi. La fermeture d’une des faces de ces cavités par des panneaux ou des membranes se fait avant la pose de l’isolant.
  2. La pose de l’isolant peut également se faire par dépose de flocons ou de billes en vrac dans les cavités. Ce travail doit être confié à un entrepreneur spécialisé, car, pour que la pose soit correcte, il nécessite une bonne expérience et un outillage adapté. On évite ainsi que l’isolant soit insuffisamment ou trop tassé, voir mal réparti. La face inférieure du plancher est posée avant placement  de l’isolant. La face supérieure est généralement posée lorsque l’isolant est en place.

Les isolants généralement utilisés seront suffisamment souples et élastiques pour assurer un calfeutrement parfait contre les éléments de structures. Ainsi des fibres organiques ou minérales conviennent parfaitement. On sera cependant très attentif à prévoir du côté intérieur (côté chaud de l’isolant) un freine-vapeur ou pare-vapeur adapté à l’hygroscopicité de l’isolant à la perméabilité à la vapeur de la finition extérieure et  aux caractéristiques du climat intérieur. Cette protection indispensable fera également office de barrière d’étanchéité à l’air, point faible des parois à ossature.


Schémas de principe

  1. Revêtement de sol
  2. Freine-vapeur, étanchéité à l’air
  3. Structure du plancher
  4. Isolant
  5. Finition
  6. Vide

Précautions

  • Les isolants utilisés devront avoir une bonne stabilité dans le temps (tassement, humidité, vermine, …)

Isolation au-dessus du plancher support, sous l’aire de foulée

Isolation au-dessus du plancher support, sous l'aire de foulée


Principe technique

L’isolant est posé sur le support du plancher (béton armé, hourdis, …). Sur l’isolant est posée l’aire de foulée (chape + finition, panneaux, …). La chape peut être chauffante. C’est configuration peut s’appliquer tant pour les planchers sur sol que pour les planchers sur vide.


Schémas de principe

  1. Revêtement de sol.
  2. Chape.
  3. Couche de séparation.
  4. Isolant.
  5. Plancher portant.
  6. Sol ou vide

Précautions

  • L’isolant doit résister à la compression. Il n’est pas soumis à l’humidité.
  • Les canalisations hydrauliques (chauffage, ECS) dans le sol doivent se trouver au-dessus de l’isolant pour des raisons d’économie d’énergie.
  • Les nœuds constructifs aux appuis des maçonneries en élévation doivent être conçus afin d’éviter au maximum les ponts thermiques.
  • Les mouvements libres en périphérie (tassement et dilatation).
  • La chape qui recouvre l’isolant doit être suffisamment résistante (flexion et poinçonnement).
  • L’impact de la diminution de l’inertie thermique devrait être évalué (réduction de la capacité d’absorption et de déphasage par rapport à une dalle non isolée : avantageux dans le cas du chauffage par le sol mais désavantageux pour la gestion de la surchauffe.)

Isolation sous le plancher sur vide

Isolation sous le plancher sur vide


Principe technique

La pose de l’isolant sur la face extérieure des parois délimitant volume protégé amène de nombreux avantages : continuité de l’isolant, maintien de la paroi à une température constante intérieure, moins de risque de condensation interne, meilleure inertie thermique, etc. C’est également le cas pour les planchers situés au-dessus du vide.


Schémas de principe

  1. Revêtement de sol
  2. Chape
  3. Plancher portant
  4. Isolant
  5. Finition (éventuelle)
  6. Vide

Précautions

  • Tous les isolants conviennent.
  • Prévoir ou non une finition extérieure ventilée.
  • Nœuds constructifs aux appuis sur les fondations.

Isolation sous le plancher sur sol

Isolation sous le plancher sur sol


Principe technique

La pose de l’isolant sur la face extérieure des parois délimitant le volume protégé amène de nombreux avantages : continuité de l’isolant, maintien de la paroi à une température constante intérieure, moins de risque de condensation interne, meilleure inertie thermique, etc. C’est également le cas pour les planchers contre terre.


Schémas de principe

  1. Revêtement de sol
  2. Chape
  3. Plancher portant
  4. Couche de séparation
  5. Isolant
  6. Terre

Schémas de principe avec support, étanchéité éventuelle, isolation, protection éventuelle, drainage éventuel (prévoir des variantes : avec ou sans nappe phréatique ; radiers <-> semelles et dalles ; etc.)

Précautions

Les isolants utilisés devront avoir certaines caractéristiques

  • Ils devront être étanches à l’eau pour conserver leurs  performances thermiques,
  • Ils devront résister à l’écrasement.

Isolation enterrée

Isolation enterrée


Principe technique

La pose de l’isolant sur la face extérieure des parois appartenant à l’enveloppe du volume protégé amène de nombreux avantages : continuité de l’isolant ; maintien de la paroi à une température constante intérieure ; moins de risque de condensation interne ; meilleure inertie thermique ; etc. C’est également le cas pour les  murs contre terre.

  1. Mur enterré
  2. Étanchéité
  3. Isolant thermique
  4. Filtre
  5. Drain
  6. Fondation du drain
  7. Raccord entre le mur enterré et le bas de la façade
  1. Mur du local enterré
  2. Isolant thermique
  3. Matelas drainant
  4. Bavette en attente pour la finition supérieure
  1. Membrane d’étanchéité éventuelle
  2. Isolant thermique
  3. Filtre
  4. Drain
  1. Isolant thermique
  2. Drain (sable)
  3. Exemple de raccord d’étanchéité dans le haut du mur enterré

Schémas de principe avec support, étanchéité éventuelle, isolation, protection éventuelle, drainage éventuel (prévoir des variantes : avec ou sans nappe phréatique.


Précautions

Les isolants utilisés devront avoir certaines caractéristiques

  • Ils devront être étanches à l’eau pour conserver leurs  performances thermiques ;
  • Ils devront résister à l’écrasement.

Isolation à l’intérieur de l’ossature en bois d’un mur

Isolation à l'intérieur de l'ossature en bois d’un mur


Principe technique

On profite de l’espace disponible entre les éléments de l’ossature pour poser un maximum d’isolant.

  1. Structure bois
  2. Pare-pluie
  3. Cavité
  4. Isolant
  5. Freine vapeur

Ossature bois avant la pose de l’isolation.

1. L’isolant peut être placé en panneaux fabriqués en usine découpés à la forme des cavités présentes dans la paroi. La fermeture d’une des faces de ces cavités par des panneaux ou des membranes se fait après la pose de l’isolant.

 

Isolation à l’aide de matelas souples.

2. La pose de l’isolant peut également se faire par insufflation de flocons dans les cavités qui, dans ce cas, sont complètement fermées avant insufflation. Ce travail doit être confié à un entrepreneur spécialisé, car, pour que la pose soit correcte, il nécessite une bonne expérience et un outillage adapté. On évite ainsi que l’isolant soit insuffisamment ou trop tassé, ou bien que des vides sans isolant subsistent.

  

Insufflation, pare-vapeur en feuille transparente.

Avant insufflation, pare-vapeur réalisé à l’aide de panneaux.

Les isolants généralement utilisés seront suffisamment souples et élastiques pour assurer un calfeutrement parfait contre les éléments de structures. Ainsi, des fibres organiques ou minérales conviennent parfaitement. On sera cependant très attentif à prévoir du côté intérieur un freine-vapeur ou pare-vapeur adapté à l’hygroscopicité de l’isolant à la perméabilité à la vapeur de la finition extérieure et aux caractéristiques du climat intérieur. Cette protection indispensable fera également office de barrière d’étanchéité à l’air, point faible des parois à ossature.

Schémas de principe avec ossature bois, isolant, finitions intérieure et extérieure, pare-vapeur, espace technique, …


Précautions

Les isolants utilisés devront avoir une bonne stabilité dans le temps (tassement, humidité, vermine, …).

Mur enterré

Mur enterré


Définition

Lorsqu’un bâtiment est partiellement enterré, des parois séparent les locaux du terrain extérieur. Les qualités des faces intérieures de ces parois doivent être équivalentes à celles des autres murs. Le contact avec le sol et les contraintes liées implique des principes constructifs différents de ceux des murs en élévation.

En général, les murs enterrés seront en maçonnerie pleine ou en béton armé. Ils peuvent être isolés par l’intérieur ou par l’extérieur. Ils devront de plus être rendus étanches aux infiltrations par des systèmes d’étanchéité et/ou de drainage.


Fonctions

Résistance mécanique

Le mur enterré supporte le poids de la construction. Il doit aussi résister à des contraintes obliques ou horizontales dues à la poussée du sol ou à la pression hydrostatique de l’eau qu’il contient lorsqu’il est situé plus bas que le niveau de la nappe phréatique.

Origines des contraintes mécaniques

Schéma origines des contraintes mécaniques.
  1. Poids du bâtiment
  2. Poussée des terres
  3. Pression hydrostatique (si nappe phréatique)
  4. Appui

Les murs enterrés sont donc généralement réalisés en maçonneries pleines (blocs de béton, de terre cuite ou briques). Ces maçonneries seront dans certains cas armées horizontalement dans les joints ou verticalement à travers les blocs creux pour résister aux contraintes horizontales. Ils peuvent aussi être renforcés par un galandage de poutres et de colonnes en béton.
Le poids du bâtiment situé au-dessus du mur enterré renforce sa résistance aux poussées latérales.

Les parois enterrées peuvent aussi être réalisées à l’aide de voiles en béton armé dont les armatures sont calculées pour qu’elles résistent aux contraintes auxquelles elles sont soumises.

Le poids du bâtiment situé au-dessus du mur enterré renforce sa résistance aux poussées latérales.

Résistance à l’humidité et infiltration d’eau

Types d’infiltrations :

Schéma types d'infiltrations.
  1. Remontée capillaire
  2. Eau de ruissellement
  3. Eau de la nappe phréatique

Lorsqu’il abrite des locaux habitables, il est primordial que la face intérieure du mur enterré reste sèche (moins important lorsqu’il s’agit de caves ou de garages). Des mesures d’étanchéité doivent donc être prises.

Lorsque le mur est situé plus bas que le niveau de la nappe phréatique une étanchéité continue à l’aide d’une membrane d’étanchéité ou d’un cuvelage est mise en œuvre. Cette étanchéité est idéalement posée sur la face extérieure du mur de manière le maintenir sec. Elle doit résister aux racines.

Un cuvelage peut éventuellement être réalisé sur la face intérieure du mur. Dans ce cas, il faut être certains que les matériaux qui constituent le mur peuvent être noyés en permanence. Le cuvelage intérieur permet  de rendre étanche a posteriori un local enterré sans devoir enlever les terres extérieures et un raccordement continu avec une étanchéité posée sur le plancher de sol (cuvelage complet). Attention, l’eau présente dans le mur aura tendance à monter par capillarité vers les éléments situés plus haut. Des barrières contre cette humidité capillaire doivent être réalisées.

Lorsque le mur est situé au-dessus du niveau de la nappe phréatique, une  étanchéité extérieure (membrane ou cimentage hydrofuge) est également nécessaire, mais les contraintes hydrostatiques subies sont moins importantes. Un drainage du sol situé contre le mur est réalisé soit à l’aide d’une couche de granulats drainants (sable, gravier, …) protégée du colmatage par un filtre en géotextile, soit à l’aide d’une nappe drainante (feuille synthétique embossée, nappe filamentaire plissée, isolant rainuré, …) qui peut également être protégée par un filtre. Ces nappes protègent aussi mécaniquement les couches d’étanchéité.

A la base du drain vertical, un drain horizontal (tuyau muni de percements) évacue les eaux de ruissellement et de percolation vers le réseau d’égouttage.

  1. Mur de cave
  2. Couche hydrofuge
  3. Couche drainante verticale
  4. Filtre géotextile
  5. Fondation du drain horizontal
  6. Drain horizontal
  7. Solin de protection

Résistance thermique

La présence du sol constitue déjà une forme d’isolation thermique du mur enterré. La chaleur doit en effet parcourir un chemin plus long dans le sol pour parvenir à l’extérieur.

Schéma résistance thermique.

Cela n’est cependant pas suffisant pour que le bâtiment soit thermiquement performant (la réglementation PEB exige une  résistance thermique minimale de ce mur).
La mise en œuvre d’une couche isolante est donc nécessaire. Elle peut être placée du côté intérieur ou du côté extérieur du mur (contre le sol).

La pose de l’isolant sur la face extérieure nécessite l’emploi d’un matériau résistant à l’humidité et à la compression. Il peut être combiné avec le système de drainage et de protection de la membrane d’étanchéité.

Inertie thermique

Lorsque les caves n’étaient pas isolées, du fait de la présence du sol derrière les murs massifs, la température dans ces locaux était particulièrement stable, ce qui apportait un confort tant en été qu’en hiver.

Le fait d’isoler les murs enterrés entraîne une perte de l’inertie thermique et rend par là le local plus sujet aux variations rapides de température.

Concevoir des noeuds constructifs performants

Concevoir des noeuds constructifs performants

L’isolation thermique importante des parois du bâtiment accentue l’impact relatif des déperditions par les nœuds constructifs s’ils ne sont pas correctement étudiés et réalisés. Il est donc important de réaliser des nœuds constructifs thermiquement acceptables (PEB-conformes) en assurant la continuité de la couche isolante.

Cette continuité sera obtenue par :

1. soit, la jonction directe des couches isolantes des parois qui se rejoignent (PEB – règle de base 1) ;

Schéma jonction directe des couches isolantes.

2. soit, l’interposition d’éléments isolants là où cette jonction directe n’est pas possible (PEB – règle de base 2) ;

Schéma interposition d’éléments isolants.

3. soit, la prolongation du chemin de moindre résistance thermique lorsqu’aucune des solutions précédentes n’est applicable (PEB – règle de base 3).

Schéma prolongation du chemin de moindre résistance thermique.

On restera attentif à ce que :

Quelques exemples

Murs creux

Schéma angle sortant. Schéma appui de fondation. Schéma balcon.
  • Angle sortant.
  • Continuité de l’isolant.
  • Appui de fondation.
  • Élément intermédiaire.
  • Balcon.
  • Chemin de moindre résistance thermique.

 Isolation par l’extérieur

Schéma angle sortant. Schéma appui de fondation. Schéma balcon.
  • Angle sortant.
  • Continuité de l’isolant.
  • Appui de fondation.
  • Élément intermédiaire.
  • Balcon.
  • Chemin de moindre résistance thermique.

 Isolation par l’intérieur

Schéma angle sortant. Schéma mur de refend. Schéma plancher intérieur.
  • Angle sortant.
  • Continuité de l’isolant.
  • Mur de refend.
  • Élément intermédiaire.
  • Plancher intérieur.
  • Chemin de moindre résistance thermique.

Choisir le type de plancher inférieur

Pour isoler le plancher inférieur du volume protégé, plusieurs méthodes d’isolation thermique sont possibles. Le choix dépendra principalement du système constructif choisi ainsi que de la facilité, selon les cas, à créer des nœuds constructifs exempts de ponts thermiques.


Plancher sur sol

(Remarque : la pose du plancher sur le sol augmente ses performances thermiques, car le sol de par ses dimensions allonge le chemin que doit parcourir la chaleur pour atteindre l’air extérieur).

Si le plancher est posé sur le sol, en général, il est en béton armé coulé in situ.

Isolant sous la dalle en béton

La pose de l’isolant sous la dalle permet facilement une continuité de la couche isolante et donc diminue l’impact des ponts thermiques surtout en périphérie.
Ce choix accroît la masse thermique du bâtiment, ce qui augmente les possibilités d’accumulation de chaleur due aux apports solaires et diminue les risques de surchauffe en été.
Tous les matériaux isolants ne conviennent à une pose directe dans le sol. Ils doivent être étanches à l’eau, imputrescibles et avoir une résistance suffisante à la compression.

Illustration de l'isolant sous la dalle en béton.

  1. Revêtement de sol.
  2. Chape.
  3. Plancher portant.
  4. Couche de séparation.
  5. Isolant.
  6. Terre.

Isolant au-dessus de la dalle en béton

La pose de l’isolant entre la dalle en béton et la chape peut se faire en fin de travaux.
La chape doit être suffisamment armée pour éviter les fissures dues aux contraintes mécaniques. L’inertie thermique est moindre que lorsque l’isolant est posé sous la dalle. Dans le cas d’un système de chauffage par le sol, l’inertie de la chape déterminera la réactivité du corps de chauffe. La position et l’épaisseur de l’isolant ainsi que la masse de la chape devront être prises en compte dans le calcul du chauffage.

Illustration de Isolant au-dessus de la dalle en béton.

  1. Revêtement de sol.
  2. Chape.
  3. Couche de séparation.
  4. Isolant.
  5. Plancher portant.
  6. Sol.

Plancher sur vide sanitaire, sur cave, sur espace adjacent non chauffé (EANC) ou sur l’environnement extérieur

(Remarque : la présence d’un espace fermé sous le plancher diminue le flux de chaleur à travers celui-ci à cause de la température moins froide du côté extérieur de la paroi. Cette température dépendra de l’étanchéité à l’air de l’espace concerné et des performances thermiques des parois qui le séparent de l’air extérieur.)

Plancher lourd

Le plancher lourd est en général, soit en béton armé coulé sur place, soit en hourdis de béton ou de terre cuite.

Isolant sous la dalle

La pose de l’isolant sous la dalle protège celle-ci des variations thermiques importantes et des dilatations qui peuvent en résulter.
Ce choix accroît la masse thermique du bâtiment, ce qui augmente les possibilités d’accumulation de chaleur due aux apports solaires et diminue les risques de surchauffe en été.
La face inférieure de l’isolant peut être parachevée (plaques de plâtre, lambris, …)
Les risques de condensation interstitielle sont éliminés si la finition inférieure éventuelle est perméable à la vapeur d’eau.

Illustration de l'isolant sous la dalle.

  1. Revêtement de sol.
  2. Chape.
  3. Plancher portant.
  4. Isolant.
  5. Finition éventuelle.
  6. Vide.

Isolant au-dessus de la dalle

L’isolant est posé entre la dalle et la finition circulable (lourde ou légère).
L’inertie thermique est moindre que lorsque l’isolant est posé sous la dalle.
Dans le cas d’un système de chauffage par le sol, l’inertie de la chape déterminera la réactivité du corps de chauffe. La position et l’épaisseur de l’isolant ainsi que la masse de la chape devront être prises en compte dans le calcul du chauffage.
Les risques de condensation interstitielle sont importants si la finition intérieure et l’isolant sont très perméables à la vapeur d’eau.

Illustration de l'isolant au-dessus de la dalle.

  1. Revêtement de sol.
  2. Chape.
  3. Couche de séparation.
  4. Isolant
  5. Plancher portant.
  6. Vide.

Plancher léger

Isolant sous le plancher léger

La pose de l’isolant sous le plancher protège celle-ci des variations thermiques importantes.
L’espace vide laissé entre les éléments de structure du plancher permet la pose de canalisations du côté chaud de la couche isolante.
Un freine vapeur assurant principalement l’étanchéité à l’air du plancher sera posé du côté chaud de l’isolant.
La face inférieure de l’isolant peut être parachevée (plaques de plâtre, lambris, …)
Les risques de condensation interstitielle sont éliminés si la finition inférieure éventuelle est perméable à la vapeur d’eau.

Illustration de l'isolant sous le plancher léger.

  1. Revêtement de sol.
  2. Plancher portant.
  3. Isolant.
  4. Finition éventuelle.
  5. Vide.

Isolant au-dessus du plancher léger

L’isolant résistant à la compression est placé sur le plancher. Une plaque de circulation est placée sur l’isolant.
L’isolant ne doit pas être découpé et la pose est facile.
L’encombrement au-dessus du plancher est plus important.
Un freine vapeur assurant principalement l’étanchéité à l’air du plancher sera posé au-dessus de l’isolant.
La structure du plancher peut rester visible par-dessous ou la face inférieure de celle-ci peut être parachevée (plaques de plâtre, lambris, …)
Les risques de condensation interstitielle sont éliminés si la finition inférieure éventuelle est perméable à la vapeur d’eau.

Illustration de l'isolant au-dessus du plancher léger.

  1. Revêtement de sol.
  2. Pare vapeur éventuel.
  3. Isolant.
  4. Plancher portant.
  5. Vide.

Isolant à l’intérieur de la structure du plancher léger

L’isolant peut être posé en panneaux ou en vrac. Les panneaux doivent être ajustés par découpe.
Les éléments de la structure interrompent la couche isolante, ce qui provoque des ponts thermiques (plus ou moins importants selon les types de matériaux mis en présence) et diminue les performances thermiques de la couche isolante.
Un freine vapeur assurant principalement l’étanchéité à l’air du plancher sera posé au-dessus de l’isolant.
La face inférieure de la structure doit être parachevée (plaques de plâtre, lambris, …) Les risques de condensation interstitielle sont éliminés si la finition inférieure éventuelle est perméable à la vapeur d’eau.

Illustration de l'isolant à l’intérieur de la structure du plancher léger

  1. Revêtement de sol.
  2. Freine vapeur, étanchéité à l’air.
  3. Structure du plancher.
  4. Isolant.
  5. Finition
  6. Vide.

Délimiter le volume protégé [concevoir]

 


Définition

Dans le cadre de la réglementation sur la Performance Energétique des Bâtiments (PEB) le volume protégé est défini.

« Volume de tous les espaces d’un bâtiment qui est protégé du point de vue thermique, de l’environnement extérieur (air ou eau), du sol et de tous les espaces contigus qui ne font pas partie du volume protégé (chapitre 2 de l’Annexe A1 de l’AGW du15 mai 2014 : définitions).

Le volume protégé doit comprendre au moins tous les espaces chauffés (et/ou refroidis) (en continu ou par intermittence) qui font partie du bâtiment considéré … Les espaces du bâtiment considéré, qui ne sont pas repris dans le volume protégé, sont donc non chauffé par définition (article 5.2 de l’Annexe A1 de l’AGW du15 mai 2015 : subdivision du bâtiment) ».

La détermination du volume protégé permet de déduire quelles sont les parois qui déterminent son enveloppe et qui doivent donc être performantes du point de vue thermique (pour ne pas laisser passer la chaleur).

Les caractéristiques de l’environnement du côté froid sont aussi définies : Espace Adjacent Non Chauffé (EANC), cave, vide sanitaire, sol ou air extérieur. Cela permet de calculer avec précision les performances thermiques (U et R) de ces parois.


Délimitation du volume protégé des nouveaux bâtiments

Lorsque le bâtiment doit encore être construit, le maitre d’œuvre choisit les locaux qu’il souhaite intégrer dans le volume protégé.

Il veillera à donner au bâtiment la forme la plus compacte possible, à exclure du volume protégé tous les locaux qui ne nécessitent pas d’être chauffés et à coller ces derniers contre le volume protégé pour en augmenter la protection.

Les parois de l’enveloppe du volume protégé devront au moins répondre aux exigences réglementaires.

Il ne pourra pas chauffer les espaces qui n’appartiennent pas au volume protégé.

Connaitre les principes et priorités de l’étanchéité à l’air

Connaitre les principes et priorités de l'étanchéité à l'air


Améliorer l’étanchéité au niveau des parties courantes des parois

Au niveau des parties courantes des parois délimitant le volume protégé, toute fissure doit être colmatée.

Les matériaux poreux utilisés en construction (briques, blocs de béton, laines minérales, …), s’ils ne sont pas enduits, sont perméables à l’air.

De plus, il arrive que les joints des maçonneries ne soient pas correctement réalisés : les joints verticaux sont partiellement remplis mais ce défaut est camouflé par rejointoyage augmentant encore la perméabilité de l’ensemble de la maçonnerie.

À titre d’exemple, des mesures d’étanchéité sur des maisons en murs creux en blocs de béton non plafonnés ont donné des débits d’environ 0,5 m³/h.m².

Pour améliorer l’étanchéité à l’air de l’enveloppe, ces matériaux doivent être protégés d’une couche étanche à l’air : un enduit (cimentage ou plafonnage), des plaques de plâtres enrobées correctement rejointoyées. Une couche de peinture épaisse et filmogène peut aussi convenir.

Exemple.

Suite à une mesure de pressurisation sur un bâtiment en blocs non enduits et donc peu étanche, on a obtenu un n50 = 10/heure. L’application d’une couche de peinture épaisse sur les blocs a réduit le n50 à 1/heure.

Remarque : un pare-vapeur est plus ou moins étanche à la vapeur d’eau suivant sa nature, mais est également à l’air.


Améliorer l’étanchéité aux raccords des éléments de façade ou au niveau des percements

Les jonctions telles que les raccords entre les éléments de la construction (façade/toiture, façade/plancher au niveau de la plinthe, …) ou les percements (passage de conduite, baie vitrée, portes, caisson de volet, boîtiers électriques, …) sont toujours des points délicats. On doit vérifier la parfaite jonction du raccord entre les différents éléments de construction ou entre la paroi et le percement dès que ce dernier touche la ou les couche(s) de la façade qui assure l’étanchéité à l’air. Si cette jonction présente des espaces, il faut les colmater.


Améliorer l’étanchéité du raccord mur-châssis

Photo joint entre le châssis et la maçonnerie.

Avec les châssis anciens, le joint entre le châssis et la maçonnerie était habituellement réalisé au moyen d’un mortier au ciment, souvent fendillé avec le temps et donc insuffisamment étanche.

On peut réfectionner ce joint. On procède en 4 étapes :

  1. On dégage le joint existant (mortier ou mastic), y compris l’éventuel fond de joint.
  2. On nettoie et on dégraisse les lèvres du joint.
  3. On réalise un fond de joint (pour autant que l’espace vide soit suffisant), par exemple, en plaçant un préformé de bourrage à cellules fermées.
    Dans le cas d’un mur plein, il est conseillé de créer une chambre de décompression entre le resserrage extérieur avec le gros œuvre et le resserrage intérieur.
    L’injection de mousse de polyuréthane n’est pas conseillée car, de par son caractère expansif, peu provoquer des dégâts (arrachement, …).
  4. On applique sur ce fond de joint un mastique élastique (thiokol ou mastic silicone) en veillant à assurer un bon contact entre les lèvres.

Améliorer l’étanchéité des châssis

Remarque : dans ce paragraphe, l’étanchéité à l’eau a été traitée en même temps que l’étanchéité à l’air ces deux-ci étant difficilement dissociables.

Une mauvaise étanchéité des châssis peut être due à :

Une classe de résistance à l’air et à l’eau du châssis insuffisante par rapport aux solicitations :

En effet, le STS définit des niveaux de performance d’étanchéité à l’eau (PE2, PE3, PE4, PEE ) et à l’air ( PA2, PA2B, PA3 ) des châssis à atteindre en fonction de la hauteur du châssis par rapport au sol.
S’il s’agit de châssis standards ces niveaux de performance sont signalés par l’agrément technique.

Hauteur par rapport au sol Perméabilité à l’air Étanchéité à l’eau
0 à 10 m

10 à 18 m

18 à 25 m

25 à 50 m

> 50 m

PA2B (1) (3)

PA2B (3)

PA3

PA3

PA3

PE2 (2)

PE3

PE3

PE4

PEE

  • (1) Si il n’y a pas d’exigence particulière du point de vue thermique et/ou acoustique, on se contentera d’un niveau PA2.
  • (2) Si le bâtiment a une exposition sévère (digue de mer), on prend un châssis de résistance PE3, et on le signale dans le cahier spécial des charges.
  • (3) Si on est en présence de locaux avec air conditionné, un niveau PA3 s’avèrera nécessaire.

Si les performances des menuiseries sont inadaptées à l’exposition et à la hauteur par rapport au sol, il n’est pas toujours possible d’y apporter les améliorations nécessaires (ajout d’une barrière d’étanchéité, modification du profil…).

Dans ce cas, seul un remplacement du châssis peut être envisagé.

concevoir

Pour en savoir plus sur le choix des châssis, cliquez ici !

Une mauvaise étanchéité entre dormant et ouvrant

Un mauvais fonctionnement de la double ou triple barrière d’étanchéité :

Remarque : des infiltrations d’eau et d’air sont inévitables malgré un bon dispositif d’étanchéité dans certains types d’ouvrants, au sein desquels l’interruption des joints d’étanchéité au droit des charnières est obligatoire.

concevoir

Pour connaître les risques d’infiltration en fonction du type d’ouvrant, cliquez ici !

Dans les anciens châssis, la forme des profilé ménageant une ou deux frappes constituait l’unique dispositif de joint entre dormant et ouvrant.
Dans ce cas et en cas de problème d’étanchéité, il est possible de réaliser un joint souple sur la frappe la plus intérieure de l’ouvrant, soit en mousse compressible, soit en mastic silicone épousant la forme des châssis.

Dans les châssis plus récents en bois, on peut ajouter également un tel type de joint sur la deuxième ou la troisième frappe.

Les fuites d’étanchéité peuvent être dues au vieillissement du préformé, dans ce cas, celui-ci doit être remplacé.

Remarque : lors de l’entretien des châssis en bois, le traitement du bois ne doit pas recouvrir le préformé, sinon ce dernier est rendu inefficace.

Il est indispensable de souder ou de recoller les joints d’étanchéité présentant une discontinuité dans les angles. En effet, la continuité du joint dans ces zones est particulièrement délicate : le joint peut facilement se défaire à cet endroit.

Dans tous les cas, il faut que le joint soit continu et reste dans un même plan sur tout le pourtour de l’ouvrant.

Un mauvais drainage

Le drainage de la chambre de décompression peut s’avérer insuffisant. Des conduits de drainages peuvent être rajoutés dans le dormant.
On veillera à réaliser des conduits d’inclinaison et de diamètres identiques à ceux existants. Normalement, les conduits seront situés près des angles et équidistants de +/- 50 cm.

Un mauvais réglage ou/et entretien des quincailleries.

Un bon réglage des quincailleries permet d’assurer un écrasement du préformé de -/+ 2 mm et garantit ainsi un bon fonctionnement de la barrière d’étanchéité.

Une déformation excessive du châssis lors de sa manipulation ou par la dilatation thermique.

Cette déformation engendre principalement un défaut d’étanchéité entre le dormant et l’ouvrant car ailleurs (c.-à-d.. entre la maçonnerie et le châssis et entre le châssis et la vitre), les joints sont extensibles.
On améliore la raideur du châssis en rapportant des profilés à la face intérieure ou extérieure.

Une mauvaise étanchéité entre le cadre et le vitrage

Schéma mauvaise étanchéité entre le cadre et le vitrage.

Dans les anciens châssis, un mastic durci et non élastique, posé généralement du côté extérieur, assurait la fixation du vitrage dans son cadre. Des petits clous assuraient la stabilité du vitrage en attendant la pose du mastic.

Les anciens mastics doivent être remplacés par des mastics souples après nettoyage et retraitement des châssis. On peut également d’abord rajouter des parecloses.

Pour les châssis récents en bois, on vérifie et éventuellement on remplace les joints, les parcloses, et l’emplacement des cales.

Pour les châssis PVC, aluminium ou polyuréthane, le joint autour des vitrages est généralement colmaté à l’aide d’un préformé d’étanchéité en néoprène, par exemple. Il doit être vérifié et remplacé s’il est abîmé.

Si on constate une insuffisance de drainage de la feuillure, on peut ajouter des conduits de drainage. L’opération est plus délicate que celle d’ajouter des conduits de drainage à la chambre de décompression car elle se fait dans l’ouvrant du châssis et toute erreur de disposition peut entraîner des infiltrations d’eau de rejet en aval de l’étanchéité à l’air du profilé.

Si le vitrage est remplacé, il faut prévoir un nouveau type de joint et vérifier la présence de drainage de la feuillure.

Une mauvaise étanchéité des assemblages

Les assemblages peuvent être rendus étanches par des injections de mastic fluide ou de colle.


Améliorer l’étanchéité au niveau des ouvertures

Les halls d’entrée sans sas

L’air conditionné en été et l’air chauffé en hiver s’échappent joyeusement… ! Le coût généré par cette fuite est variable en fonction de la durée d’ouverture.

À titre de repère, un trou permanent d’1 m² dans une enveloppe (vitre brisée, par exemple) génère un passage d’air à la vitesse moyenne de 1 m/s. Ce m³ qui s’échappe par seconde va entraîner une consommation hivernale de :

1 [m³/s] x 3 600 [s/h] x 5 800 [h/saison chauffe] x 0,34 [Wh/m³.K] x (15° – 6°) / 1 000 = 63 000 [kWh/an]

où :

    • 15° est la température moyenne intérieure, tenant compte d’un abaissement nocturne et d’un apport équivalent de 3° par les apports « gratuits »,
    • 6° est la température moyenne extérieure hivernale dans le centre de la Belgique,
    • 0,34 Wh/m³xK est la capacité thermique de l’air.

Soit un équivalent de +/- 2 500 € par an et par m² d’ouverture permanente, si la chaleur est fournie par du combustible fuel à 0,375 €/litre.

Une solution consiste à créer un sas avec doubles portes ouvrantes automatiques, ou avec porte tournante, thermiquement plus efficace mais plus contraignante à l’usage.

Photo ferme-porte automatique.

Solution minimale : le ferme-porte automatique.

Délimiter le volume protégé d’un bâtiment existant

 


Définition

Dans le cadre de la réglementation sur la Performance Energétique des Bâtiments (PEB) le volume protégé est défini.

« Volume de tous les espaces d’un bâtiment qui est protégé du point de vue thermique, de l’environnement extérieur (air ou eau), du sol et de tous les espaces contigus qui ne font pas partie du volume protégé (chapitre 2 de l’Annexe A1 de l’AGW du15 mai 2014 : définitions).

Le volume protégé doit comprendre au moins tous les espaces chauffés (et/ou refroidis) (en continu ou par intermittence) qui font partie du bâtiment considéré … Les espaces du bâtiment considéré, qui ne sont pas repris dans le volume protégé, sont donc non chauffé par définition (article 5.2 de l’Annexe A1 de l’AGW du 15 mai 2014 : subdivision du bâtiment) ».

La détermination du volume protégé permet de déduire quelles sont les parois qui déterminent son enveloppe et qui doivent donc être performantes du point de vue thermique (pour ne pas laisser passer la chaleur).

Les caractéristiques de l’environnement du côté froid sont aussi définies : Espace Adjacent Non Chauffé (EANC), cave, vide sanitaire, sol ou air extérieur. Cela permet de calculer avec précision les performances thermiques (U et R) de ces parois.


Délimitation du volume protégé des bâtiments existants

Lorsque le bâtiment existe et que l’on souhaite l’améliorer, il est nécessaire de déterminer le volume protégé en se basant sur certaines caractéristiques du bâtiment. L’amélioration de ce dernier peut aussi nécessiter de modifier le volume protégé.

Indices montrant l’appartenance ou non d’un local au volume protégé :

  • Lorsqu’il y a au moins un corps de chauffe (poêle, radiateur, sol chauffant, …) dans un local, celui-ci appartient nécessairement au volume protégé ;
  • Lorsque le local abrite une activité qui nécessite un confort thermique (chauffage ou refroidissement) celui-ci appartient nécessairement au volume protégé ;
  • Lorsqu’il y a une intention d’isoler thermiquement le local de l’environnement extérieur par l’isolation d’au moins une des parois de ce local. Les indices d’isolation de la paroi sont la présence d’une couche isolante (λ < 0.08 W/mK) ou d’un double vitrage ;
  • Lorsque des locaux contigus sont ouverts l’un sur l’autre (baies sans porte ou fenêtre), soit ils appartiennent tous au volume protégé, soit aucun n’appartient au volume protégé ;
  • Lorsqu’un local est ouvert sur l’environnement extérieur (baies sans porte ou fenêtre) il n’appartient PAS au volume protégé ;
  • Lorsqu’une paroi isolée sépare deux locaux on peut supposer qu’on a voulu protéger l’un d’entre eux  des déperditions thermiques. On peut donc en déduire que l’un appartient au volume protégé et l’autre pas ;
  • En l’absence des indices ci-dessus, on peut considérer qu’un local appartient au volume protégé lorsqu’il est majoritairement entouré par des espaces appartenant au volume protégé. C’est-à-dire que la surface des parois qui le sépare de ces espaces est plus grande que la surface de ses autres parois.

Si on veut améliorer les performances thermique d’un bâtiment, il peut être judicieux d’intégrer certains locaux au volume protégé (exemple : fermer un passage ouvert à tous vents sous un bâtiment) ou de les en exclure (exemple : suppression des radiateurs dans un local périphérique où la chaleur est inutile).

Le maître d’œuvre peut également isoler une paroi qui sépare deux locaux appartenant au volume protégé lorsque l’un d’entre eux n’est que rarement chauffé alors que l’autre l’est en permanence (exemple : conciergerie d’une salle de fête).

Mur à ossature

Mur à ossature

Les performances thermiques des murs dépendent principalement des qualités de la couche isolante. L’impact de son épaisseur est ainsi très important (plus l’épaisseur est grande meilleure est l’isolation). L’avantage des murs à ossature est de ménager dans la paroi des espaces suffisamment épais pour permettre la pose d’une couche épaisse d’isolant. Cette couche n’est malheureusement pas continue à cause des montants et traverses de la structure.

L’étanchéité à l’air de ce type de mur est plus difficile à obtenir que lorsque le mur est monolithe et enduit (murs en maçonnerie ou en béton). La pose d’un freine vapeur assurera l’étanchéité à l’air d’une telle paroi. Une  attention particulière devra aussi être apportée à la réalisation des raccords.


Ossature bois

Schéma principe mur à ossature bois.
  1. Finition intérieure
  2. Structure de l’espace technique
  3. Espace technique
  4. Isolant (éventuel) dans l’espace technique
  5. Pare-vapeur (freine-vapeur)
  6. Isolant dans la paroi
  7. Pare-pluie
  8. Structure de la paroi
  9. Vide ventilé
  10. Finition extérieure (parement ou bardage)

Ce type de mur est constitué d’une résille de montants (colonnes) et de traverses (poutres) en bois qui assurent la stabilité de la paroi. L’ensemble est triangulé pour le rigidifier. Les espaces libres entre les éléments de structure contiennent l’isolant. Ces cavités sont généralement entièrement remplies pour obtenir des performances les plus élevées possible.

L’ossature est ensuite refermée :

  • du côté intérieur, une couche étanche à l’air et plus ou moins étanche à la vapeur d’eau (freine vapeur) choisi en fonction des conditions climatiques intérieures, de la nature de l’isolant, de la perméabilité à la vapeur d’eau de la couche extérieure.
  • du côté extérieur, La face extérieure est fermée par une couche de matériau étanche à l’eau et le plus perméable possible à la vapeur (pare pluie).

Du côté intérieur, un espace technique (vide ou rempli d’une couche supplémentaire d’isolant), est généralement aménagée entre le freine vapeur et la couche de finition pour permettre le passage des conduites (chauffage, ECS, électricité, …) sans percement du freine vapeur.

Pose des conduites dans l’espace technique
sans percer le pare-vapeur.

Du côté extérieur, la paroi est protégée par un bardage (bois, ardoises, plaques ondulées ou planes, …) ou un parement en brique. La brique à l’extérieur ne se justifie que par des contraintes urbanistiques. Son inertie thermique est inutile à l’extérieur. Elle donne la fausse impression que le bâtiment est réalisé en maçonnerie.

Le calcul de performances thermiques du mur à ossature bois tiendra compte de la présence du bois.


Ossature métallique

Schéma principe mur à ossature métallique.
  1. Colonne en acier
  2. Bac horizontal en acier
  3. Isolant
  4. Bardage extérieur en acier

Les façades des bâtiments industriels sont régulièrement réalisées à l’aide d’ossatures métalliques recouvertes d’un bardage extérieur en plaques ondulées. Des caissons métalliques horizontaux sont fixés aux colonnes en acier. Le bardage extérieur vertical est à son tour, fixé au caisson. L’isolation thermique est obtenue par remplissage des caissons à l’aide d’un matériau isolant.

L’acier étant thermiquement 1 000 fois plus conducteur que le bois, les pertes de chaleur par les liaisons entre les caissons et le bardage sont très importantes. De plus, les tôles intérieures et extérieures répartissent la chaleur sur de grandes surfaces et la résistance d’échange thermique superficielle est, de ce fait quasi nulle.

Pour remédier à cette faiblesse, un isolant résistant suffisamment aux contraintes métalliques est interposé entre les caissons et le bardage. Cela réduit ainsi  considérablement les ponts thermiques ponctuels répartis sur la paroi.

Schéma principe mur à ossature métallique - 2.
  1. Colonne en acier
  2. Bac horizontal en acier
  3. Isolant
  4. Isolant interposé sous le bardage
  5. Bardage extérieur en acier

Le calcul des performances thermique d’un mur à ossature métallique est relativement compliqué et nécessite l’usage d’un programme de calcul numérique. Dans le cadre de la réglementation PEB, ce programme doit satisfaire à toutes les exigences qui sont indiquées dans les normes.

Objectifs d’une bonne toiture

Objectifs d'une bonne toiture


Objectifs d’une bonne toiture

La toiture sera stable et protégera les occupant des agresseurs extérieurs :

  • l’eau,
  • le froid,
  • la poussière,
  • le vent,
  • le bruit.

Assurant ainsi le confort des occupants à un coût énergétique avantageux.


Comment composer une toiture qui remplisse ces objectifs ?

Pour visualiser la composition d’une toiture inclinée, consulter la partie ci-dessous :


1. Le bâtiment sans toiture

Inspiré de « L’isolation thermique des toitures » CIFUL /  FFC.

© Architecture et climat 2023.

Sources d’inconfort.
Toiture et accessoires.
Effets de la toiture sur les sources d’inconfort.
– – – – – – – – –

  1. Pluie, vent et neige
  2. Température extérieure de 0°
  3. Production de vapeur d’eau
  4. Air intérieur de 0°
  5. Mur creux isolé

2. La toiture élémentaire

Inspiré de « L’isolation thermique des toitures » CIFUL /  FFC.

© Architecture et climat 2023.

Sources d’inconfort.
Toiture et accessoires.
Effets de la toiture sur les sources d’inconfort.
– – – – – – – – –
  1. Pluie, vent et neige
  2. Température extérieure de 0°
  3. Production de vapeur d’eau
  4. Air intérieur de 1°
  5. Mur creux isolé
  6. Eau infiltrée
  7. Migration de la vapeur de l’intérieur vers l’extérieur
  8. Gouttière et évacuation

-> Les composants mis en œuvre :

La charpente, la couverture et les évacuations d’eau pluviale

  • La charpente assure la stabilité de la toiture.
  • La couverture protège les occupants contre les intempéries.
  • La couverture et les évacuations écartent les eaux pluviales.

3. La toiture sans infiltration

Inspiré de « L’isolation thermique des toitures » CIFUL /  FFC.

© Architecture et climat 2023.

Sources d’inconfort.
Toiture et accessoires.
  Effets de la toiture sur les sources d’inconfort.
– – – – – – – – –
  1. Pluie, vent et neige
  2. Température extérieure de 0°
  3. Production de vapeur d’eau
  4. Air intérieur de 5°
  5. Mur creux isolé
  6. Eau infiltrée
  7. Migration de la vapeur de l’intérieur vers l’extérieur
  8. Gouttière et évacuation
  9. Pose d’une sous-toiture étanche à l’eau et perméable à la vapeur d’eau + contre-lattes

-> Les composants mis en œuvre :

La charpente, la couverture et les évacuations d’eau pluviale

  • La charpente assure la stabilité de la toiture.
  • La couverture protège les occupants contre les intempéries.
  • La couverture et les évacuations écartent les eaux pluviales.

La sous-toiture

  • Elle limite les infiltrations d’air.
  • Elle protège le bâtiment des eaux accidentellement infiltrées et des poussières.

4. Vers une toiture isolée

Inspiré de « L’isolation thermique des toitures » CIFUL /  FFC.

© Architecture et climat 2023.

Sources d’inconfort.
Toiture et accessoires.
Effets de la toiture sur les sources d »inconfort.
– – – – – – – – –

  1. Pluie, vent et neige
  2. Température extérieure de 0°
  3. Production de vapeur d’eau
  4. Air intérieur de 18°
  5. Mur creux isolé
  6. Eau infiltrée
  7. Migration de la vapeur de l’intérieur vers l’extérieur
  8. Gouttière et évacuation
  9. Pose d’une sous-toiture étanche à l’eau et perméable à la vapeur d’eau + contre-lattes
  10. Pose d’un isolant thermique

-> Les composants mis en œuvre :

La charpente, la couverture et les évacuations d’eau pluviale

  • La charpente assure la stabilité de la toiture.
  • La couverture protège les occupants contre les intempéries.
  • La couverture et les évacuations écartent les eaux pluviales.

La sous-toiture

  • Elle limite les infiltrations d’air.
  • Elle protège le bâtiment des eaux accidentellement infiltrées et des poussières.

L’isolation

  • Elle limite les pertes de chaleur.
  • Elle protège les occupants du bruit extérieur.

DANGER ! RISQUES DE CONDENSATION


5. La toiture isolée complète

Inspiré de « L’isolation thermique des toitures » CIFUL /  FFC.

© Architecture et climat 2023.

Sources d’inconfort.
Toiture et accessoires.
Effets de la toiture sur les sources d’inconfort.

– – – – – – – – –

  1. Pluie, vent et neige
  2. Température extérieure de 0°
  3. Production de vapeur d’eau
  4. Air intérieur de 20°
  5. Mur creux isolé
  6. Eau infiltrée
  7. Migration de la vapeur de l’intérieur vers l’extérieur
  8. Gouttière et évacuation
  9. Pose d’une sous-toiture étanche à l’eau et perméable à la vapeur d’eau + contre-lattes
  10. Pose d’un isolant thermique
  11. Pose d’un écran étanche à l’air et à la vapeur
  12. Finition intérieure

-> Les composants mis en œuvre :

La charpente, la couverture et les évacuations d’eau pluviale

  • La charpente assure la stabilité de la toiture.
  • La couverture protège les occupants contre les intempéries.
  • La couverture et les évacuations écartent les eaux pluviales.

La sous-toiture

  • Elle limite les infiltrations d »air.
  • Elle protège le bâtiment des eaux accidentellement infiltrées et des poussières.

L’isolation

  • Elle limite les pertes de chaleur.
  • Elle protège les occupants du bruit extérieur.

L’écran étanche à l’air et à la vapeur, et la finition intérieure

  • Ils suppriment les courants d’air.
  • Ils protègent la toiture des condensations internes et lui conservent son aspect, son efficacité thermique et sa stabilité.

Choisir la cheminée et la ventilation de la chaufferie

Étanchéité et alimentation en air

         

   

Distinction entre chaudières étanches (figures du bas) et non-étanches (figures du haut) ainsi que des chaudières à tirage naturel (figures de gauche) et à tirage forcé (figure de droite)

Étanchéité de la chaudière

On distingue les chaudières étanches et non-étanches. Les chaudières étanches ont des circuits de combustion étanches par rapport à l’enveloppe du bâtiment. Elles tirent leur air de combustion de l’environnement extérieur. À l’opposé, la chaudière non-étanche soutire son air de combustion de la pièce dans laquelle elle est installée. Cette distinction a une influence sur la stratégie de ventilation du local de chauffe. De manière générale, la ventilation a pour objectif de maintenir la température du local en-dessous d’un certain seuil (typiquement 40°C). En effet, la chaudière ainsi que les circuits hydrauliques associés sont sujet à des pertes de chaleur. Le but de ventilation est alors d’évacuer ces pertes. Dans le cas d’une chaudière non-étanche, la ventilation du local doit aussi amener l’air nécessaire pour une combustion correcte dans l’appareil. Cela aboutit à un dimensionnement différent, essentiellement en ce qui concerne l’amenée d’air neuf dans le local de chauffe.

Tirage naturel ou forcé

Une seconde distinction concerne la force motrice qui assure le mouvement des gaz dans le circuit de combustion. On trouve, d’une part, les chaudières munies d’un ventilateur. Si celui-ci est suffisamment puissant, il assurera la majeur partie du travail pour amener l’air neuf à la chaudière et pour évacuer les fumées. On parle alors de tirage forcé. D’autre part, on a les chaudières travaillant essentiellement par tirage naturel. En effet, l’air contenu dans la cheminée a une température plus élevée que la température ambiante si bien que la densité de l’air dans cette cheminée est plus faible. Du coup, cette colonne d’air a tendance à s’élever tout en appelant de l’air frais vers l’appareil de combustion.  De nouveau, cette distinction entre mode de fonctionnement conditionne le dimensionnement de la cheminée. Dans le cas du tirage naturel, celle-ci doit être dimensionnée de manière rigoureuse pour assurer une évacuation correcte des produits de combustion et amener une quantité suffisante d’air neuf à l’appareil et donc garantir une bonne combustion.


Cheminée

Le rôle de la cheminée est d’évacuer les gaz de combustion. Ces gaz contiennent principalement du CO2 et de l’eau mais aussi des composants toxiques comme le CO ou des oxydes d’azote (NOx).

Une mauvaise cheminée peut donc être dangereuse pour les occupants ou se détériorer sous l’effet de la condensation des fumées. Elle peut également perturber les performances de la chaudière, en tout cas pour les chaudières en dépression.

Le conduit de cheminée doit respecter 4 critères :

  1. être bien dimensionné,
  2. avoir le tracé le plus rectiligne possible,
  3. avoir un débouché à l’abri des perturbations du vent,
  4. avoir une faible inertie thermique et une bonne isolation.

Dans le cas des chaudières étanches, les conduits d’évacuation sont considérés comme faisant partie intégrante de la chaudière si bien que le couple chaudière et circuit a été conçu par le fabricant. Il faut se référer à ses spécifications pour garantir un fonctionnement correct de l’installation. Dans les cas des chaudières non-étanches, on doit les raccorder à un circuit d’évacuation qui doit être correctement dimensionné.

Dimensionnement de la cheminée

Le dimensionnement du conduit d’évacuation diffère selon que la chaudière est dotée d’une chambre de combustion non-étanche (ouverte) ou étanche.

Dimensionnement pour chaudières étanches

Dans le cas des chaudières étanches, les conduits d’évacuation sont considérés comme faisant partie intégrante de la chaudière si bien que le couple chaudière et circuit a été conçu par le fabricant. Il faut se référer à ses spécifications pour garantir un fonctionnement correct de l’installation.

Dimensionnement pour chaudières non-étanches

Dans les cas des chaudières non-étanches, il faut les raccorder à un circuit d’évacuation qui doit être correctement dimensionné. La chaudière ne peut fonctionner correctement sans cette cheminée adaptée. C’est pourquoi, la cheminée doit être choisie en fonction de la chaudière et non l’inverse.

Par exemple, une chaudière avec un ventilateur suffisamment puissant ne nécessite pas systématiquement un tirage naturel pour assurer la bonne évacuation des fumées. Dans ce cas de figure, le conduit d’évacuation peut être relativement court. En effet, dans le cas des chaudières où le tirage naturel joue un rôle prépondérant, la longueur de la cheminée doit être suffisamment longue pour assurer le tirage souhaité. À l’opposé, ce conduit ne doit pas être trop long si on veut éviter la condensation et ses désagréments. On l’aura compris, dimensionner un cheminée est question de spécialiste qui mérite un traitement rigoureux.

En outre, on distingue les foyers dits « pressurisés » et les foyers « à dépression ». La situation est encore différente avec une chaudière gaz atmosphérique. La puissance de la chaudière joue également un rôle important puisqu’elle conditionne le volume de gaz à évacuer. Cela est d’ailleurs une donnée importante en rénovation.

Exemple pour une chaudière à tirage naturel :

On remplace une ancienne chaudière à foyer en dépression (à tirage naturel) dont la température de fumée ne descendait pas en dessous de 220°C, par une chaudière à foyer en surpression (à tirage naturel) dont la température de fumée est de l’ordre de 160°C. De plus, le surdimensionnement de l’ancienne installation a été réduit. On est ainsi passé d’une puissance de 500 kW a une puissance de 300 kW.

Suivant la norme NBN B61-001, l’ancienne chaudière demandait une cheminée (pour une hauteur de 18 m) d’un diamètre de 48 cm. La nouvelle chaudière ne demande plus qu’un diamètre de 24 cm.

Si on raccorde la chaudière de 300 kW au conduit existant, la surface déperditive du conduit devient trop importante pour la masse plus réduite des fumées. Les risques de condensation sont alors importants. Le refroidissement des fumées le long du conduit peut également être tel qu’il réduit dangereusement le tirage.

Les mauvaises réactions, face à cette situation visent à tenter d’augmenter la température des fumées à la sortie de la chaudière :

  • enlever certains turbulateurs situés dans les tubes de l’échangeur pour accélérer les fumées dans la chaudière et diminuer l’échange de chaleur dans celle-ci,
  • modifier le réglage ou la régulation du brûleur (par exemple en « pontant » la première allure).

Cela a évidemment pour conséquence de diminuer le rendement de la nouvelle chaudière.

Le bon réflexe est d’accompagner le remplacement de la chaudière d’une modification de la section du conduit de fumée, par exemple, grâce à un tubage du conduit existant.

Dimensionnement pour chaudières non-étanches à tirage naturel

De manière générale, la section des conduits d’évacuation des chaudières à tirage naturel peut être évaluée au moyen d’abaques qui tiennent compte :

  • du type de chaudière,
  • de la hauteur de la cheminée,
  • de la puissance de la chaudière,
  • de la température des fumées à la sortie de la chaudière.

En fait le calcul d’une cheminée dépend d’autres paramètres comme :

  • la longueur du conduit de raccordement,
  • la hauteur de la cheminée,
  • la hauteur du conduit de raccordement,
  • les résistances locales comme les coudes, les tés, le couronnement de cheminée, …
  • la nature de la surface du conduit,
  • l’isolation du conduit,
  • l’inertie thermique du conduit,
  • le type de chaudière,
  • la puissance de la chaudière,
  • le rendement de combustion,
  • le taux de CO2 compris dans les fumées,
  • la température des gaz de combustion.

Lorsque les conditions réelles de fonctionnement s’écartent des conditions d’établissement des abaques, il faut procéder à un calcul plus précis. Pour simplifier celui-ci, les fabricants de cheminées ont établi des tableaux et graphiques relatifs à leur produit, en fonction des types de chaudière et des conditions de fonctionnement les plus courantes. Les abaques repris dans les normes peuvent cependant donner des ordres de grandeur de contrôle permettant d’éviter un surdimensionnement excessif.

Tracé de la cheminée

Coudes et changements de section

Quelque soit la force qui assure l’évacuation des fumées, c’est-à-dire un ventilateur et/ou le tirage naturel, l’objectif est d’atteindre le débit nominal d’échappement en vainquant les forces de frottement du conduit (les pertes de charge). Il faut donc veiller à ce que le circuit d’évacuation des fumées aie des pertes de charge compatibles avec la force motrice disponible.

Dans le cas du tirage naturel, la force dépend essentiellement de la hauteur de la cheminée et de la température des fumées : plus la température est élevée et la cheminée haute, plus le tirage est important (sans arriver pour autant à la condensation). Comme on souhaite travailler avec la température de fumées la plus basse et une cheminée la moins haute possible, on comprend que le tirage naturel est limité. Il est dès lors vital de limiter les frottements (les pertes de charge) au sein du conduit d’évacuation. On comprend aisément que la rugosité, les coudes dans le conduit vont créer des frottements complémentaires qui sont autant d’entraves au tirage. Il en va de même pour les changements de section ou de forme (comme le passage d’une section carrée à une percée de toit ronde). Pour que les changements de section et de forme ne présentent quasi pas de perte de charge, il faut ceux-ci se fassent progressivement sous en angle de 15°C. Idéalement, les virages devraient s’exécuter avec des coudes de 15°. Les coudes jusqu’à 30°C présentent des résistances encore tolérables.

Dans le cas du tirage forcé, c’est le ventilateur qui principalement assure le débit d’évacuation. Sur base des caractéristiques de ce ventilateur, on peut connaître les pertes par frottement qu’il est capable de vaincre. Typiquement, le constructeur peut donner la longueur maximale du conduit qu’il est possible de placer en aval de la chaudière ainsi que le nombre de coudes.  Ces coudes peuvent avoir des angles très élevés, voire même des angles droits. Spatialement parlant, les conduits des chaudières à tirage forcé sont plus faciles à intégrer que leur homologues à tirage naturel.

Raccordement de la chaudière

Le conduit de raccordement joint le bord externe du conduit de sortie de l’appareil de combustion au conduit d’évacuation.

Dans le cas où le tirage naturel joue un rôle important dans l’évacuation des fumées, le conduit de raccordement doit aussi assurer son rôle ou du moins, ne pas perturber ce processus.
À cette fin, le raccordement de la chaudière à la cheminée ne devrait pas présenter de contre-pente, voire idéalement ne pas se faire suivant un conduit horizontal mais plutôt au moyen d’un conduit ascendant. Typique, on prescrit une pente de 45°C, surtout si la cheminée est peu élevée.

Débouché de la cheminée

De nouveau, on fait la distinction entre tirage naturel et forcé.

Dans le cas du tirage naturel, les conditions météorologiques extérieures ont une influence sur ce tirage. On pense à la température mais aussi aux variations de pression statique induites par le vent. En l’absence d’obstacles, le vent induit une dépression au niveau du débouché de cheminée par effet Venturi et ce, même en l’absence de combustion. Si cette dépression n’est pas trop importante, elle contribue favorablement au tirage. En présence d’obstacles, par exemple à proximité du bâtiment, l’écoulement autour de ceux-ci peut engendrer des dépressions ou surpressions locales (suivant l’orientation du vent). Les surpressions peuvent réduire le tirage voire engendrer du refoulement. Il faut donc veiller à ce que le débouché de cheminée se trouve hors de la zone d’influence des différents obstacles. Par obstacle, on entend le bâtiment lui-même voire un bâtiment voisin. C’est pourquoi les normes NBN B61-001 et NBN B61-002 définissent des zones d’emplacement autorisées des débouchés de cheminées par rapport aux bâtiments et autres obstacles voisins.

De manière générale, le débouchés ne peuvent gêner les constructions voisines ou se trouver dans une zone inaccessible au personnel d’entretien ou aux pompiers. Si le fonctionnement de la cheminée ne doit pas être perturbé par son environnement (essentiellement, le vent), la cheminée ne peut elle non plus perturber son environnement. En effet, elle rejette des produits de combustion qui doivent être suffisamment dilués avant de rencontrer des ouvertures de bâtiments.

Forme de la cheminée

Toujours dans l’optique de contrôler le tirage, la cheminée idéale est ronde. C’est ainsi que pour une section donnée, la surface de paroi et donc les frottements sont les moindres. Les pertes de chaleur sont également les plus faibles. Une section carrée avec coins arrondis convient aussi.

Isolation de la cheminée et inertie thermique

Plus la cheminée est haute, plus il est important de l’isoler, afin d’éviter que les gaz de combustion ne se refroidissent trop, risquant de provoquer de la condensation non prévue. En effet, à partir de 70°C, le souffre contenu dans les combustibles (principalement de fuel) se transforme en acide liquide. Dans le cas du tirage naturel, un refroidissement risquerait de réduire significativement ce tirage. La résistance thermique minimale est 0.75 m².K/W pour la norme NBN B61-001 et de 0.4 m².K/W pour la norme NBN B61-002, plus récente.

Les produits isolants choisis doivent résister à des températures élevées (en cas de dérèglement de la chaudière), être imputrescibles et ne peuvent pas se tasser (les isolants en « vrac » sont interdits). Notons que l’isolation du conduit de cheminée limite également les nuisances sonores.

Plus la cheminée est chaude, plus le tirage est important et moins les fumées se refroidissent. Ainsi, plus le conduit de cheminée a une inertie thermique importante, plus le temps nécessaire pour parvenir au tirage maximal est long. On choisira donc de préférence un conduit de cheminée dont la paroi intérieure est légère (avec bien entendu la résistance mécanique requis

Matériaux

Différents matériaux peuvent être utilisés pour réaliser un conduit de cheminée :

  • les boisseaux en terre cuite ou en béton,
  • les conduits en inox, c’est-à-dire en acier inoxydable,
  • les conduits en aluminium,
  • les conduits en matériau synthétique (Polyvinyldène  Fluoride, PVDF, et Polypropylène, PP).

Les caractéristiques des produits de combustion des chaudières de chauffage central déterminent le choix du conduit de raccordement et d’évacuation. Il s’agit :

  • de la température des fumées,
  • de leur composition chimique,
  • du risque de la formation de condensation,
  • de la présence de suie,
  • du niveau de pression.

Des normes européennes (NBN EN 1443 et 1856-1) permettent de classifier les conduits suivant leur résistance à ces différentes caractéristiques. Ces classes, complétées d’information concernant l’épaisseur minimale de paroi, le débit de fuite maximal admis et les exigences de sécurité incendie, offrent la possibilité de faire le choix parfait pour les conduits de raccordement et d’évacuation à utiliser.

 

Exemple de marquage de conduit d’évacuation métallique : différentes « classe » par caractéristiques étudiées (classe de température, de résistance aux condensats, etc.).

Bien évidemment, ces caractéristiques des produits de combustion sont influencée par le type de combustible et le type de chaudière (par exemple, avec ou sans condensation).

Boisseaux en terre cuite et en béton.

Cheminée en inox double paroi et en PVDF.

Pour les conduits métalliques ou synthétiques, on parle de « système », c’est-à-dire que le conduit de raccordement, le conduit vertical et le débouché forment un ensemble constitué du même matériau. Le fonctionnement de ce système est de la responsabilité du fabricant de conduit. Le premier avantage de ces systèmes est la facilité de dimensionnement : chaque fabricant dispose d’abaques permettant de choisir le diamètre le plus approprié à la chaudière choisie.

Quelques remarques :

  • Différentes variantes d’acier inoxydables existent. Suivant ces différences de composition, ils peuvent être mis en œuvre avec différents types de chaudière. À titre d’exemple, l’acier ANSI 316 est interdit pour les chaudières fuel à condensation et pour les chaudières à combustible solide. L’acier ANSI 904L peut quant à lui être appliqué à tout type de chaudière.

 

  • Les conduits en aluminium ne conviennent que pour les chaudières au gaz.

 

  • Les conduits en matière synthétique ne peuvent être utilisés que si les températures des fumées ne dépassent jamais 80°C, typiquement pour des chaudières à condensation. Une protection doit garantir que cette température maximale ne sera pas dépassée (par exemple, un thermostat de sécurité). Les conduits synthétiques doivent quant à eux pouvoir tenir jusqu’à une température de 120° (correspond à la classe de température T120).

Régulation du tirage

Comme le tirage naturel dans la cheminée peut fortement influencer le rendement de combustion et que ce tirage est lui-même influencé par les conditions atmosphériques (température de l’air extérieur, vent), il faut équiper une cheminée d’un régulateur de tirage. Remarquons que les chaudières gaz atmosphériques sont, quant à elles, d’office équipées d’un coupe-tirage intégré qui remplit les mêmes fonctions que le régulateur de tirage. De manière générale, on ne place pas un régulateur de tirage si la chaudière est déjà équipée d’un coupe-tirage.

Régulateur (ou stabilisateur) de tirage.

Évaluer

Pour en savoir plus sur l’impact du tirage sur le
rendement de combustion.

Le régulateur de tirage présente également d’autres intérêts :

    1. Les brûleurs pulsés actuels (gaz ou fuel) sont équipés d’un clapet d’air qui se referme automatiquement à l’arrêt. Il n’y a donc plus de ventilation du conduit de cheminée quand la chaudière est arrêtée (pertes par balayage). La cheminée reste donc humide (condensation des fumées, pénétration d’eau de pluie). A l’arrêt, le régulateur de tirage maintiendra une certaine ouverture et une ventilation permanente de la cheminée par l’air de la chaufferie, permettant au conduit de sécher.
    2. Lorsque le clapet est ouvert, le mélange de l’air de la chaufferie et des fumées diminue la concentration en vapeur d’eau des fumées et diminue la température de rosée et donc les risques de condensation.

Nombre de conduits

Selon la norme NBN B61-001 et NBN B61-002, il y a lieu de prévoir un conduit par chaudière. C’est la règle générale qu’il faut retenir.

Il existe néanmoins deux exceptions qui s’applique aux chaudières atmosphériques à tirage naturel :

Premièrement, on peut utiliser des conduits collectifs pour des chaudières gaz atmosphériques si les dispositions locales ne permettent pas de disposer d’un conduit individuel. Dans ces cas, il faut se référer à la norme NBN D51-003 qui mentionne notamment que plusieurs chaudières peuvent être raccordées sur une même cheminée.

Notons que pour y voir plus clair, l’ARGB a édité un cahier des charges « Exigences pour les ensembles composés de chaudières en batterie et fonctionnant en cascade » qui permet de définir les critères à respecter en matière d’évacuation des produits de combustion. Pour le lecteur intéressé, l’ARGB a également édité un dossier technique « Installations alimentées en gaz combustible plus léger que l’air, distribué par canalisations » (février 2000), qui permet de s’y retrouver dans les méandres de la norme NBN D51-003 et de ses addenda 1 et 2.

Deuxièmement, dans le cas des chaudières non-étanches avec évacuation des produits de combustion par tirage naturel et de puissance inférieure à 70 kW, des chaudières de même type, montées en batterie et installées dans un même espace, peuvent être assimilées à une chaudière unique pour autant que :

  • les chaudières font partie d’un ensemble prévu pour fonctionner comme une seule unité (chaudières en cascade),

 

  • les chaudières sont équipées d’un collecteur de fumées spécialement conçu par le fabricant qui assure une évacuation correcte des produits de combustion et une combustion optimale dans n’importe quelle condition de fonctionnement,

 

  • le bon fonctionnement de l’ensemble a été contrôlé en laboratoire et certifié,

 

  • la puissance de démarrage à froid est, de minimum, 25 % de la puissance utile de l’ensemble des chaudières.

Il est en tout cas défendu de raccorder sur un même conduit, une chaudière gaz atmosphérique et une chaudière à brûleur pulsé.

Cas particulier des chaudières à condensation

Les produits de combustion issus d’une chaudière à condensation sont saturés en vapeur d’eau dont une partie va se condenser sur les parois de la cheminée. Cela exclut une évacuation par une cheminée traditionnelle en maçonnerie, car l’humidité provoquerait de graves dommages au bâtiment.

Les solutions possibles sont  :

  • La cheminée étanche à l’humidité, en acier inoxydable ou en matériau synthétique. Elle permet de maintenir une température inférieure au point de rosée sans que l’humidité ne la traverse et attaque la maçonnerie. Fonctionnant en surpression, elle est aussi étanche aux produits de combustion.

 

  • Le tubage, qui s’applique à une cheminée ancienne, doit être étanche, résistant à la corrosion et installé dans une cheminée. Le tubage doit pouvoir fonctionner en surpression dans toute sa longueur.

 

  • La cheminée en boisseaux pour peu qu’elle possède un agrément technique ATG pour fonctionner avec une chaudière à condensation.

En principe, dans une chaudière à condensation la température des fumées est supérieure à la température de l’eau entrant dans la chaudière d’environ 5°C. La température des fumées ne peut donc jamais dépasser 80°C (selon la norme NBN B61-002). Cependant pour pallier à un défaut de la régulation de cette dernière, un thermostat de sécurité coupant la chaudière si la température des fumées dépasse 120°C doit être prévu dans les raccordements vers la cheminée en matériau synthétique.

Il est important aussi de signaler que l’on ne peut raccorder sur un même conduit de cheminée, une chaudière traditionnelle et une chaudière à condensation.

Évacuation des condensats avec une chaudière à condensation : NIT 235 du CSTC

Une chaudière installée dans une maison unifamiliale moyenne produit approximativement 500 à 2000 litres de condensat par an. Il s’agit de rejets acides avec un pH compris entre 2 et 4 dans le cas du mazout pauvre en soufre (mazout extra) et entre 4 à 5 dans le cas du gaz naturel. Il est donc important que les matériaux qui entrent en contact avec les condensats présentent une bonne résistance à la corrosion : matières synthétiques, grès, fonte …

Il est vivement déconseillé d’évacuer les condensats sur des toitures comportant des éléments métalliques (couverture, avaloirs, gouttières, conduits d’évacuation, …) ou de les mettre en contact avec des matériaux de construction pierreux traditionnels ou des produits à base de ciment (tuyaux en fibres-ciment, par exemple).

A l’heure actuelle, il n’existe en Belgique aucune prescription spécifique applicable à l’évacuation de ces condensats acides. Il est conseillé de ne pas déversé ces condensats directement mais de les mélanger préalablement avec les eaux usées domestiques qui sont de nature plutôt basique (produits de nettoyage), donc apte à neutraliser l’acidité. Si l’on ne parvient pas à ramener le pH à un minimum de 6.5, il est alors recommandé de réaliser un traitement des condensats pour les neutraliser.

Si la chaudière à condensation fonctionne au mazout, il y a lieu de disposer, en amont du système neutralisant éventuel, un filtre à charbon actif dans le but de débarrasser l’effluent des dérivés huileux.


Remplacement de chaudière et adaptation de la cheminée

Le remplacement d’une ancienne chaudière s’accompagne presqu’inévitablement d’une diminution du débit et de la température des fumées à évacuer. En effet :

  • la puissance de la chaudière est revue à la baisse (souvent fortement),
  • l’échange de chaleur entre les fumées et l’eau est optimalisé dans la chaudière.

Suivant les prescriptions reprises ci-dessus, cela devrait nécessiter une modification de la section de la cheminée existante.

Dans tous les cas, si des condensations apparaissent dans le conduit de cheminée après la rénovation, il ne faut pas corriger le tir en détériorant les performances de la chaudière, c’est-à-dire :

  • en modifiant le réglage du brûleur pour augmenter la température des fumées (diminution du rendement de combustion),

 

Deux solutions permettent de limiter les risques de condensation sans modifier la cheminée :

  • isoler le conduit de raccordement entre chaudière et la cheminée pour augmenter la température des fumées à l’entrée de la cheminée,

 

  • maintenir, à l’arrêt, l’ouverture du régulateur de tirage pour assurer une ventilation de la cheminée à l’arrêt. Notons que la présence d’un régulateur de tirage diminue, en soi, les risques de condensation car la dilution des fumées dans de l’air diminue le point de rosée.

Si ces deux solutions n’apportent pas de résultat, le tubage de la cheminée pour adapter celle-ci à la nouvelle chaudière, devient inévitable.


Ventilation du local contenant les appareils de chauffe

La ventilation a pour objectif d’évacuer les pertes de chaleur des équipements de combustion afin de maintenir une température acceptable au sein du local contenant ces appareils. En outre, la ventilation assure la qualité de l’air en amenant l’air frais et en évacuant l’air vicié.

Dans le cas des appareils non-étanches, la ventilation doit aussi

  • assurer un apport d’air comburant suffisant au brûleur pour permettre un déroulement correct de la combustion,
  • maintenir constante la dépression entre la chaufferie et la cheminée.

Pour les installations de chauffage de puissance supérieure à 70 kW, les prescriptions en matière de ventilation des chaufferies sont reprises dans la norme NBN B61-001. Dans ce cas, il est nécessaire de travailler avec un chaufferie qui sera équipée d’une ventilation basse et d’une ventilation haute. Celles-ci sont directement en contact avec l’extérieur ou raccordées à des conduits suivant les indications de la norme.

Pour les installations de chauffage de puissance inférieure à 70 kW, les prescriptions en matière de ventilation des chaufferies sont reprises dans la norme NBN B61-002. Comme évoqué ci-dessus, une chaufferie spécifique n’est pas toujours nécessaire. A la base, un débit de 0.72 m³/h.kW avec un minimum de 25.3 m³/h doit être garantis pour maintenir la température du local inférieure à 40°C. Se superpose ensuite les contraintes inhérentes à la technologie des chaudières, à savoir si la chaudière est étanche ou pas. Si la chaudière est non-étanche, il faut garantir un débit d’air suffisant pour assurer la combustion optimale. Si l’on travaille sur base d’une ventilation naturelle, l’air est admis au sein du local de chauffe au moyen d’un orifice ou d’un conduit dont les caractéristiques sont prescrites par la norme. L’air vicié du local est évacué par un orifice de diamètre au moins égal au tiers de l’orifice d’admission.

Ventilation basse pour P > 70 kW

L’amenée d’air doit se faire au moyen d’un dispositif de ventilation basse situé le plus près possible du sol (au maximum au 1/4 de la hauteur du local).

D’une manière générale, pour les chaufferies de moins de 1 200 kW, la section à prévoir est de :

1 dm² par 17,5 kW, si la cheminée est plus haute que 6 m.

1,5 dm² par 17,5 kW, si la cheminée est moins haute que 6 m.

Cette section minimale augmente en fonction des accidents de parcours entre l’extérieur et la chaufferie (si la conduite d’amenée d’air comprend plus de 3 coudes). Dans ce cas et pour les chaufferies de plus de 1 200 kW, il faut se référer à la norme.

Exemples de ventilation basse pour une chaufferie en sous-sol.

1. première grille, 2. deuxième grille, 3. premier coude à 90°, 4. deuxième coude à 90°, 5. découpe en biais à 45°

Si un conduit d’amenée d’air est nécessaire dans la chaufferie, celui-ci sera coupé à 45°C, pour éviter une obstruction intempestive.

L’ouverture de ventilation basse ne doit pas forcément déboucher à l’extérieur. Elle peut communiquer avec un autre local, pour autant que celui-ci soit à son tour ventilé.

Ventilation haute pour P > 70 kW

L’air vicié éventuellement accumulé dans la chaufferie doit également être évacué à l’extérieur. À cet effet, une ventilation haute doit être prévue à la partie haute du local, du côté opposé à la ventilation basse pour permettre un bon balayage du local.

  • Le conduit de ventilation haute peut être un conduit parallèle à la cheminée. Dans ce cas, son débouché à l’extérieur doit se trouver entre 0,5 et 1,5 m sous le débouché de la cheminée.

Conduit de ventilation haute associé à la cheminée.

  • Cela peut également être un conduit plus court débouchant au-dessus de la toiture ou à un niveau intermédiaire. Dans ce dernier cas, le débouché doit être le plus éloigné possible des portes et fenêtres.

Cas particulier des chaufferies en ambiance polluée

L’air aspiré par le brûleur doit être exempt de produits corrosifs pour la chaudière.

Par exemple, si l’air de combustion risque d’être pollué par des composants halogénés en provenance, par exemple de firmes de nettoyage à sec, d’imprimeries, de teintureries, d’une piscine…, des précautions doivent être prises pour assurer une amenée d’air frais pur. Dans certains cas, l’utilisation de chaudières étanches avec prise d’air dans un endroit non pollué est à conseiller.

Chaudières gaz raccordées à une cheminée à ventouse (on parle aussi de combustion étanche) : l’air comburant est aspiré à l’extérieur par le conduit externe et les fumées sont évacuées par le conduit interne. Les deux conduits peuvent être séparés mais suffisamment proches pour être exposés à des conditions de vent identiques. Dans le cas, la ventilation basse de la chaufferie n’est plus nécessaire.

Les chaudières sont également très sensibles aux poussières. Celles-ci sont aspirées par le brûleur, encrassent le ventilateur, sont brûlées et se déposent dans la chaudière. Il en résulte une perte de rendement. C’est pourquoi, il faut partir du principe, pourtant rarement respecté qu’:

une chaufferie ne peut être un atelier !
Exemple.

Dans une institution hospitalière, une chaudière s’avère difficile à régler, tombe souvent en panne et s’encrasse rapidement.

La raison : la ventilation basse de la chaufferie est en communication directe avec la buanderie. Une quantité importante de pluches est retrouvée dans le ventilateur du brûleur !

Capteur solaire à eau chaude

Capteur solaire à eau chaude


Principe de fonctionnement

Schéma principe de fonctionnement.

Les capteurs solaires transforment le rayonnement solaire en chaleur grâce à un absorbeur (un corps noir caractérisé par des propriétés d’absorption très élevées et d’émissivité très basse). L’absorbeur transfère la chaleur à un fluide caloporteur (généralement de l’eau glycolée) circulant au travers de chacun des capteurs.

Lorsque la différence de température entre la sonde capteur (T1) et la sonde en fond de ballon (T2) dépasse quelques degrés, les circulateurs s’enclenchent.

Le fluide caloporteur, circulant dans le circuit primaire, achemine alors l’énergie solaire depuis les capteurs vers le(s) ballon(s) de stockage à travers un échangeur.

Le(s) ballon(s) de stockage accumule(nt) la chaleur produite.

Si nécessaire, une source d’énergie d’appoint porte l’eau préchauffée à la température souhaitée. Celle-ci est alors acheminée vers les points de puisage par la boucle de distribution.

Un dispositif de régulation électronique commande le fonctionnement du système (circulateurs et appoints) selon les conditions d’ensoleillement et la demande en eau chaude.


Les principaux composants d’une installation

Un chauffe-eau solaire est toujours composé de quatre parties :

Schéma principaux composants d'une installation.

Le système de charge

Le système de charge comprend les capteurs solaires, la boucle primaire ou solaire et un échangeur de chaleur.

Le système de stockage

Il s’agit généralement d’un ou plusieurs ballon(s) d’eau bien isolé(s) thermiquement. Le stockage permet de différer la demande de puisage par rapport au moment de la production solaire.

Le système d’appoint

Pendant une bonne partie de l’année, un appoint de chaleur est nécessaire pour atteindre la température minimale de la boucle sanitaire (en général 60 °C). Cet appoint de chaleur peut être fourni par un moyen traditionnel de production de chaleur (chaudière, résistance électrique, pompe à chaleur,…).

Le système de décharge

C’est la partie de l’installation qui distribue l’eau chaude sanitaire aux différents points de puisage.

Photo capteur solaire sous vide.

Exemple de capteur solaire sous vide (avec sonde de température en 1 et purgeur en 2).
À noter le lestage des pieds de l’équipement…


Les différents types d’installation

Sous nos climats, la plupart des installations sont conçues avec une boucle fermée sous pression dont la circulation est forcée, mais il existe d’autres types d’installation :

Boucle solaire fermée (indirecte) ou ouverte (directe) ?

Si la boucle est fermée, le fluide qui chauffe dans les capteurs solaires et celui qui arrive aux points de puisages (douches…) sont distincts : l’eau de consommation est indirectement chauffée à travers un échangeur par le fluide caloporteur du circuit solaire.

Dans le cas où la boucle est dite ouverte, l’eau qui circule dans les capteurs est la même que celle qui est consommée aux points de puisage. Ce type de circuit est rarement utilisé en Belgique, notamment à cause des problèmes liés au gel. On le trouve donc plus souvent dans les pays chauds, où les capteurs constituent le seul moyen de chauffage.

Boucle fermée.

Boucle ouverte.

Circulation forcée ou thermosiphon ?

Dans les installations à thermosiphon, le fluide de la boucle solaire circule par convection naturelle (le fluide réchauffé s’élève). Le stockage est en général situé au-dessus des capteurs (à une distance de minimum 50 cm). Chez nous, ce système est difficilement maîtrisable. Il convient nettement mieux aux pays chauds et ensoleillés.

Thermosiphon.

Circulation forcée.

Les installations à circulation forcée sont équipées d’un dispositif de pompage (circulateur) provoquant la circulation forcée du fluide de la boucle solaire. La pompe est activée automatiquement par la régulation qui évalue le moment où la température du fluide à la sortie des capteurs est supérieure à la température de l’eau dans le bas du réservoir de stockage. On distingue dans cette catégorie plusieurs principes suivant le débit imposé au fluide dans le circuit solaire :

  • Les installations dites « high flow » : dans ce cas, le débit étant élevé (+/- 40 à 60 litres/heure.m²), on favorise une production d’une grande quantité de fluide avec un delta de température peu élevé.
  • Les installations dites « low flow » : dans ce cas, le débit étant faible (+/- 15 à 20 litres/heure.m²), on valorise une plus haute montée en température d’un volume de fluide réduit. Cela permet de travailler avec de plus faibles diamètres de tuyauterie et de faibles puissances de circulateur. Cependant, les pertes thermiques sont augmentées, ce qui diminue le rendement des capteurs. Ce système est généralement utilisé pour les installations de type directe ou encore pour les installations dites « à vidange ».
  • Les installations dites « mix flow » : dans ce cas, le débit est variable et ajusté en continu par la régulation afin de garantir à tout moment un delta de température fixé. Ce système est de plus en plus utilisé et permet d’éviter des enclenchements-arrêts fréquents de la pompe.

Sous pression ou à vidange ?

Les systèmes traditionnels à boucle fermée et à circulation forcée sont généralement « sous pression ». Dans ce type de système, le fluide caloporteur est constamment maintenu à une pression de 1 bar à l’arrêt et de 6 bars en fonctionnement.

Il existe aussi des systèmes « vidangeables ». La différence principale avec les systèmes traditionnels est que lorsque le système ne peut capter d’énergie, les capteurs et les tuyauteries sont vidés et la pompe arrêtée. Le fluide caloporteur est alors recueilli dans un réceptacle fermé. S’ils sont bien conçus, ces systèmes présentent une grande sécurité en cas de gel ou en cas de surchauffe estivale (cela permet d’éviter les montées en températures trop importantes dans le capteur). Ces systèmes permettent ainsi d’éviter une usure accélérée des composants et présentent une grande simplicité de construction puisqu’ils ne nécessitent ni manomètre, ni vase d’expansion, ni purgeur, ni clapet anti-retour (vu que l’installation est vidangée, il n’y a pas de risque de circulation inverse par thermosiphon).

Sous pression.

A vidange.


Les types de capteurs

Il existe deux grandes familles de capteurs : les capteurs plans et les capteurs à tubes « sous vide ».

Capteurs plans

Les capteurs plans opaques

Ce sont les capteurs les plus simples du marché. Ils sont constitués d’un ensemble de tuyaux opaques de couleur foncée qui jouent à la fois le rôle de:

  

  1. plaque absorbante qui permet la captation de l’énergie thermique du rayonnement solaire.
  2. tuyauterie dans laquelle circule directement le fluide caloporteur (généralement l’eau).

Ils ne possèdent ni isolation ni couvercle transparent. Leur rendement est donc globalement moins bon sauf s’ils sont destinés à des applications estivales à basse température (proche de la température extérieure), par exemple pour les piscines extérieures … Leur simplicité va de pair avec un coût très réduit.

Les capteurs plans vitrés

Il s’agit des capteurs que l’on rencontre le plus souvent ; ils conviennent pour la plupart des applications courantes (ECS, appoint chauffage, piscine…).

Un capteur plan vitré se compose des éléments fondamentaux suivants :

  1. Un boîtier qui contient tous les éléments constitutifs fragiles du capteur comme les tubes, la plaque absorbante…
  2. un joint d’étanchéité pour empêcher l’eau de pénétrer quand il pleut ;
  3. un couvercle transparent qui crée un effet de serre au-dessus de la plaque absorbante : en général un verre trempé dit solaire, présentant une faible teneur en fer pour permettre un haut degré de transmission lumineuse ;
  4. une isolation thermique qui réduit la déperdition de chaleur par la face arrière et les côtés du capteur ;
  5. une plaque absorbante qui permet la conversion du rayonnement solaire en énergie thermique transportée par le fluide ;
  6. les tubes traversés par le fluide caloporteur qui évacue la chaleur jusqu‘à l‘extérieur du capteur ;

Selon les modèles, différents types de réseaux hydrauliques internes aux capteurs existent :

Schéma différents types de réseaux hydrauliques internes.

Capteurs à tube sous vide

L’isolation de ce type de capteurs est assurée par le vide. Par facilité de conception, ces capteurs ont toujours une forme cylindrique, d’une longueur d’environ 2 m et d’un diamètre approximatif de 10 cm. Ces capteurs sous vide ont en général un rendement optique (correspondant au rendement de production d’eau chaude à une température égale à celle de l’ambiance) plus faible mais de meilleurs coefficients d’isolation thermique que les capteurs plans.

Ils récupéreront dès lors moins d’énergie à basse température que leurs homologues plans. Plus efficaces pour la production d’eau chaude à température élevée par rapport à l’ambiance extérieure, ils seront principalement utilisés pour des applications comme le chauffage, la climatisation par ab/adsorption ou encore certains process particuliers,…

Photo capteur solaire thermique.

Il en existe deux grandes familles selon que l’absorbeur se trouve directement sur le verre ou sur une ailette en cuivre.

Les tubes sous vide avec absorbeurs sur ailette en cuivre

L’absorbeur de ce type de capteur est déposé sur une structure en cuivre placée dans le tube. Ce type d’absorbeur sur cuivre possède une meilleure sélectivité que celui déposé sur le verre (et donc procure un rendement optique plus élevé au capteur). L’avantage principal est que l’absorbeur peut être orienté différemment par rapport à son support. Cela peut être avantageux pour des applications en façade par exemple.

C’est l’intérieur du tube (et tout ce qu’il contient) qui est soumis au vide d’air. Bien que le principe soit simple, la fabrication de ces capteurs reste délicate à cause des liaisons verre/métal nécessaires.

Composition des tubes sous vide avec ailette absorbante

Schéma composition des tubes sous vide avec ailette absorbante

  1. Un tube en verre  dans lequel on effectue le vide d’air (assurant une isolation optimale) dans lequel se trouvent tous les composants suivants.
  2. L’absorbeur posé sur un support en cuivre.
  3. Les tubes qui évacuent la chaleur, généralement aussi en cuivre. Ces tuyaux peuvent être disposés de divers manières (soit juxtaposés, soit concentriques).
  4. Le système de raccordement permet la rotation des tubes afin d’orienter au mieux l’ailette absorbante.

Il existe aussi plusieurs types de capteurs selon le fluide caloporteur et son mode de circulation:

> Les capteurs à circulation directe

> Les capteurs à caloduc (ou heat pipe)

Dans le cas de capteurs à circulation directe, l’ailette sert de support à un tube en U dans lequel circule le fluide caloporteur.

Le caloduc, lui, est un échangeur qui utilise les mécanismes de changement d’état liquide-gaz d’un fluide placé dans un tube fermé. Le principe est simple : en captant la chaleur absorbée par l’ailette, le fluide s’évapore. Il s’élève alors jusqu’en partie haute et cède sa chaleur en se condensant par contact avec le fluide caloporteur de l’installation qui circule en partie haute. De nouveau à l’état liquide, il retourne alors par gravité en bas du tube.

Schéma principe du caloduc.

Pour un fonctionnement correct, ces tubes doivent être installés avec une inclinaison minimale. Ce système permet un remplacement des tubes sans purgeage complet de l’installation.

Les tubes sous vide avec absorbeurs sur support en verre (tube Sydney)

Schéma tubes sous vide avec absorbeurs sur support en verre.

Dans ce cas, le vide est fait entre les deux couches de verre (principe du thermo) qui composent le tube en verre. L’intérieur de la bouteille est donc soumis à la pression atmosphérique. À l’intérieur, l’absorbeur et les tuyauteries évacuent la chaleur du creux atmosphérique central.

Composition des tubes sous vide avec absorbeur sur support en verre

Schéma composition des tubes sous vide avec absorbeur sur support en verre.

  1. Une bouteille de verre à double paroi est employée. Les deux parois sont reliées de manière étanche au niveau du goulot de manière à emprisonner le vide (partie grise dans le schéma).
  2. Sa surface externe (2) est laissée transparente.
  3. Un absorbeur est posé sur la face intérieure de la bouteille.
  4. Des tubes qui évacuent la chaleur sont placés dans le creux atmosphérique central.
  5. Des tuyaux sont reliés à l’absorbeur par des profilés semi-circulaires métalliques de transfert de chaleur.
  6. Éventuellement et préférablement, des réflecteurs augmentent le rayonnement solaire sur le capteur (on parle alors de tubes CPC pour Compound Parabolic Concentrator).

Le rendement et l’utilisation des capteurs

Les capteurs vont se différencier entre eux par la qualité de l’absorbeur (sa sélectivité) et du verre solaire (rendement optique), ainsi que par celle de l’isolation du capteur. L’ensemble de ces trois propriétés conféreront au capteur des plages de températures privilégiées et par là, les usages pour lesquels il sera mieux adapté.

Graphique rendement et l'utilisation des capteurs.

Ces différences de rendement selon les plages de température de fonctionnement seront à la base du choix du type de capteurs que l’on utilisera. On choisira donc préférablement le capteur qui offre le meilleur rendement pour le régime de température de travail correspondant à l’application voulue.

Les plages de régimes de travail à basse température (correspondant à des delta de températures de travail des capteurs entre 0 et 20 °C) sont essentiellement rencontrées pour le chauffage de piscine. Les déperditions thermiques n’ont pour ces températures que peu d’influence. C’est donc, dans ce cas, le rendement optique du capteur qui sera déterminant. Les capteurs plans (vitrés ou non) seront le choix idéal puisqu’ils offrent des rendements optiques plus élevés pour un prix nettement inférieur.

Pour les régimes à température moyenne (delta de T° de 20° à 100 °C), recherchés pour des applications comme la production d’eau chaude sanitaire ou le chauffage à basse (delta de 60 °C) et moyenne température (delta de 100 °C), les déperditions commencent à prendre le pas sur le rendement optique. Dans ce cas, les capteurs devront posséder outre un bon absorbeur sélectif, une bonne isolation thermique. Pour ces plages, les capteurs à tubes sous vide et les capteurs plans vitrés sont concurrentiels.

Pour les régimes à haute température (nécessaires pour des applications comme des process industriels, chauffage à très haute température, climatisation solaire), c’est l’efficacité de l’isolation qui sera déterminante. Le seul choix réaliste dans ce cas est celui des tubes sous vide.


Le raccordement des capteurs

Un champ de capteurs doit être composé de capteurs aux propriétés physiques semblables. Plusieurs raisons à cela :

  • Eviter les sources d’usure prématurée : des métaux différents peuvent provoquer des couples galvaniques, sources de corrosion interne des capteurs.
  • Eviter un problème d’équilibrage hydraulique, problème fréquent de fonctionnement des capteurs : chaque capteur doit posséder des pertes de charge similaires.

Le placement des capteurs doit permettre :

  • que la planéité des capteurs soit respectée ;
  • de placer vers le bas les orifices d’évacuation des condensats ;
  • de résister aux conditions climatiques locales (vent et neige).

Pour le raccordement des panneaux entre eux, différentes configurations sont possibles :

  • en série (a) ;
  • en parallèle respectant de préférence le principe de Tichelmann (b) ;
  • en rangée de capteurs en série (c) ;
  • en rangée de capteurs en parallèle (respectant le principe de Tichelmann) (d).
  • etc.

Schéma principes de raccordement des panneaux.

Le choix sera fonction de différents éléments :

  • La facilité de réglage (équilibrage) ;
  • la longueur nécessaire de tuyauterie (coût et pertes thermiques associés) ;
  • la configuration de l’espace disponible ;
  • le compromis entre l’efficacité des capteurs et la température de sortie.

Le raccordement en série permet une montée en température plus importante au prix de pertes thermiques plus importantes (d’autant plus si l’on travaille avec un faible débit (low flow). De fait, la montée progressive en température au fil des panneaux en série est accompagnée par une diminution du rendement. Un trop grand nombre de capteurs raccordés en série sera donc à éviter. En pratique, 5 à 6 capteurs de taille standard (environ 2 m²) est un maximum.

Énergétiquement parlant, le raccordement en parallèle est donc plus intéressant mais n’est pas toujours réaliste vu les longueurs de tuyauterie nécessaires.

L’équilibrage hydraulique des différents capteurs est un point crucial. Dans la réalité, il est souvent réalisé empiriquement par un jeu de vannes qui ne permet évidemment pas de corriger les erreurs de conception. Il est donc primordial de prendre en compte les pertes de charges liées aux capteurs  pour le dimensionnement des tuyauteries. En pratique, le raccordement en boucle de Tichelmann (longueur de tuyauterie identique quelque soit le capteur ou groupe de capteurs) est souvent préconisé pour les grandes installations. Il permet un équilibrage naturel en imposant des pertes de charges identiques pour chaque capteur/groupe de capteurs.

Selon un rapport du CTSB, on recommande généralement un rapport :

Perte de charge dans les collecteurs / Perte de charge dans les capteurs, le plus faible possible,
et donc un rapport Diamètre interne des collecteurs / Diamètre interne des circuits hydrauliques des capteurs, le plus faible possible également (rapport compris entre 1,6 et 3,3).


Le circuit primaire ou circuit solaire

Le circuit primaire (ou circuit de charge solaire) est un circuit fermé composé de tuyauteries, généralement en cuivre, qui relient les capteurs (A) à un échangeur de chaleur (B). Il transporte le fluide caloporteur. Celui-ci peut atteindre des températures allant de -20 °C en cas de gel à des températures très élevées (jusqu’à 200 °C dans les capteurs !). Il est donc impératif que les composants de ce circuit puissent résister à ces changements importants de température !


Exemple de schéma possible pour un circuit primaire (partie en couleur).

Le circuit primaire est généralement muni des composants suivants :

  • Une pompe de circulation (1) assurant la circulation du fluide caloporteur dans le circuit.
  • Un purgeur (2) manuel permettant d’éliminer l’air en partie haute du circuit lors du remplissage et des entretiens.
  • Un clapet anti-retour (3) pour éviter la formation d’un contre-courant de thermocirculation qui déchargerait le ballon de stockage de sa chaleur.
  • Plusieurs vannes d’isolement (4) pour isoler les composants principaux du système en cas d’entretien ou de remplacement.
  • Un robinet (5) permettant le remplissage et la vidange du circuit en fluide caloporteur.
  • Un débitmètre gravimétrique, appareil indiquant le débit du fluide du circuit. Situé sous le circulateur, il permet de régler la vitesse minimale de celui-ci pour assurer un débit minimum dans les capteurs.
  • Parfois un système de comptage d’énergie produite est placé. Celui-ci comprend : un débitmètre volumétrique, deux thermomètres sur l’aller et le retour des capteurs et un calculateur intégrateur.

Comme pour toute autre boucle hydraulique où un générateur de chaleur est installé, un dispositif de limitation de pression devra aussi être utilisé. Pour cela, le circuit primaire comporte :

  • Une soupape de sécurité (6) munie d’un manomètre destinée à évacuer les surpressions en cas de surchauffe de l’installation. Cette vanne est raccordée à un réservoir de collecte du fluide caloporteur avec antigel pour éviter tout rejet toxique dans le réseau d’égout.
  • Un vase d’expansion (7), placé du côté aspiration de la pompe de circulation, chargé d’absorber les différences de volume et de récolter la totalité du fluide caloporteur expulsé des capteurs en cas de surchauffe. Par rapport aux vases d’expansion traditionnels utilisés pour le chauffage, les vases d’expansion solaires doivent supporter des pressions de service maximales plus élevées (de 8 à 10 bar) et possèdent une membrane plus résistante aux hautes températures. Il est parfois judicieux, vu les hautes températures atteintes, de placer un vase tampon en amont afin de ne pas compromettre la longévité du vase d’expansion. Dans le cas d’un système à vidange, on peut omettre le vase d’expansion car le circuit primaire n’est pas mis sous pression, mais il faut prévoir la place pour installer le réservoir à vidange entre le champ de capteurs et le ballon de stockage solaire.

Le fluide caloporteur

Le circuit primaire relatif à l’installation sous pression est totalement rempli d’un fluide caloporteur résistant au gel. On utilise généralement du propylène glycol. Il existe aussi des mélanges complets qui contiennent un agent inhibiteur de corrosion, un agent anti-mousse, un agent anti-algue et un colorant.

Théoriquement, on pourrait également travailler avec de l’eau pure non glycolée dans le cas d’un système à vidange. Actuellement, pour des raisons de sécurité on utilise, même dans ce cas, de plus en plus d’antigel.

Caractéristiques essentielles d’un fluide solaire

  • Stable jusqu’à la température de stagnation maximale ;
  • Protégé contre le gel ;
  • Non corrosif  ;
  • Capacité thermique élevée ;
  • Viscosité réduite ;
  • Prix réduit et disponibilité.

En pratique, on utilise généralement un mélange d’eau et de glycol comme par exemple :

Éthylène glycol (C2H6O2)
Capacité thermique : 2 410 J.kg-1.K-1
Température de fusion : – 13 °C
Température d’ébullition : 198 °C

Polypropylène glycol (C3H8O2)
Capacité thermique: 2 500 J.kg-1.K-1
Température de fusion : – 59 °C
Température d’ébullition : 188 °C

Les conduites

Photo conduites.

Les matériaux utilisés pour les conduites du circuit solaire doivent résister aux contraintes mécaniques possibles dans le circuit (pression et plage de température en fonctionnement (de – 20 à 150 °C)) et être compatibles avec le fluide et les autres matériaux de l’installation. On utilise principalement des tubes en cuivre, en acier simple ou en acier inoxydable. Les tuyauteries en matière synthétique sont plus que déconseillées, car elles ne sont généralement pas tout-à-fait étanches (surtout à haute température) à l’oxygène qui pénètre alors par diffusion dans le circuit. Le risque de corrosion en est alors augmenté. L’acier galvanisé est lui strictement interdit, car il réagit avec le glycol présent dans le circuit primaire.

Vu les hautes températures auxquelles ces conduites sont soumises, leur isolation ne peut en aucun cas être réalisée au moyen d’un quelconque isolant utilisé pour les applications sanitaires habituelles. Ne résistant qu’à des températures de l’ordre de 110 – 120 °C, le polyuréthane est à proscrire. On utilisera généralement un caoutchouc synthétique en mousse capable de résister à des températures de l’ordre de 150 °C.

L’isolant utilisé pour la boucle solaire doit de plus :

  • résister aux U.V. (ou en être protégé) ;
  • résister à l’humidité ;
  • résister aux attaques des rongeurs et oiseaux ;
  • être étanche (au vent et à la pluie).
  • Et bien sûr, avoir une épaisseur suffisante ! (au minimum égale au diamètre du tuyau).

Sous ces hautes températures, la dilatation des conduites est aussi un phénomène à prendre en compte, car elle peut induire pour les grandes installations des mouvements importants.
Pour se faire une idée, la dilatation thermique du cuivre est de 1.7 mm/m sous un échauffement de 100 °C. On comprend vite le risque associé à plusieurs dizaines de mètres de tuyauteries !

 

Montage permettant d’absorber la dilatation thermique des tuyauteries.


Le stockage de l’eau solaire

Le stockage est un élément clé de toute installation solaire thermique. Il permet de pallier au caractère discontinu de l’énergie solaire et à la non-simultanéité de la production et des besoins. En pratique, l’énergie solaire thermique est stockée via l’eau contenue dans un ou plusieurs ballon(s) d’eau accumulateur(s) raccordé(s) en série.

Photo cuves stockage.

Un matériau résistant

Comme pour tout ballon accumulateur d’eau chaude sanitaire, le principal critère de sélection de matériau du ballon est sa résistance à la corrosion. On utilise généralement des réservoirs en acier inoxydable, ou en acier émaillé voire en cuivre avec anode de protection. Les ballons en acier galvanisé sont déconseillés du fait de leur mauvaise résistance à la corrosion.
Pour les réservoirs à eau morte, n’étant pas sous-pression, on peut envisager des réservoirs en matière synthétique, plus durable puisque non soumis à la corrosion.

Le ballon de stockage à eau solaire doit non seulement répondre à toutes les exigences d’un réservoir d’eau sanitaire classique, mais doit en plus pouvoir résister aux hautes températures auxquelles il pourrait être soumis. La température dans le ballon peut en effet monter jusqu’à 95 °C, d’où la nécessité de prévoir un mitigeur thermostatique sur la boucle de distribution.

Une forme adaptée

Par ailleurs, les ballons solaires sont en général étudiés de manière à favoriser une bonne stratification interne des températures. La stratification est basée sur une variation de masse volumique en fonction de la température : L’eau réchauffée s’élève par thermocirculation et par sa masse volumique moindre s’accumule dans le haut du ballon (phénomène de la poussée d’Archimède). L’eau froide, plus lourde, reste en bas. A chaque puisage, l’eau la plus chaude du ballon est extraite et de l’eau froide du réseau est injectée dans le bas du ballon. La stratification est donc globalement préservée, l’important étant d’éviter tout brassage.

Pour favoriser ce phénomène, le réservoir  est donc préférablement vertical et sa hauteur équivaut généralement à 2-2.5 fois le diamètre. Il existe aussi des dispositifs de charge améliorant la stratification : amenée de l’eau chaude à différentes hauteurs suivant sa température.

Une isolation primordiale

Encore plus que pour un ballon accumulateur classique, outre sa bonne compacité, un ballon solaire doit impérativement être isolé dans son entièreté (10 cm grand minimum) : attention aux parties supérieures et inférieures ainsi qu’aux différents raccords ! La parfaite isolation et une bonne stratification augmenteront indéniablement les performances du système.

Une dimension adaptée

Le volume du stockage dépend du projet envisagé, mais doit être étudié de manière précise. L’enjeu est double :
D’une part, il ne doit pas être trop petit pour ne pas limiter les gains solaires possibles et d’autre part, il ne doit pas être trop grand pour permettre une montée en température suffisante pour que l’eau soit utilisable (idéalement pour pouvoir se passer de l’appoint en été).

Le ballon solaire doit généralement pouvoir stocker l’équivalent de 30 à 40 % d’une journée de consommation d’eau chaude (à 60°) de l’établissement. La capacité fréquente des plus grands ballons est de 5 000 l, mais le recours à plusieurs ballons de stockage est en général déterminé par la place prise par les échangeurs internes de grande puissance. La question de la liaison des multiples ballons est alors posée. Dans bien des cas, on s’orientera alors vers un ballon solaire à eau morte (eau ne servant pas d’eau chaude sanitaire) permettant d’emmagasiner l’énergie solaire sans se préoccuper de la gestion de la légionellose.

N.B. : Le stockage, c’est LE défi de la recherche ! Le jour où l’on arrivera à stocker l’énergie solaire pour de plus longues périodes voire saisons, ce sera sans doute une porte d’entrée vers l’autonomie énergétique. Les recherches actuelles se portent vers des matériaux à changement de phase qui remplaceraient l’eau traditionnelle.


La charge du ballon de stockage

La charge du ballon de stockage s’effectue au moyen d’un échangeur au travers duquel la chaleur du fluide solaire est transférée à l’eau du stockage.
Comme pour toute installation, deux types d’échangeurs peuvent être employés : les échangeurs intégrés au stockage et les échangeurs extérieurs (à plaques) :

Echangeurs intégrés au stockage.

Echangeurs extérieurs au stockage.

Schéma charge du ballon de stockage- 1.

À partir de là, différents systèmes de charge sont envisageables : avec échangeur interne (a,b,c,f) ou externe (d,e). Certains systèmes permettent un renforcement de la stratification des températures à l’intérieur du/des ballon(s) par différents dispositifs :

  • cheminée interne enrobant l’échangeur solaire et diffusion en fonction des températures (b),
  • chargement à hauteur différenciée par vanne trois voies (e),
  • chargement à hauteur différenciée par échangeurs multiples (c).

Schéma différents systèmes de charge possibles.

Typiquement, pour les grands systèmes solaires (au-delà de 30 m² de capteurs) des échangeurs de chaleur externes sont souvent utilisés vu les puissances considérables qui entrent en jeu.

La disposition des échangeurs et leur raccordement se fera toujours de manière à :

  • Favoriser la stratification correcte des températures à l’intérieur des ballons et le long du circuit de charge : les températures les plus hautes doivent être les plus proches de l’appoint.
  • Assurer un rendement optimal des capteurs :
    Les pertes thermiques des capteurs dépendant de la différence de température entre le fluide à l’intérieur des capteurs et la température extérieure, on aura tout intérêt à travailler avec un fluide caloporteur à la température la plus basse possible.
  • Permettre à l’échangeur de chauffer un volume d’eau suffisamment grand.

En conséquence, l’échangeur de chaleur solaire intégré au stockage des petits systèmes, sera placé en partie basse du ballon et le retour vers les capteurs sera situé le plus bas possible dans le ballon.

Schéma principe échangeur.

L’échangeur de chaleur relié à l’appoint se trouvera quant à lui dans la partie supérieure du ballon de stockage ou dans un ballon séparé (en série avec le premier) lorsque la quantité d’eau chaude nécessaire sera plus importante.


La régulation

Démarrage et arrêt du circulateur

Pour les systèmes à circulation forcée, le système de régulation différentielle assure la mise en marche et l’arrêt adéquats de l’installation. Cette gestion de la chauffe solaire est primordiale pour tirer un maximum de profit de l’énergie solaire disponible. Le principe est basé sur la mesure continue de deux températures :

  • la température de l’eau chaude en partie basse du ballon de stockage (ou du fluide caloporteur à la sortie de l’échangeur solaire) : T°stockage.
  • la température du fluide caloporteur à la sortie des capteurs : T°capteur.

Dès que la différence de température est suffisante, la pompe est mise en marche. Elle s’arrête lorsque l’énergie solaire captée n’est plus suffisante ou n’est plus nécessaire.

En résumé :

  • Si T°capteur> T°stockage + ∆T1 : la pompe démarre.
  • Si par contre, T°capteur< T°stockage + ∆T2 : la pompe s’arrête.

Il est nécessaire de calibrer précisément ces ∆ de température afin d’optimiser l’énergie solaire récoltée (on évitera les préréglages d’usines !). Le paramétrage doit tenir compte de la configuration de l’installation et principalement de la longueur des conduites et des pertes thermiques liées. On aura évidemment tout intérêt à minimiser ces pertes en plaçant le stockage aussi proche que possible des capteurs, en isolant les conduites et en travaillant à basse température. En pratique, cette perte en ligne peut être estimée en comparant la température au niveau du capteur et la température à l’entrée du ballon en fonctionnement.

Pour éviter des arrêts et des mises en marche successifs (Phénomène de Stop and Go), la température de démarrage devra en outre prendre en compte le refroidissement du capteur lors de l’enclenchement. En effet, l’ensemble du liquide de la boucle solaire plus froid que celui des capteurs provoquera au démarrage une diminution de température du capteur.

Pour le choix de la consigne d’arrêt, on devrait, en plus des pertes thermiques, prendre en compte l’énergie minimum à récolter de sorte à ce que celle-ci soit toujours supérieure à l’énergie primaire nécessaire au fonctionnement de la pompe (consommation électrique multipliée par le facteur de conversion 2,5).

En pratique, on rencontre des ∆T :

  • Pour les valeurs de démarrage de : 5 à 7 K.
  • Pour les valeurs d’arrêt de : 3 à 4 K.

Température maximale de charge

Tout ballon de stockage possède une température de charge maximale. Le système de régulation doit prendre en compte correctement cette valeur afin de couper le circulateur pour que cette température critique ne soit pas atteinte. Une valeur d’usine est  souvent donnée par défaut pour le système de régulation, mais il serait dommage de se priver de l’énergie solaire gratuite si le ballon de stockage accepte des températures plus élevées (jusqu’à 95 °C). Si la régulation ne possède qu’une sonde de température dans le bas du ballon il faut absolument tenir compte de l’effet de stratification. C’est pour cette raison que les régulations possèdent souvent un préréglage d’usine assez bas (de l’ordre de 70 °C) pour que le haut du ballon n’atteigne pas des températures de plus de 95°C.

Température de sécurité

Lors d’une journée ensoleillée, lorsque l’ensemble du stockage est à température, le circulateur s’arrête mais la température des capteurs continue, elle, à grimper.
La régulation des systèmes à vidange tiendra évidemment compte de cette température de sécurité. À partir de celle-ci, le système s’arrête et le fluide est récupéré dans un réceptacle prévu à cet effet : l’installation se vidange par drainage gravitaire ! Cela permet d’éviter que le fluide n’entre en ébullition (et vieillisse prématurément) et ne détériore les composants de l’installation. C’est l’un des grands avantages de ce système !

Certaines régulations permettent aussi d’empêcher le redémarrage de la pompe au cas où la température du fluide caloporteur est trop élevée (+/- 120 °C), évitant ainsi l’endommagement des composants les plus sensibles.


L’apport de chaleur complémentaire

Les capteurs solaires ne peuvent à eux seuls satisfaire à tout moment l’entièreté des besoins. Pour assurer la production d’eau chaude, même en période prolongée de non ensoleillement,  un système d’appoint est nécessaire. L’appoint devra pouvoir répondre aux besoins sans intervention solaire et sera, par conséquent, envisagé de manière classique. Différentes configurations sont possibles selon la présence ou non d’un échangeur de chaleur (intégré ou non au stockage) :

 

On distingue principalement quatre cas de figure :

– L’appoint électrique (c) : Dans ce cas, une résistance est directement intégrée au ballon de stockage.

Schéma appoint électrique.

– L’appoint intégré au stockage (a, d, e, f) : L’échangeur se trouvera le plus près possible de l’endroit où s’effectue le puisage dans le(s) ballon(s) et son raccordement respectera la stratification interne des températures (les plus élevées, les plus hautes). Dans un ballon de stockage unique qui rassemble aussi la production solaire, l’échangeur d’appoint se trouvera donc en haut du ballon.

Schéma appoint intégré au stockage.

– L’appoint séparé en série (b) : L’appoint (généralement instantané ou semi-instantané) se trouve dans ce cas à l’extérieur du ballon de stockage solaire. L’eau préchauffée par les capteurs solaires est alors directement portée à température (par une chaudière au gaz à condensation par exemple).

Schéma appoint séparé en série.

– L’appoint mixte : il est bien entendu possible de combiner différents types d’appoint. Par exemple, pour une petite installation, l’idée pourrait être d’éviter le fonctionnement d’une chaudière sol au mazout grâce au recours d’un appoint électrique (mais attention à la régulation de cette résistance !).

 Notons que pour les plus grands systèmes, s’il est intégré au stockage, l’appoint peut se faire via des ballons différents…

Schéma appoint mixte.


Le circuit de décharge

La décharge du ballon de stockage solaire peut se faire de multiples manières.

  • Via un système direct (a) : l’eau de stockage est directement l’eau sanitaire.
  • Via un échangeur : interne simple (c), plongé dans une cuve de transition (d) ou externe (e) dans le cas où l’eau sanitaire est chauffée instantanément. Le ballon est alors dit à eau morte, car l’eau qu’il contient est une eau de transition et non l’eau sanitaire.
  • Via une cuve de transmission (b), principalement pour les petits systèmes combinés avec les systèmes de chauffage : préparation d’un volume réduit d’ECS dans un grand volume d’eau.

Schéma circuit de décharge.

Par rapport à une installation classique d’ECS, le circuit d’eau sanitaire comportera en plus un mitigeur thermostatique et un disconnecteur.

Le mitigeur thermostatique permet d’éviter toute brûlure au point de puisage. En été, lorsque l’on bénéficie d’un rayonnement solaire important et que le puisage est réduit, il n’est pas impossible d’atteindre dans le ballon des températures de plus de 60° (maximum toléré pour de l’eau chaude sanitaire). Le mitigeur se chargera de mélanger l’eau du ballon avec de l’eau froide pour que cette température ne soit pas dépassée.

D’autre part, une fuite de liquide caloporteur du circuit primaire au niveau de l’échangeur de chaleur solaire est toujours possible. Pour protéger le réseau de distribution de toute contamination par le fluide solaire, on place un disconnecteur.
Cet équipement à zones de pression différentielle empêche le retour de l’eau sanitaire du ballon de stockage solaire vers le réseau de distribution.

Précisons aussi que vu la toxicité du fluide caloporteur, l’évacuation directe vers les égoûts est interdite. Le disconnecteur, ainsi que les soupapes et robinets de vidange doivent donc être raccordés à des réservoirs de collecte.


La gestion de la légionellose

Plus que pour toute installation de production d’eau chaude sanitaire, un regard particulier doit être posé sur la gestion de la légionellose. En effet, les températures atteintes dans un ballon de stockage solaire sont favorables à la prolifération de ces bactéries (de 30 à 40°).
La première solution est le placement d’une pompe de « dé-stratification » via laquelle on portera régulièrement l’ensemble des ballons à une température suffisante. Dans ce cas, un circulateur supplémentaire transfère l’eau à haute température du ballon d’appoint vers le(s) ballon(s) de stockage solaire. Une bonne régulation de cette mesure anti-légionellose, par une horloge, permettra de minimiser la consommation énergétique tout en évitant la contamination : par exemple, une montée en température journalière à 60° ou hebdomadaire à 80°.

Schéma de principe : désinfection thermique par pompe de déstratification.

Une autre solution, souvent à privilégier, est l’utilisation de cuves de transitions (appelés réservoirs à eau « morte ») constituant un circuit fermé indépendant de l’eau sanitaire. L’eau sanitaire est alors réchauffée instantanément via un échangeur interne ou externe au stockage. De cette manière, on évite tout risque de contamination en séparant physiquement les eaux de températures différentes. Ce système permet d’éviter les pertes thermiques liées à la montée soudaine en température, mais implique l’utilisation d’un échangeur supplémentaire.

Installation avec une cuve de transition.

Découvrez ces exemples d’eau chaude sanitaire alimentée par capteurs solaires : 2.150 m² de capteurs solaires thermiques à la résidence 3e âge « Aux Lilas » de Bonlez et des capteurs solaires au home La Charmille de Gembloux.

Concevoir le préchauffage par capteurs solaires

Concevoir le préchauffage par capteurs solaires

La non-simultanéité de la production et des besoins

Le problème essentiel du chauffage par capteurs thermiques est la non-simultanéité de la production solaire possible et la demande de chauffage du bâtiment. (À l’inverse, la climatisation solaire présente une adéquation relative entre les besoins et la disponibilité solaire. Mais le défi est de taille : faire du froid avec du chaud ! Cela se fait par l’intermédiaire d’une machine à ad/absorption).

Graphe ECS avec appoint chauffage.

Le graphe ci-dessus montre donc tout l’intérêt pour le chauffage de développer des technologies de stockage inter-saisonnier ! Si un jour les recherches aboutissaient en ce sens, il serait tout à fait possible de se chauffer gratuitement en hiver grâce à la récolte solaire estivale ! Mais avant cela, pensons d’abord à réduire nos besoins énergétiques !

À l’heure actuelle, le stockage d’énergie étant basé sur le réchauffement d’un ballon d’eau, on peu difficilement stocker l’énergie pour plusieurs semaines !
De plus, le système doit alors être dimensionné sur les besoins de mi-saisons voir plus tôt dans l’année. Les surfaces de capteurs nécessaires, considérables tout comme dans le cas d’installations solaires couvrant uniquement une grande partie des besoins d’ECS, seront donc superflues en été, diminuant le temps d’utilisation  des capteurs et leur production surfacique.

Cela rend, dans les conditions actuelles de prix, les installations collectives avec appoint chauffage difficilement viables économiquement par rapport aux systèmes plus traditionnels.

Néanmoins, certains cas seront plus favorables aux économies de chauffage possibles par le placement de capteurs solaires. La condition principale est une demande de chauffage bien  présente en mi-saison voire en été.

Cette condition est plus facilement rencontrée dans des bâtiments où la consigne reste importante en intersaisons (maisons de soins, maisons de repos,…) ou qui ne peuvent valoriser les gains solaires directs (via les fenêtres).

La première chose à faire sera donc d’identifier ses besoins de chauffage par rapport à la disponibilité solaire mensuelle.

D’un point de vue technique, les capteurs à tubes sous-vide de type heat pipe ainsi qu’un chauffage à basse température conviendront mieux à ce type d’applications.

Les cas de figure étant nombreux et tellement différents qu’une étude préalable au projet devrait confirmer la pertinence d’un tel système.

Mesurer et contrôler la production solaire thermique

Mesurer et contrôler la production solaire thermique

La comptabilité énergétique est essentielle au contrôle du bon fonctionnement de l’installation solaire et permettra rapidement d’identifier une dérive de l’installation due à un mauvais réglage ou une défaillance d’un composant. Elle nécessite cependant la pose d’un équipement spécifique et adéquat:

Les thermomètres à l’aller et au retour des capteurs

Très simples et peu coûteux, deux thermomètres placés sur l’aller et le retour entre les capteurs et le stockage permettent déjà de vérifier le fonctionnement correct de l’installation.

Un fonctionnement normal devrait montrer, lors du fonctionnement, des températures supérieures dans le circuit d’alimentation et des températures d’entrée et de sortie égales lorsque l’installation est à l’arrêt. Dans le cas contraire, un fonctionnement anormal souvent dû à un effet thermosiphon peut déjà être décelé.

Le débitmètre gravimétrique

Photo débitmètre gravimétrique.

Un débitmètre gravimétrique est un instrument de mesure du débit de fluide, souvent associé à une vanne de réglage du débit. Situé sous le circulateur, il permet de régler la vitesse de celui-ci pour assurer un débit minimum dans les capteurs. Il permet en plus un contrôle approximatif du débit de l’installation en fonctionnement.
À partir de ce débit et des températures, il est possible par calcul d’estimer très grossièrement la puissance instantanée du circuit.

Le débitmètre volumétrique

Pour la mesure de débit du circuit solaire on utilise généralement un compteur d’eau classique à impulsion bien plus précis. Celui-ci est muni d’un contact REED. À chaque tour, un aimant passant sur la couronne ferme le contact et l’impulsion est envoyée.

Photo débitmètre volumétrique.  Photo débitmètre volumétrique.

Certaines marques ont développé de petits modèles de débitmètre volumétrique…

Le compteur d’énergie

Schéma principe compteur d’énergie 

Un compteur intégrateur de chaleur appelé aussi calorimètre ou encore compteur d’énergie thermique est un dispositif comportant :

  • Un compteur volumétrique (placé généralement sur la conduite de retour (plus froide) vers les capteurs).
  • Deux sondes de température (au contact des conduites ou dans un doigt de gant). Leur placement est important pour une évaluation précise : idéalement à l’entrée et à la sortie de l’échangeur solaire.
  • Un calculateur à affichage numérique. Il propose généralement la comptabilité de l’énergie produite (en kWh), l’estimation de la puissance instantanée du système (en W), de la température aller/retour ainsi qu’un historique des données. Certains modèles proposent une gestion par réseau informatique Wifi, internet,..

Ce dispositif est le seul moyen précis pour calculer l’énergie réellement produite par l’installation. Idéalement, il devrait être réglable afin de prendre en compte les caractéristiques du fluide caloporteur utilisé.

Un calculateur est parfois intégré au système de régulation différentielle. Cependant, ce système reste très imprécis car il utilise les sondes de température propres aux besoins de la régulation (par exemple situées dans le ballon plutôt qu’à la sortie du fluide caloporteur).

N.B. : Les calculateurs spécifiques « chauffage » ne conviennent généralement pas pour les applications solaires, car, ils ne présentent pas la possibilité d’adapter la chaleur massique du fluide utilisé et ne supportent pas les hautes températures.

Établir le cahier des charges « qualité »

Établir le cahier des charges "qualité"

Le cahier des charges d’une installation solaire peut se concevoir selon deux approches différentes. Sur base des résultats de l’étude de faisabilité, le bureau d’études choisi par le maître de l’ouvrage peut soit :

  1. Définir un objectif de production de l’installation et des exigences de base auxquelles le système et certains composants doivent satisfaire. A charge pour le soumissionnaire de proposer un système qui produit annuellement le nombre de kWh solaires requis. Cette approche est utilisée dans l’optique d’une Garantie de Résultats Solaires.
  2. Dimensionner lui-même l’installation optimale et décrire en détail le système et tous ses composants. Le soumissionnaire fera une offre de prix pour la fourniture des composants spécifiés et les travaux d’installation.

Dans les deux cas, les exigences de qualité seront stipulées dans le cahier des charges afin de garantir la durabilité et le fonctionnement optimal de l’installation. Ci-dessous, quelques points qui doivent faire l’objet d’une attention particulière lors de la rédaction du cahier des charges :

  • Plus encore que dans les systèmes de production de chaleur traditionnels, un matériel de qualité, monté dans les règles de l’art est indispensable au bon fonctionnement de l’installation solaire thermique. Deux grands types de systèmes sont couramment utilisés sous nos latitudes : les systèmes à vidange et les systèmes sous pression. Le choix du type de système peut être laissé au soumissionnaire à condition de spécifier les exigences de qualité minimales pour chaque type de système.
  • Les capteurs constituent, avec la régulation, le cœur du système solaire thermique. Ils doivent satisfaire à de nombreuses exigences de durabilité, de rendement et de résistance à des conditions extrêmes de température et de pression. Tous ces critères sont explicités dans la récente norme européenne – EN 12975-1 : Installations solaires thermiques et leurs composants – Capteurs – partie 1 : Exigences générales – disponible auprès de l’Institut Belge de Normalisation (ouverture d'une nouvelle fenêtre ! http://www.nbn.be/). La conformité des capteurs avec cette norme constitue un gage de qualité appréciable.
  • L’énergie solaire est transférée au stockage par un échangeur de chaleur (interne ou externe au ballon). Le dimensionnement correct de cet échangeur est crucial. De fait, un mauvais dimensionnement risque d’influencer négativement tant la performance des capteurs que la consommation électrique de la pompe du circuit primaire.
  • Les pertes du stockage doivent absolument être limitées par une isolation parfaite du ballon et de la boucle de distribution d’eau chaude s’il y en a une. Le bouclage de l’eau distribuée augmente les pertes liées au stockage d’au moins 30 %. Une conception appropriée de l’installation permet de limiter ces pertes.
  • L’isolation ininterrompue des conduites du circuit primaire est capitale. L’isolation des conduites extérieures doit faire l’objet d’une attention particulière. Le matériau isolant doit résister aux intempéries et aux rayons ultraviolets, et dans bien des cas, une gaine rigide en aluminium sera nécessaire pour le protéger des attaques de rongeurs et d’oiseaux.

  • Dans les systèmes sous pression, le vase d’expansion du circuit primaire doit pouvoir contenir, outre le volume correspondant à la dilatation thermique du fluide caloporteur, l’entièreté du fluide contenu dans les capteurs au cas où celui-ci se vaporiserait suite à la montée en température des capteurs. Les soupapes de sécurité permettront à la vapeur de s’échapper en cas de problème.
  • Tous les matériaux mis en œuvre doivent résister simultanément à de hautes températures et pressions, en particulier les composants situés dans le réseau hydraulique des capteurs.
  • La garantie matérielle offerte sur un système solaire thermique est généralement de 10 ans sur les capteurs, 5 ans sur le(s) ballon(s) de stockage, et deux ans sur tous les autres composants du système.
  • Le suivi et la maintenance de l’installation solaire revêtent une importance particulière car, en cas de dysfonctionnement, le système de chauffage d’appoint pourrait fournir toute l’énergie nécessaire à la production d’eau chaude sans que l’on ne s’en aperçoive. Pour permettre un suivi élémentaire de l’installation, on placera un calorimètre sur la conduite primaire afin de mesurer l’énergie solaire transférée au ballon de stockage.

Plus de détails sur le cahier des charges d’une installation de capteurs solaires (fichier xls réalisé par le bureau 3E à l’initiative de l’IBGE)

Source : Brochure « Installer un grand système solaire de production d’eau chaude en Wallonie » réalisée par 3E ( ouverture d'une nouvelle fenêtre ! http://www.3e.be) et l’Institut de Conseils et d’Études en Développement Durable (ouverture d'une nouvelle fenêtre ! http://www.icedd.be).

Prévoir un contrat de Résultats Solaires (GRS)

Prévoir un contrat de Résultats Solaires (GRS)


La GRS est un contrat qui traduit la volonté du fabricant/fournisseur de ne pas se limiter à la simple fourniture de composants, mais de garantir également la production énergétique annuelle de l’installation solaire.

Par la GRS, le fabricant et/ou le fournisseur du système, l’installateur, l’exploitant et le bureau d’études en charge du projet deviennent solidairement responsables des objectifs de production fixés.

Éviter les bulles …

Les résultats d’audits menés sur d’anciennes installations solaires collectives ont permis de mettre en évidence certains problèmes de conception, de maintenance et de contrôle de l’installation. Ce constat a donné naissance au concept de Garantie de Résultats Solaires en France dès la fin des années 80.

La production de l’installation est suivie mois par mois à l’aide d’un dispositif de télésurveillance qui comptabilise l’énergie solaire. L’installation doit par exemple produire 90 % de l’objectif calculé, pendant deux à cinq années consécutives.

La GRS a été mise en œuvre pour la première fois en France, en 1988, sur l’Hôpital de Castres. Depuis lors des dizaines d’installations collectives avec GRS ont vu le jour en Espagne, en France et en Allemagne.

Détail important, jusqu’à présent, les systèmes qui en bénéficient ont toujours produit plus que ce que la GRS ne prévoyait !
Si le maître d’ouvrage souhaite obtenir une garantie de résultat solaire, le cahier des charges précisera :

  • Les besoins de l’établissement (le profil de puisage, la demande en chaleur,…).
  • Un objectif de production (combien de kWh solaire le système doit-il produire annuellement ?).
  • Toutes les contraintes susceptibles de limiter la production de l’installation.
  • Les exigences de qualité des matériaux utilisés.

> Pour en savoir plus sur la GRS : ouverture d'une nouvelle fenêtre ! http://www.tecsol.fr

Estimer la durée de vie et la maintenance

Estimer la durée de vie et la maintenance

Piscine solaire de Louvain La Neuve.

Actuellement, on peut aisément compter sur une durée de vie de 25 ans. L’audit de l’installation de la piscine du Blocry (capteur plans vitrés atmosphériques) à Louvain La Neuve a montré qu’après 20 ans l’installation présentait des performances de près de 90 % par rapport aux prestations initiales. Il va de soi que maintenir une bonne performance va de pair avec un entretien régulier et une maintenance correcte de l’installation.

Un guide très complet sur la maintenance à destination du responsable énergie a été réalisé par le bureau 3E à l’initiative de l’IBGE. 

Prédimensionner l’installation d’ECS

Prédimensionner l'installation d'ECS


C’est le rapport « volume de stockage / surface de capteur » qui détermine le fonctionnement optimal de l’ensemble du système et la fraction solaire atteinte, donc le bon dimensionnement de la proposition par rapport aux besoins couverts par le solaire (fraction solaire).

Différentes approches de dimensionnement sont possibles : sur base de la fraction solaire souhaitée ou à partir de l’optimum économique.

Le tout est de trouver le bon compromis entre une fraction solaire intéressante et une production au m² suffisante pour que l’installation solaire reste économiquement justifiée.
Pour les faibles fractions solaires assurant une plus grande production surfacique (meilleure efficacité et donc temps de retour plus court), on dimensionnera le système en situation estivale (besoins et apports solaires).
Pour atteindre une couverture solaire plus importante, l’installation sera dimensionnée par rapport à l’énergie solaire disponible en mi-saison.

> Plus d’infos sur l’influence de la fraction solaire sur le rendement de la production solaire.

Néanmoins, en fonctionnement, un système correctement dimensionné devrait produire entre 300 et 450 kWh/m².
Le tableau suivant présente des valeurs de dimensionnement couramment rencontrées en pratique (source ATIC) :

Fraction solaire % Type d’installation Surface de capteur Volume de stockage du tampon
20 à 40 % Grandes 1m² par 50 à 70 l/j d’ECS à 60 °C 50 l/m²
40 à 50 % Moyennes 1m² par 50 à 60 l/j d’ECS à 60 °C 50 à 60 l/m²
50 à 60 % Petites 1m² par 30 à 40 l/j d’ECS à 60 °C 60 l/m²

En règle générale, pour les très petites installations (type domestique), 4 m² de capteurs sont considérés comme un minimum pour rentabiliser une installation solaire alors que pour le logement collectif, 1 à 2,5 m² de panneaux solaires par logement suffisent.

Le Quick Scan, un outil d’aide à la décision simple et efficace

Le Quick Scan est un outil sectoriel de pré-dimensionnement des systèmes solaires collectifs, à utiliser au stade initial d’un projet.

Sur base de la consommation d’eau chaude (réelle ou estimée) de l’établissement, le Quick Scan fournit des indications sur :

  • la surface de capteurs à installer,
  • le volume de stockage solaire nécessaire, son poids et sa surface d’encombrement,
  • l’économie d’énergie primaire et de combustible réalisable,
  • le coût global du système et le coût du kWh solaire produit,
  • les émissions de CO2 évitées et le coût de la tonne de CO2 évitée.

Le Quick Scan donne des ordres de grandeur qui doivent être précisés par la suite, lors de l’étude de faisabilité et du dimensionnement final de l’installation. Il constitue un excellent indicateur de la pré-faisabilité d’un projet, mais pas un outil de dimensionnement fin pour les bureaux d’études ou les fournisseurs d’équipements solaires. En effet, le Quick Scan ne considère pas les contraintes techniques propres au bâtiment, et dimensionne l’installation selon une méthode simplifiée. Les étapes ultérieures de la démarche-projet visent à dimensionner l’installation au plus près de l’optimum économique.

Calculs

Pour accéder au Quick Scan.

Pour accéder au mode d’emploi du Quick Scan PDF.

Considérer l’aspect économique [ECS par capteurs solaires]

Considérer l'aspect économique [ECS par capteurs solaires]


Le coût d’une installation

Le graphe qui suit donne une estimation du coût d’une installation solaire par mètre carré de capteurs. Le coût varie forcément en fonction de la taille de l’installation (plus le système est grand, plus le prix par m² de capteur est réduit).

À titre d’information, on peut estimer les coûts (hors TVA) suivants :

  • pour 4 m² de capteurs  (ex. petites installations de type unifamilial), il faut compter environ 6 500 € pour tout le système (capteurs + stockage + raccordement de l’appoint), soit +/- 1 620 €/m² de capteurs,
  • pour 10 m² de capteurs (en logement collectif, cela correspond approximativement à 5 appartements), il faut compter environ 14 000 € pour tout le système, soit +/- 1 400 €/m² de capteurs,
  • pour 25 m² de capteurs  (en logement collectif, cela correspond approximativement à 15 appartements), il faut compter environ 30 000 € pour tout le système, soit +/- 1 200 €/m² de capteurs,

     Schéma coût unitaire du chauffe-eau solaire.

Bien entendu,  si l’installation solaire thermique s’inscrit dans la rénovation plus large du chauffage ou de la toiture, certains coûts fixes vont diminuer.

Afin d’éviter de mauvaises surprises, outre le coût des capteurs, d’autres paramètres doivent être pris en compte dans l’évaluation du prix de l’installation. Entre autres :

  • Le mode d’intégration architecturale choisi ;
  • La faisabilité technique de raccorder la boucle solaire à l’installation existante ;
  • L’accessibilité de la toiture ;
  • La structure de la toiture (évaluer le surcoût si on doit renforcer la toiture) ;
  • La taille de l’installation ;

Attention ! Si l’on compare simplement le prix d’achat d’un système solaire avec le prix d’un système conventionnel, le risque est grand d’arriver à la conclusion que le solaire n’est pas une option économiquement intéressante. Ce serait aller un peu vite en besogne :

  • Pour le solaire, la quasi-totalité des coûts porte sur les composants du système. Les frais de combustible sont par nature gratuits et les coûts d’exploitation faibles.
  • À l’inverse, pour une chaudière au mazout ou au gaz ou un boiler électrique, une fraction importante du coût est reportée sur le prix du combustible et/ou les frais d’exploitation.

L’approche qui semble la plus pertinente de la faisabilité économique passe donc par l’estimation du coût du kWh solaire produit (coût de l’investissement divisé par l’économie énergétique annuelle), que l’on pourra raisonnablement comparer avec le coût du kWh mazout, gaz ou électricité.


Les subsides

Pour soutenir la production d’énergie verte, les pouvoirs publics belges ont mis en place des mécanismes financiers qui réduisent le coût réellement payé par l’investisseur de capteurs  thermiques.

> Plus d’infos : ouverture d'une nouvelle fenêtre ! http://energie.wallonie.be

Plus d’infos sur le financement de la rénovation énergétique :  cliquez ici !


Quelle rentabilité ?

Si la conception et l’intégration d’une installation collective sont plus délicates que celles d’un chauffe-eau solaire individuel, la productivité de l’installation est généralement meilleure. En effet, le taux d’occupation des grands immeubles ou établissements est relativement constant tout au long de l’année et la consommation d’eau chaude y est globalement plus importante.

Les applications solaires les plus intéressantes économiquement se retrouvent parmi les établissements consommant de grandes quantités d’eau chaude : les piscines et les établissements d’accueil social (maisons de repos, centres d’accueil pour personnes handicapées, …), les internats, grands hôtels, centres de vacances, immeubles de plus de 15 logements, restaurants d’entreprise,… Plus la consommation d’eau chaude de l’établissement est élevée, plus l’installation solaire est grande, et meilleure est sa rentabilité. Et pour cause, le coût au m² d’une installation est inversement proportionnel à la surface installée; ce qui explique que de grandes installations puissent être rentables sans subsides.

Voici le prix de revient d’une installation solaire (couvrant 30 % des besoins énergétiques) en fonction de la consommation d’eau chaude sanitaire :

Installation solaire Coût du kWh solaire si :

Consommation moyenne
[l. eau à 60 °C /jour]

Taille
[m² capteurs]

Coût HTVA
[€]

Subside 0 %
[c€/kWh]
Subside 20 %
[c€/kWh]

Subside 40 %
[c€/kWh]

1 000 13 14 500 7.31 5.85 4.39
2 500 31 27 800 5.60 4.48 3.36
5 000 63 45 900 4.62 3.70 2.77
7 500 94 61 700 4.14 3.31 2.49
10 000 126 76 200 3.84 3.07 2.30
12 500 157 89 800 3.62 2.90 2.17
15 000 188 102 800 3.45 2.76 2.07
17 500 220 115 300 3.32 2.66 1.99
20 000 251 127 400 3.21 2.57 1.93
22 500 283 139 200 3.12 2.49 1.87
25 000 314 150 600 3.04 2.43 1.82

Par exemple, dans un établissement consommant 5 000 l d’eau chaude à 60 °C par jour (3e ligne du tableau), un chauffe-eau solaire produisant 30 % de l’énergie nécessaire pour couvrir les besoins en eau chaude sanitaire aura une surface de capteurs d’environ 63 m² et coûtera de l’ordre de 45 900 €. Si l’on rapporte ce coût à la quantité totale de combustible que l’installation solaire permet d’économiser, on obtient un coût de 4.62 c€ par kWh solaire (hors subside). Si l’investissement initial est subsidié (ou déductible fiscalement) à hauteur de 20 %, ce coût passe à 3.31 c€. Pour un taux de subside de 40 %, on a un coût de 2.77 c€ par kWh de combustible économisé.

Ces coûts sont donc compétitifs par rapport ceux des prix des combustibles à leur niveau actuel.

D’autre part, le prix des énergies fossiles sur le marché mondial dépend de nombreux facteurs que nous ne maîtrisons pas, alors que le coût du kWh solaire produit, lui, est stable et garanti pendant toute la durée de vie de l’installation. Il est bon de rappeler qu’entre 1998 et 2001, le prix du gaz naturel a augmenté de 41 %. Si le prix du combustible d’appoint double, l’économie financière réalisée grâce au système solaire double également ! C’est donc bien là que réside l’avantage économique majeur du chauffe-eau solaire: le prix du kWh produit est connu au départ et reste constant sur une période de 25 ans minimum.

Choisir le type d’installation [ECS par capteurs solaires]


Choix du type de capteurs

Le choix le plus courant pour la production d’eau chaude sanitaire est celui de capteurs plans vitrés.
Bien que moins performants que certains de leurs homologues « tubes sous vide », ils sont moins chers et présentent généralement une garantie plus longue (10 ans). Néanmoins, ils nécessitent parfois une superficie plus grande pour une même production et leur remplacement est moins évident (un tube peut être remplacé individuellement).D’autres facteurs peuvent aussi être déterminants :

  • La surface disponible.
  • L’orientation (les tubes sous vide à ailettes peuvent être orientés indépendamment de leur support).
  • Les différents types de pose, poids et le lestage associé (l’intégration est possible pour les capteurs plans).
  • Le coût, qui sera aussi déterminé par les paramètres précédents.
  • Etc.

> Plus d’infos sur les différents types de capteurs.

Deux capteurs peuvent aussi être comparés via leur courbe de rendement.

Calculs

Pour comparer différents capteurs sur base de leur courbe de rendement.

Sous pression ou à vidange ?

Si le choix d’un système indirect à boucle fermée est généralement évident sous nos latitudes, reste le choix entre les systèmes à vidange ou les systèmes sous pression non vidangeable.

Chacun présente des caractéristiques propres et les avantages qui y sont liés.

Système à vidange

Schéma de système à vidange

  • Pas de choc thermique ni surpression importants : Le système étant vidangé lorsqu’il entre en température de stagnation, l’ébullition du fluide caloporteur est évitée. Dans les systèmes traditionnels sans vidange, il n’est pas rare de voir des écarts de température allant de – 30 °C à plus de 160 °C.
  • Suppression  de certains composants (et du coût associé) : Le fluide n’étant pas sous pression, certains composants peuvent être supprimés : manomètre, vase d’expansion, purgeur, clapet anti-retour (vu que l’installation est vidangée, il n’y a pas de risque de circulation inverse par thermosiphon).
  • Possibilité d’utiliser de l’eau comme fluide caloporteur : Puisque le système se vidange en cas de gel, il est théoriquement possible d’utiliser de l’eau comme fluide caloporteur. Cependant, bien que la capacité calorifique de l’eau soit meilleure, il n’est pas rare de rencontrer des systèmes à vidange fonctionnant avec un mélange d’eau/glycol pour des raisons de sécurité (au gel) mais aussi parce que le glycol possède des propriétés anticorrosives.

Système sous pression non vidangeable

Schéma de système sous pression non vidangeable.

  • Le soin à apporter à la pente des tuyauteries est moins grand : En effet, pour les systèmes à vidange une pente minimale continue de l’ordre de 4 % doit être respectée afin d’assurer un écoulement correct du fluide puisque celui-ci s’effectue par simple gravité (drain back).
  • Utilisation de pompes de circulation moins puissantes et donc moins énergivores :  Un système sous pression utilise des circulateurs de puissance moindre. En plus d’assurer la circulation du fluide, la pompe d’un système à vidange doit en effet pouvoir relancer le fluide dans le circuit primaire, c’est à dire vaincre la hauteur manométrique entre le réceptacle de vidange et les capteurs. Une puissance importante est donc nécessaire alors que moins de 50 % de cette puissance est nécessaire lors du fonctionnement de l’installation. Une solution que proposent aujourd’hui certains constructeurs est l’installation de deux circulateurs dont l’un est adapté à la relance (et ne fonctionne que durant celle-ci) et dont l’autre est adapté au régime de fonctionnement.

Choix du système d’apport de chaleur complémentaire

Le choix du mode de préparation d’ECS principal doit se faire de manière traditionnelle. Celui-ci doit en effet assurer la production d’eau chaude en toutes circonstances, même en période de non ensoleillement prolongée.

 Schéma sur le mode de préparation ECS.

Dans une installation solaire, le système d’apport de chaleur complémentaire se situe en aval de l’échangeur solaire de manière à conserver la stratification interne des températures dans le ballon (les températures les plus hautes, les plus proches du point de puisage) mais aussi de manière à garantir une température de retour du fluide solaire la plus basse possible (afin de garantir un fonctionnement optimal des capteurs).

Dans tous les cas, le stockage de l’eau solaire oblige à une certaine centralisation de l’installation. Néanmoins, le choix d’un système de production principal décentralisé reste possible. Par exemple, l’eau préchauffée par les capteurs pourrait être acheminée vers les points de puisage où elle sera seulement amenée à la température souhaitée. Ce cas de figure permet de limiter considérablement les pertes de distribution et l’influence de l’appoint sur la température du fluide solaire.

En ce qui concerne le vecteur énergétique, il n’y en a pas de réellement privilégié en termes de fonctionnement solaire (abstraction faite des considérations environnementales liées). Par contre, la compatibilité et la régulation de l’appoint au système solaire sont à étudier précisément (d’autant plus si l’on souhaite intégrer celui-ci à un système existant).  Il serait en effet dommage que le système d’appoint empiète sur ce que le système solaire peut produire… et pourtant c’est souvent le cas. Combiner une température de consigne d’appoint trop élevée (pour la légionellose) et une mise en température des ballons solaires trop régulière peut réduire l’efficacité solaire de 30 %!


Dans tous les cas, limiter les pertes !

Une installation mal ou non isolée peut perdre jusqu’à 40 % de sa production à cause des pertes thermiques le long des conduites et au niveau du stockage.

En premier lieu, on veillera donc à limiter la longueur des tuyauteries et à positionner judicieusement le stockage par rapport aux capteurs (et aux points de puisage).

Une isolation d’épaisseur au moins égale au diamètre des tuyauteries est indispensable d’autant plus que les températures du fluide de la boucle solaire peuvent être les plus hautes de l’installation sanitaire. Pour se donner une idée des pertes : un mètre de tuyau en acier, de 1 pouce de diamètre, non isolé, dans lequel circule de l’eau chaude à 70°C et qui parcourt une ambiance à 20°C a une perte équivalente à la consommation d’une ampoule de 60 W…

Calculs

Pour estimer la rentabilité de l’isolation de la tuyauterie, cliquez ici !

Au niveau du ballon de stockage: favoriser la stratification des températures et sa parfaite isolation (attention aux raccords) favoriseront la productivité du système. 10 à 15 cm d’isolation ne seront pas superflus !

Calculs 

Pour estimer la rentabilité de l’isolation du ballon, cliquez ici !

Exploiter la configuration du bâtiment [ECS par capteurs solaires]

Exploiter la configuration du bâtiment [ECS par capteurs solaires]


Une orientation et une inclinaison optimales ?

Les capteurs seront idéalement orientés sud avec une inclinaison entre 30 et 55° par rapport à l’horizontale. La hauteur du soleil variant au fil des jours et des saisons, l’inclinaison idéale dépendra du cas de figure envisagé :

  • 35° est l’inclinaison qui permet de maximiser les gains solaires annuels. Elle est idéale pour les faibles fractions solaires : couverture solaire de 30 % des besoins d’eau chaude par exemple).
  • Pour une fraction solaire plus importante (ou une production pour le chauffage du bâtiment), il est judicieux d’orienter les panneaux plus verticalement (de 45 à 55°) afin de maximiser les gains solaires à la mi-saison.
  • 30° est l’inclinaison idéale pour les installations ne fonctionnant qu’en période estivale (pour une piscine extérieure par exemple).

Schéma orientation et une inclinaison des capteurs.

Bien entendu, on pourra aussi suivre l’inclinaison et l’orientation, induite par la configuration des lieux (par exemple la pente d’une toiture inclinée du moment que l’on reste entre le sud et l’est /ouest). On ajustera alors les surfaces de capteurs en conséquence.

> Plus d’infos sur l’énergie solaire et l’ensoleillement

Outre l’aspect énergétique, l’inclinaison des capteurs influence aussi :

  • leur prise au vent (plus les panneaux sont verticaux, plus le lestage pour les maintenir en place doit être important) ;
  • l’auto-nettoyage de leur superficie externe (vitre) par la pluie (20° d’inclinaison minimum sont requis).

Un ombrage limité

L’ombre est évidemment le pire ennemi des technologies solaires. Bien que moins problématique que pour leurs homologues photovoltaïques, on en limitera l’impact en positionnant les capteurs en dehors des zones d’ombres générées par :

  • l’environnement du bâtiment (immeubles voisins plus hauts que les capteurs solaires…) ;
  • le bâtiment lui-même (cabanon technique, antennes, cheminées…) ;
  • les capteurs entre eux.

Pour ce dernier type d’ombrage, on compte généralement qu’il faut 3 m² de toiture pour un m² de capteur.

Dimensionnement de l’entraxe entre deux capteurs

Schéma dimensionnement de l’entraxe entre deux capteurs.

L’entre-axe entre deux rangées de capteurs est défini par la formule suivante :

Entre axe = d + b = h (cos β+ sin β/ tg α)

où,

  • h =dimension du capteur.
  • α = hauteur solaire minimum (généralement prise le 21 décembre soit un angle de 16°).
  • β = inclinaison des capteurs.

En considérant des capteurs de 1,2 m de large, l’entre-axe des rangées de capteurs est de: 1,2 x (cos 35° + sin 35°/tg16°) = 3,38 m.

Il faudra aussi porter une attention particulière à l’encrassement des capteurs et des réflecteurs pour les tubes sous vide qui en sont munis (type CPC).


En toiture, au sol ou en façade?

Que ce soit en toiture plate ou inclinée, on veillera à ce que la toiture :

  • résiste à la surcharge des capteurs et de leur lestage (un panneau pèse environ 25 kg/m²) ;
  • soit en suffisamment bon état pour ne pas être remplacée trop rapidement (les capteurs ont une durée de vie moyenne de 25 ans).

Placement en toiture inclinée

Si l’orientation est favorable, le placement en toiture inclinée est souvent idéal :

  • placement en hauteur qui permet de limiter l’effet d’ombre de l’environnement ;
  • inclinaison déjà présente qui permet de se passer du système de support ;
  • intégration constructive esthétique ;
  • pertes thermiques à l’arrière du panneau limitées (dans le cas de capteurs intégrés dans la toiture).

Capteurs intégrés.

 Capteurs en « surimposition ».

Placement en toiture plate

Dans ce cas, les capteurs sont placés sur des supports métalliques, ce qui permet d’optimiser leur inclinaison et leur orientation.

L’ombrage généré par les panneaux entre eux déterminera l’espacement nécessaire entre deux rangées de capteurs.

La résistance de la toiture doit être particulièrement étudiée, car le lestage nécessaire à la stabilité des capteurs augmente considérablement la surcharge (80 à 100 kg par m² de capteur). De plus, lorsque les couches superficielles de la toiture ne présentent pas une résistance suffisante, il faudra parfois ancrer le support directement sur la structure de la toiture (chevrons,…). Des distances de sécurité par rapport au bord de la toiture sont aussi imposées.

Schéma placement en toiture plate des capteurs.

Placement au sol

Lorsque la toiture présente une inclinaison trop importante, une mauvaise orientation ou encore une surface trop réduite, on pourra opter pour une installation au sol.

Dans ce cas, on veillera à :

  • Minimiser la distance entre les capteurs et le stockage afin de réduire au maximum les pertes thermiques par les tuyauteries.
  • Placer les capteurs dans un endroit protégé pour éviter tout risque de vandalisme (attention à l’ombrage !)

Contrairement aux capteurs placés dans le plan de la toiture et ne présentant aucun débordement, le placement de capteurs au sol doit faire l’objet d’un permis d’urbanisme.

Façade

La pose des capteurs sur façade est aussi possible (l’intégration comme bardage l’est aussi) mais présente souvent des désavantages :

  • Ombrage généré par le bâtiment ;
  • Exposition réduite (30% de moins par rapport à l’optimum (sud à 35°)) ;
  • Orientation et inclinaison peu favorables (l’effet peut être limité si on utilise un support ou des tubes sous vide réorientés) ;
  • Surfaces souvent limitées ; etc.

Schéma placement en façade des capteurs.

Réglementations 

Plus d’infos sur la réglementation urbanistique relative au placement des panneaux solaires.

Une zone réservée au stockage

Le stockage est un élément clé dans la conception de tout projet solaire thermique. L’espace associé est parfois considérable et doit être pris en compte dès le départ de l’étude du projet.

Photo stockage.

L’espace prévu doit pouvoir accueillir le ballon (ainsi que son enveloppe isolante) en termes de : volume, surface au sol, hauteur sous plafond. Les accès devront aussi permettre l’amenée du ballon. Bien que cette réflexion paraisse évidente, c’est un problème très fréquent en pratique !

Identifier ses besoins en ECS

Identifier ses besoins en ECS

La décision d’installer un chauffe-eau solaire part toujours de l’identification des besoins, en particulier la consommation d’eau chaude de l’établissement.

Avant toute chose, il faut donc se poser la question de l’usage que l’on a de l’eau chaude sanitaire :

A-t-on réellement besoin d’ECS ? Quand en a-t-on besoin? Quel est le profil de ces besoins ? En a-t-on usage pendant les périodes les plus ensoleillées de l’année ?

A-t-on réalisé les mesures URE permettant de réduire les besoins énergétiques ? Ces mesures simples et efficaces (comme par exemple le placement de réducteurs de pression) restent les plus rentables!

Disponibilité de l’énergie solaire et besoins d’eau chaude sanitaire

 

Si les besoins en ECS sont constants au fil de l’année, l’installation sera généralement dimensionnée par rapport aux apports solaires estivaux. Ce cas de figure permet de garantir un taux d’utilisation et une production énergétique surfacique (kWh/m²) élevée. 

On comprendra vite qu’une installation solaire est bien plus efficace pour un bâtiment ayant des consommations importantes et plus ou moins constantes au fil des jours et des saisons qu’un vestiaire d’un club sportif ne fonctionnant que 2 jours par semaine de septembre à mai !

Ainsi, certains usages sont particulièrement adéquats : les maisons de repos et de soin, les hôpitaux, les piscines, les logements individuels et collectifs, …

Pour établir son profil de puisage, si la consommation d’eau chaude ne fait pas l’objet d’un suivi régulier par l’organisme chargé de la maintenance du bâtiment, on se basera sur des profils type par secteurs ou, mieux, on effectuera une campagne de mesures. Dans tous les cas, le placement d’un simple compteur d’eau chaude est recommandé et sera très utile pour le dimensionnement correct de l’installation solaire !

Calculs

Estimer ses besoins en eau chaude sanitaire.

N.B. Outre son influence sur l’efficacité de l’installation solaire, le profil de puisage conditionne complètement la conception du mode de préparation : volume de stockage (accumulation), système d’appoint par production centralisée ou décentralisée,…

Connaître les étapes du projet [ECS par capteurs solaires]

Connaître les étapes du projet [ECS par capteurs solaires]

Se poser les bonnes questions !

En tant que concepteur, voici les principales questions à se poser :

Quel est le besoin d’eau chaude sanitaire ?
Comment s’intégrerait l’installation dans la configuration du bâtiment ?
Quelles sont les surfaces qui pourraient être valorisées par la pose de capteurs solaires ?
Ces surfaces sont-elles capables d’accueillir des capteurs solaires thermiques en termes de :
> Superficie disponible
> Orientation (dans le cas d’une toiture inclinée)
> Inclinaison (dans le cas d’une toiture inclinée)
> Portance suffisante: la toiture peut-elle accueillir le surpoids induit par les capteurs ? En général, les toitures en structure béton supportent la surcharge, ce qui n’est pas toujours le cas des structures bois : à vérifier donc !
> Ombrage
> État : il serait dommage de devoir remplacer le support dans les quelques années qui suivent l’installation afin d’éviter des montages-démontages coûteux et parfois risqués pour les capteurs.
L’espace disponible pour les ballons de stockage est-il suffisant ?
> Place disponible : le volume nécessaire au stockage est souvent important. Il faut donc s’assurer au préalable des dimensions nécessaires !
> Les dimensions des accès : si j’ai la place nécessaire, il faut impérativement vérifier qu’il est possible d’y amener les ballons de la dimension prévue !
Quel type d’installation choisir ?
Quel prédimensionnement pour la fraction énergétique souhaitée couverte par le solaire thermique (fraction solaire) ? Ce dimensionnement est-il compatible avec mon cas de figure ?
Le projet est-il viable économiquement ?  Quels sont les coûts et subsides ?
Quelle est la durée de vie estimée d’une telle installation ? Quelle maintenance est nécessaire ?
Comment s’assurer de la qualité de réalisation du projet ? Contrat de garantie de résultats solaires et cahier des charges « qualité » sont là pour aider le concepteur!

Les étapes de la réalisation d’un projet solaire thermique ont été balisées par le programme « Soltherm » de la Région Wallonne :

  • un logiciel de préfaisabilité (Quick Scan XLS) a été mis au point et remis à jour par l’IBGE. Il est accompagné de son mode d’emploi PDF;
  • un audit solaire PDF peut être réalisé;
  • un cahier des charges XLS d’une installation solaire de qualité a été rédigé;
  • une Garantie de Résultats Solaires (GRS) peut être exigée;
  • des subsides nombreux sont disponibles.
  • un guide de la maintenance PDF pour responsable énergie est aussi disponible (réalisé par 3E et l’Apere pour l’IBGE).
Demander un audit solaire à une société spécialisée ?

L’audit solaire fait l’inventaire des caractéristiques techniques de l’établissement et détermine les dimensions du système solaire correspondant à l’optimum économique. Il détermine comment les composants du chauffe-eau solaire s’intègrent dans l’installation existante de manière à assurer le fonctionnement optimal de l’ensemble du système. Le résultat de l’audit solaire est consigné dans un rapport qui donne au maître d’ouvrage les critères énergétiques, économiques et environnementaux nécessaires à la prise de décision.

> Plus d’infos sur l’audit solaire PDF (document réalisé par 3E pour le compte de l’IBGE).

Études de cas

Parcourir l’audit solaire établi pour :

– le home La Charmille à Gembloux !

– la piscine d’Herstal !

– la piscine de l’Hélios à Charleroi !