AEROPOLIS II – des façades-rideaux performantes

photo, AEROPOLIS II

Introduction

Cet immeuble situé dans la commune de Schaerbeek (Région Bruxelles–Capitale) a été réalisé entre 2008 et 2010 par différentes ASBL de la Région désireuses de rassembler leurs bureaux dans un même bâtiment. Ses performances énergétiques poussées en ont fait à l’époque le plus grand projet de bureaux en Belgique conçu selon le standard passif. Il a été récompensé en 2007 par le label bâtiment exemplaire de Bruxelles Environnement pour ses qualités en matière d’environnement et d’économie d’énergie.

– Architecte : Architectesassoc./Sabine LERIBAUX & Marc LACOUR.
– Chef de projet : Elodie Léonard.

logo Bâtiment exemplaire


Le bâtiment

Le bâtiment a une forme simple et compacte adaptée aux dimensions du terrain. Il possède un patio en son centre apporte de la luminosité pour tous les espaces de bureaux.

Plan AEROPOLIS II

Implantation sur le terrain (source Architecte).

Il est affecté principalement à la fonction de bureaux. 7 300 m² sont répartis sur 6 étages hors sol. Il possède également deux étages en sous-sol utilisés comme garages et réserves d’archives et abritant tous les locaux techniques.

Photo AEROPOLIS II

Un bâtiment compact (source Google Maps).

La superstructure du bâtiment est en béton armé préfabriqué (colonnes, poutre, dalles). Quelques voiles en béton assurent la triangulation verticale. Les espaces intérieurs sont ainsi très dégagés et permettent de nombres possibilités d’aménagements.

Photo chantier AEROPOLIS II

La structure en béton (source BE).

Les façades rideaux sont constituées de cadres en bois massif (essence douglas, bois indigène provenant de l’Ardenne belge) préfabriqués accrochés à la structure en béton. Ces cadres sont autoporteurs. Ils ont la hauteur d’un étage et correspondent en largeur à la trame de façade (90 cm).

Photo façade rideau AEROPOLIS II

La façade rideau (source BE).


La façade rideau

La modulation

La trame intérieure du bâtiment est basée sur des axes distants de 2.70 m (= largeur minimale d’un bureau). Des axes intermédiaires divisent cet entraxe en trois parties égales de 0.90m.

Les éléments de façade ont des dimensions adaptées à cette trame. Ils ont une largeur de 0.90 m.
Trois modules de base différents ont été conçus.

  • Largeur complètement vitrée (fenêtre fixe);
  • largeur vitrée sur 2/3 de la largeur totale (fenêtre fixe + projetant extérieur en partie haute);
  • largeur complètement opaque.

Les modules partiellement vitrés et les modules opaques sont visuellement divisés en modules de 30 et 60 cm. Ils peuvent être gauches ou droits.

modules partiellement vitrés, AEROPOLIS II

Les trois différents modules (source Belgo Métal / Kyotec Group).

Les modules sont alternés de manière à éviter tout systématisme visuel à la façade tout en permettant à l’intérieur un cloisonnement souple et efficace des bureaux. Les façades des zones bureaux sont constituées de l’alignement de chacun des trois éléments. Sur 2.70 m on retrouve donc systématiquement un élément plein, un élément vitré et un élément semi-vitré permettant la ventilation.

Plan façade, AEROPOLIS II

La répétition n’est pas visible.

Les modules

Composition des modules préfabriqués, parties opaques :

  1. structure porteuse en bois massif (essence douglas);
  2. panneau multiplex perforé;
  3. isolant phonique (20 mm, laine de roche);
  4. membrane étanche à l’air;
  5. isolant (150 mm, Resol3);
  6. panneau de contreplaqué marin (ou bakellisé);
  7. panneau isolant (50 mm, Résol);
  8. tôle;
  9. couche de verre translucide blanc;
  10. exutoires de ventilation horizontaux et verticaux;
  11. étanchéité à l’air (bandes préformées en EPDM);
  12. parclose en aluminium anodisé.

schéma - Composition des modules préfabriqués, AEROPOLIS II

Module opaque.

  1. protection solaire extérieure automatique (persienne);
  2. moustiquaire.

 schéma - Composition des modules préfabriqués, AEROPOLIS II

Module semi-vitré.

schéma - Composition des modules préfabriqués, AEROPOLIS II

Module vitré.

Les éléments sont livrés sur chantier complets sauf le panneau de finition intérieure fragile en multiplex perforé avec son isolation. Il est posé lorsque l’élément est déjà mis en place. De cette manière, cette finition reste intacte malgré les aléas liés à la manipulation des éléments.

Photo éléments, AEROPOLIS II

Le panneau intérieur placé en fin de chantier.

Les fixations

Les éléments sont autoportants. Ils sont suspendus en partie haute et reposent en partie basse sur une lisse de départ ou sur les éléments de l’étage inférieur.

Photo fixations, AEROPOLIS II  Photo fixations, AEROPOLIS II

Les platines de fixation (source BE).

Les plaques de fixation sont boulonnées au béton. Des œillets dans la plaque permettent un réglage horizontal de la plaque dans les deux directions. Un étrier est suspendu à la plaque. Il peut être réglé verticalement à l’aide d’écrous. Sur l’étrier reposent des cornières fixées en usine aux cadres des éléments de la façade. Les étriers coulissent verticalement dans des évidements en forme de « L » réalisés dans la plaque de support.

Schéma plaques de fixations, AEROPOLIS II

Schéma de principe des fixations réglables.

Photo plaques de fixations, AEROPOLIS II

La pose des premiers cadres (source BE).

L’étanchéité à l’air

L’étanchéité à l’air entre modules est assurée par des bandes préformées en EPDM insérées dans des rainures verticales et horizontales creusées dans les montants et traverses des cadres en bois.

Les bandes horizontales sont munies d’une bavette en pente vers l’extérieur.

L’étanchéité à l’air des éléments de façade complets et totalement parachevés a été contrôlée en laboratoire sur un banc d’essai. L’étanchéité à l’air du bâtiment a ensuite été vérifiée sur chantier.

Photo étanchéité, AEROPOLIS II

Bandes d’étanchéité verticales en place.

  1. Rainure pour bande d’étanchéité verticale;
  2. bande d’étanchéité horizontale avec bavette.

Photo étanchéité, AEROPOLIS II

Étanchéité entre les cadres de la façade rideau (source BE).


Les performances thermiques

Le projet répond à l’exigence du standard passif.
Les parties opaques de la façade-rideau ont une valeur U moyenne d’environ 0.17 W/m²K tandis que les parties vitrées ont une valeur U moyenne d’environ 0.82 W/m²K. Le U moyen est de 0.29 W/m²K.

La compacité élevée du bâtiment (3.76) permet à celui-ci d’obtenir un niveau d’isolation thermique global K égal à 15.

Schéma niveau isolation, AEROPOLIS II

Calcul de la déperdition thermique des encadrements (source Kyotec Group).


Une bonne étanchéité à l’air

Le blower-door test effectué sur le bâtiment a montré que le renouvellement d’air à 50 Pa (n50) était inférieur à 0.46/h. Cette valeur est meilleure que celle exigée pour les bâtiments passifs : n50 < 0.60/h.
Ce résultat a été obtenu grâce à la conception des éléments et à la qualité de leur fabrication en atelier.
Les tests d’étanchéité exigés pour les façades-rideaux de type « cadre » permettent d’atteindre une bonne étanchéité à l’air (niveau requis suivant les normes européennes).

Les bandes d’étanchéité en EPDM entre les cadres ont été correctement placées sur chantier.

Photo blower-door test, AEROPOLIS II

Test d’étanchéité après installation (source BE).


La maîtrise des risques de surchauffe

Les bâtiments de bureaux, de par la présence des équipements électriques (éclairage et électronique), sont sujets à un important risque de surchauffe en été. Dans le cas présent, différents systèmes ont été mis en œuvre pour maîtriser ce risque sans avoir recours  à une climatisation active.

Schéma maîtrise de la surchauffe, AEROPOLIS II

Gestion de la surchauffe (sources Architecte et Cenergie).

  1. Régulation fine de l’éclairage basée sur les besoins
    Les appareils d’éclairage sont couplés à des sondes de régulation pour compensation des manques de lumière jour et à des détecteurs de présence.
  2. Luminaires à haut rendement
    Consommation inférieure à 2 W/m² pour 100 lux.
  3. Masse accessible
    Il n’y a pas de faux plafond et les faux planchers servent de plénum pour l’air neuf. La masse des planchers en béton est ainsi accessible et permet un déphasage dans les variations thermiques. Cette masse est refroidie la nuit par la ventilation de nuit (free cooling).
  4. Surface limitée des vitrages (concerne les façades-rideaux)
    Il n’y a pas de grandes surfaces vitrées. Un juste compromis a été trouvé entre l’avantage d’un éclairage naturel et une limitation des apports solaires dans un bâtiment de bureau où le risque de surchauffe lié aux apports internes est grand.
  5. Protections solaires automatiques extérieures réglables (concerne les façades-rideaux)
    Les fenêtres sont équipées de stores à lamelles inclinables commandées automatiquement par un système de régulation connecté à diverses sondes (vent, ensoleillement, températures intérieures et extérieures).
    Lorsque la fenêtre s’ouvre (vers l’extérieur) le store a été avancé par rapport au plan de la façade de manière permettre la manœuvre de celle-ci sans risque d’accrochage.

Photo façade, AEROPOLIS II

Les protections solaires automatiques.

  • Les lamelles sont horizontales en position standard. Lorsque nécessaires, elles sont inclinées en fonction de la position du soleil. Les lamelles sont manœuvrées lorsque la température intérieure dans la zone concernée dépasse la température conventionnelle de confort (23.5 °C) et que le rayonnement solaire en fonction de l’orientation dépasse la valeur conventionnelle de 100 W/m². Lorsqu’il y a risque de gel.
    La position est ajustée toutes les 15 minutes.
  1. Free cooling automatique de nuit (concerne les façades-rideaux)
    La ventilation nocturne s’effectue par aspiration de l’air frais le soir à l’intérieur des bureaux, via les ouvrants des fenêtres (projetant extérieur) manœuvrés automatiquement. L’air est extrait en toiture.
    A l’endroit des fenêtres ouvrant vers l’extérieur le store a été écarté pour permettre la manœuvre de la partie mobile. Le système présente des risques d’effraction faibles.

Photo free-cooling, AEROPOLIS II

Le haut du châssis en position ouverte pour la ventilation.

  1. Puits canadien
    En été, pendant la journée, l’air neuf parcourt 45 mètres sous terre dans un puits canadien avant de pénétrer dans le bâtiment. Il est ainsi rafraîchi par le sol dont l’inertie thermique maintient la température nettement en dessous de la température de l’air extérieur. Le puits canadien est réalisé à l’aide de 4 tubes en béton de grand diamètre (+/- 70 cm) suffisamment distants les uns des autres pour solliciter la fraîcheur d’un maximum de sol.

Schéma puits canadien, AEROPOLIS II

Photo puits canadien, AEROPOLIS II       Photo puits canadien, AEROPOLIS II

Le puits canadien (sources Architecte et BE).

L’efficacité des mesures passives adoptées

Des mesures ont été effectuées en plein été 2010. Elles montrent l’impact des systèmes adoptés sur la température. Le graphique ci-dessous indique la température mesurée à l’intérieur du 4ème étage entre le 21 et le 28 juillet 2010.

Le bâtiment est refroidi chaque matin grâce à la ventilation intensive de nuit. Ce refroidissement a été moins efficace la nuit du 21 au 22 juillet car la température extérieure est descendue moins bas. La journée la température est stabilisée grâce aux protections solaires, à l’inertie thermique du bâtiment, à la ventilation diurne faisant usage des puits canadiens.

Schéma sur l' efficacité des mesures passives, AEROPOLIS II

Température intérieure au 4ème étage en été (source Architecte et Cenergie).

  1. refroidissement nocturne;
  2. température haute la nuit;
  3. stabilisation de la température en journée.

Le tableau ci-dessous indique que si l’on interrompt la ventilation de nuit, la température est stable, mais élevée, ce qui démontre l’efficacité la stratégie de décharge nocturne.

Schéma sur l' efficacité des mesures passives, AEROPOLIS II

Courbes des températures lorsqu’il n’y a pas de ventilation intensive de nuit.

(source Architecte et Cenergie).

  1. ventilation de nuit active;
  2. ventilation de nuit inactive.

Informations complémentaires

Cette étude de cas a été développée grâce aux informations  fournies par le bureau d’architecture ayant conçu le bâtiment.

Architectesassoc. M. Lacour – S. Leribaux

Notre interlocuteur fut Madame Élodie Léonard, chef de projet.
Téléphone : 02/410 76 77 – Email : info@architectesassoc.be – Site : www.architectesassoc.be

Optimiser le dégivrage des meubles frigorifiques

Optimiser le dégivrage des meubles frigorifiques


Les meubles frigorifiques fermés, mixtes ou ouverts négatifs

  

Meuble mixte négatif, meuble fermé négatif et meuble ouvert négatif à ventilation forcée.

Le dégivrage « forcé » par les moyens courants tels que les résistances chauffantes ou par injection de gaz chaud côté circuit frigorifique est un mal nécessaire pour les meubles frigorifiques fermés, mixtes ou ouverts négatifs. En général, ce sont les mêmes techniques de dégivrage que les chambres frigorifiques qui leur sont appliquées.

À l’heure actuelle, sur la plupart des meubles de ce type, les équipements de dégivrage sont prévus en standard sous forme de résistances électriques.

La technique, par injection de gaz chaud à l’évaporateur nécessite une installation plus complexe et, par conséquent plus coûteuse.

Paramètres de régulation du dégivrage « forcé »

Un fabricant de meubles frigorifiques renseigne les paramètres de réglage des meubles frigorifiques négatifs. On peut y retrouver des valeurs de réglage standards en fonction de la classe d’ambiance déterminée par ouverture d'une nouvelle fenêtre ! EUROVENT, à savoir généralement pour une classe d’ambiance 3 (25°C, 60 % HR) :

Paramètre Définition Optimum énergétique
T0 température d’évaporation [°C] la plus faible possible
N/24h le nombre de dégivrage par 24 heures [N/24 heures] le plus faible possible
Tter la température en fin de dégivrage [°C] la plus basse possible
td la durée de dégivrage [min] la plus faible possible
tegout le temps d’égouttage [min] le plus faible possible
tvent le temps de retard pour redémarrer les ventilateurs [min]

Il est bien entendu que tous ces paramètres doivent trouver leur optimum énergétique suivant le type d’application, d’ambiance des zones de vente avoisinantes, …, tout en conservant la qualité du froid alimentaire.

Pour différents modèles de meubles frigorifiques et pour une température d’évaporation T0 [°C],ces paramètres sont consignés dans le tableau ci-dessous.

Type de meuble négatif Référence Type de dégivrage T0[°C] N/24 [N/24 heures] Tter[°C] td[min] tegout[min] tvent[min]
Meuble mixte vertical 3L1 RVF3 électrique -35 1 5 40 10 5
Meuble vertical vitré 3L1 RVF4 électrique -35 1 15 30 10 5
gaz chaud 1 10 10 5 5
Meuble vertical vitré 3M1 RVF4 électrique -10 1 10 10 5 0
Meuble horizontal 3L1 IHF4 électrique et gaz chaud -35 2 5 45
Meuble horizontal 3L3 électrique -10 2 10 45
Source : Costan (Sabcobel)

Il est donc nécessaire de s’assurer que ces consignes soient respectées.

Pré-programmation des dégivrages

Lorsque le magasin est composé d’un nombre impressionnant de meubles linéaires (cas des super et hypermarchés), la programmation des temps de dégivrage doit être décalée dans le temps sachant que l’appel de puissance électrique des compresseurs, pour redescendre les températures des meubles à leur valeur nominale, peut être important. La possibilité de mettre en réseau les régulateurs individuels de chaque meuble avec un superviseur (GTC : Gestion Technique Centralisée), facilite la tâche des gestionnaires techniques des magasins.

La programmation d’un décalage des démarrages des dégivrages dans le temps permet de maîtriser les pointes de courant responsables des pointes quart-horaire excessives alourdissant la facture électrique.


Les meubles frigorifiques positifs

Meuble convection naturel positif (vitrine) et meuble ouvert vertical positif avec rideau d’air en convection forcée.

Pour les applications en froid positif, le « dégivrage naturel » suffit dans la plupart des cas.

À noter qu’en option il est toujours possible de placer des résistances de dégivrage, mais ce serait prêcher contre sa chapelle puisqu’il est possible de s’en passer. Il faut compter de l’ordre de 60 à 70 W/ml pour des résistances électriques simples.

Paramètres de régulation du dégivrage « naturel »

Le principal paramètre de ce type de dégivrage est la durée de dégivrage td [min]. Les fabricants par défaut programment des temps de dégivrage maximum de l’ordre de 40 à 45 minutes. Il est nécessaire de choisir une régulation qui permette de réduire les temps de dégivrage en fonction de la classe d’ambiance. Dans la réalité, c’est au cas par cas et suivant le climat interne que va dépendre le temps de dégivrage.

Dans l’absolu, le dégivrage « naturel » est intéressant puisque pendant cette phase :

  • la production de froid est interrompue;
  • il n’y a pas de consommation électrique de dégivrage proprement dite.

Pré-programmation des dégivrages

Le même type de programmation décalée que pour les meubles de froid négatif en centralisant toutes les demandes de dégivrage au niveau d’une gestion technique centralisée (GTC) est aussi possible pour les meubles frigorifiques positifs.

Source : Delhaize Mutsaart.

Ici, on visera l’interruption de ou d’une partie de la production de froid couplée avec :

  • l’arrêt des circulateurs sur une boucle caloporteur. On privilégiera l’arrêt des circulateurs individuels des meubles frigorifiques plutôt que l’arrêt du ou des circulateurs centraux (on parlera alors de pompe de circulation) afin d’espacer dans le temps les dégivrages individuels et, par conséquent, les pointes d’appel de puissance électrique à la fin d’un dégivrage programmé central.

Boucle monotube : arrêt individuel des circulateurs de meuble.

  • la fermeture de l’alimentation d’une vanne en amont du détendeur.

Boucle caloporteur : fermeture individuelle des vannes d’alimentation des évaporateurs de meubles.

Détente directe : réglage individuel des détendeurs des meubles frigorifiques.

La programmation d’un décalage des démarrages des dégivrages dans le temps permet de maîtriser les pointes de courant responsable des pointes quart-horaire excessives alourdissant la facture électrique.

Exemple.

Le cas d’un hypermarché où la facture d’électricité risque d’être salée de par le non-décalage des débuts de dégivrage sur 150 m de meubles linéaires positifs.

Période d’enregistrement sur 24  heures.

En analysant de plus près, on se rend compte que l’appel de puissance de la journée 430 KW a été enregistré comme pointe quart-horaire à 07h30; ce qui signifie que la facture électrique intégrera cette valeur comme pointe quart-horaire mensuelle. On aurait pu éviter cette pointe en décalant les périodes de dégivrage dans le temps.

Choisir le système de dégivrage de la machine frigorifique d’un meuble frigorifique

Les meubles frigorifiques fermés, mixtes ou ouverts négatifs

Meuble mixte négatif

Meuble fermé négatif

Meuble ouvert négatif à ventilation forcée

Le dégivrage « forcé » par les moyens courants tel que les résistances chauffantes ou par injection de gaz chaud côté circuit frigorifique est un mal nécessaire pour les meubles frigorifiques fermés, mixtes ou ouverts négatifs. En général, ce sont les mêmes techniques de dégivrage que les chambres frigorifiques qui leur sont appliquées.

À l’heure actuelle, sur la plupart des meubles de ce type, les équipements de dégivrage sont prévus en standard sous forme de résistances électriques.

La technique, par injection de gaz chaud à l’évaporateur nécessite une installation plus complexe et, par conséquent plus coûteuse.

Paramètres de régulation du dégivrage « forcé »

Un fabricant de meubles frigorifiques renseigne les paramètres de réglage des meubles frigorifiques négatifs. On peut y retrouver des valeurs de réglage standards en fonction de la classe d’ambiance déterminée par ouverture d'une nouvelle fenêtre ! EUROVENT, à savoir généralement pour une classe d’ambiance 3 (25°C, 60 % HR) :

Paramètre Définition Optimum énergétique
T0 température d’évaporation [°C] la plus faible possible
N/24h le nombre de dégivrage par 24 heures [N/24 heures] le plus faible possible
Tter la température en fin de dégivrage [°C] la plus basse possible
td la durée de dégivrage [min] la plus faible possible
tegout le temps d’égouttage [min] le plus faible possible
tvent le temps de retard pour redémarrer les ventilateurs [min]

Il est bien entendu que tous ces paramètres doivent trouver leur optimum énergétique suivant le type d’application, d’ambiance des zones de vente avoisinantes, …, tout en conservant la qualité du froid alimentaire.

Pour différents modèles de meubles frigorifiques et pour une température d’évaporation T0 [°C],ces paramètres sont consignés dans le tableau ci-dessous.

Type de meuble négatif Référence Type de dégivrage T0[°C] N/24 [N/24 heures] Tter[°C] td[min] tegout[min] tvent[min]
Meuble mixte vertical 3L1 RVF3 électrique -35 1 5 40 10 5
Meuble vertical vitré 3L1 RVF4 électrique -35 1 15 30 10 5
gaz chaud 1 10 10 5 5
Meuble vertical vitré 3M1 RVF4 électrique -10 1 10 10 5 0
Meuble horizontal 3L1 IHF4 électrique et gaz chaud -35 2 5 45
Meuble horizontal 3L3 électrique -10 2 10 45
Source : Costan (Sabcobel).

Le choix du type de dégivrage (électrique ou gaz chaud) a de l’importance dans le sens où, énergétiquement parlant, l’injection de gaz chaud semble intéressante.

Avantages

  • Temps de dégivrage plus court;
  • Température de dégivrage plus faible;
  • Énergie consommée par le compresseur 3 fois plus faible (pour un COP de 3) qu’une résistance électrique directe;

Inconvénients

  • Investissement.

Pré-programmation des dégivrages

Lorsque le magasin est composé d’un nombre impressionnant de meubles linéaires (cas des super et hypermarchés), la programmation des temps de dégivrage doit être décalée dans le temps sachant que l’appel de puissance électrique des compresseurs, pour redescendre les températures des meubles à leur valeur nominale, peut être important. La possibilité de mettre en réseau les régulateurs individuels de chaque meuble avec un superviseur (GTC : Gestion Technique Centralisée), facilite la tâche des gestionnaires techniques des magasins.

La programmation d’un décalage des démarrages des dégivrages dans le temps permet de maîtriser les pointes de courant responsable des pointes quart-horaire excessives alourdissant la facture électrique.


Les meubles frigorifiques positifs

Meuble convection naturel positif (vitrine).

Meuble ouvert vertical positif avec rideau d’air en convection forcée.

Pour les applications en froid positif, il est possible de se passer du dégivrage « forcé » par résistance chauffante ou « injection de gaz chauds ». Le « dégivrage naturel » suffit dans la plupart des cas.

À noter qu’en option il est toujours possible de placer des résistances de dégivrage, mais ce serait prêcher contre sa chapelle puisqu’il est possible de s’en passer.Il faut compter de l’ordre de 60 à 70 W/ml pour des résistances électriques simples.

Paramètres de régulation du dégivrage « naturel »

Le principal paramètre de ce type de dégivrage est la durée de dégivrage td [min]. Les fabricants par défaut programme des temps dégivrage maximum de l’ordre de 40 à 45 minutes. Il est nécessaire de choisir une régulation qui permette de réduire les temps de dégivrage en fonction de la classe d’ambiance. Dans la réalité, c’est au cas par cas et suivant le climat interne que va dépendre le temps de dégivrage.

Dans l’absolu, le dégivrage « naturel » est intéressant puisque pendant cette phase :

  • la production de froid est interrompue;
  • il n’y a pas de consommation électrique de dégivrage proprement dite.

Pré-programmation des dégivrages

Le même type de programmation décalée que pour les meubles de froid négatif en centralisant toutes les demandes de dégivrage au niveau d’une gestion technique centralisée (GTC) est aussi possible pour les meubles frigorifiques positifs.

Source : Delhaize Mutsaart.

Ici, on visera l’interruption de ou d’une partie de la production de froid couplée avec :

  • L’arrêt des circulateurs sur une boucle caloporteur. On privilégiera l’arrêt des circulateurs individuels des meubles frigorifiques plutôt que l’arrêt du ou des circulateurs centraux (on parlera alors de pompe de circulation) afin d’espacer dans le temps les dégivrages individuels et, par conséquent, les pointes d’appel de puissance électrique à la fin d’un dégivrage programmé central.

Boucle monotube : arrêt individuel des circulateurs de meuble.

  • La fermeture de l’alimentation d’une vanne en amont du détendeur.

Boucle caloporteuse : fermeture individuelle des vannes d’alimentation des évaporateurs de meubles.

Détente directe : réglage individuel des détendeurs des meubles frigorifiques.

La programmation d’un décalage des démarrages des dégivrages dans le temps permet de maîtriser les pointes de courant responsable des pointes quart-horaire excessives alourdissant la facture électrique.

Exemple.

Le cas d’un hypermarché où la facture d’électricité risque d’être salée de par le non-décalage des débuts de dégivrage sur 150 m de meubles linéaires positifs.

Période d’enregistrement sur 24  heures.

En analysant de plus près, on se rend compte que l’appel de puissance de la journée 430 KW a été enregistré comme pointe quart-horaire à 07h30; ce qui signifie que la facture électrique intègrera cette valeur comme pointe quart-horaire mensuelle. On aurait pu éviter cette pointe en décalant les périodes de dégivrage dans le temps.

Évaluer l’efficacité énergétique de la stérilisation

Évaluer l'efficacité énergétique de la stérilisation


Isolation des parois

Sur les pertes des parois

En stérilisation, l’isolation des parois revêt toute son importance. En effet, pendant toute une journée d’exploitation, les équipements sont portés à haute température. C’est le cas des parois du générateur, de la distribution et de la double enveloppe où les températures avoisinent les 134 [°C]. À ces températures, sans isolation, les déperditions thermiques sont importantes.

Si on reprend les valeurs de la fiche technique d’un constructeur, les déperditions estimées sont :

Fiche technique du constructeur
Équipement Type Unité Consommation/cycle
Générateur de vapeur Entrée eau osmosée litres 13
électricité kWh 8,6
Sortie pertes des parois kW 0,8
Distribution Sortie pertes des conduites kW faibles
Autoclave Sortie pertes des parois de la double enveloppe kW 2,1
pertes des parois des portes de la chambre kW/porte fermée : 0,5
ouverte : 1,4
Pompe à vide Entrée eau adoucie litres 216
électricité du moteur de pompe kW 2,2
Sortie condensat litres 229

L’efficacité énergétique d’une isolation peut être évaluée et comparée aux valeurs de la fiche technique du constructeur.

Exemple.

Soit un stérilisateur de section carrée de l’ordre de 400 [L] en contenance d’eau. La surface de l’enveloppe extérieure peut être évaluée à partir de ses dimensions:

côté = 1 [m]; Profondeur = 1,2 [m].

La surface de l’enveloppe est de 1 x 4 x 1,2 = 4,8 m².

Lorsqu’on isole, on prend de la laine minérale dont la conductivité thermique λ est de 0,04 [W/m.K].

On prend les hypothèses suivantes :

  • La vapeur à l’intérieur des équipements est à une température de 134 [°C].
  • La paroi extérieure de la double enveloppe est en inox et a une conductivité thermique λ de 25  [W/m.K]; on peut donc considérer que la température à l’extérieur de la double enveloppe est de l’ordre de 134 [°C].
  • La température à ne pas dépasser pour l’électronique de régulation est de 28 [°C].
  • La température de contact ne peut dépasser 60 [°C].
  • Le coefficient thermique d’échange superficiel est de 10 [W/m².K]. Cependant, il peut varier suivant la présence d’une ventilation forcée ou pas, équivalant à prendre plutôt une valeur de 23 [W/m².K].

Sur cette base, on peut calculer :

  • L’épaisseur d’isolation nécessaire pour ne pas provoquer de brûlure (critère principal des constructeurs).
  • La déperdition résultant de l’isolation des parois.

Calculs

Pour évaluer ces paramètres.

En faisant varier l’épaisseur de l’isolant, on obtient les résulats suivants :

Pour un coefficient thermique d’échange superficiel de 10 [W/m².K] (sans ventilation forcée) :

Le 1er [cm] d’isolation de la cuve du stérilisateur diminue les déperditions d’un facteur 3,5; ce qui est énorme. Les centimètres supplémentaires ne servent qu’à réduire la température de contact des parois afin de circonscrire les risques de brûlure en ne diminuant plus beaucoup les déperditions. La difficulté d’isolation d’une cuve de stérilisation réside dans sa complexité de conception; à savoir que les nombreuses connections de la cuve avec le reste du système constituent autant de points faibles d’isolation.

La rentabilité d’isolation dépendra donc essentiellement du surcoût de l’isolation supplémentaire.

Pour une épaisseur d’isolant de 3 cm (comme annoncé par le constructeur), le calcul donne 600 [W] de déperdition.

Pour un coefficient thermique d’échange superficiel de 23 [W/m².K] (avec ventilation forcée) :

Sur le graphique précédent, on voit que le coefficient thermique d’échange superficiel peut faire varier les déperditions et les températures de paroi de manière importante. Les pertes thermiques sont plus importantes.

En comparant les valeurs annoncées par le constructeur et celles calculées on se rend compte qu’il y a une certaine divergence. En effet pour une épaisseur de 5 cm d’isolant et sans ventilation forcée (pour un coefficient thermique d’échange superficiel de 10 [W/m².K]) :

  • le calcul donne 529 [W],
  • le constructeur avance 2 100 [W].

Les 1 500 [W] de différence seraient-ils dus à la distribution ou le calcul a-t-il été effectué avec une épaisseur d’isolant de 1 cm?

Sur la production de condensats

Les déperditions à travers les parois se traduisent aussi par la formation de condensats. En effet, de par l’échange de chaleur entre les parois et l’ambiance, la vapeur compense ces pertes en cédant de l’énergie de condensation. Les condensats qui en découlent sont encore chauds mais ont perdu les 4/5ème de l’énergie initiale contenue dans la vapeur.

Il est certain que plus on isole, moins de condensats seront formés et moins d’énergie perdue à l’égout.

Exemple.

Soit le même stérilisateur que dans l’exemple précédent.

Pour épaisseur d’isolant de 1 et 5 [cm] on calcule les déperditions :

Calculs

Pour évaluer ces paramètres.
Déperditions au travers des parois de la cuve
Épaisseur [cm] Déperditions [W] Énergie annuelle perdue [kWh/an] Coûts annuels [€/an]
1 1 457 1,454 x 4 000 = 5 816 640
5 378 0,377 x 4 000 = 1 508 166

La chaleur libérée par la condensation de la vapeur est :

Qcondensation = h »vapeur à 3 bar 134°C – h’eau à 134°C = 2 727 [kJ/kg] – 561 [kJ/kg]

Qcondensation = 2 166 [kJ/kg]

Sur base de 4 000 [h] de fonctionnement par an, la quantité de condensats est déterminée comme suit :

mcondensats = Déperditions x durée x 3 600 / Qcondensation

La chaleur résiduelle dans les condensats est de :

Qrésiduelle_cond = mcondensats x h’eau à 134°C / 3 600

On obtient les résultats suivants :

Déperditions annuelles au travers des parois de la cuve
Épaisseur [cm] Condensats formés [kg]
Chaleur résiduel [kWh/an]
Coûts [€/an] avec 0,11 [€/kWh]
1 9 600
9 666 x 561 / 3 600 = 1 506 [kWh]
166
5 2 400
2 506 x 561 / 3 600 = 390 [kWh]
43

Conclusion

L’isolation des parois a plus d’impact sur les déperditions à travers les parois que sur l’énergie que l’on pourrait retirer des condensats.


Récupération de l’énergie des condensats

Après avoir isoler les équipements de manière optimale, l’énergie résiduelle contenue dans les condensats est-elle valorisable ?
Avant toute chose, il faut distinguer deux types de condensats :

  • Les condensats propres de la distribution et de la double enveloppe qui ne sont pas contaminés car ils n’ont pas transité par la chambre de stérilisation.
  • Les condensats contaminés évacués par la pompe à vide de la chambre de stérilisation.

Certains constructeurs prévoient de récupérer les condensats de la distribution et de la double enveloppe par gravitation en plaçant le générateur sous la double enveloppe. Cette manière de procéder est intéressante car la chaleur résiduelle des condensats produits participe positivement dans le bilan en réduisant l’énergie électrique nécessaire à la production de vapeur.

Quant aux condensats issus de la chambre de stérilisation, pas de chance, ils sont mélangés à un grand débit d’eau froide dans l’anneau liquide de la pompe à vide; ce qui signifie que l’énergie résiduelle que l’on pourrait encore tirer de l’effluent de sortie de la pompe à vide n’est pas valorisable.

Théories

L’étude approfondie sur le bilan énergétique, montre qu’une partie non négligeable de l’énergie initiale de la vapeur produite dans le générateur se retrouve sont forme de condensats issus de la pompe à vide (de l’ordre de 50 à 64 %).

Le hic, c’est que l’enthalpie du mélange des condensats et de l’eau de l’anneau liquide est faible (de l’ordre de 150 [kJ/kg] ou même moins). En d’autres termes l’énergie de la vapeur initiale s’est totalement dégradée :

h »vapeur à 3 bar 134°C = 2 727 [kJ/kg]

h’eau à 134°C = 561 [kJ/kg]

h’eau sortie de pompe  = 150 [kJ/kg]

Le rapport énergétique est de l’ordre de 18; ce qui montre bien que l’énergie contenue dans l’eau de sortie de la pompe à vide n’est pas récupérable. Cette perte d’énergie est principalement liée aux impératifs de fonctionnement de la pompe à vide qui exige des températures faibles d’eau de service pour des vides poussés.

Donc le schéma idéal ci-dessus serait bien trop coûteux à réaliser pour le peu de bénéfice à en retirer.

Récupération sur les débits d’appoint d’eau de la pompe à vide

On pourrait croire qu’il vaut mieux ne rien faire. Pas du tout !

On peut diminuer la consommation d’eau qui alimente l’anneau liquide de la pompe à vide.


Gestion du débit d’eau de la pompe à vide

Vu la nécessité de disposer d’un débit d’eau important à basse température au niveau de l’alimentation de la pompe à vide pour obtenir un vide poussé, plusieurs systèmes ont été envisagés, tout en gardant le même débit dans la pompe, de manière à réduire le débit d’appoint d’eau brute adoucie.

On parlera ici de l’évaluation de l’efficacité,

  • des circuits semi-ouverts,
  • des circuits fermés.

Circuits semi-ouverts

Théories

Pour en savoir plus sur le calcul de la quantité d’eau d’appoint dans le circuit semi ouvert.

L’évaluation théorique de ce système donne une réduction de l’ordre de 30 % :

  • de la consommation d’eau de service,
  • des pertes d’énergie par rejet à l’égout.

Circuits semi-ouverts

Théories

Pour en savoir plus sur le calcul de la quantité d’eau d’appoint dans le circuit fermé.

L’évaluation théorique de ce système donne une réduction de l’appoint d’eau de l’anneau liquide de la pompe à vide élevée. Il est risqué de donner une valeur précise de réduction sachant que les cycles de fonctionnement de la pompe à vide sont particulièrement fluctuants en température. En effet :

  • En début de phase de prise de vide, les températures risquent d’être élevées. À cet instant, le risque que l’échangeur ne soit plus suffisant est présent; ce qui signifie qu’il faut un appoint d’eau brute.
  • En fin de phase, les températures redeviennent normales puisqu’il n’y a pratiquement plus de vapeur ni de condensats à évacuer (l’échangeur suffisant à refroidir l’eau de l’anneau liquide).

Certains constructeurs annoncent 75 % de réduction de consommation d’eau.

Mesurer l’éblouissement

Date : page réalisée sous l’hégémonie Dreamweaver

Auteur : les anciens

Eté 2008 : Brieuc.

Notes : 22.01.09

  • Winmerge : ok – Sylvie
  • Mise en page [liens internes, tdm, en bref !, passage général sur la mise en page de la feuille] – Sylvie

20/03/09, par Julien

  • Corrections Antidote

Mai 2009

  • 2eme passage – mise en page – Sylvie.

Mesurer l'éblouissement


Introduction

Deux métriques décrivant l’éblouissement dû à la lumière naturelle sont utilisées couramment et inclues dans certains outils de conception. Ce sont le Daylight Glare Index (DGI) et le Daylight Glare Probability (DGP).

Le DGI décrit la sensation d’éblouissement sur une échelle alors que le DGP décrit la probabilité qu’une personne soit gênée par un éblouissement provenant de la lumière naturelle.

Cette dernière métrique fût développée sous des conditions de lumière naturelle et a montré dans plusieurs cas qu’elle est mieux corrélée avec la perception d’éblouissement dû à la lumière naturelle que le DGI.

L’ensemble du contenu de cette page provient du rapport « Energy audit et inspection procedures » réalisé lors de la sous-tâche C de la tâche 50 de l’AIE (Agence Internationale de l’Énergie). Pour plus d’information, le rapport complet des méthodes d’audit et procédure d’inspection peut être téléchargé ici en français.


Le Daylight Glare Probability (DGP)

Le Daylight Glare Probability (DGP) est une approche pour prédire l’éblouissement d’inconfort pour des environnements de type locaux de bureaux.

Le DGP est un indice d’éblouissement, qui utilise l’éclairement vertical de l’œil (de manière à considérer un effet de saturation de l’œil) ainsi que les sources individuelles de haute luminance (telles que le soleil et ses réflexions spéculaires) pour estimer la proportion de personnes insatisfaites. Des simulations basées sur les données climatiques ou des procédures de calcul simplifié du DGP permettent d’évaluer la fréquence d’occurrence de situations éblouissantes. Ceci permet d’évaluer le comportement annuel de l’environnement visuel.

L’équation du DGP est une formule empirique connectant des quantités physiques directement mesurables (luminance des sources, éclairement vertical au droit de l’œil, ange solide formé par la source éblouissante, luminance de l’arrière-fond, etc.) avec l’éblouissement ressenti par les sujets. Les variables importantes sont :

  • L’éclairement vertical au niveau de l’œil : cette valeur joue un rôle majeur dans l’expérimentation de l’éblouissement des places de travail éclairées naturellement. De plus, cette valeur est aussi utilisée de manière à tenir compte de l’adaptation de l’œil au niveau d’éclairement ambiant.
  • La luminance de la source d’éblouissement. Dans le cas de fenêtres : la luminance du ciel vu au travers de la fenêtre (plus la source ou le ciel est brillant, plus l’index est haut).
  • L’angle solide sous-tendu par la source. Dans le cas de fenêtres : la taille apparente de la surface de ciel visible depuis l’œil de l’observateur (plus la surface est grande, plus l’indice est haut).
  • La position angulaire de la source par rapport à la ligne de vue de l’observateur. Dans le cas de fenêtres : la position du ciel visible dans le champ de vision (plus il est loin de la direction centrale de vision, plus l’indice est petit).

DGP = 5,87.10-5 x Ev + 9,18.10-2 x log( 1 + ∑i [ (Ls,i2 x ωs,i) / (Ev1,87 x Pi2) ] ) + 0,16

Avec :

  • Ev : l’éclairement vertical de l’œil [lux]
  • Ls : la luminance de la source [cd/m²]
  • i : le nombre de sources éblouissantes
  • P : l’indice de position [-]
  • ωs : l’angle solide de la source [-]

Le DGP peut être appliqué à tout espace intérieur éclairé naturellement et dans lequel les tâches sont comparables à des tâches de bureau. Dans le cas de positions de travail multiples, la position la plus défavorable en termes d’éblouissement devrait être investiguée. Ces positions sont habituellement proches de la façade et/ou là où on peut s’attendre à une vue directe vers le soleil, lorsqu’il se trouve bas sur l’horizon.

De manière à éviter l’éblouissement d’inconfort pour des espaces de type bureaux, le DGP (Daylight Glare Probability) pour la direction de vision principale ne devrait pas excéder une valeur de 0.45 durant 5% du temps d’occupation. Le Tableau suivant résume les catégories de valeur du DGP.

Critères d’éblouissement Daylight Glare Probability
L’éblouissement est le plus souvent non perçu DGP ≤ 0,35
L’éblouissement est perçu mais le plus souvent non dérangeant 0,35 < DGP ≤ 0,40
L’éblouissement est perçu et souvent dérangeant 0,40 < DGP ≤ 0,45
L’éblouissement est perçu et souvent intolérable 0,45 < DGP

Une autre possibilité est d’utiliser une valeur seuil (DGPt) pour différents niveaux de protection de l’éblouissement.

Recommandation pour un niveau de protection à l’éblouissement DGPt Maximum d’excédant permis durant le temps d’usage de référence
Minimum 0,45 5 %
Moyen 0,40 5 %
Élevé 0,35 5 %

La sensibilité à l’éblouissement augmente avec l’âge. De plus, la variation de perception de l’éblouissement entre personnes est large. Le DGP ne devrait pas être appliqué aux situations pour lesquelles on soupçonne que l’éclairement vertical n’est pas un bon, indicateur de la perception d’éblouissement. Ces situations incluent ; une tâche positionnée loin de la fenêtre, les surfaces de vente des magasins, des halls sportifs et des espaces profonds et sombres avec des très petites fenêtres.


Le Daylight Glare Index (DGI)

Le Daylight Glare Index DGI (ou équation d’éblouissement de Cornell) est une version modifiée du « British glare index BGI », pour prédire l’éblouissement venant des fenêtres. L’équation est exprimée comme suit :

DGI = 10 log( 0,48 x ∑i [ (Ls1,6 x Ωs0,8) / (Lb + 0,07 x ωwi0,5 x Lwi) ] )

Avec

  • Ls : la luminance de source(s) d’éblouissement [cd/m²]
  • Lb : la luminance de l’arrière-plan [cd/m²]
  • Lw : la luminance moyenne pondérée de la fenêtre, en fonction de la surface relative du ciel, des obstructions et du sol [cd/m²]
  • i : le nombre de sources éblouissantes
  • Ωs : l’angle solide sous-tendu par la fenêtre [sr]
  • ωs : l’angle solide sous-tendu par la source d’éblouissement, modifié par la position de la source en considérant le champ visuel et l’indice de position de Guth [sr].

Le DGI exprime la magnitude d’éblouissement et sa valeur est définie comme :

Critères d’éblouissement Daylight Glare Index
Juste imperceptible 16
Juste acceptable 20
Juste inconfortable 24
Juste intolérable 28

Le DGI a été développé dans des conditions d’éclairage électrique et son applicabilité pour des sources d’éblouissement dispersées de même que pour des sources d’éblouissement de grande superficie n’est pas claire. Il ne tient pas non plus compte d’un effet de saturation de l’œil.

Simuler l’éclairage

Simuler l'éclairage


Introduction

Les méthodes et outils pour la rénovation de l’éclairage des bâtiments devraient rencontrer les besoins des architectes et des concepteurs d’éclairage, qui sont focalisés sur des « solutions d’éclairage » ; ils devraient également satisfaire ceux des ingénieurs en service des bâtiments, qui sont centrés sur « la résolution de problèmes ». Les deux approches devraient contribuer de manière efficace à :

  • Donner du support aux utilisateurs concernant la description du projet de rénovation de l’éclairage ;
  • Permettre des évaluations de performance de solutions alternatives de rénovation ;
  • Promouvoir le choix des solutions de rénovation optimales ;
  • Utiliser les métriques appropriées à l’évaluation des performances énergétiques et d’éclairage, et de confort visuel.

Le nombre de méthodes simplifiées et d’outils de simulation avancés permettant l’évaluation de métriques d’évaluation de l’éclairage et du confort visuel est actuellement élevé. Certaines d’entre elles peuvent être appliquées à la fois à l’éclairage naturel et électrique, permettant une approche intégrée pour les procédures de rénovation en matière d’éclairage. Certaines méthodes permettent l’évaluation de performances énergétiques annuelles et en éclairage de projets de rénovation de grands bâtiments, sur un simple PC.

Nous distinguons ci-après quatre types d’outils :

  • Les outils de diagnostic globaux;
  • Les outils de DAO (dessin assisté par ordinateur) et CAO (conception assistée par ordinateur);
  • Les outils de visualisation;
  • Les outils de simulation.

L’ensemble du contenu de cette page provient du rapport « Methods and tools for lighting retrofits : State of the art review » réalisé lors de la sous-tâche C de la tâche 50 de l’AIE (Agence Internationale de l’Énergie). Pour plus d’information, le rapport complet d’analyse des méthodes et outils pour la rénovation de l’éclairage des bâtiments peut être téléchargé ici en français.


Les outils de diagnostic globaux

Voici une liste (non exhaustive) d’outils de diagnostic globaux pour la rénovation :

EPIQR+

EPIQR+ est la dernière version d’un software basé sur la méthode EPIQR développée entre 1996 et 1998 dans le contexte du programme Européen de recherche Joule II et soutenu par l’Office Fédéral Suisse pour l’éducation et la Science.

L’objectif de cet outil est d’aider les experts à réaliser un diagnostic systématique d’un bâtiment existant en vue d’estimer son état de dégradation et d’élaborer différents scénarios de rénovation. Les outputs de l’outil incluent une liste de travaux et d’actions ainsi que leurs coûts associés et leurs effets sur la consommation énergétique du bâtiment.

Le logiciel permet :

  • D’établir un enregistrement complet des informations permettant de décrire l’état général du bâtiment à rénover.
  • D’élaborer un diagnostic des conditions physiques et fonctionnelles du bâtiment.
  • De déterminer en détail la nature des travaux requis.
  • D’estimer le pourcentage probable de rénovation du bâtiment (± 15%).
  • D’optimiser la consommation énergétique du bâtiment, après rénovation.
  • De prendre les mesures nécessaires de manière à corriger les désordres relatifs à la mauvaise qualité de l’air et  le confort intérieur.
  • De comparer les différents scénarios d’intervention tout en prenant en compte l’âge des éléments du bâtiment et l’évaluation des coûts en fonction du planning des travaux (planning d’investissement).
  • D’explorer les possibilités d’augmentation de la valeur d’utilisation du bâtiment (après rénovation).

Le principe est de faire une inspection complète du bâtiment, en suivant un chemin systématique, qui permet d’en réviser son entièreté (observations visuelles sans échantillon destructif ou consultation de spécialiste).

À la fin du processus, EPIQR+ donne une vue d’ensemble du statut du bâtiment et offre la possibilité de faire évaluer l’impact de divers scénarios de rénovation. Le coût et la performance énergétique de chaque scénario permet à l’utilisateur de prendre une décision justifiée sur le processus de rénovation.

Site internet de référence : www.epiqrplus.ch

LOTSE ENERGIEEFFIZIENTE INNENBELEUCHTUNG (Guide à l’efficacité énergétique de l’éclairage intérieur)

Avec son interface conviviale et facile à comprendre, le « Guide à l’efficacité énergétique de l’éclairage intérieur » fournit principalement des pistes d’information sur la rénovation énergétique efficace des systèmes d’éclairage. Les informations données dépendent du groupe cible sélectionné et sont organisées selon les phases d’un processus de rénovation. Une estimation grossière des potentiels d’économie d’énergie et de CO2 sont également fournies.

L’information est organisée en blocs que l’on doit sélectionner, structurés selon les phases d’un projet de rénovation typique : analyse de l’état actuel, planning, financement, approvisionnement et maintenance. Le nombre, contenu et niveau de détail de ces différents blocs dépend du groupe cible, qui doit être sélectionné par l’utilisateur lors de la première étape.

Ensuite, avant d’entrer dans la section informative, il existe une option d’évaluation rapide. Sur base d’une procédure très simplifiée de calcul, une estimation des potentiels de gains énergétiques est donnée, dépendant des inputs suivants : type de bâtiment (bureau, stock ou production), taille du bâtiment, âge du système d’éclairage, coûts électriques et nombre d’heures d’opération annuelles.

Site internet de référence : www.lotse-innenbeleuchtung.de

OPTOMIZER

OptoMizer fournit les outils nécessaires pour effectuer un audit d’éclairage complet, précis et détaillé. Le logiciel gère un nombre illimité de projets et d’audits, de locaux et de prix. Il gère aussi un nombre illimité de configurations de luminaire, de calendriers d’occupation et de données détaillées afin de permettre un audit, espace par espace.

Un suivi détaillé des subventions est inclus afin de permettre aux utilisateurs de profiter au mieux de celles-ci et d’encourager au maximum les économies d’énergie.

OptoMizer permet d’envisager toutes les techniques d’éclairage nécessaires et permet d’analyser les possibilités d’économie d’énergie en détail en tenant compte de l’impact carbone et des coûts.

Une fois que l’audit initial a été réalisé et que les données ont été collectées dans OptoMizer, le concepteur d’éclairage peut préserver son audit original comme audit de type « modèle » et cloner l’audit entier en un audit « construction ». Comme le projet de rénovation réel prend place, les changements réalisés peuvent être intégrés dans l’audit « construction ». Cela permet au concepteur de réaliser des comparaisons simples entre l’audit « modèle » et « construction » une fois que le projet est terminé.

Site internet de référence : www.fdlabs.com

ReLight – un outil efficace pour une inspection in-situ des installations d’éclairage et l’identification du potentiel de rénovation

L’objectif de la nouvelle application reLight, pour appareils mobiles tels que les tablettes et les smartphones est de réaliser une inspection à vue et d’analyser plus facilement les systèmes d’éclairage existants.

Elle offre aussi d’autres fonctions de consultance en énergie, telles que des comparaisons de coûts.

Une évaluation du système d’éclairage existant est réalisée par comparaison visuelle et à partir d’une simple description qualitative des proportions du local et du type de façade. En quelques minutes, cela conduit non seulement à une analyse du système d’éclairage existant mais en même temps à des suggestions de rénovation appropriées, incluant un relevé séparé des coûts liés aux différentes propositions.

Site internet de référence : www.relightapp.de


Les outils de DAO et CAO

Voici une liste (non exhaustive) d’outils de dessin assisté par ordinateur (DAO) et/ou de conception assistée par ordinateur (CAO) :

3dsMaxDesign

Le software 3dsMax est développé par Autodesk et est un outil de conception 3D complet. Depuis 2009, Autodesk propose également 3dsMAxDesign. Les deux softwares partagent la même technologie et ont les mêmes fonctionnalités clés. Cependant, alors que 3dsMax est principalement utilisé par des développeurs de jeux vidéo, 3dsMAxDesign est plus adapté aux architectes, concepteurs et ingénieurs. Il permet de réaliser des simulations précises de l’éclairage naturel et artificiel, en conditions statiques, sous ciel CIE couvert ou clair. L’intégration du modèle de ciel de Perez dans le logiciel permet aussi à l’utilisateur d’évaluer son modèle sur base du fichier météo du lieu considéré (simulations dynamiques). On peut également réaliser des animations à partir des images de visualisations créées par ces simulations.

Pour les simulations dynamiques, 3dsMaxDesign utilise le même fichier météo que celui employé par le logiciel EnergyPlus (fichier .epw). Ces fichiers météos sont disponibles (sur le site web du Département de l’Énergie des USA) pour plus de 1000 localisations aux USA et plus de 1000 localisations dans 100 autres pays. Il permet au software de modéliser les conditions d’éclairage naturel pour chaque heure de l’année.

3dsMaxDesign est un outil destiné à être utilisé lorsque le projet est déjà à un stade avancé de la conception car cela peut prendre assez de temps de créer le modèle géométrique précis, d’introduire les informations concernant les matériaux utilisés et de définir le type de ciel considéré. Les utilisateurs doivent suivre un processus bien défini en vue de calculer des valeurs précises.

L’usage de 3dsMaxDesign devrait être réservé à des spécialistes en éclairage car les résultats obtenus devraient être analysés avec un œil critique. En effet, on trouve certains bugs dans le software qui conduisent parfois à des résultats très surprenants (c.-à-d. des valeurs de FLJ plus hautes que 100 % dans 3dsMaxDesign 2013).

Site internet de référence : www.autodesk.com

AUTODESK AutoCAD

AutoCAD permet de développer des dessins vectoriels en 2D ou en 3D et de créer des visualisations 3D. Des rendus de haute qualité peuvent être créés avec la suite AutoCAD.

En fournissant un espace de mise en page connecté à l’espace du modèle, le software est utilisable pour la création de présentations. Il est possible d’améliorer la modélisation sous forme de plan (ajouter la géolocalisation, extraire des isolignes) ou les capacités de design d’AutoCAD en 3D (formes libres) grâce à des plugins additionnels. Il est aussi possible de connecter le workflow entre un ordinateur de bureau, le cloud et des solutions mobiles.

AutoCAD a été développé pour être utilisé à tous les stades de conception du bâtiment ; de l’esquisse et l’avant-projet à la modélisation avancée en 3D ou au plan d’exécution.

Il est utilisé par les architectes, les ingénieurs et les concepteurs aussi bien pour produire des dessins techniques que pour développer une visualisation du bâtiment et des rendus.

Les principaux bénéfices sont le développement et la présentation de dessins techniques et d’exécution 2D ainsi que le développement de modèles 3D de niveau de complexité moyen. Il existe une grande variété des librairies CAO/DAO disponibles sur le Web et contenant des objets et des éléments de construction pouvant être inclus dans le software.

Site internet de référence : www.autodesk.com

Rhinoceros

Rhino permet de modéliser toute sorte de forme, du dessin 2D simple à la forme 3D la plus complexe.

L’interface de Rhino est simple et intuitive et permet une visualisation contemporaine ainsi que le contrôle de vues en plans, en élévation et en perspectives.

Chaque vue peut être translatée, tournée et zoomée de manière indépendante des autres.

Rhino peut être utilisé à toutes les étapes de conception du projet, se prêtant aussi bien à créer un prototypage rapide 3D pour un premier essai qu’à développer des modèles 3D très précis, destinés à la production industrielle. Le software est destiné aux architectes, designers et ingénieurs en architecture et en construction et est approprié pour le design industriel.

Les fabricants d’appareils domestiques et de bureau, de mobilier, d’appareil médical et d’équipement de sport, de chaussures et de bijoux utilisent Rhino pour créer des formes libres.

La force de Rhino réside en sa capacité à créer des formes libres complexes. Les outils inclus permettent d’extraire des informations détaillées concernant la géométrie et d’analyser et de valider les surfaces créées.

Site internet de référence : www.rhino3d.com

Sketchup

SketchUp est un outil de modélisation 3D simplet et très intuitif qui propose aussi des opérations avancées comme le calcul de superficie et de volume. Les modèles SketchUp peuvent aussi être compatibles avec des outils BIM puisque des étiquettes de schéma peuvent être attribuées aux groupes ou composants du modèle.

Il est aussi possible de créer des composants dynamiques. Les composants dynamiques sont des objets SketchUp qui ont été programmés de manière à se comporter intelligemment. Ces composants intelligents peuvent par exemple être réduits sans être déformés. Ces composants peuvent aussi être programmés de manière à bouger automatiquement ; il s’agit par exemple de portes qui s’ouvrent ou de panneaux solaires qui tournent automatiquement de manière à faire constamment face au soleil.

L’outil « SketchUp Match Photo » permet la création d’un modèle 3D sur base de photographies. Dans SketchUp, il est aussi possible de créer, optimiser et altérer le sol, en 3D.

SketchUp ne modélise pas la lumière naturelle mais son engin de modélisation en temps réel réalise des études précises d’ombrage sur le modèle. Une fois que la localisation du modèle est fixée, la position du soleil peut être déterminée et une étude de la pénétration solaire et/ou de l’efficacité des systèmes d’ombrage peut alors être réalisée.

La possibilité de modélisation de Sketchup en lien avec l’éclairage naturel est sa capacité d’étudier les ombres portées, en fonction de la localisation du bâtiment, de son fuseau horaire ainsi que de la date considérée.

Site internet de référence : www.sketchup.com


Les outils de visualisation

Dans leur pratique de tous les jours, les architectes et designers doivent souvent produire des images de leur propres projets, de manière à fixer leur design, convaincre leurs clients ou gagner une compétition.

Ces images montrent des scènes éclairées (scénarios de jour ou de nuit) incluant des sources de lumière, des couleurs, des textures, des surfaces brillantes etc., en essayant de produire des effets photo réalistes.

Parfois ces images sont produites sur base de photos existantes. Des softwares comme PhotoShop incluent des fonctionnalités spécifiques (effet d’éclairage) à cette fin.

Certains outils CAO contiennent aussi des fonctions spécifiques qui permettent de produire ces images à partir de modèles 3D.

Toutefois, une enquête réalisée dans le cadre de l’Agence Internationale de l’Énergie (AIE) a montré que certaines personnes font des confusions entre la visualisation et la simulation.

Ainsi, bien que les outils de visualisation jouent un rôle important comme base de discussion et peuvent être cruciaux pour montrer la distribution de lumière dans un local, ils ne remplacent en aucun cas les résultats donnés par les programmes de calcul de lumière.


Les outils de simulation

Voici une liste (non exhaustive) d’outils permettant la simulation de l’éclairage à l’intérieur d’un local :

DAYSIM

DAYSIM est un software d’analyse de l’éclairage naturel basé sur le logiciel RADIANCE qui modélise la quantité annuelle d’éclairage dans et autour des bâtiments. DAYSIM permet la modélisation de systèmes de façade statiques et dynamiques. L’utilisateur peut spécifier un système de contrôle de l’éclairage électrique du type d’un interrupteur on/off manuel, un détecteur de présence ou une cellule de gradation de la lumière en fonction des disponibilités de lumière naturelle.

DAYSIM est utilisé par les concepteurs, les architectes et les ingénieurs. Cependant, comme DAYSIM est basé sur RADIANCE, une connaissance minimale de RADIANCE est nécessaire de manière à choisir correctement les paramètres de simulations.

Les résultats de simulation sont les métriques dynamiques basées sur le climat telles que l’autonomie dynamique et l’UDI (Useful Daylight Illuminance), l’éblouissement annuel ainsi que les consommations annuelles d’éclairage électrique, sur base de la puissance électrique installée. DAYSIM permet aussi une définition des horaires d’occupation, des charges internes et du statut des protections solaires qui peuvent être couplées directement avec des engins de simulation thermique tels qu’EnergyPlus, eQuest et TRNSYS.

Daysim ne fournit aucun outil de rendu.

Site internet de référence : www.daysim.ning.com

DIALUX

DIALUX permet de calculer l’éclairement naturel, pour trois types de ciel, parmi lequel le ciel couvert CIE.

DIALUX peut être utilisé à toutes les étapes du projet mais comme il n’inclut qu’un outil de modélisation géométrique simple, il est mieux adapté au stade de l’avant-projet. DIALUX est principalement dédié aux concepteurs d’éclairage mais peut être également utilisé par des architectes.

Le modèle géométrique est réalisé dans le software mais on peut importer des fichiers .dwg ou .dxf pour servir de base au dessin.

Site internet de référence : www.dial.de

DIALUX Evo

DIALUX Evo est le nouveau software qui a été introduit en parallèle avec le software DIALUX et qui remplacera ce dernier dans le futur. DIALUX Evo est avant tout dédié au bâtiment.

L’utilisateur crée sa géométrie dans un espace virtuel. Ce peut être une simple pièce, un étage entier ou même un bâtiment entier ou plusieurs bâtiments situés dans un contexte urbain. Si un concepteur conçoit l’éclairage pour un bâtiment entier, il peut se positionner n’importe où dans ce bâtiment et voir le résultat de son plan.

DIALUX Evo permet des calculs d’éclairage électrique et d’éclairage naturel. On peut y modéliser un ciel clair, moyen et couvert. Les valeurs d’éclairement ainsi que le facteur de lumière du jour peuvent être calculées.

DIALUX Evo est moins intuitif que DIALUX et est probablement plus destiné aux concepteurs d’éclairage qu’aux architectes.

Site internet de référence : www.dial.de

DIAL+ Lighting

DIAL+ permet de soit lancer des simulations d’éclairage (RADIANCE) ou de calculer les charges de chauffage et de refroidissement à l’échelle d’un local.

Le module permet de produire des rapports qui incluent les résultats suivants :

  • Facteurs de lumière du jour
  • Autonomie dynamique diffuse (% et heures)
  • Autonomie pour Minergie-Éco (Suisse)
  • Valeurs d’éclairement en éclairage électrique
  • Consommation annuelle d’électricité d’éclairage (SIA 380/4, Minergie)
  • Diagramme solaire incluant les obstructions extérieures.
  • Etudes d’ombrage (facteur d’ensoleillement, fraction de ciel vu)
  • Le module de refroidissement donne accès aux modules suivants : Charges de refroidissement et de chauffage (EN 15251 EN 15255, EN 15265 and ISO 13791, SIA 382/1 SIA 382/2)
  • Débits d’air dus à la ventilation naturelle (Modèle de Cockroft)

Grâce à sa rapidité de simulation et sa simplicité, DIAL+ est particulièrement adapté à la réalisation d’études paramétriques, ce qui est très intéressant au stade de l’avant-projet. DIAL+ permet de prendre des décisions précoces à l’échelle du local et de les appliquer au reste du bâtiment. DIAL+ est une interface très intuitive qui traite de l’optimisation des charges énergétiques, à l’échelle du local.

L’interface a été conçue de manière à permettre à un utilisateur non expert de décrire facilement les paramètres des locaux. Il peut donc être utilisé par des architectes et des ingénieurs. Il est aussi bien adapté à des objectifs pédagogiques. Cependant, l’utilisation de toutes ses caractéristiques (éclairage et thermique) suppose que l’utilisateur a une connaissance minimale du comportement d’un bâtiment.

DIAL+ contient un modeler 3D simplifié qui permet de modéliser des locaux rectangulaires, en forme de L ou de trapèzes, ayant un toit plat, à simple ou double versant. Des objets opaques ou transparents peuvent être ajoutés à l’intérieur des locaux traités. Le temps moyen requis pour décrire tous les paramètres d’un local classique est de moins de 10 minutes.

Les résultats de simulation sont affichés sous forme de plans 2D et de graphes (FLJ, autonomie, éclairement, etc.) sur le plan de travail ou sur les murs.

Site internet de référence : www.diaplus.ch

DIVA-for-Rhino

DIVA pour Rhino permet à ses utilisateurs de réaliser une série d’évaluation de performance environnementale de bâtiments individuels ou de paysages urbains incluant des cartes de rayonnement solaire, des rendus photoréalistes, des métriques dynamiques en éclairage naturel, des analyses d’éblouissement ponctuel et annuel ainsi que des analyses des charges thermiques de modèles unizones.

Cet outil est destiné aux professionnels du secteur de la construction, tels que les architectes et les concepteurs “lumière” familiers avec les outils de conception par ordinateur. Les données sont principalement introduites grâce à l’interface de modélisation 3D Rhinoceros. Une connaissance de ce logiciel est donc essentielle. Un fichier climatique doit être introduit dans le logiciel et l’analyse de l’éclairage naturel peut ensuite être réalisée, selon une grille de mesures définie par l’utilisateur. Le calcul des différentes métriques ainsi que les rendus visuels peuvent alors être facilement réalisés au travers de l’interface DIVA. Il est cependant utile d’avoir des connaissances avancées de simulations en éclairage naturel car il est nécessaire de modéliser les surfaces de manières à ce qu’elles pointent dans la bonne direction, leur donner les propriété photométriques précises (facteur de réflexion, de transmission, etc), modéliser l’environnement (bâtiments et obstacles) qui affecterons les résultats, et sélectionner les bons paramètres de calcul pour Radiance.

Site internet de référence : www.solemma.net

FENER

Fener est utilisé pour comparer des scenarios en termes de climat, géométrie et systèmes de fenêtres, calculant des métriques dynamiques d’énergie, d’éclairage naturel et d’éblouissement. Les fonctions principales de l’outil sont les suivantes :

  • Interface conviviale : l’outil guide l’utilisateur dans son introduction de toutes les données requises pour faire tourner FENER. Trois modes différents sont possibles :
    • Rapide : données prédéfinies de géométrie et conditions frontières.
    • Avancé : permet une flexibilité dans la définition de la géométrie et des conditions frontières
    • Expert : permet d’uploader des fichiers de configuration
  • Base de données : l’outil inclut une base de données à partir de laquelle des données de caractérisation (BSDF et donnée calorimétriques) relatives aux systèmes de fenêtres peuvent être sélectionnées. Des nouveaux systèmes peuvent être uploadés.
  • Stratégie de contrôle : permet à l’utilisateur de définir des stratégies de contrôle. L’utilisateur peut spécifier une matrice d’états de contrôle dépendant de l’occupation, de l’éclairement, de l’indice d’éblouissement, de la température et du rayonnement.

Autres caractéristiques

  • Fener peut être utilisé à partir de différents appareils portables
  • Il inclut une possibilité de visualisation interactive 3D de la géométrie.

L’objectif de cet outil est double :

  • Faciliter le développement de nouveaux produits de façade par les fabricants de composants de façade.
  • Quantifier les avantages de choisir l’un ou l’autre système de fenêtre par les architectes et les concepteurs de bâtiment dans les premières étapes de leurs projets.

L’outil n’inclut pas de possibilité de rendu d’éclairement intérieur.

Site internet de référence : www.fener-webport.ise.fraunhofer.de

GERONIMO

Geronimo est un software convivial pour les architectes et les concepteurs « lumière » conçu pour réaliser des simulations d’éclairage naturel pour des ciels clairs et couverts. Il permet aussi de visualiser l’impact de l’utilisation de systèmes de fenêtre complexes (CFS) sur l’éclairage naturel des bâtiments.

Le logiciel est destiné aux professionnels du secteur de la construction, tels que les architectes et les concepteurs « lumière » familiers avec les outils de conception par ordinateur. Trois modes d’analyse sont possibles dans GERONIMO : base, moyen, avancé. Le mode de base permet à tout utilisateur de produire un rendu et le mode avancé permet à un utilisateur spécialisé de contrôler les paramètres RADIANCE.

GERONIMO n’inclut pas de fonctionnalité de modélisation 3D; à la place, il fournit 6 typologies de bureau qui sont représentatives des configurations classiques.

Il est possible de travailler avec des modèles 3D personnalisés dans GERONIMO à condition de savoir comment créer un fichier de modélisation RADIANCE, qui peut ensuite être introduit dans GERONIMO.

GERONIMO ne réalise que des simulations d’éclairage naturel ; l’éclairage électrique n’est pas pris en compte.

GERONIMO permet des réaliser des rendus en « fausse couleur » de l’éclairement et de valeurs d’éclairement pondérées selon son impact circadien. Il permet de calculer le facteur de lumière du jour et affiche les résultats en niveaux de gris, en utilisant une échelle linéaire ou logarithmique. Il peut calculer les risques d’éblouissement et peut afficher différents indices d’éblouissement. Il contient un module de calcul de l’autonomie diffuse en éclairage naturel réalisé à partir d’un rendu simple sous un ciel couvert.

Site internet de référence : leso.epfl.ch

IES VE

« Virtual Environment » est une suite intégrée d’applications liées par une interface commune et un modèle simple d’intégration de données (IDM). Cela signifie que les données utilisées pour une des applications peuvent être utilisées par d’autres.

Les modèles proposés sont par exemple « ApacheSim » pour la simulation thermique, « Radiance » pour l’éclairage naturel et « SunCast » pour l’analyse des ombrages. L’application de modélisation géométrique 3D est « ModelIT ».

ModelIT permet à l’utilisateur de créer les modèles 3D requis par les autres composants au sein de la « Virtual environment ». ModelIT est conçu pour permettre d’intégrer les niveaux de complexité appropriés au modèle global.

A l’étape de pré-design ou lors de l’étude de faisabilité, des modèles basiques peuvent être générés à partir de croquis en utilisant une variété d’outils de modélisation simples, de manière à mener des évaluations préliminaires ou des études comparatives.

Similairement, en fin de processus de conception, les fichiers .dxf représentant précisément le bâtiment peuvent être importés dans ModelIT, de manière à servir de base pour une représentation 3D des espaces.

Le module d’interface pour RADIANCE, RadianceIES, est intégré dans « Virtual Environment ». Il existe deux types d’images créées par Radiance ; les rendus de luminances et d’éclairements. Un rendu d’éclairement peut être utilisé afin de regarder les valeurs en lux et de générer des iso contours en lux ou en Facteur de Lumière du Jour. Un rendu en luminance est utilisé pour évaluer des indices d’éblouissement ou en tant qu’image photo-réalistes. L’interface est conçue de manière à rendre la création d’images la plus facile possible, en se basant sur des hypothèses par défaut quand c’est possible.

Site internet de référence : www.iesve.com

Lightsolve

L’approche générale de Lightsolve est d’apporter une aide en éclairage naturel, dès le stade de l’avant-projet, au travers d’une visualisation interactive et pro-active, de manière à améliorer la performance du design en termes de performances annuelles. Les métriques évaluées dans Ligthsolve diffèrent de celles évaluées dans la plupart des outils de simulation en éclairage naturel de deux manières : elles sont orientées « objectif » et elles placent leur accent sur la variation de la performance de l’éclairage naturel au cours de l’année en utilisant les cartes temporelles.

Actuellement, 5 différents aspects peuvent être évalués dans Lightsolve :

  1. Analyse d’éclairement sur base temporelle
  2. Analyse de l’éblouissement sur base temporelle en fonction de la position de vision (basée sur le DGP)
  3. Analyse perceptuelle du contraste
  4. Analyse de variabilité (contraste au cours du temps)
  5. Évaluation des effets non visuels (santé).

Un calcul de facteur de lumière du jour est également implémenté.

Lightsolve, actuellement sous forme de beta version, a été dévelopé par le LIPID (EPFL) à destination des académiques et pour des raisons de recherche. L’application est disponible gratuitement dans sa version actuelle et sans garantie pour les étudiants, les chercheurs et les praticiens intéressés par l’outil. Comme il n’a pas encore été totalement validé, il est principalement destiné à un usage académique, de manière à collecter le feedback des utilisateurs.

Lightsolve ne fournit pas de fonctionalité de modélisation 3D mais permet d’importer des fichiers waverfront et des fichiers SketchUp.

Grâce à son rendu rapide, il est possible de l’utilisateur pour naviguer librement dans le modèles 3D et d’avoir un premier feedkback visuel des conditions d’éclairage à différents moments du jour et de l’année.

Site internet de référence : www.lightsolve.epfl.ch

RADIANCE

RADIANCE est un outil sophistiqué d’analyse et de visualisation de la lumière.

À partir de modèles géométriques 3D, il calcule des résultats corrects physiquement et des rendus de haute qualité (luminance / éclairement sous forme de valeurs et d’images). Des représentations en « fausses-couleurs » ou sous forme d’iso-lignes permettent un affichage compréhensible des résultats.

RADIANCE est le programme de référence pour le calcul de la l’éclairage naturel. Les simulations peuvent être réalisées pour différents types de ciel (clair, uniforme ou couvert) ou pour un ciel quelconque défini en utilisant le modèle de Perez. Un plugin additionnel permet de modéliser les 15 nouveaux types de ciel CIE. Le modèle de Perez sert aussi de base pour les calculs annuels de l’éclairage naturel basé sur les données climatiques du lieu considéré.

Des outils supplémentaires permettant de calculer, par exemple, les indices d’éblouissement, sont également disponibles.

RADIANCE est utilisé par les concepteurs, architectes et ingénieurs pour prédire le niveau d’éclairement et l’apparence d’un espace, éclairés avec différents systèmes d’éclairage électrique et naturel, avant la construction. Les chercheurs l’utilisent aussi afin d’évaluer les nouveaux produits d’éclairage. Le software peut être utilisé à toute étape de la conception d’un bâtiment. Il permet de modéliser une grande variété de géométries spatiales et de conditions d’éclairage.

Site internet de référence : www.radiance-online.org

ReluxPro

ReluxPro propose une interface conviviale qui fournit des possibilités d’importation puissantes des plans d’architecture 2D ou de modèles 3D. ReluxPro possède une base de données de luminaires importante, permet de définir précisément la position des luminaires dans le bâtiment et donne rapidement des résultats sous forme de rendus.

ReluxPro permet aussi de calculer des niveaux d’éclairement. Pour chaque zone d’un bâtiment, les niveaux d’éclairement et les valeurs d’uniformité g1 et g2 peuvent être obtenus. Il est dès lors possible d’obtenir un facteur de lumière du jour dans les locaux d’un bâtiment et de prédire la distribution de lumière naturelle dans le local modélisé. Des valeurs de luminance peuvent aussi être calculées.

Il est destiné au secteur des professionnels de la construction, tels que les architectes et les concepteurs d’éclairage familiarisés avec les outils de conception informatique.

ReluxPro inclut des fonctionnalités de modélisation 3D très faciles d’utilisation. Il est possible de modéliser les meubles et les luminaires, à partir d’une vaste base de données. Les ouvertures de fenêtre ainsi que d’autres éléments tels que des portes, peuvent être ensuite définies dans les murs.

Site internet de référence : www.relux.com

VELUX Daylight Visualizer

VELUX Daylight Visualizer est un outil de simulation professionnel destiné à l’analyse et la visualisation des conditions d’éclairage naturel dans les bâtiments de toute échelle, en incluant le résidentiel, les bâtiments commerciaux, les bâtiments industriels et institutionnels. Il est capable de calculer l’éclairement et la luminance pour les 15 types de ciel définis par la CIE. Il peut aussi calculer le facteur de lumière du jour.

L’interface est intuitive ce qui rend le programme accessible aux utilisateurs débutants ainsi qu’à ceux qui sont plus expérimentés à l’usage des outils de calcul de l’éclairage naturel.  Le temps de calcul nécessaire pour réaliser une étude d’éclairage naturel est aussi assez retreint.

Les résultats de simulation sont soit des images photo-réalistes qui peuvent être converties en fausse-couleur ou superposées par des iso-lignes soit des valeurs numériques. En plus des images fixes, le programme peut être utilisé pour créer des animations basées sur la course du soleil.

VELUX Daylight Visualizer est utilisé par les architectes et les ingénieurs pour prédire les niveaux d’éclairement et évaluer l’apparence d’un espace durant la conception d’un bâtiment.

Le programme peut être utilisé au tout début de la conception d’un bâtiment de manière à évaluer la disponibilité et à valider la performance du design final. VELUX Daylight Visualizer est aussi utilisé dans plusieurs écoles et universités pour enseigner l’éclairage naturel.

Site internet de référence : viz.VELUX.com


Comparaison des outils

3ds Max DAYSIM DIALUX DIALUX-EVO DIAL+ DIVA for Rhino FENER GERONIMO IES VE Lightsolve RADIANCE Relux Pro VELUX Daylight Visualizer
Informations générales
Interface graphique X X X X X X X X X X
Importation DAO X X X X X X X X
Modèle 3D X X X X X X X
Rendu 3D X X X X X X X X X
Calculs Radiance X X X X X X X X
Calculs Radiance (méthode 3 phases) X X
Daysim X
Photo-mapping X X X
Cible
Adapté pour les architectes X X X X X X X X X
Adapté pour les ingénieurs électriciens X X X X X
Adaptés pour les ingénieurs HVAC X X X
Adapté pour l’avant-projet X X X X X X X
Adapté pour une conception avancée X X X X X X X X X X
Éclairage naturel
Valeurs de Facteur de Lumière du Jour X X X X X X X X X X X X
Autonomie en éclairage naturel X X X X X X X X
Sensible à l’orientation X X X X X X X X X X
Simulations basées sur le climat X X X X X X X X X
Valeurs d’éclairement X X X X X X X X X X X
Valeurs de luminance X X X X X X X X X
Calcul de l’éblouissement X X X X X X X X
Possibilité de décrire des surplombs/avancées architecturales (fixes) X X X X X X X X X X X
Possibilité de décrire des systèmes d’ombrage (mobiles) X X X X X X X X
Possibilité de décrire des obstructions extérieures X X X X X X X X X X X
Éclairage électrique
Description manuelle des luminaires X X X X
Base de données des luminaires X X
Possibilités d’importer des luminaires (IES, Eulumdat, etc.) X

Rénovation de l’éclairage du bâtiment principal du CSTC à Limelette

Rénovation de l'éclairage du bâtiment principal du CSTC à Limelette

Étude de cas réalisée par le Centre Scientifique et Technique de la Construction (CSTC)


Introduction

Les activités de recherche et les laboratoires du Centre Scientifique et Technique de la Construction (CSTC) sont implantés à Limelette. En 2015, le bâtiment de bureaux principal du Centre à bénéficié de lourds travaux de rénovation.

L’installation d’éclairage fut un point d’attention majeur de ces travaux de rénovation; l’objectif principal étant d’offrir un confort visuel maximal tout en garantissant des consommations énergétiques minimales.

Couloir après rénovation

La rénovation de l’éclairage du bâtiment du CSTC en quelques chiffres

  • Une superficie d’environ 2000 m² répartis sur 3 niveaux et un 60 taine de locaux ;
  • 279 anciens luminaires démontés représentant une puissance installée totale de 28 067 Watts ;
  • 387 nouveaux luminaires installés représentant un puissance installée totale de 10 221 Watts ;
  • Une densité de puissance installée moyenne de 6,6 W/m² dans les locaux de bureaux et de salles de réunion ;
  • Un gain de 68 % sur la puissance installée pour ces mêmes locaux ;
  • Des luminaires présentant une efficacité lumineuse atteignant jusqu’à 148 lm/W.

L’installation avant rénovation

Le bâtiment du CSTC est composé de bureaux individuels, de différentes salles de réunion et d’une grande salle de conférence. Il abrite également une bibliothèque, la cuisine ainsi que le mess du personnel.

Avant rénovation

 

Après rénovation

Les bureaux individuels étaient éclairés par 3 ou 4 luminaires carrés (60×60) encastrés et équipés chacun de 4 tubes fluorescents T8 de 18 W.

Des armoires revêtues d’un plaquage en bois étaient encastrées dans des murs en briques apparentes de teinte jaune. Le sol était composé d’un revêtement souple en linoleum de teinte jaune également.

La commande de l’éclairage était manuelle via un interrupteur permettant allumage et extinction. Le nombre réel d’heures de service des luminaires et la gestion parcimonieuse de leur utilisation selon les besoins était donc entièrement fonction de l’utilisateur.

Pour chaque bureau individuel, la consommation électrique annuelle a été estimée par la méthode PEB à 546 kWh par an, soit l’équivalent d’environ 93 €HTVA et d’une émission de CO2 de 163 kilos chaque année.

Caractéristiques avant rénovation
Puissance des luminaires 86,4 W
Nombre de luminaires par bureau 3
Superficie moyenne d’un bureau 16,46 m²
Puissance installée 15,7 W/m²
Nombre d’heures d’occupation du bureau 2 341 h/an
Consommation estimée 546 kWh/an

Bureau individuel avant rénovation – Vue vers la façade

Bureau individuel avant rénovation – Vue vers la façade


L’installation après rénovation

Une attention particulière a été apportée à la gestion de l’éclairage : chaque bureau a été équipé d’une détection de présence ainsi que d’une gradation du flux lumineux en fonction de l’éclairage naturel.

Détecteurs

Chaque bureau individuel est à présent équipé de deux luminaires à LED avec diffuseur microprismatique. Le choix de cette optique s’avère particulièrement judicieux pour éviter tout risque d’éblouissement et de reflets gênants, en particulier lors d’un travail sur écran.

La commande de l’éclairage se fait à la fois de manière automatique, via un détecteur de mouvement mais peut également faire l’objet d’une dérogation par l’utilisateur via un simple interrupteur.

Une gradation du flux lumineux s’opère de manière automatique en fonction de l’apport d’éclairage naturel via des détecteurs de luminosité.Ce niveau de gradation peut également être modifié librement par l’utilisateur à l’aide du même interrupteur permettant l’allumage et l’extinction.

Ces luminaires à LED, couplés au système de gestion, permettent d’économiser jusqu’à 81 % d’énergie!

Caractéristiques après rénovation Économies
Puissance des luminaires 40 W
Nombre de luminaires par bureau 2
Superficie moyenne d’un bureau 16,46 m²
Puissance installée 4,9 W/m² 69 %
Nombre d’heure d’occupation du bureau 2 341 h/an
Consommation estimée 105 kWh/an 81 %

 

 Bureau individuel après rénovation – Vue vers le couloir

 

 Bureau individuel après rénovation – Vue vers la façade


Le cas particulier de la salle de conférence

Avant rénovation

 

Après rénovation

Dans la salle de conférence, l’amélioration de l’efficacité énergétique des luminaires est maximale avec une puissance installée de  12 442 Watts (soit 39,2 W/m²) avant rénovation et de 1 528 Watts (soit 5,1 W/m²) après rénovation. Ceci représente une amélioration de près de 87%!

Avant rénovation, les 96 luminaires qui étaient installés dans la salle de conférence étaient particulièrement énergivores et comptaient chacun 6 tubes fluorescents de type T8. La puissance installée représentait ainsi 41 % de l’ensemble de la puissance installée de tout le bâtiment.

Après rénovation, 83 luminaires de type downlight ont été installés, intégrant la possibilité de moduler le flux lumineux en fonction de l’ambiance souhaitée. L’amélioration de la puissance installée supérieure à la moyenne a permis de baisser cette proportion à 12 % de l’ensemble de la puissance installée de tout le bâtiment.

La salle de conférence rénovée

Un problème d’inconfort thermique ou lumineux ? N’hésitez pas à tester notre nouvel outil de diagnostic afin de trouver la solution à votre problématique.

Évaluer la consommation des équipements électriques

Évaluer la consommation des équipements électriques


Plages de consommations

L’ADEME a réalisé une enquête en 2015 auprès de 50 entreprises et sue plus de 100 000 appareils pour déterminer en autres les consommations énergétiques des équipements informatiques en milieu professionnel. Elle a ainsi pu chiffrer la consommation annuelle moyenne d’un appareil :

Appareil Consommation annuelle moyenne

[kWh/an]

Téléphone IP 40
PC portable 48
Client léger 65
Imprimante 71
PC fixe 151
Copieur 447
Appareils moins courants
Smartphone 1 à 2
PDA 4
Tablette 5
Pieuvre pour audioconférence – sans fil 10
Tableau blanc interactif 20 à 26
Mini switch de bureau 20 à 33
Badgeuse 39 à 55
Scanner 8 à 110
Fax 9 à 110
Pieuvre audioconférence – filaire 65
Antenne WI-FI 20 à 120
Machine à affranchir 67 à 190
NAS 220
Traceur de plans 170 à 470
Machine de mise sous pli 570
Écran TV 120 à 1470
Gros copieur utilisé en reprographie 350 à 1800

Ces consommations ne permettent donc pas de rendre compte :

  • du type d’appareil : marque, puissance, etc.
  • du mode d’utilisation : période de veille, d’arrêt, de fonctionnement, etc.

Le label Energy Star

Les fabricants d’équipement de bureautique peuvent obtenir un agrément auprès de l’Union Européenne pour pouvoir apposer le label Energy Star sur leurs produits.

Ce label signifie que le produit rencontre certaines exigences environnementales.

L’ensemble des appareils labellisé est repris dans une grande base de données sur leur site internet. On y retrouve des appareils tels que :

  • Les ordinateurs : fixes, portables, clients légers, tablettes, stations de travails, etc. ;
  • Les écrans : moniteurs d’ordinateurs, cadres photos numériques, affiches de signalisation, etc. ;
  • Les équipements d’imagerie : copieurs, fax, scanner, imprimantes, etc. ;
  • Les équipements alimentés sans interruptions (« UPS »);
  • Les serveurs.

Pour chacun d’entre eux des caractéristiques techniques et de consommations sont renseignées, notamment la puissance en veille ou à l’arrêt mais aussi une estimation de la consommation totale annuelle.

150 m² de capteurs solaires thermiques à la résidence 3ème âge Aux Lilas de Bonlez

Introduction

Située au cœur du village de Bonlez, à proximité de Wavre et de Louvain la Neuve, la maison de repos « Aux Lilas » accueille 52 résidents dans 40 chambres individuelles et 6 chambres doubles réparties sur 2 étages.

Totalement rénovée récemment, le choix a été fait de couvrir 100 % de ses besoins en chaleur grâce aux technologies renouvelables.

  • 60 % à 70 % de la préparation de l’eau chaude sanitaire est assurée par des capteurs solaires, le reste par la chaudière du chauffage central.
  • Le chauffage central du bâtiment est assuré par une chaudière à pellets. Le système de chauffage est décrit dans l’étude de cas : 100 % de chaleur verte à la résidence 3ème âge Aux Lilas de Bonlez.

L’installation de chauffage solaire et la chaufferie sont situées dans deux locaux séparés.


Choix de la technologie

Il existe deux types de circuits primaires dans les capteurs solaires thermiques : le système classique, sous pression et le système à drainage gravitaire.

Le système classique sous pression comprend entre autres un vase d’expansion et une soupape de sécurité et de vidange manuelle avec recueil des fluides évacués. Il ne se vidange pas à l’arrêt de la pompe. Le liquide reste dans les capteurs, surchauffe, se vaporise et se détériore avec le temps. De plus, l’utilisation d’antigel dans le fluide solaire est nécessaire, car en hiver, par temps clair, la température des capteurs peut descendre fortement sous 0 °C.
La surchauffe limite techniquement le dimensionnement à environ 40 % à 45 % de fraction solaire (pourcentage d’économie pouvant être réalisé). Ce système nécessite une maintenance plus importante. Il est le seul utilisable lorsqu’il n’est pas possible d’éviter les contre-pentes dans le circuit.

Système classique sous pression.

Le système basé sur le drainage gravitaire (drainback), va permettre aux capteurs solaires de se vidanger de façon naturelle et passive à chaque arrêt de la pompe de circulation. Le fluide est ainsi à l’abri des surchauffes et du gel. Le circuit ne peut évidemment pas présenter la moindre contre-pente.
Ce circuit est rempli partiellement d’air et de fluide solaire. La régulation ordonne à la pompe de fonctionner dès le moment où elle perçoit que de l’énergie solaire peut être délivrée aux ballons d’eau sanitaire. Une fois les ballons à température ou lorsque l’apport énergétique délivré par les capteurs est devenu insuffisant, la pompe est mise à l’arrêt. Le fluide contenu dans les capteurs redescend par gravité dans le réservoir de drainage placé en chaufferie. Il prend la place occupée par l’air qui remonte naturellement vers les capteurs. Les capteurs sont alors hors gel et hors surchauffe. Au contraire du fluide dans un système sous pression, l’air peut être chauffé et comprimé sans se dégrader de façon irréversible et sans endommager le reste de l’installation.

Système à drainage gravitaire.

A Bonlez, c’est le système à drainage gravitaire qui a été placé. Grâce à cela, une plus grande surface de capteurs solaires a pu être installée sans risque de surchauffe.

Les apports solaires dépendent de la surface des capteurs solaires. Le graphique ci-dessus montre bien que l’augmentation de la surface de capteurs permise grâce au système gravitaire fait passer la fraction solaire de 40-45 % à 60-70 %.


Choix de la surface optimale

L’énergie nécessaire pour chauffer l’eau chaude sanitaire de la maison de repos est de : 67 240 kWh par an.

Plus on place de surface de capteur solaire, plus on couvrira une partie importante du besoin en énergie avec de l’énergie solaire, plus le coût de l’installation augmentera également.

Des simulations sont effectuées pour différentes surfaces de capteurs et différents volumes de stockage pour déterminer pour chacune d’elle l’apport solaire total annuel et donc la fraction solaire.

 

Fraction solaire en fonction de la surface du capteur.

Résultat des simulations.

Les aides publiques favorisant l’installation d’un système solaire thermique en Région wallonne étant liées au nombre de lits, la courbe du coût total du chauffage de l’eau de l’eau sur 20 ans possède un point bas marqué pour environ 200 m² de capteurs solaires.

Coût total pour chauffer l’eau sur 20 ans.

Ce point bas reste le même pour les trois scénarios de l’évolution de l’énergie.

  • Scénario 1 : le prix du pétrole évolue comme il l’a fait les 15 dernières années.
  • Scénario 2 : le prix du pétrole évolue un peu moins.
  • Scénario 3 : le prix du pétrole évolue beaucoup moins.

Influence du prix du pétrole sur le coût total.


Le choix du client

Le client a choisi une installation de dimensions légèrement inférieures à l’optimum pour réduire son investissement de départ tout en conservant une fraction solaire élevée. La surface des capteurs correspond également à la surface disponible en toiture ce qui optimise les coûts.

Le tableau ci-dessous compare pour le scénario 1 (le prix du pétrole évolue comme il l’a fait les 15 dernières années) les résultats pouvant être théoriquement atteints en fonction des différents choix :

  • sans solaire;
  • système solaire classique;
  • système solaire optimum;
  • système solaire choisi par le client.

Le client a choisi une installation de dimensions légèrement inférieures à l’optimum pour réduire son investissement de départ tout en conservant une fraction solaire élevée.


L’installation réalisée

Schéma de l’installation telle qu’elle a été réalisée.

5 lignes de 12 capteurs de 2.5 m² ont été installées, pour une superficie totale de 150 m².

Les capteurs solaires.

Il y a 7 réservoirs de stockage.

Les réservoirs de stockage.

Un échangeur à plaque est placé entre le circuit primaire et le circuit secondaire. Le système du circuit primaire est à drainage gravitaire. Un réservoir de drainage isolé thermiquement de 400 litres recueille le fluide du circuit primaire lorsque le système est à l’arrêt.

L’échangeur thermique entre le circuit primaire et le circuit secondaire.

L’eau chaude sanitaire est chauffée par le système solaire thermique grâce à un échangeur à plaques.

L’échangeur à plaque pour le chauffage de l’ECS.

Le boiler pour l’eau chaude sanitaire est situé dans la chaufferie. Le système central du chauffage assure l’appoint nécessaire en cas d’insuffisance solaire.

Le boiler ECS.


Bilans

Bilan énergétique

Les simulations ont montré que la fraction solaire utile est de 63.1 %.
L’énergie économisée par an est de 67 265 kWh x 0.631 = 42 444 kWh.
Cette énergie fournie chaque année par le rayonnement solaire ne doit pas être produite par la chaufferie.

  • 95 % de cette énergie aurait été produite par la chaudière à pellets : 40 322 kWh.
  • 5 % de cette énergie aurait été produite par la chaudière d’appoint au mazout : 2 122 kWh.

Le rendement de la chaudière à pellets étant de 90 %, l’énergie consommée par celle-ci aurait été de 40 322 kWh / 0.90 = 44 802 kWh extraits de la biomasse.

Le rendement de la chaudière à mazout étant de 96 %, l’énergie consommée par celle-ci aurait été de 2 122 kWh / 0.96 = 2 210 kWh extraits d’un combustible fossile.

Gain économique

Au prix du mazout de 2016, soit environ 0.53 €/l (tarif 14/06/2016), le gain économique annuel sur la facture de mazout, consécutif à l’installation du système solaire est d’environ 117.00 €.

Au prix des pellets de 2016, soit environ 0.25 €/kg, le gain économique annuel sur la facture de pellets, consécutif à l’installation du système solaire est d’environ 2016.00 €.

Le gain économique total est donc de 2 133.00 €/an. correspondant à une réduction de la facture de 63 % pour la production d’ECS.

L’avantage économique majeur du système solaire réside dans le prix constant du kWh solaire. Alors que, pour les énergies fossiles ou issues de la biomasse, les scénarios les plus réalistes tablent sur une augmentation des prix de l’énergie dans le futur. Il va de soi que si le prix du combustible double, l’économie financière réalisée est également doublée.

Bilan environnemental

Émissions de CO2 évitées

Chauffer l’eau avec le soleil diminue d’autant la production de CO2. Même si l’énergie utilisée pour chauffer l’eau avait été produite à partir de pellets dont la combustion est censée ne pas produire de CO2 , ceux-ci auraient pu être utilisés ailleurs. La seule production de CO2 proviendrait de la combustion du mazout utilisé comme combustible d’appoint en remplacement des pellets.

Dans ce home, la combinaison du chauffage solaire pour l’ECS avec un appoint produit par la biomasse est particulièrement favorable à la préservation du climat.

Autres Impacts

Les autres impacts positifs d’un tel projet résident dans la visibilité du système solaire, rejaillissant sur l’image « durable » de la maison de repos Aux Lilas.


Partenaires du projet et contacts

Cette étude de cas a été rédigée à l’aide des informations fournies par les entreprises qui ont mis en place les installations et du facilitateur Énergie Solaire Thermique.

  • Service Facilitateur Energie Solaire Thermique – Grands Systèmes – Région wallonne
    Monsieur Bernard HUBERLANT
    FacSolthermWallonie@3E.eu

 

Régulation simplifiée au lycée La Retraite à Bruxelles

Régulation simplifiée au lycée La Retraite à Bruxelles


L’école

L’école La retraite qui accueille chaque jour près de 530 élèves à Bruxelles. On distingue deux bâtiments principaux : le plus ancien de 3 500 m² construit aux environs des années 1880 et un second de 940 m² construit en 1995. Ces deux bâtiments ont chacun un système de chauffage distinct. Le plus grand des deux, le plus ancien, avait un chauffage central au mazout qui a été remplacé par un chauffage central au gaz. Il fera l’objet de ce document.


Le programme PLAGE

En 2009, Bruxelles Environnement a lancé le programme « PLAGE écoles » ou Programme Local d’Action de Gestion de l’Énergie pour une durée de 4 ans.

Il s’agissait d’établir un cadastre énergétique des écoles de Bruxelles et d’aider un échantillon d’établissements à mettre en place une politique d’utilisation rationnelle de l’énergie et à se réapproprier la question énergétique, plus souvent « subie » que réellement « gérée ».

Cette mission consistait à définir une méthode centrée sur l’URE et à accompagner les acteurs dans cette démarche, sur quatre années.

Sur l’ensemble des écoles étudiées pour le réseau du SeGEC, seulement vingt ont été définies comme étant prioritaires, soit 10 % des implantations scolaires de ce réseau. Malheureusement, bien qu’il ait été auditionné, le lycée La Retraite n’en faisait pas partie. Il a pu cependant bénéficier d’un accompagnement et de conseils dans sa démarche de rénovation.


Description de l’ancienne installation

photo aérienne bâtiment.

Schéma de principe de l’installation

L’ancienne installation de chauffage comprenait une chaudière à mazout unique et un réseau de distribution classique. Les corps de chauffe sont du type radiateur.

Schéma de principe de l’ancienne installation de chauffage du Lycée « La Retraite ».

À la production, on trouvait  une chaudière au mazout de 450 kW avec un brûleur à deux allures.

L’installation était simple et la consommation relativement faible, mais au détriment du confort.

De plus, la chaudière, peu performante était en mauvais état et tombait souvent en panne. L’installation contenait de l’amiante. La citerne à mazout était ancienne et encombrante. Une odeur de mazout flottait dans les caves. L’impact environnemental était loin d’être idéal.

Il a donc été décidé de rénover la chaufferie.


Choix de la nouvelle installation

Une installation est traditionnellement pilotée au moyen d’une régulation numérique relativement complexe connectée à diverses sondes. Souvent des nouvelles installations sont calquées sur ce modèle complexe de régulation (cf. schéma ci-dessous).

 

Schéma d’une installation classique de chauffage avec production d’eau chaude sanitaire.

Dans les écoles, la mise en service d’une telle installation présente certaines inconvénients et difficultés.

  • Comment choisir un local témoin pour placer les sondes de compensation au Sud ? Dans les classes, la présence des élèves modifie rapidement la température de l’air. Dans le local témoin, cette température est détectée par la sonde qui agit sur les vannes mélangeuses. Mais, toutes les classes ne sont pas occupées en même temps de la même manière et ne demandent donc la même chaleur. La régulation est donc faussée.
  • La demande en eau chaude sanitaire n’est pas synchronisée avec la demande en chaleur. Elle existe également en été. Elle nécessite aussi temporairement de l’eau à une température plus élevée, ce qui n’est pas favorable au rendement des chaudières à condensation.
  • La régulation est complexe et peu intuitive (effet de boîte noire). Elle nécessite aussi des réglages en début de fonctionnement. Le chauffagiste sous-traite souvent cette régulation au fabricant… qui ne connaît pas bien le bâtiment.  Les réglages risquent d’être mauvais, le rendement de l’installation ou le confort diminuent. Dans le pire des cas, la régulation finit par être mise en mode manuel avec toutes les conséquences néfastes que l’on peut imaginer pour le rendement.

Installation traditionnelle existante (conservée) dans le bâtiment de 1995.

Il a donc été décidé de réaliser une installation simplifiée possible grâce aux évolutions techniques apparues ces dernières années.

  • La préparation de l’eau chaude sanitaire sera réalisée par une production indépendante décentralisée.
  • Les radiateurs seront équipés de vannes thermostatiques.
  • La température de la chaudière sera modulée en fonction de la température extérieure (régulation climatique).
  • Des vannes à trois voies motorisées pour régler la température des boucles secondaires ne sont pas nécessaires.
  • Un seul circulateur à vitesse variable sera placé à la sortie de la chaudière. Il sera mis en fonctionnement par une horloge annuelle, pontée par un contact antigel et un bouton de dérogation pour gérer les imprévus. Le tout ne fonctionnera que si la température extérieure est inférieure à 15°C.
  • Le circuit primaire sera de type ouvert.
  • La chaudière à condensation sera capable de supporter un débit nul. Elle n’est mise en route que si le circulateur est en demande.

Il ne reste dès lors qu’à régler la courbe de chauffe de la chaudière et l’horloge du circulateur ainsi que la température extérieure qui l’enclenche. La conduite est simple et efficace.

Grâce aux vannes thermostatiques, la régulation est précise et spécifique à chaque local quels que soient son taux d’occupation, sa localisation, la température demandée et les conditions atmosphériques.

Schéma de l’installation de chauffage réalisée.

Les différents éléments

 

La nouvelle chaudière gaz à condensation de 400 kW.

 

La régulation très simplifiée intégrée à la chaudière explicite et facile à l’emploi.

 

Un seul circulateur à vitesse variable.

 

Circuit primaire de type ouvert avec le départ des différentes boucles de chauffage (pas de vanne à trois voies motorisée).
Les conduites sont correctement isolées.

 

Les nouvelles vannes thermostatiques de type « institution ».

 

Attention, lorsque la vanne est cassée, il n’y a plus de régulation.
Le circuit est entièrement ouvert et la pompe tourne.
(Dans les endroits où le risque de heurter la vanne est grand,
il est intéressant de placer celle-ci parallèlement au mur.)


Quelques chiffres (en 2010)

Coût des travaux

Raccordement (adduction gaz) 6 762 €
Détection gaz 3 525 €
Raccordement eau (+ traitement) 2 692 €
Chaudière 22 650 €
Évacuation gaz (tubage cheminée) 4 882 €
Circulateur 4 450 €
Vase d’expansion 2 350 €
Hydraulique 13 515 €
Électricité 3 800 €
Réception 1 000 €
Démontage hydraulique existant 2 000 €
67 626 €
Vannes thermostatiques (117 pièces) 14 101 €
Neutralisation citerne 1 600 €
15 701 €
TOTAL HTVA 83 327 €

Consommation du bâtiment

  • Avant les travaux : 37 000 litre de mazout par an -> 105 kWh/m².an
  •  Après les travaux : 28 000 m³ de gaz par an -> 80 kWh/m².an

Diminution de la consommation : +/- 24 % avec une augmentation importante du confort dans les classes.

Informations complémentaires

Cette étude de cas a été réalisée avec l’aide de l’asbl CRAIE – Cellule pour la rationalisation et l’aide à la gestion énergétique. Cette structure a été mise en place par d’anciens membres du projet PLAGE. Elle est opérationnelle depuis  janvier 2015. Elle est agréée pour la réalisation de certificats PEB  (bâtiments publics). Elle s’occupe actuellement exclusivement  des écoles catholiques à Bruxelles.

CRAIE – ASBL
Avenue de l’Eglise Saint-Julien 15
1160 BRUXELLES
E-mail : info@craie-asbl.be

100 % de chaleur verte à la résidence 3ème âge Aux Lilas de Bonlez

Introduction

Située au cœur du village de Bonlez, à proximité de Wavre et de Louvain la Neuve, la maison de repos  « Aux Lilas » accueille 52 résidents dans 40 chambres individuelles et 6 chambres doubles réparties sur 2 étages.

Totalement rénovée récemment, le choix a été fait de couvrir 100 % de ses besoins en chaleur grâce aux technologies renouvelables.

 


Description de l’installation de chauffage au bois

La chaudière à pellets

La chaudière à pellet 220 kW avec ses accessoires.

La chaudière à pellets KÖB PYROT  a une puissance nominale de 220 kW alors que la puissance maximale demandée lors des froids extrêmes est de 320 kW. Soit environ 70 % de la puissance totale. Ce choix se justifie par une étude préalable dont les résultats sont représentés dans les deux figures suivantes. En effet, à cette puissance, la chaudière peut couvrir environ 95 % de la consommation annuelle.

Appels de puissance dans le bâtiment sur une saison de chauffe.

Taux de couverture de la chaudière en fonction du
rapport entre sa puissance et de la puissance totale.

Résultats :

  • La durée de vie de la chaudière est optimisée. Elle fonctionnera environ 2 000 heures par an sans s’arrêter et redémarrer trop fréquemment.

 

  • Pour environ la même production d’énergie, l’investissement est plus faible que si une chaudière plus puissante avait été choisie et sera donc plus vite amorti.

La chaudière

  1. Ventilateur à rotation. Il ne crée pas de surpression, mais favorise la combustion par turbulence;
  2. chargement automatique du combustible (ici des pellets);
  3. foyer;
  4. extracteur des fumées;
  5. décendrage interne;
  6. système de recirculation des gaz de fumées/air secondaire régulé;
  7. ventilateur d’allumage.

La chaudière est également équipée d’une série d’accessoires en option qui maintiennent la chaudière à son meilleur niveau de fonctionnement et espace la fréquence entre les interventions :

  • Nettoyage pneumatique automatique des carnaux;
  • dépoussiéreur ;
  • décendrage automatique.

Grâce à ces équipements, les nettoyages/entretiens ne sont nécessaires que toutes les 300 heures de fonctionnement. Lors de l’entretien, le technicien effectue non seulement toutes les interventions prévues à l’échéancier, mais également toutes les autres de manière à être certain qu’aucune ne soit oubliée entre les entretiens. Il a lieu environ 6 fois par an. (1 800 à 2 000 heures de fonctionnement divisées par 300).

Il est à noter qu’un espace important est requis pour le nettoyage de certaines parties. Par exemple, il faut un espace suffisant pour pouvoir introduire les écouvillons dans les tubes situés au-dessus du foyer lorsqu’il est nécessaire de les nettoyer.

La chaudière d’appoint

Une chaudière d’appoint au mazout, de la puissance totale à fournir (320 kW) servira à prendre le relais lorsque la chaudière à pellets ne suffit plus (puisqu’elle ne couvre que 95 % des besoins). Elle servira aussi de backup en cas de panne (ce qui n’est pas encore arrivé) ou lors des entretiens qui nécessitent la tombée en température de la chaudière à pellets. Cela demande un certain temps à cause de son inertie thermique. La chaudière est arrêtée le soir de la veille du jour de l’entretien pour que sa température soit suffisamment basse au matin pour que les techniciens puissent agir. L’entretien lui-même dure environ une demi-journée.

La chaudière à mazout d’appoint 320 kW.

Les ballons de stockage

Le cycle de démarrage et d’arrêt d’une chaudière à pellet est très long (1 h – 2 h). Il faut donc prévoir un stockage thermique adapté. Dans le bâtiment concerné, 3 ballons tampons ont été placés. Ils contiennent ensemble environ 5 500 litres (2 x 2 000 litres + 1 x 1 500 litres).

Les trois ballons tampons.

Schéma de l’installation.


Le silo à pellets

La partie du bâtiment où devait s’installer les chaufferies est neuve. Son sous-sol pouvait donc être aménagé de manière optimale. Une zone a été réservée à la chaufferie, au silo à pellets et au local de préparation de l’eau chaude sanitaire par capteurs solaires thermiques. Le silo a donc pu être placé juste à côté de la chaufferie à proximité directe d’une cour facilement accessible de la rue au camion de livraison. Cela facilite l’approvisionnement même si en pratique le camion pourrait se trouver à une distance maximale de 30 m du silo puisque les pellets sont soufflés et pas déversés.

Configuration de la zone « chauffage à pellets ».

Le silo qui a été choisi est de forme rectangulaire allongée avec des planchers inclinés qui ramène les pellets vers une vis sans fin. La présence du fond incliné fait perdre une partie de l’espace disponible : près de 50 %. La perte augmente lorsque le local est plus large et lorsque la pente du fond est plus raide. D’autres solutions existent en fonction de la géométrie du local de stockage.

Silo – coupe transversale : le local ne peut être rempli complètement à cause des planchers inclinés.

Silo : espace non occupé sous les planchers inclinés.

Les pellets sont introduits dans le silo par insufflation. Leur vitesse est très grande et ils viennent frapper violemment le mur du fond. Une bâche souple et solide a été suspendue devant le mur pour absorber les chocs. On empêche ainsi la pulvérisation des pellets et l’érosion de la maçonnerie.

La bâche de protection au fond du silo.


Consommation, autonomie

Le cas de l’installation au bois de la maison de repos Aux Lilas à Bonlez illustre les enjeux de la conception d’une installation au bois.

Le vecteur énergétique est le pellet. La consommation annuelle moyenne estimée est de 86 tonnes/an ce qui correspond à environ 360 000 kWh/an Net (output chaudière). Les besoins totaux calculés étant de 379 000 kWh/an, la différence de 19 000 kWh/an est assurée par la chaudière au mazout qui consomme ainsi environ 2 000 litres par an.

Le silo a un volume utilisable d’environ 34 m³. Sa capacité est donc d’environ 22 tonnes. La quantité de pellets fournie par livraison est d’environ 17 m³, soit 11 tonnes. En fonctionnement, la chaudière consomme +/- 49 kg de pellets par heure ce qui lui donne une autonomie d’environ 224 heures de fonctionnement.

Pendant les mois de décembre, janvier et février la chaudière consomme +/-15 tonnes/mois. Cela représente 52 % de sa consommation annuelle. Durant cette période, la fréquence d’approvisionnement est donc légèrement inférieure à 1 livraison / mois. Le tampon de 11 tonnes permet évidemment une certaine souplesse. Les pellets brûlés durant les 6 mois d’hiver (période où la puissance demandée est supérieure à 30 % de la puissance disponible) représentent 87 % de la consommation annuelle.

Le bâtiment a été entièrement transformé et une nouvelle installation de chauffage devait de toute façon être placée. Il fallait choisir le combustible. Ce choix s’est porté sur les pellets.

Les chaudières au bois sont plus chères que leurs homologues au mazout, de plus, le gros œuvre fait croître considérablement les coûts.

Pour rentabiliser le surinvestissement  par rapport à une chaudière fuel, les pellets doivent être par kWh significativement moins chers que le mazout. Ce n’est malheureusement pas le cas actuellement (en 2016), car le prix du mazout est particulièrement bas. L’histoire nous a cependant montré que le prix des combustibles fossiles est particulièrement volatil comme le montre la figure ci-après.  Il fluctue fortement en fonction de la situation politico-économique mondiale. Outre l’insécurité que cela provoque, on constate que sa tendance est en moyenne à la hausse. Le prix des pellets est beaucoup plus stable. La source d’approvisionnement étant plus proche, la disponibilité et le coût sont moins tributaires des marchés internationaux ce qui garantit une meilleure sécurité.

Si on prend les prix d’octobre 2012 : mazout à 8.0 c€/kWh et 5.0 c€/kWh pour les pellets, on obtient une différence de 3.0 c€/kWh. En supposant que la chaudière au bois a un rendement équivalent à une chaudière au mazout standard, on retrouve cette différence de 3 c€ au niveau de la facture. La chaudière consomme 360 000 kWh/an. Par conséquent, si le prix des énergies devait rester stable à ce niveau, chaque année la consommation de pellets à la place de mazout permet d’économiser 10 800 €.  Au regard de la durée d’utilisation d’un tel matériel qui avoisine les 20 ans, la rentabilité économique du projet serait clairement prouvée.


Performance environnementale

Si on considère les émissions de gaz nocifs émis par la combustion, on voit que la chaudière à pellets permet de réduire significativement l’empreinte environnementale. Les pellets ou granulés de bois sont issus de sous-produits du bois la sciure qui est affinée, séchée et ensuite comprimée sans colle ni additif. Leur fabrication n’influence la bonne gestion des forêts.
Si on considère le cycle complet du combustible, c’est-à-dire en intégrant les processus énergivores de l’extraction, du conditionnement et du transport, on peut prendre une émission de 327 grammes d’équivalent CO2 émis par kWh pour le mazout et de 25 grammes par kWh pour les pellets. Si on intègre le cycle de vie complet, l’impact du bois-énergie sur l’émission de gaz à effet de serre n’est pas nul, mais il est de loin inférieur par rapport aux énergies fossiles. Dans le cas du mazout, la différence est estimée à 302 grammes de CO2 par kWh. Si on reprend la consommation annuelle de la chaudière de 360 000 kWh, les pellets permettent de réduire l’émission de 108 tonnes d’équivalents CO2 par an ! En termes de production de SO2, cette réduction serait de 200 kg/an.

Partenaires du projet et contacts

Cette étude de cas a été rédigée à l’aide des informations fournies par les entreprises qui ont mis en place les installations et du facilitateur Bois-Énergie.

  • Service Facilitateur Bois Energie – Secteur Public – Région wallonne
    Fondation Rurale de Wallonie
    Monsieur Francis FLAHAUX
    pbe@frw.be
  • Installation de chauffage
    Monsieur Alain HEEREN
    hrea@viessmann.be

Economies d’énergie au Collège Notre Dame de Basse Wavre

Economies d’énergie au Collège Notre Dame de Basse Wavre


Introduction

Le Collège Notre Dame de Basse Wavre situé en Brabant Wallon à proximité de la ville de Wavre est un établissement scolaire accueillant environ 2 000 élèves. Il compte 200 membres du personnel, enseignants et ouvriers. 8 bâtiments sont disposés sur 7 hectares de terrain. La surface chauffée est de 15 582 m². Chaque année, le collège consomme 150 000 litres de mazout, 196 000 kWh d’électricité et 6 000 m³ d’eau. En 2009, les Directions du primaire et du secondaire ont décidé de rassembler en un seul projet fédérateur, plusieurs projets, en lien avec le développement durable, initiés au cours des années précédentes.


Un projet d’établissement fédérateur

En 2009, le Collège est entré dans une démarche d’Agenda 21, dans le cadre d’un partenariat avec l’asbl COREN, qui a fourni un encadrement méthodologique et des outils d’action.

Tous les projets autour de la santé, de l’environnement, de la solidarité nord-sud et de la citoyenneté rentrent dans cet Agenda. Entrer dans le processus d’Agenda 21 a été contraignant, mais cela a permis de structurer l’action sur 3 ans et d’atteindre des objectifs qui ne l’auraient sans doute pas été sans cela.

Dans ce processus, la Direction a commencé par marquer son engagement auprès de l’asbl COREN et par constituer un comité de pilotage pour coordonner le projet. L’école a ensuite dû réaliser un diagnostic qui a permis de construire un plan d’action prévoyant des indicateurs de suivi environnementaux, sociaux et éducatifs. Ce plan est régulièrement évalué pour permettre les réajustements nécessaires et préciser les actions de l’année suivante. La labellisation « Écoles vers un Agenda 21 » intervient après l’évaluation de la démarche et des actions initiées.
Les moyens humains consacrés à l’Agenda 21 sont : pour l’école primaire, un instituteur qui consacre 2 heures par semaine au développement durable ; pour le secondaire, 3 enseignants qui consacrent 6 heures par semaine au projet.

Dans ce cadre diverses actions ont été menées : amélioration de la mobilité, nette amélioration du tri des déchets, achats scolaires plus durables, semaine du développement durable, mise en place d’éco-délégués dans les classes… En parallèle, des investissements économiseurs d’énergie ont été réalisés, et pour poursuivre la démarche, la Direction a décidé de renforcer les compétences en énergie de son économat, qui a suivi en 2011 la formation de Responsable énergie de la Région wallonne.

Les enjeux de l’Agenda 21 pour l’école

Pour l’école, les enjeux de l’Agenda 21 sont multiples :

  • Travailler pour la qualité de l’environnement et le bien-être des élèves.
  • Construire un processus participatif responsabilisant en concertation avec les élèves, les enseignants, la direction, le personnel administratif et technique, et les partenaires extérieurs tels que les associations de parents.
  • S’engager pour une éducation au développement durable en intégrant cette dimension dans le programme de cours.
  • Réduire les dépenses et optimiser les ressources.

Actions pédagogiques de sensibilisation à l’énergie

Organisation d’une semaine du développement durable

En octobre 2010 avec tous les élèves et tous les professeurs, diverses activités sont animées par les professeurs et des intervenants extérieurs. Cet événement a été important pour lancer une dynamique dans l’école. Au primaire, après avoir suivi une mini formation, les éco-délégués retournent en classe expliquer aux autres élèves la démarche apprise et certaines bonnes pratiques. Encadrés par leur instituteur, les élèves proposent des actions à réaliser. Durant la semaine du développement durable, chaque classe s’était ainsi engagée à mener une action particulière.

Actions ponctuelles organisées avec les éco-délégués

Organisation d’une chasse au gaspillage de nuit : accompagnés de professeurs et de Facilitateurs Éducation de Région wallonne, les élèves, munis d’instruments de mesure, identifient les gaspillages électriques de nuit dans leur école.

Participation à la journée de la mobilité avec l’asbl Pro-vélo qui remet aux participants des brevets de cyclistes.

Intégration de l’énergie dans le contenu des cours

En cours d’éducation par la technologie au 1°er degré, un professeur a organisé avec une classe de 24 élèves un audit éclairage dans le collège baptisé « Opération kill a watt ». Avec l’aide de Facilitateurs Éducation de Région wallonne, les élèves ont ainsi pu identifier par eux même la source de gaspillages et débattre de pistes pour diminuer la consommation électrique à l’école et à la maison. Chaque classe de 1° a ensuite reçu les résultats de l’analyse de sa classe.

Autres actions menées : travail de groupe de recherche documentaire sur la thématique de l’électricité, étude d’appareils électriques et de leurs de leurs caractéristiques via l’utilisation d’appareils de mesure.


Éco-délégués dans les classes

Le projet des éco-délégués vise à sensibiliser au développement durable les 2 000 élèves de l’école. Au total, 30 éco-délégués sont actifs dans l’école, à raison d’un par classe (de 1° à 6°). Ils travaillent avec un éco-comité composé du directeur, et des professeurs responsables du développement durable. Chaque éco-délégué est élu par sa classe, la plupart du temps sur base d’un programme présenté dans le cadre d’une campagne.

Rôle et profil de l’éco-délégué :

  • Être le relais entre la classe, la direction et l’enseignant responsable des divers projets.
  • Être un relais vers les plus jeunes.
  • Être une personne ressource capable de répondre et de justifier les actions auprès des élèves de la classe.
  • Être responsable du bon déroulement des actions prévues.
  • Avoir suivi des mini formations d’1/2 journée : économie d’énergie, tri des déchets, cadre de vie.
  • Participer à des réunions pour préparer des actions.
  • Être responsable de certaines bonnes pratiques dans la classe (extinction des lumières, gestion du chauffage, etc.).

Savoir pour mieux agir

Au Collège Notre Dame de Basse Wavre, la gestion de l’énergie et des infrastructures incombent à l’économat. Il a instauré un suivi des consommations de combustible, d’électricité et d’eau afin d’identifier l’origine des dérives de consommations, et suivre l’évolution des consommations après  réalisation d’investissements. Les pistes d’action mises en œuvre au collège sont reprises ci-dessous.

Économies de chauffage

Plan d’action URE réalisé.

Placement de vannes thermostatiques administratives inviolables préréglées sur 20 °C pour éviter les situations de vannes bloquées en position maximale. Coût : +/- 25.00 €/pce.

Modification du circuit de distribution de chauffage du réfectoire. Le réfectoire était chauffé 25 heures/semaine alors qu’il n’est utilisé que 8 heures/semaine. La modification des circuits a permis d’instaurer une régulation adaptée aux horaires d’occupation.

Situation antérieure : pas de circuit distinct.

Modification des circuits permettant l’adaptation aux horaires d’occupation.

Économie réalisée : passage d’une consommation de 952 kWh/semaine à 304 kWh/semaine pour le réfectoire, soit une économie de 65 litres de fuel/semaine. Économie sur une saison (20 semaines) de chauffe : 65 x 20 = 1 300 litres. Le prix du mazout varie, mais à 0.50 €/litre cela représente 650.00 €.
Le coût du dispositif étant de 3 000.00 € le temps de retour dans ces conditions serait de 4.5 ans.

Installation d’un dispositif de régulation du chauffage. L’économat remarque que les consommations d’un bâtiment n’ont pas baissé alors que tous les châssis ont été changés. Grâce à l’analyse d’enregistrements de température dans deux bâtiments, il constate que la régulation fonctionne dans un bâtiment, mais pas dans l’autre. Le chauffage n’était pas coupé la nuit et le weekend, ce qui peut être à l’origine d’une surconsommation de 30 % ! Une nouvelle régulation a été installée dans le bâtiment objet de dysfonctionnements.

Matériel utilisé :

  • Nouvelle station météo avec enregistreur de température : 200. 00  €
  • Nouvelle régulation complète : 1700.00 €

Calorifugeage de 152 m de tuyaux.
Économie de 802 litres de fioul par an.
Le coût du calorifugeage étant de 684.00 € le temps de retour est égal 1.7 an (si 1 litre de fioul = 0.50 €).

Remplacement de 200 châssis.
Temps de retour : 30 ans. Cela peut sembler long, mais il ne faut pas oublier de prendre en compte la réduction des problèmes d’infiltration d’air, l’amélioration du confort thermique et acoustique, la résolution des problèmes de sécurité, etc.

D’autres projets sont envisagés ou en cours : création d’un sas d’entrée dans les bâtiments, instauration d’un système de contrôle à distance pour l’éclairage, le chauffage et la distribution d’eau.


Économies d’électricité

Pour limiter les consommations électriques d’éclairage, l’école a commencé par réaliser un diagnostic de son installation (identification du niveau d’éclairement dans chaque pièce, identification du matériel installé et des consommations associées). Le système d’éclairage a ensuite été remplacé dans certains locaux pour permettre une mise aux normes (éclairement suffisant) et pour limiter les consommations d’énergie.

Remplacement de tubes fluo d’ancienne génération et de lampes à incandescence par du matériel plus performant (Tubes fluo T5 à ballast électronique, lampes fluo-compactes, LED). La durée de vie allongée du matériel permet également des économies en termes de maintenance. Coût : +/- 100.00 €/Pce.

Placement dans les couloirs d’un détecteur de mouvement avec luxmètre : l’éclairage ne s’enclenche que lors du passage d’une personne ET lorsque la lumière naturelle est insuffisante. La durée d’éclairage ne représente plus que 21 % de ce qu’elle était auparavant : la minuterie diminue l’éclairage de +/- 50 %, le détecteur de lumière de +/- 30 %

Économie réalisée : passage d’une consommation de 341 400 kWh/semaine à 610 66 kWh/semaine, soit environ 39.00 € d’économie par semaine d’activité pour l’ensemble des bâtiments (15 582 m²).


Économies d’eau

Afin de limiter les pertes liées à d’éventuelles fuites sur le vaste réseau de distribution de l’école, des électrovannes ont été placées sur le réseau afin de couper l’alimentation en dehors des heures d’occupation.

Coût d’une électrovanne main d’œuvre incluse : 500 €
Économie d’eau estimée à 143m3/an pour 60 toilettes,
soit une économie de 490 €/an. Ce qui représente un temps de retour égal à environ 1 an.


Et l’avenir ?

D’autres projets sont envisagés ou en cours : création d’un sas d’entrée dans les bâtiments, instauration d’un système de contrôle à distance pour l’éclairage, le chauffage et la distribution d’eau.

Informations complémentaires

Cette étude de cas provient d’une fiche réalisée par le facilitateur URE non marchand de Wallonie en 2011.

Évaluer un risque de condensation superficielle sur les vitrages

Évaluer un risque de condensation superficielle sur les vitrages


Condensation superficielle côté intérieur

Comment la reconnaître ?

Schéma condensation vitrage

Dans le cas d’un double vitrage, elle se localise dans les coins et sur le pourtour du châssis et du vitrage, à cause des déperditions plus grandes existant dans ces zones par la présence de l’intercalaire du vitrage.

Normalement, la condensation se fera premièrement sur les vitrages et non sur les châssis.
Cependant, la présence de vitrages isolants peut favoriser la condensation de surface sur les châssis surtout si ceux-ci sont en aluminium et sans coupure thermique; leur température peut être plus basse que celle des vitrages.

La présence de condensation intérieure sur les vitrages entraîne

  • une diminution de la visibilité,
  • la formation de givre,
  • des tâches sur les verres, tablettes et allèges, dues aux gouttelettes ruisselantes,
  • la formation de moisissures sur le mastic et/ou le châssis.

Elle n’est gênante qu’en quantité excessive….

Influence du vitrage sur les risques de condensation superficielle

Lorsque la fenêtre constitue la surface intérieure la plus froide du local, c’est d’abord sur celle-ci que va se former de la condensation superficielle. Celle-ci se forme sur la paroi vitrée sans causer de dégâts, l’air intérieur est asséché et la teneur en humidité de l’air du local (xi) (en g/kg) diminue. De ce fait, le risque de condensation superficielle sur les autres parois diminue.

Un autre avantage d’une telle fenêtre, lorsqu’il n’y a pas de système de ventilation contrôlée et qu’il n’est pas envisageable d’en placer un, est que dès qu’il y a condensation à sa surface, les occupants sont prévenus que l’air est trop humide et qu’il faut ventiler.

Ainsi, il est intéressant d’avoir un vitrage sur lequel la condensation superficielle se forme plus rapidement que sur n’importe quelle autre paroi ou n’importe quel pont thermique présent dans le local.

Exemple.

Dans un local, le pont thermique le plus important a un τmin de 0,545. Il s’agit d’une terrasse en béton en encorbellement avec isolation (résistance thermique de 1 m² x K/W) intérieure au droit du linteau et entre la dalle et le plancher.

Schéma pont thermique terrasse.

τ1 = 0,705;
τ2  = 0,905;
τ3 = 0,955;
τ4 = 0,785;
τ5 = 0,98;
τ6 = 0,885;
τ7 = 0,545;
τ8 = 0,77.

τMin = τ7 = 0,545

Le local est muni de vitrages doubles ayant un coefficient de transmission thermique U de 3,22 W/m²K. Le coefficient d’échange thermique de surface entre le vitrage et l’ambiance intérieure (hi) = 10 (W/m²K).

La condensation superficielle va-t-elle se former d’abord sur les vitrages ou sur le pont thermique ?

Calcul du facteur de température (τ) du vitrage :

τ = [(1/3,22) – (1/10)] / (1/3,22)
τ = 0,68 > 0,545 :

La condensation superficielle apparaîtra en premier lieu sur le pont thermique !

Avec un simple vitrage (U = 7 W/m²k), on aurait eu τ = 0,3 < 0,545 : la condensation superficielle, dans ce cas, se forme d’abord sur le vitrage !

Calcul de la teneur en humidité de l’air du local lorsqu’il y a formation de condensation superficielle sur les vitrages

Remarque : Le texte ci-dessous est extrait de la NIT 153 du CSTC.

De l’humidité est extraite de l’air du local par la formation de condensation.
La teneur en humidité de l’air du local (xi) sera par conséquent plus basse que s’il n’y avait pas de condensation superficielle.

En supposant qu’on se trouve en régime stationnaire, l’équation hygrométrique du local comportera un terme supplémentaire, à savoir la quantité d’humidité qui condense par unité de temps sur une surface déterminée A (m²) dans le local.

Ce raisonnement conduit à la relation :

avec,

  • i : le taux d’humidité de l’air intérieur dans le cas où il n’y a pas de condensation superficielle, calculé à l’aide de la formule ci-dessus
  • xsA : le taux d’humidité de saturation (g/kg) correspondant à la température superficielle ηoi (°C) de la surface A

Cette relation est démontrée dans l’Annexe de la NIT 153 du CSTC, pg. 77.

L’expression ci-dessus, peut être utilisée dans les conditions suivantes :

xe < 7 g/kg,
2,5 g/kg < xsA < 12 g/kg,
10°C < ηi < 20°C.

avec,

  • xe : la teneur en humidité de l’air extérieur (g/kg),
  • θi : la température intérieure (°C).

On procède comme suit :

  • On détermine xi° à l’aide de la relation ci-dessus.
  • On détermine xsA en fonction de la température superficielle du vitrage ou de la paroi la plus froide du local.
  • Si xi° > xsA, il y a condensation superficielle.
  • On trouve la valeur finale de xi à l’aide de la relation ci-dessus.
Exemple.

Soit un local muni d’un vitrage de 2 m², ηi = 12°C, D = 0,05 kg/h et nV = 10 m³/h (D/nV = 0,005 kg/m³).

Les conditions extérieures sont ηe = -10°C, φe = 90 % -> xse = 1,60 g/kg.

Admettons que le vitrage de 2 m² soit la surface la plus froide de la pièce.

xi° = 0,9 x 1,6 + 825 x 0,005 = 5,56 (g/kg)

La température superficielle du vitrage est donnée par la formule :

avec,

Pour un vitrage simple (k = 7 W/m²K) et pour un vitrage double (k = 3,22 W/m²K) avec hi = 10 W/m²K, on trouve :

θoi (vitrage simple) = – 3,40°C -> xsA = 2,84 g/kg,
θoi (vitrage double) = 4,92°C -> xsA = 5,37 g/kg.

Comme dans le cas d’un vitrage simple, xsA < xi, on peut conclure que de la condensation se formera sur les vitres.

On calcule :

xi = (5,56 + 10,48 x 2,84 x 2/10) / (1 + 10,48 x 2/10) = 3,72 g/kg

Remarque.

Il convient d’attirer l’attention sur le fait que la valeur xi trouvée se situe à un niveau élevé uniquement parce que nous sommes partis d’une situation stationnaire. Une telle situation est rare en réalité et, lorsque de l’humidité commence à se produire à un moment donné, le degré hygrométrique de l’air du local n’augmentera que lentement.


Condensation superficielle côté extérieur

Comment la reconnaître ?

Celle-ci se manifeste d’abord au centre du vitrage, c’est à dire dans la partie la mieux isolée qui reçoit un minimum d’énergie venant de l’intérieur.

On observe ce phénomène :

En effet, dans ces conditions sous l’effet du rayonnement important vers la voûte céleste (surrefroidissement) et des faibles pertes thermiques à travers le vitrage, la température du vitrage peut descendre sous la température de rosée de l’air extérieure, entraînant l’apparition de condensation sur la face extérieure du vitrage.

Ce phénomène est lié au fait qu’avec un vitrage très isolant, la température de leur face extérieure reste très basse, la chaleur interne étant piégée à l’intérieur du bâtiment.

Comment l’éviter ?

Pas de chance, il n’ y a pas moyen! … À moins d’équiper ses fenêtres d’essuies-glace performants !

Photo reflet vitrage.

Consolons-nous, cela constitue une preuve des performances d’isolation des vitrages concernés !


Condensation entre les vitrages

Si on constate la présence de condensation et qu’elle n’est ni sur la face interne du vitrage ni sur la face externe, c’est qu’elle s’est formée à l’intérieur du double vitrage…

Les vitrages isolants sont habituellement garantis contre la formation de condensation interne pendant une durée de 10 ans.

Cependant des désordres peuvent apparaître bien avant en cas de pose inappropriée du vitrage, c’est à dire :

La formation de condensation interne au vitrage est plutôt un mauvais signe : cela signifie que le sicatif présent dans l’intercalaire à perdu de son efficacité ou que le scellement n’est plus hermétique. Cela entraîne un remplacement quasi inévitable du vitrage.

Améliorer

Si vous voulez en savoir plus sur le remplacement d’un vitrage. 

Repérer un problème de condensation superficielle

Repérer un problème de condensation superficielle


Distinguer un problème de condensation superficielle d’un autre problème d’humidité

Un problème de condensation se manifeste par des problèmes d’humidité ou/et de moisissure. Remarquons cependant que des moisissures peuvent apparaître même sans condensation de surface. En effet, de la condensation superficielle apparaît chaque fois que l’humidité relative à la surface d’une paroi atteint 100 %, alors que la formation de moisissures sur une paroi peut déjà se produire à partir d’une humidité relative de 80 % si le matériau en contact avec l’air humide est hygroscopique.

Néanmoins, un problème d’humidité ou de moisissure peut avoir une autre origine que la condensation de surface. L’eau à l’origine du problème peut provenir d’une cause extérieure :

  • d’infiltrations d’eau de pluie,
  • de la succion d’eau contenue dans le sol (humidité ascensionnelle),
  • de l’absorption d’eau par les matériaux lors de la construction (humidité de construction),
  • de fuites dans une conduite ou une descente d’eau, dans un tuyau d’évacuation (humidité accidentelle).

D’autre part, la condensation interne peut aussi être à l’origine de problèmes d’humidité.

Les infiltrations d’eau de pluie

L’eau de pluie est aspirée de l’extérieur vers l’intérieur du bâtiment par capillarité dans les pores du matériau ou s’infiltre par des fisssures, des joints ouverts, etc.

Le tableau ci-dessous permet de distinguer si l’on est en présence d’un problème d’infiltration ou de condensation superficielle :

Infiltrations

Condensations

Les infiltrations se manifestent à travers les couvertures vétustes. Elles sont plus graves en bas de versants et lors de pluies battantes. Les condensations se manifestent au droit des ponts thermiques (linteaux, corniches, bandeaux, consoles, etc.).

Elles apparaissent surtout dans les locaux peu chauffés et mal ventilés ou dans ceux où il y a une production de vapeur importante.

Les condensations se forment le plus souvent sur les parois orientées au nord ou à l’est car elles sont plus froides.

Les taches ont, en général, des formes arrondies. Les taches se localisent, en général, dans les angles et aux endroits mal ventilés (dos du mobilier, …).
Le débit d’eau est en général trop important pour qu’il y ait formation de moisissures. Très souvent, les condensations s’accompagnent de moisissures.
L’intensité des taches d’humidité passe par un maximum quelques heures après une pluie importante. Le risque de condensation de surface est plus élevé pendant les longues périodes d’hiver où les températures varient entre 0 et 10°C et en présence d’une humidité relative extérieure élevée (temps de brouillard et de pluie).
L’enduit intérieur se dégrade assez rapidement (décollement et pourriture). L’enduit se dégrade plus tardivement et uniquement si les condensations sont très abondantes.
Le décollement du papier peint est fréquent. Le décollement du papier peint est moins fréquent.

* Ce tableau est largement inspiré du tableau page 11 de la brochure : Condensation et moisissures – Service public Wallon/ Aménagement du territoire, Logement, Patrimoine et Énergie (DGO4) / Département de l’Énergie et du Bâtiment durable – Par le Centre Scientifique et Technique de la Construction (CSTC).

L’humidité ascensionnelle

L’humidité ascensionnelle résulte de la pression de la nappe phréatique ou de la succion capillaire de l’humidité du sol. De ce fait, les murs s’imprègnent d’humidité jusqu’à une hauteur de 1,2 à 1,5 m. Ce phénomène se manifeste en l’absence de digue horizontale étanche sous la base des murs.

Si le bas de la face verticale des murs est étanche, l’humidité ascensionnelle peut monter plus haut.

Le problème de l’humidité ascensionnelle concerne rarement les toitures sauf les parfois en bas de versant lorsque celle-ci se trouve proche du sol.

L’humidité de construction

L’humidité de construction est la quantité d’humidité présente dans un bâtiment après la fin des travaux de construction. Elle provient de :

  • L’eau qui est absorbée par les matériaux de construction pendant leur stockage chez le fabricant ou sur le chantier.
  • L’eau de gâchage nécessaire pour la mise en œuvre des matériaux (mortier, béton, plâtre, etc.).
  • L’eau qui provient des précipitations pendant la construction.

Il est déjà arrivé, qu’un an après la construction d’un bâtiment, l’on récolte un demi seau d’eau en perçant une alvéole d’un hourdi en béton.

L’humidité accidentelle

L’ humidité accidentelle est l’humidité qui provient d’une fuite dans une conduite ou une descente d’eau, ou d’une évacuation bouchée.


Tableau récapitulatif

Certaines observations permettent de suspecter l’origine des problèmes. Attention, les phénomènes constatés peuvent découler de plusieurs causes qui parfois même se conjuguent et s’amplifient mutuellement. Le tableau ci-dessous aide à réaliser une première analyse.

OBSERVATIONS, PHENOMENES

CAUSES POSSIBLES

Condensation Pluie battante Humidité ascensionnelle Humidité accidentelle
Pas d’aération, mauvaise isolation thermique x
Humidité de l’air élevée x
Dégâts limités au N. et au NE. x (x) (x)
Dégâts limités au SO. et à l’O. x (x) (x)
Les dégâts ne commencent pas d’en bas x x (x)
Dommages localisés x (x) (x) x
Ponts thermiques x
Dégradation dans les angles x (x)
Sol transpirant x
Humidité uniquement sur la surface intérieure x (x)
Finition intérieure non poreuse x
Taches sur la façade extérieure x x (x)
Pas ou peu de dépassant de toiture x
Taches redentées, irrégulières sur la surface intérieure x (x)
Mur creux (correctement exécutés) (x) (x) (x)
Efflorescences aux étages x (x)
Efflorescences au niveau du sol (x) (x)
Augmentation de l’humidité en fonction de la hauteur x
Consommation anormale d’eau x
Dommage à la toiture, aux gouttières ou aux conduites d’amenée et d’évacuation x
Humidité sur l’épaisseur totale du mur (intérieur et extérieur) (x) x
Dommages limités à l’étage inférieur x
Apparition de dommages peu de temps après une période de pluie x (x)
Davantage de dégâts pendant la saison de pluie x (x) x

Légende : x : cause possible; (x) : possibilité à ne pas exclure.

* Source : Condensation et moisissures – Service public Wallon/ Aménagement du territoire, Logement, Patrimoine et Énergie (DGO4) / Département de l’Énergie et du Bâtiment durable – Par le Centre Scientifique et Technique de la Construction (CSTC).


Un repère : l’année de construction (ou de rénovation) du bâtiment

En général, ce sont surtout les bâtiments datant de la fin des années 1970 et des années 1980 ou ayant été rénovés durant ces années qui présentent des problèmes de condensation et de moisissures.

En effet, depuis la fin des années 1970, l’isolation est devenue chose courante dans le bâtiment. Ce changement dans les habitudes de construction a été induit par le choc pétrolier de 1973.

L’isolation des bâtiments en Wallonie se systématise après 1985, date à laquelle, l’Exécutif régional wallon adopte un règlement thermique imposant une isolation thermique de l’enveloppe des nouveaux logements.

Mais lorsqu’on a commencé à isoler les bâtiments, on a fait beaucoup d' »erreurs de jeunesse » :

  • On a employé des matériaux inadéquats : par exemple, les coulisses remplies de laines minérales trop souples et non hydrofugées ont provoqué de graves problèmes d’humidité.
  • On n’a pas soigné la mise en œuvre de l’isolant : par exemple, les coulisses non nettoyées ou une méthode d’élévation des murs creux inadaptée à de nouvelles exigences ont conduit à des défauts d’isolation.
  • On n’a pas changé la conception des bâtiments, la création de ponts thermiques, résultant d’anciennes pratiques architecturales (exemple : linteau coulé sur place).

Ces défauts ont provoqué des problèmes de condensation superficielle.

De plus, les mesures annexes prises afin de diminuer les consommations, et accompagnant l’isolation ont également favorisé les problèmes de condensation. Ces mesures sont :

  • la réduction de la température intérieure (dans certaines pièces, le chauffage a même été coupé),
  • le calfeutrement des portes et fenêtres,
  • la limitation de l’aération.

Ainsi, très rapidement, l’idée d’isolation fut confondue avec l’idée de calfeutrage et associée à celle d’humidité.

Mais si les bâtiments de cette époque ont particulièrement souffert du manque de connaissance, les problèmes de condensation ne se cantonnent malheureusement pas uniquement à ceux-ci et malgré la maîtrise actuelle de la technique, on retrouve encore des défauts de construction menant tout droit à des problèmes de condensation dans les bâtiments récents.

Nouvelle cogénération dans la piscine du Sart-Tilman à Liège


Introduction : une cogénération dans une piscine

Une première question qui vient à l’esprit pour le gestionnaire ou le futur gestionnaire d’une chaufferie de piscine est de savoir comment faire pour minimiser le coût énergétique que va nécessairement engendrer un tel ensemble. Non seulement en termes de, besoins en chauffage pour le bâtiment, eau chaude pour les diverses activités présentées, les douches etc., mais également en termes de consommation électrique.

En termes de consommation énergétique, il n’est pas rare de rencontrer des chiffres bien supérieurs à 1 000 000 kWh annuel en gaz ou en électricité (cet ordre de grandeur peut varier fortement d’un établissement à l’autre).

Parallèlement à des chiffres purement économiques, viennent aussi à l’esprit l’intérêt environnemental et énergétique.

Afin de tenir compte de cette triple problématique, la réflexion conduit naturellement à envisager un projet comportant une unité de cogénération. Cette solution va apporter une solution énergétiquement optimisée qui, à partir d’un moteur alimenté au gaz (dans le cas présent) va produire à la fois de l’eau chaude et de l’électricité.

Cette solution aura un bilan intéressant à plusieurs niveaux : énergétiquement tout d’abord car l’énergie primaire consommée sera réduite par rapport à une production séparée de chaleur et d’électricité.

Économiquement ensuite car les kWh électriques produits le seront à un prix plus intéressant que celui acheté au réseau. De plus le législateur a prévu un incitent financier, calculé sur l’économie en CO2 émis par la cogénération (en comparaison à une production séparée de référence : centrale électrique TGV et chaudière à condensation), sur base de la génération de certificats verts qui pourront être valorisés par la suite.


Présentation du projet, d’où vient l’idée du projet

Le projet de cogénération à la piscine du Sart-Tilman a été lancé en 2008 en remplacement d’une pile à combustible expérimentale.

Inauguré en 2009, le projet a maintenant atteint un rythme de croisière dont on peut commencer à tirer un bilan technico-économique. La cogénération installée alimente la piscine du centre sportif ainsi que les divers consommateurs qui y sont liés (groupe de traitement d’air, douches). Elle est connectée de façon à prendre à sa charge une partie des besoins en chaleur de ces différents consommateurs dont la puissance totale nécessaire en période de pointe est de 1 500 kW, la cogénération a une puissance thermique installée de 202 kW soit environ 13,5 % de ces besoins. Le complément de chaleur qui n’est pas fourni pas la cogénération est fourni par le réseau de chaleur présent sur le site du Sart-Tilman.

En pratique la cogénération, d’une puissance thermique de 202 kW et d’une puissance électrique de 144 kW, est dimensionnée de façon à fonctionner un maximum de temps.
Elle fonctionne ainsi de l’ordre de 6 500 heures par an en moyenne. Ce chiffre, très intéressant afin de rentabiliser un tel projet, est rendu possible par des besoins en chaleur présents pratiquement toute l’année.

Une particularité d’une la cogénération installée pour chauffer une piscine est la possibilité d’utiliser le volume d’eau de la piscine (800 m³ dans le cas présent) comme tampon de chaleur afin de lisser le fonctionnement de cette cogénération et ainsi diminuer la fréquence des arrêts-démarrages. Ceux-ci sont en effet préjudiciables au rendement et à l’usure mécanique de cette cogénération.
Le bassin va permettre de continuer de faire fonctionner la cogénération même lorsque la demande des utilisateurs est trop faible que pour recevoir toute la chaleur produite. Cette chaleur y sera injectée dans certaines limites acceptables; en effet l’augmentation temporaire de température se traduira inévitablement par des pertes plus importantes (évaporation d’eau et déperditions calorifiques plus importantes…).
Le bassin, ainsi utilisé comme tampon de chaleur, permettra dans le cas présent de faire fonctionner la cogénération pas loin de 4,5 heures en augmentant la température de consigne de 1 °C.


Importance du dimensionnement, difficultés rencontrées

Le dimensionnement d’une unité de cogénération est quelque chose de sensible qui nécessite une évaluation la plus précise possible des besoins en chaleur de l’établissement où elle sera installée. C’est en effet principalement sur ces besoins en chaleur que la cogénération sera dimensionnée, elle devra également tenir compte de la consommation électrique de l’établissement. En effet, d’une façon générale, un maximum de l’électricité produite devra être autoconsommé par l’établissement afin de rentabiliser l’investissement.

Pour ce dimensionnement, l’idéal est de disposer d’un relevé quart horaire de ces besoins pendant une période de temps qui permettra d’extrapoler le profil de consommation hebdomadaire et la demande annuelle en chaleur. Sur base de cette demande, la cogénération sera dimensionnée pour maximiser sa production annuelle de chaleur.

  • Sous-dimensionnée, elle fonctionnera plus longtemps que la cogénération optimale mais produira moins que cette dernière. Elle représentera donc un manque à gagner.
  • Surdimensionnée, elle sera sujette à des cycles d’arrêt-démarrage trop fréquents qui pénaliseront son rendement de production et donc sa rentabilité. Cela grèvera également sa durée de vie et représentera un surinvestissement non justifié. De plus des cycles d’arrêt-démarrage fréquents vont provoquer une usure moteur plus importante et dès lors des frais de maintenance plus élevés.

Une fois le dimensionnement optimal effectué il restera à intégrer la cogénération dans la chaufferie et mettre en place une régulation qui la fera fonctionner à l’optimum de ses possibilités.

Ces éléments importants à rappeler permettront, une fois intégrés, de mettre en place via la cogénération un projet d’utilisation rationnelle de l’énergie (URE) efficace. Ce projet doit pour bien faire s’intégrer dans un ensemble de mesures URE dont certaines sont prioritaires ; comme par exemple la réduction des déperditions thermiques. De plus ces mesures URE déjà prises auront un impact sur le dimensionnement de la cogénération : si les besoins en chaleur sont moindres, la puissance à installer sera évidemment plus faible et le coût d’investissement moins important.


Conclusions du projet

La fiabilité de l’installation ainsi que les gains engrangés par la cogénération de la piscine du Sart-Tilman sont déterminants. D’un point de vue purement financier, pour un investissement total de près de 300 000 €, le temps de retour s’établit à 8 ans. Ce chiffre qui peut paraître élevé s’explique entre autre par le coût relativement intéressant de la chaleur achetée au réseau présent sur le site du Sart-Tilman ainsi que par le contrat d’entretien et l’omnium complète qui ont été choisis.
Dans le cas d’un site ne disposant pas de ce réseau et connecté au gaz, on trouve généralement des temps de retour proche des 5 ans.


Chiffres clés du projet (moyenne des 3 dernières années)

  • Puissance thermique : 202 kW
  • Puissance électrique : 144 kW
  • Heures de fonctionnement annuel : 6 500 heures
  • Consommation de gaz : 2 600 MWh (PCS)
  • Économies CO2 : 107 T/an
  • Certificats Verts : 246 CV/an

Contacts

Porteur de projet

Piscine du Sart-Tilman Éducation Physique
Université de Liège, Administration des Ressources immobilières
Maud LELOUTRE : Responsable Énergie
Tel : +32 (0) 4.366.37.89

Facilitateur Cogénération en Région Wallonne

Institut de Conseil et d’Études en Développement Durable asbl
Bvd Frère Orban, 4
5000 Namur
Tel : +32 (0) 81.250.480
Fax : +32 (0) 81.250.490

Crédits photos

Université de Liège : https://www.uliege.be/
Centres Sportifs du Sart-Tilman : www.rcae.ulg.ac.be/

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Nouvelle cogénération au gaz dans un home pour personnes âgées

Nouvelle cogénération au gaz dans un home pour personnes âgées


Introduction : une étude de faisabilité

En 2005, la Région de Bruxelles-Capitale a mandaté l’ICEDD pour effectuer une étude du potentiel de développement de la cogénération sur son territoire. Les résultats montrent, qu’au niveau industriel, une entreprise sur 5 pourrait installer une cogénération rentable (temps de retour inférieur à 3 ans) tandis qu’un établissement sur 2 dans le secteur tertiaire pourrait installer une unité de cogénération rentable (temps de retour inférieur à 5 ans).

Un home de la commune d’Anderlecht figure parmi ces établissements propices à la cogénération. Suite à ces bons résultats, le home a été invité à fournir des données plus précises pour réaliser une étude dite « de pertinence ». L’étude de pertinence permet, suite au pré-dimensionnement et aux calculs de rentabilité « à la grosse louche » de savoir s’il est pertinent d’installer une cogénération ou non dans le bâtiment étudié.

Cette étude de pertinence, remise en décembre 2005, a confirmé l’intérêt d’une cogénération, mais elle n’est cependant pas suffisamment précise pour que les gestionnaires puissent décider, en connaissance de cause, l’achat d’un tel équipement.

Il est nécessaire de savoir s’il y a de la place disponible et si l’acheminement du module de cogénération est possible. Il est également indispensable de pouvoir simuler le fonctionnement de cette cogénération selon les profils des besoins thermiques et électriques tel que mesurés dans le bâtiment étudié. Des simulations qui permettent d’optimiser et de fiabiliser les résultats du dimensionnement et de la rentabilité.

Ces réponses sont apportées par l’étude de faisabilité, étape ultime avant la décision d’investir. Vu l’intérêt et la motivation des gestionnaires des bâtiments, la Région de Bruxelles-Capitale a offert une étude de faisabilité gratuite, objet du présent rapport.

L’étude de faisabilité a été effectuée par le Facilitateur en Cogénération financé par la Région de Bruxelles Capitale. Pour toute information complémentaire, n’hésitez pas à contacter le Facilitateur en Cogénération.

Le document complet est disponible au téléchargement : Installation d’une cogénération dans un home pour personnes âgées (PDF).


Présentation du home

Le home est une maison de repos et de soins avec 209 places.

Installation de chauffage

Le chauffage des bâtiments est assuré actuellement par 3 chaudières au gaz naturel avec des puissances thermique de 466 kWth, 494 kWth et 494 kWth respectivement.

Dans le cadre de cette étude de faisabilité, une mesure des besoins thermiques à été effectuée en mesurant les temps de fonctionnement (à chaque demi-heure) des chaudières durant deux semaines, permettant d’obtenir un profil des besoins thermiques du bâtiment. Cette étape est en effet indispensable pour pouvoir dimensionner le plus judicieusement possible l’unité de cogénération.

Installation électrique

Le home est alimenté en électricité par une cabine haute tension (11 000 V) et alimente un transformateur. La consommation électrique est télé-relevée par Sibelga tous les quarts d’heure. Ce profil quart horaire a généreusement été transmis par Sibelga pour l’année 2005. Cette donnée est indispensable pour connaître la quantité d’électricité produite par la cogénération qui sera effectivement auto-consommée par le home ainsi que la part qui sera revendue sur le réseau électrique.

Le TGBT électrique, en aval de la cabine haute tension, est situé juste à côté de la chaufferie. La distance de câble entre le TGBT et la chaufferie où serait située la cogénération a été estimée à 15 mètres.


Synthèse des résultats

L’objectif de cette étude de faisabilité est d’évaluer l’intégration technique de la cogénération dans l’installation existante, de proposer la meilleure solution technologique et d’établir le bilan d’un projet de cogénération au gaz naturel pour le home. C’est au terme de cette étude que le décideur pourra choisir d’investir ou non dans une unité de cogénération.

Le résultat montre qu’une unité de cogénération au gaz naturel de 230 kWth et 150 kWé est économiquement intéressante, surtout couplée à un stockage de chaleur de 10 m3. Par ailleurs, elle présente de nombreux avantages énergétiques et environnementaux.

Résultats Valeurs

Techniques : Moteur au gaz naturel

Puissance « optimale »

230 kWth et 150 kWé
Nombre d’heure de fonctionnement 6 888 heures/an
Volume du ballon de stockage 10 m³
Énergétiques
Situation « avant » cogénération (factures 2005)
Consommation de gaz naturel (avec 10 % URE) 3 176 401 kWhprimaire PCI/an
Consommation d’électricité 845 996 kWé/an
Situation « après » cogénération (simulations COGENsim)
Consommation de gaz naturel de la cogénération 2 899 826 kWhprimaire PCI/an
Consommation de gaz naturel des chaudières 1 382 468 kWhprimaire PCI/an
Production de chaleur par cogénération 1 524 843 kWhth/an
Production d’électricité par cogénération 983 123 kWé/an
Économiques (montants HTVA)
Situation « avant » cogénération (factures 2005) 188 094 €/an
Facture combustible 109 585 €/an €/an
Facture électrique 78 508 €/an
Situation « après » cogénération (simulations COGENsim) 133 192 €/an
Facture combustible 147 740 €/an
facture électrique (dont revente d’électricité) 30 712 €/an (10 161 €/an)
Facture des entretiens et d’assurance 17 276 €/an
Gain de la vente des certificats verts 52 375 €/an
Gain annuel 54 902 €/an
Investissement net (tout compris) 173 720 €
Temps de retour simple (TRS) 3,2 années
Taux de rentabilité interne (TRI) 22 %/an
Environnementaux
Émissions de CO2 évitées 126 294 kg CO2/an
Objectif Kyoto satisfait pour 405 bruxellois (312 kg CO2/bruxellois)
Nombre de certificat vert (1 CV = 217 kg CO2) 582 CV/an
Économie en gaz naturel 582 540 kWh/an (16 %)


Synthèse des hypothèses

Outre les résultats, il est important de présenter, de manière synthétique, les hypothèses prises lors de l’étude. Dans le choix des hypothèses, nous avons tâché de nous situer du côté de la « sécurité », afin que le home puisse prendre la décision d’investir avec le maximum de garanties.

On distingue 4 types d’hypothèses : techniques, énergétiques, économiques et environnementales.

Il est important de préciser que ces hypothèses n’ont un impact que sur le calcul de la rentabilité du projet de cogénération et non sur son dimensionnement.

Techniques

  • Rendements de l’unité de cogénération : Évolution en fonction de la charge
  • Charge du moteur : Fonctionnement jusqu’à 75 % de sa charge nominale

Énergétiques

  • Besoins thermiques : 100 % du combustible pour la production de chaleur
  • Rendement annuel de la chaufferie : 85 % pour la chaufferie actuelle au mazout (estimation)
  • Réductions pour futures actions URE : 10%
  • Année de référence : 2005 (année chaude de + 12,4 % que l’année normale)
  • Type de combustible : Gaz naturel – PCI = 10.8 kWh PCI/m3
  • Isolation du ballon de stockage : 15 cm de laine de roche soit diminution de 1.01°C/24h

Économiques

  • Durée de vie économique : 50 000 h (env 10 ans)
  • Investissement : Tout compris (moteur, échangeurs, connexion électrique, conteneur acoustique, régulation, génie civil)
  • Investissement supplémentaire : Ballon de stockage de 10 m3 tout compris (cuve, isolation, jaquette, supports, pompes, vannes)
  • Prix mentionnés : HTVA
  • Facteur de sur-investissement : 10 % (pour éventuels imprévus)
  • Taux de subside : 20 %
  • Prix du gaz et évolution : Prix décembre 2005 (30,9 €/MWh) & + 5 %/an
  • Prix de l’électricité : Prix 2005 (92,76 €/MWh) & + 2 %/an
  • Gain sur la facture d’électricité : Réduction de puissance quart horaire non considérée
  • Régime « heures pleines » : de 7 heures à 22 heures, les jours ouvrables
  • Prix des entretiens : Contrat tout compris (huile, assurance bris de machine et dépannage) hors inspection journalière visuelle
  • Taux d’actualisation (= taux d’emprunt) : + 5 % / an
  • Prix de vente du certificat vert : 90 € / CV pendant 10 ans

Environnementales

  • Coefficient d’émission en CO2 : 217 kg CO2 / MWh de gaz naturel


Synthèse du dimensionnement

L’utilisateur d’une cogénération, pour qu’elle soit de qualité ou à haut rendement, doit valoriser toute la chaleur et toute l’électricité produites. Si la production d’électricité est supérieure aux besoins, il y aura revente sur le réseau électrique. Par contre, il est plus difficile de le faire pour la chaleur excédentaire.

C’est pourquoi, une cogénération est dimensionnée sur les besoins thermiques des bâtiments. C’est lors de l’optimisation économique de la taille que l’on tient compte des besoins électriques, en évaluant la part d’électricité auto-consommée et celle qui est revendue.

Afin de connaître avec précisions l’évolution dans le temps des besoins thermiques et électriques, des compteurs ont été placés durant le mois de janvier. Ensuite, pour la partie thermique, grâce aux degrés jours de la station météo d’Uccle, une extrapolation du profil a été réalisée.

Pour la partie électrique, Sibelga nous a fourni gracieusement les puissances ¼ heure par ¼ heure pour toute l’année 2005, l’extrapolation n’était pas nécessaire. La mesure électrique a permis de valider les données reçues. Ainsi, les profils thermique et électrique sont connus pour une année entière.

Ensuite, grâce au logiciel COGENsim, nous avons simulé le fonctionnement de plusieurs tailles de cogénération pour finalement choisir la plus rentable : une cogénération par moteur au gaz naturel de 230 kWth et 150 kWé.

Optimisation économique de la taille de cogénération à installer au home

En outre, différents scénarios de fonctionnement ont été testés. Celui qui est le mieux adapté au home consiste à faire fonctionner la cogénération 24h/24, 12 mois par an et d’y accoupler un ballon de stockage de chaleur de 10 m3.

L’intégration de la cogénération et de son ballon de stockage de chaleur est aisé, vu la place disponible dans la chaufferie et la facilité d’acheminement.


Contacts

Facilitateur Cogénération en Région de Bruxelles-Capitale

Institut de Conseil et d’Études en Développement Durable asbl
Bvd Frère Orban, 4
5000 Namur
Tel : +32 (0) 81.250.480
Fax : +32 (0) 81.250.490

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Pile à combustible

Pile à combustible


Principe

La pile à combustible part du principe de conversion de l’énergie chimique de combustion (réaction d’oxydo-réduction) en énergie électrique, en chaleur et en eau.

Les éléments de base constituant une pile à combustible sont principalement au nombre de trois, à savoir :

  1. une électrode de type anode émettrice d’électrons (oxydation);
  2. une électrode de type cathode collectrice d’électrons (réduction);
  3. un électrolyte séparant les deux électrodes.

Pour certains types de pile, l’injection continue d’un combustible au niveau de l’anode (H2 par exemple) induit, en présence de platine, la réaction d’oxydation catalytique :

H2 → 2H+ + 2e

De par ses propriétés physico-chimiques, l’électrolyte est « perméable » aux ions H+, ce qui leur permet de migrer vers l’électrode cathodique. Dans un même temps, l’électrolyte est aussi « imperméable » aux électrons et leur impose de passer par un circuit conducteur externe à la pile. D’où la création d’un courant électrique si le circuit est fermé.

L’injection continue de dioxygène de l’air (ou oxygène de l’air en simplifiant) au niveau de la cathode induit, aussi en présence de platine, la réaction suivante de réduction catalytique :

½ O2 + 2H+ + 2 e → H2O + Q (chaleur)

L’effet escompté est assuré puisque la réaction physico-chimique dans son ensemble produit de l’électricité aux bornes des électrodes et de la chaleur.

Schéma principe pile à combustible.

En première approche, cette technologie est propre vu qu’une pile alimentée avec de l’hydrogène et de l’oxygène rejette de l’eau. Le seul hic est que la production d’hydrogène, à l’heure actuelle, est très énergivore et potentiellement polluante.

Les piles à combustible sont caractérisées par la nature de l’électrolyte :

  • Un électrolyte acide induit une migration d’ions positifs (H+) de l’anode vers la cathode.
  • À l’inverse, un électrolyte basique génère la migration d’ions négatifs (OH, O2-, CO32-) de la cathode vers l’anode.

Les types de pile à combustible

Piles à combustible à électrolyte acide

  • Les PEMFC (Proton Exchange Membrane Fuel Cell). L’électrolyte est constitué d’une membrane solide polymère. Les températures de fonctionnement sont basses (20 – 100 °C).
  • Les DMFC (Direct Methanol Fuel Cell). À la place de l’hydrogène, les piles utilisent comme combustible le méthanol (CH3OH). Injecté directement sur l’anode avec de l’eau son oxydation catalytique produit des ions H+ et du gaz carbonique. Comme sur les PEMFC, une membrane solide polymère constitue l’électrolyte et permet la migration des H+ vers la cathode.
  • Les PAFC (Phosphorique Acid Fuel Cell) utilisent comme électrolyte l’acide phosphorique liquide emprisonné dans une matrice solide poreuse. Elles peuvent fonctionner jusqu’à 200 °C.

Piles à combustible à électrolyte basique

  • Les AFC à potasse liquide (Alkaline Fuel Cell) utilisent l’ion OH libéré par réduction catalytique de cette base sur la cathode.
  • Les MCFC (Molten Carbonate Fuel Cell) utilisent des carbonates de lithium et de potassium fondus pour la migration des ions CO32-.
  • Les SOFC (Solid Oxyde Fuel Cell) sont à base d’un électrolyte solide (zircone dopé aux terres rares) afin de produire des ions O2-.

Le catalyseur aux électrodes

Le rôle du catalyseur dans la réaction d’oxydo-réduction au niveau des électrodes est déterminant dans le rendement de la pile. Actuellement, on utilise du platine qui est un métal rare et coûteux. Les constructeurs et les labos de recherche tablent à moyen terme sur l’utilisation des nanotechnologies pour développer des catalyseurs.

Les enjeux énergétiques

Les piles à combustible présentent beaucoup d’atouts comme, par exemple :

  • des rendements élevés;
  • silencieuses;
  • sans pièce mobile;
  • dans une gamme de température large;
  • d’un point de vue environnemental, ne produit que de la chaleur et de l’eau.

Cependant, le défi est de taille pour produire de l’hydrogène. À 95 %, l’hydrogène est issu du « reformage » à la vapeur (ou vaporeformage) de combustibles fossiles comme le gaz de ville, le butane, le propane, … avec émission importante de CO2.

La  réaction générale s’écrit :

CnH(2n+2) + nH2O → nCO + (2n+1)H2

Exemple avec n = 1 : CH4 + H2O → CO + 3H2

Il est nécessaire de neutraliser le CO. Une réaction seconde permet d’y arriver :

CO + H2O → CO2 + H2

Du CO2 est donc émis !

En termes de rendement global théorique, des annonces de 95 % pour des piles à combustible domestique sont avancées au niveau de programme européen ene.field :  http://enefield.eu/
À prendre donc en considération, mais avec des « pincettes ».

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Procédure d’octroi des certificats verts

Procédure d’octroi des certificats verts


Préalable

La procédure d’octroi des Certificats Verts et LGO a été modifiée par l’Arrêté du Gouvernement Wallon du 3 avril 2014 relatif à la promotion de l’électricité produite au moyen de sources d’énergie renouvelable ou de cogénération. La nouvelle procédure est applicable depuis le 01/07/2014.

Il convient de toujours se référer au site Portail de la Région Wallonne pour s’assurer de la dernière version de la procédure applicable.


Présentation synthétique du mécanisme

La nouvelle procédure d’octroi des certificats impose à l’auteur de projet un passage par différentes étapes reprises ci-dessous :

  • Une demande réservation de CV. Cette demande doit être faite à la Région Wallonne et validée par elle suivant la disponibilité des CV dans l’enveloppe prévue pour la filière « cogénération ».
  • Une certification de l’installation, par un organisme agrée qui accorde un CGO ou Certificat de Garantie d’Origine pour l’installation. Lorsque l’installation est certifiée, l’organisme agréé envoie le CGO à la CWaPE. Cette démarche fait office de demande d’octroi de CV/LGO.
  • Un accord de la CWaPE quant à l’octroi des CV/ou LGO.

Le schéma ci-après reprend les étapes de la procédure de permis d’environnement.

Schéma étapes de la procédure de permis d’environnement.

(1) Formulaire à remettre à la Région (DGO4) :

  • Renseignements généraux
  • Dossier technico-financier
  • Informations relatives au projet
    • Calendrier
    • Business plan
    • Étude de faisabilité
    • Autorisations spécifiques
    • Estimation du nombre de CV

Délais de réponse : 45 jours.

(2) Validation par l’organisme agréé de la Conformité de l’installation et de la Conformité au code de comptage.

  • Le CGO fait office de demande d’octroi de CV et LGO.
  • Délais de réponse : 45 jours.

Les infos utiles

La CWaPE : https://www.cwape.be

  • Mise en place une plateforme spécifique pour faciliter la gestion des certificats vert.
  • L’édition chaque année d’un rapport sur l’évolution du marché des certificats verts.
  • La mise à disposition d’un outil Excel pour le calcul des certificats verts.

Le Portail de la RW : http://energie.wallonie.be

  • Les certificats verts.
  • La réservation.
  • Les procédure et formulaires.
  • L’état de l’enveloppe.
  •   …

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Acteurs de la cogénération en Région Wallonne et à Bruxelles

Acteurs de la cogénération en Région Wallonne et à Bruxelles

Les acteurs du marché de la cogénération

Le petit monde de la cogénération belge comporte de nombreux acteurs que ce soit des bureaux d’études, des installateurs, des entreprises de maintenances ou encore des organismes institutionnels. Pour facilité la recherche, le Facilitateur Cogénération pour la Wallonie a élaboré une liste d’outils et de documents associés disponibles ici :


La Commission wallonne pour l’Énergie (CWaPE)

La CWaPE est l’organisme responsable de la régulation du marché du gaz et de l’électricité en Wallonie.

La Commission wallonne pour l’Énergie (CWaPE) est la clé de voûte du bon fonctionnement du marché régional de l’électricité. Elle est l’organe de régulation, de contrôle et de transparence du marché wallon de l’électricité afin d’éviter tout abus de position dominante.

Elle est investie d’une mission de conseil auprès des autorités publiques ainsi que d’une mission générale de surveillance et de contrôle de l’application des décrets et arrêtés qui y sont relatifs. Elle est chargée de réaliser un rapport relatif à l’évolution du marché de l’électricité. Ce rapport d’abord communiqué au Gouvernement et au Parlement est ensuite publié.

En particulier, la CWaPE est responsable du contrôle du respect des dispositions en matière de promotion des sources d’énergie renouvelables et de la cogénération de qualité. Elle tient une banque de données dans laquelle sont enregistrés les renseignements relatifs aux certificats de garantie d’origine des unités de production d’électricité à partir de sources d’énergie renouvelables et/ou de cogénération, ainsi qu’aux labels de garantie d’origine et aux certificats verts octroyés à ces unités de production.

Elle organise un service de conciliation et d’arbitrage pour les différends relatifs à l’accès au réseau et à l’application du règlement technique. Elle pourra enfin, moyennant adaptation, intervenir en tant que régulateur du marché gazier si le législateur décide d’étendre les missions de la CWaPE à ce secteur.

Consultez le site de la Commission wallonne pour l’Énergie à l’adresse http://www.cwape.be


Le Comité de Contrôle de l’Électricité et du Gaz (CCEG)

Le CCEG est un organisme qui a débuté ses activités en 1955 pour être supprimé en 2003.

De nouvelles compétences ont alors été transférées à la CREG.


Le Comité de Régulation de l’Électricité et du Gaz (CREG)

Le Comité de Régulation de l’Électricité et du Gaz (CREG) est l’organisme fédéral de la régulation des marchés du gaz et de l’électricité en Belgique.

La CREG est un organisme autonome belge régi par la loi-programme du 22 décembre 2003 (M.B. 31/12/2003).

La CREG a plusieurs missions essentielles :

  • une mission de conseil auprès des autorités publiques.
  • surveiller la transparence et la concurrence sur les marchés de l’électricité et du gaz naturel.
  • veiller à ce que la situation des marchés vise l’intérêt général et cadre avec la politique énergétique globale.
  • veiller aux intérêts essentiels des consommateurs.

Le site de la CREG informe entre autres sur :

  • les tarifs de l’électricité et du gaz naturel.
  • des analyses relatives à l’évolution des prix, au fonctionnement des marchés, à la sécurité d’approvisionnement en électricité et en gaz naturel.
  • la législation pertinente de l’énergie.

Consultez le site du Comité de Régulation de l’Électricité et du Gaz http://www.creg.be


SPW Territoire, Logement, Patrimoine, Energie

Le SPW Territoire, Logement, Patrimoine, Energie œuvre à faire baisser la consommation d’énergie, à promouvoir les énergies renouvelables.

Le Département participe à la définition et au développement des politiques dans ces matières et coordonne les actions menées pour encourager les bonnes pratiques, aussi bien dans le secteur résidentiel, en ce compris la cible particulière des jeunes, que dans l’industrie et le tertiaire, y compris dans le secteur public.

Le soutien à la recherche et développement et à l’innovation vise aussi à réduire la consommation d’énergie et à développer à moindre coût le recours aux sources d’énergie alternatives.

Le Département veille par ailleurs à la bonne organisation des marchés régionaux de l’énergie par la rédaction et l’application d’actes réglementaires, mais aussi par la contribution à la mise en place de mesures d’accompagnement sociales des clients finaux des marchés régionaux de l’énergie.

Pour réaliser ces missions s’inscrivant le plus souvent dans un contexte européen, le Département compte trois directions : la direction du bâtiment durable, la direction de la promotion de l’énergie durable et la direction de l’organisation des marchés régionaux de l’énergie.

En particulier, le SPW Territoire, Logement, Patrimoine, Energie encadre également les accords de branche pour l’industrie et les soutiens financiers aux investissements économiseur d’énergie dont la cogénération fait partie.

Consultez le portail énergie de la Wallonie   http://energie.wallonie.be/


La Direction Générale Opérationnelle de l’Agriculture, des Ressources Naturelles et de l’Environnement – DGO3

La direction générale opérationnelle de l’Agriculture, des Ressources naturelles et de l’Environnement gère les patrimoines naturel et rural de la Région wallonne, propose des axes de développement dans les secteurs agricole et environnemental (y compris les ressources naturelles), détecte et gère les accidents environnementaux, veille au respect des exigences du développement durable.

Elle prépare et met en œuvre la Politique agricole commune, certifie et contrôle la qualité des animaux, des produits animaux, du matériel végétal de reproduction et des produits réglementés.

Elle exerce un contrôle opérationnel du régime des cours d’eau non navigables dans le respect d’une gestion intégrée de l’eau et de l’information au public.

Consultez le portail environnement de la Wallonie http://environnement.wallonie.be/

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Évaluer l’intérêt du financement par un tiers investisseur [cogen]

Évaluer l’intérêt du financement par un tiers investisseur


Le principe du tiers investisseur

La production simultanée d’électricité et de chaleur, appelée communément « cogénération », nécessite une connaissance approfondie d’un ensemble de disciplines qui n’est pas évident de maîtriser.

Le Tiers Investisseur est un concept et un instrument qui permet la prise en charge de la responsabilité totale de chaque phase d’un projet et qui en finance tous les coûts.

Ce système présente les avantages :

  • de travailler à « livre ouvert »;
  • de ne pas demander de participation financière au client;
  • de permettre au consommateur final un recentrage de son entreprise sur son métier de base;
  • de faire appel aux compétences externes non liées à un seul fabricant;
  • d’une intégration optimale des composantes techniques et financières par rapport aux financements classiques.

La formule proposée au client se présente de la façon suivante :

  • Le tiers investisseur prend à sa charge l’investissement représenté par la cogénération et les risques qui y sont liés, en ce compris le système de récupération de chaleur, le raccordement « combustible » et les éventuels travaux de transformation de la cabine de fourniture d’électricité.
  • Les installations de production de chaleur en place chez le client ne sont pas démantelées, elles assurent l’appoint nécessaire ou reprennent la production de chaleur en cas d’arrêt de l’installation de cogénération.
  • Le tiers investisseur se paie sur les économies réalisées, selon diverses formules possibles.

Avec diverses options possibles selon les formules proposées :

  • Le tiers investisseur prend ou ne prend pas la responsabilité des études et de la réalisation.
  • Le tiers investisseur est ou n’est pas propriétaire des installations.
  • Le tiers investisseur prend ou ne prend pas en charge les coûts liés à l’exploitation et à la maintenance.
  • Le tiers investisseur prend ou ne prend pas en charge les responsabilités liées à l’exploitation et à la maintenance.
  • Le tiers investisseur peut garantir les économies par rapport au prix du marché pour les productions séparées.
  • Le tiers investisseur se fournit éventuellement en combustible auprès du client afin de bénéficier des tarifs industriels qui ne lui sont pas directement accordés.


Le consommateur propriétaire des installations

Dans ce type de formule, le consommateur est propriétaire des installations.

Le tiers investisseur, après avoir investi dans les équipements, se paie sur les économies réalisées. Les aspects techniques peuvent dans ce cas être réalisés par le tiers investisseur lui-même ou par un bureau indépendant choisi par le consommateur.

Ce système présente plusieurs avantages :

  • Il donne accès à un ensemble de subsides. Dans la mesure où le consommateur est propriétaire des installations, il a droit aux subsides de la Région Wallonne.
  • Le tiers investisseur partage les économies générées et assure un remboursement de manière proportionnelle et conditionnelle.
  • Le tiers investisseur garantit un seuil et une durée de remboursement.
  • Une fois les investissements amortis, les économies sont entièrement au bénéfice du consommateur.
  • Les aspects techniques peuvent être traités par un bureau indépendant, choisi par le consommateur.

Le tiers investisseur propriétaire des installations

Dans ce type de formule, le tiers investisseur, propriétaire des équipements qu’il a étudiés et installés lui-même, vend l’électricité et la chaleur au consommateur.

Un producteur-fournisseur d’électricité comme tiers investisseur

La formule présente les caractéristiques suivantes :

  • Le fournisseur d’énergie vend de la chaleur au client, le prix étant basé sur une structure tarifaire classique, mais à un tarif réduit.
  • L’électricité qui est produite par le cogénérateur est la propriété du fournisseur d’énergie. La tarification de l’électricité au client reste identique par rapport à une situation sans cogénération, tant que le client n’est pas libéralisé.

Une société indépendante comme tiers investisseur

La formule présente les caractéristiques suivantes :

  • Électricité : une partie est produite par l’installation, le solde est acheté au réseau par le tiers investisseur. La totalité est vendue au client avec une remise garantie par rapport au meilleur prix que le client peut obtenir du réseau.
  • Chaleur : une partie est produite par l’installation, le solde est produit par les chaudières. La totalité est vendue au client avec une remise garantie par rapport au prix de revient de la chaleur produite par les chaudières.

La remise par rapport aux prix du marché est confirmée après l’étude de faisabilité, elle reste fixe pendant toute la durée du contrat.


Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Contexte wallon du développement de la cogénération

Contexte wallon du développement de la cogénération


Point de départ et vue d’ensemble

L’Arrêté du Gouvernement de la Région Wallonne a été publié le 30 novembre 2006 afin de promouvoir l’électricité verte et la cogénération de qualité.

L’intitulé est : « Arrêté du Gouvernement Wallon relatif à la promotion de l’électricité verte et de la cogénération de qualité ».

L’Arrêté a créé véritablement de nouvelles conditions économiques pour la cogénération :

  • Le nombre de certificats verts est fonction de l’économie de CO2 par rapport à la production séparée des mêmes quantités de chaleur et d’électricité dans des installations modernes de référence.
  • Un marché de certificats verts est créé par l’obligation pour tout fournisseur d’atteindre des quotas. Ceux-ci auront donc une valeur marchande qui s’ajoutera au prix du kWhé produit.

L’Arrêté détermine les règles applicables :

  • La certification des installations de production d’électricité verte et de cogénération : Principes et procédure de certification.
  • Les garanties d’origine de l’électricité produite à partir de sources d’énergie renouvelable.
  • Le mode de calcul de l’économie relative de CO2 et du nombre de certificats verts.
  • Les obligations à charge des fournisseurs d’électricité.
  • Les conditions et modalités de reconnaissance des certificats verts émis par d’autres autorités.

Évolution de l’Arrêté

L’Arrête en RW a suivi un certain nombre de modifications et d’abrogation. Elles se retrouvent sur différents sites officiels comme :

Important

Le Code de comptage énonce les dispositions applicables aux installations de mesure et le comptage liées aux installations de production d’électricité verte ou de cogénération. Une installation de production d’électricité verte ou de cogénération doit répondre aux prescriptions du code de comptage pour pouvoir être certifiée. Celui-ci est disponible ici : Procédures et codes de comptage de l’électricité produite à partir de cogénération en Région walonne (PDF)

Réglementations

Procédure d’octroi des certificats verts.

Appréhender les exigences en matière de cogénération de qualité

Afin de rencontrer ses objectifs politiques d’amélioration de l’efficacité énergétique et des outils de production d’énergie en relation notamment avec les émissions de CO2, le décret du 12 avril 2001 a particulièrement privilégié les modes de production d’énergie qui sont les plus performants d’un point de vue énergétique et environnemental.

Ainsi, la cogénération de qualité est définie comme étant « une production combinée de chaleur et d’électricité, conçue en fonction des besoins de chaleur du client, qui réalise une économie d’énergie par rapport à la production séparée des mêmes quantités de chaleur et d’électricité dans des installations modernes de référence, dont les rendements annuels d’exploitation sont définis et publiés annuellement ». Actuellement, l’installation de référence pour la production de chaleur est une chaudière ayant un rendement de 90 %. Du côté électrique, il s’agit d’une Turbine Gaz Vapeur (TGV) ayant un rendement de 55 %.

On dira que cette cogénération de qualité produira de l’électricité verte si elle a un taux minimum de 10 % d’économie de CO2 par rapport aux émissions de CO2 d’une production classique dans des installations modernes de référence. »

C’est en fonction de l’économie de CO2 qu’un nombre proportionnel de certificats verts pourra être attribué à une installation de cogénération de qualité pour chaque MWhé produit.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Évaluer le développement de la filière en Wallonie

Évaluer le développement de la filière en Wallonie


Bilan 2013 en Région Wallonne

Les installations en 2012 ont permis de produire 2140 MWh d’électricité nette (bilan 2013) pour 496 MW électrique installés. La cogénération apporte ainsi 7,1% de la production électrique de la Wallonie.

Production nette d’électricité répartie par type de centrales en Wallonie en 2013 (sources : Electrabel, SPE, CWaPE, ICEDD).

Pour atteindre cette production, le parc de cogénération se répartit suivant les différentes technologies, turbines et moteurs :

Puissance électrique : 519 MWe

Caractéristiques du parc des centrales de cogénération par type d’installation (source : Bilan Icedd – 2013).

La cogénération peut répondre aux besoins des différents secteurs, la puissance installée est majoritairement retrouvée dans les industries, alors que le secteur tertiaire possède un maximum d’unité.  Le secteur tertiaire peut en effet présenter un profil de besoin de chaleur tout à fait adapté pour l’utilisation de la cogénération. L’usage de la cogénération dans le logement, et plus spécifiquement, dans le logement individuel reste marginal.

Répartition de la puissance installée par secteur (source : Bilan Icedd – 2013).


Potentiel économique des cogénérateurs

Une étude a été menée par PWC, l’ICEDD et le Bureau DEPLASSE dans le cadre de la « Directive efficacité énergétique 2012/27 – Art. 14 – Stratégie de réseaux de chaleur et de froid alimentés par des cogénérations et des énergies fatales ».

Sur base de cette étude, le potentiel économique évalué en 2015 pour le développement de la cogénération est le suivant :

  • La puissance thermique est de 85 MWth, dont 44% dans le secteur industriel. La production thermique correspondante est estimée à 458 GWh ;
  • La puissance électrique est de 67 MWé, avec 50% dans le secteur industriel. La production électrique correspondante est de 361 GWh.
TERTIAIRE INDUSTRIE TOTAL

Part du pot. technique

Nombre total d’établissements 2 636 579 3 215
Nombre avec potentiel économique 210 24 234 9,6%
Part du total 8% 4% 7%
Puissance thermique totale kWth 48 078 37 007 85 086 16,1%
Puissance électrique totale kWe 33 288 33 431 66 719 15,6%
Production chaleur cogénérée MWh 218 541 239 714 458 255 14,4%
Production électrique cog. MWh 150 989 210 797 361 085 13,8%

Camembert puissance électrique totale (kWth)Camembert puissance électrique totale (kWe)

Camembert chaleur cogénérée MWhCamembert production électrique cog. MWh

Source : Directive efficacité énergétique 2012/27 – Art. 14 – Stratégie de réseaux de chaleur et de froid alimentés par des cogénérations et des énergies fatales (PWC, ICEDD, DEPLASSE).


Les réseaux de chaleur: une solution intéressante

dimensionnée sur les besoins de chaleur et non sur des besoins en électricité. Cette contrainte peut être considérée comme limitative pour les gros consommateurs en électricité.

Dans des installations ayant un grand besoin électrique, une alternative est alors de surdimensionner l’installation pour le besoin électrique pour autant qu’on valorise adéquatement la chaleur excédentaire. Une solution pour valoriser cette chaleur est de la distribuer dans le voisinage, par le biais d’un réseau de chaleur. Le réseau de chaleur et les installations satellites doivent être conçus pour limiter les pertes et donc maintenir un bon rendement global de distribution, régulation et stockage.

Une étude a été menée par PWC, l’ICEDD et le Bureau DEPLASSE dans le cadre de la « Directive efficacité énergétique 2012/27 – Art. 14 – Stratégie de réseaux de chaleur et de froid alimentés par des cogénérations et des énergies fatales ».

Sur base de cette étude, le potentiel wallon de développement des réseaux de chaleur a été évalué. La Région wallonne possèderait 940 secteurs statistiques avec un besoin linéaire supérieur à 2 000 kWh/an.m, représentant un potentiel énergétique de 13 733 GWh. Ce potentiel est logiquement concentré autour des villes les plus importantes (les plus denses).

Dans ces 940 secteurs statistiques, on dénombrerait 399 549 bâtiments résidentiels et 47 286 bâtiments tertiaires. Les bâtiments résidentiels représenteraient dès lors 89% de ce potentiel, contre 11 % pour le secteur tertiaire.

Notons que suite à la rénovation du parc bâti (rénovations et nouvelles constructions), ce potentiel théorique aura tendance à diminuer au fil des ans, étant donné l’augmentation de la performance énergétique du parc.


Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Intérêt de la cogénération

Intérêt de la cogénération


Une économie d’énergie significative

Le principe d’une cogénération est de produire simultanément de la chaleur et de l’électricité. Grâce à cette production combinée, les pertes d’énergie se réduisent de manière significative. Ainsi, la cogénération permet d’économiser entre 15 et 20 % d’énergie primaire par rapport à la production séparée de ces mêmes quantités de chaleur et d’électricité.

Pour produire 350 kWhé d’électricité et 530 kWth de chaleur, deux solutions sont possibles :

  • Une unité de cogénération au gaz, avec un rendement électrique de 35 % et un rendement thermique de 53 %, va consommer 1 000 kWh d’énergie primaire .
  • La meilleure centrale électrique (Turbine Gaz Vapeur), avec un rendement de 55 %, va consommer 636 kWh d’énergie primaire. De plus, la meilleure chaudière, avec un rendement annuel de 90 %, va consommer 589 kWh d’énergie primaire. Le total pour les filières séparées s’élève à 1 225 kWh d’énergie primaire.

Cette comparaison met en évidence une économie d’énergie primaire pour une même quantité de chaleur et d’électricité produite.
L’économie d’énergie primaire est alors égale à : 1 225 – 1 000 = 225 kWhp
Exprimée par rapport à la consommation totale d’énergie primaire, la fraction économisée est de :

(1 225 – 1 000) / 1 225 = 18 %

Exprimée par rapport à la consommation d’énergie primaire nécessaire pour la production d’électricité par une centrale TGV, la fraction économisée est de :

(1 225 – 1 000) / 636 = 35 %


La réduction des émissions de CO2 récompensée par des certificats verts

Les émissions polluantes, dont le CO2, sont généralement directement proportionnelles à la consommation d’énergie. Qui dit économie d’énergie primaire pour assurer les mêmes besoins (électriques et thermiques), dit réduction des émissions en CO2.

En Région Wallonne, il est convenu que 1 MWh de gaz naturel émet 251 kg de CO2, non seulement lors de sa combustion, mais également pour sa préparation. De même, 1 MWh de mazout émet 306 kg de CO2 (source : CWaPe – coefficient d’émission de CO2 des énergies primaires – juin 2004).

Ainsi, l’économie d’énergie primaire de 225 kWh, représente :

(1 225 x 0,251) – (1 000 x 0,251) = 307 – 251 = 56 kg de CO2

exprimée par rapport à l’économie totale de CO2 :

56 / 307 = 18 %

Si l’on ramène à la production de 1 MWh d’électricité par l’unité de cogénération, l’économie en CO2 s’élève à 161 kg CO2/MWhé.


Un gain économique attrayant

L’avantage de la cogénération est aussi économique. Une installation de cogénération bien dimensionnée permet à l’utilisateur de réduire sa facture énergétique globale. Le gain sur la facture électrique sera plus important que l’augmentation de la facture d’achat en combustible et d’entretiens.

En effet, par rapport à la situation antérieure (chaudière seule), la cogénération va consommer plus de gaz naturel. Cette surconsommation de 411 kWh (première figure : 1 000 – 589 = 411 « kWh » ) va permettre de produire 350 kWh d’électricité, soit un facteur 1,17.

Autrement dit, la cogénération permet de produire 1 kWh d’électricité avec un peu plus de 1 kWh de gaz naturel. L’intérêt économique est immédiat, car les coûts sont totalement différents. Alors qu’1 kWh de gaz naturel coûte environ 5 c€, l’électricité vaut entre 9 à 17 c€ par kWh.

En complément, afin de récompenser l’effort fait pour réaliser cette économie d’émission en CO2, la Wallonie a mis en place un dispositif de certificats vert. La promotion de l’électricité produite au moyen de sources d’énergie renouvelable ou de cogénération est régie par un arrêté du Gouvernement wallon du 30 novembre 2006, dernière modification par l’arrêté du Gouvernement du 12 février 2015.

Les certificats verts sont exprimés comme un taux d’octroi au MWh électrique produit, avec un maximum de 2,5 CV/MWh (pour demande postérieure au 1/1/2015).  Le taux d’octroi sera d’autant plus important que la cogénération utilise un combustible renouvelable et donc faible émetteur en CO2.

Sachant qu’aujourd’hui le certificat vert est garanti à 65 €, il s’agit d’un soutien à prendre en considération dans un projet de cogénération.

Dans un bilan économique, il faudra donc tenir compte de l’investissement initial, des soutiens financiers, sans négliger les frais d’entretien ainsi que l’amortissement.

Il est possible d’estimer rapidement la taille et la rentabilité d’un projet de cogénération.

Calculs

 Calculer vous-même la rentabilité d’une cogénération : étude de pertinence.

Objectif de la cogénération

L’intégration d’une cogénération aura toujours pour objectif premier de répondre au mieux aux besoins énergétiques en chaleur d’un bâtiment tout en produisant simultanément d’électricité.

Le besoin de chaleur devra être soigneusement défini pour le bien considéré.

Dans une situation idéale, l’intégration de la cogénération doit faire l’objet d’une amélioration énergétique globale d’un projet, et doit donc tenir compte des améliorations énergétiques du bâtiment.  Le besoin en chaleur et donc le dimensionnement du projet sont directement liés à la qualité de l’enveloppe du bâtiment.

Une cogénération mal dimensionnée n’atteindra pas les performances prévues, elle n’aura donc ni la rentabilité énergétique ni économique attendue.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Principe de la cogénération

Principe de la cogénération


C’est quoi la cogénération ?

La cogénération ou production d’énergie totale est une technique de production combinée d’énergie électrique et de chaleur. Son intérêt réside dans les rendements énergétiques supérieurs obtenus par comparaison avec une production séparée équivalente d’électricité et de chaleur

Dans les applications les plus courantes de la gamme de puissance étudiée ici, la cogénération est réalisée à partir d’un moteur à explosion. Il s’agit, en général, d’un moteur alimenté au gaz naturel. Celui-ci entraîne une génératrice qui transforme l’énergie mécanique en électricité. La chaleur contenue dans les gaz d’échappement, dans l’eau de refroidissement et dans l’huile de lubrification peut être récupérée par des échangeurs de chaleur pour produire de l’eau chaude sanitaire ou tout type de chauffage.

Schéma simplifié d’une installation de cogénération.

Autrement dit, il s’agit de récupérer la chaleur perdue des technologies existantes de production d’électricité (type groupes électrogène). Grâce à cette récupération de chaleur, les pertes d’énergie se réduisent de manière significative. Ainsi, la cogénération permet d’économiser entre 15 et 20 % d’énergie primaire par rapport à la production séparée de ces mêmes quantités de chaleur et d’électricité.

Il est également possible d’envisager une installation de cogénération fonctionnant à partir de biomasse suivant le même principe.


Contexte de son développement

La cogénération est une technologie reconnue et en continuelle évolution

L’Union Européenne (UE) doit pouvoir faire face à des défis majeurs : accroître son indépendance énergétique et lutter contre le dérèglement climatique. Pour y arriver, l’UE a adopté en 2008 le paquet « énergie-climat » fixant les objectifs « 3 x 20 en 2020 » suivants :

  • Une diminution de 20 % de la consommation énergétique.
  • Une réduction de 20 % des émissions de gaz à effet de serre.
  • 20 % d’énergie produite à partir de sources renouvelables.

Pour atteindre ces objectifs, l’UE compte énormément sur l’Efficacité Énergétique. En effet, dans sa communication « Énergie 2020 – Stratégie pour une énergie compétitive, durable et sûre » du 10 novembre 2010, la Commission européenne souligne le rôle central de l’efficacité énergétique et la nécessité de dissocier la consommation énergétique et la croissance économique.

Directive Européenne

La directive européenne 2012/27/UE relative à l’efficacité énergétique définit des règles et fixe des exigences minimales à adopter par chaque État membre en terme d’efficacité énergétique en imposant, tant au niveau de l’utilisation de l’énergie que de l’approvisionnement énergétique, des dispositions spécifiques et transversales.

Promotion de la cogénération de qualité

Dans le cadre de l’approvisionnement énergétique, outre le développement des réseaux de chaleur et de froid, et la valorisation de la chaleur fatale en industrie, la directive européenne veut promouvoir la cogénération de qualité. Elle impose aux États membres, pour le 31 décembre 2015, d’évaluer le potentiel d’application de ces technologies sur leur territoire et d’adopter des politiques visant à encourager leur développement lorsqu’une analyse coûts-avantages démontre des avantages supérieurs aux coûts.

Une étude a été menée par PWC, l’ICEDD et le bureau DEPLASSE pour le compte du SPW – SPW Territoire, Logement, Patrimoine, Energie qui évalue le potentiel wallon de développement des réseaux de chaleur et de froid alimentés par co/trigénération. Elle est intitulée : « Rapport final-tâches 1 à 6 : Directive efficacité énergétique 2012/27 – Art. 14 – Stratégie de réseaux de chaleur et de froid alimentés par des cogénérations et des énergies fatales; décembre 2015 ».

Régulièrement, la Région wallonne évalue et améliore le dispositif de soutien au développement de cette technologie par :

  • Le régime de certificat vert ou d’aide à la production dans le cadre du décret du 12 avril 2001 relatif à l’organisation du marché de l’électricité.
  • Un accès prioritaire et non discriminatoire au réseau de distribution d’électricité.
  • Des conditions commerciales plus favorables (éligibilité accélérée) tant pour la vente de l’électricité produite, pour l’achat d’électricité d’appoint ou de secours que pour l’achat de gaz naturel.
  • Un Facilitateur en Cogénération pour accompagner (gratuitement) vos premiers pas.
  • L’organisation de séminaires et de rencontres pour en démontrer toute l’efficacité et la pertinence.
  • Un régime d’aides spécifique au secteur public qui permet le financement de cette technologie.
  • La mise à disposition d’informations techniques et administratives à travers ce module inscrit dans la dynamique d’Énergie+.
  • La mise à disposition de guide, d’outil de pré-dimensionnement (cogencalc) et dimensionnement (cogensim), …

Toutes les conditions sont réunies pour que vous, chef d’entreprise, responsable technique, … franchissiez le pas et participiez à l’effort collectif tout en vous assurant le recours à une technologie moderne à des coûts économiques avantageux.

Découvrez ces exemples de mise en place d’une cogen : le home de la commune d’Anderlecht, et la piscine du Sart-Tilman à Liège.

Objectif

L’objectif de ce module est de fournir un outil de travail simple et pratique aux responsables techniques et aux prescripteurs qui veulent s’investir dans le domaine des petites et moyennes installations de cogénération.
L’utilisateur y trouvera les informations essentielles et des conseils pratiques pour évaluer, concevoir, réaliser et exploiter une installation de cogénération.
Sans se prétendre exhaustif, ce guide aborde de façon systématique les principes de dimensionnement et de mise en œuvre de projet de cogénération en soulignant ses spécificités particulières.
Une description des acteurs institutionnels et des acteurs du marché wallon de la cogénération complète cet outil.
Les informations détaillées dans ce module « cogénération » concernent les installations suivantes :

  • La production d’énergie mécanique est réalisée par des moteurs à gaz ou diesel.
  • Les puissances des installations sont inférieures à 500 kW électriques.
  • La chaleur est récupérée dans les circuits de refroidissement du moteur et dans les gaz d’échappement.
  • La valorisation de la chaleur l’est sous forme d’eau chaude.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Abaques de coûts d’investissement et de maintenance des cogénérateurs

Les abaques qui suivent ont été élaborés à partir des caractéristiques d’un échantillon de cogénérateur à moteur à combustibles liquide (diesel, biodiesel ou huile) et gaz (gaz naturel ou biogaz) actuellement sur le marché (en 2014). Ils permettent de déterminer, à partir de la puissance électrique :

  • Son coût d’entretien, avec un contrat « tout compris » (huile, assurance « bris de machine » et dépannages) :

    Schéma abaque 01.

  • Son coût d’investissement (comprenant le prix de base pour une entreprise type; le supplément pour marche en parallèle avec le réseau électrique, y compris les protections nécessaires; conteneur avec capotage acoustique; récupération de chaleur sur cogénération) :

    Schéma abaque 02.

  • Son rendement électrique (αe) à pleine charge :

    Schéma abaque 03.

Attention, les courbes ont été établies pour des valeurs moyennes. Chaque cas est cependant particulier et les valeurs à prendre en considération peuvent s’éloigner de manière significative des valeurs présentées ici. Seule une étude particulière de faisabilité réalisée par un bureau d’études compétent pourra servir de base pour envisager un éventuel investissement.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Négocier le contrat de maintenance

Négocier le contrat de maintenance

Source: Cofely.


Les coûts de la maintenance

La durée annuelle de fonctionnement est essentielle pour évaluer le coût de maintenance. En effet, il existe un très gros entretien vers 35 000 – 40 000 heures de fonctionnement du moteur. Le coût de la maintenance est donc lié au nombre d’heures de fonctionnement, quelle que soit la charge du moteur pendant ces heures. Des données typiques relatives aux coûts unitaires de maintenance sont disponibles.

La répartition des coûts de maintenance et de combustible se présente de façon générale dans le rapport 20 % – 80 %.

Par poste, les coûts se répartissent comme montrés dans le graphique suivant.

  • Coût des prestations de conduite 15 %;
  • Coût des prestations de maintenance de premier niveau 10 %;
  • Coût des pièces relatives à la maintenance préventive 40 %;
  • Révision générale 20 %;
  • Assurances 15 %.

La répartition des coûts de maintenance par poste.


Une maintenance primordiale

En moyenne, on parle d’une durée de vie pour un moteur de cogénération de l’ordre de 50 000 heures, soit environ 10 années de fonctionnement selon l’usage. Pendant cette période, il est nécessaire d’effectuer des entretiens régulièrement pour garantir ses performances et la sécurité de l’installation. Dans la plupart des cas, seul ou via un prestataire de service, l’exploitant s’astreint à effectuer certaines opérations simples sur base d’une formation effectuée par l’installateur ou le constructeur. Cette formation doit être décrite dans le cahier des charges. Le prestataire de service pourra effectuer des opérations comme :

  • La conduite journalière (relevés de compteurs et contrôles visuels).
  • Suivant les prescriptions du constructeur : les vidanges et le changement des filtres à huile, des filtres à air ou encore des bougies.

Cependant, le maître d’ouvrage doit obligatoirement sous-traiter à un prestataire de service professionnel ou directement au constructeur les opérations de maintenance plus complexes nécessitant un outillage et des compétences particulières, comme des analyses ou paramétrages du moteur (endoscopie, réglage des culbuteurs, du mélangeur, etc.) ou des interventions sur des pièces maîtresses (l’alternateur, les culasses, le vilebrequin, etc.).

Il est conseillé à l’exploitant d’établir un contrat de maintenance sur la durée de vie du moteur avec le prestataire (ou directement avec le constructeur) où est précisé notamment :

  • la durée du contrat;
  • le coût des prestations qui sera lié à la quantité d’énergie produite;
  • les limites de prestation;
  • les délais d’intervention;

Établir un contrat est doublement avantageux pour l’exploitant du site : en cas de panne, c’est la garantie qu’un technicien va intervenir rapidement, il n’y a donc pas d’interruption prolongée du moteur; c’est aussi le moyen pour lui de maîtriser ses dépenses annuelles, car ce qu’il doit payer est prévu dans le contrat. Un contrat se négocie lors de la consultation des installateurs, lors des études de conception.

Afin d’obtenir un outil de production adapté à ses besoins, le maître d’ouvrage doit négocier ou définir plusieurs points clés :

  • les garanties des équipements;
  • les garanties de performance;
  • le protocole de réception;
  • le plan de maintenance;
  • une formation adaptée;
  • la liste des pièces détachées minimum et leur prix;
  • le contrat d’assistance technique.

Tout contrat de maintenance comprend aussi les éléments standards suivants :

  • des clauses de résiliation;
  • des clauses d’exclusion;
  • des habilitations du personnel;
  • des modalités de facturation et de paiement;
  • le révision du contrat.

Les éléments spécifiques aux contrats de maintenance de cogénération sont notamment :

  • les équipements concernés : le groupe, les raccordements…
  • les engagements en termes de résultat : taux de disponibilité, puissances fournies, consommations, émissions;
  • les engagements en terme de moyen : délais d’intervention, fourniture des consommables sur place…
  • les obligations du client : conditions de fourniture de gaz, accessibilité de l’installation, information de la société de maintenance avant toute modification, information de la société de maintenance de toute anomalie de fonctionnement.

Les contrats comprennent les clauses relatives aux assurances :

  • L’extension de garantie constructeur sur la période d’amortissement.
  • Elle couvre les frais de main-d’œuvre et de remplacement de pièces défectueuses au-delà de la période de garantie constructeur.
  • Elle peut être négociée directement avec le constructeur indépendamment du contrat de maintenance.
  • Les bris de machine, conclue soit par le client, soit par la société de maintenance et revendue au client.
  • La destruction de tout ou partie des biens assurés (pour cause interne ou cause humaine).
  • Les pertes d’exploitation.
  • La couverture des conséquences financières d’un arrêt ou d’un non-démarrage partiel ou total, quelle qu’en soit la cause (ce qui nécessite des moyens de comptage sur l’installation).
  • Les modalités : pénalités en cas de défaillance électrique et thermique .
  • L’assurance perte d’exploitation n’est pas contractée par la société de maintenance, elle coûterait beaucoup trop cher, mais peut être inclue dans la police d’assurance générale du client.

Le contrat de maintenance est conclu au minimum sur la durée d’amortissement.
Attention de couvrir la révision du moteur si elle a lieu pendant la période d’amortissement.

Les paramètres relevés et archivés ainsi que les alarmes incluses dans la télésurveillance sont à définir explicitement.


Types de contrat

Contrat de type « préventif »

Ce contrat inclut généralement toutes les maintenances prévues dans le plan de maintenance simple du constructeur de la machine à l’exclusion de la maintenance générale des 50 000 heures qui implique souvent la révision complète du bloc-moteur ou son remplacement.

Contrat de type « préventif et curatif » (souvent appelé omnium simple)

Comme son nom l’indique, ce type de contrat comprend la maintenance préventive et la téléassistance. La maintenance curative permet la prise en charge de toutes les interventions résultant d’un arrêt moteur nécessitant le changement d’une pièce détachée du groupe (hors bougies, filtres). Le contrat est régulièrement accompagné d’une garantie de résultat, portant sur la disponibilité de la machine.

Contrat de type garantie simple

En plus de la maintenance préventive, de la téléassistance, de la maintenance curative, ce type de contrat inclut la garantie de disponibilité. Il inclut aussi une assurance bris de machine et couvre les pertes d’exploitation (avec un plafond).

Contrat garantie totale

Ce type de contrat comprend toutes les prestations du contrat « garantie simple », mais aussi la conduite, plusieurs visites par semaine, des réglages du moteur et la réalisation des vidanges.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Organiser la maintenance de l’installation

Organiser la maintenance de l’installation

Source : aipower.


Organiser la maintenance

La nature et la fréquence des interventions de maintenance sont définies par le constructeur. Le contrat de maintenance doit suivre ses prescriptions. Si l’expérience le suggère, l’échéancier pourra ou devra être adapté dans un sens ou dans l’autre, en accord avec le constructeur.

Contrairement à la conduite, le personnel doit ici être qualifié. C’est la société de maintenance qui l’effectue, même si elle peut éventuellement déléguer la maintenance de premier niveau.

Toute intervention doit faire l’objet d’un compte rendu qui sera distribué aux intervenants.

La maintenance de premier niveau est effectuée en général plusieurs fois par saison :

  • la vidange du carter d’huile et du réfrigérant d’huile s’il y a lieu;
  • le prélèvement d’huile en vue d’analyse :
    • la recherche de métaux pour en déduire l’usure du moteur et prendre les mesures adéquates,
    • l’oxydation et nitration de l’huile pour déterminer l’acidité de l’huile et adapter la fréquence des vidanges,
    • du glycol dans l’huile signifie une fuite dans le circuit de refroidissement.
  • le nettoyage / changement du filtre à huile;
  • le nettoyage / changement du filtre à air;
  • le graissage des roulements;
  • le contrôle, nettoyage ou changement des bougies;
  • le contrôle du niveau d’électrolyte des batteries de démarrage et remplissage si nécessaire;
  • le complément des liquides de refroidissement;
  • le contrôle de l’état des courroies;
  • la recherche approfondie de fuite;
  • la vérification des jeux aux soupapes;
  • la vérification et resserrage des connexions électriques;
  • le nettoyage du récupérateur de condensat;
  •  …

La maintenance préventive ne s’effectue en général qu’une fois par saison

  • le réglage de l’allumage et de la carburation;
  • le réglage des jeux de culbuteurs;
  • le remplacement des pièces;
  • la vidange et changement des liquides de refroidissement et prélèvements pour analyses;
  • le contrôle et nettoyage des échangeurs;
  • le contrôle général des sécurités;
  • le contrôle des rejets après redémarrage, mesure de la composition des gaz de combustion;
  • le contrôle des extracteurs d’air du local;
  • (endoscopie, contrôle des surfaces internes du moteur).

Remarques relatives au bon déroulement de la conduite et de la maintenance :

  • Les pannes existent et arrivent. Il est nécessaire que la société de maintenance fournisse une équipe efficace avec une télésurveillance appropriée pour garantir des interventions rapides.
  • Les constructeurs autorisent la sous-traitance de certaines actions de maintenance tout en maintenant la garantie.
  • Certains nouveaux moteurs ont des systèmes de contrôle qui remplacent le premier niveau de maintenance : détecteurs de détonation; mélange ajusté par vanne électronique, inversion automatique de l’ordre d’allumage…
  • Des automatismes trop nombreux et complexes multiplient les risques de panne. Un suivi régulier sur place par une personne compétente reste un gage de bon fonctionnement.
  • En pratique, il faut noter que les interventions sont le plus souvent liées à des fuites ou à des erreurs de manipulation.
  • La température d’huile (trop chaude ou trop froide) et les problèmes de viscosité que cela entraîne sont un autre problème régulièrement rencontré. Si une huile est trop chaude, le moteur ne pourra redémarrer avant 2 ou 3 heures.
  • Il existe des prix de maintenance au kWh ou, beaucoup plus fréquent, à l’heure de fonctionnement. Ils ne tiennent pas toujours compte des périphériques. Il importe de définir le contenu de la maintenance dans le contrat. Idem pour les alternateurs, pour la partie électrique et l’aéro réfrigérant.
  • L’analyse de l’huile à chaque vidange, fournie gratuitement par le fournisseur d’huile, est importante, car elle fournit de précieux renseignements.

Tenir un échéancier

Voici à titre d’exemple un tableau de maintenance. À rappeler que chaque constructeur possède souvent son propre plan de maintenance. Dans le cadre d’un projet d’installation d’un système de cogénération, n’oubliez pas de préciser dans le cahier des charges que l’installateur doit vous fournir le plan de maintenance sous forme, par exemple, d’un échéancier à afficher sur l’armoire de commande du cogénérateur.

1/ Fréquence (h) 24 750 1 500 3 600 7 200 10 800 14 400 21 600 43 200
Conduite
Relevé des paramètres X
Contrôle des niveaux X
Contrôle des fuites X
Contrôle des bruits X
Contrôle des vibrations X
Contrôle visuel des fumées X
Contrôle préchauffage X
Maintenance premier niveau
Remplacement filtre huile X
Remplacement filtre air X
Vidange huile X
Contrôle bougies X
Analyse huile X
Nettoyage récupérateur condensat X
Niveaux batteries X
Niveau eau refroidissement X
Graissage roulements alternateur X
Contrôle batteries X
Contrôle courroie X
Contrôle état durites X
Maintenance préventive
Réglage culbuteurs X
Réglage système d’allumage X
Réglage carburation X
Contrôle ligne de gaz X
Endoscopie cylindres X
Remplacement des bougies X
Remplacement faisceau allumage X
Remplacement du liquide de refroidissement X
Remplacement des durites X
Remplacement de la courroie X
Remplacement des batteries X
Contrôle du démarreur X
Remplacement des sécurités X
Contrôle pompe eau BT X
Nettoyage échangeurs chaleur X
Contrôle extracteur X
Révision culasse X
Révision pompe à eau HT X
Contrôle accouplement X
Contrôle plot suspension X
Révision cylindrées X
Révision générale moteur X
Révision alternateur X

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Assurer la conduite de l’installation de cogénération

Le contrôle des cycles de démarrage/arrêt

Une installation de cogénération nécessite un suivi régulier. On n’oubliera pas cet aspect des choses pour garantir que l’intégration de la cogénération en chaufferie sera positive non seulement d’un point de vue énergétique, environnemental et économique, mais aussi d’un point de vue de la pérennité, et ce tout au long de la durée de vie du cogénérateur.

L’exploitation de l’installation peut être réalisée par le maître d’ouvrage lui-même ou par un tiers qui est, en général, l’entreprise de maintenance.

Outre les Certificats Verts qui représentent le « baromètre » de bonne gestion énergétique, environnementale et financière de l’installation, il est nécessaire que l’exploitant tienne compte du nombre de cycles de démarrage/arrêt du cogénérateur. C’est en quelque sorte « l’électrocardiogramme » du moteur sachant qu’un nombre important de cycles ON/OFF réduit sa durée de vie de manière significative. Certains constructeurs avancent le chiffre de maximum 6 cycles par jour.

Il est tentant d’augmenter la rentabilité du projet de cogénération en faisant fonctionner le système de cogénération en été. Dans certaines installations, heureusement elles ne sont pas majoritaires, on peut observer une fréquence importante de cycles de démarrage/arrêt par jour ! Un chiffre de 80 cycles/jour a déjà été observé. Dans ces conditions, l’installation génère des CV mais à quel prix ?

Sur ce type d’installation, on peut observer les problèmes suivants :

  • S’il y a un turbo, celui-ci s’encrasse vite et casse;
  • Les bougies sont à changer plus souvent;
  • La batterie est à remplacer plus régulièrement que prévu;
  • La consommation d’huile est plus importante;

De plus, à chaque cycle ON/OFF, le rendement global moyen de l’installation diminue par rapport à une installation qui tourne en continu.

Sans pouvoir montrer des chiffres précis sur la réduction de la durée de vie du cogénérateur en fonction du nombre de cycles de démarrage/arrêt, intuitivement, cette démarche n’est pas recommandée.

Si, lors des étapes précédant l’exploitation, les différents intervenants ont bien fait leur job, c’est ici que la GTC devient très utile à l’exploitant. En effet, il peut en permanence contrôler les paramètres de l’installation, effectuer des enregistrements de données, etc. Même pour les petites installations, il est possible d’interagir à distance avec le régulateur de chaufferie (via les multimédias) et ce afin de contrôler régulièrement le fonctionnement de l’installation de cogénération.


La conduite classique

La conduite classique d’une installation de cogénération permet de se prémunir des risques de panne. Elle comprend généralement les opérations d’exploitation simples et périodiques, notamment :

  • une inspection quotidienne;
  • l’information de la société de maintenance de tout dysfonctionnement;
  • le contrôle des paramètres du moteur :
    • la température de l’eau de refroidissement,
    • la température et pression d’huile,
    • la température d’échappement,
    • la température de l’air dans le collecteur d’admission,
    • la dépression du carter d’huile,
    • la pression différentielle du filtre à huile moteur.
  • le contrôle des niveaux :
    • l’huile du carter,
    • le liquide de refroidissement,
    • la charge des batteries.
  • le contrôle du site et de l’installation :
    • le visuel des différents composants : les fuites ou anomalies apparentes,
    • le visuel des gaz d’échappement,
    • les bruits et vibrations.
  • le contrôle des puissances thermique et électrique produites :
    • la puissance électrique par phase (tension et intensité),
    • la puissance thermique,
    • la températures aux échangeurs,
    • la consommation de combustible.
  • le contrôle du nombre d’heures et de cycles de démarrages/arrêts.
  • la tenue d’un carnet de suivi :
    • assure la qualité du suivi,
    • l’outil de diagnostic pour la société de maintenance.

Le personnel de conduite n’est pas nécessairement qualifié. Il peut s’agir du personnel de maintenance de la chaufferie, mais après une formation minimale comprenant :

  • le schéma général de l’installation,
  • le principe de fonctionnement,
  • les points à contrôler,
  • le système d’arrêt d’urgence.

La télésurveillance assure le relevé (et archivage) de paramètres, ce qui peut faciliter la conduite et la maintenance. Elle génère des alarmes à distance en cas d’anomalie, mais elle ne remplace pas l’inspection quotidienne.
Les paramètres surveillés (et archivés avec date et heure) sont généralement :

  • la température d’huile,
  • la pression d’huile,
  • la température des liquides de refroidissement,
  • les puissances électriques,
  • la dépression filtre à air,
  • les marches / arrêts du module,
  • la pression gaz / niveau mazout,
  • la température d’échappement.

La conduite énergétique

Sur le même principe que la conduite classique où la prévention devrait primer sur les opérations curatives, la conduite énergétique se doit d’anticiper les « dérives énergétiques ». En d’autres termes, un contrôle journalier des compteurs d’énergie devrait permettre d’objectiver le rendement de l’installation. S’astreindre à calculer le rendement quotidien peut paraitre fastidieux d’accord, mais cela permet d’éviter les mauvaises surprises lorsque vous voulez valoriser le fruit de votre production de chaleur et d’électricité. Rien n’est plus désagréable que de ne pouvoir, sur le plan financier par exemple, revendre des certificats verts (CV).

Calcul du rendement énergétique

Le rendement énergétique du cogénérateur se calcule comme le ferait la CWaPE selon le code de comptage. Dans l’exemple repris ci-dessous, le relevé des trois compteurs certifiés par un organisme agréé permettent de calculer le rendement global de l’installation de cogénération:

α=  (Eenp+Eqnv) / Ee

Le rendement thermique du cogénérateur est le rapport entre la chaleur nette valorisée et l’énergie primaire entrante sur la période considérée :

αq = (Eqnv) / Ee

Le rendement électrique est le rapport entre l’énergie électrique nette produite et l’énergie primaire entrante sur la période considérée.

αe = (Eenp) / Ee

Les calculs des rendements électrique, thermique et global permettent d’estimer la santé de votre cogénérateur. Ils peuvent être réalisés de manière simple au moyen d’un tableur Excel ou équivalent.

Calcul du taux d’économie de CO2

Le gain en CO2, exprimé en kgCO2/MWh électrique net produit (MWhé), est obtenu en comparant les émissions respectives de l’unité considérée (F) et les installations classiques de référence.

Pour une unité de production d’électricité à partir de SER et/ou de COGEN de qualité, le gain réalisé par l’unité considérée est égal aux émissions d’une centrale électrique de référence (Eref) augmentées – dans le cas d’une installation de cogénération et/ou de trigénération – des émissions d’une chaudière de référence (Q) et, le cas échéant, d’un groupe frigorifique de référence (Qf) desquelles les émissions de l’installation envisagée (F) sont soustraites :

Un simple calcul du taux d’économie de CO2 permet aussi de vérifier si votre système de cogénération est bien de « qualité « , à savoir génère, entre autres, une économie de 10 % de CO2 par rapport à la référence :

G = Eref + Q + Qf – F (kgCO2/MWhé)

Le taux d’économie de CO2 ou kCO2 est, quant à lui, obtenu en divisant le gain (G) en CO2 de la filière par le CO2 émis par la solution électrique de référence (Eref).

τ =  G/Eref  ≥ 10 %

Relevé des index

En plus d’effectuer le relevé des index trimestriels (à fournir à la CWaPE), un relevé quotidien ou hebdomadaire, selon vos disponibilités, permet de calculer les différents flux énergétiques, rendements et taux d’économie de CO2 :

ΔG = ΔEref +ΔQ + ΔQf – ΔF (kgCO2/MWhé)

kCO2 =  ∆G/∆Eref

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Planifier la maintenance [Cogénération]

Planifier la maintenance [Cogénération]


Définitions

Par exploitation, on entend généralement la conduite et la maintenance.

La conduite est, en plus du pilotage automatique des démarrages, arrêts et modulations de charge, une inspection systématique et périodique des installations : fuites, bruits, vibrations, télésurveillance, archivage selon protocole.

La maintenance comprend une série d’actions visant à maintenir l’outil dans des conditions de fonctionnement lui permettant de remplir son rôle : produire de la chaleur et de l’électricité avec un rendement donné.

La maintenance se situe à 3 niveaux d’intervention :

  1. La maintenance premier niveau : actions simples nécessaires à l’exploitation.
  2. La maintenance préventive : réduire la probabilité de défaillance du système. Un échéancier est établi sur base des données du constructeur et des actions sont prises en fonction de critères prédéterminés sur l’état de dégradation des équipements.
    • réglages,
    • remplacement des pièces usées et des fluides,
    • prélèvements pour analyse,
    • révisions.
  3. La maintenance curative : remettre l’installation en état de fonctionner après une défaillance et éventuellement améliorer l’installation.

La maintenance des installations de cogénération se différencie de la maintenance des chaudières classiques :

  • le moteur nécessite une maintenance qui lui est spécifique;
  • certaines tâches nécessitent une société de maintenance spécialisée;
  • la maintenance implique des arrêts qu’il faut anticiper;
  • la non-disponibilité affecte la rentabilité et doit être prise en considération.

Les enjeux

L’objectif premier de la conduite et de la maintenance est de garantir un bon fonctionnement des installations et de minimiser les risques énergétiques et économiques encourus.

Plusieurs risques sont à prendre en considération pour évaluer l’importance de la conduite et de la maintenance.

Les pertes d’exploitation en cas de mauvais fonctionnement, avec pour conséquences :

  • des pertes de puissance électrique;
  • des pertes de puissance thermique;
  • une surconsommation.

Une usure précoce des composants, avec pour conséquences :

  • la nécessité d’effectuer des réparations;
  • l’indisponibilité des productions de chaleur et d’électricité.

Garantir la rentabilité, c’est un engagement sur les moyens et sur les résultats. L’engagement vise tant la disponibilité que les puissances et les rendements. Une série d’assurances garantit ces risques :

  • l’extension de la garantie du constructeur;
  • la garantie bris de machine;
  • la garantie perte d’exploitation.

L’anticipation de la maintenance dès la conception évite les mauvaises surprises en cours d’exploitation.

  • Les coûts de maintenance non négligeable affectent la rentabilité du projet, notamment si la révision générale du moteur intervient pendant la période d’amortissement du groupe, son coût important est à intégrer dans le coût de maintenance. Toute la faisabilité du projet peut s’en trouver affectée.
  • Les relations doivent être établies rapidement entre les différents acteurs, notamment entre la société de maintenance et le constructeur du groupe de cogénération.
  • L’aménagement du local doit permettre l’accès pour la maintenance.
  • Les raccordements doivent permettre l’isolement du groupe pour la maintenance.
  • Des appareils de mesure en nombre suffisant doivent être installés pour garantir une maintenance préventive efficace.

Les équipements concernés

Ici encore, il est essentiel de délimiter précisément les champs d’intervention de la conduite et de la maintenance et les responsabilités de chaque intervenant.

Les organes suivants font l’objet de surveillance

  • Le groupe de cogénération et tous ses composants :
    • le moteur;
    • l’alternateur;
    • l’échangeur de chaleur;
    • l’armoire électrique et système de régulation;
    • le silencieux;
    • le pot catalytique, régulation et contrôle compris;
    • l’aéro-réfrigérant;
    • les batteries de démarrage et batteries système;
    • la ventilation.
  • Le raccordement hydraulique au circuit d’utilisation :
    • les liaisons;
    • les vannes;
    • les pompes.
  • L’approvisionnement en combustible :
    • la pression si gaz;
    • le niveau si mazout;
    • le comptage.
  • L’évacuation des gaz
  • Le raccordement électrique :
    • les câbles de puissance;
    • le raccordement de la régulation;
    • le raccordement de la protection de découplage.

Les intervenants

Voici un bref descriptif des relations entre les principaux intervenants de l’exploitation.

Le client

  • Il est propriétaire du bien objet de la maintenance.
  • Il n’a pas de compétence particulière.
  • Il choisit la société de maintenance et choisit la répartition des tâches.

L’exploitant de la chaufferie

  • Il est à impliquer dans la conduite.
  • Il peut conduire le groupe avec une délégation par la société de maintenance.
  • Il doit se conformer aux exigences de la société de maintenance.

La société de maintenance

  • Cela peut être le constructeur lui-même ou le fournisseur.
  • Cela peut être une société agréée par le constructeur ou une société indépendante.
  • Elle doit disposer de la logistique, du personnel, de l’outillage, des relations avec le fournisseur, des assurances et de garanties de respect d’astreinte.

Le tableau suivant montre les responsabilités de chaque intervenant.

Surveillance

Maintenance
premier niveau

Maintenance
préventive
Maintenance
curative

Client

Possible

Non

Non Non

Exploitant de chaufferie

Possible

Oui

Non Non

Société de maintenance

Télésurveillance

Oui

Oui Oui

Remarques relatives à la répartition des tâches :

  • Le partage des tâches ne doit pas interférer sur les garanties.
  • Chaque intervenant prend en charge les conséquences financières de ses travaux et prend des assurances nécessaires.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir le raccordement électrique [cogen]

Câble de puissance et protections classiques

Comme toute installation électrique, le dimensionnement complet des câbles et des protections se calcule selon le R.G.I.E. (Règlement général sur les installations électriques).

En particulier, l’ajout d’une nouvelle source d’énergie influence le dimensionnement des équipements de protection contre les courts-circuits et des sections de câbles.

Toute source d’énergie électrique est caractérisée par un courant (ou une puissance) de court-circuit (Icc ou Pcc), c’est-à-dire le courant qui circulerait dans l’installation si elle était en court-circuit. Si une nouvelle source d’électricité est ajoutée à l’installation, son courant de court-circuit s’en trouve modifié.

Les disjoncteurs protègent les charges contre les défauts du réseau. De même que les circuits de puissance, ils sont dimensionnés à partir, notamment, du courant de court-circuit (Icc). Si une nouvelle source de courant est ajoutée, il est nécessaire de vérifier la capacité des disjoncteurs à protéger efficacement les charges contre le nouveau Icc et la tenue des circuits aux nouveaux défauts potentiels.

De plus, les câbles entre le point de raccordement et l’alternateur doivent être protégés de part et d’autre (réseau et cogénération) contre un court-circuit. Ce qui implique la nécessité de disposer de la Pcc au point de raccordement de la cogénération.


Protection spécifique à la production d’énergie électrique en parallèle sur le réseau

En tous cas, le système de protection sera à prévoir en concertation avec le distributeur local et fera l’objet d’un accord préalable. De plus, avant toute mise en œuvre du système de protection, celui-ci devra être accepté par un organisme agréé pour le contrôle des installations électriques qui le vérifiera à la mise en service (aux frais de l’autoproducteur). Ceci signifie également que les équipements de protection utilisés doivent être agréés.

Protection de découplage ou production décentralisée

Lorsqu’un client désire raccorder une unité de production décentralisée au réseau de distribution, le distributeur local doit évaluer si le client peut (ou pas) injecter du courant sur le réseau MT ou directement sur le poste source.

Cette limitation est à fixer conjointement :

  • par le service commercial du distributeur pour des raisons contractuelles (contrat de fourniture);
  • par l’exploitant du réseau au regard des charges et de la capacité du réseau.

Si le client peut injecter son énergie électrique sur le réseau, cette puissance sera limitée par la protection générale BT ou MT du client et une protection de découplage est obligatoire.

La protection de découplage utilise souvent le saut de vecteur. Le saut de vecteur est une protection qui identifie un saut de déphasage dans le champ électrique tournant, supérieur à une consigne.

Cette protection protège non seulement le réseau, mais également l’alternateur. Dans environ 1 % des cas cependant, elle peut être mise en défaut. Si toute la charge de l’utilisateur est alimentée par la cogénération, il n’y a quasiment pas de puissance qui transite par la cabine HT. Dans ce cas, lors d’un déclenchement, deux cas sont possibles. Si des charges existent sur la même portion de réseau, lors du déclenchement, l’impédance va varier brusquement, c’est-à-dire que le groupe va soudainement essayer d’alimenter ces charges et le saut de vecteur va déclencher. Si les charges sont trop faibles, l’impédance vue par le groupe ne variera presque pas lors du déclenchement, et le saut de vecteur ne se déclenchera pas.

En cas de saut de vecteur, le dispositif ouvre le disjoncteur au niveau du groupe.

S’il s’agit d’une micro-coupure, lorsque le réseau revient, la tension revient (la bobine du disjoncteur principal est alimentée par la tension réseau) et une reprise de parallèle permet le recouplage.

Si le réseau ne revient pas, le verrouillage du disjoncteur principal permet le fonctionnement en groupe de secours (pour les machines synchrones uniquement).

Lorsque le réseau revient après un fonctionnement en groupe secours, deux options sont possibles. Dans la première solution, le dispositif détecte la tension du réseau, ouvre le disjoncteur du groupe secours, ferme le disjoncteur principal et, comme pour une micro-coupure, reprend la parallèle, le tout en un temps très court, de l’ordre de 0,2 seconde.

L’alternative est une synchronisation arrière, c’est-à-dire une modulation de la puissance du moteur pour atteindre le synchronisme avec le réseau, tout en continuant à alimenter les charges électriques. Elle est cependant plus difficile, car il existe des charges très variables comme les ascenseurs qui font varier plus ou moins brusquement tension et fréquence.

L’ensemble des protections revient à environ 2 250 – 2 500 €. Les coûts d’une bascule et d’une parallèle réseau sont comparables l’un à l’autre et tournent autour de 7 500 €.

Protection directionnelle ou autoproduction

Si on sait que la consommation est supérieure à la production de la cogénération, on place une protection directionnelle.

La protection à prévoir est un relais directionnel de courant ou d’énergie active qui déconnecte le moteur du réseau si de l’énergie est envoyée vers le réseau par exemple, lorsque le réseau tombe en panne.

Cette protection est plus simple et donc moins chère que la protection de découplage.


Synchronisation de la génératrice synchrone

Les synchroniseurs sont très rapides et les modulations de fréquence et de tension sont minimes. Dans la majorité des cas, les modulations de fréquence et de tension respectent les limites des appareils, le recouplage peut donc se faire sans coupure. Le prescripteur vérifiera cependant l’existence ou non d’appareils particulièrement sensibles parmi les équipements du client et imposera le cas échéant une coupure de l’alimentation pour synchroniser.

Lorsque le groupe tourne, il est important d’éviter toute modification de la position des disjoncteurs de la cabine HT (avant ou après le transfo). En effet, si le groupe est en parallèle sur le réseau, il y a un risque de déclencher un saut de vecteur; si le groupe tourne en secours, il y a un risque d’une prise de parallèle non synchronisée. Il est vivement conseillé d’installer un boîtier à destination du distributeur dans la cabine HT, avec une lampe témoin allumée si le groupe est en parallèle et un interrupteur pour couper le groupe ou empêcher la prise de parallèle.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir le raccordement hydraulique [cogen]


Préambule

L’insertion d’une unité de cogénération de petite taille dans un système de chauffage centralisé est une question complexe. Chaque système de chauffage a ses spécificités et rend le raccordement hydraulique d’une cogénération unique. En outre, il n’existe pas de prescriptions techniques spécifiques auxquelles un installateur doit ou peut se conformer.

Voici repris une série de critères de dimensionnement et de caractéristiques relatifs aux différentes possibilités de raccordement de la cogénération.

  • Étude de l’installation de chauffage existante
  • Critères généraux
  • Exigences côté cogénération
  • Raccordement en série
  • Raccordement en parallèle
  • Aéro-réfrigérant

Étude de l’installation de chauffage existante

La connaissance et l’optimalisation de l’installation de chauffage existante sont un préalable important au bon fonctionnement futur de l’installation combinée. Un schéma hydraulique à jour de l’installation existante est donc indispensable.

Il faut principalement être attentif à l’adéquation des débits. Si ceux-ci sont surdimensionnés, les températures de retour de l’installation seront plus élevées que la normale. La diminution de la vitesse des pompes ou le placement de pompes à vitesse variable s’imposent donc parfois en préalable à la cogénération.

Cette étude est relativement simple pour les installations de taille modeste.

Par contre, pour les grosses centrales de chauffe, desservant plusieurs utilisateurs (sous-stations), une simulation des flux d’eau dans l’installation peut être nécessaire, pour en connaître le plus précisément possible le comportement : que se passe-t-il lorsque telle vanne s’ouvre, lorsque telle chaudière s’enclenche …


Critères de sélection

  • Ne pas créer de pertes de charge dans le circuit du client.
  • Assurer le débit d’eau au moteur quel que soit le mode de fonctionnement ou la charge.
  • Ne pas augmenter la température de l’eau à l’entrée du moteur par des mélanges.
  • Rendre possible l’isolation du circuit d’utilisation pour faire fonctionner la chaufferie sans le groupe de cogénération.
  • Prévoir un système de vidange du circuit hydraulique simple.
  • Prévenir les problèmes de corrosion et d’hydrolyse dans le circuit de refroidissement.

Le risque majeur à éviter dans la combinaison chauffage-cogénération est une température d’eau de retour trop élevée vers le moteur. Comme expliqué dans le chapitre relatif à la régulation, une température trop élevée peut entraîner une instabilité de l’enclenchement / déclenchement du moteur.

Concrètement, il faut que la température de l’eau à l’entrée du moteur soit inférieure à 85 °C si on récupère la chaleur uniquement sur l’eau de refroidissement et sur les fumées, à 75 °C si on récupère de la chaleur également sur le circuit d’huile et à 40 °C si on récupère sur le refroidissement du mélange air-gaz après turbocompression (pour les gros moteurs).

Côté refroidissement du moteur, des problèmes de corrosion et d’hydrolyse dans le circuit de refroidissement peuvent engendrer des problèmes aux joints des pompes à eau par exemple. La séparation des circuits de refroidissement du moteur (water jacket) du reste de l’installation hydraulique confine le problème. La solution est alors d’analyser la qualité de l’eau et de définir les additifs qui neutralisent les polluants. L’isolation des échangeurs de refroidissement du moteur et du circuit de lubrification permet de n’ajouter les additifs que dans un circuit local, au contraire d’un circuit unique, qui impose l’ajout des additifs en question au niveau des circuits de chaleur dans leur ensemble. La séparation des circuits de refroidissement du moteur offre en outre l’avantage de minimiser les pertes de charge dans le circuit client.


Raccordement en série

Configuration série sans ballon de stockage

Raccordement série (dérivation sur retour principal) sans bouteille de mélange :

  • Éviter le recyclage dans le circuit du retour du groupe.
  • Sélectionner une puissance du groupe inférieure à la puissance de la chaudière prioritaire pour garantir un débit suffisant.
  • La priorité est donnée naturellement à la cogénération.
  • Pas de conséquence négative lors de l’arrêt du groupe.
  • Maintien d’une régulation classique des chaudières.

Raccordement en série.

Le raccordement en série est la solution la plus simple. C’est elle qui présentera le moins de difficultés au niveau de la compatibilité hydraulique avec l’installation de chauffage existante. Elle est donc à conseiller pour les petites installations pour lesquelles une simulation du comportement hydraulique de l’ensemble serait trop coûteuse par rapport à l’investissement total.

Dans ce type de raccordement, une partie de l’eau est préchauffée par le cogénérateur. Si celui-ci ne développe pas une puissance thermique suffisante par rapport aux besoins instantanés, l’eau sera postchauffée par les chaudières.

L’inconvénient du raccordement en série provient du fait qu’une des chaudières est en permanence parcourue par de l’eau chaude même lorsqu’elle est à l’arrêt. On subit donc ses pertes à l’arrêt (y compris en été si le cogénérateur est dimensionné pour produire de l’eau chaude sanitaire). Elles peuvent être importantes sur des anciennes chaudières mal isolées et dont le brûleur est en permanence ouvert vers la cheminée (brûleurs sans clapets, chaudières atmosphériques).

Par contre, l’avantage est de pouvoir profiter du volume de la chaudière pour réaliser un stockage lorsque la demande instantanée de chaleur est fluctuante et inférieure à la production du cogénérateur. Ce volume de stockage est cependant limité par rapport à un ballon tampon séparé.

Le by-pass du cogénérateur sera dimensionné pour qu’un débit suffisant traverse le cogénérateur.

Une attention particulière devra être portée à ce problème si le circuit primaire est conçu pour fonctionner à débit variable (circuit avec une pompe d’alimentation par chaudière, circuit primaire ouvert sans pompe primaire et circuits secondaires avec vannes mélangeuses, …). Par exemple, si chaque chaudière possède sa propre pompe, le débit d’une chaudière doit être plus élevé que le débit du cogénérateur, faute de quoi celui-ci sera insuffisamment refroidi.

Configuration série sans ballon avec by-pass

Une autre configuration qui évite les pertes à l’arrêt dans les chaudières est le placement avantageux d’un by-pass. Attention toutefois au coût des vannes 3 voies par rapport à l’avantage que l’on retire de ne pas générer des pertes à l’arrêt dans une des chaudières.

Schéma de configuration série sans ballon avec by-pass.

Configuration série avec ballon

Quelques constructeurs proposent une configuration série avec ballon tampon. Le débit total de retour du collecteur traverse le ballon. On ne peut pas vraiment parler de ballon de stockage vu qu’il n’y a pas de stratification. On parlera plutôt d’augmentation de l’inertie du réseau. Pour autant que les conduits d’entrée et de sortie du ballon soient bien dimensionnés, le ballon tampon agit comme un large collecteur à faibles pertes de charge et perturbant peu les équilibres hydrauliques de la chaufferie existante. On peut comprendre que cette configuration soit intéressante, car hydrauliquement elle est simple et peut donner de bons résultats en termes de courts cycles du cogénérateur.

Schéma de raccordement série avec bouteille de mélange.

Raccordement série (dérivation sur retour principal) avec bouteille de mélange

Il est impératif de :

  • Placer la bouteille verticalement pour garantir l’indépendance hydraulique des circuits.
  • Placer la pompe en série avec le circuit hydraulique de refroidissement du moteur pour garantir le débit.
  • La priorité est donnée naturellement à la cogénération.
  • Pas de conséquence négative lors de l’arrêt du groupe.
  • Maintien d’une régulation classique des chaudières.

Le raccordement du cogénérateur en amont de la bouteille (B) est préférable au raccordement en aval (A) étant donné la possibilité de retour d’eau chaude vers les chaudières au travers de la bouteille, ce qui réduirait le refroidissement du moteur.

Schéma de raccordement série avec bouteille de mélange.

Cogénérateur raccordé en série sur les chaudières dans un circuit avec bouteille casse-pression
(principe applicable à un raccordement en parallèle)


Raccordement en parallèle

  • Pas de perte par irrigation des chaudières lorsque la cogénération suffit.
  • La priorité n’est pas donnée naturellement à la cogénération.
  • Gestion spécifique de séquence des chaudières.
  • Un dimensionnement précis de la pompe dont le calcul est délicat est nécessaire (alternative : un variateur de vitesse).

Schéma de raccordement en parallèle.

Raccordement en parallèle

L’intégration hydraulique en parallèle dans une chaufferie existante demande plus de modifications de la « tuyauterie » qu’une intégration en série et une régulation plus fine. Cependant, on peut pointer plusieurs avantages importants de la mise en parallèle d’une cogénération : à l’inverse de la configuration série classique (sans by-pass des chaudières), il n’y a pas de passage de l’eau chaude dans les chaudières lorsque la cogénération seule fonctionne. On n’a donc pas de pertes à l’arrêt au niveau des chaudières si elles ne sont pas irriguées. Mais cela nécessite naturellement de dimensionner les conduites de raccordement du ballon de stockage de manière à laisser passer le débit total.

De plus, dans des chaufferies modernes équipées de chaudières à condensation, pour autant que la température de retour au circuit primaire soit bien maîtrisée, la configuration parallèle permet de valoriser la chaleur de condensation lorsque les chaudières viennent :

  • En support de la cogénération en période froide.
  • En remplacement de la cogénération en période chaude lorsque les besoins de chaleur deviennent trop faibles, et ce pour éviter les courts

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir la génératrice [Cogen]

Puissance électrique

La puissance électrique de la génératrice est déterminée lors du dimensionnement des équipements. Si le dimensionnement s’est limité à une évaluation grossière des puissances nécessaires, des investigations supplémentaires selon la même méthodologie compléteront et valideront les résultats.

La puissance active de la génératrice doit par ailleurs correspondre à la puissance mécanique fournie par le moteur, avec une marge au-dessus de la puissance nominale du moteur.
Le régime de tension est déterminé par la tension de l’installation électrique sur laquelle la génératrice sera connectée.

Le cogénérateur est souvent raccordé au réseau basse tension du consommateur. On peut aussi le raccorder sur un réseau de secours propre du bâtiment qui reprendrait les éléments vitaux à maintenir en fonctionnement en cas de panne du réseau de distribution. Cela doit évidemment être prévu lors de la conception du réseau électrique interne.


Génératrice synchrone ou asynchrone ?

Le choix entre une génératrice synchrone ou asynchrone dépend essentiellement de la volonté de fonctionner en groupe secours (version synchrone) ou non (version asynchrone).

La version asynchrone est de conception plus simple et est donc moins chère. Par exemple, un fournisseur présent sur le marché propose le cogénérateur de 30 kWé asynchrone 3 000 euros (HTVA) moins chers que la même machine couplée à un alternateur synchrone (pour un investissement total de l’ordre de 50 000 €).

Deux inconvénients apparaissent cependant :

  • La puissance électrique de la machine asynchrone ne pourra être trop importante par rapport à la puissance totale appelée par l’établissement (on parle de maximum 30 % de la puissance appelée) de manière à ne pas perturber le cos phi de l’établissement. Il sera peut-être nécessaire d’installer une batterie de condensateurs afin de compenser le mauvais cos phi de l’installation.

 

  • La génératrice asynchrone ne peut fonctionner sans alimentation du réseau. Dans ce cas, il lui est impossible de fonctionner comme secours lorsque celui-ci est coupé. Seul un alternateur synchrone est alors envisageable.

Certains fournisseurs proposent un même moteur raccordé soit à une génératrice asynchrone, soit un alternateur synchrone. Selon la gamme de puissance, le standard sera la version synchrone ou asynchrone. Pour les puissances inférieures à 500 kW, malgré son coût, le standard est la machine synchrone, livrée avec l’ensemble des équipements de synchronisation.

Attention finalement au sens du flux d’air autour de la cogénération. Les génératrices fonctionnent à 40 °C maximum. Si l’air passe d’abord autour du moteur, il risque d’être à plus de 40 °C et de ne plus refroidir correctement la génératrice.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir le moteur [Cogen]

Critères de sélection

Les critères mentionnés au niveau du cogénérateur s’appliquent en réalité aux moteurs et sont donc d’application pour la sélection du moteur.

Attention à la qualité ! Des moteurs de bonne qualité peuvent donner une disponibilité de 95 % sur les 24 h de fonctionnement quotidiennes ! De nombreux problèmes sont dus au choix de machines trop justes, que l’on fait travailler à leurs limites. Dans le même ordre d’idée, l’état des machines (bougie, filtres, huile, échangeurs, soupapes, réglages divers comme les culbuteurs…) et leurs performances évoluent avec le temps, il faut en tenir compte dès le dimensionnement.

D’autre part, le prescripteur doit déclasser le moteur pour garantir son bon fonctionnement selon le nombre d’heures de fonctionnement et le niveau de puissance. Dans le cas contraire, le moteur risque de s’épuiser prématurément ce qui se traduirait par des chutes de rendements, voire de casser avant la fin de son amortissement.

Pour chaque moteur, le constructeur garantit des performances selon l’usage qui en est fait. Le fonctionnement en stand-by, comme son nom l’indique signifie que le moteur reste la majorité du temps à l’arrêt et ne démarre que pour des occasions particulières comme une panne de courant. Le fonctionnement, en prime, est un fonctionnement plus fréquent avec des arrêts et éventuellement des modulations de charges réguliers. Le fonctionnement en base est un fonctionnement quasi continu du moteur.

La nécessité de placer un pot catalytique résultera de la comparaison des données des constructeurs concernant le moteur sélectionné aux normes en vigueur, c’est-à-dire au permis d’environnement. Il en est de même pour le bruit, avec les limitations supplémentaires que le client peut éventuellement ajouter, comme dans le cas d’un hôtel par exemple.

Lorsque l’installation thermique ne permet pas de garantir une température de refroidissement du moteur suffisamment constante et basse, il est nécessaire d’adjoindre un aéro-réfrigérant de secours qui ne sert qu’exceptionnellement ou de réduire la charge du moteur. Ces dispositions évitent l’échauffement et l’explosion du moteur en cas de refroidissement insuffisant par l’installation thermique censée consommer la chaleur.

Sur les groupes au fuel, une sonde de contre pression permet de détecter un encrassement. Cet encrassement indique la nécessité ou non de nettoyer l’échangeur placé sur l’échappement afin de protéger le moteur. Si l’encrassement devient trop important, le moteur ne se trouve plus dans les conditions de pression optimale, le rendement chute et le moteur risque même une explosion si la perte de charge sur l’échappement devient trop importante. C’est pour cette raison que certains motoristes ne garantissent plus leurs moteurs si des échangeurs de chaleur sont placés sur les échappements.

Certains motoristes fournissent un équipement complet optimisé. Il appartient au prescripteur d’étudier la bonne adéquation entre une solution standard et les besoins spécifiques du client.


Moteur gaz ou diesel ?

D’un point de vue énergétique et environnemental

Tout dépend du combustible disponible à proximité immédiate. Au niveau des énergies fossiles, le gaz est « environnementalement » parlant mieux côté que le diesel, le coefficient du gaz naturel est inférieur à celui du diesel, raison pour laquelle les cogénérateurs gaz reçoivent plus de certificats verts que les moteurs diesels.

Les cogénérateurs à condensation de petite puissance sont de plus en plus présents sur le marché. La condensation de la fraction de vapeur d’eau contenue dans les gaz de combustion (théoriquement de 10 % pour le gaz) permet d’améliorer le rendement global du cogénérateur. La condensation des gaz de combustion issue des moteurs à gaz est moins problématique que celle issue des moteurs diesel sachant que le diesel contient du soufre qui se retrouve dans les gaz de combustion. À la condensation, le soufre se mélange à l’eau et forme un mélange acide corrosif pour les échangeurs et les conduits d’évacuation de gaz. Pour les  puissances importantes, il y a lieu de traiter les condensats. À l’inverse, les condensats des cogénérateurs gaz à condensation peuvent être rejetés directement à l’égout.

D’un point de vue mécanique

Comme caractéristique principale, un moteur gaz est nettement moins réactif au démarrage qu’un moteur diesel. Ce manque de réactivité, justifierait que le moteur gaz, et c’est d’actualité, ne soit pas utilisé comme groupe de secours en cas de « black-out ». Cependant, un cogénérateur au gaz, moyennant la présence d’un système intelligent de gestion de charge sur site, pourrait, suite à une coupure de réseau, redémarrer en groupe secours. Par exemple, la charge électrique du cogénérateur pourrait « monter en puissance » de 10  à 100 % dans un délai préprogrammé au niveau des circuits secours d’un hôpital.

La figure ci-dessous permet de rendre compte que le temps de synchronisation d’un moteur gaz sur le réseau est relativement long en comparaison au moteur diesel.

Schéma sur temps de synchronisation d’un moteur gaz / moteur diesel.

Temps de synchronisation d’un moteur gaz et diesel.

De plus, les moteurs gaz rencontrent également certaines difficultés face aux variations de charge. En effet, un des problèmes majeur des moteurs gaz est la gestion de la marche en régime transitoire. La réponse transitoire d’un moteur gaz, défini comme étant la réponse d’un système face à une variation de charges, est dès lors plus longue que pour un moteur diesel comme le montre la figure suivante :

Représentation d’une variation de charge autour de l’équilibre de base.

Dans un moteur diesel, l’injection se fait directement au niveau de la chambre de combustion tandis que pour un moteur gaz, le mélange gaz/air a lieu en amont de la chambre de combustion. C’est dès lors une des raisons pour laquelle un moteur gaz est caractérisé par une moindre robustesse.

Pour pallier le manque de réactivité rencontré dans un moteur gaz, les fabricants travaillent actuellement sur un projet visant à augmenter cette réactivité. Comme illustré à la figure suivante, le gaz est directement injecté dans la chambre de combustion, notamment grâce au système en développement HPDI (High Pressure Direct Injection).

Projet visant à l’injection directe de gaz à haute pression dans la chambre de combustion (Caterpilar).

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Synchronisation au réseau [cogen]


Principe

Dans la plupart des cas, la cogénération comme la plupart des installations décentralisées de production d’électricité est connectée au réseau pour y injecter l’excédent.
Afin de pouvoir réaliser cette connexion, il est indispensable de synchroniser le cogénérateur au réseau.

Préalablement au couplage réseau, la production décentralisée doit être mise en route avec une fréquence de rotation aussi proche possible que celle du réseau (f = 50 Hz) et une tension entre deux phases de la machine qui ait une valeur voisine de la tension entre deux phases du réseau.

Les conditions de couplage de l’alternateur sur le réseau doivent être impérativement respectées. Sans le respect des conditions de couplage, la destruction de l’alternateur est presque inéluctable.

Les conditions sont :

  • La fréquence de l’alternateur est la même que celle du réseau (ω ~ ω’). Une non-concordance des fréquences peut provoquer des retours de puissance de la part du réseau ou des couplages en opposition de phases.
  • La tension de toutes les phases de l’alternateur est identique à celle des phases du réseau (U ~ U’). Des différences de potentiel entre les phases de l’alternateur et celles correspondantes du réseau entraineraient la création de courants de circulation très élevés dans les enroulements de l’alternateur.
  • la concordance des phases est la même. En d’autres termes : « le fil rouge sur le bouton rouge … » ou, plus sérieux, les phases L1, L2, L3 (R, S, T) de l’alternateur doivent correspondre aux phases L1, L2, L3 (R, S, T) du réseau. Comme pour l’égalité des phases, la non-concordance des phases engendre des courants de circulation très élevés.

Sur le schéma présenté, les deux triades présentent une succession identique des tensions, les triades ont des fréquences proches, mais légèrement différentes représentées par la vitesse angulaire de glissement ωg. Les tensions entre les bornes 11’ ; 22’ ; 33’ s’annulent (presque) et sont au maximum simultanément (~2U).
Le couplage sera réalisé lorsque la tension 11’ est minimum. L’alternateur se synchronisera automatiquement au réseau en reprenant sa vitesse et tension.


En pratique … appareils de synchronisation

Schéma de principe de  montage des appareils de synchronisation.


Synchronoscope

Photo synchronoscope.

Cet appareil est muni d’un moteur dont la vitesse de rotation dépend de la différence entre les fréquences du réseau et de l’alternateur. La mise en parallèle s’effectue au passage à l’équilibre. Deux cas peuvent se présenter :

  • La partie gauche du cadran : il faut augmenter la vitesse de l’alternateur.
  • La partie droite du cadran : il faut réduire la vitesse de l’alternateur.

La méthode des 3 lampes

Auparavant, pour s’assurer de la concordance des phases lors de l’installation d’un nouvel alternateur, 3 lampes étaient montées de part et d’autre de l’interrupteur de couplage (voir le schéma de principe ci-dessus) :

  • Lorsque la concordance des phases est respectée, les 3 lampes s’éteignent et s’allument ensemble quand le synchronisme est proche.
  • À l’inverse, les 3 lampes s’allument et s’éteignent les unes à la suite des autres. Il est nécessaire de changer l’ordre des phases au niveau de l’interrupteur de couplage.

Le voltmètre différentiel

Photo voltmètre différentiel.

Il mesure la différence de tension de part et d’autre de l’interrupteur de couplage.
Le couplage se fait lorsque le voltmètre passe par 0 :

  • En négatif, la tension de l’alternateur est inférieure à celle du réseau.
  • À l’inverse, en positif, la tension de l’alternateur est supérieure à celle du réseau.

Le fréquencemètre

Photo fréquencemètre.

Des fréquencemètres branchés au niveau du réseau et du circuit de l’alternateur permettent de comparer si les fréquences sont proches.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Monotone de chaleur [cogen]


Principe

La monotone de chaleur est le graphique de la demande de chaleur mesurée heure par heure sur une année et classée par ordre décroissant.

Établissement d’une monotone de chaleur sur base du profil de consommation de chaleur. La courbe donne le nombre d’heures où le besoin en chaleur correspond à la puissance définie en ordonnée.


Intérêt

La monotone de chaleur sur une année permet de sélectionner le meilleur compromis entre une puissance thermique plus ou moins importante et le nombre d’heures de fonctionnement auquel cette puissance pourra fonctionner. Une faible puissance fonctionnera longtemps et de façon continue, alors qu’une grande puissance fonctionnera moins longtemps et de façon plus discontinue.
La monotone de chaleur traduit aussi une image fidèle du profil énergétique d’un bâtiment. Elle intervient, entre autres, dans l’évaluation de la puissance d’un cogénérateur. En effet, l’objectif d’une étude de faisabilité pour un système de cogénération est de maximiser la production d’énergie thermique. En d’autres termes, l’optimum énergétique d’un cogénérateur est matérialisé par la plus grande surface sous la monotone de chaleur.

Exemples

La comparaison des trois aires nous donne une indication à la fois au niveau énergétique et de la puissance thermique à prévoir pour le cogénérateur.

 

Données

Les monotones de chaleur relatives aux « profils types de consommation.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be.

Modulation de puissance [cogen]

Modulation de puissance [cogen]


Principe

Lorsqu’on parle de la modulation de puissance d’un groupe électrogène, on parle bien de la puissance électrique. Paradoxalement, la modulation de puissance d’un cogénérateur est basée sur la variation de la puissance thermique. Bien qu’il entraine aussi un alternateur comme le groupe électrogène, le cogénérateur est avant tout un générateur de chaleur et accessoirement d’électricité. Vu qu’ils sont « tous les deux unis pour le meilleur et pour le pire », la modulation de puissance thermique est intimement liée à celle de la puissance électrique.

Quel que soit le type d’alternateur, la modulation de puissance passe essentiellement :

  • Par la variation de la vitesse du cogénérateur équipé d’un alternateur asynchrone.
  • Par la variation du couple mécanique du cogénérateur équipé d’un alternateur synchrone.


L’intérêt de la modulation de puissance

La modulation de puissance est intéressante surtout pour maintenir une production électrique lorsque les besoins thermiques du circuit de chauffage connecté au cogénérateur diminuent, mais aussi pour réduire les séquences de démarrages/arrêts nuisibles à l’intégrité mécanique du moteur.

Par exemple, lorsque le cogénérateur injecte sa chaleur dans un ballon tampon qui est proche de sa consigne de température, le système de régulation du cogénérateur peut être prévu pour réduire la charge thermique de ce dernier. Dans ce cas, le cogénérateur continue à fonctionner à taux de charge partiel tout en maintenant une production d’électricité.

Attention cependant qu’à charge partielle, le rendement électrique se dégrade rapidement. En pratique, lorsque le cogénérateur est prévu pour travailler en modulation de puissance, les constructeurs proposent de ne pas descendre sous les 60 % de la puissance électrique nominale.

Le cas des alternateurs asynchrones

La modulation du taux de charge d’un cogénérateur est assez particulière lorsque l’alternateur est de type asynchrone. Pour rappel, la machine asynchrone en mode générateur doit fonctionner en « survitesse » par rapport à la vitesse du champ tournant du stator fourni par le réseau. Un glissement g négatif de quelques % suffit à l’alternateur pour atteindre sa puissance nominale. La survitesse est générée en « appuyant sur la pédale de gaz » du moteur d’entrainement et, par conséquent, en augmentant la vitesse de l’alternateur. Pour rester dans l’analogie de la voiture, l’augmentation du glissement peut être matérialisée par le comportement d’un conducteur qui, à la fois, appuie sur l’accélérateur tout en débrayant légèrement : « il fait patiner l’embrayage ». Le résultat est comparable dans le sens où les roues tournent à la même vitesse, mais que le moteur « monte légèrement dans les tours ».

Allure des courbes du couple et du courant « statorique » de la machine asynchrone fonctionnant dans les deux modes (moteur/alternateur)  en fonction d’un glissement positif ou négatif (survitesse ou sous-vitesse).

Pour une tension de réseau constante, la puissance disponible aux bornes du générateur suit la courbe du courant statorique lorsque la survitesse (ou le glissement) augmente.


Le cas des alternateurs synchrones

La variation de la puissance d’un cogénérateur équipé d’un alternateur synchrone est différente de celle d’un cogénérateur avec générateur asynchrone : il n’y a pas de glissement g ou de différence de vitesse angulaire entre le rotor de l’alternateur et le champ tournant du stator généré par le réseau.

L’action sur la « pédale de gaz » du moteur à combustion engendre juste une augmentation du couple du moteur et de la puissance électrique de l’alternateur. L’analogique de la voiture se prête bien aussi dans ce cas-ci : « pour maintenir la même vitesse d’un véhicule dans une côte, il est nécessaire  « d’appuyer sur le champignon », la vitesse des roues étant dans ce cas-ci celle du synchronisme ».

Attention, cependant, au décrochage d’un alternateur synchrone lorsque le couple résistif est trop important. Celui-ci dépend du décalage, c’est-à-dire du retard qui existe entre la force électromotrice (fem) générée par le rotor et la tension au stator. On appelle ce décalage, l’angle électrique. Si l’angle correspondant à ce déphasage dépasse 90°, on a phénomène dit de décrochage où le rotor s’emballe et la génératrice ne parvient plus à le freiner.

Courbe caractéristique du couple électrique en fonction de l’angle électrique pour une machine synchrone.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be.

Turbine

Turbine


Définition et principe

Une turbine est une machine tournante qui récupère l’énergie cinétique d’un fluide pour mettre en mouvement l’arbre de transmission.

Schéma définition et principe de la turbine.

La turbine est constituée :

  • D’une partie mobile comprenant un arbre sur lequel sont fixées les roues à aubes du compresseur et de la turbine.
  • D’une partie fixe couramment appelée « carter de la turbine » et dans lequel on retrouve les chambres de combustion, les déflecteurs pour correctement diriger le fluide sur les aubes de la turbine.

La turbine montée sur l’arbre de transmission est mise en rotation par la force exercée sur le fluide (liquide, gaz) sur les aubes. Cette action engendre une diminution de la pression du fluide ou détente. Dans le cas de la cogénération, l’arbre est couplé à un alternateur pour la production d’électricité.
La turbine est une machine qui nécessite un fonctionnement idéalement en continu. Ce type d’équipement présente, entre autres comme avantage, de demander moins d’entretien que les moteurs.


La turbine à vapeur

Une turbine à vapeur utilise, comme son nom l’indique, la vapeur comme fluide de propulsion. Elle est produite, par exemple, à partir d’une chaudière ou disponible en sortie d’un processus industriel. La vapeur produite à haute pression est injectée à l’entrée de la turbine. À ce niveau, elle subit une série de détente au travers de plusieurs étages de roue à aubes, en générant l’énergie mécanique nécessaire à mettre l’arbre en rotation.

Photo turbine à vapeur.

Turbine à Vapeur (source : General Electric).

Le schéma ci-dessous montre une turbine vapeur alimentée par une chaudière. La chaleur résiduelle comprise dans la vapeur basse pression (BP) et dans les quelques pourcents de condensats non récupérés par la chaudière vapeur,  peut servir à alimenter un système de chauffage (principe de récupération de la chaleur fatale).

Schéma principe turbine à vapeur.

La turbine vapeur conviendra particulièrement bien pour des puissances pouvant aller de 10 MWé à 50 MWé.

Elle nécessite un grand débit de vapeur d’entrée.


La turbine à gaz

Photo turbine à gaz.

Turbine à gaz (source Siemens).

La turbine à gaz fonctionne sur le principe de la détente d’un fluide gazeux dans une turbine issu de la combustion d’un mélange d’air comprimé au niveau du compresseur et de gaz dans une chambre dite « de combustion ». C’est le principe du réacteur d’avion !

La partie mobile est composée d’un arbre sur lequel sont montés le compresseur et la turbine. La partie fixe, quant à elle, accueille principalement la chambre de combustion.

Les gaz en sortie de turbine possèdent un niveau d’énergie suffisant qui peut être exploité dans une chaudière de post combustion en produisant de la vapeur.

Schéma principe turbine à gaz.

La gamme de puissances électriques des turbines à gaz est large. Le rendement électrique des turbines gaz est lié à la qualité de l’alternateur. Un ordre de grandeur courant de rendement électrique est de l’ordre de 20 à 25 %.

Le rendement thermique, lui, peut être amélioré par la qualité de l’échangeur, l’exploitation des différentes sources de chaleur, la qualité de la combustion, etc. Un ordre de grandeur de rendement thermique se situe entre 55 et 70 % (avec postcombustion).


La micro-turbine à gaz

La micro-turbine à gaz est la petite sœur de la turbine à gaz. Cependant, elle délivre de plus petites puissances (à partir de 25 kWé).

Photo micro-turbine à gaz.

Microturbine 30 kWé – Capstone.

La micro-turbine est souvent pourvue d’un échangeur complémentaire pour préchauffer l’air comprimé de la chambre de combustion. Enfin, la micro-turbine domestique existe sur certains marchés.

Schéma principe micro-turbine à gaz.

Principe de la turbine.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Présentation synthétique des composants


Le cogénérateur

Fonction

Transformer le combustible en énergies électrique et thermique.

Description

Parmi les moteurs de cogénérateur, les moteurs gaz ou diesel sont les plus couramment rencontrés. Par rapport au moteur à combustion interne classique (celui de votre voiture, par exemple), le moteur de cogénérateur valorise sa chaleur au travers d’une série d’échangeurs thermiques.

Le cogénérateur est principalement composé des entités suivantes :

  • le moteur;
  • l’alternateur;
  • les échangeurs;
  • une régulation.

Les moteurs des cogénérateurs étudiés dans cet outil sont principalement des moteurs à combustion classique, couplés à des alternateurs produisant l’électricité.

Comme le montre la figure suivante, la chaleur produite par le cogénérateur peut être valorisée au travers de différents échangeurs. Le refroidissement du moteur, des gaz d’échappement, de l’huile du carter et, éventuellement, du système turbo permet de récupérer de l’ordre de 55-58 % de l’énergie incidente (combustion du gaz, diesel, huile végétale, biogaz, …). 35 % servent à produire l’électricité et le solde de 7-10 % représente les pertes par radiation du bloc moteur et les pertes dans les gaz d’échappement. Les différents échangeurs à haute et basse température sont connectés au circuit  hydraulique de chauffage.

La chaleur des gaz d’échappement à 500 °C peut être récupérée à plus de 70 % par refroidissement à 150 °C. La chaleur de l’eau de refroidissement et de l’huile du moteur à +/- 100 °C peut être entièrement récupérée, alors que la chaleur de refroidissement du turbo à 45 °C peut plus difficilement être utilisée. Ce niveau de température est en effet trop bas pour être valorisé.

Les moteurs diesel et gaz sont utilisés dans une gamme de puissance de 5 kW à plusieurs MW et s’appliquent donc particulièrement aux secteurs tertiaires, industriel et PME, ainsi qu’au logement.

La récupération de chaleur sur ce type de moteur se prête bien à des utilisations à des températures inférieures à 100 °C comme la préparation d’eau chaude sanitaire, bien qu’une petite quantité de vapeur puisse néanmoins être générée grâce à la récupération de la chaleur contenue dans les gaz d’échappement (400 .. 500 °C).

Centrale de Cogénération compacte au gaz de 400 kWé.

Principales caractéristiques d’un groupe de cogénération complet

Le moteur

  • La puissances électrique (kW), thermique (kW), et combustible (PCI).
  • Le carburant gaz ou fuel.
  • Les rendements électriques et thermiques à différentes charges.
  • Le débit d’air et le sens de circulation pour ventilation et air comburant.
  • La présence d’un pot catalytique ou non.
  • Le silencieux.
  • La modulation de puissance : plages horaires et puissances prévues.

L’alternateur

  • Synchrone ou asynchrone.
  • Le rendement électrique à différentes charges.

L’échangeur

  • La température d’entrée d’eau.
  • La température de sortie d’eau.
  • Le débit d’eau.
  • La pression d’alimentation en combustible.

Les principes de régulation

  • signaux d’enclenchement, de déclenchements, de modulation.

Packaging

Les unités de cogénération se présentent sous deux formes :

  • Un package complet standard, comprenant dans un seul caisson moteur, génératrice, récupération de chaleur, régulateur et évacuation des gaz de combustion. Les différents composants sont parfaitement dimensionnés les uns par rapport aux autres et l’ensemble présente des coûts d’investissement et de maintenance réduits.
  • Beaucoup plus rare dans la gamme de puissance visée ici, un package spécifique assemblé sur mesure, où chacun des composants est sélectionné sur le marché et dont l’ensemble est optimisé pour répondre aux spécificités d’un projet particulier. Ce type de module est étudié au cas par cas et coûte généralement plus cher.

Il est important de noter que les unités de cogénération équipées d’un moteur diesel sont directement issues de la technologie camion ou voiture. Elles bénéficient ainsi d’effets de série très importants. Leurs prix sont moins élevés que les modèles de puissance équivalente alimentés au gaz, même si cette tendance s’estompe actuellement.


Le moteur

Fonction

Transformer le combustible (gaz, biogaz, huile végétale, …) en énergies mécanique, transformée plus loin en énergie électrique par la génératrice, et thermique, récupérée dans les échangeurs de chaleur.

Description

Le moteur est le cœur du cogénérateur, la régulation agit directement sur l’injection de carburant pour atteindre le niveau de puissance attendu.

Le moteur est aussi l’élément le plus fragile et il représente de loin la plus grande partie de la maintenance du groupe de cogénération.

Techniquement, le moteur se caractérise principalement par :

  • La puissance mécanique.
  • Le combustible utilisé, gaz ou mazout.
  • Les rendements à différentes charges.
  • Les émissions de gaz de combustion et la présence d’un pot catalytique ou non.
  • Les émissions sonores et la présence d’un silencieux ou non.
  • Le débit d’air et le sens de circulation, pour assurer la ventilation et l’air comburant.
  • Le déclassement du moteur en fonction de son usage : Stand-By; Prime; Base.

La génératrice

Fonction

Transformer l’énergie mécanique du moteur en énergie électrique et l’amener sur le réseau interne du client par le raccordement électrique.

Description

Alternateur synchrone

La génératrice synchrone est constituée d’un rotor, appelé inducteur, parcouru par un courant continu. Par la rotation des pôles de l’inducteur à l’intérieur du stator (l’induit), un courant alternatif est créé aux bornes de l’induit. Le courant induit est au départ indépendant du réseau et doit absolument être synchronisé en grandeur, en fréquence et en phase à celui-ci. La génératrice synchrone nécessite donc un équipement de synchronisation (le synchroniseur). Elle est plus complexe, plus onéreuse et nécessite la mise en place de matériels coûteux. Elle permet par contre d’assurer le secours de son établissement « hôte » en cas de perte de réseau.

La machine devra, en outre, être équipée d’une série de protections électriques comme une protection de découplage, une protection de surintensité et de mise à la terre.

Génératrice asynchrone

Une génératrice asynchrone est un moteur asynchrone dont la vitesse de glissement par rapport au champ tournant (qui est constitué par le réseau électrique) a une valeur telle qu’il se produit aux bornes du stator un courant alternatif (rotor en survitesse par rapport au champ tournant du stator). La génératrice asynchrone ne nécessite pas d’équipements de synchronisation dans la mesure où elle se synchronise automatiquement au réseau. Sa constitution est plus simple, les coûts sont moins élevés. Elle ne requiert pas d’auxiliaires électriques coûteux si ce n’est une batterie de condensateurs qui devra corriger le cosinus Phi. Celui-ci sera en effet détérioré par la puissance réactive appelée par la machine asynchrone. Ceci suppose aussi que la puissance électrique du cogénérateur ne pourra pas être trop importante pour ne pas trop détériorer le cosinus Phi de l’établissement. En pratique, pour la puissance électrique du groupe de cogénération, on ne dépassera pas 25 à 30 % de la puissance appelée par l’établissement.

Ayant besoin d’une alimentation du réseau électrique pour fonctionner, cette machine ne peut donc pas assurer un secours en cas de panne du réseau.

Résumé des avantages et inconvénients

Génératrice asynchrone
[+]

  • Coût d’investissement faible.
  • Simplicité d’utilisation.

[-]

  • Pas de possibilité d’utiliser l’unité de cogénération comme groupe de secours.
  • Limitation de la puissance du groupe par rapport à la puissance de l’établissement (25 à 30 %).
  • Nécessité de placer une batterie de condensateurs.

Alternateur synchrone
[+]

  • Possibilité d’utiliser l’unité de cogénération comme groupe de secours.
  • Solution adaptée à toutes les configurations techniques.

[-]

  • Coût d’investissement élevé.
  • Obligation d’auxiliaires électriques coûteux (synchroniseur, protection).

Caractéristiques techniques

Les caractéristiques principales de la génératrice sont :

  • la puissance électrique;
  • le régime de tension;
  • la génératrice synchrone ou asynchrone;
  • son cosinus phi.

Le raccordement électrique

Fonction

Amener l’énergie électrique depuis la génératrice vers le circuit électrique, avec toutes les protections nécessaires.

Description

La cohabitation de la cogénération et du réseau électrique du distributeur sur un même circuit demande l’installation d’une série de protections.

Le raccordement électrique se compose ainsi de plusieurs éléments :

  • le câble de puissance et les protections électriques « classiques »;
  • la protection spécifique à la production d’énergie électrique en parallèle sur le réseau;
  • le dispositif de synchronisation en cas de génératrice synchrone.

Câble de puissance et protections électriques « classiques »

Le câble de puissance, un câble électrique standard, amène l’électricité générée par la cogénération à l’installation électrique du client.

Plusieurs protections interviennent sur ce circuit électrique :

  • La protection des installations contre un dysfonctionnement du cogénérateur en plus des protections contre un dysfonctionnement du réseau électrique;
  • La protection du groupe de cogénération contre un dysfonctionnement interne ou contre un dysfonctionnement du réseau électrique;
  • La protection des personnes.

Les principales caractéristiques sont :

  • La tension de raccordement.
  • Le câble de puissance : type, dimensions et mode de pose du câble.
  • Les dispositifs de protection contre les surcharges et contre les courts-circuits.
  • Le régime de neutre et protection des personnes.

Protection spécifique à la production d’énergie électrique en parallèle sur le réseau

La protection spécifique à la production d’énergie électrique en parallèle sur le réseau permet :

  • Au gestionnaire de réseau d’exploiter son réseau de manière sûre et de se prémunir des incidents éventuels.
  • À l’auto producteur de protéger son installation en cas d’incident sur le réseau de distribution :

Schéma électrique de découplage.

Génératrice SYNCHRONE
avec fonctionnement en secours.

Deux situations sont prévues :

  • Soit le cogénérateur ne peut jamais fournir d’énergie au réseau. On parle « d’autoproduction », c’est-à-dire qu’on ne produit de l’électricité que pour ses propres besoins.
  • Soit le cogénérateur peut débiter sur le réseau (par exemple, dans le cadre d’un contrat de rachat d’énergie). On parle alors de production décentralisée.

Protection de découplage ou production décentralisée

Pour les installations de production décentralisée, on parle d’une protection de découplage. Cette protection permet, au moyen d’une série de relais (relais obligatoirement agréés par le distributeur), la mise hors service des cogénérateurs lorsque leurs influences deviennent trop importantes en cas de régimes de réseaux perturbés. Des packages agréés complets existent dans le commerce reprenant toutes les fonctionnalités de protection.

Protection directionnelle ou autoproduction

Une protection directionnelle isole le cogénérateur du réseau dès que de la puissance électrique passe vers le réseau. Dans ce cas, les protections mentionnées ci-dessus ne sont pas nécessaires.

Synchronisation de la génératrice synchrone

Le synchronoscope, composé d’un double fréquence-mètre et d’un double voltmètre (points 1 et 2 sur le schéma), donne une image des différences entre les champs tournants des deux branches du réseau à coupler que sont le cogénérateur et le réseau basse tension du client : comparaison de la fréquence et de la tension en grandeur et en phase.

Synchronisation de la génératrice synchrone.

Pour un démarrage normal, lorsque l’installation est sous tension, le synchroniseur va ajuster la puissance du moteur, via l’injection, pour adapter sa vitesse et donc la fréquence. Il va aussi moduler le courant d’excitation pour ajuster la tension en grandeur.

Lorsque les tensions et fréquences sont égales en grandeur et en phase, le couplage est actionné.

Pour un recouplage après un découplage du réseau, le même principe peut être utilisé avec une comparaison entre les points 1 et 3 au lieu des points 1 et 2.

Lorsque l’installation est alimentée par le groupe, mais isolée du réseau, on dit qu’elle est en îlotage. La puissance du moteur et le courant d’excitation régulent respectivement la fréquence et la tension. Lorsque le groupe fonctionne en parallèle sur le réseau, la puissance du moteur et le courant d’excitation régulent respectivement la charge électrique délivrée par le groupe et le cos phi.

Théorie

Pour plus d’informations sur le synchronisme des générateurs synchrones.

Les échangeurs de chaleur

Fonction

Récupérer la chaleur du moteur et des fumées pour la raccorder au système de production de chaleur  existant.

Description

Les échangeurs de chaleur permettent à 2 fluides, liquide ou gaz, de se croiser et d’échanger leur énergie thermique sans se mélanger. Les échangeurs les plus souvent rencontrés sont les échangeurs à plaques et les échangeurs à tubes droits ou en « U ». Ils se distinguent essentiellement par le type de surface d’échange entre les deux fluides. Leurs comportements respectifs en découlent.

Le groupe de cogénération comprend généralement 3 échangeurs de chaleur : le premier récupère la chaleur du bloc moteur dans l’eau de refroidissement, le deuxième celle des de l’huile de lubrification et le troisième celle des fumées.

Un quatrième échangeur est parfois présent au niveau du bloc turbo. Il est couramment appelé « intercooler » et sert à refroidir.

Une faible part de l’énergie thermique n’est pas récupérable, il s’agit de la chaleur dégagée par rayonnement et convection du moteur, de la chaleur résiduelle dans les échappements et des pertes dues à un éventuel intercooler.

Les caractéristiques essentielles des échangeurs de chaleur sont :

  • La températures d’entrée et de sortie.
  • Les débits.
  • Les polluants potentiels et solutions préconisées.

À quelques rares unités près, dans le secteur tertiaire, la plupart des cogénérateurs sont de petite puissance (quelques dizaines de kW) voire de puissance moyenne (quelques centaines de kW). Le cogénérateur alors se présente souvent sous la forme d’un « kit », échangeurs compris. Ces échangeurs sont, en général, en série; ce qui signifie que le cogénérateur ne dispose hydrauliquement que de deux connexions (départ/retour) pour se raccorder sur le circuit de chauffage.

Pour des unités de puissance plus importante, les échangeurs peuvent ne pas faire partie intégrante du cogénérateur. Dans ce cas, un ensemblier peut prévoir des échangeurs « externes » pour fournir de la chaleur à des températures différentes. Le dimensionnement de ces échangeurs se fera en fonction des exigences des différents besoins en chaleur. Ce genre d’unités de cogénération se retrouve plutôt dans l’industrie.


Le raccordement hydraulique

Fonction

Amener l’énergie thermique depuis les échangeurs du groupe de cogénération jusqu’au circuit d’utilisation de la chaleur, le plus souvent un système de chauffage central.

Schéma simplifié d’une installation type.

Description

Le raccordement hydraulique connecte la cogénération au circuit d’utilisation de chaleur du client et permet, par l’intermédiaire des vannes placées sur les canalisations, de gérer l’utilisation des différentes parties du circuit hydraulique.

On distingue essentiellement deux types de raccordement avec les chaudières : en parallèle ou en série.

Raccordement en série

Le raccordement en série est indiqué dans les configurations de chaufferie où :

  • Le réseau est de grande capacité.
  • Les débits d’eau sont importants.
  • La puissance du cogénérateur est faible par rapport à la puissance de la ou les chaudières.
  • Les chaudières sont à haute température.

Raccordement en série.

Dans le raccordement en série, la prise d’eau pour le refroidissement du moteur et sa sortie sont toutes les deux raccordées en amont des chaudières, sur le retour d’eau froide du circuit d’utilisation de chaleur du client. La prise d’eau se trouve en amont de son retour.

Une pompe de circulation assure l’irrigation correcte du moteur et, selon les cas, un échangeur de chaleur sépare le circuit principal du circuit de refroidissement du moteur.

L’inconvénient majeur de cette technique sera la non-adéquation avec une chaudière à condensation en raison d’un retour chaud et les pertes à l’arrêt inhérent à ce retour chaud.

L’avantage majeur est la « simplicité » de mise en œuvre dans une chaufferie existante, en limitant les modifications hydrauliques de la chaufferie.

Raccordement en parallèle

Raccordement en parallèle avec des chaudières à condensation par exemple.

Le raccordement en parallèle est indiqué dans les configurations de chaufferie où :

  • Les chaudières sont des chaudières à condensation.
  • Les nouvelles chaufferies.

Dans le raccordement en parallèle, la prise d’eau pour le refroidissement du moteur est raccordée en amont des chaudières, sur le retour d’eau froide du circuit d’utilisation de chaleur du client, tandis que le retour est raccordé en aval des chaudières, sur le départ vers le circuit d’utilisation de la chaleur.

Une pompe de circulation assure l’irrigation correcte du moteur et, selon les cas, un échangeur de chaleur sépare le circuit principal du circuit de refroidissement du moteur.

Un by-pass (vanne 3 V sur le schéma) permet la charge partielle ou la mise à l’arrêt du cogénérateur.

Principales caractéristiques techniques du raccordement hydraulique

Techniquement, le raccordement hydraulique se caractérise principalement par :

  • Le type de raccordement (parallèle, série, présence ou non d’un volume de stockage de chaleur, d’un aéro-réfrigérant…).
  • Le régime de température du réseau et la compatibilité des températures.
  • Le dispositif pour empêcher le retour d’eau chaude en entrée du groupe.
  • L’isolation du groupe du reste du circuit.
  • La qualité de l’eau d’appoint, traitement.
  • La bouteille de mélange ou non.
  • Le principe de régulation des chaudières.
  • L’aéro-réfrigérant :
    • l’échangeur,
    • l’antigel,
    • l’antibruit,
    • la puissance.

Le stockage de chaleur

Fonction

Si le besoin en chaleur du bâtiment est plus petit que la puissance thermique développée par la cogénération, cette dernière est normalement à l’arrêt. On peut cependant imaginer stocker une partie de la chaleur produite dans un ballon tampon pour l’utiliser lorsque la demande de chaleur est plus importante, par exemple lors de la relance matinale.

L’intérêt du stockage est :

  • De satisfaire une demande électrique sans que la chaleur produite à ce moment soit perdue. Cet avantage peut être particulièrement intéressant pendant les heures de pointe où l’électricité est particulièrement chère.
  • L’écrêtage des fluctuations de température, ce qui limite la fréquence de cycles marche/arrêt et augmente les temps de fonctionnement et la durée de vie de la machine.
  • La fourniture d’une plus grande partie de la demande de chaleur ce qui permet d’installer une plus grosse machine.

Description

Le stockage peut être mis en œuvre de différentes façons :

  • Le stockage dans les chaudières existantes (en fonction du volume d’eau de celles-ci).
  • Le stockage dans le réseau de tuyauterie (pour les grands réseaux).
  • Le stockage dans un réservoir indépendant.

Les principales caractéristiques du ballon de stockage sont

  • Le volume de stockage.
  • La position du stockage dans le circuit hydraulique.
  • Les températures et débits d’entrée et de sortie.
  • L’isolation thermique du ballon.

La régulation

Fonction

Réguler l’ensemble des équipements du cogénérateur, par exemple démarrer et arrêter le groupe ou moduler sa puissance en fonction de la demande de chaleur.

Description

La régulation se constitue d’un ensemble d’automatismes qui permettent de piloter, souvent à distance, le groupe de cogénération. C’est généralement le prescripteur qui rédige le cahier des charges de conduite.

De façon non-exhaustive, nous citons ici les principaux signaux de régulation :

  • Le démarrage
    • Le début des heures pleines relatives au tarif de l’électricité.
    • La pointe de consommation électrique (pointe quart-horaire).
    • Le besoin en chaleur (température de l’eau de retour).
    • La disparition du réseau électrique.
    • Le démarrage forcé par l’utilisateur.
  • L’arrêt
    • La fin des heures pleines relatives au tarif de l’électricité.
    • Le problème de parallélisme avec le réseau ou protections électriques.
    • La disparition du besoin de chaleur.
    • Le mauvais refroidissement du moteur (température de l’eau de retour).
    • Autre défaut sur le retour d’eau.
    • Le problème d’approvisionnement en combustible (niveau de fuel ou position de vanne).
  • La modulation de charge
    • La fluctuation du besoin en chaleur (température de l’eau de retour).
    • La pointe de consommation électrique (pointe 1/4 horaire).

 

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Moteur à combustion interne

Moteur à combustion interne


Principe dans le cas d’un cogénérateur

Parmi les moteurs de cogénérateur, les moteurs gaz ou diesel sont les plus couramment rencontrés. Par rapport au moteur à combustion interne classique (celui de votre voiture, par exemple), le moteur de cogénérateur valorise sa chaleur au travers d’une série d’échangeurs thermiques.

Le moteur diesel

Ce type de moteur appartient à la technologie des moteurs à combustion interne classique et fonctionne suivant un cycle thermodynamique en 4 temps (cycle Diesel), à allumage spontané. Il peut utiliser du combustible comme le diesel naturellement, mais aussi de l’huile végétale ou encore des huiles végétales de recyclage comme l’huile de friture. Cette filière est actuellement en cours d’évaluation tant d’un point de vue de l’étude de potentiel, de la qualité et la stabilité du combustible, ou encore de son statut par rapport à la définition de déchet, de combustible de « seconde génération », …
La qualité du carburant, sa stabilité au cours du stockage, … doivent être prise en compte afin d’éviter des ennuis mécaniques comme le dépôt de cristaux sur les têtes des pistons en occasionnant  des mises à l’arrêt intempestives.

Illustration du principe d’injection de diesel dans un moteur diesel.

Avantages et inconvénients

(+) Le moteur diesel :

  • À un rendement légèrement supérieur à son équivalent gaz.
  • Il peut facilement être adapté pour être utilisé avec des huiles végétales (pour autant que toutes les spécifications techniques de l’huile utilisée correspondent aux exigences du fabricant du moteur, par exemple la viscosité doit être adéquatement gérée).
  • Son couple mécanique est important. Il pourrait travailler en îlotage et reprendre une charge électrique non négligeable.
  •  …

(-) Par contre le moteur diesel :

  • À injection directe demande un contrôle très précis du carburant injecté pour assurer l’autoallumage.
  • Est plus bruyant que son homologue « essence ».
  • À puissance égale, sera plus lourd.
  • Demande un entretien plus régulier que son homologue.

Le moteur au gaz

Quant à ce type de moteur, il fait partir aussi de la gamme des moteurs à combustion interne. Mais, en réalité, on parlera plutôt de moteur à explosion. De plus, il fonctionne aussi suivant un cycle thermodynamique en 4 temps (cycle Otto), à allumage commandé.

Principe d’injection du mélange air/gaz dans la chambre de combustion pour un moteur gaz.

Avantages et inconvénients

(+) Le moteur gaz :

  • Plus léger.
  • Utilise des carburants plus propres que le diesel, d’où son entretien plus aisé et moins coûteux et avantageux d’un point de vue des CV octroyés.
  • Plus silencieux.
  •  …

(-) Par contre le moteur gaz :

  • Possède un moins bon couple mécanique que le moteur diesel. Son utilisation en îlotage est assez délicat.
  • Son rendement est inférieur à celui du moteur diesel.

Les échangeurs du moteur

La récupération de chaleur s’effectue à plusieurs niveaux :

  • Basse température : au niveau de l’eau de refroidissement, au niveau des huiles de lubrifications du moteur.
  • Haute température : au niveau des gaz d’échappement.
  • Basse température : au niveau de l’intercooler du turbo lorsqu’il est présent.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Moteur à combustion externe

Moteur à combustion externe


Principe

Photo moteur stirling.

Source : Wikipédia.

Dans le monde de la cogénération, le moteur stirling est une technologie de moteur utilisée particulièrement pour les micros cogénérations domestiques. C’est un moteur à combustion externe de petite puissance. Le gaz interne (hélium par exemple) est soumis aux quatre phases reprises ci-dessous :

Comme pour le moteur à combustion interne, le cycle du stirling s’articule sur la composition des 4 phases séquentielles suivantes :

  1. Chauffage externe du gaz à volume constant (isochore). C’est au point mort haut que le gaz s’échauffe et atteint une pression élevée. C’est l’exemple du brûleur qui assure le chauffage.

  2. Détente du gaz à température constant (isotherme). Le piston se déplace vers le bas.
  3. Refroidissement externe à volume constant (isochore) au point mort bas. En pratique, c’est à ce niveau que le circuit de chauffage récupère la chaleur du brûleur transmise au gaz tout en le refroidissant.

  4. Compression du gaz à température constant (isotherme). Le piston remonte.

On se doute bien que la mise en œuvre pratique d’un tel système poserait des problèmes de contraintes thermiques importantes, de la gestion du chauffage et du refroidissement du système et ne donnerait pas des performances intéressantes.

Pour pallier à ce problème, l’ingéniosité des inventeurs de tous bords n’a pas de frontières. La présence d’un « déplaceur » permet de chauffer et de refroidir le système de manière continue comme le montre les figures suivantes :

  1. Détente isotherme (à température constante). Le piston du moteur (en bleu) et le piston déplaceur se déplacent vers le bas en augmentant le volume du gaz dans le cylindre.
  2. Combinaison de la fin de la détente isotherme et du début du refroidissement isochore (à volume constant). Le piston moteur continue à se déplacer vers le bas jusqu’au point mort bas tandis que le piston se déplace déjà vers le haut.
  3. Compression isotherme. Le piston moteur remonte et le piston déplaceur se déplace vers le point mort haut.
  4. Combinaison de la fin de compression isotherme et du chauffage isochore. Le piston moteur arrive au point mort haut et le piston déplaceur redescend.

Type de moteur stirling

Histoire grecque

La plupart des moteurs stirling sont à mouvement rotatif; c’est-à-dire qu’ils transforment le mouvement alternatif linéaire des pistons en mouvement rotatif via l’ensemble bielle/vilebrequin.

Différents types de moteur stirling existent sur le marché. Un autre moteur stirling assez didactique est repris dans la figure suivante :

Type alpha.

Stirling Bêta pour cogénérateur

Schéma stirling Bêta pour cogénérateur.Schéma principe stirling Bêta pour cogénérateur.

Le type stirling bêta décrit ici est un moteur linéaire. Il remporte un franc succès auprès des constructeurs de micros cogénérateurs domestiques. Contrairement au stirling alpha, le bêta est composé d’un seul cylindre qui accueille les deux pistons. La chambre chaude se situe au niveau de la partie supérieure du cylindre tandis que la chambre froide, elle, à la base du cylindre. Sous le cylindre se situe le carter dans lequel se trouve l’alternateur. C’est un alternateur rectiligne ! La production électrique s’effectue par variation de flux lorsque la partie mobile de l’alternateur (on ne peut pas parler de rotor dans ce cas-ci) se déplace selon un mouvement rectiligne alternatif.

  1. Le gaz de travail est froid et occupe un volume minimum. Le déplaceur descend et chasse le gaz  de la partie basse du cylindre (froide) vers la partie haute (chaude) soumise à la chaleur du brûleur.

  2. Le gaz chauffé au niveau du brûleur tend à occuper plus de place et pousse le déplaceur et le piston moteur vers le bas en bout de course. Le piston entraine dans sa course la bobine.  Par variation de flux dans la bobine, il y a production d’électricité.

  3. Le gaz est maintenant à son volume maximum. Le déplaceur remonte mécaniquement et fait passer le gaz de la partie haut (chaude) vers la partie basse (froide) où il est refroidi.

  4. Le gaz en refroidissant dans la partie basse tend à occuper moins de place. Le piston moteur remonte et comprime le gaz. Le piston moteur entraine dans sa course la bobine vers le haut. Par variation de flux dans la bobine, il y a production d’électricité.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Alternateur

Alternateur

Les machines tournantes

Les machines tournantes électriques se composent principalement :

  • d’un rotor, l’élément  tournant;
  • d’un stator, la partie fixe de la machine.

Aussi, elles se divisent essentiellement en deux catégories : les machines synchrone et asynchrone. La différence principale entre ces deux types de machine réside dans la conception du rotor.

En ce qui  concerne la puissance, la plupart des machines tournantes à  courant alternatif sont, au-delà de quelques kW, des machines triphasées, raison pour laquelle les bobinages au niveau du stator sont souvent au nombre de trois ou un multiple de trois.

Schéma machines tournantes.


Les machines synchrones

Pour les machines synchrones, le rotor peut être constitué :

  • d’un ou de plusieurs aimants permanents. C’est le cas pour les petites et moyennes puissances.
  • de bobinages alimentés en courant continu et d’un circuit magnétique. On parle alors d’électro-aimants. Ce type de rotor est très courant.

Alternateur synchrone

Principe de fonctionnement

Lorsque le rotor est entrainé par un moteur à combustion interne par exemple, c’est le cas d’un cogénérateur, son champ magnétique tourne à la vitesse de rotation du moteur : il est appelé « champ tournant ». Il induit dans les bobinages du stator un courant alternatif de forme sinusoïdale pour autant que les circuits du stator soient fermés sur une charge. Dans ce cas, la machine tournante est  « génératrice » ou communément appelée « alternateur ».
La vitesse du champ tournant est aussi appelée vitesse de synchronisme pour autant qu’elle soit la même que celle du champ tournant généré par le réseau sur lequel la machine synchrone sera connectée.
Les réseaux interconnectés en Europe ont une fréquence de 50 Hz. Pourquoi cette fréquence ? La fréquence est en fait liée à la vitesse du champ tournant par la relation :

ω = 2πf / p

Avec :

  • ω : vitesse angulaire du champ tournant (radian/s).
  • f : fréquence du réseau (Hz).
  • p : le nombre de paires de pôles du rotor.

Schéma alternateur synchrone.

Par exemple, une machine tournant à 3 000 tr/min avec une seule paire de pôles génère un signal sinusoïdal de fréquence de 50 Hz. Si l’on veut brancher sur le réseau un alternateur tournant à 1 500 tr/min, le rotor devra être équipé de 2 paires de pôles pour pouvoir fournir un courant alternatif de fréquence 50 Hz. C’est le cas du rotor représenté dans la figure ci-dessus.

Démarrage de l’alternateur synchrone

Dans la plupart des cas, le démarrage est assuré par le moteur d’entrainement. Le couplage de l’alternateur se réalise lorsque tous les critères de synchronisation sont respectés.

Régulation de l’alternateur

En îlotage

Lorsque la charge d’un alternateur change, les puissances actives et réactives peuvent changer. Il en est de même pour la tension et la fréquence. Comment les maintenir stables ?
Sans rentrer dans les détails :

  • Lorsque la puissance active varie, la vitesse et la fréquence de l’alternateur varient. Comme pour une voiture où la pente de la route change, il faut « jouer » avec l’accélérateur pour rétablir la bonne vitesse et, par conséquent, la bonne fréquence (accélérer pour maintenir la bonne vitesse en côte et décélérer en descente).
  • Lorsque la puissance réactive varie, la tension de l’alternateur varie. Il est nécessaire de modifier l’excitation de l’alternateur.

En réseau

Couplé sur un réseau, l’alternateur est véritablement « accroché ». Les seuls paramètres à réguler sont :

  • la puissance réactive en agissant sur le niveau d’excitation de l’induit (le rotor);
  • la puissance active en sollicitant le régulateur ou le variateur de vitesse.

Moteur synchrone

Lorsque la machine synchrone n’est pas entrainée par un moteur à combustion interne, mais connectée à un réseau électrique classique, elle se comporte en « moteur ». Attention toutefois que le moteur synchrone est particulier dans le sens où  il ne peut pas se mettre à tourner seul sans artifice de démarrage : un variateur de fréquence placé entre le réseau et le stator permet au rotor « d’accrocher » le champ tournant du stator passant progressivement d’une basse vitesse à celle de synchronisme du réseau d’alimentation.


Les machines asynchrones

Contrairement aux machines synchrones, le rotor des machines asynchrones est plus simple dans sa conception : l’aimant permanent ou d’électro-aimant est remplacé par une simple cage d’écureuil.

Schéma machines asynchrones.

Pour expliquer le fonctionnement d’une machine asynchrone, parler des moteurs permet de simplifier la démarche.

Les moteurs asynchrones

L’application reine de la machine asynchrone est le « moteur ».  En effet, ce sont des machines simples, peu couteuses et robustes.

La notion de « glissement » est très importante pour les moteurs asynchrones. En effet, le glissement étant la différence de vitesse du champ tournant du stator par rapport à la vitesse du rotor, il est nécessaire au maintien d’une variation de flux électromagnétique au niveau des conducteurs du rotor. Sans cette variation de flux ΔΦ/Δt, selon les lois de l’induction (loi de Lenz en particulier), aucun couple n’est généré au niveau du rotor.  Le glissement, en mode moteur, est de l’ordre de quelques %. Par exemple, pour un champ tournant à une vitesse de 3 000 tr/min, le rotor,  à vide, tournera à 2 995 tr/min ; ce qui engendrera un glissement de (3 000 – 2 995) / 3 000 = 1.6 %.

Auparavant, le seul inconvénient de ce type de moteur était sa pointe importante de courant au démarrage et le fait qu’il était difficile de faire varier la vitesse de rotation du moteur. À l’heure actuelle, avec l’avènement de l’électronique de puissance, les onduleurs ont permis de faire varier la vitesse de rotation dans une large plage.

Les alternateurs asynchrones

Principe de fonctionnement

Contrairement à l’alternateur synchrone, l’alternateur asynchrone ne possède pas de circuit d’excitation au niveau du rotor, raison pour laquelle il est plus simple de raisonner d’abord sur le fonctionnement du moteur asynchrone pour ensuite détailler celui de l’alternateur.

Pour faire fonctionner un moteur asynchrone en alternateur, « il suffit » qu’il tourne légèrement plus vite que le champ tournant du stator et ce au moyen d’un moteur à combustion interne comme le cogénérateur par exemple. Autrement dit, le glissement, dans ce cas, devient négatif. On parle aussi de machine « hyper-synchrone ».

Le champ tournant du rotor d’un alternateur asynchrone est produit par le … stator connecté au réseau. L’induction d’un champ tournant dans le rotor par le stator se traduit par la génération d’une composante réactive du courant dans les enroulements du stator (courant de magnétisation du rotor) et emprunté au réseau. C’est la raison pour laquelle les alternateurs asynchrones ont un mauvais cos φ qu’il faut souvent compenser par le placement de capacités.

Cependant, pour que l’alternateur débite de l’énergie sur un réseau, il est impératif que l’induction du champ tournant au stator soit synchrone avec le celui du réseau. L’électronique est donc la bienvenue !

Démarrage

Dans la plupart des cas, le démarrage est assuré par le moteur d’entrainement. Dans certains cas particuliers, l’alternateur démarre en moteur asynchrone à vide. Un artifice de démarrage (résistances électriques en série avec les enroulements inducteurs) est nécessaire.

Régulation

Lorsque l’alternateur est couplé à un réseau, le seul paramètre de régulation est la vitesse du moteur d’entrainement qui agit sur le niveau de puissance injecté sur le réseau. Pratiquement, on considère qu’une variation de 10 % du glissement de 0 à 10 % augmente la puissance électrique de 0 à 100 %.

Couplage de l’alternateur sur un réseau

Afin de pouvoir coupler un alternateur sur le réseau, il est impératif de respecter des conditions de couplage sans quoi la destruction de l’alternateur est presque inéluctable.
Les conditions sont :

  • la concordance des fréquences;
  • la concordance des tensions;
  • la concordance des phases.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Réglementation pour les productions décentralisées

Réglementation pour les productions décentralisées


Préalable

En mettant en œuvre une installation productrice d’électricité, l’auteur de projet devient auto-producteur ou fournisseur d’électricité. À ce titre il se doit de respecter les normes et réglementations associées à ce métier particulier.

RGIE

Conformément à l’arrêté royal du 10 mars 1981, toute installation électrique est tenue de respecter les prescriptions de sécurité reprises dans le règlement général sur les Installations électriques (RGIE).

Synergrid

Synergrid est la fédération des gestionnaires de réseaux d’électricité et de gaz en Belgique.

À ce titre, elle édite les prescriptions à respecter par les fournisseurs en vue d’assurer la sécurité du réseau. La prescription C10/11 relative aux « Prescriptions techniques pour les installations de production décentralisées fonctionnant en parallèle sur le réseau de distribution » du 04 juin 2012 s’applique donc à tous les auteurs de projet mettant en œuvre une cogénération en parallèle du réseau basse ou moyenne tension.

Les prescriptions ont pour objectif de garantir le bon fonctionnement du réseau de distribution ainsi que de promouvoir la sécurité du personnel appelé à travailler sur le réseau. Il est donc essentiel de respecter ces prescrits lors de la mise en œuvre d’une installation.

 http://www.synergrid.be/

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Mécanisme des certificats verts

Mécanisme des certificats verts


Préalable

Le mécanisme des certificats verts est régi par l’Arrêté du Gouvernement Wallon du 3 avril 2014 relatif à la promotion de l’électricité produite au moyen de sources d’énergie renouvelable ou de cogénération.

Il convient de toujours se référer au site de la CWaPE, et/ou le Portail de l’énergie de la Région pour s’assurer de la dernière version de la procédure applicable.
Le principe du marché des certificats verts est résumé dans la figure suivante :


Présentation synthétique du mécanisme

Le mécanisme des certificats verts est un mécanisme de soutien aux énergies renouvelables développé afin d’atteindre les objectifs fixés par l’Europe et la Wallonie. Ce mécanisme se traduit par l’octroi de certificats verts au prorata de l’énergie « verte » produite, et ce selon les différentes filières.

Le mécanisme a été modifié depuis le 01/07/2014 et a mis en place trois nouvelles dispositions :

  • Le porteur de projet doit réserver ses certificats verts avant la réalisation du projet au sein d’enveloppes fermées par filière préalablement déterminée par le Gouvernement Wallon, le volume de CV restant par enveloppe par filière est mis à jour par la Région et est accessible sur le portail énergie de la Région Wallonne.
  • Le calcul du nombre de CV a été adapté. Le nombre de CV octroyé est fonction du caractère économique du projet (kéco) et des économies en CO2 générées par le projet. L’évaluation de cette estimation ainsi que les obligations du porteur de projet sont réglementées.
  • La garantie de rachat des certificats verts auprès du gestionnaire de réseau Elia est automatique.

Les infos utiles

La CWaPE : https://www.cwape.be

  • Mise en place une plateforme spécifique pour faciliter la gestion des certificats vert.
  • Édition chaque année d’un rapport sur l’évolution du marché des certificats verts.
  • Mise à disposition d’un outil Excel pour le calcul des certificats verts.

Le Portail de la RW : http://energie.wallonie.be

  • Les certificats verts.
  • La réservation.
  • Les procédure et formulaires.
  • L’état de l’enveloppe.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Permis d’environnement (anciennement permis d’exploitation)

Permis d’environnement (anciennement permis d’exploitation)


Préalable

En Wallonie, afin d’être exploités, tous les « établissements » nécessitent au préalable l’obtention d’un permis d’environnement. La notion d' »établissement » couvre principalement les activités et les installations de production, de service, de fabrication, de recherche & développement, de transport et de divertissement.

En outre si le projet nécessite des travaux de construction, ou modification d’un bâtiment, l’exploitant devra introduire un permis unique, reprenant le permis d’urbanisme, le permis d’environnement et d’exploitation.

Remarque importante : l’obtention  d’un permis d’environnement est actuellement un préalable à la réservation des certificats verts.

Foire aux bonnes adresses :


Le permis d’environnement (PE)

Selon le niveau du caractère polluant, les activités sont réparties en trois classes :

  • classe 1 pour les activités ayant le plus d’impact sur la santé et l’environnement;
  • classe 2 pour les activités intermédiaires;
  • classe 3 pour les activités les moins polluantes.

Pour chaque classe des dispositions particulières sont applicables :

Impact environnemental

Classe de PE

Durée de Validité MAX Type de PE

Peu d’impact

3

10 ans Déclaration

Intermédiaire

2 20 ans Permis d’environnement
Fort impact 1 20 ans Permis d’environnement

Les demandes de permis (PE ou PU) sont déposées auprès des autorités communales sur le territoire de la commune de l’unité d’exploitation.

Le permis est valables jusqu’à son terme, en cas de cession d’activités, le permis est cédé au repreneur.

La classe de PE, pour une activité donnée, est régie par un arrêté du gouvernement wallon :

http://environnement.wallonie.be/legis/pe/pe006bisannexe1.htm

Extrait relatif aux catégories applicables à la cogénération :

  • 40.10.01.01.01 égale ou supérieure à 100 kVA et inférieure à 1 500 kVA
  • 40.10.01.01.02 égale ou supérieure à 1 500 kVA
  • 40.40.10.01. lorsque la capacité de traitement est inférieure ou égale à 15 tonnes par jour
  • 40.40.10.03. lorsque la capacité de traitement est supérieure à 500 tonnes par jour
Numéro — Installation ou activité Classe EIE Organismes à consulter
40 PRODUCTION ET DISTRIBUTION D’ÉLECTRICITÉ, DE GAZ, DE VAPEUR ET D’EAU CHAUDE
40.10.01.01 Transformateur statique relié à une installation électrique d’une puissance nominale :
40.10.01.01.01 égale ou supérieure à 100 kVA et inférieure à 1 500 kVA 3
40.10.01.01.01 égale ou supérieure à 100 kVA et inférieure à 1 500 kVA 2

 

40.10.01.02 Batterie stationnaire dont le produit de la capacité exprimée en Ah par la tension en V est supérieure à 10 000 3
40.10.01.03 Centrale thermique et autres installations de combustion pour la production d’électricité dont la puissance installée est : DEBD*
40.10.01.03.01 égale ou supérieure à 0,1 MW thermique et inférieure à 200 MW thermiques 2
40.10.01.03.02 égale ou supérieure à 200 MW thermiques 1 X AWAC, DEBD*
40.30.02 Installation de production de froid ou de chaleur mettant en œuvre un cycle frigorifique (à compression de vapeur, à absorption ou à adsorption) ou par tout procédé résultant d’une évolution de la technique en la matière :
Puissance frigorifique nominale utile (en KW) : la puissance frigorifique maximale fixée et garantie par le constructeur comme pouvant être fournie en marche continue tout en respectant les rendements utiles annoncés par le constructeur.
40.30.02.01 dont la puissance frigorifique nominale utile est supérieure ou égale à 12 kW et inférieure à 300 kW ou contenant plus de 3 kg d’agent réfrigérant fluoré 3
40.30.02.02 dont la puissance frigorifique nominale utile est supérieure ou égale à 300 kW 2 DEBD
40.30.03 Installation de production de vapeur sous pression :
40.30.03.01 dont la puissance installée est supérieure ou égale à 100 kW et inférieure à 1 000 kW 3  

 

 

 

40.30.03.02 dont la puissance installée est supérieure ou égale à 1 000 kW 2  DEBD
40.40.10. Installation de biométhanisation visant à produire de l’électricité, du gaz, de la vapeur et de l’eau chaude à partir de biomatières ne constituant pas un déchet

Biomatière : tout objet ou substance décomposable par voie aérobie ou anaérobie.
Biométhanisation : processus de transformation biologique anaérobie de biomatières, dans des conditions contrôlées, qui conduit à la production de biogaz et de digestat.

Installation de biométhanisation : unité technique destinée au traitement de biomatières par biométhanisation pouvant comporter notamment :
a) des aires de stationnement pour les véhicules en attente d’être dépotés ou déchargés.
b) des aires de réception des biomatières entrantes.
c) des infrastructures de stockage des biomatières entrantes.
d) l’installation destinée à la préparation du mélange de biomatières avec le cas échéant des additifs qui sera injecté dans les digesteurs.
e) des systèmes d’alimentation des digesteurs en biomatières.
f) des digesteurs.
g) des post-digesteurs.
h) des infrastructures de stockage du digestat.
i) des infrastructures de post-traitement du digestat.
j) des infrastructures de stockage de biogaz.
k) des systèmes d’épuration du biogaz pour son utilisation comme combustible au sein de l’établissement.
l) des torchères ou tout autre offrant système des garanties équivalentes quant à la destruction du biogaz.
m) des infrastructures de stockage des biomatières refusées.
n) des installations de valorisation du biogaz produit au sein de l’installation de biométhanisation ayant pour objet de satisfaire aux besoins internes de l’établissement.
Capacité de traitement : la capacité, en tonnes, de traitement de biomatières dans le ou les digesteurs de l’installation de biométhanisation.

40.40.10.01. lorsque la capacité de traitement est inférieure ou égale à 15 tonnes par jour 3
40.40.10.02. lorsque la capacité de traitement est supérieure à 15 tonnes et inférieure ou égale à 500 tonnes par jour 2 DEBD, DPD, DPS, DRIGM, AWAC*
40.40.10.03. lorsque la capacité de traitement est supérieure à 500 tonnes par jour 1 X DEBD, DPD, DPS, DRIGM, AWAC¨*
DEBD : Département Énergie et Bâtiment Durable (http://dgo4.spw.wallonie.be/dgatlp/dgatlp/Pages/Energie/Pages/Accueil/Presentation.asp)
AWAC : Agence Wallonne de l’Air et du Climat (http://www.awac.be)
DPD : Direction de la Politique des Déchets
DPS : Direction de la Protection des Sols (http://dps.environnement.wallonie.be/home.html)
DRIGM : Direction des Risques Industriels, Géologiques et Miniers (https://www.wallonie.be/fr/acteurs-et-institutions/wallonie/departement-de-lenvironnement-et-de-leau/direction-des-risques-industriels-geologiques-et-miniers)

Les obligations liées au stockage de l’énergie primaire ne sont pas reprises dans la table ci-dessus.


En savoir plus

Lien vers le site de la Région mettant à disposition les formulaires de PU/PE :
http://www.wallonie.be/fr/formulaire/detail/20520

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Rentabiliser un projet de cogénération

Rentabiliser un projet de cogénération

Le client ne s’intéresse pas nécessairement aux dessous techniques de la cogénération et du pré-dimensionnement. S’il s’y intéresse, les informations sont disponibles et peuvent lui être communiquées. Dans le cas contraire et afin de ne pas le noyer dans des notions techniques qu’il maîtrise parfois mal, il peut être commercialement utile de ne lui parler que de ce qui l’intéresse et qu’il connaît : ses consommations, ses coûts et la sécurité de son approvisionnement énergétique. C’est le rôle de l’agent commercial de déterminer la meilleure approche.

La faisabilité économique d’une installation de cogénération, se détermine par :


La situation de référence

La situation de référence donne les coûts de consommation et de maintenance avant la cogénération.
Ces coûts relatifs à la situation initiale permettent de calculer une rentabilité en les comparant aux prévisions de coûts et de gains liés à la cogénération.

La situation de référence comprend :

  • une description des installations existantes de chauffage, d’approvisionnement en combustible;
  • une description des consommateurs de chaleur et d’électricité;
  • les coûts des approvisionnements en combustible et en électricité;
  • les coûts d’exploitation en ce compris la maintenance des installations.

L’investissement

Les investissements comprennent : l’étude, l’installation et la mise en service; le cogénérateur et ses équipements annexes, les aménagements, les raccordements hydraulique, électrique et gaz si nécessaire.

Même si l’investissement et la répartition des coûts varient en fonction de la puissance nominale de la cogénération, d’une façon générale, les coûts se répartissent comme représenté dans le graphique suivant :

Répartition des coûts d’investissement.

En pratique, le prescripteur se renseignera auprès des fournisseurs pour obtenir les informations budgétaires dont il a besoin pour évaluer la rentabilité du projet.


Les gains d’exploitation

Outre l’investissement et la maintenance de celui-ci, le calcul de rentabilité d’une installation doit intégrer les postes suivants :

Coûts liés à la cogénération :

  • les revente au réseau de l’électricité non consommée;
  • la vente de certificats verts;
  • le coût de la maintenance de la nouvelle installation.

Coûts liés à l’ancienne installation :

  • l’économie en combustible par le remplacement de l’ancien système;
  • l’économie en électricité (part autoconsommée de la production électrique);
  • l’économie de la maintenance (si l’ancienne installation est retirée).

Afin d’établir cette évaluation, il est donc indispensable de connaître le tarif applicable d’électricité et de combustibles de l’installation.

Sur cette base, il est alors possible d’établir une première image de rentabilité de l’installation.

Évolution de la facture combustible

Puisque le combustible sert à produire de la chaleur et de l’électricité, sa consommation sera plus importante que pour produire uniquement la même quantité de chaleur avec une chaudière classique.

Afin d’évaluer la consommation en combustible de la nouvelle installation, il est essentiel d’en référer au rendement de production de chaleur de l’installation envisagée. Ce rendement est à considérer en fonction du taux de charge attendu de l’installation. Le dimensionnement de l’installation pour un besoin de chaleur donné reste ici essentiel. On ne peut dès lors que souligner l’importance de la bonne connaissance du besoin en chaleur de l’installation.

Le coût de la surconsommation dépend également du prix du combustible.

Évolution de la facture de maintenance

La cogénération est une installation particulière mettant en œuvre des technologies plus spécifiques qui s’écartent de la chaudière traditionnelle.

Il est important d’évaluer dès le départ les coûts associés à la maintenance du matériel et le responsable de cette maintenance.

Les fournisseurs de groupe de cogénération proposent des contrats de maintenance pour leur matériel. Ces contrats peuvent comprendre non seulement la maintenance continue, mais également le dépannage dans un temps minimum.

Le coût de l’entretien du groupe dépend de son temps de fonctionnement. Les fabricants présentent d’ailleurs le coût de leur contrat en « €/h » (ou en €/kWhé). Il faut donc être attentif à définir correctement les périodes de fonctionnement de l’unité.

Pour les petits moteurs, le coût d’entretien est proportionnellement plus élevé que pour les grosses installations (les prestations sont à peu près semblables quelle que soit la puissance), ce qui les pénalise. Il est cependant possible de diminuer ces coûts en proposant de prendre en charge certaines prestations courantes en interne.

Ces prestations, réalisables en interne moyennant une formation adéquate, consistent en :

  • un contrôle, vidange de l’huile;
  • un remplacement des filtres;
  • une inspection du circuit de refroidissement;
  • une inspection des batteries;
  • un remplacement des bougies (moteurs gaz);
  • un contrôle du système d’allumage et du système de carburation;
  • une lubrification de l’alternateur;
  • un contrôle des sécurités.

Le fournisseur ne prend plus en charge que les dépannages et la révision complète du système (moteur et alternateur). Il est important de définir par contrat les modalités de prise en charge interne d’une part de la maintenance, notamment en ce qui concerne les conditions de garantie du cogénérateur.


Le temps de retour sur investissement

Les données définies jusqu’à présent permettent de calculer un temps de retour sur l’investissement, qui est un critère important dans la décision de réalisation ou non du projet.
Le temps de retour sur l’investissement se définit comme le rapport de l’investissement sur le gain d’exploitation annuel.  Pour rappel, il s’agit de la durée nécessaire pour rentabiliser l’investissement. Au-delà de cette période, tout le bénéfice généré par l’installation profite directement à l’investisseur.

La valeur actualisée nette VAN

La valeur actualisée nette des gains engendrés lors de l’exploitation de l’unité de cogénération est la différence entre les flux financiers positifs ou gains (c’est-à-dire gains sur la facture d’électricité, vente des certificats verts, …) et les flux financiers négatifs ou dépenses (c’est-à-dire investissement net, frais de combustible, entretiens, …).

Par ailleurs, ces flux financiers « futurs » sont actualisés en euros « actuel ». En effet, il est important de pouvoir comparer des gains « futurs » avec un investissement à réaliser « aujourd’hui ». Il s’agit de l’actualisation.

Par exemple, la valeur actuelle d’un gain de 10 000 € disponible dans 5 ans avec un taux d’actualisation de 4 % est de 8 219 €. Autrement dit, pour obtenir 10 000 € dans 5 ans, il suffit de placer 8 219 € en banque avec un taux d’intérêt de 4 %.

En outre, la valeur actualisée nette tient compte de l’évolution des prix des composants intervenant dans les flux financiers, c’est-à-dire l’inflation sur le prix des entretiens ou l’augmentation du prix des énergies.

La formule donnant la valeur actualisée nette est la suivante :

VAN = – INV + ∑ VA (gains) – ∑ VA (dépenses)

avec VA (gain) = ∑t = 1 à n (gain x (1 + j)t / (1  + i)t

Où :

  • VAN = Valeur Actualisée Nette
  • INV = Investissement initial net
  • VA = Valeur Actuelle d’une variable (gain ou dépense)
  • t = année
  • n = durée de vie économique de l’investissement
  • i = taux d’actualisation
  • j = taux d’évolution du prix d’une variable (gain ou dépense)
  • ∑ = sigle de sommation

Le taux de rentabilité interne

Le taux de rentabilité interne (TRI) est le taux d’intérêt fictif pour lequel la valeur actuelle nette serait nulle sur la durée de vie économique (souvent 10-15 ans dans le cas d’une cogénération). Plus le TRI est élevé (par rapport au taux d’intérêt d’un placement bancaire par exemple), plus le projet est rentable.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Optimaliser l’étude de faisabilité [cogen]

Lors du dimensionnement final, le bureau d’étude va évaluer les puissances thermique et électrique les mieux adaptées à chaque projet.

C’est ce dimensionnement des puissances thermique et électrique, qui permettra d’échafauder un plan financier et d’évaluer la rentabilité financière du projet.

Voici décrit une méthodologie de dimensionnement qui se base sur les besoins en chaleur et en électricité et sur leur simultanéité pour définir la cogénération adaptée à chaque cas spécifique. Elle décrit pas à pas les étapes que le prescripteur peut suivre pour le dimensionnement complet de la puissance de la cogénération.


L’importance du dimensionnement

Soulignons d’emblée l’importance du dimensionnement. Une mauvaise évaluation à ce stade aura des répercussions économiques d’autant plus grandes que les investissements et les durées de vie des équipements sont relativement importantes et que chaleur et électricité sont simultanément concernées.

Si un sous-dimensionnement n’est préjudiciable « que » dans la mesure où le client ne bénéficiera pas de toutes les économies potentiellement réalisables, un sur-dimensionnement peut s’avérer beaucoup plus pénalisant sur le plan économique : le fonctionnement en charge réduite est un fonctionnement proportionnellement plus coûteux qu’à pleine charge. Par ailleurs, cela augmente le nombre de démarrages-arrêts, préjudiciable pour la durée de vie du moteur.

Notons encore qu’avant d’entamer le calcul de dimensionnement, il importe de rationaliser toute consommation de chaleur et d’électricité par des mesures adéquates : isolation, période d’utilisation… Si cette rationalisation devait intervenir après le projet de cogénération, les consommations de chaleur et d’électricité s’en trouveraient modifiées et par là le dimensionnement de l’installation deviendrait inadéquat.

Dans le même ordre d’idée, les besoins énergétiques évoluent et il s’agit pour le prescripteur d’anticiper ces modifications et d’en tenir compte lors de son évaluation.

Dimensionner revient à calculer la puissance du cogénérateur et ses heures de fonctionnement, pour coller au mieux aux deux contraintes essentielles :

  • La production de chaleur doit égaler le besoin de chaleur (sauf si l’excédent peut être stocké dans un ballon de chaleur) ;
  • La production d’électricité doit être valorisable au maximum par le site.

Le dimensionnement optimum cherche à définir les puissances thermique et électrique les mieux adaptées aux caractéristiques du projet. L’optimisation consiste à simuler le fonctionnement « en temps réel » de plusieurs tailles d’unités de cogénération et d’en évaluer la rentabilité. Ensuite, sur base d’une série de critères définis par le décideur, l’expert propose la solution la plus intéressante au cas étudié. En cas de résultats similaires, mieux vaut opter pour la cogénération la plus petite.

Optimisation de la rentabilité de plusieurs unités de cogénération.

Dans le cas de cette maison de repos, la puissance optimale de 150 kW est celle qui maximalise la Valeur Actualisée Nette des gains et qui minimise le temps de retour simple de l’investissement.

Une rapide analyse de la sensibilité de cette rentabilité peut être utile. Les paramètres sont généralement les prix des énergies, le montant d’investissement, les performances de l’équipement et ses rendements.

Un impact important sur la manière de dimensionner une unité de cogénération est la mise sur place du mécanisme de certificats verts. Les modifications de la méthodologie de dimensionnement se situent à trois niveaux :

  • Valoriser toute la chaleur produite, afin de prétendre au titre de cogénération de qualité. Il est donc indispensable de piloter la cogénération sur base des besoins en chaleur et non plus pour faire de l’effacement de la pointe électrique. L’octroi des certificats verts est en effet proportionnel à la quantité de chaleur effectivement valorisée.
  • Fonctionner le plus longtemps possible. Alors qu’auparavant les unités de cogénération ne fonctionnaient principalement que durant les heures pleines, période où l’électricité est la plus chère, l’apport financier des certificats verts permet de fonctionner également durant les heures creuses voire de revendre le surplus sur le réseau.
  • Installer un ballon de stockage permet bien souvent d’accroître la rentabilité suite à la souplesse de fonctionnement qu’il apporte. La cogénération peut fonctionner à pleine puissance (rendements maximums) durant une plus grande partie de l’année. Ce qui permet de recevoir davantage de certificats verts.

Vous l’avez compris, le dimensionnement est le travail de spécialistes. Si l’étude de pertinence s’avère positive, vous pouvez donc faire appel à un bureau d’étude compétent pour cette étude de faisabilité. Pour vous aider à bien formuler votre demande, vous pouvez vous inspirer du document suivant :

Évaluer

Réaliser une étude de faisabilité d’une cogénération dans les règles de l’art (PDF)

L’étude des besoins énergétiques

Pour effectuer une simulation « en temps réel », et donc avec précisions, il est indispensable de connaître les besoins électriques, mais aussi thermiques durant une année entière (base de calcul pour le dimensionnement de la cogénération). Cependant, ce type d’information est rarement disponible. L’idéal serait donc de mesurer ces besoins sur une année entière, à la précision du quart d’heure (base de la facturation électrique). Une telle campagne de mesures aurait un coût prohibitif. Et allongerait considérablement le temps pour effectuer une telle étude de faisabilité.

C’est pourquoi une méthodologie simple a été mise gracieusement à disposition des bureaux d’études, experts et consultants en matière de cogénération. Il s’agit, à partir d’une courte période de mesures (typiquement deux semaines), d’obtenir un profil thermique et électrique extrapolée sur une année entière. Cette méthodologie est rassemblée dans l’outil de calcul : COGENextrapolation.xls

Les paramètres qui permettent cette extrapolation sont les données de factures mensuelles ainsi que, pour la partie thermique, les degrés-jour de la station météo la plus proche du site.

Étape 1 : les besoins en électricité

Le besoin en électricité, où la consommation électrique est relativement simple à étudier.

Un enregistrement des impulsions provenant du compteur électrique sur une période de deux semaines permet de définir précisément le profil de consommation électrique, quart d’heure par quart d’heure (précision de la facturation électrique). Choisir une période de deux semaines est un bon compromis entre la connaissance de la variation d’une semaine à l’autre des besoins électriques et la durée (et donc le coût) de la campagne de mesure.

Néanmoins, si lors de discussions avec les utilisateurs il s’avère que les consommations varient très fortement d’une semaine ou d’une saison à l’autre, les profils devront alors être mesurés pour les différents cas de figure.

Profil de consommation électrique mesuré sur une journée.

Note : la fréquence de prise de mesure pour définir le profil de consommation est le quart d’heure. Cette fréquence correspond à la fréquence utilisée actuellement par les fournisseurs d’électricité pour établir les factures.

Une autre possibilité est de demander au gestionnaire du réseau si ces données sont disponibles. C’est souvent le cas si les consommations électriques sont télé-relevées. Dans ce cas, vous pouvez obtenir les puissances quart d’heure par quart d’heure sur toute une année, ce qui est naturellement idéal.

Le profil de consommation électrique est étroitement lié à la facture électrique. Celle-ci découle effectivement directement du profil de consommation électrique. La facture étant directement accessible, sa lecture donne plusieurs paramètres clés particulièrement utiles du profil de consommation électrique pour générer l’extrapolation : la puissance maximum appelée, et surtout les consommations en heures pleines et en heures creuses. Les aspects économiques de la facture interviendront quant à eux lors du calcul de rentabilité de l’installation.

Une extrapolation sur toute une année devra être effectuée, par exemple, à l’aide de l’outil COGENextrapolation.xls

Étape 2 : les besoins en chaleur

La première étape est l’identification du type de chaleur et de tous les postes concernés par cette chaleur, que ces postes fassent partie d’un processus industriel ou non. Ensuite, mesurer la consommation de chaleur sur une période de deux semaines, quart d’heure par quart d’heure, est indispensable.

Le placement d’un compteur de chaleur à ultrasons sur le collecteur principal est une possibilité (mesure du débit et du delta T°). Une autre possibilité est l’enregistrement des impulsions des brûleurs en tenant compte de leur puissance et de la consommation totale pendant la période. Ces informations permettront de définir les puissances quart d’heure par quart d’heure, et ainsi définir le profil de consommation de chaleur.

Une extrapolation sur toute une année devra être effectuée, par exemple, à l’aide de l’outil COGENextrapolation.xls

Citons de façon non exhaustive les autres méthodes les plus utilisées pour définir les profils de consommation quotidiens, hebdomadaires et annuels :

  • la consommation annuelle de combustible de la chaudière combinée aux profils types de consommation pour le consommateur concerné;
  • des discussions avec l’utilisateur sur ses consommations de chaleur sous forme d’eau chaude;
  • une mesure :
    • des impulsions sur le compteur gaz,
    • du débit de mazout,
    • des heures de fonctionnement de la chaudière,
    • du débit d’eau chaude,
  • d’expérience acquise par le bureau d’étude et de calculs de comparaison.

Exemple de profil de consommation type
Profil D : Activité continue 7 jours sur 7 (hôpitaux, horeca…)

Profil du besoin net en chaleur d’une année type,
Besoin exprimé mois par mois, en % du besoin annuel.

Dans la majorité des cas, le besoin annuel en chaleur correspond à la consommation annuelle de combustible multipliée par le rendement de production.

Profil du besoin net en chaleur d’une semaine type,
Besoin exprimé jour par jour, en % du besoin hebdomadaire.

Profil du besoin net en chaleur d’une journée type,
Besoin exprimé heure par heure, en % du besoin quotidien.

Au niveau thermique, surtout si un ballon de stockage de chaleur est envisagé, il est possible d’utiliser des profils thermiques types plutôt que de mesurer ce profil. C’est d’autant plus vrai que les besoins thermiques sont de type climatique (production d’eau chaude pour le chauffage), dans le secteur tertiaire.

À l’opposé, dans l’industrie, les consommations estivales peuvent être semblables aux consommations hivernales, selon le type de procédé. Ce point est à analyser par le bureau d’étude. D’autre part, dans l’industrie, les responsables techniques connaissent mieux leurs procédés et leurs profils de consommation, parfois des mesures existent même.

Les chiffres de consommation sont essentiels, car ils servent de base à toute l’évaluation de la rentabilité du projet. L’accord entre le concepteur et le client sur ces résultats doit être très clair !

Calculs

Pour lancer le programme COGENextrapolation.xls

Dimensionnement optimum avec COGENsim 3.12

Les profils thermiques et électriques quart horaire sur une année entière étant déterminé, nous pouvons passer à l’étape suivante : la simulation en temps réel de l’unité de cogénération.

Cette simulation permet de connaître, à tout moment, quelle sera la production thermique et électrique de la cogénération en fonction des besoins et des règles de fonctionnement. En faisant le bilan annuel, il devient facile de calculer avec précisions le bilan énergétique et partant le bilan économique et environnemental.

La puissance de calcul des ordinateurs actuels permet même de lancer des simulations pour plusieurs tailles de cogénération. Et d’être ainsi libre de choisir celle qui convient le mieux au site étudié.

À nouveau, pour « faciliter » le travail des bureaux d’études, experts et consultants en cogénération, la Région de Bruxelles-Capitale à mis à jour le logiciel COGENsim, initialement développé par la Région wallonne. Des ajouts ont par ailleurs été faits, comme la possibilité de simuler le fonctionnement d’une cogénération avec (ou sans) ballon de stockage de chaleur.

Logiciel de simulation COGENsim 2.06.xls.

Cependant, avant d’utiliser ce puissant outil de simulation, il est conseillé de lire attentivement son mode d’emploi.

Calculs

Utiliser le logiciel de simulation COGENsim 3.12

Calculs

Mode d’emploi du logiciel COGENsim 3.12.

Le calcul de la rentabilité

La méthode de dimensionnement intègre déjà un calcul de rentabilité : le logiciel COGENsim 3.12.xls simule plusieurs unités de cogénération et propose celle qui est la plus rentable.

Le calcul de rentabilité implique une estimation fine du gain annuel net, du montant de l’investissement et des paramètres de rentabilité comme le Temps de Retour Simple (TRS), la Valeur Actualisée Nette (VAN) des gains engendrés sur la durée de vie de l’équipement et le Taux de Rentabilité Interne (TRI) du projet.

Calculer le gain annuel net

Le gain annuel net est la différence entre la somme des gains apportés par la cogénération (électricité, chaleur et certificats verts) et des dépenses associées (combustible et entretien).

Gain sur la facture électrique

Le gain sur la facture d’électricité sera égal à la différence entre la facture sans cogénération et la facture qui serait payée pour la consommation électrique résiduelle suite à la production locale d’électricité par cogénération. Par ailleurs, la cogénération optimale produira de temps en temps trop d’électricité par rapport aux besoins. Ce surplus d’électricité sera revendu au réseau, au fournisseur le plus offrant voire au GRD. Généralement, le prix oscille entre 20 à 50 €/MWh pour une cogénération. L’ensemble des deux vous donnera le gain sur la facture électrique.

Il est fort probable que le prix unitaire de l’électricité résiduelle qui restera à acheter à un fournisseur après installation d’une cogénération soit supérieur au prix unitaire actuel. La raison est que les termes fixes de la facturation sont répartis sur une consommation plus faible. Parfois, il sera peut-être nécessaire de renégocier votre contrat de fourniture avec votre (ou d’autres) fournisseur.

Gain sur la chaleur

Toute la chaleur produite par la cogénération, si elle est correctement valorisée, ne devra plus être fournie par la chaufferie existante (ou à construire). Ce qui constitue un gain non négligeable sur facture d’achat en combustible.

Gain sur la vente des certificats verts

Si votre cogénération est de qualité, alors vous recevrez des certificats verts.

Vu la volatilité de la valeur d’un certificat vert et de la méthode de calcul, vous comprendrez aisément qu’une visite sur le site de la CWaPE s’impose.

Le gain apporté par les certificats verts pour les technologies renouvelables, nettement plus important que pour les technologies classiques, est bien nécessaire pour compenser le surcoût à l’investissement voire à l’achat du combustible.

Précisons que ce gain en certificats verts vient s’ajouter au prix de votre électricité (auto-consommée ou revendue).

Dépense pour l’achat de combustible pour la cogénération

Il faudra bien entendu acheter du combustible pour faire tourner la cogénération. Cette dépense, non négligeable, doit intervenir dans le calcul de la rentabilité.

Comme au total vous allez consommer plus de combustible qu’avant (cogénération + complément chaudière), vous pourriez éventuellement négocier un meilleur prix unitaire.

Dépense en entretien de la cogénération

Également, les frais d’entretien doivent être considérés dans les calculs. Ces frais dépendent de la formule choisie et des garanties de performances proposées. Également de quelle est la répartition du travail entre vous et la société de maintenance.

Ces prestations réalisables en interne moyennant une formation adéquate consistent en :

  • un contrôle du niveau d’huile et la vidange de l’huile;
  • un remplacement des filtres;
  • une inspection du circuit de refroidissement;
  • une inspection des batteries;
  • un remplacement des bougies (moteurs gaz);
  • un contrôle du système d’allumage et du système de carburation;
  • une lubrification de l’alternateur;
  • un contrôle de sécurité.

Le montant d’investissement

Le montant de l’investissement est toujours déterminant dans le calcul de rentabilité. Il faudra, à ce stade de l’étude,  objectiver les coûts :

  • Du cogénérateur proprement dit;
  • De génie civil, de raccordement, …

Il sera aussi intéressant de vérifier si vous avez droit à des subsides. Pour plus d’informations sur les primes et subsides, voir le portail de la Région wallonne.

Calculer les paramètres de rentabilité (TRS, VAN et TRI)

Les indicateurs de rentabilité sont très importants pour l’étude de faisabilité. En effet, lorsque ces indicateurs  « virent au vert » selon les critères de rentabilité du porteur de projet, l’étude de faisabilité confirme l’intérêt de passer à l’étape suivante : réaliser le projet !

Évaluer

Réaliser une étude de faisabilité d’une cogénération dans les règles de l’art ( PDF).

Le tunning de votre moteur de cogénération

Que ce soit au moment de la conception du projet, mais aussi pour une installation existante, il est possible de « tunner » le fonctionnement de l’unité de cogénération afin d’en retirer le maximum.

Un logiciel comme COGENsim 3.12.xls permet d’affiner le paramétrage de son fonctionnement :

  • le taux de la charge partielle minimale pour le fonctionnement de la cogénération;
  • les besoins thermiques en dessous desquels il ne vaut pas la peine de redémarrer la cogénération;
  • les taux de charge minimum et maximum du ballon de stockage de la chaleur;
  • la part de la consommation électrique consommée par les auxiliaires;
  • la plage de fonctionnement (heures, jours, mois);
  • la possibilité de réinjecter ou non l’électricité excédentaire sur le réseau;

D’autres actions sont possibles pour davantage affiner le projet de cogénération, mais cependant non réalisables avec COGENsim 3.12.xls.

  • le fractionnement de la puissance totale en plusieurs unités de tailles identiques, voire différentes;
  • l’adaptation de la régulation de la chaufferie (anticipation, …) pour lisser le profil thermique;
  • l’utilisation d’un groupe de secours pour écrêter le profil électrique résiduel après cogénération;
  • la gestion du stockage de chaleur pour produire le maximum d’électricité durant les heures pleines;

Précisons que ce « tunning » est parfois proposé par les fournisseurs de cogénération voire les fabricants qui connaissent bien leurs équipements et surtout comment en obtenir le meilleur.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Cogénération [Calculs]

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Étudier la pertinence d’un nouveau projet de cogénération

Étudier la pertinence d'un nouveau projet de cogénération


L’étude de pertinence d’une cogénération

En matière de cogénération, il n’existe pas de règle rapide, univoque et universelle pour son dimensionnement : « inconvénient ou opportunité ? »

Il faut veiller à ce que la cogénération assure la « base » des besoins thermiques d’un bâtiment ou d’une entreprise pour pouvoir la faire fonctionner suffisamment longtemps à pleine puissance. Les « pointes » seront donc assurées par la chaufferie existante (ou à installer) qui ne pourra, que très rarement, être totalement remplacée par la cogénération.

Cet inconvénient se transforme en opportunité dans la mesure où le bureau d’études ou le consultant doit rechercher le dimensionnement « optimum », c’est-à-dire qui procure le maximum de bénéfices (économique, énergétique et environnementaux).

Monotone de chaleur.

Une autre manière d’exprimer le bénéfice énergétique est, de déterminer quel est l’optimum de puissance du cogénérateur qui couvre la surface maximale sous la monotone de chaleur.

Ne soyez donc pas surpris si l’on vous propose plusieurs tailles différentes : à vous de choisir celle qui vous convient le mieux.

Cette étude d’optimisation, encore appelée « étude de faisabilité », réalisée par un expert compétent, est payante et nécessite un peu de patience pour obtenir les résultats, surtout si une campagne de mesures des besoins énergétiques (électricité et chaleur) doit être envisagée. Et il est probable qu’il n’y ait pas de solution « cogénération » suffisamment attrayante dans votre cas.

Une première étude de faisabilité d’un projet peut être directement menée par le demandeur au moyen d’un outil simplifié – l’outil de calcul COGENcalc.xls.

Ce n’est qu’au terme de cette étude de pertinence à réaliser par soi-même, avec l’éventuel concours du Facilitateur en Cogénération, que vous pouvez décider de commander une étude de faisabilité.

Les éventuelles subventions mises à disposition de la Région sont disponibles sur le site de la Région : energie.wallonie.be.

>> Installer une cogénération dans votre établissement (PDF)


Les données nécessaires à une première évaluation avec COGENcalc.xls

Les données nécessaires à une première évaluation de rentabilité d’une installation de cogénération sont essentiellement les données relatives à vos consommations d’électricité et de chaleur :

  • Pour l’électricité, il vous faudra encoder les données relatives aux factures d’une année complète, soit douze factures.
  • Pour la chaleur, vous devrez fournir des informations d’une part sur la quantité de combustible que vous consommez sur une année et d’autre part sur l’utilisation faite de cette chaleur.
    • Si vous consommez actuellement du gaz, ce sont les douze factures relatives à la même période que les factures électriques que vous aurez à encoder.
    • Si vous consommez du mazout, soit vous encodez la quantité totale de mazout consommée sur une année et le montant auquel cela correspond, soit vous introduisez les livraisons de mazout réalisées pendant la même période.

Des informations de base vous seront également demandées par choix multiples sur le type de chaudière dont vous disposez et sur votre cuisine si elle est alimentée au gaz.

Finalement, vous indiquerez par un choix multiple le type d’institution pour lequel vous envisagez une cogénération avec son horaire de fonctionnement, par exemple « établissement de soin, consommation continue de chaleur, 7 jours sur 7 » et le type de moteur choisi, gaz s’il est disponible, mazout dans le cas contraire. Chacun des choix sur le type d’institution avec son horaire de fonctionnement correspond à un profil de consommation de chaleur type.

Les certificats verts sont intégrés dans le logiciel.

Il se peut que les valeurs de référence se modifient : coefficient d’émissions en CO2 et/ou rendements de l’installation de référence. Vous devrez vérifier auprès de la CWaPE ou vous tenir informé via le site portail énergie de la Région wallonne.


Mode d’emploi de l’outil COGENcalc.xls

Calculs

Pour lancer le programme de calcul COGENcalc.xls

Introduction

Le programme vous permet d’établir rapidement un premier dimensionnement d’une éventuelle cogénération adaptée à vos besoins électriques et thermiques. Il calcule aussi la rentabilité que vous pourrez attendre de cet investissement.

Lors de l’ouverture du fichier, Excel vous demandera si vous souhaitez activer les macros. Vous devez les activer.

De manière générale, les cellules sur fond bleu ou brun (caractères bleus) sont des valeurs à introduire, les cellules sur fond jaune (caractères rouges) sont des valeurs calculées.

Première partie : »Premier dimensionnement de l’unité de cogénération »

Étape 1.1 : Déterminer votre BNeC

Il s’agit de déterminer les besoins nets de chaleur de votre établissement.

Pour cela, il est nécessaire de compléter certaines informations relatives à votre bâtiment et son usage, dans l’ordre de la feuille :

  • Le type de bâtiment concerné (type d’établissement et taille de l’établissement).
  • Q : la consommation annuelle en combustible (gaz ou mazout) en kWh PCI.
  • Qnon cogen : la part de combustible qui ne pourrait pas être assurée par la cogénération, c’est-à-dire, la part de combustible, si elle existe, qui n’est pas utilisé pour la production d’eau chaude (chauffage et ECS). Ce sera la part qui ne pourra pas être assurée par la cogénération : Qnon cogen.
  • URE : la réduction de consommation qui pourrait être envisagée par la mise en place d’éventuelles mesures URE.  Une économie de 10 % est proposée par défaut dans le cadre de la réalisation d’un audit énergétique.
  • ΔQ : l’évolution de la consommation dans le futur, réduction ou augmentation (par exemple pour une extension) de la consommation initiale mentionnée.
  • ηchaufferie : le rendement thermique de l’installation de votre installation de chauffage actuelle, idéalement un rendement mesuré sur une assez longue période, sinon votre meilleure estimation. Attention, le rendement en question n’est pas le rendement ponctuel de la chaudière, mais le rendement global de l’installation sur une période de plusieurs mois.
  • La cellule jaune vous donne finalement le Besoin Net de Chaleur (BNeC), base du dimensionnement de l’unité de cogénération.

Étape 1.2 : Sélectionner un « profil type » de consommation de chaleur.

Vous indiquerez par un choix multiple le type d’institution pour lequel vous envisagez une cogénération avec son horaire de fonctionnement, par exemple « établissement de soin, consommation continue de chaleur, 7 jours sur 7 ». Chacun des choix sur le type d’institution avec son horaire de fonctionnement correspond à un profil de consommation de chaleur type.

À partir des profils thermiques types de besoins de chaleur, propres à votre établissement, le logiciel calcule directement 3 paramètres utiles pour le dimensionnement :

  • UQ : la durée de fonctionnement d’une chaudière bien dimensionnée pour assurer la satisfaction des BNeC.
  • Ucogen : la durée de fonctionnement de la cogénération pour assurer la satisfaction d’une partie des BNeC.
  • Partcogen : qui représente la puissance thermique de la cogénération par rapport à la puissance thermique maximale (de la chaudière bien dimensionnée).

Dans cette étape, il sera également possible de sélectionner la présence d’un ballon de stockage.

Étape 1.3 : Déterminer la puissance thermique de l’unité de cogénération

Sur base de ces 3 paramètres, on obtient directement :

  • PQcogen : la puissance thermique de l’unité de cogénération. Si la puissance thermique calculée est trop faible (< 10 kW) le logiciel mentionnera directement 0.
  • Qcogen : la production de chaleur.

Éventuellement, vous pouvez réduire cette puissance d’un certain pourcentage si vous estimez que l’unité est trop grande. Par exemple, si la production électrique est trop importante par rapport à votre consommation et que ne vous désirez ne pas vendre trop au réseau, le facteur de réduction de la puissance thermique peut s’avérer « payant ».

Étape 1.4 : Choisir une unité de cogénération

Dernière étape du dimensionnement, il s’agit de choisir la technologie. En effet, de ce choix, dépendra la puissance électrique de l’unité de cogénération, la puissance thermique étant identique. Typiquement, un moteur à l’huile végétale aura une puissance électrique supérieure à celle d’un moteur gaz. Cette différence étant due aux caractéristiques technologiques différentes entre ces moteurs.
Sur base du choix de la technique, on obtient une évaluation de :

  • PEcogen : la puissance électrique de l’unité de cogénération.
  • ηcogen : le rendement électrique de l’unité choisie.
  • Ecogen : la production électrique annuelle de l’unité choisie dans la configuration étudiée.

Remarque :
À ce stade, il faut être attentif au fait que ces caractéristiques de moteur sont extrapolées sur base de moteur existant, mais que vous ne rencontrerez sans doute pas sur le marché un moteur ayant exactement ces caractéristiques. Il se pourrait par exemple que le programme vous renseigne un moteur de 67.3 kWé alors que dans la pratique, vous aurez à choisir entre un moteur de 60 ou de 80 kWé. Cette remarque vaut aussi pour les autres paramètres (rapport entre le rendement électrique et thermique de votre moteur, frais d’entretien, valeur de l’investissement).

Deuxième partie : « Rentabilité du projet de cogénération »

Cette seconde partie consiste à calculer, à la « grosse louche » la rentabilité du projet de cogénération sur base du premier dimensionnement effectué.

Étape 2.1 : Calculer le gain sur facture électrique

Pour réaliser une première évaluation économique du projet, vous devez introduire :

  • Etotale : la consommation annuelle totale d’électricité (en reprenant la somme des consommations en heures pleines et en heures creuses),
  • Coût Etotale : le montant total de la facture annuelle électrique.

Si les données ne sont pas connues, l’outil calculera des valeurs automatiquement.
Sur base de ces premières données, l’outil évaluera :

  • Prixmoyen achat : le prix moyen de votre électricité.
  • Eauto-cons : la part de l’électricité qui sera autoconsommée dans le projet.
  • Erevente : la quantité d’électricité qui sera revendue sur le réseau.

Sur base de ces données et du prix de revente, l’outil calcule le gain sur la facture de l’électricité – Gainélec.

À ce stade vous devez estimer le pourcentage de l’électricité produite qui sera autoconsommée, ce pourcentage dépendra de votre consommation et votre profil d’utilisation. Si vous n’avez aucune idée, vous pouvez mettre une valeur entre 75 et 90 %. Le reste de l’électricité sera alors vendu par le réseau à un fournisseur d’électricité de votre choix, à un prix qui aura convenu avec le fournisseur (actuellement ce prix est d’environ 35 €/MWh).

Un calcul se fait automatiquement pour déterminer le gain sur la facture d’achat d’électricité, le gain sur la vente d’électricité et le gain total sur la facture d’électricité (Gainélec).

Étape 2.2 : Calculer le gain sur la chaleur

La consommation annuelle en combustible est automatiquement reprise (Q), il suffit d’introduire le montant total de la facture annuelle du combustible et le prix moyen du combustible se calcule en fonction de votre encodage.

Ensuite la consommation évitée de la chaufferie (Conschaufferie) et le gain sur la facture chaleur (Gainchaleur) se calculent.

Étape 2.3 : Calculer le gain par la vente des certificats verts

L’installation de cogénération vous permettra de réduire les émissions polluantes, dont le CO2, qui est gratifié par le mécanisme des certificats verts, pour autant que vous arriviez à une économie relative de CO2 supérieur ou égal à 5 %.

À ce stade vous devez sélectionner si le site est connecté au non au gaz naturel, ce qui doit être compatible avec le type de cogénération précédemment sélectionné.  Le facteur d’émission de l’installation est automatiquement repris (CCO2) et permet le calcul du gain en CO2 (GCO2) et en énergie primaire (Gain énergie primaire)  Le taux d’octroi est calculé selon la réglementation en vigueur.

Étape 2.4 : Calculer la dépense en combustible

En introduisant le prix moyen du combustible de la cogénération, vous obtenez automatiquement la dépense en combustible pour la cogénération (DépenseComb).

Étape 2.5 : Calculer la dépense en entretien

Ce calcul se fait directement en fonction de la technologie utilisée et de la puissance de l’unité de cogénération.

Étape 2.6 : Estimer le montant de l’investissement.

En ajoutant un facteur de sur-investissement d’environ 40 % [10 % pour les frais d’installation, 7 % pour les frais d’études, 10 % pour d’éventuels travaux de génie civil, 5 % pour la connexion sur le réseau électrique et 8 % d’imprévus] vous obtenez l’investissement brut de l’unité de cogénération « tout compris » (Invbrut cogen).

Si vous avez droit à des subsides, vous pouvez introduire ici le pourcentage ou le montant total. Pour plus d’informations sur les primes et subsides, voir le portail énergie de la Région wallonne : energie.wallonie.be.

L’investissement net se calcule automatiquement (Invnet cogen).

Étape 2.7 : Estimer la rentabilité du projet

Le gain annuel net du projet se détermine par la différence entre les gains et les dépenses.

Le temps de retour simple (TRS) se calcule en divisant l’investissement net par le gain annuel net.

Conclusion

Une conclusion s’affiche en fonction du temps de retour simple :

  • si le TRS est inférieur à 6 ans, la conclusion sera positive,
  • si il est supérieur à 6 ans, la conclusion sera négative.

Cette information est naturellement tout à fait libre et elle doit être interprétée cas par cas. Dans certains cas un TRS de 10 ans peut être acceptable, dans d’autres cas un TRS de maximum de 3 ans est jugé comme limite.

Remarque :
Le logiciel vous donne des résultats techniques et économiques qui vous permettront d’évaluer, en connaissance de cause, l’opportunité d’installer ou non une unité de cogénération. Cependant, les résultats obtenus ne sont qu’une première approximation. Ils ne donnent qu’une indication quant à la suite ou non du projet, à savoir la commande d’une étude de faisabilité dans les « Règles de l’art » à un bureau d’études compétent, et non la commande de l’équipement !


Limites de COGENcalc.xls

Les hypothèses suivantes s’appliquent à l’outil d’évaluation. Pour un dimensionnement précis, ces hypothèses sont limitatives et, sauf exception, le prescripteur devra affiner cette évaluation, notamment par rapport aux points suivants :

  • Le profil de consommation de chaleur est à choisir parmi des profils types.
  • La puissance de la cogénération et le nombre d’heures de fonctionnement sont prédéfinis pour chaque profil type de consommation de chaleur.
  • Le besoin en chaleur est continu et ne descend en tout cas pas sous la charge minimale du cogénérateur pendant les heures de fonctionnement.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Profils types de demande de chaleur et monotone

Profils types de demande de chaleur et monotone


Les profils de prélèvement

Les profils de demande de chaleur présentés ici (Besoin net en chaleur, BNeC), montrent la répartition de la demande de chaleur d’un bâtiment type sur une année, sur une semaine et sur un jour. La répartition s’exprime en pourcents.

Profil A Profil B Profil C Profil D Profil E Profil F
Activités diurnes
5 jours sur 7
Activités diurnes
6 jours sur 7
Activités diurnes
7 jours sur 7
Activités continues
7 jours sur 7
Activités diurnes
5 jours sur 7
Activités diurnes
7 jours sur 7
Bureaux
Écoles
Services aux personnes
Commerces
Culture
Centres sportifs
Soins aux personnes
HORECA
PME à consommation très régulière
Blanchisseries
Teintureries
Logement collectif
BNeC d’une journée type (%) – Profil de prélèvement horaire
BNeC d’une semaine type (%) – Profil de prélèvement hebdomadaire
BNeC d’une année type (%) – Profil de prélèvement annuelle

Les monotones de demande de chaleur

Les monotones de demande de chaleur représentent l’organisation par ordre décroissant des demandes de chaleur horaires de l’utilisateur. Une courbe « monotone de chaleur » peut être déterminée pour chaque « profil type de consommation ».

Profil A Profil B Profil C
Profil D Profil E Profil F

Q = demande de chaleur horaire de l’utilisateur (100 % = PQ = puissance thermique de l’utilisateur).

Courbe supérieure = monotone de demande de chaleur de l’utilisateur (demande de chaleur mesurée heure par heure et classée par ordre décroissant). La surface comprise sous la courbe 1 correspond au besoin net de chaleur (BNeC) annuel de l’utilisateur.

Courbe inférieure = monotone de demande de chaleur de l’utilisateur, pendant les heures pleines.

*Durée d’utilisation = nombre d’heures ”équivalentes” de fonctionnement de l’installation à puissance nominale pour produire la quantité totale de chaleur.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Technologies alternatives

Technologies alternatives

Principe de la pirolyse.


Cogénération et biomasse

La cogénération et la biomasse, une solution éprouvée !

La biomasse, qu’elle soit d’origine ligneuse, agricole, agro-alimentaire ou résidentielle, constitue une source d’énergie renouvelable et, bien souvent aussi, un déchet difficile à gérer.

Dans ce contexte, la gazéification de produits ligneux et la biométhanisation de déchets agricoles et résidentiels alimentant une unité de cogénération peuvent apporter des réponses tant du point de vue énergétique qu’environnemental.

Les techniques de gazéification ou de biométhanisation permettent maintenant de bien maîtriser les processus de combustion et de limiter ainsi les émissions de polluants.

Ces technologies valorisent ainsi efficacement une source d’énergie renouvelable, présente abondamment en Wallonie et encore largement sous exploitée. Leur utilisation comme source d’énergie primaire permet donc d’alléger nos émissions de CO2 et de participer à l’effort de notre pays au niveau de l’accord COP 21.

À ce titre, elles sont particulièrement visées par le décret relatif à l’organisation du marché de l’électricité en Wallonie, qui incite financièrement au développement d’applications économes en énergie primaire par le principe des certificats verts. L’économie en CO2 engendrée par des cogénérations à partir de biomasse est effectivement très importante.

D’une part, s’il s’agit d’une cogénération de qualité, elle participe au même titre que toute cogénération de qualité à l’économie de CO2 et peut donc recevoir à ce titre des certificats verts en fonction de sa qualité.
Par ailleurs, les cogénérations à partir de biomasse rendent également possible la création de nouvelles filières d’activités économiques et de nouveaux pôles d’excellence technologique en Wallonie.
Enfin, elles peuvent apporter des éléments de réponse à la lancinante question du traitement des déchets. Dans certains cas et sous certaines conditions, elles présentent, en effet, une réponse intégrée à ce problème majeur de société.

Cogénération au biogaz

Une réalisation concrète : la cogénération au biogaz à la décharge d’Anton.

Installation de la décharge d’Anton – © SPAQUE.

Dans le cas de la décharge d’Anton située à proximité d’Andenne, dont la réhabilitation pour le compte de la Région wallonne est menée par la Spaque, le biogaz généré par la masse des déchets enfouis est collecté et envoyé vers un module de cogénération.

Après une première expérience dans la cogénération débutée en 1999, l’unité a été remplacée en 2013.

Une nouvelle unité de cogénération a été mise en place, adaptée au biogaz produit sur le site, à savoir un biogaz pour une richesse en méthane de 55 %.

La nouvelle installation a une Puissance électrique installée de 115 kWé pour une puissance thermique de 160 kWth. Cette installation est dimensionnée pour absorber un débit de 50 m³/h de biogaz.

La chaleur est envoyée vers les différents bâtiments de l’Institut Saint-Lambert.

En 2014, l’installation a valorisé à peu près 1 million de m³ de déchets ménagers (445 000 m³ de biogaz produit), en produisant 912 MWh d’électricité (dont 41 % auto consomme et le reste a été réinjecté sur le réseau.) et 1 054 MWh de chaleur (dont 21 % a été autoconsommé et le reste renvoyé vers l’institut St Lambert).

Les rendements d’une installation de ce type (base de comparaison : pouvoir calorifique du gaz brûlé), pour un trimestre représentatif, sont de 33,6 % comme rendement électrique et 52,6 % pour le rendement thermique; ce qui donne un rendement global de 86,2 %.

Cogénération au bois

La cogénération au bois valorise le bois en électricité et en chaleur par une technologie unique qui est la seule solution bien adaptée aux déchets de bois produits dans les scieries, menuiseries de taille moyenne ainsi que ceux qui sont mobilisables lors de la gestion des espaces verts et des forêts.

Cogénérateur à gazéification de bois (source : Coretec).

La conversion du bois en électricité et en chaleur est réalisée par la gazéification du bois dans un gazogène et par la combustion du gaz produit dans un groupe de cogénération.

Installation d’une cogénération au bois : schéma de principe (source : Coretec).

Le combustible, par exemple sous forme de plaquette de bois, alimente le gazogène dans lequel il est transformé en gaz combustible. Le gaz produit est ensuite conditionné pour être brûlé dans le moteur du groupe de cogénération. L’électricité produite peut être consommée sur place ou être envoyée sur le réseau. La chaleur peut alimenter un procédé industriel ou des installations de chauffage. L’installation est entièrement automatisée et contrôlée à distance.

Les rendements de conversions électrique et thermique sont respectivement de 23 à 25 % et 50-57 %; soit un rendement total de 75-80 %. La puissance unitaire des centrales de cogénération développées et commercialisées en Wallonie varie de l’ordre de 30-45 kWé.


Trigénération

L’ajout à l’unité de cogénération d’une unité de production de froid par absorption transforme la cogénération en tri-génération.

L’objectif est d’utiliser la chaleur du moteur en été, à l’heure où elle est généralement moins utile, pour produire du froid. Ce froid peut être utilisé pour diverses applications comme la climatisation ou la réfrigération. La cogénération peut ainsi exploiter l’énergie primaire même en été.

Une telle technologie a naturellement un coût d’investissement élevé. De plus, la rentabilité tant énergétique que financière n’est pas souvent au rendez-vous. Une étude réalisée à l’UCL montrait les limites de cette technologie (« Économie d’énergie en trigénération ; Pépin Magloire, Tchouate Heteu, Léon Bolle ; Unité de thermodynamique et turbomachines, département de mécanique, Université catholique de Louvain ; 2002 »). En voici les principales conclusions :

  • Une cogénération de froid et d’électricité ne permet pas d’économiser systématiquement de l’énergie, mais permet dans certaines conditions une économie financière.
  • Cependant, la production simultanée de froid, de chaleur et d’électricité (trigénération) permet une économie d’énergie primaire en fonction de la fraction de chaleur λ utilisée pour la production de froid :
    • Pour les cycles LiBr/H2O, si λ est de l’ordre de 0,7.
    • Pour les cycles H2O/NH3, si λ est de l’ordre de 0,5.

Sur le marché, les puissances descendent actuellement jusqu’à 80 kW pour les machines à l’ammoniac ou même 70 kW pour les machines au Lithium-Bromure.

Le dimensionnement de la machine se fait en ajoutant la consommation de chaleur relative à la production de froid à la monotone de chaleur (calcul des puissances et des plages de fonctionnement) déjà définie précédemment.

Le fonctionnement idéal des machines à absorption, qui permet des rendements très élevés, utilise un fluide chaud à une température supérieure à 100 °C. Lorsque le fluide chaud n’est « qu’à » 95 °C, la puissance frigorifique est dans un rapport 1/1,6 de la puissance en chaud.

Notons finalement qu’une telle machine nécessite une tour de refroidissement plus grande.

Techniques

Présentation synthétique du phénomène d’absorption.

Microcogénération domestique

Source : Viessmann.

La micro-cogénération est une solution adaptée pour des plus petites installations, et en l’occurrence pour l’usage domestique. Au niveau du cogénérateur proprement dit, le moteur à combustion interne fait place à un moteur à combustion externe de type « stirling ». Dans de nombreux cas, la cogénération sera directement combinée avec une chaudière gaz à condensation. Les différents acteurs du marché ont à peu près tous développé une cogénération de type gaz.

Moteur stirling.

Cette technologie a été mise sur le marché pour répondre à des consommations électriques de l’ordre de 2 500 à 3 000 kWhé/an, ce qui correspond à la consommation annuelle moyenne d’un ménage.

Les puissances développées sont de 1 kWé et 6 kWth. Le complément thermique est donné par la chaudière à condensation qui peut moduler de 6 à 20 kW.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir le stockage de chaleur [cogen]

Critères de sélection

Le volume du stockage est calculé lors du dimensionnement des équipements. Si le dimensionnement s’est limité à une évaluation grossière des puissances nécessaires, des investigations supplémentaires selon la même méthodologie compléteront et valideront les résultats.

Comme dans toutes les applications de stockage, il faudra tenir compte des pertes (pertes en stand-by pour les chaudières, pertes dans les tuyauteries,…). Dès lors, le raccordement et la régulation d’un stockage de chaleur seront plus complexes que l’installation standard d’une cogénération.

D’ordinaire, le ballon de stockage est installé en parallèle avec le cogénérateur. Cela permet de fonctionner de la même façon quelle que soit la source de chaleur : la cogénération ou le ballon.

Les critères de dimensionnement relatifs à la connexion aux débits et températures mentionnés dans le chapitre sur le raccordement hydraulique sont d’applications, notamment :

  • Assurer le débit d’eau au moteur quel que soit le mode de fonctionnement ou la charge et le maintenir constant.
  • Maintenir la température d’entrée du groupe inférieure à une valeur de consigne définie par le constructeur.
  • Éviter toute fluctuation brusque de la température d’entrée.
  • Éviter le recyclage dans le circuit de retour du groupe afin de ne pas augmenter la température de l’eau à l’entrée du moteur par des mélanges.
  • Gérer la puissance de déstockage de façon à toujours garantir un débit de refroidissement du moteur suffisant.
  • Rendre possible l’isolation du circuit d’utilisation pour faire fonctionner la chaufferie sans le groupe de cogénération.
  • Prévoir un système de vidange du circuit hydraulique simple.
  • Prévenir les problèmes de corrosion et d’hydrolyse dans le circuit de refroidissement.

Raccordement d’un ballon de stockage

Stockage pour configuration en parallèle

Une des méthodes de stockage appropriées est celle décrite ci-dessous. Cependant, sur le terrain, elle reste relativement peu courante. Peut-être pour une question financière ?

Schéma stockage pour configuration en parallèle.

Dans son principe, le fonctionnement du cogénérateur est relativement indépendant de celui des chaudières. En effet, le cogénérateur peut charger le ballon à une température de consigne fixe. C’est la vanne 3 voies qui fait le gros du boulot et qui peut mitiger la température de sortie de l’ensemble cogénérateur/ballon de stockage en fonction de la température de départ primaire.

La séquence des schémas suivants donne une idée des phases de stockage/déstockage. À remarquer, qu’en termes de dimensionnement des conduites, il faut prévoir que le débit d’entrée/sortie de l’ensemble cogénérateur/stockage sera de l’ordre de 1.5 à 2 fois celui du cogénérateur s’il était prévu dans stockage.

Stockage pur

Schéma stockage pur.

  • Pas de besoin, mais le ballon n’est pas à température.
  • Le cogénérateur fonctionne à régime nominal et charge le ballon (stockage).

Déstockage et boost de la cogénération

Schéma déstockage et boost de la cogénération.

  • Besoins importants.
  • Le cogénérateur fonctionne à régime nominal.
  • Le ballon déstocke.

Déstockage pur

Schéma déstockage pur.

  • Besoins moyens.
  • Seul le ballon déstocke.

Stockage pour configuration en série

Quelques constructeurs proposent une configuration série avec ballon tampon. Le débit total de retour du collecteur traverse le ballon. On ne peut pas vraiment parler de ballon de stockage vu qu’il n’y a pas de stratification. On parlera plutôt d’augmentation de l’inertie du réseau. Pour autant que les conduits d’entrée et de sortie du ballon soient bien dimensionnés, le ballon tampon agit comme un large collecteur à faibles pertes de charge et perturbant peu les équilibres hydrauliques de la chaufferie existante. On peut comprendre que cette configuration soit intéressante, car hydrauliquement elle est simple et peut donner de bons résultats en terme de court cycle du cogénérateur.

Schéma stockage pour configuration en série.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir la régulation [Cogen]

Modulation de puissance

Une modulation de charge du cogénérateur entre 100 et 50 % est techniquement possible, mais le coût de l’entretien du groupe dépend principalement de son temps de fonctionnement et ce coût d’entretien entraîne une augmentation relative du prix du kWh lorsque la charge diminue. Combinée à une légère chute du rendement à charge réduite, il est généralement préconisé d’éviter de fonctionner à moins de 70 % de charge, sauf pour un nombre de cas très limités.

Il est encore très important de veiller à une parfaite coordination des régulations des différents éléments de chauffage, avec un intérêt certain pour l’exploitant de la cogénération de gérer toutes les installations thermiques et électriques, afin d’éviter des interfaces parfois délicates.


Contraintes thermiques sur la régulation

Intégration dans la cascade de chaudières

Une régulation de cascade doit être mise en place sachant qu’il faut pouvoir gérer la « libération » des différents équipements de production de chaleur en fonction des besoins, et ce au bon moment. On tiendra à l’esprit que c’est la cogénération qui doit être en tête de cascade de manière à couvrir le maximum des besoins de chaleur. La monotone de chaleur représentée ci-dessous est très didactique pour montrer l’importance de la programmation d’une cascade séquentielle pour l’ensemble des équipements de production de chaleur.

On rappelle qu’une monotone de chaleur exprime surtout une représentation des besoins de chaleur au cours de l’année. On voit tout de suite que pour rentabiliser une cogénération d’un point de vue « énergético-environnemento-financier », on a intérêt à programmer une cascade des chaudières et du cogénérateur pour que ce dernier couvre la plage 2 de la monotone de chaleur.

Monotone de chaleur.

Monotone de chaleur.

  1. Libération d’une des chaudières à faible régime. Pour les anciennes chaudières, leur fonctionnement à faible charge entraine une dégradation du rendement non négligeable. Pour les chaudières à condensation modulantes, elles travaillent dans des bonnes conditions de rendement (optimum autour des 30 % de taux de charge).
  2. Libération du cogénérateur seul avec une modulation de puissance entre 100 et 70 %.
  3. Libération simultanée du cogénérateur et d’une des chaudières.

La plupart du temps, un besoin de chaleur au niveau secondaire se traduit par une diminution de température au niveau de la sonde de départ du primaire. Tenant compte du fait que le régulateur adapte souvent la température de consigne de départ en fonction de la température externe (fonctionnement en température glissante), la comparaison entre la température du départ et sa consigne glissante doit permettre de libérer les différents équipements de production suivant une séquence dans la cascade bien définie comme le représente la figure suivante :

Séquence de cascade.

Interactions hydrauliques avec les chaudières

Compte tenu de notre climat, la régulation en mi-saison est la plus complexe. Le besoin en chaleur oscille pendant ces périodes à des valeurs qui ne sont ni hautes pour permettre un fonctionnement à 100 % de charge, ni basses et qui imposeraient un arrêt. Ces besoins imposent une modulation plus fréquente qu’en été ou en hiver. Notons que cela ne s’applique pas à des cogénérations qui produisent de la chaleur en continu pour un processus industriel.

Dans ce cas, de nombreux arrêts peuvent être dus à des arrêts de process du client. Le prescripteur doit alors aborder le process dans son ensemble pour définir le cahier des charges de la conduite.

Il existe des petites installations plus ou moins « sous-dimensionnées » par rapport à la monotone de chaleur. Ils garantissent un fonctionnement 24 h/24 et sans stockage.

Dans le cas du secteur tertiaire, la production thermique du cogénérateur sera raccordée à l’installation de chauffage (et/ou de production d’eau chaude sanitaire). Comme la demande de chaleur du bâtiment, dépendante de la température extérieure, est variable dans le temps, une régulation adaptée est alors exigée.

Le réglage de l’installation consiste à définir le point de commutation entre les chaudières et la cogénération et à régler les temporisations sur les variations de puissance en fonction de l’inertie thermique de tout le système, qui n’est pas bien connue à priori. Idéalement c’est le profil de demande de chaleur qui permet d’affiner le réglage du cogénérateur.

Le risque majeur à éviter dans la combinaison chauffage-cogénération est une température d’eau de retour trop élevée vers le moteur. Une température trop élevée peut entraîner une instabilité de l’enclenchement / déclenchement du moteur. On peut résumer le problème de la façon suivante :

Le cogénérateur fournit assez de puissance pour couvrir la demande de chaleur. Mais la température de départ primaire chute. Le régulateur de chaufferie libère la chaudière (démarrage).

La chaudière se met en fonctionnement. Elle délivre très rapidement suffisamment de chaleur pour que les vannes 3 voies des circuits secondaires se ferment. La température de retour monte et réchauffe le ballon tampon.

Le cogénérateur et la chaudière s’arrêtent.

Après refroidissement du ballon tampon, le moteur redémarre. La cogénération ne parvient pas suffisamment vite à répondre à la demande de chaleur et la chaudière redémarre.
Ainsi de suite …

En pratique, on peut travailler par essais/erreurs pour ajuster le point de commutation et les temporisations. On peut également adapter le réglage en fonction des performances mesurées du moteur par comptage de sa consommation et de sa production et essayer de maintenir un rendement optimum.

Un suivi des performances du moteur permettra de se rendre compte qu’il ne faut sûrement pas essayer de faire fonctionner le moteur le plus longtemps possible. Il est plus intéressant d’adapter son fonctionnement à la demande de chaleur plutôt que de suivre à tout prix la demande électrique.

Pratiquement la permutation entre le fonctionnement du cogénérateur et celui des chaudières peut se faire en fonction de la température extérieure.

Interaction  avec les courbes de chauffe des chaudières

Sauf si vous avez hérité d’une installation « d’un autre âge », en général, quel que soit le type de chaudière, une régulation de chaudière classique comprend au minimum un mode de régulation « en température glissante » par rapport à la température externe. Sans rentrer dans les détails, la température de l’eau chaude de chauffage est adaptée aux conditions climatiques externes. Ce mode de régulation est très intéressant surtout pour les chaudières à condensation, car il permet de valoriser la chaleur de condensation en faisant travailler les chaudières à basse température. Pour les autres types de chaudière, cette régulation permet de limiter les pertes thermiques qui sont générées lorsque les températures d’eau chaude sont élevées.

L’intégration d’une installation de cogénération dans une chaufferie constitue une modification assez importante de la régulation pour les raisons évidentes suivantes :

  • Avec une seule chaudière existante, pour pouvoir placer le cogénérateur en tête de séquence, une régulation en cascade doit être programmée. Le régulateur de la chaudière est-il suffisamment évolué pour pouvoir intégrer cette cascade ? De manière générale, pour les chaudières d’une dizaine d’années, c’est faisable. Pour les chaudières de génération précédente, c’est du cas par cas.
  • Avec plusieurs chaudières, la cascade existante doit inclure le cogénérateur au même titre qu’une chaudière supplémentaire. Les régulateurs d’un ensemble de chaudières sont généralement prévus pour ajouter un équipement supplémentaire.

Donc, le régulateur d’une chaufferie (une ou plusieurs chaudières) doit au minimum « chapeauter » le régulateur de l’installation de cogénération, ne fusse que dans la séquence de cascade de libération du cogénérateur ET des chaudières. En effet, quelle que soit la configuration hydraulique, la difficulté d’intégration du cogénérateur est de concilier la ou les chaudières régulées par des courbes de chauffe, et donc des températures de consigne variables, avec un équipement de cogénération qui travaille avec une température de consigne constante. On constate dans certaines chaufferies les phénomènes suivants :

  • En période froide, la consigne de température de départ appliquée par le régulateur aux chaudières est élevée (par exemple 80 °C par -10 °C de température externe). Les consignes de température de démarrage des chaudières sont, par exemple, respectivement de 75 et 70 °C pour les chaudières « maître » et « esclave ». Par contre, la température de consigne de démarrage du cogénérateur est de l’ordre de 60 °C en fixe. Cette valeur de 60°C pour le démarrage est conditionnée par les caractéristiques intrinsèques du cogénérateur. En effet, elle pourrait être plus élevée, mais sachant que la température de retour au cogénérateur est maximum de l’ordre de 70 – 75 °C, une valeur de consigne de démarrage du cogénérateur de 70 °C entrainerait des cycles très courts marche/arrêt du cogénérateur et ne permettrait de toute façon pas un passage en tête de séquence de cascade (la consigne de démarrage en tête de séquence dans ce cas-ci est de 75 °C).
  • En mi-saison, lorsque les courbes de chauffe de régulation des chaudières définissent une consigne de température de départ primaire sous la consigne de température fixe du cogénérateur, soit dans l’exemple de 60 °C, la cogénération va naturellement se placer en tête de cascade et démarrera avant les chaudières. C’est une bonne nouvelle, mais qui arrive un peu tard, comme les « carabiniers d’Offenbach », vu que les besoins de chaleur deviennent faibles. Il en résulte que le cogénérateur risque d’avoir des cycles marche/arrêt courts, ce qui n’est pas idéal.

Régulation des chaudières et du cogénérateur.

Régulation des chaudières et du cogénérateur.


Contraintes mécaniques sur la régulation

Des démarrages et des modulations de puissance trop fréquents et trop forts, comme c’est souvent le cas en mi-saison par exemple, entraînent une fatigue mécanique importante du moteur, ce qui augmente considérablement les risques de panne. Il est donc conseillé de réaliser des montées en puissance « douces » et des démarrages en nombre relativement réduit, typiquement limités à 2 ou 3 par jour. La priorité est à la cogénération, la modulation reste à la chaudière.

Dans le même ordre d’idée, puisqu’une cogénération ne peut pas moduler comme une chaudière (fréquence et intensité des modulations), il est essentiel de bien connaître son profil de consommation de chaleur pour ne démarrer la cogénération que pour des périodes suffisamment longues.

Le fonctionnement correct du moteur demande encore un préchauffage constant pendant les heures de démarrage potentiel, afin d’éviter un démarrage à froid et les contraintes thermiques très nocives que cela entraîne.

Comme pour tout moteur, il est également conseillé de le faire tourner fréquemment afin d’en garantir le bon fonctionnement au moment voulu.


Contraintes électriques sur la régulation

Lorsque le groupe de cogénération est prévu pour fonctionner en groupe secours (ce qui n’est pas idéal), il est nécessaire de gérer la charge électrique du client pour ne pas imposer de variation de charge trop importante au moteur qui risquerait de s’étouffer.

Par exemple, en cas de coupure du réseau, il peut être nécessaire de délester les charges électriques, connecter la cogénération comme approvisionnement en électricité puis relester progressivement les charges en commençant par les plus importantes. Le groupe ne saurait effectivement pas alimenter instantanément l’ensemble des charges.

Pour un fonctionnement en groupe de secours toujours, la législation impose dans certains cas comme les hôpitaux, des délais pour l’apport du courant par les groupes secours. Le groupe de cogénération doit être capable de répondre à ces exigences.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Intégrer la cogénération à l’hydraulique et à la régulation


Les pièges d’intégration

Les principaux constats des projets « piégés » sont les suivants :

  • Le manque d’heures de production du cogénérateur par rapport aux prévisions. Les conséquences sont immédiates : un manque de rentabilité du projet aux niveaux énergétique, environnemental et financier.
  • Un nombre de cycles de démarrage et d’arrêt important qui implique une réduction de la durée de vie de l’installation de cogénération et une augmentation des frais d’entretien, car les cogénérateurs, comme tout moteur, aiment les régimes stables.

Bien souvent, on pense que l’intégration d’un cogénérateur dans un projet de rénovation de chaufferie ou dans un nouveau projet peut se réaliser de manière indépendante par rapport aux chaudières. Dans la plupart des projets réalisés qui posent problème, c’est un peu réducteur et caricaturé, mais on a simplement demandé à l’installateur de fournir « deux conduites » sur lesquelles le constructeur ou le fournisseur de cogénérateur vient connecter son installation au moyen de flexible; c’est ce que l’on appellera un « plug&play » du cogénérateur. Croire que tout va fonctionner comme prévu peut s’avérer, dans certains cas, être une erreur d’appréciation fatale.


Vision globale d’intégration

Pour éviter le piège d’intégration « sauvage » du cogénérateur en chaufferie, les acteurs du projet doivent prendre un certain recul de manière à visionner les productions de chaleur et le cogénérateur comme un tout en chaufferie.

Pour les équipements de production de chaleur, il faut arriver à trouver un compromis entre les différents impératifs des chaudières.

En effet :

  • Dans une chaufferie existante, un retour suffisamment chaud pour les chaudières classiques afin d’éviter la condensation de la vapeur d’eau contenue dans les gaz de combustion (corrosion accélérée des échangeurs des conduits d’échappement, …).
  • Dans une nouvelle chaufferie, un retour suffisamment froid pour faire condenser les chaudières à condensation ou garantir de bonnes performances aux pompes à chaleur (PAC) par exemple.
  • Un débit minimum pour certains types de chaudières.

Et la cogénération dans tout cela ?

À première vue, la cogénération doit être considérée comme une chaudière supplémentaire qui vient se « greffer » sur le circuit primaire. Force est de constater que son intégration n’est pas évidente ! En effet :

  • Pour certaines configurations hydrauliques existantes, le rapport de puissance thermique entre les chaudières et le cogénérateur est déterminant pour le fonctionnement de ce dernier. Il n’est pas rare de constater qu’en hiver, lorsque les chaudières sont censées venir en appoint bivalent du cogénérateur, ce dernier se fasse « voler la vedette » par des chaudières surdimensionnées.
  • De même, la présence ou pas d’un ballon de stockage et sa position par rapport aux chaudières influencent le comportement du cogénérateur.
  • La configuration en série ou en parallèle convient à certaines installations de chaufferie et pas à d’autres. Il est important d’en tenir compte.

Impérativement, le cogénérateur doit s’intégrer de manière intelligente au niveau :

  • Hydraulique, en tenant compte de la configuration de l’installation de chaufferie, des caractéristiques des chaudières, du collecteur principal et des circuits secondaires.
  • De la régulation, en partant du principe qu’une communication minimale doit exister entre les régulateurs des chaudières et le régulateur de l’installation de cogénération.

Des solutions existent ! Elles sont simples, efficaces et ne nécessitent pas, la plupart du temps, de gros investissement.


D’un point de vue hydraulique

Intégration dans une chaufferie existante

La grande majorité des chaufferies existantes sont équipées de chaudières. Hydrauliquement parlant, l’analyse de la configuration existante des chaudières est primordiale pour intégrer un cogénérateur dans de bonnes conditions.
Quelques questions importantes à se poser. Les chaudières sont-elles :

  • À haute, basse température, très basse température ou à condensation ?
  • À faibles pertes de charge ?
  • À débit minimum ?

Dans tous les cas, si la conception a été bien réalisée, la configuration hydraulique du circuit primaire renseigne le type de chaudière. Par exemple, une ou plusieurs chaudières :

  • À haute température impliquent souvent un collecteur principal bouclé ou une bouteille casse-pression entre le collecteur principal et les chaudières ou encore un bouclage direct des chaudières.
  • À condensation sont pourvues de deux retours (un chaud un froid) ou sont connectées sur des circuits type chauffage par le sol par exemple.
  • À fortes pertes de charge sont équipées de circulateurs ou pompes de circulation.


Chaudière classique / collecteur  bouclé.


Chaudière classique / collecteur ouvert.


Chaudière classique faible volume d’eau /
bouteille casse-pression.


Chaudière à condensation deux retours.


Chaudière à condensation grand volume d’eau.

Les résultats de l’analyse doivent permettre de pouvoir répondre aux questions suivantes :

  • Où et comment placer hydrauliquement la cogénération en chaufferie pour éviter de perturber les équilibres hydrauliques initiaux ?
  • Comment modifier le circuit hydraulique existant pour permettre le fonctionnement conjoint de chaudières à haute température ou, à l’inverse, de chaudières à condensation avec un cogénérateur ayant ses propres régimes de température ?

Intégration dans un nouveau projet de chaufferie

D’emblée lors d’un nouveau projet de chaufferie intégrant un système de cogénération, les acteurs doivent considérer des systèmes de production de chaleur à basse température, voire très basse température (pompe à chaleur (PAC), chaudière à condensation, …). Hydrauliquement parlant, toute l’installation de la chaufferie, y compris le cogénérateur, doit être pensée pour ramener des retours d’eau chaude en chaufferie les plus froids possible.


D’un point de vue de la régulation

Comme pour l’hydraulique, le même exercice doit être mené au niveau de la régulation. Les acteurs du projet doivent avoir une vision globale de la régulation et non pas de l’installation de cogénération comme un « appendice » capable de travailler de manière autonome

Le régulateur de la chaufferie existante ou des chaudières d’un nouveau projet et le régulateur de l’installation de cogénération doivent communiquer entre eux de manière à inscrire au minimum la cogénération dans la séquence de cascade des chaudières.

Intégration de la cogénération dans la cascade des chaudières.

Pour en savoir plus voir le vadémécum : « Réussir l’intégration de l’hydraulique et de la régulation d’une cogénération dans une chaufferie » (PDF).

 

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir les éléments annexes [Cogénération]

Dispositif anti-vibrations.

Les éléments annexes sont repris avec leurs caractéristiques principales.


Localisation de l’installation

Le local de la cogénération peut être la chaufferie existante, un local dédié, ou elle peut être placée à l’extérieur des bâtiments, dans un caisson spécifique.

Les règlements habituels sur les chaufferies sont d’application.
La disposition spatiale est essentielle. La cogénération sera placée le plus près possible de l’endroit où la chaleur va être utilisée, pour réduire le coût des équipements de transport de la chaleur.

Les variables clés dans le dimensionnement du local et de ses abords sont :

  • la puissance des équipements;
  • le type et la position du local d’implantation;
  • la destination du bâtiment (public ou non);
  • les accès au local (non-accessibilité au public, accès direct extérieur, distance par rapport aux locaux occupés, nombre d’issues…);
  • la résistance au feu des parois;
  • la ventilation;
  • l’évacuation des gaz;
  • les équipements électriques…

Plan placement d'une cogénération.

Exemple d’implantation.


Sécurité de l’emplacement

La sécurité de l’emplacement doit être étudiée au minimum par rapport aux inondations et à l’incendie.

Il n’existe pas de réglementation relative à la détection gaz-incendie, mais des clauses particulières doivent être envisagées afin d’éviter d’interminables discussions le cas échéant.

La signalisation doit aussi faire l’objet d’une définition précise.


Raccordement combustible

Les principales caractéristiques d’une rampe à gaz sont :

  • sa pression d’alimentation;
  • le filtre;
  • les vannes de sécurité;
  • la détection gaz;
  • la détente.

Exemple : alimentation en gaz.

Raccordement gaz.


Génie civil

La dalle d’accueil de la cogénération s’étudie en tenant compte :

  • de la charge admissible;
  • du bac de rétention (éventuellement compris dans le châssis);
  • d’un dispositif anti-vibratoire (éventuellement compris dans le châssis).

Accessibilité

L’accessibilité doit être garantie pour :

  • l’installation;
  • la maintenance.

Ventilation

Les dispositions classiques pour les chaufferies sont d’application (ventilation permanente, air neuf par le bas, air usagé par le haut…).

Une attention particulière sera portée à l’apport en air comburant et à l’évacuation de la chaleur émise par rayonnement et des batteries.


Échappement

L’échappement se caractérise principalement par :

  • son implantation (hauteur, vitesse minimale d’éjection…);
  • la position de la cheminée;
  • les matériaux;
  • la conformité des fixations;
  • une pression d’évacuation suffisante pour le tracé de la cheminée;
  • la récupération des condensats;
  • l’isolation thermique;
  • le silencieux pour le traitement des émissions (voir le permis d’exploitation);
  • le pot catalytique intégré dans le silencieux;

Exemple : évacuation des gaz de combustion.

Évacuation gaz.


Acoustique et vibrations

Le permis d’environnement impose les limites en matière de bruit, qui viennent s’ajouter aux éventuelles contraintes imposées par le client comme dans le cas d’un hôtel par exemple.

Un capotage avec double enveloppe est généralement nécessaire pour atteindre les limites sonores.

La transmission du bruit s’effectue :

  • en direct;
  • via la cheminée;
  • via la tuyauterie;
  • via le fluide.

Le client ne connaît pas ses exigences en valeurs chiffrées, mais il veut de bons résultats. Un cahier des charges en terme de résultats est à déterminer avec lui avant.

Le niveau sonore du moteur ou de la cogénération avec son spectre est à connaître en champ libre pour ensuite calculer son spectre en conditions réelles et isoler adéquatement.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir les échangeurs de chaleur [cogen]

Échangeur à plaques   échangeur tubulaire

Échangeur à plaques et échangeur tubulaire.


Critères de sélection

Lorsque le projet nécessite un choix d’échangeurs séparés, il est important de les différencier :

  • La chaleur du bloc moteur est récupérée par un échange à plaque eau-eau.
  • La chaleur du circuit de lubrification est récupérée par un échange huile-eau.
  • La chaleur contenue dans les échappements est récupérée par un échange air-eau dans un échangeur à tubes droits.

Les températures et débits côtés moteur, lubrification  et échappement sont des données « constructeur » dépendantes du moteur sélectionné.

Le calcul des températures et débits côté eau doit assurer la cohérence du débit et des températures d’un échangeur à l’autre et garantir le refroidissement de chacun des postes de récupération de chaleur, avec une sécurité maximale pour le refroidissement du bloc moteur.


Échangeur sur les gaz d’échappement

La puissance de cet échangeur est fonction de sa perte de charge, mais le rendement du moteur est aussi très sensible à la pression de sortie. Un équilibre est à trouver et surtout à maintenir à ce niveau, à l’aide par exemple d’un pressostat dont le calibrage est régulièrement contrôlé. S’il y a un encrassement de l’échangeur, les pertes de charge augmentent et peuvent causer des dégâts considérables au moteur. Ce problème a causé jusqu’à l’explosion de certains moteurs.

Échangeurs sur le bloc moteur et le circuit de lubrification

Côté refroidissement du moteur, des problèmes de corrosion et d’hydrolyse dans le circuit de refroidissement peuvent engendrer des problèmes aux joints des pompes à eau par exemple. La séparation des circuits de refroidissement du moteur (water jacket) du reste de l’installation hydraulique confine le problème. La solution est alors d’analyser la qualité de l’eau et de définir les additifs qui neutralisent les polluants.

L’isolation des échangeurs de refroidissement du moteur et du circuit de lubrification permet de n’ajouter les additifs que dans un circuit local, au contraire d’un circuit unique, qui impose l’ajout des additifs en question dans tout le circuit de chaleur.

Il est encore conseillé de vérifier régulièrement la différence de température effective entre entrée et sortie des différents échangeurs, pour s’assurer du fonctionnement correct de l’installation. Rappelons qu’un mauvais refroidissement du moteur peut le détruire très rapidement.


Intercooler

Lorsque le cogénérateur est équipé d’un turbo-compresseur, l’intercooler, qui le refroidit, peut-être mis sur le même circuit que les échangeurs du bloc moteur et du circuit d’huile. Vu que son régime de température est assez bas (30 – 35 °C), l’intercooler est placé en amont des deux échangeurs précités pour bénéficier des retours froids du circuit de chauffage.

Échangeurs de secours

Un aéro-réfrigérant de secours reste souvent maintenu pour garantir le refroidissement du moteur dans des circonstances exceptionnelles. La chaleur évacuée par l’aéro-réfrigérant de secours ne peut cependant pas être comptabilisée pour l’attribution des certificats verts dans la mesure où elle ne contribue pas à la réduction de CO2.

Deux vannes 3 voies servent respectivement à by-passer l’échangeur eau-eau pour éviter un retour d’eau trop froide au moteur et à utiliser l’aéro-réfrigérant de secours (radiateur initial du moteur) pour garantir le refroidissement du moteur si le besoin en chaleur est réduit.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Dimensionner l’installation de cogénération

Dimensionner l'installation de cogénération


 Principe de dimensionnement

Schéma principe de dimensionnement.

Schéma simplifié d’une installation de cogénération.

Sur le plan technique, le pré-dimensionnement a permis de déterminer les puissances thermique et électrique ainsi que les plages de fonctionnement du cogénérateur.

Lors du dimensionnement, le prescripteur va opérer une série de choix techniques, calculer les variables clés et choisir les composants du groupe de cogénération.

Le dimensionnement peut être soit un dimensionnement complet suivi d’un appel d’offre; soit, et c’est le plus souvent le cas, un dimensionnement interactif avec les fabricants pour le choix des équipements, intégrant dès la conception les caractéristiques de moteurs et de composants disponibles sur le marché. De cette façon, le cahier des charges imposé au motoriste est très simple et c’est ce dernier qui propose des solutions sur base de quelques variables clés. Dans le cas contraire, des points spécifiques risquent de nécessiter des adaptations parfois coûteuses. L’offre du motoriste peut éventuellement comprendre un chapitre avec les besoins minimums qui ne sont pas respectés et les options possibles.

Selon le cas, le bureau d’étude sous-traitera ou réalisera lui-même le calcul complet des composants, calcul qui sort du cadre de cet outil.

Techniques

Présentation synthétique des principaux composants d’une unité de cogénération.


Puissances thermiques mises en jeu et interaction avec les chaudières

Rappelons brièvement que l’objectif de l’installation d’une cogénération en chaufferie est de couvrir au mieux le besoin énergétique en chaleur tout en produisant simultanément de l’électricité. Au vu de l’allure de la monotone de chaleur représentée ci-dessous, l’optimum énergétique pour intégrer une cogénération se situe régulièrement au tiers de la puissance maximale enregistrée. Ce n’est naturellement qu’un ordre de grandeur et sûrement pas une règle générale établie; tout dépend des profils des consommations de chaleur (liées à la performance de l’enveloppe du bâtiment) et d’électricité.
Rappelons ici que la « monotone » de chaleur est un classement par ordre décroissant des besoins en puissance du bâtiment à chauffer tout au long de l’année. Par exemple, une puissance de 200 kW doit être assurée en chaufferie pendant au moins 2 300 heures pour assurer le confort des occupants.
Ce nombre d’heures peut être plus important que celui de la période de chauffe, due à un besoin de chaleur pour l’eau chaude sanitaire (ECS). L’intérêt de parler de la monotone de chaleur ici, est que l’aire sous la courbe représente l’image des besoins thermiques du bâtiment en kWhth et d’ECS.

Monotone de chaleur

La cogénération, dans certains cas, est de très petite puissance par rapport à certaines chaudières qui généralement sont dimensionnées pour délivrer minimum 3 fois plus de puissance que le malheureux cogénérateur (c’est un ordre de grandeur). En théorie cela ne devrait pas poser trop de problèmes, mais en pratique, la cohabitation entre « Gulliver et les Lilliputiens » est parfois problématique surtout lorsque, dans les chaufferies courantes, le collecteur principal est bouclé ou une bouteille casse-pression réalise le découplage des circuits primaire et secondaire.

Le cogénérateur fournit assez de puissance pour couvrir la demande de chaleur. Mais la température de départ primaire chute. Le régulateur de chaufferie libère la chaudière (démarrage).

La chaudière se met en fonctionnement. Elle délivre très rapidement suffisamment de chaleur pour que les vannes 3 voies des circuits secondaires se ferment. La température de retour monte et réchauffe le ballon tampon.

Le cogénérateur et la chaudière s’arrêtent.

Après refroidissement du ballon tampon, le moteur redémarre. La cogénération ne parvient pas suffisamment vite à répondre à la demande de chaleur et la chaudière redémarre.
Ainsi de suite …

De plus, les facteurs aggravants sont souvent :

  • Des chaudières qui ne travaillent pas à puissance modulante ou qui ne démarrent pas en « petite flamme ». La puissance délivrée par une chaudière en relance d’appoint risque de délivrer un « boost » de chaleur capable d’imposer à la cogénération de s’arrêter.
  • Des circulateurs ou des pompes de circulation d’équipements de production de chaleur fonctionnant à débit fixe. Dans ce cas, le débit du primaire n’est que trop rarement en adéquation avec les débits des circuits secondaires, ce qui favorise un retour chaud au primaire capable de réduire fortement le temps de fonctionnement de la cogénération.

Le risque majeur à éviter dans le raccordement hydraulique est donc une température de retour trop élevée. Ce phénomène est influencé par la température de départ des chaudières et apparaît surtout dans le cas de forte demande de chaleur.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Visualiser les étapes d’un projet de cogénération

Visualiser les étapes d'un projet de cogénération


Vue d’ensemble

Si chaque projet présente des caractéristiques particulières, il est possible de définir les grandes étapes d’un projet de cogénération.

Le délai de réalisation d’un projet de cogénération, depuis l’étude jusqu’à la mise en service oscille autour de 8 mois ou plus, selon les spécificités qui peuvent influencer les délais.

Les démarches administratives doivent être entamées dès que la décision de réaliser le projet intervient. Ces démarches comprennent l’obtention des permis d’exploitation et d’urbanisme si nécessaire, la réservation des CV à l’administration, l’acceptation des plans des installations électriques et thermiques par les organismes de contrôle, le choix des assurances, le marquage CE, …

Une série d’acteurs vont se côtoyer au cours de ce projet, prendre dès le départ les coordonnées de toutes les personnes responsables facilite la communication et la coordination du projet.

  • le maître d’ouvrage ;
  • l’exploitant de la chaufferie actuelle ;
  • le bureau d’étude ;
  • le maître d’œuvre ;
  • le motoriste ;
  • l’installateur et les entreprises de travaux ;
  • la société de maintenance ;
  • les organismes de contrôle ;
  • les organismes délivrant les autorisations et permis ;
  • les organismes financiers ;
  • le fournisseur de combustible, …

Le planning

Voici une proposition de planning de réalisation d’une installation de cogénération comprenant étude, chantier, mise en service et essais, mais sans tenir compte de délais éventuels liés à l’obtention de permis ou d’autorisations liées à la réservation des CV, la certification, l’acceptation de primes éventuelles, …

Durée (jours) 1er mois 2ème mois 3ème mois 4ème mois 5ème mois 6ème mois 7ème mois

Études

Étude d’exécution des travaux électriques BT

10 X X

Étude d’exécution des travaux thermiques

10 X X

Approbations

Visa des études par les organismes de contrôle et le distributeur

5 X

Commande de matériel

Commande du groupe et équipements

2 X

Début du chantier

X

Génie Civil

Réalisation du socle

2 X

Tranchées pour circuit de récupération

5 X

Début chantier hors GC

X

Groupe de cogénération

Mise en place du groupe

5 X

Raccordement échappement (silencieux, pot catalytique, cheminée)

5  X

Circuit de refroidissement, y compris aéro-réfrigérant

10 X  X

Alimentation combustible, sécurité et essais

5  X

Travaux électriques

Pose et raccordements armoires BT

10 X  X

Circuit de puissance

5 X

Travaux de chauffage

Raccordement de la récupération de chaleur de la cogénération

10 X X

Travaux en chaufferie, coupure et raccordement

5 X

Electricité et Régulation

5 X

Mise en route et essais

10 X X

Les intervenants et leurs responsabilités

    MO – Maître d’ouvrage    

    AUD – Auditeur    

    FAC – Facilitateur    

    BE – Bureau d’études

    INST – Installateur    

    MAIN – Maintenance    

    EXPL – Exploitation    

Un projet d’implantation d’un système de cogénération dans une chaufferie existante ou dans une nouvelle chaufferie nécessite de bien définir l’intervention des différents acteurs et leurs limites.
Les responsabilités et les limites d’entreprise doivent donc être définies de la manière la plus claire possible à chaque étape du projet, à savoir au niveau :

  • D’un audit éventuel.
  • De l’avant-projet à travers les études de pertinence et de faisabilité.
  • Du projet par la réalisation de l’engineering et la rédaction des cahiers de charge.
  • De l’exécution par la réalisation correcte et critique de l’installation en collaboration étroite avec le bureau d’études ou/et le maître d’ouvrage.
  • De l’exploitation par le suivi des performances et optimalisation de l’installation.
  • De la maintenance par la réalisation des différentes tâches définies dans les cahiers de charge de maintenance (entretien à temps et à heure).

La bonne coordination du chantier implique la désignation d’un responsable et se trouve grandement facilitée par le recensement des coordonnées des responsables de tous les intervenants, à savoir :

  • l’auditeur éventuel;
  • le maître de l’ouvrage;
  • le coordinateur de l’opération;
  • le bureau d’étude;
  • le ou les bureaux de contrôle;
  • l’administration;
  • le fournisseur du groupe;
  • le maître d’œuvre des travaux;
  • la société de maintenance;
  • l’exploitant de la chaufferie actuelle;
  • les sous-traitants éventuels;
  • le distributeur d’électricité;
  • le distributeur de gaz.

L’audit

     MO       AUD       FAC   

Le maître d’ouvrage dans sa démarche d’amélioration de son installation existante a, à sa disposition, toute une série de services lui permettant de mieux appréhender « ce qui va lui tomber sur la tête » en termes de rénovation de chaufferie.

La première étape conseillée est souvent d’effectuer un audit de son installation. L’auditeur va pointer surtout les sources d’amélioration URE possibles de manière à réduire les consommations énergétiques. C’est à ce moment-là que l’auditeur peut évaluer le potentiel de réduction de la facture énergétique thermique. Cette analyse de potentiel influence fondamentalement le pré-dimensionnement et le dimensionnement d’un cogénérateur.


L’avant-projet

Pré-dimensionnement du cogénérateur

     MO       FAC       BE  

Dans tout projet d’installation de cogénération, des études de pertinence (« à la grosse louche ») et de faisabilité  (étude fine) doivent être réalisées de manière à savoir si ce projet est viable ou pas d’un point de vue :

  • Énergétique : comparaison en énergie primaire de la production de chaleur et d’électricité de la cogénération par rapport à une centrale électrique TGV (rendement de référence de 55 %) et une chaudière gaz (rendement de référence de 90 %) pour répondre au même besoin de chaleur et d’électricité du bâtiment considéré.
  • Environnemental : la réduction des émissions de gaz à effet de serre (CO2) doit être significative. En Wallonie, le taux d’économie sur les émissions de CO2 doit être supérieur à 10 % et à Bruxelles d’au moins 5 % pour avoir droit aux primes et aux certificats verts (CV). On parle de cogénération de qualité quand le dimensionnement du cogénérateur est basé sur les besoins de chaleur, génère une économie d’énergie primaire et une réduction des émissions de gaz à effet de serre comme indiqué ci-avant en fonction de la région.
  • Économique : le projet doit être rentable économiquement. Tous les indicateurs de rentabilité devront être au vert (temps de retour simple sur investissement TRS, valeur actualisée nette VAN, taux de rentabilité interne TRI).

Remarque : Le facilitateur cogénération est naturellement disponible pour ce genre d’accompagnement. Des outils sont mis à la disposition des responsables du projet : le guide de pertinence aide les auteurs de projet dans leurs premiers pas dans la technique de cogénération. L’outil de calcul CogenCalc, lui, permet, suivant des profils types de consommation de se faire une idée de la viabilité du projet avec une précision relative (de l’ordre de 20 à 30 %).
Tous les outils sont disponibles sur le site de la Région wallonne :

Intégration hydraulique et régulation du cogénérateur  

     BE       INST   

Cas d’une nouvelle chaufferie

Ce cas de figure est plus facile à aborder sachant que, de toute façon, un nouveau régulateur doit être prévu. La seule contrainte est de s’assurer que le module de régulation de l’installation de cogénération puisse communiquer avec le régulateur de chaufferie et s’intégrer dans la cascade

Cas d’une chaufferie existante

Hydraulique
Pour que l’intégration de la cogénération dans l’installation hydraulique d’une chaufferie existante soit une réussite, l’analyse de la situation par le bureau d’études en technique spéciale (ou par l’installateur pour les petits projets) doit être fine. Les contraintes d’intégration ne manquent pas. Celles qui sont à pointer sont généralement :

  • L’espace disponible dans la chaufferie pour les différents équipements comme le cogénérateur, le ou les ballons de stockage, l’armoire de régulation.
  • L’espace sur le circuit hydraulique pour placer les points d’injection de la chaleur du cogénérateur. Il doit bien être choisi par rapport aux chaudières existantes de manière à ne pas ou peu perturber l’équilibre hydraulique existant. L’intégration hydraulique doit tenir compte aussi des caractéristiques des chaudières.Par exemple :
    • Lorsque les chaudières existantes sont des chaudières à condensation, idéalement, le cogénérateur doit être placé en parallèle, et ce afin d’éviter de réchauffer le retour des chaudières. Lorsque les équilibres hydrauliques ne sont plus assurés par l’insertion d’un cogénérateur, il y aura lieu de redimensionner complètement le circuit primaire de manière à tenir compte de la redistribution des débits et des pertes de charge en fonction des caractéristiques hydrauliques des équipements en présence sur le circuit primaire.
    • Lorsque les chaudières existantes sont des chaudières à haute température, la configuration série est envisageable.

Il est toujours intéressant d’avoir un avis sans engagement d’un installateur sachant que, in fine, c’est lui qui aura les contraintes d’une bonne intégration de l’installation de cogénération en partenariat avec le bureau d’études.

Régulation
La régulation existante de la chaufferie doit pouvoir au minimum intégrer la cogénération dans la séquence de cascade des chaudières. Si ce n’est pas le cas, cette absence de communication des régulateurs des chaudières et de la cogénération risque de compromettre le bon fonctionnement du cogénérateur. En effet, on observe en pratique que l’installation de cogénération fonctionne moins d’heures que prévu et effectue des cycles de démarrage/arrêt importants.

C’est essentiellement dû au fait que les chaudières sont régulées sur base de courbes de chauffe à températures de consigne glissantes en fonction de la température externe, donc variables. La consigne de température pour réguler le fonctionnement de la cogénération est, quant à elle, fixe. Il en résulte que lorsque les deux systèmes ne communiquent pas :

  • En période froide, les consignes de démarrage des chaudières sont élevées par rapport à celles de la cogénération. Les chaudières sont donc mises en avant par rapport à la cogénération ; ce qui n’est pas le but recherché.
  • En mi-saison, les consignes des chaudières sont basses et en dessous de celles du cogénérateur et, par conséquent, le cogénérateur démarrera avant les chaudières. C’est bien, mais trop tard dans la saison de chauffe.

Dans le cas où la régulation existante des chaudières ne peut pas intégrer cette séquence de cascade et, pour autant qu’individuellement les régulateurs des différents équipements puissent accepter de l’être, il est donc impératif de prévoir un élément de régulation qui chapeaute les deux régulateurs.

Un autre moyen d’intégration est de prévoir un nouveau régulateur qui permette d’intégrer l’ensemble des équipements.


Le projet

Les étapes essentielles de tout projet, à partir du moment où la décision d’installer une unité de cogénération est prise, sont les suivantes :

  • étude des travaux électriques et thermiques ;
  • approbation des plans par le maître d’œuvre et les organismes de contrôle ;
  • commande des matériels (attention aux délais) ;
  • chantier pour le génie civil ;
  • installation du cogénérateur et raccordement (cheminée, combustible, chaleur et électricité) ;
  • travaux d’électricité (raccordement au réseau) ;
  • travaux thermiques (intégration hydraulique du cogénérateur en chaufferie) ;
  • système de régulation (intégration de la régulation du cogénérateur au système de régulation central de la chaufferie) ;
  • mise en route et essais ;
  • réception provisoire ;
  • « commissioning » (analyse et vérification des performances énergétique, environnementale et financière de l’installation) ;
  • réception définitive.

Dimensionnement

      BE   

En appui du cahier des charges pour la cogénération, le vadémécum se doit d’insister sur le dimensionnement de la cogénération surtout en tenant compte de la composante URE :

  • Un cogénérateur surdimensionné effectuera des cycles courts marche/arrêt ; ce qui réduira sa durée de vie. Le surdimensionnement d’une cogénération vient souvent du fait que l’on n’a pas de tenu compte à moyen terme de l’amélioration énergétique de l’enveloppe du bâtiment (changement des châssis vitrés, isolation des murs et des toitures, …) et des systèmes de production de chaleur et d’ECS.
  • Un sous-dimensionnement réduit la rentabilité du projet.

L’étude de faisabilité donne la méthodologie et les bonnes hypothèses aux auteurs de projet pour dimensionner et choisir une installation de cogénération dans les règles de l’art. Les outils de calcul CogenSim et CogenExtrapolation arrivent à un degré de précision suffisant (10 %) pour déterminer des points de vue  énergétique, environnemental et économique si un projet de cogénération est viable. Attention que ces outils se basent sur une mesure des besoins thermiques et électriques.

Cahier des charges

      BE   

Un cahier des charges pour la cogénération est disponible ici.

Ici, on voudrait juste pointer les petites inclusions à réaliser dans les cahiers des charges de manière à éviter les pièges de l’intégration hydraulique et de la régulation. Attention cependant que le cahier spécial des charges est à utiliser avec précaution sachant que chaque projet est un cas particulier. Le « copier/coller » pur et dur est à proscrire.

URE

Sensibilisation à l’URE

Si on veut rester cohérent par rapport à la notion de durabilité dans le bâtiment, l’URE doit être envisagée en premier lieu de manière à réduire les besoins de chaleur ET d’électricité.
Si des actions URE sont prévues dans le cadre du projet, il est impératif de le préciser dans le cahier des charges. En général, l’entreprise en techniques spéciales effectue un redimensionnement de contrôle ; c’est souvent demandé par le bureau d’études. Régulièrement, l’action URE ne s’arrête pas à l’amélioration énergétique de l’enveloppe, mais aussi au niveau des techniques spéciales :

  • On en profite pour remplacer une, voire toutes les chaudières de la chaufferie. La chaudière à condensation, dans ce cas-là, est souvent préconisée.
  • On enlève le bouclage de collecteur.
  • On prévoit une bouteille casse-pression pour mettre en place un découplage hydraulique des circuits primaire et secondaire.
  • Pour assurer un retour froid aux chaudières à condensation et au cogénérateur, on prévoit de réguler les débits primaires par des variateurs de vitesse, et ce sur base de la différence de température de part et d’autre de la bouteille casse-pression.

Au travers de son cahier des charges, le bureau d’étude devra sensibiliser par une remarque générale l’entreprise en technique spéciale de l’intention rapide, à court ou moyen terme, du maitre d’ouvrage d’entamer une action URE. Cette précision permet d’anticiper la configuration hydraulique adéquate en fonction de cette action URE.

Par exemple, le fait d’envisager à court ou moyen terme de remplacer une chaudière classique par une chaudière à condensation conditionne le positionnement hydraulique du cogénérateur vers une configuration parallèle.

Adaptation des débits primaires aux débits secondaires

Bien souvent, et à juste titre, les bureaux d’études en techniques spéciales aiment bien le concept de bouteille casse-pression, car elle permet d’éviter pas mal de problèmes de perturbation (ou « dérangement ») hydraulique et de régulation entre les circuits primaires et secondaires. Cependant, la faiblesse de ce découplage hydraulique qu’est la bouteille casse-pression réside dans le risque de ruiner tous les efforts réalisés pour mettre en place une politique URE. Comme on l’a vu précédemment, sans régulation des débits en amont et aval de la bouteille casse-pression, le retour primaire risque d’être chaud. La plupart des installations qui ont des problèmes de chaudières à condensation ne condensant pas et/ou des cogénérateurs fonctionnant peu d’heures sont équipées de bouteilles casse-pressions non régulées. Il y a donc lieu de prévoir dans le cahier des charges une clause énergétique qui décrit la régulation autour de la bouteille casse-pression.

Hydraulique

Les clauses du cahier des charges relatives à l’hydraulique devront être écrites différemment en fonction de différents paramètres :

  • La configuration hydraulique existante et future en fonction des actions URE envisagées.
  • Le type de chaudière maintenu ou nouveau envisagé. Par exemple, on préfèrera la configuration en parallèle lorsqu’on prévoit le placement en chaufferie de chaudières à condensation.

Régulation

Maintes fois soulignée dans ce vadémécum, l’importance de la communication entre les régulateurs des chaudières et du cogénérateur ne fait pas l’ombre d’un doute. Le bureau d’études devra la décrire dans son cahier des charges de manière détaillée.

Lorsque les circulateurs ou pompes de circulation à vitesse variable des chaudières et du ballon de stockage débitent dans le circuit primaire en amont d’une bouteille casse-pression, ils peuvent fonctionner à faible débit ou carrément être mis à l’arrêt quand les besoins de chaleur côté secondaire sont faibles. Lorsque ces derniers redeviennent importants, il est nécessaire de redémarrer les pompes ou les circulateurs. Cela ne peut se faire qu’en intégrant les variations de température au secondaire de la bouteille casse-pression. Il faudra donc décrire ce point de régulation dans le cahier des charges.

Gestion Technique Centralisée (GTC)

Normalement quand la cogénération est de qualité, des compteurs d’énergie thermique, électrique ainsi qu’un compteur combustible peuvent être « télégérés ». Ces compteurs sont indispensables dans toutes les installations de cogénération si le maître d’ouvrage veut valoriser son économie de CO2 sous forme de Certificat Vert CV (voir les prescriptions de la CWaPE et de Brugel).

Indépendamment de cela, une supervision (GTC) peut être envisagée pour affiner la gestion de la cogénération. Vu que la période de garantie permet d’analyser le comportement de l’installation de cogénération intégrée dans la chaufferie en situation réelle, on conseillera de décrire la télégestion du cogénérateur dans le cahier des charges. C’est vrai que c’est un coût complémentaire, mais il rendra immanquablement d’énormes services au maître d’ouvrage. En effet, moyennant la description d’un protocole précis d’analyse des paramètres du cogénérateur (« Commissioning »), d’emblée, pendant la période de garantie, l’enregistrement des valeurs de ces paramètres permettra de se faire une idée précise du bon fonctionnement de l’ensemble de l’installation. Voici une liste non exhaustive des paramètres que le bureau d’études pourrait décrire dans son cahier des charges :

  • Nombre d’heures de fonctionnement de la cogénération avec les dates et heures ;
  • en fonction du temps :
    • les températures du ballon, du retour du cogénérateur, … ;
    • l’état de fonctionnement de la cogénération ;
    • l’état des alarmes ;
    •  …

Lorsque la communication est possible entre les régulateurs de la chaufferie et de la cogénération, on conseille aussi de décrire dans le cahier des charges la télégestion du régulateur de chaufferie de manière à avoir une vue d’ensemble du fonctionnement de la chaufferie y compris le cogénérateur. Voici de nouveau une liste non exhaustive des paramètres que le BE pourrait intégrer dans son cahier des charges :

  • température externe ;
  • températures aux entrées et sorties de la bouteille casse-pression si présentes ;
  • températures des départs des circuits secondaires ;
  • températures de consigne de la cascade de chaudières ;
  • niveau d’ouverture des vannes des circuits secondaires ;
  • états des chaudières ;

L’exécution

     MO       BE       INST

L’administration

Une série de démarches administratives sont nécessaires avant et pendant la mise en œuvre du projet.

Avant exécution des travaux

  • Obtenir le permis de construire.
  • Obtenir le permis d’environnement (ou permis unique).
  • Obtenir l’accord écrit du distributeur d’électricité sur le cahier des charges relatif au raccordement électrique.
  • Réservation des CV auprès de la DGO4 et demande d’avis de la CWAPE sur les valeurs à attribuer au kCO2 et au keco.

Implantation des ouvrages

  • Faire exécuter le piquetage par un géomètre.
  • Placer les panneaux de chantier.
  • Placer les palissades pour la protection des installations de chantier.
  • Définir et assurer le système qualité du chantier.

Plan d’hygiène et de sécurité du chantier

  • Fournir le plan des locaux pour le personnel et leurs accès.
  • Assurer les dessertes pour réseaux d’eau, d’électricité et d’assainissement.
  • Désigner le responsable de coordination entre maître d’ouvrage et maître d’œuvre.
  • Définir les emplacements mis à disposition pour l’entreprise : des installations, matériels, fluides et énergie pour l’exécution des travaux.

Calendrier d’exécution des travaux

  • Établir un programme d’exécution des travaux.
  • Définir les matériels et méthodes utilisés.
  • Définir le calendrier d’intervention sur le réseau électrique.
  • Définir le calendrier d’intervention sur le réseau de chauffage.
  • Informer sur la continuité de services des installations ou dates d’interruptions.

Énergie

  • Électricité : définir les conditions de comptage, de raccordement, de mise sous tension (protection) et de mise en service (réception).
  • Gaz : définir les conditions de livraison, pression, comptage.

Le suivi de chantier

L’exécution du chantier d’intégration de la cogénération est une phase très importante. En effet, c’est à ce niveau que le dimensionnement, la rédaction des cahiers des charges, l’exécution des plans, … sont confrontés à la réalité de terrain qui nécessite souvent des compromis comme :

  • L’arbitrage des choix d’équipements sur base des fiches techniques. Les caractéristiques ne correspondent pas toujours « tip top » aux prescriptions des cahiers des charges, aux dimensionnements, etc.
  • L’adaptation des tracés des circuits hydrauliques en fonction des modifications en cours de chantier qui peuvent intervenir.

Les réunions de chantier sont là pour trouver les compromis nécessaires à la bonne réalisation du projet d’intégration.


Les réceptions

   MO       BE       INST

La réception provisoire

La réception provisoire n’est pas toujours exécutée à la période idéale; c’est-à-dire lorsque les besoins de chaleur sont suffisants pour faire fonctionner l’installation de cogénération. La période idéale pour réceptionner l’installation est en mi-saison sachant que l’on peut réellement observer le bon fonctionnement du régulateur du système de cogénération et de la communication entre ce dernier et le régulateur de chaufferie. En hiver, la réception ne devrait pas poser trop de problèmes. Par contre en été, la réception pose réellement un problème, car, même si des besoins d’Eau Chaude Sanitaire (ECS) sont présents, les tests d’interaction entre la ou les chaudières et l’installation de cogénération sont limités vu les faibles besoins de chaleur.

Dans la mesure du possible il faut éviter cette période.

Toute une série de tests devra être réalisée lors de la réception provisoire. Ils devront être décrits de manière  précise dans le cahier des charges si l’on veut éviter que « pleuvent les suppléments ». Les grandes lignes des tests à réaliser sont reprises ci-dessous en mi saison par exemple. Outre les tests classiques inhérents aux installations de chauffage (sécurités sur les équipements, équilibrage des circuits, autorité réelle des vannes motorisées, tests des pompes de circulation ou des circulateurs, …), à l’installation de cogénération (sécurités, marche/arrêt du cogénérateur sur base des consignes de température,  …), on pointera les tests spécifiques à réaliser sur les interactions entre la chaufferie et l’installation de cogénération (liste non exhaustive) :

  • Tester la séquence de cascade du cogénérateur par rapport aux chaudières :
    • Le cogénérateur doit être en tête de cascade lorsque des besoins de chaleur réapparaissent après une période de non-demande.
    • Lorsque le cogénérateur ne couvre pas les besoins de chaleur, les chaudières doivent s’enclencher séquentiellement de manière optimale. À l’inverse, quand les besoins diminuent, la séquence d’arrêt des chaudières doit être opérationnelle. Le cogénérateur devra être arrêté en dernier lieu si les besoins deviennent faibles.
  • Tester l’adaptation des débits primaires en fonction des débits secondaires. Lorsqu’une bouteille casse-pression est présente avec des sondes de température de part et d’autre de celle-ci, les débits primaires doivent bien s’adapter au Δ de température donné par les sondes. On pourra mesurer aussi à différents moments de la journée les quatre températures des conduites d’alimentation de la bouteille casse-pression.
  • Analyser le comportement de l’installation de cogénération en fonction d’une demande importante d’ECS. L’augmentation temporaire de la consigne de température du départ primaire pour satisfaire ce type de besoin ne doit pas permettre le réchauffement du retour primaire au-dessus de la consigne d’arrêt du cogénérateur. C’est une manière de constater que l’échangeur du circuit ECS est bien surdimensionné pour pouvoir ramener sur le retour primaire de l’eau chaude la plus froide possible (c’est un paradoxe !).
  • Vérifier que les puissances et rendements électrique et thermique sont conformes au cahier des charges.

En cas de réception provisoire pendant la période d’été, on ne peut évidemment pas analyser et tester les installations dans des conditions optimales. Les seuls tests qui peuvent être réalisés sont principalement :

  • l’équilibrage des circuits;
  • la vérification des débits nominaux.

La période de garantie

Comme signalé précédemment, dans le cahier des charges, il est important de décrire une période de garantie d’un an au minimum pour pouvoir couvrir une saison de chauffe complète et deux mi-saisons.

Pendant cette période, si une installation de Gestion Technique Centralisée (GTC) a été décrite dans le cahier des charges, un protocole de « commissioning » (sur base d’une analyse fonctionnelle) devra être mis en place de manière à contrôler le bon fonctionnement de la cogénération. Lorsqu’une GTC n’a pas été décrite dans le cahier des charges, Il faudra prévoir un relevé manuel des paramètres de fonctionnement principaux du cogénérateur, et ce à intervalles réguliers. On conseille aussi de décrire dans le cahier des charges le protocole d’analyse et de présentation des résultats issus des « trends » (enregistrements).

La réception définitive

La réception définitive en fin de garantie représente la dernière chance de pouvoir définitivement optimiser l’intégration en chaufferie de l’installation de cogénération. Elle n’est en fait qu’une  « deadline » ! Le gros des remarques par rapport à l’intégration du cogénérateur aura dû être résolu pendant la période de garantie.


Les documents utiles

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir le cogénérateur

Source : Cogengreen.

Puissances ?

Les puissances du cogénérateur sont déterminées lors du dimensionnement des équipements. Si le dimensionnement s’est limité à une évaluation grossière des puissances nécessaires, des investigations supplémentaires selon la méthodologie présentée compléteront et valideront les résultats.

Combustible ?

Le gaz est très généralement préféré au fuel, lorsqu’il est disponible. Son premier avantage se situe au niveau des émissions moindres que dans le cas du mazout. Autre avantage, les rendements des moteurs à gaz sont généralement meilleurs, mais pour un coût d’investissement plus élevé.

Groupe de secours ?

Une cogénération peut être pensée pour fonctionner en groupe confort secours. Une telle solution doit cependant s’étudier avec beaucoup d’attention, notamment par rapport au délai lors de la mise en route. Parmi les éléments à étudier dans ce cas, citons encore le déclassement nécessaire du moteur  d’un groupe secours existant, si l’on souhaite le faire fonctionner en cogénération. En effet, le fonctionnement en cogénérateur présente des contraintes plus importantes qu’un fonctionnement en groupe secours du fait de la durée de fonctionnement plus importante.

Si le groupe fonctionne au gaz, le fonctionnement du groupe en secours ne sera garanti que si l’approvisionnement en gaz est garanti. Notons finalement à ce sujet qu’un groupe fonctionnant au gaz a une reprise de charge plus lente, de l’ordre de quelques minutes pour atteindre la pleine charge, ce qui est une contrainte de taille pour un groupe de secours dans un hôpital par exemple.

Dans ce dernier cas, la présence d’un groupe de cogénération peut être valorisé comme deuxième source autonome, sorte de groupe de confort.

Le fonctionnement de plusieurs petites machines en parallèle peut-être une alternative, quoique d’un coût sensiblement plus élevé, proportionnellement plus chères que les grosses unités. Cette solution limite les risques de pannes et permet un fonctionnement à charge réduite, notamment pendant l’entre-saison. Cette option présente encore des difficultés quant à la complexité de sa régulation et à son intégration dans le système de gestion des chaudières existantes.


Écrêtage ?

La cogénération présente une philosophie fondamentalement différente de l’écrêtage. Un moteur dédié exclusivement à l’écrêtage ne fonctionne en effet que pour les heures pleines de pointe, c’est à dire 4 heures par jour pendant 4 mois par an. Il s’agit le plus souvent d’un groupe au mazout. À l’opposé, une cogénération fonctionnera de la façon la plus continue possible. Il s’agit le plus souvent d’un groupe au gaz.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be