Capteur solaire à eau chaude

Capteur solaire à eau chaude


Principe de fonctionnement

Schéma principe de fonctionnement.

Les capteurs solaires transforment le rayonnement solaire en chaleur grâce à un absorbeur (un corps noir caractérisé par des propriétés d’absorption très élevées et d’émissivité très basse). L’absorbeur transfère la chaleur à un fluide caloporteur (généralement de l’eau glycolée) circulant au travers de chacun des capteurs.

Lorsque la différence de température entre la sonde capteur (T1) et la sonde en fond de ballon (T2) dépasse quelques degrés, les circulateurs s’enclenchent.

Le fluide caloporteur, circulant dans le circuit primaire, achemine alors l’énergie solaire depuis les capteurs vers le(s) ballon(s) de stockage à travers un échangeur.

Le(s) ballon(s) de stockage accumule(nt) la chaleur produite.

Si nécessaire, une source d’énergie d’appoint porte l’eau préchauffée à la température souhaitée. Celle-ci est alors acheminée vers les points de puisage par la boucle de distribution.

Un dispositif de régulation électronique commande le fonctionnement du système (circulateurs et appoints) selon les conditions d’ensoleillement et la demande en eau chaude.


Les principaux composants d’une installation

Un chauffe-eau solaire est toujours composé de quatre parties :

Schéma principaux composants d'une installation.

Le système de charge

Le système de charge comprend les capteurs solaires, la boucle primaire ou solaire et un échangeur de chaleur.

Le système de stockage

Il s’agit généralement d’un ou plusieurs ballon(s) d’eau bien isolé(s) thermiquement. Le stockage permet de différer la demande de puisage par rapport au moment de la production solaire.

Le système d’appoint

Pendant une bonne partie de l’année, un appoint de chaleur est nécessaire pour atteindre la température minimale de la boucle sanitaire (en général 60 °C). Cet appoint de chaleur peut être fourni par un moyen traditionnel de production de chaleur (chaudière, résistance électrique, pompe à chaleur,…).

Le système de décharge

C’est la partie de l’installation qui distribue l’eau chaude sanitaire aux différents points de puisage.

Photo capteur solaire sous vide.

Exemple de capteur solaire sous vide (avec sonde de température en 1 et purgeur en 2).
À noter le lestage des pieds de l’équipement…


Les différents types d’installation

Sous nos climats, la plupart des installations sont conçues avec une boucle fermée sous pression dont la circulation est forcée, mais il existe d’autres types d’installation :

Boucle solaire fermée (indirecte) ou ouverte (directe) ?

Si la boucle est fermée, le fluide qui chauffe dans les capteurs solaires et celui qui arrive aux points de puisages (douches…) sont distincts : l’eau de consommation est indirectement chauffée à travers un échangeur par le fluide caloporteur du circuit solaire.

Dans le cas où la boucle est dite ouverte, l’eau qui circule dans les capteurs est la même que celle qui est consommée aux points de puisage. Ce type de circuit est rarement utilisé en Belgique, notamment à cause des problèmes liés au gel. On le trouve donc plus souvent dans les pays chauds, où les capteurs constituent le seul moyen de chauffage.

Boucle fermée.

Boucle ouverte.

Circulation forcée ou thermosiphon ?

Dans les installations à thermosiphon, le fluide de la boucle solaire circule par convection naturelle (le fluide réchauffé s’élève). Le stockage est en général situé au-dessus des capteurs (à une distance de minimum 50 cm). Chez nous, ce système est difficilement maîtrisable. Il convient nettement mieux aux pays chauds et ensoleillés.

Thermosiphon.

Circulation forcée.

Les installations à circulation forcée sont équipées d’un dispositif de pompage (circulateur) provoquant la circulation forcée du fluide de la boucle solaire. La pompe est activée automatiquement par la régulation qui évalue le moment où la température du fluide à la sortie des capteurs est supérieure à la température de l’eau dans le bas du réservoir de stockage. On distingue dans cette catégorie plusieurs principes suivant le débit imposé au fluide dans le circuit solaire :

  • Les installations dites « high flow » : dans ce cas, le débit étant élevé (+/- 40 à 60 litres/heure.m²), on favorise une production d’une grande quantité de fluide avec un delta de température peu élevé.
  • Les installations dites « low flow » : dans ce cas, le débit étant faible (+/- 15 à 20 litres/heure.m²), on valorise une plus haute montée en température d’un volume de fluide réduit. Cela permet de travailler avec de plus faibles diamètres de tuyauterie et de faibles puissances de circulateur. Cependant, les pertes thermiques sont augmentées, ce qui diminue le rendement des capteurs. Ce système est généralement utilisé pour les installations de type directe ou encore pour les installations dites « à vidange ».
  • Les installations dites « mix flow » : dans ce cas, le débit est variable et ajusté en continu par la régulation afin de garantir à tout moment un delta de température fixé. Ce système est de plus en plus utilisé et permet d’éviter des enclenchements-arrêts fréquents de la pompe.

Sous pression ou à vidange ?

Les systèmes traditionnels à boucle fermée et à circulation forcée sont généralement « sous pression ». Dans ce type de système, le fluide caloporteur est constamment maintenu à une pression de 1 bar à l’arrêt et de 6 bars en fonctionnement.

Il existe aussi des systèmes « vidangeables ». La différence principale avec les systèmes traditionnels est que lorsque le système ne peut capter d’énergie, les capteurs et les tuyauteries sont vidés et la pompe arrêtée. Le fluide caloporteur est alors recueilli dans un réceptacle fermé. S’ils sont bien conçus, ces systèmes présentent une grande sécurité en cas de gel ou en cas de surchauffe estivale (cela permet d’éviter les montées en températures trop importantes dans le capteur). Ces systèmes permettent ainsi d’éviter une usure accélérée des composants et présentent une grande simplicité de construction puisqu’ils ne nécessitent ni manomètre, ni vase d’expansion, ni purgeur, ni clapet anti-retour (vu que l’installation est vidangée, il n’y a pas de risque de circulation inverse par thermosiphon).

Sous pression.

A vidange.


Les types de capteurs

Il existe deux grandes familles de capteurs : les capteurs plans et les capteurs à tubes « sous vide ».

Capteurs plans

Les capteurs plans opaques

Ce sont les capteurs les plus simples du marché. Ils sont constitués d’un ensemble de tuyaux opaques de couleur foncée qui jouent à la fois le rôle de:

  

  1. plaque absorbante qui permet la captation de l’énergie thermique du rayonnement solaire.
  2. tuyauterie dans laquelle circule directement le fluide caloporteur (généralement l’eau).

Ils ne possèdent ni isolation ni couvercle transparent. Leur rendement est donc globalement moins bon sauf s’ils sont destinés à des applications estivales à basse température (proche de la température extérieure), par exemple pour les piscines extérieures … Leur simplicité va de pair avec un coût très réduit.

Les capteurs plans vitrés

Il s’agit des capteurs que l’on rencontre le plus souvent ; ils conviennent pour la plupart des applications courantes (ECS, appoint chauffage, piscine…).

Un capteur plan vitré se compose des éléments fondamentaux suivants :

  1. Un boîtier qui contient tous les éléments constitutifs fragiles du capteur comme les tubes, la plaque absorbante…
  2. un joint d’étanchéité pour empêcher l’eau de pénétrer quand il pleut ;
  3. un couvercle transparent qui crée un effet de serre au-dessus de la plaque absorbante : en général un verre trempé dit solaire, présentant une faible teneur en fer pour permettre un haut degré de transmission lumineuse ;
  4. une isolation thermique qui réduit la déperdition de chaleur par la face arrière et les côtés du capteur ;
  5. une plaque absorbante qui permet la conversion du rayonnement solaire en énergie thermique transportée par le fluide ;
  6. les tubes traversés par le fluide caloporteur qui évacue la chaleur jusqu‘à l‘extérieur du capteur ;

Selon les modèles, différents types de réseaux hydrauliques internes aux capteurs existent :

Schéma différents types de réseaux hydrauliques internes.

Capteurs à tube sous vide

L’isolation de ce type de capteurs est assurée par le vide. Par facilité de conception, ces capteurs ont toujours une forme cylindrique, d’une longueur d’environ 2 m et d’un diamètre approximatif de 10 cm. Ces capteurs sous vide ont en général un rendement optique (correspondant au rendement de production d’eau chaude à une température égale à celle de l’ambiance) plus faible mais de meilleurs coefficients d’isolation thermique que les capteurs plans.

Ils récupéreront dès lors moins d’énergie à basse température que leurs homologues plans. Plus efficaces pour la production d’eau chaude à température élevée par rapport à l’ambiance extérieure, ils seront principalement utilisés pour des applications comme le chauffage, la climatisation par ab/adsorption ou encore certains process particuliers,…

Photo capteur solaire thermique.

Il en existe deux grandes familles selon que l’absorbeur se trouve directement sur le verre ou sur une ailette en cuivre.

Les tubes sous vide avec absorbeurs sur ailette en cuivre

L’absorbeur de ce type de capteur est déposé sur une structure en cuivre placée dans le tube. Ce type d’absorbeur sur cuivre possède une meilleure sélectivité que celui déposé sur le verre (et donc procure un rendement optique plus élevé au capteur). L’avantage principal est que l’absorbeur peut être orienté différemment par rapport à son support. Cela peut être avantageux pour des applications en façade par exemple.

C’est l’intérieur du tube (et tout ce qu’il contient) qui est soumis au vide d’air. Bien que le principe soit simple, la fabrication de ces capteurs reste délicate à cause des liaisons verre/métal nécessaires.

Composition des tubes sous vide avec ailette absorbante

Schéma composition des tubes sous vide avec ailette absorbante

  1. Un tube en verre  dans lequel on effectue le vide d’air (assurant une isolation optimale) dans lequel se trouvent tous les composants suivants.
  2. L’absorbeur posé sur un support en cuivre.
  3. Les tubes qui évacuent la chaleur, généralement aussi en cuivre. Ces tuyaux peuvent être disposés de divers manières (soit juxtaposés, soit concentriques).
  4. Le système de raccordement permet la rotation des tubes afin d’orienter au mieux l’ailette absorbante.

Il existe aussi plusieurs types de capteurs selon le fluide caloporteur et son mode de circulation:

> Les capteurs à circulation directe

> Les capteurs à caloduc (ou heat pipe)

Dans le cas de capteurs à circulation directe, l’ailette sert de support à un tube en U dans lequel circule le fluide caloporteur.

Le caloduc, lui, est un échangeur qui utilise les mécanismes de changement d’état liquide-gaz d’un fluide placé dans un tube fermé. Le principe est simple : en captant la chaleur absorbée par l’ailette, le fluide s’évapore. Il s’élève alors jusqu’en partie haute et cède sa chaleur en se condensant par contact avec le fluide caloporteur de l’installation qui circule en partie haute. De nouveau à l’état liquide, il retourne alors par gravité en bas du tube.

Schéma principe du caloduc.

Pour un fonctionnement correct, ces tubes doivent être installés avec une inclinaison minimale. Ce système permet un remplacement des tubes sans purgeage complet de l’installation.

Les tubes sous vide avec absorbeurs sur support en verre (tube Sydney)

Schéma tubes sous vide avec absorbeurs sur support en verre.

Dans ce cas, le vide est fait entre les deux couches de verre (principe du thermo) qui composent le tube en verre. L’intérieur de la bouteille est donc soumis à la pression atmosphérique. À l’intérieur, l’absorbeur et les tuyauteries évacuent la chaleur du creux atmosphérique central.

Composition des tubes sous vide avec absorbeur sur support en verre

Schéma composition des tubes sous vide avec absorbeur sur support en verre.

  1. Une bouteille de verre à double paroi est employée. Les deux parois sont reliées de manière étanche au niveau du goulot de manière à emprisonner le vide (partie grise dans le schéma).
  2. Sa surface externe (2) est laissée transparente.
  3. Un absorbeur est posé sur la face intérieure de la bouteille.
  4. Des tubes qui évacuent la chaleur sont placés dans le creux atmosphérique central.
  5. Des tuyaux sont reliés à l’absorbeur par des profilés semi-circulaires métalliques de transfert de chaleur.
  6. Éventuellement et préférablement, des réflecteurs augmentent le rayonnement solaire sur le capteur (on parle alors de tubes CPC pour Compound Parabolic Concentrator).

Le rendement et l’utilisation des capteurs

Les capteurs vont se différencier entre eux par la qualité de l’absorbeur (sa sélectivité) et du verre solaire (rendement optique), ainsi que par celle de l’isolation du capteur. L’ensemble de ces trois propriétés conféreront au capteur des plages de températures privilégiées et par là, les usages pour lesquels il sera mieux adapté.

Graphique rendement et l'utilisation des capteurs.

Ces différences de rendement selon les plages de température de fonctionnement seront à la base du choix du type de capteurs que l’on utilisera. On choisira donc préférablement le capteur qui offre le meilleur rendement pour le régime de température de travail correspondant à l’application voulue.

Les plages de régimes de travail à basse température (correspondant à des delta de températures de travail des capteurs entre 0 et 20 °C) sont essentiellement rencontrées pour le chauffage de piscine. Les déperditions thermiques n’ont pour ces températures que peu d’influence. C’est donc, dans ce cas, le rendement optique du capteur qui sera déterminant. Les capteurs plans (vitrés ou non) seront le choix idéal puisqu’ils offrent des rendements optiques plus élevés pour un prix nettement inférieur.

Pour les régimes à température moyenne (delta de T° de 20° à 100 °C), recherchés pour des applications comme la production d’eau chaude sanitaire ou le chauffage à basse (delta de 60 °C) et moyenne température (delta de 100 °C), les déperditions commencent à prendre le pas sur le rendement optique. Dans ce cas, les capteurs devront posséder outre un bon absorbeur sélectif, une bonne isolation thermique. Pour ces plages, les capteurs à tubes sous vide et les capteurs plans vitrés sont concurrentiels.

Pour les régimes à haute température (nécessaires pour des applications comme des process industriels, chauffage à très haute température, climatisation solaire), c’est l’efficacité de l’isolation qui sera déterminante. Le seul choix réaliste dans ce cas est celui des tubes sous vide.


Le raccordement des capteurs

Un champ de capteurs doit être composé de capteurs aux propriétés physiques semblables. Plusieurs raisons à cela :

  • Eviter les sources d’usure prématurée : des métaux différents peuvent provoquer des couples galvaniques, sources de corrosion interne des capteurs.
  • Eviter un problème d’équilibrage hydraulique, problème fréquent de fonctionnement des capteurs : chaque capteur doit posséder des pertes de charge similaires.

Le placement des capteurs doit permettre :

  • que la planéité des capteurs soit respectée ;
  • de placer vers le bas les orifices d’évacuation des condensats ;
  • de résister aux conditions climatiques locales (vent et neige).

Pour le raccordement des panneaux entre eux, différentes configurations sont possibles :

  • en série (a) ;
  • en parallèle respectant de préférence le principe de Tichelmann (b) ;
  • en rangée de capteurs en série (c) ;
  • en rangée de capteurs en parallèle (respectant le principe de Tichelmann) (d).
  • etc.

Schéma principes de raccordement des panneaux.

Le choix sera fonction de différents éléments :

  • La facilité de réglage (équilibrage) ;
  • la longueur nécessaire de tuyauterie (coût et pertes thermiques associés) ;
  • la configuration de l’espace disponible ;
  • le compromis entre l’efficacité des capteurs et la température de sortie.

Le raccordement en série permet une montée en température plus importante au prix de pertes thermiques plus importantes (d’autant plus si l’on travaille avec un faible débit (low flow). De fait, la montée progressive en température au fil des panneaux en série est accompagnée par une diminution du rendement. Un trop grand nombre de capteurs raccordés en série sera donc à éviter. En pratique, 5 à 6 capteurs de taille standard (environ 2 m²) est un maximum.

Énergétiquement parlant, le raccordement en parallèle est donc plus intéressant mais n’est pas toujours réaliste vu les longueurs de tuyauterie nécessaires.

L’équilibrage hydraulique des différents capteurs est un point crucial. Dans la réalité, il est souvent réalisé empiriquement par un jeu de vannes qui ne permet évidemment pas de corriger les erreurs de conception. Il est donc primordial de prendre en compte les pertes de charges liées aux capteurs  pour le dimensionnement des tuyauteries. En pratique, le raccordement en boucle de Tichelmann (longueur de tuyauterie identique quelque soit le capteur ou groupe de capteurs) est souvent préconisé pour les grandes installations. Il permet un équilibrage naturel en imposant des pertes de charges identiques pour chaque capteur/groupe de capteurs.

Selon un rapport du CTSB, on recommande généralement un rapport :

Perte de charge dans les collecteurs / Perte de charge dans les capteurs, le plus faible possible,
et donc un rapport Diamètre interne des collecteurs / Diamètre interne des circuits hydrauliques des capteurs, le plus faible possible également (rapport compris entre 1,6 et 3,3).


Le circuit primaire ou circuit solaire

Le circuit primaire (ou circuit de charge solaire) est un circuit fermé composé de tuyauteries, généralement en cuivre, qui relient les capteurs (A) à un échangeur de chaleur (B). Il transporte le fluide caloporteur. Celui-ci peut atteindre des températures allant de -20 °C en cas de gel à des températures très élevées (jusqu’à 200 °C dans les capteurs !). Il est donc impératif que les composants de ce circuit puissent résister à ces changements importants de température !


Exemple de schéma possible pour un circuit primaire (partie en couleur).

Le circuit primaire est généralement muni des composants suivants :

  • Une pompe de circulation (1) assurant la circulation du fluide caloporteur dans le circuit.
  • Un purgeur (2) manuel permettant d’éliminer l’air en partie haute du circuit lors du remplissage et des entretiens.
  • Un clapet anti-retour (3) pour éviter la formation d’un contre-courant de thermocirculation qui déchargerait le ballon de stockage de sa chaleur.
  • Plusieurs vannes d’isolement (4) pour isoler les composants principaux du système en cas d’entretien ou de remplacement.
  • Un robinet (5) permettant le remplissage et la vidange du circuit en fluide caloporteur.
  • Un débitmètre gravimétrique, appareil indiquant le débit du fluide du circuit. Situé sous le circulateur, il permet de régler la vitesse minimale de celui-ci pour assurer un débit minimum dans les capteurs.
  • Parfois un système de comptage d’énergie produite est placé. Celui-ci comprend : un débitmètre volumétrique, deux thermomètres sur l’aller et le retour des capteurs et un calculateur intégrateur.

Comme pour toute autre boucle hydraulique où un générateur de chaleur est installé, un dispositif de limitation de pression devra aussi être utilisé. Pour cela, le circuit primaire comporte :

  • Une soupape de sécurité (6) munie d’un manomètre destinée à évacuer les surpressions en cas de surchauffe de l’installation. Cette vanne est raccordée à un réservoir de collecte du fluide caloporteur avec antigel pour éviter tout rejet toxique dans le réseau d’égout.
  • Un vase d’expansion (7), placé du côté aspiration de la pompe de circulation, chargé d’absorber les différences de volume et de récolter la totalité du fluide caloporteur expulsé des capteurs en cas de surchauffe. Par rapport aux vases d’expansion traditionnels utilisés pour le chauffage, les vases d’expansion solaires doivent supporter des pressions de service maximales plus élevées (de 8 à 10 bar) et possèdent une membrane plus résistante aux hautes températures. Il est parfois judicieux, vu les hautes températures atteintes, de placer un vase tampon en amont afin de ne pas compromettre la longévité du vase d’expansion. Dans le cas d’un système à vidange, on peut omettre le vase d’expansion car le circuit primaire n’est pas mis sous pression, mais il faut prévoir la place pour installer le réservoir à vidange entre le champ de capteurs et le ballon de stockage solaire.

Le fluide caloporteur

Le circuit primaire relatif à l’installation sous pression est totalement rempli d’un fluide caloporteur résistant au gel. On utilise généralement du propylène glycol. Il existe aussi des mélanges complets qui contiennent un agent inhibiteur de corrosion, un agent anti-mousse, un agent anti-algue et un colorant.

Théoriquement, on pourrait également travailler avec de l’eau pure non glycolée dans le cas d’un système à vidange. Actuellement, pour des raisons de sécurité on utilise, même dans ce cas, de plus en plus d’antigel.

Caractéristiques essentielles d’un fluide solaire

  • Stable jusqu’à la température de stagnation maximale ;
  • Protégé contre le gel ;
  • Non corrosif  ;
  • Capacité thermique élevée ;
  • Viscosité réduite ;
  • Prix réduit et disponibilité.

En pratique, on utilise généralement un mélange d’eau et de glycol comme par exemple :

Éthylène glycol (C2H6O2)
Capacité thermique : 2 410 J.kg-1.K-1
Température de fusion : – 13 °C
Température d’ébullition : 198 °C

Polypropylène glycol (C3H8O2)
Capacité thermique: 2 500 J.kg-1.K-1
Température de fusion : – 59 °C
Température d’ébullition : 188 °C

Les conduites

Photo conduites.

Les matériaux utilisés pour les conduites du circuit solaire doivent résister aux contraintes mécaniques possibles dans le circuit (pression et plage de température en fonctionnement (de – 20 à 150 °C)) et être compatibles avec le fluide et les autres matériaux de l’installation. On utilise principalement des tubes en cuivre, en acier simple ou en acier inoxydable. Les tuyauteries en matière synthétique sont plus que déconseillées, car elles ne sont généralement pas tout-à-fait étanches (surtout à haute température) à l’oxygène qui pénètre alors par diffusion dans le circuit. Le risque de corrosion en est alors augmenté. L’acier galvanisé est lui strictement interdit, car il réagit avec le glycol présent dans le circuit primaire.

Vu les hautes températures auxquelles ces conduites sont soumises, leur isolation ne peut en aucun cas être réalisée au moyen d’un quelconque isolant utilisé pour les applications sanitaires habituelles. Ne résistant qu’à des températures de l’ordre de 110 – 120 °C, le polyuréthane est à proscrire. On utilisera généralement un caoutchouc synthétique en mousse capable de résister à des températures de l’ordre de 150 °C.

L’isolant utilisé pour la boucle solaire doit de plus :

  • résister aux U.V. (ou en être protégé) ;
  • résister à l’humidité ;
  • résister aux attaques des rongeurs et oiseaux ;
  • être étanche (au vent et à la pluie).
  • Et bien sûr, avoir une épaisseur suffisante ! (au minimum égale au diamètre du tuyau).

Sous ces hautes températures, la dilatation des conduites est aussi un phénomène à prendre en compte, car elle peut induire pour les grandes installations des mouvements importants.
Pour se faire une idée, la dilatation thermique du cuivre est de 1.7 mm/m sous un échauffement de 100 °C. On comprend vite le risque associé à plusieurs dizaines de mètres de tuyauteries !

 

Montage permettant d’absorber la dilatation thermique des tuyauteries.


Le stockage de l’eau solaire

Le stockage est un élément clé de toute installation solaire thermique. Il permet de pallier au caractère discontinu de l’énergie solaire et à la non-simultanéité de la production et des besoins. En pratique, l’énergie solaire thermique est stockée via l’eau contenue dans un ou plusieurs ballon(s) d’eau accumulateur(s) raccordé(s) en série.

Photo cuves stockage.

Un matériau résistant

Comme pour tout ballon accumulateur d’eau chaude sanitaire, le principal critère de sélection de matériau du ballon est sa résistance à la corrosion. On utilise généralement des réservoirs en acier inoxydable, ou en acier émaillé voire en cuivre avec anode de protection. Les ballons en acier galvanisé sont déconseillés du fait de leur mauvaise résistance à la corrosion.
Pour les réservoirs à eau morte, n’étant pas sous-pression, on peut envisager des réservoirs en matière synthétique, plus durable puisque non soumis à la corrosion.

Le ballon de stockage à eau solaire doit non seulement répondre à toutes les exigences d’un réservoir d’eau sanitaire classique, mais doit en plus pouvoir résister aux hautes températures auxquelles il pourrait être soumis. La température dans le ballon peut en effet monter jusqu’à 95 °C, d’où la nécessité de prévoir un mitigeur thermostatique sur la boucle de distribution.

Une forme adaptée

Par ailleurs, les ballons solaires sont en général étudiés de manière à favoriser une bonne stratification interne des températures. La stratification est basée sur une variation de masse volumique en fonction de la température : L’eau réchauffée s’élève par thermocirculation et par sa masse volumique moindre s’accumule dans le haut du ballon (phénomène de la poussée d’Archimède). L’eau froide, plus lourde, reste en bas. A chaque puisage, l’eau la plus chaude du ballon est extraite et de l’eau froide du réseau est injectée dans le bas du ballon. La stratification est donc globalement préservée, l’important étant d’éviter tout brassage.

Pour favoriser ce phénomène, le réservoir  est donc préférablement vertical et sa hauteur équivaut généralement à 2-2.5 fois le diamètre. Il existe aussi des dispositifs de charge améliorant la stratification : amenée de l’eau chaude à différentes hauteurs suivant sa température.

Une isolation primordiale

Encore plus que pour un ballon accumulateur classique, outre sa bonne compacité, un ballon solaire doit impérativement être isolé dans son entièreté (10 cm grand minimum) : attention aux parties supérieures et inférieures ainsi qu’aux différents raccords ! La parfaite isolation et une bonne stratification augmenteront indéniablement les performances du système.

Une dimension adaptée

Le volume du stockage dépend du projet envisagé, mais doit être étudié de manière précise. L’enjeu est double :
D’une part, il ne doit pas être trop petit pour ne pas limiter les gains solaires possibles et d’autre part, il ne doit pas être trop grand pour permettre une montée en température suffisante pour que l’eau soit utilisable (idéalement pour pouvoir se passer de l’appoint en été).

Le ballon solaire doit généralement pouvoir stocker l’équivalent de 30 à 40 % d’une journée de consommation d’eau chaude (à 60°) de l’établissement. La capacité fréquente des plus grands ballons est de 5 000 l, mais le recours à plusieurs ballons de stockage est en général déterminé par la place prise par les échangeurs internes de grande puissance. La question de la liaison des multiples ballons est alors posée. Dans bien des cas, on s’orientera alors vers un ballon solaire à eau morte (eau ne servant pas d’eau chaude sanitaire) permettant d’emmagasiner l’énergie solaire sans se préoccuper de la gestion de la légionellose.

N.B. : Le stockage, c’est LE défi de la recherche ! Le jour où l’on arrivera à stocker l’énergie solaire pour de plus longues périodes voire saisons, ce sera sans doute une porte d’entrée vers l’autonomie énergétique. Les recherches actuelles se portent vers des matériaux à changement de phase qui remplaceraient l’eau traditionnelle.


La charge du ballon de stockage

La charge du ballon de stockage s’effectue au moyen d’un échangeur au travers duquel la chaleur du fluide solaire est transférée à l’eau du stockage.
Comme pour toute installation, deux types d’échangeurs peuvent être employés : les échangeurs intégrés au stockage et les échangeurs extérieurs (à plaques) :

Echangeurs intégrés au stockage.

Echangeurs extérieurs au stockage.

Schéma charge du ballon de stockage- 1.

À partir de là, différents systèmes de charge sont envisageables : avec échangeur interne (a,b,c,f) ou externe (d,e). Certains systèmes permettent un renforcement de la stratification des températures à l’intérieur du/des ballon(s) par différents dispositifs :

  • cheminée interne enrobant l’échangeur solaire et diffusion en fonction des températures (b),
  • chargement à hauteur différenciée par vanne trois voies (e),
  • chargement à hauteur différenciée par échangeurs multiples (c).

Schéma différents systèmes de charge possibles.

Typiquement, pour les grands systèmes solaires (au-delà de 30 m² de capteurs) des échangeurs de chaleur externes sont souvent utilisés vu les puissances considérables qui entrent en jeu.

La disposition des échangeurs et leur raccordement se fera toujours de manière à :

  • Favoriser la stratification correcte des températures à l’intérieur des ballons et le long du circuit de charge : les températures les plus hautes doivent être les plus proches de l’appoint.
  • Assurer un rendement optimal des capteurs :
    Les pertes thermiques des capteurs dépendant de la différence de température entre le fluide à l’intérieur des capteurs et la température extérieure, on aura tout intérêt à travailler avec un fluide caloporteur à la température la plus basse possible.
  • Permettre à l’échangeur de chauffer un volume d’eau suffisamment grand.

En conséquence, l’échangeur de chaleur solaire intégré au stockage des petits systèmes, sera placé en partie basse du ballon et le retour vers les capteurs sera situé le plus bas possible dans le ballon.

Schéma principe échangeur.

L’échangeur de chaleur relié à l’appoint se trouvera quant à lui dans la partie supérieure du ballon de stockage ou dans un ballon séparé (en série avec le premier) lorsque la quantité d’eau chaude nécessaire sera plus importante.


La régulation

Démarrage et arrêt du circulateur

Pour les systèmes à circulation forcée, le système de régulation différentielle assure la mise en marche et l’arrêt adéquats de l’installation. Cette gestion de la chauffe solaire est primordiale pour tirer un maximum de profit de l’énergie solaire disponible. Le principe est basé sur la mesure continue de deux températures :

  • la température de l’eau chaude en partie basse du ballon de stockage (ou du fluide caloporteur à la sortie de l’échangeur solaire) : T°stockage.
  • la température du fluide caloporteur à la sortie des capteurs : T°capteur.

Dès que la différence de température est suffisante, la pompe est mise en marche. Elle s’arrête lorsque l’énergie solaire captée n’est plus suffisante ou n’est plus nécessaire.

En résumé :

  • Si T°capteur> T°stockage + ∆T1 : la pompe démarre.
  • Si par contre, T°capteur< T°stockage + ∆T2 : la pompe s’arrête.

Il est nécessaire de calibrer précisément ces ∆ de température afin d’optimiser l’énergie solaire récoltée (on évitera les préréglages d’usines !). Le paramétrage doit tenir compte de la configuration de l’installation et principalement de la longueur des conduites et des pertes thermiques liées. On aura évidemment tout intérêt à minimiser ces pertes en plaçant le stockage aussi proche que possible des capteurs, en isolant les conduites et en travaillant à basse température. En pratique, cette perte en ligne peut être estimée en comparant la température au niveau du capteur et la température à l’entrée du ballon en fonctionnement.

Pour éviter des arrêts et des mises en marche successifs (Phénomène de Stop and Go), la température de démarrage devra en outre prendre en compte le refroidissement du capteur lors de l’enclenchement. En effet, l’ensemble du liquide de la boucle solaire plus froid que celui des capteurs provoquera au démarrage une diminution de température du capteur.

Pour le choix de la consigne d’arrêt, on devrait, en plus des pertes thermiques, prendre en compte l’énergie minimum à récolter de sorte à ce que celle-ci soit toujours supérieure à l’énergie primaire nécessaire au fonctionnement de la pompe (consommation électrique multipliée par le facteur de conversion 2,5).

En pratique, on rencontre des ∆T :

  • Pour les valeurs de démarrage de : 5 à 7 K.
  • Pour les valeurs d’arrêt de : 3 à 4 K.

Température maximale de charge

Tout ballon de stockage possède une température de charge maximale. Le système de régulation doit prendre en compte correctement cette valeur afin de couper le circulateur pour que cette température critique ne soit pas atteinte. Une valeur d’usine est  souvent donnée par défaut pour le système de régulation, mais il serait dommage de se priver de l’énergie solaire gratuite si le ballon de stockage accepte des températures plus élevées (jusqu’à 95 °C). Si la régulation ne possède qu’une sonde de température dans le bas du ballon il faut absolument tenir compte de l’effet de stratification. C’est pour cette raison que les régulations possèdent souvent un préréglage d’usine assez bas (de l’ordre de 70 °C) pour que le haut du ballon n’atteigne pas des températures de plus de 95°C.

Température de sécurité

Lors d’une journée ensoleillée, lorsque l’ensemble du stockage est à température, le circulateur s’arrête mais la température des capteurs continue, elle, à grimper.
La régulation des systèmes à vidange tiendra évidemment compte de cette température de sécurité. À partir de celle-ci, le système s’arrête et le fluide est récupéré dans un réceptacle prévu à cet effet : l’installation se vidange par drainage gravitaire ! Cela permet d’éviter que le fluide n’entre en ébullition (et vieillisse prématurément) et ne détériore les composants de l’installation. C’est l’un des grands avantages de ce système !

Certaines régulations permettent aussi d’empêcher le redémarrage de la pompe au cas où la température du fluide caloporteur est trop élevée (+/- 120 °C), évitant ainsi l’endommagement des composants les plus sensibles.


L’apport de chaleur complémentaire

Les capteurs solaires ne peuvent à eux seuls satisfaire à tout moment l’entièreté des besoins. Pour assurer la production d’eau chaude, même en période prolongée de non ensoleillement,  un système d’appoint est nécessaire. L’appoint devra pouvoir répondre aux besoins sans intervention solaire et sera, par conséquent, envisagé de manière classique. Différentes configurations sont possibles selon la présence ou non d’un échangeur de chaleur (intégré ou non au stockage) :

 

On distingue principalement quatre cas de figure :

– L’appoint électrique (c) : Dans ce cas, une résistance est directement intégrée au ballon de stockage.

Schéma appoint électrique.

– L’appoint intégré au stockage (a, d, e, f) : L’échangeur se trouvera le plus près possible de l’endroit où s’effectue le puisage dans le(s) ballon(s) et son raccordement respectera la stratification interne des températures (les plus élevées, les plus hautes). Dans un ballon de stockage unique qui rassemble aussi la production solaire, l’échangeur d’appoint se trouvera donc en haut du ballon.

Schéma appoint intégré au stockage.

– L’appoint séparé en série (b) : L’appoint (généralement instantané ou semi-instantané) se trouve dans ce cas à l’extérieur du ballon de stockage solaire. L’eau préchauffée par les capteurs solaires est alors directement portée à température (par une chaudière au gaz à condensation par exemple).

Schéma appoint séparé en série.

– L’appoint mixte : il est bien entendu possible de combiner différents types d’appoint. Par exemple, pour une petite installation, l’idée pourrait être d’éviter le fonctionnement d’une chaudière sol au mazout grâce au recours d’un appoint électrique (mais attention à la régulation de cette résistance !).

 Notons que pour les plus grands systèmes, s’il est intégré au stockage, l’appoint peut se faire via des ballons différents…

Schéma appoint mixte.


Le circuit de décharge

La décharge du ballon de stockage solaire peut se faire de multiples manières.

  • Via un système direct (a) : l’eau de stockage est directement l’eau sanitaire.
  • Via un échangeur : interne simple (c), plongé dans une cuve de transition (d) ou externe (e) dans le cas où l’eau sanitaire est chauffée instantanément. Le ballon est alors dit à eau morte, car l’eau qu’il contient est une eau de transition et non l’eau sanitaire.
  • Via une cuve de transmission (b), principalement pour les petits systèmes combinés avec les systèmes de chauffage : préparation d’un volume réduit d’ECS dans un grand volume d’eau.

Schéma circuit de décharge.

Par rapport à une installation classique d’ECS, le circuit d’eau sanitaire comportera en plus un mitigeur thermostatique et un disconnecteur.

Le mitigeur thermostatique permet d’éviter toute brûlure au point de puisage. En été, lorsque l’on bénéficie d’un rayonnement solaire important et que le puisage est réduit, il n’est pas impossible d’atteindre dans le ballon des températures de plus de 60° (maximum toléré pour de l’eau chaude sanitaire). Le mitigeur se chargera de mélanger l’eau du ballon avec de l’eau froide pour que cette température ne soit pas dépassée.

D’autre part, une fuite de liquide caloporteur du circuit primaire au niveau de l’échangeur de chaleur solaire est toujours possible. Pour protéger le réseau de distribution de toute contamination par le fluide solaire, on place un disconnecteur.
Cet équipement à zones de pression différentielle empêche le retour de l’eau sanitaire du ballon de stockage solaire vers le réseau de distribution.

Précisons aussi que vu la toxicité du fluide caloporteur, l’évacuation directe vers les égoûts est interdite. Le disconnecteur, ainsi que les soupapes et robinets de vidange doivent donc être raccordés à des réservoirs de collecte.


La gestion de la légionellose

Plus que pour toute installation de production d’eau chaude sanitaire, un regard particulier doit être posé sur la gestion de la légionellose. En effet, les températures atteintes dans un ballon de stockage solaire sont favorables à la prolifération de ces bactéries (de 30 à 40°).
La première solution est le placement d’une pompe de « dé-stratification » via laquelle on portera régulièrement l’ensemble des ballons à une température suffisante. Dans ce cas, un circulateur supplémentaire transfère l’eau à haute température du ballon d’appoint vers le(s) ballon(s) de stockage solaire. Une bonne régulation de cette mesure anti-légionellose, par une horloge, permettra de minimiser la consommation énergétique tout en évitant la contamination : par exemple, une montée en température journalière à 60° ou hebdomadaire à 80°.

Schéma de principe : désinfection thermique par pompe de déstratification.

Une autre solution, souvent à privilégier, est l’utilisation de cuves de transitions (appelés réservoirs à eau « morte ») constituant un circuit fermé indépendant de l’eau sanitaire. L’eau sanitaire est alors réchauffée instantanément via un échangeur interne ou externe au stockage. De cette manière, on évite tout risque de contamination en séparant physiquement les eaux de températures différentes. Ce système permet d’éviter les pertes thermiques liées à la montée soudaine en température, mais implique l’utilisation d’un échangeur supplémentaire.

Installation avec une cuve de transition.

Découvrez ces exemples d’eau chaude sanitaire alimentée par capteurs solaires : 2.150 m² de capteurs solaires thermiques à la résidence 3e âge « Aux Lilas » de Bonlez et des capteurs solaires au home La Charmille de Gembloux.

Mesurer et contrôler la production solaire thermique

Mesurer et contrôler la production solaire thermique

La comptabilité énergétique est essentielle au contrôle du bon fonctionnement de l’installation solaire et permettra rapidement d’identifier une dérive de l’installation due à un mauvais réglage ou une défaillance d’un composant. Elle nécessite cependant la pose d’un équipement spécifique et adéquat:

Les thermomètres à l’aller et au retour des capteurs

Très simples et peu coûteux, deux thermomètres placés sur l’aller et le retour entre les capteurs et le stockage permettent déjà de vérifier le fonctionnement correct de l’installation.

Un fonctionnement normal devrait montrer, lors du fonctionnement, des températures supérieures dans le circuit d’alimentation et des températures d’entrée et de sortie égales lorsque l’installation est à l’arrêt. Dans le cas contraire, un fonctionnement anormal souvent dû à un effet thermosiphon peut déjà être décelé.

Le débitmètre gravimétrique

Photo débitmètre gravimétrique.

Un débitmètre gravimétrique est un instrument de mesure du débit de fluide, souvent associé à une vanne de réglage du débit. Situé sous le circulateur, il permet de régler la vitesse de celui-ci pour assurer un débit minimum dans les capteurs. Il permet en plus un contrôle approximatif du débit de l’installation en fonctionnement.
À partir de ce débit et des températures, il est possible par calcul d’estimer très grossièrement la puissance instantanée du circuit.

Le débitmètre volumétrique

Pour la mesure de débit du circuit solaire on utilise généralement un compteur d’eau classique à impulsion bien plus précis. Celui-ci est muni d’un contact REED. À chaque tour, un aimant passant sur la couronne ferme le contact et l’impulsion est envoyée.

Photo débitmètre volumétrique.  Photo débitmètre volumétrique.

Certaines marques ont développé de petits modèles de débitmètre volumétrique…

Le compteur d’énergie

Schéma principe compteur d’énergie 

Un compteur intégrateur de chaleur appelé aussi calorimètre ou encore compteur d’énergie thermique est un dispositif comportant :

  • Un compteur volumétrique (placé généralement sur la conduite de retour (plus froide) vers les capteurs).
  • Deux sondes de température (au contact des conduites ou dans un doigt de gant). Leur placement est important pour une évaluation précise : idéalement à l’entrée et à la sortie de l’échangeur solaire.
  • Un calculateur à affichage numérique. Il propose généralement la comptabilité de l’énergie produite (en kWh), l’estimation de la puissance instantanée du système (en W), de la température aller/retour ainsi qu’un historique des données. Certains modèles proposent une gestion par réseau informatique Wifi, internet,..

Ce dispositif est le seul moyen précis pour calculer l’énergie réellement produite par l’installation. Idéalement, il devrait être réglable afin de prendre en compte les caractéristiques du fluide caloporteur utilisé.

Un calculateur est parfois intégré au système de régulation différentielle. Cependant, ce système reste très imprécis car il utilise les sondes de température propres aux besoins de la régulation (par exemple situées dans le ballon plutôt qu’à la sortie du fluide caloporteur).

N.B. : Les calculateurs spécifiques « chauffage » ne conviennent généralement pas pour les applications solaires, car, ils ne présentent pas la possibilité d’adapter la chaleur massique du fluide utilisé et ne supportent pas les hautes températures.

Établir le cahier des charges « qualité »

Établir le cahier des charges "qualité"

Le cahier des charges d’une installation solaire peut se concevoir selon deux approches différentes. Sur base des résultats de l’étude de faisabilité, le bureau d’études choisi par le maître de l’ouvrage peut soit :

  1. Définir un objectif de production de l’installation et des exigences de base auxquelles le système et certains composants doivent satisfaire. A charge pour le soumissionnaire de proposer un système qui produit annuellement le nombre de kWh solaires requis. Cette approche est utilisée dans l’optique d’une Garantie de Résultats Solaires.
  2. Dimensionner lui-même l’installation optimale et décrire en détail le système et tous ses composants. Le soumissionnaire fera une offre de prix pour la fourniture des composants spécifiés et les travaux d’installation.

Dans les deux cas, les exigences de qualité seront stipulées dans le cahier des charges afin de garantir la durabilité et le fonctionnement optimal de l’installation. Ci-dessous, quelques points qui doivent faire l’objet d’une attention particulière lors de la rédaction du cahier des charges :

  • Plus encore que dans les systèmes de production de chaleur traditionnels, un matériel de qualité, monté dans les règles de l’art est indispensable au bon fonctionnement de l’installation solaire thermique. Deux grands types de systèmes sont couramment utilisés sous nos latitudes : les systèmes à vidange et les systèmes sous pression. Le choix du type de système peut être laissé au soumissionnaire à condition de spécifier les exigences de qualité minimales pour chaque type de système.
  • Les capteurs constituent, avec la régulation, le cœur du système solaire thermique. Ils doivent satisfaire à de nombreuses exigences de durabilité, de rendement et de résistance à des conditions extrêmes de température et de pression. Tous ces critères sont explicités dans la récente norme européenne – EN 12975-1 : Installations solaires thermiques et leurs composants – Capteurs – partie 1 : Exigences générales – disponible auprès de l’Institut Belge de Normalisation (ouverture d'une nouvelle fenêtre ! http://www.nbn.be/). La conformité des capteurs avec cette norme constitue un gage de qualité appréciable.
  • L’énergie solaire est transférée au stockage par un échangeur de chaleur (interne ou externe au ballon). Le dimensionnement correct de cet échangeur est crucial. De fait, un mauvais dimensionnement risque d’influencer négativement tant la performance des capteurs que la consommation électrique de la pompe du circuit primaire.
  • Les pertes du stockage doivent absolument être limitées par une isolation parfaite du ballon et de la boucle de distribution d’eau chaude s’il y en a une. Le bouclage de l’eau distribuée augmente les pertes liées au stockage d’au moins 30 %. Une conception appropriée de l’installation permet de limiter ces pertes.
  • L’isolation ininterrompue des conduites du circuit primaire est capitale. L’isolation des conduites extérieures doit faire l’objet d’une attention particulière. Le matériau isolant doit résister aux intempéries et aux rayons ultraviolets, et dans bien des cas, une gaine rigide en aluminium sera nécessaire pour le protéger des attaques de rongeurs et d’oiseaux.

  • Dans les systèmes sous pression, le vase d’expansion du circuit primaire doit pouvoir contenir, outre le volume correspondant à la dilatation thermique du fluide caloporteur, l’entièreté du fluide contenu dans les capteurs au cas où celui-ci se vaporiserait suite à la montée en température des capteurs. Les soupapes de sécurité permettront à la vapeur de s’échapper en cas de problème.
  • Tous les matériaux mis en œuvre doivent résister simultanément à de hautes températures et pressions, en particulier les composants situés dans le réseau hydraulique des capteurs.
  • La garantie matérielle offerte sur un système solaire thermique est généralement de 10 ans sur les capteurs, 5 ans sur le(s) ballon(s) de stockage, et deux ans sur tous les autres composants du système.
  • Le suivi et la maintenance de l’installation solaire revêtent une importance particulière car, en cas de dysfonctionnement, le système de chauffage d’appoint pourrait fournir toute l’énergie nécessaire à la production d’eau chaude sans que l’on ne s’en aperçoive. Pour permettre un suivi élémentaire de l’installation, on placera un calorimètre sur la conduite primaire afin de mesurer l’énergie solaire transférée au ballon de stockage.

Plus de détails sur le cahier des charges d’une installation de capteurs solaires (fichier xls réalisé par le bureau 3E à l’initiative de l’IBGE)

Source : Brochure « Installer un grand système solaire de production d’eau chaude en Wallonie » réalisée par 3E ( ouverture d'une nouvelle fenêtre ! http://www.3e.be) et l’Institut de Conseils et d’Études en Développement Durable (ouverture d'une nouvelle fenêtre ! http://www.icedd.be).

Prévoir un contrat de Résultats Solaires (GRS)

Prévoir un contrat de Résultats Solaires (GRS)


La GRS est un contrat qui traduit la volonté du fabricant/fournisseur de ne pas se limiter à la simple fourniture de composants, mais de garantir également la production énergétique annuelle de l’installation solaire.

Par la GRS, le fabricant et/ou le fournisseur du système, l’installateur, l’exploitant et le bureau d’études en charge du projet deviennent solidairement responsables des objectifs de production fixés.

Éviter les bulles …

Les résultats d’audits menés sur d’anciennes installations solaires collectives ont permis de mettre en évidence certains problèmes de conception, de maintenance et de contrôle de l’installation. Ce constat a donné naissance au concept de Garantie de Résultats Solaires en France dès la fin des années 80.

La production de l’installation est suivie mois par mois à l’aide d’un dispositif de télésurveillance qui comptabilise l’énergie solaire. L’installation doit par exemple produire 90 % de l’objectif calculé, pendant deux à cinq années consécutives.

La GRS a été mise en œuvre pour la première fois en France, en 1988, sur l’Hôpital de Castres. Depuis lors des dizaines d’installations collectives avec GRS ont vu le jour en Espagne, en France et en Allemagne.

Détail important, jusqu’à présent, les systèmes qui en bénéficient ont toujours produit plus que ce que la GRS ne prévoyait !
Si le maître d’ouvrage souhaite obtenir une garantie de résultat solaire, le cahier des charges précisera :

  • Les besoins de l’établissement (le profil de puisage, la demande en chaleur,…).
  • Un objectif de production (combien de kWh solaire le système doit-il produire annuellement ?).
  • Toutes les contraintes susceptibles de limiter la production de l’installation.
  • Les exigences de qualité des matériaux utilisés.

> Pour en savoir plus sur la GRS : ouverture d'une nouvelle fenêtre ! http://www.tecsol.fr

Estimer la durée de vie et la maintenance

Estimer la durée de vie et la maintenance

Piscine solaire de Louvain La Neuve.

Actuellement, on peut aisément compter sur une durée de vie de 25 ans. L’audit de l’installation de la piscine du Blocry (capteur plans vitrés atmosphériques) à Louvain La Neuve a montré qu’après 20 ans l’installation présentait des performances de près de 90 % par rapport aux prestations initiales. Il va de soi que maintenir une bonne performance va de pair avec un entretien régulier et une maintenance correcte de l’installation.

Un guide très complet sur la maintenance à destination du responsable énergie a été réalisé par le bureau 3E à l’initiative de l’IBGE. 

Prédimensionner l’installation d’ECS

Prédimensionner l'installation d'ECS


C’est le rapport « volume de stockage / surface de capteur » qui détermine le fonctionnement optimal de l’ensemble du système et la fraction solaire atteinte, donc le bon dimensionnement de la proposition par rapport aux besoins couverts par le solaire (fraction solaire).

Différentes approches de dimensionnement sont possibles : sur base de la fraction solaire souhaitée ou à partir de l’optimum économique.

Le tout est de trouver le bon compromis entre une fraction solaire intéressante et une production au m² suffisante pour que l’installation solaire reste économiquement justifiée.
Pour les faibles fractions solaires assurant une plus grande production surfacique (meilleure efficacité et donc temps de retour plus court), on dimensionnera le système en situation estivale (besoins et apports solaires).
Pour atteindre une couverture solaire plus importante, l’installation sera dimensionnée par rapport à l’énergie solaire disponible en mi-saison.

> Plus d’infos sur l’influence de la fraction solaire sur le rendement de la production solaire.

Néanmoins, en fonctionnement, un système correctement dimensionné devrait produire entre 300 et 450 kWh/m².
Le tableau suivant présente des valeurs de dimensionnement couramment rencontrées en pratique (source ATIC) :

Fraction solaire % Type d’installation Surface de capteur Volume de stockage du tampon
20 à 40 % Grandes 1m² par 50 à 70 l/j d’ECS à 60 °C 50 l/m²
40 à 50 % Moyennes 1m² par 50 à 60 l/j d’ECS à 60 °C 50 à 60 l/m²
50 à 60 % Petites 1m² par 30 à 40 l/j d’ECS à 60 °C 60 l/m²

En règle générale, pour les très petites installations (type domestique), 4 m² de capteurs sont considérés comme un minimum pour rentabiliser une installation solaire alors que pour le logement collectif, 1 à 2,5 m² de panneaux solaires par logement suffisent.

Le Quick Scan, un outil d’aide à la décision simple et efficace

Le Quick Scan est un outil sectoriel de pré-dimensionnement des systèmes solaires collectifs, à utiliser au stade initial d’un projet.

Sur base de la consommation d’eau chaude (réelle ou estimée) de l’établissement, le Quick Scan fournit des indications sur :

  • la surface de capteurs à installer,
  • le volume de stockage solaire nécessaire, son poids et sa surface d’encombrement,
  • l’économie d’énergie primaire et de combustible réalisable,
  • le coût global du système et le coût du kWh solaire produit,
  • les émissions de CO2 évitées et le coût de la tonne de CO2 évitée.

Le Quick Scan donne des ordres de grandeur qui doivent être précisés par la suite, lors de l’étude de faisabilité et du dimensionnement final de l’installation. Il constitue un excellent indicateur de la pré-faisabilité d’un projet, mais pas un outil de dimensionnement fin pour les bureaux d’études ou les fournisseurs d’équipements solaires. En effet, le Quick Scan ne considère pas les contraintes techniques propres au bâtiment, et dimensionne l’installation selon une méthode simplifiée. Les étapes ultérieures de la démarche-projet visent à dimensionner l’installation au plus près de l’optimum économique.

Calculs

Pour accéder au Quick Scan.

Pour accéder au mode d’emploi du Quick Scan PDF.

Considérer l’aspect économique [ECS par capteurs solaires]

Considérer l'aspect économique [ECS par capteurs solaires]


Le coût d’une installation

Le graphe qui suit donne une estimation du coût d’une installation solaire par mètre carré de capteurs. Le coût varie forcément en fonction de la taille de l’installation (plus le système est grand, plus le prix par m² de capteur est réduit).

À titre d’information, on peut estimer les coûts (hors TVA) suivants :

  • pour 4 m² de capteurs  (ex. petites installations de type unifamilial), il faut compter environ 6 500 € pour tout le système (capteurs + stockage + raccordement de l’appoint), soit +/- 1 620 €/m² de capteurs,
  • pour 10 m² de capteurs (en logement collectif, cela correspond approximativement à 5 appartements), il faut compter environ 14 000 € pour tout le système, soit +/- 1 400 €/m² de capteurs,
  • pour 25 m² de capteurs  (en logement collectif, cela correspond approximativement à 15 appartements), il faut compter environ 30 000 € pour tout le système, soit +/- 1 200 €/m² de capteurs,

     Schéma coût unitaire du chauffe-eau solaire.

Bien entendu,  si l’installation solaire thermique s’inscrit dans la rénovation plus large du chauffage ou de la toiture, certains coûts fixes vont diminuer.

Afin d’éviter de mauvaises surprises, outre le coût des capteurs, d’autres paramètres doivent être pris en compte dans l’évaluation du prix de l’installation. Entre autres :

  • Le mode d’intégration architecturale choisi ;
  • La faisabilité technique de raccorder la boucle solaire à l’installation existante ;
  • L’accessibilité de la toiture ;
  • La structure de la toiture (évaluer le surcoût si on doit renforcer la toiture) ;
  • La taille de l’installation ;

Attention ! Si l’on compare simplement le prix d’achat d’un système solaire avec le prix d’un système conventionnel, le risque est grand d’arriver à la conclusion que le solaire n’est pas une option économiquement intéressante. Ce serait aller un peu vite en besogne :

  • Pour le solaire, la quasi-totalité des coûts porte sur les composants du système. Les frais de combustible sont par nature gratuits et les coûts d’exploitation faibles.
  • À l’inverse, pour une chaudière au mazout ou au gaz ou un boiler électrique, une fraction importante du coût est reportée sur le prix du combustible et/ou les frais d’exploitation.

L’approche qui semble la plus pertinente de la faisabilité économique passe donc par l’estimation du coût du kWh solaire produit (coût de l’investissement divisé par l’économie énergétique annuelle), que l’on pourra raisonnablement comparer avec le coût du kWh mazout, gaz ou électricité.


Les subsides

Pour soutenir la production d’énergie verte, les pouvoirs publics belges ont mis en place des mécanismes financiers qui réduisent le coût réellement payé par l’investisseur de capteurs  thermiques.

> Plus d’infos : ouverture d'une nouvelle fenêtre ! http://energie.wallonie.be

Plus d’infos sur le financement de la rénovation énergétique :  cliquez ici !


Quelle rentabilité ?

Si la conception et l’intégration d’une installation collective sont plus délicates que celles d’un chauffe-eau solaire individuel, la productivité de l’installation est généralement meilleure. En effet, le taux d’occupation des grands immeubles ou établissements est relativement constant tout au long de l’année et la consommation d’eau chaude y est globalement plus importante.

Les applications solaires les plus intéressantes économiquement se retrouvent parmi les établissements consommant de grandes quantités d’eau chaude : les piscines et les établissements d’accueil social (maisons de repos, centres d’accueil pour personnes handicapées, …), les internats, grands hôtels, centres de vacances, immeubles de plus de 15 logements, restaurants d’entreprise,… Plus la consommation d’eau chaude de l’établissement est élevée, plus l’installation solaire est grande, et meilleure est sa rentabilité. Et pour cause, le coût au m² d’une installation est inversement proportionnel à la surface installée; ce qui explique que de grandes installations puissent être rentables sans subsides.

Voici le prix de revient d’une installation solaire (couvrant 30 % des besoins énergétiques) en fonction de la consommation d’eau chaude sanitaire :

Installation solaire Coût du kWh solaire si :

Consommation moyenne
[l. eau à 60 °C /jour]

Taille
[m² capteurs]

Coût HTVA
[€]

Subside 0 %
[c€/kWh]
Subside 20 %
[c€/kWh]

Subside 40 %
[c€/kWh]

1 000 13 14 500 7.31 5.85 4.39
2 500 31 27 800 5.60 4.48 3.36
5 000 63 45 900 4.62 3.70 2.77
7 500 94 61 700 4.14 3.31 2.49
10 000 126 76 200 3.84 3.07 2.30
12 500 157 89 800 3.62 2.90 2.17
15 000 188 102 800 3.45 2.76 2.07
17 500 220 115 300 3.32 2.66 1.99
20 000 251 127 400 3.21 2.57 1.93
22 500 283 139 200 3.12 2.49 1.87
25 000 314 150 600 3.04 2.43 1.82

Par exemple, dans un établissement consommant 5 000 l d’eau chaude à 60 °C par jour (3e ligne du tableau), un chauffe-eau solaire produisant 30 % de l’énergie nécessaire pour couvrir les besoins en eau chaude sanitaire aura une surface de capteurs d’environ 63 m² et coûtera de l’ordre de 45 900 €. Si l’on rapporte ce coût à la quantité totale de combustible que l’installation solaire permet d’économiser, on obtient un coût de 4.62 c€ par kWh solaire (hors subside). Si l’investissement initial est subsidié (ou déductible fiscalement) à hauteur de 20 %, ce coût passe à 3.31 c€. Pour un taux de subside de 40 %, on a un coût de 2.77 c€ par kWh de combustible économisé.

Ces coûts sont donc compétitifs par rapport ceux des prix des combustibles à leur niveau actuel.

D’autre part, le prix des énergies fossiles sur le marché mondial dépend de nombreux facteurs que nous ne maîtrisons pas, alors que le coût du kWh solaire produit, lui, est stable et garanti pendant toute la durée de vie de l’installation. Il est bon de rappeler qu’entre 1998 et 2001, le prix du gaz naturel a augmenté de 41 %. Si le prix du combustible d’appoint double, l’économie financière réalisée grâce au système solaire double également ! C’est donc bien là que réside l’avantage économique majeur du chauffe-eau solaire: le prix du kWh produit est connu au départ et reste constant sur une période de 25 ans minimum.

Choisir le type d’installation [ECS par capteurs solaires]


Choix du type de capteurs

Le choix le plus courant pour la production d’eau chaude sanitaire est celui de capteurs plans vitrés.
Bien que moins performants que certains de leurs homologues « tubes sous vide », ils sont moins chers et présentent généralement une garantie plus longue (10 ans). Néanmoins, ils nécessitent parfois une superficie plus grande pour une même production et leur remplacement est moins évident (un tube peut être remplacé individuellement).D’autres facteurs peuvent aussi être déterminants :

  • La surface disponible.
  • L’orientation (les tubes sous vide à ailettes peuvent être orientés indépendamment de leur support).
  • Les différents types de pose, poids et le lestage associé (l’intégration est possible pour les capteurs plans).
  • Le coût, qui sera aussi déterminé par les paramètres précédents.
  • Etc.

> Plus d’infos sur les différents types de capteurs.

Deux capteurs peuvent aussi être comparés via leur courbe de rendement.

Calculs

Pour comparer différents capteurs sur base de leur courbe de rendement.

Sous pression ou à vidange ?

Si le choix d’un système indirect à boucle fermée est généralement évident sous nos latitudes, reste le choix entre les systèmes à vidange ou les systèmes sous pression non vidangeable.

Chacun présente des caractéristiques propres et les avantages qui y sont liés.

Système à vidange

Schéma de système à vidange

  • Pas de choc thermique ni surpression importants : Le système étant vidangé lorsqu’il entre en température de stagnation, l’ébullition du fluide caloporteur est évitée. Dans les systèmes traditionnels sans vidange, il n’est pas rare de voir des écarts de température allant de – 30 °C à plus de 160 °C.
  • Suppression  de certains composants (et du coût associé) : Le fluide n’étant pas sous pression, certains composants peuvent être supprimés : manomètre, vase d’expansion, purgeur, clapet anti-retour (vu que l’installation est vidangée, il n’y a pas de risque de circulation inverse par thermosiphon).
  • Possibilité d’utiliser de l’eau comme fluide caloporteur : Puisque le système se vidange en cas de gel, il est théoriquement possible d’utiliser de l’eau comme fluide caloporteur. Cependant, bien que la capacité calorifique de l’eau soit meilleure, il n’est pas rare de rencontrer des systèmes à vidange fonctionnant avec un mélange d’eau/glycol pour des raisons de sécurité (au gel) mais aussi parce que le glycol possède des propriétés anticorrosives.

Système sous pression non vidangeable

Schéma de système sous pression non vidangeable.

  • Le soin à apporter à la pente des tuyauteries est moins grand : En effet, pour les systèmes à vidange une pente minimale continue de l’ordre de 4 % doit être respectée afin d’assurer un écoulement correct du fluide puisque celui-ci s’effectue par simple gravité (drain back).
  • Utilisation de pompes de circulation moins puissantes et donc moins énergivores :  Un système sous pression utilise des circulateurs de puissance moindre. En plus d’assurer la circulation du fluide, la pompe d’un système à vidange doit en effet pouvoir relancer le fluide dans le circuit primaire, c’est à dire vaincre la hauteur manométrique entre le réceptacle de vidange et les capteurs. Une puissance importante est donc nécessaire alors que moins de 50 % de cette puissance est nécessaire lors du fonctionnement de l’installation. Une solution que proposent aujourd’hui certains constructeurs est l’installation de deux circulateurs dont l’un est adapté à la relance (et ne fonctionne que durant celle-ci) et dont l’autre est adapté au régime de fonctionnement.

Choix du système d’apport de chaleur complémentaire

Le choix du mode de préparation d’ECS principal doit se faire de manière traditionnelle. Celui-ci doit en effet assurer la production d’eau chaude en toutes circonstances, même en période de non ensoleillement prolongée.

 Schéma sur le mode de préparation ECS.

Dans une installation solaire, le système d’apport de chaleur complémentaire se situe en aval de l’échangeur solaire de manière à conserver la stratification interne des températures dans le ballon (les températures les plus hautes, les plus proches du point de puisage) mais aussi de manière à garantir une température de retour du fluide solaire la plus basse possible (afin de garantir un fonctionnement optimal des capteurs).

Dans tous les cas, le stockage de l’eau solaire oblige à une certaine centralisation de l’installation. Néanmoins, le choix d’un système de production principal décentralisé reste possible. Par exemple, l’eau préchauffée par les capteurs pourrait être acheminée vers les points de puisage où elle sera seulement amenée à la température souhaitée. Ce cas de figure permet de limiter considérablement les pertes de distribution et l’influence de l’appoint sur la température du fluide solaire.

En ce qui concerne le vecteur énergétique, il n’y en a pas de réellement privilégié en termes de fonctionnement solaire (abstraction faite des considérations environnementales liées). Par contre, la compatibilité et la régulation de l’appoint au système solaire sont à étudier précisément (d’autant plus si l’on souhaite intégrer celui-ci à un système existant).  Il serait en effet dommage que le système d’appoint empiète sur ce que le système solaire peut produire… et pourtant c’est souvent le cas. Combiner une température de consigne d’appoint trop élevée (pour la légionellose) et une mise en température des ballons solaires trop régulière peut réduire l’efficacité solaire de 30 %!


Dans tous les cas, limiter les pertes !

Une installation mal ou non isolée peut perdre jusqu’à 40 % de sa production à cause des pertes thermiques le long des conduites et au niveau du stockage.

En premier lieu, on veillera donc à limiter la longueur des tuyauteries et à positionner judicieusement le stockage par rapport aux capteurs (et aux points de puisage).

Une isolation d’épaisseur au moins égale au diamètre des tuyauteries est indispensable d’autant plus que les températures du fluide de la boucle solaire peuvent être les plus hautes de l’installation sanitaire. Pour se donner une idée des pertes : un mètre de tuyau en acier, de 1 pouce de diamètre, non isolé, dans lequel circule de l’eau chaude à 70°C et qui parcourt une ambiance à 20°C a une perte équivalente à la consommation d’une ampoule de 60 W…

Calculs

Pour estimer la rentabilité de l’isolation de la tuyauterie, cliquez ici !

Au niveau du ballon de stockage: favoriser la stratification des températures et sa parfaite isolation (attention aux raccords) favoriseront la productivité du système. 10 à 15 cm d’isolation ne seront pas superflus !

Calculs 

Pour estimer la rentabilité de l’isolation du ballon, cliquez ici !

Exploiter la configuration du bâtiment [ECS par capteurs solaires]

Exploiter la configuration du bâtiment [ECS par capteurs solaires]


Une orientation et une inclinaison optimales ?

Les capteurs seront idéalement orientés sud avec une inclinaison entre 30 et 55° par rapport à l’horizontale. La hauteur du soleil variant au fil des jours et des saisons, l’inclinaison idéale dépendra du cas de figure envisagé :

  • 35° est l’inclinaison qui permet de maximiser les gains solaires annuels. Elle est idéale pour les faibles fractions solaires : couverture solaire de 30 % des besoins d’eau chaude par exemple).
  • Pour une fraction solaire plus importante (ou une production pour le chauffage du bâtiment), il est judicieux d’orienter les panneaux plus verticalement (de 45 à 55°) afin de maximiser les gains solaires à la mi-saison.
  • 30° est l’inclinaison idéale pour les installations ne fonctionnant qu’en période estivale (pour une piscine extérieure par exemple).

Schéma orientation et une inclinaison des capteurs.

Bien entendu, on pourra aussi suivre l’inclinaison et l’orientation, induite par la configuration des lieux (par exemple la pente d’une toiture inclinée du moment que l’on reste entre le sud et l’est /ouest). On ajustera alors les surfaces de capteurs en conséquence.

> Plus d’infos sur l’énergie solaire et l’ensoleillement

Outre l’aspect énergétique, l’inclinaison des capteurs influence aussi :

  • leur prise au vent (plus les panneaux sont verticaux, plus le lestage pour les maintenir en place doit être important) ;
  • l’auto-nettoyage de leur superficie externe (vitre) par la pluie (20° d’inclinaison minimum sont requis).

Un ombrage limité

L’ombre est évidemment le pire ennemi des technologies solaires. Bien que moins problématique que pour leurs homologues photovoltaïques, on en limitera l’impact en positionnant les capteurs en dehors des zones d’ombres générées par :

  • l’environnement du bâtiment (immeubles voisins plus hauts que les capteurs solaires…) ;
  • le bâtiment lui-même (cabanon technique, antennes, cheminées…) ;
  • les capteurs entre eux.

Pour ce dernier type d’ombrage, on compte généralement qu’il faut 3 m² de toiture pour un m² de capteur.

Dimensionnement de l’entraxe entre deux capteurs

Schéma dimensionnement de l’entraxe entre deux capteurs.

L’entre-axe entre deux rangées de capteurs est défini par la formule suivante :

Entre axe = d + b = h (cos β+ sin β/ tg α)

où,

  • h =dimension du capteur.
  • α = hauteur solaire minimum (généralement prise le 21 décembre soit un angle de 16°).
  • β = inclinaison des capteurs.

En considérant des capteurs de 1,2 m de large, l’entre-axe des rangées de capteurs est de: 1,2 x (cos 35° + sin 35°/tg16°) = 3,38 m.

Il faudra aussi porter une attention particulière à l’encrassement des capteurs et des réflecteurs pour les tubes sous vide qui en sont munis (type CPC).


En toiture, au sol ou en façade?

Que ce soit en toiture plate ou inclinée, on veillera à ce que la toiture :

  • résiste à la surcharge des capteurs et de leur lestage (un panneau pèse environ 25 kg/m²) ;
  • soit en suffisamment bon état pour ne pas être remplacée trop rapidement (les capteurs ont une durée de vie moyenne de 25 ans).

Placement en toiture inclinée

Si l’orientation est favorable, le placement en toiture inclinée est souvent idéal :

  • placement en hauteur qui permet de limiter l’effet d’ombre de l’environnement ;
  • inclinaison déjà présente qui permet de se passer du système de support ;
  • intégration constructive esthétique ;
  • pertes thermiques à l’arrière du panneau limitées (dans le cas de capteurs intégrés dans la toiture).

Capteurs intégrés.

 Capteurs en « surimposition ».

Placement en toiture plate

Dans ce cas, les capteurs sont placés sur des supports métalliques, ce qui permet d’optimiser leur inclinaison et leur orientation.

L’ombrage généré par les panneaux entre eux déterminera l’espacement nécessaire entre deux rangées de capteurs.

La résistance de la toiture doit être particulièrement étudiée, car le lestage nécessaire à la stabilité des capteurs augmente considérablement la surcharge (80 à 100 kg par m² de capteur). De plus, lorsque les couches superficielles de la toiture ne présentent pas une résistance suffisante, il faudra parfois ancrer le support directement sur la structure de la toiture (chevrons,…). Des distances de sécurité par rapport au bord de la toiture sont aussi imposées.

Schéma placement en toiture plate des capteurs.

Placement au sol

Lorsque la toiture présente une inclinaison trop importante, une mauvaise orientation ou encore une surface trop réduite, on pourra opter pour une installation au sol.

Dans ce cas, on veillera à :

  • Minimiser la distance entre les capteurs et le stockage afin de réduire au maximum les pertes thermiques par les tuyauteries.
  • Placer les capteurs dans un endroit protégé pour éviter tout risque de vandalisme (attention à l’ombrage !)

Contrairement aux capteurs placés dans le plan de la toiture et ne présentant aucun débordement, le placement de capteurs au sol doit faire l’objet d’un permis d’urbanisme.

Façade

La pose des capteurs sur façade est aussi possible (l’intégration comme bardage l’est aussi) mais présente souvent des désavantages :

  • Ombrage généré par le bâtiment ;
  • Exposition réduite (30% de moins par rapport à l’optimum (sud à 35°)) ;
  • Orientation et inclinaison peu favorables (l’effet peut être limité si on utilise un support ou des tubes sous vide réorientés) ;
  • Surfaces souvent limitées ; etc.

Schéma placement en façade des capteurs.

Réglementations 

Plus d’infos sur la réglementation urbanistique relative au placement des panneaux solaires.

Une zone réservée au stockage

Le stockage est un élément clé dans la conception de tout projet solaire thermique. L’espace associé est parfois considérable et doit être pris en compte dès le départ de l’étude du projet.

Photo stockage.

L’espace prévu doit pouvoir accueillir le ballon (ainsi que son enveloppe isolante) en termes de : volume, surface au sol, hauteur sous plafond. Les accès devront aussi permettre l’amenée du ballon. Bien que cette réflexion paraisse évidente, c’est un problème très fréquent en pratique !

Identifier ses besoins en ECS

Identifier ses besoins en ECS

La décision d’installer un chauffe-eau solaire part toujours de l’identification des besoins, en particulier la consommation d’eau chaude de l’établissement.

Avant toute chose, il faut donc se poser la question de l’usage que l’on a de l’eau chaude sanitaire :

A-t-on réellement besoin d’ECS ? Quand en a-t-on besoin? Quel est le profil de ces besoins ? En a-t-on usage pendant les périodes les plus ensoleillées de l’année ?

A-t-on réalisé les mesures URE permettant de réduire les besoins énergétiques ? Ces mesures simples et efficaces (comme par exemple le placement de réducteurs de pression) restent les plus rentables!

Disponibilité de l’énergie solaire et besoins d’eau chaude sanitaire

 

Si les besoins en ECS sont constants au fil de l’année, l’installation sera généralement dimensionnée par rapport aux apports solaires estivaux. Ce cas de figure permet de garantir un taux d’utilisation et une production énergétique surfacique (kWh/m²) élevée. 

On comprendra vite qu’une installation solaire est bien plus efficace pour un bâtiment ayant des consommations importantes et plus ou moins constantes au fil des jours et des saisons qu’un vestiaire d’un club sportif ne fonctionnant que 2 jours par semaine de septembre à mai !

Ainsi, certains usages sont particulièrement adéquats : les maisons de repos et de soin, les hôpitaux, les piscines, les logements individuels et collectifs, …

Pour établir son profil de puisage, si la consommation d’eau chaude ne fait pas l’objet d’un suivi régulier par l’organisme chargé de la maintenance du bâtiment, on se basera sur des profils type par secteurs ou, mieux, on effectuera une campagne de mesures. Dans tous les cas, le placement d’un simple compteur d’eau chaude est recommandé et sera très utile pour le dimensionnement correct de l’installation solaire !

Calculs

Estimer ses besoins en eau chaude sanitaire.

N.B. Outre son influence sur l’efficacité de l’installation solaire, le profil de puisage conditionne complètement la conception du mode de préparation : volume de stockage (accumulation), système d’appoint par production centralisée ou décentralisée,…

Connaître les étapes du projet [ECS par capteurs solaires]

Connaître les étapes du projet [ECS par capteurs solaires]

Se poser les bonnes questions !

En tant que concepteur, voici les principales questions à se poser :

Quel est le besoin d’eau chaude sanitaire ?
Comment s’intégrerait l’installation dans la configuration du bâtiment ?
Quelles sont les surfaces qui pourraient être valorisées par la pose de capteurs solaires ?
Ces surfaces sont-elles capables d’accueillir des capteurs solaires thermiques en termes de :
> Superficie disponible
> Orientation (dans le cas d’une toiture inclinée)
> Inclinaison (dans le cas d’une toiture inclinée)
> Portance suffisante: la toiture peut-elle accueillir le surpoids induit par les capteurs ? En général, les toitures en structure béton supportent la surcharge, ce qui n’est pas toujours le cas des structures bois : à vérifier donc !
> Ombrage
> État : il serait dommage de devoir remplacer le support dans les quelques années qui suivent l’installation afin d’éviter des montages-démontages coûteux et parfois risqués pour les capteurs.
L’espace disponible pour les ballons de stockage est-il suffisant ?
> Place disponible : le volume nécessaire au stockage est souvent important. Il faut donc s’assurer au préalable des dimensions nécessaires !
> Les dimensions des accès : si j’ai la place nécessaire, il faut impérativement vérifier qu’il est possible d’y amener les ballons de la dimension prévue !
Quel type d’installation choisir ?
Quel prédimensionnement pour la fraction énergétique souhaitée couverte par le solaire thermique (fraction solaire) ? Ce dimensionnement est-il compatible avec mon cas de figure ?
Le projet est-il viable économiquement ?  Quels sont les coûts et subsides ?
Quelle est la durée de vie estimée d’une telle installation ? Quelle maintenance est nécessaire ?
Comment s’assurer de la qualité de réalisation du projet ? Contrat de garantie de résultats solaires et cahier des charges « qualité » sont là pour aider le concepteur!

Les étapes de la réalisation d’un projet solaire thermique ont été balisées par le programme « Soltherm » de la Région Wallonne :

  • un logiciel de préfaisabilité (Quick Scan XLS) a été mis au point et remis à jour par l’IBGE. Il est accompagné de son mode d’emploi PDF;
  • un audit solaire PDF peut être réalisé;
  • un cahier des charges XLS d’une installation solaire de qualité a été rédigé;
  • une Garantie de Résultats Solaires (GRS) peut être exigée;
  • des subsides nombreux sont disponibles.
  • un guide de la maintenance PDF pour responsable énergie est aussi disponible (réalisé par 3E et l’Apere pour l’IBGE).
Demander un audit solaire à une société spécialisée ?

L’audit solaire fait l’inventaire des caractéristiques techniques de l’établissement et détermine les dimensions du système solaire correspondant à l’optimum économique. Il détermine comment les composants du chauffe-eau solaire s’intègrent dans l’installation existante de manière à assurer le fonctionnement optimal de l’ensemble du système. Le résultat de l’audit solaire est consigné dans un rapport qui donne au maître d’ouvrage les critères énergétiques, économiques et environnementaux nécessaires à la prise de décision.

> Plus d’infos sur l’audit solaire PDF (document réalisé par 3E pour le compte de l’IBGE).

Études de cas

Parcourir l’audit solaire établi pour :

– le home La Charmille à Gembloux !

– la piscine d’Herstal !

– la piscine de l’Hélios à Charleroi !

Rendement d’une installation solaire thermique

Rendement d'une installation solaire thermique


Rendement d’un capteur solaire

Schéma principe de rendement d’un capteur solaire.

Le rendement d’un capteur est le rapport entre la chaleur utile (Q3) transmise au fluide et le rayonnement solaire incident (E0) :

n = Q3 / E0 [-]

Cette chaleur utile Q3 est définie par le bilan des apports solaires utiles et des pertes thermiques :

Q3 = E0 – E1 – Q2 – Q1 [MJ]

Les apports solaires utiles : E0 – E1 [MJ]

Ils représentent la part du rayonnement solaire réellement absorbée par le capteur. Ils dépendent des propriétés optiques du capteur (telles que l’absportivité de l’absorbeur et la transmissivité du vitrage).

Ils s’expriment selon la relation :  E0 * ατ

Avec :

  • α [-] : facteur d’absorption de l’absorbeur.
  • τ [-] : facteur de transmission du vitrage.

Les pertes thermiques : Q1 + Q2 [MJ]

Dépendant des propriétés d’isolation thermique du capteur, elles sont définies par la relation: Qth = K* ∆T

Avec :

  • K [W/m²K] : coefficient de déperdition thermique du capteur.
  • ∆T : T°capt – T°amb.

Le rendement d’un capteur : n = Q3/E0 [-]

n = ατ- (K*∆T / E0) [-]

L’efficacité d’un capteur dépend donc de ses caractéristiques thermiques (diminution des pertes) et optiques (augmentation des apports solaires utiles).

Courbe de rendement normalisée

La norme européenne (EN 12975) définit le rendement d’un capteur sur base de trois paramètres permettant de qualifier le comportement thermique du capteur : Son rendement optique n0, et deux coefficients de déperdition thermique a1 et a2.

Rendement optique n0

Le rendement optique n0 représente le rendement maximum du capteur lorsque la température du fluide est à température ambiante (pas de pertes thermiques). Il s’agit donc de la partie maximale de l’énergie solaire qui peut être captée. Mesuré dans des conditions standardisées de test (spectre AM 1,5, 1 000 W/m², perpendiculaire au capteur), il dépend des propriétés du vitrage et de sélectivité de l’absorbeur. Cette relation est établie comme suit : n0 = ατF

Avec :

  • α [-] : facteur d’absorption de l’absorbeur, compris entre 0,9 et 0,96.
  • τ [-] : facteur de transmission du vitrage, compris entre 0,88 et 0,91.
  • F [-] : facteur de rendement du capteur, compris entre 0,92 et 0,97.
Exemple de rendement optique pour différents types de capteurs :

* 75-85 % capteur plan ;
* 90-95 % capteur non vitré ;
* 75-85 % tube sous vide à absorbeur sur cuivre ;
* 50-70 % tube sous vide à absorbeur sur verre.

À l’heure actuelle, les fabricants utilisent généralement des verres « anti-reflet » extra clairs. Pauvres en fer, ils présentent une meilleure transmission lumineuse.

Coefficients de déperdition thermique

Les coefficients de déperdition thermique dépendent de la qualité d’isolation des capteurs :

  • a1 [W/m². K] : coefficient linéaire de transfert thermique, généralement compris entre 1,2 et 4.
  • a2 [W/m². K²] : coefficient quadratique de transfert thermique, généralement compris entre 0,005 et 0,015.

Conformément à la norme, le rendement du capteur est alors donné par la formule suivante :

n = n0 – (a1*∆T / E0) – (a2* ∆T² / E0) [-]

Avec :

  • E0 : 1 000 W/m².
  • ∆T = T°capt – T°amb

Représentation de la courbe de rendement associée. (exemple avec un n0=0.8 ; a1= 4 [W/m². K];  a2 = 0.015 [W/m². K²])

N.B. : Sur cette courbe apparaît la température de stagnation du capteur (dans l’exemple 133°) définie comme la différence de température à laquelle les gains solaires ne peuvent compenser les pertes thermiques. À ce moment, le rendement du capteur est nul.

Calculs

La page calcul comprend notamment ce tableur permettant le calcul de la courbe de rendement théorique en fonction de la température d’un capteur solair en fonction de ses propriétés optiques

Influence de la puissance du rayonnement solaire

Les différentes courbes de rendement sont conventionnellement établies pour une puissance de rayonnement de 1 000 W/m². Or, en réalité, l’ensoleillement varie considérablement au fil du temps (de 0 la nuit à 1 000 W maximum en plein soleil). La courbe de rendement en est modifiée de la sorte :

Schéma influence de la puissance du rayonnement solaire.

Influence sur la courbe de rendement d’une variation de l’intensité du rayonnement solaire.

Influence du delta de température

La différence de température entre l’absorbeur et l’extérieur génère des pertes thermiques. Plus cette différence de température est importante, plus les pertes le sont aussi. Pour une puissance de rayonnement et une inclinaison donnée, le point de fonctionnement du capteur se situera donc sur une courbe dont la pente et la courbure sont déterminées par ses coefficients de déperdition thermique.

Schéma influence du delta de température.

Influence de l’angle d’incidence

Schéma influence de l'angle d'incidence.

L’inclinaison du capteur et la position du soleil influencent le rendement du capteur.  Selon l’angle d’incidence, la transmission du rayonnement solaire au travers du vitrage sera modifiée. En effet, au moins les rayons sont perpendiculaires au capteur, au plus la composante réfléchie du rayonnement est importante. Le rendement en est donc diminué.

Cette diminution est décrite par un facteur d’angle Kθ ou IAM, en général donné par les fabricants. En pratique, on constate que ce facteur varie relativement peu pour des angles d’incidence inférieurs à 50°.

Influence sur la courbe de rendement d’une modification importante de l’angle d’incidence par rapport à une situation de départ où l’angle d’incidence est perpendiculaire au capteur.


Rendement instantané

En fonctionnement, le rendement du capteur se déplacera donc continuellement (on parle alors de rendement dynamique) sur une multitude de courbes résultantes des différents phénomènes cités ci-dessus. Le schéma suivant illustre ce comportement :

Schéma rendement instantané.

En conclusion, on retiendra qu’un capteur est d’autant plus performant :

  • qu’il fonctionne à une température proche de la température ambiante (delta T° faible).
    ==> Travail à basse température idéal ;
  • que l’irradiation est importante
    ==>  Orientation et inclinaison adaptée.

Une étude allemande a montré qu’en fonctionnement,  le rendement annuel des capteurs pour l’eau chaude sanitaire peut atteindre 50 %.


Rendement d’une installation

Le rendement de l’installation complète ne dépend évidemment pas du seul rendement des capteurs.

Des pertes thermiques se produiront lors du stockage de l’eau chaude, lors des  transferts des fluides caloporteurs entre les capteurs et le ballon solaire, et entre le ballon et les différents points de puisage.

Ces différentes pertes sont considérablement influencées par différents paramètres comme la longueur et la section des tuyaux. On veillera donc à en limiter l’impact par des longueurs de tuyauteries minimisées et une isolation adéquate.
Différentes simulations dynamiques ont montré que le rendement moyen d’une installation bien conçue tourne autour de 30 – 40 %. Globalement, l’irradiation avoisinant en Belgique les 1000 kWh/m².an, on capte donc près de 300 à 400kWh/m².an soit l’équivalent énergétique de 30 à 40 litres de fuel par m² et par an. C’est notre puits de pétrole à nous!

L’influence de la fraction solaire

Le choix de la fraction solaire, fraction représentant la part de l’eau chaude sanitaire que l’on souhaite produire par le solaire, a une influence non négligeable sur le rendement global annuel de l’installation.

Le phénomène est le suivant :

Si l’on veut dimensionner une installation pour qu’elle puisse fournir de l’eau chaude les jours de luminosités réduites, les surfaces nécessaires peuvent être considérables. Parfois, principalement en hiver, la luminosité est même insuffisante pour permettre toute production. Dans ce cas, on n’a pas d’autre choix que le recours au système d’appoint utilisant une énergie conventionnelle.
Or, cette superficie nécessaire pour les jours de luminosité médiocre peut être superflue en été. En effet, une superficie plus importante permet d’atteindre plus vite la quantité d’eau à la température voulue. Mais que se passe-t-il une fois le ballon chargé ? Rien ! Le capteur ne fonctionne plus, il « chôme » ! Le temps de fonctionnement annuel des capteurs est alors réduit.
En résumé, plus la fraction solaire est élevée plus le taux d’utilisation, est lui, réduit.

Un taux d’utilisation réduit signifie aussi une production surfacique (kWh par m² de capteurs) réduite (pertes thermiques induites par le surdimensionnement par rapport aux besoins estivaux combiné, et un fonctionnement à haute température plus fréquent).

La relation entre la surface de capteurs et la productivité de l’installation n’est donc pas linéaire. La courbe qui suit illustre bien le phénomène : Les premiers kWh sont les plus faciles à produire alors qu’il sera presqu’impossible de rendre l’installation autonome (asymptote horizontale !).

Superficie de capteurs nécessaire en fonction de la fraction solaire et rendement correspondant.

En conséquence : au plus la fraction solaire voulue sera grande, au plus le rendement global de l’installation sera faible !
Cette conclusion ne doit cependant être prise telle quelle : il ne faut pas oublier que l’énergie solaire est une énergie gratuite, renouvelable et totalement non polluante !

Idée : On pourrait imaginer étendre la production estivale d’eau chaude à d’autres usages (piscine ou bassin extérieur,…) ou pour générer du froid (c’est l’idée des recherches actuelles sur la climatisation solaire). L’utilisation de ce surplus potentiel permettrait d’utiliser efficacement l’installation plutôt que de la laisser « chômer » !

Un autre moyen de valoriser ce surplus énergétique est le stockage intersaisonnier de l’énergie produite ! Actuellement, la recherche se tourne principalement vers des grands volumes de stockage (dans le sol par exemple) ou vers des matériaux à changement de phase.

Circulateurs [ECS]

Circulateurs [ECS]


Les pompes in-line et les circulateurs à rotor noyé

Dans les installations de chauffage, on peut retrouver 2 types de circulateurs :

  • Les circulateurs à rotor noyé se retrouvent dans toutes les installations. Ils sont montés directement sur la tuyauterie. Le moteur est, en partie, directement refroidi par l’eau de l’installation. Ils sont sans entretien et de coût modeste. Leur rendement est cependant faible mais une partie de leur perte est récupérée par l’eau de chauffage.
  • Les pompes in-line sont aussi directement montées sur la tuyauterie mais le moteur n’est plus refroidi par l’eau du réseau de chauffage. Elles sont pourvues d’une garniture mécanique qui sépare la pompe du moteur. Le refroidissement est assuré par un ventilateur. Les pompes in-line se retrouvent principalement dans les grandes installations de chauffage ou dans les installations de refroidissement pour lesquelles la perte du moteur devient une charge calorifique supplémentaire à compenser.

Circulateur à rotor noyé et pompe in-line (les deux types de circulateur existent en version électronique).


Courbes caractéristiques

Les performances des circulateurs sont répertoriées sous forme de courbes caractéristiques reprises dans la documentation des fabricants. Attention, les données ainsi reprises sont le résultat de mesures qui, faute d’une normalisation en la matière, peuvent différer d’un fabricant à un autre.

On retrouve, dans les courbes caractéristiques, la hauteur manométrique totale (en mCE ou en bar) que peut fournir le circulateur en fonction du débit, pour chaque vitesse possible du circulateur.

On peut retrouver en parallèle, la puissance électrique absorbée par le moteur, soit sous forme de graphe pour chacun des points de fonctionnement possibles, soit sous forme de tableaux, pour chaque vitesse. Dans ce dernier cas, il est difficile de savoir à quel point de fonctionnement correspond cette puissance (est-ce ou non pour la zone de rendement maximal ?). Il n’y a pas de norme et chaque fabricant peut adopter une règle différente.

Courbes caractéristiques d’un circulateur électronique. On y repère les courbes de régulation (ici, diminution linéaire de la hauteur manométrique avec le débit) et pour chaque point de fonctionnement, on peut établir la puissance électrique absorbée. On y repère les courbes caractéristiques correspondant au régime de ralenti (de nuit). Rem : P1 correspond à la puissance électrique absorbée par le moteur, P2, à la puissance transmise par le moteur à la roue et P3, à la puissance transmise à l’eau.

Courbes caractéristiques d’un circulateur standard à 3 vitesses.

Vitesse P1 [W] In [A]
3 960 1,8
2 590 1,05
1 250 0,47

Puissance et courant nominal absorbés par le circulateur en fonction de sa vitesse.


Les circulateurs standards

On entend par « circulateur standard », un circulateur à rotor noyé dont la vitesse de rotation est réglée manuellement et reste fixe quelles que soient les conditions d’exploitation de l’installation.

On retrouve des circulateurs à 1 ou plusieurs vitesses (3 ou 4), équipés d’un moteur monophasé ou triphasé.

Circulateur à trois vitesses.

Courbes caractéristiques d’un circulateur à 3 vitesses.

Certains circulateurs (c’est valable également pour les circulateurs électroniques) peuvent être équipés d’une coquille isolante sur mesure qui diminue ses déperditions calorifiques.

On peut également y joindre un « display » permanent qui permet de visualiser en temps réel les caractéristiques électriques de fonctionnement telles que la puissance absorbée, l’ampérage, la consommation et les heures de fonctionnement, …

Circulateur équipé d’un module d’affichage des caractéristiques de fonctionnement.


Les circulateurs électroniques ou à vitesse variable

Les circulateurs électroniques ou « à vitesse variable » sont des circulateurs dont la vitesse peut être régulée en continu en fonction de la variation de pression régnant dans le circuit de distribution.

Circulateur avec convertisseur de fréquence intégré.

La régulation de vitesse est intégrée directement dans le circulateur. Elle se fait par cascade d’impulsions pour les petits circulateurs ou au moyen d’un convertisseur de fréquence (technologie semblable à celle utilisée en ventilation) pour les circulateurs de plus de 200 W.

Mode de régulation

Lorsque sous l’effet d’apports de chaleur gratuits, les vannes thermostatiques (où les vannes 2 voies de zone) se ferment, la pression dans le réseau augmente avec une influence néfaste sur le fonctionnement des vannes restées ouvertes.

Les circulateurs électroniques vont automatiquement adapter leur vitesse en fonction de la fermeture des vannes de régulation (donc en fonction des besoins thermiques). Deux types de régulation sont possibles dans ce type d’équipement :

  • soit la vitesse de rotation du circulateur est adaptée automatiquement pour maintenir la pression constante dans le circuit, quel que soit le degré d’ouverture des vannes des régulations,
  • soit la vitesse de rotation du circulateur est adaptée automatiquement en fonction de l’ouverture des vannes de régulation, en diminuant de façon linéaire la pression du circuit. Cette deuxième option est énergétiquement plus intéressante. En effet, si des vannes thermostatiques se ferment, le débit circulant dans le réseau diminue, entraînant une baisse des pertes de charge dans les tronçons communs. Le circulateur peut donc diminuer sa hauteur manométrique,
  • soit la vitesse est commandée par la température extérieure ou la température de l’eau. Dans les installations à débit constant (sans vanne thermostatique), la régulation du circulateur diminue linéairement la pression du circulateur quand la température de l’eau véhiculée diminue. Ce type de régulation peut être utilisée pour accélérer la coupure et la relance de l’installation (notamment pour un chauffage par le sol).

Utilisation d’un circulateur à vitesse variable : le circulateur diminue sa vitesse automatiquement pour assurer le maintien d’une pression différentielle constante en un point choisi du réseau. La solution de la prise de pression entre le départ et le retour en un point du circuit n’est pas standard pour les circulateurs à rotor noyé. La plupart de ceux-ci ne sont, en fait, pas équipés de prises de pression. Le régulateur interne à l’appareil travaille en fonction d’une mesure du courant absorbé, image de sa hauteur manométrique.


Evolution du débit du circulateur lorsque les vannes thermostatiques se ferment : le point de fonctionnement passe de B à A. Si on diminue la vitesse du circulateur en maintenant une pression constante dans le réseau : le point de fonctionnement passe de B à D. La consommation électrique du circulateur étant proportionnelle à la surface (hauteur manométrique x débit) diminue proportionnellement au débit.

Evolution du débit du circulateur, si on diminue la vitesse du circulateur en diminuant linéairement la pression dans le réseau : le point de fonctionnement passe de B à E. La consommation électrique du circulateur étant proportionnelle à la surface (hauteur manométrique x débit) diminue proportionnellement au débit.

Théories

Pour en savoir plus sur la régulation de vitesse des circulateurs en fonction de la fermeture des vannes thermostatiques.

Régime jour/nuit

Certains circulateurs électroniques permettent également la programmation d’un régime jour et d’un régime nuit. Cette dernier correspond à une vitesse de rotation fortement réduite.

Pour les circulateurs électroniques traditionnels, la commande du régime de nuit se fait par la régulation centrale de l’installation. Pour les nouveaux circulateurs à aimant permament, la régulation est intégrée au circulateur. Celui-ci diminue sa vitesse s’il mesure, en son sein, une baisse de température d’eau de 10 .. 15°C pendant 2 h. Il revient au régime normal si la température de l’eau augmente d’une dizaine de degré.

Programmation et visualisation des paramètres

Les circulateurs électroniques peuvent être programmés par télécommande infrarouge : mode et paramètre de régulation.

Photo de télécommande infrarouge pour circulateurs électroniques.

Ces télécommandes permettent en outre un contrôle des paramètres de fonctionnement des pompes : hauteur monométrique, débit, vitesse de rotation, température de l’eau véhiculée, puissance absorbée, … .

Coût

Le coût d’un circulateur électronique dépend de la puissance installée : pour les circulateurs de moins de 200 W, la différence de prix, par rapport à un circulateur traditionnel est faible (de l’ordre de 40 %). dès 250 W, la variation de vitesse implique plus que le doublement du prix.

Prix des circulateurs de la marque « x » (à titre indicatif).


Les circulateurs à moteur synchrone ou à aimant permanent

Les circulateurs traditionnels sont équipés d’un moteur électrique asynchrone ayant un rendement souvent médiocre.

Il existe maintenant sur le marché des circulateurs à rotor noyé équipé d’un moteur synchrone à commande électronique.

   

Roue et moteur d’un circulateur à moteur synchrone.

Nous ne disposons actuellement pas d’information neutre concernant les performances énergétiques de ce type de matériel. De l’avis des différents fabricants, ce type de moteur couvrira dans quelques années tout le marché.

Exemple.

Pour un point de fonctionnement de 10 m³/h et 6 mCE, voici la puissance électrique absorbée, mentionnée par les catalogues de la marque x, pour deux circulateurs de la même taille :

Circulateur électronique standard
(ancienne génération)

470 W

Circulateur électronique à aimant permanent

380 W

Soit une économie de 20 %.

Pour un point de fonctionnement de 15 m³/h et 5 mCE, voici la puissance électrique absorbée, mentionnée par les catalogues de la marque y, pour deux circulateurs de la même taille :

Circulateur électronique standard
(ancienne génération)

570 W

Circulateur électronique à aimant permanent

420 W

Soit une économie de 26 %. Notons que dans ce deuxième exemple, en plus du moteur, la configuration hydraulique de la roue du circulateur a également été optimalisée pour augmenter le rendement.

Chaudières à condensation [ECS]

Chaudières à condensation [ECS]

Principe de la chaudière à condensation : le retour de circuit de chauffage à basse température amène les fumées de combustion en dessous du point de rosée au sein de l’échangeur, une partie plus ou moins importante de l’eau contenue dans les fumées condense.


Principe de la condensation dans les chaudières

Pouvoir calorifique inférieur (PCI) et supérieur (PCS)

Les produits normaux d’une bonne combustion sont essentiellement du CO2 et de l’H2O. Juste après la réaction de combustion, cette eau issue du combustible se trouve à l’état gazeux dans les fumées. Notons que l’eau à l’état gazeux n’est pas visible, elle est transparente. D’ailleurs, l’air ambiant en contient toujours une certaine quantité.

Imaginons que nous puissions réaliser une combustion parfaite d’un combustible, libérant ainsi le maximum d’énergie sous forme thermique (énergie qui était initialement contenue sous forme chimique dans le combustible).  L’énergie libérée est transmise, d’une part, à la chaudière et, d’autre part, est contenue dans les fumées à température élevée. Si on peut aussi récupérer l’énergie contenue dans ces fumées en abaissant leur température jusqu’à la température ambiante, on dispose théoriquement de toute l’énergie que le combustible contenait initialement. Il s’agit du pouvoir calorifique. Néanmoins, comme évoqué ci-dessus, les fumées contiennent de l’H2O à l’état gazeux. En abaissant la température des fumées, l’eau peut passer à l’état liquide cédant ainsi une énergie, la chaleur de condensation ou énergie latente. Si on est capable de récupérer cette énergie, on parlera du pouvoir calorifique supérieur (PCS). Par contre, si, dans la phase de récupération de l’énergie des fumées, on ne sait pas la récupérer, alors on parlera de pouvoir calorifique inférieur (PCI).

Le pouvoir calorifique supérieur est par définition supérieur au pouvoir calorifique inférieur (PCS > PCI). En effet, on a récupéré la chaleur latente de la vapeur d’eau contenue dans les fumées. Voici les valeurs de pouvoir calorifique pour les combustibles liés à la technologie des chaudières à condensation :

  • Pour le gaz naturel (type L) : PCS = 9,79 kWh/m³N et PCI = 8.83 kWh/m³N, soit PCS = PCI  + 10.8 %
  • Pour le gaz naturel (type H) : PCS = 10.94 kWh/m³N et PCI = 9.88 kWh/m3N, soit PCS = PCI + 10.7 %
  • Pour le mazout (standard) : PCS = 12.67 kWh/kg et PCI = 11.88 kWh/kg, soit PCS =  PCI + 6.6 %

Dans le cas du gaz naturel ?

On voit que l’on peut récupérer jusqu’à 10 % de rendement supplémentaire si on peut condenser la vapeur d’eau des fumées et récupérer parfaitement cette chaleur. On voit donc que le potentiel d’une telle technique pour le gaz naturel est substantiel. À l’heure actuelle, on trouve des chaudières condensation gaz pour toutes les gammes de puissance.

Dans le cas du fuel ?

La technique de la condensation est principalement utilisée dans les chaudières gaz. Il existe également des chaudières fuel à condensation, mais leur utilisation est actuellement moins répandue, pour trois raisons :

  • Teneur en eau plus faible : La teneur en vapeur d’eau des fumées issues du fuel est plus faible que pour le gaz naturel. Il en résulte une différence plus faible entre le PCS et le PCI (pour le fuel : PCS = PCI + 6 %). La quantité de chaleur maximum récupérable est donc plus faible, ce qui rend moins facile la rentabilité du surcoût de la technologie « condensation ».
  • Point de rosée plus bas : Pour que l’eau à l’état gazeux dans les fumées se condense totalement, il faut que la température des fumées soit bien inférieure à la température dite de « rosée » (c’est-à-dire la température à partir de laquelle la vapeur d’eau des fumées se met à condenser, à ne pas confondre avec la température du « rosé » qui, lui, se sert bien frais). Si la différence n’est pas suffisante, autrement dit, la température des fumées pas assez basse, seule une fraction de l’eau condense. On perd donc en efficacité. Parallèlement, on peut difficilement descendre les fumées avec un échangeur en dessous d’un certain seuil. En effet, les chaudières ne possèdent pas des échangeurs de taille infinie. Typiquement, on peut descendre jusqu’à 30 °C dans de bonnes conditions. Le problème est que, dans le cas du mazout, la température à partir de laquelle les fumées condensent (point de rosée) est plus basse (d’une dizaine de °C) que dans le cas du gaz. Il faut donc descendre les fumées à une température relativement plus faible pour pouvoir bénéficier pleinement de l’avantage de la condensation. Or, la température de retour du circuit de chauffage qui assure le refroidissement des fumées dépend, d’une part, du dimensionnement, mais aussi des conditions météorologiques (la température de retour est plus élevée si la température extérieure est plus faible, et donc le besoin de chauffage grand). Dans ces conditions, il est possible que l’on ait moins de périodes où la chaudière condense avec une chaudière mazout qu’avec une chaudière gaz.

Température de condensation des fumées (point de rosée) de combustion du gaz et du fuel, en fonction de leur teneur en CO2. : pour les coefficients d’excès d’air typiques pour le gaz et le fioul, c’est-à-dire 1.2, la concentration en CO2 est de, respectivement, 10 et 13 % donnant une température de rosée d’approximativement 55 °C et 47.5 °C.

  • Présence de Soufre et acidité : Le fuel contient du soufre et génère des condensats plus acides (présence d’H2SO4), corrosifs pour la cheminée et l’échangeur. De plus, lorsque la température d’eau de retour du circuit de chauffage se situe à la limite permettant la condensation des fumées, la quantité d’eau condensée est faible, mais sa concentration en acide sulfurique est très élevée, ce qui est fort dommageable pour l’échangeur. Cela explique pourquoi les fabricants ont mis plus de temps pour le mazout pour développer des chaudières à condensation résistantes aux condensats.

Notons cependant que les gros fabricants de chaudières ont quasiment tous développé des chaudières à condensation fonctionnant au fuel. Néanmoins, ils ne proposent pas toujours ces produits dans toutes les gammes de puissance. L’acier inoxydable de l’échangeur a été étudié pour résister aux condensats acides.
Ainsi, l’existence d’un fuel à très faible teneur en souffre (« Gasoil Extra » avec une teneur en souffre inférieure à 50 ppm) officialisée par un arrêté royal publié le 23 octobre 02, peut ouvrir de nouvelles perspectives aux chaudières à condensation fonctionnant au fuel. Suivant la technologie de la chaudière à condensation au mazout, on est obligé de fonctionner avec un mazout Extra à faible teneur en Soufre ou, si la chaudière le permet, on peut fonctionner avec un mazout standard.

Dans le cas du bois ?

Certains fabricants de chaudières au bois proposent des chaudières à condensation. À l’heure actuelle, cela reste assez rare, mais cela existe. Manquant de retour et de références à ce sujet, nous ne donnerons plus d’information.


Intérêt énergétique d’une chaudière à condensation

Que rapporte une chaudière à condensation par rapport à une chaudière traditionnelle ?

Le gain énergétique réalisé grâce à une chaudière à condensation se situe à deux niveaux :

  1. Gain en chaleur latente : La condensation de la vapeur d’eau des fumées libère de l’énergie. Pour une chaudière gaz, ce gain maximum est de 11 % du PCI tandis qu’il s’élève à 6 % pour le mazout.
  1. Gain en chaleur sensible : La diminution de la température des fumées récupérée au travers de la surface de l’échangeur (de .. 150.. °C à .. 45 °C ..).

Pour comparer le rendement des chaudières à condensation et celui des chaudières classiques, il faut comparer leur rendement global annuel ou rendement saisonnier, qui prend en compte toutes les pertes de la chaudière (par les fumées, par rayonnement et d’entretien), en fonction de la charge réelle de la chaudière durant toute la saison de chauffe.

Ce gain réel obtenu par une chaudière à condensation est difficile à estimer d’une manière générale, car il dépend de la température d’eau qui irrigue la chaudière et qui est évidemment variable (elle dépend de la courbe de chauffe choisie et donc du dimensionnement des émetteurs).

Exemple pour le gaz naturel : 

 

Exemple pour le mazout :

Représentation du rendement utile (sur PCI et sur PCS) d’une chaudière gaz traditionnelle et d’une chaudière à condensation.

Par exemple pour le gaz naturel, avec une température d’eau de 40 °C, on obtient des produits de combustion d’environ 45 °C, ce qui représente des pertes de 2 % en chaleur sensible et des pertes de 5 % en chaleur latente (on gagne sur les 2 tableaux). Le rendement sur PCI est donc de :

((100 – 2) + (11 – 5)) / 100 = 104 %
(ce qui correspond à 93 % sur PCS)

Par exemple pour le mazout, des produits de combustion donnent des pertes de 2 % en chaleur sensible et des pertes de 2 % en chaleur latente. Le rendement sur PCI est donc de :

((100 – 2) + (6 – 2)) / 100 = 102 %

(ce qui correspond à 96 % sur PCS)

Un rendement supérieur à 100 % ?

Ceci est scientifiquement impossible.

Lorsque l’on a commencé à s’intéresser au rendement des chaudières, la technologie de la condensation n’existait pas. On comparait donc l’énergie produite par une chaudière à l’énergie maximale récupérable pour l’époque c’est-à-dire à l’énergie sensible contenue dans le combustible ou PCI (ou HI) du combustible.

De nos jours, ce mode de calcul a été maintenu même si, dans les chaudières à condensation, on récupère aussi une partie de la chaleur latente. On a alors l’impression de produire plus d’énergie que le combustible n’en contient. C’est évidemment faux.

Si l’on voulait être scientifiquement rigoureux, il faudrait comparer l’énergie produite par une chaudière à condensation au PCS (ou Hs) du combustible. Si on commet l’erreur de comparer avec les valeurs PCI d’autres chaudières, on aurait l’impression qu’une chaudière à condensation a un plus mauvais rendement qu’une chaudière traditionnelle, ce qui est aussi erroné.

Par exemple, un rendement utile de chaudière au gaz à condensation de 104 % sur PCI, correspond à un rendement de 93 % sur PCS.

Le tableau ci-dessous indique pour les différents rendements exprimés en fonction du PCS, l’équivalence pour le fioul ou le gaz exprimée en fonction du PCI

Rendement PCS Rendement PCI
 Fioul Gaz naturel

79,0
80,0
81,0
82,0
83,0
84,0
85,0
86,0
87,0
88,0
89,0
90,0
91,0
92,0
93,0
94,0
95,0
96,0
97,0
98,0
99,0
100,0

84,4
85,5
86,6
87,6
88,7
89,8
90,8
91,9
93,0
94,0
95,1
96,2
97,2
98,3
99,4
100,4
101,5
102,6
103,7
104,7
105,8
106,9

87,6
88,7
89,8
90,9
92,0
93,1
94,2
95,3
96,4
97,6
98,7
99,8
100,9
102,0
103,1
104,2
105,3
106,4
107,5
108,6
109,8
110,9

Le tableau ci-dessous indique pour les différents rendements exprimés en fonction du PCS, l’équivalence pour le fioul ou le gaz exprimée en fonction du PCI

Rendement PCS Rendement PCI
 Fioul Gaz naturel

79,0
80,0
81,0
82,0
83,0
84,0
85,0
86,0
87,0
88,0
89,0
90,0
91,0
92,0
93,0
94,0
95,0
96,0
97,0
98,0
99,0
100,0

84,4
85,5
86,6
87,6
88,7
89,8
90,8
91,9
93,0
94,0
95,1
96,2
97,2
98,3
99,4
100,4
101,5
102,6
103,7
104,7
105,8
106,9

87,6
88,7
89,8
90,9
92,0
93,1
94,2
95,3
96,4
97,6
98,7
99,8
100,9
102,0
103,1
104,2
105,3
106,4
107,5
108,6
109,8
110,9

Besoin d’une température de retour la plus basse possible et émetteurs de chaleur

Pour obtenir les meilleurs rendements, il faut que la température des fumées soit la plus basse possible. Du coup, il faut une température de retour du circuit de distribution de chauffage la plus basse. Cela s’obtient par une bonne conception du circuit hydraulique, essentiellement, en travaillant avec une température de départ plus basse et des émetteurs de chaleur qui travaillent à basse température. On pense naturellement au chauffage par le sol (basé sur le rayonnement). Néanmoins, les radiateurs ou convecteurs basse température peuvent aussi convenir pour atteindre cet objectif.

Rendement théorique utile des chaudières gaz et mazout à condensation en fonction de la température à laquelle on a pu descendre les fumées dans la chaudière : le coefficient d’excès d’air est pris égal à 1.2. On voit que le point d’inflexion où la chaudière au gaz commence à condenser se situe autour de 55 °C alors que ce point se déplace à 47.5 °C pour le mazout.

Quelles sont les conclusions de ce dernier graphe :

  • On voit que la température à laquelle débute la condensation (point de rosée) commence plus tôt pour le gaz (55 °C) que pour le mazout (47.5 °C). Physiquement, c’est dû à la composition des fumées.
  • On remarque que les gains de rendement potentiels grâce à la condensation sont plus faibles avec le mazout que le gaz. Physiquement, c’est dû à une moindre présence d’hydrogène dans le mazout donnant, après réaction, moins d’eau dans les fumées.
  • On remarque qu’il faut être bien en dessous de la température de rosée pour atteindre les meilleurs rendements. En effet, il ne suffit pas d’être à quelques degrés inférieurs à ce point critique. Il faut de l’ordre d’une dizaine de degrés pour assurer une augmentation significative. Encore une fois, la température des fumées dépendra des conditions climatiques et du dimensionnement de l’installation de chauffage.

Intérêt d’une chaudière à condensation pour améliorer une ancienne installation de chauffage ? Oui si régulation adaptée !

Il y a-t-il un intérêt de placer une chaudière à condensation sur un réseau de radiateurs dimensionnés en régime 90°/70 °C ? En effet, si la température de retour est de 70 °C, alors la chaudière ne condensera pas !
Pourtant, il y a bien un intérêt à placer une chaudière à condensation :

  • D’une part, la température de retour ne sera de 70 °C que pendant les périodes plus froides de l’année. En effet, le régime de radiateur 90°/70 °C correspond aux températures extérieures les plus basses, plus particulièrement à la température de dimensionnement de l’installation (en d’autres termes, la température de base qui varie suivant les régions, mais tourne autour de – 10 °C). Si la température de départ est adaptée à la température extérieure (régulation climatique ou glissante), la température de retour sera plus faible pendant les périodes moins froides de l’année pouvant finalement donner lieu à la condensation dans la chaudière.

   

Sur la première figure, il s’agit de l’évolution de la température glissante de retour en fonction de la température extérieure pour une installation conçue en régime 90°/70° (à une température de dimensionnement de – 10 °C) : on voit que le point de rosée pour le gaz et le mazout est obtenu à des températures extérieures supérieures à  ~ – 10 °C et ~ – 4 °C, respectivement.  Dans notre calcul, on a pris une température de retour limite à partir de laquelle commence la condensation de 5 °C inférieure à la température de rosée pour tenir compte de l’imperfection de l’échangeur de la chaudière. Sur base des conditions météorologiques rencontrées en moyenne (année standard), on voit sur la seconde figure que les chaudières gaz et mazout condensent sur une grande partie de la période de chauffe. En termes d’énergie, en faisant l’hypothèse que les besoins du bâtiment sont proportionnels à la température extérieure, on voit avec la troisième figure que la chaudière gaz à condensation condense 75 % du temps et la chaudière mazout approximativement 40 %.

  • D’autre part, même en l’absence de condensation, les rendements utiles minimum obtenus (95 %) sont supérieurs aux valeurs que l’on rencontre avec les chaudières traditionnelles haut rendement (92 … 94 %). En effet, les chaudières à condensation sont équipées d’échangeurs de chaleur avec une surface plus grande que les chaudières traditionnelles. À température de retour égale, la chaudière à condensation amènera les fumées à un niveau de température plus bas.

Sur base des arguments suivants, le potentiel d’une chaudière à condensation sur une ancienne installation dimensionnée en régime 90°/70° est justifié pour le gaz naturel. Pour les installations au mazout, l’amélioration induite par la condensation est bel et bien présente, mais moins importante : ceci est dû à la température du point de rosée qui est plus basse pour le mazout.

On voit au moyen des figures suivantes que la situation est encore plus favorable à la condensation en présence d’émetteurs dimensionnés en régime 70 °C/50 °C. Dans le cas de la chaudière au gaz, on peut potentiellement avoir une condensation quasi permanente de la chaudière. Pour le mazout, la condensation est aussi majoritairement présente. Par conséquent, pour s’assurer de l’efficacité des installations équipées de chaudières à condensation, il peut être intéressant de redimensionner l’installation en régime 70°/50 °C. C’est généralement possible, dans la mesure où, d’une part, les émetteurs des anciennes installations de chauffage sont souvent largement surdimensionnés en régime 90°/70 °C, et, d’autre part, que la rénovation d’une installation de chauffage va souvent de pair avec l’amélioration des performances de l’enveloppe (rénovation), ce qui réduit significativement la puissance nécessaire des émetteurs.

    

Sur la première figure, il s’agit de l’évolution de la température glissante de retour en fonction de la température extérieure pour une installation conçue en régime 70°/50° (à une température de dimensionnement de – 10 °C) : on voit que le point de rosée pour le gaz et le mazout est obtenu à des températures extérieures supérieures à  ~-10 °C et ~- 4 °C, respectivement.  Dans notre calcul, on a pris une température de retour limite à partir de laquelle commence la condensation de 5 °C inférieure à la température de rosée pour tenir compte de l’imperfection de l’échangeur de la chaudière . Sur base des conditions météorologiques rencontrées en moyenne (année standard), on voit sur la seconde figure que les chaudières gaz et mazout condensent la majeure partie de la période de chauffe. En termes d’énergie, en faisant l’hypothèse que les besoins du bâtiment sont proportionnels à la température extérieure, on voit avec la dernière figure que la chaudière gaz à condensation condense 100 % du temps et la chaudière mazout approximativement 93 %.

L’intérêt des chaudières à condensation démontré, il faut néanmoins savoir que le circuit hydraulique de distribution de chaleur devra être éventuellement modifié pour assurer une température de retour la plus faible à la chaudière.

Influence de l’excès d’air

L’excès d’air a une influence sur les performances d’une chaudière à condensation. En effet, plus l’excès d’air est important et plus la température de rosée diminue. Comme la température de retour du réseau de distribution de chaleur dépend de sa conception, mais aussi des conditions météorologiques, cette température de rosée devrait être la plus haute possible pour être certain que la chaudière condense efficacement le plus souvent. Autrement, le risque est d’avoir une température de fumée trop élevée et donc de l’eau qui reste à l’état de vapeur dans ces fumées. En conclusion, il faut que l’excès d’air soit le plus faible possible pour avoir une température de rosée la plus haute et de meilleures conditions de condensation.

Rendement utile d’une chaudière gaz de type L en fonction de la température des fumées (fonction de la température de l’eau) et de l’excès d’air (λ = 1,3 équivaut à un excès d’air de 30 %).

Remarque : ce schéma montre que les anciennes chaudières atmosphériques à condensation avaient de moins bonnes performances puisqu’elles fonctionnaient avec un excès d’air supérieur à 50 % (λ = 1,5).

Gains sur le rendement saisonnier

Le gain obtenu sur le rendement saisonnier et donc sur la facture énergétique en choisissant une chaudière à condensation plutôt qu’une chaudière traditionnelle haut rendement peut donc varier entre : 1 et 14 %.

Si on compile les informations de l’ARGB pour le gaz et le résultat des programmes de simulation de certains fabricants, on peut dire que 6 .. 9 % d’économie sur la consommation annuelle est un ordre de grandeur réaliste pouvant être utilisé pour guider le choix de la nouvelle chaudière (voir peut-être un peu plus pour les meilleures installations).


Constitution d’une chaudière à condensation

Type d’échangeur

Les chaudières à condensation actuelles sont composées de deux ou trois échangeurs en série. Ces échangeurs sont soit séparés sous une même jaquette, soit intégrés dans un ensemble monobloc.

Le dernier échangeur sur le circuit des fumées (ou la dernière partie de l’échangeur monobloc) est appelé « condenseur ». C’est dans ce dernier que les fumées doivent céder leur chaleur latente. C’est donc également au niveau de ce dernier que se raccorde le retour d’eau à température la plus basse possible. Cet échangeur est conçu en un matériau supportant la condensation sans risque de corrosion (acier inox, fonte d’aluminium).

Il est également possible d’utiliser un condenseur séparé, rajouté à une chaudière traditionnelle, de manière à en augmenter son rendement. Cela est en principe possible pour toute chaudière gaz et fioul existante. C’est la seule solution si on veut exploiter la condensation avec des chaudières de plus d’un MW.

    

Échangeurs-condenseurs s’adaptant à une chaudière traditionnelle.

Pour obtenir le meilleur rendement de l’échangeur-condenseur, il est important que l’évacuation des fumées se fasse dans le même sens que l’écoulement des condensats, c’est-à-dire vers le bas. Dans le cas contraire, les fumées s’élevant risqueraient de revaporiser les condensats, ce qui ferait perdre l’avantage de la condensation.

Évacuation des fumées dans une chaudière à condensation, dans le sens de l’écoulement des condensats.

Le rendement de combustion obtenu dépend entre autres de la qualité de l’échangeur. Un bon échangeur permettra d’obtenir des fumées dont la température à la sortie de la chaudière est au maximum de 5 °C supérieure à la température de l’eau de retour. Attention, sur les plus mauvaises chaudières à condensation, cette différence de température peut aller jusqu’à 15 °C.

Circuits retour

Certaines chaudières comportent deux branchements de retour : un retour « basse température » au niveau du condenseur et un retour « haute température » au niveau du premier échangeur. Cette configuration permet l’utilisation d’une chaudière à condensation même lorsqu’une partie des utilisateurs demandent une température d’eau élevée (production d’eau chaude sanitaire, batteries à eau chaude, circuits de radiateurs à différents niveaux de température, …). Les circuits qui leur sont propres sont alors raccordés du côté « haute température », les circuits pouvant fonctionner en basse température (circuits radiateurs basse température, chauffage par le sol, …) étant dédiés au retour « basse température ».

Il faut toutefois faire attention : le retour « froid » reste le retour principal de la chaudière.  Le retour chaud by-passe une partie de la surface d’échange.  Il est donc important de maintenir un rapport (60% min, 40% max) entre le retour froid et le retour chaud !

Si l’on place la production ECS sur le retour « chaud » , tout l’été, la chaudière va fonctionner dans de mauvaises conditions, car il n’y a pas de retour « froid ».  Il est donc préférable dans ce cas de surdimensionner la production ECS, de manière à revenir plus froid sur la chaudière, et n’utiliser qu’un seul retour, à savoir le retour « froid » dans ce cas !

Type de brûleur

En gros, en fonction du type de brûleur, on retrouve trois types de chaudière à condensation :

  1. Des chaudières dont le brûleur est un brûleur gaz pulsé traditionnel (souvent 2 allures) commercialisé séparément de la chaudière à condensation.
  2. Des chaudières dont le brûleur est un brûleur à prémélange avec ventilateur (rampe de brûleurs, brûleurs radiant, …), modulant (de 10 à 100 % de leur puissance nominale). La modulation du brûleur se fait soit par variation de vitesse du ventilateur, soit par étranglement variable de la pulsion d’air et de gaz.
  3. Des chaudières gaz à brûleur atmosphérique à prémélange, sans ventilateur. Ces brûleurs sont à une ou 2 allures. Étant donné la technologie assez basique appliquée (contrôle moindre de l’excès d’air, pas de modulation de la puissance), ces chaudières présentent généralement de moins bonnes performances que les 3 premières catégories ci-dessus.

Type d’alimentation en air

Dans certaines chaudières avec brûleur à prémélange, l’air comburant est aspiré le long des parois du foyer avant d’être mélangé au gaz. Il est ainsi préchauffé en récupérant la perte du foyer. Les pertes vers l’ambiance sont dès lors minimes.

Cette configuration liée à une régulation qui fait chuter directement la température de la chaudière à l’arrêt et à un brûleur modulant fonctionnant quasi en permanence en période de chauffe rend inutile la présence d’isolation dans la jaquette de la chaudière.

Chaudière sans isolation, dont l’air est aspiré le long du foyer.

Ces chaudières peuvent être équipées d’un système de combustion étanche (ou à ventouse) dans lequel l’air comburant est directement aspiré à l’extérieur du bâtiment.

Irrigation

Il existe de trois types de chaudière, en fonction du degré d’irrigation minimum exigé :

  • Sans irrigation imposée (chaudières à grand volume d’eau),
  • Avec irrigation faible ou moyenne imposée (chaudières à faible volume d’eau),
  • Avec irrigation importante impérative (chaudières à faible volume d’eau).

Le circuit hydraulique qui sera associé à la chaudière à condensation dépend des exigences suivantes :

  • Pour les chaudières avec faible ou moyenne exigence d’irrigation, c’est la régulation qui doit assurer un débit minimum en toute circonstance, par exemple, par action sur les vannes mélangeuses.
  • Pour les chaudières sans irrigation imposée, les circuits de distribution peuvent être extrêmement simples et optimalisés pour garantir une condensation maximale.

Dans les deux cas de figure, il est impératif d’avoir une régulation performante qui régule la température de départ chaudière en fonction des besoins et /ou de la température extérieure, afin d’optimiser les performances chaudières et limiter les pertes de distribution.

Pertes vers l’ambiance, pertes à l’arrêt et isolation

Certaines nouvelles chaudières gaz à condensation se caractérisent par l’absence d’isolation dans la jaquette. Et pourtant, leurs pertes vers l’ambiance sont très faibles.
Il y a plusieurs raisons à cela :

  • Ces chaudières sont équipées de brûleurs modulants dont la plage de modulation est grande. En journée, puisque le brûleur adapte en permanence sa puissance aux besoins. Celui-ci ne présente nettement moins de périodes d’arrêt.
  • Parallèlement à cela, l’air de combustion est aspiré par le brûleur entre le foyer et la jaquette de la chaudière. Durant le fonctionnement du brûleur, l’air lèche le foyer avant d’être mélangé au gaz. La perte du foyer est ainsi récupérée en grande partie par le brûleur.
  • Lorsque le brûleur s’arrête (par exemple, au moment de la coupure nocturne), la chaudière retombe directement en température (si son irrigation s’arrête). Elle ne présente donc plus de perte.

 Exemples de chaudière à condensation

Exemples de chaudières à condensation : 

Chaudière gaz à condensation, équipée d’un brûleur modulant 10 .. 100 % et d’un réglage automatique de la combustion par sonde d’O2.

Chaudière gaz à condensation à équiper d’un brûleur pulsé traditionnel.

Chaudière gaz à condensation avec brûleur modulant à prémélange et aspiration d’air le long du foyer en fonte d’aluminium.

 

Chaudière fioul à condensation avec brûleur à air pulsé.

Chaudière à pellets à condensation : le refroidissement des fumées s’opère en deux fois. Le premier échangeur correspond aux plus hautes températures tandis que la condensation s’opère dans le second. Cette séparation permet de récupérer le condensat efficacement sans polluer le cendrier de la chaudière.


Circuits hydrauliques associés à une chaudière à condensation

Une chaudière à condensation n’a ses performances optimales que si elle est alimentée avec une eau à basse température, en tout cas inférieure à la température de rosée des fumées (de 53 à 58 °C pour les fumées issues de la combustion du gaz naturel, environ 45 °C pour les chaudières au mazout). Plus la température d’eau de retour est froide, plus la quantité de fumée condensée est importante et meilleur est le rendement.

La configuration des circuits de distribution doit donc être adaptée en conséquence avec comme principes :

  • De ne jamais mélanger, avant le condenseur, l’eau de retour froide et l’eau chaude de départ,
  • D’alimenter le condenseur avec les retours les plus froids.

Cumul imaginaire des recyclages d’eau chaude possibles vers la chaudière. Situations à éviter.

Exemples : schémas hydrauliques proposés par les fabricants de chaudières. Remarque : d’autres schémas sont également proposés par certains fabricants. Il est impossible de les reprendre tous ici. Certains sont particulièrement complexes, pour ne pas dire « biscornus ». Nous ne critiquons pas ici leur efficacité énergétique. Nous pensons cependant qu’il est préférable de choisir les schémas les plus simples, pour des raisons de facilité de conception (diminution des erreurs de conception), de rationalisation de l’investissement et de facilité d’exploitation.

Chaufferie comprenant une chaudière à condensation pouvant fonctionner à débit variable

Exemple 1

La chaudière alimente des circuits de chauffage par radiateurs régulés en température glissante (garantis un retour le plus froid possible vers le condenseur) et une production d’eau chaude sanitaire. Les configurations de la régulation (où la température de départ de la chaudière peut rester constante) et du circuit primaire en boucle ouverte sont extrêmement simples (il n’y a pas de circulateur primaire). Des aérothermes devant fonctionner à haute température d’eau peuvent être raccordés de façon identique à la production d’eau chaude sanitaire.

ATTENTION : Le retour « haute température » by-pass une partie de la chaudière.  Pour l’ECS en été, la chaudière fonctionnera dans de mauvaises conditions !!!  Dans le cas de l’utilisation de deux retours d’eau, le retour « froid » doit rester le principal retour, avec min 60 % du débit contre 40 % max pour le retour « chaud », dans toutes les conditions d’exploitation.

Exemple 2

Le branchement de la production d’eau chaude sanitaire sur le retour « froid » de la chaudière est rendu possible par un dimensionnement de l’échangeur en régime 70°/40°. On peut également raccorder sur ce même retour froid, des batteries de traitement d’air dimensionnées en régime 70°/40° ou des ventilos-convecteurs dimensionnés en régime 55°/40°.

Exemple 3

La présence d’un circuit à très basse température comme le chauffage par le sol est à valoriser pour augmenter la condensation. La chaudière à condensation aura de bonnes performances si la puissance du circuit « basse température » équivaut au minimum à 60 % de la puissance thermique totale.

Chaufferie composée comprenant une chaudière à condensation pouvant fonctionner à débit variable, et une chaudière traditionnelle

Exemple 1

L’enclenchement des chaudières est régulé en cascade. Dans l’ordre d’enclenchement, la chaudière à condensation est prioritaire.

Exemple 2

Le fonctionnement de ce schéma est identique au précédent, mais avec une production d’eau chaude sanitaire fonctionnant en régime 70°/40°.

Exemple 3

La chaudière à condensation et la chaudière traditionnelle sont raccordées en série. La chaudière à condensation préchauffe l’eau de retour. Si la température de consigne du collecteur n’est pas atteinte, la vanne trois voies (1) bascule pour alimenter la chaudière traditionnelle qui se met alors en fonctionnement.

Chaufferie comprenant une chaudière à condensation devant fonctionner à débit constant : bouteille casse-pression et circulateur sur boucle primaire

La chaudière alimente en température glissante les circuits de chauffage par radiateurs.

Le débit constant dans la chaudière est obtenu au moyen d’une bouteille casse pression qui recycle une partie de l’eau de départ lorsque les vannes mélangeuses des circuits secondaires se ferment. Pour obtenir la condensation, malgré la possibilité de retour d’eau chaude de départ vers le condenseur (via la bouteille casse-pression), il est impératif que la température (1) à la sortie de la chaudière suive au plus près la température (2) des circuits secondaires et garantisse une ouverture maximale des vannes mélangeuses. Une régulation climatique peut assurer que la température des radiateurs est mieux adaptée aux besoins de chaleur et, donc, que les vannes mélangeuses sont plus ouvertes.

Ce type de schéma est plus complexe et risque de conduire à des performances moindres puisqu’il est quasi impossible d’empêcher le recyclage partiel d’eau chaude dans la bouteille casse-pression :

  • Les différents circuits n’ont jamais la même température de consigne,
  • Les circulateurs des circuits primaires et secondaires (et donc les débits mis en œuvre) ne sont jamais dimensionnés avec la précision voulue.

De plus, il n’est guère possible de combiner une production d’eau chaude sanitaire avec ce type de chaudière. En effet, celle-ci ne pourra, à la fois, suivre au plus près la température des circuits secondaires et produire de l’eau chaude à plus de 60 °C.

Une solution est de placer un circulateur primaire à vitesse variable. Celui-ci diminuera sa vitesse lorsque la demande des circuits secondaires diminue, empêchant le recyclage d’eau chaude dans la bouteille casse-pression. Il s’agit cependant de rester dans les limites de débit exigé par la chaudière.

Par exemple, la régulation de la vitesse du circulateur peut être réalisée comme suit : la vitesse est augmentée si la température en amont de la bouteille (T°G) est supérieure à la température en aval de la bouteille (T°D) augmentée de 2 K. Inversément, elle sera diminuée si la T°G est inférieure à T°D + 2 K. De la sorte, on est assuré du fait que l’eau de retour remontera en faible quantité dans la bouteille et que l’eau de chaudière ne sera jamais recyclée.

Chaufferie composée comprenant une chaudière à condensation devant fonctionner à débit constant et une chaudière traditionnelle

Dans un tel schéma, la chaudière à condensation est prioritaire dans l’ordre d’enclenchement de la régulation en cascade.
Pour réguler une installation de ce type en favorisant au maximum la condensation sans créer d’inconfort, il est impératif que la consigne de température des chaudières soit d’une part très proche de la température des circuits secondaires (pour éviter un retour d’eau chaude via la bouteille casse-pression) et d’autre part, que cette température soit mesurée en aval de la bouteille casse-pression (en 2 et non en 1, pour éviter une incompatibilité de débit entre le circuit des chaudières et les circuits radiateurs).

Le risque de retour d’eau chaude dans la bouteille casse-pression est moins grand que dans le cas d’une seule chaudière. En effet lorsque les besoins sont moindres et que les vannes mélangeuses des circuits secondaires se ferment, on peut imaginer que seule la chaudière à condensation est en demande. Le débit primaire est alors diminué par 2.

On peut aussi imaginer que, le raccordement du retour vers les chaudières se fasse séparément au départ d’une bouteille casse-pression verticale. Le retour vers les chaudières traditionnelles se raccordera plus haut que le retour des circuits secondaires, qui lui-même sera plus haut que le retour vers la chaudière à condensation. Cette façon de faire permet de diriger le recyclage éventuel d’eau chaude dans la bouteille casse-pression vers la chaudière traditionnelle.


Cheminées associées à la condensation

Les produits de combustion issus d’une chaudière à condensation sont saturés en vapeur d’eau dont une partie va se condenser sur les parois de la cheminée. Cela exclut une évacuation par une cheminée traditionnelle en maçonnerie, car l’humidité provoquerait de graves dommages au bâtiment. De plus, la température trop froide créé une dépression naturelle.

Des solutions particulières ont donc été mises au point pour évacuer les produits de combustion des chaudières à condensation. On rencontre ainsi principalement les deux techniques suivantes :

  1. La cheminée étanche à l’humidité, en acier inoxydable ou matériau synthétique. Elle permet de maintenir une température inférieure au point de rosée sans que l’humidité ne la traverse et attaque la maçonnerie. Fonctionnant en surpression, elle est aussi étanche aux produits de combustion.
  2. Le tubage, qui s’applique en rénovation à une cheminée ancienne. Il doit être étanche, résistant à la corrosion et installé dans une cheminée. Le tubage doit pouvoir fonctionner en surpression dans toute sa longueur. Il peut être réalisé en conduit rigide ou flexible. Dans le cas d’un tubage en conduit flexible, l’aluminium, même de qualité requise, est interdit. Le bas du conduit d’évacuation des produits de combustion doit être équipé d’une purge munie d’un siphon et reliée au réseau d’eaux usées par un conduit en matériau résistant aux condensats, le tube en PVC est réputé convenir pour cet usage.

Notons qu’il existe un agrément technique concernant les conduits de cheminée utilisables en combinaison avec une chaudière à condensation. Seuls ceux-ci peuvent être choisis.

En principe, dans une chaudière à condensation la température des fumées est supérieure à la température de l’eau entrant dans la chaudière d’environ 5 °C. La température des fumées ne peut donc jamais dépasser 110 °C qui est la limite de fonctionnement d’une chaudière. Cependant pour pallier à un défaut de la régulation de cette dernière, un thermostat de sécurité coupant la chaudière si la température des fumées dépasse 120 °C doit être prévu dans les raccordements vers la cheminée en matériau synthétique.

Il est important aussi de signaler que l’on ne peut raccorder sur un même conduit de cheminée, une chaudière traditionnelle et une chaudière à condensation.

Notons également qu’il existe des chaudières à condensation à combustion étanche (dites « à ventouse ») dont l’alimentation en air et l’évacuation des fumées se font par deux conduits concentriques (l’air est aspiré au centre et les fumées rejetées par le conduit extérieur). Une telle configuration est possible jusqu’à une puissance de 1 000 kW en conduit vertical et 160 kW en conduit horizontal.

Chaudières raccordées à un système de combustion étanche (à « ventouse »).

Pour plus d’information concernant la conception des cheminées.


Évacuation des condensats

À l’heure actuelle, il n’existe pas de normes ou de prescription en vigueur pour l’évacuation des condensats. De manière générale, les condensats sont évacués vers l’égout au moyen d’un conduit.

Photo évacuation des condensats vers les égouts.

 Photo face isolée arrière d'une chaudière à condensation au gaz avec son tuyau d'évacuation des fumées.   Photo partie inférieure du conduit de cheminée munie d'un conduit d'évacuation des condensats.

La première figure montre l’évacuation des condensats vers les égouts, la deuxième figure montre la face isolée arrière d’une chaudière à condensation au gaz avec son tuyau d’évacuation des fumées et son conduit d’évacuation des condensats (en blanc), tandis que la dernière figure montre la partie inférieure du conduit de cheminée munie d’un conduit d’évacuation des condensats.

En régime permanent, une chaudière gaz à condensation de 250 kW produit en moyenne environ 14 litres/h de condensat. Ces condensats pour le gaz naturel sont légèrement acides (H2O + CO2). Le degré d’acidité est du même ordre de grandeur que celui de l’eau de pluie (pH : 4 .. 4,5). De plus, l’acidité de ceux-ci est souvent compensée par le caractère plutôt basique des eaux ménagères. Ceci explique qu’il ne soit pas obligatoire de traiter les condensats avant leur évacuation à l’égout. Pour les grandes installations où la production de condensat devient importante devant la quantité d’eau domestique, il peut être judicieux de traiter les condensats avant de les évacuer.

Graphe représentant différents niveaux d’acidité et comparaison avec les condensats des chaudières mazout et gaz.

Dans le cas du mazout, le niveau d’acidité est plus important et est dû à la présence plus importante du soufre au sein du combustible. Le mazout extra, pauvre en Soufre, permet de limiter l’acidité. Dans ce cas de figure, les remarques pour les condensats des chaudières gaz peuvent être appliqué pour la chaudière au mazout extra. Dans le cas du mazout standard, nous conseillons le lecteur de clarifier la situation avec l’installateur ou le bureau d’études. En effet, dans les grandes installations (Pn > ~100 kW), une neutralisation des condensats pourrait s’avérer nécessaire, par exemple, dans le cas d’une utilisation continue de la chaudières (ex. piscine) qui occasionnerait une plus grande production de condensat. Pour relever le pH des condensats, on peut utiliser un bac de neutralisation équipé de filtres de charbon actif : les filtres devront être remplacés de manière périodique pour maintenir l’efficacité.

Dans le cas d’une chaufferie en toiture, il est recommandé de ne pas faire couler les condensats sur la toiture ou directement dans les gouttières (légère acidité, risque de gel et de bouchage des évacuations). Un conduit en matière synthétique raccordé directement à l’égout est indiqué.

Chaudières traditionnelles [ECS]

Chaudières traditionnelles [ECS]

On parle de « chaudière traditionnelle » en opposition aux « chaudières à condensation« . Les « chaudières traditionnelles » sont conçues et exploitées de manière à éviter la condensation des fumées.

La chaleur latente de celles-ci n’étant pas récupérée, les « chaudières traditionnelles » auront toujours un moins bon rendement que les « chaudières à condensation ».


Chaudières gaz ou fuel à brûleur pulsé

Les chaudières à brûleur pulsé sont des chaudières dont le brûleur est choisi indépendamment de la chaudière. Celui-ci peut fonctionner au gaz ou au fuel.

Les chaudières actuelles de ce type sont dites « à foyer pressurisé », c’est-à-dire que le trajet des fumées dans la chaudière est assuré grâce à la pression fournie par le ventilateur du brûleur.

   

Chaudière à foyer pressurisé sans et avec son brûleur.

Types de foyer

En gros, il existe actuellement deux types de chaudière (de puissance > 70 kW) :

  • les chaudières « à triple parcours »,
  • les chaudières « à inversion de flamme ».

Chaudière triple parcours en acier : les fumées quittent le foyer par l’arrière et parcourent à trois reprises la longueur de la chaudière avant d’être récoltées au dos de celle-ci.

Elément d’une chaudière triple parcours en fonte. Les chaudières performantes de ce type possèdent un premier et un dernier élement (refermant le foyer) entièrement parcourus par l’eau, ce qui augmente les surfaces d’échange et diminue les pertes par parois sèches.

Chaudière à inversion de flamme en acier. Dans ces chaudières, souvent de grosse puissance, le foyer est « borgne ». Les fumées ressortent de celui-ci par l’avant (le long de la flamme) avant de parcourir des tubes de fumée. Dans ceux-ci, des turbulateurs (spirales, lamelles métalliques, …) ralentissent les fumées pour augmenter l’échange avec l’eau et doser celui-ci pour éviter les condensations.

La principale différence entre ces deux configurations se situe au niveau des émissions de NOx. En effet, les chaudières à « triple parcours » permettent un court temps de séjour des fumées dans la zone de combustion, contrairement aux chaudières à inversion de flamme dans lesquelles les fumées doivent retransiter par la zone de combustion. Rappelons que un long temps de séjour des fumées dans la zone à plus haute température est favorable à la formation des NOx.

Rendement

Pertes à l’arrêt

Les pertes à l’arrêt des chaudières à brûleur pulsé modernes sont extrêmement faibles (de l’ordre 0,1 … 0,4 % de la puissance nominale de la chaudière).
Cela est la conséquence :

  • d’un degré d’isolation de la jaquette important, équivalent à une épaisseur de laine minérale de 10 cm enveloppant l’ensemble de la chaudière,
  • de la présence d’un clapet (motorisé, pneumatique, …) refermant l’aspiration d’air du brûleur lorsque celui-ci est à l’arrêt.

Isolation de la jaquette d’une chaudière à brûleur pulsé.

Rendement de combustion

Le rendement de combustion de ces chaudières est dépendant du choix du brûleur et de son réglage. Avec un brûleur finement réglé, un rendement de combustion de 93 .. 94 % est tout à fait possible dans les chaudières actuelles les plus performantes.

Rendement saisonnier

Les faibles pertes à l’arrêt et la possibilité d’obtenir des rendements de combustion les plus élevés (sans condenser), font des chaudières à brûleur pulsé les chaudières les plus performantes dans la catégorie des chaudières dites « traditionnelles »:

Exemple. Soit une chaudière correctement dimensionnée (facteur de charge (nB/nT) de 0,3) avec des pertes à l’arrêt (qE) de 0,2 % et un rendement utileutile )de 93 %.

Le rendement saisonnier de cette chaudière est estimé à :

ηsais = ηutile / (1 + qx (NT/NB – 1))

ηsais = 93 [%] / (1 + 0,002 x ((1/0,3) – 1)) = 92,6 [%]


Chaudières gaz atmosphériques

Les chaudières gaz atmosphériques sont des chaudières dont le brûleur ne possède pas de ventilateur.

Ces chaudières sont composées de rampes de brûleurs placés en dessous du foyer. L’aspiration d’air par le brûleur se fait naturellement par le gaz et les flammes. On parle de brûleur atmosphérique traditionnel quand une grande partie de l’air est aspirée au niveau de la flamme et on parle de brûleur à prémélange quand l’air est mélangé au gaz avant la flamme.

Chaudière gaz à brûleur gaz atmosphérique à prémélange.

Un coupe tirage (ouverture de la buse d’évacuation vers la chaufferie), placé à l’arrière de la chaudière annule l’influence du tirage de la cheminée sur la combustion en maintenant une pression constante à la sortie de la chaudière.

Chaudière atmosphérique :

  1. Corps de chauffe (en fonte)
  2. Échangeur à ailettes profilées
  3. Isolation
  4. Bouclier thermique
  5. Buse de fumée avec coupe-tirage intégré
  6. Tableau de commande
  7. Jaquette
  8. Porte d’accès (pivotante)
  9. Collecteur de départ
  10. Collecteur de retour
  11. Brûleur à prémélange (bas NOx)
  12. Rampe gaz
  13. Électrode d’allumage et sonde d’ionisation
  14. Transfo d’allumage
  15. Connecteurs électriques
  16. Vanne gaz à 2 allures
  17. Vanne de vidange

Avantages

  • Le prix moindre. Une chaudière atmosphérique de conception « bas de gamme » coûte moins cher qu’une chaudière équipée d’un brûleur gaz pulsé.
  • L’absence de bruit. Une chaudière atmosphérique ne comportant pas de ventilateur est nettement moins bruyante qu’un brûleur pulsé.
  • La facilité de montage et de réglage.

Inconvénients

  • Un rendement utile moindre. La gestion moins précise de l’excès d’air diminue le rendement utile des chaudières qui est voisin de 91 .. 92 % pour les nouvelles chaudières à prémélange et inférieur à 90 % pour les chaudières de conception plus ancienne (chaudières répondant juste aux exigences de l’AR du 18 mars 97 et encore vendues), alors que l’on peut espérer un rendement de 93 .. 94 % avec une chaudière moderne à brûleur pulsé bien réglée.
  • Une production importante de NOx. Les chaudières atmosphériques « bas de gamme » émettent généralement une quantité importante de NOx, à telle point que certains modèles ne peuvent plus être vendus qu’en Wallonie (émission de NO> 150 mg/kWh) où il n’y a pas de réglementation en la matière. Les technologies du prémélange et le refroidissement de la flamme au moyen de barres métalliques diminuent fortement les émissions de NOx (< 60 .. 70 mg/kWh) pour les rendre compatibles avec la plupart des labels européens.

Brûleur à prémélange « LOW NOx« .

  • Des pertes à l’arrêt plus importantes. Les chaudières purement atmosphériques (c’est-à-dire sans ventilateur) sont généralement parcourues à l’arrêt par un flux d’air continu provoquant des pertes par balayage. Par rapport aux anciens modèles de chaudière atmosphérique, celles-ci sont maintenant limitées : limitation des ouvertures de passage d’air dans les brûleurs à prémélange, ajout sur certains modèles d’un clapet sur les fumées se fermant à l’arrêt. Quelques importants fabricants de chaudières annoncent ainsi (d’autres ne donnent pas de chiffre) des pertes à l’arrêt de leurs chaudières atmosphériques de l’ordre de 0,8 .. 1,3 % de la puissance de la chaudière, sans clapet sur les fumées et de l’ordre de 0,6 .. 0,7 % avec un clapet d’obturation des fumées (pour une température d’eau de 60°C). À titre de comparaison, les pertes à l’arrêt des chaudières à brûleur pulsé modernes sont de l’ordre de 0,1 .. 0,4 %.

Pertes à l’arrêt d’une chaudière atmosphérique à prémélange actuelle de la marque « x » en fonction de la température de l’eau de chaudière.

Exemple.

Il existe sur le marché des chaudières gaz atmosphériques composées de deux ensembles brûleur-échangeur séparés, ce sous une même jaquette. Cette chaudière intègre également la régulation lui permettant de réguler en cascade les deux brûleurs. Des vannes d’isolement permettent également l’isolation hydraulique de l’échangeur à l’arrêt. Cette technique de construction permet donc, dans une seule chaudière, d’offrir les avantages de deux chaudières séparées régulées en cascade : réduction des pertes à l’arrêt, augmentation du temps de fonctionnement des brûleurs.


Chaudières gaz à prémélange avec ventilateur

On associe aussi aux chaudières gaz atmosphériques les chaudières à prémélange total mais équipées d’un ventilateur qui pulse le mélange air/gaz vers le brûleur ou placé sur l’évacuation des fumées, qui aide à vaincre la perte de charge de la chaudière. Le brûleur intégré à ces chaudières peut être un brûleur à rampes comme pour les chaudières atmosphériques ou un brûleur radiant.

Par rapport aux chaudières gaz atmosphériques (sans ventilateur), les chaudières gaz à prémélange avec ventilateur présentent les avantages complémentaires suivants :

  • Les pertes à l’arrêt sont légèrement moindres (0,5 .. 0,7 %, pour une température d’eau de 60°C), soit parce qu’un clapet d’air supprime le tirage au travers du foyer à l’arrêt, soit parce que la configuration du brûleur et du foyer est telle que le balayage d’air est moindre.
  • La technologie du brûleur radiant permet une diminution importante des émissions de NOx.
  • En outre, les brûleurs de ces chaudières sont souvent modulants, (jusqu’à 25 % pour les chaudières qui ne sont pas à condensation) ce qui implique une diminution du nombre de démarrages, donc des émissions polluantes, une diminution des temps d’arrêt de la chaudière, donc des pertes à l’arrêt et une augmentation du rendement utile à charge partielle.
  • Dans le cas d’atmosphère corrosive pour les chaudières, certaines de ces chaudières peuvent être équipées d’un système de combustion étanche (dites « à ventouse ») dont l’alimentation en air et l’évacuation des fumées se fait par deux conduits concentriques (l’air est aspiré par le conduit périphérique et les fumées rejetées par le conduit central). Une telle configuration est possible jusqu’à une puissance de 1 000 kW en conduit vertical.

Chaudières gaz reliées à un système de combustion étanche.

Il est ainsi possible d’atteindre, avec ces chaudières des rendements saisonniers proches de ceux des chaudières pressurisées à brûleur pulsé.


Les technologies « très basse température »

Actuellement, on retrouve sur le marché des chaudières traditionnelles dites :

  • « Basse température », dont la température moyenne d’eau interne ne peut descendre en dessous d’une certaine valeur, de l’ordre de 50 …60°C (on parle aussi dans la réglementation de chaudières « standards »).
  • « Très basse température », ne présentant aucune contrainte en ce qui concerne la température de l’eau.

La troisième catégorie de chaudières étant les chaudières à condensation conçues, elles, pour favoriser la condensation des fumées et fonctionnant avec les températures d’eau les plus basses.

Conception des chaudières « très basse température »

Pour éviter que les fumées ne condensent dans les chaudières « très basse température », les échangeurs de chaleur sont conçus pour qu’à aucun moment la température de paroi de l’échangeur du côté des fumées ne puisse descendre en dessous du point de rosée (.. 45°C .. pour le fuel et .. 55°C .. pour le gaz).

Exemple.

Pour certaines chaudières en fonte, le parcours de l’eau dans la chaudière est conçu pour que l’eau froide de retour n’entre pas en contact direct avec l’échangeur.

Thermographie infrarouge d’un élément en fonte d’une chaudière. l’eau de retour rentre dans l’élément par le dessus (rond bleu). Elle est dirigée vers l’extérieur de l’élément (couronne bleue, jaune et verte). Elle ne longe, ainsi, le foyer et les tubes de fumées qu’une fois réchauffée (zone rouge).

Dans les chaudières en acier, les fabricants utilisent, par exemple, des échangeurs « double parois ». Cela permet à la paroi de l’échangeur, côté fumée, d’être maintenue à une température supérieure à 60°C, même si la température de l’eau est très basse (l’échangeur se comporte comme un double vitrage).

Échangeur d’une chaudière très basse température : les fumées circulent dans les tubes doubles parois. L’absence partielle de contact entre le tube coté fumée et le tube coté eau permet aux fumées de ne pas condenser au contact de la paroi, quelle que soit la température de l’eau dans la chaudière. Sans la double paroi, la température du tube coté fumée serait presqu’égale à la température de l’eau,même si les fumées au centre du tube ont une température élevée, puisque le coefficient d’échange coté eau est nettement plus important que du coté des fumées. Les fumées condenseraient alors le long de la paroi si la température de l’eau descend sous 60°C.

Comparaison énergétique « basse température » et « très basse température »

Rendement de production

En théorie, les chaudières « très basse température » régulées en température glissante présentent un rendement saisonnier supérieur aux chaudières « basse température ». En effet, plus la température de l’eau est basse :

En pratique, la différence n’est pas aussi tranchée. En effet, le rendement de production d’une chaudière « très basse température » ne se démarque pas toujours énormément de celui d’une chaudière « basse température ».

En effet, dans les chaudières « très basse température », pour éviter que les fumées ne condensent au contact de parois de la chaudière irriguées avec de l’eau à température inférieure à 60°C, les constructeurs conçoivent des échangeurs dans lesquels l’échange de chaleur entre l’eau et les fumées est ralenti (par exemple, les tubes doubles parois).

Il en résulte un moins bon échange qu’imaginé théoriquement puisque la température de surface de l’échangeur ne descend pas sous 60° même si la température de l’eau est plus basse. La température des fumées n’est donc pas forcément plus basse pour une chaudière « très basse température » que pour une chaudière « basse température ». Pour limiter cet impact, les constructeurs augmentent la surface d’échange, ce qui augmente la taille des chaudières et leur coût.

Dans les chaudières « basse température », si la température de l’eau ne descend pas en dessous de 60°C, il n’y a aucun risque de condensation côté fumée, et on peut optimiser les surfaces d’échanges et ainsi entraîner une température de fumée plus basse et donc le meilleur rendement de combustion possible.

Pertes à l’arrêt

De plus, il est vrai que la chaudière « basse température » présente des pertes à l’arrêt légèrement supérieures mais celles-ci fortement limitées du fait d’une isolation renforcée et de la suppression des pertes par balayage avec les brûleurs pulsés (pour autant que le clapet d’air se referme effectivement à l’arrêt !).

Attention, cette conclusion n’est plus valable si on choisit une chaudière atmosphérique d’une ancienne conception, et/ou si l’installation est fortement surdimensionnée.

Pertes de distribution et de régulation

La diminution de la température moyenne de l’eau dans la chaudière, en fonction de la saison, n’a pas un intérêt énergétique que sur le rendement de la chaudière :

  • la limitation des pertes par distribution dans le collecteur primaire, dans le cas des circuits avec distribution secondaire possédant sa propre régulation de température (vannes mélangeuses),
  • la limitation des pertes de distribution dans l’ensemble du réseau de distribution dans le cas des installations sans circuit secondaire,

Cela permet également de simplifier la conception des circuits hydrauliques, puisqu’il ne faut plus faire attention à la température de l’eau qui alimentera la chaudière.

Réduire les besoins d’eau chaude sanitaire

Réduire les besoins d'eau chaude sanitaire

Le technicien améliore sans cesse la performance,
et l’usager augmente sans cesse les besoins…


Réduire le temps d’utilisation

La réduction de la durée d’utilisation peut être directe : une robinetterie à fermeture automatique (= bouton poussoir) dans les installations publiques permet de diminuer drastiquement la consommation d’eau.

Elle peut être aussi indirecte : une robinetterie thermostatique peut entraîner un gain de temps par un réglage plus rapide de la température de l’eau mitigée.

Le réglage optimum du débit avant celui de la température

Il semble que le facteur numéro 1 de consommation d’énergie soit la quantité d’eau utilisée, avant la température. Donc il faut d’abord chercher à ce que le robinet fournisse juste le débit d’eau nécessaire, et dans un deuxième temps à ce que l’adaptation de la température souhaitée entraîne le moins de consommation d’eau chaude.

L’ergonomie des différents robinets mérite donc une attention particulière, au regard de l’occupation des mains de l’utilisateur. Dans certains cas, les mains étant occupées par un objet (lavage, …), il peut être utile de sélectionner une robinetterie dans l’ouverture est commandée par le genou ou le pied (pédale).

Mitigeur mécanique ou thermostatique ?

Le gain théorique du thermostatique est moins élevé qu’il n’y paraît car la qualité de l’appareil, la méconnaissance de l’utilisateur ou la mauvaise performance de la régulation d’eau chaude peut réduire l’avantage (étude du CSTB-France). Il semble que le mitigeur thermostatique de douche apporte surtout des économies lors du deuxième usage rapproché (rinçage, par exemple). Sur base d’un surcoût moyen de 45 €, le CSTB annonce un temps de retour de 4 ans dans un usage familial. En usage tertiaire, le temps de retour est donc nettement plus faible.

De plus, les thermostatiques intègrent une fonction de sécurité grâce à un bouton « stop » qui limite la température de l’eau mitigée en sortie à 38°C et permet ainsi d’éviter les risques de brûlure (très utile en milieu fréquenté par des enfants).

Pour augmenter les économies, certains thermostatiques sont équipés d’un bouton « éco » : un geste spécifique est nécessaire pour obtenir un débit plus élevé.

Photo bouton bouton "éco".

Une amélioration du confort

Le thermostatique amène un confort supplémentaire en terme de stabilité de température, même lorsque la production instantanée entraîne des fluctuations de température de l’eau chaude.

Le placement de mitigeurs thermostatiques est donc à recommander, mais sans oublier d’informer l’utilisateur de son usage.

Comportement des usagers

Il ne faut pas perdre de vue en effet que ces mélangeurs peuvent demander une sensibilisation de l’utilisateur.

Sont-ils au courant du budget de l’eau chaude du bâtiment (en moyenne 5 € par m³ ? Connaissent-ils le principe du mitigeur thermostatique ? …

Une sensibilisation des usagers sera toujours la bienvenue, en se rappelant que Coca-Cola nous bombarde toujours de publicité alors que nous sommes bien au courant de la merveilleuse saveur de ce breuvage. Ils connaissent l’effet de répétition.

A nous de nous en inspirer pour ne pas nous décourager dans nos campagnes !

Pour favoriser l’usage préférentiel de l’eau froide pour se laver les mains, il est plus aisé de n’ouvrir que l’eau froide avec un mélangeur qu’avec un mitigeur. Aussi, certains fabricants proposent des mitigeurs avec une manette un peu particulière. En effet, la tête céramique est conçue pour que la position centrale corresponde en fait à la position « pleine eau froide » au lieu de la position « eau mitigée ».


Réduire la pression

Une pression trop importante donne naissance à une vitesse excessive qui provoque une consommation importante, du bruit dans les canalisations et une fatigue prématurée des équipements (d’où un risque accru de fuites).

Le placement d’un réducteur de pression permet de réduire la pression à un niveau voulu. Il se place chaque fois que la pression statique d’alimentation dépasse 3 bars dans une adduction domestique (à l’entrée de l’installation, après le compteur).

Réducteur de pression d’eau.

En théorie, le gain en débit varie comme la racine carrée de la pression : si la pression chute au quart, le débit chute de moitié. Mais en pratique, si la pression est forte, l’usager réduit de lui-même le débit d’eau, si bien que l’économie est moins importante.

Remarque : attention au cas où la production d’eau chaude serait réalisée par un petit appareil gaz instantané. Il est parfois nécessaire d’avoir un débit d’eau suffisant pour enclencher le chauffage de l’eau et la réduction des pressions risquerait d’empêcher ce fonctionnement. On testera au préalable la sensibilité de l’appareil à ce niveau.

La protection des équipements contre les fortes pressions et donc la limitation des fuites est par contre bien réelle.

« Réduire la pression nous paraît essentiel, pour éviter le gaspillage, bien sûr ».

Réduire le débit

Remplacement des anciennes robinetteries

Les débits des anciennes robinetteries de puisage sont de 30 à 50 % supérieurs à ceux de modèles modernes. Les investissements consentis s’amortissent dans une période de 5 à 10 ans, suivant la fréquence d’utilisation. Si l’ancienne robinetterie n’est pas étanche, le temps de retour sera encore plus cour

On peut encore trouver des vieilles pommes de douches à …30… litres/minute. Un tel équipement sera remplacé par des pommes modernes du type …8… litres/minute.

Placement de mitigeur avec butée

Ce type de robinetterie s’utilise comme un mitigeur classique. Toutefois, un point « dur » ou une butée délimite les 2 zones de fonctionnement : une zone économique (de 0 à 6 litres/min environ) et une zone de confort (jusqu’à environ 12 litres/min).

Photo mitigeur avec butée.

Le surcoût de cette technique est négligeable et donc le temps de retour est immédiat.

Placement de « mousseurs »

Il s’agit d’un régulateur de débit qui réduit la section de passage en fin de robinetterie et/ou qui crée un mélange air/eau. Il participe en même temps à la performance acoustique du robinet. Il permet par exemple de réguler un débit maximum de 6 ou 8 litres/minute. Un mousseur revient environ à 5 €.

Photo "mousseurs".

Il reste à juger de l’opportunité de réduire le débit en fonction de l’usage : réduire le débit à un lavabo, oui, mais réduire le débit à l’évier de la vaisselle où le personnel mettra alors plus de temps pour remplir une casserole d’eau chaude, peut-être pas …

On rencontre aussi ce type de réducteur de débit dans des « douchettes économes » : soit une manette permet de réduire le débit, soit un effet de « nuage d’eau » est créé. Attention au fait que ce type de douchette peut accélérer le phénomène d’aérosolisation, et donc une sensibilité plus grande à la contamination par la légionelle.

Photo "douchettes économes".

Attention également au fait que ces équipements terminaux modifient la courbe de réglage en température. La mise en place d’une perte de charge supplémentaire diminue « l’autorité » de la vanne. Si l’évolution est au départ linéaire, la perte de charge finale limite la zone de réglage de la température sur une bonne partie de la plage angulaire.

Problème commun à tous ces équipements : le calcaire !

L’entartrage de ces équipements est un problème si l’eau est particulièrement chargée en calcaire. Un entretien régulier des équipements (vinaigre, produit de type « Viakal », …) ou un adoucissement de l’eau avant son chauffage peut être nécessaire.

Les douchettes avec picots sont donc à privilégier : un simple grattage des picots permet alors de décoller les dépôts.


Réduire les fuites

Dans la Région de Charleroi, une commune a placé tous ses bâtiments (administration, écoles, …) en télégestion par un installateur de la commune. Comme une entrée libre est souvent disponible sur le régulateur numérique de l’installation de chauffage, le signal du compteur d’eau de chaque bâtiment y a été greffé. Un suivi automatique était dont réalisé sur la consommation d’eau. Si deux jours de suite, la consommation de nuit était jugée anormale par l’ordinateur, le service technique de la commune en était informé.

Une diminution drastique de la consommation d’eau s’en est suivie, particulièrement dans les écoles !

La fuite d’eau la plus courante est liée aux WC. Elle est généralement visible par le filet d’eau liée au trop plein dans le réservoir. À défaut, il est possible de fermer le robinet d’arrêt pour observer si le niveau d’eau diminue dans le réservoir.

Mais elle n’entraîne pas de consommation énergétique. Il n’en est pas de même au niveau de certains équipements :

Mélangeur sensible aux impuretés

L’élément sensible est généralement la tête, qu’elle soit à clapet (attention au serrage trop fort lors de la fermeture) ou céramique (sensible aux impuretés). On détecte le problème par le goutte-à-goutte persistant, même lorsque le robinet est fermé.

Remplacement de la cartouche.

Idéalement, il faudrait poser un filtre en amont de l’installation pour éliminer les particules qui pourraient nuire au bon fonctionnement de la robinetterie.

Pour ce qui est du remplacement, une tête céramique coûte en moyenne 10 € et un joint pour une tête à clapet coûte en moyenne 3 €. On vérifiera l’état du siège pour faire un rodage éventuel.

Robinet d’arrêt

Les robinets d’arrêt sont également assez sensibles au tartre. Il est conseillé de les manœuvrer régulièrement (1 fois par mois) afin d’éviter l’apparition de fuites (généralement situées au niveau du joint presse étoupe) lors d’une action après une longue période sans manœuvre.

Groupes de sécurité des ballons électriques

Ces appareils doivent être situés à l’amont immédiat des ballons électriques qu’ils protègent. Ils permettent d’éviter une montée en pression à l’intérieur du ballon due à la dilatation de l’eau provoquée par une élévation de température. Des évacuations ponctuelles de petites quantités d’eau sont donc normales lors de la période de chauffage. Il faut par contre surveiller que la soupape ne soit pas bloquée en position ouverte à cause de particules de tartre. L’évacuation automatique vers l’égout peut masquer longtemps ce problème…

Si tel est le cas, il faut vidanger le ballon pour procéder au nettoyage ou au remplacement du groupe.

D’une manière générale, il est conseillé de les manœuvrer régulièrement pour éviter le risque d’entartrage (1 fois par mois).

« Repassage » de l’eau froide dans l’eau chaude

Il arrive régulièrement que lors d’une défectuosité de la tête des mitigeurs ou des mélangeurs, l’eau froide, pour une question de pression, passe dans la conduite d’eau chaude et refroidisse la boucle d’eau chaude (présente dans le tertiaire). Il s’ensuit :

  • Une augmentation de la consommation d’énergie pour rattraper la perte de température de l’eau chaude.
  • Un risque de prolifération des légionelles vu que la température de la boucle d’eau chaude risque de se trouver dans la zone de température de développement optimal des méchantes bestioles (25-45°C).

Pour pallier à ce problème, il y a lieu d’essayer d’égaliser les pressions d’eau chaude et froide à tous les étages du bâtiment et d’essayer de détecter les émetteurs défectueux (en général, la sous-boucle d’eau chaude devient de plus en plus froide au fur et à mesure des soutirages d’eau chaude par les émetteurs voisins à celui défectueux).


Supprimer l’eau chaude dans les sanitaires de bureaux

Dans la conception des immeubles récents, il est très fréquent de ne plus apporter d’eau chaude dans les sanitaires des espaces bureaux, logistiques, où l’activité est peu salissante.

Alors, pourquoi ne pas déconnecter les installations existantes ?

Si de plus une boucle de circulation est associée à ce réseau, une économie très importante s’en dégagera.

Si l’option est prise de déconnecter l’eau chaude d’un point de puisage, attention toutefois à la création de bras mort où des foyers de légionelles peuvent se développer.

Il est impératif d’appliquer l’une des deux méthodes suivantes :

Conservation de la conduite d’amenée d’eau chaude

Le placement d’une vanne de sectionnement le plus près possible du collecteur d’eau chaude ou de la boucle secondaire (si présente) permet d’éviter la création d’un bras mort tant redouté.

Enlevement de la conduite inutilisée

La suppression pure et simple de la conduite d’alimentation en eau chaude du point de puisage paraît excessive (coûts important). En effet, il faut :

  • de toute façon vidanger une partie de l’installation et placer une vanne de sectionnement;
  • enlever la conduite depuis le point de puisage jusqu’à la vanne d’arrêt.

Cependant, dans les grandes installations sanitaires, le démantèlement ordonné des conduites des points de puisage permet de garder une certaine clarté par rapport à la maintenance du réseau hydraulique (à étudier au cas par cas selon la modularité de l’activité tertiaire).

De toute façon, quelle que soit la méthode adoptée, il faut utiliser un code de repérage à la fois sur site et sur les plans hydrauliques de manière à garder une situation bien à jour.

Améliorer la production d’eau chaude sanitaire

Renforcer l’isolation du ballon de stockage

Autrefois, comme mesure d’économie d’énergie, on aurait proposé de diminuer la température de l’eau pour limiter les pertes de tout le réseau. Passer de 60°C à 45°C permet de diminuer les pertes de l’ordre de 30 %. De plus, avec des températures d’eau inférieures à 60°C, les risques d’entartrage et de corrosion diminuent fortement.

Mais la gestion de la légionelle impose aujourd’hui de privilégier un stockage à une température minimale de 60°C, surtout si des douches sont présentes sur le réseau (la légionelle se transmet par inhalation de micro-gouttelettes).

Tout particulièrement, on examinera si le fond du ballon est isolé (parfois l’isolation ne couvre que les parties verticales), car à cet endroit, la stagnation d’eau tiède est propice au développement de la bactérie. Une isolation urgente s’impose

A priori, un stockage à haute température ne génère pas en soi une consommation énergétique élevée… pour autant qu’une isolation renforcée limite drastiquement les pertes.

Évaluer

Pour plus d’infos sur la rentabilité de l’isolation d’un ballon accumulateur.

Concevoir

Pour plus d’infos sur le choix de l’isolation d’un ballon accumulateur. !

La mise en œuvre nécessite un certain soin. Dans une campagne de mesures sur site, l’EDF a constaté que les pertes réelles dépassent souvent le double de la valeur obtenue par calcul théorique. La mise en œuvre pas toujours aisée de l’isolation en jaquette souple génère des courants convectifs non contrôlés (c.à.d. un effet de cheminée entre le ballon et l’isolant). Le calorifuge sous tôle galvanisée est plus hermétique.

Et les pertes augmentent avec le vieillissement de l’isolant.

L’intention de départ était louable…


Améliorer la stratification des températures

Il est difficile d’améliorer la stratification des températures dans un ballon existant (voir techniques d’évaluation de la stratification). En pratique, une intervention ne se justifie que dans un cas assez critique : celui d’un ballon placé horizontalement.

Il est cependant également possible de renforcer l’isolation des tuyauteries de raccordement et de la boucle de circulation, pour limiter les thermo-circulations d’eau parasites.


Réduire le volume du réservoir d’eau chaude

Lorsque la capacité des ballons est trop élevée et qu’il en existe plusieurs, la mise hors service d’un ballon est alors justifiée pour limiter les pertes par les parois.


Si une telle situation se rencontre systématiquement en fin de journée,
il y a intérêt à couper l’alimentation du 3ème ballon.

Calculs

Pour évaluer les pertes énergétiques d’un ballon non utilisé.

Concevoir

Pour dimensionner l’installation nécessaire,

Décentraliser la production d’eau chaude

Pour 2 litres d’eau utiles, 4 restent dans la tuyauterie…

S’il existe des points de puisage à faibles besoins et forts éloignés de la production centrale, il peut être avantageux de prévoir des petits chauffe-eau individuels : soit des instantanés gaz, soit des petits accumulateurs électriques. Cela permet d’augmenter le confort (diminution du temps d’attente) et de diminuer les pertes (pertes de l’eau chaude « qui reste » dans les tuyauteries).

Évaluer

Pour évaluer la rentabilité de la décentralisation.

Produire près du consommateur…

L’arrivée des préparateurs instantanés gaz avec cheminée « ventouse » permet aujourd’hui de reposer la question de l’emplacement du préparateur d’eau chaude sanitaire. Production en centrale de chauffe en sous-sol, à grande distance des utilisateurs, avec une chaudière surdimensionnée en été ? Ou au contraire, des préparateurs décentralisés proche des points de soutirage. On peut sans danger faire circuler une conduite de gaz dans le bâtiment.

On peut ainsi imaginer, lors d’une rénovation du système, que des productions différentes soient réalisées pour des groupes d’utilisateurs différents (un réseau « cuisine et buanderie », un réseau « sanitaires », par exemple). Cela permet notamment de générer des réseaux avec des températures différentes.

Il est également possible de disposer d’accumulateurs électriques décentralisés. Mais attention, dans le bilan, on tiendra compte qu’il s’agit souvent de courant électrique de jour (dont le prix du kWh est 2 à 3 fois plus élevé que le prix du kWh thermique…), sauf si une horloge est placée sur son alimentation.

...mais multiplier la puissance installée.
La décentralisation apporte un inconvénient : la puissance de chauffage totale à installer sera augmentée puisqu’en chaque lieu de puisage, on doit prévoir le débit d’eau maximum. Lorsque l’installation est centralisée au contraire, un effet de foisonnement a lieu. Par exemple, un ballon de stockage centralisé fournira l’eau des douches à un autre moment que l’eau de la vaisselle : les volumes à stocker ne doivent pas être additionné.


Placer un capteur solaire à eau chaude

La pose des capteurs solaires pour préchauffer l’eau chaude sanitaire est aujourd’hui une technique qui est arrivée à maturité; maturité technique et financière.

Les applications solaires les plus intéressantes économiquement se retrouvent parmi les établissements consommant de grandes quantités d’eau chaude : les hôpitaux, les piscines et les établissements d’accueil social (maisons de repos, centres d’accueil pour personnes handicapées, …), les internats, grands hôtels, centres de vacances, immeubles de plus de 15 logements, restaurants d’entreprise,…

A tout le moins, si une rénovation de la production d’eau chaude sanitaire est à l’ordre du jour, si une toiture plate ou à inclinaison sud est disponible, une étude de préfaisabilité s’impose. Des petits logiciels Excel vous permettent de faire le point rapidement.

Concevoir

Pour plus de détails sur les coûts, la rentabilité d’un projet, les outils d’aides à la décision.

Études de cas

Pour parcourir un exemple audit solaire établi pour le home La Charmille à Gembloux.

De nouveau, on prendra en compte que le chauffage de l’eau chaude sanitaire par un système solaire risque de ne pas être suffisant pour élever la température moyenne de l’eau sanitaire à une valeur suffisante (55-60°C) afin d’éviter de se trouver dans la plage de prolifération des légionelles. Il est donc nécessaire de considérer les systèmes solaires comme un moyen de préchauffage de l’eau sanitaire en complément d’une production classique.


Produire l’eau chaude avec une pompe à chaleur ?

Il est possible de produire de l’eau chaude sanitaire au moyen d’une pompe à chaleur. Différentes technologies sont possibles. De la chaleur « gratuite » sera extraite d’une source (air extérieur, nappe phréatique, …) et sera communiquée au ballon d’eau chaude.

L’avantage est mesuré par le COP (Coefficient de Performance) de la pompe à chaleur : un COP de 3 signifie qu’il faut donner 1 kWh électrique au compresseur pour fournir 3 kWh de chaleur dans le ballon d’eau chaude. Au passage, 2 kWh auront donc été pompés sur la source.

Rentabilité du projet ?

Une telle amélioration est surtout rentable si la situation de départ est une installation de production d’ECS électrique. La consommation électrique pourra être divisée par le COP. Ainsi, dans le programme de promotion des économies d’énergie suisse « Ravel », on annonce un COP annuel de 3 pour une pompe à chaleur Air-Eau et de 4,5 si la pompe capte l’énergie dans le sol (ce dernier chiffre nous paraît exagéré puisqu’une campagne de mesure faite par l’Université de Mons sur des installations de chauffage de bâtiments révèle des COP annuels de l’ordre de 2,5 à 2,9).

Mais attention, ces chiffres ne s’appliquent que si le chauffage de l’eau est limité à 50°C. Si le stockage est prévu à 60°C, une batterie électrique doit fournir le complément avec de l’électricité directe (–> COP = 1); ce qui est le cas lorsqu’on considère qu’une température de production d’eau de 60 °C est nécessaire pour éviter la prolifération des légionelles.

Imaginons le chauffage d’1 m³ de 10 à 60°C par une pompe à chaleur air-eau.

L’énergie nécessaire au chauffage de 10 à 50°C par la PAC sera de :

Énergie = 1 m³ x 1,163 kWh/m³ x (50 – 10) / 3 = 15,5 kWh

L’énergie complémentaire pour passer de 50 à 60°C sera de :

Energie = 1 m³ x 1,163 kWh/m³ x (60 – 50) = 11,6 kWh

Le COP moyen annuel est alors de :

COP = Energie produite / Energie fournie
= [1 m³ x 1,163 kWh/m³ x (60 – 10)] / [15,5 + 11,6]
= 2,15

On sera donc très attentif aux instructions fournies par le constructeur. Ceci d’autant plus qu’il n’existe pas de standard de mesure des performances d’une PAC, du moins pour en évaluer son rendement saisonnier. Il faut bien analyser

  • Pour quelle température de la source le COP est fourni ?
  • Jusqu’à quelle température l’évaporateur peut extraire la chaleur de la source ?
  • Jusqu’à quelle température le condenseur peut chauffer le ballon ?

On aura également tout intérêt à conserver une température d’eau dans le ballon la plus basse possible (45°C par exemple). Mais ceci suppose un réservoir suffisamment grand. Par ailleurs, cela peut aller à l’encontre de la protection anti-légionelle. Au minimum, on prévoiera une montée temporaire de chauffage à 70°C par une résistance électrique toutes les semaines ou tous les 15 jours.

Sources particulières

Le placement d’une pompe à chaleur doit surtout s’envisager s’il existe une source particulière de chaleur disponible dans le bâtiment (air extrait ? process ? four ?…). Par exemple, refroidir (et déshumidifier par la même occasion) une buanderie surchauffée et produire ainsi de l’eau chaude sanitaire : coup double !

Il faut par contre éviter de placer une pompe à chaleur pour « récupérer la chaleur disponible en cave » :

  • D’abord, parce qu’il est plus logique d’éviter les pertes qui sont à l’origine de cette chaleur (chaudière, tuyauteries, …) que de les récupérer (il suffira d’ailleurs de changer de chaudière pour perdre la source !).

 

  • Ensuite, parce qu’un niveau de température élevé ne traduit pas forcément une quantité de chaleur importante (cela peut traduire une mauvaise ventilation de la cave, par exemple).

 

  • Enfin, parce qu’une partie de cette chaleur est déjà récupérée par le plancher du rez de chaussée.

Concevoir

Pour plus d’info sur le choix et la mise en place d’une pompe à chaleur pour la préparation d’eau chaude sanitaire.

Désolidariser chauffage de l’eau chaude et chauffage du bâtiment ?

Dans certaines installations, le chauffage de l’eau chaude sanitaire est combiné au chauffage du bâtiment.

L’eau chaude sanitaire est alors un utilisateur au même titre que la batterie de chauffe du groupe de préparation d’air. Elle bénéficie du rendement de production saisonnier de l’ensemble, ce qui est bénéfique.

En dehors de la période de fonctionnement du chauffage, la question se pose de l’opportunité de découpler ce système et de passer, par exemple, à un système de production d’eau chaude indépendant à l’électricité ?

Il est difficile de trancher ce débat dans l’absolu. Voici les arguments de part et d’autres.

Arguments favorables au découplage

Le rendement de production de l’eau chaude sanitaire peut se dégrader en été :

  • si la chaudière est maintenue en température en permanence sur son aquastat,

 

 

  • si la chaudière est beaucoup trop puissante par rapport aux besoins de l’eau chaude sanitaire (les cycles de fonctionnement du brûleur seront courts et les démarrages fréquents, ce qui est synonyme de mauvaise combustion),

 

  • si l’ensemble du réseau primaire doit être maintenu en température uniquement pour le chauffage de l’eau sanitaire.

Un rendement inférieur à 20 % est alors tout à fait possible…

On peut envisager la possibilité de greffer une résistance électrique sur le ballon accumulateur. Tout particulièrement si les besoins d’eau chaude sont faibles (mais peut-être qu’alors un simple ballon près de la cuisine suffit ?).

En rénovation, tout dépendra des performances de la production combinée existante.

Par exemple, l’association CEDICOL a réalisé une mesure sur site (source : magazine « L’entreprise », mars 90) dont il ressort un rendement saisonnier annuel de production d’eau chaude de 71 % et un rendement d’été de 49 % :

La production de cette installation domestique est, en été, de 186 litres d’eau chaude par jour.

L’installation comprend une chaudière au fuel de 27 kW alimentant un ballon de stockage de 160 litres. La chaudière est régulée en température glissante avec une priorité sanitaire. Cela signifie qu’entre deux demandes du ballon, la chaudière redescend en température.

Durant l’été 88, la chaudière à consommé 189 litres de fuel (soit 1 880 kWh) pour produire 24 180 litres d’eau chaude (soit 939 kWh). Le rendement de production en été est donc de 939 / 1 880 kWh = 49 %.

Pour l’ensemble de l’année, le système produit 42 150 litres d’eau chaude avec un rendement saisonnier de 71 %.

Séparer la production d’eau chaude en été, et produire cette dernière au moyen de l’électricité permettrait de gagner :

1 880 [kWh] x (1 – 49 % / 93 %) = 890 [kWh]

Le gain financier est de :

  • Facture d’été en production combinée : 189 [litres] x 0,2116 [€/litres] = 40 [€]
  • Facture d’été en production séparée électrique : 990 [kWh] x 0,044 [€/kWh] = 44 [€]
  • Perte : 4 [€/an]

On se trouve dans la situation la plus favorable de production combinée, avec une chaudière fonctionnant en température glissante. Dans le cas d’une ancienne chaudière restant à température constante tout l’été (de 70°C, par exemple), il n’est pas rare d’avoir des rendements de production inférieurs à 20 % en été !

Dans ce cas, le bilan serait alors le suivant :

  • Consommation en fuel d’été : 1 880 [kWh] x 49 [%] / 20 [%] = 4 606 [kWh] ou 460 [litres fuel]
  • Gain énergétique : 4 606 [kWh] x (1 – 20 % / 93 %) = 3 616 [kWh]
  • Facture d’été en production combinée : 460 [litres] x 0,2116 [€/litres] = 97 [€]
  • Facture d’été en production séparée : 990 [kWh] x 0,044 [€/kWh] = 44 [€]
  • Gain : 53 [€/an]

La solution du ballon électrique est cependant à éviter s’il existe une boucle de circulation mal isolée générant des pertes permanentes élevées :

En effet, l’eau froide de retour perturbe la stratification des températures dans le ballon. Plusieurs situations peuvent se produire : soit l’eau chaude n’est plus assurée, soit le thermostat s’enclenche pour réchauffer le ballon, soit un réchauffage de boucle maintient la température à son niveau. Mais ceci génère un chauffage électrique de jour assez coûteux.

Arguments favorables au maintien de la production combinée

Si la chaudière est suffisamment performante, la question du maintien de la production de chaleur combinée se justifiera la plupart du temps. Après tout, le prix de l’énergie électrique est double de celui de l’énergie thermique, en moyenne.

On peut dès lors envisager des alternatives :

  • La première est de limiter au maximum la puissance de chaudière utilisée :
    • vérifier le bon fonctionnement en cascade des chaudières et en particulier des vannes d’isolement motorisées des chaudières,
    • si les chaudières ne sont pas équipées de vannes d’isolement motorisées, mettre les chaudières inutiles en été à l’arrêt et fermer manuellement leur vanne d’isolement,
    • vérifier la bonne régulation des allures de brûleur de manière à favoriser le fonctionnement de la chaudière en petite puissance.
  • La deuxième consisterait à fractionner la puissance de chauffe et à installer une petite chaudière en cascade dont la puissance convient pour le chauffage de l’eau chaude sanitaire en été. Elle sera utile également pour les relances de début de journée en mi-saison, évitant ainsi la mise en température de la chaudière principale.
Exemple théorique.

Comparons les pertes d’une installation combinée et d’une chaudière propre à la production d’eau chaude sanitaire.

Hypothèse : il s’agit d’une installation équipant un home pour personnes agées. La consommation globale en eau chaude du bâtiment est estimée à 1000 m³ d’eau à 60°C par an. Le besoin énergétique pour chauffer cette eau est de :

1,16 [kWh/m³.°C] x 1000 [m³/an] x (60 [°C] – 10 [°C]) = 58 000 [kWh/an]

dont 38 400 [kWh/an] durant la saison de chauffe et 19 600 [kWh/an] en été.

Installation combinée : une chaudière de 650 kW moderne ayant un coefficient de perte à l’arrêt (à 70°C) de 0,3 % de la puissance chaudière. Cette chaudière reste en permanence à une température de 70°C, été comme hiver, pour produire l’eau chaude sanitaire. Elle alimente en permanence un collecteur de distribution de 20 m (DN 100). En été, son rendement de combustion baisse de 2 % suite à un fonctionnement par de nombreux cycles courts (la puissance de l’échangeur sanitaire étant nettement inférieure à la puissance de la chaudière). Il passe de 92% à 90%.

Installation séparée : une chaudière de 500 kW pour le chauffage et une chaudière de 150 kW pour la production d’eau chaude sanitaire. A 70°C, ces deux chaudières ont le même coefficient de perte à l’arrêt que la chaudière de 650 kW. La chaudière de chauffage est régulée en température glissante (température moyenne de 43°C) et arrêtée en été. Ses pertes à l’arrêt sont ainsi réduites à 0,1 %. La chaudière de 150 kW est, elle maintenue à 70°C toute l’année.

Pertes

Installation combinée
[kWh/an]

Installation séparée
[kWh/an]

Différence
[kWh/an]

En hiver (5 800 h/an)

Pertes de combustion 38 400 [kWh/an] x (1 – 0,92)
= 3 072 [kWh/an]
0 [kWh/an]
Pertes à l’arrêt de la chaudière « chauffage » 0,003 x 650 [kW] x 3 925 [h/an] / 0,92
= 8 320 [kWh/an] (*)
0,001 x 500 [kW] x 4 000 [h/an] / 0,92 = 2 174 [kWh/an] 6 146 [kWh/an]
Pertes à l’arrêt de la chaudière « eau chaude » 0,003 x 150 [kW] x 5 500 [h/an] / 0,92 = 2 055 [kWh/an] – 2 055 [kWh/an]
Pertes du collecteur « chauffage » 16,7 [W/m] x 20 [m] x 5 800 [h/an] / 0,92
= 2 106 [kWh/an]
7,7 [W/m] x 20 [m] x 5 800 [h/an] / 0,92 = 971 [kWh/an] 1 135 [kWh/an]
Pertes d’hiver 3 072 [kWh/an] + 8 320 [kWh/an] + 2 106 [kWh/an] = 13 498 [kWh/an] 3 072 [kWh/an] + 2 174 [kWh/an] + 2 055 [kWh/an] + 971 [kWh/an] = 8 272 [kWh/an] 5 226 [kWh/an]

En été (2 960 h/an)

Pertes de combustion 19 600 [kWh/an] x (1 – 0,90)
= 1 960 [kWh/an]
19 600 [kWh/an] x (1 – 0,92)
= 1 568 [kWh/an]
392 [kWh/an]
Pertes à l’arrêt de la chaudière « chauffage » 0,003 x 650 [kW] x 2 935 [h/an] / 0,90
= 6 359 [kWh/an]
6 359 [kWh/an]
Pertes à l’arrêt de la chaudière « eau chaude » 0,003 x 150 [kW] x 2 860 [h/an] / 0,92 = 1 399 [kWh/an] – 1 399 [kWh/an]
Pertes du collecteur « chauffage » 16,7 [W/m] x 20 [m] x 2 960 [h/an] / 0,90 = 1 098 [kWh/an] 1 098 [kWh/an]
Pertes d’été 1 960 [kWh/an] + 6 359 [kWh/an] + 1 098 [kWh/an] = 9 417 [kWh/an] 1 568 [kWh/an] + 1 399 [kWh/an] = 2 967 [kWh/an] 6 450 [kWh/an]

Sur l’année

Bilan global – pertes totales 22 915 [kWh/an] 11 239 [kWh/an] 11 676 [kWh/an] ou 1 168 [m³gaz/an]

L’installation d’une chaudière combinée entraînerait donc une surconsommation d’environ 1 200 m³ de gaz par an ou une dépense complémentaire d’environ 275 € par an.

(*) Justification des heures prises en compte :
La saison de chauffe dure 5 800 [h/an]. La chaudière de 650 kW tourne 1 800 h/an pour le chauffage et 100 h/an pour l’eau chaude sanitaire (75 en saison de chauffe et 25 en été). La chaudière reste donc chaude sans que son brûleur ne fonctionne durant 3 925 h/an. La chaudière de 500 kW tourne 1 800 h/an pour le chauffage et est en attente chaude 4 000 h/an. La chaudière de 150 kW tourne 400 h/an (dont 100 h en été.

  • La troisième consisterait à limiter l’enclenchement de la chaudière dans le temps. En effet, si la demande peut être couverte facilement par une ou deux relances de la chaudière sur la journée, une horloge peut imposer les plages horaires durant lesquelles le réchauffage du ballon est autorisé. Par exemple : de 5 à 7 heures du matin et de 16 à 18 heures en fin de journée. Ainsi, on évitera de multiples remises en route de la chaudière tout au long de la journée !
  • Enfin, puisqu’il s’agit de besoins d’été, ils peuvent également être couverts presque totalement par une installation de capteurs solaires. Le moment est alors bien choisi pour étudier la faisabilité d’un tel investissement. Mais il faudra s’assurer que le système de chauffage dispose Dun mode « veille » très économe lorsque le soleil est actif.

Une campagne de mesure ?

On le voit, le choix est totalement dépendant de la situation locale.

Il est possible d’évaluer plus précisément sa situation en mesurant la consommation de combustible l’été et la quantité d’eau chaude consommée. À défaut de disposer d’un compteur d’eau spécifique sur le départ d’eau chaude, on pourra faire une évaluation grossière sur base des débits des équipements sanitaires (autant de douches à 40 litres/douche, etc…).

Très approximativement, on retrouvera le rendement de production de l’eau chaude par les formules :

Énergie utile [kWh] = Nbre de m³ à 60°C x 1,163 [kWh/m².K] x (60 – 10) [K]

Energie fournie [kWh] = Nbre de m³ de gaz ou de litres de fuel x 10

Rendement = Energie utile / Energie fournie

Exemple : s’il a fallu 6 500 m³ de gaz pour produire 220 m³ d’eau chaude à 60°C, le rendement de production est de :

220 x 1,163 x (60 – 10) / 6 500 x 10 = 20 %

A comparer avec les rendements de production des systèmes neufs et avec le coût d’un nouveau système.

En général, décider de désolidariser l’eau chaude sanitaire sous entend de se poser la question d’une rénovation plus fondamentale de la production de chaleur.

Concevoir

Pour plus d’informations sur la conception d’une installation d’eau chaude sanitaire.

Intégrer une priorité eau chaude sanitaire

Conflit entre chauffage du bâtiment et chauffage de l’eau chaude sanitaire

Si la chaudière réalise à la fois le chauffage du bâtiment et le chauffage de l’eau chaude sanitaire, un conflit de température apparaît :

  • Pour augmenter le rendement d’une chaudière, il est intéressant de travailler à basse température, surtout s’il s’agit d’une chaudière récente (dite à « très basse température » ou à condensation). Par exemple, la température de l’aquastat sera adaptée en fonction de la température extérieure afin de ne chauffer qu’à la température minimale nécessaire.
  • Pour réchauffer l’eau chaude sanitaire, une température minimale d’eau de chauffage à 65 ou 70°C est nécessaire (par exemple pour réchauffer un ballon de stockage à 60°C). Temporairement, par mesure de précaution anti-légionelle, une montée de l’eau du ballon de stockage à 70°C est même parfois organisée.

Régulation avec « priorité eau chaude sanitaire »

Pour éviter de maintenir en permanence les chaudières à haute température, il est possible de mettre en place une régulation du type « priorité eau chaude sanitaire » : la chaudière ne monte en température qu’au moment du réchauffage du ballon. En principe, le ou les autres circulateurs des circuits de chauffage peuvent alors éventuellement être arrêtés (l’inertie du bâtiment est suffisante).

C’est une technique courante dans le domestique. On comprend qu’elle ne puisse s’appliquer dans le tertiaire que si la production d’eau chaude sanitaire est faible par rapport au chauffage du bâtiment :

  • Ce sera tout particulièrement le cas lorsque l’eau chaude est stockée dans un ballon dont la contenance en eau est telle que la chaudière n’est sollicitée que 2 ou 3 fois par jour.
  • À l’opposé, on ne pourra appliquer cette technique en présence d’un échangeur à plaques instantané qui doit pouvoir réagir au quart de tour !

L’intérêt de la « priorité sanitaire » est d’autant plus important :

  • Que la chaudière présente des pertes à l’arrêt élevées. On pense ici tout particulièrement aux chaudières gaz atmosphériques dont l’échangeur est en communication ouverte avec la cheminée. Il faut que ces chaudières soient toujours maintenues à la plus basse température possible (température définie par leur conception et donc par le fabricant).

  • Que la chaudière alimente le ballon d’eau chaude aussi en été. Dans ce cas, la régulation permettra d’arrêter totalement la chaudière (température retombant à 20°C) sauf durant les périodes de chauffage de l’eau sanitaire.

Des relances intempestives du chauffage de l’eau sanitaire à limiter par une horloge

Si l’on constate que la demande peut être couverte facilement par une ou deux relances de la chaudière sur la journée, il est utile, en plus de la priorité sanitaire, de greffer une horloge sur la régulation pour imposer les plages horaires durant lesquelles le réchauffage du ballon est autorisé. Par exemple : de 5 à 7 heures du matin et de 16 à 18 heures en fin de journée. Ainsi, on évitera de remettre la chaudière en route pour le puisage d’un seau d’eau ! C’est surtout avantageux en été, bien sûr, mais ce l’est également en hiver puisque la température moyenne d’une chaudière régulée en fonction de la température extérieure est de 43°C sur la saison de chauffe.

Cette technique a fait l’objet d’une simulation sur une installation ECS domestique (consommation de 45 m³ à 55°C). Voici les rendements obtenus (source « Chauffage et production d’ECS » – M. Rizzo – Éditions Parisiennes) :

Chauffage de l’ECS constant

Chauffage de l’ECS programmé

Été

44 % 66 %

Hiver

69 % 80 %

Année

59 % 75 %

Soit un gain moyen annuel de 21 % sur la consommation relative à la production d’eau chaude.

On peut tester manuellement cette technique en été, en coupant la chaudière au matin et en observant « jusque quand » la réserve d’eau chaude assure les besoins du bâtiment.

Alternative

S’il est difficile de planifier les périodes de chauffage de l’eau chaude, il est possible d’obtenir un effet similaire en régulant le ballon au moyen d’un thermostat à fort différentiel situé en partie haute (au moins au 2/3 de la hauteur). Ce thermostat arrête la pompe de circulation du réchauffeur quand on atteint la valeur désirée, généralement 60 à 65°C et remet le chauffage en service quand l’eau tombe à 40/45°C.


Remplacer la veilleuse par un allumage électronique ?

La veilleuse consomme en pure perte environ 120 m³ de gaz par an, soit un coût d’environ 40 € par an. On a même parlé de veilleuse consommant 300 m³/an, mais alors il s’agit d’un très vieux chauffe-eau dont la veilleuse ressemble à un chalumeau !

Un allumage électronique est certainement plus performant, mais l’investissement n’est sans doute pas rentable sur des appareils existants.

À défaut, on peut imaginer (?) de couper cette veilleuse durant les périodes où la consommation d’ECS est nulle (WE, vacances,…).


Récupérer l’énergie au condenseur de la machine frigorifique ?

La machine frigorifique évacue de la chaleur vers l’extérieur. Or la production d’eau chaude sanitaire demande une fourniture de chaleur, au contraire. L’idée de récupérer la chaleur de l’un au bénéfice de l’autre est attirante.

En pratique, pour le groupe frigorifique, chauffer l’eau sanitaire de 10 à 30°C est très efficace, effectivement. Par contre, chauffer l’eau de 30 à 60°C est difficile. Sous prétexte de récupération, la machine frigorifique finit par avoir un très mauvais rendement : le compresseur doit augmenter son taux de compression pour atteindre les hautes températures !

Cette technique est donc à privilégier pour les installations où la demande d’eau chaude sanitaire est très importante (hôtels, restaurants, hôpitaux, homes,…) et pour lesquels on assurera le préchauffage de l’eau sanitaire, sans perturber le cycle de la machine frigorifique. De l’ordre de 20 à 25 % de la puissance frigorifique peuvent être alors récupérés.

Schéma 1 : un échangeur thermique parcouru par le fluide frigorigène est inséré au bas d’un ballon d’eau chaude.

Par effet de cheminée, la chaleur sera donnée à la zone la plus froide du ballon puis communiquée à l’ensemble du réservoir. L’échangeur est équipé d’une double paroi de sécurité, selon DIN 1988.

Schéma 2 : un ballon intermédiaire à double échange est intégré comme interface

On peut également prévoir un système à double échange : deux échangeurs sont intégrés dans un même ballon (1). Le premier échangeur est celui du condenseur de la machine frigorifique, le deuxième est le serpentin de préchauffage de l’eau chaude sanitaire.

Un appoint en série est prévu (2).

Schéma 3 : en présence d’une boucle de distribution

Le régulateur de température de départ de la boucle utilise l’appoint lorsque le niveau de température du ballon est insuffisant.

Améliorer

Motivé ? Alors, découvrez plus de détails sur le fonctionnement côté machine frigorifique en cliquant ici !

Supprimer les pertes vers l’égout du groupe de sécurité

En amont d’un chauffe-eau, un groupe de sécurité est prévu, équipé d’une soupape de sûreté. Il se peut que cette soupape laisse échapper de l’eau chaude vers l’égout.

Il peut être utile de placer un récipient entre l’échappement et l’égout pour évaluer l’importance de ce phénomène car il est fortement amplifié la nuit, ce qui est plus difficile à percevoir.

Si l’accès est impossible, peut être est-il possible de s’en rendre compte via le compteur d’eau la nuit ?

Si l’écoulement est sporadique

Cet écoulement correspond à la dilatation de l’eau lors du chauffage : la pression monte et l’excédent d’eau est évacué vers l’égout. A chaque remontée en température du ballon (soit pratiquement chaque nuit pour un ballon électrique), 1/30 de la capacité du boiler est évacuée par la soupape de sécurité. Par tranche de 100 litres de réservoir, cela représente annuellement plus d’un m³ d’eau chaude expédiée à l’égout.

Si la soupape de sécurité est ainsi constamment sollicitée, elle finit par s’entartrer et perdre, dans un goutte à goutte permanent, une quantité d’eau chaude 10 à 20 fois plus importante.

D’autant plus que, sur le plan réglementaire, un groupe de sécurité qui est chaque jour sollicité ne peut plus être considéré comme un organe de sécurité, mais bien comme un organe de régulation. Par souci de sécurité, il devrait donc être complété par une deuxième soupape de sécurité. Cela peut faire sourire, mais le directeur de l’école de Court St Etienne qui a vu son ballon d’eau chaude traverser la toiture et retomber près de la gare ne souriait pas !

Il s’agit là d’un mauvais usage d’un équipement de sécurité.

Nous pensons qu’il est très utile de placer un vase d’expansion hermétique sur l’arrivée d’eau froide sanitaire. Ces vases sont disponibles en capacités de 8 à 500 litres, à sélectionner via les tables fournies par les constructeurs.

Exemple de dimensionnement pour un ballon de 100 litres.

Hypothèses : eau froide à 10°C, eau chauffée à 65°C, pression d’alimentation en eau à 4 bars max, pression de tarage de la soupape de sécurité à 7 bars, facteur de pression 0,375 entre 4 et 7 bars (formule de Boyle-Mariotte).

Dilatation de l’eau entre 10 et 65°C : 0,0195 litre/litre

Volume du vase d’expansion :

0,0195 x 100 / 0,375 = 5,2 litres

On installera donc un ballon de 8 litres prégonflé à 4 bars.

(source : Installateur 02/99).

Si l’écoulement est permanent

Les soupapes de sécurité sont tarées à 7 bars. Si la pression du réseau dépasse cette valeur (fond de vallée, remontée classique de la pression du réseau durant la nuit), ou si le réglage de la soupape est défectueux, il est possible que ces pertes soient pratiquement permanentes.

La solution consiste à placer un réducteur de pression sur l’arrivée d’eau. C’est bien sur l’arrivée générale de l’eau dans le bâtiment qu’il faut le placer car son montage sur la seule production d’eau chaude sanitaire entraînerait un déséquilibre des pressions entre les réseaux d’eau froide et d’eau chaude, empêchant alors le bon fonctionnement des robinetteries.


Si chauffage électrique, chauffer l’eau la nuit

Étant donné le coût de l’électricité, une horloge ou une télécommande sur le réseau du distributeur commanderont la charge durant les heures creuses (la nuit ou le WE).

Ceci suppose que le volume de stockage est supérieur au puisage journalier. À défaut, on risque de tomber à court d’eau chaude en fin de journée, lors de puisages très importants.

Pour éviter cela, il est possible :

  • Soit d’augmenter la température de l’eau du ballon (ce qui implique des pertes permanentes supplémentaires et la nécessité d’un bon mitigeur à la sortie pour éviter tout risque se brûlure).

 

  • Soit de dédoubler le ballon (l’avantage de l’électricité est de pouvoir décentraliser la production). Si certains points de puisage sont fort éloignés du ballon, on y gagnera à réaliser cette solution.

 

  • Soit d’équiper l’appareil d’une deuxième résistance : l’élément chauffant inférieur assure la charge nocturne à bas tarif, alors que l’élément chauffant supérieur couvre les demandes de pointe en eau chaude durant la journée, soit environ le 1/3 supérieur du ballon. L’enclenchement simultané des deux résistances n’est généralement pas autorisé en raison de la puissance cumulée.


Si chauffage électrique, délester le chauffage de l’eau en période de pointe

Si le fonctionnement de jour est malgré tout nécessaire, le placement d’un délesteur interdira l’enclenchement de l’appareil en période de pointe.

Le ballon d’eau chaude électrique est l’équipement électrique idéal pour un délestage : il représente une puissance assez élevée et sa coupure ne gêne pratiquement pas la production d’eau chaude. Il faut se rendre compte que le délesteur n’intervient que 2 à 3 fois par jour, au moment de la pointe de puissance du bâtiment (généralement entre 11 et 13 heures). Il coupera par exemple l’alimentation électrique durant 5 minutes sur le quart d’heure. L’essentiel est qu’il soit coupé lorsque la friteuse fonctionne, par exemple.

Comme il ne s’agit pas d’une production instantanée, l’utilisateur ne s’apercevra de rien.

Techniques

Pour plus de détails sur le placement d’un délesteur.

Découvrez l’amélioration de la production d’eau chaude sanitaire qui a été réalisée au centre de Hemptinne.

Choisir le mode de préparation de l’eau chaude sanitaire

Installation centralisée ou décentralisée ?

La centralisation possède des avantages certains, …

En effet, regrouper la préparation d’eau chaude dans une seule chaufferie permet :

  • Un coût d’installation inférieur à la somme des coûts des installations individuelles qu’elle remplace.
  • Un encombrement plus faible (voire une nuisance acoustique plus faible dans certains cas).
  • Une meilleure fiabilité et durée de vie.
  • Un coût de maintenance plus faible (un seul appareil de production, un seul conduit d’évacuation des gaz brûlés).
  • Un rendement de production souvent supérieur à ceux des appareils décentralisés, dans le cas des installations à combustible.
  • Une possibilité de valoriser l’effet de foisonnement des demandes (simultanéité des besoins), d’où des puissances et des volumes de stockage moindres.

Mais des désavantages également …

  • Un rendement de distribution médiocre, avec parfois l’obligation d’installer une boucle de recyclage, ou un traçage des conduites. Le rendement est fonction de l’isolation de la conduite, mais il dépasse rarement 70 % dans ce cas.
  • Une difficulté de répartir la consommation en fonction des usagers (placement de compteurs et relevé possible mais plus lourd à gérer), et donc tendance à un « laisser-aller » dans les consommations puisqu’on ne les paye qu’indirectement…
  • Un manque de souplesse dans l’adaptation aux besoins des différents utilisateurs.

Qui sont donc des avantages pour la décentralisation !

L’installation peut être décentralisée auprès de chaque unité fonctionnelle du bâtiment :

Exemple.

La salle de sports d’une école peut avoir son ballon accumulateur, tandis que la conciergerie et le réfectoire peuvent être équipés chacun de préparateurs à eau chaude gaz indépendants.

L’installation peut même être décentralisée au niveau d’un point de puisage :

Exemple.
L’évier tout au bout du couloir, où le personnel d’entretien puise 1 ou 2 seau par jour, sera utilement équipé d’un petit préparateur à accumulation électrique.

Et énergétiquement parlant ?

La centralisation a pour désavantage d’éloigner les points de puisage du point de production de l’eau chaude, et donc de créer des pertes par tuyauteries, soit parce l’eau chaude met beaucoup de temps à parvenir, soit parce qu’un réseau de distribution doit être créé ce qui génère également des pertes.

1ère synthèse

Calculs

Pour chiffrer la perte liée à l’eau chaude « bloquée » dans un tuyau lors de la fermeture du robinet, cliquez ici (page générale) !

Calculs

Pour calculer la perte énergétique annuelle d’une tuyauterie, cliquez ici (page générale) !

Le tableau ci-dessous, extrait d’une publication EDF, peut aider le choix :

Besoins Distance entre production et points de puisage Foisonnement
(simultanéité des besoins)
Solution
Importants faible bon centralisé
mauvais (1) centralisé
grande bon centralisé
mauvais (1) décentralisé
Faibles faible semi-centralisé (2)
grande décentralisé

(1) Le foisonnement est mauvais quand les appels maximaux sont, par nature, à peu près simultanés : hôtellerie, restauration, douches d’entreprises, …

(2) Un système semi-centralisé est caractérisé par le regroupement géographique de plusieurs postes : une production commune à plusieurs points de puisage rapprochés. C’est un compromis qui vise à la fois à limiter le nombre d’équipements de production d’ECS et à réduire la longueur du réseau.

Un exemple de comparaison des consommations

Une étude réalisée dans le cadre du programme Ravel (Suisse) compare 3 façons de préparer de l’eau chaude sanitaire pour 32 appartements répartis en 3 bâtiments :

  • un boiler électrique dans chaque appartement,
  • une préparation centralisée par bâtiment,
  • une préparation centralisée pour l’ensemble des 3 bâtiments.

Sur le plan énergétique, malgré la multiplicité des ballons (et donc des surfaces de déperditions), c’est la 1ère solution qui est la plus favorable (rendement total annuel de 79 %), et c’est la production centralisée et combinée au chauffage des bâtiments qui est la plus génératrice de pertes (55 %).

Mais sur le plan de l’énergie primaire consommée (en centrale), cette conclusion s’inverse suite au fait de l’énergie électrique. Cela veut dire aussi que la première solution restera la plus chère à l’exploitation. Rien n’est simple…!


Production indépendante ou combinée ?

Faut-il une préparation d’eau chaude indépendante ou combinée avec la chaudière qui assure le chauffage du bâtiment ?

Installation combinée

Une installation à double usage permet d’alléger le prix d’investissement, le poste « production de chaleur » étant commun au chauffage des locaux et à la production d’eau chaude sanitaire. Il est seulement parfois nécessaire d’augmenter légèrement la puissance installée pour le chauffage des locaux, si la puissance de l’eau chaude dépasse 25 % de la puissance du chauffage du bâtiment.

Circuit équipé d’une chaudière à condensation et d’une chaudière classique en appoint.

Mais il y a quelques inconvénients :

  • Le principal est que le système de production de chaleur doit rester en service en mi-saison et en été. À ce moment, le rendement est alors dégradé suite aux pertes à l’arrêt des chaudières, aux pertes du collecteur et au plus mauvais rendement de combustion des brûleurs qui fonctionnent souvent en cycles courts. Des rendements de production de l’eau chaude inférieurs à 50 % sont fréquents.
  • Par ailleurs, durant la saison de chauffe, la performance de la chaudière « basse température » sera dégradée par la nécessité de remonter périodiquement la température de sortie de l’eau chaude. S’il s’agit d’une chaudière à condensation, elle requiert de l’eau de retour à basse température. Or, si la production d’eau chaude sanitaire à 60°C lui est aussi demandée, elle devra, au moins à certains moments, travailler à plus haute température… et donc perdre un peu d’efficacité liée à la condensation (en fonction du type de chaudière et du régime de dimensionnement de l’échangeur).

Une solution peut consister à fractionner la puissance de chauffe et à installer une petite chaudière dont la puissance convient pour le chauffage de l’eau chaude sanitaire en été. Durant la saison de chauffe, cette chaudière peut-être connectée en parallèle sur le réseau de chauffage et dédicacée à la production d’eau chaude sanitaire en été. Elle peut ainsi être également utile pour les relances de chauffage de début de journée en mi-saison, évitant la mise en température de la chaudière principale.

Exemple théorique.

Comparons les pertes d’une installation combinée et d’une chaudière propre à la production d’eau chaude sanitaire.

Hypothèse : il s’agit d’une installation équipant un home pour personnes âgées. La consommation globale en eau chaude du bâtiment est estimée à 1000 m³ d’eau à 60°C par an. Le besoin énergétique pour chauffer cet eau est de :

1,16 [kWh/m³.°C] x 1000 [m³/an] x (60 [°C] – 10 [°C]) = 58 000 [kWh/an]

dont 38 400 [kWh/an] durant la saison de chauffe et 19 600 [kWh/an] en été.

Installation combinée : une chaudière de 650 kW moderne ayant un coefficient de perte à l’arrêt (à 70°C) de 0,3 % de la puissance chaudière. Cette chaudière reste en permanence à une température de 70°C, été comme hiver, pour produire l’eau chaude sanitaire. Elle alimente en permanence un collecteur de distribution de 20 m (DN 100). En été, son rendement de combustion baisse de 2 % suite à un fonctionnement par de nombreux cycles courts (la puissance de l’échangeur sanitaire étant nettement inférieure à la puissance de la chaudière). Il passe de 92% à 90%.

Installation séparée : une chaudière de 500 kW pour le chauffage et une chaudière de 150 kW pour la production d’eau chaude sanitaire. A 70°C, ces deux chaudières ont le même coefficient de perte à l’arrêt que la chaudière de 650 kW. La chaudière de chauffage est régulée en température glissante (température moyenne de 43°C) et arrêtée en été. Ses pertes à l’arrêt sont ainsi réduites à 0,1 %. La chaudière de 150 kW est, elle maintenue à 70°C toute l’année.

Pertes

Installation combinée
[kWh/an]

Installation séparée
[kWh/an]
Différence
[kWh/an]

En hiver (5 800 h/an)

Pertes de combustion 38 400 [kWh/an] x (1 – 0,92)
= 3 072 [kWh/an]
0 [kWh/an]
Pertes à l’arrêt de la chaudière « chauffage » 0,003 x 650 [kW] x 3 925 [h/an] / 0,92
= 8 320 [kWh/an] (*)
0,001 x 500 [kW] x 4 000 [h/an] / 0,92 = 2 174 [kWh/an] 6 146 [kWh/an]
Pertes à l’arrêt de la chaudière « eau chaude » 0,003 x 150 [kW] x 5 500 [h/an] / 0,92 = 2 055 [kWh/an] – 2 055 [kWh/an]
Pertes du collecteur « chauffage » 16,7 [W/m] x 20 [m] x 5 800 [h/an] / 0,92
= 2 106 [kWh/an]
7,7 [W/m] x 20 [m] x 5 800 [h/an] / 0,92 = 971 [kWh/an] 1 135 [kWh/an]
Pertes d’hiver 3 072 [kWh/an] + 8 320 [kWh/an] + 2 106 [kWh/an] = 13 498 [kWh/an] 3 072 [kWh/an] + 2 174 [kWh/an] + 2 055 [kWh/an] + 971 [kWh/an] = 8 272 [kWh/an] 5 226 [kWh/an]

En été (2 960 h/an)

Pertes de combustion 19 600 [kWh/an] x (1 – 0,90)
= 1 960 [kWh/an]
19 600 [kWh/an] x (1 – 0,92)
= 1 568 [kWh/an]
392 [kWh/an]
Pertes à l’arrêt de la chaudière « chauffage » 0,003 x 650 [kW] x 2 935 [h/an] / 0,90
= 6 359 [kWh/an]
6 359 [kWh/an]
Pertes à l’arrêt de la chaudière « eau chaude » 0,003 x 150 [kW] x 2 860 [h/an] / 0,92 = 1 399 [kWh/an] – 1 399 [kWh/an]
Pertes du collecteur « chauffage » 16,7 [W/m] x 20 [m] x 2 960 [h/an] / 0,90 = 1 098 [kWh/an] 1 098 [kWh/an]
Pertes d’été 1 960 [kWh/an] + 6 359 [kWh/an] + 1 098 [kWh/an] = 9 417 [kWh/an] 1 568 [kWh/an] + 1 399 [kWh/an] = 2 967 [kWh/an] 6 450 [kWh/an]

Sur l’année

Bilan global – pertes totales 22 915 [kWh/an] 11 239 [kWh/an] 11 676 [kWh/an] ou 1 168 [m³gaz/an]

L’installation d’une chaudière combinée entraînerait donc une surconsommation d’environ 1 200 m³ de gaz par an ou une dépense complémentaire d’environ 275 € par an.

(*) Justification des heures prises en compte :
La saison de chauffe dure 5 800 [h/an]. La chaudière de 650 kW tourne 1 800 h/an pour le chauffage et 100 h/an pour l’eau chaude sanitaire (75 en saison de chauffe et 25 en été). La chaudière reste donc chaude sans que son brûleur ne fonctionne durant 3 925 h/an. La chaudière de 500 kW tourne 1 800 h/an pour le chauffage et est en attente chaude 4 000 h/an. La chaudière de 150 kW tourne 400 h/an (dont 100 h en été).

Concevoir

Pour plus d’informations sur le choix des systèmes de chauffage, cliquez ici !

Installation indépendante

Une préparation spécifique d’eau chaude permet de séparer les deux fonctions (chauffage des locaux et chauffage de l’eau) lorsque les profils de demande sont trop différents. On requiert par exemple à un ballon accumulateur électrique, à un accumulateur au gaz, à un préparateur instantané gaz, …

Cela permet de concevoir et de dimensionner au mieux chaque installation, sans réaliser de compromis … où l’énergie se trouve souvent mal valorisée.

Avec l’arrivée des critères anti-légionelles, la demande de haute température pour la production de l’eau chaude sanitaire apparaît contraire à l’évolution basse température que vit le monde du chauffage.

Cette séparation permet également l’usage de 2 énergies différentes (gaz et électricité, par exemple).

Ballon mixte  ?

On pourrait aussi prévoir un système mixte avec un serpentin d’eau chaude pour l’hiver et une résistance électrique pour l’été.

Schéma explicatif sur le ballon mixte.

  1. Thermomètre.
  2. Tube plongeur pour sonde de thermostat.
  3. Anode en magnésium.
  4. Tube de retour de circulation.
  5. Cuve (acier galvanisé, cuivre ou acier).
  6. Thermovitrification / émail / plastique.
  7. Capot de recouvrement.
  8. Thermostat de réglage et de sécurité.
  9. Corps de chauffe électrique.
  10. Prise d’eau froide.
  11. Brise-jet.
  12. Tube plongeur pour sonde de thermostat.
  13. Pieds réglables.
  14. Calorifuge (laine minérale, polyuréthane sans CFC).
  15. Retour chauffage.
  16. Serpentin.
  17. Aller chauffage.
  18. Prise d’eau chaude.

Reprenons le bilan de l’exemple précédent :

Exemple théorique (suite) :

Installation combinée
[kWh/an]

Ballon mixte

En été (2 960 h/an)

Besoin pour le chauffage de l’eau 19 600 [kWh/an] 19 600 [kWh/an]
Pertes d’été 9 417 [kWh/an]
Consommation 19 600 [kWh/an] + 9 417 [kWh/an] = 29 017 [kWh/an] 19 600 [kWh/an]
Prix du kWh 0,023 [€/kWh] 0,044 [€/kWh nuit]
Facture 29 017 [kWh/an] x 0,023 [€/kWh] = 667 [€/an] 19 600 [kWh/an] x 0,044 [€/kWh nuit] = 862 [€/an]

(On ne considère pas les pertes des ballons qui resteront constantes quel que soit le système).

Le bilan est donc plutôt en défaveur de la solution mixte, du fait du coût de l’électricité. Le bilan est également défavorable à la solution mixte si on l’établit en tenant compte de la consommation en énergie primaire puisque le rendement actuel de production de l’électricté est d’environ 38 %.

Chaque cas est cependant un cas particulier.

Le bilan doit donc être fait au cas par cas en fonction de la demande. Il sera notamment fonction du fait que le ballon mixte puisse couvrir l’ensemble des besoins de la journée ou non (le coût du kWh électrique de jour est double de celui de nuit).

En rénovation, tout dépend également des performances de la production combinée existante. Par exemple, l’association CEDICOL a réalisé une mesure sur site (source : magazine « L’entreprise », mars 90) dont il ressort un rendement saisonnier annuel de production d’eau chaude de 71 % et un rendement d’été de 49 % :

La production de cette installation domestique est, en été, de 186 litres d’eau chaude par jour.

L’installation comprend une chaudière au fuel de 27 kW alimentant un ballon de stockage de 160 litres. La chaudière est régulée en température glissante avec une priorité sanitaire. Cela signifie qu’entre deux demandes du ballon, la chaudière redescend en température.

Durant l’été 88, la chaudière a consommé 189 litres de fuel (soit 1 880 kWh) pour produire 24 180 litres d’eau chaude (soit 939 kWh). Le rendement de production en été est donc de 939 / 1 880 kWh = 49 %.

Pour l’ensemble de l’année, le système produit 42 150 litres d’eau chaude avec un rendement saisonnier de 71 %.

Séparer la production d’eau chaude en été, et produire cette dernière au moyen de l’électricité permettrait de gagner :

1 880 [kWh] x (1 – 49 % / 93 %) = 890 [kWh]

Le gain financier est de :

  • Facture d’été en production combinée : 189 [litres] x 0,2116 [€/litres] = 40 [€]
  • Facture d’été en production séparée : 990 [kWh] x 0,044 [€/kWh] = 44 [€]
  • Perte : 4 [€/an]

On se trouve dans la situation la plus favorable de production combinée, avec une chaudière fonctionnant en température glissante. Dans le cas dune ancienne chaudière restant à température constante tout l’été (de 70°C, par exemple), il n’est pas rare d’avoir des rendements de production inférieurs à 20 % en été !

Dans ce cas, le bilan serait alors le suivant :

  • Consommation en fuel d’été : 1 880 [kWh] x 49 [%] / 20 [%] = 4 606 [kWh] ou 460 [litres fuel]
  • Gain énergétique : 4 606 [kWh] x (1 – 20 % / 93 %) = 3 616 [kWh]
  • Facture d’été en production combinée : 460 [litres] x 0,2116 [€/litres] = 97 [€]
  • Facture d’été en production séparée : 990 [kWh] x 0,044 [€/kWh] = 44 [€]
  • Gain : 53 [€/an]

En tout cas, si l’on prévoit de conserver le mode de production combinée l’été et que la demande peut être couverte facilement par une ou deux relances de la chaudière sur la journée, il sera utile de greffer une horloge sur la régulation pour imposer les plages horaires durant lesquelles le réchauffage du ballon est autorisé. Par exemple : de 5 à 7 heures du matin et de 16 à 18 heures en fin de journée. Ainsi, on évitera de remettre la chaudière en route suite au puisage d’un seau d’eau !

Attention aux installations avec boucle de distribution

La solution du ballon mixte est à éviter s’il existe une boucle de circulation mal isolée générant des pertes permanentes élevées : les retours « froids » de la boucle de circulation perturbent la stratification des températures dans le ballon et la température de fourniture de l’eau diminue.

Schéma du ballon mixte avec boucle de circulation mal isolée.

Les solutions ne sont guère performantes : soit le thermostat s’enclenche pour réchauffer le ballon, soit un réchauffage de boucle maintient la température à son niveau. Mais ceci génère un chauffage électrique de jour assez coûteux.

Les capteurs solaires sont aussi une solution pour l’été

Les capteurs solaires apportent également une solution « mixte », prenant le relais en période ensoleillée. Mais il faudra s’assurer que le système de chauffage dispose d’un mode « veille » très économe lorsque le soleil est actif.


Production instantanée ou à accumulation ?

Les besoins d’eau chaude varient dans le temps. Et le préparateur doit s’y adapter en permanence !

Imaginons deux situations extrêmes :

  1. Les vestiaires du club de foot de Frouchy-les-Bains-de-Pieds : 6 douches pouvant débiter 12 litres/min chacune, utilisées 3 fois par semaine après les matchs.Le chauffage instantané de l’eau demanderait une puissance de 175 kW !
    À titre de comparaison, le chauffage d’une habitation domestique demande 20 kW par – 10°C extérieur…Solution : la petite chaudière du local produira et accumulera de l’eau chaude durant les 6 à 8 heures qui précèdent les matchs… et le réservoir sera vidé dans l’heure qui suivra le coup de sifflet de l’arbitre.
  2. L’hôpital de 1 200 lits, avec restauration et buanderie incorporée : il y a toujours un robinet d’eau chaude ouvert quelque part !Les besoins sont permanents et le système de préparation doit y répondre en temps réel, avec une modulation de la puissance en fonction des moments de la journée. Stocker les besoins journaliers d’eau chaude est inimaginable…Solution : un échangeur (à plaques ou tubulaires) rapide, raccordé à la chaudière, produisant instantanément l’eau chaude en fonction du besoin.

En réalité, la solution idéale est toujours en équilibre entre ces deux extrêmes  :

  • Dans les vestiaires, la chaudière peut déjà recharger le ballon pendant le puisage des douches, pour les cas où deux matchs se suivraient la même après-midi. On parle de semi-accumulation.
  • Dans l’hôpital, un réservoir d’appoint permet de mieux fournir l’important débit de pointe demandé au matin. On parle de semi-instantané.

En fait, « semi-accumulation », « semi-instantané », c’est la même chose : un juste équilibre à trouver dans le dimensionnement du préparateur entre ces 2 modes de production. Et une même méthode de dimensionnement.

La préparation instantanée « pure »

On distingue essentiellement le préparateur instantané gaz et l’échangeur instantané à plaques.

préparateur instantané gazéchangeur instantané à plaques

Les avantages d’une préparation instantanée sont liés à l’absence de stockage :

  • Le faible encombrement
    C’est un argument-clef si la place disponible est particulièrement réduite.
  • La faible charge au sol
    C’est un argument si la chaudière est prévue sous toiture.
  • L’absence de pertes par stockage
    Cet argument tend à devenir négligeable, vu l’isolation poussée des ballons récents.
  • La bonne performance hygiénique
    L’eau chaude ne stagnant pas dans le préparateur, les risques de propagation de la légionelle sont réduits.
  • Le faible coût d’investissement
    Cette technique est relativement peu onéreuse à installer.

Mais les inconvénients du préparateur instantané sont aussi nombreux :

  • la fluctuation de la température de l’eau au niveau de l’utilisateur
    Malgré une régulation fine (PID) (à prévoir absolument), on reste limité par le temps de réponse des éléments mécaniques de l’installation qui rend les fluctuations inévitables. Il est déconseillé d’utiliser ce type de système dans un bâtiment ayant un profil de puisage discontinu.

  • Le rendement de production dégradé de la chaudière
    Avec une chaudière combinée chauffage-ECS, il est indispensable de maintenir la chaudière en permanence à température élevée (min 70°C) pour garantir un temps de réponse minimum lorsqu’une demande apparaît. Ceci interdit une régulation en température glissante des chaudières et n’est donc pas optimum énergétiquement, principalement avec les anciennes chaudières ou même avec des chaudières gaz atmosphériques récentes dont les pertes à l’arrêt sont importantes.
  • Le fonctionnement du brûleur en cycles courts
    Étant donné l’absence de réservoir tampon, chaque puisage va entraîner la mise en route de l’installation pour des temps très courts. Les temps de fonctionnement du brûleur seront donc brefs, ce qui est défavorable pour le rendement de combustion et la pollution atmosphérique.
  • La puissance élevée du générateur
    La production instantanée demande généralement une puissance de générateur très importante. Dans le cas d’une production d’ECS combinée au chauffage, il peut être nécessaire de surdimensionner la chaudière uniquement pour l’ECS.
  • La puissance des circulateurs
    La perte de charge des échangeurs instantanés demande des pompes plus puissantes dont la consommation électrique n’est pas à négliger.
  • La fragilité de certains équipements
    Les préparateurs instantanés au gaz sont fortement soumis à l’entartrage et sont sujets à percer parfois rapidement. Cet effet est renforcé dans les chaudières murales où la compacité entraîne également l’utilisation d’un matériel plus léger que les chaudières au sol, ce qui limite la durée de vie.

La préparation en accumulation « pure »

Le ballon de stockage est un tampon permettant de dissocier le rythme de la production des variations brusques de la demande. Il lisse les pointes et réduit le coût de la puissance. Il permet parfois d’utiliser de l’énergie moins chère la nuit (accumulateur électrique).

Généralement, le principe de l’accumulation offre la possibilité de changer plus facilement le vecteur énergétique (gaz, fuel, bois, …) de l’unité de production de chaleur, et même d’intégrer une production solaire ou par pompe à chaleur.

Mais par contre, il nécessite un investissement supplémentaire, en euros (son propre coût) et en m² (son encombrement). Il génère également une perte d’énergie par les parois.

Ce mode de production sera logiquement d’application :

  • Si la source d’énergie est électrique
    Il est alors presque inimaginable de recourir à un système instantané, vu l’importance de la puissance nécessaire (un préparateur 12 litres/minute requiert une puissance de 24 kW, soit une ligne de 100 A environ !). Un système par stockage s’impose pratiquement. Cela permet d’ailleurs de valoriser le courant de nuit, moins onéreux.
  • Si les consommations présentent des pointes très importantes
    En effet, une masse d’eau chaude est immédiatement disponible, sans devoir développer une puissance considérable.

La préparation semi-instantanée ou en semi-accumulation

La production d’ECS en semi-accumulation ou en semi-instantanée (échangeur + ballon de stockage) est la plus appropriée au mode de consommation d’ECS dans la plupart des applications tertiaires.
Elle combine les avantages des deux systèmes :

  • Le confort
    Grâce au ballon d’eau chaude, les temps de réponse sont courts et les fluctuations de température réduites.
  • L’encombrement
    L’encombrement est plus réduit qu’en accumulation pure.
  • La puissance
    La puissance de production à installer est plus réduite qu’en instantané pur.
  • Le rendement de production
    Avec une chaudière combinée chauffage-ECS, le fonctionnement en température glissante ne pose pas de problème, la chaudière pouvant fonctionner en basse température pour le chauffage des locaux et rehausser sa température de consigne lorsqu’il y a demande du ballon d’ECS.

Le schéma ci-dessous paraît être le bon compromis assurant la production à la demande, et donc en limitant les pertes de stockage, tout en ayant un ballon stabilisateur de température au démarrage d’une demande de pointe.

Concevoir

Pour plus d’informations sur le choix des ballons de stockage, cliquez ici !

Concevoir

Pour plus d’informations sur le choix des préparateurs instantanés au gaz, cliquez ici !

Concevoir

Pour plus d’informations sur le choix des échangeurs à plaques, cliquez ici !
Pour info, les ingénieurs Français distinguent :

  • les préparateurs semi-instantanés comme ceux dont la capacité d’accumulation est calculée pour vaincre les besoins en ECS de l’heure de pointe, mais ne pouvant absorber les pointes de 10 minutes sans surdimensionner l’échangeur,
  • des préparateurs à semi-accumulation dont le volume de stockage est capable d’absorber les pointes de 10 minutes, avec une puissance de génération limitée aux besoins horaires.

Production combinée et chaudière à condensation

Si le chauffage de l’eau sanitaire est assuré par une chaudière à condensation, il y a lieu d’adapter le réseau hydraulique pour valoriser sa performance. En pratique, il faut assurer le retour le plus froid vers la chaudière.

Or nous sommes en présence d’un paradoxe

  • L’eau sanitaire est très froide (10°C) à son arrivée. Elle devrait dès lors permettre de valoriser l’efficacité énergétique d’une chaudière à condensation.
  • L’eau chaude sanitaire doit être portée à haute température (généralement 60°C pour gérer le problème de la légionellose). Le circuit de chauffage monte donc environ à 75°C, et génère des retours à 65°C en fin de période de chauffage du ballon ! Par rapport aux circuits « basse température » dont nous sommes aujourd’hui coutumiers en chauffage, c’est donc un régime « haute température »… et cela supprime toute possibilité de condensation.

Deux solutions apparaissent :

1° – Il existe deux raccordements de retour à la chaudière à condensation. Le retour de l’eau chaude sanitaire peut être raccordé à l’entrée « haute température ». On a abandonné alors tout espoir de condenser avec le réseau d’eau chaude sanitaire. C’est adéquat lorsque les besoins d’eau chaude sont fort importants, voire permanents (hôpital, abattoir, …).

schéma de raccordements de retour à la chaudière à condensation.

2° – On décide au contraire de valoriser au maximum la condensation. Sachant que la température de retour doit être inférieure à 53°C, on décide de travailler avec un circuit d’eau de chauffage du ballon à la plus basse température de retour possible. Lors du dimensionnement de la puissance de l’échangeur de production d’eau chaude, un retour à 40 .. 45°C est choisi, par exemple via un régime 70° – 40° ou 90° – 45° au lieu d’un traditionnel régime 90° – 60°.

schéma de raccordements de retour à la chaudière à condensation.

Cette formule n’est quasiment possible qu’en présence d’un échangeur instantané. En effet, la température de retour de 40 .. 45°C ne pourra réellement être atteinte que lorsque la température de l’eau froide est de 10°C.

Lorsque l’échangeur instantané alimente une boucle de distribution et qu’aucun puisage n’est effectué, l’échangeur est alimenté par de l’eau à 55°C, ce qui rend impossible un retour d’eau de chauffage vers la chaudière à 40°C. En cas de puisage, il y a mélange entre l’eau froide de ville et l’eau chaude de la boucle. L’eau alimentant l’échangeur est donc à une température supérieure à 10°C. Cependant le débit de boucle étant en pratique réduit, la quantité d’eau froide appelée sera la plupart du temps suffisante pour que la température d’alimentation de l’échangeur soit assez basse pour permettre la condensation.

Techniques

Pour plus d’informations sur les circuits hydrauliques favorables à la condensation, cliquez ici !

Quelle régulation pour la production combinée ?

Il est recommandé d’avoir une régulation de la température de départ de chaudière basée sur le principe de la « priorité sanitaire » : la haute température ne soit être appliquée que lorsqu’il y a demande de production d’eau chaude sanitaire.

Imaginons un ballon réglé sur 60°C :

  • En temps normal, la chaudière est gérée par une régulation à température glissante.
  • Lorsqu’il y a demande d’eau chaude sanitaire (T°ballon = 57,5°C), la température de départ chaudière augmente et les vannes mélangeuses des différents circuits de chauffage peuvent se fermer quelque peu.
  • Dès la satisfaction du ballon (T°ballon = 62,5°C), la température de chaudière revient à la valeur calculée par le régulateur en fonction de la température extérieure.

Cette régulation sous-entend l’absence d’un préparateur instantané (échangeur à plaques) qui lui doit pouvoir réagir au quart de tour, et qui demandera une température de chaudière toujours élevée.

Elle montre aussi toute l’importance d’un surdimensionnement du serpentin installé dans le ballon :

T°chaudière = T°ballon + X°

X sera d’autant plus petit que la puissance de l’échangeur sera grande.

L’intérêt d’une telle régulation est d’autant plus important que la chaudière alimente le ballon d’eau chaude aussi en été. Dans ce cas, la régulation permettra d’arrêter totalement la chaudière (température retombant à 20°C) sauf durant les périodes de chauffage de l’eau sanitaire. Ces périodes seront définies par une horloge qui limitera la charge du ballon de stockage à un nombre limité de périodes de la journée. Cela permet d’éviter que la chaudière ne démarre pour des faibles puisages, avec pour conséquence :

  • un maintien quasi permanent de la chaudière à une température moyenne relativement élevée,
  • un fonctionnement du brûleur par cycles courts, synonyme de mauvaise combustion et d’émissions polluantes.

Remarque.
À noter que certains constructeurs proposent une régulation tout à fait optimisée :

  • Lorsque la température dans le ballon atteint 61 ou 62°C, la chaudière est déjà coupée. La circulation d’eau chaude est maintenue de telle sorte que le ballon monte à 62,5°C mais sans prolonger inutilement le maintien en température de la chaudière.
  • Certains ballons sont régulés via 2 sondes plongeuses : si le puisage est faible, la première sonde est froide mais la deuxième reste chaude. L’installation ne réagit pas, elle se base sur la température moyenne entre les 2 sondes. Si le puisage est important, des remous vont déstratifier la température dans la cuve, la deuxième sonde sera rapidement touchée par le flux d’eau froide : une réaction immédiate de l’installation de chauffage est programmée. Cette astuce permet de ne pas faire réagir trop vite la chaudière et d’attendre qu’un volume d’eau important soit à réchauffer, ce qui augmente la durée de la période de condensation.


Choix du vecteur énergétique

Rien n’est simple…

Poser la question du choix du combustible pour chauffer l’eau chaude sanitaire, c’est aussi parfois comparer des équipements qui ont des performances différentes … en fonction du combustible choisi !

Par exemple, si les besoins se résument à 10 seaux d’eau par semaine pour le nettoyage des locaux de bureaux, et que le gaz naturel n’est pas disponible, le fuel est un choix technologiquement impossible.

Mais procédons par étape pour dégager les lignes de force :

L’énergie solaire

  • couvre 40 à 50 % des besoins, sans générer ni CO2 ni autres polluants. Ceci n’étant vrai que lorsqu’ils sont utilisés pour un bâtiment donc les consommations sont simultanées et également fortes en été comme les piscines, les homes, hôpitaux, l’hôtellerie, les logements collectifs… Les écoles, fermées en juillet et aout sont, par exemple, peu compatible avec ce type de vecteur,
  • c’est un « combustible gratuit » mais qui coûte essentiellement par l’investissement initial dans l’installation, son prix ramené au kWh fourni dépasse légèrement le prix du gaz naturel. Cette source d’énergie est difficilement rentable en moins de 20 ans,
  • est mieux valorisé pour les bâtiments bas (rapport m² de toiture/consommation ECS plus favorable),
  • est source d’énergie instable qui doit être complétée par un autre combustible d’appoint,
  • est porteur d’image de marque car il témoigne que l’investisseur veut promouvoir un autre type de consommation,
  • pari sur l’avenir puisqu’on peut penser que les prix énergétiques ne feront qu’augmenter.
  • dans le cadre de la lutte contre les légionelles, le chauffage de l’eau sanitaire par l’énergie solaire présente des risques liés à l’inconstance de la température de chauffe. En considérant que la fourchette de température de 25 – 45°C est idéale pour le développement des bactéries, avec un système tel que le chauffage solaire, on risque de s’y retrouver régulièrement au cours de l’année; ce qui signifie que le chauffage solaire ne doit être utilisé que comme moyen de préchauffage.
  • l’installation doit plutôt être orientée plein sud,
  • le solaire thermique produit 40% d’énergie primaire en plus que le solaire photovoltaïque mais coute presque 3 fois plus cher au m²,
  • c’est un système encombrant qui prend la place d’éventuels panneaux solaire photovoltaïques souvent bien plus rentables à tous points de vue,

Le gaz naturel

  • sans conteste le combustible traditionnel qui présente le plus de qualités environnementales : absence de soufre, faible taux de CO2 par kWh produit, faible taux de NOx,
  • facile à distribuer dans le bâtiment (un préparateur peut être facilement rapproché des consommateurs par circulation d’une conduite gaz),
  • facile à réguler grâce à la souplesse de la flamme gaz, permettant de produire en instantané et avec une puissance modulée,
  • mais aussi, requérant un conduit d’évacuation de fumées, au minimum de type ventouse,
  • nécessitant une bonne sélection de l’équipement (limitant les pertes à l’arrêt et, si possible, valorisant l’énergie de condensation de la vapeur d’eau contenue dans les fumées),
  • non disponible sur tout le territoire,
  • d’un coût au kWh en moyenne plus élevé que celui du fuel, sauf en période de crise internationale.

Évolution des prix du fuel et du gaz depuis 1996. En moyenne, de 1996 à 2001, le gaz a été 8 % (tarif ND2) plus cher que le fuel (au tarif officiel). Si l’institution parvient à obtenir une ristourne de 5 % sur le prix officiel du fuel, cette différence serait de 13 %.

Le fuel

  • Combustible engendrant des émissions polluantes plus importantes au niveau de l’utilisateur final (taux de CO2 et taux de NOx plus élevés (pour les chaudières de plus de 70 kW) que pour le gaz, présence de soufre). Le risque de pollution au cours de son transport reste important (marée noire),
  • Le coût est l’argument de vente principal, même s’il peut subir de fortes fluctuations.
  • La combustion requiert des puissances minimales élevées, ce qui force une production combinée entre chauffage et sanitaire, … et crée des mauvais rendements en été.

L’électricité

  • Source d’énergie presque parfaite lors de son utilisation : propre, de rendement proche de 100 %, d’investissement faible dans l’équipement, avec comme seul défaut une puissance limitée qui oblige à prévoir des ballons accumulateurs d’eau chaude,
  • Mais source d’énergie chère qui provoque de plus la controverse par sa production !
Développons :

La qualité écologique des rejets

  • Soit l’électricité est produite par énergie nucléaire, les rejets en CO2 sont nuls mais les déchets nucléaires sont difficilement gérables.
  • Soit l’électricité est produite par un combustible traditionnel et les émissions en CO2, NOx, SO3, … sont en moyenne élevées (les fortes émissions des anciennes centrales au fuel ou au charbon ne sont que partiellement compensées par la qualité des centrales TGV qui valorisent le gaz).

L’efficacité énergétique de la production

  • De façon simplifiée, il faut brûler 3 kWh de combustible (dit « primaire ») pour obtenir 1 kWh électrique, les 2 autres kWh étant perdus en chaleur autour de la centrale. Chaque tasse de café au bureau génère 2 tasses d’eau chaude dans la Meuse à Tihange… L’électricité, fabuleuse pour l’éclairage, pour l’électronique,… ne peut se défendre pour produire de la chaleur.
  • Seule la pompe à chaleur (PAC) peut justifier sa place comme corps de chauffe, puisqu’elle replace le bilan au point de départ : 1 kWh électrique au compresseur génère 3 kWh de chaleur utilisable. Idéalement, la PAC pourrait refroidir l’eau de la Meuse et produire les 3 tasses de café !

Mais la haute température de l’eau chaude sanitaire handicape fortement cette application.

Non, je n’ai pas dit qu’il faut d’abord filtrer la Meuse pour améliorer le goût du café, cela n’a rien à voir !…

Conclusions

  • Si une chaleur régulière peut être récupérée dans le bâtiment, elle doit être étudiée en priorité (machine frigorifique, buanderie, process, …).
  • L’étude d’un préchauffage par énergie solaire doit être intégrée dans tout nouveau projet.
  • Le gaz est alors le vecteur le plus adéquat pour produire l’appoint du chauffage de l’eau chaude sanitaire.


Critères de l’efficacité énergétique

Une évaluation difficile

Ce rendement est difficile à évaluer. Beaucoup de facteurs interviennent et les hypothèses d’exploitation modifient fortement le regard.

Pour s’en convaincre, il suffit de prendre un exemple simple d’un ballon de préparation électrique de 200 litres :

  • performant… si le puisage est de 150 litres chaque jour,
  • catastrophique … si le ballon alimente 3 lavabos deux étages plus haut, avec des utilisateurs qui, en pratique, n’attendent pas que l’eau soit chaude pour se rincer les mains !

Rendement de production des préparateurs d’eau chaude

Le Recknagel fournit quelques valeurs :

Chauffe-eau électrique à accumulation Chauffe-eau électrique instantané Préparateur instantané gaz Chaudière murale gaz Chauffe-eau gaz à accumulation Chaudière double service
0,99 0,99 0,84 0,86 0,86 0,90

Rendement d’exploitation

Cette fois, c’est l’ensemble du système de production d’eau chaude qui est étudié. Les pertes par tuyauteries, les pertes de stockage du ballon, … interviennent dans le bilan.

Pour avoir une idée des performances des différents systèmes présents sur le marché, voici d’abord les chiffres de rendement saisonnier que propose le VITO dans le cadre d’un diagnostic d’une installation domestique (programme SAVE BELAS).

Rendement
exprimé en énergie locale

Rendement
exprimé en énergie primaire

épaisseur d’isolant du ballon éventuel 2,5 cm 5 cm 10 cm

2,5 cm

5 cm

10 cm

Ballon combiné à une chaudière
(1 enveloppe commune)
ancienne chaudière à T°constante 0,46 0,52 0,56 0,46 0,52 0,56
nouvelle chaudière à T°constante 0,61 0,69 0,74 0,61 0,69 0,74
nouvelle chaudière à T°glissante 0,69 0,78 0,83 0,69 0,78 0,83
Ballon combiné à une chaudière
(2 enveloppes distinctes)
ancienne chaudière à T°constante 0,41 0,48 0,54 0,41 0,48 0,54
nouvelle chaudière à T°constante 0,54 0,64 0,72 0,54 0,64 0,72
nouvelle chaudière à T°glissante 0,61 0,72 0,81 0,61 0,72 0,81
Instantané gaz
(combiné ou non avec le chauffage)
0,90 0,90 0,90 0,90 0,90 0,90
Accumulateur gaz 0,69 0,78 0,83 0,69 0,78 0,83
Accumulateur électrique 0,76 0,87 0,93 0,29 0,33 0,35

Les hypothèses de calcul sont les suivantes :

  • demande annuelle d’ECS : 43 litres/pers.jour à 40°C pour une famille de 4 personnes.
  • volume de stockage éventuel de 150 litres
  • rendement moyen de la production d’électricité en Belgique : 0,38

Voici également les valeurs proposées par le Recknagel :

Rendement
exprimé en énergie locale

Rendement
exprimé en énergie primaire

Ballon combiné à une chaudière
à fuel 0,45 0,45
à gaz 0,45 0,45
Echangeur à plaques combiné à une chaudière à fuel 0,60 0,60
à gaz 0,60 0,60
Ballon électrique à accumulation de nuit 0,70 0,27
instantané 0,95 0,37
Chauffe-eau à accumulation à fuel 0,50 0,50

Conclusion

Même si quelques imprécisions subsistent (le rendement du préparateur gaz instantané nous paraît fort élevé dans l’étude du VITO, de même que celui de l’accumulateur gaz), les systèmes à gaz instantanés sortent clairement du lot et sont donc à conseiller. Attention : ces conclusions sont tirées d’études sur des installations domestiques !

Pour comparer la performance des différents systèmes pour une application particulière, nous proposons un petit logiciel d’évaluation.

Calculs

Pour analyser le rendement global d’une installation particulière, cliquez ici !

Un préchauffage par capteurs solaires ?

Une technologie aujourd’hui maîtrisée

photo capteurs solaires.

Arrivé à un haut niveau de maturité technique, le solaire thermique est une solution de choix dans les défis énergétiques. Il est une substitution immédiate et directe à l’usage des combustibles fossiles. Pour les grandes installations, il permet de manière aisée une réduction de 20 à 50 % des besoins énergétiques pour la production d’eau chaude sanitaire. Il présente un intérêt d’autant plus élevé pour des applications tertiaires collectives où les consommations d’ECS sont élevées.  Cette technique montre de nombreux avantages :

  • Utilisation d’une énergie propre et disponible gratuitement : pas de rejet de CO2 ni d’autres gaz à effet de serre ;
  • Anticipation de la raréfaction voire de l’épuisement des gisements d’énergie fossile ;
  • Coût de fabrication peu onéreux : technique simple ;
  • Rendement élevé : technique efficace ;
  • Investissement sûr ;
  • Indépendance énergétique et non dépendance vis-à-vis de la fluctuation des prix de l’énergie ;
  • Durée de vie importante : environ 25 ans ;
  • Entretien léger ;
  • Augmentation de l’image verte d’un établissement, d’une société ;

Les besoins en ECS étant généralement répartis de manière presque constante au fil de l’année, le (pré)chauffage de l’eau chaude sanitaire est une application particulièrement adaptée au solaire thermique.

schéma corrélation entre consommation ecs et apport solaire.

Trois facteurs majeurs influencent directement l’efficacité et  la rentabilité d’une installation :

  • La consommation d’eau chaude : trop faible, inconstante ou concentrée sur les mois d’hiver, elle constitue souvent le facteur limitant de la productivité du système, d’où l’intérêt de la mesurer.
  • L’emplacement des capteurs : une orientation ou une inclinaison défavorables, un ombrage excessif diminuent l’efficacité, donc la rentabilité du système solaire.
  • La régulation solaire et la gestion de l’appoint : le principe de base consiste à assurer une température de retour vers les capteurs la plus basse possible, afin de récupérer le maximum d’énergie solaire.

Le chauffe-eau solaire mis en service en 2001 à la résidence Vieux-temps à Fléron est composé de 56 m² de capteurs à tubes sous vide et d’un volume de stockage solaire de 6 600 litres. L’énergie solaire couvre 47 % des besoins en eau chaude de l’établissement.

À l’évidence, l’impact visuel des capteurs est limité.

 > Plus d’infos sur le choixd’un préchauffage par capteur solaire

Les étapes de la réalisation d’un projet solaire thermique ont été balisées par le programme « Soltherm » de la Région Wallonne :

Études de cas Parcourir l’audit solaire établi pour :

– le home La Charmille à Gembloux !

– la piscine d’Herstal !

– la piscine de l’Hélios à Charleroi !


Récupérer l’énergie au condenseur de la machine frigorifique ?

La machine frigorifique évacue de la chaleur vers l’extérieur. Or la production d’eau chaude sanitaire demande une fourniture de chaleur, au contraire. L’idée de récupérer la chaleur de l’un au bénéfice de l’autre est attirante.

En pratique, pour le groupe frigorifique, chauffer l’eau sanitaire de 10 à 30°C est très efficace, effectivement. Par contre, chauffer l’eau de 30 à 60°C est difficile. Sous prétexte de récupération, la machine frigorifique finit par avoir un très mauvais rendement : le compresseur doit augmenter son taux de compression pour atteindre les hautes températures !

Cette technique est donc à privilégier pour les installations où la demande d’eau chaude sanitaire est très importante (hôtels, restaurants,…) et pour lesquels on assurera le préchauffage de l’eau sanitaire, sans perturber le cycle de la machine frigorifique. De l’ordre de 20 à 25 % de la puissance frigorifique peut être alors récupéré.

Schéma 1 : un échangeur thermique parcouru par le fluide frigorigène est inséré au bas d’un ballon d’eau chaude.

échangeur thermique

Par effet de cheminée, la chaleur sera donnée à la zone la plus froide du ballon puis communiquée à l’ensemble du réservoir.

L’échangeur est équipé d’une double paroi de sécurité, selon DIN 1988.

Schéma 2 : un ballon intermédiaire à double échange est intégré comme interface.

On peut également prévoir un système à double échange : deux échangeurs sont intégrés dans un même ballon (1). Le premier échangeur est celui du condenseur de la machine frigorifique, le deuxième est le serpentin de préchauffage de l’eau chaude sanitaire.

Schéma ballon intermédiaire à double échange

Un appoint en série est prévu (2).

Schéma 3 : en présence d’une boucle de distribution.

Le régulateur de température de départ de la boucle utilise l’appoint lorsque le niveau de température du ballon est insuffisant.

 Concevoir

Motivé ? Alors, découvrez plus de détails sur le fonctionnement côté machine frigorifique en cliquant ici !

Critère anti-légionelles

Toute zone « morte » de l’installation est une zone propice au développement de la légionelle. Ces bactéries adorent se développer dans une eau entre 35 et 45°C. Ce sont surtout les grandes installations qui sont les plus sensibles. Une étude du CSTC à mis en évidence que 40 % des grandes installations étaient contaminées : immeubles à appartements, piscines, homes, hôpitaux…

D’une manière générale, les principes à poursuivre pour combattre la légionelle sont les suivants :

  • éviter la stagnation (bras morts des réseaux),
  • forcer une T° > 55°C dans la boucle de circulation,
  • éliminer les zones tièdes au fond des ballons de stockage.

Voici les recommandations du CSTC :

  • « L’eau chaude doit être produite à une température de 60°C; on évitera qu’elle reste durablement dans le chauffe-eau à une température moindre.
  • L’eau doit être maintenue à 55°C au moins en tout point du réseau principal.
  • Dans un système de distribution avec recirculation, la température de retour ne peut jamais être inférieure à 55°C. Par ailleurs, la chute de température entre le point de départ et le point de retour à l’appareil de production d’eau chaude ne peut dépasser les 5°C : si l’eau quitte l’appareil de production à 60°C, la température de retour devra être de 55°C au moins.
  • Il est interdit de laisser stagner de l’eau chaude ou de l’eau froide : les branchements « morts » sur le réseau de distribution (y compris les vases d’expansion sanitaires, par exemple) sont donc « à risque ». Ils ne pourront dépasser 5 m et avoir un volume d’eau supérieur à 3 litres.
  • Les installations doivent être entretenues régulièrement; à cet effet, les appareils de production d’eau chaude seront dotés des ouvertures nécessaires. »

Source : CSTC magazine (hiver 2000).

À ce titre, les accumulateurs d’eau chaude sont-ils plus ou moins performants que les préparateurs instantanés ? Difficile à dire, … pour supprimer tout risque, il est recommandé une température de 60°C durant 30 minutes ou 70°C durant 4 minutes. Les préparateurs instantanés ne vérifient pas ces critères, mais avec ce système, il n’y a pas de stagnation, donc pas de développement possible (il faut un minimum de 2 jours de stagnation entre 25 et 45°C pour générer la prolifération bactérienne).

Ce qui est certain, c’est que la température de production est plus élevée qu’autrefois, que l’isolation thermique doit être renforcée et … qu’il faut investir dans des mitigeurs de qualité qui ne craignent pas trop le calcaire (risque de brûlure !).

Précisons enfin que la transmission de la légionelle se réalise par inhalation d’aérosols (gouttelettes de 1 à 5 microns) et par la contamination des poumons. On pourra donc être contaminé en prenant une douche mais pas en buvant un verre d’eau ! Ceci implique que la préparation à haute température est importante dans une piscine mais pas forcément dans une école.


Traitement de l’eau ?

Pour assurer la fiabilité des systèmes de douches (absence de dépôt dans les surfaces d’évaporation dont les pommeaux, de blocage des boutons poussoirs,…), il faut passer très souvent par la réduction de la teneur en carbonates de l’eau de distribution.

Techniques de traitement

Trois techniques de traitement de l’eau sont possibles :

  • Mettre en place un adoucisseur par résines échangeuses d’ions, avec rinçage de l’installation; ce procédé est d’une efficacité reconnue.
  • Traiter physiquement grâce à un champ magnétique; l’efficacité de ce type de solution est variable en fonction des conditions de fonctionnement de l’installation (comme par exemple la vitesse de l’eau traitée). On consultera les études du CSTC et du CSTB à ce sujet.
  • Dissoudre des cristaux de polycarbonates qui jouent le rôle d’inhibiteurs; cette solution s’applique pour des températures inférieures à 60°C.

Mesure de la dureté de l’eau

On commencera par analyser le TH de l’eau, Titre Hydrotimétrique, qui caractérise la dureté totale de l’eau dans la région du bâtiment à concevoir. Ce TH exprime la somme des ions Calcium Ca++ et Magnésium Mg++, responsables de la dureté de l’eau.

L’unité de mesure est le degré français °F. Ainsi, 1° F = 10 mg CaCO3/litre. L’échelle suivante permet de juger de la tendance de l’eau à déposer des sels :

eau très douce : < 7,5°F
douce : 7,5 à 15°F
assez dure : 15 à 20°F
dure : 20 à 30°F
très dure : > 30°F

La compagnie des eaux peut fournir cette valeur. Sinon, il existe des kits de mesure que les sociétés de maintenance utilisent et qui sont en vente chez les marchands d’adoucisseurs. Un pharmacien peut également faire cette mesure

Dimensionnement de l’installation

Partons d’une eau dont le TH est de 30°F (soit 0,3 kg de CaCO3/m³).

  1. On convient de limiter le TH à une valeur de 15°F, c.-à-d. de retirer 15°F/m³ d’eau à traiter. Il n’est pas nécessaire d’adoucir davantage : la consommation de sels augmenterait alors qu’un très léger dépôt de calcaire protège le réseau de tuyauteries de la corrosion par l’oxygène.
  2. On estime la consommation journalière. Par exemple : 3 000 m³/365 = 8,2 m³/jour. Il nous semble que le traitement de l’eau chaude est suffisant puisque c’est lors du chauffage de l’eau que le problème se pose. Le traitement de l’eau froide ne se justifie que pour une raison de confort.
  3. La capacité de traitement sera de 8,2 x 15 = 123 m³.°F/jour.
  4. Considérant le prix des appareils (un adoucisseur plus petit est moins cher), on peut raisonnablement choisir un appareil de capacité nominale de 250 m³.°F/jour par exemple.De cette manière, la saumure de régénération a au moins un jour pour se reconstituer. À ce sujet, il faut considérer une consommation annuelle de sel de l’ordre de 2 000 à 3 000 kg (0,6 à 1 kg/m³). Cela entraîne la nécessité de prévoir un bac à saumure suffisamment grand pour éviter une trop grande fréquence de manipulation.Il faut aussi prévoir une mise à l’égout (environ 10 litres d’eau évacuée/litre de résine à régénérer).
  5. Choisir un dispositif de régénération volumétrique, beaucoup plus économique qu’un programmateur horaire.

L’analyse comparative de « Test-Achats »

Les résultats de l’analyse comparative publiée dans Test-Achats de juin 2000 concernent bien entendu le secteur domestique. Les coûts de l’énergie sont également ceux en vigueur dans le domestique. Toutefois, il nous a semblé intéressant d’y faire écho ici parce que le secteur tertiaire à parfois des besoins en ECS très limités, comparables à ceux d’une habitation.

Les coûts annuels repris dans le tableau englobent le coût d’investissement dans l’appareil (amorti en 15 ans) et le coût d’exploitation. Hypothèse : consommation de 180 litres d’eau chaude/jour (5 à 6 personnes)

Coût annuel
(amortissement + exploitation)

Chaudière murale au gaz naturel
(tarif B, sans veilleuse)

189 €

Chaudière murale au gaz naturel
(tarif B, avec veilleuse)

189 €

Chauffe-bain au gaz naturel
(tarif B, sans veilleuse)

251 €

Chauffe-bain au gaz naturel
(tarif B, avec veilleuse)

269 €

Boiler électrique 200 l
(tarif exclusif nuit)

321 €

Boiler au gaz naturel 145 l
(tarif B)

339 €

Boiler sur chaudière à mazout 120 l

355 €

Boiler sur chaudière au gaz naturel 120 l

366 €

Boiler électrique 200 l
(tarif bihoraire)

387 €

Chauffe-bain au propane en réservoir

428 €

Boiler au propane en réservoir

587 €

Chauffe-bain au propane en bouteilles

615 €

Boiler électrique 150 l
(tarif jour).

729 €

Boiler au propane en bouteilles 145 l

849 €

Le préparateur instantané gaz se révèle le plus économique. Tandis que le préparateur au propane gagne a être remplacé !

legionnelle - eau chaude sanitaire

Légionellose

legionnelle - eau chaude sanitaire

La « legionella pneumophila » : sa vie, sa mort

Il s’agit d’une bactérie. Sa transmission se réalise par inhalation d’aérosols (gouttelettes de 1 à 5 microns) et contamination des poumons. On pourra donc être contaminé en prenant une douche mais pas en buvant un verre d’eau, puisque la bactérie ne survit pas dans l’estomac !

Les pathologies

Dans moins de 5 % des cas, elle provoque une pneumonie avec un taux de mortalité de 10 à 20 %, mais dans 90 % des cas, on parlera d’une grippe, ce qui est plus bénin.

En Belgique, en 1999, 195 cas ont été rapportés, dont 2 cas majeurs : 5 morts parmi plus de 100 personnes hospitalisées après une visite à la foire de Kapellen (contamination par les émanations d’un bain à bulles) et 1 mort parmi les 7 personnes contaminées par le réseau d’eau chaude sanitaire d’un hôtel en Ardennes.

Croissance et température

Au départ, il y a une bactérie par m³ qui entre dans le bâtiment par le réseau d’eau de ville.

La croissance de la bactérie est nulle sous 20°C (état latent). La croissance a lieu entre 25 et 45°C, avec un optimum entre 32 et 42°C : à cette température, leur nombre double toutes les 3 à 4 heures ! On considère que pour de l’eau maintenue entre 25 et 45°C, la contamination est sans risque durant les 2 premiers jours, de risque faible entre 2 jours et une semaine, de risque élevé au delà d’une semaine.

On notera que l’on ne détecte pas de légionelles pour T°eau >= 58°C en permanence (Journal of Hospital Infection, Vol. 37, Issue 1, p 7-17).

L’unité de mesure est le CFU/l = le nombre d’unités formant colonies par litre d’eau (de l’anglais Colony Forming Units par litre).

Destruction

Théoriquement à 50°C, 90 % des bactéries présentes meurent dans les 2 à 6 heures. A 60°C, 90 % des bactéries présentent meurent dans les 5 minutes. A 80°C, 90 % des bactéries meurent dans les 30 secondes. Du moins, dans les conditions de laboratoire (= en suspension dans l’eau).

Mais en réalité, elles peuvent exceptionnellement résister jusqu’à 80°C. En effet, elles créent des colonies dans les amibes, plus résistantes à la chaleur. Et les installations d’eau chaude sanitaire sont tapissées d’un dépôt visqueux, le biofilm, composé de micro-organismes, dont les amibes… Au sens strict, un choc thermique n’est donc totalement efficace qu’à partir de 80°C.

Les désinfectants quant à eux ne sont jamais efficaces à 100 %.

Enfin, le temps de réinfection d’un système sain est inconnu. Les mesures de prévention sont donc cruciales.


Légionelle et équipements techniques

Les équipements responsables

Sont considérés comme des équipements à risque : les installations d’eau chaude sanitaire (via les douches), les tours de refroidissement des installations de climatisation (via la pulvérisation de microgoutelettes d’eau), les bains à remous et jacuzzis, …

Toutes les zones où l’eau à tendance à stagner sont critiques : zone inférieure des grands ballons de préparation (surtout si pas d’isolation du fond), bras morts des installations de distribution, …

Les systèmes d’humidification du conditionnement d’air (« bacs laveurs« ) ne sont par contre pas concernés car leur température est trop basse (10 à 15°C).

Si les chauffe-eau électriques domestiques sont parfois contaminés, ce sont les grandes installations qui sont généralement les plus sensibles (étude CSTC : 40 % des grandes installations, de type immeubles à appartements, piscines, homes, hôpitaux,…). Le problème est beaucoup moins fréquent en domestique (une étude hollandaise a montré que 6 % des installations étaient contaminées)…

Les réservoirs à basse température

Certains systèmes sont particulièrement concernés : pompe à chaleur et chauffe-eau solaire puisque la performance de ces systèmes sous-entend de travailler à basse température.

Il faut sans doute privilégier les installations avec doubles réservoirs en série, le premier assurant un préchauffage de l’eau, le deuxième assurant la montée à la température de 65°C minimum. Mais il faut que l’eau reste dans ce deuxième ballon un temps suffisant. Il ne faudrait pas qu’en période de soutirage de pointe, le post-chauffage de l’eau soit trop bref et que de l’eau contaminée soit envoyée dans le réseau.

Question (à laquelle nous n’avons pas de réponse) : que se passe-t-il si l’eau préchauffée est envoyée dans un préparateur instantané ? Le temps de chauffage dans le préparateur est-il suffisant pour tuer les légionelles ? … Il faut probablement post-chauffer à une température de 70°C ou 80°C pour éviter tout risque. Ou alors contrôler très régulièrement la teneur en légionelle du ballon de préchauffage.

L’influence de la corrosion des tuyauteries

La bactérie croît en présence de nutriments : fer, calcium, carbone (AOC), manganèse, magnésium, …

Elle se loge tout particulièrement dans certains « habitats » :

  • dépôts de boues, de calcaire, de produits de corrosion,
  • biofilm (micro-organismes) sur la face interne des réservoirs et tuyauteries,
  • eau stagnante.

On en déduit qu’un réseau de tuyauterie d’acier rouillé devient une installation « à risque » (la sortie « d’eau brune » au robinet après un arrêt de l’installation est un signe de corrosion de l’acier galvanisé).


Les recommandations du CSTC pour l’eau chaude sanitaire

Les principes à poursuivre sont les suivants :

  • Eviter la stagnation (bras morts des réseaux).
  • Garder en continu les systèmes à une T° > 55°C.
  • Eliminer les zones tièdes dans les ballons de stockage.

Voici les recommandations du CSTC :

  • L’eau chaude doit être produite à une température de 60°C; on évitera qu’elle reste durablement dans le chauffe-eau à une température moindre.
  • L’eau doit être maintenue à 55°C au moins en tout point du réseau principal.
  • Dans un système de distribution avec recirculation, la température de retour ne peut jamais être inférieure à 55°C. Par ailleurs, la chute de température entre le point de départ et le point de retour à l’appareil de production d’eau chaude ne peut dépasser les 5°C : si l’eau quitte l’appareil de production à 60°C, la température de retour devra être de 55°C au moins.
  • Il est interdit de laisser stagner de l’eau chaude ou de l’eau froide : les bras morts (y compris les vases d’expansion sanitaires, par exemple) ou peu utilisés sont donc à éviter.
  • Les installations doivent être entretenues régulièrement; à cet effet, les appareils de production d’eau chaude seront dotés des ouvertures nécessaires.
  • Les branchements « morts » sur le réseau de distribution ne pourront dépasser 15 m et avoir un volume d’eau supérieur à 3 litres((Lutte contre le développement des légionelles dans les installations sanitaires neuves – Meilleurs techniques disponibles – décembre 2021 » du CSTS/Buildwise  (voir P15) )).
  • Le fond des ballons doit être correctement isolé. Si nécessaire, un dispositif de recyclage interne du ballon doit être organisé (réinjection dans le bas du ballon de l’eau chaude extraite en partie supérieure). À défaut, une purge régulière de l’eau stagnante du fond peut être organisée.

Une remontée périodique de la température ?

Pour limiter la consommation énergétique tout en évitant la contamination, il pourrait être question d’appliquer des augmentations temporaires et périodiques de la température. Certains fabricants de matériels de régulation proposent par exemple des régulateurs dont la fonction anti-légionelle prévoit une montée en température à 70° ou 80°C une fois par semaine.

Peut-on pour autant abaisser la température de production ?

Les dernières études du CSTC((B. Bleys, O. Gerin, K. Dinne,THE RISK OF LEGIONELLA DEVELOPMENT IN SANITARY INSTALLATIONS, Rehva 2018 Conference)) sur le sujet montrent que :
– partant d’une température de production de 45°C, une remontée hebdomadaire d’une heure à 60°C ne permet pas de maintenir le développement des bactéries sous 1.000 kve/l.
– partant d’une température de production de 45°C, une remontée hebdomadaire d’une heure à 65°C n’a donné des résultats positifs que moyennant un rinçage simultané d’une demi-heure de tous les points de puisage du circuit pendant la remontée. Ce rinçage est très gourmand en eau et en énergie, et requiert potentiellement une puissance de chauffe supérieure aux capacités de l’installation.

Ces résultats ont été obtenus sur une installation de production d’eau chaude sanitaire réelle mais en conditions favorables (dimensionnement adéquat, absence de bras morts, usage régulier de tous les points de puisage,…). Il est raisonnable de croire qu’ils sont plus favorables que ce qui peut être observé dans des installations anciennes ou moins bien conçues.

Les études continuent pour déterminer les températures minimales adéquates pour garantir l’efficacité de ces remontées périodiques de température dans des scénarios d’abaissemetn des temépratures de production. En attendant, la prudence demande de respecter une température de production suffisamment élevées (départ > 60°C, retour > 55°C).


Traitements de désinfection

La désinfection thermique de choc (« heat and flush »)

Il s’agit d’un rinçage de chaque point d’eau avec de l’eau à une température de 60°C durant 30 minutes ou 70°C durant 4 minutes. C’est une technique relativement simple si l’eau peut être chauffée à température et si les pertes de chaleur dans les conduits restent limitées. Cela nécessite du personnel qualifié et demeure difficile à mettre en œuvre dans les homes et hôpitaux à cause du fonctionnement 24h/24 (risque de brûlure). Il n’est pas toujours techniquement possible d’y arriver : si tous les robinets sont ouverts, le débit risque d’être trop grand et la production ne pourra plus suivre. également, il y a lieu de vérifier au préalable si cela ne va pas entraîner de dégâts à l’évacuation (résistance limitée à la chaleur des tuyauteries d’évacuation …). Il reste à vérifier l’inexistence de bras morts dans le réseau.

Cette technique peut être automatisée dans certains types de bâtiment (piscines, complexes sportifs, douches au travail, …) : chaque soir le réseau est porté automatiquement à haute température, avec un rinçage par ouverture de robinets commandés à distance.

  1. Régulateur.
  2. Compteur.
  3. Soupape de sécurité.
  4. Clapet anti-retour.
  5. Robinet de douche normal.
  6. Robinet de désinfection actionné par la régulation.

À noter qu’un tel recours fréquent à une décontamination thermique de choc dans des installations en acier galvanisé augmente le risque de corrosion lorsque les températures sont nettement supérieures à 60°C.

On sera attentif au fait que la boucle de circulation soit correctement équilibrée (branches mal desservies…).

La désinfection chimique de choc

Il s’agit d’un rinçage avec un produit de désinfection : produit à base de chlore (hypochlorure de sodium, dioxyde de chlore, …). Il se fait avec une concentration élevée (de 30 à 50 mg de chlore libre/litre), pendant 12 à 24 heures à tous les points (ce qui nécessite un boucle de désinfection).

Cette méthode est efficace pour autant qu’elle soit réalisée de façon correcte, par un personnel expérimenté (attention à la contamination par le chlore !). Pendant la désinfection, l’installation est hors service, ce qui est difficile à réaliser dans les homes et hôpitaux. L’évacuation de l’eau chlorée demande une dilution avant la décharge (attention à l’impact sur les fosses septiques ou les centrales d’épuration).

L’ionisation Cuivre/Argent

Il s’agit cette fois d’un traitement chimique en continu. Des ions de cuivre (0,2 à 0,4 ppm) et d’argent (0,02 à 0,04 ppm) sont introduits dans l’eau par ionisation (en fonction du débit). Les ions positifs s’accrochent aux parties négativement chargées de la paroi cellulaire de la bactérie, ce qui entraîne sa mort.

Selon la littérature, ce traitement compte parmi les plus efficaces. Le traitement agit avec une certaine rémanence. Mais il n’est pas compatible avec l’acier galvanisé car Cu et Zinc forment un couple galvanique corrosif. Et l’utilisation régulière de tous les robinets reste requise.

Le dioxyde de chlore

Il s’agit d’un traitement chimique en continu à l’aide de ClO2, injecté dans l’eau avec un dosage fonction du débit. Mais un dosage « normal » ne permet pas de tuer toutes les légionelles présentes dans le biofilm. Un bon résultat n’est atteint … qu’avec un taux de concentration inadmissible (> 5mg/l) ! Le traitement ne présente pas de rémanence et provoque un risque de corrosion (qui peut être résolu par un traitement anti-corrosion approprié).

L’électrolyse

Il s’agit d’un traitement chimique en continu par l’hypochlorite (HClO – 0,1 à 0,3 ppm en chlore libre) par décomposition de l’eau par courant continu. L’avantage est de ne pas devoir ajouter de substances dans l’eau, sauf du sel NaCl. Cette technique est appliquée avec succès. Elle mise sur une tuyauterie en by-pass, avec désinfection surtout la nuit. Cette technique est cependant très coûteuse.

Le traitement UV

L’eau est soumise à des rayons ultraviolets d’une longueur d’onde de 254 nm, avec une dose de 160 J/m² minimum, souvent 400 J/m². Cette irradiation endommage l’ADN des bactéries qui ne se reproduit plus…

A nouveau, l’avantage est de ne pas devoir ajouter de produits chimiques dans l’eau. Mais il n’y a pas d’effet sur les micro-organismes piégés dans le biofilm situé en aval. L’eau doit être filtrée préalablement pour ne pas avoir de particules en suspension. Il est essentiel que les lampes restent propres (entretien régulier). D’une manière générale, le CSTC considère que l’UV ne se justifie que pour protéger une unité bien déterminée ou une zone restreinte de l’installation.


Les exigences réglementaires

Le règlement « piscines » en Wallonie (janvier 2003)

Les documents de référence sont les différents arrêtés du Gouvernement wallon du 13 juin 2013 (M.B. 12/07/13)((21 DECEMBRE 2006. – Arrêté du Gouvernement wallon modifiant l’arrêté du Gouvernement wallon du 4 juillet 2002 arrêtant la liste des projets soumis à étude d’incidences et des installations et activités classées et divers arrêtés du Gouvernement wallon déterminant les conditions sectorielles et intégrales)), ainsi que les exigences prsentes dans les permis d’environnement pour les installations de refroidissement par dispersion d’eau dans un flux d’air.

Quelques éléments sur cette réglementation « piscines » :

  • Pour les bassins de natation couverts, la température de production d’eau chaude devra être à 65 °C minimum.
  • Le mélange avec l’eau froide devra se faire le plus près possible de la distribution d’eau des douches.
  • Un contrôle deux fois par an dans l’eau d’un pommeau de douche devra vérifier que la concentration ne dépasse pas 1 000 CFU/l.

Un règlement « bâtiments publics » en Flandre (arrêté du Gouvernement flamand du 09 février 2007 – M.B. 04/05/07)

L’exploitant doit établir un « plan de gestion » de la légionelle : description de l’installation, analyse du risque et mesures de prévention.

Quels sont les seuils d’intervention ?

On distingue d’abord 2 niveaux de concentration en Legionella : le Lspp (tous les groupes) et le Lpn (seulement la Légionella pneumophila), d’application dans deux types d’installation :

Pour les systèmes d’eau froide et chaude

  • Si Lspp < limite de détection (environ 50 CFU/l) : pas d’actions
  • Si Lspp > limite de détection : peu de contamination –> vérifier si le système de préparation d’eau froide et chaude suit les recommandations en matière de température. Si oui, analyse tous les 3 mois, et si 4 x négatif, alors analyse 1 x par an. Si non, analyse tous les mois.
  • Si Lspp > 1 000 CFU/l : il y a contamination –> procéder à un nouvel échantillonnage et, si confirmation, à une désinfection de choc; dans les hôpitaux et les homes, surveillance des légionelloses.
  • Si Lspp > 10 000 CFU/l : il y a contamination importante –> fermeture de l’installation, désinfection de choc, analyse de de l’eau. Si Lspp reste > 1 000 CFU/l : fermeture et assainissement. Ensuite, analyse toutes les 2 semaines. Si 3 x de suite le résultat est négatif, contrôle tous les 3 mois. Si 4 x de suite l’analyse des 3 mois est négative, contrôle 1 x par an.

Pour les tours de refroidissement

On procède à l’analyse des Germes Totaux GT.

Si GT > 100 000 CFU/l ou si légionellose, alors analyse de la Legionella pneumophilia :

  • Si 1 000 < Lpn < 10 000 CFU/l, on procède à une nouvelle analyse et, en cas de confirmation, on analyse le risque.
  • Si Lpn > 10 000 CFU/l, on procède à un nettoyage complet et à une désinfection.

Consommation d’eau chaude sanitaire

Consommation d'eau chaude sanitaire


Caractéristiques de puisage des appareils

Dans les établissements industriels (source : Recknagel).

Débit Température
d’eau [°C]
Énergie consommée par utilisation [kWh]
Débit [l/mn] Durée [min] Par utilisation [l]

Lavabo individuel

10 3 30 35 0,9

Lavabo-auge collectif

– à robinet

5 à 10 3 15 à 30 35 0,5 à 0,9

– à pissette

3 à 5 3 9 à 15 35 0,25 à 0,50

Lavabo collectif circulaire

– à 6 places

20 3 60 35 1,8

– à 10 places

25 3 75 35 2,2

Douche commune

10 5 50 35 1,5

Douche en cabine

10 15 80 35 2,3

Baignoire

25 30 250 35 7,3

Valeur moyenne y compris les besoins de cuisine

50 l par jour et par personne 40 1,75 kWh par jour et par personne

Voici les données issues de campagnes de mesures en Suisse :

Débit par utilisation [l] Température d’eau [°C] Energie consommée par utilisation [kWh]

Douches en milieu scolaire

35 45 1,4

Douches en centre sportif

60 45 2,4

Douches pour ouvriers d’usine

– travail peu salissant

50 45 2

– travail très salissant

60 45 2,4

Baignoire normale

150 45 6,1

Grande baignoire

180 45 7,3

Baignoire d’hydrothérapie

300 45 12,2

Remarque.
Les différences constatées entre les sources sont dues,

  • Au fait que la température de référence des débits annoncés n’est pas toujours la même.
  • Au fait que certains auteurs donneront des valeurs de pointe pour le dimensionnement (Recknagel) alors que d’autres donneront des valeurs moyennes pour un calcul de rentabilité (campagne de mesures).

Ratios de consommation par type de bâtiment

Voici le résultat d’une campagne de mesures menée par l’EDF en 1985.

Etablissement Caractéristiques Besoins en litres à 60°C
Hotel – 3 étoiles en montagne
(sports d’hiver)
par chambre et par jour 170
– 3 étoiles tous lieux par chambre et par jour 130 à 140
– hôtel de vacances à la semaine avec bain par chambre et par jour 100
– 1 étoile avec douche (50 %) et bain (50 %) par chambre et par jour 75
– lingerie par kg de linge sec 4 à 5
Restaurant 150 à 50 repas par jour par repas 12 à 20
Grande cuisine cuisine à liaison froide par repas 2 à 3
Bureaux en absence de besoins particuliers (douche, restaurant, …) par personne et par jour 2 à 6
École – chambre d’internat par lit et par jour 30 à 40
– repas, hors lave-v. par repas 3 à 5
– repas, avec lave-v. par repas 9 à 10
Maison de retraite – chambre par lit et par jour 40
– repas, hors lave-v. par repas 3 à 5
– repas, avec lave-v. par repas 9 à 10
Maternité – chambre par lit et par jour 60
– cuisine, avec lave-v. par repas 10 à 15
Hôpitaux – chambre par lit et par jour 50 à 60
– cuisine, avec lave-v.
(de 1 700 à 300 repas par jour)
par repas 8 à 12
Foyer pour handicapés – chambre par lit et par jour 100
– cuisine, avec lave-v. par repas 9 à 10
Centre d’Aide par le Travail – chambre par lit et par jour 60
– cuisine, avec lave-v. par repas 9 à 10
Camping – 3 et 4 étoiles par campeur et par jour 12
par emplacement et par jour 45

Une campagne de mesure en Suisse complète ces informations :

Etablissement

Caractéristiques Besoins en litres à 60°C

Villa familiale

standard simple par personne et par jour 35

Appartement

standard moyen par personne et par jour 40

Immeuble d’appartements en location

par personne et par jour 35

mais des valeurs moitié de celles-ci ont été mesurées dans les immeubles HLM en France.

Il semble que 80 % de cette eau chaude soit consommée dans les salles de bains à une température mitigée de 37,5°C, contre 20 % en cuisine à une température de 45°C.

Si l’eau chaude est produite à 60°C, elle représente en volume 30 % de la consommation totale en eau (chaude + froide) des personnes (95 litres/pers/jour en immeuble collectif et 125 litres/pers/jour en maison individuelle).

Les statistiques dans les immeubles de bureaux sont très variables (de 10 à 40 l/jour et par personne à 45°C d’après le Recknagel), la variabilité étant sans doute liée à la présence ou non d’une restauration.

Données de l’Ademe-AICVF :

Piscine

toute eau confondue, chaude et froide par m² de bassin et par semaine de 250 à 2 300 litres, avec une moyenne de 1 180

Préparateur d’eau chaude sanitaire avec pompe à chaleur

Préparateur d'eau chaude sanitaire avec pompe à chaleur


Fonctionnement

Le principe de fonctionnement d’une pompe à chaleur est le même que celui de la machine frigorifique mais l’application travaille en sens inverse.

L’objectif consiste à extraire la chaleur gratuite d’un milieu extérieur : l’eau d’une rivière, l’air extérieur, l’eau d’une nappe souterraine, … (on parle de « source froide »). Physiquement, l’air extérieur à 0°C contient beaucoup d’énergie puisque sur l’échelle des températures absolues, l’air se situe en réalité à 273° K !

Schéma fonctionnement.

L’évaporateur est à l’extérieur et la température du fluide frigorigène sera environ 5 à 8°C inférieure à la température de la source froide. L’énergie thermique captée sera « remontée » à un niveau de température utilisable (pour le chauffage de l’eau chaude sanitaire) via le compresseur : la chaleur du condenseur est donc donnée au ballon.

Bien sûr, on aura intérêt à ce que l’eau chaude soit à une température la plus basse possible. L’écart de température entre l’entrée et la sortie du compresseur doit être en effet le plus faible possible pour limiter le travail du compresseur.

Exemple d’application.

Refroidir l’air extérieur à 0°C pour assurer le chauffage de l’eau chaude sanitaire à 45°C.

Le fluide frigorigène sera à .- 5°C. dans l’échangeur avec l’air et à .53°C. dans l’échangeur du ballon d’eau.

Cet écart est donc fort grand, ce qui va diminuer la performance de l’équipement.


Coefficient de performance

Le bilan énergétique de la PAC

Qu’est-ce qui coûte dans l’exploitation d’une installation de pompe à chaleur ?

  • pas l’énergie de la « source froide » : elle est gratuite,
  • mais bien l’énergie électrique du compresseur.

D’où la notion de rendement donné par le « COP », coefficient de performance :

COP = chaleur au condenseur/travail du compresseur = Q2 / W

Or Q2 = Q1 + W = chaleur captée à la source froide + énergie développée par le travail du compresseur (loi de conservation des énergies).
Dès lors, Q2 est toujours plus grand que W et le COP est toujours nettement plus élevé que 1.

Est-il normal de rencontrer une machine dont le « rendement » dépasse 100 % ?

En réalité, ce n’est pas ici une machine de conversion, de transformation d’énergie comme une chaudière, mais bien une machine qui transfère une quantité d’énergie thermique d’un seuil de température à un autre. Le COP n’est donc pas un rendement mais une évaluation de la performance du transfert.

Si l’écart entre les 2 seuils de température augmente, l’efficacité (ε ou COP) diminue.

Comment évaluer le COP d’une pompe à chaleur ?

Puisque W = Q2 – Q1, on écrit encore : COP = Q2 / (Q2 – Q1)

Si l’on considère un travail sans pertes, les lois de la thermodynamique établissent le lien entre l’énergie contenue dans un fluide (Q) et la température absolue de ce fluide (T), si bien que l’on admettra sans démonstration l’expression suivante du COP théorique :

COPthéorique = T2 / (T2 – T1) [T étant exprimé en Kelvin]

Le coefficient de performance instantané est d’autant meilleur :

  • que la température T1 de la source de chaleur (dite la « source froide ») est élevée,
  • que la température du réseau de chauffage est basse (T2 proche de T1).

Alors que l’on ne peut guère influencer la température de la source de chaleur, celle du ballon d’eau chaude sera définie par le projeteur ! Il aura intérêt à la laisser minimale.

Exemple d’une pompe à chaleur AIR-AIR.

Soit T°ext = 0°C (= 273° K) et T°chauff. = 40°C

COPthéor = (273 + 40) / (40) = 7,8 !

En théorie, la pompe fournira 8 x plus d’énergie au condenseur que d’énergie demandée au compresseur ! … (les 7/8 de la chaleur étant captés dans l’air extérieur).

En théorie … car en pratique, plusieurs éléments vont faire chuter cette performance :

  • Il existe un écart de température entre le fluide frigorigène et les sources.
    Par exemple : si T°ext = 0°C, T°évaporateur = … – 8°C… Et si T°chauff. = 40°C, T°condenseur = … 48°C… d’où un COP = (273 + 48) / (56) = 5,7.
    Le coefficient de convection entre l’eau et l’évaporateur étant nettement meilleur que le coefficient de convection entre l’air et l’échangeur, on aura tendance à privilégier les PAC eau/eau. Encore faut-il avoir une rivière au fond de son jardin ou une nappe phréatique sur laquelle il est possible de puiser (autorisation obligatoire). en général, il faudra se résoudre à prendre l’air extérieur comme source froide.
  • Or dans ce cas, si la T°ex < 5° C, alors T°fluide évaporateur = 0°C. Dès lors, du givre apparaît sur les ailettes, la glace bouche l’échangeur extérieur, d’où nécessité de dégivrer (soit un courant électrique est envoyé sur l’échangeur pour faire fondre la glace, soit le cycle est inversé et des gaz chauds sont envoyés dans l’évaporateur).
    Avec la consommation de dégivrage, le COP moyen diminue fortement.
  • Lorsque la température de l’air extérieur descend sous 0°C, le compresseur a de plus en plus de mal à fonctionner : la puissance délivrée au condenseur de la pompe à chaleur devient très faible et il faut parfois ajouter des résistances de chauffage électrique directe à l’installation.
  • Il y a nécessité de faire fonctionner le ventilateur de la source froide, d’où une consommation électrique supplémentaire de cet auxiliaire.

Quels COP rencontrés en pratique ?

Nous n’avons pas de résultats de mesures « neutres » qui fourniraient un COP annuel sur une machine existante.

On peut imaginer à la fois que le COP est dégradé par la haute température de l’eau chaude, mais également que sa performance est élevée en été.

On pourrait interpréter les données fournies par les fabricants :

Exemple.

Imaginons les spécifications techniques dans un catalogue

Puissance calorifique

kcal/h 3 500
Btu/h 14 000
kW 4,10
Puissance absorbée kW 1,33

On en déduit le coefficient de performance :

puissance calorifique (au condenseur) / puissance absorbée =
4,1 kW / 1,3 kW 
= 3,2

Attention ! Ce coefficient est obtenu dans des conditions bien spécifiques ! Par exemple, en petits caractères, le fabricant précise qu’il s’agit de valeurs obtenues pour 7°C extérieur… Cette performance va s’écrouler en période plus froide. En réalité, c’est le rendement moyen saisonnier qui nous intéresse… mais celui-ci n’est jamais donné puisqu’il dépend des conditions d’exploitation.

Dans le programme de promotion des économies d’énergie suisse « Ravel », on annonce un COP annuel de 3 pour une pompe à chaleur Air-Eau et de 4,5 si la pompe capte l’énergie souterraine, pour autant que le chauffage de l’eau soit limité à 50°C. Si le stockage est prévu à 60°C, une batterie électrique fournit le complément avec de l’électricité directe (COP = 1).

Attention au bilan final : imaginons le chauffage d’1 m³ de 10 à 60°C par une pompe à chaleur air-eau.

L’énergie nécessaire au chauffage de 10 à 50°C par la PAC sera de :

Énergie = 1 m³ x 1,163 kWh/m³ x (50 – 10) / 3 = 15,5 kWh

L’énergie complémentaire pour passer de 50 à 60°C sera de

Energie = 1 m³ x 1,163 kWh/m³ x (60 – 50) = 11,6 kWh

Le COP moyen annuel est alors de :

COP = Energie produite / Energie fournie

= [1 m³ x 1,163 kWh/m³ x (60 – 10)] / [15,5 + 11,6] = 2,15


Technologies

Afin de pouvoir satisfaire les débits de pointe, la pompe à chaleur est associée à un ballon accumulateur d’eau chaude, d’une capacité comprise entre 250 et 1 000 litres. Ceci permet également de faire fonctionner la pompe à chaleur durant la nuit, avec un tarif réduit.
On distingue :

  • Une installation compacte dans laquelle évaporateur à lamelles et compresseur sont situés sur le ballon et le condenseur y est intégré.
  • Une installation « split » où évaporateur et compresseur sont installés séparément, notamment parce que la source de chaleur et le chauffe-eau ne se trouvent pas au même endroit.

Entre le ballon et la pompe à chaleur, différents modes de transport de la chaleur sont possibles :

  • Par le fluide frigorigène (coefficient de performance élevé mais nécessité d’une construction anticorrosion limitant le risque de contact avec l’eau potable). On utilise généralement des conduites pré-chargées de fluide frigorigène et obturées par une feuille métallique. Lors du vissage des conduites, une broche percera la feuille métallique.

  • Par l’eau du ballon, au moyen d’un échangeur de chaleur extérieur à celui-ci.

  • Par un liquide intermédiaire, construction plus complexe mais sécurité accrue (le circuit du fluide intermédiaire doit être équipé d’un dispositif automatique de dégazage).

  • Par un condenseur extérieur disposé autour de l’accumulateur d’eau chaude, toute infiltration du frigorigène étant alors exclue.

Certains appareils possèdent en outre une résistance électrique d’appoint pour porter l’eau à plus haute température (55 à 60°C).

Il existe des appareils avec évaporateur statique (sans ventilateur), dont la surface d’échange est étendue.


Installation

Le raccordement électrique (disjoncteur, …) est similaire à celui d’un chauffe-eau électrique.

Il faut cependant prévoir en plus un conduit d’évacuation des condensats provenant de l’humidité de l’air.

Évaluer la rentabilité d’une amélioration [ECS]

Évaluer la rentabilité d'une amélioration [ECS]


Quelques ratios de consommation

Le point de départ consiste sans doute à évaluer les m³ d’eau chaude sanitaire consommés.

Il est extrêmement variable d’une institution à l’autre.

Dans la littérature spécialisée, on retrouve soit des ratios moyens par bâtiments types (bureaux, hôpitaux, …) soit des débits tirés des points de puisage que l’on peut additionner pour générer le débit total.

Données

Pour accéder à des ratios de consommation en eau chaude sanitaire.

Ces chiffres sont très approximatifs. Aussi, seul un compteur est réellement efficace dans ce domaine.

Mesures

Pour accéder aux techniques de mesure en eau chaude sanitaire.

Remarque.

Il est fréquent d’additionner les besoins d’eau chaude à 60°C. Si la consommation se fait à une autre température (soit X °C), la formule suivante permet la conversion :

Consommation équivalente à 60°C = Consommation à X °C x (X – 10) / (50)

Par exemple, 100 litres puisés à 45°C génèrent une consommation équivalente de 70 litres à 60°C puisque :

100 x (45 – 10) / (50) = 70

Cette relation est basée sur le fait que l’eau de ville entre dans le bâtiment à 10 °C en moyenne annuelle (5 °C en hiver et 15°C en été).


Budget annuel d’eau chaude sanitaire

Le coût de l’eau froide

En France, le prix moyen du m³ d’eau était de 1,5 € en 1991. Il est passé à 2,5 € en 1997. Soit une hausse de 60 % alors que, sur la même période, l’indice général des prix progressait de 11 %.

En première approximation, une augmentation similaire a eu lieu dans nos régions. Elle est, notamment, la conséquence des nouvelles exigences européennes en matière de préservation de l’environnement et, tout particulièrement, d’épuration des eaux usées.

Aujourd’hui (2016), le prix de l’eau a atteint 4 à 5 €/m³ !

Le coût du chauffage de l’eau

Que coûte le chauffage d’un m³ d’eau ? Partons de l’idée que l’eau est chauffée de 10°C (température moyenne du réseau) à 45°C (température moyenne d’utilisation).

Physiquement, le chauffage d’1 m³ d’eau requiert :

Énergie nette = Volume [m³] x Cap. Therm. de l’eau [kWh/m³.K] x (T°eau chaude – T°eau froide) [K]

Énergie nette = 1 [m³] x 1,163 [kWh/m³.K] x (45 – 10) [K]

Energie nette = 40,7 kWh/m³

Le prix de revient du kWh variant entre 0,0625 € (chauffage fuel ou gaz, rendement compris, ou chauffage électrique de nuit au tarif Haute Tension) et 0,16 € (chauffage électrique de jour au tarif Basse Tension), le coût du chauffage d’1 m³ d’eau chaude sanitaire est donc compris entre 2,5 et 6,5 € par an.

Au total (eau + chauffage), un prix de revient de 7 à 11 € du m³ est à considérer, suivant les cas.

Pour simplifier, retenons pour un bâtiment tertiaire, un prix moyen de 9 € du m³, moitié pour l’eau, moitié pour son chauffage.

Cela met la douche (40 l à 45°C) à 0,36 € et le bain (150 l à 45°C) à 1,35 € !

Le budget annuel de l’eau chaude sanitaire

Sur base de la consommation annuelle, il est possible de calculer le coût (eau + chauffage) qui lui est lié :

Coût = consommation d’eau [m³/an] x 9 [€/m³]

Prenons un exemple simple : la consommation domestique et donc le budget « eau chaude sanitaire » d’un ménage.

On estime à 35 litres à 60°C/jour/personne, les consommations en eau chaude domestique. Soit pour une année :

35 [litres/jour/pers] x 4 [pers/ménage] x 330 [jours/an] x 0,001 [m³/litre] = 46,2 [m³/an]

L’énergie pour chauffer cette eau s’exprime par :

46,2 [m³/an] x 1,163 [kWh/m³.K] x (60 – 10) [K] = 2 687 kWh/an

Le prix de revient du kWh variant entre 0,0625 € (chauffage fuel ou gaz, rendement compris) et 0,16 € (chauffage électrique de jour), le coût du chauffage de l’eau chaude sanitaire d’un ménage est donc situé entre 168 et 430 € par an.

Ce à quoi il faut ajouter les 46,2 x 4,5 = 208 € d’achat de l’eau froide.

Cette évaluation est très approximative. Elle peut cacher des coûts nettement plus élevés si le rendement de production est désastreux (… ce qui est parfois le cas en été !).
On se base alors sur les formules :

Energie brute = Energie nette / Rendement global de l’installation d’ECS

Coût = Energie brute x Coût du kWh

Toute la difficulté réside dans l’estimation du rendement de l’installation existante. Pour faciliter les calculs, un petit logiciel est à disposition.

Calculs

Pour accéder à un logiciel d’évaluation du coût de l’eau chaude sanitaire.

Rentabilité d’une amélioration

Une amélioration est financièrement rentable si l’investissement consenti est remboursé par l’économie réalisée, dans un temps court, et en tout cas inférieur à la durée de vie probable de la nouvelle installation.

Une amélioration est toujours écologiquement rentable.

Investissement

Le prix de revient d’une installation d’eau chaude sanitaire (matériel et main d’œuvre) est spécifique à l’installation et à son contexte.

Il faut tenir compte également des modifications éventuelles aux équipements annexes : l’installation électrique, l’installation de chauffage, le génie civil éventuel,…

Cet investissement peut être amorti dans le temps en fonction de la durée de vie des équipements.

Dans le programme RAVEL (Suisse), on propose les durées de vie suivantes pour les équipements :

Durée d’amortissement

Chauffe-eau (électrique, à gaz, à serpentin, avec pompe à chaleur)

15 ans
Petite cogénération au gaz naturel 15 ans

Installation solaire

20 ans

Conduites d’eau froide

40 ans

Conduites d’eau chaude

25 ans

Coût de maintenance

Les frais annuels d’entretien et de maintenance (ou frais d’exploitation, sans le coût de l’énergie) comprennent les charges salariales ainsi que le coût du matériel de maintenance et d’entretien (y compris service, nettoyage et surveillance).

Dans le programme RAVEL (Suisse), on propose d’évaluer ce poste sous forme d’un pourcentage de l’investissement :

Coût de maintenance

Accumulateur électrique

2 %

Chauffe-eau à gaz

3 %

Accumulateur à serpentin

2 %

Accumulateur avec pompe à chaleur

3 %

Petite cogénération au gaz naturel

7 %

Installation solaire

2 %

Conduites d’eau froide

1 %

Conduites d’eau chaude

2 %

Économie d’énergie liée à l’amélioration

Pour évaluer la consommation prévisible après intervention, il est possible d’appliquer la même démarche que dans l’évaluation de la situation initiale.

Calculs

Pour calculer le coût de l’eau chaude sanitaire après amélioration.

L’économie s’en déduit. Le temps de retour simple de l’investissement (exprimé en années) se dégage du rapport :

Temps de retour = Investissement / (économie d’énergie et d’exploitation)

Quelques situations simplifiées

La rentabilité de certains investissements simples peut être évaluée au moyen des petits logiciels ci-dessous :

Calculs

Pour évaluer la rentabilité de l’isolation des conduits.

Calculs

Pour évaluer la rentabilité de l’isolation d’un ballon.

Choisir un préparateur instantané à plaques

Choisir un préparateur instantané à plaques


Choix de la source de chaleur

Le préparateur instantané a pour qualité essentielle d’assurer de l’eau chaude sanitaire en quantité voulue à n’importe quel moment de la journée.

Source de la chaleur

Un préparateur électrique est très difficilement réalisable, vu l’importance de la puissance nécessaire (un préparateur 12 litres/minute requiert une puissance de 24 kW, soit une ligne de 100 A environ !). Pour s’en convaincre, il suffit de penser au percolateur à café. Avec 1 kW de puissance, il arrive tout juste à réaliser un fin filet d’eau bouillante… C’est parfait pour conserver l’arôme du café… mais c’est inimaginable pour assurer les douches en parallèle après le match de foot ! Et puis, ce serait en courant de jour…

Clairement, l’échangeur instantané s’associe à une chaudière à fuel ou gaz.


Préparateur instantané « pur »

Le chauffage de l’eau se fait dans un échangeur à plaques très compact. Une boucle d’eau chaude sanitaire sera presque automatiquement associée au projet pour lisser les variations de la température de l’eau.

La régulation de cette température se fait via le réglage d’une vanne trois voies au primaire. Cette vanne doit être très « nerveuse » pour réagir rapidement à des variations de la demande. Une régulation PID est nécessaire.

Schéma principe de l'échangeur à plaques.

Ce type de préparation génère un faible encombrement et une faible charge au sol.

Par contre, elle oblige à un maintien en température de la chaudière à haute température. Ce n’est pas heureux en été et cela va à l’encontre de l’évolution actuelle vers une régulation à température glissante (une chaudière « à la température juste nécessaire »). À ce titre, un ballon accumulateur est quand à lui chauffé une ou deux fois dans la journée et la température de la chaudière redescend le reste du temps.

Pour plus de détails, voir dans les critères de choix du mode de préparation d’eau chaude.

On voit donc qu’un préparateur instantané pur ne se justifie que pour rencontrer des besoins importants et assez continus (piscine par exemple).

Puissance

La production instantanée demande généralement une puissance de générateur très importante. Pour dimensionner cette installation, cliquez ici !

Dans le cas d’une production d’ECS combinée au chauffage, il sera peut être nécessaire de surdimensionner la chaudière uniquement pour l’ECS. Ce qui serait une mauvaise utilisation de l’investissement consenti. On préférera compléter l’installation par un ballon d’appoint : c’est le semi-instantané.

Rendement de distribution

Lors du calcul de la puissance d’installation, on admet que, pendant la durée du prélèvement maximal, le rendement de distribution est égal à 1 (pas de mise en température du volume mort, les déperditions étant faibles par rapport à l’énergie fournie).


Préparateur semi-instantané

Photo préparateur semi-instantané.

Pour améliorer la stabilité de la température d’eau chaude, il est possible d’augmenter le volant tampon de la boucle en mettant un réel ballon en série. Deux schémas sont possibles :

  • Soit l’échangeur est inclus dans le ballon :

Schéma préparateur semi-instantané avec échangeur est inclus dans le ballon.

  • Soit le ballon est placé en appoint et se met en service dès que la température de 60 °C par exemple n’est plus atteinte au départ de la boucle. La vanne s’ouvre et le circulateur se met en fonction. Son débit horaire est égal à 4 fois la capacité du ballon.

Cette capacité permet, en cas de soutirage important, d’assister le préparateur instantané par le préchauffage « préventif » d’une réserve.
Dans le même esprit, le schéma ci-dessous nous paraît plus simple et donc probablement meilleur :

Ce type d’installation est capable d’assurer avec souplesse la fourniture de besoins assez variables.

Plus le réservoir sera important, plus la puissance de chauffe pourra être réduite. Une régle de bonne pratique montre qu’avec une capacité tampon (en litres) de 5 x Puissance exprimée en kW, on peut diminuer de moitié la puissance par rapport à la puissance instantanée.

Exemple. En logement collectif, le débit de pointe de soutirage d’eau chaude est pris à 50 litres pour 10 minutes par appartement. Un coefficient de simultanéité prend en compte le fait que tous les appartements ne sont pas en demande en même temps :

Nbre de logements

10 20 39 50 75 100 200

Coeff simultanéité

0,50 0,40 0,36 0,31 0,29 0,27 0,24

Pour un parc de 50 logements, en production instantanée, on installera : 50 logements x 50 litres x 1,16 Wh/l.K x (60 – 10) K x 0,31 / [(1/6) h x 1 000] = 270 kW. Mais si un ballon de 600 litres est associé, la puissance installée sera réduite à 135 KW.

D’une manière générale, il existe une infinité de combinaisons « puissance de chauffe – volume de stockage », répartie sur une courbe d’égale satisfaction des besoins.

Calculs

Pour déterminer la courbe « puissance-volume » qui répond à un profil de besoin d’eau chaude particulier, cliquez ici !

Détails d’installation

La gestion des fluctuations de température

C’est un des inconvénients de ce type de système : il faut une réponse immédiate et à juste température. Un temps de réponse de l’ordre d’une dizaine de secondes est parfois requis.

Un régulateur progressif est nécessaire : le mode PI est nécessaire pour les échangeurs de faible capacité, comme les échangeurs à plaques. Une régulation fine (PID) est parfois à prévoir pour le réglage de la vanne 3 voies. La constante de temps de la sonde doit être réduite et la vitesse du moteur élevée. Les constructeurs de ces échangeurs spécifient les caractéristiques que doivent présenter les régulateurs.

Et malgré tout, on reste limité par le temps de réponse des éléments mécaniques de l’installation qui rend les fluctuations inévitables. Il est déconseillé d’utiliser ce type de système dans un bâtiment ayant un profil de puisage discontinu.

La sonde de température sera dédoublée par une sonde de sécurité qui interrompt impérativement l’alimentation du primaire en cas de dépassement d’un seuil de température.

Le raccordement sur une chaudière à condensation

On sera attentif à sélectionner un modèle sur base d’un retour à la plus basse température possible, par exemple au régime (donc surdimensionner un peu la surface de l’échangeur).

Mais il semble qu’avec un préparateur instantané, la condensation reste difficile. La production d’eau chaude sanitaire, surtout depuis les mesures anti-légionelles, semble un frein aux techniques de chauffage basse température d’aujourd’hui. Ne faudrait-il pas de plus en plus privilégier des productions indépendantes ? Dans ce cas, le chauffage instantané est mal placé suite à la puissance qu’il demande…

La résistance à la corrosion

La température élevée au niveau des surfaces d’échange conduit à la formation rapide de tartre.

Lorsque l’on sait que le dépôt calcaire est exponentiellement lié à la température de chauffage de l’eau, cet inconvénient limité par l’action de la vanne trois voies qui évite que la température au primaire de l’échangeur soit en permanence à la valeur maximale.

Ce système est cependant mal adapté à un réseau d’eau dure. Il est alors recommandé d’effectuer un traitement anti-tartre par injection de phosphates ou adoucisseur d’eau.

Robinetterie

Robinetterie


Le mitigeur mécanique de lavabo avec limitation

Photo mitigeur mécanique de lavabo avec limitation.

  • Coût moyen
    85 € (contre 70 pour les mitigeurs mécaniques classiques).
  • Économie
    m³ sur l’année pour une famille de 4 personnes.
  • Temps de retour
    < 1 an.
  • Fonctionnement
    Le réglage de la température se fait de manière classique. Par contre, la manette possède une limitation pour le réglage du débit vers 8 litres/mn (butée ou point dur) qui demande un effort, ou un geste supplémentaire, pour atteindre la pleine ouverture du mitigeur (au moins 12 litres/mn).
  • Conseils d’utilisation
    Pas de remarque particulière.
  • Normes
    EN 817.

Le mitigeur électronique

Photo mitigeur électronique.

  • Coût moyen
    180 €.
    L’économie reste difficilement appréciable.
  • Fonctionnement
    Une cellule électronique détecte la présence des mains de l’usager et commande l’ouverture du débit. Le réglage en température se fait de manière classique grâce à la manette de commande. Une fois les mains en dehors du champ de détection, l’écoulement est stoppé.
  • Conseils d’utilisation
    Les points faibles de ces robinetteries sont les électro-vannes. Il est donc conseillé de placer des filtres en amont afin de protéger la robinetterie contre les particules qui pourraient nuire à son bon fonctionnement.
  • Application
    Ce type d’équipement est plus approprié aux collectivités ou aux établissements recevant du public.
  • Normes
    Aucune.

L’aérateur

Photo aérateur.

  • Coût moyen
    5 €.
  • Économie
    12 m³ sur l’année pour une famille de 4 personnes.
  • Temps de retour
    < 1 an.
  • Fonctionnement
    L’aérateur standard (sans limiteur de débit) permet l’obtention d’un jet régulier et participe à l’amélioration des caractéristiques acoustiques.
    L’adjonction d’un limiteur de débit permet par exemple de réduire le débit lors de la pleine ouverture de la robinetterie à un débit voisin de 6 litres/mn pour certains limiteurs (il existe plusieurs modèles de limiteur avec différents débits associés : 8 litres/mn, …). Le limiteur de débit est constitué d’une pastille qui change de forme suivant la pression qui est exercée par la vitesse de l’écoulement afin de réduire la section de passage pour les débits élevés.
  • Conseils d’utilisation
    Nettoyer régulièrement afin d’éliminer les dépôts calcaires.
  • Normes
    EN 246.

Le réducteur de pression

Photo réducteur de pression.

  • Coût moyen
    30 €.
    L’économie reste difficilement appréciable.
  • Fonctionnement
    Le réducteur de pression est composé d’une membrane élastomère sur laquelle vient s’exercer la pression de l’eau et la pression du ressort qui permet le réglage précis de la pression aval (ex.: entre 1,5 et 5,5 bars). La valeur de la pression est alors le résultat de l’équilivre entre les forces exercées sur la membrane.
  • Conseils d’utilisation
    Ne pas installer le réducteur de pression sur un by-pass car l’équilibre des pressions est alors possible en cas de mauvaise étanchéité de la vanne de by-pass.
    De plus, son montage sur la seule production d’eau chaude sanitaire est déconseillé car le déséquilibre des pressions qu’il entraîne (entre les réseaux d’eau froide et d’eau chaude) empêche le bon fonctionnement des robinetteries.
  • Normes
    EN 1567.

Le mitigeur mécanique de douche

Photo mitigeur mécanique de douche

  • Coût moyen
    50 €.
  • Économie
    2 m³ sur l’année pour une famille de 4 personnes.
  • Temps de retour
    < 1 an.
  • Fonctionnement
    Le réglage de la température et du débit est classiquement obtenu grâce à la manette. Pour ce qui est des robinetteries avec limitation de débit au niveau de la cartouche, un point « dur » ou une butée, délimite deux zones de fonctionnement : une zone économique (de 0 à environ 5 litres/mn), et une zone de confort (jusqu’à environ 12 litres/mn).
  • Conseils d’utilisation
    Eviter la fermeture rapide.
  • Norme
    EN 817.

Le mitigeur thermostatique de douche

Photo mitigeur thermostatique de douche.

  • Coût moyen
    100 €.
  • Économie
    4 m³ sur l’année pour une famille de 4 personnes.
  • Temps de retour
    4 ans.
  • Fonctionnement
    Le thermostatique est équipé d’un réglage en température et d’un réglage en débit. La température est maintenue constante par une action simultanée, indirecte et progressive, sur les deux vannes d’arrivée d’eau froide et d’eau chaude. L’ensemble du système est piloté par un élément de détection de température très sensible (bilame ou cartouche à cire dilatable).

    D’autre part, le thermostatique est souvent équipé d’une butée en température qui évite ainsi les risques de brûlure.

  • Conseils d’utilisation
    Veiller à ce que la robinetterie thermostatique soit bien équipée de clapets de non-retour. La mise en place de filtre en amont, voire d’un adoucisseur, est conseillée dans le cas d’une eau entartrante.
  • Norme
    EN 111.

Choisir un ballon de stockage

Choisir un ballon de stockage


Critères de choix communs

Épaisseur d’isolation des parois

Les constructeurs proposent généralement des épaisseurs de 5, 8 ou 10 cm. Lors de l’acquisition d’un nouveau ballon, nous recommandons sans hésiter une isolation de 10 cm.

Passer de 5 à 10 cm est amorti généralement en 3 ans. L’investisseur est donc récompensé dès la 4ème année. Pouquoi s’en priver : c’est un placement plus sûr qu’à la bourse de New York !

Si vous n’êtes pas convaincu, utilisez le petit programme ci-après et testez deux épaisseurs différentes : le gain financier apparaîtra sur les 30 ans de durée de vie du ballon.

Calculs

Pour évaluer la rentabilité de la pose d’un isolant, cliquez ici !

Cette très bonne rentabilité de l’isolant est liée au fait que l’eau chaude est maintenue en permanence à haute température par rapport à l’ambiance (Delta T° élevé).

Voici les recommandations du programme suisse « Ravel » pour les accumulateurs calorifugés sur place

Contenance en litres

Épaisseur minimale
de laine minérale en cm

< 400

10

de 400 à 2 000

12

> 2 000

14

La lutte contre le développement de la légionelle ne fait que renforcer la nécessité d’une forte isolation puisque la température de maintien dans le ballon doit atteindre un minimum de 60°C.

Choix de l’isolant

On rencontre différentes techniques :

  • L’isolation en mousse de polyuréthane (PUR), aujourd’hui sans CFC.
  • Les matelas de laine minérale, ceinturés par une feuille d’aluminium et recouverts d’un manteau en aluman.
  • Les coquilles en polystyrène, recouvertes d’un manteau de tôle laquée, amovible (mais parfois limité à certaines températures).
  • La résine de mélamine, nouveau matériau très résistant à la haute température et facilement dissociable du manteau extérieur.

Parmi ceux-ci, surtout si le montage a lieu sur chantier, on sera attentif à deux critères :

  • L’isolation ne peut générer de pertes par convection (circulation d’air entre la cuve et le manteau isolant). Lors de certains audits, il a déjà été constaté des « effets de cheminée » très importants à ce niveau !
  • L’élimination ultérieure des déchets doit être simple (il n’est pas impossible que ceci soit taxé un jour…), ce qui privilégie le choix de matériaux dissociables de la cuve et si possible recyclables.

Encombrement

C’est le défaut des accumulateurs : ils prennent beaucoup de place.

Accumulateurs d’eau chaude en milieu hospitalier.

Si nécessaire, il est possible de limiter le volume de stockage en augmentant la consigne de stockage au delà de 60°C. Mais il est alors nécessaire de placer un mitigeur thermostatique pour diminuer la température de distribution.
En voici le schéma pour une installation électrique :

schéma pour une installation électrique

Mesure anti-légionelle

Pour éviter le développement de la légionelle, il faut éliminer les zones tièdes dans les ballons de stockage. On sera donc attentif à la conception du ballon et à une éventuelle poche d’eau tiède qui se formerait en dessous de l’élément chauffant (la face inférieure du ballon est-elle isolée ?). L’existence d’un robinet de purge en partie inférieure est également un facteur favorable pour la maintenance.

Il faut savoir que les installations d’eau chaude sanitaire sont tapissées d’un dépôt visqueux (le biofilm) composé de micro-organismes, dont des amibes… Or les légioelles créent des colonies dans les amibes. Et une fois logées dans celles-ci, elles peuvent exceptionnellement résister jusqu’à 80°C car les amibes sont plus résistantes à la chaleur !

« Les installations doivent être entretenues régulièrement; à cet effet, les appareils de production d’eau chaude seront dotés des ouvertures nécessaires » (source CSTC).

Stratification des températures

Si un ballon de 1 000 litres à 50°C est vidé pour moitié, il faut y trouver 500 litres d’eau à 50°C (encore exploitables) et 500 litres à 10°C. Et non 1 000 litres à 30°C, inutilisables…

La stratification des températures, assure la valorisation du volume utile et donc supprime tout besoin de surdimensionnement du stockage, générateur de pertes par l’enveloppe.

Pour réaliser cette stratification correcte, on adoptera :

  • un casse-vitesse sur l’arrivée de l’eau froide au bas du ballon,
  • une isolation renforcée pour limiter la circulation interne,
  • une isolation de la boucle de distribution pour éviter le retour d’eau trop froide qui « tombe » dans le réservoir et crée des turbulences,
  • une isolation soignée de la tubulure de sortie de l’accumulateur,
  • un retour vers le ballon de la tuyauterie de circulation le plus haut possible,
  • le choix de la position verticale (il faut absolument éviter de coucher les accumulateurs qui perdent ainsi une bonne partie de leur volume utile),
  • le raccordement des ballons multiples en série plutôt qu’en parallèle.

Exemple d’isolation de la tuyauterie de départ.

Pour limiter la consommation d’énergie, il est souvent judicieux d’arrêter la boucle de circulation durant la nuit. Mais cette mesure entraîne une perturbation de la stratification lors du réenclenchement de la circulation. Il est alors utile de programmer cet enclenchement à la fin de la période de chauffage de nuit, pour bénéficier encore du tarif avantageux.

Dans les calculs de dimensionnement, pour tenir compte du degré de stratification des ballons, on considérera une température minimum possible du stock de 10° et on y associera un coefficient d’efficacité ‘a’. Dans la plupart des cas courants, celui-ci prendra une valeur de 0,8 à 0,95 (bonne stratification), ce qui signifie que 80 à 95 % du volume réel du ballon est utilisable pour la température voulue. Si on se trouve dans le cas d’un ballon avec mélange important, ‘a’ peut descendre jusqu’à 0.45.

Dimensionnement

Combien de ballons ne sont-ils pas surdimensionnés !!!
Ils génèrent des pertes de chaleur permanentes par leurs parois…

Calculs

Pour calculer le volume de stockage nécessaire, cliquez ici !

Protection contre la corrosion

parmi les différentes matières de cuve, pour lutter contre la corrosion de l’eau, on prévoit (source RAVEL-Suisse, que nous n’avons pas vérifiée) :

  • L’abandon de la technique de l’acier St 37 galvanisé au bain.
  • Le recours éventuel au cuivre et aux alliages de cuivre, pour lequel nous manquons d’expérience mais qui est couramment utilisé dans les pays scandinaves et en Angleterre. Cette solution est nettement plus coûteuse.
  • L’acier inoxydable (acier CrNiMo), qui doit être suffisamment allié. On utilise généralement les nuances DIN 1.4435 ou 1.4571, soit des aciers à faible taux de carbone avec adjonction de molybdène. Pour les gaines de corps de chauffe (résistances électriques), plus fortement sollicitées, on adoptera des alliages plus performants à teneur élevée de nickel, tels que le IN 1.4539, l’Inconel, etc… La qualité de l’équipement est souvent liée à la réalisation des soudures et au décapage intérieur des cuves.
  • L’acier St 37 avec revêtement organique ou synthétique, mais d’usage limité puisqu’il requiert de ne pas dépasser la température prescrite par le fournisseur (généralement 60°C), ce qui n’est plus compatible avec les critères de gestion anti-légionnelle.
  • Enfin l’acier St 37 émaillé, émaillage réalisé généralement par deux couches successives cuites au four à 890°C.

Les cuves émaillées seront en plus munies d’une protection cathodique : le principe est de protéger l’acier par un métal moins noble que lui. Aussi, les constructeurs incorporent généralement une anode sacrificielle (une barre de magnésium) qui, sacrifiée, se dissout… laissant l’acier intact.

Régulation de température par mitigeage

Une régulation de température par mélange avec l’eau froide de distribution procure divers avantages :

  • Meilleure stabilité de température de l’eau distribuée.
  • Élévation possible de la température du ballon (donc augmentation de la capacité de stockage de nuit… au détriment de l’augmentation des pertes par les parois).
  • Possibilité de sélectionner un différentiel plus élevé (par exemple 10 K). Ceci réduit le nombre des appels de chaleur de la chaudière et les pertes occasionnées par les cycles de marche-arrêt.
  • Possibilité de créer une pointe de température périodique à plus de 70°C pour lutter contre la légionellose.

Mieux : il est judicieux de placer des mitigeurs thermostatiques séparés pour les différents usages de l’ECS dans un bâtiment. La température de l’eau sera adaptée aux différents usages (cuisine et buanderie, chambres, …).

Le risque de brûlure est limité et les pertes des conduites sont diminuées. Les vannes trois vannes seront équipées d’un moteur rapide. La sonde de température aura une très faible constante de temps et sera placée à moins de 50 cm après le mélange.

Dans le cas où les douches n’ont pas leur propre régulateur thermostatique, la régulation de la température de départ peut être améliorée en plaçant un petit ballon entre la vanne et la sonde de température (source : Costic). Un dispositif de sécurité anti-brûlure fermera la vanne en cas de dépassement de la température maximale.

S’il existe une boucle de distribution, le retour de boucle doit être repiqué sur l’entrée « Eau Froide » de la vanne mélangeuse (voir schéma similaire pour la préparation instantanée gaz).

Mais question ?

Peut-on conserver une boucle à température mitigée… sans risque de développement de la légionelle ?
Deux réponses semblent possibles :

  • Soit l’usage de chaque branche de l’installation est permanent, le réseau est constamment renouvelé : le risque est pratiquement nul (on suppose que toutes les bactéries ont été tuées lors de la phase de production de l’eau chaude à haute température et qu’elles ne peuvent pas se développer si vite dans le réseau).
  • Soit certaines branches restent inopérantes plusieurs semaines et le réseau lui-même est peu renouvelé : on pourra craindre un développement de la bactérie. Dans ce cas, le mitigeage doit être assuré au puisage de l’eau.

Il semble que la réponse actuelle soit de placer toute dérivation de plus de 5 m ou de plus de 3 litres sur une boucle (maintenue à un départ de 60 et un retour de 55°C min.), ou d’y organiser un rinçage automatique par semaine.

Études de cas

Comparaison de différents systèmes de production avec accumulateur.

Choix d’un ballon de stockage sans production de chaleur interne

Photo ballon de stockage sans production de chaleur interne

Le ballon de stockage est chauffé par un serpentin d’eau chaude. Le chauffage de l’eau du serpentin est réalisé grâce à une chaudière (gaz, fuel, …) qui assure également le chauffage du bâtiment.

Pour les petites puissances, il est possible que le ballon soit intégré dans la même jaquette que la chaudière. Cette solution a l’avantage de présenter moins de pertes vers l’ambiance, en raison

  • de l’absence de tuyauterie externe entre le ballon et la chaudière,
  • d’une surface déperditive totale moindre.

On peut parler ici de semi-accumulation puisque le stockage permet de subvenir aux besoins de pointe et la chaudière reconstitue ensuite rapidement le stock d’eau chaude.

L’avantage de ce système est de permettre un approvisionnement important, sans risque de « pénurie » en fin de journée (contrairement au système à accumulation électrique), et avec un confort d’approvisionnement optimum (contrairement au système instantané gaz).

Un réseau hydraulique qui permet un fonctionnement « indépendant »

Pour limiter les pertes de distribution au niveau du collecteur primaire, il est conseillé de raccorder la production d’eau chaude directement sur la chaudière, ce qui permet de fonctionner en température glissante au niveau du collecteur primaire (diminution des pertes), tout en pratiquant une priorité sanitaire.

De même, en été, cela permet de ne pas maintenir en température tout un collecteur uniquement pour produire de l’eau chaude.

Lorsque l’installation de chauffage est composée de chaudières en cascade de puissances différentes, il est évident qu’en été, c’est la chaudière dont la puissance est la plus proche des besoins de la production d’ECS qui doit être utilisée, de manière à limiter les pertes à l’arrêt de la chaudière et à optimaliser les temps de fonctionnement du brûleur.

Choix d’une chaudière « basse température »

Autrefois le risque de corrosion (lié à la condensation de la vapeur d’eau des fumées) entraînait le maintien en température de la chaudière fuel toute l’année, y compris l’été. On parlait d’un maintien « sur aquastat » à 65°C, par exemple.

Mais aujourd’hui, il est possible de sélectionner une chaudière régulée à température glissante, c’est à dire dont l’aquastat descend lorsque la température extérieure remonte. Le rendement de combustion en est amélioré.

La présence d’un ballon d’eau chaude perturbe cette volonté de travail à basse température. Pour réchauffer l’eau chaude sanitaire, une température minimale de 70°C environ est en effet nécessaire. Temporairement, par mesure de précaution anti-légionelle, une montée de l’eau de stockage à 70°C est même parfois organisée.

Pour résoudre ce problème, il est possible de mettre en place une régulation avec telle que la chaudière ne monte en température qu’au moment du réchauffage du ballon. Le ou les vannes mélangeuses des circuits de chauffage se ferment alors légèrement.

Pour plus d’infos sur la régulation en présence d’une production combinée, cliquez ici !

Des relances intempestives du chauffage de l’eau sanitaire limitées par une horloge

Si l’on prévoit que la demande peut être couverte facilement par une ou deux relances de la chaudière sur la journée, il sera utile de greffer une horloge sur la régulation pour imposer les plages horaires durant lesquelles le réchauffage du ballon est autorisé. Par exemple : de 5 à 7 heures du matin (juste avant la relance, ainsi on peut profiter de la haute température de l’eau) et de 16 à 18 heures en fin de journée. On évitera dès lors de remettre la chaudière en route pour un puisage d’un seau d’eau ! c’est surtout avantageux en été, bien sûr, mais ce l’est également en hiver puisque la température moyenne saisonnière de l’eau d’une chaudière régulée en fonction de la température extérieure est de 43°C.

Cette technique a fait l’objet d’une simulation sur une installation ECS domestique (consommation de 45 m³ à 55°C). Voici les rendements obtenus (source « Chauffage et production d’ECS » – M. Rizzo – Éditions Parisiennes) :

Chauffage de l’ECS constant

Chauffage de l’ECS programmé

Été

44 % 66 %

Hiver

69 % 80 %

Année

59 % 75 %

Soit un gain moyen annuel de 16 % sur la production d’eau chaude.

Alternative : s’il est difficile de planifier les périodes de chauffage de l’eau chaude, il est possible d’obtenir un effet similaire en régulant le ballon au moyen d’un thermostat à fort différentiel situé en partie haute (au moins au 2/3 de la hauteur). Ce thermostat arrête la pompe de circulation du réchauffeur quand on atteint la température de ballon désirée, généralement 60 à 65°C, et remet le chauffage en service quand la température d’eau tombe à 40/45°C.

Un réseau hydraulique qui valorise le choix d’une chaudière à condensation

Nous sommes en présence d’un paradoxe :

  • L’eau sanitaire est très froide (10°C) à son arrivée. Elle devrait dès lors permettre de valoriser l’efficacité énergétique d’une chaudière à condensation.
  • L’eau chaude sanitaire doit être portée à haute température (généralement 60°C, voire plus pour gérer le problème de la légionellose). Le circuit de chauffage monte donc à 75°C, et génère des retours à 65°C en fin de période de chauffage du ballon ! Par rapport aux circuits « basse température » dont nous sommes aujourd’hui coutumiers en chauffage, c’est donc un régime « haute température »… et cela supprime toute possibilité de condensation.

Deux solutions apparaissent :
> Il existe deux raccordements de retour à la chaudière à condensation. Le retour de l’eau chaude sanitaire est raccordé à l’entrée « haute température ». On a abandonné tout espoir de condenser avec le réseau d’eau chaude sanitaire.

> On décide au contraire de valoriser au maximum la condensation. Sachant que la température de retour doit être inférieure à 53°C, on décide de travailler avec un circuit d’eau de chauffage du ballon à la plus basse température de retour possible. Lors du dimensionnement de la puissance de l’échangeur de production d’eau chaude, un retour à 40 .. 45°C est choisi, par exemple via un régime 70° – 40° ou 90° – 45° au lieu d’un traditionnel régime 90° – 60°.

Techniques

Pour plus d’informations sur les circuits hydrauliques favorables à la condensation, cliquez ici !

Choix d’une résistance complémentaire d’appoint

Le placement d’une résistance électrique complémentaire permet de désolidariser la production de chaleur en été et d’arrêter la chaudière. On parle d’un accumulateur mixte.

Schéma ballon d'eau chaude avec résistance complémentaire d'appoint

  1. Thermomètre.
  2. Tube plongeur pour sonde de thermostat.
  3. Anode en magnésium.
  4. Tube de retour de circulation.
  5. Cuve (acier galvanisé, cuivre ou acier).
  6. Thermovitrification / émail / plastique.
  7. Capot de recouvrement.
  8. Thermostat de réglage et de sécurité.
  9. Corps de chauffe.
  10. Prise d’eau froide.
  11. Brise-jet.
  12. Tube plongeur pour sonde de thermostat.
  13. Pieds réglables.
  14. Calorifuge (laine minérale, polyuréthane sans CFC).
  15. Retour chauffage.
  16. Serpentin.
  17. Aller chauffage.
  18. Prise d’eau chaude.

Un tel équipement est également perçu comme un moyen d’assurer un complément de chaleur à un système de production de chaleur par énergie solaire ou par pompe à chaleur, par exemple. Mais la position de l’échangeur électrique est alors toute autre ! Il va se placer en position médiane, créant 2 ballons : un demi-ballon inférieur pour le préchauffage solaire et un demi-ballon supérieur pour l’appoint électrique.


Choix d’un préparateur électrique à accumulation

Schéma ballon d'eau chaude avec préparateur électrique à accumulation

  1. Carrosserie.
  2. Calorifuge (laine minérale, polyuréthane sans CFC).
  3. Cuve (acier galvanisé, cuivre ou acier).
  4. Thermovitrification / émail / plastique.
  5. Prise d’eau froide.
  6. Brise-jet.
  7. Fond.
  8. Tube plongeur pour sonde de thermostat.
  9. Corps de chauffe.
  10. Pieds réglables.
  11. Capot de recouvrement.
  12. Raccordement électrique.
  13. Thermostat de réglage et de sécurité.
  14. Flasque.
  15. Anode en magnésium.
  16. Thermomètre.
  17. Prise d’eau chaude.
  18. Groupe de sécurité (là, il faut le deviner !).
  19. Vidange à l’égout.

Choix de la résistance chauffante

Parmi les différentes techniques de chauffe, les résistances tubulaires blindées (thermoplongeurs) présentent de nombreux avantages sur leurs concurrents en céramique, dont notamment :

  • Moins de dépôt calcaire en raison des dilatations et retraits successifs de la barre.
  • Bonne capacité de flexion à froid leur permettant d’adapter leur forme à celle du fond du chauffe-eau pour réduire la zone d’eau froide (mesure anti-légionelle).

résistance chauffante

Le thermoplongeur est en contact direct avec l’eau du boiler et est donc susceptible de s’entartrer. Pour le remplacer, il faut vider complètement le réservoir. Ce n’est pas le cas pour les résistances logées dans un fourreau que l’on peut remplacer facilement.

Point de consigne

Les thermostats installés sur les chauffe-eau sont préréglés (60 à 65°C) mais il est important de choisir un appareil dont le point de consigne peut être modifié si nécessaire.

Groupe de sécurité

Pour permettre la dilatation de l’eau lors du chauffage, on trouvera en amont du chauffe-eau un groupe de sécurité (un par appareil), comportant un robinet d’arrêt, un clapet de retenue, une soupape de sûreté et un dispositif de vidange.

Photo Groupe de sécurité

Schéma groupe de sécurité

Il doit porter l’agréation ANS-NAV (reconnaissable aux initiales NA devant le numéro de référence).

Plusieurs appareils en série

Il est possible de greffer plusieurs accumulateurs électriques de forte capacité. Leur dimensionnement correct est très important puisque :

  • Ils doivent stocker la quantité d’eau chaude nécessaire à la totalité des besoins journaliers, afin de bénéficier des prix de nuit.
  • Ils ne doivent pas stocker plus que les besoins journaliers pour ne pas générer des pertes thermiques de stockage inutiles.

Si une relance est nécessaire en journée, une bonne gestion de cette relance doit être réalisée :

  • Seul le dernier ballon devra être réchauffé.
  • L’enclenchement sera asservi à un seuil de température.
  • Un délesteur pourra interrompre la charge durant les heures de pointe (limiter la pointe de puissance du bâtiment).

Hydrauliquement, ces appareils seront montés en série, avec un by-pass permettant d’isoler chaque ballon le cas échéant.

La distribution doit être indépendante du stockage. Il faut proscrire les montages « ballons en parallèle » et « bouclage par stock complet » qui amènent à des relances diurnes coûteuses puisque l’eau de recirculation détruit toute la stratification.

Un bouclage par le dernier ballon est à la limite possible si le volume du stock est approprié : 250 litres à 65°C sont nécessaires pour 100 mètres de tuyauterie de distribution à 50°C, bien isolée.

Pour limiter les pertes de stockage, préférer 2 ou 3 grands ballons plutôt que de nombreux petits ballons.

Stratification

La première mesure pour améliorer la stratification consiste à installer des ballons verticaux et bien calorifugés.

La qualité de la stratification des températures dans le ballon est d’autant plus cruciale que l’on souhaite valoriser l’énergie électrique de nuit. Pour gérer l’effet de déstratification lié au retour de l’eau « froide » de circulation, deux techniques sont possibles :

  • soit éviter la boucle de circulation en la remplaçant par un ruban chauffant électrique,
  • soit prévoir un réchauffage d’appoint de boucle, greffé sur le retour de circulation.

Schéma stratification

Mais il nous semble que dans les deux cas le bilan financier risque d’être lourd, puisque l’on réchauffe l’eau par de l’électricité de jour.

Les techniques de stratification exprimées ci-dessus seront préférées (et tout particulièrement l’isolation renforcée de la boucle de circulation), complétées par une légère augmentation de la température du ballon : en misant sur la faiblesse de la chute de température dans la boucle, on pourrait se passer de réchauffeur.

Si la boucle est fort longue, un réchauffeur semble inévitable. Rappelons qu’une tuyauterie bien isolée perd 7 W/m. Si le circuit totalise 150 m de longueur, c’est une puissance d’1 kW qui est émise. La chaleur perdue en 24 heures correspond au chauffage de 430 litres à 60°C… Et le coût en chauffage électrique avoisine les 750 € par an.

Autre solution : abaisser la consigne du réchauffeur de boucle afin de juste maintenir la température minimale souhaitée.

Dimensionnement

Un des désavantages de cette technique est le risque de tomber à court d’eau chaude en fin de journée, en cas de puisages très importants. Pour éviter cela, il faut :

  • Soit surdimensionner le ballon de stockage (ce qui implique des pertes permanentes supplémentaires).
  • Soit prévoir la possibilité de faire une relance durant la journée, mais au prix du courant de jour !

Dans ce dernier cas, on adoptera un appareil équipé de 2 résistances :
l’élément chauffant inférieur assure la charge nocturne à bas tarif, alors que l’élément chauffant supérieur couvre les demandes de pointe en eau chaude durant la journée, soit environ le 1/3 supérieur du ballon. L’enclenchement simultané des deux résistances n’est généralement pas autorisé en raison de la puissance cumulée.

La température de stockage est généralement comprise entre 50 et 60°C.

Si la longueur des circuits entre ballon et point de puisage dépasse 5 à 6 mètres, on n’hésitera pas à dédoubler le ballon électrique.

Régulation

Les thermostats des batteries électriques doivent être équipés d’une double sécurité contre la surchauffe, cette deuxième sécurité devant être active sur toutes les phases.

Étant donné le coût de l’électricité, une horloge ou une télécommande sur le réseau du distributeur commanderont la charge durant les heures creuses (la nuit ou le WE).


Choix d’un préparateur gaz à accumulation

Une très grande souplesse

L’avantage de ce type d’équipement (par rapport à la solution électrique), c’est que le fonctionnement n’est pas réservé à la nuit. À tout moment le stock d’eau chaude peut se reconstituer, ce qui permet de mieux gérer des puisages importants et exceptionnels. En fait, on peut parler ici de système semi-instantané ou semi-accumulation.

Attention aux brûleurs gaz atmosphériques

Mais malheureusement, ces accumulateurs gaz sont généralement équipés d’un brûleur atmosphérique restant ouvert en permanence vers la cheminée. De l’air à température ambiante entre dans l’appareil et sort par effet de cheminée, évacuant ainsi une part de la chaleur stockée…

Il en résulte des pertes à l’arrêt plus importantes que pour un ballon totalement fermé (ballon électrique ou ballon avec serpentin d’eau chaude) et le rendement saisonnier diminue.

Il sera donc très utile de demander au fournisseur la consommation de maintien annoncée (ou cachée…) de son appareil pendant 24 heures sans puisage (c.-à-d. la consommation pour simplement assurer le maintien de l’eau à 60°C durant 24 h).

Les appareils à ventouse sont probablement meilleurs à ce niveau (dépression moins forte de la cheminée). Idéalement, il faut choisir un appareil à air pulsé (ou aspiré) : lorsque la flamme s’arrête, la ventilation est stoppée elle aussi.

Accumulateur gaz à ventouse.

  1. Sortie ventouse en façade.
  2. Conduit de fumées.
  3. Coupe-tirage.
  4. Arrivée d’eau froide (tube plongeur).
  5. Départ d’eau chaude.
  6. Habillage à haute isolation.
  7. Anode magnésium (protection corrosion).
  8. Réservoir.
  9. Corps de chauffe.
  10. Mystère…
  11. Foyer.
  12. Socle thermo-isolant.
  13. Brûleur atmosphérique à rampes inox et régulation pneumatique avec thermostat incorporé.

Privilégier les brûleurs à air pulsé

Cette fois, le foyer restera clos lors de l’arrêt du brûleur.

Cas particuliers : les accumulateurs gaz à chauffe rapide

Un compromis entre préparateur instantané gaz et accumulateur gaz peut être trouvé dans les appareils dits « accumulateur à gaz à chauffe rapide ».

Ils peuvent travailler en toute autonomie, ce qui permet de séparer les fonctions chauffage et production ECS.

Leur foyer est ouvert, donc de l’air ambiant, attiré par la dépression de la cheminée, va balayer l’appareil et refroidir l’eau stockée en permanence. La flamme s’allumera régulièrement,… rien que pour maintenir l’eau en température.

Exemple.

Voici la fiche catalogue de l’appareil ci-dessous :

Capacité : 185 l
Quantité d’eau disponible en 1 heure : 385 l avec Delta T° = 35 K

Puissance utile : 9,18 kW
Puissance enfournée : 10,2 kW

Consommation d’entretien : 5,04 kWh/24 h
Température des fumées : 171°C

Sur base des données catalogue, on obtient un assez bon rendement instantané de combustion :

9,18/10.2 = 90 %

Mais par contre on annonce une consommation d’entretien de 5,04 kWh/24 h.

Imaginons que seulement 150 litres d’eau à 45°C soient utilisés. Cela représente une énergie utile de :

0,150 m³ x 1,163 kWh/m³.K x (45 – 10) K = 6,1 kWh

Le rendement de stockage devient

6,1 / (6,1 + 5,04) = 55 %

Soit un rendement global de

55 % x 90 % = 49,5 % !!!

Bien sûr, on a utilisé l’appareil en mode accumulation pure… Si, par contre, on lui fait tirer 2 000 litres d’eau chaude sur la journée, le rendement se rapproche des 90 % annoncés.

Préférer les appareils à condensation

Condenser la vapeur contenue dans les fumées de l’appareil au gaz ? Bien sûr, puisque l’eau arrive à 10°C dans le bâtiment ! Du moins, à première vue car le ballon est globalement maintenu à une consigne de 60°C …

Les constructeurs ont donc logiquement utilisé la stratification régnant le réservoir : les fumées sont refroidies jusqu’à condenser dans un échangeur qui se termine dans la partie froide du ballon.

En soutirage continu, le fabricant annonce un rendement de combustion de 105 % sur PCI.

À noter que l’utilisation d’un ventilateur (obligatoire puisque les fumées froides ne montent plus toutes seules…) garantit de très faibles pertes par balayage à l’arrêt du brûleur.

Calorifuge soigné, rendement de combustion élevé, pertes à l’arrêt maîtrisée,… le parent pauvre de l’HVAC a enfin ses lettres de noblesse !


Choix d’un préparateur avec pompe à chaleur

Il existe différentes technologies de pompe à chaleur (PAC) pour la préparation de l’eau chaude sanitaire.

Emplacement de la prise de chaleur (= la « source froide »)

Il est important de placer l’évaporateur de la pompe à chaleur (PAC) dans un milieu chargé de chaleur « gratuite » ! Il n’y a pas de sens à le placer dans un local qui doit être chauffé…

Le placement dans une cave est toujours sujet à réflexions. Faut-il récupérer les pertes de l’installation de chauffage, pertes par des tuyauteries mal isolées par exemple ? La réponse nous semble non. Le refroidissement de la cave par la PAC ne ferait qu’augmenter les pertes du réseau… Si une PAC est placée dans une vieille chaufferie, et qu’une rénovation ultérieure supprime ces pertes, c’est l’investissement dans la pompe à chaleur qui s’en trouve pénalisé…

Le bon réflexe consiste d’abord à limiter les pertes. Et à chercher une véritable source de chaleur « gratuite »

  • l’air extrait du bâtiment,
  • l’eau du circuit des tours de refroidissement d’une installation de conditionnement d’air,
  • l’air rejeté par un process quelconque,
  • l’air humide d’une buanderie, d’une piscine,
  • l’air d’un local où rayonne un condenseur de machine frigorifique (ici aussi, c’est discutable puisque le condenseur devrait d’abord être déplacé, mais un manque de place ou une nuisance acoustique peuvent justifier ce choix).

On cite un volume de local de 25 m³ au minimum par kW de puissance compresseur installée, mais nous préférons analyser la puissance de la source de chaleur.

Cet emplacement doit être compatible avec le souhait de ne pas s’éloigner des points de soutirages d’eau chaude (cuisines, sanitaires, …). À défaut, il faudra soit utiliser un système « split », soit un appareil muni d’un raccord pour gaine de ventilation.

La réflexion doit inclure l’hiver et l’été, et donc éventuellement prévoir un orifice donnant sur l’extérieur pour la période estivale. Si l’appareil n’est pas en service pendant la période de chauffage, les critères ci-dessous doivent être adaptés.

On évitera les locaux :

  • D’entreposage de vivres : la température de surface de l’évaporateur se trouvant généralement au-dessous de la température de rosée de l’air ambiant, celui-ci sera déshumidifié, ce qui peut altérer la conservation des légumes, des fruits, et des bouchons des bouteilles de vin !
  • Très poussiéreux qui pourraient provoquer le colmatage rapide de l’évaporateur, par collage sur les lamelles humides.
  • D’entreposage des solvants, car le ventilateur peut les diffuser et accroître le risque d’explosion.
  • Exposés à un risque de gel, car les conduites pourraient geler en période d’arrêt (dans ce dernier cas, on privilégiera les PAC de type split, avec échangeur statique par exemple, où le transport de chaleur est assuré par le fluide frigorigène lui-même).

Emplacement du condenseur de la PAC

La chaleur de la PAC est fournie au condenseur de la machine. Pour les appareils avec intégration du condenseur dans le ballon d’eau chaude, les exigences suivantes sont requises :

  • Aucune addition d’adjuvants quelconques au frigorigène.
  • Utilisation de lubrifiants ne présentant aucun danger pour le consommateur d’eau potable.
  • Aucun point ou joint soudés, assemblage vissé, … au niveau de l’échangeur entre le fluide frigorigène et l’eau potable.
  • Une sécurité élevée contre les dommages par la corrosion.
  • Un dispositif automatique de dégazage qui empêchera un dégagement de frigorigène sous forme gazeuse dans les locaux par la conduite d’eau potable.

Il nous semble que le système où le transfert de chaleur est réalisé par un condenseur extérieur disposé tout autour de l’accumulateur d’eau chaude est plus adéquat, toute infiltration du frigorigène étant alors impossible. De plus, suite à la surface importante de l’échangeur, le dépôt de tartre est exclu.

Il existe également des pompes à chaleur pour l’eau chaude sanitaire placée sur le retour de la boucle de circulation. Ce choix permet :

  • De sous-dimensionner l’accumulateur (ou tout au moins de ne pas adopter des suppléments de sécurité) puisque la PAC est en réserve.
  • De préchauffer le ballon durant la nuit à une température minimale.
  • D’arrêter la chaudière en été et de fournir l’eau chaude sanitaire par la seule PAC.

Fonctionnement de jour

Réchauffage de la boucle par la PAC.

  1. Circulateur de boucle.
  2. Circulateur de nuit.
  3. et 4  Clapets anti-retour.

Fonctionnement de nuit

Chauffage du ballon par la PAC.

Utilisation d’eau chaude.

L’ensemble de ces arguments intéressants permettent-ils d’amortir le coût de l’investissement dans un double équipement de production de chaleur ? C’est le calcul à faire !

Appoint ?

Pour diminuer la température de condensation de la PAC (et donc augmenter sa performance), il faut concevoir la PAC comme une source de chaleur de préchauffage jusque 35°C ou 45°C, par exemple. L’appoint serait donné par une deuxième source de chaleur, dans un deuxième ballon en série. Ce n’est pas forcément une résistance électrique pour ne pas diminuer la performance énergétique globale du projet…

Bien souvent on se contente d’un système d’accumulateur mixte, mais la stratification des températures n’est pas parfaite (la résistance chauffera une certaine part du ballon, s’il n’y a pas de grilles de stratification dans le ballon). Plus important, il faut se rendre compte que le ballon de préchauffage est à une température idéale de prolifération de la légionelle. Ce n’est pas grave pour autant qu’il soit suivi d’une réserve à haute température dans laquelle l’eau reste durant un temps suffisamment long (3 heures à 60°C, par exemple, ou 1 heure à 70°).

ll faut donc s’assurer que le débit d’eau de pointe ne génère passage trop rapide dans le 2ème ballon, sans assurer le temps de destruction des bactéries.

Dimensionnement

Le dimensionnement d’un préparateur d’eau chaude sanitaire avec pompe à chaleur est sensiblement identique au dimensionnement d’un chauffe-eau électrique traditionnel.

Pour favoriser le fonctionnement de nuit de la PAC (bas tarif), une majoration du volume de stockage est préconisée. Mais s’il s’agit d’une PAC sur l’air extérieur, cette technique de chauffage de nuit doit être étudiée de plus près car la température de nuit étant plus faible, c’est le COP, coefficient de performance de la pompe à chaleur, qui diminue. Il faut donc comparer (sur base de la documentation du constructeur) la baisse du COP et la baisse du tarif électrique.

Ce raisonnement est aussi fonction du type de source froide : une récupération de chaleur sur l’air extrait se fera essentiellement en journée, par exemple.

Consommation

Le bilan énergétique est directement fonction du COP, coefficient de performance de la pompe à chaleur.

Un COP de 3 signifie que pour 1 kWh électrique consommé au compresseur, on obtiendra 3 kWh au condenseur, c.-à-d. dans le ballon d’eau.

Il est difficile d’obtenir des informations neutres à ce sujet. De nombreux paramètres influencent le bilan final : la température de l’eau sanitaire, la température de la source, le fluide de transfert,… La température de l’eau chaude sanitaire est un facteur prépondérant : comment l’appoint est-il fourni ? comment la gestion de la légionelle va-t-elle influencer ce bilan ?

Ci-dessous, voici l’évolution du coefficient de performance telle que présentée dans une étude suisse réalisée en 1994 pour le compte de l’Office fédéral des questions conjoncturelles (programme RAVEL).

Rappelons que le facteur numéro 1 de consommation restera la quantité d’eau chaude consommée !

Et les légionelles?

À l’heure actuelle, le choix d’une pompe à chaleur comme préparateur d’eau chaude sanitaire devient délicat vu sa difficulté à atteindre des températures de l’ordre de 55  °C minimum nécessaires à la lutte contre la prolifération des légionelles.

Choisir un préparateur d’eau chaude instantané au gaz

Choisir un préparateur d'eau chaude instantané au gaz


Choix de la technologie

Avant toute installation du préparateur d’eau chaude sanitaire au gaz

On devra s’assurer :

  • que le local dans lequel doit être installé le générateur est conforme à la réglementation,
  • qu’il est suffisamment ventilé si ce n’est pas un appareil à ventouse, et à l’abri du gel,
  • que le conduit de fumée sera capable d’évacuer les gaz brûlés ou que les sorties de ventouses respectent la réglementation,
  • qu’il n’y a pas d’incompatibilité de tirage avec une installation de ventilation ou une hotte d’extraction,
  • que la présence d’un adoucisseur d’eau en amont ne soit pas de nature à affecter la durée de vie du réservoir par la présence du sel dissous.

Puis, parmi les différentes technologies de préparateur instantané gaz, on pourra distinguer différents critères de choix :

Choix d’un appareil étanche ou appareil « à ventouses »

En vue de limiter les risques de mauvaise combustion et de production de CO dans l’ambiance (toxicité très importante), on ne pourrait trop recommander l’appareil « étanche », encore appelé « appareil à ventouses ». Celui-ci fonctionne de façon totalement indépendante du local : l’air est pris à l’extérieur, il participe la combustion puis est rejeté vers l’extérieur par deux tubes concentriques (sortie en façade ou en toiture).

appareil étanche ou appareil "à ventouses"appareil étanche ou appareil "à ventouses"appareil étanche ou appareil "à ventouses"

Il est d’usage obligatoire en Hollande.

Accumulateur gaz à ventouse.

  1. Sortie ventouse en façade.
  2. Conduit de fumées.
  3. Coupe-tirage.
  4. Arrivée d’eau froide (tube plongeur).
  5. Départ d’eau chaude.
  6. Habillage à haute isolation.
  7. Anode magnésium (protection corrosion).
  8. Réservoir.
  9. Corps de chauffe.
  10. Mystère…
  11. Foyer.
  12. Socle thermo-isolant.
  13. Brûleur atmosphérique à rampes inox et régulation pneumatique avec thermostat incorporé.

Aujourd’hui les raccordements ne posent plus de problèmes, puisqu’il existe des appareils à ventouse équipés d’un ventilateur qui règle l’amenée d’air de combustion et l’évacuation des gaz. Ces modèles sont plus chers mais il faut faire le bilan complet, y compris l’absence du coût de construction d’une éventuelle cheminée.

Schéma sur les appareils à ventouse équipés d'un ventilateur.

Allumage

On choisira un allumage électronique plutôt que le système dépassé de la veilleuse. Celle-ci consomme en pure perte environ 120 m³ de gaz par an, soit un coût d’environ 40 € par an.

Schéma sur allumage électronique.

Il existe des veilleuses électroniques dont l’électricité est créée par le passage de l’eau elle-même, ce qui a pour avantage de ne pas devoir raccorder électriquement l’appareil.

Question : la durée d’allumage en est-elle ralentie ?

Les accumulateurs gaz à chauffe rapide

Un compromis entre préparateur instantané gaz et accumulateur gaz peut être trouvé dans les appareils dits « accumulateur à gaz à chauffe rapide ».

Ils peuvent travailler en toute autonomie, ce qui permet de séparer les fonctions chauffage et production ECS.

Leur gros point faible reste le rendement. Si les constructeurs ont amélioré les rendements de combustion et l’isolation de leur matériels, il reste cependant une perte permanente liée à leur fonctionnement « atmosphérique ». Leur foyer est ouvert, donc de l’air ambiant, attiré par la dépression de la cheminée, va balayer l’appareil et refroidir l’eau stockée en permanence. La flamme s’allumera régulièrement rien que pour maintenir l’eau en température.

Exemple.

Photo préparateur d'eau chaude instantané au gaz

Voici la fiche catalogue de l’appareil ci-contre :

Capacité : 185 l
Quantitié d’eau disponible en 1 heure : 385 l avec Delta T° = 35 K

Puissance utile : 9,18 kW
Puissance enfournée : 10,2 kW

Consommation d’entretien : 5,04 kWh/24 h
Température des fumées : 171°C

Sur base des données catalogue, on obtient un assez bon rendement instantané de combustion :

9,18 / 10.2 = 90 %

Mais par contre on annonce une consommation d’entretien de 5,04 kWh/24 h.

Imaginons que seulement 150 litres d’eau à 45°C soient utilisés. Cela représente une énergie utile de :

0,150 m³ x 1,163 kWh/m³.K x (45 – 10) K = 6,1 kWh

Le rendement de stockage devient

6,1 / (6,1 + 5,04) = 55 %

Soit un rendement global de

55 % x 90 % = 49,5 % !!!

Bien sûr, on a utilisé l’appareil en mode accumulation pure… Si, par contre, on lui fait tirer 2 000 litres d’eau chaude sur la journée, le rendement se rapproche des 90 % annoncés.

Lors de l’achat, il est très important de vérifier la consommation d’entretien annoncée (ou cachée…) par le fabricant. D’une certaine manière, ces pertes par la cheminée centrale correspondent à celles d’une mauvaise isolation de l’enveloppe.

S’il faut stabiliser la température de l’eau, a priori, il semble que la réserve d’eau doit être dissociée du lieu de production. Il vaut mieux que ce soit la boucle qui dispose d’une réserve d’eau puisque ce ballon peut être bien isolé. On peut alors s’inspirer des schémas de régulation d’un producteur instantané à plaques.


Schéma d’installation

Voici les schémas tels que proposés par Gaz de France (brochure « eau chaude sanitaire collective au gaz indépendante », disponible au Cegibat).

Schéma d'installation

Générateur seul.

  1. Générateur.
  2. Vanne d’arrêt gaz.
  3. Filtre gaz.
  4. Réducteur de pression.
  5. Vanne d’arrêt.
  6. Compteur d’eau.
  7. Filtre eau.
  8. Clapet anti-retour.
  9. Manomètre.
  10. Soupape de sécurité.
  11. Purgeur automatique.
  12. Pompe de bouclage.
  13. By-pass.
  14. Raccord isolant.

Générateur avec…

  1. Générateur.
  2. Vanne d’arrêt gaz.
  3. Filtre gaz.
  4. Réducteur de pression.
  5. Vanne d’arrêt.
  6. Compteur d’eau.
  7. Filtre eau.
  8. Clapet anti-retour.
  9. Manomètre.
  10. Soupape de sécurité.
  11. Purgeur automatique.
  12. Pompe de bouclage.
  13. By-pass.
  14. Raccord isolant.
  15. Vanne mélangeuse/mitigeur.

Le choix des tuyauteries de raccordement

Le cuivre s’érode facilement, si bien que de nombreuses particules de cuivre se mettent en circulation, se déposent sur les tuyauteries acier et constituent de nombreuses micropiles enclenchant le processus de corrosion galvanique. C’est une des raisons qui font que l’utilisation du cuivre est proscrite en amont de tuyauteries galvanisées.

Un ballon d’eau chaude sanitaire en acier galvanisé se détériore s’il est raccordé à l’arrivée d’eau de ville par des tuyauteries en cuivre. Si le cuivre est situé en aval de l’acier, il y aura peu de problèmes.


Sécurité des systèmes gaz

Le risque des appareils traditionnels

Les appareils de production d’eau chaude sanitaire fonctionnant au gaz sont à l’origine de nombreux accidents liés à la production de CO. Ce n’est pas la technique qui est en cause mais bien le non respect des règles d’installation et d’utilisation.

Un appareil traditionnel demande une évacuation des gaz brûlés correcte et le respect d’une ventilation suffisante (norme NBN D50-003).

Il sera sensible au bon tirage thermique de la cheminée. Il faut donc que l’étanchéité du local où il est inséré ne soit pas trop importante. Attention à la présence d’une hotte d’extraction d’air dans le local qui risquerait d’inverser le sens du flux d’air dans le conduit de fumées !

Illustration bon tirage thermique de la cheminée.

Chaque année, près de 300 personnes perdent la vie en Belgique par intoxication au CO… alors que la solution est techniquement si simple : l’appareil étanche.

Réglementation

En ce qui concerne les appareils non étanches, il existe une réglementation visant à limiter au maximum les accidents liés à la production de CO par les appareils instantanés (« chauffe-bains « ) ou chaudières murales combinées.

À partir du 1er janvier 96, seuls les appareils gaz portant un marquage CE peuvent être commercialisés en Belgique.

L’AR du 3 juillet 1992, transposant en droit belge la Directive européenne (90/396/CEE) « Appareils à gaz » du 29 juin 1990 qui constitue la base du marquage CE, autorise la commercialisation en Belgique d’appareils portant ce marquage pour autant qu’ils portent également l’indication CAT 12E+.

Cette indication signifie qu’il s’agit d’appareil fonctionnant uniquement (code 1) au gaz naturel (code 2) L ou H (code E) et ne comportant aucun réglage (appareil réglé en usine une fois pour toute).

Depuis cet AR, une nouvelle catégorie est permise pour les chauffe eau : CAT 12E(s)B. Les appareils de cette catégorie (principalement les chaudières à prémélange) possèdent un réglage possible de la pression de gaz mais celui-ci est scellé et donc non accessible aux utilisateurs.

Concrètement, l’impact direct de ces dispositions dans le domaine des appareils de production instantanée d’eau chaude est le renforcement de la sécurité. En effet, depuis le ler janvier 1996 deviennent obligatoires :

  • pour les petits appareils 5 l/min : un dispositif de contrôle d’atmosphère (dans la norme indiqué comme CDA),
  • pour les chauffe-bain et les chaudières murales : un dispositif de contrôle de l’évacuation des produits de la combustion (= sécurité de refoulement, appelée aussi TTB d’après la dénomination néerlandaise « thermische terugslagbeveiliging »).

CDA – Contrôle d’Atmosphère ?

Ce dispositif de sécurité doit interrompre l’arrivée du gaz au chauffe-eau type AAS (non raccordé à un conduit d’évacuation des produits de la combustion), avant que ne puisse apparaître, dans le local dans lequel il est installé, un niveau de CO dangereux pour les occupants éventuels (fixé à 100 ppm, ce seuil est totalement inoffensif pour un occupant éventuel du local).

La norme ne prescrit pas comment le fabricant doit réaliser un dispositif CDA. Elle prescrit les performances et les techniques d’essai à utiliser par le laboratoire d’agréation pour juger si la solution technique présentée par le fabricant répond bien à l’exigence de base.

La norme impose également au dispositif une deuxième performance : interrompre l’arrivée du gaz au brûleur en cas d’encrassement de l’échangeur, puisqu’un encrassement éventuel pourrait, à terme, mener à la formation de CO.

TTB – Thermische TerugslagBeveiliging ?

Ce dispositif de sécurité doit interrompre l’arrivée du gaz au chauffe-bain en cas de refoulement des produits de la combustion en quantité dangereuse dans le local où est installé l’appareil (cheminée bouchée ou évacuation dans une zone en surpression, vent refoulant, arrivée d’air insuffisante, extracteur mécanique trop puissant dans le local, …).

Son principe est basé sur un phénomène physique très simple : tout appareil à gaz avec brûleur atmosphérique raccordé à une cheminée doit comporter un coupe-tirage antirefouleur. Celui-ci comporte toujours un orifice par lequel de l’air ambiant du local est aspiré pour diluer les produits de la combustion.

En cas de déficience au niveau du tirage, le phénomène s’inverse et des produits de la combustion chauds sont envoyés dans le local. Il suffit donc de mesurer la température du flux dans cet orifice : en cas de refoulement la température sera nettement au-dessus de la température ambiante.

Il est admis qu’après intervention du dispositif de sécurité, l’appareil redémarre automatiquement mais, dans ce cas, il est exigé un délai d’attente (temporisation) de minimum 10 minutes. Il est clair que si la cause de l’intervention du dispositif persiste, l’appareil se remettra en sécurité après un certain temps. Puis redémarrera, puis se mettra en sécurité et ainsi de suite.

Remarque : en pratique , les fabricants et importateurs belges d’appareils instantanés de production d’eau chaude et de chaudières murales – réunis au sein de la Collectivité du Gaz – ont convenu, depuis le 1er janvier 1994 de ne plus commercialiser que des appareils munis du dispositif de sécurité de refoulement TTB.

D’autre part, et depuis début 1991, ils ne proposent plus que des chauffe-eau d’une capacité de 5 litres/min, raccordés ou non à une cheminée, équipés d’un dispositif de contrôle d’atmosphère CDA.


Sortie des ventouses en façade

Voici ce que dit la réglementation française à ce sujet :

Les orifices d’évacuation des appareils à circuit étanche rejetant les gaz brûlés à travers un mur extérieur doivent être situées à 0,4 mètre au moins de toute baie ouvrante et à 0,6 mètre de tout orifice d’entrée d’air de ventilation.

Schéma sur sortie des ventouses en façade. Schéma sur sortie des ventouses en façade.

Ces deux distances s’entendent de l’axe de l’axe de l’orifice d’évacuation des gaz brûlés au point le plus proche de la baie ouvrante ou de l’orifice de ventilation.

Les orifices d’évacuation et de prise d’air des appareils à circuit étanche débouchant à moins de 1,8 mètre au dessus du sol doivent être protégées efficacement contre toute intervention extérieure susceptible de nuire à leur fonctionnement normal.

Les orifices d’évacuation débouchant directement sur une circulation extérieure (voie publique ou privée) à moins de 1,8 mètre au-dessus du sol doivent comporter un déflecteur inamovible donnant au gaz une direction sensiblement parallèle au mur ».(Arrêté du 2 août 1977).

Échangeur à plaques instantané

Échangeur à plaques instantané


Technologies

Un échangeur instantané à plaques est, par définition, un préparateur d’eau chaude sans capacité de stockage. C’est l’eau du réseau de chauffage (en provenance de la chaudière) qui chauffe l’eau sanitaire dans un serpentin tubulaire, au moment des besoins.

Schéma principe échangeur à plaques instantané.

Les capacités de chauffage sont fabuleuses… pour autant que la chaudière suive !

Exemple.

Pour un débit au primaire de 14 m³/h au régime 90/45°C, on peut réchauffer environ 230 litres par minutes, de 10 à 55°C.

Mais la puissance chaudière doit être de :

14 m³/h x 1,16 kWh/m³ x (90 – 45) = 730 kW !

Soit l’équivalent de la puissance de chauffage de 30 habitations domestiques…

Et l’alimentation hydraulique doit suivre entre la chaudière et l’échangeur.

De plus, la régulation doit être très souple pour suivre instantanément les variations de la demande. De là, l’adjonction fréquente d’un ballon tampon :

Pour résoudre à la fois ce besoin élevé de puissance et cette régulation sensible, on greffe un ballon tampon sur le secondaire de l’installation.

Échangeur extérieur à la chaudière

On rencontre généralement des serpentins tubulaires en cuivre ou des échangeurs à plaques. Ces échangeurs comportent souvent des tôles déflectrices formant chicanes, dispositifs servant à améliorer les échanges des deux circuits d’eau.

Le raccordement se fait sur l’aller du circuit de chauffage, comme tout corps de chauffe.

Échangeur incorporé à la chaudière

Si la capacité de la chambre d’eau est suffisamment importante, on l’utilise parfois comme échangeur de chaleur.

Les branchements sur la chaudière sont alors réalisés de telle façon qu’en hiver, lorsqu’il y a soutirage d’importantes quantités d’eau chaude sanitaire, c’est toute la puissance de la chaudière qui serve au réchauffage de cette eau. On parle de régulation en « eau chaude sanitaire prioritaire ».


Avantages et inconvénients

Les avantages

Les avantages d’une préparation instantanée sont liés à l’absence de stockage :

  • Le faible encombrement.
    C’est un argument-clef si la place disponible est particulièrement réduite.
  • La faible charge au sol.
    C’est un argument si la chaudière est prévue sous toiture.
  • L’absence de pertes par stockage.
    Cet argument tend à devenir négligeable, vu l’isolation poussée des ballons récents.
  • La bonne performance hygiénique.
    L’eau chaude ne stagnant pas dans le préparateur, les risques de propagation de la légionelle sont réduits.
  • Le faible coût d’investissement.
    Cette technique est relativement peu onéreuse à installer.

Les inconvénients

Les inconvénients du préparateur instantané sont plus nombreux :

  • La fluctuation de la température de l’eau au niveau de l’utilisateur.
    Malgré une régulation fine (PID) (à prévoir absolument), on reste limité par le temps de réponse des éléments mécaniques de l’installation qui rend les fluctuations inévitables. Il est déconseillé d’utiliser ce type de système dans un bâtiment ayant un profil de puisage discontinu.
  • Le rendement de production dégradé de la chaudière.
    Avec une chaudière combinée chauffage-ECS, il est indispensable de maintenir la chaudière en permanence à température élevée (min 70°C) pour garantir un temps de réponse minimum lorsqu’une demande apparaît. Ceci interdit une régulation en température glissante des chaudières et n’est donc pas optimum énergétiquement, principalement avec les anciennes chaudières ou même avec des chaudières gaz atmosphériques récentes dont les pertes à l’arrêt sont importantes.
  • Le fonctionnement du brûleur en cycles courts.
    Étant donné l’absence de réservoir tampon, chaque puisage va entraîner la mise en route de l’installation pour des temps très courts. Les temps de fonctionnement du brûleur seront donc brefs, ce qui est défavorable pour le rendement de combustion et la pollution atmosphérique.
  • La puissance élevée du générateur.
    La production instantanée demande généralement une puissance de générateur très importante. Dans le cas d’une production d’ECS combinée au chauffage, il peut être nécessaire de surdimensionner la chaudière uniquement pour l’ECS. Ce qui serait une mauvaise utilisation de l’investissement consenti.
  • La puissance des circulateurs.
    La perte de charge des échangeurs instantanés demande des pompes plus puissantes dont la consommation électrique n’est pas à négliger.
  • L’entartrage.
    La température élevée au niveau des surfaces d’échange conduit à la formation rapide de tartre (inconvénient limité par l’action de la vanne trois voies qui évite que la température au primaire de l’échangeur soit en permanence à la valeur maximale).

Organiser la maintenance d’ECS

Organiser la maintenance d'ECS


Contrôles

Pendant la première année de service

Lors de la mise en service, on vérifiera la fonction de commutation du thermostat.

Même si le réglage d’origine est de 60°C, on vérifiera la température. On déterminera en outre la température désirée avec l’utilisateur.

La température peut se mesurer d’une part sur le thermomètre du boiler (s’il en existe un) et d’autre part sur le point de soutirage le plus proche du chauffe-eau (robinetterie de puisage) au moyen d’un thermomètre. On tiendra compte des pertes des conduites. Un écart de température entre le réglage du thermostat, l’affichage de la température sur le boiler et la mesure de la température au robinet est normal; il est surtout dû à la stratification régnant dans le réservoir au moment de la comparaison.

On vérifiera en outre le fonctionnement de la soupape de sûreté :

  • bref soulagement du ressort de pression sur la vanne de sécurité (rinçage);
  • contrôle visuel de la soupape de sûreté pour détecter si elle goutte au réchauffage de l’eau.

  

Groupe de sécurité et soupape de sûreté.

Après 1-2 années de service

  • contrôle du niveau de température,
  • contrôle de l’entartrage du réservoir et des corps de chauffe,
  • actionner de temps à autre la manette du groupe de sécurité, afin d’éviter qu’il ne s’encrasse ou ne s’entartre,
  • contrôle de l’anode de protection en magnésium.

Pour procéder au contrôle d’un réservoir électrique, déposer les fusibles, fermer les conduites d’eau froide (vanne d’arrêt), vidanger le chauffe-eau (robinet de vidange) et ouvrir un robinet d’eau chaude pour faire appel d’air.

Après avoir vidangé le chauffe-eau, démonter le capot de protection. Avant de démonter la flasque, dé-raccorder le thermostat et la mise à terre.

La batterie électrique peut maintenant être retirée du chauffe-eau. Bien noter sa position. Après avoir déposé la batterie, on pourra déposer et remplacer rejoint d’étanchéité.

Le passage est maintenant libre pour contrôler la cuve intérieure.


Détartrage d’un réservoir électrique

Avec des chauffe-eau modernes à surfaces intérieures lisses et température de l’eau de 60°C au maximum, il se forme normalement peu de dépôt de calcaire à l’intérieur de la cuve.

Pour le détartrage, on procédera comme suit :

  • Aspirer le calcaire au fond de la cuve avec un aspirateur.
  • Brosser les parois du réservoir.
  • Détacher le tartre de l’élément chauffant par un léger martèlement (par exemple avec un marteau en nylon) ou en grattant légèrement (tournevis, pas d’outil tranchant).
  • Avant de procéder au remontage, nettoyer les deux surfaces d’étanchéité (siège du joint d’étanchéité sur la cuve intérieure et flasque).

On évitera absolument les détartrages chimiques, sauf exceptionnellement en l’absence d’une ouverture (flasque).

Selon la composition de l’eau et avec des températures supérieures à 60° C, les précipitations de calcaire dans l’eau augmentent massivement.

Pour réduire ces précipitations à un minimum et favoriser une exploitation optimale de l’énergie, la température de l’eau sera limitée à 60°C.

Un détartrage régulier (tous les 5 ans environ) du chauffe-eau est néanmoins nécessaire. La fréquence dépend de la qualité de l’eau (composition de celle-ci).

Les détartrages seront signalés par l’apposition d’une étiquette sur le chauffe-eau.


Anodes

Comment protéger une enceinte métallique ? En la mettant en contact avec un matériau plus fragile que lui ! On parle d’ailleurs d’une anode sacrificielle qui va se corroder, laissant la cuve intacte.

Même si la plupart des chauffe-eau commercialisés sont revêtus d’une couche de protection, ils sont souvent équipés en usine d’anodes en magnésium pour garantir une protection supplémentaire du matériau du réservoir.

Lors de chaque contrôle, on vérifiera l’anode et on procédera à son remplacement lorsque l’usure atteint 60 %.

Les anodes sont disponibles dans 2 versions :

  1. anodes à tige,
  2. anodes à chaîne.

On utilise des anodes à chaîne lorsque la place disponible dans la partie supérieure du chauffe-eau n’autorise pas l’introduction d’une anode à tige.

Lors de la mise en place de l’anode, on veillera à garantir un bon contact avec l’accumulateur (masse).


Conduites

Isolation

Avec les années, des défauts de l’isolation thermique peuvent se traduire par des pertes thermiques, raison pour laquelle on procédera périodiquement à un contrôle visuel des conduites et de leur isolation. Au besoin, on complétera ou on remplacera les zones endommagées.

Rinçages

Avec des installations d’eau chaude bien conçues, un bon rinçage est garanti par les soutirages. On évitera ou on éliminera des colonnes peu ou pas utilisées.

Les rinçages sous pression sont compliqués et coûteux. On les utilise principalement pour éliminer les produits de la corrosion dans les conduites. Ce mode de rinçage doit être planifié et contrôlé par un spécialiste. L’exécution d’un rinçage sous pression sera confiée exclusivement à une entreprise spécialisée.

S’il existe un pot de décantation (récupération des boues circulant dans le réseau), généralement situé avant la pompe de recyclage de la boucle, il faudra prévoir une fois par semestre d’ouvrir le robinet de chasse pour éliminer les boues récupérées.

Pot de décantation.


Robinetterie

Circulateur de la boucle de circulation

De nombreuses installations d’eau chaude pêchent par leur circulateur : puissance trop élevée, vitesse d’écoulement trop élevée, etc.

Avec des installations existantes, on peut dans la plupart des cas remplacer le circulateur existant par un modèle plus petit. En procédant à cette opération de substitution, on posera un organe de régulation et un clapet antiretour.

Améliorer

Pour plus d’informations sur l’adaptation du circulateur.

Robinetterie d’arrêt

La robinetterie d’arrêt sera vérifiée quant aux défauts suivants :

  • étanchéité des joints;
  • accessibilité;
  • isolation thermique.

Si ces points sont en ordre, on ne rencontre normalement pas de problème avec la robinetterie d’arrêt.

Robinetterie de puisage

Une robinetterie de puisage qui goutte provoque des pertes d’eau et d’énergie qu’il ne faut pas sous-estimer. Une robinetterie qui n’est pas étanche sera donc immédiatement réparée.

Exception ! Une robinetterie à « écoulement libre goutte » pendant le réchauffage (dilatation de l’eau).

Une robinetterie à débit trop élevée peut provoquer une consommation excessive. En l’occurrence, on vérifiera si :

n’est pas une solution plus économique en termes énergétiques. Moyennant une bonne information, de telles mesures peuvent contribuer très efficacement à l’exploitation économique d’une installation.

Améliorer

Pour plus d’informations sur le choix de la robinetteriez ici.

Source : programme Ravel- Suisse.

Évaluer le confort fourni par la production d’eau chaude sanitaire

Évaluer le confort fourni par la production d'eau chaude sanitaire


Disponibilité

Accès à des locaux sanitaires

L’arrêté royal du 10 octobre 2012 fixant les exigences de base générales auxquelles les lieux de travail doivent répondre précise dans ses articles 51 et suivants, les différents équipements sanitaires qui doivent être mis à disposition par l’employeur.

En particulier, il précise les obligations de placement de douches avec eau chaude et froide pour les travailleurs soumis à des chaleurs excessives, effectuant un travail salissant ou en contact avec agents chimiques ou biologiques dangereux.

La température de l’eau est de 36°C à 38°C et les travailleurs ne sont pas exposés aux courants d’air.

Délais d’attente de l’eau chaude

La recommandation Suisse (SIA 385/3) précise les délais d’attente de l’eau chaude au point de soutirage :

Délais d’attente au soutirage

Éviers de cuisine

7 s

Lavabos

10 s

Douches

10 s

Baignoires

15-20 s

Si le temps d’attente est trop élevé, on envisagera :

  • soit une production décentralisée,
  • soit le placement d’une boucle de circulation, solution plus énergivore puisque des pertes d’énergie apparaîtront aux tuyaux.

Pour évaluer l’amélioration qui en résulterait, un petit logiciel calcule le temps d’attente en fonction du type de tuyau, de son diamètre et du débit du point de puisage. La quantité d’eau froide qui s’écoule correspond à la quantité d’eau chaude qui sera « emprisonnée » dans le tuyau à la fermeture du robinet. On peut donc évaluer la perte énergétique correspondante.

Deux litres d’eau sont nécessaire pour
se laver les mains, mais 4 litres d’eau chaude vont rester dans le tuyau et se refroidir…

Calculs

Pour calculer le débit d’eau perdu à l’ouverture du robinet

En multipliant cette opération x fois par jour, x jours par an, on évalue le nombre de m³ annuellement chauffés en pure perte. Le coût approximatif de 9 € par m³ d’eau chaude (moitié pour l’eau, moitié pour son chauffage) permet d’évaluer l’intérêt énergétique de décentraliser la production.

Améliorer

Pour plus d’informations sur la décentralisation de la production.

Concevoir

Pour plus d’informations sur la conception d’une boucle de circulation.

Accessibilité du point d’eau

L’accessibilité des patients ou du personnel soignant à mobilité réduite fait partie aussi du confort au sens large du terme.

Indépendamment du confort lié aux critères classiques de température, de débit, …, la possibilité :

  • d’accéder facilement à l’espace douche,
  • de se mouvoir aisément dans cet espace,
  • d’utiliser les pommeaux de douche, les robinets, … Sans problème majeur,

est un plus non négligeable dont il faut tenir compte dans les hôpitaux.


Débit

Débits recommandés

Un débit suffisant doit être assuré. Il est facile de mesurer le débit d’un point de puisage en mesurant le temps mis à remplir un seau de 10 litres par exemple puis de comparer à des valeurs réglementaires.

Voici les unités de raccordement selon les directives suisses W3, édition 1992.

Application

Débit par raccordement

UR- Unité de Raccordement équivalente

en litre/s en litre/min

Lavabos, bidets, lavabos-rigoles, réservoirs de chasse d’eau.

0,1 6 1

Éviers, vidoirs, lavabos muraux scolaires, douches pour salons de coiffure, lave-vaisselle domestique, chauffe-eau instantané à gaz, cuves à lessive.

0,2 12 2

Robinetteries de douche de puissance moyenne, chauffe-eau instantanés à gaz.

0,3 18 3

Grands éviers, vidoirs indépendants, vidoirs muraux, robinetteries de bain, machines à laver automatiques jusqu’à 6 kg, chauffe-eau instantanés à gaz, urinoirs à rinçage automatique.

0,4 24 4

Robinet de jardin et de garage.

0,5 30 5
Raccordements 3/4″ :

  • éviers pour grandes cuisines
  • baignoires à grande capacité
  • douches
0,8 48 8

Voici ensuite les sections de tuyauteries correspondantes pour l’acier galvanisé DIN 2440/44 :

Nombre max dur

6 16 40 160 300 600 1 600

DN (mm)

15 20 25 32 40 50 65

Tubes filetés (pouce)

1/2″ 3/4″ 1″ 1 1/4″ 1 1/2″ 2″ 2 1/2″

Di (mm)

16 21.6 27.2 35.9 41.8 53 68.8

Des tableaux similaires existent pour d’autres matériaux dans la W3.

Débit trop faible suite à la présence de calcaire ?

Dépôt sur les surfaces d’évaporation dont les pommeaux de douche ? Blocage des boutons poussoirs ? …

Un dépôt de calcaire, soit dans l’échangeur de chaleur, soit dans les conduites d’apport d’eau chaude augmente les pertes de charge et le débit peut devenir insuffisant.

En fonction de l’analyse de la dureté de l’eau, on jugera de la nécessité de l’adoucir.

Concevoir

Pour plus d’informations sur le choix parmi les techniques de traitement de l’eau et le dimensionnement de l’installation.

Débit trop élevé suite à une ancienne robinetterie ?

Aujourd’hui, on tente de diminuer les consommations par la réduction des débits. Les robinetteries modernes le permettent en réalisant un mélange, émulsion d’air et d’eau (par exemple, pomme de douche à faible débit ou mousseur de robinet).

Avertissements !

Certains rapports d’hygiène hospitalière mettent en cause l’utilisation des mousseurs de robinet dans le développement des foyers de légionelles. C’est pour cette raison qu’il faudra éviter de placer ce genre d’économiseur dans les unités de soins ou dans toutes les zones médicalisées de l’hôpital.

Dans les autres zones, une décision collégiale sera prise entre tous les intervenants.

Améliorer

Pour plus d’informations sur les techniques de réduction des débits.

Température

Consignes de température recommandées

La sensation de la chaleur de l’eau dépend de l’usage, et dans une moindre mesure de la saison.

Pour les soins corporels, une température comprise entre 37 et 45°C est souhaitable. Pour l’alimentation des douches en entreprise, l’AR du 10/10/2012 demande une température comprise entre 36 et 38°C [Art.N1 annexe 1].

Pour les travaux de nettoyage, une température de 50 à 55°C est recommandée.

Au-delà de 60°C, un risque de brûlure apparaît.

Dans une optique de réduction des consommations, un abaissement des températures est souhaitable, mais la gestion de la légionelle peut modifier ce raisonnement …

Concevoir

Pour plus d’informations sur le contrôle de la légionelle.

Si la température d’eau souhaitée n’est pas atteinte, on soupçonnera un manque de puissance.

Fluctuations de la température ?

La température de l’eau varie avec le débit, c’est à dire avec le nombre de puisages simultanés (qui n’a pas connu le coup de la douche qui devient froide lorsque le voisin arrive… juste au moment où il faut rincer le shampoing !?).

Si la préparation se fait par un préparateur instantané (échangeur à plaques, par exemple), il est possible que ce soit la vitesse de réglage de la vanne mélangeuse qui soit à l’origine du problème. Il est possible soit de lui mettre une vanne plus rapide (avec une régulation PI), soit d’adjoindre un ballon tampon à l’installation.

Concevoir

Pour plus d’informations sur la conception des préparateurs instantanés.

Également, l’emploi d’un mitigeur thermostatique de douche est fortement recommandé pour limiter ce problème, sans l’éliminer totalement car on est limité par sa vitesse de réponse.

À noter qu’il est possible qu’ un appareil de production instantané au gaz ne se mette pas en route pour de très faibles débits, ce qui impose souvent inutilement l’ouverture en grand des points de puisage.

Insuffisance de la température ? Analyse de l’origine du problème

Au départ, un manque d’eau chaude …

En tout premier lieu, il faut observer les circonstances exactes d’apparition du problème : où et quand apparaît l’inconfort ?

Voici 3 questions qui peuvent orienter les débats :

Les problèmes sont-ils récents ou ont-ils toujours existés ?

S’ils ont toujours existé, c’est la conception de l’installation qui est en cause (dimensionnement des équipements, mauvais dessin de l’installation, …). S’ils sont récents, il faut repérer les circonstances d’apparition des plaintes.

Par exemple, le repiquage d’un nouveau circuit sur l’installation existante peut perturber le fonctionnement hydraulique de celle-ci, des travaux sur l’installation peuvent provoquer un transfert de sédiments et bloquer des éléments, un échangeur peut s’entartrer progressivement, un circulateur tomber en panne,…

Les problèmes sont-ils saisonniers ?

S’ils n’apparaissent qu’en hiver, c’est que la collaboration avec le chauffage se passe mal.

S’ils apparaissent aussi en été, ce sera plutôt l’appareil de production d’eau chaude seul qui sera mis en cause. Par exemple, la puissance de l’échangeur est peut-être insuffisante.

Y-a-t-il des problèmes pour tous les utilisateurs ?

Si seuls les utilisateurs les plus éloignés de la production sont concernés, c’est du côté de la distribution d’eau chaude qu’il faut chercher. Si par contre, tous les points de puisage sont touchés, c’est la production qui devrait être suspectée.

Si le manque d’eau chaude survient pour tous les utilisateurs lorsque les demandes d’eau sanitaire et de chauffage sont maximales (c’est-à-dire, en plein hiver, au moment des douches ou des bains), on peut se poser la question : « en quoi le chauffage peut-il influencer la production d’eau chaude » ?

Premièrement, une puissance insuffisante des chaudières ne permettra pas aux échangeurs d’être alimentés à la bonne température. C’est la cause directement souvent retenue par un installateur de chauffage.

Un deuxième phénomène peut cependant intervenir. En plein hiver, les vannes (mélangeuses, thermostatiques, …) sont pour la plupart ouvertes en grand. La demande en débit des circuits de chauffage est donc maximum. Si leurs circulateurs ont été surdimensionnés, les débits appelés risquent d’être trop importants. Les échangeurs sanitaires peuvent alors être privés d’un débit suffisant.

Cas vécus.

1. Un home pour handicapés près de Hannut est confronté à une insuffisance d’eau chaude lorsque des puisages simultanés ont lieu dans les différents locaux sanitaires du bâtiment. L’installateur appelé pour avis préconise… un remplacement d’une chaudière par un modèle plus puissant, bien sûr !

L’audit évalue les puissances en jeu et met hors de cause la chaudière. Il révèle qu’il s’agit en réalité d’un problème hydraulique : le débit d’eau chaude pour transférer la chaleur de la chaudière vers l’échangeur à plaques était insuffisant.

Études de cas

Pour plus d’informations cet audit

2. Un autre centre d’accueil pour étudiants à Liège est lui aussi confronté à une insuffisance d’eau chaude à certains moments de la journée, mais cette fois c’est la consommation exorbitante qui pousse le gestionnaire à agir. Il place des réducteurs de débit sur tous les points de puisage (douches et robinets) et le résultat est double : l’eau arrive toujours chaude et la consommation globale est réduite !

Analyse de la puissance disponible

La méthode la plus exacte pour savoir si la puissance de chauffage est suffisante est de refaire le dimensionnement du système de production et de comparer avec la puissance en place.

Concevoir

Pour plus d’informations sur le dimensionnement des préparateurs d’eau chaude.

Mais plus simplement, une évaluation grossière peut avoir lieu comme suit :

Installation par accumulation

On totalise les besoins d’eau chaude sur le temps de récupération (= de réchauffage) du ballon :

  • Si le ballon n’est chauffé que la nuit, son volume doit être suffisant pour vaincre les besoins en eau de l’ensemble de la journée.
  • S’il est réchauffé par un échangeur interne, il faut évaluer la puissance de chauffe de l’échangeur et vérifier que le temps de chauffage du volume d’eau est inférieur au temps de récupération prévu.

Temps de chauffage [h] = (Volume d’eau [m³] x 1,16 [kWh/m³.K] x Delta T°) / puissance échangeur [kW]

Exemple.

Un ballon de 500 litres présente de temps en temps une insuffisance en matière d’eau chaude. Le puisage de pointe est de 450 litres d’eau à 55°C par heure et cela peut se produire plusieurs heures d’affilée. La puissance du serpentin intérieur est de 12 kW.

Vérifions :

Temps de chauffage = 0,45 x 1,16 x (55 – 10) / 12 = 1,95 heures

Ce temps est trop long, le ballon ne pourra remonter en température…

Si le manque de puissance est limité, il est possible d’augmenter la température de stockage de l’eau, … ce qui diminuera partiellement sa performance énergétique (augmentation des pertes).

Préparation instantanée

On totalise les besoins simultanés d’eau chaude sur une période de 10 minutes (= 1/6 heure), par exemple. Puis on compare la puissance correspondante à celle du préparateur :

Puissance nécessaire [kW] = (Volume d’eau [m³] x 1,16 [kWh/m³.K] x Delta T° [K]) / (1/6) [h]

Exemple.

Un préparateur d’eau chaude instantané paraît insuffisant en température. Le puisage de pointe est de 150 litres d’eau à 45°C en 10  minutes. La puissance de l’échangeur est de 45 kW.

Vérifions :

Puissance nécessaire = 0,15 x 1,16 x (45 – 10) / (1/6) = 37 kW

Sa puissance théorique est suffisante. Serait-il entartré ? Non, car ce serait le débit qui serait alors trop faible et non la température. Serait-il alimenté au primaire par une eau à trop basse température ? C’est plus probable, le constructeur a certainement pris une température nominale très élevée pour annoncer les 45 kW…

Une régulation par « priorité ECS » est-elle mise en place ?

La puissance demandée par le chauffage de l’eau chaude est souvent très élevée. Il est normal qu’au moment du réchauffage de l’eau, le chauffage des locaux soit arrêté temporairement. L’inertie du bâtiment est telle que la baisse de température ne sera pas ressenti par les occupants. On parle de « priorité Eau Chaude Sanitaire ».

En cas d’insuffisance de puissance, il est utile de vérifier si ce type de régulation a bien été mis en place

Améliorer

Pour plus d’informations sur la décentralisation de la production.


Qualité de l’eau

Mesure de la dureté de l’eau

On commencera par analyser le TH de l’eau, Titre Hydrotimétrique, qui caractérise la dureté totale de l’eau. Ce TH exprime la somme des ions Calcium Ca++ et Magnésium Mg++, responsables de la dureté de l’eau.

L’unité de mesure est le degré français °F. Ainsi, 1° F = 10 mg CaCO3/litre. L’échelle suivante permet de juger de la tendance de l’eau à déposer des sels :

eau très douce : < 7,5°F

douce : 7,5 à 15°F

assez dure : 15 à 20°F

dure : 20 à 30°F

très dure : > 30°F

La compagnie des eaux peut fournir cette valeur. Sinon, il existe des kits de mesure que les sociétés de maintenance utilisent et qui sont en vente chez les marchands d’adoucisseurs. Un pharmacien peut également faire cette mesure.

Concevoir

Pour plus d’informations sur le choix parmi les techniques de traitement de l’eau, et le dimensionnement de l’installation.

Détection de la légionelle

L’unité de mesure est l’UFC/l (Unité Formant Colonie).

Le seuil indicatif de 10³ UFC/l a été proposé par l’OMS (Organisation Mondiale de la Santé). Il semble qu’en dessous de ce seuil, on n’a qu’exceptionnellement le développement de maladie.

Le Comité Supérieur d’Hygiène Belge quant à lui a adopté le même seuil de 10³ UFC/l.

Si la concentration de légionelles est supérieure à ce seuil, il faut procéder à un contrôle approfondi. On prélève alors un grand nombre d’échantillons, y compris aux robinets , robinets de vidange, vases d’expansion,… afin d’identifier les foyers.

Dans la procédure allemande, si les 10 000 UFC/l sont atteints, la contamination est jugée importante et un contrôle immédiat approfondi est requis. Si les 100 000 UFC/l sont dépassés, la contamination est jugée très importante et l’emploi de l’installation doit être limité (arrêt des douches, par exemple) afin de procéder à une désinfection immédiate de l’installation.

Au delà d’un traitement de choc pour assainir une installation polluée (choc thermique, désinfection chimique), le technicien devra se baser sur une conception correcte du réseau (réseaux bouclés, température élevée).

Concevoir

Pour plus d’informations sur la conception du réseau d’eau chaude sanitaire.

Préparateur d’eau chaude instantané

Préparateur d'eau chaude instantané


Technologie du préparateur électrique

En pratique, l’échangeur instantané électrique ne se rencontre pas (ou rarement) dans le secteur tertiaire. La puissance qu’il requiert est en effet trop importante.

Exemple.

Imaginons un préparateur instantané électrique alimentant 3 douches. Il se peut que les 3 douches fonctionnent simultanément. Le préparateur devra dès lors fournir 3 x 10 litres/min à 45°. Ces 30 litres/min correspondent à un débit de 1 800 litres/heure.

La puissance qui en résulte est de :

1 800 litres/h x 1,163 kWh/litre.K x (45 – 10) K = 73,3 kW

Sur base d’une alimentation 230 Volts, l’ampérage nécessaire serait de :

Courant = Puissance / Tension = 73 300 W / 230 V = 319 Ampères !!!

On n’ose imaginer le câble et le disjoncteur de protection !

Seul le petit débit d’un percolateur est admissible en électrique instantané. Il correspond également à la douceur avec lequel le grain de café finement moulu doit être arrosé … afin d’en capter tout l’arôme !

Aucune comparaison avec les besoins d’eau chaude d’un bâtiment tertiaire !

A la limite, on pourrait imaginer un préparateur instantané près d’un point de puisage (lavabo), mais on installe plus classiquement un ballon accumulateur « rapide » de 5 à 30 litres max, doté d’une puissance de 120 à 200 Watts/litre et dont le temps de chauffe n’excède pas 45 minutes. Ils permettent de ne pas devoir tirer un câble spécifique de raccordement depuis le coffret de distribution électrique.

Photo préparateur électrique.   Photo préparateur électrique.

Lors du chauffage de l’eau, son volume se dilate de 4 % environ. Il existe des appareils pour circuit ouvert ou fermé. Pour l’appareil à écoulement libre, on utilisera une robinetterie appropriée. L’appareil à circuit fermé sera lui résistant à la montée en pression.


Technologie du préparateur gaz

Comme tout préparateur instantané, il chauffe l’eau au fur et à mesure du soutirage, c’est à dire en continu lors de son passage dans l’appareil. Cette technique nécessite une puissance de production importante… qui n’est parfois utilisée que sur de très courtes périodes.

Photo préparateur gaz.

On distingue 3 classes d’appareils de ce type :

  • les appareils non raccordés à un conduit ou à un dispositif d’évacuation de fumées,
  • les appareils conçus pour être raccordés à un conduit d’évacuation des produits de combustion,
  • les appareils à circuit de combustion étanche à ventouse.

Accumulateur gaz à ventouse.

  1. Sortie ventouse en façade.
  2. Conduit de fumées.
  3. Coupe-tirage.
  4. Arrivée d’eau froide (tube plongeur).
  5. Départ d’eau chaude.
  6. Habillage à haute isolation.
  7. Anode magnésium (protection corrosion).
  8. Réservoir.
  9. Corps de chauffe.
  10. Mystère…
  11. Foyer.
  12. Socle thermo-isolant.
  13. Brûleur atmosphérique à rampes inox et régulation pneumatique avec thermostat incorporé.

Le préparateur instantané gaz est réservé à la desserte d’un petit nombre de points de puisage.

Fonctionnement d’un appareil mixte

Voici son fonctionnement en mode chauffage du circuit de radiateurs :

Mode de fonctionnement chauffage.

  1. Corps de chauffe.
  2. Thermocouple.
  3. Bouton de l’aquastat.
  4. Bouton-poussoir gaz.
  5. Pompe.
  6. Réglage puissance chauffage.
  7. Echangeur sanitaire.
  8. Robinet de gaz.
  9. Régulation sanitaire.
  10. Circuit de chauffage.
  11. Sélecteur.
  12. Robinet de remplissage du circuit de chauffage.
  13. Régulateur d’eau.
  14. Elément thermostatique.
  15. Membrane.
  16. Clapet d’admission gaz.
  17. Brûleur.
  18. Sécurité surchauffe.
  19. Arrivée eau chaude sanitaire.
  20. Point de puisage sanitaire.

Et le même appareil en fonctionnement production d’eau chaude sanitaire :

Mode de fonctionnement eau chaude sanitaire.

  1. Corps de chauffe.
  2. Thermocouple.
  3. Bouton de l’aquastat.
  4. Bouton-poussoir gaz.
  5. Pompe.
  6. Réglage puissance chauffage.
  7. Echangeur sanitaire.
  8. Robinet de gaz.
  9. Régulation sanitaire.
  10. Circuit de chauffage.
  11. Sélecteur.
  12. Robinet de remplissage du circuit de chauffage.
  13. Régulateur d’eau.
  14. Elément thermostatique.
  15. Membrane.
  16. Clapet d’admission gaz.
  17. Brûleur.
  18. Sécurité surchauffe.
  19. Arrivée eau chaude sanitaire.
  20. Point de puisage sanitaire.

Fonctionnement d’un appareil à condensation

Si la condensation de la vapeur d’eau des fumées est recherchée, un échangeur complémentaire alimenté en eau froide sera placé avant la sortie des fumées dans la cheminée.

Voici son fonctionnement en mode chauffage du circuit de radiateurs & ECS.

Mode de fonctionnement chauffage.

  1. Corps de chauffe.
  2. Thermocouple.
  3. Bouton de l’aquastat.
  4. Bouton-poussoir gaz.
  5. Pompe.
  6. Réglage puissance chauffage.
  7. Echangeur sanitaire.
  8. Robinet de gaz.
  9. Régulation sanitaire.
  10. Circuit de chauffage.
  11. Sélecteur.
  12. Robinet de remplissage du circuit de chauffage.
  13. Régulateur d’eau.
  14. Elément thermostatique.
  15. Membrane.
  16. Clapet d’admission gaz.
  17. Brûleur.
  18. Sécurité surchauffe.
  19. Arrivée eau chaude sanitaire.
  20. Point de puisage sanitaire.
  21. Condenseur.
  22. Extracteur des produits de combustion.
  23. Coupe tirage.
  24. Régulateur.
  25. Evacuation des condensats.

et le même appareil en fonctionnement production d’eau chaude sanitaire :

Mode de fonctionnement eau chaude sanitaire.

  1. Corps de chauffe.
  2. Thermocouple.
  3. Bouton de l’aquastat.
  4. Bouton-poussoir gaz.
  5. Pompe.
  6. Réglage puissance chauffage.
  7. Echangeur sanitaire.
  8. Robinet de gaz.
  9. Régulation sanitaire.
  10. Circuit de chauffage.
  11. Sélecteur.
  12. Robinet de remplissage du circuit de chauffage.
  13. Régulateur d’eau.
  14. Elément thermostatique.
  15. Membrane.
  16. Clapet d’admission gaz.
  17. Brûleur.
  18. Sécurité surchauffe.
  19. Arrivée eau chaude sanitaire.
  20. Point de puisage sanitaire.
  21. Condenseur.
  22. Extracteur des produits de combustion.
  23. Coupe tirage.
  24. Régulateur.
  25. Evacuation des condensats.

Les schémas ci-dessus sont plutôt des schémas de principe puisque, en tombant, les gouttes d’eau condensées risquent d’éteindre la flamme !

Dans la pratique, l’évacuation des condensats se fera mieux si l’échangeur de condensation est situé en dessous de l’échangeur principal. C’est ce que montre le schéma ci-dessous d’une chaudière à condensation traditionnelle, avec un conduit de fumées raccordé en partie inférieure :

Schéma chaudière à condensation traditionnelle.

Choisir la robinetterie

Choix de la qualité

On peut intégrer la qualité comme facteur d’économie dans la mesure où les problèmes de fuite ou de dysfonctionnement s’en trouvent minimisés.

Et vu le coût moyen de 5 € du m³ d’eau chaude, le surcoût de la qualité est rapidement amorti. « Il faut être riche pour acheter bon marché », disait ma grand mère…


Mélangeur à 2 robinets ? Mitigeur monocommande ? Mitigeur thermostatique ?

Mitigeur monocommande Mélangeur à 2 robinets. Mitigeur thermostatique.

Voici les résultats d’une étude faite dans le cadre du programme Ravel en Suisse.
Ils montrent que la consommation d’énergie est :

  • 19 % plus élevée avec un mélangeur à deux robinets pour bain/douche qu’avec un mitigeur thermostatique (consommation supplémentaire d’énergie environ 200 kWh/an).
  • 56 % plus élevée avec un mélangeur à deux robinets pour lavabo qu’avec une robinetterie sans contact (consommation supplémentaire d’énergie environ 200 Wh/an, également).

Sur base du prix du kWh, il est possible d’avoir une idée de la rentabilité de l’investissement.

Eau chaude %

Bain

mitigeur thermostatique

64 100

mitigeur à monocommande

69 108
– mélangeur à 2 robinets 76 119

Lavabo

robinetterie sans contact

16 100

mitigeur à monocommande

20 125

mitigeur thermostatique

23 143
– mélangeur à 2 robinets 25 156

Influence de la robinetterie sur la consommation d’énergie
base : eau chaude à 55°C, eau froide à 15°C.

On peut en déduire une stratégie de choix appliquée à un lavabo :

Type de robinetterie

Consommation d’énergie Consommation d’eau Coût Remarque
– mélangeur à 2 robinets élevée élevée faible simple
– mitigeur à monocommande faible moyenne normal économique
– mitigeur thermostatique moyenne élevée élevé confortable
– robinetterie sans contact faible faible élevé hygiénique

Cette grille de choix doit encore être confrontée à l’analyse du comportement probable de l’utilisateur. Le robinet d’eau chaude est parfois inutilement actionné, de même que le levier du mitigeur à monocomande est souvent laissé dans une position médiane, même si l’eau chaude n’était pas recherchée…

Cette analyse est partagée par le CSTB en France. Il semble que le mitigeur thermostatique de douche n’apporte surtout des économies que lors du deuxième usage rapproché (rinçage, par exemple). Sur base d’un surcoût moyen de 45 €, ils annoncent un temps de retour de 4 ans dans un usage familial. En usage tertiaire, le temps de retour est donc nettement plus faible.

Le réglage optimum du débit avant celui de la température

Il semble que le facteur numéro 1 de consommation d’énergie soit la quantité d’eau utilisée, avant la température. Donc il faut d’abord chercher à ce que le robinet fournisse juste le débit d’eau nécessaire, et dans un deuxième temps à ce que l’adaptation de la température souhaitée entraîne le moins de consommation d’eau chaude.

L’ergonomie des différents robinets mérite donc une attention particulière, au regard de l’occupation des mains de l’utilisateur. Dans certains cas, les mains étant occupées par un objet (lavage, …), il peut être utile de sélectionner une robinetterie dans l’ouverture est commandée par le genou ou le pied (pédale).

Favoriser l’usage de l’eau froide

Pour favoriser l’usage préférentiel de l’eau froide pour se laver les mains, il est plus aisé de n’ouvrir que l’eau froide avec un mélangeur qu’avec un mitigeur. Aussi, certains fabricants proposent des mitigeurs avec une manette un peu particulière. En effet, la tête céramique est conçue pour que la position centrale corresponde en fait à la position « pleine eau froide » au lieu de la position « eau mitigée ».

Mitigeur.

Le thermostatique : avant tout un confort renforcé

Le thermostatique amène un confort supplémentaire en terme de stabilité de température, même lorsque la production instantanée entraîne des fluctuations de température de l’eau chaude.

Pour augmenter les économies, il existe également des robinets dont le réglage de base correspond à un débit limité à 40 ou 50 %. Ce n’est que si l’utilisateur veut volontairement obtenir le plein débit, après avoir déverrouillé le bouton « éco » du limiteur, que le débit maximal est fourni.

De plus, les thermostatiques intègrent une fonction de sécurité grâce à un bouton « stop » qui limite la température de l’eau mitigée en sortie à 38°C et permet ainsi d’éviter les risques de brûlure (très utile en milieu fréquenté par des personnes âgées ou des des enfants).

Dans des lieux de soins, la température d’arrivée d’eau chaude est parfois de 60°C au moins pour des raisons d’hygiène. Pour éviter tout risque de brûlure, il est possible d’intégrer un mitigeur de sécurité sous l’évier, en amont du mitigeur normal. Il se pose sur la vanne d’arrêt. Il prérègle la température maximale de sortie, indépendamment des variations de pression et même en cas d’interruption de l’arrivée d’eau froide, d’après le fournisseur.

Mitigeur de sécurité.

Le réglage de température est dissimulé sous une coiffe et modifiable via une clé Allen par le technicien.

Enfin, il existe des mitigeurs centralisés pour une zone du réseau.

Mitigeurs centralisés.


Choix d’équipements à faible débit

Utilisation des « boutons poussoirs »

La réduction de la durée d’utilisation peut être directe : une robinetterie à fermeture automatique dans les installations publiques permet de diminuer drastiquement la consommation d’eau.

Utilisation des commandes électroniques

Ils régulent le débit d’eau sans aucun contact physique de l’utilisateur, à l’aide d’une technique opto-électronique. Ce n’est que lorsque les mains se trouvent dans la zone de réception du capteur sous le robinet que l’eau est distribuée.

Mitigeur à commandes électroniques.

En voici une version,
avec l’alimentation en savon également sous contrôle.

Il existe des modèles raccordés au réseau (très faible consommation mais investissement plus élevé), d’autres avec alimentation par batterie (plus aisé en rénovation mais un bilan est à faire !).

Certains encore disposent d’une auto-fermeture, programmable entre 2 et 60 secondes.

Si l’électronique est présente, elle permet également de présélectionner la température d’eau mitigée.

Et puisqu’on en est à rêver, il existe des modèles de robinets intégrables dans la GTC (Gestion Technique Centralisée) du bâtiment : une alarme se déclenche si l’ouverture reste ouverte trop longtemps, une coupure automatique de tous les robinets du bâtiment est possible d’un seul lieu (début des WE, par ex.), un contrôle interdit une température pouvant provoquer des brûlures (dans un home pour personnes âgées), …

Placement de mitigeurs avec butée

Ce type de robinetterie s’utilise comme un mitigeur classique. Toutefois, un point « dur » ou une butée délimite les 2 zones de fonctionnement : une zone économique (de 0 à 6 litres/min environ) et une zone de confort (jusqu’à environ 12 litres/min). Le surcoût de cette technique « point dur à franchir » est négligeable et donc le temps de retour est immédiat.

Mitigeurs avec butée.

Placement de « mousseurs »

Un mousseur est un régulateur de débit qui réduit la section de passage en fin de robinetterie et/ou qui crée un mélange air/eau. Il participe en même temps à la performance acoustique du robinet. Il permet par exemple de réguler un débit maximum de 6 ou 8 litres/minute. Un mousseur revient environ à 5 €.

Mousseur.

Dans la pratique, on se rend compte que des foyers de légionelles peuvent se retrouver au niveau des mousseurs; raison pour laquelle dans beaucoup d’institutions les mousseurs ont été enlevés.

On rencontre aussi ce type de réducteur de débit dans des « douchettes économes » : soit une manette permet de réduire le débit, soit un effet de « nuage d’eau » est créé. Attention au fait que ce type de douchette peut accélérer le phénomène d’aérosolisation, et donc une sensibilité plus grande à la contamination par la légionelle.

Douchettes économes.

Ces équipements terminaux modifient la courbe de réglage en température. La mise en place d’une perte de charge supplémentaire diminue « l’autorité » de la vanne. Si l’évolution est au départ linéaire, la perte de charge finale limite la zone de réglage de la température sur une bonne partie de la plage angulaire.

Problème commun à tous ces équipements : le calcaire !

L’entartrage de ces équipements est un problème si l’eau est particulièrement chargée en calcaire. Un entretien régulier des équipements (vinaigre, produit de type « Viakal », …) ou un adoucissement de l’eau avant son chauffage peut être nécessaire.

Les douchettes avec picots sont donc à privilégier : un simple grattage des picots permet alors de décoller les dépôts.

Certains mousseurs se présentent comme spécialement étudiés pour réduire le dépôt de calcaire.

Tous ces équipements devront pouvoir être facilement démontables et nettoyables.


Choix du mécanisme de vidange des WC

Il ne s’agit pas d’eau chaude… donc pas d’économie d’énergie potentielle. Cependant, c’est le premier poste permettant de réduire la consommation globale d’eau du bâtiment : nous allons donc faire une exception !

Les WC sont référencés par la taille de cuvette. Si autrefois, les cuvettes avaient une capacité de 9 à 10 litres, les cuvettes de 6 litres sont aujourd’hui courantes. Mais différents appareils permettent une économie d’eau supplémentaire par rapport aux cuvettes 6 litres :

Le WC à double commande

  • Un bouton délivre 3 litres, l’autre 6 litres.
  • Coût moyen : 120 € (pour le pack complet).
  • Économie estimée : 4,5 m³ sur l’année par personne, par rapport à une cuvette 6 litres sans double commande, pour un usage familial.
  • Temps de retour : 6 mois en usage familial, donc nettement moins en usage tertiaire.

Variante : il existe des systèmes qui peuvent être interrompus où une première pression sur le bouton de chasse permet l’enclenchement alors qu’une seconde pression permet l’arrêt de l’écoulement.

Chasse de WC à double commande.

Les cuvettes avec accélérateurs de débit

  • Cette fois, c’est de 2,5 à 4 litres qui sont nécessaires, l’accélérateur de débit permettant de conserver toute son efficacité au siphon. L’économie d’eau passe à 67 % par rapport à une cuvette de 9 litres.
  • Coût moyen de l’accélérateur : de 270 € à 840 €.
  • Économie estimée : 9 m³ sur l’année par personne, par rapport à une cuvette 6 litres sans double commande, pour un usage familial.
  • Temps de retour : 22 mois en usage familial, donc nettement moins en usage tertiaire.
  • Application : tout immeuble de 4 étages maximum.

Certains de ces équipements ont reçu un « avis technique » du CSTB (France).
Remarque : ces différents appareils peuvent être sensibles au calcaire qui peut perturber le bon fonctionnement du mécanisme ou du robinet. Les fuites ne sont pas toujours bien visibles. Il convient donc de fermer le robinet d’arrêt situé en amont du réservoir de temps en temps afin de vérifier que le niveau d’eau dans le réservoir ne diminue pas.

Évaluer l’efficacité énergétique de la production d’eau chaude sanitaire

Évaluer l'efficacité énergétique de la production d'eau chaude sanitaire


Estimer le rendement global saisonnier

Ce rendement est difficile à évaluer. Beaucoup de facteurs interviennent et les hypothèses d’exploitation modifient fortement le bilan.

Prenons l’exemple simple d’un ballon électrique de 1 000 litres :

  • son rendement est performant… si le puisage est de 850 litres chaque jour,
  • son rendement est catastrophique … si le ballon alimente 3 lavabos, situés deux étages plus haut, avec des utilisateurs qui, en pratique, n’attendent même pas que l’eau soit chaude pour se rincer les mains !

Il n’est donc pas possible de parler « du rendement d’un ballon électrique » en soi.

Pour avoir malgré tout une idée des performances moyennes des différents systèmes présents sur le marché, voici les chiffres de rendement saisonnier que propose le VITO (Vlaamse Technologisch Onderzoek) dans le cadre d’un diagnostic d’une installation domestique (programme SAVE BELAS).

Rendement
exprimé en énergie locale

Rendement
exprimé en énergie primaire

Épaisseur d’isolant du ballon éventuel 2,5 cm 5 cm 10 cm 2,5 cm 5 cm 10 cm
Ballon combiné à une chaudière
(1 enveloppe commune)
ancienne chaudière à T°constante 0,46 0,52 0,56 0,46 0,52 0,56
nouvelle chaudière à T°constante 0,61 0,69 0,74 0,61 0,69 0,74
nouvelle chaudière à T°glissante 0,69 0,78 0,83 0,69 0,78 0,83
Ballon combiné à une chaudière
(2 enveloppes distinctes)
ancienne chaudière à T°constante 0,41 0,48 0,54 0,41 0,48 0,54
nouvelle chaudière à T°constante 0,54 0,64 0,72 0,54 0,64 0,72
nouvelle chaudière à T°glissante 0,61 0,72 0,81 0,61 0,72 0,81
Instantané gaz
(combiné ou non avec le chauffage)
0,90 0,90 0,90 0,90 0,90 0,90
Accumulateur gaz 0,69 0,78 0,83 0,69 0,78 0,83
Accumulateur électrique 0,76 0,87 0,93 0,29 0,33 0,35

Les hypothèses de calcul sont les suivantes :

  • demande annuelle d’ECS : 43 litres/pers.jour à 40°C pour une famille de 4 personnes.
  • volume de stockage éventuel de 150 litres
  • rendement moyen de la production d’électricité en Belgique : 0,38

Conclusion de ce tableau : même si quelques imprécisions subsistent (le rendement du préparateur de gaz instantané paraît fort élevé, de même que celui de l’accumulateur de gaz), la production instantanée de gaz sort clairement du lot et est donc à conseiller dans le secteur domestique.

L’évaluation du rendement saisonnier d’une installation existante

Même s’il est difficile d’estimer le rendement d’un installation existante, un petit logiciel est à disposition. Il tente d’évaluer les différentes pertes et d’en déduire un rendement annuel.

Calculs

Pour accéder à un logiciel d’évaluation du rendement saisonnier de l’eau chaude sanitaire.

Le cas particulier du chauffage par boiler électrique à accumulation

Il peut être relativement aisé de faire l’évaluation globale de la performance d’une telle installation … pour autant que l’on dispose d’un compteur d’eau chaude et d’un compteur électrique sur le préparateur. S’il s’agit d’un petit ballon avec une prise individuelle, il est même possible d’insérer un compteur entre la prise et le câble de raccordement (un peu comme une allonge).

En théorie, chauffer 1 m³ d’eau à la température moyenne d’utilisation de 50°C, requiert :

1,163 [kWh/m³.K] x (50 – 10) [K] = 47 [kWh]

En pratique cependant, l’EDF a constaté que « pour une installation électrique à accumulation de nuit, un ratio de 75 kWh par m³ chauffé et distribué jusqu’au point de puisage est une bonne performance. Les diverses dérives de fonctionnement peuvent malheureusement porter ce chiffre à plus de 100 kWh » (source CVC – avril 2001).

Autrement dit, le rendement évolue de 63 à 47 %… On aperçoit là l’effet négatif de la boucle de circulation souvent présente dans les installations tertiaires.


Évaluer la production

Un surdimensionnement du stockage de l’eau chaude ?

Il n’est pas rare de constater un surdimensionnement des réservoirs. Idéalement, c’est un compteur placé sur le départ d’eau chaude qui devra permettre de comparer la consommation journalière et le besoin de stockage. À défaut, on pourra procéder à un redimensionnement théorique de l’installation en fonction des données réelles d’exploitation et comparer avec l’installation en place.

Si une telle situation se rencontre systématiquement en fin de journée,
il y a intérêt à couper l’alimentation du 3ème ballon.

La mise hors service d’un ballon est alors justifiée pour limiter les pertes par les parois

Calculs

Pour évaluer les pertes énergétiques d’un ballon non utilisé.

Concevoir

Pour dimensionner l’installation nécessaire.

Situation critique en été ?

La question est souvent posée de l’intérêt d’une production d’eau chaude au moyen d’un système combiné au chauffage du bâtiment puisque celui-ci est mis à l’arrêt.

  • Si la chaudière est ancienne et est maintenue en température, elle présente des pertes à l’arrêt importantes par rapport à l’énergie utile nécessaire à la production d’eau chaude, surtout pour les chaudières gaz atmosphériques.
  • En outre, les démarrages de brûleurs fréquents et de courte durée (suite à des petits puisages) sont préjudiciables au rendement de combustion.

L’association CEDICOL a réalisé une mesure sur site dont il ressort un rendement saisonnier annuel de 71 % et un rendement d’été de 49 %.

Le détail de cette campagne de mesures

La production de cette installation domestique est, en été, de 186 litres d’eau chaude par jour.

L’installation comprend une chaudière au fuel de 27 kW alimentant un ballon de stockage de 160 litres. La chaudière est régulée en température glissante avec une priorité sanitaire. Cela signifie qu’entre les demandes du ballon, la chaudière redescend en température.

Durant l’été 88, la chaudière à consommé 189 litres de fuel (soit 1 880 kWh) pour produire 24  180 litres d’eau chaude (soit 939 kWh). Le rendement de production en été est donc de 939 / 1 880 kWh = 49  %.

Pour l’ensemble de l’année, le système produit 42 150 litres d’eau chaude avec un rendement saisonnier de 71 %.

(Source : magazine « L’entreprise », mars 90).

À noter que l’on se trouve dans la situation la plus favorable de production combinée, avec une chaudière fonctionnant en température glissante. Dans le cas d’une ancienne chaudière restant à température constante tout l’été (de 70°C, par exemple), il n’est pas rare d’avoir des rendements de production inférieurs à 20 % en été !

Améliorer

Pour plus d’informations sur la désolidarisation du chauffage de l’eau chaude sanitaire et du chauffage du bâtiment.

Améliorer

Pour plus d’informations sur la régulation avec « priorité eau chaude sanitaire », cliquez ici !

Mauvaise stratification des températures dans les ballons ?

Si un ballon de 1 000 litres à 50°C est vidé pour moitié, on peut y trouver :

  • soit 500 litres d’eau à 50°C (encore exploitables) et 500 litres à 10°C,
  • soit 1 000 litres à 30°C, inutilisables…

En soi, il n’y a pas de perte d’énergie lors du mélange des eaux chaude et froide. Simplement, le volume utile d’eau chaude est diminué, ce qui entraînera soit un surdimensionnement du ballon, soit une augmentation de la température de consigne. Dans les 2 cas, les pertes par l’enveloppe seront augmentées.

Les facteurs qui favorisent le mélange des températures dans le ballon sont :

  • une vitesse d’arrivée de l’eau froide trop élevée au bas du ballon,
  • une faible isolation des parois qui favorise la circulation interne,
  • une boucle de distribution non isolée qui génère un retour d’eau trop froide qui « tombe » dans le réservoir et crée des turbulences,
  • une absence d’isolation de la tubulure de sortie de l’accumulateur,
  • une position horizontale du ballon de stockage.

Améliorer

Pour plus d’information sur l’amélioration de la stratification des ballons accumulateurs.

Insuffisance de l’isolation des ballons ?

Pour des ballons existants, une intervention se justifie si l’épaisseur d’isolation est inférieure à 5 cm, sans hésitation.

Et ce critère est renforcé si, suite à des mesures anti-légionelles, justifiées ou non, la température du ballon dépasse les 60°C.

Si aucune isolation n’est présente, passer de 5 à 10 cm est amorti généralement en 3 ans.

Pour les autres cas, on devra donc juger de la rentabilité de la rénovation en fonction de l’âge du ballon.

Pour évaluer sa situation dans un cas précis, il est possible :

Photo ballon de stockage.

  • de mesurer T°ballon, la température de surface du ballon,
  • de se baser sur une puissance d’échange en surface de l’ordre de 10 Watts par m² et par degré d’écart entre le ballon et l’ambiance,
  • de calculer la surface du ballon en fonction du diamètre D et de la hauteur H  :Surface totale d’un cylindre = 3,14 x D x H + 3,14 x D²/2

Il est alors possible de connaître la perte énergétique du ballon.

Puissance = 10 [W/m².K] x S [m²] x (T°ballon – T°ambiance) [K]

Par exemple dans une ambiance à 15°, si les 8 m² de surface du ballon sont à une température de 30°C, les pertes seront de :

Puissance = 10 [W/m².K] x 8 [m²] x (30 – 15) [K] = 1 200 [Watts]

En multipliant par les 8 760 heures de l’année, on obtient les kWh perdus :

Pertes d’énergie = 1 200 [W] x 8 760 [h] / 1 000 = 10 512 [kWh]

Une évaluation du prix du kWh comprise entre 0,0625 € (si chauffage combustible) et 0,16 € (si chauffage électrique), rendement compris, permet d’évaluer la perte financière annuelle.

Calculs

Pour évaluer la rentabilité de l’isolation d’un ballon.

A noter que la mesure sur site des pertes dépasse, souvent, le double de la valeur par calcul théorique, en raison de la mise en œuvre pas toujours aisée de l’isolation en jaquette souple (source : EDF). Et les pertes augmentent avec le vieillissement de l’isolant.

Voici les critères proposés par l’Ordonnance sur la procédure d’expertise énergétique des réservoirs d’eau chaude en Suisse (22/01/92) :

Capacité Pertes maximum admissibles
[kWh/24h]
Capacité Pertes maximum admissibles
[kWh/24h]
30 0,75 1 000 4,70
50 0,90 1 100 4,80
100 1,30 1 200 4,90
200 2,10 1 300 5,00
300 2,60 1 400 5,05
400 3,10 1 500 5,10
500 3,50 1 600 5,12
600 3,80 1 700 5,14
700 4,10 1 800 5,16
800 4,30 1 900 5,18
900 4,50 2 000 5,20

A noter que les pertes réelles sont probablement inférieures puisque les conditions d’essai imposent une température moyenne de l’eau de 65°C sans soutirage d’eau. Dans la pratique, le soutirage diminue la température moyenne du ballon.

Améliorer

Pour plus d’information sur l’isolation des ballons accumulateurs.

Évaluer la distribution

Un mètre de tuyau en acier, de 1 pouce de diamètre, non isolé, dans lequel circule de l’eau chaude à 70°C et qui parcourt une ambiance à 20°C a une perte équivalente à la consommation d’une ampoule de 60 W.

Or cette ampoule, si elle restait allumée toute l’année dans la chaufferie, il est fort probable que quelqu’un l’éteindrait, parce qu’elle est bien visible …

Isoler les tuyauteries

Par exemple, 20 m de tuyauteries DN 20 non isolées, véhiculant une eau à 55°C ont des pertes de l’ordre de :

36 W/m x 20 m x 24 h/j x 365 j/an =
6 300 kWh/an ou l’équivalent de 630 litres de fuel ou m³ de gaz !

Pour seulement 20 m…

Or une isolation des conduites est très rentable. Il suffit de constater que l’isolation fera chuter la consommation à 20 % de sa valeur. L’économie est donc de l’ordre de 395 € par an pour les 20 mètres. L’investissement est amorti en 1 an. Toutes les années qui suivent, ce n’est que bénéfice, financier et écologique.

Calculs

Pour calculer la rentabilité de l’isolation de la tuyauterie.

Boucle de distribution d’eau chaude sanitaire non isolée,
parcourant un vide ventilé de plus de 100 m de long.

Réduire les fuites

S’il est plus courant de rencontrer des fuites sur le réseau d’eau froide (tout particulièrement aux chasses de WC), il peut être utile de vérifier s’il n’existe pas de pertes sur le réseau d’eau chaude : le joint déficient d’un pommeau de douche, un robinet d’arrêt entartré sur un lavabo, un groupe de sécurité sur un ballon électrique (qui doit lâcher un peu d’eau suite à la dilatation lors du chauffage de l’eau mais qui serait bloqué en position ouverte), …

D’autant qu’une technique simple est généralement disponible : la mesure de la consommation durant la nuit ou le weekend.


Évaluer l’émission

De nos jours, le rendement d’émission peut être fortement amélioré. Par exemple, moyennant une pomme de douche appropriée, le débit peut être fortement réduit par un bon mélange, émulsion d’air et d’eau.

Exemple : si, autrefois, la pomme de douche déversait joyeusement 30 litres/minute d’eau chaude, aujourd’hui une pomme de 8 à 12 litres/minute est tout aussi confortable.

Il est assez facile d’évaluer la performance d’une douche en mesurant le temps mis pour remplir un seau de 10 litres, par exemple.

Il en est de même pour l’ensemble de points de puisage, où réducteurs de pression et mousseurs permettent de sérieuses économies sans inconfort.

Améliorer

Pour plus d’informations sur les techniques de réduction des débits.

Prédimensionner une installation sanitaire tertiaire

Prédimensionner une installation sanitaire tertiaire


Objectif : un ordre de grandeur réaliste

La difficulté de l’évaluation pour un bâtiment neuf

Idéalement, l’installation se dimensionne se base sur le profil de puisage (quantité d’eau puisée en fonction du moment de la journée) le plus critique.

Or la constitution de ce profil de puisage n’est pas évidente dans un bâtiment neuf puisque l’on ne connaît pas encore son mode de fonctionnement. Tout au plus connaît-on les équipements sanitaires et peut-on imaginer des scénarios réalistes.

Le bureau d’études, soucieux de garantir le confort à 200 %, prend alors de fortes sécurités. Lors des audits d’installation, il n’est pas rare de rencontrer des ballons de stockage 2 à 3 fois plus volumineux que nécessaire.

Avec la conséquence que l’on imagine sur les pertes de stockage…

La possibilité de réajuster le tir dans un bâtiment existant

Dans les bâtiments existants, il est possible de connaître précisément le mode d’utilisation, moyennant le placement d’un compteur sur la fourniture d’eau chaude. Le coût de ce dernier est en général souvent vite remboursé par l’économie d’investissement lors du remplacement du matériel et par l’économie d’énergie qui résulte d’un dimensionnement plus strict.

Malgré cela, peu d’installateurs prennent la peine de passer par cette étape. C’est donc au gestionnaire de l’imposer.

Pas de méthode normalisée pour les bâtiments tertiaires

En Belgique, il n’existe malheureusement pas de méthode normalisée de dimensionnement des installations d’eau chaude sanitaire. Il existe seulement une Note d’Information Technique du CSTC, basée sur la norme allemande DIN 4708, qui présente le moyen de définir le profil de puisage d’un immeuble à appartements en fonction du nombre de logements.

Il n’existe pas « un » volume de stockage possible

Il existe une infinité de solutions :

  • depuis le ballon de stockage capable durant la nuit de préparer l’eau chaude de toute une journée,
  • jusqu’à l’échangeur instantané qui ne stocke rien à l’avance,
  • en passant par toutes les solutions intermédiaires de ballons tampons qui gèrent la pointe et se rechargent en cours de journée par un échangeur interne.

Il est possible de checker l’ordre de grandeur

En se fixant des hypothèses de départ, la démarche développée ci-dessous permet de fixer un ordre de grandeur réaliste pour les équipements.


Le profil de puisage

La connaissance de la quantité d’eau chaude puisée est indispensable pour dimensionner correctement l’appareil de production, quel que soit le système choisi.
Il existe trois méthodes pour établir le volume puisé dans un bâtiment :

  1. Les profils typesOn peut se référer à des statistiques de consommation établies sur des bâtiments identiques.
    On appliquera souvent cette méthode pour les bâtiments neufs.
  2. Le recensement des points de puisage
    On peut répertorier les points de puisage, leur débit nominal et leur période d’utilisation d’après les statistiques disponibles.
    Des exemples de débits pour des points de puisage typiques peuvent être utilisés.
    Ce recensement est à réaliser avec énormément de prudence. En effet, le risque de surdimensionner largement le système est important si on n’établit pas un scénario d’utilisation simultanée des différents points de puisage.
  3. Le comptage des consommations réelles
    La méthode idéale est de mesurer la consommation réelle d’eau chaude. Cette méthode sera la plus adaptée dans le cadre de rénovations dans le secteur tertiaire.
    Une campagne de mesures au moyen de compteurs d’eau, soit sur l’alimentation des différents points de puisage ou appareils consommateurs, soit sur l’alimentation en eau froide de l’appareil de production existant, met à l’abri de tout sur ou sous-dimensionnement du système.
Uniformisation des températures de l’eau chaude puisée :

La température de l’eau puisée varie en fonction du type de puisage.

Aussi, pour permettre l’addition de volumes puisés à des températures différentes, les volumes Vx à une température Tx seront convertis en volumes d’eau équivalents à 60°C par l’expression suivante :

V60 = Vx

Dans cette expression, 10° représente la température moyenne de l’eau froide

Si la température de l’eau puisée est inconnue, on considérera :

  • pour les cuisines : TX = 55°C,
  • pour les sanitaires : TX = 45°C,

Si les volumes puisés sont mesurés par compteur sur l’alimentation en eau froide de l’appareil de production :
TX = température de l’eau du ballon (ou en sortie de l’échangeur si le ballon est inexistant).


Coefficient d’efficacité « a » du ballon de stockage

Lorsque de l’eau chaude est puisée, de l’eau froide envahit le bas du ballon, le haut restant disponible pour l’utilisation suivante.

Mais dans certains cas (ballon horizontal, retour de la boucle dans le ballon, …), un mélange d’eau chaude et froide se produit, si bien que de l’eau à 35 … 40°C se forme. Cette eau est inutilisable. La température du ballon ne peut descendre en dessous de la température minimum de distribution de l’eau (par exemple, la température de distribution est de 45°C, pour assurer 40°C à tous les points de puisage). Le volume du ballon nécessaire pour offrir le même confort sera alors nettement supérieur.

Moyennant une construction adéquate de l’appareil, la stratification dans le ballon est optimale et l’énergie exploitable du ballon est maximum. Dans ce cas, on considère qu’au moment où le ballon ne fournit plus le confort adéquat aux utilisateurs, la température de l’eau est proche de la température de l’eau froide, à savoir 10°C.

Ainsi, le volume d’un ballon avec bonne stratification peut être inférieur au volume d’un ballon où il y a mélange intégral entre l’eau froide et l’eau chaude de plus de 50 %, pour un même confort fourni à l’utilisateur ! Ceci est illustré dans le graphe ci-dessous, où deux ballons, un avec bonne stratification (a = 0,9), l’autre avec un mélange important(a = 0,5), sont vidés en parallèle, l’eau chaude étant remplacée par de l’eau à 10° et aucune source de chaleur ne réchauffant le stock.

Température de l’eau fournie par deux ballons en fonction du temps de puisage.
L1 = limite de confort pour un ballon avec mauvaise stratification
L2 = limite de confort pour un ballon avec bonne stratification.

Dans les calculs, pour tenir compte du degré de stratification des ballons, on considère une température minimum possible du stock de 10° et on y associe un coefficient d’efficacité ‘a’. Dans la plupart des cas courants, celui-ci prend une valeur de 0,8 à 0,95 (bonne stratification), ce qui signifie que 80 à 95 % du volume réel du ballon est utilisable pour la température voulue. Si on se trouve dans le cas d’un ballon avec mélange important, ‘a’ peut descendre jusqu’à 0.45.


Préparation instantané

Un système de production d’ECS instantané ne comporte pas de volume de stockage. Son dimensionnement consiste à déterminer la puissance du générateur (production directe) ou de la chaudière et de l’échangeur (production indirecte).

En pratique, cette puissance correspondra à la puissance nécessaire pour subvenir aux besoins maximum en 10 minutes.

Etape 1 : Énergie maximum puisée en 10 minutes

Il s’agit de déterminer le volume d’eau maximum (équivalent à 60°C) puisé en 10 minutes durant la journée la plus chargée de l’année. Le volume d’eau chaude puisé a été déterminé. L’énergie maximum puisée en 10 minutes via l’eau chaude est alors donnée par la formule :

Einst = 1,16 x V60inst x (60° – 10°) / 1 000

avec,

  • Einst = énergie puisée maximum en 10 minutes en kWh
  • V60inst = volume maximum, puisé en 10 minutes, exprimé en litres, ramené à 60°.
  • 1,16 / 1 000 = coefficient de correspondance (capacité thermique d’un litre d’eau)
  • 10° = température de l’eau froide

Etape 2 : Puissance de la production

La puissance (en kW) de l’échangeur (ou du générateur) équivaudra à

Puissance = Einst x 6 + Pdis

avec,

  • Pdis = pertes dans le réseau de distribution. Dans le cas d’une boucle de distribution, il s’agit de la puissance de maintien en température de celle-ci.

Calculs

Un petit logiciel permet d’estimer ces pertes de distribution.
Exemple.

Les sanitaires comportent 10 douches. La demande de pointe maximum est basée sur le fonctionnement simultané de 6 douches. Chacune d’entre elles ayant un débit instantané de 10 litres/min, on estime la demande à 600 litres en 10 minutes à 40°C.

Cette demande est

convertie en demande à 60°C :

600 x (40 – 10) / (60 – 10) = 360 litres

On en déduit

l’énergie correspondante :

1,16 x 360 X (60 – 10) / 1 000 = 20,88 kWh/10 minutes

Et donc la puissance :

20,88 x 6 = 125,28 kW


Préparation par accumulation pure

Dans ce cas, l’entièreté des besoins journaliers est stockée. Le stock est reconstitué durant la nuit.

Étape 1 : Énergie puisée durant la journée

Le volume d’eau chaude maximum (équivalent à 60°) puisé durant la journée la plus chargée de l’année a été déterminé. L’énergie puisée via l’eau chaude est donnée par la formule :

Eacc = 1,16 x V60acc x (60° – 10°) / 1 000

avec,

  • Eacc énergie puisée durant une journée entière en kWh
  • V60acc volume d’eau chaude total puisé durant une journée, ramené à 60°C, en litres
  • 1,16/1 000 coefficient de correspondance (capacité thermique d’un litre d’eau)
  • 10° température de l’eau froide

Étape 2 : Volume de stockage et puissance de l’échangeur

Le volume du ballon de stockage est donné en litres par :

Volume =

avec,

  • ec = température de l’eau du ballon
  • 10° = température de l’eau froide
  • a = coefficient d’efficacité du stockage

La puissance de l’échangeur, donnée en kW par la formule suivante, permet de reconstituer le stock d’eau chaude en 6 ou 8 heures.

Puissance =

avec,

  • 0,9 = coefficient de majoration pour tenir compte des pertes de stockage durant la période de reconstitution du stock.
  • Pdis = pertes dans le réseau de distribution. Dans le cas d’une boucle de distribution, il s’agit de la puissance de maintien en température de celle-ci.

Calculs

Un petit logiciel permet d’estimer ces pertes de distribution.

On prendra en général, une puissance minimum de 10 à 12 W/Litre de stock.

Exemple.

Les sanitaires comportent 10 douches. La demande maximum est estimée sur base de 50 douches/jour. Chacune d’entre elles générant 40 litres à 40°C, on estime la consommation journalière à 2 000 litres.

Cette demande est

convertie en demande à 60°C :

2 000 x (40 – 10) / (60 – 10) = 1 200 litres

on en déduit

l’énergie correspondante :

1,16 x 1 200 X (60 – 10) / 1 000 = 69,6 kWh/jour

et donc le volume de stockage :

69,6 x 1 000 / 1,16 x (60 – 10) x 0,9 = 1 333 litres


Préparation en semi-accumulation/semi-instantané

Deux situations peuvent se présenter :

Les besoins sont continus et l’installation peut être décrite par de puisage « critique »

Dans le premier cas, il est possible d’utiliser une méthode du type de celle développée dans la norme IN 4708 ou dans le guide n°3 de l’AICVF. Le principe consiste à établir la courbe représentant les besoins maximum consécutifs que l’on peut rencontrer. On en déduit l’ensemble des couples « puissance – volume de réservoir » qui permettent de satisfaire ces besoins.

Calculs

Pour accéder à la description détaillée de la méthode.

Calculs

Pour accéder au logiciel de calcul.

Les besoins sont discontinus, l’installation doit vaincre un débit de pointe sur un temps donné

Dans ce cas, bien que la méthode présentée ci-avant reste évidement d’application, une méthode algébrique simple est possible. Cette méthode n’est applicable que si l’on admet l’hypothèse qu’aucun puisage n’est effectué entre deux pointes et que le stock d’eau chaude est reconstitué durant cette période. L’appareil est évidement dimensionné pour satisfaire la pointe la plus critique.

C’est le cas par exemple dans les halls de sport où les douches sont utilisées durant 10 minutes toutes les heures, aucun puisage n’étant effectué durant les 50 minutes intermédiaires.

La méthode repose sur deux équations,

1. Énergie puisée via l’eau chaude = Energie contenue dans le stock + Energie fournie par l’échangeur durant le puisage.

1.16 x V60 x (60° – l0°) = 1.16 x a x V x (Tec – 10°) + (t– 3) x P x 16,7

où,

  • V60 = volume puisé durant la période la plus critique, ramené à 60°C (en litres)
  • V = volume du ballon de stockage (en litres)
  • Tec = température de l’eau stockée (en °C)
  • 10° = température de l’eau froide et température minimale que peut atteindre le stock tout en garantissant le confort (en °C)
  • a = coefficient d’efficacité du ballon de stockage
  • t= temps de puisage (en minutes)
  • 3 = temps d’attente entre le début du puisage et la mise en action de l’échangeur : 3 minutes en production directe et 5 minutes en production indirecte
  • P puissance de l’échangeur (en kW)
  • 16,7 = facteur de conversion d’unités

2. Energie fournie par l’échangeur durant la période de reconstitution du stock = Energie nécessaire pour augmenter la température du stock jusqu’à la température maximum de stockage

tx P x 16,7 = 1.16 x a x V x (Tec – 10°)

où,

  • t= temps de reconstitution du stock entre 2 pointes de puisage (en minutes)

Ceci permet de déterminer directement :

Volume de stockage : V =

Puissance de l’échangeur : P =

Comme on le voit, cette méthode ne donne qu’une seule possibilité de choix d’appareil, contrairement à la première méthode qui débouche sur plusieurs solutions possibles et donc permet une optimalisation du choix.

Calculs

Pour accéder au logiciel de calcul.
Exemple.

La période de pointe maximum est de 770 litres à 60°C en 20 minutes. Le stock doit être reconstitué en 30 minutes pour satisfaire la demande suivante. Le coefficient d’efficacité est de 0,9. La température de l’eau stockée est de 60°C.

On obtient un volume de 546 litres et une puissance de 57 kW.


Exemple : le dimensionnement d’une école

Une école comprend :

  • une salle de gym avec 8 douches,
  • un internat équipé de 8 lavabos et 5 douches,
  • une cuisine comprenant un lave-vaisselle et un bac évier.

Remarque : pour simplifier l’exemple, il ne sera pas tenu compte dans le calcul des puissances des pertes de distribution et de stockage.

Profil de puisage

1. La salle de gym

Les lundi, mardi, jeudi, vendredi, les 8 douches fonctionnent simultanément et en continu (vanne d’ouverture commune) pendant 10 minutes après chaque cours (de 9h30 à 12h30 et de 14h30 à 16h30).

Les mercredis après-midi, les activités sportives organisées par l’école, impliquent le même type de fonctionnement.

Le soir, la salle de gym est occupée par des clubs sportifs. La location de la salle se fait à l’heure (de 19 à 22h00).

Profil de puisage du gymnase.

Chaque heure, c’est 640 litres à 45°C qui sont puisés, soit 448 litres à 60°C.

2. L’internat

Les équipements sanitaires de l’internat sont utilisés le matin et le soir. Tous les jours de la semaine sont semblables. Le week-end, l’internat est vide.

L’internat n’est pas occupé durant les vacances scolaires (pas de groupes extérieurs logés).

Après observation, on a déterminé que :

  • Le matin, seulement 2 douches au maximum sont utilisées pendant 10 min. Les 6 lavabos fonctionnent simultanément en continu pendant 10 min.
  • Le soir, les 5 douches fonctionnent en continu pendant 20 min. Seulement 3 lavabos simultanément sont utilisés pendant 20 min. Cela représente une demande de 385 litres à 60°C/10 minutes, durant 20 minutes.

Profil de puisage de l’internat.

3. La cuisine

Les repas chauds du midi sont fournis par un service traiteur.

Seul le lave-vaisselle est donc consommateur. Il fonctionne 1 fois par jour après le repas de midi.

Profil de puisage de la cuisine.

4. Profil de puisage total

Si l’appareil de production d’eau chaude sanitaire doit satisfaire les besoins des 3 groupes d’utilisateurs précédents, il doit satisfaire le profil de puisage repris ci-dessous.

Profil de puisage total en litres à 60°C.

Dans ce profil, l’ensemble des consommations sont ramenées à 60°.

Remarque : nous ne discutons pas ici de l’opportunité de scinder la production D’ECS en unités distinctes et indépendantes. Ni de la pertinence de garder un système où toutes les douches coulent en même temps ! On dira que c’était pour avoir un profil plus simple à présenter !

Profil de l’énergie puisée et courbe des besoins consécutifs

Préparation semi-instantanée ou en semi-accumulation.
Méthode des besoins continus.

Dans un premier temps, on essayera de satisfaire la période de puisage la plus critique.

Le dimensionnement de l’appareil de production pour cette période permettra de définir une puissance et un volume capable de satisfaire n’importe quelle autre demande de la journée.

La période la plus critique s’étale de 19 à 20h. Durant cette période, le maximum d’eau consommée

  • en 10 minutes = 448 l à 60° ou 26 kWh
  • en 20 minutes = 385 + 385 l à 60° ou 45 kWh
  • en 30 minutes = 385 + 385 l à 60° ou 45 kWh
  • en 40 minutes = 385 + 385 l à 60° ou 45 kWh
  • en 50 minutes = 448 + 385 l à 60° ou 48 kWh
  • en 60 minutes = 448 + 385 + 385 l à 60° ou 71 kWh

Le stock doit être reconstitué avant 20h50 pour satisfaire la demande suivante.

On peut déduire de ce profil d’énergie puisée une courbe des besoins consécutifs.

Courbe d’égale satisfaction des besoins

En introduisant le profil de consommation dans le logiciel d’évaluation de la puissance et du volume du réservoir en semi-accumulation (sur base du profil de pointe), on obtient la courbe d’égale satisfaction des besoins. Il est possible de choisir n’importe quel couple Puissance-Réservoir. Plus la puissance est faible, plus le volume du réservoir doit être important.

Préparation semi-instantanée ou en semi-accumulation.
Méthode des besoins discontinus.

Appliquons les formules :

V =

P =

On considère ici deux pointes :

a.A 19h, consommation de 2 x 385 l à 60° en 20 minutes, le stock est reconstitué en 30 minutes.

  • tp 20 min.
  • tr 30 min.
  • V60 770 1
  • Tec 60°
  • a = 0,9

On obtient V = 546 l et P = 57 kW
b.A 19h50, consommation de 448 l à 60° en 10 minutes; le stock est reconstitué en 50 minutes

  • tp 10 min.
  • tr 50 min.
  • V60 = 448 l
  • Tec = 60°
  • a = 0,9

On obtient V = 436 l et P = 27 kW

On retiendra donc les résultats du point a.

Préparation instantanée.

Le débit instantané maximum en 10 min. est de 448 litres d’eau à 60°C.

L’appareil de production instantanée doit avoir une puissance de :

pour pouvoir fournir 448 l d’eau à 60° en 10 minutes.

Préparation en accumulation pure.

Le volume total puisé par jour est de 3 000 litres à 60°

ceci équivaut à une énergie puisée de :

3 000 (60° – 10°) / 1 000 = 174 kWh

Le volume du ballon de stockage devra donc être de :

174 1 000 / a 1.16 (Tec – 10°)

Si on choisit Tec = 60° et a = 0,9, le volume de stockage égale 3 300 litres.

La puissance de l’échangeur nécessaire à la reconstitution du stock en 8h (sans tenir compte des pertes de distribution et de stockage) égale :

174 kWh / 8h = 22 kW


Faut-il additionner les puissances de chauffage du bâtiment et de l’ECS ?

La chaudière est surdimensionnée 364 jours par an puisqu’elle est calculée pour vaincre la pire période froide de l’année (- 10°C, température extérieure de base, arrivant 1 jour par an, en moyenne établie sur 30 ans).

Mais il faut imaginer ce qui se passerait ce jour là !

Tout est fonction du rapport des puissances en jeu.

Dans le cas d’une école, les seuls besoins d’eau chaude sanitaire sont ceux du réfectoire. Et encore, le lave-vaisselle chauffe son eau de façon indépendante.
Dans ce cas, la mise en route du chauffage de l’eau chaude n’entraînera aucune perturbation du fonctionnement du chauffage du bâtiment et il ne faut pas prévoir de supplément de puissance.

  1. Et s’il s’agit d’un hôpital ? Les besoins en eau chaude sanitaire sont constants. Il faut envisager le moment où il ferait – 10°C. Le chauffage devra se superposer à la fourniture de l’eau chaude : les puissances devront s’additionner.

Tentons de définir un critère chiffré :

Imaginons que le bureau d’études se base sur les déperditions des locaux pour définir la puissance des radiateurs (–> + 5 % dans le choix du radiateur dans le catalogue), qu’il additionne toutes ces puissances pour définir la puissance chaudière, qu’il applique un coefficient de relance (+ 20 % environ) pour disposer d’une surpuissance le lundi matin. On suppose qu’il installe 2 chaudières reprenant chacune 60 % de la puissance totale, mais qu’il ne cumule pas les + 20 % correspondants avec celle de la relance.

On voit qu’il n’est pas du tout irréaliste de penser que le surdimensionnement atteint 25 %, au pire moment. Et que donc, tant que la puissance du chauffage de l’ECS ne dépasse pas 25 % de la puissance, aucun supplément ne doit être installé.

On pourra toujours rétorquer que s’il fait – 10° et que c’est un lundi matin …

Méditons sur notre propension à dimensionner nos équipements pour le cas qui arrive une fois par siècle… et à son lien avec la pollution de nos villes.

Dimensionnement de la production d’eau chaude sanitaire en semi-accumulation

Dimensionnement de la production d'eau chaude sanitaire en semi-accumulation


On trouvera ci-dessous le développement d’une méthode de calcul extraite du « guide au dimensionnement des appareils de production d’eau chaude sanitaire » publiée par l’Institut de Conseils et d’Études en Développement Durable. Le document source est disponible ici.

Calculs

Si les besoins sont continus et que l’installation peut être décrite par un profil de puisage critique.

Étape 1 : profil de puisage

Le calcul d’une installation d’ECS en semi-instantané ou semi-accumulation sera fondé sur la reconstitution des puisages possibles dans les conditions réputées les plus rigoureuses.

Établir le profil de puisage consiste à déterminer pour différentes journées caractéristiques de l’année, les besoins en eau chaude heure par heure.

Remarque : Si le découpage heure par heure du profil de puisage n’est pas représentatif de la situation réelle, par exemple si on assiste à des puisages courts et discontinus ou à de courtes pointes de puisage, un autre découpage doit être considéré, de 10 en 10 minutes, par exemple.

La méthode décrite ci-après permet de dimensionner l’appareil de production d’ECS pour satisfaire aux besoins de la pointe la plus importante de la journée. On prendra comme hypothèse que l’entièreté des stocks éventuels d’eau chaude de l’appareil soient reconstitués avant d’aborder la pointe de consommation suivante.

Dimensionné pour la pointe principale, l’appareil choisi pourra alors sans problème satisfaire les demandes de pointes moins critiques.

Étape 2 : profil de l’énergie puisée

L’eau chaude consommée peut se traduire en énergie puisée. Le profil de puisage d’eau chaude peut donc être transformé en un profil d’énergie puisée au moyen de la formule suivante :

E = 1,16 x V60 x (60° – 10°) / 1 000

avec,

  • E = énergie contenue dans l’eau chaude en kWh
  • V60 = volume puisé en litre ramené à 60°C
  • 1,16 / 1 000 = facteur de conversion
  • 10° = température de l’eau froide

Étape 3 : courbe des besoins consécutifs

a. Qu’est-ce que la courbe des besoins consécutifs ?

À partir du profil de puisage (exemple sur base d’un profil de puisage continu ne subissant pas de forte pointe pouvant donc être décrit heure par heure), on peut dessiner le graphe ci-dessous :

Puisages maximum consécutifs.

Ce schéma représente l’énergie maximum puisée en continu en 1 heure, 2 heures, 3 heures, … en considérant les conditions les plus critiques, quel que soit le moment de la journée et le jour de la semaine. Autrement dit, cela peut être le puisage le plus élevé demandé un jour de semaine à 8h00, suivi de la demande la plus forte enregistrée un samedi de 9h00 à 11h00, etc…

b. Comment établir la courbe des besoins consécutifs ?

Le traitement des données peut s’effectuer de la manière suivante :

  • À partir du profil d’énergie puisée heure par heure, on peut calculer un profil d’énergie puisée, de 2 heures en 2 heures, de 3 heures en 3 heures et ainsi de suite.
  • On répète la même opération pour chaque jour caractéristique (ex.- en semaine, les vendredi et samedi, le dimanche).
  • On peut alors dessiner la courbe des besoins consécutifs, on reporte sur un graphe énergie en fonction du temps, l’ensemble des puisages maximum consécutifs, tous types de journée confondus.

Le graphe ainsi obtenu représente donc l’énergie maximum puisée via l’eau chaude sanitaire en 1 heure, 2 heures, 3 heures, 4 heures, …

Il traduit donc les besoins les plus contraignants que l’on peut rencontrer.

Il suffit maintenant de choisir l’appareil de production d’ECS (volume de stockage et puissance de l’échangeur) capable de satisfaire ceux-ci.

Étape 4 : volume de stockage et puissance de l’échangeur

Le dimensionnement des appareils consiste à définir la puissance de l’échangeur (ou du générateur) et le volume de stockage nécessaire pour satisfaire la courbe des besoins consécutifs.

a. La puissance de l’échangeur

Reprenons la courbe des besoins consécutifs. Sur ce graphe, l’énergie fournie par le générateur ou l’échangeur de la production d’ECS en fonction du temps, est représentée par une droite, appelée droite de puissance.

Puisages maximum consécutifs.

Si l’échangeur fonctionne dès le début d’un puisage, cette droite partira de l’origine.

Traçons donc une droite de puissance, par exemple la droite 1. Celle-ci représentant l’énergie fournie par l’échangeur en fonction du temps, la puissance de l’échangeur est représentée par la pente de la droite :

Examinons sur le graphe, ce qu’il se passe après un temps h de puisage :

  • l’équivalent « énergie » de l’eau chaude consommée par les utilisateurs = EkWh,
  • l’énergie fournie par l’échangeur de puissance P = EkWh.

b. Le volume de stockage

L’énergie consommée étant supérieure à l’énergie fournie par l’échangeur, la différence E– E4 doit être contenue dans l’eau chaude stockée.

L’énergie maximum qui doit être stockée dans l’eau chaude du ballon est donc représentée par la plus grande distance verticale entre la droite de puissance et la courbe des besoins consécutifs. C’est-à-dire, la distance verticale entre la parallèle à la droite de puissance tangente à la courbe des besoins (droite 2) et la droite de puissance elle-même (distance B – D). ce qui donne l’énergie : E2El.

Le volume du ballon nécessaire est donc de :

en litres

où,

  • Tec = température de stockage de l’eau chaude
  • 10° = température de l’eau froide et donc température minimum que peut atteindre l’eau dans le ballon avant que l’inconfort n’apparaisse
  • a = coefficient d’efficacité du ballon

c. Comportement du système

En parcourant la courbe des besoins consécutifs, on peut résumer le fonctionnement de l’appareil de production d’ECS, comme suit :

  • de A à B : la puissance puisée est supérieure à la puissance fournie par l’échangeur, le stock d’eau chaude se vide;
  • en B : le stock d’eau chaude a atteint sa température minimum admissible;
  • de B à C : la puissance fournie par l’échangeur est supérieure à la puissance puisée. Le stock d’eau chaude se reconstitue partiellement;
  • en C : le stock d’eau chaude est entièrement reconstitué.

d. En résumé

On a donc déterminé une paire

Puissance de l’échangeur : P =

Volume de stockage : V =

pour satisfaire les besoins.

Remarque : comme dans le cas des préparations instantanées et en accumulation, la puissance sera majorée pour tenir compte des pertes de distribution et de stockage.

Celle-ci dépend évidemment de la droite de puissance choisie. En fait, il existe une infinité de possibilités en fonction de la puissance choisie.

Puisages maximum consécutifs.

On voit ici toute la plage de possibilités offertes lorsque le profil de consommation est considéré sur 24h.

Il convient donc d’explorer l’ensemble des combinaisons P – V possibles avant de faire son choix. On tracera pour cela, une courbe dite d’égale satisfaction des besoins.

Étape 5 : courbe d’égale satisfaction des besoins

Il existe d’autres combinaisons V – P (volume, puissance) permettant de satisfaire les besoins traduits par la courbe des besoins consécutifs.

Pour les déterminer, il suffit de répéter la méthode décrite ci-avant avec plusieurs droites de puissance (ex. – droite 1, 2, 3, … ).

Courbe d’égale satisfaction des besoins.

En calculant pour chacun des cas, la puissance de l’échangeur et le volume de stockage, on peut recomposer une courbe (P, V), représentant l’ensemble des combinaisons possibles : la courbe d’égale satisfaction des besoins.

Étape 6 : choix de la combinaison puissance-volume optimum

Le choix de la puissance et du volume à installer se fera suivant :

  • Le coût :
    Le premier critère sera le coût de l’installation. On comparera le coût de plusieurs combinaisons (puissance, volume), en tenant compte dans une installation combinée (chauffage-ECS) de la surpuissance nécessaire pour la chaudière.
  • L’encombrement :
    La disponibilité de place pour le matériel (le ballon) sera aussi déterminante dans le choix. Il faudra aussi tenir compte des possibilités d’acheminement et d’évacuation du matériel.
  • La compatibilité avec la puissance chauffage dans les installations combinées :
    Dans la mesure du possible (en respectant les deux premiers critères ci-dessus), il faut essayer que la puissance de la production d’ECS soit la moins éloignée possible de la puissance chaudière – puissance de l’échangeur ECS > 30 % de la puissance chaudière. En effet, plus l’écart de puissance sera grand, plus les cycles de fonctionnement du brûleur seront courts pour assurer la production d’ECS, ce qui diminuera le rendement de production.

Repérer un surdimensionnement du transformateur

Repérer un surdimensionnement du transformateur


Les pertes à vide ou pertes « fer »

Une installation Haute tension dispose généralement de sa propre cabine de transformation, pour passer de 12 000 Volts à 400 Volts.
Le transformateur présente cependant des pertes

  • Des « pertes fer » : ce sont les pertes à vide de l’appareil, pertes qui subsistent en permanence quelle que soit la consommation réelle du bâtiment. On peut comparer ceci à la consommation au ralenti d’un véhicule, … véhicule en fonctionnement permanent !
  • Des « pertes cuivre » : ce sont les pertes en charge du transfo, pertes dans les fils proportionnelles au carré du courant appelé (effet Joule).
Exemple.
Le catalogue d’un fournisseur fournit les données suivantes pour l’évaluation des pertes d’un transfo 500 kVA :

  • pertes fer = 1 150 W,
  • pertes cuivre à pleine charge = 6 000 W.

Supposons le transformateur chargé en réalité à 300 kW, les pertes fer sont constantes mais les pertes cuivre sont proportionnelles au carré du courant appelé. Les pertes totales sont estimées à :

  • sous cos phi = 0,7  : pertes totales = 1 150 + 6 000 x
    [(300/0,7)/500]² = 5 588 W,
  • sous cos phi = 0,9  : pertes totales = 1 150 + 6 000 x
    [(300/0,9)/500]² = 3 816 W.

Explication : les pertes cuivre évoluent en fonction du carré des courants (Ieffectif / Inominal)², donc du carré des puissances apparentes (UIeffectif / UInominal)² puisque la tension est constante. Or, si la puissance active est de 300 kW, la puissance apparente est de 300 / cos phi, soit 300 / 0,7 kVA.

Il suffit de multiplier cette puissance par les 8 760 heures de l’année pour évaluer le coût énergétique (non négligeable !) de ces pertes…

Au vu de cet exemple, il est important en exploitation de bien maîtriser le cos phi (par une batterie de condensateurs par exemple) et en conception de choisir du matériel de qualité qui minimise les différentes pertes telles que la qualité du noyau magnétique (matériau et montage des tôles, …) et des enroulements, le système de refroidissement, la configuration de la logette du transformateur, …


Suppression d’un des transformateurs installés

Si deux transformateurs alimentent votre installation, il est possible que l’un des deux puisse, seul, répondre à la demande. Dans ce cas, il suffira de rassembler les départs sur le premier et ce sont les pertes à vide du deuxième qui seront totalement annulées !

Il suffit, pour se faire une idée du surdimensionnement, de comparer :

La puissance apparente des transformateurs (kVA)
et
la puissance quart-horaire maximale de la facture (kW) / Cos phi.
Exemple.

Deux bâtiments voisins de l’administration régionale wallonne sont raccordés à partir d’une même cabine HT. Celle-ci abrite deux transformateurs de 500 kVA alimentant chacun un bâtiment.

Or les factures montrent que les puissances maximales absorbées par les deux bâtiments ensemble ne dépassent jamais 260 kW.

Raccordement actuel de chaque bâtiment via son propre transformateur et son propre compteur.

Projet de raccordement des deux bâtiments via le même transformateur.

Dans ce cas, le raccordement des deux bâtiments sur un transformateur entraînerait une économie de 1 850 €/an, grâce à :

  • la suppression des pertes à vide d’un des transformateurs;
  • la suppression de la redevance de comptage d’un des bâtiments;
  • la diminution du coût des consommations. En effet, le coût du kW et du kWh est proportionnel à un coefficient D qui décroît lorsque la pointe 1/4 horaire augmente;
  • la diminution des pointes cumulées car les pointes des deux bâtiments ne sont jamais exactement synchrones.

Hélas, il n’est pas possible d’amortir le coût du remplacement du transformateur par la réduction des pertes !…

Cependant, à l’occasion d’un renouvellement du transformateur, on peut réévaluer les besoins réels de puissance et réajuster le tir.

Concevoir

Pour connaître : les critères de choix d’un nouveau transformateur.

Régulation de la production d’eau chaude par « priorité sanitaire »

Régulation de la production d'eau chaude par "priorité sanitaire"


Le principe

Dans les installations domestiques, la régulation d’une installation de production d’eau chaude sanitaire combinée à l’installation de chauffage se base sur le principe de la « priorité sanitaire« . Lorsqu’il y a demande d’eau chaude sanitaire, la distribution de chauffage est mise en « stand by » et le ballon de stockage d’eau chaude est alimenté.

Cette technique de régulation a pour intérêt de ne pas devoir surdimensionner la chaudière pour assurer la production d’eau chaude et de ne pas maintenir en permanence (hiver comme été) la chaudière à haute température.

En pratique, cette technique de régulation ne se rencontre pas dans le secteur tertiaire. On n’imagine pas de fermer les départs différents circuits, au bénéfice des seuls besoins de l’eau chaude sanitaire.

Par contre, il est recommandé d’avoir une régulation de la température de départ de chaudière telle que la haute température ne soit appliquée que lorsqu’il y a demande de production d’eau chaude sanitaire. Imaginons un ballon réglé sur 60°C :

  • En temps normal, c’est la régulation à température glissante qui est de rigueur.
  • Lorsqu’il y a demande d’eau chaude sanitaire (T°ballon = 57,5°C), la température de départ chaudière augmente et les vannes mélangeuses des différents circuits de chauffage vont se fermer quelque peu.
  • Dès la satisfaction du ballon (T°ballon = 62,5°C), la température de chaudière revient à la valeur calculée par le régulateur en fonction de la température extérieure.

Cette régulation sous-entend l’absence d’un préparateur instantané (échangeur à plaques) qui lui doit pouvoir réagir au quart de tour, et qui demandera une température de chaudière toujours élevée.

Elle montre aussi toute l’importance d’un surdimensionnement du serpentin installé dans le ballon :

T°chaudière = T°ballon + X°

X sera d’autant plus petit que la puissance de l’échangeur sera grande. Dimensionner le serpentin au régime 70/40 entraînera environ 10 % de coût d’investissement en plus, mais à l’exploitation, c’est la consommation de la chaudière qui baissera.


La justification

L’intérêt d’une telle régulation est d’autant plus important :

– Que la chaudière alimente le ballon d’eau chaude aussi en été. Dans ce cas, la régulation permettra d’arrêter totalement la chaudière (température retombant à 20°C) sauf durant les périodes de chauffage de l’eau sanitaire.

Ces périodes seront définies par une horloge qui limitera la charge du ballon de stockage à un nombre limité de périodes de la journée. Cela permet d’éviter que la chaudière ne démarre pour des faibles puisages, avec pour conséquence :

  • Un maintien quasi permanent de la chaudière à une température moyenne relativement élevée,.
  • Un fonctionnement du brûleur par cycles courts, synonyme de mauvaise combustion et d’émission polluantes.
Cas fréquent : le ballon présente une capacité supérieure aux besoins de la journée.

–> en été, une horloge n’autorisera le fonctionnement de la chaudière que durant 3 heures au matin, par exemple.

– Que la chaudière présente des pertes à l’arrêt élevées. Ce n’est pas le cas des chaudières fuel ou gaz à brûleur pulsé modernes. C’est, par contre, le cas des chaudières gaz atmosphériques dont l’échangeur est en communication ouverte avec la cheminée (chaudières par ailleurs à proscrire dans une nouvelle installation). Il faut que ces chaudières soient toujours maintenues à la plus basse température possible (température définie par leur conception et donc par le fabricant).

Exemples.

Prenons une chaudière moderne à brûleur pulsé correctement dimensionnée de 300 kW. Son coefficient de perte à l’arrêt à température nominale (température d’eau de 70°C) est de 0,3 %. Si cette chaudière travaille en température glissante, sa température moyenne sur la saison de chauffe sera d’environ 43°C. Son coefficient de perte à l’arrêt moyen sera alors de 0,11 % :

[(43 [°C] – 20 [°C]) / (70 [°C] – 20 [°C])] 1,25 x 0,3 [%] = 0,11 [%]

Par rapport au fonctionnement permanent de la chaudière à température constante de 70°C, cela permet un gain sur le rendement saisonnier (et donc sur la consommation) de seulement 0,4 %.

L’impact sera d’autant plus réduit qu’après une relance de la chaudière, celle-ci mettra un certain temps à se refroidir et à retrouver sa température d’origine. En moyenne, elle restera donc durant la journée à une température moyenne plus élevée que ne le justifierait le seul chauffage.

Prenons l’exemple d’une chaudière gaz à brûleur atmosphérique ancienne génération de 300 kW surdimensionnée de 100 %. Son coefficient de perte à l’arrêt à température d’eau de 70°C est de 1,3 %.

Si la conception de cette chaudière lui permet de travailler en température glissante (température moyenne sur la saison de chauffe d’environ 43°C) et ne remonte en température que pour produire l’eau chaude sanitaire, le gain sur le rendement saisonnier sera cette fois d’environ 4 %, par rapport au fonctionnement permanent de la chaudière à température constante de 70°C.

Pour une consommation de 240 000 m³ de gaz par an, cela équivaut à une économie de :

0,04 x 240 000 [m³/an] = 9 600 [m³/an] ou environ 2 150 [€/an]

À noter que certains constructeurs proposent une régulation tout à fait optimisée :

  • Lorsque la température dans le ballon atteint 61 ou 62°C, la chaudière est déjà coupée. La circulation d’eau chaude est maintenue de telle sorte que le ballon monte à 62,5°C mais sans prolonger inutilement le maintien en température de la chaudière.
  • Certains ballons sont régulés via 2 sondes plongeuses : si le puisage est faible, la première sonde est froide mais la deuxième reste chaude. L’installation ne réagit pas, elle se base sur la température moyenne entre les 2 sondes. Si le puisage est important, des remous vont déstratifier la température dans la cuve, la deuxième sonde sera rapidement touchée par le flux d’eau froide : une réaction immédiate de l’installation de chauffage est programmée. Cette astuce permet de ne pas faire réagir trop vite la chaudière et d’attendre qu’un volume d’eau important soit à réchauffer, ce qui augmente la durée de la période de condensation.

Complément : une horloge en été

Si l’on constate que la demande peut être couverte facilement par une ou deux relances de la chaudière sur la journée, il est utile, en plus de la priorité sanitaire, de greffer une horloge sur la régulation pour imposer les plages horaires durant lesquelles le réchauffage du ballon est autorisé. Par exemple : de 5 à 7 heures du matin et de 16 à 18 heures en fin de journée. Ainsi, on évitera de remettre la chaudière en route pour le puisage d’un seau d’eau ! C’est surtout avantageux en été, bien sûr, mais ce l’est également en hiver puisque la température moyenne d’une chaudière régulée en fonction de la température extérieure est de 43°C en hiver.

Cette technique a fait l’objet d’une simulation sur une installation ECS domestique (consommation de 45 m³ à 55°C). Voici les rendements obtenus (source « Chauffage et production d’ECS » – M. Rizzo – Éditions Parisiennes) :

Chauffage de l’ECS constant

Chauffage de l’ECS programmé

Eté

44 %

66 %

Hiver

69 %

80 %

Année

59 %

75 %

Soit un gain moyen annuel de 21 % sur la consommation relative à la production d’eau chaude.

Alternative

S’il est difficile de planifier les périodes de chauffage de l’eau chaude, il est possible d’obtenir un effet similaire en régulant le ballon au moyen d’un thermostat à fort différentiel situé en partie haute (au moins au 2/3 de la hauteur). Ce thermostat arrête la pompe de circulation du réchauffeur quand on atteint la valeur désirée, généralement 60 à 65°C et remet le chauffage en service quand l’eau tombe à 40/45°C.


Précautions

Si la priorité sanitaire impose des périodes de coupure de chauffage importante (ce qui est à déconseiller pour le confort des occupants), les circuits de chauffe ont le temps de se refroidir. Au moment de la relance de ces derniers, les vannes vont s’ouvrir et/ou les circulateurs s’enclencher et l’eau froide des circuits va débouler dans la chaudière créant un choc thermique.

Il en va de même si, en mi-saison, l’installation travaille en température glissante : la chaudière sera toujours à haute température lorsque l’eau des circuits de chauffage à température mitigée revient à nouveau vers la chaudière.
Cela peut causer à terme la rupture des chaudières en fonte.

Exemple.

Durant le puisage de l’eau chaude sanitaire, les circuits de chauffage sont fermés et se refroidissent.

A la relance du chauffage, l’eau froide des circuits est envoyée vers la chaudière chaude.

Choisir le réseau d’eau chaude sanitaire


Conception du réseau

Organisation générale du réseau

Dès le départ du projet, il est utile de se poser quelques questions de base :

  • L’apport d’eau chaude est-il nécessaire ? Par exemple, ne faut-il pas considérer comme superflu l’apport d’eau chaude aux lavabos des immeubles de bureaux ?
  • La disposition des locaux sanitaires est-elle suffisamment concentrée (juxtaposition ou superposition) ?
  • La production d’eau chaude est-elle située « au milieu » des différents points de puisage, afin de diminuer le temps d’attente, et peut-être de pouvoir éviter le placement d’une boucle de circulation ?
  • La place réservée dans les gaines techniques est-elle suffisante pour placer correctement l’isolation thermique ?
  • Faut-il prévoir un compteur spécifique sur le réseau d’eau chaude sanitaire ? Faut-il prévoir des décompteurs par zones au sein du bâtiment ? (en se basant sur l’idée de rapprocher le consommateur du payeur…)

L’arrivée des préparateurs avec cheminée « ventouse » permet aujourd’hui de reposer la question de l’emplacement du préparateur d’eau chaude sanitaire. Il n’est plus impératif de l’installer en sous-sol, à grande distance des utilisateurs, mais bien au contraire, de faire circuler une conduite de gaz dans le bâtiment et de produire l’eau localement.

préparateurs avec cheminée "ventouse"préparateurs avec cheminée "ventouse"

préparateurs avec cheminée "ventouse"

Adaptation des températures

Comme température de consigne, les températures suivantes sont jugées suffisantes :

  • Soin corporel : environ 45°C
  • Douche collective : environ 40°C
  • Cuisine domestique : environ 50°C
  • Cuisine professionnelle : environ 60°C
  • Désinfection (boucherie) : jusqu’à 90°C

Pour faire face à ces demandes différentes, on peut imaginer deux logiques différentes

  • Préchauffer l’ensemble à 45°, par exemple, et prévoir des appoints terminaux.
  • Ou régler la consigne sur la demande la plus élevée et concevoir une adaptation de température pour les autres demandeurs par robinetterie mitigeuse.

Le contrôle du développement de la légionnelle vient trancher en faveur de la deuxième solution puisque voici les recommandations du CSTC à ce sujet :

  • L’eau chaude doit être produite à une température de 60°C; on évitera qu’elle reste durablement dans le chauffe-eau à une température moindre.
  • L’eau doit être maintenue à 55°C au moins en tout point du réseau principal.
  • Il est interdit de laisser stagner de l’eau chaude ou de l’eau froide : les bras morts (y compris les vases d’expansion sanitaires, par exemple) ou peu utilisés sont donc à éviter.

Une température élevée ne sous-entend pas forcément une consommation plus élevée, mais induit un renforcement de l’isolation et une nécessité de prévoir des robinets mitigeurs au point de puisage pour éviter les brûlures.

On peut même imaginer qu’une décontamination régulière puisse avoir lieu. On pense tout particulièrement à une installation de douches publiques (piscine, salle de sports,…). Le CSTC imagine que chaque soir le réseau puisse être porté automatiquement à haute température, avec un rinçage par ouverture de robinets commandés à distance. Le schéma d’un traitement de ce type est repris ci-dessous

Réseau porté automatiquement à haute température, le soir.

    • Régulateur.
    • Compteur.
    • Soupape de sécurité.
    • Clapet anti-retour.
    • Robinet de douche normal.
    • Robinet de désinfection actionné par la régulation.

À noter qu’un tel recours fréquent à une décontamination thermique de choc dans des installations en acier galvanisé augmente le risque de corrosion lorsque les températures sont nettement supérieures à 60°C.

Réflexion.

Ne sommes-nous pas en train d’exagérer ces mesures de précaution ???

Nous avons visité une piscine où les ballons et la boucle étaient maintenus en permanence à 80°C + un rinçage chaque soir ! Vu les débits permanents assurés dans les douches toute la journée, les bactéries auraient du mal à se développer. Par contre, le risque de brûlure en cas de défaillance du mitigeur (calcaire…) nous paraît plus réel… De l’eau à 80°C peut provoquer une brûlure du 2ème ou 3ème degré, selon l’intensité du jet !

Le principe d’une décontamination par montée à haute température (70°C, par exemple) une fois toutes les 3 semaines, et à une période d’inoccupation nous paraît plus logique. Il suffit que la régulation le prévoie.

Attention aussi au réseau d’eau froide !

Toujours pour lutter contre le développement de la légionelle, il y a lieu d’éviter le réchauffement des conduites d’eau froide (développement dès que la T° dépasse 25°C). Elles seront posées à des distances suffisantes des conduites de chauffage central ou d’eau chaude. Il s’agit là d’une motivation supplémentaire à bien isoler les tuyauteries d’eau chaude.

Eviter également des configurations critiques comme des conduites d’eau froide passant près de radiateurs.

Appareil de contrôle de la corrosion

Tubes témoins ou « manchettes de contrôle ».

En France, le DTU 60.1 impose la présence d’un tube témoin :

      • sur l’arrivée d’eau froide si aucun traitement d’eau n’est pratiqué,
      • en aval de chaque appareil de traitement d’eau,
      • sur le retour de boucle, le cas échéant.

L’idée nous paraît pertinente pour une bonne gestion des installations mais nous ne connaissons pas la pratique à ce sujet dans notre région.

Placement d’un filtre à tamis

Il s’agit d’un appareil qui retient les impuretés contenues dans l’eau.

Filtre à tamis.

Prévoir un éventuel traitement chimique de l’eau ?

En vue de faciliter un éventuel futur traitement chimique de l’eau contre la légionelle, il peut être opportun d’insérer dès le départ une « bouteille d’injection par déplacement » (homes, hôpitaux, …).

Vase d’expansion ?

Les vases d’expansion en dérive sur les réseaux d’eau chaude sanitaire n’ont plus la cote aujourd’hui… because légionelle bien sûr ! C’est en effet un ballon d’eau stagnante dont la température est propice à la prolifération de cette bactérie (T° de chaufferie > 25°C). On lui préfère un vase d’expansion isolé et parcouru par l’eau chaude.


Choix du matériau de distribution

Acier galvanisé

Il s’agit de tuyauteries d’acier recouvertes d’une couche de zinc qui lui sert de protection cathodique anti-rouille.

Dans la NIT 145, le CSTC recommande cependant de favoriser la formation d’une fine couche protectrice calcaire dans les tuyaux en acier galvanisé, afin que le zinc ne soit pas trop rapidement éliminé, ce qui entraînerait une corrosion de l’acier (apparition d’eau brune). Dans un diagramme, il précise la dureté de l’eau à conserver en fonction de l’acidité de l’eau (pH), si un adoucisseur d’eau est installé.

Il précise également toutes les conditions de mise en œuvre à respecter lors de l’installation du réseau (assemblages, filtres, dégazage, …).

Une attention toute particulière est apportée à la présence de métaux différents dans les réseaux. Ainsi, il est interdit de placer les éléments en cuivre (tubes, réservoirs, échangeurs) en amont de tubes ou d’équipements en acier. Ces éléments de cuivre doivent donc être également absents de tout réseau bouclé. En effet, le cuivre s’érodant facilement, de nombreuses particules de cuivre se mettent en circulation, se déposent sur les tuyauteries acier et constituent de nombreuses micropiles enclenchant le processus de corrosion.

Comme la haute température de l’eau favorise la corrosion, que la rouille est un endroit poreux où le biofilm vient se développer et que dans le biofilm se développe la légionelle, l’acier galvanisé n’est plus recommandé aujourd’hui pour le transport de l’eau chaude sanitaire dans une installation équipée de douches.

Pas d’appareil en cuivre suivi d’une conduite en acier : Pas de boucle en cuivre :

Pas de conduite en cuivre en amont des conduites en acier : Schéma correct :
 

Cuivre

La NIT 154 du CSTC propose bon nombre de « recommandations pour l’installation des tubes en cuivre pour la distribution d’eau sanitaire ». Elle recommande notamment :

  • de régler l’adoucisseur d’eau sur un minimum de 15°F afin que l’eau ne soit pas « agressive », c’est à dire trop douce,
  • de choisir les métaux qui serviront à la brasure en fonction des spécificités du cuivre,
  • de prévoir des espaces de dilatation pour les tuyauteries lors des montées en température,

Matériau synthétique

L’évolution de la demande vers :

  • la dissimulation des canalisations,
  • la réduction du temps de pose (pas de soudure à haute température nécessitant des postes oxyacétyléniques),
  • l’atténuation des niveaux sonores,
  • la réduction des risques de corrosion (aucun risque de couple électrolytique),

a favorisé le développement des matériaux de synthèse.
Les techniques de mise en œuvre évoluent rapidement. Ainsi il est, par exemple, possible de dérouler des tubes de diamètres 12, 16 ou 20 directement calorifugés dans les gaines techniques.
Choisir une canalisation en matériaux de synthèse est fonction des critères suivants :

  • économie (coût du matériau, de l’outillage, de la mise en œuvre et de la rapidité d’installation),
  • esthétique (dissimulation des canalisations),
  • acoustique,
  • durabilité en fonction de la nature de l’eau distribuée,
  • exploitation (maintenance et réparation rapide).

Voici les principales matières synthétiques utilisées en eau chaude sanitaire :

Symbole Matière
(PB) Polybutylène
(PP) Polypropylène
(PER) Polyèthylène réticulé
(PVC-C) Polychlorure de vinyle surchloré
Exemples de choix possibles (d’après CFP).

Mise en œuvre de matériaux de synthèse lorsque les eaux sont agressives :

  • réseau en eau froide en PVC-P
  • réseau en eau chaude en PVC-C ou PB ou PPR
  • distribution terminale en eau froide et chaude en PER.

Solution permettant une uniformité de matériau :

  • réseau en eau froide en PB ou PPR
  • réseau en eau chaude en PB ou PPR
  • distribution terminale en eau froide et chaude en PER.

Solution mixte pour éviter les diamètres supérieurs à 50 mm :

  • réseaux principaux d’eau froide en acier galvanisé, colonnes d’eau froide en PVC-P
  • réseaux principaux d’eau chaude en PVC-C ou PB ou PPR, colonnes d’eau chaude en cuivre
  • distribution terminale en eau froide et chaude en cuivre

D’après les Revues CFP (Chaud-Froid-Plomberie) de mai et juin 2002, qui contiennent d’excellentes informations techniques sur les différents matériaux de synthèse.

Lors de la réception, la norme française DTU 60-1 impose une mise en charge des canalisations à une pression supérieure de 5 bars à la pression de service, sans dépasser la pression d’épreuve de chaque matériau. Mais la plupart des fabricants de canalisations synthétiques préconisent d’effectuer des essais de pression suivant la norme DIN 1988 plus contraignante. Une inspection visuelle est obligatoire avant la mise en pression car ce type de matériau est plus sensible à des dommages en cours de chantiers (par des objets tranchants).

Critère de développement de la légionelle

La présence d’un biofilm sur les parois de la tuyauterie favorise la prolifération de la légionelle. Mais les avis divergent sur le choix de la tuyauterie qui en découlerait :

  • D’une part, il apparaît que les tuyauteries en métal, et tout particulièrement en cuivre, retardent mieux le développement du biofim et donc la colonisation bactérienne, par rapport aux tuyaux en matière synthétique. Le téflon et le PEDF seraient les meilleurs matériaux organiques dans ce domaine. Quant au PVC, il semble à l’inverse plus favorable à la création du biofilm (source revue CFP-février 2000);
  • D’autre part, l’AICVF (Recommandation 2004) relate l’avis du Conseil Supérieur d’Hygiène Publique à revenir sur ses positions en considérant que :
    • les matériaux tels que les BP, PP, PER et PVC-C ne favorisent pas systématiquement la formation du bio-film;
    • le cuivre n’agit pas toujours comme un agent bactéricide.
  • Par contre, la rouille est un lieu d’adhérence et de développement du biofilm, ce qui rend l’usage de l’acier galvanisé peu adéquat…

Les joints en caoutchouc sont eux-aussi plus sensibles au dépôt de bactéries.

Par rapport à la lutte anti-légionelles, les matériaux utilisés doivent pouvoir résister à certains traitements chimiques ou thermiques tels que la chloration ou le choc thermique (température de l’ECS > 60 °C) :

Matière Avantages Inconvénients
Acier galvanisé
  • Désinfection thermique possible à température < 60°C.
  • Dégradation accélérée à température > 60 °C;
  • Développement de la corrosion après détartrage.
Cuivre
  • Supportent la désinfection thermiques et chimiques;
  • limiterait la formation du bio-film par action bactéricide;
Polybutylène (PB)
  • Adaptés aux eaux corrosives;
  • Supportent la désinfection thermiques et chimiques
  • Matériaux pouvant être favorables à la formation du bio-film.
Polypropylène (PP)
Polyèthylène réticulé (PER)
Polychlorure de vinyle surchloré (PVC-C)
  • Adaptés aux eaux corrosives;
  • Supportent la désinfection thermiques et chimiques.
  • Peut relarguer du chloroforme par action du chlore sur les solvants des colles d’assemblage.

Dimensionnement des conduites d’alimentation des points de puisage

Un dimensionnement qui limite les temps d’attente

Si les diamètres des conduits d’alimentation des points de puisage sont importants, l’attente de l’eau chaude peut être longue… et coûteuse.

Calculs

Pour estimer le temps d’attente lié au choix du réseau, cliquez ici !
Exemple d’impact de la conception sur le temps d’attente au point de puisage.

Distribution en série

Schéma de distribution en série.

Temps d’attente au lavabo
débit = 4 l/min
Temps d’attente à la douche
débit = 6 l/min
Tronçon 1
(2 m 18 x 1)
6 s Tronçon 1
(2 m 18 x 1)
4 s
Tronçon 2
(2,5 m 16 x 1)
6 s Tronçon 2
(2,5 m 16 x 1)
4 s
Tronçon 3
(1 m 12 x 1)
1 s Tronçon 4
(2 m 14 x 1)
2 s

Total

13 s Total 10 s

Distribution en étoile

Schéma de distribution en étoile.

Temps d’attente au lavabo
débit = 4 l/min
Temps d’attente à la douche
débit = 6 l/min
Tronçon 1
(0,5 m 18 x 1)
1,5 s Tronçon 1
(0,5 m 18 x 1)
1 s
Tronçon 2
(5 m 12 x 1)
5,5 s Tronçon 3
(6 m 14 x 1)
7 s
Total 7 s Total 8 s

Une configuration en étoile permet de diminuer le temps d’attente grâce à la diminution du diamètre. Généralement, un tracé direct dans la dalle permet encore une réduction des longueurs.

Cet exemple montre également que la distance à ne pas dépasser entre le distributeur et un lavabo ou une douche est de l’ordre de 6 à 7 m.

Les temps d’attente recommandés

La recommandation Suisse (SIA 385/3) précise les délais d’attente au soutirage suivants

Délais d’attente au soutirage

Éviers de cuisine 7 s
Lavabos 10 s
Douches 10 s
Baignoires 15-20 s

Les critères de dimensionnement

En matière énergétique, le choix du diamètre des tuyauteries de distribution vers les points de puisage n’a qu’une faible influence sur les pertes de chaleur.
Dans le dimensionnement, on sera attentif à plusieurs points :

  • Évaluer le débit en phase de soutirage de pointe.
  • Adopter une perte de charge maximale après le compteur (ou le réducteur de pression général) de 1,5 bar.
  • Maintenir une pression d’eau d’écoulement minimum à la prise d’eau la plus éloignée de 1 bar.
  • Choisir un diamètre intérieur minimum de 10 à 16 mm, en fonction du matériau de la conduite.
  • Assurer une vitesse d’écoulement dans les conduites comprise entre 1,5 et 2 m/s.

Boucle de distribution d’eau chaude ?

Avec ou sans boucle ?

Chaque point de puisage est raccordé à la conduite de distribution à partir du producteur d’eau chaude. En cas de soutirage, il s’écoule donc d’abord de l’eau froide avant que le robinet ne délivre de l’eau chaude (inconfort). Et après l’arrêt du robinet, l’eau chaude restera bloquée (perte énergétique). Enfin, la légionelle pourrait se développer dans ces bras « morts » à eau tiède : on parle d’imposer réglementairement une boucle sur toute branche de plus de 5 m de longueur ou de plus de 3 litres de contenance en eau. À défaut, un rinçage automatique doit être organisé.

La solution consiste à faire circuler l’eau en permanence dans une boucle de distribution, boucle qui parcourt le bâtiment. L’eau chaude est toujours à proximité de chaque point de puisage, ce qui permet à l’utilisateur d’obtenir rapidement de l’eau à bonne température.

Mais la perte permanente de chaleur par la tuyauterie est non négligeable ! Une forte isolation de la tuyauterie est indispensable.

Calculs

Pour calculer la perte énergétique annuelle d’une tuyauterie, cliquez ici !

Pour comparer les pertes entre les 2 solutions, le calcul est simple mais dépend fortement de la fréquence d’utilisation.

En fait, la boucle se justifie pour des usages entre les deux extrêmes suivantes :

  • Si les puisages sont très réguliers et si la tuyauterie est bien isolée, le temps d’attente de l’eau chaude est faible, ainsi que la perte énergétique. Par conséquent, la boucle n’est pas nécessaire;
  • De même, pour alimenter une fois par semaine les douches des vestiaires, ce n’est pas la peine de mettre une boucle permanente, ni même d’isoler !

Alternative 1 : établir une sorte de compromis entre les 2 situations ? on augmente les bras morts et donc le risque de légionellose…

Alternative 2 : dédoubler les postes de production en les rapprochant des consommateurs (par exemple, un poste pour le réfectoire et un poste pour les sanitaires) et établir 2 circuits de distribution indépendants. Il faut analyser si l’on ne perd pas alors l’avantage de la non simultanéité des besoins : une réduction de la puissance installée.
Remarques.

  • La présence dune boucle de retour rend plus complexe le comptage des consommations des différents consommateurs (en vue dune redistribution des coûts).
  • La boucle de retour détruit la stratification des températures dans la partie supérieure du ballon. S’il s’agit d’un ballon électrique chauffé durant la nuit, il faut éviter la mise en place dune circulation. Si elle est cependant nécessaire, un post-chauffage sera nécessaire hors de l’accumulateur. C’est la solution du réchauffeur de boucle électrique. Il entraîne des consommations en électricité non négligeables, et en bonne partie au tarif de jour. En pratique, l’eau de circulation est raccordée sur des thermoplongeurs, à démonter et détartrer une fois par an.

Réchauffeur électrique de boucle.

Si boucle : débit de retour limité et régulé !

Les boucles de circulation entraînées par des pompes surdimensionnées et non régulées sont des véritables « gaspilleurs d’énergie » !

Pour bien comprendre la logique d’une boucle de circulation, il faut penser au vieux truc des anciens pour éviter le gel d’une conduite en hiver : laisser passer un fin filet à la sortie du robinet ! De même, le débit de circulation d’eau compense seulement les pertes de chaleur mais n’assure pas le débit d’eau d’alimentation d’un équipement.

Globalement, différentes qualités sont nécessaires au projet :

  • Un tracé le plus court possible des conduites.
  • Une isolation soignée des tuyauteries.
  • Une disposition la plus haute possible du retour de circulation dans le ballon.
  • Un diamètre de conduite limité pour la tuyauterie de retour.
  • Un circulateur de boucle d’une très faible puissance. Le calcul du débit d’eau de circulation est basé sur le fait que les déperditions totales de la tuyauterie (entre le départ et le retour) n’entraînent pas une chute de température totale de plus de 5 K (déperditions = débit x cap.therm.eau x delta T°). On en tire le débit… qui sera très faible. Puis on dimensionnera la section du retour sur base d’une vitesse maximum de l’eau de 0,5 m/s, tout en conservant un minimum de 0,2 m/s.
  • La programmation possible d’un arrêt total de la circulation en période d’inoccupation (tout en respectant les prescriptions en matière de protection contre le développement des légionelles). Si malgré tout un usage fortuit apparaissait durant la nuit, l’eau chaude arriverait au point de puisage après quelques secondes d’attente.
  • La remise en route de la circulation programmée juste en fin de la période de chauffe à bas tarif pour les ballons électriques (car l’arrivée du « paquet d’eau froide » perturbe la stratification et réenclenche le chauffage).

Astuce ! Un fabricant propose une circulation tube-contre-tube, ce qui permet l’exécution d’une seule coquille.

  1. Isolation thermique.
  2. Eau Chaude Aller.
  3. Air.
  4. Eau Chaude Retour.

Dimensionnement du circulateur de boucle

Le volume d’eau contenu dans l’installation n’entre pas en considération dans la détermination du débit horaire à mettre en circulation. Le débit d’eau chaude qui doit circuler doit compenser la somme des déperditions des tuyauteries du réseau aller, tenant compte d’une chute de température de l’eau acceptable (généralement 5 K) entre les points extrêmes de ce réseau, c’est-à-dire entre le départ du préparateur d’eau chaude sanitaire et le puisage le plus défavorisé.

Photo circulateur de boucle.

Pompe de circulation.

La pompe de circulation du type « sanitaire » devra être capable d’assurer le débit ainsi calculé avec une hauteur manométrique égale aux pertes de charge sur le réseau aller et retour, sans oublier celles dues aux vannes, clapets et autres accessoires présents sur l’installation et tout particulièrement aux mitigeurs thermostatiques qui peuvent présenter des pertes de charge importantes.

Si boucle : température de distribution contrôlée !

La lutte contre la légionelle génère les conséquences suivantes (source CSTC) :

  • L’eau chaude doit être produite à une température minimale de 60°C; on évitera qu’elle reste durablement dans le chauffe-eau à une température moindre.
  • L’eau doit être maintenue à 55°C au moins en tout point du réseau principal.
  • Dans un système de distribution avec recirculation, la température de retour ne peut jamais être inférieure à 55°C. Par ailleurs, la chute de température entre le point de départ et le point de retour à l’appareil de production d’eau chaude ne peut dépasser les 5°C : si l’eau quitte l’appareil de production à 60°C, la température de retour devra être de 55°C au moins.

Si la production de chaleur est réalisée à une température plus élevée que 60°C, la pose d’une vanne 3 voies modulante, encore appelée « mitigeur », permettra d’abaisser cette température dans le réseau.

 

Mitigeur électrique et mitigeur thermostatique.

Générateur avec :

  1. Générateur.
  2. Vanne d’arrêt gaz.
  3. Filtre gaz.
  4. Réducteur de pression.
  5. Vanne d’arrêt.
  6. Compteur d’eau.
  7. Filtre eau.
  8. Clapet anti-retour.
  9. Manomètre.
  10. Soupape de sécurité.
  11. Purgeur automatique.
  12. Pompe de bouclage.
  13. By-pass.
  14. Raccord isolant.
  15. Vanne mélangeuse/mitigeur.

En passant de 65 à 55°C, les pertes du réseau de tuyauteries seront réduites de 22 %, et les risques de brûlure seront également moindres !


Alternative : le ruban chauffant (= traçage) ?

Schéma du principe du ruban chauffant.

Photo de ruban chauffant.

Des cordons chauffants peuvent être placés sur le réseau. Ils sont généralement auto-régulants, c’est à dire que leurs résistances électriques augmentent avec la température
–> lorsque l’eau chauffe, la résistance électrique augmente et le courant électrique diminue.

À défaut, la température doit être contrôlée par thermostat sur chaque tronçon équipé.

Les défenseurs de cette solution mettent en évidence qu’il ne faut maintenir que les pertes d’une seule conduite (pas de retour) et que la consommation de la pompe est évitée. C’est exact. A isolation de conduite égale, le bilan est positif en faveur du ruban chauffant par rapport à une boucle de circulation. Bien dimensionné, le ruban consomme environ 60 % de la consommation de la boucle.

Mais les pertes d’une conduite de retour de faible diamètre et la consommation d’une petite pompe ne peuvent compenser le fait que le réchauffage se fait alors avec de l’électricité directe chère (tarif de jour, voire de pointe), et donc avec une consommation en énergie primaire triple.

En énergie primaire et en coût, la solution reste à l’avantage de la boucle de circulation lorsque la production de chaleur est réalisée sur base de gaz ou de fuel.

De plus, pour les réseaux principaux en matériaux synthétiques posés sur chemin de câble, il est facile de poser un retour d’eau chaude en créant des points fixes à chaque colonne sur la vanne et le té de réglage. Les bouclages sanitaires en tube de synthèse semblent dès lors plus économiques en fourniture et pose qu’une installation avec des cordons chauffants électriques.

Dans tous les cas, il sera très utile de placer un délesteur pour interrompre la charge durant les heures de pointe (limiter la pointe de puissance du bâtiment).

Dimensionnement et programmation

Un ruban chauffant, entouré d’une bonne isolation thermique, doit être dimensionné sur base de 7 W/m. Et donc l’isolation doit être telle que seulement 7 W/m seront perdus par l’isolant (= besoin de 3 cm d’isolant pour un tuyau d’1 pouce, par exemple).

Ici à nouveau, un fonctionnement intermittent est requis, grâce à une horloge stoppant l’alimentation électrique du ruban en dehors des périodes d’occupation.


Alternative : la pompe à chaleur sur la boucle de retour ?

Il est possible également d’assurer le chauffage de l’eau de retour par une pompe à chaleur (PAC). Ce choix permettrait :

  • de sous-dimensionner le ballon (ou tout au moins de ne pas adopter des suppléments de sécurité) puisque la PAC est en réserve,
  • de préchauffer le ballon durant la nuit à une température minimale,
  • d’arrêter la chaudière en été et de fournir l’eau chaude sanitaire à elle-seule.

Fonctionnement de jour

Réchauffage de la boucle par la PAC.

  1. Circulateur de boucle.
  2. Circulateur de nuit.
  3. et 4  Clapets anti-retour.

Fonctionnement de nuit

Chauffage du ballon par la PAC.

Utilisation d’eau chaude.

L’ensemble de ces arguments permettent-ils d’amortir l’investissement dans une double installation de production de chaleur ? C’est le calcul à faire ! Mais il semble que ce soit bien difficile…

De plus, est-il prudent de placer une pompe à chaleur sur le retour de la boucle de circulation sachant qu’elle ne pourra pas travailler à un régime de température de 55 °C minimum (prévention des légionelles oblige). La réponse est bien entendu négative !


Isolation des conduites

Isolation des conduites

1 m de tuyau en acier de 1 pouce de diamètre, non isolé, dans lequel circule de l’eau chaude à 70°C et qui parcourt une ambiance à 20°C a une perte équivalente à la consommation dune ampoule de 60 W.

Or cette ampoule, si elle restait allumée toute l’année dans la chaufferie, il est fort probable que quelqu’un l’éteindrait, parce qu’elle est bien visible …

Priorité : isoler la boucle de circulation

Étant maintenue à haute température en permanence, la boucle de circulation présente des pertes considérables.

L’épaisseur d’isolation rentable de la boucle d’eau sanitaire dépend de son diamètre. Le tableau suivant traduit les exigences de la norme NBN D30-041 en tenant compte de la température de l’eau (fonction du mode de régulation), de la température ambiante et des épaisseurs d’isolant courantes sur le marché :

Épaisseur d’isolant rapportée à un coefficient de
conductibilité de 0,04 W/mK [en mm]

Température de l’eau

Conduite extérieure (température ambiante : 0°C)

Conduite intérieure (température ambiante : 15°C)

DN

10 40 30
15 40 30
20 40 40
25 50 40
32 50 40
40 50 50
50 50 50
65 60 50
80 60 60

 

Dispositions particulières

Épaisseur d’isolant

Tuyaux pour les percements dans les planchers et les murs et pour les croisements. La moitié des exigences ci-dessus
Tuyauteries dans la dalle entre locaux chauffés. 6 mm

Calculs

Le temps de retour de l’investissement est toujours très court : de l’ordre de 0,5 à 1,5 an.

Pour calculer la rentabilité de l’isolation de votre tuyauterie, cliquez ici !

Les vannes jouent également un rôle important et seront isolées en conséquence (en première approximation, on dit que les pertes dune vanne sont similaires à 1 mètre de tuyauterie du même diamètre).

Photo de vannes isolées.

On pense bien entendu au parcours dans les locaux non chauffés et les gaines techniques mais également au parcours dans les locaux chauffés puisque les pertes durant la mi-saison et l’été seront non négligeables. Si le local est climatisé, cette chaleur devra être éliminée en pure perte. Et si le local ne l’est pas, c’est une source de surchauffe supplémentaire en période de forte chaleur.

En absence de boucle, isoler aussi les tuyauteries d’alimentation des points de puisage

Contrairement à une idée reçue, l’isolation thermique des tuyauteries vers les différents points de puisage reste toujours utile :

  • Si les soutirages sont rapprochés (moins de 2 heures), l’économie d’énergie sera très importante,
  • Si les soutirages sont plus espacés (hébergement), l’utilisateur pourra rapidement obtenir une eau « tiède », souvent jugée suffisante, mais l’économie liée à la pose de l’isolant sera plus faible.
  • Au minimum, l’isolation des distributeurs placés au dessus de l’accumulateur est nécessaire pour limiter les circulations internes dans les tuyauteries (une campagne de mesure a permis d’évaluer que le refroidissement par une tuyauterie horizontale non isolée greffée sur le ballon est vraiment non négligeable : l’eau refroidie redescend vers le ballon et une boucle convective se forme !)

Isolation tuyauterie.

Mais attention : ces branches sans boucle constituent des bras morts propices au développement de la légionelle. La nouvelle réglementation flamande n’autorise qu’une longueur maximale de 5 m et une contenance en eau de 3 litres.

Isoler les conduites d’eau froide ?

Dans certains cas, il apparaît que de l’eau froide peut être en contact avec une source de chaleur (conduites d’eau chaude dans une gaine technique, stagnation en chaufferie ou en cave à haute température, citerne tampon pour l’alimentation des hôtels,…), au point que la température de l’eau peut y dépasser les 25°C qui sont propices au développement de la légionelle. Le CSTC recommande dans ce cas une isolation des conduits. Nous vous recommanderions d’analyser d’abord le renforcement de l’isolation de la source de chaleur !


Intégration d’un système de comptage des consommations

Objectif

Responsabiliser le consommateur, sensible à l’état de son portefeuille… Une enquête en Suisse a montré que le placement de compteurs individuels dans un immeuble à appartement diminue la consommation d’eau chaude de 25 à 30 %.

En Suisse toujours, la réglementation impose le placement dans tout bâtiment neuf (abritant au moins 5 preneurs de chaleur) d’appareils enregistreurs des consommations individuelles.

Technique de comptage

Ce souci de comptage influencera le concepteur vers une solution décentralisée de son système de production. Et dans ce cas, la mesure des coûts peut directement être réalisée sur base des énergies consommées.

Dans les autres cas, des décompteurs pourront être placés avant la répartition vers les utilisateurs d’un même groupe et après la boucle de circulation. Le schéma appelé ci-dessus « de compromis » permet d’atteindre plus facilement cet objectif. Mais il n’est pas conforme aux principes de la lutte anti-légionelle…

La valeur obtenue par calcul théorique de l’énergie consommée :

Quantité de chaleur [kWh] = quantité d’eau [m³] x 1,16 [kWh/m³.K] x (T°eau chaude- 10) [K]

doit être divisée par le rendement de production de l’eau chaude sanitaire.
Il existe d’ailleurs deux techniques possibles :

  • Soit entacher chaque m³ consommé dune part proportionnelle des pertes à la production.
  • Soit considérer que les pertes à la production sont inhérentes à la fourniture du premier litre d’eau chaude et que donc il s’agit d’une consommation de base payée par tous.

Si production d’ECS combinée au chauffage

Si la production d’eau chaude sanitaire est combinée à la production de chauffage, il est possible :

  • Soit de placer un compteur sur l’arrivée d’eau froide alimentant le chauffe-eau,
  • Soit d’évaluer sa part de consommation en extrapolant la consommation d’été. Cette évaluation est légèrement trop élevée puisque, durant l’été, l’eau chaude sanitaire porte seule la part des pertes éventuelles de maintien en température de la chaudière.

La consommation totale doit ensuite être divisée vers les consommateurs sur base d’un ratio le plus pertinent possible : le nombre de personnes, le nombre et le type d’équipement (voir débits typiques d’un équipement), la surface (immeuble à appartements), …

Photo compteur eau.

Remarque.

Un organe d’arrêt sera prévu de part et d’autre du compteur pour faciliter les révisions.

Améliorer la distribution d’eau chaude sanitaire

Stopper la circulation la nuit et le week-end

La boucle de circulation est très consommatrice d’énergie puisqu’une température élevée y est maintenue en permanence. Interrompre cette circulation permet à l’eau de descendre de température et donc de diminuer les déperditions.

Quel est le gain lié à la coupure ?

Malgré qu’il faudra remettre la boucle en température au redémarrage de la circulation, on est toujours gagnant à l’interrompre. Simplement, le gain est d’autant plus grand que la période d’interruption est longue et que l’isolation des conduits est faible.

Une étude réalisée dans le cadre du programme Ravel (Suisse) montre qu’une boucle de circulation, bien isolée, qui serait interrompue seulement 8 heures par jour (33 % du temps) économiserait 19 % des pertes du réseau d’eau chaude sanitaire (diminution des pertes des tuyauteries et de la consommation du circulateur). Dans ce calcul, il a été tenu compte du réchauffage de l’eau refroidie et de la tuyauterie à la fin des 8 heures.

Si la coupure est plus longue (8 h par nuit + week-end, soit 52 % du temps), le bénéfice en est encore bien plus important : 45 % d’économies. Proportionnellement, l’impact du réchauffage diminue.

Attention au ballon de stockage électrique

Si le chauffage est programmé la nuit, il faudra réamorcer la circulation avant la fin de la période de nuit afin que le réchauffage soit réalisé à prix réduit.

Et la Légionelle ?

La légionelle se développe particulièrement bien entre 32 et 42°C. Un arrêt de la boucle de circulation entraînera forcément une température de l’eau assez tiède pendant plusieurs heures. Cependant, si la production d’eau chaude s’est réalisée à 60°C, les bactéries ont été détruites et ne vont pas spontanément se redévelopper. Et une remontée à 60°C aura lieu dès le redémarrage de la circulation.

Et une coupure permanente ?

On peut aussi parfois se demander si la circulation d’eau est vraiment nécessaire ? Un test sur le bâtiment existant (ou sur une partie de celui-ci) peut facilement être réalisé, après avoir éventuellement averti les utilisateurs de la prolongation du temps d’attente.

Une production décentralisée (gaz ou électrique) peut-elle être placée pour alimenter le dernier point de puisage et raccourcir la boucle ?

Mais cette fois, la question de la légionelle se pose sérieusement. Des bras morts plus longs seront présents. Donc un risque de stagnation de l’eau si l’usage est sporadique. Dans la nouvelle réglementation flamande, les bras morts ne pourront être de plus de 5 m et d’une contenance de 3 litres. Si l’arrêt définitif de la boucle est confirmé, il sera au minimum nécessaire de sectionner et vidanger la tuyauterie de retour pour éviter de laisser de l’eau stagnante dans cette partie de l’installation.


Isoler les tuyauteries

Isoler la boucle de circulation

Une isolation aussi performante que celle du ballon s’impose.

L’épaisseur d’isolation rentable de la boucle d’eau sanitaire dépend de son diamètre. Le tableau suivant traduit les exigences de la norme NBN D30-041 en tenant compte de la température de l’eau (fonction du mode de régulation), de la température ambiante et des épaisseurs d’isolant courantes sur le marché

Épaisseur d’isolant rapportée à un coefficient de
conductibilité de 0,04 W/mK [en mm]

Température de l’eau

Conduite extérieure (température ambiante : 0°C)

Conduite intérieure (température ambiante : 15°C)

DN

10 40 30
15 40 30
20 40 40
25 50 40
32 50 40
40 50 50
50 50 50
65 60 50
80 60 60

Dispositions particulières

Épaisseur d’isolant

Tuyaux pour les percements dans les planchers et les murs et pour les croisements. La moitié des exigences ci-dessus
Tuyauteries dans la dalle entre locaux chauffés. 6 mm

Calculs

Le temps de retour de l’investissement est toujours très court : de l’ordre de 0,5 à 1,5 an.

Pour calculer la rentabilité de l’isolation de votre tuyauterie.

Astuce : un fabricant propose une circulation tube-contre-tube, ce qui permet l’exécution d’une seule coquille.

  1. Isolation thermique.
  2. Eau Chaude Aller.
  3. Air.
  4. Eau Chaude Retour.

On pense bien entendu aux tuyauteries traversant des locaux non chauffés (tout particulièrement les gaines techniques) mais également celles qui traversent des locaux chauffés puisque les pertes durant la mi-saison et l’été seront non négligeables. Si le local est climatisé, cette chaleur devra être éliminée en pure perte. Et si le local ne l’est pas, c’est une source de surchauffe supplémentaire par période de forte chaleur.

Dans les gaines techniques verticales, il est parfois impossible d’accéder aux tuyauteries. Pourrait-on alors imaginer d’arrêter la boucle de circulation à hauteur des caves, sans engendrer un inconfort trop important si l’on ne dépasse pas 2 ou 3 étages ?

Cette technique serait dangereuse en matière de propagation de la légionellose. En effet, on crée ainsi des « bras morts » sur le réseau où la température intermédiaire est favorable au développement de la bactérie. Ce n’est en tout cas pas admissible si ce sont des douches qui sont alimentées, puisque la contamination se fait essentiellement via la pulvérisation d’aérosols respirés par les poumons.

Isolation des vannes

Les vannes jouent également un rôle important et seront isolées en conséquence (en première approximation, on admet que les pertes d’une vanne à brides sont similaires à 1 mètre de tuyauterie du même diamètre).

Isoler les tuyauteries d’alimentation des points de puisage

Une isolation thermique des tuyauteries reste toujours utile :

  • Si les soutirages sont rapprochés, l’économie d’énergie sera très importante.

 

  • Si les soutirages sont plus espacés (hébergement), l’utilisateur pourra rapidement obtenir une eau « tiède », souvent jugée suffisante, mais l’économie liée à la pose de l’isolant sera plus faible.

 

  • Au minimum, l’isolation des distributeurs placés au dessus de l’accumulateur est nécessaire pour limiter les circulations internes dans les tuyauteries (une campagne de mesure a permis d’évaluer que le refroidissement par une tuyauterie horizontale non isolée greffée sur le ballon est vraiment non négligeable : l’eau refroidie redescend vers le ballon et une boucle convective se forme !).


Programmer le réchauffeur de boucle

L’isolation renforcée du réseau de distribution permet généralement d’arrêter le fonctionnement du réchauffeur de boucle qui peut être présent sur le retour de la boucle de circulation des ballons électriques.

Ceci permet de limiter le chauffage avec le courant de jour. Mais une perturbation de la stratification suite au retour de l’eau de circulation refroidie après la nuit, risque de se poser. Il est alors utile de programmer le réenclenchement de la circulation et du réchauffeur à la fin de la période de chauffage de nuit, pour bénéficier encore du tarif avantageux.

Une alternative peut également consister à augmenter quelque peu la température du ballon, en misant sur la faiblesse de la chute de température dans la boucle. Ou encore, d’abaisser la consigne du réchauffeur de boucle afin de juste maintenir la température minimale souhaitée.


Réduire la puissance de la pompe de circulation

Les boucles de circulation entraînées par des pompes surdimensionnées et non régulées sont des véritables « gaspilleurs d’énergie » ! Pour bien comprendre la logique d’une boucle de circulation, il faut penser au vieux truc des anciens pour éviter le gel d’une conduite en hiver : laisser passer un fin filet à la sortie du robinet ! De même, le débit de circulation d’eau compense les pertes de chaleur mais n’assure pas le débit d’eau d’alimentation d’un équipement.

En pratique, le circulateur de boucle est presque toujours surdimensionné. Lors du remplacement par un appareil de plus faible puissance, on posera un organe de régulation et un clapet antiretour.

Dimensionnement du circulateur de boucle

Le volume d’eau contenu dans l’installation n’entre pas en considération dans la détermination du débit horaire à mettre en circulation. Le débit d’eau chaude qui doit circuler doit compenser la somme des déperditions des tuyauteries du réseau aller, tenant compte d’une chute de température de l’eau acceptable (généralement 5 K) entre les points extrêmes de ce réseau, c’est-à-dire entre le départ du préparateur d’eau chaude sanitaire et le puisage le plus défavorisé.

Ce dimensionnement doit générer une vitesse maximum de l’eau de 0,5 m/s.

La pompe de circulation du type « sanitaire » devra être capable d’assurer le débit ainsi calculé avec une hauteur manométrique égale aux pertes de charge sur le réseau aller et retour, sans oublier celles dues aux vannes, clapets et autres accessoires présents sur l’installation et tout particulièrement aux mitigeurs thermostatiques qui peuvent présenter des pertes de charge importantes.

Préparateur d’eau chaude à accumulation

Préparateur d'eau chaude à accumulation


Éléments communs aux différentes technologies

Un préparateur d’eau chaude à accumulation est un réservoir dans lequel l’eau froide est chauffée puis accumulée. Cette fonction « accumulatrice » lui permet de répondre rapidement à une demande importante.

Les technologies se distinguent notamment en fonction du vecteur énergétique : gaz, électricité ou à eau chaude.

Cuve résistantes à la corrosion

L’eau est naturellement agressive suite à la présence de l’oxygène. Si dans un circuit de chauffage cette eau tourne sur elle-même et est considérée comme « morte », l’eau sanitaire est au contraire toujours renouvelée. Différents types de matériaux existent

  • L’acier St 37 galvanisé au bain, à chaud, mais cette technique est abandonnée aujourd’hui.
  • Le cuivre et les alliages de cuivre, qui semble doté d’une bonne résistance à la corrosion mais pour lequel nous manquons d’expérience. Il est couramment utilisé dans les pays scandinaves et en Angleterre.
  • L’acier inoxydable (acier CrNiMo), qui doit être suffisamment allié pour la construction d’un chauffe-eau. On utilise généralement les nuances DIN 1.4435 ou 1.4571, soit des aciers à faible taux de carbone avec adjonction de molybdène. Pour les gaines de corps de chauffe, plus fortement sollicitées, on adopte des alliages plus performants à teneur élevée de nickel, tels que le IN 1.4539, l’Inconel, etc… La qualité de l’équipement est souvent liée à la réalisation des soudures et au décapage intérieur des cuves.
  • L’acier St 37 avec revêtement organique ou synthétique. L’acier est soumis à différents traitements préparatoires (traitement chimique ou sablage) pour assurer l’accrochage de l’enduit. Son usage est limité puisqu’il requiert de ne pas dépasser la température prescrite par le fournisseur (généralement 60°C).
  • Enfin l’acier St 37 émaillé. L’acier est du type pauvre en carbone. Différents traitements (chimiques ou mécaniques) sont nécessaires avant l’émaillage. Celui-ci est réalisé généralement par deux couches successives cuites au four à 890°C.

Protection cathodique contre la corrosion

Les revêtements émaillés comportent quelques pores après la cuisson. Pour exclure tout risque, les appareils émaillés sont munis d’une protection cathodique ou galvanique. Lors de la formation d’une pile électrique, c’est toujours l’anode qui se corrode. Le principe est donc de protéger l’acier (= la cathode) en le mettant en contact avec un métal moins noble que lui (= l’anode).

L’anode, plongée dans l’eau, est généralement en alliage de magnésium. Le fer « ennobli » reste intact et le magnésium sacrifié se dissout. L’anode devra être remplacée lorsque son usure dépasse 60 %.

Ce type d’anode est dégradable, mais il existe également des anodes électroniques (généralement en titane) fonctionnant sur le secteur, et qu’il ne faut en principe jamais remplacer. En cas de panne de courant, elles sont alimentées par une batterie rechargeable. Mais celle-ci n’a qu’une capacité de 1 à 2 jours. Cela suffit si le courant est coupé pendant la journée, parce que le boiler ne fonctionne que la nuit. Cela pourrait poser problème si le courant est coupé durant une période de vacances, par exemple. Le boiler ne serait plus protégé contre la corrosion.

Les pertes thermiques du ballon

Elles sont évaluées via sa constante de refroidissement Cr (puissance de déperditions du ballon) et sa constante d’entretien ce (pertes annuelles).

Mais les performances des ballons usuels sont généralement très proches de la valeur du ballon dit « surisolé » dans la norme française NF C 73-221.

Voici les critères proposés par l‘Ordonnance sur la procédure d’expertise énergétique des réservoirs d’eau chaude en Suisse (22/01/92) :

Capacité Pertes maximum admissibles
[kWh/24h]
Capacité Pertes maximum admissibles
[kWh/24h]
30 0,75 1 000 4,70
50 0,90 1 100 4,80
100 1,30 1 200 4,90
200 2,10 1 300 5,00
300 2,60 1 400 5,05
400 3,10 1 500 5,10
500 3,50 1 600 5,12
600 3,80 1 700 5,14
700 4,10 1 800 5,16
800 4,30 1 900 5,18
900 4,50 2 000 5,20

Le préparateur à accumulation gaz

Le préparateur à accumulation gaz est conçu pour chauffer et maintenir en température un certain volume d’eau variant de 75 à 200 litres.

Ce système permet de distribuer de grandes quantités d’eau chaude à plusieurs postes de puisage. L’eau est chauffée avant et durant les puisages. La reconstitution de la réserve d’eau chaude est rapide (entre 20 et 90 minutes, suivant les modèles).

Le réservoir est calorifugé et l’eau est ainsi maintenue à une consigne de 45 à 60°C.

Il existe des préparateurs « haut rendement » et des préparateurs à condensation.


L’accumulateur électrique

Le petit accumulateur décentralisé (contenance de 5 à 30 litres)

Prévu pour la fourniture d’un ou deux postes, il répond à des besoins ponctuels et supprime la nécessité de raccordement à une installation centralisée.

Certains appareils résistent à la pression (circuit fermé), d’autres sont à écoulement libre mais doivent être suivi d’une robinetterie permettant la dilatation de l’eau chauffée.

Il existe également des chauffe-eaux rapides, dotés d’une puissance de 120 à 200 Watts/litre et dont le temps de chauffe n’excède pas 45 minutes.

Photo petit accumulateur décentralisé - 01.Photo petit accumulateur décentralisé - 02.Photo petit accumulateur décentralisé - 03.

Il est possible de les encastrer (comme un réfrigérateur ou un lave-vaisselle).

L’accumulateur électrique prévu pour une préparation centralisée

La capacité d’accumulation est de plusieurs centaines de litres. Il est possible de le faire fonctionner en continu (alimentation électrique permanente) ou en accumulation en période tarifaire creuse (heures de nuit). Dans ce cas, le dimensionnement est basé sur la couverture des besoins quotidiens.

La puissance installée est de l’ordre de 10 à 12 Watts/litres (exemple : un ballon de 200 litres sera équipé d’une résistance de 2 ou 2,5 kW).

Photo accumulateur électrique.

Schéma accumulateur électrique.

Il existe également des accumulateurs à double résistance électrique, un dans la partie inférieure assurant la charge nocturne à bas tarif, alors que l’élément chauffant supérieur couvre les demandes de pointe en eau chaude pendant la journée. L’enclenchement simultané des deux résistances n’est pas réalisé pour limiter la puissance cumulée.

Les thermostats installés sur les chauffe-eau sont préréglés (60 à 65°C) et le point de consigne ne peut pas toujours être modifié.

Pour permettre la dilatation de l’eau lors du chauffage, on trouve en amont du chauffe-eau un groupe de sécurité (un par appareil). Il comporte :

  • un robinet d’arrêt, pour couper l’arrivée d’eau froide dans le chauffe-eau (démontage),
  • un clapet de retenue, pour éviter le retour d’eau chaude dans la canalisation d’eau froide,
  • une soupape de sûreté, pour limiter la pression dans le chauffe-eau,
  • un dispositif de vidange, pour vidanger le réservoir.

  1. Carrosserie.
  2. Calorifuge (laine minérale, polyuréthane sans CFC).
  3. Cuve (acier galvanisé, cuivre ou acier).
  4. Thermovitrification / émail / plastique.
  5. Prise d’eau froide.
  6. Brise-jet.
  7. Fond.
  8. Tube plongeur pour sonde de thermostat.
  9. Corps de chauffe.
  10. Pieds réglables.
  11. Capot de recouvrement.
  12. Raccordement électrique.
  13. Thermostat de réglage et de sécurité.
  14. Flasque.
  15. Anode en magnésium.
  16. Thermomètre.
  17. Prise d’eau chaude.
  18. Groupe de sécurité (là, il faut le deviner !).
  19. Vidange à l’égout.

En voici le fonctionnement. Au fur et à mesure que l’eau monte dans la cuve, la pression augmente. Un clapet de sécurité évacue l’excès de pression. Le trop-plein d’eau s’écoule par le tuyau de décharge. Un bouton ou une manette fixée sur le groupe de sécurité permet d’actionner manuellement le clapet.

En l’actionnant régulièrement (tous les mois, par exemple), on évite qu’il ne s’encrasse ou ne s’entartre.

Les corps de chauffe électriques

Schéma corps de chauffe électrique.

On rencontre essentiellement deux systèmes :

> Les résistances blindées (ou thermoplongeurs), barres chauffantes de 6 à 9 mm environ. Le fil électrique chauffant est noyé dans de l’oxyde de magnésium (MgO) très pur à haute densité, matériau qui est à la fois un très bon conducteur de la chaleur et un protecteur de l’oxydation du conducteur chauffant.

Avantages.

  • Moins de dépôt de calcaire suite aux dilatations et retraits successifs de la barre blindée.
  • Une faible masse et donc une transmission très rapide de la chaleur vers l’eau.
  • Un flasque de plus petite surface que celle d’une résistance céramique et donc une limitation des pertes énergétiques.
  • Une possibilité, lors de sa construction à froid, de préformer la barre en fonction de la forme du chauffe-eau et donc de réduire la zone froide du fond (mesure anti-légionelle).

Inconvénients.

  • La puissance élevée peut provoquer du bruit pendant la phase de réchauffage de l’eau.
  • Il est nécessaire de vider le réservoir pour remplacer le corps de chauffe.

> Les corps de chauffe en céramique, où les résistances spiralées sont tirées dans les gorges des éléments en céramique, le tout étant introduit dans un tube de protection plongeur.

Avantages.

  • Une inertie relativement importante et donc une charge plus lente qui limite la production de bruit.
  • Un remplacement aisé de la garniture céramique contenue dans un tube plongeur sans devoir vidanger le ballon.
  • Un flasque plus grand, facilitant les travaux d’entretien.

Inconvénients.

  • La formation d’une couche calcaire sur le tube plongeur et donc une moins bonne transmission de chaleur.
  • Des pertes thermiques plus élevées par les flasques, et cela malgré l’isolation thermique en céramique à l’extrémité du flasque.
  • Zone morte plus importante au bas de la cuve, favorisant la stagnation d’eau à température faible et donc le développement de la légionelle.

Appareil à double corps de chauffe

Il existe des appareils équipés de 2 résistances : l’élément chauffant inférieur assure la charge nocturne à bas tarif, alors que l’élément chauffant supérieur couvre les demandes de pointe en eau chaude durant la journée. L’enclenchement simultané des deux résistances n’est généralement pas autorisé en raison de la puissance cumulée.

Schéma appareil à double corps de chauffe.


L’accumulateur à échangeur intégré

Un serpentin de chauffage ou un faisceau tubulaire est intégré. C’est un échangeur de chaleur parcouru par un fluide caloporteur, généralement de l’eau chaude, parfois de la vapeur. Il offre la possibilité de préparer l’eau chaude via une chaudière (gaz, fuel, …), via un capteur solaire ou via une pompe à chaleur.

L’échangeur est généralement en acier inoxydable ou en tube d’acier émaillé.

L’échangeur peut également consister en un faisceau de tubes lisses ou à ailettes, fixé sur un flasque lui-même intégré au chauffe-eau ou monté sur celui-ci.


L’accumulateur mixte

L’accumulateur mixte dispose d’un double raccordement : un serpentin d’eau chaude et une résistance électrique.

Deux types d’alternance sont possibles :

  • Soit suivant la saison : chauffer par la chaudière en hiver et électriquement en été.
  • Soit suivant la complémentarité des sources : chauffage de base par capteur solaires/pompe à chaleur/récupérateur de chaleur et chauffage d’appoint électrique lorsque le niveau de température de consigne n’est pas atteint.

Schéma accumulateur mixte.

  1. Thermomètre.
  2. Tube plongeur pour sonde de thermostat.
  3. Anode en magnésium.
  4. Tube de retour de circulation.
  5. Cuve (acier galvanisé, cuivre ou acier).
  6. Thermovitrification / émail / plastique.
  7. Capot de recouvrement.
  8. Thermostat de réglage et de sécurité.
  9. Corps de chauffe.
  10. Prise d’eau froide.
  11. Brise-jet.
  12. Tube plongeur pour sonde de thermostat.
  13. Pieds réglables.
  14. Calorifuge (laine minérale, polyuréthane sans CFC).
  15. Retour chauffage.
  16. Serpentin.
  17. Aller chauffage.
  18. Prise d’eau chaude.

S’il s’agit d’un chauffage par pompe à chaleur ou par énergie solaire, la position de l’échangeur électrique doit  ors se placer en position médiane, créant 2 ballons : un demi-ballon inférieur pour le préchauffage solaire et un demi-ballon supérieur pour l’appoint électrique…

Une séparation totale en 2 ballons en série restera toujours préférable.


La stratification des températures

Lors de la charge, l’eau est chauffée, elle se dilate, sa densité diminue et elle se déplace vers le haut. Au-dessus de l’échangeur, l’eau chaude s’élève comme de la fumée au-dessus d’un feu.

Par contre, l’eau située au-dessous du corps de chauffe n’est pour ainsi dire pas chauffée et reste pratiquement froide.

Lors de la décharge du réservoir, l’eau chaude est progressivement remplacée par l’eau froide. Des perturbations peuvent se produire dans la stratification des températures. Or un « mélange » des températures intérieures est préjudiciable à la bonne utilisation du ballon.

Exemple.

Un ballon contient 200 litres à 60°C. Un puisage de 100 litres est réalisé. Il contient donc encore 100 litres à 60°C et 100 litres à 10°. Il peut être utilisé valablement.

Si des tourbillons ont entraînés le mélange de l’eau, c’est 200 litres à 35°C qui seront présents… Aucune énergie n’est perdue, mais l’eau est « inutilisable ». Un réchauffement sera nécessaire pour ramener l’eau à 60°C.

Cette situation (caricaturale) est surtout à éviter pour l’accumulateur électrique, car il appellera un appoint de jour, mais aussi pour un système traditionnel à eau chaude car il risque de relancer la chaudière suite au moindre soutirage.

Des perturbations de la stratification peuvent avoir lieu suite à :

  • une vitesse d’arrivée d’eau trop élevée,
  • une circulation interne quand l’isolation est insuffisante (refroidissement de l’eau le long des parois),
  • un retour de boucle de circulation trop froid,
  • une disposition horizontale du ballon.