Tout au LED

Actuellement, en termes d’éclairage, on s’oriente en majorité vers la technologie LED. Celle-ci est en plein essor et ne cesse de s’améliorer au fil des années. Les arguments les plus souvent énoncés en faveur des LED sont leur grande efficacité lumineuse, leur durée de vie extrêmement longue et leur faible consommation électrique.

Technologie miracle ? Pas tout à fait…. Autant les LEDs paraissent meilleurs que la concurrence sur le plan performanciel et énergétique, il n’est pas de même en termes de confort visuel et d’impact sur la santé.


Le LED aujourd’hui

Aujourd’hui, les lampes à LED sont particulièrement performantes et beaucoup plus économes en énergie que les technologies classiques.

À titre d’exemple, le tableau comparatif ci-dessous provient d’une étude scientifique((L.T. Doulos et al. Minimizing energy consumption for artificial lighting in a typical classroom of a Hellenic public school aiming for near Zero Energy Building using LED DC luminaires and daylight harvesting systems, Energy and Buildings, Volume 194, 2019, Pages 201-217))  et met en évidence les dernières avancées en termes de LED par rapport à un luminaire classique à tube fluorescent. Les résultats peuvent évidemment dépendre selon les produits testés.

LED (AC supply) LED (DC supply) T5 2x35W
Puissance (W) 41.0 50.5 76.0
Efficacité lumineuse (lm/W) 116.1 107.6 62.0
Puissance spécifique (W/m2) 3.16 3.90 5.86
Nombres de luminaires utilisés 4 4 4
Puissance totale installée (W) 164 202 304
Consommation annuelle (kWh) 255.8 315.1 474.2
Eclairement (lx) 302 322 308

On remarque que les luminaires LED sont aujourd’hui largement plus efficaces en termes de consommation électrique, à niveau d’éclairement similaire.Il est donc très intéressant de se tourner vers des solutions 100% LED dans des projets de rénovation visant le zéro-carbone, d’autant plus que l’efficacité lumineuse retenue pour les luminaires ci-dessus n’est pas le plein potentiel de la technologie.


Effets sanitaires

Face à la constante amélioration de la technologie LED, l’ANSES (Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail) a récemment publié un nouveau rapport étudiant les effets sanitaires de ces systèmes sur la population. Les LED sont caractérisées par un spectre de lumière plus riche en lumière bleue et plus pauvre en lumière rouge que d’autres sources lumineuses, créant un déséquilibre spectral particulièrement nocif pour nos yeux. De plus, “les lumières à LED peuvent être plus éblouissantes que les lumières émises par d’autres technologies (incandescence, fluo-compactes, halogènes, etc.)” (ANSES, p.355). “Enfin, les LED sont très réactives aux fluctuations de leur courant d’alimentation. De ce fait, selon la qualité du courant injecté, des variations de lumière peuvent apparaître, suivant la fréquence et le niveau de ces variations.” (ANSES, p.355)

Le rapport étudie donc différents effets sanitaires :

  • les effets de la lumière bleue sur les rythmes circadiens (perturbation de l’horloge circadienne) ;
  • les effets de la lumière bleue sur le sommeil et sur la vigilance (retard de sommeil et altération de la quantité et qualité du sommeil) ;
  • les effets de la lumière bleue et des différents types de LED sur l’œil (phototoxicité, sécheresse oculaire, myopisation) ;
  • les effets de la lumière bleue sur la peau ;
  • les effets de la modulation temporelle de la lumière sur la santé ;
  • les effets liés à l’éblouissement.”((Source: https://www.anses.fr/fr/system/files/AP2014SA0253Ra.pdf – p.356))

Afin de protéger la population de tous ces effets sanitaires, l’ANSES émet une série de recommandations liées à l’utilisation de lumières à LED. Certaines sont de l’ordre de futures recherches à mener ou de suggestions d’évolutions réglementaires tandis que d’autres sont de l’ordre de bonnes pratiques à prendre en compte directement dans des projets de relighting. On retiendra les deux principales :

  • Limiter au plus possible l’exposition à des lumières froides (> 4000 K)
  • Exclure les lampes LED nues du champ de vision

Toutefois, les difficultés des LED ciblées dans l’étude sont surtout liées au lien entre lumière bleue et endormissement. Elles sont donc peu pertinentes dans les écoles.

Pour plus d’informations, celles-ci sont reprises dans le document « Effets sur la santé humaine et sur l’environnement (faune et flore) des diodes électroluminescentes (LED) » en page 363 : https://www.anses.fr/fr/system/files/AP2014SA0253Ra.pdf


Le LED en rénovation

Avant de se lancer dans un projet de rénovation de l’éclairage de l’école, il faut impérativement passer par l’étape d’analyse et de diagnostic de la situation existante. Pour cela, il est préférable de faire appel à un bureau spécialisé en éclairage. Cependant, il existe quelques outils sur le site de Rénover mon école qui vous permettront de réaliser un rapide diagnostic de l’installation lumineuse de vos salles de classe. Les pages suivantes sur Energie+ peuvent également être utiles :

Le site internet de Rénover mon école regroupe une grande partie des questions générales à se poser lors de la rénovation de l’éclairage. Attention que les informations mentionnées en termes d’objectifs et de techniques ne sont plus de toute fraîcheur… En plus de cela, elles ne visent pas l’objectif zéro-carbone qui nous intéresse dans ce dossier.

Pour plus d’infos concernant le passage au LED, consultez la page suivante.

Que faire donc dans notre cas ?

Procéder à un relighting de l’école dans une démarche zéro carbone nécessite de faire attention à deux points principaux :

  • Viser une puissance faible
  • Avoir une gestion efficace

En termes de puissance...

Comme vu plus haut, le LED offre de faibles puissances et donc a fortiori de meilleures performances énergétiques. C’est donc principalement vers cette technologie qu’il faut se tourner lorsqu’on envisage le relighting d’un bâtiment scolaire.

L’emplacement des luminaires dans le local a toute son importance en termes de puissance. Un moins grand nombre de luminaires, mais bien situés afin de garantir une uniformité de l’éclairement, permettra de réduire la puissance totale et donc la consommation en carbone.

La question de la gestion….

C’est principalement sur ce point qu’il est utile d’insister lorsque l’on conçoit un relighting d’une école. 35% de la facture énergétique des écoles correspond à l’électricité consommée par l’éclairage. Bien souvent, cela est dû à une mauvaise gestion du système d’éclairage. Il est impératif de rendre les occupants des locaux conscients de leurs décisions en limitant au maximum l’allumage automatique de lampes par exemple. L’extinction automatique, le zonage ou encore le dimming des lampes sont autant de principes qu’il est nécessaire de prendre en compte dans une démarche zéro-carbone. Pour plus d’informations sur ces techniques, consultez les pages suivantes :

De plus, une attention particulière doit être portée sur le programme de maintenance  afin  de garantir la pérennité du projet de relighting.

Rénover pour consommer…plus ?

Il est nécessaire de pointer la faiblesse actuelle en termes de niveaux d’éclairage dans les écoles. Les installations vétustes et inconfortables ne respectent souvent pas les normes visées lors de projets de relighting ou de constructions neuves. Dès lors, il se peut qu’après rénovation, le système d’éclairage consomme plus qu’auparavant. Cependant, au profit d’un meilleur confort visuel, qui s’avère bénéfique en de nombreux points pour tous.

Réemploi des systèmes existants

Lors de nouvelles constructions, il est facile et logique de concevoir l’ensemble de l’éclairage sur un système électrique approprié à la technologie LED. Mais est-il aussi simple d’adapter un système d’éclairage existant à la technologie LED? Dans un souci d’économie financière, est-il possible dans un projet de rénovation scolaire de garder les luminaires existants en y changeant simplement les tubes ?

Les luminaires existants de type tube T5 ou T8 sont toujours équipés de ballasts électroniques ou ferromagnétiques. Dans les deux cas, il est possible, moyennant certaines manipulations (voir article G0W), de passer d’une technologie de tube fluorescent vers des tubes LED. Il est donc tout à fait envisageable de maintenir les luminaires existants lors d’un projet de relighting au LED. Cependant, les lampes LED ayant des niveaux de luminance élevés, il est impératif d’utiliser des mécanismes optiques adaptés. On favorisera donc des mécanismes de réfraction ou de transmission à la place de mécanismes de réflexion.

À proscrire : mécanismes de réflexion

À recommander : mécanismes de réfraction


Recommandations

Les situations de relighting sont très différentes en fonction de l’usage des espaces à rénover. La disposition des luminaires, le type de luminaire, la température de lumière ou encore le mode de gestion de l’éclairage sont autant de paramètres qui varient en fonction de l’utilisation de l’espace.

Le site de Rénover mon école reprend, sur les deux pages suivantes, les grandes recommandations à prendre en compte pour des classes, des espaces de circulations, des bureaux ou encore des réfectoires : 

Choisir la gestion et la commande

Critères de choix

Au niveau énergétique, un projet de conception ou de rénovation importante de l’éclairage doit tenir compte :

  • De la sensibilisation à l’URE et de l’ergonomie ;
  • Du profil d’occupation des locaux et de l’évolution possible de ce profil au cours du temps ;
  • De l’apport de lumière naturelle ;
  • De la performance thermique de l’enveloppe du bâtiment et de lier le confort visuel au confort thermique ;
  • De la taille du ou des bâtiments constituant le parc immobilier. ;

Quels que soient les critères de choix du système,  sa configuration de base ne change pas. On a toujours besoin :

  • De câble d’alimentation ;
  • De luminaires ;
  • D’organes d’allumage et d’extinction des luminaires ;
  • D’organes de gestion.

Le développement de l’électronique et l’apparition de « l’immotique » dans les bâtiments tertiaires a permis de repenser la gestion des systèmes d’éclairage en tenant compte, à confort visuel optimal,  de l’énergie. L’acceptation de l’immotique par les occupants des locaux est souvent délicate sachant qu’en général, ils sont d’une part réfractaires au changement et d’autre part ils n’ont plus nécessairement la maîtrise du système.

Un système d’éclairage performant tenant compte de l’occupation et de la lumière naturelle permet de réduire sensiblement les consommations électriques. C’est d’autant plus vrai dans la conception de bâtiment à basse voire très basse énergie, car la part de consommation énergétique que prend l’éclairage devient très importante.


Sensibilité à l’URE et ergonomie

Sensibilité

La sensibilisation à l’URE (Utilisation Rationnelle de l’Énergie) et l’ergonomie influencent particulièrement le choix de la gestion de l’éclairage. Lorsque les occupants des locaux ont la « fibre énergétique », la gestion de l’éclairage peut être simple par le choix d’une gestion manuelle classique.

Elle est envisageable dans des espaces privés. Par contre, pour une gestion dans des espaces privés locatifs ou publics, on fera appel à de l’équipement automatique. En effet, dans ce type d’espace, il règne en général un esprit de déresponsabilisation des occupants qui sont « de passage ».

Exemple

Le choix d’une gestion de l’éclairage par un interrupteur à deux allumages pour réaliser un zonage dans un local de taille importante ne devrait pas poser un gros problème.

Ergonomie

Malgré une sensibilité avérée des occupants d’espace, l’ergonomie représente un facteur limitatif  au choix d’une gestion simple.

Exemple

« On connait tous l’inconvénient de gérer un groupe de  luminaires proche de la fenêtre par une gestion de type interrupteur simple. Notre cher climat en Belgique n’épargne pas notre patience ! ».

Lorsque le soleil joue à « cache-cache » avec la couche nuageuse, les variations de niveau d’éclairement voudraient que l’occupant éteigne et rallume les luminaires du côté de la fenêtre pour réduire la facture énergétique. Le gestionnaire risque de devoir dépenser les économies générées au profit des « psy d’entreprise ».

Arbitrage

Mise en garde : « un système de gestion automatique de l’éclairage ne fonctionne que s’il est parfaitement accepté par les occupants. L’imagination de ceux-ci est incroyable quand il s’agit de contrarier un système automatique ! Celui-ci doit donc être soit imperceptible, soit compris et accepté par les occupants ».

On conseille souvent de ne pas pousser trop loin la recherche d’économies au détriment de la liberté des utilisateurs et de la simplicité de la gestion. Dans les locaux de bureau, par exemple, les occupants doivent pouvoir allumer ou éteindre un luminaire, faire varier la puissance émise par un luminaire ou personnaliser leur ambiance de travail. Des solutions existent comme les dérogations manuelles sous forme de télécommande IR (Infrarouge) ou RF (Radio Fréquence).

Ainsi, dans les grands bureaux, il faut dans la mesure du possible donner la possibilité aux occupants de gérer l’éclairage au niveau de leur propre espace de travail.

L’utilisateur pourra être sensibilisé :

  • à la non-utilisation de l’éclairage artificiel général si l’éclairage naturel est suffisant,
  • à extinction de l’éclairage d’un local lorsqu’il quitte celui-ci.

Des exemples de gestions manuelles et automatiques

Exemple 1 : local à occupation brève et variable

Dans des locaux de type privés comme des locaux d’archives, techniques, …, une gestion manuelle  comme un interrupteur simple avec témoin lumineux est la solution. A l’inverse, les locaux comme les sanitaires et WC privés ou public seront équipés d’une détection de présence (avec éventuellement détection sonore) dans le blochet près de la porte.


Gestion manuelle.


Gestion automatique.

Calculs

Pour avoir une idée de la rentabilité d’un tel changement.!
Exemple 2 : local à occupation prolongée et à apport de lumière naturelle

Lorsque les occupants sont sensibilisés, on pourrait envisager un interrupteur à 2 allumages pour allumer/éteindre distinctement la rangée de luminaires côté fenêtre de celle côté couloir. Ceci dit, pour des variations importantes et aléatoires de l’éclairage naturel, une gestion semi-automatique par allumage volontaire à partir d’un bouton-poussoir et extinction par détection d’absence  sera préférée. À noter que la tête de détection intègre une sonde de luminosité.

Attention : s’il s’agit de lampes fluorescentes, il faudra équiper les luminaires de ballasts électroniques dimmables. S’il s’agit de LEDS, il faut prévoir des drivers dimmables.


Gestion manuelle par interrupteur à 2 allumages.

 
Gestion semi-automatique.

Calculs 

Pour avoir une idée de la rentabilité d’un tel changement.
Exemple 3 : locaux à occupation intermittente programmée

Dans les couloirs occupés de jour comme de nuit (couloir d’hospitalisation par exemple), pour les motivés par l’énergie, le placement d’une gestion manuelle comme un inverseur est une solution.

Si l’on veut s’orienter vers une gestion automatique, le placement d’une horloge centrale dans le tableau divisionnaire peut être envisagé.


Commande centrale manuelle (inverseur).


Gestion automatique du basculement de l’éclairage jour/nuit par horloge.


Taille et proportions des locaux

La taille et la proportion d’un local influencent aussi le choix de la gestion de l’éclairage. Dans les locaux de grande taille, le zonage est l’approche énergétique par excellence. En effet, il est avantageux de créer des zones bien distinctes dans :

  • Les salles de  sport de manière à ne pas éclairer les aires de jeux non occupées ;
  • Les couloirs afin d’éviter de l’éclairer sur toute sa longueur lorsqu’un occupant sort, par exemple de son bureau pour aller dans le bureau voisin sans traverser tout le couloir ;
  •  …
Exemple de zonage pour une salle de sport

Dans une salle omnisports, il est inutile d’éclairer toute la salle alors qu’un seul terrain est occupé. Il est important de prévoir un zonage, c’est-à-dire une commande séparée pour les différents terrains de la salle.

Les lignes de jeux s’entremêlent.

   

Il existe donc plusieurs manières de regrouper les luminaires qui seront commandés en une seule fois. On analysera donc chaque cas, en tenant compte de :

  • l’emplacement des lignes de jeux,
  • la fréquence d’occupation des différents terrains,
  • la possibilité d’emplacement des différentes commandes.

Voici un exemple possible de zonage :


Profils d’occupation

Les profils d’occupation des bâtiments tertiaires et de leurs locaux sont assez différents suivant l’usage (bureaux, sanitaires, classes, chambres d’hôpital, …). Le choix de la gestion de l’occupation varie surtout en fonction de la sensibilité des occupants à l’énergie, des coûts du système d’éclairage, …

Il existe sur le marché une multitude d’équipements pour gérer l’occupation des locaux. On pointera principalement :

Le choix entre ces différents équipements de gestion d’occupation est complexe. Indépendamment de la sensibilité des occupants à la gestion responsable de l’éclairage par rapport à l’énergie, ce choix doit s’opérer en fonction des fréquences d’occupation des locaux.

Voici quelques exemples de locaux que l’on rencontre régulièrement dans les bâtiments tertiaires (liste non exhaustive) :

Dans les locaux à temps d’occupation important

D’emblée, on ne conçoit pas qu’un local à temps d’occupation important soit sans baie vitrée.

L’occupation des bureaux, classes de cours, … peut-être avantageusement gérée par des boutons poussoirs d’allumage volontaire des luminaires et des détecteurs d’absence lorsqu’après un certain temps les locaux ne sont plus occupés. Cette gestion est très efficace et responsabilise souvent les occupants. En effet, en entrant dans le local, l’occupant juge si le niveau d’éclairement est  suffisant ou pas pour travailler. S’il le juge insuffisant, il peut donner une impulsion au bouton-poussoir qui allume les luminaires. Les boutons poussoirs modernes sont équipés d’un module électronique qui permet :

  • D’allumer par une première impulsion brève ;
  • D’éteindre par une nouvelle impulsion brève ;
  • A chaque impulsion prolongée, de dimmer vers plus ou moins de flux lumineux.

Dans les locaux à temps d’occupation court

Fréquentation importante : les circulations, …

Le passage fréquent, mais court en temps des locaux de circulation (couloirs, escaliers, local photocopieuse, sanitaire, …)  pourrait être géré par des simples détecteurs de mouvement. Cette technique permet de choisir des luminaires avec le détecteur de mouvement incorporé ce qui réduit fortement les longueurs des câbles d’alimentation  230 V et de commande  basse tension. La gestion de type « ancienne génération » par boutons-poussoirs et minuteries est toujours valable, mais nécessite de grandes longueurs de câbles. Au prix du kg de cuivre, le surcoût de l’électronique de gestion peut se justifier pleinement en faveur des nouvelles technologies. A remarquer que dans les circulations, le choix d’un luminaire supportant de nombreux allumages et extinctions sera primordial. On pense de plus en plus aux luminaires LED qui, théoriquement, supportent un « nombre infini » de commandes.

De plus en plus de sanitaires sont avantageusement équipés de détecteurs de mouvement et sonores. Ce type d’équipement permet de ne placer qu’un seul détecteur dans le sanitaire commun. Dans les WC, le simple fait de générer du bruit (peu importante la « source sonore »), réactive le détecteur qui évite à l’occupant du WC d’être plongé dans le noir avec toutes sortes de conséquences désagréables.

Fréquentation faible : locaux techniques, …

On pense aux locaux techniques, aux archives, aux « kots à balais », … Dans ce type de local, les interrupteurs classiques avec témoins d’allumage feront généralement « l’affaire ».


Apport d’éclairage naturel

Une gestion du flux lumineux en fonction de l’apport en éclairage naturel peut s’appliquer aux locaux éclairés naturellement lorsque le temps d’occupation journalière est important. En effet, lorsque les locaux sont utilisés de façon intermittente ou peu vitrés, le temps de valorisation de l’éclairage naturel se réduit, la rentabilité des systèmes de variation du flux lumineux aussi.

Parmi les systèmes de gestion existants, il faut privilégier ceux qui modifient les caractéristiques de flux lumineux de façon imperceptible pour les occupants, c’est-à-dire le dimming en fonction d’un capteur intérieur.

Cependant, n’excluons pas trop vite la bonne volonté des occupants en prévoyant un double allumage qui différencie la commande des luminaires côté fenêtre et côté intérieur.

Allumage différencié

Simplement, un des interrupteurs commande le luminaire côté fenêtre et l’autre le luminaire côté couloir. Ce système est basique et nécessite une certaine sensibilité à l’énergie des occupants. Dans notre chère Belgique, par temps d’alternance de nuage et de soleil, on comprend la limite de ce type de gestion.

Gestion par sonde de luminosité

À ce stade, le choix peut se porter sur des solutions simples, mais locales ou des solutions plus complexes et centrales (plus coûteuses aussi, c’est vrai !).

On pointera principalement le choix entre les sondes de luminosité intégrées :

  • au luminaire même ;
  • à la tête de détection de présence.

Dans le cas de la sonde de luminosité intégrée à la tête de détection de présence, le « dimming » du niveau d’éclairage des luminaires pourra être local ou central.

Dans le cas de l’usage de sonde de luminosité, il faudra prévoir un système d’horloge ou de détecteur pour éviter que la lumière reste allumée. (Si les lampes sont dimmées, l’occupant risque d’oublier d’éteindre en quittant le local (surtout en été)).

Gestion locale

La gestion locale gère directement les luminaires à partir d’un détecteur d’absence/présence équipé d’une sonde de luminosité par exemple.

Gestion centrale

La gestion centrale gère les luminaires par des modules 0-10V ou DALI (module sur rail DIN dans le tableau divisionnaire) via un bus de communication de type KNX.

 

En fonction des équipements de gestion de l’éclairage naturel, la flexibilité de reconversion des locaux est plus ou moins grande. Il est clair que le choix d’une gestion au travers d’un bus de communication offre plus de liberté d’adaptation de l’éclairage en cas de changement d’affectation des locaux.

Cette réflexion est tout à fait gratuite, mais c’est à voir au cas par cas !

Rentabilité d’un dimming

La rentabilité du système choisi dépendra de plusieurs facteurs décrits ci-dessous :

Orientation et environnement des locaux

Dimensions du local
l x L
Surface de fenêtres
Orientation Économie
Zone fenêtre Zone centrale Moyenne
3,6 x 5,4 6 NO 33 % 18 % 26 %
5,5 x 5,5 12 S et O 36 % 33 % 34 %
4,0 x 5,5 4 O 29 % 22 % 26 %
3,0 x 3,6 2,4 E 30 % 8 % 19 %
3,6 x 5,4 3,3 O 29 % 16 % 22 %
3,6 x 5,0 4,5 O 41 % 19 % 30 %

Identique au cas précédent, mais utilisateurs différent.

43 % 31 % 37 %

Mesures réelles de l’économie apportée par un dimming individuel des luminaires  par rapport à un fonctionnement à pleine puissance avec des ballasts électroniques non dimmables (fourniture de 500 lux sur le plan de travail), source : TNO.

L’environnement extérieur des façades influence fortement la rentabilité. Par exemple, si une façade est masquée par un autre bâtiment (rue étroite), les apports en éclairage naturel dans les premiers étages risquent d’être trop faibles pour justifier une gestion automatique, mais suffisante pour les étages supérieurs.

D’une manière générale une économie de 30 % est un chiffre que l’on peut considérer comme raisonnable pour le dimming complet d’un bureau.

Puissance totale gérée par une unité de commande

Le coût du système de gestion dépend en partie du coût de l’unité de commande (capteur, interface). Plus celui-ci est élevé, plus la puissance électrique totale commandée par un système devra être importante pour assurer une rentabilité suffisante.

Exemple.

Dans le cas d’une gestion indépendante de chaque luminaire, plus la puissance des lampes commandées par un ballast est faible, plus le coût d’investissement est important par rapport à l’économie escomptée : gérer une lampe de 36 W avec 1 ballast coûtera environ 3,25 € par watt commandé, tandis que gérer deux lampes de 58 W avec 1 ballast coûtera environ 1 € par watt.

De la présence d’une climatisation

La diminution de la puissance de l’éclairage en fonction de l’apparition du soleil permet de diminuer les coûts éventuels d’une climatisation ou de limiter les surchauffes.

Calculs

Pour estimer la rentabilité d’un système de gestion en fonction de votre situation.

Performance thermique du bâtiment

Mais que vient faire la performance thermique dans une histoire qui concerne l’éclairage ?
Tout simplement parce que dans un bâtiment performance thermiquement (à basse ou très basse énergie), la gestion de l’apport en éclairage naturel va de pair avec la gestion de la surchauffe au travers des baies vitrées par des stores. En effet, un savant compromis est nécessaire entre :

  • D’une part, le besoin de maximiser les apports de lumière naturelle afin d’optimiser le confort visuel et de réduire la facture énergétique d’électricité ;

 

  • D’autre part, la nécessité de maîtriser les apports solaires sources de surchauffe dans un bâtiment performant. Notons que le risque de surchauffe est intimement et principalement lié à l’orientation des baies vitrées.

Gestion de store

La gestion des stores et du niveau d’éclairement doivent donc être maîtrisés de concert. Pour y parvenir, le choix d’un système centralisé simplifie fortement cette gestion.
Un mode de gestion intéressant des stores est repris ci-dessous :

  • Gestion de la position des stores au travers du bus KNX en fonction des paramètres donnés par la station météo.

 

  • Le bouton-poussoir « store » de dérogation manuelle permet à l’occupant de garder la maîtrise de la position du store.

 

  • Le détecteur d’absence permet de « rendre la main » au système de gestion automatique lorsque l’occupant s’absente pour un temps donné.

Gestion HVAC

Gestion de la ventilation

Dans les bâtiments performants, le besoin d’échange de paramètres de commande ou de régulation entre les systèmes d’éclairage et HVAC (Heating Ventilation Air Conditioning)  est nécessaire.

La détection de présence dans une salle de réunion peut faire évoluer le taux de renouvellement d’air de zéro à 100 % (ON/OFF ou modulant) par la gestion de l’ouverture d’une boîte VAV. Pour ne pas démultiplier le nombre d’équipements de détection de présence, l’auteur de projet pourra rationaliser son choix de détecteur de présence. C’est d’autant plus vrai que les détecteurs de présence modernes offrent les fonctions suivantes :

  • Canal de commande en présence ou absence ainsi que du niveau d’éclairement des luminaires ;
  • Canal de commande en présence ou absence d’équipement HVAC.

Gestion des températures

Une sonde de température peut être couplée avec le bus KNX lorsque le bâtiment est inoccupé afin de gérer le store :

  • Abaissement du store en cas de canicule lorsque les températures intérieure et extérieure dépassent une certaine valeur ;
  • Relèvement du store en cas de grand froid et d’ensoleillement important ; ce qui permet de valoriser les apports solaires lorsque la température interne est en dessous de sa consigne.

Gestion du store en cas de canicule.

Gestion du store en cas d’apports solaires nécessaires importants.


Taille des bâtiments ou importance du parc immobilier

La taille du ou des bâtiments, la présence de plusieurs bâtiments sur un site, … influencera nécessairement le besoin de centralisation ou pas des gestions d’éclairage. On comprend aisément qu’un gestionnaire technique d’un parc important de bâtiments ait un besoin de supervision au travers d’une gestion technique centralisée (GTC). Ce genre d’installation passe impérativement par la mise en place d’un bus de communication.

Pour des bâtiments de petite taille, la centralisation n’est pas une fin en soi. On peut très bien avoir des systèmes d’éclairage performants énergétiquement parlant sans « sophistiquer » le système d’éclairage.
Voyons les deux configurations d’un système d’éclairage :

Système local

Dans les bâtiments de petite taille, envisager une GTC (gestion technique centralisée) n’est pas vraiment nécessaire.

Des solutions de gestion de l’éclairage et des stores (ou même HVAC) peuvent être envisagées avec un certain degré « d’immotisation » tout en restant dans la simplicité. Dans cette configuration, la gestion locale de l’éclairage est propre à chaque local. Dans un bâtiment simple, de petite taille et ne nécessitant pas beaucoup de souplesse d’aménagement des espaces, une gestion sophistiquée n’est pas nécessaire. De plus, la mise en place de ce type de gestion est relativement peu coûteuse.

Un bémol cependant (« eh oui, on ne peut pas gagner sur tous les fronts ! ») réside dans le manque de flexibilité de cette configuration. En effet, lorsque les espaces doivent être transformés (changement d’activité, d’usage, …), il est inévitable que l’installation d’éclairage doive être partiellement ou entièrement recâblée.

Système central

Dans des bâtiments plus complexes, plus grands ou encore dans des parcs immobiliers importants, le gestionnaire aura à disposition toute une palette de centralisation de la gestion de l’éclairage à l’échelle :

  • d’un étage d’immeuble ;
  • du bâtiment ;
  • d’un parc immobilier.

La gestion centrale nécessite à coup sûr de passer par un ou plusieurs de bus de communication avec, par exemple, les protocoles suivants:

  • DALI spécifiquement pour l’éclairage ;
  • KNX pour l’éclairage et /ou  le HVAC ;
  • TCP/IP pour la supervision.

La supervision ou GTC (gestion technique centralisée), permettra d’avoir une vue d’ensemble  de tous les paramètres de gestion de l’éclairage et, par la même occasion des autres systèmes (HVAC ou autres).

« Alors cerise sur le gâteau ou outil indispensable ? »

Ces systèmes sont naturellement plus onéreux que les systèmes locaux et donc l’incidence budgétaire sera étudiée au cas par cas. Cependant, une configuration centralisée, avec une vision énergétique par rapport au profil d’occupation, permet de réduire de manière importante les coûts de maintenance des locaux ainsi que les coûts de transformation (on ne doit pas systématiquement recâbler la gestion puisque le bus de communication est modulable) et, par après, d’adapter facilement la gestion suivant le nouveau profil d’occupation.


Organigramme de gestion

Voici un organigramme d’aide dans le choix de la gestion et de la commande de l’éclairage intérieur. Ces systèmes peuvent être intégrés dans une gestion centralisée, qui par son coût de câblage ne peut être envisagée que dans des bâtiments neufs ou des rénovations de grande ampleur.

1 Exemple : bureau paysager, classe, salle de réunion avec cloison amovible, salle de sport à plusieurs plateaux, … avec fenêtres orientées au nord

MINIMUM Zonage :

  • 1 zone = rangée de luminaires proches de la fenêtre,
  • 1 zone = autres rangées de luminaires,
  • 1 zone = éclairage point particulier (tableau de classe ou de salle de réunion, « table de réunion », …)
MINIMUM Interrupteur manuel on/off pour chaque zone.
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence par zone avec délai réglable.

Il s’avérera peu rentable dans le seul cas d’occupants « disciplinés » éteignant systématiquement les lampes en fin de journée. Cette gestion nécessite que les boutons poussoirs et les détecteurs « se parlent ». Elle peut être locale (l’intelligence est dans la tête de détection) ou centrale (régulateur dans un tableau divisionnaire ou GTC centrale pour les grands bâtiments tertiaires).

CONSEILLE La gestion en fonction de l’éclairage naturel se fera au moyen d’une ou plusieurs sondes de luminosité agissant sur un ou plusieurs ballasts électroniques dimmables (0-10V ou DALI). La ou les sondes de luminosité seront intégrées dans le ou les luminaires ou encore dans la ou les têtes de détection d’absence/présence

2 Exemple : bureau paysager, classe, salle de réunion avec cloison amovible, salle de sport à plusieurs plateaux, … avec autres orientations que les fenêtres au nord

MINIMUM Zonage :

  • 1 zone = rangée de luminaires proches de la fenêtre,
  • 1 zone = autres rangées de luminaires,
  • 1 zone = éclairage point particulier (tableau de classe ou de salle de réunion, « table de réunion », …)
MINIMUM Interrupteur manuel on/off pour chaque zone.
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence par zone avec délai réglable.
CONSEILLE La gestion en fonction de l’éclairage naturel se fera au moyen d’une ou plusieurs sondes de luminosité agissant sur un ou plusieurs ballasts électroniques dimmables (0-10V ou DALI). La ou les sondes de luminosité seront intégrées dans le ou les luminaires ou encore dans la ou les têtes de détection d’absence/présence.

3 Exemple : salle de réunion à cloison amovible et salle de sport sans fenêtre

MINIMUM Zonage : autant de zone qu’il y a d’espaces ou de plateaux distincts identifiables.
MINIMUM Interrupteur manuel on/off pour chaque zone.
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence par zone avec délai réglable.

4 Exemple : locaux techniques, archives, …

MINIMUM Zonage : autant de zone qu’il y a d’espaces ou de plateaux distincts identifiables.
MINIMUM Interrupteur manuel on/off pour chaque zone.
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence par zone avec délai réglable.

5 Exemple : Couloir, cage d’escalier, … avec baie vitrée

MINIMUM Zonage :

  • Par une ou plusieurs portions de couloir ;
  • Par un ou deux étages.
MINIMUM Boutons poussoirs commandant  un télérupteur de tableau avec minuterie d’extinction par zone
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence par zone avec délai réglable.

Alternative 1 :

  • Détecteur de mouvement  par étage pour les escaliers qui commande les luminaires de palier et des demi-étages directement supérieur et inférieur au palier considéré ;
  • Détecteur de mouvement par zone de couloir qui ne commande que les luminaires proches de sa couverture.

Alternative 2 :

  • détecteur de mouvement intégré au luminaire. « D’expérience, c’est une très bonne solution ! ».
CONSEILLE La gestion en fonction de l’éclairage naturel se fera au moyen d’une ou plusieurs sondes de luminosité agissant sur un ou plusieurs ballasts électroniques dimmables (0-10V ou DALI). La ou les sondes de luminosité seront intégrées dans le ou les luminaires ou encore dans une ou des têtes de détection de présence.

6 Exemple : Couloir, cage d’escalier, … sans baie vitrée

MINIMUM Zonage :

  • Par une ou plusieurs portions de couloir ;
  • Par un ou deux étages.
MINIMUM Boutons poussoirs commandant  un télérupteur de tableau avec minuterie d’extinction par zone.
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence par zone avec délai réglable.

Alternative 1 :

  • Détecteur de mouvement  par étage pour les escaliers qui commande les luminaires de palier et des demi-étages directement supérieur et inférieur au palier considéré ;
  • Détecteur de mouvement par zone de couloir qui ne commande que les luminaires proches de sa couverture.

Alternative 2 :

  • détecteur de mouvement intégré au luminaire. « D’expérience, c’est une très bonne solution ! ».

7 Exemple : bureau individuel, petite classe, salle de réunion, salle de sport à un seul plateau, … avec fenêtres orientées au nord

MINIMUM Interrupteur manuel on/off.
CONSEILLE Il sera intéressant de prévoir une gestion :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence avec délai réglable.
CONSEILLE La gestion en fonction de l’éclairage naturel se fera au moyen d’une ou plusieurs sondes de luminosité agissant sur un ou plusieurs ballasts électroniques dimmables (0-10V ou DALI). La ou les sondes de luminosité seront intégrées dans le ou les luminaires ou encore dans la ou les têtes de détection d’absence/présence.

8 Exemple : bureau individuel, classe, salle de réunion, salle de sport à un seul plateau, … avec autres orientations que les fenêtres au nord

MINIMUM Interrupteur manuel on/off.
CONSEILLE Il sera intéressant de prévoir une gestion :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence avec délai réglable.
CONSEILLE La gestion en fonction de l’éclairage naturel se fera au moyen d’une sonde de luminosité agissant sur un ou plusieurs ballasts électroniques dimmables(0-10V ou DALI). La sonde de luminosité sera intégrée dans un des luminaires et sera maître pour la gestion des autres luminaires. Ou encore, elle intégrera la tête de détection d’absence/présence.

9 Exemple : locaux techniques, archives, …

MINIMUM Interrupteur manuel on/off.

10 Exemple : sanitaire et WC

MINIMUM Interrupteur manuel on/off.
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Un détecteur de mouvement et éventuellement sonore avec délai réglable.

Salles de sport

Salles de sport


Qualité de l’éclairage naturel

La qualité de l’éclairage naturel dans un hall de sports réside dans son aptitude à éclairer les surfaces de jeux le plus longtemps possible sans risque d’éblouissement et de surchauffe.

Spécifiquement dans les halls sportifs, il est intéressant d’exploiter la lumière zénithale de par la disponibilité de grandes surfaces peu encombrées par rapport aux façades.

En éclairage naturel zénithal, l’orientation a toute son importance. Par exemple, l’orientation au nord permet de bénéficier d’un éclairage « diffus » très important et constant sous nos latitudes. L’avantage de l’orientation au nord des baies vitrées réside aussi dans l’absence d’éblouissement direct du rayonnement solaire.


Étude en éclairage naturel

Lors de la conception d’un hall de sports, une attention toute particulière doit être apportée à la quantité et à la qualité de lumière du jour apportée aux plateaux sportifs.

À partir de la modélisation d’un hall de sports classique, l’influence de la proportion d’ouvertures en toiture et de l’orientation du bâtiment sur l’éclairage naturel du plateau sportif principal a été évaluée. Cette évaluation a été validée par une simulation dynamique d’éclairage naturel (réalisée à l’aide du logiciel Daysim).

Hypothèses

Lanterneau

L’éclairage naturel est réalisé via une ouverture zénithale située au faîte de la toiture. Cette ouverture consiste en un lanterneau en polycarbonate opalin à triple parois de 32 x 4 m (soit 128 m² de base) orienté le long de l’axe NNE-SSO (244° de décalage par rapport au nord).

Photo lanterneau 01.   Photo lanterneau 02.Photo lanterneau 03.

Ouverture zénithale classique : hall de sport de Grez-Doiceau.

Aucune baie vitrée n’est placée dans les parois verticales de la salle, à l’exception de la surface vitrée communiquant avec la cafétéria en partie supérieure des gradins.

Plateaux de sports

Les caractéristiques des plateaux sportifs sont les suivantes :

  • Dimensions principales de la pièce : 44,66 x 26,70 m
  • Hauteur du faîte de toiture : 12,73 m
  • Surface de calcul : 40 x 20 m (aire de jeu)
  • Aucun masque solaire lointain
  • Horaire d’occupation : de 9 à 23 h
  • Niveau d’éclairement souhaité : 300 lux
  • Transmission lumineuse du lanterneau opalin : 36 %
  • Facteurs de réflexion des parois :
    • Plafond : 60%
    • Murs : 70 % (sauf mur d’escalade : 52 %)
    • Sol (résine de polyuréthane coulée) : 50 %

Variables

Taille de l’ouverture

4 tailles de lanterneau zénithal sont simulées :

⇒ Très petit lanterneau

Proportion d’ouvertures en toiture : 6 %.

⇒ Petit lanterneau

Proportion d’ouvertures en toiture : 10 %.

⇒ Grand lanterneau

Proportion d’ouvertures en toiture : 17 %.

⇒ Très grand lanterneau

Proportion d’ouvertures en toiture : 23 %.

Orientation du bâtiment

8 décalages par rapport au nord sont simulés dynamiquement, de 0 à 360°, par pas de 45°. En effet, le lanterneau n’étant pas centré sur l’aire de jeu (voir image ci-dessous), on ne peut pas considérer qu’un décalage de 45° par rapport au nord donnera les mêmes résultats qu’un décalage de 225°.

Vue en plan du bâtiment décalé de 45° par rapport au nord. La surface de calcul est représentée en bleu.

Analyse des résultats

Les résultats sont évalués sur base d’une comparaison du facteur, de l’autonomie et de l’éclairement utile de lumière du jour.

Proportion d’ouvertures en toiture

Exemple de simulation pour une ouverture équivalent à 6 % de la surface de toiture :

⇒ Facteur lumière du jour

⇒ Autonomie lumière du jour – 300 lux (9h00 à 23h00).

⇒ Autonomie en lumière du jour – 100 < % < 2 000 lux (09h00 à 23h00)

Analyse des résultats

FLJ
(Facteur de Lumière du jour)*

DA
(Autonomie en Lumière du Jour)*

UDI
(Autonomie en lumière du jour utile)*

FLJ > 2 %

DA > 40 %

UDI > 50 %

(*)

  • FLJ moyen considéré comme bon si 3 % < FLJ > 5 %
  • DA moyen considérée comme bon si DA > 50 %
  • UDI moyen considérée comme bon si UDI > 50 %

À la lecture des résultats (voir graphique ci-dessous), on peut remarquer que, pour une même orientation du bâtiment :

  • Plus la proportion d’ouvertures en toiture augmente, plus le facteur de lumière du jour > 2 % augmente. Celui-ci tend cependant vers le maximum (100 %) à partir de 10 % d’ouvertures en toiture.
  • Plus la proportion d’ouvertures en toiture augmente, plus l’autonomie de lumière du jour maximum augmente. Cela signifie également que la consommation en éclairage artificiel diminue lorsqu’on augmente la proportion d’ouvertures.
  • L’éclairement de lumière du jour utile (de 100 à 2 000 lux) est maximal aux alentours de 10 % d’ouvertures en toiture.

Influence de la proportion d’ouvertures en toiture sur l’éclairage naturel du plateau sportif.

Augmenter de façon exagérée la proportion d’ouvertures en toiture n’est donc pas à conseiller, du point de vue de l’éclairage naturel, car ceci peut mener à un éclairement trop important qui augmentera le risque d’éblouissement pour les sportifs ; il faut trouver un juste équilibre entre l’éclairage naturel utile et la réduction des besoins en éclairage artificiel. Dans l’étude de cas qui nous concerne, cet optimum semble se situer aux environs de 10 % d’ouvertures en toiture.

Orientation du bâtiment

Les simulations dynamiques (voir graphique ci-dessous) montrent que, pour une même configuration des ouvertures, l’orientation du bâtiment a une grande influence sur l’éclairement de jour utile et sur l’autonomie de lumière du jour, et donc également sur les consommations en éclairage artificiel. Ces deux valeurs réagissent cependant de manière antinomique à la variation de l’orientation du bâtiment. Une fois de plus, du point de vue de l’éclairage naturel, il faut trouver un optimum entre un éclairement de lumière du jour réellement utile pour les activités sportives qui devront se dérouler sur le plateau et une autonomie de lumière du jour la plus élevée possible.

Influence de l’orientation du bâtiment sur l’éclairage naturel du plateau sportif (via un lanterneau zénithal décentré).

Les conclusions ci-dessus ne prennent en compte que les aspects liés à l’éclairage, mais il ne faut surtout pas oublier que les ouvertures pratiquées dans l’enveloppe du bâtiment sont également source de déperditions thermiques et de surchauffes estivales.

Il convient donc également de simuler le comportement thermique du plateau sportif en fonction de la proportion d’ouvertures en toiture et de l’orientation du bâtiment afin de savoir si l’optimum en termes d’éclairage correspond à l’optimum en termes thermiques.


Analyse thermique dynamique

Pour rappel, les simulations dynamiques en éclairage naturel donnent une idée du confort visuel et des consommations énergétiques en éclairage artificiel.

Des simulations thermiques dynamiques sont souvent nécessaires afin de vérifier que les options prises suite aux simulations dynamiques en éclairage naturel ne vont pas à l’encontre du bilan énergétique global qui associera les consommations électriques  en éclairage artificiel aux consommations dues au chauffage et éventuellement au refroidissement du bâtiment étudié.

Hypothèses

Outre les hypothèses prises lors des simulations en éclairage naturel (horaire d’occupation, orientation de base du bâtiment, volumétrie, …), les hypothèses suivantes sont prises :

  • la température de consigne en période d’occupation est de 17 °C ;
  • Un profil d’occupation classique de salle de sport (apports internes) ;

  • La ventilation est double flux avec récupération de chaleur ;

Variables

Au cours des différentes simulations, on fait varier :

  • tout comme dans les simulations en éclairage naturel, la surface du lanterneau et l’orientation du bâtiment ;
  • le type de vitrage ;
  • la performance de l’enveloppe du bâtiment :
U parois [W/(m².K)]

Type de paroi

Réglementaire Basse énergie Très basse énergie

Mur

Mur contre terre

Sol

Toiture

Vitrage

Lanterneau

0,5

0,9

0,9

0,3

1,1

1,3

0,25

0,25

0,25

0,2

1,1

1,1

0,15

0,15

0,15

0,15

0,7

0,7

Analyse des résultats

Surface de lanterneau

On remarque sur les graphiques ci-dessus que la consommation d’électricité pour l’éclairage artificiel du plateau sportif diminue fortement lorsque la proportion d’ouvertures en toiture varie de 0 à 5 %, puis décroit ensuite lentement au-delà de 5 %.

La consommation de chauffage, quant à elle, augmente de manière constante avec la proportion d’ouvertures tandis que la consommation de refroidissement ne commence à devenir significative qu’au-delà de 20 % d’ouvertures.

En mettant ces résultats en concordance avec les simulations d’éclairage naturel, on peut trouver un optimum commun aux deux simulations aux alentours de 10 % d’ouvertures en toiture. Cette valeur est, bien entendu, propre à l’étude de cas qui nous occupe ici ; il faut seulement retenir qu’il est important, lors de la conception des ouvertures, de prendre en compte les aspects thermiques en parallèle avec les aspects visuels.

Orientation du bâtiment

Le graphique ci-dessous montre que les besoins énergétiques de chauffage sont minimisés lorsque les locaux à température de consigne élevée (tels que les vestiaires) et avec de grandes ouvertures destinées à capter les apports solaires (tels que la cafétéria) sont orientés plein sud. Les besoins énergétiques de refroidissement étant faibles dans le cas des halls de sports, l’impact de l’orientation du bâtiment sur ceux-ci est très peu perceptible.

De plus, le modèle de simulation intégrant un lanterneau zénithal comme seule ouverture dans l’enveloppe extérieure du plateau sportif, l’orientation de celui-ci n’a quasiment aucun impact sur les besoins énergétiques du hall de sports.

En comparant ces résultats avec ceux des simulations d’éclairage naturel, on aperçoit que l’orientation préférentielle de notre modèle en termes thermiques est également celle qui apporte le plus grand éclairement de lumière du jour utile (de 100 à 2 000 lux) pour le plateau sportif.

Ceci constitue un argument supplémentaire en faveur de l’orientation nord-sud pour le hall de sports, avec les vestiaires et la cafétéria au sud et le plateau sportif au nord, malgré le fait que l’autonomie de lumière du jour soit minimale pour le plateau sportif lorsque le bâtiment est orienté de cette manière.

Type de vitrage

Le type de vitrage influence également les besoins en chauffage et en froid.

Dans le modèle considéré, un vitrage clair en toiture donnera plus d’apports solaires, mais risquera d’induire de la surchauffe, contrairement à un vitrage opalin.


Alternative d’éclairage naturel

D’autres configurations existent pour éclairer naturellement le plateau sportif modélisé. Deux sont proposées ci-dessous et sont ensuite comparées avec modèle initial (éclairé par un lanterneau zénithal opalin orienté NNE-SSO).

Configuration

Éclairage bilatéral nord et sud

Caractéristiques :

  • orientation : faîte dans l’axe est-ouest
  • transmission lumineuse du vitrage : 78 %
  • ouverture au nord : 44,66 x 1,79 m (80 m²)
  • ouverture au sud : 44,66 x 0,56 m (25 m²)

Éclairage bilatéral nord et sud

Caractéristiques :

  • transmission lumineuse du vitrage : 78 %
  • ouvertures au nord : 2 x 44,66 x 1,1 m (100 m²)
  • hauteur sous plafond : 8,6 m

Synthèse

Modèle 1

Éclairage zénithal opalin NNE-SSO

Modèle 2

Éclairage bilatéral nord et sud

Modèle 3

Éclairage par sheds au nord

FLJ > 2 %

Éclairement de lumière du jour utile
  • 31 % (100-2000 lx)
  • 27 % (> 2000 lx)
  • 38 % (100-2 000 lx)
  • 17 % (> 2 000 lx)
  • 55 % (100-2 000 lx)
  • 3 % (> 2 000 lx)
Autonomie de lumière du jour min-max
  • 30 à 60 %
  • 27 à 60 %
  • 33 à 56 %
Consommation d’éclairage avec et sans dimming
  • 39,3 MWh (sans dimming)
  • 35,0 MWh (avec dimming en fonction de l’apport en éclairage naturel)
  • 41,1 MWh (sans dimming)
  • 36,3 MWh (avec dimming en fonction de l’apport en éclairage naturel)
  • 40,6 MWh (sans dimming)
  • 35,1 MWh (avec dimming en fonction de l’apport en éclairage naturel)
Avantages
  • Très efficace par ciel couvert
  • Consommation d’éclairage artificiel plus faible (avec ou sans dimming)
  • Facilité d’entretien des vitrages
  • Consommation de chauffage plus faible grâce aux apports solaires
  • Consommations énergétiques cumulées (chaud, froid, éclairage) plus faibles
  • Éclairage naturel uniforme et constant sur l’aire de jeu
  • Aucun risque d’éblouissement des joueurs
  • Bon niveau d’éclairement de lumière du jour utile (de 100 à 2 000 lux)
Inconvénients
  • Aucune vue vers l’extérieur (à cause du polycarbonate opalin)
  • Dysfonctionnement thermique important tout au long de l’année (avec risque de surchauffe).
  • Risque d’éblouissement pour les sports tels que le badminton ou le volley-ball
  • Moins bon éclairement de lumière du jour utile (de 100 à 2 000 lux)
  • Faible facteur de lumière du jour
  • Risque d’éblouissement en l’absence de protections solaires
  • Consommation de chauffage plus élevée car apports solaires inexistants
  • Coût de construction plus élevé

Quantification en éclairage artificiel

Partant du principe que le confort lumineux doit être assuré en présence ou pas d’éclairage naturel, un complément d’éclairage artificiel est nécessaire. Normativement, le dimensionnement de l’éclairage artificiel s’effectue sans les apports de lumière naturelle. La démarche énergétique d’un système d’éclairage artificiel réside donc dans sa capacité à moduler la puissance installée en fonction de l’éclairage naturel. En effet, pour autant qu’il n’y ait pas d’éblouissement, meilleure l’autonomie en lumière du jour sera, moins fort sera le poids des consommations d’éclairage artificiel pour donner le complément de confort nécessaire.

Dans le cas de l’atelier considéré, le choix du type d’éclairage artificiel et surtout du type de luminaire, passe par une étude de type Dialux  permettant de comparer des luminaires entre eux.

Efficacité de l’installation d’éclairage

La salle est éclairée artificiellement au moyen de 4 rangées de 10 plafonniers industriels Zumtobel Copa A-B 1/400W HIT/HST E40 VVG KSP IP65 équipés d’une lampe de 400 W aux iodures métalliques à brûleur quartz. Ces luminaires peuvent également être équipés de lampes à vapeur de sodium haute pression.

Simulation Dialux

La simulation Dialux (logiciel gratuit) permet d’évaluer principalement le niveau d’éclairement moyen, l’uniformité de l’éclairement et l’efficacité énergétique (en W/m²).

Paramètres de simulation

  • Hauteur du point d’éclairage du 1er champ de luminaires: 7,28 m
  • Hauteur du point d’éclairage du 2e champ de luminaires : 8,98 m
  • Facteur d’entretien : 0,85
  • Surface de calcul :
    • Taille : 42 x 22 m (centrée sur le plateau sportif de 40 x 20 m)
    • Trame : 128 x 64 points

Position de la surface de calcul.

Résultats

En fonction du nombre de luminaires, de leurs caractéristiques lumineuses, de leur disposition au dessus des aires de jeux, …, les niveaux d’éclairement sont calculés dans Dialux.

Plan d’implantation des luminaires.

Courbes isolux.

Analyse des résultats

Niveau d’éclairement

Le niveau d’éclairement moyen calculé est de 876 lux (soit 745 lux après dépréciation). Ce niveau d’éclairement correspond au niveau moyen recommandé pour des compétitions nationales et internationales (750 lux). Il aurait pu être dimensionné entre 500 et 600 lux (après dépréciation) dans le cas bien précis de cette salle de compétition moyenne.

Uniformité d’éclairement et absence d’ombres

L’uniformité d’éclairement (Emin/Emoy) calculée est de 0,66. Une valeur supérieure ou égale à 0,7 aurait été préférable pour les compétitions (amateurs ou professionnelles).

Risque d’éblouissement

L’UGR maximum calculé dans les 2 directions du terrain est de 26. Cette valeur est peu représentative pour ce type de salle. En effet, étant donné qu’il s’agit d’un terrain omnisports, l’emplacement idéal et l’orientation des luminaires pour empêcher l’éblouissement par la vue des sources lumineuses sont impossibles.

Qualité de la lumière

Les lampes utilisées (aux iodures métalliques) ont des températures de couleur froides (3 200 à 5 600 K) qui s’équilibrent avec la lumière du jour lorsque l’éclairage artificiel est utilisé parallèlement à celle-ci. Elles ont également un bon indice de rendu des couleurs (65 à 90) qui permettra de bien distinguer les différentes lignes de jeux, à la fois pour les niveaux amateur et professionnel.

Couleur des lignes de jeux

Les tracés de jeu sont très contrastés par rapport au sol. Ceci facilite la perception visuelle (qu’aucun éclairage ne pourrait suppléer).

Efficacité énergétique

Rendement des équipements

Avec une puissance spécifique calculée de 2,73 W/m²/100 lux (20,33 W/m²), l’éclairage installé est performant (< 3 W/m²/100 lux) d’un point de vue énergétique. Ceci est principalement dû à l’utilisation de lampes aux iodures métalliques et de ballasts électroniques.

Qualité des parois

Les parois verticales de la salle sont réalisées en blocs de béton peints avec une couleur claire à l’exception des murs de la réserve de matériel sportif qui sont, quant à aux, peints avec une couleur plus foncée. L’uniformité d’éclairement pourrait éventuellement être améliorée si on les repeignait avec une couleur claire.

  

Gestion de la commande

La commande d’éclairage de cette salle est séparée en 2 zones mal réparties :

  • Zone 1 : 8 luminaires dans les 4 coins ;
  • Zone 2 : les 32 luminaires restant.

Il serait préférable de pouvoir commander l’allumage séparé des 3 à 5 aires de jeux (basket-ball, volley-ball et badminton) situées transversalement par rapport à l’aire de jeux principale (football en salle et handball) de manière à éviter que tous les terrains soient éclairés alors qu’un seul est occupé. Il serait également utile de pouvoir adapter le niveau d’éclairement des terrains au sport pratiqué, au niveau de jeu (loisir ou compétition) et à l’apport de lumière naturelle.

Façades des bureaux


Qualité de l’éclairage naturel

Confort lumineux

Dans une démarche de construction ou de rénovation durable, on privilégiera l’utilisation de la lumière naturelle à la place de l’éclairage artificiel. La qualité « spectrale » de la lumière naturelle ainsi que sa variabilité et ses nuances offrent une perception optimale des formes et des couleurs. L’éclairage artificiel doit être donc considéré comme un complément à la lumière naturelle.

En confort lumineux, l’objectif premier est de privilégier l’ouverture des espaces de travail vers la lumière naturelle tout en sachant qu’une trop grande ouverture des façades est souvent synonyme d’éblouissement. Cependant, l’éblouissement peut être assez facilement traité par un store interne.

Efficacité énergétique

D’un point de vue énergétique, l’utilisation de l’éclairage naturel comme « source » lumineuse est gratuite ; ce qui signifie que la facture électrique d’éclairage artificiel sera d’autant plus réduite que l’éclairage naturel exploité. De plus, en améliorant la qualité énergétique de l’enveloppe, que ce soit en conception ou en amélioration, les consommations énergétiques d’éclairage deviennent prépondérantes.

À titre d’exemple, les clefs de répartition énergétique pour un ancien bâtiment « passoire » et un nouveau bâtiment très performant  sont les suivantes :

Dans ce type de bâtiment « passoire », les consommations de chauffage et l’éclairage sont prédominants dans le sens où les parois sont très déperditives et l’installation d’éclairage peu performante.

Un bâtiment très performant et bien étudié au niveau de l’enveloppe limite ses dépenses énergétiques tant en chauffage qu’en refroidissement. Si l’installation électrique n’est pas performante (comme le montre cet exemple), les consommations d’éclairage en énergie primaire deviennent prépondérantes.

En absolu, on peut apprécier l’effort réaliser sur les consommations en énergie primaire. On réduit effectivement par 3 ces consommations primaires.

On se retrouve devant le défi, surtout pour le tertiaire, d’optimiser les consommations énergétiques d’éclairage en maximisant les apports gratuits d’éclairage naturel.

Attention cependant que dans bien des projets de conception ou de rénovation de bâtiments tertiaires, des trop grandes ouvertures génèrent des risques de surchauffe en été et des déperditions plus importantes en hiver. Le gestionnaire du bâtiment risque d’avoir la mauvaise surprise de payer une facture énergétique plus importante de climatisation en été et de chauffage en hiver. Cependant, les performances thermiques des vitrages actuels et le choix d’une bonne stratégie de protection solaire limitent l’impact respectivement des déperditions et des surchauffes sur le bilan énergétique global. Il en résulte que la consommation énergétique principale risque bien de devenir l’éclairage artificiel.

Critères

Bien des paramètres viennent influencer de manière plus ou moins significative la pénétration de la lumière dans les espaces de travail :

  • L’orientation des façades ;
  • La présence d’ombres reportées (bâtiments ou autres façades du bâtiment étudié faisant de l’ombre) ;
  • La taille, la forme et la position des baies vitrées dans les façades ;
  • La forme et les dimensions des trumeaux ;
  • Les caractéristiques des vitrages ;
  • La présence de protection solaire (fixe, mobile, …) ;
  •  …

Exemple d’analyse en autonomie en lumière du jour.

  1. Vitrage clair
  2. Vitrage sélectif
  3. Auvent
  4. Lamelles
  5. Ombre reportée

Pour un projet de taille importante, une étude par un bureau spécialisé est toujours intéressante sachant qu’il est possible d’optimiser conjointement les conforts lumineux et thermiques par des simulations dynamiques tenant compte de l’ensoleillement et du climat à tout moment de l’année et disponibles sous forme de bases de données type « météonorm » par exemple.


Influence de la modulation de façade

L’étude de cette influence porte sur un projet de conception d’un ensemble de plateaux de bureaux dans un immeuble tour. Une série de simulation dynamique en éclairage naturel (ECOTECH et DAYSIM) sont réalisées afin de mettre en évidence l’influence :

  • De la taille de la fenêtre ;
  • Du type de trumeaux ;
  • Du type de vitrage ;
  • Du type de cloisonnement interne ;
  • De l’épaisseur des trumeaux ;
  • De la hauteur des linteaux.

L’objectif des simulations est de réaliser un arbitrage entre différentes configurations de module de bureau. À chaque étape d’optimisation, l’arbitrage élimine les moins bonnes solutions.

Pour un bureau paysager ?

La modulation des façades influence la pénétration de la lumière naturelle dans l’espace de travail. C’est ce qu’on se propose d’étudier ici.

Base : taille de baie vitrée ⇒ deux fenêtres de 90 x 237 cm. Transmission lumineuse du vitrage TL = 50 %

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

1 < FLJ < 2 % Éloigné de la fenêtre DA < 20 %
3 % < FLJ < 5 % Proche de la fenêtre 50 % < DA

Les bureaux côté intérieur devront bénéficier régulièrement d’un système d’éclairage artificiel.

1re amélioration : taille de baie vitrée ⇒ une fenêtre de 180 x 237 cm et trumeau

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

1 < FLJ < 2 % Éloigné de la fenêtre 20 % < DA < 50 %
3 % < FLJ < 5 % Proche de la fenêtre 50 % < DA

Pour une même surface vitrée, une large fenêtre permet de laisser entrer plus facilement la lumière naturelle qu’une fenêtre étroite.

2e amélioration : trumeau de forme trapézoïdale

Tout en conservant la taille de la baie vitrée de 180 x 237 cm pour laquelle la pénétration de la lumière est la meilleure, on remplace un trumeau de section rectangulaire  par un trumeau de section trapézoïdale.

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

1 < FLJ < 3 % Éloigné de la fenêtre 30 % < DA < 50 %
3 % < FLJ < 5 % Proche de la fenêtre 50 % < DA

Les trumeaux trapézoïdaux améliorent légèrement la couverture des besoins d’éclairage par de l’éclairage artificiel. Cependant, on comprend aisément que la mise en œuvre de tel trumeaux risque de poser des problèmes.

3e amélioration : vitrage avec une transmission lumineuse de TL = 60 %

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

2,5 % < FLJ < 3 % Éloigné de la fenêtre 40 % < DA < 50 %
5 % < FLJ Proche de la fenêtre 50 % < DA

La configuration des modules de façade devient optimale. Cependant, pour les bureaux le long de la fenêtre, le risque d’éblouissement croît.

Que faut-il retenir ?

En conception, dans la modulation de façade, l’optimum de la couverture d’éclairage par la lumière naturelle (gratuite) passe par le choix d’une ouverture large pour les baies vitrées avec un vitrage de transmission lumineuse élevée. En rénovation, c’est du cas par cas ! Attention, cependant, que la limite d’ouverture à outrance des baies vitrées risque de provoquer de l’inconfort visuel (éblouissement) et thermique (surchauffe). Pour cette raison, l’étude doit souvent être complétée par des simulations thermiques dynamiques.

Pour un bureau individuel ?

La modulation des cloisons internes va aussi modifier le niveau d’exploitation de la lumière naturelle. Ici, un seul module de bureau est modélisé. Seule la position des parois varie. Pour ce type de configuration, les vitrages ont une transmission lumineuse TL de 50 %.

Base : taille de baie vitrée ⇒ deux fenêtres de 90 x 237 cm. Transmission lumineuse du vitrage TL = 50 %

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

0 < FLJ < 1,2 % Éloigné de la fenêtre DA < 20 %
FLJ < 3 % Proche de la fenêtre DA <  50 %

Le cloisonnement des plateaux de bureaux ne favorise pas l’entrée de la lumière dans le local individuel. Même la lumière naturelle n’apprécie pas l’individualisme !

1er amélioration : taille de baie vitrée ⇒ une fenêtre de 180 x 237 cm

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

1 < FLJ < 1,5 % Éloigné de la fenêtre DA < 20 %
3 % < FLJ Proche de la fenêtre 50 % < DA

Une ouverture plus large permet de bénéficier une qualité de lumière acceptable pour les plans de travail situé côté fenêtre.

Alternative : taille de baie vitrée ⇒ une fenêtre de 180 x 237 cm avec un positionnement des cloisons internes

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

0 < FLJ < 1,2% Éloigné de la fenêtre DA < 20 %
FLJ < 3 % Proche de la fenêtre DA <  50 %

Le cloisonnement désaxé du trumeau (centrée avec l’axe du châssis) n’est pas vraiment une bonne idée. En rénovation, par exemple, ce type d’aménagement de cloison se rencontre souvent. À éviter si possible !

Que faut-il retenir ?

Le cloisonnement des plateaux de bureaux au sens large du terme en bureaux individuel est, dans la mesure du possible, à éviter. On comprend bien que ce soit régulièrement impossible à envisager. Cependant, une ambiance chaleureuse de travail dans un paysager permet souvent d’optimiser le niveau de pénétration de la lumière naturelle.


Influence de l’épaisseur des trumeaux

L’épaisseur plus ou moins variable des trumeaux (ou l’épaisseur de la façade) crée un ombrage fluctuant. Cette influence est décrite ci-dessous pour des épaisseurs variant de 70 à 40 cm.

Épaisseur des trumeaux : 70 cm – Facteur de lumière du jour et Autonomie en lumière du jour

Épaisseur des trumeaux : 60 cm – Facteur de lumière du jour et Autonomie en lumière du jour

Épaisseur des trumeaux : 50 cm – Facteur de lumière du jour et Autonomie en lumière du jour

Épaisseur des trumeaux : 40 cm – Facteur de lumière du jour et Autonomie en lumière du jour

Analyse des résultats
Épaisseur des trumeaux de 70 cm
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

FLJ < 3 % Éloigné de la fenêtre DA < 50 %
  3 % < FLJ < 6 % Proche de la fenêtre 50 % < DA

Épaisseur des trumeaux de 60 cm.

FLJ < 3 % Éloigné de la fenêtre DA < 50 %
  3 % < FLJ < 6 % Proche de la fenêtre 50 % < DA

Épaisseur des trumeaux de 50 cm

FLJ < 3 % Éloigné de la fenêtre DA < 50 %
  3 % < FLJ < 6 % Proche de la fenêtre 50 % < DA

Épaisseur des trumeaux de 40 cm

FLJ < 3 % Éloigné de la fenêtre DA < 50 %
  6 %< FLJ Proche de la fenêtre 50 % < DA

Que faut-il retenir ?

Attention toutefois à l’épaisseur trop faible des trumeaux qui risque d’occasionner un risque d’éblouissement. Dans la construction ou la rénovation basse énergie, les épaisseurs des parois ont tendance à augmenter ; ce qui a pour conséquence de réduire la pénétration de la lumière dans les espaces mais de réduire les risques de surchauffe. Décidément, la Belgique est vraiment la championne du compromis !


Influence de l’orientation de la baie vitrée

Indépendamment du traitement, une façade sud a un éclairement plus élevé qu’une façade nord.
Au premier abord, il apparaitrait logique d’augmenter la surface vitrée au nord, pour compenser un éclairement plus faible. La lumière du nord est aussi plus faible, mais moins éblouissante et plus facile à contrôler.
Pour les orientations sud, est et ouest l’éblouissement et le risque de surchauffe nécessite de placer des stores qui baissés limiteront le niveau d’éclairement. À ce stade, de nouveau, tout est une question de compromis !

Autonomie en lumière de jour pour une orientation nord.

Pour une orientation nord, l’autonomie en lumière du jour est suffisante pour les espaces bureaux à proximité de la baie vitrée. Mais on voit tout de suite la limite de pénétration de la lumière naturelle à savoir : la mi-profondeur du local étudié.

Autonomie en lumière du jour pour une orientation sud.

Pour une orientation sud, la pénétration de la lumière naturelle est importante. On pourrait pratiquement équiper les espaces de bureaux sur toute la profondeur du local.

Intérêt du store pour une orientation sud.

Que faut-il retenir ?

  • Une orientation nord donne moins de lumière naturelle, mais plus stable dans le temps et absente d’éblouissement.
  • Une orientation sud donne beaucoup de lumière au risque même de générer des éblouissements. Un store est souvent nécessaire pour réduire ce risque. L’influence de la gestion du store se fait ressentir de manière significative pour les baies vitrées orientées au sud. Un bon compromis entre un apport de lumière naturelle réduit (orientation nord) et un éblouissement régulier (orientation sud sans store) est l’équipement des baies vitrées de stores automatiques. De plus, les stores en automatique ont l’avantage de traiter aussi les surchauffes en été.

Hypothèses de simulation

Les hypothèses prises pour réaliser les simulations sont les suivantes :

  • L’orientation de la façade est nord ;
  • Coefficients de réflexion considérés pour les parois internes :
    • Plafond : 70 %
    • Murs intérieurs : 50 %
    • Ébrasements : 50 %
    • Sol : 30 %
  • Les façades extérieures sont assimilées à des parois uniformes mates. Trois type de murs sont considérés dont les coefficients de réflexions sont :
    • Mur clair : 50 %
    • Mur moyen : 30 %
    • Mur foncé : 20 %
  • Disposition des zones de travail : les zones de travail mesurent 4 x 80 cm x 180 cm et sont situées à 80 cm de la face extérieure de la façade.
  • Surface nette éclairante = 2 x 2,37 x 0,90 = 4,266 m² par travée de 2,7 m
  • Surface nette façade intérieure = 2,735 x 2,70 = 7,385 m² par travée
  • Surface nette éclairante / surface nette façade intérieure = 58 % ;
  • (surface nette éclairante/surface nette façade intérieure) x transmission lumineuse du vitrage = 28,9 %.

Meubles frigo

Meubles frigo


Influence de l’éclairage

Les luminaires, en plus de produire de la lumière, vont également dégager de la chaleur. Une grande partie de l’énergie consommée est transformée en chaleur et doit être évacuée par la machine frigorifique. Il y a plusieurs manières de limiter les apports thermiques de l’éclairage et ainsi de diminuer les consommations énergétiques des meubles frigorifiques.

Exemple.

Selon ouverture d'une nouvelle fenêtre ! l’AFF, un éclairage à incandescence assurant un niveau d’éclairement de 400 lux provoquera un accroissement de température de 1.5 à 3 °C pour les paquets de la couche supérieure selon les meubles. Un éclairage équivalent, réalisé à base de tubes fluorescents ne provoquera pas d’accroissement supérieur à 0.5 °C.

Toute l’énergie consommée par les lampes est transformée en chaleur par :

  • conduction (« par les solides »),
  • convection (« par les gaz, les liquides »),
  • rayonnement (lumière et autres radiations, infrarouge en particulier).

En fonction de la famille de lampes considérée, la répartition de ces divers apports sera différente. Il est essentiel de tenir compte de cette répartition pour éviter des élévations de température trop importantes.

Parmi les manières envisageables pour limiter ces apports thermiques, on peut par exemple :

  • faire appel à des lampes dont le spectre d’émission comporte une faible proportion d’énergie thermique infrarouge par rapport à la fraction utile d’énergie lumineuse ;
  • sortir le système d’éclairage de la zone de froid ;
  • limiter la puissance des lampes.

Choisir des lampes adaptées

Dans toutes les applications, il y a lieu de limiter les apports thermiques du système d’éclairage. Ceux-ci se paieront par une surconsommation au niveau de la climatisation et/ou des machines de froid alimentaire.

Deux caractéristiques permettent de choisir correctement le type de lampe à utiliser :

  • le rendement des lampes : fraction de la quantité d’énergie transformée en lumière ;
  • la composition du spectre d’émission : on choisira des lampes dont le spectre comporte une faible proportion d’énergie thermique infrarouge par rapport à la fraction utile d’énergie lumineuse.

Pour éviter un apport calorifique trop important, on réalisera le système d’éclairage à partir de  tubes fluorescents.

Lampes à incandescence

Ces lampes émettent un rayonnement infrarouge important (de l’ordre de 75 % de la puissance de la lampe). Comme les infrarouges et les rayons lumineux se réfléchissent en même temps, les lampes à réflecteur et les projecteurs intensifs vont provoquer des élévations de température très importantes dans l’axe du faisceau.

Les lampes à rayonnement dirigé dites à « faisceau froid » ou dichroïque » limitent le rayonnement infrarouge direct. Le miroir de ces lampes, conçu pour réfléchir la lumière, est transparent pour les radiations infrarouges indésirables. Lorsque l’on utilise ce genre de lampe, il faut s’assurer que le luminaire utilisé est susceptible de les recevoir, car, sans précaution, elles provoquent un échauffement supplémentaire de la douille, du câblage et de la partie arrière du luminaire.

Lampes fluorescentes et lampes à décharge (haute pression)

Ces lampes émettent une très faible proportion de rayons infrarouges courts. Par contre, les tubes à décharge des halogénures métalliques et des sodiums haute pression émettent une quantité importante d’infrarouges moyens. En ce qui concerne les lampes fluorescentes, on ne fera attention qu’aux niveaux d’éclairement très élevé qui sont les seuls à produire un effet thermique direct perceptible.

Si l’effet calorifique du rayonnement de ces lampes est relativement faible, la transformation en chaleur de l’énergie électrique consommée (lampe et ballast)  ne doit pas être sous-estimée. L’élévation de la température des parois du luminaire va transformer celui-ci en émetteur d’infrarouges longs susceptibles d’influencer la distribution thermique du local et/ou du meuble frigorifique.

Sources LED

Les lampes LED ne génèrent pas ou peu de rayonnement infrarouge (IR) ou ultraviolet (UV) dans le flux lumineux.

C’est la température de jonction qui influence le flux lumineux de la LED chip et donc son efficacité lumineuse. Les LED conviennent particulièrement bien pour les applications à basse température (surgélation, réfrigération, …) sachant que le flux lumineux augmente avec l’abaissement de la température de jonction. De plus, pour les basses températures, la durée de vie augmente.

Bilan énergétique de quelques lampes

Le tableau suivant donne les bilans énergétiques de quelques types de lampes.

Bilans énergétiques de quelques lampes (d’après C. Meyer et H. Nienhuis)
Type de lampe Conduction et convection [%] Rayonnement [%] Rayonnement lumineux [%] Puissance à installer par 100 lm [W]
UV IR
Incandescentes 100 W 15 75 10 10
Fluorescentes rectilignes 71.5 0.5 (1) 28 1.4
Fluorescente compactes 80 0.5 (1) 19.5 1.8
Halogénures métalliques 50 1.5 24.5 24 1.3
Sodium haute pression 44 25 31 1
(1) Dans le cas de lampes fluorescentes dont la surface développée est importante, on pourrait séparer le rayonnement infrarouge (long). Pour les lampes fluocompactes cette distinction est inutile.

 

Exemple.

Par exemple si 2 500 lm doivent être fournis, les bilans énergétiques des différentes installations deviennent :

Type de lampe Conduction et convection [W] Rayonnement [W] Rayonnement lumineux [W]
UV IR
Incandescentes 100 W 37.5 187.5 25
Fluorescentes rectilignes 25.025 0.
175
(1) 9.8
Fluorescente compactes 36 0.225 (1) 8.775
Halogénures métalliques 16.25 0.487 7.962 7.8
Sodium haute pression 12.1 6.875 8.525
(1) Dans le cas de lampes fluorescentes dont la surface développée est importante, on pourrait séparer le rayonnement infrarouge (long). Pour les lampes fluocompactes cette distinction est inutile.

Cet exemple montre bien l’intérêt d’utiliser des lampes à décharge. Leur faible coût d’achat, leur longue durée de vie, leur bon indice de rendu des couleurs font des lampes fluorescentes le choix le plus adapté.


Placer les systèmes d’éclairage à l’extérieur des meubles

Pour éviter de consommer inutilement de l’énergie (de l’ordre de 10 % de l’énergie de jour fournie par l’évaporateur), l’éclairage du meuble doit être prévu en dehors de la zone froide. D’une part, les lampes fluorescentes ont une mauvaise efficacité lumineuse à basse température, d’autre part, les luminaires sont des sources de chaleur. Comme dit précédemment, l’énergie électrique consommée par les lampes et les ballasts est transformée en chaleur. Pour cette raison on tentera au maximum de sortir les appareils des zones ou des meubles froids. Si le maître d’ouvrage se refuse à déplacer la lampe, il faudra tout de même essayer de sortir le ballast de la zone réfrigérée ou climatisée.

Dans la lutte contre les apports de rayonnements, les baldaquins de forme concave dont la face inférieure est recouverte d’un aluminium de type poli miroir non anodisé, peuvent être utiles.

Schémas baldaquins .

Ces baldaquins interceptent une part importante de la lumière d’ambiance et il peut alors être nécessaire de faire recourt à un appoint d’éclairage. Ce complément peut être réalisé de manière confortable en utilisant comme réflecteur la sous face en aluminium du baldaquin.

Cela permet :

  • d’éviter l’influence de l’éclairage direct général,
  • d’utiliser un éclairage indirect,
  • d’éloigner les appareils des meubles,

À défaut d’un éclairage placé hors de la zone froide, limiter la puissance des lampes

La plupart du temps, les constructeurs de meubles frigorifiques utilisent des lampes fluorescentes. Le problème est que ce type de lampes a une basse efficacité lumineuse aux basses températures comme le montre la figure suivante :

Les pertes peuvent donc être très importantes :

  • plus de 40 % de perte si on utilise des tubes T8,
  • plus de 70 % de perte si on utilise des tubes T5.

De nombreux fabricants proposent des solutions permettant de limiter l’influence de la température sur le flux de la lampe.

Certains constructeurs proposent ainsi une sorte de douille qui se monte sur une des extrémités de la lampe fluorescente, celle désignée comme étant le point froid de la lampe. Il y provoque une élévation de la température.

Une autre solution consiste à utiliser un tube de protection qui va permettre d’augmenter la température ambiante autour de la lampe.

Si dans la pratique, le niveau d’éclairement est suffisant, alors il est possible de remplacer la lampe par une autre de puissance plus faible, mais équipée de ce genre de solution.

Exemple.

Soit une zone de froid positif (8 °C) équipé de tube T5 de 54 W (4450 lm à 25 °C). La faible température va influencer la lampe qui ne va émettre que 75 % de son flux théorique, soit un peu moins de 3500 lm. Une lampe de 35 W, équipée d’un dispositif permettant de combattre la baisse de la température fournira un flux équivalent.

Il est ainsi possible de gagner 19 W par lampe tout en assurant le même confort.

Choisir les luminaires – tableau récapitulatif

Lampes de bureau

Lampes de bureau

Luminaire mobile avec lampe fluo compacte ou led de faible puissance.

Pour l’éclairage local des postes de travail.

Projecteurs

Projecteurs

Luminaire orientable avec lampe halogène, fluo compacte, led ou à décharge.

Pour l’éclairage d’accentuation (musée, commerce, etc.)

Downlights

Downlights

Avec réflecteur en aluminium.

Pour l’éclairage décoratif, l’éclairage des espaces restreints ou l’illumination de cavités. Éviter les réflecteurs blancs.

Downlights Avec réflecteur en aluminium et diffuseur translucide. Idem que précédent mais avec besoin de limitation de l’éblouissement direct. À éviter au maximum et privilégier la version sans diffuseur.

Cloches

Cloches

Avec réflecteur en métal ou prismatique et avec ou sans diffuseur translucide ou verre de protection.

Pour l’éclairage des espaces à grande hauteur sous-plafond (commerces, etc.). Éviter au maximum les réflecteurs transparents et les diffuseurs translucides.

Plafonds lumineux

Plafonds lumineux

Avec diffuseur translucide.

Pour l’éclairage des locaux avec un besoin de limitation de l’éblouissement direct (soins de santés, etc.). L’usage à but uniquement décoratif est à éviter (bureau, etc.)

Luminaires sur pied

Luminaires sur pied

Luminaire d’appoint.

À utiliser comme appoint pour fournir localement l’intensité lumineuse demandée, mais à éviter si la composante indirecte et/ou la puissance sont trop élevées.

Appliques murales

Appliques murales

Appliques murales

Généralement avec diffuseur translucide.

Pour éclairage décoratif.

Réglettes et luminaires industriels

Réglettes et luminaires industriels

Tube nu.

Uniquement pour les pièces de service, peu utilisé, sans exigence de protection contre l’éblouissement.

Réglettes et luminaires industriels Avec réflecteur industriel de préférence miroité (éviter les réflecteurs peints). Pour l’éclairage général, hauteur sous plafond de 5m, avec ou sans ventelles en fonction des besoins en protection contre l’éblouissement direct.

Luminaires linéaires encastrés, plafonniers et suspensions

Luminaires linéaires encastrés Avec diffuseur translucide (ou prismatique). A éviter au maximum. Pour usage décoratif et un besoin de limitation de l’éblouissement direct.

plafonniers

Diffuseur translucide et réflecteur.

A éviter au maximum. Pour usage décoratif et un besoin de limitation de l’éblouissement direct.

Ventelles plates

Ventelles plates crantées.

Ventelles plates ou crantées en aluminium.

Pour l’éclairage général et limitation de l’éblouissement direct. Les ventelles blanches sont à éviter.

Ventelles paraboliques

Ventelles paraboliques en aluminium.

Pour l’éclairage général, avec présence d’écrans de visualisation et travail de haute précision.

Ventelles paraboliques avec fermeture en verre.

Ventelles paraboliques en aluminium et fermeture en verre.

Pour les salles blanches et travail de haute précision.

Luminaires étanches

Tube fluorescent nu

Tube fluorescent nu.

Uniquement pour les pièces de service humides, peu utilisées, sans exigence de protection contre l’éblouissement.

Réflecteur industriel miroité

Réflecteur industriel miroité.

Pour l’éclairage général des locaux humides ou poussiéreux, hauteur sous plafond de 4 à 5 m, avec ou sans ventelles en fonction du besoin de protection contre l’éblouissement direct. Les réflecteurs peints sont à éviter.

Vasque transparente,

Vasque transparente, structurée ou prismatique.

Pour l’éclairage général des locaux humides ou poussiéreux avec nécessité de résistance aux chocs extérieurs ou internes (bris de lampe).

Luminaires résistant aux chocs

Luminaire avec grille de protection en acier.

Luminaire à ventelles paraboliques en aluminium et grille de protection en acier.

Pour l’éclairage des salles de sport. Éviter les réflecteurs peints.

Flexibilité des plateaux de bureaux

Flexibilité des plateaux de bureaux


Importance de l’aménagement intérieur

Dans le tertiaire et, plus spécifiquement dans la promotion immobilière d’immeubles de bureaux, tant en rénovation qu’en nouvelle conception, l’anticipation de l’agencement des espaces est une étape cruciale que l’auteur de projet aurait tort de négliger.

Les enjeux de tels projets restent, malgré tout, trop souvent financiers en négligeant le confort des occupants et les consommations énergétiques. À la décharge de l’auteur de projet, il est très difficile de répondre à toutes les attentes d’aménagement des futurs occupants. Cependant, les combinaisons logiques d’agencement des locaux ne sont pas multiples, surtout si l’on fait appel aux notions :

  • De destination logique des locaux (locaux aveugles pour accueillir les serveurs, les photocopieuses, les sanitaires…);
  • D’ergonomie des postes de travail (espaces entre bureaux et armoires, largeur des circulations…);
  • De rapport à la lumière naturelle au travers des baies vitrées (bureaux centrés et perpendiculaires par rapport à la baie vitrée, recul des bureaux par rapport aux fenêtres…).

Mais pourquoi s’occuper d’aménagement intérieur dans un outil tel qu’Énergie+ ?

La raison est  simple ! L’agencement rationnel des locaux influence clairement les consommations énergétiques d’éclairage. C’est d’autant plus vrai lorsqu’un promoteur immobilier « s’attaque » à une rénovation importante de type URE (Utilisation Rationnelle de l’Énergie) ou un projet de conception basse voire très basse énergie. En effet, dans ce type de bâtiment, la proportion des consommations électriques d’éclairage peut devenir plus grande que les consommations énergétiques de chaleur et de refroidissement réunies.


Enjeux énergétiques de l’éclairage

La proportion des consommations électriques résultant de l’éclairage artificiel est naturellement liée à la performance énergétique des bâtiments. Par exemple dans les bureaux, la consommation énergétique due à l’éclairage peut varier de 25 % pour un bâtiment qualifié de standard (375 kWhprimaire/(m².an)) à 40 %, voire plus, pour un bâtiment de type passif (75 kWhprimaire/(m².an)).
L’éclairage dans un bâtiment performant représente donc un enjeu important au niveau énergétique.


Flexibilité totale

Lorsque, notamment dans la promotion immobilière, l’auteur de projet est tenté de rendre son bâtiment au maximum flexible, et ce de manière à prendre en compte toutes les combinaisons d’agencements possibles des locaux, on parlera de « flexibilité totale« .

Une flexibilité totale se doit  d’anticiper au maximum l’occupation des locaux. Elle présuppose que l’installation d’éclairage devra couvrir l’ensemble de la surface à occuper :

  • de manière homogène ;
  • avec un niveau d’éclairement suffisant ;
  • une gestion efficace ;
  •  …

Flexibilité totale.

Cette flexibilité totale induit inévitablement une puissance installée supérieure à celle réellement nécessaire. En effet, sur base de ce principe, il serait nécessaire de respecter un niveau d’éclairement suffisant (par exemple 500 lux dans les bureaux) avec une homogénéité de 0,7 selon la norme NBN EN 12464-1. De plus, pour être sûr de pouvoir gérer de manière efficace l’installation d’éclairage et d’anticiper tous les combinaisons possibles de cloisonnement, l’auteur de projet sera tenté de placer, par exemple, un nombre suffisant de détections de présence. En surnombre, elles risquent de s’influencer négativement (détection de présence dans une zone non occupée par exemple).

Point de vue énergétique

La flexibilité totale engendrera :

  •  une puissance spécifique (en W/m²) importante : puissance installée : 6 x 1­ x 28 W ⇒ 9,5 W/m²

       

  • de l’éclairage inutile de zone comme le dessus des armoires par exemple ;

Point de vue du confort

Indépendamment de l’efficacité énergétique, le confort peut aussi être altéré :

  • plan de travail peu éclairé (aussi du vécu !) ;
  • éblouissement au niveau de certains postes.

Flexibilité raisonnée

La flexibilité raisonnée fera simplement appel au bon sens en imaginant des scénarios d’occupation « raisonnable » des espaces. Cette réflexion permettra de travailler principalement selon 2 axes :

  • Le rythme des façades : en conception l’agencement des bureaux influence inévitablement le rythme des baies vitrées et des trumeaux. En rénovation, par contre, c’est le rythme des façades qui influence le positionnement des bureaux.
  • La progression de l’agencement des postes de travail et des espaces de circulation en fonction de la pénétration de la lumière naturelle dans l’immeuble : cette progression s’effectue depuis la proximité de la baie vitrée où on privilégiera les tâches de bureautique jusqu’aux espaces de circulation qui nécessitent peu de lumière et sont des espaces à faible occupation.

Flexibilité raisonnée.

Point de vue énergétique

La flexibilité raisonnée permet :

  • De réduire la puissance spécifique : 2 x 1 x 49 W = 5,5 W/m² ;

 

  • De placer les luminaires aux endroits où la tâche justifie un éclairage correct.

Point de vue du confort

Le confort sera assuré par :

  • Le niveau d’éclairement sur la tâche de travail (le plan de travail se limite à la surface du bureau) et dans les zones avoisinantes avec une uniformité correcte de 0,7 (selon la norme 12464-1 ).
  • L’éblouissement qui sera évité par l’orientation des postes de travail perpendiculairement à la baie vitrée.

Distribution des alimentations de l’éclairage

Que l’auteur de projet préfère la flexibilité raisonnée à la flexibilité totale ou l’inverse, la distribution primaire de l’éclairage (230 V monophasé, 3 x 230 V ou encore 3 x 400 V + N), à ce stade, doit être réalisée avec une connectique organisée selon un schéma intelligent. Beaucoup de fabricants proposent sur le marché des solutions intéressantes qui intègrent aussi une flexibilité totale ou raisonnée.

Les systèmes de distribution structurés sont en général composés :

  • De câble de distribution primaire de longueur variable avec connecteurs ;
  • De pièce en T ou de boîtier de dérivation permettant de répartir de manière répétitive le courant fort en fonction du niveau de flexibilité à acquérir ;
  • De cordons secondaires qui permettent d’interface au niveau des pièces en T ou des boîtiers de dérivation les éléments de commande ou de gestion et les luminaires.

Par l’utilisation de ce type de connectique, une flexibilité plus ou moins étendue peut être assurée.

Exemple de câblage de distribution structuré.

 

Exemple de bus de distribution structuré plat.


Commande et gestion de l’éclairage

La gestion et la commande de l’éclairage, quelle que soit la flexibilité, doivent être menées de front avec la distribution de manière structurée et intelligente. À l’heure actuelle, les techniques disponibles sur le marché permettent une panoplie étendue de distribution du courant fort, de commande et de gestion de la plus simple à la plus compliquée.

Commandes simples

La plupart du temps, le gestionnaire de bâtiment ou l’auteur de projet peuvent s’en sortir avec des commandes ou des gestions d’éclairage simples. Une commande simple consiste, par exemple en :

  • Un interrupteur simple pour un petit local ;
  • Un interrupteur deux allumages pour un grand local à une entrée dans lequel un zonage s’impose ;
  • Quatre interrupteurs deux directions pour un grand local à deux entrées et où le zonage est toujours nécessaire.

Commande par interrupteur simple pour petits locaux.

Commandes par interrupteur 2 allumages pour locaux de grande taille.

Commandes par interrupteur 2 directions pour locaux de grande taille et à 2 entrées.

Gestion simple de l’éclairage

La gestion d’éclairage peut aussi être intégrée dans une distribution structurée. Tout en gardant une bonne flexibilité, une gestion simple peut être mise en place sans le besoin de bus de communication type DALI, KNX, …  Cette gestion s’appuie  sur une connectique du même type que celle acceptant les commandes simples.

Quand on pense gestion, se profilent principalement :

  • La gradation 0-10 V locale ou centrale par rapport à la lumière naturelle ;
  • La détection de présence  et de mouvement ;

Détection globale de présence et de luminosité combinées et détection locale de luminosité (par luminaire) et offset de niveau d’éclairement entre le luminaire côté fenêtre et le côté couloir.

Une gestion simple peut se résumer, par exemple, comme suit :

  • Allumage par bouton poussoir (allumage volontaire) ;
  • Extinction automatique par détection d’absence ;
  • Offset sur le réglage du niveau d’éclairement entre le luminaire côté fenêtre et celui côté couloir.

Gestion simple de l’éclairage.

Gestion globalisée de l’éclairage

La gestion/commande simple par câblage structuré a naturellement ses limites surtout dans les bâtiments de grande taille. Pour pallier à ce problème, le concepteur pourra faire appel à un câblage structuré doublé d’un système de bus de communication de type de DALI, KNX, … :

  • La distribution du courant fort s’effectue en câblage structuré ;
  • La gestion/commande est basée sur un bus de communication DALI.

Gestion par bus de communication.


Bilan énergétique

La finalité de la flexibilité raisonnée est naturellement de réduire les consommations énergétiques et de dégager une certaine rentabilité par rapport au surinvestissement potentiel.

L’étude qui suit tente de mettre en évidence l’impact de la flexibilité raisonnée :

Point de départ

L’installation de base fait appel à des luminaires de faible performance énergétique : soit 12,8 W/m².

1re amélioration

Des luminaires performances remplacent les luminaires de base. Dans ce cas, on applique la flexibilité totale : soit 9,5 W/m².

2e amélioration

On applique une stratégie de zonage par le placement intelligent de commande d’éclairage.

3e amélioration

L’emplacement et le nombre de luminaires sont optimisés selon le principe de flexibilité raisonnée : soit 5,5 W/m².

4e amélioration

Une détection de présence permet encore d’optimaliser le temps d’allumage des luminaires en fonction de l’occupation réelle des locaux.

5e amélioration

Enfin, une sonde de luminosité adaptera le niveau d’éclairement des luminaires. Le réglage des niveaux d’éclairement sera différentié en fonction de la position des luminaires par rapport à la baie vitrée.

Bilan en énergie finale

L’énergie finale représente l’énergie indiquée sur la facture électrique. L’analyse du diagramme suivant montre que les consommations spécifiques annuelles passent de 35 à 8 kWh/(m².an) lorsque l’on passe d’un système d’éclairage peu performant à un système performant, ce qui représente une réduction des consommations de l’ordre de 78 %.

Bilan en énergie primaire

Au niveau de l’énergie primaire, l’amélioration est encore plus notoire sachant que pour l’électricité, le facteur de conversion d’énergie finale en énergie primaire est de 2,5 (1 kWh électrique consommé au niveau du bâtiment représente 2,5 kWh consommé par la centrale électrique (valeur de référence de la CWAPE).

Pour un bâtiment de type passif, l’éclairage représentant 40 % des consommations énergétiques primaires, une réduction de 78 % de la consommation énergétique d’éclairage représente 31 % de réduction de la consommation énergétique primaire du bâtiment ; ce qui est énorme !

La réduction en émission de gaz à effet de serre (CO2) agit dans les mêmes proportions que celle en énergie primaire.

Comme la tendance est à améliorer drastiquement la qualité de l’enveloppe des bâtiments (isolation des parois, remplacement des vitrages par des doubles vitrages à basse émissivité ou triples vitrages, placement de récupérateur sur l’air extrait, …), le soin à apporter  au système d’éclairage représente en enjeu majeur.

Bilan financier

Les temps de retour simples sur investissement sont assez intéressants tout en sachant que l’évolution des prix du matériel et de l’énergie est très « volatile ».

Ateliers

Ateliers


Éclairage naturel et baies vitrées

Dans les ateliers, les tâches de travail peuvent vite devenir dangereuses lorsque le risque d’éblouissement est important. Intuitivement, on essayera d’ouvrir les façades orientées au nord pour la simple raison que la lumière naturelle côté nord est essentiellement une lumière diffuse avec un niveau d’éclairement relativement continu en journée. Mais les contraintes d’orientation ne peuvent pas toujours être maîtrisées :

  • En rénovation, les façades orientées au nord ne sont pas toujours disponibles à l’ouverture vers la lumière naturelle.
  • En conception nouvelle, le bâtiment ne peut pas toujours être orienté avec ses larges façades au nord.

Des alternatives intéressantes à considérer sont les ouvertures de toiture :

Photo ouvertures de toiture.

Les ouvertures de type coupole représentent un potentiel important d’éclairage naturel mais avec son lot d’inconvénients comme, par exemple, l’éblouissement zénithal et la surchauffe en été.

Photos baies vitrées de type sheds.

Les baies vitrées de type sheds orientées au nord permettent de maîtriser la surchauffe et l’éblouissement d’été. Elles offrent bien d’autres avantages comme, par exemple, la possibilité de coupler l’éclairage naturel côté nord aux panneaux photovoltaïques placés sur le versant des sheds côté sud.


Les ouvertures verticales en toiture

Ouvertures verticales en toiture.

Début du siècle dernier, voire bien avant, ce type d’ouverture existait déjà. Nos ancêtres étaient bien inspirés en regard du confort visuel. Cependant, d’un point de vue thermique, les performances du simple vitrage et l’étanchéité des châssis ne permettaient pas des performances énergétiques géniales !

À l’heure actuelle, les performances thermiques des sheds deviennent très bonnes, ce qui permet à ceux-ci de pouvoir jouir d’une seconde jeunesse !

La mise en œuvre des sheds en conception nécessite quand même de respecter l’orientation nord-sud, et ce dans une « fourchette angulaire » relativement restreinte de manière à éviter les surchauffes et les éblouissements directs. De plus, d’un point de vue conceptuel, les sheds doivent être alignés sur la trame de la structure portante (alignement parallèlement ou perpendiculairement au rythme des poutres principales par exemple). Cette remarque montre la limite que l’on peut vite atteindre en cas de rénovation simple.

Schéma ouvertures verticales en toiture.

Les ouvertures verticales orientées vers le nord de type sheds apparaissent comme une solution très intéressante si l’on parvient à maîtriser le rayonnement solaire direct en début de matinée.

Le shed est intéressant sur plusieurs aspects. Il présente des avantages et inconvénients résumés dans le tableau suivant :

Avantages Inconvénients
  • Éclairage naturel uniforme et constant sans risque d’éblouissement pour les expositions au nord.
  • Ventilation intensive naturelle possible et efficace en règle générale.
  • Possibilité de combinaison d’une ventilation naturelle avec la fonction de désenfumage (exutoire de fumée sur certain châssis vitrés.
  • Support d’éventuels panneaux solaires photovoltaïques.
  • Récupération de surfaces internes contre les façades (pour le stockage par exemple).
  • Meilleure isolation que les voutes filantes ou les coupoles en général.
  • Une surface de déperdition plus importante.
  • Coûts de mise en œuvre de la toiture plus importants (cependant, partiellement compensés par la réduction des surfaces vitrées en façade).
  •  …

Les lanterneaux

Photo lanterneaux.

Les lanterneaux étaient et restent les ouvertures zénithales les plus répandues. On peut arriver à des performances énergétiques proches de celles des doubles vitrages plans par l’utilisation de polycarbonates double voire triple couche. Cependant, la surchauffe et l’éblouissement sont les ennemis du lanterneau. Pour limiter le risque d’éblouissement direct et la surchauffe, un vitrage opalin est recommandé. La transmission lumineuse du vitrage est cependant fortement diminuée et la relation avec l’extérieur altérée (plus de possibilités d’analyser la couleur du ciel).

De manière générale, l’ouverture zénithale avec un lanterneau présente des avantages et inconvénients résumés dans le tableau suivant :

Avantages Inconvénients
  • Éclairage naturel intéressant pour toutes les expositions.
  • Ventilation intensive naturelle possible et efficace en règle générale.
  • Possibilité de combinaison d’une ventilation naturelle avec la fonction de désenfumage (exutoire de fumée sur certains châssis vitrés.
  • Récupération de surfaces internes contre façades (pour le stockage par exemple).
  • Une surface de déperdition plus importante.
  • Coûts de mise en œuvre de la toiture plus importants (cependant, partiellement compensés par la réduction des surfaces vitrées en façade).
  • Risque de surchauffe et d’éblouissement direct.

Quantification de l’apport en éclairage naturel

Nous proposons ici, une étude théorique de l’apport en éclairage naturel de plusieurs solutions qui peuvent être envisagées dans un ateliers.

Quantitativement, l’apport en lumière naturelle au travers de différents types de baies vitrées passe par l’appréciation :

  • Du FLJ ou Facteur de Lumière du Jour. Le FLJ permet d’objectiver la qualité de la baie vitrée indépendamment de l’orientation, des conditions climatiques… On peut en tirer des enseignements quant à l’homogénéité de l’éclairage naturel, de la performance de la baie vitrée par rapport à sa taille, sa position dans la façade ou dans la toiture…
  • De l’autonomie en lumière du jour qui donne une idée relativement précise des consommations d’éclairage artificiel comme complément à l’éclairage naturel.

Un FLJ compris entre 3 et 5 % est en général un gage de bonne qualité de la lumière naturelle dans le local considéré. Dans la même optique, une autonomie en lumière naturelle de l’ordre de 50-60 % augure une bonne indépendance vis-à-vis de la lumière artificielle.

La quantification ne peut se réaliser que par l’utilisation d’outils de simulation dynamique en éclairage naturel. Des logiciels comme ECOTECH et DAYSIM.

Hypothèses de modélisation

La modélisation s’effectue en tenant compte de la volumétrie du projet de conception et des hypothèses sur :

  • L’horaire d’occupation : 06h00 à 22h00 ;
  • Le niveau d’éclairement : 300 lux à 0,80 m ;
  • Transmission lumineuse du vitrage : 70 % ;
  • Les coefficients de réflexion des parois internes :
  • Plafond : 40 %
  • Murs : 40 %
  • Dalle : 20 %

Simulation 1 : ouvertures verticales vers le nord en toiture

Schéma ouvertures verticales vers le nord en toiture.

Caractéristiques propres aux sheds

  • Surface nette éclairante : 99 m²
  • Surface nette éclairante/surface de la pièce : 10 %
  • Réflecteurs du plafond des sheds : 80 %

Facteur lumière du jour

Autonomie lumière du jour – 300 lux – 6h00 à 22h00

Que faut-il retenir ?

Analyse des résultats

FLJ (Facteur de Lumière du jour)*

DA (Autonomie en Lumière du Jour)*

1 < FLJ < 2 %

DA < 20 %

(*)

  • FLJ moyen (Facteur de Lumière du jour) sur l’ensemble de la surface considéré comme bon si 3 % < FLJ > 5 % ;
  • DA moyen (Autonomie en Lumière du Jour) sur l’ensemble de la surface considérée comme acceptable si DA > 50 %.

 Une zone d’ombre au niveau de la façade nord réduit fortement la performance globale du système de « sheds ».

Simulation 2 : Ouvertures verticales vers le nord en toiture + fenêtre verticale en façade

Schéma ouvertures verticales vers le nord en toiture.

Caractéristiques propres aux sheds

  • Surface nette éclairante : 124 m²
  • Surface nette éclairante/surface de la pièce : 13 %
  • Réflecteurs du plafond des sheds : 80 %

Facteur lumière du jour

Autonomie lumière du jour – 300 lux – 6h00 à 22h00

Que faut-il retenir ?

Analyse des résultats

FLJ (Facteur de Lumière du jour)*

DA (Autonomie en Lumière du Jour)*

2 < FLJ < 3 %

DA < 40 %

(*)

  • LJ moyen (Facteur de Lumière du jour) sur l’ensemble de la surface considéré comme bon si 3 % < FLJ > 5 % ;
  • DA moyen (Autonomie en Lumière du Jour) sur l’ensemble de la surface considérée comme acceptable si DA > 50 %.

Le placement d’un bandeau vitré en façade nord améliore permet de gommer les zones d’ombre. Globalement, le résultat est meilleur. Ceci dit, de manière pratique, tout dépend la hauteur à laquelle se situe ce bandeau, sachant que dans les ateliers toute surface vitrée en façade reste un inconvénient en termes d’exploitation des m² utiles.

Simulation 3 : ouvertures verticales vers le nord en toiture + fenêtre verticale en façade + optimisation

Schéma ouvertures verticales vers le nord en toiture - 2.

Caractéristiques propres aux sheds

  • Surface nette éclairante : 124 m² ;
  • Surface nette éclairante/surface de la pièce : 13 % ;
  • Réflecteurs du plafond des sheds : 80 % ;
  • Transmission lumineuse du vitrage 80 %.
  • Plafond : 60 %

Facteur lumière du jour

Autonomie lumière du jour – 300 lux – 6h00 à 22h00

Que faut-il retenir ?

Analyse des résultats

FLJ (Facteur de Lumière du jour)*

DA (Autonomie en Lumière du Jour)*

2,5 < FLJ < 5 %

DA < 40 %

(*)

  • LJ moyen (Facteur de Lumière du jour) sur l’ensemble de la surface considéré comme bon si 3 % < FLJ > 5 % ;
  • DA moyen (Autonomie en Lumière du Jour) sur l’ensemble de la surface considérée comme acceptable si DA > 50 %.

Tout en évitant l’éblouissement et les surchauffes, les sheds à vitrages clairs proposent une solution intéressante pour les ateliers. Le confort visuel y est assuré ! Pour autant que le système d’éclairage artificiel soit géré de manière efficace, les consommations électriques peuvent être réduites de manière significative.

Simulation 4 : voute filante – vitrage opalin  (TL 22 %)

Schéma voûte filante.

Caractéristiques propres aux lanterneaux

  • Surface nette éclairante : 157 m² ;
  • Surface nette éclairante/surface de la pièce : 16,3 % ;
  • Transmission lumineuse du vitrage : 22 %.
  • Plafond : 60 %

Facteur lumière du jour

Autonomie lumière du jour – 300 lux – 6h00 à 22h00

Que faut-il retenir ?

Analyse des résultats

FLJ (Facteur de Lumière du jour)*

DA (Autonomie en Lumière du Jour)*

1 < FLJ < 2 %

DA < 30 %

(*)

  • LJ moyen (Facteur de Lumière du jour) sur l’ensemble de la surface considéré comme bon si 3 % < FLJ > 5 % ;
  • DA moyen (Autonomie en Lumière du Jour) sur l’ensemble de la surface considérée comme acceptable si DA > 50 %.

Ce type de configuration ne donne pas lieu à des résultats encourageants. D’autant plus, qu’avec les lanterneaux, on n’évite pas les éblouissements et les surchauffes d’été. En pratique, les occupants des espaces de travail sont obligés de se protéger par des toiles horizontales. Lorsqu’elles sont fixes, l’effet d’éclairage naturel est perdu. La mise en place d’un système de gestion automatique coûte très cher !

Simulation 5 : voute filante – vitrage opalin  (TL 35 %)

Schéma voûte filante - 2.

Caractéristiques propres aux lanterneaux

  • Surface nette éclairante : 157 m² ;
  • Surface nette éclairante/surface de la pièce : 16,3 % ;
  • Transmission lumineuse du vitrage : 35 %.
  • Plafond : 60 %

Facteur lumière du jour

Autonomie lumière du jour – 300 lux – 6h00 à 22h00

Que faut-il retenir ?

Analyse des résultats

FLJ (Facteur de Lumière du jour)*

DA (Autonomie en Lumière du Jour)*

2 < FLJ < 3 %

DA < 45 %

(*)

  • LJ moyen (Facteur de Lumière du jour) sur l’ensemble de la surface considéré comme bon si 3 % < FLJ > 5 % .
  • DA moyen (Autonomie en Lumière du Jour) sur l’ensemble de la surface considérée comme acceptable si DA > 50 %.

L’augmentation de la transmission lumineuse améliore la situation, mais amplifie aussi l’inconfort d’éblouissement et l’inconfort thermique en été.

Conclusions

De manière générale, les sheds donnent des résultats très intéressants. D’autant plus que la qualité de la lumière naturelle captée par les sheds est excellente pour les raisons déjà évoquées précédemment, à savoir :

  • la source d’éclairage naturel diffuse est relativement constante et pas éblouissante ;
  • les surchauffes dues aux apports directs sont évitées.

Envisager le placement d’un bandeau vitré en façade nord et une augmentation du coefficient de réflexion du plafond amélioration les performances des sheds ;

L’utilisation des lanterneaux permet d’approcher les critères de FLJ et ALJ envisagés (FLJ compris entre 3 et 5 %, ALJ > 50 %). Cependant, l’éblouissement doit être maîtrisé sachant que le rayonnement solaire direct est limité, mais toujours présent. De plus, les surchauffes potentielles ne seront pas évitées.


Quantification en éclairage artificiel

Partant du principe que le confort lumineux doit être assuré en présence ou pas d’éclairage naturel, un complément d’éclairage artificiel est nécessaire. Normativement, le dimensionnement de l’éclairage artificiel s’effectue sans les apports de lumière naturelle. La démarche énergétique d’un système d’éclairage artificiel réside donc dans sa capacité à moduler la puissance installée en fonction de l’éclairage naturel. En effet, pour autant qu’il n’y ait pas d’éblouissement, meilleure l’autonomie en lumière du jour sera, moins fort sera le poids des consommations d’éclairage artificiel pour donner le complément de confort nécessaire.

Dans le cas de l’atelier considéré, le choix du type d’éclairage artificiel et surtout du type de luminaire, passe par une étude de type Dialux permettant de comparer des luminaires entre eux.

Choix du type de luminaire

Quel type de lampe ?

Dans l’atelier de hauteur inférieure à 7-8 m, deux types de source lumineuse ont été envisagées, à savoir :

  • les lampes aux halogénures métalliques ;
  • les tubes fluorescents.

Photo lampes aux halogénures métalliques.

Luminaire à lampe aux halogénures métalliques.

Photo luminaire à lampe aux halogénures métalliques.

Luminaire à tubes fluorescents.

 Quel type de luminaire ?

Luminaire à lampe aux halogénures métalliques.

Luminaire à tubes fluorescents.

Une étude technico-économique peut être réalisée de façon à pouvoir sélectionner la meilleure solution. Il en ressort, que les luminaires à tubes fluorescents sont à préférer. Les principales raisons sont les suivantes :

  • Une grande efficacité énergétique,
  • Un très bon rendu des couleurs,
  • Une durée de vie importante,
  • Un faible coût d’investissement.

De plus, si on les compare aux lampes aux halogénures métalliques, on constate que :

  • Leur faible flux lumineux (4.300 lm pour une lampe de 49 W) les rend moins éblouissantes que les lampes aux halogénures ;
  • De même, elles nécessitent l’installation d’un plus grand nombre de lampes. On obtiendra ainsi une plus grande uniformité d’éclairement qu’avec des lampes à décharge haute pression et une réduction des ombres portées ;
  • Vu le grand nombre de points lumineux, si une lampe est défectueuse, elle ne laissera pas une tache sombre au sol en attendant d’être remplacée ;
  • Elles peuvent être dimées facilement et permettent donc une gestion de commande plus perfectionnée.

Choix du système d’éclairage

En fonction de la géométrie de l’atelier et pour des raisons de modularité, de flexibilité et de rendement, une solution est privilégiée :

  • Une base de 4 rails de ligne lumineuse (utilisé à titre d’exemple dans la modélisation) traversant le hall. Ces rails ont été fixés au-dessus du pont roulant ;
  • Les luminaires sont alors attachés simplement par des verrous quart de tour.

Le câblage spécialement conçu et intégré d’usine dans le rail porteur du luminaire révolutionne la méthode d’installation, la rend variable, nettement plus rapide et plus simple.

 

Coupe transversale d’un rail précablé et luminaire adapté au rail profilé pour un montage rapide.

  

Source : Zumtobel.

Évaluation du niveau d’éclairage artificiel

Modélisation

Schéma modélisation.

La modélisation de l’éclairage artificiel est réalisée pour un niveau d’éclairement souhaité de 300 lux sur base des hypothèses suivantes :

  • Hauteur du plan de travail : 0,80 m
  • Facteur d’entretien : 0,70
  • Facteur de réflexion :
  • Sol : 0,2
  • Mur : 0.5
  • Toit : 0,5
  • Niveau d’éclairement souhaité de 300 lux

 Simulation

  

liste des luminaires
Quantité Désignation (Facteur de maintenance) φ (lm) P (W)
1 60 Tubes fluorescents sur rails lumineux 2 x 49 W T16 8 600 109
Total 516 000 6 540
Puissance installée spécifique : 6,81 W/m² (surface au sol 960 m²)
Puissance installée spécifique : 2,12 W/m²/100 lux (surface au sol 960 m²)

Adaptabilité

La principale caractéristique de ce type d’installation sur rail est de pouvoir accepter tous les luminaires de la gamme et donc on peut alterner différente puissance et dimension de tube.

Il est donc possible d’adapter le nombre et le type de luminaire pour augmenter le niveau d’éclairement souhaité en un point en fonction de l’activité.

Évaluation des consommations d’énergie

L’influence d’une gestion en fonction de la lumière du jour est évaluée, à partir du logiciel LIGHTSWITCH, selon le niveau d’éclairement souhaité et selon le type d’ouverture prévue en toiture.

On considère que l’éclairage est allumé tout les jours de la semaine de 6h00 à 22h00. Le niveau d’éclairement maintenu est de 300 lux sur l’ensemble de l’espace.

Lumière du jour

En conception, l’éclairage est dimensionné sans prendre en compte l’apport de lumière naturelle. Par contre, une gradation automatique commandée en fonction de la lumière du jour permet d’adapter la puissance de l’éclairage en fonction de l’apport de l’éclairage naturel. Un capteur enregistre la quantité de lumière du jour et réduit le flux lumineux de l’éclairage en fonction de leur position par rapport à la fenêtre.

Maintenance control

Les installations d’éclairage doivent être surdimensionnées pour pouvoir remplir les dispositions de la norme EN 12464 en matière d’éclairement minimal à maintenir durant toute l’utilisation. C’est pourquoi on calcule généralement une réserve très large, vu que l’éclairement diminue au fur et à mesure du vieillissement, de l’encrassement des luminaires, de l’encrassement de la pièce et de la durée de vie de la lampe.

Des installations de gestion centralisée permettent de piloter les lampes de manière à maintenir toujours le niveau d’éclairement à la valeur requise. Ainsi seule l’énergie absolument nécessaire est consommée. Des éclairements plus élevés permettent en plus d’optimiser les intervalles de maintenance.

Sans maintenance Control
Un flux lumineux trop élevé et une forte consommation en permanence.

Avec maintenance Control
Un flux lumineux constant et une consommation réduite.
Calculé sur une période de 15 ans, cette fonction permet d’économiser
jusqu’à un tiers des frais d’exploitation des luminaires et en même temps de rallonger sensiblement les intervalles d’entretien.

Le facteur de maintenance considéré pour le dimensionnement de l’éclairage est de 0,70. L’éclairage est donc surdimensionné de 30 %. Le maintien d’un flux constant permet d’économiser de l’ordre de 10 %.

Consommations énergétiques

Suivant les différentes configurations d’éclairage naturel envisagées ci-dessus, les consommations énergétiques de l’éclairage artificiel sont simulées :

Puissance installée : 7 W/m² Consommation annuelle théorique d’éclairage artificiel selon le type de gestion
Gestion en fonction d’un horaire Gestion automatique de la lumière du jour sur bas d’un Heliomètre positionné Gestion automatique de la lumière du jour sur bas d’un Heliomètre positionné + maintient du flux constant
Alt 1 Éclairage zénithal nord – vitrage sélectif 30,0 kWh/m².an 25,0 kWh/m².an 16,7 % 22,7 kWh/m².an 24,3 %
Alt 2 Éclairage zénithal nord + bandeau lumineux en façade nord – vitrage sélectif 30,0 kWh/m².an 22,4 kWh/m².an 25,3 % 20,4 kWh/m².an 32,0 %
Alt 3 Éclairage zénithal nord + bandeau lumineux en façade nord – vitrage clair – parois claires 30,0 kWh/m².an 20,2 kWh/m².an 32,7 % 18,5 kWh/m².an 38,3 %
Alt 4 Éclairage zénithal coupole  – vitrage translucide (TL 22 %) + parois claires 30,0 kWh/m².an 24,3 kWh/m².an 19 % 22,1 kWh/m².an 26,3 %
Alt 5 Éclairage zénithal coupole  – vitrage translucide (TL 35 %) + parois claires 30,0 kWh/m².an 19,6 kWh/m².an 34,7 % 18 kWh/m².an 40 %

 

D’un point de vue consommation énergétique, les alternatives 3 et 5 avec une gestion automatique par rapport à la lumière du jour et un maintien du flux constant sont intéressantes. Cependant, il faut rappeler que d’un point de vue confort visuel (éblouissement) et thermique (surchauffe d’été), l’alternative 3 avec les sheds orientés au nord est celle qui donne les meilleurs résultats.

Choisir l’emplacement des luminaires dans les commerces

Les situations sont tellement nombreuses dans les commerces qu’il est impossible de donner une règle générale permettant de positionner idéalement les luminaires.

Parmi les caractéristiques à ne pas perdre de vue, la hauteur des rayons est d’une grande importance. Elle influencera les niveaux d’éclairement et l’uniformité de l’éclairage général. Dans le cas de rayonnage haut, comme ceux que l’on retrouve dans les supermarchés, il faudra bien tenir compte de la position relative des luminaires par rapport aux rayonnages. Le dimensionnement devra être réalisé par un logiciel de calcul permettant de prendre en compte la position et la taille de ces meubles.

Choisir les ballasts et les « drivers »

Choisir les ballasts et les "drivers"


Les ballasts pour lampes fluorescentes

Techniques

En conception, choix s’effectue entre 3 types de ballasts :

  • électronique avec préchauffage,
  • électronique sans préchauffage,
  • électronique gradable ou dimmable.

BE pour tube T8, BE pour tube T5, BED pour tube T5.

  • BE : ballast électronique
  • BED : ballast électronique « dimmable »

En fonction de la durée d’utilisation

En conception, il est illusoire de vouloir faire une comparaison de performance entre un ballast électromagnétique et un ballast électronique. En effet, le ballast électronique a une consommation propre plus faible que le ballast électromagnétique et augmente la durée de vie des lampes. Le ballast électromagnétique à très faible perte reste sur le marché uniquement pour des circonstances où le ballast électronique n’est pas à recommander (p.ex. certains environnements industriels).

Il faut cependant savoir qu’un ballast électronique implique un risque de défectuosité plus grand qu’un ballast électromagnétique. Ceci est normal étant donné le nombre de composants de ces ballasts. Il faut donc choisir des ballasts de qualité, éprouvés sur le marché.

Des ballasts électroniques à préchauffage doivent être placés dès que l’installation est susceptible d’être allumée et éteinte plus de 2 fois par jour.

Ce n’est que dans le cas d’une utilisation absolument continue des lampes que le ballast électronique sans préchauffage peut être utilisé. En outre, toutes les marques de lampe ne peuvent fonctionner correctement avec tous les ballasts électroniques. Chaque ballast est conçu pour une résistance donnée des électrodes du tube fluorescent. On peut ainsi avoir un taux de défectuosité important des lampes uniquement parce que la marque des tubes fluorescents utilisés n’est pas compatible avec la marque du ballast choisi. Au moment de l’installation, il est difficile de vérifier si ce problème est présent. On peut cependant se renseigner auprès du fabricant (de luminaires ou de ballasts) pour savoir si le ballast proposé a été développé pour les lampes choisies.

En fonction de l’apport de lumière naturelle

Lorsque les locaux bénéficient d’un pourcentage standard d’ouverture dans la façade de 40 .. 60 %, le fait de placer des ballasts électroniques dimmables permet de tabler sur des économies d’énergie de l’ordre de 30 .. 50 % pour la rangée de luminaires proche des fenêtres et 15 .. 30 % pour la rangée contiguë en cas de gestion appropriée.

La rentabilité du système de gestion dépendra bien entendu, du tarif électrique appliqué au bâtiment.

Calculs

Pour estimer le gain réalisé en plaçant des ballasts électroniques dimmables : cliquez ici !

Par rapport à la classe énergétique définie dans la directive 2000/55/CE

Pour les ballasts électroniques, on impose que la catégorie énergétique soit au minimum A3.

Pour assurer plusieurs niveaux d’éclairements et/ou éviter le suréclairement

Dans certaines situations, il est intéressant de placer des ballasts électroniques dimmables. Ceux-ci, raccordés à un simple dimmer permettent, après installation, d’ajuster le niveau d’éclairement en fonction des réactions des utilisateurs ou des besoins réels. Par exemple, dans les salles de sports utilisées pour la compétition, on doit assurer plusieurs niveaux d’éclairement.

Si les luminaires ne sont pas prévus pour allumer un nombre différent de lampes par luminaire, les différents niveaux peuvent être atteints par « dimming« . Dans ce cas, on devra opter pour des ballasts électroniques dimmables.

Ceux-ci permettent d’ajuster le niveau d’éclairement en fonction des besoins. En outre, on limite ainsi le surdimensionnement inévitable des nouvelles installations.

Pour assurer une plus grande sécurité

Beaucoup de machines, dans les ateliers, ont des mouvements périodiques. L’utilisation de lampes fluorescentes ou à décharge (au sodium haute pression, aux iodures métalliques,…) risquent, si elles sont alimentées à la même fréquence que les machines, de provoquer des illusions d’optiques très dangereuses pour l’utilisateur. Ce phénomène s’appelle l’effet stroboscopique : si une machine tourne à la même fréquence que le clignotement des lampes (par exemple 50 Hz), on aura l’impression qu’elle est immobile, ce qui peut provoquer des accidents très graves.

Machine tournante éclairée par une lampe avec ballast haute fréquence (à gauche) et éclairée par une lampe avec ballast 50 Hz (à droite).

Pour éviter cela, on choisira de nouveau les ballasts électroniques qui, contrairement aux ballasts électromagnétiques traditionnels, fonctionnent eux à haute fréquence (plus de 25 kHz).

En cas d’hésitation

Certains constructeurs proposent des luminaires intelligents possédant un grand nombre de fonctions qui sont initialement bloquées (gradation, régulation en fonction de la lumière du jour, …). Celles-ci peuvent être activées par après grâce à l’utilisation de l’interface standard DALI.

Ce genre de système présente deux gros avantages :

  • Le coût de base du luminaire correspond aux fonctions disponibles initialement. Chaque ajout de fonctions devra être payé par après.
  • Lorsque l’on veut ajouter des fonctions au système d’éclairage, il n’est plus nécessaire de réaliser des travaux importants et coûteux de remplacement des luminaires et de câblage. La fonction est simplement débloquée grâce à une extension logicielle.

Particularité des hôpitaux

La lampe fluorescente et son ballast produisent des ondes électromagnétiques. Celles-ci sont accentuées avec l’utilisation de ballasts électroniques. Elles peuvent perturber le fonctionnement des appareils électroniques de précision (électro-encéphalogramme, électro-cardiogramme, …). C’est pourquoi leur utilisation peut parfois poser des problèmes dans les salles d’opération, les soins intensifs, … Ce problème est encore plus critique pour les lampes fluocompactes à ballast incorporé car celui-ci n’est pas déparasité.

Pour limiter les risques, on peut :

  • exiger la garantie du fabricant du luminaire quant à l’utilisation de son matériel dans ces circonstances particulières, et exiger la conformité aux normes concernant les ballasts électroniques :
    • EN 60928        sécurité
    • EN 60929        fonctionnement
    • EN 61547        compatibilité électromagnétique
    • EN 61000-3-2  harmoniques
  • éloigner le plus possible les appareils de mesure des luminaires, les perturbations diminuant avec la distance,
  • sortir tous les ballasts de la zone de travail,
  • utiliser, à défaut, des lampes halogène.


En tout cas, les luminaires devront, au minimum, porter un label garantissant la limitation des émissions parasites.

Concevoir

Choix des auxiliaires.

Les ballasts pour lampes à décharge

  • Ballast électronique, pour lampe à vapeur de sodium HP.
  • Ballast électronique pour lampe aux iodures métalliques.

En fonction de la durée de vie de la lampe

Pour les lampes à décharge au sodium haute pression ou aux iodures métalliques, les ballasts électroniques s’imposent, car ils peuvent accroître la durée de vie des lampes à décharge jusqu’à 30 %.

En fonction de la sécurité

Ici aussi, les ballasts électroniques sont recommandés pour la simple raison qu’ils éliminent les problèmes de clignotement et, par conséquent, d’effet stroboscopique.

En fonction de l’apport de lumière naturelle

À l’heure actuelle, certains constructeurs proposent des ballasts électroniques dimmables pour les lampes à décharge à vapeur de sodium HP et à iodure ou halogénure métallique (surcoût de 20 % par rapport aux ballasts électroniques). Certains constructeurs proposent même des ballasts électroniques dimmables et programmables de type DALI. Avec ce type de ballast, les flux sont réglables jusqu’à 50 % de la valeur nominale. Mais le dimming des lampes à iodure ou halogénure risque encore de poser des problèmes (changement de couleur).


Les ballasts DALI

À l’heure actuelle, les ballasts électroniques de type DALI ont le même ordre de grandeur de prix que les ballasts électroniques dimmables analogiques. Dans les bâtiments de taille moyenne ou importante et avec des apports de lumière naturelle corrects, on a tout intérêt à orienter le choix d’un ballast vers un type DALI. Il offre beaucoup plus de possibilités :

  • de gestion centralisée par groupe adressable de façon à générer facilement des zonages. Les zonages seront très flexibles et permettront au bâtiment d’évoluer sans grand investissement comme le recâblage ;
  • de contrôle des lampes à distance ;
  • d’interfaçage facile avec des bus de type IEB (KNX) ;

Les drivers des LEDs

 En général, chaque LED à sa propre alimentation ; c’est un gage de qualité ! Les LEDs étant souvent commandées en très basse tension et en faible courant, il faut se méfier des chutes de tension en ligne entre le driver et la lampe. Pour cette raison, il est nécessaire de limiter les longueurs de câble. Pour tout système d’éclairage à LED, le choix de l’alimentation prendra en compte de la concordance entre celle-ci et la source d’éclairage :

  • des tensions et courants de commande ;
  • de la puissance ;
  • de la classe d’isolation électrique (classe I à III ou de la simple isolation à la double en très basse tension).

Driver dimmable de lampe LED et driver  à courant constant de lampe LED.

Choisir les cables du réseau de distribution

Choisir les cables du réseau de distribution

Influence de la section des câbles

Pour les circuits d’éclairage fortement chargés, où le courant absorbé est de l’ordre de 10 A, il est intéressant de dimensionner les câbles de distribution en 2.5 mm2 plutôt qu’en 1.5 mm2. En effet, la réduction des pertes par effet joule (et donc de la consommation) compense le surcoût dû à l’augmentation de section.

Exemple

Soit l’installation suivante :

  • Des luminaires de 58 W chacun.
  • Le premier luminaire est séparé d’un mètre de l’alimentation 230 V.
  • Les luminaires suivants sont séparés entre eux de 1 mètre.
  • Chaque luminaire est parcouru par un courant de l’ordre de 0.3 A et donc la première section du circuit d’éclairage est parcourue par un courant de l’ordre de 10 A, le second 9.7 A, etc …

 

On bénéficie aussi des données suivantes :

  • le prix du kWh est de 0.17 €,
  • le surcoût du câble en 2.5² par rapport au 1.5² est de l’ordre de 3,67 €/m.

On prend les hypothèses suivantes :

  • la perte des ballasts est négligeable par rapport à la puissance consommée par les lampes ;
  • l’installation fonctionne 2 500 heures par an.

On obtient les résultats suivants :

Interprétation

Le choix d’une section de 2.5 mm² au lieu de 1,5 mm² est assez peu rentable quel que soit le nombre de luminaires (entre 10 et 30 ans). Le temps de retour simple est, exprimé comme le rapport entre le surcoût d’une section 2.5 mm² par rapport à une section de 1,5 mm² et le coût de la réduction de consommation par effet joule (moins de perte dans une section de 2,5 mm² que dans 1,5 mm²).

Conclusion

Sur la durée de vie de l’installation d’éclairage (> 30 ans), on a intérêt à légèrement surdimensionner les sections de câbles. C’est le prix du cuivre qui réduit fortement la rentabilité.

Choisir le type d’éclairage : direct, mixte ou indirect ?

Éclairage direct

C’est l’éclairage direct qui donne les meilleurs résultats en termes de conception énergétique. On peut arriver à des valeurs de puissance spécifique sous certaines conditions de l’ordre de 1,5 W/m²/100 lux. Suivant l’usage des locaux ou des espaces dans les locaux, trois types d’éclairage ou un mixte des trois seront envisagés :

  • un éclairage général uniforme ;
  • un éclairage général orienté ;
  • un éclairage ponctuel.

Éclairage général uniforme

L’éclairage général uniforme  permet d’avoir une grande flexibilité des postes de travail. Attention toutefois que ce genre de considération conduit souvent à un surdimensionnement inutile des installations d’éclairage. La dernière version de la norme NBN EN 12464-1 palie à ce risque de surdimensionnement. En effet, dans la zone dite « de fond », le niveau d’éclairement peut être réduit au tiers de celui de la zone de travail et l’uniformité à 0,1. Ce qui permet d’envisager un éclairage général uniforme de faible niveau d’éclairement et de prévoir des zones de travail mobiles et flexibles avec l’uniformité et le niveau d’éclairement requis. Énergétiquement parlant, c’est acceptable et vivement conseillé.

Exemple
Soit un hall d’usinage qui demande une très grande flexibilité par rapport à la position des postes de travail. Le niveau d’éclairement pour certains postes de travail pourrait être de 750 lux. Selon la NBN EN 12464-1, le niveau d’éclairement moyen devrait s’élever à 250 lux.

 

Cette configuration de luminaires permet d’envisager :

  • De modifier complètement la disposition du hall sans toucher à l’éclairage ;
  • Une disposition variable des postes de travail sur toute la surface du hall ;
  • L’installation de nouveaux équipements.

Les caractéristiques des luminaires peuvent être les suivantes :

  • Une répartition de façon non préférentielle ;
  • Des luminaires à caractéristiques modifiables (position des lampes, type de réflecteur, …) ;
  • Des luminaires montés sur rails porteurs, donc facilement déplaçables ; ce qui avait été envisagé dans l’étude de cas réalisée.

Éclairage général orienté

Lorsque la position des zones de travail est fixe (tableau d’une salle de cours, écran d’une salle de réunion, machines-outils fixes, …), localiser l’éclairage près des zones de travail est une excellente méthode pour limiter la puissance installée.
Attention toutefois au recommandation de la norme NBN EN 12464-1 :  Éviter des contrastes trop élevés. Dans la zone dite « de fond »,  le niveau d’éclairement peut être réduit au tiers de celui de la zone de travail et l’uniformité à 0,1.
De manière générale, ce type d’éclairage permet :

  • D’envisager un niveau d’éclairement plus faible pour les circulations.
  • D’éviter de trop éclairer des zones où la lumière naturelle est présente en abondance sachant que lorsqu’il fait noir dehors, l’éclairage de la zone devant la baie vitrée n’est pas nécessaire.
  • Par le choix de luminaires asymétriques, obtenir un éclairement suffisant sur des plans verticaux comme dans les rayonnages des archives par exemple.

Le choix de l’éclairage général orienté devra aussi composer avec la structure du plafond et l’emplacement des poutres de structures qui risquent de faire écran à la disposition de la lumière ; à méditer !

Attention toutefois qu’un éclairage orienté mal positionné provoque des ombres indésirables et peut être dangereux notamment dans les ateliers où les postes de travail sont, par exemple, des machines tournantes.
Lorsqu’un atelier comporte des machines-outils dangereuses, des marquages appropriés doivent délimiter les zones de circulation et de travail, ainsi que les zones de danger. L’éclairage doit alors appuyer ces mesures en insistant sur les trois types de zone.

Éclairage ponctuel

Ce type d’éclairage permet de disposer d’un éclairement important au niveau des postes de travail de précision, sans augmenter exagérément le niveau d’éclairement général. Cette solution est toute profitable d’un point de vue énergétique.

Les luminaires individuels complémentaires  peuvent augmenter localement le niveau d’éclairement et accentuer certains contrastes.

Leur emplacement doit être approprié pour ne pas générer des situations dangereuses de travail :

Soit le ou les luminaires sont placés dans les allées encadrant les postes de travail, et ce en veillant à ce que la lumière provienne des côtés et qu’il n’y ait ni ombre ni d’éblouissement gênant.
Soit le ou les luminaires sont placés contre les postes de travail. Idéalement, ces luminaires devraient être équipés d’un gradateur de lumière. La position et l’orientation de ces luminaires doivent être réglables pour éviter les réflexions sur les objets éclairés.

Conseil : pensez  éventuellement à placer un interrupteur ou un détecteur de présence/d’absence à chaque poste de travail pour éviter que ces lampes restent allumées inutilement à des postes non-occupés.

Pour éviter de trop grandes variations de luminance dans le champ de vision des utilisateurs, maintien d’un niveau d’éclairement général suffisant par rapport à l’éclairement de la tâche :

Éclairement général = 3 x (Éclairement ponctuel)½

 Exemple dans les commerces

Dans les commerces d’ancienne génération, on se souvient tous, même les plus jeunes, du surdimensionnement de l’éclairage général uniforme de manière à couvrir l’ensemble de la surface de vente avec des niveaux d’éclairement de l’ordre de 750 lux. « Question de marketing, disaient les vendeurs ! »

Cependant, cet éclairage présente le risque de créer des zones d’ombre qui peuvent se révéler gênantes. Ce risque est d’autant plus important que la hauteur sous plafond est grande et que l’on utilise des luminaires suspendus. De plus, énergétiquement parlant, ce n’était pas la meilleure manière de travailler.

Le système direct à deux composantes est à préférer au système direct lorsque l’on veut mettre en valeur des objets, créer des contrastes de luminosité. On réalisera des économies d’énergie d’autant plus importantes que le niveau d’éclairement à assurer est supérieur au niveau d’éclairement général nécessaire (censé permettre un déplacement par exemple). On économisera de l’énergie en augmentant l’éclairage localement via un deuxième circuit plus intensif que le premier. Dans la pratique, on vérifiera ce constat théorique en réalisant une étude comparative des systèmes « directs »  et « à deux composantes ».

Éclairage indirect

Un éclairage indirect via le plafond a l’avantage de ne pas provoquer d’éblouissement par la vue directe des lampes. La probabilité d’ombre est inférieure. Mais son efficacité énergétique est faible et fort dépendante des coefficients de réflexion des parois (généralement le plafond).  Comme ceux-ci n’atteignent que rarement les 0.85, il faudra surdimensionner l’installation d’éclairage (en première approximation entre 15 et 30% voire 50% dans locaux où la hauteur sous plafond est importante) pour réaliser un éclairement équivalent à celui fourni par un éclairage direct. Ce système sera fortement dépendant de l’état de propreté des parois du local (ceci peut aussi conduire à la nécessité de surdimensionner l’installation de plus d’une vingtaine de pour cent par rapport à un éclairage direct).

 Exemple dans les commerces

Ce type d’éclairage sera proscrit sachant que, typiquement dans les commerces de type grande surface, les plafonds sont parcourus par des gaines de ventilation, des chemins de câbles électriques, … La tendance actuelle, bien comprise par un certain nombre de responsables énergie de magasin de grande distribution, est de prescrire un éclairage direct bien positionné avec un plafond sombre pour masquer sensiblement les techniques spéciales apparentes.

Éclairage mixte

Du point de vue efficacité énergétique, ce système se situe entre les systèmes directs et indirects. Plus la composante directe sera prépondérante, moins énergivore le système sera.

Il est à noter que les pertes complémentaires dues à la partie indirecte de l’éclairage seront en partie compensées par un rendement total du luminaire mixte souvent plus important que celui du luminaire direct.

En ce qui concerne le confort, ce type de système peut trouver son utilité dans le cas de locaux possédant une grande hauteur sous plafond, pour éviter la création d’une zone d’ombre trop importante. Ce constat est d’autant plus marqué si l’on utilise des luminaires suspendus. Dans ce cas, une faible proportion de flux lumineux dirigée vers le haut suffira.

Bien entendu, si la hauteur sous plafond est raisonnable, la réflexion sur les murs et le sol suffira à éclairer suffisamment le plafond.

Comme dans le cas du système indirect, ce système sera dépendant de l’état de propreté des parois du local (ceci peut conduire à la nécessité de surdimensionner l’installation de plus d’une vingtaine de pour cent par rapport à un éclairage direct).

 Exemple des commerces

Lorsque les plafonds ou faux plafonds sont de qualité acceptable et ne sont pas encombrés par des techniques spéciales apparentes, on pourra envisager ce type d’éclairage en favorisant la composante directe des luminaires, la composante indirecte donnant un « look » commercial intéressant.
« Il en faut pour tous les goûts ! »
Un autre exemple éclairant

On peut considérer que seul le flux dirigé vers le bas est efficace. En effet, la plupart du temps les luminaires sont situés au-dessus de la marchandise à éclairer. La plupart du temps seulement, car dans certains cas, la lumière émise vers le haut peut avoir un effet utile (éviter la présence d’une ombre gênante au niveau du plafond…).

Si l’on considère que seule la lumière dirigée vers le bas est utile, alors on peut introduire la notion de rendement utile du luminaire. Soit un appareil possédant les rendements suivants :

Rendement vers le bas : 30 %
Rendement total : 90 %
Rendement vers le haut : 60 %

La lumière dirigée vers le haut, avant d’atteindre la marchandise, devra être réfléchie par le plafond. Si on considère que cette surface possède un coefficient de réflexion de 0.7, alors 30 % de la lumière émise vers le haut sera « perdue ». On peut donc estimer que le luminaire possède les rendements utiles suivants :

Rendement vers le bas : 30 % Rendement total : 72 %
Rendement vers le haut :
60 * 0.7 = 42 %

Le rendement du luminaire a ainsi diminué de 20 %.

La figure suivante donne le facteur par lequel il faut multiplier le rendement pour trouver son équivalent « utile » en fonction du type d’éclairage choisi et pour un coefficient de réflexion de 0.7 pour le plafond. Notez que cette valeur est celle prise de manière standard. Cette valeur est assez élevée puisqu’elle correspond à un plafond peint en blanc. La valeur de ce coefficient descend à 0.25 si la peinture est brune et à 0 dans le cas d’un plafond noir.

Bien entendu, ce calcul est simplifié. Pour être exact, on devrait tenir compte de l’influence du système d’éclairage sur l’uniformité des niveaux d’éclairement, des autres réflexions sur les murs du local, …

Le but de cet exemple est de montrer qu’il est essentiel, lorsque l’on vise l’efficacité énergétique de limiter la composante supérieure du flux émis.

Comparaison en termes d’efficacité énergétique

Un point de comparaison s’impose entre les différents éclairages :

Comparaison de trois systèmes d’éclairage pour une même puissance installée :

6 luminaires de 2 x 36 W (et ballast électronique),
pour une classe de 7 m x 8 m x 3,2 m, soit 7,7 W/m²,
coefficients de réflexion : 0,7 (plafond); 0,5 (murs); 0,3 (sol).

Système d’éclairage

Direct Mixte Indirect

Éclairement sur le plan de travail

348 lux 350 lux 231 lux

Éclairement au sol

310 lux 304 lux 207 lux

Type de lampes

Tubes fluo Tubes fluo Tubes fluo

Puissance spécifique/100 lux sur le plan de travail

2,2 W/m2 2,2 W/m2 3,3 W/m2

Parmi les choix énergétiquement corrects, on retiendra le direct et le mixte. L’indirect sera juste réservé pour créer des ambiances bien spécifiques lorsque ce choix se révèle incontournable comme dans certains locaux d’hôtel (bar, accueil, …), des chambres d’hôpital, …

Découvrez ces exemples de rénovation de l’éclairage : un établissement scolaire au centre de Liège et une fabrique de peinture à Lausanne.

Choisir les luminaires – critères généraux

Choisir les luminaires - critères généraux


En fonction de la distribution lumineuse souhaitée

Lorsque l’on choisira un luminaire, il faudra bien faire attention à sa courbe photométrique. Elle indique la distribution des luminosités d’un luminaire dans le sens transversal et dans le sens longitudinal (définition des plans de coupe).

distribution lumineuse

Par exemple dans le cas des allées de supermarchés illuminées par un jeu de luminaires équipés de tube fluorescent (pas d’éclairage d’accentuation), on choisira des luminaires éclairant plus fortement les rayonnages (300 lux à assurer) que le sol (150 lux à assurer). Dans beaucoup de commerces, tels que les magasins d’habillement, on essaiera de fournir un éclairage vertical important.

La hauteur du local peut aussi influencer le choix du luminaire où l’optique permet une distribution extensive, symétrique, asymétrique, intensive en modifiant le niveau d’éclairement, l’uniformité, …

Hauteur Type de luminaire
2,5 – 3 m Luminaires à distribution extensive avec tubes fluorescents disposés individuellement ou en rangées en fonction du niveau d’éclairement à atteindre. Des luminaires asymétriques peuvent être disposés le long des fenêtres éventuelles.

3 – 4 m Les luminaires sont semblables à la situation précédente: disposés en rangées sur le plafond ou suspendus, parallèlement aux fenêtres principales et à l’axe habituel du regard des occupants.

4 – 7 m

Toit plat avec ou sans lucarne ou toit en dent de scie

Ici aussi, le choix le plus économique est l’utilisation de luminaires avec lampes fluorescentes, disposés en rangées parallèles aux ondulations du toit. Si la hauteur sous plafond est inférieure à 5 m, on choisira une distribution extensive. Au-delà de 5 m, la distribution intensive est la plus adéquate.

7 m et plus La meilleure solution sont des luminaires à distribution symétriques équipés de lampes à décharge haute pression de puissance importante (250 .. 1 000 W). Tout en garantissant l’uniformité correcte, on a tout intérêt à avoir la puissance la plus élevée par luminaire, ce qui permet de diminuer le nombre de luminaires et par la même occasion les frais de maintenance et d’installation.

Lorsque des surfaces inclinées doivent disposer d’un éclairement important, il sera nécessaire d’installer des luminaires supplémentaires équipés de lampes fluorescentes. Si la surface des pièces travaillées ou des équipements utilisés est sensible aux réflexions, seuls des luminaires intensifs avec tubes fluorescents et ventelles peuvent convenir (cfr. cas précédent).
et du coût de remplacement des lampes.

En fonction de l’éblouissement

En fonction de la tâche exécutée, la sensibilité des occupants à l’éblouissement et aux réflexions sera plus ou moins grande.

Les normes introduisent le paramètre du taux d’éblouissement unifié (UGR) qui caractérise le niveau d’éblouissement ou la luminance apparente d’un ensemble de luminaires par rapport à la luminance de fond perçue dans le champ visuel d’un ou de plusieurs observateurs. Cette valeur, recommandée par la norme suivant le type de local ou de tâche, est comprise entre 10 (peu d’éblouissement) et 30 (fort éblouissant) et ne doit pas être dépassée. L’UGR sera calculé par l’auteur du projet (dialux dispose aussi d’une fonction calculant l’URG en un point ou un plan donné) et influencera le choix d’un type de luminaire, sa position et son orientation dans le local considéré et pour la tâche considérée. Une valeur d’UGR de 19 est monnaie courante !

De manière générale des luminaires pourvus de grilles de défilement ou de ventelles permettront de diminuer les risques d’éblouissement en cachant la lampe de la vue directe directe (à condition que l’angle de regard soit respecté).

photo sous éblouissement.  photo sans éblouissement.

Avant … et … Après.

En présence d’écrans de visualisation (ordinateurs, écrans de contrôle, écrans de commande de machines-outils…), il est conseillé d’opter pour des optiques présentant une luminance réduite (luminaires dits basse luminance).

Photo optiques avec luminance réduite.

Ce type de luminaire est également le bienvenu pour les travaux de précision. Pour ceux-ci, les postes de travail peuvent être équipés de luminaires ponctuels basse luminance permettant un éclairement important et localisé.

Dans la salle de sports

Dans toutes les gammes de luminaires pour salles de sports, il existe des luminaires avec grilles de défilement.

luminaires avec grilles de défilement

Cependant, l’éblouissement que l’on cherche à éviter dans les salles de sport est l’éblouissement par la vue directe de la lampe lorsqu’on regarde vers le haut. Les grilles de défilement n’empêcheront pas un tel éblouissement. Seul le choix des lampes et l’emplacement des luminaires permettront de l’éviter. La grille de défilement limitera l’éblouissement d’inconfort, mais celui-ci n’est pas très important dans une salle de sport.

De plus, la grille de défilement diminue le rendement des luminaires.


En fonction du rendement lumineux

Rendement d'un luminaire.

Tout en respectant les autres critères de choix, on choisira toujours les luminaires ayant le meilleur rendement lumineux. Celui-ci doit donc systématiquement être demandé au fournisseur ou vérifié dans les catalogues.

Remarque : le rendement des luminaires LED est souvent 100 % car le rendement de la source lumineuse n’est plus mesuré séparément du luminaire. Le rendement est alors exprimé en lumen/watt. L’allure de la courbe photométrique est un paramètre très important !

   

ηbas = 62 %
Ηhaut = 27 %
Ηtot = 89 %
UGR < 19
CIE flux code 70 99 100 70 89

Coûts totaux d’une installation en fonction du rendement des luminaires

Cas réel : local de 9,5 x 5,5 m, éclairement recommandé = 500 lux, luminaires 2 x 36 W, durée de fonctionnement 6h/jour, 250 jours/an

Rendement

Nb de luminaires

P installée

Prix d’un luminaire

Investissement

Facture électrique (0,17 €/kWh)

0,5 9 648 W 87,5 € 787,5 € 169 €/an
0,7 6 432 W 117,5 € 705 € 112 €/an
Gains grâce au haut rendement 82,5 € 57 €/an
Gain total sur 20 ans (durée de vie des luminaires) 1 140 €

Pour un même niveau d’éclairement, il faudra un nombre plus important de luminaires à mauvais rendement. Il est dès lors possible que l’on soit pénalisé par une surconsommation et par un surinvestissement.

Les luminaires bas de gamme peuvent en outre présenter d’autres défauts : mauvais contrôle de l’éblouissement, qualité mécanique des composants, …

D’une manière qualitative, voici les éléments qui favorisent un rendement élevé :

Des optiques réfléchissantes

Les réglettes nues sont souvent attractives par leur prix. Leur choix constitue cependant une erreur. Le flux lumineux n’étant pas du tout contrôlé, elles présentent des pertes importantes et des risques d’éblouissement trop importants pour les tâches demandant une attention soutenue.

Photo luminaire sans optique réfléchissante.

Rendement inférieur : 58 %.

Photo luminaire avec optique réfléchissante.

Rendement : 83 %.

De même, les réflecteurs peints présentent un moins bon rendement et un plus mauvais contrôle de l’éblouissement que les réflecteurs miroités. De plus, ils jaunissent avec le temps.

Photo réflecteurs peints.

Cloche émaillée
Rendement : 69 %.

Photo réflecteur alu.

Cloche alu
Rendement : 80 %.

Des matériaux translucides de qualité

Photo matériaux translucides.

Rendement : 83 %.

Des réflecteurs peu « enveloppants »

Toutes les surfaces de réflexion, définissant les caractéristiques photométriques du luminaire, sont autant de sources d’absorption de la lumière émise par les lampes. Moins ces surfaces sont importantes, plus le rendement du luminaire est élevé. Par exemple, les petits luminaires et les optiques paraboliques enveloppent de façon importante la lampe.

Photo réflecteur "enveloppant"

Rendement inférieur : 81 %.

Photo réflecteur peu "enveloppant"

Rendement inférieur : 79 %.

De l’écartement entre les sources

Dans les luminaires pourvus de plusieurs lampes, il y a un risque d’absorption du flux lumineux par les lampes entre elles (elles ne sont pas réfléchissantes). Il faut donc limiter le nombre de lampes par luminaire et favoriser un écartement important entre celles-ci.

Rendement : 87 %.

Rendement : 79 %.

Rendement < 60%.

De la présence de grilles de défilement ou ventelles

Tout dispositif destiné à cacher la lampe à la vue directe pour diminuer les risques d’éblouissement aura une influence néfaste sur le rendement. Puisqu’il fait obstacle à la lumière.

Photo luminaire sans grilles de défilement.

Rendement : 93 %.

Photo luminaire avec grilles de défilement.

Rendement : 75 %.

Rendements minimum recommandés

Luminaires directs à ventelles planes 70 %
Luminaires directs basse luminance 65 %
Luminaires directs très basse luminance 55 %
Luminaires mixtes 75 %
Luminaires indirects 65 %
Luminaire à optique asymétrique 60 %

Attention cependant qu’avec des luminaires équipés de lampes T5 et de ventelles paraboliques,  on peut obtenir des rendements très élevés et par la même occasion réduire de manière significative le risque d’éblouissement.

Photo luminaire avec ventelles paraboliques.
ηbas = 85 %


En fonction de l’assemblage, du montage et de la maintenance

Photo montage d'un luminaire.

Tous les luminaires doivent être construits de manière à pouvoir supporter des contraintes normales de montage et d’utilisation. Les luminaires montés en saillie ne peuvent pas se tordre lorsqu’ils sont montés sur des plafonds irréguliers. Les luminaires suspendus ne peuvent présenter de flèche entre supports, ni de distorsion de ceux-ci.

Photo montage d'un luminaire.

La construction du luminaire doit rendre la maintenance aisée : facilité de démontage des éléments, sans endommagement possible. Par exemple, l’optique peut être montée sur charnière pour faciliter son ouverture.

De plus, les instructions de maintenance et d’utilisation (choix de la lampe appropriée, par exemple) doivent être précises.

Quand les plenums (espaces au-dessus des faux plafonds) ne sont pas accessibles, il faut prendre certaines précautions afin de pouvoir accéder aux boîtes de branchement électrique des circuits au travers des luminaires.


En fonction de la structure du plafond

On peut rencontrer des luminaires :

Phot luminaire encastrés dans les faux plafonds.

Encastrés dans les faux plafonds.

Photo luminaire posés sur les faux plafonds.

En saillies, posés sur le plafond.

Photo luminaire suspendus.

Suspendus.

Encastrés

Lorsqu’on dispose d’un faux plafond, on peut y encastrer les luminaires. Dans le cas d’un faux plafond démontable, les dimensions des luminaires devront s’adapter au module du faux plafond.

En cas d’incendie, la déformation des faux plafonds risque de provoquer la chute des luminaires. Ainsi, dans les circulations servant de chemin d’évacuation, il est recommandé de fixer les luminaires directement à la dalle, au moyen de tiges, de câbles ou de chaînette.

En saillie

Lorsque le plafond est en béton, ou lorsqu’on dispose d’un faux plafond fixe qu’on ne souhaite pas rénover, on placera des luminaires en saillie.

Suspendus

Les luminaires suspendus s’installent principalement dans les locaux où la hauteur sous plafond est importante (hsp > 3,5 m). Dans ce cas, on peut favoriser des luminaires présentant une composante indirecte ne dépassant pas 50 % du flux total émis par le luminaire. Cela permet d’éviter la présence d’une zone fort sombre au dessus des luminaires.

Photo luminaire suspendus.

Les luminaires suspendus seront également utilisés lorsque l’on désire apporter un éclairage localisé des postes de travail.

Ils sont également suspendus lorsque le plafond est incliné, de manière à avoir tous les luminaires à la même hauteur.


En fonction de la qualité électrique

Picto label de qualité.

Les ballasts ne peuvent produire trop de signaux en haute fréquence sur le réseau électrique. Ceux-ci peuvent perturber les autres appareils électriques.

Pour éviter cet inconvénient, les luminaires complets et/ou les ballasts doivent posséder un label de qualité.

Picto protection électrique de classe I.

Dans la plupart des applications, les luminaires doivent être raccordés à la terre (protection électrique de classe I).

Picto luminaires de classe II.

Dans les sanitaires (projections d’eau) où un contact direct avec le luminaire est possible, il est recommandé d’utiliser des luminaires de classe II.


En fonction des protections nécessaires

Types de local

Résistance aux chocs

Protection contre les poussières et l’humidité

Protection électrique

Précisions

Bureaux

Classes

0,5J IP20

Classe I

Luminaires ouverts, non protégés contre les infiltrations d’eau.

Couloirs et escalier

> 6J

Luminaires ouverts, non protégés contre les infiltrations d’eau et  résistants aux chocs.

Locaux techniques, réserves, archives

IP44

Luminaires fermés, protégés contre les poussières et les projections d’eau.

Sanitaires

6J

Classe II

Luminaires fermés, protégés contre les poussières et les projections d’eau et résistants aux chocs.

Cas particulier des salles de sport

Photo luminaire salle de sport.

Les luminaires utilisés dans les salles où l’on pratique des jeux de balles doivent résister à l’impact des balles.

Ils doivent de préférence porter le label ci-dessous.

Picto luminaire salle de sport.

Les luminaires qui portent ce label ont été soumis au test du ballon selon la norme DIN. Ce test contrôle la sécurité électrique après une série d’impacts de ballons dosés.

Pour les jeux de ballons, le « bac » doit être pourvu d’une glace ou d’une grille de protection dont la maille ne laisse pas pénétrer la plus petite balle utilisée dans la salle.

Cas des hôpitaux

Les salles à ambiance contrôlée

Dans certains locaux à risque, est-il impératif d’avoir un degré IP élevé contre la pénétration des poussières ou des « mouches » dans le luminaire. De plus, le degré IP doit-il se limiter uniquement au luminaire et pas à l’ensemble luminaires faux-plafond ? Dit d’une autre manière, faut-il ou non encastrer les luminaires dans les zones à ambiance contrôlée avec joint étanche ?

Dans les faux plafonds, on trouve souvent des germes tels que les aspergillus, responsables d’infections pulmonaires graves pour des patients « immuno déprimés » (dont la barrière immunitaire a été abaissée). Les luminaires représentent un risque de passage de la poussière du faux plafond vers le local. De plus, la poussière venant « du bas », de l’ambiance du local, se dépose aussi sur les surfaces horizontales des luminaires.

Mais les luminaires apparents offrent une surface supérieure importante où la poussière peut se déposer. De plus, en terme de nettoyage ou de désinfection (ce qui est souvent le cas dans les salles à ambiance contrôlée), le luminaire apparent présente une plus grande surface à traiter que le luminaire encastré.

Pour ces raisons, dans les locaux à risque, on placera des luminaires avec une certaine herméticité : le degré IP sera au moins égal à 5 X.

Les chambres d’hospitalisation

Dans les chambres d’hospitalisation, le luminaire placé au dessus de la tête du patient doit combiner plusieurs éclairages :

  • L’éclairage général. Il est en général orienté vers le haut (indirect) de manière à ne pas éblouir le patient ;
  • L’éclairage de lecture en direct au niveau de la tête du patient;
  • L’éclairage de soins qui peut combiner l’éclairage général et l’éclairage de lecture ;
  • L’éclairage de veille dans certains cas de pathologie (surveillance en soins intensif par exemple) ou comme éclairage de nuit.

Les critères de choix d’un tel type de luminaire sont très précis. De plus, on combine souvent l’éclairage avec d’autres techniques :

  • La distribution de gaz médicaux ;
  • L’appel infirmière ;
  •  …

Cas des ambiances « explosives »

Des Picto luminaire ambiances "explosives".luminaires doivent être utilisés dans ce type d’ambiance.


En fonction de la puissance des sources lumineuses

Un luminaire est conçu pour des sources lumineuses d’une certaine puissance et il est impératif de se limiter à cette puissance. En effet, la dissipation thermique doit être suffisante afin d’assurer une durée de vie normale de la source et les performances du luminaire.

De plus, tout en respectant l‘uniformité d’éclairement, on a intérêt à choisir les luminaires comprenant la puissance installée la plus importante. Ceci réduira le nombre de luminaires et de ballasts et donc l’investissement.

Cependant, lorsqu’on a un faux plafond démontable et modulaire, la puissance unitaire des luminaires pour tubes fluorescents dépend du module des faux plafonds. Exemple : si le faux plafond a un module 60 cm x 120 cm, on ne pourra choisir des luminaires de x fois 58 W (ou d’autres sources de longueur 1,5 m).

Photo luminaire faux plafond.

De même, parmi les lampes T8, les tubes de 18 W (75 lm/w) ont une efficacité lumineuse inférieure aux tubes de 36 W (86 lm/W) ou 58 W (89 lm/W).  Cette même constatation est à formuler dans les sources T5 : la lampe T5 14 W est moins efficace que les T5 28 W ou 35 W.

Exemple : D’un point de vue énergétique, il est plus intéressant d’utiliser des luminaires de 2 x 36 W que de 4 x 18 W. D’autant plus qu’ils ont des prix semblables.

Les luminaires 4 x 18 W seront utilisés dans des faux plafonds de structure carrée.


En fonction de la climatisation

Luminaire avec extraction intégrée vers un plenum.

Luminaire pour tubes T5 avec extraction sur les bords.

Dans les bureaux climatisés, intégrer l’extraction d’air dans les luminaires permet d’évacuer jusqu’à 60 % de la puissance thermique produite (partie convective) par les lampes et les auxiliaires. Il en résulte évidemment une diminution des frais de climatisation.

Ce mode d’extraction permet, en outre, de faire l’économie de bouches séparées souvent plus coûteuses.

Si les luminaires sont équipés de tubes fluorescents de type T5, une extraction d’air au travers des lampes entraînera une chute du flux lumineux car la température de l’air autour de la lampe ne sera plus optimale. Cette extraction devra donc se faire par des canaux à l’extérieur ou sur la face latérale des armatures. Le potentiel d’évacuation de chaleur est alors nettement moindre.

Extraction d’air au travers des luminaires pour lampes T5.


En fonction du prix

Le choix d’un luminaire se fera également en fonction du prix de revient de l’installation. A critère de confort égal, celui-ci dépend :

  • du prix du luminaire et de son placement,
  • du prix des lampes,
  • de la consommation sur sa durée de vie,
  • du coût de remplacement des lampes.

Calculs

Pour comparer plus précisément le prix de revient de plusieurs installations, en connaissant :

  • le prix d’un luminaire (placement compris),
  • le prix des lampes,
  • le rendement du luminaire,

cliquez ici !

Choisir l’emplacement des luminaires dans les classes

   

Classes à aménagement fixe

La plupart du temps, les bancs des élèves sont alignés face au tableau, l’axe du regard étant parallèle aux fenêtres.

Les luminaires sont disposés en rampes parallèles aux fenêtres, de préférence entre les rangées de bancs, pour :

  • Éviter les risques d’éblouissement par les luminaires.
  • Profiter de l’éclairage naturel par une commande séparée des différentes rampes en fonction de l’éloignement à la fenêtre (zonage).
  • Éviter les ombres gênantes en compensant la lumière unidirectionnelle en provenance des fenêtres.
  • Assurer une bonne uniformité de l’éclairement dans le local en composant avec l’éclairage naturel.

De plus

  • Les luminaires disposés le long de la façade vitrée seront rapprochés de celle-ci. À défaut, étant donné le plus faible coefficient de réflexion des fenêtres (ou des tentures, le cas échéant), un déséquilibre lumineux en résulterait le soir.
  • Les lampes situées derrière les tables des élèves risquent de créer des ombres portées sur le plan de travail. On arrêtera les rangées de luminaires au niveau des derniers bureaux. Ceci permettra également de ne pas éclairer inutilement le fond de la classe.
  • La disposition des luminaires en lignes continues permet une meilleure répartition des ombres au niveau des plans de travail (absence d’ombres marquées), puisque la lumière éclairant chaque plan de travail provient de multiples directions.

 

  • Prévoir un allumage séparé des luminaires du tableau. De plus en plus les professeurs ont à leur disposition des écrans lumineux pour projeter les cours. Dans ces conditions, il n’est donc pas nécessaire d’allumer l’éclairage du tableau.

Remarques.
Il est conseillé de placer les luminaires le long de la façade au plus proche de celle-ci pour garantir une bonne uniformité dans la répartition lumineuse de la lumière, excepté les 50 cm qui bordent les murs comme préconisé par les normes. Mais dans la plupart des cas, une école n’est pas utilisée en soirée ou pendant la nuit. Il peut donc parfois être innovant d’imposer des critères spécifiques au CDC comme par exemple que l’étude de l’éclairage doit montrer une luminosité de 300 Lux excepté dans les 50 cm qui bordent les murs intérieurs et les 2 m qui bordent la façade fortement vitrée. De facto, les tubes seront alors décentrés pour profiter de la lumière naturelle.

De même, bien que l’on conseille de placer les luminaires entre les bancs, pour éviter les reflets sur les bureaux, en pratique, cette indication est bien souvent théorique et très contraignante. Elle ne sera respectée que dans des cas très particuliers où le confort doit être parfait.
En effet, c’est le dimensionnement qui détermine le nombre de luminaires et donc l’emplacement des luminaires par rapport aux bancs. De plus, les bancs peuvent être de largeur variable d’une classe à l’autre. Les luminaires ne peuvent pas être placés en fonction de l’aménagement probable de la classe.


Classes à aménagement variable

EcoleEmplacementLuminaire5.GIF (3916 octets)

L’élève n’a pas de position prédéfinie de travail.

La direction de l’éclairage naturel et la direction du regard des élèves varient avec la position particulière de chacun.

Dans ce cas, les luminaires n’ont pas de direction particulière d’émission. Ils seront disposés de manière à obtenir une répartition uniforme de l’éclairement.


Éclairage spécifique au tableau

Des luminaires asymétriques avec tubes fluorescents ou des spots avec lampes fluocompactes seront répartis sur toute la longueur du tableau (attention : longueur du tableau ouvert dans le cas de tableaux articulés). En outre, pour assurer une uniformité d’éclairement, les luminaires à tubes fluorescents seront toujours posés de façon jointive.

Les luminaires placés dans la zone bleutée ne donnent pas de réflexions gênantes sur le tableau. C’est dans cette zone qu’ils devront être placés.

Choisir les luminaires – limiter l’éblouissement

Choisir les luminaires - limiter  l’éblouissement


Locaux sans ordinateur

Dans les locaux où il n’y a pas d’écran d’ordinateur, on cherchera principalement à limiter l’éblouissement direct des occupants.

Pour les luminaires ouverts traditionnels, les risques d’éblouissement sont réduits si le luminaire dispose de ventelles empêchant la vue directe des lampes à partir d’un certain angle de vision par rapport à la verticale (angle de défilement).

Luminaire a ventelles.

Recommandations

Angle de défilement maximum

60°

Rendement minimum

70 %

La norme NBN EN 12464-1 prévoit de limiter l’éblouissement direct par des ventelles en fonction de la luminance de la lampe :

Luminance de la lampe en kCd/m2 Angle maximum de défilement
20 à < 50 75°
50 à < 500 70°
>= 500 60°

Les luminaires basse luminance ne sont pas strictement nécessaires mais apportent un confort supplémentaire aux élèves. Leur prix est cependant supérieur par rapport aux simples luminaires avec ventelles blanches (les luminaires avec ventelles blanches ont souvent un très faible rendement).


Locaux avec ordinateurs

On peut éviter les réflexions parasites sur les écrans de deux manières différentes :

Avec des luminaires basse luminance

Le choix d’un luminaire dit « basse luminance » est la meilleure solution pour l’éclairage des locaux informatisés de surface relativement importante, quel que soit le type d’écran. Celui-ci ne doit pas être incliné de plus de 20° par rapport à la verticale (position courante de travail sur PC).

Schéma sur angle d'élévation de luminaires.

Pour prévenir tout risque de reflets dans les écrans quel que soit leur type, les normes  recommandent pour un angle d’élévation de 65° des valeurs de luminance reprise dans le tableau ci-dessous et ce quel que soit le plan du luminaire considéré (C0, C30, …, C90) :

Niveau limite de luminance moyenne des luminaires (cd/m²)
État de luminance élevé de l’écran Écran à haute luminance

L > 200 cd/m²

Écran à luminance moyenne

L ≤ 200 cd/m²

Tâche de bureau classique ≤ 3 000 ≤ 1 500
Besoin de détail ≤ 1 500 ≤ 1 000
L’état de luminance élevé de l’écran (selon EN ISO 9241-302) décrit la luminance maximale de la partie blanche de l’écran, valeur fournie par le fabricant.

Cependant, la protection contre l’éblouissement se fait au détriment du rendement du luminaire (plus on dispose de ventelles devant la lampe pour limiter l’éblouissement, plus importantes seront les pertes).

Les constructeurs proposent différents types de luminaires « basse luminance » avec des angles d’élévation inférieurs à 65°. Dans ce cas, il est important de garantir le maintien d’un rendement acceptable. Pour ce faire, Laborelec (le laboratoire belge de l’industrie électrique) a établi un tableau synthétique donnant, pour différents angles d’élévation, un rendement minimum à respecter.

Type de travail
sur ordinateur
 

Recommandation
EN 12464-1

Angle d’élévation

Luminance < 200 cd/m2 pour des angles g
Recommandation
Laborelec par rapport à la DIN 5035
Angle d’élévation rendement minimum
Dans tous les plans Dans les plans longitudinaux (C90),
transversaux (C0) et diagonaux (C30 et C60)
Usage limité 65° 65°
65 %
Usage important
mais non fatigant
60°
65 %
Usage intensif
et fatigant
50° 55 %

En observant le tableau ci-dessus, on se rend compte que la DIN 5035 est plus précise et contraignante que la norme EN 12464-1. À l’heure actuelle, certains constructeurs proposent des luminaires dont les caractéristiques techniques tiennent compte des deux normes.

Exemple.

Ce luminaire basse luminance répond à la norme EN 12464-1. La luminance du luminaire est inférieure à 200 Cd/m² pour un angle de défilement > 65° et ce dans toutes les directions. Son rendement, avec 1 lampes T8 de 58 W est de 76 %. De plus, il est DIN 60.

Remarque.

Comme on l’a vu, la norme EN 12464-1 précise que pour un angle d’élévation de 65°, on considère tous les plans du luminaire; autrement dit, quel que soit la position du bureau et par conséquent l’angle de vue, les 200 Cd/m² ne peuvent pas être dépassés; ce qui n’était pas le cas dans les anciennes normes NBN L 13 – 006, IN 5035 (partie 7), CIBSE LG3 (1989) qui ne privilégiaient que certains plans. On en conclut, dans ce cas, que la EN 12464-1 est plus restrictive.

Phot tubes fluos 26 et 16 mm.

Le libre choix des luminaires équipés de lampes T5 ou T8 est laissé à l’auteur de projet. Toutefois on rappellera que pour comparer ces deux technologies il faut :

  • Vérifier que les constructeurs donnent des valeurs de rendement qui puissent être comparées (pour une même température ambiante),
  • Vérifier le prix.
  • Se rendre bien compte que les sources LED et les lampes T5 ont une luminance plus élevée que les lampes T8 donc risque d’éblouissement.

Avec des luminaires « lumière douce » ou à plexi performant

Photo écran à affichage positif.     Photo écran à affichage négatif.

Écran à affichage positif… et … Écran à affichage négatif.

Les luminaires « lumière douce » ont une luminance nettement supérieure à 200 cd/m² pour des angles d’élévation > 65°.

Ils ne peuvent donc pas être utilisés en présence d’ordinateurs, sauf dans le cas très restreint d’écrans plats à affichage positif (caractères sombres sur fond clair) et bon traitement antireflet.

En effet, la norme européenne ISO 9241 admet qu’une luminance moyenne des luminaires de 1 000 cd/m² (avec des pointes de moins de 1 500 cd/m²) ne provoquera pas de réflexion gênante sur les écrans. Ceci s’explique par la réduction du contraste entre ce type d’écran et les réflexions qui peuvent y apparaître (attention, le contraste entre le fond d’écran et le texte diminue aussi, ce qui est un inconvénient !).

Photo luminaire "lumière douce".

Les  luminaires « lumière douce » respectent ce critère soit directement, soit moyennant une adaptation qui limite leur luminance moyenne (par exemple pour les lampes fluocompactes).

L’avantage de ce type de luminaire apparaît lorsqu’on utilise des ordinateurs portables. (En effet les recommandations Laborelec s’appliquent pour des écrans inclinés de 15° à 20° par rapport à la verticale). Dans le cas d’ordinateurs portables, l’utilisateur incline plus fortement son écran. Il risque alors d’apercevoir des reflets même si les luminaires sont à basse luminance. Un luminaire « lumière douce » ayant une luminance moyenne dans toutes les directions, même verticale, peut alors se justifier. Il existe des luminaires à plexi performant avec les mêmes avantages que la « lumière douce ».


Cas particulier : les bureaux individuels

Les recommandations ci-dessus s’appliquent pour la majorité des bureaux. Cependant, dans un petit bureau (bureau individuel), on peut placer le luminaire et/ou les postes de travail de manière telle qu’il n’y ait jamais de réflexion. L’angle sous lequel l’écran voit le luminaire reste alors toujours inférieur à 50 – 60°.

Schéma luminaires de bureau.

On peut alors toujours choisir un luminaire qui n’est pas basse luminance, par exemple à ventelles planes et diffusantes ou à plexi. Ces luminaires ont un prix inférieur par rapport aux luminaires identiques équipés de ventelles paraboliques. Ces derniers apportent cependant un « plus » au standing du local et donc contribuent au confort psychologique des occupants.

Photo bureau avec luminaires sans ventelles paraboliques.     Photo bureau avec luminaires avec ventelles paraboliques.

Exemple : bureau avant et après

    

Avant : 2 vieux luminaires 2 x 36 W BM avec du bruit et éclairage trop faible.

Après : 2 luminaires 1 x 35 W T5 BE-DIM avec un niveau d’éclairement x 1,5, une économie d’énergie > 50 %, < 2,5 W/m²/100 lux et confort visuel élevé !


Cas particulier : les circulations

Les couloirs de bureaux, d’école, …

Photo luminaires dans zone de circulation. Photo luminaires dans zone de circulation. Photo luminaires dans zone de circulation.

Les circulations ne présentent aucune exigence en termes de basse luminance. Tout au plus faut-il éviter un éblouissement trop important en choisissant des luminaires comportant un système de défilement. Des luminaires ouverts à ventelles planes sont donc tout à fait indiqués (angle de défilement minimum de 75°).

Les couloirs d’hôpital, de maison de repos

Photo luminaires dans couloirs hôpital. Photo luminaires dans couloirs hôpital.

Les couloirs d’hôpitaux et des maisons de repos nécessitent une attention particulière sachant que l’éblouissement dû au luminaire peut être important pour les patients alités. C’est la raison pour laquelle les luminaires à basse luminance sont intéressants.


Flexibilité du local

Dans certains locaux, le type de travail et/ou la disposition des postes de travail peuvent varier dans le temps. Dans ce cas, l’éclairage général ne peut privilégier aucune zone ni direction dans le local. Si tel était le cas, leur adaptation à une nouvelle situation doit se faire avec un minimum de manipulations.

Voici différents types de luminaires pouvant répondre à ces exigences  :

  • des luminaires à distribution de lumière identique dans toutes les directions,
  • si des bureaux individuels risquent d’être regroupés en bureaux paysagers, il est préférable de les équiper de luminaires basse luminance.

Choisir l’emplacement des luminaires dans les circulations

Dans les couloirs

Compromis

Le choix du nombre de luminaires, de la puissance par luminaire et de leur emplacement résultera d’un compromis entre

  • le respect d’une certaine uniformité,
  • l’investissement à consentir,
  • les facilités de câblage électrique et de réfection des plafonds.

Uniformité

Si pour des raisons d’économie d’énergie, on désire limiter l’éclairement moyen des couloirs à 200 (100 – école, halls) lux maximum, le nombre de luminaires à installer sera relativement faible par rapport à la surface à éclairer. Il en résultera un manque d’uniformité de l’éclairement et une succession dans les couloirs de zones claires et sombres. Ceci ne sera pas forcément gênant si le couloir n’est qu’un lieu de passage et non de « stationnement ». Inversement si on veut respecter une uniformité correcte (Emin / Emoy > 0,7), on augmentera le nombre de luminaires, vraisemblablement aussi la puissance installée et le niveau d’éclairement moyen puisque la gamme de puissance des lampes fluorescentes n’est pas infinie.

En fonction de la forme du couloir

  • Les couloirs étroits paraîtront plus larges et plus conviviaux si on favorise l’éclairage des murs par une composante indirecte.
  • Les couloirs longs paraîtront plus courts si on place les luminaires perpendiculairement par rapport à l’axe du regard. Comme la distribution lumineuse de la plupart des luminaires est plus large dans le sens transversal que dans le sens longitudinal, cette position permettra d’obtenir une uniformité correcte avec moins de luminaires.

Dans les escaliers

L’objectif principal (de base de l’éclairage des escaliers – halls) est d’assurer un contraste suffisant entre les marches pour éviter tout accident. Pour cela, il faut assurer l’éclairage des marches et maintenir dans l’ombre les contre-marches.

Exemple

  • La position A est correcte car elle éclaire obliquement les marches.
  • La position B est incorrecte, elle ne garantit pas un contraste suffisant entre les marches.
  • Dans les longs escaliers, la position A peut être complétée par un éclairage latéral des marches au départ d’appliques murales (position C).

Choisir la couleur des parois et des plans de travail

Coefficients de réflexion recommandés

 

Que ce soit en éclairage direct ou indirect, il est toujours préférable de favoriser les parois de couleur claire.

Par défaut, on choisira les coefficients suivants :

Coefficients de réflexion par défaut
Plafond 0.7
Mur 0.5
Sols 0.3

Données

Pour connaitre les différents coefficients de réflexion en fonction du matériau ou de la couleur.

Influence de la couleur des différentes parois

Plafond

La couleur du plafond joue un rôle peu important sur l’éclairage artificiel direct. Son rôle devient primordial lorsqu’il s’agit de distribuer la lumière naturelle en profondeur dans le local. La valorisation maximum de cet éclairage naturel permet ainsi une diminution des consommations électriques.

En éclairage indirect, le plafond sert de diffuseur de la lumière. Il doit toujours avoir le coefficient de réflexion le plus élevé.

Dans tous les cas, un facteur de réflexion trop faible peut provoquer un trop grand contraste entre le plafond et les luminaires, d’où risque d’éblouissement.
Dans les bâtiments de soin, il doit de plus être mat pour éviter les taches lumineuses trop intenses qui risquent d’éblouir le patient couché.

Plafond très foncé.

Murs

La couleur des murs aura un rôle, au niveau de l’éclairement, d’autant plus important que les luminaires utilisés ont une distribution extensive.

Sol

Le plancher est rarement complètement libre et dégagé. Le mobilier représente souvent une surface importante. La couleur du sol aura donc peu d’influence sur la qualité de l’éclairage artificiel.


Couleur du plan de travail

La clarté des tables de travail constitue un élément favorable au confort visuel. La réduction du contraste entre le support papier et la table diminue les efforts d’accommodation de l’œil à chacun de ses déplacements.

De plus, il est conseillé d’utiliser des revêtements mats pour les parois du local et surtout pour les tables de travail pour limiter les luminances excessives et les risques d’éblouissement.


« Autour des baies vitrées »

Pour éviter l’éblouissement, il est souvent nécessaire de réduire la luminance des baies vitrées, excessive par rapport à celle de la tâche visuelle, en adoptant des systèmes appropriés.

Il existe plusieurs moyens pour diminuer cet éblouissement

  • préférer une grande fenêtre, moins éblouissante que plusieurs petites,
  • diminuer le contraste mur-huisserie grâce à un cadre clair,
  • voiler le ciel par une protection solaire ou un rideau,
  • diminuer le contraste mur-fenêtre en éclairant le mur contenant la fenêtre,
  • diminuer le contraste mur-fenêtre en augmentant la part indirecte de l’éclairage naturel (local très clair),
  • voiler en partie le ciel en assombrissant la fenêtre par un élément déflecteur,
  • voiler en partie le ciel en disposant à l’extérieur des éléments moins lumineux que le ciel (atrium, cour intérieure).

Connaître les paramètres pour le dimensionnement de l’éclairage

Connaître les paramètres pour le dimensionnement de l'éclairage


La zone de calcul

Schéma zone de calcul.

Selon la norme NBN EN 12464-1, trois zones sont définies :

  • la zone de travail où la tâche visuelle est réalisée (le bureau : zone à 500 lux dans l’exemple),
  • la zone environnante immédiate à la zone de travail (zone à 300 lux dans l’exemple).
  • la zone de fond qui représente le reste de la surface du local.

Attention : pour le calcul de la puissance spécifique  en W/m²/100 lux il faut considérer toute la surface du local (aussi bien pour le calcul de la puissance totale de tous les luminaires que pour le niveau d’éclairement moyen à hauteur du plan de travail.)

La zone de travail

Dans la zone de travail, l’éclairement moyen recommandé est à maintenir sur la surface de référence ou plan utile pendant toute la durée de vie de l’installation d’éclairage.  Cette surface est celle où la tâche visuelle s’exécute comme par exemple :

  • la table à dessin,
  • le bureau,
  • le desk de réception,
  • le banc d’écolier,
  • le tableau,
  • l’établi,

On définit dans la zone de travail un niveau d’éclairement en fonction de la tâche effectuée.

Ces différentes valeurs sont données dans les normes.

Données

Pour connaitre les valeurs d’éclairement recommandé en fonction de l’usage, cliquez ici.

Où 20 lux représentent le seuil de perception; les autres valeurs étant séparées par un facteur approximatif de 1.5 et représentant la plus petite différence significative entre deux niveaux d’éclairement.

20 30 50 75 100 150 200 300 500 750 1 000 1 500 2 000 3 000 5 000

La zone environnante immédiate

Dans la zone environnante immédiate (bande de 0.5 m autour de la zone de travail), l’éclairement recommandé et l’uniformité doivent être en relation avec ceux de la zone de travail selon le tableau ci-dessous :

Éclairement de la tâche
en lux
Éclairement des zones environnantes immédiates
en lux
>= 750
500
300
200
150
100
<= 50
500
300
200
150
E tâche
E tâche
E tâche
Uniformité : > = 0.4 à 0.6 Uniformité : > = 0.4

On retiendra donc que dans cette zone, les niveaux d’éclairement peuvent être diminués d’un facteur de l’ordre de 1.5 à 1,666 avec une uniformité de 0.4.

La zone de fond

On pourrait définir la zone de fond comme l’espace couvrant le local, diminué des zones de travail et environnantes immédiate. Dans cette zone, le niveau d’éclairement doit être au moins égal au tiers de celui de la zone environnante immédiate avec une uniformité moyenne de 0.1.

Quelques exemples selon l’usage

Une caisse de grande surface

Schéma éclairage caisse de grande surface.

Un couloir

Schéma éclairage couloir.

Une chambre d’hospitalisation

 


Le plan de référence

La surface de référence est constituée par le plan sur lequel s’effectue normalement le travail.

La hauteur du plan de référence est donc à définir en fonction de l’ergonomie et de l’activité menée de manière courante au niveau de la zone de travail considérée :

Surface de référence par rapport au sol Tâche effectuée
Debout Assis Couché
Horizontale Lecture, écriture sur un guéridon dans un couloir d’hospitalisation (h = 1 m).
Marche dans un couloir (h = 0,10 m).
Écriture, lecture sur un bureau (h = 0.7 m sur un bureau standard et h = 0.85 m sur un plan de travail de laboratoire). Examen médical sur une table d’examen (h = 0.85 m).
Verticale Écriture au tableau. Lecture au tableau.
Inclinée Lecture d’un livre par un patient dans un hôpital en position couchée (h = 1 m avec une inclinaison de 75°).

Quelques exemples selon l’usage

Bureau

Il peut être à une hauteur de 0.75 m pour un plan de travail normal.

Schéma éclairage exemples selon l’usage, bureau.

Caisse de grande surface

Le plan sera horizontal et situé à la même hauteur que la caisse.

Schéma éclairage exemples selon l’usage, caisse de grande surface.

Chambre d’hospitalisation

Schéma éclairage exemples selon l’usage, chambre d’hospitalisation.


L’éclairement moyen minimum

On trouve dans les normes des valeurs de niveaux d’éclairement en fonction de la tâche exécutée.

Pour connaitre  les valeurs d’éclairements moyens recommandés suivant l’activité du local : cliquez ici !

Les valeurs Em calculées dans les zones de travail, environnantes immédiates et de fond seront fournies par l’auteur du projet et, dans la mesure du possible, se rapprocheront de la valeur d’éclairement recommandé.
En début d’installation (dépréciation nulle), on limitera le surdimensionnement de l’installation (les cahiers des charges énergétiques préconisent de ne pas dépasser 20 % de surdimensionnement) afin de préserver l’efficacité énergétique de l’installation d’éclairage.

Exemple d’éclairement recommandé : 500 lux

+

500 lux

600 lux (+ 20 %)

> 600 lux


L’uniformité

Zone de travail

L’uniformité de l’éclairement recommandée dans la zone est précisée dans les normes.

Données

Pour connaitre les valeurs d’uniformité recommandées, cliquez-ici.

Zone environnante immédiate et de fond

Dans ces zones, l’uniformité est respectivement de 0,4 et 0,1.


Le coefficient de réflexion des parois

Si les couleurs des parois sont définies une fois pour toutes, et particulièrement si les parois sont de couleur foncée, les coefficients de réflexion choisis pour le dimensionnement devront correspondre à ces couleurs. Mais en général les couleurs ne sont pas fixes, et pour autant que les couleurs soient relativement claires, il vaut mieux faire les calculs avec des valeurs par défaut.

Données

Pour connaître les coefficients de réflexion par défaut ou correspondants  à la couleur et à la matière de vos parois, cliquez ici !

Concevoir

Pour savoir comment choisir la couleur des parois

Le facteur de maintenance

L’installation doit fournir les niveaux d’éclairement requis durant toute sa durée de vie. Pour tenir compte de la diminution du flux lumineux avec l’âge (diminution du flux des lampes, encrassement des lampes et luminaires), le dimensionnement de l’installation doit intégrer la notion de facteur de maintenance « FM » (facteur de maintenance = 1 – facteur de dépréciation) qui surdimensionne l’installation d’origine.

On remarque cependant que ces facteurs ne couvrent pas la perte de flux en fin de vie utile. Or les lampes sont censées être remplacées après cette période. En pratique, l’éclairement, en fin de vie, sera donc inférieur aux valeurs recommandées.

Ces facteurs permettent néanmoins d’éviter un surdimensionnement trop important de l’installation neuve (et donc une surconsommation, voire parfois un inconfort).


La grille de calcul

Dans la zone de travail, les niveaux d’éclairement moyen  sont calculés suivant un quadrillage au moins aussi fin que les recommandations des normes.

Exemple pour les halls omnisports

Les mesures doivent se faire selon un maillage spécifique généralement rectangulaire et recouvrant toute l’aire de référence au niveau du sol. Les éclairements sont calculés et mesurés au centre des mailles. Le pas maximum est déterminé en pratique par la formule suivante :

p = 0,2 . 5 EXP (log d)

où :

  • EXP = exposant,
  • d est la plus grande dimension de l’aire de référence,
  • p est le pas maximum du maillage.
    Dans le cas de l’exemple (d = 28 m), on trouve p = 2 m.

Le nombre de points sur la longueur est donné par le nombre entier impair le plus proche du rapport d/p; soit 28/2 = 14. On peut choisir 13 ou 15; la norme donnera 13. Dans l’exemple, on a choisi 15 pour tenir compte d’une zone de sécurité débordante de 1 m.

Dans la mesure du possible, on essaye de prendre une maille carrée.

Dans la pratique, pour éviter un maillage excessif, on définit un maillage réduit de commun accord entre l’auteur de projet et le maître d’ouvrage. Cela peut être, par exemple, un maillage de « un point sur deux ». On peut s’aider aussi des valeurs reprises dans les tableaux de la norme EN 12193.


En pratique ?

De nombreux outils sont disponibles. Après avoir déterminé le type de type de lampe, de ballast et de luminaire à utiliser, les outils suivants permettent par exemple de dimensionner l’installation (nombre et position des appareils) :

DIALux et RELUX

Ces logiciels de calcul sont gratuits. Ils sont neutres et indépendants vis-à-vis des fabricants et permettent de simuler un système d’éclairage en tenant compte des caractéristiques réelles de la plupart des produits disponibles sur le marché.

Ces logiciels permettent de vérifier que le système d’éclairage répondra bien aux exigences de confort visuel. Il permet ainsi de calculer les niveaux d’éclairement, l’uniformité et l’UGR.

 DIALux

Pour accéder au site de DIALux, ouverture d'une nouvelle fenêtre ! cliquez ici !

RELUX,

Pour accéder au site de RELUX, ouverture d'une nouvelle fenêtre ! cliquez ici !

Les outils proposés par les fabricants de luminaires

L’étape intermédiaire entre l’utilisation des fichiers Excel et celui des logiciels DIALux et RELUX, est le recours aux logiciels proposés sur le site des constructeurs de luminaires. Ceux-ci permettent d’utiliser les caractéristiques réelles des appareils. Les résultats se limitent souvent à la valeur de l’éclairement moyen réalisé.

Le recours à un professionnel de l’éclairage

L’utilisation des logiciels plus poussés (Dialux et RELUX) nécessite une certaine expérience. Les professionnels de l’éclairage seront sûrement d’une aide utile lors de cette phase de dimensionnement.

Choisir l’emplacement des luminaires dans les bureaux

Bureau individuel

 

Ces bureaux ont en général 5 à 7 m de profondeur et jouissent d’un éclairage naturel qui peut être abondant. Ils peuvent se passer d’éclairage artificiel durant un grand nombre d’heures.

Afin de limiter les problèmes d’éblouissement et de reflets sur les écrans d’ordinateur, il est conseillé de placer la table de travail perpendiculairement aux fenêtres. Vu que la plupart des luminaires actuels ont des angles de défilement bien contrôlés dans toutes les directions, ils pourront être placés en deux rangées  perpendiculaires ou parallèles à la baie vitrée.

Comme l’apport d’éclairage naturel est généralement important, et bien que ces bureaux ne soient pas très profonds, il est intéressant de pouvoir commander les deux rangées de luminaires séparément l’une de l’autre afin de pouvoir dimmer le luminaire côté fenêtre.


Bureau de groupe

 

Un bureau de groupe est occupé par 5 à 10 personnes. Les places de travail peuvent être arrangées afin que les lignes de vision des personnes soient parallèles aux fenêtres et que la lumière naturelle provienne de leur gauche pour les droites et vice versa pour les gauchers. La position des places est donc souvent figée.

La distribution classique des luminaires en rangées parallèles à la fenêtre permet de tenir compte des apports de lumière naturelle (si la modulation des faux plafonds permet une telle répartition).

Une telle disposition des personnes et des luminaires peut paraître monotone mais elle a l’avantage de fournir une même qualité d’éclairement pour chacun sans nécessiter de dispositifs spéciaux contre l’éblouissement.


Bureau paysager

 

En général, c’est toute la largeur d’une aile d’un bâtiment qui est réservée à un bureau paysager.

Il bénéficie donc souvent d’éclairage naturel bilatéralement ou même trilatéralement. Cependant, leur profondeur et la présence de mobilier sont telles que certaines zones ne peuvent se passer d’éclairage artificiel.

Pour éviter la monotonie d’un tel espace, on peut éclairer différemment les zones de communication et les zones de travail.

Les zones de même activité seront regroupées et disposeront d’une commande d’éclairage spécifique.

Les luminaires peuvent également être gérés en groupes différents en fonction de l’apport d’éclairage naturel et d’un zonage d’activité.

Il est également important de veiller au confort psychologique en créant une zone de travail agréable et personnelle pour chaque individu en utilisant, par exemple, des luminaires d’appoint ponctuels.

Choisir les lampes

Choisir les lampes


Les lampes à rejeter !

Les lampes à incandescence et les lampes halogènes énergivores :

  • très mauvaise efficacité lumineuse ;
  • durée de vie faible.

Les lampes à vapeur de mercure haute pression

  • mauvaise efficacité lumineuse ;
  • mauvais rendu des couleurs ;
  • altération de la température de couleur en cours d’exploitation.

Les lampes fluorescentes de mauvaise qualité (IRC < 70). P.ex.la teinte 640, 630 …

Notons que l’Europe a pris les choses en main et par différentes directives impose le retrait progressif du marché des lampes les moins efficaces !


Critères de choix des lampes

Le confort lumineux impose un choix de lampe associée à son luminaire qui permet de maîtriser le niveau d’éclairement, l’éblouissement, l’uniformité, … et ce de manière à se conformer aux normes NBN EN 12464-1 et NBN EN 12193. Pour respecter le confort lumineux, quelle que soit la volumétrie du local, le concepteur devra trouver un savant compromis entre le nombre de luminaires, leur puissance, leur coût, leur efficacité énergétique, … Il devra aussi tenir compte d’un indice de rendu des couleurs (IRC) à assurer, de la stratégie de maintenance, de la durée de vie des lampes, leur capacité à dimmer leur flux en fonction de l’apport de lumière naturelle et à accepter un nombre d’allumages/extinctions adapté à l’usage, …

Techniques

pour connaitre les différents types de lampes : cliquez-ici !

Données

pour visualiser un récapitulatif des caractéristiques des différentes lampes, cliquez-ici !

Choix en fonction de la hauteur du local

La hauteur du local va influencer le choix de lampe, c’est une évidence ! Mais il ne faut pas perdre de vue que la lampe est toujours associée à un luminaire. Dissocier les deux n’est pas envisageable dans un projet de conception/ rénovation.

Cependant, un premier tri de lampe s’impose en fonction de la hauteur du local. En effet, toutes les lampes ne sont pas à même de donner un niveau de flux adéquat :

  • Les lampes à flux lumineux important (à puissance élevée) équiperont les luminaires des locaux de hauteur importante (de l’ordre de 6 à 12 m).
  • À l’inverse, les lampes à flux lumineux réduit ou basse puissance équiperont les luminaires des locaux de hauteur normale (de l’ordre de 1 à 6 m).

Pour les hauteurs inférieures à 7m

La plupart des lampes à flux lumineux modéré conviennent pour les locaux à hauteur classique.

Lampes fluorescentes

Pour rappel, les lampes fluorescentes sont le plus souvent recommandées, du fait :

Photo lampes fluorescentes.

Les systèmes d’éclairage à LEDs

Les systèmes d’éclairage à LEDs envahissent de plus en plus le secteur tertiaire sachant que leur efficacité énergétique se rapproche de celle des lampes fluorescences. On les choisira principalement pour :

  • leur efficacité énergétique certaine ;
  • leur rendu de couleur acceptable ;
  • leur durée de vie très importante.

La technologie LED est en constante évolution et inonde le marché de l’éclairage. On estime que les lampes LED prendront de l’ordre de 80 % du marché à moyen terme. Les seuls freins actuels dans le choix de cette source lumineuse sont naturellement :

  • l’absence de normalisation qui empêche les comparaisons.
  • Une qualité très différentes d’une référence à l’autre.

Pour les hauteurs supérieures à 7 m

Dans les locaux de grande hauteur (à partir de 7 – 12 m), on utilise généralement des lampes à décharge sodium HP ou halogénure et iodure métallique. Ce type de lampes est mis en compétition avec, devinez… , les tubes fluorescents et les LEDs !

Lampes à vapeur de sodium ou halogénure métallique ?

Lampes à vapeur de sodiumLampes à halogénure métallique.

Les lampes à vapeur de sodium haute pression ou à vapeur d’halogénure métallique fournissent un flux lumineux par lampe important (jusqu’à 200 000 lm). Elles permettent ainsi d’obtenir un éclairement suffisant avec un nombre réduit de luminaires. Néanmoins, il faut être particulièrement attentif :

  • à leur emplacement vu les risques d’éblouissement que représentent ces lampes,
  • aux ombres portées,
  • à l’uniformité des niveaux d’éclairement (moins de lampes sur la surface à éclairer).

On retiendra encore que vu le faible nombre de points lumineux à installer, la maintenance des lampes à décharge sera plus rapide, ce qui peut représenter un facteur non négligeable dans un local où les plafonds sont hauts et donc peu accessibles.

Lampes fluorescentes

Lampes fluorescentes

Les progrès réalisés par certains constructeurs sur des luminaires équipés de lampes fluorescentes (de 2 à 4 lampes) pour des hauteurs supérieures à 7 m sont assez spectaculaires.
Ces types de luminaires sont équipés, par exemple, de lampes fluorescentes 4 x 80 W en tube T5 pour des hauteurs d’atelier pouvant aller jusqu’à 12 m avec une efficacité énergétique de ≤2.5 W/m².

Exemple

Pour un atelier de l’ordre de 7 m de haut, vaut-il mieux prévoir de l’équiper de luminaire à lampe aux halogénures métalliques ou à tubes fluorescents ?


Luminaire
à lampe aux halogénures métalliques.


Luminaire
à tubes fluorescents.


Luminaire
à lampe aux halogénures métalliques.


Luminaire
à tubes fluorescents.

Pour en savoir plus sur l’étude de cas, cliquer ici !

On voit tout de suite que :

  • L’installation d’éclairage équipée de lampes aux halogénures métalliques nécessite moins de luminaires pour atteindre le niveau d’éclairement moyen requis. Par contre, l’uniformité sera moins bonne (les alternances taches claires et taches sombres sont plus visibles).
  • Mais les lampes à décharge haute pression ne sont pas dimmables (du moins sans problème) et donc dans le cas d’un apport important de lumière naturelle, il est recommandé d’utiliser des systèmes d’éclairage dimmables (fluorescentes ou LEDs).

Éclairage ponctuel proche du plan de travail

Étant donné ses nombreux avantages, le luminaire équipé d’une lampe fluorescente doit donc souvent être préféré.

Éclairage local de bureau

Photo lampe fluocompacte.

Lorsque l’on désire un éclairage ponctuel, la lampe fluocompacte (à ballast électronique séparé) est largement préférable à la lampe à incandescence traditionnelle ou halogène. Malgré son prix plus élevé, la lampe fluocompacte permet, sur une durée de fonctionnement de 10 000 heures, d’économiser de 20 à 125 € par lampe (selon la puissance installée) par rapport au placement d’une lampe à incandescence.

Éclairage de décoration et d’accentuation

lampe à vapeur d'halogénure métallique.lampe à vapeur d'halogénure métallique.

La lampe à vapeur d’halogénure métallique de faible puissance (20 à 150 W) est compacte et sa lumière se laisse facilement focaliser. Si un flux lumineux élevé par unité est requis, elle est une alternative efficace à la lampe à incandescence et à la lampe halogène pour l’éclairage de décoration, par exemple dans les halls d’accueil et les salles d’exposition. Des luminaires indirects équipés de lampes à vapeur d’halogénure métallique de puissance moyenne (150 W, 250 W) réalisent une économie d’énergie de 70 % par rapport aux lampes halogènes.

Éclairage d’un tableau ou de documents affichés sur les murs

Photo éclairage tableau.

Source : Etap.

Un éclairement suffisant sur le tableau  ne pourra être obtenu que par un éclairage spécifique.
Pour obtenir un éclairage uniforme sur le tableau, le tube, de par sa forme allongée, est le plus adéquat. Les lampes fluocompactes  peuvent aussi convenir, mais on obtiendra plus facilement des « ronds » de lumière et l’éclairage sera donc moins uniforme.

Exemple.

Une classe est éclairée par :

  • éclairage général : 9 luminaires basse luminance de 2 x 36 W chacun,
  • éclairage du tableau : 3 luminaires asymétriques de 50 W chacun.

L’éclairement moyen mesuré dans la classe est de 420 lux pour une puissance d’éclairage général de 9 W/m². Le niveau d’éclairement du tableau, lorsque son éclairage spécifique est allumé, est de 436 lux. Lorsque l’on se contente de l’éclairage général, le niveau d’éclairement moyen du tableau est de 99 lux, ce qui est nettement insuffisant.


Choix en fonction de l’éclairage naturel

Photo magasin avec éclairage naturel.

Source : Philips.

Dans les locaux qui ont accès à la lumière naturelle (présence de baie vitrée), le choix de lampe tiendra compte de la compatibilité avec le « dimming » en vue d’adopter une gestion du flux lumineux en fonction de la lumière naturelle.

Les lampes facilement dimmables

Le choix des lampes fluorescentes (type tube fluo) et les LEDs sera intéressant pour réaliser un dimming efficace en fonction du niveau d’éclairage naturel dans le local concerné.

Les lampes fluocompactes

Mis à part les lampes fluocompactes à 4 pin avec ballast électronique, ce type de lampe à 2 pin et à visser ne peuvent pas être dimmée de manière efficace.

Les iodures et halogénures métalliques

Ce type de lampe ne peut être dimmé au maximum qu’à 50 % (et souvent il y des problèmes de changement de couleur (collor shift) dans le cas de dimming. Si les baies vitrées sont de grandes tailles, le choix des lampes à iodure ou halogénure métallique ne sera pas judicieux.


Choix en fonction du temps de fonctionnement et de la fréquence d’allumage/extinction

Locaux à temps d’occupation prolongé

Comme son nom l’indique, ce type de local accueille des occupants pendant un temps suffisamment long pour envisager un choix de lampes qui ne supportent pas trop les temps courts de fonctionnement et les fréquents cycles d’allumage/extinction. En effet, elles ont besoin d’un certain temps pour chauffer et stabiliser leur flux lumineux. Enfin, les cycles fréquents d’allumage/extinction réduisent leur durée de vie.

On pointera les locaux comme les bureaux, les classes de cours, les salles de réunion, les salles de sports, …

Pour un temps de fonctionnement prolongé avec un nombre restreint de cycle d’allumage extinction, les lampes suivantes conviennent bien :

Locaux à temps d’occupation sporadique

On retrouve des locaux comme les archives, les espaces techniques, …  Pour ce type de local, pratiquement toutes les sources lumineuses énergétiquement efficaces conviennent puisque le nombre d’allumage et d’extinction est faible au cours du temps. Ce constat s’appuie aussi sur le fait que ces locaux n’ont pas d’accès à la lumière naturelle et ne nécessitent pas de sources lumineuses « dimmables ». Dans ce cas bien précis, ce sera surtout l’aspect financier qui prévaudra.

Locaux où l’allumage et l’extinction de l’éclairage sont fréquents

On regroupe ici toutes les circulations et les locaux sanitaires. Pour un nombre d’allumage et d’extinction important, les lampes fluorescentes à ballast électroniques et les LEDs conviennent parfaitement.


Choix en fonction de l’IRC et de la température de couleur

Le rendu des couleurs

Pour certaines tâches où la reconnaissance des couleurs est importante, on prendra en compte le paramètre de rendu de couleur. Dans les commerces, cette caractéristique (qualité de la lumière produite) est primordiale et peut être satisfaite avec l’emploi de produits efficaces (autre qu’incandescente) ! Dans d’autres pièces, comme les circulations, cette donnée aura moins d’importance.

La norme EN 12464-1 définit, pour chaque tâche ou local, une valeur de l’indice de rendu de couleur (IRC ou Ra).

Le prix d’achat domine souvent lors du choix du tube fluorescent, choix qui se fait alors sans trop tenir compte du rendu des couleurs.

Les tubes dits « standards » (type 29, 33, 129, 133, 20 ou 30 = anciens codes – ou encore 640,630 …selon les marques) sont nettement moins chers à l’achat que les tubes « type » 830 ou 840. Ils présentent cependant deux inconvénients :

  • un  indice IRC ou Ra réduit, souvent incompatible psychologiquement avec le travail de bureau, mais suffisant pour des circulations (IRC de classe 3 (IRC entre 40 et 60)) ;
  • une efficacité lumineuse inférieure.

Les tubes standards seront donc à éviter. Dans la pratique, on peut choisir des lampes 830 – 840 dans toutes les situations standards. Cela uniformise les ambiances et facilite la maintenance.

À l’opposé, des lampes à rendu de couleur supérieur (IRC > 90) sont réservées aux magasins de mode, musées, laboratoires ou industries où la fidélité des couleurs est primordiale. Ces lampes sont nettement plus chères et ont généralement une mauvaise efficacité lumineuse.

La température de couleur

La température de couleur de la lampe influence l’impression de confort visuel de l’œil.
La norme EN 12464-1 laisse une certaine latitude quant au choix de la température de couleur des lampes.

Température de couleur.Température de couleur.

La température de couleur d’une lampe fluorescente est indiquée sur la lampe ou dans le catalogue des fabricants.
En pratique, on choisira :

  • Des teintes froides (Tc = 4 000 K) dans les locaux de travail où les lampes sont utilisées en journée, en complément à la lumière naturelle.
  • Des teintes chaudes pour l’éclairage des habitations ou assimilées.
  • Des teintes froides pour des éclairements élevés ou dans des climats chauds.
  • Des teintes de couleur très froides (température de couleur > 5 000 K), appelées également « lumière du jour » dans les locaux aveugles. En effet, proches de la lumière naturelle, elles ont un effet favorable sur le bien-être des occupants.

Il faut éviter l’utilisation simultanée des teintes froides et des teintes chaudes, ce qui gêne l’adaptation chromatique de l’œil et crée des perturbations visuelles. Ainsi, lorsque les locaux ont un apport important de lumière naturelle, la tendance sera de choisir une température de couleur plus élevée pour éviter de trop grandes différences entre l’éclairage artificiel et naturel.

Dans les locaux où il n’y a pas d’apport de lumière naturelle, la lumière dynamique peut simuler la teinte de la lumière du jour (évolue dans le courant de la journée).

Le spectre lumineux

Les tubes fluorescents présentent une gamme très étendue en termes de température et de rendu des couleurs, ainsi qu’en termes de spectre lumineux. Les fabricants reprennent dans leur catalogue le type d’application de leurs lampes. Cela permet de vérifier si le choix réalisé correspond bien à sa situation propre. Il existe par exemple des lampes pour boucherie qui ont pour but d’accentuer la couleur rouge de la viande.

Données

pour connaitre les caractéristiques générales des différents types de lampe : cliquez ici !

Choix en fonction de l’efficacité énergétique et du prix de revient

Toutes les lampes ne sont pas égales du point de vue de l‘efficacité énergétique et « fonctionnelle » (durée de vie moyenne, utile, …). Le choix entre les différents types dépendra aussi du prix de revient de l’installation, c’est-à-dire de l’investissement (lampes et luminaires), de la consommation des frais de maintenance, de la durée de vie et du nombre d’allumages/extinctions autorisés. En effet, il ne suffit pas de choisir une lampe efficace, mais impayable.

Schéma durée de vie.

Données

pour connaitre les caractéristiques générales des différents types de lampe : cliquez ici !

Remarque : l’Europe, via ses directives, a entrepris la labellisation des différentes lampes, ce qui permet de comparer plus aisément l’efficacité de différentes lampes. Pour en savoir plus, cliquez ici.

Exemple de calcul par rapport à l’exploitation.

Voici le coût des différentes lampes envisageables dans des ateliers de grande hauteur. Ces coûts sont établis au départ d’une liste de prix d’un fabricant. Ils regroupent le coût d’achat des lampes et le coût de la consommation (ici pris égal à 11 c€/kWh), pour la fourniture d’environ 200 000 lm, pendant 30 000 heures.

On ne tient pas compte ici,

  • du coût des luminaires,
  • du rendement du luminaire,
  • ni de la perte supplémentaire d’efficacité lumineuse due au ballast.

Remarque.

On se doute que les valeurs reprises dans le tableau sont purement théoriques. En effet, on se rend bien compte, qu’à dimensions de local égales, l’uniformité obtenue avec 4 lampes sodium HP de 400 W, par rapport à 38 lampes fluorescentes de 58 W, est nettement inférieure.

Type
de lampe
Tube fluorescent
58 W
Sodium haute pression
250 W
Sodium haute pression
400 W
Sodium haute pression confort
250 W
Sodium haute pression confort
400 W
Halogénure métallique
250 W
Halogénure métallique
400 W
Efficacité
énergétique
(lm/W), auxiliaires compris
90 108 120 88 93 76 88
Puissance
installée
(W)
38 x 58 7 x 250 4 x 400 10 x 250 6 x 400 12 x 250 6 x 400
Durée
de vie utile (h)
16 000 16 000 16 000 12 000 12 000 6 000 6 000
Coût d’achat unitaire (€) 6.6 53 56 55 60 57 57
Coût d’achat
(€)
474

(71 lampes)

689

(13 lampes)

448

(8 lampes)

1 350

(25 lampes)

900

(15 lampes)

3 420

(60 lampes)

1 710

(30 lampes)

Coût de
consommation
(€)
7 273 5 775 5 280 8 250 7 920 9 900  7 920
Coût total
(€)
7 747 6 464 5 728 9 600 8 880 13 320 9 630
Conclusion

On se rend compte que les lampes à vapeur de sodium HP offre des avantages pour autant qu’il ne soit pas nécessaire d’obtenir un rendu de couleur élevé; ce qui est rarement le cas en éclairage intérieur (Ra de l’ordre de 80 dans la plupart des types de tâches). Pour rester dans des prix abordables en exploitation, la solution des luminaires équipés de lampes fluorescentes est intéressante.

Calculs

Pour comparer plus précisément le prix de revient de plusieurs installations, en connaissant, le prix d’un luminaire (placement compris), le prix des lampes, le rendement du luminaire.
cliquez ici !

Données

Pour connaître  et comparer les caractéristiques et les performances des différentes lampes,
cliquez ici !

Choix en fonction de la température ambiante du local

Le calcul du rendement d’une lampe s’effectue à température optimale. Ceci est particulièrement important dans le choix entre les lampes T8 et T5, par exemple. Sachant que les T5 atteignent leur flux lumineux maximum à 35 °C de température ambiante et les T8 à 25 °C, il est difficile, de déterminer quel type de lampe est à privilégier. En effet, selon que la valeur réelle de la température ambiante se situe plus vers 25 °C ou 35 °C le rendement lumineux chute de 10 % pour l’un ou pour l’autre des types de lampe.

En ce qui concerne les LEDs, celles-ci sont très sensibles à la température. C’est la température de jonction qui prévaut. Plus la température de la jonction est basse, meilleure est son efficacité lumineuse. Autrement dit, dans les ambiances froides comme les applications en froid alimentaire ou dans les locaux non chauffés, un système d’éclairage à LED convient bien.


Tableau récapitulatif des choix

Type
de lampe
Efficacité lumineuse IRC Durée de vie Dimmable Insensibilité allumage/exctinction Prix Domaine d’application
Tube fluorescent +++/–* Bon à élevé +++/– Oui ++/– +

Éclairage général des commerces et bureaux, éclairage industriel, sportif.

Fluo-
compacte culot à visser
+/– Bon Oui certains produits spéciaux +/– ++

En substitution aux incandescentes.

Fluo-
compacte +culot à broche
++/- Bon à élevé Oui ++/– ++

Éclairage domestique et tertiaire.

Halogénures métalliques +++/– Bon à élevé + Non +/—

Éclairage tertiaire, accentuation dans les commerces, éclairage public, sportif et industriel.

Sodium
haute pression
+++/– Moyen à bon ++/– Oui +/–

Éclairage routier, industriel, horticole, des salles et terrains de sport.

Sodium
basse pression
++++ N. C. ++ Non +/-

Éclairage autoroute.

LED +/— Bon +++ Oui ++

Éclairage domestique et tertiaire (couloir et sanitaire).

 * L’étendue des indicateurs illustre l’étendue des produits disponibles.

Données

Pour connaître les caractéristiques générales des différents types de lampe, cliquez ici !

Choisir l’emplacement des luminaires dans les salles de sports

Règles particulières à 1 sport

Dans certains sports, certaines directions de vision se présentent plus fréquemment. On peut parler de directions principales et secondaires.

Il faudra veiller à limiter l’éblouissement en évitant un flux lumineux orienté dans la direction du regard principal.

Il faudra éviter de placer des luminaires inclinés en bout de terrain. Ceux-ci seront à proscrire s’il s’agit de lampes à décharge haute pression dont la luminance moyenne est 20 à 30 fois supérieure à celle des lampes fluorescentes.

Dans le cas d’une installation avec tubes fluorescents, on placera les luminaires parallèlement à la direction principale.

Dans le même but, la norme EN 12193 recommande :

Types de sport

Recommandations pour l’emplacement des luminaires

Badminton Aucun luminaire ne devrait se situer dans la partie du plafond située au-dessus de l’aire de jeu principale.
Nettball Aucun luminaire ne devrait se situer dans la partie du plafond comprise à l’intérieur d’un cercle de 4 m de diamètre centré au droit du panier.
Tennis Aucun luminaire ne devrait se trouver dans la partie du plafond située au-dessus du rectangle de marquage prolongé de 3 m derrière les lignes de fond.
Volley-ball Aucun luminaire ne devrait se situer au plafond, au moins dans la partie directement au-dessus de l’aire du filet.

L’Afe recommande de ne pas disposer une ligne de luminaires dans l’axe longitudinal d’une surface d’évolution. Il est conseillé de préserver une bande d’environ 6 m de large, centrée sur cet axe longitudinal.


La salle omnisports

Dans la salle omnisports, les appareils d’éclairage sont disposés en même temps pour différents terrains de sport dont les tracés au sol s’entremêlent.

Les luminaires seront donc répartis uniformément de manière à éclairer tous les terrains.
Pour éviter l’éblouissement direct, on évitera de placer des luminaires inclinés. Avec des lampes à décharge haute pression, l’inclinaison est tout à fait à proscrire.

Les directions principales des différents terrains peuvent être perpendiculaires entre elles. Il n’est donc pas possible d’éviter certains emplacements comme expliqué dans « les règles particulières à un seul sport ». On peut néanmoins privilégier certains terrains et respecter au mieux les règles pour ceux-ci.

Salles d’opération [éclairage]

Salles d'opération


Le niveau d’éclairement

Certaines caractéristiques de plaies et de tissus, bien que différentes par nature, ne se distinguent souvent, au niveau des contrastes de luminance, que par quelques points seulement, exprimés en pourcentage. Par conséquent, l’opérateur doit faire preuve d’une acuité visuelle particulièrement élevée, pour être sûr de reconnaître les infimes différences de luminosité.

Pour que l’œil puisse distinguer de très faibles nuances de luminosité, il faut d’une part un haut niveau de luminance d’environnement et un temps l’adaptation de l’œil assez long.

La figure montre l’évolution de l’acuité visuelle en fonction de la tâche visuelle et de la luminance des objets. La situation 3 représente la situation couramment rencontrée lors d’une opération. Une deuxième abscisse montre le niveau d’éclairement nécessaire pour atteindre ces luminances si le facteur de réflexion des objets est de 0,05 (tissus foncés). Ainsi pour que l’acuité visuelle puisse tendre vers un maximum, le niveau d’éclairement du champ opératoire doit souvent atteindre 100 000 lux.

Il n’est évidemment pas nécessaire de maintenir de tels niveaux d’éclairement dans l’ensemble de la salle d’opération. Cependant, on a vu que l’acuité visuelle maximum demande un temps d’adaptation assez long. C’est pourquoi, il est nécessaire de maintenir un éclairement suffisamment important sur les pourtours du champ pouvant être parcourus du regard par le chirurgien, pour éviter des troubles d’adaptation, dus à des différences de luminance trop marquées.


Les reliefs

La visualisation de la structure des tissus, des cavités étroites nécessite une lumière permettant de faire ressortir les reliefs peu prononcés. Cela sera possible grâce à un éclairage ayant à la fois une composante rasante et une composante perpendiculaire.


Le spectre et la couleur

L’interprétation de l’état du patient dépend fortement de la très bonne restitution des couleurs des plaies ou tissus.

Température de couleur de 4 500 K et  de 3 000 K.

La vision des couleurs dépend de la sensibilité de l’œil mais aussi d’une composition la plus homogène possible du spectre de la source lumineuse. La lumière idéale de ce point de vue est la lumière naturelle (IRC = 100, Température de couleur = 5 600 K). Les lampes émettant une lumière chaude (3 000 K env.) possède trop de jaune et de rouge, ce qui peut altérer la vision correcte en salle d’opération. Pour obtenir une lumière blanche, il faut une température de couleur supérieure à 4 500 K.


Les ombres

Les instruments, les mains ou la tête de l’opérateur peuvent masquer ou assombrir la lumière du champ opératoire. La manière la plus efficace pour supprimer de telles ombres portées consiste à doter l’éclairage opératoire d’une lumière inondant le champ selon un angle spatial le plus large.


Les rayonnements infrarouges

Pour empêcher le dessèchement des tissus, dû au rayonnement thermique émis par les lampes, il faut que la lumière émise comprenne le moins de rayonnement infrarouge possible. La suppression de ce rayonnement profite aussi à l’opérateur qui peut subir lors des longues interventions des contraintes thermiques au niveau de la tête.


Les reflets

Lorsque le diamètre du champ lumineux est trop important, il y a des risques d’éblouissement de l’opérateur par réflexion de la lumière sur des objets se trouvant en périphérie du champ opératoire. C’est pour cela qu’il faut limiter le diamètre du champ lumineux à 20 .. 35 cm.

Au sein de ce champ lumineux, la lumière sera considérée comme agréablement répartie si son intensité suit le profil suivant en fonction du rayon du faisceau lumineux.

Définir les objectifs à atteindre (check-list d’un cahier des charges)

Définir les objectifs à atteindre en rénovation éclairage (check-list d'un cahier des charges)

La rénovation de l’éclairage est programmée. Voici les points essentiels que doit contenir le cahier des charges établi par l’auteur de projet.

On sera attentif à 4 aspects du projet :

Les tableaux suivants reprennent la liste simplifiée des bons réflexes à acquérir.


Paramètres de dimensionnement

Exigences

Pour en savoir plus

Dans les différents locaux les zones de travail et zones environnantes immédiates doivent être définies de la façon la plus précise possible. La surface restante du local, diminuée des deux surfaces précédentes représente la zone de fond.
Le niveau d’éclairement moyen dans la zone de travail et au plan de référence doit être spécifié suivant la tâche exécutée.

Le niveau d’éclairement moyen dans la zone environnante immédiate et au plan de référence respectera la norme EN 12464-1, à savoir qu’il doit être diminué d’un facteur 1.5 à 1.66.

Données

Le facteur de maintenance choisi pour le dimensionnement doit être de 0,8 pour les installations où les luminaires sont équipés avec ballasts électromagnétiques et 0.9 avec ballasts électroniques.

Concevoir

L’uniformité d’éclairement :

  • dans la zone de travail doit être : Emin / Emoy > 0.4 à 0,7 ;
  • dans la zone environnante immédiate : Emin / Emoy > 0.4 ;
  • dans la zone de fond : Emin / Emoy > 0.1

Évaluer

Les coefficients de réflexion des parois sont les plus proches possibles des caractéristiques réelles du local. On prendra les valeurs par défaut recommandées.

Concevoir

Dans la plupart des cas, la puissance  spécifique (perte ballast comprise) ne peut dépasser :

1,5 W/m²/100 lux dans les bureaux, classes et salles de réunion

2,5 – 3 W/m²/100 lux pour les pièces plus spécifiques (salle de sport,..)

Evaluer


Choix de matériel

Exigences

Pour en savoir plus

Les lampes dites à usage domestique (émettant moins de 6 500 lm) dispose d’un label « Énergie ».
Le choix de la lampe tient compte aussi de l’indice de rendu de couleur Ra défini dans les normes en fonction de la tâche ou du local considéré.

Théories

L’auteur de projet est en mesure de calculer et de fournir la valeur de l’UGR des luminaires choisis pour l’implantation considérée.

Théories

Les luminaires sont équipés d’optiques réfléchissantes et ont un rendement minimum de 70 %.

Concevoir

Pour éviter les éblouissements directs dans les locaux, les luminaires ont les caractéristiques suivantes :

Luminance de la lampe
kCd/m2
Angle maximum de défilement

20 à < 50

15°

50 à < 500

20°

>= 500

30°

Pour éviter les éblouissements  indirects dans les locaux équipés d’écran de visualisation, les luminaires ont les caractéristiques suivantes :

État de luminance élevé de l’écran Écran à haute luminance

L > 200 cd•m-2

Écran à luminance moyenne

L ≤ 200 cd•m-2

Cas A
(polarité positive et exigences normales concernant la couleur et le détail des informations affichées, comme pour les écrans utilisés dans les bureaux, pour l’éducation, etc.).
≤ 3 000 cd/m² ≤ 1 500 cd/m²
Cas B
(polarité négative et/ou exigences plus élevées concernant la couleur et le  détail des informations affichées, comme pour les écrans utilisés pour le contrôle des couleurs en conception assistée par ordinateur etc.).
≤ 1 500 cd/m² ≤ 1 000 cd/m²

Concevoir

Dans les halls de moins de 7 m de haut, les sources lumineuses  sont des tubes fluorescents ou des LEDS de type 830 ou 840 (température de couleur comprise entre 3 000 et 4 000 K, indice de rendu des couleurs compris entre 80 et 90).

Concevoir

Dans les halls de plus de 7 m de haut, les lampes sont de type tube fluorescentaux halogénures métalliques ou au sodium haute pression.

Concevoir

Les ballasts seront de type électronique avec préchauffage et d’une catégorie énergétique (EEI Energy Efficiency Index) inférieure à la catégorie A3 définie dans la directive 2000/55/CE.

Concevoir

Les luminaires sont protégés contre la production d’interférences électriques : ils sont marqués ou certifiés ENEC.

Concevoir

Les luminaires ont un degré de protection électrique minimum de classe I.

Concevoir

Dans les ambiances poussiéreuses et humides, les luminaires doivent avoir un degré de protection minimum IP56.

Concevoir

En cas de risque de choc, les luminaires doivent avoir une résistance minimum de 5 joules (IK08).

Concevoir

Des luminaires doivent être utilisés dans les ambiances explosives.

Concevoir


Systèmes de commande et de gestion

Exigence

Pour en savoir plus

Chaque local doit disposer d’une commande d’allumage propre.

Concevoir

Dans chaque local, la rangée de luminaires la plus proche des fenêtres doit pouvoir être commandée séparément et dimmée en fonction de la lumière naturelle.

Concevoir

La détection d’absence (détecteur de mouvement) combinée à un bouton poussoir d’allumage manuel volontaire est une solution énergétiquement intéressante d’un point de vue gestion de présence.

Concevoir


Recommandations de bonne pratique

Exigences

Pour en savoir plus

Les éléments du luminaire seront faciles d’accès pour l’entretien (accès aux composants électriques, démontage des optiques,…). Pour les halls de grande hauteur, des dispositifs de suspension spéciaux peuvent être prévus pour faciliter la maintenance (treuil, …).

Concevoir

Chaque zone d’activité doit posséder sa commande d’éclairage propre.

Concevoir

Les activités secondaires demandant moins d’éclairage (gardiennage, entretien, …) peuvent disposer d’une commande d’éclairage propre (commandant 1 luminaire sur 3, par exemple).

Concevoir

L’ensemble de l’installation peut être raccordé sur un programmateur horaire avec possibilités de dérogation locale et retour au mode automatique après une certaine période.

Concevoir

Les locaux à occupation intermittente et non programmable (circulations, entrepôts, …) peuvent être équipés de détecteur de présence.

Concevoir

La couleur des parois du local doit être claire.

Concevoir

Une check-list énergétique est mise à disposition du maître d’ouvrage afin de clarifier les demandes de performance énergétique en conception et/ou en rénovation de bâtiments.

Choisir l’emplacement des luminaires – règles générales

Objectif

Règles

Limiter l’éblouissement direct

Grâce aux ventelles, l’angle de défilement transversal est souvent plus grand que l’angle de défilement longitudinal. Il est donc généralement plus facile de prévenir l’éblouissement en plaçant les luminaires longitudinalement par rapport à l’axe du regard.

Limiter les réflexions sur le plan de travail  Respecter une zone interdite située au-dessus du plan de travail.

Cela revient souvent à placer les luminaires en rangées parallèles de part et d’autre du plan de travail plutôt qu’au-dessus.

Éviter les zones sombres le long des fenêtres le soir Un mur réfléchit la lumière, curieusement, un vitrage l’absorbe. La rangée de luminaires le long des fenêtres doit donc être proche de celles-ci pour compenser les pertes de lumière au travers des vitrages (le placement de rideaux peut jouer un rôle semblable).

Éviter les ombres gênantes Favoriser l’éclairage provenant de la gauche (pour les droitiers) et du dessus, mais avec un appoint venant de la droite pour éviter les ombres trop agressives.
Valoriser les apports en éclairage naturel ou les zones de besoins différents Placer les luminaires par zone de besoins différents (zone de circulation, de rencontre, de travail, zone façade, …) avec des commandes dédiées.
Assurer une uniformité correcte Respecter un écartement des luminaires fonction de la hauteur de montage et de la distribution lumineuse des luminaires. Certains fabricants peuvent fournir des tableaux qui illustrent pour un luminaire donné l’uniformité moyenne obtenue en fonction du rapport e (écartement entre les luminaires) / hu (distance entre le luminaire et le plan de travail.

Extrait de catalogue.