Grandes familles de systèmes de refroidissement

Grandes familles de systèmes de refroidissement


Présentation des grandes familles

Souvent on distingue 3 grandes familles de systèmes de climatisation en fonction du mode de transport de l’énergie frigorifique. Le rafraîchissement des locaux peut se faire :

  1. Par l’intermédiaire d’un réseau d’air,
  2. par l’intermédiaire d’un réseau d’eau froide ou d’eau glacée,
  3. par contact direct entre l’air à refroidir et l’évaporateur de la machine frigorifique (« détente directe »).

Famille 1 : les installations centralisées « tout air »

Puisque de l’air hygiénique doit de toute façon être apporté aux occupants, la première idée consiste à profiter du réseau de distribution d’air pour fournir la chaleur ou le froid demandés par les locaux.

Mais pour un bureau le débit d’air hygiénique entraîne un renouvellement du volume d’air du local :

Exemple.

1 personne demande 30 m³/h d’apport d’air neuf. Il occupe 10 m², sur une hauteur de 3 m, soit 30 m³. Le ratio « débit/volume occupé » est de 1 [1/h].

Par contre le transport de la chaleur et du froid entraîne des débits d’air nettement plus importants : on atteint des débits correspondant à 4 … 10 renouvellements du local, chaque heure, …

Exemple.

Les apports internes et les apports solaires génèrent une puissance de 100 W/m². Pour les 10 m² de l’occupant, cela crée un besoin frigorifique de 1 000 W. Supposons que l’ambiance est à 24 °C et l’air frais apporté à 14 °C, l’écart de soufflage sera de 24 – 14 = 10 K.
Le débit nécessaire sera de : 1 000 W / (0,34 Wh/m³.K x 10 K) = 294 m³/h
C’est un débit d’air 10 x plus élevé que le débit hygiénique !

Le réseau d’air devient alors fort encombrant !

Aussi, la consommation électrique des ventilateurs peut devenir très élevée : dans les anciennes installations (installées il y a 30 ans), le coût de l’énergie électrique des ventilateurs peut atteindre 50 % du coût total de l’énergie consommée par le conditionnement d’air de tout l’immeuble !

De plus, en « tout air neuf », le coût de fonctionnement de l’installation est très élevé puisque le chauffage est assuré, en plein hiver, par de l’air extérieur qu’il faut réchauffer à grands frais.

Exemple.

Pour apporter 1,5 kW de chaleur au local, un apport de 3,5 kW est demandé au caisson de traitement d’air : 2 kW pour porter l’air de 6° à 22 °C, puis 1,5 kW pour l’amener à 40 °C.

La température de 6 °C correspond à la température moyenne de l’air extérieur.

Pour diminuer les coûts d’exploitation d’une installation « tout air », une bonne partie de cet air doit être recyclé.

Exemple.

60 m³/h sont conservés pour l’apport d’air hygiénique et 210 m³/h extraits des bureaux à 22 °C sont recyclés. La puissance de chauffe redescend à 1,9 kW :

Cette solution est plus économique, mais on reproche alors au système les risques de contamination que peut entraîner ce recyclage, … qui mélange l’air provenant de tous les locaux !

Pour limiter les coûts énergétiques sans risque de contamination, on place alors un récupérateur de chaleur sur l’air extrait.

Exemple.

Autrefois à la mode à toutes les sauces, on réserve généralement les centrales « tout air » aux locaux où les besoins en air neuf sont très importants, c’est à dire des locaux à grande densité d’occupation : des salles de réunion, des salles de conférences, … Un autre cas de figure est celui des bâtiments où les besoins de refroidissement sont faibles et bien maitrisés (par des superficies vitrées réduites, des protections solaires extérieures,…)

Dans ces cas, le débit de ventilation hygiénique se rapproche du débit thermique nécessaire …

De plus, la technique du « débit d’air variable » permet aujourd’hui de limiter le coût du transport de l’air et surtout d’adapter le débit en fonction des besoins de chaud ou de froid nécessaire.

Gros avantage du « tout air » sur le plan énergétique : pour les locaux qui doivent être refroidis en mi-saison et éventuellement même en hiver, de l’air frais extérieur gratuit est disponible. On parle alors de « free cooling mécanique ».

Famille  2 : les installations décentralisées « sur boucles d’eau »

Ici, les fonctions sont séparées :

  • L’air neuf hygiénique est traité en centrale, puis apporté dans les locaux au moyen d’un réseau de conduits.
  • La chaleur et le froid sont apportés vers des unités de traitement terminales situées dans les locaux, via une boucle d’eau chaude et une boucle d’eau froide ou d’eau glacée.

Comme unités terminales, on retrouve les ventilo-convecteurs, les pompes à chaleur sur boucle d’eau, les plafonds rafraîchissants, …
Trois problèmes sont résolus

  1. Seul de l’air neuf est véhiculé, limitant ainsi le risque hygiénique lié au recyclage partiel de l’air vicié (en quelque sorte, il s’agit d’une ventilation « double flux », améliorée par un traitement central en température et humidité).
  2. L’encombrement est limité puisque l’eau transporte de la chaleur (ou du froid) avec 3 000 fois moins de volume que l’air. De simples tuyauteries suffisent. En rénovation de bâtiments, on évite ainsi le percement des parois pour insérer des gainages d’air de grandes dimensions…
  3. Le transport de la puissance frigorifique ou calorifique se fait par l’eau, au moyen d’une pompe dont la consommation sera nettement moins consommatrice que le ventilateur correspondant au système « tout air ».

Cette séparation entre la ventilation et l’apport thermique au local est de plus un gage de bonne régulation.

Le mode de régulation de la température peut se faire local par local et est très accessible à l’utilisateur, ce qui est un confort apprécié. Une liaison par bus de communication des différentes unités terminales est possible, ce qui permet une régulation et une gestion globale de qualité par la GTC (Gestion Technique Centralisée).

Famille 3 : les appareils travaillant en « détente directe »

On retrouve dans cette famille les climatiseurs, armoires de climatisation, roof-top,… mais ces appareils ne peuvent résoudre qu’un problème de climatisation limité à un ou quelques locaux : la climatisation d’une salle informatique, d’une cafétéria, d’un hall d’atelier, … par exemple. On les retrouve dans des bâtiments qui ne sont pas munis de production centrale de froid, dans des ajouts de locaux ou dans les cas où il faut assurer en secours du froid pour une fonction vitale (ex : central téléphonique).

La consommation spécifique de ces appareils est plus élevée que dans une unité terminale d’une installation centralisée (ventilo-convecteurs, par exemple), suite au fait qu’ils travaillent avec une température d’évaporation très basse, entraînant une consommation parasite par déshumidification exagérée de l’air. Par contre, ils ne demandent pas le maintien de réseaux d’eau froide durant tout l’été et la mi-saison, ce qui est appréciable.

Un seul type de système peut climatiser l’ensemble d’un immeuble de bureaux, c’est le système dit « à Débit Réfrigérant Variable » (ou DRV). Il est souvent connu par les appellations VRV ou VRF, selon les constructeurs. Sa particularité est de véhiculer du fluide frigorigène dans les différents locaux et d’alimenter directement des échangeurs situés en allège ou en faux plafond. Suivant les besoins du local, l’échangeur peut fonctionner en mode froid (il est l’évaporateur de la machine frigorifique) ou en mode chaud (il est le condenseur de celle-ci). À noter le faible encombrement qu’il entraîne, puisqu’aucune chaufferie n’est ici nécessaire.

Il n’utilise aucun fluide intermédiaire (air ou eau). De là, le terme d’appareil à « détente directe » : l’échangeur « froid » est parcouru directement par le fluide frigorigène. Cette caractéristique est performante au niveau énergétique puisque le coût du transport de l’énergie frigorifique est évité. De plus, les systèmes à fluide réfrigérant variable permettent de récupérer la chaleur entre les zones chaudes et les zones froides du bâtiment.

Comme dans les systèmes air-eau, le mode de régulation de la température se fait local par local et est très accessible à l’utilisateur (généralement une télécommande).

Le problème du traitement de l’air hygiénique subsiste : il n’existe pas de chaudière ou de groupe frigorifique disponibles en centrale pour préparer l’air hygiénique. Des solutions décentralisées sont possibles avec un moindre confort.

Concevoir

Pour plus de détails, on peut consulter le choix d’un système à débit de réfrigérant variable.

Les solutions les plus courantes

La solution « standard » : le ventilo-convecteur

Photo ventilo-convecteur.

  • Partons du système le plus utilisé pour un immeuble de bureaux : le ventilo-convecteur sur une boucle d’eau froide et une boucle d’eau chaude (système appelé « ventilo-4 tubes »).Il a pour avantages :
    • une très grande souplesse de réaction face aux variations de charges,
    • un faible encombrement,
    • une possibilité d’accepter des charges différentes d’un local par rapport à un autre,
    • une séparation entre l’apport d’air frais hygiénique et l’apport thermique, ce qui supprime tout recyclage de l’air hors du local,
    • un prix d’investissement limité grâce à un équipement fabriqué en grande série.On sera attentif à la qualité lors de sélection du matériel et lors de la réalisation de la distribution d’air neuf (confort thermique et acoustique).
  • Si le bâtiment est très homogène dans ses besoins (« quand c’est l’hiver, c’est l’hiver pour tous les locaux ») on se contentera d’un « système à 2 tubes », moins coûteux : un seul réseau de tuyauterie véhicule alternativement de l’eau chaude en hiver et de l’eau froide en été. Mais cette solution devient de plus en plus difficile à appliquer : l’enveloppe du bâtiment étant de mieux en mieux isolée, certains locaux plus chargés en apports internes seront demandeurs de froid, même en hiver.
  • En rénovation, pour vaincre des charges d’équipements devenues inconfortables, on peut greffer une installation 2 tubes froids (« Hydrosplit »), sur la production de chauffage existante.

Le plafond froid

Photo plafond froid.

  • La technique des plafonds froids apporte un confort thermique et acoustique inégalé (moyennant un éventuel supplément de prix) : le froid est apporté par rayonnement au-dessus de la tête des occupants et aucun ventilateur ne vient perturber l’ambiance. Mais la puissance de refroidissement des plafonds est limitée. Cette technique ne s’appliquera dès lors qu’avec des bâtiments dont la conception limite les apports solaires : bâtiments avec ombre portée, stores extérieurs, stores intérieurs combinés à des vitrages performants,…
  • Le plafond froid sera d’ailleurs facilement intégré lors de la rénovation d’un bâtiment existant dont les charges sont légères et qui dispose déjà d’une installation de chauffage.
  • On pourra utiliser des poutres froides complémentaires si la puissance frigorifique souhaitée n’est pas atteinte, mais au détriment du confort aéraulique comme souvent dans les solutions dynamiques (risque de courants d’air froid).
  • Reste le problème de l’apport de chaleur en hiver. En construction nouvelle, si le bâtiment est bien isolé, la demande de chaleur en hiver est limitée.
    Il est envisageable d’apporter cette chaleur :

    • soit en alimentant en eau chaude les plafonds situés près des façades (près des baies vitrées),
    • soit via un circuit de radiateurs complémentaire,
    • soit grâce à des batteries terminales placées sur le conduit de ventilation hygiénique (si le débit de celui-ci est suffisant).

La solution spécifique pour les locaux à forte occupation : la centrale « tout air » à débit variable (VAV)

Photo centrale "tout air" à débit variable (VAV).

Le problème se pose tout autrement si une présence humaine nombreuse est prévue. Alors que l’on prévoit 12 m² par personne dans un bureau individuel ou 8 m²/pers dans un bureau paysager, ce ratio descend à 2 à 4 m²/pers dans une salle de réunion, voire 1 à 2 m²/pers dans une salle de conférence. Puisque chaque personne nécessite 30 m³/h, un réseau d’air neuf important sera nécessaire. On pense dès lors à profiter de ce réseau pour apporter les calories et frigories requises.
Un bilan s’impose :

  • Si le bâtiment présente des besoins limités (bien isolé du froid extérieur et bien protégé des apports solaires), le débit d’air hygiénique élevé pourra apporter les besoins thermiques. On parle d’un système « tout air ».
Exemple.
Soit un local de réunion assez dense : 2 m²/pers.
Réalisons le bilan des apports :
éclairage : 12 W/m²
personnes : 80 W pour 2 m² = 40 W/m²
total : 52 W/m²
Réalisons le bilan du refroidissement par le débit d’air hygiénique : débit : 30 m³/h/pers pour 2 m² = 15 m³/h/m²
puissance de refroidissement : 15 m³/h/m² x 0,34 Wh/m³K x 8 K = 41 W/m²

On voit qu’en poussant un peu le débit d’air, on peut facilement vaincre les 52 W/m² de chaleur.

  • Dans le cas où le local est soumis à des apports solaires supplémentaires, les débits nécessaires pour les besoins thermiques dépasseront de loin le débit d’air hygiénique, l’encombrement sera très important, un recyclage de l’air devra être organisé… Le système « tout air » devient inadapté.

Vu le coût d’exploitation du transport par air (coût de fonctionnement des ventilateurs), un système d’adaptation du débit d’air aux besoins réels sera prévu (système VAV, Volume d’Air Variable). Le débit maximal ne sera pulsé que dans les situations extrêmes. Mais ce système est coûteux et la mise au point de sa régulation est plus délicate.

Un grand avantage pourtant de ce système « tout air » est de pouvoir profiter d’un refroidissement gratuit par de l’air extérieur en mi-saison (free cooling diurne).

Un outsider possible pour certains bâtiments : le DRV, Débit de Réfrigérant Variable

Photo DRV, Débit de Réfrigérant Variable.

Quelques réflexions peuvent se faire :

  • Le souci de modularité dans la construction des bâtiments nouveaux entraîne faux plafond, cloisons légères, … Cette caractéristique de construction sans inertie, alliée à la présence généralisée de moquette au sol, entraîne une très grande variabilité des besoins dans le temps : il faut réchauffer le bâtiment au matin, mais le fonctionnement de la bureautique et le premier rayon de soleil entraîne un besoin de refroidissement à midi !
  • Les bâtiments nouveaux sont parfois confrontés à des besoins simultanés de chaud et de froid :
    • exemple 1 : en hiver, chauffage des locaux en périphérie et refroidissement du cœur du bâtiment,
    • exemple 2 : en mi-saison, au matin, chauffage des locaux à l’Ouest et refroidissement des locaux à l’Est déjà soumis au rayonnement solaire,
    • exemple 3 : chauffage de l’air hygiénique et refroidissement des locaux.
      Il est dommage de voir simultanément des chaudières fonctionner, ne fut-ce que pour préchauffer l’air hygiénique, et des condenseurs évacuer dans l’air extérieur la chaleur excédentaire des locaux refroidis…
  • Pourquoi passer par un fluide intermédiaire (eau ou air) et ne pas travailler directement avec le fluide frigorigène qui peut apporter chaleur ou refroidissement par simple inversion du cycle ?

Par ailleurs, la technique du « fluide réfrigérant variable » semble performante pour des locaux dont les besoins sont très variables entre eux et dans le temps. Par exemple, en hiver, un échangeur dans le faux plafond devient évaporateur lorsqu’il est placé dans un local central et condenseur lorsqu’il est dans un local en façade. Et ce même échangeur bascule en évaporateur en été.

Reste le problème d’apport de l’air neuf hygiénique et le contrôle du taux d’humidité en hiver. Ce système ne le prévoit pas.
Il faut alors :

  • Soit prévoir un caisson de préparation de l’air indépendant, mais on ne dispose pas de source de chaleur puisque pas de chaudière…
  • Soit intégrer l’air neuf dans les échangeurs intérieurs et laisser à l’unité terminale le soin de préparer la température adéquate, mais on ne gère pas le problème de l’humidité de l’air des locaux.

Un avantage de ce type d’installation : c’est une solution « tout électrique », ce qui simplifie et accélère la construction. On veillera cependant à en limiter la puissance électrique (gestion de la pointe de puissance par délestage ou par stockage de froid la nuit).

Quel que soit le système choisi…

C’est très souvent la qualité du projet qui fait la différence :

  • dimensionnement correct (absence de courant d’air, limitation du bruit,…),
  • finesse de la régulation des équipements,
  • performance des moyens de gestion qui pilotent le tout.

Ce sont les 10 % de budget supplémentaire qui feront souvent la performance globale…

Choisir une production de froid « alternative » (freechilling, refroidissement adiabatique, géothermie, climatisation solaire)

Choisir une production de froid "alternative" (freechilling, refroidissement adiabatique, géothermie, climatisation solaire)


Quand opter pour un freechilling ?

Le free-chilling consiste à refroidir l’eau glacée de l’installation frigorifique par « contact » avec l’air extérieur lorsque la température de celui-ci est suffisamment basse.

Qu’est-ce qu’une installation adaptée au free-chilling ?

Au départ, il faut que des besoins de froid soient prévus en hiver.
L’intérêt est augmenté si les échangeurs des unités terminales qui seront choisis travaillent à « haute » température : ce sera le cas de plafonds froids (régime 15-17 °C), de poutres froides ou de ventilos-convecteurs surdimensionnés pour travailler au régime 12-17 °C ou 14-19 °C,… À noter qu’un tel dimensionnement diminue les pertes du réseau et la consommation liées à la condensation de la vapeur d’eau contenue dans l’air des ambiances, ce qui amplifie l’économie d’énergie.

Si l’installation demande une puissance de refroidissement faible en mi-saison ou en hiver (de l’ordre de 50 W/m²), on pourrait faire travailler les plafonds froids au régime 17 ° – 19 °C, ce qui permet un refroidissement par l’air extérieur tant que la température de l’air est inférieure à 14 °C. On peut alors imaginer une modulation de la température de consigne de l’eau des plafonds froids en fonction de la température extérieure.

Enfin, le projet se présente très favorablement si un condenseur à eau est prévu : on pourra utiliser la tour de refroidissement pour refroidir l’eau glacée directement par l’air extérieur. Dans la tour, grâce à l’évaporation partielle de l’eau, la température de l’air extérieur sera encore diminuée. Ainsi, de l’air à 15 °C et 70 % HR permet de créer de l’eau de refroidissement à 12 ° (limite basse théorique appelée température « bulbe humide »). Malheureusement, un échangeur sera nécessaire entre le circuit de la tour (eau glycolée) et le circuit d’eau glacée du bâtiment. Une partie de l’avantage est donc perdu…

Le problème du gel…

De l’eau glacée refroidie par l’air extérieur pose le problème du gel dans la tour. La solution la plus courante est l’addition de glycol, mais :

  • le glycol coûte cher,
  • le glycol diminue les capacités d’échange thermique et augmente la densité du liquide, ce qui entraîne une augmentation de puissance des pompes,
  • en général, on limite le circuit glycol au dernier tronçon en contact avec l’extérieur (l’eau de la boucle d’eau glacée n’est pas glycolée car, en cas de vidange, c’est l’entièreté du circuit qui est à remplacer),
  • un échangeur supplémentaire doit alors être prévu, entraînant une consommation électrique liée à sa perte de charge et un écart de température qui diminue la période de fonctionnement du free-chilling…
  • Attention lorsque l’on rajoute de l’eau ultérieurement…

Il est aussi possible de placer des cordons chauffants (mais peut-on protéger totalement ainsi une tour ?) ou de prévoir un circuit de chauffage spécifique qui se met en place en période de gel, mais on risque de manger le bénéfice !

 Le free-chilling : une solution miracle pour toutes les installations ?

Certainement pas. De nombreuses contraintes apparaissent.

Quelques exemples :

  • Lorsque l’installation travaille à charge partielle, il y a intérêt à ce que la température moyenne de l’eau « glacée » soit la plus élevée possible pour favoriser l’échange avec l’air extérieur. On appliquera donc une régulation des échangeurs par débit variable pour augmenter l’écart de température entre départ et retour.
  • Une tour de 300 kW pèse 3 à 4 tonnes et une tour de 1 000 kW pèse 9 à 12 tonnes, ce qui génère parfois des frais d’adaptation du génie civil.
  •  …

Adapter cette technique nécessite donc toujours une étude particulière (cadastre des énergies de froids prévues avec leur niveau de température, répartition été/hiver, …) pour apprécier la rentabilité.

Mais il est en tous cas impératif d’y penser lors d’une nouvelle installation !


Quand opter pour un refroidissement adiabatique

Le refroidissement adiabatique permet de rafraîchir de l’air en centrale par humidification. Cet air humide et frais est ensuite utilisé directement dans l’ambiance ou indirectement par un échangeur de chaleur.

Ce système basé sur des équipements existants (groupe de ventilation, tour de refroidissement) apporte un rafraichissement naturel bienvenu lorsque des techniques plus « lourdes » (fenêtres motorisées, etc.) ne peuvent être mises en œuvre. Il peut également servir d’appoint à ces techniques passives lorsque celles-ci ne suffisent plus à assurer le confort.

Le refroidissement adiabatique a cependant une efficacité limitée à trois niveaux,

  • comme tout système de transfert thermique basé sur l’air, la faible capacité calorifique de l’air bride la puissance disponible. Des débits d’air importants sont nécessaires pour que le refroidissement soit réellement sensible.
  • La température minimale à laquelle l’air peut être abaissé est la température de bulbe humide, qui correspond à la saturation. Cette température est plus élevée que celle obtenue par une machine frigorifique « classique ».
  • Le système ne fonctionne que lorsque l’air que l’on souhaite humidifier est suffisamment sec que pour présenter un potentiel de rafraichissement intéressant. Si c’est de l’air intérieur, le refroidissement adiabatique sera plus pertinent dans des locaux faiblement occupés (moins de dégagement d’humidité dans l’ambiance). Si c’est de l’air extérieur, le système ne sera pas très efficace les jours chauds et humides.

La figure ci-dessous montre, heure par heure, les conditions climatiques d’Uccle, et la zone de conditions T° et Humidité favorable à un système évaporatif direct. A l’évidence, notre climat humide n’est pas le plus favorable pour cette technique.

Elle n’est pas pour autant à dédaigner complètement. Considérons par exemple un air extérieur à 22 °c et 60 % d’humidité relative, une condition qui n’a rien d’exceptionnel en été. Pour peu qu’il y ait un peu de soleil, beaucoup de bâtiments seront en demande de refroidissement. Par humidification, cet air peut être  abaissé jusqu’à environ 17 °C. Ce gain de 5 °C, sur un débit d’air hygiénique d’environ 3 m³/(hm²) dans des bureaux représente 5 W/m² de puissance frigorifique. C’est presque équivalent à la chaleur dégagée par les occupants (70 W/personne, 10 à 15 m²/personne). C’est peu, mais non négligeable.

Quand donc opter pour ce type de système ?

Dans notre climat, un refroidissement adiabatique direct est limité par l’humidité extérieure, et surtout d’une efficacité très variable en fonction de la météo.  On évitera donc de se fier uniquement sur eux pour traiter une ambiance. Par contre, sa simplicité fait qu’il trouvera presque toujours une place en complément de stratégies de refroidissement sur boucle d’eau.

Les systèmes indirects, basés sur l’humidification de l’air extrait, seront pertinents lorsque l’air extrait peut être fortement refroidi. Pour cela, il faut qu’il ne soit ni trop chaud, ni trop humide. La condition « pas trop chaud » fait penser à des locaux disposant déjà d’un système de refroidissement  par boucle d’eau. On est alors sur de plafonner à 24-25 °C. La condition « pas trop humide » se rencontre lorsque la surchauffe du local est liée à des gains solaires et internes sans dégagement d’humidité. Autrement dit dans les locaux dont l’occupation humaine est relativement limitée. Problème : dans ces cas-là, le débit d’air a tendance à l’être aussi, ce qui limite la puissance disponible. Faut-il surdimensionner le réseau de ventilation ? C’est un calcul économique à réaliser au cas par cas.

En conclusion, le refroidissement adiabatique apparait chez nous comme un appoint intéressant à d’autres systèmes plus que comme une technique autonome de refroidissement.

Et si on reformulait les objectifs de la conception des bâtiments de façon à atteindre un niveau de maîtrise des charges thermiques au point de rendre cet appoint suffisant ?

Techniques

Pour en savoir plus sur le refroidissement adiabatique, cliquez ici !

Concevoir

Pour en savoir plus sur la façon de valoriser la physique de l’air humide, cliquez ici !

Quand opter pour une climatisation solaire ?

La climatisation solaire est une technique basée sur l’utilisation de machines frigorifiques à ab/adsorption  ou de roues dessicantes. L’énergie solaire sert alors de source de chaleur pour régénérer le sorbant.

Dans le cas des machines frigorifiques à adsorbtion, la possibilité d’utiliser le soleil pour cet usage est limité par la demande d’une température d’eau minimale qui se situe entre 70 et 95°C en fonction du couple solvant-réfigérant. Dans les roues dessicante, cette température est également supérieure à 70°C. Pour atteindre cette température, l’emploi de capteurs performants est indispensable (sélectifs, sous vide, à faible concentration), ce qui induit un coût d’investissement assez important.

Il faut aussi tenir compte de ce que, en l’absence de soleil, si les besoins de froid sont toujours présents, une autre source de chaleur doit prendre le relais. L’intérêt de la machine frigorifique à absorption couplée avec des capteurs solaires doit donc être évalué sur base d’une moyenne annuelle, en tenant compte des heures d’ensoleillement exploitables. Cette évaluation dépend de nombreuses valeurs à estimer :

  • rendement de la chaudière ;
  • rendement de la machine frigorifique à absorption ou des différents échangeurs de la roue dessicante ;
  • proportion de la demande de froid qu’on peut produire avec l’énergie solaire (X) qui dépend du nombre d’heures d’ensoleillement exploitables ;
  • rendement moyen de la production électrique en centrale ;
  • COP de la machine frigorifique à compression.

Avec les hypothèses prises dans le schéma ci-dessus, le bilan au niveau de la consommation d’énergie primaire est favorable au système de refroidissement solaire si au moins 51 % de la demande de froid peut être satisfaite par l’énergie solaire. Pour évaluer la rentabilité économique du système, il faudrait tenir compte des prix de l’énergie et des coûts d’investissement.

Est-il envisageable d’atteindre ce ratio ? A priori non : dans notre climat peu ensoleillé, les surchauffes sont en grande partie liées aux dégagements intérieurs de chaleur. Encore plus si le bâtiment est équipé de protections solaires.

Faisons l’exercice inverse : pour que la climatisation solaire soit pertinente, il faudrait que :

  • Les locaux soient peu sujets à des gains internes : des grands espaces peu occupés.
  • Les locaux soient sujets à une surchauffe au moment où le soleil brille : donc des espaces qui présentent une faible inertie thermique.
  • Les locaux disposent d’une stratégie alternative lorsque cette surchauffe apparait pour un ensoleillement moyen (en mi-saison, quand la température dans le capteur ne sera pas suffisante) : locaux que l’on peut ventiler intensivement en été.

Cela pourrait nous faire penser à des espaces d’exposition, pour autant que l’éclairage artificiel n’y représente pas une charge trop importante, ou à des atriums. On le voit, la climatisation solaire doit, chez nous, être considérée comme un produit de ‘niche’, pour lequel une étude technico-économique détaillée est indispensable.

Techniques

Pour en savoir plus sur les machines frigorifiques à ad/absorption

Techniques

Pour en savoir plus sur les roues dessicantes

Quand opter pour un geocooling ?

Le geocooling est une technique de valorisation de la fraicheur du sol grâce à un réseau véhiculant un fluide caloporteur. En principe, le champ d’application du geocooling est large. Tout bâtiment qui présente un besoin de froid pourrait théoriquement en bénéficier, quitte à compléter cette source d’un appoint par une machine frigorifique plus traditionnelle.
Les limites d’utilisation du geocooling seront :

  • Réglementaires : les forages doivent faire l’objet d’une demande de permis unique en Région Wallonne, pour laquelle il faut fournir notamment une coupe géologique probable du puits avec profondeur estimée de la nappe aquifère, la description des méthodes de forage et les équipements du puits avec coupe technique, un rapport technique sur la nature de la nappe aquifère éventuelle et un plan de situation des puits. Le sens de cette demande de permis est bien évidemment d’éviter tout risque de pollution d’une nappe aquifère, ce qui peut limiter le développement de cette technologie dans certaines zones sensibles.
  • Technologiques : Décharger d’année en année une quantité d’énergie dans le sol mène à son échauffement progressif. Il en découle une perte de performance liée à des moindres écarts de température entre le sol, la boucle d’eau et le bâtiment. On privilégiera donc le geocooling dans les situations où le sol est également utilisé comme source de chaleur en hiver (géothermie), t en particulier lorsque les besoins de chauffage et de refroidissement du bâtiment sont dans une certaine proportion. Puisqu’en géothermie l’énergie utile (la demande de chaud) = l’énergie extraite du sol + l’énergie consommée au compresseur de la pompe à chaleur, alors qu’en geocooling, l’énergie utile (la demande de froid) = l’énergie injectée dans le sol, on déduit que le geocooling sera particulièrement pertinent lorsque la demande de froid = la demande de chaud / (1-(1/COPpac)). Autrement dit, si on considère qu’une pompe à chaleur à un COP de l’ordre de 4, il faut que les besoins de froid soient environ 133 % des besoins de chaleur.

Schéma évolution de la température du sol sur 20 ans.

Simulation de la température d’un sol dont on retire du froid chaque été. Après 240 mois (20 ans), la température moyenne a grimpé de 3°C, rendant difficile la production d’eau froide à destination du système de climatisation du bâtiment.

  • Économiques : La pertinence économie qu’un geocooling dépend de la nature du sol et de l’équilibre entre besoins de chaleur et de froid. Pour ce qui est de la nature du sol, il est évident qu’un forage dans une roche demandera un investissement plus important qu’un forage dans du sable. Certains sols offrent également une plus grande diffusivité thermique, ce qui améliore leur rôle de tampon thermique. Un test de réponse thermique (TRT) permet de chiffrer la qualité d’un sol relativement à des applications thermiques. L’équilibre chaud-froid dans les proportions discutées au point précédent permet de limiter le recours à des technologies d’appoint (chaudière ou machine frigorifique à compression) pour valoriser au maximum l’investissement fait au niveau du forage.

Pour illustrer tout cela, voici un exemple de bilan réalisé pour un bâtiment de bureaux (source : MATRIciel sa). Il s’agit de la comparaison entre la géothermie/geocooling et des installations de production traditionnelles, pour plusieurs combinaisons d’enveloppe (coefficient de déperdition des murs de 0,2 à 0,4 W/m²K et facteur solaire des vitrages de 22 à 39 %). Certaines combinaisons ne sont pas possibles si on désire installer une géothermie, car elles entraînent un trop grand déséquilibre entre les besoins de chauffage et de refroidissement et donc une mauvaise dynamique du sol d’une saison à l’autre. Dans ces cas, la stabilité de la température du sol à long terme n’est pas garantie. Globalement, lorsqu’elle est possible, la valorisation du sol permet une division par 2 des émissions de CO2 et une économie d’un tiers de l’énergie primaire liée au chauffage et refroidissement. Mais, on constate que la combinaison qui minimise la consommation d’énergie primaire pour des techniques traditionnelles ne permettait pas, pour ce cas-là, d’opter pour le geocooling ! Même si cela peut paraître paradoxal, il est alors préférable d’aller un peu moins loin dans la réduction des besoins (de froid dans ce cas-ci) pour rendre possible l’investissement dans une technique qui minimisera l’impact global du bâtiment.

Schéma comparaison entre la géothermie/geocooling et des installations de production traditionnelles.

Schéma comparaison entre la géothermie/geocooling et des installations de production traditionnelles.

Techniques

Pour en savoir plus sur les techniques de geocooling, cliquez ici !

Influence du régime de température

Le régime de température d’un système de climatisation influence directement la quantité d’énergie produite en valorisant la fraicheur de l’environnement. À titre d’exemple, le tableau suivant reprend les gains énergétiques potentiels par free-chilling et par géocooling qui ont été simulés en fonction du régime de température, pour un bâtiment de bureaux nécessitant 302 MWh de besoin en froid.

  Géocooling
Régime 09°C-14°C 15°C-17°C 17°C-19°C
Gain énergétique potentiel 33% 66% 75%

Free-chilling

Régime 09°C-14°C 15°C-17°C 17°C-19°C
Gain énergétique potentiel 0.5% 8.6% 15.5%

Le géocooling consiste à refroidir directement l’eau avec le sol, la température du sol  doit donc être inférieure à la température de départ de l’eau. Dans cette exemple, le choix d’un régime 17-19 °C au lieu de 9 °C – 14 °C permet bénéficier de 2 fois plus d’énergie gratuite et d’ainsi couvrir 75 % des besoins en froid du bâtiment !

Pour un régime de température de 9 °C – 14 °C, l’utilisation d’énergie gratuite de l’air est quasi nulle (0.5 % de la consommation annuelle).  Dans cet exemple, l’augmentation du régime de température de 2 °C (17-19 au lieu de 15-17) permet d’utiliser 1.8 fois plus d’énergie gratuite.

En outre, un régime plus élevé diminue fortement le risque de condensation et peut permettre de se passer de la déshumidification de l’air. Il est dès lors possible d’utiliser des émetteurs de types plafond froid.

Géothermie et géocooling [Climatisation]

Géothermie et géocooling


Principe

À l’état naturel, le sous-sol garde une température constante de l’ordre de 10 … 12 °C à partir d’une profondeur d’une dizaine de m.

graphe principe géothermie.

On peut donc logiquement imaginer que celui-ci puisse servir de source naturelle de froid. Il suffirait qu’un réseau véhiculant un fluide caloporteur le parcoure pour produire de l’eau à température adéquate pour refroidir un bâtiment.

On appelle cela du « géocooling ».

De même, une température de 10 .. 12 °C plus élevée et plus stable que la température extérieure hivernale est une température intéressante pour servir de source froide à une pompe à chaleur, en l’occurrence sol/eau, pour chauffer le bâtiment en hiver.

On parle alors de « géothermie ».

Refroidissement en été et chauffage en hiver vont d’ailleurs souvent de pair. En effet, si en été on extrait du « froid » du sol, ce dernier se réchauffe progressivement. Si cette opération se répète d’année en année, sans autre perturbation, le sol verra sa température moyenne augmenter jusqu’à ne plus être exploitable.

Dès lors pour éviter ce phénomène, il s’agit de régénérer le sol chaque hiver en extrayant la chaleur accumulée en été grâce à une pompe à chaleur.

On parle alors de « STOCKAGE GEOTHERMIQUE » : la chaleur du bâtiment est transférée dans le sol en été quand elle est gênante pour être utilisée en hiver quand elle est nécessaire.


Technologie des sondes géothermiques

Les systèmes fermés et ouverts

On parle de système fermé si un fluide caloporteur circule dans le sol dans un circuit fermé.

On retrouve principalement 3 types de systèmes fermés : les forages ou sondes géothermiques, les pieux géothermiques et les nappes horizontales.


3 types d’échangeur géothermique : les pieux, les sondes et les nappes.

Source : Rehau.

On parle de système ouvert lorsque c’est l’eau de la nappe phréatique ou du lit d’une rivière qui est pompée pour échanger sa chaleur avec le bâtiment et réintroduite en aval du sens d’écoulement souterrain.

Forages géothermiques

Dans ce cas les « échangeurs géothermiques » ou « sondes géothermiques » sont pour la plupart constitués de forages verticaux (diam 150 mm) d’une profondeur de 50 à 400 m (souvent 100 .. 150 m). Chaque forage contient des conduites, le plus souvent en polyéthylène (DN 32) disposées en double U et enrobées d’un coulis de ciment/bentonite (le « grout ») assurant la protection mécanique tout en permettant une certaine souplesse indispensable pour résister aux mouvements de sol.

Source : REHAU.

L’ensemble des forages forme ainsi un champ de sondes espacées entre elles de 6 à 10 m, pour limiter les interférences thermiques. Les sondes sont raccordées entre elles via des collecteurs, en série ou en parallèle ou un mix des deux.

Le champ de sondes peut être disposé à côté du bâtiment ou même sous le bâtiment (par exemple en ville).

Variantes : Sondes coaxiales en acier

Les forages géothermiques présentent une série de contraintes comme :

  • la nécessité d’espace pour effectuer les forages;
  • la gestion du forage au travers de couches de sous-sol parfois hétérogènes;
  • la nécessité de maximiser l’échange de chaleur tout en garantissant la tenue mécanique des sondes,
  •  …

Cela conduit les fabricants à proposer des alternatives aux sondes traditionnelles en « double U ».

Il existe ainsi des sondes coaxiales : l’eau en provenance du bâtiment circule dans la périphérie de la sonde et revient par le cœur pour délivrer son énergie au bâtiment.

Exemple de sonde coaxiale en PE : le fabricant annonce que les performances d’une sonde de dimension 63 mm / 40 mm
correspondent à une sonde géothermique double U de dia. 32 mm.

Source : www.hakagerodur.ch

Pour encore augmenter l’échange thermique avec le sol les sondes peuvent être réalisées en acier (avec protection cathodique) ou en inox, sans enrobage : le tube périphérique est en métal et le tube intérieur en PE.

L’augmentation du transfert de chaleur, permet alors réduire le nombre de forages et la longueur des sondes. Ainsi des tests de réponse thermique montrent qu’en moyenne, les sondes coaxiales en inox ont une résistance thermique 2 fois moindre qu’une sonde avec doubles U en PE. Cela permettrait une puissance d’extraction de 10 à 20 % supérieure.

Exemple de sondes en acier, à visser (longueur de 3 m).

Source : Thermo-pieux.

Exemple de sonde en inox introduite par forage ou « vibro-fonçage ».  La profondeur peut atteindre une centaine de mètres.

Source : geo-green.

La technologie des sondes coaxiales ouvre la porte à des installations avec des forages en étoile au départ d’un point d’entrée unique dans des lieux où l’accès pour des forages parallèles espacés n’est pas possible (par exemple, une cour intérieure dans un site existant).

 

Forages en « étoile » : on parle dans la littérature de « racines géothermiques ».

Pieux géothermiques

Une alternative aux forages consiste à intégrer les échangeurs géothermiques aux pieux de structure d’un bâtiment. Cela se justifie parce que ceux-ci sont souvent nécessaires dans des sous-sols humides, sous-sols favorables aussi à la géothermie.

On justifie cette technique par un souci de rationaliser les techniques en les combinant. Cependant, la pratique ne prouve pas que les coûts soient inférieurs par rapport à des installations distinctes. La mise en œuvre des pieux se complique également. La gestion de l’installation doit également interdire que les pieux de fondation ne gèlent en mode de chauffage hivernal.

 

Exemples de réalisation : La crèche de l’île aux oiseaux, ville de Mons : 16 pieux géothermiques de 10 m.

La crèche de l’ile aux oiseaux de Mons.

Aéroport de Zurich : 350 pieux géothermiques de 30 m de profondeur.

Nappes horizontales

La géothermie se décline également sous la forme de nappes de tuyaux déployés horizontalement à faible profondeur (0,6 à 1,2 m).

Le système est peu applicable dans le secteur tertiaire. En effet,

  • Il demande une surface de terrain très importante : de 28 à 100 m²/kW de puissance de chauffage nécessaire.
  • En hiver, elle peut conduire à un refroidissement excessif du sol préjudiciable à la végétation.
  • L’utilisation en refroidissement n’est guère possible, la température du sol étant fortement soumise à l’environnement extérieur.

Alternative pour les bâtiments de taille réduite : les sondes de faible profondeur.

Pour les petits projets, pour lesquels un forage n’est pas autorisé et où les systèmes horizontaux ne disposent pas de surface suffisante, certains fabricants proposent des sondes de petite taille constituées d’un échangeur spiralé. Ce système permet notamment de limiter l’influence que peut avoir la géothermie sur la couche de sol où se développe la végétation.

Source : SANA FONDATIONS sprl.

Cas particulier : le puits canadien

Le puits canadien ou puits provençal constitue une forme de géothermie puisque l’air neuf de ventilation est prétraité (chauffé ou refroidi) par son passage dans le sol.

Techniques

 Pour en savoir plus sur le puits canadien.

Schémas de principe

Traditionnellement, on retrouve 2 types de schéma de principe, selon que le froid est produit par échange direct avec le sol soit par la pompe à chaleur réversible utilisant le sol comme source chaude. Une troisième configuration se retrouve lorsqu’on puise directement l’eau de la nappe phréatique.

Free cooling direct

En été : le froid est produit par échange direct avec le sol et distribué via un échangeur vers les unités terminales. Le géocooling est ainsi mis en œuvre moyennant uniquement la consommation de pompes. Si on compare cette consommation à l’énergie frigorifique produite, on calcule un ESEER équivalent du système de l’ordre de …12…, voire plus en fonction des dimensionnements des équipements. Souvent une machine de production de froid vient en appoint pour satisfaire les demandes de pointes ou pour alimenter des utilisateurs demandant des températures d’eau plus basses (comme les groupes de traitement d’air).

En hiver, le sol sert de source froide à une pompe à chaleur sol/eau. Le coefficient de performance saisonnier obtenu varie entre 4,5 et 5,5. Une chaudière est utilisée en appoint pour couvrir les pointes de puissance par grands froids. Généralement, le système est dimensionné pour que la PAC couvre environ 70 % du besoin de chaud grâce à environ 30 % de la puissance totale nécessaire.

Recharge du sol par pompe à chaleur réversible

La pompe à chaleur sol/eau est réversible. En été, elle fonctionne comme un groupe de production d’eau glacée en utilisant le sol pour évacuer la chaleur de son condenseur régénérant ainsi ce dernier.

L’avantage d’un tel système est de mieux gérer la recharge du sol et peut-être de pouvoir se passer d’un groupe de froid d’appoint et d’un échangeur intermédiaire. L’investissement est donc moindre.

En contrepartie, alors que l’on peut toujours parler de stockage géothermique, il ne s’agit plus réellement de géocooling naturel puisqu’il est nécessaire de faire fonctionner une machine thermodynamique pour extraire le « froid » du sol. Le bilan énergétique global est donc moins favorable.

Systèmes ouverts

Si la nappe phréatique se situe près de la surface du sol, on peut envisager de puiser directement l’eau dans cette dernière plutôt que de la parcourir avec un échangeur et un fluide caloporteur. On parle de système ouvert. Dans ce cas, l’eau de la nappe sert par l’intermédiaire d’un échangeur :

  • En mode chauffage, de source froide à une pompe à chaleur.
  • En mode refroidissement, de source de froid directe pour une boucle d’eau.

L’eau puisée est ensuite réinjectée dans la nappe à une certaine distance créant ainsi 2 zones dans la nappe phréatique à températures différentes, l’eau passant de l’une à l’autre en fonction de la saison :

  • En hiver une zone se refroidit par l’eau réinjectée après échange avec la pompe à chaleur.
  • En été l’eau est pompée en sens inverse de cette zone et réinjectée plus chaude dans la zone de puisage hivernal.

Étant donné les mouvements dans les nappes phréatiques et en fonction de la distance entre les zones chaude et froide, l’influence d’un éventuel déséquilibre entre les besoins de chauffage et de refroidissement est nettement moindre dans le cas d’un système ouvert par rapport à un système fermé.

En outre, il est également possible de produire du chaud et du froid en même temps dans le bâtiment. En effet, si nécessaire, l’eau pompée de la nappe peut être dirigée à la fois vers la pompe à chaleur et vers l’échangeur de géocooling ou vers un échangeur commun entre les productions de chaud et de froid.

Exemples d’installations

Le schéma ci-dessous est proposé par un constructeur allemand. Il permet le chauffage par pompe à chaleur, le refroidissement libre par un échangeur vers les sondes géothermiques, éventuellement assisté par le fonctionnement réversible de la pompe à chaleur.

Le schéma ci-après, plus complet, permet un fonctionnement mixte en mi-saison : une chaudière alimente la zone périphérique en chaleur, alors que simultanément, la zone centrale est refroidie par l’échangeur dans le sol via la pompe à chaleur. Attention cependant à la destruction d’énergie qui pénalise l’intérêt énergétique de ce système.


Unités terminales associées

Les performances de la pompe à chaleur et du géocooling sont fortement dépendantes du régime de température des unités terminales :

Plus la température de l’eau de distribution est basse en saison de chauffe (température max de l’ordre 50 .. 55 °C), meilleur sera le rendement de la PAC et plus elle est élevée en été (température min de l’ordre de 15 .. 17 °C) plus grande sera la quantité d’énergie extractible directement du sol.

On doit donc choisir des unités terminales compatibles avec ces températures :

  • Plafonds refroidissants ou ilots rayonnants
    • avantages : peu d’inertie thermique et donc rendement de régulation élevé, contrôle facile de la température ambiante, réversible chaud/froid;
    • inconvénients : puissance plus limitée (plafonds).

Exemple d’îlot rayonnant.

(Source : Interalu).

  • Dalles actives
    • avantages : stockage de nuit et donc limitation de la puissance à installer;
    • inconvénients : inertie thermique importante et donc contrôle difficile de la température et rendement de régulation dégradé. Peu de flexibilité spatiale et difficulté d’utilisation en chauffage (nécessité d’un second système). Absence de faux plafond (gestion des techniques et de l’acoustique).

Étude d’un projet de géothermie

Un projet de géothermie consiste à mettre en corrélation le comportement thermique du bâtiment et celui du sous-sol. Tout cela se passe de façon dynamique : les besoins varient, le sol se charge, se décharge, échange avec son voisinage tout cela sur une échelle de temps quotidienne, mais aussi saisonnière. Cela justifie l’utilisation d’outils de simulation thermique dynamique prenant en compte la variabilité des besoins, des échanges et l’inertie du système.

Étapes de l’étude d’un projet de géothermie :

  • Définir les besoins par simulations dynamiques en évaluant différentes variantes de manière à trouver le bon équilibre entre le besoin de chaud et de refroidissement du bâtiment (niveau d’isolation, type de vitrage, protections solaires, …).

Besoins simulés de chauffage et de refroidissement d’un bâtiment, h par h ou 1/4h par 1/4 h.

  • Connaître la nature du sol par études géologique et hydrogéologique pour préévaluer les caractéristiques physiques et thermiques du sous-sol et pour évaluer les éventuels risques liés aux forages (présence de nappes phréatiques, de couche argileuse,  de quartzites, …). Cela permet de prédéfinir la pertinence et la configuration des forages (par exemple, leur longueur minimale et maximale en fonction des couches de sous-sol susceptibles d’être rencontrées).

Pour exemple, voici quelques données moyennes :

Caractéristiques du sol Puissance spécifique d »extraction
Sur 1 800 heures de fonctionnement Sur 2 400 heures de fonctionnement
Valeurs indicatives générales
Sous-sol de mauvaise qualité (sédiment sec) (λ < 1,5 W/m²K) 25 W/m 20 W/m
Sous-sol rocheux normal  et sédiment  saturé en eau (λ < 1,5 – 3.0 W/m²K) 60 W/m 50 W/m
Roche compacte à conductibilité  thermique élevée (λ < 3,0 W/m²K) 84 W/m84 W/m 70 W/m
Minéraux respectif
Gravier et sable secs < 25 W/m <20 W/m
Gravier et sable aquifères 65 – 80 55 – 65 W/m W/m
Dans le cas de fort courant des eaux souterraines dans le gravier ou le sable et d’installations uniques 80 – 100 80 – 100 W/m
Argile et glaise humides 35 – 50 W/m W/m 30 – 40 W/m
Calcaire (massif) 55 – 70 W/m 45 – 60 W/m
Grès 65 – 80 W/m 55 – 65 W/m
Roche magmatique acide (par ex. granit) 65 – 85 W/m 55 – 70 W/m
Roche magmatique basique (par ex. basalte) 40 – 65 W/m 35 – 55 W/m
Gneiss 70 – 85 W/m 60 – 70 W/m

Puissances traditionnelles extractibles.

Source Rehau.

  • Effectuer un test de réponse thermique (« TRT »). Il s’agit de réaliser un forage en taille réelle et de le soumettre à une sollicitation thermique pour pouvoir calculer la conductibilité et la capacité thermique du sol et la résistance thermique des sondes, en moyenne sur toute la longueur de la sonde. Cette sonde test pourra ensuite être valorisée dans le champ de sondes final.

Source : Group Verbeke.

  • Dimensionner le champ de sondes au moyen d’un logiciel de simulation dynamique du sous-sol : simulation du comportement du sol compte tenu des besoins du bâtiment (heure par heure) et des caractéristiques  thermiques des sondes prévues et du sol (définies par le TRT) ; optimalisation de la puissance de la PAC, du nombre et de la profondeur des sondes en s’assurant de l’équilibre à long terme de la température du sol.

Dimensionnement de l’échangeur de sol

Pour le dimensionnement des collecteurs de sol, des réfrigérateurs de plaques de fond ou de réservoirs de fondations, il est possible de consulter la DIN ISO EN 13370 « Transmission de chaleur par le procédé de calcul terrestre ».

L’objet de cette norme est l’examen du transfert de la chaleur en tenant compte des paramètres (tuyaux, isolation, masse géométrique du bâtiment, etc.) et de la conduite d’exploitation. La ligne directrice VDI 4640 « Utilisation thermique du sous-sol » convient pour l’évaluation du rendement (puissance) d’un chauffage. De plus, elle fournit des indices de planification concernant les permissions et les conditions additionnelles liées à l’environnement, mais (à notre connaissance en octobre 2003) elle n’aurait pas encore été adaptée sous l’aspect « été » du réfrigérateur.

D’après la norme DIN ISO EN 13370 (traduction non officielle !), les tableaux suivants donnent une vue d’ensemble sur les capacités d’extraction des collecteurs de chaleur et des sondes géothermiques (capacité des pompes de chaleur jusqu’à max. 30 kW) :

>  S’il s’agit de collecteurs situés à côté du bâtiment (en W/m²) :

Puissance d’extraction thermique en W/m²
Sous-sol Exploitation 1 800 h / saison Exploitation 2 400 h / saison
Sol sec, non cohérent 10 8
Humide, cohérent 20…30 16…24
Sable, gravier, imbibés d’eau 40 32

>  S’il s’agit de sondes géothermiques (en W/m courant) :

Puissance d’extraction thermique en W/m²
Sous-sol Exploitation 1 800 h / saison Exploitation 2 400 h / saison
Sédiments secs et peu conducteurs (Lambda < 1,5 W/m.K) 25 20
Roche, sédiments imbibés d’eau
(Lambda > 1,5 … 3 W/m.K)
60 50
Roche dure très conductrice
(Lambda > 3 W/m.K)
84 70

L’adaptation des calculs détaillés est de plus indiquée dans les cas suivants :

  • Modification des heures de services des pompes à chaleur par rapport aux hypothèses de base;
  • plus grande nécessité de chaleur pour la préparation d’eau chaude;
  • effet régénérateur du sol suite à un apport de chaleur par réfrigération de locaux ou à un rechargement thermique solaire;
  • grande influence des eaux souterraines (nappe phréatique).

Les valeurs de référence pour les capacités d’extraction de chaleur en hiver ne sont pas directement applicables à l’activité en été. Différentes causes sont à la base des écarts entre les capacités d’extraction et d’incorporation :

  • Lors du fonctionnement en hiver, une couche de glace se forme autour de la sonde ou des tuyaux, et influence favorablement la transmission thermique par conduction. En été, le sol peut au contraire sécher davantage, ce qui est défavorable.
  • Les couches terrestres proches du sol sont soumises à de si fortes influences climatiques qu’il faudrait parler non pas d’éléments de construction thermiques, mais plutôt d’éléments de construction solaires thermiques dans le cas de collecteurs de terre classiques non bâtis.

Pour l’évaluation de la capacité de sondes géothermiques et de pieux d’énergie dans le processus de réfrigération, un constructeur conseille :

  • Vu les raisons énoncées précédemment, de mettre les capacités d’incorporation (été) égales à 70 % des capacités d’extraction de chaleur énoncées dans la VDI 4640.
  • De valoriser si possible l’existence d’une nappe souterraine, qui suite à l’humidification des couches terrestres en dessous des fondations, améliore la conductibilité thermique. Il en résultera également des capacités de réfrigération plus constantes.
  • Une distance de pose entre les tuyaux ne dépassant pas 15 cm.
  • Des phases de régénération (suite à l’arrêt du système en journée ou suite à une réduction de la nécessité de froid (journées fraîches d’été)) qui améliorent la capacité de rendement.

Aspect réglementaire lié à la réalisation du projet

(Rédaction : 2014)

En région wallonne

En Wallonie, tout projet de réalisation de puits destiné à la géothermie doit faire l’objet d’un permis unique : Permis d’environnement (installations classées, conditions intégrales et sectorielles) + Permis d’urbanisme.

Selon l’Arrêté du Gouvernement wallon du 4/7/2002, annexe I, les systèmes géothermiques fermés sont classés dans la rubrique 45.12.01 : « Forage et équipement de puits destinés au stockage des déchets nucléaires ou destinés à recevoir des sondes géothermiques », classe de permis 2.

D’autres rubriques existent pour classer les systèmes ouverts en fonction des techniques de puisage et de rejet d’eau souterraine utilisé.

Les forages d’essais (TRT) et de l’installation définitive doivent faire l’objet d’une demande de permis propre comprenant :

  • Le formulaire général de demande de permis d’environnement et de permis unique – Annexe I.
  • Le formulaire relatif aux forages – Annexe XVIII (rubrique 45.12.01) ou le formulaire relatif aux prises d’eau – Annexe III (rubrique 41.00.03.02).

Le formulaire XVIII doit notamment comprendre :

  • Une coupe géologique probable du puits avec profondeur estimée de la nappe aquifère;
  • la description des méthodes de forage et les équipements du puits avec coupe technique;
  • un rapport technique sur la nature de la nappe aquifère éventuelle;
  • un plan de situation des puits.

Chronologiquement, étant donné les délais d’obtention, il est souvent difficile d’attendre les résultats du TRT et le dimensionnement final du champ de sondes avant l’introduction de la demande de permis pour ce dernier. De même, étant donné que le choix de l’enveloppe du bâtiment et l’équilibre géothermique sont intimement liés, il apparaît difficile de dissocier chronologiquement les demandes de permis pour le bâtiment neuf, le TRT et le champ de sondes. Dans ces différents cas, la pratique veut que les permis soient introduits en parallèle en mentionnant les hypothèses de prédimensionnement effectués.

En région bruxelloise

Il n’existe actuellement pas de législation spécifique à la géothermie en RBC. Les systèmes géothermiques sont néanmoins presque toujours composés d’installations classées soumises à déclaration ou à permis d’environnement.

Dans le cas de systèmes géothermiques fermés, les installations classées concernées sont les suivantes :

  • Pompe à chaleur < 10 kWelec  et < 3 kg de substance appauvrissant la couche d’ozone : Installation non classé et donc non soumise à autorisation (rubrique 132).
  • Pompe à chaleur > 10 kWelec mais < 100 kWelec  ou > 3  kg de substance appauvrissant la couche d’ozone : Installation classée de classe 3 et donc soumise à déclaration (rubrique 132).
  • Pompe à chaleur > 100 kWelec : Installation classée de classe 2 et donc soumise à Permis d’Environnement (rubrique 132).
  • Pompes électriques > à 100 kVA (rubrique 55).

Les forages ne sont, eux, pas classés.

Dans le cas de systèmes géothermiques ouverts, les captages d’eau souterraine sont des installations classées de classe 2 ou de classe 1B (rubrique 62) et sont donc soumis à Permis d’Environnement. En plus comme pour les captages d’eau « classiques », les systèmes géothermiques ouverts sont soumis à une « autorisation de pompage » de la part de l’IBGE.

De plus la réglementation urbanistique (COBAT) stipule que les forages géothermiques sont soumis à rapport d’incidence. Il semblerait donc que les systèmes géothermiques sont soumis à Permis d’Urbanisme (PU). Dans la pratique, il semblerait néanmoins que les systèmes géothermiques ne fassent pas l’objet d’une demande de PU à part entière. Il est donc conseillé de se renseigner auprès du service urbanisme de la commune concernée pour savoir si un PU est nécessaire.

La demande de permis d’environnement doit comprendre une série de renseignements.

Pour les systèmes géothermiques fermés (sondes verticales) :

  • Le cadre du projet de géothermique (industrie, tertiaire, logements collectifs, privés, ….
  • Le profil géologique et hydrogéologique de la zone où sont prévus les forages (et plus particulièrement déterminer les aquifères qui seront traversés par les forages) :
    • soit sur base du profil géologique et hydrogéologique obtenu à partir d’un forage réalisé sur le site (ou à proximité immédiate du site);
    • soit, en l’absence de forage, sur base des données cartographiques – carte géologique, géotechnique de Bruxelles, …- , via la base de données DOV (Databank Ondergrond Vlaanderen) ou via consultation des archives du service géologique de Belgique.

Il y a lieu de motiver la profondeur des sondes envisagée sur base de ce profil.

  • La technique de forage prévue pour le placement des sondes.
  • La description technique de l’installation géothermique :
    • puissance électrique de la pompe à chaleur (PAC) et rendement;
    • nombre de puits ou forage prévus + nombre de sondes verticales prévues;
    • profondeur des sondes;
    • type de sondes (simple boucle en U, double boucle en U, coaxiale, autre);
    • type de matériaux utilisés pour les sondes et les différentes connexions;
    • systèmes prévus pour isoler les sondes (ou les groupes de sondes) en cas de fuite (vannes d’isolement, …);
    • fluide caloporteur prévu dans les sondes;
    • surface prévue pour l’implantation des sondes (et surface disponible si différente);
    • matériaux de remplissage sont prévus pour le scellement des trous de forages (espace interstitiel).
    •  …
  • Le plan reprenant de manière claire l’emplacement des installations (PAC et champ de sondes).
  • La description détaillée (schéma de fonctionnement y compris le mode opératoire de la régulation) du système HVAC complet du bâtiment et l’intégration de l’installation de géothermie dans cet ensemble.
  • L’évaluation des besoins énergétiques :
    • la demande en chaud du bâtiment (kWh/an);
    • la demande en froid du bâtiment (kWh/an);
    • la puissance de pointe en chaud du bâtiment (kW);
    • la puissance de pointe en froid du bâtiment (kW);
    • l’énergie (chaud) soutirée au sol (kWh/an);
    • l’énergie (froid) soutirée au sol (kWh/an);
    • % de la demande en chaud couvert par la géothermie;
    • % de la demande en froid couvert par la géothermie.

Dans la mesure du possible, un (des) graphique(s) (histogramme) reprenant les besoins mensuels du bâtiment en froid et en chaud sur un an et distinguant la part produite par la géothermie de la part produite par les systèmes complémentaires (système de production de chaud et froid classiques) sera fourni.

  • Dans le cas ou un test de réponse thermique (TRT) a été réalisé : les conclusions du test.
  • La comparaison du gain énergétique du système proposé par rapport à l’utilisation d’une chaudière à condensation (réduction d’énergie primaire (%)).
  • L’évaluation du déséquilibre thermique du sous-sol et l’évolution de la performance de la PAC sur 20 ans en tenant compte de ce déséquilibre thermique.
  • Quant au rapport d’incidences, il doit également évaluer les nuisances et impacts environnementaux liés au système géothermique ainsi que les mesures prises pour éviter, supprimer ou réduire les nuisances répertoriées.  (Ex : test de mise sous pression des bouclages, mise en place d’un système de détection de fuites, étanchéité des puits,…).

Pour les systèmes géothermiques ouverts :

  • Le type de système géothermique prévu : captage/réinjection réversible (stockage chaud froid) ou captage réinjection non réversible.
  • La description technique de l’installation géothermique :
    • nombre de puits de pompage et de réinjection prévus ;
    • profondeur des puits (+ facteurs ayant servi à la détermination de la profondeur) ;
    • zone de filtre (crépine) ;
    • distance séparant les puits de captage et de réinjection ;
    • type de compteurs et nombre de compteurs prévus (+ emplacement) ;
    • puissance électrique de la pompe à chaleur (PAC) et son rendement ;
    • liquide utilisé dans le circuit secondaire ;
    • type d’échangeur – circuit primaire / circuit secondaire (double parois, simple paroi, …) ;
    • Éventuel système de détection de fuite dans le circuit secondaire.
    • plan reprenant l’emplacement de la PAC, des différents puits de captage et de réinjection.
  • La description détaillée (schéma de fonctionnement y compris le mode opératoire de la régulation) du système HVAC complet du bâtiment et l’intégration de l’installation de géothermie dans cet ensemble.
  • Le profil géologique et hydrogéologique des zones de captage et de réinjection (et plus particulièrement déterminer l’aquifère ou les aquifères qui seront traversés par les forages) :
    • soit sur base du profil géologique et hydrogéologique obtenu à partir d’un forage réalisé sur le site (ou à proximité immédiate du site);
    • soit, en l’absence de forage, sur base des données cartographiques – carte géologique, géotechnique de Bruxelles, …- , via la base de données DOV (Databank Ondergrond Vlaanderen) ou via consultation des archives du service géologique de Belgique.
  • Le débit maximum capté (m³/h, m³/j), le volume total capté par an ou par saison (m³) et si la totalité de l’eau captée est réinjectée dans la nappe. Si l’eau souterraine est utilisée à d’autres fins que la géothermie, il y a également lieu de préciser les utilisations alternatives et le débit capté (m³/j).
  • La température de réinjection maximale prévue.
  • Le dossier doit comporter une évaluation de :
    • la demande en chaud du bâtiment (kWh/an);
    • (la demande en froid du bâtiment (kWh/an)), si utilisation des puits pour refroidir;
    • la puissance de pointe en chaud du bâtiment (kW);
    • (la puissance de pointe en froid du bâtiment (kW)) → Si utilisation des puits pour refroidir;
    • l’énergie (chaud) soutirée de la nappe (kWh/an);
    • (l’énergie (froid) soutirée de la nappe (kWh/an)), si utilisation des puits pour refroidir;
    • % de la demande en chaud couvert par la géothermie;
    • (% de la demande en froid couvert par la géothermie), si utilisation des puits pour refroidir.
  • Le gain énergétique du système proposé par rapport à l’utilisation d’une chaudière à condensation  (réduction d’énergie primaire (%)) doit également être évalué.
  • Le rapport d’incidence doit évaluer le déséquilibre thermique de l’aquifère  et l’évolution de la performance de la PAC sur 20 ans en tenant compte du déséquilibre thermique.
  • Le rapport d’incidence doit évaluer la possibilité technique de mettre en place le système géothermique sur le site.
  • Le rapport d’incidence doit enfin évaluer l’impact et les nuisances du système géothermique et notamment :
    • l’impact éventuel du projet sur des captages voisins (impact hydraulique);
    • l’impact éventuel du projet sur la stabilité des constructions voisine;
    • le risque d’inondation au niveau des puits de réinjection et des constructions voisine;
    • l’impact thermique éventuel du système sur les eaux souterraines.
  • Ainsi que les mesures particulières de protection du sol et des eaux souterraines prévues (Rehaussement du puits, étanchéité des puits de forages, mesures prévues pour éviter la connexion éventuelle d’aquifères différents, mesures prévues pour éviter une contamination de l’eau pompée et réinjectée dans la nappe (type d’échangeur utilisé, système de détection de fuite, surpression du circuit secondaire (eau pompée) par rapport au circuit primaire (de la PAC), …)).

Refroidissement adiabatique

Refroidissement adiabatique


Principe de base

Le principe est le suivant : si de l’air chaud et sec traverse un filet d’eau, il en provoque l’évaporation. La chaleur nécessaire à la vaporisation d’eau étant extraite de l’air. Celui-ci se refroidit.

Schéma principe de base.

Par exemple, de l’air à 20°C, 30 % HR traversant un nuage d’eau voit sa température atteindre 12°C en se chargeant d’humidité.

Le refroidissement adiabatique peut-être

  • direct : si l’air humidifié soit directement pulsé dans l’ambiance;
  • indirect : si de l’air pulsé ou un réseau d’eau est refroidi par échange avec l’air qui aura été humidifié.

Refroidissement indirect de l’air pulsé

Il existe des échangeurs à plaques dans lequel l’air vicié est refroidi par humidification. Un tel système permet d’exploiter le « pouvoir refroidissant » de l’humidification adiabatique, tout en évitant le problème de l’humidification de l’air neuf.

Photo d’une centrale de refroidissement adiabatique.

L’air vicié et l’air neuf passent dans un double échangeur à plaques. Dans l’échangeur, l’air vicié est humidifié. On combine donc deux phénomènes dans l’échangeur : le refroidissement adiabatique de l’air vicié et le refroidissement au contact avec l’air neuf. Remarquons les volets de by-pass (sur l’air neuf et l’air vicié) permettant une régulation de la puissance échangée.

Actuellement, nous manquons de données neutres pour juger des performances et de l’intérêt énergétique d’un tel équipement. Il semblerait que si l’humidification de l’air vicié est effectuée avant l’échangeur, le refroidissement complémentaire qui en résulte ne soit pas suffisant pour augmenter significativement l’énergie récupérée en période de climatisation. C’est apparemment l’intégration de l’humidificateur dans l’échangeur, qui augmenterait les performances du système. En effet, dans ce cas, l’eau s’évapore dans l’échangeur et refroidit aussi bien celui-ci que l’air vicié. Le fabricant de ce matériel annonce, dans les meilleures conditions, un refroidissement de l’air neuf de 10 °C.

En hiver, avec l’arrêt de l’humidification, on retrouve le fonctionnement d’un groupe « traditionnel » avec échangeur à plaques.


Refroidissement indirect d’un réseau d’eau

Il existe d’autres modes de refroidissement exploitant le principe de l’évaporation de l’eau, notamment associés à des machines frigorifiques avec possibilité de free chilling via aérorefroidisseur ou tour de refroidissement.

Schéma refroidissement indirect d’un réseau d’eau.

Photo d’un refroidisseur adiabatique.

Dans ce processus, quel que soit le mode d’humidification, le principe est toujours le même : les molécules d’eau passent progressivement à l’état de vapeur, provoquant ainsi par évaporation une diminution de la température d’air.

Son efficacité sera accrue si la surface de l’eau est grande, si le débit d’air à la surface de l’eau est important et si la température de l’air est élevée.

Enfin, il est indispensable d’assurer un contrôle et une maintenance très rigoureux des équipements, car :

  • les surfaces humides présentent un terrain favorable au développement des micro-organismes;
  • l’évaporation provoque des dépôts consécutifs à la cristallisation (sels minéraux, carbonates);
  • la ventilation de l’air favorise les dépôts de poussière.

Avantages et inconvénients

  • La solution simple permettant un refroidissement naturel en exploitant des équipements existants : groupe de ventilation, tour de refroidissement, …
  • Mais le pouvoir rafraîchissant est limité.
    • Le refroidissement de l’air est d’autant plus grand que le climat est chaud et sec (un tel système est donc inutile dans les régions où le climat est tropical, c’est-à-dire que l’air chaud est déjà chargé en humidité excessive. Chez nous, on se retrouve entre les deux …
    • Le refroidissement de l’eau ne sera lui possible que pour des températures extérieures typiques de la mi-saison, voire de nuit.
  • On parle donc bien de rafraîchissement et non de climatisation au sens de la fourniture d’une puissance de froid suffisante quels que soient les besoins.
  • Le dispositif ne peut être régulé avec précision, car il dépend de l’hygrométrie extérieure. Il est d’autant plus efficace que le climat est chaud et sec.
  • La consommation en eau non négligeable, nécessite qu’elle soit de bonne qualité pour éviter l’entartrage des tuyauteries, ainsi que les problèmes de légionelles. Pour éviter ce désagrément, un traitement d‘eau est nécessaire. Évidemment, l’utilisation de l’eau de pluie réduit l’impact sur la consommation en eau potable, mais nécessite la garantie du fabricant quant à la résistance de ses équipements.

Régulation

Les éléments qui constituent l’installation : filtres, surpresseur, pressostats de sécurité, pompe, électrovanne, rampes avec buses, échangeur, vannes de purge.

La régulation du refroidissement adiabatique repose principalement sur le contrôle des débits d’air et d’eau.

La régulation pour la ventilation d’air peut être de deux types :

Régulation par étage

Des étages de ventilation s’enclenchent les uns après les autres. Lorsque 100 % de la ventilation est en fonctionnement et que la température extérieure est supérieure à la valeur de consigne d’enclenchement de la brumisation haute pression, une électrovanne s’ouvre et un surpresseur se met en route.

Régulation par variations de fréquence

La variation de vitesse régulera jusqu’à ce que 100 % du débit de ventilation soit en fonctionnement (à 50 Hz l’électrovanne de la rampe s’ouvre et le système adiabatique fonctionne).

La régulation pour le débit d’eau projeté

Un brouillard d’eau efficace offre la plus grande surface d’échange possible avec l’air.
Cette surface d’échange est d’autant plus grande que le nombre de microgouttelettes pulvérisées est important. Pour obtenir un brouillard de qualité, l’eau est donc mise sous forte pression (100 bar) et accumule ainsi, une énergie importante. Le débit d’eau de brumisation est calculé précisément afin d’apporter à l’air la juste quantité d’eau.

 

Roue dessicante


Principe de fonctionnement

Les dispositifs à dessiccation (DEC : Desiccant Evaporative Cooling) sont des systèmes de déshydratation ou de refroidissement de l’air, utilisant de l’eau et une source de chaleur.

Ce procédé repose sur le principe physique suivant : l’évaporation de la vapeur d’eau dans l’air sec réduit la température et augmente l’humidité absolue de l’air.

La dessiccation exploite un double échange de frigories et d’humidité entre les flux d’air entrant (air de process) et sortant (air de régénération) d’un bâtiment. Cette circulation d’air est généralement assurée par une centrale de traitement d’air.

Schéma de fonctionnement d’une centrale d’air à roue dessicante.

Représentation de l’évolution de l’air dans un diagramme de l’air humide.

(1>2) L’air extérieur ou air pulsé (aussi appelé « air de process ») est aspiré au travers d’un filtre, puis traverse la « roue dessicante » ou « roue à dessiccation ». Cet échangeur rotatif contient un produit de sorption solide. Ce dernier absorbe la vapeur d’eau de l’air extérieur par adsorption. L’air extérieur est ainsi déshumidifié et en contreparti, voit sa température augmenter.

(2>3) L’air extérieur est alors refroidi par échange de chaleur avec l’air intérieur extrait ou simplement l’air extrait (aussi appelé « air de régénération »). Cet échange se fait au travers d’un échangeur de chaleur rotatif (non hygroscopique).

(6>7) Pour augmenter l’échange de chaleur et donc le refroidissement de l’air pulsé, on rafraîchit au préalable l’air extrait en l’humidifiant jusqu’à saturation. On abaisse ainsi le plus possible sa température, et on bénéficie au maximum du potentiel de refroidissement dans l’échangeur.

(7>8) en passant au travers de l’échangeur de chaleur, l’air extrait se voit donc réchauffé.

(8>9) Pour pouvoir fonctionner en continu, la roue dessicante doit être régénérée c’est-à-dire que l’humidité doit être évacuée du matériau adsorbant. Pour cela la portion de roue contenant l’humidité doit croiser le flux d’air extrait qui aura été préalablement réchauffé pour atteindre une température suffisante pour vaporiser les molécules d’eau retenues dans les pores de la roue.

(9>10) Enfin l’air chaud traverse et régénère la roue dessicante pour lui permettre de poursuivre le processus continu de déshumidification. Finalement, l’air rejeté, à l’aide d’un ventilateur, sort plus haute en température et plus chargé en humidité que l’air extérieur.

(3>5) L’air pulsé peut encore être arrosé d’eau au travers d’un humidificateur. L’eau va absorber les calories restantes dans l’air avant que celui-ci soit propulsé dans le bâtiment à refroidir par un ventilateur. Cette alternative permet de refroidir l’air pulsé mais pas de le déshumidifier. Pour ce faire, il est alors nécessaire de remplacer cet humidificateur par une batterie froide.

(4>5): Ce système est dit réversible, car il peut aussi bien être utilisé en refroidissement qu’en chauffage. En hiver, cela correspond à un mode de fonctionnement normal de réchauffement par système centralisé à air, en utilisant la roue de sorption comme récupérateur de chaleur, tout en complément des apports de la chaleur solaire. La présence d’une batterie chaude permet ainsi la régulation de température de chauffe en hiver.

Résumé du comportement de l’air illustré par le diagramme de l’air humide :

En théorie, dans le diagramme de l’air humide, l’évolution de l’air dans la roue dessicante se fait selon une courbe isenthalpique pour l’air soufflé et pour l’air repris (1>2 et 9>10).
Dans l’échangeur et dans le régénérateur (batterie chaude, apports solaires, …), les transferts de chaleur se font à humidité absolue constante (2>3, 7>8 et 8>9).
Entre l’air pulsé et l’air repris par la centrale de traitement, l’air subit les apports dus au local (personnes, lampes, ordinateurs, …) et voit sa température augmenter (5>6).
La combinaison de ces différentes évolutions permet d’obtenir un point de soufflage compatible avec le rafraîchissement du bâtiment.


Aspects technologiques

La roue à dessiccation – principe d’adsorption

La sorption est un phénomène physique qui consiste à fixer les molécules d’un élément à une surface généralement granulée et poreuse. Les matériaux dessicants attirent l’eau en formant à leur surface une zone à faible pression de vapeur.
La vapeur de l’air, ayant une pression plus élevée, se déplace de l’air vers la surface du matériau ce qui garantit une déshumidification de l’air.


Photo technologie roue dessicante rotative.


Schéma d’une roue à dessiccation avec section de purge
(séparation amont/aval).

La déshumidification s’effectue soit à travers un dispositif sur lequel est posé un matériau dessicant (on parle alors de « déshydratation en phase solide »), soit dans des échangeurs dans lesquels est pulvérisée une solution dessicante (« déshydratation en phase liquide »).

La sorption peut donc prendre place entre un gaz et un solide, auquel cas on parle d’adsorption, soit entre un gaz et un liquide, il s’agit dans ce cas du phénomène d’absorption. Raison pour laquelle les roues dessicantes sont appelées également des déshydrateurs à adsorption.

Photo d’un déshydrateur à adsorption  de la marque « Ventsys » fonctionnant selon le principe de la roue dessicante.

Actuellement les sorbants les plus utilisés sont le SiO2 (Silica-gel), LiCl (Chlorure de Lithium), Al2O3 (Alumine activée) et le LiBr (Bromure de Lithium).
Ces substances sont imprégnées sur une roue rotative en céramique à structure en nids d’abeilles.
Lorsque le matériau devient saturé, la roue continue à tourner lentement et la partie exempte d’humidité est régénérée par chauffage, au départ d’une source de chaleur disponible.

L’échangeur rotatif non hygroscopique

Un échangeur non hygroscopique est une roue à rotation lente, métallique à structure en nids d’abeilles à travers laquelle passent deux flux d’air de sens opposés produisant un échange sensible entre eux (humidité absolue constante).

L’avantage de ce type d’échangeur c’est qu’il a une perte de charge faible en comparaison de son efficacité, de plus il présente peu d’encombrement.

Pour éviter les fuites de l’air entre les sections de soufflage et de retour, il est préférable d’avoir une section de purge séparant les deux sections et d’avoir les ventilateurs en aval de l’échangeur.


Intérêts du procédé

  • L’intérêt environnemental de la roue dessicante se marque si la source de chaleur utilisée est de type renouvelable. Elle peut donc fonctionner avec des capteurs solaires thermiques (on parle alors de climatisation solaire), avec un réseau de chaleur urbain alimenté en permanence en été de manière renouvelable (biomasse, géothermie profonde (> 1 500 m), etc.), ou encore en valorisant des rejets thermiques de process industriel par exemple.
    L’utilisation de capteurs solaires comme source de chaleur possède comme principal avantage de pouvoir amener le plus de froid lorsqu’il fait le plus chaud. Ce système est d’autant plus intéressant que les apports solaires sont grands, et trouve donc en toute logique son intérêt en période estivale.
    Dans ces situations et afin de garantir une utilisation prolongée, par exemple lors des périodes non ensoleillées, il est également envisageable de stocker de la chaleur emmagasinée en journée dans des ballons tampons.
    Remarque : Afin d’assurer le bon fonctionnement du processus d’adsorption, il est nécessaire que la source de chaleur puisse fournir une température suffisante à la batterie de régénération. Cette température est d’environ 70 °C quand le climat extérieur est de 25 °C et 75 % HR.
    Remarque : une autre solution, conduisant à un coût d’investissement plus faible, utilise directement l’énergie solaire de régénération par le biais de capteurs à air (et non-circulation à eau), du fait que le réfrigérant est en contact direct avec l’atmosphère.

Schéma présentant le système à roue dessiccante couplé à une installation chauffage solaire.

  • L’utilisation d’eau comme fluide réfrigérant rend ces systèmes totalement inoffensifs pour l’environnement.
  • Les humidificateurs peuvent être alimentés via l’eau de pluie ou grâce à l’eau de ville. Dans ce dernier cas, il s’agit de consommation d’eau potable dont il convient d’évaluer l’ampleur économique et environnementale.
  • La compression du fluide caloporteur est thermique, avec absence de mouvements mécaniques, ce qui augmente leur durée de vie et réduit leur bruit. Cependant une maintenance soignée est obligatoire.
  • La qualité de l’air intérieur est améliorée par l’effet bactéricide des matériaux adsorbants.
  • Ce mode de climatisation ne suffit pas pour assurer une bonne rentabilité économique, en effet le coût d’investissement pour ce genre d’installation encombrante est souvent onéreux.  Le coût spécifique [€ /(m³/h)] des centrales de traitement d’air reste trop élevé pour de petits débits. Ces systèmes tout air neuf ne sont pas adaptés pour tous les bâtiments.

Remarque : le coût spécifique va de 8 €/(m³/h) pour une centrale de traitement de 20 000 m³/h jusqu’à 16 €/(m³/h) pour une centrale de traitement de 5 000 m³/h (coût brut source fournisseur). À titre de comparaison, le coût spécifique pour une centrale de traitement d’air à roue hygroscopique va de 3.5 €/(m³/h) pour une centrale de 20 000 m³/h jusqu’à 8 €/(m³/h) pour une centrale de 5 000 m³/h.

  • Dans le cas d’utilisation de panneaux solaires comme source de chaleur, la production frigorifique varie évidemment avec les apports solaires, le dispositif ne peut fonctionner qu’en journée. Il est cependant envisageable de stocker de la chaleur emmagasinée en journée dans des ballons tampons afin d’utiliser le dispositif pendant les périodes non ensoleillées. On ne dispose donc pas d’une véritable climatisation en ce sens que la puissance de froid peut ne pas être suffisante. On parle donc plutôt de « rafraîchissement ». Si l’on souhaite réellement disposer d’une puissance de froid suffisante quels que soient les besoins, il convient de surdimensionner le système de ventilation et de recourir à une source de chaleur d’appoint bien souvent fossile ou électrique. Dans ce cas, le bilan environnemental du système peut s’effondrer.
  • La complexité d’une installation réside dans la régulation des multiples circulations de fluides avec une source thermique peut-être variable et discontinue (apports solaires). Ainsi le bon fonctionnement du système peut s’avérer délicat à garantir sur la durée. Il faut optimiser le refroidissement et la régulation, éviter les pertes thermiques et les pertes de fluides, limiter la consommation électrique, éviter la surchauffe en période estivale, se protéger contre le gel.
  • Le système est peu performant dans les climats chauds et humides.
  • En hiver, il n’est pas possible de récupérer une grande part de l’énergie latente (humidité) telle que dans le cas d’un système à roue hygroscopique. Dès lors, le besoin d’énergie pour l’humidification est plus élevé.

Bilan énergétique

Évaluation statique de l’intérêt énergétique :
Comparaison entre un système de traitement d’air à roue hygroscopique et un système de traitement d’air à roue dessicante.

Exemple en hiver

  • Air repris à une température de 20°C et une humidité absolue de 6 g/kg
  • Air extérieur à une température de 5°C et une humidité absolue de 3 g/kg
  • Air pulsé après la roue à :
    • une température de 16.25°C et une humidité absolue de 5.25 g/kg dans le cas de la roue hygroscopique. Pour l’amener à 20°C et 6 g/kg, il faut donc l’équivalent de 5 kJ/kg d’énergie (chaud) et 0.75 g/kg d’air.
    • une température de 16.25°C et une humidité absolue de 3 g/kg dans le cas de la roue dessicante. Pour l’amener à 20°C et 6 g/kg, il faut donc l’équivalent de 11 kJ/kg d’énergie (chaud) et 3 g/kg d’air.

Pour un même mode de production d’énergie, le système à roue dessicante ne peut jamais être plus intéressant que le système à roue hygroscopique.  Il nécessite plus d’eau pour humidifier l’air et plus d’énergie pour compenser le rafraichissement dû à cet apport d’eau dans l’air.

Exemple en été

  • Air repris à une température de 25°C et une humidité absolue de 13 g/kg
  • Air extérieur à une température de 23°C et une humidité absolue de 15 g/kg
  • Pour une pulsion à une température de 16°C et une humidité absolue de 11 g/kg (point de pulsion de l’air dans le cas d’une climatisation par plafonds froids en régime 17-20°C), il faut :
    • l’équivalent de 17 kJ/kg d’énergie (froid) dans le cas de la roue hygroscopique.
    • l’équivalent de 32 kJ/kg d’énergie (chaud), 2 kJ/kg d’énergie (froid) et 11.5 g/kg d’air dans le cas de la roue dessicante.

Si on considère que l’énergie de refroidissement dans le cas de la roue hygroscopique est produite avec les caractéristiques suivantes :

  • 0.781 kWh d’énergie primaire / kWh d’énergie utile
  • 0.123 kg de CO² / kWh d’énergie utile
  • 0.043 € / kWh d’énergie utile

(facteurs de conversion : ESEER machine frigo de 3,2 ; 0,395 kg CO2/kWhélectrique ; 2,5 kWhprimaire/kWhélectrique ; 0,14€/kWhélectrique).

Il faut donc que l’énergie de régénération (chaud) dans le cas de la roue dessicante ait au minimum les caractéristiques suivantes pour être intéressante en été :

  • 0.36 kWh d’énergie primaire / kWh d’énergie utile
  • 0.058 kg de CO² / kWh d’énergie utile
  • 0.021 € / kWh d’énergie utile

On peut noter qu’un réseau urbain alimenté en biomasse répond à peine à ces critères,  sans compter qu’il faudrait en plus compenser les consommations supplémentaires en hiver et la consommation d’eau des humidificateurs !

De ce fait, si on la compare à un groupe de ventilation avec roue de  récupération hygroscopique, le bilan énergétique de la roue dessicante ne semble intéressant que dans très peu de cas où l’on peut considérer que la chaleur est entièrement d’origine renouvelable ou récupérée et l’eau de l’eau de pluie.
La performance d’une installation dessicante dépend :

  • De l’efficacité de l’échangeur rotatif : choix de la roue utilisée.
  • De la température de régénération : ce paramètre est utilisé afin de modifier la puissance froide délivrée par la centrale en mode desiccant cooling.
  • Des débits de ventilation : la variation du débit engendre une variation de la puissance froide, mais également une variation du rendement d’échange dans les roues. C’est pourquoi il est nécessaire d’utiliser le système dans la plage de débit pour lequel il est dimensionné.
  • De l’efficacité de l’humidificateur: sa modification permet de contrôler la température et l’humidité de l’air de soufflage. Cela peut être utile en cas d’humidité relative intérieure inconfortable.

Domaines d’utilisation

  • Les dispositifs à dessiccation apportent une solution bien adaptée dans les régions où les apports latents sont limités et sont particulièrement efficaces en climat assez sec.
    En effet, le seul problème provient des régions trop humides, où la roue n’est pas suffisante pour déshydrater l’air ambiant, car elle nécessite une température de régénération élevée, ce qui augmente la consommation du système en énergie primaire.
  • Les systèmes à dessiccation sont utilisés pour produire directement de l’air frais (déshumidification de l’air), et non pas pour refroidir l’eau de la boucle de refroidissement comme dans le cas des machines frigorifiques classiques. Une telle installation n’est donc pas envisageable pour rechercher de grands refroidissements. Ces dispositifs peuvent souffler de l’air à une température d’environ 10°C de moins que la température extérieure (suivant les débits d’air choisis).

Photo d’une installation DEC : desiccant evaporative cooling.

  • Ce procédé est plus spécialement applicable aux bâtiments neufs ou en réhabilitation lorsqu’une source thermique à faible coût est disponible pour régénérer l’adsorbant.
  • Enfin, les systèmes dessicants peuvent être valorisés dans les bâtiments ayant un objectif de bilan « Zéro énergie » dans lesquels une déshumidification de l’air est d’office nécessaire (utilisation de plafonds froids, d’îlots rayonnants). Pour ce faire, il est nécessaire de supprimer l’humidificateur adiabatique sur le chemin de l’air neuf.

Nouvelle technologie : les Lits dessicants liquide – (LDC : Liquid dessicant cooling)

Une technique développée, toute nouvelle sur le marché, utilise pour la dessiccation de l’air un sorbant liquide : une solution eau/bromure ou chlorure de lithium.
Par rapport à un système à dessiccation utilisant un sorbant solide, ce type de système présente plusieurs avantages :

  • un plus fort taux de déshumidification pour le même niveau de température;
  • une possibilité d’un haut niveau de stockage énergétique sous la forme de solution concentrée.

Ventilation intensive mécanique d’été

Date :juin 2014

Auteur : Geoffrey

Notes : mise en page – Sylvie

Ventilation intensive mécanique d’été


Principe

La ventilation intensive d’été, souvent appelée « free cooling » consiste à refroidir un bâtiment par ventilation en utilisant l’énergie gratuite de l’air extérieur lorsque celui-ci présente une température inférieure à la température intérieure :

  • En hiver, de l’air frais extérieur peut alimenter, en journée, les zones à rafraîchir sans nécessiter l’enclenchement des groupes frigorifiques.
  • En été, une ventilation nocturne peut décharger le bâtiment de la chaleur accumulée en journée

Selon le moment de la journée, on parle de free cooling de jour ou de nuit :

  • Le free cooling diurne consiste à surventiler les locaux avec de l’air extérieur plus frais que l’air intérieur. La capacité frigorifique de l’air extérieur étant faible, de grands débits d’air sont nécessaires.
  • Le free cooling nocturne consiste à rafraîchir les bâtiments la nuit grâce à de l’air extérieur. On parle de « décharge nocturne » du bâtiment puisqu’il évacue toute la chaleur excédentaire accumulée en journée.

On distingue une ventilation intensive naturelle ou mécanique, selon que le mouvement d’air soit généré par des forces naturelles (poussée d’Archimède ou force du vent) ou par un ventilateur.
Il faut également distinguer le débit d’air neuf hygiénique, du débit d’air de rafraîchissement d’un local :

  • La ventilation hygiénique ou permanente assure la qualité de l’air. Elle vise globalement les 30 m³/h d’air neuf nécessaires par personne (RGPT). Dans un bureau, cela entraîne un renouvellement horaire de 1 x par heure, puisque chaque occupant occupe +/- 10 m² au sol, et donc un volume de 30 m³.

Grille d’apport d’air hygiénique naturel … ou réseau d’air pulsé.

  • Le refroidissement naturel d’un local (ou free cooling) sous-entend un taux de renouvellement important de l’air du local. Dans des systèmes naturels (ouverture de fenêtre), on parle de 4/heure comme base de dimensionnement, 8 renouvellements/heure sont couramment rencontrés. Dans un système mécanique par contre on se limitera à environ 2 renouvellements horaire pour éviter un surdimensionnement exagéré des réseaux de distribution de l’air.


Un refroidissement gratuit ?

La conception d’un réseau de ventilation mécanique intensive n’est pas différente de celle d’un réseau de ventilation hygiénique mécanique (double flux) ou d’un système de climatisation « tout air« .

Souvent, c’est même un système de refroidissement « tout air » qui permettra d’organiser une ventilation intensive mécanique lorsque ce système est utilisé sans recyclage, récupération de chaleur ou traitement de l’air.

Cependant, vu l’importance des débits d’air à mettre en œuvre, le concepteur sera particulièrement attentif à limiter les pertes de charges du réseau, par un dimensionnement généreux des conduites, et la limitation des pertes de charges ponctuelles (filtres, groupes, organes divers). Le choix de l’efficacité énergétique du ventilateur sera également déterminant.

Oui mais… surdimensionner un réseau de ventilation mécanique, ce n’est pas un refroidissement gratuit, puisque la consommation électrique des ventilateurs est proportionnelle au débit : brasser plus d’air coute plus cher. En effet :

Consél = (qv / 3 600) x Δp x t / ηvent

où,

  • Consél = consommation énergétique du transport de l’air [Wh/an]
  • qv = débit d’air [m³/h]
  • 3 600 = 3 600 secondes par heure [s/h]
  • Δp = perte de charge (pulsion + extraction) [pa]
  • t = durée de fonctionnement [h/an]
  • ηvent = rendement total du système de ventilation (moyenne entre pulsion et extraction).

En fait, on peut obtenir un refroidissement gratuit si le coût du grand déplacement d’air en été est compensé par une réduction de ce coût en hiver. Cette réduction est possible grâce à la modulation du débit. En période de chauffe, seul le débit hygiénique est nécessaire, et non plus la pleine capacité de l’installation. Or, une réduction du débit dans un réseau donné entraîné une réduction proportionnellement plus importante des pertes de charges. Débit d’air et perte de charge sont en effet liés par une relation de type :

p1 / p2 = (n1 / n2)² = (q1 / q2

où,

  • q = débit volume (m³/h)
  • n = vitesse de rotation (tr/min)
  • p = gain de pression (Pa)

Faire une économie sur les ventilateurs en hiver n’est possible que si le réseau de ventilation est dimensionné sur les débit d’air « maximal » souhaité en free cooling, et non sur le débit hygiénique. Mettre en œuvre une ventilation intensive mécanique ‘URE’, ce n’est donc pas forcer un grand débit d’air en augmentant la vitesse au-delà des plages de fonctionnement ‘normales’.

Illustrons cela par un exemple : Soit un immeuble de bureaux de 5000m² demandant 10000 m³/h de ventilation hygiénique.

Scénario 1 : un réseau de ventilation dimensionné sur base des besoins hygiéniques présente une perte de charge globale de 900 Pa. Il fonctionne 12 h/jour, 5 jours par semaines, 52 semaines par an, soit 3 120 heures. Si le rendement du ventilateur est de 60 %, la consommation électrique sera :

Consél = (10 000 / 3 600) x 900 x 3 120 / 0.6 =13 000 kWh ou 2.6 kWh/m²

Scénario 2 : Le réseau est dimensionné pour pouvoir assurer le double du débit d’air hygiénique avec une perte de charge inchangée de 900 Pa. Il s’agit bien d’un surdimensionnement, et non du forçage d’un réseau de moindre capacité. Lorsqu’il ne fournit que l’air hygiénique (soit 50% de sa capacité), la perte de charge est réduite à 50%^2=25% de sa valeur nominale, soit 225 Pa. En supposant que, sur les 3120 heures de fonctionnement, le groupe fonctionne X heures en mode hygiénique est 3120-X heures en mode « free cooling », la consommation d’électricité totale sur l’année sera :

Consél = (10 000 / 3 600) x 225 x X / 0.6 +(20 000 / 3 600) x 900 x (3 120-X) / 0.6

Consél = 650 kW implique que X=1 783 heures

Dans cet exemple, le dédoublement de la capacité du réseau de ventilation pour un même niveau de perte de charge permet de libérer 3120-1783=1337 heures sur l’année de free cooling réellement gratuit.

En fait, le pourcentage du temps où le free cooling est gratuit dépend uniquement du facteur de surdimensionnement entre le débit hygiénique et le débit de conception du réseau de ventilation :

Dans cette figure, le % temps FC est la fraction maximale du temps d’utilisation qui peut être utilisé en mode free cooling sans induire de surconsommation d’électricité. Le ratio de surventilation est alors le rapport entre la quantité totale d’air pulsé sur l’année et la quantité correspondant au seul débit hygiénique.

Il n’est cependant pas toujours possible de surdimensionner un réseau de ventilation. On peut alors être tenté de forcer le débit, en augmentant la vitesse dans le réseau. Il s’en suit une augmentation de la consommation du ventilateur, qui peut être comparée au coût d’une installation de refroidissement traditionnelle.

Reprenons notre exemple avec le scénario 1 :

Dans ce bâtiment, extraire un kWh avec une machine frigorifique d’une efficacité EER de 3 aurait coûté :

Consomachine frigo= 1/3 = 0.33 kWhelec = 333 Wh

Dans ce réseau, brasser de l’air au débit hygiénique nous coûte

Puisél = (1 / 3 600) x 900 x 1 / 0.6 =0.41 W/m³/h

Doubler le débit d’air dans ce réseau fait passer les pertes de charges de 900 Pa à 3 600. Le coût du kWh pulsé dans ces conditions est de

Puisél = (1 / 3 600) x 3 600 x 1 / 0.6 =1.67 W/m3/h

Or, extraire 1 kWh thermique dans un bâtiment à 25°C nécessite au minimum, si l’air extérieur est à 15 °C :

Débit = 1 000 Wh / [0.34 (Wh/m³K) * (25 °C-15 °C)] = 294 m³ d’air

On voit clairement que la surventilation par forçage du débit est, dans ce cas-ci, moins intéressante que le recours à une machine frigorifique, puisqu’il nous coutera au minimum 294 m³*1.67 W/(m³/h) = 490 Wh, là où la machine frigorifique ne demanderait que 333 Wh.

Réglementation

Pour en savoir plus sur la performance énergétique des ventilateurs, norme :  EN13779  sur la ventilation des bâtiments non résidentiels.


Pertes de charge du réseau

La ventilation intensive implique de grands débit d’air. Lorsqu’elle est mécanique, on prévoira souvent entre 1.5 et 3 renouvellements horaires. Pas plus pour limiter les surdimensionnements. Or, la consommation électrique du ventilateur doit rester sous contrôle. Ces deux exigences ne peuvent se combiner que dans des réseaux à  « basse pression ».

Puissance absorbée, débit et rendement du ventilateur sont liés par l’expression :

P [W] = qV [m³/s] * Hm

où :

  • P = puissance absorbée au moteur du ventilateur [W]
  • qV = débit nominal à travers le ventilateur en [m³.s-1]
  • Hm est la hauteur manométrique [Pa]
  • η est le rendement nominal [-]

Théorie

Pour en savoir plus, le rendement d’un système de ventilation

En considérant un rendement moyen du ventilateur de l’ordre de 60%, on peut se donner une perte de charge maximale des réseaux de ventilation :

EN13779  :

Catégorie Puissance spécifique en W/m³.s Perte de charge maximale
SFP 1 < 500 < 300 Pa
SFP 2 500 – 750 300 – 450 Pa
SFP 3 750 – 1 250 450 – 750 Pa
SFP 4 1 250 – 2 000 750 – 1 200 Pa
SFP 5 > 2 000 > 1 200 Pa

Par exemples, la recherche d’une consommation spécifique inférieure à 1 200 W/(m3/s) implique des pertes de charge inférieures à :

Hm/η  < P / qV [W.m-3.s] < 1 200

Hm  < 1 200 * 0.6 = 720 Pa

C’est là une valeur raisonnablement facile à respecter… mais mieux vaut vérifier quand même !

Choisir un système de ventilation intensive (free cooling)

Choisir un système de ventilation intensive (free cooling)

Ventilation intensive mécanique ou naturelle ?

On peut envisager un système de ventilation intensive entièrement mécanique. La consommation électrique des ventilateurs risque cependant de compenser l’économie réaliser sur la machine frigorifique. Sans parler de l’encombrement des conduites. Ce type de système est équivalent à une climatisation « tout air » de type VAV qui valoriserait au maximum l’air extérieur non traité.

Concevoir

Pour plus d’infos techniques sur la conception des systèmes VAV

Selon les situations, les ventilations mécaniques et naturelles présentent chacune des avantages et/ou des inconvénients :

Coût d’investissement

Le free cooling, de jour comme de nuit, nécessite des débits de ventilation relativement importants. L’ installation de ventilation doit donc être dimensionnée pour gérer ces débits (conduits, ventilateurs, bouches, ….).

Si le bâtiment est déjà équipé d’un système de climatisation tout air ou si les débits de ventilation hygiénique sont importants (du fait de l’occupation, dans des salles de conférence, des auditoires, par exemple), un réseau mécanique ne représente peut-être pas un surcoût.

Par contre, lorsque la ventilation hygiénique est limitée, la possibilité d’organiser un free cooling mécanique entraîne un surdimensionnement, donc un surcoût important de l’installation.

Dans le cas d’une ventilation naturelle, si la réalisation d’un réseau de ventilation mécanique important est évitée, l’investissement pour organiser une ventilation naturelle n’est néanmoins pas nul. Des éléments particuliers doivent être prévus pour amener l’air dans le bâtiment sans risque d’effraction (grilles, fenêtres automatisées,…), éventuellement pour lui permettre de circuler (grilles de transfert, portes coupe-feu,…) et pour l’extraire (grilles d’extraction, cheminées,…).

Coût de fonctionnement

En ventilation naturelle, le transport de l’air s’effectue naturellement grâce aux différences de pression et/ou de température de l’air autour du bâtiment. Dans les systèmes de ventilation par effet de cheminée, un ventilateur d’extraction est parfois installé pour pourvoir au transport de l’air dans de mauvaises conditions climatiques. Pratiquement, ces ventilateurs sont peu ou pas utilisés.

En ventilation mécanique, le fonctionnement des ventilateurs pour le transport de l’air nécessite une énergie électrique non négligeable.

Par exemple, une étude réalisée sur un bâtiment du Sud de la France montre que la consommation des ventilateurs actionnés la nuit était similaire à la consommation des groupes frigorifiques en relance au matin en absence de free cooling (ceux-ci bénéficiant de l’efficacité frigorifique qui produit 2 à 3 kWh de froid pour 1 kWh au compresseur…).

Confort

En free cooling diurne naturel, l’amenée d’air frais directement dans les locaux peut se révéler inconfortable. Des solutions peuvent néanmoins être trouvées pour éviter cet inconfort, comme le montrent les trois exemples suivants réalisés dans des bâtiments anglais.

Exemples.

Dans le centre administratif de l’entreprise Powergen, l’air, en hiver, est introduit par les fenêtres hautes, et guidé, grâce à la forme particulière du plafond vers le centre du bâtiment. Le mélange de l’air frais extérieur avec l’air ambiant se fait donc sans inconfort.

Photo centre administratif de l'entreprise Powergen.

Dans le bâtiment environnemental du BRE, l’air de ventilation des bureaux paysagers parcourt des conduits intégrés dans le plafond, à température ambiante, avant de pénétrer le local au niveau du plafond. Il est donc légèrement réchauffé.

Powergen, schéma explicatif.

Powergen, schéma explicatif.

Enfin, dans le Queen’s building de l’Université De Monfort, l’air extérieur est introduit dans les auditoires au travers d’un absorbant acoustique et d’une batterie de préchauffe.

À cela s’ajoute le risque de sous-refroidissement du local et donc d’inconfort le matin, à l’arrivée des occupants, si les amenées d’air ne sont pas automatisées et refermées au cours de la nuit, quand le bâtiment est suffisamment refroidi.

En ventilation mécanique, lorsque l’on souhaite bénéficier de la fraîcheur de l’air extérieur, mais que celui-ci est trop froid pour être pulsé tel quel, il serait paradoxal de recourir à une batterie de chauffe. Une récupération de chaleur sur l’air extrait est alors tout indiquée. Éventuellement, un recyclage partiel de l’air extrait peut être envisagé.


Un ventilateur en renfort du tirage naturel : vers des systèmes hybrides ?

Pour renforcer le tirage lorsqu’il est trop faible ou pour limiter l’encombrement des cheminées de tirage naturel, il est possible d’organiser une pulsion forcée d’air frais extérieur : un extracteur est placé sur le sommet de la cheminée. Ici également, la température intérieure va fluctuer entre 21 et 25°C durant la journée, puisque le bâtiment stocke son froid la nuit et se réchauffe le jour. Mais au moins une garantie est donnée sur la réelle circulation de l’air.

Schéma de fonctionnement de la ventilation hybride dans les classes (École Tanga).


Disposer d’une masse thermique accessible

Le but de la ventilation nocturne est de refroidir la masse thermique du bâtiment durant la nuit et de diminuer ainsi les surchauffes en journée.

Ce sont les matériaux lourds de construction (béton, carrelage, …) qui constituent la principale masse thermique d’un bâtiment. En journée, ceux-ci absorbent les apports instantanés de chaleur (ensoleillement, …). Cette chaleur est restituée ensuite avec un décalage temporel, ce qui atténue fortement les hausses de température diurne dans le bâtiment. On parle d’inertie thermique du bâtiment. Prenons l’exemple d’une voiture. Celle-ci n’a aucune masse thermique. Dès que le soleil luit, la température intérieure monte très vite. À l’inverse, dès que le soleil disparaît, la température intérieure chute.

Évolution dans le temps de l’apport de chaleur dû à l’ensoleillement dans un local
avec ou sans inertie thermique : comparaison entre la chaleur instantanée transmise au travers du vitrage et la chaleur restituée au local.

Le but de la ventilation nocturne est de décharger au maximum, durant la nuit, la chaleur accumulée dans les matériaux du bâtiment et de permettre une forte absorption de chaleur durant la journée.
Pour que ce phénomène d’accumulation / restitution de chaleur soit possible, il faut :

  • D’une part, favoriser l’utilisation de matériaux de construction lourds pour assurer l’accumulation.
  • D’autre part, garantir le contact entre ceux-ci et l’air frais de ventilation pour évacuer la chaleur accumulée.

À défaut de quoi, on ne refroidirait que l’air ambiant du bâtiment, qui se réchaufferait au premier rayon de soleil (comme cela se passe dans une voiture …). Concrètement :

  • Au niveau du sol, le carrelage est préférable à la moquette, au plancher ou au faux plancher qui isolent par rapport à la masse du sol. …). Le passage des réseaux hydrauliques, électriques,informatiques… s’en trouve contrarié.
  • Au niveau des murs, des murs intérieurs en maçonnerie lourde absorbent nettement plus de chaleur que les cloisons légères. Mais des cloisons lourdes peuvent aller à l’encontre de la flexibilité souhaitée par un promoteur immobilier par exemple.
  • Au niveau des plafonds, l’emploi de faux plafonds est déconseillé.

La surface d’absorption manquante au plafond peut être fournie par les portes absorbantes acoustiques des armoires.

Exemple.

Les bureaux du bâtiment environnemental du BRE, par exemple, ne présentent pas de faux plafonds. La surface du plafond a même été augmentée artificiellement en lui donnant une forme sinusoïdale. L’énergie thermique stockée par le plafond est ainsi augmentée.

Phot des plafonds du bâtiment environnemental du BRE.

Cependant, les faux plafonds offrent d’importants avantages (coût par rapport à la finition d’un plafond « lourd », intégration des installations techniques, …) et permettent notamment d’améliorer l’acoustique des locaux. Un compromis peut être trouvé entre la fonctionnalité du faux plafond et la perte de masse thermique qu’il engendre. Il s’agit de plafonds semi-fermés comportant des ouvertures qui assurent un contact entre l’air intérieur et la structure du bâtiment.

Faux plafonds semi-ouverts permettant la circulation de l’air de ventilation.

Dans le centre administratif de l’entreprise Powergen en Angleterre, une autre solution a été utilisée pour assurer le confort acoustique : les « ailes » des éléments techniques suspendus (regroupant luminaires, détecteurs incendies, etc.) sont des absorbants acoustiques. La forme elliptique des creux du plafond focalise les ondes sonores vers ces absorbants.

Théories

Pour plus d’informations sur l’évolution thermique d’un local type sans inertie, cliquez ici !


Gérer la fluctuation inévitable de la température intérieure

Choisir un rafraichissement par ventilation intensive sans appoint d’une machine frigorifique implique inévitablement des fluctuations de température dans le bâtiment.

En été, le bâtiment est un réservoir « tampon », qui est « vidé de sa chaleur » la nuit jusqu’à atteindre 21°C, et dont la température augmente progressivement en journée jusqu’à 25°C. S’il fait plus de 25°C à l’extérieur, l’occupant doit vivre dans son local sans ouvrir la fenêtre, et se baser sur le « capital froid » emmagasiné durant la nuit.

En outre, il ne faut pas sous-refroidir le bâtiment, pour ne pas créer d’inconfort lors de l’arrivée des occupants, le matin. Une régulation automatique du free cooling s’impose si les utilisateurs ne peuvent assurer la gestion manuelle.

Dans tous les cas, les fluctuations de température doivent rester dans les plages de confort tolérées par le maître d’ouvrage. Or, dans un bâtiment se basant sur un système de reoifridissement par ventilation, l’approche du confort n’est pas la même que dans un bâtiment climatisé. La norme NBN EN 15251 donne à ce titre des indications utiles.

Pour en savoir plus :

Théories

Le confort thermique.

Réglementations 

La norme NBN EN 15251.

Comparer le chauffage simple et la climatisation

Comparer le chauffage simple et la climatisation
Il est possible de comparer, pour un bâtiment donné, la consommation et le niveau de confort générés par différents niveaux d’équipements. Nous reprenons ci-dessous un extrait d’un vaste travail de simulation réalisé par l’ISSO aux Pays-Bas (les conditions de climat extérieur sont donc relativement comparables à ceux de nos régions).

Voici les hypothèses de travail :

La simulation porte sur un bureau de 4,1 m de façade sur 5,2 m de profondeur et 2,7 m de hauteur. Les consignes sont de 22°C en hiver et 24°C en été. L’inertie des parois est moyenne (sol en béton, pas de faux plafond, cloisons intérieures légères, soit 59 kg/m²). Les apports internes correspondent à l’éclairage et la présence d’une personne et de son PC par zone de 12 m² (35 W/m²). Le pourcentage de vitrage par rapport à la façade est de 50 %. Les murs extérieurs sont équipés de 8 cm d’isolant. Le bureau simulé est entouré d’autres bureaux dont les consignes sont similaires (pas d’échange avec les bureaux voisins). Des stores extérieurs limitent les apports solaires à 20 % de leur valeur lorsque ceux-ci dépassent 300 W/m². Le taux de renouvellement d’air est de 3/h pour les systèmes 2 et 4, et 4/h pour le système 3. Les pertes de charge du circuit de ventilation sont de 1 600 Pa. Un échangeur de chaleur est placé sur l’air de ventilation et son rendement est estimé à 75 %. Le coût de l’humidification est intégré.

Dans ce cas, en intégrant les rendements de production des équipements, les consommations annuelles sont [en kWh/m²] :

SUD EST OUEST NORD
1 Radiateurs + ventilation naturelle Chauffage : 78
Transport : 1
Inconfort : 370 h
Chauffage : 81
Transport : 1
Inconfort : 400 h
Chauffage : 81
Transport : 1
Inconfort : 450 h
Chauffage : 83
Transport : 1
Inconfort : 310 h
2 Radiateurs + ventilation mécanique double flux Chauffage : 58
Transport : 22
Inconfort : 260 h
Chauffage : 59
Transport : 22
Inconfort : 280 h
Chauffage : 60
Transport : 22
Inconfort : 310 h
Chauffage : 61
Transport : 22
Inconfort : 230 h
3 Radiateurs + ventilation mécanique double flux + rafraîchissement* + free cooling de nuit** Chauffage : 70
Refroidissement : 7
Transport : 30
Inconfort : 25 h
Chauffage : 72
Refroidissement : 7
Transport : 31
Inconfort : 45 h
Chauffage : 73
Refroidissement : 7
Transport : 31
Inconfort : 60 h
Chauffage : 74
Refroidissement : 7
Transport : 30
Inconfort :  20 h
4 Conditionnement d’air
(installation 4 tubes avec éjecto-convecteurs)
Chauffage : 83
Refroidissement : 14
Transport : 29
Inconfort : 0 h
Chauffage : 83
Refroidissement : 13
Transport : 29
Inconfort : 0 h
Chauffage : 83
Refroidissement : 14
Transport : 29
Inconfort : 0 h
Chauffage : 83
Refroidissement : 11
Transport : 29
Inconfort : 0 h

*Par « rafraîchissement » en été, on entend ici une pulsion d’air « rafraîchit » correspondant à 4 renouvellements horaires :

  • refroidit à une température de 18 [°C], lorsque la température extérieure est < 23 [°C]
  • refroidit à une température de (T°ext – 5°), lorsque la température extérieure est > 23 [°C]

**Par « free cooling de nuit », on entend ici une pulsion d’air extérieur de ventilation correspondant à 4 renouvellements horaires, si T°ext < T°int  et si T°int > 20 [°C].

La rubrique « transport » représente l’énergie des circulateurs et ventilateurs.

Par « inconfort », on entend le nombre d’heures durant la période de travail où le PMV (Vote Moyen Prédictif) des occupants serait > 0,5. Autrement dit, le nombre d’heures où l’on peut s’attendre à des plaintes du personnel… On considère que si ce nombre d’heures est inférieur à 100 heures par an, il s’agit d’une gêne temporaire tout à fait acceptable. Au-delà de 200 h/an, des mesures de refroidissement sont nécessaires pour garder un climat intérieur correct.

Les kWh de refroidissement sont ceux demandés au compresseur. Ils intègrent donc le COP de la machine frigorifique. Les besoins de froid du bâtiment seraient plus élevés.

Pour transcrire ceci en coût, on peut adopter les hypothèses suivantes

  • le kWh thermique (chauffage) revient à 6,22 c€, sur base d’un prix du fuel de 0,622 €/litre.
  • le kWh électrique (froid et transport) revient à 16 c€, puisque l’installation fonctionne en journée, 10 h sur 24, uniquement durant les jours ouvrables (251 jours par an)

Le tableau devient [en €/m² ] :

SUD EST OUEST NORD
1 Radiateurs + ventilation naturelle Chauffage : 4,85
Transport : 0,16
Inconfort : 370 h
Chauffage : 5,04
Transport : 0,16
Inconfort : 400 h
Chauffage : 5,04
Transport : 0,16
Inconfort : 450 h
Chauffage : 5,16
Transport : 0,16
Inconfort : 310 h
2 Radiateurs + ventilation mécanique double flux Chauffage : 3,61
Transport : 3,52
Inconfort : 260 h
Chauffage : 3,67
Transport : 3,52
Inconfort : 280 h
Chauffage : 3,73
Transport : 3,52
Inconfort : 310 h
Chauffage : 3,79
Transport : 3,52
Inconfort : 230 h
3 Radiateurs + ventilation mécanique double flux + rafraîchissement* + free cooling de nuit** Chauffage : 4,35
Refroidissement : 1,12
Transport : 4,80
Inconfort : 25 h
Chauffage : 4,48
Refroidissement : 1,12
Transport : 4,80
Inconfort : 45 h
Chauffage : 4,54
Refroidissement : 1,12
Transport : 4,80
Inconfort : 60 h
Chauffage : 4,60
Refroidissement : 1,12
Transport : 4,80
Inconfort :  20 h
4 Conditionnement d’air
(installation 4 tubes avec éjecto-convecteurs)
Chauffage : 5,16
Refroidissement : 2,24
Transport : 4,64
Inconfort : 0 h
Chauffage : 5,16
Refroidissement : 2,08
Transport : 4,64
Inconfort : 0 h
Chauffage : 5,16
Refroidissement : 2,24
Transport : 4,64
Inconfort : 0 h
Chauffage : 5,16
Refroidissement : 1,76
Transport : 4,64
Inconfort : 0 h

Si les coûts sont à présent globalisés et ramenés à une échelle de 100 pour la situation 1 (radiateurs et ventilation naturelle) :

SUD EST OUEST NORD
1 Radiateurs + ventilation naturelle Coût : 100
Inconfort : 370 h/an
Coût : 104
Inconfort : 400 h/an
Coût : 104
Inconfort : 450 h/an
Coût : 105
Inconfort : 310 h/an
2 Radiateurs + ventilation mécanique double flux Coût : 146
Inconfort : 260 h/an
Coût : 144
Inconfort : 280 h/an
Coût : 145
Inconfort : 310 h/an
Coût : 146
Inconfort : 230  h/an
3 Radiateurs + ventilation mécanique double flux + rafraîchissement* + free cooling de nuit** Coût : 205
Inconfort : 25 h/an
Coût : 208
Inconfort : 45 h/an
Coût : 209
Inconfort : 60 h/an
Coût : 210
Inconfort :  20 h/an
4 Conditionnement d’air
(installation 4 tubes avec éjecto-convecteurs)
Coût : 240
Inconfort : 0 h/an
Coût : 237
Inconfort : 0 h/an
Coût : 240
Inconfort : 0 h/an
Coût : 231
Inconfort : 0 h/an

Analyse des résultats

Dans les hypothèses prises pour la simulation, le coût d’exploitation global généré par le système de conditionnement d’air est évalué à 6,5 €/m²/an. Il est 4 fois plus onéreux que le système par simples radiateurs, mais ce dernier n’est plus acceptable dans un bureau aux standards de construction actuels, si des mesures particulières de limitation des charges ne sont pas prises.

Le coût du transport de l’air de ventilation et de climatisation est également un poste majeur dans le bilan financier. Mais les hypothèses de dimensionnement choisies par l’équipe de recherche sont particulièrement défavorables au transport (taux de renouvellement d’air élevé et pertes de charge du réseau élevées) et favorables au bilan thermique (échangeur de chaleur sur l’air extrait pour préchauffer l’air de ventilation en hiver, et stores pour limiter les apports solaires d’été). Il n’empêche que le coût du transport est un poste à ne pas négliger et que le choix du système de climatisation sera déterminant à ce niveau.

Dans d’autres simulations de cette étude, il apparaît que seuls les bâtiments dont la charge interne est limitée à 20 W/m² (ce qui correspond à une situation d’absence d’équipement bureautique), peuvent encore se passer d’un système de refroidissement. C’est le cas du secteur domestique, mais pas du secteur des bureaux…

Concevoir

 Alors … la climatisation des bureaux, un mal nécessaire ?

Binning des LEDs

Binning des LEDs

Lors de la conception d’une lampe et d’un luminaire LED, les différentes unités LED sont prises parmi un lot. Les unités LED d’un même lot peuvent avoir des caractéristiques différentes en termes d’intensité et de couleur. Pour assurer une production de luminaire de mêmes caractéristiques photométriques et de température de couleur, les constructeurs ont mis au point le « binning ».
Le binning est caractérisé par le tri en fonction de critères spécifiques :

  • Tri selon la couleur ;
  • Tri selon le flux lumineux ;
  • Tri selon la tension directe.

Pour un « bin » de couleur déterminée, une qualité de lumière constante est garantie.

Température de couleur corrélée (Correlated Color Temperature : CCT)

Le CCT permet de qualifier une source lumineuse émettant de la lumière blanche comme chaude, neutre ou froide. Comme référence, le CCT se base sur l’émission de couleur du corps noir qui passe par différentes couleurs lorsqu’il est chauffé : du rouge (le plus froid) au bleu (le plus chaud).

Schéma températures de couleurs spécifiques ANSI.

Des températures de couleurs spécifiques ANSI ont été établies par rapport à des variations de couleurs autour de 8 valeurs de référence de CCT, à savoir :

ANSI C78.377A CCT Standard
CCT nominal (K) Variation du CCT (K)
2 700 2 725 + 145
3 000 3 045 + 175
3 500 3 465 + 245
4 000 3 985 + 275
4 500 4 503 + 243
5 000 5 028 + 283
5 700 5 665 + 355
6 500 6 530 + 510

Ellipses de MacAdam

Au-delà de la qualification d’une source comme étant chaude, neutre ou froide (CCT), il est très important pour les fabricants de LED de définir une variation maximale de température de couleur par rapport à une température cible caractérisant un luminaire LED. Cette précaution permet d’éviter de se retrouver dans un même espace avec une série de luminaires émettant une lumière différente.

Pour y arriver, les fabricants se servent des ellipses de MacAdam représentant un contour à l’intérieur duquel la variation des couleurs devient plus ou moins perceptible par l’œil.

% de population qui perçoit une différence.

L’échelle des ellipses de MacAdam est définie par une succession de SDMN (standard deviation of color matching) ou les dispersions  de couleurs :

  • À l’intérieur de l’ellipse 1 SDMC (« tep »), ne sont pas visibles ;
  • Entre les ellipses 2 et 4 SDMC sont légèrement visibles ;
  • Au-delà de l’ellipse, 5 SDMC sont franchement visibles.

Les huit températures de couleur (CCT) définies par ANSI ont, quant à elles, une dispersion de couleurs définies par des « boîtes » entourant l’ellipse 7 SDMC.

D’après ANSI, un lot de puce LED est considéré comme ayant la même température de couleur selon leur appartenance à l’ellipse 4 SDMC.

Gestion et commandes manuelles

Gestion et commandes manuelles


Les interrupteurs

Les interrupteurs constituent les organes de commande les plus simples dans une gestion d’occupation. Leur caractéristique principale est qu’ils restent en l’état ON ou OFF s’ils ne sont pas actionnés par l’occupant. Le changement d’état nécessite l’intervention de l’occupant.

L’occupant allume ou pas l’éclairage en fonction de sa sensibilité personnelle et des conditions d’ambiance du local dans lequel il se trouve. L’acte d’allumer ou d’éteindre est volontaire, ce qui devrait responsabiliser les occupants.

Différentes études ont montré que la responsabilisation de l’occupant est plus liée à l’allumage des luminaires quand il rentre dans un local qu’à leur extinction quand il le quitte. Leur perspective de perdurer dans une installation moderne qui tient compte de la gestion énergétique des consommations d’éclairage ne repose que sur la démarche volontaire d’éteindre les luminaires quand on quitte son boulot.

Schéma principe boutons interrupteurs.

Schéma principe boutons interrupteurs.

Dans les bâtiments tertiaires, on voit tout de suite la limite des interrupteurs si les occupants sont peu ou pas responsables.

On retrouve différents types d’interrupteur suivant la configuration du local : les interrupteurs simples et 2 directions existent toujours sur le marché.


Les boutons poussoir

Les boutons poussoirs, contrairement aux interrupteurs, n’ont qu’un seul état au repos : soit ON, soit OFF suivant leur type. Ils ne servent, par une simple impulsion, qu’à changer l’état d’un équipement intermédiaire de commande des luminaires comme, par exemple, les télérupteurs, les relais, les entrées digitales des automates (DI : Digital Input), …

Cette caractéristique leur permet aussi de pouvoir être couplés avec une détection d’occupation automatique.

L’idée est de combiner :

  • un allumage volontaire de l’éclairage à l’entrée de l’occupant dans son local ;
  • et une extinction manuelle ou automatique du même éclairage par détection d’absence lorsque l’occupant quitte son local (possibilité de temporisation).

Schéma principe boutons poussoir.


Les gradateurs ou « dimmer »

L’idée du contrôle du flux lumineux  est d’adapter la luminance ou, de manière plus pratique, le niveau d’éclairement du luminaire en fonction du besoin réel de « lux » dans un local. En effet, lorsque le local considéré bénéficie d’un appoint en éclairage naturel conséquent, par exemple, ou bien lorsque l’on souhaite projeter une présentation dans une salle de réunion, le maintien d’un flux lumineux à 100 %, d’une part, peut devenir une source d’inconfort visuel et, d’autre part, source de consommations énergétiques inutiles.

Schéma principe gradateurs ou "dimmer".

Grâce aux « dimmers », la tension d’alimentation peut-être réglée de 0 à 100 % en 230 V par exemple. La technique du contrôle manuel fait appel à la bonne volonté des occupants et nécessite une bonne dose de patience sachant que le climat de notre chère Belgique est très changeant, ce qui limite sérieusement son utilisation dans le contrôle du flux lumineux en fonction de la lumière naturelle de plusieurs luminaires. Il sera donc principalement utilisé dans les locaux où plusieurs tâches nécessitant des niveaux d’éclairement différents sont réalisées (salle de réunion et projection par exemple).

Variateurs de lumière (ou « dimmer »).

Techniques

 Pour en savoir plus sur les possibilités de gestion en fonction de l’apport en éclairage naturel.

Un problème d’inconfort thermique ou lumineux ? N’hésitez pas à tester notre nouvel outil de diagnostic afin de trouver la solution à votre problématique.

Isolation à l’intérieur de la structure

Isolation  à l'intérieur de la structure

Cette technique, délicate par la résolution des risques de condensation et ponts thermiques, consiste au placement d’isolation entre les éléments de structure.

Choisir le type de toiture

Actuellement, les toitures plates sont aussi fiables que les toitures inclinées. Le choix se fera donc sur base des exigences architecturales de fonctionnalité et d’esthétique.

 

Dans le cas des toitures inclinées il faut choisir, soit d’isoler les versants, soit d’isoler le plancher des combles.

Isolation dans le versant de toiture.

Isolation dans le plancher des combles.

Choisir le type de mur [concevoir l’isolation]

Chacune de ces techniques constructives présente des avantages et des inconvénients qui guideront le choix.


Le mur creux

Principe du mur creux.

Avantages

  • Le mur creux s’intègre généralement dans l’architecture traditionnelle de nos régions.
  • Il est efficace contre les infiltrations d’eau de pluie.
  • Son parement extérieur résiste bien aux agressions mécaniques.
  • Le mur porteur intérieur généralement massif (> 100 kg/m²) renforce l’inertie thermique du bâtiment diminuant ainsi les risques de surchauffe en été et permettant un stockage de chaleur en hiver.

Inconvénients

  • L’épaisseur de l’isolant est limitée par l’épaisseur disponible dans le creux du mur (en rénovation).
  • La stabilité des parements notamment au-dessus des grandes baies nécessite des appareillages qui sont sources potentielles de ponts thermiques et de coûts supplémentaires.

Techniques

Pour en savoir plus sur les caractéristiques du mur creux : cliquez ici  !

Concevoir

Pour en savoir plus sur la conception du mur creux : cliquez ici  !


Le mur plein non isolé

Principe du mur plein non isolé.

Ce type de mur ne sera généralement pas envisagé étant donné ses mauvaises performances thermiques. Même si le matériau utilisé est relativement isolant (béton cellulaire ou terre cuite allégée), les épaisseurs nécessaires pour atteindre ne fut-ce que les performances minimales exigées par la réglementation sont déjà très importantes (50 cm). Pour des performances plus ambitieuses, cette technique n’est pas adaptée.

Techniques

Pour en savoir plus sur les caractéristiques du mur plein : cliquez ici  !

Le mur isolé par l’extérieur

Principe du mur isolé par l’extérieur.

  1. Mur plein.
  2. Mortier de collage de l’isolant.
  3. Panneau d’isolation.
  4. Armature synthétique ou métallique + sous-couche de l’enduit.
  5. Enduit de finition.

Avantages

  • L’isolant est continu et enveloppe bien le bâtiment.
  • Des épaisseurs importantes sont possibles.
  • L’aspect extérieur peut être adapté aux exigences urbanistiques.
  • Le mur généralement massif (> 100 kg/m²) renforce l’inertie thermique du bâtiment diminuant ainsi les risques de surchauffe en été et permettant un stockage de chaleur en hiver.

Inconvénients

  • La face extérieure de la façade est relativement fragile aux agressions mécaniques.

Techniques

Pour en savoir plus sur les différents systèmes d’isolation par l’extérieur : cliquez ici  !

Concevoir

Pour en savoir plus sur la conception du mur isolé par l’extérieur cliquez ici  !

Le mur isolé par l’intérieur

Principe du mur mur isolé par l’intérieur.

Ce type de mur ne sera généralement pas envisagé pour une nouvelle construction à cause de la difficulté à gérer les ponts thermiques, le risque de condensation interstitielle dans la façade et l’affaiblissement de l’inertie thermique du bâtiment (défavorable pour la gestion des surchauffes estivales).


Le mur à ossature bois

Principe du mur à ossature bois.

Avantages

  • Le mur à ossature bois est fabriqué en atelier et sa pose sur chantier est très rapide.
  • L’espace disponible pour la pose de l’isolant est généralement important. La façade peut donc être très performante du point de vue thermique.
  • Son inertie thermique faible peut être un avantage pour les bâtiments à occupation occasionnelle (salles de fête, lieux de culte, …) car elle permet une mise à température rapide sans apport d’énergie excessif et stockage inutile de celle-ci.

Inconvénients

  • La faible inertie de la façade augmente les risques de surchauffe en été.
  • Certaines réglementations urbanistiques imposent des parements extérieurs en brique. Du point de vue constructif, ce parement lourd n’est pas nécessaire. Il est coûteux. Il trompe l’observateur sur la nature de la paroi. Une couche massive de matériau est placée  à l’extérieur de l’isolant alors qu’elle aurait éventuellement pu être utile à l’intérieur pour stabiliser la température.

Techniques

Pour en savoir plus sur les caractéristiques du mur à ossature : cliquez ici  !

Techniques

Pour en savoir plus sur l’isolation dans l’ossature : cliquez ici  !

Concevoir

Pour en savoir plus sur la conception du mur à ossature bois: cliquez ici  !

Le mur-rideau

Principe du mur-rideau.

Le mur-rideau est comparable à  une fenêtre de grande dimension avec d’éventuelles parties pleines (non transparentes). Les exigences thermiques réglementaires  ne sont pas sévères et peuvent généralement être respectées. Toutefois, si certains murs rideaux avec triples vitrages atteignent des performances intéressantes (U < 0.85 W/m²K), ces valeurs sont bien moins bonnes que celles obtenues par des murs traditionnels (U < 0.4 W/m²K). Il est donc préférable de n’opter pour les murs rideaux que lorsque de grandes surfaces vitrées sont nécessaires. Si ce n’est pas le cas, une façade légère en bois est plus indiquée si le choix d’une façade légère est fait.

Techniques

Pour en savoir plus sur les caractéristiques du mur rideau: cliquez ici  !

Concevoir

Pour en savoir plus sur la conception du mur rideau: cliquez ici  !

Déterminer les performances thermiques à atteindre [Concevoir]

Déterminer les performances thermiques à atteindre [Concevoir]


La réglementation

Outre un niveau de performance global à atteindre (Kglobal et E), la PEB en matière d’isolation exige des valeurs maximales pour le coefficient de transmission thermique Umax des parois faisant partie de la surface de déperdition.

En rénovation, ces valeurs doivent être respectées pour toute paroi qui fait l’objet d’une reconstruction ou qui est ajoutée.

Il se peut également que ces valeurs (ou même des valeurs plus sévères) doivent être atteintes, et ce même si une paroi n’est pas directement touchée par la rénovation, lorsqu’il y a changement d’affectation du bâtiment, de manière à atteindre le niveau global d’isolation (K).


Les recommandations

Si l’on s’en tient à la réglementation, un coefficient de transmission thermique U est requis pour les parois délimitant le volume protégé. Mais il faut comprendre cette valeur comme l’exigence de qualité minimale à respecter, sorte de garde-fou que la Région a voulu imposer aux constructeurs.

L’épaisseur est le résultat d’un compromis :

  • Plus on isole, plus la consommation diminue (chauffage et climatisation), et avec lui le coût d’exploitation du bâtiment.
  • Plus on isole, plus le coût d’investissement augmente.

On peut aujourd’hui aller plus loin dans l’isolation des parois sans pour autant générer de grandes modifications dans la technique de construction. On peut aussi vouloir atteindre certains labels qui donnent parfois droit à des subsides. A titre d’exemple, pour une certification « passive » une isolation des parois approchant un U de 0.15 W/m²K est recommandée.

Elle permet de satisfaire de manière plus aisée l’exigence de niveau d’isolation globale (K).
Quelques considérations complémentaires :

  • Souvent c’est une logique de rentabilité financière qui détermine l’épaisseur d’isolant mis en place. Si une logique de rentabilité écologique était prise, la lutte contre le CO2 nous pousserait vers une isolation plus forte !
  • Le prix de l’énergie sur lequel on détermine la rentabilité varie sans cesse mais la tendance est clairement à la hausse. Cette évolution doit donc être prise en compte dans l’évolution de la rentabilité. Si le litre de fuel est un jour à 3 €, la rentabilité de l’isolation ne sera même plus discutée !
  • Maintenir 20°C dans un bâtiment, c’est un peu comme maintenir un niveau de 20 cm d’eau dans un seau percé. Aux déperditions du bâtiment correspondent des fuites dans la paroi du seau. En permanence nous injectons de la chaleur dans le bâtiment. Or, si en permanence on nous demandait d’apporter de l’eau dans le seau pour garder les 20 cm, notre premier réflexe ne serait-il pas de boucher les trous du seau ?

  • Expliquez aux Scandinaves, aux Suisses,. que nous hésitons entre 6 et 8 cm d’isolant, vous les verrez sourire, eux qui placent couramment 20 cm de laine minérale, sans état d’âme !

Pourquoi une isolation moins poussée sur le sol ?

En hiver la température du sol est plus élevée que la température extérieure. La « couverture » peut donc être moins épaisse.

Pourquoi une isolation plus poussée en toiture que dans les murs ?

Si la température extérieure est cette fois identique dans les 2 cas, le placement de l’isolant en toiture est plus facile à mettre en œuvre en forte épaisseur. Le coût est proportionnellement moindre. La rentabilité de la surépaisseur est meilleure.


Épaisseur d’isolant

L’épaisseur d’isolant (ei) peut être calculée par la formule :

1/U = Rsi + e11 + eii + e22 + Rse

ei = λi [1/U – (Rsi + e11 + e22 + Rse)]

avec,

  • λi : le coefficient de conductivité thermique de l’isolant (W/mK),
  • U : le coefficient de transmission thermique de la paroi à atteindre (W/m²K),
  • Rse et Rsi : les résistances thermiques d’échange entre le mur et les ambiances extérieure et intérieure. Ils valent respectivement 0,04 et 0,13 m²K/W,
  • e1/λ1, e22 : la résistance thermique des autres couches de matériaux (m²K/W).

Dans le tableau ci-dessous, vous trouverez les épaisseurs minimales d’isolant à ajouter sur la face interne ou externe du mur plein pour obtenir différents coefficients de transmission.

Hypothèses de calcul :

  • Les coefficients de conductivité thermique (λ en W/mK) ou les résistances thermiques (Ru en m²K/W) des maçonneries utilisées et des isolants sont ceux indiqués dans l’annexe VII de l’AGW du 17 avril 2008.
  • La maçonnerie est considérée comme sèche et le coefficient de conductivité thermique de celle-ci correspond à celui du matériau sec. En effet, on a considéré que le mur isolé par l’intérieur ou par l’extérieur avait été protégé contre les infiltrations d’eau, comme il se doit.
  • La face intérieure de la maçonnerie est recouverte d’un enduit à base de plâtre d’1 cm d’épaisseur.

Remarques.

  • Lorsqu’on utilise un isolant disposant d’un agrément technique (ATG), on peut se fier au coefficient de conductivité thermique certifié par celui-ci; celui-ci est , en général, plus faible que celui indiqué dans dans l’annexe VII de l’AGW du 17 avril  2008 et on peut ainsi diminuer l’épaisseur d’isolant, parfois de manière appréciable.
  • Les épaisseurs calculées doivent être augmentées de manière à obtenir des épaisseurs commerciales.
  • A épaisseur égale et pour autant que l’isolant soit correctement mis en œuvre, la présence d’une lame d’air moyennement ventilée entre l’isolant et sa protection (enduit ou bardage), permet de diminuer le coefficient de transmission thermique U de 2,5 à 5 %.
Composition du mur plein Masse volumique (kg/m³) λ(W/mK) ou Ru (m²K/W) Épaisseur du mur plein (cm) Coefficient de transmission thermique du mur plein sans isolant (W/m²K) Épaisseur de l’isolant (en cm) à ajouter pour obtenir Umax :
Umax (W/m²K) Nature de l’isolant
MW/EPS XPS PUR/PIR CG
Maçonnerie de briques ordinaires

 

1 000 à 2 100

 

0.72

 

19

 

2.22

 

0.60 5.47 4.86 4.25 6.69
0.40 9.22 8.20 7.17 11.27
0.30 12.97 11.53 10.09 15.85
0.15 27.97 24.86 21.76 34.19
29

 

1.69

 

0.60 4.84 4.31 3.77 5.92
0.40 8.59 7.64 6.68 10.50
0.30 12.34 10.97 9.60 15.09
0.15 27.34 24.3 21.26 33.41
39

 

1.37

 

0.60 4.22 3.75 3.28 5.16
0.40 7.97 7.08 6.20 9.74
0.30 11.72 10.42 9.12 14.32
0.15 26.72 23.75 20.78 32.65
Maçonnerie de moellons

 

2 200

 

1.40

 

29

 

2.54

 

0.60 5.73 5.09 4.45 7.00
0.40 9.48 8.42 7.37 11.58
0.30 13.23 11.76 10.29 16.16
0.15 28.23 25.09 21.96 34.5
39

 

2.15

 

0.60 5.40 4.80 4.20 6.60
0.40 9.15 8.14 7.12 11.19
0.30 12.90 11.47 10.04 15.77
0.15 27.91 24.81 21.71 34.11
Blocs creux de béton lourd

 

> 1 200

 

0.11

 

14

 

3.36

 

0.60 6.16 5.48 4.79 7.53
0.40 9.91 8.81 7.71 12.12
0.30 13.66 12.14 10.63 16.70
0.15 28.66 25.48 22.29 35.03
0.14

 

19

 

3.06

 

0.60 6.03 5.36 4.69 7.37
0.40 9.78 8.69 7.60 11.95
0.30 13.53 12.02 10.52 16.53
0.15 28.53 25.36 22.19 34.87
0.20

 

29

 

2.58

 

0.60 5.76 5.12 4.48 7.04
0.40 9.51 8.45 7.39 11.62
0.30 13.26 11.78 10.31 16.20
0.15 28.26 25.12 21.98 34.53
Blocs de béton mi-lourd

 

1 200 à 1 800

 

0.75

 

14

 

2.67

 

0.60 5.82 5.17 4.52 7.11
0.40 9.57 8.50 7.44 11.69
0.30 13.32 11.84 10.36 16.28
0.15 28.31 25.17 22.02 34.61
19

 

2.27

 

0.60 5.52 4.90 4.29 6.74
0.40 9.27 8.24 7.21 11.33
0.30 13.02 11.57 10.12 15.91
0.15 28.02 24.90 21.79 34.24
29

 

1.74

 

0.60 4.92 4.37 3.82 6.01
0.40 8.67 7.70 6.74 10.59
0.30 12.42 11.04 9.66 15.18
0.15 27.41 24.37 21.32 33.51
Blocs de béton moyen

 

900 à  1 200

 

0.40

 

14

 

1.86

 

0.60 5.08 4.52 3.95 6.21
0.40 8.83 7.85 6.87 10.80
0.30 12.58 11.18 9.79 15.38
0.15 27.58 24.52 21.45 33.71
19

 

1.51

 

0.60 4.52 4.02 3.52 5.52
0.40 8.27 7.35 6.43 10.11
0.30 12.02 10.68 9.35 14.69
0.15 27.02 24.02 21.02 33.02
29

 

1.10

 

0.60 3.39 3.02 2.64 4.15
0.40 7.14 6.35 5.56 8.73
0.30 10.89 9.68 8.47 13.32
0.15 25.91 23.03 20.15 31.67
Blocs de béton léger

 

600 à 900

 

0.30

 

14

 

1.53

 

0.60 4.56 4.05 3.54 5.57
0.40 8.31 7.38 6.46 10.15
0.30 12.06 10.72 9.38 14.74
0.15 27.06 24.05 21.05 33.07
19

 

1.22

 

0.60 3.81 3.38 2.96 4.65
0.40 7.56 6.72 5.88 9.24
0.30 11.31 10.05 8.79 13.82
0.15 26.31 23.39 20.46 32.16
29

 

0.87

 

0.60 2.31 2.05 1.79 2.82
0.40 6.06 5.38 4.71 7.40
0.30 9.81 8.72 7.63 11.99
0.15 24.83 22.07 19.31 30.34
Blocs creux de béton léger

 

< 1 200

 

0.30

 

14

 

2.05

 

0.60 5.31 4.72 4.13 6.49
0.40 9.06 8.05 7.04 11.07
0.30 12.81 11.38 9.96 15.65
0.15 27.8 24.72 21.63 33.98
0.35

 

19

 

1.86

 

0.60 5.08 4.52 3.95 6.21
0.40 8.83 7.85 6.87 10.80
0.30 12.58 11.18 9.79 15.38
0.15 27.58 24.52 21.45 33.71
0.45

 

29

 

1.57

 

0.60 4.63 4.12 3.60 5.66
0.40 8.38 7.45 6.52 10.25
0.30 12.13 10.78 9.44 14.83
0.15 27.13 24.12 21.10 33.16
Blocs de béton très léger

 

< 600

 

0.22

 

14

 

1.21

 

0.60 3.79 3.37 2.95 4.64
0.40 7.54 6.71 5.87 9.22
0.30 11.29 10.04 8.78 13.80
0.15 26.28 23.36 20.44 32.12
19

 

0.95

 

0.60 2.77 2.46 2.16 3.39
0.40 6.52 5.80 5.07 7.97
0.30 10.27 9.13 7.99 12.55
0.15 25.26 22.46 19.65 30.88
29

 

0.66

 

0.60 0.73 0.65 0.56 0.89
0.40 4.48 3.98 3.48 5.47
0.30 8.23 7.31 6.40 10.05
0.15 23.18 20.61 18.03 28.33
Blocs de béton cellulaire

 

< 500

 

0.18

 

15

 

0.98

 

0.60 2.91 2.58 2.26 3.55
0.40 6.66 5.92 5.18 8.14
0.30 10.41 9.25 8.09 12.72
0.15 25.41 22.59 19.76 31.05
20

 

0.77

 

0.60 1.66 1.47 1.29 2.03
0.40 5.41 4.81 4.21 6.61
0.30 9.16 8.14 7.12 11.19
0.15 24.16 21.47 18.79 29.52
30

 

0.54

 

0.60
0.40 2.91 2.58 2.26 3.55
0.30 6.66 5.92 5.18 8.14
0.15 21.67 19.26 16.85 26.48
Blocs de terre cuite lourds

 

1 600 à 2 100

 

0.90

 

14

 

2.92

 

0.60 5.96 5.30 4.63 7.28
0.40 9.71 8.63 7.55 11.86
0.30 13.46 11.96 10.47 16.45
0.15 28.46 25.3 22.13 34.78
19

 

2.51

 

0.60 5.71 5.07 4.44 6.98
0.40 9.46 8.41 7.36 11.56
0.30 13.21 11.74 10.27 16.14
0.15 28.21 25.07 21.94 34.48
29

 

1.96

 

0.60 5.21 4.63 4.05 6.36
0.40 8.96 7.96 6.97 10.95
0.30 12.71 11.30 9.88 15.53
0.15 27.70 24.63 21.55 33.86
Blocs de terre cuite perforés

 

1 000 à 1 600

 

0.54

 

14

 

2.24

 

0.60 5.49 4.88 4.27 6.71
0.40 9.24 8.21 7.19 11.29
0.30 12.99 11.55 10.10 15.88
0.15 27.99 24.88 21.77 34.21
19

 

1.86

 

0.60 5.07 4.51 3.95 6.20
0.40 8.82 7.84 6.86 10.79
0.30 12.57 11.18 9.78 15.37
0.15 27.58 24.52 21.45 33.71
29

 

1.38

 

0.60 4.24 3.77 3.30 5.18
0.40 7.99 7.10 6.22 9.77
0.30 11.74 10.44 9.13 14.35
0.15 26.74 23.77 20.80 32.68
Blocs de terre cuite perforés

 

700 à 1 000

 

0.27

 

14

 

1.42

 

0.60 4.32 3.84 3.36 5.29
0.40 8.07 7.18 6.28 9.87
0.30 11.82 10.51 9.20 14.45
0.15 26.83 23.85 20.87 32.79
19

 

1.12

 

0.60 3.49 3.10 2.72 4.27
0.40 7.24 6.44 5.63 8.85
0.30 10.99 9.77 8.55 13.43
0.15 25.98 23.10 20.21 31.76
29

 

0.79

 

0.60 1.82 1.62 1.42 2.23
0.40 5.57 4.95 4.34 6.81
0.30 9.32 8.29 7.25 11.40
0.15 24.30 21.60 18.90 29.70
Blocs silico-calcaire creux

 

1 200 à 1 700

 

0.60

 

14

 

2.38

 

0.60 5.61 4.98 4.36 6.85
0.40 9.36 8.32 7.28 11.44
0.30 13.11 11.65 10.19 16.02
0.15 28.11 24.99 21.86 34.36
19

 

1.98

 

0.60 5.23 4.65 4.07 6.40
0.40 8.98 7.98 6.99 10.98
0.30 12.73 11.32 9.90 15.56
0.15 27.73 24.65 21.57 33.89
29

 

1.49

 

0.60 4.48 3.98 3.49 5.48
0.40 8.23 7.32 6.40 10.06
0.30 11.98 10.65 9.32 14.65
0.15 26.98 23.98 20.98 32.98

Source : Isolation thermique des murs pleins réalisée par le CSTC à la demande de la DGTRE.

Il est également possible d’utiliser le fichier Excel pour calculer le U d’une paroi en contact avec l’extérieur.

Ponts thermiques

Ponts thermiques


Généralités

Les ponts thermiques sont des points faibles dans l’isolation thermique de l’enveloppe du bâtiment.
À ces endroits, en hiver, la température superficielle de l’enveloppe est plus basse que celle des surfaces environnantes.

Ils découlent, en général de :

  • Contraintes constructives
  • Contraintes géométriques

Ils vont provoquer :

  • Des dépenses énergétiques
  • Un inconfort sur le plan de l’hygiène
  • La détérioration des matériaux

Pont thermique dû à des contraintes constructives

Les matériaux isolants ont généralement des capacités limitées en matière de résistance aux contraintes mécaniques.

Le principe de la continuité de la couche isolante n’a pas été respecté, ou n’a pu l’être dans certains cas, à certains endroits.

Il s’agit par exemple d’ancrages ou d’appuis entre d’éléments situés de part et d’autre de la couche isolante de la paroi.

L’isolant étant localement absent, le flux de chaleur est sensiblement plus dense dans ces parties de la paroi.

Pont thermique dû à des contraintes géométriques

Ce type de pont thermique est dû à la forme de l’enveloppe à un endroit.

A cet endroit, la surface de la face extérieure est beaucoup plus grande que la surface de la face intérieure.

La surface chauffée (intérieure) est plus petite que la surface de refroidissement (extérieure).

Dépenses énergétiques provoquées par les ponts thermiques

Dans le cas d’un bâtiment bien isolé, les ponts thermiques peuvent entraîner des déperditions de chaleur proportionnellement très importantes par rapport aux déperditions totales.

En outre, si on ne tient pas compte des déperditions dues aux ponts thermiques, l’installation de chauffage peut être sous-dimensionnée.
C’est surtout le cas lorsque le bâtiment est très bien isolé et lorsque les installations de chauffage sont dimensionnées de façon optimale.

Inconfort sur le plan de l’hygiène provoqué par les ponts thermiques

Les ponts thermiques provoquent une condensation en surface lorsque la température de celle-ci descend en dessous du point de rosée de l’air ambiant.

L’humidité de la paroi permet le développement de moisissures.

Celles-ci, outre leur aspect désagréable, dégagent des substances pouvant être odorantes et pouvant provoquer chez certaines personnes des phénomènes d’allergie.

Du point de vue hygiénique et confort les moisissures doivent donc être évitées.

Détérioration des matériaux provoquée par les ponts thermiques

Lorsque les quantités d’eau condensées sont importantes et ne peuvent être éliminées quotidiennement, elles pénètrent les revêtements et papiers peints, et provoquent leur détérioration.
Les carrelages, les revêtements plastiques, les peintures synthétiques à l’huile résistent mieux au détériorations.

Lorsque la condensation se fait dans le bois, celui-ci va pourrir plus ou moins vite en fonction de son essence et du traitement de protection dont il a bénéficié.

Si la condensation est importante, toute l’épaisseur de la paroi peut être fortement humide. La structure porteuse de la construction elle-même se dégrade sous l’effet de l’humidité permanente et éventuellement aussi du gel des matériaux.


Analyse des effets des ponts thermiques sur les flux de chaleur au travers d’une paroi

Isolation par l’extérieur d’un mur avec descente d’eau pluviale

Situation

Situation  n°1

Situation °2

L’architecte refuse de déplacer la descente d’eau pluviale; l’isolation extérieure y est interrompue.

La descente d’eaux pluviales est déplacée, l’isolation extérieure est continue.

Dessin des isothermes

Situation n°1

Situation n°2

Les températures de paroi intérieures sont d’environ 15°C.

Les températures de paroi intérieures sont plus élevées : environ 17°C.

Ligne de flux de chaleur

Situation n°1

Situation n°2

La chaleur s’échappe de manière importante par la discontinuité dans l’isolant.

La chaleur s’échappe de manière relativement identique par toutes les parties du mur.

Isolation par l’extérieur – Pourtour de baie vitrée

Situation n°1

Situation n°2

L’isolant n’est pas prolongé à l’intérieur de la baie.

L’isolant est prolongé à l’intérieur de la baie.

Situation n°1

Situation n°2

Les températures de paroi intérieures sont d’environ 16°C.

Les températures de paroi intérieures sont plus élevées : environ 18°C.

Situation n°1

Situation n°2

La chaleur s’échappe de manière importante par le retour de baie non isolé.

La chaleur s’échappe de manière relativement identique par toutes les parties du mur.

Coefficient de transmission thermique d’une fenêtre (Uw) ou d’une porte

Coefficient de transmission thermique d'une fenêtre (Uw) ou d'une porte


Le coefficient de transmission thermique d’une fenêtre ou d’une porte simple

N.B.: la méthode présentée ci-dessous n’est valable que pour les fenêtres ou portes considérées comme simples, cas le plus courant dans nos régions.

Elle ne s’applique pas à une double fenêtre ou à une fenêtre à vantaux dédoublés.

Fenêtre simple.

Double fenêtre.

Fenêtre à vantaux dédoublés.

Détermination par essais

Le coefficient de transmission thermique d’une porte ou d’une fenêtre peut être déterminé avant pose par des essais  réalisés conformément à la norme NBN EN ISO 12567-1 (ou -2 pour une fenêtre de toit). Ils peuvent aussi être réalisés sur exactement la même fenêtre ou porte avec  les mêmes dimensions et les mêmes composants.

Détermination par calcul

Une fenêtre ou une porte est constituée de différentes parties qui ont chacune une surface et un coefficient de transmission thermique U déterminés.

 

  1. l’encadrement (châssis) de la fenêtre ou de la porte (dans tous les cas) ;
  2. le ou les vitrages (le cas échéant) ;
  3. le ou les panneaux opaques (le cas échéant) ;
  4. la ou les grilles de ventilation (le cas échéant).

Le contour des vitrages isolants et des panneaux est affecté d’une déperdition thermique supplémentaire résultant des effets combinés des encadrements, intercalaires, vitrages et panneaux (pont thermique linéaire).

L’ensemble de ces éléments permet de déterminer par calcul le coefficient de transmission thermique de la fenêtre Uw. Il s’agit de la valeur moyenne des coefficients de transmission thermique des  différentes parties au pro rata de leurs surfaces, augmentées des déperditions linéiques aux rives des vitrages et panneaux.

avec :

  • Ug = le coefficient de transmission thermique du vitrage
  • Ag = l’aire du vitrage
  • Uf = le coefficient de transmission thermique de l’encadrement
  • Af = l’aire de l’encadrement
  • Up = le coefficient de transmission thermique du panneau
  • Ap = l’aire du panneau
  • Ur = le coefficient de transmission thermique de la grille de ventilation
  • Ar = l’aire de la grille de ventilation
  • ψg = le coefficient de transmission thermique linéique de l’intercalaire autour du vitrage
  • lg = le périmètre visible du vitrage
  • ψp = le coefficient de transmission thermique linéique autour du panneau
  • lp = le périmètre visible du panneau

Le calcul doit être effectué pour chaque fenêtre et porte.

Calcul simplifié

Pour un ensemble de fenêtres ayant un même type de vitrage, d’encadrement, de panneau de remplissage opaque et  de grille de ventilation, et étant placées dans le même bâtiment, on peut adopter une seule valeur moyenne UW pour l’ensemble des fenêtres. Celle-ci tient compte d’une proportion fixe entre l’aire du vitrage et l’aire de l’encadrement ainsi que d’un périmètre du vitrage ou des intercalaires. On évite ainsi de devoir faire ce calcul pour chaque fenêtre.

La réglementation PEB fournit ainsi une formule simplifiée permettant d’évaluer l’efficacité énergétique d’une fenêtre en tenant compte de l’efficacité du châssis et du vitrage tout en supposant une bonne étanchéité à l’air.

Partie vitrage et encadrement Partie grille de ventilation
Ug ≤ Uf Uw = 0,7Ug + 0,3Uf + 3ψg + ∑Ar (Ur – Ug)/∑AW,d [W/m²K]
Ug > Uf Uw = 0,8Ug + 0,2Uf + 3ψg + ∑Ar (Ur – Uf)/∑AW,d [W/m²K]

avec :

  • Uvc = coefficient de transmission thermique U du vitrage.
  • Uch = coefficient de transmission thermique U du châssis.
  • ψg= coefficient de transmission thermique linéique de l’intercalaire.
  • Ur = coefficient de transmission thermique de la grille de ventilation
  • ∑Ar = aire totale des grilles de ventilation présentes
  • ∑AW,d = aire totale des fenêtres (déterminée sur la base des aires des baies des fenêtres)

La proportion varie suivant que le vitrage est thermiquement plus performant que l’encadrement, ou l’inverse. Généralement c’est le vitrage qui est le plus performant. Dans ce cas la formule de calcul devient, s’il n’y a ni grille ni panneau :

UW,T= 0,7 Ug+0,3 Uf+3 ψg

Ce qui revient à considérer : 70 % de vitrage, 30 % d’encadrement et 3 m d’intercalaire par m² de fenêtre.

Si la fenêtre comprend des grilles de ventilation et des panneaux opaques la formule se complique. Elle tient compte de l’influence de ces éléments sur le résultat final (pour les calculs, se référer aux formules 20 et 21 de l’Art 8.5 de l’Annexe 7).

Source : AGW du 15 mai 2014, Annexe B1, Art 8.5


L’influence du volet (Uws)

En été, la présence d’un volet à l’extérieur améliore les moyens dont dispose le bâtiment pour résister à la surchauffe.

En hiver, un volet placé à l’extérieur d’une fenêtre apporte une résistance thermique supplémentaire lorsqu’il est fermé. Bien sûr, il n’est pas fermé en permanence et le taux de fermeture variera d’une fenêtre à l’autre. La législation PEB en Belgique suppose qu’il sera fermé 8 heures par jour.

La résistance thermique de l’ensemble fenêtre-volet  s’exprime de la manière suivante :

Rws = Rw + ΔR

ΔR dépendra de deux caractéristiques :

  1. La résistance thermique totale du volet lui-même, Rsh ;
  2. La fente totale effective entre les bords du volet et les bords de l’ouverture du jour de la fenêtre bsh = b1 + b2 + b3 . b1, b2 et b3 sont respectivement la moyenne des ouvertures des fentes en bas, en haut et sur les côtés du volet.

Attention, la fente sur le côté du volet (b3) n’est comptée qu’une fois parce que les fentes situées dans le haut et dans le bas ont une plus grande influence.

Rsh est calculé de la même manière que les autres éléments de construction.

Cas particuliers :

  • Le calcul se fait suivant la norme NBN EN ISO 10211 dans le cas d’un volet à composition hétérogène ;
  • Le calcul se fait suivant la norme NBN EN ISO 10077-2 dans le cas d’un élément profilé ;
  • Rsh = 0 dans le cas d’un volet inconnu.

Lorsque Rsh et bsh sont déterminées, ΔR est calculé à partir des formules reprises dans le tableau 3 extrait de l’Art. 8.4.5 de l’Annexe B1 de l’AGW du 15 mai 2014.

Classe Perméabilité à l’air du volet en position fermée bsh [mm] ΔR [m²K/W](1)
1 Perméabilité très élevée 35 < bsh 0,08
2 Perméabilité élevée
(le volet est lui-même étanche à l’air).
15 < bsh < 35 0,25 . Rsh + 0,09
3 Perméabilité moyenne
(le volet est lui-même étanche à l’air)
8 < bsh < 15 0,55 . Rsh + 0,11
4 Perméabilité faible
(le volet est lui-même étanche à l’air).
bsh < 8 0,80 . Rsh + 0,14
5 Perméabilité très faible
(le volet est lui-même étanche à l’air).
bsh < 3 et b1 + b3 = 0 ou(2) b2(3) + b3 = 0 0,95 . Rsh + 0,17

(1)Les valeurs ΔR sont valables pour Rsh < 0,3 m²K/W (Rsh est la résistance thermique du volet même, déterminée selon le chapitre 6 si celui-ci est d’application, selon la NBN EN ISO 10211 dans le cas d’un volet à composition hétérogène ou selon  la NBN ISO 10077-2 dans le cas d’un élément profilé).

(2)Ce cas suppose la présence de joints d’étanchéité autour d’au moins 3 côtés du volet et que du côté restant la fente soit inférieure ou égale à 3 mm.

(3)La classe 5 (perméabilité très faible) peut également être adoptée si une mesure du débit d’air au travers du volet fermé démontre que ce débit d’air n’est pas supérieur à 10 m³/h.m² (avec une différence de pression de 10 Pa – essai selon la NBN EN 12835. Des conditions supplémentaires pour la classe 5 sont disponibles dans la NBN EN 13125 par type de volet.

Tableau 3 : résistance thermique additionnelle de la couche d’air et du volet fermé.

ΔR étant ainsi connu, la résistance thermique de l’ensemble fenêtre volet Rws  peut être calculée.
Le coefficient de conductivité thermique Uws est finalement obtenu par la formule :

Uws = 1 / Rws

Le logiciel PEB permet de calculer automatiquement Uws à partir des informations introduites.

Les caisses à volets roulants

Attention, la pose de volets suppose dans certains cas la présence de caisses à volets. Lorsqu’elles sont encastrées dans la façade, il faudra être très attentif à maintenir la continuité de la couche isolante et l’étanchéité à l’air du bâtiment. Cela n’est pas toujours facile. Les détails techniques doivent être étudiés avec soin dès de le début de la conception de l’immeuble.

Source: AGW du 15 mai 2014, Annexe B1, Art 8.4.5

Coefficient de transmission thermique d’une paroi (U)

Date :

  • Mai 2011

Auteur :

  • Claude relecture Olivier

Notes :

  • 24-10-2011, Sylvie, ok!

Source :

 

Généralités

Le coefficient de transmission thermique d’une paroi est la quantité de chaleur traversant cette paroi en régime permanent, par unité de temps, par unité de surface et par unité de différence de température entre les ambiances situées de part et d’autre de la paroi.
Le coefficient de transmission thermique est l’inverse de la résistance thermique totale (RT) de la paroi.

U = 1 / RT

> U (ou k) s’exprime en W/m²K
Plus sa valeur est faible et plus la construction sera isolée.

 Pour calculer le coefficient U d’une paroi, rendez-vous sur la page « Calculs » – catégorie « Enveloppe » !

Résistance thermique d’échange superficiel d’une paroi (Rsi et Rse)

Résistance thermique d'échange superficiel d'une paroi (Rsi et Rse)


La transmission de la chaleur de l’air ambiant à une paroi et vice versa se fait à la fois par rayonnement et par convection.

…..

Le coefficient d’échange thermique superficiel entre une ambiance intérieure (hi) et une paroi est la somme des quantités de chaleur transmise entre une ambiance intérieure et la face intérieure d’une paroi, par convection et par rayonnement, par unité de temps, par unité de surface de la paroi, et pour un écart de 1 K entre la température de la résultante sèche de l’ambiance et la température de surface.

> hi s’exprime en W/m²K.

La résistance thermique d’échange d’une surface intérieure (Rsi) est égale à l’inverse du coefficient d’échange thermique de surface intérieure hi.

Rsi = 1/hi

> Rsi s’exprime en m²K/W.

Le coefficient d’échange thermique superficiel entre une paroi et une ambiance extérieure (he) est la somme des quantités de chaleur transmise entre la face extérieure d’une paroi et une ambiance extérieure, par convection et par rayonnement, par unité de temps, par unité de surface de la paroi, et pour un écart de 1 K entre la température de la résultante sèche de l’ambiance et la température de surface.

> he s’exprime en W/m²K.

La résistance thermique d’échange d’une surface extérieure (Rse) est égale à l’inverse du coefficient d’échange thermique de surface extérieure he.

Rse = 1/he

> Rse s’exprime en m²K/W.

Les différences de valeur entre Rsi et Rse ne proviennent pas de la différence de température entre l’intérieur et l’extérieur mais bien des mouvements d’air plus importants à l’extérieur qu’à l’intérieur, ce qui influence le transfert de chaleur par convection.

Les valeurs des résistances thermiques d’échange superficiel Ri et Re sont données dans un tableau extrait de la réglementation thermique.

Résistance thermique d’une couche d’air (Ra)

Résistance thermique d'une couche d'air (Ra)


Définition d’une couche d’air

Pour qu’un espace vide situé à l’intérieur d’une paroi soit considérée comme une couche d’air, dans le cadre de la réglementation, il faut que les conditions suivantes soient remplies (source : Annexe VII de l’AGW du 17 avril 2008, Art. 5.4.2.1):

  • la couche d’air doit être délimitée par deux plans parallèles qui sont perpendiculaires à la direction du flux thermique ;
  • les deux faces de ces plans sont non-réfléchissants (c’est le cas de la plupart des matériaux de construction traditionnels)1  ;
  • l’épaisseur de la couche d’air ne peut dépasser 30 cm ;
  • l’épaisseur de la couche d’air doit 10 fois plus petite que sa longueur et sa largeur ;
  •  il ne peut pas y avoir de passage d’air entre la couche d’air et l’environnement intérieur du bâtiment2.

1Si une des couche au moins est réfléchissante, il faut se référer aux annexes B.2 et B.3 de la NBN EN ISO 6946.
2Dans le cas contraire, la couche d’air et toutes les couches de matériaux situés du côté intérieur par rapport à celle-ci, ne sont pas pris en considération.

Ra, la résistance thermique d’une couche d’air plane est l’inverse de la quantité de chaleur qui est transmise en régime permanent de la face chaude de la couche d’air vers la face froide, par conduction, convection et rayonnement, par unité de temps, par unité de surface et pour un écart de 1 K entre les températures des faces chaudes et froides.

> Ra s’exprime en m²K/W.


Définition d’une couche d’air non-ventilée

Une couche d’air sera considérée comme « non-ventilée » lorsque la surface des ouvertures entre cette couche d’air et l’environnement extérieur ne dépasse pas 5 cm²

  • par m de longueur dans le cas d’une paroi verticale ou
  • par m² de surface dans le cas d’une paroi horizontale3.

3Une paroi inclinée sera considérée comme verticale dès que sa pente dépasse 30°. Dans le cas contraire, elle sera considérée comme horizontale.

NB : Une paroi inclinée sera considérée comme verticale dès que sa pente dépasse 30°. Dans le cas contraire, elle sera considérée comme horizontale.

Les résistances thermiques des couches d’air non ventilées Ra sont données dans un tableau extrait de la réglementation thermique en fonction de l’épaisseur de la lame d’air et de la direction du flux.


Définition d’une couche d’air peu ventilée

Une couche d’air sera considérée comme « peu ventilée » lorsque la surface des ouvertures entre cette couche d’air et l’environnement extérieur est comprise entre 5 cm² et 15 cm²

  • par m de longueur dans le cas d’une paroi verticale ou
  • par m² de surface dans le cas d’une paroi horizontale (pente<30°).

Dans ce cas, on peut considérer pour cette couche une résistance thermiques Ra correspondant à la moitité de celle donnée pour une  couche d’air non-ventilée d’épaisseur équivalente. De plus, la résistance thermique globale prise en compte pour les couches de construction entre la couche d’air et l’environnement extérieur sera limitée à maximum 0,15 m²K/W.


Définition d’une couche d’air fortement ventilée

Une couche d’air sera considérée comme « fortement ventilée » lorsque la surface des ouvertures entre cette couche d’air et l’environnement extérieur dépasse plus de 15 cm²

  • par m de longueur dans le cas d’une paroi verticale ou
  • par m² de surface dans le cas d’une paroi horizontale (pente<30°).

Dans ce cas, on considère pour cette couche une résistance thermique Ra nulle et la valeur Rsi sera utilisée comme valeur caractéristique de la résistance thermique d’échange superficiel extérieur (Rse=Rsi).

Résistance thermique d’une couche de matériau (R)


La perméance thermique d’une couche de matériau

La perméance thermique (P) indique la quantité de chaleur qui se propage :

  • en 1 seconde,
  • à travers 1 m² d’une couche de matériau,
  • d’une épaisseur déterminée,
  • lorsque la différence de température entre les deux faces est de 1 K (1 K = 1 °C).

> La perméance thermique s’exprime en W/m²K.

Plus la perméance thermique est élevée, plus la couche laisse passer la chaleur.
Ce coefficient est valable aussi bien pour les matériaux homogènes que pour les matériaux non-homogènes.

  • Matériau homogène : P = λ / d  où d = épaisseur de la paroi.
  • Matériau non-homogènes : P est déduite d’essais effectués en laboratoire.

La résistance thermique d’une couche de matériau

La notion de perméance thermique est peu utilisée. Elle permet d’introduire et de mieux comprendre la résistance thermique (R) qui est l’inverse de la perméance thermique.

R = 1 / P

> Elle s’exprime en m²K/W.

C’est la mesure de performance isolante de la couche de matériau. Plus la résistance thermique est élevée, plus la couche est isolante.
Ce coefficient est valable aussi bien pour les matériaux homogènes que pour les matériaux non homogènes.

Matériau homogène

La résistance thermique est obtenue par le rapport entre l’épaisseur (en m) et la conductivité thermique de la couche du matériau (en W/m.K) :

R = d / λ

Matériau non-homogène

La résistance thermique utile Ru est déduite d’essais effectués en laboratoire.

La valeur déclarée

La valeur déclarée RD d’une couche de matériau de construction est généralement fournie par son fabricant. Cette valeur est certifiée sur base d’un agrément technique (ATG, CE, ETA, ETZ, …). Elle est obtenue dans des conditions de référence données de température et d’humidité (d’après les principes donnés dans la EN ISO 10456).

Les valeurs de calcul

À partir de cette valeur RD, il est possible de déduire les valeurs de calcul de la conductivité thermique RU,i et RU,e qui correspondent aux conditions d’utilisation du matériau (interne ou externe).

Il existe un site officiel (ouverture d'une nouvelle fenêtre ! www.epbd.be) qui indique, pour les trois régions belges, les valeurs RU,i et RU,e de certains matériaux qui peuvent être utilisées pour le calcul des performances thermiques des parois suivant la réglementation PEB.

Les valeurs de calcul par défaut

Des valeurs de calcul RU,i par défaut peuvent toujours être utilisées lorsque le matériau ne possède pas de valeur RD certifiée ou n’est connu que par sa nature. Ces valeurs sont reprises dans un tableau de la réglementation.


La résistance thermique d’une couche de matériau homogène d’épaisseur variable

Dans les parois de l’enveloppe du volume protégé, certaines couches peuvent avoir des épaisseurs variables.

Exemples :

Un béton de pente
(peu d’influence sur la résistance thermique totale).

Une couche d’isolant à épaisseur variable
(grande influence sur la résistance thermique totale).

Méthode simplifiée

La résistance thermique de cette couche peut être déterminée de manière sécuritaire en considérant que son épaisseur est partout égale à son épaisseur la plus faible dmin  ->  R = dmin/λ.

Épaisseur dmin

Méthode précise

Si la différence de pente entre les deux faces de la couche est inférieure à 5 %, une méthode de calcul existe pour quantifier avec plus de précision les performances thermiques de la paroi. Celle-ci est décrite dans l’Annexe B1 de l’AGW du 15 mai 2014 à l’Art. 7.4.

Elle consiste à décomposer la paroi en éléments partiels de formes déterminées et à calculer à l’aide de formules directement la valeur U de chacun de ces éléments.

Décomposition de la paroi en éléments partiels.

Les formes de base  :

Rectangulaire

U = 1/R. ln [1 + R1/R0]

Triangulaire avec partie la plus épaisse à la pointe

U = 2/R. [(1 + R0/R1) . ln (1+R1/R0) – 1]

Triangulaire avec partie la plus mince à la pointe

U = 2/R. [1 – R0/R1 . ln (1+R1/R0)]

Avec :

  • R1: Résistance thermique maximale de la couche inclinée
  • R0: Résistance thermique globale de l’élément d’environnement à environnement sans R1.

Un outils de calcul développé par l’IBGE existe et est disponible ici. XLS

Si par contre, la différence de pente entre les deux faces de la couche est supérieure à 5%, cette méthode ne s’applique pas et un calcul numérique doit être réalisé.


La résistance thermique d’une couche de mousse de polyuréthane (PUR) projetée in situ

Il est difficile d’évaluer l’épaisseur exacte d’une couche de mousse de polyuréthane projetée in situ.

PUR projeté.

C’est la raison pour laquelle la résistance thermique R de cette couche est multipliée par un terme correctif a qui varie en fonction du type d’application.

R PUR projeté = a x R PUR en plaque

  • a vaut 0.85 pour les applications en toiture.
  • a vaut 0.925 pour les applications sur sol.

Source: AGW du 15 mai 2014, Annexe B1, Art 7. 3

PUR projeté en toiture.

PUR projeté sur sol.


La résistance thermique d’une couche de maçonnerie

Une maçonnerie est constitué de briques ou de blocs assemblés et solidarisés entre eux par du mortier. La résistance thermique d’une couche de maçonnerie devra donc prendre en compte l’épaisseur de ce joint de mortier.

Si cette épaisseur est inférieure à 3 mm, on peut considérer que les briques ou blocs sont collés.  Dans ce cas, le coefficient de conductivité thermique utile λU de la maçonnerie est égal à celui des briques ou blocs. La résistance thermique de la couche est donc égale à l’épaisseur de la maçonnerie divisée par le coefficient de conductivité thermique de la brique ou du bloc.

R = dU,maç / λU,brique/bloc

Blocs collés.

Si cette épaisseur est supérieure à 3 mm, il faudra tenir compte de la présence des joints pour déterminer le coefficient de conductivité thermique λU moyen de la maçonnerie.

λU,moyen = (λU,brique/bloc x Surface brique/bloc + λU,joint x Surface joint)  /  Surface totale

  • Surfacejoint = (l + h + d) x d
  • Surfacebrique/bloc = l x h
  • Surfacetotale = (l + d) x (h + d)

La résistance thermique de la couche est donc égale à l’épaisseur de la maçonnerie divisée par le coefficient de conductivité thermique moyen.

R = dmaç / λU,moyen

Valeurs par défaut

Lorsque la proportion de joints n’est pas connue,

  • si la conductivité thermique des joints est inférieure à des biques ou blocs, on peut considérer la maçonnerie comme collée (donc sans joints) ;
  • si la conductivité thermique des joints est supérieure à des biques ou blocs, on peut considérer :
    • la fraction joints égale à 16 % pour les maçonneries intérieures et
    • la fraction joints égale à 28 % pour les maçonneries extérieures.

Source: AGW du 15 mai 2014, Annexe B1, Art. G.3.1


La résistance thermique d’une couche non homogène d’un élément de construction avec structure bois

Les parois du volume protégé peuvent contenir des couches de matériaux non-homogènes dans lesquelles une structure bois est incorporée et dont le reste de l’espace est occupé par un matériau isolant.

Exemples :

  • chevrons d’une toiture inclinée ;
  • gîtage d’une toiture plate, d’un plafond ou d’un plancher en bois;
  • structure d’une façade légère à ossature bois ;
  •   …

Façades et plancher à ossature bois.

Toit incliné à chevrons.

Cette structure affaiblit le pouvoir isolant de la couche. Il faut donc en tenir compte pour en calculer la résistance thermique.

Celle-ci dépend de la fraction bois. Dans le cas d’une structure régulière, la fraction bois est égale à la largeur des éléments en bois divisée par la distance moyenne entre les éléments (d’axe en axe).

% bois = d / l moyen

Cette fraction est généralement augmentée de 1 % pour tenir compte des entretoises.

Calcul de la résistance thermique de la couche

La résistance thermique de la couche se calcule donc en utilisant un coefficient de conductivité thermique λU moyen.

λU,moyen = λU,bois x % bois + λU,isolant x (100 % – % bois)

La résistance thermique de la couche est donc égale à l’épaisseur de la couche divisée par le coefficient de conductivité thermique moyen.

R = d / λU,moyen

Valeurs par défaut

La réglementation propose l’utilisation de valeurs par défaut. Elles correspondent aux limites supérieures des valeurs les plus courantes en fonction du type de paroi. Celles-ci sont reprises dans le tableau suivant :

Structure en bois Fraction de bois
(valeur par défaut)
Toiture à pannes
(pannes-structure portante primaire)
0,11
Toiture à pannes
(chevrons-structure portante secondaire)
0,20
Toiture à fermes
(fermettes-structure portante secondaire)
0,12
Planchers en bois
(poutres-structure portante secondaire)
0,11
Parois à ossature en bois 0,15

Source: AGW du 15 mai 2014, Annexe B1, Art G.4

Ensoleillement

Ensoleillement


Le rayonnement solaire

En tant que source d’énergie, l’ensoleillement est un facteur climatique dont on a intérêt à tirer parti (de manière passive, via les ouvertures vitrées, et/ou de manière active pour produire de l’énergie) mais dont on doit aussi parfois se protéger pour éviter les surchauffes en été.

La maîtrise de l’énergie solaire nécessite donc de connaître la position correcte du soleil (hauteur et azimut) ainsi que l’intensité du rayonnement à tout moment.

Une énergie renouvelable, inépuisable à l’échelle humaine

Photo soleil.

Le soleil est un réacteur à fusion nucléaire qui fonctionne depuis 5 milliards d’années.
Par un processus de transformation d’hydrogène en hélium, il émet ainsi d’énormes quantités d’énergie dans l’espace (sa puissance est estimée à 63 500 kW/m²). Ces radiations s’échappent dans toutes les directions et voyagent à travers l’espace à la vitesse constante de 300 000 km à la seconde, dénommée vitesse de la lumière.
Après avoir parcouru une distance d’environ 150 millions de kilomètres, l’irradiation solaire arrive à l’extérieur de l’atmosphère de la Terre avec une puissance d’environ 1 367 W/m². C’est ce qu’on appelle la constante solaire. La Terre, une petite boule comparée au Soleil, intercepte une si faible partie de l’énergie radiante du soleil que les rayons du soleil ainsi stoppés paraissent constituer un faisceau parallèle.

Énergie la plus abondante sur Terre, l’énergie solaire est à l’origine du cycle de l’eau, du vent et de la photosynthèse, elle-même à l’origine des énergies fossiles. C’est l’ensemble de la vie sur Terre qui dépend de cette source énergétique. Heureusement pour l’humanité, selon les astronomes, le soleil ne devrait pas s’éteindre avant 5 autres milliards d’années.

Une énergie de flux, diffuse et intermittente

Les théories actuelles présentent le rayonnement solaire comme une émission de particules. Ce flux de particules, appelées photons, atteint la terre avec différentes longueurs d’ondes à la quelle correspond une énergie spécifique décrite par la relation :

E [J] = hv = h . c/λ

Avec,

  • λ : longueur d’onde [m].
  • v : fréquence [Hz].
  • c : vitesse de la lumière [m/s].

La répartition énergétique des différentes longueurs d’ondes du rayonnement électromagnétique du Soleil est appelé spectre solaire.

Schéma spectre solaire.

Avec sa température d’émission de 5 500°C, le soleil rayonne la plus grande partie de son énergie dans les hautes fréquences (courtes longueurs d’onde).
La lumière visible représente 46 % de l’énergie totale émise par le soleil. 49 % du rayonnement énergétique émis par le soleil se situe au-delà du rouge visible, dans l’infrarouge. C’est ce rayonnement que nous ressentons comme une onde de chaleur. Le reste du rayonnement solaire, l’ultraviolet, représente l’ensemble des radiations de longueur d’onde inférieure à celle de l’extrémité violette du spectre visible.

  1. Puissance émise par le soleil : 63 500 kW/m².
  2. Constante solaire : 1 370 W/m².
  3. Rayonnement réfléchi.
  4. Rayonnement absorbé et diffusé.
  5. Rayonnement solaire à la surface de la Terre (max : 1 000 W/m²).

Au moins 35 % du rayonnement solaire intercepté par la Terre et son atmosphère sont réfléchis vers l’espace. Une partie du rayonnement qui atteint la Terre a été diffusée dans toutes les directions au cours de la traversée de l’atmosphère, en rencontrant des molécules d’air, des aérosols et des particules de poussière (c’est ce rayonnement diffus, appartenant notamment à la frange bleue du spectre visible qui est responsable de la couleur bleue du ciel clair). D’autre part, la vapeur d’eau, le gaz carbonique et l’ozone de l’atmosphère absorbent 10 à 15 % du rayonnement solaire. Le reste du rayonnement atteint directement la surface.

Outre la composition de l’atmosphère, le facteur le plus important pour évaluer la quantité du rayonnement solaire qui atteint la surface de la Terre est l’épaisseur d’atmosphère que le rayonnement doit traverser.

Schéma rayonnement solaire.

Au milieu du jour, le Soleil est au-dessus de nos têtes, et ses rayons ont à traverser une épaisseur d’air moindre avant d’arriver sur Terre. Mais au début et à la fin de la journée, le Soleil est bas sur l’horizon ; la traversée de l’atmosphère se fait alors plus longue. L’atmosphère absorbe et diffuse d’autant plus de particules de lumière qu’elle est plus épaisse et plus dense. Ainsi, au coucher du Soleil, les rayons sont suffisamment affaiblis pour permettre à l’œil humain de fixer le Soleil sans trop d’éblouissement. Par contre, lorsque l’altitude augmente, la couche d’atmosphère à traverser est plus réduite : dans les sites de montagnes, l’intensité du rayonnement augmente sensiblement.

L’épaisseur d’atmosphère traversée influence donc le spectre lumineux reçu. Les normes internationales définissent différents types de spectre : AM1 (pour air mass 1, lorsque le rayonnement a traversé une épaisseur d’atmosphère), AM0 (spectre à la surface externe de l’atmosphère), AM1.5 (spectre utilisé pour les tests standardisés des panneaux solaires correspondant à la traversée d’une atmosphère et demie).

Le rayonnement solaire reçu sur une surface varie donc au cours du temps en fonction de la position du Soleil et de la couverture nuageuse. La puissance solaire maximale à la surface de la Terre est d’environ 1 000 W/m² pour une surface perpendiculaire aux rayons.

Puissance solaire pour différents ciels.


Le mouvement Terre-Soleil

Schéma mouvement Terre-Soleil - 01.

La course de la Terre autour du Soleil décrit une ellipse légèrement aplatie. Dans cette ronde annuelle autour du Soleil, la Terre effectue un tour complet sur elle-même en 24 heures autour de l’axe des pôles. Cet axe nord – sud fait un angle de 23°27′ avec la direction perpendiculaire au plan de l’orbite terrestre autour du Soleil.

Cette inclinaison est constante tout au long de la course autour du Soleil et est responsable des variations saisonnières Ainsi pendant nos mois d’hiver, en hémisphère nord la durée d’insolation est relativement courte et le Soleil n e monter pas très  haut dans le ciel, tandis que l’été règne sur l’hémisphère sud. Pendant nos mois d’été, la situation est inversée, l’hémisphère nord est tourné vers le Soleil. Les jours sont alors plus longs que les nuits dans l’hémisphère nord et le rayonnement incident se rapproche de la verticale.

Schéma mouvement Terre-Soleil - 02.

Aux équinoxes de printemps et d’automne (21 mars, 21 septembre), à midi, le rayonnement est perpendiculaire à l’équateur (latitude 0°) et partout sur le globe, les jours et les nuits sont de durée égale. C’est à ce moment que la hauteur du Soleil à midi est la plus facile à calculer. En effet, sa hauteur est égale à l’angle complémentaire de la latitude.

H = 90° – L

Schéma mouvement Terre-Soleil - 03.

Au solstice d’été (21 juin), la terre est inclinée vers les rayons solaires et, à midi, ceux-ci sont perpendiculaires au tropique du cancer (latitude 23°27′ N). Le Soleil ne se couche jamais dans les régions du globe situées à l’intérieur du cercle arctique (celui-ci se trouvant 23°27′ au-dessous du pôle Nord). Une personne vivant à la latitude de 66°33′ N (90°-23°27′) devrait veiller jusqu’à minuit pour voir le Soleil se promener aux alentours du nord, s’abaisser jusqu’à toucher l’horizon et commencer à s’élever de nouveau vers le secteur est du ciel. La hauteur du Soleil à midi (solaire) est de 23°27′ supérieure à celle de l’équinoxe.

H = 90° – L + 23°27

Schéma mouvement Terre-Soleil - 04.

Au solstice d’hiver (22 décembre), l’angle d’inclinaison est inversé et c’est le tropique du capricorne (latitude 23°27′ S) qui bénéficie d’un rayonnement perpendiculaire. La hauteur du Soleil à midi est de 23°27′ inférieure à celle de l’équinoxe.

H = 90° – L – 23°27′


Le mouvement apparent du Soleil

Pour bien comprendre et utiliser l’influence du Soleil dans le choix et le traitement d’un site, il faut bien sûr connaître à tout instant la position du Soleil dans le ciel. Cette information est indispensable pour le calcul des apports solaires, pour le choix de l’exposition d’un immeuble, l’implantation de systèmes actifs solaires (thermique ou photovoltaïque),  l’aménagement des parties extérieures voisines, l’éclairage naturel des pièces intérieures, l’emplacement des fenêtres, des protections solaires et de la végétation, etc.

À un instant donné, la hauteur et l’azimut du Soleil déterminent la position du Soleil dans le ciel. Ainsi est connue la direction du rayonnement solaire et peuvent être calculées les surfaces ensoleillées du bâtiment. Ces calculs tiendront compte des effets d’ombrage dus au relief, au cadre bâti, à la végétation ou au bâtiment lui-même.

Schéma mouvement apparent du Soleil.

En un lieu,

  • La hauteur «  » du Soleil est l’angle que fait la direction du Soleil avec le plan horizontal. Elle se compte de 0° à 90° à partir de l’horizon vers la voûte céleste.
  • L’azimut «  » du Soleil est l’angle créé entre le plan vertical passant à la fois par le Soleil et par le lieu considéré, et le plan vertical N-S. Cet angle vaut 0° au sud et est conventionnellement positif vers l’ouest et négatif vers l’est.

 Schéma hauteur et azimut du soleil.

Pour plus de clarté, on représente généralement la course solaire par un diagramme en coordonnées rectangulaires.

 

Diagramme solaire cylindrique pour Uccle en temps universel.

Pour en savoir plus sur la construction d’un diagramme solaire : LIENS (dernier point).

En regardant plus précisément, la valeur de l’azimut à différents moments de l’année, on constate que l’expression « le Soleil se lève à l’est et se couche à l’ouest » n’est pas exacte. En effet, en décembre, il se lève au sud-est pour se coucher au sud-ouest, tandis qu’en juin, il se lève pratiquement au nord-est pour se coucher au nord-ouest. Ceci donne 7 heures d’ensoleillement maximum en décembre et plus de 16 heures en juin : ce sont les deux époques des solstices de l’année. Ce n’est qu’aux équinoxes de printemps et d’automne que la durée du jour est égale a celle de la nuit.

Quant à la hauteur du Soleil, elle atteint un maximum de 62° le 21 juin à 12 heure (heure universelle), alors que le 21 décembre a 12 huniv. Elle n’atteint que 16°.

Les graphes et tableaux qui suivent donnent la hauteur et l’azimut du Soleil à Uccle, en fonction du temps universel, pour les mois de mars, juin, septembre et décembre.

Graphe hauteur et l'azimut du Soleil à Uccle en mars.

Temps
universel
Soleil :
hauteur degré
Soleil :
azimut degré

7
8
9
10
11
12
13
14
15
16
17

8,7
17,5
25,3
31,6
35,5
36,7
34,7
30,1
23,4
15,2
6,2

– 75,1
– 62,7
– 48,9
– 33,4
– 16,0
2,5
20,8
37,7
52,8
66,1
78,3

 Graphe hauteur et l'azimut du Soleil à Uccle en juin.

Temps
universel
Soleil :
hauteur degré
Soleil :
azimut degré
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
3,1
11,4
20,4
29,9
39,3
48,3
56,0
61,2
62,3
58,7
51,8
43,2
33,9
24,4
15,2
6,5
– 124,0
– 112,9
– 102,1
– 90,9
– 78,7
– 64,1
– 45,5
– 20,7
8,6
35,8
56,9
72,9
85,9
97,4
108,3
119,2

 Graphe hauteur et l'azimut du Soleil à Uccle en septembre.

Temps
universel
Soleil :
hauteur degré
Soleil :
azimut degré
6
7
8
9
10
11
12
13
14
15
16
17
6,0
15,4
24,3
32,1
38,3
41,9
42,3
39,6
34,0
26,6
17,9
8,6
– 87,9
– 76,0
– 63,2
– 48,7
– 31,9
– 12,9
7,4
26,9
44,3
59,4
72,6
84,7

 Graphe hauteur et l'azimut du Soleil à Uccle en décembre.

Temps
universel
Soleil :
hauteur degré
Soleil :
azimut degré
8
9
10
11
12
13
14
15
1,9
8,3
12,9
15,5
15,8
13,8
9,6
3,6
– 48,3
– 36,1
– 22,9
– 8,9
5,4
19,5
32,9
45,4


L’irradiation solaire incidente

L’angle que font les rayons du Soleil avec une surface détermine la densité énergétique que reçoit cette surface. Puisque le rayonnement solaire arrive sur la Terre sous forme d’un faisceau parallèle, une surface perpendiculaire à ces rayons intercepte la densité maximale d’énergie. Et si l’on incline la surface à partir de cette position perpendiculaire, son éclairement diminue.

Le meilleur moyen de représenter ce phénomène consiste peut-être à figurer les rayons parallèles du Soleil par une poignée de crayons tenus dans la main au-dessus d’une feuille de papier, pointes en bas. Les marques faites par les pointes représentent des grains d’énergie. Lorsque les crayons sont perpendiculaires à la feuille, les pointes sont serrées au maximum : la densité d’énergie par unité de surface est la plus grande. Lorsqu’on incline ensemble tous ces crayons parallèles, les pointes s’écartent et couvrent des surfaces de plus en plus allongées : la densité d’énergie diminue avec l’étalement des traces.

Schéma irradiation solaire incidente.

Cependant, une surface qui s’écarte de 25 % de cette position perpendiculaire au Soleil, intercepte encore plus de 90 % du rayonnement direct maximum. L’angle que font les rayons du Soleil avec la normale à la surface (angle d’incidence) déterminera le pourcentage de lumière directe interceptée par la surface. Le tableau ci-dessous donne les pourcentages de lumière interceptée par une surface pour différents angles d’incidence.

Tableau pourcentage du rayonnement intercepté par une paroi en fonction de l'angle d'incidence.

En réalité, le rayonnement total reçu sur une surface, appelé irradiation solaire incidente (ou encore éclairement énergétique global), est défini par la somme de trois composantes :

  • L’irradiation directe, provenant directement du Soleil. Cette composante s’annule si le Soleil est caché par des nuages ou par un obstacle.
  • L’irradiation diffuse, correspondant au rayonnement reçu de la voûte céleste, hors rayonnement direct. Cette énergie diffusée par l’atmosphère et dirigée vers la surface de la Terre, peut atteindre 50 % du rayonnement global reçu, lorsque le Soleil est bas sur l’horizon, et 100 % pour un ciel entièrement couvert.
  • L’irradiation réfléchie, correspondant au rayonnement réfléchi par l’environnement extérieur, en particulier le sol, dont le coefficient de réflexion est appelé « albedo ».

Schéma rayonnement direct, diffus et réfléchi.

En particulier, on définit aussi l’irradiation hémisphérique comme l’irradiation globale reçue sur une surface horizontale (la composante réfléchie par le sol est nulle dans ce cas).
L’éclairement énergétique global  est mesuré par un solarimètre suivant l’inclinaison et l’orientation souhaitées. L’éclairement énergétique diffus seul est mesuré par un solarimètre à bande d’ombre : c’est le même instrument muni d’un ruban semi-circulaire qui, ajusté périodiquement, masque l’ensoleillement direct de l’appareil de mesure.

La quantité d’énergie reçue sera dépendante cette puissance, mais aussi de la durée de l’ensoleillement.

Irradiation solaire annuelle et ressources connues d’énergie par rapport à la consommation énergétique mondiale annuelle.

Et cette énergie reçue est énorme !  Même si toute l’énergie solaire reçue sur Terre n’est pas exploitable, on estime que la partie qui pourrait l’être représente trois fois plus que l’énergie consommée mondialement. Cette énergie qui semble inépuisable à l’échelle humaine est totalement respectueuse de l’environnement : son utilisation ne produit ni déchets ni émission polluante. Un véritable défi pour l’avenir !


Les obstacles à l’ensoleillement

Des masques solaires peuvent être occasionnés par le relief, la végétation existante, les bâtiments voisins, ou encore par des dispositifs architecturaux liés au bâtiment lui-même.

Les constructions constituent des écrans fixes pour leur voisinage. Leur rôle peut être positif si l’on recherche une protection contre le Soleil : c’est le cas des villes méditerranéennes traditionnelles, où l’étroitesse des ruelles et la hauteur des bâtiments réduisent considérablement le rayonnement direct et fournissent un ombrage bienvenu.

Schéma obstacles à l’ensoleillement.

Par contre, ce rôle peut être négatif si les bâtiments voisins masquent le Soleil alors qu’on souhaite bénéficier d’apports solaires. En effet  sous notre climat, durant les mois d’hiver, environ 90 % des apports solaires interviennent entre 9 h et 15 h solaire. Tous les masques de l’environnement (immeubles ou grands arbres, qui interceptent le Soleil pendant ces heures) gêneront grandement l’utilisation des gains solaires.

Dans le cas d’une conception solaire passive, il importera donc de mesurer l’impact de cet effet de masquage.  Pour ce faire, on représentera  sur un diagramme cylindrique ou stéréographique (figure ci-dessus) les courbes de la course solaire annuelle et la silhouette des bâtiments voisins. On repèrera ainsi facilement les périodes où l’ensoleillement est disponible et on pourra calculer les facteurs de réduction des gains solaires.

L’emploi de matériaux réfléchissants (vitrages) peut également influencer l’exposition effective d’un bâtiment. Ainsi, un édifice orienté nord et doté de larges vitrages clairs pour tirer parti de la lumière naturelle peut se retrouver dans une situation sud si on construit en face un bâtiment équipé de vitrages réfléchissants, précisément pour se protéger de l’ensoleillement. À l’évidence, les conditions de confort, dans le premier bâtiment, sont profondément modifiées par la construction du second.


L’ensoleillement en Belgique

Sous notre climat, le Soleil nous apporte annuellement environ 1 000 kWh/m² au sol, l’équivalent énergétique de 100 litres de mazout par m² !

Photo soleil.    Illustration 100 litres de mazout par m².

La quantité d’énergie solaire reçue en un lieu est inégalement répartie au fil des saisons. Elle varie suivant le jour et l’heure considérés, et est influencée par les conditions météorologiques et le niveau de pollution de l’air. On considère en général que l’on reçoit 250 kWh du 15 octobre au 15 avril  et 750 kWh du 15 avril au 15 octobre.

Graphe énergie solaire mensuelle reçue (Uccle).

Suivant les conditions météorologiques,  le rayonnement nous parviendra selon ses composantes diffuses et directes en proportion plus ou moins grande.

N.B. : Le rayonnement solaire global est ici considéré sur une surface horizontale (sur laquelle la composante réfléchie du rayonnement est nulle).

En pratique, les conditions météorologiques peuvent être qualifiées par l’insolation directe relative : c’est le rapport entre l’insolation effective (S) et l’insolation maximale théorique (So). Celle-ci détermine les types de ciel :

  • Un ciel est considéré comme serein lorsque l’insolation directe relative S/So est comprise entre 80 et 100 %,
  • un ciel est considéré comme moyen lorsque l’insolation directe relative S/So est comprise entre 20 et 80 %,
  • un ciel est considéré comme couvert lorsque l’insolation directe relative S/So est comprise entre 0 et 20 %.
Ciel Mois de l’année
J F M A M J J A S O N D
Couvert 65 54 45 40 30 28 32 29 29 43 61 70
Moyen 23 33 39 44 47 53 52 55 47 37 28 20
Serein 12 13 16 16 13 19 16 16 24 20 11 10

Et le tableau suivant donne pour Uccle, les moyennes journalières mensuelles de l’insolation directe relative.

Mois J F M A M J J A S O N D
S/So (%) 23 28 34 39 46 40 41 45 43 35 24 17

Par exemple, une insolation directe relative de 34 % au mois de mars à Uccle indique qu’en moyenne seulement 34 % du temps est ensoleillé entre le lever et le coucher du Soleil.

Énergie moyenne journalière reçue sur une surface horizontale.

Annuellement, c’est environ de 60 % de l’énergie solaire qui nous arrive sous forme de rayonnement diffus, et 40 % sous forme de rayonnement direct.

Global [kWh/m².an] Direct [%] Diffus [%]
Normale 980 40 60
2002 990 44 56
2003 1 151 52 48
2004 1 034 44 56
2005 1 056 47 53
2006 1 040 47 53
2007 998 45 55

Rayonnement annuel reçu sur une surface d’1m² au sol.
Source IRM.

> En Belgique, dû à la présence fréquente de nuages, plus de la moitié de l’énergie solaire nous provient de manière diffuse !

L’éclairement énergétique disponible

Les graphes suivants donnent l’éclairement énergétique solaire direct et global pour un ciel serein à Uccle, le 15 des mois de mars, juin, septembre et décembre.

Schéma éclairement énergétique solaire direct et global pour un ciel serein à Uccle, décembre.

Schéma éclairement énergétique solaire direct et global pour un ciel serein à Uccle, mars.

Schéma éclairement énergétique solaire direct et global pour un ciel serein à Uccle, juin.

Schéma éclairement énergétique solaire direct et global pour un ciel serein à Uccle, septembre.

Par exemple, les éclairements énergétiques solaires direct et global pour un ciel serein à Uccle sont,

  • le 15 mars à 10huniv.(11hoff) de 291 W/m² et 424 W/m² pour une surface horizontale,
  • le 15 juin à 13huniv.(15hoff) de 124 W/m² et 323 W/m² pour une surface verticale ouest,
  • le 15 septembre à 13huniv.(15hoff) de 467 W/m² et 687 W/m² pour une surface verticale sud.

Dans le cas où la surface réceptrice est verticale, l’éclairement énergétique sera maximal sur une surface sud en hiver, tandis qu’il sera maximal sur une surface est ou ouest en été. Ceci étant, la surface verticale n’est jamais la surface la plus favorable au captage de l’énergie solaire.

Afin de tenir compte des conditions météorologiques, les tableaux ci-après donnent l’éclairement énergétique solaire global pour un ciel moyen et un ciel couvert, à Uccle (Bruxelles), le 15 des mois de mars, juin, septembre et décembre, d’une surface horizontale et d’une surface verticale d’orientation sud, nord, est et ouest.

Par exemple, l’éclairement énergétique solaire global pour un ciel moyen et un ciel couvert à Uccle est,

  • le 15 mars à 9huniv. (10hoff) de 197 W/m² et 89 W/m² pour une surface horizontale,
  • le 15 juin à 9huniv. (11hoff) de 419 W/m² et 130 W/m² pour une surface verticale est.

Tableau éclairement énergétique global W/m² - ciel moyen.

Ciel moyen.

Tableau éclairement énergétique global W/m² - ciel couvert.

Ciel couvert.

Comparativement au ciel serein, la réduction de l’éclairement énergétique global sur une surface horizontale est de l’ordre de 30 % par ciel moyen et de 70 % par ciel couvert. Cette différence s’accentue lorsque la surface réceptrice tend à être perpendiculaire au rayonnement solaire.

Variation géographique de l’exposition énergétique

Le tableau ci-dessous donne pour les stations sélectionnées les expositions énergétiques moyennes mensuelles et annuelles en Wh/m².

Wh/m2 MIDDELKERKE UCCLE CHIEVRES KLEINE-BROGEL FLORENNES SPA SAINT-HUBERT
Janvier 23 324,1 19 934,9 18 946 21 429,49 20 193,282 21 701,74 22 207,33
Février 38 408,6 35 366,7 34 127,7 37 347,43 36 886,284 39 867,08 42 403,39
Mars 82 762,2 70 736,2 70 311,2 73 494,77 74 980,998 75 783,84 77 881,23
Avril 120 012 106 964 104 289 110 814,4 108 247,55 111 258,9 112 953,5
Mai 155 199 142 253 133 433 142 964,2 139 408,37 144 247,7 147 089,5
Juin 161 996 148 892 139 511 149 189,7 149 189,71 152 095,5 154 251,2
Juillet 156 251 140 136 131 869 141 958,6 144 339,32 144 247,7 148 684,1
Aout 133 588 120 135 113 045 122 898,7 120 976,34 127 024,1 124 579,4
Sept. 97 249,4 89 548,8 85 518 89 726,62 90 176,658 93 757,5 95 727,1
Octobre 60 666 54 359,9 54 087,7 57 785,18 58 599,132 61 316,02 59 199,18
Nov. 28 288,4 24 577 24 771,4 27 132,73 26 249,322 27 085,5 25 560,38
Déc. 18 576,5 15 690,1 15 940,2 18 120,89 16 820,79 17 654,19 18 279,24
ANNEE 1 076 322 968 591 925 849 992 862,8 986 067,77 1 016 040 1 028 816

La Belgique se caractérise par des variations géographiques relativement faibles, inférieures à ± 5 % pour l’ensemble du pays, à l’exception de la région côtière et du pays gaumais où des écarts annuels de 10 % par rapport à Uccle sont atteints et même dépassés (+ 18 % à Luxembourg).

Du tableau précédent, les écarts par rapport à Uccle s’établissent comme suit selon les saisons : en hiver (H); printemps (P); été (E); automne (A) et période de végétation (V) couvrant les mois de mai, juin et juillet.

H P E A V Année
Middelkerke + 13 % + 12 % + 10 % + 10 % + 9 % + 11 %
Chièvres – 3 % – 4 % – 6 % – 2 % – 6 % – 4 %
Kleine-Brogel + 9 % + 2 % + 1 % + 3 % + 1 % + 2 %
Florennes + 4 % + 1 % + 1 % + 4 % 0 % + 2 %
Spa + 12 % + 4 % + 3 % + 8 % + 2 % + 5 %
Saint-Hubert + 17 % + 6 % + 4 % + 7 % + 4 % + 6 %

L’Institut Royal Météorologique de Belgique a établi une distribution du rayonnement solaire basée sur la répartition de l’insolation effective selon les zones climatiques de la Belgique sachant que les variations de celle-ci par rapport à Uccle sont approximativement les suivantes :

Littoral + 10 %
Polders et Pays de Waes de + 5 % à + 2 % selon l’éloignement de la zone côtière.
Campine et Flandre limoneuse + 2 %
Hesbaye – 2 %
Pays de Herve – 5 %
Gileppe – Warche – 7 %
Plateau ardennais + 2 % à + 5 %
Pays gaumais + 5 %
Grand-Duché de Luxembourg + 10 %

La carte ci-dessous en a été déduite.

 

L’influence de l’orientation et de l’inclinaison

Il est bien entendu clair que la quantité d’énergie reçue sur une surface dépendra de son orientation et de son inclinaison.

Le graphe ci-dessous montre cette influence dans notre pays (l’azimut se lit sur la circonférence  et la hauteur du Soleil sur les cercles intérieurs) :

Schéma influence de l’orientation et de l’inclinaison.

Une surface inclinée à 38° au sud recevra un maximum d’énergie solaire. Une surface verticale à l’est ne recevra que 50 % de cette énergie maximale.


Construction d’un diagramme solaire

La voûte céleste est la partie visible du ciel dans toutes les directions au-dessus de l’horizon. Le quadrillage du diagramme solaire représente les angles horizontaux et verticaux des points de la voûte céleste. Tout se passe comme si l’observateur repérait l’azimut et la hauteur du Soleil sur un hémisphère transparent au-dessus de lui et comme si, ensuite, il étirait cette portion de sphère en cylindre vertical.

  Schéma construction d'un diagramme solaire -01.     

Lorsque l’on connaît l’azimut et la hauteur solaire, on n’a aucune peine à situer la position du Soleil dans le ciel.

En joignant les différentes localisations, du Soleil à divers moments de la journée, on obtient le tracé de la course du Soleil.

On peut ainsi tracer la course du Soleil pour n’importe quel jour de l’année. Les trajectoires représentées sur les diagrammes solaires correspondent au vingtième jour de chaque mois (certains diagrammes les donnent pour les 5, 15 et/ou 25ème jours de chaque mois). La journée solaire est la plus longue au solstice d’été, lorsque le Soleil atteint sa hauteur la plus élevée et balaie le secteur azimutal le plus large, de part et d’autre du sud. Au voisinage du solstice d’hiver, le Soleil est au contraire beaucoup plus bas dans le ciel : il reste visible moins longtemps et balaie le secteur azimutal le plus faible.

Pour terminer, si on relie entre eux les points qui correspondent aux mêmes heures sur les différentes courbes relatives à une même latitude (et à différents moments de l’énnée, on obtient pour chaque heure du jour une ligne particulière en pointillé.

D’une manière similaire, on pourra aisément représenter les masques solaires. Il suffira pour cela de repérer l’azimut et la hauteur de chacun des obstacles et de les reporter sur le diagramme.

Établir le cahier des charges « qualité »

Établir le cahier des charges "qualité"

Le cahier des charges d’une installation solaire peut se concevoir selon deux approches différentes. Sur base des résultats de l’étude de faisabilité, le bureau d’études choisi par le maître de l’ouvrage peut soit :

  1. Définir un objectif de production de l’installation et des exigences de base auxquelles le système et certains composants doivent satisfaire. A charge pour le soumissionnaire de proposer un système qui produit annuellement le nombre de kWh solaires requis. Cette approche est utilisée dans l’optique d’une Garantie de Résultats Solaires.
  2. Dimensionner lui-même l’installation optimale et décrire en détail le système et tous ses composants. Le soumissionnaire fera une offre de prix pour la fourniture des composants spécifiés et les travaux d’installation.

Dans les deux cas, les exigences de qualité seront stipulées dans le cahier des charges afin de garantir la durabilité et le fonctionnement optimal de l’installation. Ci-dessous, quelques points qui doivent faire l’objet d’une attention particulière lors de la rédaction du cahier des charges :

  • Plus encore que dans les systèmes de production de chaleur traditionnels, un matériel de qualité, monté dans les règles de l’art est indispensable au bon fonctionnement de l’installation solaire thermique. Deux grands types de systèmes sont couramment utilisés sous nos latitudes : les systèmes à vidange et les systèmes sous pression. Le choix du type de système peut être laissé au soumissionnaire à condition de spécifier les exigences de qualité minimales pour chaque type de système.
  • Les capteurs constituent, avec la régulation, le cœur du système solaire thermique. Ils doivent satisfaire à de nombreuses exigences de durabilité, de rendement et de résistance à des conditions extrêmes de température et de pression. Tous ces critères sont explicités dans la récente norme européenne – EN 12975-1 : Installations solaires thermiques et leurs composants – Capteurs – partie 1 : Exigences générales – disponible auprès de l’Institut Belge de Normalisation (ouverture d'une nouvelle fenêtre ! http://www.nbn.be/). La conformité des capteurs avec cette norme constitue un gage de qualité appréciable.
  • L’énergie solaire est transférée au stockage par un échangeur de chaleur (interne ou externe au ballon). Le dimensionnement correct de cet échangeur est crucial. De fait, un mauvais dimensionnement risque d’influencer négativement tant la performance des capteurs que la consommation électrique de la pompe du circuit primaire.
  • Les pertes du stockage doivent absolument être limitées par une isolation parfaite du ballon et de la boucle de distribution d’eau chaude s’il y en a une. Le bouclage de l’eau distribuée augmente les pertes liées au stockage d’au moins 30 %. Une conception appropriée de l’installation permet de limiter ces pertes.
  • L’isolation ininterrompue des conduites du circuit primaire est capitale. L’isolation des conduites extérieures doit faire l’objet d’une attention particulière. Le matériau isolant doit résister aux intempéries et aux rayons ultraviolets, et dans bien des cas, une gaine rigide en aluminium sera nécessaire pour le protéger des attaques de rongeurs et d’oiseaux.

  • Dans les systèmes sous pression, le vase d’expansion du circuit primaire doit pouvoir contenir, outre le volume correspondant à la dilatation thermique du fluide caloporteur, l’entièreté du fluide contenu dans les capteurs au cas où celui-ci se vaporiserait suite à la montée en température des capteurs. Les soupapes de sécurité permettront à la vapeur de s’échapper en cas de problème.
  • Tous les matériaux mis en œuvre doivent résister simultanément à de hautes températures et pressions, en particulier les composants situés dans le réseau hydraulique des capteurs.
  • La garantie matérielle offerte sur un système solaire thermique est généralement de 10 ans sur les capteurs, 5 ans sur le(s) ballon(s) de stockage, et deux ans sur tous les autres composants du système.
  • Le suivi et la maintenance de l’installation solaire revêtent une importance particulière car, en cas de dysfonctionnement, le système de chauffage d’appoint pourrait fournir toute l’énergie nécessaire à la production d’eau chaude sans que l’on ne s’en aperçoive. Pour permettre un suivi élémentaire de l’installation, on placera un calorimètre sur la conduite primaire afin de mesurer l’énergie solaire transférée au ballon de stockage.

Plus de détails sur le cahier des charges d’une installation de capteurs solaires (fichier xls réalisé par le bureau 3E à l’initiative de l’IBGE)

Source : Brochure « Installer un grand système solaire de production d’eau chaude en Wallonie » réalisée par 3E ( ouverture d'une nouvelle fenêtre ! http://www.3e.be) et l’Institut de Conseils et d’Études en Développement Durable (ouverture d'une nouvelle fenêtre ! http://www.icedd.be).

Prévoir un contrat de Résultats Solaires (GRS)

Prévoir un contrat de Résultats Solaires (GRS)


La GRS est un contrat qui traduit la volonté du fabricant/fournisseur de ne pas se limiter à la simple fourniture de composants, mais de garantir également la production énergétique annuelle de l’installation solaire.

Par la GRS, le fabricant et/ou le fournisseur du système, l’installateur, l’exploitant et le bureau d’études en charge du projet deviennent solidairement responsables des objectifs de production fixés.

Éviter les bulles …

Les résultats d’audits menés sur d’anciennes installations solaires collectives ont permis de mettre en évidence certains problèmes de conception, de maintenance et de contrôle de l’installation. Ce constat a donné naissance au concept de Garantie de Résultats Solaires en France dès la fin des années 80.

La production de l’installation est suivie mois par mois à l’aide d’un dispositif de télésurveillance qui comptabilise l’énergie solaire. L’installation doit par exemple produire 90 % de l’objectif calculé, pendant deux à cinq années consécutives.

La GRS a été mise en œuvre pour la première fois en France, en 1988, sur l’Hôpital de Castres. Depuis lors des dizaines d’installations collectives avec GRS ont vu le jour en Espagne, en France et en Allemagne.

Détail important, jusqu’à présent, les systèmes qui en bénéficient ont toujours produit plus que ce que la GRS ne prévoyait !
Si le maître d’ouvrage souhaite obtenir une garantie de résultat solaire, le cahier des charges précisera :

  • Les besoins de l’établissement (le profil de puisage, la demande en chaleur,…).
  • Un objectif de production (combien de kWh solaire le système doit-il produire annuellement ?).
  • Toutes les contraintes susceptibles de limiter la production de l’installation.
  • Les exigences de qualité des matériaux utilisés.

> Pour en savoir plus sur la GRS : ouverture d'une nouvelle fenêtre ! http://www.tecsol.fr

Estimer la durée de vie et la maintenance

Estimer la durée de vie et la maintenance

Piscine solaire de Louvain La Neuve.

Actuellement, on peut aisément compter sur une durée de vie de 25 ans. L’audit de l’installation de la piscine du Blocry (capteur plans vitrés atmosphériques) à Louvain La Neuve a montré qu’après 20 ans l’installation présentait des performances de près de 90 % par rapport aux prestations initiales. Il va de soi que maintenir une bonne performance va de pair avec un entretien régulier et une maintenance correcte de l’installation.

Un guide très complet sur la maintenance à destination du responsable énergie a été réalisé par le bureau 3E à l’initiative de l’IBGE. 

Prédimensionner l’installation d’ECS

Prédimensionner l'installation d'ECS


C’est le rapport « volume de stockage / surface de capteur » qui détermine le fonctionnement optimal de l’ensemble du système et la fraction solaire atteinte, donc le bon dimensionnement de la proposition par rapport aux besoins couverts par le solaire (fraction solaire).

Différentes approches de dimensionnement sont possibles : sur base de la fraction solaire souhaitée ou à partir de l’optimum économique.

Le tout est de trouver le bon compromis entre une fraction solaire intéressante et une production au m² suffisante pour que l’installation solaire reste économiquement justifiée.
Pour les faibles fractions solaires assurant une plus grande production surfacique (meilleure efficacité et donc temps de retour plus court), on dimensionnera le système en situation estivale (besoins et apports solaires).
Pour atteindre une couverture solaire plus importante, l’installation sera dimensionnée par rapport à l’énergie solaire disponible en mi-saison.

> Plus d’infos sur l’influence de la fraction solaire sur le rendement de la production solaire.

Néanmoins, en fonctionnement, un système correctement dimensionné devrait produire entre 300 et 450 kWh/m².
Le tableau suivant présente des valeurs de dimensionnement couramment rencontrées en pratique (source ATIC) :

Fraction solaire % Type d’installation Surface de capteur Volume de stockage du tampon
20 à 40 % Grandes 1m² par 50 à 70 l/j d’ECS à 60 °C 50 l/m²
40 à 50 % Moyennes 1m² par 50 à 60 l/j d’ECS à 60 °C 50 à 60 l/m²
50 à 60 % Petites 1m² par 30 à 40 l/j d’ECS à 60 °C 60 l/m²

En règle générale, pour les très petites installations (type domestique), 4 m² de capteurs sont considérés comme un minimum pour rentabiliser une installation solaire alors que pour le logement collectif, 1 à 2,5 m² de panneaux solaires par logement suffisent.

Le Quick Scan, un outil d’aide à la décision simple et efficace

Le Quick Scan est un outil sectoriel de pré-dimensionnement des systèmes solaires collectifs, à utiliser au stade initial d’un projet.

Sur base de la consommation d’eau chaude (réelle ou estimée) de l’établissement, le Quick Scan fournit des indications sur :

  • la surface de capteurs à installer,
  • le volume de stockage solaire nécessaire, son poids et sa surface d’encombrement,
  • l’économie d’énergie primaire et de combustible réalisable,
  • le coût global du système et le coût du kWh solaire produit,
  • les émissions de CO2 évitées et le coût de la tonne de CO2 évitée.

Le Quick Scan donne des ordres de grandeur qui doivent être précisés par la suite, lors de l’étude de faisabilité et du dimensionnement final de l’installation. Il constitue un excellent indicateur de la pré-faisabilité d’un projet, mais pas un outil de dimensionnement fin pour les bureaux d’études ou les fournisseurs d’équipements solaires. En effet, le Quick Scan ne considère pas les contraintes techniques propres au bâtiment, et dimensionne l’installation selon une méthode simplifiée. Les étapes ultérieures de la démarche-projet visent à dimensionner l’installation au plus près de l’optimum économique.

Calculs

Pour accéder au Quick Scan.

Pour accéder au mode d’emploi du Quick Scan PDF.

Considérer l’aspect économique [ECS par capteurs solaires]

Considérer l'aspect économique [ECS par capteurs solaires]


Le coût d’une installation

Le graphe qui suit donne une estimation du coût d’une installation solaire par mètre carré de capteurs. Le coût varie forcément en fonction de la taille de l’installation (plus le système est grand, plus le prix par m² de capteur est réduit).

À titre d’information, on peut estimer les coûts (hors TVA) suivants :

  • pour 4 m² de capteurs  (ex. petites installations de type unifamilial), il faut compter environ 6 500 € pour tout le système (capteurs + stockage + raccordement de l’appoint), soit +/- 1 620 €/m² de capteurs,
  • pour 10 m² de capteurs (en logement collectif, cela correspond approximativement à 5 appartements), il faut compter environ 14 000 € pour tout le système, soit +/- 1 400 €/m² de capteurs,
  • pour 25 m² de capteurs  (en logement collectif, cela correspond approximativement à 15 appartements), il faut compter environ 30 000 € pour tout le système, soit +/- 1 200 €/m² de capteurs,

     Schéma coût unitaire du chauffe-eau solaire.

Bien entendu,  si l’installation solaire thermique s’inscrit dans la rénovation plus large du chauffage ou de la toiture, certains coûts fixes vont diminuer.

Afin d’éviter de mauvaises surprises, outre le coût des capteurs, d’autres paramètres doivent être pris en compte dans l’évaluation du prix de l’installation. Entre autres :

  • Le mode d’intégration architecturale choisi ;
  • La faisabilité technique de raccorder la boucle solaire à l’installation existante ;
  • L’accessibilité de la toiture ;
  • La structure de la toiture (évaluer le surcoût si on doit renforcer la toiture) ;
  • La taille de l’installation ;

Attention ! Si l’on compare simplement le prix d’achat d’un système solaire avec le prix d’un système conventionnel, le risque est grand d’arriver à la conclusion que le solaire n’est pas une option économiquement intéressante. Ce serait aller un peu vite en besogne :

  • Pour le solaire, la quasi-totalité des coûts porte sur les composants du système. Les frais de combustible sont par nature gratuits et les coûts d’exploitation faibles.
  • À l’inverse, pour une chaudière au mazout ou au gaz ou un boiler électrique, une fraction importante du coût est reportée sur le prix du combustible et/ou les frais d’exploitation.

L’approche qui semble la plus pertinente de la faisabilité économique passe donc par l’estimation du coût du kWh solaire produit (coût de l’investissement divisé par l’économie énergétique annuelle), que l’on pourra raisonnablement comparer avec le coût du kWh mazout, gaz ou électricité.


Les subsides

Pour soutenir la production d’énergie verte, les pouvoirs publics belges ont mis en place des mécanismes financiers qui réduisent le coût réellement payé par l’investisseur de capteurs  thermiques.

> Plus d’infos : ouverture d'une nouvelle fenêtre ! http://energie.wallonie.be

Plus d’infos sur le financement de la rénovation énergétique :  cliquez ici !


Quelle rentabilité ?

Si la conception et l’intégration d’une installation collective sont plus délicates que celles d’un chauffe-eau solaire individuel, la productivité de l’installation est généralement meilleure. En effet, le taux d’occupation des grands immeubles ou établissements est relativement constant tout au long de l’année et la consommation d’eau chaude y est globalement plus importante.

Les applications solaires les plus intéressantes économiquement se retrouvent parmi les établissements consommant de grandes quantités d’eau chaude : les piscines et les établissements d’accueil social (maisons de repos, centres d’accueil pour personnes handicapées, …), les internats, grands hôtels, centres de vacances, immeubles de plus de 15 logements, restaurants d’entreprise,… Plus la consommation d’eau chaude de l’établissement est élevée, plus l’installation solaire est grande, et meilleure est sa rentabilité. Et pour cause, le coût au m² d’une installation est inversement proportionnel à la surface installée; ce qui explique que de grandes installations puissent être rentables sans subsides.

Voici le prix de revient d’une installation solaire (couvrant 30 % des besoins énergétiques) en fonction de la consommation d’eau chaude sanitaire :

Installation solaire Coût du kWh solaire si :

Consommation moyenne
[l. eau à 60 °C /jour]

Taille
[m² capteurs]

Coût HTVA
[€]

Subside 0 %
[c€/kWh]
Subside 20 %
[c€/kWh]

Subside 40 %
[c€/kWh]

1 000 13 14 500 7.31 5.85 4.39
2 500 31 27 800 5.60 4.48 3.36
5 000 63 45 900 4.62 3.70 2.77
7 500 94 61 700 4.14 3.31 2.49
10 000 126 76 200 3.84 3.07 2.30
12 500 157 89 800 3.62 2.90 2.17
15 000 188 102 800 3.45 2.76 2.07
17 500 220 115 300 3.32 2.66 1.99
20 000 251 127 400 3.21 2.57 1.93
22 500 283 139 200 3.12 2.49 1.87
25 000 314 150 600 3.04 2.43 1.82

Par exemple, dans un établissement consommant 5 000 l d’eau chaude à 60 °C par jour (3e ligne du tableau), un chauffe-eau solaire produisant 30 % de l’énergie nécessaire pour couvrir les besoins en eau chaude sanitaire aura une surface de capteurs d’environ 63 m² et coûtera de l’ordre de 45 900 €. Si l’on rapporte ce coût à la quantité totale de combustible que l’installation solaire permet d’économiser, on obtient un coût de 4.62 c€ par kWh solaire (hors subside). Si l’investissement initial est subsidié (ou déductible fiscalement) à hauteur de 20 %, ce coût passe à 3.31 c€. Pour un taux de subside de 40 %, on a un coût de 2.77 c€ par kWh de combustible économisé.

Ces coûts sont donc compétitifs par rapport ceux des prix des combustibles à leur niveau actuel.

D’autre part, le prix des énergies fossiles sur le marché mondial dépend de nombreux facteurs que nous ne maîtrisons pas, alors que le coût du kWh solaire produit, lui, est stable et garanti pendant toute la durée de vie de l’installation. Il est bon de rappeler qu’entre 1998 et 2001, le prix du gaz naturel a augmenté de 41 %. Si le prix du combustible d’appoint double, l’économie financière réalisée grâce au système solaire double également ! C’est donc bien là que réside l’avantage économique majeur du chauffe-eau solaire: le prix du kWh produit est connu au départ et reste constant sur une période de 25 ans minimum.

Choisir le type d’installation [ECS par capteurs solaires]


Choix du type de capteurs

Le choix le plus courant pour la production d’eau chaude sanitaire est celui de capteurs plans vitrés.
Bien que moins performants que certains de leurs homologues « tubes sous vide », ils sont moins chers et présentent généralement une garantie plus longue (10 ans). Néanmoins, ils nécessitent parfois une superficie plus grande pour une même production et leur remplacement est moins évident (un tube peut être remplacé individuellement).D’autres facteurs peuvent aussi être déterminants :

  • La surface disponible.
  • L’orientation (les tubes sous vide à ailettes peuvent être orientés indépendamment de leur support).
  • Les différents types de pose, poids et le lestage associé (l’intégration est possible pour les capteurs plans).
  • Le coût, qui sera aussi déterminé par les paramètres précédents.
  • Etc.

> Plus d’infos sur les différents types de capteurs.

Deux capteurs peuvent aussi être comparés via leur courbe de rendement.

Calculs

Pour comparer différents capteurs sur base de leur courbe de rendement.

Sous pression ou à vidange ?

Si le choix d’un système indirect à boucle fermée est généralement évident sous nos latitudes, reste le choix entre les systèmes à vidange ou les systèmes sous pression non vidangeable.

Chacun présente des caractéristiques propres et les avantages qui y sont liés.

Système à vidange

Schéma de système à vidange

  • Pas de choc thermique ni surpression importants : Le système étant vidangé lorsqu’il entre en température de stagnation, l’ébullition du fluide caloporteur est évitée. Dans les systèmes traditionnels sans vidange, il n’est pas rare de voir des écarts de température allant de – 30 °C à plus de 160 °C.
  • Suppression  de certains composants (et du coût associé) : Le fluide n’étant pas sous pression, certains composants peuvent être supprimés : manomètre, vase d’expansion, purgeur, clapet anti-retour (vu que l’installation est vidangée, il n’y a pas de risque de circulation inverse par thermosiphon).
  • Possibilité d’utiliser de l’eau comme fluide caloporteur : Puisque le système se vidange en cas de gel, il est théoriquement possible d’utiliser de l’eau comme fluide caloporteur. Cependant, bien que la capacité calorifique de l’eau soit meilleure, il n’est pas rare de rencontrer des systèmes à vidange fonctionnant avec un mélange d’eau/glycol pour des raisons de sécurité (au gel) mais aussi parce que le glycol possède des propriétés anticorrosives.

Système sous pression non vidangeable

Schéma de système sous pression non vidangeable.

  • Le soin à apporter à la pente des tuyauteries est moins grand : En effet, pour les systèmes à vidange une pente minimale continue de l’ordre de 4 % doit être respectée afin d’assurer un écoulement correct du fluide puisque celui-ci s’effectue par simple gravité (drain back).
  • Utilisation de pompes de circulation moins puissantes et donc moins énergivores :  Un système sous pression utilise des circulateurs de puissance moindre. En plus d’assurer la circulation du fluide, la pompe d’un système à vidange doit en effet pouvoir relancer le fluide dans le circuit primaire, c’est à dire vaincre la hauteur manométrique entre le réceptacle de vidange et les capteurs. Une puissance importante est donc nécessaire alors que moins de 50 % de cette puissance est nécessaire lors du fonctionnement de l’installation. Une solution que proposent aujourd’hui certains constructeurs est l’installation de deux circulateurs dont l’un est adapté à la relance (et ne fonctionne que durant celle-ci) et dont l’autre est adapté au régime de fonctionnement.

Choix du système d’apport de chaleur complémentaire

Le choix du mode de préparation d’ECS principal doit se faire de manière traditionnelle. Celui-ci doit en effet assurer la production d’eau chaude en toutes circonstances, même en période de non ensoleillement prolongée.

 Schéma sur le mode de préparation ECS.

Dans une installation solaire, le système d’apport de chaleur complémentaire se situe en aval de l’échangeur solaire de manière à conserver la stratification interne des températures dans le ballon (les températures les plus hautes, les plus proches du point de puisage) mais aussi de manière à garantir une température de retour du fluide solaire la plus basse possible (afin de garantir un fonctionnement optimal des capteurs).

Dans tous les cas, le stockage de l’eau solaire oblige à une certaine centralisation de l’installation. Néanmoins, le choix d’un système de production principal décentralisé reste possible. Par exemple, l’eau préchauffée par les capteurs pourrait être acheminée vers les points de puisage où elle sera seulement amenée à la température souhaitée. Ce cas de figure permet de limiter considérablement les pertes de distribution et l’influence de l’appoint sur la température du fluide solaire.

En ce qui concerne le vecteur énergétique, il n’y en a pas de réellement privilégié en termes de fonctionnement solaire (abstraction faite des considérations environnementales liées). Par contre, la compatibilité et la régulation de l’appoint au système solaire sont à étudier précisément (d’autant plus si l’on souhaite intégrer celui-ci à un système existant).  Il serait en effet dommage que le système d’appoint empiète sur ce que le système solaire peut produire… et pourtant c’est souvent le cas. Combiner une température de consigne d’appoint trop élevée (pour la légionellose) et une mise en température des ballons solaires trop régulière peut réduire l’efficacité solaire de 30 %!


Dans tous les cas, limiter les pertes !

Une installation mal ou non isolée peut perdre jusqu’à 40 % de sa production à cause des pertes thermiques le long des conduites et au niveau du stockage.

En premier lieu, on veillera donc à limiter la longueur des tuyauteries et à positionner judicieusement le stockage par rapport aux capteurs (et aux points de puisage).

Une isolation d’épaisseur au moins égale au diamètre des tuyauteries est indispensable d’autant plus que les températures du fluide de la boucle solaire peuvent être les plus hautes de l’installation sanitaire. Pour se donner une idée des pertes : un mètre de tuyau en acier, de 1 pouce de diamètre, non isolé, dans lequel circule de l’eau chaude à 70°C et qui parcourt une ambiance à 20°C a une perte équivalente à la consommation d’une ampoule de 60 W…

Calculs

Pour estimer la rentabilité de l’isolation de la tuyauterie, cliquez ici !

Au niveau du ballon de stockage: favoriser la stratification des températures et sa parfaite isolation (attention aux raccords) favoriseront la productivité du système. 10 à 15 cm d’isolation ne seront pas superflus !

Calculs 

Pour estimer la rentabilité de l’isolation du ballon, cliquez ici !

Exploiter la configuration du bâtiment [ECS par capteurs solaires]

Exploiter la configuration du bâtiment [ECS par capteurs solaires]


Une orientation et une inclinaison optimales ?

Les capteurs seront idéalement orientés sud avec une inclinaison entre 30 et 55° par rapport à l’horizontale. La hauteur du soleil variant au fil des jours et des saisons, l’inclinaison idéale dépendra du cas de figure envisagé :

  • 35° est l’inclinaison qui permet de maximiser les gains solaires annuels. Elle est idéale pour les faibles fractions solaires : couverture solaire de 30 % des besoins d’eau chaude par exemple).
  • Pour une fraction solaire plus importante (ou une production pour le chauffage du bâtiment), il est judicieux d’orienter les panneaux plus verticalement (de 45 à 55°) afin de maximiser les gains solaires à la mi-saison.
  • 30° est l’inclinaison idéale pour les installations ne fonctionnant qu’en période estivale (pour une piscine extérieure par exemple).

Schéma orientation et une inclinaison des capteurs.

Bien entendu, on pourra aussi suivre l’inclinaison et l’orientation, induite par la configuration des lieux (par exemple la pente d’une toiture inclinée du moment que l’on reste entre le sud et l’est /ouest). On ajustera alors les surfaces de capteurs en conséquence.

> Plus d’infos sur l’énergie solaire et l’ensoleillement

Outre l’aspect énergétique, l’inclinaison des capteurs influence aussi :

  • leur prise au vent (plus les panneaux sont verticaux, plus le lestage pour les maintenir en place doit être important) ;
  • l’auto-nettoyage de leur superficie externe (vitre) par la pluie (20° d’inclinaison minimum sont requis).

Un ombrage limité

L’ombre est évidemment le pire ennemi des technologies solaires. Bien que moins problématique que pour leurs homologues photovoltaïques, on en limitera l’impact en positionnant les capteurs en dehors des zones d’ombres générées par :

  • l’environnement du bâtiment (immeubles voisins plus hauts que les capteurs solaires…) ;
  • le bâtiment lui-même (cabanon technique, antennes, cheminées…) ;
  • les capteurs entre eux.

Pour ce dernier type d’ombrage, on compte généralement qu’il faut 3 m² de toiture pour un m² de capteur.

Dimensionnement de l’entraxe entre deux capteurs

Schéma dimensionnement de l’entraxe entre deux capteurs.

L’entre-axe entre deux rangées de capteurs est défini par la formule suivante :

Entre axe = d + b = h (cos β+ sin β/ tg α)

où,

  • h =dimension du capteur.
  • α = hauteur solaire minimum (généralement prise le 21 décembre soit un angle de 16°).
  • β = inclinaison des capteurs.

En considérant des capteurs de 1,2 m de large, l’entre-axe des rangées de capteurs est de: 1,2 x (cos 35° + sin 35°/tg16°) = 3,38 m.

Il faudra aussi porter une attention particulière à l’encrassement des capteurs et des réflecteurs pour les tubes sous vide qui en sont munis (type CPC).


En toiture, au sol ou en façade?

Que ce soit en toiture plate ou inclinée, on veillera à ce que la toiture :

  • résiste à la surcharge des capteurs et de leur lestage (un panneau pèse environ 25 kg/m²) ;
  • soit en suffisamment bon état pour ne pas être remplacée trop rapidement (les capteurs ont une durée de vie moyenne de 25 ans).

Placement en toiture inclinée

Si l’orientation est favorable, le placement en toiture inclinée est souvent idéal :

  • placement en hauteur qui permet de limiter l’effet d’ombre de l’environnement ;
  • inclinaison déjà présente qui permet de se passer du système de support ;
  • intégration constructive esthétique ;
  • pertes thermiques à l’arrière du panneau limitées (dans le cas de capteurs intégrés dans la toiture).

Capteurs intégrés.

 Capteurs en « surimposition ».

Placement en toiture plate

Dans ce cas, les capteurs sont placés sur des supports métalliques, ce qui permet d’optimiser leur inclinaison et leur orientation.

L’ombrage généré par les panneaux entre eux déterminera l’espacement nécessaire entre deux rangées de capteurs.

La résistance de la toiture doit être particulièrement étudiée, car le lestage nécessaire à la stabilité des capteurs augmente considérablement la surcharge (80 à 100 kg par m² de capteur). De plus, lorsque les couches superficielles de la toiture ne présentent pas une résistance suffisante, il faudra parfois ancrer le support directement sur la structure de la toiture (chevrons,…). Des distances de sécurité par rapport au bord de la toiture sont aussi imposées.

Schéma placement en toiture plate des capteurs.

Placement au sol

Lorsque la toiture présente une inclinaison trop importante, une mauvaise orientation ou encore une surface trop réduite, on pourra opter pour une installation au sol.

Dans ce cas, on veillera à :

  • Minimiser la distance entre les capteurs et le stockage afin de réduire au maximum les pertes thermiques par les tuyauteries.
  • Placer les capteurs dans un endroit protégé pour éviter tout risque de vandalisme (attention à l’ombrage !)

Contrairement aux capteurs placés dans le plan de la toiture et ne présentant aucun débordement, le placement de capteurs au sol doit faire l’objet d’un permis d’urbanisme.

Façade

La pose des capteurs sur façade est aussi possible (l’intégration comme bardage l’est aussi) mais présente souvent des désavantages :

  • Ombrage généré par le bâtiment ;
  • Exposition réduite (30% de moins par rapport à l’optimum (sud à 35°)) ;
  • Orientation et inclinaison peu favorables (l’effet peut être limité si on utilise un support ou des tubes sous vide réorientés) ;
  • Surfaces souvent limitées ; etc.

Schéma placement en façade des capteurs.

Réglementations 

Plus d’infos sur la réglementation urbanistique relative au placement des panneaux solaires.

Une zone réservée au stockage

Le stockage est un élément clé dans la conception de tout projet solaire thermique. L’espace associé est parfois considérable et doit être pris en compte dès le départ de l’étude du projet.

Photo stockage.

L’espace prévu doit pouvoir accueillir le ballon (ainsi que son enveloppe isolante) en termes de : volume, surface au sol, hauteur sous plafond. Les accès devront aussi permettre l’amenée du ballon. Bien que cette réflexion paraisse évidente, c’est un problème très fréquent en pratique !

Identifier ses besoins en ECS

Identifier ses besoins en ECS

La décision d’installer un chauffe-eau solaire part toujours de l’identification des besoins, en particulier la consommation d’eau chaude de l’établissement.

Avant toute chose, il faut donc se poser la question de l’usage que l’on a de l’eau chaude sanitaire :

A-t-on réellement besoin d’ECS ? Quand en a-t-on besoin? Quel est le profil de ces besoins ? En a-t-on usage pendant les périodes les plus ensoleillées de l’année ?

A-t-on réalisé les mesures URE permettant de réduire les besoins énergétiques ? Ces mesures simples et efficaces (comme par exemple le placement de réducteurs de pression) restent les plus rentables!

Disponibilité de l’énergie solaire et besoins d’eau chaude sanitaire

 

Si les besoins en ECS sont constants au fil de l’année, l’installation sera généralement dimensionnée par rapport aux apports solaires estivaux. Ce cas de figure permet de garantir un taux d’utilisation et une production énergétique surfacique (kWh/m²) élevée. 

On comprendra vite qu’une installation solaire est bien plus efficace pour un bâtiment ayant des consommations importantes et plus ou moins constantes au fil des jours et des saisons qu’un vestiaire d’un club sportif ne fonctionnant que 2 jours par semaine de septembre à mai !

Ainsi, certains usages sont particulièrement adéquats : les maisons de repos et de soin, les hôpitaux, les piscines, les logements individuels et collectifs, …

Pour établir son profil de puisage, si la consommation d’eau chaude ne fait pas l’objet d’un suivi régulier par l’organisme chargé de la maintenance du bâtiment, on se basera sur des profils type par secteurs ou, mieux, on effectuera une campagne de mesures. Dans tous les cas, le placement d’un simple compteur d’eau chaude est recommandé et sera très utile pour le dimensionnement correct de l’installation solaire !

Calculs

Estimer ses besoins en eau chaude sanitaire.

N.B. Outre son influence sur l’efficacité de l’installation solaire, le profil de puisage conditionne complètement la conception du mode de préparation : volume de stockage (accumulation), système d’appoint par production centralisée ou décentralisée,…

Connaître les étapes du projet [ECS par capteurs solaires]

Connaître les étapes du projet [ECS par capteurs solaires]

Se poser les bonnes questions !

En tant que concepteur, voici les principales questions à se poser :

Quel est le besoin d’eau chaude sanitaire ?
Comment s’intégrerait l’installation dans la configuration du bâtiment ?
Quelles sont les surfaces qui pourraient être valorisées par la pose de capteurs solaires ?
Ces surfaces sont-elles capables d’accueillir des capteurs solaires thermiques en termes de :
> Superficie disponible
> Orientation (dans le cas d’une toiture inclinée)
> Inclinaison (dans le cas d’une toiture inclinée)
> Portance suffisante: la toiture peut-elle accueillir le surpoids induit par les capteurs ? En général, les toitures en structure béton supportent la surcharge, ce qui n’est pas toujours le cas des structures bois : à vérifier donc !
> Ombrage
> État : il serait dommage de devoir remplacer le support dans les quelques années qui suivent l’installation afin d’éviter des montages-démontages coûteux et parfois risqués pour les capteurs.
L’espace disponible pour les ballons de stockage est-il suffisant ?
> Place disponible : le volume nécessaire au stockage est souvent important. Il faut donc s’assurer au préalable des dimensions nécessaires !
> Les dimensions des accès : si j’ai la place nécessaire, il faut impérativement vérifier qu’il est possible d’y amener les ballons de la dimension prévue !
Quel type d’installation choisir ?
Quel prédimensionnement pour la fraction énergétique souhaitée couverte par le solaire thermique (fraction solaire) ? Ce dimensionnement est-il compatible avec mon cas de figure ?
Le projet est-il viable économiquement ?  Quels sont les coûts et subsides ?
Quelle est la durée de vie estimée d’une telle installation ? Quelle maintenance est nécessaire ?
Comment s’assurer de la qualité de réalisation du projet ? Contrat de garantie de résultats solaires et cahier des charges « qualité » sont là pour aider le concepteur!

Les étapes de la réalisation d’un projet solaire thermique ont été balisées par le programme « Soltherm » de la Région Wallonne :

  • un logiciel de préfaisabilité (Quick Scan XLS) a été mis au point et remis à jour par l’IBGE. Il est accompagné de son mode d’emploi PDF;
  • un audit solaire PDF peut être réalisé;
  • un cahier des charges XLS d’une installation solaire de qualité a été rédigé;
  • une Garantie de Résultats Solaires (GRS) peut être exigée;
  • des subsides nombreux sont disponibles.
  • un guide de la maintenance PDF pour responsable énergie est aussi disponible (réalisé par 3E et l’Apere pour l’IBGE).
Demander un audit solaire à une société spécialisée ?

L’audit solaire fait l’inventaire des caractéristiques techniques de l’établissement et détermine les dimensions du système solaire correspondant à l’optimum économique. Il détermine comment les composants du chauffe-eau solaire s’intègrent dans l’installation existante de manière à assurer le fonctionnement optimal de l’ensemble du système. Le résultat de l’audit solaire est consigné dans un rapport qui donne au maître d’ouvrage les critères énergétiques, économiques et environnementaux nécessaires à la prise de décision.

> Plus d’infos sur l’audit solaire PDF (document réalisé par 3E pour le compte de l’IBGE).

Études de cas

Parcourir l’audit solaire établi pour :

– le home La Charmille à Gembloux !

– la piscine d’Herstal !

– la piscine de l’Hélios à Charleroi !