Choisir les luminaires – tableau récapitulatif

Lampes de bureau

Lampes de bureau

Luminaire mobile avec lampe fluo compacte ou led de faible puissance.

Pour l’éclairage local des postes de travail.

Projecteurs

Projecteurs

Luminaire orientable avec lampe halogène, fluo compacte, led ou à décharge.

Pour l’éclairage d’accentuation (musée, commerce, etc.)

Downlights

Downlights

Avec réflecteur en aluminium.

Pour l’éclairage décoratif, l’éclairage des espaces restreints ou l’illumination de cavités. Éviter les réflecteurs blancs.

Downlights Avec réflecteur en aluminium et diffuseur translucide. Idem que précédent mais avec besoin de limitation de l’éblouissement direct. À éviter au maximum et privilégier la version sans diffuseur.

Cloches

Cloches

Avec réflecteur en métal ou prismatique et avec ou sans diffuseur translucide ou verre de protection.

Pour l’éclairage des espaces à grande hauteur sous-plafond (commerces, etc.). Éviter au maximum les réflecteurs transparents et les diffuseurs translucides.

Plafonds lumineux

Plafonds lumineux

Avec diffuseur translucide.

Pour l’éclairage des locaux avec un besoin de limitation de l’éblouissement direct (soins de santés, etc.). L’usage à but uniquement décoratif est à éviter (bureau, etc.)

Luminaires sur pied

Luminaires sur pied

Luminaire d’appoint.

À utiliser comme appoint pour fournir localement l’intensité lumineuse demandée, mais à éviter si la composante indirecte et/ou la puissance sont trop élevées.

Appliques murales

Appliques murales

Appliques murales

Généralement avec diffuseur translucide.

Pour éclairage décoratif.

Réglettes et luminaires industriels

Réglettes et luminaires industriels

Tube nu.

Uniquement pour les pièces de service, peu utilisé, sans exigence de protection contre l’éblouissement.

Réglettes et luminaires industriels Avec réflecteur industriel de préférence miroité (éviter les réflecteurs peints). Pour l’éclairage général, hauteur sous plafond de 5m, avec ou sans ventelles en fonction des besoins en protection contre l’éblouissement direct.

Luminaires linéaires encastrés, plafonniers et suspensions

Luminaires linéaires encastrés Avec diffuseur translucide (ou prismatique). A éviter au maximum. Pour usage décoratif et un besoin de limitation de l’éblouissement direct.

plafonniers

Diffuseur translucide et réflecteur.

A éviter au maximum. Pour usage décoratif et un besoin de limitation de l’éblouissement direct.

Ventelles plates

Ventelles plates crantées.

Ventelles plates ou crantées en aluminium.

Pour l’éclairage général et limitation de l’éblouissement direct. Les ventelles blanches sont à éviter.

Ventelles paraboliques

Ventelles paraboliques en aluminium.

Pour l’éclairage général, avec présence d’écrans de visualisation et travail de haute précision.

Ventelles paraboliques avec fermeture en verre.

Ventelles paraboliques en aluminium et fermeture en verre.

Pour les salles blanches et travail de haute précision.

Luminaires étanches

Tube fluorescent nu

Tube fluorescent nu.

Uniquement pour les pièces de service humides, peu utilisées, sans exigence de protection contre l’éblouissement.

Réflecteur industriel miroité

Réflecteur industriel miroité.

Pour l’éclairage général des locaux humides ou poussiéreux, hauteur sous plafond de 4 à 5 m, avec ou sans ventelles en fonction du besoin de protection contre l’éblouissement direct. Les réflecteurs peints sont à éviter.

Vasque transparente,

Vasque transparente, structurée ou prismatique.

Pour l’éclairage général des locaux humides ou poussiéreux avec nécessité de résistance aux chocs extérieurs ou internes (bris de lampe).

Luminaires résistant aux chocs

Luminaire avec grille de protection en acier.

Luminaire à ventelles paraboliques en aluminium et grille de protection en acier.

Pour l’éclairage des salles de sport. Éviter les réflecteurs peints.

Photo, gestion de l'éclairage

Améliorer la commande et la gestion [Eclairage]

Photo, gestion de l'éclairage

Zonage et sensibilisation des utilisateurs

Mise en garde : un système de gestion de l’éclairage ne fonctionne que s’il est parfaitement accepté par les occupants. L’imagination de ceux-ci est incroyable quand il s’agit de contrarier un système automatique ! Celui-ci doit donc être soit imperceptible, soit compris et accepté par les occupants. C’est d’autant plus vrai en rénovation puisqu’il y a un  historique.<

On conseille souvent de ne pas pousser trop loin la recherche d’économies au détriment de la liberté des utilisateurs et de la simplicité du système. Dans les locaux de bureau, par exemple, les occupants doivent pouvoir allumer ou éteindre un luminaire, faire varier la puissance émise par un luminaire ou personnaliser leur ambiance de travail.

Dans un premier temps, on peut influencer ces comportements par l’information et la motivation de l’utilisateur, sans modifier le mode de commande de l’installation.

Dans ce cas, la collaboration des utilisateurs sera d’autant plus facile que ceux-ci disposent de commandes personnelles et ergonomiques. Ceci implique un zonage des commandes, et, par exemple, le rapatriement des commandes vers la table de travail ou l’utilisation de télécommandes à infrarouge.

Ou de télécommande sans fil et sans pile.
Ainsi, dans les grands bureaux, il faut dans la mesure du possible donner la possibilité aux occupants de gérer l’éclairage au niveau de leur propre zone de travail.
L’utilisateur pourra être sensibilisé :

  • A la non-utilisation de l’éclairage artificiel général si l’éclairage naturel est suffisant.
  • À l’extinction de l’éclairage d’un local lorsqu’il quitte celui-ci.

Temps minimum d’absence avant coupure

Dans un local équipé d’un éclairage fluorescent à ballast électromagnétique ou électronique sans préchauffage, il est préférable d’éteindre si l’inoccupation excède 15 à 30 minutes. Éteindre pour des absences plus courtes n’est pas économiquement rentable à cause de la diminution de la durée de vie des lampes avec l’augmentation du nombre d’allumages. Dans tous les autres cas (lampes incandescentes, fluorescentes avec ballast électronique à préchauffage, LEDS), une extinction est recommandée quelle que soit la durée de l’absence.

Note : souvent une installation d’éclairage à LED reste allumée inutilement car on pense que les LEDS ne consomment rien… un des avantages des LEDS est l’allumage et l’extinction immédiat et sans problèmes donc profitons de cet avantage pour encore économiser plus d’énergie !

Zonage

Exemple de zonage pour une salle de sport :

Dans une salle omnisports, il est inutile d’éclairer toute la salle alors qu’un seul terrain est occupé. Il est important de prévoir un zonage, c’est-à-dire une commande séparée pour les différents terrains de la salle.

Les lignes de jeux s’entremêlent.

   

Il existe donc plusieurs manières de regrouper les luminaires qui seront commandés en une seule fois.

On analysera donc chaque cas, en tenant compte de :

  • l’emplacement des lignes de jeux,
  • la fréquence d’occupation des différents terrains,
  • la possibilité d’emplacement des différentes commandes.

Voici un exemple possible de zonage :


Gestion horaire

Si l’horaire de travail est fixe, une horloge peut commander l’éclairage en tout ou rien par zone ou pour l’ensemble du bâtiment.

Dans les grands bureaux, les occupants se sentent moins concernés par la gestion de l’éclairage général. Ceci justifie une coupure générale en fonction d’un horaire.

Dans les petits bureaux, l’occupant est plus conscient de son rôle. Les systèmes automatiques auront donc moins d’impact. On peut alors préconiser des systèmes qui poussent l’utilisateur à prendre la décision d’allumer ou d’éteindre la lumière à plusieurs moments de la journée, par exemple par une extinction automatique suivant un horaire.

Attention, la coupure automatique de l’ensemble de l’éclairage est dangereuse si elle plonge tout le bâtiment dans le noir alors que des personnes sont encore présentes. Une solution peut être une extinction graduelle par groupes de luminaires avec possibilité de relance.

L’horaire peut intégrer le passage à un éclairage réduit pour les tâches d’entretien, par exemple la coupure de 2/3 des appareils.

Études de cas

Gestion de l’éclairage des Moulins de Beez.

Gestion en fonction de la présence

   

Dans certains cas, il est plus rentable d’investir dans un détecteur de présence que dans la rénovation de l’appareil d’éclairage. Ceci permet d’éviter un investissement important et de réaliser immédiatement des économies substantielles.

La détection de présence est recommandée dans les locaux où la présence de personnes est occasionnelle, comme par exemple dans les salles de réunion, dans les locaux d’archives d’archives (si un rayonnage n’implique pas un trop grand nombre de détecteurs) ou encore dans certains couloirs, …

a href= »https://www.energieplus-lesite.be/index.php?id=19073″>Pour estimer la rentabilité d’un détecteur de présence.(XLS)

Dans les couloirs et les escaliers, la détection de présence peut être remplacée par une simple minuterie.

L’utilisation de ces systèmes implique une certaine prudence dans les locaux où les mouvements des occupants sont faibles comme les bureaux. Les détecteurs peu sensibles risquent de ne pas détecter les mouvements légers engendrés par le travail sur ordinateur ou la lecture.

La rentabilité d’un détecteur de présence dépend :

  • Du temps de coupure supplémentaire par rapport au fonctionnement normal.
  • De la puissance électrique gérée par un détecteur.
  • De la présence de ballasts électromagnétiques. Ceux-ci impliquent une forte diminution de la durée de vie des lampes avec le nombre d’allumages. Ceci peut être évité avec des ballasts électroniques. Voir Le remplacement des ballasts.
  • Du coût du kWh : comme pour la gestion en fonction de l’éclairage naturel, l’énergie économisée grâce au détecteur n’est pas facturée au prix pratiqué pendant les heures pleines, mais risque de se rapprocher de celui des heures creuses.

Mise en garde

Toute gestion qui prévoit des séquences d’allumage/extinction en fonction de la présence n’est pas recommandée avec des lampes à décharge. En effet, après extinction des lampes, celles-ci nécessitent un certain temps avant de se refroidir. Si on essaie de la rallumer, le ballast va envoyer une tension élevée aux électrodes de la lampe. Cette tension ne suffira pas à allumer la lampe tant que celle-ci est chaude. Cette répétition va cependant user la lampe et diminuer sa durée de vie.

Les lampes à décharge haute pression doivent être utilisées avec des cycles de 8 à 12 h. Avec des cycles plus courts, la durée de vie des lampes diminue fortement. Pour des cycles de 3 heures, par exemple, la durée de vie des lampes chute à 50 %.

Avec des lampes à décharge haute pression, la gestion en fonction de la présence des occupants ne consiste pas à allumer l’installation en cas de présence et à l’éteindre en cas d’absence, mais à faire varier le flux lumineux d’un niveau bas en cas d’absence vers un niveau élevé en cas de présence.


Gestion en fonction de la lumière du jour

Une économie énergétique très importante peut être obtenue par la gestion automatisée de l’éclairage en fonction de l’éclairage naturel, accompagnée ou non d’une gestion en fonction de la présence dans certains locaux/zones.

Si les mesures réalisées sur le site montrent un apport important de lumière naturelle dans quelques locaux, il sera utile de jouer sur des capteurs de luminosités pour commander les lampes (on/off par des cellules crépusculaire ou dimmable en fonction de l’éclairage du jour).

Nous préférons des ballasts électroniques dimmables à une commande ON/OFF pour des raisons de confort visuel.

Pour la gradation en fonction de la lumière du jour, plusieurs systèmes sont disponibles sur le marché (par lampe, par groupe de lampes, extinction complet ou non, par local ou programmable par bâtiment entier (p.ex. avec des ballasts programmables DALI (Digital Adressable Lighting Interface…)).

Concevoir

la fenêtre comme capteur de lumière naturelle.

Gestion sans fil

Lorsque l’on veut améliorer la gestion des luminaires de manière approfondie, un frein à l’initiative réside dans la peur de devoir recâbler une partie ou l’ensemble de l’installation.

A l’heure actuelle, nombreuses sont les techniques issues de la domotique qui permettent de travailler en rénovation de gestion sans fil (ou à peu près). Il est vrai que ce genre de techniques reste coûteux à l’investissement et qu’il est toujours  nécessaire de bien analyser la rentabilité.
Il existe sur le marché des dizaines, voire plus, de techniques de commande et de gestion sans fil. À titre d’exemple, voici une manière de rénover le système de gestion de l’éclairage. Attention toutefois, que le changement de technologie de gestion de l’éclairage passe souvent par le remplacement complet du luminaire.

Avant

  • Les ballasts sont de type électromagnétique ;
  • Un interrupteur simple commande les deux luminaires.

Après

  • Les luminaires sont remplacés. Ils sont équipés d’un ballast électronique dimmable ;
  • L’interrupteur est « ponté ». on peut le remplacer par un cache de propreté ;
  • Le local est équipé d’un détecteur de présence /absence avec sonde de luminosité incorporée. On récupère l’alimentation 230 V des luminaires pour alimenter le détecteur et les luminaires ;
  • Une télécommande IR permet de gérer le détecteur. Quant au détecteur il peut piloter les luminaires en fonction de la présence/absence et de la lumière naturelle dans le local.

Ombres

Ombres


En fonction de sa direction, la lumière peut provoquer l’apparition d’ombres marquées qui risquent de perturber le travail effectué.

  

Lorsque la lumière provient du côté droit pour les droitiers et du côté gauche pour les gauchers.

Lorsque la lumière est dirigée dans le dos des occupants.

À l’inverse, une lumière non directionnelle, telle qu’on peut la créer avec un éclairage artificiel purement indirect, rendra difficile la perception des reliefs et peut rendre, par exemple, les visages désagréables à regarder.

Avec un éclairage directionnel et avec un éclairage diffus.

Une pénétration latérale de la lumière naturelle satisfait généralement à la perception tridimensionnelle du relief des objets et de leur couleur, grâce à sa directionnalité et à sa composition spectrale. Le cas est idéal mais le niveau d’éclairement diminue dès qu’on s’éloigne des fenêtres.

  • Composition correcte des ombres permettant une bonne perception des détails : combinaison d’éclairage direct et diffus.
  • Absence d’ombre effaçant tout relief : éclairage diffus.
  • Ombres dures pouvant modifier l’aspect des objets et donc représenter une source de danger : éclairage directionnel.

Eblouissement

Eblouissement


Généralités

L’éblouissement est dû à la présence, dans le champ de vision, de luminances excessives (sources lumineuses intenses) ou de contrastes de luminance excessifs dans l’espace ou dans le temps.

Suivant l’origine de l’éblouissement, on peut distinguer :

L’éblouissement direct produit par un objet lumineux (lampe, fenêtre, …) situé dans la même direction que l’objet regardé ou dans une direction voisine.

L’éblouissement par réflexion produit par des réflexions d’objets lumineux sur des surfaces brillantes (anciens écrans d’ordinateur, plan de travail, tableau …).

En éblouissement direct, on peut donc distinguer 2 types d’éblouissement :

  • D’une part, « l’éblouissement d’inconfort«  résulte de la vue en permanence de sources lumineuses de luminances relativement élevées. Cet éblouissement peut créer de l’inconfort sans pour autant empêcher la vue de certains objets ou détails.
  • D’autre part, « l’éblouissement invalidant«  est provoqué par la vue d’une luminance très élevée pendant un temps très court. Celui-ci peut, juste après l’éblouissement, empêcher la vision de certains objets sans pour autant créer de l’inconfort.

Le premier type d’éblouissement se rencontrera dans des locaux où l’axe du regard est toujours relativement proche de l’horizontale. C’est le cas dans les classes ou bureaux par exemple. Le deuxième cas se présente dans les salles de sport, par exemple, car l’axe de vision d’un sportif est constamment changeant et que celui-ci regarde vers le haut pour suivre les balles en hauteur.


En éclairage naturel

En éclairage naturel, l’éblouissement peut être provoqué par la vue directe du soleil, par une luminance excessive du ciel vu par les fenêtres, ou par des parois réfléchissant trop fortement le rayonnement solaire et provoquant des contrastes trop élevés par rapport aux surfaces voisines. Il est intéressant de noter qu’une plus grande ouverture à la lumière naturelle cause moins d’éblouissement qu’une petite car elle augmente le niveau d’adaptation des yeux et diminue le contraste de luminance.

Deux métriques sont couramment utilisées pour décrire l’éblouissement à la lumière naturelle : le Daylight Glare Probability (DGP) et le Daylight Glare Index (DGI).


En éclairage artificiel

En éclairage artificiel, l’éblouissement peut être provoqué par la vue directe d’une lampe ou par sa réflexion sur les parois polies des luminaires, sur les surfaces du local ou sur des objets.

L’éblouissement direct provoqué par un luminaire est d’autant plus fort pour une position donnée de l’observateur que :

  • la luminance du luminaire est élevée,
  • le fond sur lequel elle se détache est sombre,
  • l’angle compris entre la direction considérée et la verticale est important ; pratiquement, en dessous de 45° par rapport à la verticale, l’éblouissement devient négligeable,
  • le nombre de luminaires dans le champ visuel est important.

La position des luminaires et la répartition de la lumière qu’ils émettent sont donc fondamentales. D’autant que le degré de tolérance à l’éblouissement venant d’un luminaire (source lumineuse de petite taille) est plus faible que celui venant d’une fenêtre (source lumineuse de grande taille).

Température de couleur [Théories]

Température de couleur


La couleur de la lumière artificielle a une action directe sur la sensation de confort de l’ambiance lumineuse d’un espace. Elle n’influence cependant pas les performances visuelles.
Pour la qualifier, on définit la température de couleur (exprimée en Kelvins (K)). On parlera généralement de teinte chaude (température de couleur < 3 000 K) ou froide (température de couleur > 3 000 K). Plus une couleur est chaude visuellement, plus sa température thermique (en degré Kelvin) est donc faible.

Une lumière de couleur « chaude » est composée majoritairement de radiations rouges et oranges. C’est le cas des lampes à incandescence normales.

Les tubes fluorescents standards génèrent une lumière « froide » composée principalement de radiations vertes, violettes et bleues.

Ci-dessous, on illustre la variation de la sensation de confort de l’ambiance lumineuse d’un local en fonction de la température de couleur des tubes fluorescents choisis et ce pour un même niveau d’éclairement.

  • Éclairement de 300 lux lumière chaude.
  • Éclairement de 300 lux lumière froide.

De plus, les couleurs chaudes (rouge, orange) des objets sont plus agréables lorsqu’elles sont éclairées par une lumière chaude plutôt que par une lumière froide, mais par contre la lumière chaude tend à noircir les couleurs froides (bleu, violet). Ceci se manifeste particulièrement bien dans l’éclairage à incandescence classique.

Les radiations colorées émises par les objets et l’environnement peuvent aussi produire certains effets psycho-physiologiques sur le système nerveux. C’est ainsi que les couleurs de grandes longueurs d’onde (rouge, orange) ont un effet stimulant tandis que celles de courtes longueurs d’onde (bleu, violet) ont un effet calmant. Les couleurs intermédiaires (jaune, vert) ont, de même que le blanc, un effet tonique et favorable à la concentration. Les couleurs foncées et le gris ont par contre une action déprimante.

Enfin les couleurs peuvent contribuer dans une large mesure à modifier la dimension apparente des surfaces et des volumes. Les couleurs chaudes seront de préférence utilisées dans des locaux de dimensions exagérées tandis que les couleurs froides seront choisies pour les locaux de dimensions réduites.

Quelques températures de couleur sont reprises dans le tableau suivant :

 Tableau différentes températures de couleur.

Autonomie en lumière du jour

Autonomie en lumière du jour


Autonomie en lumière du jour

Le DA (Daylight Autonomy) est défini comme étant le pourcentage des heures occupées par an, où le niveau minimum d’éclairement requis peut être assuré par la seule lumière naturelle. Un objectif raisonnable est d’arriver à un temps d’utilisation de l’éclairage naturel d’au moins 50-60 % (pour un horaire de 8h00 à 18h00).

Une autonomie en lumière du jour de 60 % pour un lieu de travail occupé en semaine de 8 h à 18 h. et un éclairement minimum de 500 lux implique que l’occupant est en principe capable de travailler 60 % de l’année uniquement avec de l’éclairage naturel.

En première approximation, ceci entraîne un facteur de lumière du jour de 2,5 (exigence de 300 lux) à 4 % (exigence de 500 lux) dans les locaux de vie, et de 1,5 % dans les circulations et sanitaires (exigence de 100 lux).

Deux types d’autonomie en éclairage naturel doivent être distingués : l’autonomie statique et l’autonomie dynamique.
L’autonomie statique est basée sur l’évaluation du facteur de lumière du jour au point considéré et tient donc compte des conditions de ciel couvert. Elle ne considère ni le ciel clair ni intermédiaire, pas plus que les protections solaires.
Au contraire, l’autonomie dynamique en éclairage naturel est basée sur la prédiction de l’éclairement au point considéré, à chaque pas de temps (horaire ou inférieure) pour l’année entière. L’éclairement est donc prédit à partir d’un fichier météo.

Une majeur partie du contenu de cette page provient du rapport « Energy audit et inspection procedures » réalisé lors de la sous-tâche C de la tâche 50 de l’AIE (Agence Internationale de l’Énergie). Pour plus d’information, le rapport complet des méthodes d’audit et procédure d’inspection peut être téléchargé ici en français.


Autonomie diffuse en éclairage naturel

Cette métrique traduit le facteur lumière du jour en une estimation du pourcentage de temps durant lequel le niveau d’éclairement requis sera atteint grâce à la lumière naturelle. L’autonomie diffuse en éclairage naturel est basée sur des données météo horaires.

Un des avantages de cette métrique est qu’elle permet d’estimer les consommations annuelles d’éclairage électrique. Par exemple, si l’autonomie diffuse moyenne est de 64 %, le pourcentage de temps durant lequel les lampes seront allumées peut être estimé à 36%, des heures d’occupation.

Le DDA est hautement dépendant de l’orientation du local et de la localisation du bâtiment (la latitude est un facteur majeur). Comme elle est basée sur le niveau d’éclairement requis, l’autonomie diffuse en éclairage naturel est également liée à la fonction du local.

Cette métrique ne prend pas en compte la contribution du soleil. Cependant, comme beaucoup d’études ont montré que l’utilisation d’une protection solaire est assez imprévisible, il semble acceptable de compter sur l’éclairement diffus pour estimer avec un taux de confiance raisonnable, la contribution de l’éclairage naturel à l’éclairement intérieur. De plus, dans beaucoup de cas, quand le soleil frappe la façade, des systèmes d’ombrage appropriés sont déployés de manière à bloquer la pénétration du rayonnement solaire direct sans obscurcir la pièce et donc sans résulter en un allumage des lampes.


Autonomie dynamique en éclairage naturel

L’autonomie dynamique en éclairage naturel est basée sur la prédiction de l’éclairement au point considéré, à chaque pas de temps (horaire ou inférieure) pour l’année entière. L’éclairement est donc prédit à partir d’un fichier météo.

La notion d’autonomie dynamique en éclairage naturel est complétée par des modèles qui prédisent, pour chaque pas de temps, le statut du système de contrôle des protections solaires. Cette notion est appelée autonomie dynamique « effective » en éclairage naturel.

L’utilisation de l’autonomie dynamique est récente. Par conséquent, les valeurs cibles définies par les auteurs doivent être étudiée en profondeur est adaptées de manière à considérer le climat du site.

Par exemple, les critères de Rogers définissent que :

  • les espaces qui atteignent une autonomie dynamique comprise 40% et 60% sur plus de 60% de leur surface obtiennent un crédit de base ;
  • les espaces qui atteignent une autonomie dynamique comprise 60% et 80% sur plus de 60% de leur surface obtiennent un crédit additionnel ;
  • les espaces qui atteignent une autonomie dynamique de plus de 80% sur plus de 60% de leur surface obtiennent deux crédits additionnels.

Une autre cible peut être d’atteindre la moitié de l’autonomie d’un point extérieur non ombré, ayant le même profil d’occupation que le bâtiment étudié, pour la même localisation (Critère de Reinhart & Walkenhorst). Un espace est donc considéré comme éclairé naturellement s’il reçoit suffisamment de lumière naturelle durant au moins la moitié du temps durant laquelle le point extérieur obtient assez de lumière.

L’autonomie dynamique en éclairage naturel est basée sur le climat, elle est donc supposée être une des métriques les plus précises pour évaluer la disponibilité d’éclairage naturel dans un bâtiment. Cependant le calcul de cette valeur à plusieurs limites :

  • Le résultat obtenu pour une année entière est agrégé en une simple valeur, les informations temporelles sur l’évolution de la disponibilité de la lumière naturelle sont perdues. Toutefois, une manière de bénéficier de toute la puissance des métriques dynamiques basées sur le climat est de les représenter par des graphiques de type « carte temporelle » :

    Schéma informations temporelles sur l’évolution de la disponibilité de la lumière.

    Exemple de carte temporelle. ( Source: J. Mardaljevic)

  • La simulation est supposée modéliser le comportement humain de gestion des stores, ce qui implique une grande incertitude des résultats. Les simulations horaires sont cependant conformes à la réalité si le local est équipé de gestion automatique des protections solaires.
  • Les objectifs sont dépendants du climat, de l’occupation et du type de bâtiment et devraient être fixés pour chaque pays. Toutefois, cette métrique est intéressante pour faire des comparaisons entre diverses options de design.

Autonomie dynamique continue

L’autonomie dynamique continue est une métrique dérivée de l’autonomie dynamique. Cette métrique met en évidence la contribution bénéfique de la lumière naturelle, même à bas niveau. Elle modélise en quelque sorte l’autonomie qu’on obtiendrait dans un local équipé d’un système de gradation de l’éclairage électrique.

Comme pour l’autonomie dynamique, il n’existe actuellement pas de valeurs cibles. Ces valeurs devraient en principe dépendre du climat, de l’occupation et du type de bâtiment et devrait probablement être définies par pays.

Cependant, comparer la valeur de l’autonomie continue devrait permettre aux concepteurs de choisir parmi différentes options de configuration.

Autonomie dynamique maximale

L’autonomie maximale en éclairage naturel est définie comme le pourcentage d’heures d’occupations durant lesquelles du soleil direct entre dans le bâtiment ou que des niveaux excessif d’éclairage naturel sont atteints.

Le niveau maximum est fixé en fonction des objectifs établis pour le calcul de l’autonomie dynamique. Il vaut 10 fois cette valeur (c’est-à-dire que si l’objectif d’éclairement pour l’autonomie dynamique est de 300 lux, le niveau maximum acceptable sera de 3 000 lux). Cette manière de fixer la valeur maximum est la faiblesse de cette métrique car elle est intuitive, plutôt que basée sur des résultats expérimentaux.

Cependant, l’usage de l’autonomie maximale de manière à évaluer des situations critiques, quand trop de lumière naturelle pénètre dans le bâtiment, donne une première idée de l’endroit du local où de tels problèmes pourraient apparaître.

Autonomie dynamique spatiale

De manière à évaluer la qualité d’un espace éclairé naturellement, l’Illuminating Engineering Society (IES) a défini l’autonomie spatiale en éclairage naturel sDA. Cette métrique décrit la possibilité qu’un local profite de suffisamment de lumière naturelle, sur base d’une année.

L’autonomie spatiale en éclairage naturel est définie comme le pourcentage de la surface de travail qui atteint un niveau d’éclairement naturel minimum, pour une fraction donnée des heures d’utilisation du bâtiment, pour une année, c.-à-d., qui rencontre une certaine autonomie en éclairage naturel.

Les seuils recommandés sont 300 lux et 50 % des heures d’opération, de 8h00 à 18h00 (heure locale en tenant compte du changement d’heure d’été) et le sDA est donné en pourcents. Ainsi l’autonomie spatiale est calculée comme ceci :

sDA (300 lx, 50 %) =  (surface analysée avec un éclairement ≥ 300lx pour au moins 50% des heures d’utilisation) / (surface totale d’analyse) * 100

Selon IES, les valeurs cibles pour l’autonomie spatiale sont :

  • sDA (300 lx, 50 %) ≥ 55 % : valeur suffisante d’éclairage naturel ;
  • sDA (300 lx, 50 %) ≥ 75 % : valeur préférée d’éclairage naturel.

L’autonomie spatiale en éclairage naturel s’appuie sur des calculs basés sur des données climatiques. Elle tient donc en compte la contribution du ciel et du soleil ainsi que les systèmes d’ombrage dynamiques. Cependant, le sDA ne fournit aucune information sur un éventuel inconfort visuel. Celui-ci pourrait être évalué par le calcul de l’éblouissement annuel.


Useful Daylight Illuminance

L’UDI (Useful Daylight Illuminance) est le pourcentage des heures occupées par an où l’éclairement assuré par la seule lumière naturelle est compris entre 500 lx et 2 500 lx.

Cette valeur intègre le manque en lumière naturelle, mais également le risque de niveau d’éclairement trop élevé qui peut être associé à un inconfort des occupants et des apports solaires trop élevés.

À la place de fixer une valeur cible d’éclairement, l’UDI mesure la fréquence, sur un an, d’une gamme de niveaux d’éclairement atteints.

Quatre catégories sont définies.

  • un « UDI trop faible » caractérise un éclairement naturel insuffisant de moins de 100 lx ;
  • un « UDI supplémentaire » caractérise éclairement naturel entre 100 et 500 lux généralement suffisant mais qui peut être complété par de la lumière électrique ;
  • un « UDI autonome » caractérise un éclairement naturel entre 500 et 2 000  à 2 500 lux permettant d’être autonome vis-à-vis de l’éclairage électrique ;
  • un « UDI excédent » caractérise un éclairement naturel plus élevé que 2 000  à 2 500 lux entrainant un inconfort.

Ces limites peuvent être discutées en fonction de l’activité réalisée dans le local et de l’occupation. Ainsi, une autre considération est de définir les heures de l’année qui doivent être prises en compte.

Ce nombre peut être défini par les heures d’occupation du bâtiment ou par les heures d’éclairement naturel durant l’année.

Il n’existe actuellement pas de cible définie qui permettrait de certifier que si l’UDI est atteint sur une certaine superficie du local, le local est bien éclairé. En effet, les objectifs dépendent fortement du climat, de l’orientation, de l’application (travail sur pc, sur papier, dessin, …).

Cependant, l’UDI reste une métrique utile permettant de mettre en évidence les zones sur-éclairées (pour lesquelles un ombrage serait nécessaire) et sous-éclairées et permettant de comparer différentes configurations d’un bâtiment.


Lien avec l’éclairage artificiel : les courbes CIE

Plus le facteur de lumière du jour et l’autonomie en lumière du jour sont élevés, plus le temps d’utilisation des locaux avec la lumière naturelle est élevé, limitant ainsi la consommation d’éclairage artificiel.

Ainsi les courbes CIE donnent une indication de la disponibilité d’éclairement extérieur diffus uniquement selon la latitude ; l’orientation et le rayonnement direct ne sont toutefois pas pris en compte.

La figure suivante présente ces courbes liant latitude et éclairement extérieur  :

Pourcentage d’heures entre 9h00 et 17h00 où le niveau d’éclairement est disponible ou dépassé. (source : CIE – Commission Internationale de l’Éclairage).

Par exemple, pour un bâtiment de bureau situé à Uccle (50,8° Latitude Nord), dont l’éclairement total doit valoir 500 lux. Supposons qu’on mesure un facteur de lumière du jour de 6 % en un point. La valeur d’éclairement extérieur nécessaire pour atteindre 500 lux vaut donc 8 333 lux (= 500/0.06).

Si on trace une ligne horizontale à 8 333 lux, celle-ci rencontre la ligne verticale correspondant à la latitude au point A. Ce point est situé sur une courbe (non dessinée) qui correspond environ à 73 %.

Ce qui veut dire qu’un point du local ayant un facteur de lumière du jour de 6 % disposera de 500 lux pendant 73 % du temps de travail, en moyenne sur l’année.

Notons que cet abaque est relativement pessimiste puisqu’elle ne tient compte que d’un ciel couvert. On peut dire qu’elle convient assez bien pour des ouvertures orientées au Nord. Elle n’est pas très satisfaisante… mais l’analyse détaillée (dynamique) requiert des outils bien plus avancés qui restent pour l’instant au niveau de la recherche !

Lumière : généralités

Lumière : généralités


La lumière naturelle

Onde et particule

Lorsqu’on parle de lumière, on considère qu’elle est à la fois une particule élémentaire (photon) et une onde électromagnétique.

L’onde électromagnétique est caractérisée par :

  • Une amplitude ;
  • Une longueur d’onde (ou fréquence) ;
  • Une vitesse de propagation.

La relation suivant unit la longueur d’onde et la vitesse de propagation :

λ = C / F

où :

  • λ : longueur d’onde en nanomètre ;
  • C : est la vitesse en m.s-1 ;
  • F : fréquence en Hz.

Pour une vitesse de la lumière de 299,792,458 m.s-1 et une longueur d’onde de 380 nm (bleu) la fréquence de propagation est de :

F = 299,792,458 / 450 x 10-9 = 780 THz

À titre comparatif, le tableau suivant donne une idée des longueurs d’onde de différents types de rayonnement :

Longueur d’onde (dans le vide) Domaine Fréquence Commentaire
Plus de 10 m radio inférieure à 30 MHz
de 1 mm à 30 cm micro-onde (Wifi, téléphones portables, radar, etc.) de 1 GHz à 300 GHz incluse dans les ondes radio
de 780 nm à 500 µm infrarouge norme NF/en 1836
de 380 nm à 780 nm lumière visible de 350 THz à 750 THz rouge (620-780 nm)
orange (592-620 nm)
jaune (578-592 nm)
vert (500-578 nm)
bleu (446-500 nm)
violet (380-446 nm)
de 10 nm à 380 nm ultraviolet de 750 THz à 30 PHz
de 10-11 m à 10-8 m rayon X de 30 PHz à 30 EHz
< à 5 x 10-12 m Rayon γ (gamma) supérieure à 30 EHz

Remarque : le spectre de la lumière naturelle est changeant suivant l’état du ciel : en fonction de la présence ou pas de nuage, leur densité, leur forme, … le spectre lumineux évolue.

Spectre lumière naturelle.


Lumière blanche artificielle

En éclairage artificiel, on tente toujours de se rapprocher de la lumière naturelle qui est, par définition, une lumière blanche. C’est indispensable de s’en rapprocher pour une question principalement de confort visuel. On imagine difficilement pour des occupants de bâtiments tertiaires de travailler dans une ambiance de couleur jaune comme c’est le cas, par exemple, chez certains fabricants de téléviseur.

Spectre lampe à incandescence.

Lampe à incandescence : bon exemple de lumière blanche.

La lumière blanche artificielle qui se rapproche le plus de la lumière naturelle est donnée par la lampe à incandescence. Indépendamment des considérations énergétiques (cette lampe est amenée à disparaître à terme), la lampe à incandescence reste, sans conteste, la source de référence par rapport à la qualité visuelle d’une lampe artificielle.


Diagramme de chromaticité

Toutes les couleurs du spectre visible peuvent être représentées dans un diagramme de chromaticité de la Commission Internationale de l’Éclairage (CIE).

Diagramme de chromaticité

Quelques paramètres caractéristiques :

  • La courbe du fer à cheval représente les couleurs pures (teintes) de tout le spectre visible depuis le rouge (λ= 700 nm) jusqu’au violet (λ= 420 nm) ;
  • Le segment de droite qui joint les extrémités du fer à cheval représente les pourpres ;
  • le point de coordonnées (x=1/3 ;y = 1/3) est le blanc ;
  • la température de couleur pour le blanc est de 6 000 K ;
  • Le centre du fer à cheval focalise les différentes couleurs blanches. L’arc de cercle gradué de 10 000 à 1 500 K représente les températures de couleur qui caractérisent les différences sources lumineuses entre elles par rapport à la lumière blanche.

Confort visuel

Confort visuel

Source : Cette rubrique est basée sur la brochure « Le confort visuel et la normalisation (Normes & Règlements) » éditée par le CSTC en 2003.


La lumière

La perception de la lumière est un des sens les plus importants de l’Homme. Grâce à cette perception, nous pouvons appréhender facilement l’espace qui nous entoure et nous mouvoir aisément dedans. L’œil, jouant le rôle d’interface avec l’environnement est sensible non seulement aux caractéristiques de la lumière, mais aussi au niveau de ses variations et de sa répartition. L’œil est indubitablement une merveille de « technologie naturelle » capable de s’adapter aux conditions extrêmes qui règne sur notre planète, mais, naturellement, a ses limites au niveau adaptation et accommodation ; ce qui consiste les limites du confort visuel.


Le confort visuel

À l’instar du confort thermique, le confort visuel est, non seulement une notion, objective faisant appel à des paramètres quantifiables et mesurables, mais aussi à une part de subjectivité liée à un état de bien-être visuel dans un environnement défini.
Le confort visuel dépend à la fois :

Paramètres physiques

La luminance, l’éclairement, l’éblouissement et les contrastes sont les plus perceptibles par l’Homme et les représentatifs du confort visuel. À ces paramètres, on associe des valeurs qui garantissent le bon déroulement d’une tâche sans fatigue ni risque d’accident :

  • L’éclairement (en lux) est une valeur relativement facile à mesurer (luxmètre) ;
  • La luminance (en candela.m² ou cd/m²), plus représentative de la perception réelle de l’œil, mais demande du matériel sophistiqué (luminancemètre);
  • L’éblouissement (en UGR) qui constitue le paramètre le plus gênant dans la réalisation d’une tâche. Il se mesure avec un luminancemètre visant une direction bien spécifique. Il reste à préciser que l’éblouissement peut être direct ou indirect ;

Les contrastes, quant à eux, sont responsables d’un manque de distinction de deux zones ou éléments différents.

Théories

 Ppour connaitre les caractéristiques de base du confort visuel.

Caractéristiques propres à l’environnement

La volumétrie d’un local et les propriétés des parois influencent la qualité de la répartition du flux lumineux.  Elles constituent l’environnement immédiat ou éloigné. Le flux lumineux au niveau d’une tâche résulte de la superposition de la lumière naturelle issue d’une ouverture dans une paroi externe verticale ou/et horizontale et la lumière artificielle.

Au niveau de la composante naturelle, on distingue :

  • La composante directe issue sans réflexion du soleil ou du ciel de manière générale (réflexion du rayonnement solaire sur la couche nuageuse ) ;
  • La composante indirecte réfléchie par des éléments externes comme une surface vitrée d’un immeuble voisin ;
  • La composante indirecte interne issue de la réflexion des deux composantes externes sur les parois internes.

Schéma composante naturelle.

Au niveau de la composante artificielle d’un luminaire, on distingue aussi :

  • La composante directe depuis le luminaire sur le plan de travail ;
  • Et la composante indirecte résultant des réflexions multiples sur les parois internes du local considéré.

Schéma composante artificielle.

Les paramètres influençant le niveau d’éclairement de la tâche est directement liée aux paramètres influençant l’éclairage naturel et artificiel :

  • La contribution des composantes externes dépendra de la taille, de la forme, de l’orientation,  du positionnement de l’ouverture dans la façade, des caractéristiques du vitrage, de la présence ou pas d’une protection solaire et des coefficients de réflexion des parois ;
  • Les propriétés des luminaires, leur localisation et leur orientation

Caractéristiques propres à la tâche à accomplir

Pratiquement chaque tâche nécessite un niveau d’éclairement différent. On distinguera les tâches de précision, les tâches liées à un objet en mouvement, …  À noter que plus les contrastes sont faibles plus le niveau d’éclairement doit être important. Mais jusqu’à un certain point ! En effet, un sur éclairement d’une tâche devient aussi inconfortable.

L’éclairage artificiel devra fournir une lumière de qualité en termes de rendu de couleur (Ra) de manière à se rapprocher le plus possible de la lumière naturelle (Ra a un indice 100 pour la lumière naturelle).

Facteurs physiologiques

Nous ne sommes pas égaux devant le confort visuel. Les couleurs ne sont pas perçues de la même manière d’un individu à l’autre. Aussi, les capacités visuelles sont fonction de l’âge des personnes : dans une maison de retraite, par exemple, une lumière plus blanche (Rendu de couleur élevé) permettra plus facilement d’assurer le confort visuel des personnes âgées.

Facteurs psychologiques

Le besoin de lumière se fait souvent ressentir dans les pays scandinaves par exemple. Consciemment ou inconsciemment, les peuplades du nord compensent souvent le manque de lumière et l’uniformité de l’environnement (neige uniforme partout) par des couleurs vives au niveau des maisons.

Un problème d’inconfort thermique ou lumineux ? N’hésitez pas à tester notre nouvel outil de diagnostic afin de trouver la solution à votre problématique.

Température de couleur [Données]

Température de couleur


À ce niveau, les normes laissent généralement le libre choix de la température de couleur.

Cependant, en pratique et d’une manière générale sont préférées :

  • Les teintes chaudes (3 000 K)  pour l’éclairage des locaux de séjour, endroits de détente,…
  • Les teintes intermédiaires (4 000 K) sont recommandées dans la plupart des travaux techniques.
  • Les teintes froides (5 000 K) pour des éclairements élevés là où les performances visuelles sont importantes.

Des recommandations plus précises sont parfois renseignées ? :

Général

Type de local Température de couleur (K)
Classes entre 2 000 et 5 000 K blanc chaud à
blanc neutre
Salles de réunion entre 2 000 et 3 500 K blanc chaud
Ateliers entre 3 500 et 5 000 K blanc neutre
Ateliers graphiques supérieur à 3 500 K
(et de préférence > à 5 000 K)
lumière du jour froide

Usage médical

Type d’application Température de couleur
Dentisterie 4 000 à 5 600 K
Dermatologie 4 000 à 5 600 K
Chambres 3 000 K
Salles de garde 3 000 K
Consultations 3 000 à 4 000 K
Endoscopie 3 000 à 4 000 K
Ophtalmologie 3 000 à 4 000 K
Radiologie 3 000 à 4 000 K
Salles d’opération 4 000 K
Bloc opératoire 4 000 K
Laboratoire 3 000 à 5 000 K
Couloirs et escaliers 3 000 K
3 000 à 4 000 K

Lampes et luminaires LED

Lampes et luminaires LED


Terminologie

Puce (ou chip) LED

Puce (ou chip) LED

La puce LED est le composant semi-conducteur intégré dans une capsule appropriée permettant une connexion électrique ou un assemblage simplifié. Les puces LED peuvent être combinées entre elles sur un circuit imprimé.

Lampe LED

Lampe LED.

La lampe LED est un système complet conçu de manière à permettre le remplacement aisé des technologies traditionnelles moins efficaces (retrofit). Ces lampes reprennent pour cela les formes et les culots normalisés des lampes traditionnelles.

Module LED

Module LED.

Le module LED est constitué d’une ou plusieurs puces LED montées avec d’éventuels composants optiques, électriques ou thermiques (généralement externes).

Luminaire LED

Luminaire LED.
Luminaire encastré.

Luminaire LED.
Luminaire plafonnier.

Le luminaire LED est un système complet composé de puces LED, de lampe(s) à LEDs ou encore de module(s) LED, comprenant l’électronique, l’enveloppe, le câblage, etc. Il peut éventuellement être conçu pour recevoir des modules remplaçables.


Conception d’une lampe ou d’un luminaire LED

La plupart des constructeurs de lampes ou de luminaires sérieux ne font que concevoir les lampes ou les luminaires en se fournissant en unités LED chez les électroniciens. Afin d’assurer une homogénéité dans l’application, le choix des LEDs utilisés se fait suite à une sélection (appelée binning) en fonction de critères spécifiques de couleur, flux lumineux et tension.

Pour répondre aux attentes des marchés, les objectifs des constructeurs sont principalement :

  • de fournir un éventail de lampes et de luminaires avec un large panel de photométries différentes ;
  • d’obtenir une esthétique attrayante ;
  • d’optimiser les performances énergétiques (lm/W) ;
  • d’allonger la durée de vie (heures de fonctionnement);
  •   …

Des études sur la thermique sont impératives de manière à bien « drainer » la chaleur en dehors de la lampe ou du luminaire. Ces études influencent bien entendu la conception de la lampe ou du luminaire.


 Caractéristiques générales

Durée de vie des lampes et luminaires LED

Même si aujourd’hui une source LED (chip) seule peut atteindre une durée de vie de 50 000 h, cet objectif n’est pas encore atteint pour les applications intérieures (lampes et luminaires). Selon une étude du U.S. Department of Energy (Energy Savings Potential of Solid State Lighting in General Illumination Applications. 2012), on peut raisonnablement prévoir  l’évolution suivante dans le futur :

Évolution prévue de la durée de vie des applications LED.

Efficacité lumineuse des lampes et luminaires LED

L’efficacité lumineuse des lampes et luminaires à LEDs est bien différente de l’efficacité lumineuse annoncée pour les puces LED.
En effet, cette dernière est évaluée en test éclair et pour une température de jonction de 25°C (soit une température très basse par rapport à la température à laquelle la jonction est soumise en conditions d’utilisation réelle).

En réalité, l’efficacité lumineuse d’un luminaire LED est d’environ 20 % à 30 % plus faible que la valeur annoncée pour la chip LED.
Voici deux exemples :

Grâce à ces exemples, on se rend compte que l’efficacité lumineuse réelle des lampes et luminaires à LEDs est pour le moment équivalente à celle des lampes fluorescente :

Selon l’étude du U.S. Department of Energy, l’évolution des LEDs devrait permettre d’atteindre 200 lm/W vers 2020-2025.  De quoi alors surpasser tous les autres types de sources lumineuses !

Évolution prévue de l’efficacité lumineuse des applications LED.

Rendu des couleurs et température de couleurs

Avec les lampes et luminaires à LEDs, on peut obtenir un indice de rendu de couleur entre 60 et 98. De plus, il est possible, avec certains types de LED, de moduler la température de couleur de manière continue.


Aspect thermique

Malgré que le rayonnement lumineux de la LED ne génère pas d’infrarouge (et donc pas de chaleur dans le sens du flux lumineux), la dissipation de la chaleur de la jonction est un des problèmes majeurs des lampes et des luminaires à LEDs. En effet, entre  50 % et 70 % de la consommation d’une LED est transformée directement en chaleur qui doit être absolument évacuée sous peine de réduire l’efficacité lumineuse et la durée de vie.

Comparatif thermique entre une LED et une lampe à incandescence.

Des études de dissipation thermique, pour chaque modèle sont donc nécessaires pour pouvoir concevoir une lampe ou un luminaire à LEDs avec  son dissipateur de chaleur intégré.

Cas des lampes

La complexité de l’évacuation de la chaleur générée par les unités LED composant la lampe s’accentue vu la nécessité d’éviter le « drainage » de la chaleur vers l’arrière de la lampe. En effet, le risque est d’accumuler la chaleur de jonction au niveau de l’alimentation intégrée dans le culot. On dit que la lampe LED « claque » non pas par une surchauffe des unités LED mais plutôt de l’alimentation. D’où la nécessité d’évacuer la chaleur par l’avant de la lampe.

Exemple d’étude thermique d’une lampe LED.

Cas des luminaires

Dans le cas des luminaires, le problème de la surchauffe de l’alimentation peut être éliminé vu la possibilité de la déporter hors du luminaire. Il reste aux constructeurs à bien concevoir le dissipateur en fonction d’un luminaire prévu pour être monté en saillie ou encastré.

Étude thermique (source ETAP).


Aspect optique

De par sa taille réduite, l’association de puces LED, de lentille, de diffuseurs et de réflecteurs permet d’obtenir à peu près toutes les distributions lumineuses possibles.

Cependant, à cause de cette petite taille combinée à une puissance lumineuse en constante augmentation, la luminance de la source devient très importante et peut atteindre des valeurs de 10 à 100 millions de Cd/m². Les fabricants prévoient donc des systèmes optiques comme les lentilles, les réflecteurs ou/et des diffuseurs pour éviter l’exposition directe du regard et le risque d’éblouissement.

Type de lampe Luminance (Cd/m²)
Fluo linéaire – T8 14 000
Fluo linéaire – T5 15 000 – 33 000
Fluo compact 50 000
LED nue 100 000 000
Soleil 1 000 000 00
Suivant l’application, on peut obtenir les résultats suivants :

Des lentilles seules, par exemple, permettent de réduire la luminance de crête :

Des réflecteurs combinés avec un diffuseur permettent d’obtenir une lumière douce :

Sources LED

Sources LED

N.B. : cette page reprend uniquement la description du fonctionnement et des caractéristiques de la puce LED. Pour en savoir plus sur son application sous forme de lampe ou de luminaire.


Comment fonctionne une LED ?

Schéma description LED.

Une LED (Light Emitting Diode) est une diode électroluminescente qui émet de la lumière lorsqu’elle est parcourue par un courant continu dans le sens passant.

Schéma description LED - 02. Schéma description LED - 03.

Comme le montre la figure suivante, la quantité de lumière générée par la LED est  proportionnelle à l’intensité du courant qui la traverse.

Couleur des LEDs

Schéma couleur des LEDs.

La LED émet une lumière quasi monochromatique. Sa couleur dépend des caractéristiques des matériaux utilisés durant la production (composition des semi-conducteurs et de leur dopage, température de jonction, …). Il est ainsi possible de balayer toutes les couleurs du spectre visible.

En éclairage artificiel d’intérieur, on cherche cependant essentiellement à se rapprocher de la couleur de la lumière naturelle, à savoir la lumière blanche. Pour obtenir une lumière blanche, il est nécessaire de combiner plusieurs sources lumineuses de composantes. Ainsi, la couleur blanche peut être produite soit par mélange additif de LED rouges, vertes et bleues, soit par conversion d’un LED bleu au moyen de poudre phosphorescente, selon le même principe utilisé dans les tubes fluorescents. Ce dernier principe est généralement utilisé en éclairage intérieur.

Les LEDs pour l’éclairage

Avant de devenir incontournables dans le domaine de l’éclairage, les LEDs doivent encore relever plusieurs défis non négligeables en termes :


Caractéristiques générales

Il importe de bien distinguer la performance (et son potentiel d’évolution) d’une puce LED par rapport à celle d’une lampe LED et à celle d’un luminaire LED.

Si les performances (efficacité lumineuse, durée de vie, etc.) des puces LED sont intéressantes pour évaluer le potentiel intrinsèque de la technologie, elles sont inutiles pour comparer la technologie de l’éclairage LED par rapport aux autres technologies disponibles (notamment les lampes fluorescentes).

Sous différents aspects, la LED est très prometteuse sachant que ses performances énergétiques, sa durée de vie, … s’améliorent de jour en jour.

Techniques

Pour en savoir plus sur les applications LED (lampes et luminaires) et leurs performances.

Durée de vie d’un « chip » LED

La durée de vie des puces LED avoisine théoriquement les 50 000 heures, durée pendant laquelle le flux lumineux reste au-dessus de 70 % du flux initial.

Schéma durée de vie d'un "chip" LED.

Cependant, cette durée dépend de plusieurs paramètres comme le courant qui la traverse et, donc indirectement de la température. Les 50 000 heures sont atteignables pour autant que la température de jonction ne dépasse pas 80-85 °C.

L’absence de « pièce fragile » comme le filament de nombreuses lampes, permet d’augurer une durée de vie plus importante. Par contre, comme tout composant électronique, la chip LED est sensible aux influences électromagnétiques. Pour ne pas raccourcir sa durée de vie, il est important que les constructeurs prévoient une bonne connexion à la terre.

Ces valeurs élevées doivent être vues comme une démonstration du potentiel élevé de la technologie LED.

Efficacité lumineuse des chip LED

L’efficacité lumineuse (lm/W) représente un des critères essentiels d’une source lumineuse. Certains fabricants annoncent une efficacité lumineuse de l’ordre de 100 lm/W sous forme commerciale et de 200 lm/W en laboratoire. Le maximum théorique serait de 230 lm/W (pour une température de jonction de 25°C).
De même que pour la durée de vie, ces valeurs élevées doivent être vues comme une démonstration du potentiel élevé de la technologie LED.

La température de jonction influence aussi le flux lumineux de la puce LED et donc son efficacité lumineuse. C’est principalement pour cette raison que les LEDs conviennent particulièrement bien pour les applications à basse température (surgélation, réfrigération, …) sachant que le flux lumineux augmente avec l’abaissement de la température de jonction. De plus, pour les basses températures, la durée de vie augmente.

Flux lumineux de démarrage

Contrairement à la plupart des lampes fluorescentes qui mettent un certain temps à atteindre leur flux lumineux optimal, les LEDs l’atteignent  quasi instantanément. De plus, elles peuvent être commutées ON/OFF à chaud sans altération de leur durée de vie. Ce n’est pas le cas pour les lampes à décharge par exemple.

La gradation du flux lumineux

La gradation du flux lumineux des LEDs s’opère sur une large plage (presque 0 % à 100 %). Les pertes par gradation sont sensiblement les mêmes que pour les lampes fluorescentes équipées d’un ballast électronique performant.

Schéma gradation du flux lumineux.

À 0 % de flux lumineux, la consommation résiduelle est de l’ordre de 10-15 % de la puissance nominale.

Rayonnement IR et UV

Les LEDs ne génèrent pas ou peu de rayonnement infrarouge (IR) ou ultraviolet (UV) dans le flux lumineux. Il est clair qu’elles génèrent de la chaleur, mais en grande partie de manière convective et non radiative. Autrement dit, la chaleur n’est pas émise dans le sens du flux lumineux. De par ces propriétés, les lampes LED sont intéressantes dans le cas d’application comme pour l’éclairage des œuvres d’art, des denrées alimentaires, des vêtements, …

Par contre l’élimination de la chaleur reste un problème majeur pour toutes les applications LED. Pour en savoir plus, cliquez ici !


Métier de la LED

Dans le monde de la conception LED apparaissent deux métiers : les concepteurs de puces LED et les  concepteurs de luminaires ou lampes LEDs. Les premiers sont plutôt issus de l’industrie électronique, les seconds de la conception en éclairage (lampe ou luminaire). Dans ce domaine, à l’heure actuelle, il convient de prendre un certain recul par rapport à la tendance qu’ont les électroniciens à s’improviser professionnel de l’éclairage.

Techniques

pour en savoir plus sur les lampes et luminaires à LEDs.

Données

Pour connaitre les valeurs caractéristiques des lampes LED.

Données

Pour consulter un récapitulatif des caractéristiques des différents types de lampe.

Flexibilité des plateaux de bureaux

Flexibilité des plateaux de bureaux


Importance de l’aménagement intérieur

Dans le tertiaire et, plus spécifiquement dans la promotion immobilière d’immeubles de bureaux, tant en rénovation qu’en nouvelle conception, l’anticipation de l’agencement des espaces est une étape cruciale que l’auteur de projet aurait tort de négliger.

Les enjeux de tels projets restent, malgré tout, trop souvent financiers en négligeant le confort des occupants et les consommations énergétiques. À la décharge de l’auteur de projet, il est très difficile de répondre à toutes les attentes d’aménagement des futurs occupants. Cependant, les combinaisons logiques d’agencement des locaux ne sont pas multiples, surtout si l’on fait appel aux notions :

  • De destination logique des locaux (locaux aveugles pour accueillir les serveurs, les photocopieuses, les sanitaires…);
  • D’ergonomie des postes de travail (espaces entre bureaux et armoires, largeur des circulations…);
  • De rapport à la lumière naturelle au travers des baies vitrées (bureaux centrés et perpendiculaires par rapport à la baie vitrée, recul des bureaux par rapport aux fenêtres…).

Mais pourquoi s’occuper d’aménagement intérieur dans un outil tel qu’Énergie+ ?

La raison est  simple ! L’agencement rationnel des locaux influence clairement les consommations énergétiques d’éclairage. C’est d’autant plus vrai lorsqu’un promoteur immobilier « s’attaque » à une rénovation importante de type URE (Utilisation Rationnelle de l’Énergie) ou un projet de conception basse voire très basse énergie. En effet, dans ce type de bâtiment, la proportion des consommations électriques d’éclairage peut devenir plus grande que les consommations énergétiques de chaleur et de refroidissement réunies.


Enjeux énergétiques de l’éclairage

La proportion des consommations électriques résultant de l’éclairage artificiel est naturellement liée à la performance énergétique des bâtiments. Par exemple dans les bureaux, la consommation énergétique due à l’éclairage peut varier de 25 % pour un bâtiment qualifié de standard (375 kWhprimaire/(m².an)) à 40 %, voire plus, pour un bâtiment de type passif (75 kWhprimaire/(m².an)).
L’éclairage dans un bâtiment performant représente donc un enjeu important au niveau énergétique.


Flexibilité totale

Lorsque, notamment dans la promotion immobilière, l’auteur de projet est tenté de rendre son bâtiment au maximum flexible, et ce de manière à prendre en compte toutes les combinaisons d’agencements possibles des locaux, on parlera de « flexibilité totale« .

Une flexibilité totale se doit  d’anticiper au maximum l’occupation des locaux. Elle présuppose que l’installation d’éclairage devra couvrir l’ensemble de la surface à occuper :

  • de manière homogène ;
  • avec un niveau d’éclairement suffisant ;
  • une gestion efficace ;
  •  …

Flexibilité totale.

Cette flexibilité totale induit inévitablement une puissance installée supérieure à celle réellement nécessaire. En effet, sur base de ce principe, il serait nécessaire de respecter un niveau d’éclairement suffisant (par exemple 500 lux dans les bureaux) avec une homogénéité de 0,7 selon la norme NBN EN 12464-1. De plus, pour être sûr de pouvoir gérer de manière efficace l’installation d’éclairage et d’anticiper tous les combinaisons possibles de cloisonnement, l’auteur de projet sera tenté de placer, par exemple, un nombre suffisant de détections de présence. En surnombre, elles risquent de s’influencer négativement (détection de présence dans une zone non occupée par exemple).

Point de vue énergétique

La flexibilité totale engendrera :

  •  une puissance spécifique (en W/m²) importante : puissance installée : 6 x 1­ x 28 W ⇒ 9,5 W/m²

       

  • de l’éclairage inutile de zone comme le dessus des armoires par exemple ;

Point de vue du confort

Indépendamment de l’efficacité énergétique, le confort peut aussi être altéré :

  • plan de travail peu éclairé (aussi du vécu !) ;
  • éblouissement au niveau de certains postes.

Flexibilité raisonnée

La flexibilité raisonnée fera simplement appel au bon sens en imaginant des scénarios d’occupation « raisonnable » des espaces. Cette réflexion permettra de travailler principalement selon 2 axes :

  • Le rythme des façades : en conception l’agencement des bureaux influence inévitablement le rythme des baies vitrées et des trumeaux. En rénovation, par contre, c’est le rythme des façades qui influence le positionnement des bureaux.
  • La progression de l’agencement des postes de travail et des espaces de circulation en fonction de la pénétration de la lumière naturelle dans l’immeuble : cette progression s’effectue depuis la proximité de la baie vitrée où on privilégiera les tâches de bureautique jusqu’aux espaces de circulation qui nécessitent peu de lumière et sont des espaces à faible occupation.

Flexibilité raisonnée.

Point de vue énergétique

La flexibilité raisonnée permet :

  • De réduire la puissance spécifique : 2 x 1 x 49 W = 5,5 W/m² ;

 

  • De placer les luminaires aux endroits où la tâche justifie un éclairage correct.

Point de vue du confort

Le confort sera assuré par :

  • Le niveau d’éclairement sur la tâche de travail (le plan de travail se limite à la surface du bureau) et dans les zones avoisinantes avec une uniformité correcte de 0,7 (selon la norme 12464-1 ).
  • L’éblouissement qui sera évité par l’orientation des postes de travail perpendiculairement à la baie vitrée.

Distribution des alimentations de l’éclairage

Que l’auteur de projet préfère la flexibilité raisonnée à la flexibilité totale ou l’inverse, la distribution primaire de l’éclairage (230 V monophasé, 3 x 230 V ou encore 3 x 400 V + N), à ce stade, doit être réalisée avec une connectique organisée selon un schéma intelligent. Beaucoup de fabricants proposent sur le marché des solutions intéressantes qui intègrent aussi une flexibilité totale ou raisonnée.

Les systèmes de distribution structurés sont en général composés :

  • De câble de distribution primaire de longueur variable avec connecteurs ;
  • De pièce en T ou de boîtier de dérivation permettant de répartir de manière répétitive le courant fort en fonction du niveau de flexibilité à acquérir ;
  • De cordons secondaires qui permettent d’interface au niveau des pièces en T ou des boîtiers de dérivation les éléments de commande ou de gestion et les luminaires.

Par l’utilisation de ce type de connectique, une flexibilité plus ou moins étendue peut être assurée.

Exemple de câblage de distribution structuré.

 

Exemple de bus de distribution structuré plat.


Commande et gestion de l’éclairage

La gestion et la commande de l’éclairage, quelle que soit la flexibilité, doivent être menées de front avec la distribution de manière structurée et intelligente. À l’heure actuelle, les techniques disponibles sur le marché permettent une panoplie étendue de distribution du courant fort, de commande et de gestion de la plus simple à la plus compliquée.

Commandes simples

La plupart du temps, le gestionnaire de bâtiment ou l’auteur de projet peuvent s’en sortir avec des commandes ou des gestions d’éclairage simples. Une commande simple consiste, par exemple en :

  • Un interrupteur simple pour un petit local ;
  • Un interrupteur deux allumages pour un grand local à une entrée dans lequel un zonage s’impose ;
  • Quatre interrupteurs deux directions pour un grand local à deux entrées et où le zonage est toujours nécessaire.

Commande par interrupteur simple pour petits locaux.

Commandes par interrupteur 2 allumages pour locaux de grande taille.

Commandes par interrupteur 2 directions pour locaux de grande taille et à 2 entrées.

Gestion simple de l’éclairage

La gestion d’éclairage peut aussi être intégrée dans une distribution structurée. Tout en gardant une bonne flexibilité, une gestion simple peut être mise en place sans le besoin de bus de communication type DALI, KNX, …  Cette gestion s’appuie  sur une connectique du même type que celle acceptant les commandes simples.

Quand on pense gestion, se profilent principalement :

  • La gradation 0-10 V locale ou centrale par rapport à la lumière naturelle ;
  • La détection de présence  et de mouvement ;

Détection globale de présence et de luminosité combinées et détection locale de luminosité (par luminaire) et offset de niveau d’éclairement entre le luminaire côté fenêtre et le côté couloir.

Une gestion simple peut se résumer, par exemple, comme suit :

  • Allumage par bouton poussoir (allumage volontaire) ;
  • Extinction automatique par détection d’absence ;
  • Offset sur le réglage du niveau d’éclairement entre le luminaire côté fenêtre et celui côté couloir.

Gestion simple de l’éclairage.

Gestion globalisée de l’éclairage

La gestion/commande simple par câblage structuré a naturellement ses limites surtout dans les bâtiments de grande taille. Pour pallier à ce problème, le concepteur pourra faire appel à un câblage structuré doublé d’un système de bus de communication de type de DALI, KNX, … :

  • La distribution du courant fort s’effectue en câblage structuré ;
  • La gestion/commande est basée sur un bus de communication DALI.

Gestion par bus de communication.


Bilan énergétique

La finalité de la flexibilité raisonnée est naturellement de réduire les consommations énergétiques et de dégager une certaine rentabilité par rapport au surinvestissement potentiel.

L’étude qui suit tente de mettre en évidence l’impact de la flexibilité raisonnée :

Point de départ

L’installation de base fait appel à des luminaires de faible performance énergétique : soit 12,8 W/m².

1re amélioration

Des luminaires performances remplacent les luminaires de base. Dans ce cas, on applique la flexibilité totale : soit 9,5 W/m².

2e amélioration

On applique une stratégie de zonage par le placement intelligent de commande d’éclairage.

3e amélioration

L’emplacement et le nombre de luminaires sont optimisés selon le principe de flexibilité raisonnée : soit 5,5 W/m².

4e amélioration

Une détection de présence permet encore d’optimaliser le temps d’allumage des luminaires en fonction de l’occupation réelle des locaux.

5e amélioration

Enfin, une sonde de luminosité adaptera le niveau d’éclairement des luminaires. Le réglage des niveaux d’éclairement sera différentié en fonction de la position des luminaires par rapport à la baie vitrée.

Bilan en énergie finale

L’énergie finale représente l’énergie indiquée sur la facture électrique. L’analyse du diagramme suivant montre que les consommations spécifiques annuelles passent de 35 à 8 kWh/(m².an) lorsque l’on passe d’un système d’éclairage peu performant à un système performant, ce qui représente une réduction des consommations de l’ordre de 78 %.

Bilan en énergie primaire

Au niveau de l’énergie primaire, l’amélioration est encore plus notoire sachant que pour l’électricité, le facteur de conversion d’énergie finale en énergie primaire est de 2,5 (1 kWh électrique consommé au niveau du bâtiment représente 2,5 kWh consommé par la centrale électrique (valeur de référence de la CWAPE).

Pour un bâtiment de type passif, l’éclairage représentant 40 % des consommations énergétiques primaires, une réduction de 78 % de la consommation énergétique d’éclairage représente 31 % de réduction de la consommation énergétique primaire du bâtiment ; ce qui est énorme !

La réduction en émission de gaz à effet de serre (CO2) agit dans les mêmes proportions que celle en énergie primaire.

Comme la tendance est à améliorer drastiquement la qualité de l’enveloppe des bâtiments (isolation des parois, remplacement des vitrages par des doubles vitrages à basse émissivité ou triples vitrages, placement de récupérateur sur l’air extrait, …), le soin à apporter  au système d’éclairage représente en enjeu majeur.

Bilan financier

Les temps de retour simples sur investissement sont assez intéressants tout en sachant que l’évolution des prix du matériel et de l’énergie est très « volatile ».

Ecole passive de Louvain-La-Neuve, proposition d’équipements

Ecole passive de Louvain-La-Neuve, proposition d'équipements

Après avoir tiré les premiers enseignements du monitoring, tentons ci-dessous de faire des propositions pour équiper un nouveau projet éventuel.


Une volonté de simplifier les installations techniques et leur régulation

Les possibilités des techniques de régulation numériques actuelles sont fabuleuses. Elles peuvent entraîner le bureau d’études à sophistiquer la régulation (par ex : une gestion de l’éclairage et des stores liée à la luminosité extérieure et combinée à une lecture de la température intérieure des locaux). Les fabricants de matériel font leur travail de marketing pour vendre ces solutions en présentant un rendu final idéal (écran de visualisation des installations), mais en pratique l’école ne disposera pas du budget pour financer la réalisation de ces écrans et devra se contenter d’un accès à une liste de paramètres, incompréhensible à un non-technicien… de la marque !

Très généralement, aucun mode d’emploi simple de l’installation et de sa régulation accessible à un non-technicien n’est réalisé.

Enfin, cette sophistication va à l’encontre de l’évolution de la demande réelle du bâtiment très isolé. Par exemple, à l’école passive de Louvain-La-Neuve, 3 niveaux de température de consigne ont été imaginé :

  • Consigne de nuit et de weekend (14°C),
  • Consigne de jour d’un local occupé (20°C),
  • Consigne de jour d’un local non-occupé (18°C).

Un détecteur de présence, mis en place dans chaque classe, va permettre d’optimiser la consigne.

Cette idée d’affiner la température en fonction de la présence effective des élèves paraît intéressante, mais dans la pratique, la forte inertie et la forte isolation font que la température baisse au plus de 1 degré par 24 heures… Le gain de consommation liée à cette triple consigne est donc très faible.

Cherchons au contraire… une installation technique « passive » !


Chaudière à condensation, radiateurs … mais plus de vanne à 3 voies !

  • Le chauffage est individualisé, local par local.
  • Les émetteurs sont des radiateurs à eau chaude, technologie maîtrisée par tous.
  • Ils sont commandés par une régulation terminale :
    • vannes thermostatiques ordinaires (classes, locaux administratifs, bibliothèque,…) pour un réglage de température individualisé,
    • vannes thermostatiques « institutionnelles », c-à-d dont le réglage de température est réalisé par le technicien et non par l’occupant  (couloirs, ou locaux des écoles secondaires techniques et professionnelles…) pour mieux gérer le côté impersonnel des locaux partagés,
    • vanne motorisée pour commander plusieurs radiateurs alimentés par une même tuyauterie et dont les besoins thermiques sont similaires, si on craint les dégradations par les occupants. Cette vanne est insérée dans la tuyauterie en question et est commandée par un thermostat d’ambiance avec horloge hebdomadaire.
  • La chaudière est à condensation. Elle peut fonctionner à débit nul. Idéalement, elle est alimentée au gaz, à brûleur modulant. Une seule chaudière est suffisante, son rendement sera excellent puisque réalisé sur base d’une petite flamme sous un grand échangeur. Les pannes sont aujourd’hui trop rares que pour justifier le coût du dédoublement de la chaudière.
  • Le régulateur de chaudière permet :
    • une régulation climatique de la température d’eau sur base de la température extérieure.
    • l’arrêt complet de la chaudière la nuit, le week-end, durant les vacances scolaires, et lorsque la température extérieure dépasse une certaine valeur (par exemple 15 °C).
    • un régime de ralenti pour les périodes de nettoyage en dehors des heures scolaires, basé sur un abaissement de la courbe de chauffe.
    • une sécurité hors-gel : la chaudière est enclenchée si la température extérieure est inférieure à – 2 °C.
  • La production d’eau chaude sanitaire est indépendante et décentralisée, de préférence à production instantanée pour limiter tout stockage d’eau chaude. La température est limitée à 45 °C.
  • La distribution hydraulique est découpée en zones d’usages différents dans le temps : salle de sports, classes, locaux administratifs, réfectoire, … Chaque zone possède son circuit propre.
  • Chaque circuit est équipé d’un circulateur à vitesse variable et programmable. Des clapets anti-retour sur chaque départ secondaire empêchent une circulation parasite inverse lors de l’arrêt d’un circulateur ;
  • Il n’y a pas de vannes mélangeuses au départ des circuits. La température de départ est uniquement réalisée à la chaudière sur base de la température extérieure. Un circuit Sud reçoit donc la même eau qu’un circuit Nord, mais les vannes thermostatiques suppriment le débit si le local est chauffé par le soleil ou l’occupant.
  • Chaque circulateur de zone est géré par un programmateur avec les fonctions suivantes :
    • une horloge annuelle qui tient compte de l’heure d’hiver/d’été, des années bissextiles, etc. ; Ceci permettra d’introduire d’avance les jours de congé par l’utilisateur et/ou l’exploitant ; Les périodes d’occupation avec les inversions devront être librement programmables pour les différents jours de la semaine et les jours de congé ;
    • une dérogation manuelle temporisée (pour éviter les simples commutateurs qui restent systématiquement en position manuelle) ;
    • le dégommage automatique du circulateur en période d’arrêt.
    • une sécurité hors-gel pour la zone qu’il commande : le circulateur s’enclenche si la température descend sous les …8 °C… dans le local témoin.
      Le local témoin est le local jugé le plus froid de la zone, sans influence de la présence d’élèves (local de direction au Nord, bibliothèque, … ).

  • À noter qu’une fonction d’optimisation (permettant un démarrage et un arrêt optimal basé sur l’information d’une sonde d’ambiance intérieure) ne sera pas installé; dans un bâtiment passif, l’économie générée est très faible par rapport à l’augmentation de la complexité de l’installation. D’autant que dans une école, un local témoin fidèle des besoins n’existe pas…
  • En reprenant l’installation type donnée dans le schéma en tête de ce chapitre sur le chauffage, la logique de la régulation hors gel et dérogation 2 heures est développée dans le schéma ci-dessous :

KM1  et KM2 sont des relais pilotant les circulateurs des zones Nord et Sud de l’installation ci-dessous. Sans modifier la régulation existante, toute l’installation peut être interrompue par coupure des circulateurs et de la chaudière.

La sécurité hors-gel est double : sur la température des locaux et la température extérieure.

Et la programmation d’un décalage d’1/4 d’heure entre les démarrages des 2 circulateurs réduira le risque de condensation en chaudière puisque toute l’eau froide n’arrivera pas en même temps !


Une ventilation double flux avec récupération de chaleur

Schéma ventilation double flux avec récupération de chaleur.

  • Une ventilation double flux assure la pulsion et l’extraction d’air.
  • Un récupérateur de chaleur permet de récupérer plus de 80 % de la chaleur de l’air extrait pour préchauffer l’air pulsé.
  • Un puits canadien ne sera pas nécessairement installé. Son intérêt énergétique supplémentaire est faible lorsqu’il est mis en série avec un récupérateur de chaleur. Sa grande qualité est de pré-refroidir l’air pulsé en période de canicule. Mais si le refroidissement de nuit fonctionne bien, on peut se passer de cet équipement. Il apporte de plus un risque hygiénique pour le futur difficilement évaluable…
  • Si l’usage des locaux est jugé très variable (laboratoire de sciences, par exemple), il peut être décidé de mettre un clapet sur l’arrivée d’air, commandé par un détecteur de présence. Mais le surcoût et la maintenance justifient-t-ils cet investissement supplémentaire ? Pas sûr…

Un refroidissement direct des classes la nuit, par ouverture de la façade

  • Le refroidissement est assuré par l’ouverture de vasistas dans les classes durant la nuit. L’avantage est que l’air frais arrive directement dans les locaux, sans être préchauffé par le puits canadien éventuel, par le ventilateur, par les gaines de distribution dans les couloirs, …

 Schéma refroidissement direct des classes la nuit, par ouverture de la façade.

  • Différents scénarios peuvent être imaginés :
    • Ouverture manuelle lorsque l’enseignant quitte la classe
    • Ouverture motorisée des vasistas en fonction d’une sonde de T° intérieure et de T° extérieure
    • Ceci avec ou sans ouverture des portes du couloir (ventilation transversale)
    • Extraction motorisée pour renforcer les débits qui doivent largement dépasser les 4 renouvellements horaires nocturnes.
  • Si l’on souhaite minimiser encore la consommation électrique, on peut imaginer une extraction naturelle par un point haut de l’école (tirage naturel par effet de cheminée). Mais c’est alors une forte contrainte architecturale…

Une production d’eau chaude sanitaire, décentralisée et instantanée

  • Les besoins d’eau chaude sanitaire dans une école sont faibles et très intermittents (salle de sport). Ils seront décentralisés et produits, de préférence, par un ou plusieurs préparateurs instantanés à une température de 45 °C.
  • Les préparateurs d’eau chaude électriques installés sous éviers ou dans les couloirs seront programmés et réglés sur 40 °C.

Serions-nous arrivés ainsi à une installation simple, sans régulateur complexe ? À des équipements passifs pour une école passive ? La vérité sort de la rencontre des idées… nous serions heureux de connaître la vôtre !

Isoler un plancher inférieur sur sol par le bas

Isoler un plancher inférieur sur sol par le bas


Choix du système

> Le choix du système d’isolation par l’extérieur se fait en fonction des critères suivants :

  • les performances énergétiques ;
  • le prix.

Les différentes possibilités d’isolation à l’intérieur de la structure

Le freine-vapeur devra être mis en œuvre si nécessaire (à évaluer en fonction de la composition du plancher : nature et épaisseur des couches). Il est cependant toujours conseillé pour garantir l’étanchéité à l’air du plancher.

img.

Un freine vapeur est toujours conseillé pour assurer l’étanchéité à l’air.

Les performances énergétiques

Il faut profiter de tout l’espace disponible pour y introduire l’épaisseur maximale possible d’isolant. Le coût de la main-d’œuvre est identique. Seule la quantité d’isolant augmente.

La structure en bois ne pouvant être supprimée, la transmission thermique est plus importante à l’endroit de celle-ci. Il en est tenu compte dans l’évaluation du coefficient de transmission thermique (équivalent) du plancher. Malgré cela, à cause de l’épaisseur importante généralement disponible pour l’isolant, des performances élevées peuvent être atteintes.

Le prix

« Le nerf de la guerre…! »

La fourniture et la pose de l’isolant lui-même sont peu couteuses par rapport aux autres parties du plancher.

Isoler entre les éléments de structure d’un plancher inférieur [Concevoir]

Isoler entre les éléments de structure d’un plancher inférieur [Concevoir]


Choix du système

> Le choix du système d’isolation par l’extérieur se fait en fonction des critères suivants :

  • les performances énergétiques ;
  • le prix.

Les différentes possibilités d’isolation à l’intérieur de la structure

Le freine-vapeur devra être mis en œuvre si nécessaire (à évaluer en fonction de la composition du plancher : nature et épaisseur des couches). Il est cependant toujours conseillé pour garantir l’étanchéité à l’air du plancher.

Un freine vapeur est toujours conseillé pour assurer l’étanchéité à l’air.

Les performances énergétiques

Il faut profiter de tout l’espace disponible pour y introduire l’épaisseur maximale possible d’isolant. Le coût de la main-d’œuvre est identique. Seule la quantité d’isolant augmente.

La structure en bois ne pouvant être supprimée, la transmission thermique est plus importante à l’endroit de celle-ci. Il en est tenu compte dans l’évaluation du coefficient de transmission thermique (équivalent) du plancher. Malgré cela, à cause de l’épaisseur importante généralement disponible pour l’isolant, des performances élevées peuvent être atteintes.

Le prix

« Le nerf de la guerre…! »
La fourniture et la pose de l’isolant lui-même sont peu coûteuses par rapport aux autres parties du plancher.


Choix de l’isolant

Type d’isolant

L’isolant est placé dans les espaces laissés libres par la structure. Ces espaces sont généralement de dimensions et formes irrégulières. L’isolant doit donc être suffisamment souple pour épouser ces irrégularités. On utilisera donc des matelas isolants en laine minérale ou en matériaux naturels ou, si c’est possible (cavités bien fermées dans le bas), les mêmes matériaux déposés en vrac ou insufflés.

La migration de vapeur à travers le plancher devra être régulées par la pose, du côté intérieur d’un freine-vapeur étanche à l’air adapté à la finition extérieure et au type d’isolant posé (hygroscopique ou non).

Épaisseur de l’isolant

Les épaisseurs d’isolant sont déterminées en fonction de l’espace disponible. Idéalement, celui-ci doit être totalement rempli.

Conseils de mise en œuvre

> On évitera toute cavité dans l’isolant afin de ne pas créer de zones froides, des courants internes de convection ou d’aggraver les fuites d’air en cas de défectuosité du freine-vapeur. Les panneaux isolants doivent donc être posés de manière parfaitement jointive et appliqués contre les éléments de structure et les faces.

Isoler un plancher inférieur par le haut [Concevoir]

Isoler un plancher inférieur par le haut [Concevoir]


Choix du système

> Le choix du système d’isolation par l’intérieur se fait en fonction des critères suivant :

  • les performances à atteindre
  • l’esthétique recherchée
  • les performances énergétiques
  • le prix

Les performances à atteindre

L’étanchéité à l’air du plancher doit être assurée. Cela ne pose pas de gros problème lorsque le support est en béton coulé sur place. Il suffit dans ce cas de traiter les raccords de la dalle du plancher avec les murs périphériques. Par contre, lorsqu’il s’agit d’un plancher léger à ossature et éléments assemblés une couche spéciale d’étanchéité à l’air doit être prévue. Elle fait en même temps office de pare-vapeur et doit être posée entre l’isolant et la plaque circulable.

L’esthétique recherchée

Toutes sortes de finitions de sol sont possibles. Elles peuvent être lourdes (chape + finition) ou légères (panneau fin ou planches + finition éventuelle).

La raideur de l’isolant devra être adaptée au type de finition. Des joints de mouvement devront être prévus dans la finition pour éviter la rupture de celle-ci.

Si l’isolant est trop souple et ne résiste pas à l’écrasement, des lambourdes seront placées pour porter la plaque circulable.

Les performances énergétiques

Lorsque le plancher est posé sur sol, l’isolation peut éventuellement se limiter à la zone périphérique, le long des façades. (La résistance mécanique de la chape flottante devra être vérifiée en rive d’isolant).

Parfois l’espace disponible pour poser l’isolant est limité. Dans ce cas, l’isolant devra être le plus performant possible pour atteindre les valeurs souhaitées (λ le plus petit possible). Des isolants moins performants seront choisis lorsque la place disponible est suffisante et que d’autres de leurs caractéristiques sont intéressantes (étanchéité à l’eau, étanchéité à la vapeur, résistance à la compression, prix, caractère écologique, …).

Le prix

« Le nerf de la guerre…! »

Le coût de la finition dépendra des choix esthétiques et des performances attendues (résistance mécanique, résistance à l’eau, aspect, facilité d’entretien, …).


Choix de l’isolant

Type d’isolant

Les isolants mis en œuvre devront être adaptés aux contraintes spécifiques au projet (résistance à la compression, résistance à l’eau, …).

Lorsque le support est irrégulier, la pose d’un isolant en matelas souples ou projeté sur place est préférable pour épouser les défauts. Si l’isolant est rigide, il est nécessaire de régler le support avant de poser l’isolant.

Épaisseur de l’isolant

Les épaisseurs d’isolant sont calculées à partir des performances à atteindre.

Conseils de mise en œuvre

> Les panneaux isolants doivent être posés de manière parfaitement jointive et appliqués contre le plancher afin d’éviter les interruptions dans la couche isolante (= pont thermique).

> Il faut protéger et manipuler les panneaux isolants avec précautions pour éviter les écrasements, les déchirures, l’eau, la boue.


Détails d’exécution

L’isolation par le haut d’un plancher existant sera interrompue à chaque mur. À cet endroit il y a un risque de pont thermique. L’interposition d’un élément isolant entre le mur et la dalle est possible si le bâtiment n’est pas trop lourd.

Isoler un plancher inférieur par le bas [Concevoir]

Isoler un plancher inférieur par le bas [Concevoir]


Choix du système

> Le choix du système d’isolation par l’extérieur se fait en fonction des critères suivants :

  • les performances à atteindre ;
  • l’esthétique recherchée ;
  • les performances énergétiques ;
  • le prix.

Les performances à atteindre

Généralement la face extérieure des planchers est protégée de la pluie. On sera cependant attentif lorsque la plancher situé au-dessus de l’ambiance extérieure est raccordé au bas d’une façade. À cet endroit, un système doit être mis en œuvre pour éviter que les eaux de ruissellement atteignent le plafond (casse-goutte).

Schéma performances à atteindre.

L’esthétique recherchée

Lorsque la face inférieure du plancher n’est pas visible, il est inutile de revêtir l’isolant d’une finition.

Lorsque le plancher se trouve au-dessus de l’ambiance extérieure, il sera recouvert d’une finition en harmonie avec l’aspect extérieur du bâtiment et qui résiste aux agressions extérieures mécaniques et atmosphériques.

Lorsque le plancher est en même temps le plafond d’un espace adjacent non chauffé ou d’une cave, l’isolant pourra, soit rester apparent si les panneaux sont suffisamment rigides, soit être revêtu d’une finition pour environnement intérieur (planchettes, panneau, plaques de plâtre, enduit, …).

Les performances énergétiques

L’enduit isolant est difficile à mettre en œuvre au plafond et nécessite des épaisseurs excessives pour atteindre le coefficient de transmission thermique U réglementaire.

Les systèmes avec panneaux rigides peuvent être continus s’ils ne sont pas recouverts d’une finition.

Un système avec structure (finition inférieure supportée par une structure) présente une isolation discontinue et donc moins efficace pour une même épaisseur d’isolant.

Une structure métallique est déconseillée, car elle engendre des ponts thermiques.

Le prix

« Le nerf de la guerre…! »

Si l’isolant reste apparent, le coût des travaux dépendra principalement de la difficulté d’accès à la face inférieure du plancher (vide sanitaire de hauteur réduite).

Lorsque l’isolant est revêtu par une finition extérieure, le choix de cette finition (structure portante comprise) influencera fortement le coût des travaux.

Si on souhaite rendre les nœuds constructifs (appuis) conformes aux critères de la réglementation PEB en prolongeant de chemin de moindre résistance thermique, le coût des travaux annexe peut être considérable surtout si les appuis sont nombreux.


Choix de l’isolant

Type d’isolant

L’isolant est placé directement contre le plancher. Si l’isolant est souple, il épouse parfaitement la forme de son support même si celui-ci est un peu irrégulier. Si l’isolant est rigide, il est nécessaire de régler le support avant de poser l’isolant.

Un isolant perméable à l’air (laine minérale, par exemple) ne peut être choisi que si le support auquel il est fixé est lui-même étanche à l’air (plancher en béton, …).

Les produits minces réfléchissants (PMR), dont l’efficacité est beaucoup moins élevée que celle annoncée par les fabricants, sont à proscrire dans une isolation par l’extérieur puisqu’ils constituent un film pare-vapeur placé « du côté froid » du plancher, susceptible de provoquer une forte condensation sur la face interne (entre le plancher et l’isolant).

Épaisseur de l’isolant

Les épaisseurs  d’isolant sont calculées à partir des performances à atteindre..

Conseils de mise en œuvre

>Les panneaux isolants doivent être posés de manière parfaitement jointive et appliqués contre le plancher afin d’éviter les interruptions dans la couche isolante (= pont thermique) et les courants de convection.

Courants de convection.

Remarque : le risque de courants de convection est encore plus important lorsqu’il y a une lame d’air ventilée entre l’isolant et le parement extérieur.

> Il faut protéger et manipuler les panneaux isolants avec précautions pour éviter les écrasements, les déchirures, l’eau, la boue.


Choix de la finition

Cette finition ne sera généralement appliquée que lorsque la face inférieure du plancher est visible (environnement extérieur, cave ou espace adjacent non chauffé. Elle présentera les caractéristiques suivantes :

  • perméable à la vapeur d’eau pour éviter la condensation interstitielle ;
  • bonne résistance mécanique surtout en cas d’agression possible ;
  • aspect esthétique adapté ;

Détails d’exécution

L’isolation d’un plancher par le bas sera interrompue à chaque appui du plancher. À cet endroit il y a un risque de pont thermique. L’interposition d’un élément isolant entre le mur d’appui et la dalle est possible si le bâtiment n’est pas trop lourd.

Blocs isolants sous la dalle au dessus des murs de fondation.

Si cela n’est pas le cas, il est toutefois possible de prolonger à certains endroits le chemin que doit parcourir la chaleur pour sortir du volume protégé. Cette intervention reste généralement visible, mais est esthétiquement acceptable dans les caves, garages, locaux secondaires et vides sanitaires.

Allongement du chemin de moindre résistance thermique

Schéma allongement du chemin de moindre résistance thermique.

Concevoir le mur à ossature bois

Concevoir le mur à ossature bois


Choix de la finition extérieure

Les prescriptions d’urbanisme imposent l’intégration des nouveaux bâtiments aux immeubles existants. Souvent l’usage d’un parement en brique apparente est exigé. Dans ce cas le parement est placé devant le mur à ossature comme il le serait devant un mur porteur du mur creux. Un vide légèrement ventilé est ménagé entre le parement et la paroi légère.

Parement en briques devant le mur à ossature bois.

Le parement n’exprime pas le caractère léger du bâtiment, ce qui pourrait être considéré comme regrettable. De plus, la masse du parement qui serait utile pour limiter la surchauffe de l’espace intérieur est inaccessible à partir de celui-ci. Le parement fait uniquement office de protection contre la pluie.
Il peut être remplacé par un bardage en bois, en ardoises, en métal, … Le creux est fortement ventilé. La coulisse peut être partiellement remplie par un isolant supplémentaire qui renforce ainsi l’isolation de la paroi.

Bardage en bois devant un mur à ossature bois.

Un enduit extérieur décoratif étanche à l’eau et perméable à la vapeur d’eau peut également être appliqué directement sur cet isolant supplémentaire (à la place du bardage ou du parement). L’isolant et l’enduit doivent faire partie d’un même système d’isolation thermique extérieure développé, testé et homologué par un même fabricant.

Finition extérieure en cimentage

  1. Cimentage.
  2. Armature du cimentage.
  3. Isolant.
  4. Panneau extérieur de la structure bois.
  5. Isolant thermique dans la structure bois.
  6. Freine-vapeur + étanchéité à l’air.
  7. Vide technique avec ou sans isolant.
  8. Structure en bois.

Choix de la structure

La structure est généralement réalisée à l’aide de montants et de traverses en bois massif de section rectangulaire. L’essence choisie sera suffisamment durable pour cet emploi ou traité préventivement pour éviter toute attaque de champignons ou d’insectes.

Les sections auront au moins 14 cm de hauteur. Cette hauteur peut être plus importante de manière à ménager ainsi un espace plus épais pour placer l’isolant thermique et augmenter ainsi les performances. La stabilité de la paroi est aussi améliorée.

Afin de minimiser les transmissions thermiques, des poutres en I peuvent être utilisées pour les montants. Elle permet de diminuer les ponts thermiques induits par les montants et par conséquent d’augmenter la résistance thermique de la cloison.

Poutres « I » préfabriquées en bois.


Quel freine-vapeur ?

Du côté chaud de l’isolant, une couche freine vapeur est toujours nécessaire, ne fut-ce que pour assurer l’étanchéité à l’air de la paroi, essentielle pour assurer l’isolation thermique et éviter les problèmes de condensation interstitielle.

Des panneaux en OSB ou multiplex sont généralement placés de part et d’autre de la structure pour assurer le contreventement des parois. Ils constituent ainsi les caissons dans lesquels sera posé l’isolant éventuellement en vrac. Le panneau intérieur peut faire office de freine-vapeur à condition que sa perméabilité à la vapeur soit connue et que les joints entre les panneaux soient soigneusement rendus étanches à l’aide de bandes adhésives ou de mastic.

Panneaux intérieurs faisant office de freine-vapeur et étanchéité à l’air.

Si la paroi n’est pas pourvue de panneau intérieur, le contrôle de la diffusion de vapeur et de l’étanchéité à l’air sera réalisé à l’aide de membranes spécialement destinées à cette fonction. Leur perméabilité à la vapeur d’eau est, dans certains cas, variable en fonction de conditions hygrothermiques. Certaines peuvent servir de couche de confinement pour les isolants à insuffler.

Membrane freine-vapeur et étanchéité à l’air.

Le niveau de perméabilité à la vapeur des panneaux et des membranes devra être déterminé suite à des calculs réalisés par un bureau spécialisé de préférence à l’aide d’un logiciel de simulation dynamique. Ce logiciel calcule le transfert de chaleur et d’humidité dans la paroi en fonction de la température et du taux d’humidité intérieure, des conditions climatiques, de l’évaporation, de l’absorption, ainsi que de la perméabilité et de la capillarité des matériaux.


Quel pare-pluie ?

Lorsqu’il y a un creux ventilé entre la finition extérieure (bardage, parement, …) et  la paroi,  une couche de protection de l’isolant contre les infiltrations accidentelle est posée du côté froid de l’isolant. Elle doit être le plus perméable possible à la vapeur d’eau.

Des panneaux en OSB ou multiplex sont généralement placés de part et d’autre de la structure pour assurer le contreventement des parois. Ils constituent ainsi les caissons dans lesquels sera posé l’isolant éventuellement en vrac. Le panneau extérieur peut faire office de pare-pluie.

Panneaux faisant office de pare-pluie.

Si la paroi n’est pas pourvue de panneaux extérieurs de contreventement, des panneaux bitumés légers en fibre de bois ou des membranes souples très robustes, imperméables à l’eau et très perméables à la vapeur d’eau peuvent être utilisées et servir de pare-pluie et, en même temps, de couche de confinement pour les isolants à insuffler.

Pare-pluie souple.


Quel type d’isolant ?

L’isolant posé dans la structure doit pouvoir s’adapter facilement à la forme de celle-ci et être suffisamment raide pour ne pas se tasser sous son propre poids.

L’isolant sera donc idéalement :

soit, constitué de panneaux semi-rigides de fibres minérales ou organiques placés avant la pose d’une des faces  de la paroi ;

Isolant en matelas.

soit insufflé dans la paroi déjà munie de ses deux faces de coffrage (pare-pluie et pare-vapeur).

Isolant en vrac.

L’eau étant un très bon conducteur de chaleur, il faut éviter que l’isolant ne s’humidifie. La migration de vapeur et l’étanchéité à l’eau devront être correctement maîtrisées.

L’épaisseur d’isolant dépendra du type d’isolant choisi, de sa configuration dans la paroi et des performances thermiques à atteindre.


Le remplissage de l’espace technique intérieur par de l’isolant ?

L’espace technique ménagé entre le freine-vapeur et la finition intérieure peut être rempli d’isolant sans provoquer un risque de condensation interstitielle car l’épaisseur de cet espace est relativement réduite par rapport à celle de la structure isolée. De cette manière on augmente à peu de frais les performances thermiques du mur surtout si l’espace technique est relativement épais à cause de l’encombrement des installations prévues.

Remplissage du vide technique par de l’isolant

  1. Finition intérieure.
  2. Vide technique isolé.
  3. Freine-vapeur et étanchéité à l’air.
  4. Ossature bois avec isolant

Isolation à l’intérieur de la structure

Isolation  à l'intérieur de la structure

Cette technique, délicate par la résolution des risques de condensation et ponts thermiques, consiste au placement d’isolation entre les éléments de structure.

Pompes à chaleur gaz

Pompes à chaleur gaz


PAC à moteur gaz

Principe

La pompe à chaleur à moteur gaz (GHP : Gas engine Heat Pump) s’apparente fort à la pompe à chaleur électrique traditionnelle. Les seules différences résident au niveau :

  • Du système d’entrainement du compresseur : le moteur électrique accouplé mécaniquement au compresseur est remplacé par un moteur à combustion à gaz.
  • De l’exploitation de la chaleur générée par le système d’entrainement :
    • Le moteur électrique a très peu de pertes (η de l’ordre de = 98 %). En d’autres termes, l’énergie électrique, au rendement près, est transformée totalement en énergie mécanique pour le compresseur.
    • Le moteur à gaz, quant à lui, a un rendement mécanique médiocre (45-50 %). Le solde de l’énergie de combustion du gaz est de la chaleur. L’intérêt de la pompe à chaleur à moteur à gaz réside dans la récupération de la chaleur de combustion.

Schéma de principe : PAC à moteur gaz.

Technologie

PAC à moteur gaz (source : Sanyo).

Moteur gaz

Moteur gaz (source : Aisin Toyota).

La technologie des pompes à chaleur à moteur gaz est développée depuis plusieurs décennies. Le moteur gaz est un moteur thermique à faible taux de compression de type volumétrique (cycle de Miller). Le gaz utilisé est soit le gaz naturel ou le LPG. Certains moteurs utilisent le propane. Comme le montre la figure ci-contre, ce fabricant propose un moteur 4 temps accouplé mécaniquement à des compresseurs au moyen d’une ou plusieurs courroies. La particularité de ce moteur est la récupération de la chaleur de combustion du gaz résiduelle au niveau du circuit de refroidissement. Un échangeur, placé au niveau du condenseur du circuit frigorifique permet le refroidissement du moteur et, par conséquent, la récupération de chaleur de combustion du moteur en supplément de celle échangée par le circuit frigorifique.

Circuit frigorifique

Les fabricants de PAC à moteur gaz proposent plusieurs configurations de circuit frigorifique. On retrouve généralement :

  • Le groupe VRV réversible à détente directe à 2 tubes permettant de travailler en mode « change-over » ou 3 tubes en mode « récupérateur d’énergie ».
  • la PAC à condenseur à eau. En général, c’est la même machine de base que l’unité externe des groupes VRV. Un condenseur à eau est directement branché sur le circuit frigorifique.

 (Source : Aisin Toyota).

Les compresseurs sont généralement des « scrolls ».  L’avantage de la pompe à chaleur à moteur gaz réside dans le fait que les compresseurs sont entrainés par un moteur à vitesse variable et, par conséquent, peuvent moduler le débit de fluide frigorigène (R410A par exemple).


PAC gaz à absorption

Principe

Tout part de la succession, dans un cycle fermé :

  • De l’absorption d’ammoniac (NH3) gazeux en présence d’eau pour donner une solution d’ammoniaque concentré (NH4OH). Elle s’accompagne de la libération d’une grande quantité de chaleur à température élevée.
  • Et de la désorption de cette même solution d’ammoniaque (NH4OH) qui permet la libération d’ammoniac (NH3) gazeux. La désorption demande de la chaleur.

À ce stade, rien de différencie ce système thermodynamique d’une chaudière gaz à eau chaude. Au lieu de chauffer de l’eau pure en circuit fermé, on chauffe une solution d’ammoniaque (NH4OH).

L’ingéniosité du principe vient de l’utilisation de l’ammoniac (NH3) dans un cycle frigorifique secondaire qui permettra de « pomper » la chaleur d’une source froide (au niveau de l’évaporateur) pour la restituer au niveau de la source chaude (condenseur) : cette chaleur est gratuite !

En combinant la libération de chaleur lors de l’absorption et la chaleur de condensation, le bilan énergétique est nettement positif !

Technologie

Schéma de principe (source Théma).

Générateur (ou déconcentrateur)

Au niveau du générateur, le brûleur chauffe la solution d’ammoniaque (NH4OH) de manière à libérer de l’ammoniac gazeux (NH3) à haute température. En partie haute du générateur, l’ammoniac est injecté dans le circuit principal de la PAC vers le condenseur. Il va de soi que la solution d’ammoniaque se déconcentre. En continuant de chauffer la solution sans rien changer, la production d’ammoniac gazeux risque de s’arrêter d’elle-même. Pour cette raison, il est nécessaire de régénérer (ou concentrer) la solution d’ammoniaque pauvre. C’est l’absorbeur qui s’en charge !

Absorbeur (ou concentrateur)

Dans l’absorbeur, la solution pauvre issue du générateur est projetée en fines gouttelettes sur l’ammoniac gazeux provenant de l’évaporateur de la machine thermodynamique. Il s’en suit un enrichissement de la solution d’ammoniaque avec, en prime, un dégagement de chaleur important (réaction exothermique). La solution d’ammoniaque riche régénérée peut être renvoyée au niveau du générateur. Le cycle de la PAC gaz est fermé !

Sans rien changé, l’efficacité énergétique de la PAC gaz serait vraiment médiocre ! L’ingéniosité du système réside dans la récupération au condenseur de la chaleur d’absorption. Concrètement, la solution riche d’ammoniaque passera par le condenseur de manière à céder sa chaleur à la source chaude.

Condenseur

Le condenseur de la PAC gaz à absorption est de conception un peu particulière. En réalité, c’est un double condenseur :

  • Un premier échangeur branché sur le circuit thermodynamique principal permet à l’ammoniac (NH3) gazeux de condenser et donc de céder sa chaleur à la source chaude (système de chauffage).
  • Un second échangeur raccordé au circuit secondaire permet à la phase liquide/gaz d’ammoniaque de céder, elle aussi, sa chaleur d’absorption.

Évaporateur

L’évaporateur de la PAC gaz à absorption est un évaporateur classique comme celui utilisé dans les PAC électriques.

Échangeurs secondaires

La chaleur d’absorption étant libérée à haute température, elle ne peut être, qu’en partie, transmise à la source chaude en demande de températures plus modestes. Pour cette raison, d’autres échangeurs placés en aval du condenseur permettront de successivement récupérer la chaleur d’absorption (intérêt de ces échangeurs).

Disponibilité sur le marché

Environnement

Parler du CO2 mais aussi de l’impact d’une fuite de NH3 dans l’air.


PAC gaz à adsorption

Principe

Le principe de fonctionnement de la pompe à chaleur à adsorption s’appuie sur les caractéristiques de la zéolithe, une céramique microporeuse très stable et non polluante. Cette zéolithe est capable de dégager de la chaleur lorsqu’elle adsorbe de l’eau (réaction exothermique lors du passage de la forme déshydratée à la forme hydratée). Lorsqu’elle est saturée, un brûleur à gaz évacue l’eau (désorption). L’emploi de la zéolithe permet de favoriser l’utilisation de l’énergie solaire même à basse température pour le chauffage, sachant que la réaction exothermique d’adsorption peut atteindre 85 °C avec de l’eau à 4 °C.

  • Phase d’adsorption : dans la partie basse de la pompe à chaleur, l’eau présente dans un réservoir sous vide est chauffée. Cette eau, même à basse température, se transforme  en vapeur et migre vers le haut du réservoir. La microporosité de la zéolithe permet de piéger une grande quantité de vapeur (adsorption). La chaleur d’adsorption est utilisée  au niveau de la source chaude (comme un plancher chauffant par exemple) ;
  • Phase de désorption : lorsque la zéolithe saturée d’eau, le minéral est chauffé. L’eau retenue dans la zéolithe est alors libérée sous forme de vapeur (désorption). Cette vapeur coule vers la partie inférieure de la pompe à chaleur, se condense à nouveau et libère de la chaleur. Une récupération de cette chaleur est mise en place. Le système peut redémarrer dans un nouveau cycle d’adsorption.

L’adsorption et la désorption sont des réactions physiques qui n’altèrent pas la structure de la zéolithe. L’alternance adsorption/désorption est alternative, mais peut fonctionner indéfiniment.

     

Phase de désorption puis d’adsorption (Source : www.gaz-naturel.ch).

Technologie

Le système est  conçu sur la base d’une chaudière à condensation, associée à un module à zéolithe sous vide comprenant des billes de céramique microporeuse, de l’eau et les composants hydrauliques.

A l’heure actuelle, certains constructeurs ont un programme de développe des PAC gaz à adsorption pour le résidentiel (maximum 10 kW). L’adsorbant utilisé est la zéolite (Une zéolithe, ou zéolite est un minéral microporeux appartenant au groupe des silicates).

Les sources froides peuvent, comme pour les pompes à chaleur classiques :

  • L’air ;
  • L’eau ;
  • La géothermie …

Comme le montrent les figures ci-dessus, la source froide de la pompe à chaleur à adsorption peut être aussi des panneaux solaires thermiques. Les efficacités saisonnières sont à préciser par le constructeur et à vérifier par des études neutres et en situation réelle. Sur papier, ce système paraît très intéressant sachant qu’on pourrait attendre des …


Point de comparaison des PAC’s

Principe et technologie

Bien que la machine gaz à absorption/adsorption semble assez différente de la machine frigorifique traditionnelle, le principe de base de fonctionnement reste le même :

  • circulation d’un fluide réfrigérant ;
  • évaporation du fluide avec production de froid ;
  • compression du fluide demandant un apport d’énergie ;
  • condensation du fluide avec production de chaleur.

La différence réside dans le moyen de comprimer le fluide :

  • mécanique dans le cas d’une machine électrique ou à moteur à gaz ;
  • thermochimique/thermophysique dans le cas de la machine à absorption/adsorption.

Le type d’énergie nécessaire à cette compression :

  • électrique dans le cas d’une PAC électrique ;
  • calorifique dans le cas d’une PAC gaz à absorption.

PAC électrique

Principe de la PAC électrique.

La pompe à chaleur électrique utilise le travail de compression du compresseur pour faire passer la chaleur gratuite disponible à basse température au niveau de l’évaporateur (source froide : l’air extérieur, l’eau d’une rivière ou d’une nappe phréatique, …) à une température plus élevée au niveau du condenseur (source chaude : l’air intérieur, l’eau chaude d’un chauffage à basse température comme le chauffage au sol, l’ECS, …). Le transfert de la chaleur est effectué grâce un fluide frigorigène via le compresseur. A la chaleur gratuite tirée de la source de froid est ajouté le travail de compression, cette énergie étant fournie par le moteur électrique du compresseur.

PAC à moteur gaz

Principe de la PAC à moteur gaz.

Toute chose restant égale, seul le moteur électrique accouplé mécaniquement au compresseur est remplacé par un moteur à combustion gaz.

PAC gaz à absorption

Principe de la PAC gaz à absorption.

Sur le même principe que la pompe à chaleur électrique, le transfert de la chaleur gratuite de la source froide à basse température vers la source chaude à température plus élevée, est assuré  grâce à un fluide frigorigène via, non pas un compresseur, mais un générateur de chaleur au gaz. C’est à ce stade que l’analogie s’arrête et que les deux systèmes diffèrent complètement.

Efficacité énergétique

Principe de comparaison

Une pompe à chaleur est énergétiquement efficace si elle demande peu d’énergie pour fournir une puissance calorifique donnée. Pour pouvoir assurer un point de comparaison énergétique entre les différents types de pompe, il est nécessaire, par rapport à leur production de chaleur, de considérer les consommations « primaires » d’énergie. C’est le cas surtout pour l’électricité ! En effet, l’électricité consommée au niveau de la pompe à chaleur est une énergie finale qui ne tient pas compte :

  • du rendement moyen des centrales électriques en Belgique ;
  • des pertes en lignes du réseau électrique.

L’énergie primaire à considérer est :

  • Le gaz disponible au niveau de la conduite d’alimentation du bâtiment. Les kWhPCI sont utilisés pour tenir compte d’une éventuelle phase de condensation (ηPCI > 100 %).
  • L’électricité disponible au niveau du câble d’alimentation du bâtiment multipliée 2.5. Ce coefficient a été adopté par la ouverture d'une nouvelle fenêtre ! CWaPE (Commission Wallonne Pour L’Énergie) se base sur un rendement moyen de 40 % pour les centrales électriques en Europe. En d’autres termes, un 1 kWh consommé au niveau de la pompe à chaleur, 2.5 kWh ont été consommés au niveau de la centrale électrique. Dans le cas de la PAC électrique, la performance se calcule par le rapport :

    Technologie

COP = Énergie utile (chaleur) / Énergie consommée (électricité)

Cependant, pour comparer des pommes entre elles par rapport à une PAC gaz à absorption par exemple, l’énergie primaire consommée pour produire de l’électricité nécessaire à alimenter le moteur électrique, doit être considérée. On parle alors de rapport d’énergie primaire REP défini comme suit :

REP (PER) = Énergie utile / (Énergie consommée / η centrale électrique)

La valeur intéressante pour les gestionnaires de bâtiments est la valeur du COPA ou ACOP, … (vive l’Europe !) qui exprime l’efficacité  annuelle mesurée en tenant compte de toutes les consommations de la machine par rapport à l’énergie qu’elle fournit. La performance annuelle est naturellement liée à l’efficacité instantanée au cours du temps qui, elle, peut varier en fonction de différents paramètres :

  • de la température de la source froide ;
  • de la température de la source chaude ;
  • du taux de charge de la pompe à chaleur.

PAC électrique

Dans le cas de la pompe à chaleur électrique dont le COP = 3, 1 kWh d’énergie électrique finale consommé, fournit à la distribution d’un système de chauffage 3 kWh. C’est bon pour la poche du consommateur (performance finale de 300 %) ! Mais en termes d’énergie primaire, seulement 3/2.5 soit 1.2 kWh est restitué à la source chaude (performance primaire de 120 %) ; ce qui reste meilleur que la performance d’une chaudière à condensation très efficace quand même (ηPCI = 108 %).

Bilan énergétique  (source : Thema).

La performance de la PAC électrique est influencée par les paramètres repris dans le tableau suivant :

Paramètres d’influence Niveau d’influence Remarque
Température de la source froide Forte Réduction des consommations de + 3 % par augmentation de 1 °C
Température de la source chaude Forte Réduction des consommations de + 3 % réduction de 1 °C
Taux de charge Moyenne En général, une PAC électrique travaillant à charge partielle réduit les consommations

Comme le montre le tableau précédent, la PAC électrique est très sensible aux types de source chaude et de source froide. On privilégiera le fonctionnement de la PAC à charge partielle par la réduction de la vitesse du compresseur (technique INVERTER).

PAC à moteur gaz

Bilan énergétique (source Théma).

Bilan énergétique et performance (Source : Aisin Toyota).

La PAC gaz à absorption a une efficacité énergétique définie comme suit :

COP = Énergie utile (chaleur) / Énergie consommée (consommation de gaz)

Comme le montre le graphique précédent, le constructeur annonce qu’en pointe (taux de charge faible) pour 1 kWh d’énergie primaire fourni (gaz), une pompe à chaleur à moteur à gaz restitue donc 1,43 kWh maximum, ce qui en fait un système de chauffage hautement intéressant par rapport à l’environnement.
La performance de la PAC à moteur gaz est influencée par les paramètres repris dans le tableau suivant :

Paramètres d’influence Niveau d’influence Remarque
Température de la source froide Faible
Température de la source chaude Moyenne
Taux de charge Forte 30 à 40 % d’influence

La modulation de puissance est très importante pour augmenter la performance de la PAC à moteur gaz. Sur un moteur à combustion, comme celui qui équipe ce type de PAC, la modulation de puissance ne pose aucun problème. Elle est donc principalement influencée par le dimensionnement en fonction des besoins de chaleur.

PAC gaz à absorption

Bilan énergétique  (source : Thema).

Certains constructeurs annoncent des performances de l’ordre de 150 %.

Tout comme la PAC à moteur gaz, la performance de la PAC gaz à absorption est influencée par les paramètres repris dans le tableau suivant :

Paramètres d’influence Niveau d’influence Remarque
Température de la source froide Faible
Température de la source chaude Moyenne
Taux de charge Forte

Comparatif des PAC gaz

Une étude très intéressante de l’IGU (International Gas Union : « Gas Heat Pumps, the renewable heating system for the future ? ») a montré qu’en moyenne, la performance des PAC gaz, toutes parques confondues, était plutôt aux alentours des 116 % avec une valeur à 120 % en cas de configuration de la PAC gaz avec des panneaux solaires thermiques.

Performance moyenne.

PAC électrique, PAC gaz même combat ?

Tout dépend des conditions de fonctionnement (taux de charge, températures des sources chaudes et froides, …) et des consommations des auxiliaires du niveau de dégivrage). Dans la littérature, on s’accorde à dire, qu’effectivement, pour les PAC électriques et gaz c’est le même combat !

Intérêt de la géothermie ?

Par contre, comme le montre la figure ci-dessus, les PAC gaz peuvent fortement se démarquer des PAC électriques au niveau du dimensionnement de la source froide. On voit tout de suite que l’évaporateur peut être de dimension plus faible :

  • Si la source froide est l’air externe, la taille de l’évaporateur et des ventilateurs sera plus faible d’où réduction de l’investissement pour la partie évaporateur. Il s’ensuit que les consommations des auxiliaires seront aussi réduites.
  • Si la source froide est l’eau, et plus spécifiquement, la géothermie, le dimensionnement du système de géothermie est presque divisé par 3.

Surtout dans le domaine de la conception et de l’exploitation de la géothermie qui, en règle générale, passe à la trappe pour une question d’investissement (grande quantité de sondes géothermiques, profondeur importante, …), l’association d’une PAC gaz avec une géothermie est très intéressante.

Évaluer l’association cogen et chaudière condensation


Intérêt énergétique, environnemental et financier

Y a-t-il un intérêt énergétique, environnemental et financier à associer une cogénération avec une chaudière à condensation ?

Dans ce qui suit, on tente d’y répondre par l’exploitation du logiciel d’étude de pertinence de cogénération de la Région Wallonne CogenSim.

Simulation

En partant du principe qu’une cogénération est dimensionnée pour produire la base du profil des besoins de chaleur, le solde étant fourni par une chaudière, plus cette chaudière sera performante, plus importante sera la réduction des consommations énergétiques pour fournir ce solde.

Une manière d’y arriver est de simuler une cogénération associée à une chaudière dont le rendement saisonnier évolue de 80 à 99 %.

Exemple

Les besoins de chaleur et d’électricité d’un bâtiment tertiaire sont représentés par les profils de chaleur suivants. Un exemple de profil de besoins est donné dans CogenSim.On constate que :

  • la puissance maximale correspondant au dimensionnement est de 1 000 kW, soit 100 % de taux de charge ;
  • le besoin de chaleur résiduelle en été est de l’ordre de 200 kW. Ce besoin résiduel est de l’ordre de grandeur d’un besoin d’ECS ;
  • le profil électrique montre que le bâtiment est occupé 7 jours sur 7 avec une réduction d’activité le weekend.

Besoin de chaleur.

Besoin d’électricité.

La monotone de chaleur permet de mieux visualiser la fréquence des puissances de chauffe nécessaires sur une année :

Monotone de chaleur.

Les hypothèses de simulation sont nombreuses. L’objectif dans cet exemple étant de ne pas vous assommer de chiffres, les principales sont reprises ci-dessous :

  • Vecteur énergétique : gaz.
  • Type de régulation :
    • l’injection d’électricité sur le réseau est autorisée ;
    • le rejet de chaleur est interdit.
  • Les certificats verts sont garantis par la RW au prix de 65 €.
  • Les prix de l’électricité avant cogénération : 150 €/MWh.
  • Les prix de l’électricité après cogénération : 157 €/MWh.
  • La vente d’électricité : 40 €/MWh.
  • Les prix du combustible avant cogénération : 60 €/MWh.
  • Les prix du combustible après cogénération : 32.8 €/MWh.
  • Le taux de charge minimum de la cogénération : on considère en général qu’une cogénération ne peut moduler sa puissance qu’entre 60 et 100 %.
  • Le taux de charge minimum et maximum : 40 et 60 %.
  • La capacité du ballon tampon : 10 000 litres.

 

Simulation

CogenSim a sélectionné une cogénération d’une puissance de 200 kWélectrique et 297 kWthermique. Les caractéristiques principales de la machine sont détaillées dans le tableau suivant :

Combustible
Puissance nominale électrique (hors auxiliaires électriques) 200 kW
Puissance appelée par les auxiliaires électriques 4 kW
Puissance nominale thermique 297 kW
Rendement électrique à charge nominale 35 %
Rendement électrique à mi-charge 31 %
Rendement thermique à charge nominale 52 %
Rendement moyen électrique 34 %
Rendement moyen chaleur 52 %
Rendement moyen de fonctionnement 86 %

Pour différentes valeurs de rendement (80, 85, 90 et 100 %), le bilan énergétique donne :

Bilan énergétique
Rendement de la chaudière associée 80 % 85 % 90 % 100 %

Sans cogénération

Énergie électrique consommée 4,956,554 4,956,554 4,956,554 4,956,554 kWhélectrique/an
Besoins thermiques nets 3,521,490 3,521,490 3,521,490 3,521,490 kWhth/an
Combustible consommé 4,401,862 4,142,929 3,912,766 3,521,842 kWhcombustible/an
Énergie électrique primaire consommée 12,391,385 12,391,385 12,391,385 12,391,385 kWhcombustible/an
Énergie primaire totale sans cogénération 16,793,247 16,534,314 16,304,151 15,913,227 kWhcombustible/an

Avec cogénération

Énergie primaire consommée par la cogénération 3,984,400 3,984,400 3,984,400 3,984,400 kWhcombustible/an
Chaleur utile produite par la cogénération 2,076,437 2,076,437 2,076,437 2,076,437 kWhth/an
Économie combustible correspondante pour la chaufferie 2,595,546 2,442,867 2,307,152 2,076,644 kWhcombustible/an
Chaleur utile encore à produire par la chaufferie 1,448,450 1,448,450 1,448,450 1,448,450 kWhth/an
Consommation correspondante par la chaufferie 1,810,562 1,704,059 1,609,389 1,448,595 kWhcombustible/an
Énergie électrique produite par la cogénération 1,358,704 1,358,704 1,358,704 1,358,704 kWhélectrique/an
dont énergie électrique revendue au réseau 110 110 110 110 kWhélectrique/an
dont énergie électrique auto-consommée 1,358,594 1,358,594 1,358,594 1,358,594 kWhélectrique/an
Énergie électrique consommée au niveau du réseau 3,597,960 3,597,960 3,597,960 3,597,960 kWhcombustible/an
Énergie primaire totale avec cogénération 14,789,863 14,683,360 14,588,690 14,427,896 kWhélectrique/an
Taux d’économie de CO2 12 % 11 % 11 % 9 %

Sur base des résultats obtenus et dans ce cas précis, on peut « tirer » les informations suivantes :

> Le bilan énergétique théorique est favorable à l’association d’une chaudière, quelle qu’elle soit, à une cogénération.

> Lorsqu’on tend vers le rendement d’une chaudière à condensation, les consommations en énergie primaire diminuent. En effet, le besoin thermique résiduel pris en charge par la chaudière génèrera une consommation d’autant plus faible que meilleur sera le rendement de la chaudière.

 

Quant au bilan économique, il est présenté dans le tableau suivant :

Bilan financier

Sans cogénération

Coûts 80 % 85 % 90 % 100 %
Montant facture électricité 743,483 743,483 743,483 743,483 €/an
Montant facture combustible 264,111 248 575 234, 65 21,310 €/an
Montant facture énergie globale 1,007,594 992,058 978,249 954,730 €/an

Avec cogénération

Coûts
Montant facture électricité 566,678 566,678 566,678 566,678 €/an
Montant facture combustible 347,443 341,068 335,401 325,776 €/an
Montant entretien pour la cogénération 22,328 22,328 22,328 22,328 €/an
Montant facture énergie globale 936,451 930,075 924,408 914,783 €/an
Gain
Rente de l’électricité injectée 4 4 4 4 €/an
Économie annuelle sans C.V. 71,144 77,519 83,186 92,811 €/an
Taux d’économie en CO2 32 % 32 % 32 % 32 %
Certificats verts 28 306 28 306 28 306 28 306 €/an
Économie annuelle avec C.V. 99,451 105,826 111,493 121,118 €/an
Investissement
Cogénérateur complet (hors installation) 197,181 197,181 197,181 197,181
Groupe cogénération & stockage de chaleur 205,772 205,772 205,772 205,772
Aide à l’investissement 1 % 1 % 1 % 1 %
Facteur de surinvestissement 50 % 50 % 50 % 50 %
Groupe cogénération NET 305,572 305,572 305,572 305,572
Chaudière 33,333 33,333 33,333 50,000
Temps de Retour Simple (TRS) 3.4 3.2 3.0 2.9 Années

L’analyse du bilan financier montre que l’augmentation du rendement de la chaudière permet d’améliorer la rentabilité financière de l’ensemble de l’installation.

Remarque
Attention qu’il existe deux taux d’économie en CO2. On les appellera librement le taux d’économie en CO2 énergétique et le taux d’économie en CO2 lié au calcul des certificats verts (production verte d’électricité) :

> Le taux d’économie en CO2 énergétique (énergie primaire) est exprimé par la formule suivante :

tCO2 énergétique    Eref + Q  –  F /  Eref  + Q %

Où,

  • Eref = émissions d’une centrale électrique de référence (kg CO2/an). Si la centrale de référence est une TGV (turbine gaz vapeur), le rendement de la CWaPE est de 55 %. Par conséquent, Eref = 456 kg CO2/MWh ;
  • Q  = émissions d’une chaudière de référence (kg CO2/an) ;
  • F = émissions de la cogénération (kg CO2/an).

> Le taux d’économie en CO2 (calcul CV) est exprimé par la formule suivante :

tCO2 énergétique    Eref + Q  –  F / Eref   %

Où,

  • Eref = émissions d’une centrale électrique de référence (kg CO2/MWh électrique.
  • Q  = émissions d’une chaudière de référence (kg CO2/ MWh électrique).
  • F = émissions de la cogénération (kg CO2/ MWh électrique).

Choisir le type de toiture

Actuellement, les toitures plates sont aussi fiables que les toitures inclinées. Le choix se fera donc sur base des exigences architecturales de fonctionnalité et d’esthétique.

 

Dans le cas des toitures inclinées il faut choisir, soit d’isoler les versants, soit d’isoler le plancher des combles.

Isolation dans le versant de toiture.

Isolation dans le plancher des combles.

Résoudre les noeuds constructifs – isolation dans l’épaisseur de la paroi

Résoudre les noeuds constructifs - isolation dans l’épaisseur de la paroi 


Ossatures légères

Les éléments de fixation et de structure répartis sur toute la surface de ces parois ne sont pas des nœuds constructifs mais sont pris en compte dans le calcul du coefficient de transmission thermique U de la paroi elle-même. Ils ne doivent généralement pas être traités.

Exemple.

Plancher léger inférieur.

Murs creux

Dans les bâtiments anciens, la coulisse est souvent interrompue. Ces interruptions constituent des ponts thermiques qui ne peuvent pas être supprimés.

Exemples.

Appui de plancher.

Seuil de fenêtre.

Retour de baie.

Dans ce cas, il est souhaitable de ne pas insuffler l’isolant dans la coulisse. Il est préférable d’isoler par l’extérieur.

Résoudre les noeuds constructifs – isolation par l’extérieur

C’est le cas le plus facile à résoudre. En effet, il est généralement possible d’assurer la continuité de l’isolant sans rencontrer d’obstacles provoquant l’interruption de celui-ci.

Les principales difficultés seront localisées au droit des balcons et des fondations. Il n’est généralement pas possible, à coût raisonnable, de démonter le nœud constructif et d’insérer une couche isolante. La seule solution alors possible est d’allonger le chemin de moindre résistance thermique en emballant l’élément qui ne peut pas être coupé.

Les nœuds constructifs entre les fenêtres et les façades (appuis de fenêtre, linteaux, piédroits) nécessitent parfois des petites adaptations.

Résoudre les noeuds constructifs - isolation par l'extérieur


Raccord entre le pied de façade et un plancher sur vide sanitaire accessible (ou cave)

Lorsque le vide sanitaire (ou la cave) est accessible, le plancher sera isolé par l’extérieur, c.-à-d.. par le dessous. L’isolant est collé ou fixé mécaniquement.
En rénovation, la continuité entre l’isolant du mur et celle du plancher n’est pas réalisable. Il faut donc neutraliser le pont thermique en augmentant la longueur des chemins dont la résistance thermique est plus faible.

La résistance thermique du chemin ‘B’ est beaucoup plus faible que celle des chemins ‘A’ et ‘C’.

De par sa longueur, la résistance thermique du chemin ‘B’ au travers des matériaux non isolants tels que maçonneries, dalles de plancher, etc. devient aussi importante que celle des chemins ‘A’ et ‘C’.

Dans les terrains humides, le panneau isolant doit être protégé par une membrane drainante. Un drain doit être placé au bas de cette membrane pour récolter et évacuer les eaux.
Si le vide sanitaire est en contact direct avec l’air extérieur, il faut, pour les mêmes raisons que ci-dessus, prolonger l’isolant sous la dalle, sur l’intérieur du mur de fondation.

  1. Mur existant.
  2. Plancher lourd existant avec isolant appliqué sur sa face inférieure.
  3. Vide sanitaire accessible (ou cave) en contact direct avec l’air extérieur.
  4. Isolation par l’extérieur du mur de façade (cas de panneaux isolants revêtus d’un enduit).
  5. Isolant thermique résistant à l’humidité (XPS, par exemple) fixé au mur enterré pour neutraliser le pont thermique au pied de façade.
  6. Panneaux de protection mécanique résistant à l’humidité.
  7. Retour d’isolation pour neutraliser le pont thermique entre l’intérieur du bâtiment et le vide sanitaire.

Raccord entre le pied de façade et un plancher sur terre plein (isolé par l’intérieur)

Comme dans le cas précédent la continuité entre l’isolant du mur et celle du plancher n’est pas réalisable. Il faut donc neutraliser le pont thermique en prolongeant l’isolant du pied de façade en dessous du niveau du plancher.

Dans les terrains humides, le panneau isolant doit être protégé par une membrane drainante. Un drain doit être placé au bas de cette membrane pour récolter et évacuer les eaux.

  1. Mur existant.
  2. Plancher isolé sur sol.
  3. Isolation par l’extérieur du mur de façade.
  4. Isolant thermique (XPS) fixé au mur enterré pour neutraliser le pont thermique au pied de façade.
  5. Membrane drainante.
  6. Panneau de protection mécanique résistant à l’humidité.
  7. Drain et empierrement protégé à l’aide d’un géotextile.

Raccord avec une toiture chaude côté rive

Techniques

Si vous voulez savoir comment réaliser une toiture chaude ?

  1. Pièce de bois fixée à la maçonnerie.
  2. Bande d’étanchéité de raccord. Celle-ci est placée de manière à favoriser l’écoulement de l’eau vers la partie couvrante (intérieure) de la toiture.
  3. Profilé de rive avec écarteur = casse-goutte fixé à la pièce de bois.

Raccord avec une toiture chaude côté gouttière pendante

Techniques

Si vous voulez savoir comment réaliser une toiture chaude ?

  1. Mur de façade
  2. Panneaux isolants
  3. Armature de la couche d’enrobage
  4. enduit de finition
  5. Profil d’nterruption
  6. Pièces de bois (échelle)
  7. isolant existant
  8. Planche de rive
  9. Crochets
  10. Gouttière
  11. Larmier rigide
  • Isolation du mur par l’extérieur : placer les panneaux isolants (2) sur le mur de façade existant (1), le profilé d’interruption (5) fixé à la maçonnerie, l’armature et la couche d’enrobage (3) et enfin l’enduit de finition (4).
  • Poser des pièces de bois (6) là où doivent venir les crochets de la gouttière. Elles sont placées de manière à ce que la planche de rive posée ultérieurement fasse casse-goutte. Leur épaisseur est inférieure à celle de l’isolant de manière à éviter les stagnations d’eaux.
  • Création de la toiture chaude à partir du support existant (7) : l’étanchéité existante est conservée pour servir de pare-vapeur. L’isolant thermique est posé; il est prolongé entre les pièces de bois qui vont servir de support aux crochets de la gouttière. Une nouvelle étanchéité est posée sur l’isolant.
  • La planche de rive (8) est fixée sur les pièces de bois.
  • Les crochets (9) + la gouttière (10) sont placés.
  • La membrane d’étanchéité est posée. Le larmier rigide (11) assure la continuité de l’étanchéité entre la membrane et la gouttière.

Raccord avec une toiture chaude côté rive avec acrotère

Techniques

Si vous voulez savoir comment réaliser une toiture chaude ?

  1. Maçonnerie pour surélever l’acrotère.
  2. Isolation du mur par l’extérieur (cas de panneaux isolants revêtus d’un enduit : isolant collé au support, armature et couche d’enrobage, enduit de finition.).
  3. Profilé d’interruption fixé dans la maçonnerie.
  4. Création d’une toiture chaude sur support existant : l’étanchéité existante est conservée comme pare-vapeur, isolant, nouvelle étanchéité, lestage éventuel.
  5. Chanfrein.
  6. L’isolation de l’acrotère assure la continuité de l’isolation.
  7. Bande d’étanchéité de raccord. Celle-ci est placée de manière à favoriser l’écoulement de l’eau vers la partie couvrante (intérieure) de la toiture.
  8. Profilé de rive avec écarteur = casse-goutte fixé à la maçonnerie.

Bruxelles Environnement a édité une vidéo illustrative de la mise en œuvre correcte de l’isolation d’un acrotère :

    Isolation : Isolation correcte de l’acrotère [Vidéo réalisée dans le cadre du projet Conclip, soutenu par Bruxelles Environnement].


Raccord avec le versant de toiture isolé entre les chevrons

 Améliorer

Si vous voulez savoir comment isoler le versant de la toiture existante ?

  1. Chevron ou fermette.
  2. Voligeage éventuel.
  3. Sous-toiture étanche à l’eau.
  4. Contre-latte.
  5. Lattes.
  6. Éléments de couverture.
  7. Planche de pied. Sa face supérieure doit se trouver dans le même plan que le bord supérieur des chevrons ou fermes.
  8. Planche de rive.
  9. Gouttière pendante.
  10. Peigne (protection de la latte de pied contre la pluie et contre la pénétration d’oiseaux ou d’insectes).
  11. Isolation de la toiture.
  12. Pare-vapeur.
  13. Plafond.
  14. Moulure décorative.
  15. Mur plein.
  16. Finition intérieure des murs.
  17. Isolation du mur par l’extérieur.
  18. Sous-enduit + armature + enduit de finition.

Raccord avec le versant de toiture isolé au-dessus des chevrons (toiture « Sarking »)

Améliorer

Si vous voulez savoir comment isoler le versant de la toiture existante ?

  1. Cale de bois pour empêcher le glissement des panneaux isolants.
  2. Panneaux isolants rigides au-dessus des chevrons ou des fermettes (Toiture « Sarking »).
  3. Contre-lattes.
  4. Bavette insérée partiellement dans le panneau isolant pour que les eaux infiltrées s’écoulent dans la gouttière.
  5. Mur isolé par l’extérieur (cas de panneaux isolants revêtus d’un enduit : isolant collé au support, armature et couche d’enrobage. Enduit de finition.)
  6. Profilé d’interruption fixé mécaniquement à la maçonnerie.
  7. Isolant de remplissage pour assurer le continuité de la couche isolante entre la toiture et le mur.

La baie de fenêtre

Seuil et linteau – cas du panneau isolant revêtu d’un enduit

  1. Mur existant + enduit intérieur.
  2. Arrêt d’enduit + mastic.
  3. Panneau isolant collé.
  4. Armature et mortier d’enrobage.
  5. Enduit de finition.
  6. Armature d’angle.
  7. Retour d’isolation au niveau du linteau (panneau collé revêtu des mêmes couches que le reste du mur existant).
  8. Seuil en tôle pliée.
  9. Retour d’isolation au niveau du seuil.

Retour d’isolation au niveau du seuil – étapes :

  • Le seuil en pierre existant est démonté.
  • Un support de forme adéquate pour laisser de la place à l’isolant sous le châssis (une poutrelle en acier en « U » par exemple) est placé sous le châssis pour le soutenir.
  • Une couche isolante (isolant compressible) est placée sous le châssis jusqu’au panneau isolant extérieur.
  • Un nouveau seuil plus fin (métallique par exemple) est placé en garantissant l’écoulement vers l’extérieur de l’eau évacuée par le châssis (le conduit de drainage doit se trouver en avant du « talon » du seuil).

Ébrasement de baie – cas du panneau isolant revêtu d’un enduit

      1. Mur existant + enduit intérieur.
      2. Arrêt d’enduit + mastic.
      3. Panneau isolant collé.
      4. Armature et mortier d’enrobage.
      5. Enduit de finition.
      6. Armature d’angle.
      7. Retour d’isolation au niveau de l’ébrasement (panneau collé revêtu des mêmes couches que le mur).

 Seuil et linteau – cas de l’isolant protégé par un bardage

      1. Retour d’isolation au niveau du linteau.
      2. Retour d’isolation au niveau du seuil de fenêtre.
      3. Retour au niveau de l’ébrasement de fenêtre.

Retour d’isolation au niveau du linteau et au niveau de l’ébrasement : des lattes sont fixées sur le linteau et sur l’ébrasement de fenêtre. L’isolant est posé entre les lattes. Le tout est recouvert d’une finition ( feuille métallique par exemple).

Retour d’isolation au niveau du seuil – étapes :

  1. Le seuil en pierre existant est démonté.
  2. Un support de forme adéquate pour laisser de la place à l’isolant sous le châssis (une poutrelle en acier en « U » par exemple) est placé sous le châssis pour le soutenir.
  3. Une couche isolante (isolant compressible) est placée sous le châssis jusqu’au panneau isolant extérieur.
  4. Un nouveau seuil plus fin (métallique par exemple) est placé en garantissant l’écoulement vers l’extérieur de l’eau évacuée par le châssis (le conduit de drainage doit se trouver en avant du « talon » du seuil).

Seuil et linteau – cas de la création d’un mur creux

      1. Mur existant + enduit intérieur.
      2. Isolant thermique (cas d’une coulisse intégralement remplie).
      3. Mur de parement neuf.
      4. Remplissage de l’espace qui était réservé au seuil d’origine par de la maçonnerie.
      5. Nouveau seuil de fenêtre.
      6. Isolant thermique assurant la continuité entre l’isolant du mur et le châssis.
      7. Support de fenêtre sans appui sur le seuil (patte en acier galvanisé fixée mécaniquement au mur porteur).
      8. Cornière.
      9. Linteau extérieur.
      10. Membrane d’étanchéité (avec bords latéraux relevés) et joints verticaux ouverts au-dessus du linteau afin d’évacuer l’eau infiltrée dans la coulisse.
      11. Nouvelle fenêtre.
      12. Joint d’étanchéité (Mastic).
      13. Mousse isolante injectée.
      14. Nouvelle tablette (bois par exemple).
      15. Joint d’étanchéité (fond de joint + mastic).
      16. Calfeutrement
      17. Nouvelle finition de l’encadrement intérieur.

Concevoir

Les principes à respecter sont les mêmes que ceux pour un seuil et un linteau d’un nouveau mur creux.

Lorsque les dimensions du dormant du châssis ne sont pas suffisantes pour revenir avec l’épaisseur des panneaux isolants sur les retours au niveau de l’ébrasement ou/et du linteau, il faut casser la maçonnerie.

Linteau – cas du panneau isolant revêtu d’un enduit

Ébrasement de baie – cas du panneau isolant revêtu d’un enduit

De même, si l’on souhaite conserver un seuil en pierre, il faut également casser la maçonnerie pour gagner de la place.
S’il n’est pas possible de casser la maçonnerie (linteau en béton, par exemple), il faut prévoir un châssis plus petit.

Remarque : de par son épaisseur, l’isolant posé à l’extérieur fait apparaître les châssis plus enfoncés dans la façade. De même, suivant la pose au niveau du linteau et du retour de baie, les dimensions du dormant du châssis peuvent paraître moins importantes.

Choisir le type de mur [concevoir l’isolation]

Chacune de ces techniques constructives présente des avantages et des inconvénients qui guideront le choix.


Le mur creux

Principe du mur creux.

Avantages

  • Le mur creux s’intègre généralement dans l’architecture traditionnelle de nos régions.
  • Il est efficace contre les infiltrations d’eau de pluie.
  • Son parement extérieur résiste bien aux agressions mécaniques.
  • Le mur porteur intérieur généralement massif (> 100 kg/m²) renforce l’inertie thermique du bâtiment diminuant ainsi les risques de surchauffe en été et permettant un stockage de chaleur en hiver.

Inconvénients

  • L’épaisseur de l’isolant est limitée par l’épaisseur disponible dans le creux du mur (en rénovation).
  • La stabilité des parements notamment au-dessus des grandes baies nécessite des appareillages qui sont sources potentielles de ponts thermiques et de coûts supplémentaires.

Techniques

Pour en savoir plus sur les caractéristiques du mur creux : cliquez ici  !

Concevoir

Pour en savoir plus sur la conception du mur creux : cliquez ici  !


Le mur plein non isolé

Principe du mur plein non isolé.

Ce type de mur ne sera généralement pas envisagé étant donné ses mauvaises performances thermiques. Même si le matériau utilisé est relativement isolant (béton cellulaire ou terre cuite allégée), les épaisseurs nécessaires pour atteindre ne fut-ce que les performances minimales exigées par la réglementation sont déjà très importantes (50 cm). Pour des performances plus ambitieuses, cette technique n’est pas adaptée.

Techniques

Pour en savoir plus sur les caractéristiques du mur plein : cliquez ici  !

Le mur isolé par l’extérieur

Principe du mur isolé par l’extérieur.

  1. Mur plein.
  2. Mortier de collage de l’isolant.
  3. Panneau d’isolation.
  4. Armature synthétique ou métallique + sous-couche de l’enduit.
  5. Enduit de finition.

Avantages

  • L’isolant est continu et enveloppe bien le bâtiment.
  • Des épaisseurs importantes sont possibles.
  • L’aspect extérieur peut être adapté aux exigences urbanistiques.
  • Le mur généralement massif (> 100 kg/m²) renforce l’inertie thermique du bâtiment diminuant ainsi les risques de surchauffe en été et permettant un stockage de chaleur en hiver.

Inconvénients

  • La face extérieure de la façade est relativement fragile aux agressions mécaniques.

Techniques

Pour en savoir plus sur les différents systèmes d’isolation par l’extérieur : cliquez ici  !

Concevoir

Pour en savoir plus sur la conception du mur isolé par l’extérieur cliquez ici  !

Le mur isolé par l’intérieur

Principe du mur mur isolé par l’intérieur.

Ce type de mur ne sera généralement pas envisagé pour une nouvelle construction à cause de la difficulté à gérer les ponts thermiques, le risque de condensation interstitielle dans la façade et l’affaiblissement de l’inertie thermique du bâtiment (défavorable pour la gestion des surchauffes estivales).


Le mur à ossature bois

Principe du mur à ossature bois.

Avantages

  • Le mur à ossature bois est fabriqué en atelier et sa pose sur chantier est très rapide.
  • L’espace disponible pour la pose de l’isolant est généralement important. La façade peut donc être très performante du point de vue thermique.
  • Son inertie thermique faible peut être un avantage pour les bâtiments à occupation occasionnelle (salles de fête, lieux de culte, …) car elle permet une mise à température rapide sans apport d’énergie excessif et stockage inutile de celle-ci.

Inconvénients

  • La faible inertie de la façade augmente les risques de surchauffe en été.
  • Certaines réglementations urbanistiques imposent des parements extérieurs en brique. Du point de vue constructif, ce parement lourd n’est pas nécessaire. Il est coûteux. Il trompe l’observateur sur la nature de la paroi. Une couche massive de matériau est placée  à l’extérieur de l’isolant alors qu’elle aurait éventuellement pu être utile à l’intérieur pour stabiliser la température.

Techniques

Pour en savoir plus sur les caractéristiques du mur à ossature : cliquez ici  !

Techniques

Pour en savoir plus sur l’isolation dans l’ossature : cliquez ici  !

Concevoir

Pour en savoir plus sur la conception du mur à ossature bois: cliquez ici  !

Le mur-rideau

Principe du mur-rideau.

Le mur-rideau est comparable à  une fenêtre de grande dimension avec d’éventuelles parties pleines (non transparentes). Les exigences thermiques réglementaires  ne sont pas sévères et peuvent généralement être respectées. Toutefois, si certains murs rideaux avec triples vitrages atteignent des performances intéressantes (U < 0.85 W/m²K), ces valeurs sont bien moins bonnes que celles obtenues par des murs traditionnels (U < 0.4 W/m²K). Il est donc préférable de n’opter pour les murs rideaux que lorsque de grandes surfaces vitrées sont nécessaires. Si ce n’est pas le cas, une façade légère en bois est plus indiquée si le choix d’une façade légère est fait.

Techniques

Pour en savoir plus sur les caractéristiques du mur rideau: cliquez ici  !

Concevoir

Pour en savoir plus sur la conception du mur rideau: cliquez ici  !

Déterminer les performances thermiques à atteindre [Concevoir]

Déterminer les performances thermiques à atteindre [Concevoir]


La réglementation

Outre un niveau de performance global à atteindre (Kglobal et E), la PEB en matière d’isolation exige des valeurs maximales pour le coefficient de transmission thermique Umax des parois faisant partie de la surface de déperdition.

En rénovation, ces valeurs doivent être respectées pour toute paroi qui fait l’objet d’une reconstruction ou qui est ajoutée.

Il se peut également que ces valeurs (ou même des valeurs plus sévères) doivent être atteintes, et ce même si une paroi n’est pas directement touchée par la rénovation, lorsqu’il y a changement d’affectation du bâtiment, de manière à atteindre le niveau global d’isolation (K).


Les recommandations

Si l’on s’en tient à la réglementation, un coefficient de transmission thermique U est requis pour les parois délimitant le volume protégé. Mais il faut comprendre cette valeur comme l’exigence de qualité minimale à respecter, sorte de garde-fou que la Région a voulu imposer aux constructeurs.

L’épaisseur est le résultat d’un compromis :

  • Plus on isole, plus la consommation diminue (chauffage et climatisation), et avec lui le coût d’exploitation du bâtiment.
  • Plus on isole, plus le coût d’investissement augmente.

On peut aujourd’hui aller plus loin dans l’isolation des parois sans pour autant générer de grandes modifications dans la technique de construction. On peut aussi vouloir atteindre certains labels qui donnent parfois droit à des subsides. A titre d’exemple, pour une certification « passive » une isolation des parois approchant un U de 0.15 W/m²K est recommandée.

Elle permet de satisfaire de manière plus aisée l’exigence de niveau d’isolation globale (K).
Quelques considérations complémentaires :

  • Souvent c’est une logique de rentabilité financière qui détermine l’épaisseur d’isolant mis en place. Si une logique de rentabilité écologique était prise, la lutte contre le CO2 nous pousserait vers une isolation plus forte !
  • Le prix de l’énergie sur lequel on détermine la rentabilité varie sans cesse mais la tendance est clairement à la hausse. Cette évolution doit donc être prise en compte dans l’évolution de la rentabilité. Si le litre de fuel est un jour à 3 €, la rentabilité de l’isolation ne sera même plus discutée !
  • Maintenir 20°C dans un bâtiment, c’est un peu comme maintenir un niveau de 20 cm d’eau dans un seau percé. Aux déperditions du bâtiment correspondent des fuites dans la paroi du seau. En permanence nous injectons de la chaleur dans le bâtiment. Or, si en permanence on nous demandait d’apporter de l’eau dans le seau pour garder les 20 cm, notre premier réflexe ne serait-il pas de boucher les trous du seau ?

  • Expliquez aux Scandinaves, aux Suisses,. que nous hésitons entre 6 et 8 cm d’isolant, vous les verrez sourire, eux qui placent couramment 20 cm de laine minérale, sans état d’âme !

Pourquoi une isolation moins poussée sur le sol ?

En hiver la température du sol est plus élevée que la température extérieure. La « couverture » peut donc être moins épaisse.

Pourquoi une isolation plus poussée en toiture que dans les murs ?

Si la température extérieure est cette fois identique dans les 2 cas, le placement de l’isolant en toiture est plus facile à mettre en œuvre en forte épaisseur. Le coût est proportionnellement moindre. La rentabilité de la surépaisseur est meilleure.


Épaisseur d’isolant

L’épaisseur d’isolant (ei) peut être calculée par la formule :

1/U = Rsi + e11 + eii + e22 + Rse

ei = λi [1/U – (Rsi + e11 + e22 + Rse)]

avec,

  • λi : le coefficient de conductivité thermique de l’isolant (W/mK),
  • U : le coefficient de transmission thermique de la paroi à atteindre (W/m²K),
  • Rse et Rsi : les résistances thermiques d’échange entre le mur et les ambiances extérieure et intérieure. Ils valent respectivement 0,04 et 0,13 m²K/W,
  • e1/λ1, e22 : la résistance thermique des autres couches de matériaux (m²K/W).

Dans le tableau ci-dessous, vous trouverez les épaisseurs minimales d’isolant à ajouter sur la face interne ou externe du mur plein pour obtenir différents coefficients de transmission.

Hypothèses de calcul :

  • Les coefficients de conductivité thermique (λ en W/mK) ou les résistances thermiques (Ru en m²K/W) des maçonneries utilisées et des isolants sont ceux indiqués dans l’annexe VII de l’AGW du 17 avril 2008.
  • La maçonnerie est considérée comme sèche et le coefficient de conductivité thermique de celle-ci correspond à celui du matériau sec. En effet, on a considéré que le mur isolé par l’intérieur ou par l’extérieur avait été protégé contre les infiltrations d’eau, comme il se doit.
  • La face intérieure de la maçonnerie est recouverte d’un enduit à base de plâtre d’1 cm d’épaisseur.

Remarques.

  • Lorsqu’on utilise un isolant disposant d’un agrément technique (ATG), on peut se fier au coefficient de conductivité thermique certifié par celui-ci; celui-ci est , en général, plus faible que celui indiqué dans dans l’annexe VII de l’AGW du 17 avril  2008 et on peut ainsi diminuer l’épaisseur d’isolant, parfois de manière appréciable.
  • Les épaisseurs calculées doivent être augmentées de manière à obtenir des épaisseurs commerciales.
  • A épaisseur égale et pour autant que l’isolant soit correctement mis en œuvre, la présence d’une lame d’air moyennement ventilée entre l’isolant et sa protection (enduit ou bardage), permet de diminuer le coefficient de transmission thermique U de 2,5 à 5 %.
Composition du mur plein Masse volumique (kg/m³) λ(W/mK) ou Ru (m²K/W) Épaisseur du mur plein (cm) Coefficient de transmission thermique du mur plein sans isolant (W/m²K) Épaisseur de l’isolant (en cm) à ajouter pour obtenir Umax :
Umax (W/m²K) Nature de l’isolant
MW/EPS XPS PUR/PIR CG
Maçonnerie de briques ordinaires

 

1 000 à 2 100

 

0.72

 

19

 

2.22

 

0.60 5.47 4.86 4.25 6.69
0.40 9.22 8.20 7.17 11.27
0.30 12.97 11.53 10.09 15.85
0.15 27.97 24.86 21.76 34.19
29

 

1.69

 

0.60 4.84 4.31 3.77 5.92
0.40 8.59 7.64 6.68 10.50
0.30 12.34 10.97 9.60 15.09
0.15 27.34 24.3 21.26 33.41
39

 

1.37

 

0.60 4.22 3.75 3.28 5.16
0.40 7.97 7.08 6.20 9.74
0.30 11.72 10.42 9.12 14.32
0.15 26.72 23.75 20.78 32.65
Maçonnerie de moellons

 

2 200

 

1.40

 

29

 

2.54

 

0.60 5.73 5.09 4.45 7.00
0.40 9.48 8.42 7.37 11.58
0.30 13.23 11.76 10.29 16.16
0.15 28.23 25.09 21.96 34.5
39

 

2.15

 

0.60 5.40 4.80 4.20 6.60
0.40 9.15 8.14 7.12 11.19
0.30 12.90 11.47 10.04 15.77
0.15 27.91 24.81 21.71 34.11
Blocs creux de béton lourd

 

> 1 200

 

0.11

 

14

 

3.36

 

0.60 6.16 5.48 4.79 7.53
0.40 9.91 8.81 7.71 12.12
0.30 13.66 12.14 10.63 16.70
0.15 28.66 25.48 22.29 35.03
0.14

 

19

 

3.06

 

0.60 6.03 5.36 4.69 7.37
0.40 9.78 8.69 7.60 11.95
0.30 13.53 12.02 10.52 16.53
0.15 28.53 25.36 22.19 34.87
0.20

 

29

 

2.58

 

0.60 5.76 5.12 4.48 7.04
0.40 9.51 8.45 7.39 11.62
0.30 13.26 11.78 10.31 16.20
0.15 28.26 25.12 21.98 34.53
Blocs de béton mi-lourd

 

1 200 à 1 800

 

0.75

 

14

 

2.67

 

0.60 5.82 5.17 4.52 7.11
0.40 9.57 8.50 7.44 11.69
0.30 13.32 11.84 10.36 16.28
0.15 28.31 25.17 22.02 34.61
19

 

2.27

 

0.60 5.52 4.90 4.29 6.74
0.40 9.27 8.24 7.21 11.33
0.30 13.02 11.57 10.12 15.91
0.15 28.02 24.90 21.79 34.24
29

 

1.74

 

0.60 4.92 4.37 3.82 6.01
0.40 8.67 7.70 6.74 10.59
0.30 12.42 11.04 9.66 15.18
0.15 27.41 24.37 21.32 33.51
Blocs de béton moyen

 

900 à  1 200

 

0.40

 

14

 

1.86

 

0.60 5.08 4.52 3.95 6.21
0.40 8.83 7.85 6.87 10.80
0.30 12.58 11.18 9.79 15.38
0.15 27.58 24.52 21.45 33.71
19

 

1.51

 

0.60 4.52 4.02 3.52 5.52
0.40 8.27 7.35 6.43 10.11
0.30 12.02 10.68 9.35 14.69
0.15 27.02 24.02 21.02 33.02
29

 

1.10

 

0.60 3.39 3.02 2.64 4.15
0.40 7.14 6.35 5.56 8.73
0.30 10.89 9.68 8.47 13.32
0.15 25.91 23.03 20.15 31.67
Blocs de béton léger

 

600 à 900

 

0.30

 

14

 

1.53

 

0.60 4.56 4.05 3.54 5.57
0.40 8.31 7.38 6.46 10.15
0.30 12.06 10.72 9.38 14.74
0.15 27.06 24.05 21.05 33.07
19

 

1.22

 

0.60 3.81 3.38 2.96 4.65
0.40 7.56 6.72 5.88 9.24
0.30 11.31 10.05 8.79 13.82
0.15 26.31 23.39 20.46 32.16
29

 

0.87

 

0.60 2.31 2.05 1.79 2.82
0.40 6.06 5.38 4.71 7.40
0.30 9.81 8.72 7.63 11.99
0.15 24.83 22.07 19.31 30.34
Blocs creux de béton léger

 

< 1 200

 

0.30

 

14

 

2.05

 

0.60 5.31 4.72 4.13 6.49
0.40 9.06 8.05 7.04 11.07
0.30 12.81 11.38 9.96 15.65
0.15 27.8 24.72 21.63 33.98
0.35

 

19

 

1.86

 

0.60 5.08 4.52 3.95 6.21
0.40 8.83 7.85 6.87 10.80
0.30 12.58 11.18 9.79 15.38
0.15 27.58 24.52 21.45 33.71
0.45

 

29

 

1.57

 

0.60 4.63 4.12 3.60 5.66
0.40 8.38 7.45 6.52 10.25
0.30 12.13 10.78 9.44 14.83
0.15 27.13 24.12 21.10 33.16
Blocs de béton très léger

 

< 600

 

0.22

 

14

 

1.21

 

0.60 3.79 3.37 2.95 4.64
0.40 7.54 6.71 5.87 9.22
0.30 11.29 10.04 8.78 13.80
0.15 26.28 23.36 20.44 32.12
19

 

0.95

 

0.60 2.77 2.46 2.16 3.39
0.40 6.52 5.80 5.07 7.97
0.30 10.27 9.13 7.99 12.55
0.15 25.26 22.46 19.65 30.88
29

 

0.66

 

0.60 0.73 0.65 0.56 0.89
0.40 4.48 3.98 3.48 5.47
0.30 8.23 7.31 6.40 10.05
0.15 23.18 20.61 18.03 28.33
Blocs de béton cellulaire

 

< 500

 

0.18

 

15

 

0.98

 

0.60 2.91 2.58 2.26 3.55
0.40 6.66 5.92 5.18 8.14
0.30 10.41 9.25 8.09 12.72
0.15 25.41 22.59 19.76 31.05
20

 

0.77

 

0.60 1.66 1.47 1.29 2.03
0.40 5.41 4.81 4.21 6.61
0.30 9.16 8.14 7.12 11.19
0.15 24.16 21.47 18.79 29.52
30

 

0.54

 

0.60
0.40 2.91 2.58 2.26 3.55
0.30 6.66 5.92 5.18 8.14
0.15 21.67 19.26 16.85 26.48
Blocs de terre cuite lourds

 

1 600 à 2 100

 

0.90

 

14

 

2.92

 

0.60 5.96 5.30 4.63 7.28
0.40 9.71 8.63 7.55 11.86
0.30 13.46 11.96 10.47 16.45
0.15 28.46 25.3 22.13 34.78
19

 

2.51

 

0.60 5.71 5.07 4.44 6.98
0.40 9.46 8.41 7.36 11.56
0.30 13.21 11.74 10.27 16.14
0.15 28.21 25.07 21.94 34.48
29

 

1.96

 

0.60 5.21 4.63 4.05 6.36
0.40 8.96 7.96 6.97 10.95
0.30 12.71 11.30 9.88 15.53
0.15 27.70 24.63 21.55 33.86
Blocs de terre cuite perforés

 

1 000 à 1 600

 

0.54

 

14

 

2.24

 

0.60 5.49 4.88 4.27 6.71
0.40 9.24 8.21 7.19 11.29
0.30 12.99 11.55 10.10 15.88
0.15 27.99 24.88 21.77 34.21
19

 

1.86

 

0.60 5.07 4.51 3.95 6.20
0.40 8.82 7.84 6.86 10.79
0.30 12.57 11.18 9.78 15.37
0.15 27.58 24.52 21.45 33.71
29

 

1.38

 

0.60 4.24 3.77 3.30 5.18
0.40 7.99 7.10 6.22 9.77
0.30 11.74 10.44 9.13 14.35
0.15 26.74 23.77 20.80 32.68
Blocs de terre cuite perforés

 

700 à 1 000

 

0.27

 

14

 

1.42

 

0.60 4.32 3.84 3.36 5.29
0.40 8.07 7.18 6.28 9.87
0.30 11.82 10.51 9.20 14.45
0.15 26.83 23.85 20.87 32.79
19

 

1.12

 

0.60 3.49 3.10 2.72 4.27
0.40 7.24 6.44 5.63 8.85
0.30 10.99 9.77 8.55 13.43
0.15 25.98 23.10 20.21 31.76
29

 

0.79

 

0.60 1.82 1.62 1.42 2.23
0.40 5.57 4.95 4.34 6.81
0.30 9.32 8.29 7.25 11.40
0.15 24.30 21.60 18.90 29.70
Blocs silico-calcaire creux

 

1 200 à 1 700

 

0.60

 

14

 

2.38

 

0.60 5.61 4.98 4.36 6.85
0.40 9.36 8.32 7.28 11.44
0.30 13.11 11.65 10.19 16.02
0.15 28.11 24.99 21.86 34.36
19

 

1.98

 

0.60 5.23 4.65 4.07 6.40
0.40 8.98 7.98 6.99 10.98
0.30 12.73 11.32 9.90 15.56
0.15 27.73 24.65 21.57 33.89
29

 

1.49

 

0.60 4.48 3.98 3.49 5.48
0.40 8.23 7.32 6.40 10.06
0.30 11.98 10.65 9.32 14.65
0.15 26.98 23.98 20.98 32.98

Source : Isolation thermique des murs pleins réalisée par le CSTC à la demande de la DGTRE.

Il est également possible d’utiliser le fichier Excel pour calculer le U d’une paroi en contact avec l’extérieur.