Pompes à chaleur gaz

Pompes à chaleur gaz


Préambule 

Cet article présente avec une grande clarté technique les principes de fonctionnement des pompes à chaleur (PAC) à gaz, une technologie mature et performante. Cependant, pour le lecteur de 2025, il est crucial de contextualiser cette solution dans un paysage énergétique, réglementaire et environnemental en pleine révolution, marqué par une sortie programmée des énergies fossiles.

Une Technologie à la Croisée des Chemins

Les PAC gaz, avec leurs rendements élevés (GUE de 130 à 170%) et leur indépendance vis-à-vis de la température extérieure, ont longtemps représenté une alternative séduisante aux PAC électriques. Mais en 2024-2025, leur utilisation de combustibles fossiles (gaz naturel, propane) les place au cœur d’un paradoxe : comment concilier performance technique et impératif de décarbonation ? Alors que l’Europe vise la neutralité carbone, l’avenir des technologies à combustion directe est remis en question, avec des interdictions progressives des chaudières gaz qui se profilent à l’horizon 2026-2030.

La Concurrence des PAC Électriques Haute Performance

Le marché des PAC électriques a connu une véritable révolution, avec des modèles atteignant des coefficients de performance (COP) saisonniers de 5 à 7. Cette efficacité exceptionnelle, couplée à un mix électrique de plus en plus décarboné, réduit considérablement l’avantage économique et environnemental des PAC gaz fossiles. L’argument d’un coût énergétique inférieur de 30% doit être réévalué à l’aune des prix actuels de l’électricité et du gaz, et des bilans carbone complets.

La Voie de la Décarbonation : Biogaz et Hydrogène

La survie des PAC gaz dépend de leur capacité à s’affranchir des combustibles fossiles. Deux voies se dessinent :
Le biogaz et le biométhane : L’utilisation de gaz renouvelables, issus de la méthanisation de déchets organiques, permet de décarboner le fonctionnement des PAC gaz existantes sans modification majeure. C’est la voie la plus mature et la plus accessible à court terme.
L’hydrogène vert : À plus long terme, l’adaptation des moteurs gaz à l’hydrogène produit par électrolyse de l’eau avec des énergies renouvelables représente une perspective prometteuse, mais qui nécessite encore des développements technologiques et des investissements massifs dans les infrastructures.

Un Cadre Réglementaire Exigeant

Au-delà de la question du combustible, les PAC gaz sont soumises à des réglementations environnementales de plus en plus strictes. La réglementation F-Gas III, en vigueur depuis mars 2024, impose l’abandon des fluides frigorigènes à fort potentiel de réchauffement global (comme le R410A) d’ici 2025, obligeant les fabricants à migrer vers des alternatives plus vertueuses comme le propane (R290). De plus, l’utilisation d’ammoniac (NH3) dans les PAC à absorption soulève des enjeux de sécurité et de toxicité qui nécessitent des précautions d’installation et de maintenance rigoureuses.
En conclusion, cet article vous fournira des bases techniques solides pour comprendre le fonctionnement des PAC gaz. Ce préambule vous invite à les considérer avec un regard critique et prospectif : une technologie performante mais à combustible fossile, dont l’avenir dépendra de sa capacité à intégrer les gaz renouvelables et à répondre aux exigences d’un monde en pleine transition énergétique.

PAC à moteur gaz

Principe

La pompe à chaleur à moteur gaz (GHP : Gas engine Heat Pump) s’apparente fort à la pompe à chaleur électrique traditionnelle. Les seules différences résident au niveau :

  • Du système d’entrainement du compresseur : le moteur électrique accouplé mécaniquement au compresseur est remplacé par un moteur à combustion à gaz.
  • De l’exploitation de la chaleur générée par le système d’entrainement :
    • Le moteur électrique a très peu de pertes (η de l’ordre de = 98 %). En d’autres termes, l’énergie électrique, au rendement près, est transformée totalement en énergie mécanique pour le compresseur.
    • Le moteur à gaz, quant à lui, a un rendement mécanique médiocre (45-50 %). Le solde de l’énergie de combustion du gaz est de la chaleur. L’intérêt de la pompe à chaleur à moteur à gaz réside dans la récupération de la chaleur de combustion.

Schéma de principe : PAC à moteur gaz.

Technologie

PAC à moteur gaz (source : Sanyo).

Moteur gaz

Moteur gaz (source : Aisin Toyota).

La technologie des pompes à chaleur à moteur gaz est développée depuis plusieurs décennies. Le moteur gaz est un moteur thermique à faible taux de compression de type volumétrique (cycle de Miller). Le gaz utilisé est soit le gaz naturel ou le LPG. Certains moteurs utilisent le propane. Comme le montre la figure ci-contre, ce fabricant propose un moteur 4 temps accouplé mécaniquement à des compresseurs au moyen d’une ou plusieurs courroies. La particularité de ce moteur est la récupération de la chaleur de combustion du gaz résiduelle au niveau du circuit de refroidissement. Un échangeur, placé au niveau du condenseur du circuit frigorifique permet le refroidissement du moteur et, par conséquent, la récupération de chaleur de combustion du moteur en supplément de celle échangée par le circuit frigorifique.

Circuit frigorifique

Les fabricants de PAC à moteur gaz proposent plusieurs configurations de circuit frigorifique. On retrouve généralement :

  • Le groupe VRV réversible à détente directe à 2 tubes permettant de travailler en mode « change-over » ou 3 tubes en mode « récupérateur d’énergie ».
  • la PAC à condenseur à eau. En général, c’est la même machine de base que l’unité externe des groupes VRV. Un condenseur à eau est directement branché sur le circuit frigorifique.

 (Source : Aisin Toyota).

Les compresseurs sont généralement des « scrolls ».  L’avantage de la pompe à chaleur à moteur gaz réside dans le fait que les compresseurs sont entrainés par un moteur à vitesse variable et, par conséquent, peuvent moduler le débit de fluide frigorigène (R410A par exemple).


PAC gaz à absorption

Principe

Tout part de la succession, dans un cycle fermé :

  • De l’absorption d’ammoniac (NH3) gazeux en présence d’eau pour donner une solution d’ammoniaque concentré (NH4OH). Elle s’accompagne de la libération d’une grande quantité de chaleur à température élevée.
  • Et de la désorption de cette même solution d’ammoniaque (NH4OH) qui permet la libération d’ammoniac (NH3) gazeux. La désorption demande de la chaleur.

À ce stade, rien de différencie ce système thermodynamique d’une chaudière gaz à eau chaude. Au lieu de chauffer de l’eau pure en circuit fermé, on chauffe une solution d’ammoniaque (NH4OH).

L’ingéniosité du principe vient de l’utilisation de l’ammoniac (NH3) dans un cycle frigorifique secondaire qui permettra de « pomper » la chaleur d’une source froide (au niveau de l’évaporateur) pour la restituer au niveau de la source chaude (condenseur) : cette chaleur est gratuite !

En combinant la libération de chaleur lors de l’absorption et la chaleur de condensation, le bilan énergétique est nettement positif !

Technologie

Schéma de principe (source Théma).

Générateur (ou déconcentrateur)

Au niveau du générateur, le brûleur chauffe la solution d’ammoniaque (NH4OH) de manière à libérer de l’ammoniac gazeux (NH3) à haute température. En partie haute du générateur, l’ammoniac est injecté dans le circuit principal de la PAC vers le condenseur. Il va de soi que la solution d’ammoniaque se déconcentre. En continuant de chauffer la solution sans rien changer, la production d’ammoniac gazeux risque de s’arrêter d’elle-même. Pour cette raison, il est nécessaire de régénérer (ou concentrer) la solution d’ammoniaque pauvre. C’est l’absorbeur qui s’en charge !

Absorbeur (ou concentrateur)

Dans l’absorbeur, la solution pauvre issue du générateur est projetée en fines gouttelettes sur l’ammoniac gazeux provenant de l’évaporateur de la machine thermodynamique. Il s’en suit un enrichissement de la solution d’ammoniaque avec, en prime, un dégagement de chaleur important (réaction exothermique). La solution d’ammoniaque riche régénérée peut être renvoyée au niveau du générateur. Le cycle de la PAC gaz est fermé !

Sans rien changé, l’efficacité énergétique de la PAC gaz serait vraiment médiocre ! L’ingéniosité du système réside dans la récupération au condenseur de la chaleur d’absorption. Concrètement, la solution riche d’ammoniaque passera par le condenseur de manière à céder sa chaleur à la source chaude.

Condenseur

Le condenseur de la PAC gaz à absorption est de conception un peu particulière. En réalité, c’est un double condenseur :

  • Un premier échangeur branché sur le circuit thermodynamique principal permet à l’ammoniac (NH3) gazeux de condenser et donc de céder sa chaleur à la source chaude (système de chauffage).
  • Un second échangeur raccordé au circuit secondaire permet à la phase liquide/gaz d’ammoniaque de céder, elle aussi, sa chaleur d’absorption.

Évaporateur

L’évaporateur de la PAC gaz à absorption est un évaporateur classique comme celui utilisé dans les PAC électriques.

Échangeurs secondaires

La chaleur d’absorption étant libérée à haute température, elle ne peut être, qu’en partie, transmise à la source chaude en demande de températures plus modestes. Pour cette raison, d’autres échangeurs placés en aval du condenseur permettront de successivement récupérer la chaleur d’absorption (intérêt de ces échangeurs).

Disponibilité sur le marché

Environnement

Parler du CO2 mais aussi de l’impact d’une fuite de NH3 dans l’air.


PAC gaz à adsorption

Principe

Le principe de fonctionnement de la pompe à chaleur à adsorption s’appuie sur les caractéristiques de la zéolithe, une céramique microporeuse très stable et non polluante. Cette zéolithe est capable de dégager de la chaleur lorsqu’elle adsorbe de l’eau (réaction exothermique lors du passage de la forme déshydratée à la forme hydratée). Lorsqu’elle est saturée, un brûleur à gaz évacue l’eau (désorption). L’emploi de la zéolithe permet de favoriser l’utilisation de l’énergie solaire même à basse température pour le chauffage, sachant que la réaction exothermique d’adsorption peut atteindre 85 °C avec de l’eau à 4 °C.

  • Phase d’adsorption : dans la partie basse de la pompe à chaleur, l’eau présente dans un réservoir sous vide est chauffée. Cette eau, même à basse température, se transforme  en vapeur et migre vers le haut du réservoir. La microporosité de la zéolithe permet de piéger une grande quantité de vapeur (adsorption). La chaleur d’adsorption est utilisée  au niveau de la source chaude (comme un plancher chauffant par exemple) ;
  • Phase de désorption : lorsque la zéolithe saturée d’eau, le minéral est chauffé. L’eau retenue dans la zéolithe est alors libérée sous forme de vapeur (désorption). Cette vapeur coule vers la partie inférieure de la pompe à chaleur, se condense à nouveau et libère de la chaleur. Une récupération de cette chaleur est mise en place. Le système peut redémarrer dans un nouveau cycle d’adsorption.

L’adsorption et la désorption sont des réactions physiques qui n’altèrent pas la structure de la zéolithe. L’alternance adsorption/désorption est alternative, mais peut fonctionner indéfiniment.

     

Phase de désorption puis d’adsorption (Source : www.gaz-naturel.ch).

Technologie

Le système est  conçu sur la base d’une chaudière à condensation, associée à un module à zéolithe sous vide comprenant des billes de céramique microporeuse, de l’eau et les composants hydrauliques.

A l’heure actuelle, certains constructeurs ont un programme de développe des PAC gaz à adsorption pour le résidentiel (maximum 10 kW). L’adsorbant utilisé est la zéolite (Une zéolithe, ou zéolite est un minéral microporeux appartenant au groupe des silicates).

Les sources froides peuvent, comme pour les pompes à chaleur classiques :

  • L’air ;
  • L’eau ;
  • La géothermie …

Comme le montrent les figures ci-dessus, la source froide de la pompe à chaleur à adsorption peut être aussi des panneaux solaires thermiques. Les efficacités saisonnières sont à préciser par le constructeur et à vérifier par des études neutres et en situation réelle. Sur papier, ce système paraît très intéressant sachant qu’on pourrait attendre des …


Point de comparaison des PAC’s

Principe et technologie

Bien que la machine gaz à absorption/adsorption semble assez différente de la machine frigorifique traditionnelle, le principe de base de fonctionnement reste le même :

  • circulation d’un fluide réfrigérant ;
  • évaporation du fluide avec production de froid ;
  • compression du fluide demandant un apport d’énergie ;
  • condensation du fluide avec production de chaleur.

La différence réside dans le moyen de comprimer le fluide :

  • mécanique dans le cas d’une machine électrique ou à moteur à gaz ;
  • thermochimique/thermophysique dans le cas de la machine à absorption/adsorption.

Le type d’énergie nécessaire à cette compression :

  • électrique dans le cas d’une PAC électrique ;
  • calorifique dans le cas d’une PAC gaz à absorption.

PAC électrique

Principe de la PAC électrique.

La pompe à chaleur électrique utilise le travail de compression du compresseur pour faire passer la chaleur gratuite disponible à basse température au niveau de l’évaporateur (source froide : l’air extérieur, l’eau d’une rivière ou d’une nappe phréatique, …) à une température plus élevée au niveau du condenseur (source chaude : l’air intérieur, l’eau chaude d’un chauffage à basse température comme le chauffage au sol, l’ECS, …). Le transfert de la chaleur est effectué grâce un fluide frigorigène via le compresseur. A la chaleur gratuite tirée de la source de froid est ajouté le travail de compression, cette énergie étant fournie par le moteur électrique du compresseur.

PAC à moteur gaz

Principe de la PAC à moteur gaz.

Toute chose restant égale, seul le moteur électrique accouplé mécaniquement au compresseur est remplacé par un moteur à combustion gaz.

PAC gaz à absorption

Principe de la PAC gaz à absorption.

Sur le même principe que la pompe à chaleur électrique, le transfert de la chaleur gratuite de la source froide à basse température vers la source chaude à température plus élevée, est assuré  grâce à un fluide frigorigène via, non pas un compresseur, mais un générateur de chaleur au gaz. C’est à ce stade que l’analogie s’arrête et que les deux systèmes diffèrent complètement.

Efficacité énergétique

Principe de comparaison

Une pompe à chaleur est énergétiquement efficace si elle demande peu d’énergie pour fournir une puissance calorifique donnée. Pour pouvoir assurer un point de comparaison énergétique entre les différents types de pompe, il est nécessaire, par rapport à leur production de chaleur, de considérer les consommations « primaires » d’énergie. C’est le cas surtout pour l’électricité ! En effet, l’électricité consommée au niveau de la pompe à chaleur est une énergie finale qui ne tient pas compte :

  • du rendement moyen des centrales électriques en Belgique ;
  • des pertes en lignes du réseau électrique.

L’énergie primaire à considérer est :

  • Le gaz disponible au niveau de la conduite d’alimentation du bâtiment. Les kWhPCI sont utilisés pour tenir compte d’une éventuelle phase de condensation (ηPCI > 100 %).
  • L’électricité disponible au niveau du câble d’alimentation du bâtiment multipliée 2.5. Ce coefficient a été adopté par la ouverture d'une nouvelle fenêtre ! CWaPE (Commission Wallonne Pour L’Énergie) se base sur un rendement moyen de 40 % pour les centrales électriques en Europe. En d’autres termes, un 1 kWh consommé au niveau de la pompe à chaleur, 2.5 kWh ont été consommés au niveau de la centrale électrique. Dans le cas de la PAC électrique, la performance se calcule par le rapport :

    Technologie

COP = Énergie utile (chaleur) / Énergie consommée (électricité)

Cependant, pour comparer des pommes entre elles par rapport à une PAC gaz à absorption par exemple, l’énergie primaire consommée pour produire de l’électricité nécessaire à alimenter le moteur électrique, doit être considérée. On parle alors de rapport d’énergie primaire REP défini comme suit :

REP (PER) = Énergie utile / (Énergie consommée / η centrale électrique)

La valeur intéressante pour les gestionnaires de bâtiments est la valeur du COPA ou ACOP, … (vive l’Europe !) qui exprime l’efficacité  annuelle mesurée en tenant compte de toutes les consommations de la machine par rapport à l’énergie qu’elle fournit. La performance annuelle est naturellement liée à l’efficacité instantanée au cours du temps qui, elle, peut varier en fonction de différents paramètres :

  • de la température de la source froide ;
  • de la température de la source chaude ;
  • du taux de charge de la pompe à chaleur.

PAC électrique

Dans le cas de la pompe à chaleur électrique dont le COP = 3, 1 kWh d’énergie électrique finale consommé, fournit à la distribution d’un système de chauffage 3 kWh. C’est bon pour la poche du consommateur (performance finale de 300 %) ! Mais en termes d’énergie primaire, seulement 3/2.5 soit 1.2 kWh est restitué à la source chaude (performance primaire de 120 %) ; ce qui reste meilleur que la performance d’une chaudière à condensation très efficace quand même (ηPCI = 108 %).

Bilan énergétique  (source : Thema).

La performance de la PAC électrique est influencée par les paramètres repris dans le tableau suivant :

Paramètres d’influence Niveau d’influence Remarque
Température de la source froide Forte Réduction des consommations de + 3 % par augmentation de 1 °C
Température de la source chaude Forte Réduction des consommations de + 3 % réduction de 1 °C
Taux de charge Moyenne En général, une PAC électrique travaillant à charge partielle réduit les consommations

Comme le montre le tableau précédent, la PAC électrique est très sensible aux types de source chaude et de source froide. On privilégiera le fonctionnement de la PAC à charge partielle par la réduction de la vitesse du compresseur (technique INVERTER).

PAC à moteur gaz

Bilan énergétique (source Théma).

Bilan énergétique et performance (Source : Aisin Toyota).

La PAC gaz à absorption a une efficacité énergétique définie comme suit :

COP = Énergie utile (chaleur) / Énergie consommée (consommation de gaz)

Comme le montre le graphique précédent, le constructeur annonce qu’en pointe (taux de charge faible) pour 1 kWh d’énergie primaire fourni (gaz), une pompe à chaleur à moteur à gaz restitue donc 1,43 kWh maximum, ce qui en fait un système de chauffage hautement intéressant par rapport à l’environnement.
La performance de la PAC à moteur gaz est influencée par les paramètres repris dans le tableau suivant :

Paramètres d’influence Niveau d’influence Remarque
Température de la source froide Faible
Température de la source chaude Moyenne
Taux de charge Forte 30 à 40 % d’influence

La modulation de puissance est très importante pour augmenter la performance de la PAC à moteur gaz. Sur un moteur à combustion, comme celui qui équipe ce type de PAC, la modulation de puissance ne pose aucun problème. Elle est donc principalement influencée par le dimensionnement en fonction des besoins de chaleur.

PAC gaz à absorption

Bilan énergétique  (source : Thema).

Certains constructeurs annoncent des performances de l’ordre de 150 %.

Tout comme la PAC à moteur gaz, la performance de la PAC gaz à absorption est influencée par les paramètres repris dans le tableau suivant :

Paramètres d’influence Niveau d’influence Remarque
Température de la source froide Faible
Température de la source chaude Moyenne
Taux de charge Forte

Comparatif des PAC gaz

Une étude très intéressante de l’IGU (International Gas Union : « Gas Heat Pumps, the renewable heating system for the future ? ») a montré qu’en moyenne, la performance des PAC gaz, toutes parques confondues, était plutôt aux alentours des 116 % avec une valeur à 120 % en cas de configuration de la PAC gaz avec des panneaux solaires thermiques.

Performance moyenne.

PAC électrique, PAC gaz même combat ?

Tout dépend des conditions de fonctionnement (taux de charge, températures des sources chaudes et froides, …) et des consommations des auxiliaires du niveau de dégivrage). Dans la littérature, on s’accorde à dire, qu’effectivement, pour les PAC électriques et gaz c’est le même combat !

Intérêt de la géothermie ?

Par contre, comme le montre la figure ci-dessus, les PAC gaz peuvent fortement se démarquer des PAC électriques au niveau du dimensionnement de la source froide. On voit tout de suite que l’évaporateur peut être de dimension plus faible :

  • Si la source froide est l’air externe, la taille de l’évaporateur et des ventilateurs sera plus faible d’où réduction de l’investissement pour la partie évaporateur. Il s’ensuit que les consommations des auxiliaires seront aussi réduites.
  • Si la source froide est l’eau, et plus spécifiquement, la géothermie, le dimensionnement du système de géothermie est presque divisé par 3.

Surtout dans le domaine de la conception et de l’exploitation de la géothermie qui, en règle générale, passe à la trappe pour une question d’investissement (grande quantité de sondes géothermiques, profondeur importante, …), l’association d’une PAC gaz avec une géothermie est très intéressante.

1 réflexion au sujet de « Pompes à chaleur gaz »

Laisser un commentaire