Communauté d’énergie : Quel est le cadre mis en place et quels sont les outils à disposition ?

Communauté d’énergie : Quel est le cadre mis en place et quels sont les outils à disposition ?

Webinaire Energie+ – du jeudi 14 décembre 2023

Intervenants :

Philippe Judong – Renewable Energy Communities Projects – TWEED

Cliquez sur ce lien afin d’accéder à la présentation (PDF) de Philippe Judong

Basile CaprasseEco-passeur – Ville de Hannut

Cliquez sur ce lien afin d’accéder à la présentation (PDF) de Basile Caprasse

 Vidéo du Webinaire (appuyez sur « Regarder sur You Tube » afin d’accéder à la vidéo) 


Avec le soutien de :

En partenariat avec l’organisme :

Classement énergétique de plusieurs bâtiments : cadastre énergétique – ancien article

Bâtiment prioritaire ou mesure prioritaire ?

Après avoir relevé et normalisé les consommations de chauffage des différents bâtiments du parc, il est classique de sélectionner celui qui sera prioritaire en terme d’amélioration. C’est l’objet de la méthode du cadastre énergétique ci-dessous. Elle sélectionnera le bâtiment à auditer ou à faire auditer par un spécialiste.

 

 

Mais il est peut-être utile de prendre en considération les alternatives ci-dessous :

 

Alternative 1 : plutôt que de se focaliser sur un seul bâtiment, il est possible de décider d’actions transversales prioritaires, c.-à-d. de mesures très rentables qui seront appliquées à tous les bâtiments en parallèle. Par exemple, appliquer toutes les mesures « + + + + » du classement des mesures les plus rentables.

Évaluer

Pour repérer les mesures les plus rentables.

Alternative 2 : à défaut de pouvoir réaliser un audit du bâtiment, ou en plus de cette démarche, il est possible d’intégrer dans le cahier des charges de la société de maintenance les mesures qui sont les plus rentables et de son ressort.

Gérer

Pour repérer les améliorations de la maintenance des installations.

Le cadastre énergétique

Le cadastre énergétique permet de classer différents immeubles d’un patrimoine en fonction de leur qualité énergétique et donc de l’urgence d’entreprendre des interventions URE.

Tout dernièrement, sur l’impulsion de la Région wallonne, les Facilitateurs URE de Wallonie ont crée un modèle de cadastre énergétique mis a disposition en ligne pour les communes et institutions désireuses de suivre et gérer leur consommations.

Calculs

Pour accéder au cadastre énergetique Facilitateurs URE.

Méthode simplifiée

Si le calcul ne doit pas faire l’objet d’une réglementation, une méthode simplifiée est accessible :

  1. On divisera la consommation de chaque bâtiment par sa surface chauffée, exprimée en m². Le ratio en kWh/m² le plus élevé sera l’indice du bâtiment le plus « mauvais » sur le plan énergétique. Au passage, on pourra alors déjà se comparer aux consommations du secteur.
  2. Il se peut que le plus mauvais bâtiment… soit très petit, et que donc le potentiel d’économie d’énergie soit faible. Il sera alors plus opportun d’attaquer d’abord un bâtiment d’un peu meilleure qualité, mais dont la consommation importante amortira beaucoup mieux les investissements (un appareil de régulation représente le même investissement dans un petit bâtiment que dans un grand). Dans ce but, on multiplie le ratio trouvé précédemment par la consommation du bâtiment. On fait donc (consommation /surface chauffée) x consommation, exprimé en [kWh²/m²]. Le plus grand nombre trouvé est sans signification, mais c’est celui dont le potentiel d’économie d’énergie est le plus grand.

Méthode officielle

Il existe une méthode plus rigoureuse, plus proche de la performance énergétique exacte d’un bâtiment. Ce type de classement est d’ailleurs demandé dans le cadre du programme de subsides UREBA.

Deux critères vont mettre en évidence les immeubles les plus déficients :

  • l’indice énergétique E,
  • l’indice énergétique pondéré ECaPi.

L’indice énergétique E

L’indice E est un critère estimatif de la qualité énergétique d’un immeuble.

Un indice E élevé est donc le reflet, soit d’une enveloppe thermique mal isolée et peu étanche, soit d’une installation de chauffage défectueuse, soit encore de la présence simultanée des deux phénomènes.
Il devrait donc être donné par un ratio du type :

E = kglm / ηexpl.

où,

  • ηexpl. = rendement saisonnier de l’installation (en décimales).

Plus l’enveloppe est une passoire, plus kglm est élevé. Plus l’installation de chauffage est défectueuse, plus ηexpl. diminue. Dans les deux cas, E augmente.

Hélas, un tel calcul semble complexe puisque ces valeurs sont inconnues et difficiles à mesurer…

Astuce ! on peut retrouver ce même ratio en partant de données beaucoup mieux maîtrisées. En effet, l’indice E peut aussi être calculé par la formule suivante :

   Consommation x PCI
E =  
Se x ΔT°m x durée saison

dont les différents coefficients sont connus :

Consommation =

Consommation annuelle en unités physiques de combustible (m³ de gaz, litre de fuel,…). Idéalement, on prendra la moyenne sur trois années consécutives des consommations normalisées (c’est-à-dire ramenées à un climat type moyen).

PCI  =

Pouvoir Calorifique Inférieur du combustible, exprimé en Wh par unité de combustible.

Se  =

Surface extérieure de l’enveloppe du bâtiment (attention, c’est bien la surface totale des façades extérieures, du  plancher et de la toiture et non la surface au sol du bâtiment).

Δm  =

T°IntMoy – T°ExtMoy = écart entre la température moyenne intérieure du bâtiment, et la température extérieure moyenne du lieu.

Durée saison  =

Durée de la saison de chauffe = du 15 septembre au 15 mai = 242 jours x 24 h/j =± 5 800 h.

À noter que le produit : Δx durée saison, peut encore se calculer par la méthode des « degrés-jours corrigés », pour arriver au même résultat.

A quelle valeur de E s’attendre ?

Pour le coefficient kglm, k global moyen d’une enveloppe (y compris la ventilation du bâtiment), on peut s’attendre aux valeurs suivantes :

  • valeur souhaitable : kmoy < 1,2 W/m²K
  • valeur relativement élevée : 1,2 < kmoy < 1,7 W/m²K
  • valeur élevée : kmoy > 1,7 W/m²K

Pour le rendement d’exploitation saisonnier :

  • valeur actuelle pour un bâtiment performant : ηexpl > 0,8
  • valeur moyenne : 0,7 < ηexpl < 0,8
  • valeur basse : ηexpl < 0,6

Dès lors, E varie de 1,5 à 4 :

1,5

pour un bâtiment dont système et enveloppe ne posent pas de problème énergétique,

4

pour un bâtiment où diverses actions doivent être entreprises, tant sur le système que sur l’enveloppe.

L’indice énergétique pondéré ECaPi

Faut-il forcément investir dans un immeuble ayant un indice E élevé (donc très mauvais) ?

Si la consommation du bâtiment est faible, non. Un immeuble présentant un indice E plus moyen mais une consommation importante sera sans doute prioritaire !

Aussi, un deuxième classement est possible, basé sur le produit de l’indice E pondéré par la consommation annuelle. C’est l’indice ECaPi. Un indice ECaPi élevé est le reflet d’un potentiel d’économie d’énergie important.

ECaPi = E x Consommation x PCI

où la consommation est exprimée en unité de combustible.

À titre d’exemple : économiser 50 % d’énergie dans un immeuble consommant 10 000 l de fuel par an est plus difficile que d’économiser 15 % dans un immeuble consommant 50 000 l de fuel par an ! Et en plus, le gain financier est plus important dans le deuxième cas.

Il s’agit donc d’un critère quantitatif d’aide à la décision.


Un exemple

Soit deux bâtiments de bureaux, situés dans le Brabant, que l’on souhaite classer :

Cons. 125 067 litres 40 020 litres
Se 14 376 m² 3 200 m²
T°Int Moy  20°C – 3°C – 3°C = 14°C 20°C – 3°C – 3°C = 14°C
E 125 067 l x 9 950 Wh

14 376 m² x (14°C – 6,5°C) x 5 800 h= 2,0
40 020 l x 9 950 Wh

3 200 m² x (14°C – 6,5°C) x 5 800 h= 2,9
ECaPi 2,0 x 125 067 x 9 960 = 2,5 10 (exposant 9) 2,9 x 40 020 x 9 960 = 2,2 10 (exposant 9)

Conclusion : le premier bâtiment est thermiquement meilleur que le deuxième, mais le potentiel d’énergie récupérable y est plus important.

Études de cas

Pour parcourir l’exemple du cadastre énergétique des bâtiments du CBTJ, cliquez ici !

Plus de détails sur l’écart de température T°Int Moy-T°Ext Moy

La température intérieure moyenne équivalente T°Int Moy

Int Moy =

  • La température intérieure équivalente du bâtiment sur la saison de chauffe.
  • La température moyenne des locaux en journée  réduction pour les coupures de nuit et de week-end  réduction pour les apports gratuits.

La réduction pour les coupures (nuits, W.E., congés scolaires) est donnée approximativement dans le tableau suivant :

Hôpitaux, homes, maisons de soins

0°C

Immeuble d’habitation avec réduction nocturne

2°C

Bâtiments administratifs, bureaux

3°C

Écoles avec cours du soir

4,5°C

Écoles sans cours du soir et de faible inertie thermique

6°C
(Remarque : nous devrions écrire 2 K (2 Kelvins) pour respecter les conventions d’écriture en matière d’écart de température, mais nous tenons surtout à conserver nos lecteurs !)

La réduction pour les apports « gratuits » (équipements internes, personnes, soleil, …) est estimée en moyenne entre 2 et 3°C dans les anciens bâtiments. Elle peut être nettement plus élevée dans les bâtiments récents, bien isolés.

Cette réduction doit donc être adaptée en fonction des caractéristiques physiques du bâtiment : elle doit être augmentée si l’inertie thermique et l’isolation sont fortes et les apports internes sont grands (ordinateurs, éclairage, occupation, …), et diminuée si le bâtiment est peu vitré, par exemple.

Application

Prenons des bureaux maintenus à 20°C durant la journée, la température intérieure moyenne choisie pour les calculs sera de :

20°C – 3°C  – 3°C = 14°C

Attention ! Cette température intérieure équivalente est fictive. En réalité, elle est bien de 17°C mais 3°C sont « fournis » par les apports « gratuits » et ne sont donc pas comptabilisés dans la facture de chauffage (à noter que les apports des appareils électriques sont payés… mais sur une autre facture). Les 14°C constituent donc une température équivalente fictive pour dimensionner la chaleur « consommée ».

La température extérieure moyenne équivalente T°Ext Moy

Ext Moy est la température extérieure moyenne équivalente durant la saison de chauffe. Voici sa valeur entre le 15 septembre et le 15 mai pour quelques endroits de notre région :

Uccle 6,5°C
Hastière 5,5°C
Libramont 3,5°C
Mons 6°C
Saint-Vith 2,7°C

Cette température est obtenue via la valeur des degrés-jours 15/15 du lieu, divisée par la durée standardisée de la saison de chauffe (242 jours, du 15 septembre au 15 mai).

Exemple.

Pour Uccle :

  • Degrés-jours 15/15 = 2 074 D°J,
  • 2 074 / 242 jours = 8,5°C -> l’écart moyen de la température extérieure est donc de 8,5°C par rapport à 15 °C,
  • La température extérieure moyenne est donnée par : (15°C – 8,5°C) = 6,5°C.

Plus de détails sur la méthode de calcul

Comment est-on passé de :

E = kglm / ηexpl.

Vers

   Consommation x PCI
E =     
se x ΔTx durée saison

Il faut repartir de l’évaluation de la consommation d’un bâtiment.
Décomposons :

Consommation en Wh =

Consommation en unités physiques (litres, m³,…) x PCI du combustible

Qu’est-ce que la consommation en unités physiques ?

Consommation en unités physiques =

Puissance moyenne de chauffe x durée saison de chauffe / Rendement saisonnier installation

Or la puissance moyenne de chauffe est donnée par :

Puissance moyenne de chauffe =

Puissance moyenne des pertes par les parois + Puissance moyenne des pertes par ventilation

où :

  • Puissance moyenne des pertes par les parois =

ks x Se x (T°Int Moy – T°Ext Moy )

  • Puissance moyenne des pertes par ventilation =

0,34 xβ x Volume du bâtiment x (T°Int Moy – T°Ext Moy )

où :

  • β est lui-même le taux de renouvellement d’air horaire du bâtiment et 0,34 correspond à la capacité volumique de l’air (0,34 Wh/m³.K).

Si l’on appelle « ΔTm » l’écart moyen entre intérieur et extérieur et « kglm » le coefficient global moyen de déperdition du bâtiment :

kglm = (KSe + 0,34 x β x V)/ Se

On peut alors avoir l’expression de la consommation sous la forme :

Consommation x PCI = kglm x Se x ΔTm x durée saison / ηexpl

En regroupant les termes plus faciles à déterminer du même côté de l’équation, on isole le ratio des deux termes difficiles à connaître et caractéristiques de la mauvaise performance du bâtiment :

Consommation x PCI / Se x ΔTm x durée saison = kglm / ηexpl = E

Ce qu’il fallait démontrer !


Une variante sur base des Degrés-Jours Pondérés

Il est possible de remplacer le produit Δx durée de la saison de chauffe par la valeur des degrés-jours pondérés x 24 h. C’est la méthode officielle préconisée par l’Université de Mons-Hainaut.

Exemple :

Prenons un immeuble de bureaux maintenu à 20°C durant la journée, la température intérieure moyenne choisie pour les calculs est de

20°C – 3°C  – 3°C = 14°C 

Imaginons qu’il soit situé à Mons, la température extérieure moyenne sera de 6°C.

Le produit « ΔT°x durée de la saison de chauffe » sera de :

(14° – 6°) x 5 800 h = 46 400 D°h

Soit encore (en divisant par 24 h) :

1 933 D°J x 24 h

Dans le cadre du programme de subventions UREBA, l’Université de Mons-Hainaut propose une série de degrés-jours pondérés en fonction du lieu et du type d’activité.

C’est pour cela que l’indice E exprimé ci-dessus :

     Consommation x PCI
E =    
     Se x ΔT°x durée saison

Peut-être encore donné sous la forme :

     Consommation x PCI
E =     
     Se x Degrés-Jours pondérés x 24

Ou encore, si le PCI est exprimé en Joules :

     Consommation x PCI
E =    
     Se x Degrés-Jours pondérés x 24 x 3 600

Découvrez ces exemples de cadastre énergétique des bâtiments : le Centre belge du Tourisme des Jeunes (actuellement Kaleo), les bâtiments de la Ville de Chimay et les bâtiments de la Ville de Mons.

Score agrégé de performance environnementale

La multiplicité des scores d’impact environnemental lorsqu’ils sont pris de manière individuelle constitue rarement une bonne base pour la prise de décision. C’est pourquoi, TOTEM permet de visualiser le profil environnemental d’un élément ou du bâtiment à l’aide d’un score agrégé. L’agrégation de tous les impacts environnementaux en un score unique s’inscrit dans cette logique « decision- making » et permet aux utilisateurs d’effectuer une sélection orientée vers la prise de décision quant aux solutions de construction.

 

Pondération selon la méthode PEF

Au sein du logiciel TOTEM, il est donc possible de calculer un score unique pour l’ensemble des dix-neuf indicateurs environnementaux. Dans la suite logique de la mise à jour de la norme EN 15804 + A2 en juillet 2021 sur laquelle TOTEM s’aligne, il a été décidé d’abandonner l’ancienne approche de monétisation et d’appliquer l’approche de pondération PEF (Performence Environmental Footprint). La méthodologie PEF calcule, sur base des indicateurs environnementaux caractérisés, un score unique au moyen d’une étape de normalisation suivie d’une étape de pondération.

L’approche de la pondération PEF comprend deux étapes : normalisation et pondération, qui sont ensuite regroupée dans une agrégation.

Normalisation

La normalisation vise à calculer l’ampleur du phénomène de l’indicateur de catégorie par rapport à un système de référence.  Pour chaque indicateur environnemental, les valeurs caractérisées sont divisées par leurs facteurs de normalisation respectifs, exprimés en impact global annuel par habitant (sur la base d’une valeur globale pour l’année de référence 2010). Les résultats normalisés sont donc logiquement sans dimension.

TOTEM applique les facteurs de normalisation proposés par la plateforme européenne sur l’analyse du cycle de vie (EPLCA 2019). Par exemple, le facteur de normalisation pour le changement climatique est de 8,1 X 10³ kg CO2 eq./personne par an. L’ensemble des facteurs de normalisation utilisé dans la méthode PEF a été élaboré à partir de données statistiques sur les émissions et les ressources utilisées dans le monde pendant un an par habitant.

Pondération

Dans un deuxième temps, les valeurs normalisées sont pondérées en les multipliant par des facteurs de pondération afin de refléter l’importance relative perçue des catégories d’impact environnemental considérées. Par exemple, le facteur de pondération pour le changement climatique est de 21,06 %.

Les facteurs de pondération proposés sont calculés sur la base d’une combinaison d’ensembles de pondération :

  • un ensemble de pondérations provenant d’une enquête publique (25 %)
  • un ensemble de pondérations dérivé d’une enquête menée auprès d’experts en ACV (25 %), et
  • une approche hybride combinant des critères fondés sur des preuves (par exemple, l’étendue, la durée, la réversibilité des impacts…) et un jugement d’expert (50 %). Pour tenir compte de la robustesse des indicateurs d’impact, un facteur de correction (sur une échelle de 0,1 à 1) est appliqué aux facteurs de pondération afin de réduire l’importance des catégories d’impact dont la robustesse est faible (degré d’incertitude trop grande, données peu représentatives,…).

Agrégation

Après pondération, les résultats des différents indicateurs environnementaux peuvent être additionnés pour obtenir une note globale unique (exprimée en millipoints dans TOTEM). Le tableau ci-dessus un aperçu des facteurs de normalisation et de pondération.

Après normalisation et pondération, les scores peuvent être agrégés en un seul score. Dans les tableaux de résultats de Totem, un « facteur d’agrégation » par indicateur d’impact est donné sur la base de la combinaison des facteurs de normalisation et de pondération du PEF. Ces facteurs d’agrégation sont calculés en multipliant l’inverse de chaque facteur de normalisation avec son facteur de pondération correspondant et puis en multipliant par 1000 pour la conversion de Pt en millipoints.

Si vous voulez en savoir plus sur le score environnemental unique de Totem, nous vous recommandons la video ci-dessous :


Ventilation des résultats

Disposer d’un score unique permet de combiner des impacts différent, mais ne bride pas toute capacité d’analyse plus fouillée. Totem propose différentes décompositions des résultats, par indicateurs, composant, ou étape du cycle de vie.

Impact par indicateur

La figure ci-illustre la décomposition de l’impact environnemental d’un élément choisi en exemple est issu de la bibliothèque de TOTEM. Il s’agit d’un élément correspondant à la description suivante: Élément de toiture en pente / Recouvrement en ardoise_Fibre-ciment | Poutres_Bois résineux (172 mm – entraxe 400 mm) | Matelas_Laine de roche (170 mm) | Panneau_Plâtre.

Cette figure permet d’identifier facilement les impacts les plus impactant dans le score global de cet élément : dans ce cas, il s’agit de la contribution u changement climatique, de l’épuisement des ressources abiotiques et des émissions de particules fines.

Si vous voulez en savoir plus sur les différents indicateurs environnementaux utilisés dans TOTEM, nous vous recommandons la video ci-dessous :

Impact par composant

Le même exemple peut être analysé par composant :

On voit ici que 46% de l’impact est lié aux pertes de chaleur par transmission associée à cette paroi, et que le deuxième élément le plus impactant est lié au recouvrement en ardoise, ce qui suggère de mettre en question ce choix de recouvrement avant d’autres composants, tels que le matériau isolant (5% de l’impact uniquement dans ce cas).

Impact par étape du cycle de vie

Cette troisième visualisation permet de voir que la phase B6, représentant l’énergie de chauffage associée à l’élément, est de loin dominante. Deux autres phases se détachent : A1-A3, qui couvre la production des éléments, et B4, qui représente le remplacement de certains éléments durant le cycle de vie. Les étapes de transport et de fin de vie pèsent par contre peu, ce qui relativise les incertitudes pesant sur les scénarios de réemploi, recyclage ou traitement en fin de vie.

Gestion du carbone biogénique

Qu’est-ce que le carbone biogénique?

Le carbone biogénique est le carbone stocké dans la matière végétale sous forme de biomasse, par le processus de photosynthèse. La photosynthèse est le processus par lequel les plantes utilisent l’énergie solaire pour convertir le dioxyde de carbone et l’eau en glucose (sucre) et en oxygène.

L’idée derrière la notion de carbone biogénique est donc de tenir compte du fait que, au cours de la croissance des plantes, le carbone provenant du CO2 atmosphérique s’incorpore à la structure des molécules organiques qui constituent la biomasse. Par conséquent, cela peut être considéré comme une forme de séquestration du carbone. Cette capacité de captation du carbone atmosphérique par la biomasse est souvent utilisée dans le contexte de discussions sur les stratégies à adopter pour réduire les émissions de gaz à effet de serre (GES).

Certains produits de construction, comme le bois, présentent donc un potentiel de stockage du carbone temporaire du carbone, et sont à ce titre considérés comme des puits naturels de carbone.

Dans Totem, la prise en compte du carbone biogénique concerne uniquement les matières biosourcées dont la formation est relativement rapide. Dans cette logique, TOTEM ne considère pas les produits pétroliers comme des puits à carbone biogénique même si ceux-ci sont issus de matières premières végétales mais dont la formation – bien au-delà de l’échelle humaine – est très longue.


La comptabilité du carbone biogénique

Deux méthodes sont possibles pour comptabiliser le carbone biogénique dans les analyses de cycle de vie :

  • Soit on comptabilise la fixation du carbone dans la phase de production. On doit alors également prendre en compte l’émission de ce carbone biogénique dans l’atmosphère lors de la fin de vie (ou le transfert vers le cycle de vie subséquent dans le cas du recyclage ou du réemploi).
  • Soit les deux flux de carbone biogénique (fixation et émission) sont négligés puisque le bilan global sur le cycle de vie est de toute façon nul.

TOTEM a chois d’appliquer la première méthode. Sur le cycle de vie complet, le bilan du carbone biogénique est donc considéré comme nul : la quantité absorbée pour produire la matière végétale est équivalente à la quantité émise ou transférée en fin de vie.

Les impacts sont déclarés dans les modules où ils se produisent. Cela signifie que l’absorption de carbone est déclarée au sein de la phase de production du cycle de vie et que les émissions, elles, sont déclarées dans la phase liée à la fin de vie. Il s’agit de la méthode « -1; +1 ».

 

Prenons l’exemple de l’élément de toiture inclinée nommé « TI_Pannes_Bois résineux_BIB_Reno_04 » de la bibliothèque TOTEM.  Un stockage de 40 kg CO2 eq. est déclaré et comptabilisé dans la première phase du cycle de vie (modules A). A l’autre bout, aux modules C3 et C4 portant la fin de vie, sont déclarés respectivement 16 et 25 kilos de CO2 eq pour l’indicateur de l’impact « carbone biogénique ». Il y a donc un bilan carbone biogénique presque à l’équilibre puisqu’in fine, en tenant compte des arrondis, l’impact global vaut seulement 1,5 kg CO2 eq. (-40+16+25).

Si vous souhaitez en savoir plus sur la prise en compte des différents indicateurs environnementaux dans TOTEM, et notamment sur le carbone biogénique, nous vous invitons à visionner la video suivante :


Les matériaux biosourcés dans TOTEM

Les matériaux de construction biosourcés sont des matériaux d’origine végétale ou animale, dérivés de la biomasse ou des matériaux d’origine biologique, excluant les matériaux intégrés dans des formations géologiques et/ou fossilisés. Ils se trouvent dans leur état naturel ou sont synthétisés ou manufacturés par traitement physique, chimique ou biologique utilisant de la biomasse.

Sur base de cette définition, une classification a été réalisée de l’ensemble des matériaux utilisés dans TOTEM, le label biosourcé n’étant attribué qu’aux matériaux dont la majorité du contenu est biosourcé. Par exemple, un profilé FJI composé des matériaux « bois lamellé » et « OSB », tous deux biosourcés, sera luio aussi considéré comme tel. Par contre, un panneau sandwich composé de panneaux agglomérés et d’isolation synthétique n’est pas considéré comme biosourcé car seul le panneau aggloméré l’est.

Dans la bibliothèque des composants, un filtre (Biosourcé, Non biosourcé) est disponible afin de n’afficher que ces derniers.

Le chauffage de proximité en test à l’UCLouvain

Une expérience pilote((Lire le détail sur : https://dial.uclouvain.be/pr/boreal/fr/object/boreal%3A275611/datastreams)) de dispositifs de chauffage de proximité s’est tenue dans bureaux de la faculté LOCI et de l’institut LAB de l’UCLouvain, en décembre et janvier 2023. L’objectif est de démontrer qu’il est possible de maintenir la satisfaction des occupants tout en abaissant les températures intérieures des espaces de travail, grâce à l’utilisation de systèmes de correction thermique individuels. Cette expérience s’inspire bien entendu de la démarche Slowheat.


Démarche

L’expérience fait appel à des volontaires, qui reçoivent un « kit » de solutions chauffantes. En échange, ils s’engagent à chercher à moduler la température de leur bureau (a priori à la baisse) jusqu’à trouver leur point d’équilibre. Ont répondu à l’appel 34 personnes (24 femmes pour 10 hommes), certains disposant de leur propre bureau, d’autres partageant un même espace.

Le matériel suivant a été proposé aux participants:

  • Un chauffe-main de 115 Watt
  • Un dossier de chaise chauffant de 60 Watt
  • Un panneau chauffe pied de 85 Watt

La sélection du matériel s’est basée, principalement, sur la disponibilité, le coût, et le présence d’un moyen de contrôle dans le temps de l’apport de chaleur (auto-stop), de façon à limiter les risques de surconsommation d’énergie.


Températures d’ambiance

Des enregistreurs de température ont été placés dans les bureaux des participants. Les résultats présentés ici ne couvrent que les heures d’occupation. Dans la moitié des locaux environ, les relevés montrent une température sensiblement inférieure à la cible institutionnelle de 19°C. Dans l’autre moitié, les températures sont relativement proche de cette cible. Selon les déclarations des participants dans les locaux les plus froid, cette chute de température est bien due à leur action sur les vannes thermostatiques. Il sont plusieurs à avoir complètement coupé le chauffage. Notons cependant que les locaux adjacents, couloirs, etc… restaient chauffés, ce qui assure une apport thermique de base.

Distribution des températures intérieures entre le 1 décembre et le 20 janvier, en période d’occupation,
dans les différents bureaux des participants.


Confort thermique

Des questionnaires remplis à intervalles réguliers permettent d’avoir une idée de la satisfaction des participants. Ceux-ci montrent pendant l’expérience une perception de l’ambiance plus centrée sur la neutralité (« ni trop chaud ni trop froid ») que lors de la période de référence avant expérience.

Distribution des réponse à la question « Comment décririez-vous, au moment de remplir ce questionnaire,
l’ambiance thermique à votre poste de travail ? », sur une échelle allant de -3 (très froid) à +3 (très chaud), avec un neutre à 0.

Ils montrent aussi une augmentation sensible de la satisfaction thermique pendant l’expérience.

Distribution des réponse à la question « Comment jugez-vous l’ambiance thermique à votre poste de travail ? »
sur une échelle allant de 1 (très insatisfaisant) à 6 (très satisfaisant), sans possibilité de réponse neutre.


Avis sur les dispositifs de correction thermique

L’enquête révèle une disparité importante de satisfaction vis-à-vis des différents dispositifs de correction thermique distribués. Si le chauffe-main fait l’unanimité, le dossier de chaise présente un résultat plus contrasté tout en restant très majoritairement apprécié, alors que le chauffe-pied est unanimement jugé insatisfaisant.
Ce tableau résume les avantages et inconvénients de ces différentes solutions :

Dispositif Avantage Inconvénient
Chauffe-main
  • peu encombrant
  • Efficace
  • Sensation de chaleur immédiate
  • Chaleur ressentie au-delà des mains
  • Parfois jugé trop puissant ou insuffisamment modulable en température
  • Odeur de plastique chaud lors des premiers usages
  • En cas de grand froid (12°), jugé efficace pour les paumes et poignets ,mais inefficace pour le haut des main.
  • L’apport de chaleur sous un laptop pose question sur le bon fonctionnement de celui-ci
Dossier et assise chauffants
  • Puissant, rapide et efficace. « Parfait quand il fait entre 16-17,5°C »
  • Apport de chaleur au niveau du dos apprécié
  • Fil encombrant
  • Jugé parfois trop puissant, même en puissance minimale
  • Contraste trop important de ressenti entre la position assise et lorsque l’on se relève, ou entre le dos et les extrémités du corps
  • Apport de chaleur au niveau de l’assise pas toujours apprécié, et pose de question de santé à terme (apport de chaleur sur la zone génitale)
Chauffe-pied
  • Néant
  • Très souvent jugé non nécessaire
  • Peu efficace lorsqu’utilisé : trop faible sensation de chaleur
  • Cable au sol encombrant

Conclusions

L’expérience confirme le potentiel des systèmes de correction thermique individuels. Ceux-ci peuvent effectivement augmenter la satisfaction individuelle et, dans certains cas, garantir celle-ci dans des conditions « hors normes ». En effet, les participants sont plutôt d’accord avec les affirmations selon lesquelles :

  • les dispositifs de correction proposés sont en mesure de corriger une situation de départ inconfortable, et
  • ceux-ci permettent de réduire les températures sans perte de bien-être.

Cependant, il apparait également que pour une partie non négligeable des participants, ces dispositifs n’ont pas permis de réduire la température. Ils ont alors servi de moyen d’améliorer la satisfaction dans les ambiances telles que prévues par la régulation centralisée (entre 18 et 20°C).

Il serait donc abusif, sur base de cette seule expérience, de présenter les systèmes de correction thermique comme une panacée permettant de réduire de façon centralisée les températures cibles.

Réduction des températures intérieures à Malmédy

Vue sur le monastère de Malmedy
Monastère de Malmedy, siège, entre autres, de l’administration communale

Durant l’hiver 2023, face à l’augmentation du prix de l’énergie (le prix au MWh est passé de 42.63€ en 2022 à 64.44€ soit une augmentation de 52%), l’administration communale de Malmédy a fait un effort de réduction des températures intérieures. Voici leur retour d’expérience.


Cas d’étude

Le bâtiment du monastère, situé à Malmédy, est une ancienne abbaye dont la construction date du XIIIème siècle, mais donc les bâtiments actuels sont du XVIIIème. La commune l’utilise pour diverse fonctions : bureaux, salles de réception, musée,…

La commune a déjà mis en oeuvre divers travaux d’amélioration de la performance énergétique, notamment des remplacement de châssis et la fermeture du cloître par une verrière. La qualité patrimoniale du site complique cependant les interventions.

L’installation de chauffage présente des circuits séparés pour les différentes fonctions du bâtiment, avec régulation par vannes thermostatiques et alimentation par des chaudières gaz de 250 kW. Selon un audit réalisé en 2023, reprenant les factures de l’année 2021, les consommations du bâtiment sont de 114 MWh/an d’électricité et 740 MWh/an de gaz, pour un coût d’environ 24 000 et 31 000 EUR/an respectivement.


Démarche

La commune a invité le personnel à vérifier le réglage des vannes thermostatiques en visant une position « 2.5» . Celle-ci correspond normalement  à une température de l’ordre de 19C°. Des affiches ont été apposées pour sensibiliser le personnel.

Aucune autre action n’a été prise au niveau de la régulation. C’est donc bien une démarche volontaire des participants, dans un contexte de crise énergétique.

Affiche de sensibilisation
Affiche apposée par la commune de Malmedy dans les locaux du monastère

Aider les plus sensibles

Pour ceux souffrant du froid, l’administration a mis à disposition des dispositifs de chauffage de proximité sous la forme de 35 sous-main chauffants, pour 65 employés. Ceux-ci ont une puissance maximale de 80W et deux positions de réglage, qui leur permettent de monter à 35 ou 60°C au choix de l’utilisateur. L’objectif est de chauffer les poignets par contact et les mains par rayonnement, car il s’agit d’une des zones les plus sensible du corps, et souvent la première à s’engourdir lors du travail de bureau en ambiance fraîche.

Sous-main chauffant
Exemple de sous-main chauffant

Résultats

Suite à la compagne de sensibilisation, les occupants ont réduit les températures d’environ 1°C en moyenne. Cela a permis une économie de 57.168 kWh soit une diminution de 9%. Puisque les 2 hivers sont comparables, l’abaissement de température expliquent donc cette diminution.

Au final, une économie de près de 3500 EUR par an pour la ville. Cela couvre très largement le prix d’achat (environ 15 EUR pièce) et les consommations des tapis chauffants. Celle-ci peut en effet être estimée à :

  • 80W (au maximum)
  • 6 heures par jour
  • 150 jours par an
  • = 80*6*150 = 72 000 Wh/an, ou 72 kWh/an
  • un kWh électrique à environ 40 centimes d’euro,
  • soit une trentaine d’euros par an et par sous-main, avec des hypothèses très défavorables.

Au niveau ressenti, le responsable énergie de la commune n’a relevé aucune perte de confort :

« Il n’y a pas eu de perte de confort dû à la baisse de T°. Que du contraire, puisque les tapis sous-mains chauffant ont même augmenté le confort des personnes les plus frileuses. »

Le slowheating… un peu trop vite ?

  1. Dossiers de chaise chauffants.
  2. Sous-mains chauffants.
  3. Panneaux radiants.
  4. Plaids chauffants.

Retour d’expérience d’un projet de slowheating dans des bureaux namurois.


De quoi s’agit-il ?

Le slowheating est une stratégie de chauffage basée sur le maintien d’une température d’ambiance plus basse que les standards habituels, avec compensation par des dispositifs chauffant à l’échelle des personnes, ainsi que des changements comportementaux et organisationnels.

L’expérience rapportée ici est celle d’un bureau d’études wallon qui a mis en place une expérience de ce type durant l’hiver 2023.


Mise en place

Ce bureau dispose de différents espaces de travail de type open space et bureaux individuels, distribués dans des anciens bâtiments à la performance énergétique médiocre. L’installation de chauffage est vétuste, et constituée d’un circuit de chauffage central alimenté par une chaudière fuel, sans thermostats d’ambiance. La régulation se faisait jusque-là sur base d’une courbe de chauffe et de vannes thermostatiques. Mais la régulation de la chaufferie est défectueuse et les vannes thermostatiques peu précises. On est donc en pratique dans une situation de chauffage permanent avec un réglage de la température ambiante difficile et dépendant des conditions météo.

A l’initiative du personnel, un séminaire interne à l’entreprise a été animé avant l’hiver par un expert en slowheating : l’occasion de présenter le concept et d’échanger sur la pertinence de sa mise en place dans le bureau. Suite à quoi un groupe de travail interne s’est mis en place pour préparer l’expérience.

Plusieurs options ont été explorées, pour finalement aboutir à une décision de réduction de la température d’ambiance dans deux des trois espaces open space. Cela implique environ la moitié de l’équipe la plus motivée a priori par la démarche. Cette première expérience a eu lieu en février 2023. La chute de température a été obtenue en fermant les vannes des radiateurs des locaux concernés. Sans contrôle donc sur la température résultante, qui en pratique était de l’ordre de 16 à 17°C le matin. Peu d’élévation de température en cours de journée est signalé, notamment du fait d’une ventilation « à l’ancienne » par ouverture de fenêtre.

A titre de compensation, du matériel chauffant a été mis à disposition, en « libre-service ». Chaque travailleur ne disposait pas de matériel attribué, faute de connaissance en amont de quels dispositifs pourraient satisfaire les employés. La direction a dès lors investi dans quelques sous-mains chauffants, des panneaux radiants, des dossiers de chaise chauffants et des plaids chauffants. Ce matériel n’est cependant arrivé que tardivement, et après le début de l’expérience. Dans un premier temps, les employés ont donc « fait avec », et joué sur leur habillement principalement. Une mobilité entre bureaux était possible, mais n’a pas été exploitée par les travailleurs.

En fin d’hiver, la décision a été prise de couper complètement le chauffage, vu le redoux. Peut-être un peu trop hâtivement, car un WE froid et venteux a entraîné des températures de l’ordre de 14°C un lundi matin, dans l’ensemble des open-spaces, … sans que du matériel chauffant complémentaire n’ait été prévu.


Retours d’expérience des membres du personnel

Les retours des participants sont divers. Si certains ont globalement apprécié la démarche, d’autres étaient beaucoup plus critiques. Puisque l’on apprend surtout de nos erreurs, concentrons-nous sur les difficultés rencontrées :

  • Certains expriment une frustration quant à l’absence de matériel chauffant en suffisance, en particulier lors de l’élargissement de la coupure de chauffage. Cette frustration est multipliée par le fait que les personnes touchées à ce moment-là n’étaient pas volontaires au départ.
  • Certains ont exprimé des critiques sur le matériel mis à disposition. Les sous-mains chauffants auraient dans un cas déformé un clavier plat posé dessus. Les panneaux radiants posés sur le bureau entravent la vue et la communication entre collègues, sans régler l’inconfort au niveau des pieds. Etc.
  • Certains expriment plus généralement une difficulté d’adhésion à l’idée d’un inconfort sur son poste de travail : « On vient pour bosser. Si en plus il fait froid… »
  • Certains expriment un dilemme émotionnel. D’une part leur conscience environnementale les mène rationnellement à comprendre la démarche. D’autre part, l’expérience physique d’inconfort est difficile à assumer. « Je n’osais pas me plaindre ».
  • Le fait qu’un espace de convivialité tel que le local de pause et de lunch ait également été froid a aussi été pointé comme une difficulté :  « on n’a même pas envie de rester à la machine à café car on ne s’y réchauffe pas ».
  • Enfin, l’installation de chauffage ne permettant pas de mesurer un bénéfice environnemental a été pointé comme un défaut. Pour certains, il est nécessaire de voir « le bénéfice de l’effort » pour maintenir de la motivation. Notons cependant qu’aucune gratification du personnel n’était associée à des économies d’énergie… On parle donc ici uniquement de motivation environnementale.

Quelques autres retours intéressants :

  • Entrer dans cette démarche a rendu certains hyper critiques envers le fonctionnement thermique d’autres espaces. Par exemple, des WC chauffés plus que les bureaux a interpellé sur le sens des priorités.
  • Au-delà des avantages et inconvénients des différents dispositifs chauffants (à ce stade jugés globalement trop peu durables), la clef du confort semble se situer dans l’habillement. Une fois celui-ci adapté à des températures fraiches, seul le confort des mains et des pieds peut être problématique. Cependant, les différences de températures fortes entre locaux peuvent poser problème si l’on est « trop habillé ».
  • Le fait d’être habillé chaudement est perçu par certains comme une gêne pour des tâches de bureau. D’autres évoquent également le fait qu’il est aussi plus difficile d’être coquet lorsqu’on est emmitouflé sous des couches épaisses.
  • Il a été perçu comme non acceptable de diminuer la température dans les salles de réunion, vu que celles-ci accueillent des externes pas au courant ni sensibilisé à la démarche (et du coup pas habillé en conséquence)
  • Certains des convaincus mentionnaient, malgré leur adhésion, une forme de fatigue au fil du temps.
  • « Si on a froid en arrivant, c’est foutu, on n’arrive pas à se réchauffer » … d’où l’intérêt d’un bon équipement également pour l’extérieur, notamment par temps pluvieux. Certains ont relevés qu’il fallait s’habiller plus chaudement pour du travail de bureau à l’intérieur que pour circuler à l’extérieur.  Cela est à l’opposé de nos habitudes et perturbe.
  • Les courants d’air froids et la température de surface des parois impactent sensiblement le confort, or ceci n’est pas mesuré par les thermomètres ni les vannes thermostatiques. Il n’est pas facile au début d’identifier la source de son inconfort, et donc les solutions pour l’améliorer.  Essayer trop brusquement de descendre la température ambiante risque dès lors de tuer la démarche Slowheat dans l’œuf.

Enseignements

De l’expérience de ce bureau, nous pouvons tirer quelques enseignements. A garder à l’esprit pour de futures expériences :

  • Assurer de l’adhésion en amont, ce qui implique des explications, une préparation, un temps d’expérimentation et un réel espace de discussion sur les modalités concrètes. Le sentiment d’une démarche imposée ou insuffisamment préparée (manque de matériel par exemple) pèse lourdement dans le résultat mitigé de cette expérience.
  • Assurer de la cohérence : Pour être accepté, le slowheating doit s’inscrire dans une démarche cohérente de bonne gestion énergétique. Sans cela, l’engagement du personnel sera difficile à assurer.
  • Donner de la flexibilité : Un changement des conditions de travail tel que visé ici devrait probablement aller de pair avec une réflexion plus large sur l’organisation des espaces de travail. On peut regrouper les personnes partageant des sensibilités proches. Ou rassembler les personnes aux horaires semblables pour justifiant des moments de remontées en température. En tous les cas, la tendance à aller vers des grands open-spaces et bureaux partagés ne facilite pas le slowheating. Et quand bien même cette flexibité serait-elle présente (c’est le cas ici), elle n’est pas si facile à mettre en œuvre en pratique. Certains sont attachés à leur poste de travail ou sont contraints par le matériel au vu des tâches qu’ils font.
  • Individualiser les dispositifs de compensation : Le partage d’équipements chauffants semblait ici problématique pour trois raisons. Premièrement, ce qui s’assimile à des vêtements (plaids,…) pose des questions d’hygiène. Deuxièmement, certains dispositifs sont encombrants et donc peu mobiles. Troisièmement, l’organisation du partage n’est pas évidente (premier arrivé = premier servi ?). Faut-il dès lors aller vers la distribution de bons d’achat plutôt que de matériel ? Ou l’organisation par l’employeur d’un achat groupé mais dans lequel chacun peut, après expérience sur du matériel de démonstration, sélectionner les dispositifs qui lui conviennent ?

Conclusion : Chi va piano va sano e va lontano ?

Avec notre regard extérieur, il nous semble que l’expérience partagée ici était peut-être trop ambitieuse.  une réduction trop forte des températures intérieures, trop rapidement ?

Pourquoi cette impression ? parce que beaucoup des personnes interrogées parlent d’un effort à faire, de motivation à entretenir, … Or, l’idée du slowheating est de changer de mode de fonctionnement pour trouver un nouvel équilibre. Si tout changement est un effort, la situation d’arrivée ne devrait pas en être un, faute de quoi la poursuite dans la durée sera difficile.

Dans ce cas-ci, la faible flexibilité de gestion de l’installation de chauffage au départ est en partie responsable. Ne pas pouvoir gérer l’installation de chauffage pour disposer de la température souhaitée n’aide évidemment pas à garder le contrôle. Or, la capacité à choisir la température d’ambiance et à se réchauffer lorsque besoin est un élément clé de toute démarche de slowheating. Comme le disait un des employés :

« Nous avons plus fait une expérience de résistance au froid qu’une expérience de slowheating ».

Chauffage de proximité

Principe:

Les systèmes de chauffage de proximité sont un ensemble d’équipements de chauffage permettant un apport d’énergie thermique de façon très précise dans l’espace et le temps. En particulier, il s’agit de dispositifs mobiliers permettant de chauffer directement le corps, par conduction (contact) ou rayonnement infra-rouge. Ils s’utilisent en complément du système de chauffage central pour assurer le confort individuel, en particulier dans une approche de slowheating.


Palette de solutions

Crédit Denis De Grave

On peut considérer un grand nombre d’équipements mobilier ou vestimentaires comme des chauffages de proximité. C’est pourquoi le projet de recherche Slowheat en propose une classification pour les espaces de logement sur base de leur sobriété énergétique. Cette classification, adaptée ici pour des usage de (télé)travail, les présente comme prioritaires sur le chauffage central :

Classe Puissance Familles de solutions Exemples

Classe A, le bon sens non-énergétique

0 watts Habillement, cloisonnement, acclimatation, adéquation de l’activité Mettre un pull, fermer une porte, alterner des périodes statiques et des périodes de mouvement…

Classe B, le chauffage de proximité basse puissance des corps [Par conduction]

± 50 W/corps Accessoires vestimentaires et/ou du mobilier chauffants en contact avec le corps. Chaise chauffante, gilet chauffant, sous-clavier chauffant…

Classe C, le chauffage de proximité moyenne puissance de l’environnement proche des corps [Principalement par rayonnement]

± 300 W/corps Par des éléments radiants et/ou du mobilier chauffant à proximité directe des bénéficiaires. Panneau radiant, table chauffante…

Classe D, le chauffage centralisé d’une pièce entière [Principalement par convection]

± 1 500 W/pièce Les vannes thermostatiques, le(s) radiateur(s) en place, un thermostat adapté. Chauffer une pièce à 15-17° quand on y est pour que les solutions ABC restent suffisantes.

Classe E, le chauffage centralisé du bâtiment entier

±5 000 W/logement Le chauffage central Garder le chauffage central en alerte pour maintenir le bâtiment hors gel (8 °C) ou à une température « de passage”, par exemple 12-15 °C.

Outre les accessoires mobiliers, des éléments de chauffage plus classiques pourraient être considérées comme des systèmes de chauffage de proximité. On pense notamment aux plafonds chauffants. Il faut cependant pour cela qu’ils répondent à trois exigences :

  • Etre pensés à une petite échelle : il ne s’agit pas ici d’élément chauffant uniformément un grand espace.
  • Pouvoir se réguler directement par l’occupant, en fonction de son ressenti, et non sur base d’une consigne d’ambiance.
  • Avoir une grande réactivité : pas plus de quelques minutes entre la demande de chaleur et le ressenti par l’occupant.

Efficacité énergétique

La littérature scientifique exprime souvent l’impact de ces système de chauffage en « degrés équivalents ». L’idée est la suivante : on mesurer le confort d’une cohorte d’individus dans une ambiance de référence, sans équipement de chauffage de proximité, puis le confort d’une autre cohorte dans une ambiance plus fraiche mais avec la possibilité d’utiliser de tels équipement. En multipliant les expériences pour différentes températures d’ambiance, on peut identifier celle qui mène à une satisfaction moyenne équivalent à la situation de référence. L’écart entre cette température et celle de référence donne une idée de l’impact des équipements testés.

Parallèlement, la consommation d’énergie liée à ces dispositifs peut être monitorée, et exprimée en watt par degré d’ambiance compensé.

De façon plus synthétique, un « review » de la littérature publié en 2022 a identifiée 20 études rigoureuses impliquant des systèmes de chauffage individuels, de 5 types différents((Thermal comfort and energy performance of personal comfort systems (PCS): A systematic review and meta-analysis, Song, Z. Zhang, Z. Chen, F. Wang and B. Yang, Energy and Buildings 2022 Vol. 256, DOI: 10.1016/j.enbuild.2021.111747)) : chaises chauffantes, chauffes pieds, tapis de sol chauffant, souffleur d’air chaud de table ou une combinaison de solutions. Leur analyse est résumée par la figure suivante, qui met en regard la température d’ambiance de confort pouvant être atteinte et la consommation d’énergie de compensation par le système de chauffage individuel :

Efficacité de différents dispositifs de chauffage de proximité, mesurée par la puissance nécessaire par degré de réduction d’ambiance pour un confort équivalent. Inspiré de Song et al, 2022.

On voit un potentiel de réduction des températures très importante, mais aussi très variable selon les études, signe d’une grande diversité de potentiel selon les dispositifs testés. Ce qui semble clair par contre c’est la très faible puissance nécessaire pour assurer le confort dans ces températures basses : de l’ordre de l’une ou l’autre dizaine de watt par degré (et par personne). En effet, parmi les dispositifs testés, les chaises chauffantes semble avoir la meilleure efficacité énergétique (moins de watt par degré de réduction d’ambiance). A l’opposé, des tapis de pied chauffants seraient les moins efficaces au niveau énergie.


Parties du corps à viser

Concernant les zones du corps à viser en priorité, un autre review indique que dans un environnement froid, c’est l’apport de chaleur au niveau de l’abdomen qui serait perçu comme le plus confortable((Effectiveness of personal comfort systems on whole-body thermal comfort – A systematic review on which body segments to target, W. Luo, R. Kramer, Y. de Kort and W. van Marken Lichtenbelt, Energy and Buildings 2022 Vol. 256, DOI: 10.1016/j.enbuild.2021.111766)). Par contre, l’apport de chaleur au niveau de la tête n’aurait que très peu d’impact.

Quant aux extrémités (mains et pieds), zones sensibles au froid, elles seraient positivement affectées par une apport de chaleur indirect au niveau du torse et du bas du dos, signe que des apports de chaleur locaux peuvent avoir des impacts plus larges sur le corps. Mais avec des limites : la perception de chaleur au niveau de la tête étant par exemple très peu impactée par un apport de chaleur sur d’autres parties du corps.

L’un dans l’autre, il semble que c’est la combinaison d’un apport de chaleur au niveau du torse (grande surface de contact) pour le confort général et au niveau des extrémité (zone sensible) pour la résolution d’inconforts localisés qui soit le plus efficace…. Si nous sommes relativement peu vêtus. Si l’on multiplie les couches vestimentaires, en particulier au niveau du torse, c’est l’apport de chaleur a niveau des extrémités qui devient crucial.

« The current knowledge indicates that, in an office context, in mild excursions outside the thermal comfort zone, hands and feet are the sources of thermal discomfort in the cold and the head is the source of thermal discomfort in the warmth. A novel Personnel Comfort System scheme, which targets only the extremities and head, is suggested. This scheme may eliminate the local thermal discomfort of the extremities and head while maintaining the thermal excitation to the torso in mild cold/warm conditions, thus providing a solution for creating a healthy and comfortable indoor environment. »((id.))

 

Dispositif de confor de proximité idéal : le torse correctement couvert mais laissé en interaction avec l’ambiance (1 et 3), tandis que les extrémités reçoivent des apports spécifique, de chaleur en hiver sur les pieds et les mains (2) et de faicheur sur la tête en été (4). D’après Luo et al, 2022.

Retours d’expériences

Différentes expériences de mise en œuvre des principes du slowheating, incluant le recours à des systèmes de chauffage de proximité sont racontées dans nos études de cas (dans une école, dans un bureau, dans une administration). De celles-ci, nous pouvons tirer les enseignements suivants :

  • Il est important que la puissance puisse être modulée. Jouez sur l’intensité ou sur des cycles marche-arrêt.
  • Tout le monde n’apprécie pas les mêmes apports de chaleur. Les sous-claviers chauffants semblent récolter une quasi-unanimité. Mais les apports de chaleur sur le dos et, surtout, les cuisses, ne plaisent pas à tout le monde. Il est donc important de prévoir différents dispositifs et de laisser chacun expérimenter.
  • Les expériences de partage de dispositifs dont nous avons eu vent ne semblent pas concluantes. A priori, à chacun son matériel. Surtout s’il s’agit d’élément en contact avec le corps.
  • Les études de cas montrent beaucoup de frustration. La qualité et durabilité des éléments actuellement présents sur le marché pose question.

Améliorer le confort thermique en été via notamment l’isolation des parois

L’importance de l’isolation thermique dans les bâtiments tertiaires ne fait aucun doute, non seulement pour réduire la consommation d’énergie, mais aussi pour créer un environnement intérieur confortable tout au long de l’année. Cependant, une question se pose : est-ce que certains matériaux isolants offrent un meilleur confort thermique en été que d’autres ?

C’est l’un des arguments de vente de certains fabricants. La capacité thermique de leurs isolants étant plus élevée, ils contribueraient à augmenter le déphasage thermique et donc le confort d’été.

Théoriquement, la vitesse de propagation de la chaleur dépend de la conductivité thermique (W/m.K) et de la capacité thermique volumique (J/m3.K) de la paroi. L’augmentation de température de la paroi intérieure survient donc après un certain laps de temps, appelé déphasage, et de manière atténuée, grâce à l’isolation.


Définition : Capacité thermique

Quantité de chaleur nécessaire pour élever d’un degré (Kelvin) la température d’un m3 de matériau.

La capacité thermique d’un matériau est la quantité de chaleur nécessaire pour élever d’un degré (Kelvin) la température d’un mètre cube (m³) de ce matériau. Elle est le produit de la masse volumique (exprimée en kg/m³) et de la chaleur spécifique Cp  (exprimée en J/kg.K).

Pour éclaircir cette question, le CSTC (Centre Scientifique et Technique de la Construction, connu désormais sous le nom de Buildwise) a réalisé une simulation dynamique de la variation de la température dans une pièce sous toiture isolée, en utilisant des matériaux ayant des capacités thermiques différentes, tout en étant soumise à un épisode de canicule de 15 jours.

pièce sous toiture isolée

Exemple de deux isolants similaires au point de vue de leur conductivité thermique mais fort différents quant à leurs capacités thermiques


Isolant

Conductivité thermique

(W/m.K)

Masse volumique

(kg/m3)

Chaleur spécifique

Cp (J/kg.K)

Capacité thermique volumique

(J/m3.K)

Laine de bois 0,039 55 2000 110
Laine minérale 0,035 25 1030 26

Les conclusions du CSTC (Buildwise) indiquent que, bien que le déphasage et le confort en été augmentent en fonction de  l’épaisseur de l’isolant, lorsque l’épaisseur d’isolant et la conductivité thermique sont équivalentes, l’impact de la capacité thermique du matériau utilisé reste relativement faible, en particulier par rapport à d’autres paramètres à prendre en compte.

Outre les propriétés intrinsèques des matériaux, voici les éléments qui ont le plus d’influence sur le confort thermique en été dans les bâtiments tertiaires :

  • L’épaisseur de l’isolant (et sa conductivité thermique) ;
  • Les protections solaires extérieures pouvant limiter l’apport solaire ;
  • La mise en place d’une ventilation nocturne intensive pour faire baisser la température intérieure ;
  • La réduction des sources internes de chaleur ;
  • La présence d’une masse thermique élevée et accessible, telle que le plafond ou le sol, qui contribue à l’inertie thermique du bâtiment.

Ces facteurs jouent un rôle essentiel pour assurer un confort thermique optimal en été dans les bâtiments tertiaires, qu’il s’agisse de rénovations, de constructions neuves ou simplement de la gestion quotidienne de l’énergie.

Article réalisé par l’ICEDD (Institut de Conseil et d’Etudes en Développement Durable) – https://www.icedd.be/.

Référence :

Dossiers du CSTC – N° 3/2010 – Cahier n°6 – Capacité thermique des isolants et risque de surchauffe

 

Confort [Calculs]

Enveloppe du bâtiment [Calculs]

Données génériques et / ou spécifiques

 

Il y a dans TOTEM deux types de données, qui diffèrent selon leur origine. D’une part des données dites génériques, qui décrivent des matériaux ou composants « types », et d’autre part des données dites spécifiques, liées à un produit ou composant particulier, lié donc à un fabriquant clairement identifié.

Chaque type de donnée à son usages, les deux se complétant utilement. A terme, l’objectif est d’utiliser uniquement des données spécifiques, mises à disposition directement par les producteurs de matériaux, via la base de données de B-EPD. D’ici à ce que cette base de données soit suffisamment alimentées, le recours aux données génériques restera indispensable.

Nous présentons dans cette page les principaux points liés à chaque type de données. Si vous voulez creuser le sujet plus profondément, nous vous invitons à regarder les deux videos ci-dessous :


Les données génériques

EcoInvent


 

Ecoinvent est une base de données Suisse d’inventaire du cycle de vie (ICV) qui fournit, depuis 2003, des données sur les impacts environnementaux associés à la production de divers biens et services. L’objectif principal de cette base de données est de soutenir les analyses du cycle de vie, qui évaluent l’ensemble des impacts environnementaux tout au long du cycle de vie d’un produit, depuis l’extraction des matières premières jusqu’à la fin de vie.

Ecoinvent couvre un large éventail de secteurs industriels et de processus de production. Elle fournit pour chacun des données sur les émissions de gaz à effet de serre, la consommation d’énergie, la consommation d’eau, et d’autres aspects environnementaux pertinents. La base de données EcoInvent est conforme aux normes ISO 14040 et ISO 14044 et documente actuellement plus de 20 000 processus industriels.

Le logiciel TOTEM s’alimente de cette base de données qui lui permet de disposer de suffisamment de données au sein de l’outil. Les données mobilisées sont adaptées à la réalité du marché belge, notamment au niveau du mix énergétique et des données liées au transport.

La base de données ECOINVENT permet de disposer de suffisamment de données au sein de l’outil. Il a été choisi de l’utiliser pour différentes raisons: exhaustivité, transparence, adaptabilité.

Adapter les données au contexte belge

Afin d’assurer la représentativité géographique du contexte belge, des opérations sont effectuées sur les données reprises dans EcoInvent. En particulier :

  • Les données sont adaptées aux spécificités de notre territoire tel qu’il est aujourd’hui : un mix énergétique donné, des filières de traitement des déchets plus ou moins développées, etc…
  • Lorsque plusieurs processus sont décrits pour un même composant, la préférence est donnée à ceux représentatifs de l’Europe occidentale.
  • Lorsqu’aucun processus d’Europe occidentale n’est disponible dans la base de données, les données disponibles sont adaptées en remplaçant les flux d’énergie, les flux d’eau et le traitement des matériaux en fin de vie. Ces adaptations ne concernent que les flux inclus dans la production du produit analysé, et non ceux liés aux processus sous-jacents (par exemple, la production de matières premières utilisées dans le processus de production).
  • Pour les matières premières dont le taux d’importation est très important, des scénarios spécifiques ont été établis pour le transport des matières premières vers la Belgique. Sur la base de ces scénarios, des processus spécifiques peuvent être créés pour les versions importées de ces produits. C’est le cas par exemple pour plaques de pierre bleue en provenance d’Asie.
Dans le cadre de l’étude MMG, il a été examiné si le pourcentage de matières premières secondaires adopté par défaut dans les processus EcoInvent diffère de la pratique belge. L’exercice a été fait pour un nombre limité de produits contenant une matières premières secondaires (acier, laine de verre, verre cellulaire, cellulose, MDF, OSB, béton et autres), Il a également été vérifié si les limites du système et les règles d’allocation pour le recyclage et les coproduits appliquées dans les données d’EcoInvent sont cohérentes avec les principes de la norme EN 15804. Résultat ? des divergences ont été pointées, et des processus de traitement des données d’EcoInvent adaptés.

Par exemple, dans la base de données EcoInvent, le béton est produit à partir de ciment CEM I. En Belgique, cependant, le ciment de four (CEM III A) est couramment utilisé pour le béton coulé. Par conséquent, le processus standard EcoInvent a été modifié pour remplacer le CEM I pour 10% par le CEM III B et pour 55% par le CEM III A23.


Les données spécifiques : B-EPD

EPD est l’abréviation de « Environmental Product Declaration » (déclaration environnementale de produit). Le « B » fait référence à la Belgique. Une B-EPD est donc une EPD conforme aux principes généraux du programme B-EPD du SPF Santé.

Depuis octobre 2020, Totem intègre dans sa bibliothèque des composants établis sur base des déclarations environnementales de produits des fabricants. Les composants enregistrés dans la bibliothèque TOTEM sur base d’une déclaration environnementale sont appelés composants spécifiques.

Une EPD est réalisée à l’initiative d’un fabricant de matériaux ou d’un groupement de fabricants. Elle contient des informations quantifiées sur les impacts environnementaux des produits de construction basées sur une analyse du cycle de vie. Plusieurs fois par an, Totem enrichit sa base de données de nouvelles EPD. Au moment d’écrire cet article (mars 2024) la base de données EPD des autorités fédérales belges renseignent 144 produits de construction. C’est encore une jeune base de données puisque le programme B-EPD a pris son envol en 2019.

En tant qu’opérateur du programme, le SPF Santé se base sur la norme NBN EN ISO 14025 et EN 15804. Ces normes européennes fournissent un cadre afin que les EPD des produits, des services et des processus de construction soient calculées, vérifiées et présentées de façon harmonisées. Les B-EPD contiennent entre 20 et 30 pages d’informations sur le produit, le processus de fabrication, le ou les fabricants, ainsi que les hypothèses et les résultats de l’étude ACV. La base de données B-EPD est consultable par le grand public, via le portail du SPF Santé.


Exemple de l’EPD d’une poutre en bois lamellé-collé

Les partenaires du projet européen ProFilWood (Fibois, Hout Info Bois, OEWB…) ont souhaité développer, en collaboration avec les entreprises, des EPD collectives afin de mesurer plus précisément les impacts environnementaux des produits en bois destinés à la construction, dans le but d’introduire ces données dans l’outil TOTEM afin d’affiner les informations sur ces éléments à base de bois. Cette EPD évalue le cycle de vie des poutres en bois lamellé-collé « du berceau à la tombe ». Elle est collective et se base sur les données de production de 4 fabricants belges. le propriétaire de cette EPD est l’Office économique Wallon du Bois.

Au-delà des données collectées et déclarées par l’EPD, lorsque celle-ci est richement documentée, elle donne à voir les processus de fabrication des produits de construction concernés. A titre d’exemple, le schéma ci-dessous – extrait de l’EPD – synthétise le processus de production du produit de façon détaillée :

 

Lien entre performance énergétique et performance environnementale

Si la notion de PEB (Performance énergétique des Bâtiments) est largement connue, celle de performance environnementale appliquée au bâtiment l’est beaucoup moins. Est-ce un nouveau concept qui vient se rajouter à celui de la PEB ou est-ce celle-ci qui se met au vert? Bref, comment définit-on la performance environnementale du bâtiment ? C’est à cette question que cet article tente de répondre.


Théoriquement, une bascule entre impacts

La performance énergétique des bâtiments n’est pas sans lien avec la performance environnementale car elle (la PEB) a notamment un impact significatif sur les émissions de gaz à effet de serre, la consommation des ressources naturelles et la qualité de l’environnement.

Avec le renforcement des normes de la PEB au fil du temps, l’énergie primaire mobilisée pour les besoins fonctionnels du bâtiment pendant la phase d’occupation tend à diminuer. Une performance énergétique améliorée signifie a priori une utilisation plus rationnelle des ressources. Cela peut réduire par exemple la demande en combustibles fossiles et en électricité. L’amélioration de la performance énergétique contribue en ce sens à réduire l’impact environnemental du bâtiment.

Mais atteindre une haute performance énergétique implique de mettre en œuvre des matériaux et systèmes qui ont un impact environnemental propre, lié à leur production et fin de vie, qui peut :

  • Soit présenter un « coût » environnemental s’il s’agit de matière que l’on aurait pas mis en œuvre sans cet objectif de performance énergétique (le Xème centimètre d’isolant).
  • Soit présenter un coût initial différent de celui de la solution de référence (une pompe à chaleur à la place d’une chaudière par exemple).

Schématiquement, on va observer un glissement au fil des améliorations de performance énergétique : une part de la réduction d’impact lors de l’usage du bâtiment va être annulée par une augmentation d’impact lors des phases de production, construction et fin de vie. Une bascule s’opère donc entre le poids environnemental lié aux besoins énergétiques du bâtiment et le poids environnemental lié aux matériaux.

Toute la question est de savoir si ce glissement compense, voire annule, le bénéfice de la performance énergétique. L’avènement de l’outil Totem s’inscrit dans ce questionnement. Il devient essentiel de prendre en compte à la fois les aspects liés à la performance énergétique des bâtiments et à l’impact environnemental associé aux matériaux mis en œuvre dans un bâtiment afin de concevoir des bâtiments plus durables et respectueux de l’environnement.


En pratique, c’est moins clair

La bascule décrite au point précédent se voit-elle dans la réalité ? Pas si sûr…

Un review publié en 2016 a regroupé les résultats d’analyses de cycle de vie de 90 bâtiments résidentiels. Si les auteurs identifient bien une tendance à l’augmentation de l’énergie « embarquée » lorsque l’on va vers plus de performance énergétique, les chiffres montrent en fait une très large variabilité dans la part relative des impacts « in use » et « embodied » pour tous type de bâtiment. Cela indique que ce qui fait l’impact environnemental des bâtiments tient plus aux choix de construction qu’au niveau de performance énergétique.

Part relative de l’énergie embarquée (EE) et opérative (OE) dans les analyses de cycle de vie de 90 bâtiments résidentiels.((Chastas, P., Theodosiou, T. et Bikas, D. (2016) Embodied energy in residential buildings-towards the nearly zero energy building: A literature review, Building and Environment Volume 105, 15 August 2016, Pages 267-282))

Globalement, les études disponible donnent la tendance suivante((Voir par exemple : Ayşegül Demir Dilsiz et al. (2019) Embodied versus operational energy in residential and commercial buildings: where should we focus? J. Phys.: Conf. Ser. 1343 012178)) :

  • Il y a une corrélation entre augmentation de la performance énergétique et augmentation de la part « embarquée » dans l’impact environnemental global : c’est logique, si on consomme moins, la partie liée aux matériaux sera relativement plus lourde
  • Il n’y a pas d’augmentation de l’impact global liée à une tendance à l’amélioration de la performance énergétique : le choix d’aller vers plus de performance n’est pas contrebalancé par l’impact des matériaux mis en œuvre
  • Il y a une très grande variabilité d’impact global, pour tout niveau de performance énergétique, et cette variabilité a tendance à augmenter pour les bâtiment les plus performants : les choix de modes constructifs sont toujours importants, et encore plus lorsque leur poids dans le bilan global augmente.

En conséquence, l’évaluation environnementale global est un sujet de plus en plus brulant, mais pas une remise en cause fondamentale des efforts faits ces dernières années.


Et à l’échelle d’une paroi ?

Le score agrégé de performance environnementale obtenu en millipoints dans le logiciel Totem peut être présenté de différentes façons, notamment via un graphique dissociant l’impact des matériaux et celui de l’énergie . Ce graphique permet à l’utilisateur d’évaluer l’importance relative de l’impact des matériaux (en rouge) et de l’impact énergétique (en vert).

Mais de quelle énergie est-il question ? Etant donné que l’impact des matériaux prend également en compte des aspects énergétiques comme l’énergie utilisées lors du processus de fabrication des ressources premières, lors du transport, pendant le chantier, quelques clarifications s’imposent : Dans le logiciel TOTEM, le calcul lié aux consommations énergétiques correspond uniquement à la phase d’utilisation du bâtiment (B6) et ne concerne donc qu’une seule phase du cycle de vie. Les autres consommations énergétiques comme l’énergie dite grise apparaît dans le score « matériaux ». Lea consommation durant la phase d’utilisation est calculée sur base de la consommation d’énergie pour le chauffage liée aux pertes de transmission en recourant la méthode des degrés-jours équivalents.

Que faire de ce genre de chiffres ? Prenons l’exemple d’un mur creux avec deux niveaux d’isolation en PUR différents (U=0,14W/m2K ou U=0,24W/m2K). On constate que :

  • L’impact environnemental des matériaux augmente lorsque l’on ajoute de l’isolant
  • L’impact environnemental de l' »énergie lors de la phase d’usage diminue lorsqu’on ajoute de l’isolant
  • Dans ce cas-ci, l’impact global est constant

Dans le second exemple ci-dessous, il s’agit également d’un mur creux avec deux niveaux d’isolation en PUR différents, mais cette fois sur base de laine minérale (U=0,15W/m2K ou U=0,24W/m2K). On constate cette fois que l’impact global est réduit lorsque l’isolation augmente :


Vers une réglementation intégrée ?

Le cadre actuel de la PEB se limite à des exigences en énergie primaire. Cela va changer. Les autorités européenne ont définitivement approuvé un texte imposant l’intégration d’exigence tenant compte des émissions de carbone des bâtiment sur l’ensemble de leur cycle de vie.

« Étant donné que les bâtiments donnent lieu à des émissions de gaz à effet de serre avant et après leur durée de vie utile, les États membres devraient également tenir compte des émissions de carbone sur l’ensemble de leur cycle de vie. »((Directive du 13 septembre 2023 relative à l’efficacité énergétique (EU/2023/1791))

Il est évidemment trop tôt pour décrire la façon dont cette exigence se traduira sur le terrain, mais on peut déjà avancer que :

  • Vu que TOTEM intègre dans son évaluation une approche « cycle de vie » et des indicateurs liés aux émissions de carbone équivalent, c’est l’outil naturel pour la mise en place de cette exigence en Belgique.
  • Il est impossible à ce stade de déterminer des seuils d’émission de carbone à viser. Il faut donc s’attendre à un effort intense de benchmarking dans les années qui viennent, pour déterminer le bilan carbone des pratiques actuelles et fixer ces seuils.
  • Si les textes européens imposent un bilan carbone, ils ne disent rien des autres impacts environnementaux. Or, TOTEM travaille avec un indicateur unique agrégeant de multiples impact. Faudra-t-il détricoter cet indicateur unique ? Y adjoindre un indicateur « carbone » ? Time will tell. En tout état de cause, il y a une forte corrélation entre un score global et un bilan carbone, vu le poids important des indicateurs liés au changement climatique dans le score agrégé. Pour s’en convaincre, le graphique ci-dessous établi une courbe de tendance entre le score agrégé et le total des émissions de CO2 équivalente pour les toitures reprises dans la bibliothèque de TOTEM (version été 2023). On voit bien que la corrélation des assez forte., mais pas parfaite.
Corrélation entre le score environnemental agrégé et les émissions de CO2 équivalent, pour les toitures inclues dans la bibliothèque d’éléments de TOTEM en 2023

Du matériau au bâtiment

Différents niveaux d’analyse

Plusieurs niveaux d’analyse sont nécessaires pour une évaluation environnementale. Ces différents niveaux suivent une structure hiérarchique. Faisons un parallèle : les lettres de l’alphabet sont les plus petites parties élémentaires du langage écrit, et peuvent être assemblées en mots, ces derniers formant des phrases ; dans TOTEM les matériaux constituent l’alphabet, combinables en composants, eux-mêmes à la base de complexes de parois appelés élément, qui ensemble constituent le bâtiment.

TOTEM est donc construit selon une structure hiérarchique distinguant quatre niveaux d’analyse détaillés ci-dessous. Parmi ces niveaux, seuls les plus élevés, à savoir les éléments et les bâtiments permettent donc une comparaison de leur score environnemental.


Les matériaux

Les matériaux constituent le niveau hiérarchique de base et servent à alimenter les niveaux supérieurs. TOTEM ne score ni ne documente les matériaux pris individuellement. L’idée est que l’impact d’un matériau ne peut être isolé de son conditionnement (emballage) et de sa mise en œuvre (assemblage), considérés au niveau du composant. Dans cette logique, il n’est pas possible d’afficher le score de l’impact environnemental pour ce niveaux hiérarchique dans TOTEM, bien qu’il soit pris en compte dans les scores affiché aux niveaux hiérarchiques supérieurs.

La couche matériaux n’est en conséquence pas directement visible dans TOTEM. Les données liées peuvent par contre être obtenue indirectement, en passant par le niveau supérieur des composants. Dans une certaine mesure, dans le cadre d’un projet et donc dans le cas d’une modélisation, il est possible d’apporter des modifications aux niveau des constituants du composant que sont les matériaux.

Ce niveau hiérarchique de base n’a donc clairement pas (à ce stade ?) vocation à être manipulé par l’utilisateur.


Les composants

Les composants sont essentiellement des « matériaux mis en œuvre » : chaque composant peut être constitué de plusieurs matériaux et/ou inclure une fixation. Ces matériaux conditionnés et mis en œuvre constituent le premier niveau hiérarchique aisément accessible par l’utilisateur de TOTEM.

Dans la bibliothèque des composants de TOTEM, deux types peuvent être trouvés :

  • des composants génériques qui ne sont pas liés à une certaine marque. Ces composants génériques sont représentatifs des composants utilisés en Belgique pour la construction d’immeubles d’habitation et de bureaux. Les données relatives à ces composants génériques proviennent de la base de données EcoInvent, une base de données suisse couramment utilisée dans le monde scientifique. Ces données sont générées en rassemblant les données (disponibles) de divers fabricants et donnent une indication de l’impact « moyen » d’un matériau de construction.
  • des composants spécifiques pour lesquels une déclaration environnementale de produit (EPD) existe. Il s’agit de données exclusives des fabricants belges de matériaux de construction qui ont été objectivement déclarées sous la forme d’une déclaration environnementale de produit (B-EPD) dans la base de données fédérale. Pour ces composants spécifiques, TOTEM renvoie vers l’EPD concernée.

Si vous voulez en savoir plus sur la base de données EcoInvent et les déclaration environnementales de produits, nous vous invitons à regarder les deux videos ci-dessous :


Les éléments

Les éléments sont un assemblage de différents composants, eux-mêmes combinant plusieurs matériaux. Les éléments sont typiquement des parois intérieures ou extérieures, mais aussi, de plus en plus, des systèmes techniques tels qu’une installation de chauffage central.

La base de données des éléments est accessible au public dans TOTEM et les utilisateurs sont autorisés à modifier certains paramètres de ces derniers. Typiquement, l’épaisseur d’une paroi, ou le détail des composants la constituant sont éditables. C’est une différence majeure entre les composants et les éléments, car la bibliothèque des composants n’est accessible qu’en lecture seule.


Le bâtiment

Dernier niveau hiérarchique, le bâtiment est constitué d’un certain nombre d’éléments (tels que les sols, les murs extérieurs ou intérieurs, les installations techniques, etc.).

L’introduction de cette échelle permet de réaliser une analyse de performance environnementale à une échelle qui concerne le concepteur. La démarche de minimisation d’impact ne se limite en effet pas à choisir la paroi « la moins impactante », mais aussi à réfléchir à la conception plus globalement. Par exemple en maintenant des parois existantes ou en travaillant à limiter les surfaces de parois à construire.

L’échelle du bâtiment permet ces analyse en évaluant le score environnemental cumulé de l’ensemble des éléments et en le ramenant à une unité comparable entre bâtiment, à savoir le m2 plancher.

L’approche est trop récente aujourd’hui, mais à terme des benchmarks de projets devraient permettre de définir des performances de référence pour différents types de bâtiment, et éventuellement sur cette base fixer des objectifs réglementaires.


Unité fonctionnelle (UF)

L’utilisation d’unités fonctionnelles standardisées simplifie la comparaison et l’évaluation de la performance environnementale des bâtiments, et ce indépendamment de la taille ou du type de bâtiment.

L’unité fonctionnelle (UF) est l’unité de mesure utilisée pour évaluer un élément de construction. De la même manière que pour comparer le prix de deux fruits en ramenant les prix au kilo, pour comparer les impacts environnementaux de deux éléments, on ramènera les impacts à une unité de mesure commune. Le choix de l’UF est importante car elle doit permettre de comparer les choses de manière complète et objective.

Dans le bâtiment, il s’agira souvent d’une unité exprimée en surface (un mètre carré de paroi ou de bâtiment), mais cela ne se limite pas à la dimension. La fixation d’hypothèses de durées de vie de composants, définissant un rythme de remplacement, et la définition de conditions d’ambiance intérieure, permettant de calculer l’impact d’un élément sur la consommation de chauffage, sont nécessaires pour réaliser une analyse rigoureuse. C’est tout l’intérêt d’un outil tel que TOTEM de proposer, dans une interface simple, le cadre méthodologique permettant ces analyses.

Pourquoi l’Unité Fonctionnelle est importante?

  • Comparaison objective: En utilisant une unité fonctionnelle commune (m² de mur dans cet exemple), vous pouvez comparer objectivement des options qui semblent très différentes.
  • Décisions éclairées: Cela vous permet de prendre des décisions basées sur des données quantifiables et objectives concernant la durabilité des options de construction.
  • Adaptabilité: La flexibilité de l’UF permet de prendre en compte des facteurs variés, tels que la durée de vie et l’impact sur la consommation d’énergie, ce qui rend l’analyse plus complète.

En résumé, l’utilisation d’une unité fonctionnelle standardisée, comme dans l’outil TOTEM, permet aux professionnels du bâtiment de prendre des décisions plus éclairées et durables concernant leurs projets, en s’assurant que les comparaisons entre différents éléments de construction sont justes et significatives.

Indicateurs d’impacts environnementaux

L’impact environnemental est évalué au travers d’une multiplicité d’indicateurs, que l’on peut rassembler en dix familles. Nous donnons ci-dessous quelques éléments d’explication pour chacune.  Si vous voulez en savoir plus sur les choix d’indicateurs, nous vous conseillons la video suivante :

Potentiel de réchauffement climatique

Trois sous-indicateurs sont utilisés pour caractériser l’impact d’un composant sur le changement climatique, exprimé en kgCO2 équivalent. On y parle de Potentiel de Réchauffement Global (PRG) lié à différentes formes d’émissions. Ces trois sous-indicateurs sont ensuite agrégés en un potentiel global.

Le potentiel de réchauffement global-fossile / PRG-fossile

Cet indicateur d’impact tient compte du potentiel de réchauffement dû aux émissions et aux gaz à effet de serre (GES) vers tout milieu provenant de l’oxydation et/ou de la réduction des combustibles fossiles ou de matériaux contenant du carbone fossile au moyen de leur transformation ou leur dégradation (par exemple, combustion, incinération, mise en décharge, etc…).

Le potentiel de réchauffement global biogénique / PRG-biogénique

Le potentiel de réchauffement global lié aux émissions de carbone (équivalent) dans l’air (C02, CO, CH4) provenant de l’oxydation et/ou de la réduction de la biomasse de surface par sa transformation ou sa dégradation (par exemple combustion, digestion, compostage, mise en décharge ) et l’absorption de CO2 de l’atmosphère par photosynthèse pendant la croissance de la biomasse. Cet indicateur tient compte du PRG dû à la séquestration et aux émissions provenant de la biomasse de toute origine à l’exception des forêts naturelles.

La question de la prise en compte du carbone biogénique dans Totem est souvent posée.

Le potentiel de réchauffement global par transformation de l’occupation des sols / PRG-luluc

Cette sous-catégorie concerne le potentiel de réchauffement global lié aux absorptions et aux émissions de carbone dus aux variations des stocks de carbone causés par la transformation de l’occupation des sols. Des variations dans la gestion des sols peuvent avoir une influence persistante sur les stocks de carbone pendant des décennies. des changements d’affectation des sols comme le défrichement, peuvent donner lieu à de grandes émissions spontanées.

Le potentiel de réchauffement (climatique) global /  PRG-total

Cet indicateur prend en compte  l’augmentation de la concentration atmosphérique moyenne de diverses substances d’origine anthropique ( CO², CH4, CFC,…) que l’on nomme communément les émissions de gaz à effets de serre (CO2, HFC, CH4, …) qui conduisent au réchauffement climatique.

Cet impact est déclarée en tant que Potentiel de Réchauffement Global. Ce PRG-total est la somme des PRG-fossile, PRG-biogénique et PRG-luluc.


Appauvrissement de la couche d’ozone

Cet indicateur prend en compte les émissions dans l’air (CFC, HCFC, halons, …) qui contribuent au « trou dans la couche d’ozone ». Il est exprimé en kgCFC11 équivalent (kilo trichlorofluorométhane équivalent).

La destruction de l’ozone est causée par des réactions complexes entre l’ozone stratosphérique et des composés tels que les chlorofluorocarbure (CFC), les gaz contenant du brome (les halons), les solvants chlorés. les CFC, composés chimiques d’origine humaine, sont des dérivés chlorés et fluorés d’hydrocarbures que l’on retrouve notamment dans les produits suivants: (agents de climatisation dans les climatiseurs, agent gonflant dans certaines mousses rigides, isolants, … Ces composés contribuent à deux mécanismes de pollution bien connus, le premier concerne cet indicateur, il s’agit donc de la destruction de la couche d’ozone. Le second mécanisme de pollution impliqué est celui se rapportant à l’indicateur précédent: l’effet de serre.

L’amenuisement de la couche d’ozone se traduit entre autre par une réduction de la filtration naturelle des rayonnements ultraviolets moins efficace, menant à une augmentation des cancers de la peau, et impactant la flore et de la faune sous-marine.


Acidification des sols et de l’eau

Cet indicateur porte sur l’évaluation des émissions dans l’atmosphère de composés susceptibles de se transformer en acides (ex : acide sulfurique, acide nitrique). Il est évalué en mol H+ équivalent (mole d’ions H+ équivalents).

Lorsque présents dans l’atmosphère, ceux-ci peuvent être lessivés par les précipitations (pluies acides) et se retrouver dans les eaux de ruissellement, de surface et dans le sol. Cette acidification engendre la dégradation des milieux et conduit à des impacts sur la faune (mort de poissons, …) et la flore (dépérissement de la végétation).


Eutrophisation

Cet indicateur prend en compte les émissions dans l’air et dans l’eau des substances qui causent des excès d’éléments nutritifs dans les lacs, rivières et les océans. Il se décompose en trois sous-indicateurs mesurés en kg P eq. (pour l’eau douce), kg N eq. (pour l’eau de mer) et mol N eq. (pour les sols).

L’eutrophisation a pour conséquence notamment le développement anarchique d’algues dans les plan d’eau, empêchant ensuite le développement normal de la biodiversité.


Formation d’ozone photochimique

Cet indicateur prend en compte les émissions dans l’air de substances qui conduisent à la production d’ozone troposphérique (ozone bas, smog d’été). Il se mesure en kg NMVOC eq. (kg éthylène équivalent).


Épuisement des ressources abiotiques

Deux types d’épuisement des ressources sont considérées :

Épuisement des ressources abiotiques non fossiles

Cet indicateur prend en compte l’épuisement des matières premières minérales (minerais métalliques tels que Fer, Cuivre, Plomb, Zinc, …). Il se mesure en kg Sb eq. (kg antimoine équivalent).

Épuisement des ressources abiotiques combustibles fossiles

Cet indicateur prend en compte l’épuisement des combustibles fossiles (gaz, pétrole, charbon, …). Il se mesure en MJ (Méga Joule).


Épuisement des ressources en eau

Cet indicateur prend en compte la consommation des ressources en eau douce. Il se mesure en m³ de privation équivalente mondiale.


Particules fines

Cet indicateur prend en compte les émissions dans l’air de fines particules solides (poussières), générant des maladies cardiaques et pulmonaires chez l’humain. Il se mesure en DALY (Disability Adjusted Life Years). Cela correspond à une estimation des années de vie perdues par une mort prématurée ou vécues avec un handicap).


Rayonnement ionisant – effets sur la santé humaine

Cet indicateur prend en compte les émissions de rayonnements ionisants (radioactifs) pouvant entrainer des lésions cellulaires. Il se mesure en DALY (Disability Adjusted Life Years). Cela correspond à une estimation des années de vie perdues par une mort prématurée ou vécues avec un handicap).


Ecotoxicité pour les écosystèmes aquatiques d’eau douce

Cet indicateur prend en compte les émissions de substances pouvant causer des dommages aux organismes vivants dans les eaux douces, telles que les composés halogènes organiques, métaux lourds, PCB, dichlorobenzène (DB) et hydrocarbures polycycliques (PAH). Il se mesure en CTUe (Comparative Toxic Unit equivalent).


Toxicité humaine

Deux sous-indicateurs sont utilisés pour établir la toxicité humaine, selon que les effets soient cancérigènes ou non.

Cet indicateur prend en compte les émissions dans l’air et l’eau, de substances (composés halogènes organiques, métaux lourds, PCB, dichlorobenzène (DB), hydrocarbures polycycliques (PAH), pouvant causer des dommages (cancérigènes ou non) aux organismes vivants, et à l’humain plus particulièrement. Il se mesure en CTUh (Comparative Toxic Unit for human).


Occupation et transformation du sol

Il s’agit d’un indicateur adimensionnel combinant deux types d’impacts, pour deux type d’action: l’occupation du sol, et la transformation de celui-ci.

Matière organique du sol


Ce sous-indicateur prend en compte l’occupation et les changements d’affectation du sol (terres arables et milieux urbains) dans le temps. Cela a des implications significatives sur la qualité des écosystèmes (perte de biodiversité), des paysages et de l’environnement (variation de la matière organique du sol, érosion, filtration des eaux de pluie, valeurs foncière, production alimentaire, …). Il se mesure en Déficit en kg C.

Biodiversité


Ce sous-indicateur mesure le risque de perte de biodiversité lié à des changement d’affectation du sol, en quantifiant la perte de territoires favorable à la biodiversité.. Il se mesure en m² x an.


Agrégation en millipoints

Schéma © Architecture et Climat (UCLouvain).

Afin de faciliter la comparaison entre variantes, les différents impacts environnementaux considérés dans TOTEM sont agrégés en un score unique, exprimé en millipoints par unité fonctionnelle (m2, m ou unité pour un élément, m2 de plancher pour un bâtiment).
Plus ce score est élevé, plus les impacts environnementaux sont importants.

Avant juillet 2021, cette agrégation se faisant par un système dit de « monétarisation ». Tous les impacts environnementaux étaient convertis en euros, sur base d’une évaluation du coût de réparation du dommage environnemental causé. Depuis juillet 2021, l’agrégation se fait par une méthode appelée PEF (Product Environmental Footprint) qui est harmonisée au niveau européen. Le score agrégé est maintenant exprimé en millipoint (d’impact par habitant mondial). Cette méthodologie a été choisie afin d’harmoniser la méthode TOTEM avec les recommandations européennes.

Le millipoint est une unité adimentionnelle obtenue suite à ces deux étapes :

  • La normalisation : division du score de chaque indicateur environnemental (chacun dans sa propre unité) par l’impact par habitant mondial moyen pour ce même indicateur environnemental (dans la même unité)
  • La pondération : chaque score normalisé est multiplié par un facteur de pondération qui exprime l’importance relative de chaque indicateur et corrigé par la robustesse de cet impact. (si un indicateur présente beaucoup d’impact ou que la méthodologie évolue encore énormément, la correction va diminué le poids attribué à cet indicateur (échelle de 0.1 à 1)

Si vous souhaitez en savoir plus sur ces questions, nous vous invitons à visionner la vidéo suivante :

 

Analyse du cycle de vie

L’Analyse du Cycle de Vie (ACV): est une méthode scientifique d’évaluation globale des impacts environnementaux, multicritère et multi-étapes. Cette méthode normalisée permet d’évaluer quantitativement les effets de produits ou de services sur l’environnement.

  • Multicritère car elle intègre tout un spectre d’indicateurs environnementaux.
  • Multi-étapes car elle prend en compte les différentes étapes du cycle de vie. L’ACV est à ce titre souvent qualifié de méthode « du berceau à la tombe ».

Une question de flux

Une ACV se fonde sur plusieurs critères d’analyse des flux entrants et sortants. On appelle « flux » tout ce qui entre dans la fabrication du produit et tout ce qui sort en matière de pollution. Parmi les flux entrants, on trouve, par exemple, ceux des matières et de l’énergie : ressources en fer, eau, pétrole, gaz. Quant aux flux sortants, ils peuvent correspondre aux déchets, émissions gazeuses, liquide rejeté, etc.

La collecte des informations relatives aux flux est une étape importante de l’ACV. Ils sont quantifiés à chaque étape du cycle et correspondent à des indicateurs d’impacts potentiels sur l’environnement. La complexité des phénomènes en jeu et de leurs interactions est une source d’incertitude sur la valeur réelle des impacts, c’est pourquoi on les qualifie de « potentiels ».((https://expertises.ademe.fr/economie-circulaire/consommer-autrement/passer-a-laction/dossier/lanalyse-cycle-vie/quest-lacv))

 


L’ACV selon les normes ISO

La méthode d’analyse du cycle de vie s’articule autour de quatre étapes. Celles-ci sont à la fois distinctes et interdépendantes, car tout au long de l’étude de fréquents retours sont nécessaires, ce qui rend la démarche générale itérative. Ces 4 étapes de l’ACV sont définies par les normes ISO 14040 et ISO 14044.

Étape 1: Définition des objectifs et du champs d’étude

Cette étape consiste à définir quels sont les objectifs de l’ACV, en précisant la destination de l’étude (par ex, déclaration environnementale), mais également les frontières du système et les limites de l’étude, l’unité fonctionnelle, la qualité des données, les incertitudes acceptées, etc. Cette étape est essentielle car les résultats de l’étude y font forcément référence.

Étape 2: Analyse de l’inventaire:

L’analyse de l’inventaire (ICV) est –selon la norme ISO 14040– la phase de l’ACV impliquant la compilation et la quantification des intrants et des extrants d’un produit ou d’un système de produits sur l’ensemble de leur cycle de vie. Cette étape consiste donc à dresser l’inventaire et à quantifier les flux de matières et d’énergies entrants (intrants énergétiques, intrants de matières premières, intrants auxiliaires) et sortants (les produits, co-produits et déchets relatifs au produit « final » considéré, les émissions polluantes dans l’air, l’eau et le sol), associés aux différentes étapes du cycle de vie du produit. L’ICV est donc une comptabilité analytique des flux entrants et sortants.

L’inventaire proprement dit inclut :

  • la récolte des données proprement dite, qui est une phase souvent longue et fastidieuse ;
  • la description du mode de calcul permettant de quantifier les intrants et les sortants pertinents d’un produit.

La réalisation d’un inventaire est un processus itératif puisque le produit est d’autant mieux connu que les données sont recueillies ; cela amène généralement de nouvelles exigences ou des limitations sur ces données engendrant parfois un changement de mode de récolte de ces données, en accord avec les objectifs et le champ de l’étude (phase 1 d’une ACV). Dans certains cas, la phase de récolte des données amène à revoir les objectifs et le champ de l’étude.

Étape 3: Évaluation des impacts:

Les données sur les intrants et les extrants sont traduites en indicateurs environnementaux, en termes d’impacts potentiels sur l’environnement, sur la santé humaine, ou sur la disponibilité des ressources. Cette quantification est généralement réalisée à l’aide de logiciels dédiés qui utilisent des méthodes reconnues et validées.

Totem se base pour l’analyse d’impact sur une liste de 19 indicateurs environnementaux, repris des recommandations européennes.

Étape 4: Interprétation

Cette étape est itérative avec les trois précédentes, de manière à toujours valider que les résultats obtenus répondent aux objectifs de l’étude (par exemple, il arrive que la non-disponibilité de certaines données puisse conduire, en cours d’étude, à restreindre le champ de l’étude). C’est également ici que l’on évaluera la robustesse des résultats.


Les différentes phases du cycle de vie (dans TOTEM)

Dans les normes européennes, le cycle de vie d’un bâtiment est divisé en plusieurs étapes, chacune ayant des limites clairement définies. La règle de base est qu’un impact est attribué à l’étape dans laquelle il se produit. Cinq étapes composent le cycle de vie d’un produit. Chacune se subdivise en sous-partie, appelées « modules ».

La phase de production

Cette phase couvre toutes les étapes en amont du chantier. Elle porte donc sur l’extraction des matières premières ou composants entrant dans la fabrication du produit étudié (module A1), leur transport (module A2) et la fabrication du produit proprement dit (module A3).

La phase de construction

Il s’agit de l’opération la plus visible pour le concepteur ou maître d’ouvrage : la phase de chantier proprement dit (module A5), mais également le transport des marchandises entre le lieur de fabrication et le chantier (module A4)

La phase d’utilisation

Cette phase, en général très lourde dans le bilan global d’un bâtiment, couvre les multiples impacts liés à l’utilisation d’un bâtiment. On distingue dans totem :

  • deux modules liés à l’usure des composants, à savoir les opérations de maintenance régulière (B2) et de remplacement (B4)
  • deux modules liés aux consommations associées, en termes d’utilisation d’énergie (module B6) et d’eau (module B7).

Totem ne considère pas les modules B1 (usage d’énergie) et B3 (réparation), faute de données disponibles.

La phase de fin de vie

La fin de vie est divisée en quatre modules chronologiques, à savoir : la déconstruction (module C1), le transport (module C2), le traitement des déchets (module C3) et leur élimination (module C4).

Deux difficultés majeures se posent à ces étapes :

  • comment faire des hypothèses solides sur des opérations de traitement telles qu’elles se pratiqueront dans plusieurs décennies ?
  • comment intégrer une transition du secteur de la construction vers plus de réemploi ? Si mathématique il « suffit » d’identifier une fraction de matériaux et composants qui sortiront du système avec les modules C .. bonne chance pour faire des hypothèses sur les pratiques de réemploi dans 50 ou 60 ans !

Les informations supplémentaires, au-delà du cycle de vie du bâtiment

Pour aider à répondre aux deux questions ci-dessous, le module D vient compléter les informations précédentes de données sur par exemple les possibilités de réemploi ou de recyclage des composants. Des informations utiles, mais qui reflètent un potentiel plus qu’un impact, ce qui justifie le caractère « informatif » de ces modules.


Intégrer la circularité dans l’ACV

A l’évidence, l’incertitude pesant sur la fin de vie des composants a un impact sur une analyse de cycle de vie. Bien qu’il faille relativiser cet impact (quelques pourcents environ du bilan global), l’effort de transition vers une économie plus circulaire nécessite que l’on s’y arrète un moment.

A ce jour, il est d’ores et déjà possible de tenir compte dans TOTEM du fait que l’on choisit de faire recours à des produits issus de réemploi. Dans ce cas, les modules A (liés à l’extraction et transformation de ressources primaires) et éventuellement B1 (si l’élément remployé est déjà sur le site du projet) seront négligés.

Il n’est par contre pas encore possible de valoriser la mise en œuvre d’élément qui ont un potentiel de réemploi à terme. Pourquoi ? Parce que la fin de vie est, à l’heure actuelle, décrite sur base des processus existants de recyclage, valorisation ou traitement de déchets. Or, faute de filières de réemploi développées, il est impossible aujourd’hui de traduire celles-ci en processus rigoureusement décrits. Très probablement, cela évoluera progressivement avec le développement de ces filières.

Plus largement, la question du réemploi illustre une limite intrinsque des méthodes ACV appliquées au secteur du bâtiment : la nécessité de faire aujourd’hui des hypothèses à long terme dans une industrie et un contexte qui sont amenés à changer en profondeur sur un espace de temps inférieur à la durée des analyses…

Pour approfondir votre compréhension sur l’application des principes de l’économie circulaire au sein de Totem, nous vous recommandons de visionner la vidéo proposée ci-dessous :

Si vous voulez en savoir plus le les hypothèses de calcul faites dans TOTEM, nous vous invitons à consulter la vidéo suivante :

TOTEM – Les notions clés en 5 minutes

 

Qu’est-ce que TOTEM ?

TOTEM est un outil belge en ligne commun aux trois régions qui permet aux acteurs de la construction d’évaluer l’impact environnemental des bâtiments et des éléments de construction sur l’ensemble du cycle de vie du bâtiment. son nom est l’acronyme de « Tool to Optimize the Total Environmental impact of Materials ».

TOTEM est donc avant tout un outil d’aide à la décision, qui peut être utilisé à toutes les étapes d’un projet. Il fournit des scores environnementaux pour un projet dans son ensemble ou pour l’un des éléments/techniques/ matériaux utilisés. Ces scores sont calculés sur base de 19 indicateurs, qui couvrent l’ensemble du cycle de vie. TOTEM permet donc de comparer différents scénarios de construction ou de rénovation, de démolition ou de réemploi.

L’objectif est d’optimiser les choix architecturaux et de construction pour aller vers une réduction de l’impact environnemental. L’outil a également pour objectif de promouvoir les connaissances et la compréhension en matière de performance environnementale des bâtiments et de faciliter le dialogue au sein du secteur de la construction.

Rentrer dans l’outil TOTEM, c’est un peu comme un jeu de poupées russes; chaque notion en appelle une autre. L’outil en ligne est généreusement documenté. Le but de cet article n’est donc pas de retranscrire littéralement ce qui se trouve dans la documentation mais bien de donner une vision d’ensemble synthétique des notions phares. Les schémas ci-dessous sont les illustrations emblématique de TOTEM, que l’on retrouvent dans les nombreuses publications relatives à l’outil. Chaque schéma contient un hyperlien développant les notions illustrées. Si vous souhaitez approfondir le sujet, n’hésitez pas à cliquer dessus.

Et si vous voulez en savoir plus sur le « bon usage » de TOTEM et/ou les hypothèses de calcul derrière cet outil, nous vous invitons à visionner les vidéos suivantes :


Performance énergétique ou performance environnementale

Sous l’impulsion des réglementations européennes de Performance Energétique des Bâtiments (PEB), le secteur de la construction s’est intensément attelé à réduire les consommations énergétiques des bâtiments au cours de ces dernières années. Les performances ont donc beaucoup évolué. Au début de cette dynamique, on parlait du concept de « basse énergie ». Les bâtiments passifs sont apparus vers 2010. Aujourd’hui c’est le concept « Nearly Zero Energy Buildings (NZEB) » QZEN qui est mis en avant. A l’avenir, les bâtiments à « énergie positive » produiront plus d’énergie qu’ils n’en consommeront.

Mais aux consommations liées à l’usage du bâtiment, s’ajoute désormais une préoccupation liée à l’impact « gris » (non lié aux consommations pour l’usage), et une prise de conscience de la multiplicité des impacts, qui ne se limite pas à l’enjeu énergétique. Les problématiques sont en effet nombreuses : préservation des ressources en matières premières, limitation de l’utilisation des énergies fossiles, gestion de l’eau, lutte contre la pollution atmosphérique, conception de bâtiments à haute performance énergétique, réutilisation/recyclage des matériaux, … Pour intégrer ces défis dans une approche globale, il est essentiel d’avoir une approche sur la totalité du cycle de vie des bâtiments, des éléments constructifs et des matériaux.


L’Analyse de cycle de vie (ACV)

La prise de conscience accrue de l’importance de la protection de l’environnement et des impacts possibles associés aux produits fabriqués et consommés, a augmenté l’intérêt pour le développement de méthodes destinées à mieux comprendre ces impacts et à y remédier. L’une de ces technique est l’analyse du cycle de vie.

D’après la norme ISO 14040, l’ACV est une « compilation et évaluation des intrants, des extrants et des impacts environnementaux potentiels d’un système de produits au cours de son cycle de vie ». Initiée dans les années 1990, l’analyse de cycle de vie est aujourd’hui un outil performant et reconnu. La normalisation internationale ISO (14040 à 14043), développée à partir de 1994, a fixé les bases méthodologiques et déontologiques de ce type d’évaluation, favorisant une harmonisation de la méthodologie employée, davantage de robustesse et de fiabilité des résultats et une communication plus formalisée.

Approche multicritère sur l’ensemble des étapes du cycle de vie des produits considérés « du berceau à la tombe », l’ACV est le concept-clé sur lequel s’appuie l’outil TOTEM.


Les indicateurs d’impact environnementaux

L’impact environnemental est évalué au travers d’une multiplicité d’indicateurs, que l’on peut rassembler en quelques grandes familles. Celle-ci couvrent des éléments très différents, allant du réchauffement climatique à l’épuisement des ressources, en passant par les impacts pour la santé humaine et des écosystèmes. C’est donc un panel le plus complet possible des impacts environnementaux qui est présenté, illustrant la complexité des conséquences de nos choix de construction.

A la difficulté qu’il y a à décrire et quantifier chacun des impacts individuellement s’ajoute le défi de rassembler ceux-ci en un indicateur unique permettant de prendre des décisions pratiques. Une gageure ?


Le score agrégé en millipoints

Totem propose un score agrégé exprimé en millipoints par unité fonctionnelle. Ce score combine les 19 indicateurs environnementaux en un résultat unique. Il se base pour cela sur la méthode PEF (Product Environmental Footprint), qui inclus une étape de normalisation pour chacun indicateur, puis une pondération combinant des éléments objectifs (robustesse des méthode d’évaluation) et des éléments subjectifs (perception d’importance de l’indicateur).


Les données génériques et spécifiques

Avant 2020, TOTEM utilisaient des données génériques uniquement, provenant de la base de données ECOINVENT. Il s’agit d’une base de donnée suisse largement reconnue dans le domaine scientifique, développée spécifiquement pour les analyse du cycle de vie. Elle a été choisie pour sa représentativité des données pour l’Europe occidentale.

Spécifiquement pour l’outil TOTEM, les données génériques d’EcoInvent sont harmonisées autant que possible au domaine de la construction belge (mix énergétique belge avec facteur d’émission adapté, adaptation des scénarios de fin de transport, de fin de vie, etc.).

Depuis 2020, TOTEM intègre également des données spécifiques provenant directement des producteurs de matériaux qui réalisent des analyses de cycles de vie au sein de leurs unités de production pour produire des données spécifiques à leur produit. Il s’agit des Déclarations Environnementales de Produits (EPD). La réalisation d’EPD et leur intégration dans Totem implique bien évidemment une série de règles, portant sur la standardisation des documents, le recours à une analyse de cycle de vie conforme aux normes, une définition précise de l’objet d’étude, un processus de review par des vérificateurs reconnus par le SPF, et l’enregistrement des données au sein d’une base de données totalement ouverte.


Matériaux, composants, éléments et bâtiments

Plusieurs niveaux d’analyse sont nécessaires pour une évaluation environnementale. Ces différents niveaux suivent une structure hiérarchique. Faisons un parallèle : les lettres de l’alphabet sont les plus petites parties élémentaires du langage écrit, et peuvent être assemblées en mots, ces derniers formant des phrases ; dans TOTEM les matériaux constituent l’alphabet, combinables en composants, eux-mêmes à la base de complexes de parois appelés élément, qui ensemble constituent le bâtiment.

TOTEM est donc construit selon une structure hiérarchique distinguant quatre niveaux d’analyse détaillés ci-dessous. Parmi ces niveaux, seuls les plus élevés, à savoir les éléments et les bâtiments permettent donc une comparaison de leur score environnemental.

Retour d’expérience d’une démarche Slowheat mise en place dans une école

Retour d’expérience d’une démarche Slowheat mise en place dans une école

Webinaire Energie+ du mardi 30 mai 2023

protection solaire verlaine

L’utilisation de protections solaires -à l’école de Verlaine

L’objectif des protections solaires est de maintenir un environnement intérieur confortable et sain en évitant l’éblouissement et la surchauffe. Il existe sur le marché différents systèmes d’ombrage, qui permettent de réguler la quantité de lumière solaire entrant dans une pièce et réduire le rayonnement solaire.

Afin de réduire la surchauffe du bâtiment, il existe principalement 2 systèmes, les protections solaires parallèles qui ont pour objectif de réduire les gains de chaleur solaire et l’éblouissement tout en préservant la lumière naturelle ou les protections solaires perpendiculaires fixe ou mobile, qui sont généralement plus efficaces, mais qui modifie de manière plus marquée l’esthétique de la façade.

Des systèmes automatisés

Les systèmes automatisés de protections solaires utilisent des capteurs de luminosité pour détecter la quantité de lumière du soleil et ajuster la position des dispositifs de protection solaire en conséquence. Cette fonction peut être contrôlée par une télécommande ou une application smartphone, et certains peuvent être programmés pour ajuster leur position en fonction de l’heure de la journée ou de la saison.

Ce système automatisé a été mis en place dans l’un des bâtiments de l’école des Verlaine. Vous pouvez le découvrir en parcourant la vidéo consacrée à l’école de Verlaine :

Les vidéos des travaux à l’école communale La Gaminerie de Lessines

La ventilation

L’installation d’un système de ventilation VMC double flux centralisé.


Le relighting

Le relighting, le remplacement après études par des éclairages LED du bâtiment.


L’enveloppe

Rénovation de la toiture et l’isolation du plancher des combles du bâtiment.

Un Système C de ventilation dans les nouvelles classes de l’institut Sainte-Marie à Jambes

Le trio gagnant: isolation + étanchité + ventilation

« Si par le passé, on se fiait aux fuites d’air pour assurer la ventilation des petits bâtiments, le perfectionnement des méthodes de construction, telle la pose de fenêtres plus tanches, de pare-vapeur continus, ainsi qu’un plus grand souci du détail, ont augmenté l’étanchéité à l’air des bâtiments. Les fuites d’air ne constituent donc plus une source de ventilation suffisante pour répondre aux besoins de ventilation, dans le cas des bâtiments récent et/ou rénovés. »
Jean-Marie Hauglustaine et Francy Simon, « La ventilation et l’énergie – guide pour les architectes », P.11

Dans cette logique d’étanchéisation des bâtiments qui permet un meilleur contrôle du climat intérieur, la ventilation fait partie d’un trio indissociable :

Le trio gagnant :

  • Isolation thermique ;
  • Etanchéité à l’air ;
  • Ventilation contrôlée.

+

  • Favoriser les apports solaires gratuits tout en évitant la surchauffe.

 

La qualité de l’enveloppe

La meilleure énergie est celle que l’on utilise pas.
Au plus l’enveloppe est performante, au plus les besoins en énergie sont réduits.

Et la PEB ? En cas de rénovation d’une PEN…

La réglementation PEB prévoit des exigences de ventilation pour tous types d’unités PEB quelle que soit la destination (résidentielle ou non-résidentielle) et la nature des travaux applicables.

DESTINATION NATURE DES TRAVAUX REFERENCE REGLEMENTAIRE
Neuf et assimilé Changement de destination Rénovation simple Rénovation importante
 

 

 

 

 

Mise en place d’un système de ventilation complet soit :

  • Alimentation et évacuation naturelle ;
  • Alimentation et mécanique ;
  • Alimentation naturelle, évacuation mécanique ;
  • Alimentation et évacuation mécanique.

Les dispositifs de ventilation installés doivent permettre d’assurer les débits requis  tant en alimentation qu’en évacuation  et ce, dans tous les espaces, qu’ils soient destinés à l’occupation humaine ou non.

NB : Dans les espaces destinés à l’occupation humaine, les débits  d’alimentation doivent  obligatoirement être réalisés avec de l’air neuf. Par contre, dans les locaux non destinés à l’occupation humaine, il est permis d’alimenter en air transféré sous certaines conditions.

 

 

 

Pour les locaux existants où des châssis de fenêtres ou de portes extérieurs sont placés ou remplacés, seules les exigences de ventilation relatives aux amenées d’air sont applicables.

Pour les locaux situés en extension, mise en place de dispositifs de ventilation permettant d’assurer les débits requis tant en alimentation qu’en évacuation et ce, dans tous les espaces, qu’ils soient destinés à l’occupation humaine ou non.

NB : Il est permis de faire mieux que la réglementation en prévoyant un système de ventilation complet.

 

 

 

Annexe C3* – VHN de l’arrêté qui fait référence, notamment, à la norme NBN EN 13779 : 2004.

Lien vers les textes réglementaires : Réglementation PEB à partir du 11/03/2021 – Site énergie du Service public de Wallonie.

Pour les dispositifs de ventilation des immeubles non résidentiels destins à l’usage humain – tels que les écoles – la classification de base de la qualité de l’air intérieure est reprise dans le tableau ci-dessous :

CATEGORIE DESCRIPTION CLASSIFICATION PAR LE NIVEAU E CO2

Niveau de co2  au-dessus du niveau de l’air fourni en [ppm]

VALEUR PAR DEFAUT
INT 1 Qualité d’air intérieur excellente < 400 350
INT 2 Qualité d’air intérieur moyenne 400 – 600 500
INT 3 Qualité d’air intérieur modérée 600 – 1 000 800
INT 4 Qualité d’air intérieur basse > 1 000 1 200

Lors du dimensionnement des systèmes de ventilation, le débit de conception ne peut pas âtre inférieur au débit minimal correspondant à la catégorie d’air INT3, qui correspond à 75 à 80 % de personnes satisfaites par la qualité de l’air.

Un aspect essentiel d’une installation de ventilation est la détermination du taux de renouvellement d’air ventilé. Pour maximiser les économies d’énergie, il faut réduire autant que possible le taux de renouvellement d’air durant la période de chauffe et, en été, utiliser le refroidissement de nuit, par une surventilation du bâtiment. La ventilation doit néanmoins rester suffisante afin d’empêcher l’accumulation d’agents contaminants dans l’air intérieur et de permettre aux occupants de respirer, de façon à assurer la bonne santé des occupants.

 

Système C

Amenée d’air naturelle
Extraction d’air naturelle
Apport d’air mécanisé
Extraction d’air naturel
Amenée d’air naturelle
Extraction mécanisée
Amenée d’air mécanisé
Extraction mécanisée
(+ échangeur de chaleur)

Dimensionnement

L’apport d’air neuf extérieur se fait dans ce cas-ci par une série répétée d’ouvertures d’amenée d’air réglables (AOR) sur châssis avec un débit de 100 m³/h/m sous 20 Pa

Etant donné que la façade se déploie sur plus de 70 m de long et que l’ensemble de la toiture est percée en continu sur toute sa longueur et sur ses deux côtés pour accueillir un ensemble de baies vitrées afin de faire pénétrer la lumière sous les toits du bâtiment, il y a un potentiel théorique de débit nominal de 70 m X 100 m³ / h /m, soit 7 000 m³.

Source = auteur de projet

L’aérateur de fenêtre auto-réglable à rupture thermique est un profil en aluminium doté d’une série de perforations de 2,9 X 20,3 mm de manière à servir de moustiquaire anti-insectes. Le profil perforé est totalement amovible, ce qui permet à l’aérateur d’être nettoyé complètement à la brosse ou à l’aspirateur.

Le profilé perforé constitue une faiblesse au niveau de la performance thermique du châssis. En effet, la valeur U du profil est de 3,0 W/m²K. Cette pièce d’aération a une hauteur de 92 mm. Cette faiblesse thermique engendrée par le profilé doit être au maximum compensée par les performances thermiques du reste du vitrage afin que l’ensemble du châssis (système d’aération compris) rencontre la performance demandée. Mais il ne faut également pas perdre de vue que que l’air entrant par ces grilles, ayant la même température que l’air extérieur, engendre des déperditions thermique dont il y a lieu de tenir compte. En période de chauffe, ce type de ventilation génère un apport d’air « froid » qui demande à être compensé au plus proche de ces pertes. Ce système, par ricochet, pèse sur le calcul global de la consommation énergétique du bâtiment étant donné que ces pertes occasionées par l’amenée d’air non pré-chauffé doivent être compensées ; ce qui n’est pas le cas dans avec un système de ventilation mécanique double flux avec récupération de chaleur. Dans chaque nouveau projet, une réflexion calculée sur les gains et les pertes permet d’étayer le choix vers tel ou tel système.

Comme le prévoit le cahier des charges, l’aérateur de fenêtre est de type autoréglable à rupture thermique et est prévu pour un montage sur vitrage.

  • Rupture thermique : Un profil porteur en plastique de haute qualité fait office de rupture thermique.
  • Autorégulation : pour éviter les courants d’air, un clapet autoréglable (exempt d’entretien) est appliqué dans le clapet de fermeture, ce qui rend l’aérateur autoréglable. Ce clapet réagit automatiquement aux différences de pression/à la force du vent et ne peut pas être manipulé par l’utilisateur.

Groupes de ventilation

Caisson extraction insonorisé de 470 m³/h.

Groupe de ventilation dans Aile A

Groupe de 1 845 m³/h avec sonde CO2 anti retour.

Ce groupe gère la ventilation de 3 classes (dont une grande classe de 140 m²).

Groupe de ventilation dans Aile B

Groupe de 1 405 m³/h avec sonde CO2 anti retour.

Ce groupe gère la ventilation (au niveau de l’extraction) de 3 classes et d’un 4ième local.

Un caisson d’extraction insonorisé réglable (0 -10 V)

Ce groupe est dédié à la nouvelle salle des professeurs. Son système 0-10 V permet de réguler manuellement l’extraction de l’air en fonction de la situation (variations météorologiques et/ou du taux d’occupation).

Comme le groupe est asservi à une sonde CO2 (en sortie), le système ne va tirer le dbit d’air nominal mais va s’adapter selon le taux de CO2. Il est préférable d’avoir une sonde CO2 pour chaque classe mais comme le groupe de ventilation est dédié à des locaux ayant la même affectation, il y a tout de même une logique cohérente au niveau de l’occupation des locaux.

La reprise d’air se fait au sein même du local via un réseau de gaines apparentes. Les flexibles jouent le rôle de silencieux.

 

Il y a une régulation temporelle plus un potentiomètre réglable manuellement qui permet la possibilité d’augmenté le débit en fonction de l’occupation.

 

 

 

 

 

Rénovation de la toiture : transformation d’un grenier et ancien internat en nouvelles classes à l’Institut Sainte-Marie de Jambes

La vidéo


Contexte

L’institut Sainte-Marie de Jambes se dresse sur les hauteurs de Jambes au sein d’un vaste site de 2,6 ha. La première pierre fut posée en 1928. Hébergeant une centaine d’élèves, tous internes, à ses débuts ; l’école comptabilise aujourd’hui 1 500 élèves (dont 70 internes) et x enseignants (à compléter). Tout au long de ce siècle d’existence, se sont agrégés autour de cet imposant bâtiment principal diverses extensions suivant l’évolution de la population scolaire et du développement de son projet éducatif.

En 1961, la moitié des greniers situés sous la toiture de ce bâtiment principal est transformée en logements (chambrettes) pour les internes, ce qui a permis de récupérer la place qu’occupaient jusqu’alors les dortoirs pour ouvrir de nouvelles classes. Mais en 19 ??, l’internat a fait l’objet d’une nouvelle construction sur le site au sein d’un bâtiment autonome. Actuellement, La rénovation des 1 600 m² de toiture du bâtiment principal s’inscrivent dans la volonté de l’école de récupérer la surface de ce dernier étage sous la toiture qui a longtemps abrité l’internat afin d’y aménager de nouvelles classes en remplacement des (nombres ?) classes-containers temporairement installées sur une partie verdurisée du site.

Après travaux, les élèves ayant cours dans les containers rejoindront le nouvel étage aménagé en classes au dernier étage du bâtiment principal et les containers seront supprimé au profit de tout un espace vert qui regagnera du terrain.


Subventionnement

PPT / Plan Prioritaire de travaux

Pour les travaux, l’école bénéficie d’une subvention PPT. Le PPT correspond à un fonds subsidiant structurel en FWB. Pour un établissement secondaire, le taux d’intervention correspond à 60 % de l’investissement sur base du montant des offres. Le montant de l’investissement doit s’inscrire dans une enveloppe qui est plafonnée. Afin de bénéficier de ces subsides, l’école a décidé de limiter les travaux entrepris à cette enveloppe budgétaire plafonnée. Ce plafond est donc une contrainte supplémentaire à intégrer aux nombreux paramètres avec lesquels l’école doit jongler lorsqu’elle planifie des travaux de rénovation. Dans l’idée d’adopter une vision plus globale de l’ensemble des travaux de rénovation à entreprendre, le futur fonds structurel pour les bâtiments scolaires annonce une levée de cette contrainte en supprimant le plafond du montant de l’investissement. Le PPT ne fixe pas de performances à atteindre ; c’est donc les réglementations classiques en vigueur qui sont d’application. Au niveau énergétique, il s’agit donc de satisfaire les normes régionales PEB en vigueur et/ou les normes liée à une subvention complémentaire comme le permet le programme UREBA classique.

UREBA (classique)

Ces travaux sont également subsidiés par la Région Wallonne via le programme UREBA classique qui peut se cumuler avec le PPT et qui prend en charge un pourcentage (30 ou 35 %) de la partie non subsidiée pour les postes éligibles dont l’isolation thermique de l’enveloppe du bâtiment fait partie. Le programme UREBA classique est accessible en continu (à la différence des UREBA exceptionnels) et vise à soutenir certains organismes qui veulent réduire la consommation énergétique de leurs bâtiments affectés à une mission de service public ou non commerciale. Les écoles sont éligibles à ce programme de subventionnement. Les exigences en termes de performances énergétiques à atteindre sont consultables via le lien ci-dessous et pour l’isolation thermique des parois, les exigences et performances à atteindre sont consultables ici et, dans le cas de l’isolation thermique des parois, elles correspondent à celles de la PEB.

Annuellement, en plus de l’UREBA CLASSIQUE, des appels à projets UREBA EXCEPTIONNELS sont lancés via des appels à projets ponctuels qui octroient des subsides plus importants.

Au moment de la rédaction de cet article, un appel à projet UREBA EXCEPTIONNEL 2022 est en cours et le détail du présent appel à projet est consultable via le lien ci-dessus.


Travaux de rénovation énergétiques entrepris

Les travaux de rénovation consistent à renouveler la toiture (nouveau recouvrement), à isoler entièrement ses pans et à récupérer tout une partie de l’espace du grenier pour créer sept nouvelles classes afin que les classes actuelles installées dans des containers puissent rejoindre le bâtiment principal. L’éviction des containers permettra de regagner de l’espace vert dans la partie « parc » du site.

Le bâtiment principal est composé de 5 étages et n’est que très faiblement mitoyen sur ses deux pignons latéraux. Ce bâtiment n’est pas du tout isolé.

Entre-autres pour des raisons économiques, l’école a fait le choix de phaser les travaux d’isolation de l’enveloppe du bâtiment en commençant par l’amélioration de l’enveloppe au niveau de la toiture qui, sur ce bâtiment, totalise 1 600 m². Dans cette optique de phasage, il est donc important d’éviter les effets de verrouillage et d’anticiper les futurs travaux ultérieurs liés notamment à l’isolation des façades, notamment au travers de la continuité de l’isolation.


Situations existante et projetée

Le bâtiment principal est composé de 5 étages et n’est que très faiblement mitoyen sur ses deux pignons latéraux. Ce bâtiment n’est pas du tout isolé.  Un audit énergétique préalable a été réalisé en amont de ces travaux. Voici quelques données phares extraites de cet audit. (avant travaux)

 

K 

 

89 

Ce coefficient K qui reflète la qualité thermique moyenne du bâtiment est atténué par l’effet de volume qui favorise les grands bâtiments  
 

CEP 

 

 

135 kWh/(m².an) 

Cette consommation spécifique est calculée par l’auditeur Elle concerne le bâtiment principal ainsi que le bâtiment annexe (salle fortement vitrée), soit plus que la zone touchée par les travaux. Le certificat PEB indique un CEP de 203 kWh/(m2.an), mais pour un périmètre encore plus étendu couvrant l’ensemble de l’institution.  

La ville de Namur, par le biais du « NID [Namur Intelligente et Durable] »  a réalisé une thermographie aérienne de l’ensemble de la ville de Namur. Un avion équipé d’un scanner infrarouge a survolé la commune pendant les nuits du 16 au 17 et du 23 au 24 février 2018. Pour que les données soient correctes, plusieurs conditions devaient être respectées (bonne visibilité, ciel dégagé, humidité de 80 %, températures entre -5°C et -3°, vent de +/- 4 à 7 km/h, altitude de vol : 1 200 m (résolution de l’acquisition des données : 50 cm au sol). On peut y observer « le flux radiatif  » émis par les toitures survolées. Grâce à ces flux radiatifs, il est possible, dans certaines conditions, d’estimer l’importance des déperditions thermiques des toitures. La thermographie donne donc une indication de l’état de l’isolation des toitures. En effet, les données collectées ont permis de calculer un indice de déperdition pour chaque bâtiment. Afin d’étalonner les données, 120 Citoyens se sont portés volontaires pour tester leur bâtiment en tant que « témoin » et afin de constituer un échantillon représentatif de référence. Les toitures ont ensuite été classées en 256 niveaux selon leur émission moyenne. Il ne s’agit donc pas de température.
Plus les toitures émettent de la chaleur, plus elles se rapprochent des tonalités rouges. Une clé d’interprétation des résultats est disponible pour déterminer la classe d’émission selon l’échelle suivante :

Source : Namur – Thermographie moyenne par bâtiment.

Dans le cas de l’Institut Sainte-Marie de Jambes, il apparaît au premier coup d’œil – et nous l’avons vérifié – que la toiture de l’édifice principal du site n’est pas isolée contrairement à celles des bâtiments connexes qui se sont ajoutés au fil du temps. Le choix d’isoler la toiture du bâtiment majeur de cette école secondaire n’en est pas un, c’est une nécessité en regard du contexte énergétique et des objectifs de décarbonation attendus dans les prochaines décennies. En effet, un haut niveau d’isolation et d’étanchéité à l’air permettent de diminuer les besoins en énergie. Dans un bâtiment non isolé, la toiture représente une part importante des déperditions, estimées de l’ordre de 25 % des pertes totale. Donc agir sur l’amélioration de l’enveloppe par le biais d’une intervention au niveau des toitures est une priorité haute !

Le volume chauffé totalise presque 36 000 m³ (bâtiment principal + bâtiment vitré). D’après les données de ce bâtiment audité et suivants les recommandations émises par cet audit énergétique, le niveau global d’isolation thermique (K) serait sensiblement amélioré et passerait d’un K 89 à un K 24, ce qui engendrerait une baisse significative de la consommation. La consommation d’énergie spécifique qui est actuellement évaluée à 135 kWh/m².an descendrait à 56 kWh/m²/an (=situation projetée)  

NIVEAU K
NIVEAU GLOBAL D’ISOLATION THERMIQUE
ACTUEL 89
ENVELOPPE -65
CHAUFFAGE 0
RENO TOTAL -65
FINAL 24

 

Cet indicateur projeté concerne évidemment une mise en œuvre de l’ensemble des recommandations. Cette consommation spécifique envisagée (56 kWh/m².an) s’aligne avec les chiffres annoncés par « La stratégie wallonne de rénovation énergétique ». Pour rappel, Cette « STRAT RENO » à long terme du bâtiment est un maillon clé des politiques de réduction des émissions de GES, dans laquelle la Wallonie s’est engagée en visant « la neutralité carbone au plus tard en 2050, avec une étape intermédiaire de réduction des émissions de gaz à effet de serre (GES) de 55 % par rapport à 1990 d’ici 2030 ». Plus précisément, les objectifs de la stratégie de rénovation énergétique du parc de bâtiments wallon, en lien avec les propositions formulées dans la Déclaration de Politique Régionale 2019-2024, sont, pour le tertiaire : tendre en 2040 vers un parc de bâtiments tertiaires efficace en énergie avec une cible de 80 kWhef/m²an définie pour leur consommation d’énergie finale, tous usages confondus. A cette efficacité énergétique s’ajoute une neutralité carbone pour le chauffage, la production d’eau chaude sanitaire, le refroidissement et l’éclairage. C’est-à-dire présentant un bilan énergétique annuel nul avec un besoin d’énergie assuré par une production d’énergie de sources renouvelables.

Les travaux entrepris visent une amélioration de l’enveloppe du bâtiment par la rénovation de la toiture – qui à cette occasion sera isolée –  et la réaffectation du grenier en nouvelles classes. 

 

   

  • Photo de gauche : charpente d’origine et poutrelles d’origine en béton 
  • Photo du milieu : versants de toitures d’origine en dalles de béton armées
  • Photo de droite : carotage en recherche avant travaux.

Ni la toiture, ni le plafond sous le grenier ne sont isolés. Les travaux entrepris visent à complètement isoler par l’extérieur les pans de cette toiture à versants et à aménager de nouvelles classes dans le grenier existant. La toiture sera modifiée par le percement d’ouvertures afin de réaliser un « bandeau lumineux » continu faisant pénétrer la lumière du jour dans les nouvelles classes aménagées.

 

Postisolation d’une toiture à versants

Isolation des versants ou via le plancher des combles ? 

   

Emplacement de l’isolation dans des combles non habités (1) ou habités (2 et 3) 

Voir NIT 251 Buidwise 

L’emplacement de l’isolation dans une toiture à versants dépend de la destination des locaux sous-jacents. S’ils sont destinés à être habités, il y a lieu de placer l’isolation dans le plan de la toiture. Dans le cas contraire, il sera plus opportun de disposer l’isolation dans le plancher du grenier. Ce second choix permet de réduire les dimensions du volume protégé (ce qui aura généralement pour conséquence d’augmenter la compacité du bâtiment) et de limiter la surface de déperdition. NIT 251 Buildwise (CSTC)

Ici, l’école a fait le choix d’isoler les versants de la toiture malgré qu’une partie du volume ne soit pas « habité ». Ce choix a été fait pour éviter les effets de verrouillage, dans une perspective de futurs aménagements possibles dans ce volume.

En isolant les pans de cette toiture à versants, un grand volume allant jusqu’à 6m de hauteur (au niveau du faîtage) est isolé. Ce grand volume est restructuré à l’aide de plafonds suspendus acoustiques créant des volumes intérieurs développant une hauteur sous-plafond proche des 3m (de 2,70 m à 3m). De futurs travaux ultérieurs d’aménagement seront nécessaires pour investir cet espace encore disponible sous le faîtage. D’autres cas d’étude (mettre lien vers Sart d’Avette Flémalle + La Gaminerie à Lessines) mettent en évidence une alternative à l’isolation des pans de toiture par une isolation via le plancher des combles.

 

 

Par au-dessus, par en-dessous ou entre les chevrons ? 

Que les combles soient occupés ou non, l’isolation peut être posée au-dessus, en dessous ou entre les éléments de la charpente ou du plancher des combles. Ces trois positions de base peuvent, en fonction de la réalité de terrain, se combiner.

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Le chantier en images

Nouvelle couverture

Des tuiles plates rectangulaires (4,5 cm X 3 cm) sont utilisées pour le recouvrement de la toiture.
1 640 m² sont recouverts de cette façon et 80 tuiles spéciales (ventilation) sont réparties sur l’ensemble de la toiture.
Les lattes (ou liteaux) constituent le support des tuiles. Les contre-lattes sont destinées à créer un espace entre les lattes et la sous-toiture afin de permettre ainsi l’écoulement occasionnel d’eau. Elles limitent également le risque de dégradation de la sous-toiture lors des travaux et facilitent le séchage du matériau de couverture. Le bois de ce lattage et contre-lattage a subi un traitement de préservation insecticide et fongicide.

L’étanchéisation aux matières liquides de cette toiture à versants est assurée par la sous-toiture qui doit évidemment être étanche à l’eau et résistante à l’humidité. Jusqu’alors, il n’y a jamais eu de sous-toiture comme on peut le voir sur les photos présentant la situation existante avant travaux.
Cette sous-toiture est bien visible sur la photo : membrane souple de polypropylène nervurée de 0.2 mm d’épaisseur présentant une faible résistance à la diffusion des vapeurs d’eau. Valeur Sd : +/- 0.05 m. Sa bonne perméabilité à la vapeur d’eau permet ainsi à l’humidité – qui serait malgré tout parvenue à pénétrer l’isolation de continuer à s’échapper par le toit. Les différents lés de cette membrane se chevauchent en assurant l’herméticité des joints.

L’étanchéité de la plateforme de toiture plate (à l’endroit du « bandeau lumineux » = bandeau continu de lucarnes) est assurée par un revêtement d’étanchéité monocouche constitué d’un matériau à base de hauts polymères, il s’agit d’une membrane d’étanchéité EPDM non armée, de teinte noire, résistant obligatoirement aux UV. Ce revêtement d’étanchéité synthétique est collé sur les panneaux isolants.

Selon la pente ; donc principalement à X° pour les versants d’origine et plate (2°) au-dessus des chiens assis, l’étanchéité à l’eau est gérée distinctement : à l’aide d’une sous-toiture au niveau des pans de toiture et à l’aide d’une membrane EPDM au niveau de la toiture plate.

Isolation des pans de toiture d’une charpente en béton

Compte tenu de la structure existante en béton (système mixte : une partie faite de poutres et poutrelles en béton et une autre partie faite de portiques en béton soutenant des dalles en béton qui constituent les pans de la toiture), le choix d’une isolation par l’extérieur s’est imposé. Cette isolation est envisagée dans ce cas-ci avec une couche de 22 cm de laine minérale posée au sein d’une ossature-bois de 23 cm. Il s’agit donc d’une isolation traditionnelle entre chevrons.

   

Sur cette photo de chantier, on peut apercevoir les éléments en bois entre lesquels les rouleaux de laine minérale vont être déployés. Les dalles en béton constituant une partie des pans de toiture sont autant que possible conservés. Néanmoins, la mise en œuvre d’une isolation continue et le « redécoupage » de la toiture pour y insérer des baies a nécessité la destruction d’une partie de ces dalles en béton.

Par transparence au travers de la sous-toiture bleue, on peut voir le lattage et contre-lattage nécessaire au recouvrement du toit. Et du côté intérieur de la sous-toiture, on devine la suite des couches successives qui formeront le nouveau complexe de paroi constituant la toiture. Apparaît la sur-épaisseur faite d’éléments en bois de 23 cm qui se construit afin d’accueillir la couche d’isolation thermique la plus continue possible, limitant au maximum les interruptions d’isolant au droit des nœuds constructifs.

L’isolation thermique est réalisée en laine minérale se présentant sous forme de rouleaux épais de 22 cm. La conductivité thermique a une valeur U = 0,035 W/mK. Les rouleaux de laine minérale sont déployés dans la structure réalisée pour accueillir cet isolant. Celle-ci est réalisée avec des éléments en bois de 23 cm d’épaisseurs disposés à intervalles réguliers.

L’isolation de la toiture plate (toiture des lucarnes et des chiens assis) est quant à elle réalisée à l’aide de panneaux en polyuréthane (PIR) d’une épaisseur de 14 cm. La conductivité thermique de ces panneaux a une valeur Umax de 0,024 W/mK. Les panneaux isolant sont collés en adhérence totale sur la couche pare-vapeur (OSB 18 mm).

 

  1. Etanchéité EPDM ;
  2. Isolant 140 mm ;
  3. OSB 18 mm ;
  4. Structure bois 6/4 15 ;
  5. Latte 24 mm ;
  6. Plaque de plâtre RF 1/2H 15 mm.

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Enseignements:

  • Attention aux exigences variables entre le subside et la norme. Choisir la plus contraignante des deux.
  • La toiture la plus économe.
  • La rénovation énergétique n’est pas toujours l’élément déclencheurs des travaux entrepris. Dans ce cas-ci, c’est plutôt la réaffectation des locaux sous la charpente et le manque de places qui ont motivé la mise en route du projet. A l’occasion de ce chantier de réaménagement spatial, une attention a été portée aux questions énergétiques étant donné que c’était la première grosse intervention en toiture depuis la construction du bâtiment dans les années 1930 ! Les travaux énergétiques ne sont généralement pas une fin en soi mais font partie intégrante d’une rénovation plus globale s’inscrivant dans une vision élargie à long terme.

 

Installation d’une ventilation double-flux à l’école communale de Wépion

Contextualisation des travaux

L’école communale de Wépion a entrepris des travaux de rénovation sur l’ensemble de ses bâtiments :

 

Source= https://www.le-nid.be/

  • La rénovation intérieure de partie dédiée à l’école maternelle
  • le remplacement de l’ensemble des châssis (lien vers l’article)
  • l’installation d’un système de ventilation double-flux
  • la rénovation des sanitaires

Le dossier bénéficie d’une subvention partielle du montant de l’investissement via le programme UREBA PWI qui a fait l’objet de l’appel à projet UREBA Exceptionnel 2019.

Dans le prolongement des travaux en toiture déjà réalisés et dans cette logique d’amélioration (thermique) de l’enveloppe, c’est à présent au tour des châssis d’être remplacés. Etant donné que les travaux d’isolation impliquent une prise en compte de l’étanchéité à l’air et qu’ils sont indissociables des travaux relatifs à la ventilation, un autre lot de ce chantier concerne la mise en place d’une ventilation.

 


Situation existante avant travaux

Pas de système de ventilation. (phrase)

Pas de plainte QAI mais point d’attention (voir dossier)

Statistique POE (sur les 25 élèves interrogés). Est-ce dû au fait que l’enveloppe (avant travaus) pas étanche à l’air?


VMC double-flux

« Une ventilation satisfaisante des locaux occupés, au moyen de l’air extérieur, est une exigence fondamentale pour obtenir des conditions environnantes acceptables à l’intérieur des bâtiments. Elle est, par conséquent, un élément essentiel de la conception d’un bâtiment et de ses équipements ».
Source : Guide bleu ventilation p 8.

 

Par le nombre et la surface de châssis remplacés, l’étanchéité du bâtiment a été renforcée. Par conséquence, un travail sur la ventilation hygiénique des locaux s’imposait.

 

Attention schéma double-flux, new photos Wépion


Norme et réglementation

L’Annexe C3-VHN de l’AGW PEB du 15/12/16 [GW -16- 2], et la norme NBN EN 13779 [IBN -07-1] définissent les exigences de ventilation pour les bâtiments non résidentiels destinés à l’usage humain. Les besoins de ventilation hygiénique de ces bâtiments varient en fonction de leur densité d’occupation, de l’utilisation du bâtiment, de la qualité de l’air intérieur demandée et de l’environnement extérieur.

La classification de base de la qualité de l’air intérieur est reprise dans le tableau ci-dessous.

Catégorie Description Classification par le niveau de CO2

Niveau de CO2 au -dessus du niveau de l’air fourni en [ppm]

Valeur par défaut [ppm]
INT 1 Qualité d’air intérieur excellente < 400 350
INT 2 Qualité d’air intérieur moyenne 400 – 600 500
INT 3 Qualité d’air intérieur modérée 600 – 1 000 800
INT 4 Qualité d’air intérieur basse > 1 000 1 200

Source : Guide bleu, p. 19.

Lors du dimensionnement des systèmes de ventilation, le débit de conception ne peut pas être inférieur au débit minimal correspondant à la catégorie d’air intérieur INT 3, qui correspond à 75 à 80 % de personnes satisfaites par la qualité de l’air. Dans les espaces destinés à l’occupation humaine, pour atteindre la catégorie d’air intérieur INT 3, il faut déterminer le nombre de personnes occupant un local et le multiplier par le débit de conception minimal correspondant à la catégorie d’air intérieur INT 3. Le débit de conception minimal dans les espaces destinés à l’occupation humaine doit être déterminé sur base du tableau ci-joint de la norme NBN EN 13779 (taux d’air neuf par personne).

Débit d’air neuf par personne
Catégorie Zone non fumeur
Plage type Valeur par défaut
INT 1 > 54 72
INT 2 36 – 54 45
INT 3 22 – 36 29
INT 4 < 22 18

On aboutit, ainsi, à un débit d’air neuf minimal de 22 m³/h par personne. Parallèlement à cette réglementation, la Réglementation Générale pour la Protection du Travail (RGPT) impose, dans tout local occupé par du personnel, que l’employeur prenne toutes dispositions pour qu’un débit d’air neuf de 30 m³/h par personne soit amené dans le local.

Extrait du tableau 11 de la norme NBN-13779 : 2004 qui fixe le taux d’air neuf par personne selon la catégorie de qualité d’air intérieur (ici, INT 3) :

Catégorie Unité Débit d’air neuf / personne
Zone non-fumeurs Zone fumeurs
Plage type Valeur par défaut Plage type Valeur par défaut
INT 3 m³/h par personne 22 – 36 29 43 – 72 58

Outil de simulation / Niveau de CO2 d’une classe

La Belgian Society for Occupational Hygiene est l’association scientifique belge pour l’hygiène du travail et met à disposition du grand public un outil de simulation sur la qualité de l’air d’un local en fonction de son volume, du taux d’occupation et du débit de ventilation de ce local.

Source : https://CO2sim.bsoh.be.


Régulation

la régulation de la qualité de l’air est assurée à un système de régulation de type IDAC6; ce qui correspond aux exigences du programme UREBA PWI 2019. Dans le cas l’installation de la VMC à l’école communale de wépion, chacun des quatres groupe de ventilation est asservie à une sonde CO2.

Catégorie Description
INT – C1 (IDA-C1) Sans régulation.
Le système de fonctionne constamment. PAS AUTORISE !
INT – C2 (IDA-C2) Régulation manuelle.
Le système de fonctionne selon une commutation manuelle. PAS AUTORISE !
INT – C3 (IDA-C3) Régulation temporelle.
Le système de fonctionne selon un programme temporel donné.
INT – C4 (IDA-C4) Régulation par l’occupation.
Le système de fonctionne en fonction de la présence (commutateur d’éclairage, détecteur à infrarouge, …).
INT – C5 (IDA-C5) Régulation par la présence (nombre de personnes).
Le système de fonctionne en fonction de la présence de personnes dans l’espace.
INT – C6 (IDA-C6) Régulation directe.
Le système est régulé par des détecteurs mesurant les paramètres de l’air intérieur ou des critères adaptés (détecteurs de CO2, gaz mélangés, COV, …) Les paramètres  utilisés doivent être adaptés à la nature de l’activité dans l’espace.

Types possibles pour la régulation de la qualité d’air intérieur (INT – C).
Source : PEB, page 210.


Dimensionnement adapté à la fonction des locaux

Selon la fonction du local (classe, cuisine, sanitaire), le dimensionnement de la VMC doit être adapté.

Source= architecte ville de Namur / BEP

La superficie d’une classe-type est de plus ou moins 55 m ². (volume estimé à 150 m³) Sur base d’un nombre moyen d’occupants de 23 personnes (22 élèves + 1 adulte), la simulation du taux CO2 couvrant une période continue de 120 minutes dessine une courbe qui plafonne à la limite des 1 000 ppm. Le taux de renouvellement d’air pris en compte pour cette simulation est le débit de conception minimal réglementaire, soit 22 m³/(h.pers).

 

simulation VMC classe-type à l’école communale de Wépion

Le débit d’air prévu dans le réfectoire (+/- 140 m²) est de 2 000 m³/h.

En prenant les 22 m³/h de référence, le dimensionnement correspond à une occupation de la pièce par 90 personnes.

Les normes imposent un débit de conception minimal plus élevé pour les espaces dédiés aux sanitaires. Le débit de conception minimal dans les toilettes est de :

  • 25 m³/h par WC (y compris les urinoirs)

ou

  • 15 m³/h par m² de surface au sol
    si le nombre de WC n’est pas connu au moment du dimensionnement du système de ventilation.

Quatre groupe de ventilation gèrent la ventilation de l’école.

 

Groupe 1 4 780 m³/ h
  • 7 classes (500 m³/h chacune)
  • Local sieste
  • Petit local polyvalent
  • Salle informatique
  • Secrétariat
Groupe 2 5 690 m³/ h
  • 9 classes (500 m³/h chacune)
  • Salle des professeurs
  • Bureau de la direction
Groupe 3 3 240 m³/ h
  • Salle de gymnastique
  • vestiaire
Groupe 4 2 500 m³/h
  • Réfectoire
  • Cuisine

Des plans d’architecture meublés « habités » pour une occupation réelle!

Source = bureau d’étude . Plan meublé pour une nouvelle construction dans le BW

Bien que la norme PEB impose un débit de conception minimal qui prenne en compte le nombre réel d’occupants, la mise en dessin sur plans du scénario d’occupation permet de lever les ambiguïtés possibles sur l’hypothèse de départ prise en compte dans le calcul de ce débit de conception minimal.

Encourager la maîtrise d’ouvrage, les porteurs de projet à dialoguer avec l’auteur de projet sur base de documents graphiques présentant l’occupation réel des locaux permet d’éviter d’avoir recours à la méthode se basant sur les m² minimum pas personne pour dimensionner le système de ventilation. Cette méthode aboutit généralement à une sous-estimation du nombre d’occupants.

 

Nouvelles menuiseries extérieures à l’école communale de Wépion

La vidéo


Contexte

L’école communale de Wépion a entrepris des travaux de rénovation sur l’ensemble de ses bâtiments :

 

Source= https://www.le-nid.be/

  • La rénovation intérieure de partie dédiée à l’école maternelle
  • le remplacement de l’ensemble des châssis 
  • l’installation d’un système de ventilation double-flux
  • la rénovation des sanitaires.

Le dossier bénéficie d’une subvention partielle du montant de l’investissement via le programme UREBA PWI qui a fait l’objet de l’appel à projet UREBA Exceptionnel 2019.

Situation existante

Comme on peut le constater sur thermographie aérienne réalisée par la Ville de Namur, la couleur bleutée du toit atteste que des travaux d’isolation au niveaux de la toiture ont déjà été réalisés par le passé. Une installation photovoltaïque a également été placée. Pour info, la zone rouge visible l’image ci-dessous et que l’on pourrait supposer mal isolée correspond à la cour de récréation et non à la toiture. Cette zone ne devrait dont pas apparaître de façon colorée car seules les toitures du bâti sont concernées par cette thermographie aérienne.

Dans le prolongement des travaux en toiture déjà réalisés et dans cette logique d’amélioration (thermique) de l’enveloppe, c’est à présent au tour des châssis d’être remplacés. Etant donné que les travaux d’isolation impliquent une prise en compte de l’étanchéité à l’air et qu’ils sont indissociables des travaux relatifs à la ventilation, un autre lot de ce chantier concerne la mise en place d’une ventilation (VMC double flux, lien vers ces travaux).

Source : https://www.le-nid.be/3d.

 

Dans le prolongement des travaux en toiture déjà réalisés et dans cette logique d’amélioration (thermique) de l’enveloppe, c’est à présent au tour des châssis d’être remplacés. Etant donné que les travaux sur l’enveloppe (remplacement de tous les châssis) impliquent un renforcement de l’étanchéité à l’air, cela induit inévitablement de repenser la ventilation des locaux, un autre lot de ce chantier concerne donc la mise en place d’une ventilation mécanique contrôlée double flux.

Tous les châssis, encore d’origine (construction des bâtiments entre 1961 et 1970), sont remplacés à l’occasion de ces travaux de rénovation. Etant donné que les murs extérieurs de l’école sont principalement composés d’ensembles de châssis (avec alternances parties vitrées et parties opaques), Ces éléments de paroi impactent fortement le confort des usagers au quotidien.

Les anciens châssis ont continuellement un aspect sablé, il y a des « jours » au niveau du raccord avec la façade, présence de courants d’air inconfortables, …

La proportion ( calculer pourcentage ?) de baies vitrées (+- 670 m²) composant le mur est très grande, la conception initiale du bâtiment s’approche d’avantage d’une façade-rideaux que d’un mur classique percé de quelques ouvertures.
De plus, les fenêtres basculantes (celles ouvertes sur les photos ci-contre) ne sont pas du tout adaptées à la fonction du bâtiment : une école ! Ce système d’ouverture est donc banni pour les nouveaux châssis.


Situation projetée

Source = architecte – BEP NAMUR

 

La rénovation envisagée au niveau de l’enveloppe consiste à remplacer les châssis par de nouveaux, plus performants. Cette rénovation ajoute une touche colorée par rapport au ton bleu uniforme qui a dominé jusqu’à ce jour. A intervalle régulier, un panneau opaque entre deux vitrage se pare de couleur. Hormis cette ponctuation colorée, l’ensemble des châssis est d’une couleur homogène, neutre (gris).

Pour satisfaire les exigences relatives à la subvention UREBA exceptionnel PWI, les travaux au niveau de l’isolation thermique devaient permettre d’atteindre les coefficients globaux de transmission inférieurs ou égaux aux valeurs suivantes :

  • Si l’on considère qu’il s’agit d’un mur rideau, les éléments qui composent l’ensemble châssis et vitrage doivent satisfaire la valeur Umax = 2 [W/m²K] et 1,10 [W/m²K] pour la partie vitrage.
  • Si l’on considère qu’il s’agit de fenêtres, celles-ci doivent satisfaire la valeur Umax = 1,50 [W/m²K] pour l’ensemble châssis + vitrage et 1,10 [W/m²K] pour la partie vitrage.

Dans ce cas-ci, c’est la seconde option qui est retenue. Etant donné qu’une façade-rideau, au niveau des exigences attendues, est moins performante que de classiques baies vitrées, c’est donc ce deuxième cas avec la « meilleure » valeur U (la plus basse) qui a été retenue, au bénéfice donc du caractère « isolant » du châssis. Cependant, étant donné que la proportion de châssis sur certaines façades est plus grande que la partie « mur », le U moyen du mur sera plus proche de la valeur des châssis (max 1,5 [W/m²K]) que de celle attendue pour un mur mieux isolé (0,24 [W/m²K]) … et qui a donc une valeur U plus faible. Une paroi opaque, assimilée à un châssis, sera généralement plus déperditive qu’une paroi opaque assimilée à un mur ! Cela interroge la conception même d’un bâtiment et les motivations qui président aux choix de conception.

Les valeurs de cet appel à projet Ureba exceptionnel 2019 sont heureusement alignées sur les valeurs réglementaires actuelles de la PEB malgré les longs temps de procédure qui séparent l’appel à projet et la réalisation des travaux. Dans pareille situation, il peut être intéressant d’anticiper le délai des procédures et d’aller au-delà de la réglementation…

Bien que d’aspect homogène, la façade est en réalité composée de nombreux châssis différents. Voici un aperçu du panel

La valeur Umax à atteindre au niveau des fenêtres concerne l’ensemble de la fenêtre, c’est-à-dire la partie vitrage et la partie du profilé et l’intercalaire et la grille de ventilation (si présente) et le panneau de remplissage (si présent).
La procédure générale pour la détermination de la valeur U des fenêtres et des portes est détaillée dans l’Annexe 3 de l’AGW du 15/12/16 [GW -16-2].
Dans l’évaluation de la performance énergétique d’un bâtiment dans le cadre de la PEB, un calcul fenêtre par fenêtre est en principe réalisé, utilisant la formule reprise dans l’encadré ci-dessous:

Coefficient de transmission thermique des fenêtres et portes, de matériaux et de dimensions standard
Dans son paragraphe « 9. Coefficient de transmission thermique des composants des fenêtres et des portes », l’Annexe 3 de l’AGW du 15/12/16 donne le détail du mode de calcul des coefficients de transmission thermique :

  • du vitrage ;
  • de l’encadrement ;
  • du panneau de remplissage opaque ;
  • de la grille de ventilation ;

ainsi que :

  • Le coefficient de transmission thermique linéique tenant compte des effets combinés du vitrage, de l’intercalaire et de l’encadrement ;
  • et le coefficient de transmission thermique linéique tenant compte des effets combinés du panneau de remplissage, de l’intercalaire et de l’encadrement.

Le coefficient de transmission thermique d’une fenêtre Uw ou d’une porte UD ayant des dimensions connues et pourvue de parties vitrées et/ou de panneaux de remplissage opaques et/ou de grilles de ventilation, est généralement calculé au moyen de la formule suivante :

Uw (ou UD) = ( AgUg + Af Uf + ApUp + ArUr + IgΨg + IpΨp) / (Ag + Af + Ap + Ar)

où,

  • A [m²] = superficie du vitrage (Ag), du châssis (Af ), de la grille de ventilation (Ar) ou du panneau de remplissage (Ap) ;
  • U [W/m²K] = coefficient de transmission thermique du vitrage (Ug), du châssis (Uf ), du panneau de remplissage opaque (Up) ou de la grille de ventilation (Ur) ;
  • ψ [W/mK] = coefficient de transmission linéique tenant compte des effets combinés ;
    • du vitrage, de l’intercalaire et de l’encadrement (ψg),
    • du panneau de remplissage, de l’intercalaire et de l’encadrement (ψp),
  • l [m] = longueur du raccordement entre l’encadrement et ;
    • le vitrage (lg),
    • le panneau de remplissage (Ip).

Cette équation peut être utilisée pour les fenêtres constituées de plusieurs types de vitrages, encadrements ou panneaux de remplissage.

 

Jean-Marie Hauglustaine et Françy Simon, la fenêtre et la gestion de l’énergie – guide pratique pour les architectes, Editeur RW, édition 2018, p.26

Une approche simplifiée est également autorisée. Pour des fenêtres sans grille de ventilation ni panneau de remplissage, le coefficient se calcule comme suit :

si Ug ≤ Uf , alors : Uw,T = 0,7 Ug + 0,3 Uf + 3 Ψf,g [W/m²K]

si Ug > Uf , alors : Uw,T = 0,8 Ug + 0,2 Uf + 3 Ψf,g [W/m²K]

Dans le cas de châssis composés d’éléments opaques, la performance énergétique des parties non transparentes n’est pas équivalente à celle d’un mur.

Pour aller plus loin dans le cas de cette rénovation, des réflecteurs peuvent être placés derrière les radiateurs afin de limiter les déperditions directes via ces allèges

Le remplacement des châssis a eu lieu pendant les vacances de la Toussaint. Le cahier des charges précisait que ces travaux devaient être réalisés en une seule phase continue et que les croisements entre activité scolaire et activité du chantier étaient exclus. Les périodes de congés scolaires s’imposent donc comme la période idéale pour les chantiers. Pour parvenir à remplacer l’ensemble des châssis en moins de deux semaines afin de ne pas empiéter sur la vie scolaire – ce qui aurait nécessité de « reloger » les usagers, le chantier a mobilisé de nombreuses forces vives travaillant en même temps. Lors de notre visite de chantier, plusieurs dizaines d’ouvriers étaient à pieds d’œuvre ! C’était impressionnant d’imaginer que cette métamorphose en cours serait terminée en quelques jours à peine.

Pose de nouveaux châssis en aluminium pour l’ensemble des façades de l’école.

Des fenêtres à ouvertures d’air réglables de type invisivent sont placées dans les locaux de l’école maternelle ainsi que dans les sanitaires de l’école primaire.
Ces profilés occasionnent une faiblesse thermique dans l’enveloppe et occasionnent des pertes étant donné que l’air a la même température que l’air extérieur. En période de chauffe, ces pertes devront être compensées au plus près (radiateurs placés à proximité) et en période estivale, contrôle manuel possible ?

Il s’agit d’un aérateur auto-réglable acoustique à rupture thermique pour montage au-dessus du châssis, derrière la battée. (pas de déduction de vitrage)

  • Umax profilé OAR : 2,2 W/m²K ;
  • hauteur du profilé = 62 mm (ouverture extérieure visible = 33 mm) ;
  • Quantité placée : 57 mètres.

Le clapet autoréglable bascule en cas de légère pression du vent et plie en cas de pression plus forte du vent.

Ces profilés occasionnent une faiblesse thermique dans l’enveloppe et génèrent des besoins de chaleur étant donné que l’air entrant à la même température que l’air extérieur. En période de chauffe, ces pertes devront être compensées au plus près (radiateurs placés à proximité). Hormis cet air entrant qui n’est pas préchauffé (mais qui le serait avec une ventilation mécanique double flux avec récupérateur de chaleur) ce système –moins coûteux qu’une VMC- assure l’apport d’air neuf indispensable à une bonne qualité d’air intérieure. Généralement, cette solution pour l’apport d’air neuf est couplée à une extraction mécanique (= système C). Ces aérateurs au-dessus des châssis sont uniquement placés dans la partie de l’école maternelle ainsi que dans les sanitaires. Dans les autres parties de l’école (réfectoire, salle de gymnastique, classes primaires, bureaux), un système de ventilation mécanique double flux est installé. (voir lien article). Il n’est donc pas impossible de démultiplier les systèmes et de combiner différentes solutions.

Le confort d’été est également abordé au travers d’un projet d’aménagement végétalisé des cours de récréation. Le prochain chantier à venir concerne l’aménagement des abords du bâtiment. Tant la cour de l’école maternelle que celle de la cour primaire va être en partie déminéralisée et verdurisée. Les motivations sont multiples pour faire entrer la nature dans l’école. Que ce soit pour que les enfants (re)trouvent un contact avec leur environnement, pour permettre d’organiser des « classes du dehors », pour créer des zones ombragées et limiter la surchauffe à certains endroits de la cour… Une approche pluridisciplinaire de ce projet favorise son appropriation par toutes et tous.

Cette démarche de déminéralisation des cours de récréation à travers des projets de verdurisation est encouragée à travers l’appel à projet « Re-Création » en région bruxelloise et s’inscrit dans la même logique que le projet international des cours « OASIS ». A Namur, de tels projets ont déjà vu le jour dans d’autres écoles de la Ville : Loyers, Court’Echelle, La Plante, Heuvy, Boninne, … Dans une interview, le directeur nous raconte les problèmes de surchauffe rencontrés dans certaines classes fortement exposées. Par forte chaleur, la température a déjà atteint 38 °C dans la classe la plus chaude. Avec l’arrivée des nouveaux châssis et les futures plantations envisagées à proximité, les usagers espèrent que ces problèmes de surchauffe soient atténués, voire solutionnés.

 

Avant-Projet de végétalisation de la cour de récréation de la section primaire de l’école

Avant -Projet de végétalisation de la cour de récréation de la section maternelle de l’école.

______________________________________________________________________________________________________________________________________

 

slowheat

La démarche Slowheat

 


De quoi s’agit-il ?

Slowheat est une démarche mettant en question le principe du maintien des températures intérieures dans les zones dites “de neutralité thermique”. Elle lui préfère une approche basée sur le chauffage direct des corps, l’adaptation comportementale, sociale et physiologique, et la valorisation des fluctuations naturelles des conditions d’ambiances. Le chauffage des espaces y est vu comme la solution de dernier recours. Cette démarche vient donc en complémentarité des efforts de rénovation énergétique. Elle offre un moyen d’action à court terme, complémentaire ou supplétif aux opérations de rénovation “classiques” qui nécessairement devront s’étaler dans le temps.

Slowheating (n.m.) : Pratique de chauffage développée dans le projet éponyme qui adapte nos façons d’habiter autour de sept principes et d’une idée centrale qui consiste à chauffer les corps distinctement des bâtiments. Elle poursuit l’objectif de concilier au mieux modération de la consommation et bien-être des habitants((Rapports de recherche Slowheat, disponibles sur www.slowheat.og)).


Principes

Les développeurs du slowheating proposent d’articuler cette pratique sur 7 principes :

  1. On libère la pratique du chauffage. Chacun peut faire différemment selon ses besoins et son mode de vie.
  2. On rediscute les normes de confort dans le ménage et dans la société plus largement. 20°C partout et tout le temps, c’est une construction sociale qui peut être questionnée.
  3. On (ré)chauffe les corps de multiples manières. Différentes sensations de froid peuvent justifier différents moyen de se réchauffer.
  4. On choisit de façon empirique les solutions qui nous conviennent. A chacun de se saisir de concept et d’essayer concrètement jusqu’à trouver son équilibre.
  5. Toute consommation d’énergie est maîtrisée, elle est le fruit d’une décision raisonnée. Attendons d’avoir (un peu) froid pour chauffer. 
  6. Cette décision se base sur nos besoins et nos ressentis du moment : écoutons nos corps. Tant qu’on est bien, pourquoi chauffer ?
  7. On favorise les voies les moins énergivores pour répondre à nos besoins en fonction des contraintes du moment. Apportons la chaleur où et quand c’est nécessaire. C’est le principe du chauffage de proximité.

Ressources

Nous vous invitons à découvrir la démarche slowheat en parcourant le site consacré à cette recherche : https://www.slowheat.org/recherche

Ce site a été réalisé par une coalition de cochercheurs née en octobre 2020, composée d’une vingtaine de citoyens dont 4 sont également présents en tant que chercheurs universitaires interdisciplinaires (Architecte, Ingénieur, Sociologue…) et 2 en tant que professionnels du terrain et des processus participatifs.

N’hésitez pas également à découvrir les pages Energie+ dédies aux solutions de chauffage de proximité, et à divers retours d’expérience (école, bureau, administration). En particulier, l’expérience Slowheat réalisée à l’école des Bruyères de Louvain-la-neuve :

Slowheat à l’école des Bruyères

 

Projet pilote de communauté d’énergie renouvelable (CER) à l’école communale La Gaminerie de Lessines

Au-delà des travaux de rénovations énergétiques, mise en place d’une CER

https://www.dhnet.be/regions/tournai-ath-mouscron/pays-vert/2020/11/30/lessines-une-ecole-a-la-pointe-du-developpement-durable-NDBSJ7NO7JBCLMSYXUQKTTHEY4/

Projet COLECO

https://lessines.futureproofed.com/action/10568

Le projet COLECO a pour objectif de lancer une dynamique locale d’autoconsommation collective en Wallonie picarde par la mise en place d’outils digitaux qui permettent de créer des communautés locales d’énergie éco-responsables, c’est-à-dire des communautés de voisins qui produisent et consomment ensemble une énergie locale durable. Le projet est porté par l’agence de développement territorial IDETA en collaboration avec le gestionnaire du réseau de distribution d’électricité, Les 8 communes pilotes – dont la ville de Lessines – et l’entreprise HAULOGY, spécialisée dans le développement de logiciels pour les acteurs du monde énergétique.

https://ideta.be/projets/communautes-locales-denergie-eco-responsables/

La commune souhaitait équiper un de ses bâtiments communaux et dans ce paysage communal, l’établissement scolaire faisait office de candidat idéal. En effet, vu son taux d’occupation en raison des horaires scolaires et des périodes de vacances répétées, l’école présente un excellent profil pour faire communauté d’énergie avec les voisins du quartier.


La réglementation

Un précédent article à l’occasion d’un webinaire sur ce projet et ce sujet a déjà évoqué la question de la réglementation. le cadre légal relatif aux communautéxs d’énergie en Wallonie et au partage d’énergie n’est pas encore totalement abouti. Si le décret du 5 mai 2022 introduisant notamment les notions de communauté d’énergie renouvelable et de communauté d’énergie citoyenne ainsi que la possibilité d’effectuer une opération de partage d’énergie au sein d’un même bâtiment ou au sein d’une communauté d’énergie est entré en vigueur depuis octobre 2022, un arrêté d’exécution du Gouvernement wallon est toutefois nécessaire afin que ces nouveaux régimes puissent être opérationels (sources = CWAPE).


Mise en place expérimentale du périmètre local de la communauté.

Développer une communautés de voisins qui produisent et consomment ensemble une énergie locale durable…

plan de la CER au sein d’un périmètre de proximité

Ores, le gestionnaire du réseau de distribution a mis à disposition les documents techniques de la cabine basse tension dont dépend l’école. IDETA s’est basée sur un périmètre géographique de proximité lié au réseau desservi par cette cabine. Cette décision fut prise tout en sachant que les critères de prescription de périmètre de la CER devront encore être précisés par les arrêtés d’exécution toujours en attente. C’est le bon sens et la logique qui a présidé à ce choix prudent. c’est sur base de cette première aire de partage qu’un appel à participation locale a été lancé après une étude du quartier menée par IDETA qui a cherché à dresser les différents profils de consommateurs potentiels de cette CER. Cette étude préliminaires des profils des membres de la communauté et de la capacité du réseau est un préalable au bon dimentionnement de la CER. Dans le but de minimiser d’une part la réinjection massive d’un surplus sur le réseau et d’autre part de connaître la capacité du réseau à absorber ce surplus en partage. Dans cette expérience pilote à Lessines, parmi les 140 bénéficiaires potentiels identifiés, une quarantaine se sont portés volontaires. Ces participants volontaires ont été informés du projet, ont signé une première charte d’adhésion et ont également été sensibilisé à l’énérgie et au déplacement de charge lors d’ateliers citoyens participatifs.

Compteurs communicants et outils numériques

Tous les membres potentiels de cette CER ont été équipés d’un compteur communiquant permettant le relevé et la collecte d’informations de consommation quart-horaire. C’est IDETA qui a centralisé les demandes et pris en charge les petits frais d’équipement connexes à leur bonne installation.

L’entreprise Haulogy spécialisée dans le développement de logiciels pour les acteurs du monde énergétique développe des outils digitaux d’aide au pilotage des consommations domestiques afin de faciliter, favoriser un échange direct, une redistribution et une répartition du surplus d’énergie renouvelable produite localement – sur les toitures de l’école communale – entre les membres de la CER.

source: IDETA

Ateliers participatifs de sensibilisation à l’énergie, au déplacement de charge

Les ateliers citoyens participatifs proposé par IDETA ont permis à l’agence de développement territorial de mieux comprendre les besoins des membres potentiels de la CER. Cette étude préliminaire des profils de consommation des membres de la communauté est un préalable au bon dimensionnement de la CER. Quant aux membres, ils ont été sensibilisé à l’énergie et au déplacement de charge. Car l’objectif à terme est que la demande en électricité épouse l’offre. Que la consommation se superpose à la production. C’est une logique qui vient à contre-courant du compteur bi-horaire.

“La synchronisation de la production et de la consommation à une échelle locale permettra de mobiliser le réseau dans une moindre mesure et facilitera
une meilleure intégration des énergies renouvelables, par nature intermittentes”. IDETA

Dans ce projet pilote mené au sein de 8 communes, les coles participantes se sont engagées à soutenir la démarche et à créer un comité de suivi composé d’élèves, d’enseignant·e·s, d’un repésentant d’IDETA, du coordinateur POLLEC, d’un membre du POet de la direction de l’école. Ce comité élabore un plan d’action sur base d’une feuille de route.

Installation photovoltaïque

L’installation actuelle a été dimensionnée dans un premier temps dans une logique d’autoconsommation propre à l’école. Il reste une grande surface disponible en toiture pour développer l’installation et assurer une plus grande production d’électricité. Pour poursuivre son déploiement, ce projet expérimental de mise en place d’une CER attend les avancées législatives en la matière, à savoir les arrêtés d’éxécution relatifs au décret permettant le partage d’énergie renouvelable au sein d’une communaut d’énergie citoyenne.

Lien vers le webinaire

Travaux de rénovation énergétique à l’école communale La Gaminerie de Lessines

Le projet en images

Les 3 vidéos qui illustrent le contenu de cette page, ci-dessous, c’est à dire l’installation d’un système de ventilation, le relighting et l’isolation de la toiture et par le plancher du grenier sont visibles ici.


Contexte

Le site accueille une école primaire et maternelle sur une surface bâtie de 2455m². Le bâtiment principal date de 1993 et a été rénové en 2020. Il abrite les classes de la section maternelle, des classes de primaires, des bureaux ainsi que les cuisines et les sanitaires. Une extension a été ajoutée à l’école en 2008 afin d’accueillir de nouvelles classes de primaires. Cette extension est encore en bon état et ne nécessite dès lors pas encore de rénovation.

 

L’accolade de bâtiments avec toiture à 2 pans forment l’extension datant de 2008.

Les travaux de rénovation envisagés ont été accélérés par la nécessité d’une intervention urgente liée à un problème structurel de la charpente. Avant les travaux, ce bâtiment de l’école était source de nombreux inconforts (thermique, visuel, respiratoire…) pour ses occupants. Les travaux de rénovation de la toiture pour résoudre les faiblesses manifestes de la charpente ont dès lors été pensés dans une perspective plus globale incluant plusieurs objectifs, notamment ceux d’une utilisation plus rationnelle de l’énergie mais avec un gain de confort au niveau du climat ambiant intérieur de l’établissement. Si l’objectif premier était donc de solutionner urgemment un problème structurel du bâtiment, un second objectif était de diminuer les consommations énergétiques et le bilan carbone de l’école. Au-delà des aspects techniques, les différents travaux avaient comme objectif majeur d’améliorer le confort des occupants dans le bâtiment.

Pour parvenir à ces objectifs, voici la liste des travaux entrepris :

  • Le remplacement et l’isolation de la toiture (par le plancher)
    (lien vers vidéo) ;
  • le remplacement des baies : installations de nouveaux châssis et portes ;
  • le remplacement de l’installation électrique et de la détection incendie ;
  • le remplacement des installations de chauffage et de ventilation
    (lien vers vidéo) ;
  • la rénovation complète des murs et du sol ;
  • le placement de panneaux photovoltaïques
    (lien vers vidéo). lien vers PPV CER (Communauté d’Energie Renouvelable) 

Tous ces travaux ont permis de rendre l’école moins énergivore et grâce à l’installation des panneaux photovoltaïque, l’établissement est devenu producteur d’énergie et s’est engagée dans un projet pilote de communauté d’énergie (voir lien).


Rénovation de la toiture et isolation par le plancher des combles

Avant les travaux.

Pendant le  chantier.

Toiture, châssis et protections solaires après travaux.

Les toitures en pentes du bâtiment principal ont été rénovées dans le même esprit que l’extension datant de 2008. L’ancienne couverture en tuiles a donc fait place à une nouvelle couverture en zinc.

Source= auteur de projet

La toiture est isolée via le plancher des combles par une couche isolante de 22 cm de laine minérale. Cette isolation via le plancher des combles permet une économie (de matière et de coût) par rapport à une isolation des pans entiers de toiture. Les combles ne sont pas « habités », ils servent de local technique. Les installations techniques présentes sont calorifugées.

Schématiquement, il s’agit ici de ce type d’intervention qui permet, lorsque la charpente n’est pas « habitée », d’isoler la toiture par le biais du plancher des combles, ce qui génère une économie de matière et de coûts.

Note du bureau d’étude présentant une estimation des économies engendrées par l’isolation thermique des toitures :

Type d’affectation de l’immeuble Ecole
Température moyenne de la saison de chauffe 21°C
Détermination de la température extérieure moyenne de référence
Station IRM la plus proche
Valeur moyenne des degrés-jours 15/15 de la station
T° extérieure moyenne de la zone considérée
Chièvres (Huissignies)
1847 DJ
7°C
Paramètre du bâtiment
Coefficient de transmission thermique de la paroi initiale
Surface mise en œuvre
Durée annuelle de la saison de chauffe
0,2 W/m²K
806 m²
5600 heures
Réduction annuelle de la demande en énergie utile
Economies annuelles
82 148 kWh
Réduction annuelle de la consommation annuelle de combustible
Corrélation consommation théorique et consommation réelle
Economies sur le besoin net en énergie
Rendement de l’installation de chauffage actuelle
Economie d’énergie
100 %
82 148 kWh
78,43 % *
104 739,92 kWH

* L’installation de chauffage a également été remplacée par deux nouvelles chaudières à condensation dont le rendement est de 90 %. Le calcul ci-dessus n’intègre pas encore ce rendement amélioré de la chaudière.

Les anciennes chaudières atmosphériques datant de 1993 et disposait d’une régulation de type climatiques. Afin de mieux maîtriser la consommation énergétique, le système de régulation lié aux nouvelles chaudières à condensation permet une gestion à distance des producteurs et distributeurs. Les radiateurs, disposant déjà de vannes thermostatiques, ne sont pas remplacés.

Dans le cadre de cette rénovation plus globale, l’enveloppe a également été améliorée au niveau des châssis.


Remplacement des châssis et protections solaires

Note du bureau d’étude présentant une estimation des économies engendrées par le remplacement des châssis :

Type d’affectation de l’immeuble Ecole
Température moyenne de la saison de chauffe 21°C
Détermination de la température extérieure moyenne de référence
Station IRM la plus proche
Valeur moyenne des degrés-jours 15/15 de la station
T° extérieure moyenne de la zone considérée
Chièvres (Huissignies)
1847 DJ
7°C
Paramètre du bâtiment
Coefficient de transmission thermique de la paroi initiale
Coefficient de transmission thermique de la paroi
Surface mise en œuvre
Durée annuelle de la saison de chauffe
3,00 W/m²K
1,4 W/m²K
125 m²
5 600 heures
Réduction annuelle de la demande en énergie utile
Economies annuelles
15 680 kWh
Réduction annuelle de la consommation annuelle de combustible
Corrélation consommation théorique et consommation réelle
Economies sur le besoin net en énergie
Rendement de l’installation de chauffage actuelle
Economie d’énergie
100 %
15 680 kWh
78,43 % *
25 237,41 kWH

Les ouvertures pour les baies vitrées ont été agrandies afin que les fenêtres deviennent des porte-fenêtre permettant un accès direct vers l’extérieur. Selon les témoignages des enseignantes, ce lien immédiat avec l’extérieur est un vrai « plus » par rapport à la situation d’avant les travaux. Cela impact positivement la vie du groupe-classe et l’autonomie des enfants puisqu’ils peuvent ouvrir-fermer, seuls, les fenêtres de manière sécurisée.

En façade Sud, les châssis sont équipés de protections solaires que les enseignantes peuvent descendre et remonter librement grâce à une commande électrique (mais non automatisée).


Ventilation VMC double flux

Les groupes de ventilation double flux (VMC avec récupérateur de chaleur) sont installés dans les combles non-aménagés.

 

source = auteur de projet / bureau d’étude

 

 


Relighting

« Assurer le confort visuel des enfants c’est leur assurer des conditions lumineuses favorables à une vision sans fatigue, c’est-à-dire une vision ressentie comme non désagréable et dans laquelle le corps humain n’a pas d’efforts à faire pour bien voir et se sentir bien.
Veiller à ce confort visuel est particulièrement important dans les locaux d’apprentissage (qu’il s’agisse de salles de classe traditionnelles ou non, d’ateliers de travaux manuels, ou encore de salles de sport) et dans les espaces de travail dans lesquels les employés ont une activité prolongée. »

Avant le relighting, les sources lumineuses étaient de type « tubes lumineux » énergivores (en moyenne 4 * 35 W par luminaire). Suite aux travaux de relighting, ces anciens luminaires ont été remplacés par des éclairages LED possédant le marquage *L80 /B20.

* Cela veut dire qu’après une durée de vie de 50 000 heures (environ 16 ans), pour 80  % des luminaires, la valeur du flux lumineux est maintenue de telle sorte qu’elle ne tombe pas à moins de 80 % de la luminosité initiale et que 20 % des LED ont une valeur de flux lumineux inférieure à 80 % du flux initial.

Une commande et gestion d’éclairage par détection de présence ou d’absence suivant les espaces.

Il est essentiel d’avoir une dérogation manuelle possible à cette détection automatique (d’absence de préférence). Car le risque est de ne jamais pouvoir éteindre. En effet, avec la généralisation des tableaux interactifs, il est parfois souhaitable de vouloir baisser l’ambiance lumineuse ponctuellement.

Lien vers un complément d’informations relatives à la norme NBN EN 12464-1 réglementant l’éclairage.

Avant les travaux de relighting, la puissance moyenne installée dans l’école était de 20 W/m². Le remplacement des tubes lumineux par des LED ont permis de passer à une puissance à 8W/m². L’’éclairage fonctionne en moyenne 2000 h/an.

 

Schéma extrait de l’étude lumineuse d’une classe (faite dans DIALux)

Hauteur de la pièce : 2 800 m, hauteur de montage : 2 800 m, facteur de valeurs en Lux, maintenance : 0.90.

Surface ρ [%] Emoy [lx] Emin [lx] Emax [lx] Emin/Emoy
Plan utile / 471 256 589 0.544
Sol 20 414 244 508 0.590
Plafond 70 104 87 178 0.838
Murs (6) 50 258 88 617 /

Plan utile à 80 cm = hauteur d’une table.
Puissance installée spécifique: 7.30 W/m² = 1.55 W/m²/100 lx (Surface au sol : 62.49 m²).

vidéosSchéma extrait de l’étude lumineuse d’une classe (faite dans DIALux).

Hauteur de la pièce : 2 800 m, hauteur de montage : 2 800 m, facteur de valeurs en Lux, maintenance : 0.90.

Surface ρ [%] Emoy [lx] Emin [lx] Emax [lx] Emin/Emoy
Plan utile / 227 38 382 1.168
Sol 20 208 42 297 0.200
Plafond 70 45 15 81 0.325
Murs (6) 50 96 6.63 341 /

Puissance installée spécifique : 3.05 W/m² = 1.34 W/m²/100 lx (Surface au sol : 246.83 m²).

Schéma extrait de l’étude lumineuse d’une classe (faite dans DIALux).

Hauteur de la pièce : 2 800 m, hauteur de montage : 2 800 m, facteur de valeurs en Lux, maintenance : 0.90.

Puissance installée spécifique : 3.37 W/m² = 3.12 W/m²/100 lx (Surface au sol : 5.34 m²).

Surface ρ [%] Emoy [lx] Emin [lx] Emax [lx] Emin/Emoy
Plan utile / 108 63 154 0.586
Sol 20 73 52 89 0.721
Plafond 70 32 19 42 0.591
Murs (6) 50 65 25 213 /

Résumé des travaux de relighting

Puissance moyenne installée avant travaux = 20W/m²

Puissance moyenne installée après travaux = 8 W /m²

Consommation annuelle avant travaux: 36 000 KWh (2000h)

Consommation annuelle après travaux 14 400 KWh (2000h)

L’installation s’accompagne d’une régulation selon détecteurs de présence et d’absence.


Panneaux photovoltaïques

  • 60 panneaux phtovoltaïques;
  • Capacité du panneau: 250 Wc
  • Puissance de l’installation = 15 kWc
  • La production en énergie en 2021 = 10 000 kWh
  • La consommation d’électricité en 2021 = 30 000 kWh

Au delà de l’installation technique en toiture de panneaux photovoltaïques, c’est toute la communauté scolaire qui s’est investie de manière pro-active dans une réflexion sur l’énergie au sens large. Cette prise en compte des énergétique a percolé dans les activités pédagogiques et c’est toute la collectivité qui se mobilise en action autour de la quetion énergétique.

Dans cet état d’esprit, l’école a pris part à une expérience pilote de mise sur pied d’une Communauté d’Energie Renouvelable (CER) encadrée par IDETA, une agence de développement territoriale de la Wallonie picarde. Plus d’infos sur la page dédiée à ce sujet: voici le lien

L’installation actuelle a été dimensionnée dans un premier temps dans une logique d’autoconsommation propre à l’école. Il reste une grande surface disponible en toiture pour développer l’installation et assurer une plus grande production d’électricité. Pour poursuivre son déploiement, ce projet expérimental de mise en place d’une CER attend les avancées législatives en la matière, à savoir les arrêtés d’éxécution relatifs au décret permettant le partage d’énergie renouvelable au sein d’une communaut d’énergie citoyenne.

Installation d’un système de ventilation décentralisé à l’école communale Sart d’Avette à Flémalle

La vidéo


Contexte

Les travaux de rénovation énergétique de l’école communale Sart dame D’avette située à Flémalle ont été facilités par RENOWATT et ont bénéficié de subsides (sur les postes éligibles) UREBA CLASSIQUE (version 2019).

, facilitateur de la rénovation énergétique en Wallonie.

https://renowatt.be

 

Pour atteindre les objectifs européens en matière de climat et d’énergie (- 55 % de gaz à effets de serre d’ici 2030), et encourager les collectivités locales à entreprendre des rénovations favorisant l’efficacité énergétique, le projet RenoWatt fournit une assistance globale aux autorités locales pour les épauler dans la rénovation énergétique de leurs bâtiments. Il leur permet :

  • d’identifier les bâtiments à rénover ;
  • de préparer un projet de rénovation énergétique de bâtiments publics (y compris en intégrant les subventions régionales) ;
  • de lancer les marchés publics nécessaires en vue de conclure des contrats de performance énergétique, négocier avec les entreprises et faciliter l’attribution de ces marchés par les pouvoirs publics.

Les 6 étapes du processus RenoWatt

RenoWatt, une initiative du Gouvernement wallon, est un guichet unique qui réalise des audits énergétiques et des études techniques en vue de conclure des marchés de services et de travaux pour la rénovation des bâtiments publics, que ce soit au travers de marchés Design and build (D&B) ou de contrats de performance énergétique (CPE). Dans le cas de l’école de Sart D’Avette, il s’agit d’un projet Design and build.

Actuellement, RenoWatt compte près d’une centaine d’adhérents (villes, communes, provinces, zones de secours et de police, hôpitaux, …) et continue d’être sollicité pour apporter son expertise à d’autres pouvoirs publics. Elle est soutenue par le programme d’investissement ELENA, initiative conjointe de la Banque européenne d’investissement (BEI) et de la Commission européenne dans le cadre du programme Horizon 2020.

La commune de Flémalle a décidé de réaliser des travaux de rénovation dans plusieurs bâtiments, en vue de diminuer leur consommation énergétique et d’améliorer le confort des occupants. La majorité des bâtiments sont des écoles où le confort revêt un intérêt particulier. C’est dans ce cadre que la commune de Flémalle a adhéré à la centrale de marchés RenoWatt, et a intégré les bâtiments suivants, qui bénéficieront donc d’un programme de rénovation énergétique (liste de travaux non-exhaustive) :

  • École Sart d’Avette (cas d’étude de cet article) : travaux d’isolation des façades, toitures et plafond, remplacement des châssis, réfection de la toiture, ainsi que des investissements sur les équipements techniques (ventilation).
  • École Jean Beulers : remplacement des chaudières, des circulateurs et de la régulation des systèmes de ventilation, ainsi que l’installation de panneaux PV.
  • École des Awirs : remplacement de la chaudière, isolation des combles et des toitures plates, ainsi que la rénovation de ces dernières, installation de panneaux PV et de compteurs, …
  • Service Travaux : installation de compteurs, remplacement des circulateurs, relighting LED, …
  • E-pole : remplacement des chaudières, installation de compteurs, relighting LED, …

Ces 5 bâtiments totalisant une surface chauffée de 9 907m² et ambitionne de voir leur consommation en énergie primaire diminuer de 33 % en moyenne pour le lot CPE et de 73 % pour le lot D&B, et leur impact CO2 de 34 % en moyenne pour le lot CPE et de 73 % pour le lot D&B, pour un montant total de marchés attribués de : 1 398 961 € TVAC.

Dans le cas de l’école Sart D’Avette, l’avis de marché relatif à la publication des guides de sélection a paru en août 2019 et la commande des travaux a eu lieu en avril 2022. Entre-ces deux dates, les différentes étapes liées à la passation de marchés publics ont été franchies, une entreprise locale spécialisée a été désignée pour réaliser ces travaux.


Programme Ureba

Le projet de rénovation bénéficie d’un subside UREBA classique 2019. UREBA est un programme de subvention de rénovation des bâtiments publics. Les bases légales de ce programme datant respectivement de 1993 et de 2003, une actualisation des conditions d’éligibilité étaient nécessaire. C’est chose faite depuis octobre 2022. Voici un bref aperçu des modifications de conditions :

  • Types de travaux : Les travaux subsidiés sont plus nombreux et le taux d’intervention financière plus important. Précédemment, le taux de subside était de 30 % des dépenses éligibles, la réforme monte le taux à 40 % des dépenses éligibles. Une surprime est prévue si le projet atteint des niveaux élevés d’efficacité énergétique, dans ce cas, la couverture atteint jusque 52 %. L’utilisation de matériaux bio-sourcés est également valorisée.
  • Il y a également un incitant financier pour les projets qui vont plus loin en matière de rénovation. Concernant les travaux sur les systèmes de chauffages, seuls les moyens de chauffage renouvelables peuvent faire l’objet d’une demande de subsides (comme une pompe à chaleur ou une chaudière biomasse, par exemple). Les systèmes qui recourent à des énergies fossiles ne sont plus financés.
  • Introduction des demandes : Les demandes peuvent être introduite à l’aide d’un dossier simplifié, à tout moment, sans devoir respecter une date de dépôt précise.

Voici un tableau comparatif des exigences du programme UREBA classique version 2019 (celle correspondant à ce cas d’étude) et celles de la version actualisée en vigueur depuis octobre 2022.

UREBA Classique 2019 UREBA Classique depuis octobre 2022
 

L’isolation thermique des parois du bâtiment doit permettre d’atteindre

–   Soit des coefficients globaux de transmission inférieurs ou égaux aux valeurs suivantes ;

–   Soit des coefficients de résistance thermique supérieurs ou égaux aux valeurs suivante :

 

Parois de la surface de déperdition du bâtiment

 

 

Umax (W/m²K)

Ou Rmin (m²K/W)

 

Paroi délimitant le volume protégé

 

Umax

 

a.      Vitrage

En outre, l’ensemble châssis et vitrage présentera un coéfficient de transmission inférieur à

 

Umax 1.1

 

Umax 1.8

 

Fenêtres

Vitrage uniquement

Ensemble châssis et vitrage

 

Murs – rideaux

Vitrage uniquement

Ensemble châssis et vitrage

 

Parois transparentes / translucides autres que le verre

–   Partie transparente

–   Ensemble châssis et partie transparente

 

 

1,1

1,5

 

 

1,1

2

 

 

1,4

2

 

b.      Portes

 

Umax 2 Portes 2
En cas de remplacement de châssis ou portes, les exigences reprises à l’annexe C3 de l’arrêté du 15 mai 2014 portant sur l’exécution du 28 novembre 2013 relatif à la performance énergétique des bâtiments doivent être respectées pour les amenées d’air dans les locaux
 

Le coéfficient de résistance thermique R de l’isolant ajouté sera supérieur ou égal aux valeurs suivantes :

Parois délimitant le volume protégé Rmin de l’isolant ajouté
c.      Murs et parois opaques

1° non en contact avec le sol, à l’exception des murs visés au 2°

2° en contact avec un vide sanitaire ou avec une cave en dehors du volume protégé

3° en contact avec le sol

 

Umax 0.32

 

Rmin 1.2

Rmin 1.3

 

Mur

 

6

d.      Toiture ou plafond séparant le volume protégé d’un local non chauffé non à l’abri du gel

 

 

Umax 0.27

 

Toiture ou plafond

 

 

6

plancher 4

Objet des travaux de rénovation énergétiques entrepris

Dans ce projet de rénovation « design et build » de l’école communale de Sart d’Avette, il s’agissait d’améliorer la performance énergétique du bâtiment sans repenser la conception du bâtiment. Cette rénovation consiste donc à remplacer des éléments du bâtiment par de nouveaux éléments semblables mais plus performants du point de vue énergétique.

Dans cette optique :

  • Remplacement du recouvrement de la toiture (+ nouvelle étanchéité par la pose d’une sous-toiture).
  • Isolation de la toiture par le plancher des combles. / Umax = 0,2W/m².K.
  • Isolation et pose de crépis sur isolant des murs (440 m²). Umax < 0.24 W/m².K.
  • Remplacement des châssis double vitrage anciens (292 m²) par de nouveaux châssis Uw < 1.5 W/m².K.
  • .Installation d’un système de ventilation ( système C)
    • OAR montée sur châssis + système extraction d’air mécanisée décentralisé (individualisé, un dans chaque local) asservi à une sonde CO2.

C’est donc une rénovation « simple » qui met en évidence l’interrelation entre l’amélioration de l’enveloppe du bâtiment par l’isolation de la toiture, le remplacement des châssis – qui par voie de conséquence rendent le bâtiment plus étanche à l’air – et l’installation d’un système de ventilation pour assurer le renouvellement d’air. Ce trio indissociable  « isolation – étanchéité à l’air – ventilation » entre en ligne de compte même dans le cas d’une rénovation simple puisque, par voie de conséquence, des travaux sur l’un des aspects de ces trois aspects entraînent les deux autres.

L’étanchéité à l’air recouvre :

  • l’étanchéité intrinsèque des composants ;
  • l’étanchéité des joints linéaires, à la jonction entre les murs et la toiture, par exemple ;
  • l’étanchéité des traversées ponctuelles : sortie de la ventilation sanitaire en toiture, par exemple, qui constituent autant de points critiques.

Au niveau de la candidature, voici les performances énergétiques annoncées.

Marché Surface Consommation
avant travaux
Consommation
après travaux
Performance
après travaux
Investissement
Gaz Gaz Energie
primaire
Emission
de GES
Montant
du marché
kWhEF/an kWhEF/an % % €TVAC
D&B 880 193 500 52 156 73 73 490 624

Source: dossier de candidature


Rénovation de la toiture et isolation par le plancher des combles

Nouvelle couverture de toiture + pose d’une sous-toiture.

 

Amélioration de l’enveloppe par l’isolation du toit via le plancher des combles

Isolation des combles (460 m²)

 

vérification des conditions Ureba au moment de l’introduction de la demande (2019).

Isolation des combles
Lambda
[W/k/m]
e [mm] U [W/K/m²] R [K.m²/W]
Dalle béton 1,7 82 21,25 0,05
Laine minérale 0,035 200 0,18 5,71
Résistance
superficielles
0,34
Total 0,16 6,10
Critère Ureba Toiture ou plafond séparant le volume protégé d’un local non chauffé non à l’abri du gel : U<=0,27 -> OK

source = bureau d’étude du projet.

 

Le cahier des charges impose que la réglementation PEB soit respectée. La valeur U des toitures n’excéde donc jamais 0.2 W/m².K, ou 0.24 W/m².K pour les autres parois.
La pose continue d’une couche homogène de 20 cm de laine minérale sur le plancher des combles permet donc de satisfaire la norme PEB et rencontre également les exigences du programme UREBA classique telles qu’elles étaient au moment de l’introduction de la demande.

Par contre, si la demande était à nouveau introduite via le programme UREBA actualisé (depuis octobre 2022) qui stipule que le coefficient de résistance thermique R de l’isolant ajouté sera supérieur ou égal 6 ; les 20 cm de laine minérale ne suffisent plus car la résistance thermique affichée pour ces 20 cm est de 5,70. Pour satisfaire cette exigence renforcée, il faudra pour un même matériau viser une épaisseur plus grande (22 cm minimum) ou une valeur U inférieure à 0,035. > La résistance thermique d’une couche de matériau


Pour aller plus loin

Si le choix de la laine minérale comme isolant (ep = 20 cm) permet de rencontrer les exigences PEB, au niveau de la performance environnementale il existe des alternatives biosourcées plus écologiques. La performance environnementale n’est pas encore réglementée comme la PEB mais compte tenu des objectifs de décarbonation à atteindre dans les prochaines décennies, sa prise en compte émerge dans les différents nouveaux appels à projets et plans de subventionnement (Plan de relance européen, Plan d’investissement exceptionnel à venir, Ureba exceptionnel 2022, Ureba classique actualisé,…)

A titre indicatif, voici quelques valeurs comparatives de l’énergie moyenne nécessaire à la fabrication de certains isolants.

Energie grise de différents isolants thermiques :

fibres de lin (0,038 W/mK)

fibres de chanvre (0,038 à 0,042 W/mK)

cellulose de bois ( 0,038 W/mK)

laine de mouton (0,039 à 0,042 W/mK)

laine de roche (0,033 à 0,042 W/mK)

Perlite (0,040 à 0,060 W/mK)

laine de verre (0,030 à 0,046 W/mK)

argile expansé (0,09 à 0,16 W/mK)*

panneau de liège (0,040 à 0,042 W/mK)

polystyrène expansé PSE (0,038 à 0,030 W/mK)

polystyrène extrudé XPS (0,029 à 0,035 W/mK)

mousse de polyuréthane PUR (0,021 à 0,028 W/mK)

panneau fibre de bois (tendre) (0,036 à 0,055 W/mK)

verre cellulaire (0,038 à 0,050 W/mK)

 30 kWh/m³

40 kWh/m³

50 kWh/m³

55 kWh/m³

150 kWh/m³

230 kWh/m³

250 kWh/m³

300 kWh/m³

450 kWh/m³

450 kWh/m³

850 kWh/m³

1 000 à 1 200 kWh/m³

1 400 kWh/m³

700 à 1 300 kWh/m³

Source : Ecoconso – L’énergie grise des matériaux de construction.


Au fil du chantier

Evacuation de l’isolant d’époque (ancienne couche de quelques centimètres de laine minérale) par une nouvelle couche de 20 cm de laine minérale (lamda = 0,035 W/K/m) + pose d’un pare-vapeur adapté du côté chaud de l’isolant.

 

livraison de l’isolant (laine minérale) en rouleaux

Dépose des anciens châssis (double vitrage ancienne génération)

Livraison des nouveaux châssis

 

 

290 m² environ, soit :

 

–   25 châssis côté cour,

–   24 châssis côté arrière

–   12 châssis dans les circulations et locausanitaires ;

–   2 portes d’entrées du bâtiment.

 

Dormant Dormant 70 mm Living MD
Renforcement total Oui
Type d’évacuation A face
Vitrage demandé DV feuilleté clair 33.2/15/33.2 U=1,0 W/m²K
Parclose Parcloses rondes MD
Ouvrant Fixe simple cadre Living MD
Parclose Parcloses rondes MD
Coefficient thermique Uw = 1,14 W/m².K

Dormant Dormant 70 mm Living MD
Renforcement total Oui
Type d’évacuation A face
Traverse Traverse dormant 92 mm Living MD
Vitrage demandé DV feuilleté clair 4/15/33.2 U=1,0 W/m²K
Parclose Parcloses rondes MD
Ouvrant 1 Fixe simple cadre Living MD
Parclose Parcloses rondes MD
Aérateur Aérateur AR75
Position commande A gauche
Débit S 56 m³/H/m
Ouvrant 2 Ouvrant 83 mm 1 vantail LIVING
Parclose Parcloses rondes MD
Avec rejet d’eau Non
Quincaillerie OB1 Concept PVC (Oscillo-battant)
— Quincaillerie — 0
Type de crémone GAM milieu
Choix sécurité Basis +
Position variable 0
Couleur de la poignée par défaut Blanc
Couleur de la poignée par défaut Blanc
Coefficient thermique Uw = 1,08 W/m².K

Dormant Dormant 70 mm Living MD
Renforcement total Oui
Type d’évacuation A face
Vitrage demandé DV feuilleté clair 4/15/33.2 U=1,0 W/m²K
Parclose Parcloses rondes MD
Ouvrant Fixe simple cadre Living MD
Parclose Parcloses rondes MD
Coefficient thermique Uw = 1,18 W/m².K

Système C+ décentralisé

Aucune ventilation n’était présente avant les travaux de rénovations entrepris. L’école a décidé d’installer une ventilation de type C+ afin d’améliorer la qualité de l’air et de diminuer le temps de surchauffe. Un système individualisé de ventilation est prévu dans chaque local, pour permettre que toute classe fonctionne de manière optimale en fonction de son occupation réelle ! Ce système est constitué de :

  • Un groupe d’extraction à vitesse variable de 0…240 à 800 m³/h et entraînement direct du ventilateur par moteur EC. Une commande locale reste accessible à l’occupant en cas de nécessité. Position soit murale soit en plafonnier ;
  • un gainage de pulsion ;
  • une gaine de prise d’air ;
  • un rejet d’air équipé d’un anti-retour pour limiter les
    entrées d’air parasites dû à la mise en pression des
    façades ;
  • une prise d’air équipée d’un anti-retour pour limiter les
    entrées d’air parasites dû à la mise en pression des
    façades ;
  • une sonde CO2-Température pour la commande directe du groupe d’extraction.

L’implantation prévue est la suivante, en considérant 7 classes et le réfectoire !

Avantage du système indépendant par classe :

  • Faible gainage, donc consommation électrique très faible
  • Système très compact et fiable – 1 seul appareil actif.
  • Système avec commande locale pour dérogation de l’occupant.
  • Système complètement autonome sans horloge ni commande externe.
  • La surchauffe d’une classe n’impacte pas les autres.
  • Pas d’effet téléphone entre les locaux, pas d’impact sur la transmission de bruits entre classe.
  • Pas de gainage en dehors de ces locaux.
  • Un atténuateur de bruit est prévu pour éviter une hausse du bruit ambiant général.
    Objectif : NR35-40. Cependant le bruit généré est fonction du nombre d’occupant et donc en symbiose avec le bruit ambiant.
  • Le système accélère en fonction du taux de CO2 ou de la température, (fonctionnement en refroidissement), en comparant les 2 signaux.
  • Seule une alimentation électrique doit être prévue par classe.