Réduire le talon de consommation d’une école


Talon de consommation ?

Les bâtiments scolaires sont sujets à de nombreux gaspillages d’énergie suite à leurs périodes d’occupations ponctuelles. Durant les weekends, les mercredis après-midi ou les congés, beaucoup d’appareils électriques restent branchés et utilisent de l’électricité inutilement. Malheureusement, le problème est voué à une grosse augmentation à cause de la numérisation de la pédagogie (bornes wifi, salles informatiques et autre). Il est donc impératif d’agir dès maintenant !

Contrairement à ce que l’on pense, les appareils en standby durant les périodes d’inoccupation consomment énormément d’électricité, faisant augmenter la facture totale à la fin du mois. En effet, si les puissances en cause sont limitées, les durées de fonctionnement de ces équipements sont longues. La quantité totale d’énergie n’est donc pas à négliger. Ces sources d’électricité cachées participent à former le talon de consommation de l’école, c’est à dire le seuil en dessous duquel il est difficile d’aller en termes de consommations.

Agir sur le talon de consommations est relativement simple et abordable pour tous. C’est donc la première chose à réaliser afin de réduire les consommations électriques dans l’école. Ensuite, pour aller plus loin, il sera pertinent de se pencher sur le choix des équipements et/ou l’amélioration de leurs performances. Une bonne conception et régulation de ceux-ci est essentielle afin de réduire efficacement les consommations d’électricité.


Génération 0 Watt

Le projet Génération Zéro Watt a pour objectif d’aller à la recherche des sources de consommation d’énergie cachées ou inutiles et d’agir localement sur celles-ci. Par le biais de petites actions simples sur les appareils électriques, l’éclairage et le chauffage, les enfants des écoles impliquées dans le projet sont sensibilisés à des comportements efficaces en termes de réduction de consommation d’énergie. De cette manière, les écoles participantes peuvent atteindre durant le défi des économies allant en moyenne jusqu’à 20% de la consommation électrique initiale.

Le pourcentage d’économies dépend du nombre d’élèves dans les établissements concernés. Les grandes écoles éprouvent plus de difficulté à mobiliser l’ensemble de leurs occupants à réduire leurs consommations. Toutefois, celles qui y parviennent peuvent atteindre un ratio de consommation par élève logiquement plus bas que les petites écoles.

Source : https://www.educationenergie.be/moyennes-du-secteur/

Plus largement, les actions à entreprendre pour améliorer sa consommation peuvent être réparties selon le budget disponible. Le site educationenergie.be reprend, selon la taille du budget, les actions possibles à envisager dans l’école : https://www.educationenergie.be/actions-zero-budget/

Si l’on réfléchit aux bâtiments scolaires dans une optique zéro carbone, ce talon de consommation, bien que réduit par les diverses actions menées, produit toujours du carbone, nuisant ainsi à l’objectif nul recherché. Dès lors, il est nécessaire de réfléchir à d’autres solutions, parfois plus expérimentales ou innovantes.


Repenser les systèmes

Cette solution est hypothétique et va au-delà des petites actions ponctuelles sur les appareils électriques, le chauffage ou l’éclairage. Elle propose une gestion centralisée et automatisée des circuits électriques parcourant le bâtiment de l’école. Ce mode de fonctionnement permettrait une plus grande efficacité dans la lutte contre le talon de consommation de l’école. Pour plus d’informations concernant la gestion centralisée (GTC), consultez cet article consacré au réseau électrique.

Les principes de GTC existent déjà mais sont actuellement peu propices à l’utilisation dans des écoles car ils sont onéreux et nécessitent beaucoup de maintenance. Ils sont donc principalement réservés à des projets hauts de gamme.

Une mesure plus pragmatique concernant la modification des systèmes électriques dans une école serait de réfléchir avec l’électricien à un découpage qui, outre la logique “spatiale”, intègre la division entre 3 types d’usages.

Imaginons donc que 3 circuits électriques composent l’installation de l’école

  • Circuit permanent (congélateur, frigo…)
  • Circuit d’urgence (éclairage de secours, alarme, détecteurs incendies…)
  • Circuit d’usage (ordinateurs, TBI, éclairage, machine à café, ventilation…)

Ces trois circuits sont contrôlés via un tableau électrique et chacun d’entre eux est doté d’un interrupteur horaire. Ceux-ci ont pour but d’allumer et de couper le circuit électrique selon un horaire prédéfini. La répartition proposée sous forme de circuit permet, lors des périodes d’inoccupation de simplement couper en une fois l’ensemble du circuit d’usage, sans devoir éteindre chaque appareil individuellement. Cette simplification des manipulations agit en faveur de la réduction des consommations énergétiques de l’école.

Des réglages pourraient être envisagés lorsque l’école est occupée en dehors des heures habituelles. Par une détection de présence d’occupants, le circuit comprenant l’éclairage pourrait se mettre en route par exemple..

S’il n’est pas envisageable de refaire le réseau électrique complet, il faut trouver d’autres solutions. Par exemple, avoir recours à des prises de courant intelligentes, pour pouvoir leur ajouter une programmation horaire individuelle. L’utilisation de technologies de l’internet des objets permet elle aussi de réduire les consommations énergétiques, mais à moindre niveau et au prix d’une consommation de ressources non négligeable.

Une école sans carbone au quotidien


Bilan carbone

Les émissions de carbone dans les écoles proviennent de nombreuses sources qui vont bien au-delà de la simple consommation d’énergie. En effet, les bâtiments scolaires se situent à l’intersection de trois facteurs contribuant aux émissions mondiales de gaz à effet de serre, pouvant être explorés à différents stades du cycle de vie de la construction :

  • L’énergie incorporée en amont, l’énergie grise, ou énergie matérielle incorporée
  • L’énergie opérationnelle et de mobilité pendant la vie du bâtiment
  • L’élimination des matériaux en aval

Pour atteindre la neutralité carbone, l’école doit donc non seulement porter une attention particulière sur les aspects techniques de la rénovation mais également sur la sensibilisation et la mise en place de pratiques alternatives décarbonées. L’asbl COREN propose un outil permettant aux écoles de quantifier leur bilan carbone, en intégrant ces différents volets((https://www.coren.be/images/outils/bilan_carbone/Guide%20accompagnement%20bilan%20carbone.pdf)).


Pistes de réflexions

Les écoles sont, par leur caractère éducatif visant une citoyenneté responsable, des lieux propices à la sensibilisation et à l’éducation de notions relatives à la protection de l’environnement.

Sensibiliser à la neutralité carbone va au-delà de placarder des affiches sur les murs de l’école, c’est une réelle réflexion globale qui doit être menée sur de nouvelles pratiques alternatives moins consommatrices en carbone. L’objectif général étant d’éveiller les occupants des écoles à des comportements moins hostiles vis-à-vis de l’environnement. Pour cela, nous proposons 3 pistes de réflexions.

  • Mobilité

Une voiture transportant une seule personne consomme environ 0,2 kgCO²e par kilomètre parcouru, contre plus de la moitié en moins pour le même trajet en bus ou en train. Dès lors, il paraît évident, dans une optique zéro carbone, que l’école mette la question de la mobilité à l’ordre du jour de ses préoccupations. Les écoles en Wallonie sont assez bien desservies en transports publics, rendant leur utilisation facile pour tous les enfants de l’école.

Avec le soutien de certaines associations comme Empreintes, l’école peut facilement mettre en place certains gestes agissant en faveur d’une diminution des émissions de carbone liées à la mobilité. Agir durablement sur les modes de transports vers et depuis l’école est une étape importante dans la sensibilisation à la neutralité carbone et dans l’éducation relative à l’environnement des élèves prenant part au projet.

La Région Wallonne propose également de nombreux outils pour traiter la question de la mobilité durable. Pour en savoir plus, consultez les pages suivantes :

  • Végétation

Projet Ose le Vert ! à l’école de Gentinnes

Développer la végétation dans l’école est indispensable pour sensibiliser les occupants à l’environnement. La présence de nature dans l’environnement direct des enfants permettra non seulement de les rapprocher de la nature mais également de rendre visible et tangible des processus écologiques au sein même de leur école. La nature environnante s’accompagne de potentiels pédagogiques importants, elle doit servir de support d’apprentissage pour les élèves.

La végétation permet une meilleure gestion du cycle de l’eau dans l’école mais également d’accueillir de la biodiversité sur le site. En plus de cela, les potagers, jardins, vergers et autres peuvent agir comme de réels puits de carbone. Les émissions de gaz à effet de serre pourront en partie être réduites grâce à une absorption directe par la végétation présente sur le site même de l’école((Last child in the woods – saving our children from nature-deficit disorders – Richard Lou)).

Pour aborder la question de la végétalisation dans votre école, consultez les pages suivantes :

Chaque année, des appels à projets ont lieu en Wallonie et à Bruxelles pour des projets de végétalisation des cours de récréation.

  • Alimentation

Avoir une réflexion sur une alimentation plus durable permet également d’alléger le bilan carbone de l’école. En plus de cela, ces actions ont un effet positif sur notre santé.

Les leviers à mettre en place pour se diriger vers une alimentation plus respectueuse de l’environnement sont les suivants :

  • Réduire la fréquence et les quantités de viande proposées en alternant les sources de protéines. Un menu végétarien peut facilement avoir une empreinte carbone 4 fois inférieure à un menu comportant de la viande bovine.
  • Privilégier les produits locaux, qui nécessitent moins de déplacements.
  • Privilégier les produits de saison, à l’empreinte plus faible pour leur production et leur conservation.
  • Privilégier les produits biologiques, qui utilisent moins d’intrants (engrais, pesticides, produits phytopharmaceutiques).

Pour aller plus loin dans ces réflexions, vous pouvez consultez les pages suivantes :


Bénéfices

  • Rapport à la nature

On considère souvent le contact avec la nature comme un avantage, mais rarement comme une nécessité absolue. Pourtant, des recherches scientifiques montrent qu’on peut considérer notre lien avec la nature comme un besoin essentiel à notre bien-être et à notre développement.

Le contact avec la nature a de multiples impacts bénéfiques sur la santé physiologique et psychologique. Des recherches ont montré des relations entre le manque de contact avec la nature et des problèmes tels que l’obésité, les troubles de l’attention ou la dépression. Les enfants en contact avec la nature sont considérés comme plus « résilients ». Ils résistent et s’adaptent plus facilement à des situations de stress.

En parallèle à ses impacts sur le bien-être physiologique et psychologique des enfants, la nature sollicite tous les sens de l’enfant et offre des possibilités d’expérimentations et d’apprentissages multiples. Elle est le support idéal pour enseigner de nombreuses notions faisant partie du programme scolaire. Comme terrain de jeu, un environnement naturel met à disposition des enfants, une série d’éléments variables et sans usage prédéterminé qui, utilisés pour jouer, stimulent l’inventivité et la créativité.

Pourtant, dans notre société actuelle, l’accès à la nature est de plus en plus difficile pour les enfants. L’urbanisation importante, la peur des parents qui les mènent à réduire leur autonomie et la multiplication des activités parascolaires limitant le temps libre des enfants sont différents facteurs qui font que les enfants passent de moins en moins de temps dans la nature, a fortiori pour y avoir des activités libres, non dirigées.

Dans le cadre de l’école, la nature est donc à la fois une nécessité pour les enfants, qui dépasse le cadre strictement scolaire, et une formidable opportunité d’apprentissage.

  • Efficacité

Les enfants ayant pu bénéficier de cette sensibilisation pourront-ils inciter efficacement leurs parents à modifier leur comportement en matière de consommation d’énergie ? Il a été démontré qu’amener les élèves de primaire et secondaire à encourager leurs familles à suivre de bonnes pratiques de consommation est un moyen efficace d’organiser des engagements volontaires en matière d’économies d’énergie. Ces études nous montrent que le milieu scolaire est un levier efficace pour toucher plus largement la société en général((AGARWAL S., RENGARAJAN S., FOO SING T. & YANG Y (2016), Nudges of school children and electricity conservation: evidence form the “project carbon zero” campaign in Singapore)).

Cependant, l’éveil environnemental tel que pratiqué aujourd’hui dans de nombreuses écoles n’est pas encore assez efficace que pour inciter à de réels changements comportementaux à long terme chez les enfants. Toutefois, cela reste une généralité car certaines écoles parviennent tout de même à inciter de manière concluante leurs occupants à des changements de comportements par une sensibilisation plus poussée et plus active((DE PAUW & VAN PETEGEM (2013), The effect of eco-schools on children’s environmental values and behavior, Journal of Biological Education, 47:2, p.102)). Voilà de quoi motiver les troupes !

POE occupant : la quête du confort dans les bureaux !

POE occupant : la quête du confort dans les bureaux !

Introduction du webinaire : Energie+ – les nouvelles fonctionnalités d’Energie+ à la loupe !

Webinaire Energie+ – du vendredi 18 septembre 2020

INFORMATION :

Le premier Webinaire Energie+ consacré aux responsables énergies a eu lieu le 18 septembre 2020 de 10h à 11h40.

Nous avions décidé de sélectionner 2 modules pour ce premier Webinaire :

1. Energie+ : les nouvelles fonctionnalités d’Energie+ à la loupe !
2. POE occupant : la quête du confort dans les bureaux !

La première partie fut consacrée à la présentation de l’équipe « Architecture et Climat » :

10:00 – 10:20
Présentation de la cellule Architecture et Climat et du site Energie+ par Sergio Altomonte et Geoffrey Van Moeseke.

10:20 – 11:00
Premier module – Energie+ : les nouvelles fonctionnalités d’Energie+ à la loupe ! Présentation de l’outil « responsable énergie » par Denis De Grave.

11 :00 – 11:40
Second module – POE occupant : La quête du confort dans les bureaux ! Présenté par Sergio Altomonte.

Présentation PDF du premier Webinaire – Responsable Energie

Rénovation énergétique d’une école primaire – les points clés

École : rénovation énergétique d’une école primaire – les points clés à prendre en compte !

Introduction du webinaire : monitoring et analyse des données – quelles informations tirer suite au monitoring d’un bâtiment ?

Webinaire Energie+ – du jeudi 8 octobre 2020 de 10h à 11h30

Ces modules ont été présentés par Science Infuse et l’ICEDD.

 

Ecole : comment garantir le confort et la qualité de l’air ?

Comment garantir le confort et la qualité de l’air dans les établissements scolaires ?

Webinaire Energie+ – mercredi 8 septembre 2021 de 8h45 à 10h00

> Intervenants :

Shady Attia
Prof. in Sustainable Architecture & Building Technology & Head of Sustainable Building Design Lab (SBD)

Tanguy Boucquey

Responsable du Bureau d’études Bâtiments/Energie à la Ville d’Ottignies-Louvain-la-Neuve

 

classe chauffage

Consommation d’énergie et émissions carbones dans les écoles

classe chauffage


Les différentes formes d’énergies

On peut distinguer 2 principales formes d’énergies consommées au sein de l’école :

  • La consommation énergétique de chauffage (60 à 70%) : en général par combustion d’une énergie fossile (mazout ou gaz naturel) ou éventuellement renouvelable (bois, pellet).
  • La consommation électrique (35%): nécessaire pour l’éclairage, la ventilation des locaux, le fonctionnement des systèmes techniques, les équipements de bureaux (ordinateur, photocopieuse…) etc.

Ces deux postes de consommation sont responsables d’une grande partie des émissions carbones des écoles. Cependant, ce ne sont pas les seuls car l’impact carbone des bâtiments scolaires va bien au-delà de la consommation d’énergie. En effet, beaucoup d’autres facteurs sont à prendre en compte dans le bilan carbone général d’une école (alimentation, mobilité, énergie grise…), alourdissant celui-ci de manière considérable. Agir en priorité sur les postes de consommations d’énergie paraît toutefois être une solution efficace pour tendre vers la neutralité carbone.

De nombreuses questions liées à la rénovation ont des répercussions sur la consommation d’énergie de l’école. Il existe donc de nombreux moyens de réduire celle-ci : l’isolation des bâtiments, agir sur la performance des systèmes de chauffage et des équipements électriques, l’installation d’un système de ventilation, la production d’énergie renouvelable, le choix des matériaux de construction…


Pourquoi rénover zéro carbone ?

  • Pour réduire les impacts de la consommation d’énergie fossile
  • Pour réduire la dépendance économique de l’école
  • Pour éduquer à l’environnement

1) Réduire les impacts de la consommation d’énergie fossile

La consommation d’énergie dans les écoles wallonnes en quelques chiffres :

La part de la consommation énergétique wallonne dont les écoles sont responsables

Selon les données du bilan énergétique wallon, la consommation énergétique du secteur de l’enseignement représente 14% de la consommation du secteur tertiaire, qui représente elle-même 11% de la consommation énergétique globale wallonne. Elle est donc estimée à 1,5% de la consommation énergétique totale de la Wallonie.

Cette consommation varie également d’un réseau d’enseignement à l’autre((https://www.renovermonecole.be/fr/content/part-consommation-energetique-wallones-dont-ecoles-sont-responsables)).

Les grandes variations que l’on peut observer dans le graphique ci-dessus((https://www.renovermonecole.be/fr/content/part-consommation-energetique-wallones-dont-ecoles-sont-responsables)) ont plusieurs explications :

  • Les caractéristiques des bâtiments reliés à chaque réseau.
  • La manière dont les bâtiments et leur consommation d’énergie sont gérés : contrôle des systèmes de chauffage, impact des coûts énergétiques sur les utilisateurs, contact entre les gestionnaires et les occupants, responsabilisation des occupants, etc.

Comme le montre le graphique, les consommations spécifiques de combustibles dans l’enseignement dépassent largement les consommations en électricité, dans l’état du parc au moment de la réalisation de ce cadastre. C’est pourquoi beaucoup d’écoles se tournent de plus en plus vers des travaux de rénovation, dans l’objectif de diminuer cette part importante de consommation. En moyenne, les écoles aujourd’hui consomment en combustibles 138 kWh/m² (40 kWh/m³).

La région Wallonne propose aux écoles (voir critères d’éligibilité) les subventions UREBA exceptionnelles destinées à soutenir les travaux d’amélioration des performances énergétiques. La prime propose une couverture de 30% des coûts éligibles à celle-ci. En moyenne, les écoles effectuant des travaux (plus ou moins importants) et ayant recours à cette prime effectuent une économie de 38 % sur leurs consommations de combustibles. Cependant, il est évident que ce chiffre varie en fonction du type de travaux, de la taille de l’école, de la consommation initiale, etc… ((Consommations spécifiques moyennes dans l’enseignement dans les écoles à Bruxelles – https://www.renovermonecole.be/fr/content/part-consommation-energetique-wallones-dont-ecoles-sont-responsables.))

2) Réduire la dépendance économique de l’école

La consommation d’énergie dans les écoles représente un budget important et ce budget est en constante augmentation. Réduire ces dépenses est nécessaire pour l’équilibre financier des écoles et permet de développer des projets plus passionnants que la combustion des énergies fossiles.

Il existe mille projets plus intéressants à financer dans une école que la consommation d’énergie, dont l’impact sur le climat et la paix mondiale n’est pas vraiment brillant.

Le coût de l’énergie pour l’école dépend de nombreux facteurs tels que les bâtiments, leurs caractéristiques techniques, le nombre d’élèves, les enseignants et leurs habitudes, le type de chauffage, …

Chaque école devrait connaître le coût de sa consommation d’énergie. Pour en savoir plus sur l’évolution des prix de l’énergie : cliquez ici.

Les actions qui améliorent le confort dans l’école ont un impact sur le bien-être, la santé et les performances des élèves et des enseignants.

La ventilation, la lumière naturelle, le confort thermique et acoustique contribuent à réduire l’absentéisme et à augmenter les chances de réussite des élèves. Et cela permet aussi de faire des économies. Si elles ne profitent pas directement à l’école, elles n’en sont pas moins intéressantes au niveau collectif.

Le coût de la scolarité d’un élève à charge de la Fédération Wallonie Bruxelles varie selon le niveau d’enseignement, avec une moyenne de 5097 € par élève et par an en 2011.

La Fédération Wallonie Bruxelles estime qu’en 2019, l’échec scolaire a généré un coût supplémentaire d’environ 391 millions d’euros dans l’enseignement obligatoire ordinaire. Investir dans la rénovation des établissements scolaires permettrait donc, dans certaines mesures, de réduire ce gouffre financier.

En plus de réduire la dépendance économique de l’école, rénover zéro-carbone peut aussi offrir plus de résilience aux écoles face à la raréfaction de l’énergie. Les sources d’énergie fossiles (pétrole, gaz, charbon) sont, par définition, limitées en quantité. De plus, cette contrainte d’épuisement n’est pas la seule à diriger la production d’énergie fossile. Des contraintes économiques et politiques participent aussi à la raréfaction de l’énergie, réduisant ainsi encore plus la production par rapport à la quantité d’énergie disponible. Ces contraintes sont par exemple l’augmentation des prix provoquant un déclin de la demande ou encore les crises politiques.

Limiter ses consommations et consommer de l’énergie renouvelable peu donc permettre aux écoles une meilleure stabilité dans le temps, moins de dépendance et plus de résilience face au marché fluctuant de l’énergie.

3) Eduquer à l’environnement

Rénover son école dans une démarche durable tel que le zéro carbone est une réelle opportunité pour sensibiliser et éduquer les élèves, enseignants et parents au développement durable et à l’efficacité énergétique. Les bâtiments scolaires rénovés offrent le potentiel de devenir des vitrines pour les élèves et les familles d’une architecture respectueuse de l’environnement. Cette vitrine, une fois vécue, peut influencer leur attitude et les amener à développer des comportements et des habitudes plus responsables afin de devenir de vrais éco-citoyens.

L’architecture de l’école possède une vertu pédagogique, capable d’enseigner et de sensibiliser de manière directe ou indirecte ses occupants à une série de concepts clés liés au développement durable. Le bâtiment scolaire ne devient plus uniquement une structure qui accueille les apprentissages mais un outil d’apprentissage en tant que tel.

Rénover son école dans l’optique zéro carbone offre donc le potentiel de proposer une architecture pédagogique au service de l’éducation à l’environnement de ses occupants.

L’éducation à l’environnement est une thématique très actuelle portée par beaucoup d’écoles à Bruxelles et en Wallonie. Au vu des problématiques auxquelles notre société fait face aujourd’hui, il semble indispensable d’éveiller les enfants dès leur plus jeune âge à des valeurs et des comportements pro-environnementaux.

L’éducation relative à l’environnement (ErE)  passe par un travail mené en parallèle sur 3 dimensions :

  • L’éducation à propos de l’environnement : exposer des faits, des concepts et des principes clés à intégrer pour une bonne connaissance.
  • L’éducation pour l’environnement : éveiller les enfants à des valeurs et des compétences pour la préservation de celui-ci.
  • L’éducation dans l’environnement : interagir directement et physiquement avec la nature et son milieu.

L’architecture de l’école peut donc participer à l’éducation relative à l’environnement de ses élèves en agissant sur les deux dernières dimensions.

 

Les dossiers thématiques : rénovation des écoles

Dans ce dossier adressé aux responsables énergies, aux concepteurs et gestionnaires de bâtiments scolaires et aux bureaux d’études, vous trouverez un ensemble d’articles théoriques et d’outils pour vous guider dans la rénovation des bâtiments scolaires dans le but d’approcher au plus près la neutralité carbone fixée par le Green Deal à l’horizon 2050.

Beaucoup de documentation se trouve déjà sur le site “Rénover mon école” et dans le “Guide de la rénovation soutenable des bâtiments scolaires” mais l’intention ici est de hiérarchiser les actions à mener sous forme d’une feuille de route adaptée au cas particulier des bâtiments sur lesquels vous vous pencherez.

De plus, à la différence de ces deux outils existants, nous proposons dans ce dossier une approche des projets de rénovation dans une démarche zéro-carbone. La neutralité carbone de nos écoles d’ici 2050 est absolument nécessaire afin d’atteindre les objectifs européens.

Le processus hiérarchique peut contribuer à réduire la complexité de la réalisation d’un projet de rénovation. Il permettra de donner la priorité aux considérations les plus importantes à chaque étape de la conception plutôt que de les considérer toutes ensemble comme dans un modèle « plat ». Cette priorisation des démarches de rénovation permet aux gestionnaires de projets d’avoir plus de flexibilité et de répartir les interventions et le budget sur une vision à long terme.

Nous détaillons dans les articles ci-dessous la priorisation que nous en faisons, tenant compte de la répartition des émissions carbone dans le parc scolaire ainsi que des besoins spécifiques des fonctions propres aux bâtiments scolaires.

 


Introduction

Stratégie immobilière

Dans le cas de rénovations partielles, il faut identifier les priorités d’action et la bonne séquence de travaux. Se référer à un plan, avec un objectif clair, est indispensable pour cela. Pour garantir la santé et le bien-être et éviter des désordres constructifs, la qualité d’air doit être le premier objectif. Ensuite viennent l’économie d’énergie, puis le basculement vers des formes d’énergie décarbonée.

Priorité 1 : Air

Priorité 2 : Enveloppe

Priorité 3 : Electricité

Priorité 4 : Chaleur

Priorité 5 : Autres

Les témoignages :

Webinaire :

Les études de cas  :

Divers

Tout au LED

Actuellement, en termes d’éclairage, on s’oriente en majorité vers la technologie LED. Celle-ci est en plein essor et ne cesse de s’améliorer au fil des années. Les arguments les plus souvent énoncés en faveur des LED sont leur grande efficacité lumineuse, leur durée de vie extrêmement longue et leur faible consommation électrique.

Technologie miracle ? Pas tout à fait…. Autant les LEDs paraissent meilleurs que la concurrence sur le plan performanciel et énergétique, il n’est pas de même en termes de confort visuel et d’impact sur la santé.


Le LED aujourd’hui

Aujourd’hui, les lampes à LED sont particulièrement performantes et beaucoup plus économes en énergie que les technologies classiques.

À titre d’exemple, le tableau comparatif ci-dessous provient d’une étude scientifique((L.T. Doulos et al. Minimizing energy consumption for artificial lighting in a typical classroom of a Hellenic public school aiming for near Zero Energy Building using LED DC luminaires and daylight harvesting systems, Energy and Buildings, Volume 194, 2019, Pages 201-217))  et met en évidence les dernières avancées en termes de LED par rapport à un luminaire classique à tube fluorescent. Les résultats peuvent évidemment dépendre selon les produits testés.

LED (AC supply) LED (DC supply) T5 2x35W
Puissance (W) 41.0 50.5 76.0
Efficacité lumineuse (lm/W) 116.1 107.6 62.0
Puissance spécifique (W/m2) 3.16 3.90 5.86
Nombres de luminaires utilisés 4 4 4
Puissance totale installée (W) 164 202 304
Consommation annuelle (kWh) 255.8 315.1 474.2
Eclairement (lx) 302 322 308

On remarque que les luminaires LED sont aujourd’hui largement plus efficaces en termes de consommation électrique, à niveau d’éclairement similaire.Il est donc très intéressant de se tourner vers des solutions 100% LED dans des projets de rénovation visant le zéro-carbone, d’autant plus que l’efficacité lumineuse retenue pour les luminaires ci-dessus n’est pas le plein potentiel de la technologie.


Effets sanitaires

Face à la constante amélioration de la technologie LED, l’ANSES (Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail) a récemment publié un nouveau rapport étudiant les effets sanitaires de ces systèmes sur la population. Les LED sont caractérisées par un spectre de lumière plus riche en lumière bleue et plus pauvre en lumière rouge que d’autres sources lumineuses, créant un déséquilibre spectral particulièrement nocif pour nos yeux. De plus, “les lumières à LED peuvent être plus éblouissantes que les lumières émises par d’autres technologies (incandescence, fluo-compactes, halogènes, etc.)” (ANSES, p.355). “Enfin, les LED sont très réactives aux fluctuations de leur courant d’alimentation. De ce fait, selon la qualité du courant injecté, des variations de lumière peuvent apparaître, suivant la fréquence et le niveau de ces variations.” (ANSES, p.355)

Le rapport étudie donc différents effets sanitaires :

  • les effets de la lumière bleue sur les rythmes circadiens (perturbation de l’horloge circadienne) ;
  • les effets de la lumière bleue sur le sommeil et sur la vigilance (retard de sommeil et altération de la quantité et qualité du sommeil) ;
  • les effets de la lumière bleue et des différents types de LED sur l’œil (phototoxicité, sécheresse oculaire, myopisation) ;
  • les effets de la lumière bleue sur la peau ;
  • les effets de la modulation temporelle de la lumière sur la santé ;
  • les effets liés à l’éblouissement.”((Source: https://www.anses.fr/fr/system/files/AP2014SA0253Ra.pdf – p.356))

Afin de protéger la population de tous ces effets sanitaires, l’ANSES émet une série de recommandations liées à l’utilisation de lumières à LED. Certaines sont de l’ordre de futures recherches à mener ou de suggestions d’évolutions réglementaires tandis que d’autres sont de l’ordre de bonnes pratiques à prendre en compte directement dans des projets de relighting. On retiendra les deux principales :

  • Limiter au plus possible l’exposition à des lumières froides (> 4000 K)
  • Exclure les lampes LED nues du champ de vision

Toutefois, les difficultés des LED ciblées dans l’étude sont surtout liées au lien entre lumière bleue et endormissement. Elles sont donc peu pertinentes dans les écoles.

Pour plus d’informations, celles-ci sont reprises dans le document « Effets sur la santé humaine et sur l’environnement (faune et flore) des diodes électroluminescentes (LED) » en page 363 : https://www.anses.fr/fr/system/files/AP2014SA0253Ra.pdf


Le LED en rénovation

Avant de se lancer dans un projet de rénovation de l’éclairage de l’école, il faut impérativement passer par l’étape d’analyse et de diagnostic de la situation existante. Pour cela, il est préférable de faire appel à un bureau spécialisé en éclairage. Cependant, il existe quelques outils sur le site de Rénover mon école qui vous permettront de réaliser un rapide diagnostic de l’installation lumineuse de vos salles de classe. Les pages suivantes sur Energie+ peuvent également être utiles :

Le site internet de Rénover mon école regroupe une grande partie des questions générales à se poser lors de la rénovation de l’éclairage. Attention que les informations mentionnées en termes d’objectifs et de techniques ne sont plus de toute fraîcheur… En plus de cela, elles ne visent pas l’objectif zéro-carbone qui nous intéresse dans ce dossier.

Pour plus d’infos concernant le passage au LED, consultez la page suivante.

Que faire donc dans notre cas ?

Procéder à un relighting de l’école dans une démarche zéro carbone nécessite de faire attention à deux points principaux :

  • Viser une puissance faible
  • Avoir une gestion efficace

En termes de puissance...

Comme vu plus haut, le LED offre de faibles puissances et donc a fortiori de meilleures performances énergétiques. C’est donc principalement vers cette technologie qu’il faut se tourner lorsqu’on envisage le relighting d’un bâtiment scolaire.

L’emplacement des luminaires dans le local a toute son importance en termes de puissance. Un moins grand nombre de luminaires, mais bien situés afin de garantir une uniformité de l’éclairement, permettra de réduire la puissance totale et donc la consommation en carbone.

La question de la gestion….

C’est principalement sur ce point qu’il est utile d’insister lorsque l’on conçoit un relighting d’une école. 35% de la facture énergétique des écoles correspond à l’électricité consommée par l’éclairage. Bien souvent, cela est dû à une mauvaise gestion du système d’éclairage. Il est impératif de rendre les occupants des locaux conscients de leurs décisions en limitant au maximum l’allumage automatique de lampes par exemple. L’extinction automatique, le zonage ou encore le dimming des lampes sont autant de principes qu’il est nécessaire de prendre en compte dans une démarche zéro-carbone. Pour plus d’informations sur ces techniques, consultez les pages suivantes :

De plus, une attention particulière doit être portée sur le programme de maintenance  afin  de garantir la pérennité du projet de relighting.

Rénover pour consommer…plus ?

Il est nécessaire de pointer la faiblesse actuelle en termes de niveaux d’éclairage dans les écoles. Les installations vétustes et inconfortables ne respectent souvent pas les normes visées lors de projets de relighting ou de constructions neuves. Dès lors, il se peut qu’après rénovation, le système d’éclairage consomme plus qu’auparavant. Cependant, au profit d’un meilleur confort visuel, qui s’avère bénéfique en de nombreux points pour tous.

Réemploi des systèmes existants

Lors de nouvelles constructions, il est facile et logique de concevoir l’ensemble de l’éclairage sur un système électrique approprié à la technologie LED. Mais est-il aussi simple d’adapter un système d’éclairage existant à la technologie LED? Dans un souci d’économie financière, est-il possible dans un projet de rénovation scolaire de garder les luminaires existants en y changeant simplement les tubes ?

Les luminaires existants de type tube T5 ou T8 sont toujours équipés de ballasts électroniques ou ferromagnétiques. Dans les deux cas, il est possible, moyennant certaines manipulations (voir article G0W), de passer d’une technologie de tube fluorescent vers des tubes LED. Il est donc tout à fait envisageable de maintenir les luminaires existants lors d’un projet de relighting au LED. Cependant, les lampes LED ayant des niveaux de luminance élevés, il est impératif d’utiliser des mécanismes optiques adaptés. On favorisera donc des mécanismes de réfraction ou de transmission à la place de mécanismes de réflexion.

À proscrire : mécanismes de réflexion

À recommander : mécanismes de réfraction


Recommandations

Les situations de relighting sont très différentes en fonction de l’usage des espaces à rénover. La disposition des luminaires, le type de luminaire, la température de lumière ou encore le mode de gestion de l’éclairage sont autant de paramètres qui varient en fonction de l’utilisation de l’espace.

Le site de Rénover mon école reprend, sur les deux pages suivantes, les grandes recommandations à prendre en compte pour des classes, des espaces de circulations, des bureaux ou encore des réfectoires : 

Résoudre les nœuds constructifs dans le cas d’une isolation par l’intérieur

A cause de la présence des planchers et murs intérieurs qui se raccordent aux différentes parois de l’enveloppe du volume protégé (façades, toitures, planchers, …) assurer la continuité de la couche d’isolant thermique est quasiment impossible à coût raisonnable.

Le raccord du plancher avec la façade, tous deux étant isolés par l’intérieur, ne pose pas de difficulté. C’est également le cas entre la toiture et la façade.

Les principales difficultés seront donc localisées au droit des raccords entre les parois intérieures et les parois de l’enveloppe. Dans le cas des façades, deux solutions existent cependant :

Les nœuds constructifs entre les fenêtres et les façades (appuis de fenêtre, linteaux, piédroits) nécessitent parfois des petites adaptations.

Raccord plancher-façade

En rénovation, la mise en œuvre de l’isolation du plancher et de la jonction avec le mur n’est pas évidente et lourde. Il faut vraiment se trouver dans un cas de figure où la rénovation :

  • est perçue comme un nouveau projet de mise en œuvre d’une dalle flottante;
  • tient compte des différentes épaisseurs composant le nouveau plancher afin d’éviter les problèmes qu’entraîne une surépaisseur (hauteurs de portes, de la première marche d’escalier, …).

Jonction avec le plancher sur local non chauffé ou sur terre-plein – Isolation sous chape

  • Placer un film d’étanchéité (4) contre le bas du mur + enduit existants (1 + 2) et contre la dalle existante (3). Ce film va protéger l’isolant de sol contre l’humidité ascensionnelle. Il n’est nécessaire que si on se trouve en présence d’une dalle contre terre et qu’aucune étanchéité n’a été prévue sous la dalle lors de la construction ; dans le doute, mieux vaut le placer. Prévoir un recouvrement de minimum 30 cm entre bandes.
  • Si la face supérieure de la dalle existante n’est pas plane, réaliser une chape d’égalisation avant d’y poser le film d’étanchéité ou l’isolation.
  • Placer un isolant thermique (5) sur la dalle (ou sur chape d’égalisation) : panneaux posés sur le sol de manière jointive ou isolant expansé projeté sur le sol ; l‘isolant choisi doit résister à la compression.
  • Placer l’isolant (6) en périphérie de la chape. Cet isolant assure :
    • La continuité de la couche isolante entre le sol et le mur et évite la création d’un pont thermique à la jonction sol-mur.
    • La désolidarisation de la chape des autres éléments lourds (dalle et mur). On crée ainsi une dalle flottante qui atténue la propagation du bruit.
  • Placer une membrane d’étanchéité (7) sur l’isolation du sol et contre l’isolant périphérique de la chape pour éviter que les eaux de mise en œuvre de la chape et les eaux de lavage du sol ne s’y infiltrent. Cette membrane remonte contre le mur existant.
  • Couler une chape armée (8) sur l’isolant de sol.
  • Poser un film d’étanchéité (9) contre le mur enduit existant et sur la chape. Celui-ci va protéger le pied de paroi contre les eaux de nettoyage.
  • Placer soit l’isolant (10), l’éventuel pare-vapeur (11) et la finition (12), soit un panneau composite (13) sur le mur enduit existant.
  • Une mousse isolante (14) est injectée sous le panneau isolant, puis arasée. Cette mousse va assurer la continuité de l’isolation au bas du panneau. En effet, lors du placement des panneaux, ceux-ci sont butés contre le plafond, le jeu entre la hauteur du panneau et du mur apparaît donc en bas de panneau au niveau du sol.
  • La partie du film d’étanchéité (9) posée temporairement sur la chape et destiné à protéger le pied de paroi contre les eaux de nettoyage est relevée contre la finition intérieure de la cloison de doublage.
  • On pose la finition de sol (carrelage, par exemple) (15).
  • On place la plinthe (16) avec joint d’étanchéité (17).

Jonction avec le plancher sur local non chauffé ou sur terre-plein – Panneaux isolants composites

Seuil et linteau – cas du panneau isolant revêtu d’un enduit

  1. Mur existant.
  2. Enduit existant.
  3. Dalle existante.
  4. Chape d’égalisation.
  5. Film d’étanchéité (contre l’humidité ascensionnelle).
  6. Film d’étanchéité (protection du pied de paroi).
  7. Isolant thermique.
  8. Pare-vapeur éventuel.
  9. Finition.
  10. Panneau composite.
  11. Isolant thermique.
  12. Couche pouvant recevoir la finition.
  13. Panneau composite emboîté par languette et rainures.
  14. Fermeture des raccords au moyen d’un enduit pour éviter toute infiltration d’eau dans la couche isolante.
  15. Finition : revêtement souple.

Plancher en bois entre étages

Dans le cas d’un plancher en bois, l’extrémité de celui-ci qui vient s’encastrer dans la maçonnerie atteint des températures plus basses qu’avant isolation par l’intérieur. Alors qu’il est possible d’éviter le transfert de vapeur interne au travers du mur par l’usage d’un pare-vapeur, il n’existe pas de moyen efficace pour éviter ce transfert au niveau du plancher. Ainsi, il y a risque de condensation à proximité des têtes de solives et possibilité de pourrissement.

  1. Plancher.
  2. Solive.
  3. Risque : condensation ⇒ solution : nouveau support latéral appuyé sur ses extrémités.

Le projet de recherche Renofase, mené par la Région Flamande a pour objectif de soutenir les projets de rénovation de son parc immobilier et d’en assurer une réalisation performante et de qualité. Dans son dernier rapport, portant sur l’isolation par l’intérieur, elle propose le , offrant sous forme schématique une multitude de solutions afin de résoudre les ponts thermiques aux jonctions avec des planchers ou avec des murs de refend. Pour supprimer ces ponts, beaucoup de solutions peuvent être envisagées :

Possibilités de réduction des ponts thermiques
Isolation continue Appliquer l’isolation du retour Augmenter l’épaisseur de l’isolation intérieure Appliquer l’isolation extérieure locale
++ SOLUTION OPTIMALE

 

– Souvent impossible à réaliser avec une isolation intérieure.

 

– Une connexion structurelle entre les deux éléments de construction est souvent nécessaire, ce qui peut entraîner des ponts thermiques.

 

! Attention à l’isolation acoustique : les fuites acoustiques doivent être évitées.

 

Les matériaux d’isolation rigides peuvent être interrompus par des isolants souples au point de raccordement.

+ SOLUTION STANDARD

 

Dimensionnement : longueur de l’isolation de retour standard 60 cm à partir de la surface intérieure du mur existant ; en l’étendant à 100 cm à partir de la surface extérieure, le nœud du bâtiment est accepté par la PEB

 

– Impact sur la forme de la surface du mur ou du plancher à l’intérieur (parfois non possible ou souhaité)

 

+ Peut être utile de le combiner avec l’intégration de techniques (conduit de tuyaux, éclairage, …)

+ Impact visuel minimal

 

– Perte d’espace relativement importante

 

– Une simulation thermique est toujours nécessaire pour déterminer l’épaisseur minimale de l’isolation (car elle dépend de l’épaisseur de la paroi et des propriétés du matériau).

 

– Cette solution permet d’éviter les dommages (facteur de température

suffisamment élevé) mais les pertes d’énergie ne sont réduites que de manière limitée

Dimensionnement : la règle de base « chemin de moindre résistance > 1 m » peut être utilisée pour rendre le nœud de bâtiment acceptable pour les PEB.

 

+ Impact visuel et perte d’espace minimaux

 

– Impact sur l’aspect de la façade, donc pas toujours possible ;

 

+ Parfois, cela permet à la fois de résoudre un pont thermique et d’apporter une valeur ajoutée architecturale

 

! Attention aux contraintes thermiques dans la maçonnerie

Quelques variantes
La maçonnerie existante est remplacée localement par une maçonnerie isolante.

 

! Attention : la maçonnerie isolante peut devenir humide : l’impact de celle-ci doit être pris en compte (impact sur la valeur lambda, le transport capillaire de l’humidité, la durabilité…).

Continuez sur l’ensemble du mur ou du plancher et combinez avec une isolation ou une absorption acoustique.

 

Afin de limiter les pertes d’énergie, des matériaux super-isolants et isolants peuvent être utilisés dans les premiers 20 à 50 cm du mur.

 

– Attention : la dalle de plancher peut devenir relativement froide en hiver ; les contraintes thermiques d’impact doivent être vérifiées ; pas de tuyaux sensibles au gel dans le plancher.

 

L’épaississement peut être limité à une bande de chaque côté de la paroi intérieure ou du plancher.

 

+ Peut être utilement combiné avec l’intégration de techniques (conduite, éclairage, …)

Peut être intégré dans des éléments de façade décoratifs nouveaux ou existants (par exemple, dans le cas de bâtiments patrimoniaux) et/ou être associé à une isolation à retour limité, par exemple.

 

Isolation autour de la baie

Pour ne pas provoquer de pont thermique et de risque de condensation superficielle autour de la baie, l’isolation thermique doit être prolongée jusqu’à la menuiserie.

  1. Mur existant avec enduit de finition.
  2. Isolant thermique (posé entre lattes par exemple).
  3. Pare-vapeur éventuel.
  4. Panneau de finition.
  5. Retour d’isolation collé à la maçonnerie (épaisseur de minimum 2 cm).Si après avoir disqué l’enduit de finition existant, il n’y a pas assez de place pour le retour d’isolation, il faut remplacer le châssis par un châssis à dormant plus large.
  6. Prolongement du pare-vapeur jusqu’à la menuiserie ou pose d’un isolant peu perméable à la vapeur (mousse synthétique, par exemple).
  7. Joint souple d’étanchéité pour empêcher toute infiltration d’air intérieur derrière l’isolant.
  8. Nouvelle tablette.

Pour augmenter les performances thermiques du retour d’isolation, la finition autour de la baie peut être réalisée en bois (ébrasement et tablette).

  1. Joint souple d’étanchéité.
  2. Ébrasement et chambranle en bois.
  3. Finition angle.

Travaux annexes

Remarque: cette partie sinspire de la brochure Méthodes de modification du gros-œuvre isolation thermique dun bâtiment existant” et du projet de recherche Renofase mené par la Région Flamande

Jonction mur-plancher étanche à l’air 

Pour éviter tout risque de condensation interne, les systèmes d’isolation par l’intérieur doivent garantir une parfaite étanchéité à l’air. La ruine des parois peut avoir lieu lorsque de l’air chargé en humidité pénètre derrière la couche d’isolation et condense sur l’arrière de celle-ci.

 

Couche étanche à l’air((DOBBELS F, RenoFase WP4 – Detaillering van binnenisolatie, WTCB, 2017, p.31-32))
Matériau isolant étanche à l’air, placé correctement. Panneau préfabriqué avec membrane intégrée (la feuille ne dépasse pas des bords du panneau). Membrane placée séparément entre la finition et l’isolant (la membrane peut dépasser des bords). Revêtement en plâtre
Possibilités de finitions étanches à l’air
Solutions alternatives
Points d’attention

 

Les installations électriques (prises et interrupteurs)

Elles sont disposées dans un espace technique (ménagé entre l’isolant (ou le pare-vapeur) et la finition.

Détail en plan et en coupe :

  1. Isolant posé entre lattes
  2. Pare-vapeur placé sans interruption
  3. Latte fixée à la maçonnerie
  4. Latte supplémentaire servant d’entretoise
  5. Tube électrique
  6. Boîtier électrique

Les canalisations d’eau

Les canalisations encastrées avant rénovation (isolation par l’intérieur) sont réchauffées par l’ambiance intérieure.

Si aucune précaution n’est prise lorsqu’on isole par l’intérieur, la maçonnerie, et avec elle, la canalisation sont directement exposées au climat extérieur et donc au gel.

Il existe différentes solutions pour protéger la canalisation contre le gel.

Solution n°1: déplacer le tuyau et le laisser apparent.

Solution n° 2: (peu pratique) agrandir la saignée dans laquelle se trouve la canalisation et introduire un isolant thermique (mousse expansée, par exemple.)

Solution n° 3: déplacer le tuyau et le placer dans un espace technique ménagé entre l’isolant (ou le pare-vapeur) et la finition.

Attention: ne pas traverser le pare-vapeur avec le tuyau!

Les radiateurs

Les radiateurs doivent être déplacés et fixés à la nouvelle paroi. Dans ce cas, la structure doit être renforcée.
Le radiateur peut également être posé sur un pied fixé au sol.

  1. Tablette
  2. Isolant imperméable à la vapeur collé à la maçonnerie
  3. Isolation entre lattes
  4. Pare-vapeur
  5. Radiateur
  6. Joint d’étanchéité (mastic)
  7. Canalisation de chauffage
  8. Renfort (lattes bois)

Concernant les tuyaux des radiateurs, ceux-ci peuvent soit rester là où ils sont et être prolongés pour alimenter la nouvelle position du radiateur ou alors ils peuvent être déplacés dans le même plan que les corps de chauffe.

Si on garde le tuyau à sa place :

  • Insuffler de la mousse isolante autour du tuyau.

  • Glisser de l’isolant derrière le tuyau.

Si on peut déplacer le tuyau :

Sol

Lorsque l’isolation des murs est prolongée par l’isolation du sol, cela exige de créer une marche au niveau de l’accès aux autres locaux.

Remplacement des châssis

L’organigramme ((DOBBELS F, RenoFase WP4 – Detaillering van binnenisolatie, WTCB, 2017, p.201)) ci-dessous proposé par Renofase, évoque les différentes solutions envisageables pour le placement de nouveaux châssis dans le cas d’une isolation par l’intérieur.

Si vous souhaitez savoir comment évaluer le risque de condensation à partir des données propres à votre bâtiment.

Si vous souhaitez voir, par un exemple, comment évaluer concrètement le risque de condensation au droit d’un pont thermique dans un immeuble de bureau.

Isoler un mur par l’intérieur

Attention ! L’isolation par l’intérieur est la seule technique possible lorsque l’aspect extérieur de la façade doit rester inchangé. Cependant, cette technique d’isolation est délicate et peut engendrer des problèmes. Ainsi, beaucoup d’architectes belges l’évitent.

En respectant une série de principes et en effectuant les vérifications préliminaires nécessaires mentionnées plus bas, cela permet simplement de se mettre le plus possible du côté de la sécurité !


Principes à respecter

Avant toute chose, il est impératif de traiter tout type de problème d’humidité!  Rajouter une couche isolante sur la face intérieur d’un mur a des conséquences importantes sur son comportement hygrothermique. Dès lors, il est impératif de démarrer sur une bonne base, avec un mur sain. Les dommages liés à l’humidité se produisent généralement lorsque des matériaux sensibles à l’humidité sont en contact direct avec celle-ci. La présence de tâches, d’efflorescences, de fissures ou encore d’écaillages sur les murs existants sont autant de signaux révélateurs d’humidité. Le mur doit être complètement sec et exempt de toute trace d’humidité lorsqu’on pose l’isolation par l’intérieur.  

  • Principe 1 : Contrôle du climat intérieur

Une bonne gestion du climat intérieur a toute son importance dans l’apparition ou non de dommages au niveau des zones sous-isolées.  L’ampleur des dégâts est caractérisée par la température ambiante et par l’humidité relative de l’air intérieur. Pour éviter tout risque lié à une isolation par l’intérieur, le bâtiment doit appartenir à la classe de climat intérieur 1 ou 2. Ces classes de confort sont facilement atteintes grâce à des systèmes de ventilation mécanique.

  • Principe 2 : Réduire ponts thermiques

Les ponts thermiques sont les principales failles des systèmes d’isolation par l’intérieur. Ils sont parfois complexes à éliminer mais de nombreuses solutions existent pour les combattre. Une mauvaise gestion des ponts thermiques peut entraîner des moisissures dues à la condensation ainsi que d’importantes pertes d’énergie. Attention cependant que tous les ponts thermiques ne doivent pas nécessairement être réglés. La température minimale de surface dépend beaucoup du climat intérieur : si celui-ci est particulièrement humide, l’augmentation de la température de surface sera plus rapide et une humidité relative critique se produira plus rapidement que dans les climats plus secs.  Il est indispensable de ne pas laisser les ponts thermiques insolubles se refroidir trop longtemps pendant les périodes de froid afin que la température de surface des zones non isolées ne tombe pas en dessous de la température en dessous de laquelle le développement de moisissures devient possible.

Des pistes de résolution des situations à risque sont proposées sur cette page.

  • Principe 3 : Eviter fuites dair

Pour éviter tout risque de, les systèmes d’isolation par l’intérieur doivent garantir une parfaite étanchéité à l’air. La ruine des parois peut avoir lieu lorsque de l’air chargé en humidité pénètre derrière la couche d’isolation et condense sur l’arrière de celle-ci.

Dans la réalisation d’une enveloppe étanche à l’air, les situations à risque sont les suivantes: le passage des techniques à travers l’enveloppe et les joints entre différents éléments ou matériaux. Des pistes de résolution de ces situations à risque sont proposées sur .

Si vous voulez , il peut être utile de faire appel à un test de pressurisation qui permettra de détecter toutes les fuites, même celles qui ne sont pas visuellement perceptibles. Attention toutefois que ces tests ont pour objectif de détecter les flux d’air qui se produisent entre l’environnement intérieur et extérieur et non au sein d’une construction.

Une fois ces principes pris en compte, une attention particulière doit être portée sur les nœuds constructifs. Un bon traitement de ces nœuds améliore fortement les performances des bâtiments considérés, quelle que soit la technique d’isolation considérée. L’amélioration est de l’ordre de 30 % pour une épaisseur d’isolant de 6 cm et de l’ordre de 70 % pour une épaisseur de 20 cm. Augmenter l’épaisseur d’isolant sans traiter les nœuds constructifs a peu de sens, cela ne permettra pas d’atteindre les performances thermiques recherchées.

Le graphique ci-dessous illustre les valeurs U moyennes des trois façades d’une maison standard, intégrant l’effet des nœuds constructifs pour différentes épaisseurs d’isolant.

Pour en savoir plus sur les techniques de résolution des nœuds constructifs, consultez notre page : Résoudre les nœuds constructifs – isolation par l’intérieur.


Vérifications et mesures préliminaires

Le mur doit être en bon état

Lorsqu’on isole un mur plein par l’intérieur, les variations de température hiver-été et au cours d’une même journée, deviennent plus importantes. Ce qui augmente les contraintes dans la maçonnerie et peut mener à des fissurations.
Si le mur est déjà fissuré, on peut s’attendre à des dégradations suite à l’apport d’une isolation par l’intérieur.

Le mur doit être sec et protégé contre toute pénétration d’eau

Comme mentionné plus haut, le mur doit être sec et protégé de toute pénétration d’eau de pluie, protégé contre les remontées capillaires et ne plus contenir d’humidité de construction.

L’étanchéité à l’eau de pluie d’un mur plein dépend de son type et de son état.

Lorsque le mur est isolé par l’intérieur, l’eau à l’intérieur de la maçonnerie engendre les 2 désagréments suivants :

  • Vu l’abaissement de la température moyenne d’hiver d’un mur isolé par l’intérieur, le séchage est ralenti. L’humidification prolongée de la maçonnerie peut favoriser une dégradation de la maçonnerie par le gel.

En outre, lorsqu’une maçonnerie humide a fait l’objet d’une intervention pour la protéger, il y a lieu d’attendre son séchage (6 mois à plusieurs années selon le type et l’épaisseur du mur) avant d’entamer son isolation par l’intérieur.

La disposition doit permettre de traiter les ponts thermiques

  • Les dormants des châssis doivent être suffisamment grands pour pouvoir prolonger l’isolant sur la partie latérale de la baie, en dessous du linteau, sous la tablette de fenêtre. À défaut, les châssis devront être remplacés. On profitera de l’occasion pour choisir des vitrages à haut rendement.
  • On doit vérifier la possibilité d’envisager une isolation du sol, du plafond et des murs de refend ou simplement une prolongation de l’isolant sur ces parois.

Le climat intérieur doit être “normal”

Le climat intérieur doit correspondre au plus à la classe III.

Dans des bâtiments de classe de climat intérieur IV, le risque de condensation à l’interface maçonnerie-isolant est trop important. Dans ce cas des précautions lourdes doivent être prises : une étude approfondie du système et de chaque détail doit être réalisée par un bureau d’étude spécialisé; un soin particulier doit être apporté à la mise en œuvre; les matériaux devront être judicieusement choisis etc.

L’inertie thermique doit être suffisante

On vérifiera que la capacité thermique des locaux reste suffisante malgré l’apport de l’isolation du côté intérieur des murs de façade.

Voici des indices d’un risque important de surchauffe en été :

  • Les cloisons intérieures sont en matériaux légers (ex. : plaques de plâtre sur structure en bois ou métallique).
  • Les plancher sont en bois.
  • Il y a beaucoup d’apports internes (éclairage artificiel, ordinateurs, imprimantes, etc.).
  • Les baies vitrées sont grandes et ont une orientation autre que “Nord”.

Voici des indices d’un risque faible de surchauffe en été :

  • Les cloisons intérieures sont en matériaux lourds (béton, brique, …).
  • Les plancher sont en béton.
  • Il y a peu d’apports internes (éclairage artificiel, ordinateurs, imprimantes, etc.).
  • Les baies vitrées sont petites ou orientées au Nord.
    Cependant, une faible inertie thermique peut être favorable dans le cas de locaux occupés durant de courtes périodes.

Diagnostic professionnel

Le CSTC propose une démarche de diagnostic afin d’évaluer la faisabilité d’une isolation par l’intérieur. Elle se concentre sur 4 points d’attention qui se déclinent en différentes nuances, indiquant de la pertinence ou non d’une isolation de ce type.

Technique applicable Applicabilité inconnue (des contrôles ou études complémentaires peuvent confirmer l’applicabilité de la technique) Technique déconseillée en l’état (des interventions visant à corriger les défauts constatés peuvent rendre la technique applicable)
Dégâts visibles Absence de dégâts visibles (traces d’humidité dans les finitions intérieures, écaillage superficiel des briques extérieures, fissures, …) et de sources d’humidité (procéder éventuellement à des mesures du taux d’humidité au moyen d’un humidimètre électrique, p. ex.) Absence de dégâts visibles, mais présence de sources d’humidité (humidité ascensionnelle, éclaboussures, …) susceptibles d’en provoquer après la pose de l’isolation (procéder éventuellement à des mesures du taux d’humidité au moyen d’un humidimètre électrique, p. ex.) Présence de taches d’humidité, front d’humidité, sels efflorescents, algues, fissures, écaillage superficiel des briques extérieures (sensibilité au gel)
Exposition à l’humidité et au gel Typologie de la façade et exposition à la pluie
· Maçonnerie pleine dont l’épaisseur est constituée d’au moins deux briques ou d’une brique et demie, ou moins, en cas d’exposition limitée à la pluie

·  Mur massif en béton coulé

·  Mur creux (isolé ou pas)

·  Mur intérieur

Maçonnerie pleine dont l’épaisseur est constituée d’une brique et demie en cas d’exposition à la pluie moyenne à élevée Maçonnerie pleine dont l’épaisseur est constituée d’une brique ou moins en cas d’exposition à la pluie moyenne à élevée
Installations techniques
·  Absence de conduites d’eau ou d’autres conduites sensibles à l’humidité ou au gel dans la façade.

·  L’absence d’installations techniques nécessitant le percement de l’isolant facilitera la mise en œuvre

·  Présences de conduites d’eau ou d’autres conduites sensibles à l’humidité ou au gel dans la façade.
Planchers intermédiaires
Plancher en béton ou structure portante en bois non encastrée dans la façade à isoler Structure portante en bois sans dégradation encastrée dans la façade à isoler Structure portante en bois avec dégradations encastrée dans la façade à isoler
Caractéristiques des matériaux Finition extérieure
·  Absence de finition extérieure

·  Finition extérieure en bon état, imperméable à l’eau, mais perméable à la vapeur d’eau

·  Finition extérieure dégradée

·  Finition extérieure imperméable à la vapeur d’eau (briques émaillées, carrelages, mosaïque, peinture inadaptée, …)

Matériaux constitutifs de la face extérieure de la maçonnerie (briques, mortier de pose et de jointoiement)
Matériaux aux performances connues présentant une résistance au gel suffisante ·  Absence de dégâts dus au gel visibles

·  Mortier à base de chaux

 

·  Dégâts dus au gel visibles

·  Eléments identifiés comme non résistants au gel

Finition intérieure
·  Absence de finition intérieure

·  Absence de dégâts visibles (fissures, peinture non adhérente, enduit intérieur dégradé, …)

·   Absence de parties instables

·  Parties instables

·  Finition intérieure ne résistant pas à l’humidité ou imperméable à la vapeur d’eau

Dégâts visibles (fissures, peinture non adhérente, enduit intérieur dégradé, …)
Les caractéristiques et l’état de la finition intérieure influencent essentiellement le type de système d’isolation par l’intérieur (système collé, création d’une contre-cloison, …) pouvant être installé sur le mur considéré ainsi que la façon de dimensionner celui-ci. La technique d’isolation des murs existants par l’intérieur ne devrait dès lors pas être rejetée uniquement sur la base des critères associés à la finition intérieure. Ces différents éléments sont décrits dans la seconde partie de cet article traitant du choix des systèmes d’isolation par l’intérieur et de leur dimensionnement.
Climat intérieur et systèmes du bâtiment Classe de climat intérieur
Classe de climat 2 Classe de climat 3 Classe de climat 4
Systèmes
Systèmes de ventilation et de chauffage efficaces et en état de fonctionnement

Choix du système

Il existe de nombreux systèmes d’isolation par l’intérieur.

Choix du système à panneaux isolants collés

Lorsque le mur est sec et sain et présente une surface plane, on choisit le système des panneaux collés.

Les défauts de planéité ne peuvent pas dépasser 15 mm sur une règle de 2 m. Ce système ne peut être utilisé sur des supports ayant connu l’humidité car des sels peuvent apparaître.
Ce système est le moins onéreux et demande le moins d’espace.
Il demande le décapage complet du revêtement (papier-peint, peinture, …) ou du moins aux endroits des plots ou bandes de colle.

Choix d’un système à structure

Lorsque le mur n’est pas suffisamment plan, on choisit un des deux systèmes à structure.

Ceux-ci sont plus chers mais permettent de rattraper les défauts de planéité du mur. Ces systèmes peuvent aussi être choisis si l’on ne souhaite pas enlever le papier peint ou la peinture.

Le système à panneaux composites posés sur lattage possède l’avantage, par rapport au système à panneaux isolants entre lattes, d’apporter une isolation continue. En particulier, lorsque les profilés utilisés sont métalliques, il évite les ponts thermiques au droit de chaque profilé. Ce système permet également d’apposer une couche plus épaisse d’isolant.

Avec un système à panneaux isolant entre profilés métalliques, ces derniers doivent, dans certains cas, pour des raisons de résistance, être placés avec l’ouverture du “u” vers le mur. On doit veiller, dans ce cas, à ce que ceux-ci soient remplis d’isolant.

Choix du système avec isolation derrière contre-cloison maçonnée

L’isolation derrière contre-cloison maçonnée permet de rajouter un matériau lourd devant l’isolant et donc de remplacer, en partie du moins, l’inertie thermique perdue.
Il demande néanmoins un plancher pouvant le supporter. Il ne pourra pas, en principe, être choisi dans le cas d’un plancher entre étages en bois.


Choix de l’isolant

Le choix d’un isolant dépend principalement des performances à atteindre après isolation. Les caractéristiques des matériaux isolants à prendre en compte en cas d’isolation d’un mur par l’extérieur donc les suivantes :

  • « Epaisseur de l’isolant (m) : Cette épaisseur est une caractéristique du produit dans le cas des isolants rigides ou souples. Elle est déterminée par la mise en œuvre et la géométrie des parois isolées dans le cas des matériaux projetés ou insufflés.  
  • Conductivité thermique du matériau (W/mK): Cette caractéristique détermine le caractère isolant des matériaux. On la retrouve dans les différentes fiches techniques des matériaux d’isolation.
  • Facteur de résistance à la diffusion de la vapeur d’eau: Cette valeur se retrouve soit dans les fiches produits des fabricants, soit dans des documents de référence. Lorsqu’une gamme de valeur est citée, il y a lieu de prendre en compte la plus faible valeur renseignée.

Choix du pare-vapeur

Quand doit-on prévoir un pare-vapeur ?

Lorsqu’on utilise un isolant perméable à la vapeur (laine minérale, par exemple) celui-ci doit être précédé, côté intérieur, par un pare-vapeur de manière à éviter le risque de condensation interne.

L’utilisation d’un isolant peu ou pas perméable à la vapeur (EPS, XPS, PUR, CG) collé sur la maçonnerie, ne nécessite pas l’interposition d’un pare-vapeur pour autant que de l’air intérieur NE puisse PAS circuler entre isolant et maçonnerie.
Aussi, si ce type d’isolant est mis en œuvre entre lattes, la pose du pare-vapeur reste indispensable. Celui-ci couvre alors l’ensemble du système “isolant + lattes”.

Quel pare-vapeur choisir ?

L’évaluation du risque principal de condensation par modèle statique (comme celui de Glaser) entraîne presque systématiquement le choix d’une membrane très étanche à la vapeur du côté intérieur. On les appelle souvent les “pare-vapeurs”. Lorsque l’on affine l’analyse, il apparaît que le choix d’une membrane plus faiblement étanche à la vapeur est parfois suffisant. On parle alors de “freine-vapeur”. La valeur Sd des pare-vapeur n’est pas définie avec précision, mais en pratique, elle sera de plusieurs dizaines de mètres (par ex. 50 ou même 100 m) alors que la valeur Sd des freine-vapeur ne sera que de quelques mètres seulement (par ex. 2 m à 5 m, mais rarement plus de 10 m).

Le choix d’un freine-vapeur, plus ouvert au passage de la vapeur, permet souvent de se prémunir du risque, dit secondaire, de condensations internes en été ou au printemps, ou quand la pression de vapeur est plus importante à l’extérieur qu’à l’intérieur et que la vapeur a donc tendance à traverser la paroi de l’extérieur vers l’intérieur. En effet, le flux de vapeur n’est pas complètement bloqué vers l’intérieur ce qui facilite le séchage du mur.

D’autres membranes, dites intelligentes, sont de ce point de vue encore plus adaptées. En effet, leur perméabilité à la vapeur évolue avec l’humidité relative. Elles sont conçues pour être relativement fermées à la vapeur quand l’humidité relative est faible et pour s’ouvrir au passage de la vapeur quand l’humidité relative est plus élevée. Ce principe est illustré ici.

Outre les risques de condensations, il est important de faire remarquer que certains matériaux dits hygroscopiques, comme le bois et les matériaux dérivés du bois, mais aussi d’autres matériaux comme la terre crue, ont le pouvoir de réguler l’humidité de l’ambiance intérieure en captant l’humidité en excès pour la restituer plus tard, atténuant ainsi les effets désagréables d’ambiances trop sèches ou trop humides. On parle alors parfois d’inertie hydrique par analogie avec l’inertie thermique. Malheureusement, peu de valeurs sont disponibles. Ce domaine devrait faire l’objet de recherches complémentaires et dépasse le cadre d’Énergie+. Remarquons seulement que la présence d’une membrane atténue fortement l’effet hygroscopique des couches sous-jacentes, et notamment celui de l’isolant.

Remarquons enfin que la présence d’une membrane, en plus de permettre la régulation de la vapeur, permet aussi de bloquer le passage de l’air et donc d’éviter le risque de condensation par convection, pour autant bien sûr que la mise en œuvre soit d’une qualité irréprochable (notamment au niveau des nœuds constructifs).

Comment assurer la continuité de la fonction “pare-vapeur” :

Lorsque la fonction “pare-vapeur” est assurée par les panneaux, la continuité de la fonction “pare-vapeur” est assurée en fermant les joints entre panneaux ou entre panneaux et raccords au moyen :

  • soit, de bandes adhésives,
  • soit, de mousse injectée,
  • soit, de mastic.

Lorsque le système nécessite un pare-vapeur indépendant, celui-ci doit être placé avec recouvrements. Les recouvrements et les raccords doivent être fermés au moyen :

  • soit, de bandes adhésives,
  • soit, de joints comprimés.

Il faut vérifier auprès des fabricants que le produit assurant la continuité du pare-vapeur proposé corresponde à la classe du pare-vapeur demandé.

isolation d'une école

Réduire les consommations d’énergie de chauffage dans une démarche zéro-carbone

 

Comme mentionné en introduction du dossier consacré à la rénovation des écoles, l’énergie de chauffage dans une école représente en moyenne 60 à 70% des consommations totales. Cette part importante du poste chauffage est liée d’une part à une faible performance énergétique des bâtiments.

Dans le cas de rénovations de bâtiments scolaires dans une démarche zéro carbone, il est prioritaire de réduire cette consommation excessive de carbone liée à l’énergie de chauffe. Pour cela, des solutions « classiques »  peuvent être envisagées (changement combustible, remplacement de la chaudière…). Ou alors, dans une démarche plus innovante, nous proposons 3 pistes de réflexion afin d’atteindre l’objectif de neutralité carbone souhaité :

  • Repenser les besoins
  • Optimiser les performances énergétiques de l’enveloppe
  • Compenser les besoins résiduels avec une production propre

Repenser les besoins

Face aux enjeux énergétiques auxquels nous faisons face aujourd’hui, il s’avère de plus en plus clairement qu’un changement radical de nos pratiques et de nos standards de confort thermique s’impose afin de réduire les émissions de carbone liées à notre consommation d’énergie.

Qui dit repenser les besoins thermiques, dit aussi repenser les attentes thermiques des occupants. Celles-ci reposent habituellement sur un modèle classique d’espaces chauffés à une température standard de 20°, par un système de chauffage centralisé alimentant en chaleur l’ensemble du bâtiment. Cependant, dans une optique zéro-carbone, il est intéressant de retourner le modèle en se basant sur un principe visant à “chauffer les personnes, pas le bâtiment”. Ou encore, en poussant cette réflexion à l’extrême, il serait également envisageable de ne plus avoir recours à un contrôle permanent sur l’ambiance, mais uniquement à un apport ponctuel à certains moments critiques (relance…). Ceci est particulièrement vrai dans les école où la densité d’occupants constitue un apport thermique significatif.

  Effet du chauffage par air                                           Ce dont nous avons besoin

Une vue de l’esprit ? Pas si sûr : la théorie du confort adaptatif met en évidence l’existence, moyennant la présence d’opportunités adaptatives dans le bâtiment, de plages de températures dites “confortables” plus larges que celles dont nous avons l’habitude. Cette théorie est généralement appliquée uniquement pour la réponse aux surchauffe, faute d’études suffisante en hiver. Mais elle mérite d’être explorée.

Selon cette théorie, il serait possible de réduire les besoins thermiques à l’école en offrant aux occupants des capacités d’adaptation pour corriger localement leur ressenti. On ne parle donc pas ici de simplement placer une vanne thermostatique, mais des mettre à dispositions des solutions individuelles et proches du corps, regroupées sous l’appellation “systèmes de confort personnels (PCS)”.


Optimiser les performances énergétiques de l’enveloppe

Comme mentionné plus haut, agir sur les flux de chaleur intérieur-extérieur passe par un travail accru sur les niveaux d’isolation et d’étanchéité de l’enveloppe. Néanmoins, dans une optique zéro-carbone, “isoler plus” rime inévitablement avec “plus de carbone”. En effet, ce qui peut paraître négligeable dans un contexte global de faible efficacité énergétique devient significatif, voire prépondérant au regard de l’objectif de sobriété et d’efficacité à atteindre.

Il en va ainsi de l’énergie grise. Négligeable dans une construction courante au regard de l’énergie utilisée pour l’exploitation du bâtiment tout au long de son cycle de vie, elle devient significative pour une construction performante énergétiquement. Bien que le choix de matériaux durables – excepté leurs performances d’isolation thermique – ne soit pas une obligation pour viser les normes QZen ou plus ambitieux, il y trouve un champ d’application tout à fait opportun.

Personne n’aura pu y échapper, aujourd’hui, la tendance en termes d’isolation tend vers “toujours plus”. En effet, au cours de ces dernières années, les réglementations concernant les niveaux U des parois ne cessent de se renforcer, visant des niveaux de conductibilité thermique toujours plus faibles.

Réduire les échanges de chaleur entre intérieur et extérieur dans une démarche zéro carbone nécessite donc de trouver un réel équilibre entre le coût en carbone des matériaux utilisés pour améliorer l’isolation et la consommation en carbone liée à l’énergie de chauffage.

L’idée vous intéresse ? Consultez notre article « améliorer l’enveloppe dans une démarche zéro-carbone« .


Combiner les deux, pour se passer de chauffage ?

En poussant les deux pistes ci-dessus à l’extrême, pourrait-on envisager de se passer complètement de chauffage ? Nous avons étudié cela sur base de simulations thermiques dynamiques, en considérant une salle de classe typique. Celles-ci ont porté sur l’influence du changement d’orientation de la classe et sur le changement de position dans le bâtiment. Voici nos conclusions :

  • Il est possible de se passer d’un contrôle permanent sur l’ambiance dans des classes mitoyennes de tous les côtés (graphique SB et SBS ci-dessous), à condition que celles-ci soient composées de parois performantes et étanches. Dans le meilleur des cas, ces classes pourraient bénéficier d’une simple relance du chauffage au matin avant l’arrivée des élèves pour ainsi garder une température optimale (entre 18° et 20°) à l’intérieur tout au long de la journée. Pour tous les autres locaux de classes (graphiques SI et SIS), ne bénéficiant pas d’une position favorable, un besoin de chauffage permanent reste indispensable, malgré une amélioration des performances de l’enveloppe et une exposition favorable((HANDRIEU R, Validation par modélisation thermique d’une stratégie de rénovation énergétique d’écoles centrée sur l’autonomie thermique des salles de classes, Faculté d’architecture, ingénierie architecturale, urbanisme, Université catholique de Louvain, 2020. Prom. : Geoffrey Van Moeseke)).

Classe non mitoyenne orientée « ouest »                   Classe mitoyenne orientée « ouest » 

Classe non mitoyenne orientée « sud »                     Classe mitoyenne orientée « sud » 

  • Si l’on veut se passer de chauffage dans la classe, des concessions doivent être faites ; soit sur la qualité de l’air, soit sur la température ambiante, soit sur les deux en même temps. Nous estimons qu’il est préférable de mettre la priorité sur une ambiance saine dans la classe. La qualité de l’air (graphique de droite ci-dessous) ayant un impact plus important sur les performances que la baisse de température (graphique de gauche) ((HANDRIEU R, Validation par modélisation thermique d’une stratégie de rénovation énergétique d’écoles centrée sur l’autonomie thermique des salles de classes, Faculté d’architecture, ingénierie architecturale, urbanisme, Université catholique de Louvain, 2020. Prom. : Geoffrey Van Moeseke)).

  • Il ne faut pas négliger l’impact de systèmes d’apport de chaleur alternatifs. Si l’on prend par exemple le cas d’une installation de batteries de chauffe sur le système de ventilation complétée par des panneaux rayonnants et des systèmes de chauffe individuels, il devient possible de se passer d’un contrôle continu sur l’ambiance, même pour des locaux de classe en situation moins favorable (graphique SI ci-dessous). Il s’avère même, grâce à ces apports ponctuels de chaleur, envisageable de se passer complètement de chauffage pour des classes complètement mitoyennes (graphiques SB) ((HANDRIEU R, Validation par modélisation thermique d’une stratégie de rénovation énergétique d’écoles centrée sur l’autonomie thermique des salles de classes, Faculté d’architecture, ingénierie architecturale, urbanisme, Université catholique de Louvain, 2020. Prom. : Geoffrey Van Moeseke)).

Supprimer le chauffage dans les écoles est une utopie qui permet de remettre en questions beaucoup de pratiques concernant les activités scolaires, l’organisation des espaces et les besoins thermiques. Se passer d’un contrôle permanent sur l’ambiance est une opportunité pour créer un programme scolaire en adéquation avec les activités pédagogiques et l’environnement naturel qui l’entoure. Agir sur le besoin de chauffage des occupants est un projet éducationnel intégrant des éléments d’architecture. Ces considérations poussent donc à concevoir nos écoles de manière différente, en réfléchissant aux usages, au degré d’ouverture, et aux besoins en chaleur de chaque espace((Siraut,  Astrid.  Vers une école sans chauffage : adaptabilité de la construction et des occupants. p.67, Faculté d’architecture, ingénierie architecturale, urbanisme, Université catholique de Louvain, 2020. Prom. : Geoffrey Van Moeseke – http://hdl.handle.net/2078.1/thesis:24912 )).

 

Stratégie hiver (fermé)                                        Stratégie été (ouvert) 

Imagination de composition architecturale selon les ambiances thermiques et les besoins scolaires  


Compenser les besoins résiduels avec une production renouvelable

Une fois les deux pistes précédentes prises en compte et les besoins thermiques de l’école considérablement diminués, il est nécessaire de se focaliser sur les technologies. Aussi réduites soient-elles, les consommations en énergie de chauffage de l’école devront être assurées par des techniques cohérentes avec l’objectif zéro-carbone de l’école. A ce titre, toute combustion d’énergie fossile doit être proscrite. Cela laisse donc deux possibilités : la biomasse et l’électricité par l’intermédiaire d’une pompe à chaleur, mais dans les deux cas, sous certaines conditions seulement. Quelles sont-elles ?

Pour la biomasse, il faut s’assurer que la ressource brûlée est effectivement “neutre en carbone”, ce qui n’est pas si évident. Pour en savoir plus, allez consulter la rubrique « impact environnemental et socio-économique » de cet article. En plus de cela, le mode de production d’énergie doit être soit très efficace en termes de rejet de carbone, soit avoir un très haut rendement (chaudière bois-énergie), soit être une cogénération. Attention toutefois à la complexité des systèmes de cogénération, qui rendent l’application en milieu scolaire difficile (à moins de passer via un tiers investisseur).

Dans le cas présent d’installations de chauffage dans des écoles à optique zéro-carbone, les technologies de biomasse s’y prêtent relativement bien. Au-delà des avantages et inconvénients évoqués ici, la biomasse offre un potentiel communautaire non négligeable par le développement de synergies territoriales autour de modes de chauffage. Pour en savoir plus sur les communautés d’énergies, consultez cet article.

Pour l’électricité, il faut s’assurer que celle-ci provienne le plus possible d’une source renouvelable. Idéalement, le besoin électrique sera compensé par une production sur site, pour obtenir un bilan annuel équilibré. On parlera alors de bâtiment zéro-énergie (ZEB). Cela nous amène à envisager des sources de production renouvelables , qui sont traitées plus loin dans ce dossier.Et bien sûr, pas question de se contenter de résistances thermiques pour alimenter un réseau de chauffage central. La pompe à chaleur est la condition sine qua non du recours à l’électricité pour le chauffage.

Les pompes à chaleur peuvent, en étant multipliées et fonctionnant par zone, offrir des gammes de puissance suffisantes afin de répondre aux besoins d’une école. Cependant, tout comme pour la biomasse, les systèmes peuvent prendre beaucoup de place et générer du bruit. Une étude préliminaire sur l’implantation des unités extérieures sur le site de l’école est donc impérative. En fonction du site de l’école, cette technologie permet également de tirer parti des techniques de géothermie afin de proposer une production d’énergie au bilan carbone neutre. La pompe à chaleur offre donc de nombreux avantages en termes de neutralité carbone de l’école, mais à quel prix ? Des études de faisabilité et de rentabilité sont indispensables avant de se lancer dans de tels projets pour une école.

La place des énergies renouvelables à l’école


Quel intérêt pour une école ?

La production d’énergie renouvelable sur le site par des technologies peu émettrices en carbone  reste la meilleure manière pour des écoles d’atteindre le net zéro énergie et donc le net zéro carbone.

Une bonne utilisation de ces technologies renouvelables peut permettre de combattre les pics d’énergie de pointe, de compenser le talon de consommation de l’école, ou encore, dans les meilleurs cas, de couvrir l’ensemble des besoins en énergie de l’établissement. Il faut cependant éviter de tomber dans le travers d’un système renouvelable devant compenser des performances thermiques limitées d’un bâtiment ! Il est et sera toujours mieux de chercher à se passer d’un appoint d’énergie que de la produire de manière renouvelable.

De plus, la présence et la visibilité de sources de production d’énergie renouvelable sur le site de l’école s’accompagnent de potentiels pédagogiques non négligeables.


Quelle puissance nécessaire ? 

En moyenne, les écoles en Wallonie consomment en électricité 200 kWh/élève par an. Pour les écoles de taille moyenne, la consommation annuelle en électricité (sans ventilation) revient donc à 80 000 kWh.

Si l’on considère une réduction de 20% de celle-ci grâce à des actions comme celles proposées par le défi Génération 0 Watt, on peut considérer des consommations se situant autour des 160 kWh/élève par an comme base de travail.

Certains établissements ayant effectué un travail beaucoup plus important peuvent atteindre des consommations bien plus basses, de l’ordre de 50 kWh/élève par an. On peut majorer ces chiffres de 7 à 13 kWh/an par élève lorsqu’on ajoute un système de ventilation simple ou double flux.

Le tableau ci-dessous reprend les consommations électriques et thermiques théoriques moyennes en fonction du degré de rénovation. Ceci permet donc d’une part de se situer par rapport aux autres établissement et d’autre part d’évaluer le potentiel d’efficacité d’une production d’énergie renouvelable.

Actuel Actuel 0 Watt

(-20%)

Rénovation presque passive Rénovation passive
Electrique (sans chauffage) 200 kWh/élève.an

25kWh/m².an

160 kWh/élève

20kWh/m².an

50 kWh/élève

6kWh/m².an

25 kWh/élève

3 kWh/m².an

Thermique 1100 kWh/élève

138kWh/m².an

Même que l’actuel car 0 Watt agit sur la consommation électrique surtout. 240 kWh/élève

30 kWh/m².an

120 kWh/élève

15 kWh/m².an

VMC / / 10 kWh/élève 7 kWh/élève

Quelle technologie choisir pour une école ?

Il existe plusieurs sources de production d’énergie renouvelable. Les panneaux photovoltaïques et l’éolien sont les plus propices à être utilisés dans des bâtiments scolaires. Dans ce type de bâtiment, il est impératif d’utiliser des technologies qui soient faciles en maintenance et en entretien afin qu’elles puissent faire profiter au mieux de leur plein potentiel. La cogénération est donc plus délicate, mais pas à exclure pour autant.

Bien que la dimension technique soit probablement la plus efficace dans la diminution des émissions de carbone, elle peut facilement entraîner l’effet inverse. En effet, il est nécessaire pour les écoles d’avoir des responsables énergie et des équipes pédagogiques formées en amont du passage à l’action, pour une mise en place efficiente des systèmes. Equiper les écoles d’installations très performantes mais complexes à gérer ne fonctionne pas. Les écoles ne possèdent actuellement pas de gestionnaires techniques capables d’assurer la gestion de ces systèmes. La rénovation zéro carbone de manière générale est donc une tâche très complexe qui fait appel à toute une série de technologies et qui nécessite une sensibilisation et un renforcement des compétences des parties prenantes.

  • Panneaux photovoltaïques

Le photovoltaïque est la technologie la plus adaptée pour des écoles, elle demande peu de maintenance et offre un rendement efficace pour les consommations électriques d’une école. Mais attention que les panneaux photovoltaïques prennent énormément d’espace ! De grandes surfaces de toiture sont donc nécessaires pour une installation optimale.

A titre d’exemple :

  • Si l’école consomme 160 kWh/élève par an -> 64 000 kWh par an pour une école de 400 élèves

Il faudra environ 600 m² de panneaux (plus de 300 panneaux) ((https://www.ef4.be/fr/pv/composants-dun-systeme/dimensionnement-projet-photovoltaique.html)).

  • Si l’école consomme 50 kwh/élève par an après rénovation -> 20 000 kWh par an pour une école de 400 élèves

Il faudra presque 200 m² de panneaux (une centaine de panneaux).

Pour plus d’informations sur la technologie photovoltaïque, consultez les pages suivantes :

Éolien

Une autre possibilité de production d’énergie verte pour l’école est le petit éolien. C’est une technologie qu’on rencontre moins mais qui n’est toutefois pas à négliger. Elle permet, avec relativement peu de moyens, de compenser des besoins électriques faibles. En effet, le petit éolien trouve sa place dans des écoles de petite taille ou dans des écoles ayant déjà réduit considérablement leurs besoins en électricité.

A titre d’exemple :

  • 2 éoliennes de puissance 5kW (10 à 12m de haut) qui tournent pendant 2000 h/an (5h30 par jour) chacune à puissance nominale peuvent produire 20 000 kWh par an. Soit l’équivalent d’une école de 400 élèves consommant en électricité 50 kWh/élève.

Cependant, la majorité du temps, l’éolienne ne fonctionne pas à puissance nominale, le vent n’étant généralement pas suffisant pour garantir cela. Du coup, il faudra une puissance installée supérieure avec des éoliennes qu’avec des centrales classiques pour atteindre une même production d’énergie annuelle. Il est possible recalculer le nombre d’heures que l’éolienne doit tourner à puissance nominale pour débiter la même production électrique annuelle (avec un vent dont la vitesse varie). Typiquement, la production annuelle électrique d’une petite éolienne en Wallonie correspond à 11 % du temps à puissance nominale.

Les petites éoliennes ((Images provenant de https://neonext.fr/eolienne-skystream/)) ne sont pas toujours à axe horizontal comme sur les images ci-dessus. On retrouve de plus en plus d’éoliennes à axe vertical, principalement en milieu urbain. Elles s’y adaptent particulièrement bien car elles peuvent fonctionner avec des vents venant de toutes les directions. De plus, elles sont relativement silencieuses, peuvent facilement s’intégrer à l’architecture des bâtiments, permettent de placer la génératrice au niveau du sol et ne nécessitent pas de mécanisme d’orientation((https://energie.wallonie.be/fr/vade-mecum-pour-l-implantation-d-eoliennes-de-faible-puissance-en-wallonie.html?IDD=77455&IDC=6170)).

Les projets de petit éolien permettent donc d’organiser son indépendance énergétique moyennant certaines formalités. Les démarches administratives, les contraintes urbanistiques ou encore les limites techniques sont autant d’obstacles qui peuvent freiner les porteurs de projets à s’orienter vers ce type de production d’énergie. Le vade-mecum de la Région Wallonne pour l’implantation d’éoliennes à faible puissance vous accompagnera dans toutes vos démarches et questions relatives à cette technologie. Vous pouvez également prendre connaissance de ce projet de construction d’éolienne par des élèves pour leur école à Verviers.

Pour encore plus d’informations sur la technologie éolienne, consultez les pages suivantes :

  • Cogénération

Elle permet de couvrir relativement aisément les besoins en électricité d’une école. Cependant, la cogénération n’est pas la technologie la plus adaptée dans ce contexte car elle demande trop de maintenance et de gestion. A ce jour, les écoles n’ont pas de personnel spécialisé ou de gestionnaire technique attitré pour gérer le fonctionnement d’installations comme celles-ci.

Toutefois, il peut être intéressant pour une école d’avoir recours à la cogénération par le biais d’un tiers investisseur. Celui-ci s’occupe des études préliminaires, de l’installation et de la maintenance, sans que l’école ne doive intervenir. Ou encore, l’école peut se greffer à des réseaux de chaleurs existants dans son quartier/sa commune, dont l’énergie partagée est produite via des technologies de cogénération.


Place de l’école dans des communautés d’énergie

La production d’énergie renouvelable au sein de l’école offre de nombreux avantages, dont celui d’offrir le potentiel de créer des communautés d’énergies. Les installations de production d’énergie dans les écoles produisent occasionnellement un grand surplus d’énergie, qu’il est bénéfique de faire profiter au plus grand nombre. Le regroupement autour d’un projet de communauté d’énergie permet ce partage.

Les écoles ont un rôle moteur au sein de ces communautés. Les établissements scolaires, par leur caractère éducatif, pédagogique, social et institutionnel, participent à stimuler et activer la société.  En adoptant un comportement exemplaire en faveur de la transition énergétique, les écoles deviennent également des vitrines qui portent un rôle exemplatif auprès des pouvoirs publics (particulièrement les écoles du réseau officiel).

Par ailleurs, la communauté d’énergie permet à l’école un retour sur investissement plus rapide des installations de production d’énergie. En effet, l’école profite d’un bénéfice en revendant son surplus d’énergie à un prix supérieur au prix du kWh renvoyé sur le réseau.

Pour plus d’informations à ce sujet n’hésitez pas à consulter la page consacrée aux communautés d’énergie.


Exemple de communauté d’énergie

Depuis 2020, une école de la commune de Ganshoren à Bruxelles a établi un projet de communauté d’énergie renouvelable autour de partage d’électricité. Celle-ci est produite tant par des panneaux disposés sur le toit de l’école (34,77 kWc) ainsi que chez un particulier (2,4 kWc) habitant dans le quartier de l’école.

Les surplus d’électricité venant de ces deux sources de production permettent d’alimenter en électricité verte une quinzaine de résidents du quartier ayant été équipés de compteurs intelligents.

Le surplus d’énergie autoconsommée est actuellement en grande partie complété par de l’électricité complémentaire venant de fournisseurs.

L’autoconsommation du surplus est vouée à de nombreuses améliorations, au fur et à mesure que les membres de la communauté s’habituent à une nouvelle gestion de leurs consommations électriques.

Pour plus d’informations sur le projet : https://nosbambins.be/