Évaluer les besoins du froid

Évaluer les besoins du froid


Les quatre impératifs en présence

Photo champ de culture.   Photo assiette avec nourriture.

Le froid alimentaire au niveau des commerces, qu’ils soient de détail ou de moyenne/grande surface, occupe une place prépondérante dans notre société actuelle. Notre souci permanent d’amélioration de la qualité des denrées alimentaires passe impérativement et principalement par le respect des températures de conservation des aliments pendant depuis leur production jusque dans l’assiette du consommateur.

La distribution fait naturellement partie de la chaîne de froid depuis l’approvisionnement par camions frigorifiques jusqu’au « caddie » ou le sac « récupérable » (nous insistons) du ou de la consommatrice.

À ce niveau de la chaîne alimentaire, le souci d’éviter de « casser » la chaîne du froid est un défi difficile à maîtriser d’autant plus qu’il faut concilier les impératifs de vente qui ont tendance pour la plupart à ouvrir les espaces de réfrigération (4 à 6°C) et de congélation (-18°C par exemple) à l’ambiance de vente (18, …, 20, …24 °C) et le respect des règles de conservation des denrées.

A cela vient s’ajouter le problème très présent du confort du personnel dans les ambiances froides des réserves et des ateliers et du confort du personnel et des clients dans les espaces de vente.

Et « last but not least », n’oublions pas ce pour quoi Énergie+ doit exister, à savoir l‘énergie. Cette énergie qui, à première vue est en contradiction totale avec les trois autres impératifs sous nos latitudes tempérées.

Nous avons donc affaire à un « quadrinôme » d’impératifs indissociables et cohabitant difficilement ensemble.


La qualité du froid alimentaire

La certitude que la vente de denrées au niveau des commerces ne représente pas risque pour la santé des consommateurs est sans conteste l’élément le plus important à respecter.

La partie visible de l’iceberg est naturellement les surfaces de vente où les marchandises sont exposées dans des comptoirs frigorifiques. À l’écart des regards des clients, la chaîne de froid est bien présente que ce soit :

  • avant le stockage dans les chambres frigorifiques;
  • pendant le stockage;
  • après le stockage.

Avant le stockage

Photo camion et caisses de salades.

Les transferts entre le camion frigorifique et la chambre froide influencent naturellement la pérennité des denrées alimentaires à cause du contact possible avec les ambiances internes et externes au magasin (climat, gaz d’échappement en ville, déchet de toutes sortes à proximité, …). En général, les principaux facteurs qui peuvent influencer les denrées sur le plan thermique sont :

  • le temps de transfert;
  • la différence de température entre les denrées et l’air extérieur;
  • leur masse;
  • leur type de conditionnement (emballée ou pas, type d’emballage, …);
  • leur teneur en eau;

Pratiquement, les commerçants se contentent simplement d’effectuer un transfert le plus rapide possible du camion vers les chambres de conservation. Sachant qu’à l’heure actuelle, la plupart des denrées sont conditionnées dans des emballages dès la production, une ambiance extérieure « hostile » (déchet à proximité, gaz d’échappement, …) influence moins la pérennité des denrées. Néanmoins, les commerçants devront toujours éviter que les flux « propres et sales » ne se croisent dans les réserves.

L’évaluation de la qualité du transfert relève d’une procédure interne à mettre en place en s’inspirant par exemple de l’HACCP (Hazard Analysis Critical Control Point = Analyse des dangers et points critiques pour leur maîtrise).

Pendant le stockage

Photo GTC (Gestion Technique Centralisée)  

Mis à part le contrôle du temps de stockage, le respect des températures de conservation constitue le principal gage de qualité dans la chaîne du froid. Cette température est monitorée en permanence à l’aide d’un enregistreur dédicacé à la chambre froide ou d’une GTC (Gestion Technique Centralisée) qui regroupe tous les enregistrements de température des installations plus complexes de froid alimentaire.

La conservation des denrées en phase de stockage dépend essentiellement du contrôle :
  • des ouvertures de portes;
  • du dégivrage des évaporateurs.

Influence des ouvertures et fermetures des portes

Le contrôle d’accès aux chambres froides des réserves est primordial pour pouvoir maintenir les températures de conservation et éviter la prise en glace trop rapide des évaporateurs. A l’heure actuelle, l’isolation des chambres froides est relativement bonne et la principale source d’échange thermique avec l’ambiance extérieure est liée :

  • au temps pendant lequel la porte reste ouverte;
  • à l’étanchéité de la porte.

L’impact de l’ouverture de porte ou du manque d’étanchéité du joint de porte est double dans le sens où la température et l’humidité au sein de la chambre augmentent, ce qui, d’une part risque de réduire la qualité de conservation en température et, d’autre part de solliciter les évaporateurs par rapport aux opérations de dégivrage.

Influence du dégivrage des évaporateurs

L’air ambiant humide provenant des zones de réserves va naturellement se condenser en grande partie sur les ailettes des évaporateurs des chambres froides. Si aucun dispositif de régulation ou de dégivrage n’est présent, on dit que l’évaporateur « prend en glace ». Il s’ensuit une perte d’efficacité de l’évaporateur qui en l’occurrence ne peut plus assurer le maintien à température des denrées alimentaires.

Transfert après stockage

photo rayon froid supermarché

Le temps de transfert des chambres de stockage vers les rayons ou les ateliers de transformation, tout comme le trajet entre le camion frigorifique et les chambres de stockage, doit rester le plus court possible sachant que les chariots de transfert sont rarement équipés d’un groupe frigorifique embarqué afin de maintenir la température.


La vente

Un des critères de vente des denrées alimentaires est que le client puisse « toucher », « soupeser », …, « sentir » très facilement les produits. Au niveau des denrées réfrigérées (produits laitiers, fruit, légumes, …) et surgelées (frites, soupe, crèmes glacées, …), l’approche « marketing » est complexe. Tant au niveau du froid positif que négatif, l’impact sur la qualité du froid et les consommations énergétiques est énorme sachant que l’on doit garder en permanence une température de l’ordre :

  • de 0-4 voire 8 °C (pour le froid positif);
  •  et -18 °C voire moins (pour le froid négatif);

dans les meubles frigorifiques ouverts (conditions de fonctionnement extrêmes) dans une ambiance de vente de 20-24 °C avec comme « isolation » entre les deux un rideau d’air plus ou moins efficace.

« Le client est roi », c’est bien connu. Mais à quel prix !


Le confort du personnel et des clients

Non seulement l’ouverture permanente des meubles frigorifiques réchauffe les denrées alimentaires au risque de « casser la chaîne du froid » mais l’ambiance de vente se refroidit en réduisant le confort. La tentation est forte de pallier à l’inconfort des clients par le chauffage permanent des allées froides :

Il y a donc « destruction » de l’énergie !

La sonnette d’alarme doit être tirée à ce niveau, car on voit de plus en plus « fleurir » des systèmes de chauffage des allées froides afin de réduire l’inconfort.

Périodes chaudes

En période chaude, la sensibilité au confort de la clientèle est aiguisée par les paramètres suivants :

  • l’écart des températures est important entre d’une part l’extérieur et l’intérieur du magasin et d’autre part entre les zones de vente classique et celles où se trouvent les rayons de froid alimentaire (devant les meubles frigorifiques), le pire étant les allées froides (allées en deux rangées de meubles frigorifiques linéaires);
  • le faible habillement des clients.

Ces deux paramètres combinés entraînent nécessairement un inconfort pouvant friser, dans certains cas, le choc thermique.

Périodes froides

Lors des périodes froides, l’inconfort est moins grand. La raison en est simple, les clients s’habillent en conséquence (pull, manteau, …) tout en considérant aussi que le corps s’habitue à la longue aux températures plus basses régnant à l’extérieur et, par conséquent, le « désensibilisant » partiellement lorsque le client passe à proximité des meubles frigorifiques ouverts.


L’énergie

« Le client est roi », c’est bien connu. Mais à quel prix ! Non seulement l’ouverture permanente des meubles frigorifiques réchauffe les denrées alimentaires au risque de « casser la chaîne du froid » mais aussi l’ambiance de vente se refroidit au point de se retrouver dans la situation où l’on doit réchauffer l’air devant les comptoirs afin de réduire l’inconfort qui y règne. À l »inverse, l’ambiance tempérée du magasin augmente les apports externes aux enceintes frigorifiques.

Le respect de la chaîne du froid dans les commerces au sens large du terme (commerces de détail et moyennes/grandes surfaces) est un sujet où les ingénieurs et techniciens de tous bords s’arrachent les cheveux. En effet, comment concilier des points de vue qui, à première vue, sont antinomiques ?
à savoir :

  • le besoin de garantir des basses températures les plus constantes possible dans le temps aux denrées tout au long de la chaîne alimentaire;
  • la nécessité de vendre le plus possible et donc de favoriser un maximum le contact visuel et tactile des denrées par le client en imposant de laisser une interface ouverte entre les deux ambiances.

Cette approche purement « marketing » a des répercussions énormes non seulement sur la qualité du froid à assurer, mais aussi sur les consommations énergétiques des comptoirs de vente réfrigérés.

Sans grande observation scientifique, on se rend tout de suite compte que les échanges thermiques ou plus généralement enthalpiques (influence de la température et de l’humidité de l’air), entre les deux ambiances, c’est-à-dire entre les meubles frigorifiques et l’ambiance de vente, sont importants. Au travers du rideau d’air des meubles frigorifiques :

  • l’air de la surface de vente à température ambiante (24°C par exemple) et à taux d’humidité de l’ordre de 50 % réchauffe et humidifie l’intérieur des meubles frigorifiques;
  • à l’inverse, l’air froid du meuble (4°C par exemple) refroidit et déshumidifie l’ambiance de vente

A l’heure actuelle, des réglementations et des méthodes d’analyse de risques élaborées telles que le HACCP (Hazard Analysis Critical Control Point)  permettent de garantir, ou du moins de tendre vers le respect de la qualité du froid alimentaire. La garantie de protection de la santé publique tout en assurant la vente des denrées a imposé le développement de techniques de réfrigération sophistiquées au niveau :

  • des rideaux d’air des meubles frigorifiques ouverts;
  • du dégivrage des évaporateurs.

Entendons-nous bien, ce n’est pas la mission d’Énergie+ que de mettre en cause les techniques mises en œuvre ni d’évaluer si ces techniques de vente sont ou ne sont pas pertinentes. Par contre, c’est de notre compétence d’analyser, de constater, de critiquer positivement, d’établir des bilans, … afin de concilier le respect de la qualité du froid avec le confort humain pour une consommation énergétique optimisée.

Queen’s Building de l’université de Montfort

Entrée (orientation nord-est).

Façade sud-est.

Façade nord-ouest .


Introduction

Le Queen’s Building est un bâtiment de la faculté d’ingénieur de l’université de Montfort regroupant auditoires, salles de cours, bureaux, laboratoires et ateliers. Les gestionnaires du bâtiment l’ont voulu faible consommateur d’énergie. Il a donc été conçu pour :

  1. limiter la consommation due à l‘éclairage artificiel :
    L’enveloppe du bâtiment est pensée pour apporter un maximum d’éclairage naturel à tous les locaux, soit directement par des fenêtres en façade et en toiture, soit indirectement par des fenêtres intérieures donnant sur l’atrium central.
    Une étude complète de l’éclairage artificiel a été réalisée afin de limiter la puissance installée au minimum nécessaire.
    Éliminer les consommations de refroidissement et de ventilation.
  2. Les apports calorifiques d’été sont limités par la protection de certaines ouvertures extérieures.
    Une ventilation naturelle est organisée dans tout le bâtiment : l’air est introduit par les fenêtres et extrait, selon les locaux, par des fenêtres (en façade ou en toiture), ou par des cheminées. Dans un souci de simplicité, les équipements accessibles sont commandés manuellement. La ventilation est exclusivement diurne pour l’ensemble des locaux à l’exception des auditoires dans lesquels une ventilation nocturne est également organisée. L’inertie thermique du bâtiment combinée à cette ventilation permet de réduire la température de pointe en été.

Ces moyens ont réellement permis de limiter la consommation annuelle moyenne à 145 kWh/m², ce qui est un très bon résultat pour ce type de bâtiment en Angleterre.


Description

Le Queen’s Building regroupe différents locaux de la faculté d’ingénieur de l’université de Monfort : 2 auditoires, des salles de cour, des salles de séminaires, des bureaux, des laboratoires et des ateliers. Il est situé à Leicester, dans un site urbain, et fut mis en service au début du mois de décembre 1993. D’une surface totale de 10 000 m², il est susceptible d’accueillir simultanément 1 000 occupants, tandis que le nombre total d’utilisateurs se chiffre à environ 2 000 (étudiants et personnel).

Plan du premier niveau :
1. ateliers d’électricité 2. salles de cours 3. atrium
4. auditoires 5. laboratoire de mécanique.

Principes de conception

La conception du bâtiment repose sur :

  1. une étude approfondie de l’éclairage, naturel et artificiel;
  2. la ventilation du bâtiment de façon naturelle.

Éclairage

Éclairage naturel

Un maximum d’éclairage naturel est apporté à tous les locaux, afin de :

  • limiter la consommation directe d’éclairage artificiel,
  • de limiter les charges internes en été.

La forme complexe du bâtiment résulte de cette contrainte. En effet, contrairement à ce qui se fait couramment pour ce genre de bâtiment (bâtiment compact de forme simple, avec laboratoires aveugles au centre et bureaux éclairés naturellement en périphérie), les locaux s’articulent les uns aux autres pour aller chercher de la lumière, par les façades ou par la toiture.

 

Formes architecturales (puits de lumière, articulation des locaux)
pour capter un maximum de lumière naturelle.

En plus de ces apports de lumière directe, de nombreux locaux bénéficient d’un apport de lumière indirecte, par des fenêtres intérieures, donnant sur un hall de distribution central. Ce hall, sorte d’atrium, est fortement éclairé, notamment par la toiture.

 

Apport de lumière dans le hall central, sorte d’atrium.

Dans le hall, les circulations sont organisées à l’aide d’escaliers et de passerelles métalliques avec planchers de verre, afin de laisser passer un maximum de lumière vers les niveaux inférieurs.

 

Passerelles métalliques avec plancher de verre dans le hall central.

Des fenêtres intérieures transmettent la lumière de l’atrium vers les locaux périphériques.

 

 

Fenêtres intérieures dans l’atrium.

 

Exemple de laboratoire éclairé en partie naturellement :
fenêtres intérieures transmettant la lumière de l’atrium, et fenêtres extérieures

Éclairage artificiel

Une étude complète de l’éclairage artificiel a été réalisée afin de limiter la puissance installée au minimum nécessaire. De nombreux luminaires (ateliers, atrium) fonctionnent avec des lampes industrielles à basse consommation.

Une gestion de l’éclairage par détection de présence avait été installée mais elle a été abandonnée suite à son fonctionnement « capricieux » : le matériel choisi n’était malheureusement pas de bonne qualité.


Ventilation naturelle

La ventilation du bâtiment est entièrement naturelle. L’air est :

  • introduit par les fenêtres ou par des grilles,
  • extrait par des fenêtres de façade ou de toiture, ou des grilles en tête de cheminée.

Les gestionnaires du bâtiment ont opté pour des équipements simples, avec aussi peu de maintenance que possible. Les fenêtres accessibles sont donc manipulées manuellement, tandis que seules les fenêtres non accessibles sont commandées automatiquement.

 

Ouverture des fenêtres manuelle et automatique.

La ventilation est exclusivement diurne (à l’exception des auditoires), pour deux raisons :

  1. les fenêtres ne sont pas protégées par des grilles, ce qui poserait des problèmes de sécurité si elles étaient laissées ouvertes toute la nuit.
  2. l’organisation d’une ventilation de nuit avec un système qui n’est pas totalement automatisé demande une participation des occupants difficile à imposer dans ce cas : les occupants sont très nombreux, et la population des étudiants change souvent.

Les différents types de ventilation naturelle possibles sont représentés dans le bâtiment :

  • Ventilation avec effet de cheminée : l’air réchauffé monte naturellement vers la sortie de la cheminée ou vers l’ouverture de toiture. Pour les cheminées, l’air extérieur passant dans la toiture de la cheminée renforce l’effet de tirage.

 

  • Ventilation transversale entre façades opposées, par exemple dans les deux ailes formant la cour d’entrée.
  • Ventilation unilatérale d’un local individuellement par une seule fenêtre verticale (l’air frais entre dans la partie basse de la fenêtre, se réchauffe à l’intérieur du local et ressort en partie haute).

Le bâtiment est compartimenté pour que les flux d’air soient canalisés autant que possible. Ce compartimentage a également un rôle au niveau acoustique en limitant la transmission de bruit et au niveau de la prévention incendie.


Refroidissement et chauffage

Refroidissement

Il n’y a pas de refroidissement mécanique dans le bâtiment.

Le pouvoir rafraichissant de l’air extérieur est exploité pour réduire la température de pointe en été : le bâtiment présente une importante inertie thermique, réalisée par de grandes surfaces de maçonnerie apparente, et une ventilation naturelle diurne est organisée.

Pour permettre ce fonctionnement, les apports solaires d’été sont limités par la protection de certaines baies.

Les types de protection sont les suivants :

  • avancée de toiture,
  • relief de façade,
  • ombre portée du bâtiment,
  • panneaux d’ombrage,
  • stores extérieurs fixes (toiture de l’atrium notamment).

Pour chaque baie, la protection a été choisie après comparaison des apports favorables d’hiver avec les apports indésirables de l’été.

 

Avancées de toiture.

 

Reliefs de façade.

Cour d’entrée ombragée naturellement :
elle constitue un réservoir d’air frais (- 2°C qu’ailleurs en été).

Remarque concernant l’encombrement :

Un système de conditionnement d’air peut prendre jusqu’à environ 20 % de l’espace d’un bâtiment (locaux techniques, réseau de ventilation,…). Ici, cet espace a été consacré à 12 cheminées de ventilation. Afin de limiter l’encombrement de ces cheminées, elles reposent sur des piliers, ce qui permet de libérer l’espace du rez-de-chaussée.

 

Support des cheminées des auditoires sur colonnes,
exploitation de l’espace sous les gradins.

Chauffage

Les équipements et l’occupation représentent une partie importante du chauffage des locaux, ainsi que les apports solaires par les vitrages, notamment en toiture. Certaines fenêtres ne sont d’ailleurs pas protégées pour bénéficier de ces apports gratuits, au détriment de la limitation des charges d’été (bilan comparatif réalisé entre apports d’hiver et d’été).

L’installation de chauffage regroupe un système de cogénération (gaz – 38 kW électrique et 70 kW chauffage), une chaudière à condensation et deux chaudières conventionnelles. La gestion de la fourniture de chaleur se fait en fonction des conditions de fonctionnement du bâtiment. La cogénération est choisie si la majorité de la production d’électricité et de chaleur est utilisée dans le bâtiment, et si, à ce moment, cela coûte moins cher que d’acheter l’électricité.


Fonctionnement

Atrium

Outre son utilité au niveau de l’éclairage, le hall central sert également de zone de transfert pour l’apport d’air frais dans certains locaux.

Par exemple, la salle informatique (destinée lors de la conception à être une salle de dessin) est ventilée de cette manière.

  
Entrée de l’air dans l’atrium et transfert vers la salle informatique.
  
Extraction par la toiture de la salle.

Auditoire

Les 2 auditoires de 150 places chacun sont ventilés naturellement. Ils sont gérés automatiquement par un système informatique (GTC : gestion technique centralisée).
Photo auditoire.
L’air extérieur est introduit dans le local via un absorbant acoustique et une batterie de préchauffe. Une partie est distribuée directement au niveau de l’orateur, l’autre partie est répartie sous les gradins et introduite dans l’auditoire par des grilles au niveau des pieds des auditeurs.

Il est extrait via deux cheminées de 13.5 m. Un ventilateur est prévu dans chaque cheminée pour aider la ventilation naturelle, mais aucun n’a jamais été utilisé à ce jour.

   

Grille d’amenée d’air avec absorbant acoustique et batterie de préchauffe.

Grille d’amenée d’air avec absorbant acoustique et batterie de préchauffe.

La gestion automatique règle le débit de ventilation naturelle et le débit d’eau chaude dans les batteries de préchauffe en fonction des mesures relevées continuellement par 7 capteurs (5 mesureurs de température et 2 sondes CO2).

En hiver, les auditoires sont maintenus à 20°C pendant les heures d’occupation et à 16°C le reste du temps.

En été, une ventilation nocturne est organisée afin de décharger le local des apports de chaleur de la journée et limiter la température de pointe pendant l’occupation.

Enfin, une attention particulière est portée sur la qualité  : la ventilation pendant l’occupation est réglée de l’air
pour limiter la concentration de CO2 à 600 ppm.

Les charges internes maximales du local sont les suivantes :

  • occupation 8 heures par jour,
  • 5 jours par semaine,
  • 100 W par occupant,
  • 150 personnes,
  • 15 W/m² pour l’éclairage
  • 500 W pour l’équipement

Soit des gains internes de 18.3 kW, ou 80 W/m².
Pour assurer en même temps le confort acoustique et thermique, un compromis a dû être trouvé entre les surfaces absorbantes acoustiques, et les surfaces destinées au stockage thermique.

Photo briques apparentes.

Les briques apparentes de la partie supérieure du mur assurent l’inertie thermique. La partie inférieure du mur est recouverte d’absorbant acoustique.

Les auditoires fonctionnent bien globalement. On constate néanmoins dans celui où l’orateur se trouve côté extérieur (et non du côté de l’atrium) des problèmes de courants d’air au premier rang de l’auditoire, et quelques problèmes de bruit provenant de la rue.

Laboratoire de mécanique

Laboratoire de mécanique.

Les activités du laboratoire peuvent être assez bruyantes. Les concepteurs ont donc pris des précautions acoustiques au niveau de l’introduction de l’air dans le local, pour éviter des nuisances aux bâtiments voisins.

L’air passe dans les contreforts verticaux en maçonnerie ajourée remplis d’absorbant acoustique avant d’être introduit dans le local.

  

Contreforts délimitant des espaces tampons acoustiques sur le passage de l’air entre l’extérieur et l’intérieur.

La gestion du débit d’air introduit se fait par ouverture manuelle de panneaux en bois.

Remarque : certains utilisateurs ont placé des meubles devant ces ouvertures, ce qui rend la ventilation partiellement non utilisable.

L’air est extrait par les fenêtres de la toiture, commandées par GTC.

Gestion du débit d’air introduit par des panneaux mobiles en bois.

Extraction de l’air par les fenêtres de la toiture.

Les charges internes du local (personnes + équipements) sont évaluées à 100 W/m². Les apports solaires d’été en façade sont limités par le prolongement de la toiture.

Le local est chauffé par des panneaux rayonnants suspendus à la toiture.

Laboratoires d’électricité

Les laboratoires d’électricité sont installés dans les locaux étroits des deux « ailes » entourant la cour d’entrée. Les locaux sont longs et étroits,ce qui permet un bon éclairage naturel réparti uniformément, et une ventilation transversale.

Laboratoire d’électricité.

Les fenêtres hautes et basses sont dimensionnées pour pouvoir éliminer les apports internes par ventilation : ordinateurs, autres appareils fonctionnant généralement en continu, et l’occupation, soit environ 85 W/m². En été, la cour d’entrée ombragée constitue un réservoir d’air frais qui aide au refroidissement efficace des locaux.

  

Cour d’entrée : fenêtres donnant sur les laboratoires d’électricité.

La lumière naturelle est en partie contrôlée par des « étagères à lumière » (light shelves) qui protègent les occupants de l’éclairage direct et réfléchissent la lumière vers le plafond afin de fournir au local un éclairage diffus.

  
« Étagère à lumière » dans un laboratoire d’électricité.

Le confort thermique des laboratoires semble satisfaisant. On note néanmoins, par moments, quelques problèmes de courants d’air…

Le fonctionnement devrait donc être mieux expliqué aux occupants pour leur permettre d’utiliser le système correctement.

Classes

Certaines classes sont ventilées par ventilation unilatérale, d’autres par effet de cheminée. Dans le premier cas, l’air est introduit par les fenêtres basses et extrait, après s’être réchauffé dans le local, par des fenêtres ou une grille de ventilation haute.

Dans le second cas, l’air est introduit par les fenêtres et extrait par une cheminée.

  

Classe ventilée par effet de cheminée.
Celle-ci se trouve derrière la grille ajourée de la photo de droite.

Bureaux

Les bureaux paysagers sont ventilés par effet de cheminée : l’air rentre par les fenêtres murales, et est extrait par la toiture.

Lors de la conception, la hauteur des meubles de séparation entre bureaux avait été définie pour que la ventilation soit efficace et confortable. À l’utilisation, les occupants ont désiré des séparations plus hautes, et même des cloisons délimitant des bureaux individuels : le service n’est pas adapté à un fonctionnement en bureau paysager (entretiens avec des étudiants qui demandent de l’intimité). Ces adaptations perturbent donc la ventilation, et le confort dans les locaux n’est pas atteint.

  

Bureau paysager : le meuble blanc de gauche a la hauteur idéale étudiée à la conception, les cloisons rouges ont été ajoutées par après.

Les caisses montrent la volonté des utilisateurs de créer des zones plus intimes.


Sécurité

Sécurité incendie

Le bâtiment est séparé en de nombreux compartiments, la plupart renfermant un seul local. Chacun a son ou ses issues de secours individuelle(s).

 

 

Issues de secours extérieures et intérieures.

Sécurité

C’est justement ce nombre important d’issues de secours qui pose certains problèmes d’intrusions. Ceux-ci ne viennent donc pas directement du système de ventilation.


Performance

Confort thermique

Le confort thermique semble atteint en été comme en hiver dans les divers locaux, à l’exception des bureaux paysagers cloisonnés dans lesquels la ventilation n’est pas efficace.

Consommation

La consommation annuelle moyenne actuelle est de 145 kWh/m², répartis comme suit :

  • 100 kWh/m2/an en chauffage : bonne valeur comparée à d’autres bâtiments du même type, et ce grâce aux apports solaires gratuits.
  • 45 kWh/m2/an en électricité : très bon niveau (un bon niveau en Angleterre est de 90 kWh/m²/an pour ce type de bâtiment) grâce à l’absence totale de climatisation, et à l’éclairage naturel qui limite l’éclairage artificiel.

(Il est possible de comparer ceci avec les consommations énergétiques moyennes rencontrées chez nous dans les écoles ou dans les bureaux).

Le budget d’investissement était de 845 £/m² soit environ 1318,2 €/m² au taux de 2002 (1,56 €/£).

  • Architectes : Short Ford & Associates
  • Ingénieurs stabilité : YRM Anthony Hunt
  • Ingénieurs techniques spéciales : Max Fordham Associates

Centre administratif du Powergen

Façade est .

Façade nord.

Façade sud.


Résumé

Le centre administratif de Powergen (compagnie de production d’électricité en Angleterre) se situe à Westwood, dans un site suburbain à proximité de Coventry. Il regroupe principalement des bureaux paysagers, sur trois niveaux, autour d’un atrium, ainsi que des salles de réunion et de conférence, une cafétéria et des locaux techniques.

Dans les bureaux paysagers, une ventilation naturelle (donc gratuite) de jour et/ou de nuit est organisée pour limiter la température intérieure en été et en mi-saison.

L’air entre par les fenêtres supérieures des bureaux, et est extrait par les fenêtres hautes de l’atrium. L’ouverture et la fermeture de ces fenêtres sont commandées automatiquement en fonction des conditions extérieures et intérieures.

  • En mi-saison, le refroidissement des locaux se fait par ventilation diurne, l’air extérieur étant plus frais que l’air intérieur.
  • En été, le refroidissement des locaux se fait principalement par ventilation nocturne. Les dalles de plafond en béton sont refroidies pendant la nuit par l’air frais extérieur. En journée, ces dalles agissent comme des « radiateurs de froid ».

Pour que le refroidissement par ventilation soit efficace, il a fallu réduire les apports du bâtiment.

  1. Limitation de l’éclairage artificiel :
    • L’apport de lumière naturelle de l’atrium permet de limiter le besoin en éclairage artificiel.
    • Les luminaires installés ont un très bon rendement et sont groupés, par plateau, en fonction de l’éclairage naturel disponible.
    • Une gestion automatique de l’éclairage artificiel permet d’éviter les gaspillages.
  1. Les équipements informatiques les plus importants (serveurs, imprimantes laser, etc.), ainsi que les photocopieuses, sont regroupés dans des locaux séparés, refroidis séparément.
  2. Les apports solaires sont limités grâce à des pare-soleil fixes sur la façade sud et des stores extérieurs sur les façades du volume vitré et sur les vitrages inclinés de l’atrium.

D’autres équipements URE sont prévus sur le reste des équipements. Par exemple :

  • En hiver, une ventilation mécanique complémentaire assure l’apport d’air hygiénique et le chauffage des bureaux paysagers. L’air est pulsé par des bouches de sol intégrées dans les faux-planchers, et extrait par 4 grandes bouches dans la partie supérieure de l’atrium. L’air extrait est récupéré jusqu’à concurrence de 90 % pour limiter la consommation d’énergie de chauffage.
  • Tout au long de l’année, les locaux à fortes charges internes (cuisine de la cafétéria, locaux avec ordinateurs, photocopieuses, etc.) sont refroidis mécaniquement. Tant qu’elle peut être utile dans le bâtiment, la chaleur dispersée au condenseur de la machine frigorifique est récupérée pour le préchauffage de l’air ou le chauffage de certains locaux.

Résultats

La ventilation naturelle permet de maintenir la température intérieure 3°C en dessous de la température extérieure et la consommation du bâtiment est inférieure de 20 % par rapport à celle du bâtiment voisin, de même type et équipé d’air conditionné.


Description

Powergen est une compagnie de production d’électricité en Angleterre. Son centre administratif se situe à Westwood, dans un site suburbain à proximité de Coventry.

Construit en 1994, le bâtiment est rectangulaire, étroit, orienté nord-sud, et a une surface brute totale de 13 600 m² sur 3 niveaux (12 700 m² net), pour une occupation d’environ 600 personnes. Dans le volume principal, chaque niveau réunit deux plateaux de 12 m de profondeur de chaque côté d’un grand atrium, chaque plateau étant divisé en 2 zones de bureaux paysagers. À l’est, un volume vitré regroupe le hall d’entrée, la salle de conférence et la cafétéria. À l’ouest sont concentrés les locaux techniques et informatiques.

Plan bâtiment.


Refroidissement par ventilation naturelle

La particularité de ce bâtiment réside dans le mode de refroidissement des bureaux paysagers, par ventilation naturelle, diurne en mi-saison et nocturne en été. La ventilation est organisée grâce à des fenêtres commandées automatiquement et permet de limiter la température intérieure grâce à l’inertie du bâtiment.

Principe de fonctionnement

Schéma principe de fonctionnement.

Ventilation naturelle.

Le principe de ventilation combine la ventilation transversale, d’une façade à l’autre (à partir d’une vitesse de vent de 2.5 à 3 m/s), et la ventilation par effet de cheminée utilisant l’atrium.

L’air est introduit par les fenêtres des bureaux. Celles-ci sont divisées horizontalement en trois parties : les fenêtres des deux rangées inférieures sont commandées manuellement pour une ventilation locale au niveau des occupants, et les fenêtres de la rangée supérieure sont commandées automatiquement pour la ventilation globale de jour ou de nuit.

L’air est extrait par les fenêtres hautes de l’atrium, autour de la coursive du quatrième niveau qui sont également commandées automatiquement.

 

Fenêtre des bureaux :

  • les grandes fenêtres des rangées inférieures sont ouvertes manuellement,
  • les petites fenêtres de la rangée supérieure sont commandées par la GTC

Photo fenêtres hautes d'extraction.  Photo fenêtres hautes d'extraction, détail.

Au 4 ème niveau, fenêtres hautes d’extraction, commandées par la GTC.

Une gestion technique centralisée (GTC) commande l’ouverture et la fermeture de ces fenêtres en fonction des températures extérieures et intérieures, ainsi que de la vitesse du vent et de la nébulosité. Elle intervient également dans la gestion de l’éclairage, du chauffage et du refroidissement, ainsi que dans la gestion des stores extérieurs.

Enfin, les dalles de plafond en béton, apparentes et de forme particulière, permettent un refroidissement efficace et confortable par ventilation.

L’absence de faux plafond permet l’accessibilité de la masse thermique aux charges internes. Elles fournissent donc une certaine inertie thermique au bâtiment. Celle-ci est particulièrement importante pour le refroidissement en été par ventilation nocturne : les charges internes de la journée sont stockées dans la dalle et évacuées la nuit par l’air frais extérieur de ventilation. La journée suivante, la dalle rafraîchie agit comme un « radiateur de froid ».

Les dalles présentent des creux de section elliptique qui guident l’air perpendiculairement aux façades et permettent d’éviter les courants d’air froid au niveau des occupants en ventilation diurne. Ces creux reçoivent un élément technique suspendu regroupant les équipements de plafond : luminaires, capteurs d’éclairement, détecteurs et alarmes incendie, sprinklers, et un absorbant acoustique.

Dalle de plafond.

Régulation de la ventilation

Ventilation nocturne

L’ouverture de toutes les fenêtres supérieures des bureaux et des fenêtres verticales de l’atrium (« 4 ème niveau ») est commandée par la GTC lorsque les conditions suivantes sont réunies :

  1. la température moyenne des bureaux à la fin de la journée dépasse 23°C,
  2. la température extérieure maximale de la journée dépasse 21°C,
  3. le système de chauffage est coupé.

Les fenêtres sont refermées, zone par zone, dès que la température des bureaux de la zone est redescendue à 18°C ou est inférieure ou égale à la température extérieure.

Certaines fenêtres sont également refermées en cas de pluie ou en fonction de la vitesse du vent :

  • En cas de pluie, les fenêtres de la façade face au vent sont fermées.
  • Si la vitesse du vent dépasse 5 m/s, les fenêtres sur la façade au vent sont progressivement refermées pour être complètement fermées quand la vitesse du vent atteint 15 m/s; au-dessus de 20 m/s, les fenêtres de l’autre façade sont également refermées.

Ventilation diurne

Quand le chauffage fonctionne, les fenêtres de bureau de la rangée supérieure sont fermées. Les occupants ont néanmoins la liberté d’ouvrir manuellement les fenêtres des deux rangées inférieures.

Quand le chauffage ne fonctionne pas, et que la température d’une zone dépasse 23°C, les fenêtres hautes de cette zone sont ouvertes automatiquement ainsi que les fenêtres de l’atrium qui leur font face. Les fenêtres sont refermées si la température extérieure est supérieure à la température intérieure et si la vitesse du vent est trop importante (2.5 m/s pour la façade au vent et 5 m/s pour l’autre)


Mesures prises pour limiter les charges internes

Pour que le refroidissement par ventilation garantisse un confort correct dans le bâtiment, les charges internes ont dû être limitées.

Apports internes

Éclairage

L’apport de lumière naturelle de l’atrium permet de limiter le besoin en éclairage artificiel.

Photo lumière naturelle de l'atrium.  Photo lumière naturelle de l'atrium.

Les luminaires suspendus sont conçus de façon à maximaliser le rendement de l’éclairage : 95 % de la lumière est dirigée vers le bas, et seulement 5 % vers le haut; ces 5 % sont récupérés par le local sous forme de lumière diffuse par réverbération dans les creux elliptiques de la dalle. Ils comportent chacun un tube fluorescent de 36 W (T8) et des lampes fluorescentes compactes biaxiales (2L) avec ballast électronique haute fréquence.

Pour augmenter la souplesse de gestion de l’éclairage, les luminaires sont groupés, par plateau, de chaque côté de l’atrium, en trois zones longitudinales :

  1. extérieure, près des façades vitrées,
  2. centrale, au milieu du plateau de bureau,
  3. intérieure, côté atrium.

On peut donc par exemple éteindre les luminaires près de la fenêtre où l’éclairage naturel suffit et les allumer plus en profondeur dans le bâtiment.

Luminaires intégrés dans les équipements suspendus.

Une gestion centralisée de l’éclairage artificiel en fonction des horaires élimine les gaspillages en dehors des heures d’occupation. De plus, l’éclairage est régulièrement éteint suivant les indications des détecteurs de présence. Enfin, certaines zones sont gérées en fonction de l’éclairage naturel disponible : bureaux proches des fenêtres extérieures, atrium, parkings et jardins. La possibilité de régler le niveau d’éclairement est néanmoins laissée aux occupants. L’économie réellement réalisée sur l’éclairage n’est donc pas aussi importante qu’elle ne pourrait l’être théoriquement.

Dans les salles de réunion, la commande de l’éclairage est manuelle.

À l’encontre de ces mesures, des arbres à l’intérieur de l’atrium sont éclairés par éclairage artificiel en dehors des heures de bureau (de 0h00 à 6h00) car ils ne reçoivent pas suffisamment de lumière naturelle. Cet apport d’énergie non indispensable est sans doute critiquable au niveau consommation d’énergie, mais il prouve qu’on peut faire des bâtiments à faible consommation énergétique tout en se permettant certaines « fantaisies architecturales ».

Arbres éclairés une partie de la nuit, dans l’atrium.

Equipements de bureau

Les équipements informatiques les plus importants (serveurs, imprimantes laser, etc.), ainsi que les photocopieuses, sont regroupés dans des locaux séparés, en dehors des bureaux paysagers. On peut donc traiter ces locaux séparément et diminuer la charge interne des bureaux.

Remarque : une étude sur la puissance réelle des équipements de bureaux type utilisés par Powergen a été réalisée. Les puissances relevées se sont révélées bien inférieures aux chiffres habituellement utilisés pour le dimensionnement des équipements de climatisation : environ 7 W/m² de bureau contre 30 W/m². Par mesure de sécurité, la valeur utilisée pour les simulations et le dimensionnement est de 14 W/m².

Apports solaires

Différents éléments participent à la limitation des apports solaires :

> L’orientation nord/sud des façades principales du bâtiment limite le problème posé par les apports de chaleur dus à l’ensoleillement :

  • Il n’y a pas d’apports sur la façade nord.
  • La façade sud, exposée à un soleil haut, peut être protégée efficacement par des éléments fixes.

> Les pare-soleils fixes de la façade sud : grilles métalliques horizontales.

Auvents métalliques fixes sur la façade sud.

> Les stores intérieurs déroulants :

  • Complètent les auvents dans leur le rôle de protection contre les apports de chaleur en façade sud.
  • Permettent d’éviter l’éblouissement des utilisateurs sur les deux façades.

Stores intérieurs déroulants.

> On trouve des stores extérieurs autour du volume vitré à l’est du bâtiment, ainsi que sur les vitrages inclinés de l’atrium.

  • Le volume est du bâtiment, reprenant le hall d’accueil, la cafétéria et la salle de conférences, est protégé par des stores déroulants sur les façades sud et est. Ils sont abaissés et remontés automatiquement en fonction de l’ensoleillement, du vent et des intempéries.

 

Stores extérieurs en façade est et sud,
pour protéger la cafétéria des apports solaires.

Volume vitré à l’est du bâtiment.

  • Les vitrages inclinés de l’atrium sont orientés au sud et sont protégés par des stores extérieurs à lamelles. Leur position sur la longueur du bâtiment est modifiée manuellement selon les saisons.

Stores extérieurs à lamelles au-dessus des vitrages
de l’atrium inclinés, orientés au sud.


Équipements

Ventilation

Une ventilation mécanique complémentaire assure :

  1. l’apport en air hygiénique,
  2. une partie du chauffage des bureaux en hiver,
  3. un apport de froid limité pour les journées de forte chaleur.

Le système de ventilation mécanique est divisé en 4 réseaux, chacun desservant le quart du bâtiment sur ses trois niveaux. L’air est préparé dans 4 locaux techniques, situés aux 4 coins du dernier étage. Il est pulsé par des bouches de sol intégrées dans les faux planchers (diamètre d’environ 25 cm), et extrait par 4 grandes bouches dans les parois des locaux techniques (environ 4 m²). Pour limiter la consommation d’énergie destinée au chauffage des bureaux, l’air extrait est récupéré jusqu’à concurrence de 90 %.

 

Bouches de pulsion et grille d’extraction intérieures.

Vue extérieure d’un des locaux de préparation de l’air,
avec sa grille de reprise et d’extraction d’air.

Chauffage

Le chauffage des bureaux est assuré par :

  1. le chauffage de l’air pulsé (batteries à eau dans les groupes de préparation de l’air, et post-chauffe électrique par étage),
  2. des résistances électriques de faible puissance sous les fenêtres,
  3. la dissipation de la chaleur du condenseur de la machine frigorifique dans les radiateurs de l’atrium.

L’atrium (lieu de réunion) et le hall d’entrée sont chauffés par le sol, la cafétéria est chauffée par des radiateurs traditionnels. Les salles de réunions sont chauffées et refroidies par des ventilo-convecteurs.

Remarque : Le chauffage est dimensionné pour un fonctionnement quasi continu, et tient compte des apports internes; Le bâtiment connaît donc un problème de relance en cas de fermeture exceptionnelle du bâtiment pendant un congé prolongé. Par exemple, lors de la semaine de congé à l’occasion du passage à l’an 2000 (fermeture exceptionnelle), les équipements n’ont été stoppés que quelques jours. Le chauffage a été relancé dès le milieu de la semaine de congé.

Refroidissement

Les locaux à fortes charges internes (cuisine de la cafétéria, locaux avec ordinateurs, photocopieuses, etc.) sont refroidis mécaniquement par des unités de traitement d’air une grande partie de l’année.

Les bureaux sont refroidis par ventilation naturelle comme décrit ci-dessus. En complément, pour les quelques journées les plus chaudes de l’année (utilisé jusque maintenant environ 5 jours par an), l’air pulsé dans les locaux peut être refroidit par une batterie à eau.

Préparation de chaleur et de froid

La boucle d’eau chaude peut prendre sa chaleur à trois sources différentes :

  1. récupération de chaleur sur le condenseur de la machine frigorifique,
  2. pompe à chaleur air/eau qui prépare de l’eau à basse température,
  3. chaudière au mazout pour les besoins exceptionnels de pointe.

Exemples.

  1. Lorsqu’il fait chaud, et qu’une ventilation naturelle est organisée, l’eau de refroidissement du condenseur de la machine frigo est utilisée pour chauffer l’eau sanitaire, et est ensuite refroidie dans les radiateurs de l’atrium. Ces radiateurs chauffent l’air devant les fenêtres d’extraction, pour améliorer l’effet de tirage et favoriser la ventilation. Le reste de la chaleur est évacuée dans des refroidisseurs à air.
  2. Quand des demandes de chaleur apparaissent, l’eau chauffée au condenseur sert :
    • au chauffage de locaux comme la cafétéria, la partie inférieure de l’atrium, le hall d’entrée, etc..,
    • au chauffage de l’air pulsé dans les bureaux,
    • au chauffage de la partie haute de l’atrium pour empêcher les coulées de froid.

Lorsque la demande de chaud augmente, la pompe à chaleur air/eau est mise en fonction et produit de l’eau à basse température qui vient en complément de l’eau du condenseur. Enfin, en cas de forte demande, la chaudière peut également fournir de la chaleur.

Equipement techniques extérieurs.

Radiateurs sous les fenêtres d’extraction de l’atrium : ils empêchent les « coulées de froid » en hiver, et favorisent l’effet de tirage quand les fenêtres sont ouvertes.

Encombrement du système

Le système de ventilation mécanique prend peu de place :

  • Il n’y a pas de gainage de reprise d’air grâce à l’atrium.
  • Les gaines de pulsion sont peu encombrantes : 4 gaines verticales aux 4 coins du bâtiment, le gainage horizontal de pulsion est inclus dans le faux plancher (hauteur de 45 cm, et il n’y a pas de gainage d’extraction, celle-ci étant réalisée via l’atrium.

L’installation pour le refroidissement mécanique est moins importante que dans un bâtiment climatisé.

Néanmoins, le 4 ème niveau (le niveau a une surface réduite par rapport au trois premiers niveaux puisqu’il se résume à une coursive) et l’atrium ont un encombrement non négligeable. Mais l’atrium participe également à l’apport de lumière naturelle, à l’aspect architectural global et au fonctionnement du bâtiment.

Le bilan comparatif du point de vue encombrement entre un bâtiment climatisé et ce bâtiment est donc difficile à faire.


Confort et sécurité

Températures

La ventilation naturelle permet de maintenir la température intérieure 3°C en-dessous de la température extérieure. Cela s’est vérifié même durant l’été très chaud de 1995.

Confort acoustique

Les éléments techniques suspendus aux plafonds ont des « ailes » qui sont des absorbants acoustiques. La forme elliptique des creux dans le plafond focalise les ondes sonores vers ces absorbants.

De plus, dans les zones où apparaît une source de bruit importante, une onde est diffusée pour noyer ce bruit, sorte de « bruit de fond parasite » non perceptible. Les diffuseurs, comme les autres éléments techniques de plafond, sont intégrés dans les éléments complexes suspendus.

Sécurité incendie

Le concept d’un seul et même espace pour la quasi-totalité du bâtiment est en principe contraire à la réglementation incendie en vigueur dans notre pays. En Belgique, chaque étage doit être séparé par des cloisons Rf 1 ou 2 heures en fonction des cas. Cependant, la nouvelle législation belge (AR de 97) prévoit la possibilité de contourner cette exigence si des moyens adéquats sont prévus pour assurer le désenfumage. Appliquer le concept de ce bâtiment chez nous demande donc une étude approfondie de la sécurité incendie, étude qui devra être approuvée par les pompiers. Il faudra, par exemple, être attentif à ne pas utiliser les balcons comme chemin d’évacuation, peut-être prévoir des écrans de fumée automatiques entre les étages, étudier correctement le désenfumage (amenée d’air de compensation, fermetures automatiques des amenées d’air naturelles, …), … En gros, il faudra convaincre les pompiers !

Dans l’exemple présenté ici, les équipements de sécurité incendie sont les suivants :

  • nombreux escaliers de secours extérieurs (trois par façade),
  • détecteurs de fumée,
  • système d’alarme incendie relié aux centrales de préparation d’air et aux commandes des fenêtres,
  • sprinklers.

En cas d’incendie, les fenêtres automatiques au niveau des bureaux sont fermées, le système de ventilation est coupé, mais les fenêtres hautes de l’atrium sont ouvertes pour évacuer les fumées.

 

Escaliers de secours sur la façade sud .


Coût et consommation

Coût global de 900 £/m² (hors mobilier de bureau) (environ 1 404 €/m²), soit parmi les plus bas pour un tel type de bâtiment de bureaux.

Coûts relatifs

£/m²

%

Fondations

19.5

2.2

Structure

383.9

42.6

Finitions internes

74.4

8.3

Mobilier

10.4

1.1

Équipements techniques

348.7

38.7

Divers

63.7

7.1

TOTAL

900.6

100

La consommation du bâtiment peut être comparée avec celle du bâtiment voisin, équipé d’air conditionné. Il est nouveau, de même type d’architecture et de même type d’occupation. La consommation annuelle au m² du bâtiment ventilé naturellement est inférieure de 20 % à celle du bâtiment conditionné.

Remarque : ce nouveau bâtiment, occupé pour le moment par Powergen, risque d’être loué ou revendu à plus ou moins long terme. C’est pour cette raison que le choix a été fait de le construire de façon plus traditionnelle, et de l’équiper d’air conditionné.

Nouveau bâtiment de Powergen.


Commentaires

Il semble que le choix de conception d’un bâtiment « basse énergie » résulte plus d’un souci d’image de marque de la société que d’une préoccupation énergétique.

Vont notamment à l’encontre de cette préoccupation énergétique

  • L’éclairage la nuit des arbres de l’atrium.
  • Le pompage de l’eau des étangs extérieurs pour maintenir les chutes entre les mares construites à différents niveaux.

 

Malgré tout, le bâtiment fonctionne bien : la consommation est inférieure à celle d’un bâtiment conditionné, les occupants semblent satisfaits, et l’aspect architectural n’a pas été négligé.

Il faut noter deux éléments importants qui ont permis la réalisation d’un tel projet, et qui font qu’il ne peut être généralisé partout :

  • L’organisation des bureaux est essentiellement paysagère, cette organisation ne peut convenir à tous les bâtiments.
  • Le site suburbain permet l’ouverture des fenêtres sans gêne pour les utilisateurs (bruit, pollution,…).

Remarque : si l’implantation sur un site à l’extérieur de la ville permet une ventilation naturelle de jour, elle entraîne une consommation en déplacements. Cet aspect devrait entrer dans une réflexion plus globale.


Conclusion

Avec des aménagements pour respecter la législation incendie en Belgique (ou des négociations…), la ventilation naturelle de bureaux paysagers dans des sites suburbains est une bonne solution pour diminuer la consommation d’énergie d’un bâtiment.

  • Architectes : Bennetts Associates
  • Ingénieurs stabilité : Curtins Consulting Engineers
  • Ingénieurs techniques spéciales : Ernest Griffith & Son Consulting Engineers

Le Queen’s Building est un bâtiment de la faculté d’ingénieur de l’université de Montfort regroupant auditoires, salles de cours, bureaux, laboratoires et ateliers. Les gestionnaires du bâtiment l’ont voulu faible consommateur d’énergie. Il a donc été conçu pour :

  1. limiter la consommation due à l‘éclairage artificiel :L’enveloppe du bâtiment est pensée pour apporter un maximum d’éclairage naturel à tous les locaux, soit directement par des fenêtres en façade et en toiture, soit indirectement par des fenêtres intérieures donnant sur l’atrium central.Une étude complète de l’éclairage artificiel a été réalisée afin de limiter la puissance installée au minimum nécessaire.
  2. Eliminer les consommations de refroidissement et de ventilation.Les apports calorifiques d’été sont limités par la protection de certaines ouvertures extérieures.Une ventilation naturelle est organisée dans tout le bâtiment : l’air est introduit par les fenêtres et extrait, selon les locaux, par des fenêtres (en façade ou en toiture), ou par des cheminées. Dans un souci de simplicité, les équipements accessibles sont commandés manuellement. La ventilation est exclusivement diurne pour l’ensemble des locaux à l’exception des auditoires dans lesquels une ventilation nocturne est également organisée. L’inertie thermique du bâtiment combinée à cette ventilation permet de réduire la température de pointe en été.

Ces moyens ont réellement permis de limiter la consommation annuelle moyenne à 145 kWh/m², ce qui est un très bon résultat pour ce type de bâtiment en Angleterre.
Pour découvrir le fonctionnement du bâtiment, consultez les détails du projet.

Boucles frigoporteuses

Boucles frigoporteuses

Boucle frigoporteur à eau glycolée (source : Delhaize).


Définitions

Détente directe

On parle de détente directe lorsque le fluide frigorigène assure lui-même le transfert de chaleur « utile » aux applications de froid alimentaire (meubles frigorifiques, les ateliers de boucherie, les chambres de stockage, …).

 Refroidissement par détente directe.

Refroidissement indirect

Le refroidissement est indirect lorsque le transfert de chaleur « utile » n’est pas assuré par le fluide frigorigène lui-même, mais plutôt par un fluide intermédiaire appelé frigoporteur.

 Refroidissement indirect par boucle secondaire monotube.

Frigoporteur

En raison de la simplicité avec laquelle les frigoporteurs assurent le transfert de chaleur « utile » entre deux points sans gros risque de toxicité et d’inflammabilité et dans un souci de réduire les fuites de fluide frigorigène (néfastes à la couche d’ozone et à l’effet de serre), ce type de configuration revient en force dans le domaine du froid alimentaire.


Les types de frigoporteur

On retrouve 2 principaux types de frigoporteur :

  • Les frigoporteurs monophasiques composés d’un liquide incongelable dans la gamme des températures standard du froid alimentaire (-3 à – 38 °C par exemple).
  • Les frigoporteurs biphasiques composés :
    • d’un liquide et d’un solide;
    • d’un liquide et de sa vapeur.

Frigoporteurs monophasiques

L’eau glacée constitue le plus connu des frigoporteurs monophasiques. Tout le transfert de la chaleur est effectué par la variation de la température (chaleur sensible) du frigoporteur.

Des débits importants sont nécessaires pour travailler en chaleur sensible. Ceci signifie que les boucles de distribution utilisent des sections de passage importantes et constituent donc une dépense énergétique non négligeable pour faire circuler le frigoporteur.

On retrouve sur le marché différents frigoporteurs :

  • les substances pures telles que l’eau, les hydrocarbures liquides, les alcools simples (méthanol, éthanol), les polyalcools (éthylène glycol, propylène glycol, …);
  • les mélanges tels que l’eau + sel (saumure), l’eau + ammoniac (alcali), …

Il est clair qu’en froid alimentaire, le type de frigoporteur ne doit pas altérer les denrées et ne pas constituer un risque de toxicité et d’inflammabilité pour les personnes; ce qui limite le choix.

Pour donner un ordre de grandeur, on parle pour les frigoporteurs monophasiques de transfert de chaleur de  ~ 20 [kJ/kg] en chaleur sensible.

Avantages

  • Équipements de boucle simples.

Inconvénients

  • Débit important.
  • Dimensionnement conséquent.
  • Dépense énergétique non négligeable.

Frigoporteurs diphasiques (liquide + solide)

On rencontre ce type de frigoporteur sous forme de « coulis » ou « sorbet » dans les applications de froid positif. On parle ici de chaleur latente de fusion dans les transferts de chaleur; ce qui permet d’augurer des réductions de débits pour évacuer la même quantité de chaleur qu’un frigoporteur fonctionnant en chaleur sensible.

De même, un ordre de grandeur acceptable de transfert de chaleur est de  ~ 250 [kJ/kg].

Avantages

  • Chaleur latente de fusion importante.
  • Débit réduit par rapport à la solution type chaleur sensible.
  • Dimensionnement réduit des conduites et des pompes.
  • Consommation énergétique plus faible qu’avec un frigoporteur à chaleur latente.

Inconvénients

  • Coût élevé de l’évaporateur.

Frigoporteurs diphasiques (liquide + vapeur)

On rencontre ce type de frigoporteur dans les applications de froid négatif par exemple les installations à frigoporteur au CO2. On parle ici de chaleur latente de vaporisation dans les transferts de chaleur. Cette chaleur de vaporisation est en général fort importante.

Pour une température d’application de -40°C, sachant que l’évaporation n’est pas totale, sur une chaleur totale de vaporisation de ~ 322 [kJ/kg], on peut envisager disposer de 107 [kJ/kg] (pour un titre à la sortie de l’évaporateur de l’ordre de 33 %).

Avantages

  • Chaleur latente de vaporisation importante.
  • Bon coefficient d’échange thermique.
  • Faibles volumes massiques du liquide et de la vapeur.
  • Tuyauterie de faible diamètre.
  • Absence d’huile.
  • Prix faible.
  • Peu d’influence sur l’environnement.
  • Très faible impact sur l’effet de serre (GWP = 1). À titre de comparaison, le GWP du R404A est de 3 800 et celui du R134a est de 3 260.
  • Frigoporteur naturel, largement disponible.
  • Applications pouvant aller jusqu’à -54°C.
  • Aux basses températures, sa viscosité reste faible évitant des pertes de charge importantes.

Inconvénients

  • Danger d’asphyxie au-delà de concentration > 8 %.
  • Les dégivrages demandent des précautions particulières.
  • Peu de techniciens formés.
  • Nécessite une déshydratation très poussée de la boucle (sinon formation d’acide avec l’eau).
  • En cas d’arrêt prolongé, perte de charge de CO2 (dégazage).
  • Fortes pressions de service.

Les types de boucle

Ces types de boucle utilisent les technologies monotube et bitube.

Technologie monotube

Cette technologie, comme son nom l’indique est composée d’une boucle à un seul tuyau qui alimente les évaporateurs terminaux en série. Le même tube dessert les entrée et sortie de chaque évaporateur.

Schéma de principe Technologie monotube.

Avantages

  • Très modulable en exploitation.
  • Débit pratiquement constant dans la boucle frigoporteur.
  • Pas de nécessité de variateur de fréquence sur les pompes de mise en circulation du frigoporteur (investissement réduit).

Inconvénients

  • Coût important.
  • Maintenance des circulateurs des applications terminales alors que dans le cas du bitube, il n’y a que des électrovannes sans beaucoup d’entretien (augmentation de l’ordre de 10 % des coûts d’entretien).
  • La non-variation du débit entraîne des pertes énergétiques lorsque la demande frigorifique est faible.

Technologie bitube simple

Cette technologie positionne les évaporateurs terminaux en parallèle sur la boucle frigoporteur.

Schéma de principe technologie bitube simple

Avantages

  • Une simple vanne suffit à alimenter un évaporateur terminal.
  • Le débit variable des pompes de circulation du frigoporteur permet de réduire les consommations énergétiques.

Inconvénients

  • Mise en œuvre plus conséquente de par la nécessité d’adapter les sections des tuyauteries tout au long de l’aller et du retour de boucle.
  • Pertes de charge variables nécessitant une régulation du débit des pompes de circulation (investissement dans des variateurs de fréquence).

Technologie bitube avec vannes 3 voies montées en décharge

Cette technique permet de remédier au problème de débit variable grâce au placement de « by-pass » des évaporateurs terminaux.

Schéma de principe technologie bitube avec vannes 3 voies montées en décharge.

Avantages

  • Débit constant au niveau des pompes de circulation du frigoporteur.

Inconvénients

  • Sans débit variable au niveau des pompes, les pertes énergétiques sont plus importantes.
  • Les coûts d’investissement sont importants.

Des ascenseurs équipés d’un système de gestion de trafic

Des ascenseurs équipés d'un système de gestion de trafic


Introduction

Le Centre Hospitalier Universitaire André Vésale à Montigny-le-Tilleul compte un parc de 22 ascenseurs visiteurs et monte malades. En 1999, après 20 années de loyaux services, il était temps d’entreprendre une grande rénovation de la machinerie et des cabines. Lors de cette modernisation, l’équipe du service technique s’est penchée sur l’intérêt du placement de variateurs de fréquence associés à un système de gestion du trafic.


Quelques chiffres pour se donner des idées

On dénombre quelques 74 000 ascenseurs en Belgique dont 61% ont plus de 20 ans et 17% plus de 45 ans. Bref, il existe chez nous un grand potentiel en terme de rénovation et d’amélioration des équipements voire de renouvellement complet du système.

Au CHU André Vésale, on comptabilise :

  • 320 000 à 650 000 démarrages par an et par ascenseurs pour les ascenseurs visiteurs;
  • 268 000 à 385 000 démarrages par an et par ascenseurs pour les ascenseurs monte-malades. Soit un trafic important mais certes normal pour une institution hospitalière.


Les objectifs fixés lors de la rénovation

Prolonger la durée de vie de l’ensemble des ascenseurs via une modernisation des cabines et un remplacement des moteurs, améliorer le confort d’utilisation et les délais d’attente, réduire les coûts d’entretien via des équipements plus performants, mettre les installations en règle avec la dernière Directive Européenne et accessoirement diminuer la consommation d’énergie globale du poste ascenseurs. Tous ces objectifs furent atteints en final.


La variation de fréquence sur les moteurs

Aujourd’hui, en matière d’ascenseurs, toutes les nouvelles installations sont dorénavant équipées d’une variation de fréquence sur les moteurs entraînant les cabines. Les intérêts de la régulation en fréquence par rapport à la régulation en tension sont nombreux : précision d’arrêt au niveau des seuils d’étage, fonctionnement plus souple, réduction de l’usure mécanique, diminution des pointes de démarrage ainsi que de la consommation électrique globale.


La gestion de trafic

De plus en plus fréquemment, on verra implanter un système de gestion de trafic pour les ascenseurs fortement sollicités. L’intérêt de cette gestion est de réduire le temps d’attente des ascenseurs aux étages et de réduire la durée du parcours (en général, il y a de fortes chances qu’en se rendant du 1er au 6ème, l’ascenseur opère une halte à chaque étage).

Petite mise en situation pour expliquer le principe : sur un palier où traditionnellement un visiteur appuie habituellement sur les 3 boutons d’appel des 3 ascenseurs dans le but d’en obtenir un rapidement, il est demandé au visiteur de composer le numéro de l’étage auquel il souhaite se rendre. Le système de gestion, après évaluation, indique alors sous forme d’un affichage (A, B ou C) lequel des 3 ascenseurs le conduira dans les plus brefs délais à sa destination même si ce n’est pas le premier qui ouvrira ses portes au niveau du palier.


Énergie

Au CHU André Vésale, des mesures ont été effectuées sur 24h pour une journée type avant et après la rénovation afin de chiffrer l’intérêt en termes d’économie d’énergie de l’association des variateurs de fréquence au système de gestion de trafic.

  • Avant : pointes de démarrage de 140 ampères
  • Après : pointes de démarrage de 60 ampères
  • Avant : consommation journalière de 122,73 kWh
  • Après : consommation journalière de 61,15 kWh

On constate une économie d’énergie de l’ordre de 50 % sur le poste ascenseur suite aux travaux de modernisation effectués. Les variateurs de fréquence diminuent le niveau des pointes de démarrage par rapport à l’ancien système et le système de gestion de trafic permet une réduction du nombre de démarrage et une optimisation des déplacements des cabines.


En détail

Économique

Investissements consentis pour la rénovation des ascenseurs et la mise en place du système de gestion de trafic : 530 000 € TVAC.

Informations complémentaires

Dominique TESSE
Directeur Technique
ISPPC
Tél : 071 924 460
Email : dominique.tesse@chu-charleroi.be

Cette étude de cas provient des Sucess Stories réalisées par l’ICEDD, Institut de conseils et d’études en développement durable en 2004.

Choisir le type d’éclairage : direct, mixte ou indirect ?

Éclairage direct

C’est l’éclairage direct qui donne les meilleurs résultats en termes de conception énergétique. On peut arriver à des valeurs de puissance spécifique sous certaines conditions de l’ordre de 1,5 W/m²/100 lux. Suivant l’usage des locaux ou des espaces dans les locaux, trois types d’éclairage ou un mixte des trois seront envisagés :

  • un éclairage général uniforme ;
  • un éclairage général orienté ;
  • un éclairage ponctuel.

Éclairage général uniforme

L’éclairage général uniforme  permet d’avoir une grande flexibilité des postes de travail. Attention toutefois que ce genre de considération conduit souvent à un surdimensionnement inutile des installations d’éclairage. La dernière version de la norme NBN EN 12464-1 palie à ce risque de surdimensionnement. En effet, dans la zone dite « de fond », le niveau d’éclairement peut être réduit au tiers de celui de la zone de travail et l’uniformité à 0,1. Ce qui permet d’envisager un éclairage général uniforme de faible niveau d’éclairement et de prévoir des zones de travail mobiles et flexibles avec l’uniformité et le niveau d’éclairement requis. Énergétiquement parlant, c’est acceptable et vivement conseillé.

Exemple
Soit un hall d’usinage qui demande une très grande flexibilité par rapport à la position des postes de travail. Le niveau d’éclairement pour certains postes de travail pourrait être de 750 lux. Selon la NBN EN 12464-1, le niveau d’éclairement moyen devrait s’élever à 250 lux.

 

Cette configuration de luminaires permet d’envisager :

  • De modifier complètement la disposition du hall sans toucher à l’éclairage ;
  • Une disposition variable des postes de travail sur toute la surface du hall ;
  • L’installation de nouveaux équipements.

Les caractéristiques des luminaires peuvent être les suivantes :

  • Une répartition de façon non préférentielle ;
  • Des luminaires à caractéristiques modifiables (position des lampes, type de réflecteur, …) ;
  • Des luminaires montés sur rails porteurs, donc facilement déplaçables ; ce qui avait été envisagé dans l’étude de cas réalisée.

Éclairage général orienté

Lorsque la position des zones de travail est fixe (tableau d’une salle de cours, écran d’une salle de réunion, machines-outils fixes, …), localiser l’éclairage près des zones de travail est une excellente méthode pour limiter la puissance installée.
Attention toutefois au recommandation de la norme NBN EN 12464-1 :  Éviter des contrastes trop élevés. Dans la zone dite « de fond »,  le niveau d’éclairement peut être réduit au tiers de celui de la zone de travail et l’uniformité à 0,1.
De manière générale, ce type d’éclairage permet :

  • D’envisager un niveau d’éclairement plus faible pour les circulations.
  • D’éviter de trop éclairer des zones où la lumière naturelle est présente en abondance sachant que lorsqu’il fait noir dehors, l’éclairage de la zone devant la baie vitrée n’est pas nécessaire.
  • Par le choix de luminaires asymétriques, obtenir un éclairement suffisant sur des plans verticaux comme dans les rayonnages des archives par exemple.

Le choix de l’éclairage général orienté devra aussi composer avec la structure du plafond et l’emplacement des poutres de structures qui risquent de faire écran à la disposition de la lumière ; à méditer !

Attention toutefois qu’un éclairage orienté mal positionné provoque des ombres indésirables et peut être dangereux notamment dans les ateliers où les postes de travail sont, par exemple, des machines tournantes.
Lorsqu’un atelier comporte des machines-outils dangereuses, des marquages appropriés doivent délimiter les zones de circulation et de travail, ainsi que les zones de danger. L’éclairage doit alors appuyer ces mesures en insistant sur les trois types de zone.

Éclairage ponctuel

Ce type d’éclairage permet de disposer d’un éclairement important au niveau des postes de travail de précision, sans augmenter exagérément le niveau d’éclairement général. Cette solution est toute profitable d’un point de vue énergétique.

Les luminaires individuels complémentaires  peuvent augmenter localement le niveau d’éclairement et accentuer certains contrastes.

Leur emplacement doit être approprié pour ne pas générer des situations dangereuses de travail :

Soit le ou les luminaires sont placés dans les allées encadrant les postes de travail, et ce en veillant à ce que la lumière provienne des côtés et qu’il n’y ait ni ombre ni d’éblouissement gênant.
Soit le ou les luminaires sont placés contre les postes de travail. Idéalement, ces luminaires devraient être équipés d’un gradateur de lumière. La position et l’orientation de ces luminaires doivent être réglables pour éviter les réflexions sur les objets éclairés.

Conseil : pensez  éventuellement à placer un interrupteur ou un détecteur de présence/d’absence à chaque poste de travail pour éviter que ces lampes restent allumées inutilement à des postes non-occupés.

Pour éviter de trop grandes variations de luminance dans le champ de vision des utilisateurs, maintien d’un niveau d’éclairement général suffisant par rapport à l’éclairement de la tâche :

Éclairement général = 3 x (Éclairement ponctuel)½

 Exemple dans les commerces

Dans les commerces d’ancienne génération, on se souvient tous, même les plus jeunes, du surdimensionnement de l’éclairage général uniforme de manière à couvrir l’ensemble de la surface de vente avec des niveaux d’éclairement de l’ordre de 750 lux. « Question de marketing, disaient les vendeurs ! »

Cependant, cet éclairage présente le risque de créer des zones d’ombre qui peuvent se révéler gênantes. Ce risque est d’autant plus important que la hauteur sous plafond est grande et que l’on utilise des luminaires suspendus. De plus, énergétiquement parlant, ce n’était pas la meilleure manière de travailler.

Le système direct à deux composantes est à préférer au système direct lorsque l’on veut mettre en valeur des objets, créer des contrastes de luminosité. On réalisera des économies d’énergie d’autant plus importantes que le niveau d’éclairement à assurer est supérieur au niveau d’éclairement général nécessaire (censé permettre un déplacement par exemple). On économisera de l’énergie en augmentant l’éclairage localement via un deuxième circuit plus intensif que le premier. Dans la pratique, on vérifiera ce constat théorique en réalisant une étude comparative des systèmes « directs »  et « à deux composantes ».

Éclairage indirect

Un éclairage indirect via le plafond a l’avantage de ne pas provoquer d’éblouissement par la vue directe des lampes. La probabilité d’ombre est inférieure. Mais son efficacité énergétique est faible et fort dépendante des coefficients de réflexion des parois (généralement le plafond).  Comme ceux-ci n’atteignent que rarement les 0.85, il faudra surdimensionner l’installation d’éclairage (en première approximation entre 15 et 30% voire 50% dans locaux où la hauteur sous plafond est importante) pour réaliser un éclairement équivalent à celui fourni par un éclairage direct. Ce système sera fortement dépendant de l’état de propreté des parois du local (ceci peut aussi conduire à la nécessité de surdimensionner l’installation de plus d’une vingtaine de pour cent par rapport à un éclairage direct).

 Exemple dans les commerces

Ce type d’éclairage sera proscrit sachant que, typiquement dans les commerces de type grande surface, les plafonds sont parcourus par des gaines de ventilation, des chemins de câbles électriques, … La tendance actuelle, bien comprise par un certain nombre de responsables énergie de magasin de grande distribution, est de prescrire un éclairage direct bien positionné avec un plafond sombre pour masquer sensiblement les techniques spéciales apparentes.

Éclairage mixte

Du point de vue efficacité énergétique, ce système se situe entre les systèmes directs et indirects. Plus la composante directe sera prépondérante, moins énergivore le système sera.

Il est à noter que les pertes complémentaires dues à la partie indirecte de l’éclairage seront en partie compensées par un rendement total du luminaire mixte souvent plus important que celui du luminaire direct.

En ce qui concerne le confort, ce type de système peut trouver son utilité dans le cas de locaux possédant une grande hauteur sous plafond, pour éviter la création d’une zone d’ombre trop importante. Ce constat est d’autant plus marqué si l’on utilise des luminaires suspendus. Dans ce cas, une faible proportion de flux lumineux dirigée vers le haut suffira.

Bien entendu, si la hauteur sous plafond est raisonnable, la réflexion sur les murs et le sol suffira à éclairer suffisamment le plafond.

Comme dans le cas du système indirect, ce système sera dépendant de l’état de propreté des parois du local (ceci peut conduire à la nécessité de surdimensionner l’installation de plus d’une vingtaine de pour cent par rapport à un éclairage direct).

 Exemple des commerces

Lorsque les plafonds ou faux plafonds sont de qualité acceptable et ne sont pas encombrés par des techniques spéciales apparentes, on pourra envisager ce type d’éclairage en favorisant la composante directe des luminaires, la composante indirecte donnant un « look » commercial intéressant.
« Il en faut pour tous les goûts ! »
Un autre exemple éclairant

On peut considérer que seul le flux dirigé vers le bas est efficace. En effet, la plupart du temps les luminaires sont situés au-dessus de la marchandise à éclairer. La plupart du temps seulement, car dans certains cas, la lumière émise vers le haut peut avoir un effet utile (éviter la présence d’une ombre gênante au niveau du plafond…).

Si l’on considère que seule la lumière dirigée vers le bas est utile, alors on peut introduire la notion de rendement utile du luminaire. Soit un appareil possédant les rendements suivants :

Rendement vers le bas : 30 %
Rendement total : 90 %
Rendement vers le haut : 60 %

La lumière dirigée vers le haut, avant d’atteindre la marchandise, devra être réfléchie par le plafond. Si on considère que cette surface possède un coefficient de réflexion de 0.7, alors 30 % de la lumière émise vers le haut sera « perdue ». On peut donc estimer que le luminaire possède les rendements utiles suivants :

Rendement vers le bas : 30 % Rendement total : 72 %
Rendement vers le haut :
60 * 0.7 = 42 %

Le rendement du luminaire a ainsi diminué de 20 %.

La figure suivante donne le facteur par lequel il faut multiplier le rendement pour trouver son équivalent « utile » en fonction du type d’éclairage choisi et pour un coefficient de réflexion de 0.7 pour le plafond. Notez que cette valeur est celle prise de manière standard. Cette valeur est assez élevée puisqu’elle correspond à un plafond peint en blanc. La valeur de ce coefficient descend à 0.25 si la peinture est brune et à 0 dans le cas d’un plafond noir.

Bien entendu, ce calcul est simplifié. Pour être exact, on devrait tenir compte de l’influence du système d’éclairage sur l’uniformité des niveaux d’éclairement, des autres réflexions sur les murs du local, …

Le but de cet exemple est de montrer qu’il est essentiel, lorsque l’on vise l’efficacité énergétique de limiter la composante supérieure du flux émis.

Comparaison en termes d’efficacité énergétique

Un point de comparaison s’impose entre les différents éclairages :

Comparaison de trois systèmes d’éclairage pour une même puissance installée :

6 luminaires de 2 x 36 W (et ballast électronique),
pour une classe de 7 m x 8 m x 3,2 m, soit 7,7 W/m²,
coefficients de réflexion : 0,7 (plafond); 0,5 (murs); 0,3 (sol).

Système d’éclairage

Direct Mixte Indirect

Éclairement sur le plan de travail

348 lux 350 lux 231 lux

Éclairement au sol

310 lux 304 lux 207 lux

Type de lampes

Tubes fluo Tubes fluo Tubes fluo

Puissance spécifique/100 lux sur le plan de travail

2,2 W/m2 2,2 W/m2 3,3 W/m2

Parmi les choix énergétiquement corrects, on retiendra le direct et le mixte. L’indirect sera juste réservé pour créer des ambiances bien spécifiques lorsque ce choix se révèle incontournable comme dans certains locaux d’hôtel (bar, accueil, …), des chambres d’hôpital, …

Découvrez ces exemples de rénovation de l’éclairage : un établissement scolaire au centre de Liège et une fabrique de peinture à Lausanne.

Choisir la cellule de refroidissement ou de congélation rapide [Concevoir – Froid alimentaire]

Quand doit-on choisir une cellule de refroidissement rapide ?

Dans tout atelier traiteur par exemple où l’on a opté pour une liaison froide, il est recommandé d’abaisser la température au cœur des aliments de + 65 °C à + 10 °C en moins de 2 heures. La cellule de refroidissement rapide est l’équipement idéal pour atteindre ces performances.

Il ne s’agit pas d’une obligation, mais d’une bonne pratique de fabrication qui est recommandée si l’on veut refroidir des aliments cuits en toute sécurité et si on veut prouver que des procédures de sécurité sont appliquées conformément à l’art. 3 et 4 de l’A.R du 07/02/97.

Cette bonne pratique provient, en fait, d’une réglementation qui s’applique aux établissements de transformation de la viande : A.R. du 4 juillet 1996 relatif aux conditions générales et spéciales d’exploitation des abattoirs et d’autres établissements / annexe chapitre V point 5, qui dépendent de l’IEV (Institut d’Expertise Vétérinaire).

Il convient de noter que le choix de la liaison froide peut se faire pour l’ensemble des menus ou pour une partie seulement. Il existe, par exemple, certaines cuisines collectives qui proposent chaque jour des plats végétariens en plus du menu du jour, mais pour ne pas avoir à fabriquer chaque jour deux plats, les plats végétariens sont préparés un jour par semaine, par exemple, en liaison froide.


Choix du procédé de production du froid

Il existe deux procédés de production du froid dans une cellule de refroidissement rapide :

Les coûts d’utilisation d’une cellule de froid mécanique sont nettement (10 x) plus faibles que ceux d’une cellule de froid cryogénique. Par contre, les coûts d’investissement pour une cellule cryogénique sont nettement plus faibles que pour une cellule mécanique.

Pour une utilisation régulière de la cellule, la cellule mécanique sera donc beaucoup plus intéressante. Dans le seul cas d’une utilisation occasionnelle, une cellule cryogénique peut être intéressante.

Lorsque le refroidissement rapide est utilisé régulièrement, il paraît risqué de n’avoir qu’une seule cellule. En cas de panne, la préparation est bloquée. On peut alors songer à investir dans une cellule de refroidissement mécanique principale et une deuxième cellule cryogénique de dépannage.

Parmi les fluides utilisés pour le froid cryogénique, vu la très faible température d’ébullition de l’azote, celui-ci est utilisé lorsque les distances à parcourir entre le lieu de stockage du fluide et le lieu de production du froid sont grandes.

Il faut cependant veiller à bien calorifuger les conduites. Le dioxyde de carbone (CO2) sera utilisé lorsque ces distances sont plus courtes.


Précautions d’utilisation

Pour obtenir un fonctionnement satisfaisant et économique, on place les préparations sur les clayettes ou les supports prévus à cet effet, afin de favoriser la circulation de l’air, et d’utiliser la cellule à sa capacité nominale.

Capacité et puissance frigorifique des cellules

La capacité (kg)

Elle doit correspondre à celle des appareils de cuisson, c’est-à-dire qu’elle doit permettre de refroidir le nombre de préparations qui peuvent être préparées en une seule fois par les autres appareils de cuisson.

L’ensemble des mets préparés pourra ainsi être refroidi dès la fin de la cuisson. En effet, selon la réglementation, « la durée de refroidissement entre la fin de la cuisson et une température à cœur de 10°C doit être inférieure ou égale à deux heures. »

D’autre part, la cellule pourra ainsi être utilisée à sa pleine capacité. Ce qui permet de travailler au meilleur rendement possible.

La puissance frigorifique

de l’appareil dépend de la durée que prend le refroidissement ou la congélation, de la capacité désirée et de la température à atteindre. Le besoin en frigories est donné par la quantité de chaleur qu’il faut retirer des aliments pour les faire passer de 65°C à 10 °C (ou – 18 °C).

Le calcul ci-dessous est statique et purement théorique. Il est donné à titre indicatif. En réalité, pour correspondre à la réalité, le calcul devrait être fait en dynamique. Statique, le bilan ci-dessous néglige les apports de chaleur au travers des parois, relativement négligeables par rapport à la chaleur à extraire des aliments.
En refroidissement rapide

Q = m x Cs x δt

Où :

  • Q = besoin en frigories (en kWh),
  • m  = poids des aliments dans la cellule (kg),
  • Cs= chaleur spécifique des aliments (kWh/kg°C),
  • δt = différence entre la température à l’entrée et à la sortie des aliments (10°C) (K).

En congélation rapide

Q = (m x Cs x δt) + (m x Cl) + (P1 x Cs‘ x δt’)

Où :

  • Q = besoin en frigories (en Wh),
  • m  = poids des aliments dans la cellule (kg),
  • Cs = chaleur spécifique au-dessus de 0°C des aliments (Wh/kg°C),
  • Cl = chaleur latente nécessaire au changement d’état du constituant liquide des aliments (passage à l’état solide) (Wh/kg),
  • Cs‘ = chaleur spécifique en-dessous de 0°C des aliments (Wh/kg°C),
  • δt = différence entre la température à l’entrée des aliments et 0°C (K),
  • δt’ = différence entre 0°C et la température de sortie des aliments (-18°C) (K),

La puissance frigorifique de l’évaporateur

P(W) = Q (Wh) / t (h)

Où :

  • t = temps maximum légal – temps nécessaire au conditionnement des aliments.

Temps maximum légal = 2 h pour le refroidissement de 65 °C à 10 °C et 3 h pour le passage de 10 °C à -18 °C (congélation).

Exemple.

1. Soit une cellule de congélation rapide, d’une capacité de 20 kg; la congélation doit se faire en 4 h.

Q = 20 x 1,04 x 65 + 20 x 80 + 20 x 0,53 x 18 = 3 143 (Wh) (soit 157 Wh par kg)
P =  3 143  /  4 = 785 W (soit 40 W/ kg.)

2. Soit une cellule de refroidissement rapide, d’une capacité 20 kg; le refroidissement doit se faire en 1h30.

Q = 20 x 1,04 x 55 = 1 144 Wh (soit 57 Wh/kg.)
P = 1 144/1h30 = 762 W (soit 38 W/kg).

En réalité la puissance calculée ci-dessus en statique est une moyenne. Or, la puissance nécessaire varie en fonction du temps, selon une courbe d’allure exponentielle, et la puissance maximale est demandée à l’évaporateur en début de processus (c’est alors que les Δt sont les plus importants). La puissance frigorifique des cellules correspond donc à cette puissance maximale.

Voici les puissances électriques que nous avons relevées dans la documentation d’un fournisseur :

Remarque : entre la puissance frigorifique et la puissance électrique, il y a le COP.

Cellule à clayette – surgélation et refroidissement rapide
Capacité par cycle (kg) Puissance électrique installée (W)
7 2 100
15 2 280/450*
25 4 000/580*
50 6 100/580*

* version équipée sans groupe frigorifique (à distance).

Cellule à chariots – surgélation et refroidissement rapide
Capacité par cycle (kg) Puissance électrique installée (W)
En surgélation En refroidissement
65 65 3 200/900*
80 110 5 400/4 300*
160 220 9 600/6 600*
240 330 11 500*
320 440 14 000*
480 660 20 000*

* version équipée sans groupe non comprise l’alimentation du groupe frigorifique (à distance).

Évaluer le confort thermique des ambiances froides

Évaluer le confort thermique des ambiances froides


Effet du froid sur le corps humain

Photo chambre froide.

Travailler dans des températures froides comme en boucherie peut être dangereux pour la santé pouvant même, à l’extrême, entraîner la mort (au risque de faire sourire certain, rester bloqué dans une chambre de congélation pendant un temps prolongé peut être fatal). Le corps doit absolument maintenir sa température corporelle à 37 °C pour préserver la santé des personnes et aussi fournir l’énergie nécessaire aux activités physiques. Le métabolisme sert au corps humain à s’adapter aux conditions difficiles de travail dans des ambiances froides.

Afin de maintenir son équilibre thermique en zone froide, le corps dispose de mécanismes de régulation :

  • Un mécanisme très complexe de régulation physiologique qui a pour but d’adapter le métabolisme et l’échange de chaleur au niveau de la peau et des poumons en fonction des conditions intra et extracorporelles. Pour demeurer actif dans une zone froide, le corps compense la perte constante de chaleur par la production équivalente de chaleur en « brûlant » le glycogène qui est notre carburant vital. Les frissons, par exemple, augmentent la production de chaleur de notre corps de l’ordre de 500 %. À ce niveau de consommation, notre corps s’épuise en quelques heures; raison pour laquelle le risque de s’endormir dans des ambiances froides est non négligeable.
  • Des mécanismes comportementaux qui permettent à l’humain d’améliorer sa tolérance au froid. Il peut très bien adapter son alimentation, son hydratation, sa tenue vestimentaire, ses attitudes posturales et physiques.

Quels risques pour la santé ?

L’exposition aux basses températures se rencontre fréquemment dans la chaîne de froid alimentaire que ce soit au niveau du personnel que des clients. Les principaux effets sur la santé d’une exposition directe et prolongée au froid sont :

  • l’hypothermie;
  • l’engelure;
  • un risque accru de troubles musculosquelettiques (TMS) en cas d’exposition prolongée;

Il faut être particulièrement vigilant dès que la température ambiante devient inférieure à 5 °C; ce qui se rencontre assez régulièrement dans les commerces (boucherie, poissonnerie, …)

Hypothermie

L’hypothermie est une des principales causes de mortalité liée à l’exposition directe au froid. Dans les commerces, ce risque est uniquement présent dans les chambres froides à 4 °C et – 18 °C. Pour cette raison, les portes des chambres froides sont toujours équipées de moyens d’ouverture des portes de l’intérieur.

Le tableau suivant montre les différents stades de l’hypothermie :

Manifestation clinique de l’hypothermie
Niveau

Température corporelle

Symptômes
Léger
35 – 32 °C
  • Confusion minime.
  • Frissons.
  • Perte de la coordination motrice.
  • Augmentation de la fréquence cardiaque et pression artérielle.
  • Vasoconstriction périphérique.
Modéré
 < 32,2 – 28 °C
  • Coma vigile.
  • Rigidité musculaire.
  • Disparition des frissons.
  • Hypoventilation.
Sévère
< 28 °C
  • Coma aréactif.
  • Rigidité.
  • Apnée.
  • Disparition des pouls.
  • Fibrillation ventriculaire.

Engelure

C’est le premier degré de la gelure. Dans les zones froides des commerces, c’est surtout les extrémités et surtout les mains qui sont les plus exposées au froid lors des manutentions des denrées alimentaires congelées par exemple.

Douleurs

La sensation de froid suivie de douleurs dans les parties exposées du corps est l’un des signes de gelures ou d’une hypothermie légère.

Acrosyndrome et syndrome de Raynaud

Le syndrome de Raynaud est le résultat d’une diminution du diamètre des artérioles des mains et des orteils lors d’une exposition prolongée au froid. La diminution du diamètre entraîne une réduction de l’irrigation sanguine dans les extrémités et se traduit par l’apparition d’une pâleur de deux à trois doigts de chaque main.

Troubles musculosquelettiques

Des études ont mis en évidence une relation entre des troubles musculosquelettiques et les situations de travail dans le froid associées à des facteurs tels que :

  • des mouvements répétitifs;
  • des amplitudes articulaires importantes;
  • des postures extrêmes;
  • des vibrations;
  • du temps de repos insuffisant;
  • du stress;

Quels facteurs de risque ?

Les risques dépendent de différents facteurs :

  • climatiques ou ambiants tels que la température, l’humidité et la vitesse de l’air;
  • liés au poste de travail ou à la tâche à exécuter;
  • individuels.

Facteurs climatiques ou ambiants : la température

La température et l’humidité de l’air sont deux des 6 paramètres qui influencent la sensation de confort thermique. On retrouve en effet :

  • Le métabolisme, qui est la production de chaleur interne au corps humain permettant de maintenir celui-ci autour de 36,7 °C. Un métabolisme de travail correspondant à une activité particulière s’ajoute au métabolisme de base du corps au repos.
  • L’habillement, qui représente une résistance thermique aux échanges de chaleur entre la surface de la peau et l’environnement.
  • La température ambiante de l’air Ta.
  • La température moyenne des parois Tp.
  • L’humidité relative de l’air (HR), qui est le rapport exprimé en pourcentage entre la quantité d’eau contenue dans l’air à la température Ta et la quantité maximale d’eau contenue à la même température.
  • La vitesse de l’air, qui influence les échanges de chaleur par convection.

En général le couple température-humidité est indissociable dans des conditions climatiques normales sous nos latitudes.

Le problème des températures au niveau de la chaîne de froid alimentaire est conditionné par le respect des températures de conservation tout au long de la chaîne. Nécessairement, ces températures sont basses et n’entrent pas dans les températures de confort pour le corps humain.

À partir de températures inférieures à :

  • 15 °C, notamment pour les postes statiques ou de pénibilité légère, l’inconfort a des fortes chances de se ressentir mais varie selon les individus;
  • 5 °C et en particulier à des températures négatives, le risque pour la santé est immédiat comme dans le cas de travail dans les chambres froides de stockage positives ou négatives.

Clairement, les ambiances froides dans lesquelles évoluent les travailleurs sont inconfortables; elles sont dues principalement aux basses températures et à l’humidité.

Par rapport à la plage de confort hygrothermique habituellement présentée (extrait de l’article de R. Fauconnier L’action de l’humidité de l’air sur la santé dans les bâtiments tertiaires paru dans le numéro 10/1992 de la revue Chauffage Ventilation Conditionnement), on voit tout de suite qu’au niveau de nombreux postes de travail l’inconfort est souvent présent :

  • dans les allées froides, les températures peuvent descendre sous les 16 °C, ce qui signifie qu’en été, par exemple, le choc thermique peut être important vu que les clients passent rapidement d’une ambiance chaude (rayon « no food »), voire surchauffée (boulangerie), à une ambiance réfrigérée;

  • dans les zones climatisées basses (12 °C) et en chambre froide (0 °C, 4 °C et -18 °C).

  1. Zone à éviter vis-à-vis des problèmes de sécheresse.
  2. et 3 : Zones à éviter vis-à-vis des développements de bactéries et de microchampignons.
  3. Zone à éviter vis-à-vis des développements d’acariens.
  4. Polygone de confort hygrothermique.

Le schéma suivant représente des polygones de fonctionnement classiques des meubles frigorifiques dans les zones de vente. Le polygone « rose » représente l’ambiance de la zone (température, hygrométrie) dans laquelle le meuble frigorifique fonctionne correctement. C’est aussi en grande partie la zone de confort des usagers. On voit tout de suite que l’inconfort se situe à l’extrême gauche du polygone de confort. En pratique, dans les allées froides, cette limite est souvent atteinte.

La zone hachurée correspond à la zone de confort.

Facteurs climatiques ou ambiants : l’humidité

L’humidité relative influence le confort du corps humain dans le sens où la perte de chaleur du corps humain augmente dans des conditions humides. Cependant, le taux d’humidité présent aux températures basses de la chaîne de froid dépend de plus en plus :

  • de l’échange hygrothermique qui s’opère avec l’ambiance extérieure;
  • de l’occupation (respiration des personnes dans l’ambiance froide).

En effet, à part les fruits et les légumes, les denrées alimentaires sont souvent conditionnées dans des emballages qui réduisent ou évitent leur échange hygrométrique avec l’ambiance froide. De plus, l’humidité résiduelle présente dans l’ambiance froide va en grande partie se condenser et geler sur les ailettes de l’évaporateur qui agissent comme déshumidificateur. Il en résulte que l’humidité absolue dans les ambiances froides reste sensiblement basse. Toutefois, même dans une ambiance relativement froide avec une humidité absolue faible, l’inconfort peut aussi être présent pour des humidités relatives élevées.

Accumulation de l’humidité ambiance sur les ailettes de l’évaporateur (« prise en glace »).

Facteurs climatiques ou ambiants : la vitesse

La vitesse de l’air est un facteur qui renforce la sensation d’inconfort. On parle souvent d’une vitesse de l’ordre de 0.2 m/s maximum pour ne pas augmenter l’inconfort dans les zones à basse température.

Grille des températures ressenties en fonction de la vitesse du vent et niveau de danger d’une exposition au froid
Indice de refroidissement éolien

Vitesse de l’air [m/s]

La température réellement mesurée correspond à une vitesse de vent nulle [°C]
0
5 0

-5

-10

-15 -20 -25 -30
1,4
4 -2 -7 -13 -19 -24 -30 -36
2,8
3 -3 -9 -15 -21 -27 -33 -39
4,2
2 -4 -11 -17 -23 -29 -35 -41
5,6
1 -5 -12 -18 -24 -31 -37 -43
7 1 -6 -12 -19 -25 -32 -38 -45
8,3
0 -7 -13 -20 -26 -33 -39 -46
9,7
0 -7 -14 -20 -27 -33 -40 -47

11,1

-1 -7 -14 -21 -27 -34 -41 -48
12,5
-1 -8 -15 -21 -28 -35 -42 -48
13,9
-1 -8 -15 -22 -29 -35 -42 -49
Risque faible. Risque modéré. Risque élevé.
Risque faible.
  • peu de danger pour les expositions au froid de moins d’une heure avec peau sèche;
  • risque d’engelure faible, mais inconfort;
  • risque d’hypothermie pour les expositions de longue durée sans protection adéquate.
Risque modéré.
  • risque croissant pour des températures comprises entre – 25 et – 30°C;
  • la peau peut geler en 10 à 30 minutes;
  • il faut surveiller tout engourdissement ou blanchissement du visage et des extrémités;
  • risque d’hypothermie pour les expositions de longue durée sans protection adéquate.
Risque élevé.
  • risque élevé pour des températures comprises entre – 40 et – 49°C;
  • gelures graves en moins de 10 minutes;
  • il faut surveiller tout engourdissement ou blanchissement du visage et des extrémités;
  • risque sérieux d’hypothermie pour les expositions de longue durée.

Photo chambre froide.Source : Commission de la Santé et de la Sécurité au Travail (CSST/Canada) : Contrainte thermique : Le froid; Service Météorologique du Canada : le refroidissement éolien.

Facteurs inhérents au poste de travail ou à la tâche à exécuter

Il est clair que certains facteurs de condition de travail ou d’exposition au froid peuvent augmenter les risques. On pointera principalement :

  • la prolongation de la durée d’exposition en continu au froid;
  • L’absence de salle de repos chauffée;
  • Exécution d’une tâche à des cadences ou d’un travail physique intense ou moyen mettant le sujet exposé en transpiration. La peau humide est plus sensible au froid et des vêtements humides sont inconfortables et isolent mal du froid;
  • L’insuffisance des poses de récupération;
  • Le port de vêtements non adapté au froid, ou ne procurant pas un niveau d’isolation thermique suffisant.
  • La possibilité de contact direct de la peau nue avec des surfaces métalliques froides à des températures inférieures à -7 °C;
  • L’utilisation de gants peu adaptés à la tâche à réaliser sachant que des gants épais réduisent la dextérité et augmentent l’effort à fournir.

Facteurs individuels

En général, la réaction au froid varie d’un individu à l’autre. Cependant, certaines caractéristiques individuelles contribuent à majorer les conséquences d’une exposition au froid comme :

  • l’age : les personnes âgées sont plus sensibles;
  • le sexe : la vitesse de refroidissement des pieds et des mains chez la femme (égalité avez-vous dit ?);
  • la morphologie : rapport entre la surface de peau et le volume du corps;
  • la condition physique : les personnes en bonne santé supportent mieux la sensation de froid;
  • la présence de trouble de la circulation;
  • la fatigue;
  • les apports alimentaires et liquides insuffisants (contribuant à la production de chaleur par l’organisme et limitant la déshydratation).

Certains facteurs de risque peuvent favoriser la survenue de symptômes liés au froid comme par exemple :

  • les médicaments comme l’insuline peuvent être responsable d’hypothermie;
  • l’alcool est un vasodilatateur qui accroît la perte de chaleur du corps, réduit la régulation thermique interne et modifie le métabolisme du sucre dans le sang;
  • lors de la grossesse, la femme est plus vulnérable;

Acclimatation au froid

En fait, il n’y a pas vraiment d’acclimatation au froid. Cependant, certaines parties du corps comme les mains peuvent développer une certaine résistance au froid (cas des bouchers qui peuvent sans problème couper de la viande froide sans gants).

Conclusion

La conservation des denrées alimentaires fixant les températures qu’il doit régner dans les enceintes froides, impose au personnel de s’habiller en conséquence. Le temps de travail doit être aussi adapté sous peine de voir le risque d’accident augmenter et l’efficacité du travail diminuer rapidement.


Comment évaluer sa situation ?

Confort en ambiance froide

L’évaluation du confort dans des ambiances froides se révèle beaucoup plus difficile que dans les zones des commerces qui sont à température ambiante classique (de l’ordre de 20 °C). En effet, la plupart des études sur le confort se cantonnent dans des valeurs de température au dessus de 15 °C. Or les températures que l’on rencontre dans les commerces au niveau de la chaîne de froid alimentaire se trouvent plutôt dans la fourchette de – 20 °C à 12 °C avec comme cas particulier les températures comprises entre 10 et 12 °C pour des conditions de travail prolongé.

La notion du confort peut être exprimée par l’équilibre thermique du corps. En effet, placé dans une ambiance thermique froide le corps humain perd de sa chaleur. Si la production de la chaleur liée au métabolisme est égale aux pertes de chaleur à travers les vêtements et les extrémités non protégées, le bilan thermique est nul et l’occupant est en équilibre thermique.

L’évaluation du confort passe donc par l’élaboration d’une méthode de quantification de l’équilibre thermique du corps humain en fonction des contraintes externes et de l’habillement.

Indices d’isolation vestimentaire

Vu la nécessité de se vêtir correctement dans les ambiances froides, la notion de confort et de sécurité passe par un indice intéressant qui a été introduit dans un document de travail ISO (ISO/TR 11 079) portant sur l’évaluation des ambiances thermiques froides; c’est l’indice d’isolation vestimentaire IREQ (Required Clothing Insulation Index). Il permet de choisir des vêtements adaptés au froid en assurant au corps un bon équilibre thermique. Il est admis que cet indice doit être utilisé lorsque la température est inférieure à 10 °C.

Le port d’un vêtement dont l’isolement est inférieur à l’indice IREQ requis, implique qu’une durée d’exposition limite doit être calculée (DLE). Il en résulte que si la durée d’exposition est inférieure à la durée DLE calculée, il n’y a pas de risque d’hypothermie. Pour les travailleurs en chambre froide, l’indice IREQ est en général compris entre 2,5 et 4 [clo]. Actuellement, les meilleurs vêtements de protection contre le froid offrent une isolation thermique comprise entre 3 et 4 [clo].

Clo : c’est l’unité d’isolement thermique où 1 [clo] correspond à 1,155 [K.m²/W].

Pratiquement parlant, il est admis que plusieurs couches de vêtements valent mieux qu’un seul vêtement épais.

Exemple

Une tenue vestimentaire composée :

  • de sous-vêtements;
  • d’un caleçon long;
  • d’un pantalon;
  • d’une veste isolante;
  • d’un sur-pantalon;
  • de chaussettes ;
  • de chaussures;
  • d’un bonnet;
  • de gants;

permet d’atteindre un IREQ de l’ordre de 2,6.

Attention que la couche la plus proche de la peau doit être isolante et éloigner l’humidité de la peau afin de la maintenir sèche.

Attention qu’il ne faut pas oublier, lors d’un travail en ambiance froide, qu’il est nécessaire d’adapter l’isolement vestimentaire à la pénibilité de la charge de travail. Ainsi, la valeur de l’indice IREQ peut être réduite de l’ordre de :

  • 10 % pour un travail léger;
  • 20 % pour les travaux plus intenses.

Contrainte ou astreinte thermique

Les conditions climatiques de l’ambiance froide sont évaluées en mesurant différents paramètres physiques :

  • la température de l’air avec un thermomètre. Les équipements faisant partie de la chaîne de froid (chambre froide, chambre climatisée, meuble frigorifique ouvert, …) sont souvent équipés de leur propre thermomètre ou même un enregistreur de température. L’évaluation n’est donc pas difficile en soi;
  • la température de rayonnement avec par exemple un thermomètre de contact pour la température de paroi;
  • l’humidité avec un hygromètre;
  • la vitesse de l’air avec un anémomètre.

Une bonne image du confort thermique est donnée par la température opérative, moyenne arithmétique entre la température de l’air et la température des parois.

Topérative = (Tair + Tparois) / 2

  • La mesure de la température de l’air se fait à l’aide d’un thermomètre protégé du rayonnement solaire et du rayonnement des parois du local.
  • La température de surface d’une paroi se fait à l’aide d’une sonde de contact ou sonde à rayonnement infrarouge.

Malheureusement, la température de rayonnement des parois est celle ressentie par l’occupant à l’endroit où il se trouve. Elle doit en principe être « individualisée » sur base de la position de l’occupant et de sa relation avec l’ensemble des parois. Mais ne soyons pas plus catholiques que le pape.

Dépense énergétique

Pour produire 1 [Joule] de travail, l’organisme en produit entre 5 et 90 Joules de chaleur. Dans les ambiances froides, l’activité physique « protège » le corps humain en brûlant de l’énergie fournie entre autres par l’alimentation. À titre indicatif, la norme ISO 8996 [32] détaille les différentes méthodes d’évaluation de la dépense énergétique.

Température corporelle : température cutanée du dos de la main

Le travail prolongé au niveau de la chaîne alimentaire nécessite que l’on adapte les conditions de travail pour maintenir un confort relatif et surtout une sécurité optimale des occupants.

Dans des températures habituelles de travail, le refroidissement corporel et le risque d’hypothermie sont faibles. Il n’en est pas de même pour le refroidissement des extrémités. Dans la plupart des cas de condition d’ambiance froide dans le secteur des commerces, la température de peau des extrémités du corps constitue une bonne évaluation de l’impact des basses températures sur le confort et la sécurité. Plus particulièrement, la mesure de la température cutanée du dos de la main représente un critère de dextérité conservée.

En général, on associe la température du dos de la main à une durée d’exposition.

L’INRS (Institut National de Recherche Scientifique : M. Aptel, Le travail au froid artificiel dans l’industrie alimentaire : description des astreintes et des recommandations, Cahier des notes documentaires n°126, 1er trimestre 1987) a montré l’influence de la température cutanée du dos de la main, du temps d’exposition au froid et de la répartition des alternances chaud/froid sur la dextérité des mains.

Les schémas ci-dessous montrent l’évolution de la contrainte thermique cutanée en fonction des répartitions des périodes d’exposition au froid au cours d’une journée de travail entre chambre froide (- 23°C) et en chambre climatisée (5°C).

Les expériences menées à l’INRS ont montré plusieurs choses :

  • Au-dessus d’un seuil de température cutanée de 24 °C, la dextérité des doigts des mains n’est altérée. À ce seuil, le refroidissement de la main n’entraîne qu’un inconfort thermique. Mais dès que le seuil des 24 °C est franchi, la capacité à effectuer des tâches de précision est réduite.
  • Une pause d’environ 25 minutes n’est pas suffisante pour réchauffer les mains.
  • Le réchauffement de la main pendant la pause est d’autant plus important que le refroidissement est plus intense.
  • Le refroidissement du travailleur en chambre climatisée est plus important que celui en chambre froide.

La mesure de la température cutanée du dos de la main est la méthode qui semble la plus intéressante pour les conditions de travail en ambiance froide, mais elle ne constitue pas un indice permettant de prévoir le refroidissement des travailleurs à partir des mesures des paramètres physiques des conditions climatiques des zones froides. Cependant, cet indicateur est le plus facilement exploitable car :

  • spontanément les occupants adaptent leur tenue vestimentaire en fonction de la sévérité des conditions d’ambiance; ce qui simplifie l’évaluation de l’impact du froid sur la personne;
  • lorsque la température cutanée de la main descend sous 23-24 °C , la dextérité diminue;
  • la perception du refroidissement des extrémités varie d’un individu à l’autre. Seul un indicateur d’astreinte peut la prendre en compte;
  • enfin, il peut être mesuré facilement.

Recommandations, normes et règlements

Les recommandations et normes se concentrent essentiellement sur la protection des travailleurs exposés au froid. La notion de confort est moins perceptible par rapport à la sécurité, mais est néanmoins bien présente puisqu’elle influence l’efficacité du travail et, par conséquent, le bien-être et la sécurité.

Les vêtements de protection

Les vêtements de protection contre le froid sont considérés comme des équipements de protection individuelle (EPI).

Les vêtements contre le froid offrent une barrière entre la peau et le milieu ambiant, modifiant aussi bien les échanges de chaleur convectifs et radiatifs, que ceux par évaporation. Il se crée autour de la peau couverte, un microclimat caractérisé par une température d’air et par une pression partielle de vapeur d’eau. La température de rayonnement caractéristique du microclimat est celle de la face interne du vêtement. L’influence du vêtement sur les échanges de chaleur, comme on l’a vu ci-dessus est très complexe.

Le port d’un vêtement de protection freine les échanges thermiques, ce qui est bénéfique en ambiance froide.

Classes des vêtements de protection

La majorité des vêtements contre le froid appartiennent à la classe II. Mais les vêtements, les accessoires (détachables ou non) et tous les équipements destinés à la protection de tout ou d’une partie du visage, du pied, de la jambe, de la main, du bras et conçus pour permettre l’intervention dans les ambiances froides dont les effets sont comparables à ceux d’une température d’air inférieure ou égale à -50°C appartiennent à la classe III. Quant aux vêtements et aux accessoires (détachables ou non) qui sont conçus pour protéger contre les conditions atmosphériques qui ne sont ni exceptionnelles ni extrêmes et à usage professionnel, ils appartiennent à la classe I.

La norme EN 511

La norme EN 511 définit les exigences et les méthodes d’essai des gants de protection contre le froid, d’origine climatique ou artificielle, transmis par convection ou par conduction jusqu’à -50 °C.

Les principaux sujets traités sont repris dans le tableau suivant :

Sujet Définition
Froid convectif
TR [°C.m²/W] représente la résistance à la perte de chaleur sèche de la main.
Niveau d’isolement thermique

R en m² °C/W)

Froid de contact
est fondée sur la résistance thermique du matériau composant le gant lorsqu’il est en contact avec un objet froid
Imperméabilité à l’eau

 

facteur de pénétration du gant par l’eau

La norme prEN 342

Le prEN 342 spécifie les exigences et les méthodes d’essais de performance des vêtements de protection contre le froid à des températures inférieures à -5 °C.

L’isolation thermique du vêtement de protection est évaluée en combinaison avec les sous-vêtements standards :

  • maillot à manches longues;
  • caleçons longs;
  • chaussettes;
  • pantoufles en feutre;
  • gilet isolant;
  • caleçons isolants;
  • gants tricotés;
  • passe-montagne.

L’isolation thermique d’un ensemble de vêtements (vêtements de protection et sous-vêtements) est classée en fonction de la valeur de l’isolation de base résultante mesurée (Iclr).

La performance d’un ensemble vestimentaire, en termes de maintien de l’équilibre thermique du corps à la température normale, dépend de la production de chaleur métabolique interne. C’est pourquoi la valeur de protection d’un ensemble vestimentaire est évaluée en comparant sa valeur d’isolation mesurée et la valeur d’isolation requise calculée (IREQ) comme montré dans le tableau ci-dessous :

Icl. r.
Activité
très légère : 90 W/m² légère : 115 W/m² modérée 170 W/m²
temps d’exposition [heures]
[m².°C/W] clo
8
1
8
1
8
1
0,15
1,0
-3
3
-5
0,23
1,5
4
8
-13
-7
-18
0,31
2,0
10
-4
1
-23
-18
-31
0,38
2,5
4
-12
-6
-33
-29
-44
0,46
3,0
-1
-21
-13
-43
-39
-57
0,54
3,5
-7
-30
-20
-53
-49
-70
0,62
4,0
-13
-39
-28
-63
-60
0,70
4,5
-19
-48
-35
  • Les valeurs Icl. r. sont seulement valables avec des gants, chaussures et couvre-chef adéquats et une vitesse d’air compris entre 0,3 m/s et 0,5 m/s;
  • Des vitesses d’air plus élevées augmenteront les températures indiquées dans le tableau à cause de l’effet de refroidissement par le vent (WCI). Un niveau adapté de l’isolation de tout le corps peut ne pas être suffisant pour éviter le refroidissement des parties sensibles du corps (par exemple les mains, les pieds, le visage) et le risque concomitant de gelures.

Le projet de norme ISO/TR 11079

Le projet de norme ISO /TR 11079 Évaluation des ambiances froides – Détermination de l’isolement requis des vêtements (IREQ) décrit la procédure d’évaluation des ambiances froides et de détermination de l’isolement requis des vêtements à mettre à la disposition des travailleurs.

Par ailleurs, en ce qui concerne les autres vêtements de protection contre le froid, les chaussures de protection utilisées dans les enceintes froides, en plus des protections générales contre les chutes d’objets, les coupures, l’humidité, …, doivent également assurer une isolation contre le froid (indiquée par le symbole CL).

Quant aux sous-vêtements isolants, ils sont également soumis au marquage CE.

Pour plus d’informations : Le travail dans le froid artificiel, Ministère fédéral de l’Emploi et du Travail, 1998, 35 p.


L’inconfort des bouches de pulsion d’air

Zone tempérée

En climatisation classique, la source d’inconfort est principalement liée :

  • à l’emplacement de la bouche dans le local considéré;
  • la température de pulsion;
  • le débit de pulsion;

Lorsque l’air pulsé entre dans la zone d’occupation du local et que la différence de température entre cet air et l’air ambiant dépasse encore 1°C en pulsion froide, on risque de ressentir une sensation de « masse d’air » lorsque l’on se déplace dans le local.

La zone d’occupation est souvent représentée par la surface du local de laquelle on a soustrait une bande de 50 cm le long des murs intérieurs et de 1 m le long des murs extérieurs, et ce sur une hauteur de 1,8 m. Dans cette zone, la vitesse de l’air ne peut dépasser 0,2 m/s (0,28 dans les locaux de passage) et le long des murs, à 1,8 m, elle ne peut dépasser 0,4 m/s :

L’inconfort éventuel est lié au choix des bouches de pulsion ou à la température de pulsion :

  • diffuseurs trop proches l’un de l’autre entraînant une retombée rapide du jet d’air vers le sol, avant son brassage correct avec l’air ambiant,
  • diffuseurs ne présentant pas assez d’induction par rapport à la hauteur du local (pas assez de brassage avec l’air ambiant),
  • différence entre la température de consigne de l’air pulsé et la température ambiante trop grande.

Inconfort par effet Coanda rompu

Lorsque l’air est soufflé à proximité d’une surface (ex : soufflage horizontal à proximité du plafond), il se produit un effet d’adhérence du jet à la paroi : c’est l’effet « COANDA ».

L’effet Coanda est très utile quand on pulse de l’air froid, car il facilite la bonne pénétration du jet dans le local (augmentation de 30 % de la portée).

Problème 1

La présence d’un obstacle perpendiculaire au jet d’air (poutre, luminaire) peut faire dévier prématurément le jet vers la zone occupée et engendrer un courant d’air désagréable.

En conséquence :

  • Il faut souffler soit à partir de l’obstacle, soit parallèlement à celui-ci et diviser le local en zones correspondantes.
  • L’éclairage au plafond doit être soit encastré, soit suspendu avec une longueur de suspension de 0,3 m minimum.
  • On tiendra compte de la présence éventuelle de colonnes qui ne pourront se situer dans la trajectoire du jet.

Problème 2

Lorsqu’une bouche plafonnière pulsant de l’air froid est surdimensionnée, la vitesse de sortie de l’air risque d’être trop faible (< 2 m/s) pour créer un effet Coanda. Le jet d’air tombera alors directement vers le sol, risquant de provoquer un courant d’air froid sous la bouche. Paradoxalement, pour éviter le courant d’air, il faudra augmenter la vitesse de l’air en réduisant la taille du diffuseur.

Problème 3

Les diffuseurs utilisent dans les systèmes de climatisation à débit d’air variable (VAV ou climatiseurs à plusieurs vitesses) doivent être spécifiquement dimensionnés pour conserver l’effet Coanda même aux faibles débits.

Concevoir

Pour plus d’infos : choix des bouches de pulsion et d’extraction en climatisation.

Zone de froid alimentaire

Dans les zones où il est nécessaire de maintenir des températures de conservation de l’ordre de quelques degrés au dessus de 0 °C en application positive voire franchement sous les 0 °C en froid négatif (congélation), outre l’inconfort dû à la température, les débits d’air sont souvent importants; l’inconfort est par conséquent accru.

Pour les zones de travail telles que les ateliers de boucherie, par exemple, l’évaluation de l’inconfort dû aux bouches de pulsion se complexifie de par l’augmentation des débits d’air pour atteindre des températures de l’ordre de 12 °C. La limitation des vitesses de déplacement d’air plus froid doit être inférieure à 0,4 m/s.

Attention que plus l’air est froid moins l’effet « COANDA » est présent vu que la densité de l’air augmente et nécessairement l’alourdit.


Cas particulier des chambres froides

Les chambres froides sont des locaux de stockage dans les commerces. L’ambiance à l’intérieur des chambres est refroidie dans une gamme de températures classiques variant de -30 à +4 °C. Nécessairement, l’inconfort règne et exige que les travailleurs y pénétrant soit habillés de manière appropriée. En général, c’est le genre de local où l’on s’attarde peu.


Cas particulier des ateliers

Les zones climatisées sont les espaces où l’on procède à la transformation des produits (préparation de sous-produits du poulet pour le traiteur par exemple). Les ateliers de boucherie, de poissonnerie, … sont les plus couramment rencontrés au niveau des commerces que ce soit de détail ou en grande surface. Les ateliers ne sont qu’une étape de transformation des produits qui interviennent entre le stockage et la distribution et se caractérisent par la nécessité de maintenir les températures de la chaîne du froid en dessous de 12 °C. De plus, ces zones climatisées, contrairement à la chambre de stockage, abritent une activité humaine importante et souvent longue.

L’évaluation du confort pour ces zones est donc primordiale et nécessite de déterminer, en fonction principalement de la température ambiante et de la vitesse de l’air :

  • le type d’habillement;
  • le temps de travail des personnes exposées;
  • leur temps de pose entre leurs périodes de travail.

Une attention toute particulière sera prise par rapport à la vitesse de l’air dans ces zones qui peut générer très vite un inconfort au niveau des extrémités découvertes du corps (la tête et les mains par exemple).

Photo travailleur dans chambre froide.

Afin de créer le froid nécessaire, des ventilo convecteurs sont couramment utilisés. Ils ont des débits importants qui peuvent induire, s’ils sont mal positionnés, des vitesses d’air supérieures à 0,2 m/s à 1,8 m de hauteur par rapport au sol. Une manière d’évaluer la vitesse de l’air est d’utiliser un anémomètre en différents endroits du local dans différentes directions notamment au niveau des postes de travail.

À noter d’emblée que les manchettes ou chaussettes, … à air sont des moyens de diffuser des débits d’air froid importants en garantissant des vitesses d’air faibles tout assurant les températures voulues.


Cas particulier des allées froides

Photo allée froide

Marché oblige, les meubles frigorifiques ouverts, et principalement les meubles frigorifiques verticaux « MFV », sont de plus en plus nombreux dans les commerces. Dans un souci commercial et énergétique, ces meubles sont régulièrement placés en vis à vis créant ainsi des « allées froides » totalement inconfortables au point que les responsables techniques sont tentés de réchauffer par n’importe quel moyen le centre des allées. L’évaluation du problème s’effectue au moyen d’un thermomètre et d’un hygromètre en différents endroits de l’allée.

Des mesures de température et d’humidité ont été réalisées dans plusieurs commerces de grande surface. En moyenne, les températures relevées ne dépassaient pas les 16 °C avec une humidité relative de l’ordre de 35 %.