Isolation dans la coulisse

Isolation dans la coulisse


En conception : le mur creux à remplissage intégral

Lors du montage du mur creux à remplissage intégral, les panneaux isolants doivent être placés de manière à être jointifs entre eux mais également avec les châssis de fenêtres, avec les fondations et avec la toiture.

Le mode de construction traditionnellement utilisé en Belgique consiste à élever les maçonneries par tronçons en commençant par le parement, puis par le mur intérieur et en incluant l’isolant au fur et à mesure. Cette technique permet de dresser le mur extérieur par tronçon à partir des dalles aux différents niveaux du bâtiment et permet donc l’économie d’un échafaudage placé à l’extérieur pour le montage du parement (*).

Cette technique de construction permet de réaliser un travail correct du point de vue thermique. En effet, de par le fait que la coulisse est « bourrée » d’isolant, le remplissage intégral du creux d’un mur souffre peu des erreurs de pose; il faudrait vraiment une (mauvaise) volonté délibérée de l’entrepreneur pour que des erreurs de mise en œuvre puissent avoir une influence réelle sur le coefficient de transmission thermique réel du mur (déchets de mortiers laissés entre les panneaux, absence de protection contre les pluies en cours de chantiers, etc.).

Cependant, aucun contrôle visuel de la qualité d’exécution de l’isolation n’est possible avec cette technique.

Un contrôle de la qualité de l’isolation, de sa fixation, ainsi qu’un contrôle des crochets de liaison et des membranes d’étanchéité qui doivent être placées en attente n’est possible que lorsque la paroi est réalisée de la manière suivante :

  • on construit d’abord le mur porteur intérieur sur toute sa hauteur,
  • on y applique et fixe le matériau isolant,
  • on construit enfin l’ensemble du parement.

(Cette méthode est, par ailleurs, la seule acceptable pour le mur creux à remplissage partiel).

(*) L’économie d’échafaudage dépend de l’organisation de l’entrepreneur. Certains entrepreneurs disposent de leurs propres échafaudages, d’autres doivent les louer. En principe, l’échafaudage est, de toute façon, nécessaire par la suite pour le jointoyage a posteriori de la façade. Mais cet échafaudage peut être plus léger. Pour diverses raisons, le jointoiement au fur et à mesure du montage du mur est à déconseiller au profit du jointoiement ultérieur, et ce, d’autant plus dans le cas d’un mur isolé pour lequel des exigences plus strictes sont formulées quant à la qualité des briques et du mortier mis en œuvre (« Eclatement de joints de mortier ». Revue CSTC n°1, janvier-mars 1986. Bruxelles.).


En conception : le mur creux à remplissage partiel

Lors du montage du mur creux à remplissage partiel, les panneaux isolants doivent être placés de manière à être jointifs entre eux mais également avec les châssis de fenêtres, avec les fondations et avec la toiture.

Pour réaliser correctement le remplissage partiel de la coulisse, on procède de la manière suivante :

  • on construit d’abord le mur porteur intérieur sur toute sa hauteur,
  • on y applique et fixe le matériau isolant,
  • on construit enfin l’ensemble du parement.

Il faut, non seulement, que les panneaux soient correctement pressés l’un contre l’autre mais aussi que ces panneaux soient plaqués contre le mur intérieur grâce à des ancrages spéciaux.

Une pose négligée de l’isolant dans la cadre d’un remplissage partiel du creux détériore fortement le coefficient de transmission thermique réel d’une paroi. En effet, l’espace disponible dans le creux du mur autorise, en cas de pose négligée, une rotation spontanée de l’air autour des panneaux, même lorsque ces derniers sont quasi jointifs dans le plan vertical. Un espace de 5 mm suffit à obtenir cet effet néfaste.

Pour illustrer ce propos, voici des résultats de mesures de coefficients de transmission thermique (U) moyens réels, effectués par la KUL, sur des murs creux où la mise en œuvre de l’isolant a été soignée et sur les mêmes murs creux où la mise en œuvre a été exécutée sans soin particulier et ce, pour des murs creux isolés avec remplissage partiel.

Uthéorique (W/m²xK) Upratique (W/m²xK)
Pas d’isolant dans le mur creux 1,34 1,35

Remplissage partiel du creux

Pose correcte de l’isolant. 0,42 à 0,49 0,54 à 0,61
Pose déficiente de l’isolant. 0,42 à 0,49 0,99

En conclusion

L’application et la fixation de l’isolant au mur intérieur préalablement à la construction du parement doit tendre à se généraliser sur tous les chantiers. Cette méthode de construction est d’ailleurs recommandée par la norme NBN B 24-401(**).

(**) : « Il est conseillé de maçonner d’abord la feuille intérieure (mur portant) et ensuite la feuille extérieure (parement) pour garantir un bon placement de l’isolation et une exécution des joints sans bavure ».

(**) « Exécution des maçonneries ». IBN. Bruxelles – juin 1981.


En rénovation : l’isolation par injection

Principe

Des mousses obtenues par moussage sur chantier de deux composants sont injectées au moyen d’un pistolet dans la coulisse du mur creux au travers de petits orifices pratiqués dans le mur extérieur. Ces mousses se gélifient en place dans la minute qui suit l’injection. Les orifices sont refermés.

Les différents isolants utilisés sont :

  • la mousse d’urée-formaldéhyde (UF),
  • la mousse de polyuréthanne (PUR),
  • les perles de polystyrène expansé (injectés en même temps qu’une colle).

Avantages

L’isolation thermique s’adapte aux interstices de forme irrégulière.

Inconvénients

La mousse d’urée-formaldéhyde (UF) peut provoquer des allergies chez certaines personnes. Si elle est mise en œuvre, il faut assurer une parfaite étanchéité à l’air de la paroi interne du mur.

La mousse d’urée-formaldéhyde (UF) est légèrement capillaire. Cependant cette légère capillarité ne donne pas obligatoirement lieu à des problèmes, car son retrait important permet à l’eau qui aurait traversé le mur de parement de s’écouler sans atteindre l’isolant.

Le contrôle du remplissage est assez difficile à réaliser (éventuellement par thermographie).

L’injection doit être réalisée prudemment par du personnel formé pour maîtriser les pressions exercées par l’expansion de l’isolant sur les faces internes de la coulisse.


En rénovation : le remplissage par insufflation des isolants en vrac

Principe

Un matériau isolant en vrac est insufflé par une machine dans la coulisse du mur creux, soit par des orifices percés dans l’une des parois, soit par le haut depuis les combles. Les éventuels orifices sont ensuite refermés.

Les différents isolants utilisés sont :

  • la laine minérale (de roche ou de verre) hydrofugée en flocons,
  • des perles de polystyrène expansé,
  • des perles de perlite siliconée.

Avantages

Le produit isolant est mis en place à l’état sec.

Inconvénients

Les isolants en vrac se tassent avec le temps.

Le contrôle du remplissage est assez difficile à réaliser (éventuellement par thermographie).

Surmonter son propre découragement

Surmonter son propre découragement


Le stress organisationnel est une source importante de découragement. En effet, le stress est souvent présent quand une personne se sent impuissante à changer une situation qui lui est imposée et dans laquelle elle se sent mal.

Souvent on rumine sur les difficultés que l’on rencontre; toutefois, le stress augmente quand on rumine et par conséquent aussi le sentiment qu’il n’y a rien à faire.

Le meilleur remède est de fonctionner par objectif et de s’octroyer à soi-même les félicitations que l’on ne trouve pas à l’extérieur quand l’objectif est atteint.

Le stress se décharge dans l’action. Plus vous gardez en tête l’objectif à atteindre et plus vous considérez que la situation actuelle est bien compliquée, mais qu’elle fait partie de ce qu’il faut gérer pour atteindre le but fixé, plus vous avez des chances d’atteindre votre objectif et moins le stress lié à la situation aura un effet néfaste sur vos nerfs.

Puisque le stress se décharge dans l’action, n’hésitez surtout pas à vous mettre en route au lieu de rester sur une seule jambe en déplorant tout ce gâchis de temps.

La maîtrise de la situation diminue les effets négatifs du stress. Le fait de prendre l’initiative de changer des pratiques a un effet atténuateur sur les symptômes du stress. Mais attention, choisir de mettre en place des changements manifestement irréalistes par rapport à la situation actuelle serait un facteur de stress supplémentaire.
Il faut donc pouvoir se réapproprier quelque chose dans le déroulement de l’action et que cela soit couronné d’effet. Échouer dans ses objectifs est une preuve supplémentaire qu’on n’a pas de pouvoir.
On peut se souvenir qu’on gère plus facilement un stress quand on veut vraiment maîtriser quelque chose dans un processus qui semble nous échapper.

Et puis, le stress induit souvent des tensions musculaires qu’il est recommandé de relâcher en s’étirant comme les chats, en respirant consciemment et régulièrement et en permettant à son corps de bouger. Allez donc dans les couloirs, rencontrez d’autres personnes, peut-être ces utilisateurs que vous ne connaissez que par les images que d’autres vous ont données d’eux, essayez de téléphoner à ce décideur qui ne vous entend pas, prenez rendez-vous, …

Évaluer la motivation des occupants

Évaluer la motivation des occupants


L’URE ? Ils s’en moquent !… Pourquoi ?

Quand on ne se sent pas concerné par un problème, on ne se motive pas non plus pour le résoudre.

L’URE est un but de système, nous l’avons déjà vu. Il ne fait pas partie des préoccupations professionnelles de beaucoup d’acteurs à l’intérieur d’une institution.

Ces acteurs ne recherchent donc pas des informations qu’ils considèrent comme peu utiles.

De plus, personne ne pense non plus à leur fournir ces informations.

Il faut bien admettre que l’énergie n’est devenue une préoccupation qu’à partir du moment où son prix a augmenté considérablement. Cette préoccupation générale dans les années 70 s’est beaucoup altérée à partir de 1985.

Si l’URE continue à rester une préoccupation à la maison, ce n’est pas la même chose au travail. Chez soi, on connaît le montant des factures, on les paie soi-même, les gratifications sont immédiates si l’on consomme moins. De plus, on peut parfois se sentir concerné par des comportements éco-civiques parce qu’on maîtrise l’ensemble du processus de l’utilisation de l’énergie.

Il en va tout autrement dans les institutions publiques. Les modalités pratiques d’utilisation des appareils échappent souvent à l’utilisateur. Il ne contrôle pas grand chose : la température lui est souvent imposée. Quand il peut modifier les températures lui-même, sa marge de manœuvre est souvent restreinte …

Les utilisateurs ont aussi rarement de l’information sur les résultats obtenus après une campagne de sensibilisation aux économies d’énergie. Ils ne se rendent pas compte de ce que coûtent les gaspillages : le plus souvent, ils ne voient jamais les factures.

Et pour les personnes qui sont chargées de la comptabilité, elles paient des montants fixes tous les mois ou tous les deux mois et c’est seulement en fin d’année qu’arrive un réajustement annuel qui conditionnera le montant des factures suivantes. On ne paie donc pas au fur et à mesure des consommations.

Souvent, on pense aussi que ce sont les investissements techniques (onéreux, ceux-là) qui permettront de faire chuter le prix des factures, bien plus que des comportements raisonnables.

Et enfin, l’énergie est considérée comme indispensable, une dépense à laquelle on n’échappe pas.

Difficile de développer une vue globale dans ce contexte, d’autant que le montant des factures d’énergie est parfois bien moins élevé que celui d’autres dépenses.

Gérer

Pour agir et organiser une campagne de sensibilisation.

Ils sont démotivés !… Pourquoi ?

Plusieurs explications sont possibles pour ce type de problème.

  • L’URE n’a pas de sens pour les personnes à qui vous demandez de modifier des comportements (voir « Ils sont si peu motivés. Pourquoi ?« ). Ou plus probablement, d’autres choses ont bien plus de sens.
  • Ils ne sont pas suffisamment associés ou ils ont été mal associés aux décisions et ils sont donc peu motivés. En effet, les êtres humains sont surtout motivés par des objectifs qu’ils se fixent eux-mêmes ou s’ils parviennent à définir eux-mêmes comment atteindre des objectifs qu’on leur impose.
  • Même associées au projet, certaines personnes ne percevront pas en quoi ce projet leur permet d’atteindre d’autres objectifs importants pour elles. Le responsable énergie aura alors l’impression qu’il ne « peut rien leur demander ».
  • La lenteur, la lourdeur, l’inertie, les conflits liés à la participation des acteurs à un projet URE (ou tout autre projet d’ailleurs) ont le don de démotiver ces personnes qui pensent que l’efficacité immédiate est à rechercher. Sans se rendre compte que d’autres procédures plus « expéditives » sont loin d’être aussi efficaces que dans leurs pensées, elles se démotivent en mettant en avant « tout ce temps perdu en discussion stérile ».
  • Mais il se pourrait aussi que ce comportement ne soit rien d’autre que l’expression d’une « résistance au changement » que la plupart des individus adoptent assez spontanément, surtout lorsque le changement demandé est nouveau, qu’ils n’ont pas encore eu le temps de s’habituer ou d’expérimenter les conséquences réelles pour eux du changement demandé. C’est l’expression de l’adage « il vaut mieux prévenir que guérir ! ». On fait cela notamment pour éviter de rester sans aucun pouvoir dans une situation qui nous est imposée.

Gérer

Pour agir et gérer les conflits.

Gérer

Pour agir et surmonter son propres découragement.

Je suis toujours le dernier informé !… Pourquoi ?

Pour répondre à cette question, plusieurs explications sont possibles.

  • D’une manière générale, il faut bien admettre que les filières de communication informelles sont bien plus souvent utilisées que les autres. Il est en effet assez fréquent de constater que dans une organisation, c’est radio-couloir qui a le taux d’écoute le plus grand !
  • Les précédentes demandes n’ont pas été suivies d’effets, pour des raisons qui vous sont ou non imputables. Les utilisateurs essaient donc quelque chose qui leur semble plus efficace.
  • Il se pourrait aussi que les enjeux (conséquence positive ou négative de ce qu’ils font) soient très importants pour ces utilisateurs. Ils passent par « la bande » parce que c’est plus facile, que ça permet à plus de gens d’être au courant, que c’est une manière de montrer aux décideurs que l’énergie n’est pas une priorité pour eux …
  • Utiliser une filière personnelle pour faire passer une information au lieu de la filière « logique », c’est aussi utiliser son « pouvoir stratégique » (voir « Tout est bloqué. Pourquoi ?« ) Pour atteindre les objectifs qu’ils se fixent, de manière consciente ou inconsciente, les utilisateurs ont recours à des stratégies de communication et de persuasion. Passer « par la bande » peut être une de ces stratégies.
  • Le confort au travail (ne pas avoir froid souvent) est un objectif personnel qui paraît très important à certaines personnes. Elles attachent donc de l’importance à garder une maîtrise sur des éléments de leur environnement en relation avec cet objectif. Choisir sa filière d’information peut dès lors être vu comme une manière de garder la maîtrise sur le « chaud » indispensable…

Gérer

 Pour agir et déjouer les blocages institutionnels.

Ils sont d’accord, mais rien ne bouge  ! … Pourquoi ?

Les mentalités changent … petit à petit.

Une information unique, présentée une seule fois, une lettre ou un discours, même bien faits, prenant en compte ce qui est important pour l’interlocuteur, énonçant des raisons très compréhensibles et même valables pour les gens sera souvent insuffisante pour faire changer les mentalités. « S’ils continuent à n’en faire qu’à leur tête », c’est notamment parce que les messages comportant des raisons de changer et des manières de changer n’ont pas été suffisamment renouvelés.

Pour que des personnes intègrent des changements, il faut que leur environnement soit favorable à ces transformations et à leur persistance.
Ce n’est pas le cas ici. Les personnes n’ont sans doute pas été suffisamment associées aux changements ou elles ont été mal associées au changement. Elles ont l’impression « qu’on les manipule ». Les décisions les concernant n’ont pas été prises en groupe. Il n’existe pas suffisamment de relations personnelles entre les « décideurs » et les personnes impliquées directement par les changements.

Les gens ne changent pas d’habitude s’ils n’ont pas d’information.

Mais avoir été informé ne suffit en général pas, il faut encore que la personne soit réceptive au message et le comprenne. Et comme les gens ne changent, en général, pas de comportement pour rien ou simplement pour vous faire plaisir, il est important de leur expliquer pourquoi un  changement est souhaité et ce qu’ils vont y perdre et y gagner.

Le « pourquoi » doit avoir une valeur pour eux. Alors le message aura plus de chances d’être accepté « vraiment ». De plus, il faut avoir fait  l’expérience des conséquences réelles du changement pour se motiver à l’intégrer comme un nouvelle habitude et pour cela il faut nécessairement du temps.

Gérer

Pour se faire entendre et convaincre sa hiérarchie.

Ils se comparent avec un plus gaspilleur qu’eux… pour ne rien faire ! Pourquoi ?

S’il y a d’importants investissements techniques à réaliser, il faut dans la mesure du possible commencer par là. Dans la situation décrite, bien des personnes se démotivent parce qu’elles pensent que leurs efforts devraient être trop importants pour un résultat qu’elles savent dérisoire. Dans ce cas, leur comportement est très compréhensible et il n’est pas nécessaire de l’expliquer autrement. Quand les décisions concernant les investissements techniques ont été prises, on peut commencer aussi à agir parallèlement sur les comportements.

Dans d’autres circonstances, l’origine du comportement décrit peut se trouver chez des personnes qui ne trouvent pas de sens ou n’acceptent aucune des raisons invoquées à acquérir de nouveaux comportements URE. Il nous faut rappeler ici que les « bonnes raisons » de changer de comportements sont individuelles et que ce qui a du sens pour quelqu’un n’en a pas nécessairement pour tout le monde. Il est donc possible que trop peu de « pourquoi » aient été diffusés pour acquérir de nouveaux comportements URE.
Mais il se peut aussi que le canal de communication utilisé pour diffuser ce type d’information ne convienne pas dans la situation particulière. Exemple : des affiches mal placées, parution une seule fois dans un journal interne que peu de personnes lisent …

Résister au changement est normal pour des personnes qui n’ont pas eu grand-chose à dire dans les modifications qu’elles sont tout à coup obligées d’accepter. On peut certes le déplorer; toutefois, c’est une conséquence non voulue d’une situation et il vaut mieux ne pas l’imputer à la mauvaise volonté des acteurs. De toute façon, juger en accusant les gens est peu efficace; on ne peut bâtir sur une telle base.

Gérer

Pour agir en organisant une campagne de sensibilisation.

Ils vandalisent l’installation ! … Pourquoi ?

Il est préférable souvent de ne pas tout automatiser. D’abord parce que l’automatisation favorise l’apparition du vandalisme, ensuite parce qu’il existe certaines personnes qui baissent le radiateur quand il fait 22° au lieu d’ouvrir la fenêtre … si elles ont le choix !

La liberté d’un individu dans un groupe est toujours bien limitée quelque part par un autre individu et cette situation engendre ce que certains auteurs ont appelé le « stress social ». A l’intérieur d’une organisation, les contraintes sont nombreuses et omniprésentes. Le stress social est fait de tous ces « stresseurs organisationnels » avec lesquels nous devons vivre tous les jours.

Les stresseurs organisationnels sont un facteur important dans les troubles dus au stress : l’individu les identifie difficilement comme facteurs de stress. Ces stresseurs sont constants, quotidiens et souvent on a l’impression qu’on ne peut rien y faire.

Pour minimiser l’impact de ce stress diffus et impalpable sur leur santé, beaucoup d’humains, sans le savoir, tentent de reprendre une maîtrise sur quelque chose dans les situations qu’ils sont amenés à vivre.

Ils mettent ainsi en place des stratégies qui leur permettent de récupérer le sentiment qu’ils peuvent influer sur les choses et les êtres.

Le fait « d’avoir du pouvoir » sur la situation augmente l’estime de soi et est de nature à prévenir les troubles physiologiques et émotionnels résultant du stress.
Le vandalisme est un comportement permettant de maîtriser une situation qui échappe à l’individu. Comme le fait d’avoir trop froid ou trop chaud est lui-même un stress pour un organisme vivant, il est assez fréquent de voir se développer des comportements aberrants dans des situations où la personne ne peut rien faire d’autre pour elle-même que de vandaliser une vanne.

Gérer

Pour agir et gérer les conflits.

Gérer

Pour agir en organisant une campagne de sensibilisation.

Limiter les pertes de chaleur

Limiter les pertes de chaleur


Un profil de demande thermique en forte évolution

Les conséquences de l’isolation des parois extérieures

Hier et aujourd’hui
(couleur beige = isolant).

Le fonctionnement thermique des bâtiments tertiaires subit une révolution depuis 20 ans suite à la conjugaison de 3 facteurs :

  1. Un renforcement de l’isolation et surtout l’arrivée de vitrages très performants.
  2. Une explosion des apports internes électriques.
  3. Une tendance à augmenter les surfaces vitrées en façade.
Résultats d’une simulation informatique

Pour un même immeuble type de bureau, nous avons comparé les bilans énergétiques entre une construction ancienne (simple vitrage, murs non isolés, …) avec une version usuelle aujourd’hui (double vitrage, murs isolés, …).

Voici les bilans obtenus (évolution de la demande en fonction de la température extérieure, celle-ci variant de – 10 à + 30 °C) :

Une évolution sensible par rapport aux bâtiments des années 70 apparaît :

  • L’isolation élevée diminue les besoins de chauffage en hiver.
  • La bureautique couvre une part des besoins d’hiver… mais augmente les besoins de refroidissement en été et en mi-saison.
  • Le soleil génère des pointes de température difficile à accepter par l’occupant. Les périodes de canicule sont présentes, elles génèrent un risque d’inconfort majeur, mais ne représentent pas une consommation d’énergie élevée, car le temps est court.

Si autrefois le chauffage était arrêté par + 15°C extérieur, aujourd’hui le chauffage des locaux est arrêté dès + 11°C extérieur, voire moins s’il y a beaucoup d’apports internes (la chaudière reste en service pour l’éventuel chauffage de l’air neuf et de l’eau chaude sanitaire). En mi-saison, des locaux restent en demande de chaleur au nord, alors que la façade sud est déjà en demande de refroidissement.

L’isolation diminue la demande de chauffage (hiver) et augmente la demande de refroidissement (été). Mais le bilan global des consommations annuelles est toujours positif en faveur de l’isolation.

Par rapport à un bâtiment mal isolé, la consommation de chauffage tombe au tiers de sa valeur. Et parmi ce tiers restant, le chauffage de l’air neuf hygiénique représente la moitié des besoins.

Si autrefois il y avait 8 mois d’hiver et 4 mois d’été, aujourd’hui la période de chauffe est limitée à 6 mois (15 octobre – 15 avril).

Mais le besoin de rafraîchissement est accru, en été et en mi-saison.

La diminution de l’inertie et l’augmentation des gains internes

Autrefois, le bâtiment disposait d’une bonne inertie thermique qui lissait les pointes d’apports solaires en journée (les bâtiments ne se comportaient pas comme une voiture laissée en plein soleil …) grâce à l’immense réservoir que constituait la masse des parois.

Suite à sa faible isolation, le bâtiment se « déchargeait » la nuit de la chaleur accumulée en journée.

Aujourd’hui, la tendance va vers :

  • La diminution de l’inertie pour des raisons fonctionnelles (tapis, faux plafond, cloisons mobiles, …).
  • L’augmentation des équipements de bureautique (doublement des consommations électriques du secteur tertiaire durant ces 15 dernières années !).
  • L’amplification des apports solaires suite au souhait du Maître d’Ouvrage de larges baies vitrées.
  • La chaleur interne se retrouve « piégée » dans le bâtiment suite à l’isolation des parois.

Faut-il une forte isolation ? Ne perd-on pas en climatisation ce que l’on gagne en chauffage ?

Non, toutes les simulations informatiques montrent que le bilan reste bénéficiaire en faveur de l’isolation, notamment parce que la saison de chauffe est plus longue que l’été.

Voyons les choses positivement : autrefois, on n’avait pas conscience de l’existence d’une « chaleur interne » parce que celle-ci était négligeable face aux déperditions des parois. A présent, les fuites de chaleur étant maîtrisées et les apports internes amplifiés par l’évolution technologique, ces apports viennent à satisfaire en bonne partie nos besoins hivernaux. Nous arrivons à chauffer nos bureaux avec 7 litres de fuel au m², contre 20 à 25 dans les années 50. Et c’est tant mieux.

Puisqu’une consommation électrique minimale est nécessaire (bureautique, éclairage, …), tant mieux si nous pouvons « utiliser une deuxième fois » cette énergie pour nous chauffer.

Quant aux besoins de rafraîchissement, la courbe bleue du diagramme ci-dessus montre qu’ils apparaissent majoritairement lorsque la température extérieure est entre 14 et 22°C, c.-à-d. plus froide que l’ambiance intérieure. À ce moment, il devrait être possible « d’ouvrir le bâtiment » pour valoriser l’air frais et décharger le bâtiment,… mais le bruit, la pollution de l’air ou le risque d’intrusion rendent cette ouverture parfois complexe.

Ceci renforce l’importance d’une conception initiale du bâtiment adaptée à ce nouveau profil de consommation et la mise en place d’un système de refroidissement qui valorise l’air frais extérieur.

Théories

Pour plus d’informations sur l’évolution des besoins thermiques des immeubles, suite à l’isolation des parois.

Et ceci ne nous épargne pas la nécessité de trouver une solution pour gérer la période de canicule !


Optimaliser le volume du bâtiment

En réalité la chose n’est pas simple : il s’agit de trouver, selon la programmation du bâtiment et le contexte d’implantation (forme et taille du terrain, environnement bâti ou paysager, …) le compromis optimal entre :

  • une grande compacité pour limiter les pertes de chaleur,
  • et une faible compacité pour profiter d’éclairage naturel et faciliter le rafraîchissement par ventilation naturelle.

L’intérêt de la forte compacité

Un bâtiment compact, s’approchant du cube, a peu de pertes de chaleur. La surface de déperdition de l’ensemble de ses façades est limitée par rapport au volume des locaux. Les zones centrales, en contact avec d’autres locaux à la même température, ont beaucoup moins de pertes de chaleur que les locaux périphériques.

Par contre, ces zones sont difficilement éclairées et ventilées naturellement.

L’intérêt de la faible compacité

Un bâtiment peu compact (barre, en « peigne », carré avec cour intérieure, présentant de nombreux décrochements, …) a une surface de façade plus importante par rapport au volume des locaux et aura donc plus de déperditions, et une demande de chauffage accrue.

Par contre, le fait d’avoir plus de locaux en façade permet de les éclairer naturellement, et d’organiser relativement facilement une ventilation naturelle.

Exemple : Queen’s Building de l’Université de Montfort, en Angleterre. Les locaux, ventilés naturellement, sont agencés par rapport à leur fonction et la développée de l’enveloppe est importante.

Photo Queen's Building.

Plan Photo Queen's Building.

Plan du premier niveau :

  1. ateliers d’électricité
  2. salles de cours
  3. atrium
  4. auditoires
  5. laboratoire de mécanique

Concrètement

Selon les cas, le juste compromis sera en faveur de l’une ou de l’autre solution.

Dans les bâtiments récents, bien isolés, le problème de la surchauffe et de la consommation de froid prend de plus en plus d’importance par rapport à celui de la consommation de chauffage.

Il convient donc, a priori, de favoriser autant que possible l’éclairage naturel et les possibilités de refroidir naturellement le bâtiment par ventilation naturelle intensive en :

  • Limitant la profondeur des locaux. On recommande de limiter la profondeur des bureaux au double de la hauteur du local, soit à environ 6 m. Ainsi, si deux rangées de bureaux sont séparées par un couloir central, cela donne une profondeur de bâtiment d’environ 15 m.
  • Limitant le nombre d’étages à 2 ou 3 idéalement. Les contraintes techniques pour organiser une ventilation naturelle intensive dans des bâtiments plus hauts deviennent très lourdes (exemple : cheminées hautes).

Limiter les besoins de chauffage

Opter pour un bâtiment bien isolé

L’isolation de l’enveloppe est, et de loin, le moyen le plus efficace pour réduire la consommation d’un bâtiment. Et les vitrages très performants permettent aujourd’hui de diminuer drastiquement les consommations d’hiver.

Non, on n’isole JAMAIS trop. L’isolation diminue la demande de chauffage en hiver et augmente celle de refroidissement en été, mais le bilan global des consommations annuelles est toujours en sa faveur.

Il est toujours utile d’isoler, même si cela entraîne la nécessité de climatiser. Bien entendu, l’idéal est de trouver des solutions naturelles pour rafraîchir le bâtiment et éviter ainsi le refroidissement mécanique.

Dans les propos ci-dessous, on supposera toujours que le bâtiment est bien isolé.

On donnera également aux concepteurs le temps et les moyens nécessaires pour étudier les détails de construction à prévoir pour éviter les ponts thermiques (principe de continuité de l’isolation).

Concevoir

Pour plus de détails sur la conception des détails de façades.

Favoriser l’étanchéité de l’enveloppe

Le problème est qu’il est impossible d’arrêter ce type de ventilation lorsqu’elle n’est pas nécessaire, en dehors des temps d’occupation notamment. Or elle est fortement consommatrice d’énergie.

Aujourd’hui, il convient de réaliser une enveloppe très étanche à l’air (parois, joints, portes, etc.) et d’organiser une ventilation hygiénique contrôlée (naturelle ou mécanique).

  • Lors de la construction, on sera très attentif à l’étanchéité à l’air des parois. Le bâtiment ne doit pas se « décharger » de sa chaleur en hiver par des fuites multiples de son enveloppe. La norme européenne EN 13779 recommande un taux de renouvellement d’air maximum sous la pression d’essai de 50 Pa (n50) de 1/h, ce qui génère en moyenne un taux de renouvellement d’air par infiltration de 4 % (0,04/h).

« Blower-test » de contrôle de l’étanchéité .

  • Il sera très utile de prévoir un sas à l’entrée du bâtiment, particulièrement en cas de climatisation de celui-ci.
  • On sera très attentif également à la fermeture des grilles de châssis (ventilation hygiénique) pendant la nuit et le week-end, quitte à installer des grilles motorisées si la motivation future de l’occupant paraît faible…

Limiter les besoins de chauffage de l’air neuf hygiénique

Dans un immeuble bien isolé d’aujourd’hui, le chauffage de l’air neuf hygiénique génère plus de la moitié des consommations de chauffage. On veillera dès lors à :

  • Limiter le débit d’air neuf à 30 m³/heure/personne en période de chauffe. Ce débit peut bien sûr être augmenté en mi-saison et/ou en été.
  • Favoriser les installations de ventilation « double flux » : une école est occupée 25% du temps, un bureau 30% du temps ! Il est donc fondamental de pouvoir stopper le débit d’air en période d’inoccupation.
  • Gérer ce débit en fonction de la présence effective des occupants : un capteur (détecteur de présence, sonde CO2, …) peut permettre de moduler le débit, par palier (ventilateur à plusieurs vitesses) ou en continu (ventilateur à vitesse variable). Tout particulièrement, le débit d’air neuf sera stoppé lors de la relance du bâtiment (le lundi matin, par exemple), avant l’arrivée des occupants.
  • Préchauffer l’air neuf hygiénique par récupération de chaleur
    • Sur l’air extrait (échangeur à plaques, par exemple). Idéalement, il faudra prévoir alors que les conduites d’extraction soient proches des conduites de pulsion d’air.
    • Sur une zone tampon du bâtiment. Par exemple, une prise d’air placée dans un atrium captera de l’air déjà préchauffé par le bâtiment et/ou le soleil.
    • Sur un puits canadien dans le sol pour capter l’énergie géothermique.
    • Sur un condenseur de machine frigorifique, si celui-ci présente un fonctionnement annuel. On imagine par exemple qu’un rideau d’air chaud à l’entrée du bâtiment puisse être alimenté par le refroidissement de la salle informatique ou de la chambre froide de la cuisine.

Si ces idées sont retenues dès le début du projet, elles entraînent peu de surcoûts.

Concevoir

Pour plus de détails sur la conception des installations de ventilation.

Faut-il forcément climatiser le bâtiment ?

Pour certains, le rafraîchissement de l’ambiance intérieure semble aujourd’hui incontournable. Le maître d’ouvrage se trouve-t-il alors confronté à l’obligation d’investir à la fois dans une installation de chauffage, certes plus petite qu’avant, mais aussi dans une installation de refroidissement ?

Non, une machine frigorifique ne doit pas être obligatoirement être installée dans nos régions. Mais une « stratégie de rafraîchissement active » doit être étudiée si la puissance thermique des apports de chaleur dépasse 50 à 60 W/m² au sol.

Décrivons ci-dessous ces diverses possibilités.

Calculs

Pour évaluer la puissance thermique prévisible dans un local et vérifier que les 60 W/m² ne sont pas dépassés, nous vous proposons

une feuille de calcul simplifiée sur Excel.

Trois stratégies sont possibles :

Stratégie 1 : limiter les sources de chaleur et se passer de la machine frigorifique

Constat : depuis l’âge de la pierre, l’homme se chauffe. Cela se comprend, il souhaite vivre dans une ambiance entre 20 et 24°C. Or la température moyenne extérieure annuelle dans nos Régions est de 10°C. Un complément de chaleur est nécessaire.

Par contre, la température à Uccle dépasse 24° durant 2 % de l’année seulement ! Autrement dit, 98 % du temps, il fait plus froid à l’extérieur du bâtiment qu’à l’intérieur. Comment se fait-il que nous ayons alors besoin d’une machine frigorifique pour le refroidir ???

Inspirons-nous du mas provençal (qui reste bien frais même lorsqu’il fait torride à l’extérieur) pour construire un bâtiment.

  • Il dispose de suffisamment d’inertie intérieure pour stabiliser les variations de température en journée,
  • il « décharge » le bâtiment via un rafraîchissement nocturne par air (free cooling) ou par eau (slab cooling) pour évacuer l’excédent de chaleur grâce à l’air frais de la nuit.

Free cooling et slab cooling.

Pour vous faire une opinion, voici trois exemples conçus en Angleterre, pays qui a pris beaucoup d’avance dans ce domaine :

Études de cas

Le bâtiment environnemental du « BRE ».

Études de cas

Le centre administratif de Powergen.

Études de cas

Le « Queen’s Building » de l’Université De Monfort.

Mais en Belgique aussi, des initiatives sont prises, comme dans le bâtiment IVEG à Anvers :

Études de cas

Le bâtiment IVEG.

Stratégie 2 : installer chauffage et refroidissement, mais en limiter l’usage aux périodes extrêmes

Analysons la répartition des températures extérieures à Uccle :

Admettons l’évolution actuelle vers l’installation d’une machine frigorifique. Ce n’est pas en soit plus mauvais de refroidir que de chauffer (contrairement à une idée couramment répandue, avec un 1 kWh électrique au compresseur, on produit 3 kWh de froid. Et pour obtenir 1 kWh électrique en sortie de centrale, il faut consommer 2,8 kWh d’énergie primaire. Donc le bilan entre chauffage et refroidissement est neutre).

L’objectif de conception devient :

  • recours au chauffage des locaux durant les seules périodes de grands froids (T°ext <…5°C…),
  • recours au refroidissement mécanique aux seules périodes chaudes (T°ext >…18°C…),
  • durant le reste du temps (5°C < T°ext > 18°C), c.-à-d. plus de 60 % de l’année, les apports internes et externes « gratuits » assurent le chauffage, et l’air extérieur assure le refroidissement de mi-saison. Aucun apport thermique par combustible ne doit être apporté à ce moment.

Cela sous-entend une conception adaptée du bâtiment (pouvoir ouvrir les façades dès qu’il fait trop chaud à l’intérieur, par exemple) et du système de climatisation (conçu comme un appoint), ainsi que le placement d’un récupérateur de chaleur sur l’air extrait, …

C’est une solution à très basse consommation, mais qui nécessite parfois un investissement plus élevé, sauf si le même système gère le chaud et le froid (slab cooling, pompe à chaleur, …). En contre-partie, elle apporte une garantie de résultat final : chauffage et climatisation sont présents pour couvrir toute période de pointe, toute évolution future du bâtiment.

Comment choisir ?

La première stratégie devrait a priori être toujours étudiée. Puisqu’elle ne fonctionne que si les apports de chaleur sont drastiquement réduits, ceci sous-entend que l’approche énergétique est globale. On y gagne donc deux fois : parce que les équipements sont à faible consommation et parce qu’ils n’ont pas entraîné le fonctionnement d’un climatiseur. De plus, la simplification des systèmes est une garantie d’exploitation future à faible coût. Enfin, elle permet à l’occupant de retrouver le contact avec l’extérieur par l’ouverture des fenêtres, ce qui est luxe à nul autre pareil.

La deuxième stratégie est certainement prometteuse. Cette recherche « d’autonomie » maximale du bâtiment sans énergie autre que celle des équipements interne (éclairage et bureautique) et externe (soleil), cette conception des systèmes de chauffage et de refroidissement comme appoint en période de pointe, … constitue un des défis majeurs à relever pour les bâtiments futurs. Lorsque le contexte l’impose (environnement bruyant et pollué, volonté de garantir une stricte consigne de température intérieure, …), c’est la voie à suivre. Elle demande de la créativité tant à l’architecte qu’à l’ingénieur. Encore faut-il leur en laisser le temps et les moyens dans la phase de conception.

À noter une troisième stratégie « de compromis » :

Peut-être qu’une climatisation partielle du bâtiment est la solution ?

Dans les locaux avec forte production de chaleur interne (le centre informatique d’une société d’assurances, par exemple), la climatisation s’impose. Mais il est possible de regrouper dans cette partie du bâtiment les équipements les plus dispensateurs de chaleur (photocopieuses, imprimantes, …) et d’y prévoir une installation de free-chilling (by-pass de la machine frigorifique en hiver et refroidissement direct sur l’air extérieur).

Une telle centralisation des équipements de bureautique permet également de mieux gérer le bruit dans les locaux : les moniteurs des PC sont centralisés en ne laissant plus l’accès qu’aux écrans et claviers. Des lecteurs communs de CD ou de disquettes sont accessibles en partage.

De même, l’ensemble des locaux de réunion peuvent être regroupés (superposés, un ou deux par étage) et gérés par une installation « à volume d’air variable » (VAV).

Enfin, les autres locaux, dégagés des apports thermiques principaux, peuvent alors être gérés par refroidissement naturel.

A chaque besoin,… sa solution. Et cette « décomposition thermique » du bâtiment peut avoir un impact extérieur visible sur son architecture, … ce qui n’est pas inintéressant !

Rentabilité de l’isolation d’une paroi

Rentabilité de l'isolation d'une paroi

Attention !
L’évaluation ci-dessous est applicable à d’anciens bâtiments non climatisés. Elle n’est pas valable pour des bâtiments neufs bien isolés et climatisés.

Calculs

Si vous voulez accéder à un programme de calcul qui effectue les calculs ci-dessous.

Évaluation de l’économie énergétique annuelle engendrée par l’isolation d’une paroi en contact avec l’extérieur

Principe de base

On détermine une température moyenne intérieure et une température moyenne extérieure pour la saison de chauffe.

La quantité de chaleur traversant 1 m² de paroi donnée est alors estimée avant et après isolation.

L’économie d’énergie annuelle par unité de surface de déperdition est la différence entre les 2 pertes de chaleur durant la saison de chauffe.

Économie d’énergie annuelle

L’économie d’énergie annuelle =
((ΔU x S x ΔTm) / η) x durée de chauffe 

Avec :

  • S = la surface de la paroi; elle est fixée à 1 m²
  • Tm = Tint. moy. – Text. moy. = écart entre les températures moyennes intérieures et extérieures
  • η = rendement global de l’installation de chauffage

Détaillons quelques paramètres :

Le coefficient de transmission thermique de la paroi

Les valeurs des coefficients de transmission thermiques ont été calculées pour certaines parois types. Elles ont été calculées de manière plus complète dans l’ouvrage : « Parois courantes : catalogue de coefficients k’ de la Région wallonne » – Aménagement du territoire, Logement, Patrimoine et Énergie (DGO4).

La température intérieure moyenne du bâtiment (Tint moy.)

Tint. moy. = Température moyenne des locaux en journée – réduction pour les coupures de nuit et de week-end – réduction pour les apports gratuits.

Les valeurs que l’on peut considérer pour les coupures
(nuits, W.E., congés scolaires) sont données dans le tableau suivant :

Type de bâtiment : Réduction (°C)
Hôpitaux, homes, maisons de soins 0°C
Immeuble d’habitation avec réduction nocturne 1,5°C
Bâtiment administratif, bureaux 3°C
École avec cours du soir 4,5°C
École sans cours du soir et de faible inertie 6°C

La réduction pour les apports gratuits (équipements internes, personnes, soleil, …) est estimée en moyenne entre 2 et 3°C.

Cette réduction doit être adaptée en fonction des caractéristiques physiques du bâtiment : elle doit être augmentée si l’inertie et l’isolation sont fortes, si les apports internes sont grands (ordinateur, éclairage, occupation, …) et diminuée si le bâtiment est peu vitré, par exemple.

 La température extérieure moyenne (Text. moy.)

C’est la température extérieure moyenne, durant la saison de chauffe. Le tableau ci-dessous donne sa valeur équivalente entre le 15 septembre et le 15 mai pour quelques endroits de notre région :

Région

Text. moy.

Uccle 6,5°C
Hastière 5,5°C
Libramont 3,5°C
Mons 6°C
Saint Vith 2,7°C

La durée de chauffe

La durée de la saison de chauffe peut être uniformisée du 15 septembre au 15 mai, soit 242 jours, soit 5 800 heures. Les températures extérieures moyennes ci-dessus sont calculées fictivement en considérant que la saison de chauffe est partout de 242 jours.

Tout se passe donc comme si…

Tout se passe donc comme si durant 242 jours la température de Uccle est de 6,5°C; que la température intérieure d’un bureau (maintenu à 20°C durant la journée) est en permanence de 14°C (20°C – 3°C – 3°C). La différence de température est donc de (14°C – 6,5°C), soit 7,5°C.

Rendement global de l’installation de chauffage

La notion de rendement global d’une installation de chauffage traduit son efficacité énergétique.

Le rendement représente le pourcentage d’énergie consommée qui est réellement utile au confort des occupants, le complément de consommation servant à compenser les pertes au niveau de la production, de la distribution, de l’émission et de la régulation.

Des ordres de grandeur de ce rendement peuvent être donnés en fonction du type de chaudière et de l’installation ainsi que de sa régulation.

Exemple.

Un m² de mur de briques pleines de 29 cm (U = 2,3 W/m² K) constitue la paroi d’un local de bureau chauffé à 20°C à Uccle. Le mur est isolé avec 6 cm de laine minérale (U = 0,5 W/m² K). Le rendement global de l’installation de chauffage est évalué à 70 %.

L’économie d’énergie annuelle

= (ΔU x S x ΔTm x durée de chauffe) / 0,7

= [(2,3 – 0,5) x 1 x [(20 – 3 – 3) – 6,5)] x 5 800 h] / 0,7

= (1,8 x 7,5 x 5 800) / 0,7

= 111 857 Wh

= 112 kWh

Sachant qu’1 m³ de gaz équivaut énergétiquement à 1 litre de mazout et à 10 kWh,

L’économie d’énergie annuelle par m²

= 11,2 litres de mazout ou 11,2 m³ de gaz.


Évaluation de la rentabilité d’une isolation de paroi en contact avec l’extérieur

Pour évaluer la rentabilité financière de l’isolation d’une paroi, on met en balance, d’une part le gain annuel financier provenant des économies d’énergie suite à l’isolation, d’autre part, le coût de revient de cette amélioration. Ce calcul est simplifié : il ne tient pas compte du manque à gagner de l’argent dépensé pour payer la rénovation qui aurait pu être placé en banque.

Exemple : évaluation de la rentabilité de l’isolation du mur de l’exemple

ci-dessus.

Lorsqu’on isole 1 m² de mur, l’économie annuelle est de 11,2 litres de gasoil. Avec un prix du gasoil de 0,8 € par litre, l’économie financière annuelle est de 9 €.

Si l’on estime le coût d’une isolation de mur par l’extérieur à 62 à 75 € par m², le temps de retour est de 7 à 8 ans.

La rentabilité peut être améliorée par des subventions.
Elle est augmentée largement si le bâtiment est situé en Ardenne (Text. moy.plus basse) ou si le chauffage est plus continu (cas des hôpitaux, des piscines, des homes où la tint moy. est plus élevée).

Indépendamment des aspects budgétaires, le confort thermique sera amélioré dans les locaux, du point de vue environnemental, les rejets de gaz polluants seront diminués… ce qui ne se chiffre pas financièrement…!

Calculs

Si vous voulez accéder à un programme de calcul qui effectue les calculs ci-dessus pour votre propre situation.

Concevoir le raccord entre le bas du versant isolé et le mur

Concevoir le raccord entre le bas du versant isolé et le mur


Isolation entre chevrons – cas d’une gouttière pendante

Schéma - isolation entre chevrons - gouttière pendante

  1. Sablière.
  2. Pare-vapeur.
  3. Isolant.
  4. Sous-toiture rigide.
  5. Contre-latte.
  6. Lattes.
  7. Couverture.
  8. Planche de rive.
  9. Chevron.
  10. Voliges.
  11. Gouttière.
  12. Finition intérieure.
  13. Latte de pied.
  14. Peigne.
  15. Bande de raccord de la gouttière.
  16. Tuile de pied à bord recourbé.
  17. Crochet.

Continuité de la fonction de la couverture (étanchéité à la pluie)

La couverture a pour objectif d’arrêter l’eau et de l’évacuer vers la gouttière.

Comment placer la gouttière pendante pour éviter les risques d’infiltrations ?

> Des voliges sont fixées entre ou sur les chevrons ou fermettes avec découpes éventuelles de ces derniers. Celles-ci vont servir de support à la gouttière.
Des planches de rive viennent fermer l’espace sous la toiture.

> La gouttière proprement dite prolongée par une bande de raccord est agrafée sur les voliges prévues à cet effet. L’extrémité de la bande de raccord doit se trouver au moins 80 mm plus haut que le côté extérieur de la gouttière.

Remarque : la bande de raccord de gouttière peut être indépendante de la gouttière pour autant qu’il n’existe pas de risque de remontée d’eau.

> Dans le cas de tuiles, la position et l’épaisseur de la première latte en pied de toiture est déterminée en fonction de la position des tuiles de pied :

  • le débordement de ces tuiles par rapport à la gouttière doit être d’environ 1/3 de la largeur de la gouttière;
  • la pente de ces tuiles doit être la même que celle des autres tuiles.

Attention, la bande de raccord de la gouttière et la sous-toiture ne peuvent être perforées lors du clouage de cette latte.

> Une bande métallique ou synthétique (ou peigne plastique) protège la latte de pied contre la pluie et évite la pénétration d’oiseaux ou d’insectes.

  1. Ardoises.
  2. Lattes.
  3. Contre-lattes.
  4. Sous-toiture.
  5. Volige.
  6. Peigne.

> Contrairement aux prescriptions, il n’est en général pas donné de pente aux gouttières pendantes, et ce pour des raisons de pratique et d’esthétique. Cette dérogation n’entraîne, en général, pas de problème en pratique.

Continuité de la fonction de la sous-toiture (évacuation des eaux infiltrées ou condensées)

> La sous-toiture doit aboutir dans la gouttière.

> Le recouvrement minimal entre la sous-toiture et la bande de raccord de la gouttière est de 60 mm en projection verticale

Continuité de l’isolation

La continuité de l’isolation exige une bonne coordination entre les corps de métier.

En effet, dans le cas d’une isolation entre chevrons, l’isolant de toiture est posé après la sous-toiture et la couverture.

Or, la jonction correcte de l’isolant entre le mur et la toiture ne peut être réalisée que par l’extérieur, et la sous-toiture déjà posée condamne l’accès à cette zone.

Aussi, une partie de l’isolant, celle située au-dessus du mur de façade et raccordée à l’isolant de la façade, doit être posée juste avant la pose de la sous-toiture.

Continuité du pare-vapeur et raccord de la finition intérieure de toiture avec celle des murs

Le pare-vapeur doit être correctement raccordé contre la face intérieure du mur de façade. La finition fixée sous le pare-vapeur est raccordée de manière étanche avec la finition intérieure du mur de façade de façon à supprimer tout risque de courant d’air à travers la toiture.


Isolation entre fermettes – cas d’un chéneau et de combles non utilisés

Schéma - isolation entre fermettes - chéneau et de combles non utilisés

  1. Panne sablière.
  2. Volige.
  3. Planche de rive.
  4. Fond de chéneau.
  5. Fermette.
  6. Sous-toiture.
  7. Contre-latte.
  8. Lattes.
  9. Couverture.
  10. Double latte.
  11. Bande métallique ou synthétique.
  12. Porte à faux de la tuile de pied.
  13. Bande de raccord de la gouttière.
  14. Pare-vapeur.
  15. Vide technique.
  16. Finition intérieure.
  17. Echelle de corniche.
  18. Plafond de rive.
  19. Étanchéité du chéneau.
  20. Comble perdu.

Une échelle de corniche en bois mise à plat au-dessus du mur porteur ou de la dalle permet de réaliser le support du chéneau en porte-à-faux. Elle remplace ou supporte la sablière.

Continuité de la fonction de la couverture (étanchéité à la pluie)

La couverture a pour objectif d’arrêter l’eau et de l’évacuer vers la gouttière.

Comment placer la gouttière pour éviter les risques d’infiltrations ?

Des cales posées sur l’échelle vont servir à donner la pente au chéneau.
Des voliges sont fixées entre ou sur les chevrons ou fermettes (avec découpes de ces dernières dans le second cas). Celles-ci vont servir de support à la bande de raccordement du chéneau.
Des planches (planche de rive, plafond de rive + moulure de finition, fond de chéneau, …) viennent former la corniche assurant par la même occasion la fermeture du bâtiment au pied du versant de la toiture.

Le caisson en bois de la corniche est pourvu d’une étanchéité métallique, en plastique rigide ou en matériaux souples d’étanchéité tels que le bitume polymère armé de polyester et/ou de fibre de verre.

De plus, comme dans le cas précédent :

> L’extrémité de la bande de raccordement de la gouttière doit se trouver au moins 80 mm plus haut que le côté extérieur de la gouttière.

> La hauteur de la première pièce de support des éléments de couverture (liteaux, voliges) en pied de toiture, est adaptée de manière à leur conserver la même pente.
Attention, la bande de raccord de la gouttière et la sous-toiture ne peuvent être perforées lors du clouage de cette pièce.

> Dans le cas de tuiles, la position de la première de latte en pied de toiture est déterminée de manière à ce que la tuile de pied déborde au-dessus du chéneau.

> Une bande métallique ou synthétique (ou peigne plastique) protège la latte de pied contre la pluie et évite la pénétration d’oiseaux ou d’insectes.

Continuité de la fonction de la sous toiture (évacuation des eaux infiltrées ou condensées)

Comme dans le cas précédent :

> La sous-toiture doit aboutir dans la gouttière.

> Le recouvrement minimal entre la sous-toiture et la bande de raccord du chéneau est de 60 mm en projection verticale.

Continuité de l’isolation

L’échelle de corniche permet de réaliser une jonction continue entre l’isolation du mur et de la toiture (ici, la dalle des combles).

Continuité du pare-vapeur et raccord de la finition intérieure de toiture avec celle des murs

Le pare-vapeur doit être correctement raccordé contre la face intérieure du mur de façade. La finition fixée sous le pare-vapeur est raccordée de manière étanche avec la finition intérieure du mur de façade de façon à supprimer tout risque de courant d’air à travers la toiture.


Toiture « Sarking » – cas d’une gouttière pendante

Au niveau du raccord, la continuité, de la fonction de la couverture, est assurée de la même manière que pour une toiture traditionnelle (isolée par l’intérieur).

Par contre la continuité des fonctions :

  • de la sous-toiture;
  • de l’isolation thermique;
  • et de l’étanchéité à la vapeur et à l’air,

est spécifique à la toiture « Sarking », vu que le panneau isolant assure, à lui seul, ces différentes fonctions.

Cette technique impose de tenir compte de l’épaisseur supplémentaire apportée par l’isolant.

Schéma - Toiture "Sarking" - gouttière pendante.

  1. Panne sablière.
  2. Chevron ou fermette.
  3. Planche de rive.
  4. Cale de bois.
  5. Panneaux isolants.
  6. Isolant entre chevrons ou fermette.
  7. Sous-toiture éventuelle.
  8. Contre-latte.
  9. Lattes.
  10. Latte plâtrière.
  11. Couverture.
  12. Gouttière.
  13. Bavette indépendante.
  14. Peigne.
  15. Finition intérieure.

Une cale en bois est fixée sur le chevron en bas de versant, celle-ci servira à poser le premier panneau isolant.

Des planches (planches de rive, …) viennent fermer l’espace sous la toiture. La gouttière est fixée dans la planche de rive.

Continuité de la fonction de la sous-toiture

Pour assurer la continuité de la fonction de la sous-toiture des panneaux isolants en bas de versant, une bavette indépendante est engravée dans la partie supérieure du panneau sur une profondeur minimum de 30 mm. Elle est maintenue en place par un joint continu de mastic souple. La bavette est constituée d’un matériau rigide (cuivre, zinc, aluminium).

Continuité de l’isolation

Afin d’assurer la continuité de l’isolation entre celle du mur et celle de la toiture, via la panne sablière, des panneaux d’isolation complémentaires doivent être placés sur la panne sablière, entre les chevrons.

Étanchéité à l’air

Ces panneaux d’isolation complémentaire doivent également assurer l’étanchéité à l’air au niveau de bas de versant. Sinon, des dispositions spéciales sont à prévoir.


Toiture « Sarking » – cas d’un chéneau

Au niveau du raccord, la continuité, de la fonction de la couverture, est assurée de la même manière que pour une toiture traditionnelle (isolée par l’intérieur).

Par contre la continuité des fonctions :

  • de la sous-toiture;
  • de l’isolation thermique;
  • et de l’étanchéité à la vapeur et à l’air,

est spécifique à la toiture « Sarking », vu que le panneau isolant assure, à lui seul, ces différentes fonctions.

Cette technique impose de tenir compte de l’épaisseur supplémentaire apportée par l’isolant.

Schéma - Toiture "Sarking" - cas d'un chéneau.

  1. Mur de parement extérieur.
  2. Mur porteur intérieur.
  3. Isolation.
  4. Ossature corniche.
  5. Panne sablière.
  6. Chevron ou fermette.
  7. Cale de pente.
  8. Fond de chéneau.
  9. Volige.
  10. Panneaux isolants.
  11. Isolant entre chevrons ou fermettes.
  12. Sous-toiture.
  13. Contre-latte.
  14. Latte.
  15. Peigne.
  16. Bavette indépendante.
  17. Couverture.
  18. Planche de rive.
  19. Plafond de rive.
  20. Chéneau.
  21. Finition intérieure.

Une volige est fixée sur le chevron en bas de versant, celle-ci servira à poser le premier panneau isolant.

Continuité de la fonction de la sous-toiture

Pour assurer la continuité de la fonction de la sous-toiture des panneaux isolants en bas de versant, une bavette indépendante est engravée dans la partie supérieure du panneau sur une profondeur minimum de 30 mm. Elle est maintenue en place par un joint continu de mastic souple. La bavette est constituée d’un matériau rigide (cuivre, zinc, aluminium).

Continuité de l’isolation

Afin d’assurer la continuité de l’isolation entre celle du mur et celle de la toiture, via la panne sablière, des panneaux d’isolation complémentaires doivent être placés sur la panne sablière, entre les chevrons.

Étanchéité à l’air

Ces panneaux d’isolation complémentaire doivent également assurer l’étanchéité à l’air au niveau de bas de versant. Sinon, des dispositions spéciales sont à prévoir.

Repérer l’origine de la sensation de froid

Repérer l'origine de la sensation de froid


Règles de base de la recherche

Évaluer l’origine de ce problème n’est pas simple. Cela demande de recouper diverses informations comme :

  • les plaintes des occupants,
  • les moments d’apparition du problème,
  • les conditions climatiques correspondantes,
  • des mesures locales de l’ambiance thermique,
  • les indications des sondes de l’installation.

La confrontation de ces informations permet de circonscrire le problème sur base de trois hypothèses :

  • la régulation de la fourniture de chaleur n’est pas adaptée aux besoins,
  • la distribution hydraulique vers les locaux est mal équilibrée ou est à l’origine d’interférence entre les circuits,
  • la puissance locale ou totale est insuffisante.

Notons que l’ordre de présentation de ces trois phénomènes reflète dans la plupart des cas, l’ordre d’approche du problème lorsqu’un inconfort est ressenti.

Il existe deux règles de base à l’analyse et à la résolution de l’inconfort :

  1. Un schéma détaillé de l’installation doit exister ou être dressé (comme pour « l’évaluation de l’efficacité énergétique de la régulation« ).
  2. Une seule personne doit être habilitée à intervenir sur les réglages centraux de l’installation et un carnet de notes collationnera les modifications apportées pour en garder le fil conducteur.

Méthode et rigueur. Voici un moyen parmi d’autres de circonscrire l’inconfort.


Pistes de recherche

Le tableau suivant permet d’orienter les recherches, en fonction du lieu et du moment où apparaît l’inconfort.

Légende : P = production, D = distribution, E = émission, R = régulation

Moment Lieu Dans tout le bâtiment Dans une zone spécifique du bâtiment Dans un local particulier À un endroit particulier du corps
Le matin à la relance P1, P2
D2
R2, R3
D1, D2
R2, R3
D1
E1, E2, E3
R5
Lors d’un changement brutal de temps (ex : apparition/disparition du soleil) R2, R3, R4 R3, R4
Par grand froid P1, P2
D2
R1
D1, D2
R1
D1
E1, E2, E3
R5
E4
En tout temps (surtout en mi-saison) D2 D2
Progressivement dans le temps ou apparition récente P2 D1 D1
E3

Manque de chaleur lié à la production de chaleur

  • P1 : puissance des chaudières insuffisante
  • P2 : encrassement de la chaudière

Manque de chaleur lié à la distribution de chaleur

  • D1 : déséquilibrage hydraulique
  • D2 : incompatibilité des débits entre les circuits de distribution

Manque de chaleur lié à l’émission de chaleur

  • E1 : entraves à l’émission de chaleur
  • E2 : mauvaise circulation de l’eau dans les émetteurs
  • E3 : sous-dimensionnement des émetteurs (radiateurs)
  • E4 : parois extérieures froides non compensées

Manque de chaleur lié à la régulation

  • R1 : mauvais choix de la courbe de chauffe
  • R2 : mauvais paramètres de relance
  • R3 : mauvais emplacement des sondes extérieures ou intérieures
  • R4 : absence de sonde de compensation
  • R5 : mauvaise disposition des vannes thermostatiques

Un problème d’inconfort thermique ou lumineux ? N’hésitez pas à tester notre nouvel outil de diagnostic afin de trouver la solution à votre problématique.

Réparer le pare-vapeur

Réparer le pare-vapeur


Sauf dans certains cas, le pare-vapeur n’est plus visible lorsque le bâtiment est achevé.

S’il est visible, il est facile d’apprécier son état et de le réparer en cas désordre.

Lorsque le pare-vapeur n’est pas visible, c’est l’humidité excessive dans les différentes couches de la couverture qui sera le symptôme principal d’une défectuosité ou d’une mauvaise qualité de celui-ci. Cette humidité peut entraîner des coulées qui permettront d’établir un diagnostic. En cas de doute des sondages à travers la toiture seront nécessaires.

Théories

Pour en savoir plus sur la condensation interne.

Dans le cas d’une toiture chaude, toutes les couches constituant la toiture doivent être enlevées jusqu’au support et remplacées.

Dans le cas d’une isolation par l’intérieur, il fautr démonter les finitions, enlever le pare-vapeur, enlever l’isolant mouillé et vérifier le support.

Les supports en bois doivent être traités de façon curative et préventive contre les insectes et les champignons.

La protection des supports métalliques contre la corrosion, doit être vérifiée et restaurée si nécessaire.

Évaluer le confort fourni par la production d’eau chaude sanitaire

Évaluer le confort fourni par la production d'eau chaude sanitaire


Disponibilité

Accès à des locaux sanitaires

L’arrêté royal du 10 octobre 2012 fixant les exigences de base générales auxquelles les lieux de travail doivent répondre précise dans ses articles 51 et suivants, les différents équipements sanitaires qui doivent être mis à disposition par l’employeur.

En particulier, il précise les obligations de placement de douches avec eau chaude et froide pour les travailleurs soumis à des chaleurs excessives, effectuant un travail salissant ou en contact avec agents chimiques ou biologiques dangereux.

La température de l’eau est de 36°C à 38°C et les travailleurs ne sont pas exposés aux courants d’air.

Délais d’attente de l’eau chaude

La recommandation Suisse (SIA 385/3) précise les délais d’attente de l’eau chaude au point de soutirage :

Délais d’attente au soutirage

Éviers de cuisine

7 s

Lavabos

10 s

Douches

10 s

Baignoires

15-20 s

Si le temps d’attente est trop élevé, on envisagera :

  • soit une production décentralisée,
  • soit le placement d’une boucle de circulation, solution plus énergivore puisque des pertes d’énergie apparaîtront aux tuyaux.

Pour évaluer l’amélioration qui en résulterait, un petit logiciel calcule le temps d’attente en fonction du type de tuyau, de son diamètre et du débit du point de puisage. La quantité d’eau froide qui s’écoule correspond à la quantité d’eau chaude qui sera « emprisonnée » dans le tuyau à la fermeture du robinet. On peut donc évaluer la perte énergétique correspondante.

Deux litres d’eau sont nécessaire pour
se laver les mains, mais 4 litres d’eau chaude vont rester dans le tuyau et se refroidir…

Calculs

Pour calculer le débit d’eau perdu à l’ouverture du robinet

En multipliant cette opération x fois par jour, x jours par an, on évalue le nombre de m³ annuellement chauffés en pure perte. Le coût approximatif de 9 € par m³ d’eau chaude (moitié pour l’eau, moitié pour son chauffage) permet d’évaluer l’intérêt énergétique de décentraliser la production.

Améliorer

Pour plus d’informations sur la décentralisation de la production.

Concevoir

Pour plus d’informations sur la conception d’une boucle de circulation.

Accessibilité du point d’eau

L’accessibilité des patients ou du personnel soignant à mobilité réduite fait partie aussi du confort au sens large du terme.

Indépendamment du confort lié aux critères classiques de température, de débit, …, la possibilité :

  • d’accéder facilement à l’espace douche,
  • de se mouvoir aisément dans cet espace,
  • d’utiliser les pommeaux de douche, les robinets, … Sans problème majeur,

est un plus non négligeable dont il faut tenir compte dans les hôpitaux.


Débit

Débits recommandés

Un débit suffisant doit être assuré. Il est facile de mesurer le débit d’un point de puisage en mesurant le temps mis à remplir un seau de 10 litres par exemple puis de comparer à des valeurs réglementaires.

Voici les unités de raccordement selon les directives suisses W3, édition 1992.

Application

Débit par raccordement

UR- Unité de Raccordement équivalente

en litre/s en litre/min

Lavabos, bidets, lavabos-rigoles, réservoirs de chasse d’eau.

0,1 6 1

Éviers, vidoirs, lavabos muraux scolaires, douches pour salons de coiffure, lave-vaisselle domestique, chauffe-eau instantané à gaz, cuves à lessive.

0,2 12 2

Robinetteries de douche de puissance moyenne, chauffe-eau instantanés à gaz.

0,3 18 3

Grands éviers, vidoirs indépendants, vidoirs muraux, robinetteries de bain, machines à laver automatiques jusqu’à 6 kg, chauffe-eau instantanés à gaz, urinoirs à rinçage automatique.

0,4 24 4

Robinet de jardin et de garage.

0,5 30 5
Raccordements 3/4″ :

  • éviers pour grandes cuisines
  • baignoires à grande capacité
  • douches
0,8 48 8

Voici ensuite les sections de tuyauteries correspondantes pour l’acier galvanisé DIN 2440/44 :

Nombre max dur

6 16 40 160 300 600 1 600

DN (mm)

15 20 25 32 40 50 65

Tubes filetés (pouce)

1/2″ 3/4″ 1″ 1 1/4″ 1 1/2″ 2″ 2 1/2″

Di (mm)

16 21.6 27.2 35.9 41.8 53 68.8

Des tableaux similaires existent pour d’autres matériaux dans la W3.

Débit trop faible suite à la présence de calcaire ?

Dépôt sur les surfaces d’évaporation dont les pommeaux de douche ? Blocage des boutons poussoirs ? …

Un dépôt de calcaire, soit dans l’échangeur de chaleur, soit dans les conduites d’apport d’eau chaude augmente les pertes de charge et le débit peut devenir insuffisant.

En fonction de l’analyse de la dureté de l’eau, on jugera de la nécessité de l’adoucir.

Concevoir

Pour plus d’informations sur le choix parmi les techniques de traitement de l’eau et le dimensionnement de l’installation.

Débit trop élevé suite à une ancienne robinetterie ?

Aujourd’hui, on tente de diminuer les consommations par la réduction des débits. Les robinetteries modernes le permettent en réalisant un mélange, émulsion d’air et d’eau (par exemple, pomme de douche à faible débit ou mousseur de robinet).

Avertissements !

Certains rapports d’hygiène hospitalière mettent en cause l’utilisation des mousseurs de robinet dans le développement des foyers de légionelles. C’est pour cette raison qu’il faudra éviter de placer ce genre d’économiseur dans les unités de soins ou dans toutes les zones médicalisées de l’hôpital.

Dans les autres zones, une décision collégiale sera prise entre tous les intervenants.

Améliorer

Pour plus d’informations sur les techniques de réduction des débits.

Température

Consignes de température recommandées

La sensation de la chaleur de l’eau dépend de l’usage, et dans une moindre mesure de la saison.

Pour les soins corporels, une température comprise entre 37 et 45°C est souhaitable. Pour l’alimentation des douches en entreprise, l’AR du 10/10/2012 demande une température comprise entre 36 et 38°C [Art.N1 annexe 1].

Pour les travaux de nettoyage, une température de 50 à 55°C est recommandée.

Au-delà de 60°C, un risque de brûlure apparaît.

Dans une optique de réduction des consommations, un abaissement des températures est souhaitable, mais la gestion de la légionelle peut modifier ce raisonnement …

Concevoir

Pour plus d’informations sur le contrôle de la légionelle.

Si la température d’eau souhaitée n’est pas atteinte, on soupçonnera un manque de puissance.

Fluctuations de la température ?

La température de l’eau varie avec le débit, c’est à dire avec le nombre de puisages simultanés (qui n’a pas connu le coup de la douche qui devient froide lorsque le voisin arrive… juste au moment où il faut rincer le shampoing !?).

Si la préparation se fait par un préparateur instantané (échangeur à plaques, par exemple), il est possible que ce soit la vitesse de réglage de la vanne mélangeuse qui soit à l’origine du problème. Il est possible soit de lui mettre une vanne plus rapide (avec une régulation PI), soit d’adjoindre un ballon tampon à l’installation.

Concevoir

Pour plus d’informations sur la conception des préparateurs instantanés.

Également, l’emploi d’un mitigeur thermostatique de douche est fortement recommandé pour limiter ce problème, sans l’éliminer totalement car on est limité par sa vitesse de réponse.

À noter qu’il est possible qu’ un appareil de production instantané au gaz ne se mette pas en route pour de très faibles débits, ce qui impose souvent inutilement l’ouverture en grand des points de puisage.

Insuffisance de la température ? Analyse de l’origine du problème

Au départ, un manque d’eau chaude …

En tout premier lieu, il faut observer les circonstances exactes d’apparition du problème : où et quand apparaît l’inconfort ?

Voici 3 questions qui peuvent orienter les débats :

Les problèmes sont-ils récents ou ont-ils toujours existés ?

S’ils ont toujours existé, c’est la conception de l’installation qui est en cause (dimensionnement des équipements, mauvais dessin de l’installation, …). S’ils sont récents, il faut repérer les circonstances d’apparition des plaintes.

Par exemple, le repiquage d’un nouveau circuit sur l’installation existante peut perturber le fonctionnement hydraulique de celle-ci, des travaux sur l’installation peuvent provoquer un transfert de sédiments et bloquer des éléments, un échangeur peut s’entartrer progressivement, un circulateur tomber en panne,…

Les problèmes sont-ils saisonniers ?

S’ils n’apparaissent qu’en hiver, c’est que la collaboration avec le chauffage se passe mal.

S’ils apparaissent aussi en été, ce sera plutôt l’appareil de production d’eau chaude seul qui sera mis en cause. Par exemple, la puissance de l’échangeur est peut-être insuffisante.

Y-a-t-il des problèmes pour tous les utilisateurs ?

Si seuls les utilisateurs les plus éloignés de la production sont concernés, c’est du côté de la distribution d’eau chaude qu’il faut chercher. Si par contre, tous les points de puisage sont touchés, c’est la production qui devrait être suspectée.

Si le manque d’eau chaude survient pour tous les utilisateurs lorsque les demandes d’eau sanitaire et de chauffage sont maximales (c’est-à-dire, en plein hiver, au moment des douches ou des bains), on peut se poser la question : « en quoi le chauffage peut-il influencer la production d’eau chaude » ?

Premièrement, une puissance insuffisante des chaudières ne permettra pas aux échangeurs d’être alimentés à la bonne température. C’est la cause directement souvent retenue par un installateur de chauffage.

Un deuxième phénomène peut cependant intervenir. En plein hiver, les vannes (mélangeuses, thermostatiques, …) sont pour la plupart ouvertes en grand. La demande en débit des circuits de chauffage est donc maximum. Si leurs circulateurs ont été surdimensionnés, les débits appelés risquent d’être trop importants. Les échangeurs sanitaires peuvent alors être privés d’un débit suffisant.

Cas vécus.

1. Un home pour handicapés près de Hannut est confronté à une insuffisance d’eau chaude lorsque des puisages simultanés ont lieu dans les différents locaux sanitaires du bâtiment. L’installateur appelé pour avis préconise… un remplacement d’une chaudière par un modèle plus puissant, bien sûr !

L’audit évalue les puissances en jeu et met hors de cause la chaudière. Il révèle qu’il s’agit en réalité d’un problème hydraulique : le débit d’eau chaude pour transférer la chaleur de la chaudière vers l’échangeur à plaques était insuffisant.

Études de cas

Pour plus d’informations cet audit

2. Un autre centre d’accueil pour étudiants à Liège est lui aussi confronté à une insuffisance d’eau chaude à certains moments de la journée, mais cette fois c’est la consommation exorbitante qui pousse le gestionnaire à agir. Il place des réducteurs de débit sur tous les points de puisage (douches et robinets) et le résultat est double : l’eau arrive toujours chaude et la consommation globale est réduite !

Analyse de la puissance disponible

La méthode la plus exacte pour savoir si la puissance de chauffage est suffisante est de refaire le dimensionnement du système de production et de comparer avec la puissance en place.

Concevoir

Pour plus d’informations sur le dimensionnement des préparateurs d’eau chaude.

Mais plus simplement, une évaluation grossière peut avoir lieu comme suit :

Installation par accumulation

On totalise les besoins d’eau chaude sur le temps de récupération (= de réchauffage) du ballon :

  • Si le ballon n’est chauffé que la nuit, son volume doit être suffisant pour vaincre les besoins en eau de l’ensemble de la journée.
  • S’il est réchauffé par un échangeur interne, il faut évaluer la puissance de chauffe de l’échangeur et vérifier que le temps de chauffage du volume d’eau est inférieur au temps de récupération prévu.

Temps de chauffage [h] = (Volume d’eau [m³] x 1,16 [kWh/m³.K] x Delta T°) / puissance échangeur [kW]

Exemple.

Un ballon de 500 litres présente de temps en temps une insuffisance en matière d’eau chaude. Le puisage de pointe est de 450 litres d’eau à 55°C par heure et cela peut se produire plusieurs heures d’affilée. La puissance du serpentin intérieur est de 12 kW.

Vérifions :

Temps de chauffage = 0,45 x 1,16 x (55 – 10) / 12 = 1,95 heures

Ce temps est trop long, le ballon ne pourra remonter en température…

Si le manque de puissance est limité, il est possible d’augmenter la température de stockage de l’eau, … ce qui diminuera partiellement sa performance énergétique (augmentation des pertes).

Préparation instantanée

On totalise les besoins simultanés d’eau chaude sur une période de 10 minutes (= 1/6 heure), par exemple. Puis on compare la puissance correspondante à celle du préparateur :

Puissance nécessaire [kW] = (Volume d’eau [m³] x 1,16 [kWh/m³.K] x Delta T° [K]) / (1/6) [h]

Exemple.

Un préparateur d’eau chaude instantané paraît insuffisant en température. Le puisage de pointe est de 150 litres d’eau à 45°C en 10  minutes. La puissance de l’échangeur est de 45 kW.

Vérifions :

Puissance nécessaire = 0,15 x 1,16 x (45 – 10) / (1/6) = 37 kW

Sa puissance théorique est suffisante. Serait-il entartré ? Non, car ce serait le débit qui serait alors trop faible et non la température. Serait-il alimenté au primaire par une eau à trop basse température ? C’est plus probable, le constructeur a certainement pris une température nominale très élevée pour annoncer les 45 kW…

Une régulation par « priorité ECS » est-elle mise en place ?

La puissance demandée par le chauffage de l’eau chaude est souvent très élevée. Il est normal qu’au moment du réchauffage de l’eau, le chauffage des locaux soit arrêté temporairement. L’inertie du bâtiment est telle que la baisse de température ne sera pas ressenti par les occupants. On parle de « priorité Eau Chaude Sanitaire ».

En cas d’insuffisance de puissance, il est utile de vérifier si ce type de régulation a bien été mis en place

Améliorer

Pour plus d’informations sur la décentralisation de la production.


Qualité de l’eau

Mesure de la dureté de l’eau

On commencera par analyser le TH de l’eau, Titre Hydrotimétrique, qui caractérise la dureté totale de l’eau. Ce TH exprime la somme des ions Calcium Ca++ et Magnésium Mg++, responsables de la dureté de l’eau.

L’unité de mesure est le degré français °F. Ainsi, 1° F = 10 mg CaCO3/litre. L’échelle suivante permet de juger de la tendance de l’eau à déposer des sels :

eau très douce : < 7,5°F

douce : 7,5 à 15°F

assez dure : 15 à 20°F

dure : 20 à 30°F

très dure : > 30°F

La compagnie des eaux peut fournir cette valeur. Sinon, il existe des kits de mesure que les sociétés de maintenance utilisent et qui sont en vente chez les marchands d’adoucisseurs. Un pharmacien peut également faire cette mesure.

Concevoir

Pour plus d’informations sur le choix parmi les techniques de traitement de l’eau, et le dimensionnement de l’installation.

Détection de la légionelle

L’unité de mesure est l’UFC/l (Unité Formant Colonie).

Le seuil indicatif de 10³ UFC/l a été proposé par l’OMS (Organisation Mondiale de la Santé). Il semble qu’en dessous de ce seuil, on n’a qu’exceptionnellement le développement de maladie.

Le Comité Supérieur d’Hygiène Belge quant à lui a adopté le même seuil de 10³ UFC/l.

Si la concentration de légionelles est supérieure à ce seuil, il faut procéder à un contrôle approfondi. On prélève alors un grand nombre d’échantillons, y compris aux robinets , robinets de vidange, vases d’expansion,… afin d’identifier les foyers.

Dans la procédure allemande, si les 10 000 UFC/l sont atteints, la contamination est jugée importante et un contrôle immédiat approfondi est requis. Si les 100 000 UFC/l sont dépassés, la contamination est jugée très importante et l’emploi de l’installation doit être limité (arrêt des douches, par exemple) afin de procéder à une désinfection immédiate de l’installation.

Au delà d’un traitement de choc pour assainir une installation polluée (choc thermique, désinfection chimique), le technicien devra se baser sur une conception correcte du réseau (réseaux bouclés, température élevée).

Concevoir

Pour plus d’informations sur la conception du réseau d’eau chaude sanitaire.

Gérer l’énergie ?

Gérer l'énergie ?


L’Énergie est partout, chance ou problème ?

Gérer l’énergie c’est,

  • Vérifier si le rendement de la chaudière est bon; à défaut, envisager son remplacement, appeler l’installateur ou le bureau d’études, discuter avec lui du meilleur choix de chaudière aujourd’hui, trouver le financement, chercher si des subsides existent à ce niveau, etc…
  • Penser à programmer l’horloge de l’extraction des sanitaires, et modifier l’heure deux fois par an,…
  • Analyser si le tarif électrique est adéquat au type de consommation du bâtiment, …
  • Choisir une bonne photocopieuse, donc le mode veille est performant, et vérifier que les ordinateurs se coupent après 10 minutes sans utilisation, …
  • C’est éteindre les lampes dans le couloir, … non, c’est plutôt motiver les occupants à éteindre. Mais « ils n’en ont rien à cirer »…

Gérer l’énergie, c’est fatigant…
L’énergie est partout, c’est un sacré problème…

Chacun est concerné, autant l’homme d’entretien que le directeur…

Dans le fond, il n’y a pas beaucoup de thèmes qui concernent tout le monde dans l’Institution, qui permettent de générer un budget suite aux économies réalisées, qui touchent à l’environnement, à l’image de marque, …

Cela pourrait être la source d’un projet commun de l’Institution ?

L’énergie est partout, c’est une sacrée chance…


C’est la toute, toute première fois … que vous abordez l’énergie dans votre institution ?

Bienvenue au club !

Pour vous aider à mettre en place une politique énergétique dans une institution, nous vous proposons un premier fil conducteur.

Pour cela, il est nécessaire de réfléchir deux minutes en se posant les bonnes questions pour mener à bien une politique énergétique dans une institution.

L’économie d’énergie repose sur 4 pôles :

  • le suivi comptable des consommations,
  • l’amélioration technique des bâtiments,
  • la gestion des équipements,
  • la sensibilisation des utilisateurs.

Aussi, il est utile de se poser quelques questions, reprises ci-dessous en vrac :

Quelle structure portera le projet ?

  • Un Responsable Énergie nommé à cette tâche ?
  • Une gestionnaire interne et des sous-traitants externes ?
  • Une équipe de plusieurs personnes qui travaillent ensemble ?

Quelle est la compétence technique interne ?

  • En matière de bâtiments (isolation, châssis, …)
  • En matière de systèmes (chauffage, éclairage, climatisation, …)

Quelle stratégie d’intervention technique ?

  • Chercher à développer la compétence interne ?
  • Agir sur base d’audits externes ?
  • Sous-traiter l’ensemble à une société de maintenance avec un objectif URE ?

Quelle relation existera entre le Responsable Energie/l’équipe et le service technique existant ?

Qui est bon animateur pour créer l’adhésion au projet ?

  • Qui l’est naturellement dans l’institution ?
  • Qui est naturellement motivé par l’environnement ?

Comment l’entourer ?

  • Quelles ressources internes (éco-conseiller ?) ?
  • Quelles ressources externes (consultant technique ? consultant animation ?) ?

Quel temps est-on prêt à consacrer au projet « énergie » dans l’institution ?

Qu’est-ce qui fera « bouger les choses » ?

  • Un bon rapport vers les décideurs ?
  • Un grand projet fédérateur pour tous ?
  • Des petites actions réussies au fil du temps ?
  • Un groupe de mordus internes ?

De quel budget annuel disposera-t-on ?

  • Un budget spécifique « extraordinaire »?
  • Un budget dédicacé au sein du budget ordinaire « entretien bâtiment » ?

Quel « marketing » du projet URE dans l’institution ?

  • Qui faut-il mettre au courant au départ ?
  • Faut-il informer les membres de l’institution de ce qui se fait ?
  • Si oui, comment le faire et quand ?

Quelle échelle ?

  • Un projet pour toute l’institution ?
  • Un projet pour les utilisateurs d’un seul bâtiment à la fois ?

Quel planning ?

  • Se tester à petite échelle ?
  • Impliquer tous les acteurs en parallèle dès le départ ?

Quel sera l’indicateur de l’amélioration de la situation ?

Pour aller plus loin !

Gérer

Pour réfléchir à la collaboration des utilisateurs

Gérer

Pour en savoir plus sur le suivi des consommations.

Il existe aussi des manuels de gestion URE, disponible ici.

Découvrez également le Vademecum « secteur tertiaire » : maîtriser les consommations d’énergie de mes bâtiments

Choisir l’emplacement des prises et des rejets d’air extérieurs

Prises d’air

Les prises d’air neuf doivent :

  • Être les plus proches possible de la centrale de traitement de l’air. On sait que les pertes de charge en aspiration sont plus faibles qu’en refoulement, car il s’agit d’une mise en vitesse; mais le dessin des prises d’air doit néanmoins être bien tracé, car la perte de charge existe, elle est une source de bruit et elle peut avoir une grande influence sur le fonctionnement des équipements placés en aval : ventilateurs, filtres, échangeurs.

Pour minimiser les pertes de charge,
il faut assurer un passage progressif entre l’espace infini extérieur
et la section du conduit d’aspiration.

  • Ne pas aspirer du côté de rues à fort trafic.

 

  • Éviter les effets de by-pass entre prise d’air neuf et évacuation d’air vicié. Les aspirations doivent naturellement être faites loin des zones de refoulement d’air vicié. Les prises d’air neuf doivent être faites plus bas que les sorties des rejets d’air vicié. De même, il faut s’éloigner des orifices d’évacuation des fumées de parking et tours aéroréfrigérantes, tout en tenant compte des vents dominants.

 

  • Pour limiter les charges calorifiques inutiles, éviter de disposer les prises d’air dans des endroits fortement ensoleillés (toitures, terrasses, façade ensoleillée, …) sans protection.

 

  • Résister aux intempéries. Pour cela, les aspirations se font en général du bas vers le haut, sinon sous la protection d’une visière assez longue, car l’aspiration a évidemment tendance à entraîner la pluie ou la neige. Ne pas oublier que neige et brouillard givrant peuvent très vite obturer les grillages de protection et faire se coller les uns aux autres les volets mobiles des registres automatiques ou autobasculants.

 

  • Limiter le transfert des bruits. Il est fréquent de confier aux prises d’air une fonction d’insonorisation permettant non seulement de réduire le bruit extérieur pénétrant dans l’installation, mais également le bruit de celle-ci partant vers l’extérieur, en particulier celui des ventilateurs.

 

  • Prévoir un accès pour le nettoyage. Celui-ci peut être fréquent puisque les grilles de prise d’air extérieur ne sont pas protégées par des filtres.

 

  • Ne pas permettre l’intrusion de rongeurs par exemple grâce à un grillage. Celui-ci sera réalisé avec une section de câble la plus faible possible pour limiter les pertes de charge à l’entrée.

La norme européenne EN 13779 définit certaines dispositions à respecter pour les prises d’air extérieures :

  • Le placement préférentiel de la prise d’air est face aux vents dominants.

 

  • Le dimensionnement de la prise d’air non protégée s’effectue sur base d’une vitesse d’air maximum de 2 m/s.

 

  • Les principales distances à respecter par rapport à la prise d’air sont reprises dans le tableau suivant :
Exigences EN 13779
en [m]
Distance au sol 1,5 x l’épaisseur de neige maximum
Distance minimale des sources polluantes (point de ramassage d’ordure, parking de plus de 3 voitures, …) 8

Rejets d’air

La norme européenne EN 13779 définit certaines dispositions à respecter pour les rejets d’air vers l’extérieur.
Si une bouche de rejet d’air est disposée sur un mur, elle doit respecter les prescriptions suivantes :

  • Les rejets d’air doivent se trouver à plus de 8 m d’un immeuble voisin.

 

  • Les rejets d’air doivent se trouver à plus de 2 m d’une prise d’air neuf située sur le même mur et de préférence au-dessus de celle-ci.

 

  • Le débit d’air par bouche ne peut dépasser 0,5  m³/s et la vitesse de l’air au droit de la bouche doit dépasser 5 m/s.

Si une de ces conditions n’est pas respectée, les rejets d’air doivent être installés en toiture.
L’Annexe C3 de la PEB complète la EN 13779 en imposant que dans le cas d’une ventilation naturelle, les bouches d’évacuation soient raccordées à un conduit d’évacuation qui débouche au-dessus du toit. Les conduits d’évacuation doivent avoir un tracé vertical autant que possible. Des déviations de maximum 30° par rapport à la verticale sont admises.


Combinaison rejet-entrée d’air

   

Distance minimum entre entrée et rejet d’air pour un air de ventilation courant à faible niveau de pollution (norme EN 13779).

Choisir la gestion en ventilation

Un ventilateur plusieurs vitesses – Les économies d’énergies

Le ventilateur à 2 ou plusieurs vitesses peut être commandé de différentes façons :

Il est très difficile d’évaluer la réduction des débits introduits grâce à une gestion de ventilation par un moteur à 2 ou plusieurs vitesses.
Elle dépend de nombreux paramètres tels que :

    • le cycle de fonctionnement initial par rapport au nouveau cycle de fonctionnement,
    • le nombre de vitesses et les débits correspondant à ces vitesses.

L’économie de débit peut être visualisée sur un diagramme donnant les débits sans et avec gestion.

Exemples.

> Cas 1 : ventilateur surdimensionné.

Dans une cuisine, la ventilation fonctionnait initialement 24 h sur 24. Suite à un calcul ne tenant pas compte de la chaleur réellement produite par les appareils, le ventilateur avait été surdimensionné. Il n’y avait qu’une seule vitesse.
On a remplacé le moteur du ventilateur par un moteur à deux vitesses + arrêt.
La poulie du moteur fut également modifiée de manière à diminuer le débit maximum de façon à l’adapter au débit maximum nécessaire aux équipements.

La diminution des débits peut être substantielle. Elle est ici représentée par la proportion de la surface bleue sur la surface totale.

> Cas 2 : ventilateur bien dimensionné.

Dans une cuisine, la ventilation fonctionnait du matin au soir. Le ventilateur était bien dimensionné. Il n’y avait qu’une seule vitesse. On a remplacé le moteur du ventilateur par un moteur à deux vitesses + arrêt.

Dans cet exemple, l’économie de débit est d’un peu plus de 20 %.


Un moteur à vitesse variable + régulateur PI – Les économies d’énergies

Une plate-forme d’essais a été construite au centre de recherche des Renardières d’EDF à Moret-sur-Loing en France. Le but de cette plate-forme est de recréer au mieux les conditions de fonctionnement d’une grande cuisine.

Des essais sur cette plate-forme ainsi que des mesures sur des cuisines réelles ont permis d’évaluer les effets d’un moteur à vitesse variable muni d’une régulation PI en fonction de la température de l’air ambiant complétée de deux alarmes pour le taux de CO2 et l’humidité entraînant un passage en vitesse maximale en cas de dépassement de consigne.

Ces essais et mesures sont décrits dans le magazine « Chaud Froid Plomberie » n° 585 de novembre 1996. Ce magazine tient lui même ses informations du n° 44 de la revue « Qualita ».

Exemples.

  • Une  cuisine fonctionnant de 8 h à 23 h a été simulée. On a fait varier la puissance appelée de 0 à 32 kW lors du déjeuner et du dîner. Le régulateur PI commande un moteur à vitesse variable. Le débit du ventilateur correspondant à la vitesse minimale est de 2 100 m³/h et celui correspondant à la vitesse maximale est de 4 500 m³/h. La température de consigne est de 24°C. Le régulateur est programmé pour couper la ventilation entre 23 et 8 h.
    Voici les résultats obtenus :
Chauffage d’air neuf
(par jour)
Consommation du moteur (par jour)

Grande vitesse (de 8 h à 23 h)

270 kWh 10,5 kWh

Régulation PI

144 kWh 3,3 kWh

Économie

46,6 % 68,6 %
  • Une simulation sur ordinateur a montré qu’un débit minimal quatre fois inférieur au débit maximal aurait permis de plus grandes économies d’énergie : le débit aurait été réduit de 60 % au lieu de 46,6 %.

 

  • La même régulation a été installée dans une cafétéria existante dans laquelle des mesures ont été faites. Cette cuisine ouverte sur une salle de restaurant prépare 500 repas/jour; 7 jours sur 7. Elle est équipée de matériel électrique pour une puissance totale installée de 116,6 kW.
    Un régulateur PI commande un moteur d’extraction à vitesse variable.  Le passage en vitesse maximale se fait automatiquement lorsque le taux d’humidité dépasse 70 %. Une alarme sur le taux de CO2 n’est pas nécessaire vu que la cuisine est « tout électrique ».
    La ventilation de cette cuisine est dimensionnée pour ne pas dépasser 28°C. Cela suppose que la température de l’air soufflé soit proche de 20°C.

    En effet, lors des mesures, la température de l’air soufflé (provenant du restaurant) était de 21°C. Le nombre de repas servis était de 456 lors du fonctionnement en grande vitesse et de 493 lors du fonctionnement en régulation PI.Voici les résultats obtenus :
Chauffage d’air neuf
(par jour)
Consommation du moteur
(par jour)

Grande vitesse

528 kWh 57,7 kWh

Régulation PI

169 kWh 5,1 kWh

Économie

68 % 91 %
  • Les économies de débits baissent si la température du restaurant augmente. Les températures du restaurant ont varié de 20 à 24°C durant les essais. Les économies sur les débits d’air ont respectivement varié de 70 à 40 %.

Remarque.

Nous pensons que ces chiffres ne sont pas à généraliser et sont à prendre avec beaucoup de précautions. En effet, les exemples ne précisent pas si les vitesses frontales minimales entre la hotte et le plan de travail ainsi que si les débits dans la salle de restaurant sont respectés. Ils ne donnent aucune précision quant au fonctionnement avant et après installation du régulateur.

De manière générale, tout comme pour une gestion à plusieurs vitesses, l’économie de débit dépend :

  • De la plage de débit possible.

 

  • De la différence entre les débits maximums sans gestion et des débits réellement nécessaires à chaque instant (c’est-à-dire du cycle de fonctionnement initial par rapport au nouveau cycle de fonctionnement). Notons que les débits réellement nécessaires dépendent d’une multitude de facteurs dont notamment le rendement des équipements, la puissance installée, la variabilité de la puissance appelée, etc.

Choix de la gestion

S’il y a gestion de la ventilation, celle-ci se fait par adaptation de la vitesse aux besoins soit grâce à un moteur à plusieurs vitesses, soit grâce à un moteur à vitesse variable. En effet, cette gestion est plus efficace au niveau énergétique que les autres moyens tels que l’adaptation de la vitesse par clapets d’étranglement, par exemple.

Choix entre un moteur à une (pas de gestion) ou plusieurs vitesses et un moteur à vitesses variables + régulateur PI

Le choix entre un moteur à une (pas de gestion) ou plusieurs vitesses et un moteur à vitesses variables + régulateur PI se fait en fonction :

  • du confort
  • de la rentabilité
  • du type de cuisine
  • mais encore…

Le confort

La gestion des débits en fonction de la demande des équipements ne peut se faire que si le confort est respecté.

Les débits, s’ils sont bien calculés, doivent respecter 3 critères qui assurent le confort :

  • Une augmentation de température ambiante maximale.
  • Une augmentation d’humidité absolue maximale.
  • Une vitesse frontale entre la hotte et le plan de travail minimal, de manière à assurer l’entraînement correct des particules en suspension dans l’air.

On peut raisonnablement supposer que lorsque le nombre d’équipements en fonctionnement diminue, la température et l’humidité dégagées diminuent proportionnellement et que la diminution des débits commandée par la gestion ne compromettra pas ces deux premiers critères.

Par contre, il faudra veiller, lorsque les débits diminuent, à ce que les vitesses frontales soient encore suffisantes pour assurer l’évacuation des particules en suspension.

D’autre part, si le système de ventilation est avec transfert d’air entre le local de cuisson et le restaurant, par exemple, il faut veiller à ce que les débits, en cas de gestion dans le local de cuisson, soient encore suffisants dans l’ (ou les) autre(s) local(aux).

Il faut qu’il y ait asservissement du ventilateur de pulsion par rapport au ventilateur d’extraction.

Exemple : avec deux moteurs à 2 vitesses, une mesure est faite dans le local de cuisson, une autre dans la salle à manger. Si aucune des 2 mesures ne dépasse un certain seuil, les deux moteurs se mettent sur la plus petite vitesse. Ces deux vitesses tiennent compte du fait qu’il y a des différences de débits à respecter entre la pulsion et l’extraction de manière à respecter une dépression dans les locaux avec odeurs.

La rentabilité

Les économies d’énergie avec un ventilateur à plusieurs vitesses ou avec un ventilateur à vitesse variable + régulateur PI dépendent de nombreux paramètres dont il est question ci-dessus.

Ces économies possibles sont à évaluer au cas par cas.

Une gestion est, par exemple, indispensable lorsque les ventilateurs sont surdimensionnés. Ce qui arrive très facilement vu qu’il n’existe pas en Belgique de réglementation au niveau du calcul des débits de ventilation dans les cuisines collectives.

La rentabilité dépendra du surcoût, sans doute, relativement faible d’un ventilateur à plusieurs vitesses, et plus élevé d’un ventilateur à vitesse variable (convertisseur de fréquence) + régulateur PI par rapport à un ventilateur à une seule vitesse.

Le type de cuisines

Le ventilateur à vitesse variable + régulateur PI est un système relativement sophistiqué et relativement délicat à régler. Ainsi, il est plus approprié à une « grande cuisine » : nombre de couverts élevés, plusieurs repas par jours, système de ventilation indépendant, etc.

Mais encore : remarque

Chaque type de filtre n’est efficace que dans une plage de vitesses. A chaque filtre d’une surface donnée correspond donc une plage de débits (correspondant aussi à une plage de pertes de charges). Un débit minimal doit donc être maintenu pour assurer cette efficacité.

Choix de la commande d’un moteur à plusieurs vitesses

Si l’on choisit un moteur à plusieurs vitesses, il existe plusieurs méthodes pour commander la vitesse :

La meilleure commande est celle qui permet de se rapprocher le plus possible des besoins réels.
Ainsi, si le personnel est bien sensibilisé, la commande manuelle peut être plus intéressante que l’horloge.

La température et la mesure de courant sont de bonnes commandes mais la deuxième n’est valable que pour une cuisine « tout électrique ».
En fait, dans le cas d’une cuisine « tout électrique », les deux commandes reviennent au même vu que tout le courant est transformé en chaleur.
Mais la commande par sonde de température dépend de la température initiale de l’air c.-à-d. de la température à laquelle l’air est insufflé ou de la température de l’air après transfert. Ainsi les consignes seront plus difficiles à régler que pour une gestion commandée par mesure de courant : elles devront tenir compte de cette température initiale.

Il peut être intéressant de combiner les différentes commandes :

Exemples de commande

 

Évaluer l’efficacité énergétique des chaudières

Chaudière en coupe, lorsque le brûleur est en fonctionnement et lorsqu’il est à l’arrêt : une partie de l’énergie contenue dans le combustible consommé est directement perdue par la chaudière.


Rendement de combustion

Le rendement de combustion d’une chaudière est l’image de la transformation complète du combustible en chaleur et de la transmission de celle-ci à l’eau de la chaudière.

Ordre de grandeur

Théoriquement, une chaudière moderne performante (sans condensation) et parfaitement réglée pourrait atteindre un rendement de combustion de 93-94 %, ce qui signifie que 5 % de l’énergie contenue dans le combustible est perdue sous forme de chaleur et d’imbrûlés dans les fumées.

Dans la pratique, un rendement de combustion de 93 % peut être considéré comme très bon.

À l’inverse, on peut considérer qu’une valeur de 88 % mérite une amélioration, sachant qu’une diminution de 1 unité (1 %) du rendement de combustion équivaut, en première approximation, à une surconsommation de 1 %.

Exemple.

Une chaudière de 400 kW consomme annuellement 60 000 m³ de gaz. Une amélioration du rendement de combustion de 1 %, par un meilleur réglage du brûleur permet d’économiser 600 m³ de gaz, soit environ 420 €/an (à 0,7 €/m³ de gaz).

Pour les chaudières à condensation récentes, le rendement de combustion pourrait atteindre des valeurs théoriques de l’ordre de 108 %.% sur PCI.

Origine possible d’un mauvais rendement de combustion

Un mauvais rendement de combustion d’une chaudière peut avoir pour origine :

  • un brûleur inadapté à la chaudière,
  • un mauvais réglage du brûleur,
  • un encrassement de la chaudière,
  • un tirage trop important de la cheminée,
  • des entrées d’air parasites,
  • ou tout simplement une chaudière de conception trop ancienne.

Évaluer le rendement de combustion d’une chaudière existante

Pour les chaudières au fuel : selon la fiche d’entretien

Actuellement, suivant la PEB chauffage, l’entretien annuel des chaudières fonctionnant au fuel est obligatoire. Il doit être accompagné d’une mesure du rendement de combustion. Le résultat de cette mesure est consigné sur une fiche d’entretien dont la conservation par l’utilisateur est obligatoire.

On peut cependant émettre certaines réserves quant à l’interprétation que l’on peut faire de ce chiffre.

Premièrement parce qu’il s’agit de la mesure effectuée juste après l’entretien. Le rendement obtenu est donc souvent meilleur que le rendement moyen durant la saison de chauffe (déréglage, encrassement progressif, …).

Ensuite, la pratique montre que l’exactitude des chiffres repris sur la fiche peut parfois être discutée. Pour l’illustrer, voici deux exemples :

  • La température ambiante reprise sur la fiche est presque toujours de 20°C. Il n’est pas rare de rencontrer une température de 35°C dans les anciennes chaufferies mal ventilées abritant des chaudières et des conduites mal isolées.
  • La température des fumées est indiquée sur la fiche, alors que la buse d’évacuation ne comporte pas de trou pour permettre la prise de mesure.

Trou dans la buse de raccordement, permettant la mesure des caractéristiques des fumées.

Notons en outre qu’actuellement, selon la PEB chauffage, les chaudières fonctionnant à combustible solide et liquide sont soumises à une obligation de mesure du rendement : 1 fois par an et les chaudières à combustible gazeux 1 fois tous les 2 à 3 ans en fonction de la puissance utile du générateur.

Évaluer

Pour comprendre les termes d’une attestation d’entretien d’une chaudière fuel et interpréter les données qui y sont reprises.

Pour les chaudières gaz : selon la plaque signalétique

Dans le cas d’une chaudière gaz à brûleur atmosphérique, le débit de gaz ne peut être réglé. On peut donc rapidement estimer le rendement de combustion au départ de la plaque signalétique de la chaudière. En effet, cette dernière mentionne la puissance fournie à l’eau et la puissance fournie par le brûleur :

  • soit directement sous forme d’une puissance (« charge thermique » ou « puissance brute ») en [kW],
  • soit sous forme d’un débit de gaz en [m³/h] qu’il faut multiplier par 9,45 [kWh/Nm³] (si le gaz de référence est du G20) ou 8,13 [kWh/Nm³] (si le gaz de référence est du G25) pour obtenir la puissance en [kW].

En divisant l’un par l’autre, on obtient le rendement utile qui équivaut au rendement de combustion, aux pertes vers la chaufferie près.

Exemple.

Plaque signalétique d’une chaudière gaz atmosphérique : le rendement utile nominal de la chaudière vaut
116 [kW] / 128,2 [kW] x 100 = 90 %.

C’est en effectuant ce calcul que l’on se rend compte que des chaudières gaz atmosphériques relativement récentes (.. 1996 ..) présentent des valeurs de rendement utile relativement bas (juste égaux au minimum requis par la réglementation de 1988), de l’ordre de 86 .. 87 %. Cela s’explique par l’important excès d’air nécessaire à ce type de brûleur.

Attention, certains techniciens chargés de l’entretien des chaudières remplissent, pour les chaudières gaz atmosphériques, une attestation semblable aux attestations d’entretien des chaudières fuel. Le calcul de rendement de combustion qui y figure n’a aucune signification. En effet, il est impossible de mesurer les caractéristiques des fumées dans le coupe-tirage de la chaudière (et pourtant c’est ce que ces sociétés font), du fait du mélange des fumées avec de l’air et des turbulences présentes à cet endroit.

Pour les brûleurs gaz à air pulsé, il faut comme pour les brûleurs fuel, se fier à la fiche d’entretien.

Mesurer le rendement de combustion d’une chaudière existante

Le rendement de combustion repris sur la fiche d’entretien est une valeur instantanée prise juste après l’entretien. Cette valeur peut se dégrader dans le temps, notamment par l’encrassement de la chaudière et du brûleur, mais également par modification des caractéristiques (pression, température) de l’air comburant.

Il est donc bon, pour les grosses installations, de procéder à une ou plusieurs mesures de rendement entre 2 entretiens, par exemple, à chaque changement de saison.

Mesures

Pour visualiser les différentes techniques de mesure du rendement de combustion.

Évaluer

Pour interpréter le résultat d’une mesure de rendement de combustion.

Par exemple, la présence de suie dans la chaudière va diminuer l’échange entre les fumées et l’eau. Cela va augmenter la température des fumées, donc aussi les pertes vers la cheminée : 1 mm de suie sur la surface de l’échangeur équivaut à une perte de rendement de combustion de 4 à 8 %. On peut également prendre comme référence qu’une température de fumée supérieure de 15°C à la valeur mesurée lors du dernier entretien indique souvent un encrassement excessif de la chaudière (cela équivaut à une surconsommation de 1 .. 1,5 %).

Améliorer

Améliorer le réglage du brûleur.

Gérer

Améliorer la maintenance de la chaudière.

Améliorer

Changer le brûleur.

Pertes vers la chaufferie

Lorsque le brûleur est en fonctionnement, la chaleur de la flamme et des fumées est en grande partie transmise à l’eau de chauffage. La flamme rayonne également vers des zones qui dans les anciennes chaudières ne sont par irriguées par l’eau et qui plus est, ne sont pas toujours isolées.

Il s’agit principalement de la porte-foyer, du fond et du socle de la chaudière.

Chaudière de 1972 : la porte-foyer peu isolée dont la température de surface durant le fonctionnement du brûleur est proche de 100°C.

Malheureusement, il est difficile et souvent onéreux d’isoler une ancienne porte-foyer.

Il faut cependant retenir que la mauvaise isolation de certaines parties de la chaudière est un symbole de la vétusté et du peu de performance de celle-ci.

Ordre de grandeur

Pertes vers l’ambiance totales (pertes par parois sèches + pertes par parois irriguées) des anciennes chaudières lorsque le brûleur est en action, en pourcentage de la puissance de la chaudière.
1 : chaudière au charbon converties au fuel
2 : chaudière gaz atmosphérique
3 : chaudière fuel ou gaz à brûleur pulsé.
Source : le Recknagel.


Pertes à l’arrêt

Pertes vers la chaufferie

Entre les périodes de fonctionnement du brûleur, la chaudière perd sa chaleur vers la chaufferie.

Degré d’isolation de la chaudière

L’importance de cette perte dépend d’abord du degré d’isolation de la jaquette de la chaudière.

Les chaudières actuelles sont isolées avec une épaisseur de laine minérale d’environ 10 cm. Il en résulte des pertes vers la chaufferie négligeables (de l’ordre de 0,1 .. 0,7 % de la puissance nominale).

Il n’en va pas de même pour les anciennes chaudières où l’isolant ne dépasse parfois pas une épaisseur de 3 cm sans compter des zones qui parfois ne sont pas isolées ou équipées d’un isolant en piteux état.


Chaudière de 1979 isolée par 3 cm de laine minérale et comportant certaines zones non isolées.

Indice

On peut se faire une première idée des pertes vers la chaufferie en plaçant la main sur la jaquette de la chaudière. Si celle-ci est chaude, il est fort à parier que le degré d’isolation est faible (si le brûleur fonctionne, attention aux risques de brûlure sur les zones non isolées comme la face avant !).

Un contact avec la main permet de se faire une première idée de la qualité de l’isolation.
Références : sur les chaudières modernes non isolées, on ne sent rien et on se brûle à partir de 65°C.

Attention, il existe encore de vieilles chaudières dont l’isolant est fixé à la carrosserie et non sur le « corps » de la chaudière. Dans ce cas, il est possible que l’espace compris entre l’isolant et la chaudière soit en permanence parcouru par un courant d’air. Cela augmente fortement les pertes à l’arrêt, bien que la jaquette semble froide.

Ordre de grandeur

Mesures

Si on veut être plus précis, il est possible de mesurer sur site les pertes à l’arrêt des chaudières, en disposant d’un thermomètre de contact.

Lors d’audits énérgétiques nous avons pu effectuer différentes mesures de température sur d’anciennes chaudières (datant de 1975 à 1985). En moyenne, le pourcentage moyen des pertes mesurées tournait autour des

0,4 .. 0,6 % de la puissance nominale de la chaudière

0,5 % de pertes peut donc être considéré comme un ordre de grandeur représentatif pour les pertes vers l’ambiance d’une ancienne chaudière.

Exemple.

Une chaudière de 400 kW a des pertes vers la chaufferie de 0,5 %. Le brûleur de cette chaudière est à l’arrêt environ 4 500 heures par an. Heures pendant lesquelles la chaudière est maintenue en température.

La perte annuelle engendrée est de :

0,005 x 400 [kW] x 4 500 [h/an] = 9 000 [kWh/an] ou 900 [litres fuel ou m³ gaz /an]

Le remplacement de cette chaudière par une nouvelle chaudière ayant une perte de 0,2 % permettrait donc une première économie de 540 [litres fuel ou m³ gaz /an].

Améliorer

Réisoler la chaudière.

Influence de la température de l’eau dans la chaudière

La température de l’eau dans les chaudières influence également les pertes à l’arrêt. Ces dernières seront plus importantes si les chaudières sont maintenues à haute température toute l’année.

Ainsi, si la température de l’eau dans une chaudière varie complètement en fonction des conditions climatiques (attention, ce qui n’est pas possible pour toutes les chaudières), on obtiendrait, dans la chaudière, une température moyenne sur la saison de chauffe d’environ 43°C. Par rapport à une chaudière maintenue en permanence à 70°C, les pertes à l’arrêt sont réduites de :

1  – [(43 [°C] – 20 [°C]) / (70 [°C] – 20 [°C])] 1,25 = 62 [%]

Améliorer

Améliorer la régulation en température de la production.

Balayage du foyer

Lorsque le brûleur est à l’arrêt, tout courant d’air dans la chaudière va entraîner son refroidissement. Or l’alimentation en air des anciens brûleurs pulsés(environ, avant 1985) ainsi que les brûleurs gaz atmosphériques reste en permanence ouverte, même lorsque le brûleur est à l’arrêt. Il en résulte, par effet de tirage naturel, une perte importante vers la cheminée.

Clapet d’air fermé à l’arrêt sur un brûleur.

Indice

Il suffit de mettre la main devant l’entrée d’air du brûleur pour se rendre compte du courant d’air engendré par le tirage de la cheminée. Il est même parfois possible de voir le ventilateur d’un brûleur pulsé entraîné naturellement par celui-ci.

Ordre de grandeur

Mesures

Si on veut être plus précis, il est possible de mesurer sur site les pertes par balayage des chaudières, en disposant d’un anémomètre ou en mesurant la dépression dans la cheminée.

Ici aussi, nous avons pu effectuer différentes mesures de température sur d’anciennes chaudières (datant de 1975 à 1985). En moyenne, le pourcentage moyen des pertes par balayage mesurées tournait autour des

1 .. 1,5 % de la puissance nominale de la chaudière

Exemple.

Reprenons la chaudière de 400 kW de l’exemple précédent. Cette chaudière est équipée d’un brûleur dont le clapet d’air ne se referme pas à l’arrêt. Aux 0,5 % de pertes vers la chaufferie, viennent s’ajouter 1,5 % de pertes vers la cheminée lorsque le brûleur est à l’arrêt. La chaudière présente donc des pertes à l’arrêt totales de 2 %.

La perte annuelle engendrée est donc de :

0,02 x 400 [kW] x 4 500 [h/an] = 36 000 [kWh/an] ou 3 600 [litres fuel ou m³ gaz /an]

Le remplacement de cette chaudière par une nouvelle chaudière avec un brûleur relativement étanche à l’arrêt réduirait la perte à l’arrêt totale à 0,2 % et permettrait donc une première économie de 3 240 [litres fuel ou m³ gaz /an].

Attention, on se rend compte que le coefficient de perte à l’arrêt de la chaudière aura d’autant plus d’impact sur la consommation annuelle que la chaudière est maintenue longtemps en température, brûleur à l’arrêt, c’est-à-dire :

    • que la chaudière est
  • surdimensionnée,
  • que la chaudière est également maintenue en température en été pour produire de l’eau chaude sanitaire.

Cas particulier des chaudières gaz atmosphériques

Les chaudières gaz à brûleur atmosphérique couramment rencontrées dans les installations de petite et moyenne puissance sont des chaudières dont le foyer reste en permanence ouvert.

En théorie, cela ne devrait pas engendrer de perte par balayage importante. En effet, selon l’ARGB, les chaudières atmosphériques sont conçues pour « retomber en température » entre les demandes de chauffage. Étant froide durant les périodes d’arrêt, les pertes s’annulent. De plus, la présence d’un coupe-tirage supprime le tirage dans la chaudière si celle-ci est froide.

Ce fonctionnement idéal n’est pas cependant guère rencontré en pratique :

  • Les chaudières sont le plus souvent maintenues en température sur leur aquastat.
  • Même lorsque le fonctionnement du brûleur est directement commandé par un thermostat d’ambiance, l’inertie thermique des chaudières (qui diminue avec le volume d’eau de la chaudière) les maintient, sauf exception (installations domestiques), à une certaine température moyenne.

La perte par balayage qui en résulte est de l’ordre de 1 .. 2 % de la puissance de la chaudière.

Notons que le balayage d’air dans les chaudières atmosphériques tend à diminuer avec la technologie des brûleurs à prémélange et les nouvelles configurations de chaudière (présence d’un ventilateur d’extraction s’arrêtant à l’arrêt, évacuation des fumées par le bas de la chaudière, …). Le passage d’air à l’arrêt est fortement freiné, ce qui limite les pertes par balayage à des valeurs de 0,2 .. 0,6 %.

Attention aux brûleurs récents (après 1985)

Témoin de position du clapet d’air d’un brûleur :
clapet en position fermée et clapet en position ouverte.

Attention, posséder un brûleur récent n’est pas une garantie de suppression des pertes par balayage. En effet, le clapet d’air qui, théoriquement, devrait se refermer à l’arrêt du brûleur, ne fonctionne pas toujours correctement :

  • Si le rappel se fait mécaniquement (contre poids ou ressort), le système peut se coincer avec le temps en position ouverte.
  • Si le rappel est assuré par un servomoteur, l’alimentation électrique ne peut être coupée à l’arrêt du brûleur. Il n’est ainsi pas rare de rencontrer des brûleurs dont le raccordement électrique est mal réalisé : la commande d’enclenchement du brûleur ouvre électriquement le clapet d’air; lorsque la régulation commande l’arrêt du brûleur, l’alimentation électrique de ce dernier est coupée; le clapet d’air ne peut plus se refermer puisque le servomoteur n’est plus alimenté. Il faut donc revoir le câblage du brûleur.

Même avec un brûleur récent, il faut donc vérifier, en plaçant la main devant l’entrée d’air du brûleur, que celle-ci ne laisse pas en permanence un libre passage à l’air.

Comparaison : les chaudières actuelles

Les chaudières actuelles présentent des pertes à l’arrêt nettement moindre que les anciens modèles :

  • suppression des pertes par balayage, notamment par fermeture du foyer à l’arrêt,
  • isolation renforcée de la jaquette de la chaudière,
  • régulation de la température de la chaudière en fonction des besoins.

À titre de comparaison, voici les coefficients de pertes à l’arrêt courants (% de la puissance nominale) que l’on rencontre couramment pour les chaudières actuelles (pour une température d’eau de l’ordre de 65°C) :

  • à brûleur pulsé : 0,1 (grosses puissances) .. 0,4 % (petites puissances),
  • à brûleur gaz atmosphérique : 0,6 .. 1,3 %

On peut aussi comparer les anciennes installations aux exigences de label OPTIMAZ, pour les chaudières fuel. Pour obtenir celui-ci, le coefficient de perte à l’arrêt des chaudières fuel ne peut dépasser (pour une différence de température entre l’eau et la chaufferie de 35°C) :

  • chaudières de moins de 20 kW : 1 %
  • chaudières entre 20 et 60 kW : 0,8 %
  • chaudières entre 60 et 400 kW : 0,6 %
  • chaudières de plus de 400 kW : 0,4 %

Surdimensionnement

Le surdimensionnement de la chaudière joue un rôle important sur l’ampleur des pertes à l’arrêt

  • Plus la puissance de l’ensemble brûleur/chaudière est importante par rapport aux besoins, plus son temps de fonctionnement annuel est faible par rapport au temps d’attente de la chaudière et plus les pertes à l’arrêt prennent de l’importance sur le rendement global de la production,
  • Les pertes à l’arrêt sont fonction des caractéristiques constructives de la chaudière. Elles sont proportionnelles à sa puissance nominale,

et sur les émissions polluantes et l’encrassement de la chaudière (production d’imbrûlés au démarrage et à l’arrêt des brûleurs).

Ordre de grandeur

Le temps de fonctionnement continu d’un brûleur (mesurable à l’aide d’un chronomètre ou d’une simple montre) est un premier indice du degré de surdimensionnement de la chaudière. Dans une installation correctement dimensionnée, ce temps doit être de plusieurs minutes. On cite souvent le chiffre de :

4 minutes par cycle de fonctionnement,

comme étant un temps de fonctionnement de brûleur correct.

Attention, ce chiffre n’est évidemment qu’une référence car le temps de fonctionnement du brûleur dépend de la saison et du mode de régulation.

Évaluer

On peut approfondir cet indice en calculant le temps de fonctionnement annuel du brûleur et en comparant ce chiffre à un temps estimé correct en fonction du type de bâtiment. Cette estimation ne peut se faire qu’en connaissant la puissance du brûleur et la consommation annuelle de combustible. Pour approfondir cette méthode d’évaluation.

Présence de plusieurs chaudières

Le découpage de la puissance en plusieurs chaudières peut avoir un impact favorable sur la diminution des pertes à l’arrêt. En effet, si la régulation de l’installation est correctement réalisée, cela permet en principe de réduire le nombre de chaudières en activité, durant une bonne partie de la saison de chauffe et d’éliminer ainsi une partie des pertes.

Profil des besoins annuels d’un bâtiment dont la puissance maximale demandée est de 800 kW (climat de Uccle). Par exemple, le bâtiment demande une puissance de chauffe de plus de 200 kW pendant 4 000 h/an.
Si la puissance installée est découpée en 2 chaudières de 400 kW, la deuxième chaudière ne sera nécessaire que durant 1 140 heures sur la saison de chauffe (qui dure 5 800 heures/an)

Tout dépend cependant de la régulation de l’installation.

Exemple.

Deux chaudières de 558 kW de 1967 et 1959.

Cette installation est composée de deux chaudières de 558 kW chacune. Une seule chaudière est nécessaire pour satisfaire les besoins durant l’année entière. Bien que mise à l’arrêt durant toute la saison de chauffe, la deuxième chaudière est en permanence irriguée par l’eau de chauffage à 70°C.

Elle présente donc des pertes à l’arrêt, d’autant plus inutiles que la puissance de la chaudière n’est pas nécessaire.

Le coefficient de perte à l’arrêt des chaudières est estimé à 2,5 %. La perte à l’arrêt de la deuxième chaudière est donc de :

558 [kW] x 0,025 x 5 800 [h/an] = 80 910 [kWh/an] ou 8 091 [litres fuel ou m³ gaz par an]

Cette perte pourrait être nulle si l’irrigation de la deuxième chaudière était supprimée (par une vanne motorisée ou plus simple ici, par une vanne manuelle).

On voit donc qu’une installation comprenant plusieurs chaudières n’est efficace que si les chaudières inutiles par rapport aux besoins instantanés ne sont pas irriguées par l’eau chaude de l’installation et que l’on réalise une véritable régulation en cascade. Dans le cas contraire, on « subit » pleinement leurs pertes à l’arrêt.

Exemple.

La situation « énergétiquement » aberrante et pourtant sûrement pas exceptionnelle est un ensemble de plusieurs chaudières dont une est en panne depuis plusieurs années. Comme la puissance restante est suffisante pour chauffer le bâtiment, la réparation n’est pas effectuée. Mais la circulation est maintenue dans la chaudière à l’arrêt, entraînant une perte importante.

Mais attention, on constate cependant qu’en pratique des chaudières régulées en cascade avec fermeture d’une vanne d’isolement associée à l’arrêt de la chaudière peuvent cependant rester toute la saison de chauffe en température. D’où peut provenir ce dysfonctionnement ?
On peut citer 3 causes possibles :

  1. Les vannes d’isolement ne sont pas étanches. Pour le savoir, il suffit d’empêcher manuellement le brûleur d’une chaudière à l’arrêt de démarrer et d’observer si sa température chute.
  2. La régulation de la cascade ne tient pas compte de la température extérieure pour commander le démarrage des chaudières. Ainsi, en mi-saison, lors de la relance, le régulateur demande la pleine puissance et commande la mise en route de toutes les chaudières alors qu’une seule chaudière est nécessaire. Les chaudières qui ne serviront plus durant la journée mettront alors un temps certain pour retomber en température (fonction de leur degré d’isolation et de leur inertie thermique). Toute l’énergie contenue dans ces chaudières est perdue.
  3. La temporisation à l’enclenchement des différentes chaudières est trop faible. Ainsi quelle que soit la saison, toutes les chaudières sont susceptibles de démarrer plusieurs fois par jour, restant chaudes quasi en permanence.

Présence de brûleurs 2 allures

L’impact du surdimensionnement est également tempéré par le découpage de la puissance installée au moyen de brûleurs 2 allures ou modulants (gaz ou fuel) :

  • Le temps moyen d’un cycle de fonctionnement du brûleur augmente et son nombre de démarrage diminue puisque le rapport (puissance fournie/puissance nécessaire) est réduit, notamment en mi-saison.
  • Le temps de fonctionnement annuel total du brûleur augmente et le temps d’attente de la chaudière et les pertes à l’arrêt annuelles diminuent.
  • Le rendement de combustion du brûleur augmente puisque la puissance du brûleur diminuant par rapport à la surface d’échange, la température des fumées à la sortie de la chaudière est plus basse. Un gain de l’ordre de 2 .. 2,5 % sur le rendement de combustion peut être obtenu en première allure.

On comprendra aisément que l’utilisation d’un brûleur modulant adaptant, en continu, dans une certaine plage, sa puissance aux besoins permet d’obtenir une installation qui fonctionne presqu’en permanence, avec un minimum de démarrages et d’arrêts.

Cependant, tout dépend si une réelle régulation en cascade est appliquée. En effet, on rencontre dans la pratique :

  • Des chaudières multiples démarrent toujours en même temps quelle que soit la saison.
  • Des brûleurs 2 allures ne sont pas toujours des brûleurs à deux allures vraies, mais des brûleurs avec une plus petite allure de démarrage (le brûleur démarre en petite allure et après un certain temps passe d’office à pleine puissance).
  • Des brûleurs à deux allures vraies mais commandés par un unique aquastat, sans relais temporisé. La commande de la première allure ayant été « pontée », le brûleur passe alors d’office en deuxième allure, sans régulation de la puissance.

Fonctionnement d’un brûleur avec allure réduite au démarrage (brûleur à deux « fausses » allures).

Fonctionnement d’un brûleur 2 allures en fonction des besoins instantanés.

Dans ces trois cas, on perd l’avantage, sur la production d’imbrûlés et sur les pertes à l’arrêt, d’avoir dissocié la puissance en plusieurs allures de brûleur et/ou plusieurs chaudières, puisque c’est la pleine puissance qui est appelée systématiquement quels que soit les besoins.

Améliorer

Améliorer la régulation en cascade de la production.

Améliorer

Diminuer la puissance du brûleur.

Différentiel de régulateur trop faible

Un temps de fonctionnement trop court des brûleurs peut également être la conséquence d’un différentiel de régulateur trop petit. Cela peut être le cas sur les régulateurs électroniques dont le différentiel est réglable par l’utilisateur (voir mode d’emploi du régulateur). Celui-ci devrait être de l’ordre de 9°C, c’est-à-dire un écart de température d’eau de 9°C entre la consigne d’allumage et d’extinction du brûleur. Parfois, le différentiel réglé n’est que de 1 ou 2°C. Dans ce cas, on comprend aisément que le brûleur s’allume et s’éteint constamment.


Évaluer le rendement saisonnier de la production

L’efficacité énergétique d’une chaudière se traduit par son rendement saisonnier. Le rendement saisonnier d’une chaudière est le rapport entre l’énergie fournie annuellement à l’eau de chauffage (à la sortie de la chaudière) et la quantité de combustible consommé.

La différence entre ces deux grandeurs constitue les pertes de production.

Expression mathématique du rendement saisonnier de production

Le rendement saisonnier d’une installation de production de chaleur peut entre autres s’exprimer par la formule :

hsais = [hcomb – %qr] / [1 + qx (nT/n– 1)]

où on retrouve les différents éléments évalués ci-dessus :

  • le rendement de combustion hcomb [%],
  • le pourcentage de perte vers la chaufferie, brûleur en marche %qr [%],
  • le coefficient de perte à l’arrêt qE [.,..],
  • le rapport entre la durée de la saison de chauffe et le temps de fonctionnement annuel du brûleur NT/NB [-], image du surdimensionnement.

Ces paramètres sont parfois complexes à évaluer sur une installation existante.

Pour effectuer le calcul dans votre propre situation et évaluer le potentiel d’amélioration,

Calculs

sur base du climat moyen de Uccle.

Calculs

sur base du climat moyen de St Hubert.

Objectif

On peut raisonnablement imaginer qu’il est possible d’atteindre, avec une (ou des) chaudière(s) moderne(s) performante(s), régulée(s) de façon adéquate, un rendement saisonnier de production de (pour une installation ne produisant pas d’eau chaude sanitaire) :

hsais = .. 92 .. %

Exemple.

Soit une ancienne chaudière de 600 kW sur dimensionnée de 100 % (le brûleur fonctionne durant 750 heures/an). Son coefficient de perte à l’arrêt est estimé à 2 %. La fiche d’entretien de la chaudière indique un rendement de combustion de 87 %. Les pertes vers la chaufferie, lorsque le brûleur fonctionne sont estimées à 1 %.

La consommation de cette chaudière est de 45 000 m³ de gaz par an.

Son rendement saisonnier peut être estimé à :

hsais = [87 – 1] / [1 + 0,02 x (5 800 / 750 – 1)] = 76 [%]

Le remplacement de cette chaudière par une chaudière et un brûleur moderne et redimensionnée permettrait une économie de :

45 000 [m³gaz/an] x (1 – 76 [%] / 92 [%]) = 7 826 [m³gaz/an], soit 17,4 [%]

Si l’installation le permet, il peut être intéressant de remplacer la chaudière par une chaudière à condensation. On peut alors espérer un rendement saisonnier de :

hsais = 101 % ou plus

Exemple.

Si on remplace l’ancienne chaudière du cas précédent par une nouvelle chaudière à condensation, le gain réalisé sera de :

45 000 [m³gaz/an] x (1 – 76 [%] / 101 [%]) = 11 138 [m³gaz/an], soit 24 [%]

Signalons en outre que le remplacement des anciennes chaudières par des nouvelles permet souvent de diviser par 2 à 3 les émissions annuelles de NOx (responsables entre autres des pluies acides).


Évaluer l’efficacité d’une chaudière à condensation

Posséder une chaudière à condensation n’est pas, en soi, une garantie d’efficacité énergétique optimale. Encore faut-il que cette chaudière condense réellement. Il n’est pas rare, en effet, de rencontrer des chaudières de ce type desquelles ne s’échappe qu’un fin filet de condensat. Parfois, l’évacuation vers l’égout reste désespérément sèche durant toute la saison de chauffe …

L’investissement consenti pour profiter d’un matériel performant est alors inutile.

Dans ce cas, outre la qualité intrinsèque de la chaudière, on peut mettre en cause :

Le réglage du brûleur

Un excès d’air de combustion trop important augmente la température de rosée des fumées, c’est-à-dire la température à partir de laquelle les fumées commencent à se condenser. L’énergie récupérée grâce à la condensation diminue en conséquence. Pour évaluer la qualité du réglage, il faut procéder ou faire procéder par le chauffagiste à un contrôle de combustion.

   

Rendement utile (sur PCI) d’une chaudière gaz en fonction de la température des fumées à la sortie de la chaudière et de l’excès d’air (n = 1,3 équivaut à un excès d’air de 30 %).

La conception du circuit hydraulique

La température des fumées sera la plus basse (et la quantité de condensat et l’énergie récupérée la plus grande), si le circuit hydraulique raccordé à la chaudière permet un retour d’eau le plus froid possible. Le circuit doit donc éviter tout retour direct d’eau chaude vers la chaudière : pas de soupape différentielle, pas de circuit primaire bouclé, de bouteille casse pression ou de circulateur de by-pass, …

Soupape de pression différentielle placée entre le départ et le retour d’un circuit secondaire : lorsque des vannes thermostatiques se ferment sur le circuit, la soupape s’ouvre renvoyant directement une partie de l’eau chaude vers la chaudière pour éviter que la pression n’augmente trop dans le circuit.

Certaines chaudières à condensation imposent cependant l’utilisation d’une bouteille casse-pression (chaudières nécessitant en permanence un débit minimal). Dans ce cas, il faut veiller à ce que la température de l’ensemble des circuits secondaires varie en fonction des conditions atmosphériques et que la température de la chaudière suive au plus près la température du circuit le plus demandeur. Cela peut devenir problématique si la chaudière remonte souvent en température pour produire en même temps de l’eau chaude sanitaire ou pour servir des utilisateurs demandant une température nettement plus élevée que les autres (circuit avec aérothermes, …). Alors, la chaudière ne condensera quasi pas.

Exemple de circuit hydraulique raccordé à une chaudière à condensation demandant un débit minimal permanent :

Si cette chaudière doit en même temps produire de l’eau chaude sanitaire, elle sera tenue de fonctionner un certain temps, pour ne pas dire tout le temps, à haute température. Dans ce cas, les vannes des circuits secondaires devront se refermer pour obtenir la température voulue. Le surplus d’eau chaude alors produit par la chaudière sera directement renvoyé vers celle-ci via la bouteille casse-pression. La chaudière ne condensera plus.

La régulation

Plusieurs dysfonctionnements de la régulation peuvent empêcher la condensation dans la chaudière :

Réglage des courbes de chauffe

La température de retour de l’eau vers la chaudière est conditionnée par la température demandée par les circuits secondaires. Celle-ci est le plus souvent réglée en fonction de la température extérieure au moyen d’une vannes mélangeuse et d’une courbe de chauffe. Un mauvais réglage de cette dernière peut conduire à demander une température d’eau trop élevée. Si une chaudière condense mal, il faut repérer le réglage des courbes existantes et les abaisser si nécessaire.

Exemple de courbe maximale que l’on devrait atteindre :

La courbe de chauffe réelle devrait même se trouver sous cette courbe. En effet si on prend en compte le surdimensionnement des radiateurs, une température d’eau de 70°C en plein hiver au lieu de 80° devrait être suffisante. Surtout si les radiateurs ont été dimensionnés pour un régime de température inférieur au traditionnel 90°/70°.

Attention, si les radiateurs sont équipés de vanne thermostatique, une courbe de chauffe trop élevée peut passer totalement inaperçue aux yeux des utilisateurs puisqu’aucune surchauffe ne se fera sentir. Le réglage de la courbe doit donc se faire toutes les vannes ouvertes.

En outre, lorsque l’on est en présence d’un circuit primaire avec bouteille casse-pression (comme mentionné ci-dessus), il faut vérifier que la température demandée à la chaudière est quasi semblable à la température demandée par le circuit secondaire le plus demandeur.

Régulation des brûleurs

Plus la puissance en fonctionnement du brûleur est faible par rapport à la puissance de la chaudière, plus celle-ci condensera facilement. Il faut donc vérifier que les brûleurs modulants ou les brûleurs 2 allures fonctionnent réellement en allure réduite quand les besoins sont faibles.

Si ce n’est pas le cas, il faut vérifier le paramétrage de la régulation et le raccordement correct du brûleur.

Concevoir

Les critères de performance d’une nouvelle chaudière à condensation.

Calculer le rendement saisonnier sur base de mesures

Chaudière classique

Le rendement saisonnier peut très bien être calculé au moyen de mesures effectuées à l’aide d’un compteur de chaleur sur le départ de la chaudière et d’un compteur sur l’alimentation en combustible du brûleur. Le rapport entre la production de chaleur mesurée au niveau du compteur de chaleur (kWh) et la consommation de combustible (gaz, fuel, …) exprimé en kWh donne la valeur du rendement saisonnier. Plus la période d’intégration est longue, meilleure est l’approche de la valeur réelle du rendement saisonnier, l’idéal étant une intégration sur l’ensemble de la période chauffe.

Trop souvent le rendement saisonnier est évalué suite à un audit, et ce de manière théorique. La seule façon de le déterminer précisément est de collecter les consommations mensuelles (ou en temps réel) de combustible et les consommations de chaleur.

La mesure de la quantité de chaleur produite passe donc par le placement d’un ou de compteur d’énergie :

  • En exploitation, la pose de compteurs permanents est primordiale, car elle permet, en temps réel de déterminer le rendement de chaufferie et, par conséquent, de pouvoir se rendre compte rapidement, d’une dérive des consommations. L’investissement dans ce type de compteur est très vite rentabilisé et ce d’autant plus que la puissance de la chaufferie est importante.
  • Lors d’un audit, la pose de compteurs non invasifs est intéressante, car elle permet d’approcher la valeur réelle du rendement saisonnier. On estime qu’une période de 2 semaines pendant la saison de chauffe permet d’obtenir un profil de consommation de chaleur suffisamment représentatif que l’on peut extrapoler pour une saison de chauffe.

Quelle que soit l’option prise, le placement d’un compteur d’énergie doit être réalisé par un professionnel sachant que la précision de la mesure peut être faussée juste par le choix d’un emplacement inadéquat au niveau de l’hydraulique de la production ou de la distribution. Sans y prendre garde, l’erreur de mesure peut atteindre d’ordre de 20 % pour les compteurs « non invasifs ». Pour les compteurs « invasifs », l’erreur est en moyenne de l’ordre de 1 à 2 % s’ils sont bien placés et calibrés (jusqu’à 20 % d’erreur).

ηsaisonnier =
kWh chaleur / kWh gazPCI

ηsaisonnier < 100 %

Mesures

Pour en savoir plus sur la mesure de l’énergie par compteur de chaleur.

 Chaudière à condensation

La détermination du rendement saisonnier s’effectue de la même manière qu’une chaudière classique en considérant les consommations de combustible et la mesure des consommations de chaleur. L’énergie de condensation est intrinsèque aux mesures effectuées. En d’autres termes, on peut s’attendre à obtenir des excellents rendements (voire > 100 %) si la chaudière à condensation travaille correctement.

ηsaisonnier = kWh chaleur / kWh gaz PCI

ηsaisonnier < 100 % si pas de condensation
ηsaisonnier > 100 % si condensation

Condenseur externe

Lorsque la puissance de la chaudière dépasse les 1 000-1 500 kW, pour exploiter l’énergie de condensation, on fait appel à un condenseur externe; ce qui complique le circuit hydraulique. Pour l’évaluation du rendement saisonnier en tenant compte de l’énergie de condensation, tout comme pour la chaudière à condensation, un seul compteur de chaleur bien placé est nécessaire sachant que l’énergie de condensation est intrinsèque à la mesure réalisée par le compteur de chaleur.

ηsaisonnier =
kWh chaleur < 100 % si pas de condensation /
kWh gaz PCI < 100 % > 100 % si condensation

Mesures

Pour en savoir plus sur le placement d’un compteur de chaleur.

Évaluer l’énergie de condensation sur base de mesures

Il n’est pas toujours possible de placer un compteur de chaleur sur un circuit hydraulique existant. En effet, la mesure effectuée par le compteur de chaleur non invasif (système à ultrason) n’est généralement précise que si elle est réalisée sur portion droite de conduite ; ce qui n’est pas toujours le cas dans une chaufferie.

Une manière d’évaluer le rendement de la production de chaleur est de mesurer la quantité de condensats sortant de la chaudière à condensation ou du récupérateur externe à condensation. Deux types de mesure sont assez simples à mettre en œuvre :

  • Pour les petites puissances, on peut très bien placer « un bidon » au niveau de l’évacuation des condensats et évaluer le nombre de litres d’eau condensée dans un laps de temps donné.
  • Pour les puissances plus importantes, on pourrait, avec un peu d’imagination, placer un compteur d’eau pouvant résister à une eau agressive (pH de l’ordre de 4).

Facteurs d’influence de la condensation

En théorie, la quantité de condensats formée lors du fonctionnement d’une chaudière à condensation est loin d’être négligeable. Le tableau suivant montre ce que l’on pourrait récolter comme quantité d’eau de condensation :

Pouvoir calorifique supérieur Hs (kWh/m³) Pouvoir calorifique inférieur Hi (kWh/m³) Hs/Hi Hs – Hi (kWh/m³) Quantité théorique spécifique de condensat (kg/m³)(1)
Gaz naturel LL 9.78 8.83 1.11 0.95 1.53
Gaz naturel E 11.46 10.35 1.11 1.11 1.63
Propane 28.02 25.8 1.09 2.22 3.37
Fuel domestique(2) 10.68 10.08 1.06 0.6 0.88

(1) Rapportée à la quantité de combustible.
(2)
Pour le mazout EL, les indications se rapportent au litre.

En pratique, la quantité de condensats peut varier en fonction principalement :

  • de la température des fumées ;
  • de la température du retour de l’eau de chauffage ;
  • du taux de charge de la chaudière.

Mais elle peut aussi varier en fonction du dimensionnement des échangeurs, de son efficacité, …

Quantités annuelles de condensats

Quantité théorique

Tout au long de la saison de chauffe, pour autant qu’elle soit modulante, la chaudière travaille à différents taux de charge. La monotone de chaleur exprime bien la répartition des taux de charge pendant une saison de chauffe :

Monotone de chaleur (source : Viessmann).

Travail de chauffage (source : Viessmann).

En analysant et en combinant les deux graphiques ci-dessus, en moyenne, une chaudière modulante bien régulée et alimentant un réseau secondaire maximisant un retour d’eau le plus froid possible, travaille avec un taux de charge compris entre 30 et 45 % sur la saison de chauffe.

Sur base de ce taux de charge moyen annuelle, on peut déterminer, par l’utilisation des abaques ci-dessous, le taux de condensation moyen auquel il faut s’attendre sur l’année de chauffe.

Eau de condensation générée.

La formule suivante permet de calculer la quantité théorique annuelle de condensats en fonction de la consommation de combustible :

Quantité théorique annuelle de condensats (kg) = taux de condensation théorique x Quantité théorique spécifique de condensat (kg/m³ ou kg/litre) x Quantité de combustible annuelle (m³ de gaz ou litre de fuel)

En croisant la quantité théorique annuelle de condensats et celle mesurée sur le terrain, on peut déjà se rendre compte de la situation dans laquelle on se trouve.

Exemple

Sur  base de ce qui précède et en considérant les hypothèses suivantes, il est possible de calculer la quantité théorique de condensats que l’on peut espérer récolter sur une saison de chauffe. On peut en déduire le rendement saisonnier.

Hypothèse :

  • La chaudière gaz est à brûleur modulant.
  • Le nombre d’heures de chauffe est de 6 500 heures.
  • Le taux de charge moyenne est de 37 %.
  • Le régime de température est 75/60°C ;
  • La quantité de gaz consommée sur l’année est de 20 000 m³.

Pour un taux de charge de 0.37 (37 % de la puissance nominale) :

  • La température de départ de l’eau de chauffage est de 47 °C.
  • La température de retour de  l’eau de chauffage est de 42 °C.
  • La température des fumées 42 °C.
  • Le taux de condensation est de 62 %.

La quantité de condensats récoltée est de 0.62 x 1.53 (kg/m3) x 20 000 (m³ de gaz) = 12 972 (kg d’eau).

Dans ce cas-ci, lorsqu’on s’approche de cette valeur de 12 972 litres d’eau, on peut considérer que la chaudière condense de manière optimale.

Le taux de condensation étant de 62 %, on peut considérer que 62 % des 11 % maximum disponible dans l’énergie de condensation, soit 6.8 %, représente l’augmentation du rendement saisonnier calculé sans condensation.

Le rendement saisonnier se déduit comme suit : en supposant que le rendement saisonnier sans condensation calculé soit de 97 %, le rendement saisonnier avec condensation est de 97 % + 6.8 % = 103.8 %.

Pour effectuer le calcul du rendement saisonnier (sans condensation) de l’installation :

Calculs

sur base du climat moyen de Uccle.

Calculs

 sur base du climat moyen de St Hubert.

Quantité réelle

Une autre manière de procéder est de recalculer le taux moyen réel de condensation par la formule suivante :

Taux de condensation annuel (%) =
Quantité de condensats mesurée (kg) x 100 / Quantité de combustible annuelle (m³ de gaz ou litre de fuel) x Quantité théorique spécifique de condensat (kg/m³ ou kg/litre)

Cette valeur du taux de condensation annuel est une image de l’amélioration du rendement saisonnier de l’installation due à la condensation.

Exemple

Hypothèse :

  • La quantité théorique spécifique de condensat pour le gaz est de 1.63 kg/m³.

Mesures

  • La quantité de gaz consommée sur l’année est de 20 000 m³.
  • La quantité de condensats récoltée sur l’année est de 10 000 kg.

Le taux réel de condensation annuelle est de 10 000 kg de condensats x 100 / (20 000 (m3 de gaz) x 1.53 kg/m3) est de 32 %.

La valeur théorique maximum du taux de condensation étant pour le gaz par exemple de 11 % (correspondant à 1.53 kg/m³), 0.32 x 11 % =  3.53 % représente l’amélioration du rendement saisonnier de l’installation.

Pour effectuer le calcul du rendement saisonnier (sans condensation) de l’installation :

Calculs

sur base du climat moyen de Uccle.

Calculs

 sur base du climat moyen de St Hubert.

Une valeur de 97 % sur PCI de rendement saisonnier sans la condensation issue du calcul donne une valeur du rendement saisonnier avec condensation de 97 % + 3.53 % = 100.53 % sur PCI.

Évaluer la motivation des décideurs

Évaluer la motivation des décideurs


Ils sont si peu motivés !… Pourquoi ?

La motivation humaine est un processus fort complexe. Nous allons tenter de la décortiquer pour comprendre son fonctionnement.

Il faut d’abord voir la motivation comme le résultat d’un processus et pas comme son préalable. La démotivation est, elle aussi, le résultat d’une situation et d’une manière de la vivre. Peu de gens sont des démotivés de naissance ! Mais la motivation « spontanée » des individus à l’économie d’énergie n’existe pas : elle est plus le résultat du dialogue à instaurer volontairement que le préalable à l’instauration de nouvelles habitudes.

Ensuite, on peut dire que la motivation, c’est la VIE :

  • Valence
  • Instrumentalité
  • Expectation

Les trois éléments doivent être présents pour que la motivation s’installe. Plus encore, VIE fonctionne comme un produit : cela veut dire que si pour un des termes on a une valeur égale à 0, la motivation est, elle aussi, peu probable.

VIE, c’est pratique pour retenir, mais les mots sont un peu barbares. Reprenons donc chaque terme et voyons ce qu’il y a derrière.

VALENCE :

C’est la valeur que l’on accorde à l’action demandée. La valence, c’est le jugement de valeur que l’on porte sur la conduite ou sur ce qu’elle permet d’atteindre. Si ce qu’on nous demande est important pour nous ou nous permet d’atteindre quelque chose d’autre qui est important pour nous, nous nous motiverons pour l’action. Par exemple : faire de l’URE par solidarité, pour éviter la déresponsabilisation, que nous considérons comme négative … Rien n’est en fait important ou pas important en soi : ça dépend des valeurs de chacun.

INSTRUMENTALITÉ :

On peut facilement remplacer ce terme par OBJECTIF. On se motive plus pour une tâche si on comprend pourquoi on nous la demande. On se motive plus encore pour cette tâche si on est d’accord avec ces raisons et surtout si on a pu participer à leur élaboration. L’action demandée est plus motivante si elle nous permet d’atteindre un autre objectif au-delà de ce qui est demandé. Par exemple, dans une école, un professeur peut se motiver pour l’URE si la conduite qui lui est demandée dans ce cadre (relever des compteurs, élaborer des affiches …) lui permet d’atteindre d’autres objectifs pédagogiques ou que ça rentre facilement dans un de ses cours.

EXPECTATION = CONFIANCE EN SOI :

Les humains se motivent s’ils sont persuadés que ce qu’on leur demande est possible pour eux. L’expectation, c’est l’image que l’on a de soi et de ses possibilités d’atteindre ou non le résultat demandé. Tout le monde sait que si on se croit incapable de faire quelque chose, on arrive rarement à le faire. En matière d’URE, vous allez reconnaître un niveau d’expectation très bas quand les gens vous diront : « Je ne peux pas faire la police tout le temps, ce n’est pas mon rôle, je ne suis pas payé pour ça … », on se rend incapable de réaliser l’action demandée.

Prenons un exemple complet. Un utilisateur d’énergie peut se motiver pour réduire sa consommation d’énergie en fermant tous les interrupteurs si :

  • Instrumentalité : il sait pourquoi on lui demande de le faire (par exemple, on lui a donné en même temps les chiffres de consommation et dit combien son geste pouvait permettre d’économiser par jour, ou si on lui donne à connaître les lois sur la diminution des émissions de CO2 et en quoi son geste peut y participer, ou …)

et

  • Expectation : il se sent capable de le faire : par exemple, c’est sous son entière responsabilité, ou il se sent capable de persuader les autres personnes utilisatrices des infrastructures

et

  • Valence : c’est important pour lui la diminution du CO2 parce qu’il pense aux générations suivantes, l’environnement est une valeur pour lui, il pense qu’éviter le gaspillage, c’est bien …

Gérer

Pour agir et organiser une campagne de sensibilisation.

Leurs décisions sont illogiques !… Pourquoi ?

La « logique » des décisions m’échappe. Leurs décisions sont prises en dépit du bon sens : ils achètent des équipements en fonction du budget disponible et des urgences et pas des économies d’énergie. Pourquoi les décideurs sont-ils si incohérents ?

Une analyse de la situation vous permet de comprendre le problème à partir de la « logique » de quelqu’un d’autre.

Cette analyse augmentera la chance d’atteindre vos objectifs. Constater est insuffisant, il faut aussi agir. L’analyse est parfois paralysante : ne vous laissez pas piéger par le fait que ce que vous découvrez est « normal ». Le changement dans une organisation passe par la volonté de certains acteurs d’atteindre des objectifs, en surmontant les obstacles liés à l’organisation ou aux comportements divergents des acteurs.

Toute organisation est traversée par des rationalités diverses (économique, technique, juridique, politique, sociale, psychologique …) liées à des intérêts divergents et complémentaires d’acteurs internes et externes à l’institution. De plus, les acteurs à l’intérieur des organisations poursuivent des objectifs qui leur sont propres.

Les décisions de ceux qui ne poursuivent pas les mêmes objectifs que nous nous apparaissent souvent comme illogiques. De plus, nous percevons comme irrationnels des comportements ou des décisions dont nous ne pouvons admettre la logique.

Mais à peu près tous les humains recherchent une cohérence interne SUBJECTIVE. Si nous nous interrogeons sur la « logique » de quelqu’un, c’est la sienne qu’il faut rechercher !

Les décideurs sont aussi « incohérents » parce que leurs critères de décision ne sont pas les vôtres !

Les responsables énergie sont rarement les décideurs. Ils ont tendance à considérer que les critères de décision les plus pertinents sont ceux qu’ils élaborent en prenant en considération leurs propres contraintes et ressources. Ils omettent parfois le point de vue d’autres acteurs notamment ceux qui doivent prendre les décisions. Dans une pareille situation, quand les points de vue ne sont pas considérés comme complémentaires par le décideur, il y aura nécessairement perception d’une « incohérence » par le responsable énergie.

Influencer les décideurs grâce à des projets bien pensés, c’est-à-dire, jouer un rôle d’aide à la décision, fait partie de la fonction de la plupart des responsables énergie, mais souvent « on » a omis de le leur dire.

Il est important aussi de se rappeler qu’à l’intérieur d’une organisation, ce sont des hommes qui prennent des décisions et pas « un pouvoir » impersonnel. Rétablir la personne derrière ce concept de « pouvoir » permet de mieux réfléchir des stratégies pour la convaincre du bien-fondé d’un projet.

Gérer

Pour agir et surmonter son propres découragement.

Gérer

Pour agir, faire entendre son avis et convaincre la hiérarchie.

Tout est bloqué !… Pourquoi ?

Tout se bloque quand le projet n’a plus d’importance pour les personnes chez qui il se trouve ou si d’autres priorités viennent gommer l’importance du dossier.

Les blocages sont fait d’un mélange d’éléments aléatoires, intentionnels et inconscients :

  • l’aléatoire par nature nous échappe;
  • l’intentionnel est lié aux objectifs des acteurs;
  • l’inconscient quant à lui peut s’expliquer notamment en prenant comme cadre de référence les buts de mission et de système et le fonctionnement du processus du pouvoir.

Toute institution remplit une fonction dans la société ; elle poursuit des « buts ». Certains sont officiels et donc clairement exprimés. D’autres ne sont pas explicités mais ont quand même une influence sur le fonctionnement de l’organisation. Mintzberg établit deux catégories de buts poursuivis dans une institution : les buts de mission et les buts de système.

Les buts liés à la mission décrivent la vocation externe de l’institution. Ils sont la raison d’être de l’organisation. Par exemple, le but de mission d’une école, c’est l’éducation des jeunes. Les buts déclarés sont le plus souvent des buts de mission. Ils sont généralement exprimés en termes vagues et imprécis. Ils sont donc sujets à diverses interprétations à l’intérieur et à l’extérieur de l’institution, ce qui peut être à l’origine de bien des conflits et des blocages.

Les buts liés au système sont ceux que l’institution poursuit pour assurer son existence et son développement. Ils concernent directement l’organisation et son personnel. Ces buts peuvent être la survie (but minimal), la croissance, le contrôle de son champ d’action, une utilisation efficiente des ressources. Ils existent dans toutes les organisations, mais ils ne sont pas toujours explicites ou conscients. Ils sont pourtant fondamentaux pour que l’institution puisse poursuivre des buts de mission.

La gestion de l’énergie, c’est typiquement un but de système. En effet, comme d’autres départements (comptabilité, personnel…), le Responsable Énergie apparaît comme « auxiliaire » par rapport aux fonctions de ceux qui travaillent directement à la réalisation des buts de mission (les professeurs dans une école, le bourgmestre dans une commune, les agents de la production dans une usine).

On découvre l’importance des buts de système quand justement ils ne sont pas atteints. Quand tout fonctionne bien, on a tendance à les ignorer (ainsi que ceux qui y contribuent).

Dans beaucoup d’organisations, les buts de mission, les impératifs économiques et les objectifs des acteurs sont les critères les plus importants pour prendre des décisions.

Technicien chauffage

Améliorer les chaudières

Technicien chauffage

Améliorer le réglage de la combustion

Le réglage correct du débit d’air comburant est une donnée essentielle pour optimaliser le rendement de combustion du brûleur. La pratique montre qu’un léger excès d’air est nécessaire pour atteindre le rendement maximum. Il faut donc trouver cet optimum en réglant le registre d’air tout en mesurant le rendement et en surveillant l’apparition d’imbrûlés.

Attention, le volume d’oxygène contenu dans l’air diminue en hiver. C’est pourquoi les responsables de chaufferie ont tendance à régler les brûleurs à air pulsé avec des excès d’air plus élevés, de manière à éviter la formation d’imbrûlés quelle que soit la saison, ce, au détriment des performances de la combustion.

C’est aussi, ce qui peut justifier que, pour les installations d’une certaine puissance, plusieurs réglages annuels soient effectués.

Réglage d’un brûleur avec analyse en direct des fumées.

Gérer

Pour en savoir plus sur l’intérêt de procéder à plusieurs réglages par an.


Améliorer l’évacuation des fumées

Réguler le tirage

Un tirage de la cheminée trop important (> 15 .. 20 Pa) a des incidences sur le rendement de combustion de la chaudière :

  • augmentation de la vitesse des fumées et augmentation de la température de celles-ci;
  • augmentation de l’excès d’air (notamment parasite) et diminution de la teneur en CO2 des fumées.

Un tirage trop faible (< 10 PA) ou fluctuant sera source d’imbrûlés.

Pour remédier a ces problèmes, il faut bien souvent équiper la buse d’évacuation des fumées d’un régulateur de tirage ou, s’il est déjà présent, procéder à un nouveau réglage.

Régulateur de tirage.

Notons que la présence d’un régulateur de tirage limite également les problèmes de condensation dans la cheminée :

  • Les fumées sont diluées par de l’air frais. La teneur en vapeur d’eau du mélange diminue par rapport aux fumées pures. La température à partir de laquelle cette vapeur d’eau va se condenser va donc s’abaisser.

 

  • La température du mélange aspiré par la cheminée diminuant, l’échange de chaleur entre les parois de la cheminée et les fumées diminue et donc proportionnellement, les fumées se refroidissent moins.

 

  • Le débit total véhiculé par la cheminée augmentant, à échange vers les parois égal, la chute de température de mélange sera plus faible.

 

  • À l’arrêt de la chaudière, dans les grandes cheminées, le tirage sera tel que le régulateur de tirage conservera une certaine ouverture, créant un courant d’air permanent asséchant la cheminée.

Isoler la buse de raccordement à la cheminée

Isoler la buse de raccordement entre la chaudière et la cheminée ralentit le refroidissement des fumées et donc les risques de condensation des fumées dans la cheminée.

En soi l’isolation de la buse n’améliore pas le rendement mais indirectement lorsqu’un problème de condensation apparaît dans la cheminée, le réflexe du technicien est malheureusement parfois de bloquer en position ouverte, le clapet d’admission d’air du brûleur et, par conséquent, le rendement s’en ressent. Il vaudrait beaucoup mieux placer un régulateur de tirage et isoler la buse de raccordement.

Exemple :

Pour une surface de buse de 6 m², et une température de fumée à la sortie de la chaudière de 160°C, la température au niveau de la souche de cheminée sera de 120°C, soit une chute de température de 40°C.

Cette chute de température peut être réduite à 5°C si la buse de raccordement est isolée avec une épaisseur de 5 cm de laine minérale.


Modifier la régulation du brûleur

Il est fréquent de rencontrer des brûleurs performants (anciens ou récents) dont les avantages ne sont pas exploités réellement.

Les deux exemples les plus flagrants sont :

Visualisation du positionnement du volet d’air motorisé d’un brûleur 2 allures :
on peut y constater la fermeture à l’arrêt et le passage de première en deuxième allure.

Faire corriger ces deux points par un technicien spécialisé permet d’importantes économies.

Fermeture du volet d’air motorisé à l’arrêt

La fermeture du volet d’air implique que l’alimentation électrique de son servomoteur ne soit pas coupée à l’arrêt du brûleur. Il faut donc que le chauffagiste corrige le raccordement électrique de ce dernier pour qu’il corresponde aux prescriptions du fabricant.

Bornier de raccordement électrique d’un brûleur et servomoteur permettant la fermeture du clapet d’air à l’arrêt. Sur les brûleurs domestiques (moins de 40 kW), celui-ci n’est qu’en option.

Le gain qui en résulte peut être important si on estime que l’on supprime les pertes par balayage, grâce à cette amélioration.

Évaluer

Évaluer les pertes par balayage.

Notons que certains installateurs préfèrent forcer l’ouverture permanente du clapet d’air pour maintenir un balayage dans la cheminée et éviter les problèmes de condensation.

Ce raisonnement est à proscrire parce qu’il engendre, comme on l’a vu, des pertes importantes pour la chaudière. Si des problèmes de condensation se présentent, c’est au niveau de la cheminée qu’il faut agir, en revoyant son dimensionnement ou en ouvrant la trappe de ramonage ou le régulateur de tirage.

Concevoir

Concevoir une cheminée.

Régulation des brûleurs en cascade

Par facilité et économie d’investissement, certains brûleurs 2 allures sont raccordés sans réelle régulation en cascade.

Pour être régulé en cascade, un brûleur 2 allures a en général besoin soit de 2 aquastats (sur le départ ou sur le retour), chacun de ceux-ci commandant une allure, soit de relais temporisés, soit d’un régulateur de cascade (module de gestion de cascade travaillant au départ d’une sonde de départ).

Armoire de gestion de cascade précâblée incluant les relais temporisés.

Si le brûleur n’est commandé que par un aquastat et que la commande de la première allure est « pontée » (comme disent les fabricants de brûleurs), celui-ci se comportera comme un brûleur démarrant en petite allure et enclenchant d’office la grande allure rapidement. Le brûleur fonctionne donc la plupart du temps à pleine puissance et on perd l’intérêt de disposer d’un matériel capable d’adapter sa puissance aux besoins, à savoir l’augmentation du temps de fonctionnement du brûleur, la diminution des pertes à l’arrêt et l’augmentation du rendement de combustion).

Concevoir 

Intérêt d’un brûleur 2 allures ou modulant

Pour exploiter correctement un brûleur deux allures et réduire ainsi les pertes et émissions polluantes, il faut compléter la régulation existante par des relais temporisés ou un module de gestion de cascade. Celui-ci permet de gérer en fonction des besoins de puissance, le fonctionnement en cascade de plusieurs chaudières équipées de brûleurs à deux allures.

Attention, les fabricants de chaudières recommandent souvent la puissance minimale en dessous de laquelle la première allure du brûleur ne peut pas descendre sous peine de voir apparaître des condensations dans la chaudière. Cette puissance est généralement de l’ordre de 60 % (voire 80 %) de la puissance nominale de la chaudière. La puissance développée par le brûleur en première allure doit donc absolument être vérifiée, comparée aux exigences du fabricant et augmentée si nécessaire.

Études de cas 

Audit d’une installation de chauffage.

Améliorer la régulation en cascade des chaudières

Réguler en cascade des chaudières fonctionnant en parallèle

Réguler des chaudières en cascade a deux intérêts :

  • Limiter les pertes à l’arrêt des chaudières dont la puissance n’est pas nécessaire pour couvrir les besoins. Autrement dit, isoler hydrauliquement les chaudières mises à l’arrêt, évite le maintien en température de la chaudière.

 

  • Limiter la puissance mise en œuvre pour augmenter le temps de fonctionnement des brûleurs et limiter les pertes et les émissions polluantes au démarrage et à l’arrêt du brûleur (comme pour la régulation en cascade des brûleurs 2 allures).
Exemple :

Ces deux chaudières de 350 kW sont équipées d’un brûleur 2 allures mais qui en réalité travaille toujours à pleine puissance.

Les deux chaudières fonctionnent en parallèle et sont maintenues en température durant toute la saison de chauffe (5 800 h/an).

Leur surdimensionnement par rapport aux besoins maximaux est de l’ordre de 20 %. Le rendement utile des chaudières est estimé à 90,3 % (rendement de combustion mesuré : 91 %).

Les brûleurs sont équipés d’un volet d’air motorisé mais qui est maintenu en permanence ouvert. Le coefficient de perte à l’arrêt qui en résulte est estimé à 2 % (0,5 % pour les pertes vers l’ambiance et 1,5 % de pertes par balayage).

Le rendement saisonnier de l’installation est estimé à 85,5 % et la consommation annuelle est de 123 800 litres de fuel par an.

Examinons le gain possible en améliorant la régulation en cascade de brûleurs et des chaudières.

Pour effectuer le calcul dans votre propre situation et évaluer le potentiel d’amélioration,

Calculs

sur base du climat moyen de Uccle, !

Calculs

sur base du climat moyen de St Hubert,  !

La première action à envisager est de supprimer le balayage d’air dans la chaudière à l’arrêt en modifiant le raccordement électrique des brûleurs. Le coefficient de perte à l’arrêt passe ainsi de 2 % à 0,5 %.

Le rendement saisonnier atteindrait alors la valeur de 89 %, soit un gain de :

123 800 [litres/an] x (1 – 85,5 [%] / 89 [%]) = 4 868 [litres/an]

À partir de ce moment, les autres actions ont moins d’intérêt.

Si on régule en cascade les 2 allures des brûleurs, le rendement monte à 91,3 %, soit un gain complémentaire de :

(123 800 [litres/an] – 4 868 [litres/an]) x (1 – 89 [%] / 91,3 [%]) = 2 996 [litres/an]

Grâce à la diminution des temps d’attente des chaudières et l’amélioration du rendement de combustion en petite allure (on estime que le rendement de combustion augmente de 2 % en 1ère allure). On ne tient pas compte ici de la diminution de l’encrassement de la chaudière parallèle à la diminution du nombre de démarrages, gain non chiffrable.

Enfin, si on régule l’ensemble de l’installation en cascade avec isolation hydraulique de la chaudière à l’arrêt, le rendement saisonnier serait de 91,8 %, soit un gain complémentaire de :

(123 800 [litres/an] – 4 868 [litres/an] – 2 996 [litres/an]) x (1 – 91,3 [%] / 91,8 [%]) = 631 [litres/an]

grâce à la suppression des pertes à l’arrêt de la chaudière non nécessaire.

Gain total : 4 868 [litres/an] + 2 996 [litres/an] + 631 [litres/an] = 8 495 [litres/an] ou 1 797 [€/an] à 0,2116 [€/litre]

Si la technologie des anciens brûleurs est telle qu’il n’est pas possible de supprimer les pertes par balayage, sans changer de brûleur, le gain réalisé régulant en cascade les allures des brûleurs et en réalisant une véritable cascade de chaudières serait différent.

On passerait d’un rendement de 85,5 % à un rendement de 88,5 % en modifiant la régulation des brûleurs, puis à un rendement de 90,4 % par une régulation complète de l’ensemble avec isolation hydraulique de la chaudière à l’arrêt.

Les gains successifs seraient de :

123 800 [litres/an] x (1 – 85,5 [%] / 88,5 [%]) = 4 196 [litres/an]

(123 800 [litres/an] – 4 196 [litres/an]) x (1 – 88,5 [%] / 90,4 [%]) = 2 514 [litres/an]

Gain total : 4 196 [litres/an] + 2 514 [litres/an] = 6 710 [litres/an] ou 1 420 [€/an] à 0,2116 [€/litre]

À titre de comparaison, le devis remis pour le module de gestion de cascade de cette installation était de 1 375 € HTVA.

Améliorer la régulation en cascade existante

La régulation en cascade des chaudières n’a un sens que si les chaudières mises à l’arrêt sont déconnectées du réseau hydraulique au moyen d’une vanne motorisée. Cette précaution n’est cependant pas suffisante pour éviter que toutes les chaudières ne restent à haute température toute l’année. Il faut, en plus, être attentif à ce que la cascade respecte deux principes minimaux :

  • Interdiction de fonctionnement d’une chaudière en fonction de la température extérieure. Cette fonction permet de ne pas appeler systématiquement toutes les chaudières au moment des remontées en température et d’éviter des démarrages de trop courte durée en mi-saison. Par exemple, si à chaque relance, toutes les chaudières sont mises en route, les chaudières devenues inutiles en journée mettront un temps certain à se refroidir.

 

  • Une temporisation suffisante à l’enclenchement des chaudières pour éviter les démarrages intempestifs et inutiles de toutes les chaudières, quelle que soit la saison.

Couper manuellement une chaudière inutile dans une installation surdimensionnée

Bien souvent, les anciennes installations sont fortement surdimensionnées. Pour s’en convaincre, il suffit d’écouter un bon nombre de responsables techniques qui précisent qu’une des chaudières de leur installation ne se met jamais en route. Dans ce cas, il peut être simple de couper carrément une des chaudières au moyen d’une vanne manuelle. Cette chaudière ne serait alors remise en route que par de grands froids exceptionnels.

Évaluer

Pour évaluer l’importance du surdimensionnement des chaudières.
Exemple :

Dans une installation de 2 chaudières de 500 KW, une des chaudières est inutile.

Les pertes à l’arrêt de cette chaudière sont estimées à 2 %. En mettant à l’arrêt la chaudière inutile au moyen dune vanne d’isolement manuelle, on peut gagner (avec un rendement utile de la chaudière de 86 %) :

2 [%] x 500 [kW] x 5 800 [heures/an] / 0,86 = 67 442 [kWh/an] ou 6 744 [litres de fuel ou m³ de gaz par an]

Précautions

  • Pour éviter la corrosion de la chaudière mise à l’arrêt, il est conseillé de la laisser « sous eau » et de prévoir une passivation de l’eau de l’installation après analyse. Une telle analyse, qui par ailleurs ne peut être que bénéfique pour l’ensemble de l’installation, peut par exemple, être réalisée par le CSTC.

 

  • La « déconnection hydraulique » d’une chaudière inutile va entraîner une diminution du débit d’eau dans le circuit primaire. Cela peut poser un problème de confort dans le cas d’un circuit primaire bouclé. Pour éviter ce problème, il faudra vérifier que la température de la ou des chaudières restées en fonctionnement soit suffisamment supérieure à la température demandée aux circuits secondaires (ce qui est généralement le cas avec des anciennes chaudières maintenues sur leur aquastat).

 

  • Attention, si une chaudière est mise longtemps à l’arrêt, il est possible que des oiseaux nichent ou simplement tombent dans la cheminée, bouchant cette dernière. Il faut y être attentif lors de la remise en route.

 

  • Il faudra respecter les prescriptions garantissant le bon fonctionnement de la régulation en cascade.

Évaluer

Pour en savoir plus sur les problèmes hydrauliques susceptibles d’apparaître avec les circuits primaires bouclés.

Diminuer la puissance du brûleur

Lorsqu’une chaudière est manifestement surdimensionnée, il n’est pas utile de lui adjoindre un brûleur 2 allures. Autant diminuer, de façon permanente, la puissance en modifiant les caractéristiques du brûleur (à l’exception des brûleurs gaz atmosphériques) :

  • pour les chaudières fuel : en modifiant les caractéristiques du gicleur (débit du gicleur/ pression de pompe),
  • pour les chaudières gaz : en diminuant la pression de gaz.

Attention, les fabricants de chaudières recommandent souvent la puissance minimale en dessous de laquelle la puissance du brûleur ne peut pas descendre sous peine de voir apparaître des condensations dans la chaudière (lors des relances, lorsque la température de l’eau diminue, …). Cette puissance est généralement de l’ordre de 60 % (voire 80 % pour certaines chaudières) de la puissance nominale de la chaudière.

Cette contrainte montre la limitation de cette amélioration. En effet, si on diminue trop la puissance du brûleur, on risque de mettre en péril la chaudière (corrosion par l’acide, principalement avec le fuel).

Si la chaudière est manifestement surdimensionnée, mieux vaut rechercher une solution plus globale et envisager le remplacement de la chaudière.

Évaluer

Pour évaluer l’importance du surdimensionnement des chaudières.

Remplacer le brûleur

Certains anciens brûleurs pulsés (gaz ou fuel) ne permettent plus un réglage correct de la combustion et l’obtention d’un rendement de production suffisant. Cela est notamment dû au fait que l’usure mécanique des pièces qui ne permet plus un dosage correct entre l’air et le combustible.

Évaluer

Évaluer les paramètres de la combustion.

Il en résulte une production d’imbrûlés plus importante, un encrassement et donc une perte de rendement plus rapide. Cela peut aller jusqu’à l’arrêt du brûleur trop encrassé.

L’âge du brûleur est également source de pannes plus fréquentes des différents organes qui à elles seules justifient le remplacement.

Nouveau brûleur et vieille chaudière ?

Est-il judicieux de remplacer uniquement le brûleur dune chaudière obsolète ?

Non, si la chaudière est manifestement au bout du rouleau et que son surdimensionnement est manifeste. Dans ce cas, il faut envisager le remplacement de l’ensemble.
Oui, si on prend en considération le gain énergétique que l’on peut déjà réaliser par cette action et si on s’assure de pouvoir récupérer le nouveau brûleur en cas de remplacement futur de la chaudière.

Beaucoup de gestionnaires se posent la question de la durée de vie restante d’une ancienne chaudière. Il est impossible de donner une réponse précise à cette question. Cela dépend du mode de fonctionnement de la chaudière depuis son installation. Par exemple, la fonte « enregistre » les contraintes qu’elle a subies durant toute sa vie. Fragilisée, elle « lâchera » un jour. On ne peut dire quand, car on ne peut chiffrer ces contraintes.

Evidemment, des taches flagrantes de corrosion interne sont un signe de détérioration future.

C’est pourquoi, plus que de miser sur la « survie » ou la « mort future » dune chaudière, il faut programmer son remplacement par souci d’économie d’énergie ou dans le cadre du programme d’investissement lié à la maintenance du bâtiment.

Améliorer

Remplacer la chaudière.

Le gain

Gain sur le rendement de combustion

Les nouveaux brûleurs assurent une meilleure combustion que les anciens, notamment avec une production moindre de NOx. Cependant, si la chaudière ne change pas, la qualité de l’échange entre les fumées et l’eau reste identique.

De plus, chaque chaudière est développée pour un nombre limité de brûleurs, de manière à optimaliser l’échange de chaleur. En plaçant un nouveau brûleur sur une vieille chaudière, on peut, dès lors, conserver des températures de fumée assez élevées.

On n’obtient donc pas une amélioration du rendement de combustion aussi importante que si on remplaçait l’ensemble de l’installation.

En première approximation, on peut miser sur une augmentation du rendement de combustion de 1 .. 2 points.

Par exemple, pour une chaudière ayant un rendement de combustion de 88 %, on peut espérer que le remplacement du brûleur permette d’atteindre un rendement de 90 %.

Gain sur les pertes par balayage

Le gain réalisé en plaçant un nouveau brûleur se situe également au niveau de la suppression de pertes par balayage de la chaudière.

En effet, les nouveaux brûleurs possèdent la plupart du temps un clapet d’air qui se referme lorsque le brûleur est mis à l’arrêt. Ce clapet a pour effet de supprimer le courant d’air qui parcourt la chaudière lorsque le brûleur est arrêté.

Les pertes par balayage que ce courant d’air engendre sont souvent de l’ordre de 1 .. 1,5 % de la puissance installée.

Comme on l’a vu ci-dessus, il faut cependant faire attention, si le nouveau brûleur est équipé d’un clapet d’air motorisé (la présence d’un servomoteur pour manœuvrer le clapet d’air est indiquée dans la documentation technique du brûleur). En effet, il arrive (souvent) que le mode de régulation appliqué à la chaudière ne permette pas au clapet de se refermer à l’arrêt du brûleur.

Exemple.

Beaucoup d’anciennes chaudières sont maintenues en température par un aquastat. Lorsque la température de consigne est atteinte, le brûleur est mis à l’arrêt par coupure de son alimentation électrique. Or si cette dernière est totalement coupée, le servomoteur du clapet d’air est inopérant et le clapet ne peut se refermer.

Pour éviter cela, il faut être attentif au mode de

raccordement du nouveau brûleur.

Exemple.

Considérons une chaudière de 350 kW de 1981, équipée d’un ancien brûleur sans fermeture à l’arrêt du clapet d’air. La consommation annuelle de cette installation est de 60 000 litres de fuel par an.

Les pertes à l’arrêt de cette chaudière sont estimées à 0,5 % de pertes vers l’ambiance et à 1,5 % de pertes par balayage.

Le rendement de combustion mesuré est de 87 %.

En plaçant un nouveau brûleur, on peut espérer une augmentation du rendement de combustion à 89 % et on supprime les pertes par balayage.

Le rendement saisonnier de production calculé passerait alors de 82,1 % à 87,7 % (si la chaudière ne produit pas d’eau chaude sanitaire en été).

Le gain énergétique s’élève donc à :

60 000 [litres de fuel] x (1 – 82,1 [%] / 87,7 [%]) = 3 831 [litres fuel/an] ou 1 245 [€/an] (à 0,325 €/litre)

pour un coût de : 3 625 € (HTVA).

Pour effectuer le calcul dans votre propre situation et évaluer le potentiel d’amélioration,

Calculs

sur base du climat moyen de Uccle,

cliquez ici !

Calculs

sur base du climat moyen de St Hubert,

cliquez ici !


Colmater et réisoler la chaudière

Voilà le type d’action que l’on peut mener en attendant de préparer le projet de remplacement d’une très ancienne et peu performante chaudière.

Colmater les entrées d’air

Les entrées d’air parasite (entre les éléments d’une chaudière en fonte, au niveau de la porte foyer, ou encore par le regard des anciennes chaudières au charbon converties) sont synonymes :

  • De pertes de rendement de combustion par augmentation parasite de l’excès d’air. Les inétanchéités peuvent être telles que, quel que soit le réglage du brûleur, il est impossible d’atteindre un pourcentage de CO2 suffisant dans les fumées et donc un bon rendement de combustion.

 

Pour remédier à cela, il suffit de colmater les trous au moyen d’un mastic réfractaire, opération qui peut facilement se faire par du personnel interne à l’établissement.

Réisoler la jaquette

Dans beaucoup d’anciennes chaudières, il est possible de démonter l’enveloppe extérieure (la jaquette) et d’insérer sous celle-ci un nouvel isolant ou un isolant complémentaire en laine minérale.

Exemple.

   

Placement de nouveaux panneaux isolants sous la jaquette dune ancienne chaudière.

en passant d’une épaisseur d’isolant de 3 cm (en bon état !) à une épaisseur d’isolant de 5 cm, on diminue de 40 % la perte de chaleur par les parois de la chaudière. Le gain est de 90 % pour les zones de la paroi où l’isolant a disparu.

Soit un gain d’environ 13 litres de fuel par an et par m² de paroi pour une chaudière maintenue à 70°C durant la saison de chauffe pour un coût des matériaux de l’ordre de 5 €/m² (le gain est de 200 litres/m² de paroi, par an pour les parties non isolées au départ).


Diminuer la température de fonctionnement des chaudières

Diminuer la température de fonctionnement des chaudières maintenues en permanence en température élevée permet de réduire leurs pertes à l’arrêt.

Ainsi, en fonction de la saison, ou en permanence si les chaudières sont surdimensionnées, on peut modifier manuellement la température de consigne de l’aquastat de chaudière.

On peut aussi imaginer que la chaudière soit régulée totalement en température glissante en fonction de la température extérieure.

Gain

Les pertes à l’arrêt dépendent de la différence de température entre la chaudière et la chaufferie.

Exemple.

considérons une chaudière de 350 kW de 1981, équipée d’un ancien brûleur sans fermeture à l’arrêt du clapet d’air. La consommation annuelle de cette installation est de 60 000 litres de fuel par an.

Les pertes à l’arrêt de cette chaudière sont estimées à 0,5 % de pertes vers l’ambiance et à 1,5 % de pertes par balayage, la chaudière fonctionnant en permanence à une température moyenne de 80°C.

En diminuant la température de la chaudière de 10°C en moyenne sur la saison de chauffe, on diminue les pertes à l’arrêt dans le rapport (pour une température de chaufferie de 20°C) :

[(70 [°C] – 20 [°C]) / (80 [°C] – 20 [°C])] 1,25 = 0,8

Le gain s’élève à :

(1 – 0,8) x 0,02 x 350 [kW] x 4 000 [h/an] = 5 600 [kWh]/an ou 560 [litres/an]

où 4 000 [h/an] = le temps d’arrêt de la chaudière durant la saison de chauffe pour une chaudière non surdimensionnée.

Si la chaudière était totalement régulée en température glissante la température moyenne sur la saison de chauffe serait de l’ordre de 43°C. Dans ce cas les pertes seraient réduites d’un facteur :

[(43 [°C] – 20 [°C]) / (80 [°C] – 20 [°C])] 1,25 = 0,3

Le gain s’élèverait à :

(1 – 0,3) x 0,02 x 350 [kW] x 4 000 [h/an] = 19 600 [kWh]/an ou 1 960 [litres/an]

Un deuxième gain se situe au niveau des pertes du collecteur primaire, maintenu à la température des chaudières.

Exemple.

Une chaudière alimente un collecteur primaire DN 50 de 20 m (aller-retour), isolé par 4 cm de laine minérale.

Actuellement, le collecteur est maintenu à une température moyenne (aller-retour) de 70°C.

Si le collecteur est alimenté en température glissante sans limite basse, la température moyenne du collecteur durant la saison de chauffe sera d’environ 43°C.

Pour chacun des deux cas, la perte de distribution en chaufferie (température ambiante de 15°C) s’élève à :

Cas de la température fixe : 0,271 [W/m.°C] x 20 [m] x (70 [°C] – 15 [°C]) x 5 800 [heures/an] = 1 729 [kWh/an] ou 173 [litres fuel/an] ou 173 [m³ gaz/an]

Cas de la température glissante : 0,271 [W/m.°C] x 20 [m] x (43 [°C] – 15 [°C]) x 5 800 [heures/an] = 880 [kWh/an] ou 88 [litres fuel/an] ou 88 [m³ gaz/an]

Évaluer

Pour évaluer les pertes du réseau de distribution.

Précautions

Problèmes hydrauliques

Attention, dans certains types de circuits primaires (boucles fermées, bouteilles casse-pression), la régulation en température glissante de la chaudière peut conduire à des problèmes d’inconfort dans certains circuits. Avant de se lancer dans l’investissement d’un régulateur climatique, un essai manuel peut être effectué pour évaluer le risque encouru.

Évaluer 

Pour en savoir plus sur les problèmes d’inconfort liés à l’hydraulique et à la régulation en température glissante des chaudières.

Condensations internes

Toutes les chaudières (nouvelles ou anciennes) ne peuvent travailler avec une basse température d’eau. Certaines risquent de se détériorer du fait des condensations internes de fumées qui peuvent apparaître. Ce problème est encore plus présent pour les chaudières fonctionnant au fuel puisque dans ce cas les condensats sont plus acides.

Les anciennes chaudières en fonte ne posent pour cela, aucun problème étant donné :

  • Le mauvais échange de chaleur au niveau du foyer, qui empêche à la température des fumées de descendre trop bas.
  • L’épaisseur de la fonte qui ne risque guère de percer en cas de corrosion.

Ce n’est pas le cas pour les anciennes chaudières en acier qui, elles, sont sensibles à la corrosion.

Anciennes chaudières en fonte.

Il est évident que les chaudières modernes très basse température s’accommodent très bien de ce type de régulation.

Il faut également faire attention dans le cas des anciennes chaudières avec des rampes gaz (brûleurs gaz atmosphériques) sur lesquelles de l’eau de condensation des fumées risque de couler, causant de la corrosion et une production importante de suie.

Si un doute subsiste sur les capacités de la chaudière à résister à ce mode de fonctionnement, le plus simple est d’interroger le fabricant de la chaudière ou son fournisseur : « est-ce que la chaudière dont je dispose peut être régulée en température glissante, sachant que cela impliquera par moment un fonctionnement à très basse température ».

Le maintien en température élevée des anciennes chaudières est également parfois inévitable en présence dune production d’eau chaude sanitaire combinée à la chaudière.

Placer un récupérateur de chaleur

Placer un récupérateur de chaleur


Quantité d’énergie exploitable

Exemple.

Calculons l’énergie contenue dans 1 m³ d’air rejeté à l’extérieur.

Soit de l’air à 22°C rejeté à l’extérieur où il fait 6°C.

La quantité de chaleur Q contenue dans ce m³ d’air rejeté est égale au produit du volume d’air par la chaleur volumique de l’air (0,34 Wh/m³°C) et par l’écart de température entre l’air rejeté et l’air à l’extérieur (ΔT).

Q = 0,34 [Wh/m³°C] x 1 [m³] x (22 [°C] – 6 [°C]) = 5,4 Wh

En fait, l’énergie perdue est proportionnelle à l’écart de température et au taux d’humidité :

  • plus l’air rejeté est chaud (perte de chaleur sensible),
  • plus l’air rejeté est humide (perte de chaleur latente),
  • plus la température extérieure est basse.

Plus l’énergie contenue dans l’air rejeté est grande

Calculons l’énergie rejetée par heure par un groupe de ventilation ayant un débit de 10 000 m³/h.

Supposons que cet air de ventilation doit être simplement chauffé, et qu’il n’y a pas de contrôle d’humidité.

Ce groupe rejettera donc toutes les heures un potentiel énergétique de :

Énergie rejetée par heure : 5,4 [W/(m³/h)] x 10 000 [m³/h] = 54 [kWh]

Si le chauffage de l’air est assuré par une installation au mazout dont le rendement est de 70 % (rendement d’installation moyen), cela représente un équivalent combustible de :

54 [kWh] / 0,7 x 10 [kWh/litre] = 7,7 [litres]

Un récupérateur de chaleur sur l’air extrait permet, en gros, de récupérer 50 % de cette consommation, soit l’équivalent de 3,6 litres ou 1,35 € (à 0,375 €/litre) par heure de fonctionnement (certains récupérateurs permettent de récupérer 75 .. 90 % de cette consommation).

Installation sans récupération.

Installation avec récupération.

Calculs

Pour estimer le gain réalisable par le placement d’un récupérateur de chaleur.

Rentabilité d’un récupérateur de chaleur

La rentabilité du récupérateur résulte de la comparaison entre « le bénéfice », c’est-à-dire le coût de l’énergie récupérée, et « les dépenses », c’est-à-dire

  • Les dépenses de capital pour l’achat et le placement des échangeurs, pompes, ventilateurs, … (dans une installation neuve il faudra également tenir compte de l’éventuelle possibilité de réduire la taille des autres équipements de chauffe, batteries, chaudières, …),
  • les frais d’exploitation en consommation d’énergie des pompes, ventilateurs et accessoires,
  • les coûts d’entretien des équipements.

Le point délicat dans le calcul de la rentabilité sera l’estimation correcte de l’économie d’énergie que l’on peut atteindre. Celle-ci étant en pratique dépendante des conditions de fonctionnement essentiellement variables de la ventilation.

L’optimalisation consiste à rechercher, parmi plusieurs solutions techniques, la sélection de l’équipement présentant le temps de retour le plus court et/ou l’économie maximale.

L’optimum peut être déterminé selon les deux critères suivants :

  • Énergie nette maximale récupérée, qui est l’énergie totale récupérée moins les consommations en énergie du récupérateur (accessoires, accroissement des pertes de charge et donc de la puissance du ventilateur).
  • Gain financier maximum, le système est alors optimisé par rapport au gain financier pendant la durée de vie estimée de l’équipement (10 ans).

En fait, l’optimalisation se réalisera entre un nombre limité de solutions : différents modèles d’un même type et différents types de récupérateurs compatibles avec l’application concernée (les critères technologiques ayant déjà permis une première sélection).

Exemple.

Envisageons ici un exemple de calcul de rentabilité :

Soit une installation de ventilation assurant un débit de 10 000 m³/h et fonctionnant en tout air neuf 10 h par jour (de 8 h à 18 h), 5 jours par semaine et 35 semaines par saison de chauffe, soit 1 750 h.

Économie d’énergie

La température intérieure est de 22°C.

L’énergie nécessaire au chauffage de l’air neuf est de (8°C = température moyenne extérieure diurne durant la saison de chauffe et 0,8 est le rendement de l’installation de chauffage) :

0,34 [Wh/m³.°C] x 10 000 [m³/h] x (22 [°C] – 8 [°C]) x
1 750 [h/an] / 0,8 / 1 000 = 104 125 [kWh/an].

Soit un récupérateur dont le rendement de récupération est de 50 % (batteries à eau glycolée).

Cela implique une énergie récupérée de 52 062 kWh/an ou 5 200 litres fuel ou 3 235,4 €/an (à 0,622 €/litre).

Augmentation de la consommation électrique

La puissance électrique des ventilateurs GP et GE de l’installation de base est de :

0,4 [W/(m³/h)], soit 4 [kW]

Le placement du récupérateur entraîne une augmentation des pertes de charge et donc une augmentation de la puissance des ventilateurs pour maintenir le même débit :

Puissance électrique des ventilateurs GP et GE avec récupérateur = 5,7 kW

Ainsi qu’une consommation électrique d’auxiliaire pour la circulation du fluide caloporteur :

Puissance de la pompe de circulation = 0,3 kW

Le supplément de consommation électrique sera donc de :

5,7 [kW] + 0,3 [kW] – 4 [kW] = 2 [kW] x 1 750 [h] = 3 500 [kWh/an]

soit à 0,16 [€/kWh] (consommation de jour) = 560 [€/an]

L’économie annuelle réelle est donc de 1950 [€/an] – 402,5 [€/an] = 2674,4 [€/an]

Investissement

Dans une installation existante, le placement d’un récupérateur implique le coût du récupérateur mais aussi son intégration dans les caissons de ventilation existants, la modification de la vitesse du ventilateur (changement de poulies et peut-être du moteur) de manière à maintenir le débit de ventilation nominal et le placement d’un filtre sur l’air extrait pour protéger la batterie si celui-ci est absent.

Si on ne tient compte que du récupérateur et de son placement, on peut estimer l’investissement à 6 250 €. Le temps de retour est donc de :

6 250 [€] / 2674,4 [€/an] = 2,34 [ans]

On observe donc que la rentabilité est très dépendante du prix de revient du kWh thermique.


Les situations les plus favorables

Tout d’abord, si on remplace l’entièreté du groupe de traitement d’air, n’importe quel type de récupérateur peut être installé (à plaques, par accumulation, caloduc ou à eau glycolée). Au niveau du choix, on se retrouve quasiment dans la situation d’un bâtiment neuf.

Concevoir

Choix d’un récupérateur de chaleur dans le cas d’une installation neuve (pour les immeubles de bureaux).

Si on ne remplace pas le groupe de traitement d’air, seule la solution de l’échangeur à eau glycolée est réaliste avec un minimum d’intervention technique. Elle a aussi l’avantage de ne pas imposer la proximité entre les prises et les rejets d’air. Il faudra cependant parfois adapter la section des conduits au droit des batteries pour adapter éventuellement la vitesse de l’air (2,5 .. 3 m/s) (la batterie sur l’air neuf pourra être mise dans n’importe quelle position, la batterie sur l’air extrait devra être verticale pour permettre l’évacuation des condensats).

En outre, on obtiendra la meilleure rentabilité du récupérateur dans les cas suivants :

  • des débits élevés (+ de 10 000 m³/h),
  • un usage permanent de l’installation de ventilation (ex : hôpitaux),
  • des besoins thermiques élevés (ex : piscines),
  • une source de chaleur particulière et disponible (process industriel),
  • un ventilateur et son moteur surdimensionnés au départ, ce qui peut éviter de pourvoir au remplacement des poulies et du moteur pour maintenir les débits prescrits.

Exigences en milieu hospitalier

En milieu hospitalier il est impératif de limiter au maximum les risques de biocontamination. L’air est un vecteur important responsable des infections nosocomiales. Pour cette raison, la distribution d’air doit, au même titre que les démarches d’hygiène classique de chirurgie par exemple, suivre une marche en avant du plus « propre » vers le plus « sale » sans croisement possible de l’un vers l’autre.

En clair, un air extrait ne peut pas dans la majorité des cas se mélanger ou être contact avec l’air neuf.

Les échangeurs air/air, où l’air neuf et l’air vicié sont en contact physiquement (échangeur à accumulation par exemple) l’un et l’autre, doivent être évités là où il n’y a pas d’exigence de filtration absolue et où le réseau de distribution d’air alimente des zones à activités médicales multiples (contamination croisée).

Il est aussi difficile de modifier une installation existante sachant que souvent les groupes de pulsion et d’extraction sont assez éloignés les uns des autres. Que ce soit dans la conception « tour » ou « pavillonnaire », les groupes se trouvent aux extrémités opposées des plateaux des bâtiments.

On retiendra, qu’en milieu hospitalier, les récupérateurs les mieux appropriés sont des échangeurs :

  • à plaque pour autant que les groupes de pulsion et d’extraction soient proches les uns des autres,
  • à eau glycolée si les groupes sont éloignés.

Découvrez ce bon exemple de système de ventilation qui a été intégré au bâtiment de la société IVEG.

Consommation d’électricité et de combustible dans l’enseignement

Consommation d'électricité et de combustible dans l'enseignement


Communautés

Consommations spécifiques par élève

Consommations d’électricité HT et de combustibles de l’enseignement des Communautés en 2012.

Caractéristiques de l’échantillon

65 établissements de 12 à 2 100 élèves (total de 30 298 élèves)
Vecteur énergétique Électricité Combustibles
Écart-type
434 2 884
Consommation spécifique moyenne 379 kWh/élève 1 830 kWh/élève

Évolution de l’échantillon

Année Consommation spécifique électrique Consommation spécifique combustible Nombre Nombre d’élèves Degrés-jours 15/15
[kWh/élève] [kWh/élève]
2000 487 2 804 24 16 368 1 719
2001 400 2 519 56 28 531 1 934
2002 364 2 075 47 23 936 1 688
2003 306 2 146 55 21 168 1 921
2004 393 2 566 80 30 991 1 894
2005 381 2 394 55 19 057 1 829
2006 329 2 035 73 22 388 1 795
2007 400 2 069 82 32 241 1 578
2008 413 2 421 71 28 138 1 829
2009 430 2 160 66 25 518 1 818
2010 413 2 281 67 29 910 2 309
2011 360 1 827 70 29 689 1 515
2012 379 1 830 65 30 298 1 915
2013 Non disponible Non disponible Non disponible Non disponible 2137
2014 362 1 813 61 25498 1424
2015 402 1 737 53 22313 1688
2016 495 2010 Non disponible Non disponible 1948
2017 361 2075 63 25137 1775
2018 552 1996 31 11191 1737
2019 Non disponible Non disponible Non disponible Non disponible 1676
2020 307 1111 40 25720 1517

Consommations spécifiques par mère carré

Consommations d’électricité HT et de combustibles de l’enseignement des Communautés en 2012

Caractéristiques de l’échantillon

65 établissements de 265 à 27 020 m² (surface totale de 397 399 m²)
Vecteur énergétique Électricité Combustibles
Écart-type
16 92
Consommation spécifique moyenne 27 kWh/m² 127 kWh/m²

Ces données sont issues de l’enquête Bilan énergétique de la Wallonie 2012 Consommation du secteur domestique réalisé par l’ICEDD asbl pour le compte du Service Public de Wallonie. Le bilan complet est disponible sur le Portail de l’énergie en Wallonie.


Provincial et communal

Consommations spécifiques par élève

Consommations d’électricité HT et de combustibles de l’enseignement provincial et communal en 2012

Caractéristiques de l’échantillon

72 établissements de 57 à 996 élèves (total de 20 203 élèves)
Vecteur énergétique Électricité Combustibles
Écart-type
377 1 503
Consommation spécifique moyenne 323 kWh/élève 2 181 kWh/élève

Évolution de l’échantillon

Année Consommation spécifique électrique Consommation spécifique combustible Nombre Nombre d’élèves Degrés-jours 15/15
[kWh/élève] [kWh/élève]
2000 374 2 244 34 15 671 1 719
2001 346 2 213 37 13 439 1 934
2002 389 2 504 35 13 192 1 688
2003 378 2 435 37 10 915 1 921
2004 359 2 596 23 16 305 1 894
2005 294 1 892 55 19 100 1 829
2006 288 1 944 63 24 526 1 795
2007 328 1 891 58 17 763 1 578
2008 328 2 288 59 15 679 1 829
2009 342 2 334 72 20 352 1 818
2010 334 2 193 52 12 638 2 309
2011 329 1 571 61 13 621 1 515
2012 323 2 181 72 20 203 1 915
2013 Non disponible Non disponible Non disponible Non disponible 2137
2014 429 1 880 62 22382 1424
2015 405 2 094 61 23302 1688
2016 331 1614 Non disponible Non disponible 1948
2017 327 1842 44 15664 1775
2018 343 1555 19 5168 1737
2019 234 1033 4 1436 1676
2020 282 1193 20 11340 1517

Consommations spécifiques par mètre carré

Consommations d’électricité HT et de combustibles de l’enseignement provincial et communal en 2012

Caractéristiques de l’échantillon

90 établissements de 270 à 19 806 m² (surface totale de 290 815 m²)
Vecteur énergétique Électricité Combustibles
Écart-type
24 128
Consommation spécifique moyenne 26 kWh/m² 178 kWh/m²

Ces données sont issues de l’enquête Bilan énergétique de la Wallonie 2012 Consommation du secteur domestique réalisé par l’ICEDD asbl pour le compte du Service Public de Wallonie. Le bilan complet est disponible sur le Portail de l’énergie en Wallonie.


Libre et privé

Consommations spécifiques par élève

Consommations d’électricité HT et de combustibles de l’enseignement libre et privé en 2012

Caractéristiques de l’échantillon

76 établissements de 99 à 2 845 élèves (total de 72 451 élèves)
Vecteur énergétique Électricité Combustibles
Écart-type
113 612
Consommation spécifique moyenne 217 kWh/élève 1055 kWh/élève

Évolution de l’échantillon

Année Consommation spécifique électrique Consommation spécifique combustible Nombre Nombre d’élèves Degrés-jours 15/15
[kWh/élève] [kWh/élève]
2000 265 1 310 32 35 978 1 719
2001 214 1 248 59 51 523 1 934
2002 212 1 287 55 47 819 1 688
2003 225 1 258 51 40 896 1 921
2004 226 1 199 52 46 457 1 894
2005 215 1 077 56 53 196 1 829
2006 212 1 056 67 59 384 1 795
2007 229 1 021 77 73 709 1 578
2008 218 1 085 68 69 368 1 829
2009 218 1 013 79 75 694 1 818
2010 216 1 101 71 68 448 2 309
2011 213 898 70 66 641 1 515
2012 217 1 055 76 72 451 1 915
2013 Non disponible Non disponible Non disponible Non disponible 2137
2014 210 789 66 65670 1424
2015 193 849 54 53892 1688
2016 230 923 Non disponible Non disponible 1948
2017 206 941 60 1007 1775
2018 206 1036 39 40014 1737
2019 Non disponible Non disponible Non disponible Non disponible 1676
2020 164 481 37 45658 1517

Consommations spécifiques par mètre carré

Consommations d’électricité HT et de combustibles de l’enseignement libre et privé en 2012

Caractéristiques de l’échantillon

69 établissements de 800 à 23 000 m² (surface totale de 587 879 m²)
Vecteur énergétique Électricité Combustibles
Écart-type
12 70
Consommation spécifique moyenne 24 kWh/m² 114 kWh/m²

Ces données sont issues de l’enquête Bilan énergétique de la Wallonie 2012 Consommation du secteur domestique réalisé par l’ICEDD asbl pour le compte du Service Public de Wallonie. Le bilan complet est disponible sur le Portail de l’énergie en Wallonie.


Comparaison

Consommations spécifiques moyennes dans les différents réseaux d’enseignement  (en kWh/élève)

Consommations spécifiques moyennes dans les différents réseaux d’enseignement  (en kWh/m²)

Déterminer les performances thermiques à atteindre [Améliorer]

Déterminer les performances thermiques à atteindre [Améliorer]


La réglementation

Outre un niveau de performance global à atteindre (Kglobal et E), la PEB en matière d’isolation exige des valeurs maximales pour le coefficient de transmission thermique Umax des parois faisant partie de la surface de déperdition.

En rénovation, ces valeurs doivent être respectées pour toute paroi qui fait l’objet d’une reconstruction ou qui est ajoutée.

Il se peut également que ces valeurs (ou même des valeurs plus sévères) doivent être atteintes, et ce même si une paroi n’est pas directement touchée par la rénovation, lorsqu’il y a changement d’affectation du bâtiment, de manière à atteindre le niveau global d’isolation (K).


Les recommandations

Si l’on s’en tient à la réglementation, un coefficient de transmission thermique U est requis pour les parois délimitant le volume protégé. Mais il faut comprendre cette valeur comme l’exigence de qualité minimale à respecter, sorte de garde-fou que la Région a voulu imposer aux constructeurs.

L’épaisseur est le résultat d’un compromis :

  • Plus on isole, plus la consommation diminue (chauffage et climatisation), et avec lui le coût d’exploitation du bâtiment.
  • Plus on isole, plus le coût d’investissement augmente.

On peut aujourd’hui aller plus loin dans l’isolation des parois sans pour autant générer de grandes modifications dans la technique de construction. On peut aussi vouloir atteindre certains labels qui donnent parfois droit à des subsides. À titre d’exemple, pour une certification « passive » une isolation des parois approchant un U de 0.15 W/m²K est recommandée.

Elle permet de satisfaire de manière plus aisée l’exigence de niveau d’isolation globale (K).
Quelques considérations complémentaires :

  • Souvent c’est une logique de rentabilité financière qui détermine l’épaisseur d’isolant mis en place. Si une logique de rentabilité écologique était prise, la lutte contre le CO2 nous pousserait vers une isolation plus forte !
  • Le prix de l’énergie sur lequel on détermine la rentabilité varie sans cesse mais la tendance est clairement à la hausse. Cette évolution doit donc être prise en compte dans l’évolution de la rentabilité. Si le litre de fuel est un jour à 3 €, la rentabilité de l’isolation ne sera même plus discutée !
  • Maintenir 20°C dans un bâtiment, c’est un peu comme maintenir un niveau de 20 cm d’eau dans un seau percé. Aux déperditions du bâtiment correspondent des fuites dans la paroi du seau. En permanence nous injectons de la chaleur dans le bâtiment. Or, si en permanence on nous demandait d’apporter de l’eau dans le seau pour garder les 20 cm, notre premier réflexe ne serait-il pas de boucher les trous du seau ?

  • Expliquez aux Scandinaves, aux Suisses,. que nous hésitons entre 6 et 8 cm d’isolant, vous les verrez sourire, eux qui placent couramment 20 cm de laine minérale, sans état d’âme !

Pourquoi une isolation moins poussée sur le sol ?

En hiver la température du sol est plus élevée que la température extérieure. La « couverture » peut donc être moins épaisse.

Pourquoi une isolation plus poussée en toiture que dans les murs ?

Si la température extérieure est cette fois identique dans les 2 cas, le placement de l’isolant en toiture est plus facile à mettre en œuvre en forte épaisseur. Le coût est proportionnellement moindre. La rentabilité de la surépaisseur est meilleure.


Épaisseur d’isolant

L’épaisseur d’isolant (ei) peut être calculée par la formule :

1/U = Rsi + e11 + eii + e22 + Rse

ei = λi [1/U – (Rsi + e11 + e22 + Rse)]

avec,

  • λi : le coefficient de conductivité thermique de l’isolant (W/mK),
  • U : le coefficient de transmission thermique de la paroi à atteindre (W/m²K),
  • Rse et Rsi : les résistances thermiques d’échange entre le mur et les ambiances extérieure et intérieure. Ils valent respectivement 0,04 et 0,13 m²K/W pour une paroi verticale traversée par un flux de chaleur horizontal.
  • e1/λ1, e22 : la résistance thermique des autres couches de matériaux (m²K/W).

Dans le tableau ci-dessous, vous trouverez les épaisseurs minimales d’isolant à ajouter sur la face interne ou externe du mur plein pour obtenir différents coefficients de transmission.
Hypothèses de calcul :

  • Les coefficients de conductivité thermique (λ en W/mK) ou les résistances thermiques (Ru en m²K/W) des maçonneries utilisées et des isolants sont ceux indiqués dans l’annexe VII de l’AGW du 15 mai 2014.
  • La maçonnerie est considérée comme sèche et le coefficient de conductivité thermique de celle-ci correspond à celui du matériau sec. En effet, on a considéré que le mur isolé par l’intérieur ou par l’extérieur avait été protégé contre les infiltrations d’eau, comme il se doit.
  • La face intérieure de la maçonnerie est recouverte d’un enduit à base de plâtre d’1 cm d’épaisseur.

Remarques.

  • Lorsqu’on utilise un isolant disposant d’un agrément technique (ATG), on peut se fier au coefficient de conductivité thermique certifié par celui-ci; celui-ci est , en général, plus faible que celui indiqué dans dans l’annexe B1 de l’AGW du 15 mai  2014 et on peut ainsi diminuer l’épaisseur d’isolant, parfois de manière appréciable.
  • Les épaisseurs calculées doivent être augmentées de manière à obtenir des épaisseurs commerciales.
  • A épaisseur égale et pour autant que l’isolant soit correctement mis en œuvre, la présence d’une lame d’air moyennement ventilée entre l’isolant et sa protection (enduit ou bardage), permet de diminuer le coefficient de transmission thermique U de 2,5 à 5 %.
Composition du mur plein Masse volumique (kg/m³) λ(W/mK) ou Ru (m²K/W) Épaisseur du mur plein (cm) Coefficient de transmission thermique du mur plein sans isolant (W/m²K) Épaisseur de l’isolant (en cm) à ajouter pour obtenir un coefficient de transmission thermique particulier (U)
U
(W/m²K)
Nature de l’isolant
MW/EPS XPS PUR/PIR CG
Maçonnerie de briques ordinaires

 

1 000 à 2 100

 

0.72

 

19

 

2.22

 

0.60 5.47 4.86 4.25 6.69
0.40 9.22 8.20 7.17 11.27
0.30 12.97 11.53 10.09 15.85
0.15 27.97 24.86 21.76 34.19
29

 

1.69

 

0.60 4.84 4.31 3.77 5.92
0.40 8.59 7.64 6.68 10.50
0.30 12.34 10.97 9.60 15.09
0.15 27.34 24.3 21.26 33.41
39

 

1.37

 

0.60 4.22 3.75 3.28 5.16
0.40 7.97 7.08 6.20 9.74
0.30 11.72 10.42 9.12 14.32
0.15 26.72 23.75 20.78 32.65
Maçonnerie de moellons

 

2 200

 

1.40

 

29

 

2.54

 

0.60 5.73 5.09 4.45 7.00
0.40 9.48 8.42 7.37 11.58
0.30 13.23 11.76 10.29 16.16
0.15 28.23 25.09 21.96 34.5
39

 

2.15

 

0.60 5.40 4.80 4.20 6.60
0.40 9.15 8.14 7.12 11.19
0.30 12.90 11.47 10.04 15.77
0.15 27.91 24.81 21.71 34.11
Blocs creux de béton lourd

 

> 1 200

 

0.11

 

14

 

3.36

 

0.60 6.16 5.48 4.79 7.53
0.40 9.91 8.81 7.71 12.12
0.30 13.66 12.14 10.63 16.70
0.15 28.66 25.48 22.29 35.03
0.14

 

19

 

3.06

 

0.60 6.03 5.36 4.69 7.37
0.40 9.78 8.69 7.60 11.95
0.30 13.53 12.02 10.52 16.53
0.15 28.53 25.36 22.19 34.87
0.20

 

29

 

2.58

 

0.60 5.76 5.12 4.48 7.04
0.40 9.51 8.45 7.39 11.62
0.30 13.26 11.78 10.31 16.20
0.15 28.26 25.12 21.98 34.53
Blocs de béton mi-lourd

 

1 200 à 1 800

 

0.75

 

14

 

2.67

 

0.60 5.82 5.17 4.52 7.11
0.40 9.57 8.50 7.44 11.69
0.30 13.32 11.84 10.36 16.28
0.15 28.31 25.17 22.02 34.61
19

 

2.27

 

0.60 5.52 4.90 4.29 6.74
0.40 9.27 8.24 7.21 11.33
0.30 13.02 11.57 10.12 15.91
0.15 28.02 24.90 21.79 34.24
29

 

1.74

 

0.60 4.92 4.37 3.82 6.01
0.40 8.67 7.70 6.74 10.59
0.30 12.42 11.04 9.66 15.18
0.15 27.41 24.37 21.32 33.51
Blocs de béton moyen

 

900 à  1 200

 

0.40

 

14

 

1.86

 

0.60 5.08 4.52 3.95 6.21
0.40 8.83 7.85 6.87 10.80
0.30 12.58 11.18 9.79 15.38
0.15 27.58 24.52 21.45 33.71
19

 

1.51

 

0.60 4.52 4.02 3.52 5.52
0.40 8.27 7.35 6.43 10.11
0.30 12.02 10.68 9.35 14.69
0.15 27.02 24.02 21.02 33.02
29

 

1.10

 

0.60 3.39 3.02 2.64 4.15
0.40 7.14 6.35 5.56 8.73
0.30 10.89 9.68 8.47 13.32
0.15 25.91 23.03 20.15 31.67
Blocs de béton léger

 

600 à 900

 

0.30

 

14

 

1.53

 

0.60 4.56 4.05 3.54 5.57
0.40 8.31 7.38 6.46 10.15
0.30 12.06 10.72 9.38 14.74
0.15 27.06 24.05 21.05 33.07
19

 

1.22

 

0.60 3.81 3.38 2.96 4.65
0.40 7.56 6.72 5.88 9.24
0.30 11.31 10.05 8.79 13.82
0.15 26.31 23.39 20.46 32.16
29

 

0.87

 

0.60 2.31 2.05 1.79 2.82
0.40 6.06 5.38 4.71 7.40
0.30 9.81 8.72 7.63 11.99
0.15 24.83 22.07 19.31 30.34
Blocs creux de béton léger

 

< 1 200

 

0.30

 

14

 

2.05

 

0.60 5.31 4.72 4.13 6.49
0.40 9.06 8.05 7.04 11.07
0.30 12.81 11.38 9.96 15.65
0.15 27.8 24.72 21.63 33.98
0.35

 

19

 

1.86

 

0.60 5.08 4.52 3.95 6.21
0.40 8.83 7.85 6.87 10.80
0.30 12.58 11.18 9.79 15.38
0.15 27.58 24.52 21.45 33.71
0.45

 

29

 

1.57

 

0.60 4.63 4.12 3.60 5.66
0.40 8.38 7.45 6.52 10.25
0.30 12.13 10.78 9.44 14.83
0.15 27.13 24.12 21.10 33.16
Blocs de béton très léger

 

< 600

 

0.22

 

14

 

1.21

 

0.60 3.79 3.37 2.95 4.64
0.40 7.54 6.71 5.87 9.22
0.30 11.29 10.04 8.78 13.80
0.15 26.28 23.36 20.44 32.12
19

 

0.95

 

0.60 2.77 2.46 2.16 3.39
0.40 6.52 5.80 5.07 7.97
0.30 10.27 9.13 7.99 12.55
0.15 25.26 22.46 19.65 30.88
29

 

0.66

 

0.60 0.73 0.65 0.56 0.89
0.40 4.48 3.98 3.48 5.47
0.30 8.23 7.31 6.40 10.05
0.15 23.18 20.61 18.03 28.33
Blocs de béton cellulaire

 

< 500

 

0.18

 

15

 

0.98

 

0.60 2.91 2.58 2.26 3.55
0.40 6.66 5.92 5.18 8.14
0.30 10.41 9.25 8.09 12.72
0.15 25.41 22.59 19.76 31.05
20

 

0.77

 

0.60 1.66 1.47 1.29 2.03
0.40 5.41 4.81 4.21 6.61
0.30 9.16 8.14 7.12 11.19
0.15 24.16 21.47 18.79 29.52
30

 

0.54

 

0.60
0.40 2.91 2.58 2.26 3.55
0.30 6.66 5.92 5.18 8.14
0.15 21.67 19.26 16.85 26.48
Blocs de terre cuite lourds

 

1 600 à 2 100

 

0.90

 

14

 

2.92

 

0.60 5.96 5.30 4.63 7.28
0.40 9.71 8.63 7.55 11.86
0.30 13.46 11.96 10.47 16.45
0.15 28.46 25.3 22.13 34.78
19

 

2.51

 

0.60 5.71 5.07 4.44 6.98
0.40 9.46 8.41 7.36 11.56
0.30 13.21 11.74 10.27 16.14
0.15 28.21 25.07 21.94 34.48
29

 

1.96

 

0.60 5.21 4.63 4.05 6.36
0.40 8.96 7.96 6.97 10.95
0.30 12.71 11.30 9.88 15.53
0.15 27.70 24.63 21.55 33.86
Blocs de terre cuite perforés

 

1 000 à 1 600

 

0.54

 

14

 

2.24

 

0.60 5.49 4.88 4.27 6.71
0.40 9.24 8.21 7.19 11.29
0.30 12.99 11.55 10.10 15.88
0.15 27.99 24.88 21.77 34.21
19

 

1.86

 

0.60 5.07 4.51 3.95 6.20
0.40 8.82 7.84 6.86 10.79
0.30 12.57 11.18 9.78 15.37
0.15 27.58 24.52 21.45 33.71
29

 

1.38

 

0.60 4.24 3.77 3.30 5.18
0.40 7.99 7.10 6.22 9.77
0.30 11.74 10.44 9.13 14.35
0.15 26.74 23.77 20.80 32.68
Blocs de terre cuite perforés

 

700 à 1 000

 

0.27

 

14

 

1.42

 

0.60 4.32 3.84 3.36 5.29
0.40 8.07 7.18 6.28 9.87
0.30 11.82 10.51 9.20 14.45
0.15 26.83 23.85 20.87 32.79
19

 

1.12

 

0.60 3.49 3.10 2.72 4.27
0.40 7.24 6.44 5.63 8.85
0.30 10.99 9.77 8.55 13.43
0.15 25.98 23.10 20.21 31.76
29

 

0.79

 

0.60 1.82 1.62 1.42 2.23
0.40 5.57 4.95 4.34 6.81
0.30 9.32 8.29 7.25 11.40
0.15 24.30 21.60 18.90 29.70
Blocs silico-calcaire creux

 

1 200 à 1 700

 

0.60

 

14

 

2.38

 

0.60 5.61 4.98 4.36 6.85
0.40 9.36 8.32 7.28 11.44
0.30 13.11 11.65 10.19 16.02
0.15 28.11 24.99 21.86 34.36
19

 

1.98

 

0.60 5.23 4.65 4.07 6.40
0.40 8.98 7.98 6.99 10.98
0.30 12.73 11.32 9.90 15.56
0.15 27.73 24.65 21.57 33.89
29

 

1.49

 

0.60 4.48 3.98 3.49 5.48
0.40 8.23 7.32 6.40 10.06
0.30 11.98 10.65 9.32 14.65
0.15 26.98 23.98 20.98 32.98

Source : Isolation thermique des murs pleins réalisée par le CSTC à la demande de la DGTRE.

Il est également possible d’utiliser  le fichier Excel (XLS) pour calculer le U d’une paroi en contact avec l’extérieur.

Choisir la robinetterie

Choix de la qualité

On peut intégrer la qualité comme facteur d’économie dans la mesure où les problèmes de fuite ou de dysfonctionnement s’en trouvent minimisés.

Et vu le coût moyen de 5 € du m³ d’eau chaude, le surcoût de la qualité est rapidement amorti. « Il faut être riche pour acheter bon marché », disait ma grand mère…


Mélangeur à 2 robinets ? Mitigeur monocommande ? Mitigeur thermostatique ?

Mitigeur monocommande Mélangeur à 2 robinets. Mitigeur thermostatique.

Voici les résultats d’une étude faite dans le cadre du programme Ravel en Suisse.
Ils montrent que la consommation d’énergie est :

  • 19 % plus élevée avec un mélangeur à deux robinets pour bain/douche qu’avec un mitigeur thermostatique (consommation supplémentaire d’énergie environ 200 kWh/an).
  • 56 % plus élevée avec un mélangeur à deux robinets pour lavabo qu’avec une robinetterie sans contact (consommation supplémentaire d’énergie environ 200 Wh/an, également).

Sur base du prix du kWh, il est possible d’avoir une idée de la rentabilité de l’investissement.

Eau chaude %

Bain

mitigeur thermostatique

64 100

mitigeur à monocommande

69 108
– mélangeur à 2 robinets 76 119

Lavabo

robinetterie sans contact

16 100

mitigeur à monocommande

20 125

mitigeur thermostatique

23 143
– mélangeur à 2 robinets 25 156

Influence de la robinetterie sur la consommation d’énergie
base : eau chaude à 55°C, eau froide à 15°C.

On peut en déduire une stratégie de choix appliquée à un lavabo :

Type de robinetterie

Consommation d’énergie Consommation d’eau Coût Remarque
– mélangeur à 2 robinets élevée élevée faible simple
– mitigeur à monocommande faible moyenne normal économique
– mitigeur thermostatique moyenne élevée élevé confortable
– robinetterie sans contact faible faible élevé hygiénique

Cette grille de choix doit encore être confrontée à l’analyse du comportement probable de l’utilisateur. Le robinet d’eau chaude est parfois inutilement actionné, de même que le levier du mitigeur à monocomande est souvent laissé dans une position médiane, même si l’eau chaude n’était pas recherchée…

Cette analyse est partagée par le CSTB en France. Il semble que le mitigeur thermostatique de douche n’apporte surtout des économies que lors du deuxième usage rapproché (rinçage, par exemple). Sur base d’un surcoût moyen de 45 €, ils annoncent un temps de retour de 4 ans dans un usage familial. En usage tertiaire, le temps de retour est donc nettement plus faible.

Le réglage optimum du débit avant celui de la température

Il semble que le facteur numéro 1 de consommation d’énergie soit la quantité d’eau utilisée, avant la température. Donc il faut d’abord chercher à ce que le robinet fournisse juste le débit d’eau nécessaire, et dans un deuxième temps à ce que l’adaptation de la température souhaitée entraîne le moins de consommation d’eau chaude.

L’ergonomie des différents robinets mérite donc une attention particulière, au regard de l’occupation des mains de l’utilisateur. Dans certains cas, les mains étant occupées par un objet (lavage, …), il peut être utile de sélectionner une robinetterie dans l’ouverture est commandée par le genou ou le pied (pédale).

Favoriser l’usage de l’eau froide

Pour favoriser l’usage préférentiel de l’eau froide pour se laver les mains, il est plus aisé de n’ouvrir que l’eau froide avec un mélangeur qu’avec un mitigeur. Aussi, certains fabricants proposent des mitigeurs avec une manette un peu particulière. En effet, la tête céramique est conçue pour que la position centrale corresponde en fait à la position « pleine eau froide » au lieu de la position « eau mitigée ».

Mitigeur.

Le thermostatique : avant tout un confort renforcé

Le thermostatique amène un confort supplémentaire en terme de stabilité de température, même lorsque la production instantanée entraîne des fluctuations de température de l’eau chaude.

Pour augmenter les économies, il existe également des robinets dont le réglage de base correspond à un débit limité à 40 ou 50 %. Ce n’est que si l’utilisateur veut volontairement obtenir le plein débit, après avoir déverrouillé le bouton « éco » du limiteur, que le débit maximal est fourni.

De plus, les thermostatiques intègrent une fonction de sécurité grâce à un bouton « stop » qui limite la température de l’eau mitigée en sortie à 38°C et permet ainsi d’éviter les risques de brûlure (très utile en milieu fréquenté par des personnes âgées ou des des enfants).

Dans des lieux de soins, la température d’arrivée d’eau chaude est parfois de 60°C au moins pour des raisons d’hygiène. Pour éviter tout risque de brûlure, il est possible d’intégrer un mitigeur de sécurité sous l’évier, en amont du mitigeur normal. Il se pose sur la vanne d’arrêt. Il prérègle la température maximale de sortie, indépendamment des variations de pression et même en cas d’interruption de l’arrivée d’eau froide, d’après le fournisseur.

Mitigeur de sécurité.

Le réglage de température est dissimulé sous une coiffe et modifiable via une clé Allen par le technicien.

Enfin, il existe des mitigeurs centralisés pour une zone du réseau.

Mitigeurs centralisés.


Choix d’équipements à faible débit

Utilisation des « boutons poussoirs »

La réduction de la durée d’utilisation peut être directe : une robinetterie à fermeture automatique dans les installations publiques permet de diminuer drastiquement la consommation d’eau.

Utilisation des commandes électroniques

Ils régulent le débit d’eau sans aucun contact physique de l’utilisateur, à l’aide d’une technique opto-électronique. Ce n’est que lorsque les mains se trouvent dans la zone de réception du capteur sous le robinet que l’eau est distribuée.

Mitigeur à commandes électroniques.

En voici une version,
avec l’alimentation en savon également sous contrôle.

Il existe des modèles raccordés au réseau (très faible consommation mais investissement plus élevé), d’autres avec alimentation par batterie (plus aisé en rénovation mais un bilan est à faire !).

Certains encore disposent d’une auto-fermeture, programmable entre 2 et 60 secondes.

Si l’électronique est présente, elle permet également de présélectionner la température d’eau mitigée.

Et puisqu’on en est à rêver, il existe des modèles de robinets intégrables dans la GTC (Gestion Technique Centralisée) du bâtiment : une alarme se déclenche si l’ouverture reste ouverte trop longtemps, une coupure automatique de tous les robinets du bâtiment est possible d’un seul lieu (début des WE, par ex.), un contrôle interdit une température pouvant provoquer des brûlures (dans un home pour personnes âgées), …

Placement de mitigeurs avec butée

Ce type de robinetterie s’utilise comme un mitigeur classique. Toutefois, un point « dur » ou une butée délimite les 2 zones de fonctionnement : une zone économique (de 0 à 6 litres/min environ) et une zone de confort (jusqu’à environ 12 litres/min). Le surcoût de cette technique « point dur à franchir » est négligeable et donc le temps de retour est immédiat.

Mitigeurs avec butée.

Placement de « mousseurs »

Un mousseur est un régulateur de débit qui réduit la section de passage en fin de robinetterie et/ou qui crée un mélange air/eau. Il participe en même temps à la performance acoustique du robinet. Il permet par exemple de réguler un débit maximum de 6 ou 8 litres/minute. Un mousseur revient environ à 5 €.

Mousseur.

Dans la pratique, on se rend compte que des foyers de légionelles peuvent se retrouver au niveau des mousseurs; raison pour laquelle dans beaucoup d’institutions les mousseurs ont été enlevés.

On rencontre aussi ce type de réducteur de débit dans des « douchettes économes » : soit une manette permet de réduire le débit, soit un effet de « nuage d’eau » est créé. Attention au fait que ce type de douchette peut accélérer le phénomène d’aérosolisation, et donc une sensibilité plus grande à la contamination par la légionelle.

Douchettes économes.

Ces équipements terminaux modifient la courbe de réglage en température. La mise en place d’une perte de charge supplémentaire diminue « l’autorité » de la vanne. Si l’évolution est au départ linéaire, la perte de charge finale limite la zone de réglage de la température sur une bonne partie de la plage angulaire.

Problème commun à tous ces équipements : le calcaire !

L’entartrage de ces équipements est un problème si l’eau est particulièrement chargée en calcaire. Un entretien régulier des équipements (vinaigre, produit de type « Viakal », …) ou un adoucissement de l’eau avant son chauffage peut être nécessaire.

Les douchettes avec picots sont donc à privilégier : un simple grattage des picots permet alors de décoller les dépôts.

Certains mousseurs se présentent comme spécialement étudiés pour réduire le dépôt de calcaire.

Tous ces équipements devront pouvoir être facilement démontables et nettoyables.


Choix du mécanisme de vidange des WC

Il ne s’agit pas d’eau chaude… donc pas d’économie d’énergie potentielle. Cependant, c’est le premier poste permettant de réduire la consommation globale d’eau du bâtiment : nous allons donc faire une exception !

Les WC sont référencés par la taille de cuvette. Si autrefois, les cuvettes avaient une capacité de 9 à 10 litres, les cuvettes de 6 litres sont aujourd’hui courantes. Mais différents appareils permettent une économie d’eau supplémentaire par rapport aux cuvettes 6 litres :

Le WC à double commande

  • Un bouton délivre 3 litres, l’autre 6 litres.
  • Coût moyen : 120 € (pour le pack complet).
  • Économie estimée : 4,5 m³ sur l’année par personne, par rapport à une cuvette 6 litres sans double commande, pour un usage familial.
  • Temps de retour : 6 mois en usage familial, donc nettement moins en usage tertiaire.

Variante : il existe des systèmes qui peuvent être interrompus où une première pression sur le bouton de chasse permet l’enclenchement alors qu’une seconde pression permet l’arrêt de l’écoulement.

Chasse de WC à double commande.

Les cuvettes avec accélérateurs de débit

  • Cette fois, c’est de 2,5 à 4 litres qui sont nécessaires, l’accélérateur de débit permettant de conserver toute son efficacité au siphon. L’économie d’eau passe à 67 % par rapport à une cuvette de 9 litres.
  • Coût moyen de l’accélérateur : de 270 € à 840 €.
  • Économie estimée : 9 m³ sur l’année par personne, par rapport à une cuvette 6 litres sans double commande, pour un usage familial.
  • Temps de retour : 22 mois en usage familial, donc nettement moins en usage tertiaire.
  • Application : tout immeuble de 4 étages maximum.

Certains de ces équipements ont reçu un « avis technique » du CSTB (France).
Remarque : ces différents appareils peuvent être sensibles au calcaire qui peut perturber le bon fonctionnement du mécanisme ou du robinet. Les fuites ne sont pas toujours bien visibles. Il convient donc de fermer le robinet d’arrêt situé en amont du réservoir de temps en temps afin de vérifier que le niveau d’eau dans le réservoir ne diminue pas.

Eau chaude sanitaire [Concevoir l’avant projet]

Eau chaude sanitaire [Concevoir l’avant projet]

Plaçons-nous dans l’idéal pour décrire l’installation de production d’eau chaude sanitaire :

Équiper les points de puisage de réducteurs de débit

Du bouton-poussoir à fermeture automatique au robinet à œil électronique, en passant par la douche à faible débit : l’installation la plus économe est celle qui consomme peu d’eau.

En voici une version, avec l’alimentation en savon également sous contrôle.

A priori, décentraliser la production

Si le gaz est disponible et vu les nouvelles contraintes liées à la légionelle (maintien à haute température), on décentralisera au maximum la production : produire près du lieu de puisage, avec des préparateurs instantanés étanches (encore appelés appareils « ventouses »). Autant faire circuler la conduite de gaz dans le bâtiment que la conduite d’eau chaude.

Si production centralisée, alors semi-instantané

Schéma production centralisée, alors semi-instantané.

Si les besoins sont élevés, ou si le gaz n’est pas disponible, une installation semi-instantanée paraît optimale : un échangeur instantané pour produire au moment de la demande, avec le renfort d’un petit ballon de stockage pour stabiliser la température de l’eau durant la première minute de puisage.

L’eau chaude sanitaire est le « vilain petit canard » de l’installation de chauffage !

Les besoins de chauffage du bâtiment sont de plus en plus souvent couverts par des émetteurs à basse température, avec de l’eau préparée par une chaudière à condensation gaz performante.

La production d’eau chaude à haute température perturbe cette évolution. Si les besoins sont élevés, on étudiera donc l’intérêt d’assurer une production de l’eau chaude par une chaudière indépendante.

Choisir un circuit adapté à la chaudière

Schéma circuit adapté à la chaudière.

Si la production d’eau chaude est combinée avec le chauffage du bâtiment par une chaudière à condensation, on dimensionnera l’échangeur au régime 70° – 40° et/ou le circuit hydraulique sera bien étudié pour favoriser le retour d’eau froide vers la chaudière.

Préchauffer par une installation solaire

Prévus dès le départ du projet, des capteurs solaires permettront de couvrir 50 % des besoins annuels, avec une rentabilité financière correcte et une rentabilité environnementale très forte.

Isoler fortement le(s) ballon(s) et la boucle de circulation

On choisira sans hésiter des ballons coiffés d’une jaquette isolante de 10 cm d’épaisseur. L’investissement est très rapidement amorti.

De même pour la boucle de distribution : la lutte contre le développement de la légionelle impose des hautes températures, et donc une isolation plus élevée qu’autrefois.

Accumulateurs d’eau chaude en milieu hospitalier.

Munir l’installation d’outils de gestion

Un compteur permettra de connaître les besoins d’eau chaude du bâtiment, de connaître l’importance du débit de pointe, … C’est sur base de ce profil de puisage que l’on pourra piloter au mieux l’installation, et… la rénover ultérieurement !

Concevoir

Choix du mode de préparation de l’eau chaude.

Concevoir 

Choix du réseau.

Isoler un mur par l’extérieur

Isoler un mur par l'extérieur


Mesures préliminaires

Si le mur présente des problèmes d’humidité ascensionnelle, ceux-ci doivent d’abord être supprimés. Une barrière étanche perpendiculaire au mur doit exister juste au-dessus du niveau des terres. Si cette barrière est inexistante ou mal positionnée, il faut la créer. Pour ce faire une membrane étanche peut être placée en démontant la maçonnerie par petits tronçons. Cette méthode est la plus efficace, mais difficile et délicate à réaliser. Aussi, on peut créer cette barrière en injectant des produits hydrofuges dans la masse du mur.

On doit ensuite laisser au mur le temps de sécher.

La maçonnerie sur laquelle va être posé l’isolant ne peut être perforée, ce qui permettrait une pénétration directe d’air intérieur (humide) dans l’isolant.


Choix du système

> Le choix du système d‘isolation par l’extérieur se fait en fonction des critères suivants :

  • les performances à atteindre
  • l’esthétique recherchée
  • les performances énergétiques
  • la complexité de la façade
  • le prix

Les performances d’étanchéité à atteindre

Le système le plus performant est le panneau isolant protégé par un bardage. Celui-ci assure une excellente étanchéité à l’eau. De plus si de l’eau pénètre malgré tout accidentellement, celle-ci est drainée par la coulisse et évacuée par le bas du mur. Ainsi isolant et mur sont parfaitement protégés des pluies.

Il est en outre facile à démonter pour vérifier l’état de l’isolant.

L’esthétique recherchée et contraintes urbanistiques

Bien qu’actuellement très varié au niveau de l’aspect extérieur (ardoises naturelles, synthétiques, bois, feuilles métalliques, …) le bardage ne correspond pas toujours à l’esthétique recherchée ou aux contraintes urbanistiques imposées. L’enduit de finition est généralement plus largement accepté.

Si l’on souhaite un parement extérieur classique en briques, on choisit soit une isolation par l’extérieur par éléments isolants préfabriqués (recouvert de plaquettes de briques), soit on crée un mur creux à partir de la maçonnerie existante.

Les performances énergétiques

L’enduit isolant nécessite des épaisseurs excessives pour atteindre le coefficient de transmission thermique U recommandé.

Les systèmes tels que panneaux isolants plus enduit ou les éléments isolants préfabriqués présentent une très bonne continuité de l’isolation.

Un système avec structure (bardage ou enduit supporté par une structure) présente une isolation discontinue et donc moins efficace pour une même épaisseur d’isolant.

Une structure métallique est déconseillée car elle engendre des ponts thermiques.

La complexité de la façade

Le tandem panneaux isolants + enduit est plus approprié dans les cas d’une façade complexe très découpée. Un bardage est plus approprié dans le cas d’une façade sans ou avec peu de découpes.

Le prix

« Le nerf de la guerre…! »

Les prix peuvent être très variables en fonction du type de finition (différents types de bardages, différents revêtements pour les éléments isolants préfabriqués, ….), de la complexité de la surface à isoler, de la préparation du support, et du coût des installations de chantier (distances, échafaudages, hauteur, protections, …).

La création d’un mur creux revient nettement plus cher.

> Les systèmes d’isolation par l’extérieur qui comportent une finition sous forme d’enduit doivent disposer d’un agrément technique ATG.

Les composants doivent faire partie d’un même système (colle, isolant, mortier, armature et finition). L’exécution nécessite un savoir-faire particulier, surtout pour ce système et est donc, de préférence, confiée à un entrepreneur spécialisé.
Il en va de même pour le système des panneaux isolants couverts de plaquettes en briques.


Choix de l’isolant

Type d’isolant

L’isolant est placé directement contre le mur. Si l’isolant est souple, il épouse parfaitement la forme de son support même si celui-ci est un peu irrégulier. Si l’isolant est rigide, il est nécessaire de régler le support avant de poser l’isolant.

Un isolant perméable à l’air (laine minérale, par exemple) ne peut être choisi que si le mur-support sur lequel il est posé est lui-même étanche à l’air (maçonnerie plafonnée, …). Si la maçonnerie doit rester apparente à l’intérieur du bâtiment, pour rendre le mur étanche à l’air, la face extérieure du mur plein doit être enduite avant pose de ce type d’isolant.

Les produits minces réfléchissants (PMR), dont l’efficacité est beaucoup moins élevée que celle annoncée par les fabricants, sont à proscrire dans une isolation par l’extérieur puisqu’ils constituent un film pare-vapeur placé « du côté froid » du mur, susceptibles de provoquer une forte condensation sur la face interne (entre le mur et l’isolant).

Épaisseur de l’isolant

Les épaisseurs d’isolant sont calculées à partir des performances à atteindre.

Conseils de mise en œuvre

> Les panneaux isolants doivent être posés de manière parfaitement jointive et appliqués contre le mur-support afin d’éviter les interruptions dans la couche isolante (= pont thermique) et les courants de convection.

Courants de convection.

Remarque : le risque de courants de convection est encore plus important lorsqu’il y a une lame d’air ventilée entre l’isolant et le parement extérieur.

> Afin d’éviter les ponts thermiques, l’isolation de l’enveloppe doit être continue. Elle doit être dans le prolongement et en contact avec le dormant du châssis muni d’un vitrage isolant. La couche isolante du mur doit être raccordée aux couches isolantes des autres parois du volume protégé.

> Il faut protéger et manipuler les panneaux isolants avec précautions pour éviter les écrasements, les déchirures, l’eau, la boue.

Choix de l’enduit éventuel

Lorsque le mur est isolé par l’extérieur, mur et isolant doivent rester parfaitement secs.

Lorsque le système d’isolation par l’extérieur choisi comporte un enduit, c’est celui-ci qui assure l’étanchéité à l’eau.

Les enduits disponibles sur le marché – qu’ils soient minéraux ou synthétiques – présentent une absorption d’eau faible et assure ainsi l’étanchéité à l’eau pour autant qu’ils soient appliqués en suivant les recommandations et qu’ils ne présentent pas de fissurations importantes (> 1 à 2 mm).

Outre l’étanchéité à l’eau, les enduits doivent également :

  • Être perméable à la vapeur afin de permettre le séchage de la maçonnerie et de laisser sortir l’humidité qui aurait pénétré sous forme de vapeur. La plupart des enduits disponibles sur le marché – qu’ils soient minéraux ou synthétiques – présentent cette perméabilité à la vapeur élevée.
  • Présenter une bonne résistance mécanique : ils doivent pouvoir résister à des chocs modérés principalement au rez-de-chaussée, adhérer suffisamment à leur support, disposer d’une cohésion adéquate et résister à la fissuration. Les enduits – qu’ils soient minéraux ou synthétiques – présentent, en général, ces qualités pour autant qu’ils soient appliqués en suivant les recommandations et sur un support bien préparé. Lorsque l’enduit est appliqué directement sur l’isolant thermique, une armature est généralement prévue pour limiter le risque de fissuration.
  • Donner l’aspect décoratif recherché. Cette variété décorative est donnée par la grande variété de composition, de teinte et d’état de surface : lisse, gratté, tyrolien, ….).

Les enduits, aussi bien minéraux que synthétiques, sont préparés en usine afin d’obtenir une meilleure constance dans les mélanges et limiter de ce fait les variations de teinte et d’état de surface.

Vu les sollicitations importantes dues aux variations thermiques que peuvent subir les enduits, on choisit, de préférence, un enduit de couleur claire. Il sera suffisamment déformable pour limiter le risque de fissuration.

L’enduit nécessite un entretien tous les 10 à 15 ans pour des raisons esthétiques (encrassement).


Détails d’exécution

L’isolation par l’extérieur est un système qui permet d’isoler un mur existant de manière continue pour autant que les détails aux nœuds constructifs (interruptions dans le mur et raccords avec les parois adjacentes  tels que ceux montrés ci-dessous) soient réalisés avec soin. Seul le pont thermique au droit d’un balcon reste difficile à éviter.

La baie de fenêtre

Seuil et linteau – cas du panneau isolant revêtu d’un enduit

Schéma isolation seuil et linteau - 01.

  1. Mur existant + enduit intérieur.
  2. Arrêt d’enduit + mastic.
  3. Panneau isolant collé.
  4. Armature et mortier d’enrobage.
  5. Enduit de finition.
  6. Armature d’angle.
  7. Retour d’isolation au niveau du linteau (panneau collé revêtu des mêmes couches que le mur).
  8. Profilé d’interruption fixé mécaniquement à la maçonnerie.
  9. Retour d’isolation au niveau du seuil.

Retour d’isolation au niveau du seuil – étapes :

  1. Le seuil en pierre existant est démonté.
  2. Un support de forme adéquate pour laisser de la place à l’isolant sous le châssis (un profilé en acier en « U » par exemple) est placé sous le châssis pour le soutenir.
  3. Une couche isolante (isolant compressible) est placée sous le châssis jusqu’au panneau isolant extérieur.
  4. Un nouveau seuil plus fin (métallique par exemple) est placé en garantissant l’écoulement vers l’extérieur de l’eau évacuée par le châssis (le conduit de drainage doit se trouver en avant du « talon » du seuil).

Ébrasement de baie – cas du panneau isolant revêtu d’un enduit

Schéma isolation ébrasement de baie.

  1. Mur existant + enduit intérieur.
  2. Arrêt d’enduit + mastic.
  3. Panneau isolant collé.
  4. Armature et mortier d’enrobage.
  5. Enduit de finition.
  6. Armature d’angle.
  7. Retour d’isolation au niveau de l’ébrasement (panneau collé revêtu des mêmes couches que le mur).

Seuil et linteau – cas de l’ isolant protégé par un bardage

Schéma isolation seuil et linteau - 02.

  1. Retour d’isolation au niveau du linteau.
  2. Retour d’isolation au niveau du seuil de fenêtre.
  3. Retour au niveau de l’ébrasement de fenêtre.
  4. Feuille métallique.

Retour d’isolation au niveau du linteau et au niveau de l’ébrasement : des lattes sont fixées sur le linteau et sur l’ébrasement de fenêtre. L’isolant est posé entre les lattes. Le tout est recouvert d’une finition ( feuille métallique par exemple).

Retour d’isolation au niveau du seuil – étapes (idem que seuil de l’isolant revêtu d’un enduit).

Seuil et linteau – cas de la création d’un mur creux

Schéma isolation seuil et linteau - 03.

  1. Mur existant + enduit intérieur.
  2. Isolant thermique (cas d’une coulisse intégralement remplie).
  3. Mur de parement neuf.
  4. Remplissage de l’espace qui était réservé au seuil d’origine par de la maçonnerie.
  5. Nouveau seuil de fenêtre.
  6. Isolant thermique assurant la continuité entre l’isolant du mur et le châssis.
  7. Support de fenêtre sans appui sur le seuil (patte en acier galvanisé fixée mécaniquement au mur porteur).
  8. Cornière.
  9. Linteau extérieur.
  10. Membrane d’étanchéité (avec bords latéraux relevés) et joints verticaux ouverts au-dessus du linteau afin d’évacuer l’eau infiltrée dans la coulisse.
  11. Nouvelle fenêtre.
  12. Joint d’étanchéité (Mastic).
  13. Mousse isolante injectée.
  14. Nouvelle tablette (bois par exemple).
  15. Joint d’étanchéité (fond de joint + mastic).
  16. Calfeutrement.
  17. Nouvelle finition de l’encadrement intérieur.

concevoir

 Les principes à respecter sont les mêmes que ceux pour un seuil et un linteau d’un nouveau mur creux !

Cas particulier

Lorsque les dimensions du dormant du châssis que l’on souhaite conserver, ne sont pas suffisantes pour permettre un retour de l’isolant contre celui-ci, il faut casser la maçonnerie des battées.

Linteau – cas du panneau isolant revêtu d’un enduit

Ébrasement de baie – cas du panneau isolant revêtu d’un enduit

De même, si l’on souhaite conserver un seuil en pierre, il faut également casser la maçonnerie pour gagner de la place.

S’il n’est pas possible de casser la maçonnerie (linteau en béton, par exemple), il faut remplacer le châssis par un châssis plus petit.

Remarque : de par son épaisseur, l’isolant posé à l’extérieur fait apparaître les châssis plus enfoncés dans la façade. De même, suivant la pose au niveau du linteau et du retour de baie, les dimensions du dormant du châssis peuvent paraître moins important.

Joints de mouvement – cas du panneau isolant revêtu d’un enduit

Les joints de dilatation ou de tassement doivent être répercutés dans l’isolation et dans l’enduit. Les rives libres des panneaux, ainsi que les bords des joints de mouvement sont protégés par des profilés « ad hoc » faisant partie du système.

Joint de mouvement en partie courante

Schéma isolation joint de mouvement en partie courante.

Joint de mouvement dans un angle

Schéma isolation joint de mouvement dans un angle.

Raccord avec une paroi adjacente

Schéma isolation raccord avec une paroi adjacente.

  1. Mur existant.
  2. Panneau isolant collé.
  3. Armature et mortier d’enrobage.
  4. Enduit de finition.
  5. Profil protecteur.
  6. Joint élastique d’étanchéité.
  7. Fond de joint.
  8. Joint mécanique.

Construction en encorbellement – cas du panneau isolant revêtu d’un enduit

  1. Enduit.
  2. Revêtement de sol.
  3. Chape.
  4. Isolant acoustique.
  5. Dalle de plancher.
  6. Mur plein.
  7. Panneau isolant.

Définir les objectifs à atteindre (check-list d’un cahier des charges)

Définir les objectifs à atteindre en rénovation éclairage (check-list d'un cahier des charges)

La rénovation de l’éclairage est programmée. Voici les points essentiels que doit contenir le cahier des charges établi par l’auteur de projet.

On sera attentif à 4 aspects du projet :

Les tableaux suivants reprennent la liste simplifiée des bons réflexes à acquérir.


Paramètres de dimensionnement

Exigences

Pour en savoir plus

Dans les différents locaux les zones de travail et zones environnantes immédiates doivent être définies de la façon la plus précise possible. La surface restante du local, diminuée des deux surfaces précédentes représente la zone de fond.
Le niveau d’éclairement moyen dans la zone de travail et au plan de référence doit être spécifié suivant la tâche exécutée.

Le niveau d’éclairement moyen dans la zone environnante immédiate et au plan de référence respectera la norme EN 12464-1, à savoir qu’il doit être diminué d’un facteur 1.5 à 1.66.

Données

Le facteur de maintenance choisi pour le dimensionnement doit être de 0,8 pour les installations où les luminaires sont équipés avec ballasts électromagnétiques et 0.9 avec ballasts électroniques.

Concevoir

L’uniformité d’éclairement :

  • dans la zone de travail doit être : Emin / Emoy > 0.4 à 0,7 ;
  • dans la zone environnante immédiate : Emin / Emoy > 0.4 ;
  • dans la zone de fond : Emin / Emoy > 0.1

Évaluer

Les coefficients de réflexion des parois sont les plus proches possibles des caractéristiques réelles du local. On prendra les valeurs par défaut recommandées.

Concevoir

Dans la plupart des cas, la puissance  spécifique (perte ballast comprise) ne peut dépasser :

1,5 W/m²/100 lux dans les bureaux, classes et salles de réunion

2,5 – 3 W/m²/100 lux pour les pièces plus spécifiques (salle de sport,..)

Evaluer


Choix de matériel

Exigences

Pour en savoir plus

Les lampes dites à usage domestique (émettant moins de 6 500 lm) dispose d’un label « Énergie ».
Le choix de la lampe tient compte aussi de l’indice de rendu de couleur Ra défini dans les normes en fonction de la tâche ou du local considéré.

Théories

L’auteur de projet est en mesure de calculer et de fournir la valeur de l’UGR des luminaires choisis pour l’implantation considérée.

Théories

Les luminaires sont équipés d’optiques réfléchissantes et ont un rendement minimum de 70 %.

Concevoir

Pour éviter les éblouissements directs dans les locaux, les luminaires ont les caractéristiques suivantes :

Luminance de la lampe
kCd/m2
Angle maximum de défilement

20 à < 50

15°

50 à < 500

20°

>= 500

30°

Pour éviter les éblouissements  indirects dans les locaux équipés d’écran de visualisation, les luminaires ont les caractéristiques suivantes :

État de luminance élevé de l’écran Écran à haute luminance

L > 200 cd•m-2

Écran à luminance moyenne

L ≤ 200 cd•m-2

Cas A
(polarité positive et exigences normales concernant la couleur et le détail des informations affichées, comme pour les écrans utilisés dans les bureaux, pour l’éducation, etc.).
≤ 3 000 cd/m² ≤ 1 500 cd/m²
Cas B
(polarité négative et/ou exigences plus élevées concernant la couleur et le  détail des informations affichées, comme pour les écrans utilisés pour le contrôle des couleurs en conception assistée par ordinateur etc.).
≤ 1 500 cd/m² ≤ 1 000 cd/m²

Concevoir

Dans les halls de moins de 7 m de haut, les sources lumineuses  sont des tubes fluorescents ou des LEDS de type 830 ou 840 (température de couleur comprise entre 3 000 et 4 000 K, indice de rendu des couleurs compris entre 80 et 90).

Concevoir

Dans les halls de plus de 7 m de haut, les lampes sont de type tube fluorescentaux halogénures métalliques ou au sodium haute pression.

Concevoir

Les ballasts seront de type électronique avec préchauffage et d’une catégorie énergétique (EEI Energy Efficiency Index) inférieure à la catégorie A3 définie dans la directive 2000/55/CE.

Concevoir

Les luminaires sont protégés contre la production d’interférences électriques : ils sont marqués ou certifiés ENEC.

Concevoir

Les luminaires ont un degré de protection électrique minimum de classe I.

Concevoir

Dans les ambiances poussiéreuses et humides, les luminaires doivent avoir un degré de protection minimum IP56.

Concevoir

En cas de risque de choc, les luminaires doivent avoir une résistance minimum de 5 joules (IK08).

Concevoir

Des luminaires doivent être utilisés dans les ambiances explosives.

Concevoir


Systèmes de commande et de gestion

Exigence

Pour en savoir plus

Chaque local doit disposer d’une commande d’allumage propre.

Concevoir

Dans chaque local, la rangée de luminaires la plus proche des fenêtres doit pouvoir être commandée séparément et dimmée en fonction de la lumière naturelle.

Concevoir

La détection d’absence (détecteur de mouvement) combinée à un bouton poussoir d’allumage manuel volontaire est une solution énergétiquement intéressante d’un point de vue gestion de présence.

Concevoir


Recommandations de bonne pratique

Exigences

Pour en savoir plus

Les éléments du luminaire seront faciles d’accès pour l’entretien (accès aux composants électriques, démontage des optiques,…). Pour les halls de grande hauteur, des dispositifs de suspension spéciaux peuvent être prévus pour faciliter la maintenance (treuil, …).

Concevoir

Chaque zone d’activité doit posséder sa commande d’éclairage propre.

Concevoir

Les activités secondaires demandant moins d’éclairage (gardiennage, entretien, …) peuvent disposer d’une commande d’éclairage propre (commandant 1 luminaire sur 3, par exemple).

Concevoir

L’ensemble de l’installation peut être raccordé sur un programmateur horaire avec possibilités de dérogation locale et retour au mode automatique après une certaine période.

Concevoir

Les locaux à occupation intermittente et non programmable (circulations, entrepôts, …) peuvent être équipés de détecteur de présence.

Concevoir

La couleur des parois du local doit être claire.

Concevoir

Une check-list énergétique est mise à disposition du maître d’ouvrage afin de clarifier les demandes de performance énergétique en conception et/ou en rénovation de bâtiments.

Prédimensionner une installation sanitaire tertiaire

Prédimensionner une installation sanitaire tertiaire


Objectif : un ordre de grandeur réaliste

La difficulté de l’évaluation pour un bâtiment neuf

Idéalement, l’installation se dimensionne se base sur le profil de puisage (quantité d’eau puisée en fonction du moment de la journée) le plus critique.

Or la constitution de ce profil de puisage n’est pas évidente dans un bâtiment neuf puisque l’on ne connaît pas encore son mode de fonctionnement. Tout au plus connaît-on les équipements sanitaires et peut-on imaginer des scénarios réalistes.

Le bureau d’études, soucieux de garantir le confort à 200 %, prend alors de fortes sécurités. Lors des audits d’installation, il n’est pas rare de rencontrer des ballons de stockage 2 à 3 fois plus volumineux que nécessaire.

Avec la conséquence que l’on imagine sur les pertes de stockage…

La possibilité de réajuster le tir dans un bâtiment existant

Dans les bâtiments existants, il est possible de connaître précisément le mode d’utilisation, moyennant le placement d’un compteur sur la fourniture d’eau chaude. Le coût de ce dernier est en général souvent vite remboursé par l’économie d’investissement lors du remplacement du matériel et par l’économie d’énergie qui résulte d’un dimensionnement plus strict.

Malgré cela, peu d’installateurs prennent la peine de passer par cette étape. C’est donc au gestionnaire de l’imposer.

Pas de méthode normalisée pour les bâtiments tertiaires

En Belgique, il n’existe malheureusement pas de méthode normalisée de dimensionnement des installations d’eau chaude sanitaire. Il existe seulement une Note d’Information Technique du CSTC, basée sur la norme allemande DIN 4708, qui présente le moyen de définir le profil de puisage d’un immeuble à appartements en fonction du nombre de logements.

Il n’existe pas « un » volume de stockage possible

Il existe une infinité de solutions :

  • depuis le ballon de stockage capable durant la nuit de préparer l’eau chaude de toute une journée,
  • jusqu’à l’échangeur instantané qui ne stocke rien à l’avance,
  • en passant par toutes les solutions intermédiaires de ballons tampons qui gèrent la pointe et se rechargent en cours de journée par un échangeur interne.

Il est possible de checker l’ordre de grandeur

En se fixant des hypothèses de départ, la démarche développée ci-dessous permet de fixer un ordre de grandeur réaliste pour les équipements.


Le profil de puisage

La connaissance de la quantité d’eau chaude puisée est indispensable pour dimensionner correctement l’appareil de production, quel que soit le système choisi.
Il existe trois méthodes pour établir le volume puisé dans un bâtiment :

  1. Les profils typesOn peut se référer à des statistiques de consommation établies sur des bâtiments identiques.
    On appliquera souvent cette méthode pour les bâtiments neufs.
  2. Le recensement des points de puisage
    On peut répertorier les points de puisage, leur débit nominal et leur période d’utilisation d’après les statistiques disponibles.
    Des exemples de débits pour des points de puisage typiques peuvent être utilisés.
    Ce recensement est à réaliser avec énormément de prudence. En effet, le risque de surdimensionner largement le système est important si on n’établit pas un scénario d’utilisation simultanée des différents points de puisage.
  3. Le comptage des consommations réelles
    La méthode idéale est de mesurer la consommation réelle d’eau chaude. Cette méthode sera la plus adaptée dans le cadre de rénovations dans le secteur tertiaire.
    Une campagne de mesures au moyen de compteurs d’eau, soit sur l’alimentation des différents points de puisage ou appareils consommateurs, soit sur l’alimentation en eau froide de l’appareil de production existant, met à l’abri de tout sur ou sous-dimensionnement du système.
Uniformisation des températures de l’eau chaude puisée :

La température de l’eau puisée varie en fonction du type de puisage.

Aussi, pour permettre l’addition de volumes puisés à des températures différentes, les volumes Vx à une température Tx seront convertis en volumes d’eau équivalents à 60°C par l’expression suivante :

V60 = Vx

Dans cette expression, 10° représente la température moyenne de l’eau froide

Si la température de l’eau puisée est inconnue, on considérera :

  • pour les cuisines : TX = 55°C,
  • pour les sanitaires : TX = 45°C,

Si les volumes puisés sont mesurés par compteur sur l’alimentation en eau froide de l’appareil de production :
TX = température de l’eau du ballon (ou en sortie de l’échangeur si le ballon est inexistant).


Coefficient d’efficacité « a » du ballon de stockage

Lorsque de l’eau chaude est puisée, de l’eau froide envahit le bas du ballon, le haut restant disponible pour l’utilisation suivante.

Mais dans certains cas (ballon horizontal, retour de la boucle dans le ballon, …), un mélange d’eau chaude et froide se produit, si bien que de l’eau à 35 … 40°C se forme. Cette eau est inutilisable. La température du ballon ne peut descendre en dessous de la température minimum de distribution de l’eau (par exemple, la température de distribution est de 45°C, pour assurer 40°C à tous les points de puisage). Le volume du ballon nécessaire pour offrir le même confort sera alors nettement supérieur.

Moyennant une construction adéquate de l’appareil, la stratification dans le ballon est optimale et l’énergie exploitable du ballon est maximum. Dans ce cas, on considère qu’au moment où le ballon ne fournit plus le confort adéquat aux utilisateurs, la température de l’eau est proche de la température de l’eau froide, à savoir 10°C.

Ainsi, le volume d’un ballon avec bonne stratification peut être inférieur au volume d’un ballon où il y a mélange intégral entre l’eau froide et l’eau chaude de plus de 50 %, pour un même confort fourni à l’utilisateur ! Ceci est illustré dans le graphe ci-dessous, où deux ballons, un avec bonne stratification (a = 0,9), l’autre avec un mélange important(a = 0,5), sont vidés en parallèle, l’eau chaude étant remplacée par de l’eau à 10° et aucune source de chaleur ne réchauffant le stock.

Température de l’eau fournie par deux ballons en fonction du temps de puisage.
L1 = limite de confort pour un ballon avec mauvaise stratification
L2 = limite de confort pour un ballon avec bonne stratification.

Dans les calculs, pour tenir compte du degré de stratification des ballons, on considère une température minimum possible du stock de 10° et on y associe un coefficient d’efficacité ‘a’. Dans la plupart des cas courants, celui-ci prend une valeur de 0,8 à 0,95 (bonne stratification), ce qui signifie que 80 à 95 % du volume réel du ballon est utilisable pour la température voulue. Si on se trouve dans le cas d’un ballon avec mélange important, ‘a’ peut descendre jusqu’à 0.45.


Préparation instantané

Un système de production d’ECS instantané ne comporte pas de volume de stockage. Son dimensionnement consiste à déterminer la puissance du générateur (production directe) ou de la chaudière et de l’échangeur (production indirecte).

En pratique, cette puissance correspondra à la puissance nécessaire pour subvenir aux besoins maximum en 10 minutes.

Etape 1 : Énergie maximum puisée en 10 minutes

Il s’agit de déterminer le volume d’eau maximum (équivalent à 60°C) puisé en 10 minutes durant la journée la plus chargée de l’année. Le volume d’eau chaude puisé a été déterminé. L’énergie maximum puisée en 10 minutes via l’eau chaude est alors donnée par la formule :

Einst = 1,16 x V60inst x (60° – 10°) / 1 000

avec,

  • Einst = énergie puisée maximum en 10 minutes en kWh
  • V60inst = volume maximum, puisé en 10 minutes, exprimé en litres, ramené à 60°.
  • 1,16 / 1 000 = coefficient de correspondance (capacité thermique d’un litre d’eau)
  • 10° = température de l’eau froide

Etape 2 : Puissance de la production

La puissance (en kW) de l’échangeur (ou du générateur) équivaudra à

Puissance = Einst x 6 + Pdis

avec,

  • Pdis = pertes dans le réseau de distribution. Dans le cas d’une boucle de distribution, il s’agit de la puissance de maintien en température de celle-ci.

Calculs

Un petit logiciel permet d’estimer ces pertes de distribution.
Exemple.

Les sanitaires comportent 10 douches. La demande de pointe maximum est basée sur le fonctionnement simultané de 6 douches. Chacune d’entre elles ayant un débit instantané de 10 litres/min, on estime la demande à 600 litres en 10 minutes à 40°C.

Cette demande est

convertie en demande à 60°C :

600 x (40 – 10) / (60 – 10) = 360 litres

On en déduit

l’énergie correspondante :

1,16 x 360 X (60 – 10) / 1 000 = 20,88 kWh/10 minutes

Et donc la puissance :

20,88 x 6 = 125,28 kW


Préparation par accumulation pure

Dans ce cas, l’entièreté des besoins journaliers est stockée. Le stock est reconstitué durant la nuit.

Étape 1 : Énergie puisée durant la journée

Le volume d’eau chaude maximum (équivalent à 60°) puisé durant la journée la plus chargée de l’année a été déterminé. L’énergie puisée via l’eau chaude est donnée par la formule :

Eacc = 1,16 x V60acc x (60° – 10°) / 1 000

avec,

  • Eacc énergie puisée durant une journée entière en kWh
  • V60acc volume d’eau chaude total puisé durant une journée, ramené à 60°C, en litres
  • 1,16/1 000 coefficient de correspondance (capacité thermique d’un litre d’eau)
  • 10° température de l’eau froide

Étape 2 : Volume de stockage et puissance de l’échangeur

Le volume du ballon de stockage est donné en litres par :

Volume =

avec,

  • ec = température de l’eau du ballon
  • 10° = température de l’eau froide
  • a = coefficient d’efficacité du stockage

La puissance de l’échangeur, donnée en kW par la formule suivante, permet de reconstituer le stock d’eau chaude en 6 ou 8 heures.

Puissance =

avec,

  • 0,9 = coefficient de majoration pour tenir compte des pertes de stockage durant la période de reconstitution du stock.
  • Pdis = pertes dans le réseau de distribution. Dans le cas d’une boucle de distribution, il s’agit de la puissance de maintien en température de celle-ci.

Calculs

Un petit logiciel permet d’estimer ces pertes de distribution.

On prendra en général, une puissance minimum de 10 à 12 W/Litre de stock.

Exemple.

Les sanitaires comportent 10 douches. La demande maximum est estimée sur base de 50 douches/jour. Chacune d’entre elles générant 40 litres à 40°C, on estime la consommation journalière à 2 000 litres.

Cette demande est

convertie en demande à 60°C :

2 000 x (40 – 10) / (60 – 10) = 1 200 litres

on en déduit

l’énergie correspondante :

1,16 x 1 200 X (60 – 10) / 1 000 = 69,6 kWh/jour

et donc le volume de stockage :

69,6 x 1 000 / 1,16 x (60 – 10) x 0,9 = 1 333 litres


Préparation en semi-accumulation/semi-instantané

Deux situations peuvent se présenter :

Les besoins sont continus et l’installation peut être décrite par de puisage « critique »

Dans le premier cas, il est possible d’utiliser une méthode du type de celle développée dans la norme IN 4708 ou dans le guide n°3 de l’AICVF. Le principe consiste à établir la courbe représentant les besoins maximum consécutifs que l’on peut rencontrer. On en déduit l’ensemble des couples « puissance – volume de réservoir » qui permettent de satisfaire ces besoins.

Calculs

Pour accéder à la description détaillée de la méthode.

Calculs

Pour accéder au logiciel de calcul.

Les besoins sont discontinus, l’installation doit vaincre un débit de pointe sur un temps donné

Dans ce cas, bien que la méthode présentée ci-avant reste évidement d’application, une méthode algébrique simple est possible. Cette méthode n’est applicable que si l’on admet l’hypothèse qu’aucun puisage n’est effectué entre deux pointes et que le stock d’eau chaude est reconstitué durant cette période. L’appareil est évidement dimensionné pour satisfaire la pointe la plus critique.

C’est le cas par exemple dans les halls de sport où les douches sont utilisées durant 10 minutes toutes les heures, aucun puisage n’étant effectué durant les 50 minutes intermédiaires.

La méthode repose sur deux équations,

1. Énergie puisée via l’eau chaude = Energie contenue dans le stock + Energie fournie par l’échangeur durant le puisage.

1.16 x V60 x (60° – l0°) = 1.16 x a x V x (Tec – 10°) + (t– 3) x P x 16,7

où,

  • V60 = volume puisé durant la période la plus critique, ramené à 60°C (en litres)
  • V = volume du ballon de stockage (en litres)
  • Tec = température de l’eau stockée (en °C)
  • 10° = température de l’eau froide et température minimale que peut atteindre le stock tout en garantissant le confort (en °C)
  • a = coefficient d’efficacité du ballon de stockage
  • t= temps de puisage (en minutes)
  • 3 = temps d’attente entre le début du puisage et la mise en action de l’échangeur : 3 minutes en production directe et 5 minutes en production indirecte
  • P puissance de l’échangeur (en kW)
  • 16,7 = facteur de conversion d’unités

2. Energie fournie par l’échangeur durant la période de reconstitution du stock = Energie nécessaire pour augmenter la température du stock jusqu’à la température maximum de stockage

tx P x 16,7 = 1.16 x a x V x (Tec – 10°)

où,

  • t= temps de reconstitution du stock entre 2 pointes de puisage (en minutes)

Ceci permet de déterminer directement :

Volume de stockage : V =

Puissance de l’échangeur : P =

Comme on le voit, cette méthode ne donne qu’une seule possibilité de choix d’appareil, contrairement à la première méthode qui débouche sur plusieurs solutions possibles et donc permet une optimalisation du choix.

Calculs

Pour accéder au logiciel de calcul.
Exemple.

La période de pointe maximum est de 770 litres à 60°C en 20 minutes. Le stock doit être reconstitué en 30 minutes pour satisfaire la demande suivante. Le coefficient d’efficacité est de 0,9. La température de l’eau stockée est de 60°C.

On obtient un volume de 546 litres et une puissance de 57 kW.


Exemple : le dimensionnement d’une école

Une école comprend :

  • une salle de gym avec 8 douches,
  • un internat équipé de 8 lavabos et 5 douches,
  • une cuisine comprenant un lave-vaisselle et un bac évier.

Remarque : pour simplifier l’exemple, il ne sera pas tenu compte dans le calcul des puissances des pertes de distribution et de stockage.

Profil de puisage

1. La salle de gym

Les lundi, mardi, jeudi, vendredi, les 8 douches fonctionnent simultanément et en continu (vanne d’ouverture commune) pendant 10 minutes après chaque cours (de 9h30 à 12h30 et de 14h30 à 16h30).

Les mercredis après-midi, les activités sportives organisées par l’école, impliquent le même type de fonctionnement.

Le soir, la salle de gym est occupée par des clubs sportifs. La location de la salle se fait à l’heure (de 19 à 22h00).

Profil de puisage du gymnase.

Chaque heure, c’est 640 litres à 45°C qui sont puisés, soit 448 litres à 60°C.

2. L’internat

Les équipements sanitaires de l’internat sont utilisés le matin et le soir. Tous les jours de la semaine sont semblables. Le week-end, l’internat est vide.

L’internat n’est pas occupé durant les vacances scolaires (pas de groupes extérieurs logés).

Après observation, on a déterminé que :

  • Le matin, seulement 2 douches au maximum sont utilisées pendant 10 min. Les 6 lavabos fonctionnent simultanément en continu pendant 10 min.
  • Le soir, les 5 douches fonctionnent en continu pendant 20 min. Seulement 3 lavabos simultanément sont utilisés pendant 20 min. Cela représente une demande de 385 litres à 60°C/10 minutes, durant 20 minutes.

Profil de puisage de l’internat.

3. La cuisine

Les repas chauds du midi sont fournis par un service traiteur.

Seul le lave-vaisselle est donc consommateur. Il fonctionne 1 fois par jour après le repas de midi.

Profil de puisage de la cuisine.

4. Profil de puisage total

Si l’appareil de production d’eau chaude sanitaire doit satisfaire les besoins des 3 groupes d’utilisateurs précédents, il doit satisfaire le profil de puisage repris ci-dessous.

Profil de puisage total en litres à 60°C.

Dans ce profil, l’ensemble des consommations sont ramenées à 60°.

Remarque : nous ne discutons pas ici de l’opportunité de scinder la production D’ECS en unités distinctes et indépendantes. Ni de la pertinence de garder un système où toutes les douches coulent en même temps ! On dira que c’était pour avoir un profil plus simple à présenter !

Profil de l’énergie puisée et courbe des besoins consécutifs

Préparation semi-instantanée ou en semi-accumulation.
Méthode des besoins continus.

Dans un premier temps, on essayera de satisfaire la période de puisage la plus critique.

Le dimensionnement de l’appareil de production pour cette période permettra de définir une puissance et un volume capable de satisfaire n’importe quelle autre demande de la journée.

La période la plus critique s’étale de 19 à 20h. Durant cette période, le maximum d’eau consommée

  • en 10 minutes = 448 l à 60° ou 26 kWh
  • en 20 minutes = 385 + 385 l à 60° ou 45 kWh
  • en 30 minutes = 385 + 385 l à 60° ou 45 kWh
  • en 40 minutes = 385 + 385 l à 60° ou 45 kWh
  • en 50 minutes = 448 + 385 l à 60° ou 48 kWh
  • en 60 minutes = 448 + 385 + 385 l à 60° ou 71 kWh

Le stock doit être reconstitué avant 20h50 pour satisfaire la demande suivante.

On peut déduire de ce profil d’énergie puisée une courbe des besoins consécutifs.

Courbe d’égale satisfaction des besoins

En introduisant le profil de consommation dans le logiciel d’évaluation de la puissance et du volume du réservoir en semi-accumulation (sur base du profil de pointe), on obtient la courbe d’égale satisfaction des besoins. Il est possible de choisir n’importe quel couple Puissance-Réservoir. Plus la puissance est faible, plus le volume du réservoir doit être important.

Préparation semi-instantanée ou en semi-accumulation.
Méthode des besoins discontinus.

Appliquons les formules :

V =

P =

On considère ici deux pointes :

a.A 19h, consommation de 2 x 385 l à 60° en 20 minutes, le stock est reconstitué en 30 minutes.

  • tp 20 min.
  • tr 30 min.
  • V60 770 1
  • Tec 60°
  • a = 0,9

On obtient V = 546 l et P = 57 kW
b.A 19h50, consommation de 448 l à 60° en 10 minutes; le stock est reconstitué en 50 minutes

  • tp 10 min.
  • tr 50 min.
  • V60 = 448 l
  • Tec = 60°
  • a = 0,9

On obtient V = 436 l et P = 27 kW

On retiendra donc les résultats du point a.

Préparation instantanée.

Le débit instantané maximum en 10 min. est de 448 litres d’eau à 60°C.

L’appareil de production instantanée doit avoir une puissance de :

pour pouvoir fournir 448 l d’eau à 60° en 10 minutes.

Préparation en accumulation pure.

Le volume total puisé par jour est de 3 000 litres à 60°

ceci équivaut à une énergie puisée de :

3 000 (60° – 10°) / 1 000 = 174 kWh

Le volume du ballon de stockage devra donc être de :

174 1 000 / a 1.16 (Tec – 10°)

Si on choisit Tec = 60° et a = 0,9, le volume de stockage égale 3 300 litres.

La puissance de l’échangeur nécessaire à la reconstitution du stock en 8h (sans tenir compte des pertes de distribution et de stockage) égale :

174 kWh / 8h = 22 kW


Faut-il additionner les puissances de chauffage du bâtiment et de l’ECS ?

La chaudière est surdimensionnée 364 jours par an puisqu’elle est calculée pour vaincre la pire période froide de l’année (- 10°C, température extérieure de base, arrivant 1 jour par an, en moyenne établie sur 30 ans).

Mais il faut imaginer ce qui se passerait ce jour là !

Tout est fonction du rapport des puissances en jeu.

Dans le cas d’une école, les seuls besoins d’eau chaude sanitaire sont ceux du réfectoire. Et encore, le lave-vaisselle chauffe son eau de façon indépendante.
Dans ce cas, la mise en route du chauffage de l’eau chaude n’entraînera aucune perturbation du fonctionnement du chauffage du bâtiment et il ne faut pas prévoir de supplément de puissance.

  1. Et s’il s’agit d’un hôpital ? Les besoins en eau chaude sanitaire sont constants. Il faut envisager le moment où il ferait – 10°C. Le chauffage devra se superposer à la fourniture de l’eau chaude : les puissances devront s’additionner.

Tentons de définir un critère chiffré :

Imaginons que le bureau d’études se base sur les déperditions des locaux pour définir la puissance des radiateurs (–> + 5 % dans le choix du radiateur dans le catalogue), qu’il additionne toutes ces puissances pour définir la puissance chaudière, qu’il applique un coefficient de relance (+ 20 % environ) pour disposer d’une surpuissance le lundi matin. On suppose qu’il installe 2 chaudières reprenant chacune 60 % de la puissance totale, mais qu’il ne cumule pas les + 20 % correspondants avec celle de la relance.

On voit qu’il n’est pas du tout irréaliste de penser que le surdimensionnement atteint 25 %, au pire moment. Et que donc, tant que la puissance du chauffage de l’ECS ne dépasse pas 25 % de la puissance, aucun supplément ne doit être installé.

On pourra toujours rétorquer que s’il fait – 10° et que c’est un lundi matin …

Méditons sur notre propension à dimensionner nos équipements pour le cas qui arrive une fois par siècle… et à son lien avec la pollution de nos villes.

Evolution des besoins thermiques des immeubles suite à l’isolation des parois

Evolution des besoins thermiques des immeubles suite à l'isolation des parois


Transfert thermique par les parois extérieures

Prenons l’exemple d’un local de bureau de 30 m² sur 3 m de hauteur, soit un volume de 90 m³.

Supposons qu’il soit entouré d’autres locaux régulés à la même température (bureaux voisins, couloirs, …), si bien que seule la paroi en façade est source d’échanges thermiques.

Cette paroi est constituée de 7,5 m² de vitrage et de 6 m² d’allège.

Il y a 30 ans on aurait placé du simple vitrage (U = 6 W/m²K) et une allège non isolée (U = 1,5 W/m²K). Une ventilation de 1 renouvellement horaire serait assurée, essentiellement par infiltrations non maîtrisables. Il en résulte les puissances suivantes

  • pertes par paroi : (7,5 x 6 + 6 x 1,5) = 54 [W/K]
  • pertes par ventilation : (0,34 Wh/m³K x 90 m³) = 31 [W/K]

Soit un total de 85 Watts par degré d’écart entre extérieur et intérieur.

Quelle doit être la température intérieure à considérer ? On peut partir d’une zone neutre de confort entre 21°C (hiver) et 24°C (été), et donc d’une température moyenne intérieure d’hiver de 18°C (moyenne jour/nuit/week-end). On obtient alors le profil d’échange suivant en fonction de la température extérieure :

Supposons à présent que la paroi soit isolée : double vitrage à basse émissivité (U = 1 W/m²K) et allège avec 6 cm de laine minérale (U = 0,24 W/m²K). Il en résulte les puissances suivantes

  • pertes par paroi : (7,5 x 1,5 + 6 x 0,53) = 14 [W/K]
  • pertes par ventilation : (0,34 Wh/m³K x 90 m³) = 31 [W/K]

Soit un total de + 40 Watts par degré d’écart entre extérieur et intérieur. La température intérieure moyenne en période de chauffe est réévaluée à 19°C (avec la nouvelle isolation, les nuits et les week-ends seront moins frais entrainant une augmentation de la température moyenne). Le profil d’échange est adapté :

Cette fois, les infiltrations par les châssis sont négligeables et le taux horaire de renouvellement d’air de 1 correspond au débit d’air neuf pulsé mécaniquement dans les locaux de manière volontaire et contrôlée. Ce qui sous-entend que ce débit peut être arrêté la nuit et le WE, soit les 2/3 du temps.

Conclusions

Suite à l’isolation, les besoins de chauffage et de froid sont réduits. L’enveloppe freine davantage le transfert de chaleur quel que soit le sens de passage. Le besoin de refroidissement du local en été est donc, à première vue, diminué par l’isolation de la paroi ! (mais ce n’est qu’un regard partiel puisque l’on ne prend pas ici en compte l’effet des charges internes et solaires).

À noter que les besoins liés à la ventilation représentent les 3/4 des besoins totaux et qu’ils sont contrôlables.


Influence des apports internes

Les apports internes doivent être introduits dans le bilan.

Dans les bureaux non-isolés

Autrefois, on comptait 30 W/m², soit 10 W/m² pour les personnes et 20 W/m² pour l’éclairage. Quelle que soit la température extérieure, c’est un apport fixe de 900 W qui est donné au local.

Cet apport doit être diminué dans la mesure où ils apparaissent chaque jour durant les 10 heures de fonctionnement des bureaux, soit 1/3 du temps de la semaine. Les besoins thermiques sont eux proportionnels à la température moyenne intérieure, maintenue en permanence.

Ainsi, les apports internes représentent une puissance moyenne permanente de 900 x 1/3 = 300 Watts. Ce nouvel apport décale le profil de demande de -3,5 °C.

Le point d’équilibre est atteint pour une température extérieure de 14,5°C : les apports compensent les besoins de chaleur. Les besoins de froid sont augmentés : dès que la température extérieure dépassera les 20,5 °C, une puissance de réfrigération sera nécessaire pour assurer le confort des occupants.

Dans les bureaux actuels isolés avec 14 cm de laine minérale

Pour un bâtiment actuel, les apports internes sont similaires dans un local de bureaux : si 10 W/m² supplémentaires de bureautique sont apparus, la nouvelle performance des systèmes d’éclairage a permis une diminution de 10 W/m².

À noter que dans les anciens bureaux, l’arrivée de la bureautique a entraîné un réel accroissement de la charge.

Le nouveau profil de charge apparaît, avec un point d’équilibre ramené à 11,52 °C :e

19 °C – (300 W/(40 W/K)) ≈ 11,5 °C

Conclusion

La puissance frigorifique maximale n’est pas plus élevée que dans les anciens bâtiments; elle commence cependant plus tôt dans la saison.


Influence des apports solaires

Des apports solaires élevés vont s’ajouter à la charge thermique du local.

Imaginons que le bureau soit situé en façade Ouest.

Comment estimer l’importance des apports solaires en fonction de la température extérieure ?

Un lien partiel existe. On l’évaluera en première approximation par le fait que :

  • 3 kWh d’énergie solaire atteignent, en moyenne, chaque m² de façade Ouest par journée, pour un ciel moyen de juin, soit pour une température extérieure moyenne de 16 °C.
  • 0,36 kWh d’énergie solaire atteignent, en moyenne, chaque m² de façade Ouest durant une journée de décembre, que l’on pourra faire correspondre à T° extérieure de l’ordre de 0° (en fait, par ciel serein l’apport solaire est élevé mais la température est plus faible).
  • 4,8 kWh sont reçus par m2 de façade Ouest, par jour, par ciel serein au mois de juin, et donc pour des températures maximales proches de 30°C.

Pour connaître les apports solaires reçus par le bureau, multiplions ces valeurs par les 7,5 m2 de vitrages, affectons ces montants d’un coefficient 0,6 pour tenir compte du facteur solaire du double vitrage et de la présence du châssis, et divisons cette énergie par 24 h pour obtenir une puissance moyenne effective.

Il en résulte un apport de 900 Watts aux températures maximales (30°C), de 560 Watts à 16°C et de 70 Watts à 0°C. Apport qu’il faut additionner à la courbe qui traduit le bilan thermique du local :

Bilan pour les immeubles non isolés

On constate que la température d’équilibre est descendue à 12 °C. Ceci signifie qu’avec 12 °C à l’extérieur, les apports internes et externes suffisent à assurer une température confortable de 21°C à l’intérieur. De plus, au-delà de 15 °C extérieur, en raison des divers apports, la température intérieure dépasse 24 °C et un besoin de rafraîchissement apparaît.

Bilan pour les immeubles isolés

Cette fois, le chauffage s’arrête pour 7°C extérieur et le rafraîchissement est souhaité à partir de 10°C extérieur.

Remarque : cette évaluation est simplifiée puisque le lien entre température extérieure et puissance solaire est évalué grossièrement et de plus, la présence de soleil fait monter la température extérieure des parois, ce qui entraîne une augmentation du transfert thermique au travers de la paroi.


Conclusions sur les conséquences de l’isolation des parois

La comparaison des deux courbes de puissance montre que la puissance de refroidissement souhaité n’a pas été augmentée par l’isolation des parois (elle a même plutôt légèrement diminué aux fortes températures).

Mais le profil de la demande de puissance est très différent : il faut refroidir de plus en plus tôt dans l’année.

L’énergie de refroidissement (produit de la puissance par le temps de la demande) va dès lors augmenter. Pour le visualiser, il faut mettre en regard la courbe des puissances et la courbe de l’évolution des températures en fonction du temps de l’année :

On constate que la température extérieure est située entre 12 et 18°C durant de nombreuses heures de l’année. Autrefois, à ces températures la puissance du local était nulle ou faible. Aujourd’hui, une demande de refroidissement est bel et bien présente à ces températures…

Voici l’évolution de la demande annuelle du local par tranche de températures extérieures :

Attention : dans l’absolu les besoins de chauffage ne baissent pas en deçà de 0 degrés pour devenir nuls vers -15 °C; simplement, le nombre d’heures/an rencontrant ces situations extrêmes étant très réduit, la consommation annuelle (puissance x durée) à ces températures, est réduite. Le même raisonnement explique la tendance au-delà de 18 °C.

La demande énergétique totale est en baisse de 20 % ;L’énergie de refroidissement est donc en hausse après isolation. Mais pas de regrets et pas de marche arrière !

  • La demande de chauffage s’est effondrée de 75 %.

Comment comprendre que les besoins soient nuls sur une large plage (7 °C à 10 °C ? Le bâtiment est à l’équilibre thermique et la température intérieure oscille dans « la zone neutre » entre 21 et 24 °C.

Cependant, la demande en énergie de refroidissement a dramatiquement progressé de + 95 % ! Dramatiquement, vraiment ? Nous sommes tout de même passés de 1 200 kWh/an à 2 350 kWh/an…

En réalité cette valeur est à nuancer. Rappelez-vous qu’elle exprime l’énergie nécessaire au refroidissement d’un local fermé, peu aéré, sans protections solaires…

Nous pouvons aussi observer que l’augmentation des besoins de refroidissement suite à l’isolation du local a principalement lieu pour des températures extérieures comprises entre 10 °C et 21 °C. À ces températures, l’air frais extérieur pourra-t-être mis à profit pour refroidir l’ambiance gratuitement (les besoins de froids qui concernent des températures supérieures à 21 °C ne représentent que 20 à 30 % des besoins de froids).

Vous l’aurez compris, isoler permet une réduction de la consommation d’énergie de chauffage très importante avec pour revers d’augmenter les besoins de froids. Il faudra donc entreprendre des stratégies adaptées à ce nouveau profil pour en tirer tous ses avantages :

  1. Autrefois, le chauffage constituait le principal poste énergivore, mais à présent, un équilibre est plus souvent atteint et il faut pouvoir faire face à une demande de chaud et une demande de froid lors des températures extrêmes. Par exemple, la simple présence de protections solaires extérieures peut fortement limiter les besoins de refroidissement.
  2. Le diagramme des puissances met en évidence que la demande de froid se fait souvent au moment où la température extérieure est bien inférieure à la température de consigne intérieure, ce qui, théoriquement, permet de mettre en place une technique de free cooling diurne.
  3. Suite à cette évolution des besoins, il y a de plus en plus souvent des besoins de réfrigération dans certains locaux alors que d’autres locaux sont encore en demande de chauffage. Par exemple, dans un immeuble bien isolé comportant deux façades Est-Ouest, il est probable qu’en mi-saison vers 10h00, la façade Est est en demande de refroidissement alors que la façade Ouest demande encore de la chaleur. Le système de climatisation devra pouvoir répondre à cette évolution.
  4. Également, ce que le diagramme ne montre pas, c’est le cycle de température jour/nuit qui permet d’évacuer la chaleur accumulée en journée, par de l’air nocturne plus frais : c’est le free cooling nocturne. Ceci pour autant que le local puisse jouer le rôle de réservoir tampon, et donc qu’il dispose d’une inertie suffisante.
  5. Pour finir, nous pouvons observer sur le schéma ci-dessous que la période de besoin de refroidissement  coïncide avec la disponibilité en énergie solaire la plus forte. Ainsi, l’installation de panneaux photovoltaïques pourrait s’avérer être une stratégie judicieuse [notamment dans le cadre d’un objectif QZEN] profitant de la concordance entre la période de disponibilité d’une énergie renouvelable (le photovoltaïque solaire) et la période de besoin de cette énergie pour le refroidissement.

Si cela se vérifie à l’échelle d’une année, il en va de même à l’échelle de la journée.

Affiches de l’agence ALME – Mulhouse – Série 4

ALME – Agence Locale de la Maîtrise de l’Énergie à Mulhouse

Les affiches ci-dessous sont distribuées par l’Agence Locale de la Maîtrise de l’Énergie à Mulhouse. Elles sont téléchargeables gratuitement en cliquant sur les icônes ci-dessous (format PDF).
Téléphone 33 (0)3 89 32 76 96
e-mail : contact@alme-mulhouse.frsite : ouverture d'une nouvelle fenêtre ! http://www.alme-mulhouse.fr/

Affiche Ne surchauffez pas la classe Affiche Aérer pendant des heures ...
Affiche S'il fait trop chaud ... Affiche Fermez les portes ...
Affiche Eteignez la lumière ... Affiche Coupez le chauffage ...

Améliorer la distribution d’eau chaude sanitaire

Stopper la circulation la nuit et le week-end

La boucle de circulation est très consommatrice d’énergie puisqu’une température élevée y est maintenue en permanence. Interrompre cette circulation permet à l’eau de descendre de température et donc de diminuer les déperditions.

Quel est le gain lié à la coupure ?

Malgré qu’il faudra remettre la boucle en température au redémarrage de la circulation, on est toujours gagnant à l’interrompre. Simplement, le gain est d’autant plus grand que la période d’interruption est longue et que l’isolation des conduits est faible.

Une étude réalisée dans le cadre du programme Ravel (Suisse) montre qu’une boucle de circulation, bien isolée, qui serait interrompue seulement 8 heures par jour (33 % du temps) économiserait 19 % des pertes du réseau d’eau chaude sanitaire (diminution des pertes des tuyauteries et de la consommation du circulateur). Dans ce calcul, il a été tenu compte du réchauffage de l’eau refroidie et de la tuyauterie à la fin des 8 heures.

Si la coupure est plus longue (8 h par nuit + week-end, soit 52 % du temps), le bénéfice en est encore bien plus important : 45 % d’économies. Proportionnellement, l’impact du réchauffage diminue.

Attention au ballon de stockage électrique

Si le chauffage est programmé la nuit, il faudra réamorcer la circulation avant la fin de la période de nuit afin que le réchauffage soit réalisé à prix réduit.

Et la Légionelle ?

La légionelle se développe particulièrement bien entre 32 et 42°C. Un arrêt de la boucle de circulation entraînera forcément une température de l’eau assez tiède pendant plusieurs heures. Cependant, si la production d’eau chaude s’est réalisée à 60°C, les bactéries ont été détruites et ne vont pas spontanément se redévelopper. Et une remontée à 60°C aura lieu dès le redémarrage de la circulation.

Et une coupure permanente ?

On peut aussi parfois se demander si la circulation d’eau est vraiment nécessaire ? Un test sur le bâtiment existant (ou sur une partie de celui-ci) peut facilement être réalisé, après avoir éventuellement averti les utilisateurs de la prolongation du temps d’attente.

Une production décentralisée (gaz ou électrique) peut-elle être placée pour alimenter le dernier point de puisage et raccourcir la boucle ?

Mais cette fois, la question de la légionelle se pose sérieusement. Des bras morts plus longs seront présents. Donc un risque de stagnation de l’eau si l’usage est sporadique. Dans la nouvelle réglementation flamande, les bras morts ne pourront être de plus de 5 m et d’une contenance de 3 litres. Si l’arrêt définitif de la boucle est confirmé, il sera au minimum nécessaire de sectionner et vidanger la tuyauterie de retour pour éviter de laisser de l’eau stagnante dans cette partie de l’installation.


Isoler les tuyauteries

Isoler la boucle de circulation

Une isolation aussi performante que celle du ballon s’impose.

L’épaisseur d’isolation rentable de la boucle d’eau sanitaire dépend de son diamètre. Le tableau suivant traduit les exigences de la norme NBN D30-041 en tenant compte de la température de l’eau (fonction du mode de régulation), de la température ambiante et des épaisseurs d’isolant courantes sur le marché

Épaisseur d’isolant rapportée à un coefficient de
conductibilité de 0,04 W/mK [en mm]

Température de l’eau

Conduite extérieure (température ambiante : 0°C)

Conduite intérieure (température ambiante : 15°C)

DN

10 40 30
15 40 30
20 40 40
25 50 40
32 50 40
40 50 50
50 50 50
65 60 50
80 60 60

Dispositions particulières

Épaisseur d’isolant

Tuyaux pour les percements dans les planchers et les murs et pour les croisements. La moitié des exigences ci-dessus
Tuyauteries dans la dalle entre locaux chauffés. 6 mm

Calculs

Le temps de retour de l’investissement est toujours très court : de l’ordre de 0,5 à 1,5 an.

Pour calculer la rentabilité de l’isolation de votre tuyauterie.

Astuce : un fabricant propose une circulation tube-contre-tube, ce qui permet l’exécution d’une seule coquille.

  1. Isolation thermique.
  2. Eau Chaude Aller.
  3. Air.
  4. Eau Chaude Retour.

On pense bien entendu aux tuyauteries traversant des locaux non chauffés (tout particulièrement les gaines techniques) mais également celles qui traversent des locaux chauffés puisque les pertes durant la mi-saison et l’été seront non négligeables. Si le local est climatisé, cette chaleur devra être éliminée en pure perte. Et si le local ne l’est pas, c’est une source de surchauffe supplémentaire par période de forte chaleur.

Dans les gaines techniques verticales, il est parfois impossible d’accéder aux tuyauteries. Pourrait-on alors imaginer d’arrêter la boucle de circulation à hauteur des caves, sans engendrer un inconfort trop important si l’on ne dépasse pas 2 ou 3 étages ?

Cette technique serait dangereuse en matière de propagation de la légionellose. En effet, on crée ainsi des « bras morts » sur le réseau où la température intermédiaire est favorable au développement de la bactérie. Ce n’est en tout cas pas admissible si ce sont des douches qui sont alimentées, puisque la contamination se fait essentiellement via la pulvérisation d’aérosols respirés par les poumons.

Isolation des vannes

Les vannes jouent également un rôle important et seront isolées en conséquence (en première approximation, on admet que les pertes d’une vanne à brides sont similaires à 1 mètre de tuyauterie du même diamètre).

Isoler les tuyauteries d’alimentation des points de puisage

Une isolation thermique des tuyauteries reste toujours utile :

  • Si les soutirages sont rapprochés, l’économie d’énergie sera très importante.

 

  • Si les soutirages sont plus espacés (hébergement), l’utilisateur pourra rapidement obtenir une eau « tiède », souvent jugée suffisante, mais l’économie liée à la pose de l’isolant sera plus faible.

 

  • Au minimum, l’isolation des distributeurs placés au dessus de l’accumulateur est nécessaire pour limiter les circulations internes dans les tuyauteries (une campagne de mesure a permis d’évaluer que le refroidissement par une tuyauterie horizontale non isolée greffée sur le ballon est vraiment non négligeable : l’eau refroidie redescend vers le ballon et une boucle convective se forme !).


Programmer le réchauffeur de boucle

L’isolation renforcée du réseau de distribution permet généralement d’arrêter le fonctionnement du réchauffeur de boucle qui peut être présent sur le retour de la boucle de circulation des ballons électriques.

Ceci permet de limiter le chauffage avec le courant de jour. Mais une perturbation de la stratification suite au retour de l’eau de circulation refroidie après la nuit, risque de se poser. Il est alors utile de programmer le réenclenchement de la circulation et du réchauffeur à la fin de la période de chauffage de nuit, pour bénéficier encore du tarif avantageux.

Une alternative peut également consister à augmenter quelque peu la température du ballon, en misant sur la faiblesse de la chute de température dans la boucle. Ou encore, d’abaisser la consigne du réchauffeur de boucle afin de juste maintenir la température minimale souhaitée.


Réduire la puissance de la pompe de circulation

Les boucles de circulation entraînées par des pompes surdimensionnées et non régulées sont des véritables « gaspilleurs d’énergie » ! Pour bien comprendre la logique d’une boucle de circulation, il faut penser au vieux truc des anciens pour éviter le gel d’une conduite en hiver : laisser passer un fin filet à la sortie du robinet ! De même, le débit de circulation d’eau compense les pertes de chaleur mais n’assure pas le débit d’eau d’alimentation d’un équipement.

En pratique, le circulateur de boucle est presque toujours surdimensionné. Lors du remplacement par un appareil de plus faible puissance, on posera un organe de régulation et un clapet antiretour.

Dimensionnement du circulateur de boucle

Le volume d’eau contenu dans l’installation n’entre pas en considération dans la détermination du débit horaire à mettre en circulation. Le débit d’eau chaude qui doit circuler doit compenser la somme des déperditions des tuyauteries du réseau aller, tenant compte d’une chute de température de l’eau acceptable (généralement 5 K) entre les points extrêmes de ce réseau, c’est-à-dire entre le départ du préparateur d’eau chaude sanitaire et le puisage le plus défavorisé.

Ce dimensionnement doit générer une vitesse maximum de l’eau de 0,5 m/s.

La pompe de circulation du type « sanitaire » devra être capable d’assurer le débit ainsi calculé avec une hauteur manométrique égale aux pertes de charge sur le réseau aller et retour, sans oublier celles dues aux vannes, clapets et autres accessoires présents sur l’installation et tout particulièrement aux mitigeurs thermostatiques qui peuvent présenter des pertes de charge importantes.

Repérer une consommation de nuit ou de week-end anormale

Repérer une consommation de nuit ou de week-end anormale


Évaluer la situation

La facture fournit la consommation en « Heures Creuses  (kWh HC), c’est-à-dire la consommation des appareils branchés :

  • 9 h par jour ouvrable du lundi au vendredi (horaire variable selon les régions mais généralement de 22 h à 7 h),
  • 24 h/24 les samedis, dimanches et jours fériés légaux.

À titre de comparaison, dans les immeubles de bureau de la Région Wallonne (non climatisés), la consommation HC représente 23 % des kWh consommés et 10 % du coût de la facture.

Cette consommation doit pouvoir être interprétée en listant la puissance des équipements en fonctionnement (éclairage de nuit, circulateur de chauffage, réfrigérateurs, eau chaude sanitaire, …) et en leur attribuant une durée de fonctionnement. Le produit doit fournir les kWh HC de la facture.

Ce type d’analyse révèle généralement des surprises, riches d’économies énergétiques et financières !

Équipement Puissance Heures de nuit en semaine Heures de week-end Énergie consommée
Circulateur 0,3 kW 5 x 9 h 2 x 24 h 27,9 kWh / semaine
Éclairage extérieur 2 kW 5 x 9 h 2 x 10 h 130 kWh / semaine

On sera aidé dans cette tâche par :

La réalisation de mesures sur certains équipements :

Le compteur général de l’installation, si on peut mesurer un à un les départs des circuits en jouant avec les disjoncteurs des tableaux divisionnaires.
Le placement de compteurs de passage sur les principales lignes.

(On notera que ce type de compteur constituera également un outil de motivation dans le cadre d’une future sensibilisation des occupants d’un bâtiment. Ainsi, la motivation d’une « équipe cuisine » passe par la possibilité de leur communiquer l’évolution de la consommation de la cuisine).

Les valeurs standards de consommation électrique des équipements en :

La visite du bâtiment en dehors des heures de fonctionnement normales (en soirée, un samedi, …). OK, il faut être vâââchement mordu par l’énergie mais on en découvre des équipements en fonctionnement pour rien !!!!

Où agir ? : quelques pistes…

Plusieurs postes consommateurs peuvent être envisagés. Les éléments suivants peuvent donner des pistes de solution :

Éclairage :
Ventilation :
  • arrêt des extracteurs sanitaires ?
  • arrêt de la ventilation des locaux non utilisés ?
  • arrêt de la ventilation des garages ?
  • utilisation d’un interrupteur horaire ?

Interrupteur horaire.

  • fonctionnement par détecteur de présence ?
  • fonctionnement à deux vitesses ?
  • regroupement des locaux utilisés la nuit ?
Bureautique :
  • double circuit électrique ?Prises rouges pour l’équipement qui doit rester en fonctionnement, prises blanches pour tous les autres équipements : c’est la solution adoptée à l’hôpital de Mouscron. Chaque rénovation de local entraîne la mise en place de ce système : une coupure horaire automatique est prévue sur le réseau « blanc », seuls les prises « rouges » continuent à alimenter les équipements à fonctionnement continu.

 

Eau Chaude Sanitaire :
  • arrêt du circulateur de la boucle d’ECS ? (peut-on admettre un temps d’attente avant d’obtenir de l’eau chaude la nuit ?)
Chauffage :
  • arrêt du circulateur de chauffage ? (risque de gel ?)

  • placement de chaudières autorisant une coupure totale durant la nuit et le week-end et d’une régulation avec maintien hors gel ?
Climatisation :
  • arrêt de la climatisation la nuit ou le week-end ?
  • fonctionnement avec taux de renouvellement d’air réduit ou avec recyclage de l’air à 100 % ?
  • fonctionnement enclenché par détecteur de présence ?
Réfrigération :
  • arrêt de certains équipements (le réfrigérateur de bureau qui ne contient que des éléments non périssables (ex.boissons) ou le distributeur de boissons peuvent-ils être arrêté le week-end ?)
  • si les besoins sont réduits la nuit, la régulation met-elle certains compresseurs à l’arrêt ?

Évaluer les gains et la rentabilité de l’isolation thermique

Évaluer les gains et la rentabilité de l'isolation thermique


ρ

Les gains se situent au niveau de :


La diminution de la facture énergétique

L’isolation thermique d’une paroi permet d’économiser énormément d’énergie.

Exemple.

On pose sur un toit plat non isolé de 100 m² une couche d’isolant, dont la résistance thermique R = 2.5 (exemples : 12 cm de laine de roche ou 9 cm de mousse de polyuréthanne ou 14 cm de verre cellulaire). Ceci permet d’économiser au moins 1 000 litres de gasoil par an au centre du pays, dans un immeuble non chauffé la nuit et le WE (bureaux, par exemple).

Calculs

Si vous voulez accéder aux détails des formules utilisées ci-dessous, cliquez ici !

Détail :

  • Résistance sans isolant :

R = 0.50 m²K/W => U = 2 W/m²K

  • Résistance avec isolant :

R = 3,00 m²K/W => U = 0,33 W/m²K

  • Différence de U = 1,67 W/m²K
  • Température extérieure moyenne pendant la période de chauffe : 6.5°C
  • Durée de la période de chauffe : 242 jours
  • Température moyenne intérieure : 20° (T° de jour) – 3° (intermittence) – 3° d’apports gratuits = 14°C
  • Différence moyenne de température :

14°C – 6,5°C = 7,5 K

  • Rendement moyen de l’installation de chauffage : 0,7
  • Différence de perte annuelle par m² :

(ΔU x S x Δ Tm)  x durée de chauffe / η =
1,67 W/K x 7,5 K x 242 j x 24 h/j / 0,7 = 103 922 Wh

  • Soit en combustible 104 kWh x 0.1 l/kWh = 10,4 litres de gasoil par m² par an.
  • Soit ici 1 000 litres de gasoil pour la toiture par an.

Exemple de rentabilité :

  • Avec un prix du gasoil de 0,8 € par litre, l’économie financière annuelle par m² de toiture est de 8 €.
  • Le prix de l’isolation est très variable (isolation des combles ou de la toiture ? l’étanchéité est-elle de toute façon à refaire ? …). Un prix de 50 €/m² permet de boucler un projet, étanchéité comprise. Le temps de retour de l’isolation est donc de ( 50/ 8) = moins de 7 ans.
  • À noter que si le bâtiment est chauffé jour et nuit (hôpital, maison de repos) et que l’on considère une température moyenne intérieure de 21°C, l’économie monte à 16 litre de gasoil/m² et le temps de retour descend à 6 ans.
  • Si le bâtiment est situé en Ardenne, le temps de retour descend à 5 ans (bureau) ou 3 ans (hôpital).
  • Si l’institution (bureau d’une administration ou home) obtient la prime UREBA de 30 %, (ou une autre prime et déduction fiscale pour les bureaux privés, voir http://energie.wallonie.be), le prix de l’isolation descend à 35 €/m², et donc les temps de retour descendent à :
bureau
home
Brabant
5 ans
3 ans
Ardenne
3 ans
2 ans
  • Si le chantier est important et qu’une négociation est possible, le prix peut encore descendre. Et si l’étanchéité de la toiture est de toute façon à envisager, le prix de l’isolant s’amortit alors très rapidement.

Calculs

Si vous voulez calculer vous-même la rentabilité de l’isolation d’une paroi, cliquez ici !

Calculs

Dans le programme de calcul ci-dessus, il vous sera demandé le coefficient de transmission thermique (U) de la paroi avant et après isolation.  Ces valeurs ont été calculées pour certaines parois types.

Évaluer

Il vous sera également demandé d’évaluer le rendement de votre installation de chauffage.
Vous trouverez des indications concernant les valeurs à considérer pour une installation à eau chaude en cliquant ici. Pour le chauffage électrique, le rendement est de 100 %.

L’amélioration du confort

L’isolation de la paroi va augmenter la température de surface de celle-ci, augmentant ainsi le confort thermique pour les occupants, et réduisant les risques de condensation en surface et donc les problèmes d’hygiène.
Vous pouvez évaluer la température de surface de la paroi à l’aide de la formule :

θoi = θi – (U x 0,125 x(θi – θe))

avec :

  • θi : température intérieure (en °C)
  • θe : température extérieure (en °C)
  • U : coefficient de transmission thermique de la paroi (en W/m²K)
  • θoi : température de surface intérieure de la paroi (en °C)

Exemple : si la température extérieure est de 0°C et que la température intérieure est de 20°C, la face inférieure d’une paroi plate passera de 15 à 19°C après isolation.


La protection du bâtiment

L’amélioration de l’isolation de la paroi correctement réalisée par l’extérieur augmente la longévité des matériaux, car elle :


La diminution des rejets polluants

Du point de vue environnemental, les économies de chauffage engendrées par l’isolation permettent de réduire fortement les rejets de gaz polluants (CO2, SO2, NOX, …)

Exemple.

Dans le Brabant, la pose, sur le toit plat non isolé de 100 m² d’un immeuble de bureau, d’une couche d’isolant dont la résistance thermique R = 2.5 (exemples : 12 cm de laine de roche ou 9 cm de mousse de polyuréthanne ou 14 cm de verre cellulaire) permet de diminuer les rejets annuels (chauffage au gasoil) :

  • d’environ 104 kWh/m² x 100 m² x 0,264 kg > CO2/kWh = 2 746  kg de CO2
  • d’environ 104 kWh/m² x 100 m² x 0,169 mg NOx/kWh = 1,7  kg de NOx

Changer les comportements

Les améliorations techniques se font lentement. Comment y associer les utilisateurs ?

« On a fait un audit sérieux. Les améliorations techniques se font au fur et à mesure des possibilités budgétaires. Comment fait-on pour associer les utilisateurs aux efforts consentis ? »

À ce stade du travail, il est important d’associer les utilisateurs à un projet particulier, de les consulter pour des problèmes les concernant directement (les températures souhaitables, les heures, …) Il faut leur donner la possibilité d’être écouté, de faire des suggestions, de formuler des propositions pour résoudre les problèmes qui ne vont pas manquer de se poser.

Voici, à titre indicatif, une procédure possible :

  • informer les utilisateurs de ce qui a été réalisé en matière d’URE et ce qui est en cours.
  • multiplier les relations avec les utilisateurs pour connaître la situation et les comportements des utilisateurs.
  • afficher des informations contenant de bonnes raisons de faire de l’URE.
  • proposer une réunion d’information et de discussion sur une action à mener pour diminuer la consommation énergétique.
  • décider avec les utilisateurs des modalités d’une action à mener pour faire changer les comportements;
  • appliquer les décisions prises.
  • réunir les personnes à nouveau quand des résultats peuvent être diffusés à propos de l’action …

Les lumières restent allumées… Que faire ?

« Moi, je ne peux pas obliger les gens à éteindre la lumière quand ils quittent une pièce. Alors, comment faire ? »

  1. Diffuser des « pourquoi » : il existe des affiches qui donnent de bonnes raisons d’économiser l’énergie.
  2. Diffuser parallèlement des « comment » : créer des petites affiches humoristiques, les placer près des interrupteurs, rappelant qu’il faut éteindre en partant. Pour qu’elles continuent à être lues, il faut les remplacer de temps en temps.
  3. Favoriser les relations personnelles avec les utilisateurs et parler avec eux de ce qui devrait être fait tant par le responsable énergie que par les utilisateurs pour faire diminuer la consommation énergétique.

Les gens ont peur qu’on nuise à leur confort. Que faire ?

« Et quand les gens sont convaincus que l’URE va à l’encontre de leur confort, comment faire pour qu’ils ne vandalisent pas mes installations ? »

Les mentalités changent PETIT A PETIT.

Inutile d’attendre de grands bouleversements : les gens ont autre chose à faire.

En plus de diffuser des « pourquoi » et des « comment » économiser l’énergie, il faut idéalement que les personnes puissent faire plusieurs fois l’expérience que confort et URE ne sont pas nécessairement antagonistes.

Faites leur part d’expériences réalisées ailleurs et de ce qui a été fait chez eux sans nuire à leur confort.

Vous pouvez aussi rappeler de manière redondante que confort et gaspillage, ce n’est pas la même chose.


Comment organiser une campagne de sensibilisation ?

On a fait ce qu’on pouvait avec le budget disponible. On ne peut pas automatiser plus. Il faudrait mener une campagne de sensibilisation à l’URE pour tout le personnel. Comment faire ?

Organiser une campagne de sensibilisation interne est un travail de longue haleine qui nécessite un investissement en temps et en informations considérable. Parfois, il est plus intéressant de se concentrer sur un service seulement (voir « Les améliorations techniques se font lentement. Comment y associer les utilisateurs ? »). Mais parfois, une action de grande envergure vous paraîtra plus appropriée.

Toucher tout le monde, tout de suite, c’est impossible. Alors, il faut compter sur la conscientisation d’un petit nombre au début, puis sur un probable effet d’entraînement, puis sur un retour en arrière parce qu’une urgence est venue contrecarrer vos projets, sur un redémarrage lent et progressif, sur des résistances au changement logiquement incompréhensible, sur des comportements qui finissent par s’adapter, mais après combien de temps …
À propos, vous êtes-vous déjà fait la réflexion que Coca-Cola fait toujours de la publicité ?

Nous vous proposons une procédure en 6 phases que vous adapterez bien entendu en fonction des situations que vous rencontrerez chez vous.

Et souvenez-vous de cette parole de Rivarol :

« Il faut attaquer l’opinion avec ses armes. On ne tire pas de coups de fusil aux idées ! ».

1ère phase : phase d’information

S’informer

  • Savoir ce que veut dire URE pour les différents acteurs (décideurs, utilisateurs, collaborateurs).

 

  • Auprès d’autres responsables énergie, récolter des informations sur la façon dont ils envisagent une campagne, quelles sont leurs expériences, où on peut trouver des affiches, des slogans …

 

  • S’inscrire à un cycle de formation pour renforcer ses propres compétences techniques.

 

  • Le maître mot : ÉCOUTER.

 

  • Considérer que toutes les représentations peuvent être utiles. Si vous désirez que quelqu’un change d’avis, il vous faut d’abord savoir de quoi est fait son avis.

 

  • Connaître les problèmes de chauffage ou d’éclairage comme les voient les autres personnes : ceci est très important pour pouvoir remédier aux problèmes manifestes avant d’entamer (ou parallèlement à) une campagne de sensibilisation. Il serait inopportun de lancer une vaste campagne de sensibilisation si les acteurs n’ont pas les moyens matériels pour appliquer vos consignes (vannes de radiateur saccagées, interrupteurs cassés,…).

Informer

  • Vos collaborateurs à propos de votre projet.

 

  • D’autres acteurs que vous souhaiteriez associer dès les phases de réflexions (par exemple, dans une école, les professeurs et les élèves s’il s’agit d’un concours d’affiches et de l’insertion de l’URE dans un cours ou une leçon).

 

  • Les décideurs pour obtenir leur accord et leur soutien sur votre projet.

L’information des autres et votre propre information sont deux processus fortement imbriqués. Assumer les deux processus en même temps permet au responsable énergie d’associer plus vite les différents acteurs à ses projets URE.

2ème phase : construction du projet de sensibilisation

Trois questions à vous poser :

  • Que faire ?
  • Pour qui ?
  • Comment ?

Que faire ?

  • des conférences,
  • des réunions d’informations,
  • des lettres-circulaires,
  • des affiches,
  • des activités de loisirs,
  • des articles dans le journal d’entreprise,
  • une permanence à votre bureau,
  • un questionnaire / une enquête,
  • un séminaire, une action de formation,
  • un concours, un parrainage,
  • une soirée, un dîner, une réception,
  • une séance « portes ouvertes »,
  • un peu de tout …, mais dans un certain ordre ! Planifier plusieurs actions dans le temps assure une meilleure persistance des nouveaux comportements,
  • vous préférez en décider avec les bénéficiaires.

Pour qui ?

  • Tout le monde,
  • un groupe cible particulier dans un premier temps et ensuite profiter de l’expérience pour étendre l’action,
  • les opérateurs,
  • les décideurs,
  • quelles personnes relais pouvez-vous dès maintenant associer et conscientiser ?

Comment ?

  • Avez-vous besoin d’un budget ? Si oui, où allez-vous aller le chercher ? Si vous ne pouvez pas en avoir, comment allez-vous faire ?
  • Avec quels partenaires internes ou externes pouvez-vous travailler (le chef sécurité hygiène, la Région wallonne, un expert, un scientifique, …) ?
  • Élaborez un planning indicatif avec un premier jet des actions projetées.
Exemple.

À court terme : informer les personnes de la nécessité d’adopter des comportements plus responsables en matière d’URE pendant le premier trimestre dans une école, par exemple en septembre et en octobre. Mettre en œuvre une action d’affichage. Les affiches sont dessinées par les élèves en novembre. Elles sont reproduites et affichées, par exemple, en janvier. Un deuxième affichage avec d’autres affiches aura lieu un mois plus tard, soit en février. En avril on lance une boîte à suggestions pour pouvoir obtenir des informations qui permettront d’améliorer l’installation pendant l’été. En juin, en fin de période de chauffe, le bilan de l’action est communiqué.

À moyen terme : le suivi apporté la première année : comment informe-t-on les personnes sur les économies réalisées ? Un affichage aux valves, une lettre circulaire, le bouche à oreille, tout cela en même temps ? Qu’est-ce qu’on fait des économies générées ? On restitue une partie aux utilisateurs pour qu’ils achètent du matériel pédagogique, des plantes vertes, … Mais alors quelle partie et sur base de quoi ? Il faut aussi penser à donner toutes ses informations aux utilisateurs pour favoriser leur motivation.

À long terme : et la deuxième année, et si les acteurs changent, comment renouveler l’opération, sur quelles bases, … ?

  • Comment allez-vous savoir que des économies ont été générées ?
    • comparaison mois / saison / année,
    • la première année,
    • les années suivantes.
  • Sur quelles bases pouvez-vous imaginer une « récompense » ?
    • la baisse des consommations,
    • la baisse des factures,
    • un montant forfaitaire quelles que soient les économies réalisées,
    • quelle partie pour les utilisateurs, quelle partie pour le responsable énergie (son salaire par exemple), quelle partie pour qui d’autre,
    • s’il n’est pas possible de redistribuer de l’argent, quelle autre forme peut prendre la « récompense » : un confort accru, une meilleure écoute des problèmes, une prise en compte plus rapide des plaintes, une information de bonne qualité sur les moyens d’économiser aussi à la maison …

 

  • Dans quelle mesure pouvez-vous responsabiliser à long terme les occupants des bâtiments par une décentralisation budgétaire du poste « énergie » ? Si un système de récompense est choisi, il devra être offert chaque année… Par contre, si le budget chauffage est géré par l’utilisateur en parallèle avec son budget de fonctionnement, il sera automatiquement soucieux d’une gestion économe.
    Par exemple, le directeur du centre sportif est-il intéressé à économiser sur ses consommations pour augmenter son budget « matériel de sport » ?

 

  • La source, c’est-à-dire l’émetteur, a beaucoup d’importance pour assurer une crédibilité à vos messages. La communication interpersonnelle directe est le canal d’influence le plus puissant.
    Les communications avec supports (affiches, lettres, …) permettent d’assurer la persistance de l’information et la répétition des messages. Dans toute campagne de sensibilisation, le responsable énergie s’efforcera donc de maintenir de bonnes relations et d’informer de manière privilégiée les « leaders d’opinion ».
    Par exemple : associer le plus tôt possible le délégué syndical s’il a une grande influence et s’il veut bien; le chef de sécurité et hygiène pour les aspects relatifs à la santé et aux conditions de travail; la ou les secrétaire(s) par qui passent toutes les informations …

3ème phase : construction des outils

  • Il existe déjà des affiches, des autocollants, des slogans … N’hésitez surtout pas à vous en servir : les bonnes idées sont faites pour être volées (respectez la législation sur les droits d’auteurs quand même quand il y en a) !

 

  • Tentez d’élaborer un slogan qui sera rappelé le plus souvent possible.

 

  • Quels que soient les supports adoptés, les messages doivent contenir des « pourquoi » et des « comment ». Les « pourquoi » aident à motiver. Les « comment » aide à changer les comportements de manière concrète.

 

  • Les campagnes antitabac ont permis de faire chuter le nombre de fumeurs de manière très importante. « Le tabac nuit gravement à la santé » est un « pourquoi » répété à l’infini. Le « plan de 5 jours », la méthode « point contact » sont des « comment » qui permettent de changer l’habitude.

 

  • Il est important de multiplier les types de messages, les types de supports et les périodes pendant lesquelles les personnes seront soumises aux messages. La répétition est indispensable à la sensibilisation d’un groupe.

 

  • Les outils peuvent aussi être construits en groupe (une classe, un service …) : ils seront plus efficaces, au moins pour les personnes qui ont participé à leur élaboration.

 

  • Vous pouvez aussi imaginer une « année de la gestion des ressources humaines dans la commune » dans le cadre de l’année européenne de la conservation de la nature, par exemple. Vous organiserez alors une grande conférence inter-services – sommet de la commune – à la fin de l’année avec diffusion des informations sur les actions réalisées, les économies générées, ce qu’on n’a pas consommé, … et l’impact que cela a pu avoir sur l’environnement.

 

  • Avec une action de ce genre, l’URE est intégrée de manière explicite dans un projet bien plus large, ce qui lui donne, au moins pour certaines personnes, une instrumentalité immédiate.

 

  • Quels supports contiennent quels types d’informations ?
Exemples.

Des « pourquoi » :

  • Quelques affiches sur la « planète bleue ».
  • Une séance d’informations sur les directives européennes en matière d’URE.
  • Une séance d’information sur les améliorations techniques prévues ou effectuées avec les effets escomptés. Les économies générées et les économies possibles si on peut compter sur des comportements responsables.
  • Des informations dans le journal d’entreprise sur ce qui se fait en matière d’URE dans l’institution pour sauvegarder l’environnement.
  • Des informations sur le développement durable, l’utilisation responsable des ressources naturelles, sur la dépendance énergétique, sur les quantités encore disponibles dans le monde, sur le coût de l’énergie pour l’institution …

Des « comment » :

  • Une affiche humoristique à côté des interrupteurs rappelant la nécessité d’éteindre la lumière en partant.
  • Une affiche à côté d’une fenêtre indiquant qu’il faut la fermer en partant ou quand on ouvre le radiateur.
  • Un autocollant coloré à côté de la machine à café incitant à utiliser le Thermos …
  • les questionnaires :
    Les questionnaires et les enquêtes peuvent aussi être utilisés pour conscientiser aux problèmes URE. En lisant les questions, un certain nombre de personnes peuvent modifier quelques-uns de leurs comportements. Mais soyez attentif au fait que les questions doivent être non culpabilisantes, le questionnaire doit de préférence être anonyme.

Les questionnaires peuvent :

  • Soit poursuivre un objectif de conscientisation ET vous permettre de récolter de l’information. Dans ce cas, il est évidemment nécessaire que vous les repreniez.
  • Soit être conçus comme une sorte de test pour vous permettre de diffuser des informations à propos de l’URE. Ils contiennent alors les « bonnes » réponses ou mieux, vous afficherez ces réponses quelque temps plus tard, de telle sorte que les personnes aient eu l’occasion d’en parler entre elles.

Exemples.

Combien pensez-vous que nous dépensons en chauffage par an ?

  • 2 500 €
  • de 25 à 5 000 €

A votre avis, quel service de l’hôpital consomme le plus d’électricité ?

  • la cuisine
  • la salle d’opération
  • l’ensemble des chambres des malades

Quelle que soit la formule choisie, il faut être clair et précis avec votre public-cible et dire pourquoi vous avez opté pour la formule « questionnaire ».

Valence

  • Vous devrez avoir bien écouté les gens et leurs idées à propos de l’URE pour ensuite pouvoir les aider à élargir leurs avis.
Exemple. 

L’URE = Utilisation Restreinte d’Énergie pour une personne. Un message que vous pouvez faire passer alors, c’est : « Évidemment, l’URE, c’est utiliser moins d’énergie. Mais c’est aussi l’utiliser mieux, en maximisant le confort des occupants. Confort et URE vont parfois très bien ensemble, il faut profiter de l’un pour faire de l’autre. »

  • Vous pouvez aussi ajouter des sens qui ne sont pas encore associés à l’URE dans votre contexte.
Exemple.

URE = conservation de la nature, gestion de l’environnement, augmentation du confort, diminution du gaspillage, éviter des surconsommations inutiles, gestion durable des ressources naturelles, penser aux générations futures, diminution de l’individualisme et de l’égoïsme que tout le monde déplore, une action à notre disposition pour faire un petit pas vers un développement soutenable, la possibilité de créer un emploi … pour que chacun puisse choisir en fonction de ses valeurs.

Instrumentalité

  • Chaque fois que vous pouvez trouver une « carotte », c’est mieux !
Exemples.

Un concours d’affiches, la motivation peut être immédiate si par exemple les meilleurs sont affichées; quand c’est possible, restitution de tout ou une partie des économies réalisées pour un voyage, un jeu, une amélioration du cadre de travail, un matériel…

Il ne suffit pas de le faire, il faut aussi dire qu’on l’a fait. Et si on peut l’écrire en plus, ce ne sera certainement pas plus mal.

Exemples.

Dans une école, l’URE peut devenir un projet dans un cours; dans un CPAS : un projet URE et des comportements éco-civiques qui permettent à des assistés sociaux de réapprendre quelques éléments dans un processus d’autonomisation.

Expectation

  • Il vous faudra surtout traiter les problèmes de comparaison : on se rend « incapable » de faire de l’URE, en se comparant à d’autres qui ne le font pas.
    Dans ce cas, et en prenant le temps qu’il faut, sans culpabiliser les personnes, il faut amener vos propres comparaisons. Ailleurs, d’autres personnes font de l’URE. Elles n’imitent pas des personnes qui ne s’en préoccupent pas. Elles prennent plutôt leurs exemples là où les gens sont conscients des problèmes que posent une surconsommation inutile d’énergie. De plus, le gaspillage n’augmente le confort de personne, a un impact négatif sur l’air que nous respirons …

 

  • Mais vous aurez surtout à faire face à des habitudes très ancrées. Les gens penseront qu’ils sont « éternellement distraits » et ils n’éteindront pas leur lampe avant de partir. C’est une manière de se penser incapable de se soumettre à la conduite demandée. Les habitudes ne changent qu’avec le temps et si l’information est suffisamment redondante (ou en cas d’urgence).

4ème phase : la mise en œuvre

Quand les étapes précédentes ont été suffisamment réfléchies, cette phase est facile. Laissez démarrer une première étape de l’opération prévue. Récoltez des informations sur ses effets. Tous les effets : ceux que vous avez prévus et les autres, non prévus.

Utilisez ce que les gens disent, font, vous disent, disent à d’autres, ce qu’ils font des informations que vous avez diffusées, combien de temps durent les affiches, sont-elles barbouillées, arrachées, enjolivées, tellement belles qu’on les pique pour garnir ailleurs …Vérifier le plus possible ce qui change dans les consommations.

Être à l’affût des petites actions qui ont lieu pour économiser l’énergie ou pour vous faire savoir que personne ne s’en préoccupe.

5ème phase : l’évaluation

Maintenant que la première étape a été mise en œuvre, quels sont les résultats obtenus ?

C’est à partir de cette nouvelle situation qu’il faut continuer.

  • Les résultats sont positifs, les gens ont bien réagi :
    • surtout dites-le,
    • continuez l’action, pensez à renouveler les messages et à assurer la répétition des slogans;
  •  Les résultats sont mitigés, mais certains comportements ont quand même changé :
    • dites ce qui a changé en bien,
    • élaborez des correctifs et de nouvelles actions en tenant compte des résistances qui sont apparues lors de la première étape;
  • Les résultats sont négatifs, rien n’a changé ou, pire, tout le monde vous en veut maintenant :
    • il y a sûrement des améliorations techniques à faire avant. Si ce n’est pas possible, ne comptez pas trop non plus sur la sensibilisation des utilisateurs,
    • les gens n’ont pas assez compris, ils se sont sentis trop culpabilisés; ils sont débordés… Il faut prendre le temps et introduire l’URE dans un cadre plus vaste de confort, d’environnement, d’amélioration des conditions de travail …

6ème phase : Assurer la persistance des nouvelles habitudes

  • Nous nous habituons à notre environnement si fort, que finalement, nous ne le voyons même plus. Or la répétition d’un message atténue la vitesse de l’oubli. Il faut donc changer les affiches, mettre d’autres couleurs, trouver un nouveau stimulus étrange, un tout petit peu bizarre, suffisamment différent du précédent pour qu’il attire le regard, mais contenant des éléments semblables pour que le public perçoive la continuité (par exemple, utilisez le même slogan, le même logo).
  • On constate une modification d’attitudes plus stables chez les personnes qui ont eu l’occasion d’élaborer elles-mêmes les messages persuasifs. La réception passive d’un message assure moins sa persistance. Pensez-y lors des phases précédentes. Mais aussi, vous pouvez maintenant vous informer auprès des gens sur la façon dont ils auraient écrit, dessiné , sur la façon dont ils mettent quelles informations en relation avec quoi. Ces idées vous en donneront pour concevoir vos communications.
  • Le contexte est un déterminant de la stabilité de l’attitude dans le temps. Il faut donc rendre le contexte propice à l’URE.
    Par exemple, en diffusant régulièrement de l’information sur les consommations et ce qu’on a pu faire depuis qu’on consomme moins pour l’organisation ou pour l’air, l’eau, le confort des occupants, maintenir l’emploi …
    On peut aussi continuer à diffuser des petits conseils oralement, par écrit, par le réseau sur les ordinateurs, … : si vous m’éteignez, vous faites économiser XX € à l’heure. Si XX personnes le font, ça fait … Au bout de l’année, nous aurons … Ce n’est rien pour vous, peu de choses pour la commune, mais beaucoup de CO2 en moins dans l’atmosphère et les personnes sensibles qui respirent mieux, de même d’ailleurs que les petits oiseaux …

 

  • Écoutez les contre-arguments que certaines personnes ne manqueront pas de produire et utilisez-les dans vos messages pour les réfuter.
    Par exemple : certains diront qu’ils ne sont pas intéressés par l’URE. Ils veulent avoir chaud et qu’on ne les embête pas avec des contraintes supplémentaires. On peut bien entendu comprendre ce point de vue : il faut se trouver dans une ambiance confortable pour travailler. Toutefois, avoir chaud ne veut pas dire avoir trop chaud au point de devoir ouvrir la fenêtre quand le radiateur est allumé. Le confort, c’est un équilibre à trouver.

Outil

Cahier technique sectoriel: sensibilisation aux économies d’énergie en entreprise

Ce cahier se propose d’aborder la question de la sensibilisation aux économies d’énergie en entreprise, et ce par le prisme des acteurs qui la composent. Les études et articles décrivant des méthodes de sensibilisation sont nombreux mais ils négligent souvent la spécificité des cibles auxquelles la démarche de sensibilisation s’adresse. Or cette cible de la sensibilisation (qui n’est jamais qu’une « communication visant à créer l’adhésion et à mettre en mouvement et changer les comportements») est déterminante pour que la démarche soit efficace.

Lien vers l’outil :

Sensibilisation aux économies d’énergie en entreprise

Document réalisé par l’ICEDD (Institut de Conseil et d’Etudes en Développement Durable) – https://www.icedd.be/. Mise à jour du document en mars 2024. 

Se poser les questions les plus fréquentes sur la ventilation

Worker making final touches to HVAC system. HVAC system stands for heating, ventilation and air conditioning technology. Team work, HVAC, indoor environmental comfort concept photo.

Voici les affirmations et les questions les plus couramment formulées par des gestionnaires de bâtiment à l’adresse de l’Administration régionale wallonne concernant la mise en œuvre de la réglementation wallonne en matière d’isolation et de ventilation :


C’est à cause de l’isolation que l’on connaît des problèmes de salubrité dans les bâtiments. Mieux vaut donc ne pas trop isoler

Cette affirmation est en grande partie fausse. Pour comprendre pourquoi, il est utile de retracer l’historique de l’isolation.

Les années d’insouciance :

Avant la crise pétrolière des années ’70, l’énergie était bon marché. Les habitations non isolées pouvaient être bien chauffées à peu de frais.

Les années de crise :

Dans les années ’70, les pays producteurs de pétrole augmentèrent fortement les prix. Le choc fut rude pour nos économies et il devint urgent de diminuer nos dépenses énergétiques. À cette fin, tous les moyens furent bons. Quelques-uns tentèrent d’isoler avec les moyens et les connaissances d’alors …

Mais, on a surtout

  • réduit le chauffage que l’on a même coupé dans certaines pièces,
  • calfeutré portes et fenêtres,
  • limité l’aération.

Les conséquences de ces actes uniquement basés sur une logique d’économie d’énergie furent désastreuses pour les bâtiments : de nombreux problèmes d’humidité apparurent suite à la « fermeture complète » du bâtiment. L’isolation mal réalisée agit en effet comme révélateur d’humidité : sans isolation, la condensation de la vapeur d’eau se répartissait sur toutes les surfaces. Mais lorsqu’on a commencé à isoler, les problèmes d’humidité se sont concentrés uniquement sur les nombreux défauts provoquant l’apparition de moisissures. Très rapidement, l’idée d’isolation fut alors confondue avec l’idée de calfeutrage et associée à celle d’humidité.

Les années de tâtonnement :

À cette époque, la conception des bâtiments était fondée sur la logique de « fermeture » : on isole et on supprime quasiment toute ventilation. De plus, la combinaison des techniques traditionnelles et des exigences nouvelles génère toute une série de problèmes (ponts thermiques, mauvaise mise en œuvre de l’isolant). Suite à la parution du règlement régional wallon, l’isolation des bâtiments neufs est devenue obligatoire. Elle s’est généralisée, mais quelques problèmes ont subsisté.

Les années raisonnables :

L’observation des pathologies apparues dans le parc immobilier, ainsi que les recherches menées pour améliorer les performances énergétiques des bâtiments, ont permis de dégager trois règles essentielles à respecter pour éviter les problèmes de condensation

  • assurer un chauffage suffisant des locaux,
  • contrôler la ventilation,
  • réaliser une isolation de qualité (absence de ponts thermiques, de discontinuités de la surface isolante, …).

Ainsi réalisée, l’isolation est une source de confort et d’économies sans ennuis.

Et l’avenir …

La réglementation thermique va devenir plus exigeante afin de protéger le consommateur et l’environnement. L’isolation doit progresser en efficacité. Il est donc impératif d’assurer une conception et une exécution de qualité.


Pourquoi rendre étanches les châssis et isoler le bâtiment pour ensuite créer des « trous » pour laisser rentrer de l’air froid ?

1er élément : pertes par transmission et pertes par ventilation

Il faut distinguer « perte de chaleur par ventilation et infiltration » et « perte de chaleur par transmission ». La première est due au renouvellement de l’air intérieur (chaud) du bâtiment par de l’air (froid) extérieur. La seconde est due au transfert de chaleur d’un espace chaud vers un espace froid au travers des matériaux d’une paroi.

Placer de l’isolant dans une toiture, dans un mur, … n’a donc théoriquement aucun impact sur la perte de chaleur par ventilation, mais bien sur la perte par transmission. En effet, on ne modifie pas le renouvellement d’air du bâtiment mais le pouvoir isolant de ses parois.

À l’inverse, calfeutrer un bâtiment, c’est-à-dire le rendre étanche à l’air (par des joints au niveau des fenêtres, …) c’est diminuer les pertes par ventilation et infiltration.
On peut faire une comparaison avec un ballon de stockage d’eau chaude sanitaire :

  • Les pertes par ventilation équivalent au chauffage nécessaire pour chauffer l’eau froide qui rentre dans le ballon lorsqu’il y a puisage à un robinet.
  • Les pertes par transmission, c’est la chaleur qui s’échappe par les parois du ballon puisque celui-ci est plus chaud que l’ambiance.

Isoler le ballon ou le bâtiment, c’est donc limiter les pertes par « transmission »; fermer le robinet ou calfeutrer le bâtiment, c’est éliminer les pertes par « ventilation » (ou irrigation dans le cas de l’eau).

2ème élément : manque de ventilation et pollution de l’air intérieur

Si le taux de ventilation d’un local fortement occupé est insuffisant, l’air y est rapidement vicié par de multiples agents (CO2, micro-organismes, matières odorantes, émissions des imprimantes et photocopieurs, …) : la respiration est moins active, une fatigue prématurée apparaît, la concentration diminue, le risque de contamination augmente, …

3ème élément : ventilation et utilisation rationnelle de l’énergie

L’URE consiste à assurer le confort des occupants, tout en maîtrisant les consommations énergétiques. Il faut donc limiter les apports d’air extérieur à la quantité nécessaire et suffisante (ni plus, ni moins !) pour maintenir la qualité de l’air intérieur. Ce principe est difficilement respecté dans les anciens bâtiments, les débits d’air frais entrant dans le bâtiment via les infiltrations (fuites et fentes) sont tout à fait incontrôlables (en quantité, en température, en direction et en durée) et varient fortement avec les conditions atmosphériques :

  • Les fuites et les fentes représentent des ouvertures accidentelles et involontaires n’offrant aucune garantie quant au débit de fuite atteint.
  • Les fuites et les fentes constituent des dispositifs d’amenée d’air tout à fait incontrôlables, car sans réglage possible. Par grand vent, les risques de courant d’air sont importants et les pertes d’énergie sont incontrôlables. À l’inverse, par temps calme, les débits d’air neuf peuvent être insuffisants.
  • En fonction de la direction du vent, la répartition des flux d’air dans le bâtiment change alors que les besoins en air neuf sont, eux, théoriquement constants.
  • La surface totale des fuites d’un bâtiment est souvent insuffisante pour atteindre les débits exigés par la norme.
  • Les inétanchéités du bâtiment sont souvent mal réparties conduisant à des inégalités de ventilation entre les locaux.

Éliminer les infiltrations d’air parasites (c’est-à-dire incontrôlables) et créer une ventilation organisée (c’est-à-dire intentionnelle, grâce à des grilles, des ventilateurs, …) fournit au contraire la quantité d’air frais juste nécessaire aux occupants, limitant ainsi les consommations énergétiques au minimum.

Notons en outre que le contrôle de la consommation énergétique liée à la ventilation est d’autant plus important que les bâtiments deviennent fortement isolés. En effet, dans ce cas la perte de chaleur par transmission diminuant, la perte de chaleur par ventilation prend une part plus importante dans la consommation globale du bâtiment. C’est donc elle qu’il faut surveiller pour avoir un impact sur la consommation totale.


Pourquoi la ventilation par les fenêtres n’est-elle pas adéquate ?

La ventilation par les fenêtres est une ventilation intensive périodique qui permet une élimination rapide des polluants émis dans l’ambiance.

Taux de CO2 mesuré dans une salle de classe dans laquelle
on ventile par ouverture de fenêtre lors des intercours.

Elle est inadéquate pour assurer une ventilation de base continue car

  • Elle est liée à la bonne volonté des occupants.
  • Elle est intermittente, ce qui signifie qu’entre les périodes d’ouverture le taux de CO2 va fluctuer fortement dans le local entre les périodes d’ouverture et les périodes de fermeture et dépassera bien souvent la valeur couramment admise de 1 000 ppm. Par exemple, le confinement de l’air d’une classe normalement occupée et ventilée uniquement aux intercours est atteint après un quart d’heure d’occupation.
  • Elle est source d’inconfort pour les occupants étant donné les débits importants d’air neuf, souvent froid.
  • Elle est difficilement réglable, exception faite des petits vasistas réglables.

Pourquoi exiger un système de ventilation alors que l’on n’est pas obligé de s’en servir ?

La norme NBN D50-001, relative à la ventilation des logements impose la présence de dispositifs corrects de ventilation, mais les habitants sont libres d’en faire usage ou non.

Cette approche ne garantit donc pas une ventilation permanente et suffisante du bâtiment. Elle est par exemple différente de l’approche française qui impose des entrées d’air non obturables.

La philosophie adoptée en Belgique consiste à laisser aux utilisateurs la possibilité de réduire les amenées en cas de courant d’air, de crainte de voir celles-ci complètement et définitivement obturées si aucune maîtrise n’est laissée à l’utilisateur.

La norme prévoit en outre que toute amenée d’air peut avoir un débit de fuite minimum en position fermée ce qui garantit quand même une ventilation minimum.

Les annexes C2 et C3 de la PEB prescrivent, respectivement pour les immeubles résidentiels et non-résidentiels, les débits de conception minimale à respecter. En outre, l’annexe C3 précise que les systèmes de ventilation mécaniques équipés d’un système de régulation appartenant à l’une des catégories suivantes sont interdits :

  • Sans régulation, le système fonctionne constamment
  • Régulation manuelle, le système fonctionne selon une commutation manuelle

De même, les systèmes de régulation basés sur la température de l’air et qui permettent de réduire le débit de ventilation sous le débit minimal ne sont pas autorisés.


Si, dans une école, on aménage une ancienne chapelle en classes, la réglementation impose-t-elle un système de ventilation ?

La réglementation wallonne fait la distinction entre « transformation avec changement d’affectation » et « transformation sans changement d’affectation ».

La notion de changement d’affectation s’adresse au bâtiment et non au local. Ainsi, la transformation d’une chapelle d’école ne modifie pas l’affectation de l’école, celle-ci restant un bâtiment scolaire. Dans ce cas, seules des amenées d’air naturelles sont à prévoir si les fenêtres sont modifiées (remplacement ou nouveau percement). Dans le cas contraire, la réglementation n’impose rien.

Ainsi dans la chapelle traitée ici, si aucune fenêtre n’est créée ou remplacée, la réglementation n’impose pas de système de ventilation.

Cependant, il faut faire preuve de bon sens. Ce n’est pas parce que la réglementation ne prévoit rien que la qualité de l’air sera d’office assurée. Les règles de l’art veulent ainsi qu’un système de ventilation correct soit prévu dans les nouvelles classes.

Pour le réaliser, on peut se baser sur les débits imposés dans le cadre des « transformations avec changement d’affectation ».


Faut-il tenir compte des débits de ventilation lors du calcul de l’installation de chauffage ?

La puissance de chauffage à installer doit compenser les pertes par transmission au travers des parois du bâtiment et les pertes par ventilation due au renouvellement de l’air intérieur.

La norme NBN B62-003 est utilisée pour le dimensionnement des chaudières, prend déjà en compte ces deux pertes.

Pour les pertes par ventilation, la norme utilise la formule :

Pch = 0,34 x qx (Tint – Text)

où :

  • Pch = puissance nécessaire au chauffage de l’air neuf [W],
  • 0,34 = capacité calorifique de l’air [Wh/m³.K],
  • q= débit d’air neuf [m³/h],
  • Tint = température intérieure de consigne [°C],
  • Text = température extérieure de base [°C].

En résumé, qv varie suivant les situations :

Type de ventilation

q=

Bâtiments sans ventilation mécanique 1 renouvellement par heure [vol/h] x volume des locaux [m³]
ou 10 [m³/h.pers] (locaux non-fumeurs) à 20 [m³/h.pers] (locaux avec fumeurs) x nombre de personnes
Bâtiments avec ventilation mécanique (taux de renouvellement d’air prévu par le concepteur [vol/h] + 0,3) x volume des locaux

À titre de comparaison, la réglementation wallonne de ventilation impose dans les bureaux un débit d’environ 2,5 [m³/h.m²] (dépendant du taux d’occupation minimal prévu), ce qui équivaut dans des locaux de 2,5 m de haut à un taux de renouvellement d’air de 1 [vol/h].

En conclusion, il n’est pas nécessaire de surdimensionner l’installation de chauffage pour tenir compte de la réglementation en matière de ventilation si cette installation a été dimensionnée suivant la norme NBN B 62-003.


L’évacuation de l’air vicié doit-elle toujours se faire en toiture ?

Dans le cas d’une évacuation d’air vicié naturelle, celle-ci doit toujours se faire via un conduit vertical débouchant en toiture, en respectant certaines dispositions d’emplacement par rapport au faîte du toit et par rapport aux bâtiments voisins.

Lorsque l’évacuation d’air est mécanique (on parle alors d’extraction d’air), le rejet d’air peut se faire aussi bien au niveau de la façade que de la toiture. Il faudra aussi veiller à son emplacement pour éviter les gênes pour le voisinage et pour la prise d’air neuf.


Comment calculer le débit d’évacuation des sanitaires dans les bureaux et les écoles ?

La réglementation wallonne indique qu’il faut respecter un débit de conception minimal dans les toilettes de 25 m³/h par wc (au minimum) ou 15 m³/h par m² de surface si le nombre de wc n’est pas connu lors du dimensionnement.


Doit-on prévoir des amenées d’air neuf dans les locaux sanitaires ?

Non !

Du point de vue qualité de l’air, le système de ventilation idéal consiste à pulser de l’air frais dans chaque local et d’en extraire l’air vicié. C’est le système de ventilation double flux unizone. Cependant, ce principe de ventilation est énergivore puisque c’est celui qui conduit au plus grand apport d’air neuf dans le bâtiment.

C’est pour cela que l’on admet le principe du « balayage ». Il consiste à ventiler les locaux dits « humides » avec l’air provenant des locaux dits « secs », grâce à un transfert de l’air d’une zone à l’autre.


Faut-il équilibrer les débits de pulsion et d’extraction ?

Lorsque l’on dimensionne une installation de ventilation suivant la réglementation wallonne, on ne parvient jamais à une égalité entre les débits d’amenée d’air neuf, les débits de transfert et les débits d’évacuation d’air vicié.

Faut-il, dés lors, surdimensionner l’une ou l’autre de ces trois composantes pour équilibrer le système ?

Raisonnons tout d’abord de manière théorique : « de l’air ne peut entrer dans un local que s’il ne peut en sortir ».

Ainsi, idéalement, il faut équilibrer les débits d’amenée et d’évacuation d’air, ce sera souvent en disposant des évacuations complémentaires aux évacuations sanitaires.

La réglementation wallonne et la norme NBN D 50-001 relative au logement ne l’imposent cependant pas, et ce, pour plusieurs raisons :

  • Pour ne pas imposer des investissements trop importants, et tenir compte ainsi des difficultés constructives liées notamment à la rénovation de bâtiments existants.
  • Pour tenir compte des inétanchéités de l’enveloppe des bâtiments. En effet, le bâtiment existant moyen belge est relativement peu étanche à l’air. On en conclut que la différence de débit entre amenée et évacuation d’air pourrait être reprise par les infiltrations ou évacuations parasites.
  • Parce que l’impact de la qualité de l’air sur les occupants reste flou. Des essais de confort, réalisés dans le cadre de recherches internationales, montrent par exemple que de très grandes variations de taux de ventilation (de l’ordre de 200 %) ne modifient que peu le nombre d’occupants insatisfaits (variant de 15 à 30 %). Cette imprécision justifie d’ailleurs les différences existant entre les législations des différents pays.

Pourcentage de personnes insatisfaites de la qualité de l’air, lorsqu’elles rentrent dans un bureau individuel occupé en fonction du taux de renouvellement d’air du bureau (source : Rapport technique du Comité Européen de Normalisation (CEN), CR 1752, 1998).

Il faut dès lors comprendre la réglementation comme un minimum permettant un certain renouvellement d’air des locaux, mais sûrement pas comme une garantie de ventilation correcte des locaux comme l’exige, par exemple, le RGPT (soit 30 m³/h et par personne).

Par exemple, faire confiance aux infiltrations pour assurer une partie du débit d’air, c’est s’exposer à des éléments non maîtrisables comme l’étanchéité de l’enveloppe et la pression du vent.

En résumé, on peut établir une gradation dans la garantie d’obtenir une ventilation correcte des locaux en fonction de l’installation mise en œuvre :

  • Pas de garantie : aucun système
  • Garantie minimum : réglementation wallonne avec ventilation naturelle
  • Garantie maximum : système double flux équilibré

Pratiquement, certains bureaux d’études choisissent un compromis entre l’application stricte des débits recommandés par la réglementation qui conduit à des débits d’amenée d’air nettement supérieurs aux débits d’évacuation et le système totalement équilibré. Ils configurent l’installation de telle sorte qu’en fonctionnement :

Débit d’air neuf = Débit d’air évacué + Taux d’infiltration du bâtiment

Un taux d’infiltration de 0,5 vol/h est souvent choisi comme valeur usuelle. Ceci permet d’ « imaginer » que le surplus d’amenée d’air neuf prévu pourra effectivement sortir du bâtiment et donc … y entrer réellement.


Lors d’une rénovation de châssis, est-on obligé de prévoir des grilles d’amenée d’air ?

Oui !

Dans le cas de transformations sans changement d’affectation et demandant un permis d’urbanisme, la réglementation wallonne précise :

  • Pour les logements (et les zones d’hébergement), il faut respecter la norme NBN D50-001, avec au minimum des amenées d’air réglables (OAR) dans les châssis rénovés.
  • Pour les bureaux et les écoles, tous les locaux dont on remplace les châssis de fenêtres doivent au minimum être pourvus d’amenées d’air réglables (OAR) qui fournissent les débits recommandés pour une pression de 2 Pa.

Que faire si la qualité de l’air extérieur est mauvaise ?

Lorsque la qualité de l’air extérieur est insuffisante (pollution, bruit, …), il est nécessaire de traiter celui-ci avant son introduction dans le bâtiment.

Seule une filtration efficace de l’air permettra d’éliminer les particules extérieures. Cela ne sera possible que si on installe un système de ventilation avec pulsion mécanique (double flux). L’emplacement des prises d’air extérieures joue aussi un rôle sur la transmission possible des polluants au sein du bâtiment :

  • Ne pas aspirer du côté de rues à fort trafic.
  • Éviter les effets de by-pass entre prise d’air neuf et évacuation d’air vicié. Les aspirations doivent naturellement être faites loin des zones de refoulement d’air vicié ou réchauffé (le long des terrasses, toitures, ou murs soumis à l’insolation). Les prises d’air neuf doivent être faites plus bas que les sorties des rejets d’air vicié. De même, il faut s’éloigner des orifices d’évacuation des fumées de parking et tours aéroréfrigérantes.
  • Ne pas aspirer au niveau du sol, respecter une distance d’un mètre minimum.

Avec une ventilation simple flux, il est possible d’éviter le transfert de bruit au moyen de bouches d’amenée d’air isophoniques. Cependant, dans les zones les plus bruyantes, on évitera de créer des « trous » dans les façades. Dès lors, seul un système de ventilation double flux permettra le renouvellement de l’ intérieur tout en limitant le transfert de bruit.


Existe-t-il d’autres possibilités d’amenées d’air naturelles que les grilles dans les châssis ?

Une amenée d’air naturelle est définie par la norme NBN D 50-001 relative à la ventilation des locaux d’hébergement sous le terme « ouverture d’alimentation réglable pour alimentation naturelle ou libre (OAR) ».

Les critères de définition sont :

  • être pratiquée dans une paroi extérieure (maçonnerie ou menuiserie);
  • ne pas augmenter les risques d’effraction;
  • être réglable en 3 positions minimum entre la position ouverte et la position fermée;
  • posséder un débit de fuite minimum en position fermée (critère facultatif).

Plusieurs systèmes peuvent répondre à ces critères et peuvent donc être utilisés comme amenée d’air naturel :

  • les grilles placées dans les fenêtres, soit entre vitrage et châssis, soit dans le châssis, soit entre châssis et maçonnerie;
  • les grilles disposées dans la maçonnerie, principalement au dos des émetteurs de chaleur;
  • les vasistas, c’est-à-dire des petites fenêtres basculantes.

Existe-t-il des installations de ventilation mécanique silencieuses ?

On repère différentes sources de bruits dans une installation de ventilation : en provenance de l’extérieur, du ventilateur, des locaux voisins (notamment technique), du réseau de distribution, …

Évaluer

Pour visualiser la qualité acoustique d’une installation.

Chacune de ces sources de bruit peut être maîtrisée moyennant une conception correcte de l’installation (choix correct du ventilateur, du silencieux, de la vitesse de l’air, des bouches, …). Le calcul acoustique d’une installation de ventilation est cependant complexe et doit souvent être réalisé par un spécialiste, ce qui est peut-être parfois négligé.

Calculs

Pour visualiser un exemple de calcul acoustique d’une installation de ventilation.

La correction d’une installation existante est également possible mais demandera des investissements souvent plus importants.

Améliorer

Pour visualiser les possibilités d’amélioration acoustique d’une installation existante.

Quelles sont les interactions entre l’obligation de ventilation et la réglementation incendie ?

L’A.R. du 19 décembre 97 impose que toute paroi séparant un lieu d’occupation (bureau, classe, dortoir, …) d’un chemin d’évacuation (en gros les couloirs) soit classée « Rf 1/2 h ».

Cela signifie que les ouvertures de transfert prévues entre les locaux où l’air neuf est amené et les couloirs par lesquels l’air transite vers les sanitaires doivent avoir la même résistance au feu.

Cela est possible grâce à des grilles de transfert coupe-feu. Pour ce qui est du détalonnage des portes, cela peut prêter à discussion.

Cependant, si on désire aller plus loin dans l’analyse des risques liés aux incendies, il faudrait également se poser la question du transfert des fumées. En effet, les grilles coupe-feu, comprennent un élément qui bouche la grille lorsque la température dépasse 70°C. Entre-temps, les fumées ont peut-être pu envahir les couloirs.

Bien que cela ne soit pas imposé par la législation, on peut dans ce cas se demander s’il n’est pas nécessaire d’équiper chaque local d’une amenée et d’une évacuation d’air local par local et d’éviter ainsi tout transfert entre locaux. Ceci est évidemment nettement plus onéreux.

En outre, pour les bâtiments d’une hauteur comprise entre 25 et 50 m, il est imposé de maintenir les cages d’escalier en surpression en cas d’incendie. À cela vient s’ajouter le désenfumage obligatoire des couloirs par pulsion et extraction pour les bâtiments de plus de 50 m de haut. Ces deux exigences se réalisent par un système de ventilation tout à fait indépendant de la ventilation hygiénique qui met en œuvre des débits nettement plus importants, de l’ordre de 10 renouvellements d’air par heure. De plus en cas d’incendie, la ventilation hygiénique doit être coupée pour limiter au maximum les transferts de fumée.

Enfin, tous les bâtiments doivent être compartimentés en cas d’incendie. Un compartiment est un plateau de maximum 2 500 m² et délimité à un étage. Les parois séparant les compartiments doivent être « Rf 2 h ». Ceci implique notamment que tout transfert d’air entre deux étages est soit interdit (pas de pulsion à un étage et d’extraction à un autre), soit obturable automatiquement (porte coupe-feu automatique, clapet coupe-feu).

Plan d’action [Chauffage – nouvelle chaudière]

Plan d'action [Chauffage - nouvelle chaudière]

… ou vaut-il mieux investir dans le remplacement des chaudières ou dans une nouvelle régulation ?


Les améliorations obligatoires

 Certaines situations peuvent être qualifiées d’inadmissibles : soit l’investissement à consentir est faible, et directement remboursé par les économies, soit les équipements sont performants mais leurs qualités ne sont pas exploitées correctement (mauvais réglage ou d’un défaut de raccordement).

Améliorer

Dans la première catégorie, on peut classer :

On retrouve dans la seconde catégorie :

Évaluer


Si on ne peut tout faire … choisir l’amélioration adéquate

Ensuite, si le budget d’investissement est limité, se pose l’alternative suivante : vaut-il mieux investir dans l’amélioration, voire le remplacement des chaudières ou dans l’amélioration de la régulation ?

Un essai de réponse peut être donné au départ d’un exemple :

Exemple.

Une école est chauffée par une chaudière de 500 kW. Sa consommation est de l’ordre de 58 000 litres de fuel par an.

Le rendement saisonnier des chaudières est estimé à 76 % (situation des plus mauvaises).

La régulation globale de l’installation est défaillante, de sorte qu’en moyenne une surchauffe de 2°C est souvent constatée dans de nombreuses zones du bâtiment et aucune intermittence n’est appliquée au chauffage en période d’inoccupation (situation la plus mauvaise : chauffage durant les nuits et les week-ends) .

Comparons le gain réalisable grâce à chacune des améliorations prises séparément. Évidemment ces économies ne sont pas cumulables puisque si on améliore les chaudières, l’amélioration de la régulation aura moins d’impact.

Action

Gain Investissement Temps de retour
[%] [Litres fuel/an] [€/an] (à 0,2116 [€/l]) [€] [ans]
Remplacement du brûleur par un brûleur 2 allures avec clapet d’air fermant à l’arrêt et permettant un rendement de combustion de 89 % (au lieu de 84 %) (faisable uniquement si l’état mécanique de la chaudière le permet). 12 7 000 1 500 4 500 3
Remplacement de la chaudière par une chaudière traditionnelle haut rendement redimensionnée de 350 kW. 17 10 000 2 100 11 000 5,2
Remplacement de la régulation (remplacement de 4 vannes mélangeuses, placement d’un régulateur climatique gérant ces 4 circuits et intermittence par optimisation et placement de vannes thermostatiques sur 80 radiateurs) 30 17 000 3 600 8 000 2,2

En fait, le choix ne se limite pas à l’installation de chauffage. L’isolation de l’enveloppe entre également en balance. Celle-ci doit être pratiquée avant le remplacement de la chaudière. Il est en effet logique de diminuer les besoins énergétiques avant d’améliorer la façon dont on les satisfait. Cette opération est aussi plus rentable et permet de diminuer la puissance de la nouvelle chaudière.

On peut également dire que l’impact de la régulation peut être différent en fonction du type de bâtiment. Ainsi, pratiquer une coupure du chauffage dans un bâtiment à fort degré d’isolation et grande inertie n’apporte guère d’économie, ce ne sera pas le cas dans un bâtiment sans isolation et peu inerte.

Concevoir

Isoler une toiture plate.

Concevoir

Isoler une toiture inclinée.

Améliorer

Améliorer les chaudières.

Améliorer

Remplacer la ou les chaudières.

Améliorer

Améliorer la distribution.

Améliorer

Améliorer les corps de chauffe.

Améliorer

Améliorer la régulation.

Améliorer

Améliorer la maintenance.

Motiver les utilisateurs

Motiver les utilisateurs

« Qui ne veut pas quelque chose cherche une excuse, qui veut quelque chose cherche un moyen »

La personne qui est en face de vous n’est pas vous.

Il garde une liberté de pensée, d’action, de réponse qui ne dépend pas toujours de vous ni du contexte. Excepté dans des situations de contraintes et de dépendance extrêmes, les comportements des êtres humains dépendent autant des situations que des décisions qu’ils prennent eux-mêmes en référence à leurs propres désirs, caractères, croyances, valeurs … ET des informations disponibles dans leur environnement.

Comme le disait déjà Vauvenargues, « la science des projets consiste à prévenir les difficultés de l’exécution ». Il est important de savoir que des difficultés surviendront même si les projets sont bons. La qualité du gestionnaire vient surtout de sa capacité à prendre en compte des difficultés et à les résoudre, et à ne pas se laisser décourager devant les impondérables qui ne manqueront pas de survenir.

Ce sont des pistes possibles d’actions qui seront décrites dans cette deuxième partie du document.

Comme pour la première partie, nous vous proposons une série de situations types parmi lesquelles, nous vous engageons à rechercher celle qui ressemble le plus aux problèmes auxquels vous êtes confrontés. Pour la facilité de la recherche, nous avons groupé ces situations selon 5 axes :

  1. Les problèmes en réunion
  2. Convaincre
  3. Changer les comportements
  4. Les blocages institutionnels
  5. Surmonter son propre découragement

 

Un problème d’inconfort thermique ou lumineux ? N’hésitez pas à tester notre nouvel outil de diagnostic afin de trouver la solution à votre problématique.

Découvrez ces exemples de sensibilisation des occupants : le projet Kyoto des élèves de Saint-Louis, « quand les élèves s’y mettent!« , économies d’énergie au Collège Notre Dame de Basse Wavre, construire un mur avec les économies d’énergie.

Obtenir une aide pour le secteur public

Obtenir une aide pour le secteur public


Pour les infrastructures sportives

Principe de la subvention

Renouveler l’éclairage d’une salle de sports, comme remplacer sa vieille chaudière, c’est réaliser un aménagement des infrastructures sportives.

À ce titre, il est possible d’obtenir une aide de la Région wallonne, Direction des Infrastructures Sportives.

Il est prévu deux possibilités d’intervention financière (voir « Décret relatif aux subventions octroyées à certains investissements en matière d’infrastructures sportives » du 25/02/99, paru au moniteur du 18/03/99, modifié en dernier par le décret du 17/12/2015 en vigueur au 1/1/2016) :

  • Pour les « petits travaux », d’un coup global inférieur à 1 500 000 € HTVA, le subside se monte à 75  % (voire 85 % pour certains projets communaux d’animation de quartier accessibles à tous). La démarche est rapide et accessible aux pouvoirs locaux et aux groupements sportifs.
  • Pour les « gros travaux », d’un coup global situé entre 1 500 001 et 1 875 000 € HTVA,  un subside de 60 % est accordé et la démarche est réservée aux Pouvoirs Locaux (communes, provinces, Intercommunales, régies autonomes)

À noter que désormais les sociétés de logements de service public sont également éligibles.

On peut imaginer que les rénovations énergétiques entrent dans la première catégorie.

Sont subsidiables : les matériaux mis en œuvre par vos soins, mais aussi la réalisation de travaux par des entreprises spécialisées.

À noter que pour les communes, provinces, … disposant de bâtiments sportifs, rien n’empêche a priori de cumuler cette subvention avec UREBA, la subvention pour projets économiseurs d’énergie.

Modalités

Un dossier devra être introduit en double exemplaire auprès d’Infrasports. Il comportera notamment :

  • une présentation du projet, des installations existantes et des utilisateurs, adressée au Ministre chargé des Insfrastructures Sportives,
  • le programme des constructions,
  • un plan coté,
  • pour les groupements sportifs, une preuve de jouissance du bien durant 20 ans à dater de l’introduction de la demande (ou une copie du titre de propriété),
  • l’estimation des coûts,
  • un plan d’implantation dans la commune,
  • un permis de bâtir le cas échéant,
  • pour les groupements sportifs, les statuts de l’association, l’approbation du Conseil Communal et des attestations diverses.

Les documents complets ainsi que les personnes de contact nécessaires pour la bonne constitution de ce dossier peuvent être obtenus auprès d’Infrasports.


Pour l’éclairage public

Programme TRIENNAL

Les investissements d’installation, de déplacement et de renouvellement d’éclairage public, à l’exception du renouvellement d’appareils d’éclairage visés par le décret du 9.12.1993 relatif aux aides et interventions de la Région wallonne pour la promotion de l’URE, des économies d’énergie et des énergies renouvelables, et par ses arrêtés d’exécution, sont subventionnés par l’arrêté du Gouvernement wallon du 07.05.1998 paru au Moniteur belge le 13.06.1998 et entré en vigueur le 23.06.1998. Il porte exécution du décret du 01.12.1988 relatif aux subventions octroyées par la Région wallonne à certains investissements d’intérêt public. Le taux de subvention est de 60% et peut s’élever à 75% lorsque l’investissement a pour objectif la sécurité et la convivialité de la voirie publique contribuant à la fois à la limitation de la vitesse des véhicules à moteur et à l’amélioration du cadre de vie.

Dossiers traités par la Direction Générale des Pouvoirs Locaux.

EPURE

À l’intention des villes, communes et provinces de la région, il existe un programme de subsidiation de la rénovation de l’éclairage public. Ce programme porte le nom de EPURE.

Les investissements de remplacement de l’éclairage public existant, destinés à réaliser des économies d’énergie, sont subventionnés par l’arrêté du Gouvernement wallon du 01.04.1999 paru au Moniteur belge le 13.05.1999. Ce dernier a été modifié par l’arrêté du Gouvernement Wallon du 25 avril 2002 paru au Moniteur belge le 28 mai 2002.

Le montant de la subvention, qui est plafonné à cent pour cent du montant total des travaux et études, est calculé en fonction des économies d’énergie d’après le tableau suivant :

ÉCONOMIES SUBVENTION EN EURO PAR APPAREIL
< /= 100 W > 100 W
0% – 9% 0 0
10% – 19% 119 139
20% – 24% 238 278
25% – 29% 300 350
30% – 39% 312,5 364,5
40% – 49% 342,5 399,5
50% et + 372 434

Dossiers traités par la Direction générale opérationnelle – Aménagement du territoire, Logement, Patrimoine et Énergie.

Formulaire T1
Le Formulaire T1 () peut être téléchargé à l’adresse suivante :
ouverture d'une nouvelle fenêtre ! http://energie.wallonie.be (taper EPURE dans l’outil de recherche).

Contact

DGO4 – Aménagement du territoire, Logement, Patrimoine, Energie
Avenue Prince de Liège, 7 – 5100 Jambes.
Mr Michel MARCHETTI
Tél : 081 33 56 46
Fax : 081 30 66 00
Courriel : michel.marchetti@spw.wallonie.be

Choisir entre les différents types de fenêtre : récapitulatif

A. Les châssis

Concevoir

Pour en savoir plus sur les critères de choix des châssis.

Techniques

Pour en savoir plus sur les différents types de châssis.

Le châssis en bois

Avantages

  • Thermiquement performant.
  • Traditionnel dans nos régions.
  • Produit naturel (si bien géré).
  • S’adapte facilement à des formes complexes.
  • Relativement stable au feu.
  • Relativement résistant à l’effraction.

Inconvénients

  • Nécessite un entretien périodique.

Le châssis en PVC

Avantages

  • Thermiquement performant.
  • Entretien très facile.

Inconvénients

  • Produit synthétique contenant du chlore.
  • Dilatation thermique importante.
  • Faible résistance au feu.
  • Faible résistance à l’effraction

 Le châssis en aluminium à coupure thermique

Avantages

  • Bonne résistance mécanique.
  • Bonne résistance à l’effraction.
  • Facile à entretenir.

Inconvénients

  • Thermiquement moins performant que le bois ou le PVC.
  • Faible résistance au feu.

Le châssis mixte et le châssis à haute performance thermique

Il existe une grande variété de châssis constitués de différents matériaux assemblés en vue de conférer à ceux-ci des caractéristiques spécifiques adaptées à leurs usages : Isolation renforcée, facilité d’entretien, résistance mécanique, …

Le choix de ceux-ci se fera en fonctions des niveaux de performances à atteindre par le bâtiment. Ils sont plus coûteux que des châssis classiques.

B. Le vitrage

Concevoir

Pour en savoir plus sur les critères de choix du vitrage.

Techniques

Pour en savoir plus sur les différents types de vitrage.

Le vitrage thermique

On n’envisagera plus actuellement de mettre en œuvre des vitrages autres que thermiquement performants.

Un double vitrage basse émissivité avec gaz dont le coefficient de transmission thermique Ug est compris entre 1.0 et 1.3 W/m²K, est un minimum à prévoir. De plus, le rapport qualité/prix de ce type de vitrage est intéressant.

Pour des ambitions plus hautes en matière de performance thermique, le triple vitrage s’impose. Il est normal que son prix soit plus élevé. Le châssis doit évidemment être adapté à l’épaisseur du vitrage et à son poids.

Le vitrage thermique solaire

Outre ses qualités thermiques, sa principale fonction est de diminuer les apports solaires pour réduire la surchauffe dans le bâtiment. Il est donc indiqué lorsque le bâtiment ne peut pas être équipé de protections solaires fixes ou mobiles efficaces et qu’il est sensible à la surchauffe à cause de sa faible inertie et/ou d’apports internes importants.

Les vitrages thermiques ont cependant certains inconvénients.

  • Ils peuvent, dans certaines conditions atmosphériques, assombrir l’intérieur au point de nécessiter l’usage de l’éclairage artificiel.
  • Ils peuvent diminuer les apports solaires gratuits en hivers.
  • Leur aspect extérieur n’est pas aussi neutre que celui d’un vitrage normal (couleur et réflexion).
  • Depuis l’intérieur du bâtiment, la perception de la lumière extérieure est modifiée (intensité et couleur).
  • La nuit, la visibilité vers l’extérieur est fortement réduite à cause de la réflexion de la lumière intérieure.

Le vitrage thermique acoustique

Le choix d’un vitrage thermique acoustique n’est justifié que par la localisation du bâtiment dans une zone bruyante. Il protège des bruits extérieurs sans avoir un impact significatif sur l’acoustique intérieure du bâtiment. Il n’est efficace que lorsque les fenêtres sont fermées et donc inutile dans un bâtiment dont les fenêtres doivent être ouvertes souvent.

Ce type de vitrage est plus lourd que le vitrage thermique normal (une des vitres est plus épaisse) et thermiquement légèrement moins performant (à épaisseur totale égale, l’espace entre les vitres est moins large – 12 mm au lieu de 15 ou 16 mm). Il est aussi plus cher.

Le vitrage thermique de sécurité

Comme le vitrage acoustique, le vitrage de sécurité n’est justifié qu’aux endroits où il y a risque de blessure ou de chute pour les personnes, ou d’effraction. Les règles de sécurité à respecter sont reprises dans la norme NBN S23-002 : 2007 et son addendum NBN S 23-002/A1 : 2010. Le principe de base de cette norme est qu’il faut examiner si un verre de sécurité est nécessaire du côté du vitrage thermique où se trouve une zone d’activité humaine.

Ainsi, dans le cas des vitrages thermiques de sécurité (double vitrage ou triple vitrage), le verre de sécurité doit être placé du côté où le choc risque de se produire, ou des deux côtés si le choc peut se produire des deux côtés. En toiture, le verre feuilleté doit se trouver en dessous de manière à éviter la chute de morceaux de vitre. Etc.

Comme le vitrage thermique acoustique, le vitrage thermique de sécurité est plus lourd que le vitrage thermique normal (une des vitres est plus épaisse) et thermiquement légèrement moins performant à épaisseur totale égale. Il est aussi plus cher.

C. L’intercalaire

Normal ou amélioré ?

Les écarteurs qui relient les vitres d’un vitrage double ou triple provoquent un pont thermique plus ou moins important qui augmente le coefficient thermique Uw de la fenêtre.

Certains intercalaires, dits améliorés, réduisent ce pont thermique. Le Uw peut ainsi être diminué de 0.12 W/m²K (voire plus si l’intercalaire est thermiquement très performant).

Il faut être très attentif au moment de la commande de spécifier si on souhaite qu’un intercalaire amélioré soit placé. Il coûte un plus cher qu’un intercalaire normal (supplément 10 à 15 % du prix total du vitrage).

Obtenir d’autres aides

Obtenir d'autres aides


Les primes Énergie – généralités

Sur le site ouverture d'une nouvelle fenêtre ! http://energie.wallonie.be sont recensées toutes les aides et primes selon la qualité du demandeur. La Division de l’énergie instruit les demandes, les contacts avec les demandeurs et bien sûr assure la mise en liquidation des montants octroyés. À ce jour, les catégories sont :

  • Particuliers
  • Entreprises, indépendants, artisans, secteur non marchand
  • Pouvoirs publics

Toutes les autres subventions

Il existe une banque de données de toutes les aides provinciales, régionales, fédérales, européennes, … : c’est la base de données MIDAS.

Elle est disponible, sur Internet à l’adresse : ouverture d'une nouvelle fenêtre ! http://www.aides-entreprises.be/

Obtenir une aide pour les entreprises

Obtenir une aide pour les entreprises


L’aide aux entreprises et aux organismes représentatifs d’entreprises : programme AMURE

Les subventions AMURE sont destinées à soutenir certains organismes qui veulent réduire la consommation énergétique de leurs bâtiments. Plusieurs démarches destinées à améliorer la performance énergétique de ces bâtiments peuvent être subsidiées.

Pour plus d’informations, consultez le site portail Énergie de la Région Wallonne : ouverture d'une nouvelle fenêtre ! http://energie.wallonie.be. On y trouvera le formulaire de demande de subsides ainsi que les explications détaillées.

Les primes à la consultance

Bénéficiaires

PME de moins de 100 personnes n’exerçant pas leur activité dans un des secteurs suivants :

  • Banques, institutions financières, assurances et immobilier, enseignement et formation, soins de santé, sports, loisirs et culture, sauf tourisme,
  • Production et distribution d’énergie et d’eau, sauf production d’énergies renouvelables,
  • Professions libérales.

Activités soutenues

Réalisation d’études dans les domaines suivants : gestion financière, gestion commerciale, politique industrielle, gestion de la qualité des produits, gestion environnementale et du développement durable, organisation et management, informatique, transmission d’entreprise.

Montant de l’aide

  • Prise en charge des honoraires du consultant à concurrence de 50 % (aussi bien pour le diagnostic général que pour la mission spécialisée).
  • Honoraires pris en considération limités à 620 € par jour HTVA.
  • Montant maximal de l’aide : 12 500 € HTVA.
  • TVA et frais de déplacement à charge de l’entreprise.

Critères d’éligibilité

  • Consultants agréés par la Région wallonne,
  • Pré-étude préalable et concertation avec la Région wallonne afin de déterminer la portée et la durée de la mission.

Réglementation

Décret du 11 mars 2004 relatif aux incitants régionaux en faveur des PME.
Arrêté du Gouvernement Wallon du 6 mai 2004 Section 4 (dernières modifications apportées en janvier 2016) portant exécution du décret du 11 mars 2004 relatif aux incitants régionaux en faveur des PME.

Contact

DGO6 – Économie, Emploi, Recherche
Place de la Wallonie, 1
5100 Namur (Jambes)
Tél. : 081/33 37 00
Site web : www.emploi.wallonie.be


La déduction fiscale pour l’investissement économiseur d’énergie

Bénéficiaire

Les bénéfices des entreprises industrielles, commerciales ou agricoles et les profits des titulaires de professions libérales, charges, offices ou autres occupations lucratives peuvent être exonérés.

Montant de l’aide

Immunisation d’une quotité des bénéfices à concurrence de 13.5 %.

L’avantage est octroyé par le Ministère des Finances; la Région délivre une attestation garantissant que les investissements réalisés font bien partie de la liste.

Critères d’éligibilité

Les immobilisations sont affectées en Belgique à l’exercice de l’activité professionnelle.

Les investissements doivent faire partie de la liste des 12 catégories d’investissements éligibles figurant à l’annexe I du formulaire de demande :

  1. limitation des déperditions d’énergie dans les bâtiments existants ou dans les serres existantes;
  2. limitation des pertes d’énergie par l’isolation d’appareils, conduites, vannes et gaines de transport en usage ou par le recouvrement des bains de liquide chaud ou froid en usage;
  3. limitation des pertes d’énergie dans les fours existants;
  4. limitation des pertes par ventilation dans les bâtiments existants;
  5. récupération de chaleur résiduelle;
  6. utilisation de l’énergie de détente libérée par des processus de production existants ou par la détente de fluides comprimés pour leur transport;
  7. appareils de production combinée de forme et de chaleur;
  8. appareils de combustion, de chauffage, de climatisation et d’éclairage;
  9. procédés industriels de production;
  10. production et utilisation d’énergie par conversion chimique, thermochimique ou biochimique de la biomasse et des déchets;
  11. production d’énergie à partir des sources d’énergie renouvelables;
  12. transport par chemin de fer ou par navigation.

Réglementation

  • Code des Impôts sur les Revenus 1992 (article 69) ;
  • A.R. du 27 août 1993, d’exécution du Code des Impôts sur les Revenus, Chapitre I, Section XVI.

Procédure

Le contribuable adresse à l’administration régionale de l’énergie une demande d’attestation au moyen du formulaire CEB-2 complété. Suite à l’examen du dossier, la Région délivre une attestation que le contribuable introduira auprès du Ministère des finances. La demande de déductions fiscales doit être introduite avant la fin de la période de 3 mois suivant la clôture de l’exercice fiscal au cours duquel l’investissement a été réalisé.

Contact

Informations sur le site portail de la R.W. : energie.wallonie.be

Les subventions pour la recherche industrielle de base

Bénéficiaire

Les PME et les grandes entreprises, généralement en association avec des centres de recherche ou équipes universitaires ou de niveau universitaire.

Activités soutenues

Acquisition de connaissances scientifiques et techniques qui sont susceptibles d’applications industrielles exploitées en Wallonie.
Les dépenses admissibles sont :

  • Les dépenses de personnel relatives aux chercheurs, techniciens et autre personnel d’appui, dans la mesure où ils sont affectés à la réalisation du projet ;
  • Les coûts des instruments et du matériel. Dans la mesure où, et aussi longtemps qu’ils sont utilisés pour la réalisation du projet (si ceux-ci ne sont pas utilisés pendant toute leur durée de vie pour la réalisation du projet, seuls les coûts d’amortissement correspondant à la durée de vie du projet -calculés selon les bonnes pratiques comptables- sont alors admissibles) ;
  • Les coûts de la recherche contractuelle, des connaissances techniques et des brevets acquis en faisant l’objet de licences auprès de sources extérieures, au prix du marché, ainsi que les coûts des services de consultants et de services équivalents utilisés pour la réalisation du projet ;
  • Les frais généraux additionnels supportés directement du fait de la réalisation du projet ;
  • Les autres frais d’exploitation, notamment les coûts des matériaux, fournitures et produits similaires, supportés directement du fait de la réalisation du projet.

Montant de l’aide

La subvention varie de 50 à 80 % du coût du projet en fonction du type d’entreprise.

Critères d’éligibilité

Les critères d’évaluation de la demande sont les suivants:

  • Le caractère innovant du projet et notamment sa contribution au progrès scientifique en terme d’acquisition de connaissances nouvelles;
  • La qualité du projet, sa faisabilité technique et sa pertinence par rapport aux besoins technico-économiques de la Région.
  • Votre entreprise doit être capable de valoriser du point de vue économique et de l’emploi les résultats attendus du projet: retombées économiques, existence d’un marché lucratif et capacité à pénétrer ce marché, perspectives d’exploitation et incidences des droits intellectuels de projets concurrents.
  • L’impact sur l’environnement ne peut être négatif;
  • Votre entreprise doit être à même de faire face aux besoins financiers actuels et prévisibles du projet ou avoir la possibilité de trouver les financements complémentaires correspondants à ces besoins;
  • Le projet doit comporter un degré de risque évident (coût du projet par rapport au chiffre d’affaires de l’entreprise, temps de mise au point du nouveau produit ou procédé, bénéfices escomptés par rapport au coût du projet).
  • L’effet incitatif de l’aide.

Réglementation

Décret du 3 juillet 2008 relatif au soutien de la recherche, du développement et de l’innovation en Wallonie (articles 15 à 20)

Contact

energie.wallonie.be


L’avance récupérable pour la recherche appliquée, le développement et la démonstration

Bénéficiaire

Les PME et les grandes entreprises, généralement en association avec des centres de recherche ou équipes universitaires ou de niveau universitaire.

Activités soutenues

Mise au point de produits, procédés ou services nouveaux susceptibles de déboucher sur une activité rentable de production en Région wallonne, dans un délai de l’ordre de cinq ans.

Montant de l’aide

  • Petites entreprises : avance récupérable de 75 % du coût du projet.
  • Moyennes entreprises : avance récupérable de 65 % du coût du projet.
  • Grandes entreprises : avance récupérable de 55 % du coût du projet.

Critères d’éligibilité

Le produit, procédé ou service innovant doit avoir un marché accessible pour l’entreprise et une rentabilité suffisante.

L’entreprise doit être saine sur le plan financier et avoir la possibilité de trouver des financements correspondant aux besoins actuels et prévisibles du projet.

Compétence et motivation de l’équipe chargée du projet et de son réseau commercial.

Réglementation

Décret du 3 juillet 2008 relatif au soutien de la recherche, du développement et de l’innovation en Wallonie (articles 21 à 31).

Contact

Informations sur le site portail de la R.W. : energie.wallonie.be


Horizon 2020 Energy Efficiency : le programme cadre de l’UE pour la recherche et l’innovation

Bénéficiaire

Un consortium composé d’au moins trois entités juridiques (projets de recherche courants) ou toute entité juridique (autres programmes).

Activités soutenues

Les sujets de recherche et d’innovation de la thématique efficacité énergétique proposés par la Commission européenne varient d’un appel à l’autre. Les principaux thèmes soutenus concernent :

  • Les consommateurs : engager et sensibiliser les consommateurs, comprendre le comportement des occupants, favoriser les solutions connectées et informatiques, etc ;
  • Les bâtiments : réduire les coûts de rénovation énergétique, atteindre l’objectif NZEB, enlever les barrières dues aux marchés, favoriser l’harmonisation du calcul des performances énergétiques, travailler avec les réseaux énergétiques et leur gestion, etc ;
  • Les autorités publiques : montrer l’exemple en matière d’efficacité énergétique, développer des politiques en énergie durable ambitieuses, etc ;
  • Les industries, produits et services : augmenter l’efficacité énergétique de l’entièreté du processus de production, réutiliser les déchets industriels, etc ;
  • Le chauffage et le refroidissement : modérer la demande, accroitre l’efficacité énergétique, maximiser l’utilisation des énergies renouvelables, réduire les coûts, etc ;
  • Une finance pour une énergie durable : développer des mécanismes financiers innovants en faveur des économies d’énergie, accélérer le développement du marché, etc.

Montant de l’aide

  • Actions de recherche et d’innovation : jusqu’à 100 %  des coûts admissibles pour les organismes à but non-lucratif, généralement 70 % pour les autres.
  • Coûts indirects admissibles : 25 % des coûts directs admissibles.

Critères d’éligibilité

En général, le projet doit être présenté par un consortium groupant au moins 3 participants de 3 États Membres ou États associés différents, dont 2 au moins proviennent d’États Membres ou d’États associés. Différents nombres minimum de participants peuvent être spécifiés dans les appels à propositions.

Le projet doit être introduit dans le cadre d’un appel à propositions et doit être évalué positivement par les experts de la Commission européenne.

Réglementation

RÈGLEMENT (UE) N°1291/2013 DU PARLEMENT EUROPÉEN ET DU CONSEIL du 11 décembre 2013
portant établissement du programme-cadre pour la recherche et l’innovation « Horizon 2020 » (2014-2020) et abrogeant la décision n°1982/2006/CE.

Contacts

UNION WALLONNE DES ENTREPRISES
Elle assume la mission de Point de Contact National, en vue d’aider les partenaires belges à déposer des propositions de projets.

Website: http://www.ncpwallonie.be