Classement énergétique de plusieurs bâtiments : cadastre énergétique – ancien article

Bâtiment prioritaire ou mesure prioritaire ?

Après avoir relevé et normalisé les consommations de chauffage des différents bâtiments du parc, il est classique de sélectionner celui qui sera prioritaire en terme d’amélioration. C’est l’objet de la méthode du cadastre énergétique ci-dessous. Elle sélectionnera le bâtiment à auditer ou à faire auditer par un spécialiste.

 

 

Mais il est peut-être utile de prendre en considération les alternatives ci-dessous :

 

Alternative 1 : plutôt que de se focaliser sur un seul bâtiment, il est possible de décider d’actions transversales prioritaires, c.-à-d. de mesures très rentables qui seront appliquées à tous les bâtiments en parallèle. Par exemple, appliquer toutes les mesures « + + + + » du classement des mesures les plus rentables.

Évaluer

Pour repérer les mesures les plus rentables.

Alternative 2 : à défaut de pouvoir réaliser un audit du bâtiment, ou en plus de cette démarche, il est possible d’intégrer dans le cahier des charges de la société de maintenance les mesures qui sont les plus rentables et de son ressort.

Gérer

Pour repérer les améliorations de la maintenance des installations.

Le cadastre énergétique

Le cadastre énergétique permet de classer différents immeubles d’un patrimoine en fonction de leur qualité énergétique et donc de l’urgence d’entreprendre des interventions URE.

Tout dernièrement, sur l’impulsion de la Région wallonne, les Facilitateurs URE de Wallonie ont crée un modèle de cadastre énergétique mis a disposition en ligne pour les communes et institutions désireuses de suivre et gérer leur consommations.

Calculs

Pour accéder au cadastre énergetique Facilitateurs URE.

Méthode simplifiée

Si le calcul ne doit pas faire l’objet d’une réglementation, une méthode simplifiée est accessible :

  1. On divisera la consommation de chaque bâtiment par sa surface chauffée, exprimée en m². Le ratio en kWh/m² le plus élevé sera l’indice du bâtiment le plus « mauvais » sur le plan énergétique. Au passage, on pourra alors déjà se comparer aux consommations du secteur.
  2. Il se peut que le plus mauvais bâtiment… soit très petit, et que donc le potentiel d’économie d’énergie soit faible. Il sera alors plus opportun d’attaquer d’abord un bâtiment d’un peu meilleure qualité, mais dont la consommation importante amortira beaucoup mieux les investissements (un appareil de régulation représente le même investissement dans un petit bâtiment que dans un grand). Dans ce but, on multiplie le ratio trouvé précédemment par la consommation du bâtiment. On fait donc (consommation /surface chauffée) x consommation, exprimé en [kWh²/m²]. Le plus grand nombre trouvé est sans signification, mais c’est celui dont le potentiel d’économie d’énergie est le plus grand.

Méthode officielle

Il existe une méthode plus rigoureuse, plus proche de la performance énergétique exacte d’un bâtiment. Ce type de classement est d’ailleurs demandé dans le cadre du programme de subsides UREBA.

Deux critères vont mettre en évidence les immeubles les plus déficients :

  • l’indice énergétique E,
  • l’indice énergétique pondéré ECaPi.

L’indice énergétique E

L’indice E est un critère estimatif de la qualité énergétique d’un immeuble.

Un indice E élevé est donc le reflet, soit d’une enveloppe thermique mal isolée et peu étanche, soit d’une installation de chauffage défectueuse, soit encore de la présence simultanée des deux phénomènes.
Il devrait donc être donné par un ratio du type :

E = kglm / ηexpl.

où,

  • ηexpl. = rendement saisonnier de l’installation (en décimales).

Plus l’enveloppe est une passoire, plus kglm est élevé. Plus l’installation de chauffage est défectueuse, plus ηexpl. diminue. Dans les deux cas, E augmente.

Hélas, un tel calcul semble complexe puisque ces valeurs sont inconnues et difficiles à mesurer…

Astuce ! on peut retrouver ce même ratio en partant de données beaucoup mieux maîtrisées. En effet, l’indice E peut aussi être calculé par la formule suivante :

   Consommation x PCI
E =  
Se x ΔT°m x durée saison

dont les différents coefficients sont connus :

Consommation =

Consommation annuelle en unités physiques de combustible (m³ de gaz, litre de fuel,…). Idéalement, on prendra la moyenne sur trois années consécutives des consommations normalisées (c’est-à-dire ramenées à un climat type moyen).

PCI  =

Pouvoir Calorifique Inférieur du combustible, exprimé en Wh par unité de combustible.

Se  =

Surface extérieure de l’enveloppe du bâtiment (attention, c’est bien la surface totale des façades extérieures, du  plancher et de la toiture et non la surface au sol du bâtiment).

Δm  =

T°IntMoy – T°ExtMoy = écart entre la température moyenne intérieure du bâtiment, et la température extérieure moyenne du lieu.

Durée saison  =

Durée de la saison de chauffe = du 15 septembre au 15 mai = 242 jours x 24 h/j =± 5 800 h.

À noter que le produit : Δx durée saison, peut encore se calculer par la méthode des « degrés-jours corrigés », pour arriver au même résultat.

A quelle valeur de E s’attendre ?

Pour le coefficient kglm, k global moyen d’une enveloppe (y compris la ventilation du bâtiment), on peut s’attendre aux valeurs suivantes :

  • valeur souhaitable : kmoy < 1,2 W/m²K
  • valeur relativement élevée : 1,2 < kmoy < 1,7 W/m²K
  • valeur élevée : kmoy > 1,7 W/m²K

Pour le rendement d’exploitation saisonnier :

  • valeur actuelle pour un bâtiment performant : ηexpl > 0,8
  • valeur moyenne : 0,7 < ηexpl < 0,8
  • valeur basse : ηexpl < 0,6

Dès lors, E varie de 1,5 à 4 :

1,5

pour un bâtiment dont système et enveloppe ne posent pas de problème énergétique,

4

pour un bâtiment où diverses actions doivent être entreprises, tant sur le système que sur l’enveloppe.

L’indice énergétique pondéré ECaPi

Faut-il forcément investir dans un immeuble ayant un indice E élevé (donc très mauvais) ?

Si la consommation du bâtiment est faible, non. Un immeuble présentant un indice E plus moyen mais une consommation importante sera sans doute prioritaire !

Aussi, un deuxième classement est possible, basé sur le produit de l’indice E pondéré par la consommation annuelle. C’est l’indice ECaPi. Un indice ECaPi élevé est le reflet d’un potentiel d’économie d’énergie important.

ECaPi = E x Consommation x PCI

où la consommation est exprimée en unité de combustible.

À titre d’exemple : économiser 50 % d’énergie dans un immeuble consommant 10 000 l de fuel par an est plus difficile que d’économiser 15 % dans un immeuble consommant 50 000 l de fuel par an ! Et en plus, le gain financier est plus important dans le deuxième cas.

Il s’agit donc d’un critère quantitatif d’aide à la décision.


Un exemple

Soit deux bâtiments de bureaux, situés dans le Brabant, que l’on souhaite classer :

Cons. 125 067 litres 40 020 litres
Se 14 376 m² 3 200 m²
T°Int Moy  20°C – 3°C – 3°C = 14°C 20°C – 3°C – 3°C = 14°C
E 125 067 l x 9 950 Wh

14 376 m² x (14°C – 6,5°C) x 5 800 h= 2,0
40 020 l x 9 950 Wh

3 200 m² x (14°C – 6,5°C) x 5 800 h= 2,9
ECaPi 2,0 x 125 067 x 9 960 = 2,5 10 (exposant 9) 2,9 x 40 020 x 9 960 = 2,2 10 (exposant 9)

Conclusion : le premier bâtiment est thermiquement meilleur que le deuxième, mais le potentiel d’énergie récupérable y est plus important.

Études de cas

Pour parcourir l’exemple du cadastre énergétique des bâtiments du CBTJ, cliquez ici !

Plus de détails sur l’écart de température T°Int Moy-T°Ext Moy

La température intérieure moyenne équivalente T°Int Moy

Int Moy =

  • La température intérieure équivalente du bâtiment sur la saison de chauffe.
  • La température moyenne des locaux en journée  réduction pour les coupures de nuit et de week-end  réduction pour les apports gratuits.

La réduction pour les coupures (nuits, W.E., congés scolaires) est donnée approximativement dans le tableau suivant :

Hôpitaux, homes, maisons de soins

0°C

Immeuble d’habitation avec réduction nocturne

2°C

Bâtiments administratifs, bureaux

3°C

Écoles avec cours du soir

4,5°C

Écoles sans cours du soir et de faible inertie thermique

6°C
(Remarque : nous devrions écrire 2 K (2 Kelvins) pour respecter les conventions d’écriture en matière d’écart de température, mais nous tenons surtout à conserver nos lecteurs !)

La réduction pour les apports « gratuits » (équipements internes, personnes, soleil, …) est estimée en moyenne entre 2 et 3°C dans les anciens bâtiments. Elle peut être nettement plus élevée dans les bâtiments récents, bien isolés.

Cette réduction doit donc être adaptée en fonction des caractéristiques physiques du bâtiment : elle doit être augmentée si l’inertie thermique et l’isolation sont fortes et les apports internes sont grands (ordinateurs, éclairage, occupation, …), et diminuée si le bâtiment est peu vitré, par exemple.

Application

Prenons des bureaux maintenus à 20°C durant la journée, la température intérieure moyenne choisie pour les calculs sera de :

20°C – 3°C  – 3°C = 14°C

Attention ! Cette température intérieure équivalente est fictive. En réalité, elle est bien de 17°C mais 3°C sont « fournis » par les apports « gratuits » et ne sont donc pas comptabilisés dans la facture de chauffage (à noter que les apports des appareils électriques sont payés… mais sur une autre facture). Les 14°C constituent donc une température équivalente fictive pour dimensionner la chaleur « consommée ».

La température extérieure moyenne équivalente T°Ext Moy

Ext Moy est la température extérieure moyenne équivalente durant la saison de chauffe. Voici sa valeur entre le 15 septembre et le 15 mai pour quelques endroits de notre région :

Uccle 6,5°C
Hastière 5,5°C
Libramont 3,5°C
Mons 6°C
Saint-Vith 2,7°C

Cette température est obtenue via la valeur des degrés-jours 15/15 du lieu, divisée par la durée standardisée de la saison de chauffe (242 jours, du 15 septembre au 15 mai).

Exemple.

Pour Uccle :

  • Degrés-jours 15/15 = 2 074 D°J,
  • 2 074 / 242 jours = 8,5°C -> l’écart moyen de la température extérieure est donc de 8,5°C par rapport à 15 °C,
  • La température extérieure moyenne est donnée par : (15°C – 8,5°C) = 6,5°C.

Plus de détails sur la méthode de calcul

Comment est-on passé de :

E = kglm / ηexpl.

Vers

   Consommation x PCI
E =     
se x ΔTx durée saison

Il faut repartir de l’évaluation de la consommation d’un bâtiment.
Décomposons :

Consommation en Wh =

Consommation en unités physiques (litres, m³,…) x PCI du combustible

Qu’est-ce que la consommation en unités physiques ?

Consommation en unités physiques =

Puissance moyenne de chauffe x durée saison de chauffe / Rendement saisonnier installation

Or la puissance moyenne de chauffe est donnée par :

Puissance moyenne de chauffe =

Puissance moyenne des pertes par les parois + Puissance moyenne des pertes par ventilation

où :

  • Puissance moyenne des pertes par les parois =

ks x Se x (T°Int Moy – T°Ext Moy )

  • Puissance moyenne des pertes par ventilation =

0,34 xβ x Volume du bâtiment x (T°Int Moy – T°Ext Moy )

où :

  • β est lui-même le taux de renouvellement d’air horaire du bâtiment et 0,34 correspond à la capacité volumique de l’air (0,34 Wh/m³.K).

Si l’on appelle « ΔTm » l’écart moyen entre intérieur et extérieur et « kglm » le coefficient global moyen de déperdition du bâtiment :

kglm = (KSe + 0,34 x β x V)/ Se

On peut alors avoir l’expression de la consommation sous la forme :

Consommation x PCI = kglm x Se x ΔTm x durée saison / ηexpl

En regroupant les termes plus faciles à déterminer du même côté de l’équation, on isole le ratio des deux termes difficiles à connaître et caractéristiques de la mauvaise performance du bâtiment :

Consommation x PCI / Se x ΔTm x durée saison = kglm / ηexpl = E

Ce qu’il fallait démontrer !


Une variante sur base des Degrés-Jours Pondérés

Il est possible de remplacer le produit Δx durée de la saison de chauffe par la valeur des degrés-jours pondérés x 24 h. C’est la méthode officielle préconisée par l’Université de Mons-Hainaut.

Exemple :

Prenons un immeuble de bureaux maintenu à 20°C durant la journée, la température intérieure moyenne choisie pour les calculs est de

20°C – 3°C  – 3°C = 14°C 

Imaginons qu’il soit situé à Mons, la température extérieure moyenne sera de 6°C.

Le produit « ΔT°x durée de la saison de chauffe » sera de :

(14° – 6°) x 5 800 h = 46 400 D°h

Soit encore (en divisant par 24 h) :

1 933 D°J x 24 h

Dans le cadre du programme de subventions UREBA, l’Université de Mons-Hainaut propose une série de degrés-jours pondérés en fonction du lieu et du type d’activité.

C’est pour cela que l’indice E exprimé ci-dessus :

     Consommation x PCI
E =    
     Se x ΔT°x durée saison

Peut-être encore donné sous la forme :

     Consommation x PCI
E =     
     Se x Degrés-Jours pondérés x 24

Ou encore, si le PCI est exprimé en Joules :

     Consommation x PCI
E =    
     Se x Degrés-Jours pondérés x 24 x 3 600

Découvrez ces exemples de cadastre énergétique des bâtiments : le Centre belge du Tourisme des Jeunes (actuellement Kaleo), les bâtiments de la Ville de Chimay et les bâtiments de la Ville de Mons.

Répartition d’une consommation entre plusieurs entités

Répartition d'une consommation entre plusieurs entités


La situation de départ

Il arrive parfois que la même chaudière desserve des bâtiments occupés par des unités très différentes. Par exemple, une crèche et un centre sportif indépendants sont intégrés dans les bâtiments d’une école.

Comme il est toujours bon que chaque consommateur se sente responsable, il est utile de ventiler les consommations le plus fidèlement possible. Et puis cela évite les conflits…!

Quatre solutions

  • Si les circuits de distribution des radiateurs ne correspondent pas du tout au découpage des locaux par locataires, la solution la plus simple consiste à faire une répartition au prorata des m² chauffés. C’est simple, mais c’est forfaitaire… La motivation à « faire attention à ses consommations » n’est pas encouragée…
  • Si les bâtiments présentent des caractéristiques très différentes (un nouveau et un ancien bâtiment par exemple), il est possible de corriger quelque peu la méthode précédente. Partant du fait que  les déperditions se font par les parois, l’idée est de pondérer la consommation totale par un facteur proportionnel à la qualité thermique des parois (coefficient U) et à leur surface (S).Supposons deux entités. On totalisera pour chacune les produits U*S de toutes leurs parois extérieures. La consommation de la première entité sera de :

    Cons. 1 = Cons. totale x (U*S)1 / (U*S)total

    De même :

    Cons. 2 = Cons. totale x (U*S)2 / (U*S)total

    Si le résultat est plus conforme aux consommations réelles des bâtiments, il ne tiendra toujours pas compte du fait que les occupants sont peut-être très économes dans l’entité 1 et gaspilleurs dans l’entité 2 !

  • Il est plus précis de placer des compteurs individuels sur les radiateurs (appelé calorimètres) : ceux-ci sont basés sur l’évaporation de l’eau contenue dans un petit capillaire. Plus le radiateur chauffe fort et longtemps, plus l’eau s’évapore. Le placement et le relevé annuel sont réalisés par une société spécialisée. Une répartition de la facture proportionnellement à la chaleur délivrée par chaque radiateur est alors possible.

Relevé de l’index d’un calorimètre.

Compteur de chaleur à installer entre les conduites aller et retour d’un circuit de chauffage.

  • Enfin, si chaque entité possède son circuit de chauffage (ou de refroidissement) propre, il est possible de placer un compteur d’énergie thermique entre le départ et le retour de chaque circuit. Cet appareil mesure le débit d’eau et la différence de température entre le départ et le retour. Le régulateur intègre ces valeurs et affiche l’énergie thermique en kWh ou en MJ. Cette solution est certainement la plus fiable, mais demande parfois la modification des circuits hydrauliques. Si grâce à cela la régulation du bâtiment peut être améliorée, cela en vaut la peine !

Tableau de bord, consommation d’électricité

Tableau de bord, consommation d'électricité


Un suivi annuel via un relevé sur Excel

Pour faciliter l’analyse, il est préférable de retranscrire l’évolution des consommations électriques sous forme de graphes plutôt que sous forme de tableaux de chiffres.

De plus, en tarification Haute Tension, il est intéressant de suivre non seulement le montant total des factures mensuelles, mais également des autres paramètres de la facture électrique sur lesquels il y a moyen d’agir :

La répartition financière des postes consommateurs, entre puissance (kW) et énergie (kWh).

La répartition des consommations de jour et de nuit (si compteur bihoraire) ou en Heures Creuses (nuit + week-end) et en Heures Pleines (jour en semaine), si régime Haute Tension. Le double relevé en kWh et en Euro est utile.

L’évolution de la pointe de puissance quart-horaire (pour les institutions soumises au régime Haute Tension).

L’évolution du « facteur de puissance » ou « cos phi »(pour les institutions soumises au régime Haute Tension).

Calculs

Pour accéder à un exemple de logiciel sur Excel pour suivre la comptabilité énergétique annuelle de bâtiments.

Il comprend une fiche par année + un récapitulatif sur 10 ans.

Toutes les cases bleues sont à remplir, toutes les cases jaunes + rouges sont calculées automatiquement.

Un fichier exemple « test » avec quelques valeurs « bidons » sont jointes afin de visualiser le type de résultat.

Calculs

Pour accéder à un fichier exemple afin de visualiser le type de résultat.

Études de cas

Si vous souhaitez parcourir la mise en place d’une comptabilité énergétique au Collège du Sacré Cœur.

Tout dernièrement, sur l’impulsion de la Région wallonne, les Facilitateurs URE de Wallonie ont crée un modèle de cadastre énergétique mis a disposition en ligne pour les communes et institutions désireuses de suivre et gérer leur consommations.

Calculs

Pour accéder au modèle de cadastre énergétique édité par les Facilitateurs.


Un tableur pour accompagner un projet de sensibilisation dans un bâtiment tertiaire  !

Des projets de sensibilisation voient le jour actuellement avec un retour partiel vers les occupants des économies générées.

Ainsi, avec les économies d’énergie, le collège Saint Louis de Liège a décidé d’engager un peintre, chômeur de longue durée, pour rafraîchir couloirs et classes. Les élèves sont aujourd’hui conscients que son emploi est lié à leur motivation, jour après jour… Pour plus d’infos sur ce projet.

Autre projet : une commune bruxelloise a décidé de motiver ses écoles en redistribuant pour partie les économies d’électricité, de chauffage et d’eau réalisées : 1/3 pour l’école (avec totale liberté d’affectation), 1/3 pour l’école (avec affectation dans des outils économiseurs du type ferme-porte automatique, vannes thermostatiques, …) et 1/3 pour la commune.

Un fichier Excel spécifique a été établi pour le suivi des consommations, avec un diagramme comparant chaque mois la consommation à celle de l’année précédente.

Un diagramme similaire est établi pour les consommations électriques.

Si vous souhaitez accéder au fichier Excel établi dans ce cadre (xls compressé).

Si vous souhaitez visionner une application de ce logiciel pour un bâtiment particulier (xls compressé).

Si vous souhaitez parcourir le mode d’emploi de ce logiciel.  (PDF)

Si vous recherchez des informations complémentaires à propos de ce logiciel, n’hésitez pas à contacter J. Claessens de la cellule Architecture et Climat (jacques.claessens@uclouvain.be).


Informer les services techniques et responsables des bâtiments

Qui connaît la consommation du bâtiment dans lequel il travaille ? Comment s’étonner alors qu’il soit si peu motivé à éteindre la lumière…?

Pire : quel est le technicien d’entretien qui connaît l’évolution de la consommation de son bâtiment ses dernières années ? C’est un outil de base pour le motiver à agir. C’est une photographie de la qualité de son travail !

Il est donc très utile que le service comptable diffuse ces informations, sous forme d’un bilan général des consommations annuelles. Idéalement, il pourrait informer le service technique dès qu’il perçoit une dérive de consommation.


Aller plus loin ?

Audit

Pour comprendre et analyser les paramètres de la facture électrique.

Audit

Pour définir le(s) bâtiment(s) prioritaire(s).

Audit

Pour comparer le bâtiment aux autres bâtiments du secteur.

Audit

Pour repérer les mesures les plus rentables.

Classement énergétique de plusieurs bâtiments : cadastre énergétique

Classement énergétique de plusieurs bâtiments : cadastre énergétique


Bâtiment prioritaire ou mesure prioritaire ?

Après avoir relevé et normalisé les consommations de chauffage des différents bâtiments du parc, il est classique de sélectionner celui qui sera prioritaire en terme d’amélioration. C’est l’objet de la méthode du cadastre énergétique ci-dessous. Elle sélectionnera le bâtiment à auditer ou à faire auditer par un spécialiste.

Mais il est peut-être utile de prendre en considération les alternatives ci-dessous:

Alternative 1 : plutôt que de se focaliser sur un seul bâtiment, il est possible de décider d’actions transversales prioritaires, c.-à-d. de mesures très rentables qui seront appliquées à tous les bâtiments en parallèle. Par exemple, appliquer toutes les mesures « + + + + » du classement des mesures les plus rentables.

Évaluer

Pour repérer les mesures les plus rentables.

Alternative 2 : à défaut de pouvoir réaliser un audit du bâtiment, ou en plus de cette démarche, il est possible d’intégrer dans le cahier des charges de la société de maintenance les mesures qui sont les plus rentables et de son ressort.

Gérer

Pour repérer les améliorations de la maintenance des installations.

Le cadastre énergétique

Le cadastre énergétique permet de classer différents immeubles d’un patrimoine en fonction de leur qualité énergétique et donc de l’urgence d’entreprendre des interventions URE.

Tout dernièrement, sur l’impulsion de la Région wallonne, les Facilitateurs URE de Wallonie ont crée un modèle de cadastre énergétique mis a disposition en ligne pour les communes et institutions désireuses de suivre et gérer leur consommations.

Calculs

Pour accéder au cadastre énergetique Facilitateurs URE.

Méthode simplifiée

Si le calcul ne doit pas faire l’objet d’une réglementation, une méthode simplifiée est accessible :

  1. On divisera la consommation de chaque bâtiment par sa surface chauffée, exprimée en m². Le ratio en kWh/m² le plus élevé sera l’indice du bâtiment le plus « mauvais » sur le plan énergétique. Au passage, on pourra alors déjà se comparer aux consommations du secteur.
  2. Il se peut que le plus mauvais bâtiment… soit très petit, et que donc le potentiel d’économie d’énergie soit faible. Il sera alors plus opportun d’attaquer d’abord un bâtiment d’un peu meilleure qualité, mais dont la consommation importante amortira beaucoup mieux les investissements (un appareil de régulation représente le même investissement dans un petit bâtiment que dans un grand). Dans ce but, on multiplie le ratio trouvé précédemment par la consommation du bâtiment. On fait donc (consommation /surface chauffée) x consommation, exprimé en [kWh²/m²]. Le plus grand nombre trouvé est sans signification, mais c’est celui dont le potentiel d’économie d’énergie est le plus grand.

Ancienne méthode portant sur l’indice énergétique E et ECaPi

Cette méthode n’est plus appliquée, mais reste interessante dans son approche.  Elle est plus rigoureuse que la méthode simplifiée et tente d’approcher au plus près la performance énergétique exacte d’un bâtiment.

Dans cette méthode, deux critères vont mettre en évidence les immeubles les plus déficients :

  • l’indice énergétique E,
  • l’indice énergétique pondéré ECaPi.

L’indice énergétique E

L’indice E est un critère estimatif de la qualité énergétique d’un immeuble.

Un indice E élevé est donc le reflet, soit d’une enveloppe thermique mal isolée et peu étanche, soit d’une installation de chauffage défectueuse, soit encore de la présence simultanée des deux phénomènes.
Il devrait donc être donné par un ratio du type :

E = kglm / ηexpl.

où,

  • ηexpl. = rendement saisonnier de l’installation (en décimales).

Plus l’enveloppe est une passoire, plus kglm est élevé. Plus l’installation de chauffage est défectueuse, plus ηexpl. diminue. Dans les deux cas, E augmente.

Hélas, un tel calcul semble complexe puisque ces valeurs sont inconnues et difficiles à mesurer…

Astuce ! on peut retrouver ce même ratio en partant de données beaucoup mieux maîtrisées. En effet, l’indice E peut aussi être calculé par la formule suivante :

   Consommation x PCI
E =  
Se x ΔT°m x durée saison

dont les différents coefficients sont connus :

Consommation =

Consommation annuelle en unités physiques de combustible (m³ de gaz, litre de fuel,…). Idéalement, on prendra la moyenne sur trois années consécutives des consommations normalisées (c’est-à-dire ramenées à un climat type moyen).

PCI  =

Pouvoir Calorifique Inférieur du combustible, exprimé en Wh par unité de combustible.

Se  =

Surface extérieure de l’enveloppe du bâtiment (attention, c’est bien la surface totale des façades extérieures, du  plancher et de la toiture et non la surface au sol du bâtiment).

Δm  =

T°IntMoy – T°ExtMoy = écart entre la température moyenne intérieure du bâtiment, et la température extérieure moyenne du lieu.

Durée saison  =

Durée de la saison de chauffe = du 15 septembre au 15 mai = 242 jours x 24 h/j =± 5 800 h.

À noter que le produit : Δx durée saison, peut encore se calculer par la méthode des « degrés-jours corrigés », pour arriver au même résultat.

A quelle valeur de E s’attendre ?

Pour le coefficient kglm, k global moyen d’une enveloppe (y compris la ventilation du bâtiment), on peut s’attendre aux valeurs suivantes :

  • valeur souhaitable : kmoy < 1,2 W/m²K
  • valeur relativement élevée : 1,2 < kmoy < 1,7 W/m²K
  • valeur élevée : kmoy > 1,7 W/m²K

Pour le rendement d’exploitation saisonnier :

  • valeur actuelle pour un bâtiment performant : ηexpl > 0,8
  • valeur moyenne : 0,7 < ηexpl < 0,8
  • valeur basse : ηexpl < 0,6

Dès lors, E varie de 1,5 à 4 :

1,5

pour un bâtiment dont système et enveloppe ne posent pas de problème énergétique,

4

pour un bâtiment où diverses actions doivent être entreprises, tant sur le système que sur l’enveloppe.

L’indice énergétique pondéré ECaPi

Faut-il forcément investir dans un immeuble ayant un indice E élevé (donc très mauvais) ?

Si la consommation du bâtiment est faible, non. Un immeuble présentant un indice E plus moyen mais une consommation importante sera sans doute prioritaire !

Aussi, un deuxième classement est possible, basé sur le produit de l’indice E pondéré par la consommation annuelle. C’est l’indice ECaPi. Un indice ECaPi élevé est le reflet d’un potentiel d’économie d’énergie important.

ECaPi = E x Consommation x PCI

où la consommation est exprimée en unité de combustible.

À titre d’exemple : économiser 50 % d’énergie dans un immeuble consommant 10 000 l de fuel par an est plus difficile que d’économiser 15 % dans un immeuble consommant 50 000 l de fuel par an ! Et en plus, le gain financier est plus important dans le deuxième cas.

Il s’agit donc d’un critère quantitatif d’aide à la décision.


Un exemple

Soit deux bâtiments de bureaux, situés dans le Brabant, que l’on souhaite classer :

Cons. 125 067 litres 40 020 litres
Se 14 376 m² 3 200 m²
T°Int Moy  20°C – 3°C – 3°C = 14°C 20°C – 3°C – 3°C = 14°C
E 125 067 l x 9 950 Wh

14 376 m² x (14°C – 6,5°C) x 5 800 h= 2,0
40 020 l x 9 950 Wh

3 200 m² x (14°C – 6,5°C) x 5 800 h= 2,9
ECaPi 2,0 x 125 067 x 9 960 = 2,5 10 (exposant 9) 2,9 x 40 020 x 9 960 = 2,2 10 (exposant 9)

Conclusion : le premier bâtiment est thermiquement meilleur que le deuxième, mais le potentiel d’énergie récupérable y est plus important.

Études de cas

Pour parcourir l’exemple du cadastre énergétique des bâtiments du CBTJ, cliquez ici !

Plus de détails sur l’écart de température T°Int Moy-T°Ext Moy

La température intérieure moyenne équivalente T°Int Moy

Int Moy =

  • La température intérieure équivalente du bâtiment sur la saison de chauffe.
  • La température moyenne des locaux en journée  réduction pour les coupures de nuit et de week-end  réduction pour les apports gratuits.

La réduction pour les coupures (nuits, W.E., congés scolaires) est donnée approximativement dans le tableau suivant :

Hôpitaux, homes, maisons de soins

0°C

Immeuble d’habitation avec réduction nocturne

2°C

Bâtiments administratifs, bureaux

3°C

Écoles avec cours du soir

4,5°C

Écoles sans cours du soir et de faible inertie thermique

6°C
(Remarque : nous devrions écrire 2 K (2 Kelvins) pour respecter les conventions d’écriture en matière d’écart de température, mais nous tenons surtout à conserver nos lecteurs !)

La réduction pour les apports « gratuits » (équipements internes, personnes, soleil, …) est estimée en moyenne entre 2 et 3°C dans les anciens bâtiments. Elle peut être nettement plus élevée dans les bâtiments récents, bien isolés.

Cette réduction doit donc être adaptée en fonction des caractéristiques physiques du bâtiment : elle doit être augmentée si l’inertie thermique et l’isolation sont fortes et les apports internes sont grands (ordinateurs, éclairage, occupation, …), et diminuée si le bâtiment est peu vitré, par exemple.

Application

Prenons des bureaux maintenus à 20°C durant la journée, la température intérieure moyenne choisie pour les calculs sera de :

20°C – 3°C  – 3°C = 14°C

Attention ! Cette température intérieure équivalente est fictive. En réalité, elle est bien de 17°C mais 3°C sont « fournis » par les apports « gratuits » et ne sont donc pas comptabilisés dans la facture de chauffage (à noter que les apports des appareils électriques sont payés… mais sur une autre facture). Les 14°C constituent donc une température équivalente fictive pour dimensionner la chaleur « consommée ».

La température extérieure moyenne équivalente T°Ext Moy

Ext Moy est la température extérieure moyenne équivalente durant la saison de chauffe. Voici sa valeur entre le 15 septembre et le 15 mai pour quelques endroits de notre région :

Uccle 6,5°C
Hastière 5,5°C
Libramont 3,5°C
Mons 6°C
Saint-Vith 2,7°C

Cette température est obtenue via la valeur des degrés-jours 15/15 du lieu, divisée par la durée standardisée de la saison de chauffe (242 jours, du 15 septembre au 15 mai).

Exemple.

Pour Uccle :

  • Degrés-jours 15/15 = 2 074 D°J,
  • 2 074 / 242 jours = 8,5°C -> l’écart moyen de la température extérieure est donc de 8,5°C par rapport à 15 °C,
  • La température extérieure moyenne est donnée par : (15°C – 8,5°C) = 6,5°C.

Plus de détails sur la méthode de calcul

Comment est-on passé de :

E = kglm / ηexpl.

Vers

   Consommation x PCI
E =     
se x ΔTx durée saison

Il faut repartir de l’évaluation de la consommation d’un bâtiment.
Décomposons :

Consommation en Wh =

Consommation en unités physiques (litres, m³,…) x PCI du combustible

Qu’est-ce que la consommation en unités physiques ?

Consommation en unités physiques =

Puissance moyenne de chauffe x durée saison de chauffe / Rendement saisonnier installation

Or la puissance moyenne de chauffe est donnée par :

Puissance moyenne de chauffe =

Puissance moyenne des pertes par les parois + Puissance moyenne des pertes par ventilation

où :

  • Puissance moyenne des pertes par les parois =

ks x Se x (T°Int Moy – T°Ext Moy )

  • Puissance moyenne des pertes par ventilation =

0,34 xβ x Volume du bâtiment x (T°Int Moy – T°Ext Moy )

où :

  • β est lui-même le taux de renouvellement d’air horaire du bâtiment et 0,34 correspond à la capacité volumique de l’air (0,34 Wh/m³.K).

Si l’on appelle « ΔTm » l’écart moyen entre intérieur et extérieur et « kglm » le coefficient global moyen de déperdition du bâtiment :

kglm = (KSe + 0,34 x β x V)/ Se

On peut alors avoir l’expression de la consommation sous la forme :

Consommation x PCI = kglm x Se x ΔTm x durée saison / ηexpl

En regroupant les termes plus faciles à déterminer du même côté de l’équation, on isole le ratio des deux termes difficiles à connaître et caractéristiques de la mauvaise performance du bâtiment :

Consommation x PCI / Se x ΔTm x durée saison = kglm / ηexpl = E

Ce qu’il fallait démontrer !


Une variante sur base des Degrés-Jours Pondérés

Il est possible de remplacer le produit Δx durée de la saison de chauffe par la valeur des degrés-jours pondérés x 24 h. C’est la méthode officielle préconisée par l’Université de Mons-Hainaut.

Exemple :

Prenons un immeuble de bureaux maintenu à 20°C durant la journée, la température intérieure moyenne choisie pour les calculs est de

20°C – 3°C  – 3°C = 14°C 

Imaginons qu’il soit situé à Mons, la température extérieure moyenne sera de 6°C.

Le produit « ΔT°x durée de la saison de chauffe » sera de :

(14° – 6°) x 5 800 h = 46 400 D°h

Soit encore (en divisant par 24 h) :

1 933 D°J x 24 h

Dans le cadre du programme de subventions UREBA, l’Université de Mons-Hainaut propose une série de degrés-jours pondérés en fonction du lieu et du type d’activité.

C’est pour cela que l’indice E exprimé ci-dessus :

     Consommation x PCI
E =    
     Se x ΔT°x durée saison

Peut-être encore donné sous la forme :

     Consommation x PCI
E =     
     Se x Degrés-Jours pondérés x 24

Ou encore, si le PCI est exprimé en Joules :

     Consommation x PCI
E =    
     Se x Degrés-Jours pondérés x 24 x 3 600

Découvrez ces exemples de cadastre énergétique des bâtiments : le Centre belge du Tourisme des Jeunes (actuellement Kaleo), les bâtiments de la Ville de Chimay et les bâtiments de la Ville de Mons.

Indicateur d’une dérive des consommations : signature énergétique

Indicateur d'une dérive des consommations : signature énergétique


Signature énergétique du premier degré

Plus il fait froid, plus la consommation d’un bâtiment augmente ! Si les Degrés-Jours doublent, la consommation devrait doubler. C’est sur cette base qu’on a pensé à établir le graphe d’évolution des consommations en fonction du froid, c’est-à-dire en fonction des Degrés-Jours. A priori, ce graphe devrait être une droite.

Dresser la signature énergétique, c’est établir le lien entre la consommation d’un bâtiment et le climat.

Dans le diagramme, l’énergie consommée est indiquée en ordonnée tandis que les degrés-jours ou températures moyennes extérieures sont indiquées en abscisse. Le « lien » est établi par la droite de régression, fonction accessible automatiquement dans un tableur. Cette droite est celle qui « passe au mieux au milieu des différents points ».

Plus la pente de la droite de régression est élevée, plus le bâtiment est sensible aux rigueurs climatiques, soit par défaut d’isolation, soit par défaut d’étanchéité à l’air.

Toute anomalie de fonctionnement se traduit par un éloignement des relevés par rapport à la droite de régression établie sur base des périodes antérieures.

Analyser une signature énergétique, c’est interpréter les écarts des consommations par rapport à cette droite.

Si nécessaire, pour affiner l’analyse, il peut être utile de réaliser ces mesures toutes les semaines.

La méthode de travail repose sur la comparaison des consommations du bâtiment par rapport à lui-même, au fil du temps. En aucun cas, la signature énergétique ne donnera d’indication quant aux consommations optimales d’un bâtiment. Elle ne donne peu d’informations quand à l’origine du problème. Ce n’est pas la panacée universelle, loin de là, et ne remplacera jamais l’audit énergétique du bâtiment. La signature énergétique complète l’analyse de la comptabilité énergétique dont elle fait partie.

Quelle référence climatique ? Degrés-Jours ou température extérieure ?

Lorsque l’on utilise les degrés-jours comme référence climatique, une mise en garde s’impose.

La base 15/15 des degrés-jours, généralement retenue, repose sur les postulats

  • D’une température intérieure équivalente de chauffage de 15°C : 20°C le jour et 16°C la nuit, soit 18°C en moyenne, dont on retranche 3°C pour tenir compte des apports « gratuits » (soleil, équipements, …).
  • D’une température extérieure moyenne d’arrêt de l’installation de chauffage de 15°C.

Cela n’est pas toujours vérifié dans la pratique. Si cela « colle » pour les bureaux, surtout les bureaux peu isolés, c’est inexact pour un hôpital.

Pour un hôpital par exemple, la signature énergétique présentera un écart à l’origine puisque pour 15°C extérieur, le chauffage fonctionne toujours (alors que DJ = 0).

Cette erreur n’est pas facile à déceler, car la présence de consommateurs permanents fausse la lecture (consommation d’eau chaude sanitaire en été, par exemple).

Il existe une méthode qui permet d’éviter le problème : appliquer la signature énergétique sur base des températures moyennes extérieures. Cette méthode est couramment appliquée en Suisse.

Cette méthode permet d’identifier le moment où le chauffage a été arrêté: lorsque les consommations sont nulles.

Le graphique est également plus lisible puisqu’il fait référence à la température extérieure, compréhensible par tout un chacun.

Les besoins autres que le chauffage peuvent aussi être facilement appréciés :

Le point d’inflexion de la droite correspond à la température extérieure à partir de laquelle le chauffage est arrêté. La consommation résiduelle correspond aux besoins des autres usages.

Cette méthode est cependant peu utilisée en Belgique où l’utilisation des degrés-jours est une tradition !


Signature énergétique du second degré

La signature du second degré consiste à approcher l’évolution des consommations par une loi du second degré. Elle se présente alors sous la forme d’une courbe (c’est une parabole).

Une régression de second degré apporte un peu plus de finesse à l’interprétation des résultats, et ne demande pas beaucoup plus de temps de calcul pour autant que l’on puisse utiliser la formule intégrée dans le tableur.

Le surcroît de précision ainsi obtenue n’est réel que si le recueil des données est rigoureux

  • Fiabilité et régularité des mesures.
  • Choix des degrés-jours.
  • Adéquation entre les périodes couvertes par les relevés de consommation et les valeurs climatologiques.

L’interprétation de la signature énergétique du second degré est similaire à celle du premier degré (disposition des points autour de la courbe, pente, origine, évolution au fil du temps, … ).

On peut cependant y ajouter un paramètre : la concavité de la courbe de la signature énergétique. Le rendement moyen de l’installation augmentant avec la charge des chaudières, la concavité de la signature énergétique doit normalement être tournée vers le bas. Autrement dit, les pertes fixes évoluent faiblement lorsque la consommation augmente fort. Les chaudières sont mieux utilisées. Les signatures énergétiques dont la concavité est tournée vers le haut sont donc, a priori, suspectes.


Interprétation : erreur de lecture, d’encodage ou dérive subite

La première année, une signature énergétique de référence du bâtiment est établie. La deuxième année, tout écart d’un point par rapport à cette signature de référence sera interprété comme

  • Une erreur de l’appareil de mesure (compteur, jauge;…).
  • Une erreur de lecture des index.
  • Une erreur d’encodage des données.
  • Une dérive subite des consommations.

En route Sherlock Holmes !…


Interprétation : problèmes de régulation

Une faible dispersion du nuage de points est significative de la bonne performance de la régulation. C’est la fonction même du régulateur que d’adapter le système de chauffage aux besoins du bâtiment, lesquels sont, notamment, liés aux conditions climatiques.

Une forte dispersion des points du diagramme montre donc un fonctionnement aléatoire de la régulation (absence, défaillance, …).

Les signatures énergétiques du second degré dont la concavité est tournée vers le haut peuvent s’expliquer par le choix d’une courbe de régulation inadéquate donnant lieu à des surchauffes lorsque les températures extérieures sont basses.

Attention : cette technique de la « signature énergétique » demande beaucoup d’investissement « temps », peut être trop par rapport aux résultats qu’elle permet de tirer. Une visite dans le bâtiment concerné est souvent plus efficace pour y détecter la même anomalie de régulation… Elle se justifie néanmoins par le fait que le comptable peut ainsi être le collaborateur du technicien et tirer la sonnette d’alarme, et ce surtout s’il dispose d’un logiciel de comptabilité énergétique lui fournissant l’analyse automatiquement.


Interprétation : dérive progressive de consommation

Par rapport à la signature de référence, les relevés de l’année en cours dérivent progressivement.

Le positionnement répété des relevés au-dessus de la signature de référence entraîne l’augmentation de la pente de la nouvelle signature. Elle indique une augmentation de la consommation, indépendamment de la rigueur climatique. Il faudra en rechercher la cause parmi les suivantes

  • Surchauffe du bâtiment ?
  • Déréglage des courbes de chauffe ?
  • Défaut de l’étanchéité de l’enveloppe ?
  • Encrassement de la chaudière ?
  • Déréglage du brûleur ?

Interprétation :apports solaires gratuits importants

Les consommations observées sont moindres que celles attendues. Cela s’explique soit par un ensoleillement important et inhabituel en saison de chauffe, soit par un apport « gratuit » de chaleur du fait des activités extraordinaires qui se seraient déroulées dans les lieux.

Cela n’est vrai que si une sonde d’ambiance ou des vannes thermostatiques intègrent ces apports gratuits.

Les relevés en période douce se rassemblent alors sous la signature énergétique de référence.


Interprétation : fonctionnement simultané de la climatisation et du chauffage

Le fonctionnement simultané de la climatisation et du chauffage provoque une hausse des consommations de chauffage.

À partir d’une certaine rigueur climatique, la climatisation n’est plus sollicitée et seul le chauffage est alors assuré, avec des consommations plus conformes aux prévisions.

Le nuage des points prend une allure caractéristique en forme de vague autour de la signature de l’année en cours.


Interprétation : existence de consommations à 0 Degré-Jour

Cette situation peut s’observer dans quatre cas

  • Choix d’une mauvaise base pour le choix des Degré-Jours.
  • Existence de consommations pour un autre besoin que le chauffage des locaux.
  • Défaut de mise à l’arrêt du chauffage en période estivale.
  • Imprécision de la signature énergétique du 1er degré.

1. Choix d’une mauvaise base pour le choix des degré-jours

Le problème a déjà été abordé dans l’explication de la méthode. Il est possible soit d’adopter la température extérieure comme référence, soit de choisir les Degrés-Jours ad hoc.

2. Existence de consommations pour un autre besoin que le chauffage des locaux,

Dans toute la mesure du possible, on organisera un comptage séparé des consommations relatives au chauffage des locaux (qui sont tributaires du climat). Éventuellement, on estimera les consommations qui sont propres à un autre usage que celui du chauffage afin de les soustraire des consommations totales enregistrées.

Il est parfois difficile de compter séparément ou même d’estimer les consommations d’un usage particulier.

Dans pareil cas, la consommation observée à 0 Degré-Jour correspond aux besoins pour la production d’eau chaude sanitaire, aux pertes près (pertes à l’arrêt, fonctionnement du chauffage en période estivale, …).

Graphiquement, cette consommation correspond à l’écart entre l’origine du graphe (le point [0,0]) et l’origine de la signature énergétique (ci-dessus, exemple d’une piscine, ce qui explique l’importance des consommations attribuées à l’ECS).

3. Défaut de mise à l’arrêt du chauffage en période estivale,

Si la production d’ECS (ou autre usage) n’influence pas la consommation de chauffage (systèmes ou comptages séparés), l’existence de consommation à 0 degré-jour révèle un défaut de régulation. Le chauffage fonctionne alors que les besoins sont nuls.

Graphiquement, cette consommation correspond, ici aussi, à l’écart entre l’origine du graphe (le point [0,0]) et l’origine de la signature énergétique de l’année observée.

4. Imprécision de la signature énergétique du 1er degré

L’écart entre l’origine de la signature énergétique du 1er degré et l’origine du graphe peut provenir en fait d’une « erreur mathématique » : le nuage des points « tirant » la signature énergétique de telle sorte que l’origine de la droite ne passe pas par l’origine du graphique.

Par contre, la signature du second ordre, pour la même période de consommation, ne présente pas cet écart à l’origine. Elle est plus précise.

On pourrait donc établir une signature du premier degré dans tous les cas et, en guise de contrôle, une signature du second degré dans les cas de figure tel que celui présenté ici, où l’on douterait de l’interprétation à donner au graphe.

Mais si la régression du second degré est directement accessible sur le tableur d’enregistrement, autant en profiter du premier coup !

Tableau de bord, consommation de combustibles

Tableau de bord, consommation de combustibles


Réaliser l’inventaire des bâtiments et des points de consommation

L’objectif :

Un tel inventaire fournit une vue d’ensemble sur le parc immobilier géré : quelle est la consommation des bâtiments et comment évolue-t-elle dans le temps ? Ceci permet :

  • de connaître l’importance financière de cette consommation,
  • de la situer par rapport aux autres bâtiments du secteur
  • de repérer les bâtiments les plus consommateurs et donc prioritaires en matière de rénovation,
  • de suivre les effets d’une politique énergétique menée et donc de justifier les investissements réalisés,

En pratique :

Un premier relevé établira : où sont les compteurs ? quel compteur mesure quoi ? … en associant une surface chauffée à toute consommation.

Ceci paraît élémentaire et pourtant, d’expérience, on constate que cet inventaire permet souvent de déceler des anomalies :

  • compteurs ouverts sans consommation,
  • compteurs qui, historiquement, regroupent plusieurs bâtiments ou morceaux de bâtiments,

Il est parfois nécessaire de couper un disjoncteur, une chaudière ou un circulateur pour mieux repérer les zones de bâtiment alimentées.

Remarque.

Idéalement, en concertation avec le service technique, un dossier complet par bâtiment pourrait être constitué, contenant des informations liées à :

L’enveloppe

  • plans et dimensions,
  • qualité thermique des parois,
  • année de construction,
  • améliorations apportées ces dernières années,

Aux systèmes

  • système de chauffage, de climatisation, de production ECS,…,
  • vecteurs utilisés, tarifs appliqués, unités de comptage,
  • régimes de fonctionnement,
  • schémas d’installation et de régulation,
  • améliorations apportées ces dernières années,

Aux occupants

  • type d’activité,
  • horaires d’occupation,
  • confort souhaité,
  • zonage des activités,

L’existence d’un tel inventaire permet une bonne organisation de la maintenance et bien souvent, elle permet déjà des améliorations simples et très rentables, du type inadéquation entre type de régulation et type d’occupation, horloges mal réglées, … Il faut imaginer également que la mémoire des installations (par où passe les tuyaux !) est souvent liée aux hommes présents lors du chantier, hommes qui ne sont pas éternels… La contrainte de devoir mettre sur papier ce que l’on sait est un fameux gain de temps pour le suivant !


Normaliser la consommation

L’objectif

« Normaliser la consommation » : c’est la rendre insensible aux conditions climatiques. En fait, on ramène la consommation à ce qu’elle aurait été « si le climat de l’année avait été celui d’une année moyenne ».

C’est une condition indispensable pour comparer la consommation d’une année à celle de l’année précédente, pour repérer une anomalie quelconque dans l’évolution des consommations : encrassement d’une chaudière, dérèglement de la régulation, …

1ère étape : relever la consommation

Idéalement, ceux-ci se font sur fiches pré-imprimées. Chaque point de comptage (compteur gaz, jauge à mazout, compteur fuel,…) porte un numéro d’identification correspondant au numéro de fiche à transmettre et au code utilisé dans le tableau de bord. Il importe que les relevés soient réalisés à dates fixes. Si un contrôle mensuel est organisé, c’est idéalement au 1er ou au 31 du mois que les relevés doivent être faits, afin de coïncider avec les données climatiques de l’IRM (à défaut, avec les dates de relevé, on pourra corriger la lecture).

Voici une fiche type pour la collecte des données.

Pour le calcul de la consommation, la formule généralement applicable est :

consommation = index d’arrivée – index de départ

Dans le cas du mazout, à défaut d’un système de comptage, on appliquera la formule suivante :

consommation = index de départ + approvisionnement éventuel – index d’arrivée.

D’autres dispositifs peuvent être mis en place pour la mesure des consommations fuel.

Quelle doit être la fréquence des mesures ?

Tout dépend de l’objectif :

  • S’il s’agit du simple contrôle d’un petit bâtiment, un contrôle annuel suffit. On comparera alors les années entre elles, en normalisant préalablement les consommations (c.-à-d. en les ramenant toutes à la valeur qu’elles auraient eu pour une année climatique moyenne).
  • S’il s’agit d’un bâtiment fort important (hôpital, par exemple), un contrôle mensuel sera nécessaire parce qu’une dérive des consommations entraîne rapidement des frais importants. Dans ce cas on appliquera la signature énergétique.
  • S’il s’agit de mettre au point les paramètres d’une régulation, un relevé hebdomadaire peut être temporairement nécessaire.

2ème étape : convertir les relevés en valeurs standards

Pour comparer des 10 000 m³ de gaz et 20 000 litres de fuel, il est utile de les convertir en une unité commune d’énergie : le Kilo-Watt-heure (kWh).

Cette étape n’est pas obligatoire: il est parfois plus explicite de dire « notre école consomme 60 litres de mazout/m²/an pour les besoins de chauffage, soit 30 Euros/m²/an », que « notre école consomme 600 kWh/m²/an … » !.

« Convertir » = multiplier la consommation en unités physiques par la valeur du PCI, Pouvoir Calorifique Inférieur du combustible. Voici des valeurs moyennes indicatives (elles varient très légèrement en permanence) :

Facteur conversion ou PCI du combustible
Vecteur Unité en MJ en kWh
Gaz naturel pauvre 32,97 9,16
Électricité kWh 3,6 1
Gaz butane kg 45,56 12,66
Gaz naturel riche (distribué en Wallonie) 36,43 10,12
Houille kg 29,3 8,14
Anthracite 10/20 kg 31,4 8,72
Coke kg 28,5 7,92
Propane L 23,72 6,59
Gasoil chauffage L 35,87 9,95
Fuel léger L 36,37 10,10
Fuel moyen L 37,68 10,47
Fuel lourd L 38,16 10,60
Fuel extra lourd L 38,58 10,72
Formule : consommation en unité lue x fact. conversion = consommation en kWh
Exemple : 1 000 kg gaz butane x 12,66 kWh/kg = 12 660 KWh
Remarques :
  1. Physiquement, 1 kWh c’est la consommation d’une lampe de 100 W durant 10 heures ! C’est aussi l’équivalent de 3,6 MJ (MégaJoules) mais c’est plus difficile à se représenter …
  2. A retenir en première approximation : 1 m³ de gaz = 1 litre de mazout = 10 kWh.
  3. Attention, le distributeur de gaz annonce en général le PCS, Pouvoir Calorifique Supérieur, sur sa facture.

3ème étape : normaliser les consommations

Pour évaluer la rigueur du climat, on utilise une mesure : le nombre de degrés-jours (DJ). Plus il fait froid, plus le nombre de degrés-jours est élevé.

La valeur moyenne des Degrés Jours pour un lieu (établie sur les 30 dernières années) est appelée « Degrés-Jours Normaux ».

Connaissant les Degrés-Jours Normaux de la région, et le nombre de Degrés-Jours de l’année écoulée, on peut ramener la consommation d’un bâtiment à la valeur qu’elle aurait eu pour une année moyenne, … par une simple règle de trois !

Consommation normalisée =

(consommation observée x DJ Normaux du lieu) / DJ du lieu de la période d’observation

Théories

Afin de tout connaître sur le principe des Degrés-jours, n’hésitez pas à parcourir cette page.
Exemple.
Consommation 2003 : 30 000 litres.
DJ de l’année 2003 à Houtsiplou : 2 560 DJ.
DJ d’une année moyenne à Houtsiplou : 2 300 DJ (DJ Normaux du lieu).
Consommation normalisée : 30 000 x 2 300 / 2 560 = 26 953 litres.Autrement dit, l’année ayant été 10 % plus froide que la normale, la consommation normalisée (= ramenée à une année normale) est 10 % plus faible.

Établir les ratios de consommations

Ensuite, il est possible d’en tirer les ratios énergétiques :

Relever le coût total des consommations de combustibles : C € / an
Relever le total annuel des kWh consommés : Q kWh / an
Déterminer la surface de référence des locaux :
(il s’agit de la surface brute de plancher, mesurée par l’extérieur des murs, cage d’escalier et couloir compris. Si la surface nette du plancher est connue, on peut la majorer de 10 %. Les chaufferies et garages sont exclus du calcul).
S
ratio financier : C / S [€ / m² x an]
ratio de consommation : Q / S [kWh / m² x an]

Remarque :

Suivant le secteur d’activité, il peut être intéressant d’établir les ratios par unité représentative de l’activité : consommation par occupant, par élève, par lit, par repas, …


Réaliser le suivi des consommations

Pour pouvoir comparer les consommations d’une année à l’autre, il est possible de dresser les graphiques d’évolution sur tableur : on pourra y détecter des dérives de consommation.

Comptabiiteenergetique1.gif (3255 octets)

On peut aussi calculer les consommations spécifiques (kWh/m², kWh/élève, kWh/lit,…) et les comparer aux valeurs moyennes du secteur.

 Évaluer

Pour comparer les consommations du bâtiment à celles des autres bâtiments du secteur.

Tout dernièrement, sur l’impulsion de la Région wallonne, les Facilitateurs URE de Wallonie ont crée un modèle de cadastre énergétique mis a disposition en ligne pour les communes et institutions désireuses de suivre et gérer leur consommations.

Calculs

Pour accéder à différents outils de cadastre énergétique.

Études de cas

Si vous souhaitez parcourir la mise en place d’une comptabilité énergétique au Collège du Sacré Cœur.

Un tableur pour accompagner un projet de sensibilisation dans un bâtiment tertiaire  !

Des projets de sensibilisation voient le jour actuellement avec un retour partiel vers les occupants des économies générées.

Ainsi, avec les économies d’énergie, le collège Saint Louis de Liège a décidé d’engager un peintre, chômeur de longue durée, pour rafraîchir couloirs et classes. Les élèves sont aujourd’hui conscients que son emploi est lié à leur motivation, jour après jour…  Pour plus d’infos sur ce projet.

Autre projet : une commune bruxelloise a décidé de motiver ses écoles en redistribuant pour partie les économies d’électricité, de chauffage et d’eau réalisées : 1/3 pour l’école (avec totale liberté d’affectation), 1/3 pour l’école (avec affectation dans des outils économiseurs du type ferme-porte automatique, vannes thermostatiques, …) et 1/3 pour la commune.

Un fichier Excel spécifique a été établi pour le suivi des consommations, avec un diagramme comparant chaque mois la consommation à celle de l’année précédente. La comparaison en chauffage ne pouvait se faire qu’après normalisation des consommations.

Un diagramme similaire est établi pour les consommations électriques.

Si vous souhaitez accéder au fichier Excel établi dans ce cadre (xls compressé).

Si vous souhaitez visionner une application de ce logiciel pour un bâtiment particulier (xls compressé).

Si vous souhaitez parcourir le mode d’emploi de ce logiciel.  (PDF)

Si vous recherchez des informations complémentaires à propos de ce logiciel, n’hésitez pas à contacter J. Claessens de la cellule Architecture et Climat (jacques.claessens@uclouvain.be).


Informer et puis agir !

Informer les services techniques et responsables des bâtiments

Qui connaît la consommation du bâtiment dans lequel il travaille ? Comment s’étonner alors qu’il soit si peu motivé à éteindre la lumière…?

Pire : quel est le technicien d’entretien qui connaît l’évolution de la consommation de son bâtiment ses dernières années ? C’est un outil de base pour le motiver à agir. C’est une photographie de la qualité de son travail !

Il est donc très utile que le service comptable diffuse ces informations. Idéalement, il pourrait en informer le service technique dès qu’il perçoit une dérive de consommation.

Aller plus loin ?

Evaluer

Pour comprendre et analyser les paramètres de la facture électrique.

Gérer

Pour définir le(s) bâtiment(s) prioritaire(s).

Evaluer

Pour comparer le bâtiment aux autres bâtiments du secteur.

Evaluer

Pour repérer les mesures les plus rentables.