Tout au LED

Actuellement, en termes d’éclairage, on s’oriente en majorité vers la technologie LED. Celle-ci est en plein essor et ne cesse de s’améliorer au fil des années. Les arguments les plus souvent énoncés en faveur des LED sont leur grande efficacité lumineuse, leur durée de vie extrêmement longue et leur faible consommation électrique.

Technologie miracle ? Pas tout à fait…. Autant les LEDs paraissent meilleurs que la concurrence sur le plan performanciel et énergétique, il n’est pas de même en termes de confort visuel et d’impact sur la santé.


Le LED aujourd’hui

Aujourd’hui, les lampes à LED sont particulièrement performantes et beaucoup plus économes en énergie que les technologies classiques.

À titre d’exemple, le tableau comparatif ci-dessous provient d’une étude scientifique((L.T. Doulos et al. Minimizing energy consumption for artificial lighting in a typical classroom of a Hellenic public school aiming for near Zero Energy Building using LED DC luminaires and daylight harvesting systems, Energy and Buildings, Volume 194, 2019, Pages 201-217))  et met en évidence les dernières avancées en termes de LED par rapport à un luminaire classique à tube fluorescent. Les résultats peuvent évidemment dépendre selon les produits testés.

LED (AC supply) LED (DC supply) T5 2x35W
Puissance (W) 41.0 50.5 76.0
Efficacité lumineuse (lm/W) 116.1 107.6 62.0
Puissance spécifique (W/m2) 3.16 3.90 5.86
Nombres de luminaires utilisés 4 4 4
Puissance totale installée (W) 164 202 304
Consommation annuelle (kWh) 255.8 315.1 474.2
Eclairement (lx) 302 322 308

On remarque que les luminaires LED sont aujourd’hui largement plus efficaces en termes de consommation électrique, à niveau d’éclairement similaire.Il est donc très intéressant de se tourner vers des solutions 100% LED dans des projets de rénovation visant le zéro-carbone, d’autant plus que l’efficacité lumineuse retenue pour les luminaires ci-dessus n’est pas le plein potentiel de la technologie.


Effets sanitaires

Face à la constante amélioration de la technologie LED, l’ANSES (Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail) a récemment publié un nouveau rapport étudiant les effets sanitaires de ces systèmes sur la population. Les LED sont caractérisées par un spectre de lumière plus riche en lumière bleue et plus pauvre en lumière rouge que d’autres sources lumineuses, créant un déséquilibre spectral particulièrement nocif pour nos yeux. De plus, “les lumières à LED peuvent être plus éblouissantes que les lumières émises par d’autres technologies (incandescence, fluo-compactes, halogènes, etc.)” (ANSES, p.355). “Enfin, les LED sont très réactives aux fluctuations de leur courant d’alimentation. De ce fait, selon la qualité du courant injecté, des variations de lumière peuvent apparaître, suivant la fréquence et le niveau de ces variations.” (ANSES, p.355)

Le rapport étudie donc différents effets sanitaires :

  • les effets de la lumière bleue sur les rythmes circadiens (perturbation de l’horloge circadienne) ;
  • les effets de la lumière bleue sur le sommeil et sur la vigilance (retard de sommeil et altération de la quantité et qualité du sommeil) ;
  • les effets de la lumière bleue et des différents types de LED sur l’œil (phototoxicité, sécheresse oculaire, myopisation) ;
  • les effets de la lumière bleue sur la peau ;
  • les effets de la modulation temporelle de la lumière sur la santé ;
  • les effets liés à l’éblouissement.”((Source: https://www.anses.fr/fr/system/files/AP2014SA0253Ra.pdf – p.356))

Afin de protéger la population de tous ces effets sanitaires, l’ANSES émet une série de recommandations liées à l’utilisation de lumières à LED. Certaines sont de l’ordre de futures recherches à mener ou de suggestions d’évolutions réglementaires tandis que d’autres sont de l’ordre de bonnes pratiques à prendre en compte directement dans des projets de relighting. On retiendra les deux principales :

  • Limiter au plus possible l’exposition à des lumières froides (> 4000 K)
  • Exclure les lampes LED nues du champ de vision

Toutefois, les difficultés des LED ciblées dans l’étude sont surtout liées au lien entre lumière bleue et endormissement. Elles sont donc peu pertinentes dans les écoles.

Pour plus d’informations, celles-ci sont reprises dans le document « Effets sur la santé humaine et sur l’environnement (faune et flore) des diodes électroluminescentes (LED) » en page 363 : https://www.anses.fr/fr/system/files/AP2014SA0253Ra.pdf


Le LED en rénovation

Avant de se lancer dans un projet de rénovation de l’éclairage de l’école, il faut impérativement passer par l’étape d’analyse et de diagnostic de la situation existante. Pour cela, il est préférable de faire appel à un bureau spécialisé en éclairage. Cependant, il existe quelques outils sur le site de Rénover mon école qui vous permettront de réaliser un rapide diagnostic de l’installation lumineuse de vos salles de classe. Les pages suivantes sur Energie+ peuvent également être utiles :

Le site internet de Rénover mon école regroupe une grande partie des questions générales à se poser lors de la rénovation de l’éclairage. Attention que les informations mentionnées en termes d’objectifs et de techniques ne sont plus de toute fraîcheur… En plus de cela, elles ne visent pas l’objectif zéro-carbone qui nous intéresse dans ce dossier.

Pour plus d’infos concernant le passage au LED, consultez la page suivante.

Que faire donc dans notre cas ?

Procéder à un relighting de l’école dans une démarche zéro carbone nécessite de faire attention à deux points principaux :

  • Viser une puissance faible
  • Avoir une gestion efficace

En termes de puissance...

Comme vu plus haut, le LED offre de faibles puissances et donc a fortiori de meilleures performances énergétiques. C’est donc principalement vers cette technologie qu’il faut se tourner lorsqu’on envisage le relighting d’un bâtiment scolaire.

L’emplacement des luminaires dans le local a toute son importance en termes de puissance. Un moins grand nombre de luminaires, mais bien situés afin de garantir une uniformité de l’éclairement, permettra de réduire la puissance totale et donc la consommation en carbone.

La question de la gestion….

C’est principalement sur ce point qu’il est utile d’insister lorsque l’on conçoit un relighting d’une école. 35% de la facture énergétique des écoles correspond à l’électricité consommée par l’éclairage. Bien souvent, cela est dû à une mauvaise gestion du système d’éclairage. Il est impératif de rendre les occupants des locaux conscients de leurs décisions en limitant au maximum l’allumage automatique de lampes par exemple. L’extinction automatique, le zonage ou encore le dimming des lampes sont autant de principes qu’il est nécessaire de prendre en compte dans une démarche zéro-carbone. Pour plus d’informations sur ces techniques, consultez les pages suivantes :

De plus, une attention particulière doit être portée sur le programme de maintenance  afin  de garantir la pérennité du projet de relighting.

Rénover pour consommer…plus ?

Il est nécessaire de pointer la faiblesse actuelle en termes de niveaux d’éclairage dans les écoles. Les installations vétustes et inconfortables ne respectent souvent pas les normes visées lors de projets de relighting ou de constructions neuves. Dès lors, il se peut qu’après rénovation, le système d’éclairage consomme plus qu’auparavant. Cependant, au profit d’un meilleur confort visuel, qui s’avère bénéfique en de nombreux points pour tous.

Réemploi des systèmes existants

Lors de nouvelles constructions, il est facile et logique de concevoir l’ensemble de l’éclairage sur un système électrique approprié à la technologie LED. Mais est-il aussi simple d’adapter un système d’éclairage existant à la technologie LED? Dans un souci d’économie financière, est-il possible dans un projet de rénovation scolaire de garder les luminaires existants en y changeant simplement les tubes ?

Les luminaires existants de type tube T5 ou T8 sont toujours équipés de ballasts électroniques ou ferromagnétiques. Dans les deux cas, il est possible, moyennant certaines manipulations (voir article G0W), de passer d’une technologie de tube fluorescent vers des tubes LED. Il est donc tout à fait envisageable de maintenir les luminaires existants lors d’un projet de relighting au LED. Cependant, les lampes LED ayant des niveaux de luminance élevés, il est impératif d’utiliser des mécanismes optiques adaptés. On favorisera donc des mécanismes de réfraction ou de transmission à la place de mécanismes de réflexion.

À proscrire : mécanismes de réflexion

À recommander : mécanismes de réfraction


Recommandations

Les situations de relighting sont très différentes en fonction de l’usage des espaces à rénover. La disposition des luminaires, le type de luminaire, la température de lumière ou encore le mode de gestion de l’éclairage sont autant de paramètres qui varient en fonction de l’utilisation de l’espace.

Le site de Rénover mon école reprend, sur les deux pages suivantes, les grandes recommandations à prendre en compte pour des classes, des espaces de circulations, des bureaux ou encore des réfectoires : 

La place des énergies renouvelables à l’école


Quel intérêt pour une école ?

La production d’énergie renouvelable sur le site par des technologies peu émettrices en carbone  reste la meilleure manière pour des écoles d’atteindre le net zéro énergie et donc le net zéro carbone.

Une bonne utilisation de ces technologies renouvelables peut permettre de combattre les pics d’énergie de pointe, de compenser le talon de consommation de l’école, ou encore, dans les meilleurs cas, de couvrir l’ensemble des besoins en énergie de l’établissement. Il faut cependant éviter de tomber dans le travers d’un système renouvelable devant compenser des performances thermiques limitées d’un bâtiment ! Il est et sera toujours mieux de chercher à se passer d’un appoint d’énergie que de la produire de manière renouvelable.

De plus, la présence et la visibilité de sources de production d’énergie renouvelable sur le site de l’école s’accompagnent de potentiels pédagogiques non négligeables.


Quelle puissance nécessaire ? 

En moyenne, les écoles en Wallonie consomment en électricité 200 kWh/élève par an. Pour les écoles de taille moyenne, la consommation annuelle en électricité (sans ventilation) revient donc à 80 000 kWh.

Si l’on considère une réduction de 20% de celle-ci grâce à des actions comme celles proposées par le défi Génération 0 Watt, on peut considérer des consommations se situant autour des 160 kWh/élève par an comme base de travail.

Certains établissements ayant effectué un travail beaucoup plus important peuvent atteindre des consommations bien plus basses, de l’ordre de 50 kWh/élève par an. On peut majorer ces chiffres de 7 à 13 kWh/an par élève lorsqu’on ajoute un système de ventilation simple ou double flux.

Le tableau ci-dessous reprend les consommations électriques et thermiques théoriques moyennes en fonction du degré de rénovation. Ceci permet donc d’une part de se situer par rapport aux autres établissement et d’autre part d’évaluer le potentiel d’efficacité d’une production d’énergie renouvelable.

Actuel Actuel 0 Watt

(-20%)

Rénovation presque passive Rénovation passive
Electrique (sans chauffage) 200 kWh/élève.an

25kWh/m².an

160 kWh/élève

20kWh/m².an

50 kWh/élève

6kWh/m².an

25 kWh/élève

3 kWh/m².an

Thermique 1100 kWh/élève

138kWh/m².an

Même que l’actuel car 0 Watt agit sur la consommation électrique surtout. 240 kWh/élève

30 kWh/m².an

120 kWh/élève

15 kWh/m².an

VMC / / 10 kWh/élève 7 kWh/élève

Quelle technologie choisir pour une école ?

Il existe plusieurs sources de production d’énergie renouvelable. Les panneaux photovoltaïques et l’éolien sont les plus propices à être utilisés dans des bâtiments scolaires. Dans ce type de bâtiment, il est impératif d’utiliser des technologies qui soient faciles en maintenance et en entretien afin qu’elles puissent faire profiter au mieux de leur plein potentiel. La cogénération est donc plus délicate, mais pas à exclure pour autant.

Bien que la dimension technique soit probablement la plus efficace dans la diminution des émissions de carbone, elle peut facilement entraîner l’effet inverse. En effet, il est nécessaire pour les écoles d’avoir des responsables énergie et des équipes pédagogiques formées en amont du passage à l’action, pour une mise en place efficiente des systèmes. Equiper les écoles d’installations très performantes mais complexes à gérer ne fonctionne pas. Les écoles ne possèdent actuellement pas de gestionnaires techniques capables d’assurer la gestion de ces systèmes. La rénovation zéro carbone de manière générale est donc une tâche très complexe qui fait appel à toute une série de technologies et qui nécessite une sensibilisation et un renforcement des compétences des parties prenantes.

  • Panneaux photovoltaïques

Le photovoltaïque est la technologie la plus adaptée pour des écoles, elle demande peu de maintenance et offre un rendement efficace pour les consommations électriques d’une école. Mais attention que les panneaux photovoltaïques prennent énormément d’espace ! De grandes surfaces de toiture sont donc nécessaires pour une installation optimale.

A titre d’exemple :

  • Si l’école consomme 160 kWh/élève par an -> 64 000 kWh par an pour une école de 400 élèves

Il faudra environ 600 m² de panneaux (plus de 300 panneaux) ((https://www.ef4.be/fr/pv/composants-dun-systeme/dimensionnement-projet-photovoltaique.html)).

  • Si l’école consomme 50 kwh/élève par an après rénovation -> 20 000 kWh par an pour une école de 400 élèves

Il faudra presque 200 m² de panneaux (une centaine de panneaux).

Pour plus d’informations sur la technologie photovoltaïque, consultez les pages suivantes :

Éolien

Une autre possibilité de production d’énergie verte pour l’école est le petit éolien. C’est une technologie qu’on rencontre moins mais qui n’est toutefois pas à négliger. Elle permet, avec relativement peu de moyens, de compenser des besoins électriques faibles. En effet, le petit éolien trouve sa place dans des écoles de petite taille ou dans des écoles ayant déjà réduit considérablement leurs besoins en électricité.

A titre d’exemple :

  • 2 éoliennes de puissance 5kW (10 à 12m de haut) qui tournent pendant 2000 h/an (5h30 par jour) chacune à puissance nominale peuvent produire 20 000 kWh par an. Soit l’équivalent d’une école de 400 élèves consommant en électricité 50 kWh/élève.

Cependant, la majorité du temps, l’éolienne ne fonctionne pas à puissance nominale, le vent n’étant généralement pas suffisant pour garantir cela. Du coup, il faudra une puissance installée supérieure avec des éoliennes qu’avec des centrales classiques pour atteindre une même production d’énergie annuelle. Il est possible recalculer le nombre d’heures que l’éolienne doit tourner à puissance nominale pour débiter la même production électrique annuelle (avec un vent dont la vitesse varie). Typiquement, la production annuelle électrique d’une petite éolienne en Wallonie correspond à 11 % du temps à puissance nominale.

Les petites éoliennes ((Images provenant de https://neonext.fr/eolienne-skystream/)) ne sont pas toujours à axe horizontal comme sur les images ci-dessus. On retrouve de plus en plus d’éoliennes à axe vertical, principalement en milieu urbain. Elles s’y adaptent particulièrement bien car elles peuvent fonctionner avec des vents venant de toutes les directions. De plus, elles sont relativement silencieuses, peuvent facilement s’intégrer à l’architecture des bâtiments, permettent de placer la génératrice au niveau du sol et ne nécessitent pas de mécanisme d’orientation((https://energie.wallonie.be/fr/vade-mecum-pour-l-implantation-d-eoliennes-de-faible-puissance-en-wallonie.html?IDD=77455&IDC=6170)).

Les projets de petit éolien permettent donc d’organiser son indépendance énergétique moyennant certaines formalités. Les démarches administratives, les contraintes urbanistiques ou encore les limites techniques sont autant d’obstacles qui peuvent freiner les porteurs de projets à s’orienter vers ce type de production d’énergie. Le vade-mecum de la Région Wallonne pour l’implantation d’éoliennes à faible puissance vous accompagnera dans toutes vos démarches et questions relatives à cette technologie. Vous pouvez également prendre connaissance de ce projet de construction d’éolienne par des élèves pour leur école à Verviers.

Pour encore plus d’informations sur la technologie éolienne, consultez les pages suivantes :

  • Cogénération

Elle permet de couvrir relativement aisément les besoins en électricité d’une école. Cependant, la cogénération n’est pas la technologie la plus adaptée dans ce contexte car elle demande trop de maintenance et de gestion. A ce jour, les écoles n’ont pas de personnel spécialisé ou de gestionnaire technique attitré pour gérer le fonctionnement d’installations comme celles-ci.

Toutefois, il peut être intéressant pour une école d’avoir recours à la cogénération par le biais d’un tiers investisseur. Celui-ci s’occupe des études préliminaires, de l’installation et de la maintenance, sans que l’école ne doive intervenir. Ou encore, l’école peut se greffer à des réseaux de chaleurs existants dans son quartier/sa commune, dont l’énergie partagée est produite via des technologies de cogénération.


Place de l’école dans des communautés d’énergie

La production d’énergie renouvelable au sein de l’école offre de nombreux avantages, dont celui d’offrir le potentiel de créer des communautés d’énergies. Les installations de production d’énergie dans les écoles produisent occasionnellement un grand surplus d’énergie, qu’il est bénéfique de faire profiter au plus grand nombre. Le regroupement autour d’un projet de communauté d’énergie permet ce partage.

Les écoles ont un rôle moteur au sein de ces communautés. Les établissements scolaires, par leur caractère éducatif, pédagogique, social et institutionnel, participent à stimuler et activer la société.  En adoptant un comportement exemplaire en faveur de la transition énergétique, les écoles deviennent également des vitrines qui portent un rôle exemplatif auprès des pouvoirs publics (particulièrement les écoles du réseau officiel).

Par ailleurs, la communauté d’énergie permet à l’école un retour sur investissement plus rapide des installations de production d’énergie. En effet, l’école profite d’un bénéfice en revendant son surplus d’énergie à un prix supérieur au prix du kWh renvoyé sur le réseau.

Pour plus d’informations à ce sujet n’hésitez pas à consulter la page consacrée aux communautés d’énergie.


Exemple de communauté d’énergie

Depuis 2020, une école de la commune de Ganshoren à Bruxelles a établi un projet de communauté d’énergie renouvelable autour de partage d’électricité. Celle-ci est produite tant par des panneaux disposés sur le toit de l’école (34,77 kWc) ainsi que chez un particulier (2,4 kWc) habitant dans le quartier de l’école.

Les surplus d’électricité venant de ces deux sources de production permettent d’alimenter en électricité verte une quinzaine de résidents du quartier ayant été équipés de compteurs intelligents.

Le surplus d’énergie autoconsommée est actuellement en grande partie complété par de l’électricité complémentaire venant de fournisseurs.

L’autoconsommation du surplus est vouée à de nombreuses améliorations, au fur et à mesure que les membres de la communauté s’habituent à une nouvelle gestion de leurs consommations électriques.

Pour plus d’informations sur le projet : https://nosbambins.be/

Choisir le système de ventilation dans les classes

© Architecture et climat 2023.

  1. Air neuf
  2. Air rejeté
  3. Prise d’air extérieur
  4. Bouches de pulsion
  5. Reprise d’air via grille de transfert
  6. Réseau de gainage
  7. Bouches d’extraction
  8. Silencieux
  9. Ventilateur
  10. Récupérateur de chaleur
  11. Filtres

L’objectif principal de la ventilation des salles de classe est de créer des conditions environnementales intérieures qui réduisent le risque de problèmes de santé chez les élèves et minimisent leur inconfort, afin d’éliminer tout effet négatif sur l’apprentissage.

Des expériences récentes montrent que des taux de ventilation inadéquats dans les salles de classe peuvent entraîner une prévalence élevée de symptômes de santé aigus, réduire la vitesse à laquelle les tâches linguistiques et mathématiques typiques du travail scolaire sont exécutées par les élèves, et peut réduire les progrès de l’apprentissage tels que mesurés par le nombre d’élèves qui réussissent les tests standard de mathématiques et de langues. Elle peut également accroître l’absentéisme, ce qui est susceptible d’avoir des conséquences négatives sur l’apprentissage. Ces effets donnent lieu à des coûts socio-économiques importants.

Malgré cet ensemble croissant de preuves, la plupart des données publiées dans la littérature scientifique indiquent que la ventilation des salles de classe dans de nombreuses écoles est encore inadéquate et que les taux d’apport d’air extérieur dans les écoles sont considérablement plus faibles que dans les bureaux, voire dans de nombreux cas plus faibles que ceux observés dans les habitations.


Quel débit choisir dans une classe ?

Les taux de ventilation sont réglementés par le code de bien-être au travail et par des arrêtés royaux. Le minimum régional imposé par la PEB est clair, il vise un débit de 22 m3/h par personne. Le code du bien-être au travail demande quant à lui minimum 40 m3/h par personne, ce qui permet d’atteindre moins de 800 PPM dans une classe de taille moyenne (24 enfants). Cependant, le deuxième chiffre clé de la directive est le seuil limite de 900 PPM. Assurer un débit de 32m3/h par personne permet de supposer celui-ci respecté.

La directive du code du bien-être au travail propose également une dérogation pour pouvoir se limiter à un débit de 25 m3/h ou 1200 PPM. Cette dérogation demande une analyse de risques des polluants dans la classe et un plan d’action sur quelques années. Les sources de polluants sont nombreuses dans les classes (colles, revêtements, peintures, produits d’entretien…), rendant cette dérogation difficilement applicable. Si toutefois, vous envisagez une telle dérogation, adressez-vous au conseiller en prévention compétent.


Performances du système double-flux

Seul des systèmes de ventilation mécanique à double flux permettent de respecter ces débits réglementaires. Grâce à une récupération de la chaleur des flux sortants, le système D limite l’inconfort et les besoins de chauffe dans les classes, le rendant particulièrement adapté à la démarche zéro-carbone.

Le système de ventilation double flux, c’est-à-dire équipé d’une pulsion et d’une extraction mécanique ainsi qu’un échangeur de chaleur, est le meilleur en terme de maîtrise des débits dans les locaux.

© Architecture et climat 2023.

  1. Air neuf
  2. Air rejeté
  3. Air vicié

Ce système est pratiquement indispensable dans les écoles en site urbain.

La distribution de l’air neuf est assurée par un réseau de conduits placé par exemple dans les faux plafonds des zones de circulation.

La diffusion de l’air neuf à l’intérieur de chaque classe est obtenue par une ou plusieurs bouches, soit murales, soit plafonnières.

© Architecture et climat 2023.

  1. Classe
  2. Couloir

L’extraction et le transfert se font comme pour le système simple flux. Vu l’importance des débits mis en jeu, l’extraction peut ne pas se limiter aux seuls sanitaires et se distribuer sur une partie des espaces de circulation, ceci pour éviter des courants d’air dans les sanitaires. Dans certains cas, l’extraction (ou une partie de celle-ci) pourra se faire directement dans les classes.

Concrètement, le choix du double flux par rapport au simple flux sera guidé par :

  • le souhait de garantir une répartition correcte des flux d’air,
  • le besoin de se protéger de l’ambiance extérieure (bruit et pollution),
  • le souhait de récupérer l’énergie de l’air extrait par un récupérateur de chaleur,

le besoin d’augmenter la température de l’air neuf.

Comme dit précédemment, la principale difficulté réside en l’encombrement des réseaux, qu’il n’est pas toujours possible d’intégrer dans un bâtiment existant. Dans certain cas, une décomposition du bâtiment en différentes zones équipées chacune de leur propre groupe et réseau de ventilation peut simplifier le problème :  une ventilation avec pulsion et extraction mécanique là où c’est possible, une simple extraction ailleurs.Il peut aussi être préférable d’opter pour des systèmes D de ventilation décentralisés, limitant l’encombrement causé par les gaines et les consommations électriques.

Pour les principes généraux sur les systèmes centralisés/décentralisés, consultez la page suivante: Choisir un système de ventilation centralisé ou décentralisé

Si vous souhaitez aller plus loin dans la gestion de la ventilation afin de prévenir la dispersion d’agents pathogènes, n’hésitez à consulter l’article réalisé en juillet 2020 durant la pandémie du COVID-19.


Ventilation décentralisée ou centralisée dans la classe?

Avantages

Ventilation décentralisée

  • Appropriation de la machine localement par les utilisateurs des classes, principalement les professeurs.
  • Permet de gérer les machines séparément, classe par classe, en fonction des besoins spécifiques de chacune. Cette modulation maximum permet de faire de fortes économies d’énergie.
  • Permet un investissement par étape. Les projets de rénovation ou les projets à petit budgets pourront donc en bénéficier plus facilement.
  •  Les gainages sont fortement limités, diminuant les consommations liées aux pertes de charges et les coûts d’entretien.

Ventilation centralisée

  • Ce sont des technologies qui ont quelques années déjà. Leur durabilité est donc garantie par une réparabilité quasi assurée.
  • Les travaux de maintenance sont centralisés en un seul endroit, au cœur de l’installation.
Inconvénients
  • La maintenance doit être faite sur chaque machine.
  • C’est une technologie encore très récente, rendant la question de la réparabilité difficile à évaluer. La technologie est vouée à se développer grandement, les pièces la constituant changeront donc probablement rapidement.
  • Nécessite de multiples percements en façade pour alimenter les groupes
  • Ce sont des installations complexes qui nécessitent une gestion attentive.
  • Les écoles font souvent appel à des sociétés extérieures pour la maintenance, car elles ne veulent pas prendre cette responsabilité, ce qui représente des coûts importants.
  • Les gainages sont très importants, nécessitant énormément de place.
  • Les groupes et gaines qui sont situés en extérieur périssent rapidement sous l’effet des intempéries.

Que prévoir comme régulation?

  • Une régulation sur base d’un horaire par local, pour éviter toute consommation en soirée et week-end. Pour affiner cela, possibilité d’une modulation du débit sur base d’une mesure CO² par classe, ce qui est bien plus simple dans un système décentralisé : en cas d’absences, de travail en plus petits groupes ou autres, réduire le débit permet d’éviter un air trop sec et de limiter le bruit généré par le système de ventilation.
  • Si possible : une modulation du débit dans la programmation, pour éviter le tout ou rien, car un fonctionnement à pleine charge risque d’être bruyant.Par exemple, demander un démarrage à débit réduit pour une concentration CO² de 500ppm, avec une montée progressive jusqu’au débit de dimensionnement lorsque la concentration atteint la cible de 900ppm.
  • Avoir une possibilité de dérogation (on/off) par local, moyennant une action simple de l’utilisateur, est recommandée. Cela permet de répondre à des besoins ponctuels imprévisible, et évite bien des frustrations. Une fonction de retour à la normale après un temps raisonnable doit évidemment suivre la dérogation.
  • Modifier la régulation pour la belle saison : ne démarrer par exemple que lorsque la concentration intérieure atteint le seuil de 900ppm. En combinant cette mesure à un message vers les enseignants du type “il fait beau, on ouvre les fenêtres ! “. L’idée étant d’éviter la consommation d’énergie liée aux ventilateurs ne laissant aux occupants la gestion de la qualité de l’air que par l’ouverture des fenêtres, la VMC restant en « backup » si, pour une raison ou l’autre, la qualité d’air n’est pas suffisante.Placer un afficheur CO² dans les classes peut être utile en soutient à la responsabilisation des occupants.

A ne pas oublier : les classes sont souvent sujettes à la surchauffe en fin de printemps et dans les premières semaines de l’année. Le décalage du calendrier scolaire vers le mois d’août va renforcer ce risque. Pour limiter cela, il faut pouvoir combiner des protections solaires et l’ouverture des fenêtres, ce qui n’est pas toujours évident. Dès lors, une fonction « Free-Cooling » sur la VMC est utile : un enclenchement de la ventilation au débit correspondant à une classe occupée lorsque la température intérieure monte (25 … 26°C°) alors que la température extérieure reste agréable.

Enfin, pensez à exiger un système qui vous permette un suivi à distance : visualisation des courbes de débits brassés, de qualité d’air, température et humidité dans les classes, avec des alarmes programmables et, si possible, une possibilité de modification des paramètres de régulation à distance


Autres systèmes

Si la réalisation d’un système D n’est pas envisageable dans le projet de rénovation, il existe d’autres moyens pour ventiler la classe. Toutefois, ces stratégies sont nettement moins efficaces et ne permettront pas d’atteindre les débits réglementaires. De plus, sans système D, il n’y a pas de récupération de chaleur possible, ce qui accentuera sensiblement les besoins de chaleur de l’école et donc indirectement les factures liées à la consommation énergétique de chauffage.

Limites de la ventilation par ouverture des fenêtres

La ventilation par ouverture des fenêtres est bien souvent l’unique moyen de ventilation utilisé dans la majorité des écoles actuelles, malgré qu’elle réponde difficilement aux critères d’hygiène et de confort exigés :

  • Le confinement de l’air d’une salle de classe normalement occupée et ventilée par ouverture des fenêtres aux intercours est atteint après un quart d’heure d’occupation. De plus, la ventilation est totalement liée à la bonne volonté des occupants.
  • L’ouverture des fenêtres engendre d’importants mouvements d’air froid, ce qui rend quasiment impossible la ventilation continue en période d’occupation, c’est-à-dire pendant la production des polluants. Durant cette période les inétanchéités des fenêtres sont, par contre, insuffisantes pour assurer les débits d’air recommandés

Ventilation simple flux avec extraction sanitaire

Lorsque l’ambiance extérieure (bruit et pollution limités) le permet, la solution la plus simple à mettre en œuvre est le système simple flux avec extraction sanitaire.

© Architecture et climat 2023.

  1. Air neuf
  2. Air vicié
  • L’air neuf est de préférence introduit dans les bureaux au moyen de grilles autoréglables placées en façade dans les menuiseries ou la maçonnerie.

 Grille intégrée entre le vitrage et la menuiserie    Grille verticale intégrée dans la menuiserie

  • L’air vicié est évacué dans les sanitaires au moyen d’un ventilateur d’extraction.
  • Les transferts d’air entre classes et sanitaires se font, soit par un détalonnage des portes, soit par des passages appropriés avec grilles à chevrons ou autre.

Grille de transfert d’air

Exemple

Dans une école du Brabant wallon, l’air neuf est introduit dans les classes par des ouvertures auto réglables et transféré sous les portes vers les sanitaires.

Les circuits d’extraction (conduits et ventilateurs) sont, dans la plupart des cas, communs à plusieurs niveaux. Ils sont généralement conçus suivant le principe du “parapluie”. Les conduits verticaux empruntent les gaines techniques également verticales et les conduits horizontaux passent dans l’épaisseur des faux plafonds. Ces ensembles desservent à chaque niveau une ou plusieurs zones sanitaires.

Étant donné l’absence de conduit de distribution vers chaque classe, l’espace nécessaire aux locaux techniques et aux conduits d’air est peu important. Ceci prend toute son importance en regard des hauteurs de faux plafonds qui n’ont pas à tenir compte du passage de conduits d’air.

Ce système appliqué aux écoles présente comme inconvénients :

  • La nécessité d’un nombre important de grilles d’amenée d’air auto réglables : par exemple, une classe de 60 m² demande un débit de ventilation de : 8,6 [m³/h.m²] x 60 [m²] = 516 [m³/h]. Or le débit maximum obtenu par grille est de l’ordre de 30 à 180 m³/h par mètre courant (sous 2 Pa). Il faut donc intégrer de 5 à 20 m de grilles dans la façade, ce qui n’est pas toujours évident. Une alternative est d’utiliser ne fenêtre robotisée comme amenée d’air.
  • La transmission de bruit possible au travers des grilles de transfert.
  • Le risque de courants d’air froid dus au débit d’air frais introduit dans la classe. L’utilisation de fenêtres robotisées, basée sur une sonde CO², permettrait de moduler le débit aux besoins réels, réduisant (un peu) le risque de courant d’air. On peut même envisager de coupler cette robotisation à une sonde d’absence et une horloge, pour assurer une ventilation maximale pendant les récréations.
  • Le risque de perturbation du flux d’air en fonction de l’ouverture des fenêtres et des portes.
  • L’absence de filtration de l’air neuf en milieu urbain.

A lire également afin d’aller plus loin sur cette thématique : Les différents systèmes de ventilation expliqué aux responsables énergie

les matériaux de construction

Limiter les impacts de l’utilisation des matériaux de construction

L’analyse multicritère des impacts d’un matériau ou d’une solution est un exercice complexe.

Si on privilégie le réemploi et qu’on choisit des matériaux

  • fabriqués partir de matières premières renouvelables (et renouvelées !) et/ou ou à partir de matières recyclées ;
  • peu transformés (surtout thermiquement) ;
  • peu ou pas traité, n’utilisant pas de produits toxiques ;
  • résistants et réparables ;
  • issus de filières locales et d’entreprises qui respectent leurs travailleurs ;
  • assemblés mécaniquement ;
  • réutilisables ou recyclables en fin de vie.

Alors, on est dans le bon ! Analysons tout ceci de façon détaillée : ici

Plus d’info sur les hypothèses et la méthode d’évaluation ?

Plus d’info sur les outils d’évaluation des impacts environnementaux des matériaux ?

Des critères pour privilégier les matériaux durables

Choisir le compresseur de la machine frigorifique [Climatisation]

Choisir le compresseur de la machine frigorifique [Climatisation]

Choix du type de compresseur

Il existe de nombreuses technologies de conception des compresseurs.

Techniques

Pour découvrir ces diverses technologies, cliquez ici !

Pour aider à la sélection, il est possible de les regrouper par « familles » et d’en tirer leurs propriétés communes.

On distingue les compresseurs par le mode de compression :

  • Le compresseur volumétrique, la compression du fluide frigorigène se fait par réduction du volume de la chambre de compression. Il existe des compresseurs à piston, à vis, à spirales (compresseurs scroll) et des compresseurs rotatifs.
  • Le compresseur centrifuge, où la compression du fluide est créée par la force centrifuge générée par une roue à aubes. On parle de turbocompresseur.

On les distingue également par l’association moteur-compresseur :

  • Le compresseur ouvert, où le moteur est dissocié du compresseur et raccordé par un manchon ou une courroie. L’accès aux différents éléments est possible pour réparation et la vitesse de rotation est modifiable en changeant la poulie du moteur. Mais ces deux avantages (fort théoriques…) ne compensent pas le défaut majeur de l’existence d’un joint d’étanchéité rotatif à la traversée du carter par l’arbre. Ce joint, qui doit être lubrifié pour assurer l’étanchéité, est source de fuites… inacceptables aujourd’hui dans un contexte « zéro-fuite ».
  • Le compresseur hermétique, où moteur et compresseur sont enfermés dans une même enveloppe. Le joint tournant disparaît et avec lui le risque de fuite. Mais des contraintes nouvelles apparaissent, dont le fait que le refroidissement du moteur est réalisé par le fluide frigorigène lui-même. Cet échauffement est préjudiciable au cycle frigorifique puisque la température à l’aspiration du compresseur augmente. De plus, si le moteur vient à griller, c’est l’ensemble du circuit frigorifique qui sera pollué : un nettoyage complet du circuit doit être réalisé si l’on veut éviter de nouveaux ennuis. En cas de problème, il n’est plus possible de réparer… Dès lors, un organe de sécurité contre la surchauffe (Klixon) est incorporé. Grâce à cette sécurité thermique, montée dans les enroulements du moteur ou sur ces derniers, l’alimentation électrique sera coupée lors d’une surchauffe du moteur.Le compresseur hermétique est couramment utilisé pour les petites et moyennes puissances : climatiseurs, armoires de climatisation, pompes à chaleur, …
  • Le compresseur semi-hermétique, qui réalise un compromis entre les deux produits précédents. Il tente de bénéficier des avantages du groupe ouvert (accès aux mécanismes) et du groupe hermétique (limitation des fuites). Mais l’étanchéité reste imparfaite (nombre de joints non négligeable) et le prix est sensiblement plus élevé que pour le compresseur hermétique.Le compresseur semi-hermétique est utilisé pour les moyennes puissances.

Critères énergétiques de sélection parmi les différents types de compresseur

Tous les compresseurs ne présentent pas une performance égale. Cette performance peut être mesurée via le COP de la machine frigorifique dans laquelle ils seront insérés. Le tableau ci-dessous (valeurs recommandées par le standard ARI) permet d’apprécier globalement la performance que l’on peut attendre des différents types de compresseurs :

Type d’équipement

COP min. recommandé (kWr/kWe)

Groupes de production d’eau glacée à pistons

A refroidissement par air

– Jusqu’à 100 kWr
– Supérieur à 100 kWr

A refroidissement par eau

– jusqu’à 10 kWr
– Supérieur à 10 kWr

 

 

3,0
3,0

 

3,7
4,0

Groupes de production d’eau glacée à vis

A refroidissement par air

A refroidissement par eau

– jusqu’à 800 kWr
– Supérieur à 800 kWr

 

4,5

 

4,6
5,0

Groupes de production d’eau glacée centrifuges

A refroidissement par air

– jusqu’à 800 kWr
– Supérieur à 800 kWr

A refroidissement par eau

– jusqu’à 800 kWr
– Supérieur à 800 kWr

3,8
3,84,5
4,7

Conditions standard ARI 550/590-98. Exemple : pour groupes de production d’eau glacée, température départ eau glacée = 6,7°C ; température entrée condenseur à eau = 29,4°C / à air = 35,0°C.

Comment choisir ?

Globalement, la tendance actuelle est :

  • à l’abandon des machines à mouvement alternatif (compresseur à piston),
  • au développement des machines tournantes, à came rotative, à spirale rotative (scroll) ou à vis.


Le compresseur à vis …


… et la vis en question !

Compresseur scroll.

Les avantages portent :

  • sur une réduction des pièces mécaniques en mouvement (suppression des clapets) et donc une plus grande fiabilité,
  • un rendement volumétrique d’un compresseur assez bon grâce à l’absence d’espaces morts, comme dans les compresseurs à pistons,
  • une meilleure modulation de puissance,
  • une plus grande longévité,
  • un niveau sonore nettement plus favorable (moins de vibrations), surtout pour les appareils hermétiques,
  • une moindre sensibilité aux entrées de fluide frigorigène liquide (« coups de liquide » destructeurs des compresseurs à pistons),
  • un coût de maintenance également plus faible, puisque le risque de panne est diminué.

Pas de secret : leur coût d’achat est encore plus élevé…

On choisira des compresseurs hermétiques ou semi-hermétiques pour atteindre l’objectif zéro-fuite de fluide frigorigène, objectif qui sera un jour obligatoire au niveau réglementaire.

La puissance frigorifique à atteindre constitue un critère de choix de départ, mais la sélection d’un compresseur demande une vue globale sur les typologies disponibles en fonction de la puissance frigorifique et sur le mode de régulation de puissance. Un camion peut être très performant, mais s’il est trop puissant, il n’atteint pas la performance de 2 camionnettes…

Dans le tableau synthèse de sélection, on trouvera les deux critères rassemblés.

Critères énergétiques de sélection du compresseur lui-même

Pour les compresseurs à vis comme pour les compresseurs scroll, le risque est de sélectionner un compresseur dont le taux de compression est trop élevé : le compresseur travaillera « pour rien » puisque le fluide frigorigène sera trop comprimé puis se détendra au travers de l’orifice de refoulement jusqu’à atteindre la pression de condensation.

La pression de condensation est liée au régime de fonctionnement du condenseur de l’installation. Il importe que la pression interne de refoulement soit la plus proche possible de la pression de condensation.

Le concepteur choisira un « rapport de volume interne » (cela correspond au taux de compression, mais exprimé sous forme d’un rapport entre les volumes à l’entrée et à la sortie du compresseur) approprié au cas d’utilisation et pour lequel le compresseur exige la plus faible puissance d’entraînement possible.

Pour les cas où les conditions de pression de fonctionnement varient fortement, on a mis au point le compresseur à vis à rapport de volume interne variable. Le taux de compression s’adapte automatiquement au rapport de pression utile en fonction des paramètres de température de condensation et de température d’évaporation.

Cette technique optimalise le rendement énergétique tant à pleine charge, qu’à charge partielle.

L’insertion d’un économiseur (ou « superfeed » ou « suralimentation »)

Le fonctionnement technique de l’économiseur dépasse la portée de nos propos, mais le principe de base consiste à injecter une quantité de fluide frigorigène supplémentaire dans le compresseur, à une pression intermédiaire entre la pression de condensation et d’aspiration.

La puissance frigorifique en est nettement améliorée alors que la puissance absorbée n’augmente que légèrement.

On rencontre différentes modalités d’application de ce principe dans trois technologies de compresseur :

  • Dans les compresseurs à vis, où un orifice est prévu dans la paroi du stator pour injecter du fluide juste après la phase d’aspiration.
  • Dans les compresseurs rotatifs à palettes multiples, où une augmentation de 10 % de la puissance absorbée, génère de 20 à 30 % de la puissance frigorifique, suivant le régime de fonctionnement.
  • Dans les compresseurs centrifuges, où ce système est prévu par certains constructeurs lorsque le compresseur comporte deux roues. Les gaz supplémentaires sont injectés à l’entrée de la deuxième roue où ils se mélangent aux gaz refoulés de la première roue. Même si la puissance absorbée augmente, le coefficient de performance en est accru. On cite par exemple un COP accru de 6 % pour une température d’évaporation de 0°C et une température de condensation de 40°C.

Refroidisseur de liquide à compresseur centrifuge de 3 900 kW.

Prévoir dès le départ la mesure du COP de l’installation :

Pour la bonne gestion future d’une grosse installation, on peut imaginer de placer un compteur d’énergie sur l’eau glacée et un compteur électrique sur le compresseur (coût de l’ordre de 5 000 Euros). Il sera alors possible d’imposer un COP moyen annuel minimum à la société de maintenance… en laissant celle-ci se débrouiller pour y arriver. Un remboursement de la différence peut être prévu comme pénalité en cas de non-respect.


Choix de la technique de régulation de puissance

La puissance de la machine frigorifique a été dimensionnée pour répondre aux conditions de fonctionnement extrêmes (période de canicule), sans compter les surdimensionnements liés aux incertitudes d’occupation.

La première économie consiste à évaluer au plus près la puissance frigorifique nécessaire car la machine frigorifique s’adapte mal aux bas régimes. Chaque palier de diminution de 25 % de la puissance frigorifique du groupe ne réduit la puissance électrique absorbée que de 10 % en moyenne ! Pour vérifier les ordres de grandeur dans un cahier des charges, un ratio (très approximatif !) de 100 W/m² peut situer les besoins d’un bureau. La puissance totale du bâtiment ainsi trouvée sera multipliée par 2/3 pour tenir compte de la non-simultanéité des besoins.

Ensuite, il faut choisir une régulation qui lui permette de répondre à des besoins généralement beaucoup plus faibles que la valeur nominale et fluctuant dans le temps.

Diverses techniques de régulation sont possibles :

  • la régulation par « tout ou rien » (marche/arrêt ou pump-down),
  • la régulation progressive de la pression d’évaporation,
  • la régulation par « étages »,
  • la régulation par cascades (ou « centrales »),
  • la régulation par variation de vitesse ou « INVERTER »,
  • la mise hors-service de cylindres,
  • le by-pass des vapeurs refoulement-aspiration,
  • l’obturation de l’orifice d’aspiration,
  • la régulation par injection des gaz chauds,
  • la régulation « par tiroir » des compresseurs à vis,
  • la prérotation du fluide frigorigène dans les turbocompresseurs.

Les investissements dans une régulation performante sont très rentables. Le supplément de prix demandé par l’installation de plusieurs unités en cascade (centrale) ou d’unités avec un réglage fin de la production (turbocompresseurs et compresseurs à vis avec régulation de l’aspiration) est rapidement compensé par les économies d’énergie réalisées. Un surcroît d’investissement de 10 à 15 % génère de 20 à 30 % d’économie d’énergie.

Le découpage de la puissance

Classiquement, la solution consiste à répartir la puissance :

  • soit en choisissant un compresseur à plusieurs étages (= plusieurs cylindres ou plusieurs pistons),
  • soit en créant une cascade entre plusieurs compresseurs (= compresseurs en centrales).

Le choix d’un compresseur à plusieurs étages est réservé aux machines frigorifiques utilisées en congélation. Suite à la très basse température de l’évaporateur, la différence des pressions à vaincre par le compresseur est fort élevée. Il est alors très utile de décomposer la compression en deux étapes : c’est le rôle du compresseur bi-étagé. On choisit également ce système lorsque la température de refoulement des gaz comprimés devient trop élevée : c’est par exemple le cas de l’ammoniac.

Par contre, en climatisation, un montage en parallèle de plusieurs machines (montage « en centrale ») est simple et fiable puisque les machines restent indépendantes.

Compresseurs alternatifs
montés en tandem.

La variation progressive de la puissance est énergétiquement favorable puisqu’aucune machine n’est dégradée dans son fonctionnement.

Bien sûr, le coût d’investissement est plus élevé que si l’on utilisait une seule grosse machine, mais imaginerait-on d’installer une grosse chaudière sans prévoir une cascade pour reprendre les faibles besoins de la mi-saison ?

Un découpage de la puissance en étages est recommandé, tout particulièrement lorsque les variations de charge sont importantes.

Il en résultera :

  • Un gain sur les kWh (énergie) :
    • car le « petit » compresseur alimentera un condenseur surdimensionné pour ses besoins, d’où une pression de condensation plus basse,
    • car le rendement du moteur du compresseur sera amélioré.
  • Une longévité accrue de l’installation par un fonctionnement plus régulier.
  • Une sécurité d’exploitation.
  • Un gain sur la pointe 1/4 horaire en kW (puissance), facturée par la société distributrice.

En général, on établit les enclenchements en cascade sur base de l’évolution de la température de retour de la boucle d’eau glacée, température qui constitue une image des besoins du bâtiment. Le tout est temporisé de telle sorte que les compresseurs ne s’enclenchent pas tous les uns à la suite des autres.

Une bonne solution peut être également de réguler en fonction de la température du ballon-tampon, lorsqu’il est existant.

Pourquoi un ballon tampon ? Un compresseur ne peut démarrer et s’arrêter trop fréquemment sous peine de s’échauffer. Pour prolonger la durée de vie du matériel en diminuant le nombre de démarrages, le constructeur prévoit un « anti-court cycle », c’est-à-dire la temporisation du redémarrage si l’installation vient de s’arrêter. La présence du ballon tampon amplifie l’inertie thermique de l’installation, prolonge la durée de fonctionnement du compresseur, améliore le rendement du compresseur et supprime le risque qu’il soit bloqué par l’anti-court cycle.

On dimensionne un ballon tampon de telle sorte que son stockage corresponde à 5 à 10 minutes de la consommation en eau.

La variation de vitesse du compresseur

C’est une autre solution avantageuse en plein développement : soit un moteur d’entraînement à deux vitesses, soit un entraînement à vitesse variable. Cette dernière technique est sans aucun doute à recommander actuellement. Le régime de vitesse s’adapte à la puissance de réfrigération souhaitée. Par exemple, un variateur de fréquence génère une tension dont la fréquence varie entre 20 et 60 Hz. S’il s’agit d’un moteur prévu pour fonctionner à 1 500 tours à 50 Hz, il tournera entre 600 et 1 800 tours/min selon les besoins.

Pourquoi la limitation à 20 Hz ? Un défaut de lubrification du compresseur peut apparaître à basse vitesse, mais les constructeurs améliorent les systèmes régulièrement et trouvent des solutions.

Cette technique de variation de puissance par la variation de vitesse du compresseur (encore appelée INVERTER) entraîne :

  • un confort élevé (bonne stabilité de la température à l’évaporateur car régulation de la pression à l’aspiration du compresseur),
  • un rendement énergétique supérieur aux autres techniques de régulation de puissance, car on ne détruit pas le rendement volumétrique, on givre moins (en chambre frigorifique), on limite les dépassements de consigne de régulation propres aux systèmes de régulation tout ou rien (liés au différentiel de régulation),
  • une réduction du bruit et des vibrations,
  • un cos phi élevé (entre 0,95 et 0,98), ce qui permet d’éviter des pénalités ou le placement de condensateurs de compensation.

Audit

Pour comprendre la facture électrique, cliquez ici !

Réseau électrique

Pour comprendre le placement de condensateurs de compensation, cliquez ici !

Le supplément de coût (si un compresseur coûte 100, sa version avec variateur de vitesse tournera entre 150 et 180) sera rapidement amorti par l’économie d’exploitation. Il ne sera plus nécessaire de prévoir un démarrage « étoile-triangle » puisqu’un démarrage « en douceur » est réalisé par le variateur.

A priori, les différents types de compresseurs peuvent être équipés de cette technique (exceptés les petits compresseurs hermétiques), mais s’il s’agit de greffer un variateur sur un matériel existant, une consultation préalable du fabricant sera bienvenue (risque de défaut de lubrification).

Cette technique est également intéressante pour les compresseurs à vis (énergétiquement plus efficace que la régulation par tiroir), mais des troubles de lubrification et un échauffement du moteur peuvent apparaître à vitesse réduite.

La mise à l’arrêt de cylindres

Méthode assez répandue parmi les techniques de découpage de la puissance, il est possible de jouer avec la mise hors-service des cylindres (ce qui peut s’adapter sur une installation existante).

Avantage : pour éviter les pointes de courant de démarrage, il est possible de démarrer à vide le compresseur.

Inconvénients :

  • Ce réglage est énergétiquement moins favorable; les cylindres tournant à vide ont pour conséquence que, pour une puissance de réfrigération de 50 %, par exemple, la machine absorbe encore environ 65 % de la puissance d’entraînement.
  • La variation de la puissance n’est pas continue (sauts de puissance).
  • L’usure de la machine est pratiquement identique à vide ou en charge.

L’obturation de l’orifice d’aspiration

À cet égard, le réglage par un étranglement dans la conduite d’aspiration n’est pas meilleur. On modifie alors la puissance de réfrigération en agissant sur le débit du réfrigérant.

L’injection des gaz chauds

Quant au réglage de la puissance du compresseur par injection des gaz chauds dans l’évaporateur ou à l’entrée du compresseur, il faut le qualifier de « pur anéantissement d’énergie ». Dans ce cas, la puissance absorbée reste la même lorsque la puissance de réfrigération diminue. De plus, ils provoquent un échauffement du moteur. Dans la mesure du possible, il faut mettre ce système aberrant hors service dans les installations existantes.

C’est le compresseur qui travaille sur lui-même. On pourrait tenter l’image suivante : une pompe remonte de l’eau de la cave vers le rez-de-chaussée. Si l’eau vient à manquer, on risque de faire caviter la pompe. Aussi, on décider de redescendre de l’eau vers la cave, de réinjecter de l’eau supplémentaire à l’entrée de la pompe. Ainsi, on est sûr que le débit de la pompe restera suffisant !

Attention à l’injection de gaz chauds rencontrée en climatisation sur des groupes avec un compresseur n’ayant pas de système interne de régulation de puissance, utilisé sur des petits chillers et des systèmes à détente directe (roof-top, par exemple) : c’est absolument à proscrire.

(A ne pas confondre avec le dégivrage par injection de gaz chauds, qui est par contre une technique très efficace de dégivrage).

Tableau synthèse de sélection

L’importance d’une mesure préalable !

La mise en place d’une régulation performante demande de connaître la puissance effective nécessaire en fonction des saisons. Aussi, si le choix d’un compresseur doit être fait en vue du remplacement d’une machine existante, on placera un simple compteur horaire sur l’alimentation électrique du compresseur actuel pour ainsi connaître son temps de fonctionnement et donc la puissance moyenne demandée. Cela permettra de mieux choisir la nouvelle machine frigorifique.

Si l’installation doit vaincre les apports d’une machine spécifique à enclenchement discontinu, la puissance moyenne peut être trompeuse : à certains moments, c’est la puissance totale qui est demandée, et zéro le reste du temps… Idéalement, on enregistrera la puissance demandée, en relevant en parallèle la source des apports thermiques.

Type de compresseur Plages de puissance
(kW frigorifiques)
Régulation adaptée
Compresseur rotatif 10 W maximum
(climatiseurs individuels,
petits refroidisseurs d’eau)
  • Variation de la vitesse de rotation
  • Régulation admission gaz à l’aspiration
  • La tendance est d’associer deux ou plusieurs compresseurs sur une même machine

(*)

Compresseur scroll de 3 à 40 kW par compresseur
(mais possibilité de puissance supérieure par mise en parallèle de compresseurs)
Modulation de puissance optimale, par variation de la vitesse de rotation ou par mise en « centrale »
Compresseur à piston
Ouvert quelques dizaines de kW à plus de 1 000 kW Étanchéité aux fluides frigorigènes insuffisante aujourd’hui
Semi-hermétique de quelques dizaines de kW à quelques centaines de kW
  • Un compresseur à plusieurs étages
    ou plusieurs compresseurs en cascade (« centrale »)
  • Variation de la vitesse de rotation
Hermétique de quelques kW à plusieurs dizaines de kW Régulation type « marche/arrêt » commandée par thermostat d’ambiance ou sur circuit d’eau.

Tendance actuelle : plusieurs compresseurs en cascade (« centrale »)

Compresseur à vis de (20) 100 à 1 200 kW Excellente fiabilité et longévité

Modulation de puissance par « tiroirs » très souple, de 100 à 10 %, avec une très faible dégradation du COP par la régulation « par tiroirs », du moins au-dessus de 50 % de la puissance.

Compresseur centrifuge (ou turbo-compresseur) de (600) 1 000 à 4 000 kW Modulation de puissance optimale limitée à 35 %, par prérotation du fluide frigorigène à l’entrée de la roue.

(**)

(*) pour les compresseurs rotatifs, la modulation de puissance s’opère par modification du débit de fluide frigorigène, soit en faisant varier la vitesse de rotation du compresseur, soit en régulant l’admission des gaz à l’aspiration. Le rendement énergétique est sensiblement conservé à charge partielle, ce qui constitue un avantage important. Pour la même raison que pour les compresseurs à pistons, la tendance est d’associer deux ou plusieurs compresseurs sur une même machine.

(**) Pour les turbocompresseurs,

  • La variation de la vitesse de rotation ne peut se faire que sur une plage limitée et avec une diminution de rendement du compresseur. Concrètement, la variation de vitesse par moteur asynchrones triphasés est encore onéreuse, aussi la régulation par variation de vitesse n’est envisagée que lorsque le turbo compresseur est entraîné par une turbine à vapeur.
  • La régulation par modification des pressions du cycle est parfois rencontrée (augmentation de la pression de condensation par augmentation de la température au condenseur, et diminution de la température à l’évaporation en créant une perte de charge à l’aide d’un volet). cette technique est désastreuse sur le plan énergétique. Tout autant que la régulation par injection de gaz chauds à l’aspiration.
Remarque.
Choisir un compresseur performant, c’est bien. Le placer dans un environnement favorable, c’est mieux. En pratique, on sera très attentif aux assembliers qui proposent
« un échangeur + un compresseur + un échangeur ».
L’ensemble forme une machine frigorifique, certes, mais les pertes de charge liées aux échangeurs sont parfois très élevées pour le compresseur, ce qui augmente fortement sa consommation !On choisira de préférence une installation globale, montée d’usine et dont le fabricant garantit la performance globale.

Critères acoustiques

En local technique

C’est le compresseur qui génère le plus de bruit, il est donc toujours préférable de le placer en local technique lorsque l’on dispose d’un espace suffisant, tandis que le condenseur refroidi par air est placé en terrasse. Cette solution est la plus adaptée en ce qui concerne la diminution des nuisances sonores vers l’extérieur du bâtiment.

Lorsque les compresseurs sont placés en local technique, ils masquent tous les bruits de détente ou de circulation interne des fluides dans la machine. Pour diminuer les nuisances acoustiques du compresseur, il faut mettre en place les dispositifs suivants :

  • Mettre un capot acoustique sur la machine.
  • Prévoir une dalle flottante équipée d’isolateurs à ressorts.
  • Placer des plots en élastomère entre la machine et la dalle flottante.

Si le groupe évaporateur/compresseur est implanté au-dessus de locaux occupés, on peut placer un matelas de laine de verre entre la dalle flottante et le socle de propreté de la machine.

N.B. : la suspension anti-vibratile des compresseurs peut ne pas être suffisamment efficace car les compresseurs sont reliés aux autres éléments de façon rigide. Ainsi, on utilisera des manchettes souples pour relier l’évaporateur aux canalisations du réseau hydraulique.

En terrasse

Si on ne dispose pas d’un local de service, évaporateur, compresseurs et condenseur seront placés en terrasse. Mais, sur le plan acoustique, ce type de disposition est toujours à éviter.

Dans tous les cas, il faudra éloigner au maximum les compresseurs de tous les plaignants potentiels.

Remarquons que l’éloignement de la machine impose des longueurs de canalisations plus importantes, ce qui peut avoir une influence sur le dimensionnement des équipements (collecteurs, pompes, …) et augmenter le coût de l’installation.

Il faudra éviter de placer les compresseurs à proximité de parois qui pourraient augmenter sa directivité vers une zone sensible. Au contraire, il faudra envisager de placer la machine de façon à la cacher derrière un obstacle. Ainsi, en terrasse, on pourra placer la machine derrière la cabine d’ascenseur ou profiter de la présence de l’armoire électrique de la machine, par exemple.

Remarque.

Si la réduction des nuisances acoustiques est un critère important, le placement d’un variateur de vitesse sur le compresseur (qui se justifie déjà pour des raisons énergétiques) est incontournable.

Certains variateurs peuvent être paramétrés pour « sauter » la(les) gamme(s) de fréquence qui génère(nt) des vibrations du compresseur (fréquences de résonance de la machine). Simplement, il ne s’arrête pas sur ces fréquences critiques.

À titre d’exemple, voici quelques niveaux sonores donnés par un fabricant de groupes refroidisseurs de liquide (pression sonore mesurée à 10 m en champ libre en dBA).

– machines équipées de compresseur scroll hermétique :

Puissance comprise entre 17 et 35 kW : 43 dBA
Puissance comprise entre 38 et 100 kW : 55 dBA
Puissance comprise entre 101 et 200 kW : 61 dBA

Puissance comprise entre 201 et 245 kW : 65 dBA

– machines équipées de compresseur à piston semi-hermétique :

Puissance comprise entre 245 et 540 kW : 57 dBA
Puissance comprise entre 541 et 740 kW : 60 dBA

– machines équipées de compresseur à vis :

Puissance comprise entre 280 et 600 kW : 68 dBA
Puissance comprise entre 601 et 1215 kW : 71 dBA

Stratégie de conception d’un bâtiment Q-ZEN (Quasi Zéro Energie)

Stratégie de conception d’un bâtiment Q-ZEN


Stratégie globale

Quelle stratégie de conception utiliser et quel « niveau d’effort sur la performance énergétique » doit-on réaliser pour répondre aux exigences du Q-ZEN Wallon ?

Pour rappel les exigences principales du Q-ZEN sont :
  • Les Umax des différentes parois du volume protégé de 0,24W/m².K sauf pour :
    • Les vitrages (1,1 W/m³.K) ;
    • Les fenêtres (1,5 W/m³.K) ;
    • Les façades légères et les portes (2,0 W/m².K).
  • Un niveau K35;
  • Le niveau Ew inférieur à 45. (90 pour les bâtiments non résidentiels autres que les parties fonctionnelles bureau et enseignement)

Pour plus de détails, allez voir notre page sur les exigences de la réglementation Q-ZEN.
Pour Energie+, la meilleure énergie reste celle que l’on ne consomme pas. Pour cette raison les priorités dans la stratégie de conception d’un bâtiment Q-ZEN sont les suivantes :

  • La première chose à faire sera de chercher à réduire les besoins d’énergie du bâtiment à leur minimum [par l’isolation thermique, un volume réduit et rationnel, un rapport entre les parois opaques et transparentes équilibré, des pare-soleil, …].
  • Lorsque les besoins du bâtiment sont réduits à leur minimum raisonnable, le concepteur devra veiller à répondre à ces besoins thermiques et électriques avec des systèmes techniques efficaces, adéquats, bien dimensionnés, bien régulés et correctement mis en place, tant au niveau de la production thermique que de la distribution des fluides, le choix des émetteurs et la régulation globale.
  • Finalement, le concepteur envisagera de produire le maximum des besoins résiduels de manière renouvelable.

Schéma sur la stratégie globale du Q-Zen wallon.

Il est important d’agir dans cet ordre [Réduire les besoins > utiliser des systèmes efficaces > exploiter des sources locales et renouvelables d’énergie] et de se pencher sur l’aspect suivant une fois que l’optimum est atteint pour chaque étape de la conception.

Les exigences Q-ZEN ne recouvrent qu’une partie des postes de consommation, pour diminuer la consommation totale du bâtiment, visitez notre page consacrée à la Stratégie de conception « soft énergie » à tous les niveaux.


Une géométrie compacte

Pour commencer, il faudra trouver l’optimum entre une grande compacité pour limiter les pertes de chaleur et une faible compacité (augmenter les surfaces de façade) pour profiter du maximum d’éclairage naturel. Selon les cas, le juste compromis sera en faveur de l’une ou de l’autre solution.

Aujourd’hui, dans les bâtiments isolés au niveau du Q-ZEN, la consommation d’éclairage représente environ ¼ des consommations.

Il convient donc, a priori, de favoriser autant que possible l’éclairage naturel en limitant la profondeur des locaux. On recommande de limiter la profondeur des bureaux au double de la hauteur du local, soit à environ 6 m. Ainsi, si deux rangées de bureaux sont séparées par un couloir central, cela donne une profondeur de bâtiment d’environ 15 m.

Pour tous les cas, à l’exception des bâtiments majoritairement composés de façades légères vitrées, une bonne pratique consiste à vérifier que le bâtiment respecte l’exigence sur le niveau K lorsque les valeurs U des parois respectent strictement les valeurs Umax.

Si le bâtiment nécessite d’aller au-delà des exigences Umax sur les parois pour atteindre le niveau K35, le concepteur doit considérer que la compacité du projet pourrait poser problème et agir sur la forme du bâtiment ou encore revoir la quantité de parois transparente à la baisse.

Lorsque le bâtiment est majoritairement composé de vitrage ou de façades légères et que le respect strict des valeurs Umax ne permet pas d’atteindre le niveau K35, la compacité ne sera alors pas nécessairement la seule à incriminer. Il faudra également envisager d’aller bien au-delà des exigences Q-ZEN sur la valeur U des façades légères pour que le niveau K puisse être respecté.

Généralement, aller en deçà du niveau K20 n’apporte que peu de gains énergétiques, car les économies sur la production de chaleur sont en bonne partie compensées par l’augmentation de la consommation pour le refroidissement et l’éclairage.

En effet, la consommation pour l’éclairage artificiel peut augmenter car, à volume égal, plus le bâtiment à un niveau K « performant », plus il est opaque (le ratio parois opaques/paroi transparentes augmente) et/ou moins il dispose de surfaces d’enveloppe extérieure. De surcroît, plus les vitrages sont isolants et plus la protection contre la surchauffe devient importante, moins leur transmission lumineuse sera bonne.

Le schéma ci-dessous illustre cette problématique. Toutefois, ces courbes ne représentent qu’une tendance générale et d’un bâtiment à l’autre, en fonction des choix techniques, du type d’occupation, de l’environnement, de la géométrie, ces tendances peuvent varier.

Courbe sur l'évolution des postes de consommation en fonction du niveau K de projets existants.
Évolution des postes de consommation (hors énergie renouvelable) en fonction du niveau K basé sur l’étude de 9 projets existants répondant aux exigences Q-ZEN

Plus d’information : Optimaliser le volume du bâtiment

Un rapport équilibré entre parois opaques et les parois translucides

Ce n’est un secret pour personne, bien que les progrès techniques soient impressionnants, les fenêtres sont moins isolantes que les parois opaques. Ainsi, un bon triple vitrage récent sera toujours trois à quatre fois plus déperditif qu’un mur opaque respectant les exigences Q-ZEN.

Alors on ne met plus de fenêtre ? NON, l’occupant a besoin d’éclairage naturel et de vues vers l’extérieur pour son confort et son bien-être. Il s’agit plutôt de trouver un équilibre optimal entre maîtrise des déperditions thermiques et bien-être. Attention, lorsqu’un bâtiment est très vitré, celui-ci risque de surchauffer. Dans ce cas, il faudra réduire le facteur de transmission solaire (facteur g) et/ou penser à la mise en œuvre de pare-soleil.

Conseil : la taille des vitrages n’est pas la seule donnée importante concernant l’éclairage. La disposition et l’orientation de ceux-ci sont tout aussi importantes. Par exemple, plus un vitrage sera haut, plus la lumière qui la traverse se diffusera profondément au sein de la bâtisse.

Opter pour une proportion de vitrage comprise entre 30 et 45 % de la surface de la façade constitue une bonne première estimation qu’il faudra affiner ensuite en fonction du programme, des orientations et de la géométrie. Pour aller au-delà de ces valeurs indicatives, il est nécessaire de porter une attention accrue sur le niveau d’isolation des vitrages, leur facteur solaire et la présence d’éventuels pare-soleil.

Plus d’information : Choisir la position et la dimension de la fenêtre

Un bon niveau d’isolation des parois

Lorsque la forme de l’édifice est définie, vient le moment de déterminer le niveau d’isolation des différents éléments constructifs du bâtiment…Dans tous les cas, les éléments devront respecter les exigences concernant les Umax . Améliorer le niveau d’isolation est vraisemblablement une des manières les plus durables et abordable de réduire les besoins en énergie du bâtiment.

De plus, en réduisant les besoins, nous pouvons nous contenter de systèmes de climatisation plus petits et donc moins coûteux (ou plus efficaces pour le même montant).

Au-delà des 10 à 15 cm d’isolant généralement requis pour répondre à l’exigence sur les Umax, chaque centimètre d’isolant supplémentaire permet de gagner parfois jusqu’à 1 point sur le niveau Ew ! Vous savez maintenant comment empocher quelques points supplémentaires !

Dans les murs récents, 95 % de la résistance thermique du mur est réalisée par la présence d’un matériau isolant dédié à cette fonction. Les matériaux isolants les plus utilisés (Laines minérales, XPS…) ont une conductivité thermique (λ) de 0,035 W/m.K. Le schéma suivant ne tient pas compte des autres matériaux constituant la paroi et donne une idée de la valeur U atteinte en fonction de l’épaisseur d’isolant « courant » qui pourra être mis en œuvre.

Courbe représentant la valeur U de la paroi en fonction de l'épaisseur de l'isolant.

Pour atteindre le standard Q-ZEN, plus le niveau d’isolation sera élevé, plus il sera facile de l’atteindre sans faire appel à des technologies complexes de production de chaud ou de froid.

Avec des valeurs U inférieures à 0,15 W/m².K pour les parois opaques et des fenêtres performantes (U<0,8 W/m².K), le bâtiment que vous concevez est déjà en bonne voie pour répondre aux 3 exigences principales du Q-ZEN (Umax, K35 et EW45) sans même avoir à y installer des technologies coûteuses ou devoir produire des énergies renouvelables sur place.

Mais maintenant que les besoins sont réduits, les systèmes nécessaires seront plus petits et donc moins coûteux !

Plus d’information : Concevoir l’isolation

Attention à l’étanchéité !

Avec des bâtiments toujours mieux isolés, la proportion des pertes par infiltration dans le total de déperdition devient non-négligeable ! Un débit de fuite à 50 Pa par unité de surface inférieur à 2 m³/h.m² doit être visé. Afin de valoriser cet effort dans le cadre d’un encodage PEB, un test Blowerdoor devra être réalisé.

Plus d’information : Concevoir l’étanchéité à l’air

Valoriser la fraîcheur de l’environnement

Le renforcement de la performance énergétique d’hiver augmente parfois le risque de surchauffe en mi-saison ou en été. Or, dans notre climat, le recours au refroidissement mécanique devrait rester exceptionnel. Des stratégies de rafraîchissement naturel, par ventilation nocturne ou par géocooling notamment, permettent de limiter ou d’éviter la consommation en été de l’énergie économisée en hiver.

Plus d’information : Valoriser la fraicheur de l’environnement


Des systèmes adaptés

La ventilation et la récupération de chaleur

Si les bâtiments étanches représentent un gros atout énergétique, les occupants ont quant à eux besoin d’air frais en grande quantité. L’atout de ventilation double flux est de pouvoir réguler la quantité d’air frais injecté dans le bâtiment pour l’adapter aux besoins du moment et répondre à la norme en matière de ventilation hygiénique pour les bâtiments non résidentiels NBN EN 13779 [2]. La présence d’un récupérateur de chaleur sur ce type de ventilation est aujourd’hui incontournable dans les immeubles de bureau désireux d’atteindre le standard Q-ZEN. Leur rendement peut atteindre les 90 % (!). Pour un coût relativement faible, 75 à 90% des pertes par ventilation peuvent ainsi être évitées !

Plus d’information  Choisir le système de ventilation.

Le système de chauffage

Un bâtiment Q-ZEN n’exclut par l’utilisation de systèmes « classiques » et permet généralement l’utilisation d’une chaudière au gaz à condensation, tout en conservant un niveau Ew répondant aux exigences Q-ZEN. Néanmoins, pour que cette solution soit viable, il faudra répondre à l’une de ces conditions :

  • Le niveau d’isolation des parois opaque atteint 0,15 W/m².K et/ou le niveau K est inférieur à 20 ;
  • OU le bâtiment est équipé d’une surface de panneaux PV équivalent à 10 % de la surface de plancher chauffé.

Par contre, lorsqu’un tel niveau d’isolation ne peut être atteint et que l’on ne dispose pas d’une surface permettant d’accueillir des panneaux photovoltaïques le concepteur des installations devra se pencher sur des techniques plus complexes et coûteuses (à la construction) comme la cogénération, une pompe à chaleur performante…

Plus d’information : Concevoir le chauffage

Le système de refroidissement

Dans les bâtiments récents, compacts et bien isolés, le problème de la surchauffe et de la consommation de froid prend de plus en plus d’importance par rapport à celui de la consommation de chauffage.

Courbe sur la tendance de l'évolution du niveau EW en fonction du niveau K pour 8 bâtiments.
Tendance de l’évolution du niveau EW en fonction du niveau K pour 8 bâtiments.

Les bâtiments ayant un niveau K inférieur à 20 auront une consommation pour le froid pouvant être équivalente voir supérieure à la consommation pour le chaud ! Et le changement climatique va renforcer cette tendance.

Comme pour le chauffage, Q-ZEN ne veut pas nécessairement dire High-tech. Dès lors que les risques de surchauffe sont bien gérés, que le bâtiment est bien isolé et que l’inertie du bâtiment est adaptée, un système de refroidissement « classique » comme une machine à compression électrique pourra dans certains cas suffire à atteindre le standard Q-ZEN. Néanmoins, dans les bâtiments fortement isolés, la part de consommation concernant le refroidissement est élevée de sorte qu’il sera toujours intéressant d’installer un système adapté et performant.

Dans le cas des bâtiments moins isolés et à défaut de panneaux photovoltaïques présents, le concepteur devra agir au moins sur la production de chaleur ou de froid pour atteindre un niveau Ew acceptable. S’il agit sur le refroidissement, il devra alors étudier la possibilité d’installer un système de : nightcooling, géocooling ou une pompe à chaleur à absorption performante selon les opportunités du projet.

Les systèmes passifs de maitrise de la surchauffe seront toujours à prescrire avant toute intervention active sur le refroidissement.

Plus d’information : Concevoir la climatisation

L’éclairage

Pour atteindre le niveau Ew de 45 exigé par la réglementation Q-ZEN pour les parties fonctionnelles bureau et enseignement, le concepteur devra valoriser au maximum la lumière naturelle et veiller à réduire le plus possible les besoins d’éclairage artificiels. La présence de détecteur de présence, d’une gestion par petite surface, de luminaires économiques et bien dimensionnés permet de gagner un grand nombre de points sur le niveau Ew à moindres frais.

Nécessité : Encodez les valeurs réelles dans le logiciel PEB : Dites non aux valeurs par défaut ! Voyez plutôt : entre les valeurs par défaut pour l’éclairage et un système bien conçu et correctement encodé, un gain de 30 à 45 points (!) sur le niveau Ew est régulièrement observé ! Autant dire que sans cela il faudra se lever tôt pour que notre bâtiment soit Q-ZEN !

Plus d’information : Concevoir l’éclairage


Produire et autoconsommer de l’énergie renouvelable

Produire de l’énergie renouvelable

Lorsque les besoins sont limités au maximum raisonnable et que les systèmes sont choisis de manière adaptée, la faible quantité d’énergie consommée pourra être partiellement ou totalement produite sur site.

Si idéalement le renouvelable devait être considéré comme un moyen, en bout de chaîne, permettant de réduire la consommation d’énergie issue du réseau, force est de constater qu’aujourd’hui les panneaux solaires photovoltaïques sont particulièrement avantageux… tant d’un point de vue économique que de leur rendement énergétique.

En effet, sans effort particulier sur l’isolation et les systèmes, la simple installation de 10 à 15 Wc/m² de surface de plancher chauffée permet dans 95 % des cas d’atteindre le standard Q-ZEN pour peu que leur exposition soit satisfaisante. Ainsi, lorsque l’on dispose d’une surface permettant l’installation de PV équivalente à ±10 % de la surface de plancher chauffée, être Q-ZEN ne sera jamais un souci, comme le montre notre étude.

Faut-il pour autant évacuer les considérations sur l’isolation et l’efficacité des systèmes ? Faut-il approcher la conception énergétique d’un bâtiment en faisant le minimum sur l’isolation et les systèmes et chercher à compenser par du PV ensuite ?

Pour qu’elle soit durable et « future-proof », la conception énergétique d’un bâtiment Q-ZEN doit être vue comme un ensemble équilibré entre performance de l’enveloppe, performance des systèmes passifs, performance des systèmes actifs et finalement consommation d’énergie produite sur site.

Le Q-ZEN ne doit pas être vu comme un objectif en soi, mais plutôt comme un minimum acceptable.
De plus, avec l’arrivée du tarif prosumer, le faible taux autoconsommation et la levée de la prime Qualiwatt sur le photovoltaïque, la solution solaire gagnera à s’inscrire dans une démarche de performance énergétique du bâtiment qui soit globale.

Plus d’information sur :

  • le photovoltaïque
  • le solaire thermique
  • l’éolien
  • la cogénération

Et n’oublions jamais que produire sa propre électricité c’est bien, la consommer : c’est mieux !

 

Choisir le système de dégivrage de la machine frigorifique d’un meuble frigorifique

Les meubles frigorifiques fermés, mixtes ou ouverts négatifs

Meuble mixte négatif

Meuble fermé négatif

Meuble ouvert négatif à ventilation forcée

Le dégivrage « forcé » par les moyens courants tel que les résistances chauffantes ou par injection de gaz chaud côté circuit frigorifique est un mal nécessaire pour les meubles frigorifiques fermés, mixtes ou ouverts négatifs. En général, ce sont les mêmes techniques de dégivrage que les chambres frigorifiques qui leur sont appliquées.

À l’heure actuelle, sur la plupart des meubles de ce type, les équipements de dégivrage sont prévus en standard sous forme de résistances électriques.

La technique, par injection de gaz chaud à l’évaporateur nécessite une installation plus complexe et, par conséquent plus coûteuse.

Paramètres de régulation du dégivrage « forcé »

Un fabricant de meubles frigorifiques renseigne les paramètres de réglage des meubles frigorifiques négatifs. On peut y retrouver des valeurs de réglage standards en fonction de la classe d’ambiance déterminée par ouverture d'une nouvelle fenêtre ! EUROVENT, à savoir généralement pour une classe d’ambiance 3 (25°C, 60 % HR) :

Paramètre Définition Optimum énergétique
T0 température d’évaporation [°C] la plus faible possible
N/24h le nombre de dégivrage par 24 heures [N/24 heures] le plus faible possible
Tter la température en fin de dégivrage [°C] la plus basse possible
td la durée de dégivrage [min] la plus faible possible
tegout le temps d’égouttage [min] le plus faible possible
tvent le temps de retard pour redémarrer les ventilateurs [min]

Il est bien entendu que tous ces paramètres doivent trouver leur optimum énergétique suivant le type d’application, d’ambiance des zones de vente avoisinantes, …, tout en conservant la qualité du froid alimentaire.

Pour différents modèles de meubles frigorifiques et pour une température d’évaporation T0 [°C],ces paramètres sont consignés dans le tableau ci-dessous.

Type de meuble négatif Référence Type de dégivrage T0[°C] N/24 [N/24 heures] Tter[°C] td[min] tegout[min] tvent[min]
Meuble mixte vertical 3L1 RVF3 électrique -35 1 5 40 10 5
Meuble vertical vitré 3L1 RVF4 électrique -35 1 15 30 10 5
gaz chaud 1 10 10 5 5
Meuble vertical vitré 3M1 RVF4 électrique -10 1 10 10 5 0
Meuble horizontal 3L1 IHF4 électrique et gaz chaud -35 2 5 45
Meuble horizontal 3L3 électrique -10 2 10 45
Source : Costan (Sabcobel).

Le choix du type de dégivrage (électrique ou gaz chaud) a de l’importance dans le sens où, énergétiquement parlant, l’injection de gaz chaud semble intéressante.

Avantages

  • Temps de dégivrage plus court;
  • Température de dégivrage plus faible;
  • Énergie consommée par le compresseur 3 fois plus faible (pour un COP de 3) qu’une résistance électrique directe;

Inconvénients

  • Investissement.

Pré-programmation des dégivrages

Lorsque le magasin est composé d’un nombre impressionnant de meubles linéaires (cas des super et hypermarchés), la programmation des temps de dégivrage doit être décalée dans le temps sachant que l’appel de puissance électrique des compresseurs, pour redescendre les températures des meubles à leur valeur nominale, peut être important. La possibilité de mettre en réseau les régulateurs individuels de chaque meuble avec un superviseur (GTC : Gestion Technique Centralisée), facilite la tâche des gestionnaires techniques des magasins.

La programmation d’un décalage des démarrages des dégivrages dans le temps permet de maîtriser les pointes de courant responsable des pointes quart-horaire excessives alourdissant la facture électrique.


Les meubles frigorifiques positifs

Meuble convection naturel positif (vitrine).

Meuble ouvert vertical positif avec rideau d’air en convection forcée.

Pour les applications en froid positif, il est possible de se passer du dégivrage « forcé » par résistance chauffante ou « injection de gaz chauds ». Le « dégivrage naturel » suffit dans la plupart des cas.

À noter qu’en option il est toujours possible de placer des résistances de dégivrage, mais ce serait prêcher contre sa chapelle puisqu’il est possible de s’en passer.Il faut compter de l’ordre de 60 à 70 W/ml pour des résistances électriques simples.

Paramètres de régulation du dégivrage « naturel »

Le principal paramètre de ce type de dégivrage est la durée de dégivrage td [min]. Les fabricants par défaut programme des temps dégivrage maximum de l’ordre de 40 à 45 minutes. Il est nécessaire de choisir une régulation qui permette de réduire les temps de dégivrage en fonction de la classe d’ambiance. Dans la réalité, c’est au cas par cas et suivant le climat interne que va dépendre le temps de dégivrage.

Dans l’absolu, le dégivrage « naturel » est intéressant puisque pendant cette phase :

  • la production de froid est interrompue;
  • il n’y a pas de consommation électrique de dégivrage proprement dite.

Pré-programmation des dégivrages

Le même type de programmation décalée que pour les meubles de froid négatif en centralisant toutes les demandes de dégivrage au niveau d’une gestion technique centralisée (GTC) est aussi possible pour les meubles frigorifiques positifs.

Source : Delhaize Mutsaart.

Ici, on visera l’interruption de ou d’une partie de la production de froid couplée avec :

  • L’arrêt des circulateurs sur une boucle caloporteur. On privilégiera l’arrêt des circulateurs individuels des meubles frigorifiques plutôt que l’arrêt du ou des circulateurs centraux (on parlera alors de pompe de circulation) afin d’espacer dans le temps les dégivrages individuels et, par conséquent, les pointes d’appel de puissance électrique à la fin d’un dégivrage programmé central.

Boucle monotube : arrêt individuel des circulateurs de meuble.

  • La fermeture de l’alimentation d’une vanne en amont du détendeur.

Boucle caloporteuse : fermeture individuelle des vannes d’alimentation des évaporateurs de meubles.

Détente directe : réglage individuel des détendeurs des meubles frigorifiques.

La programmation d’un décalage des démarrages des dégivrages dans le temps permet de maîtriser les pointes de courant responsable des pointes quart-horaire excessives alourdissant la facture électrique.

Exemple.

Le cas d’un hypermarché où la facture d’électricité risque d’être salée de par le non-décalage des débuts de dégivrage sur 150 m de meubles linéaires positifs.

Période d’enregistrement sur 24  heures.

En analysant de plus près, on se rend compte que l’appel de puissance de la journée 430 KW a été enregistré comme pointe quart-horaire à 07h30; ce qui signifie que la facture électrique intègrera cette valeur comme pointe quart-horaire mensuelle. On aurait pu éviter cette pointe en décalant les périodes de dégivrage dans le temps.

Choisir le raccordement électrique [cogen]

Câble de puissance et protections classiques

Comme toute installation électrique, le dimensionnement complet des câbles et des protections se calcule selon le R.G.I.E. (Règlement général sur les installations électriques).

En particulier, l’ajout d’une nouvelle source d’énergie influence le dimensionnement des équipements de protection contre les courts-circuits et des sections de câbles.

Toute source d’énergie électrique est caractérisée par un courant (ou une puissance) de court-circuit (Icc ou Pcc), c’est-à-dire le courant qui circulerait dans l’installation si elle était en court-circuit. Si une nouvelle source d’électricité est ajoutée à l’installation, son courant de court-circuit s’en trouve modifié.

Les disjoncteurs protègent les charges contre les défauts du réseau. De même que les circuits de puissance, ils sont dimensionnés à partir, notamment, du courant de court-circuit (Icc). Si une nouvelle source de courant est ajoutée, il est nécessaire de vérifier la capacité des disjoncteurs à protéger efficacement les charges contre le nouveau Icc et la tenue des circuits aux nouveaux défauts potentiels.

De plus, les câbles entre le point de raccordement et l’alternateur doivent être protégés de part et d’autre (réseau et cogénération) contre un court-circuit. Ce qui implique la nécessité de disposer de la Pcc au point de raccordement de la cogénération.


Protection spécifique à la production d’énergie électrique en parallèle sur le réseau

En tous cas, le système de protection sera à prévoir en concertation avec le distributeur local et fera l’objet d’un accord préalable. De plus, avant toute mise en œuvre du système de protection, celui-ci devra être accepté par un organisme agréé pour le contrôle des installations électriques qui le vérifiera à la mise en service (aux frais de l’autoproducteur). Ceci signifie également que les équipements de protection utilisés doivent être agréés.

Protection de découplage ou production décentralisée

Lorsqu’un client désire raccorder une unité de production décentralisée au réseau de distribution, le distributeur local doit évaluer si le client peut (ou pas) injecter du courant sur le réseau MT ou directement sur le poste source.

Cette limitation est à fixer conjointement :

  • par le service commercial du distributeur pour des raisons contractuelles (contrat de fourniture);
  • par l’exploitant du réseau au regard des charges et de la capacité du réseau.

Si le client peut injecter son énergie électrique sur le réseau, cette puissance sera limitée par la protection générale BT ou MT du client et une protection de découplage est obligatoire.

La protection de découplage utilise souvent le saut de vecteur. Le saut de vecteur est une protection qui identifie un saut de déphasage dans le champ électrique tournant, supérieur à une consigne.

Cette protection protège non seulement le réseau, mais également l’alternateur. Dans environ 1 % des cas cependant, elle peut être mise en défaut. Si toute la charge de l’utilisateur est alimentée par la cogénération, il n’y a quasiment pas de puissance qui transite par la cabine HT. Dans ce cas, lors d’un déclenchement, deux cas sont possibles. Si des charges existent sur la même portion de réseau, lors du déclenchement, l’impédance va varier brusquement, c’est-à-dire que le groupe va soudainement essayer d’alimenter ces charges et le saut de vecteur va déclencher. Si les charges sont trop faibles, l’impédance vue par le groupe ne variera presque pas lors du déclenchement, et le saut de vecteur ne se déclenchera pas.

En cas de saut de vecteur, le dispositif ouvre le disjoncteur au niveau du groupe.

S’il s’agit d’une micro-coupure, lorsque le réseau revient, la tension revient (la bobine du disjoncteur principal est alimentée par la tension réseau) et une reprise de parallèle permet le recouplage.

Si le réseau ne revient pas, le verrouillage du disjoncteur principal permet le fonctionnement en groupe de secours (pour les machines synchrones uniquement).

Lorsque le réseau revient après un fonctionnement en groupe secours, deux options sont possibles. Dans la première solution, le dispositif détecte la tension du réseau, ouvre le disjoncteur du groupe secours, ferme le disjoncteur principal et, comme pour une micro-coupure, reprend la parallèle, le tout en un temps très court, de l’ordre de 0,2 seconde.

L’alternative est une synchronisation arrière, c’est-à-dire une modulation de la puissance du moteur pour atteindre le synchronisme avec le réseau, tout en continuant à alimenter les charges électriques. Elle est cependant plus difficile, car il existe des charges très variables comme les ascenseurs qui font varier plus ou moins brusquement tension et fréquence.

L’ensemble des protections revient à environ 2 250 – 2 500 €. Les coûts d’une bascule et d’une parallèle réseau sont comparables l’un à l’autre et tournent autour de 7 500 €.

Protection directionnelle ou autoproduction

Si on sait que la consommation est supérieure à la production de la cogénération, on place une protection directionnelle.

La protection à prévoir est un relais directionnel de courant ou d’énergie active qui déconnecte le moteur du réseau si de l’énergie est envoyée vers le réseau par exemple, lorsque le réseau tombe en panne.

Cette protection est plus simple et donc moins chère que la protection de découplage.


Synchronisation de la génératrice synchrone

Les synchroniseurs sont très rapides et les modulations de fréquence et de tension sont minimes. Dans la majorité des cas, les modulations de fréquence et de tension respectent les limites des appareils, le recouplage peut donc se faire sans coupure. Le prescripteur vérifiera cependant l’existence ou non d’appareils particulièrement sensibles parmi les équipements du client et imposera le cas échéant une coupure de l’alimentation pour synchroniser.

Lorsque le groupe tourne, il est important d’éviter toute modification de la position des disjoncteurs de la cabine HT (avant ou après le transfo). En effet, si le groupe est en parallèle sur le réseau, il y a un risque de déclencher un saut de vecteur; si le groupe tourne en secours, il y a un risque d’une prise de parallèle non synchronisée. Il est vivement conseillé d’installer un boîtier à destination du distributeur dans la cabine HT, avec une lampe témoin allumée si le groupe est en parallèle et un interrupteur pour couper le groupe ou empêcher la prise de parallèle.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir le raccordement hydraulique [cogen]


Préambule

L’insertion d’une unité de cogénération de petite taille dans un système de chauffage centralisé est une question complexe. Chaque système de chauffage a ses spécificités et rend le raccordement hydraulique d’une cogénération unique. En outre, il n’existe pas de prescriptions techniques spécifiques auxquelles un installateur doit ou peut se conformer.

Voici repris une série de critères de dimensionnement et de caractéristiques relatifs aux différentes possibilités de raccordement de la cogénération.

  • Étude de l’installation de chauffage existante
  • Critères généraux
  • Exigences côté cogénération
  • Raccordement en série
  • Raccordement en parallèle
  • Aéro-réfrigérant

Étude de l’installation de chauffage existante

La connaissance et l’optimalisation de l’installation de chauffage existante sont un préalable important au bon fonctionnement futur de l’installation combinée. Un schéma hydraulique à jour de l’installation existante est donc indispensable.

Il faut principalement être attentif à l’adéquation des débits. Si ceux-ci sont surdimensionnés, les températures de retour de l’installation seront plus élevées que la normale. La diminution de la vitesse des pompes ou le placement de pompes à vitesse variable s’imposent donc parfois en préalable à la cogénération.

Cette étude est relativement simple pour les installations de taille modeste.

Par contre, pour les grosses centrales de chauffe, desservant plusieurs utilisateurs (sous-stations), une simulation des flux d’eau dans l’installation peut être nécessaire, pour en connaître le plus précisément possible le comportement : que se passe-t-il lorsque telle vanne s’ouvre, lorsque telle chaudière s’enclenche …


Critères de sélection

  • Ne pas créer de pertes de charge dans le circuit du client.
  • Assurer le débit d’eau au moteur quel que soit le mode de fonctionnement ou la charge.
  • Ne pas augmenter la température de l’eau à l’entrée du moteur par des mélanges.
  • Rendre possible l’isolation du circuit d’utilisation pour faire fonctionner la chaufferie sans le groupe de cogénération.
  • Prévoir un système de vidange du circuit hydraulique simple.
  • Prévenir les problèmes de corrosion et d’hydrolyse dans le circuit de refroidissement.

Le risque majeur à éviter dans la combinaison chauffage-cogénération est une température d’eau de retour trop élevée vers le moteur. Comme expliqué dans le chapitre relatif à la régulation, une température trop élevée peut entraîner une instabilité de l’enclenchement / déclenchement du moteur.

Concrètement, il faut que la température de l’eau à l’entrée du moteur soit inférieure à 85 °C si on récupère la chaleur uniquement sur l’eau de refroidissement et sur les fumées, à 75 °C si on récupère de la chaleur également sur le circuit d’huile et à 40 °C si on récupère sur le refroidissement du mélange air-gaz après turbocompression (pour les gros moteurs).

Côté refroidissement du moteur, des problèmes de corrosion et d’hydrolyse dans le circuit de refroidissement peuvent engendrer des problèmes aux joints des pompes à eau par exemple. La séparation des circuits de refroidissement du moteur (water jacket) du reste de l’installation hydraulique confine le problème. La solution est alors d’analyser la qualité de l’eau et de définir les additifs qui neutralisent les polluants. L’isolation des échangeurs de refroidissement du moteur et du circuit de lubrification permet de n’ajouter les additifs que dans un circuit local, au contraire d’un circuit unique, qui impose l’ajout des additifs en question au niveau des circuits de chaleur dans leur ensemble. La séparation des circuits de refroidissement du moteur offre en outre l’avantage de minimiser les pertes de charge dans le circuit client.


Raccordement en série

Configuration série sans ballon de stockage

Raccordement série (dérivation sur retour principal) sans bouteille de mélange :

  • Éviter le recyclage dans le circuit du retour du groupe.
  • Sélectionner une puissance du groupe inférieure à la puissance de la chaudière prioritaire pour garantir un débit suffisant.
  • La priorité est donnée naturellement à la cogénération.
  • Pas de conséquence négative lors de l’arrêt du groupe.
  • Maintien d’une régulation classique des chaudières.

Raccordement en série.

Le raccordement en série est la solution la plus simple. C’est elle qui présentera le moins de difficultés au niveau de la compatibilité hydraulique avec l’installation de chauffage existante. Elle est donc à conseiller pour les petites installations pour lesquelles une simulation du comportement hydraulique de l’ensemble serait trop coûteuse par rapport à l’investissement total.

Dans ce type de raccordement, une partie de l’eau est préchauffée par le cogénérateur. Si celui-ci ne développe pas une puissance thermique suffisante par rapport aux besoins instantanés, l’eau sera postchauffée par les chaudières.

L’inconvénient du raccordement en série provient du fait qu’une des chaudières est en permanence parcourue par de l’eau chaude même lorsqu’elle est à l’arrêt. On subit donc ses pertes à l’arrêt (y compris en été si le cogénérateur est dimensionné pour produire de l’eau chaude sanitaire). Elles peuvent être importantes sur des anciennes chaudières mal isolées et dont le brûleur est en permanence ouvert vers la cheminée (brûleurs sans clapets, chaudières atmosphériques).

Par contre, l’avantage est de pouvoir profiter du volume de la chaudière pour réaliser un stockage lorsque la demande instantanée de chaleur est fluctuante et inférieure à la production du cogénérateur. Ce volume de stockage est cependant limité par rapport à un ballon tampon séparé.

Le by-pass du cogénérateur sera dimensionné pour qu’un débit suffisant traverse le cogénérateur.

Une attention particulière devra être portée à ce problème si le circuit primaire est conçu pour fonctionner à débit variable (circuit avec une pompe d’alimentation par chaudière, circuit primaire ouvert sans pompe primaire et circuits secondaires avec vannes mélangeuses, …). Par exemple, si chaque chaudière possède sa propre pompe, le débit d’une chaudière doit être plus élevé que le débit du cogénérateur, faute de quoi celui-ci sera insuffisamment refroidi.

Configuration série sans ballon avec by-pass

Une autre configuration qui évite les pertes à l’arrêt dans les chaudières est le placement avantageux d’un by-pass. Attention toutefois au coût des vannes 3 voies par rapport à l’avantage que l’on retire de ne pas générer des pertes à l’arrêt dans une des chaudières.

Schéma de configuration série sans ballon avec by-pass.

Configuration série avec ballon

Quelques constructeurs proposent une configuration série avec ballon tampon. Le débit total de retour du collecteur traverse le ballon. On ne peut pas vraiment parler de ballon de stockage vu qu’il n’y a pas de stratification. On parlera plutôt d’augmentation de l’inertie du réseau. Pour autant que les conduits d’entrée et de sortie du ballon soient bien dimensionnés, le ballon tampon agit comme un large collecteur à faibles pertes de charge et perturbant peu les équilibres hydrauliques de la chaufferie existante. On peut comprendre que cette configuration soit intéressante, car hydrauliquement elle est simple et peut donner de bons résultats en termes de courts cycles du cogénérateur.

Schéma de raccordement série avec bouteille de mélange.

Raccordement série (dérivation sur retour principal) avec bouteille de mélange

Il est impératif de :

  • Placer la bouteille verticalement pour garantir l’indépendance hydraulique des circuits.
  • Placer la pompe en série avec le circuit hydraulique de refroidissement du moteur pour garantir le débit.
  • La priorité est donnée naturellement à la cogénération.
  • Pas de conséquence négative lors de l’arrêt du groupe.
  • Maintien d’une régulation classique des chaudières.

Le raccordement du cogénérateur en amont de la bouteille (B) est préférable au raccordement en aval (A) étant donné la possibilité de retour d’eau chaude vers les chaudières au travers de la bouteille, ce qui réduirait le refroidissement du moteur.

Schéma de raccordement série avec bouteille de mélange.

Cogénérateur raccordé en série sur les chaudières dans un circuit avec bouteille casse-pression
(principe applicable à un raccordement en parallèle)


Raccordement en parallèle

  • Pas de perte par irrigation des chaudières lorsque la cogénération suffit.
  • La priorité n’est pas donnée naturellement à la cogénération.
  • Gestion spécifique de séquence des chaudières.
  • Un dimensionnement précis de la pompe dont le calcul est délicat est nécessaire (alternative : un variateur de vitesse).

Schéma de raccordement en parallèle.

Raccordement en parallèle

L’intégration hydraulique en parallèle dans une chaufferie existante demande plus de modifications de la « tuyauterie » qu’une intégration en série et une régulation plus fine. Cependant, on peut pointer plusieurs avantages importants de la mise en parallèle d’une cogénération : à l’inverse de la configuration série classique (sans by-pass des chaudières), il n’y a pas de passage de l’eau chaude dans les chaudières lorsque la cogénération seule fonctionne. On n’a donc pas de pertes à l’arrêt au niveau des chaudières si elles ne sont pas irriguées. Mais cela nécessite naturellement de dimensionner les conduites de raccordement du ballon de stockage de manière à laisser passer le débit total.

De plus, dans des chaufferies modernes équipées de chaudières à condensation, pour autant que la température de retour au circuit primaire soit bien maîtrisée, la configuration parallèle permet de valoriser la chaleur de condensation lorsque les chaudières viennent :

  • En support de la cogénération en période froide.
  • En remplacement de la cogénération en période chaude lorsque les besoins de chaleur deviennent trop faibles, et ce pour éviter les courts

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir la génératrice [Cogen]

Puissance électrique

La puissance électrique de la génératrice est déterminée lors du dimensionnement des équipements. Si le dimensionnement s’est limité à une évaluation grossière des puissances nécessaires, des investigations supplémentaires selon la même méthodologie compléteront et valideront les résultats.

La puissance active de la génératrice doit par ailleurs correspondre à la puissance mécanique fournie par le moteur, avec une marge au-dessus de la puissance nominale du moteur.
Le régime de tension est déterminé par la tension de l’installation électrique sur laquelle la génératrice sera connectée.

Le cogénérateur est souvent raccordé au réseau basse tension du consommateur. On peut aussi le raccorder sur un réseau de secours propre du bâtiment qui reprendrait les éléments vitaux à maintenir en fonctionnement en cas de panne du réseau de distribution. Cela doit évidemment être prévu lors de la conception du réseau électrique interne.


Génératrice synchrone ou asynchrone ?

Le choix entre une génératrice synchrone ou asynchrone dépend essentiellement de la volonté de fonctionner en groupe secours (version synchrone) ou non (version asynchrone).

La version asynchrone est de conception plus simple et est donc moins chère. Par exemple, un fournisseur présent sur le marché propose le cogénérateur de 30 kWé asynchrone 3 000 euros (HTVA) moins chers que la même machine couplée à un alternateur synchrone (pour un investissement total de l’ordre de 50 000 €).

Deux inconvénients apparaissent cependant :

  • La puissance électrique de la machine asynchrone ne pourra être trop importante par rapport à la puissance totale appelée par l’établissement (on parle de maximum 30 % de la puissance appelée) de manière à ne pas perturber le cos phi de l’établissement. Il sera peut-être nécessaire d’installer une batterie de condensateurs afin de compenser le mauvais cos phi de l’installation.

 

  • La génératrice asynchrone ne peut fonctionner sans alimentation du réseau. Dans ce cas, il lui est impossible de fonctionner comme secours lorsque celui-ci est coupé. Seul un alternateur synchrone est alors envisageable.

Certains fournisseurs proposent un même moteur raccordé soit à une génératrice asynchrone, soit un alternateur synchrone. Selon la gamme de puissance, le standard sera la version synchrone ou asynchrone. Pour les puissances inférieures à 500 kW, malgré son coût, le standard est la machine synchrone, livrée avec l’ensemble des équipements de synchronisation.

Attention finalement au sens du flux d’air autour de la cogénération. Les génératrices fonctionnent à 40 °C maximum. Si l’air passe d’abord autour du moteur, il risque d’être à plus de 40 °C et de ne plus refroidir correctement la génératrice.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir le moteur [Cogen]

Critères de sélection

Les critères mentionnés au niveau du cogénérateur s’appliquent en réalité aux moteurs et sont donc d’application pour la sélection du moteur.

Attention à la qualité ! Des moteurs de bonne qualité peuvent donner une disponibilité de 95 % sur les 24 h de fonctionnement quotidiennes ! De nombreux problèmes sont dus au choix de machines trop justes, que l’on fait travailler à leurs limites. Dans le même ordre d’idée, l’état des machines (bougie, filtres, huile, échangeurs, soupapes, réglages divers comme les culbuteurs…) et leurs performances évoluent avec le temps, il faut en tenir compte dès le dimensionnement.

D’autre part, le prescripteur doit déclasser le moteur pour garantir son bon fonctionnement selon le nombre d’heures de fonctionnement et le niveau de puissance. Dans le cas contraire, le moteur risque de s’épuiser prématurément ce qui se traduirait par des chutes de rendements, voire de casser avant la fin de son amortissement.

Pour chaque moteur, le constructeur garantit des performances selon l’usage qui en est fait. Le fonctionnement en stand-by, comme son nom l’indique signifie que le moteur reste la majorité du temps à l’arrêt et ne démarre que pour des occasions particulières comme une panne de courant. Le fonctionnement, en prime, est un fonctionnement plus fréquent avec des arrêts et éventuellement des modulations de charges réguliers. Le fonctionnement en base est un fonctionnement quasi continu du moteur.

La nécessité de placer un pot catalytique résultera de la comparaison des données des constructeurs concernant le moteur sélectionné aux normes en vigueur, c’est-à-dire au permis d’environnement. Il en est de même pour le bruit, avec les limitations supplémentaires que le client peut éventuellement ajouter, comme dans le cas d’un hôtel par exemple.

Lorsque l’installation thermique ne permet pas de garantir une température de refroidissement du moteur suffisamment constante et basse, il est nécessaire d’adjoindre un aéro-réfrigérant de secours qui ne sert qu’exceptionnellement ou de réduire la charge du moteur. Ces dispositions évitent l’échauffement et l’explosion du moteur en cas de refroidissement insuffisant par l’installation thermique censée consommer la chaleur.

Sur les groupes au fuel, une sonde de contre pression permet de détecter un encrassement. Cet encrassement indique la nécessité ou non de nettoyer l’échangeur placé sur l’échappement afin de protéger le moteur. Si l’encrassement devient trop important, le moteur ne se trouve plus dans les conditions de pression optimale, le rendement chute et le moteur risque même une explosion si la perte de charge sur l’échappement devient trop importante. C’est pour cette raison que certains motoristes ne garantissent plus leurs moteurs si des échangeurs de chaleur sont placés sur les échappements.

Certains motoristes fournissent un équipement complet optimisé. Il appartient au prescripteur d’étudier la bonne adéquation entre une solution standard et les besoins spécifiques du client.


Moteur gaz ou diesel ?

D’un point de vue énergétique et environnemental

Tout dépend du combustible disponible à proximité immédiate. Au niveau des énergies fossiles, le gaz est « environnementalement » parlant mieux côté que le diesel, le coefficient du gaz naturel est inférieur à celui du diesel, raison pour laquelle les cogénérateurs gaz reçoivent plus de certificats verts que les moteurs diesels.

Les cogénérateurs à condensation de petite puissance sont de plus en plus présents sur le marché. La condensation de la fraction de vapeur d’eau contenue dans les gaz de combustion (théoriquement de 10 % pour le gaz) permet d’améliorer le rendement global du cogénérateur. La condensation des gaz de combustion issue des moteurs à gaz est moins problématique que celle issue des moteurs diesel sachant que le diesel contient du soufre qui se retrouve dans les gaz de combustion. À la condensation, le soufre se mélange à l’eau et forme un mélange acide corrosif pour les échangeurs et les conduits d’évacuation de gaz. Pour les  puissances importantes, il y a lieu de traiter les condensats. À l’inverse, les condensats des cogénérateurs gaz à condensation peuvent être rejetés directement à l’égout.

D’un point de vue mécanique

Comme caractéristique principale, un moteur gaz est nettement moins réactif au démarrage qu’un moteur diesel. Ce manque de réactivité, justifierait que le moteur gaz, et c’est d’actualité, ne soit pas utilisé comme groupe de secours en cas de « black-out ». Cependant, un cogénérateur au gaz, moyennant la présence d’un système intelligent de gestion de charge sur site, pourrait, suite à une coupure de réseau, redémarrer en groupe secours. Par exemple, la charge électrique du cogénérateur pourrait « monter en puissance » de 10  à 100 % dans un délai préprogrammé au niveau des circuits secours d’un hôpital.

La figure ci-dessous permet de rendre compte que le temps de synchronisation d’un moteur gaz sur le réseau est relativement long en comparaison au moteur diesel.

Schéma sur temps de synchronisation d’un moteur gaz / moteur diesel.

Temps de synchronisation d’un moteur gaz et diesel.

De plus, les moteurs gaz rencontrent également certaines difficultés face aux variations de charge. En effet, un des problèmes majeur des moteurs gaz est la gestion de la marche en régime transitoire. La réponse transitoire d’un moteur gaz, défini comme étant la réponse d’un système face à une variation de charges, est dès lors plus longue que pour un moteur diesel comme le montre la figure suivante :

Représentation d’une variation de charge autour de l’équilibre de base.

Dans un moteur diesel, l’injection se fait directement au niveau de la chambre de combustion tandis que pour un moteur gaz, le mélange gaz/air a lieu en amont de la chambre de combustion. C’est dès lors une des raisons pour laquelle un moteur gaz est caractérisé par une moindre robustesse.

Pour pallier le manque de réactivité rencontré dans un moteur gaz, les fabricants travaillent actuellement sur un projet visant à augmenter cette réactivité. Comme illustré à la figure suivante, le gaz est directement injecté dans la chambre de combustion, notamment grâce au système en développement HPDI (High Pressure Direct Injection).

Projet visant à l’injection directe de gaz à haute pression dans la chambre de combustion (Caterpilar).

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir le stockage de chaleur [cogen]

Critères de sélection

Le volume du stockage est calculé lors du dimensionnement des équipements. Si le dimensionnement s’est limité à une évaluation grossière des puissances nécessaires, des investigations supplémentaires selon la même méthodologie compléteront et valideront les résultats.

Comme dans toutes les applications de stockage, il faudra tenir compte des pertes (pertes en stand-by pour les chaudières, pertes dans les tuyauteries,…). Dès lors, le raccordement et la régulation d’un stockage de chaleur seront plus complexes que l’installation standard d’une cogénération.

D’ordinaire, le ballon de stockage est installé en parallèle avec le cogénérateur. Cela permet de fonctionner de la même façon quelle que soit la source de chaleur : la cogénération ou le ballon.

Les critères de dimensionnement relatifs à la connexion aux débits et températures mentionnés dans le chapitre sur le raccordement hydraulique sont d’applications, notamment :

  • Assurer le débit d’eau au moteur quel que soit le mode de fonctionnement ou la charge et le maintenir constant.
  • Maintenir la température d’entrée du groupe inférieure à une valeur de consigne définie par le constructeur.
  • Éviter toute fluctuation brusque de la température d’entrée.
  • Éviter le recyclage dans le circuit de retour du groupe afin de ne pas augmenter la température de l’eau à l’entrée du moteur par des mélanges.
  • Gérer la puissance de déstockage de façon à toujours garantir un débit de refroidissement du moteur suffisant.
  • Rendre possible l’isolation du circuit d’utilisation pour faire fonctionner la chaufferie sans le groupe de cogénération.
  • Prévoir un système de vidange du circuit hydraulique simple.
  • Prévenir les problèmes de corrosion et d’hydrolyse dans le circuit de refroidissement.

Raccordement d’un ballon de stockage

Stockage pour configuration en parallèle

Une des méthodes de stockage appropriées est celle décrite ci-dessous. Cependant, sur le terrain, elle reste relativement peu courante. Peut-être pour une question financière ?

Schéma stockage pour configuration en parallèle.

Dans son principe, le fonctionnement du cogénérateur est relativement indépendant de celui des chaudières. En effet, le cogénérateur peut charger le ballon à une température de consigne fixe. C’est la vanne 3 voies qui fait le gros du boulot et qui peut mitiger la température de sortie de l’ensemble cogénérateur/ballon de stockage en fonction de la température de départ primaire.

La séquence des schémas suivants donne une idée des phases de stockage/déstockage. À remarquer, qu’en termes de dimensionnement des conduites, il faut prévoir que le débit d’entrée/sortie de l’ensemble cogénérateur/stockage sera de l’ordre de 1.5 à 2 fois celui du cogénérateur s’il était prévu dans stockage.

Stockage pur

Schéma stockage pur.

  • Pas de besoin, mais le ballon n’est pas à température.
  • Le cogénérateur fonctionne à régime nominal et charge le ballon (stockage).

Déstockage et boost de la cogénération

Schéma déstockage et boost de la cogénération.

  • Besoins importants.
  • Le cogénérateur fonctionne à régime nominal.
  • Le ballon déstocke.

Déstockage pur

Schéma déstockage pur.

  • Besoins moyens.
  • Seul le ballon déstocke.

Stockage pour configuration en série

Quelques constructeurs proposent une configuration série avec ballon tampon. Le débit total de retour du collecteur traverse le ballon. On ne peut pas vraiment parler de ballon de stockage vu qu’il n’y a pas de stratification. On parlera plutôt d’augmentation de l’inertie du réseau. Pour autant que les conduits d’entrée et de sortie du ballon soient bien dimensionnés, le ballon tampon agit comme un large collecteur à faibles pertes de charge et perturbant peu les équilibres hydrauliques de la chaufferie existante. On peut comprendre que cette configuration soit intéressante, car hydrauliquement elle est simple et peut donner de bons résultats en terme de court cycle du cogénérateur.

Schéma stockage pour configuration en série.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir la régulation [Cogen]

Modulation de puissance

Une modulation de charge du cogénérateur entre 100 et 50 % est techniquement possible, mais le coût de l’entretien du groupe dépend principalement de son temps de fonctionnement et ce coût d’entretien entraîne une augmentation relative du prix du kWh lorsque la charge diminue. Combinée à une légère chute du rendement à charge réduite, il est généralement préconisé d’éviter de fonctionner à moins de 70 % de charge, sauf pour un nombre de cas très limités.

Il est encore très important de veiller à une parfaite coordination des régulations des différents éléments de chauffage, avec un intérêt certain pour l’exploitant de la cogénération de gérer toutes les installations thermiques et électriques, afin d’éviter des interfaces parfois délicates.


Contraintes thermiques sur la régulation

Intégration dans la cascade de chaudières

Une régulation de cascade doit être mise en place sachant qu’il faut pouvoir gérer la « libération » des différents équipements de production de chaleur en fonction des besoins, et ce au bon moment. On tiendra à l’esprit que c’est la cogénération qui doit être en tête de cascade de manière à couvrir le maximum des besoins de chaleur. La monotone de chaleur représentée ci-dessous est très didactique pour montrer l’importance de la programmation d’une cascade séquentielle pour l’ensemble des équipements de production de chaleur.

On rappelle qu’une monotone de chaleur exprime surtout une représentation des besoins de chaleur au cours de l’année. On voit tout de suite que pour rentabiliser une cogénération d’un point de vue « énergético-environnemento-financier », on a intérêt à programmer une cascade des chaudières et du cogénérateur pour que ce dernier couvre la plage 2 de la monotone de chaleur.

Monotone de chaleur.

Monotone de chaleur.

  1. Libération d’une des chaudières à faible régime. Pour les anciennes chaudières, leur fonctionnement à faible charge entraine une dégradation du rendement non négligeable. Pour les chaudières à condensation modulantes, elles travaillent dans des bonnes conditions de rendement (optimum autour des 30 % de taux de charge).
  2. Libération du cogénérateur seul avec une modulation de puissance entre 100 et 70 %.
  3. Libération simultanée du cogénérateur et d’une des chaudières.

La plupart du temps, un besoin de chaleur au niveau secondaire se traduit par une diminution de température au niveau de la sonde de départ du primaire. Tenant compte du fait que le régulateur adapte souvent la température de consigne de départ en fonction de la température externe (fonctionnement en température glissante), la comparaison entre la température du départ et sa consigne glissante doit permettre de libérer les différents équipements de production suivant une séquence dans la cascade bien définie comme le représente la figure suivante :

Séquence de cascade.

Interactions hydrauliques avec les chaudières

Compte tenu de notre climat, la régulation en mi-saison est la plus complexe. Le besoin en chaleur oscille pendant ces périodes à des valeurs qui ne sont ni hautes pour permettre un fonctionnement à 100 % de charge, ni basses et qui imposeraient un arrêt. Ces besoins imposent une modulation plus fréquente qu’en été ou en hiver. Notons que cela ne s’applique pas à des cogénérations qui produisent de la chaleur en continu pour un processus industriel.

Dans ce cas, de nombreux arrêts peuvent être dus à des arrêts de process du client. Le prescripteur doit alors aborder le process dans son ensemble pour définir le cahier des charges de la conduite.

Il existe des petites installations plus ou moins « sous-dimensionnées » par rapport à la monotone de chaleur. Ils garantissent un fonctionnement 24 h/24 et sans stockage.

Dans le cas du secteur tertiaire, la production thermique du cogénérateur sera raccordée à l’installation de chauffage (et/ou de production d’eau chaude sanitaire). Comme la demande de chaleur du bâtiment, dépendante de la température extérieure, est variable dans le temps, une régulation adaptée est alors exigée.

Le réglage de l’installation consiste à définir le point de commutation entre les chaudières et la cogénération et à régler les temporisations sur les variations de puissance en fonction de l’inertie thermique de tout le système, qui n’est pas bien connue à priori. Idéalement c’est le profil de demande de chaleur qui permet d’affiner le réglage du cogénérateur.

Le risque majeur à éviter dans la combinaison chauffage-cogénération est une température d’eau de retour trop élevée vers le moteur. Une température trop élevée peut entraîner une instabilité de l’enclenchement / déclenchement du moteur. On peut résumer le problème de la façon suivante :

Le cogénérateur fournit assez de puissance pour couvrir la demande de chaleur. Mais la température de départ primaire chute. Le régulateur de chaufferie libère la chaudière (démarrage).

La chaudière se met en fonctionnement. Elle délivre très rapidement suffisamment de chaleur pour que les vannes 3 voies des circuits secondaires se ferment. La température de retour monte et réchauffe le ballon tampon.

Le cogénérateur et la chaudière s’arrêtent.

Après refroidissement du ballon tampon, le moteur redémarre. La cogénération ne parvient pas suffisamment vite à répondre à la demande de chaleur et la chaudière redémarre.
Ainsi de suite …

En pratique, on peut travailler par essais/erreurs pour ajuster le point de commutation et les temporisations. On peut également adapter le réglage en fonction des performances mesurées du moteur par comptage de sa consommation et de sa production et essayer de maintenir un rendement optimum.

Un suivi des performances du moteur permettra de se rendre compte qu’il ne faut sûrement pas essayer de faire fonctionner le moteur le plus longtemps possible. Il est plus intéressant d’adapter son fonctionnement à la demande de chaleur plutôt que de suivre à tout prix la demande électrique.

Pratiquement la permutation entre le fonctionnement du cogénérateur et celui des chaudières peut se faire en fonction de la température extérieure.

Interaction  avec les courbes de chauffe des chaudières

Sauf si vous avez hérité d’une installation « d’un autre âge », en général, quel que soit le type de chaudière, une régulation de chaudière classique comprend au minimum un mode de régulation « en température glissante » par rapport à la température externe. Sans rentrer dans les détails, la température de l’eau chaude de chauffage est adaptée aux conditions climatiques externes. Ce mode de régulation est très intéressant surtout pour les chaudières à condensation, car il permet de valoriser la chaleur de condensation en faisant travailler les chaudières à basse température. Pour les autres types de chaudière, cette régulation permet de limiter les pertes thermiques qui sont générées lorsque les températures d’eau chaude sont élevées.

L’intégration d’une installation de cogénération dans une chaufferie constitue une modification assez importante de la régulation pour les raisons évidentes suivantes :

  • Avec une seule chaudière existante, pour pouvoir placer le cogénérateur en tête de séquence, une régulation en cascade doit être programmée. Le régulateur de la chaudière est-il suffisamment évolué pour pouvoir intégrer cette cascade ? De manière générale, pour les chaudières d’une dizaine d’années, c’est faisable. Pour les chaudières de génération précédente, c’est du cas par cas.
  • Avec plusieurs chaudières, la cascade existante doit inclure le cogénérateur au même titre qu’une chaudière supplémentaire. Les régulateurs d’un ensemble de chaudières sont généralement prévus pour ajouter un équipement supplémentaire.

Donc, le régulateur d’une chaufferie (une ou plusieurs chaudières) doit au minimum « chapeauter » le régulateur de l’installation de cogénération, ne fusse que dans la séquence de cascade de libération du cogénérateur ET des chaudières. En effet, quelle que soit la configuration hydraulique, la difficulté d’intégration du cogénérateur est de concilier la ou les chaudières régulées par des courbes de chauffe, et donc des températures de consigne variables, avec un équipement de cogénération qui travaille avec une température de consigne constante. On constate dans certaines chaufferies les phénomènes suivants :

  • En période froide, la consigne de température de départ appliquée par le régulateur aux chaudières est élevée (par exemple 80 °C par -10 °C de température externe). Les consignes de température de démarrage des chaudières sont, par exemple, respectivement de 75 et 70 °C pour les chaudières « maître » et « esclave ». Par contre, la température de consigne de démarrage du cogénérateur est de l’ordre de 60 °C en fixe. Cette valeur de 60°C pour le démarrage est conditionnée par les caractéristiques intrinsèques du cogénérateur. En effet, elle pourrait être plus élevée, mais sachant que la température de retour au cogénérateur est maximum de l’ordre de 70 – 75 °C, une valeur de consigne de démarrage du cogénérateur de 70 °C entrainerait des cycles très courts marche/arrêt du cogénérateur et ne permettrait de toute façon pas un passage en tête de séquence de cascade (la consigne de démarrage en tête de séquence dans ce cas-ci est de 75 °C).
  • En mi-saison, lorsque les courbes de chauffe de régulation des chaudières définissent une consigne de température de départ primaire sous la consigne de température fixe du cogénérateur, soit dans l’exemple de 60 °C, la cogénération va naturellement se placer en tête de cascade et démarrera avant les chaudières. C’est une bonne nouvelle, mais qui arrive un peu tard, comme les « carabiniers d’Offenbach », vu que les besoins de chaleur deviennent faibles. Il en résulte que le cogénérateur risque d’avoir des cycles marche/arrêt courts, ce qui n’est pas idéal.

Régulation des chaudières et du cogénérateur.

Régulation des chaudières et du cogénérateur.


Contraintes mécaniques sur la régulation

Des démarrages et des modulations de puissance trop fréquents et trop forts, comme c’est souvent le cas en mi-saison par exemple, entraînent une fatigue mécanique importante du moteur, ce qui augmente considérablement les risques de panne. Il est donc conseillé de réaliser des montées en puissance « douces » et des démarrages en nombre relativement réduit, typiquement limités à 2 ou 3 par jour. La priorité est à la cogénération, la modulation reste à la chaudière.

Dans le même ordre d’idée, puisqu’une cogénération ne peut pas moduler comme une chaudière (fréquence et intensité des modulations), il est essentiel de bien connaître son profil de consommation de chaleur pour ne démarrer la cogénération que pour des périodes suffisamment longues.

Le fonctionnement correct du moteur demande encore un préchauffage constant pendant les heures de démarrage potentiel, afin d’éviter un démarrage à froid et les contraintes thermiques très nocives que cela entraîne.

Comme pour tout moteur, il est également conseillé de le faire tourner fréquemment afin d’en garantir le bon fonctionnement au moment voulu.


Contraintes électriques sur la régulation

Lorsque le groupe de cogénération est prévu pour fonctionner en groupe secours (ce qui n’est pas idéal), il est nécessaire de gérer la charge électrique du client pour ne pas imposer de variation de charge trop importante au moteur qui risquerait de s’étouffer.

Par exemple, en cas de coupure du réseau, il peut être nécessaire de délester les charges électriques, connecter la cogénération comme approvisionnement en électricité puis relester progressivement les charges en commençant par les plus importantes. Le groupe ne saurait effectivement pas alimenter instantanément l’ensemble des charges.

Pour un fonctionnement en groupe de secours toujours, la législation impose dans certains cas comme les hôpitaux, des délais pour l’apport du courant par les groupes secours. Le groupe de cogénération doit être capable de répondre à ces exigences.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Intégrer la cogénération à l’hydraulique et à la régulation


Les pièges d’intégration

Les principaux constats des projets « piégés » sont les suivants :

  • Le manque d’heures de production du cogénérateur par rapport aux prévisions. Les conséquences sont immédiates : un manque de rentabilité du projet aux niveaux énergétique, environnemental et financier.
  • Un nombre de cycles de démarrage et d’arrêt important qui implique une réduction de la durée de vie de l’installation de cogénération et une augmentation des frais d’entretien, car les cogénérateurs, comme tout moteur, aiment les régimes stables.

Bien souvent, on pense que l’intégration d’un cogénérateur dans un projet de rénovation de chaufferie ou dans un nouveau projet peut se réaliser de manière indépendante par rapport aux chaudières. Dans la plupart des projets réalisés qui posent problème, c’est un peu réducteur et caricaturé, mais on a simplement demandé à l’installateur de fournir « deux conduites » sur lesquelles le constructeur ou le fournisseur de cogénérateur vient connecter son installation au moyen de flexible; c’est ce que l’on appellera un « plug&play » du cogénérateur. Croire que tout va fonctionner comme prévu peut s’avérer, dans certains cas, être une erreur d’appréciation fatale.


Vision globale d’intégration

Pour éviter le piège d’intégration « sauvage » du cogénérateur en chaufferie, les acteurs du projet doivent prendre un certain recul de manière à visionner les productions de chaleur et le cogénérateur comme un tout en chaufferie.

Pour les équipements de production de chaleur, il faut arriver à trouver un compromis entre les différents impératifs des chaudières.

En effet :

  • Dans une chaufferie existante, un retour suffisamment chaud pour les chaudières classiques afin d’éviter la condensation de la vapeur d’eau contenue dans les gaz de combustion (corrosion accélérée des échangeurs des conduits d’échappement, …).
  • Dans une nouvelle chaufferie, un retour suffisamment froid pour faire condenser les chaudières à condensation ou garantir de bonnes performances aux pompes à chaleur (PAC) par exemple.
  • Un débit minimum pour certains types de chaudières.

Et la cogénération dans tout cela ?

À première vue, la cogénération doit être considérée comme une chaudière supplémentaire qui vient se « greffer » sur le circuit primaire. Force est de constater que son intégration n’est pas évidente ! En effet :

  • Pour certaines configurations hydrauliques existantes, le rapport de puissance thermique entre les chaudières et le cogénérateur est déterminant pour le fonctionnement de ce dernier. Il n’est pas rare de constater qu’en hiver, lorsque les chaudières sont censées venir en appoint bivalent du cogénérateur, ce dernier se fasse « voler la vedette » par des chaudières surdimensionnées.
  • De même, la présence ou pas d’un ballon de stockage et sa position par rapport aux chaudières influencent le comportement du cogénérateur.
  • La configuration en série ou en parallèle convient à certaines installations de chaufferie et pas à d’autres. Il est important d’en tenir compte.

Impérativement, le cogénérateur doit s’intégrer de manière intelligente au niveau :

  • Hydraulique, en tenant compte de la configuration de l’installation de chaufferie, des caractéristiques des chaudières, du collecteur principal et des circuits secondaires.
  • De la régulation, en partant du principe qu’une communication minimale doit exister entre les régulateurs des chaudières et le régulateur de l’installation de cogénération.

Des solutions existent ! Elles sont simples, efficaces et ne nécessitent pas, la plupart du temps, de gros investissement.


D’un point de vue hydraulique

Intégration dans une chaufferie existante

La grande majorité des chaufferies existantes sont équipées de chaudières. Hydrauliquement parlant, l’analyse de la configuration existante des chaudières est primordiale pour intégrer un cogénérateur dans de bonnes conditions.
Quelques questions importantes à se poser. Les chaudières sont-elles :

  • À haute, basse température, très basse température ou à condensation ?
  • À faibles pertes de charge ?
  • À débit minimum ?

Dans tous les cas, si la conception a été bien réalisée, la configuration hydraulique du circuit primaire renseigne le type de chaudière. Par exemple, une ou plusieurs chaudières :

  • À haute température impliquent souvent un collecteur principal bouclé ou une bouteille casse-pression entre le collecteur principal et les chaudières ou encore un bouclage direct des chaudières.
  • À condensation sont pourvues de deux retours (un chaud un froid) ou sont connectées sur des circuits type chauffage par le sol par exemple.
  • À fortes pertes de charge sont équipées de circulateurs ou pompes de circulation.


Chaudière classique / collecteur  bouclé.


Chaudière classique / collecteur ouvert.


Chaudière classique faible volume d’eau /
bouteille casse-pression.


Chaudière à condensation deux retours.


Chaudière à condensation grand volume d’eau.

Les résultats de l’analyse doivent permettre de pouvoir répondre aux questions suivantes :

  • Où et comment placer hydrauliquement la cogénération en chaufferie pour éviter de perturber les équilibres hydrauliques initiaux ?
  • Comment modifier le circuit hydraulique existant pour permettre le fonctionnement conjoint de chaudières à haute température ou, à l’inverse, de chaudières à condensation avec un cogénérateur ayant ses propres régimes de température ?

Intégration dans un nouveau projet de chaufferie

D’emblée lors d’un nouveau projet de chaufferie intégrant un système de cogénération, les acteurs doivent considérer des systèmes de production de chaleur à basse température, voire très basse température (pompe à chaleur (PAC), chaudière à condensation, …). Hydrauliquement parlant, toute l’installation de la chaufferie, y compris le cogénérateur, doit être pensée pour ramener des retours d’eau chaude en chaufferie les plus froids possible.


D’un point de vue de la régulation

Comme pour l’hydraulique, le même exercice doit être mené au niveau de la régulation. Les acteurs du projet doivent avoir une vision globale de la régulation et non pas de l’installation de cogénération comme un « appendice » capable de travailler de manière autonome

Le régulateur de la chaufferie existante ou des chaudières d’un nouveau projet et le régulateur de l’installation de cogénération doivent communiquer entre eux de manière à inscrire au minimum la cogénération dans la séquence de cascade des chaudières.

Intégration de la cogénération dans la cascade des chaudières.

Pour en savoir plus voir le vadémécum : « Réussir l’intégration de l’hydraulique et de la régulation d’une cogénération dans une chaufferie » (PDF).

 

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir les éléments annexes [Cogénération]

Dispositif anti-vibrations.

Les éléments annexes sont repris avec leurs caractéristiques principales.


Localisation de l’installation

Le local de la cogénération peut être la chaufferie existante, un local dédié, ou elle peut être placée à l’extérieur des bâtiments, dans un caisson spécifique.

Les règlements habituels sur les chaufferies sont d’application.
La disposition spatiale est essentielle. La cogénération sera placée le plus près possible de l’endroit où la chaleur va être utilisée, pour réduire le coût des équipements de transport de la chaleur.

Les variables clés dans le dimensionnement du local et de ses abords sont :

  • la puissance des équipements;
  • le type et la position du local d’implantation;
  • la destination du bâtiment (public ou non);
  • les accès au local (non-accessibilité au public, accès direct extérieur, distance par rapport aux locaux occupés, nombre d’issues…);
  • la résistance au feu des parois;
  • la ventilation;
  • l’évacuation des gaz;
  • les équipements électriques…

Plan placement d'une cogénération.

Exemple d’implantation.


Sécurité de l’emplacement

La sécurité de l’emplacement doit être étudiée au minimum par rapport aux inondations et à l’incendie.

Il n’existe pas de réglementation relative à la détection gaz-incendie, mais des clauses particulières doivent être envisagées afin d’éviter d’interminables discussions le cas échéant.

La signalisation doit aussi faire l’objet d’une définition précise.


Raccordement combustible

Les principales caractéristiques d’une rampe à gaz sont :

  • sa pression d’alimentation;
  • le filtre;
  • les vannes de sécurité;
  • la détection gaz;
  • la détente.

Exemple : alimentation en gaz.

Raccordement gaz.


Génie civil

La dalle d’accueil de la cogénération s’étudie en tenant compte :

  • de la charge admissible;
  • du bac de rétention (éventuellement compris dans le châssis);
  • d’un dispositif anti-vibratoire (éventuellement compris dans le châssis).

Accessibilité

L’accessibilité doit être garantie pour :

  • l’installation;
  • la maintenance.

Ventilation

Les dispositions classiques pour les chaufferies sont d’application (ventilation permanente, air neuf par le bas, air usagé par le haut…).

Une attention particulière sera portée à l’apport en air comburant et à l’évacuation de la chaleur émise par rayonnement et des batteries.


Échappement

L’échappement se caractérise principalement par :

  • son implantation (hauteur, vitesse minimale d’éjection…);
  • la position de la cheminée;
  • les matériaux;
  • la conformité des fixations;
  • une pression d’évacuation suffisante pour le tracé de la cheminée;
  • la récupération des condensats;
  • l’isolation thermique;
  • le silencieux pour le traitement des émissions (voir le permis d’exploitation);
  • le pot catalytique intégré dans le silencieux;

Exemple : évacuation des gaz de combustion.

Évacuation gaz.


Acoustique et vibrations

Le permis d’environnement impose les limites en matière de bruit, qui viennent s’ajouter aux éventuelles contraintes imposées par le client comme dans le cas d’un hôtel par exemple.

Un capotage avec double enveloppe est généralement nécessaire pour atteindre les limites sonores.

La transmission du bruit s’effectue :

  • en direct;
  • via la cheminée;
  • via la tuyauterie;
  • via le fluide.

Le client ne connaît pas ses exigences en valeurs chiffrées, mais il veut de bons résultats. Un cahier des charges en terme de résultats est à déterminer avec lui avant.

Le niveau sonore du moteur ou de la cogénération avec son spectre est à connaître en champ libre pour ensuite calculer son spectre en conditions réelles et isoler adéquatement.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir les échangeurs de chaleur [cogen]

Échangeur à plaques   échangeur tubulaire

Échangeur à plaques et échangeur tubulaire.


Critères de sélection

Lorsque le projet nécessite un choix d’échangeurs séparés, il est important de les différencier :

  • La chaleur du bloc moteur est récupérée par un échange à plaque eau-eau.
  • La chaleur du circuit de lubrification est récupérée par un échange huile-eau.
  • La chaleur contenue dans les échappements est récupérée par un échange air-eau dans un échangeur à tubes droits.

Les températures et débits côtés moteur, lubrification  et échappement sont des données « constructeur » dépendantes du moteur sélectionné.

Le calcul des températures et débits côté eau doit assurer la cohérence du débit et des températures d’un échangeur à l’autre et garantir le refroidissement de chacun des postes de récupération de chaleur, avec une sécurité maximale pour le refroidissement du bloc moteur.


Échangeur sur les gaz d’échappement

La puissance de cet échangeur est fonction de sa perte de charge, mais le rendement du moteur est aussi très sensible à la pression de sortie. Un équilibre est à trouver et surtout à maintenir à ce niveau, à l’aide par exemple d’un pressostat dont le calibrage est régulièrement contrôlé. S’il y a un encrassement de l’échangeur, les pertes de charge augmentent et peuvent causer des dégâts considérables au moteur. Ce problème a causé jusqu’à l’explosion de certains moteurs.

Échangeurs sur le bloc moteur et le circuit de lubrification

Côté refroidissement du moteur, des problèmes de corrosion et d’hydrolyse dans le circuit de refroidissement peuvent engendrer des problèmes aux joints des pompes à eau par exemple. La séparation des circuits de refroidissement du moteur (water jacket) du reste de l’installation hydraulique confine le problème. La solution est alors d’analyser la qualité de l’eau et de définir les additifs qui neutralisent les polluants.

L’isolation des échangeurs de refroidissement du moteur et du circuit de lubrification permet de n’ajouter les additifs que dans un circuit local, au contraire d’un circuit unique, qui impose l’ajout des additifs en question dans tout le circuit de chaleur.

Il est encore conseillé de vérifier régulièrement la différence de température effective entre entrée et sortie des différents échangeurs, pour s’assurer du fonctionnement correct de l’installation. Rappelons qu’un mauvais refroidissement du moteur peut le détruire très rapidement.


Intercooler

Lorsque le cogénérateur est équipé d’un turbo-compresseur, l’intercooler, qui le refroidit, peut-être mis sur le même circuit que les échangeurs du bloc moteur et du circuit d’huile. Vu que son régime de température est assez bas (30 – 35 °C), l’intercooler est placé en amont des deux échangeurs précités pour bénéficier des retours froids du circuit de chauffage.

Échangeurs de secours

Un aéro-réfrigérant de secours reste souvent maintenu pour garantir le refroidissement du moteur dans des circonstances exceptionnelles. La chaleur évacuée par l’aéro-réfrigérant de secours ne peut cependant pas être comptabilisée pour l’attribution des certificats verts dans la mesure où elle ne contribue pas à la réduction de CO2.

Deux vannes 3 voies servent respectivement à by-passer l’échangeur eau-eau pour éviter un retour d’eau trop froide au moteur et à utiliser l’aéro-réfrigérant de secours (radiateur initial du moteur) pour garantir le refroidissement du moteur si le besoin en chaleur est réduit.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Dimensionner l’installation de cogénération

Dimensionner l'installation de cogénération


 Principe de dimensionnement

Schéma principe de dimensionnement.

Schéma simplifié d’une installation de cogénération.

Sur le plan technique, le pré-dimensionnement a permis de déterminer les puissances thermique et électrique ainsi que les plages de fonctionnement du cogénérateur.

Lors du dimensionnement, le prescripteur va opérer une série de choix techniques, calculer les variables clés et choisir les composants du groupe de cogénération.

Le dimensionnement peut être soit un dimensionnement complet suivi d’un appel d’offre; soit, et c’est le plus souvent le cas, un dimensionnement interactif avec les fabricants pour le choix des équipements, intégrant dès la conception les caractéristiques de moteurs et de composants disponibles sur le marché. De cette façon, le cahier des charges imposé au motoriste est très simple et c’est ce dernier qui propose des solutions sur base de quelques variables clés. Dans le cas contraire, des points spécifiques risquent de nécessiter des adaptations parfois coûteuses. L’offre du motoriste peut éventuellement comprendre un chapitre avec les besoins minimums qui ne sont pas respectés et les options possibles.

Selon le cas, le bureau d’étude sous-traitera ou réalisera lui-même le calcul complet des composants, calcul qui sort du cadre de cet outil.

Techniques

Présentation synthétique des principaux composants d’une unité de cogénération.


Puissances thermiques mises en jeu et interaction avec les chaudières

Rappelons brièvement que l’objectif de l’installation d’une cogénération en chaufferie est de couvrir au mieux le besoin énergétique en chaleur tout en produisant simultanément de l’électricité. Au vu de l’allure de la monotone de chaleur représentée ci-dessous, l’optimum énergétique pour intégrer une cogénération se situe régulièrement au tiers de la puissance maximale enregistrée. Ce n’est naturellement qu’un ordre de grandeur et sûrement pas une règle générale établie; tout dépend des profils des consommations de chaleur (liées à la performance de l’enveloppe du bâtiment) et d’électricité.
Rappelons ici que la « monotone » de chaleur est un classement par ordre décroissant des besoins en puissance du bâtiment à chauffer tout au long de l’année. Par exemple, une puissance de 200 kW doit être assurée en chaufferie pendant au moins 2 300 heures pour assurer le confort des occupants.
Ce nombre d’heures peut être plus important que celui de la période de chauffe, due à un besoin de chaleur pour l’eau chaude sanitaire (ECS). L’intérêt de parler de la monotone de chaleur ici, est que l’aire sous la courbe représente l’image des besoins thermiques du bâtiment en kWhth et d’ECS.

Monotone de chaleur

La cogénération, dans certains cas, est de très petite puissance par rapport à certaines chaudières qui généralement sont dimensionnées pour délivrer minimum 3 fois plus de puissance que le malheureux cogénérateur (c’est un ordre de grandeur). En théorie cela ne devrait pas poser trop de problèmes, mais en pratique, la cohabitation entre « Gulliver et les Lilliputiens » est parfois problématique surtout lorsque, dans les chaufferies courantes, le collecteur principal est bouclé ou une bouteille casse-pression réalise le découplage des circuits primaire et secondaire.

Le cogénérateur fournit assez de puissance pour couvrir la demande de chaleur. Mais la température de départ primaire chute. Le régulateur de chaufferie libère la chaudière (démarrage).

La chaudière se met en fonctionnement. Elle délivre très rapidement suffisamment de chaleur pour que les vannes 3 voies des circuits secondaires se ferment. La température de retour monte et réchauffe le ballon tampon.

Le cogénérateur et la chaudière s’arrêtent.

Après refroidissement du ballon tampon, le moteur redémarre. La cogénération ne parvient pas suffisamment vite à répondre à la demande de chaleur et la chaudière redémarre.
Ainsi de suite …

De plus, les facteurs aggravants sont souvent :

  • Des chaudières qui ne travaillent pas à puissance modulante ou qui ne démarrent pas en « petite flamme ». La puissance délivrée par une chaudière en relance d’appoint risque de délivrer un « boost » de chaleur capable d’imposer à la cogénération de s’arrêter.
  • Des circulateurs ou des pompes de circulation d’équipements de production de chaleur fonctionnant à débit fixe. Dans ce cas, le débit du primaire n’est que trop rarement en adéquation avec les débits des circuits secondaires, ce qui favorise un retour chaud au primaire capable de réduire fortement le temps de fonctionnement de la cogénération.

Le risque majeur à éviter dans le raccordement hydraulique est donc une température de retour trop élevée. Ce phénomène est influencé par la température de départ des chaudières et apparaît surtout dans le cas de forte demande de chaleur.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Visualiser les étapes d’un projet de cogénération

Visualiser les étapes d'un projet de cogénération


Vue d’ensemble

Si chaque projet présente des caractéristiques particulières, il est possible de définir les grandes étapes d’un projet de cogénération.

Le délai de réalisation d’un projet de cogénération, depuis l’étude jusqu’à la mise en service oscille autour de 8 mois ou plus, selon les spécificités qui peuvent influencer les délais.

Les démarches administratives doivent être entamées dès que la décision de réaliser le projet intervient. Ces démarches comprennent l’obtention des permis d’exploitation et d’urbanisme si nécessaire, la réservation des CV à l’administration, l’acceptation des plans des installations électriques et thermiques par les organismes de contrôle, le choix des assurances, le marquage CE, …

Une série d’acteurs vont se côtoyer au cours de ce projet, prendre dès le départ les coordonnées de toutes les personnes responsables facilite la communication et la coordination du projet.

  • le maître d’ouvrage ;
  • l’exploitant de la chaufferie actuelle ;
  • le bureau d’étude ;
  • le maître d’œuvre ;
  • le motoriste ;
  • l’installateur et les entreprises de travaux ;
  • la société de maintenance ;
  • les organismes de contrôle ;
  • les organismes délivrant les autorisations et permis ;
  • les organismes financiers ;
  • le fournisseur de combustible, …

Le planning

Voici une proposition de planning de réalisation d’une installation de cogénération comprenant étude, chantier, mise en service et essais, mais sans tenir compte de délais éventuels liés à l’obtention de permis ou d’autorisations liées à la réservation des CV, la certification, l’acceptation de primes éventuelles, …

Durée (jours) 1er mois 2ème mois 3ème mois 4ème mois 5ème mois 6ème mois 7ème mois

Études

Étude d’exécution des travaux électriques BT

10 X X

Étude d’exécution des travaux thermiques

10 X X

Approbations

Visa des études par les organismes de contrôle et le distributeur

5 X

Commande de matériel

Commande du groupe et équipements

2 X

Début du chantier

X

Génie Civil

Réalisation du socle

2 X

Tranchées pour circuit de récupération

5 X

Début chantier hors GC

X

Groupe de cogénération

Mise en place du groupe

5 X

Raccordement échappement (silencieux, pot catalytique, cheminée)

5  X

Circuit de refroidissement, y compris aéro-réfrigérant

10 X  X

Alimentation combustible, sécurité et essais

5  X

Travaux électriques

Pose et raccordements armoires BT

10 X  X

Circuit de puissance

5 X

Travaux de chauffage

Raccordement de la récupération de chaleur de la cogénération

10 X X

Travaux en chaufferie, coupure et raccordement

5 X

Electricité et Régulation

5 X

Mise en route et essais

10 X X

Les intervenants et leurs responsabilités

    MO – Maître d’ouvrage    

    AUD – Auditeur    

    FAC – Facilitateur    

    BE – Bureau d’études

    INST – Installateur    

    MAIN – Maintenance    

    EXPL – Exploitation    

Un projet d’implantation d’un système de cogénération dans une chaufferie existante ou dans une nouvelle chaufferie nécessite de bien définir l’intervention des différents acteurs et leurs limites.
Les responsabilités et les limites d’entreprise doivent donc être définies de la manière la plus claire possible à chaque étape du projet, à savoir au niveau :

  • D’un audit éventuel.
  • De l’avant-projet à travers les études de pertinence et de faisabilité.
  • Du projet par la réalisation de l’engineering et la rédaction des cahiers de charge.
  • De l’exécution par la réalisation correcte et critique de l’installation en collaboration étroite avec le bureau d’études ou/et le maître d’ouvrage.
  • De l’exploitation par le suivi des performances et optimalisation de l’installation.
  • De la maintenance par la réalisation des différentes tâches définies dans les cahiers de charge de maintenance (entretien à temps et à heure).

La bonne coordination du chantier implique la désignation d’un responsable et se trouve grandement facilitée par le recensement des coordonnées des responsables de tous les intervenants, à savoir :

  • l’auditeur éventuel;
  • le maître de l’ouvrage;
  • le coordinateur de l’opération;
  • le bureau d’étude;
  • le ou les bureaux de contrôle;
  • l’administration;
  • le fournisseur du groupe;
  • le maître d’œuvre des travaux;
  • la société de maintenance;
  • l’exploitant de la chaufferie actuelle;
  • les sous-traitants éventuels;
  • le distributeur d’électricité;
  • le distributeur de gaz.

L’audit

     MO       AUD       FAC   

Le maître d’ouvrage dans sa démarche d’amélioration de son installation existante a, à sa disposition, toute une série de services lui permettant de mieux appréhender « ce qui va lui tomber sur la tête » en termes de rénovation de chaufferie.

La première étape conseillée est souvent d’effectuer un audit de son installation. L’auditeur va pointer surtout les sources d’amélioration URE possibles de manière à réduire les consommations énergétiques. C’est à ce moment-là que l’auditeur peut évaluer le potentiel de réduction de la facture énergétique thermique. Cette analyse de potentiel influence fondamentalement le pré-dimensionnement et le dimensionnement d’un cogénérateur.


L’avant-projet

Pré-dimensionnement du cogénérateur

     MO       FAC       BE  

Dans tout projet d’installation de cogénération, des études de pertinence (« à la grosse louche ») et de faisabilité  (étude fine) doivent être réalisées de manière à savoir si ce projet est viable ou pas d’un point de vue :

  • Énergétique : comparaison en énergie primaire de la production de chaleur et d’électricité de la cogénération par rapport à une centrale électrique TGV (rendement de référence de 55 %) et une chaudière gaz (rendement de référence de 90 %) pour répondre au même besoin de chaleur et d’électricité du bâtiment considéré.
  • Environnemental : la réduction des émissions de gaz à effet de serre (CO2) doit être significative. En Wallonie, le taux d’économie sur les émissions de CO2 doit être supérieur à 10 % et à Bruxelles d’au moins 5 % pour avoir droit aux primes et aux certificats verts (CV). On parle de cogénération de qualité quand le dimensionnement du cogénérateur est basé sur les besoins de chaleur, génère une économie d’énergie primaire et une réduction des émissions de gaz à effet de serre comme indiqué ci-avant en fonction de la région.
  • Économique : le projet doit être rentable économiquement. Tous les indicateurs de rentabilité devront être au vert (temps de retour simple sur investissement TRS, valeur actualisée nette VAN, taux de rentabilité interne TRI).

Remarque : Le facilitateur cogénération est naturellement disponible pour ce genre d’accompagnement. Des outils sont mis à la disposition des responsables du projet : le guide de pertinence aide les auteurs de projet dans leurs premiers pas dans la technique de cogénération. L’outil de calcul CogenCalc, lui, permet, suivant des profils types de consommation de se faire une idée de la viabilité du projet avec une précision relative (de l’ordre de 20 à 30 %).
Tous les outils sont disponibles sur le site de la Région wallonne :

Intégration hydraulique et régulation du cogénérateur  

     BE       INST   

Cas d’une nouvelle chaufferie

Ce cas de figure est plus facile à aborder sachant que, de toute façon, un nouveau régulateur doit être prévu. La seule contrainte est de s’assurer que le module de régulation de l’installation de cogénération puisse communiquer avec le régulateur de chaufferie et s’intégrer dans la cascade

Cas d’une chaufferie existante

Hydraulique
Pour que l’intégration de la cogénération dans l’installation hydraulique d’une chaufferie existante soit une réussite, l’analyse de la situation par le bureau d’études en technique spéciale (ou par l’installateur pour les petits projets) doit être fine. Les contraintes d’intégration ne manquent pas. Celles qui sont à pointer sont généralement :

  • L’espace disponible dans la chaufferie pour les différents équipements comme le cogénérateur, le ou les ballons de stockage, l’armoire de régulation.
  • L’espace sur le circuit hydraulique pour placer les points d’injection de la chaleur du cogénérateur. Il doit bien être choisi par rapport aux chaudières existantes de manière à ne pas ou peu perturber l’équilibre hydraulique existant. L’intégration hydraulique doit tenir compte aussi des caractéristiques des chaudières.Par exemple :
    • Lorsque les chaudières existantes sont des chaudières à condensation, idéalement, le cogénérateur doit être placé en parallèle, et ce afin d’éviter de réchauffer le retour des chaudières. Lorsque les équilibres hydrauliques ne sont plus assurés par l’insertion d’un cogénérateur, il y aura lieu de redimensionner complètement le circuit primaire de manière à tenir compte de la redistribution des débits et des pertes de charge en fonction des caractéristiques hydrauliques des équipements en présence sur le circuit primaire.
    • Lorsque les chaudières existantes sont des chaudières à haute température, la configuration série est envisageable.

Il est toujours intéressant d’avoir un avis sans engagement d’un installateur sachant que, in fine, c’est lui qui aura les contraintes d’une bonne intégration de l’installation de cogénération en partenariat avec le bureau d’études.

Régulation
La régulation existante de la chaufferie doit pouvoir au minimum intégrer la cogénération dans la séquence de cascade des chaudières. Si ce n’est pas le cas, cette absence de communication des régulateurs des chaudières et de la cogénération risque de compromettre le bon fonctionnement du cogénérateur. En effet, on observe en pratique que l’installation de cogénération fonctionne moins d’heures que prévu et effectue des cycles de démarrage/arrêt importants.

C’est essentiellement dû au fait que les chaudières sont régulées sur base de courbes de chauffe à températures de consigne glissantes en fonction de la température externe, donc variables. La consigne de température pour réguler le fonctionnement de la cogénération est, quant à elle, fixe. Il en résulte que lorsque les deux systèmes ne communiquent pas :

  • En période froide, les consignes de démarrage des chaudières sont élevées par rapport à celles de la cogénération. Les chaudières sont donc mises en avant par rapport à la cogénération ; ce qui n’est pas le but recherché.
  • En mi-saison, les consignes des chaudières sont basses et en dessous de celles du cogénérateur et, par conséquent, le cogénérateur démarrera avant les chaudières. C’est bien, mais trop tard dans la saison de chauffe.

Dans le cas où la régulation existante des chaudières ne peut pas intégrer cette séquence de cascade et, pour autant qu’individuellement les régulateurs des différents équipements puissent accepter de l’être, il est donc impératif de prévoir un élément de régulation qui chapeaute les deux régulateurs.

Un autre moyen d’intégration est de prévoir un nouveau régulateur qui permette d’intégrer l’ensemble des équipements.


Le projet

Les étapes essentielles de tout projet, à partir du moment où la décision d’installer une unité de cogénération est prise, sont les suivantes :

  • étude des travaux électriques et thermiques ;
  • approbation des plans par le maître d’œuvre et les organismes de contrôle ;
  • commande des matériels (attention aux délais) ;
  • chantier pour le génie civil ;
  • installation du cogénérateur et raccordement (cheminée, combustible, chaleur et électricité) ;
  • travaux d’électricité (raccordement au réseau) ;
  • travaux thermiques (intégration hydraulique du cogénérateur en chaufferie) ;
  • système de régulation (intégration de la régulation du cogénérateur au système de régulation central de la chaufferie) ;
  • mise en route et essais ;
  • réception provisoire ;
  • « commissioning » (analyse et vérification des performances énergétique, environnementale et financière de l’installation) ;
  • réception définitive.

Dimensionnement

      BE   

En appui du cahier des charges pour la cogénération, le vadémécum se doit d’insister sur le dimensionnement de la cogénération surtout en tenant compte de la composante URE :

  • Un cogénérateur surdimensionné effectuera des cycles courts marche/arrêt ; ce qui réduira sa durée de vie. Le surdimensionnement d’une cogénération vient souvent du fait que l’on n’a pas de tenu compte à moyen terme de l’amélioration énergétique de l’enveloppe du bâtiment (changement des châssis vitrés, isolation des murs et des toitures, …) et des systèmes de production de chaleur et d’ECS.
  • Un sous-dimensionnement réduit la rentabilité du projet.

L’étude de faisabilité donne la méthodologie et les bonnes hypothèses aux auteurs de projet pour dimensionner et choisir une installation de cogénération dans les règles de l’art. Les outils de calcul CogenSim et CogenExtrapolation arrivent à un degré de précision suffisant (10 %) pour déterminer des points de vue  énergétique, environnemental et économique si un projet de cogénération est viable. Attention que ces outils se basent sur une mesure des besoins thermiques et électriques.

Cahier des charges

      BE   

Un cahier des charges pour la cogénération est disponible ici.

Ici, on voudrait juste pointer les petites inclusions à réaliser dans les cahiers des charges de manière à éviter les pièges de l’intégration hydraulique et de la régulation. Attention cependant que le cahier spécial des charges est à utiliser avec précaution sachant que chaque projet est un cas particulier. Le « copier/coller » pur et dur est à proscrire.

URE

Sensibilisation à l’URE

Si on veut rester cohérent par rapport à la notion de durabilité dans le bâtiment, l’URE doit être envisagée en premier lieu de manière à réduire les besoins de chaleur ET d’électricité.
Si des actions URE sont prévues dans le cadre du projet, il est impératif de le préciser dans le cahier des charges. En général, l’entreprise en techniques spéciales effectue un redimensionnement de contrôle ; c’est souvent demandé par le bureau d’études. Régulièrement, l’action URE ne s’arrête pas à l’amélioration énergétique de l’enveloppe, mais aussi au niveau des techniques spéciales :

  • On en profite pour remplacer une, voire toutes les chaudières de la chaufferie. La chaudière à condensation, dans ce cas-là, est souvent préconisée.
  • On enlève le bouclage de collecteur.
  • On prévoit une bouteille casse-pression pour mettre en place un découplage hydraulique des circuits primaire et secondaire.
  • Pour assurer un retour froid aux chaudières à condensation et au cogénérateur, on prévoit de réguler les débits primaires par des variateurs de vitesse, et ce sur base de la différence de température de part et d’autre de la bouteille casse-pression.

Au travers de son cahier des charges, le bureau d’étude devra sensibiliser par une remarque générale l’entreprise en technique spéciale de l’intention rapide, à court ou moyen terme, du maitre d’ouvrage d’entamer une action URE. Cette précision permet d’anticiper la configuration hydraulique adéquate en fonction de cette action URE.

Par exemple, le fait d’envisager à court ou moyen terme de remplacer une chaudière classique par une chaudière à condensation conditionne le positionnement hydraulique du cogénérateur vers une configuration parallèle.

Adaptation des débits primaires aux débits secondaires

Bien souvent, et à juste titre, les bureaux d’études en techniques spéciales aiment bien le concept de bouteille casse-pression, car elle permet d’éviter pas mal de problèmes de perturbation (ou « dérangement ») hydraulique et de régulation entre les circuits primaires et secondaires. Cependant, la faiblesse de ce découplage hydraulique qu’est la bouteille casse-pression réside dans le risque de ruiner tous les efforts réalisés pour mettre en place une politique URE. Comme on l’a vu précédemment, sans régulation des débits en amont et aval de la bouteille casse-pression, le retour primaire risque d’être chaud. La plupart des installations qui ont des problèmes de chaudières à condensation ne condensant pas et/ou des cogénérateurs fonctionnant peu d’heures sont équipées de bouteilles casse-pressions non régulées. Il y a donc lieu de prévoir dans le cahier des charges une clause énergétique qui décrit la régulation autour de la bouteille casse-pression.

Hydraulique

Les clauses du cahier des charges relatives à l’hydraulique devront être écrites différemment en fonction de différents paramètres :

  • La configuration hydraulique existante et future en fonction des actions URE envisagées.
  • Le type de chaudière maintenu ou nouveau envisagé. Par exemple, on préfèrera la configuration en parallèle lorsqu’on prévoit le placement en chaufferie de chaudières à condensation.

Régulation

Maintes fois soulignée dans ce vadémécum, l’importance de la communication entre les régulateurs des chaudières et du cogénérateur ne fait pas l’ombre d’un doute. Le bureau d’études devra la décrire dans son cahier des charges de manière détaillée.

Lorsque les circulateurs ou pompes de circulation à vitesse variable des chaudières et du ballon de stockage débitent dans le circuit primaire en amont d’une bouteille casse-pression, ils peuvent fonctionner à faible débit ou carrément être mis à l’arrêt quand les besoins de chaleur côté secondaire sont faibles. Lorsque ces derniers redeviennent importants, il est nécessaire de redémarrer les pompes ou les circulateurs. Cela ne peut se faire qu’en intégrant les variations de température au secondaire de la bouteille casse-pression. Il faudra donc décrire ce point de régulation dans le cahier des charges.

Gestion Technique Centralisée (GTC)

Normalement quand la cogénération est de qualité, des compteurs d’énergie thermique, électrique ainsi qu’un compteur combustible peuvent être « télégérés ». Ces compteurs sont indispensables dans toutes les installations de cogénération si le maître d’ouvrage veut valoriser son économie de CO2 sous forme de Certificat Vert CV (voir les prescriptions de la CWaPE et de Brugel).

Indépendamment de cela, une supervision (GTC) peut être envisagée pour affiner la gestion de la cogénération. Vu que la période de garantie permet d’analyser le comportement de l’installation de cogénération intégrée dans la chaufferie en situation réelle, on conseillera de décrire la télégestion du cogénérateur dans le cahier des charges. C’est vrai que c’est un coût complémentaire, mais il rendra immanquablement d’énormes services au maître d’ouvrage. En effet, moyennant la description d’un protocole précis d’analyse des paramètres du cogénérateur (« Commissioning »), d’emblée, pendant la période de garantie, l’enregistrement des valeurs de ces paramètres permettra de se faire une idée précise du bon fonctionnement de l’ensemble de l’installation. Voici une liste non exhaustive des paramètres que le bureau d’études pourrait décrire dans son cahier des charges :

  • Nombre d’heures de fonctionnement de la cogénération avec les dates et heures ;
  • en fonction du temps :
    • les températures du ballon, du retour du cogénérateur, … ;
    • l’état de fonctionnement de la cogénération ;
    • l’état des alarmes ;
    •  …

Lorsque la communication est possible entre les régulateurs de la chaufferie et de la cogénération, on conseille aussi de décrire dans le cahier des charges la télégestion du régulateur de chaufferie de manière à avoir une vue d’ensemble du fonctionnement de la chaufferie y compris le cogénérateur. Voici de nouveau une liste non exhaustive des paramètres que le BE pourrait intégrer dans son cahier des charges :

  • température externe ;
  • températures aux entrées et sorties de la bouteille casse-pression si présentes ;
  • températures des départs des circuits secondaires ;
  • températures de consigne de la cascade de chaudières ;
  • niveau d’ouverture des vannes des circuits secondaires ;
  • états des chaudières ;

L’exécution

     MO       BE       INST

L’administration

Une série de démarches administratives sont nécessaires avant et pendant la mise en œuvre du projet.

Avant exécution des travaux

  • Obtenir le permis de construire.
  • Obtenir le permis d’environnement (ou permis unique).
  • Obtenir l’accord écrit du distributeur d’électricité sur le cahier des charges relatif au raccordement électrique.
  • Réservation des CV auprès de la DGO4 et demande d’avis de la CWAPE sur les valeurs à attribuer au kCO2 et au keco.

Implantation des ouvrages

  • Faire exécuter le piquetage par un géomètre.
  • Placer les panneaux de chantier.
  • Placer les palissades pour la protection des installations de chantier.
  • Définir et assurer le système qualité du chantier.

Plan d’hygiène et de sécurité du chantier

  • Fournir le plan des locaux pour le personnel et leurs accès.
  • Assurer les dessertes pour réseaux d’eau, d’électricité et d’assainissement.
  • Désigner le responsable de coordination entre maître d’ouvrage et maître d’œuvre.
  • Définir les emplacements mis à disposition pour l’entreprise : des installations, matériels, fluides et énergie pour l’exécution des travaux.

Calendrier d’exécution des travaux

  • Établir un programme d’exécution des travaux.
  • Définir les matériels et méthodes utilisés.
  • Définir le calendrier d’intervention sur le réseau électrique.
  • Définir le calendrier d’intervention sur le réseau de chauffage.
  • Informer sur la continuité de services des installations ou dates d’interruptions.

Énergie

  • Électricité : définir les conditions de comptage, de raccordement, de mise sous tension (protection) et de mise en service (réception).
  • Gaz : définir les conditions de livraison, pression, comptage.

Le suivi de chantier

L’exécution du chantier d’intégration de la cogénération est une phase très importante. En effet, c’est à ce niveau que le dimensionnement, la rédaction des cahiers des charges, l’exécution des plans, … sont confrontés à la réalité de terrain qui nécessite souvent des compromis comme :

  • L’arbitrage des choix d’équipements sur base des fiches techniques. Les caractéristiques ne correspondent pas toujours « tip top » aux prescriptions des cahiers des charges, aux dimensionnements, etc.
  • L’adaptation des tracés des circuits hydrauliques en fonction des modifications en cours de chantier qui peuvent intervenir.

Les réunions de chantier sont là pour trouver les compromis nécessaires à la bonne réalisation du projet d’intégration.


Les réceptions

   MO       BE       INST

La réception provisoire

La réception provisoire n’est pas toujours exécutée à la période idéale; c’est-à-dire lorsque les besoins de chaleur sont suffisants pour faire fonctionner l’installation de cogénération. La période idéale pour réceptionner l’installation est en mi-saison sachant que l’on peut réellement observer le bon fonctionnement du régulateur du système de cogénération et de la communication entre ce dernier et le régulateur de chaufferie. En hiver, la réception ne devrait pas poser trop de problèmes. Par contre en été, la réception pose réellement un problème, car, même si des besoins d’Eau Chaude Sanitaire (ECS) sont présents, les tests d’interaction entre la ou les chaudières et l’installation de cogénération sont limités vu les faibles besoins de chaleur.

Dans la mesure du possible il faut éviter cette période.

Toute une série de tests devra être réalisée lors de la réception provisoire. Ils devront être décrits de manière  précise dans le cahier des charges si l’on veut éviter que « pleuvent les suppléments ». Les grandes lignes des tests à réaliser sont reprises ci-dessous en mi saison par exemple. Outre les tests classiques inhérents aux installations de chauffage (sécurités sur les équipements, équilibrage des circuits, autorité réelle des vannes motorisées, tests des pompes de circulation ou des circulateurs, …), à l’installation de cogénération (sécurités, marche/arrêt du cogénérateur sur base des consignes de température,  …), on pointera les tests spécifiques à réaliser sur les interactions entre la chaufferie et l’installation de cogénération (liste non exhaustive) :

  • Tester la séquence de cascade du cogénérateur par rapport aux chaudières :
    • Le cogénérateur doit être en tête de cascade lorsque des besoins de chaleur réapparaissent après une période de non-demande.
    • Lorsque le cogénérateur ne couvre pas les besoins de chaleur, les chaudières doivent s’enclencher séquentiellement de manière optimale. À l’inverse, quand les besoins diminuent, la séquence d’arrêt des chaudières doit être opérationnelle. Le cogénérateur devra être arrêté en dernier lieu si les besoins deviennent faibles.
  • Tester l’adaptation des débits primaires en fonction des débits secondaires. Lorsqu’une bouteille casse-pression est présente avec des sondes de température de part et d’autre de celle-ci, les débits primaires doivent bien s’adapter au Δ de température donné par les sondes. On pourra mesurer aussi à différents moments de la journée les quatre températures des conduites d’alimentation de la bouteille casse-pression.
  • Analyser le comportement de l’installation de cogénération en fonction d’une demande importante d’ECS. L’augmentation temporaire de la consigne de température du départ primaire pour satisfaire ce type de besoin ne doit pas permettre le réchauffement du retour primaire au-dessus de la consigne d’arrêt du cogénérateur. C’est une manière de constater que l’échangeur du circuit ECS est bien surdimensionné pour pouvoir ramener sur le retour primaire de l’eau chaude la plus froide possible (c’est un paradoxe !).
  • Vérifier que les puissances et rendements électrique et thermique sont conformes au cahier des charges.

En cas de réception provisoire pendant la période d’été, on ne peut évidemment pas analyser et tester les installations dans des conditions optimales. Les seuls tests qui peuvent être réalisés sont principalement :

  • l’équilibrage des circuits;
  • la vérification des débits nominaux.

La période de garantie

Comme signalé précédemment, dans le cahier des charges, il est important de décrire une période de garantie d’un an au minimum pour pouvoir couvrir une saison de chauffe complète et deux mi-saisons.

Pendant cette période, si une installation de Gestion Technique Centralisée (GTC) a été décrite dans le cahier des charges, un protocole de « commissioning » (sur base d’une analyse fonctionnelle) devra être mis en place de manière à contrôler le bon fonctionnement de la cogénération. Lorsqu’une GTC n’a pas été décrite dans le cahier des charges, Il faudra prévoir un relevé manuel des paramètres de fonctionnement principaux du cogénérateur, et ce à intervalles réguliers. On conseille aussi de décrire dans le cahier des charges le protocole d’analyse et de présentation des résultats issus des « trends » (enregistrements).

La réception définitive

La réception définitive en fin de garantie représente la dernière chance de pouvoir définitivement optimiser l’intégration en chaufferie de l’installation de cogénération. Elle n’est en fait qu’une  « deadline » ! Le gros des remarques par rapport à l’intégration du cogénérateur aura dû être résolu pendant la période de garantie.


Les documents utiles

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir le cogénérateur

Source : Cogengreen.

Puissances ?

Les puissances du cogénérateur sont déterminées lors du dimensionnement des équipements. Si le dimensionnement s’est limité à une évaluation grossière des puissances nécessaires, des investigations supplémentaires selon la méthodologie présentée compléteront et valideront les résultats.

Combustible ?

Le gaz est très généralement préféré au fuel, lorsqu’il est disponible. Son premier avantage se situe au niveau des émissions moindres que dans le cas du mazout. Autre avantage, les rendements des moteurs à gaz sont généralement meilleurs, mais pour un coût d’investissement plus élevé.

Groupe de secours ?

Une cogénération peut être pensée pour fonctionner en groupe confort secours. Une telle solution doit cependant s’étudier avec beaucoup d’attention, notamment par rapport au délai lors de la mise en route. Parmi les éléments à étudier dans ce cas, citons encore le déclassement nécessaire du moteur  d’un groupe secours existant, si l’on souhaite le faire fonctionner en cogénération. En effet, le fonctionnement en cogénérateur présente des contraintes plus importantes qu’un fonctionnement en groupe secours du fait de la durée de fonctionnement plus importante.

Si le groupe fonctionne au gaz, le fonctionnement du groupe en secours ne sera garanti que si l’approvisionnement en gaz est garanti. Notons finalement à ce sujet qu’un groupe fonctionnant au gaz a une reprise de charge plus lente, de l’ordre de quelques minutes pour atteindre la pleine charge, ce qui est une contrainte de taille pour un groupe de secours dans un hôpital par exemple.

Dans ce dernier cas, la présence d’un groupe de cogénération peut être valorisé comme deuxième source autonome, sorte de groupe de confort.

Le fonctionnement de plusieurs petites machines en parallèle peut-être une alternative, quoique d’un coût sensiblement plus élevé, proportionnellement plus chères que les grosses unités. Cette solution limite les risques de pannes et permet un fonctionnement à charge réduite, notamment pendant l’entre-saison. Cette option présente encore des difficultés quant à la complexité de sa régulation et à son intégration dans le système de gestion des chaudières existantes.


Écrêtage ?

La cogénération présente une philosophie fondamentalement différente de l’écrêtage. Un moteur dédié exclusivement à l’écrêtage ne fonctionne en effet que pour les heures pleines de pointe, c’est à dire 4 heures par jour pendant 4 mois par an. Il s’agit le plus souvent d’un groupe au mazout. À l’opposé, une cogénération fonctionnera de la façon la plus continue possible. Il s’agit le plus souvent d’un groupe au gaz.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Concevoir les percements

Concevoir les percements

Principe général

Les jonctions telles que les percements (passage de conduite, caisson de volet, portes, baies vitrées, boîtiers électriques, …) sont toujours des points délicats. On doit vérifier la parfaite jonction du raccord entre la paroi et le percement dès que ce dernier touche la ou les couche(s) de la façade qui assure l’étanchéité à l’air. Si cette jonction présente des espaces, il faut les colmater.

De manière générale, on essayera de réduire au maximum le nombre de percements.


Manchons et fourreaux

Les manchons

Les manchons sont des raccords préfabriqués permettant de réalisé la continuité entre l’élément cylindrique, le conduits ou tuyau, et la surface plane de la paroi. Il est composé d’un élément en forme de cône tronqué, permettant le resserrage autour du conduit, qui est soudé à un élément plan.

Sa mise en œuvre nécessite une place suffisante autour du percement et de la conduite et doit être effectué par l’installateur concerné par la technique.

Le manchon est fixé à la couche d’étanchéité à l’air du mur ou de la toiture grâce à des bandes adhésives simples ou doubles face. Cela nécessite donc que le manchon soit adapté à la nature du pare-air mis en place.

Les fourreaux

Lors de la pose du gros-œuvre, des fourreaux peuvent être mis en place pour accueillir plus tard le passage d’un conduit.

Lorsque le conduit a été mis en place, on dispose un resserrage sur le fourreaux et finalement un manchon souple vient terminer et réaliser la continuité de l’étanchéité à l’air entre l’enduit intérieur et le conduit.

Bruxelles Environnement a édité à une vidéo illustrative du traitement des percements par les câbles et les conduits dans une paroi bois :

Etanchéité à l’air : Percements étanches par les câbles et les conduits[Vidéo réalisée dans le cadre du projet Conclip, soutenu par Bruxelles Environnement].


Raccords souples

Les raccords souples sont très utiles pour les géométries plus complexes que les cylindres.

Sous forme liquide

Il s’agit ici d’appliquer un liquide effectuant le raccord d’étanchéité à l’air. Cette couche de jonction est renforcée par un géotextile permettant de reprendre les éventuels contraintes et d’éviter que la peinture ne se morcelle et que l’air puisse circuler.

Sous forme de ruban adhésif étirable

Des bandes de raccord plissées existent et permettent la jonction avec un conduit cylindrique. Ces bandes doivent ensuite être raccordées comme une jonction sec-sec avec la membrane pare-air ou une jonction sec-humide avec l’enduit.


Élément préfabriqué pour cheminée

Certains fabricants proposent des sorties de cheminée en toiture préfabriquées garantissant la continuité de l’étanchéité à l’air. Ces systèmes permettent également d’assurer la continuité de l’isolation thermique.

Concevoir les menuiseries

Concevoir les menuiseries

Importance de l’étanchéité à l’air des menuiseries extérieures

Les portes et châssis extérieures peuvent déforcer l’étanchéité à l’air globale du bâtiment si leur étanchéité propre n’est pas suffisante. C’est particulièrement le cas si l’étanchéité courante de l’enveloppe extérieur est bonne. Ainsi les châssis peuvent être responsable de près de 50% des fuites d’air.

La perméabilité à l’air d’un châssis est testé en usine et la classe de perméabilité à l’air est généralement communiqué par le fabricant dans ses spécifications techniques.

La norme NBN EN 12207 définit 4 classes de perméabilité à l’air de la classe 1, la moins performante, à la classe 4, la plus performante. Dans une de ses études, le CSTC a montré que la plupart des châssis actuels atteignaient la classe 4 qui est la classe recommandée pour garantir un bonne étanchéité à l’air des menuiseries extérieures.


Performances recommandées pour l’étanchéité à l’air

Concernant les châssis, les STS définissent des niveaux de performance d’étanchéité à l’air (PA2, PA2B, PA3) recommandés en fonction de la hauteur du châssis par rapport au sol.

Voici un tableau (selon les STS 52) reprenant les valeurs de perméabilité à l’air recommandées, en fonction de la hauteur du châssis par rapport au sol :

Hauteur par rapport au sol Perméabilité à l’air
0 à 10 m

10 à 18 m

18 à 25 m

25 à 50 m

> 50 m

PA2B (1) (3)

PA2B (3)

PA3

PA3

PA3

(1) Si il n’y a pas d’exigence particulière du point de vue thermique et/ou acoustique, on se contentera d’un niveau PA2.

(2) Si le bâtiment a une exposition sévère (digue de mer), on prendra un châssis de résistance PE3, et on le signalera dans le cahier spécial des charges.

(3) Si on est en présence de locaux avec air conditionné, un niveau PA3 s’avérera nécessaire.

Selon les STS 52 [5] le cahier spécial des charges peut, pour des raisons d’uniformisation ou d’aspect, prescrire le même niveau de performance pour tous les châssis du bâtiment en se basant sur les éléments de construction les plus exposés.


Les critères de choix

Lors du choix des menuiseries extérieures, il convient de faire particulièrement attention aux points suivant pour assurer l’étanchéité à l’air :

  • La compression des joints entre dormant et ouvrant : le réglage des quincaillerie doit être correctement réalisé pour assure la compression des joints lorsque la fenêtre est en position fermée;
  • La continuité des joints : la continuité des joints des être vérifiée sur le pourtour du châssis. Les jonctions entre deux joints doivent être soudées ou collées;
  • Le raccords entre les pare-closes et la menuiserie : l’étanchéité de ces raccords doit être vérifiés. Au besoin, ils peuvent être rendus étanche à l’air au moyen d’un joint souple, par exemple;
  • Les portes extérieures : le seuil d’une porte donnant vers un espace extérieur ou un espace adjacent non-chauffé est une source de fuite d’air importante. Il faut au minimum prévoir un joint brosse ou une plinthe à guillotine. Le mieux restant la pièce d’appui inférieure.

Concevoir les noeuds constructifs

Concevoir les noeuds constructifs

© B-ARCHITECTES / Architecture et Expertises.


Principe général

Les jonctions telles que les raccords entre les éléments de la construction (façade-toiture, façade-plancher au niveau de la plinthe, …) sont toujours des points délicats. On doit vérifier la parfaite jonction du raccord entre les différents éléments de construction dès que ce dernier touche la ou les couche(s) de la façade qui assure l’étanchéité à l’air. Si cette jonction présente des espaces, il faut les colmater.

La conception ou la vérification de l’étanchéité à l’air des nœuds constructifs d’un bâtiment est une adaptation des principes généraux valables pour les parties courantes et les types de jonction mais une réflexion par rapport à la géométrie du détails doit également être menée.

Les procédés de conception de l’étanchéité à l’air d’un bâtiment décrits et expliqués ci-après sont en grande partie basée sur les détails et conseils techniques donnés par le CSTC dans ses diverses publications.


Façades

Pour assurer l’étanchéité à l’air des façades, les points importants auxquels il faudra faire attention sont les jonctions des murs extérieurs avec les planchers et murs intérieurs, en pied de mur mais également à l’intégration des menuiseries. Les solutions à apporter seront différentes suivant la structure, lourde ou légère, du bâtiment.

Jonction façade-plancher

Dans le cas d’une structure lourde, la continuité de l’étanchéité à l’air est assurée par les enduits des deux pièces superposées et la dalle de plancher en béton coulé. Une attention particulière au joint doit être apportée. Dans le cas de hourdis, il faut s’assurer que le béton de second phase doit correctement remplir les cavités sur le pourtour complet pour assure la continuité entre la maçonnerie, le béton et les enduits.

Schéma jonction façade-plancher.

Dans le cas d’une construction légère, la position de la barrière à l’air doit être pensée dès la conception. En effet il faut prévoir une bande de pare-air à placer en attente sur les murs de pourtour horizontalement avant la mise en place des parois internes pour ensuite pouvoir effectuer le raccord entre les membranes pare-air de deux locaux superposés.

Deux cas existent:

  • soit le plancher repose sur le mur inférieur auquel cas la bande de pare-air doit être suffisamment longue pour recouvrir le mur intérieur sur une dizaine de centimètres, effectuer le tour du plancher et revenir sur une dizaine de centimètres au niveau de mur supérieur.
  • soit le plancher est ancré dans le mur de façade qui lui est continu du pied à la corniche auquel cas, la bande en attente, indispensable, doit être placée sur le pourtour là où viendra s’ancrer le plancher. Il conviendra de faire particulièrement attention aux percements et à ne pas déchirer le pare-air lors de la mise en place du plancher. Ce deuxième cas est également valable lorsque l’on isole par l’intérieur et que le plancher est désolidariser du mur extérieur.

Jonction façade-mur de refend

La jonction entre le mur extérieur et un mur intérieur perpendiculaire se fait par la continuité de l’enduit sur les deux faces. Toutefois, il convient de faire attention au encadrement de porte intérieur qui peuvent représenté des endroits de fuites s’ils ne sont pas enduits.

Dans le cas d’une construction légère, la position de la barrière à l’air doit être pensée dès la conception. En effet il faut prévoir une bande de pare-air à placer en attente sur les murs de pourtour avant la mise en place des parois internes pour ensuite pouvoir effectuer le raccord entre les membranes pare-air de deux pièces voisines. C’est le même principe, mais à la verticale, que dans le cas de la jonction façade-plancher.

Jonction façade-dalle de sol

Il convient de faire le raccord entre la dalle de sol coulée sur place qui est normalement intrinsèquement étanche à l’air et la partie courante du mur faisant office d’étanchéité à l’air : l’enduit dans le cas d’une structure lourde ou le pare-air dans le cas d’une structure légère.

On peut donc effectuer soit un raccord en enduisant un film d’étanchéité de sous la chape ou de sous l’isolant dans le plafonnage ou un disposant une couche de mortier périphérique effectuant le raccord entre l’enduit du mur et la dalle de sol.

Schéma -noeuds constructifs-jonction façade-dalle de sol.

La feuille d’étanchéité (9) faisant office de pare-air doit remonter suffisamment sur le bord pour être enduit par le plafonnage intérieur sur au moins 2 cm.

  1. Mur de structure.
  2. Bloc isolant.
  3. Isolation sur dalle.
  4. Joints verticaux ouverts.
  5. Membrane d’étanchéité.
  6. Membrane d’étanchéité.
  7. Feuille d’étanchéité.
  8. Feuille d’étanchéité.
  9. Feuille d’étanchéité.
  10. Interruption de l’enduit.
  11. Enduit.

Dans le cas d’une structure légère, une bande pare-air sera placé sur le pourtour pour effectuer la jonction entre la dalle et la paroi légère avant la pose du pare-air du mur en partie courante.

Bruxelles Environnement a édité à une vidéo illustrative du placement d’une telle bande :

Etanchéité à l’air : Pied de mur ossature bois [Vidéo réalisée dans le cadre du projet Conclip, soutenu par Bruxelles Environnement].

Dans le cas d’une isolation par l’intérieur, la continuité de l’étanchéité à l’air au pied du mur peut se faire en enduisant la membrane d’étanchéité de sous la chape dans le plafonnage ou en raccord avec le pare-vapeur du mur.

Schéma -noeuds constructifs-jonction façade-dalle de sol.

  1. Mur existant.
  2. Enduit existant.
  3. Dalle existante.
  4. Film d’étanchéité.
  5. Isolant thermique.
  6. Isolant périphérique.
  7. Membrane d’étanchéité.
  8. Chape armée.
  9. Film d’étanchéité.
  10. Isolant.
  11. Pare-vapeur.
  12. Finition.
  13. Panneau composite.
  14. Mousse isolante.
  15. Carrelage.
  16. plinthe.
  17. Joint d’étanchéité.

Jonction façade-châssis

Les fenêtres et portes extérieures sont toutes autant des percements de l’enveloppe du bâtiment que de l’étanchéité à l’air. Si ces menuiseries extérieurs sont déjà garanties étanche à l’air, il convient d’assurer la continuité entre le châssis étanche et l’élément courant du mur faisant office d’étanchéité à l’air.

Le moyen le plus courant d’effectuer cette jonction est de fixer une membrane d’étanchéité à l’air sur le pourtour du châssis au moyen d’un adhésif avant sa pose. Cette membrane pourra, une fois le châssis en place, recouvrir le tour de la baie et être enduit par le plafonnage ou raccordé au pare-air en partie courante. Une attention particulière devra être portée au coin afin d’éviter les plis surnuméraires et de faciliter la mise sous enduit de la membrane.

Schéma - noeuds constructifs- jonction façade-châssis.

Schéma - noeuds constructifs- jonction façade-châssis.

Bruxelles Environnement a édité une vidéo illustrative de cette technique :

Etanchéité à l’air : Pose d’une fenêtre, mur en brique, avec isolation par l’extérieur [Vidéo réalisée dans le cadre du projet Conclip, soutenu par Bruxelles Environnement].

La jonction d’étanchéité à l’air entre le dormant et l’enduit du mur peut également être réalisé avec un joint souple.

Dans le cas d’une structure légère ou d’un mur présentant une épaisseur d’isolation importante, un caisson en panneaux de bois ou en polystyrène haute densité peut être utilisé comme encadrement de la fenêtre. La continuité de l’étanchéité à l’air entre le châssis et le caisson est assuré par un joint continu ou une colle. Le raccord entre le caisson et la partie courante du mur grâce à une bande de membrane d’étanchéité à l’air faisant le pourtour et se noyant dans l’enduit du mur intérieur ou se collant sur le pare-air mis en place.


Toitures inclinées

La barrière d’étanchéité à l’air en partie courante est généralement réalisée avec le pare-vapeur. Il est en effet important d’éviter tout risque de condensation en toiture.

Dans la pente de toiture, la panne représente un point d’attention particulier. Il faut soigner son raccord ou son passage avec le pare-vapeur, le raccord peut se faire soit grâce à un lé en attente, soit en passant sous la panne, cas d’une rénovation par exemple, soit en l’interrompant et en effectuant une liaison avec la panne :

  • En faisant passer le pare-vapeur sous la panne de manière ininterrompue;

Schéma noeuds constructifs - toitures inclinées- 01.

  1. Première couche d’isolant.
  2. Deuxième couche d’isolant.
  3. Pare-vapeur.
  • Au moyen d’une bande de pare-vapeur placée en « attente » sur les pannes avant la mise en place des chevrons. Les parties courantes peuvent alors y être collées au moyen d’un ruban adhésif double face. Cette solution est la plus efficace car elle est pensée dès la conception;

Schéma noeuds constructifs - toitures inclinées- 02.

  1. Panne.
  2. Chevron.
  3. Pare-vapeur.
  4. Latte.
  5. Sous-toiture.
  6. Contre-latte.
  7. Couverture.
  8. Bande de pare-vapeur en attente.
  • Au moyen d’un joint de silicone (uniquement entre pare-vapeur et charpente). Ce joint sera éventuellement caché par la finition;

Schéma noeuds constructifs - toitures inclinées- 03.

  1. Panne.
  2. Chevron.
  3. Pare-vapeur.
  4. Contre-latte.
  5. Sous-toiture.
  6. Latte.
  7. Couverture.
  8. Joint-colle.
  • En comprimant le pare-vapeur entre un joint souple et une latte, le tout cloué ou vissé;

Schéma noeuds constructifs - toitures inclinées- 04.

  1. Pare-vapeur.
  2. Latte.
  3. Joint souple.
  •  Au moyen d’un ruban adhésif double face adhérant parfaitement au bois.

La finition intérieure final par panneaux de bois ou, par exemple, plaques de plâtres. devra être posée en minimisant le nombre de point de percement du pare-vapeur et en laissant un espace suffisant de 6 cm pour faire éventuellement passer des câbles électriques et installer des prises sans endommager la barrière d’étanchéité à l’air.

Finalement, certaines techniques d’isolation comme la toiture « sarking » mettent en place des panneaux préfabriqués intégrant une couche interne étanche à l’air faisant office de pare-vapeur. Il faudra donc veiller à réaliser une jonction correcte entre les panneaux suivant les recommandations du fabricant ou en utilisant des bandes adhésives.

Jonction toiture-façade

Ce type de jonction est traité soit par recouvrement du pare-vapeur par l’enduit de finition intérieur soit par jonction du pare-vapeur du mur et de celui de la toiture par collage ou ruban adhésif double face.

Pour se prémunir de toutes les déchirures qui pourraient avoir lieu dû aux différentes natures de matériaux, on rajoute un élément faisant la liaison entre l’enduit et la maçonnerie et le pare-vapeur de la toiture. Il convient de laisser aussi suffisamment de souplesse, réalisation d’une « boucle » au pare-vapeur de la toiture lors du raccord.
La jonction entre l’enduit et la finition intérieure de la toiture est réalisée par un joint souple.

Schéma noeuds constructifs - Jonction toiture-façade.

  1. Panne sablière.
  2. Chevron ou fermette.
  3. Planche de rive.
  4. Cale de bois.
  5. Panneaux isolants.
  6. Isolant entre chevrons ou fermette.
  7. Sous-toiture éventuelle.
  8. Contre-latte.
  9. Lattes.
  10. Latte plâtrière.
  11. Couverture.
  12. Gouttière.
  13. Bavette indépendante.
  14. Peigne.
  15. Finition intérieure.

 

 Jonction toiture-pignon

La jonction de la toiture avec un mur de maçonnerie sur le pignon s’effectue en enduisant le pare-vapeur dans la finition intérieure.

Schéma noeuds constructifs - Jonction toiture-pignon.

  1. Isolation
  2. Chevron ou fermette
  3. Isolation ou bloc isolant
  4. Mortier de scellement
  5. Sous-toiture
  6. Contre-latte
  7. Latte
  8. Rejet d’eau
  9. Tuile de rive
  10. Isolant entre chevrons
  11. Pare-vapeur
  12. Finition intérieure

La continuité de la barrière d’étanchéité à l’air peu aussi être réalisée par le collage au moyen de colle ou de ruban adhésif du pare-vapeur de la toiture sur l’enduit sec et propre du dépassement. Dans ce cas une finition intérieur supplémentaire devra être envisagée si les combles sont destinés à l’occupation.

Dans les deux cas, il convient de laisser suffisamment de souplesse au pare-vapeur pour éviter tous risques de déchirure dus aux contraintes qui peuvent apparaître. Un joint souple sera en plus prévu entre l’enduit de la maçonnerie et la finition intérieure de la toiture.

Jonction toiture-châssis

La plupart des châssis à intégrer dans la pente de toiture sont fournis avec un cadre isolant pour permettre la raccord avec l’isolation de la toiture. De même, un pourtour est préfixé au châssis pour faciliter sont intégration et réaliser la jonction avec le pare-vapeur de la toiture inclinée.

Schéma noeuds constructifs - Jonction toiture-châssis.Schéma noeuds constructifs - Jonction toiture-châssis.

  1. Contre latte.
  2. latte.
  3. Tuiles.
  4. Solin au-dessus des tuiles à la base du châssis.
  5. Raccord de la sous-toiture au châssis.
  6. Partie mobile de la fenêtre.
  7. Vitrage isolant.
  8. Étanchéité en plomb ou chéneau encastré.
  9. Raccord sous-toiture châssis.
  10. Chéneau en amont de la fenêtre.
  11. Isolation thermique.
  12. Étanchéité à l’air et à la vapeur.
  13. Volige de pied.
  14. Partie fixe de la fenêtre.
  15. Sous-toiture.
  16. Chevron.
  17. Finition intérieure devant espace technique.
  18. Cadre isolant.

Toitures plates

La réalisation de la continuité de l’étanchéité à l’air au raccord entre une toiture plate et le mur de façade se fait de manière similaire à une jonction entre la façade et un plancher :

  • dans le cas d’une structure lourde par dalle coulée sur place, la continuité de la maçonnerie et de l’enduit de finition intérieur garantit l’étanchéité à l’air;

Schéma noeuds constructifs - toiture plate.

Exemple de continuité de l’enduit dans le cas d’une continuité mur-toiture plate

  • dans le cas d’une structure lourde par hourdis, le béton de seconde phase sera utile pour effectuer le raccord de la barrière à l’air;
  • dans le cas d’une structure légère avec le plancher ancré, un lé en attente fera la liaison avec le pare-vapeur de la toiture;
  • dans le cas d’une structure légère avec le plancher posé sur le mur, le lé en attente fera le contour du plancher et dépassera suffisamment de chaque côté pour être relié au pare-vapeur du mur d’un côté et à celui de la toiture de l’autre.

Dans tous les cas, un joint souple entre les finitions intérieures du mur et du plafond permettra d’éviter l’apparition de fissures pouvant entraîner des fuites d’air.

Concevoir l’étanchéité à l’air



L’étanchéité à l’air : Daniel De Vroey vous conseille from Bruxelles Env. on Vimeo.
L’étanchéité à l’air est méconnue des professionnels car on ne la perçoit pas. Il est pourtant essentiel d’y penser, et ce à toutes les étapes de son projet.

L’étanchéité à l’air : Daniel De Vroey vous conseille from Bruxelles Env. on Vimeo.

L’étanchéité à l’air est méconnue des professionnels car on ne la perçoit pas. Il est pourtant essentiel d’y penser, et ce à toutes les étapes de son projet. Daniel De Vroey vous partage ses astuces.


Points d’attention

Avec l’isolation de plus en plus performante de nos bâtiments, leur étanchéité à l’air devient un point important pour contrôler les infiltrations et exfiltrations d’air et avec elles, certaines pertes d’énergie. La tendance actuelle est donc à une étanchéification la plus complète afin de pouvoir contrôler au mieux ces fuites d’air et de pouvoir assurer d’une ventilation efficace des locaux.

Les enduits intérieurs, les bétons coulés sur place et les membranes pare-vapeur sont des éléments intrinsèquement étanche à l’air. L’étanchéité complète de l’enveloppe doit donc être conçue en faisant très attention aux jonctions de ces éléments entre eux et avec les autres éléments de la construction.

Pour cela la mise en œuvre de l’étanchéité à l’air doit faire l’objet de certains points d’attention dès la conception mais aussi sur chantier.

On considère que l’étanchéité à l’air de l’enveloppe extérieur est assurée si :

Ainsi, il conviendra particulièrement de faire attention aux points suivants :

Les procédés de conception de l’étanchéité à l’air d’un bâtiment décrits et expliqués ci-après sont en grande partie basés sur les détails et conseils techniques donnés par le CSTC dans ses diverses publications.


Niveaux de référence

Étanchéité globale

En Wallonie, il n’existe pas de recommandations concernant l’étanchéité à l’air globale d’un bâtiment.

Par contre, la norme européenne EN 13779 recommande un taux de renouvellement d’air maximum à 50 Pa(n50) :

  • de 1/h pour les bâtiments hauts (> 3 étages);
  • de 2/h pour les bâtiments bas.

On peut également se référer à la norme NBN D 50-001 qui recommande :

  • n50 < 3/h si ventilation mécanique,
  • n50 < 1/h si récupérateur de chaleur.

À titre de comparaison, la région de Bruxelles-Capitale imposera en 2018 un niveau d’étanchéité à l’air n50 < 0.6/h (label passif) pour toute construction neuve, et n50 < 0.72/h pour les rénovations assimilées à de la construction neuve.

Étanchéité des fenêtres

En Belgique, les bâtiments des services publics doivent satisfaire aux exigences d’étanchéité suivantes :

Hauteur du bâtiment (h en [m])

Φ50 [m³/h.m]

h < 10

< 3,8

10 < h < 18

< 1,9

h > 18

< 1,3

Source : STS 52 – Menuiseries extérieures en bois. Fenêtres, porte-fenêtres et façades légères. Institut national du logement – Bruxelles – 1973.

Ces exigences sont relativement sévères par rapport aux autres pays (seuls les pays scandinaves ont des exigences plus sévères).

La figure ci-dessous donne un aperçu des valeurs d’étanchéité à l’air des menuiseries imposées par un certain nombre de pays occidentaux.

Schéma valeurs d'étanchéité à l'air des menuiseries.

Aperçu des exigences d’étanchéité à l’air des menuiseries dans différents pays occidentaux.


Les parties courantes

Volume à étanchéifier et position de la barrière d’étanchéité

Le volume du bâtiment à rendre étanche à l’air est le volume à isoler thermiquement. Ainsi l’écran étanche à l’air doit être placé au plus près de la barrière d’isolation, pour éviter au maximum les circulations d’air entre les deux écrans, du côté chaud de l’isolant, c’est-à-dire du côté intérieur pour un mur extérieur.

Tout comme l’isolation thermique, la position de l’enveloppe étanche à l’air du logement doit être choisie pour éviter le plus de percements de celle-ci et donc éviter des points faibles et des raccords difficiles à mettre en œuvre.

Matériaux de l’étanchéité à l’air

Chaque système constructif présente ses particularités d’un point de vue structurelle, ainsi la conception de l’étanchéité à l’air variera selon le mode de construction choisi : maçonnerie, ossature lourde, ossature bois, structure légère, etc.

Il est admis qu’un matériau est étanche à l’air quand sa perméabilité à l’air est inférieure à 0,1 m³/h.m² sous une différence de pression de 50 Pa.

Ainsi pour les constructions lourdes ou de maçonneries, l’étanchéité à l’air est réalisée au moyen des enduits intérieurs. Dans le cas des constructions légères, telles les ossatures bois, l’étanchéité à l’air peut-être atteinte grâce aux panneaux de bois et au pare-vapeur. Les bétons coulés et les chapes de béton font aussi office d’écran étanche à l’air.

Au contraire, des matériaux comme les maçonneries ou les lambris ne sont pas suffisamment imperméables à l’air et ne peuvent pas être utilisés pour mettre en œuvre la barrière d’étanchéité à l’air du bâtiment !

Remarque : les isolants souples avec feuille étanche à l’air (ex. aluminium) ou les isolants rigides étanches à l’air ne devraient pas non plus être utilisés comme écran à l’air. En effet, les techniques de mise en œuvre d’un isolant souple nécessitent généralement l’ajout d’une structure secondaire ou une installation entre chevrons. Dans ce cas-là, un pare-air supplémentaire sera toujours nécessaire pour assurer l’étanchéité des joints et jonctions. C’est également le cas pour les isolants rigides même si leur performance d’étanchéité à l’air est élevée.

L’enduit intérieur

Les enduits intérieurs n’ont pas qu’une qualité esthétique ! Ils ont une performance d’étanchéité à l’air élevée pour autant que l’épaisseur soit suffisante et que l’enduit ne se fissure pas (les fissurations peuvent être une source de fuites d’air). C’est pourquoi, on privilégie une couche minimale de 6 mm d’épaisseur lors de sa pose.

Lors de la conception et la pose du plafonnage ou de l’enduit, il convient de faire particulièrement attention aux endroits cachés : derrière une plinthe, un encadrement de porte ou de fenêtre, derrière une gaine, un mur de brique apparent, … Il faut veiller à la continuité de l’étanchéité à l’air même en ces endroits-là.

Schéma continuité de l'étanchéité à l'air.

L’enduit intérieur fait office de barrière d’étanchéité à l’air lors de la conception d’un mur creux dont les éléments (briques, blocs de béton,…) sont très peu étanches à l’air dû aux cavités présentes dans la matière.

Remarque : les plaques de plâtres sont étanches à l’air en elles-mêmes, mais la réalisation de joints est difficile et les apparitions de fissures à ces endroits sont fréquentes.

Le pare-vapeur ou pare-air

Pour les structures bois et plus généralement pour les structures légères, ce sont les membranes films souples les plus utilisées comme écran à l’air. Dans ce cas-là, la membrane combine les fonctions de pare-vapeur et d’étanchéité à l’air.

Dès lors comme pour les pares-vapeurs, les points d’attention se situeront principalement aux joints de raccord entre les lés de deux parties courantes. De même, les jonctions entre le pare-air et les autres éléments de la construction sont importantes pour garantir l’étanchéité complète du bâtiment.

Les panneaux de bois

Pour une construction en ossature bois ou en panneaux de bois pleins, il n’est pas rare que des panneaux de bois servent à rigidifier la structure. Ces panneaux sont composés de fibres de bois ou de fibres de bois et ciment. Certains ont une perméabilité à l’air inférieur à 0,1 m³/h.m² sous 50 Pa. Ainsi comme les enduits intérieurs n’ont pas qu’une fonction esthétique, ces panneaux de bois n’ont pas qu’une fonction structurelle et peuvent faire office de barrière étanche à l’air.

Dans ce cas, la mise en œuvre devra particulièrement faire attention à ce que les joints entre les panneaux soient rendus étanches à l’air également !

Le béton coulé

Comme les enduits, le béton coulé in situ présente des performances d’étanchéité à l’air importantes. Il convient également de porter une attention particulière aux joints et au jonctions périphériques.


Les jonctions

Pour concevoir efficacement l’étanchéité à l’air d’un bâtiment, il faut correctement réaliser les jonctions et joints entre les parties courantes. Les matériaux utiles à la mise en œuvre de l’étanchéité à l’air sont de type : enduits, films ou panneaux.

On distingue ainsi trois types de jonctions possibles à mettre en place :

  • la jonction sec-sec, par exemple entre deux panneaux de bois;
  • la jonction sec-humide, par exemple entre un film et un enduit;
  • et la jonction humide-humide, par exemple entre deux enduits de façades.

La jonction sec-sec

Ce type de jonction est réalisé au moyen de colle, mastic, bande adhésive ou avec un élément de compression mécanique.

La jonction sec-sec peut être réalisée entre :

  • deux lés de pare-air par un ruban adhésif simple ou double face, par une latte de serrage support par un collage ou par agrafe sur support.
  • un lé de pare-air et une surface d’enduit sec par collage ou ruban adhésif.
  • deux panneaux de bois par joint souple ou ruban adhésif.
  • deux surfaces d’enduit sec par un joint souple.

Dans le cas du raccord entre deux bandes de membranes pare-air, il convient de :

  • vérifier la propreté des parties à coller, souder ou compresser;
  • assurer un chevauchement suffisant des parties. Le ruban adhésif ou la colle ne sont que des moyens de jonction et ne peuvent pas être considérées comme des membranes étanches à l’air même si elles le sont;
  • si la structure est en bois, les membranes peuvent être agrafées mais celle-ci devront être recouvertes de ruban adhésif;
  • éviter de tendre la membrane d’étanchéité, afin de ne pas lui imposer des contraintes qui pourraient mener à des déchirures.

Ruban adhésif

Latte de serrage

Remarque : dans le cas ou les lés sont perpendiculaires à la structure, la jonction doit s’effectuer sur un support généralement souple comme de l’isolant. Un assemblage soit par chevauchement soit par joint debout et collage ou moyen de colle ou ruban adhésif double face avec une grande précision doit être réalisé.

La jonction sec-humide

Une jonction entre un film pare-air ou un panneau de bois et le mur enduit peut devoir être réalisée entre les menuiseries et la façade ou par exemple entre la toiture et le mur de pignon.

La membrane, partie sèche, doit être « noyée » dans l’enduit, partie humide, pour garantir la continuité de la barrière d’étanchéité à l’air. Il est donc nécessaire de prévoir un raccord suffisamment long, en attente, lors de la pose de la membrane pare-air en toiture ou au châssis pour effectuer le raccord.

La partie sèche doit pouvoir être enduite sans perdre ses caractéristiques physiques sans lui induire des contraintes qui pourraient la déchirée. Si ce n’est pas le cas, des bandes noyées existent et permettent de faire le raccords avec la membrane pare-air.

Exemple de jonction sec-humide de la toiture avec le mur de pignon : la membrane du pare-air a été laissée suffisamment longue pour ensuite être « noyée » dans l’enduit lors de la pose de celui-ci

  1. Isolation
  2. Chevron ou fermette
  3. Isolation ou bloc isolant
  4. Mortier de scellement
  5. Sous-toiture
  6. Contre-latte
  7. Latte
  8. Rejet d’eau
  9. Tuile de rive
  10. Isolant entre chevrons
  11. Pare-vapeur
  12. Finition intérieure

La jonction humide-humide

La jonction entre deux faces d’enduits, par exemple dans le coin d’une pièce est théoriquement la plus facile à réalisée, dans les règles de l’art du plafonneur.

Toutefois, le bâtiment doit pouvoir vivre et dans certains cas pour éviter l’apparition de fissures, deux parois doivent être désolidarisées, c’est particulièrement le cas à la jonction mur-plafond. L’enduit n’étant plus continu, on placera un joint souple afin de garantir la continuité de l’étanchéité à l’air.

Choisir un système de déshumidification

Choisir un système de déshumidification


Préalable : le besoin de déshumidification

En Belgique, l’humidité absolue extérieure dépasse rarement les 15 gr d’eau par kilo d’air, ce qui, pour des températures de l’ordre de 25° correspond à 70% d’humidité relative.

 

Température et humidité extérieure pour un mois de juillet moyen à Uccle.

Un tel niveau est confortable, et cela correspond à l’intuition : il est rare que l’on ait, en été, une sensation d’humidité exagérée, comme on le ressent sous les tropiques.

Trois cas de figure vont néanmoins justifier l’installation d’un système de deshumidification.

Le respect d’une consigne stricte

Théoriquement, un inconfort thermique lié à une trop grande humidité n’apparaît pas à moins de 70% d’humidité relative. Des exigences plus strictes peuvent cependant être énoncées par l’occupant, par exemple en référence à la norme NBN EN 15251. Tout comme pour l’humidification, des spécifications rigides dans un cahier des charges tel que « maintien des locaux à 21°C et 50 % HR » vont entraîner des gaspillages énergétiques. Au minimum, des seuils minimum et maximum doivent être exprimés, et pourquoi pas des périodes de dépassement autorisées (5… 10% du temps).

Quelque soit le niveau maximal d’humidité toléré, celui-ci ne pourra pas être maintenu à tout moment à l’intérieur d’un bâtiment sans recours à une installation de deshumidification. Il suffit en effet d’une météo orageuse pour que le niveau d’humidité de l’air extérieur devienne inconfortable.

L’acceptabilité de dépassements ponctuels du seuil d’humidité est comparable à l’acceptabilité de températures élevées dans un bâtiment. Elle dépendra de la capacité d’action de l’occupant (créer un courant d’air?… les moyens d’action contre une humidité trop élevée sont limités), de sa compréhension de l’origine de l’inconfort et de sa durée prévisible (« Ca va tomber ce soir! »), etc.

Enfin, il faut garder à l’esprit que la mesure dans la reprise d’air est souvent faussée, par l’échauffement de l’air au niveau des luminaires, notamment. Il n’est donc technologiquement pas simple de garantir un strict respect d’une consigne d’humidité.

La production d’humidité à l’intérieur

La présence d’occupants et de certaines activités dans un bâtiment dégagent de l’humidité : on parle de 70 à 100 gr d’eau par heure et par personne pour un travailleur de bureau. Cette humidité est diluée dans l’air neuf, et représente en conséquence une charge non négligeable de 1.9 à 2.8 gr d’eau par kilo d’air, sur base d’un débit d’air neuf de 30 m³/(h.personne).

Ajouté à l’humidité extérieure estivale, cette charge justifie le système de déshumidification. Existe-t-il une alternative? Oui : si le bâtiment est conçu pour fonctionner selon un mode « free cooling » lors des journées d’été, le taux d’air neuf sera beaucoup plus important, typiquement plus de 100 m³/(h.personne) dans le cas d’une ventilation naturelle. La charge d’humidité liée à l’occupation représente dès lors moins de 1 gr d’eau par kilo d’air, et les périodes de temps où cette charge, ajoutée à l’humidité extérieure, provoque un inconfort est limité.

Le risque de condensations surfaciques

Si dans le local se trouve un émetteur de refroidissement qui n’autorise pas de condensations surfaciques, tel qu’un plafond rayonnant ou une dalle active, il peut être nécessaire de contrôler le taux d’humidité de l’ambiance. Ces systèmes sont normalement conçus pour limiter le risque de condensation : ils sont alimentés avec une température d’eau la plus élevée possible, de façon à être au-dessus du point de rosée de l’ambiance.

Par exemple, avec un régime de température d’eau de 17°-20° dans un plafond rayonnant, un simple refroidissement de l’air à 16° est suffisant pour éviter les condensations. La température de rosée est donnée dans le tableau ci-dessous pour différentes combinaisons de température et d’humidité:

Température de l’ambiance Humidité relative de l’ambiance Température de rosée
21 50 10,19
60 12,95
70 15,33
23 50 12,03
60 14,82
70 17,24
25 50 13,86
60 16,70
70 19,15

La déshumidification concrètement

En pratique, la déshumidification d’une ambiance se fait par pulsion d’un air « asséchant », c’est à dire dont l’humidité absolue est inférieure à celle de l’ambiance. Pour produire cet air relativement sec, le principe couramment utilisé est la condensation : mis en contact avec une batterie d’eau glacée dans une centrale de traitement d’air, l’air se refroidit au-delà de son point de rosée et l’humidité excédentaire condense. Mais l’air sec obtenu est trop froid pour être amené tel quel dans un local. Il provoquerait un courant d’air inconfortable, voir une condensation malvenue de l’air du local à la sortie de la bouche du pulsion. Une postchauffe est donc généralement prévue au moyen d’une batterie alimentée en eau chaude ou d’une résistance électrique.

C’est le principe expliqué sur le diagramme de l’air humide ci-dessous :

  • On dispose au départ d’un air extérieur à 28°C et 17 greau/kgair (70.7%HR – point E) dont la température de rosée est de 22°C.
  • Le passage par la batterie d’eau glacée amène à 10.5°C et 8 greau/kgair (100%HR – point X). L’air a perdu environ 9 greau/kgair.
  • La postchauffe ramène à une température de soufflage confortable de 16°C pour 8 greau/kgair (70%HR – 36kJ/kg – point S).
  • Les conditions d’ambiance qui seront créées grâce à la pulsion de cet air dépendent du débit, de la production d’humidité par l’occupation, etc. Si l’on se base sur un dégagement intérieur dilué dans l’air neuf de 3 greau/kgair on arrive à 8+3=11 greau/kgair, ce qui, à 25°C, correspond à une humidité relative d’un peu plus de 50%.

Puisque la déshumidification se fait par condensation de l’humidité de l’air sur une batterie de refroidissement, la plupart des systèmes de production de froid traditionnels peuvent être utilisés. La seule condition est de disposer d’une batterie d’eau glacée, pour pouvoir amener l’air à une température suffisamment basse.

Oui mais… dans les pages sur la climatisation, il est dit qu’il faut choisir des systèmes de refroidissement à haute température, pour mieux valoriser la fraîcheur de l’environnement. Alors quoi ?

Il y a là en effet un conflit. L’expression d’un besoin de déshumidifier peut disqualifier des techniques intéressantes pour le refroidissement telles que les systèmes de geocooling ou de refroidissement adiabatiques. Ces techniques sont-elles donc à l’arrivé moins intéressantes qu’escompté? Pas nécessairement, car:

  • Le système de production de froid qui assure la déshumidification de l’air et celui qui est chargé du contrôle de la température des locaux ne sont pas forcément les mêmes. Les systèmes d’air conditionné des années 70 et 80, dans lesquelles des grands débits d’air froid assuraient le contrôle simultané de la température et de l’humidité n’ont plus autant la cote aujourd’hui. Le contrôle thermique des locaux se fait de plus en plus par boucle d’eau et plafonds rayonnants ou poutres froides, tandis que le traitement de l’humidité reste assuré par la pulsion de l’air hygiénique. Si les distributions sont différentes, les modes de production pourraient l’être aussi.

 

Combinaison d’un top cooling alimenté par une machine frigorifique à compression et de plafond rayonnants alimentés par un geocooling.

  • Le besoin de contrôle de l’humidité en été n’est sans doute pas aussi impérieux que celui de contrôle de température. Si l’approche de la conception du bâtiment et des systèmes est de limiter la consommation d’énergie en été par un contrôle des charges thermiques et un système de refroidissement à « haute température », peut-être n’est-il pas nécessaire de déshumidifier? Des inconforts ponctuels peuvent parfois être acceptés par les occupants. En outre, des températures intérieures légèrement plus élevées modifient sensiblement l’humidité relative : par exemple, pour une même humidité absolue de 13 greau/kgair, tolérer un glissement de température de 24 vers 26°C fait passer l’humidité relative de 70% à un petit peu plus de 60%.

Et puis, il existe une alternative à la déshumidification par batterie d’eau glacée : la roue dessicante, qui permet de refroidir et déshumidifier l’air pulsé au moyen… d’une source de chaleur. C’est donc une piste intéressante lorsque le bâtiment n’est pas équipé d’une machine de refroidissement traditionnelle.

 

Eléments d’une roue dessicante.

Enfin, pour la postchauffe, la question n’est pas différente de celle du choix d’une batterie de préchauffage de l’air neuf.


La consommation énergétique de la déshumidification

Le calcul de la consommation d’énergie pour la déshumidification est fonction de la chaleur de vaporisation de l’eau (0,694 Wh/gramme) et de la somme des écarts entre l’humidité extérieure et l’humidité de l’ambiance.

Puisque la déshumidification va systématiquement de pair avec le refroidissement, il est utile de s’intéresser au coût du mètre cube d’air traité en été. Celui-ci est de l’ordre de 55 kJ/md’air, en ce compris la postchauffe, pour un point de soufflage à 16°C et 70%HR. S’il n’avait pas été nécessaire d’abaisser la température sensiblement plus bas que le point de soufflage à des fins de déshumidification, pour de réaliser une post chauffe, le coût énergétique n’aurait été que de 35 kJ/m³. On le voit, le traitement de l’humidité augmente considérablement le coût du traitement de l’air.

Pour réaliser vos propres bilans annuels, des outils de calcul des grammes-heure de déshumidification sont disponibles.

Enfin, une étude de cas détaillée de la consommation d’énergie liée à la déshumidification dans une salle d’opération montre le potentiel de réduction de cette consommation par le choix des consignes : une consigne flottante offre près de 80% d’économie par rapport à une consigne fixe. 

Combiner la ventilation aux besoins hygrothermiques

Combiner la ventilation aux besoins hygrothermiques

Lorsqu’un système de ventilation avec pulsion et extraction mécanique est choisit, il est possible de compléter la centrale de traitement d’air d’élément de pré-traitement thermique. Dans certains cas, il peut être pertinent de l’utiliser pour assurer tout ou partie des besoins thermiques des locaux.

Différentes questions se posent donc :


Faut-il préchauffer l’air neuf en hiver ?

Il est évident que l’amenée d’air à basse température dans un local peut provoquer, dans certains cas, des situations inconfortables. Quelque soit la température de l’air, des recommandations existent pour limiter ce risque, telles que placer les grilles à plus de 1,8 m de haut et au-dessus des émetteurs de chaleur.

Dans les cas où le débit d’air neuf demandé est relativement bas, ces recommandations peuvent suffire à éviter les inconforts assez bas, même dans le cas d’une ventilation avec amenée d’air naturelle. Au contraire, dans les locaux à forte densité d’occupation (salle de réunion, de séminaire, …), l’importance des débits d’air neuf demandés risque de provoquer un certain inconfort thermique lorsque la température extérieure est basse.

Ainsi, dans tous les cas, pour éviter la sensation de courant d’air froid, l’idéal est de pouvoir amener l’air neuf à une température minimum (12 .. 16°C, température à régler en fonction des apports de chaleur gratuits) avant son arrivée dans le local. Dans le cas d’une pulsion mécanique, le préchauffage de l’air neuf a également pour but d’éviter de faire circuler de l’air trop froid dans les conduits, ce qui peut provoquer des condensations.

Différentes solutions existent pour réaliser le préchauffage de l’air. La solution évidente pour réaliser cet échauffement est le recours à un récupérateur de chaleur. Attention toutefois à choisir un mode de gestion du dégivrage du récupérateur qui permette de maintenir une température de pulsion suffisamment élevée à tout moment.  Un puits canadien peut également être envisagé pour préchauffer l’air neuf, mais la température atteinte ne sera pas aussi élevée qu’avec un récupérateur de chaleur. En dernier recours, le chauffage de l’air neuf pourra se faire avec une batterie de chauffage.

Concevoir

 Pour choisir le mode de préchauffage

Faut-il « neutraliser » l’air neuf ?

Lorsque le système de pulsion d’air neuf n’est pas intégré à la climatisation au travers d’une solution « tout air« , il est parfois conseillé de prétraiter l’air neuf. À défaut, il risque de créer de l’inconfort (courants d’air) menant parfois à l’obturation des bouches d’amenée d’air par les occupants.

Le développement des récupérateurs de chaleur limite ce risque, mais certaines pratique ont la vie dure. Qu’en est-il donc de cette pratique de « neutralisation de l’air neuf », qui consiste à s’assurer que l’air soit amené au local dans des conditions similaires à celles visées dans le local lui-même. Autrement dit, si vous souhaitez chauffer à 21°C, l’air sera amené à 21°C, à charge pour le radiateur de compenser les pertes par les parois.

Tout l’enjeu consiste à combiner le contrôle de la température des locaux et le contrôle de la température de l’air neuf hygiénique de manière à :

  • ne pas créer de courants d’air (on considère souvent qu’une température de 16°C minimum est nécessaire);
  • ne pas « casser l’énergie », c’est-à-dire ne pas chauffer l’air neuf et refroidir simultanément le local avec le ventilo-convecteur, ou inversement.

A priori, on pourrait penser que la température de pulsion de l’air neuf doit être « neutre » dans le bilan thermique du local et ne pas interférer avec la régulation des ventilos. On rencontre ainsi souvent une pulsion proche des 21°C toute l’année.

Effectivement, au niveau du bilan thermique du local le bilan est neutre, puisqu’il n’apporte ni chaud, ni froid.

En réalité, ce choix implique souvent qu’en mi-saison de l’énergie soit « cassée ». en effet, dans les immeubles de bureaux isolés, à partir d’une température extérieure de 12 à 14°C, il y a beaucoup de chances que le bâtiment soit en régime « refroidissement ». on va dès lors chauffer l’air neuf de 14 à 21°C, et simultanément évacuer l’énergie excédentaire du local avec le ventilo-convecteur. Cela représente une consommation énergétique importante comme le montre l’étude d’un bâtiment type. Il aurait mieux valu pulser directement cet air à 14°C dans le local.

Mais 14°C est une température de pulsion qui risque d’être trop faible et de créer de l’inconfort pour les occupants ?

Essayons dès lors de définir la régulation la plus adéquate :

On peut imaginer qu’en plein hiver, on pulse de l’air à 21°C et qu’à partir d’une température extérieure de 14°C, par exemple, la consigne de température de pulsion de l’air soit abaissée à 16°C.

Remarquons que dans la pratique, le basculement comprend un hystérésis de manière à stabiliser le fonctionnement des équipements au changement de saison. Par exemple, l’installation passe du chaud au froid à 14°, et du froid au chaud à 12°.

Toute la difficulté consiste pour le gestionnaire du bâtiment à définir le plus précisément possible la température extérieure de basculement entre le régime « été » et le régime « hiver ». En effet si celle-ci est trop élevée (par exemple, 18°C), une période de « casse d’énergie » subsiste puisque l’on chauffe l’air de ventilation pour le refroidir ensuite avec les ventilo-convecteurs.

Le problème est compliqué par le fait que tous les locaux ne sont pas soumis aux mêmes conditions d’équilibre.

Pour réduire ce risque, on peut dès lors imaginer de maintenir une température de pulsion minimum durant toute l’année. Choisissons une température de pulsion minimale de 16°C dans les locaux : si la température extérieure est inférieure à cette valeur, on préchauffe l’air et on le prérefroidit dans le cas contraire.

C’est une stratégie de régulation que l’on peut d’office utiliser dans les locaux que l’on refroidit toute l’année comme les zones intérieures d’un bâtiment (zones nullement influencées par les conditions atmosphériques).

Mais cette solution risque de créer de l’inconfort si les bouches de distribution ne sont pas prévues à haute induction.

Remarque : jusqu’à présent, on a toujours parlé en terme de température d’air neuf dans le local. Étant donné que l’air s’échauffe d’environ 1°C lors de son passage dans les conduits, on peut dire que fixer une consigne de température de 16°C sur l’air neuf équivaut à maintenir une température de 15°C à la sortie du groupe de traitement d’air.

Reste une difficulté : dans le local inoccupé dont l’occupant a arrêté le ventilo en quittant le local, c’est le débit d’air de ventilation qui va assurer la température de base durant son absence. Et au retour de l’occupant, le local sera fort froid… Cela ne paraît cependant pas remettre en question le principe d’une pulsion à 16°C car l’occupant a le loisir de remettre son local en température très rapidement dès son retour grâce à l’absence d’inertie du ventilo-convecteur (transfert rapide par l’air) et à la possibilité de positionner le ventilo en grande vitesse. Et si l’occupant n’apprécie pas la petite période d’inconfort qui en résulte, il y a beaucoup de chances qu’il ne soit pas du genre à arrêter son ventilo en quittant le local !

De plus, en période de relance, avant l’arrivée des occupants, la régulation centrale peut faire fonctionner le bâtiment en circuit fermé, sans apport d’air neuf.

Conclusions 

En l’absence de préchauffe de l’air par récupération de chaleur, il n’y a pas de solution idéale à ce problème. Il faut chercher une réponse pour un bâtiment donné, sur base de ses températures d’équilibre. Notez que le récupérateur de chaleur peut lui aussi provoquer une surconsommation d’énergie en mi-saison, s’il n’est pas équipé d’un bypass qui permet de ne pas réchauffer l’air lorsque le local est de demande de froid.

Il est clair que de prévoir des est une garantie de pouvoir pulser l’air à basse température sans créer de courants d’air, et donc de ne pas détruire de l’énergie.

L’impact énergétique est énorme. Dans un bâtiment-type de bureau,

nous avons simulé 2 situations :

  • Une pulsion d’air neuf à une température permanente de 21°C en hiver et de 16°C lorsque la température extérieure dépasse 16°C : référence 100
  • une pulsion à une température permanente de 16°C, été comme hiver :
    • – 37 % sur la consommation du traitement d’air,
    • + 19 % de consommation de chauffage des locaux,
    • – 13 % sur la consommation de froid des locaux,
    • et finalement – 10 % sur la consommation totale du bâtiment.

Qui ne serait pas tenté de diminuer de 10 % la consommation d’un bâtiment rien qu’en réglant la consigne de l’air neuf ?

Un compromis peut consister à pulser suivant une consigne qui suit une relation linéaire entre les deux points suivants : par – 10°C extérieurs, pulsion à 23°C et par + 30°C extérieurs, pulsion à 16°C.

Cette solution génère une économie de 2 % par rapport à la référence 100 du bâtiment-type.

En tous cas, ne pas adopter une pulsion constante de 21°C toute l’année ! nous ne l’avons pas chiffrée, mais la surconsommation en été doit être très importante.


La ventilation est-elle suffisante pour vaincre les surchauffes ?

Dans les anciens immeubles de bureaux, non isolés, la ventilation hygiénique permettait de résoudre en partie les problèmes de surchauffe, avec une période d’inconfort limitée à quelques jours.

L’isolation des bâtiments n’a pas augmenté la puissance nécessaire au refroidissement mais la période d’inconfort « estival » commence plus tôt dans la saison. Ceci est renforcé par :

  • l’augmentation des charges internes par l’équipement électrique des bureaux,
  • la tendance actuelle des architectes d’accroître sensiblement le pourcentage de vitrage de la façade, et donc les apports solaires peu désirables,
  • la diminution de l’inertie des parois (cloisons légères mobiles, tapis au sol, faux plafond avec absorbeur acoustique),
  • une attente accrue de confort et de productivité du personnel.

Dans certaines situations et pour autant que l’on accepte quelques journées d’inconfort, il est cependant possible d’éviter une installation de conditionnement d’air

  • En choisissant les équipements les moins énergivores.
  • En utilisant des protections solaires et des vitrages performants.
  • En exploitant au maximum le pouvoir refroidissant de l’air extérieur lorsque celui-ci à une température inférieure à la température intérieure. On parlera alors de free cooling, soit naturel, soit mécanique.

Il est important de réaliser que les débits d’air mis en jeu par la ventilation hygiénique (de l’ordre de 0.5 à 1 renouvellement horaire) et ceux impliqués par une stratégie de free cooling (à partir de 4 renouvellements horaires) ne sont pas du même ordre. On parle d’ailleurs souvent, pour le free cooling, de ventilation intensive.

Débits différents signifie a priori techniques et équipements différents. Ainsi, une ventilation intensive naturelle ne se basera pas sur des aérateurs et une cheminée telle qu’utilisée pour la ventilation hygiénique, mais bien sur l’ouverture de fenêtres en différents endroits du bâtiment. Une ventilation intensive mécanique par contre pourrait utiliser le même réseau de conduits que la ventilation hygiénique, pour autant que celui-ci soit dimensionné sur base de l’usage le plus contraignant (le débit intensif donc) et permette une régulation à la baisse lorsque cette capacité n’est pas pleinement nécessaire.

Concevoir

Pour examiner en détail l’intérêt du free cooling comme alternative à la climatisation

Concevoir

Pour en savoir plus sur les techniques de refroidissement par ventilation intensive

Études de cas

Un confort d’été correct est obtenu dans le bâtiment Probe du CSTC grâce à un free cooling nocturne. Pour plus de détails sur ce bâtiment

Faut-il humidifier ou déshumidifier l’air de ventilation ?

En hiver, sans humidification de l’air neuf, l’humidité intérieure flirte rapidement avec les limites de confort thermique.

Ceci n’est pas lié au type de ventilation (naturel ou mécanique). Pourquoi ? Parce que, en l’absence de traitement d’air, l’humidité absolue de l’air pulsé n’est pas modifiée par son passage dans un aérateur ou un réseau de ventilation. Dans les deux cas, cette humidité sera celle de l’air extérieur, qui est basse en hiver (maximum 4 gr d’eau par kilo d’air à 0°C, soit en-dessous des 6 gr qui correspondent à 40% d’humidité pour 20°C).  Le caractère asséchant de la ventilation est par contre lié au rapport entre le débit d’air neuf et le taux d’émission de vapeur dans l’ambiance, lié à l’occupation. En pratique, au plus le débit par personne sera élevé, au plus l’effet asséchant de l’air neuf sera important.

L’humidification de l’air neuf est un poste particulièrement énergivore. Il est dès lors peut-être utile de se demander si une humidification est toujours nécessaire, sachant qu’elle n’est pratiquement possible qu’en association avec un système de ventilation double flux.

Ce n’est d’ailleurs que si la pulsion de l’air est mécanique que le RGPT impose le respect d’une humidité ambiante minimum de 40%. Dans le cas d’une ventilation simple flux, le RGPT dit simplement qui si c’est possible technologiquement, un dispositif d’humidification permettant d’atteindre une humidité de 40% doit être mis en œuvre.

Évaluer

 Pour estimer la consommation liée à l’humidification de l’air neuf.
Prenons un exemple.

La température extérieure est de 0°C pour une humidité relative de 85 % (1) (conditions couramment rencontrées chez nous) :

  • Si cet air est introduit dans un bureau individuel chauffée à 20°C, à raison de 30 m³/h.pers, on peut lire sur le diagramme de l’air humide que son humidité relative chutera à 23 % (2), ce qui est trop sec pour garantir le confort thermique. Si on y rajoute l’humidité produite par un occupant, à savoir environ 50 gr d’eau par h, l’humidité relative montera jusqu’à 33 % (3), soit à la limite des conditions de confort.
  • Par contre, si la chambre est chauffée à 24°C, comme c’est souvent le cas dans les hôpitaux, on atteindra plutôt au final une humidité relative d’environ 25%, ce qui est insuffisant.

Une humidification de l’air apparaît donc nécessaire pour garantir le confort durant les périodes les plus critiques de l’année (en hiver). Étant donné que les périodes durant lesquelles il existe un risque de voir chuter l’humidité intérieure en dessous du seuil de confort sont généralement courtes, il est recommandé d’asservir le fonctionnement de l’humidificateur à la température extérieure. Sous notre climat, on peut par exemple souvent l’arrêter lorsque la température extérieure dépasse 5°C.

Notons qu’humidifier l’air implique aussi automatiquement de le préchauffer, sinon le point de saturation est atteint directement.

Concevoir

Pour choisir le mode d’humidification.

Et en été, qu’en est-il? En Belgique, l’humidité absolue extérieure dépasse rarement les 15 gr d’eau par kilogramme d’air, ce qui, pour des températures de l’ordre de 25°C correspond à 70% d’humidité relative. Un tel niveau est acceptable, et cela correspond à l’intuition : il est rare que l’on ait, en été, une sensation d’humidité exagérée, comme on le ressent sous les tropiques. Mais…

  • Cela arrive malgré tout par temps orageux. Faut-il que, ces jours là, les systèmes de ventilation soient à même de ne pas répercuter cet inconfort à l’intérieur? C’est au maître d’ouvrage de se positionner. La question se pose de la même façon pour les vagues de chaleur et le risque d’une élévation de température. Quel est le prix du confort absolu ?
  • Si à l’humidité extérieure s’ajoute un dégagement d’humidité importante à l’intérieur, cela ne nous mène-t-il pas au-delà du confort? Oui, à moins de diluer cet apport intérieur d’humidité par un taux de ventilation très élevé, tel que le permet une ventilation intensive;
  • Si dans le local se trouve un émetteur de refroidissement qui n’autorise pas de condensations surfaciques, tel qu’un plafond rayonnant ou une dalle active, ne faut-il pas garantir un contrôle de l’humidité? Oui, bien sûr, pour éviter les dégâts liés à ces condensations.

Les situations où une déshumidification est à prévoir sont donc plus nombreuses que ne le laisse supposer une simple analyse climatique. En pratique, la déshumidification ira souvent de pair avec le recours à un refroidissement actif.

Concevoir

Pour en savoir plus sur la deshumidification

Gérer

Pour en savoir plus sur la régulation de la deshumidification

Utiliser la ventilation comme émetteur thermique ?

Dans les anciens immeubles de bureaux non isolés, la puissance nécessaire au chauffage est telle que le débit de ventilation hygiénique est insuffisant si on veut assurer avec celui-ci un chauffage aéraulique. La séparation des fonctions « ventilation hygiénique » et « chauffage » s’impose d’autant plus que le bâtiment est peu isolé et que les apports internes de chaleur (machines, éclairage, …) sont faibles.

Dans ces vieux bâtiments, si on veut combiner ventilation et chauffage, un recyclage partiel de l’air doit être organisé pour augmenter les débits pulsés, ce qui surdimensionne les équipements de ventilation.

Par contre, dans les bâtiments de bureaux plus modernes, bien isolés, fortement équipés (ordinateur, imprimante personnelle), la puissance de chauffage nécessaire se réduit fortement, et avec elle, les débits d’air nécessaires pour un chauffage aéraulique. Dans ce cas, il peut être logique d’envisager la combinaison du chauffage et de la ventilation. Il n’y a plus alors d’autres sources de chauffage. C’est la logique qui prévaut souvent dans les bâtiments conçus selon le « standard passif ».

En généralisant, ce raisonnement, on pourrait envisager d’assurer également le refroidissement par la pulsion d’air neuf refroidit dans la centrale de traitement d’air.  On parlera alors de refroidissement « tout air« . Technologiquement, cela ne pose pas de problème. Mais il faut garder à l’esprit que les puissances qu’un local demande en refroidissement sont souvent plus importante qu’en chauffage. Pour un bureau, on sera souvent entre 50 et 100 W/m² de charge de refroidissement à compenser, une valeur peu influencée par l’amélioration actuelle des enveloppes. De telles puissances impliquent un surdimensionnement important du réseau de ventilation, comme le montre l’exemple ci-dessous. Une piste intéressante dans certains cas est celle du « top cooling« , où la capacité de refroidissement du réseau de ventilation hygiénique est utilisée sans surdimensionnement, en appoint d’un autre mode de refroidissement, ou comme « aide » pour franchir les périodes de canicule dans des locaux non climatisés.

Exemple.

La puissance thermique disponible sur une pulsion d’air ce calcule en multipliant le débit par la chaleur massique (0,34 [W/(m³/h)K]) et le delta de température entre l’air pulsé et l’ambiance. Considérons un local de bureau typique de 20m² occupé par deux personnes, pour lequel les règles de dimensionnement de la ventilation hygiénique recommandent 60 m³/h (RGPT). 

La température maximale de pulsion est souvent fixée à 35°C dans une ambiance à 20°C, et la température minimale à 16°C dans une ambiance à 25°C. Quelles sont les puissances disponible en fonction d’un facteur de surdimensionnement de la ventilation ?

Puissance disponible grâce à de la pulsion d’air neuf dans un local de bureau type
Débit Puissance de chauffage Puissance de refroidissement
hygiénique: 60 m³/h 15 [W/m²] 9 [W/m²]
hygiénique x 2 : 120 m³/h 31 [W/m²] 18 [W/m²]
hygiénique  x 5: 300 m³/h 77[W/m²] 46 [W/m²]

On voit que pour un bâtiment non isolé, il faut multiplier le débit d’air hygiénique par 5 si on veut atteinte l’ordre de grandeur des puissances de chauffage. Les 15W/m² disponibles « de base » devraient par contre être suffisant dans un bâtiment « passif ». Les puissances disponibles en refroidissement ne sont alors que tout juste capable de compenser la puissance des luminaires, ou celle des ordinateurs. En aucun cas les charges liées à l’ensoleillement… 

Notons au passage que lorsqu’on fait un chauffage par la ventilation,  il faut prévoir la possibilité de travailler en tout air recyclé pour optimaliser la relance matinale du système de chauffage aéraulique. L’apport d’air neuf n’étant enclenché qu’à l’arrivée des occupants.

Choisir un système de ventilation centralisé ou décentralisé

Choisir un système de ventilation centralisé ou décentralisé

Différents critères interviennent dans ce choix:


Les possibilités d’implantation

La facilité (ou difficulté) d’implantation d’un système de ventilation dépend d’abord de son type : les systèmes proposés se différencient par leur encombrement et les modifications qu’ils imposent dans un bâtiment existant, dans un bâtiment neuf, les libertés étant plus grandes.

Les systèmes naturels ou simple flux par extraction mécanique sont les plus faciles à implanter. Ils ne demandent aucun gainage de pulsion, celui d’extraction étant quant à lui généralement beaucoup plus court et facile à implanter. Le système naturelle demande cependant que cette extraction soit faite par des conduits verticaux respectant certaines prescriptions quant à leur tracé et leur débouché en toiture. Ce système peut donc être plus difficile à mettre en œuvre que l’extraction mécanique. Cette dernière devra d’ailleurs être choisie si une évacuation naturelle correcte ne peut être réalisée.

La pulsion mécanique impose, quant à elle, une distribution de l’air dans tous les locaux via un gainage. Dans les locaux aveugles, il n’est généralement pas possible de réaliser des amenées d’air naturelles correctes, ce qui impose la pulsion mécanique.

Quel que soit le mode de ventilation, l’implantation peut être facilitée si le système de ventilation se décompose en différents systèmes indépendants desservant chacun une partie du bâtiment. Ce découpage peut se faire sur base:

  • d’une logique spatiale : différentes ailes du bâtiments pourraient avoir chacune leur propre système. Dans ce cas, la séparation des systèmes permet de limiter la longueur des conduites, l’encombrement dans le bâtiment et les pertes de charges.
  • d’une logique d’occupation : des espaces présentant des profils d’occupation très différents peuvent justifier un réseau de ventilation spécifique, par exemple des salles de réunion regroupées dans un bâtiment de bureau, ou un amphithéâtre dans une école. Dans ce cas, la séparation des systèmes permet de faciliter la gestion des débits d’air : apporter exactement la bonne quantité d’air au bon endroit, au bon moment.

À l’extrême, chaque local pourrait disposer de son propre système de ventilation. Certains dispositifs de ventilation permettent d’ailleurs une pulsion et extraction mécanique avec récupération de chaleur par local.

Décentraliser peut donc dans certains cas limiter l’encombrement du réseau au sein du bâtiment. Par contre, cela implique de multiplier les groupes de ventilation qui prennent eux-aussi une place conséquente.


L’isolation acoustique entre locaux

Certaines activités de bureaux demandent une certaine confidencialité (bureau d’avocats, cabinet de médecin, …) qu’il peut être difficile d’atteindre du fait des ouvertures permanentes pratiquées pour le transfert de l’air. La question de l’isolation acoustique se pose aussi de façon pressante dans les bâtiments scolaires.

La conception d’un système de ventilation décentralisé pour ces locaux élimine le transfert d’air et la faiblesse acoustique liée au passage de l’air dans le bâtiment. Cette solution peut cependant générer une autre nuisance acoustique du fait de la présence des ventilateurs dans (ou à proximité) de ces locaux.

L’autre piste, est l’utilisation d’un réseau de ventilation centralisé, mais équipé de grilles de transfert acoustiques. Celles-ci, plus larges, se placent plus aisément dans les murs que dans les portes. Elles génèrent malheureusement plus de pertes de charge qu’une grille traditionnelle, avec un impact sur le consommation électrique des ventilateurs.

Ouverturetransfert2.gif (1351 octets)Ouverturetransfert3.gif (1519 octets)

Ouvertures de transfert acoustiques.


La protection incendie

L’A.R. du 19 décembre 97 impose que toute paroi séparant un lieu de travail d’un chemin d’évacuation (en gros les couloirs) soit classée « Rf 1/2 h ».

Cela signifie que les ouvertures de transfert prévues entre les bureaux où l’air neuf est amené et les couloirs par lesquels l’air transite vers les sanitaires doivent avoir la même résistance au feu. Cela est possible grâce à des grilles de transfert coupe-feu. Pour ce qui est du détalonnage des portes, cela peut prêter à discussion.

Plus globalement, la traversée d’une paroi, quelle qu’elle soit, par un conduit d’air ne peut pas amoindrir la résistance au feu de cette paroi : « La traversée par des conduites de fluides ou d’électricité et les joints de dilatation d’un élément de construction ne peuvent altérer le degré de résistance au feu exigé pour cet élément.  » (AR du 7 juillet 1994).

Des résistances au feu minimales sont imposées aux séparations entre compartiments incendie. Un compartiment à une superficie de maximum 2 500 m² et est limité à un étage. Les parois séparant les compartiments doivent être « Rf  min 1 h » (en fonction de la hauteur du bâtiment). Ceci implique notamment que tout transfert d’air entre deux étages est soit interdit (pas de pulsion à un étage et d’extraction à un autre), soit obturable automatiquement (porte coupe-feu automatique, clapet coupe-feu).

Cette règle s’applique donc également aux parois des trémies dans lesquelles se trouvent les conduits de ventilation des réseaux mécaniques. Ces parois doivent présenter une RF de 1h à 2h selon la hauteur du bâtiment (cas des trémies continues sur la hauteur du bâtiment).

On comprends facilement qu’une réflexion sur une décentralisation des systèmes de ventilation qui soit cohérente avec le découpage du bâtiment en compartiments incendie peut limiter le recours à ce type d’équipements et dans certains cas permettre une économie d’investissement.

Enfin, notons que pour les bâtiments d’une hauteur comprise entre 25 et 50 m, il est imposé de maintenir les cages d’escalier en surpression en cas d’incendie. À cela vient s’ajouter le désenfumage obligatoire des couloirs par pulsion et extraction pour les bâtiments de plus de 50 m de haut. Ces deux exigences se réalisent par un système de ventilation tout à fait indépendant de la ventilation hygiénique et qui met en œuvre des débits nettement plus importants, de l’ordre de 10 renouvellements d’air par heure.


L’impact énergétique

Dans le cas où un bâtiment inclut des espaces dont les besoins d’air sont variables (des locaux de même nature mais gérés différemment, ou des locaux abritant des fonctions différentes), subdiviser un système de ventilation peut favoriser les économies d’énergie électrique au niveau des ventilateurs. Pourquoi ?

La puissance électrique absorbée par un ventilateur dépend du débit d’air à mettre en mouvement et de la perte de pression à compenser. Considérons un réseau de ventilation alimentant un alignement de classes. Imaginons que les classes à l’extrémité du réseau soient utilisées en soirée pour des activités extra-scolaires, tandis que celles situées au milieu ou au début du réseau n’ont plus besoin d’air après les heures de cours.

En soirée, une gestion intelligente du débit fermera un clapet ou registre de réglage à l’entrée des premières classes. En conséquence, la pression va monter dans le réseau et le ventilateur, s’il détecte cette montée en pression, pourra moduler sa vitesse. Néanmoins, il devra toujours compenser les pertes de charge générées par la totalisé du réseau pour alimenter la classe utilisée en soirée.

Si chaque classe disposait de son propre système de ventilation, ou si cette seule classe à usage particulier disposait de son propre système, le fonctionnement en mode « soirée » n’impliquerait que cet unique groupe de ventilation, qui n’aurait pas à vaincre les pertes de charge d’une réseau collectif. Dès lors, la puissance absorbée pourrait théoriquement être moindre : même débit dans les deux situations, mais pertes de charge réduite dans le cas décentralisé.

Cette réflexion de principe est bien évidemment dépendante des choix de dimensionnement qui seraient faits dans les alternatives centralisées et décentralisée, de la finesse du mode de gestion dans le cas centralisé, des pertes de charges propres aux groupes de ventilation et de l’impact de la réduction du débit d’air sur ces pertes de charges dans le scénario centralisé, etc.

Le bénéfice énergétique de la décentralisation n’est pas nécessairement évident. C’est cependant une piste qui mérite d’être calculée en détail par les bureaux d’étude, maintenant que les consommations des ventilateurs représentent une part non négligeable du calcul PEB.

Choisir un système de ventilation naturelle ou mécanique

 

© Architecture et climat 2023.

Ventilation naturelle.    

© Architecture et climat 2023.

Ventilation mécanique.

Différents critères interviennent dans ce choix:


La garantie de résultat

L’efficacité d’une ventilation est sa capacité à évacuer réellement les polluants des locaux. Pour cela, il faut avoir la garantie que l’air neuf balaye correctement les bureaux et soit évacué après son mélange avec l’air ambiant.

La solution idéale est, mécaniquement, de pulser l’air neuf et d’évacuer l’air vicié directement dans chaque local indépendamment. Cette solution de ventilation indépendante de chaque local est cependant onéreuse et est réservée aux salles à forte affluence (salle de réunion, auditorium, …).

Le système double flux avec pulsion dans les bureaux et extraction dans les sanitaires et/ou zones de circulation garantit au minimum une amenée d’air neuf réelle dans les bureaux et une évacuation des odeurs dans les sanitaires.

Les systèmes de ventilation naturelle ou simple flux, quant à eux, ne garantissent pas toujours un renouvellement d’air correct dans tous les bureaux.

Prenons l’exemple d’une ventilation simple flux avec une simple extraction mécanique dans les sanitaires et des grilles d’amenée d’air naturel dans les châssis des bureaux :

L’air est paresseux, il préférera toujours le chemin le plus facile pour se mouvoir. Ainsi, s’il doit choisir entre les grilles placées dans les châssis des bureaux et un hall d’entrée (ou une fenêtre, …) largement ouvert vers l’extérieur, il est plus que probable que l’air extrait par les sanitaires provienne de ce dernier, plutôt que des bureaux. Ceux-ci ne seront alors pas ventilés correctement.

Schéma trajet de l'air dans un bâtiment.

Ce phénomène est aggravé :

  • en présence de couloirs maintenus ouverts vers les cages d’escalier ou hall d’entrée,
  • en présence de fenêtres et portes ouvertes dans certains bureaux,
  • en l’absence de moyens de transfert d’air au niveau des portes (grilles, détalonnage des portes).

En outre, dans des immeubles de bureaux, le compartimentage variable (location à des sociétés différentes) peut rendre encore plus difficile la coordination entre les entrées d’air et les évacuations.

De plus, les flux d’air véhiculés par les systèmes naturels ou simple flux sont dépendants des conditions atmosphériques (répartition du vent, des températures sur les façades) et donc difficilement contrôlables. Il est par exemple, possible que le flux d’air s’inverse dans une grille autoréglable si celle-ci est disposée sur une façade à l’abri des vents dominants (c’est-à-dire sur une façade en dépression). en effet, ce type de grille permet de limiter l’ouverture d’entrée d’air si elle est soumise à la pression du vent. Par contre, elle n’empêche pas un reflux d’air si elle est à l’abri du vent.

Le système de ventilation ne fonctionnera correctement que si le bâtiment est relativement étanche à l’air.

Dans son article « La ventilation et l’infiltration dans les bâtiments : la situation en Belgique » (1986), le CSTC, recommande d’améliorer l’étanchéité du bâtiment avant d’installer un système de ventilation contrôlée pour un taux de renouvellement de l’air à 50 Pa (n50) inférieur à 5/h. Les recommandations actuelles d’étanchéité à l’air des construction sont cependant plus ambitieuses encore.

Évaluer

Pour évaluer l’étanchéité du bâtiment, cliquez ici !

L’ambiance extérieure

Si l’ambiance extérieure est particulièrement polluée et/ou bruyante (site urbain, industriel, route fort fréquentée, parking avec heures de pointe), les amenées d’air neuf doivent obligatoirement comporter des filtres et une isolation acoustique.

Notons que les locaux les plus sensibles au niveau de la pollution des routes sont les locaux situés à moins de 10 m du sol.

Les amenées d’air naturelles, même équipées de systèmes d’insonorisation laissent cependant filtrer les bruits extérieurs et surtout les poussières. Des recherches sont cependant menées pour améliorer les qualités acoustiques, de filtration et d’automatisation des entrées d’air naturelles. À terme, elles devraient conduire au développement sur le marché de produits permettant une protection contre la pollution extérieure et une régulation semblable à celle possible en ventilation double flux.

Dans les sites urbains fort fréquentés et/ou pour certains locaux demandant une pureté de l’air plus importante (salles d’ordinateur, hôpitaux, …), une pulsion mécanique, équipée de filtres s’impose donc, la prise d’air extérieure devant être disposée dans l’endroit le moins exposé (à l’arrière du bâtiment ou en toiture).

Concevoir

Pour choisir l’emplacement de la prise d’air neuf, cliquez ici !

Les possibilités d’implantation

Les différents systèmes de ventilation se différencient par leur encombrement et les modifications qu’ils imposent dans un bâtiment existant, dans un bâtiment neuf, les libertés étant plus grandes.

Les systèmes naturelle ou simple flux par extraction mécanique sont les plus faciles à implanter.

Ils ne demandent que peu de gainage. Un système naturel se limite à  la création de conduits verticaux d’évacuation dans les locaux humides. Pour fonctionner efficacement, ceux-ci doivent cependant respecter certaines prescriptions quant à leur tracé et leur débouché en toiture, que l’on trouvera dans la norme (résidentielle) NBN D50-001. Ce système peut donc être plus difficile à mettre en œuvre qu’un système mécanique simple flux par extraction. Cette dernière devra d’ailleurs être choisie si une évacuation naturelle correcte ne peut être réalisée.

La pulsion mécanique impose, quant à elle, une distribution de l’air dans tous les locaux via un gainage, et parfois, à des fins d’équilibrage aéraulique, une reprise d’air qui ne se limite pas aux locaux sanitaires et prends la forme d’un second réseau de conduites.

Rappelons que dans le cas d’une pulsion mécanique, un principe de balayage peut être mis en place. L’air alimentant un local peut provenir d’un autre local, pour autant qu’il n’y ait une gradation dans la qualité de l’air: un local ne peut pas être alimenté par de l’air provenant d’un espace plus pollué que lui (voir à ce sujet la norme ISO « ventilation dans les bâtiments non-résidentiels » ). Dans les espaces résidentiels, cette possibilité est explicitement prévue par la norme NBN D50-001, qui autorise que l’air alimentant les salles de séjour provienne des chambres, des locaux d’étude et de loisir, des couloirs, des cages d’escalier, des halls. Ceci a l’avantage de diminuer les débits totaux d’air neuf à injecter dans le bâtiment et de préchauffer l’air avant son entrée dans les locaux de séjour. Dans les chambres et les locaux d’étude et de loisir, seul l’air extérieur est autorisé.

Dans les locaux aveugles, il n’est généralement pas possible de réaliser des amenées d’air naturelles correctes, ce qui impose la pulsion mécanique.


La consommation énergétique et les coûts

Il faut comparer les performances que l’on espère obtenir, l’investissement à consentir et les coûts d’exploitation du système.

Au niveau de l’investissement, plus la mécanisation est importante (du simple flux avec extraction sanitaire au double flux avec pulsion et extraction dans chaque local), plus l’investissement est important. Il en est de même pour les frais d’exploitation (consommation des ventilateurs, maintenance des réseaux). Les frais de chauffage de l’air neuf sont, quant à eux les mêmes, si on considère que tous les systèmes permettent d’assurer des débits équivalents corrects. si ce n’est qu’une ventilation double flux est généralement pourvue d’une récupération de chaleur sur l’air extrait qui modifie sensiblement le bilan énergétique et financier.

Pour situer la surconsommation électrique d’un système de ventilation entièrement mécanique par rapport à un système de ventilation entièrement naturel, on peut citer les chiffres de consommation des ventilateurs couramment rencontrés dans la littérature : pour un système de ventilation double flux, la puissance électrique absorbée par les ventilateurs dans leurs conditions nominales de fonctionnement est de l’ordre de :

2 * 0,14 (installation performante : SFP1) à 0,35 W (installation médiocre : SFP3) par m³/h d’air transporté

dont une partie se retrouvera sous forme de chaleur dans l’air pulsé.
Vous pouvez estimer la différence de consommation entre les différents principes de ventilation :

Calculs

Pour estimer la différence de consommation entre les différents types de ventilation, cliquez ici !

Par exemple, pour assurer un apport d’air neuf de 6 000 m³/h pendant 2 500 h/an, un système de ventilation mécanique double flux consommera en électricité environ :

2* (0,14 [W] .. 0,35 [W]) x 6 000 [m³/h] x 2 500 [h/an] = 4200 .. 10500 [kWh/an]

Par contre, le système double flux permet une meilleure maîtrise des débits, donc des déperditions de chaleur par ventilation. Les consommations peuvent en outre être réduites si on utilise un récupérateur de chaleur. Cette récupération de chaleur est énergétiquement très intéressante puisqu’elle permet de récupérer de 50% à 90% de l’énergie rejetée avec l’air extrait.

Le système double flux permet également une gestion automatique des débits de ventilation local par local en agissant directement au niveau des bouches de pulsion, par exemple en fonction de l’occupation des bureaux individuels. Ce niveau d’automatisation au  niveau de chaque local est théoriquement possible en ventilation naturelle et simple flux si l’on utilise comme amenée d’air des fenêtres robotisées liées à des sondes de présence ou de CO2. Mais ce type de systèmes est très peu utilisé à l’heure actuelle.

Notons également que des installations pilotes de ventilation naturelle avec récupération de chaleur ont été réalisées dans le cas du projet de recherche « NatVent » (pour plus de détail : NatVent, Overcoming barriers to natural, CD-Rom, P.Wouters, J.Demeester, CSTC, 02/655 77 11).


L’esthétique

Les grilles d’amenée d’air naturelles doivent s’intégrer dans l’esthétique des façades et demandent un travail de recherche lors de la conception. Les prises et évacuations extérieures des systèmes mécaniques peuvent souvent être disposées à des endroits moins visibles.

Photo grilles d'amenée d'air naturelles.

Amenée d’air naturelle disposée discrètement au dessus du châssis, contre la battée.

Choisir le système de ventilation : critères généraux

© Architecture et climat 2023.

La qualité d’air intérieur dépend notamment de :

  1. L’air extérieur ;
  2. le mobilier et matériel de bureau ;
  3. les produits et matériaux de construction ;
  4. la ventilation ;
  5. le comportement des usagers.

Les normes recommandent une ventilation de base permanente ayant pour but d’évacuer les odeurs, l’humidité et les éventuelles substances nocives. Pour ce faire, différents systèmes de ventilation existent.


Aperçu des normes

En région wallonne, depuis le 1er mai 2010, tous les bâtiments neufs et assimilés doivent répondre à des exigences particulières. Les bâtiments non résidentiels (hors habitation et appartement) doivent respecter l’Annexe C3 de la PEB (elle-même basée sur la norme européenne EN 13 779 (Ventilation dans les bâtiments non résidentiels – Spécifications des performances pour les systèmes de ventilation et de climatisation).  Celle-ci impose une qualité d’air au moins égale à la catégorie INT 3 (débit minimum de 22 m³ par heure et par personne).

De plus, elle impose un taux d’occupation minimum (m² par personne) à prendre en compte pour le dimensionnement en fonction de l’usage de la pièce.

Pour déterminer le débit d’air neuf minimal à assurer dans chaque local, il faut donc multiplier le taux d’occupation (de conception ou minimum imposé) par le débit de ventilation (INT 3 minimum).

De plus, il faut respecter un débit de conception minimal pour les sanitaires : 25m³/h par WC ou urinoir ou 15m²/h par m² de surface si le nombre de WC n’est pas connu lors du dimensionnement.

Pour les hôpitaux, selon la norme NF S90-351, dans les zones à risques 1, c’est-à-dire concrètement sans risque d’aérobiocontamination (hospitalisation sans risque d’infection, certaines consultations, radiologie, ergothérapie, …), la ventilation se traite, en principe, sans exigence particulière en terme de filtration et de pression.

Dans les autres locaux (médico-techniques par exemple), la ventilation est organisée dans le même local où l’on retrouve à la fois des bouches de pulsion et d’extraction.


Typologie des systèmes de ventilation

Différentes dénominations sont utilisées pour caractériser des systèmes de ventilation.

Relativement au flux d’air, on distingue ventilation hygiénique et intensive sur base du débit:

  • Ventilation hygiénique, ou « de base » : il s’agit de la ventilation minimale nécessaire pour garantir une qualité de l’air suffisante, pour réduire la concentration des odeurs et de l’humidité. Elle requiert des débits d’air limités, appliqués de manière permanente. Ordre de grandeur : <1 renouvellement horaire de l’air.
  • Ventilation intensive : ventilation temporaire à grand débit (ordre de grandeur : >4 renouvellements horaires de l’air) nécessaire uniquement dans des circonstances plus ou moins exceptionnelles, comme lors d’activités générant une production élevée de substances nocives ou d’humidité (travaux de peinture, de nettoyage, certains loisirs,…), lors de chaleur persistante ou d’ensoleillement intensif qui provoque une surchauffe, ou lors d’une occupation extraordinaire, par exemple une fête, un nombre de fumeurs élevé, …

On distingue également infiltrations et ventilation sur base du caractère volontaire ou fortuit du mouvement d’air :

  • Infiltration : mouvement d’air involontaire et incontrôlé au travers des faiblesses de l’enveloppe d’un bâtiment
  • Ventilation : mouvement d’air volontaire et partiellement ou totalement contrôlé au travers de dispositifs spécifiques

Dans le logement, la norme NBN D50-001 parle de systèmes A, B, C ou D selon que l’amenée et/ou l’évacuation d’air est naturelle ou mécanique. Bien qu’exclusivement réservée aux logement, ces appellations sont parfois généralisées aux systèmes mis en œuvre dans les bâtiments tertiaires. Nous parlerons ici plus largement de :

Les ventilations double flux peuvent ou non intégrer une récupération de chaleur sur l’air extrait.

Enfin, on parlera de ventilation hybride lorsqu’elle recours aux principe de la ventilation naturelle mais prévoit ponctuellement le support de ventilateurs et d’éléments réseaux de ventilation mécanique. Typiquement, il s’agit d’une ventilation naturelle dans laquelle un ventilateur d’appoint vient renforcer le tirage lorsque les forces naturelles font défaut.

Le premier choix à réaliser est donc, pour faire simple, entre une ventilation naturelle ou mécanique simple ou double flux. en conception neuve ou rénovation, c’est très souvent une ventilation mécanique qui sera choisie. Se posent alors deux autres questions :

  • faut-il créer un réseau de ventilation unique desservant tout le bâtiment (système de ventilation centralisé) ou distinguer les équipements de chaque local ou groupe de locaux (système de ventilation décentralisé) ?
  • A-t-on intérêt à utiliser ce système de ventilation pour traiter l’air neuf et/ou climatiser le local?

Concevoir

Pour départager les ventilation naturelles et mécaniques, cliquez ici !

Concevoir

Pour départager les systèmes de ventilation centralisés ou décentralisés, cliquez ici!

Concevoir

Pour examiner l’intérêt d’une combinaison de la ventilation avec le traitement thermique des locaux, cliquez ici

Choisir le CO2 comme fluide réfrigérant ou caloporteur

Image par défaut pour la partie Concevoir

Le grand retour du CO2 ?

Le CO2 (R 744) revient à la charge ses derniers temps comme fluide frigorigène. Autrefois remplacé par les CFC, HCFC, HFC, il doit son retour :

  • À son faible impact sur l’environnement (ODP = 0, GWP = 1) par rapport aux autres fluides frigorigènes utilisés actuellement (jusqu’à 3 800 fois moins d’impact sur l’environnement que les HFC).
  • À  l’avancée des technologies dans le domaine de la réfrigération et de la climatisation. En effet, le problème du confinement des gaz sous haute pression semble partiellement résolu grâce, et c’est paradoxal, à la maîtrise de la climatisation dans les véhicules avec la nécessité de trouver :
    • un fluide réfrigérant propre;
    • un faible volume massique permettant des installations compactes (faible poids des équipements et volume réduit de fluide frigorigène);

Les avantages et inconvénients de l’utilisation du CO2 comme fluide frigorigène sont les suivants :

Avantages

Inconvénients

  • pas d’action sur l’ozone (ODP = 0);
  • peu d’impact direct sur l’effet de serre (GWP = 1) sachant par exemple que le R404A a un GWP de 3 800;
  • fluide naturel et largement disponible;
  • ininflammable (utilisation comme gaz dans les extincteurs);
  • non corrosif, compatible avec tous les matériaux;
  • non toxique;
  • alimentaire (notamment nos voisins hollandais l’utilise dans la conservation des repas dans les hôpitaux);
  • production frigorifique volumétrique élevée, permettant à l’heure actuelle des compresseurs de faible cylindrée et des circuits à faible quantité de fluide;
  • miscible à l’huile des compresseurs;
  • peu descendre jusqu’à -54°C;
  • taux de compression faible par rapport aux autres réfrigérants (COP intéressant);
  • il forme des acides avec l’eau et du carbonate d’ammonium (corrosif) avec l’ammoniac;
  • les pressions de service sont très importantes (80, 100 bar voire plus);
  • les équipements des circuits et de sécurité, dus à la pression, doivent être performants (coûts importants);
  • la mise en œuvre de tels circuits n’est pas encore bien maîtrisée;
  • à la mise en route, la déshydratation des circuits doit être encore plus poussée.
  • en cas d’arrêt prolongé, des dégazages à l’atmosphère doivent être opérés, nécessitant une recharge ultérieure;


Utilisation du CO2 comme fluide frigorigène : Cas pratique

Actuellement, un supermarché GB à Aywaille teste un système de réfrigération-chauffage combiné où :

  • les sources froides sont :
    • les meubles frigorifiques;
    • échangeur air/CO2 (« évaporateur de toiture);
    • échangeur eau nappe souterraine/CO2;
  • et les sources chaudes sont :
    • échangeur CO2/air (« gaz cooler »de toiture);
    • les circuits à basse température tels que le chauffage au sol, la centrale de traitement d’air et les rideaux d’air;
    • les circuits à haute température pour l’eau chaude sanitaire.

L’intérêt de ce système est de combiner des besoins :

  • de froid au niveau des meubles frigorifiques. En effet, le nombre impressionnant de meubles frigorifiques ouverts et fermés pour ce type de supermarché nécessite une puissance frigorifique de 300 kW (positif) et 40 kW (négatif);
  • de chaud classiques d’une puissance de l’ordre de 540 kW.

avec une seule machine, à savoir une pompe à chaleur.

Les résultats du monitoring ne sont pas encore connus mais devraient permettre d’y voir plus clair sur une technologie qui a le vent en poupe.


Comparaison  CO2 – R134a  

À titre d’exemple, on compare les performances théoriques de deux fluides réfrigérants comme le CO2 et le R134a.

Les hypothèses de travail sont les suivantes :

  • la phase de refroidissement du CO2 est dans la zone « transcritique » (refroidissement au dessus du point critique : 31°C, 73,6 bar);
  • la température d’évaporation est de -10°C dans les deux cas (application classique de froid positif);
  • la température de condensation pour le R134a est de 30°C (la température ou pression de condensation est flottante en fonction du climat externe);
  • la température de fin de refroidissement pour le « gaz cooler » est de 30°C aussi.

Dans le diagramme (log p, h), on superpose les deux cycles frigorifiques :

Les avantages et inconvénients du cycle CO2 au niveau thermodynamique sont :

Avantages

Inconvénients

  • L’efficacité énergétique en production de froid est relativement bonne si on maîtrise la phase de refroidissement (au « gaz cooler ») au niveau de la température. Pour une température de condensation flottante atteignant les 30°C, l’EFF du compresseur est de l’ordre de h1/h2 = 3,8;
  • Les températures à l’entrée du « gaz cooler » ou  d’un échangeur quelconque, peuvent atteindre des valeurs de l’ordre de 80°C, ce qui est intéressant pour des applications classiques de chauffage par pompe à chaleur;
  • L’efficacité énergétique en production de chaleur peut être très bonne dans la mesure où l’installation puisse tenir des pressions importantes (de l’ordre de 90 bar), ce qui représente quand même une prouesse technologique, mais accessible actuellement. Le COP pourrait atteindre des valeurs de h3/h2= 5;
  • Que ce soit en chaud comme en froid, les valeurs de EFF et COP restent en dessous des valeurs obtenues pour le R134A dans les mêmes conditions, soit une EFF h4/h5 de 5 et un COP h6/h5 de 6.

Les avantages et inconvénients du cycle R134a au niveau thermodynamique sont :

Avantages

Inconvénients

  • pour une installation bien régulée (détendeur électronique, variateur de vitesse des compresseurs, …, les performances des compresseurs tant en chaud qu’en froid sont meilleures que celles pour le cycle CO2 (COP = 6, EFF = 5).
  • Les températures de condensation sont plus faibles que celle du cycle CO2. Ce qui signifie que ce type de fluide ne peut être utilité pour des applications de chauffage haute température combiné au froid alimentaire.


Intérêt du CO2 ?

L’intérêt de l’utilisation du CO2 comme fluide réfrigérant, est avant tout lié à un choix par rapport à l’environnement. En effet, on pointera principalement :

  • le faible impact sur la couche d’ozone et l’effet de serre de part sa composition:
  • la plus faible quantité de fluide utilisé de part son volume massique faible (en cas de fuite, la quantité rejetée est faible);
  • la disponibilité de ce fluide dans la nature (piège à CO2 réalisable);

De plus, dans le cas où l’on considère qu’il faut combiner le besoin de chaleur à haute température (80-90°C) avec celui de froid et ce afin d’éviter de choisir une chaudière et un groupe de réfrigération pour la partie froid alimentaire, une installation de pompe à chaleur au CO2 peut être intéressante.

Toutefois en conception, pour autant que :

  • l’enveloppe soit bien isolée;
  • la ventilation hygiénique soit régulée en fonction de l’occupation;
  • les entrées soit bien étudiées afin de réduire les pertes énergétiques aux accès (courant d’air par exemple);
  • la quantité de meubles frigorifiques dans les commerces ouverts soit limitée;

Il n’y a pas de raison valable d’investir dans une installation coûteuse telle que celle au CO2 car la nécessité d’atteindre des températures d’eau chaude de 80-90°C n’est plus nécessaire. Autant alors investir dans une pompe à chaleur classique dont le condenseur fonctionne à des températures avoisinant les 45°C.


Conclusion

L’utilisation du CO2 comme fluide frigorigène est probablement une piste à suivre de très près.

Il est important, en conception, avant de choisir le réfrigérant qui va naturellement conditionner tout le choix des équipements, de déterminer si le projet s’inscrit dans une démarche énergétique et durable globale. Auquel cas, il faut limiter au maximum :

  • Les déperditions de l’enveloppe par l’isolation thermique des parois, la limitation des pertes par ventilation et infiltration, …
  • Les apports internes positifs ou négatifs tels que l’éclairage intensif, les meubles frigorifiques ouverts, …, par le choix  de luminaires performants, de meubles frigorifiques fermés, apport de lumière naturelle contrôlé (sheds par exemple), …
  • Les apports externes tels que les apports solaires par l’orientation du bâtiment, les ombrages, …

En fonction de l’objectif fixé au niveau de l’esquisse du bâtiment, lors du projet on pourra déterminer l’intérêt ou pas d’investir dans un fluide réfrigérant tel que le CO2.

Choisir l’emplacement des émetteurs de refroidissement

Le confort lié à la distribution de l’air et de la chaleur

L’emplacement de l’unité intérieure conditionne fortement le confort des occupants. La difficulté est renforcée par le fait que le confort doit être assuré autant en mode « chauffage » qu’en mode « refroidissement ». Les mouvements de l’air dans les locaux sont conditionnés par la disposition des bouches de soufflage et de reprise par rapport à l’emplacement des occupants. Notons que certaines cassettes plafonnières régulent automatiquement la direction du flux suivant le mode fonctionnement chaud ou froid.

Le dimensionnement doit alors faire apparaître que la zone d’occupation du local n’est pas perturbée par le jet d’air.

La zone d’occupation du local est limitée dans les recommandations EUROVENT.

En pratique, la vitesse résiduelle du jet d’air dans la zone d’occupation devrait se situer entre 0,15 et 0,2 m/s. Si elle atteint 0,25 m/s, il y aura inconfort des occupants.

Disposition en allège

Si l’emplacement est en allège, la stratification de la température de l’air est limitée et le rayonnement froid du vitrage en hiver est diminué.

climatiser_local_35.gif (6397 octets)

Cette disposition impose qu’en mode « refroidissement », personne ne se trouve à proximité immédiate de la bouche de soufflage.

On rencontre deux cas de figure : soit l’échangeur est placé « complet » avec son habillage, soit il est « nu » et intégré dans un caisson en allège. La première solution apporte beaucoup de garanties de qualité, car le fabricant a testé son matériel et peut en garantir les performances. Mais l’architecte préfère de loin la deuxième formule, pour l’esthétique globale du local et pour la possibilité de dissimuler câbles et tuyauteries dans l’allège ! Les problèmes qui se posent alors sont liés à l’interface entre l’échangeur et la grille du caisson : des remous modifient les jets d’air et créent un inconfort acoustique. Il est donc important soit de remonter l’échangeur pour qu’il affleure la grille, soit de prévoir un manchon de raccord entre ventilo et grille.

De même, on évitera les tablettes, rideaux, … qui peuvent entraver une diffusion correcte de l’air.

Exemple de ventilo-convecteur en allège.

Disposition en faux plafond

Paradoxalement, c’est lorsque soufflage et reprise sont proches l’un de l’autre que le brassage de l’air du local est le meilleur. Mais cette distribution horizontale de l’air peut poser beaucoup de difficultés, surtout si l’on souhaite faire varier le débit d’air. Le choix de la grille sera déterminant. On adopte généralement des grilles linéaires ou des grilles à rouleaux dont on recherche l‘effet Coanda le long du plafond. Mais à faible vitesse, la veine d’air risque de se décoller du plafond et de faire retomber un air trop froid sur les occupants.

En faux plafond, il est sans doute préférable d’imposer une vitesse constante (en l’imposant à la régulation centrale). Ce qui n’est acoustiquement et énergétiquement pas optimal. Permettre à l’occupant de modifier la vitesse de distribution de l’air sous-entend de reporter la commande sur une paroi du local, ce qui est coûteux à l’investissement.

Certains appareils modifient le jet en fonction de la température de l’air soufflé.
À noter enfin que lorsque l’échangeur est placé en faux plafond, on aura tendance a insérer l’apport d’air neuf dans le plénum constitué par ce faux plafond. L’échangeur aspire un mélange d’air du local et d’air neuf. Or, l’air neuf devant être pulsé en permanence, il faudra toujours maintenir une vitesse minimale à l’échangeur.

Disposition en faux plafond avec gainages de distribution

C’est un appareil dont le raccordement est prévu via des gaines de distribution vers différentes grilles de pulsion. Cela améliore le confort (meilleure diffusion de l’air, diminution du bruit, …).

Mais les pertes de charge sont plus élevées et la consommation électrique du ventilateur augmente, tout particulièrement si les gaines de distribution d’air sont longues et terminées par des bouches linéaires.

Disposition au plafond, en apparent ou en imposte

Ce n’est pas idéal au niveau confort thermique. En mode « froid » et à basse vitesse, le jet risque de tomber et de provoquer une sensation d’inconfort désagréable. Ce risque est renforcé si la température de la boucle d’eau glacée est choisie très basse lors du dimensionnement (régime 7° – 12°C, par exemple, plutôt que 12° – 17°C). On peut diminuer cet effet, lors du dimensionnement de l’équipement, en calculant le ventilo sur base de la vitesse moyenne et en recherchant à valoriser à ce moment l‘effet Coanda.

Disposition en faux plancher

La distribution et l’émission peut également être disposée dans le faux plancher.

Disposition dans un local technique indépendant

Pour l’organisation de la maintenance, il peut être plus aisé de disposer toutes les unités terminales dans un local technique, et de les relier chacune à son local par une gaine spécifique.

On parle alors de Module de traitement d’air, qui peut être vu comme un ventilo-convecteur délocalisé.

Coupe à l’intérieur du module de traitement d’air.

En aval, ils sont alimentés en air neuf prétraité, en eau glacée et éventuellement en eau chaude.

En amont, ces caissons sont prolongés par des gaines pour alimenter les diffuseurs d’air dans les locaux (ces diffuseurs assurent aussi bien la pulsion que la reprise).

Le principe de fonctionnement est donc fort proche de celui des ventilo-convecteurs. Mais en plus, il apporte une flexibilité totale s’adaptant très bien aux bâtiments modulaires dont on voudrait pouvoir modifier les cloisons ultérieurement.

Le coût d’installation fort élevé entraîne le besoin d’une évaluation de la rentabilité de ce système sur le long terme.

Un module de traitement d’air traite un local.

Vue du local technique où sont rassemblés les MTA d’un étage, par exemple.


L’évacuation des condensats

La température d’évaporation (en mode froid) d’un système DRV ou d’un climatiseur est inférieure à la température de rosée de l’eau contenue dans l’air, il y a alors condensation sur les ailettes. Des condensats apparaissent également sur les échangeurs à eau glacée des ventilo-convecteurs ou poutres froides.

Ces condensats doivent être évacués. En fonction de l’emplacement de l’appareil, ceci pourra s’effectuer par écoulement naturel ou au moyen d’une pompe de relevage. Celle-ci, si elles ne sont pas intégrées dans la cassette peuvent engendrer du bruit. Dans la mesure du possible, il faut essayer de ne pas sacrifier le confort pour faciliter l’évacuation.

A priori, l’évacuation pour un appareil en plafond dispose de plus de pentes qu’en allège, mais la présence de poutres perpendiculaires au chemin probable d’évacuation peut rendre les choses plus difficiles…

Exemple du DRV : Les condensats sont extraits de l’air ambiant lors du fonctionnement de l’échangeur en mode « froid ». Ainsi, lorsque l’appareil détecte une humidité trop importante dans le local, il descend la température du fluide frigorigène sous le point de rosée de l’ambiance. La distance entre ailettes étant de 2 mm, le bypass factor est très faible. L’air du local condense et ressort à 95… 98 % d’humidité relative.

D’après un constructeur :

  • la consommation de l’appareil est de 85 % en chaleur sensible en mode refroidissement (et donc 15 % pour la déshumidification),
  • elle descend à 50 % en chaleur sensible lors d’un fonctionnement en mode déshumidification.

La technique de la température variable fait qu’il est possible de faire varier la proportion entre chaleur sensible et latente dans le traitement de l’air en mode froid.


La facilité de maintenance

Il ne faut pas non plus oublier que le ventilo doit s’intégrer dans l’esthétique générale du local et que sa facilité d’accès déterminera en partie son coût d’entretien et le coût du service après-vente.

Il est certain que les appareils en allège sont de ce point de vue nettement préférable à ceux en faux plafond.

On sera attentif à ce que les appareils en faux plafond disposent d’une ouverture prévue par le dessous (point surtout critique pour les appareils gainables). Certains appareils sont pourvus de filtres autonettoyants facilitant ainsi l’entretien.

Synthèse

Avantages

Configurations

 Inconvénients

  • distribution optimale de l’air,
  • bruit réduit,
  • faux plafond mis à profit,
  • multiplicité des combinaisons.

  • risque de court-circuit de l’air pulsé et repris,
  • difficulté de respecter le confort à vitesse réduite.

  • distribution optimale de l’air,
  • bruit réduit,
  • faux plafond mis à profit.

  • difficulté d’évacuation des condensats (nécessité d’une pente),
  • difficulté de respecter le confort à vitesse réduite.

  • fonctionnement correct en chauffage et refroidissement.

  • risque de court-circuit si vitesse de soufflage trop faible,
  • encombrement au sol,
  • difficulté d’évacuation des condensats (nécessité d’une pente).

  • fonctionnement correct en chauffage et refroidissement.

  • risque de court-circuit si vitesse de soufflage trop faible
  • esthétique
  • difficulté d’évacuation des condensats (nécessité d’une pente).

Pour en savoir plus :

Techniques

Le ventilo-convecteur

Techniques 

L’éjecto-convecteur

Techniques 

La poutre froide

Techniques 

Le climatiseur de local

Techniques 

Le système DRV

Système de refroidissement [Concevoir l’avant projet ]

Système de refroidissement


Stratégie de choix

Un système technique, notamment de refroidissement, ne devrait pas se choisir uniquement sur base de critères technologiques et économiques, même s’ils sont essentiels. Le choix doit intégrer toute la complexité du bâtiment, son programme, ses besoins énergétiques de chaud et de froid, son site, son occupation,…

Pour s’y retrouver, il est nécessaire de se donner une stratégie. Un exemple de stratégie de choix peut être d’identifier des groupes de critères jugés prioritaires sur base desquels faire une première sélection peut s’effectuer. Par exemple, dans une approche orientée vers la performance énergétique, on mettra en avant les critères liés :

  • Aux propriétés thermiques et constructives du projet :
    Quelle est l’inertie du bâtiment ? Quelles sont les puissances demandées et les besoins d’énergie en chaud et en froid, en fonction des charges internes et solaires, des performances de l’enveloppe ? Quels sont les débits d’air hygiéniques ? Quelle est la modularité envisagée (possibilité de modifier fréquemment les cloisons) ?
  • Aux ressources énergétiques disponibles sur le site :
    Dans notre climat, un bâtiment peut être rafraîchi la plus grande partie de l’été en ventilant naturellement le bâtiment par de l’air extérieur. Si le site est trop bruyant ou pollué, une ventilation mécanique adaptée utilisée en mode free cooling sera également efficace. L’air extérieur peut en outre être rafraichi par des aménagements paysagers (parcs, bassins) ou technologiques (humidification). Si l’air extérieur reste malgré tout chaud la journée, la température nocturne tombe suffisamment pour permettre de décharger la chaleur accumulée à l’intérieur. Si l’air extérieur n’est pas valorisable sur le site du projet, peut-être une ressource hydrique l’est-elle (sans aller jusqu’à solliciter la nappe phréatique, un étang par exemple constitue une masse d’eau fraiche impressionnante) ? La capacité thermique du sol peut également être sollicitée, si sa composition permet des forages à un coût raisonnable.
  • Au profil de l’occupant :
    Selon qu’il souhaite ou non avoir un rôle actif dans la conduite du bâtiment, les choix techniques ne seront pas les mêmes. Est-il disposé à ouvrir ses fenêtres en été ? Les choix dépendront également des profils d’occupation : sont-ils stables ou variables ? Enfin, les attentes de confort sont un critère majeur : les occupants exigent-ils une température constante réglable selon leurs envies, ou sont-ils prêts à accepter une évolution raisonnable, mais moins maîtrisée des conditions intérieures ?

Une fois que l’on s’est donné une liste de critères principaux, il faut faire l’inventaire des choix possibles, et s’orienter vers celui qui offre la meilleure performance énergétique. Cette première sélection doit ensuite être discutée sur base des autres critères : impact financier, contraintes d’entretien, risque de nuisance acoustique, etc.

Choisir une production de froid « alternative » (freechilling, refroidissement adiabatique, géothermie, climatisation solaire)

Choisir une production de froid "alternative" (freechilling, refroidissement adiabatique, géothermie, climatisation solaire)


Quand opter pour un freechilling ?

Le free-chilling consiste à refroidir l’eau glacée de l’installation frigorifique par « contact » avec l’air extérieur lorsque la température de celui-ci est suffisamment basse.

Qu’est-ce qu’une installation adaptée au free-chilling ?

Au départ, il faut que des besoins de froid soient prévus en hiver.
L’intérêt est augmenté si les échangeurs des unités terminales qui seront choisis travaillent à « haute » température : ce sera le cas de plafonds froids (régime 15-17 °C), de poutres froides ou de ventilos-convecteurs surdimensionnés pour travailler au régime 12-17 °C ou 14-19 °C,… À noter qu’un tel dimensionnement diminue les pertes du réseau et la consommation liées à la condensation de la vapeur d’eau contenue dans l’air des ambiances, ce qui amplifie l’économie d’énergie.

Si l’installation demande une puissance de refroidissement faible en mi-saison ou en hiver (de l’ordre de 50 W/m²), on pourrait faire travailler les plafonds froids au régime 17 ° – 19 °C, ce qui permet un refroidissement par l’air extérieur tant que la température de l’air est inférieure à 14 °C. On peut alors imaginer une modulation de la température de consigne de l’eau des plafonds froids en fonction de la température extérieure.

Enfin, le projet se présente très favorablement si un condenseur à eau est prévu : on pourra utiliser la tour de refroidissement pour refroidir l’eau glacée directement par l’air extérieur. Dans la tour, grâce à l’évaporation partielle de l’eau, la température de l’air extérieur sera encore diminuée. Ainsi, de l’air à 15 °C et 70 % HR permet de créer de l’eau de refroidissement à 12 ° (limite basse théorique appelée température « bulbe humide »). Malheureusement, un échangeur sera nécessaire entre le circuit de la tour (eau glycolée) et le circuit d’eau glacée du bâtiment. Une partie de l’avantage est donc perdu…

Le problème du gel…

De l’eau glacée refroidie par l’air extérieur pose le problème du gel dans la tour. La solution la plus courante est l’addition de glycol, mais :

  • le glycol coûte cher,
  • le glycol diminue les capacités d’échange thermique et augmente la densité du liquide, ce qui entraîne une augmentation de puissance des pompes,
  • en général, on limite le circuit glycol au dernier tronçon en contact avec l’extérieur (l’eau de la boucle d’eau glacée n’est pas glycolée car, en cas de vidange, c’est l’entièreté du circuit qui est à remplacer),
  • un échangeur supplémentaire doit alors être prévu, entraînant une consommation électrique liée à sa perte de charge et un écart de température qui diminue la période de fonctionnement du free-chilling…
  • Attention lorsque l’on rajoute de l’eau ultérieurement…

Il est aussi possible de placer des cordons chauffants (mais peut-on protéger totalement ainsi une tour ?) ou de prévoir un circuit de chauffage spécifique qui se met en place en période de gel, mais on risque de manger le bénéfice !

 Le free-chilling : une solution miracle pour toutes les installations ?

Certainement pas. De nombreuses contraintes apparaissent.

Quelques exemples :

  • Lorsque l’installation travaille à charge partielle, il y a intérêt à ce que la température moyenne de l’eau « glacée » soit la plus élevée possible pour favoriser l’échange avec l’air extérieur. On appliquera donc une régulation des échangeurs par débit variable pour augmenter l’écart de température entre départ et retour.
  • Une tour de 300 kW pèse 3 à 4 tonnes et une tour de 1 000 kW pèse 9 à 12 tonnes, ce qui génère parfois des frais d’adaptation du génie civil.
  •  …

Adapter cette technique nécessite donc toujours une étude particulière (cadastre des énergies de froids prévues avec leur niveau de température, répartition été/hiver, …) pour apprécier la rentabilité.

Mais il est en tous cas impératif d’y penser lors d’une nouvelle installation !


Quand opter pour un refroidissement adiabatique

Le refroidissement adiabatique permet de rafraîchir de l’air en centrale par humidification. Cet air humide et frais est ensuite utilisé directement dans l’ambiance ou indirectement par un échangeur de chaleur.

Ce système basé sur des équipements existants (groupe de ventilation, tour de refroidissement) apporte un rafraichissement naturel bienvenu lorsque des techniques plus « lourdes » (fenêtres motorisées, etc.) ne peuvent être mises en œuvre. Il peut également servir d’appoint à ces techniques passives lorsque celles-ci ne suffisent plus à assurer le confort.

Le refroidissement adiabatique a cependant une efficacité limitée à trois niveaux,

  • comme tout système de transfert thermique basé sur l’air, la faible capacité calorifique de l’air bride la puissance disponible. Des débits d’air importants sont nécessaires pour que le refroidissement soit réellement sensible.
  • La température minimale à laquelle l’air peut être abaissé est la température de bulbe humide, qui correspond à la saturation. Cette température est plus élevée que celle obtenue par une machine frigorifique « classique ».
  • Le système ne fonctionne que lorsque l’air que l’on souhaite humidifier est suffisamment sec que pour présenter un potentiel de rafraichissement intéressant. Si c’est de l’air intérieur, le refroidissement adiabatique sera plus pertinent dans des locaux faiblement occupés (moins de dégagement d’humidité dans l’ambiance). Si c’est de l’air extérieur, le système ne sera pas très efficace les jours chauds et humides.

La figure ci-dessous montre, heure par heure, les conditions climatiques d’Uccle, et la zone de conditions T° et Humidité favorable à un système évaporatif direct. A l’évidence, notre climat humide n’est pas le plus favorable pour cette technique.

Elle n’est pas pour autant à dédaigner complètement. Considérons par exemple un air extérieur à 22 °c et 60 % d’humidité relative, une condition qui n’a rien d’exceptionnel en été. Pour peu qu’il y ait un peu de soleil, beaucoup de bâtiments seront en demande de refroidissement. Par humidification, cet air peut être  abaissé jusqu’à environ 17 °C. Ce gain de 5 °C, sur un débit d’air hygiénique d’environ 3 m³/(hm²) dans des bureaux représente 5 W/m² de puissance frigorifique. C’est presque équivalent à la chaleur dégagée par les occupants (70 W/personne, 10 à 15 m²/personne). C’est peu, mais non négligeable.

Quand donc opter pour ce type de système ?

Dans notre climat, un refroidissement adiabatique direct est limité par l’humidité extérieure, et surtout d’une efficacité très variable en fonction de la météo.  On évitera donc de se fier uniquement sur eux pour traiter une ambiance. Par contre, sa simplicité fait qu’il trouvera presque toujours une place en complément de stratégies de refroidissement sur boucle d’eau.

Les systèmes indirects, basés sur l’humidification de l’air extrait, seront pertinents lorsque l’air extrait peut être fortement refroidi. Pour cela, il faut qu’il ne soit ni trop chaud, ni trop humide. La condition « pas trop chaud » fait penser à des locaux disposant déjà d’un système de refroidissement  par boucle d’eau. On est alors sur de plafonner à 24-25 °C. La condition « pas trop humide » se rencontre lorsque la surchauffe du local est liée à des gains solaires et internes sans dégagement d’humidité. Autrement dit dans les locaux dont l’occupation humaine est relativement limitée. Problème : dans ces cas-là, le débit d’air a tendance à l’être aussi, ce qui limite la puissance disponible. Faut-il surdimensionner le réseau de ventilation ? C’est un calcul économique à réaliser au cas par cas.

En conclusion, le refroidissement adiabatique apparait chez nous comme un appoint intéressant à d’autres systèmes plus que comme une technique autonome de refroidissement.

Et si on reformulait les objectifs de la conception des bâtiments de façon à atteindre un niveau de maîtrise des charges thermiques au point de rendre cet appoint suffisant ?

Techniques

Pour en savoir plus sur le refroidissement adiabatique, cliquez ici !

Concevoir

Pour en savoir plus sur la façon de valoriser la physique de l’air humide, cliquez ici !

Quand opter pour une climatisation solaire ?

La climatisation solaire est une technique basée sur l’utilisation de machines frigorifiques à ab/adsorption  ou de roues dessicantes. L’énergie solaire sert alors de source de chaleur pour régénérer le sorbant.

Dans le cas des machines frigorifiques à adsorbtion, la possibilité d’utiliser le soleil pour cet usage est limité par la demande d’une température d’eau minimale qui se situe entre 70 et 95°C en fonction du couple solvant-réfigérant. Dans les roues dessicante, cette température est également supérieure à 70°C. Pour atteindre cette température, l’emploi de capteurs performants est indispensable (sélectifs, sous vide, à faible concentration), ce qui induit un coût d’investissement assez important.

Il faut aussi tenir compte de ce que, en l’absence de soleil, si les besoins de froid sont toujours présents, une autre source de chaleur doit prendre le relais. L’intérêt de la machine frigorifique à absorption couplée avec des capteurs solaires doit donc être évalué sur base d’une moyenne annuelle, en tenant compte des heures d’ensoleillement exploitables. Cette évaluation dépend de nombreuses valeurs à estimer :

  • rendement de la chaudière ;
  • rendement de la machine frigorifique à absorption ou des différents échangeurs de la roue dessicante ;
  • proportion de la demande de froid qu’on peut produire avec l’énergie solaire (X) qui dépend du nombre d’heures d’ensoleillement exploitables ;
  • rendement moyen de la production électrique en centrale ;
  • COP de la machine frigorifique à compression.

Avec les hypothèses prises dans le schéma ci-dessus, le bilan au niveau de la consommation d’énergie primaire est favorable au système de refroidissement solaire si au moins 51 % de la demande de froid peut être satisfaite par l’énergie solaire. Pour évaluer la rentabilité économique du système, il faudrait tenir compte des prix de l’énergie et des coûts d’investissement.

Est-il envisageable d’atteindre ce ratio ? A priori non : dans notre climat peu ensoleillé, les surchauffes sont en grande partie liées aux dégagements intérieurs de chaleur. Encore plus si le bâtiment est équipé de protections solaires.

Faisons l’exercice inverse : pour que la climatisation solaire soit pertinente, il faudrait que :

  • Les locaux soient peu sujets à des gains internes : des grands espaces peu occupés.
  • Les locaux soient sujets à une surchauffe au moment où le soleil brille : donc des espaces qui présentent une faible inertie thermique.
  • Les locaux disposent d’une stratégie alternative lorsque cette surchauffe apparait pour un ensoleillement moyen (en mi-saison, quand la température dans le capteur ne sera pas suffisante) : locaux que l’on peut ventiler intensivement en été.

Cela pourrait nous faire penser à des espaces d’exposition, pour autant que l’éclairage artificiel n’y représente pas une charge trop importante, ou à des atriums. On le voit, la climatisation solaire doit, chez nous, être considérée comme un produit de ‘niche’, pour lequel une étude technico-économique détaillée est indispensable.

Techniques

Pour en savoir plus sur les machines frigorifiques à ad/absorption

Techniques

Pour en savoir plus sur les roues dessicantes

Quand opter pour un geocooling ?

Le geocooling est une technique de valorisation de la fraicheur du sol grâce à un réseau véhiculant un fluide caloporteur. En principe, le champ d’application du geocooling est large. Tout bâtiment qui présente un besoin de froid pourrait théoriquement en bénéficier, quitte à compléter cette source d’un appoint par une machine frigorifique plus traditionnelle.
Les limites d’utilisation du geocooling seront :

  • Réglementaires : les forages doivent faire l’objet d’une demande de permis unique en Région Wallonne, pour laquelle il faut fournir notamment une coupe géologique probable du puits avec profondeur estimée de la nappe aquifère, la description des méthodes de forage et les équipements du puits avec coupe technique, un rapport technique sur la nature de la nappe aquifère éventuelle et un plan de situation des puits. Le sens de cette demande de permis est bien évidemment d’éviter tout risque de pollution d’une nappe aquifère, ce qui peut limiter le développement de cette technologie dans certaines zones sensibles.
  • Technologiques : Décharger d’année en année une quantité d’énergie dans le sol mène à son échauffement progressif. Il en découle une perte de performance liée à des moindres écarts de température entre le sol, la boucle d’eau et le bâtiment. On privilégiera donc le geocooling dans les situations où le sol est également utilisé comme source de chaleur en hiver (géothermie), t en particulier lorsque les besoins de chauffage et de refroidissement du bâtiment sont dans une certaine proportion. Puisqu’en géothermie l’énergie utile (la demande de chaud) = l’énergie extraite du sol + l’énergie consommée au compresseur de la pompe à chaleur, alors qu’en geocooling, l’énergie utile (la demande de froid) = l’énergie injectée dans le sol, on déduit que le geocooling sera particulièrement pertinent lorsque la demande de froid = la demande de chaud / (1-(1/COPpac)). Autrement dit, si on considère qu’une pompe à chaleur à un COP de l’ordre de 4, il faut que les besoins de froid soient environ 133 % des besoins de chaleur.

Schéma évolution de la température du sol sur 20 ans.

Simulation de la température d’un sol dont on retire du froid chaque été. Après 240 mois (20 ans), la température moyenne a grimpé de 3°C, rendant difficile la production d’eau froide à destination du système de climatisation du bâtiment.

  • Économiques : La pertinence économie qu’un geocooling dépend de la nature du sol et de l’équilibre entre besoins de chaleur et de froid. Pour ce qui est de la nature du sol, il est évident qu’un forage dans une roche demandera un investissement plus important qu’un forage dans du sable. Certains sols offrent également une plus grande diffusivité thermique, ce qui améliore leur rôle de tampon thermique. Un test de réponse thermique (TRT) permet de chiffrer la qualité d’un sol relativement à des applications thermiques. L’équilibre chaud-froid dans les proportions discutées au point précédent permet de limiter le recours à des technologies d’appoint (chaudière ou machine frigorifique à compression) pour valoriser au maximum l’investissement fait au niveau du forage.

Pour illustrer tout cela, voici un exemple de bilan réalisé pour un bâtiment de bureaux (source : MATRIciel sa). Il s’agit de la comparaison entre la géothermie/geocooling et des installations de production traditionnelles, pour plusieurs combinaisons d’enveloppe (coefficient de déperdition des murs de 0,2 à 0,4 W/m²K et facteur solaire des vitrages de 22 à 39 %). Certaines combinaisons ne sont pas possibles si on désire installer une géothermie, car elles entraînent un trop grand déséquilibre entre les besoins de chauffage et de refroidissement et donc une mauvaise dynamique du sol d’une saison à l’autre. Dans ces cas, la stabilité de la température du sol à long terme n’est pas garantie. Globalement, lorsqu’elle est possible, la valorisation du sol permet une division par 2 des émissions de CO2 et une économie d’un tiers de l’énergie primaire liée au chauffage et refroidissement. Mais, on constate que la combinaison qui minimise la consommation d’énergie primaire pour des techniques traditionnelles ne permettait pas, pour ce cas-là, d’opter pour le geocooling ! Même si cela peut paraître paradoxal, il est alors préférable d’aller un peu moins loin dans la réduction des besoins (de froid dans ce cas-ci) pour rendre possible l’investissement dans une technique qui minimisera l’impact global du bâtiment.

Schéma comparaison entre la géothermie/geocooling et des installations de production traditionnelles.

Schéma comparaison entre la géothermie/geocooling et des installations de production traditionnelles.

Techniques

Pour en savoir plus sur les techniques de geocooling, cliquez ici !

Influence du régime de température

Le régime de température d’un système de climatisation influence directement la quantité d’énergie produite en valorisant la fraicheur de l’environnement. À titre d’exemple, le tableau suivant reprend les gains énergétiques potentiels par free-chilling et par géocooling qui ont été simulés en fonction du régime de température, pour un bâtiment de bureaux nécessitant 302 MWh de besoin en froid.

  Géocooling
Régime 09°C-14°C 15°C-17°C 17°C-19°C
Gain énergétique potentiel 33% 66% 75%

Free-chilling

Régime 09°C-14°C 15°C-17°C 17°C-19°C
Gain énergétique potentiel 0.5% 8.6% 15.5%

Le géocooling consiste à refroidir directement l’eau avec le sol, la température du sol  doit donc être inférieure à la température de départ de l’eau. Dans cette exemple, le choix d’un régime 17-19 °C au lieu de 9 °C – 14 °C permet bénéficier de 2 fois plus d’énergie gratuite et d’ainsi couvrir 75 % des besoins en froid du bâtiment !

Pour un régime de température de 9 °C – 14 °C, l’utilisation d’énergie gratuite de l’air est quasi nulle (0.5 % de la consommation annuelle).  Dans cet exemple, l’augmentation du régime de température de 2 °C (17-19 au lieu de 15-17) permet d’utiliser 1.8 fois plus d’énergie gratuite.

En outre, un régime plus élevé diminue fortement le risque de condensation et peut permettre de se passer de la déshumidification de l’air. Il est dès lors possible d’utiliser des émetteurs de types plafond froid.

Analyser les besoins thermiques en fonction du climat

Évolution des besoins selon les saisons

Dès le stade de l’avant-projet, le profil thermique du bâtiment doit être évalué. Une analyse logique, intégrant les spécificités du programme (grand dégagement de chaleur intérieur ou non, large ouverture solaire ou non), permet déjà une première analyse. L’organigramme ci-dessous présente un canevas général pour aider à réaliser cet exercice : au départ des 3 saisons qui caractérisent notre climat, les priorités différentes de conception architecturale et technique sont mises en évidence.

  • En période de chauffe, soit lorsque la température en journée est inférieure au point d’équilibre du bâtiment et qu’il y a peu de soleil, il convient de minimiser à la fois le besoin et la consommation de chauffage. Minimiser le besoin fait appel aux techniques passives d’isolation, compacité, etc. et aux techniques actives de récupération de chaleur et de modulation des débits d’air. Minimiser la consommation passe par le choix d’émetteurs base température et de mode de production efficace.

 

  • En mi-saison, soit lorsque la température extérieure diurne est entre le point d’équilibre du bâtiment et la température de confort, lorsqu’il y a peu de soleil, il est prioritaire de valoriser les sources gratuites de chaleur : gains solaires, même limités, et gains internes. Le transfert d’énergie au sein du bâtiment, par les réseaux de ventilation ou VRV est alors pertinent. En période ensoleillée, c’est la maîtrise des charges solaires qui devient prédominante, pour limiter les surchauffes précoces : gestion des stores et free cooling.

 

  • En été, soit lorsque la température extérieure diurne atteint ou dépasse la température de confort, auquel cas l’ajout des charges internes et solaires crée un besoin de refroidissement, c’est la température nocturne qui deviendra le pivot de la stratégie. Si cette température est basse, la combinaison d’inertie thermique et de free cooling permet de retarder ou d’éviter le recours au refroidissement mécanique. Le dimensionnement et la gestion des réseaux de ventilation est centrale. Le choix de techniques de top cooling est également important. Si la température nocturne reste élevée (canicules), on peut partir de l’a priori qu’un refroidissement mécanique est nécessaire. On veillera alors à maximiser son efficacité, par le choix des températures d’émission et des modes de dissipation de la chaleur (géocooling par exemple).




Simulation numérique

Une fois une première analyse logique et qualitative réalisée, et après une première itération sur  l’architecture et les choix de techniques, une simulation numérique du comportement thermique du projet est à envisager. Les logiciels dits de STD (simulation thermique dynamique) les plus souvent utilisés en Wallonie sont EnergyPlus et Trnsys. Une telle simulation :

  • Fera apparaître les besoins de chaleur et de refroidissement du bâtiment.
  • Évaluera la part de simultanéité de besoins de chaud et de froid dans des locaux différents.
  • Informera de la valeur de la température extérieure au moment où la demande de refroidissement apparaît.
  •   …

Exemple de profil pour un immeuble de bureaux-type, avec locaux de réunion et salle de conférence (l’énergie frigorifique demandée alors que la température est inférieure à 10°C provient du local informatique) :

Cette analyse peut permettre :

  • De préciser les options de l’avant-projet.
  • De prendre en compte le fait qu’une zone demande un refroidissement alors que sa voisine demande du chauffage.
  • De quantifier l’énergie de refroidissement demandée alors que … c’est l’hiver dehors ! (possibilité de free-chilling).
  • D’orienter le choix du système de refroidissement (naturel ou mécanique, à Débit de Réfrigérant Variable,…).
  • De grouper des locaux avec des charges importantes.
Découvrez 3 exemples de bâtiment dont les besoins thermiques ont été intégrés dés l’avant-projet : école passive de Louvain-la-Neuve (premier bilan), école passive de Louvain-la-Neuve (proposition d’équipements), et le projet ECOFFICE.

Choisir un système de ventilation intensive (free cooling)

Choisir un système de ventilation intensive (free cooling)

Ventilation intensive mécanique ou naturelle ?

On peut envisager un système de ventilation intensive entièrement mécanique. La consommation électrique des ventilateurs risque cependant de compenser l’économie réaliser sur la machine frigorifique. Sans parler de l’encombrement des conduites. Ce type de système est équivalent à une climatisation « tout air » de type VAV qui valoriserait au maximum l’air extérieur non traité.

Concevoir

Pour plus d’infos techniques sur la conception des systèmes VAV

Selon les situations, les ventilations mécaniques et naturelles présentent chacune des avantages et/ou des inconvénients :

Coût d’investissement

Le free cooling, de jour comme de nuit, nécessite des débits de ventilation relativement importants. L’ installation de ventilation doit donc être dimensionnée pour gérer ces débits (conduits, ventilateurs, bouches, ….).

Si le bâtiment est déjà équipé d’un système de climatisation tout air ou si les débits de ventilation hygiénique sont importants (du fait de l’occupation, dans des salles de conférence, des auditoires, par exemple), un réseau mécanique ne représente peut-être pas un surcoût.

Par contre, lorsque la ventilation hygiénique est limitée, la possibilité d’organiser un free cooling mécanique entraîne un surdimensionnement, donc un surcoût important de l’installation.

Dans le cas d’une ventilation naturelle, si la réalisation d’un réseau de ventilation mécanique important est évitée, l’investissement pour organiser une ventilation naturelle n’est néanmoins pas nul. Des éléments particuliers doivent être prévus pour amener l’air dans le bâtiment sans risque d’effraction (grilles, fenêtres automatisées,…), éventuellement pour lui permettre de circuler (grilles de transfert, portes coupe-feu,…) et pour l’extraire (grilles d’extraction, cheminées,…).

Coût de fonctionnement

En ventilation naturelle, le transport de l’air s’effectue naturellement grâce aux différences de pression et/ou de température de l’air autour du bâtiment. Dans les systèmes de ventilation par effet de cheminée, un ventilateur d’extraction est parfois installé pour pourvoir au transport de l’air dans de mauvaises conditions climatiques. Pratiquement, ces ventilateurs sont peu ou pas utilisés.

En ventilation mécanique, le fonctionnement des ventilateurs pour le transport de l’air nécessite une énergie électrique non négligeable.

Par exemple, une étude réalisée sur un bâtiment du Sud de la France montre que la consommation des ventilateurs actionnés la nuit était similaire à la consommation des groupes frigorifiques en relance au matin en absence de free cooling (ceux-ci bénéficiant de l’efficacité frigorifique qui produit 2 à 3 kWh de froid pour 1 kWh au compresseur…).

Confort

En free cooling diurne naturel, l’amenée d’air frais directement dans les locaux peut se révéler inconfortable. Des solutions peuvent néanmoins être trouvées pour éviter cet inconfort, comme le montrent les trois exemples suivants réalisés dans des bâtiments anglais.

Exemples.

Dans le centre administratif de l’entreprise Powergen, l’air, en hiver, est introduit par les fenêtres hautes, et guidé, grâce à la forme particulière du plafond vers le centre du bâtiment. Le mélange de l’air frais extérieur avec l’air ambiant se fait donc sans inconfort.

Photo centre administratif de l'entreprise Powergen.

Dans le bâtiment environnemental du BRE, l’air de ventilation des bureaux paysagers parcourt des conduits intégrés dans le plafond, à température ambiante, avant de pénétrer le local au niveau du plafond. Il est donc légèrement réchauffé.

Powergen, schéma explicatif.

Powergen, schéma explicatif.

Enfin, dans le Queen’s building de l’Université De Monfort, l’air extérieur est introduit dans les auditoires au travers d’un absorbant acoustique et d’une batterie de préchauffe.

À cela s’ajoute le risque de sous-refroidissement du local et donc d’inconfort le matin, à l’arrivée des occupants, si les amenées d’air ne sont pas automatisées et refermées au cours de la nuit, quand le bâtiment est suffisamment refroidi.

En ventilation mécanique, lorsque l’on souhaite bénéficier de la fraîcheur de l’air extérieur, mais que celui-ci est trop froid pour être pulsé tel quel, il serait paradoxal de recourir à une batterie de chauffe. Une récupération de chaleur sur l’air extrait est alors tout indiquée. Éventuellement, un recyclage partiel de l’air extrait peut être envisagé.


Un ventilateur en renfort du tirage naturel : vers des systèmes hybrides ?

Pour renforcer le tirage lorsqu’il est trop faible ou pour limiter l’encombrement des cheminées de tirage naturel, il est possible d’organiser une pulsion forcée d’air frais extérieur : un extracteur est placé sur le sommet de la cheminée. Ici également, la température intérieure va fluctuer entre 21 et 25°C durant la journée, puisque le bâtiment stocke son froid la nuit et se réchauffe le jour. Mais au moins une garantie est donnée sur la réelle circulation de l’air.

Schéma de fonctionnement de la ventilation hybride dans les classes (École Tanga).


Disposer d’une masse thermique accessible

Le but de la ventilation nocturne est de refroidir la masse thermique du bâtiment durant la nuit et de diminuer ainsi les surchauffes en journée.

Ce sont les matériaux lourds de construction (béton, carrelage, …) qui constituent la principale masse thermique d’un bâtiment. En journée, ceux-ci absorbent les apports instantanés de chaleur (ensoleillement, …). Cette chaleur est restituée ensuite avec un décalage temporel, ce qui atténue fortement les hausses de température diurne dans le bâtiment. On parle d’inertie thermique du bâtiment. Prenons l’exemple d’une voiture. Celle-ci n’a aucune masse thermique. Dès que le soleil luit, la température intérieure monte très vite. À l’inverse, dès que le soleil disparaît, la température intérieure chute.

Évolution dans le temps de l’apport de chaleur dû à l’ensoleillement dans un local
avec ou sans inertie thermique : comparaison entre la chaleur instantanée transmise au travers du vitrage et la chaleur restituée au local.

Le but de la ventilation nocturne est de décharger au maximum, durant la nuit, la chaleur accumulée dans les matériaux du bâtiment et de permettre une forte absorption de chaleur durant la journée.
Pour que ce phénomène d’accumulation / restitution de chaleur soit possible, il faut :

  • D’une part, favoriser l’utilisation de matériaux de construction lourds pour assurer l’accumulation.
  • D’autre part, garantir le contact entre ceux-ci et l’air frais de ventilation pour évacuer la chaleur accumulée.

À défaut de quoi, on ne refroidirait que l’air ambiant du bâtiment, qui se réchaufferait au premier rayon de soleil (comme cela se passe dans une voiture …). Concrètement :

  • Au niveau du sol, le carrelage est préférable à la moquette, au plancher ou au faux plancher qui isolent par rapport à la masse du sol. …). Le passage des réseaux hydrauliques, électriques,informatiques… s’en trouve contrarié.
  • Au niveau des murs, des murs intérieurs en maçonnerie lourde absorbent nettement plus de chaleur que les cloisons légères. Mais des cloisons lourdes peuvent aller à l’encontre de la flexibilité souhaitée par un promoteur immobilier par exemple.
  • Au niveau des plafonds, l’emploi de faux plafonds est déconseillé.

La surface d’absorption manquante au plafond peut être fournie par les portes absorbantes acoustiques des armoires.

Exemple.

Les bureaux du bâtiment environnemental du BRE, par exemple, ne présentent pas de faux plafonds. La surface du plafond a même été augmentée artificiellement en lui donnant une forme sinusoïdale. L’énergie thermique stockée par le plafond est ainsi augmentée.

Phot des plafonds du bâtiment environnemental du BRE.

Cependant, les faux plafonds offrent d’importants avantages (coût par rapport à la finition d’un plafond « lourd », intégration des installations techniques, …) et permettent notamment d’améliorer l’acoustique des locaux. Un compromis peut être trouvé entre la fonctionnalité du faux plafond et la perte de masse thermique qu’il engendre. Il s’agit de plafonds semi-fermés comportant des ouvertures qui assurent un contact entre l’air intérieur et la structure du bâtiment.

Faux plafonds semi-ouverts permettant la circulation de l’air de ventilation.

Dans le centre administratif de l’entreprise Powergen en Angleterre, une autre solution a été utilisée pour assurer le confort acoustique : les « ailes » des éléments techniques suspendus (regroupant luminaires, détecteurs incendies, etc.) sont des absorbants acoustiques. La forme elliptique des creux du plafond focalise les ondes sonores vers ces absorbants.

Théories

Pour plus d’informations sur l’évolution thermique d’un local type sans inertie, cliquez ici !


Gérer la fluctuation inévitable de la température intérieure

Choisir un rafraichissement par ventilation intensive sans appoint d’une machine frigorifique implique inévitablement des fluctuations de température dans le bâtiment.

En été, le bâtiment est un réservoir « tampon », qui est « vidé de sa chaleur » la nuit jusqu’à atteindre 21°C, et dont la température augmente progressivement en journée jusqu’à 25°C. S’il fait plus de 25°C à l’extérieur, l’occupant doit vivre dans son local sans ouvrir la fenêtre, et se baser sur le « capital froid » emmagasiné durant la nuit.

En outre, il ne faut pas sous-refroidir le bâtiment, pour ne pas créer d’inconfort lors de l’arrivée des occupants, le matin. Une régulation automatique du free cooling s’impose si les utilisateurs ne peuvent assurer la gestion manuelle.

Dans tous les cas, les fluctuations de température doivent rester dans les plages de confort tolérées par le maître d’ouvrage. Or, dans un bâtiment se basant sur un système de reoifridissement par ventilation, l’approche du confort n’est pas la même que dans un bâtiment climatisé. La norme NBN EN 15251 donne à ce titre des indications utiles.

Pour en savoir plus :

Théories

Le confort thermique.

Réglementations 

La norme NBN EN 15251.

Choisir la gestion et la commande

Critères de choix

Au niveau énergétique, un projet de conception ou de rénovation importante de l’éclairage doit tenir compte :

  • De la sensibilisation à l’URE et de l’ergonomie ;
  • Du profil d’occupation des locaux et de l’évolution possible de ce profil au cours du temps ;
  • De l’apport de lumière naturelle ;
  • De la performance thermique de l’enveloppe du bâtiment et de lier le confort visuel au confort thermique ;
  • De la taille du ou des bâtiments constituant le parc immobilier. ;

Quels que soient les critères de choix du système,  sa configuration de base ne change pas. On a toujours besoin :

  • De câble d’alimentation ;
  • De luminaires ;
  • D’organes d’allumage et d’extinction des luminaires ;
  • D’organes de gestion.

Le développement de l’électronique et l’apparition de « l’immotique » dans les bâtiments tertiaires a permis de repenser la gestion des systèmes d’éclairage en tenant compte, à confort visuel optimal,  de l’énergie. L’acceptation de l’immotique par les occupants des locaux est souvent délicate sachant qu’en général, ils sont d’une part réfractaires au changement et d’autre part ils n’ont plus nécessairement la maîtrise du système.

Un système d’éclairage performant tenant compte de l’occupation et de la lumière naturelle permet de réduire sensiblement les consommations électriques. C’est d’autant plus vrai dans la conception de bâtiment à basse voire très basse énergie, car la part de consommation énergétique que prend l’éclairage devient très importante.


Sensibilité à l’URE et ergonomie

Sensibilité

La sensibilisation à l’URE (Utilisation Rationnelle de l’Énergie) et l’ergonomie influencent particulièrement le choix de la gestion de l’éclairage. Lorsque les occupants des locaux ont la « fibre énergétique », la gestion de l’éclairage peut être simple par le choix d’une gestion manuelle classique.

Elle est envisageable dans des espaces privés. Par contre, pour une gestion dans des espaces privés locatifs ou publics, on fera appel à de l’équipement automatique. En effet, dans ce type d’espace, il règne en général un esprit de déresponsabilisation des occupants qui sont « de passage ».

Exemple

Le choix d’une gestion de l’éclairage par un interrupteur à deux allumages pour réaliser un zonage dans un local de taille importante ne devrait pas poser un gros problème.

Ergonomie

Malgré une sensibilité avérée des occupants d’espace, l’ergonomie représente un facteur limitatif  au choix d’une gestion simple.

Exemple

« On connait tous l’inconvénient de gérer un groupe de  luminaires proche de la fenêtre par une gestion de type interrupteur simple. Notre cher climat en Belgique n’épargne pas notre patience ! ».

Lorsque le soleil joue à « cache-cache » avec la couche nuageuse, les variations de niveau d’éclairement voudraient que l’occupant éteigne et rallume les luminaires du côté de la fenêtre pour réduire la facture énergétique. Le gestionnaire risque de devoir dépenser les économies générées au profit des « psy d’entreprise ».

Arbitrage

Mise en garde : « un système de gestion automatique de l’éclairage ne fonctionne que s’il est parfaitement accepté par les occupants. L’imagination de ceux-ci est incroyable quand il s’agit de contrarier un système automatique ! Celui-ci doit donc être soit imperceptible, soit compris et accepté par les occupants ».

On conseille souvent de ne pas pousser trop loin la recherche d’économies au détriment de la liberté des utilisateurs et de la simplicité de la gestion. Dans les locaux de bureau, par exemple, les occupants doivent pouvoir allumer ou éteindre un luminaire, faire varier la puissance émise par un luminaire ou personnaliser leur ambiance de travail. Des solutions existent comme les dérogations manuelles sous forme de télécommande IR (Infrarouge) ou RF (Radio Fréquence).

Ainsi, dans les grands bureaux, il faut dans la mesure du possible donner la possibilité aux occupants de gérer l’éclairage au niveau de leur propre espace de travail.

L’utilisateur pourra être sensibilisé :

  • à la non-utilisation de l’éclairage artificiel général si l’éclairage naturel est suffisant,
  • à extinction de l’éclairage d’un local lorsqu’il quitte celui-ci.

Des exemples de gestions manuelles et automatiques

Exemple 1 : local à occupation brève et variable

Dans des locaux de type privés comme des locaux d’archives, techniques, …, une gestion manuelle  comme un interrupteur simple avec témoin lumineux est la solution. A l’inverse, les locaux comme les sanitaires et WC privés ou public seront équipés d’une détection de présence (avec éventuellement détection sonore) dans le blochet près de la porte.


Gestion manuelle.


Gestion automatique.

Calculs

Pour avoir une idée de la rentabilité d’un tel changement.!
Exemple 2 : local à occupation prolongée et à apport de lumière naturelle

Lorsque les occupants sont sensibilisés, on pourrait envisager un interrupteur à 2 allumages pour allumer/éteindre distinctement la rangée de luminaires côté fenêtre de celle côté couloir. Ceci dit, pour des variations importantes et aléatoires de l’éclairage naturel, une gestion semi-automatique par allumage volontaire à partir d’un bouton-poussoir et extinction par détection d’absence  sera préférée. À noter que la tête de détection intègre une sonde de luminosité.

Attention : s’il s’agit de lampes fluorescentes, il faudra équiper les luminaires de ballasts électroniques dimmables. S’il s’agit de LEDS, il faut prévoir des drivers dimmables.


Gestion manuelle par interrupteur à 2 allumages.

 
Gestion semi-automatique.

Calculs 

Pour avoir une idée de la rentabilité d’un tel changement.
Exemple 3 : locaux à occupation intermittente programmée

Dans les couloirs occupés de jour comme de nuit (couloir d’hospitalisation par exemple), pour les motivés par l’énergie, le placement d’une gestion manuelle comme un inverseur est une solution.

Si l’on veut s’orienter vers une gestion automatique, le placement d’une horloge centrale dans le tableau divisionnaire peut être envisagé.


Commande centrale manuelle (inverseur).


Gestion automatique du basculement de l’éclairage jour/nuit par horloge.


Taille et proportions des locaux

La taille et la proportion d’un local influencent aussi le choix de la gestion de l’éclairage. Dans les locaux de grande taille, le zonage est l’approche énergétique par excellence. En effet, il est avantageux de créer des zones bien distinctes dans :

  • Les salles de  sport de manière à ne pas éclairer les aires de jeux non occupées ;
  • Les couloirs afin d’éviter de l’éclairer sur toute sa longueur lorsqu’un occupant sort, par exemple de son bureau pour aller dans le bureau voisin sans traverser tout le couloir ;
  •  …
Exemple de zonage pour une salle de sport

Dans une salle omnisports, il est inutile d’éclairer toute la salle alors qu’un seul terrain est occupé. Il est important de prévoir un zonage, c’est-à-dire une commande séparée pour les différents terrains de la salle.

Les lignes de jeux s’entremêlent.

   

Il existe donc plusieurs manières de regrouper les luminaires qui seront commandés en une seule fois. On analysera donc chaque cas, en tenant compte de :

  • l’emplacement des lignes de jeux,
  • la fréquence d’occupation des différents terrains,
  • la possibilité d’emplacement des différentes commandes.

Voici un exemple possible de zonage :


Profils d’occupation

Les profils d’occupation des bâtiments tertiaires et de leurs locaux sont assez différents suivant l’usage (bureaux, sanitaires, classes, chambres d’hôpital, …). Le choix de la gestion de l’occupation varie surtout en fonction de la sensibilité des occupants à l’énergie, des coûts du système d’éclairage, …

Il existe sur le marché une multitude d’équipements pour gérer l’occupation des locaux. On pointera principalement :

Le choix entre ces différents équipements de gestion d’occupation est complexe. Indépendamment de la sensibilité des occupants à la gestion responsable de l’éclairage par rapport à l’énergie, ce choix doit s’opérer en fonction des fréquences d’occupation des locaux.

Voici quelques exemples de locaux que l’on rencontre régulièrement dans les bâtiments tertiaires (liste non exhaustive) :

Dans les locaux à temps d’occupation important

D’emblée, on ne conçoit pas qu’un local à temps d’occupation important soit sans baie vitrée.

L’occupation des bureaux, classes de cours, … peut-être avantageusement gérée par des boutons poussoirs d’allumage volontaire des luminaires et des détecteurs d’absence lorsqu’après un certain temps les locaux ne sont plus occupés. Cette gestion est très efficace et responsabilise souvent les occupants. En effet, en entrant dans le local, l’occupant juge si le niveau d’éclairement est  suffisant ou pas pour travailler. S’il le juge insuffisant, il peut donner une impulsion au bouton-poussoir qui allume les luminaires. Les boutons poussoirs modernes sont équipés d’un module électronique qui permet :

  • D’allumer par une première impulsion brève ;
  • D’éteindre par une nouvelle impulsion brève ;
  • A chaque impulsion prolongée, de dimmer vers plus ou moins de flux lumineux.

Dans les locaux à temps d’occupation court

Fréquentation importante : les circulations, …

Le passage fréquent, mais court en temps des locaux de circulation (couloirs, escaliers, local photocopieuse, sanitaire, …)  pourrait être géré par des simples détecteurs de mouvement. Cette technique permet de choisir des luminaires avec le détecteur de mouvement incorporé ce qui réduit fortement les longueurs des câbles d’alimentation  230 V et de commande  basse tension. La gestion de type « ancienne génération » par boutons-poussoirs et minuteries est toujours valable, mais nécessite de grandes longueurs de câbles. Au prix du kg de cuivre, le surcoût de l’électronique de gestion peut se justifier pleinement en faveur des nouvelles technologies. A remarquer que dans les circulations, le choix d’un luminaire supportant de nombreux allumages et extinctions sera primordial. On pense de plus en plus aux luminaires LED qui, théoriquement, supportent un « nombre infini » de commandes.

De plus en plus de sanitaires sont avantageusement équipés de détecteurs de mouvement et sonores. Ce type d’équipement permet de ne placer qu’un seul détecteur dans le sanitaire commun. Dans les WC, le simple fait de générer du bruit (peu importante la « source sonore »), réactive le détecteur qui évite à l’occupant du WC d’être plongé dans le noir avec toutes sortes de conséquences désagréables.

Fréquentation faible : locaux techniques, …

On pense aux locaux techniques, aux archives, aux « kots à balais », … Dans ce type de local, les interrupteurs classiques avec témoins d’allumage feront généralement « l’affaire ».


Apport d’éclairage naturel

Une gestion du flux lumineux en fonction de l’apport en éclairage naturel peut s’appliquer aux locaux éclairés naturellement lorsque le temps d’occupation journalière est important. En effet, lorsque les locaux sont utilisés de façon intermittente ou peu vitrés, le temps de valorisation de l’éclairage naturel se réduit, la rentabilité des systèmes de variation du flux lumineux aussi.

Parmi les systèmes de gestion existants, il faut privilégier ceux qui modifient les caractéristiques de flux lumineux de façon imperceptible pour les occupants, c’est-à-dire le dimming en fonction d’un capteur intérieur.

Cependant, n’excluons pas trop vite la bonne volonté des occupants en prévoyant un double allumage qui différencie la commande des luminaires côté fenêtre et côté intérieur.

Allumage différencié

Simplement, un des interrupteurs commande le luminaire côté fenêtre et l’autre le luminaire côté couloir. Ce système est basique et nécessite une certaine sensibilité à l’énergie des occupants. Dans notre chère Belgique, par temps d’alternance de nuage et de soleil, on comprend la limite de ce type de gestion.

Gestion par sonde de luminosité

À ce stade, le choix peut se porter sur des solutions simples, mais locales ou des solutions plus complexes et centrales (plus coûteuses aussi, c’est vrai !).

On pointera principalement le choix entre les sondes de luminosité intégrées :

  • au luminaire même ;
  • à la tête de détection de présence.

Dans le cas de la sonde de luminosité intégrée à la tête de détection de présence, le « dimming » du niveau d’éclairage des luminaires pourra être local ou central.

Dans le cas de l’usage de sonde de luminosité, il faudra prévoir un système d’horloge ou de détecteur pour éviter que la lumière reste allumée. (Si les lampes sont dimmées, l’occupant risque d’oublier d’éteindre en quittant le local (surtout en été)).

Gestion locale

La gestion locale gère directement les luminaires à partir d’un détecteur d’absence/présence équipé d’une sonde de luminosité par exemple.

Gestion centrale

La gestion centrale gère les luminaires par des modules 0-10V ou DALI (module sur rail DIN dans le tableau divisionnaire) via un bus de communication de type KNX.

 

En fonction des équipements de gestion de l’éclairage naturel, la flexibilité de reconversion des locaux est plus ou moins grande. Il est clair que le choix d’une gestion au travers d’un bus de communication offre plus de liberté d’adaptation de l’éclairage en cas de changement d’affectation des locaux.

Cette réflexion est tout à fait gratuite, mais c’est à voir au cas par cas !

Rentabilité d’un dimming

La rentabilité du système choisi dépendra de plusieurs facteurs décrits ci-dessous :

Orientation et environnement des locaux

Dimensions du local
l x L
Surface de fenêtres
Orientation Économie
Zone fenêtre Zone centrale Moyenne
3,6 x 5,4 6 NO 33 % 18 % 26 %
5,5 x 5,5 12 S et O 36 % 33 % 34 %
4,0 x 5,5 4 O 29 % 22 % 26 %
3,0 x 3,6 2,4 E 30 % 8 % 19 %
3,6 x 5,4 3,3 O 29 % 16 % 22 %
3,6 x 5,0 4,5 O 41 % 19 % 30 %

Identique au cas précédent, mais utilisateurs différent.

43 % 31 % 37 %

Mesures réelles de l’économie apportée par un dimming individuel des luminaires  par rapport à un fonctionnement à pleine puissance avec des ballasts électroniques non dimmables (fourniture de 500 lux sur le plan de travail), source : TNO.

L’environnement extérieur des façades influence fortement la rentabilité. Par exemple, si une façade est masquée par un autre bâtiment (rue étroite), les apports en éclairage naturel dans les premiers étages risquent d’être trop faibles pour justifier une gestion automatique, mais suffisante pour les étages supérieurs.

D’une manière générale une économie de 30 % est un chiffre que l’on peut considérer comme raisonnable pour le dimming complet d’un bureau.

Puissance totale gérée par une unité de commande

Le coût du système de gestion dépend en partie du coût de l’unité de commande (capteur, interface). Plus celui-ci est élevé, plus la puissance électrique totale commandée par un système devra être importante pour assurer une rentabilité suffisante.

Exemple.

Dans le cas d’une gestion indépendante de chaque luminaire, plus la puissance des lampes commandées par un ballast est faible, plus le coût d’investissement est important par rapport à l’économie escomptée : gérer une lampe de 36 W avec 1 ballast coûtera environ 3,25 € par watt commandé, tandis que gérer deux lampes de 58 W avec 1 ballast coûtera environ 1 € par watt.

De la présence d’une climatisation

La diminution de la puissance de l’éclairage en fonction de l’apparition du soleil permet de diminuer les coûts éventuels d’une climatisation ou de limiter les surchauffes.

Calculs

Pour estimer la rentabilité d’un système de gestion en fonction de votre situation.

Performance thermique du bâtiment

Mais que vient faire la performance thermique dans une histoire qui concerne l’éclairage ?
Tout simplement parce que dans un bâtiment performance thermiquement (à basse ou très basse énergie), la gestion de l’apport en éclairage naturel va de pair avec la gestion de la surchauffe au travers des baies vitrées par des stores. En effet, un savant compromis est nécessaire entre :

  • D’une part, le besoin de maximiser les apports de lumière naturelle afin d’optimiser le confort visuel et de réduire la facture énergétique d’électricité ;

 

  • D’autre part, la nécessité de maîtriser les apports solaires sources de surchauffe dans un bâtiment performant. Notons que le risque de surchauffe est intimement et principalement lié à l’orientation des baies vitrées.

Gestion de store

La gestion des stores et du niveau d’éclairement doivent donc être maîtrisés de concert. Pour y parvenir, le choix d’un système centralisé simplifie fortement cette gestion.
Un mode de gestion intéressant des stores est repris ci-dessous :

  • Gestion de la position des stores au travers du bus KNX en fonction des paramètres donnés par la station météo.

 

  • Le bouton-poussoir « store » de dérogation manuelle permet à l’occupant de garder la maîtrise de la position du store.

 

  • Le détecteur d’absence permet de « rendre la main » au système de gestion automatique lorsque l’occupant s’absente pour un temps donné.

Gestion HVAC

Gestion de la ventilation

Dans les bâtiments performants, le besoin d’échange de paramètres de commande ou de régulation entre les systèmes d’éclairage et HVAC (Heating Ventilation Air Conditioning)  est nécessaire.

La détection de présence dans une salle de réunion peut faire évoluer le taux de renouvellement d’air de zéro à 100 % (ON/OFF ou modulant) par la gestion de l’ouverture d’une boîte VAV. Pour ne pas démultiplier le nombre d’équipements de détection de présence, l’auteur de projet pourra rationaliser son choix de détecteur de présence. C’est d’autant plus vrai que les détecteurs de présence modernes offrent les fonctions suivantes :

  • Canal de commande en présence ou absence ainsi que du niveau d’éclairement des luminaires ;
  • Canal de commande en présence ou absence d’équipement HVAC.

Gestion des températures

Une sonde de température peut être couplée avec le bus KNX lorsque le bâtiment est inoccupé afin de gérer le store :

  • Abaissement du store en cas de canicule lorsque les températures intérieure et extérieure dépassent une certaine valeur ;
  • Relèvement du store en cas de grand froid et d’ensoleillement important ; ce qui permet de valoriser les apports solaires lorsque la température interne est en dessous de sa consigne.

Gestion du store en cas de canicule.

Gestion du store en cas d’apports solaires nécessaires importants.


Taille des bâtiments ou importance du parc immobilier

La taille du ou des bâtiments, la présence de plusieurs bâtiments sur un site, … influencera nécessairement le besoin de centralisation ou pas des gestions d’éclairage. On comprend aisément qu’un gestionnaire technique d’un parc important de bâtiments ait un besoin de supervision au travers d’une gestion technique centralisée (GTC). Ce genre d’installation passe impérativement par la mise en place d’un bus de communication.

Pour des bâtiments de petite taille, la centralisation n’est pas une fin en soi. On peut très bien avoir des systèmes d’éclairage performants énergétiquement parlant sans « sophistiquer » le système d’éclairage.
Voyons les deux configurations d’un système d’éclairage :

Système local

Dans les bâtiments de petite taille, envisager une GTC (gestion technique centralisée) n’est pas vraiment nécessaire.

Des solutions de gestion de l’éclairage et des stores (ou même HVAC) peuvent être envisagées avec un certain degré « d’immotisation » tout en restant dans la simplicité. Dans cette configuration, la gestion locale de l’éclairage est propre à chaque local. Dans un bâtiment simple, de petite taille et ne nécessitant pas beaucoup de souplesse d’aménagement des espaces, une gestion sophistiquée n’est pas nécessaire. De plus, la mise en place de ce type de gestion est relativement peu coûteuse.

Un bémol cependant (« eh oui, on ne peut pas gagner sur tous les fronts ! ») réside dans le manque de flexibilité de cette configuration. En effet, lorsque les espaces doivent être transformés (changement d’activité, d’usage, …), il est inévitable que l’installation d’éclairage doive être partiellement ou entièrement recâblée.

Système central

Dans des bâtiments plus complexes, plus grands ou encore dans des parcs immobiliers importants, le gestionnaire aura à disposition toute une palette de centralisation de la gestion de l’éclairage à l’échelle :

  • d’un étage d’immeuble ;
  • du bâtiment ;
  • d’un parc immobilier.

La gestion centrale nécessite à coup sûr de passer par un ou plusieurs de bus de communication avec, par exemple, les protocoles suivants:

  • DALI spécifiquement pour l’éclairage ;
  • KNX pour l’éclairage et /ou  le HVAC ;
  • TCP/IP pour la supervision.

La supervision ou GTC (gestion technique centralisée), permettra d’avoir une vue d’ensemble  de tous les paramètres de gestion de l’éclairage et, par la même occasion des autres systèmes (HVAC ou autres).

« Alors cerise sur le gâteau ou outil indispensable ? »

Ces systèmes sont naturellement plus onéreux que les systèmes locaux et donc l’incidence budgétaire sera étudiée au cas par cas. Cependant, une configuration centralisée, avec une vision énergétique par rapport au profil d’occupation, permet de réduire de manière importante les coûts de maintenance des locaux ainsi que les coûts de transformation (on ne doit pas systématiquement recâbler la gestion puisque le bus de communication est modulable) et, par après, d’adapter facilement la gestion suivant le nouveau profil d’occupation.


Organigramme de gestion

Voici un organigramme d’aide dans le choix de la gestion et de la commande de l’éclairage intérieur. Ces systèmes peuvent être intégrés dans une gestion centralisée, qui par son coût de câblage ne peut être envisagée que dans des bâtiments neufs ou des rénovations de grande ampleur.

1 Exemple : bureau paysager, classe, salle de réunion avec cloison amovible, salle de sport à plusieurs plateaux, … avec fenêtres orientées au nord

MINIMUM Zonage :

  • 1 zone = rangée de luminaires proches de la fenêtre,
  • 1 zone = autres rangées de luminaires,
  • 1 zone = éclairage point particulier (tableau de classe ou de salle de réunion, « table de réunion », …)
MINIMUM Interrupteur manuel on/off pour chaque zone.
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence par zone avec délai réglable.

Il s’avérera peu rentable dans le seul cas d’occupants « disciplinés » éteignant systématiquement les lampes en fin de journée. Cette gestion nécessite que les boutons poussoirs et les détecteurs « se parlent ». Elle peut être locale (l’intelligence est dans la tête de détection) ou centrale (régulateur dans un tableau divisionnaire ou GTC centrale pour les grands bâtiments tertiaires).

CONSEILLE La gestion en fonction de l’éclairage naturel se fera au moyen d’une ou plusieurs sondes de luminosité agissant sur un ou plusieurs ballasts électroniques dimmables (0-10V ou DALI). La ou les sondes de luminosité seront intégrées dans le ou les luminaires ou encore dans la ou les têtes de détection d’absence/présence

2 Exemple : bureau paysager, classe, salle de réunion avec cloison amovible, salle de sport à plusieurs plateaux, … avec autres orientations que les fenêtres au nord

MINIMUM Zonage :

  • 1 zone = rangée de luminaires proches de la fenêtre,
  • 1 zone = autres rangées de luminaires,
  • 1 zone = éclairage point particulier (tableau de classe ou de salle de réunion, « table de réunion », …)
MINIMUM Interrupteur manuel on/off pour chaque zone.
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence par zone avec délai réglable.
CONSEILLE La gestion en fonction de l’éclairage naturel se fera au moyen d’une ou plusieurs sondes de luminosité agissant sur un ou plusieurs ballasts électroniques dimmables (0-10V ou DALI). La ou les sondes de luminosité seront intégrées dans le ou les luminaires ou encore dans la ou les têtes de détection d’absence/présence.

3 Exemple : salle de réunion à cloison amovible et salle de sport sans fenêtre

MINIMUM Zonage : autant de zone qu’il y a d’espaces ou de plateaux distincts identifiables.
MINIMUM Interrupteur manuel on/off pour chaque zone.
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence par zone avec délai réglable.

4 Exemple : locaux techniques, archives, …

MINIMUM Zonage : autant de zone qu’il y a d’espaces ou de plateaux distincts identifiables.
MINIMUM Interrupteur manuel on/off pour chaque zone.
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence par zone avec délai réglable.

5 Exemple : Couloir, cage d’escalier, … avec baie vitrée

MINIMUM Zonage :

  • Par une ou plusieurs portions de couloir ;
  • Par un ou deux étages.
MINIMUM Boutons poussoirs commandant  un télérupteur de tableau avec minuterie d’extinction par zone
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence par zone avec délai réglable.

Alternative 1 :

  • Détecteur de mouvement  par étage pour les escaliers qui commande les luminaires de palier et des demi-étages directement supérieur et inférieur au palier considéré ;
  • Détecteur de mouvement par zone de couloir qui ne commande que les luminaires proches de sa couverture.

Alternative 2 :

  • détecteur de mouvement intégré au luminaire. « D’expérience, c’est une très bonne solution ! ».
CONSEILLE La gestion en fonction de l’éclairage naturel se fera au moyen d’une ou plusieurs sondes de luminosité agissant sur un ou plusieurs ballasts électroniques dimmables (0-10V ou DALI). La ou les sondes de luminosité seront intégrées dans le ou les luminaires ou encore dans une ou des têtes de détection de présence.

6 Exemple : Couloir, cage d’escalier, … sans baie vitrée

MINIMUM Zonage :

  • Par une ou plusieurs portions de couloir ;
  • Par un ou deux étages.
MINIMUM Boutons poussoirs commandant  un télérupteur de tableau avec minuterie d’extinction par zone.
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence par zone avec délai réglable.

Alternative 1 :

  • Détecteur de mouvement  par étage pour les escaliers qui commande les luminaires de palier et des demi-étages directement supérieur et inférieur au palier considéré ;
  • Détecteur de mouvement par zone de couloir qui ne commande que les luminaires proches de sa couverture.

Alternative 2 :

  • détecteur de mouvement intégré au luminaire. « D’expérience, c’est une très bonne solution ! ».

7 Exemple : bureau individuel, petite classe, salle de réunion, salle de sport à un seul plateau, … avec fenêtres orientées au nord

MINIMUM Interrupteur manuel on/off.
CONSEILLE Il sera intéressant de prévoir une gestion :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence avec délai réglable.
CONSEILLE La gestion en fonction de l’éclairage naturel se fera au moyen d’une ou plusieurs sondes de luminosité agissant sur un ou plusieurs ballasts électroniques dimmables (0-10V ou DALI). La ou les sondes de luminosité seront intégrées dans le ou les luminaires ou encore dans la ou les têtes de détection d’absence/présence.

8 Exemple : bureau individuel, classe, salle de réunion, salle de sport à un seul plateau, … avec autres orientations que les fenêtres au nord

MINIMUM Interrupteur manuel on/off.
CONSEILLE Il sera intéressant de prévoir une gestion :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence avec délai réglable.
CONSEILLE La gestion en fonction de l’éclairage naturel se fera au moyen d’une sonde de luminosité agissant sur un ou plusieurs ballasts électroniques dimmables(0-10V ou DALI). La sonde de luminosité sera intégrée dans un des luminaires et sera maître pour la gestion des autres luminaires. Ou encore, elle intégrera la tête de détection d’absence/présence.

9 Exemple : locaux techniques, archives, …

MINIMUM Interrupteur manuel on/off.

10 Exemple : sanitaire et WC

MINIMUM Interrupteur manuel on/off.
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Un détecteur de mouvement et éventuellement sonore avec délai réglable.

Salles de sport

Salles de sport


Qualité de l’éclairage naturel

La qualité de l’éclairage naturel dans un hall de sports réside dans son aptitude à éclairer les surfaces de jeux le plus longtemps possible sans risque d’éblouissement et de surchauffe.

Spécifiquement dans les halls sportifs, il est intéressant d’exploiter la lumière zénithale de par la disponibilité de grandes surfaces peu encombrées par rapport aux façades.

En éclairage naturel zénithal, l’orientation a toute son importance. Par exemple, l’orientation au nord permet de bénéficier d’un éclairage « diffus » très important et constant sous nos latitudes. L’avantage de l’orientation au nord des baies vitrées réside aussi dans l’absence d’éblouissement direct du rayonnement solaire.


Étude en éclairage naturel

Lors de la conception d’un hall de sports, une attention toute particulière doit être apportée à la quantité et à la qualité de lumière du jour apportée aux plateaux sportifs.

À partir de la modélisation d’un hall de sports classique, l’influence de la proportion d’ouvertures en toiture et de l’orientation du bâtiment sur l’éclairage naturel du plateau sportif principal a été évaluée. Cette évaluation a été validée par une simulation dynamique d’éclairage naturel (réalisée à l’aide du logiciel Daysim).

Hypothèses

Lanterneau

L’éclairage naturel est réalisé via une ouverture zénithale située au faîte de la toiture. Cette ouverture consiste en un lanterneau en polycarbonate opalin à triple parois de 32 x 4 m (soit 128 m² de base) orienté le long de l’axe NNE-SSO (244° de décalage par rapport au nord).

Photo lanterneau 01.   Photo lanterneau 02.Photo lanterneau 03.

Ouverture zénithale classique : hall de sport de Grez-Doiceau.

Aucune baie vitrée n’est placée dans les parois verticales de la salle, à l’exception de la surface vitrée communiquant avec la cafétéria en partie supérieure des gradins.

Plateaux de sports

Les caractéristiques des plateaux sportifs sont les suivantes :

  • Dimensions principales de la pièce : 44,66 x 26,70 m
  • Hauteur du faîte de toiture : 12,73 m
  • Surface de calcul : 40 x 20 m (aire de jeu)
  • Aucun masque solaire lointain
  • Horaire d’occupation : de 9 à 23 h
  • Niveau d’éclairement souhaité : 300 lux
  • Transmission lumineuse du lanterneau opalin : 36 %
  • Facteurs de réflexion des parois :
    • Plafond : 60%
    • Murs : 70 % (sauf mur d’escalade : 52 %)
    • Sol (résine de polyuréthane coulée) : 50 %

Variables

Taille de l’ouverture

4 tailles de lanterneau zénithal sont simulées :

⇒ Très petit lanterneau

Proportion d’ouvertures en toiture : 6 %.

⇒ Petit lanterneau

Proportion d’ouvertures en toiture : 10 %.

⇒ Grand lanterneau

Proportion d’ouvertures en toiture : 17 %.

⇒ Très grand lanterneau

Proportion d’ouvertures en toiture : 23 %.

Orientation du bâtiment

8 décalages par rapport au nord sont simulés dynamiquement, de 0 à 360°, par pas de 45°. En effet, le lanterneau n’étant pas centré sur l’aire de jeu (voir image ci-dessous), on ne peut pas considérer qu’un décalage de 45° par rapport au nord donnera les mêmes résultats qu’un décalage de 225°.

Vue en plan du bâtiment décalé de 45° par rapport au nord. La surface de calcul est représentée en bleu.

Analyse des résultats

Les résultats sont évalués sur base d’une comparaison du facteur, de l’autonomie et de l’éclairement utile de lumière du jour.

Proportion d’ouvertures en toiture

Exemple de simulation pour une ouverture équivalent à 6 % de la surface de toiture :

⇒ Facteur lumière du jour

⇒ Autonomie lumière du jour – 300 lux (9h00 à 23h00).

⇒ Autonomie en lumière du jour – 100 < % < 2 000 lux (09h00 à 23h00)

Analyse des résultats

FLJ
(Facteur de Lumière du jour)*

DA
(Autonomie en Lumière du Jour)*

UDI
(Autonomie en lumière du jour utile)*

FLJ > 2 %

DA > 40 %

UDI > 50 %

(*)

  • FLJ moyen considéré comme bon si 3 % < FLJ > 5 %
  • DA moyen considérée comme bon si DA > 50 %
  • UDI moyen considérée comme bon si UDI > 50 %

À la lecture des résultats (voir graphique ci-dessous), on peut remarquer que, pour une même orientation du bâtiment :

  • Plus la proportion d’ouvertures en toiture augmente, plus le facteur de lumière du jour > 2 % augmente. Celui-ci tend cependant vers le maximum (100 %) à partir de 10 % d’ouvertures en toiture.
  • Plus la proportion d’ouvertures en toiture augmente, plus l’autonomie de lumière du jour maximum augmente. Cela signifie également que la consommation en éclairage artificiel diminue lorsqu’on augmente la proportion d’ouvertures.
  • L’éclairement de lumière du jour utile (de 100 à 2 000 lux) est maximal aux alentours de 10 % d’ouvertures en toiture.

Influence de la proportion d’ouvertures en toiture sur l’éclairage naturel du plateau sportif.

Augmenter de façon exagérée la proportion d’ouvertures en toiture n’est donc pas à conseiller, du point de vue de l’éclairage naturel, car ceci peut mener à un éclairement trop important qui augmentera le risque d’éblouissement pour les sportifs ; il faut trouver un juste équilibre entre l’éclairage naturel utile et la réduction des besoins en éclairage artificiel. Dans l’étude de cas qui nous concerne, cet optimum semble se situer aux environs de 10 % d’ouvertures en toiture.

Orientation du bâtiment

Les simulations dynamiques (voir graphique ci-dessous) montrent que, pour une même configuration des ouvertures, l’orientation du bâtiment a une grande influence sur l’éclairement de jour utile et sur l’autonomie de lumière du jour, et donc également sur les consommations en éclairage artificiel. Ces deux valeurs réagissent cependant de manière antinomique à la variation de l’orientation du bâtiment. Une fois de plus, du point de vue de l’éclairage naturel, il faut trouver un optimum entre un éclairement de lumière du jour réellement utile pour les activités sportives qui devront se dérouler sur le plateau et une autonomie de lumière du jour la plus élevée possible.

Influence de l’orientation du bâtiment sur l’éclairage naturel du plateau sportif (via un lanterneau zénithal décentré).

Les conclusions ci-dessus ne prennent en compte que les aspects liés à l’éclairage, mais il ne faut surtout pas oublier que les ouvertures pratiquées dans l’enveloppe du bâtiment sont également source de déperditions thermiques et de surchauffes estivales.

Il convient donc également de simuler le comportement thermique du plateau sportif en fonction de la proportion d’ouvertures en toiture et de l’orientation du bâtiment afin de savoir si l’optimum en termes d’éclairage correspond à l’optimum en termes thermiques.


Analyse thermique dynamique

Pour rappel, les simulations dynamiques en éclairage naturel donnent une idée du confort visuel et des consommations énergétiques en éclairage artificiel.

Des simulations thermiques dynamiques sont souvent nécessaires afin de vérifier que les options prises suite aux simulations dynamiques en éclairage naturel ne vont pas à l’encontre du bilan énergétique global qui associera les consommations électriques  en éclairage artificiel aux consommations dues au chauffage et éventuellement au refroidissement du bâtiment étudié.

Hypothèses

Outre les hypothèses prises lors des simulations en éclairage naturel (horaire d’occupation, orientation de base du bâtiment, volumétrie, …), les hypothèses suivantes sont prises :

  • la température de consigne en période d’occupation est de 17 °C ;
  • Un profil d’occupation classique de salle de sport (apports internes) ;

  • La ventilation est double flux avec récupération de chaleur ;

Variables

Au cours des différentes simulations, on fait varier :

  • tout comme dans les simulations en éclairage naturel, la surface du lanterneau et l’orientation du bâtiment ;
  • le type de vitrage ;
  • la performance de l’enveloppe du bâtiment :
U parois [W/(m².K)]

Type de paroi

Réglementaire Basse énergie Très basse énergie

Mur

Mur contre terre

Sol

Toiture

Vitrage

Lanterneau

0,5

0,9

0,9

0,3

1,1

1,3

0,25

0,25

0,25

0,2

1,1

1,1

0,15

0,15

0,15

0,15

0,7

0,7

Analyse des résultats

Surface de lanterneau

On remarque sur les graphiques ci-dessus que la consommation d’électricité pour l’éclairage artificiel du plateau sportif diminue fortement lorsque la proportion d’ouvertures en toiture varie de 0 à 5 %, puis décroit ensuite lentement au-delà de 5 %.

La consommation de chauffage, quant à elle, augmente de manière constante avec la proportion d’ouvertures tandis que la consommation de refroidissement ne commence à devenir significative qu’au-delà de 20 % d’ouvertures.

En mettant ces résultats en concordance avec les simulations d’éclairage naturel, on peut trouver un optimum commun aux deux simulations aux alentours de 10 % d’ouvertures en toiture. Cette valeur est, bien entendu, propre à l’étude de cas qui nous occupe ici ; il faut seulement retenir qu’il est important, lors de la conception des ouvertures, de prendre en compte les aspects thermiques en parallèle avec les aspects visuels.

Orientation du bâtiment

Le graphique ci-dessous montre que les besoins énergétiques de chauffage sont minimisés lorsque les locaux à température de consigne élevée (tels que les vestiaires) et avec de grandes ouvertures destinées à capter les apports solaires (tels que la cafétéria) sont orientés plein sud. Les besoins énergétiques de refroidissement étant faibles dans le cas des halls de sports, l’impact de l’orientation du bâtiment sur ceux-ci est très peu perceptible.

De plus, le modèle de simulation intégrant un lanterneau zénithal comme seule ouverture dans l’enveloppe extérieure du plateau sportif, l’orientation de celui-ci n’a quasiment aucun impact sur les besoins énergétiques du hall de sports.

En comparant ces résultats avec ceux des simulations d’éclairage naturel, on aperçoit que l’orientation préférentielle de notre modèle en termes thermiques est également celle qui apporte le plus grand éclairement de lumière du jour utile (de 100 à 2 000 lux) pour le plateau sportif.

Ceci constitue un argument supplémentaire en faveur de l’orientation nord-sud pour le hall de sports, avec les vestiaires et la cafétéria au sud et le plateau sportif au nord, malgré le fait que l’autonomie de lumière du jour soit minimale pour le plateau sportif lorsque le bâtiment est orienté de cette manière.

Type de vitrage

Le type de vitrage influence également les besoins en chauffage et en froid.

Dans le modèle considéré, un vitrage clair en toiture donnera plus d’apports solaires, mais risquera d’induire de la surchauffe, contrairement à un vitrage opalin.


Alternative d’éclairage naturel

D’autres configurations existent pour éclairer naturellement le plateau sportif modélisé. Deux sont proposées ci-dessous et sont ensuite comparées avec modèle initial (éclairé par un lanterneau zénithal opalin orienté NNE-SSO).

Configuration

Éclairage bilatéral nord et sud

Caractéristiques :

  • orientation : faîte dans l’axe est-ouest
  • transmission lumineuse du vitrage : 78 %
  • ouverture au nord : 44,66 x 1,79 m (80 m²)
  • ouverture au sud : 44,66 x 0,56 m (25 m²)

Éclairage bilatéral nord et sud

Caractéristiques :

  • transmission lumineuse du vitrage : 78 %
  • ouvertures au nord : 2 x 44,66 x 1,1 m (100 m²)
  • hauteur sous plafond : 8,6 m

Synthèse

Modèle 1

Éclairage zénithal opalin NNE-SSO

Modèle 2

Éclairage bilatéral nord et sud

Modèle 3

Éclairage par sheds au nord

FLJ > 2 %

Éclairement de lumière du jour utile
  • 31 % (100-2000 lx)
  • 27 % (> 2000 lx)
  • 38 % (100-2 000 lx)
  • 17 % (> 2 000 lx)
  • 55 % (100-2 000 lx)
  • 3 % (> 2 000 lx)
Autonomie de lumière du jour min-max
  • 30 à 60 %
  • 27 à 60 %
  • 33 à 56 %
Consommation d’éclairage avec et sans dimming
  • 39,3 MWh (sans dimming)
  • 35,0 MWh (avec dimming en fonction de l’apport en éclairage naturel)
  • 41,1 MWh (sans dimming)
  • 36,3 MWh (avec dimming en fonction de l’apport en éclairage naturel)
  • 40,6 MWh (sans dimming)
  • 35,1 MWh (avec dimming en fonction de l’apport en éclairage naturel)
Avantages
  • Très efficace par ciel couvert
  • Consommation d’éclairage artificiel plus faible (avec ou sans dimming)
  • Facilité d’entretien des vitrages
  • Consommation de chauffage plus faible grâce aux apports solaires
  • Consommations énergétiques cumulées (chaud, froid, éclairage) plus faibles
  • Éclairage naturel uniforme et constant sur l’aire de jeu
  • Aucun risque d’éblouissement des joueurs
  • Bon niveau d’éclairement de lumière du jour utile (de 100 à 2 000 lux)
Inconvénients
  • Aucune vue vers l’extérieur (à cause du polycarbonate opalin)
  • Dysfonctionnement thermique important tout au long de l’année (avec risque de surchauffe).
  • Risque d’éblouissement pour les sports tels que le badminton ou le volley-ball
  • Moins bon éclairement de lumière du jour utile (de 100 à 2 000 lux)
  • Faible facteur de lumière du jour
  • Risque d’éblouissement en l’absence de protections solaires
  • Consommation de chauffage plus élevée car apports solaires inexistants
  • Coût de construction plus élevé

Quantification en éclairage artificiel

Partant du principe que le confort lumineux doit être assuré en présence ou pas d’éclairage naturel, un complément d’éclairage artificiel est nécessaire. Normativement, le dimensionnement de l’éclairage artificiel s’effectue sans les apports de lumière naturelle. La démarche énergétique d’un système d’éclairage artificiel réside donc dans sa capacité à moduler la puissance installée en fonction de l’éclairage naturel. En effet, pour autant qu’il n’y ait pas d’éblouissement, meilleure l’autonomie en lumière du jour sera, moins fort sera le poids des consommations d’éclairage artificiel pour donner le complément de confort nécessaire.

Dans le cas de l’atelier considéré, le choix du type d’éclairage artificiel et surtout du type de luminaire, passe par une étude de type Dialux  permettant de comparer des luminaires entre eux.

Efficacité de l’installation d’éclairage

La salle est éclairée artificiellement au moyen de 4 rangées de 10 plafonniers industriels Zumtobel Copa A-B 1/400W HIT/HST E40 VVG KSP IP65 équipés d’une lampe de 400 W aux iodures métalliques à brûleur quartz. Ces luminaires peuvent également être équipés de lampes à vapeur de sodium haute pression.

Simulation Dialux

La simulation Dialux (logiciel gratuit) permet d’évaluer principalement le niveau d’éclairement moyen, l’uniformité de l’éclairement et l’efficacité énergétique (en W/m²).

Paramètres de simulation

  • Hauteur du point d’éclairage du 1er champ de luminaires: 7,28 m
  • Hauteur du point d’éclairage du 2e champ de luminaires : 8,98 m
  • Facteur d’entretien : 0,85
  • Surface de calcul :
    • Taille : 42 x 22 m (centrée sur le plateau sportif de 40 x 20 m)
    • Trame : 128 x 64 points

Position de la surface de calcul.

Résultats

En fonction du nombre de luminaires, de leurs caractéristiques lumineuses, de leur disposition au dessus des aires de jeux, …, les niveaux d’éclairement sont calculés dans Dialux.

Plan d’implantation des luminaires.

Courbes isolux.

Analyse des résultats

Niveau d’éclairement

Le niveau d’éclairement moyen calculé est de 876 lux (soit 745 lux après dépréciation). Ce niveau d’éclairement correspond au niveau moyen recommandé pour des compétitions nationales et internationales (750 lux). Il aurait pu être dimensionné entre 500 et 600 lux (après dépréciation) dans le cas bien précis de cette salle de compétition moyenne.

Uniformité d’éclairement et absence d’ombres

L’uniformité d’éclairement (Emin/Emoy) calculée est de 0,66. Une valeur supérieure ou égale à 0,7 aurait été préférable pour les compétitions (amateurs ou professionnelles).

Risque d’éblouissement

L’UGR maximum calculé dans les 2 directions du terrain est de 26. Cette valeur est peu représentative pour ce type de salle. En effet, étant donné qu’il s’agit d’un terrain omnisports, l’emplacement idéal et l’orientation des luminaires pour empêcher l’éblouissement par la vue des sources lumineuses sont impossibles.

Qualité de la lumière

Les lampes utilisées (aux iodures métalliques) ont des températures de couleur froides (3 200 à 5 600 K) qui s’équilibrent avec la lumière du jour lorsque l’éclairage artificiel est utilisé parallèlement à celle-ci. Elles ont également un bon indice de rendu des couleurs (65 à 90) qui permettra de bien distinguer les différentes lignes de jeux, à la fois pour les niveaux amateur et professionnel.

Couleur des lignes de jeux

Les tracés de jeu sont très contrastés par rapport au sol. Ceci facilite la perception visuelle (qu’aucun éclairage ne pourrait suppléer).

Efficacité énergétique

Rendement des équipements

Avec une puissance spécifique calculée de 2,73 W/m²/100 lux (20,33 W/m²), l’éclairage installé est performant (< 3 W/m²/100 lux) d’un point de vue énergétique. Ceci est principalement dû à l’utilisation de lampes aux iodures métalliques et de ballasts électroniques.

Qualité des parois

Les parois verticales de la salle sont réalisées en blocs de béton peints avec une couleur claire à l’exception des murs de la réserve de matériel sportif qui sont, quant à aux, peints avec une couleur plus foncée. L’uniformité d’éclairement pourrait éventuellement être améliorée si on les repeignait avec une couleur claire.

  

Gestion de la commande

La commande d’éclairage de cette salle est séparée en 2 zones mal réparties :

  • Zone 1 : 8 luminaires dans les 4 coins ;
  • Zone 2 : les 32 luminaires restant.

Il serait préférable de pouvoir commander l’allumage séparé des 3 à 5 aires de jeux (basket-ball, volley-ball et badminton) situées transversalement par rapport à l’aire de jeux principale (football en salle et handball) de manière à éviter que tous les terrains soient éclairés alors qu’un seul est occupé. Il serait également utile de pouvoir adapter le niveau d’éclairement des terrains au sport pratiqué, au niveau de jeu (loisir ou compétition) et à l’apport de lumière naturelle.

Façades des bureaux


Qualité de l’éclairage naturel

Confort lumineux

Dans une démarche de construction ou de rénovation durable, on privilégiera l’utilisation de la lumière naturelle à la place de l’éclairage artificiel. La qualité « spectrale » de la lumière naturelle ainsi que sa variabilité et ses nuances offrent une perception optimale des formes et des couleurs. L’éclairage artificiel doit être donc considéré comme un complément à la lumière naturelle.

En confort lumineux, l’objectif premier est de privilégier l’ouverture des espaces de travail vers la lumière naturelle tout en sachant qu’une trop grande ouverture des façades est souvent synonyme d’éblouissement. Cependant, l’éblouissement peut être assez facilement traité par un store interne.

Efficacité énergétique

D’un point de vue énergétique, l’utilisation de l’éclairage naturel comme « source » lumineuse est gratuite ; ce qui signifie que la facture électrique d’éclairage artificiel sera d’autant plus réduite que l’éclairage naturel exploité. De plus, en améliorant la qualité énergétique de l’enveloppe, que ce soit en conception ou en amélioration, les consommations énergétiques d’éclairage deviennent prépondérantes.

À titre d’exemple, les clefs de répartition énergétique pour un ancien bâtiment « passoire » et un nouveau bâtiment très performant  sont les suivantes :

Dans ce type de bâtiment « passoire », les consommations de chauffage et l’éclairage sont prédominants dans le sens où les parois sont très déperditives et l’installation d’éclairage peu performante.

Un bâtiment très performant et bien étudié au niveau de l’enveloppe limite ses dépenses énergétiques tant en chauffage qu’en refroidissement. Si l’installation électrique n’est pas performante (comme le montre cet exemple), les consommations d’éclairage en énergie primaire deviennent prépondérantes.

En absolu, on peut apprécier l’effort réaliser sur les consommations en énergie primaire. On réduit effectivement par 3 ces consommations primaires.

On se retrouve devant le défi, surtout pour le tertiaire, d’optimiser les consommations énergétiques d’éclairage en maximisant les apports gratuits d’éclairage naturel.

Attention cependant que dans bien des projets de conception ou de rénovation de bâtiments tertiaires, des trop grandes ouvertures génèrent des risques de surchauffe en été et des déperditions plus importantes en hiver. Le gestionnaire du bâtiment risque d’avoir la mauvaise surprise de payer une facture énergétique plus importante de climatisation en été et de chauffage en hiver. Cependant, les performances thermiques des vitrages actuels et le choix d’une bonne stratégie de protection solaire limitent l’impact respectivement des déperditions et des surchauffes sur le bilan énergétique global. Il en résulte que la consommation énergétique principale risque bien de devenir l’éclairage artificiel.

Critères

Bien des paramètres viennent influencer de manière plus ou moins significative la pénétration de la lumière dans les espaces de travail :

  • L’orientation des façades ;
  • La présence d’ombres reportées (bâtiments ou autres façades du bâtiment étudié faisant de l’ombre) ;
  • La taille, la forme et la position des baies vitrées dans les façades ;
  • La forme et les dimensions des trumeaux ;
  • Les caractéristiques des vitrages ;
  • La présence de protection solaire (fixe, mobile, …) ;
  •  …

Exemple d’analyse en autonomie en lumière du jour.

  1. Vitrage clair
  2. Vitrage sélectif
  3. Auvent
  4. Lamelles
  5. Ombre reportée

Pour un projet de taille importante, une étude par un bureau spécialisé est toujours intéressante sachant qu’il est possible d’optimiser conjointement les conforts lumineux et thermiques par des simulations dynamiques tenant compte de l’ensoleillement et du climat à tout moment de l’année et disponibles sous forme de bases de données type « météonorm » par exemple.


Influence de la modulation de façade

L’étude de cette influence porte sur un projet de conception d’un ensemble de plateaux de bureaux dans un immeuble tour. Une série de simulation dynamique en éclairage naturel (ECOTECH et DAYSIM) sont réalisées afin de mettre en évidence l’influence :

  • De la taille de la fenêtre ;
  • Du type de trumeaux ;
  • Du type de vitrage ;
  • Du type de cloisonnement interne ;
  • De l’épaisseur des trumeaux ;
  • De la hauteur des linteaux.

L’objectif des simulations est de réaliser un arbitrage entre différentes configurations de module de bureau. À chaque étape d’optimisation, l’arbitrage élimine les moins bonnes solutions.

Pour un bureau paysager ?

La modulation des façades influence la pénétration de la lumière naturelle dans l’espace de travail. C’est ce qu’on se propose d’étudier ici.

Base : taille de baie vitrée ⇒ deux fenêtres de 90 x 237 cm. Transmission lumineuse du vitrage TL = 50 %

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

1 < FLJ < 2 % Éloigné de la fenêtre DA < 20 %
3 % < FLJ < 5 % Proche de la fenêtre 50 % < DA

Les bureaux côté intérieur devront bénéficier régulièrement d’un système d’éclairage artificiel.

1re amélioration : taille de baie vitrée ⇒ une fenêtre de 180 x 237 cm et trumeau

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

1 < FLJ < 2 % Éloigné de la fenêtre 20 % < DA < 50 %
3 % < FLJ < 5 % Proche de la fenêtre 50 % < DA

Pour une même surface vitrée, une large fenêtre permet de laisser entrer plus facilement la lumière naturelle qu’une fenêtre étroite.

2e amélioration : trumeau de forme trapézoïdale

Tout en conservant la taille de la baie vitrée de 180 x 237 cm pour laquelle la pénétration de la lumière est la meilleure, on remplace un trumeau de section rectangulaire  par un trumeau de section trapézoïdale.

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

1 < FLJ < 3 % Éloigné de la fenêtre 30 % < DA < 50 %
3 % < FLJ < 5 % Proche de la fenêtre 50 % < DA

Les trumeaux trapézoïdaux améliorent légèrement la couverture des besoins d’éclairage par de l’éclairage artificiel. Cependant, on comprend aisément que la mise en œuvre de tel trumeaux risque de poser des problèmes.

3e amélioration : vitrage avec une transmission lumineuse de TL = 60 %

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

2,5 % < FLJ < 3 % Éloigné de la fenêtre 40 % < DA < 50 %
5 % < FLJ Proche de la fenêtre 50 % < DA

La configuration des modules de façade devient optimale. Cependant, pour les bureaux le long de la fenêtre, le risque d’éblouissement croît.

Que faut-il retenir ?

En conception, dans la modulation de façade, l’optimum de la couverture d’éclairage par la lumière naturelle (gratuite) passe par le choix d’une ouverture large pour les baies vitrées avec un vitrage de transmission lumineuse élevée. En rénovation, c’est du cas par cas ! Attention, cependant, que la limite d’ouverture à outrance des baies vitrées risque de provoquer de l’inconfort visuel (éblouissement) et thermique (surchauffe). Pour cette raison, l’étude doit souvent être complétée par des simulations thermiques dynamiques.

Pour un bureau individuel ?

La modulation des cloisons internes va aussi modifier le niveau d’exploitation de la lumière naturelle. Ici, un seul module de bureau est modélisé. Seule la position des parois varie. Pour ce type de configuration, les vitrages ont une transmission lumineuse TL de 50 %.

Base : taille de baie vitrée ⇒ deux fenêtres de 90 x 237 cm. Transmission lumineuse du vitrage TL = 50 %

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

0 < FLJ < 1,2 % Éloigné de la fenêtre DA < 20 %
FLJ < 3 % Proche de la fenêtre DA <  50 %

Le cloisonnement des plateaux de bureaux ne favorise pas l’entrée de la lumière dans le local individuel. Même la lumière naturelle n’apprécie pas l’individualisme !

1er amélioration : taille de baie vitrée ⇒ une fenêtre de 180 x 237 cm

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

1 < FLJ < 1,5 % Éloigné de la fenêtre DA < 20 %
3 % < FLJ Proche de la fenêtre 50 % < DA

Une ouverture plus large permet de bénéficier une qualité de lumière acceptable pour les plans de travail situé côté fenêtre.

Alternative : taille de baie vitrée ⇒ une fenêtre de 180 x 237 cm avec un positionnement des cloisons internes

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

0 < FLJ < 1,2% Éloigné de la fenêtre DA < 20 %
FLJ < 3 % Proche de la fenêtre DA <  50 %

Le cloisonnement désaxé du trumeau (centrée avec l’axe du châssis) n’est pas vraiment une bonne idée. En rénovation, par exemple, ce type d’aménagement de cloison se rencontre souvent. À éviter si possible !

Que faut-il retenir ?

Le cloisonnement des plateaux de bureaux au sens large du terme en bureaux individuel est, dans la mesure du possible, à éviter. On comprend bien que ce soit régulièrement impossible à envisager. Cependant, une ambiance chaleureuse de travail dans un paysager permet souvent d’optimiser le niveau de pénétration de la lumière naturelle.


Influence de l’épaisseur des trumeaux

L’épaisseur plus ou moins variable des trumeaux (ou l’épaisseur de la façade) crée un ombrage fluctuant. Cette influence est décrite ci-dessous pour des épaisseurs variant de 70 à 40 cm.

Épaisseur des trumeaux : 70 cm – Facteur de lumière du jour et Autonomie en lumière du jour

Épaisseur des trumeaux : 60 cm – Facteur de lumière du jour et Autonomie en lumière du jour

Épaisseur des trumeaux : 50 cm – Facteur de lumière du jour et Autonomie en lumière du jour

Épaisseur des trumeaux : 40 cm – Facteur de lumière du jour et Autonomie en lumière du jour

Analyse des résultats
Épaisseur des trumeaux de 70 cm
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

FLJ < 3 % Éloigné de la fenêtre DA < 50 %
  3 % < FLJ < 6 % Proche de la fenêtre 50 % < DA

Épaisseur des trumeaux de 60 cm.

FLJ < 3 % Éloigné de la fenêtre DA < 50 %
  3 % < FLJ < 6 % Proche de la fenêtre 50 % < DA

Épaisseur des trumeaux de 50 cm

FLJ < 3 % Éloigné de la fenêtre DA < 50 %
  3 % < FLJ < 6 % Proche de la fenêtre 50 % < DA

Épaisseur des trumeaux de 40 cm

FLJ < 3 % Éloigné de la fenêtre DA < 50 %
  6 %< FLJ Proche de la fenêtre 50 % < DA

Que faut-il retenir ?

Attention toutefois à l’épaisseur trop faible des trumeaux qui risque d’occasionner un risque d’éblouissement. Dans la construction ou la rénovation basse énergie, les épaisseurs des parois ont tendance à augmenter ; ce qui a pour conséquence de réduire la pénétration de la lumière dans les espaces mais de réduire les risques de surchauffe. Décidément, la Belgique est vraiment la championne du compromis !


Influence de l’orientation de la baie vitrée

Indépendamment du traitement, une façade sud a un éclairement plus élevé qu’une façade nord.
Au premier abord, il apparaitrait logique d’augmenter la surface vitrée au nord, pour compenser un éclairement plus faible. La lumière du nord est aussi plus faible, mais moins éblouissante et plus facile à contrôler.
Pour les orientations sud, est et ouest l’éblouissement et le risque de surchauffe nécessite de placer des stores qui baissés limiteront le niveau d’éclairement. À ce stade, de nouveau, tout est une question de compromis !

Autonomie en lumière de jour pour une orientation nord.

Pour une orientation nord, l’autonomie en lumière du jour est suffisante pour les espaces bureaux à proximité de la baie vitrée. Mais on voit tout de suite la limite de pénétration de la lumière naturelle à savoir : la mi-profondeur du local étudié.

Autonomie en lumière du jour pour une orientation sud.

Pour une orientation sud, la pénétration de la lumière naturelle est importante. On pourrait pratiquement équiper les espaces de bureaux sur toute la profondeur du local.

Intérêt du store pour une orientation sud.

Que faut-il retenir ?

  • Une orientation nord donne moins de lumière naturelle, mais plus stable dans le temps et absente d’éblouissement.
  • Une orientation sud donne beaucoup de lumière au risque même de générer des éblouissements. Un store est souvent nécessaire pour réduire ce risque. L’influence de la gestion du store se fait ressentir de manière significative pour les baies vitrées orientées au sud. Un bon compromis entre un apport de lumière naturelle réduit (orientation nord) et un éblouissement régulier (orientation sud sans store) est l’équipement des baies vitrées de stores automatiques. De plus, les stores en automatique ont l’avantage de traiter aussi les surchauffes en été.

Hypothèses de simulation

Les hypothèses prises pour réaliser les simulations sont les suivantes :

  • L’orientation de la façade est nord ;
  • Coefficients de réflexion considérés pour les parois internes :
    • Plafond : 70 %
    • Murs intérieurs : 50 %
    • Ébrasements : 50 %
    • Sol : 30 %
  • Les façades extérieures sont assimilées à des parois uniformes mates. Trois type de murs sont considérés dont les coefficients de réflexions sont :
    • Mur clair : 50 %
    • Mur moyen : 30 %
    • Mur foncé : 20 %
  • Disposition des zones de travail : les zones de travail mesurent 4 x 80 cm x 180 cm et sont situées à 80 cm de la face extérieure de la façade.
  • Surface nette éclairante = 2 x 2,37 x 0,90 = 4,266 m² par travée de 2,7 m
  • Surface nette façade intérieure = 2,735 x 2,70 = 7,385 m² par travée
  • Surface nette éclairante / surface nette façade intérieure = 58 % ;
  • (surface nette éclairante/surface nette façade intérieure) x transmission lumineuse du vitrage = 28,9 %.

Meubles frigo

Meubles frigo


Influence de l’éclairage

Les luminaires, en plus de produire de la lumière, vont également dégager de la chaleur. Une grande partie de l’énergie consommée est transformée en chaleur et doit être évacuée par la machine frigorifique. Il y a plusieurs manières de limiter les apports thermiques de l’éclairage et ainsi de diminuer les consommations énergétiques des meubles frigorifiques.

Exemple.

Selon ouverture d'une nouvelle fenêtre ! l’AFF, un éclairage à incandescence assurant un niveau d’éclairement de 400 lux provoquera un accroissement de température de 1.5 à 3 °C pour les paquets de la couche supérieure selon les meubles. Un éclairage équivalent, réalisé à base de tubes fluorescents ne provoquera pas d’accroissement supérieur à 0.5 °C.

Toute l’énergie consommée par les lampes est transformée en chaleur par :

  • conduction (« par les solides »),
  • convection (« par les gaz, les liquides »),
  • rayonnement (lumière et autres radiations, infrarouge en particulier).

En fonction de la famille de lampes considérée, la répartition de ces divers apports sera différente. Il est essentiel de tenir compte de cette répartition pour éviter des élévations de température trop importantes.

Parmi les manières envisageables pour limiter ces apports thermiques, on peut par exemple :

  • faire appel à des lampes dont le spectre d’émission comporte une faible proportion d’énergie thermique infrarouge par rapport à la fraction utile d’énergie lumineuse ;
  • sortir le système d’éclairage de la zone de froid ;
  • limiter la puissance des lampes.

Choisir des lampes adaptées

Dans toutes les applications, il y a lieu de limiter les apports thermiques du système d’éclairage. Ceux-ci se paieront par une surconsommation au niveau de la climatisation et/ou des machines de froid alimentaire.

Deux caractéristiques permettent de choisir correctement le type de lampe à utiliser :

  • le rendement des lampes : fraction de la quantité d’énergie transformée en lumière ;
  • la composition du spectre d’émission : on choisira des lampes dont le spectre comporte une faible proportion d’énergie thermique infrarouge par rapport à la fraction utile d’énergie lumineuse.

Pour éviter un apport calorifique trop important, on réalisera le système d’éclairage à partir de  tubes fluorescents.

Lampes à incandescence

Ces lampes émettent un rayonnement infrarouge important (de l’ordre de 75 % de la puissance de la lampe). Comme les infrarouges et les rayons lumineux se réfléchissent en même temps, les lampes à réflecteur et les projecteurs intensifs vont provoquer des élévations de température très importantes dans l’axe du faisceau.

Les lampes à rayonnement dirigé dites à « faisceau froid » ou dichroïque » limitent le rayonnement infrarouge direct. Le miroir de ces lampes, conçu pour réfléchir la lumière, est transparent pour les radiations infrarouges indésirables. Lorsque l’on utilise ce genre de lampe, il faut s’assurer que le luminaire utilisé est susceptible de les recevoir, car, sans précaution, elles provoquent un échauffement supplémentaire de la douille, du câblage et de la partie arrière du luminaire.

Lampes fluorescentes et lampes à décharge (haute pression)

Ces lampes émettent une très faible proportion de rayons infrarouges courts. Par contre, les tubes à décharge des halogénures métalliques et des sodiums haute pression émettent une quantité importante d’infrarouges moyens. En ce qui concerne les lampes fluorescentes, on ne fera attention qu’aux niveaux d’éclairement très élevé qui sont les seuls à produire un effet thermique direct perceptible.

Si l’effet calorifique du rayonnement de ces lampes est relativement faible, la transformation en chaleur de l’énergie électrique consommée (lampe et ballast)  ne doit pas être sous-estimée. L’élévation de la température des parois du luminaire va transformer celui-ci en émetteur d’infrarouges longs susceptibles d’influencer la distribution thermique du local et/ou du meuble frigorifique.

Sources LED

Les lampes LED ne génèrent pas ou peu de rayonnement infrarouge (IR) ou ultraviolet (UV) dans le flux lumineux.

C’est la température de jonction qui influence le flux lumineux de la LED chip et donc son efficacité lumineuse. Les LED conviennent particulièrement bien pour les applications à basse température (surgélation, réfrigération, …) sachant que le flux lumineux augmente avec l’abaissement de la température de jonction. De plus, pour les basses températures, la durée de vie augmente.

Bilan énergétique de quelques lampes

Le tableau suivant donne les bilans énergétiques de quelques types de lampes.

Bilans énergétiques de quelques lampes (d’après C. Meyer et H. Nienhuis)
Type de lampe Conduction et convection [%] Rayonnement [%] Rayonnement lumineux [%] Puissance à installer par 100 lm [W]
UV IR
Incandescentes 100 W 15 75 10 10
Fluorescentes rectilignes 71.5 0.5 (1) 28 1.4
Fluorescente compactes 80 0.5 (1) 19.5 1.8
Halogénures métalliques 50 1.5 24.5 24 1.3
Sodium haute pression 44 25 31 1
(1) Dans le cas de lampes fluorescentes dont la surface développée est importante, on pourrait séparer le rayonnement infrarouge (long). Pour les lampes fluocompactes cette distinction est inutile.

 

Exemple.

Par exemple si 2 500 lm doivent être fournis, les bilans énergétiques des différentes installations deviennent :

Type de lampe Conduction et convection [W] Rayonnement [W] Rayonnement lumineux [W]
UV IR
Incandescentes 100 W 37.5 187.5 25
Fluorescentes rectilignes 25.025 0.
175
(1) 9.8
Fluorescente compactes 36 0.225 (1) 8.775
Halogénures métalliques 16.25 0.487 7.962 7.8
Sodium haute pression 12.1 6.875 8.525
(1) Dans le cas de lampes fluorescentes dont la surface développée est importante, on pourrait séparer le rayonnement infrarouge (long). Pour les lampes fluocompactes cette distinction est inutile.

Cet exemple montre bien l’intérêt d’utiliser des lampes à décharge. Leur faible coût d’achat, leur longue durée de vie, leur bon indice de rendu des couleurs font des lampes fluorescentes le choix le plus adapté.


Placer les systèmes d’éclairage à l’extérieur des meubles

Pour éviter de consommer inutilement de l’énergie (de l’ordre de 10 % de l’énergie de jour fournie par l’évaporateur), l’éclairage du meuble doit être prévu en dehors de la zone froide. D’une part, les lampes fluorescentes ont une mauvaise efficacité lumineuse à basse température, d’autre part, les luminaires sont des sources de chaleur. Comme dit précédemment, l’énergie électrique consommée par les lampes et les ballasts est transformée en chaleur. Pour cette raison on tentera au maximum de sortir les appareils des zones ou des meubles froids. Si le maître d’ouvrage se refuse à déplacer la lampe, il faudra tout de même essayer de sortir le ballast de la zone réfrigérée ou climatisée.

Dans la lutte contre les apports de rayonnements, les baldaquins de forme concave dont la face inférieure est recouverte d’un aluminium de type poli miroir non anodisé, peuvent être utiles.

Schémas baldaquins .

Ces baldaquins interceptent une part importante de la lumière d’ambiance et il peut alors être nécessaire de faire recourt à un appoint d’éclairage. Ce complément peut être réalisé de manière confortable en utilisant comme réflecteur la sous face en aluminium du baldaquin.

Cela permet :

  • d’éviter l’influence de l’éclairage direct général,
  • d’utiliser un éclairage indirect,
  • d’éloigner les appareils des meubles,

À défaut d’un éclairage placé hors de la zone froide, limiter la puissance des lampes

La plupart du temps, les constructeurs de meubles frigorifiques utilisent des lampes fluorescentes. Le problème est que ce type de lampes a une basse efficacité lumineuse aux basses températures comme le montre la figure suivante :

Les pertes peuvent donc être très importantes :

  • plus de 40 % de perte si on utilise des tubes T8,
  • plus de 70 % de perte si on utilise des tubes T5.

De nombreux fabricants proposent des solutions permettant de limiter l’influence de la température sur le flux de la lampe.

Certains constructeurs proposent ainsi une sorte de douille qui se monte sur une des extrémités de la lampe fluorescente, celle désignée comme étant le point froid de la lampe. Il y provoque une élévation de la température.

Une autre solution consiste à utiliser un tube de protection qui va permettre d’augmenter la température ambiante autour de la lampe.

Si dans la pratique, le niveau d’éclairement est suffisant, alors il est possible de remplacer la lampe par une autre de puissance plus faible, mais équipée de ce genre de solution.

Exemple.

Soit une zone de froid positif (8 °C) équipé de tube T5 de 54 W (4450 lm à 25 °C). La faible température va influencer la lampe qui ne va émettre que 75 % de son flux théorique, soit un peu moins de 3500 lm. Une lampe de 35 W, équipée d’un dispositif permettant de combattre la baisse de la température fournira un flux équivalent.

Il est ainsi possible de gagner 19 W par lampe tout en assurant le même confort.

Choisir les luminaires – tableau récapitulatif

Lampes de bureau

Lampes de bureau

Luminaire mobile avec lampe fluo compacte ou led de faible puissance.

Pour l’éclairage local des postes de travail.

Projecteurs

Projecteurs

Luminaire orientable avec lampe halogène, fluo compacte, led ou à décharge.

Pour l’éclairage d’accentuation (musée, commerce, etc.)

Downlights

Downlights

Avec réflecteur en aluminium.

Pour l’éclairage décoratif, l’éclairage des espaces restreints ou l’illumination de cavités. Éviter les réflecteurs blancs.

Downlights Avec réflecteur en aluminium et diffuseur translucide. Idem que précédent mais avec besoin de limitation de l’éblouissement direct. À éviter au maximum et privilégier la version sans diffuseur.

Cloches

Cloches

Avec réflecteur en métal ou prismatique et avec ou sans diffuseur translucide ou verre de protection.

Pour l’éclairage des espaces à grande hauteur sous-plafond (commerces, etc.). Éviter au maximum les réflecteurs transparents et les diffuseurs translucides.

Plafonds lumineux

Plafonds lumineux

Avec diffuseur translucide.

Pour l’éclairage des locaux avec un besoin de limitation de l’éblouissement direct (soins de santés, etc.). L’usage à but uniquement décoratif est à éviter (bureau, etc.)

Luminaires sur pied

Luminaires sur pied

Luminaire d’appoint.

À utiliser comme appoint pour fournir localement l’intensité lumineuse demandée, mais à éviter si la composante indirecte et/ou la puissance sont trop élevées.

Appliques murales

Appliques murales

Appliques murales

Généralement avec diffuseur translucide.

Pour éclairage décoratif.

Réglettes et luminaires industriels

Réglettes et luminaires industriels

Tube nu.

Uniquement pour les pièces de service, peu utilisé, sans exigence de protection contre l’éblouissement.

Réglettes et luminaires industriels Avec réflecteur industriel de préférence miroité (éviter les réflecteurs peints). Pour l’éclairage général, hauteur sous plafond de 5m, avec ou sans ventelles en fonction des besoins en protection contre l’éblouissement direct.

Luminaires linéaires encastrés, plafonniers et suspensions

Luminaires linéaires encastrés Avec diffuseur translucide (ou prismatique). A éviter au maximum. Pour usage décoratif et un besoin de limitation de l’éblouissement direct.

plafonniers

Diffuseur translucide et réflecteur.

A éviter au maximum. Pour usage décoratif et un besoin de limitation de l’éblouissement direct.

Ventelles plates

Ventelles plates crantées.

Ventelles plates ou crantées en aluminium.

Pour l’éclairage général et limitation de l’éblouissement direct. Les ventelles blanches sont à éviter.

Ventelles paraboliques

Ventelles paraboliques en aluminium.

Pour l’éclairage général, avec présence d’écrans de visualisation et travail de haute précision.

Ventelles paraboliques avec fermeture en verre.

Ventelles paraboliques en aluminium et fermeture en verre.

Pour les salles blanches et travail de haute précision.

Luminaires étanches

Tube fluorescent nu

Tube fluorescent nu.

Uniquement pour les pièces de service humides, peu utilisées, sans exigence de protection contre l’éblouissement.

Réflecteur industriel miroité

Réflecteur industriel miroité.

Pour l’éclairage général des locaux humides ou poussiéreux, hauteur sous plafond de 4 à 5 m, avec ou sans ventelles en fonction du besoin de protection contre l’éblouissement direct. Les réflecteurs peints sont à éviter.

Vasque transparente,

Vasque transparente, structurée ou prismatique.

Pour l’éclairage général des locaux humides ou poussiéreux avec nécessité de résistance aux chocs extérieurs ou internes (bris de lampe).

Luminaires résistant aux chocs

Luminaire avec grille de protection en acier.

Luminaire à ventelles paraboliques en aluminium et grille de protection en acier.

Pour l’éclairage des salles de sport. Éviter les réflecteurs peints.

Flexibilité des plateaux de bureaux

Flexibilité des plateaux de bureaux


Importance de l’aménagement intérieur

Dans le tertiaire et, plus spécifiquement dans la promotion immobilière d’immeubles de bureaux, tant en rénovation qu’en nouvelle conception, l’anticipation de l’agencement des espaces est une étape cruciale que l’auteur de projet aurait tort de négliger.

Les enjeux de tels projets restent, malgré tout, trop souvent financiers en négligeant le confort des occupants et les consommations énergétiques. À la décharge de l’auteur de projet, il est très difficile de répondre à toutes les attentes d’aménagement des futurs occupants. Cependant, les combinaisons logiques d’agencement des locaux ne sont pas multiples, surtout si l’on fait appel aux notions :

  • De destination logique des locaux (locaux aveugles pour accueillir les serveurs, les photocopieuses, les sanitaires…);
  • D’ergonomie des postes de travail (espaces entre bureaux et armoires, largeur des circulations…);
  • De rapport à la lumière naturelle au travers des baies vitrées (bureaux centrés et perpendiculaires par rapport à la baie vitrée, recul des bureaux par rapport aux fenêtres…).

Mais pourquoi s’occuper d’aménagement intérieur dans un outil tel qu’Énergie+ ?

La raison est  simple ! L’agencement rationnel des locaux influence clairement les consommations énergétiques d’éclairage. C’est d’autant plus vrai lorsqu’un promoteur immobilier « s’attaque » à une rénovation importante de type URE (Utilisation Rationnelle de l’Énergie) ou un projet de conception basse voire très basse énergie. En effet, dans ce type de bâtiment, la proportion des consommations électriques d’éclairage peut devenir plus grande que les consommations énergétiques de chaleur et de refroidissement réunies.


Enjeux énergétiques de l’éclairage

La proportion des consommations électriques résultant de l’éclairage artificiel est naturellement liée à la performance énergétique des bâtiments. Par exemple dans les bureaux, la consommation énergétique due à l’éclairage peut varier de 25 % pour un bâtiment qualifié de standard (375 kWhprimaire/(m².an)) à 40 %, voire plus, pour un bâtiment de type passif (75 kWhprimaire/(m².an)).
L’éclairage dans un bâtiment performant représente donc un enjeu important au niveau énergétique.


Flexibilité totale

Lorsque, notamment dans la promotion immobilière, l’auteur de projet est tenté de rendre son bâtiment au maximum flexible, et ce de manière à prendre en compte toutes les combinaisons d’agencements possibles des locaux, on parlera de « flexibilité totale« .

Une flexibilité totale se doit  d’anticiper au maximum l’occupation des locaux. Elle présuppose que l’installation d’éclairage devra couvrir l’ensemble de la surface à occuper :

  • de manière homogène ;
  • avec un niveau d’éclairement suffisant ;
  • une gestion efficace ;
  •  …

Flexibilité totale.

Cette flexibilité totale induit inévitablement une puissance installée supérieure à celle réellement nécessaire. En effet, sur base de ce principe, il serait nécessaire de respecter un niveau d’éclairement suffisant (par exemple 500 lux dans les bureaux) avec une homogénéité de 0,7 selon la norme NBN EN 12464-1. De plus, pour être sûr de pouvoir gérer de manière efficace l’installation d’éclairage et d’anticiper tous les combinaisons possibles de cloisonnement, l’auteur de projet sera tenté de placer, par exemple, un nombre suffisant de détections de présence. En surnombre, elles risquent de s’influencer négativement (détection de présence dans une zone non occupée par exemple).

Point de vue énergétique

La flexibilité totale engendrera :

  •  une puissance spécifique (en W/m²) importante : puissance installée : 6 x 1­ x 28 W ⇒ 9,5 W/m²

       

  • de l’éclairage inutile de zone comme le dessus des armoires par exemple ;

Point de vue du confort

Indépendamment de l’efficacité énergétique, le confort peut aussi être altéré :

  • plan de travail peu éclairé (aussi du vécu !) ;
  • éblouissement au niveau de certains postes.

Flexibilité raisonnée

La flexibilité raisonnée fera simplement appel au bon sens en imaginant des scénarios d’occupation « raisonnable » des espaces. Cette réflexion permettra de travailler principalement selon 2 axes :

  • Le rythme des façades : en conception l’agencement des bureaux influence inévitablement le rythme des baies vitrées et des trumeaux. En rénovation, par contre, c’est le rythme des façades qui influence le positionnement des bureaux.
  • La progression de l’agencement des postes de travail et des espaces de circulation en fonction de la pénétration de la lumière naturelle dans l’immeuble : cette progression s’effectue depuis la proximité de la baie vitrée où on privilégiera les tâches de bureautique jusqu’aux espaces de circulation qui nécessitent peu de lumière et sont des espaces à faible occupation.

Flexibilité raisonnée.

Point de vue énergétique

La flexibilité raisonnée permet :

  • De réduire la puissance spécifique : 2 x 1 x 49 W = 5,5 W/m² ;

 

  • De placer les luminaires aux endroits où la tâche justifie un éclairage correct.

Point de vue du confort

Le confort sera assuré par :

  • Le niveau d’éclairement sur la tâche de travail (le plan de travail se limite à la surface du bureau) et dans les zones avoisinantes avec une uniformité correcte de 0,7 (selon la norme 12464-1 ).
  • L’éblouissement qui sera évité par l’orientation des postes de travail perpendiculairement à la baie vitrée.

Distribution des alimentations de l’éclairage

Que l’auteur de projet préfère la flexibilité raisonnée à la flexibilité totale ou l’inverse, la distribution primaire de l’éclairage (230 V monophasé, 3 x 230 V ou encore 3 x 400 V + N), à ce stade, doit être réalisée avec une connectique organisée selon un schéma intelligent. Beaucoup de fabricants proposent sur le marché des solutions intéressantes qui intègrent aussi une flexibilité totale ou raisonnée.

Les systèmes de distribution structurés sont en général composés :

  • De câble de distribution primaire de longueur variable avec connecteurs ;
  • De pièce en T ou de boîtier de dérivation permettant de répartir de manière répétitive le courant fort en fonction du niveau de flexibilité à acquérir ;
  • De cordons secondaires qui permettent d’interface au niveau des pièces en T ou des boîtiers de dérivation les éléments de commande ou de gestion et les luminaires.

Par l’utilisation de ce type de connectique, une flexibilité plus ou moins étendue peut être assurée.

Exemple de câblage de distribution structuré.

 

Exemple de bus de distribution structuré plat.


Commande et gestion de l’éclairage

La gestion et la commande de l’éclairage, quelle que soit la flexibilité, doivent être menées de front avec la distribution de manière structurée et intelligente. À l’heure actuelle, les techniques disponibles sur le marché permettent une panoplie étendue de distribution du courant fort, de commande et de gestion de la plus simple à la plus compliquée.

Commandes simples

La plupart du temps, le gestionnaire de bâtiment ou l’auteur de projet peuvent s’en sortir avec des commandes ou des gestions d’éclairage simples. Une commande simple consiste, par exemple en :

  • Un interrupteur simple pour un petit local ;
  • Un interrupteur deux allumages pour un grand local à une entrée dans lequel un zonage s’impose ;
  • Quatre interrupteurs deux directions pour un grand local à deux entrées et où le zonage est toujours nécessaire.

Commande par interrupteur simple pour petits locaux.

Commandes par interrupteur 2 allumages pour locaux de grande taille.

Commandes par interrupteur 2 directions pour locaux de grande taille et à 2 entrées.

Gestion simple de l’éclairage

La gestion d’éclairage peut aussi être intégrée dans une distribution structurée. Tout en gardant une bonne flexibilité, une gestion simple peut être mise en place sans le besoin de bus de communication type DALI, KNX, …  Cette gestion s’appuie  sur une connectique du même type que celle acceptant les commandes simples.

Quand on pense gestion, se profilent principalement :

  • La gradation 0-10 V locale ou centrale par rapport à la lumière naturelle ;
  • La détection de présence  et de mouvement ;

Détection globale de présence et de luminosité combinées et détection locale de luminosité (par luminaire) et offset de niveau d’éclairement entre le luminaire côté fenêtre et le côté couloir.

Une gestion simple peut se résumer, par exemple, comme suit :

  • Allumage par bouton poussoir (allumage volontaire) ;
  • Extinction automatique par détection d’absence ;
  • Offset sur le réglage du niveau d’éclairement entre le luminaire côté fenêtre et celui côté couloir.

Gestion simple de l’éclairage.

Gestion globalisée de l’éclairage

La gestion/commande simple par câblage structuré a naturellement ses limites surtout dans les bâtiments de grande taille. Pour pallier à ce problème, le concepteur pourra faire appel à un câblage structuré doublé d’un système de bus de communication de type de DALI, KNX, … :

  • La distribution du courant fort s’effectue en câblage structuré ;
  • La gestion/commande est basée sur un bus de communication DALI.

Gestion par bus de communication.


Bilan énergétique

La finalité de la flexibilité raisonnée est naturellement de réduire les consommations énergétiques et de dégager une certaine rentabilité par rapport au surinvestissement potentiel.

L’étude qui suit tente de mettre en évidence l’impact de la flexibilité raisonnée :

Point de départ

L’installation de base fait appel à des luminaires de faible performance énergétique : soit 12,8 W/m².

1re amélioration

Des luminaires performances remplacent les luminaires de base. Dans ce cas, on applique la flexibilité totale : soit 9,5 W/m².

2e amélioration

On applique une stratégie de zonage par le placement intelligent de commande d’éclairage.

3e amélioration

L’emplacement et le nombre de luminaires sont optimisés selon le principe de flexibilité raisonnée : soit 5,5 W/m².

4e amélioration

Une détection de présence permet encore d’optimaliser le temps d’allumage des luminaires en fonction de l’occupation réelle des locaux.

5e amélioration

Enfin, une sonde de luminosité adaptera le niveau d’éclairement des luminaires. Le réglage des niveaux d’éclairement sera différentié en fonction de la position des luminaires par rapport à la baie vitrée.

Bilan en énergie finale

L’énergie finale représente l’énergie indiquée sur la facture électrique. L’analyse du diagramme suivant montre que les consommations spécifiques annuelles passent de 35 à 8 kWh/(m².an) lorsque l’on passe d’un système d’éclairage peu performant à un système performant, ce qui représente une réduction des consommations de l’ordre de 78 %.

Bilan en énergie primaire

Au niveau de l’énergie primaire, l’amélioration est encore plus notoire sachant que pour l’électricité, le facteur de conversion d’énergie finale en énergie primaire est de 2,5 (1 kWh électrique consommé au niveau du bâtiment représente 2,5 kWh consommé par la centrale électrique (valeur de référence de la CWAPE).

Pour un bâtiment de type passif, l’éclairage représentant 40 % des consommations énergétiques primaires, une réduction de 78 % de la consommation énergétique d’éclairage représente 31 % de réduction de la consommation énergétique primaire du bâtiment ; ce qui est énorme !

La réduction en émission de gaz à effet de serre (CO2) agit dans les mêmes proportions que celle en énergie primaire.

Comme la tendance est à améliorer drastiquement la qualité de l’enveloppe des bâtiments (isolation des parois, remplacement des vitrages par des doubles vitrages à basse émissivité ou triples vitrages, placement de récupérateur sur l’air extrait, …), le soin à apporter  au système d’éclairage représente en enjeu majeur.

Bilan financier

Les temps de retour simples sur investissement sont assez intéressants tout en sachant que l’évolution des prix du matériel et de l’énergie est très « volatile ».

Isoler un plancher inférieur sur sol par le bas

Isoler un plancher inférieur sur sol par le bas


Choix du système

> Le choix du système d’isolation par l’extérieur se fait en fonction des critères suivants :

  • les performances énergétiques ;
  • le prix.

Les différentes possibilités d’isolation à l’intérieur de la structure

Le freine-vapeur devra être mis en œuvre si nécessaire (à évaluer en fonction de la composition du plancher : nature et épaisseur des couches). Il est cependant toujours conseillé pour garantir l’étanchéité à l’air du plancher.

img.

Un freine vapeur est toujours conseillé pour assurer l’étanchéité à l’air.

Les performances énergétiques

Il faut profiter de tout l’espace disponible pour y introduire l’épaisseur maximale possible d’isolant. Le coût de la main-d’œuvre est identique. Seule la quantité d’isolant augmente.

La structure en bois ne pouvant être supprimée, la transmission thermique est plus importante à l’endroit de celle-ci. Il en est tenu compte dans l’évaluation du coefficient de transmission thermique (équivalent) du plancher. Malgré cela, à cause de l’épaisseur importante généralement disponible pour l’isolant, des performances élevées peuvent être atteintes.

Le prix

« Le nerf de la guerre…! »

La fourniture et la pose de l’isolant lui-même sont peu couteuses par rapport aux autres parties du plancher.

Isoler entre les éléments de structure d’un plancher inférieur [Concevoir]

Isoler entre les éléments de structure d’un plancher inférieur [Concevoir]


Choix du système

> Le choix du système d’isolation par l’extérieur se fait en fonction des critères suivants :

  • les performances énergétiques ;
  • le prix.

Les différentes possibilités d’isolation à l’intérieur de la structure

Le freine-vapeur devra être mis en œuvre si nécessaire (à évaluer en fonction de la composition du plancher : nature et épaisseur des couches). Il est cependant toujours conseillé pour garantir l’étanchéité à l’air du plancher.

Un freine vapeur est toujours conseillé pour assurer l’étanchéité à l’air.

Les performances énergétiques

Il faut profiter de tout l’espace disponible pour y introduire l’épaisseur maximale possible d’isolant. Le coût de la main-d’œuvre est identique. Seule la quantité d’isolant augmente.

La structure en bois ne pouvant être supprimée, la transmission thermique est plus importante à l’endroit de celle-ci. Il en est tenu compte dans l’évaluation du coefficient de transmission thermique (équivalent) du plancher. Malgré cela, à cause de l’épaisseur importante généralement disponible pour l’isolant, des performances élevées peuvent être atteintes.

Le prix

« Le nerf de la guerre…! »
La fourniture et la pose de l’isolant lui-même sont peu coûteuses par rapport aux autres parties du plancher.


Choix de l’isolant

Type d’isolant

L’isolant est placé dans les espaces laissés libres par la structure. Ces espaces sont généralement de dimensions et formes irrégulières. L’isolant doit donc être suffisamment souple pour épouser ces irrégularités. On utilisera donc des matelas isolants en laine minérale ou en matériaux naturels ou, si c’est possible (cavités bien fermées dans le bas), les mêmes matériaux déposés en vrac ou insufflés.

La migration de vapeur à travers le plancher devra être régulées par la pose, du côté intérieur d’un freine-vapeur étanche à l’air adapté à la finition extérieure et au type d’isolant posé (hygroscopique ou non).

Épaisseur de l’isolant

Les épaisseurs d’isolant sont déterminées en fonction de l’espace disponible. Idéalement, celui-ci doit être totalement rempli.

Conseils de mise en œuvre

> On évitera toute cavité dans l’isolant afin de ne pas créer de zones froides, des courants internes de convection ou d’aggraver les fuites d’air en cas de défectuosité du freine-vapeur. Les panneaux isolants doivent donc être posés de manière parfaitement jointive et appliqués contre les éléments de structure et les faces.

Isoler un plancher inférieur par le haut [Concevoir]

Isoler un plancher inférieur par le haut [Concevoir]


Choix du système

> Le choix du système d’isolation par l’intérieur se fait en fonction des critères suivant :

  • les performances à atteindre
  • l’esthétique recherchée
  • les performances énergétiques
  • le prix

Les performances à atteindre

L’étanchéité à l’air du plancher doit être assurée. Cela ne pose pas de gros problème lorsque le support est en béton coulé sur place. Il suffit dans ce cas de traiter les raccords de la dalle du plancher avec les murs périphériques. Par contre, lorsqu’il s’agit d’un plancher léger à ossature et éléments assemblés une couche spéciale d’étanchéité à l’air doit être prévue. Elle fait en même temps office de pare-vapeur et doit être posée entre l’isolant et la plaque circulable.

L’esthétique recherchée

Toutes sortes de finitions de sol sont possibles. Elles peuvent être lourdes (chape + finition) ou légères (panneau fin ou planches + finition éventuelle).

La raideur de l’isolant devra être adaptée au type de finition. Des joints de mouvement devront être prévus dans la finition pour éviter la rupture de celle-ci.

Si l’isolant est trop souple et ne résiste pas à l’écrasement, des lambourdes seront placées pour porter la plaque circulable.

Les performances énergétiques

Lorsque le plancher est posé sur sol, l’isolation peut éventuellement se limiter à la zone périphérique, le long des façades. (La résistance mécanique de la chape flottante devra être vérifiée en rive d’isolant).

Parfois l’espace disponible pour poser l’isolant est limité. Dans ce cas, l’isolant devra être le plus performant possible pour atteindre les valeurs souhaitées (λ le plus petit possible). Des isolants moins performants seront choisis lorsque la place disponible est suffisante et que d’autres de leurs caractéristiques sont intéressantes (étanchéité à l’eau, étanchéité à la vapeur, résistance à la compression, prix, caractère écologique, …).

Le prix

« Le nerf de la guerre…! »

Le coût de la finition dépendra des choix esthétiques et des performances attendues (résistance mécanique, résistance à l’eau, aspect, facilité d’entretien, …).


Choix de l’isolant

Type d’isolant

Les isolants mis en œuvre devront être adaptés aux contraintes spécifiques au projet (résistance à la compression, résistance à l’eau, …).

Lorsque le support est irrégulier, la pose d’un isolant en matelas souples ou projeté sur place est préférable pour épouser les défauts. Si l’isolant est rigide, il est nécessaire de régler le support avant de poser l’isolant.

Épaisseur de l’isolant

Les épaisseurs d’isolant sont calculées à partir des performances à atteindre.

Conseils de mise en œuvre

> Les panneaux isolants doivent être posés de manière parfaitement jointive et appliqués contre le plancher afin d’éviter les interruptions dans la couche isolante (= pont thermique).

> Il faut protéger et manipuler les panneaux isolants avec précautions pour éviter les écrasements, les déchirures, l’eau, la boue.


Détails d’exécution

L’isolation par le haut d’un plancher existant sera interrompue à chaque mur. À cet endroit il y a un risque de pont thermique. L’interposition d’un élément isolant entre le mur et la dalle est possible si le bâtiment n’est pas trop lourd.

Isoler un plancher inférieur par le bas [Concevoir]

Isoler un plancher inférieur par le bas [Concevoir]


Choix du système

> Le choix du système d’isolation par l’extérieur se fait en fonction des critères suivants :

  • les performances à atteindre ;
  • l’esthétique recherchée ;
  • les performances énergétiques ;
  • le prix.

Les performances à atteindre

Généralement la face extérieure des planchers est protégée de la pluie. On sera cependant attentif lorsque la plancher situé au-dessus de l’ambiance extérieure est raccordé au bas d’une façade. À cet endroit, un système doit être mis en œuvre pour éviter que les eaux de ruissellement atteignent le plafond (casse-goutte).

Schéma performances à atteindre.

L’esthétique recherchée

Lorsque la face inférieure du plancher n’est pas visible, il est inutile de revêtir l’isolant d’une finition.

Lorsque le plancher se trouve au-dessus de l’ambiance extérieure, il sera recouvert d’une finition en harmonie avec l’aspect extérieur du bâtiment et qui résiste aux agressions extérieures mécaniques et atmosphériques.

Lorsque le plancher est en même temps le plafond d’un espace adjacent non chauffé ou d’une cave, l’isolant pourra, soit rester apparent si les panneaux sont suffisamment rigides, soit être revêtu d’une finition pour environnement intérieur (planchettes, panneau, plaques de plâtre, enduit, …).

Les performances énergétiques

L’enduit isolant est difficile à mettre en œuvre au plafond et nécessite des épaisseurs excessives pour atteindre le coefficient de transmission thermique U réglementaire.

Les systèmes avec panneaux rigides peuvent être continus s’ils ne sont pas recouverts d’une finition.

Un système avec structure (finition inférieure supportée par une structure) présente une isolation discontinue et donc moins efficace pour une même épaisseur d’isolant.

Une structure métallique est déconseillée, car elle engendre des ponts thermiques.

Le prix

« Le nerf de la guerre…! »

Si l’isolant reste apparent, le coût des travaux dépendra principalement de la difficulté d’accès à la face inférieure du plancher (vide sanitaire de hauteur réduite).

Lorsque l’isolant est revêtu par une finition extérieure, le choix de cette finition (structure portante comprise) influencera fortement le coût des travaux.

Si on souhaite rendre les nœuds constructifs (appuis) conformes aux critères de la réglementation PEB en prolongeant de chemin de moindre résistance thermique, le coût des travaux annexe peut être considérable surtout si les appuis sont nombreux.


Choix de l’isolant

Type d’isolant

L’isolant est placé directement contre le plancher. Si l’isolant est souple, il épouse parfaitement la forme de son support même si celui-ci est un peu irrégulier. Si l’isolant est rigide, il est nécessaire de régler le support avant de poser l’isolant.

Un isolant perméable à l’air (laine minérale, par exemple) ne peut être choisi que si le support auquel il est fixé est lui-même étanche à l’air (plancher en béton, …).

Les produits minces réfléchissants (PMR), dont l’efficacité est beaucoup moins élevée que celle annoncée par les fabricants, sont à proscrire dans une isolation par l’extérieur puisqu’ils constituent un film pare-vapeur placé « du côté froid » du plancher, susceptible de provoquer une forte condensation sur la face interne (entre le plancher et l’isolant).

Épaisseur de l’isolant

Les épaisseurs  d’isolant sont calculées à partir des performances à atteindre..

Conseils de mise en œuvre

>Les panneaux isolants doivent être posés de manière parfaitement jointive et appliqués contre le plancher afin d’éviter les interruptions dans la couche isolante (= pont thermique) et les courants de convection.

Courants de convection.

Remarque : le risque de courants de convection est encore plus important lorsqu’il y a une lame d’air ventilée entre l’isolant et le parement extérieur.

> Il faut protéger et manipuler les panneaux isolants avec précautions pour éviter les écrasements, les déchirures, l’eau, la boue.


Choix de la finition

Cette finition ne sera généralement appliquée que lorsque la face inférieure du plancher est visible (environnement extérieur, cave ou espace adjacent non chauffé. Elle présentera les caractéristiques suivantes :

  • perméable à la vapeur d’eau pour éviter la condensation interstitielle ;
  • bonne résistance mécanique surtout en cas d’agression possible ;
  • aspect esthétique adapté ;

Détails d’exécution

L’isolation d’un plancher par le bas sera interrompue à chaque appui du plancher. À cet endroit il y a un risque de pont thermique. L’interposition d’un élément isolant entre le mur d’appui et la dalle est possible si le bâtiment n’est pas trop lourd.

Blocs isolants sous la dalle au dessus des murs de fondation.

Si cela n’est pas le cas, il est toutefois possible de prolonger à certains endroits le chemin que doit parcourir la chaleur pour sortir du volume protégé. Cette intervention reste généralement visible, mais est esthétiquement acceptable dans les caves, garages, locaux secondaires et vides sanitaires.

Allongement du chemin de moindre résistance thermique

Schéma allongement du chemin de moindre résistance thermique.

Concevoir le mur à ossature bois

Concevoir le mur à ossature bois


Choix de la finition extérieure

Les prescriptions d’urbanisme imposent l’intégration des nouveaux bâtiments aux immeubles existants. Souvent l’usage d’un parement en brique apparente est exigé. Dans ce cas le parement est placé devant le mur à ossature comme il le serait devant un mur porteur du mur creux. Un vide légèrement ventilé est ménagé entre le parement et la paroi légère.

Parement en briques devant le mur à ossature bois.

Le parement n’exprime pas le caractère léger du bâtiment, ce qui pourrait être considéré comme regrettable. De plus, la masse du parement qui serait utile pour limiter la surchauffe de l’espace intérieur est inaccessible à partir de celui-ci. Le parement fait uniquement office de protection contre la pluie.
Il peut être remplacé par un bardage en bois, en ardoises, en métal, … Le creux est fortement ventilé. La coulisse peut être partiellement remplie par un isolant supplémentaire qui renforce ainsi l’isolation de la paroi.

Bardage en bois devant un mur à ossature bois.

Un enduit extérieur décoratif étanche à l’eau et perméable à la vapeur d’eau peut également être appliqué directement sur cet isolant supplémentaire (à la place du bardage ou du parement). L’isolant et l’enduit doivent faire partie d’un même système d’isolation thermique extérieure développé, testé et homologué par un même fabricant.

Finition extérieure en cimentage

  1. Cimentage.
  2. Armature du cimentage.
  3. Isolant.
  4. Panneau extérieur de la structure bois.
  5. Isolant thermique dans la structure bois.
  6. Freine-vapeur + étanchéité à l’air.
  7. Vide technique avec ou sans isolant.
  8. Structure en bois.

Choix de la structure

La structure est généralement réalisée à l’aide de montants et de traverses en bois massif de section rectangulaire. L’essence choisie sera suffisamment durable pour cet emploi ou traité préventivement pour éviter toute attaque de champignons ou d’insectes.

Les sections auront au moins 14 cm de hauteur. Cette hauteur peut être plus importante de manière à ménager ainsi un espace plus épais pour placer l’isolant thermique et augmenter ainsi les performances. La stabilité de la paroi est aussi améliorée.

Afin de minimiser les transmissions thermiques, des poutres en I peuvent être utilisées pour les montants. Elle permet de diminuer les ponts thermiques induits par les montants et par conséquent d’augmenter la résistance thermique de la cloison.

Poutres « I » préfabriquées en bois.


Quel freine-vapeur ?

Du côté chaud de l’isolant, une couche freine vapeur est toujours nécessaire, ne fut-ce que pour assurer l’étanchéité à l’air de la paroi, essentielle pour assurer l’isolation thermique et éviter les problèmes de condensation interstitielle.

Des panneaux en OSB ou multiplex sont généralement placés de part et d’autre de la structure pour assurer le contreventement des parois. Ils constituent ainsi les caissons dans lesquels sera posé l’isolant éventuellement en vrac. Le panneau intérieur peut faire office de freine-vapeur à condition que sa perméabilité à la vapeur soit connue et que les joints entre les panneaux soient soigneusement rendus étanches à l’aide de bandes adhésives ou de mastic.

Panneaux intérieurs faisant office de freine-vapeur et étanchéité à l’air.

Si la paroi n’est pas pourvue de panneau intérieur, le contrôle de la diffusion de vapeur et de l’étanchéité à l’air sera réalisé à l’aide de membranes spécialement destinées à cette fonction. Leur perméabilité à la vapeur d’eau est, dans certains cas, variable en fonction de conditions hygrothermiques. Certaines peuvent servir de couche de confinement pour les isolants à insuffler.

Membrane freine-vapeur et étanchéité à l’air.

Le niveau de perméabilité à la vapeur des panneaux et des membranes devra être déterminé suite à des calculs réalisés par un bureau spécialisé de préférence à l’aide d’un logiciel de simulation dynamique. Ce logiciel calcule le transfert de chaleur et d’humidité dans la paroi en fonction de la température et du taux d’humidité intérieure, des conditions climatiques, de l’évaporation, de l’absorption, ainsi que de la perméabilité et de la capillarité des matériaux.


Quel pare-pluie ?

Lorsqu’il y a un creux ventilé entre la finition extérieure (bardage, parement, …) et  la paroi,  une couche de protection de l’isolant contre les infiltrations accidentelle est posée du côté froid de l’isolant. Elle doit être le plus perméable possible à la vapeur d’eau.

Des panneaux en OSB ou multiplex sont généralement placés de part et d’autre de la structure pour assurer le contreventement des parois. Ils constituent ainsi les caissons dans lesquels sera posé l’isolant éventuellement en vrac. Le panneau extérieur peut faire office de pare-pluie.

Panneaux faisant office de pare-pluie.

Si la paroi n’est pas pourvue de panneaux extérieurs de contreventement, des panneaux bitumés légers en fibre de bois ou des membranes souples très robustes, imperméables à l’eau et très perméables à la vapeur d’eau peuvent être utilisées et servir de pare-pluie et, en même temps, de couche de confinement pour les isolants à insuffler.

Pare-pluie souple.


Quel type d’isolant ?

L’isolant posé dans la structure doit pouvoir s’adapter facilement à la forme de celle-ci et être suffisamment raide pour ne pas se tasser sous son propre poids.

L’isolant sera donc idéalement :

soit, constitué de panneaux semi-rigides de fibres minérales ou organiques placés avant la pose d’une des faces  de la paroi ;

Isolant en matelas.

soit insufflé dans la paroi déjà munie de ses deux faces de coffrage (pare-pluie et pare-vapeur).

Isolant en vrac.

L’eau étant un très bon conducteur de chaleur, il faut éviter que l’isolant ne s’humidifie. La migration de vapeur et l’étanchéité à l’eau devront être correctement maîtrisées.

L’épaisseur d’isolant dépendra du type d’isolant choisi, de sa configuration dans la paroi et des performances thermiques à atteindre.


Le remplissage de l’espace technique intérieur par de l’isolant ?

L’espace technique ménagé entre le freine-vapeur et la finition intérieure peut être rempli d’isolant sans provoquer un risque de condensation interstitielle car l’épaisseur de cet espace est relativement réduite par rapport à celle de la structure isolée. De cette manière on augmente à peu de frais les performances thermiques du mur surtout si l’espace technique est relativement épais à cause de l’encombrement des installations prévues.

Remplissage du vide technique par de l’isolant

  1. Finition intérieure.
  2. Vide technique isolé.
  3. Freine-vapeur et étanchéité à l’air.
  4. Ossature bois avec isolant

Choisir le type de toiture

Actuellement, les toitures plates sont aussi fiables que les toitures inclinées. Le choix se fera donc sur base des exigences architecturales de fonctionnalité et d’esthétique.

 

Dans le cas des toitures inclinées il faut choisir, soit d’isoler les versants, soit d’isoler le plancher des combles.

Isolation dans le versant de toiture.

Isolation dans le plancher des combles.

Choisir le type de mur [concevoir l’isolation]

Chacune de ces techniques constructives présente des avantages et des inconvénients qui guideront le choix.


Le mur creux

Principe du mur creux.

Avantages

  • Le mur creux s’intègre généralement dans l’architecture traditionnelle de nos régions.
  • Il est efficace contre les infiltrations d’eau de pluie.
  • Son parement extérieur résiste bien aux agressions mécaniques.
  • Le mur porteur intérieur généralement massif (> 100 kg/m²) renforce l’inertie thermique du bâtiment diminuant ainsi les risques de surchauffe en été et permettant un stockage de chaleur en hiver.

Inconvénients

  • L’épaisseur de l’isolant est limitée par l’épaisseur disponible dans le creux du mur (en rénovation).
  • La stabilité des parements notamment au-dessus des grandes baies nécessite des appareillages qui sont sources potentielles de ponts thermiques et de coûts supplémentaires.

Techniques

Pour en savoir plus sur les caractéristiques du mur creux : cliquez ici  !

Concevoir

Pour en savoir plus sur la conception du mur creux : cliquez ici  !


Le mur plein non isolé

Principe du mur plein non isolé.

Ce type de mur ne sera généralement pas envisagé étant donné ses mauvaises performances thermiques. Même si le matériau utilisé est relativement isolant (béton cellulaire ou terre cuite allégée), les épaisseurs nécessaires pour atteindre ne fut-ce que les performances minimales exigées par la réglementation sont déjà très importantes (50 cm). Pour des performances plus ambitieuses, cette technique n’est pas adaptée.

Techniques

Pour en savoir plus sur les caractéristiques du mur plein : cliquez ici  !

Le mur isolé par l’extérieur

Principe du mur isolé par l’extérieur.

  1. Mur plein.
  2. Mortier de collage de l’isolant.
  3. Panneau d’isolation.
  4. Armature synthétique ou métallique + sous-couche de l’enduit.
  5. Enduit de finition.

Avantages

  • L’isolant est continu et enveloppe bien le bâtiment.
  • Des épaisseurs importantes sont possibles.
  • L’aspect extérieur peut être adapté aux exigences urbanistiques.
  • Le mur généralement massif (> 100 kg/m²) renforce l’inertie thermique du bâtiment diminuant ainsi les risques de surchauffe en été et permettant un stockage de chaleur en hiver.

Inconvénients

  • La face extérieure de la façade est relativement fragile aux agressions mécaniques.

Techniques

Pour en savoir plus sur les différents systèmes d’isolation par l’extérieur : cliquez ici  !

Concevoir

Pour en savoir plus sur la conception du mur isolé par l’extérieur cliquez ici  !

Le mur isolé par l’intérieur

Principe du mur mur isolé par l’intérieur.

Ce type de mur ne sera généralement pas envisagé pour une nouvelle construction à cause de la difficulté à gérer les ponts thermiques, le risque de condensation interstitielle dans la façade et l’affaiblissement de l’inertie thermique du bâtiment (défavorable pour la gestion des surchauffes estivales).


Le mur à ossature bois

Principe du mur à ossature bois.

Avantages

  • Le mur à ossature bois est fabriqué en atelier et sa pose sur chantier est très rapide.
  • L’espace disponible pour la pose de l’isolant est généralement important. La façade peut donc être très performante du point de vue thermique.
  • Son inertie thermique faible peut être un avantage pour les bâtiments à occupation occasionnelle (salles de fête, lieux de culte, …) car elle permet une mise à température rapide sans apport d’énergie excessif et stockage inutile de celle-ci.

Inconvénients

  • La faible inertie de la façade augmente les risques de surchauffe en été.
  • Certaines réglementations urbanistiques imposent des parements extérieurs en brique. Du point de vue constructif, ce parement lourd n’est pas nécessaire. Il est coûteux. Il trompe l’observateur sur la nature de la paroi. Une couche massive de matériau est placée  à l’extérieur de l’isolant alors qu’elle aurait éventuellement pu être utile à l’intérieur pour stabiliser la température.

Techniques

Pour en savoir plus sur les caractéristiques du mur à ossature : cliquez ici  !

Techniques

Pour en savoir plus sur l’isolation dans l’ossature : cliquez ici  !

Concevoir

Pour en savoir plus sur la conception du mur à ossature bois: cliquez ici  !

Le mur-rideau

Principe du mur-rideau.

Le mur-rideau est comparable à  une fenêtre de grande dimension avec d’éventuelles parties pleines (non transparentes). Les exigences thermiques réglementaires  ne sont pas sévères et peuvent généralement être respectées. Toutefois, si certains murs rideaux avec triples vitrages atteignent des performances intéressantes (U < 0.85 W/m²K), ces valeurs sont bien moins bonnes que celles obtenues par des murs traditionnels (U < 0.4 W/m²K). Il est donc préférable de n’opter pour les murs rideaux que lorsque de grandes surfaces vitrées sont nécessaires. Si ce n’est pas le cas, une façade légère en bois est plus indiquée si le choix d’une façade légère est fait.

Techniques

Pour en savoir plus sur les caractéristiques du mur rideau: cliquez ici  !

Concevoir

Pour en savoir plus sur la conception du mur rideau: cliquez ici  !

Déterminer les performances thermiques à atteindre [Concevoir]

Déterminer les performances thermiques à atteindre [Concevoir]


La réglementation

Outre un niveau de performance global à atteindre (Kglobal et E), la PEB en matière d’isolation exige des valeurs maximales pour le coefficient de transmission thermique Umax des parois faisant partie de la surface de déperdition.

En rénovation, ces valeurs doivent être respectées pour toute paroi qui fait l’objet d’une reconstruction ou qui est ajoutée.

Il se peut également que ces valeurs (ou même des valeurs plus sévères) doivent être atteintes, et ce même si une paroi n’est pas directement touchée par la rénovation, lorsqu’il y a changement d’affectation du bâtiment, de manière à atteindre le niveau global d’isolation (K).


Les recommandations

Si l’on s’en tient à la réglementation, un coefficient de transmission thermique U est requis pour les parois délimitant le volume protégé. Mais il faut comprendre cette valeur comme l’exigence de qualité minimale à respecter, sorte de garde-fou que la Région a voulu imposer aux constructeurs.

L’épaisseur est le résultat d’un compromis :

  • Plus on isole, plus la consommation diminue (chauffage et climatisation), et avec lui le coût d’exploitation du bâtiment.
  • Plus on isole, plus le coût d’investissement augmente.

On peut aujourd’hui aller plus loin dans l’isolation des parois sans pour autant générer de grandes modifications dans la technique de construction. On peut aussi vouloir atteindre certains labels qui donnent parfois droit à des subsides. A titre d’exemple, pour une certification « passive » une isolation des parois approchant un U de 0.15 W/m²K est recommandée.

Elle permet de satisfaire de manière plus aisée l’exigence de niveau d’isolation globale (K).
Quelques considérations complémentaires :

  • Souvent c’est une logique de rentabilité financière qui détermine l’épaisseur d’isolant mis en place. Si une logique de rentabilité écologique était prise, la lutte contre le CO2 nous pousserait vers une isolation plus forte !
  • Le prix de l’énergie sur lequel on détermine la rentabilité varie sans cesse mais la tendance est clairement à la hausse. Cette évolution doit donc être prise en compte dans l’évolution de la rentabilité. Si le litre de fuel est un jour à 3 €, la rentabilité de l’isolation ne sera même plus discutée !
  • Maintenir 20°C dans un bâtiment, c’est un peu comme maintenir un niveau de 20 cm d’eau dans un seau percé. Aux déperditions du bâtiment correspondent des fuites dans la paroi du seau. En permanence nous injectons de la chaleur dans le bâtiment. Or, si en permanence on nous demandait d’apporter de l’eau dans le seau pour garder les 20 cm, notre premier réflexe ne serait-il pas de boucher les trous du seau ?

  • Expliquez aux Scandinaves, aux Suisses,. que nous hésitons entre 6 et 8 cm d’isolant, vous les verrez sourire, eux qui placent couramment 20 cm de laine minérale, sans état d’âme !

Pourquoi une isolation moins poussée sur le sol ?

En hiver la température du sol est plus élevée que la température extérieure. La « couverture » peut donc être moins épaisse.

Pourquoi une isolation plus poussée en toiture que dans les murs ?

Si la température extérieure est cette fois identique dans les 2 cas, le placement de l’isolant en toiture est plus facile à mettre en œuvre en forte épaisseur. Le coût est proportionnellement moindre. La rentabilité de la surépaisseur est meilleure.


Épaisseur d’isolant

L’épaisseur d’isolant (ei) peut être calculée par la formule :

1/U = Rsi + e11 + eii + e22 + Rse

ei = λi [1/U – (Rsi + e11 + e22 + Rse)]

avec,

  • λi : le coefficient de conductivité thermique de l’isolant (W/mK),
  • U : le coefficient de transmission thermique de la paroi à atteindre (W/m²K),
  • Rse et Rsi : les résistances thermiques d’échange entre le mur et les ambiances extérieure et intérieure. Ils valent respectivement 0,04 et 0,13 m²K/W,
  • e1/λ1, e22 : la résistance thermique des autres couches de matériaux (m²K/W).

Dans le tableau ci-dessous, vous trouverez les épaisseurs minimales d’isolant à ajouter sur la face interne ou externe du mur plein pour obtenir différents coefficients de transmission.

Hypothèses de calcul :

  • Les coefficients de conductivité thermique (λ en W/mK) ou les résistances thermiques (Ru en m²K/W) des maçonneries utilisées et des isolants sont ceux indiqués dans l’annexe VII de l’AGW du 17 avril 2008.
  • La maçonnerie est considérée comme sèche et le coefficient de conductivité thermique de celle-ci correspond à celui du matériau sec. En effet, on a considéré que le mur isolé par l’intérieur ou par l’extérieur avait été protégé contre les infiltrations d’eau, comme il se doit.
  • La face intérieure de la maçonnerie est recouverte d’un enduit à base de plâtre d’1 cm d’épaisseur.

Remarques.

  • Lorsqu’on utilise un isolant disposant d’un agrément technique (ATG), on peut se fier au coefficient de conductivité thermique certifié par celui-ci; celui-ci est , en général, plus faible que celui indiqué dans dans l’annexe VII de l’AGW du 17 avril  2008 et on peut ainsi diminuer l’épaisseur d’isolant, parfois de manière appréciable.
  • Les épaisseurs calculées doivent être augmentées de manière à obtenir des épaisseurs commerciales.
  • A épaisseur égale et pour autant que l’isolant soit correctement mis en œuvre, la présence d’une lame d’air moyennement ventilée entre l’isolant et sa protection (enduit ou bardage), permet de diminuer le coefficient de transmission thermique U de 2,5 à 5 %.
Composition du mur plein Masse volumique (kg/m³) λ(W/mK) ou Ru (m²K/W) Épaisseur du mur plein (cm) Coefficient de transmission thermique du mur plein sans isolant (W/m²K) Épaisseur de l’isolant (en cm) à ajouter pour obtenir Umax :
Umax (W/m²K) Nature de l’isolant
MW/EPS XPS PUR/PIR CG
Maçonnerie de briques ordinaires

 

1 000 à 2 100

 

0.72

 

19

 

2.22

 

0.60 5.47 4.86 4.25 6.69
0.40 9.22 8.20 7.17 11.27
0.30 12.97 11.53 10.09 15.85
0.15 27.97 24.86 21.76 34.19
29

 

1.69

 

0.60 4.84 4.31 3.77 5.92
0.40 8.59 7.64 6.68 10.50
0.30 12.34 10.97 9.60 15.09
0.15 27.34 24.3 21.26 33.41
39

 

1.37

 

0.60 4.22 3.75 3.28 5.16
0.40 7.97 7.08 6.20 9.74
0.30 11.72 10.42 9.12 14.32
0.15 26.72 23.75 20.78 32.65
Maçonnerie de moellons

 

2 200

 

1.40

 

29

 

2.54

 

0.60 5.73 5.09 4.45 7.00
0.40 9.48 8.42 7.37 11.58
0.30 13.23 11.76 10.29 16.16
0.15 28.23 25.09 21.96 34.5
39

 

2.15

 

0.60 5.40 4.80 4.20 6.60
0.40 9.15 8.14 7.12 11.19
0.30 12.90 11.47 10.04 15.77
0.15 27.91 24.81 21.71 34.11
Blocs creux de béton lourd

 

> 1 200

 

0.11

 

14

 

3.36

 

0.60 6.16 5.48 4.79 7.53
0.40 9.91 8.81 7.71 12.12
0.30 13.66 12.14 10.63 16.70
0.15 28.66 25.48 22.29 35.03
0.14

 

19

 

3.06

 

0.60 6.03 5.36 4.69 7.37
0.40 9.78 8.69 7.60 11.95
0.30 13.53 12.02 10.52 16.53
0.15 28.53 25.36 22.19 34.87
0.20

 

29

 

2.58

 

0.60 5.76 5.12 4.48 7.04
0.40 9.51 8.45 7.39 11.62
0.30 13.26 11.78 10.31 16.20
0.15 28.26 25.12 21.98 34.53
Blocs de béton mi-lourd

 

1 200 à 1 800

 

0.75

 

14

 

2.67

 

0.60 5.82 5.17 4.52 7.11
0.40 9.57 8.50 7.44 11.69
0.30 13.32 11.84 10.36 16.28
0.15 28.31 25.17 22.02 34.61
19

 

2.27

 

0.60 5.52 4.90 4.29 6.74
0.40 9.27 8.24 7.21 11.33
0.30 13.02 11.57 10.12 15.91
0.15 28.02 24.90 21.79 34.24
29

 

1.74

 

0.60 4.92 4.37 3.82 6.01
0.40 8.67 7.70 6.74 10.59
0.30 12.42 11.04 9.66 15.18
0.15 27.41 24.37 21.32 33.51
Blocs de béton moyen

 

900 à  1 200

 

0.40

 

14

 

1.86

 

0.60 5.08 4.52 3.95 6.21
0.40 8.83 7.85 6.87 10.80
0.30 12.58 11.18 9.79 15.38
0.15 27.58 24.52 21.45 33.71
19

 

1.51

 

0.60 4.52 4.02 3.52 5.52
0.40 8.27 7.35 6.43 10.11
0.30 12.02 10.68 9.35 14.69
0.15 27.02 24.02 21.02 33.02
29

 

1.10

 

0.60 3.39 3.02 2.64 4.15
0.40 7.14 6.35 5.56 8.73
0.30 10.89 9.68 8.47 13.32
0.15 25.91 23.03 20.15 31.67
Blocs de béton léger

 

600 à 900

 

0.30

 

14

 

1.53

 

0.60 4.56 4.05 3.54 5.57
0.40 8.31 7.38 6.46 10.15
0.30 12.06 10.72 9.38 14.74
0.15 27.06 24.05 21.05 33.07
19

 

1.22

 

0.60 3.81 3.38 2.96 4.65
0.40 7.56 6.72 5.88 9.24
0.30 11.31 10.05 8.79 13.82
0.15 26.31 23.39 20.46 32.16
29

 

0.87

 

0.60 2.31 2.05 1.79 2.82
0.40 6.06 5.38 4.71 7.40
0.30 9.81 8.72 7.63 11.99
0.15 24.83 22.07 19.31 30.34
Blocs creux de béton léger

 

< 1 200

 

0.30

 

14

 

2.05

 

0.60 5.31 4.72 4.13 6.49
0.40 9.06 8.05 7.04 11.07
0.30 12.81 11.38 9.96 15.65
0.15 27.8 24.72 21.63 33.98
0.35

 

19

 

1.86

 

0.60 5.08 4.52 3.95 6.21
0.40 8.83 7.85 6.87 10.80
0.30 12.58 11.18 9.79 15.38
0.15 27.58 24.52 21.45 33.71
0.45

 

29

 

1.57

 

0.60 4.63 4.12 3.60 5.66
0.40 8.38 7.45 6.52 10.25
0.30 12.13 10.78 9.44 14.83
0.15 27.13 24.12 21.10 33.16
Blocs de béton très léger

 

< 600

 

0.22

 

14

 

1.21

 

0.60 3.79 3.37 2.95 4.64
0.40 7.54 6.71 5.87 9.22
0.30 11.29 10.04 8.78 13.80
0.15 26.28 23.36 20.44 32.12
19

 

0.95

 

0.60 2.77 2.46 2.16 3.39
0.40 6.52 5.80 5.07 7.97
0.30 10.27 9.13 7.99 12.55
0.15 25.26 22.46 19.65 30.88
29

 

0.66

 

0.60 0.73 0.65 0.56 0.89
0.40 4.48 3.98 3.48 5.47
0.30 8.23 7.31 6.40 10.05
0.15 23.18 20.61 18.03 28.33
Blocs de béton cellulaire

 

< 500

 

0.18

 

15

 

0.98

 

0.60 2.91 2.58 2.26 3.55
0.40 6.66 5.92 5.18 8.14
0.30 10.41 9.25 8.09 12.72
0.15 25.41 22.59 19.76 31.05
20

 

0.77

 

0.60 1.66 1.47 1.29 2.03
0.40 5.41 4.81 4.21 6.61
0.30 9.16 8.14 7.12 11.19
0.15 24.16 21.47 18.79 29.52
30

 

0.54

 

0.60
0.40 2.91 2.58 2.26 3.55
0.30 6.66 5.92 5.18 8.14
0.15 21.67 19.26 16.85 26.48
Blocs de terre cuite lourds

 

1 600 à 2 100

 

0.90

 

14

 

2.92

 

0.60 5.96 5.30 4.63 7.28
0.40 9.71 8.63 7.55 11.86
0.30 13.46 11.96 10.47 16.45
0.15 28.46 25.3 22.13 34.78
19

 

2.51

 

0.60 5.71 5.07 4.44 6.98
0.40 9.46 8.41 7.36 11.56
0.30 13.21 11.74 10.27 16.14
0.15 28.21 25.07 21.94 34.48
29

 

1.96

 

0.60 5.21 4.63 4.05 6.36
0.40 8.96 7.96 6.97 10.95
0.30 12.71 11.30 9.88 15.53
0.15 27.70 24.63 21.55 33.86
Blocs de terre cuite perforés

 

1 000 à 1 600

 

0.54

 

14

 

2.24

 

0.60 5.49 4.88 4.27 6.71
0.40 9.24 8.21 7.19 11.29
0.30 12.99 11.55 10.10 15.88
0.15 27.99 24.88 21.77 34.21
19

 

1.86

 

0.60 5.07 4.51 3.95 6.20
0.40 8.82 7.84 6.86 10.79
0.30 12.57 11.18 9.78 15.37
0.15 27.58 24.52 21.45 33.71
29

 

1.38

 

0.60 4.24 3.77 3.30 5.18
0.40 7.99 7.10 6.22 9.77
0.30 11.74 10.44 9.13 14.35
0.15 26.74 23.77 20.80 32.68
Blocs de terre cuite perforés

 

700 à 1 000

 

0.27

 

14

 

1.42

 

0.60 4.32 3.84 3.36 5.29
0.40 8.07 7.18 6.28 9.87
0.30 11.82 10.51 9.20 14.45
0.15 26.83 23.85 20.87 32.79
19

 

1.12

 

0.60 3.49 3.10 2.72 4.27
0.40 7.24 6.44 5.63 8.85
0.30 10.99 9.77 8.55 13.43
0.15 25.98 23.10 20.21 31.76
29

 

0.79

 

0.60 1.82 1.62 1.42 2.23
0.40 5.57 4.95 4.34 6.81
0.30 9.32 8.29 7.25 11.40
0.15 24.30 21.60 18.90 29.70
Blocs silico-calcaire creux

 

1 200 à 1 700

 

0.60

 

14

 

2.38

 

0.60 5.61 4.98 4.36 6.85
0.40 9.36 8.32 7.28 11.44
0.30 13.11 11.65 10.19 16.02
0.15 28.11 24.99 21.86 34.36
19

 

1.98

 

0.60 5.23 4.65 4.07 6.40
0.40 8.98 7.98 6.99 10.98
0.30 12.73 11.32 9.90 15.56
0.15 27.73 24.65 21.57 33.89
29

 

1.49

 

0.60 4.48 3.98 3.49 5.48
0.40 8.23 7.32 6.40 10.06
0.30 11.98 10.65 9.32 14.65
0.15 26.98 23.98 20.98 32.98

Source : Isolation thermique des murs pleins réalisée par le CSTC à la demande de la DGTRE.

Il est également possible d’utiliser le fichier Excel pour calculer le U d’une paroi en contact avec l’extérieur.

Choisir une PAC en fonction de la performance de l’enveloppe

Choisir une PAC en fonction de la performance de l'enveloppe


Stratégie de chauffage et de refroidissement

Lorsque la performance de l’enveloppe d’un bâtiment augmente, pour une même surface nette ou un même volume de bâtiment, la quantité d’énergie nécessaire au chauffage devient faible.

« On peut passer d’une valeur de 200 kWh/m².an à 15 kWh/m².an lorsqu’on tend vers un bâtiment passif ! ».

Source : PMP (Plateforme Maison Passive).

De même, la puissance à mettre à disposition pour assurer les besoins de chaleur du bâtiment se voit réduite de manière significative.

« Les puissances mises en jeu pour combattre les déperditions au travers des parois et par ventilation et pour assurer la relance en cas d’intermittence (ou ralenti nocturne), passent de l’ordre de 70 W/m³ à 20 W/m³ voire moins encore ! ».

Le renforcement de l’isolation et de l’étanchéité d’un bâtiment interagit donc sur la puissance du système de chauffage. À première vue, pour autant que les fabricants de systèmes de chauffage  puissent proposer des équipements de faible puissance, il n’y a pas de restriction quant au choix de tel ou tel type de système de chauffage par rapport à la puissance.

Cependant, si le concepteur n’y prend pas garde, l’isolation d’un bâtiment n’engendre pas seulement que des réductions des besoins de chauffage. Il risque de générer aussi une augmentation des besoins de rafraichissement. D’un point de vue énergétique, si c’est le cas, il est primordial de produire du froid gratuitement ou à peu près !

La manière de produire le plus écologiquement du froid dans notre bonne Belgique est de faire appel au « free cooling » par ventilation naturelle. Ce n’est pas toujours possible !

En effet :

  • Le confort, dans certains cas, ne peut pas être assuré en permanence. On image difficilement qu’une chambre d’isolé dans un hôpital, de surcroit occupée la nuit, puisse être ventilée naturellement.
  • Certains maîtres d’ouvrage ne voient pas d’un bon œil de laisser des fenêtres ouvertes la nuit par souci de sécurité (même grillagée).
  • Les coûts d’une automatisation des systèmes d’ouvertures risquent d’être importants.
  • La régulation des systèmes d’ouverture n’est pas toujours évidente.

Le choix du « géocooling » comme moyen de refroidissement naturel s’impose donc. Cela tombe bien puisqu’avec le même système, on pourra produire du chaud par « géothermie » et du froid par « géocooling ». En effet, par le choix d’une pompe à chaleur géothermique eau/eau, réversible ou pas suivant le besoin de froid, on peut envisager la stratégie suivante :

  • En hiver,  la chaleur sera « pompée » du sol par la pompe à chaleur en travaillant en mode « chaud », le sol se refroidissant par la même occasion.
  • En été, le froid accumulé en hiver sera extrait du même sol soit par la pompe à chaleur travaillant en mode froid, soit par 2 pompes de circulation permettant de travailler de manière satisfaisante au niveau énergétique (c’est la seule consommation des pompes qui permet de refroidir le bâtiment).

Cependant, le choix de la géothermie, comme source froide pour des bâtiments à forte isolation, est dépendant aussi de l’équilibre entre les besoins de chaud et de froid de l’immeuble.
Un bâtiment en demande de chaleur :

  • Qui nécessite peu de besoins de froid sous forme de « géocooling », ne permettra pas de recharger le sol en chaleur en été. Il s’en suivra, dans certains cas, d’un appauvrissement de la capacité du sol à fournir de la chaleur. Dans certaines études (simulation PileSim), on remarque qu’après 15 à 20 ans, la température du sol reste très basse. Dans ces conditions, l’énergie du sol sera plus difficilement exploitable. Si c’est possible, le refroidissement pourra être pris en charge par un système de « free-cooling » de nuit sur l’air par exemple.
  • Équilibré par la même demande en refroidissement permettrait de pérenniser la source froide.

En pratique, un équilibre 50/50 entre les besoins de chaud et de froid permettra de garantir une géothermie optimale à long terme.


Influence sur le choix du type de source froide et son dimensionnement

Pour une même emprise au sol, un bâtiment tertiaire dont l’enveloppe est performante est moins gourmand en besoin de chauffage qu’un bâtiment de type « passoire ». Par conséquent, il « pompera » moins d’énergie à la source froide.

Source froide : l’air ou aérothermie

L’air est en quantité « infinie » autour du bâtiment ; ce qui signifie que l’influence du niveau d’isolation du bâtiment sur le choix de l’air comme source froide reste faible. Bien que ! Si on pousse le raisonnement à l’absurde, une concentration de bâtiments peu isolés dont le choix de leur système de chauffage se porterait sur une PAC air/eau par exemple, contribuerait à créer un micro climat plus froid qu’il ne serait si les bâtiments étaient peu isolés.

Donc, la performance de l’enveloppe du bâtiment influence l’air comme source froide, mais il faut pousser le raisonnement très loin !

Pour un bâtiment bien isolé, la taille de l’évaporateur pourra être plus petite. Attention toutefois que les évaporateurs sont une source de nuisance sonore dont il faudra tenir compte.

Source froide : le sol ou géothermie

Le sol est une ressource limitée en quantité et en temps. Pour des bâtiments peu « déperditifs », la géothermie peut être intéressante dans le sens où, pour une même empreinte au sol du bâtiment, plus celui-ci est isolé :

  • Moins il sera gourmand en puissance disponible et plus petite sera l’installation de géothermie.
  • Plus grande sera la disponibilité d’énergie dans le sol.

Influence de la performance du bâtiment sur la source froide géothermique.

L’augmentation de la performance de l’enveloppe d’un bâtiment permet de mieux exploiter un même volume de sol, c’est vrai ! Mais il est nécessaire de tenir compte comme décrit ci-avant de l’équilibre entre les besoins de chaleur et les besoins de refroidissement.

Une fois n’est pas coutume, c’est la source froide qui risque de conditionner le niveau d’isolation de l’enveloppe du bâtiment !

En effet :

  • Une enveloppe de bâtiment très performante entraine un déséquilibre entre les besoins Chaud/froid en faveur du besoin de froid : la source froide risque de se réchauffer au cours des années. Il s’ensuit une interrogation au niveau de l’écologique, de l’autorisation d’exploiter le sol, …
  • Une enveloppe de bâtiment peu performante inverse la tendance : la source froide se refroidit.

Il n’est donc pas dit, avec une technologie comme la géothermie, que le renforcement à outrance de la performance de l’enveloppe du bâtiment soit l’idéal. Comme tout est une question de compromis, dans ce cas particulier, on ne visera pas nécessairement le passif voire mieux. Mais c’est du cas par cas !

Un bureau d’étude spécialisé permettra, par simulation thermique dynamique, de trouver le réel équilibre pour optimiser l’exploitation de la géothermie. On en tiendra compte dès l’avant projet du bâtiment.

Source froide : l’eau ou hydrothermie

Tout comme le sol, l’eau comme source froide (hydrothermie) est une ressource limitée qui dépend, entre autres, du débit de renouvellement du volume d’eau pris comme source froide (plan d’eau, …). Le fait de rendre les bâtiments performants permettra de disposer d’une source froide de taille plus petite (le lac de Genval plutôt que l’Eau d’heure par exemple). Cependant, s’il existe un besoin de refroidissement du bâtiment, l’eau devra être en mesure d’absorber la chaleur extraite du bâtiment par le système de pompe à chaleur réversible. Ceci implique qu’en été :

  • le débit de renouvellement de la source froide soit suffisant ;
  • les réglementations en vigueur permettent un rejet de chaleur à température plus élevée que la température moyenne de la source froide.

Influence sur le choix du type de source chaude et son dimensionnement

Régime de température

Les émetteurs à eau

Pour une même volumétrie des locaux dans un bâtiment bien isolé, la puissance d’émission nécessaire sera plus faible. On pourra donc prévoir un régime de température plus faible, et par conséquent la performance énergétique de la PAC associée pourra être améliorée (de l’ordre de 3 % par °C de température de  gagné).

Exemple

On considère que la température de l’eau au niveau du condenseur se situe entre 35 et 45 °C pour – 8 °C extérieur dans le cas d’un bâtiment K45. Si on décide d’opter pour la conception d’un bâtiment plus performant (basse énergie ou passif), on pourrait avantageusement passer à des températures de condensation entre 25 et 30°C, soit un gain théorique de l’ordre de 30 % des consommations énergétiques.

Les émetteurs à air

Tout dépend du type d’émetteur :

  • En détente directe sur l’air hygiénique, les températures de condensation risque de devoir être aussi hautes que pour un bâtiment non isolé sachant que c’est de l’air externe que l’on réchauffe. Dans ce cas, le niveau de performance de l’enveloppe du bâtiment ne joue pas.
  • Pour des ventilo-convecteur à eau, cela revient au même que pour les radiateurs classiques : les températures de condensation seront sensiblement les mêmes (entre 25 et 30 °C par – 8 °C extérieur).

Inertie de l’émetteur

Dans un bâtiment dont l’enveloppe est performante, la faible inertie de l’émetteur est primordiale. En effet, en mi-saison, la surchauffe risque d’être dommageable si l’inertie de l’émetteur est importante. En effet, en cas de nuit froide, la dalle se chargera pour anticiper la journée qui suit. Malheureusement, le stockage de chaleur risque de ne servir à rien si les apports solaires pendant la journée sont élevés. La combinaison des apports solaires au travers des parois vitrées et des apports internes générés par la dalle de sol chauffante ne peuvent être évacués. Il s’ensuit une surchauffe importante des locaux.

Pour pallier à ce problème, on pense, par exemple, au plancher chauffant qui doit nécessairement être à faible inertie. L’émetteur dynamique à faible inertie, comme montré ci-dessous, permet de bien répondre aux besoins de réactivité d’un bâtiment performant. Tout dépendra naturellement du type de revêtement qui sera placé en finition au-dessus du plancher chauffant. Un matériau thermiquement isolant impliquera une augmentation de la température de l’eau de l’émetteur entrainant une dégradation de la performance de la pompe à chaleur. On rappelle qu’une augmentation de 1 °C de la température de condensation de la PAC entraine une dégradation de sa performance de l’ordre de 3 %.

Schéma principe du plancher chauffant.

Photo plancher chauffant.

Source Opal-système.


Influence sur le choix du type de compresseur

Les bâtiments qui présentent un niveau d’isolation important permettront le choix de pompe à chaleur de puissance raisonnable dans une gamme plus élargie. Au point que pour certains bâtiments tertiaires de petite taille, on pourrait même envisager d’étendre la gamme aux pompes à chaleur domestiques.

Quand on est en présence d’un bâtiment performant, le système de chauffage, quel qu’il soit, doit être très réactif à la relance et pouvoir moduler sur une plage de puissance large. On considère que la plage de variation de puissance des PAC (taux de charge) peut raisonnablement varier entre 30 et 100 %. L’idéal est donc de choisir des pompes à chaleur avec compresseur à vitesse variable (technologie INVERTER).

Concevoir une installation de cogénération avec une ou des chaudières à condensation

Concevoir une installation de cogénération avec une ou des chaudières à condensation


Besoins thermiques et électriques d’un bâtiment moderne

Besoins thermiques

La conception des bâtiments modernes n’a plus rien à voir avec nos chères constructions « passoires ». La venue de la PEB  bouleverse nos habitudes de constructions ; cela va dans le sens où les besoins thermiques diminuent fortement.

Les profils de chaleur évoluent aussi ! Il suffit d’analyser deux monotones de chaleur pour s’en convaincre. On se réfère à deux bâtiments de volume différent, mais ayant le même besoin de puissance de chauffe :

  • l’un, de grand volume est bien isolé et d’étanchéité correcte ;
  • l’autre de volume moyen est de type « passoire ».

Les monotones de chaleur sont représentées ci-dessous :

Schéma monotone de chaleur 01.

Bâtiment type passoire.

Bâtiment performant.

Le besoin de chaleur en puissance est représenté par la courbe et en énergie par l’aire sous la courbe. Les surfaces de couleur matérialisent le besoin de chaleur qui pourrait être pris en charge par une unité de cogénération. En comparant les deux aires de couleur, on se rend compte que :

  • Pour une même puissance de dimensionnement de cogénération, la prise en charge du besoin de chaleur par la cogénération dans un bâtiment énergétiquement performant est beaucoup plus faible.
  • Pour un même investissement, la production de chaleur et, par conséquent, d’électricité est moindre.

Il s’en suit qu’à puissance de cogénération égale, on observe une diminution de la rentabilité énergétique, environnementale et financière.
A méditer !

Comment déterminer les besoins de chaleur ?

Partir d’une feuille blanche pour envisager l’association d’une cogénération et de chaudières à condensation n’est pas nécessairement plus aisé qu’en rénovation. En effet, les profils de consommations de chaleur ne sont pas connus. Dès lors, il est impératif de déterminer ces profils de manière précise. Les simulations thermiques dynamiques peuvent aider le concepteur à établir ces besoins de chaleur en fonction :

  • des caractéristiques du bâtiment (volumétrie, orientation, composition des parois, inertie accessible, …) ;
  • des types et scénarios d’occupation (horaires, nombre de personnes, …) déterminant les consignes de température, les apports internes, … ;
  • du climat dans lequel le bâtiment se trouve (température, humidité, ensoleillement, vent, …) permettant d’évaluer les échanges thermiques du bâtiment avec l’extérieur, les apports solaires au travers des baies vitrées, …) ;
  •   …

Pour réaliser ce genre d’étude, il faut s’adresser à un bureau d’étude spécialisé qui établira un profil de besoins tel que celui exposé ci-après :

Profil de besoin de chaleur et de refroidissement en fonction de la température externe
(simulation type TRNSYS).

Profil annuel des besoins de chaleur et de refroidissement
(simulation type TRNSYS).

Comment déterminer les besoins d’électricité ?

Pour déterminer les besoins d’électricité, il existe des ratios relativement fiables. Une difficulté majeure dans l’établissement d’un profil de besoins électriques est d’imaginer les scénarios de commande et de régulation des équipements électriques. On donne comme exemple les variations des consommations électriques :

  • des luminaires en fonction de l’apport de lumière naturelle et d l’occupation ;
  • des ventilateurs de ventilation hygiéniques en fonction de la qualité de l’air ;
  • des ascenseurs en fonction du trafic ;
  • des process éventuels en fonction du « taux de charge » de la chaîne de production ;
  • des groupes de climatisations en fonction du climat et des apports internes ;
  •  …

Besoin d’électricité.

Profil de besoin électrique reconstitué à partir d’un scénario théorique.


Intérêt énergétique, environnemental et financier de l’association

Pour rappel, que ce soit en amélioration ou en conception, la cogénération est juste là pour produire un maximum d’énergie thermique et électrique locale sur base d’un profil de chaleur. L’appoint en chauffage, comme des chaudières à condensation, n’est là que pour :

  • prendre le relais en mi-saison lorsqu’on décide de ne pas faire fonctionner la cogénération ;
  • donner un « coup de pouce » en termes de puissance pendant les périodes froides ;
  • palier à une défectuosité de la cogénération.

Scénario de départ

Le gestionnaire d’un parc immobilier a décidé, pour son nouveau bâtiment de placer deux chaudières à condensation.

Mais aurait-il un intérêt à investir dans une cogénération ?

Avant de se lancer dans une entreprise de combinaison d’une cogénération avec une ou plusieurs chaudières à condensation, il est impératif de savoir s’il existe un intérêt énergétique, environnemental et financier réel à les associer. En d’autres termes :

> Vaut-il mieux se contenter :

  • de placer uniquement des chaudières à condensation  et d’optimiser l’installation tant au niveau hydraulique qu’au niveau de la régulation du système de chauffage, et ce dans le but d’optimiser uniquement le rendement saisonnier de la chaufferie ?
  • ou de continuer à « importer » de l’électricité à partir du réseau ?

> Ou faut-il viser directement l’association des chaudières avec un cogénérateur en considérant que sur site :

  • la cogénération consomme plus de combustible pour chauffer le bâtiment  et produire de l’électricité en local  ?
  • les chaudières consomment un solde de combustible lorsque la cogénération ne « tourne pas » ?
  • le réseau fournit le solde de besoin d’électricité ?

Dans ce qui suit on tente d’y répondre par l’exploitation du logiciel d’étude de pertinence de cogénération de la Région Wallonne CogenSim (version 3.11 ;  2011) :

Simulation

Le postula de départ est qu’une étude de faisabilité d’installation d’une cogénération a montré une rentabilité énergétique, environnementale et financière valable.

En partant du principe qu’une cogénération est dimensionnée pour produire la base d’un profil de besoin de chaleur, le solde étant fourni par une chaudière à condensation, plus cette chaudière sera performante, plus importante sera la réduction des consommations énergétiques pour fournir ce solde.

Une manière d’y arriver est de simuler une cogénération associée à une chaudière dont le rendement saisonnier évolue de 80 à 100 %.

Evaluer

Pour plus de renseignements sur le calcul de rentabilité de l’association d’une cogénération avec une ou plusieurs chaudières à condensation.

Il y a t-il un intérêt réel d’association ?

En préliminaire, il faut toutefois faire remarquer que le cas présenté ci-dessus est très favorable à l’investissement dans une cogénération. En effet, les profils des besoins de chaleur et d’électricité se complètent bien. Tous les projets ne sont pas toujours aussi heureux ! Par exemple, lorsque le besoin de chaleur est faible par rapport à la demande d’électricité, l’investissement dans une cogénération n’est pas toujours rentable. A voir donc au cas par cas !

Cogénération 

Pour plus de renseignements sur les cogénérateurs.

Niveau énergétique

En partant du principe, que pour les profils de chaleur et d’électricité établis pour le projet considéré, l’étude précise de faisabilité du placement d’une cogénération est envisageable énergétiquement, environnementalement et financièrement parlant, l’association d’une ou de plusieurs chaudières à condensation est un plus énergétique comme le montre le graphique suivant :

Évolution des consommations en énergie primaire.

Niveau environnemental

La réduction des émissions de gaz à effet de serre est liée aux consommations en énergie primaire. Dans le cas étudié dans la note de calcul, la réduction des émissions de CO2 est effective même pour une cogénération au gaz et sera d’autant meilleure que le rendement des chaudières d’appoint sera élevé. On privilégiera donc les chaudières à condensation. Le bilan environnemental sera naturellement influencé par le type de combustible utilisé par la cogénération. En effet, le nombre de certificats verts octroyés (CV) sera d’autant plus important que le combustible sera renouvelable (bois, huile végétale, …).

Niveau financier

Quant au bilan financier, il est en général lié aux éléments principaux suivants :

  • aux coûts imputés aux consommations des différents combustibles et aux frais de maintenance ;
  • à l’investissement :
    • dans l’installation de la cogénération et de la (des) chaudière(s) ;
    • dans la modification du circuit hydraulique primaire ;
    • dans l’adaptation de la régulation de la cascade cogénération/chaudière(s) ;
  • à l’octroi des primes et des certificats verts (CV) ;
  • à l’autoconsommation maximale de l’électricité produite par la cogénération (réduction de la facture électrique) ;
  • à la revente résiduelle d’électricité. Attention, qu’au global, il ne peut pas devenir producteur d’électricité.

Le bilan financier est très variable. La rentabilité de la cogénération provient du gain engendré sur la facture électrique et les CV. Le premier gain est très important d’où l’intérêt d’autoconsommer un maximum de l’électricité produite par la cogénération pour maximiser la rentabilité de l’installation.


Aspect hydraulique et de régulation

Condition de cohabitation

Ici, on part du principe que le bâtiment qui sera construit est un bâtiment énergétiquement performant répondant au moins aux exigences PEB.

Pour qu’une cogénération puisse cohabiter avec une ou plusieurs chaudières à condensation, il faut en même temps alimenter :

  • la chaudière à condensation avec un retour en chaufferie le plus froid possible (pour le gaz < 55 °C) ;
  • le cogénérateur avec un retour, dont la température, n’est pas inférieur à 60 °C mais pas supérieur à 70 °C. Même, la température d’eau de la plupart des moteurs n’excède pas plus de 65 °C.

C’est à ce niveau que les aspects de conception des circuits hydrauliques et de la régulation ainsi que la disposition des équipements, les uns par rapport aux autres, prennent toute leur importance.

On rappelle ici que la cogénération est en tête de cascade. Ce qui signifie que, si l’étude de faisabilité de la cogénération a été réalisée correctement, pendant 4 000-5 000 heures sur la saison de chauffe, elle doit fonctionner seule ou en parallèle avec la ou les chaudières.

Aspect hydraulique

Température de retour

On part du principe « qui peut le plus peut le moins » ; ce qui signifie qu’un retour froid des circuits secondaires peut être réchauffé et pas l’inverse !

C’est donc bien un retour le plus froid possible qui garantit une cohabitation harmonieuse de la cogénération et de la ou des chaudières à condensation !

Le retour froid en chaufferie est surtout conditionné par le mélange ou pas des retours des circuits secondaires dont les régimes de températures peuvent être totalement différents.

Ces régimes sont déterminés en fonction :

  • De la charge thermique par déperdition au travers des parois et par in/exfiltration ainsi que la charge thermique par ventilation hygiénique des différents locaux du bâtiment. Par exemple, pour un bâtiment dont la performance de l’enveloppe est élevée (isolation des parois, remplacement de châssis à  simple vitrage par des châssis à double vitrage à basse émissivité, placement de récupérateur de chaleur sur un système de ventilation à double flux, …), les régimes de températures pourraient être les suivants :
    • pour les circuits statiques, un régime 70-50 °C ;
    • pour les planchers chauffants, un régime 35-25 °C.
    • pour les batteries chaudes des systèmes de ventilation double flux avec récupérateur, un régime 45-35 °C.
  • De la présence ou pas d’un circuit d’ECS. On pourrait très bien envisager, pour une production d’ECS semi-instantanée, un régime 70-45 °C.

Configuration de collecteur

Suivant la température de retour des différents circuits secondaires, ceux-ci seront combinés ou pas au niveau du collecteur principal.

Un seul collecteur de retour (régime ECS : 70-45 °C).

     

Collecteur de retour haute et basse température (régime de température 70-60 °C).

Concevoir 

Pour plus de renseignements sur la conception correcte des circuits de distribution.

Techniques

Pour plus de renseignements sur les circuits hydrauliques associés à une chaudière à condensation.

Configuration des équipements de production

En conception, pour optimiser énergétiquement l’association d’un cogénérateur avec une ou plusieurs chaudières à condensation, le nombre de configurations hydrauliques des équipements de production est assez limité de par la complexité des projets.

La configuration hydraulique du circuit primaire est en général tributaire :

  • de la cohérence entre les régimes de températures des circuits secondaires ;
  • de l’évolution ou pas du nombre de circuits secondaires : le projet est-il prévu en plusieurs phases ou pas ?
  • et du type de chaudières disponibles sur le marché en fonction de la puissance. On envisagera, par exemple :
    • une chaudière à condensation avec un seul ou deux retours (échangeurs haute température et à condensation en série ou les deux échangeurs en parallèle) ;
    • une chaudière à grand ou faible volume d’eau ;
    • une chaudière nécessitant un débit minimum ou pas ;
    • une chaudière traditionnelle nécessitant un retour chaud (minimum de 60°C pour éviter la condensation dans l’échangeur).

Différentes configurations sont proposées par les fabricants. A quelques variantes près, elles se ressemblent. On considère ici, à titre d’exemple, trois associations caractéristiques de chaudières de différents types avec un cogénérateur. À noter que certains constructeurs de chaudières proposent maintenant des solutions complètes d’association de chaudières avec cogénérateur pilotée par une même régulation. En conception, il est intéressant d’opter pour une solution complète du même constructeur sachant qu’il est très important que la régulation porte sur l’ensemble de la chaufferie, y compris la cogénération.

Il est bien entendu que la règle de prudence est toujours d’application sachant que chaque projet est un cas particulier. Le responsable du projet fera toujours appel à un bureau d’étude spécialisé capable de maîtriser non seulement les techniques liées aux cogénérateurs, mais aussi celles faisant appel aux chaudières.

Exemple 1 : Deux chaudières à condensation et un cogénérateur à huile végétale

Schéma Deux chaudières à condensation et un cogénérateur à huile végétale.

Source : Sibelga.

Quelques explications :

Les circulateurs des circuits secondaires assurent la circulation du fluide caloporteur tant au primaire qu’au secondaire.

Le ballon tampon du cogénérateur est hydrauliquement en tête du retour. Vu que l’objectif premier est de maximiser le nombre d’heures de fonctionnement du cogénérateur, le ballon tampon est  le « fournisseur prioritaire » des besoins de chaleur.

Tant que la puissance du cogénérateur est suffisante, il est le seul producteur primaire de chaleur.

Une fois que le besoin de chaleur dépasse la puissance du cogénérateur, l’appoint est donné par la première chaudière à condensation. La vanne 3 voies permet l’irrigation du retour chaud tandis que la vanne 2 voies celle du retour froid. Ces deux vannes travaillent en tout ou rien et sont commandées par la régulation de la chaudière qui est en demande de production de chaleur.

Lorsque le besoin de chaleur devient très important, la seconde chaudière à condensation peut donner le solde de chaleur.

Exemple 2 : Une chaudière traditionnelle, une chaudière à condensation et un cogénérateur

Une chaudière traditionnelle, une chaudière à condensation et un cogénérateur

Source : Sibelga.

Quelques explications :

Les circulateurs des circuits secondaires assurent toujours la circulation du fluide caloporteur tant au primaire qu’au secondaire.

Le ballon tampon du cogénérateur est aussi hydrauliquement en tête de retour.

Tant que la puissance du cogénérateur est suffisante, il est le seul producteur primaire de chaleur.

Une fois que le besoin de chaleur dépasse la puissance du cogénérateur, l’appoint est donné par la chaudière à condensation. En fonction de l’ouverture des vannes de réglable 2 voies AK et 3 voies UV, l’appoint de la chaudière se répartit entre les échangeurs à haute et basse température de manière à favoriser au maximum la condensation.

Durant les périodes de grand froid, la chaudière traditionnelle peut aussi donner un « coup de pouce » par la modulation de la vanne 3 voies SK.

Exemple 3 : une chaudière à condensation à un seul retour et un cogénérateur

Schéma chaudière à condensation à un seul retour et un cogénérateur.

Source : Sibelga.

Quelques explications :

Les fabricants proposent de plus en plus des chaudières à condensation à un seul retour.

Dans ce cas-ci, lorsque la cogénération ne peut plus assurer les besoins de chaleur, la régulation centrale « libère » la chaudière à condensation en ouvrant la vanne 3 voies qui lui est associée. Cette vanne tout ou rien permet le passage du débit total dans la chaudière à condensation.

Aspect de régulation globale

Outre la régulation individuelle des équipements qui doit être optimale, la globalisation de la régulation tant au niveau de la cascade des chaudières que de la cogénération est primordiale. Dans des projets de conception, l’occasion est rêvée d’assurer cette globalisation, à savoir qu’il est nécessaire de considérer :

  • Les chaudières à condensation et le cogénérateur avec leur propre régulation « interne » .
  • La supervision d’ensemble de tous les équipements de manière à bien orchestrer l’ensemble de la cascade avec toujours comme objectif :
    • de privilégier le fonctionnement de la cogénération ;
    • de favoriser la condensation des chaudières lorsque celles-ci fonctionnent.

Pour bien réguler l’ensemble de l’association chaudières classiques/chaudières à condensation/cogénérateur, on considérera l’ordre de priorité suivant :

  • Chaudière à condensation pour les faibles besoins d’été par exemple. C’est intéressant de faire fonctionner la  chaudière à condensation à faible charge sachant que dans une plage de module de 10 à 50 % voire 60 %, ce type de chaudière est très performant au niveau énergétique (zone 1).
  • Cogénérateur un maximum de temps durant la saison de chauffe. Pendant cette période, il module entre 60 et 100 % de sa puissance thermique nominale. Suivant le profil de besoin, la quantité de démarrages du cogénérateur peut être limitée, « ce qui lui sauve la vie ! » (zone 2).
  • Cogénérateur travaillant à 100 % de son taux de charge et chaudière à condensation modulant de 10 à 100 %. À noter toutefois que pour quelques heures par an, la seconde chaudière peut donner un appoint (zone 3).

Techniques  

Pour plus de renseignements sur la régulation de l’association chaudières classiques/chaudière à condensation/ cogénérateur.

Dimensionner une installation de chauffage : principes généraux

Dimensionner une installation de chauffage : principes généraux


Dimensionnement de la production de chaleur

Le principe du dimensionnement

Durant la saison de chauffe, deux besoins de chauffe apparaissent :

  • Un transfert de chaleur s’effectue de l’ambiance intérieure chaude vers l’extérieur plus froid, au travers des parois.
  • De l’air hygiénique entre dans le bâtiment « neuf et froid »,… et sort « vicié et chaud ».

Ces pertes de chaleur sont appelées les déperditions du bâtiment.

Le but de l’installation de chauffage est de compenser ces déperditions pour maintenir la température intérieure constante. Dimensionner les systèmes de chauffage, c’est calculer la puissance utile nécessaire pour y parvenir lors des conditions extrêmes : lorsque la température extérieure est minimale, qu’il n’y a pas de soleil et que les apports internes sont nuls.

Les déperditions du bâtiment doivent être calculées suivant la norme NBN B 62-003. (nouvelle norme NBN EN 12831 : 2003).

Toutefois, le Cahier des Charges 105 de la Régie des Bâtiments (1990) ne prend en compte que la moitié des déperditions par infiltration calculées pour chaque local. En effet, celles-ci ne se manifestent jamais simultanément : selon la direction du vent, une façade est en surpression et la façade opposée est en dépression. Conséquence, seule une partie du bâtiment (environ la moitié) voit son air renouvelé par de l’air extérieur, l’autre se voit traversé par cet air déjà préchauffé.

Actuellement, la réglementation impose l’organisation d’une ventilation permanente :

  • S’il s’agit d’une ventilation permanente organisée naturellement, une règle similaire peut être d’application : les débits qui entrent dans les locaux munis d’orifice d’alimentation sont les mêmes que ceux qui sont évacués par les locaux en dépression, après passage dans les couloirs (« le même air est utilisé 2 fois »). Si bien que le taux de renouvellement d’air moyen β peut être pris égal à 0,5.
  • Si l’installation est mécanique, c’est l’entièreté du débit d’air neuf hygiénique qui doit être pris en compte.

Attention à la température extérieure de référence !

La température extérieure extrême pour laquelle il faut dimensionner l’installation est mentionnée dans la norme NBN B 62-003 (nouvelle norme NBN EN 12831 :2003), pour chaque commune de Belgique. Cette température, appelée « température de base », correspond à la « température extérieure moyenne journalière qui, en moyenne, n’est dépassée vers le bas que pendant un seul jour par an ».

C’est cette température qui doit servir de référence et non l' »impression » du chauffagiste qui pense qu’il fait souvent plus froid dans sa région, ou qui veut à tout prix que le confort soit garanti en cas de gel à – 20 °C comme on en rencontre tous les 30 ans.

En fait, un bâtiment a de l’inertie et ses besoins de chauffage sont sensibles à la T°moyenne jour/nuit. D’ailleurs, lorsque la température de – 10 °C est choisie, il s’agit d’une moyenne entre les extrémis jour et nuit. En fait, dimensionner pour « – 10 °C », c’est en réalité dimensionner pour – 15 °C la nuit et – 5 °C le jour, par exemple. Donc une installation calculée pour – 10 °C « tiendra » pour – 15 °C la nuit.

Températures extérieures minimales de base, en Belgique.

Faut-il surdimensionner la production de chaleur pour permettre l’intermittence ?

Lorsque l’on pratique un chauffage discontinu (coupure nocturne, de week-end, …), la relance de l’installation demande une surpuissance par rapport au fonctionnement continu. Cette surpuissance sera surtout fonction de l’inertie thermique du bâtiment (la masse des matériaux) qu’il faudra réchauffer. Et l’isolation renforcée des bâtiments récents augmente l’importance relative de la puissance de relance par rapport à la puissance des déperditions en régime permanent.

La norme NBN B62-003 (nouvelle norme NBN EN 12831 :2003) estime qu’il faut tenir compte de cette surpuissance dans le dimensionnement de la production de chaleur. Mais le calcul (emprunté à la norme allemande DIN 4701) est assez complexe et peut générer des surpuissances « exagérées » (selon « rapport n°1 » du CSTC).

Par contre, le cahier des charges type 105 de la Régie des Bâtiments, et nous penchons plutôt dans ce sens, préconise de choisir la puissance de la production correspondant aux déperditions du bâtiment et de dimensionner les émetteurs de chaleur à un régime de température d’eau inférieur à celui du générateur. Par exemple, en régime 80°/60° pour les émetteurs, si la production de chaleur est dimensionnée pour un régime de 90°/70°.

Durant la saison de chauffe

Cette méthode donne lieu à un surdimensionnement des émetteurs de 27 % en moyenne, ce qui est une surcapacité suffisante dans la plupart des situations de l’année, sachant que la production de chaleur est de toute façon surdimensionnée 364 jours par an !

En fait, sur la saison de chauffe, toute installation possède une surpuissance moyenne de 100 %. En effet, la température extérieure moyenne d’une saison de chauffe est de l’ordre de 6 °C (5 °C en Ardenne) et la température extérieure de base prise en compte pour le dimensionnement est en moyenne de – 10 °C. La différence de température entre intérieur et extérieur à vaincre est donc en moyenne de 20 °C – 5 °C = 15 °C, alors que l’installation a été dimensionnée pour une différence de 20 °C – (- 10 °C) = 30 °C, soit 2 fois plus.

Lors de la situation la plus critique

Il reste la situation la plus critique : on peut imaginer, par exemple, que le chauffage est coupé entre Noël et Nouvel An, que le bâtiment est seulement maintenu à 14 °C et qu’il gèle à – 10 °C le jour de la reprise…

Le surdimensionnement des émetteurs ne sera pas utile si la production de chaleur ne l’est pas.
Mais plusieurs critères vont renforcer la puissance de chauffe effective :

  • Lors de la sélection de la production de chaleur, la norme NBN D30-001 (1991) propose la répartition de puissance suivante :

Puissance calculée
Qtot [kW]

Nombre
minimum
de production de chaleur

Puissance utile de la production de chaleur

Production de chaleur 1

Production de chaleur  2

Production de chaleur 3

< 200

1

1,1 x Qtot

200 kW < .. < 600

2

0,6 x Qtot

0,6 x Qtot

> 600

3

0,33 x Qtot

0,33 x Qtot

0,5 x Qtot

3

0,39 x Qtot

0,39 x Qtot

0,39 x Qtot

de facto, la puissance de la (des) production (s) de chaleur sera surdimensionnée de 10 à 20 %,
  • Lors des calculs, des marges de sécurité sont prises sur la définition des caractéristiques thermiques des matériaux qui composent les parois.
  • La production de chaleur choisie dans un catalogue de fournisseur aura une puissance supérieure à la valeur calculée.
  • La ventilation mécanique des bâtiments doit être mise à l’arrêt en période d’inoccupation, et donc aussi pendant la relance. La ventilation mécanique représentant de l’ordre de 50 % de la puissance de chauffe d’un bâtiment bien isolé, c’est autant de puissance de relance qui se dégage. Si l’installation de ventilation est naturelle, une fermeture soit des grilles d’entrée d’air, soit des cheminées de sortie d’air est recommandée pour limiter les déperditions en période d’inoccupation. S’il s’agit d’un ancien bâtiment sans système de ventilation, portes et fenêtres resteront fermées durant la relance.
  • La régulation par optimisation relancera suffisamment tôt le chauffage, quitte par période exceptionnelle de gel intense, à ce que l’installation fonctionne en régime continu sans interruption.
  • Dès l’arrivée des occupants, des apports internes (éclairage, bureautique, …) viendront renforcer l’apport des corps de chauffe.
  • Les périodes de froid intense sont accompagnées de ciel serein et donc de soleil, permettant un éventuel complément de chauffe en milieu de matinée.

Et finalement, faudrait-il vraiment surdimensionner toute une installation pour une situation exceptionnelle pouvant nuire très temporairement à notre confort ?

Faut-il tenir compte des pertes de distribution ?

Non, le dimensionnement ne doit pas tenir compte des pertes dans le réseau de distribution. En effet, celles-ci sont en partie récupérées par le bâtiment et, lorsque les conduites parcourent des zones non chauffées, leur degré d’isolation est suffisant pour rendre les pertes négligeables.

Comment vérifier que le dimensionnement a été effectué correctement ?

Déperditions au travers des parois et pertes par ventilation

C’est le bureau d’études ou l’installateur qui doit effectuer le dimensionnement, c’est-à-dire calculer les déperditions du bâtiment suivant la norme NBN B62-003 (nouvelle norme NBN EN 12831 :2003). Pour cela, il a besoin de connaître :

  • La surface et la composition de toutes les parois qui entourent le volume chauffé du bâtiment : murs extérieurs, murs intérieurs en contact avec des locaux non chauffés, portes et fenêtres, planchers sur sol, sur cave, sur vide ventilé, toiture ou plafond sous grenier non chauffé, coupoles, …
  • Les températures de consigne de chacune des zones intérieures (la norme donne des valeurs indicatives à prévoir en fonction du type de local).

Ce qui signifie que si ces données n’ont pas été demandées, le dimensionnement n’a pas été réalisé selon les règles.

À titre de contrôle, on peut se faire une idée de la puissance à installer en utilisant le tableau suivant (attention, ce tableau ne peut être utilisé pour dimensionner, mais bien pour vérifier un calcul !) :

Puissance spécifique à installer [W/m³] pour une température intérieure de consigne de 19 °C, une température extérieure de base de – 8 °C et un taux de renouvellement d’air de 0,7 vol/h

Compacité du bâtiment
(Volume chauffé / Surface déperditive) [m]

Niveau global d’isolation

K35

K45

K70

K150

0,5

23,9

31,6

46,3

67,6

1

16,7

19,4

26,6

47,3

1,5

14,7

17

22,6

40,6

2

13,9

15,9

21,0

37,2

3

13,5

15,2

20,2

33,8

4

16,8

32,1

K35 = bâtiment basse énergie ;
K45 = bâtiment bien isolé (construire avec l’énergie) ;
K70 = bâtiment isolé des années 80 ;
K150 = bâtiment ancien et non isolé.

On se rend compte que l’on atteint qu’exceptionnellement une puissance de 60 W/m³. Ce ne sera que pour un petit bâtiment très peu compact (fort étalé et présentant beaucoup de recoins) et extrêmement mal isolé.

Calculs

Pour adapter ces valeurs à votre situation et contrôler le dimensionnement de votre nouvelle chaudière.

Cahier des charges

Dimensionnement de la production de chaleur. Puissance de la production combinée de chauffage et d’eau chaude sanitaire.

Puissance de relance

A la puissance nécessaire pour vaincre les déperditions au travers des parois et les pertes par ventilation, il faut adjoindre la puissance de relance en cas d’intermittence ou de ralenti nocturne. Comme le montre le tableau suivant (extrait de la norme  NBN EN 12831), la puissance de relance dépend principalement :

  • De l’inertie du bâtiment ;
  • De la chute prévue de la température intérieure lors du ralenti ;
  • Du temps de relance toléré pour atteindre le confort.
Temps de relance pour une durée maximale de ralenti de nuit de 12 heures frh
W/m²
Chute prévue de la température intérieure lors du ralenti
2K 3K 4K
Inertie du bâtiment
faible moyenne forte faible moyenne forte faible moyenne forte
1

2

3

4

18

9

6

4

23

16

13

11

25

22

18

16

27

18

11

6

30

20

16

13

27

23

18

16

36

22

18

11

27

24

18

16

31

25

18

16

L’addition des puissances dues aux déperditions des parois et des pertes par ventilations avec la puissance de relance détermine la puissance totale à prévoir pour le système de production de chaleur.


Influence de la performance de l’enveloppe du bâtiment

Facteurs d’influence

Le dimensionnement d’une installation de chauffage dépend donc :

  • de la charge thermique due aux déperditions au travers des parois ;
  • de la charge thermique due à la ventilation et aux in/exfiltrations ;
  • de la puissance de relance nécessaire en cas d’intermittence.

Au travers de différents exemples repris ci-dessous, on se propose d’étudier l’influence de l’amélioration de la performance de l’enveloppe d’un bâtiment.

Exemple 1

Soit un immeuble de bureau modélisé avec les caractéristiques suivantes :

  • Composé d’un sous-sol enterré sur la moitié de la surface au sol, d’un RDC + 2 ;
  • Empreinte au sol de 980 m² ;
  • 3 411 m² de surface nette totale ;
  • 10 233 m³ de volume intérieur ;
  • La hauteur sous plafond est de 2,5 m ;
  • Le bâtiment est équipé d’un système de ventilation double flux avec un récupérateur de chaleur de rendement thermique de 70 % ;
  • Le taux de renouvellement est de 1 vol/h ;
  • Le rendement moyen du récupérateur de chaleur sur l’air hygiénique est de 70 % ;
  • La compacité volumique du bâtiment (V/At) est de 3.3 ;
  • L’inertie du bâtiment est moyenne.

Sur base de la norme de dimensionnement NBN EN 12831 : 2003, on calcule les charges thermiques par transmission (déperditions des parois) et par renouvellement d’air, ainsi que la puissance de relance, et ce en fonction de l’évolution de la performance de l’enveloppe. On entend par performance de l’enveloppe, la prise en compte du niveau d’isolation des parois externes et de l’étanchéité du bâtiment. Une image parlante (mais à prendre avec des pincettes) est la valeur K du bâtiment.

Les hypothèses suivantes sont prises :

  • La température extérieure de dimensionnement est de – 8 °C ;
  • La température interne est de 20 °C ;
  • La moyenne de la température externe est de 8 °C ;
  • Le temps de relance est de 3 heures ;
  • En fonction de la performance de l’enveloppe, les hypothèses suivantes sont prises :
Niveau de performance de l’enveloppe Taux de renouvellement n50 (h-1) Rendement thermique du récupérateur (%) U moyen du bâtiment (W.m-2.K
K70 5 1.2
K45 2,5 70 0.8
K30 2 70 0.5
K19 0,6 70 0.3

Remarque : de manière tout à fait arbitraire, on considère que le bâtiment de type  K70, à l’époque, n’était pas équipé d’un récupérateur de chaleur.

Le graphique suivant donne une idée de l’évolution de la puissance de chauffe en fonction du niveau d’isolation du bâtiment.

Image de la performance de l’enveloppe.

Lorsque le niveau d’isolation augmente :

  • Les charges thermiques par transmission diminuent. En d’autres termes, le Umoyen du bâtiment  (W/m².K) s’améliore de par l’augmentation de l’épaisseur d’isolant dans les parois externes.
  • Les charges thermiques par ventilation et infiltration  diminuent sachant que :
    • Celles par ventilation du système de ventilation hygiénique restent constantes. En effet, on considère que les débits ne sont pas changés. Dans le cas du bâtiment K70, le système de ventilation n’étant pas équipé d’un récupérateur (courant sur les vieilles installations), la charge thermique augmente de 70 %.
    • Celles par infiltration diminuent. Effectivement, lorsqu’on améliore le niveau d’isolation, on peut considérer qu’un soin particulier doit être pris à réduire aussi le niveau d’infiltration.
  • Concernant la puissance de relance :
    • En absolu, elle diminue. En effet, par la pratique de l’intermittence ou de l’abaissement de la consigne de température de nuit, le bâtiment se refroidit. Plus l’enveloppe du bâtiment est performante, moins la chute de température interne sera conséquente et plus facile sera la relance.
    • En relatif, par rapport aux autres charges thermiques, elle augmente comme le montre les diagrammes ci-dessous :

Exemple 2

En décidant de réduire l’inertie du bâtiment (plancher et plafond en bois par exemple), l’influence de la puissance de relance sur la puissance totale de dimensionnement se réduit comme le montre le graphique suivant.

Image de la performance de l’enveloppe.

Exemple 3

A l’inverse, quand l’auteur de projet décide de renforcer l’inertie du bâtiment (plancher et plafond en béton), l’influence de la puissance de relance sur la puissance totale de dimensionnement augmente comme le montre le graphique suivant.

Image de la performance de l’enveloppe.

En résumé

L’augmentation de la performance énergétique de l’enveloppe :

En absolu, s’accompagne d’une réduction de la puissance de dimensionnement du système de chauffage. En effet :

  • Les déperditions au travers des parois sont réduites de par l’isolation croissante.
  • Le taux d’in/exfiltrations diminue. En d’autres termes, l’étanchéité du bâtiment s’améliore.
  • En cas d’intermittence, la puissance de relance diminue :
    • Pour un bâtiment à faible isolation, la coupure du chauffage en période nocturne ou le WE peut engendrer des variations de température entre le début et la fin de la coupure de l’ordre de 4 K.
    • Pour un bâtiment à forte isolation, toute autre chose restant égale (par exemple l’inertie), l’intermittence ou le ralenti nocturne provoque une réduction de la température interne limitée. Sur une période de 12 heures, on pourrait observer une chute de température de l’ordre de 2 K par exemple.

En relatif, met en évidence une augmentation significative de la part de puissance prise en charge pour la relance. Ce  qui signifie, qu’au cours d’une journée un bâtiment bien isolé :

  • Demandera tôt le matin une puissance de relance proche de la puissance nominale du système de chauffage, et ce pendant un temps relativement court.
    • Lorsque le bâtiment sera occupé, nécessitera une puissance très faible pour contrecarrer les déperditions relativement faibles pendant un temps plus long.

Concevoir des noeuds constructifs performants

Concevoir des noeuds constructifs performants

L’isolation thermique importante des parois du bâtiment accentue l’impact relatif des déperditions par les nœuds constructifs s’ils ne sont pas correctement étudiés et réalisés. Il est donc important de réaliser des nœuds constructifs thermiquement acceptables (PEB-conformes) en assurant la continuité de la couche isolante.

Cette continuité sera obtenue par :

1. soit, la jonction directe des couches isolantes des parois qui se rejoignent (PEB – règle de base 1) ;

Schéma jonction directe des couches isolantes.

2. soit, l’interposition d’éléments isolants là où cette jonction directe n’est pas possible (PEB – règle de base 2) ;

Schéma interposition d’éléments isolants.

3. soit, la prolongation du chemin de moindre résistance thermique lorsqu’aucune des solutions précédentes n’est applicable (PEB – règle de base 3).

Schéma prolongation du chemin de moindre résistance thermique.

On restera attentif à ce que :

Quelques exemples

Murs creux

Schéma angle sortant. Schéma appui de fondation. Schéma balcon.
  • Angle sortant.
  • Continuité de l’isolant.
  • Appui de fondation.
  • Élément intermédiaire.
  • Balcon.
  • Chemin de moindre résistance thermique.

 Isolation par l’extérieur

Schéma angle sortant. Schéma appui de fondation. Schéma balcon.
  • Angle sortant.
  • Continuité de l’isolant.
  • Appui de fondation.
  • Élément intermédiaire.
  • Balcon.
  • Chemin de moindre résistance thermique.

 Isolation par l’intérieur

Schéma angle sortant. Schéma mur de refend. Schéma plancher intérieur.
  • Angle sortant.
  • Continuité de l’isolant.
  • Mur de refend.
  • Élément intermédiaire.
  • Plancher intérieur.
  • Chemin de moindre résistance thermique.

Choisir le type de plancher inférieur

Pour isoler le plancher inférieur du volume protégé, plusieurs méthodes d’isolation thermique sont possibles. Le choix dépendra principalement du système constructif choisi ainsi que de la facilité, selon les cas, à créer des nœuds constructifs exempts de ponts thermiques.


Plancher sur sol

(Remarque : la pose du plancher sur le sol augmente ses performances thermiques, car le sol de par ses dimensions allonge le chemin que doit parcourir la chaleur pour atteindre l’air extérieur).

Si le plancher est posé sur le sol, en général, il est en béton armé coulé in situ.

Isolant sous la dalle en béton

La pose de l’isolant sous la dalle permet facilement une continuité de la couche isolante et donc diminue l’impact des ponts thermiques surtout en périphérie.
Ce choix accroît la masse thermique du bâtiment, ce qui augmente les possibilités d’accumulation de chaleur due aux apports solaires et diminue les risques de surchauffe en été.
Tous les matériaux isolants ne conviennent à une pose directe dans le sol. Ils doivent être étanches à l’eau, imputrescibles et avoir une résistance suffisante à la compression.

Illustration de l'isolant sous la dalle en béton.

  1. Revêtement de sol.
  2. Chape.
  3. Plancher portant.
  4. Couche de séparation.
  5. Isolant.
  6. Terre.

Isolant au-dessus de la dalle en béton

La pose de l’isolant entre la dalle en béton et la chape peut se faire en fin de travaux.
La chape doit être suffisamment armée pour éviter les fissures dues aux contraintes mécaniques. L’inertie thermique est moindre que lorsque l’isolant est posé sous la dalle. Dans le cas d’un système de chauffage par le sol, l’inertie de la chape déterminera la réactivité du corps de chauffe. La position et l’épaisseur de l’isolant ainsi que la masse de la chape devront être prises en compte dans le calcul du chauffage.

Illustration de Isolant au-dessus de la dalle en béton.

  1. Revêtement de sol.
  2. Chape.
  3. Couche de séparation.
  4. Isolant.
  5. Plancher portant.
  6. Sol.

Plancher sur vide sanitaire, sur cave, sur espace adjacent non chauffé (EANC) ou sur l’environnement extérieur

(Remarque : la présence d’un espace fermé sous le plancher diminue le flux de chaleur à travers celui-ci à cause de la température moins froide du côté extérieur de la paroi. Cette température dépendra de l’étanchéité à l’air de l’espace concerné et des performances thermiques des parois qui le séparent de l’air extérieur.)

Plancher lourd

Le plancher lourd est en général, soit en béton armé coulé sur place, soit en hourdis de béton ou de terre cuite.

Isolant sous la dalle

La pose de l’isolant sous la dalle protège celle-ci des variations thermiques importantes et des dilatations qui peuvent en résulter.
Ce choix accroît la masse thermique du bâtiment, ce qui augmente les possibilités d’accumulation de chaleur due aux apports solaires et diminue les risques de surchauffe en été.
La face inférieure de l’isolant peut être parachevée (plaques de plâtre, lambris, …)
Les risques de condensation interstitielle sont éliminés si la finition inférieure éventuelle est perméable à la vapeur d’eau.

Illustration de l'isolant sous la dalle.

  1. Revêtement de sol.
  2. Chape.
  3. Plancher portant.
  4. Isolant.
  5. Finition éventuelle.
  6. Vide.

Isolant au-dessus de la dalle

L’isolant est posé entre la dalle et la finition circulable (lourde ou légère).
L’inertie thermique est moindre que lorsque l’isolant est posé sous la dalle.
Dans le cas d’un système de chauffage par le sol, l’inertie de la chape déterminera la réactivité du corps de chauffe. La position et l’épaisseur de l’isolant ainsi que la masse de la chape devront être prises en compte dans le calcul du chauffage.
Les risques de condensation interstitielle sont importants si la finition intérieure et l’isolant sont très perméables à la vapeur d’eau.

Illustration de l'isolant au-dessus de la dalle.

  1. Revêtement de sol.
  2. Chape.
  3. Couche de séparation.
  4. Isolant
  5. Plancher portant.
  6. Vide.

Plancher léger

Isolant sous le plancher léger

La pose de l’isolant sous le plancher protège celle-ci des variations thermiques importantes.
L’espace vide laissé entre les éléments de structure du plancher permet la pose de canalisations du côté chaud de la couche isolante.
Un freine vapeur assurant principalement l’étanchéité à l’air du plancher sera posé du côté chaud de l’isolant.
La face inférieure de l’isolant peut être parachevée (plaques de plâtre, lambris, …)
Les risques de condensation interstitielle sont éliminés si la finition inférieure éventuelle est perméable à la vapeur d’eau.

Illustration de l'isolant sous le plancher léger.

  1. Revêtement de sol.
  2. Plancher portant.
  3. Isolant.
  4. Finition éventuelle.
  5. Vide.

Isolant au-dessus du plancher léger

L’isolant résistant à la compression est placé sur le plancher. Une plaque de circulation est placée sur l’isolant.
L’isolant ne doit pas être découpé et la pose est facile.
L’encombrement au-dessus du plancher est plus important.
Un freine vapeur assurant principalement l’étanchéité à l’air du plancher sera posé au-dessus de l’isolant.
La structure du plancher peut rester visible par-dessous ou la face inférieure de celle-ci peut être parachevée (plaques de plâtre, lambris, …)
Les risques de condensation interstitielle sont éliminés si la finition inférieure éventuelle est perméable à la vapeur d’eau.

Illustration de l'isolant au-dessus du plancher léger.

  1. Revêtement de sol.
  2. Pare vapeur éventuel.
  3. Isolant.
  4. Plancher portant.
  5. Vide.

Isolant à l’intérieur de la structure du plancher léger

L’isolant peut être posé en panneaux ou en vrac. Les panneaux doivent être ajustés par découpe.
Les éléments de la structure interrompent la couche isolante, ce qui provoque des ponts thermiques (plus ou moins importants selon les types de matériaux mis en présence) et diminue les performances thermiques de la couche isolante.
Un freine vapeur assurant principalement l’étanchéité à l’air du plancher sera posé au-dessus de l’isolant.
La face inférieure de la structure doit être parachevée (plaques de plâtre, lambris, …) Les risques de condensation interstitielle sont éliminés si la finition inférieure éventuelle est perméable à la vapeur d’eau.

Illustration de l'isolant à l’intérieur de la structure du plancher léger

  1. Revêtement de sol.
  2. Freine vapeur, étanchéité à l’air.
  3. Structure du plancher.
  4. Isolant.
  5. Finition
  6. Vide.

Délimiter le volume protégé [concevoir]

 


Définition

Dans le cadre de la réglementation sur la Performance Energétique des Bâtiments (PEB) le volume protégé est défini.

« Volume de tous les espaces d’un bâtiment qui est protégé du point de vue thermique, de l’environnement extérieur (air ou eau), du sol et de tous les espaces contigus qui ne font pas partie du volume protégé (chapitre 2 de l’Annexe A1 de l’AGW du15 mai 2014 : définitions).

Le volume protégé doit comprendre au moins tous les espaces chauffés (et/ou refroidis) (en continu ou par intermittence) qui font partie du bâtiment considéré … Les espaces du bâtiment considéré, qui ne sont pas repris dans le volume protégé, sont donc non chauffé par définition (article 5.2 de l’Annexe A1 de l’AGW du15 mai 2015 : subdivision du bâtiment) ».

La détermination du volume protégé permet de déduire quelles sont les parois qui déterminent son enveloppe et qui doivent donc être performantes du point de vue thermique (pour ne pas laisser passer la chaleur).

Les caractéristiques de l’environnement du côté froid sont aussi définies : Espace Adjacent Non Chauffé (EANC), cave, vide sanitaire, sol ou air extérieur. Cela permet de calculer avec précision les performances thermiques (U et R) de ces parois.


Délimitation du volume protégé des nouveaux bâtiments

Lorsque le bâtiment doit encore être construit, le maitre d’œuvre choisit les locaux qu’il souhaite intégrer dans le volume protégé.

Il veillera à donner au bâtiment la forme la plus compacte possible, à exclure du volume protégé tous les locaux qui ne nécessitent pas d’être chauffés et à coller ces derniers contre le volume protégé pour en augmenter la protection.

Les parois de l’enveloppe du volume protégé devront au moins répondre aux exigences réglementaires.

Il ne pourra pas chauffer les espaces qui n’appartiennent pas au volume protégé.

Choisir la cheminée et la ventilation de la chaufferie

Étanchéité et alimentation en air

         

   

Distinction entre chaudières étanches (figures du bas) et non-étanches (figures du haut) ainsi que des chaudières à tirage naturel (figures de gauche) et à tirage forcé (figure de droite)

Étanchéité de la chaudière

On distingue les chaudières étanches et non-étanches. Les chaudières étanches ont des circuits de combustion étanches par rapport à l’enveloppe du bâtiment. Elles tirent leur air de combustion de l’environnement extérieur. À l’opposé, la chaudière non-étanche soutire son air de combustion de la pièce dans laquelle elle est installée. Cette distinction a une influence sur la stratégie de ventilation du local de chauffe. De manière générale, la ventilation a pour objectif de maintenir la température du local en-dessous d’un certain seuil (typiquement 40°C). En effet, la chaudière ainsi que les circuits hydrauliques associés sont sujet à des pertes de chaleur. Le but de ventilation est alors d’évacuer ces pertes. Dans le cas d’une chaudière non-étanche, la ventilation du local doit aussi amener l’air nécessaire pour une combustion correcte dans l’appareil. Cela aboutit à un dimensionnement différent, essentiellement en ce qui concerne l’amenée d’air neuf dans le local de chauffe.

Tirage naturel ou forcé

Une seconde distinction concerne la force motrice qui assure le mouvement des gaz dans le circuit de combustion. On trouve, d’une part, les chaudières munies d’un ventilateur. Si celui-ci est suffisamment puissant, il assurera la majeur partie du travail pour amener l’air neuf à la chaudière et pour évacuer les fumées. On parle alors de tirage forcé. D’autre part, on a les chaudières travaillant essentiellement par tirage naturel. En effet, l’air contenu dans la cheminée a une température plus élevée que la température ambiante si bien que la densité de l’air dans cette cheminée est plus faible. Du coup, cette colonne d’air a tendance à s’élever tout en appelant de l’air frais vers l’appareil de combustion.  De nouveau, cette distinction entre mode de fonctionnement conditionne le dimensionnement de la cheminée. Dans le cas du tirage naturel, celle-ci doit être dimensionnée de manière rigoureuse pour assurer une évacuation correcte des produits de combustion et amener une quantité suffisante d’air neuf à l’appareil et donc garantir une bonne combustion.


Cheminée

Le rôle de la cheminée est d’évacuer les gaz de combustion. Ces gaz contiennent principalement du CO2 et de l’eau mais aussi des composants toxiques comme le CO ou des oxydes d’azote (NOx).

Une mauvaise cheminée peut donc être dangereuse pour les occupants ou se détériorer sous l’effet de la condensation des fumées. Elle peut également perturber les performances de la chaudière, en tout cas pour les chaudières en dépression.

Le conduit de cheminée doit respecter 4 critères :

  1. être bien dimensionné,
  2. avoir le tracé le plus rectiligne possible,
  3. avoir un débouché à l’abri des perturbations du vent,
  4. avoir une faible inertie thermique et une bonne isolation.

Dans le cas des chaudières étanches, les conduits d’évacuation sont considérés comme faisant partie intégrante de la chaudière si bien que le couple chaudière et circuit a été conçu par le fabricant. Il faut se référer à ses spécifications pour garantir un fonctionnement correct de l’installation. Dans les cas des chaudières non-étanches, on doit les raccorder à un circuit d’évacuation qui doit être correctement dimensionné.

Dimensionnement de la cheminée

Le dimensionnement du conduit d’évacuation diffère selon que la chaudière est dotée d’une chambre de combustion non-étanche (ouverte) ou étanche.

Dimensionnement pour chaudières étanches

Dans le cas des chaudières étanches, les conduits d’évacuation sont considérés comme faisant partie intégrante de la chaudière si bien que le couple chaudière et circuit a été conçu par le fabricant. Il faut se référer à ses spécifications pour garantir un fonctionnement correct de l’installation.

Dimensionnement pour chaudières non-étanches

Dans les cas des chaudières non-étanches, il faut les raccorder à un circuit d’évacuation qui doit être correctement dimensionné. La chaudière ne peut fonctionner correctement sans cette cheminée adaptée. C’est pourquoi, la cheminée doit être choisie en fonction de la chaudière et non l’inverse.

Par exemple, une chaudière avec un ventilateur suffisamment puissant ne nécessite pas systématiquement un tirage naturel pour assurer la bonne évacuation des fumées. Dans ce cas de figure, le conduit d’évacuation peut être relativement court. En effet, dans le cas des chaudières où le tirage naturel joue un rôle prépondérant, la longueur de la cheminée doit être suffisamment longue pour assurer le tirage souhaité. À l’opposé, ce conduit ne doit pas être trop long si on veut éviter la condensation et ses désagréments. On l’aura compris, dimensionner un cheminée est question de spécialiste qui mérite un traitement rigoureux.

En outre, on distingue les foyers dits « pressurisés » et les foyers « à dépression ». La situation est encore différente avec une chaudière gaz atmosphérique. La puissance de la chaudière joue également un rôle important puisqu’elle conditionne le volume de gaz à évacuer. Cela est d’ailleurs une donnée importante en rénovation.

Exemple pour une chaudière à tirage naturel :

On remplace une ancienne chaudière à foyer en dépression (à tirage naturel) dont la température de fumée ne descendait pas en dessous de 220°C, par une chaudière à foyer en surpression (à tirage naturel) dont la température de fumée est de l’ordre de 160°C. De plus, le surdimensionnement de l’ancienne installation a été réduit. On est ainsi passé d’une puissance de 500 kW a une puissance de 300 kW.

Suivant la norme NBN B61-001, l’ancienne chaudière demandait une cheminée (pour une hauteur de 18 m) d’un diamètre de 48 cm. La nouvelle chaudière ne demande plus qu’un diamètre de 24 cm.

Si on raccorde la chaudière de 300 kW au conduit existant, la surface déperditive du conduit devient trop importante pour la masse plus réduite des fumées. Les risques de condensation sont alors importants. Le refroidissement des fumées le long du conduit peut également être tel qu’il réduit dangereusement le tirage.

Les mauvaises réactions, face à cette situation visent à tenter d’augmenter la température des fumées à la sortie de la chaudière :

  • enlever certains turbulateurs situés dans les tubes de l’échangeur pour accélérer les fumées dans la chaudière et diminuer l’échange de chaleur dans celle-ci,
  • modifier le réglage ou la régulation du brûleur (par exemple en « pontant » la première allure).

Cela a évidemment pour conséquence de diminuer le rendement de la nouvelle chaudière.

Le bon réflexe est d’accompagner le remplacement de la chaudière d’une modification de la section du conduit de fumée, par exemple, grâce à un tubage du conduit existant.

Dimensionnement pour chaudières non-étanches à tirage naturel

De manière générale, la section des conduits d’évacuation des chaudières à tirage naturel peut être évaluée au moyen d’abaques qui tiennent compte :

  • du type de chaudière,
  • de la hauteur de la cheminée,
  • de la puissance de la chaudière,
  • de la température des fumées à la sortie de la chaudière.

En fait le calcul d’une cheminée dépend d’autres paramètres comme :

  • la longueur du conduit de raccordement,
  • la hauteur de la cheminée,
  • la hauteur du conduit de raccordement,
  • les résistances locales comme les coudes, les tés, le couronnement de cheminée, …
  • la nature de la surface du conduit,
  • l’isolation du conduit,
  • l’inertie thermique du conduit,
  • le type de chaudière,
  • la puissance de la chaudière,
  • le rendement de combustion,
  • le taux de CO2 compris dans les fumées,
  • la température des gaz de combustion.

Lorsque les conditions réelles de fonctionnement s’écartent des conditions d’établissement des abaques, il faut procéder à un calcul plus précis. Pour simplifier celui-ci, les fabricants de cheminées ont établi des tableaux et graphiques relatifs à leur produit, en fonction des types de chaudière et des conditions de fonctionnement les plus courantes. Les abaques repris dans les normes peuvent cependant donner des ordres de grandeur de contrôle permettant d’éviter un surdimensionnement excessif.

Tracé de la cheminée

Coudes et changements de section

Quelque soit la force qui assure l’évacuation des fumées, c’est-à-dire un ventilateur et/ou le tirage naturel, l’objectif est d’atteindre le débit nominal d’échappement en vainquant les forces de frottement du conduit (les pertes de charge). Il faut donc veiller à ce que le circuit d’évacuation des fumées aie des pertes de charge compatibles avec la force motrice disponible.

Dans le cas du tirage naturel, la force dépend essentiellement de la hauteur de la cheminée et de la température des fumées : plus la température est élevée et la cheminée haute, plus le tirage est important (sans arriver pour autant à la condensation). Comme on souhaite travailler avec la température de fumées la plus basse et une cheminée la moins haute possible, on comprend que le tirage naturel est limité. Il est dès lors vital de limiter les frottements (les pertes de charge) au sein du conduit d’évacuation. On comprend aisément que la rugosité, les coudes dans le conduit vont créer des frottements complémentaires qui sont autant d’entraves au tirage. Il en va de même pour les changements de section ou de forme (comme le passage d’une section carrée à une percée de toit ronde). Pour que les changements de section et de forme ne présentent quasi pas de perte de charge, il faut ceux-ci se fassent progressivement sous en angle de 15°C. Idéalement, les virages devraient s’exécuter avec des coudes de 15°. Les coudes jusqu’à 30°C présentent des résistances encore tolérables.

Dans le cas du tirage forcé, c’est le ventilateur qui principalement assure le débit d’évacuation. Sur base des caractéristiques de ce ventilateur, on peut connaître les pertes par frottement qu’il est capable de vaincre. Typiquement, le constructeur peut donner la longueur maximale du conduit qu’il est possible de placer en aval de la chaudière ainsi que le nombre de coudes.  Ces coudes peuvent avoir des angles très élevés, voire même des angles droits. Spatialement parlant, les conduits des chaudières à tirage forcé sont plus faciles à intégrer que leur homologues à tirage naturel.

Raccordement de la chaudière

Le conduit de raccordement joint le bord externe du conduit de sortie de l’appareil de combustion au conduit d’évacuation.

Dans le cas où le tirage naturel joue un rôle important dans l’évacuation des fumées, le conduit de raccordement doit aussi assurer son rôle ou du moins, ne pas perturber ce processus.
À cette fin, le raccordement de la chaudière à la cheminée ne devrait pas présenter de contre-pente, voire idéalement ne pas se faire suivant un conduit horizontal mais plutôt au moyen d’un conduit ascendant. Typique, on prescrit une pente de 45°C, surtout si la cheminée est peu élevée.

Débouché de la cheminée

De nouveau, on fait la distinction entre tirage naturel et forcé.

Dans le cas du tirage naturel, les conditions météorologiques extérieures ont une influence sur ce tirage. On pense à la température mais aussi aux variations de pression statique induites par le vent. En l’absence d’obstacles, le vent induit une dépression au niveau du débouché de cheminée par effet Venturi et ce, même en l’absence de combustion. Si cette dépression n’est pas trop importante, elle contribue favorablement au tirage. En présence d’obstacles, par exemple à proximité du bâtiment, l’écoulement autour de ceux-ci peut engendrer des dépressions ou surpressions locales (suivant l’orientation du vent). Les surpressions peuvent réduire le tirage voire engendrer du refoulement. Il faut donc veiller à ce que le débouché de cheminée se trouve hors de la zone d’influence des différents obstacles. Par obstacle, on entend le bâtiment lui-même voire un bâtiment voisin. C’est pourquoi les normes NBN B61-001 et NBN B61-002 définissent des zones d’emplacement autorisées des débouchés de cheminées par rapport aux bâtiments et autres obstacles voisins.

De manière générale, le débouchés ne peuvent gêner les constructions voisines ou se trouver dans une zone inaccessible au personnel d’entretien ou aux pompiers. Si le fonctionnement de la cheminée ne doit pas être perturbé par son environnement (essentiellement, le vent), la cheminée ne peut elle non plus perturber son environnement. En effet, elle rejette des produits de combustion qui doivent être suffisamment dilués avant de rencontrer des ouvertures de bâtiments.

Forme de la cheminée

Toujours dans l’optique de contrôler le tirage, la cheminée idéale est ronde. C’est ainsi que pour une section donnée, la surface de paroi et donc les frottements sont les moindres. Les pertes de chaleur sont également les plus faibles. Une section carrée avec coins arrondis convient aussi.

Isolation de la cheminée et inertie thermique

Plus la cheminée est haute, plus il est important de l’isoler, afin d’éviter que les gaz de combustion ne se refroidissent trop, risquant de provoquer de la condensation non prévue. En effet, à partir de 70°C, le souffre contenu dans les combustibles (principalement de fuel) se transforme en acide liquide. Dans le cas du tirage naturel, un refroidissement risquerait de réduire significativement ce tirage. La résistance thermique minimale est 0.75 m².K/W pour la norme NBN B61-001 et de 0.4 m².K/W pour la norme NBN B61-002, plus récente.

Les produits isolants choisis doivent résister à des températures élevées (en cas de dérèglement de la chaudière), être imputrescibles et ne peuvent pas se tasser (les isolants en « vrac » sont interdits). Notons que l’isolation du conduit de cheminée limite également les nuisances sonores.

Plus la cheminée est chaude, plus le tirage est important et moins les fumées se refroidissent. Ainsi, plus le conduit de cheminée a une inertie thermique importante, plus le temps nécessaire pour parvenir au tirage maximal est long. On choisira donc de préférence un conduit de cheminée dont la paroi intérieure est légère (avec bien entendu la résistance mécanique requis

Matériaux

Différents matériaux peuvent être utilisés pour réaliser un conduit de cheminée :

  • les boisseaux en terre cuite ou en béton,
  • les conduits en inox, c’est-à-dire en acier inoxydable,
  • les conduits en aluminium,
  • les conduits en matériau synthétique (Polyvinyldène  Fluoride, PVDF, et Polypropylène, PP).

Les caractéristiques des produits de combustion des chaudières de chauffage central déterminent le choix du conduit de raccordement et d’évacuation. Il s’agit :

  • de la température des fumées,
  • de leur composition chimique,
  • du risque de la formation de condensation,
  • de la présence de suie,
  • du niveau de pression.

Des normes européennes (NBN EN 1443 et 1856-1) permettent de classifier les conduits suivant leur résistance à ces différentes caractéristiques. Ces classes, complétées d’information concernant l’épaisseur minimale de paroi, le débit de fuite maximal admis et les exigences de sécurité incendie, offrent la possibilité de faire le choix parfait pour les conduits de raccordement et d’évacuation à utiliser.

 

Exemple de marquage de conduit d’évacuation métallique : différentes « classe » par caractéristiques étudiées (classe de température, de résistance aux condensats, etc.).

Bien évidemment, ces caractéristiques des produits de combustion sont influencée par le type de combustible et le type de chaudière (par exemple, avec ou sans condensation).

Boisseaux en terre cuite et en béton.

Cheminée en inox double paroi et en PVDF.

Pour les conduits métalliques ou synthétiques, on parle de « système », c’est-à-dire que le conduit de raccordement, le conduit vertical et le débouché forment un ensemble constitué du même matériau. Le fonctionnement de ce système est de la responsabilité du fabricant de conduit. Le premier avantage de ces systèmes est la facilité de dimensionnement : chaque fabricant dispose d’abaques permettant de choisir le diamètre le plus approprié à la chaudière choisie.

Quelques remarques :

  • Différentes variantes d’acier inoxydables existent. Suivant ces différences de composition, ils peuvent être mis en œuvre avec différents types de chaudière. À titre d’exemple, l’acier ANSI 316 est interdit pour les chaudières fuel à condensation et pour les chaudières à combustible solide. L’acier ANSI 904L peut quant à lui être appliqué à tout type de chaudière.

 

  • Les conduits en aluminium ne conviennent que pour les chaudières au gaz.

 

  • Les conduits en matière synthétique ne peuvent être utilisés que si les températures des fumées ne dépassent jamais 80°C, typiquement pour des chaudières à condensation. Une protection doit garantir que cette température maximale ne sera pas dépassée (par exemple, un thermostat de sécurité). Les conduits synthétiques doivent quant à eux pouvoir tenir jusqu’à une température de 120° (correspond à la classe de température T120).

Régulation du tirage

Comme le tirage naturel dans la cheminée peut fortement influencer le rendement de combustion et que ce tirage est lui-même influencé par les conditions atmosphériques (température de l’air extérieur, vent), il faut équiper une cheminée d’un régulateur de tirage. Remarquons que les chaudières gaz atmosphériques sont, quant à elles, d’office équipées d’un coupe-tirage intégré qui remplit les mêmes fonctions que le régulateur de tirage. De manière générale, on ne place pas un régulateur de tirage si la chaudière est déjà équipée d’un coupe-tirage.

Régulateur (ou stabilisateur) de tirage.

Évaluer

Pour en savoir plus sur l’impact du tirage sur le
rendement de combustion.

Le régulateur de tirage présente également d’autres intérêts :

    1. Les brûleurs pulsés actuels (gaz ou fuel) sont équipés d’un clapet d’air qui se referme automatiquement à l’arrêt. Il n’y a donc plus de ventilation du conduit de cheminée quand la chaudière est arrêtée (pertes par balayage). La cheminée reste donc humide (condensation des fumées, pénétration d’eau de pluie). A l’arrêt, le régulateur de tirage maintiendra une certaine ouverture et une ventilation permanente de la cheminée par l’air de la chaufferie, permettant au conduit de sécher.
    2. Lorsque le clapet est ouvert, le mélange de l’air de la chaufferie et des fumées diminue la concentration en vapeur d’eau des fumées et diminue la température de rosée et donc les risques de condensation.

Nombre de conduits

Selon la norme NBN B61-001 et NBN B61-002, il y a lieu de prévoir un conduit par chaudière. C’est la règle générale qu’il faut retenir.

Il existe néanmoins deux exceptions qui s’applique aux chaudières atmosphériques à tirage naturel :

Premièrement, on peut utiliser des conduits collectifs pour des chaudières gaz atmosphériques si les dispositions locales ne permettent pas de disposer d’un conduit individuel. Dans ces cas, il faut se référer à la norme NBN D51-003 qui mentionne notamment que plusieurs chaudières peuvent être raccordées sur une même cheminée.

Notons que pour y voir plus clair, l’ARGB a édité un cahier des charges « Exigences pour les ensembles composés de chaudières en batterie et fonctionnant en cascade » qui permet de définir les critères à respecter en matière d’évacuation des produits de combustion. Pour le lecteur intéressé, l’ARGB a également édité un dossier technique « Installations alimentées en gaz combustible plus léger que l’air, distribué par canalisations » (février 2000), qui permet de s’y retrouver dans les méandres de la norme NBN D51-003 et de ses addenda 1 et 2.

Deuxièmement, dans le cas des chaudières non-étanches avec évacuation des produits de combustion par tirage naturel et de puissance inférieure à 70 kW, des chaudières de même type, montées en batterie et installées dans un même espace, peuvent être assimilées à une chaudière unique pour autant que :

  • les chaudières font partie d’un ensemble prévu pour fonctionner comme une seule unité (chaudières en cascade),

 

  • les chaudières sont équipées d’un collecteur de fumées spécialement conçu par le fabricant qui assure une évacuation correcte des produits de combustion et une combustion optimale dans n’importe quelle condition de fonctionnement,

 

  • le bon fonctionnement de l’ensemble a été contrôlé en laboratoire et certifié,

 

  • la puissance de démarrage à froid est, de minimum, 25 % de la puissance utile de l’ensemble des chaudières.

Il est en tout cas défendu de raccorder sur un même conduit, une chaudière gaz atmosphérique et une chaudière à brûleur pulsé.

Cas particulier des chaudières à condensation

Les produits de combustion issus d’une chaudière à condensation sont saturés en vapeur d’eau dont une partie va se condenser sur les parois de la cheminée. Cela exclut une évacuation par une cheminée traditionnelle en maçonnerie, car l’humidité provoquerait de graves dommages au bâtiment.

Les solutions possibles sont  :

  • La cheminée étanche à l’humidité, en acier inoxydable ou en matériau synthétique. Elle permet de maintenir une température inférieure au point de rosée sans que l’humidité ne la traverse et attaque la maçonnerie. Fonctionnant en surpression, elle est aussi étanche aux produits de combustion.

 

  • Le tubage, qui s’applique à une cheminée ancienne, doit être étanche, résistant à la corrosion et installé dans une cheminée. Le tubage doit pouvoir fonctionner en surpression dans toute sa longueur.

 

  • La cheminée en boisseaux pour peu qu’elle possède un agrément technique ATG pour fonctionner avec une chaudière à condensation.

En principe, dans une chaudière à condensation la température des fumées est supérieure à la température de l’eau entrant dans la chaudière d’environ 5°C. La température des fumées ne peut donc jamais dépasser 80°C (selon la norme NBN B61-002). Cependant pour pallier à un défaut de la régulation de cette dernière, un thermostat de sécurité coupant la chaudière si la température des fumées dépasse 120°C doit être prévu dans les raccordements vers la cheminée en matériau synthétique.

Il est important aussi de signaler que l’on ne peut raccorder sur un même conduit de cheminée, une chaudière traditionnelle et une chaudière à condensation.

Évacuation des condensats avec une chaudière à condensation : NIT 235 du CSTC

Une chaudière installée dans une maison unifamiliale moyenne produit approximativement 500 à 2000 litres de condensat par an. Il s’agit de rejets acides avec un pH compris entre 2 et 4 dans le cas du mazout pauvre en soufre (mazout extra) et entre 4 à 5 dans le cas du gaz naturel. Il est donc important que les matériaux qui entrent en contact avec les condensats présentent une bonne résistance à la corrosion : matières synthétiques, grès, fonte …

Il est vivement déconseillé d’évacuer les condensats sur des toitures comportant des éléments métalliques (couverture, avaloirs, gouttières, conduits d’évacuation, …) ou de les mettre en contact avec des matériaux de construction pierreux traditionnels ou des produits à base de ciment (tuyaux en fibres-ciment, par exemple).

A l’heure actuelle, il n’existe en Belgique aucune prescription spécifique applicable à l’évacuation de ces condensats acides. Il est conseillé de ne pas déversé ces condensats directement mais de les mélanger préalablement avec les eaux usées domestiques qui sont de nature plutôt basique (produits de nettoyage), donc apte à neutraliser l’acidité. Si l’on ne parvient pas à ramener le pH à un minimum de 6.5, il est alors recommandé de réaliser un traitement des condensats pour les neutraliser.

Si la chaudière à condensation fonctionne au mazout, il y a lieu de disposer, en amont du système neutralisant éventuel, un filtre à charbon actif dans le but de débarrasser l’effluent des dérivés huileux.


Remplacement de chaudière et adaptation de la cheminée

Le remplacement d’une ancienne chaudière s’accompagne presqu’inévitablement d’une diminution du débit et de la température des fumées à évacuer. En effet :

  • la puissance de la chaudière est revue à la baisse (souvent fortement),
  • l’échange de chaleur entre les fumées et l’eau est optimalisé dans la chaudière.

Suivant les prescriptions reprises ci-dessus, cela devrait nécessiter une modification de la section de la cheminée existante.

Dans tous les cas, si des condensations apparaissent dans le conduit de cheminée après la rénovation, il ne faut pas corriger le tir en détériorant les performances de la chaudière, c’est-à-dire :

  • en modifiant le réglage du brûleur pour augmenter la température des fumées (diminution du rendement de combustion),

 

Deux solutions permettent de limiter les risques de condensation sans modifier la cheminée :

  • isoler le conduit de raccordement entre chaudière et la cheminée pour augmenter la température des fumées à l’entrée de la cheminée,

 

  • maintenir, à l’arrêt, l’ouverture du régulateur de tirage pour assurer une ventilation de la cheminée à l’arrêt. Notons que la présence d’un régulateur de tirage diminue, en soi, les risques de condensation car la dilution des fumées dans de l’air diminue le point de rosée.

Si ces deux solutions n’apportent pas de résultat, le tubage de la cheminée pour adapter celle-ci à la nouvelle chaudière, devient inévitable.


Ventilation du local contenant les appareils de chauffe

La ventilation a pour objectif d’évacuer les pertes de chaleur des équipements de combustion afin de maintenir une température acceptable au sein du local contenant ces appareils. En outre, la ventilation assure la qualité de l’air en amenant l’air frais et en évacuant l’air vicié.

Dans le cas des appareils non-étanches, la ventilation doit aussi

  • assurer un apport d’air comburant suffisant au brûleur pour permettre un déroulement correct de la combustion,
  • maintenir constante la dépression entre la chaufferie et la cheminée.

Pour les installations de chauffage de puissance supérieure à 70 kW, les prescriptions en matière de ventilation des chaufferies sont reprises dans la norme NBN B61-001. Dans ce cas, il est nécessaire de travailler avec un chaufferie qui sera équipée d’une ventilation basse et d’une ventilation haute. Celles-ci sont directement en contact avec l’extérieur ou raccordées à des conduits suivant les indications de la norme.

Pour les installations de chauffage de puissance inférieure à 70 kW, les prescriptions en matière de ventilation des chaufferies sont reprises dans la norme NBN B61-002. Comme évoqué ci-dessus, une chaufferie spécifique n’est pas toujours nécessaire. A la base, un débit de 0.72 m³/h.kW avec un minimum de 25.3 m³/h doit être garantis pour maintenir la température du local inférieure à 40°C. Se superpose ensuite les contraintes inhérentes à la technologie des chaudières, à savoir si la chaudière est étanche ou pas. Si la chaudière est non-étanche, il faut garantir un débit d’air suffisant pour assurer la combustion optimale. Si l’on travaille sur base d’une ventilation naturelle, l’air est admis au sein du local de chauffe au moyen d’un orifice ou d’un conduit dont les caractéristiques sont prescrites par la norme. L’air vicié du local est évacué par un orifice de diamètre au moins égal au tiers de l’orifice d’admission.

Ventilation basse pour P > 70 kW

L’amenée d’air doit se faire au moyen d’un dispositif de ventilation basse situé le plus près possible du sol (au maximum au 1/4 de la hauteur du local).

D’une manière générale, pour les chaufferies de moins de 1 200 kW, la section à prévoir est de :

1 dm² par 17,5 kW, si la cheminée est plus haute que 6 m.

1,5 dm² par 17,5 kW, si la cheminée est moins haute que 6 m.

Cette section minimale augmente en fonction des accidents de parcours entre l’extérieur et la chaufferie (si la conduite d’amenée d’air comprend plus de 3 coudes). Dans ce cas et pour les chaufferies de plus de 1 200 kW, il faut se référer à la norme.

Exemples de ventilation basse pour une chaufferie en sous-sol.

1. première grille, 2. deuxième grille, 3. premier coude à 90°, 4. deuxième coude à 90°, 5. découpe en biais à 45°

Si un conduit d’amenée d’air est nécessaire dans la chaufferie, celui-ci sera coupé à 45°C, pour éviter une obstruction intempestive.

L’ouverture de ventilation basse ne doit pas forcément déboucher à l’extérieur. Elle peut communiquer avec un autre local, pour autant que celui-ci soit à son tour ventilé.

Ventilation haute pour P > 70 kW

L’air vicié éventuellement accumulé dans la chaufferie doit également être évacué à l’extérieur. À cet effet, une ventilation haute doit être prévue à la partie haute du local, du côté opposé à la ventilation basse pour permettre un bon balayage du local.

  • Le conduit de ventilation haute peut être un conduit parallèle à la cheminée. Dans ce cas, son débouché à l’extérieur doit se trouver entre 0,5 et 1,5 m sous le débouché de la cheminée.

Conduit de ventilation haute associé à la cheminée.

  • Cela peut également être un conduit plus court débouchant au-dessus de la toiture ou à un niveau intermédiaire. Dans ce dernier cas, le débouché doit être le plus éloigné possible des portes et fenêtres.

Cas particulier des chaufferies en ambiance polluée

L’air aspiré par le brûleur doit être exempt de produits corrosifs pour la chaudière.

Par exemple, si l’air de combustion risque d’être pollué par des composants halogénés en provenance, par exemple de firmes de nettoyage à sec, d’imprimeries, de teintureries, d’une piscine…, des précautions doivent être prises pour assurer une amenée d’air frais pur. Dans certains cas, l’utilisation de chaudières étanches avec prise d’air dans un endroit non pollué est à conseiller.

Chaudières gaz raccordées à une cheminée à ventouse (on parle aussi de combustion étanche) : l’air comburant est aspiré à l’extérieur par le conduit externe et les fumées sont évacuées par le conduit interne. Les deux conduits peuvent être séparés mais suffisamment proches pour être exposés à des conditions de vent identiques. Dans le cas, la ventilation basse de la chaufferie n’est plus nécessaire.

Les chaudières sont également très sensibles aux poussières. Celles-ci sont aspirées par le brûleur, encrassent le ventilateur, sont brûlées et se déposent dans la chaudière. Il en résulte une perte de rendement. C’est pourquoi, il faut partir du principe, pourtant rarement respecté qu’:

une chaufferie ne peut être un atelier !
Exemple.

Dans une institution hospitalière, une chaudière s’avère difficile à régler, tombe souvent en panne et s’encrasse rapidement.

La raison : la ventilation basse de la chaufferie est en communication directe avec la buanderie. Une quantité importante de pluches est retrouvée dans le ventilateur du brûleur !

Concevoir le préchauffage par capteurs solaires

Concevoir le préchauffage par capteurs solaires

La non-simultanéité de la production et des besoins

Le problème essentiel du chauffage par capteurs thermiques est la non-simultanéité de la production solaire possible et la demande de chauffage du bâtiment. (À l’inverse, la climatisation solaire présente une adéquation relative entre les besoins et la disponibilité solaire. Mais le défi est de taille : faire du froid avec du chaud ! Cela se fait par l’intermédiaire d’une machine à ad/absorption).

Graphe ECS avec appoint chauffage.

Le graphe ci-dessus montre donc tout l’intérêt pour le chauffage de développer des technologies de stockage inter-saisonnier ! Si un jour les recherches aboutissaient en ce sens, il serait tout à fait possible de se chauffer gratuitement en hiver grâce à la récolte solaire estivale ! Mais avant cela, pensons d’abord à réduire nos besoins énergétiques !

À l’heure actuelle, le stockage d’énergie étant basé sur le réchauffement d’un ballon d’eau, on peu difficilement stocker l’énergie pour plusieurs semaines !
De plus, le système doit alors être dimensionné sur les besoins de mi-saisons voir plus tôt dans l’année. Les surfaces de capteurs nécessaires, considérables tout comme dans le cas d’installations solaires couvrant uniquement une grande partie des besoins d’ECS, seront donc superflues en été, diminuant le temps d’utilisation  des capteurs et leur production surfacique.

Cela rend, dans les conditions actuelles de prix, les installations collectives avec appoint chauffage difficilement viables économiquement par rapport aux systèmes plus traditionnels.

Néanmoins, certains cas seront plus favorables aux économies de chauffage possibles par le placement de capteurs solaires. La condition principale est une demande de chauffage bien  présente en mi-saison voire en été.

Cette condition est plus facilement rencontrée dans des bâtiments où la consigne reste importante en intersaisons (maisons de soins, maisons de repos,…) ou qui ne peuvent valoriser les gains solaires directs (via les fenêtres).

La première chose à faire sera donc d’identifier ses besoins de chauffage par rapport à la disponibilité solaire mensuelle.

D’un point de vue technique, les capteurs à tubes sous-vide de type heat pipe ainsi qu’un chauffage à basse température conviendront mieux à ce type d’applications.

Les cas de figure étant nombreux et tellement différents qu’une étude préalable au projet devrait confirmer la pertinence d’un tel système.

Établir le cahier des charges « qualité »

Établir le cahier des charges "qualité"

Le cahier des charges d’une installation solaire peut se concevoir selon deux approches différentes. Sur base des résultats de l’étude de faisabilité, le bureau d’études choisi par le maître de l’ouvrage peut soit :

  1. Définir un objectif de production de l’installation et des exigences de base auxquelles le système et certains composants doivent satisfaire. A charge pour le soumissionnaire de proposer un système qui produit annuellement le nombre de kWh solaires requis. Cette approche est utilisée dans l’optique d’une Garantie de Résultats Solaires.
  2. Dimensionner lui-même l’installation optimale et décrire en détail le système et tous ses composants. Le soumissionnaire fera une offre de prix pour la fourniture des composants spécifiés et les travaux d’installation.

Dans les deux cas, les exigences de qualité seront stipulées dans le cahier des charges afin de garantir la durabilité et le fonctionnement optimal de l’installation. Ci-dessous, quelques points qui doivent faire l’objet d’une attention particulière lors de la rédaction du cahier des charges :

  • Plus encore que dans les systèmes de production de chaleur traditionnels, un matériel de qualité, monté dans les règles de l’art est indispensable au bon fonctionnement de l’installation solaire thermique. Deux grands types de systèmes sont couramment utilisés sous nos latitudes : les systèmes à vidange et les systèmes sous pression. Le choix du type de système peut être laissé au soumissionnaire à condition de spécifier les exigences de qualité minimales pour chaque type de système.
  • Les capteurs constituent, avec la régulation, le cœur du système solaire thermique. Ils doivent satisfaire à de nombreuses exigences de durabilité, de rendement et de résistance à des conditions extrêmes de température et de pression. Tous ces critères sont explicités dans la récente norme européenne – EN 12975-1 : Installations solaires thermiques et leurs composants – Capteurs – partie 1 : Exigences générales – disponible auprès de l’Institut Belge de Normalisation (ouverture d'une nouvelle fenêtre ! http://www.nbn.be/). La conformité des capteurs avec cette norme constitue un gage de qualité appréciable.
  • L’énergie solaire est transférée au stockage par un échangeur de chaleur (interne ou externe au ballon). Le dimensionnement correct de cet échangeur est crucial. De fait, un mauvais dimensionnement risque d’influencer négativement tant la performance des capteurs que la consommation électrique de la pompe du circuit primaire.
  • Les pertes du stockage doivent absolument être limitées par une isolation parfaite du ballon et de la boucle de distribution d’eau chaude s’il y en a une. Le bouclage de l’eau distribuée augmente les pertes liées au stockage d’au moins 30 %. Une conception appropriée de l’installation permet de limiter ces pertes.
  • L’isolation ininterrompue des conduites du circuit primaire est capitale. L’isolation des conduites extérieures doit faire l’objet d’une attention particulière. Le matériau isolant doit résister aux intempéries et aux rayons ultraviolets, et dans bien des cas, une gaine rigide en aluminium sera nécessaire pour le protéger des attaques de rongeurs et d’oiseaux.

  • Dans les systèmes sous pression, le vase d’expansion du circuit primaire doit pouvoir contenir, outre le volume correspondant à la dilatation thermique du fluide caloporteur, l’entièreté du fluide contenu dans les capteurs au cas où celui-ci se vaporiserait suite à la montée en température des capteurs. Les soupapes de sécurité permettront à la vapeur de s’échapper en cas de problème.
  • Tous les matériaux mis en œuvre doivent résister simultanément à de hautes températures et pressions, en particulier les composants situés dans le réseau hydraulique des capteurs.
  • La garantie matérielle offerte sur un système solaire thermique est généralement de 10 ans sur les capteurs, 5 ans sur le(s) ballon(s) de stockage, et deux ans sur tous les autres composants du système.
  • Le suivi et la maintenance de l’installation solaire revêtent une importance particulière car, en cas de dysfonctionnement, le système de chauffage d’appoint pourrait fournir toute l’énergie nécessaire à la production d’eau chaude sans que l’on ne s’en aperçoive. Pour permettre un suivi élémentaire de l’installation, on placera un calorimètre sur la conduite primaire afin de mesurer l’énergie solaire transférée au ballon de stockage.

Plus de détails sur le cahier des charges d’une installation de capteurs solaires (fichier xls réalisé par le bureau 3E à l’initiative de l’IBGE)

Source : Brochure « Installer un grand système solaire de production d’eau chaude en Wallonie » réalisée par 3E ( ouverture d'une nouvelle fenêtre ! http://www.3e.be) et l’Institut de Conseils et d’Études en Développement Durable (ouverture d'une nouvelle fenêtre ! http://www.icedd.be).

Prévoir un contrat de Résultats Solaires (GRS)

Prévoir un contrat de Résultats Solaires (GRS)


La GRS est un contrat qui traduit la volonté du fabricant/fournisseur de ne pas se limiter à la simple fourniture de composants, mais de garantir également la production énergétique annuelle de l’installation solaire.

Par la GRS, le fabricant et/ou le fournisseur du système, l’installateur, l’exploitant et le bureau d’études en charge du projet deviennent solidairement responsables des objectifs de production fixés.

Éviter les bulles …

Les résultats d’audits menés sur d’anciennes installations solaires collectives ont permis de mettre en évidence certains problèmes de conception, de maintenance et de contrôle de l’installation. Ce constat a donné naissance au concept de Garantie de Résultats Solaires en France dès la fin des années 80.

La production de l’installation est suivie mois par mois à l’aide d’un dispositif de télésurveillance qui comptabilise l’énergie solaire. L’installation doit par exemple produire 90 % de l’objectif calculé, pendant deux à cinq années consécutives.

La GRS a été mise en œuvre pour la première fois en France, en 1988, sur l’Hôpital de Castres. Depuis lors des dizaines d’installations collectives avec GRS ont vu le jour en Espagne, en France et en Allemagne.

Détail important, jusqu’à présent, les systèmes qui en bénéficient ont toujours produit plus que ce que la GRS ne prévoyait !
Si le maître d’ouvrage souhaite obtenir une garantie de résultat solaire, le cahier des charges précisera :

  • Les besoins de l’établissement (le profil de puisage, la demande en chaleur,…).
  • Un objectif de production (combien de kWh solaire le système doit-il produire annuellement ?).
  • Toutes les contraintes susceptibles de limiter la production de l’installation.
  • Les exigences de qualité des matériaux utilisés.

> Pour en savoir plus sur la GRS : ouverture d'une nouvelle fenêtre ! http://www.tecsol.fr

Estimer la durée de vie et la maintenance

Estimer la durée de vie et la maintenance

Piscine solaire de Louvain La Neuve.

Actuellement, on peut aisément compter sur une durée de vie de 25 ans. L’audit de l’installation de la piscine du Blocry (capteur plans vitrés atmosphériques) à Louvain La Neuve a montré qu’après 20 ans l’installation présentait des performances de près de 90 % par rapport aux prestations initiales. Il va de soi que maintenir une bonne performance va de pair avec un entretien régulier et une maintenance correcte de l’installation.

Un guide très complet sur la maintenance à destination du responsable énergie a été réalisé par le bureau 3E à l’initiative de l’IBGE. 

Prédimensionner l’installation d’ECS

Prédimensionner l'installation d'ECS


C’est le rapport « volume de stockage / surface de capteur » qui détermine le fonctionnement optimal de l’ensemble du système et la fraction solaire atteinte, donc le bon dimensionnement de la proposition par rapport aux besoins couverts par le solaire (fraction solaire).

Différentes approches de dimensionnement sont possibles : sur base de la fraction solaire souhaitée ou à partir de l’optimum économique.

Le tout est de trouver le bon compromis entre une fraction solaire intéressante et une production au m² suffisante pour que l’installation solaire reste économiquement justifiée.
Pour les faibles fractions solaires assurant une plus grande production surfacique (meilleure efficacité et donc temps de retour plus court), on dimensionnera le système en situation estivale (besoins et apports solaires).
Pour atteindre une couverture solaire plus importante, l’installation sera dimensionnée par rapport à l’énergie solaire disponible en mi-saison.

> Plus d’infos sur l’influence de la fraction solaire sur le rendement de la production solaire.

Néanmoins, en fonctionnement, un système correctement dimensionné devrait produire entre 300 et 450 kWh/m².
Le tableau suivant présente des valeurs de dimensionnement couramment rencontrées en pratique (source ATIC) :

Fraction solaire % Type d’installation Surface de capteur Volume de stockage du tampon
20 à 40 % Grandes 1m² par 50 à 70 l/j d’ECS à 60 °C 50 l/m²
40 à 50 % Moyennes 1m² par 50 à 60 l/j d’ECS à 60 °C 50 à 60 l/m²
50 à 60 % Petites 1m² par 30 à 40 l/j d’ECS à 60 °C 60 l/m²

En règle générale, pour les très petites installations (type domestique), 4 m² de capteurs sont considérés comme un minimum pour rentabiliser une installation solaire alors que pour le logement collectif, 1 à 2,5 m² de panneaux solaires par logement suffisent.

Le Quick Scan, un outil d’aide à la décision simple et efficace

Le Quick Scan est un outil sectoriel de pré-dimensionnement des systèmes solaires collectifs, à utiliser au stade initial d’un projet.

Sur base de la consommation d’eau chaude (réelle ou estimée) de l’établissement, le Quick Scan fournit des indications sur :

  • la surface de capteurs à installer,
  • le volume de stockage solaire nécessaire, son poids et sa surface d’encombrement,
  • l’économie d’énergie primaire et de combustible réalisable,
  • le coût global du système et le coût du kWh solaire produit,
  • les émissions de CO2 évitées et le coût de la tonne de CO2 évitée.

Le Quick Scan donne des ordres de grandeur qui doivent être précisés par la suite, lors de l’étude de faisabilité et du dimensionnement final de l’installation. Il constitue un excellent indicateur de la pré-faisabilité d’un projet, mais pas un outil de dimensionnement fin pour les bureaux d’études ou les fournisseurs d’équipements solaires. En effet, le Quick Scan ne considère pas les contraintes techniques propres au bâtiment, et dimensionne l’installation selon une méthode simplifiée. Les étapes ultérieures de la démarche-projet visent à dimensionner l’installation au plus près de l’optimum économique.

Calculs

Pour accéder au Quick Scan.

Pour accéder au mode d’emploi du Quick Scan PDF.

Considérer l’aspect économique [ECS par capteurs solaires]

Considérer l'aspect économique [ECS par capteurs solaires]


Le coût d’une installation

Le graphe qui suit donne une estimation du coût d’une installation solaire par mètre carré de capteurs. Le coût varie forcément en fonction de la taille de l’installation (plus le système est grand, plus le prix par m² de capteur est réduit).

À titre d’information, on peut estimer les coûts (hors TVA) suivants :

  • pour 4 m² de capteurs  (ex. petites installations de type unifamilial), il faut compter environ 6 500 € pour tout le système (capteurs + stockage + raccordement de l’appoint), soit +/- 1 620 €/m² de capteurs,
  • pour 10 m² de capteurs (en logement collectif, cela correspond approximativement à 5 appartements), il faut compter environ 14 000 € pour tout le système, soit +/- 1 400 €/m² de capteurs,
  • pour 25 m² de capteurs  (en logement collectif, cela correspond approximativement à 15 appartements), il faut compter environ 30 000 € pour tout le système, soit +/- 1 200 €/m² de capteurs,

     Schéma coût unitaire du chauffe-eau solaire.

Bien entendu,  si l’installation solaire thermique s’inscrit dans la rénovation plus large du chauffage ou de la toiture, certains coûts fixes vont diminuer.

Afin d’éviter de mauvaises surprises, outre le coût des capteurs, d’autres paramètres doivent être pris en compte dans l’évaluation du prix de l’installation. Entre autres :

  • Le mode d’intégration architecturale choisi ;
  • La faisabilité technique de raccorder la boucle solaire à l’installation existante ;
  • L’accessibilité de la toiture ;
  • La structure de la toiture (évaluer le surcoût si on doit renforcer la toiture) ;
  • La taille de l’installation ;

Attention ! Si l’on compare simplement le prix d’achat d’un système solaire avec le prix d’un système conventionnel, le risque est grand d’arriver à la conclusion que le solaire n’est pas une option économiquement intéressante. Ce serait aller un peu vite en besogne :

  • Pour le solaire, la quasi-totalité des coûts porte sur les composants du système. Les frais de combustible sont par nature gratuits et les coûts d’exploitation faibles.
  • À l’inverse, pour une chaudière au mazout ou au gaz ou un boiler électrique, une fraction importante du coût est reportée sur le prix du combustible et/ou les frais d’exploitation.

L’approche qui semble la plus pertinente de la faisabilité économique passe donc par l’estimation du coût du kWh solaire produit (coût de l’investissement divisé par l’économie énergétique annuelle), que l’on pourra raisonnablement comparer avec le coût du kWh mazout, gaz ou électricité.


Les subsides

Pour soutenir la production d’énergie verte, les pouvoirs publics belges ont mis en place des mécanismes financiers qui réduisent le coût réellement payé par l’investisseur de capteurs  thermiques.

> Plus d’infos : ouverture d'une nouvelle fenêtre ! http://energie.wallonie.be

Plus d’infos sur le financement de la rénovation énergétique :  cliquez ici !


Quelle rentabilité ?

Si la conception et l’intégration d’une installation collective sont plus délicates que celles d’un chauffe-eau solaire individuel, la productivité de l’installation est généralement meilleure. En effet, le taux d’occupation des grands immeubles ou établissements est relativement constant tout au long de l’année et la consommation d’eau chaude y est globalement plus importante.

Les applications solaires les plus intéressantes économiquement se retrouvent parmi les établissements consommant de grandes quantités d’eau chaude : les piscines et les établissements d’accueil social (maisons de repos, centres d’accueil pour personnes handicapées, …), les internats, grands hôtels, centres de vacances, immeubles de plus de 15 logements, restaurants d’entreprise,… Plus la consommation d’eau chaude de l’établissement est élevée, plus l’installation solaire est grande, et meilleure est sa rentabilité. Et pour cause, le coût au m² d’une installation est inversement proportionnel à la surface installée; ce qui explique que de grandes installations puissent être rentables sans subsides.

Voici le prix de revient d’une installation solaire (couvrant 30 % des besoins énergétiques) en fonction de la consommation d’eau chaude sanitaire :

Installation solaire Coût du kWh solaire si :

Consommation moyenne
[l. eau à 60 °C /jour]

Taille
[m² capteurs]

Coût HTVA
[€]

Subside 0 %
[c€/kWh]
Subside 20 %
[c€/kWh]

Subside 40 %
[c€/kWh]

1 000 13 14 500 7.31 5.85 4.39
2 500 31 27 800 5.60 4.48 3.36
5 000 63 45 900 4.62 3.70 2.77
7 500 94 61 700 4.14 3.31 2.49
10 000 126 76 200 3.84 3.07 2.30
12 500 157 89 800 3.62 2.90 2.17
15 000 188 102 800 3.45 2.76 2.07
17 500 220 115 300 3.32 2.66 1.99
20 000 251 127 400 3.21 2.57 1.93
22 500 283 139 200 3.12 2.49 1.87
25 000 314 150 600 3.04 2.43 1.82

Par exemple, dans un établissement consommant 5 000 l d’eau chaude à 60 °C par jour (3e ligne du tableau), un chauffe-eau solaire produisant 30 % de l’énergie nécessaire pour couvrir les besoins en eau chaude sanitaire aura une surface de capteurs d’environ 63 m² et coûtera de l’ordre de 45 900 €. Si l’on rapporte ce coût à la quantité totale de combustible que l’installation solaire permet d’économiser, on obtient un coût de 4.62 c€ par kWh solaire (hors subside). Si l’investissement initial est subsidié (ou déductible fiscalement) à hauteur de 20 %, ce coût passe à 3.31 c€. Pour un taux de subside de 40 %, on a un coût de 2.77 c€ par kWh de combustible économisé.

Ces coûts sont donc compétitifs par rapport ceux des prix des combustibles à leur niveau actuel.

D’autre part, le prix des énergies fossiles sur le marché mondial dépend de nombreux facteurs que nous ne maîtrisons pas, alors que le coût du kWh solaire produit, lui, est stable et garanti pendant toute la durée de vie de l’installation. Il est bon de rappeler qu’entre 1998 et 2001, le prix du gaz naturel a augmenté de 41 %. Si le prix du combustible d’appoint double, l’économie financière réalisée grâce au système solaire double également ! C’est donc bien là que réside l’avantage économique majeur du chauffe-eau solaire: le prix du kWh produit est connu au départ et reste constant sur une période de 25 ans minimum.

Choisir le type d’installation [ECS par capteurs solaires]


Choix du type de capteurs

Le choix le plus courant pour la production d’eau chaude sanitaire est celui de capteurs plans vitrés.
Bien que moins performants que certains de leurs homologues « tubes sous vide », ils sont moins chers et présentent généralement une garantie plus longue (10 ans). Néanmoins, ils nécessitent parfois une superficie plus grande pour une même production et leur remplacement est moins évident (un tube peut être remplacé individuellement).D’autres facteurs peuvent aussi être déterminants :

  • La surface disponible.
  • L’orientation (les tubes sous vide à ailettes peuvent être orientés indépendamment de leur support).
  • Les différents types de pose, poids et le lestage associé (l’intégration est possible pour les capteurs plans).
  • Le coût, qui sera aussi déterminé par les paramètres précédents.
  • Etc.

> Plus d’infos sur les différents types de capteurs.

Deux capteurs peuvent aussi être comparés via leur courbe de rendement.

Calculs

Pour comparer différents capteurs sur base de leur courbe de rendement.

Sous pression ou à vidange ?

Si le choix d’un système indirect à boucle fermée est généralement évident sous nos latitudes, reste le choix entre les systèmes à vidange ou les systèmes sous pression non vidangeable.

Chacun présente des caractéristiques propres et les avantages qui y sont liés.

Système à vidange

Schéma de système à vidange

  • Pas de choc thermique ni surpression importants : Le système étant vidangé lorsqu’il entre en température de stagnation, l’ébullition du fluide caloporteur est évitée. Dans les systèmes traditionnels sans vidange, il n’est pas rare de voir des écarts de température allant de – 30 °C à plus de 160 °C.
  • Suppression  de certains composants (et du coût associé) : Le fluide n’étant pas sous pression, certains composants peuvent être supprimés : manomètre, vase d’expansion, purgeur, clapet anti-retour (vu que l’installation est vidangée, il n’y a pas de risque de circulation inverse par thermosiphon).
  • Possibilité d’utiliser de l’eau comme fluide caloporteur : Puisque le système se vidange en cas de gel, il est théoriquement possible d’utiliser de l’eau comme fluide caloporteur. Cependant, bien que la capacité calorifique de l’eau soit meilleure, il n’est pas rare de rencontrer des systèmes à vidange fonctionnant avec un mélange d’eau/glycol pour des raisons de sécurité (au gel) mais aussi parce que le glycol possède des propriétés anticorrosives.

Système sous pression non vidangeable

Schéma de système sous pression non vidangeable.

  • Le soin à apporter à la pente des tuyauteries est moins grand : En effet, pour les systèmes à vidange une pente minimale continue de l’ordre de 4 % doit être respectée afin d’assurer un écoulement correct du fluide puisque celui-ci s’effectue par simple gravité (drain back).
  • Utilisation de pompes de circulation moins puissantes et donc moins énergivores :  Un système sous pression utilise des circulateurs de puissance moindre. En plus d’assurer la circulation du fluide, la pompe d’un système à vidange doit en effet pouvoir relancer le fluide dans le circuit primaire, c’est à dire vaincre la hauteur manométrique entre le réceptacle de vidange et les capteurs. Une puissance importante est donc nécessaire alors que moins de 50 % de cette puissance est nécessaire lors du fonctionnement de l’installation. Une solution que proposent aujourd’hui certains constructeurs est l’installation de deux circulateurs dont l’un est adapté à la relance (et ne fonctionne que durant celle-ci) et dont l’autre est adapté au régime de fonctionnement.

Choix du système d’apport de chaleur complémentaire

Le choix du mode de préparation d’ECS principal doit se faire de manière traditionnelle. Celui-ci doit en effet assurer la production d’eau chaude en toutes circonstances, même en période de non ensoleillement prolongée.

 Schéma sur le mode de préparation ECS.

Dans une installation solaire, le système d’apport de chaleur complémentaire se situe en aval de l’échangeur solaire de manière à conserver la stratification interne des températures dans le ballon (les températures les plus hautes, les plus proches du point de puisage) mais aussi de manière à garantir une température de retour du fluide solaire la plus basse possible (afin de garantir un fonctionnement optimal des capteurs).

Dans tous les cas, le stockage de l’eau solaire oblige à une certaine centralisation de l’installation. Néanmoins, le choix d’un système de production principal décentralisé reste possible. Par exemple, l’eau préchauffée par les capteurs pourrait être acheminée vers les points de puisage où elle sera seulement amenée à la température souhaitée. Ce cas de figure permet de limiter considérablement les pertes de distribution et l’influence de l’appoint sur la température du fluide solaire.

En ce qui concerne le vecteur énergétique, il n’y en a pas de réellement privilégié en termes de fonctionnement solaire (abstraction faite des considérations environnementales liées). Par contre, la compatibilité et la régulation de l’appoint au système solaire sont à étudier précisément (d’autant plus si l’on souhaite intégrer celui-ci à un système existant).  Il serait en effet dommage que le système d’appoint empiète sur ce que le système solaire peut produire… et pourtant c’est souvent le cas. Combiner une température de consigne d’appoint trop élevée (pour la légionellose) et une mise en température des ballons solaires trop régulière peut réduire l’efficacité solaire de 30 %!


Dans tous les cas, limiter les pertes !

Une installation mal ou non isolée peut perdre jusqu’à 40 % de sa production à cause des pertes thermiques le long des conduites et au niveau du stockage.

En premier lieu, on veillera donc à limiter la longueur des tuyauteries et à positionner judicieusement le stockage par rapport aux capteurs (et aux points de puisage).

Une isolation d’épaisseur au moins égale au diamètre des tuyauteries est indispensable d’autant plus que les températures du fluide de la boucle solaire peuvent être les plus hautes de l’installation sanitaire. Pour se donner une idée des pertes : un mètre de tuyau en acier, de 1 pouce de diamètre, non isolé, dans lequel circule de l’eau chaude à 70°C et qui parcourt une ambiance à 20°C a une perte équivalente à la consommation d’une ampoule de 60 W…

Calculs

Pour estimer la rentabilité de l’isolation de la tuyauterie, cliquez ici !

Au niveau du ballon de stockage: favoriser la stratification des températures et sa parfaite isolation (attention aux raccords) favoriseront la productivité du système. 10 à 15 cm d’isolation ne seront pas superflus !

Calculs 

Pour estimer la rentabilité de l’isolation du ballon, cliquez ici !

Exploiter la configuration du bâtiment [ECS par capteurs solaires]

Exploiter la configuration du bâtiment [ECS par capteurs solaires]


Une orientation et une inclinaison optimales ?

Les capteurs seront idéalement orientés sud avec une inclinaison entre 30 et 55° par rapport à l’horizontale. La hauteur du soleil variant au fil des jours et des saisons, l’inclinaison idéale dépendra du cas de figure envisagé :

  • 35° est l’inclinaison qui permet de maximiser les gains solaires annuels. Elle est idéale pour les faibles fractions solaires : couverture solaire de 30 % des besoins d’eau chaude par exemple).
  • Pour une fraction solaire plus importante (ou une production pour le chauffage du bâtiment), il est judicieux d’orienter les panneaux plus verticalement (de 45 à 55°) afin de maximiser les gains solaires à la mi-saison.
  • 30° est l’inclinaison idéale pour les installations ne fonctionnant qu’en période estivale (pour une piscine extérieure par exemple).

Schéma orientation et une inclinaison des capteurs.

Bien entendu, on pourra aussi suivre l’inclinaison et l’orientation, induite par la configuration des lieux (par exemple la pente d’une toiture inclinée du moment que l’on reste entre le sud et l’est /ouest). On ajustera alors les surfaces de capteurs en conséquence.

> Plus d’infos sur l’énergie solaire et l’ensoleillement

Outre l’aspect énergétique, l’inclinaison des capteurs influence aussi :

  • leur prise au vent (plus les panneaux sont verticaux, plus le lestage pour les maintenir en place doit être important) ;
  • l’auto-nettoyage de leur superficie externe (vitre) par la pluie (20° d’inclinaison minimum sont requis).

Un ombrage limité

L’ombre est évidemment le pire ennemi des technologies solaires. Bien que moins problématique que pour leurs homologues photovoltaïques, on en limitera l’impact en positionnant les capteurs en dehors des zones d’ombres générées par :

  • l’environnement du bâtiment (immeubles voisins plus hauts que les capteurs solaires…) ;
  • le bâtiment lui-même (cabanon technique, antennes, cheminées…) ;
  • les capteurs entre eux.

Pour ce dernier type d’ombrage, on compte généralement qu’il faut 3 m² de toiture pour un m² de capteur.

Dimensionnement de l’entraxe entre deux capteurs

Schéma dimensionnement de l’entraxe entre deux capteurs.

L’entre-axe entre deux rangées de capteurs est défini par la formule suivante :

Entre axe = d + b = h (cos β+ sin β/ tg α)

où,

  • h =dimension du capteur.
  • α = hauteur solaire minimum (généralement prise le 21 décembre soit un angle de 16°).
  • β = inclinaison des capteurs.

En considérant des capteurs de 1,2 m de large, l’entre-axe des rangées de capteurs est de: 1,2 x (cos 35° + sin 35°/tg16°) = 3,38 m.

Il faudra aussi porter une attention particulière à l’encrassement des capteurs et des réflecteurs pour les tubes sous vide qui en sont munis (type CPC).


En toiture, au sol ou en façade?

Que ce soit en toiture plate ou inclinée, on veillera à ce que la toiture :

  • résiste à la surcharge des capteurs et de leur lestage (un panneau pèse environ 25 kg/m²) ;
  • soit en suffisamment bon état pour ne pas être remplacée trop rapidement (les capteurs ont une durée de vie moyenne de 25 ans).

Placement en toiture inclinée

Si l’orientation est favorable, le placement en toiture inclinée est souvent idéal :

  • placement en hauteur qui permet de limiter l’effet d’ombre de l’environnement ;
  • inclinaison déjà présente qui permet de se passer du système de support ;
  • intégration constructive esthétique ;
  • pertes thermiques à l’arrière du panneau limitées (dans le cas de capteurs intégrés dans la toiture).

Capteurs intégrés.

 Capteurs en « surimposition ».

Placement en toiture plate

Dans ce cas, les capteurs sont placés sur des supports métalliques, ce qui permet d’optimiser leur inclinaison et leur orientation.

L’ombrage généré par les panneaux entre eux déterminera l’espacement nécessaire entre deux rangées de capteurs.

La résistance de la toiture doit être particulièrement étudiée, car le lestage nécessaire à la stabilité des capteurs augmente considérablement la surcharge (80 à 100 kg par m² de capteur). De plus, lorsque les couches superficielles de la toiture ne présentent pas une résistance suffisante, il faudra parfois ancrer le support directement sur la structure de la toiture (chevrons,…). Des distances de sécurité par rapport au bord de la toiture sont aussi imposées.

Schéma placement en toiture plate des capteurs.

Placement au sol

Lorsque la toiture présente une inclinaison trop importante, une mauvaise orientation ou encore une surface trop réduite, on pourra opter pour une installation au sol.

Dans ce cas, on veillera à :

  • Minimiser la distance entre les capteurs et le stockage afin de réduire au maximum les pertes thermiques par les tuyauteries.
  • Placer les capteurs dans un endroit protégé pour éviter tout risque de vandalisme (attention à l’ombrage !)

Contrairement aux capteurs placés dans le plan de la toiture et ne présentant aucun débordement, le placement de capteurs au sol doit faire l’objet d’un permis d’urbanisme.

Façade

La pose des capteurs sur façade est aussi possible (l’intégration comme bardage l’est aussi) mais présente souvent des désavantages :

  • Ombrage généré par le bâtiment ;
  • Exposition réduite (30% de moins par rapport à l’optimum (sud à 35°)) ;
  • Orientation et inclinaison peu favorables (l’effet peut être limité si on utilise un support ou des tubes sous vide réorientés) ;
  • Surfaces souvent limitées ; etc.

Schéma placement en façade des capteurs.

Réglementations 

Plus d’infos sur la réglementation urbanistique relative au placement des panneaux solaires.

Une zone réservée au stockage

Le stockage est un élément clé dans la conception de tout projet solaire thermique. L’espace associé est parfois considérable et doit être pris en compte dès le départ de l’étude du projet.

Photo stockage.

L’espace prévu doit pouvoir accueillir le ballon (ainsi que son enveloppe isolante) en termes de : volume, surface au sol, hauteur sous plafond. Les accès devront aussi permettre l’amenée du ballon. Bien que cette réflexion paraisse évidente, c’est un problème très fréquent en pratique !

Identifier ses besoins en ECS

Identifier ses besoins en ECS

La décision d’installer un chauffe-eau solaire part toujours de l’identification des besoins, en particulier la consommation d’eau chaude de l’établissement.

Avant toute chose, il faut donc se poser la question de l’usage que l’on a de l’eau chaude sanitaire :

A-t-on réellement besoin d’ECS ? Quand en a-t-on besoin? Quel est le profil de ces besoins ? En a-t-on usage pendant les périodes les plus ensoleillées de l’année ?

A-t-on réalisé les mesures URE permettant de réduire les besoins énergétiques ? Ces mesures simples et efficaces (comme par exemple le placement de réducteurs de pression) restent les plus rentables!

Disponibilité de l’énergie solaire et besoins d’eau chaude sanitaire

 

Si les besoins en ECS sont constants au fil de l’année, l’installation sera généralement dimensionnée par rapport aux apports solaires estivaux. Ce cas de figure permet de garantir un taux d’utilisation et une production énergétique surfacique (kWh/m²) élevée. 

On comprendra vite qu’une installation solaire est bien plus efficace pour un bâtiment ayant des consommations importantes et plus ou moins constantes au fil des jours et des saisons qu’un vestiaire d’un club sportif ne fonctionnant que 2 jours par semaine de septembre à mai !

Ainsi, certains usages sont particulièrement adéquats : les maisons de repos et de soin, les hôpitaux, les piscines, les logements individuels et collectifs, …

Pour établir son profil de puisage, si la consommation d’eau chaude ne fait pas l’objet d’un suivi régulier par l’organisme chargé de la maintenance du bâtiment, on se basera sur des profils type par secteurs ou, mieux, on effectuera une campagne de mesures. Dans tous les cas, le placement d’un simple compteur d’eau chaude est recommandé et sera très utile pour le dimensionnement correct de l’installation solaire !

Calculs

Estimer ses besoins en eau chaude sanitaire.

N.B. Outre son influence sur l’efficacité de l’installation solaire, le profil de puisage conditionne complètement la conception du mode de préparation : volume de stockage (accumulation), système d’appoint par production centralisée ou décentralisée,…

Connaître les étapes du projet [ECS par capteurs solaires]

Connaître les étapes du projet [ECS par capteurs solaires]

Se poser les bonnes questions !

En tant que concepteur, voici les principales questions à se poser :

Quel est le besoin d’eau chaude sanitaire ?
Comment s’intégrerait l’installation dans la configuration du bâtiment ?
Quelles sont les surfaces qui pourraient être valorisées par la pose de capteurs solaires ?
Ces surfaces sont-elles capables d’accueillir des capteurs solaires thermiques en termes de :
> Superficie disponible
> Orientation (dans le cas d’une toiture inclinée)
> Inclinaison (dans le cas d’une toiture inclinée)
> Portance suffisante: la toiture peut-elle accueillir le surpoids induit par les capteurs ? En général, les toitures en structure béton supportent la surcharge, ce qui n’est pas toujours le cas des structures bois : à vérifier donc !
> Ombrage
> État : il serait dommage de devoir remplacer le support dans les quelques années qui suivent l’installation afin d’éviter des montages-démontages coûteux et parfois risqués pour les capteurs.
L’espace disponible pour les ballons de stockage est-il suffisant ?
> Place disponible : le volume nécessaire au stockage est souvent important. Il faut donc s’assurer au préalable des dimensions nécessaires !
> Les dimensions des accès : si j’ai la place nécessaire, il faut impérativement vérifier qu’il est possible d’y amener les ballons de la dimension prévue !
Quel type d’installation choisir ?
Quel prédimensionnement pour la fraction énergétique souhaitée couverte par le solaire thermique (fraction solaire) ? Ce dimensionnement est-il compatible avec mon cas de figure ?
Le projet est-il viable économiquement ?  Quels sont les coûts et subsides ?
Quelle est la durée de vie estimée d’une telle installation ? Quelle maintenance est nécessaire ?
Comment s’assurer de la qualité de réalisation du projet ? Contrat de garantie de résultats solaires et cahier des charges « qualité » sont là pour aider le concepteur!

Les étapes de la réalisation d’un projet solaire thermique ont été balisées par le programme « Soltherm » de la Région Wallonne :

  • un logiciel de préfaisabilité (Quick Scan XLS) a été mis au point et remis à jour par l’IBGE. Il est accompagné de son mode d’emploi PDF;
  • un audit solaire PDF peut être réalisé;
  • un cahier des charges XLS d’une installation solaire de qualité a été rédigé;
  • une Garantie de Résultats Solaires (GRS) peut être exigée;
  • des subsides nombreux sont disponibles.
  • un guide de la maintenance PDF pour responsable énergie est aussi disponible (réalisé par 3E et l’Apere pour l’IBGE).
Demander un audit solaire à une société spécialisée ?

L’audit solaire fait l’inventaire des caractéristiques techniques de l’établissement et détermine les dimensions du système solaire correspondant à l’optimum économique. Il détermine comment les composants du chauffe-eau solaire s’intègrent dans l’installation existante de manière à assurer le fonctionnement optimal de l’ensemble du système. Le résultat de l’audit solaire est consigné dans un rapport qui donne au maître d’ouvrage les critères énergétiques, économiques et environnementaux nécessaires à la prise de décision.

> Plus d’infos sur l’audit solaire PDF (document réalisé par 3E pour le compte de l’IBGE).

Études de cas

Parcourir l’audit solaire établi pour :

– le home La Charmille à Gembloux !

– la piscine d’Herstal !

– la piscine de l’Hélios à Charleroi !

Contacter le facilitateur photovoltaïque

Contacter le facilitateur photovoltaïque

Le Facilitateur E-SER est chargé par la Région wallonne de mener des actions d’information, d’accompagnement, de sensibilisation et de conseil pour aider au développement harmonieux de la filière photovoltaïque en Wallonie.
Concrètement, le Facilitateur a pour objectifs :

  • d’assurer une veille technologique, réglementaire et statistique ;
  • de veiller à la coordination de la filière photovoltaïque ;
  • d’informer et de conseiller les investisseurs potentiels concernant le photovoltaïque.

Le Facilitateur vise le secteur public et les entreprises. Sans que cela ne soit une étape obligée, tout auteur de projet peut s’adresser gratuitement au Facilitateur afin de réaliser une étude de pertinence. Celui-ci conseillera l’auteur de projet quant à la pertinence économique, juridique et administrative d’un projet photovoltaïque dans sa commune ou dans son entreprise. La mission de Facilitateur E-SER ne couvre pas les installations photovoltaïques domestiques, qui relèvent du plan Qualiwatt. Pour les particuliers, les Guichets de l’Énergie jouent ce rôle de Facilitateur.

> Plus d’infos sur :

Choisir un label de qualité

Choisir un label de qualité

RESCert

Outre le matériel qui doit respecter les exigences fixées dans les normes européennes et les tests correspondants, il existe aussi en Belgique un label de qualité pour les installateurs appelé RESCert.

La Région wallonne, la Région flamande et la Région de Bruxelles-Capitale ont mis sur pied un système harmonisé pour la formation et la certification d’installateurs fiables et de qualité. Les technologies visées sont les systèmes d’énergie résidentiels/de petite taille.

Quelle est la différence entre un certificat de compétence et un certificat de compétence au titre de candidat ?

  • Un certificat de compétence est destiné aux installateurs ayant plus de 3 ans d’expérience (voir ici) et ayant réussi un examen.
  • Un certificat de compétence au titre de candidat est destiné aux installateurs ayant moins de 3 ans d’expérience (voir ici) et ayant réussi un examen.

Remarque : Le certificat de compétence au titre de candidat ne peut pas être utilisé pour les primes, et les personnes ayant un certificat de compétence au titre de candidat ne figurent pas sur la liste des installateurs certifiés. Le certificat de compétence au titre de candidat peut être ‘upgraded’ gratuitement en certificat de compétence une fois que les 3 ans d’expérience sont atteints.

Plus d’info sur :  https://rescert.be/fr


NRQUAL

NRQual : un label de qualité officiel pour les entreprises d’installation de systèmes d’énergie renouvelable en Wallonie

Logo NRQUAL

Afin de redonner confiance aux consommateurs et de leur garantir la qualité de leurs installations, la Wallonie a décidé de soutenir et de promouvoir les entreprises d’installation de systèmes renouvelables qui s’inscrivent dans un processus « qualité » en lançant le label wallon NRQual.

Pour les entreprises, se faire labelliser implique des garanties de qualité à plusieurs niveaux :

  • capacité de concevoir une installation : l’entreprise devra remettre au client un dossier reprenant les plans techniques de l’installation, les spécifications techniques des composants utilisés, les calculs de rendements énergétiques, les manuels destinés à l’utilisateur ;
  • capacité de placer un système renouvelable :
    • l’entreprise devra compter des installateurs certifiés parmi ses équipes en charge de l’installation des systèmes ;
    • un contrôle sera effectué via des audits aléatoires d’installations placées par l’entreprise labellisée ;
    • l’entreprise labellisée rédigera une déclaration de conformité à l’attention du client confirmant la conformité de l’installation avec les exigences de qualité imposées par le label.
  • conditions liées à la vente :
    • utilisation du contrat type publié sur le site de la DGO4 () ;
    • suivi des plaintes ;
    • l’entreprise devra disposer de tous les enregistrements, accès à la profession et assurances requis.

Trouver une entreprise labellisée NRQual :
http://www.questforquality.be/consommateurs/trouvez-un-installateur/


Solar PV

SOLAR PV est le label de qualité utilisé par les entreprises d’installation de systèmes photovoltaïques qui sont labellisés en Belgique par le BCCA sur base des référentiels développés par QUEST & CONSTRUCTION QUALITY. [questforquality.be]

QUEST et CONSTRUCTION QUALITY sont deux organismes indépendants aux missions distinctes. D’une part, QUEST est le garant de qualité des entreprises liées aux énergies renouvelables et, d’autre part, CONSTRUCTION QUALITY a pour mission de garantir les compétences professionnelles des entreprises actives dans la construction. Ces deux labels ont été réunis afin de créer le label SOLAR PV [energreen.be]

Logo Solar PV

Vous pouvez retrouver ce logo sur des devis, des déclarations de conformité, des autocollants, etc.

Prévoir la maintenance et la durée de vie d’une installation

Prévoir la maintenance et la durée de vie d'une installation


L’entretien nécessaire aux installations photovoltaïques est très limité. Un nettoyage occasionnel reste conseillé. Néanmoins, sa fréquence peut être influencée par de nombreux facteurs environnants : inclinaison, situation près de zone boisée, pollution,… Un des avantages de cette technique est que, via la présence de compteurs, la production est facilement comptabilisée. Cela permet de détecter rapidement un fonctionnement anormal de l’installation.

Un suiveur solaire nécessite par contre un entretien plus important (moteurs,…).

Un système photovoltaïque est un investissement à long terme puisque sa durée de vie est généralement supérieure à 25 ans et peut même atteindre 40 ans. Les fabricants, eux-mêmes, garantissent généralement qu’après 20-25 ans le module atteindra encore 80 % de sa puissance crête initiale. Un onduleur a par contre une durée de vie plus limitée (de 10 à 15 ans).

Considérer les aspects économiques d’une installation photovoltaïque

Considérer les aspects économiques d'une installation photovoltaïque

Les méthodes de production se sont considérablement améliorées et répandues ces dernières années. Les coûts de production et donc de vente des technologies photovoltaïques ne cessent de diminuer.

À l’heure actuelle, on considère des prix compris entre 0.8 à 2 € (HTVA) par Wc installés. Donc de  800 € à 2 000 € du kWc en fonction de la taille de l’installation.

Théories

La production électrique photovoltaïque est de plus récompensée par la certification verte.

Jusqu’au 30 juin 2018, en fonction de la puissance du champ de capteur installé, la production électrique donne droit à certains subsides. Les petites installations (< 10 kW) font l’objet de primes Qualiwatt. Les plus grandes installations (> 10 kW) donnent droit à un montant de certificats verts par MWh produit durant un certain nombre d’années.  Ce contexte d’aide, ainsi que les conditions de raccordement, influencent considérablement la rentabilité et les temps de retour sur investissement.

Néanmoins, pas d’inquiétude pour l’après Qualiwatt : la démocratisation et l’amélioration des performances globales des systèmes photovoltaïques ont rendu l’investissement suffisamment rentable pour qu’il n’ait plus besoin de soutien.

Vous trouverez plus d’infos sur les subsides sur le site de la CWAPE : ouverture d'une nouvelle fenêtre ! https://energie.wallonie.be/fr/facilitateur-energies-renouvelables-electriques-et-cogeneration.html?IDC=9546

Pour les petites installations (< 10kW), l’APERE a mis au point un simulateur financier. Il est disponible sur : ouverture d'une nouvelle fenêtre ! http://sifpv.apere.org/

> Pour estimer la rentabilité d’une installation photovoltaïque raccordée au réseau. XLS

N’en oublions pas pour autant les démarches URE !
L’énergie la moins chère et la moins polluante reste celle que l’on ne consomme pas !

Définir le raccordement au réseau de distribution

Définir le raccordement au réseau de distribution

Après avoir été transformé par l’onduleur en courant alternatif, le courant produit par une installation photovoltaïque alimente les différents circuits électriques de l’installation.
Si la production est inférieure à la consommation, l’ensemble de la production électrique photovoltaïque sera consommée sur place et le réseau fournira le complément nécessaire. Par contre, en cas de surproduction instantanée supérieure à la consommation, l’excédent pourra être injecté sur le réseau* de distribution et ainsi être utilisé par un autre consommateur.
Ce raccordement et la réinjection ne peuvent évidemment pas se faire n’importe comment ! Il faut donc avant toujours vérifier les conditions de raccordement au réseau dès les premières étapes du projet !

Différents types de raccordement sont en effet imposés suivant la puissance du champ de capteur. Ceux-ci se basent sur la notion de puissance nette développée (PND) définie comme étant le  minimum  entre la puissance crête du champ de capteur et la puissance maximale de sortie de l’onduleur (renseigné sur la fiche technique de l’onduleur). Elle est exprimée en kilovolt Ampère.

Voici en résumé les valeurs seuils et les exigences correspondantes :

De 0-10kVA :

La « compensation », le fameux compteur qui tourne à l’envers, est permis. Dans ce cas, un seul compteur établit le bilan annuel de consommation. Le producteur ne paiera annuellement que la consommation excédentaire. S’il produit plus qu’il ne consomme, son compteur est remis à 0. En quelque sorte, c’est comme  si le producteur valorisait l’énergie produite au même prix que celle d’achat, tant qu’il reste dans ses plages de consommation. Aucune revente de l’électricité excédentaire n’est permise dans cette configuration.

Jusqu’à 5 kVA, le raccordement monophasé est permis. Au-delà, le triphasé est obligatoire. Un équilibrage entre phases est imposé.

Au-delà de 10 kVA :

La compensation n’est plus permise. Le placement d’un compteur supplémentaire, dissocié du compteur de consommation, est imposé. Celui-ci comptabilise l’énergie qui est alors réinjectée sur le réseau (autrement dit qui n’est pas instantanément consommée par le producteur). L’électricité est alors revendue au fournisseur (le prix de vente se situe entre 3.5 et 5.5 c€ du kWh produit). Une étude de faisabilité est alors imposée par le gestionnaire du Réseau de distribution (GRD) (coût entre 2 000 et 10 000 €).

Dans un cas comme dans l’autre, l’installation devra répondre aux exigences,

De plus, des démarches préalables et postérieures à l’installation doivent impérativement être effectuées ! On contactera donc la commune, le GRD et la CWAPE en temps utiles !
Sur le site du facilitateur P.V. :
> Plus d’infos sur ouverture d'une nouvelle fenêtre ! les  aspects électriques.
> Plus d’infos sur ouverture d'une nouvelle fenêtre ! les exigences administratives relatives au photovoltaïque.
Sur le site de Synergrid :

> ouverture d'une nouvelle fenêtre ! Liste des questions les plus fréquentes concernant le raccordement réseau.

* Nous n’avons envisagé ici que les systèmes raccordés au réseau. Des systèmes autonomes fonctionnant sur batteries existent et constituent parfois la seule alternative pour des sites isolés.

Choisir un suiveur solaire

Choisir un suiveur solaire

L’avantage d’un système de tracking est incontestablement l’augmentation des performances qui en découle. Il permet ainsi de mieux exploiter les cellules dont on dispose.

Cependant, cette augmentation de production est compensée par un surcout engendré par la structure et le moteur du suiveur et la dalle de béton nécessaire à la stabilité. Un permis d’urbanisme est de plus nécessaire pour installer ce type de système. En pratique, il est donc important de mettre en balance les avantages liés à une meilleure production et le prix par kWc plus important.

Réglementations 

Plus d’infos sur la réglementation urbanistique (CWATUPE).

Au niveau de la production électrique, un suiveur à deux axes garantit une augmentation de la production électrique par rapport aux panneaux fixes d’au minimum 25 %. Des résultats de mesures sur cinq années ont par ailleurs permis au centre de recherche solaire allemand ZSW, d’estimer l’augmentation des performances par rapport à un système fixe pour Stuttgart (latitude de 48°, proche des 50° pour la Belgique) :

Source : New Energy (n° 3 de juin 2010 p 84-86).

Exemple : production d’électricité mensuelle d’1 kWc avec et sans traqueur installé au sud avec une inclinaison de 35° (Namur) sur une année moyenne.

(Pertes du système=14.0 %).

Fixe Traqueur 2 axes
[kWh] [kWh]
Moyenne mensuelle 70 88
Moyenne  journalière 2.3 2.9
Production totale annuelle 845 1 050

> Gains dans le cas considéré : 24.2 %.

Source : ouverture d'une nouvelle fenêtre ! PVGIS (Geographical Assessment of Solar Energy Resource and Photovoltaic Technology 2001-2007).

Remarquons que la différence de performance se marque donc plus en toute logique les mois les plus ensoleillés.

Pour évaluer les performances d’un système avec ou sans tracking dans un lieu précis : ouverture d'une nouvelle fenêtre ! cliquez ici !

Pour évaluer la rentabilité d’un suiveur solaire : cliquez ici ! XLS
Une autre technique complémentaire à celle du traqueur qui permet d’améliorer les performances des cellules est l’utilisation d’un concentrateur. Le principe est le suivant : augmenter la surface de captation sans augmenter la taille des cellules. Cette méthode est séduisante, car elle permet d’utiliser peu de matière semi-conductrice. Le problème reste sa difficulté de mise en œuvre et l’augmentation considérable de température de la cellule qu’elle induit, provoquant une chute de rendement importante. Il devient donc nécessaire de refroidir la cellule. Certaines recherches tentent actuellement de coupler des cellules photovoltaïques avec une application thermique (cellule PVT). L’idée est de récupérer la chaleur émise en chauffant un fluide (de l’eau glycolée par exemple). Pour l’instant, ces applications à concentration restent principalement répandues pour les applications spatiales (où l’échauffement des cellules ne pose pas de problème).

Choisir et placer un onduleur

L’onduleur est un organe primordial de l’installation qu’il ne faut pas négliger. La détermination de ses caractéristiques se fera naturellement en fonction du champ de capteur pris en charge.

Chaque onduleur possède en effet des plages de fonctionnement précises qui devront impérativement correspondre aux caractéristiques du courant continu généré par les modules.

Le choix et le dimensionnement de l’onduleur tiendront compte :

  • De la puissance maximale possible générée par les modules (on utilise généralement la puissance crête (conditions STC) minorée de 5 à 15 %).

 

  • Des tensions minimales et maximales (on utilise généralement comme tension maximale la tension générée en circuit ouvert (Uoc) à -10°C et comme tension basse, la tension à 70°C).

 

  • L’intensité maximum du courant

Suivant la taille de l’installation, il peut être nécessaire de démultiplier le nombre d’onduleurs. En général, un deuxième onduleur peut être prévu à partir de 5 kWc. Cette limite découle également des prescriptions Synergrid [Prescriptions C10/11 synergrid]

Une hétérogénéité (orientation, inclinaison, ombrage, utilisation de plusieurs types de modules, grande tolérance de fabrication sur la puissance des modules…) de l’installation peut aussi amener à opter pour plusieurs onduleurs. Plus l’installation est hétérogène, plus on aura intérêt en terme de performance à démultiplier les onduleurs (onduleur modulaire ou onduleur string). A l’inverse, pour une installation tout à fait homogène, il sera plus intéressant de limiter le nombre d’onduleurs (onduleur central). Il faudra suivant la situation trouver le bon compromis.  Les onduleurs multistring évitent également de démultiplier si on a une hétérogénéité dans l’installation.

  1. Générateur.
  2. Boitier de raccordement.
  3. Onduleur.

Techniques

Plus d’infos sur les différentes configurations possibles.

Le choix entre deux onduleurs correspondant à la configuration de l’installation peut être guidé par :

L’emplacement de  l’onduleur est aussi un facteur à prendre en compte lors de la conception d’un projet photovoltaïque.

Tout comme les cellules photovoltaïques, les composants électroniques internes de l’onduleur sont très sensibles aux hautes températures. Outre une chute de rendement, l’onduleur risque de se dégrader lors de fonctionnements continus à haute température. Certains onduleurs sont même équipés de refroidisseur actif (ventilateur). On comprendra donc ici tout l’intérêt de placer l’onduleur dans un local ventilé où la température est globalement contrôlée (attention aux combles sous toiture !).

Un onduleur fait aussi un certain bruit (généré soit par le transformateur et/ou par le ventilateur interne) qui peut parfois être gênant. Son poids (environ 10 kg/kW) peut aussi être un facteur déterminant pour le choix son emplacement.

Prédimensionner l’installation [photovoltaïque]

Prédimensionner l'installation [photovoltaïque]

En Belgique, 1 kWc, non ombré, exposé plein sud et incliné à 35° produit en moyenne 950 kWh/an. La surface nécessaire pour atteindre cette puissance crête dépendra du type de cellules choisies.

En première approximation, on considère généralement qu’il faut environ 7 m²/kWc.

La production électrique annuelle d’une installation non ombrée peut donc être estimée de cette manière :

Électricité produite annuellement [kWh]= Nombre de kWc*950 kWh *α

Avec,

  • α = facteur de correction prenant en compte l’orientation et l’inclinaison des capteurs.

Le tableau suivant reprend les valeurs de ce facteur correctif pour différentes configurations (d’inclinaison et d’orientation).

Sources des valeurs : EF4, facilitateur photovoltaïque.

Cette production sera bien entendu répartie au fil de l’année. L’exemple suivant illustre cette répartition :

Production d’électricité mensuelle d’1kWc installée au sud avec une inclinaison de 35° (Namur) sur base d’une année moyenne :

(Pertes du système = 14.0 %).
Moyenne mensuelle : 77.4 kWh.
Moyenne  journalière : 2.54 kWh.
Production totale annuelle 928 kWh.

Source  ouverture d'une nouvelle fenêtre ! PVGIS (Geographical Assessment of Solar Energy Resource and Photovoltaic Technology 2001-2012).

> Pour une estimation détaillée de la production électrique d’un système PV en un lieu donné : ouverture d'une nouvelle fenêtre ! PVGIS.

On notera que ces formules simplificatrices ne prennent pas en compte l’influence des ombres très préjudiciables pour le fonctionnement des modules photovoltaïques. Le meilleur moyen pour prédire de manière plus précise la production électrique est d’utiliser des logiciels de simulation dynamiques.

Prédimensionnement

Dimensionner une installation revient à déterminer la puissance crête à installer.
Ce dimensionnement peut se faire selon de nombreux critères :

  • Budget maximal.
  • La surface disponible et sa configuration (orientation, inclinaison, ombrage).
  • Couverture d’une fraction des consommations (pour évaluer ses consommations électriques : cliquez ici !
  • La rentabilité de l’investissement.

Dans les trois premiers cas, la formule (Nombre de kWc*950 kWh *α) permettra déjà de se faire une bonne idée du dimensionnement nécessaire. Le nombre de modules nécessaire est alors donné par :

N = Puissance crête de l’installation [Wc] /Puissance crête d’un module choisi [Wc]

Ex : Un fabricant propose un panneau de 125 Wc. Pour une puissance installée de 10 kWc il faudra donc : 10 000 / 125 = 80 panneaux.

Calculs

Pour accéder à une feuille de calcul donnant une estimation de la production d’une installation photovoltaïque. XLS

Dans le contexte actuel, les critères de faisabilité technico-économique (conditions de raccordement, subsides (certificats verts,…) et conditions de revente de l’électricité) conditionnent parfois le dimensionnement de l’installation.

Une base de données vivante et intéressante est disponible sur le site www.bdpv.fr.

Celle-ci comprend de nombreuses installations belges, on peut y voir leur production ainsi que des statistiques sur le matériel le plus installé.

Pour les systèmes autonomes, non abordés dans ce chapitre d’énergie+, le dimensionnement doit faire l’objet d’une analyse très détaillée de :

  • l’ensemble des consommations d’électricité du bâtiment ou de l’application,
  • du stockage de l’électricité, via des batteries (pouvant supporter des charges et décharges successives) et d’un système de secours.
Photovoltaïque et énergie grise
Une étude sur l’impact environnemental du photovoltaïque dans les pays de l’OCDE réalisée par Hespul avec le soutien notamment de l’ADEME et de l’AIE montre qu’il faut, en Belgique, 3,21 ans pour qu’un système sur toiture produise l’énergie nécessaire à sa fabrication. Cette durée est appelée temps de retour énergétique. Pour une installation en façade, elle est estimée à 4,68 ans. Si l’on estime la durée de vie d’une installation à 30ans, cela signifie que celle-ci aura produit 8,4 fois plus d’énergie que celle qui a été nécessaire à sa fabrication. Ce facteur appelé facteur de retour énergétique est de 5,4 pour les installations en façades.Sur sa durée de vie, une installation photovoltaïque de 1 kWc en toiture permet d’éviter jusqu’à 8,5 tonnes de CO2 (6,2 tonnes pour les installations en façade).
Source : IEA-PVPS Task 10, EPIA, European Photovoltaic Technology Platform.
Plus d’infos : facilitateur Energies renouvelables électriques :  http://energie.wallonie.be Dans le futur (après 2030), avec l’amélioration du rendement des cellules PV ou encore l’allongement de la durée de vie des panneaux, l’agence international pour l’énergie [IEA] prévois dans son scénario le plus optimiste une réduction du temps de retour énergétique à 1,7 ans. Dans son scénario le plus défavorable, l’étude avance le chiffre de 2,2 ans soit un an de moins qu’en 2018. [http://www.iea-pvps.org/index.php?id=314]

Choisir et raccorder les modules

Le choix du module (ou panneau pour les cellules cristallines) repose avant tout sur le type de cellule qui le compose. L’avantage majeur que possède le photovoltaïque est que technologies quelles que soient leurs provenances, ont été soumises à des tests sous les conditions STC (décrits dans les normes européennes). Cela permet une comparaison aisée via leur puissance crête !

Théories

Pour en savoir plus sur le rendement et la puissance crête d’une cellule.

Ce choix repose souvent sur la recherche d’un optimum économique parmi les possibilités suivantes (ou encore d’une contrainte de surface disponible en toiture par exemple) :

Plus une cellule est performante, plus elle est chère et plus la production surfacique (kWh/m²) sera grande.

Ainsi pour une puissance crête installée de 1 kWc, on aura besoin en moyenne  de :

  • 6 m² de cellules monocristallines (en considérant une puissance crête de 165 Wc/m²),
  • 8 m² de cellules polycristallines (en considérant une puissance crête de 125 Wc/m²),
  • 15 m² de cellules amorphes (en considérant une puissance crête de 66 Wc/m²).

En général, cette réflexion s’effectue directement au niveau du module :

Ex : Un fabricant propose un panneau de 125 Wc : il faudra donc huit panneaux pour obtenir une puissance installée de 1 kWc (1 000 Wc/125 Wc).

N.B. : les valeurs ci-dessus ne sont que des ordres de grandeur et peuvent varier sensiblement suivant le rendement des cellules considérées.

On choisira donc le type de cellule du module en fonction de la surface disponible, de la production souhaitée et du coût.

Techniques

Plus d’infos sur les différents types de cellules et leurs caractéristiques.

Le type de pose et l’effet esthétique peut aussi influencer le type de module choisi :

On pourra ainsi opter pour des modules verre-verre plutôt que des modules verre-tedlar traditionnels pour des applications où l’on recherche un effet translucide (verrière,…).

Techniques

Plus d’infos sur les différents types de modules.

Le raccordement des différents modules entre eux peut s’effectuer soit en série soit en parallèle en fonction du lieu d’implantation et des caractéristiques d’entrée de l’onduleur.

Le montage en série (addition des tensions générées) permet :

  • Un montage rapide et aisé.
  • Une utilisation de petites sections de câbles sans augmenter les pertes de transport du courant continu. (les pertes de puissance sont en effet fonction de l’intensité du courant au carré).

Il conviendra essentiellement pour les installations les plus homogènes (sans ombrage, orientation identique, faible tolérance de la puissance des modules,…). Dans ce cas, la défectuosité, l’ombrage,… affecteront l’entièreté de la production des modules raccordés en série.

Le montage en parallèle (addition des courants générés) conviendra à l’inverse plus particulièrement pour des installations plus hétérogènes (ombrage, inclinaison et orientation différentes,…) ou quand les tensions autorisées par l’installation  sont limitées.

En pratique, on essaie dans la limite du possible de  rassembler en série le maximum de modules de caractéristiques identiques (strings).

De manière générale, on veillera à limiter la longueur et à bien dimensionner le câblage  entre les modules. Un dimensionnement correcte du diamètre du câble permettra en effet d’éviter un échauffement trop important et par là des pertes de transports inutiles.

Choisir l’emplacement des capteurs [photovoltaïque]

 

Avant toute chose, il est nécessaire de se poser quelques questions :

  • Y a-t-il des surfaces inutilisées qui pourraient être valorisées énergétiquement ?
  • Au niveau du bâtiment ? du terrain ?
  • Ces surfaces sont-elles bien orientées ?
  • Sont-elles ombrées ?
  • En cas d’application en toiture, celle-ci est-elle encore en bon état ?

Le choix de l’emplacement des modules peut être fonction de plusieurs de ces facteurs :


Surface disponible

La surface disponible déterminera la puissance génératrice qu’il est possible d’installer en fonction du type de cellule choisi. Pour connaître la production électrique surfacique attendue :

> Plus d’infos sur la production électrique et le pré dimensionnement


Orientation et inclinaison

Dans nos régions, le sud est évidemment le maître choix pour les installations fixes. L’inclinaison optimale qui permet de maximiser les gains solaires annuels incidents (et donc la production) se situe à 35°. On tentera donc de se rapprocher le plus possible de cette orientation.

Attention, si théoriquement ceci est vrai, d’un point de vue économique, le but de toute installation photovoltaïque doit également de faire se rencontrer les périodes de production et de consommation pour favoriser l’autoconsommation. Ainsi, en l’absence d’un moyen de stockage de taille adapté, une orientation des panneaux dite Est-Ouest peut être optimale.

Figure 1:Panneaux photovoltaïques orientés Est-Ouest : Tritec-energy.com.

De plus, les températures hautes étant nuisibles aux performances des panneaux, on préférera généralement une orientation Est à Ouest (température plus basse le matin).

Théories

Plus d’infos sur la variation de l’irradiation solaire annuelle en fonction de l’inclinaison et de l’orientation!

> Plus d’infos sur l’influence de ce paramètre au niveau de la production électrique et du dimensionnement.

Cependant, comme le montre le schéma suivant, l’angle d’inclinaison optimale (perpendiculaire au soleil) varie au fil des mois et des heures.

Des systèmes de tracking appelés aussi suiveur solaire permettent d’adapter continuellement l’inclinaison et l’orientation des panneaux.


Type de pose

Plusieurs types de pose sont possibles :

En toiture

Pose en toiture inclinée

En toiture inclinée, les panneaux sont attachés à la structure du toit au moyen de pattes métalliques. Les modules peuvent être soit placés en surimposition soit intégrés à la toiture. Les modules remplacent alors la couverture de la toiture comme peuvent le faire des tuiles solaires.

L’échauffement possible des cellules est, dans ce cas, un problème dont il faut tenir compte. En effet, une perte de puissance (environ 0.5 % par degré) en fonctionnement est associée à la montée en température des cellules. Or, en cas d’intégration, la chaleur est plus difficilement dissipée par ventilation qu’en cas de surimposition. Des ajustements de la structure de la toiture sont dans certains cas indiqués pour améliorer la ventilation à l’arrière des modules.

     

Surimposition et intégration

Pose en toiture plate

En toiture plate, les panneaux sont généralement disposés sur une structure en métal ou en plastique. Celle-ci permet d’obtenir un angle d’inclinaison optimisant la production de la surface utilisée tout en assurant la ventilation de l’arrière du panneau. La ventilation de l’arrière des  panneaux photovoltaïques est par contre moins importante dans le cas des bacs en PVC. On n’oubliera pas le lestage nécessaire.

Il faut impérativement vérifier l’état de la toiture et du matériau de couverture au préalable. Il serait dommage de devoir démonter les panneaux quelques années plus tard ! De plus, il ne faut pas oublier le poids induit par la pose des panneaux et le lestage important (80 à 100 kg par m² de capteur) requis pour la pose en toiture plate (résistance à la prise au vent). Ce surpoids doit pouvoir être supporté par la charpente ! Lorsque l’on solidarise l’ensemble des panneaux via une structure métallique, la quantité de lestage peut diminuer et des valeurs de l’ordre de 50 kg/m² sont alors plus communes.

Certaines cellules de types « thin film » ont aussi vu le jour. Elles permettent une intégration directe à l’étanchéité d’une toiture plate et ne nécessitent donc pas le surpoids induit par le support.  Attirante d’un point de vue économique (cellule moins coûteuse et directement intégrée dans une étanchéité nécessaire), on notera que ces cellules sont caractérisées par de plus faibles rendements. Elles doivent de plus être implantées selon la configuration du support. Leur orientation et inclinaison seront donc généralement celles de la toiture, ce qui conditionnera leur productivité. Une légère pente reste néanmoins souhaitable pour favoriser l’écoulement des eaux de pluies et éviter l’encrassement des cellules.

  

Sur supports et intégré à la couverture.

En façade

Il est possible d’utiliser des modules photovoltaïques comme bardage de façade. Ce type de configuration entraine une perte de production importante due à une réduction de l’exposition solaire (30% de moins que dans les conditions optimales). Comme en toiture inclinée, l’intégration ou la surimposition est possible.

Ce qu’on appelle aujourd’hui le BIPV (Building Integrated Photovoltaics) est de prime abord moins productif et généralement plus cher que la pose classique en toiture. Néanmoins, les panneaux photovoltaïques peuvent se substituer au bardage et remplir ainsi une double fonction (bardage + production électrique solaire). Dans le cadre d’une telle installation, il faut en réalité se poser la question du surcoût par rapport au matériau « classique » qui est remplacé.

La technologie solaire étant de moins en moins cher et le coût de l’énergie augmentant continuellement, ces solutions ont tendance à devenir de plus en plus crédibles d’un point de vue économique, et ce malgré leur rendement réduit.

Dans les zones urbanisées, sous la pression immobilière et la nécessitée croissante de densifier, les concepteurs de bâtiments ont tendance à réduire l’emprise au sol des bâtiments (et corollairement leur surface de toiture) au profit d’un accroissement du nombre d’étages. Se faisant, la quantité de surfaces verticales augmente considérablement tandis que les surfaces de toitures sont réduites à peau de chagrin. Il y a donc un réel intérêt aujourd’hui à donner une plus-value à ces surfaces, et ce dès la conception des projets.

En verrière

Pour ces applications, on utilise des modules verre-verre qui permettent de garantir un passage lumineux. Attention au respect des normes d’isolation thermique !

Ce type d’installation peut également être utilisé pour des préaux, carports, vérandas, façade légère double-peau…

En protection solaire

Un module photovoltaïque peut aussi participer à la démarche bioclimatique du bâtiment en utilisant les gains solaires superflus au confort thermique du bâtiment.

Au sol

Il est tout à fait possible de disposer des panneaux photovoltaïques au sol (voire sur des traqueurs). En Allemagne, bon nombre de champs de ce genre ont été installés. Il faudra cependant s’assurer de la qualité du sol et de sa stabilité en fonction de la taille du projet. Ce type de pose est soumis a permis. L’avis de fonctionnaire délégué ainsi que l’intervention d’un architecte est requis.

 Réglementations

Plus d’infos sur la réglementation urbanistique (CWATUPE).


Ombrage

 

En l’absence d’optimiseurs ou de micro-onduleur, l’ombrage est le pire ennemi du photovoltaïque. L’effet de l’ombrage sur les cellules photovoltaïques est comparable à l’effet provoqué par la torsion d’une partie d’un tuyau d’arrosage : c’est le point faible qui détermine l’intensité générée !

Une cellule ombrée va donc limiter la puissance générée. Il est donc impératif de choisir un endroit qui soit le moins possible soumis aux ombres fixes provoquées par l’environnement (attention aux cheminées !).

Sur une toiture plate, on devra veiller tout particulièrement à l’ombrage généré par les panneaux entre eux. La formule suivante permet d’estimer l’espace nécessaire entre les panneaux. En général, on estime que la surface de panneaux correspond à environ un tiers de la surface de la toiture plate. (En tenant compte d’un recul imposé de 1,5m par rapport au bord).

Dimensionnement de l’entre-axe entre deux capteurs

L’entre-axe entre deux rangées de capteurs est défini par la formule suivante :

Entre axe = d + b = h (cos β+ sin β/ tg α)

où,

  • h =dimension du capteur.
  • α = hauteur solaire minimum (généralement prise le 21 décembre soit un angle de 16°).
  • β = inclinaison des capteurs.

En considérant des capteurs de 1,2 m de large, l’entre-axe des rangées de capteurs est de : 1,2 x (cos 35° + sin 35°/tg16°) = 3,38 m.

En pratique, sur toiture plate, on préfère incliner moins les modules, car on peut dès lors placer plus de modules et au final produire plus que si l’angle optimal avec été utilisé. En sus, en réduisant l’inclinaison, la prise au vent est également moins importante. Enfin, l’option de placer les panneaux en mode Est-Ouest permet une optimisation de la surface encore plus grande.

Si une ombre est inévitable, il est important que les modules soient correctement disposés afin de diminuer les pertes de productions. Les diodes de by pass servent à éviter les effets dits de « points chauds » détériorant les performances et peuvent dans ce cas limiter le nombre de cellules affectées par l’ombrage. L’ombrage doit être un paramètre important à prendre en compte lors de la conception et lors du raccordement des modules entre eux (en série ou en parallèle).

Dans l’exemple suivant, la configuration de droite permet de limiter l’effet de l’ombrage en by passant uniquement les strings ombrés. Dans la situation de gauche, l’ombre peut provoquer jusqu’à l’annulation complète de la production des modules.

L’influence de l’ombrage temporaire (feuille, saleté,…) n’est normalement que limitée, car une inclinaison de 15° suffit déjà à l’auto nettoyage du vitrage.

Considérer l’aspect économique de l’installation d’une éolienne

Considérer l'aspect économique de l'installation d'une éolienne


La durée d’utilisation des éoliennes

Afin de déterminer la rentabilité d’un projet éolien, il faut connaître le nombre d’années durant lesquelles on espère pouvoir exploiter ses éoliennes. On parle de durée d’utilisation. Cette notion est un peu différente de la durée de vie. En effet, à la fin de la durée d’utilisation escomptée de votre matériel, il se peut que celui-ci garde un certain potentiel pour continuer à fonctionner, notamment au travers d’une grosse révision, ou une mise à niveau. Ce matériel n’est donc pas mort. Pour réaliser une étude économique, on prend en compte la durée d’utilisation. La durée de vie est au moins égale à la durée d’utilisation :

durée d’utilisation <= durée de vie.

La durée de vie d’une éolienne dépend essentiellement de la qualité du projet (choix d’un bon site, d’une bonne machine, d’une bonne hauteur de mât, etc.) mais aussi de la qualité de la maintenance. Installer une éolienne demande de s’en occuper régulièrement quand elle est installée. Dans la suite de cette section dédiée à la durée d’utilisation, on supposera toujours que le matériel est entretenu de manière rigoureuse.

Durée d’utilisation et de vie

Cela dépend essentiellement de la taille de l’éolienne. Plus une éolienne est grande et plus sa durée de vie est importante. En effet, les fluctuations de vent sont relativement moins importantes sur une grande éolienne. En outre, pour les puissances plus importantes, la maintenance sera réalisée par des sociétés spécialisées et formées sur le type de matériel installé. Par conséquent, la qualité de la maintenance est meilleure comparée à une petite éolienne où le propriétaire devra, plus que probablement, assurer lui-même la majeure partie du suivi.

  • Les micro-éoliennes [0,1 à 0,4 kW] et mini-éoliennes [0,4 à 2 kW] : La durée de vie dépend fortement du matériel et de sa mise en œuvre. On peut travailler sur une base de 6 à 12 ans. Un paramètre qui permet d’évaluer la robustesse du matériel est le rapport entre le poids de l’éolienne rapporté par m² de surface balayée par le rotor. Autrement dit, cela donne une idée de la masse disponible pour supporter une certaine « densité de force ». Plus le poids de l’éolienne par m² est important, plus elle est susceptible d’être robuste. Ce n’est pas garanti, mais c’est un bon indicateur. Une éolienne légère correspond à approximativement 10 kg/m² alors qu’une éolienne massive tourne autour des 20 kg/m². À noter que sur cette gamme de micro-éoliennes, les frais de maintenance et de réparation sont souvent difficiles à justifier d’un point de vue purement économique.
  • Éoliennes domestiques [2 à 30 kWh]  : La durée de vie peut aller de 15 à 20 ans avec une bonne maintenance et un bon monitoring.
  • Petites éoliennes commerciales [30 à 120 kWh]  : On tourne autour de 20 ans, toujours dans de bonnes conditions de maintenance. Dans certains cas, on commence à avoir des durées d’utilisation inférieures à la durée de vie de l’éolienne.
  • Moyennes et grandes éoliennes commerciales [120 à 3 000 kWh] : La durée d’utilisation est de typiquement 20 à 25 ans.
  • Géantes commerciales [3 000 à 8 000 kWh] :
    Ces éoliennes sont plus récentes. Leur durée de vie est estimée entre 20 et 30 ans en fonction des constructeurs et de l’entretien.

Investissement

Il est difficile de donner un ordre de prix pour les éoliennes et leur installation. En effet, cela dépend fortement du type d’éolienne, de sa marque ainsi que de la nature du projet. En outre, s’il faut un raccordement particulier au réseau de distribution ou de transport de l’énergie électrique via le placement d’une nouvelle ligne de transmission, cela vient s’ajouter aux frais de l’éolienne.

On peut d’abord introduire quelques tendances générales :

  • Le coût d’investissement par m² de surface balayée ou par kW installé diminue avec la taille des éoliennes : le coût total augmente mais le coût relatif par m² ou kW diminue.
  • Le coût varie selon le fabricant d’éolienne ainsi qu’en fonction du type de fondation.
  • Le coût peut être considérablement impacté par la distance de l’éolienne par rapport à un nœud du réseau susceptible de recevoir la production de l’éolienne. On pense notamment au fait de devoir tirer une nouvelle ligne.

Investissement par m² de surface balayée ou par kW ?

On trouve essentiellement dans la littérature des ordres de prix donnés en euros/kW installé. Certains auteurs considèrent plutôt l’investissement par m² de surface balayée par le rotor. En effet, la puissance nominale d’une éolienne peut être mesurée à des vitesses différentes d’une éolienne à l’autre. Cette dernière valeur n’est pas standardisée si bien que l’on ne sait pas de quelle puissance on parle. In fine, la relation entre la puissance et la taille de l’éolienne n’est pas directe.

Prenons, pour exemple, deux éoliennes de rendement instantané global identique et de puissance nominale égale. La première obtient son rendement nominal à 10 m/s et la seconde à 20 m/s. En gros, on s’attend à ce que la première éolienne aie une surface balayée 2³ soit 8 fois plus importante que la seconde. En termes de diamètre de rotor, la première éolienne a un rotor 8½ fois plus grand que la deuxième. En travaillant avec l’investissement rapporté par m² de surface balayée, on s’affranchit de cette limite.

Néanmoins, si on parle en termes d’investissement par m² balayé, on n’a aucune idée de rendement, d’efficacité du matériel, sur la qualité de l’éolienne.

Ordre de grandeur d’investissements totaux rencontrés

On donne ici un tableau établi en 2010 (mis à jour en 2018) reprenant des fourchettes de prix d’investissement total suivant différentes sources :

Taille de l’éolienne €/m² €/kW €/kW €/kW
Source ou auteur Paul Gipe Facilitateur
(APERe)
 EWEA
Micro-éolienne 2 000-3 000
Mini-éolienne 1 500-3 000
Eoliennes domestiques 1 500-2 500 5 000
Petites éoliennes commerciales 1 200-1 500
Grandes éoliennes commerciales 1 000-1 250 1  400 – 1 500 1000 1 000-1 400

Ordre de grandeur de la répartition des coûts pour un projet éolien de moyenne et grande puissance

On donne ici un tableau établi en 2010 et toujours d’actualité en 2018 reprenant des répartitions types dans l’investissement suivant différentes sources :

Schéma proportion des différents coûts éoliens.

Poste Facilitateur APERe Parc-eolien.com  EWEA
Eolienne 75 % 68 % 75 %
Raccordement au réseau 7 % 13 % 9 %
Génie civil 8 % 8 % 6.5 %
Ingéniérie 5 % 6 % 1.2 %
Etudes préliminaires 2 % 1.2 %
Autres 5 % 7 %

On voit que l’éolienne représente le gros de l’investissement et que le coût du raccordement au réseau est loin d’être négligeable.


La maintenance

Un aspect important d’un projet d’éolienne est la capacité à la maintenir en bon état de marche. Sans ce suivi, la machine ne fonctionnera pas efficacement sur toute la durée d’utilisation. En outre, il s’agit de garantir la durée de vie du matériel.

Voici quelques spécificités des frais de maintenance en faveur des grands projets éoliens :

  • Comparés à l’investissement, les frais de maintenance sont d’autant plus lourds que l’éolienne est petite. A la limite du raisonnement, on trouve les mini-éoliennes et les éoliennes domestiques. Dans le cas des mini-éoliennes, le coût de la maintenance voire de la réparation est tel qu’il ne se justifie pas souvent d’un point de vue strictement économique (de l’ordre de 300€ de maintenance annuelle pour une installation de 3 kWc). Dans les cas des éoliennes domestiques qui représentent déjà un investissement plus significatif, il est souhaitable de pouvoir réaliser une vérification des composants après quelques années. Néanmoins, sur base des recherches que nous avons faites sur les fournisseurs wallons d’éoliennes domestiques, ils n’offrent pas un tel service de maintenance et d’entretien. De manière générale, le propriétaire d’une telle éolienne devra assurer lui-même le suivi régulier de son installation, d’où l’intérêt de faire un relevé de la production électrique. En effet, toute dérive significative de production sera symptomatique d’un fonctionnement anormal, d’un élément défectueux. Le propriétaire bénéficie d’une garantie de quelques années sur le matériel au-delà de laquelle il doit se débrouiller avec son éolienne.
  • Les frais d’entretien augmentent avec le temps. Plus l’éolienne vieillit et plus les interventions sont lourdes pour la maintenir en état.
  • Plus l’éolienne est grande et plus le recours d’une équipe ou d’une société spécialisée pour réaliser les différents aspects de la maintenance sera rencontré. Du coup, la qualité de la maintenance sera plus facilement garantie.

À titre d’exemple, on peut citer les chiffres pour de grandes éoliennes : 5 % de l’investissement initial par année pour les 10 premières années de fonctionnement et 7 % de l’investissement initial par année pour les 10 années suivantes. D’autres sources donnent des valeurs de 1 à 2 % de l’investissement par année et certaines avancent 2 % les 10 premières années, 2,5 % de 10 à 15 ans et 3 % pour la fin de vie de l’éolienne (entre la 16e et 20e année). Il est difficile de savoir quels chiffres sont les bons tant les facteurs qui influencent ces chiffres sont nombreux. Néanmoins, si on travaille avec une éolienne que l’on espère faire tourner 20 ans, on constate que la maintenance est un poste important à intégrer dans l’analyse de rentabilité économique.

Si nous tablons sur une durée de vie de 20 années et un coût de maintenance annuel équivalent à 5 % de l’investissement initial : Le coût de la maintenance sur la durée de vie de l’éolienne sera alors égal à l’investissement initial pour cette dernière.


Production et rentabilité

Afin de pouvoir estimer la rentabilité du projet, il est nécessaire de pouvoir estimer la production électrique annuelle de celle-ci. Il s’agit essentiellement de connaître le potentiel de vent de son site. Il faut disposer de mesures correspondantes à la localisation exacte du futur mât de l’éolienne ainsi qu’à la hauteur à laquelle sera placé le rotor ou obtenir les statistiques du vent sur base de simulations numériques.

Une fois l’investissement connu ainsi que la production électrique annuelle escomptée, on peut déduire le temps de retour sur investissement. Il y a deux grands cas de figure :

  • Soit, toute l’énergie électrique est injectée sur le réseau, auquel il faudra regarder le prix auquel un fournisseur voudra acheter cette énergie,
  • Soit on consomme entièrement ou partiellement l’énergie que l’on a produite, il faudra alors intégrer le prix auquel on vend et on achète l’énergie à un fournisseur. En effet, l’énergie que l’on produit soi-même et qu’on consomme correspond à une quantité d’énergie non consommée sur le réseau et donc à une économie.

Coût du kWh produit

On peut réaliser une analyse simple de la rentabilité économique de la production d’électricité avec une éolienne. La dimension uniquement analysée ici est la dimension économique vue par l’investisseur. La réalité est plus complexe que cela … fort heureusement d’ailleurs … L’intérêt d’investir dans l’éolien ne se limite pas à une dimension purement économique. Par exemple, les avantages de l’éolien comparés aux centrales classiques à combustibles fossiles n’est plus à démontrer, que ce soit en termes de rejet de gaz à effet de serre (SER) ou d’autonomie en approvisionnement énergétique.

On considère ici une durée d’utilisation de 20 ans avec des frais d’entretien annuels de 5 % de l’investissement initial. L’investissement est pris à différentes valeurs : 1 000 €/kW et 1 500 €/kW qui sont représentatifs des grandes éoliennes ainsi que 2 000, 3 000, 4 000 et 5 000 €/kW pour de plus petites éoliennes. Il est alors possible d’évaluer le coût du kWh produit si on connaît la production annuelle d’électricité rapportée en nombre d’heures équivalentes de fonctionnement à puissance nominale.

Si on reprend 25 % de fonctionnement équivalent à puissance nominale (une valeur typique du grand éolien pour nos contrées), pour une année de 8 760 heures, cela donne approximativement 2 200 heures. Sur base du graphe ci-dessus, on voit que le prix du kWh produit s’échelonne de 5 c€/kWh pour des investissements proches de 1 000 €/kWN à 22.5 c€/kWh pour des investissements de 5 000 €/kWN représentatifs de petites éoliennes.

Pour les mini- et micro-éoliennes, le constat fréquent en Wallonie est que le nombre d’heures efficaces dépasse rarement les 1 000 h/an. En outre, l’investissement par kW nominal pour de telles éoliennes est relativement élevé. Prenons à titre d’exemple 5 000 €/kWN, tout en sachant que les prix varient fortement d’un constructeur à l’autre (en fait, la qualité varie aussi fortement selon les fabricants). Le coût du kWh produit est approximativement de 50 c€/kWh, ce qui est nettement supérieur à prix actuel de l’électricité du réseau. Cela explique pourquoi ces éoliennes sont surtout utilisées pour l’alimentation d’appareils dans des lieux éloignés du réseau électrique. On peut citer des applications de recharge de batterie pour des bateaux ou l’alimentation de clôtures électriques dans des exploitations agricoles.


Incitants fiscaux et aide à la production

Afin de promouvoir la production d’électricité verte sur base d’énergies renouvelables, les différents niveaux de pouvoir ont mis en place des dispositifs d’incitants financiers. On peut classer les différents mécanismes en deux grandes catégories :

  • Les certificats verts : Chaque producteur éolien reçoit 1 CV par MWh produit, pour une durée calculée en fonction de la rentabilité de chaque projet éolien. Cette durée est calculée par le régulateur de l’énergie wallon, la ouverture d'une nouvelle fenêtre ! CWaPE, dans le but d’atteindre un IRR/TRI de 7 %. Pour plus d’info, voire la note de la CWaPE sur le calcul du coefficient de rentabilité [keco] ainsi que l’arrêté ministériel. Attention, le taux d’octroi pour le petit éolien est supérieur.   http://www.cwape.be/?dir=0.2&docid=1528
  • Aides et subsides : Par exemple, à l’heure de l’écriture de cette section, c’est-à-dire en mars 2018, on pouvait compter les mécanismes suivants: aide à l’investissement pour les entreprises, Aide UDE de la DGO6 (uniquement petit éolien < 1 MW) http://www.wallonie.be/fr/formulaire/detail/20452, déduction fiscale d’une partie des bénéfices, exonération du précompte immobilier sur le nouveau matériel.

Pour plus de détail, nous invitons le lecteur à consulter les informations diffusées par le Facilitateur Énergies Renouvelables électriques [https://energie.wallonie.be/fr/facilitateur-energies-renouvelables-electriques-et-cogeneration.html?IDC=9546] éolien, c’est-à-dire l’APERe ou de prendre contact avec celui-ci, notamment via son site internet. [http://www.apere.org/]

Il est important de prendre en considération ces incitants financiers dans la mesure où ils améliorent considérablement la rentabilité économique. Le montant et le nombre de certificats verts sont d’ailleurs conçus pour rendre les énergies vertes compétitives par rapport aux filières traditionnelles.


Avantages des grands projets éoliens par rapport à des petites installations : projets  éoliens participatifs

Nous résumons ci-dessous les avantages d’investir en commun dans un grand projet éolien plutôt que de réaliser une multitude de petites installations :

  1. L’investissement ainsi que les frais de maintenance par m² ou par kW nominal diminue avec la taille de l’éolienne si bien que, avec un même budget total initial, on peut investir dans une surface balayée ou une puissance installée supérieure. En conclusion, on produira plus.
  2. Le rendement des éoliennes augmente avec la taille. En conclusion, on produira encore plus.
  3. On pourra travailler avec du matériel certifié et l’entretien sera réalisé systématiquement par des professionnels formés sur le matériel installé. En conclusion, on aura une garantie de qualité et donc une meilleure garantie sur les performances et la durée de vie.
  4. D’un point de vue financier, c’est répartir le risque de l’investissement sur un plus grand nombre de personnes.
  5. Permet de se payer une étude du potentiel de vent approfondie ce qui garantit les performances de la future éolienne. Pour des petits projets, l’étude de vent est plus difficile à rentabiliser.
  6. On peut déléguer et remettre le suivi du projet à des personnes plus compétentes ou qui ont un mandat clair et des moyens pour réaliser le projet. Ces personnes prendront la tête de l’initiative et pousseront le projet.
  7. L’avantage paysager est également à noter : mieux vaut une grande éolienne que 10 petites : pas de prolifération anarchique de petites constructions.

Nous invitons donc les lecteurs intéressés dans l’éolien à ne pas perdre cette possibilité de vue, de se renseigner sur les offres disponibles dans l’éolien participatif avant de se lancer seul dans son propre projet. En outre, une motivation majeure, souvent principale, est aussi de prendre part à une initiative citoyenne en faveur de la protection de l’environnement.

Des plateformes comme Coopalacarte (https://www.coopalacarte.be/fr) cartographient les projets d’énergie renouvelable belge où des coopératives citoyennes sont actives.

Concevoir l’installation d’une éolienne

 


Un projet multidisciplinaire

Au-delà de la justification environnementale et économique, l’implantation d’une ou plusieurs éoliennes doit satisfaire à une série de contraintes. Celles-ci sont de natures fort différentes. Ces contraintes peuvent être vues comme des conditions nécessaires à remplir pour pouvoir édifier une éolienne, mais chaque contrainte séparée ne peut être vue comme une condition suffisante : il faut pouvoir répondre à toutes les contraintes. Naturellement, plus le projet est ambitieux en taille et plus les contraintes à respecter sont sévères ou plus la justification de leur respect doit être approfondie. À l’autre extrême, on trouve les projets de petites éoliennes où les contraintes sont relativement limitées.

Pertinence du projet

Au départ, le projet doit être intrinsèquement pertinent. On développe cette idée ci-dessous pour différentes dimensions du projet, c’est-à-dire des objectifs énergétiques, environnementaux et économiques. Ces dimensions ont été séparées pour des raisons de clarté et pour structurer le propos. Il faut être conscient qu’en réalité tous ces critères sont fortement liés et doivent être considérés ensemble.

Pertinence économique

Bien que l’impact sur la réduction de l’émission de gaz à effet de serre soit un atout indéniable, il n’en reste pas moins que la pertinence économique d’un projet éolien demeure un paramètre vital. À cet effet, il est important d’avoir une idée claire sur la rentabilité de son projet. En outre, il faut intégrer à ses calculs financiers la politique de soutien des autorités publiques pour la production d’énergie verte. En effet, ce dernier aspect améliore considérablement les performances économiques du projet.

Pertinence énergétique et environnementale

  • Maîtrise de la consommation énergétique : Si l’objectif est de répondre à la demande d’électricité d’un ou plusieurs bâtiments, d’autres approches que l’éolien peuvent être pertinentes, voire prioritaires. Produire son énergie avec des sources d’énergies renouvelables est une excellente initiative, ne pas consommer cette énergie est encore mieux. C’est un slogan que l’on rencontre systématiquement dans le contexte de l’utilisation rationnelle de l’énergie. Bien qu’un peu « bateau », il est tout à fait pertinent. Une condition préalable à l’investissement dans un projet éolien est la maîtrise de sa consommation énergétique. À l’échelle d’un bâtiment, cela doit être vu au sens large, c’est-à-dire en intégrant la consommation électrique, mais aussi la consommation de chaleur. On peut attaquer ces consommations sur deux fronts : le premier est de réduire les besoins de chaleur et d’électricité, le second est l’utilisation d’un matériel performant et en bon état de marche. Les différentes sections d’Énergie+ ont été développées pour vous accompagner dans cette démarche de maîtrise des consommations pour chaque poste-clef de votre bâtiment ou de votre parc immobilier.
  • Les ressources disponibles : Par définition, une éolienne est une machine qui transforme l’énergie du vent en énergie mécanique, c’est-à-dire la rotation du rotor. Finalement, cette énergie sera transformée en électricité via une génératrice. Comme toute machine, elle réalise cette conversion avec un certain rendement. Comme le bon vieux premier principe de la thermodynamique nous l’apprend, l’énergie est conservée : « rien ne se perd, rien ne se gagne ». Le rendement de l’éolienne ne dépasse donc jamais les 100 %. Tout cela pour dire que si le vent ne contient pas beaucoup d’énergie sur le site où vous voulez implanter votre éolienne, celle-ci ne pourra pas faire de miracles et produire plus que ce potentiel énergétique du vent. Avant de se lancer dans l’aventure, il faut donc connaître les ressources d’énergie éolienne dont on dispose. Cela peut se faire via une campagne de mesure sur site ou, dans la plupart des cas aujourd’hui, au moyen de logiciels de simulation numérique qui permettent de déterminer les grandes caractéristiques du vent en relation avec une éolienne. Une propriété importante est la puissance instantanée du vent qui traverse la surface balayée par l’éolienne. Cette puissance dépend du cube de la vitesse du vent (en amont de l’éolienne). Si la vitesse double, la puissance instantanée du vent est multipliée par huit. L’éolienne dispose alors de huit fois plus de puissance de vent à convertir en électricité. Sur base de ce constat, on comprend tout l’intérêt de placer son éolienne sur un site venteux. En outre, de par ses propriétés, le vent varie fortement d’un site à l’autre. Par conséquent, la pertinence énergétique d’un projet éolien dépend fondamentalement du potentiel local de votre site d’implantation.
  • Un large spectre d’énergies renouvelables : Comme expliqué ci-dessus, la pertinence énergétique dépend fortement du potentiel de vent de votre site d’implantation. Ce potentiel va donc aussi influencer la viabilité économique du projet. Toutes les sources d’énergies renouvelables ne sont pas aussi sensibles aux conditions atmosphériques ou météorologiques locales. Par exemple, lorsque l’on considère les techniques solaires, que ce soit le solaire thermique ou photovoltaïque, votre production sera essentiellement dépendante de l’ensoleillement ainsi que de la température extérieure (qui influence le rendement du matériel). Ces facteurs varient bien évidemment d’un site à l’autre, mais les variations, au sein d’un territoire restreint comme la Région wallonne, restent limitées. Par conséquent, ces techniques solaires souffrent moins de facteurs locaux, leur pertinence est donc plus facile à établir ou réfuter. Le choix d’une énergie renouvelable par rapport à une autre dépendra donc du potentiel de votre site. Si vous ne disposez pas de sites venteux, d’autres sources d’énergies  renouvelables seront peut-être plus indiquées. Dans certains cas, d’autres ressources d’énergies renouvelables sont peut-être plus facilement valorisables, tel le bois-énergie dans des régions où les forêts et les sous-produits de bois sont nombreux. En conclusion, il faut regarder la question de la manière la plus large possible en envisageant toutes les opportunités qui s’offrent.

Contraintes

Le but de cette section relative aux contraintes n’est pas de faire un état des lieux précis des contraintes auxquelles est soumise l’implantation d’une éolienne. L’objectif est de démontrer la diversité des questions et des disciplines rencontrées. Nous invitons le lecteur intéressé à consulter les documents de référence sur ces questions voir de rentrer en contact avec le facilitateur Électricité Renouvelable de la Région wallonne. Fort heureusement, pour les petits projets éoliens, la liste des contraintes est plus restreinte.

Contraintes urbanistiques

Une éolienne doit respecter une série de contraintes urbanistiques. Celles-ci seront d’autant plus sévères que l’éolienne sera grande. L’ensemble des règles concernant les zones capables en éolien sont reprises dans le Code du Développement Territorial (CoDT). En outre, il existe des zones protégées où l’installation d’une éolienne est en principe proscrite. On peut citer, à titre d’exemple, les zones Natura 2000, les réserves naturelles, les peuplements de feuillus,…

Les éoliennes pourront par contre s’établir, moyennant certaines conditions, dans les zones agricoles, zones d’activité économique, zone forestière à faible densité…

Contraintes électriques et de raccordement au réseau

Mis à part les situations d’auto-consommation, l’électricité qui sera produite par les éoliennes sera principalement injectée sur le réseau. Il faut que le réseau possède un nœud de connexion proche (cabine de tête) qui puisse accueillir le puissance électrique débitée par une ou plusieurs éoliennes. Cette capacité dépend de la puissance électrique que l’on souhaite faire transiter par le réseau et donc de la taille du projet éolien. Dans le cas où il faudrait tirer une nouvelle ligne de puissance vers une éolienne, il faut savoir que ce sont des travaux extrêmement coûteux. La topologie du réseau électrique à proximité du site d’implantation a donc un impact majeur. Ces questions sont traitées en collaboration avec le Gestionnaire du Réseau de Distribution (GRD) ou de Transport (GRT) suivant le niveau de tension du réseau auquel on veut se raccorder.

Actuellement, les meilleurs sites (sur les plans de l’exposition au vent et de la connexion au réseau) sont déjà équipés en éoliennes. Ce critère est donc moins évident à optimiser au fur et à mesure que les gisements de vents idéalement situés sont exploités.

Contraintes environnementales

L’implantation d’une éolienne peut perturber son environnement direct :

  • Les éoliennes émettent du bruit. Ce bruit peut être engendré par la vibration de la structure, voire aussi être d’origine aérodynamique. Il faut veiller à ce que le niveau de bruit émis par l’éolienne soit compatible avec l’occupation du voisinage. À ce titre, le législateur a mis en place un arrêté pour protéger le cadre de vie des riverains en exigent le respect de normes de bruits strictes en fonction des conditions sectorielles. http://environnement.wallonie.be/legis/pe/pesect074.html
  • L’impact de l’éolien sur l’avifaune est très limité. Il est d’autant plus limité que l’éolienne est de petite taille. Il existe pourtant des zones sensibles qu’il est souhaitable d’éviter, essentiellement pour les grands projets éoliens. Par exemple, on peut citer les couloirs de migration ou les zones de nidification. L’étude d’incidence analyse particulièrement ces impacts.

Contraintes de compatibilité

L’implantation d’une éolienne peut interagir négativement avec d’autres fonctions réalisées dans son environnement :

  • Les éoliennes émettent un rayonnement électromagnétique. Néanmoins, celui-ci n’est pas dans la même gamme de fréquences que celles utilisées par les radars. Ces éoliennes ne constituent donc pas des brouilleurs actifs. Par contre, l’éolienne peut avoir des surfaces importantes métalliques comme le mât ou les pâles qui peuvent refléter les rayons d’un radar. Potentiellement, cela peut créer de faux échos radars ce qui peut être dangereux pour l’aviation civile ou militaire. En outre, certaines parties de l’éolienne sont en mouvement. C’est, par définition, le cas du rotor. Un effet « Doppler » qui modifie le champ électromagnétique pulsé par le radar peut avoir lieu. Ce phénomène génère de forts échos radars. Il faut savoir que même les éoliennes avec un rotor de diamètre limité, comme une éolienne domestique avec un rotor de 2 m de diamètre, génèrent un écho perceptible sur les radars. Un faux écho radar peut être dangereux pour l’aviation, qu’elle soit civile ou militaire, c’est pourquoi certaines zones d’exclusion existent, notamment à proximité des aéroports ou de zones d’implantation de radars. Par contrer cela, des filtres (solutions software) sont actuellement en cours de développement de manière à permettre l’implantation d’éolienne dans certaines zones à proximité de radars.
  • Les grandes éoliennes peuvent constituer un obstacle dangereux pour l’aviation. A l’heure actuelle, les éoliennes dont la hauteur dépasse 60 m doivent être répertoriées.
  • Dans certains cas, l’éolienne peut interagir avec les ondes hertziennes parce que l’éolienne peut réfléchir ou diffracter ces ondes. Comme dans le cas du radar, il s’agit d’une perturbation passive et non pas d’un brouillage actif qui serait généré par les ondes électromagnétiques produites par l’éolienne. Le risque est que le signal envoyé par un émetteur soit « dévié » par une éolienne si bien qu’au niveau du récepteur du signal, on ait la superposition du signal direct et d’un signal dévié par une éolienne. La combinaison des deux contributions donne un signal perturbé. En pratique, une éolienne dont la hauteur totale correspond à la hauteur générale des obstacles naturels ou habituels ne créera pas de perturbation pour les faisceaux hertziens. Mais pas de panique, l’IPBT (Institut belge des services postaux et des télécommunications) et la RTBF sont systématiquement concertés dans le cadre de l’analyse des demandes de permis éoliens, de sorte que le risque de perturbation de votre programme télévisé préféré est aujourd’hui fortement minimisé.

Contraintes foncières

Dans bon nombre de cas, le développeur n’est pas propriétaire du terrain sur lequel il envisage une exploitation éolienne. Dans ce cas, l’exploitant passe un contrat avec le(s) propriétaire(s) du ou des terrain(s) pour pouvoir y réaliser leur projet éolien.

Dans un certain nombre de cas, des contraintes « de signature » peuvent grandement conditionner le projet. Les contraintes imposées par le(s) propriétaire(s) peuvent tant porter sur l’implantation des éoliennes que sur les caractéristiques du parc : nombre de turbines, puissance…


Les étapes d’un grand projet éolien

L’élaboration d’un grand projet éolien est un processus qui se réalise en plusieurs étapes. Au regard des différentes contraintes précitées et de l’importance du potentiel du vent, établir un projet complet demande beaucoup d’investissement en temps et en moyen, notamment pour réaliser les diverses études. Par conséquent, une première étape consiste à valider rapidement le bien-fondé de la démarche en évaluant une série de conditions de base que le projet doit au minimum respecter. Cela permet d’éviter d’engager trop de moyens dans un projet intrinsèquement non viable. Une fois cette étape de pré-faisabilité établie, on peut investir dans des études techniques plus poussées, c’est-à-dire des études de faisabilité, pour finalement aboutir à la finalisation du projet. Le projet ainsi défini, on passe au montage administratif qui donnera lieu à l’obtention d’un permis ou d’un refus d’implantation d’un parc éolien :

  1. Préfaisabilité
  2. Faisabilité
  3. Finalisation du projet
  4. Montage administratif
  5. Obtention ou refus du permis

Les diverses étapes jalonnant le projet sont notamment définies dans des documents de référence développés par le Facilitateur éolien,  ouverture d'une nouvelle fenêtre ! l’APERe. Nous reprenons ci-dessous une description un peu détaillée de la phase de définition du projet avant le montage administratif.

Étude de pré-faisabilité

  • Sur base de la vitesse moyenne du vent sur le site sélectionné, on estime rapidement la production électrique de la future éolienne. En parallèle, on peut aussi estimer l’impact de la topographie et d’obstacles locaux sur la qualité du vent : si l’on se trouve sur un terrain plat ou non plat, si des obstacles naturels ou artificiels sont présents.
  • On peut vérifier si l’implantation est compatible avec les contraintes urbanistiques, avec la présence de zones habitées proche, avec la présence de zones protégées, …
  • Une étude de faisabilité, appelée étude d’orientation, est commandée au gestionnaire de réseau électrique pour évaluer la possibilité de raccordement, la puissance qui peut être raccordée ainsi qu’une estimation du prix de raccordement. Il s’agit, suivant le niveau de raccordement, du gestionnaire du réseau de transport (GRT) ou de distribution (GRD).
  • Consulter les organismes dont l’avis risque d’être sollicité par les autorités qui délivrent le permis d’implantation de l’éolienne. On pense par exemple à Belgocontrol, la Défense Nationale, aux Fonctionnaires Délégués et Techniques. De cette manière, on peut s’assurer que le projet ne recevra pas un avis négatif de la part de ces organismes plus tard dans le processus d’obtention du permis. Encore une fois, on peut ainsi éviter d’engager trop de forces dans un projet qui ne risque pas d’aboutir. Il s’agit d’un avis indicatif qui ne garantit rien sur l’avis officiel qui sera donné ultérieurement par ces institutions durant la phase administrative du projet. À noter que certains organismes ne donnent pas d’avis indicatif.

Étude de faisabilité

  • Une étude plus approfondie sur le potentiel éolien du site est réalisée. Ce potentiel est évalué sur base d’une campagne de mesure sur site bien qu’aujourd’hui les simulations numériques (via un logiciel de simulation numérique des écoulements environnementaux) sont privilégiées.
  • Une étude de détail sera commandée au gestionnaire du réseau électrique afin qu’il établisse les spécifications techniques du raccordement de l’éolienne au nœud du réseau fixé par l’étude d’orientation. Sur base des ces informations techniques, on peut faire établir un devis par une société spécialisée en électrotechnique pour réaliser le raccordement du parc éolien projeté.

Finalisation de l’étude

  • On passe à la phase dite de « micro-siting« . Il s’agit de déterminer le nombre, le type et les caractéristiques des éoliennes qui seront installées ainsi que l’emplacement exact de chaque turbine sur le terrain. On tient à la fois compte des informations collectées sur le potentiel du vent et des contraintes urbanistiques.
  • Un plan de financement est réalisé. Sur base du potentiel du vent, on peut estimer la rentabilité économique du projet. Cette étude tient compte des frais déjà engagés, de l’investissement dans les différentes éoliennes, leur installation et les frais de connexion au réseau électrique. En outre, les frais de maintenance ne seront pas négligés.
  • L’étude est ainsi finalisée, on peut ainsi rentrer dans la phase du montage administratif et la réalisation de l’étude d’incidence environnementale du projet.

Les étapes d’un petit projet éolien

Dans le cas d’un petit projet éolien, le montage d’un projet est fort heureusement moins lourd. Nous résumons ci-dessous les grandes étapes d’un tel projet. On passe au travers ces différentes étapes de manière séquentielle : une fois que la démarche est réalisée, on peut seulement passer à l’étape suivante (processus « go/no-go« ).

Les étapes d’un petit projet éolien :

    1. Vérifier sa consommation électrique et la réduire. En amont de toute démarche, il faut maîtrise ses consommations par une utilisation rationnelle de l’énergie (URE). Énergie+ a typiquement été développé pour vous accompagner dans cette tâche.
    2. Vérifier le coût de l’électricité du réseau auprès des fournisseurs.
    3. Faire une estimation rapide de la production de l’éolienne, notamment sur base de la vitesse moyenne du vent sur le futur site d’implantation.
    4. Faire une estimation rapide de la rentabilité du projet en intégrant les incitants fiscaux. Sur cette base, faire une comparaison avec les autres systèmes d’énergies renouvelables.
    5. Vérifier si l’implantation d’une petite éolienne est compatible avec les prescriptions urbanistiques.
    6. Mesurer le potentiel de vent de son site, c’est-à-dire la vitesse du vent durant une période d’au minimum plusieurs mois à, idéalement, un an. Il faut en outre vérifier la « qualité » de l’écoulement du vent sur le terrain en repérant les obstacles qui risquent de le perturber ou les modifications de relief qui risquent d’accélérer ou décélérer le vent localement. Il faut se référer aux règles de bonne pratique pour avoir une idée de cet impact. Finalement, sur base des mesures, on peut faire une estimation de la production électrique réalisable.
    7. Choisir la taille de l’éolienne, son modèle ainsi que la hauteur du mât. La hauteur du mât est un aspect très important. C’est un point sur lequel il faut être particulièrement vigilant et intransigeant pour garantir le futur succès de votre installation éolienne.
    8. Demande et obtention du permis de bâtir.
    9. Suivant la puissance, notification ou demande de permis au Gestionnaire de Réseau de Distribution (GRD) pour la connexion au réseau électrique.
    10. Commander l’éolienne.
    11. Installation de l’éolienne.
    12. Réception des travaux, notamment au niveau électrique et de la connexion au réseau.
    13. Maintenance et surveillance du matériel durant toute sa durée d’utilisation.

Choisir l’émetteur de chaleur [PAC]

Introduction

Pour pouvoir parler de l’émetteur de chaleur, il faut faire le choix de la source « chaude » : l’air, l’eau, ou le sol dans le cas où la pompe à chaleur est à condensation directe.

La redistribution de température doit se faire à la température la plus basse possible (maximum 50 °C) car la PAC sera plus efficace. On peut effectuer cette redistribution soit par un chauffage à air pulsé, un chauffage par le sol ou mural, ou un chauffage à ventilo-convecteurs.


L’air comme source chaude

On utilise cette source chaude en général dans les PAC air/air.

L’air est pulsé dans un échangeur de chaleur fluide/air et chauffé par le fluide frigorigène comprimé jusqu’à 30 ou 40 °C. Il est ensuite  envoyé vers les pièces du bâtiment. L’avantage de cette source chaude est de répondre rapidement à la température demandée de par la faible inertie de l’air. Cet avantage devient un inconvénient au point de vue financier dans la mesure où il ne peut y avoir d’accumulation de chaleur pendant la nuit et donc aucun bénéfice des tarifs de nuit pour l’électricité.

Quatre types d’installations existent dans le cas où l’air est choisi comme source chaude :

  1. Installation compacte intérieure. Dans ce cas, il y a une conduite d’amenée et de rejet d’air extérieur vers l’évaporateur qui se trouve à l’intérieur du bâtiment. La PAC est installée près d’un mur extérieur. La traversée des conduites dans le mur est isolée et protégée contre la pluie.
  2. Installation compacte extérieure. La PAC est reliée au réseau de distribution d’air par des conduites isolées. Cette solution est coûteuse à cause du transfert des sources chaude ou froide.
  3. Système mono-split : ce système, d’une grande souplesse d’installation, permet de chauffer une seule pièce du bâtiment. Une ou deux unités intérieures (dans la même pièce) sont reliées à une unité extérieure unique qui traite l’air. L’évaporateur se trouve ainsi à l’extérieur et le condenseur à l’intérieur du bâtiment, ce qui permet à l’évaporateur d’être bien alimenté en air extérieur. Le fluide frigorigène doit passer à travers la paroi du bâtiment dans des conduites calorifugées et l’air chaud est distribué via des gaines de différents diamètres en fonction des débits et des pressions demandés. La quantité de fluide frigorigène présente dans ce système est supérieure aux deux systèmes précédents.
  4. Système multi-split : plusieurs pièces peuvent être chauffées, à l’aide d’un ou deux ventilo-convecteurs dans chacune d’entre elles. Il y a donc plusieurs condenseurs, mais toujours un unique évaporateur extérieur.

Les ventilo-convecteurs sont des émetteurs de chaleur qui fonctionnent dans ce cas-ci à « condensation directe » : le fluide frigorigène cède directement l’énergie thermique à l’air.

Le système split

Dans ce type de système :

  • l’évaporateur est placé à l’extérieur
  • le condenseur est placé soit dans un local technique où il est relié à un réseau de distribution, soit directement dans le local à chauffer, par exemple dans un ventilo-convecteur.

Le transfert de chaleur entre l’intérieur et l’extérieur se fait par le fluide frigorigène qui traverse la peau du bâtiment dans des canalisations calorifugées.

Les systèmes split installés directement dans les locaux ont l’avantage de la souplesse d’installation : un simple réseau bitube est suffisant pour le transport du fluide frigorigène, on évite les intermédiaires puisque la PAC chauffe directement l’air du local, il ne faut pas d’accumulateur ni de régulation complexe d’un réseau hydraulique, … en contrepartie, ils présentent un plus grand risque de fuite de fluide frigorigène.

Lorsque l’on multiplie le nombre d’échangeurs de chaleur, on parle de système multi-split. Les différents échangeurs intérieurs, par exemple un par local, sont alors tous reliés à un (ou plusieurs) échangeurs de chaleur extérieur. Différentes « boucles » sont donc « juxtaposées » avec comme seule interconnexion la ou les unités extérieures.

Un condenseur commun et plusieurs unités intérieures = multi-split.

Exemple de système multi-split :

Un fournisseur propose une gamme standard d’installations multi-split complètes dont l’unité extérieure a une puissance frigorifique maximale allant de 1 à 11,5 kW et une puissance calorifique maximale de 0,9 à 17,2 kW, pour des débits d’air d’environ 2 100 m³/h.

La longueur maximale de tuyauterie autorisée va de 35 à 70 mètres au total selon l’unité extérieure choisie dans la gamme. Le branchement de plus de 4 unités intérieures par unité extérieure n’est pas possible.

Les unités intérieures peuvent être murales, en consoles, gainables ou en cassette 2 ou 4 voies. Leur puissance frigorifique varie entre 1 et 4,5 kW et leur puissance calorifique entre 1,1 et 6,4 kW.

Chaque unité intérieure accepte une longueur de tuyauterie de 25 m.

Le prix des groupes de condensation (unité extérieure) est entre 2 285 et 4 150 €, celui des unités intérieures de 585 à 2 235 € pièce.


L’eau comme source chaude

Dans ce cas, le fluide frigorigène comprimé donne sa chaleur à l’eau du circuit de chauffage par l’intermédiaire d’un échangeur de chaleur. La température de l’eau de condensation devant être la plus basse possible (entre 35 et 45 °C pour – 8 °C extérieurs), le chauffage par pompe à chaleur sera réalisé par un plancher chauffant à eau, par des ventilo-convecteurs à eau ou par des grands radiateurs à basse température.

Plancher chauffant à eau

Cette solution efficace procure un excellent confort thermique uniforme dans la pièce. La surface d’émission est suffisamment grande pour permettre une température faible : maximum 28 °C. Cette température permet d’éviter les problèmes de circulation dans les jambes. Cet émetteur de chaleur présente l’avantage (pour des constructions neuves) d’être complètement invisible et de dégager de la place aux murs par rapport aux radiateurs conventionnels.

Installation d’un plancher chauffant.

Le plancher chauffant est composé d’un réseau de tubes en polyéthylène enfouis dans du béton coulé, et montre une grande inertie thermique. Les réponses aux variations de température demandées sont donc lentes (de l’ordre de quelques heures). Le revêtement de sol doit présenter une résistance thermique faible, comme un carrelage ou un parquet (même si ce dernier a une résistance thermique plus élevée que le carrelage pour des épaisseurs égales). Pour obtenir une bonne transmission de la chaleur entre la couche de béton et l’ambiance, le parquet doit être de préférence collé. Dans tous les cas, il faut éviter les couches d’air car elles ont un effet isolant.

Le chauffage par plancher chauffant peut nécessiter un appoint. On peut également jouer sur la distance entre deux tubes pour avoir plus ou moins de puissance surfacique. Si on augmente la longueur de tube chauffant dans le sol, on peut diminuer la température de l’eau qui y circule pour un même confort thermique dans l’ambiance.

Murs chauffants

Les murs peuvent également être utilisés comme surface de chauffage. C’est parfois une meilleure solution dans le cas d’une rénovation.

Installation d’une cloison chauffante

Ventilo-convecteur à eau

Ce type de ventilo-convecteur est un échangeur qui transmet la chaleur de l’eau (chauffée dans le convecteur) à de l’air forcé à l’intérieur. C’est le même type d’appareil qu’un ventilo-convecteur à condensation directe, hormis le fait que le fluide chauffant est de l’eau et non un fluide frigorigène.

Cette solution permet la production de froid quand c’est nécessaire en été.

Radiateur basse température

Ces radiateurs, incompatibles avec des systèmes de chauffage autres que la PAC, contiennent de l’eau dont la température est de 40-50 °C. Cette température est nettement inférieure à celle des radiateurs conventionnels (70 – 90 °C), mais est néanmoins suffisante pour chauffer un local, car les radiateurs basse température sont de grandes dimensions. Ils peuvent être construits en fonte, en fonte d’aluminium ou en acier. Bien évidemment, cette solution n’est pas compatible avec l’installation d’une pompe à chaleur réversible (rafraîchissement et climatisation en été).


Le sol comme source chaude

Dans ce cas, le fluide frigorigène circule dans un réseau de tuyaux en cuivre dans le sol, c’est la solution « à condensation directe ». Il n’y a pas d’échangeur intermédiaire et les tubes constituent eux-mêmes le condenseur de la PAC.

La quantité de fluide frigorigène utilisée est importante, ce qui impose le respect de règles dans la vérification, la récupération des fuites, etc. La mise en place des tubes doit être réalisée par des personnes qualifiées pour éviter tout risque de fuite et afin de garantir l’efficacité de l’installation.

Enveloppe


Le choix d’un niveau d’isolation correct

L’isolation doit faire partie intégrante de tout projet de construction et de rénovation où l’ambiance intérieure est destinée à être chauffée ou climatisée. Cette technique doit être intégrée dès le début du projet pour au final respecter au minimum la réglementation en vigueur ou, mieux, les objectifs fixés par différentes labellisations.

Une attention particulière doit aussi être portée aux différents nœuds constructifs (raccords entre les parois) qui présentent plus de risques de ponts thermiques.


Le choix de la fenêtre

Le choix de la fenêtre, sa position, son orientation, son type de vitrage a également un grand impact sur la qualité du projet au niveau énergétique.

Une fenêtre doit être vue comme :


Le choix de la protection solaire

Le choix d’une protection solaire est fonction des objectifs que l’on se donne :

  • les objectifs principaux sont de limiter les surchauffes et l’éblouissement ;
  • les objectifs secondaires sont d’augmenter le pouvoir isolant de la fenêtre, d’assurer l’intimité des occupants ou d’occulter un local et de décorer la fenêtre.

Choisir les éléments principaux de la pompe à chaleur

Choisir les éléments principaux de la pompe à chaleur


Choix du fluide frigorigène

Les fluides frigorigènes envisageables aujourd’hui pour les nouvelles installations de pompes à chaleur sont nombreux et font partie soit des hydrofluorocarbones (HFC), soit des fluides frigorigènes naturels. Plus question aujourd’hui de concevoir une installation chargée au R12 (CFC) ni au R22 (HCFC), ces réfrigérants destructeurs de la couche d’ozone participant fortement au réchauffement climatique.

Les fluides frigorigènes peuvent être choisis suivant différents critères :

Critères
thermodynamiques
Critères
de sécurité
Critères
techniques
Critères
économiques
Critères
environnementaux
Pression d’évaporation. Toxicité. Action sur les composants de l’installation. Prix. Action sur la couche d’ozone.
Température critique. Inflammabilité. Comportement avec l’huile Disponibilité. Action sur l’effet de serre.
Taux de compression. Caractère explosif. Comportement avec l’eau. Possibilité de récupération et de recyclage.
Efficacité des échanges thermiques. Aptitudes aux détections des fuites.
Température de refoulement. Stabilité.
Production frigorifique. Volumétrique spécifique.

Les fluides frigorigènes peuvent être soit des mélanges de fluides dans des proportions précises, soit des fluides purs. Les comportements diffèrent dans l’un ou l’autre cas. Les fluides purs s’évaporent à température constante alors que les mélanges (sauf mélanges azéotropiques) s’évaporent à des températures variables.

Les HFC

Les plus répandus sont le R134a, le R407C, le R410A et le R404A.

Les HFC présentent un Global Warming Potential (contribution à l’effet de serre) sur 100 ans relativement élevé. Pour cette raison, la réglementation  impose de vérifier l’étanchéité des installations de HFC afin d’éviter les fuites dans l’atmosphère.

La détection et la récupération des fuites doivent se faire avec un outillage adapté et les frigoristes doivent être certifiés.

Les fluides frigorigènes naturels

Les quatre fluides frigorigènes HFC ont été largement utilisés dans les installations de PAC neuves. Cependant, vu leur impact sur l’effet de serre, la réglementation  prévoit leur abandon progressif en faveur des fluides montrant un potentiel de participation au réchauffement climatique sur 100 ans plus faible voire des fluides frigorigènes « naturels ».


Choix de l’évaporateur de la PAC

Le fluide frigorigène capte la chaleur de l’environnement (eau, air ou eau glycolée) dans l’évaporateur de la pompe à chaleur. Il y passe de l’état liquide à l’état gazeux à basse température en emmagasinant de l’énergie. L’évaporateur est donc un échangeur de chaleur, au même titre que le condenseur et la température d’évaporation doit être la plus élevée possible pour augmenter les performances de la pompe à chaleur.

Les évaporateurs sont classés suivant leur type et leur source froide. Ainsi, on aura d’un côté, des évaporateurs à air ou à eau en fonction de la source froide choisie, et d’un autre côté on aura soit des évaporateurs secs, soit noyés.

Sec vs Noyé

  1. La différence entre ces deux technologies réside premièrement dans l’état de la vapeur qui sort de l’échangeur :
    Dans le cas des évaporateurs de type sec, également appelés « à surchauffe » ou « à détente sèche », le fluide frigorigène vaporisé sera complètement sec à l’admission au compresseur. Ceci est dû à la succession de deux phases : l’ébullition du liquide frigorigène puis la surchauffe des vapeurs obtenues (la température du gaz frigorigène sortant de l’évaporateur est donc légèrement supérieure à la température d’évaporation proprement-dite).
    La surchauffe est par contre pratiquement nulle dans le cas des évaporateurs de type noyé. Cela présente un inconvénient : la nécessité de prévoir une bouteille anti-coups de liquide avant le compresseur pour le protéger. Le mélange liquide-vapeur sortant de l’évaporateur est à la même température que le liquide entrant (en négligeant les pertes de charge).
  2. La configuration de l’évaporateur est également différente dans les deux cas :
    Dans les évaporateurs noyés, les surfaces d’échange (les plus grandes possibles) doivent être en contact permanent avec du fluide frigorigène liquide. Les tubes qui contiennent le fluide caloporteur (qui est souvent de l’eau glycolée) sont dès lors noyés dans le fluide frigorigène liquide qui se vaporise.
    C’est l’inverse dans le cas des évaporateurs secs. Les coefficients d’échange obtenus pour les évaporateurs noyés sont très élevés et ne varient pas beaucoup par rapport à ceux des évaporateurs à détente sèche.
    (En effet, de façon générale, l’échange de chaleur sera élevé si :- la surface d’échange augmente ;
    – la vitesse de passage des fluides est faible ;
    – la différence de température entre les fluides est grande ;
    – le débit de la source de chaleur est important par rapport au fluide frigorigène.).

Les évaporateurs de pompes à chaleur sont en général du type sec à cause des inconvénients que présentent les évaporateurs noyés (besoin d’une bouteille anti-coups de liquide, piégeage de l’huile de lubrification, etc.).

À air vs à eau

Pour les sources de chaleur liquides, les évaporateurs présentent une des 5 configurations suivantes :
Type noyé

  • L’échangeur à serpentin noyé (puissances supérieures à 30 kW).
  • L’échangeur multitubulaire noyé (puissances supérieures à 30 kW), qui est en général utilisé avec un compresseur à pistons ou à vis. Il faut faire attention au risque de gel de l’eau à l’intérieur des tubes. Autre inconvénient : ces évaporateurs peuvent accumuler de l’huile non désirée, dans le cas où ils sont utilisés avec un compresseur volumétrique lubrifié.

À surchauffe :

  • Les évaporateurs multitubulaires à surchauffe (puissances supérieures à 30 kW) sont très utilisés avec les compresseurs à pistons ou à vis. Les risques de gel sont amoindris par rapport à l’échangeur multitubulaire noyé et il n’y a pas de problème de retour d’huile.
  • L’échangeur à plaques brasées : Ces échangeurs ont tendance à se généraliser dans l’application des pompes à chaleur eau glycolée/eau. Ils sont performants (car les coefficients d’échange thermique sont élevés), robustes, compacts et étanches. Il faut toutefois faire attention à ce qu’il n’y ait pas d’encrassement. Attention également au risque de gel (il faut dès lors prévoir de l’antigel en suffisance).
  • Les évaporateurs coaxiaux sont très utilisés pour des puissances frigorifiques allant jusqu’à 100 kW. Ils présentent des difficultés d’entretien et nécessitent de l’eau très propre non entartrante.

Les types d’évaporateurs à air sont au nombre de 3 :

  • Les évaporateurs à ailettes à convection naturelle ;
  • Les évaporateurs à tube lisse à convection naturelle.
Ces deux premiers types d’évaporateurs à air ne sont utilisés que pour des faibles puissances. De plus, les coefficients d’échanges thermiques sont faibles, car la ventilation est naturelle. On les retrouve donc très peu pour les pompes à chaleur.
  • Les évaporateurs à ailettes à convection forcée : c’est le type d’évaporateur à air qui est le plus utilisé. Ils sont munis d’un ou plusieurs ventilateurs pour assurer la circulation de l’air à travers les surfaces d’échange. Le problème de ces échangeurs réside dans la formation de givre ou de condensation lorsque la température des parois extérieures de l’évaporateur est inférieure à la température de rosée de l’air.

Techniques

Pour plus de détails concernant certains types d’évaporateurs de pompes à chaleur, cliquer ici !

Choix du compresseur

Il existe deux types de compresseurs qui peuvent être utilisés dans les pompes à chaleur : les compresseurs volumétriques et les compresseurs centrifuges (ou turbocompresseurs). Dans le premier cas, une réduction du volume à l’intérieur de la chambre de compression permet d’y augmenter la pression. En général les compresseurs sont de ce type. Dans le second cas, la compression résulte de la force centrifuge obtenue par entraînement dynamique au moyen d’une roue à aubes. On utilise ces compresseurs pour des applications précises, ou pour de grandes puissances.

Les compresseurs volumétriques à pistons

Les compresseurs volumétriques à pistons sont les plus répandus pour les circuits frigorifiques et ils sont alternatifs pour la plupart. Ils sont de plusieurs types, suivant qu’ils sont ouverts, semi-ouverts ou fermés (hermétiques) au niveau de l’association entre le moteur et le compresseur.

compresseurs volumétriques à pistonscompresseurs volumétriques à pistons

Hermétique, semi-hermétique et ouvert.

Hermétique

Dans ce cas le moteur électrique et le compresseur sont logés dans une même enveloppe soudée. L’ensemble n’est pas démontable. On utilise beaucoup ce type de compresseur pour de faibles puissances, jusqu’à 30 kW environ.

Avantages

  • Le faible coût de l’ensemble.
  • L’encombrement réduit.
  • La bonne étanchéité.
  • Le peu de bruit par rapport aux autres compresseurs volumétriques à pistons.
  • La rapidité de la recharge en fluide frigorigène, car bonne tolérance aux coups de liquide.
  • Pas de problème de mise en ligne du compresseur et du moteur, car pas d’accouplement.
  • Le refroidissement effectué par le fluide frigorigène lui-même, car le moteur est dans le circuit du fluide frigorigène.
  • La bonne récupération au condenseur de la chaleur dissipée par le moteur, de par la configuration fermée.

Inconvénients

  • Le compresseur est inaccessible. Si un problème survient, il faut changer le compresseur, car il n’est en général par réparable.
  • Les performances sont médiocres, car l’accent est en général mis sur de bonnes puissances frigorifiques à un prix réduit, au détriment de la consommation du compresseur.
  • Les hautes températures de refoulement peuvent présenter un danger à certains régimes de fonctionnement (surchauffe).
  • Le bobinage du moteur peut se retrouver court-circuité à cause d’une attaque chimique de l’isolant du bobinage par un fluide frigorigène pollué, de l’humidité ou d’une surchauffe (dans ce dernier cas, prévoir un organe de sécurité qui coupera l’alimentation électrique lors d’une surchauffe). Si le moteur « grille », il faut remettre en état le bobinage et nettoyer l’ensemble du circuit, car il sera pollué.
  • La puissance ne peut pas être réglée, sauf par variation de fréquence du courant d’alimentation.

Semi-hermétique

Le compresseur est entraîné directement par le moteur électrique, qui est accolé au compresseur. Ces compresseurs sont utilisés pour des puissances se situant entre 0,4 et 100 kW (on peut aussi monter jusqu’à 400 kW en recourant à plusieurs compresseurs). Ces puissances sont plus élevées que pour les compresseurs hermétiques, car il n’y a plus de limitation d’entretien.

Avantages

  • L’accessibilité à tous les organes mécaniques et électriques.
  • Pas de problème de mise en ligne du compresseur et du moteur, car pas d’accouplement.
  • L’encombrement réduit.
  • Pas besoin d’élément d’étanchéité entre le moteur et le compresseur, donc pas de risque de fuites de fluide frigorigène.
  • La récupération partielle au condenseur de la chaleur dissipée par le moteur.
  • La bonne qualité de fabrication, d’où une bonne performance.

Inconvénients

  • Moins résistant aux coups de liquide.
  • Le coût plus élevé.
  • Pas de récupération totale de la chaleur dissipée par le moteur.
  • Le bobinage du moteur peut se retrouver court-circuité à cause d’une attaque chimique de l’isolant du bobinage par un fluide frigorigène pollué, de l’humidité ou d’une surchauffe (dans ce dernier cas, prévoir un organe de sécurité qui coupera l’alimentation électrique lors d’une surchauffe). Si le moteur « grille », il faut remettre en état le bobinage et nettoyer l’ensemble du circuit, car il sera pollué.

Ouvert

Ici le moteur et le compresseur sont totalement séparés ; le moteur est donc accouplé au compresseur en bout d’arbre à l’aide d’un manchon, ou alors par des poulies et des courroies. La gamme de puissances est similaire à celle des compresseurs semi-hermétique.

Avantages

  • L’entretien aisé, car le compresseur est démontable.
  • Peut être entraîné par des moteurs de différents types (moteurs électriques à courant alternatif, continu, à vitesse fixe ou variable, moteurs à combustion interne, turbine à gaz,…).
  • La très bonne qualité de fabrication.
  • La possibilité de choisir la vitesse de rotation la mieux adaptée.
  • Pas de pollution du circuit frigorifique en cas de court-circuit dans le moteur.

Inconvénients

  • Le coût élevé.
  • La mise en ligne moteur-compresseur difficile.
  • La faible résistance aux coups de liquide.
  • Aucune récupération de la chaleur dissipée par le moteur.
  • Il faut une garniture d’étanchéité entre le moteur et le compresseur, d’où le risque de fuites de fluide frigorigène.

Le compresseur volumétrique hermétique spiro-orbital Scroll

Le compresseur Scroll comprime les vapeurs en continu en faisant tourner une partie mobile autour d’un élément fixe en forme de spirale. Ce type de compresseur est de plus en plus utilisé dans les circuits frigorifiques. Sa gamme de puissances va de 2 à 60 kW seulement, mais on peut très bien mettre plusieurs compresseurs en parallèle.

Avantages

  • La robustesse et fiabilité.
  • La légèreté.
  • La faible consommation.
  • Le prix réduit.
  • Le haut rendement volumétrique par rapport à l’espace mort.
  • L’encombrement réduit.
  • Le faible niveau sonore.
  • L’excellente tolérance aux coups de liquide.
  • La récupération quasi totale au condenseur de la chaleur dissipée par le moteur.
  • La séparation totale des gaz d’aspiration et de refoulement, réduisant leur échange thermique mutuel.
  • Il y a moins de pièces en mouvement que dans le cas du compresseur à pistons, et donc moins de frottements internes. De plus, il n’y a pas de clapets d’aspiration et de refoulement. Pour ces raisons le rendement est supérieur à celui des compresseurs à pistons, de même que le COP.

Inconvénients

  • L’inaccessibilité des organes du compresseur. On doit changer l’ensemble en cas de problème.
  • Le bobinage du moteur peut se retrouver court-circuité à cause d’une attaque chimique de l’isolant du bobinage par un fluide frigorigène pollué, de l’humidité ou d’une surchauffe (dans ce dernier cas, prévoir un organe de sécurité qui coupera l’alimentation électrique lors d’une surchauffe). Si le moteur « grille », il faut remettre en état le bobinage et nettoyer l’ensemble du circuit, car il sera pollué.

Les compresseurs volumétriques à vis

Les compresseurs de ce type sont soumis à deux classifications : les compresseurs à vis mono-rotor ou bi-rotor d’une part, et les compresseurs à vis hermétiques ou ouverts d’autre part.

  1. Le compresseur à vis mono-rotor : une vis hélicoïdale unique tourne à grande vitesse.
  2. Le compresseur à vis bi-rotor : le compresseur est composé de deux vis (une femelle et une mâle) à dentures hélicoïdales. L’insertion progressive des cannelures de la vis mâle dans celles de la vis femelle (par simple rotation) provoque la compression des vapeurs de fluide frigorigène.

Les compresseurs à vis de tous types sont utilisés dans le domaine des pompes à chaleur de fortes puissances : de 100 à 5 000 kW de puissance calorifique au condenseur. De ce fait, ils sont utilisés dans les pompes à chaleur eau/eau.

Avantages

  • Pas de soupapes et peu de pièces en mouvement, excellent rendement (indiqué et volumétrique).
  • L’absence de vibrations et peu de bruit.
  • Le taux de compression élevés.
  • Le flux de gaz pratiquement continu.
  • L’absence de parties sujettes à usure.
  • Le réglage facile.
  • La relative insensibilité aux coups de liquide.
  • Quasiment pas d’entretien nécessaire.
  • La régulation de puissance possible de 10 à 100 %.
  • Les rotors à profils asymétriques, ce qui est préférable au point de vue énergétique.
  • Le compresseur peu volumineux.

Inconvénients

  • Le coût relativement élevé.
  • Consomme plus d’énergie que les autres types de compresseurs.
  • Le moteur plus rapide donc groupe moto-compresseur assez bruyant.
  • La nécessité d’usiner avec une grande précision.
  • Uniquement utilisable pour de fortes puissances.
  • La nécessité d’adapter le taux de compression interne au taux de compression externe, sinon pertes.

En outre, les compresseurs à vis ouverts montrent l’avantage de pouvoir être entraînés par toutes sortes de moteurs, et l’inconvénient de ne pas récupérer au condenseur la chaleur dissipée par le moteur. Ils sont plus courants que les moteurs à vis semi-hermétiques.

Le compresseur volumétrique rotatif

Dans ce type de compresseur, un stator cylindrique renferme un rotor excentré par rapport à l’axe du stator. Un volume en forme de croissant est piégé. Du fluide frigorigène est introduit (aspiration) et la rotation du rotor comprime cet espace jusqu’à atteindre la pression souhaitée (refoulement).

Deux technologies existent :

  • Le compresseur rotatif à piston roulant : il est constitué d’un stator à l’intérieur duquel est disposé un rotor excentré (piston) qui comprime les vapeurs en se déplaçant. Une palette est montée sur le stator et assure l’étanchéité entre les chambres d’aspiration et de refoulement.
  • Le compresseur rotatif à palettes : la compression des vapeurs est obtenue par le déplacement des palettes qui sont logées dans des rainures dans le rotor, et qui appuient contre le stator grâce à la force centrifuge. Le rotor est monté de façon excentrique à l’intérieur du stator de manière à créer des volumes de plus en plus réduits pour les vapeurs.

Compresseur à piston roulant et compresseur à palettes.

Ces compresseurs sont utilisés pour des puissances calorifiques jusqu’à 10 kW et bénéficient d’une grande souplesse de fonctionnement. De plus, ils sont peu bruyants.

Le compresseur centrifuge

Ces compresseurs, appelés aussi turbocompresseurs, ne sont utilisés que dans le cas des très fortes puissances : de 1 000 kW à 50 000 kW de puissance calorifique au condenseur. Ils sont donc envisageables dans les grands centres industriels et commerciaux. Ils appartiennent aux pompes à chaleur de type eau/eau et peuvent être de type ouvert ou fermé.

Avantages

  • L’encombrement réduit.
  • Pas d’huile dans le circuit frigorifique et pas de problème d’huile piégée dans l’évaporateur, car les deux circuits (fluide frigorigène et huile) sont bien séparés.
  • Les puissances très élevées et réglables de 20 à 100 %
  • Peut être entraîné par des moteurs de différents types, dans le cas des compresseurs ouverts.
  • L’excellente qualité de fabrication.
  • Le coût plus faible que les compresseurs à vis.

Inconvénients

  • Le taux de compression faibles : ce compresseur se rencontre souvent donc en multi-étagé.
  • Moins de souplesse d’adaptation aux régimes de marche et aux fluides frigorigènes.
  • Utilisables pour les très fortes puissances uniquement.
  • Pas de récupération au condenseur de la chaleur dissipée par le moteur.
  • Plus délicat que les compresseurs à pistons à faible charge à cause du phénomène de pompage qui survient pour des faibles débits et qui peut endommager le compresseur (pompage : le débit oscille entre un débit nul et le débit maximal d’où écoulement pulsatoire).

PAC électrique ou au gaz ?

Les pompes à chaleur fonctionnent pour la majorité à l’électricité. Mais il est également possible de faire fonctionner la pompe à chaleur à l’aide d’un moteur à gaz, la PAC prélevant la chaleur sur l’air extérieur ou sur de l’air extrait d’un bâtiment. Le moteur thermique est alimenté en gaz naturel (méthane), ou en LPG (propane + butane) et ces PAC au gaz sont chargées avec les HFC (par exemple du R410A).

Les pompes à chaleur à gaz présentent les avantages suivants :

  • Leurs performances sont bonnes et leur rendement est indépendant des fluctuations de la température extérieure, car elles récupèrent la chaleur dissipée par le moteur et celle contenue dans les gaz d’échappement.
  • Grâce à cette récupération de chaleur, le dégivrage n’est plus nécessaire et la montée en régime est rapide. La PAC fonctionne en continu.
  • Contrairement à leurs homologues électriques sur l’air extérieur, elles fonctionnent bien en monovalence, c’est-à-dire qu’aucun appoint n’est nécessaire (ni de chaudière).
  • Leur coût énergétique est inférieur d’environ 30 % par rapport aux PAC électriques. Elles consomment peu d’électricité (90 % en moins).
  • Elles sont utilisables dans n’importe quel type de bâtiment, aussi bien dans les maisons particulières que dans des installations industrielles.
  • Elles peuvent être équipées d’un kit hydraulique pour produire de l’eau chaude ou de l’eau froide.
  • Les coûts d’entretien sont faibles.
  • Il est possible de réutiliser les installations existantes de PAC électriques en ne remplaçant que la PAC elle-même.
  • Les unités peuvent être connectées en série ; ce type de PAC est donc applicable à de grandes installations.
  • Elles sont compatibles avec les systèmes classiques de chauffage basse température : chauffage par le sol ou par le plafond, ou ventilo-convecteurs.

Ces PAC sont par contre plus chères que les PAC électriques. Peu de constructeurs exploitent cette solution pour l’alimentation d’une PAC.

Performances de la PAC à gaz

Il n’est pas possible de comparer directement le COP d’une PAC à gaz et celui d’une PAC électrique. En effet, dans le premier cas, l’énergie est primaire, dans le deuxième elle ne l’est pas.

Considérons que l’électricité est produite à partir de centrales dont le rendement moyen en Belgique est de 38 %. Pour produire 3 kWh thermiques, la pompe à chaleur aura donc utilisé 2,6 kWh primaires. Le « COP » sur énergie primaire est alors égal à 3 / 2,6 = 1,15.

Le PER (Primary Energy Ratio) de la PAC à gaz se situe quant à lui entre 1,2 et 1,6. Ce « COP » n’est pas beaucoup plus élevé que celui de la PAC électrique, mais contrairement à cette dernière, les performances sont conservées en cas de grand froid.


Choix du condenseur

On distingue les condenseurs à air et à eau.

Dans le premier cas, on utilise en général un condenseur à air à tubes à ailettes, un ventilateur centrifuge pour brasser l’air et un filtre. Les coefficients d’échange des condenseurs à air vont de 20 à 30 [W/m².K].

Dans le cas des condenseurs à eau, il existe :

  • Les condenseurs à serpentins : ils ne sont utilisés que pour des faibles puissances calorifiques au condenseur. Ils présentent l’inconvénient de montrer des difficultés d’entretien et de devoir utiliser une eau très propre et non entartrante.
  • Les condenseurs à tubes coaxiaux : utilisés pour des puissances calorifiques allant jusqu’à 100 kW. De même que le précédent, il nécessite une eau propre, car les entretiens ne sont pas évidents.
  • Les condenseurs à plaques brasées : leur coefficient d’échange thermique est élevé et donc ils se généralisent pour les pompes à chaleur air/eau et eau/eau. Ils sont performants, compacts, les pertes de charge sur l’eau sont en général assez faibles et la petite taille des canaux réduit la quantité de fluide frigorigène. Par contre, ce dernier atout présente l’inconvénient de favoriser l’encrassement des tuyaux. De nouveau, l’eau doit être très propre ou filtrée avant d’entrer dans le condenseur.
  • Les condenseurs multitubulaires : ils sont utilisés lorsque les puissances calorifiques sont importantes.

Les coefficients d’échange des condenseurs à eau vont de 700 à 1 100 [W/m².K].


Choix de l’organe de détente

Détendeur Thermostatique. C’est le détendeur le plus utilisé dans les pompes à chaleur. Il fonctionne de façon automatique et règle le débit du fluide frigorigène de manière à ce que la surchauffe des gaz qui sortent de l’évaporateur soit constante. Son inconvénient est de ne pas présenter un temps de réponse instantané, mais ce détendeur est très fiable, il permet d’adapter l’alimentation de l’évaporateur en fluide frigorigène, et de plus, certains détendeurs thermostatiques peuvent fonctionner dans les deux sens, évitant ainsi un second détendeur et des clapets dans les pompes à chaleur réversibles.
Capillaire de détente Il est utilisé dans les petits matériels de série. Son inconvénient réside dans le fait qu’il ne permet aucun réglage de la détente, mais cet inconvénient est aussi un avantage, car le capillaire de détente ne permet pas de déréglage de la détente dans le temps. Le capillaire peut se boucher facilement, il faut donc veiller à la parfaite déshydratation du circuit. Il faut également éviter l’utilisation d’une bouteille accumulatrice de liquide, car pendant l’arrêt du compresseur, l’évaporateur se remplirait alors exagérément (en effet le capillaire n’interrompt pas la communication entre condenseur et évaporateur, même pendant l’arrêt du compresseur). La charge en fluide frigorigène doit donc rester limitée. D’un autre côté, l’équilibre des pressions qui s’établit pendant l’arrêt du compresseur permet à ce dernier de redémarrer plus facilement. Autre avantage : le temps de réponse de la détente est instantané.
Détendeur électronique Il en existe de deux sortes : le détendeur moteur pas-à-pas et le détendeur à impulsion. C’est un détendeur très précis et fiable, de par la régulation numérique. L’injection du fluide frigorigène, la régulation de la température de la source froide et le dégivrage sont donc optimalisés et la surchauffe est maîtrisée. Le rendement de la pompe à chaleur reste ainsi optimal à tous les régimes. De plus, le système s’adapte à tous les fluides frigorigènes. Son inconvénient réside toutefois dans son coût élevé.
Orifice calibré Il s’appelle aussi « accurator » et s’utilise pour les pompes à chaleur réversibles. C’est un détendeur très fiable et son temps de réponse est instantané. Par contre, on ne peut pas adapter l’alimentation en fluide frigorigène en fonction de la charge thermique à l’évaporateur. De plus, ce détendeur n’est pas protégé par un filtre en amont, il faut donc faire attention lors d’interventions sur le circuit.
Régleur manuel Il est uniquement utilisé comme organe de secours d’un autre détendeur. Il fonctionne comme un capillaire, mais le réglage peut être modifié par la suite. Son temps de réponse est instantané, mais comme pour l’orifice calibré, on ne peut pas adapter l’alimentation en fluide frigorigène en fonction de la charge thermique à l’évaporateur. Lors de l’arrêt du compresseur, il est nécessaire de prévoir une vanne magnétique pour éviter le remplissage en liquide de l’évaporateur.
Détendeur à flotteur haute pression Il est souvent utilisé dans les groupes centrifuges. Ce détendeur règle le débit de liquide vers l’évaporateur en fonction du débit des vapeurs condensées, qui sont à haute pression. Son problème réside dans le fait qu’il faut mesurer très précisément la charge en fluide frigorigène pour éviter un retour de liquide vers l’aspiration du compresseur en cas d’excès de charge, et une alimentation insuffisante de l’évaporateur en cas de défaut de charge.
Détendeur à flotteur basse pression Il est très utilisé en combinaison aux évaporateurs noyés et également pour les pompes à chaleur de forte puissance. Ce détendeur règle le débit de liquide vers l’évaporateur en fonction de son niveau de liquide, qui est à basse pression. Le fluide frigorigène a un niveau constant, quelle que soit la charge thermique de l’évaporateur.
Contrôleur de niveau magnétique C’est une variante du détendeur à flotteur basse pression. Le flotteur porte ici un aimant permanent ou une masselotte en fer doux et actionne magnétiquement les contacts de commande de la vanne solénoïde placée sur l’arrivée de liquide dans l’évaporateur.
Contrôleur de niveau à bulbe chauffé Ici un bulbe est chauffé électriquement, et sa chaleur agit sur l’injection de liquide vers l’évaporateur.

Dimensionner les pompes à chaleur les plus courantes

Dimensionner les pompes à chaleur les plus courantes

Les propos de cette page concernent surtout les installations domestiques …

L’objectif n’est pas ici de donner une méthodologie de dimensionnement, mais bien de mettre en évidence les points caractéristiques à prendre en compte lors de la conception.


Optimiser l’installation

Une évolution de la puissance en sens contraire de la demande

Prenons le cas d’une pompe dont la source froide est l’air extérieur. On constate que malheureusement, l’évolution de la puissance fournie par la PAC se fait en sens contraire de la puissance appelée par le bâtiment.

Dimensionner une PAC capable de fournir la chaleur nécessaire par – 10 °C extérieurs générerait une puissance beaucoup trop élevée en mi-saison. Elle serait coûteuse à l’investissement et fonctionnerait alors durant de courtes périodes, avec une performance réduite.

Mais choisir une petite pompe à chaleur suppose un appoint de chaleur fort important, ce qui n’est pas plus performant, surtout si l’appoint est électrique.

Il faut donc évaluer la situation au cas par cas et optimiser le système.

Température de dimensionnement, de bivalence et limite

Le diagramme représente, dans la partie supérieure, les courbes relatives au circuit de chauffage, et, dans la partie inférieure, les besoins calorifiques et la puissance de chauffage de la PAC, le tout en fonction des températures extérieures.

Trois paliers importants sont définis en fonction des températures extérieures :

  • La température de dimensionnement (ou de base) : le système de chauffage est dimensionné en fonction de cette température.
  • La température de bivalence : en cas de fonctionnement bivalent, c’est au-dessous de cette température que la chaudière est utilisée.
  • La limite du chauffage : au-dessous de cette température, un système de chauffage est nécessaire.

Dans le diagramme supérieur, on voit que la PAC tente de donner un ΔT° à l’eau de retour mais que en dessous de la température de bivalence, elle n’arrive plus à assurer le niveau de t° de départ souhaité.

Le diagramme inférieur présente 2 fonctionnements bivalent-parallèles dont les sources de chaleur sont fondamentalement différentes :

  • Puissance chauffage PAC à peu près constante : la température de sortie du condenseur évolue parallèlement à la température de retour du chauffage (source de chaleur : par exemple nappe phréatique).
  • Puissance chauffage PAC fortement variable : la différence de température dans le condenseur augmente si la température extérieure croît (source de chaleur : par exemple air extérieur).

Dimensionnement de la pompe à chaleur Air/Eau

La première chose à faire est d’estimer les besoins calorifiques du bâtiment Q selon les normes en vigueur. Comme estimation rapide, on peut multiplier la surface chauffée (en tertiaire) par les besoins calorifiques suivants :

  • bâtiment neuf, isolation au niveau passif : 10 W/m²
  • bâtiment neuf, isolation de très bonne qualité : 40 W/m²
  • bâtiment neuf, isolation de bonne qualité : 50 W/m²
  • bâtiment présentant une isolation normale : 80 W/m²
  • bâtiment ancien sans isolation spéciale : 120 W/m²

Les études techniques et économiques montrent que la pompe à chaleur bivalente financièrement optimale doit être dimensionnée à 70 – 80 % des besoins d’énergie calorifique maximaux.

La PAC fournit la totalité des besoins calorifique jusqu’à la température d’équilibre (température de bivalence) en dessous de laquelle l’installation fonctionne en mode bivalent (la pompe à chaleur augmente la température de retour du chauffage et le second générateur de chaleur assure le complément). Cette température d’équilibre peut être déterminée sur base des graphiques de performance des appareils fournis par les constructeurs.

Reprenons l’exemple d’un constructeur allemand :

Les besoins calorifiques sont de 9 kW par – 14 °C (remarque : en Belgique, on dimensionne généralement pour – 10 °) et la limite de chauffage est fixée à 15 °C. Le graphique de performance indique une puissance de 5 kW pour la pompe à chaleur à – 14 °C. Pour la PAC choisie, le point d’équilibre se trouve à – 4,5 °C et indique une puissance à installer de 6,1 kW.

La puissance du chauffage d’appoint se mesure par la différence entre la puissance calorifique à fournir et la puissance de la PAC à la température de dimensionnement. Ici, elle est de 9 – 5 = 4 kW.

En mode monovalent, la pompe à chaleur est le seul générateur de chaleur à couvrir les besoins du bâtiment. Il faudra donc, le cas échéant, prendre en compte les besoins en eau chaude sanitaire.

Pour les pompes à chaleur avec appoint, ce supplément ne sera pris en compte que si la somme de puissance de chauffage supplémentaire demandée par l’ECS dépasse de 20 % les besoins calorifiques calculés selon la norme. Dans le cas contraire, on comptera sur l’appoint pour fournir le surplus de puissance.


Dimensionnement de la pompe chaleur Eau/Eau

Comme pour la pompe à chaleur Air/Eau, les fournisseurs proposent des graphiques des performances en fonction de la température de la source froide. Il suffit, une fois la température de la source froide évaluée (par exemple une nappe phréatique à 10 °C), de choisir l’installation qui, pour cette température, peut fournir la puissance calorifique demandée par l’utilisateur.

Le débit d’eau nécessaire est fonction de la puissance pompée dans l’évaporateur. Un débit suffisant assurera la constance de la température de la source froide et des performances de la PAC. Une approximation du débit minimal nécessaire peut-être de 150 l/h par kW absorbé pour un refroidissement de 4 à 5 °C dans l’évaporateur. Le débit précis sera déterminé par les formules suivantes :

Qf = V x cv x (tESF – tSSF)

La puissance frigorifique à l’évaporateur Qf est la puissance de chauffage de la pompe à chaleur QPAC moins l’énergie électrique motrice PPAC.

Qf = QPAC – PPAC

où,

  • QPAC = Puissance de chauffage [kW]
  • Qf = Puissance frigorifique [kW]
  • V = Débit volumique [m³/h]
  • tESF = Température d’entrée de la source froide [K]
  • tSSF = Température de sortie de la source froide [K]
  • c= Capacité calorifique ou chaleur spécifique [kWh/m³.K]
  • PPAC = Puissance électrique absorbée [kW]

Exemple
Pour un débit d’eau de 2,5 m³/h et un refroidissement de 4 K, une puissance de 11,6 kW est absorbée à l’évaporateur (c’est-à-dire la puissance frigorifique).

Qf = 2,5 [m³/h] x 1,163 [kWh/m³.K] x 4 [K]

Pour les pompes à chaleur alimentées par des eaux de surface, on limite le refroidissement dans l’évaporateur à 2 °C. Il faudra donc s’assurer un débit double pour pomper la même quantité de chaleur. On peut donc prendre comme évaluation le chiffre de 300 l/h par kW.

Lorsque la vitesse d’écoulement est insuffisante pour assurer le débit demandé, il faudra augmenter la taille de l’échangeur de chaleur en compensation.

V = v x A

Où :

  • V = Débit volumique [m³/h]
  • v = vitesse d’écoulement [m/s]
  • A = surface d’échange [m²]

Le calcul du débit d’air dans un évaporateur de PAC Air/Air ou Air/Eau se fait exactement de la même façon.

Choisir le mode de fonctionnement d’une pac

 

Choix du mode de fonctionnement

Avant de se lancer dans le choix d’une pompe à chaleur, il faut déterminer son mode de fonctionnement : la PAC sera-t-elle utilisée seule (fonctionnement monovalent) ou conjointement avec une chaudière (fonctionnement bivalent) ou avec un appoint électrique ?

Monovalent

Dans ce cas, la PAC fonctionne seule et couvre tous les besoins en chauffage. Cette solution n’est évidemment envisageable que si la source de chaleur est suffisante pour la demande en chauffage du bâtiment. En pratique on choisira cette solution uniquement pour de nouvelles constructions bien isolées munies d’un système de chauffage basse température.

En fonctionnement monovalent, la PAC est dimensionnée pour couvrir la totalité des besoins de chaleur. Elle est donc trop puissante pendant une bonne partie de la saison de chauffe, tandis qu’elle n’est correctement dimensionnée que pour une température extérieure donnée.

Malgré cela, au vu des frais d’investissement plus élevés en installation bivalente (2 systèmes de chauffage pour le même bâtiment), on préférera en général les PAC monovalentes lorsque c’est possible, ou bien la solution « avec résistance d’appoint » (voir ci-dessous). En effet, la nécessité d’investir dans une chaudière traditionnelle en plus de la PAC n’est pas compensée par la diminution du coût de la PAC, diminution proportionnelle à la puissance moindre installée.

Avec résistance d’appoint électrique

Une installation avec appoint électrique constitue un compromis entre les fonctionnements monovalent et bivalent. Elle nécessite un faible investissement, mais contribue à la surcharge du réseau. Elle est aussi moins rationnelle au niveau écologique à cause de l’importante consommation de l’appoint électrique qui provoque un abaissement du COP annuel. Un enclenchement manuel est d’ailleurs conseillé pour éviter une durée de fonctionnement trop importante. Les appoints électriques permettent de préserver le confort lors des dégivrages ou des périodes de gel, lorsque la PAC (qui a été dimensionnée au plus juste pour limiter l’investissement) éprouve des difficultés.

Diagramme puissance/température :
La performance d’une pompe à chaleur est représentée, dans les catalogues des fabricants, par un diagramme température/puissance. Combien de puissance aura-t-on besoin pour l’appoint électrique ?

Schéma sur le diagramme puissance/température.

La figure montre les courbes de performance d’une pompe à chaleur air/eau pour 3 températures de condensation différentes.

La droite grise, qui représente les besoins calorifiques, est déterminée à partir de la température de dimensionnement (-10 °C) et de la température de limite de chauffage (15 °C).
Pour la température de limite de chauffage, les besoins calorifiques sont nuls. Mais à combien s’élèvent-t-ils pour la température de dimensionnement ? Cela dépend du type de bâtiment, de son isolation, de son orientation, etc. Ici ils sont de 7,8 kW.

Le point d’équilibre est déterminé par l’intersection entre la droite représentant les besoins calorifiques et la courbe de fonctionnement de la pompe à chaleur (donnée dans les catalogues des fabricants). En règle générale, le point d’équilibre se situe entre 0 °C et -5 °C.

La puissance de la pompe à chaleur est déterminée pour couvrir 100 % des besoins au point d’équilibre. Dans l’exemple, la puissance à prévoir est de 6,2 kW.

La puissance de l’appoint est déterminée par la différence entre les besoins calorifiques à la température de dimensionnement (-10 °C) et la puissance fournie par la PAC à cette température. Dans l’exemple, la puissance de l’appoint est de 7,8 – 5,6 = 2,2 kW.

Dans le secteur tertiaire, les apports internes compensent les pertes de puissance dues aux dégivrages, d’autant plus facilement que les dimensionnements de PAC réversibles sont souvent basés sur des puissances en froid, ce qui surdimensionne la puissance de chauffe. Les résistances d’appoint ne s’y justifient donc pas.

Bivalent

Lorsque la puissance à fournir est trop importante par rapport à une source froide limitée ou lorsque la température d’entrée dans le réseau de distribution doit être supérieure à 50 °C, les systèmes bivalents sont inévitables pour assurer le confort de l’occupant. C’est souvent le choix qui est fait en rénovation, lorsque les réseaux d’émissions ne sont pas modernisés et ne peuvent fonctionner qu’à haute température.

Le fonctionnement bivalent alternatif a l’avantage de la simplicité de compréhension et de régulation. La PAC est mise en marche lorsque la chaudière est à l’arrêt et inversement.

Schéma sur le fonctionnement bivalent alternatif.

Le fonctionnement parallèle par contre profite mieux de la pompe à chaleur puisqu’elle fonctionne toute la saison de chauffe. Ce deuxième mode permet donc une plus grande économie en frais de fonctionnement (même si, en période de grand froid, le COP de la PAC chute beaucoup) et un meilleur bilan écologique (avec un point de bivalence à 50 % de la puissance de chauffage, la PAC utilisée en bivalent-parallèle assure tout de même 80 % du besoin de chaleur).

Schéma sur le fonctionnement parallèle.


Avec ou sans accumulateur tampon ? De chaleur

Toute installation compte au moins un accumulateur tampon qui permet d’augmenter la quantité d’eau présente dans le circuit, ceci afin d’éviter l’enclenchement trop fréquent des producteurs de chaleur (courts cycles).

On reproche parfois à l’accumulateur tampon pour les petites installations d’être trop coûteux, trop volumineux, d’entraîner des pertes de chaleur. Mais rares sont les cas où son installation n’est pas justifiée. On ne peut y renoncer que si les conditions suivantes sont remplies :

  • puissance à peu près constante de la source de chaleur (max 5 K de variation de température);
  • volume d’eau de chauffage supérieur à 15 litres/kW;
  • grande capacité d’accumulation du système de distribution de chaleur (par exemple inertie de chauffage par le sol);
  • pas ou peu de vannes thermostatiques;
  • installation bien équilibrée.

Un accumulateur de chaleur est lui plus volumineux qu’un accumulateur tampon. Il sert couvrir les heures d’interruption de fourniture électrique. Il peut aussi compenser des variations temporaires de la source froide et permettre une plus grande utilisation du courant bas tarif. De plus, un accumulateur de chaleur permet de combiner plus facilement différents producteurs de chaleur, comme par exemple des capteurs solaires.


Choix de la régulation

Adaptation de la puissance

Pour de petites pompes à chaleur, la régulation de puissance a lieu par mise en ou hors service. Pour les plus grandes puissances, obtenues par combinaison de plusieurs unités de petites pompes à chaleur, la régulation a lieu par enclenchement-déclenchement de chaque unité. Si la puissance est obtenue par un compresseur à plusieurs cylindres, l’adaptation à la puissance demandée est effectuée par branchement et débranchement des différents cylindres. La combinaison de plusieurs modules est également une bonne solution, par exemple pour un quartier de villas, si on ne sait pas au départ combien de maisons seront raccordées au système de chauffage par pompe à chaleur.

De nouveaux concepts de régulation font usage de la possibilité de faire varier la vitesse de rotation du compresseur. De cette façon, il est possible d’adapter en tout temps la puissance au besoin momentané. De tels systèmes sont actuellement disponibles, également dans le domaine des fortes puissances. On ne saurait trop les recommander pour conserver une performance correcte tout au long de la saison.

Pour les installations travaillant par enclenchement-déclenchement, il faut éviter des démarrages trop fréquents, afin que le réseau électrique public ne soit pas surchargé et que la PAC ne subisse pas de dommages. Rappelons que ceci est réalisé au moyen d’un accumulateur technique (accumulateur tampon), auquel on ne peut renoncer que dans des cas exceptionnels.

Paramètres de régulation

Les régulateurs commandent la pompe à chaleur en fonction de la courbe de chauffe, après avoir obtenu les données du thermostat d’ambiance et la température de retour. Le thermostat est éventuellement doté de consignes « température de confort » et « température de nuit » réglables. Différentes commandes de fonctionnement sont possibles et s’organisent avec un ordre de priorité précis. Le dégivrage a toujours la priorité et s’effectue automatiquement si les sondes extérieures en indiquent le besoin. Viennent ensuite les alimentations de chauffage et d’ECS. La préparation de l’ECS peut être par exemple considérée comme un mode « été » alors qu’en hiver l’essentiel de la puissance de la pompe servirait au chauffage du bâtiment. Les équipements tels les piscines sont toujours derniers en priorité, à moins bien sûr que la pompe à chaleur ne leur soit spécifiquement destinée (piscines publiques,.)

La régulation de la température de sortie du condenseur est essentiellement liée au mode de chargement de l’accumulateur (étagé ou par stratification).

Adaptation des paramètres en fonctionnement

De nombreuses recherches menées en Suisse durant les premières années de fonctionnement ont montré que beaucoup d’installations ne travaillent pas du tout comme le concepteur du projet le souhaite, cette remarque est également valable pour des installations conventionnelles. Un contrôle des résultats pendant les premières années d’utilisation est donc conseillé pour s’assurer d’un bon fonctionnement de l’installation.

Stabilité du réglage

Les systèmes que l’on trouve pour la technique du bâtiment sont en général assez lents, ce qui permet une régulation stable et fiable. Certains circuits comprennent toutefois des parties où la vitesse de régulation est critique. C’est le cas de la température de départ du condenseur. Pour assurer une régulation rapide, diverses recommandations sont utiles : placer la vanne de régulation le plus près possible de la PAC pour réduire le temps mort, choisir une vanne de régulation à fermeture rapide, optimiser les paramètres de régulation de la vanne, utiliser des thermomètres de régulation à faible inertie.


Choix du chargement

Il existe deux méthodes de chargement de l’accumulateur de chaleur associé à la pompe à chaleur : le chargement étagé et à stratification.

Le chargement étagé est meilleur marché (pas de régulation de la charge) et entraîne un coefficient de performance annuel plutôt meilleur que le chargement par stratification puisque la PAC peut fonctionner avec une température de sortie du condenseur plus basse. Toutefois, ce système a différents désavantages :

Schéma sur le chargement étagé.   Schéma sur le chargement étagé.

Illustration du principe de chargement par étage.

  • Consommation électrique supplémentaire de la pompe du condenseur pour augmenter le débit et diminuer la température de départ.
  • Variations de la température de départ du chauffage difficiles à évaluer.
  • Température finale de l’accumulateur imprécise.
  • N’utilise pas pleinement les capacités de l’accumulateur.
  • Manque de capacité au premier passage.

Cette dernière difficulté pourrait être évitée si la différence de température dans le condenseur est suffisamment importante. De cette façon pourtant, la charge étagée est un non-sens, car dans le meilleur des cas, il ne se produirait qu’environ deux passages étagés à la limite du chauffage. Une charge étagée ne peut être recommandée que dans les situations suivantes :

  • Petite installation (surtout à cause de l’avantage du prix).
  • Un seul groupe de chauffage.
  • Pour accumulateur technique seulement.

À l’opposé, le chargement par stratification, malgré son COP plus faible et son coût plus élevé, permet :

  • Une maîtrise exacte de la température de l’accumulateur.
  • Une température constante de départ garantie.
  • Une puissance de la pompe du condenseur plus faible.
  • Une utilisation maximale de la capacité de l’accumulateur.

Schéma du chargement par stratification.   Schéma du chargement par stratification.

Illustration du chargement par accumulation.

Type de chargement de l’accumulateur

Le chargement étagé de l’accumulateur et, dans certains cas, le chargement par stratification en fonction des conditions météorologiques produisent un meilleur coefficient de performance annuel qu’un chargement par stratification avec consigne constante, car on peut sortir du condenseur avec des températures plus basses. Ce système ne fonctionne toutefois que si l’installation est réglée sur une petite différence de température dans le condenseur. En règle générale cela implique de doubler le débit, ce qui multiplie par 4 la perte de pression sur le condenseur. Ceci doit absolument être pris en considération.

L’influence sur le COP annuel est complexe, car il faut tenir compte non seulement de la température de sortie du condenseur, mais aussi de la consommation d’énergie auxiliaire et de la petite différence de température dans le condenseur lors du chargement étagé. La différence de COP entre une température de sortie du condenseur adaptée ou constante se situe à moins de 10 %.

Encore une fois, reprenons les installations décrites plus haut et supposons qu’au lieu de fonctionner 2 500 h à 47 °C, d’où ε = 3,4, on procède ainsi :

500 h à 45°C, d’où ε = 3,5

1 000 h à 42°C, d’où ε = 3,75

1 000 h à 39°C d’où ε = 4

Le coefficient de performance instantané moyen pondéré SPF s’améliore en passant de 3,4 à 3,8. Le coefficient de performance annuel (COPA) devrait suivre cette tendance et passer de 3 à 3,4. Mais en doublant le débit, la perte de pression dans le condenseur est quatre fois plus forte. Il en résulte pour la petite installation :

  • Ppompe condenseur = (100 kPa x 1,8 m³/h) – (25 kPa x 0,9 m³/h) / (3 600 x 0,10) = 0,438 kW
  • W = 2500 h x 0,438 kW = 1 095 kWh

COPApetit = 25 000 kWh / (25 000 / 3,4) + 1 095 kWh = 2,96

et pour la grande installation :

  • Ppompe condenseur = (100 kPa x 12 m³/h) – (25 kPa x 9 m³/h) / (3 600 x 0,25) = 1 750 kW
  • W = 2 500 h x 1 750 kW = 4 375 kW

COPAgrand = 250 000 kWh / (250 000 / 3,4) + 4 375 kWh = 3,21


Choix de la technique de dégivrage

Modes de dégivrage

On utilise deux modes de dégivrage :

  1. Le système « by-pass » de dégivrage par gaz chaud, par lequel une partie des gaz échauffés à la sortie du compresseur est dirigée vers l’évaporateur. Ce système exige une différence de pression minimale assurée par le compresseur.
  2. L’ inversion de la direction du circuit par une vanne à quatre voies. L’évaporateur devient alors condenseur et le givre est rapidement éliminé au prix d’un plus grand besoin de chaleur momentané.

Illustration du principe de dégivrage par inversion.

Lors du montage de l’évaporateur, il est indispensable de s’assurer que le fonctionnement du dégivrage n’est pas perturbé par un apport d’air froid dû à la circulation naturelle de l’air.

Le dégivrage des pompes Air/Air et Air/Eau

Les pertes provoquées par le dégivrage de l’évaporateur sont difficiles à évaluer avec précision, car elles sont variables en fonction de la programmation des paramètres de dégivrage. L’énergie dépensée pour la fonte du givre (EFG) est généralement fournie par la pompe à chaleur qui, pour l’occasion, fonctionne en sens inverse. Elle vaut environ l’énergie utile de fonte du givre EFGu (énergie pour élever la température du givre à 0 °C + chaleur latente de fusion du givre + énergie pour élever la température de l’eau de 0 °C à 10 °C pour éviter un regel immédiat) divisée par un rendement de 50 %. Cette énergie sera prélevée dans le bâtiment et devra en suite lui être restituée lorsque la pompe se remettra en mode chauffage. Pour des machines bien réglées avec des détections du givre optimales, la perte de COP peut valoir jusqu’à 10 % par temps froid.

Il n’est pas rare de voir des pompes à chaleur dont le système de détection du givre est mal réglé et la durée de dégivrage trop longue. Il s’en suit des consommations d’énergie excessives qui peuvent conduire à des COP inférieurs à 1.

Le graphique ci-contre, issu d’une fiche technique de constructeur, illustre l’influence du dégivrage sur la puissance calorifique et le COP d’une pompe à chaleur Air/Eau. On voit clairement la perte de COP survenant entre 3 et 10 °C. L’air extérieur est chargé d’eau et le fluide frigorigène est à une température inférieure à zéro degré. La glace qui se forme « colle » à l’évaporateur.

Par contre, lorsqu’il fait très froid, l’air extérieur est plus sec et le givre apparaît alors davantage sous forme de cristaux qui n’adhèrent plus sur la paroi de l’évaporateur.

Choix de la technique de dégivrage

Sur le plan énergétique, le dégivrage par inversion du cycle est plus avantageux que le chauffage par injection de gaz chauds. Mais quelle que soit la méthode choisie, c’est surtout la durée du dégivrage qui sera le facteur important pour l’évolution du COP. Le critère d’enclenchement et de déclenchement doit être choisi avec soin.

Le choix du paramètre qui décrit la couche de givre dans l’évaporateur peut être multiple. En utilisation industrielle, il faut choisir un paramètre robuste et assez sensible. Plusieurs choix pour le lancement du dégivrage peuvent être faits :

  • Perte de charge dans l’évaporateur : la mesure de cette grandeur peut provoquer des dérives lorsqu’il y a risque de « bouchonnement » par des impuretés (feuilles, animaux,.) ou par des variations de pression causées par les vents externes.
  • Température de surface des ailettes : la différence entre la température de surface des ailettes et la température de l’air indique bien si une couche de givre (= isolation thermique) s’est formée. Comme le développement de givre n’est pas uniforme sur la surface de l’évaporateur, il faut bien vérifier l’emplacement du capteur de température.
  • Pincement dans l’évaporateur : la couche de givre provoque un blocage du transfert de chaleur qui se traduit par une diminution de l’efficacité de l’échangeur. Par conséquent, il y a une augmentation de l’écart de température minimal entre la température d’évaporation du frigorigène et la température de l’air en sortie d’évaporateur, écart appelé « pincement ». Pour détecter ce pincement, il faudra en général une prise de température de l’air sortant ainsi que le calcul de la température de saturation correspondante à la pression de vaporisation.

De même pour le paramètre d’arrêt, définissant la durée de dégivrage, plusieurs mesures peuvent être considérées :

  • La température du réfrigérant à la sortie de l’évaporateur : pendant le dégivrage de la batterie par inversion de cycle, un film d’eau ruisselle sur l’échangeur en refroidissant le fluide frigorigène. Une fois le dégivrage achevé, une grande partie de l’évaporateur est libérée et le transfert de chaleur diminue, ce qui provoque une réaugmentation de la température de sortie du fluide frigorigène.
  • Température de la surface des ailettes : cette mesure indique directement si l’échangeur est libéré de la couche de givre. Il est cependant difficile de bien placer la sonde pour avoir une bonne représentativité globale de l’échangeur.
  • Optimisation globale par microprocesseur : en combinaison avec les critères étalonnés en usine, le calcul du bilan énergétique par cycle de chauffage permet d’optimiser les grandeurs limites imposées sur site et en cours de fonctionnement.

Ces critères, ainsi que le critère plus « archaïque » qu’est l’horloge, devront être étalonnés soigneusement et vérifiés.

Une fois le cycle de dégivrage achevé, l’enclenchement du ventilateur à plein régime sans mettre en route le compresseur permet de sécher l’évaporateur. À défaut, les gouttelettes restantes seront rapidement gelées.


Choix de l’emplacement de la pompe à chaleur

De façon générale, l’unité principale d’une pompe à chaleur se trouve à l’intérieur du bâtiment à chauffer.

Une PAC à l’intérieur du bâtiment

D’un point de vue acoustique, si l’unité principale d’une pompe à chaleur se trouve à l’intérieur du bâtiment, elle doit être placée dans un local suffisamment éloigné des pièces calmes. On la pose sur des plots antivibratiles (dans le cas où la PAC est bruyante), eux-mêmes placés sur une plateforme stable en béton ou en fer. Les parois du local peuvent également être construites dans des matériaux spéciaux qui atténuent la réverbération des sons.

L’installation d’une PAC doit évidemment répondre aux spécifications du constructeur.

L’air …
Si la PAC véhicule de l’air dans des conduites, l’air doit avoir une vitesse de maximum 4 m/s (circuits principaux). Dans les conduits secondaires, l’air doit avoir une vitesse de maximum 3 m/s. Ces conduits doivent être construits dans des matériaux absorbants et les grilles de prise et de rejet d’air doivent être équipées de grillage antivolatiles.

L’eau …
Si la PAC est à eau, les conduites seront fixées aux parois avec des supports de façon à éviter la transmission des vibrations au bâtiment. Il faudra utiliser des flexibles pour toutes les liaisons à la PAC.

Une PAC à l’extérieur du bâtiment

Il n’existe pas de distance minimale entre une unité extérieure de PAC et le voisinage. Attention par contre à la gêne que peut occasionner une PAC bruyante et aux litiges qui peuvent en découler. Le meilleur choix d’une PAC extérieure est celui d’une très peu bruyante. Si c’est nécessaire, penser aux écrans acoustiques tels que des parois ou bien des arbres à feuilles permanentes.

Choisir la source de chaleur [PAC]

Évaporateur à air d'une PAC domestique

Évaporateur à air d’une PAC domestique.


Introduction sur les sources froides

Les pompes à chaleur sont désignées en fonction du fluide dans lequel baignent les échangeurs de la PAC : d’abord côté évaporateur, ensuite côté condenseur. Pour comprendre ce qu’est une pompe chaleur ainsi que son principe de fonctionnement, cliquez ici !

Le tableau donne les types de PAC qui existent en fonction des combinaisons fluides côté source froide/côté source chaude.

Désignation Évaporateur Condenseur
PAC air extérieur / air air extérieur air
PAC air extérieur / eau air extérieur eau
PAC air extrait / air air extrait air
PAC air extrait / eau air extrait eau
PAC eau / air eau souterraine ou de surface air
PAC eau / eau eau souterraine ou de surface eau
PAC eau glycolée / eau tuyaux d’eau glycolée dans le sol eau
PAC sol / eau ou « fluide /eau » évaporation directe dans sol eau
PAC sol / sol ou « fluide /fluide » évaporation directe dans sol condensation directe dans sol

Dans le cas du chauffage de locaux, la source froide sera la source – qui n’est pas toujours inépuisable ! – où l’on captera la chaleur. Elle provient souvent du milieu extérieur du bâtiment à chauffer et est donc soumise à des variations de température en fonction des conditions climatiques.

Les sources de chaleur utilisables sont les suivantes :

  • l’air extérieur qui est simplement l’air atmosphérique ;
  • l’air extrait qui résulte des rejets thermiques gazeux ou de l’air venant de l’intérieur d’un bâtiment ;
  • l’eau, qui est soit de l’eau de surface, comme un étang ou un cours d’eau, soit de l’eau de nappe phréatique en sous-sol ;
  • le sol (très profond, profond, ou de surface) qui amène deux technologies distinctes, d’où deux appellations différentes pour la même source froide :
    • eau glycolée : mélange eau-glycol qui circule dans le circuit fermé entre le sol et l’évaporateur. C’est soit, de la géothermie de surface, soit verticale de profondeur.
    • fluide ou sol : on a affaire à une pompe à chaleur à détente directe (soit seulement du côté évaporateur, ou bien des deux côtés – évaporateur et condenseur), ce qui signifie qu’il n’y a pas de fluide intermédiaire entre le sol et le fluide frigorigène comme dans le cas à eau glycolée. Le fluide frigorigène circule directement dans des conduites placées dans le sol (qui joue donc le rôle d’évaporateur). On peut également appeler plus simplement cette source de chaleur sol.

Lors de la mise en marche d’un projet de pompe à chaleur, la tâche la plus ardue consiste à aligner les propriétés des pompes à chaleur avec des données telles que le débit et la température de la source de chaleur. Il faut que la quantité de chaleur disponible puisse supporter un prélèvement continu. Un mauvais dimensionnement par rapport au potentiel thermique de la source de chaleur peut avoir des retombées sur la puissance de l’exploitation et son rendement thermique.

Pour pouvoir comparer les COP des pompes à chaleur…

Le COP d’une pompe à chaleur, c’est le rapport entre la chaleur fournie par le condenseur et l’électricité consommée pour la produire (auxiliaires compris). Plus le COP est élevé, plus la pompe à chaleur est performante. Il est influencé par les températures des sources, leur différence et leur stabilité.

Afin de pouvoir comparer les coefficients de performance de différentes pompes à chaleur d’un même type, il faut bien évidemment que leurs températures à l’évaporateur soient identiques, et de même au condenseur. Dans les fiches techniques, on trouvera donc souvent une des dénominations abrégées suivantes selon le type de pompe à chaleur :

  • PAC air/eau : A2/W35 (« W » = water !). La source froide est de l’air à 2 °C (T°C à l’entrée de l’évaporateur) et la source chaude est une eau à 35°C (T°C à la sortie du condenseur).
  • PAC eau/eau : W10/W35. La source froide est de l’eau à 10 °C et la source chaude est de l’eau à 35 °C.
  • PAC eau glycolée/eau : B0/W35 ou S0/W35 (« B » =  eau glycolée – brine en anglais – et « S » = « sol » pour les références de produits en français). La source froide est le sol dans lequel circule de l’eau glycolée à 0 °C et la source chaude est de l’eau à 35 °C.
  • PAC sol/eau : S0/W35.

Classement des sources en fonction de leur efficacité

D’une manière générale, il faut utiliser en priorité les sources froides dont la température est la plus constante et élevée. Le coefficient de performance théorique des sources d’une pompe à chaleur dépend en effet de la différence entre la température de la source froide et la température de la source chaude :

ε ths = T2 / (T2 – T1)

où,

  • T1 est la température absolue (température en °C + 273,15°C) de la source froide et T2 la température absolue de la source « chaude ».

Pour obtenir un coefficient de performance acceptable, il faut donc que la différence T2-T1 soit faible. Autrement dit, la température de la source froide doit être la plus élevée possible (et, si possible, le niveau de température de la source chaude doit être bas).

Le classement des sources froides en fonction de ces deux critères (température élevée et constante), de la source la plus efficace à la moins efficace, se dresse comme suit :

  • les rejets thermiques (air vicié et eaux usées),
  • l’eau des nappes phréatiques,
  • l’eau de surface,
  • le sous-sol,
  • le sous-sol proche de la surface,
  • l’air extérieur.

Les rejets thermiques

Dans la plupart des cas, les rejets thermiques d’un bâtiment et son besoin de chaleur ne concordent pas. Une analyse exacte s’avère donc indispensable. Il s’agit de savoir si le problème peut être résolu par adjonction d’un accumulateur de chaleur (côté froid et/ou côté chaud). Une exploitation rationnelle de l’accumulateur permet une utilisation optimale lorsque les besoins thermiques sont moyens; elle permet également de limiter les pointes de puissance (avantage financier).

Il est aussi impératif de connaître la réglementation locale en terme de rejet.
Les eaux usées

  • pour des raisons de pollution, elles ne sont souvent qu’indirectement utilisables (attention au choix du matériel, prévoir un système automatique de nettoyage),
  • les quantités offertes sont souvent trop insignifiantes pour permettre une utilisation rentable,
  • l’utilisation du réseau public des eaux usées est soumise à autorisation.

L’air vicié est une source de chaleur très souvent employée dans les installations d’utilisation de rejets thermiques, et ceci, sans pompe à chaleur. Pour une utilisation indirecte avec pompe à chaleur, l’air pollué se révèle intéressant, surtout pour le chauffage de l’eau. Il peut cependant être corrosif (agriculture, industrie).


L’eau souterraine des nappes phréatiques

Pompes à chaleur "eau/eau", eau souterraine des nappes phréatiques.

Source : ef4.

L’eau des nappes phréatiques représente une source de chaleur intéressante, utilisée dans les pompes à chaleur « eau/eau ». L’eau de la nappe est remontée à la surface à l’aide de pompes de circulation et échange son énergie avec le fluide frigorigène à l’intérieur de l’évaporateur.

Quelle nappe ?

Certaines cartes des nappes phréatiques en Wallonie sont disponibles sur ouverture d'une nouvelle fenêtre ! le site de la Région Wallonne.

L’appellation « nappe phréatique » désigne toutes les eaux se trouvant dans le sous-sol. On entend donc par ce terme la partie saturée du sol, c’est-à-dire celle où les interstices entre les grains solides sont entièrement remplis d’eau, ce qui permet à celle-ci de s’écouler.

L’hydrogéologie distingue 2 types de nappes : les nappes aquifères à porosité d’interstices et les nappes aquifères fracturées.

Dans les nappes aquifères à porosité d’interstices, qui sont les nappes les plus fréquentes et les plus exploitées, l’eau circule dans les porosités de la roche constituée par des graviers, sables ou alluvions. Dans les nappes aquifères fracturées, la roche est imperméable et l’eau circule dans les fractures ou fissures de roches telles que le granit, le calcaire, la craie.

Minéraux des nappes aquifères à porosité d'interstices.

Le risque de réaliser des forages infructueux est plus élevé dans les nappes aquifères fissurées ou fracturées, et il dépend essentiellement de la connaissance locale de la fracturation. Dans les nappes aquifères à porosité d’interstices, le débit de la nappe est proportionnel à la perméabilité de la roche (taille des grains), à la pente et à la section de la nappe aquifère à cet endroit.

Un système de captage dans une nappe aquifère comprend deux parties :

  • La partie supérieure, la chambre de pompage, est un tubage en acier qui traverse les couches de sol où il n’y a pas de captage. Une cimentation permet d’éviter le mélange entre une éventuelle nappe supérieure polluée et la nappe de pompage. Elle évite également l’éboulement du trou. S’y trouvent les pompes à vitesse variable chargées d’évacuer et de ramener de l’eau à partir de ou vers la nappe concernée.
  • La partie inférieure, la chambre de captage, contient un massif de gravier filtrant (pour éviter l’encrassement par les matières fines), une crépine (tube en acier inoxydable inséré dans le fond du forage, comportant des ouvertures calibrées selon la granulométrie du sable), un tube de décantation et un capot qui ferme le puits.

Système de captage dans une nappe aquifère.

  1. Niveau de l’eau dans le puits.
  2. Tubage acier.
  3. Pompes à vitesse variable.
  4. Crépine.
  5. Massif filtrant.
  6. Tube de décantation et capot.

Quelle température ?

La température de l’eau phréatique (sans infiltration des eaux de surface) varie autour de la valeur de la température moyenne de l’air extérieur, si la PAC a une puissance de moins de 30 kW et si on considère les eaux souterraines en dessous de 10 mètres de profondeur. La température moyenne annuelle de l’air extérieur étant égale à 8,5 °C, la température phréatique vaudra une valeur entre 8,5 et 10 °C. Mais contrairement à l’air extérieur, l’eau souterraine a cette température approximative toute l’année.

Plus la profondeur est importante, moins la température de l’air exerce une influence sur la température de la nappe phréatique. L’écart saisonnier entre les valeurs maximales et minimales diminue avec la profondeur. La différence de température entre la température de départ et de retour est comprise entre 3 et 4 K pour les petits systèmes, ou plus pour les systèmes plus grands.

D’où provient l’énergie contenue dans le sol ?

Cette chaleur souterraine est due en majeure partie au rayonnement solaire. L’énergie géothermique provenant des profondeurs au sous-sol est à ce niveau de profondeur insignifiante. Les infiltrations des eaux de surface peuvent avoir une influence déterminante sur la température de la nappe phréatique, de même que des puits industriels.

Qualité physico-chimique de l’eau

Dans la plupart des cas, l’eau de nappe n’est pas agressive. Il est cependant vivement conseillé de pratiquer une analyse pour protéger le système de chauffage. Si le fabricant de la PAC (avec l’eau comme source froide) n’a pas indiqué de données pour la qualité de l’eau extraite, les valeurs suivantes doivent être respectées :

Composant et unité de mesure Valeur
Matériau organique (possibilité de sédimentation) aucune
pH 6,5 à 9
Conductivité thermique (µS/cm) 50 à 1 000
Chlorure (mg/l) < 300
Fer et manganèse (mg/l) < 1
Sulfate (mg/l) 0 à 150
Teneur en O2 (mg/l) < 2
Chlore (mg/l) 0 à 5
Nitrate (mg/l) 0 à 100

 Source : Norme prEN 15450:2007.

Une pollution mécanique (sable) ne peut se produire que si l’installation de filtration de l’eau n’est pas effectuée dans les règles de l’art. Il faut aussi se méfier du colmatage provoqué par une eau trop calcaire ou riche en boues fines. Le puits doit être garanti par l’entreprise spécialisée. En pratique les valeurs indicatives pour le diamètre de la foreuse sont :
  • 150 mm pour 50 à 150 l/min
  • 300 mm pour 150 à 300 l/min
  • 800 mm pour 600 à 1 200 l/min

Quel débit ?

Si aucune autre donnée n’est disponible, on considérera qu’il est nécessaire d’avoir un débit d’eau de 0,25 m3/h par kilowatt de puissance.

Rejet de l’eau

L’eau prélevée, après absorption de la chaleur, est parfois remise dans un cours d’eau de surface. Si, par contre, le réservoir d’eau souterraine est de faible capacité, ou si l’eau prélevée ne peut être remise en surface à cause de sa composition chimique, cette eau doit être réinjectée au moyen d’un second forage (forage de réinjection) dans la couche de prélèvement. Ce second forage doit être en aval et suffisamment éloigné du premier pour ne pas créer d’interférence thermique.

Il est néanmoins très rare de faire appel à cette deuxième solution (réinjection de l’eau dans la nappe) en Wallonie car le rejet est considéré comme étant beaucoup trop dangereux pour le milieu récepteur. Si un élément polluant infectait les nappes phréatiques, il serait quasiment impossible de l’en faire sortir. La Région wallonne refuse donc presque systématiquement le rejet d’eau en nappe.

Avantages et inconvénients

Les eaux de la nappe phréatique représentent une source de chaleur idéale pour les raisons suivantes :
  • niveau de température idéal,
  • température relativement constante,
  • importance des gisements,
  • propreté,
  • peu de place au sol.

Les inconvénients de ce type de captage sont toutefois nombreux :

  • permis environnemental requis,
  • connaissances géohydrauliques approfondies requises,
  • eau de qualité n’est pas disponible partout à une profondeur adéquate,
  • analyse de l’eau de nappe requise,
  • coûts d’installation élevés (travaux de terrassement, construction d’un, deux ou plusieurs puits, analyse de l’eau, pompe à eau dans le puits),
  • énergie nécessaire pour pomper l’eau hors du puits,
  • système ouvert,
  • nécessité de garantir une séparation parfaite entre l’eau d’origine souterraine et le fluide réfrigérant, si l’eau est réinjectée dans la nappe phréatique via un puits de recharge,
  • recharge de la nappe rarement implémentable.

De plus, avant d’installer une pompe à chaleur sur nappe phréatique, l’utilisateur doit obtenir les informations relatives à la puissance du puits de captage et d’absorption.

En résumé

  • Une étude du sol préalable au forage est conseillée. On doit être certain que la température de l’eau ne sera jamais inférieure à 8 °C.
  • À proximité d’un cours d’eau ou d’un lac, tenir compte d’une possible infiltration.
  • Le captage et la restitution de l’eau doivent respecter les principes hydrologiques.
  • Une analyse de l’eau est vivement recommandée, de façon à vérifier que l’eau n’est pas agressive, polluée ou qu’elle ne transporte pas d’alluvions.
  • Des autorisations officielles sont nécessaires (elles ne sont accordées que si l’eau n’est pas utilisée ultérieurement comme eau potable).
  • Le débit d’eau doit être suffisant et compatible avec les besoins du bâtiment à chauffer.

L’eau de surface

Pompes à chaleur, eau de surface.

Source : ef4.

Si l’on choisit ce type de source froide (qui doit bien évidemment se trouver à proximité du bâtiment à chauffer), il faut s’assurer que le débit d’eau disponible le sera toujours en quantité suffisante à l’avenir (donc attention aux débits variables des rivières et fleuves). Il faut également vérifier la qualité de l’eau et s’assurer que le prélèvement de chaleur n’a pas un impact néfaste sur le milieu.

L’investissement est raisonnable en comparaison aux pompes à chaleur géothermiques. Lors de la mise en œuvre d’une pompe à chaleur à captage de chaleur sur l’eau, il est recommandé de collaborer avec des installateurs qui ont une formation technique particulière, car la mise en œuvre est complexe. Il faudra entre autres calculer le débit d’eau nécessaire.

Une eau de surface mobile (rivière,…) ne gèlera jamais à cause de son mouvement. L’évaporateur doit être protégé des éboulis. S’il s’agit d’eau stagnante, cette solution n’est utilisable que sous certaines réserves, le principal inconvénient étant la diminution du coefficient de convection vu l’absence d’écoulement de l’eau. L’eau peut geler dans ce deuxième cas et ainsi diminuer les performances de la pompe à chaleur.

Deux choix de capteurs se présentent dans le cas de captage de chaleur sur source d’eau :

Capteurs statiques

L’évaporateur est alors complètement immergé dans le réservoir d’eau que représente la rivière, l’étang, … (ou dans un bac dans cette source d’eau). Une très grande quantité d’eau passe par l’échangeur et le Delta T° de refroidissement est proportionnellement très petit.

La température de l’eau de la source est plus constante qu’en surface ; le risque de gel s’en retrouve donc amoindri. Ceci constitue donc un gros avantage pour ce type de capteur. L’inconvénient principal réside dans l’encrassage de l’échangeur noyé par des plastiques, branchages,… De plus, avec un échangeur noyé, les procédures d’autorisation et l’entretien peuvent être coûteux et la réalisation est plutôt difficile.

Capteurs dynamiques

L’eau de la source froide est récoltée dans un puits filtrant puis pompée vers l’évaporateur.

La température varie beaucoup plus que pour le premier cas et peut être assez basse en hiver (2 à 4 °C), ce qui risque d’entraîner le gel de l’évaporateur et sa casse. L’évaporateur doit alors avoir une protection antigel. Par contre, ce système présente l’avantage de prélever de l’eau pratiquement propre grâce au puits filtrant. Il faut néanmoins souvent nettoyer le filtre en question.

Utilisation directe ou indirecte ?

Les importantes variations de température des eaux de surface ne permettent généralement pas une exploitation monovalente avec utilisation directe. On trouve donc davantage de cas d’utilisation indirecte : la source de chaleur transmet son énergie à un échangeur de chaleur lui-même relié à la PAC par un circuit intermédiaire. Ce dernier contient une solution antigel pour permettre à la température d’évaporation de descendre en dessous de 0 °C. Un circuit intermédiaire entraîne toutefois des températures plus basses et donc des coefficients de puissance moins élevés.

Paramètres de dimensionnement

Si l’on opte pour la solution de l’échangeur noyé, il est recommandé de tenir compte d’un écart de 5 à 6 °C entre la température de l’eau de la source et la température d’entrée du fluide caloporteur dans l’évaporateur. Pour dimensionner la surface de l’échangeur de chaleur, il est courant d’admettre un coefficient k de transmission thermique de 200 à 300 W/m²K (vitesse de courant supérieure à 0,5 m/s). Il est vivement conseillé de prévoir une marge de sécurité d’environ 25 % en cas d’encrassement de l’échangeur. D’autre part, l’écart entre les tubes de l’évaporateur doit être au minimum de 4 cm.

S’il s’agit d’eau stagnante, cette solution n’est utilisable que sous certaines réserves, le principal inconvénient étant la diminution du coefficient de convection vu l’absence d’écoulement de l’eau.


La géothermie très profonde

Géothermie très profonde.

Des forages profonds permettent de récupérer la chaleur géothermique (due à des activités volcaniques) à des températures plus élevées (plus de 150 °C). Selon leur température les eaux puisées à ces profondeurs peuvent être utilisées directement ou élevées par une pompe à chaleur au niveau voulu.

Pour garantir une solution économiquement rentable, le COP annuel ne doit pas se situer en dessous de 4.

L’utilisation géothermique de la chaleur appartient au domaine des technologies lourdes, et ne sera pas davantage développée ici. En effet, à moins d’être dans une région spécifique (la région de St Ghislain près de Mons en est une, grâce à la présence de failles dans la roche qui permettent à l’eau chaude de remonter et d’être accessible à une profondeur raisonnable), de telles températures ne s’atteignent qu’avec des forages dont la profondeur se mesure en kilomètres.

La géothermie profonde

Géothermie profonde.

Source : ef4.

Si la surface du terrain avoisinant le bâtiment à chauffer est insuffisante pour placer des capteurs géothermiques horizontaux (voir plus loin), on peut alors penser aux sondes thermiques verticales.

L’avantage de ces sondes est de profiter, dès 10 mètres de profondeur, d’une source de chaleur à peu près constante sur l’année. La température du sol augmente de 1 °C tous les 33 mètres, soit 3 °C par 100 mètres. Cette ressource géothermique est dite de très basse température. Les forages de sondes géothermiques ont un diamètre de 16 à 18 cm et une profondeur de 30 à 150 mètres.

 Pompe à chaleur à eau glycolée - géothermie verticale.

 Pompe à chaleur à eau glycolée – géothermie verticale.

Il existe deux technologies pour récupérer la chaleur du sous-sol profond : soit des capteurs d’eau glycolée sont infiltrés dans le sol et l’énergie sera transmise au fluide frigorigène via un échangeur de chaleur, soit les capteurs sont dits « à détente directe ». Dans ce cas, il n’y a pas d’eau glycolée : le fluide frigorigène est en contact direct avec la chaleur du sol.

Comment calculer la profondeur du forage à effectuer ? Tout dépend de la « charge de chaleur » nécessaire dans le bâtiment, qui représente la quantité de chaleur nécessaire pour le chauffer de façon suffisante au cours de la saison de chauffe. La longueur de la sonde sera d’autant plus faible que le bâtiment à chauffer a des besoins calorifiques réduits.

Si le bâtiment est une nouvelle construction « standard » (besoins calorifiques = 45 W/m2 environ) et que la surface à chauffer est de 150 m2, on aura besoin de +- 7 kW de puissance de chauffage. Si le COP vaut 4, alors il faut extraire 5,25 kW du sol.

Pour obtenir la longueur approximative de la sonde, il suffit de diviser ce résultat par l’extraction thermique, qui vaut entre 50 et 55 W/m linéaire de sonde (c’est cette valeur moyenne que l’on choisit d’habitude pour l’extraction thermique).

La sonde devra ainsi avoir une longueur d’environ 100 mètres.

On doit donc compter approximativement 15 mètres de sonde par kW de chauffage.
Si la profondeur nécessaire du forage est trop grande, on peut la diminuer en plaçant 2 sondes d’une profondeur deux fois moins importante. Il faut veiller à ce qu’il y ait une distance de 5 à 6 mètres entre les différents forages, pour éviter de refroidir excessivement les zones autour des sondes.

En refroidissant, le sol crée une sorte d’entonnoir de froid qui dépend de la puissance spécifique des sondes (W/m). Des soutirages intensifs provoquent une baisse de la température de la sonde et l’entonnoir s’agrandit. Au plus, le soutirage de chaleur (par mètre de longueur de sonde) est faible, au plus grand sera le COP annuel. Durant les arrêts de fonctionnement, la zone de terrain entourant la sonde se régénère à nouveau. Ce phénomène est absolument nécessaire, car le faible flux thermique provenant du sous-sol ne suffit pas à maintenir les conditions de dimensionnement. La détermination correcte de la longueur des sondes est donc d’une grande importance pour éviter une surexploitation qui empêcherait une régénération de la source.

Rafraîchissement

Les sondes géothermiques peuvent non seulement être utiles au chauffage de bâtiments, mais aussi à leur rafraîchissement en saison estivale. Si un système de pompe à chaleur permet la commutation chauffage/rafraîchissement, il est appelé « réversible ». Le rafraîchissement est actif ou passif. Dans le cas du rafraîchissement actif, le compresseur de la pompe à chaleur est utilisé pour abaisser le niveau de température de l’ambiance intérieure et la commutation est réalisée à l’aide d’une vanne à 4 voies. Le compresseur n’est par contre pas utilisé dans le cas d’un rafraîchissement passif ; ici un niveau de température existant (de la nappe phréatique ou du sous-sol) est transmis au système de chauffage et la pompe à chaleur n’est pas activée. De cette façon, la consommation énergétique reste faible (mais il faut néanmoins toujours alimenter les pompes de circulation d’eau).

Avantages/inconvénients

La surface d’installation de ce type de captage d’énergie est réduite et la technologie est utilisable presque partout (il faut néanmoins procéder à une analyse de la composition du sol pour déterminer la faisabilité de l’ensemble). De plus, la chaleur récupérée à la source froide est disponible en quantité quasiment illimitée. Le niveau de température de la source froide est relativement élevé et les variations de température sont faibles. Pendant la saison hivernale, il y a tout de même une diminution du niveau de température. Pour finir, le système est fermé mais on doit bien faire attention à ce qu’il soit étanche au glycol.

Le principal inconvénient de ce type de captation d’énergie est le coût d’investissement élevé ainsi que la mise en œuvre qui est assez lourde.


La géothermie de surface

Géothermie de surface.

Source : ef4.

On peut envisager ce mode de captation de chaleur si on possède un terrain exempt de grosses plantations. Les calories contenues dans le sol juste en dessous de la surface sont récupérées via des serpentins horizontaux en polyéthylène qui contiennent soit un mélange d’eau et de glycol, soit le fluide frigorigène (système à détente directe – les tuyaux sont dans ce cas en cuivre et non en polyéthylène). Les pompes à chaleur utilisant cette source froide sont désignées sous les termes « eau glycolée » ou « sol ».

Les serpentins, qui jouent le rôle d’évaporateur du système, sont enfouis à une profondeur de 60 cm minimum pour éviter le gel. L’avantage d’un tel type de chauffage réside dans la relative stabilité de la température d’évaporation (ce qui augmente les performances). La température varie néanmoins plus ou moins fortement, à cause justement de la présence d’une pompe à chaleur…

Evolution de la t° du sol à 60 cm de profondeur.

Origine de la chaleur du sol ?

Il y a une diminution de la température du sol pendant l’automne, et une augmentation pendant le printemps. Cette évolution est directement liée au rayonnement solaire qui chauffe la partie du sol directement sous la surface (jusqu’à une profondeur d’environ 2 mètres). La chaleur géothermique ne représente que quelques pourcents à cet endroit.

Potentiel du sol

Le pouvoir calorifique du sous-sol dépend de la nature du sol et surtout de sa teneur en eau. En effet, l’eau possède une capacité calorifique élevée, i.e. sa température varie très lentement sous une action extérieure. La quantité de pluie infiltrée est donc un facteur essentiel dans l’extraction de chaleur du sol.

Potentiel du sol, minéraux.

Les pouvoirs calorifiques de divers sous-sol sont les suivants :
  • sol sablonneux sec : 10 à 15 W/m²
  • sol argileux sec : 20 à 25 W/m²
  • sol argileux humide : 25 à 30 W/m²
  • sol marécageux : 30 à 35 W/m²
Pour une température de sol minimale de 2 °C (une plus grande absorption de chaleur pourrait créer des cristaux de glace autour des serpentins et diminuer leur efficacité), l’extraction thermique par mètre courant « q » est environ de :
  • sol sablonneux sec : 10 W/m
  • sol argileux humide : 25 W/m
  • sol argileux saturé : 35 W/m
  • roche dure : 50 W/m
  • granit : 55-70 W/m
Pour limiter le refroidissement excessif du sol, un écartement minimal entre les tuyaux doit être respecté (une pose trop serrée pourrait provoquer le gel de l’eau autour des tuyaux et une fermeture hermétique) :
  • 1 m en cas de sol sec
  • 0,7 m en cas de sol humide
  • 0,5 m en cas de sol sablonneux ou caillouteux saturé

Dimensionnement

Les capteurs enterrés, malgré leur configuration simple qui ne nécessite pas d’auxiliaires, requièrent des surfaces de terrain de l’ordre de 1,5 fois la surface des locaux à chauffer. Pour beaucoup de bâtiments du secteur tertiaire, ce type de technologie demande donc de très grandes surfaces extérieures et engendre donc un coût de terrassement élevé.

Exemple d’installation

Les déperditions calorifiques d’une habitation domestique construite sur sol argileux s’élèvent à 12 kW.

On prévoit un chauffage par le sol avec une température d’entrée de 45 °C.

En choisissant une PAC dont la puissance de chauffe est de 13,3 kW pour une puissance électrique absorbée de 3,85 kW (valeur fournisseur), il faudra extraire du sol 13,3 – 3,85 = 9,45 kW. Il faudra donc 9 450 W/ 25 W/m = 378 m soit 4 serpentins de 100 m.

Lors du dimensionnement de l’installation, il convient de tenir compte de la configuration du site (il est donc recommandé d’établir un plan qui comporte les constructions, arbres, piscines, fosses septiques et réseaux souterrains en plus, bien évidemment, de la localisation des capteurs) et de la durée annuelle de fonctionnement.

Pour les gros projets, une compréhension des flux thermiques des sols près de la surface est nécessaire pour un calcul assez précis des échangeurs de chaleur du sol.  Avant le revêtement, il faudrait opérer une expertise/analyse du sol afin de déterminer la situation géologique de celui-ci à l’endroit de la construction. On tiendra compte des dates de l’analyse (été/hiver – pluies récentes – …) pour obtenir les paramètres thermiques de sol nécessaires pour le calcul et la simulation exacts de la configuration.

Les COP de ce type de pompe à chaleur sont intéressants (de l’ordre de 4). On pourrait néanmoins s’attendre à plus étant donné les avantages de ce système (pas d’auxiliaire, pas de dégivrage). De plus, il faut faire très attention à ce qu’il n’y ait pas de fuites de fluide frigorigène, car il possède un impact environnemental élevé.

En pratique, les échangeurs horizontaux ne sont intéressants que lorsqu’il faut entreprendre de grands travaux, qui permettent un placement économique des tuyaux dans le sous-sol ou à l’intérieur d’une couche de propreté.

Les serpentins peuvent aussi être intégrés en alternance, entre les fondations. Le placement sous le bâtiment permet d’éviter la sensibilité aux conditions météorologiques d’été (sécheresse) mais comporte le risque de gel des fondations en hiver…

Les applications en secteur tertiaire paraissent donc réduites pour cette technique…


L’air extérieur

Le choix de l’air extérieur comme source froide conduit à un choix entre deux technologies très différentes : le système dynamique et le système statique. Dans le premier cas, la PAC ventile mécaniquement l’air de l’environnement extérieur, qui se retrouve donc en mouvement pour améliorer l’échange de chaleur avec le fluide frigorigène au niveau de l’évaporateur. Dans le second cas, l’air reste « statique » et le transfert de chaleur avec le fluide frigorigène est réalisé grâce à la convection naturelle. De grandes surfaces d’échange (ailettes) seront alors nécessaires pour assurer l’efficacité.

Pompe à chaleur à air dynamique

La pompe à chaleur sur air dynamique peut être installée à l’extérieur ou à l’intérieur du bâtiment à chauffer. Dans le premier cas (système Split), le raccordement au système de chauffage est effectué via deux tubes isolés qui se trouvent dans le sol (un pour l’aller et l’autre pour le retour). Il y a également un câble électrique dans le sol et des fonctions antigel. Dans le second cas, la pompe à chaleur est reliée à l’air extérieur par des conduites d’air.

Ce type de pompe à chaleur permet de chauffer les locaux, mais aussi l’eau sanitaire. Un rafraîchissement actif est également possible.

 Pompe à chaleur à air dynamique.

Exemple de pompe à chaleur à air dynamique : présence d’un ventilateur.

Pompe à chaleur à air statique

Les PAC à air statique ne sont pas fort présentes sur le marché malgré leurs avantages en termes de bruit et de performances. De l’eau glycolée, ou le fluide frigorigène, passe dans les ailettes des capteurs statiques extérieurs. Le reste de la PAC, qui se trouve à l’intérieur du bâtiment, comprime alors le fluide frigorigène pour le faire monter en température.

Pompe à chaleur à air statique.

Exemple de pompe à chaleur à air statique.

Avantages/inconvénients

L’air extérieur comme source de chaleur présente les avantages suivants :

  • il est disponible quasiment partout en quantité illimitée,
  • il est facilement exploitable,
  • l’extraction de chaleur sur l’air extérieur ne nécessite pas l’octroi d’une autorisation, sauf peut-être un permis d’urbanisme,
  • cette source froide génère des coûts d’installation limités par rapport aux autres types de pompes à chaleur.

Il présente toutefois quelques inconvénients qui remettent en cause son utilisation en système monovalent :

  • évolution contraire de la température de la source de chaleur et de la température du système de chauffage,
  • les températures de la source froide sont très variables et peuvent être fort basses, ce qui abaisse le coefficient de performance ; la performance globale annuelle est faible.

Les PAC à air dynamique montrent les deux inconvénients suivants par rapport aux PAC à air statique :

  • à une température extérieure de 6 à 7 °C, l’eau issue de la condensation de l’air ambiant commence à geler et nécessite un dégivrage ;
  • problèmes de bruit dus à la grande quantité d’air déplacé. Il est indispensable de se renseigner sur les techniques de protection phonique, dans tous les cas, qu’il s’agisse d’une installation intérieure ou extérieure. L‘ordonnance sur la protection contre le bruit et les prescriptions locales doivent être soigneusement étudiées. Au besoin, un spécialiste en acoustique devra être consulté.

Performances des PAC sur air extérieur

En général, les COP des pompes à chaleur sur air extérieur sont donnés pour une température extérieure de 2 °C. La moyenne des températures extérieures sur la saison de chauffe (de début octobre à fin avril) pour la station d’Uccle est cependant d’environ 6 °C. Le seasonal performance factor (SPF), qui représente la moyenne théorique du coefficient de performance sur la saison de chauffe, sera donc plus élevé que le COP indiqué dans la fiche technique de la pompe à chaleur. Mais lorsque la température extérieure est effectivement très basse, le COP chute et la pompe à chaleur peut très bien ne plus être suffisante pour subvenir aux besoins de chaleur du bâtiment. Dans ce cas on l’utilise conjointement à un système d’appoint ou à une chaudière (voir les modes de fonctionnement).


PAC géothermique : rechargement de la source froide par l’énergie solaire

Les soutirages de chaleur fréquents provoqués par la présence d’une PAC géothermique mènent à une baisse relativement importante de la température du sous-sol. La chaleur n’y est en effet pas renouvelée suffisamment rapidement.

Pour résoudre ce problème, si la surface des capteurs n’est pas trop grande, on peut combiner la PAC avec un système de recharge : des absorbeurs solaires (avec ou sans vitre). Le collecteur solaire se refroidira d’abord dans la PAC pour éviter que l’environnement du serpentin ne se dessèche trop et perde de sa puissance d’échange.

Le rendement du panneau solaire s’améliore, lui, si la température de l’eau qui y circule diminue. Une PAC dont l’évaporateur est lié au circuit des collecteurs solaires permettra de travailler à plus basse température dans les collecteurs, ce qui double leur rendement (et divise donc par 2 la surface nécessaire et l’investissement) et allonge leur durée annuelle de fonctionnement. La PAC disposera, elle, d’une source froide à température plus élevée. Les deux appareils voient donc leur fonctionnement optimisé. Un chauffage d’appoint sera nécessaire en hiver, par température extérieure très basse et ensoleillement limité.

Reste le coût de l’ensemble qui semble difficile à amortir…


Comparaison des sources froides

Chaque source de chaleur possède ses avantages et inconvénients, c’est pourquoi seule une analyse minutieuse du projet peut préciser le type de source froide qu’il vaut mieux choisir.

La capacité thermique de l’eau plaide incontestablement en faveur d’une source liquide :

  • le gain de chaleur provenant de 1 m³ d’eau refroidie d’environ 5 K se monte à 5,8 kWh.
  • pour un gain de chaleur identique, il faudrait comparativement refroidir environ 3 500 m³ d’air de 5 K !

Mais le débit d’eau reste important. Imaginons un bâtiment de 5 000 m². On peut tabler sur un besoin de chaleur limité à 45 W/m² (par – 10°C extérieur) s’il est bien isolé. Ceci représente une puissance totale installée de 225 kW. La puissance à capter à l’évaporateur sera de 150 kW (si COP = 3).

Sur base d’un refroidissement de l’eau de 5 K, le débit d’eau nécessaire sera de

150 kW / 5,8 kWh/m³ = 26 m³/h !

Le tableau ci-dessus reprend les caractéristiques à prendre en compte lors de la conception d’une installation de pompe à chaleur :

Source Caractéristiques de la source Coût d’installation COP saisonnier moyen COP selon la norme EN14511 (suivi de la condition de mesure) Conditions d’installation Remarques
Rejets thermiques de procédés industriels ou de systèmes de climatisation

Faibles variations de température.

Possible variation de débit.

Bas.

Comparable à celui des PAC air/eau ou eau/eau selon les propriétés de la source froide.

Installation plus ou moins importante selon la configuration de la source.

Système courant pour la production d’eau chaude sanitaire.

Eau de nappe phréatique

Faibles variations de température (+6°C à +10°C).

Élevé.

3 à 4,5.

5 à 6

(W10/W35)

Besoin de suffisamment d’eau souterraine de qualité.

Restrictions légales locales.

Des puits existants peuvent réduire les coûts.

Coût d’entretien faible.

Dimensionnement très rigoureux.

Eau de surface Faibles variations de température.

Variable selon la proximité de l’eau.

3 à 4,5.

5 à 6

(W10/W35)

Proximité d’eau en quantité adéquate nécessaire.

Système de protection contre le gel.

L’évaporateur sera conçu en fonction de la qualité de l’eau.

 

Passage par un circuit d’eau intermédiaire dans le cas de capteurs dynamiques.

Encrassage possible.

Tuyaux d’eau glycolée dans le sol Faibles variations de température (plus fortes si usage de serpentins à faible profondeur).

Connaissance des propriétés thermiques du sol requise.

Moyen à élevé. 3 à 4.

4 à 5

(B0/W35)

Besoin de surface si échangeur de chaleur horizontal et d’une solution antigel. Échangeurs verticaux ou horizontaux.

Les conditions de sol et de surface influencent la conception.

Coûts d’entretien faibles.

Dimensionnement très rigoureux.

Air extérieur

Larges variations de température (0°C à + 15°C).

Bas.

2,5 à 3,5.

3 à 4

(A2/W35)

Système universel, source disponible en grande quantité.

Dégivrage et parfois chauffage auxiliaire nécessaires.

Système à évaporation directe : le fluide frigorigène passe dans le sol (tuyaux verticaux et horizontaux) Faibles variations de température.

3 à 4.

Pas de circuit intermédiaire du côté évaporateur.

Grandes quantités de fluide frigorigène nécessaire.

* Les valeurs des coefficients de performance dépendent des modèles de pompes à chaleur choisies. Les valeurs données ici sont des ordres de grandeur permettant la compréhension de l’influence de la source froide.

Les pompes à chaleur les plus répandues sont les pompes à chaleur air extérieur/eau, ensuite viennent les pompes à chaleur eau glycolée/eau qui tirent leur énergie du sol.

Réglementation et permis

Suivant le type de PAC, sa puissance et la quantité de fluide frigorigène présente dans le circuit, l’installation d’une pompe à chaleur requiert ou non l’octroi de permis d’environnement ou d’urbanisme. Bien souvent, la PAC devra uniquement être « déclarée ».

Les réglementations en vigueur sont susceptibles de changer régulièrement. À titre d’illustration, voici un tableau qui reprend ces réglementations pour l’année 2009 :

Condition (2009) Classe
Si puissance frigorifique nominale utile comprise entre 12 et 300 kW et charge en FF > 3 kg. 3 – déclaration.
Si puissance frigorifique nominale >= 300 kW. 2 – permis d’environnement.
Pompe à chaleur sur air
Si air statique. Peut-être permis d’urbanisme – vérifier avec la commune.
Si air dynamique. Peut-être permis d’urbanisme – vérifier avec la commune.
Pompe à chaleur sur eau souterraine
Opération de forage et opération de sondage ayant pour but l’exploitation future d’une prise d’eau,… (hormis les forages inhérents à des situations d’urgence ou accidentelles). 2 – permis unique.
Installation pour la ou les prise(s) d’eau et/ou le traitement des eaux souterraines non potabilisables et non destinées à la consommation humaine d’une capacité de prise d’eau et/ou de traitement inférieure ou égale à 10 m3/jour et à 3 000 m³/an. 3 – déclaration.
Installation pour la ou les prise(s) d’eau et/ou le traitement des eaux souterraines non potabilisables et non destinées à la consommation humaine d’une capacité de prise d’eau et/ou de traitement supérieure à 10 m³/jour et à 3 000 m³/an et inférieure ou égale à 10 000 000 m³/an. 2 – permis d’environnement ou permis unique.
Installation pour la ou les prise(s) d’eau et/ou le traitement des eaux souterraines non potabilisables et non destinées à la consommation humaine d’une capacité de prise d’eau et/ou de traitement de plus de 10 000 000 m³/an. 1 – permis d’environnement ou permis unique avec étude
d’incidences sur l’environnement obligatoire.
Installation pour la recharge ou les essais de recharge artificielle des eaux souterraines. 1 – permis unique avec étude d’incidences sur l’environnement obligatoire.
Déversement d’eaux usées industrielles telles que définies à l’article D.2, 42°, du Livre II du Code de l’Environnement, contenant le Code de l’Eau, dans les eaux de surface, les égouts publics ou les collecteurs d’eaux usées :
rejets supérieurs à 100 équivalent-habitant par jour ou comportant des substances dangereuses visées aux annexes Ire et VII du Livre II du Code de l’Environnement, contenant le Code de l’Eau.
2 – permis d’environnement ou permis unique.
PAC sur eaux de surface Autorisation du gestionnaire de l’eau de surface nécessaire. Peut-être permis d’urbanisme – voir avec la commune.
Déversement d’eaux usées industrielles telles que définies à l’article D.2, 42°, du Livre II du Code de l’Environnement, contenant le Code de l’Eau, dans les eaux de surface, les égouts publics ou les collecteurs d’eaux usées : rejets supérieurs à 100 équivalent-habitant par jour ou comportant des substances dangereuses visées aux annexes Ire et VII du Livre II du Code de l’Environnement, contenant le Code de l’Eau. 2 – permis d’environnement ou permis unique.
PAC à captation verticale dans le sol
Opération de forage et opération de sondage pour le stockage des déchets nucléaire ou pour un usage géothermique. 2 – permis unique.
PAC à captation horizontale dans le sol Non classé, mais peuvent l’être si quantité FF > 3kg.

Source : Synthèse sur les réglementations et permis relatifs à l’installation
et à l’exploitation de pompes à chaleur en Région wallonne – Document EF4.

Ateliers

Ateliers


Éclairage naturel et baies vitrées

Dans les ateliers, les tâches de travail peuvent vite devenir dangereuses lorsque le risque d’éblouissement est important. Intuitivement, on essayera d’ouvrir les façades orientées au nord pour la simple raison que la lumière naturelle côté nord est essentiellement une lumière diffuse avec un niveau d’éclairement relativement continu en journée. Mais les contraintes d’orientation ne peuvent pas toujours être maîtrisées :

  • En rénovation, les façades orientées au nord ne sont pas toujours disponibles à l’ouverture vers la lumière naturelle.
  • En conception nouvelle, le bâtiment ne peut pas toujours être orienté avec ses larges façades au nord.

Des alternatives intéressantes à considérer sont les ouvertures de toiture :

Photo ouvertures de toiture.

Les ouvertures de type coupole représentent un potentiel important d’éclairage naturel mais avec son lot d’inconvénients comme, par exemple, l’éblouissement zénithal et la surchauffe en été.

Photos baies vitrées de type sheds.

Les baies vitrées de type sheds orientées au nord permettent de maîtriser la surchauffe et l’éblouissement d’été. Elles offrent bien d’autres avantages comme, par exemple, la possibilité de coupler l’éclairage naturel côté nord aux panneaux photovoltaïques placés sur le versant des sheds côté sud.


Les ouvertures verticales en toiture

Ouvertures verticales en toiture.

Début du siècle dernier, voire bien avant, ce type d’ouverture existait déjà. Nos ancêtres étaient bien inspirés en regard du confort visuel. Cependant, d’un point de vue thermique, les performances du simple vitrage et l’étanchéité des châssis ne permettaient pas des performances énergétiques géniales !

À l’heure actuelle, les performances thermiques des sheds deviennent très bonnes, ce qui permet à ceux-ci de pouvoir jouir d’une seconde jeunesse !

La mise en œuvre des sheds en conception nécessite quand même de respecter l’orientation nord-sud, et ce dans une « fourchette angulaire » relativement restreinte de manière à éviter les surchauffes et les éblouissements directs. De plus, d’un point de vue conceptuel, les sheds doivent être alignés sur la trame de la structure portante (alignement parallèlement ou perpendiculairement au rythme des poutres principales par exemple). Cette remarque montre la limite que l’on peut vite atteindre en cas de rénovation simple.

Schéma ouvertures verticales en toiture.

Les ouvertures verticales orientées vers le nord de type sheds apparaissent comme une solution très intéressante si l’on parvient à maîtriser le rayonnement solaire direct en début de matinée.

Le shed est intéressant sur plusieurs aspects. Il présente des avantages et inconvénients résumés dans le tableau suivant :

Avantages Inconvénients
  • Éclairage naturel uniforme et constant sans risque d’éblouissement pour les expositions au nord.
  • Ventilation intensive naturelle possible et efficace en règle générale.
  • Possibilité de combinaison d’une ventilation naturelle avec la fonction de désenfumage (exutoire de fumée sur certain châssis vitrés.
  • Support d’éventuels panneaux solaires photovoltaïques.
  • Récupération de surfaces internes contre les façades (pour le stockage par exemple).
  • Meilleure isolation que les voutes filantes ou les coupoles en général.
  • Une surface de déperdition plus importante.
  • Coûts de mise en œuvre de la toiture plus importants (cependant, partiellement compensés par la réduction des surfaces vitrées en façade).
  •  …

Les lanterneaux

Photo lanterneaux.

Les lanterneaux étaient et restent les ouvertures zénithales les plus répandues. On peut arriver à des performances énergétiques proches de celles des doubles vitrages plans par l’utilisation de polycarbonates double voire triple couche. Cependant, la surchauffe et l’éblouissement sont les ennemis du lanterneau. Pour limiter le risque d’éblouissement direct et la surchauffe, un vitrage opalin est recommandé. La transmission lumineuse du vitrage est cependant fortement diminuée et la relation avec l’extérieur altérée (plus de possibilités d’analyser la couleur du ciel).

De manière générale, l’ouverture zénithale avec un lanterneau présente des avantages et inconvénients résumés dans le tableau suivant :

Avantages Inconvénients
  • Éclairage naturel intéressant pour toutes les expositions.
  • Ventilation intensive naturelle possible et efficace en règle générale.
  • Possibilité de combinaison d’une ventilation naturelle avec la fonction de désenfumage (exutoire de fumée sur certains châssis vitrés.
  • Récupération de surfaces internes contre façades (pour le stockage par exemple).
  • Une surface de déperdition plus importante.
  • Coûts de mise en œuvre de la toiture plus importants (cependant, partiellement compensés par la réduction des surfaces vitrées en façade).
  • Risque de surchauffe et d’éblouissement direct.

Quantification de l’apport en éclairage naturel

Nous proposons ici, une étude théorique de l’apport en éclairage naturel de plusieurs solutions qui peuvent être envisagées dans un ateliers.

Quantitativement, l’apport en lumière naturelle au travers de différents types de baies vitrées passe par l’appréciation :

  • Du FLJ ou Facteur de Lumière du Jour. Le FLJ permet d’objectiver la qualité de la baie vitrée indépendamment de l’orientation, des conditions climatiques… On peut en tirer des enseignements quant à l’homogénéité de l’éclairage naturel, de la performance de la baie vitrée par rapport à sa taille, sa position dans la façade ou dans la toiture…
  • De l’autonomie en lumière du jour qui donne une idée relativement précise des consommations d’éclairage artificiel comme complément à l’éclairage naturel.

Un FLJ compris entre 3 et 5 % est en général un gage de bonne qualité de la lumière naturelle dans le local considéré. Dans la même optique, une autonomie en lumière naturelle de l’ordre de 50-60 % augure une bonne indépendance vis-à-vis de la lumière artificielle.

La quantification ne peut se réaliser que par l’utilisation d’outils de simulation dynamique en éclairage naturel. Des logiciels comme ECOTECH et DAYSIM.

Hypothèses de modélisation

La modélisation s’effectue en tenant compte de la volumétrie du projet de conception et des hypothèses sur :

  • L’horaire d’occupation : 06h00 à 22h00 ;
  • Le niveau d’éclairement : 300 lux à 0,80 m ;
  • Transmission lumineuse du vitrage : 70 % ;
  • Les coefficients de réflexion des parois internes :
  • Plafond : 40 %
  • Murs : 40 %
  • Dalle : 20 %

Simulation 1 : ouvertures verticales vers le nord en toiture

Schéma ouvertures verticales vers le nord en toiture.

Caractéristiques propres aux sheds

  • Surface nette éclairante : 99 m²
  • Surface nette éclairante/surface de la pièce : 10 %
  • Réflecteurs du plafond des sheds : 80 %

Facteur lumière du jour

Autonomie lumière du jour – 300 lux – 6h00 à 22h00

Que faut-il retenir ?

Analyse des résultats

FLJ (Facteur de Lumière du jour)*

DA (Autonomie en Lumière du Jour)*

1 < FLJ < 2 %

DA < 20 %

(*)

  • FLJ moyen (Facteur de Lumière du jour) sur l’ensemble de la surface considéré comme bon si 3 % < FLJ > 5 % ;
  • DA moyen (Autonomie en Lumière du Jour) sur l’ensemble de la surface considérée comme acceptable si DA > 50 %.

 Une zone d’ombre au niveau de la façade nord réduit fortement la performance globale du système de « sheds ».

Simulation 2 : Ouvertures verticales vers le nord en toiture + fenêtre verticale en façade

Schéma ouvertures verticales vers le nord en toiture.

Caractéristiques propres aux sheds

  • Surface nette éclairante : 124 m²
  • Surface nette éclairante/surface de la pièce : 13 %
  • Réflecteurs du plafond des sheds : 80 %

Facteur lumière du jour

Autonomie lumière du jour – 300 lux – 6h00 à 22h00

Que faut-il retenir ?

Analyse des résultats

FLJ (Facteur de Lumière du jour)*

DA (Autonomie en Lumière du Jour)*

2 < FLJ < 3 %

DA < 40 %

(*)

  • LJ moyen (Facteur de Lumière du jour) sur l’ensemble de la surface considéré comme bon si 3 % < FLJ > 5 % ;
  • DA moyen (Autonomie en Lumière du Jour) sur l’ensemble de la surface considérée comme acceptable si DA > 50 %.

Le placement d’un bandeau vitré en façade nord améliore permet de gommer les zones d’ombre. Globalement, le résultat est meilleur. Ceci dit, de manière pratique, tout dépend la hauteur à laquelle se situe ce bandeau, sachant que dans les ateliers toute surface vitrée en façade reste un inconvénient en termes d’exploitation des m² utiles.

Simulation 3 : ouvertures verticales vers le nord en toiture + fenêtre verticale en façade + optimisation

Schéma ouvertures verticales vers le nord en toiture - 2.

Caractéristiques propres aux sheds

  • Surface nette éclairante : 124 m² ;
  • Surface nette éclairante/surface de la pièce : 13 % ;
  • Réflecteurs du plafond des sheds : 80 % ;
  • Transmission lumineuse du vitrage 80 %.
  • Plafond : 60 %

Facteur lumière du jour

Autonomie lumière du jour – 300 lux – 6h00 à 22h00

Que faut-il retenir ?

Analyse des résultats

FLJ (Facteur de Lumière du jour)*

DA (Autonomie en Lumière du Jour)*

2,5 < FLJ < 5 %

DA < 40 %

(*)

  • LJ moyen (Facteur de Lumière du jour) sur l’ensemble de la surface considéré comme bon si 3 % < FLJ > 5 % ;
  • DA moyen (Autonomie en Lumière du Jour) sur l’ensemble de la surface considérée comme acceptable si DA > 50 %.

Tout en évitant l’éblouissement et les surchauffes, les sheds à vitrages clairs proposent une solution intéressante pour les ateliers. Le confort visuel y est assuré ! Pour autant que le système d’éclairage artificiel soit géré de manière efficace, les consommations électriques peuvent être réduites de manière significative.

Simulation 4 : voute filante – vitrage opalin  (TL 22 %)

Schéma voûte filante.

Caractéristiques propres aux lanterneaux

  • Surface nette éclairante : 157 m² ;
  • Surface nette éclairante/surface de la pièce : 16,3 % ;
  • Transmission lumineuse du vitrage : 22 %.
  • Plafond : 60 %

Facteur lumière du jour

Autonomie lumière du jour – 300 lux – 6h00 à 22h00

Que faut-il retenir ?

Analyse des résultats

FLJ (Facteur de Lumière du jour)*

DA (Autonomie en Lumière du Jour)*

1 < FLJ < 2 %

DA < 30 %

(*)

  • LJ moyen (Facteur de Lumière du jour) sur l’ensemble de la surface considéré comme bon si 3 % < FLJ > 5 % ;
  • DA moyen (Autonomie en Lumière du Jour) sur l’ensemble de la surface considérée comme acceptable si DA > 50 %.

Ce type de configuration ne donne pas lieu à des résultats encourageants. D’autant plus, qu’avec les lanterneaux, on n’évite pas les éblouissements et les surchauffes d’été. En pratique, les occupants des espaces de travail sont obligés de se protéger par des toiles horizontales. Lorsqu’elles sont fixes, l’effet d’éclairage naturel est perdu. La mise en place d’un système de gestion automatique coûte très cher !

Simulation 5 : voute filante – vitrage opalin  (TL 35 %)

Schéma voûte filante - 2.

Caractéristiques propres aux lanterneaux

  • Surface nette éclairante : 157 m² ;
  • Surface nette éclairante/surface de la pièce : 16,3 % ;
  • Transmission lumineuse du vitrage : 35 %.
  • Plafond : 60 %

Facteur lumière du jour

Autonomie lumière du jour – 300 lux – 6h00 à 22h00

Que faut-il retenir ?

Analyse des résultats

FLJ (Facteur de Lumière du jour)*

DA (Autonomie en Lumière du Jour)*

2 < FLJ < 3 %

DA < 45 %

(*)

  • LJ moyen (Facteur de Lumière du jour) sur l’ensemble de la surface considéré comme bon si 3 % < FLJ > 5 % .
  • DA moyen (Autonomie en Lumière du Jour) sur l’ensemble de la surface considérée comme acceptable si DA > 50 %.

L’augmentation de la transmission lumineuse améliore la situation, mais amplifie aussi l’inconfort d’éblouissement et l’inconfort thermique en été.

Conclusions

De manière générale, les sheds donnent des résultats très intéressants. D’autant plus que la qualité de la lumière naturelle captée par les sheds est excellente pour les raisons déjà évoquées précédemment, à savoir :

  • la source d’éclairage naturel diffuse est relativement constante et pas éblouissante ;
  • les surchauffes dues aux apports directs sont évitées.

Envisager le placement d’un bandeau vitré en façade nord et une augmentation du coefficient de réflexion du plafond amélioration les performances des sheds ;

L’utilisation des lanterneaux permet d’approcher les critères de FLJ et ALJ envisagés (FLJ compris entre 3 et 5 %, ALJ > 50 %). Cependant, l’éblouissement doit être maîtrisé sachant que le rayonnement solaire direct est limité, mais toujours présent. De plus, les surchauffes potentielles ne seront pas évitées.


Quantification en éclairage artificiel

Partant du principe que le confort lumineux doit être assuré en présence ou pas d’éclairage naturel, un complément d’éclairage artificiel est nécessaire. Normativement, le dimensionnement de l’éclairage artificiel s’effectue sans les apports de lumière naturelle. La démarche énergétique d’un système d’éclairage artificiel réside donc dans sa capacité à moduler la puissance installée en fonction de l’éclairage naturel. En effet, pour autant qu’il n’y ait pas d’éblouissement, meilleure l’autonomie en lumière du jour sera, moins fort sera le poids des consommations d’éclairage artificiel pour donner le complément de confort nécessaire.

Dans le cas de l’atelier considéré, le choix du type d’éclairage artificiel et surtout du type de luminaire, passe par une étude de type Dialux permettant de comparer des luminaires entre eux.

Choix du type de luminaire

Quel type de lampe ?

Dans l’atelier de hauteur inférieure à 7-8 m, deux types de source lumineuse ont été envisagées, à savoir :

  • les lampes aux halogénures métalliques ;
  • les tubes fluorescents.

Photo lampes aux halogénures métalliques.

Luminaire à lampe aux halogénures métalliques.

Photo luminaire à lampe aux halogénures métalliques.

Luminaire à tubes fluorescents.

 Quel type de luminaire ?

Luminaire à lampe aux halogénures métalliques.

Luminaire à tubes fluorescents.

Une étude technico-économique peut être réalisée de façon à pouvoir sélectionner la meilleure solution. Il en ressort, que les luminaires à tubes fluorescents sont à préférer. Les principales raisons sont les suivantes :

  • Une grande efficacité énergétique,
  • Un très bon rendu des couleurs,
  • Une durée de vie importante,
  • Un faible coût d’investissement.

De plus, si on les compare aux lampes aux halogénures métalliques, on constate que :

  • Leur faible flux lumineux (4.300 lm pour une lampe de 49 W) les rend moins éblouissantes que les lampes aux halogénures ;
  • De même, elles nécessitent l’installation d’un plus grand nombre de lampes. On obtiendra ainsi une plus grande uniformité d’éclairement qu’avec des lampes à décharge haute pression et une réduction des ombres portées ;
  • Vu le grand nombre de points lumineux, si une lampe est défectueuse, elle ne laissera pas une tache sombre au sol en attendant d’être remplacée ;
  • Elles peuvent être dimées facilement et permettent donc une gestion de commande plus perfectionnée.

Choix du système d’éclairage

En fonction de la géométrie de l’atelier et pour des raisons de modularité, de flexibilité et de rendement, une solution est privilégiée :

  • Une base de 4 rails de ligne lumineuse (utilisé à titre d’exemple dans la modélisation) traversant le hall. Ces rails ont été fixés au-dessus du pont roulant ;
  • Les luminaires sont alors attachés simplement par des verrous quart de tour.

Le câblage spécialement conçu et intégré d’usine dans le rail porteur du luminaire révolutionne la méthode d’installation, la rend variable, nettement plus rapide et plus simple.

 

Coupe transversale d’un rail précablé et luminaire adapté au rail profilé pour un montage rapide.

  

Source : Zumtobel.

Évaluation du niveau d’éclairage artificiel

Modélisation

Schéma modélisation.

La modélisation de l’éclairage artificiel est réalisée pour un niveau d’éclairement souhaité de 300 lux sur base des hypothèses suivantes :

  • Hauteur du plan de travail : 0,80 m
  • Facteur d’entretien : 0,70
  • Facteur de réflexion :
  • Sol : 0,2
  • Mur : 0.5
  • Toit : 0,5
  • Niveau d’éclairement souhaité de 300 lux

 Simulation

  

liste des luminaires
Quantité Désignation (Facteur de maintenance) φ (lm) P (W)
1 60 Tubes fluorescents sur rails lumineux 2 x 49 W T16 8 600 109
Total 516 000 6 540
Puissance installée spécifique : 6,81 W/m² (surface au sol 960 m²)
Puissance installée spécifique : 2,12 W/m²/100 lux (surface au sol 960 m²)

Adaptabilité

La principale caractéristique de ce type d’installation sur rail est de pouvoir accepter tous les luminaires de la gamme et donc on peut alterner différente puissance et dimension de tube.

Il est donc possible d’adapter le nombre et le type de luminaire pour augmenter le niveau d’éclairement souhaité en un point en fonction de l’activité.

Évaluation des consommations d’énergie

L’influence d’une gestion en fonction de la lumière du jour est évaluée, à partir du logiciel LIGHTSWITCH, selon le niveau d’éclairement souhaité et selon le type d’ouverture prévue en toiture.

On considère que l’éclairage est allumé tout les jours de la semaine de 6h00 à 22h00. Le niveau d’éclairement maintenu est de 300 lux sur l’ensemble de l’espace.

Lumière du jour

En conception, l’éclairage est dimensionné sans prendre en compte l’apport de lumière naturelle. Par contre, une gradation automatique commandée en fonction de la lumière du jour permet d’adapter la puissance de l’éclairage en fonction de l’apport de l’éclairage naturel. Un capteur enregistre la quantité de lumière du jour et réduit le flux lumineux de l’éclairage en fonction de leur position par rapport à la fenêtre.

Maintenance control

Les installations d’éclairage doivent être surdimensionnées pour pouvoir remplir les dispositions de la norme EN 12464 en matière d’éclairement minimal à maintenir durant toute l’utilisation. C’est pourquoi on calcule généralement une réserve très large, vu que l’éclairement diminue au fur et à mesure du vieillissement, de l’encrassement des luminaires, de l’encrassement de la pièce et de la durée de vie de la lampe.

Des installations de gestion centralisée permettent de piloter les lampes de manière à maintenir toujours le niveau d’éclairement à la valeur requise. Ainsi seule l’énergie absolument nécessaire est consommée. Des éclairements plus élevés permettent en plus d’optimiser les intervalles de maintenance.

Sans maintenance Control
Un flux lumineux trop élevé et une forte consommation en permanence.

Avec maintenance Control
Un flux lumineux constant et une consommation réduite.
Calculé sur une période de 15 ans, cette fonction permet d’économiser
jusqu’à un tiers des frais d’exploitation des luminaires et en même temps de rallonger sensiblement les intervalles d’entretien.

Le facteur de maintenance considéré pour le dimensionnement de l’éclairage est de 0,70. L’éclairage est donc surdimensionné de 30 %. Le maintien d’un flux constant permet d’économiser de l’ordre de 10 %.

Consommations énergétiques

Suivant les différentes configurations d’éclairage naturel envisagées ci-dessus, les consommations énergétiques de l’éclairage artificiel sont simulées :

Puissance installée : 7 W/m² Consommation annuelle théorique d’éclairage artificiel selon le type de gestion
Gestion en fonction d’un horaire Gestion automatique de la lumière du jour sur bas d’un Heliomètre positionné Gestion automatique de la lumière du jour sur bas d’un Heliomètre positionné + maintient du flux constant
Alt 1 Éclairage zénithal nord – vitrage sélectif 30,0 kWh/m².an 25,0 kWh/m².an 16,7 % 22,7 kWh/m².an 24,3 %
Alt 2 Éclairage zénithal nord + bandeau lumineux en façade nord – vitrage sélectif 30,0 kWh/m².an 22,4 kWh/m².an 25,3 % 20,4 kWh/m².an 32,0 %
Alt 3 Éclairage zénithal nord + bandeau lumineux en façade nord – vitrage clair – parois claires 30,0 kWh/m².an 20,2 kWh/m².an 32,7 % 18,5 kWh/m².an 38,3 %
Alt 4 Éclairage zénithal coupole  – vitrage translucide (TL 22 %) + parois claires 30,0 kWh/m².an 24,3 kWh/m².an 19 % 22,1 kWh/m².an 26,3 %
Alt 5 Éclairage zénithal coupole  – vitrage translucide (TL 35 %) + parois claires 30,0 kWh/m².an 19,6 kWh/m².an 34,7 % 18 kWh/m².an 40 %

 

D’un point de vue consommation énergétique, les alternatives 3 et 5 avec une gestion automatique par rapport à la lumière du jour et un maintien du flux constant sont intéressantes. Cependant, il faut rappeler que d’un point de vue confort visuel (éblouissement) et thermique (surchauffe d’été), l’alternative 3 avec les sheds orientés au nord est celle qui donne les meilleurs résultats.

Choisir l’emplacement des luminaires dans les commerces

Les situations sont tellement nombreuses dans les commerces qu’il est impossible de donner une règle générale permettant de positionner idéalement les luminaires.

Parmi les caractéristiques à ne pas perdre de vue, la hauteur des rayons est d’une grande importance. Elle influencera les niveaux d’éclairement et l’uniformité de l’éclairage général. Dans le cas de rayonnage haut, comme ceux que l’on retrouve dans les supermarchés, il faudra bien tenir compte de la position relative des luminaires par rapport aux rayonnages. Le dimensionnement devra être réalisé par un logiciel de calcul permettant de prendre en compte la position et la taille de ces meubles.

Choisir un climatiseur individuel ou une armoire de climatisation

Choisir un climatiseur individuel ou une armoire de climatisation


Quand opter pour un climatiseur individuel ?

Un climatiseur paraît bien adapté lorsque l’on cherche un refroidissement localisé à peu de frais. Mais ce système présente d’importantes limites : il ne permet pas la maîtrise de l’humidité et risque de créer un inconfort lié au flux d’air froid.

Ce dernier point s’explique comme suit : en conditionnement d’air, on cherche à assurer un écart de soufflage limité (écart entre la température de l’air soufflé et la température du local). On peut aller jusqu’à 10 °C d’écart (soit une pulsion d’air à 14 °C si le local est à 24 °C) mais on utilise alors des bouches à haut taux d’induction pour être sûr que le mélange avec l’air ambiant soit maximal. Dans un climatiseur par contre, le fabricant cherche à fournir une puissance maximale dans un encombrement minimal. L’évaporateur est donc de petite surface, … et travaille à très basse température ! L’air du local est fortement refroidi à son contact. Une « coulée » d’air froid risque alors de gêner fortement les occupants…

Ceci dit, c’est une solution facile lorsque quelques locaux sont à traiter, particulièrement en rénovation. Et le confort limité peut être accepté si le climatiseur est utilisé sporadiquement pour vaincre des périodes de surchauffe.

Lorsque des puissances plus grandes sont nécessaires par exemple pour des locaux de serveurs, on s’orientera vers les armoires de climatisation.


Choix du type de climatiseur

En fonction de la puissance frigorifique

À partir de la puissance frigorifique requise, on réalisera une première sélection parmi la typologie des climatiseurs de locaux.

La puissance frigorifique nécessaire permet déjà d’écarter quelques équipements :

  • appareil mobile : maximum 2,5 kW,
  • appareil plafonnier : minimum 2,5 kW,
  • appareil en toiture + gaines (rooftop) : minimum 5 kW.

Lorsque la puissance des appareils présents sur le marché ne correspond pas à la puissance frigorifique calculée, il est toujours préférable de choisir un appareil ayant une puissance juste inférieure plutôt que celui qui a une puissance supérieure.

En effet, les conditions extrêmes de température extérieures n’apparaissent que durant quelques jours par an. On peut donc se permettre un très léger inconfort durant cette période. De plus, un appareil plus petit aura des durées de fonctionnements plus longs, et donc un meilleur rendement.

En fonction de la performance acoustique

Les climatiseurs monoblocs et les climatiseurs de « fenêtres » présentent souvent de mauvaises caractéristiques acoustiques puisque condenseur et compresseur sont directement en contact avec le local à climatiser.

Graphique performance acoustique

La performance acoustique va orienter le choix vers une configuration en split (le compresseur est à l’extérieur), puis vers un évaporateur en cassette (faux plafond), voire rechercher un placement de l’évaporateur dans un local annexe (couloir ?) afin de profiter en plus de l’absorption acoustique de la gaine.

À ce titre, on pourrait classer le choix en fonction de ses performances acoustiques de gauche à droite :

  Illustration plafonnier rapporté.  Illustration plafonnier intégré.  Illustration unité de plafond + gaine.

Mais ce critère sera affiné ci-dessous.

En fonction d’un éventuel découpage par zone

Il faut découper le local par zone, chaque zone étant desservie par une bouche de soufflage :

Si la surface du local est importante :

Illustration sur principe de surface du local.

Un phénomène d’irrigation incomplète des locaux apparaît lorsque la distance de pénétration du jet (mentionnée par le fournisseur) est inférieure à la dimension de la pièce (dans la direction de soufflage). Il se forme alors un mouvement d’air en sens contraire (boucle secondaire) dans le fond du local, zone mal rafraîchie.

Dans ce cas un découpage du local en plusieurs zones s’impose.

Exemple : découpage d’un local rectangulaire suivant les zones d’influence des diffuseurs plafonniers circulaires.

Si un obstacle se trouve au plafond

Lorsque l’air est soufflé à proximité d’une surface (ex : soufflage horizontal à proximité du plafond), il se produit un effet d’adhérence du jet à la paroi : c’est l’effet « COANDA » (augmentation de 30% de la portée).

Illustration sur effet "COANDA

L’effet Coanda est très utile quand on pulse de l’air froid, car il facilite la bonne pénétration du jet dans le local.

La présence d’un obstacle perpendiculaire au jet d’air (poutre, luminaire) peut faire dévier prématurément le jet vers la zone occupée et engendrer un courant d’air désagréable.

Illustration sur effet "COANDA

En conséquence :

  • il faut souffler soit à partir de l’obstacle, soit parallèlement à celui-ci et diviser le local en zones correspondantes,
  • l’éclairage au plafond doit être soit encastré, soit suspendu avec une longueur de suspension de 0,3 m minimum,
  • on tiendra compte de la présence éventuelle de colonnes qui ne pourront se situer dans la trajectoire du jet.

Si le local présente une forme de L

La distance de pénétration ne peut dépasser 4 fois la hauteur de la pièce. Dès lors, pour les locaux forts en longueur (et a fortiori pour les locaux en L), on prévoira une position centrale ou un dédoublement des bouches.

Si l’apport de chaleur est très localisé

Si la source de chaleur est concentrée (équipement, vitrage, …) dans une partie du local, il est judicieux de traiter spécifiquement cette zone.

Par exemple si la production des calories est éloignée de la façade (local profond), le souci d’économie d’investissement qui conduirait au choix d’un système « window unit » entraînerait un inconfort dans la zone à refroidir.

S’il y a présence de zones fumeurs et non-fumeurs

La zone à destination des fumeurs doit être traitée si possible indépendamment de la zone non-fumeurs, notamment en prévoyant l’extraction dans l’espace fumeurs.

En fonction de la centralisation ou non du traitement

Les zones étant définies, il est nécessaire de fixer le mode de traitement de l’air.

Un traitement centralisé et une distribution de l’air par gainage sont envisagés :

  • si les besoins des locaux ou des zones sont similaires, car l’air est distribué à même température dans les différentes pièces,
  • si les locaux ou les zones ont des charges thermiques trop faibles par rapport aux puissances des appareils sur le marché,
  • si le passage des gaines est possible (présence de faux plafond, de local annexe),
  • si les locaux de travail exigent des critères acoustiques sévères.

Dans ces différents cas, un seul appareil de traitement alimentera plusieurs zones via un réseau de gaines de distribution. Cette centralisation entraînera souvent le placement de l’appareil hors des locaux de travail et la possibilité d’une absorption acoustique par le gainage.

Climatiseur avec gaines.

Un traitement décentralisé est envisagé :

  • si les locaux ont des besoins différents (orientation des fenêtres, par exemple),
  • si les parois extérieures sont perçables de manière à faire traverser les liaisons électriques et frigorifiques, ainsi que la tuyauterie d’évacuation des condensats.

Illustration sur traitement décentralisé

On choisit dans ce cas, un traitement local par local au moyen d’appareils indépendants.

Photo sur traitement décentralisé

Un condenseur commun et plusieurs unités intérieures = multi-split.

Cette configuration n’exclut pas l’utilisation d’un système multi split.

Il est alors possible de diminuer la puissance à installer si on peut prendre en considération la non-simultanéité des besoins.


Choix d’ une armoire de climatisation

illustration sur armoire de climatisation

Tout comme les climatiseurs, les armoires de climatisation présentent, par rapport aux systèmes sur boucle d’eau ou d’air, l’avantage d’une très grande flexibilité d’implantation et de gestion. En termes de puissance frigorifique, on peut dépasser parfois la centaine de kW ce qui les différencie des climatiseurs de local. En termes de débit d’air, on atteint alors les 20 000 m³/h. Un des défauts majeurs est le bruit généré par cet équipement, à proximité des occupants…

Les armoires de climatisation se trouvent dans le traitement des salles informatiques, surtout lorsqu’elles constituent la seule demande du bâtiment. Lorsque le bâtiment comporte plusieurs armoires de ce type, il devient intéressant de les raccorder sur une boucle d’eau glacée, équipée d’un système centralisé d’évacuation de la chaleur. La même armoire peut climatiser plusieurs locaux (avec distribution de l’air traité par conduit) mais ces locaux doivent avoir des besoins semblables.

Techniques

Pour connaître plus en détail les caractéristiques technologiques et le fonctionnement des armoire de climatisation, cliquez ici !

Découvrez ces exemples concrets de système de climatisation : le Centre Hospitalier du Bois de l’Abbaye de Seraing et la climatisation et l’hôpital des Fagnes de Chimay.

Valoriser la fraîcheur de l’environnement [Esquisse du projet]

Valoriser la fraîcheur de l'environnement


Valoriser la fraicheur de l’air extérieur

Le potentiel lié à la fraicheur extérieure

L’isolation des bâtiments élargit la période de refroidissement en mi-saison et en été. Ce besoin peut être pour une bonne part résolu en valorisant l’air extérieur lorsqu’il est plus frais que la consigne intérieure.

En moyenne, la température extérieure à Uccle est 98 % du temps inférieur à 24°C et ne dépasse 27° que 40 heures par an. En outre, en été, dans notre pays, la température nocturne minimale est inférieure de plus de 8°C à la température maximum diurne, et cette température extérieure nocturne est toujours inférieure aux plages de confort. Il existe donc un pouvoir rafraîchissant naturel important de l’air extérieur, sans traitement et donc sans coût énergétique autre que son transport.

Les profils de températures moyennes à Uccle montrent que la température extérieure est généralement inférieure à la température de confort.

Ce pouvoir rafraîchissant est cependant limité par deux facteurs : la faible capacité frigorifique de l’air extérieur et la quantité d’air pouvant être valorisée, qui est limitée par l’encombrement des gaines de ventilation, la taille des ouvertures en façade, le risque de générer un courant air.

Ainsi, imaginons un local à 26°C avec une charge thermique (élevée) de 60 W/m² (ordinateur, éclairage, occupants, ensoleillement, …) ou 20 W/m³ (si la hauteur sous plafond est de 3 m). La température de l’air extérieur est de 20°C. Calculons le débit nécessaire pour évacuer la chaleur d’un m³ du local :

débit = 20 [W/m³] / (0,34 [W/(m³/h).K] x 6 [K]) = 9,8 [renouv./h]

où,

  • 0,34 W/m³.K est le pouvoir calorifique de l’air et 6 K est la différence de température entre l’intérieur et l’extérieur

Il faudrait donc un taux de renouvellement horaire de 9,8 : chaque heure, l’air du local serait renouvelé 10 fois ! en dehors de la difficulté technique, cela génère un climat peu confortable…

En pratique, la fraîcheur de l’air extérieur peut être valorisée de trois façons : par une ventilation intensive naturelle (free cooling naturel), par l’intégration d’air frais dans le système de conditionnement d’air (free cooling mécanique), et par le refroidissement direct des boucles d’eau froide (free chilling).

Données

En savoir plus sur le climat belge ?

L’exploitation de l’air extérieur par ventilation naturelle (free cooling naturel)

La  ventilation intensive estivale (ou free cooling naturel), vise le refroidissement passif du bâtiment par l’ouverture de sa façade. L’objectif est soit de compenser en journée les charges internes et solaires, soit de « décharger » et refroidir pendant la nuit la masse du bâtiment, afin que cette masse puisse limiter la montée en température le lendemain.

La ventilation intensive est efficace en journée si l’air extérieur n’excède pas la température intérieure, mais n’est pas non plus trop froid, pour éviter la sensation de courant d’air, ce qui limite son usage en mi-saison. De plus, il restera toujours les 40 heures, soit de 5 à 10 journées de travail par an, où la ventilation ne ferait qu’empirer les choses puisque la température extérieure est supérieure à la température intérieure. Le refroidissement par ventilation de jour peut donc être une solution en mi-saison, mais a ses limites en été.

Le refroidissement par ventilation de nuit par contre conserve son efficacité toute l’année, sauf canicule extrême. Malgré tout, pour qu’un free cooling permette de se passer de climatisation en journée, il faut assurer durant la nuit, un taux de renouvellement d’air nettement plus important que le taux de ventilation hygiénique : au minimum 4 [vol/h] par rapport à 1 [vol/h].

Au-delà de l’économie d’énergie qui en résulte, c’est une certaine qualité de vie qui est recherchée : absence de système sophistiqué de climatisation, … et plaisir de pouvoir ouvrir sa fenêtre et d’entrer plus en contact avec l’environnement extérieur.

Techniques 

En savoir plus sur la ventilation intensive d’été ?

L’intégration  de l’air frais dans le système de conditionnement d’air (free cooling mécanique)

La climatisation est parfois nécessaire (charges thermiques élevées, consignes intérieures strictes de température et d’humidité, …).

On sera alors attentif au fait que le système installé n’exclue pas le refroidissement naturel : dès que la température extérieure descend, elle doit pouvoir supplanter la climatisation mécanique. Idéalement, celle-ci ne devrait plus servir que dans les périodes de canicule.

Tout particulièrement, dans les locaux refroidis toute l’année (locaux intérieurs, locaux enterrés, …) et dans les locaux à forte occupation de personnes (salles de conférence, locaux de réunion, …), il est dommage de faire fonctionner la climatisation en hiver et en mi-saison. On privilégiera les systèmes « tout air » à débit variable.

Durant les nuits d’été, le bâtiment peut facilement être refroidi par le balayage de l’air extérieur (l’installation fonctionne alors en « tout air neuf »). Et en mi-saison, l’air extérieur assure seul le refroidissement par mélange avec l’air recyclé.

Bien sûr, la consommation du ventilateur ne doit pas dépasser celle de la machine frigorifique ! La perte de charge du réseau de ventilation (pulsion, extraction et recyclage) doit rester faible. Il faut prévoir la place pour de larges conduits.

Concevoir

En savoir plus sur le choix du mode de gestion du débit d’air neuf ?

L’utilisation de l’air frais comme source froide d’une installation de refroidissement (free chilling)

Aussi curieux que cela puisse paraître, de nombreuses machines frigorifiques fonctionnent en hiver. Pour assurer le refroidissement de la salle informatique, pour refroidir le cœur du bâtiment surchauffé par les équipements, …

La première réaction est d’imaginer de scinder la production de froid : une petite machine couvre les besoins permanents de la salle informatique, par exemple. Et la grosse machine est mise à l’arrêt en hiver, tout en pouvant jouer le rôle de groupe de sécurité en cas de défaillance de la première.

La deuxième réaction est d’analyser si le circuit d’eau glacée ne pourrait pas être refroidi directement par l’air extérieur, en by-passant la machine frigorifique. Si le fonctionnement est continu tout l’hiver, cela en vaut sûrement la peine (c’est le cas pour un groupe qui refroidirait des locaux de consultations situés en sous-sol d’un hôpital, par exemple).

Lorsque la température extérieure descend sous les 8 à 10°C, on peut fabriquer de l’eau glacée sans utiliser le groupe frigorifique. L’eau peut-être directement refroidie par l’air extérieur. La machine frigorifique est alors  mise à l’arrêt.

L’économie d’énergie est évidente ! La rentabilité du projet est d’autant plus élevée que les besoins de refroidissement sont importants en hiver et que l’installation s’y prête.

Toutes sortes de configurations sont possibles en intercalant dans la boucle d’eau glacée soit un aérorefroidisseur (en parallèle ou en série avec le groupe frigorifique) soit une tour de refroidissement (ouverte ou fermée) ou encore un échangeur à plaque couplé avec une tour de refroidissement.

Aérorefroidisseur monté en série avec un évaporateur

Concevoir

En savoir plus sur la mise  en place d’un free-chilling ?

Valoriser la fraicheur du sol

Le sol présente un potentiel important pour rafraichir les bâtiments. Sa température est, en été, moins élevée et surtout plus stable que celle de l’air extérieur. Une masse de sable, d’argile ou de roche présente en outre une capacité calorifique importante.

La température moyenne mensuelle est amortie et déphasée par rapport aux températures extérieures. Le sol présente donc un potentiel de rafraichissement particulièrement intéressant au printemps et en été, lorsque la température extérieure est plus élevée.

Les propriétés thermiques du sol dépendent des propriétés de ses constituants et de leurs proportions. Quelques ordres de grandeur :

nature des constituants Conductivité thermique (W/m°c) Capacité calorifique volumique Cp(Wh/m3°c) Diffusivité thermique (m2/h
constituants minéraux 2,92 534 0,0054
constituants organiques 0,25 697 0,00036
eau 0,59 1 163 0,00050
air 0,025 0,34 0,0756

Frédéric Chabert « Habitat enterré » (1980).

La conductivité thermique des sols varie de 1 à 5 selon qu’il est sec ou saturé. La capacité thermique moyenne des sols varie elle de 1 à 3.
L’exploitation de la fraicheur du sol se fait en y organisant un échange de chaleur par le passage contrôlé d’air ou d’eau. Lorsqu’il s’agit d’un échangeur air-sol, on parle de puits canadiens ou provençaux. Lorsqu’il s’agit d’un échangeur eau-sol, on parle de geocooling, une appellation qui, strictement, devrait également recouvrir les puits canadiens.

Parmi les diverses solutions d’échangeur eau-sol, notons l’exploitation du sol sous la dalle de fondation (attention à la puissance qui peut rester alors faible…),

ou dans les pieux de fondation :

Des échangeurs de type forage vertical, indépendants de la structure du bâtiment, sont également possibles.

Une autre possibilité est d’utiliser l’eau des nappes phréatiques souterraine au moyen, en la pompant pour la conduire vers un échangeur de chaleur eau-eau, mais cette technique peut générer des problèmes de nature hydraulique dans le sol (déséquilibres des nappes phréatiques, pollutions).

Un des grands intérêts des techniques de geocooling est que le niveau de température concerné (de 5 à 15°C) est intéressant tant :

  • Pour le refroidissement direct : un échange de chaleur, par l’intermédiaire de boucles d’eau, entre le bâtiment est le sol), en vue d’alimenter un système de refroidissement par dalle ou par plafond froid.
  • Pour le refroidissement indirect : valoriser le sol comme source froide de la machine frigorifique, quel que soit le système de distribution et d’émission dans le bâtiment.
  • Que pour le chauffage par pompes à chaleur. En pratique, on n’envisagera pas de valorisation thermique du sol uniquement pour le refroidissement estival. L’investissement en pompages ou forage ne se fera que si le sol peut être valorisé au maximum de son potentiel, c’est-à-dire tant en refroidissement l’été qu’en chauffage l’hiver. Le géocooling est donc intimement lié à la géothermie.

Pour en savoir plus :

Concevoir

Choisir une production de froid « alternative » : geocooling

Concevoir

Choisir un système rayonnant sur boucle d’eau froide : plafond froid et dalle active.

Concevoir

Le choix de la source de chaleur du chauffage par pompe à chaleur.

Techniques

Le géocooling.

Valoriser la physique de l’air humide

Le contenu énergétique de l’air est lié à la fois à sa température et à son humidité. En effet, la présence de vapeur d’eau dans l’air représente une forme d’énergie latente, égale à la quantité d’énergie nécessaire pour vaporiser ou condenser cette eau. La somme de l’énergie sensible (liée à la température) et de l’énergie latente (liée à l’humidité) est appelée enthalpie. Cette quantité d’énergie est importante, puisque la chaleur de vaporisation d’un litre d’eau est de 2 257 kJ/kg (à la pression atmosphérique et à 100 °C). Soit 5,4 fois plus que pour chauffer le litre d’eau de 0 à 100 °C ! Elle est cependant limitée par la quantité maximale de vapeur que l’air peut contenir, qui dépend de sa température.

Le diagramme psychrométrique est l’outil indispensable pour visualiser et mesurer ces quantités d’énergie. L’enthalpie est représentée sur l’axe diagonal à gauche du diagramme. On constate que le niveau d’enthalpie est équivalent pour un air à 30 °C et 30 % d’humidité relative et pour un air à 17 °C et 100 % d’humidité relative. Autrement dit, si l’on arrive à créer des transferts entre l’énergie sensible et l’énergie latente d’une masse d’air, on devrait être en mesure de créer de l’air froid (et humide) au départ d’air chaud (et sec). Et cela sans grande consommation d’énergie, puisque l’enthalpie de l’air serait conservée.

Comment réaliser ce petit miracle ? Simplement en humidifiant l’air.
En pratique, deux types d’applications ont été développées pour valoriser ce principe physique.
Le premier dispositif se trouve dans l’architecture vernaculaire de nombreuses cultures, mais fut particulièrement développé par les Perses. Ils combinaient des tours à vent (« bagdir ») avec locaux servant de glacières (« yakh-chal ») souvent reliées à un canal souterrain (« qanat »). Par cet ensemble de dispositifs, ils étaient capables de conserver des aliments et rafraîchir des bâtiments dans un climat particulièrement chaud. Marco-Polo, lors de son premier voyage en orient, se serait vu offrir des glaces en plein été !

Plus récemment, l’idée de refroidir de l’air par humidification a été appliquée dans des groupes de traitement d’air. On parle alors de refroidissement adiabatique. Une différence majeure avec la solution imaginée par les Persans : ici c’est l’air extrait du bâtiment que l’on refroidit par humidification. Un échangeur de chaleur air-air permet ensuite de rafraîchir l’air neuf au contact de l’air extrait. Nos ambiances sont déjà suffisamment humides en été que pour éviter d’y pulser un air saturé !
Pour en savoir plus :

Théories

Les grandeurs hygrométriques.

Concevoir

Choisir une production de froid « alternative » : refroidissement adiabatique et climatisation solaire.


Valoriser le soleil

Paradoxalement, la chaleur du soleil peut être utilisée pour rafraichir un bâtiment… pour autant que l’on dispose de l’équipement adéquat.

Généralement, produire du froid implique l’usage d’une machine frigorifique. Celle-ci se compose de deux échangeurs de chaleur (condenseur et évaporateur), d’un détendeur et d’un compresseur électrique. Pas de place pour l’énergie solaire là-dedans, si ce n’est au travers de capteurs photovoltaïques.

Mais il existe un autre type de machine frigorifique, dit « à ab/adsorption« . Là, l’échange thermique est basé à la fois sur la vaporisation d’un réfrigérant (de l’eau) et sur la capacité de certaines substances à absorber la vapeur d’eau pour la restituer à un niveau de pression différent lorsqu’ils sont échauffés. Le cycle de cette matière absorbant joue le rôle du compresseur dans une machine frigorifique traditionnelle, tout en demandant une alimentation en chaleur plutôt qu’en électricité. Or, qui dit soleil dit chaleur ! La combinaison de capteurs solaires thermiques et d’une machine frigorifique à ab/adsorption constitue ce que l’on appelle une « climatisation solaire », une idée séduisante si les besoins de froid du bâtiment sont liés aux gains solaires.

Pour en savoir plus :

Concevoir

Choisir une production de froid « alternative » : refroidissement adiabatique et climatisation solaire.

Choisir les ballasts et les « drivers »

Choisir les ballasts et les "drivers"


Les ballasts pour lampes fluorescentes

Techniques

En conception, choix s’effectue entre 3 types de ballasts :

  • électronique avec préchauffage,
  • électronique sans préchauffage,
  • électronique gradable ou dimmable.

BE pour tube T8, BE pour tube T5, BED pour tube T5.

  • BE : ballast électronique
  • BED : ballast électronique « dimmable »

En fonction de la durée d’utilisation

En conception, il est illusoire de vouloir faire une comparaison de performance entre un ballast électromagnétique et un ballast électronique. En effet, le ballast électronique a une consommation propre plus faible que le ballast électromagnétique et augmente la durée de vie des lampes. Le ballast électromagnétique à très faible perte reste sur le marché uniquement pour des circonstances où le ballast électronique n’est pas à recommander (p.ex. certains environnements industriels).

Il faut cependant savoir qu’un ballast électronique implique un risque de défectuosité plus grand qu’un ballast électromagnétique. Ceci est normal étant donné le nombre de composants de ces ballasts. Il faut donc choisir des ballasts de qualité, éprouvés sur le marché.

Des ballasts électroniques à préchauffage doivent être placés dès que l’installation est susceptible d’être allumée et éteinte plus de 2 fois par jour.

Ce n’est que dans le cas d’une utilisation absolument continue des lampes que le ballast électronique sans préchauffage peut être utilisé. En outre, toutes les marques de lampe ne peuvent fonctionner correctement avec tous les ballasts électroniques. Chaque ballast est conçu pour une résistance donnée des électrodes du tube fluorescent. On peut ainsi avoir un taux de défectuosité important des lampes uniquement parce que la marque des tubes fluorescents utilisés n’est pas compatible avec la marque du ballast choisi. Au moment de l’installation, il est difficile de vérifier si ce problème est présent. On peut cependant se renseigner auprès du fabricant (de luminaires ou de ballasts) pour savoir si le ballast proposé a été développé pour les lampes choisies.

En fonction de l’apport de lumière naturelle

Lorsque les locaux bénéficient d’un pourcentage standard d’ouverture dans la façade de 40 .. 60 %, le fait de placer des ballasts électroniques dimmables permet de tabler sur des économies d’énergie de l’ordre de 30 .. 50 % pour la rangée de luminaires proche des fenêtres et 15 .. 30 % pour la rangée contiguë en cas de gestion appropriée.

La rentabilité du système de gestion dépendra bien entendu, du tarif électrique appliqué au bâtiment.

Calculs

Pour estimer le gain réalisé en plaçant des ballasts électroniques dimmables : cliquez ici !

Par rapport à la classe énergétique définie dans la directive 2000/55/CE

Pour les ballasts électroniques, on impose que la catégorie énergétique soit au minimum A3.

Pour assurer plusieurs niveaux d’éclairements et/ou éviter le suréclairement

Dans certaines situations, il est intéressant de placer des ballasts électroniques dimmables. Ceux-ci, raccordés à un simple dimmer permettent, après installation, d’ajuster le niveau d’éclairement en fonction des réactions des utilisateurs ou des besoins réels. Par exemple, dans les salles de sports utilisées pour la compétition, on doit assurer plusieurs niveaux d’éclairement.

Si les luminaires ne sont pas prévus pour allumer un nombre différent de lampes par luminaire, les différents niveaux peuvent être atteints par « dimming« . Dans ce cas, on devra opter pour des ballasts électroniques dimmables.

Ceux-ci permettent d’ajuster le niveau d’éclairement en fonction des besoins. En outre, on limite ainsi le surdimensionnement inévitable des nouvelles installations.

Pour assurer une plus grande sécurité

Beaucoup de machines, dans les ateliers, ont des mouvements périodiques. L’utilisation de lampes fluorescentes ou à décharge (au sodium haute pression, aux iodures métalliques,…) risquent, si elles sont alimentées à la même fréquence que les machines, de provoquer des illusions d’optiques très dangereuses pour l’utilisateur. Ce phénomène s’appelle l’effet stroboscopique : si une machine tourne à la même fréquence que le clignotement des lampes (par exemple 50 Hz), on aura l’impression qu’elle est immobile, ce qui peut provoquer des accidents très graves.

Machine tournante éclairée par une lampe avec ballast haute fréquence (à gauche) et éclairée par une lampe avec ballast 50 Hz (à droite).

Pour éviter cela, on choisira de nouveau les ballasts électroniques qui, contrairement aux ballasts électromagnétiques traditionnels, fonctionnent eux à haute fréquence (plus de 25 kHz).

En cas d’hésitation

Certains constructeurs proposent des luminaires intelligents possédant un grand nombre de fonctions qui sont initialement bloquées (gradation, régulation en fonction de la lumière du jour, …). Celles-ci peuvent être activées par après grâce à l’utilisation de l’interface standard DALI.

Ce genre de système présente deux gros avantages :

  • Le coût de base du luminaire correspond aux fonctions disponibles initialement. Chaque ajout de fonctions devra être payé par après.
  • Lorsque l’on veut ajouter des fonctions au système d’éclairage, il n’est plus nécessaire de réaliser des travaux importants et coûteux de remplacement des luminaires et de câblage. La fonction est simplement débloquée grâce à une extension logicielle.

Particularité des hôpitaux

La lampe fluorescente et son ballast produisent des ondes électromagnétiques. Celles-ci sont accentuées avec l’utilisation de ballasts électroniques. Elles peuvent perturber le fonctionnement des appareils électroniques de précision (électro-encéphalogramme, électro-cardiogramme, …). C’est pourquoi leur utilisation peut parfois poser des problèmes dans les salles d’opération, les soins intensifs, … Ce problème est encore plus critique pour les lampes fluocompactes à ballast incorporé car celui-ci n’est pas déparasité.

Pour limiter les risques, on peut :

  • exiger la garantie du fabricant du luminaire quant à l’utilisation de son matériel dans ces circonstances particulières, et exiger la conformité aux normes concernant les ballasts électroniques :
    • EN 60928        sécurité
    • EN 60929        fonctionnement
    • EN 61547        compatibilité électromagnétique
    • EN 61000-3-2  harmoniques
  • éloigner le plus possible les appareils de mesure des luminaires, les perturbations diminuant avec la distance,
  • sortir tous les ballasts de la zone de travail,
  • utiliser, à défaut, des lampes halogène.


En tout cas, les luminaires devront, au minimum, porter un label garantissant la limitation des émissions parasites.

Concevoir

Choix des auxiliaires.

Les ballasts pour lampes à décharge

  • Ballast électronique, pour lampe à vapeur de sodium HP.
  • Ballast électronique pour lampe aux iodures métalliques.

En fonction de la durée de vie de la lampe

Pour les lampes à décharge au sodium haute pression ou aux iodures métalliques, les ballasts électroniques s’imposent, car ils peuvent accroître la durée de vie des lampes à décharge jusqu’à 30 %.

En fonction de la sécurité

Ici aussi, les ballasts électroniques sont recommandés pour la simple raison qu’ils éliminent les problèmes de clignotement et, par conséquent, d’effet stroboscopique.

En fonction de l’apport de lumière naturelle

À l’heure actuelle, certains constructeurs proposent des ballasts électroniques dimmables pour les lampes à décharge à vapeur de sodium HP et à iodure ou halogénure métallique (surcoût de 20 % par rapport aux ballasts électroniques). Certains constructeurs proposent même des ballasts électroniques dimmables et programmables de type DALI. Avec ce type de ballast, les flux sont réglables jusqu’à 50 % de la valeur nominale. Mais le dimming des lampes à iodure ou halogénure risque encore de poser des problèmes (changement de couleur).


Les ballasts DALI

À l’heure actuelle, les ballasts électroniques de type DALI ont le même ordre de grandeur de prix que les ballasts électroniques dimmables analogiques. Dans les bâtiments de taille moyenne ou importante et avec des apports de lumière naturelle corrects, on a tout intérêt à orienter le choix d’un ballast vers un type DALI. Il offre beaucoup plus de possibilités :

  • de gestion centralisée par groupe adressable de façon à générer facilement des zonages. Les zonages seront très flexibles et permettront au bâtiment d’évoluer sans grand investissement comme le recâblage ;
  • de contrôle des lampes à distance ;
  • d’interfaçage facile avec des bus de type IEB (KNX) ;

Les drivers des LEDs

 En général, chaque LED à sa propre alimentation ; c’est un gage de qualité ! Les LEDs étant souvent commandées en très basse tension et en faible courant, il faut se méfier des chutes de tension en ligne entre le driver et la lampe. Pour cette raison, il est nécessaire de limiter les longueurs de câble. Pour tout système d’éclairage à LED, le choix de l’alimentation prendra en compte de la concordance entre celle-ci et la source d’éclairage :

  • des tensions et courants de commande ;
  • de la puissance ;
  • de la classe d’isolation électrique (classe I à III ou de la simple isolation à la double en très basse tension).

Driver dimmable de lampe LED et driver  à courant constant de lampe LED.

Choisir les cables du réseau de distribution

Choisir les cables du réseau de distribution

Influence de la section des câbles

Pour les circuits d’éclairage fortement chargés, où le courant absorbé est de l’ordre de 10 A, il est intéressant de dimensionner les câbles de distribution en 2.5 mm2 plutôt qu’en 1.5 mm2. En effet, la réduction des pertes par effet joule (et donc de la consommation) compense le surcoût dû à l’augmentation de section.

Exemple

Soit l’installation suivante :

  • Des luminaires de 58 W chacun.
  • Le premier luminaire est séparé d’un mètre de l’alimentation 230 V.
  • Les luminaires suivants sont séparés entre eux de 1 mètre.
  • Chaque luminaire est parcouru par un courant de l’ordre de 0.3 A et donc la première section du circuit d’éclairage est parcourue par un courant de l’ordre de 10 A, le second 9.7 A, etc …

 

On bénéficie aussi des données suivantes :

  • le prix du kWh est de 0.17 €,
  • le surcoût du câble en 2.5² par rapport au 1.5² est de l’ordre de 3,67 €/m.

On prend les hypothèses suivantes :

  • la perte des ballasts est négligeable par rapport à la puissance consommée par les lampes ;
  • l’installation fonctionne 2 500 heures par an.

On obtient les résultats suivants :

Interprétation

Le choix d’une section de 2.5 mm² au lieu de 1,5 mm² est assez peu rentable quel que soit le nombre de luminaires (entre 10 et 30 ans). Le temps de retour simple est, exprimé comme le rapport entre le surcoût d’une section 2.5 mm² par rapport à une section de 1,5 mm² et le coût de la réduction de consommation par effet joule (moins de perte dans une section de 2,5 mm² que dans 1,5 mm²).

Conclusion

Sur la durée de vie de l’installation d’éclairage (> 30 ans), on a intérêt à légèrement surdimensionner les sections de câbles. C’est le prix du cuivre qui réduit fortement la rentabilité.

Projet de nouvelle installation de froid alimentaire ?

Projet de nouvelle installation de froid alimentaire ?


La conservation par le froid : objectifs

La réfrigération voire la congélation permet de ralentir les réactions chimiques et enzymatiques, afin de diminuer la multiplication des germes d’altération et surtout de bloquer le développement des bactéries pathogènes.

Les équipements frigorifiques doivent assurer l’hygiène dès l’arrivée des denrées dans les magasins de distribution et durant tout leur cycle de vie depuis les zones de stockage jusqu’à leur distribution.

Températures à garantir

Chambre froide fruits et légumes

4 à 6 °C

Chambre froide viande

2 à 4 °C

Chambre froide poisson

2 à 4 °C

Chambre froide pâtisserie

2 à 4 °C

Chambre froide de jour

2 à 4 °C

Congélateur

– 12 à – 24 °C

Local de stockage des déchets

10 °C

Cave à vin conditionnée

10 à 12 °C/HR 75 %

Local de tranchage

10 °C

Concevoir

Pour en savoir plus sur le choix de l’implantation.

Choix de l’implantation de la zone froide

Photo zone froide - 01.   Photo zone froide - 02.

Photo zone froide - 03.

Une part de l’énergie frigorifique va servir à refroidir (et donc, assécher) l’air des zones tempérées de vente jusqu’à la température de consigne des meubles frigorifiques, de la chambre froide, des ateliers de boucherie, …

Cette part d’énergie peut être élevée sur l’ensemble du bilan frigorifique si l’air ambiant du magasin est chaud et humide.

Ainsi, dans un projet de conception ou de rénovation conséquent, il sera important de respecter une certaine hiérarchisation des priorités :

  • l’implantation des zones « froide » par rapport au contexte externe (l’orientation du bâtiment, présence d’autres bâtiments ou pas , milieu rural ou urbain, ..);
  • l’implantation des zones « froide » par rapport au contexte interne (présence d’apports internes tels que fours, rôtissoires, … à proximité directe des chambres froides, des ateliers de boucherie, des meubles frigorifiques, …);
  • le confinement des zones « froide » par rapport aux zones adjacentes (chambre fermée, chambre semi-fermée, meuble frigorifique ouvert, …).

Schéma implantation zone froide.

Concevoir

Pour en savoir plus sur le choix de l’implantation de la zone de froid.

Choix des meubles frigorifiques

Schéma meuble frigorifique - modèle 01.   Schéma meuble frigorifique - modèle 02.

Schéma meuble frigorifique - modèle 03.   Schéma meuble frigorifique - modèle 04.

À l’heure actuelle, on ne peut plus négliger les aspects environnementaux, énergétiques et financiers tout en sachant que la vente prédominera toujours. Néanmoins les coûts énergétiques devenant importants, on ne peut plus ignorer que les différents aspects du choix des meubles sont désormais intimement liés au chiffre d’affaires réalisé par les commerçants.

Il est donc impératif de prendre en compte le critère de consommation énergétique des meubles et, au sens large du terme, les consommations énergétiques des installations de froid alimentaire.

Critères de choix

Les critères de choix à prendre en compte sont essentiellement liés :

  • à la vente;
  • aux coûts;
  • à l’énergie.

Les critères de choix liés à la vente

Bien évidemment, la toute première fonction d’un meuble frigorifique est de mettre en valeur des denrées afin qu’elles soient vendues. Les principaux critères de choix des meubles frigorifiques par rapport à la motivation de vente sont liés aux types :

  • de denrées vendues (nature des denrées, compatibilités des matériaux du meuble, …);
  • de vente (alimentation générale, spécialisée, …);
  • de magasin (forme, implantation, design, …);
  • de système frigorifique (groupe incorporé ou pas, …);
  • de service (accessibilité avant, arrière, …).

Les critères de choix liés aux coûts

Les principaux coûts dont on devra tenir compte dans un projet seront :
  • l’investissement qui comprend l’achat des meubles frigorifiques proprement dits, les systèmes frigorifiques, l’installation, la réception, … On en déduit un coût global d’investissement annuel comprenant l’investissement lui-même et l’intérêt annuel du capital immobilisé;
  • l’exploitation qui inclut le coût de l’énergie, les entretiens, le loyer annuel par rapport à la surface occupée par les meubles, les montants de police d’assurance couvrant les équipements et la perte des denrées. Sur le même principe que l’investissement, on en déduit un coût d’exploitation annuel.

Les critères de choix liés à l’énergie

Lors de projets de conception, l’aspect énergétique était auparavant négligé au profit naturellement de la vente. Vu l’augmentation constante des prix de l’énergie électrique et par une prise de conscience timide des problèmes d’environnement que cause la production de froid, la conciliation de :
  • la qualité du froid alimentaire;
  • la vente;
  • le confort des clients et du personnel;
  • l’énergie.

est indispensable !

Peu importe les moyens et techniques mis en œuvre, il suffit de prévoir le confinement ou l’enfermement du froid dans une boîte isolée pour améliorer directement l’efficacité énergétique du froid alimentaire. Certains magasins (ils se reconnaîtront) appliquent ce principe depuis déjà longtemps, d’autres se lancent timidement. Il peut s’envisager de manière :

  • globale pour l’ensemble des denrées dans un espace isolé, avec des ouvertures contrôlées tout en permettant un accès aisé;
  • décentralisée comme les meubles frigorifiques où le confinement est réalisé par des portes vitrées par exemple.

Choix des meubles

Selon les différents critères énoncés, un choix de meubles frigorifiques se dégage. Les fabricants classent en général les meubles selon :

  • la température de conservation positive ou négative (quelle valeur) ?
  • le type ouvert, mixte ou fermé, vertical ou horizontal ?
  • l’aménagement interne avec combien d’étagères, avec ou sans éclairage des tablettes, …?
  • équipé d’un convection forcée ou pas ?
  • équipé de porte vitrée, de rideau de nuit, de combien de cordons chauffants ?

Appréhender les dépenses énergétiques

Le choix énergétique du meuble se fera, toute chose restant égale, au niveau du meuble le moins gourmand en consommation journalière d’énergie (kWh par m² de surface d’exposition et par jour) définit par EUROVENT qui effectue des essais aboutissant à une certification du meuble frigorifique dans des conditions d’ambiance tout à fait particulières (la classe 3, par exemple, implique une température ambiante de 25 °C et 60 % d’humidité relative).

Cette certification est naturellement nécessaire pour permettre aux bureaux d’études en techniques spéciales ou au maître d’ouvrage de pouvoir comparer les meubles de même classe ou de même famille ensemble. Les résultats des mesures des consommations énergétiques sont des moyennes mais ne représentent pas les consommations réelles en fonction des conditions ambiantes de température et d’humidité variables à l’intérieur du commerce.

Les principales consommations énergétiques des meubles ouverts sont dues à l’induction de l’air au niveau de l’ouverture.

Puissance frigorifique nécessaire

Une fois le choix des meubles effectué, on peut déterminer assez aisément par les catalogues la puissance frigorifique nécessaire pour son application. Cette puissance conditionnera la valeur de la puissance de l’évaporateur et naturellement celle du compresseur associé.

Il faut toutefois signaler que la puissance frigorifique est donnée en fonction de la classe d’essai EUROVENT (la plus courante c’est la classe 3 : température ambiante de 25 °C et 60 % d’humidité relative). Attention que si les conditions d’ambiance réelle sont différentes de la classe de dimensionnement, on risque de se trouver face à des problèmes d’adaptation de puissance de l’évaporateur par rapport aux apports internes et externes.

Pour être certain de ne pas se « planter », on peut aussi comparer le meuble choisi par rapport à des valeurs de puissance frigorifique par mètre linéaire [W/ml] couramment rencontrées :

  • pour les applications de froid positif, les puissances spécifiques oscillent en général entre 0,2 kW/ml (vitrine service par le personnel en convection naturelle) et 1,3 kW/ml (meuble vertical self service à convection forcée;
  • pour les applications de froid négatif, les puissances spécifiques, quant à elle, varient entre 0,4 et 2,1 kW/ml (respectivement pour les gondoles horizontales self-service en convection forcée et les meubles verticaux à convection forcée).

Le choix des portes fermées

On veillera à choisir des vitrages et des châssis de bonne qualité. on fera attention aux valeurs de consommation énergétique des couches conductrices de désembuage des faces internes des vitres. On demandera éventuellement si les cordons chauffants de porte peuvent être alimentés de manière non continue lorsque les portes son fermées.

Le choix du rideau d’air des meubles ouverts

Le choix du type de rideau d’air est principalement fonction de :

  • la position de l’ouverture du meuble (horizontale, verticale, inclinée, …);
  • la longueur de l’ouverture;
  • l’écart de température.

Un taux d’induction (rapport de la quantité d’air ambiant mélangé par la quantité d’air du rideau d’air et ce, par unité de temps) de l’ordre de 0,1 à 0,2 est courant et garantit la stabilité du rideau d’air. Attention que certains constructeurs proposent des doubles rideaux d’air afin de renforcer cette stabilité, mais ce n’est pas sans risques au niveau des consommations électriques des ventilateurs et de l’augmentation de puissance des évaporateurs (dans certains cas, jusqu’à 15 % de surpuissance).

Le choix du système de dégivrage

Des systèmes intelligents, comme la détection de la fin du palier de fusion de la glace ou du givre, permettent d’optimiser les temps de dégivrage.

Le choix de l’éclairage

Pour éviter de consommer inutilement de l’énergie (de l’ordre de 10 % de l’énergie de jour fournie par l’évaporateur), l’éclairage du meuble doit être prévu en dehors de la zone froide. D’une part, les lampes fluorescentes ont une mauvaise efficacité lumineuse à basse température, d’autre part, les luminaires sont des sources de chaleur et, par conséquent, augmentent les apports internes que l’évaporateur devra évacuer.

Concevoir

Pour en savoir plus sur le choix des meubles frigorifiques.

Choix des chambres froides

Type d’enceinte de conservation

Suivant la capacité de conservation nécessaire pour chaque famille de matières premières (produits laitiers, viandes, …), pour les plats cuisinés à l’avance ou encore pour les produits surgelés, les enceintes seront de type armoire froide, chambre froide compacte, chambre froide modulable, …

On veillera, lors d’un projet de construction de magasin à plutôt s’orienter vers des enceintes modulables afin de permettre de suivre l’évolution de l’activité sans « devoir tout casser ».

Volume et puissance

Le volume nécessaire dépend des ventes, du choix de la gamme des produits, du rythme d’approvisionnement, de leur conditionnement, … Sur cette base, on établira le bilan frigorifique afin de déterminer la puissance de l’évaporateur. Ce calcul est très compliqué et itératif, car il est nécessaire de s’adapter à des conditions particulières telles que les nombres de dégivrages, la tenue de l’isolant dans le temps, …

À noter que le surdimensionnement de l’évaporateur et la régulation étagée du groupe frigo sont intéressants à considérer dans une démarche URE.

Précautions à prendre au niveau de l’utilisation de l’enceinte

Réduire la fréquence et les temps d’ouverture des portes des enceintes permet de réduire les consommations énergétiques au niveau de l’évaporateur et de son dégivrage.

Caractéristiques techniques générales

Le choix d’un réfrigérant s’effectuera en fonction du type de chambre :

  • Pour les chambres positives (0 à 4 °C), le R134a est souvent employé.
  • Pour les chambres négatives (- 10 °C-> ~ – 25 °C), on utilise le R507 ou le R404a (ces fluides sont des HFC (hydrofluorocarbone)).

Aussi, les chambres seront pourvues d’un système d’enregistrement de température au point le plus chaud.

Concevoir

Pour en savoir plus sur le choix des chambres froides.

Choix de l’enveloppe de la chambre froide

Choix constructif

On évite la création de ponts thermiques par le choix des pièces de raccordement d’origine du fabricant ou par l’adaptation intelligente des panneaux isolants au droit des raccordements.

Choix du coefficient de transmission thermique des parois

Si dans le bilan thermique l’isolation des parois prend une importance relative élevée, il faut isoler (cas des chambres de conservation de longue durée). Des ordres de grandeur à atteindre pour les coefficients de transmission thermique sonts :

  • 0,350 à 0,263 W/m²K en stockage réfrigéré,
  • 0,263 à 0,162 W/m²K en stockage surgelé.

Pour des raisons hygiéniques, on évitera la formation de condensation; c’est pour cela qu’il est nécessaire de prévoir une isolation suffisante et placée correctement. Enfin, l’optimum des gains annuels suite à une meilleure isolation interviendra en tenant compte à la fois des coûts liés à la consommation (diminution), à l’investissement dans l’isolation (augmentation) et et la machine frigorifique (diminution).

Faut-il isoler la dalle de sol ?

Plusieurs configurations de chambres froides sont possibles.
Dans le cas :

  • D’une chambre négative avec pièce habitée en dessous, il y a risque de condensation sur le plafond inférieur; il faut donc isoler.
  • D’une chambre négative sur terre-plein, pour peu qu’il y ait de l’eau sous la chambre, il y a risque de gel; il faut aussi isoler.
  • D’une chambre froide positive, on isole le plancher pour autant que la chambre soit utilisée régulièrement.

Attention que l’isolation du plancher impose souvent une marche. Différentes parades tels que le plan incliné, le décaissé dans la dalle, …, permettent d’y remédier.

L’étanchéité des parois

Elle va permettre de limiter la pénétration de l’air (apports thermiques) et la diffusion de la vapeur d’eau risquant de « mouiller » l’isolation (perte de qualité de l’isolation) ou de geler en formant de la glace sur les parois intérieures (risque de déformation des panneaux). Pour réaliser cette étanchéité, la chambre sera équipée d’un pare-vapeur (en général la tôle externe) continu et les portes de joints étanches. Mais la bonne étanchéité de la chambre risque de créer une dépression interne et, par conséquent, une déformation des parois. On y remédie par la pose de soupapes de décompression.

La porte et ses accessoires

La porte de par ses ouvertures apporte des quantités importantes de chaleur et constitue donc un poste important dans le bilan thermique d’une chambre. De plus, de la condensation ou du givre se forme sur les parois. Plusieurs « trucs » permettent de limiter ces effets négatifs :

  • fermeture de porte automatique,
  • lamelles plastiques d’obturation des portes,
  • vitre isolée permettant de repérer ce que l’on cherche de l’extérieur.

La capacité thermique de la chambre

L’inquiétude des exploitants est de tomber en panne de groupe de froid alimentant les chambres froides. C’est la capacité thermique de la chambre, associée avec son isolation qui détermine combien de temps elle tiendra sa température dans une fourchette acceptable de conservation des denrées. Une bonne inertie de dalle de sol placée sur l’isolation permet de répondre en partie à ce problème.

Concevoir

Pour en savoir plus sur le choix de l’enveloppe des chambres froides.

Choix de la cellule de refroidissement rapide

Quand doit-on choisir une cellule de refroidissement rapide ?

Dans tout atelier traiteur où l’on a opté pour une liaison froide, il est recommandé d’abaisser la température au cœur des aliments de + 65 °C à + 10 °C en moins de 2 heures par l’intermédiaire d’une cellule de refroidissement rapide.

Choix du procédé de production de froid

Il est de deux types :

  • froid mécanique;
  •  ou cryogénique (azote liquide).

Le premier est cher à l’investissement par rapport au second. À l’inverse, en exploitation le système cryogénique est onéreux. Dans la pratique, on optera pour un froid mécanique pour la production courante et un froid cryogénique d’appoint en cas de panne de la cellule de refroidissement mécanique.

Précaution d’utilisation

Pour une bonne efficacité de la cellule de refroidissement rapide, l’espacement des denrées à refroidir est primordial.

Capacité et puissance frigorifique des cellules

Le dimensionnement des cellules de refroidissement rapide nécessite de connaître la capacité de cuisson (on ne peut pas refroidir plus ou moins de repas que ceux cuisinés), le temps de refroidissement recommandé et les températures à atteindre. Il faudra encore différentier dans le dimensionnement les cellules positives des négatives; pour ces dernières, il est nécessaire de tenir compte des chaleurs sensibles positives, négatives et de la chaleur latente de congélation.

Concevoir

Pour en savoir plus sur le choix de la cellule de refroidissement rapide.

Choix du compresseur

Photo compresseur - modèle 01.Photo compresseur - modèle 02.Photo compresseur - modèle 03.

Compresseur à vis (source Bitzer), compresseur scroll (source Copeland) et compresseur semi-hermétique à piston (source Bitzer).

Les critères de choix thermiques

On doit garder à l’esprit qu’une température d’évaporation élevée et une température de condensation basse épargnent le compresseur. La température d’évaporation est souvent dictée par l’application (réfrigération, congélation) qui doit respecter les températures de conservation des denrées. La température de condensation, quant à elle, dépend de l’ambiance dans laquelle est placé le condenseur (climat externe, local technique, …). Dans les deux cas, les températures influencent le choix du compresseur.

Les critères de choix énergétiques

Les critères de choix énergétiques à émerger vraiment sont :

  • le coefficient de performance énergétique EER (Energy Efficiency Ratio) ou couramment appelé COPfroid. Sa valeur doit être naturellement la plus élevée possible.
  • le taux de compression HP/BP entre le refoulement et l’aspiration. Le taux de compression ne doit pas dépasser 8, sans quoi le rendement volumétrique du compresseur devient mauvais; c’est la raison pour laquelle en froid négatif on utilise des compresseurs à deux étages;
  • le rendement volumétrique est variable suivant le type de compresseur. Le rendement volumétrique des compresseurs à pistons est variable ne fonction du rapport HP/BP. Par contre celui du compresseur à vis, reste relativement stable en fonction du taux de compression.

Choix du compresseur

Il existe différentes sortes de compresseurs : volumétriques (à pistons, à vis ou à spirales) et centrifuges. On les différencie aussi suivant l’association moteur-compresseur (ouvert, semi-hermétique et hermétique).

La tendance actuelle est au choix des machines tournantes qui donnent plus de fiabilité, un rendement volumétrique plus important, une durée de vie plus longue, … Cependant, les machines tournantes (vis, scroll, …) présentent les désavantages de coûter plus cher et d’être de puissance frigorifique plus importante que les machines alternatives (piston). C’est pour cette raison que le choix de machine tournante dans les commerces de détail n’est pas souvent retenu.

Au sein d’une famille de compresseurs , on sera attentif au taux de compression qui doit être adapté en fonction de la pression de condensation et par conséquent en fonction du régime de fonctionnement du condenseur.

Dimensionnement du compresseur

Le dimensionnement courant du compresseur pour une installation de froid alimentaire est naturellement conditionné par :
  • le type de fluide réfrigérant;
  • la température nécessaire à l’application au niveau de l’évaporateur (froid positif ou négatif, type de denrées à conserver, …) et ce, dans des conditions optimales;
  • la température extrême qu’il peut régner au niveau du condenseur (température de l’air ou de l’eau selon le type de condenseur).

En froid alimentaire, le respect des températures de réfrigération ou de congélation est draconien. En Belgique, nous ne sommes pas privilégiés au niveau du dimensionnement par rapport au climat. En effet, pour quelques heures par an, le bureau d’études doit tenir compte, dans son dimensionnement, de la température de condensation pour une période de canicule (40-45°C sont des températures de dimensionnement courantes correspondant pour un condenseur à air à une température d’air de l’ordre de 32-35°C). En dehors de cette période, le compresseur est surdimensionné. Or on sait qu’à bas régime, le compresseur s’adapte mal et qu’une diminution de 25 % de la puissance frigorifique correspond à environ une diminution de 10 % de la consommation électrique du compresseur.

Choix de régulation de puissance du compresseur

Afin d’augmenter la performance des groupes frigorifiques, on retiendra qu’il est important de réaliser un découpage de la puissance en fonction de la charge par le choix :

  • d’un groupe de froid à plusieurs étages ;
  • d’un compresseur à vitesse variable;
  • de la mise en parallèle de plusieurs compresseurs avec régulation de la puissance par enclenchements et déclenchements successifs;

de manière à éviter le fonctionnement de chaque machine à bas régime.

Quant au réglage de la puissance du compresseur par injection des gaz chauds dans l’évaporateur ou à l’entrée du compresseur, il faut le qualifier de « pur anéantissement d’énergie ». Dans ce cas, la puissance absorbée reste la même lorsque la puissance de réfrigération diminue. De plus, ils provoquent un échauffement du moteur. Dans la mesure du possible, il faut mettre ce système aberrant hors service dans les installations existantes.

Il est clair que l’optimisation de la puissance de compression n’est réalisable qu’en associant des techniques de compression de pointe avec une régulation efficace (numérique par exemple).

Critères acoustiques

Ce sont les compresseurs qui génèrent la majorité du bruit. Pour diminuer les nuisances acoustiques du compresseur, il faut prévoir les dispositifs suivants :

  • un capot acoustique sur la machine.
  • une dalle flottante équipée d’isolateurs à ressorts.
  • des plots en élastomère entre la machine et la dalle flottante.

Concevoir

Pour en savoir plus sur le choix des compresseurs.

Choix du condenseur

Photo condenseur - 01.   Photo condenseur - 02.

Critères de choix généraux

Il faut évacuer la chaleur du réfrigérant vers l’air ambiant; c’est le condenseur qui s’en charge. Deux techniques existent pour y arriver : le condenseur à air ou à eau.

Le choix d’un condenseur dépendra en première approche :

  • de son emplacement par rapport au compresseur; l’idéal étant de placer le groupe de froid en toiture,
  • de la température de condensation conditionnée, pour une température extérieure donnée, par la surface d’échange et le débit d’air ou d’eau (les performances du compresseur seront meilleures si la température de condensation est basse),
  • de la température extérieure; un condenseur en plein soleil ou sous un toit noir n’est pas de bonnes idées.

Critères acoustiques

La principale source de bruit d’un condenseur est constituée par le(s) ventilateur(s). on aura toujours intérêt à les faire fonctionner à faible vitesse. Il faudra être attentif au bruit « solidien » se transmettant à la structure par les fixations du condenseur.

Choix d’un condenseur à air

L’entretien du condenseur à air est limité. Aussi, il n’y a aucun risque de gel en hiver. Mais le coefficient d’échange avec l’air étant faible, le condenseur sera volumineux, et donc lourd et encombrant. Enfin, les températures de condensation sont directement liées aux conditions de température extérieure : la pression de condensation sera forte en été (dégradation du COP de la machine frigorifique), mais plus faible en hiver, entraînant d’ailleurs un besoin de régulation adapté pour un fonctionnement correct.

Le fonctionnement du condenseur en période chaude peut être amélioré en choisissant un système d’évaporation d’eau sur la batterie de condensation (réduction de la température de l’air de refroidissement de l’ordre de 5 à 8 K). Les condenseurs « adiabatiques » permettent de prérefroidir l’air par l’évaporation d’eau qui pourrait très bien provenir d’une réserve d’eau de pluie par exemple. Cette initiative est aussi salutaire dans le sens où on pourrait sous-dimensionner le compresseur de par l’abaissement du taux de compression.

On veillera aussi à considérer :

  • le ventilateur, car sa consommation électrique et le bruit généré ne sont pas négligeables,
  • l’abaissement de la température de condensation par la considération des détails de construction, le positionnement (ombrage possible par exemple), l’environnement (toiture noire), … du condenseur;
  • la récupération de chaleur perdue à la sortie du condenseur;

Choix du condenseur évaporatif

Pour les magasins où l’installation frigorifique est de taille importante, le condenseur évaporatif est aussi une solution intéressante qui permet de garder une installation relativement simple tout en permettant de réduire les températures de condensation si chères à l’optimisation des performances énergétiques des compresseurs. Attention toutefois au risque de légionelles qui résultent souvent d’un manque de suivi et de contrôle des installations utilisant de l’eau de refroidissement.

Choix d’un condenseur à eau

Le réfrigérant de la machine frigorifique cède sa chaleur à l’eau circulant dans le condenseur. Grâce au coefficient d’échange avec l’eau 20 à 30 x plus élevé que le coefficient d’échange avec l’air, la taille du condenseur à eau sera plus réduite et l’échangeur moins encombrant. Aussi, il est moins bruyant que le condenseur à air. Cependant, il nécessite une tour de refroidissement à extérieur ainsi que tout un réseau d’eau à protéger du gel; l’installation est donc très coûteuse, raison pour laquelle en froid commercial (en particulier pour la distribution) on trouve peu d’installation de ce genre.

Une application possible est son utilisation pour les grandes surfaces où l’on veut réduire la quantité de fluide frigorigène.

Choix de la régulation

Le contrôle de la température du condenseur influence le bon fonctionnement du groupe frigo. En effet, on cherche à travailler à basse température pour soulager le compresseur. Mais si elle est trop basse, le détendeur fonctionne mal, car la pression à son entrée est trop faible et il ne peut assurer le débit de réfrigérant dans l’évaporateur. En pratique, on régule le débit du ventilateur du condenseur en fonction de sa pression d’entrée. L’utilisation de variateurs de vitesse apporte un plus dans la régulation de cette pression.

Aussi, on préférera un détendeur électronique plutôt qu’un thermostatique; en effet, l’électronique peut travailler avec des températures de condensation plus basse.

Concevoir

Pour en savoir plus sur le choix du condenseur.

Choix du détendeur

Photo détendeur.

Critères de choix énergétiques

Les critères de choix énergétiques des détendeurs sont :

  • la gestion intelligente de la surchauffe;
  • la capacité à travailler à des pressions d’entrée faibles pour favoriser le choix d’une stratégie de température de condensation basse.

Choix  du type de détendeur

Les détendeurs thermostatiques sont souvent retenus pour leurs coûts réduits et leur capacité à gérer relativement bien la surchauffe au niveau de l’évaporateur.

Quant au détendeur électronique, il commence à être régulièrement retenu pour ses aptitudes à :

  • gérer la surchauffe correctement en « collant » à la valeur minimale de surchauffe stable et d’assurer ainsi un remplissage optimal de l’évaporateur quelle que soit la charge à l’évaporateur;
  • s’intégrer dans des systèmes de régulation globaux (régulation flottante de la pression de condensation par exemple) et communs ;
  • de mieux supporter les faibles différences de pression entre ses orifices lorsque l’on veut réduire au maximum la pression de condensation.

Le choix d’un détendeur électronique est donc principalement énergétique. Certains constructeurs parlent de temps de retour de l’ordre de 2,5 ans sur le surinvestissement.

Dimensionnement du détendeur

Un surdimensionnement du détendeur électronique permet de mieux accepter les pressions de condensation faibles réglées par la régulation flottante au niveau de la pression de condensation.

Concevoir

Pour en savoir plus sur le choix du détendeur.

Choix du dégivrage

Du côté de la chambre froide ou du meuble frigorifique fermé ou mixte négatif, le givre diminue le transfert thermique entre l’air et la surface extérieure de la batterie. L’apport de froid vers la chambre se fait moins bien. La température de la chambre froide monte quelque peu.

D’autre part, du côté du circuit frigorifique, le compresseur de la machine frigorifique travaille avec une mauvaise efficacité énergétique : la couche de glace sur l’évaporateur peut être comparée à une couverture posée sur un radiateur (pour obtenir la même chaleur, il faudra augmenter la température de l’eau et diminuer le rendement en chaudière).

Il faut donc débarrasser périodiquement l’évaporateur du givre formé : c’est le dégivrage.

La chambre frigorifique doit donc être équipée d’un dégivrage automatique.

Le personnel d’exploitation, s’il n’effectue pas lui-même le dégivrage, doit cependant en vérifier le bon déroulement et surtout s’assurer périodiquement que les dégivrages sont effectués complètement. Aucune trace de givre ne doit subsister sur la surface froide à la fin du dégivrage.

Précautions à prendre au niveau du choix de l’enceinte et du groupe

Pour une question d’efficacité et de limitation du nombre de dégivrages, l’évaporateur doit être placé le plus loin possible de l’entrée de la chambre. De plus, pour les opérations de dégivrage proprement dites, on choisit de préférence une vanne magnétique sur le circuit réfrigérant et un manchon souple placé à la sortie du ventilateur de l’évaporateur afin de garder la chaleur lors de la coupure du ventilateur (début de l’opération de dégivrage).

Précaution à prendre au niveau de l’utilisation de l’enceinte

Il est un fait certain que moins il y aura d’ouverture de la porte de la chambre (organisation rationnelle), moins on gaspillera de l’énergie nécessaire :

  • pour le dégivrage,
  • pour le refroidissement et le séchage de l’air extérieur entré par la porte,
  • pour évacuer la chaleur produite au niveau de l’évaporateur par l’opération de dégivrage.

Choix de la technique de dégivrage

Le réchauffage de la batterie pour assurer la fusion du givre peut se faire de diverses façons :

  • par résistance chauffante (la plus courante pour les moyennes puissances),
  • par introduction de vapeurs refoulées par le compresseur où l’évaporateur reçoit les gaz chauds par inversion du cycle en devenant le temps du dégivrage le condenseur du groupe frigo,
  • par aspersion d’eau sur la surface externe, givrée, de la batterie,
  • par circulation d’air.

Les deux premières méthodes citées ci-dessus sont les plus courantes.

Choix de la régulation de dégivrage

Vu que le dégivrage est une source de dépense énergétique, l’optimisation des du dégivrage prend toute son importance en terme de fréquence et de longueur de cycle. Parmi les types de dégivrage, les plus courants sont les systèmes :

  • par horloges (difficulté d’optimisation par rapport à l’organisation de la cuisine),
  • électroniques contrôlant la présence de glace par l’analyse de la courbe de remontée en température de l’évaporateur (plateau de t° = fusion),
  • électroniques contrôlant l’écart de température entre l’ambiance et l’évaporateur.

Les systèmes électroniques sont en plus capables d’accepter des niveaux d’alarme, de contrôler un délestage, …

Évacuation des condensats

On cherchera le chemin le plus court pour évacuer les condensats sans qu’ils ne gèlent. Cette évacuation demandera une maintenance toute particulière, car elle influence directement le bon fonctionnement de l’évaporateur.

Les meubles fermés ou mixtes

Les principes généraux de dégivrage des chambres froides s’appliquent assez bien aux meubles frigorifiques fermés ou mixtes négatifs, car l’évaporateur subit le même type d’agressions hygrothermiques lors des ouvertures des portes. En ce qui concerne les meubles frigorifiques ouverts négatifs horizontaux (gondole par exemple) ils subissent les agressions hygrothermiques de manière moins forte vu que l’influence de l’induction de l’air de la zone de vente n’est pas prépondérante. Néanmoins, pour ce type de meubles, le dégivrage par résistance électrique ou injection de gaz chaud est souvent nécessaire.

Les meubles ouverts positifs

Ce type de meubles, quant à lui, subit les agressions hygrothermiques en permanence de par l’induction de l’air de l’ambiance de vente de manière naturelle ou au travers d’un rideau d’air en ventilation forcée. L’induction d’air apportant irrémédiablement de la vapeur d’eau contenue dans l’air ambiant sur l’évaporateur, le dégivrage est plus que nécessaire mais, vu les températures d’échange au niveau de l’air sur les ailettes de l’évaporateur sont proches de 0°C, un dégivrage naturel sans apport de chaleur est suffisant dans la plupart des applications.

Concevoir

Pour en savoir plus sur le choix du dégivrage.

Choix de la régulation

Variateur de fréquence d’un compresseur (source : Delhaize).

Critères de choix

Dans ce cadre-ci, les critères de choix d’une régulation s’articulent autour de l’optimisation de la puissance frigorifique de l’évaporateur et de la consommation énergétique des équipements. Par exemple, une bonne régulation du détendeur permet de remplir idéalement l’évaporateur en fluide frigorigène afin de maximiser la puissance frigorifique et naturellement de réduire le temps de travail du compresseur.

Choix de la régulation

Le choix d’une régulation d’une application de froid alimentaire doit être pris :

  • dans un premier temps de manière globale. En effet, vu que le cycle frigorifique est fermé, la régulation particulière d’un équipement influence naturellement la régulation des autres. Par exemple, la régulation de la pression de condensation au niveau du ventilateur d’un condenseur à air influence celle du compresseur, etc …
  • dans un second temps, pour chaque équipement en particulier en fonction de l’aptitude ou pas à accepter une régulation simple ou sophistiquée.

Concevoir

Pour en savoir plus sur le choix du dégivrage.

Choix d’un fluide frigorigène

Photo fluides frigorigènes.

Le choix d’un fluide frigorigène dépendra de plusieurs facteurs dont :

  • L’impact environnemental;
  • l’impact énergétique (ou qualité thermodynamique);
  • la sécurité d’usage;
  • les contraintes techniques;
  • le coût;
  • les tendances futures.

Concevoir

Pour en savoir plus sur le choix du fluide frigorigène.

Investir dans une récupération de chaleur ?

Schéma principe récupération de chaleur.

Principe de fonctionnement

Une machine frigorifique transfère de la chaleur extraite des meubles frigorifiques vers l’extérieur. Par ailleurs, une proportion non négligeable des meubles frigorifiques ouverts  est présente dans l’ambiance tempérée des zones de vente qui se refroidit.

En période froide, il semblerait dès lors logique de tenter de récupérer la chaleur sur le condenseur de la machine frigorifique pour l’injecter dans l’ambiance plutôt que de l’évacuer à l’extérieur.

On sait aussi qu’une machine frigorifique est d’autant plus performante que sa température de condensation est basse. On se trouve donc devant un choix difficile entre :

  • d’une part, utiliser la température externe pour refroidir le condenseur entraînant une perte de chaleur non négligeable vers l’extérieur, mais en augmentant la performance de la machine frigorifique;
  • d’autre part, récupérer la chaleur de condensation pour la réinjecter directement ou indirectement dans l’ambiance des zones de vente, d’où en fin de compte elle provient.

Plus largement, la chaleur que l’on peut récupérer du cycle frigorifique peut provenir :

  • à haute température de la phase de désurchauffe du cycle frigorifique suivi d’une condensation classique à basse température (air externe en période froide par exemple). À ce stade, les températures peuvent être intéressantes (> 70°C voire plus) mais la quantité d’énergie échangée reste faible;
  • à moyenne température de la phase de condensation suivie d’une condensation classique à basse température (Chauffage au sol pour des températures de l’ordre de 35-40°C);
  • à basse température de la phase de condensation (préchauffage de l’eau chaude sanitaire à des températures de condensation de l’ordre de 20°C.

Application au chauffage du magasin et des annexes par l’air

Dans le cas de l’utilisation de la chaleur de condensation pour chauffer directement le magasin (cas des meubles frigoriques avec groupe condenseur incorporé), en période froide, cette technique peut être intéressante. En période chaude, il vaut mieux prévoir une évacuation de cette chaleur dehors (sinon la performance énergétique de la machine froid se dégrade).

Application au chauffage du magasin et des annexes par l’eau

La récupération de la chaleur de condensation pour chauffer de l’eau destinée à alimenter un système de chauffage au sol doit être envisagée avec précaution. En effet, pour fonctionner correctement, le chauffage au sol nécessite une température d’eau de l’ordre de 35- 40 °C. Si l’on n’y prend pas garde, les températures de condensation pourraient atteindre les 50-55°C réduisant la performance du compresseur. Enfin, en terme de confort, la solution du chauffage au sol dans les allées froides pourrait être intéressante sans trop modifier le régime de fonctionnement des meubles frigorifiques (chauffage radiant augmentant les apports externes des meubles).

Application au préchauffage de l’eau chaude sanitaire

L’idée est ici de profiter d’un besoin de chauffage d’un fluide à basse température (la température de l’eau de ville varie entre 5° en hiver et 15°C en été).

Mais le système ne fonctionnera bien que lorsque la puissance de récupération nécessaire est supérieure à la puissance fournie par le condenseur. Autrement dit, il faut que les besoins d’eau sanitaire soient très importants par rapport à la puissance de la machine frigorifique; ce n’est pas nécessairement le cas des magasins.

Concevoir

Pour en savoir plus sur l’intérêt d’investir dans une récupération de chaleur.

Tuyauterie des installations frigorifiques

Conduite liquide

Si elles traversent des espaces tempérés, les conduites liquides non isolées entre le condenseur et le détendeur, risquent de re-vaporiser le fluide frigorigène (« flash gaz ») causant le mauvais fonctionnement du détendeur. Au final, l’évaporateur perdra de la puissance frigorifique.

Conduite d’aspiration

Lors de la conception, le choix d’un long traçé du circuit d’aspiration crée des pertes de charge importantes qui influencent négativement le travail de compression du compresseur. Il en est de même pour le manque d’isolation, mais à plus faible échelle.

Concevoir

Pour en savoir plus sur précautions à prendre lors du placement des conduites.

Choisir le type d’éclairage : direct, mixte ou indirect ?

Éclairage direct

C’est l’éclairage direct qui donne les meilleurs résultats en termes de conception énergétique. On peut arriver à des valeurs de puissance spécifique sous certaines conditions de l’ordre de 1,5 W/m²/100 lux. Suivant l’usage des locaux ou des espaces dans les locaux, trois types d’éclairage ou un mixte des trois seront envisagés :

  • un éclairage général uniforme ;
  • un éclairage général orienté ;
  • un éclairage ponctuel.

Éclairage général uniforme

L’éclairage général uniforme  permet d’avoir une grande flexibilité des postes de travail. Attention toutefois que ce genre de considération conduit souvent à un surdimensionnement inutile des installations d’éclairage. La dernière version de la norme NBN EN 12464-1 palie à ce risque de surdimensionnement. En effet, dans la zone dite « de fond », le niveau d’éclairement peut être réduit au tiers de celui de la zone de travail et l’uniformité à 0,1. Ce qui permet d’envisager un éclairage général uniforme de faible niveau d’éclairement et de prévoir des zones de travail mobiles et flexibles avec l’uniformité et le niveau d’éclairement requis. Énergétiquement parlant, c’est acceptable et vivement conseillé.

Exemple
Soit un hall d’usinage qui demande une très grande flexibilité par rapport à la position des postes de travail. Le niveau d’éclairement pour certains postes de travail pourrait être de 750 lux. Selon la NBN EN 12464-1, le niveau d’éclairement moyen devrait s’élever à 250 lux.

 

Cette configuration de luminaires permet d’envisager :

  • De modifier complètement la disposition du hall sans toucher à l’éclairage ;
  • Une disposition variable des postes de travail sur toute la surface du hall ;
  • L’installation de nouveaux équipements.

Les caractéristiques des luminaires peuvent être les suivantes :

  • Une répartition de façon non préférentielle ;
  • Des luminaires à caractéristiques modifiables (position des lampes, type de réflecteur, …) ;
  • Des luminaires montés sur rails porteurs, donc facilement déplaçables ; ce qui avait été envisagé dans l’étude de cas réalisée.

Éclairage général orienté

Lorsque la position des zones de travail est fixe (tableau d’une salle de cours, écran d’une salle de réunion, machines-outils fixes, …), localiser l’éclairage près des zones de travail est une excellente méthode pour limiter la puissance installée.
Attention toutefois au recommandation de la norme NBN EN 12464-1 :  Éviter des contrastes trop élevés. Dans la zone dite « de fond »,  le niveau d’éclairement peut être réduit au tiers de celui de la zone de travail et l’uniformité à 0,1.
De manière générale, ce type d’éclairage permet :

  • D’envisager un niveau d’éclairement plus faible pour les circulations.
  • D’éviter de trop éclairer des zones où la lumière naturelle est présente en abondance sachant que lorsqu’il fait noir dehors, l’éclairage de la zone devant la baie vitrée n’est pas nécessaire.
  • Par le choix de luminaires asymétriques, obtenir un éclairement suffisant sur des plans verticaux comme dans les rayonnages des archives par exemple.

Le choix de l’éclairage général orienté devra aussi composer avec la structure du plafond et l’emplacement des poutres de structures qui risquent de faire écran à la disposition de la lumière ; à méditer !

Attention toutefois qu’un éclairage orienté mal positionné provoque des ombres indésirables et peut être dangereux notamment dans les ateliers où les postes de travail sont, par exemple, des machines tournantes.
Lorsqu’un atelier comporte des machines-outils dangereuses, des marquages appropriés doivent délimiter les zones de circulation et de travail, ainsi que les zones de danger. L’éclairage doit alors appuyer ces mesures en insistant sur les trois types de zone.

Éclairage ponctuel

Ce type d’éclairage permet de disposer d’un éclairement important au niveau des postes de travail de précision, sans augmenter exagérément le niveau d’éclairement général. Cette solution est toute profitable d’un point de vue énergétique.

Les luminaires individuels complémentaires  peuvent augmenter localement le niveau d’éclairement et accentuer certains contrastes.

Leur emplacement doit être approprié pour ne pas générer des situations dangereuses de travail :

Soit le ou les luminaires sont placés dans les allées encadrant les postes de travail, et ce en veillant à ce que la lumière provienne des côtés et qu’il n’y ait ni ombre ni d’éblouissement gênant.
Soit le ou les luminaires sont placés contre les postes de travail. Idéalement, ces luminaires devraient être équipés d’un gradateur de lumière. La position et l’orientation de ces luminaires doivent être réglables pour éviter les réflexions sur les objets éclairés.

Conseil : pensez  éventuellement à placer un interrupteur ou un détecteur de présence/d’absence à chaque poste de travail pour éviter que ces lampes restent allumées inutilement à des postes non-occupés.

Pour éviter de trop grandes variations de luminance dans le champ de vision des utilisateurs, maintien d’un niveau d’éclairement général suffisant par rapport à l’éclairement de la tâche :

Éclairement général = 3 x (Éclairement ponctuel)½

 Exemple dans les commerces

Dans les commerces d’ancienne génération, on se souvient tous, même les plus jeunes, du surdimensionnement de l’éclairage général uniforme de manière à couvrir l’ensemble de la surface de vente avec des niveaux d’éclairement de l’ordre de 750 lux. « Question de marketing, disaient les vendeurs ! »

Cependant, cet éclairage présente le risque de créer des zones d’ombre qui peuvent se révéler gênantes. Ce risque est d’autant plus important que la hauteur sous plafond est grande et que l’on utilise des luminaires suspendus. De plus, énergétiquement parlant, ce n’était pas la meilleure manière de travailler.

Le système direct à deux composantes est à préférer au système direct lorsque l’on veut mettre en valeur des objets, créer des contrastes de luminosité. On réalisera des économies d’énergie d’autant plus importantes que le niveau d’éclairement à assurer est supérieur au niveau d’éclairement général nécessaire (censé permettre un déplacement par exemple). On économisera de l’énergie en augmentant l’éclairage localement via un deuxième circuit plus intensif que le premier. Dans la pratique, on vérifiera ce constat théorique en réalisant une étude comparative des systèmes « directs »  et « à deux composantes ».

Éclairage indirect

Un éclairage indirect via le plafond a l’avantage de ne pas provoquer d’éblouissement par la vue directe des lampes. La probabilité d’ombre est inférieure. Mais son efficacité énergétique est faible et fort dépendante des coefficients de réflexion des parois (généralement le plafond).  Comme ceux-ci n’atteignent que rarement les 0.85, il faudra surdimensionner l’installation d’éclairage (en première approximation entre 15 et 30% voire 50% dans locaux où la hauteur sous plafond est importante) pour réaliser un éclairement équivalent à celui fourni par un éclairage direct. Ce système sera fortement dépendant de l’état de propreté des parois du local (ceci peut aussi conduire à la nécessité de surdimensionner l’installation de plus d’une vingtaine de pour cent par rapport à un éclairage direct).

 Exemple dans les commerces

Ce type d’éclairage sera proscrit sachant que, typiquement dans les commerces de type grande surface, les plafonds sont parcourus par des gaines de ventilation, des chemins de câbles électriques, … La tendance actuelle, bien comprise par un certain nombre de responsables énergie de magasin de grande distribution, est de prescrire un éclairage direct bien positionné avec un plafond sombre pour masquer sensiblement les techniques spéciales apparentes.

Éclairage mixte

Du point de vue efficacité énergétique, ce système se situe entre les systèmes directs et indirects. Plus la composante directe sera prépondérante, moins énergivore le système sera.

Il est à noter que les pertes complémentaires dues à la partie indirecte de l’éclairage seront en partie compensées par un rendement total du luminaire mixte souvent plus important que celui du luminaire direct.

En ce qui concerne le confort, ce type de système peut trouver son utilité dans le cas de locaux possédant une grande hauteur sous plafond, pour éviter la création d’une zone d’ombre trop importante. Ce constat est d’autant plus marqué si l’on utilise des luminaires suspendus. Dans ce cas, une faible proportion de flux lumineux dirigée vers le haut suffira.

Bien entendu, si la hauteur sous plafond est raisonnable, la réflexion sur les murs et le sol suffira à éclairer suffisamment le plafond.

Comme dans le cas du système indirect, ce système sera dépendant de l’état de propreté des parois du local (ceci peut conduire à la nécessité de surdimensionner l’installation de plus d’une vingtaine de pour cent par rapport à un éclairage direct).

 Exemple des commerces

Lorsque les plafonds ou faux plafonds sont de qualité acceptable et ne sont pas encombrés par des techniques spéciales apparentes, on pourra envisager ce type d’éclairage en favorisant la composante directe des luminaires, la composante indirecte donnant un « look » commercial intéressant.
« Il en faut pour tous les goûts ! »
Un autre exemple éclairant

On peut considérer que seul le flux dirigé vers le bas est efficace. En effet, la plupart du temps les luminaires sont situés au-dessus de la marchandise à éclairer. La plupart du temps seulement, car dans certains cas, la lumière émise vers le haut peut avoir un effet utile (éviter la présence d’une ombre gênante au niveau du plafond…).

Si l’on considère que seule la lumière dirigée vers le bas est utile, alors on peut introduire la notion de rendement utile du luminaire. Soit un appareil possédant les rendements suivants :

Rendement vers le bas : 30 %
Rendement total : 90 %
Rendement vers le haut : 60 %

La lumière dirigée vers le haut, avant d’atteindre la marchandise, devra être réfléchie par le plafond. Si on considère que cette surface possède un coefficient de réflexion de 0.7, alors 30 % de la lumière émise vers le haut sera « perdue ». On peut donc estimer que le luminaire possède les rendements utiles suivants :

Rendement vers le bas : 30 % Rendement total : 72 %
Rendement vers le haut :
60 * 0.7 = 42 %

Le rendement du luminaire a ainsi diminué de 20 %.

La figure suivante donne le facteur par lequel il faut multiplier le rendement pour trouver son équivalent « utile » en fonction du type d’éclairage choisi et pour un coefficient de réflexion de 0.7 pour le plafond. Notez que cette valeur est celle prise de manière standard. Cette valeur est assez élevée puisqu’elle correspond à un plafond peint en blanc. La valeur de ce coefficient descend à 0.25 si la peinture est brune et à 0 dans le cas d’un plafond noir.

Bien entendu, ce calcul est simplifié. Pour être exact, on devrait tenir compte de l’influence du système d’éclairage sur l’uniformité des niveaux d’éclairement, des autres réflexions sur les murs du local, …

Le but de cet exemple est de montrer qu’il est essentiel, lorsque l’on vise l’efficacité énergétique de limiter la composante supérieure du flux émis.

Comparaison en termes d’efficacité énergétique

Un point de comparaison s’impose entre les différents éclairages :

Comparaison de trois systèmes d’éclairage pour une même puissance installée :

6 luminaires de 2 x 36 W (et ballast électronique),
pour une classe de 7 m x 8 m x 3,2 m, soit 7,7 W/m²,
coefficients de réflexion : 0,7 (plafond); 0,5 (murs); 0,3 (sol).

Système d’éclairage

Direct Mixte Indirect

Éclairement sur le plan de travail

348 lux 350 lux 231 lux

Éclairement au sol

310 lux 304 lux 207 lux

Type de lampes

Tubes fluo Tubes fluo Tubes fluo

Puissance spécifique/100 lux sur le plan de travail

2,2 W/m2 2,2 W/m2 3,3 W/m2

Parmi les choix énergétiquement corrects, on retiendra le direct et le mixte. L’indirect sera juste réservé pour créer des ambiances bien spécifiques lorsque ce choix se révèle incontournable comme dans certains locaux d’hôtel (bar, accueil, …), des chambres d’hôpital, …

Découvrez ces exemples de rénovation de l’éclairage : un établissement scolaire au centre de Liège et une fabrique de peinture à Lausanne.

Choisir la cellule de refroidissement ou de congélation rapide [Concevoir – Froid alimentaire]

Quand doit-on choisir une cellule de refroidissement rapide ?

Dans tout atelier traiteur par exemple où l’on a opté pour une liaison froide, il est recommandé d’abaisser la température au cœur des aliments de + 65 °C à + 10 °C en moins de 2 heures. La cellule de refroidissement rapide est l’équipement idéal pour atteindre ces performances.

Il ne s’agit pas d’une obligation, mais d’une bonne pratique de fabrication qui est recommandée si l’on veut refroidir des aliments cuits en toute sécurité et si on veut prouver que des procédures de sécurité sont appliquées conformément à l’art. 3 et 4 de l’A.R du 07/02/97.

Cette bonne pratique provient, en fait, d’une réglementation qui s’applique aux établissements de transformation de la viande : A.R. du 4 juillet 1996 relatif aux conditions générales et spéciales d’exploitation des abattoirs et d’autres établissements / annexe chapitre V point 5, qui dépendent de l’IEV (Institut d’Expertise Vétérinaire).

Il convient de noter que le choix de la liaison froide peut se faire pour l’ensemble des menus ou pour une partie seulement. Il existe, par exemple, certaines cuisines collectives qui proposent chaque jour des plats végétariens en plus du menu du jour, mais pour ne pas avoir à fabriquer chaque jour deux plats, les plats végétariens sont préparés un jour par semaine, par exemple, en liaison froide.


Choix du procédé de production du froid

Il existe deux procédés de production du froid dans une cellule de refroidissement rapide :

Les coûts d’utilisation d’une cellule de froid mécanique sont nettement (10 x) plus faibles que ceux d’une cellule de froid cryogénique. Par contre, les coûts d’investissement pour une cellule cryogénique sont nettement plus faibles que pour une cellule mécanique.

Pour une utilisation régulière de la cellule, la cellule mécanique sera donc beaucoup plus intéressante. Dans le seul cas d’une utilisation occasionnelle, une cellule cryogénique peut être intéressante.

Lorsque le refroidissement rapide est utilisé régulièrement, il paraît risqué de n’avoir qu’une seule cellule. En cas de panne, la préparation est bloquée. On peut alors songer à investir dans une cellule de refroidissement mécanique principale et une deuxième cellule cryogénique de dépannage.

Parmi les fluides utilisés pour le froid cryogénique, vu la très faible température d’ébullition de l’azote, celui-ci est utilisé lorsque les distances à parcourir entre le lieu de stockage du fluide et le lieu de production du froid sont grandes.

Il faut cependant veiller à bien calorifuger les conduites. Le dioxyde de carbone (CO2) sera utilisé lorsque ces distances sont plus courtes.


Précautions d’utilisation

Pour obtenir un fonctionnement satisfaisant et économique, on place les préparations sur les clayettes ou les supports prévus à cet effet, afin de favoriser la circulation de l’air, et d’utiliser la cellule à sa capacité nominale.

Capacité et puissance frigorifique des cellules

La capacité (kg)

Elle doit correspondre à celle des appareils de cuisson, c’est-à-dire qu’elle doit permettre de refroidir le nombre de préparations qui peuvent être préparées en une seule fois par les autres appareils de cuisson.

L’ensemble des mets préparés pourra ainsi être refroidi dès la fin de la cuisson. En effet, selon la réglementation, « la durée de refroidissement entre la fin de la cuisson et une température à cœur de 10°C doit être inférieure ou égale à deux heures. »

D’autre part, la cellule pourra ainsi être utilisée à sa pleine capacité. Ce qui permet de travailler au meilleur rendement possible.

La puissance frigorifique

de l’appareil dépend de la durée que prend le refroidissement ou la congélation, de la capacité désirée et de la température à atteindre. Le besoin en frigories est donné par la quantité de chaleur qu’il faut retirer des aliments pour les faire passer de 65°C à 10 °C (ou – 18 °C).

Le calcul ci-dessous est statique et purement théorique. Il est donné à titre indicatif. En réalité, pour correspondre à la réalité, le calcul devrait être fait en dynamique. Statique, le bilan ci-dessous néglige les apports de chaleur au travers des parois, relativement négligeables par rapport à la chaleur à extraire des aliments.
En refroidissement rapide

Q = m x Cs x δt

Où :

  • Q = besoin en frigories (en kWh),
  • m  = poids des aliments dans la cellule (kg),
  • Cs= chaleur spécifique des aliments (kWh/kg°C),
  • δt = différence entre la température à l’entrée et à la sortie des aliments (10°C) (K).

En congélation rapide

Q = (m x Cs x δt) + (m x Cl) + (P1 x Cs‘ x δt’)

Où :

  • Q = besoin en frigories (en Wh),
  • m  = poids des aliments dans la cellule (kg),
  • Cs = chaleur spécifique au-dessus de 0°C des aliments (Wh/kg°C),
  • Cl = chaleur latente nécessaire au changement d’état du constituant liquide des aliments (passage à l’état solide) (Wh/kg),
  • Cs‘ = chaleur spécifique en-dessous de 0°C des aliments (Wh/kg°C),
  • δt = différence entre la température à l’entrée des aliments et 0°C (K),
  • δt’ = différence entre 0°C et la température de sortie des aliments (-18°C) (K),

La puissance frigorifique de l’évaporateur

P(W) = Q (Wh) / t (h)

Où :

  • t = temps maximum légal – temps nécessaire au conditionnement des aliments.

Temps maximum légal = 2 h pour le refroidissement de 65 °C à 10 °C et 3 h pour le passage de 10 °C à -18 °C (congélation).

Exemple.

1. Soit une cellule de congélation rapide, d’une capacité de 20 kg; la congélation doit se faire en 4 h.

Q = 20 x 1,04 x 65 + 20 x 80 + 20 x 0,53 x 18 = 3 143 (Wh) (soit 157 Wh par kg)
P =  3 143  /  4 = 785 W (soit 40 W/ kg.)

2. Soit une cellule de refroidissement rapide, d’une capacité 20 kg; le refroidissement doit se faire en 1h30.

Q = 20 x 1,04 x 55 = 1 144 Wh (soit 57 Wh/kg.)
P = 1 144/1h30 = 762 W (soit 38 W/kg).

En réalité la puissance calculée ci-dessus en statique est une moyenne. Or, la puissance nécessaire varie en fonction du temps, selon une courbe d’allure exponentielle, et la puissance maximale est demandée à l’évaporateur en début de processus (c’est alors que les Δt sont les plus importants). La puissance frigorifique des cellules correspond donc à cette puissance maximale.

Voici les puissances électriques que nous avons relevées dans la documentation d’un fournisseur :

Remarque : entre la puissance frigorifique et la puissance électrique, il y a le COP.

Cellule à clayette – surgélation et refroidissement rapide
Capacité par cycle (kg) Puissance électrique installée (W)
7 2 100
15 2 280/450*
25 4 000/580*
50 6 100/580*

* version équipée sans groupe frigorifique (à distance).

Cellule à chariots – surgélation et refroidissement rapide
Capacité par cycle (kg) Puissance électrique installée (W)
En surgélation En refroidissement
65 65 3 200/900*
80 110 5 400/4 300*
160 220 9 600/6 600*
240 330 11 500*
320 440 14 000*
480 660 20 000*

* version équipée sans groupe non comprise l’alimentation du groupe frigorifique (à distance).

Automatiser les protections mobiles ?

Trois modes de manipulation

Il existe trois degrés de manipulation des protections solaires amovibles :

  • Manuelle (par manivelle, cordon ou chaînette),
  • motorisée (commande avec bouton poussoir ou télécommande, commande groupée ou individuelle),
  • automatisée.

Quel est le rôle de la gestion automatique ?

Augmenter la protection

Lorsque des apports solaires risquent d’entraîner des surchauffes des locaux et une production de froid importante ou l’éblouissement des occupants, la régulation peut décider le déploiement de la protection.

Cette action peut être préventive et intervenir avant que l’inconfort réel n’apparaisse. En hiver, la nuit venue, la régulation peut prendre en charge l’ajout d’une isolation complémentaire aux fenêtres.

Diminuer la protection

En période de chauffe, des apports extérieurs sont les bienvenus. La régulation peut décider la suppression de la protection pour diminuer les frais de chauffage.

L’automatisation permet en outre de ne pas exposer les protections à des contraintes extérieures excessives (vent, pluie, vandalisme).

La libération automatique des fenêtres en cas d’incendie est également un point à considérer.


Pourquoi automatiser la protection ?

Le rôle de la gestion automatique pourrait être assuré manuellement par un occupant consciencieux. Cependant, il existe plusieurs objections à cela :

    1. L’optimalisation des dépenses énergétiques n’est généralement pas le souci premier des occupants des bâtiments du secteur tertiaire.Exemple : en hiver, qui pensera à baisser son store le soir avant son départ ?
    2. L’oubli de la protection et la non-surveillance des conditions extérieures.

Exemple : une protection extérieure restant déployée durant la nuit alors que le vent se lève risque de se détériorer.

    1. Ou tout simplement l’absence d’occupant dans un local, alors que celui-ci est chauffé ou refroidi.
      Exemple : les apports solaires dans les locaux orientés à l’est peuvent devenir importants avant l’arrivée du personnel. Dans les locaux orientés à l’ouest, les apports les plus importants se produisent en fin de journée. Qui pensera alors à protéger la fenêtre pour empêcher toute accumulation inutile de chaleur après le départ des occupants ? De même dans des locaux inoccupés, il faut prévenir toute accumulation de chaleur qui augmentera ultérieurement ou sur le moment même la nécessité de refroidissement. Ces exemples peuvent être transposés en période de chauffe lorsque les apports extérieurs sont alors les bienvenus.

En conclusion

L’automatisation des protections solaires mobiles permet donc de suppléer à l’absence des occupants ou à leurs carences en matière de gestion des apports énergétiques extérieurs. Cependant, une dérogation est toujours recommandée pour offrir à l’occupant une possibilité d’interagir sur son environnement. Cela lui permettra, en autres, de se protéger d’un éventuel inconfort (dû à l’éblouissement par exemple) ou de satisfaire un besoin d’intimité.


Quelles caractéristiques pour le système d’automatisation ?

Les grandeurs de référence

L’ensoleillement

Un capteur mesure l’intensité lumineuse et active le système de protection en cas de dépassement des valeurs programmées.

La température extérieure

Une sonde de température extérieure empêchera le déploiement des protections en dessous d’une certaine valeur.

La température intérieure

Un thermostat d’ambiance peut commander la protection en fonction de la température intérieure.

La vitesse du vent

Un anémomètre mesure la vitesse du vent et commande un retrait des protections extérieures en cas de menace de tempête.

La présence de pluie

Une sonde détecte la présence de pluie et entraîne le retrait immédiat de la protection.

La date et l’heure

Une horloge quotidienne et hebdomadaire commandera à heures fixes les protections.

Le danger d’incendie

Un détecteur de fumée commande le retrait des protections pour garantir l’accès aux fenêtres et une évacuation possible.

Toutes ces grandeurs ne doivent pas forcément être reprises. Pour les protections extérieures la protection au vent sera la configuration minimale. Son association avec une sonde d’ensoleillement sera aussi couramment rencontrée. La protection contre la pluie n’est importante que pour les protections extérieures horizontales (auvents). Par contre le vent et la pluie n’ont pas d’influence sur les protections intérieures.

Lorsque plusieurs grandeurs sont prises en considération, le régulateur actionnera (en tout ou rien ou en modulation) les protections en fonction d’un des paramètres considéré comme prioritaire ou en fonction d’une combinaison de paramètres.

La temporisation

La temporisation des commandes de l’automatisme est indispensable. En effet, de petites variations passagères des paramètres ne peuvent entraîner des modifications incessantes des protections.

Exemple : le passage d’un nuage, légères variations de température, …

Si tel était le cas, l’abandon de l’automatisme pour un mode manuel serait rapidement opéré par les utilisateurs.

Commande centralisée et dérogation

Une centralisation permet de commander une série de protections pour des locaux d’orientation identique.

Exemple : toute l’aile d’un hôpital, …

Dans ce cas, un local de référence devra accueillir la sonde de température ambiante éventuelle.

Malgré l’automatisation, une dérogation doit rester possible pour les utilisateurs d’un local particulier. Cette liberté sera, au même titre que la protection proprement dite, source de confort et donc d’efficacité pour les occupants. Cependant la dérogation et le fonctionnement en mode manuel ne peuvent rester permanents un retour au mode automatique est obligatoire si on ne veut pas perdre tous les avantages de l’automatisation. Ce retour peut se faire en fonction du temps de dérogation, d’un horaire précis ou de la variation d’un des paramètres. Les paramètres prévenant toute détérioration (vent, pluie) des protections seront prioritaires et indérogeables.

Protection du système

L’automatisation doit être munie d’un système permettant de détecter tout mauvais fonctionnement de la sonde de vent. Par exemple si le régulateur ne détecte aucun mouvement de l’anémomètre durant une période déterminée, il commande le retrait immédiat de la protection et bloque l’automatisme.


Quel est le coût du système de commande ?

Il est difficile de fixer dans l’absolu le surcoût relatif à la motorisation et à l’automatisation des protections mobiles.

Paramètres

Cela dépend  :

  • Du nombre de protections manipulables et gérables simultanément,
  • de l’orientation des locaux,
    Exemple : un local avec une façade vitrée au sud et une à l’ouest devra disposer de deux capteurs d’ensoleillement
  • du nombre de grandeurs prises en compte,
  • du précâblage existant dans le bâtiment,

Pour fixer les idées

D’une manière générale, on peut dire que l’installation de protections motorisées a un coût semblable à l’installation de protections à commande manuelle. Lorsque le nombre de protections gérables simultanément devient important, la commande électrique peut même devenir moins onéreuse que la commande manuelle, grâce à des commandes groupées et à une main d’œuvre nécessaire moins importante (le branchement électrique est plus facile à réaliser que le placement d’une manivelle au travers du châssis ou du mur).

Notons également que la commande électrique des protections sollicite moins les parties mobiles que la commande manuelle et donc leur garantit une durée de vie plus longue.

En fonction du degré de sophistication demandé, le coût d’une gestion automatique se situe dans une fourchette de 250 à 1250 €. Lorsque le nombre de protections gérées est important, on se rend compte que le surcoût relatif de l’automatisation devient nettement moins lourd.

De plus, certains capteurs du système de gestion peuvent déjà faire partie de l’installation de chauffage ou de climatisation comme capteur principal ou de compensation.

Un projet d’installation de protections solaires peut être planifié sur plusieurs années. Si le besoin se fait ressentir, des protections motorisées peuvent être équipées d’une gestion automatique a posteriori sans surcoût important par rapport à un projet initial complet.


Exemple d’automatisation d’une protection mobile

L’exemple ci-contre, se rapporte à un bâtiment précis. Les valeurs de consigne qui y sont mentionnées peuvent varier en fonction de la saison et du type d’inertie du bâtiment. Si le bâtiment est sensible à l’ensoleillement même durant la saison de chauffe, la consigne de température extérieure peut être abaissée. De même, une anticipation face à la surchauffe peut être réalisée en diminuant la température de consigne intérieure. En effet plus le bâtiment est inerte thermiquement, plus l’apparition de la surchauffe sera retardée par rapport à l’ensoleillement.

Choisir une protection mobile, fixe ou permanente

Choisir une protection mobile, fixe ou permanente


Stores enroulables mobiles.

Brise-soleil fixes.

Films pare-soleil permanents.


Pourquoi moduler la protection ?

Des besoins variables

Les besoins de protection des locaux vis-à-vis des apports du soleil sont la plupart du temps variables sur une journée ou encore sur une année :

  • Les apports énergétiques peuvent être souhaités en hiver et au printemps (température extérieure moyenne < 8°C) mais risquent de devenir indésirables en été ou en automne (température extérieure moyenne > 15°C).
  • Les apports solaires seront importants le matin pour les locaux orientés à l’est et le soir pour les locaux orientés à l’ouest.
  • Une augmentation de l’isolation thermique des vitrages est souhaitable durant les nuits d’hiver mais au contraire défavorable au refroidissement du bâtiment durant les nuits en été.
  • L’éblouissement dépend très fort de la hauteur du soleil et donc de l’orientation et de la saison.
  • En absence de soleil, la lumière du jour est souvent la bienvenue.

Optimaliser les besoins de chaleur et de froid

Adapter le degré de protection à ces besoins permettra de gérer les apports gratuits et d’optimaliser les productions de chaud ou de froid (pour autant que celles-ci tiennent compte des apports externes : présence de vannes thermostatiques, sonde extérieure,…) et l’éclairage artificiel des locaux.

L’optimalisation de la protection solaire en fonction des besoins réels dépendra de plusieurs facteurs :

La mobilité de la protection elle-même : certaines protections peuvent être fixes, d’autres complètement amovibles. Le degré d’automatisation de la protection : la manipulation de nombreuses protections peut être motorisée et automatisée. Dans ce cas, le degré de protection sera automatiquement réglé en fonction de grandeurs représentatives des climats intérieurs et extérieurs.

Le comportement des occupants : dans le cas de protections manuelles, le rôle de l’occupant sur l’optimalisation de la protection est important et souvent difficile. Dans le cas de protections automatisées, il faut tenir compte de la liberté de l’occupant et de son pouvoir sur la mise en dérogation du système.


Les protections mobiles

La protection peut varier selon les souhaits de l’utilisateur, quelle que soit l’heure ou la saison.

Exemple : les stores vénitiens, enroulables, à lamelles.

L’adaptation aux besoins en protection ou en apports solaires peut se faire par retrait partiel ou complet (latéral ou vertical en fonction du type de store) ou par inclinaison des lamelles. Cette modulation peut être gérée par l’occupant de façon manuelle ou motorisée (il existe aussi des systèmes avec télécommande) ou de façon automatique grâce à un régulateur.

Store vénitien
intérieur.

Store enroulable
extérieur.


Les protections fixes

Le système est fixe et le degré de protection varie systématiquement en fonction de l’heure et de la saison.

Exemple : les brise-soleil, les avancées architecturales.

Souvent les éléments fixes sont des avancées horizontales au-dessus de la fenêtre, soit des avancées verticales de part et d’autre de la fenêtre.

Le pourcentage de protection de la fenêtre dépend :

  • De la position de la protection par rapport à la fenêtre,
  • de la hauteur du soleil,
  • du rapport entre la largeur de la protection et la hauteur ou longueur (en position verticale) de la fenêtre,
  • de l’espacement et de l’orientation des lames éventuelles.

Brise-soleil.

Avancée architecturale.

Façades sud

Les façades d’orientation proches du sud seront les plus faciles à protéger. Une protection fixe est à même d’éliminer complètement le rayonnement direct estival sans pour autant porter une ombre indésirable en hiver.

Façades est et ouest

Par contre, aucune protection fixe, horizontale ou verticale, ne permet de résoudre le problème propre aux façades est et ouest. Dans ces situations, une protection mobile sera de loin la plus préférable.

En général, une protection optimale, c’est-à-dire adaptée toute l’année aux besoins en chaud ou en froid, est difficile à obtenir avec des protections fixes. En tout état de cause, une étude précise tenant compte des risques de surchauffe et d’éblouissement dus à l’ensoleillement en fonction de la position du soleil et de la saison doit être menée préalablement à tout projet.

calculs 

Pour obtenir une méthode de dimensionnement des protections fixes : cliquez ici !

Exemple : une protection fixe horizontale pour une fenêtre orientée au sud.

en été :
la protection est maximum lorsque le soleil est au zénith

en hiver :
la protection est inopérante

en mi-saison :
aux mois de septembre et de mars, la protection est partielle

En hiver

En hiver, l’absence de protection permet aux apports du soleil de diminuer les frais de chauffage. La situation est intéressante. Cependant, elle ne le sera que si la régulation de l’installation de chauffage tient compte des apports gratuits et que l’ensoleillement ne crée pas de surchauffe en saison froide. Par contre l’éblouissement dû au soleil bas en hiver ne peut être résolu par cette disposition. Pour limiter celui-ci, une protection légère intérieure (rideaux) peut être associée à une protection fixe.

En mi-saison

En mi-saison, on voit que l’ensoleillement des locaux sera le même au printemps qu’en automne, alors que les besoins sont différents. En effet, au mois de septembre, la température moyenne en journée est d’environ 18°C. L’ensoleillement peut dans ce cas devenir source de surchauffe. Au mois de mars, la température moyenne est de 8°C. Dans ce cas, les apports du soleil peuvent être les bienvenus.

Cas particulier : la végétation

La végétation à feuilles caduques apporte une protection qui est naturellement variable. En été, le feuillage apporte un ombrage aux fenêtres et en hiver, la chute des feuilles fait profiter les locaux des apports gratuits du soleil.

Schéma protection solaire végétale.


Les protections permanentes

Le système est fixe et le degré de protection est constant quelle que soit l’heure et la saison.

Exemple : les films collés contre le vitrage, les vitrages spéciaux (réfléchissants et/ou absorbants).

Photo films collés contre le vitrage. Sous notre climat belge, la probabilité d’ensoleillement est inférieure à 20 % en hiver (moins d’un jour sur cinq) et à 50 % en été (moins de un jour sur deux).
Une protection relativement efficace en été est inconciliable avec la valorisation de l’éclairage naturel en absence d’ensoleillement et des apports énergétiques gratuits en hiver.
Sauf exception (locaux informatiques où il faut gérer la surchauffe et l’éblouissement), ce type de protection est donc peu recommandable dans nos régions.

Conscients de ce problème, les fabricants de vitrages ont développé des vitrages présentant une protection contre l’énergie solaire correcte (FS = 0,39) et une transmission lumineuse qui se rapproche de celle des doubles vitrages clairs (TL = 0,71).

Signalons également que des vitrages anti-solaires dont les caractéristiques de protection peuvent varier automatiquement en fonction des besoins sont développés par les grands fabricants. Ils ne sont malheureusement pas accessibles à tout le monde !

Choisir une protection insérée dans un double vitrage

Choisir une protection insérée dans un double vitrage


La description du système

Schéma protection insérée dans un double vitrage. Schéma protection insérée dans un double vitrage. La protection, composée d’une toile enroulable ou d’un store vénitien, est intégrée dans l’espace entre les deux vitres d’un double vitrage.

Les avantages par rapport aux systèmes classiques

L’efficacité contre les surchauffes et l’éblouissement

Les performances face à l’ensoleillement sont semblables aux performances des protections intérieures réfléchissantes et peuvent se rapprocher des performances de protections extérieures parallèles au vitrage. Il faudra cependant se méfier de l’augmentation de la température interne de la surface du vitrage qui peut provoquer un léger inconfort (rayonnement chaud).

La résistance mécanique et à l’encrassement

Les éléments sont montés à l’intérieur d’une partie étanche. Ils ne sont soumis ni aux perturbations extérieures, ni aux perturbations intérieures. N’étant pas sujet à l’encrassement et à l’empoussièrage, ce système de protection peut s’appliquer aux locaux où une grande hygiène est souhaitée. Il ne demande aucun entretien.

L’esthétique

La présence de la protection est discrète. Elle ne modifie pas la structure des façades, ni à l’extérieur, ni à l’intérieur.

La ventilation naturelle

La liberté d’ouverture des fenêtres est totale.

Le pouvoir isolant

Le coefficient de transmission thermique U du double vitrage clair est amélioré, jusqu’à 20 à 30 % pour un double vitrage clair standard (air) grâce à une protection solaire insérée entre les vitres.


Les inconvénients par rapport aux systèmes classiques

Placement en rénovation

Le placement de la protection implique le remplacement du vitrage, ce qui limite son application dans le cadre de la résolution d’un problème de surchauffe ou d’éblouissement.

Diminution de la surface utile de la fenêtre

L’encombrement du mécanisme des systèmes escamotables (par exemple les stores enroulables) peut diminuer de façon non négligeable la surface utile de la fenêtre.

Dépannage et étanchéité du double vitrage

La position intégrée des protections rend difficile un dépannage en cas de dysfonctionnement du mécanisme de retrait. Il peut également en résulter une perte d’étanchéité du vitrage.

Choisir entre une protection intérieure ou extérieure

L’efficacité contre les surchauffes et l’éblouissement

L’effet de serre se produit lorsque les rayons du soleil sont absorbés par une matière située derrière le vitrage. Dès lors, une protection solaire sera efficace contre les surchauffes :

Protections extérieures Les protections extérieures seront toujours efficaces contre les surchauffes car elles arrêtent les rayons du soleil avant qu’ils n’atteignent le vitrage. Pour les stores de type « toile »,  une plus grande efficacité sera atteinte pour de facteur d’ouverture faible et des couleurs foncées.
Protections intérieures Les protections intérieures ne seront efficaces contre les surchauffes que si elles repoussent les rayons du soleil ayant traversé le vitrage. Pour cela, elle doit être non absorbante et réfléchissante (couleur clair au minimum).

Un même store en tissu (gris non réfléchissant avec un coefficient d’ouverture de 4.2) à l’extérieur ou à l’intérieur combiné à un double vitrage argon clair et basse émissivité :

FS = 0,05

FS = 0,55

Par contre, une même protection solaire installée à l’extérieur ou à l’intérieur, permettra un contrôle presqu’identique de la luminosité.


Les contraintes mécaniques

Protections extérieures Les protections extérieures sont soumises aux perturbations atmosphériques (vent, pluie) ou encore au vandalisme. La sensibilité de certaines de ces protections (notamment en toile) peut limiter leur utilisation pour les bâtiments élevés ou en zone exposée (vent important) ou encore à hauteur d’homme dans des lieux fréquentés (vandalisme).
Pour prévenir toute détérioration, notamment la nuit, il sera nécessaire de conscientiser les occupants à la nécessité de retrait de ces protections durant leur absence ou à envisager leur automatisation.
Par contre, il existe des protections extérieures conçues pour résister aux contraintes extérieures. C’est le cas par exemple des brise-soleil ou des stores vénitiens en aluminium.
En outre, dans les zones urbaines fort fréquentées, l’encrassement des protections extérieures peut être assez rapide.
Protections intérieures Les protections intérieures devront résister aux sollicitations des occupants qui peuvent être importantes notamment dans les locaux publics. La position intérieure des stores peut faciliter leur nettoyage notamment pour les bâtiments élevés.

L’esthétique

Protections extérieures Les protections extérieures modifient peu (stores enroulables) ou beaucoup (brise-soleil, avancées architecturales, stores vénitiens) la structure architecturale des façades. En ce sens, certaines protections extérieures risquent de ne pas s’adapter à une rénovation.

Protections intérieures Des protections intérieures ayant une efficacité limitée contre les surchauffes (par exemple, les stores vénitiens ou à lamelles) sont parfois installées uniquement pour leur aspect décoratif.

Les protections intérieures efficaces contre les surchauffes et les déperditions de chaleur auront un aspect réfléchissant qui peut ne pas être au goût de chacun.


Le pouvoir isolant

Protections extérieures Les protections extérieures n’apportent qu’une légère amélioration de l’isolation thermique supplémentaire à la fenêtre car elles ne sont généralement pas étanches..
Protections intérieures Certaines protections intérieures peuvent avoir un impact plus important sur la diminution des déperditions d’un vitrage. De plus, elles peuvent aussi avoir un impact plus important sur la sensation de confort à proximité de la baie (protection contre le rayonnement « froid » de la baie).

Pour autant que la surface intérieure de la protection soit réfléchissante, le coefficient de transmission thermique d’une fenêtre équipée de double vitrage peut diminuer de 25 %. Une diminution de 40 % peut être atteinte avec des stores réfléchissants insérés dans des guides étanches.

Remarquons que l’inétanchéité de la protection, outre la diminution de l’isolation par rapport à l’optimum, risque d’entraîner l’apparition de condensations importantes sur la surface intérieure de la fenêtre. Celles-ci peuvent endommager les menuiseries.


La ventilation naturelle des locaux

Le déploiement de certaines protections solaires rendra impossible l’ouverture des fenêtres pour pratiquer une ventilation naturelle des locaux.

Protections extérieures Aucune protection extérieure n’empêchera physiquement l’ouverture des fenêtres permettant ainsi une ventilation naturelle associée à la protection solaire. Une restriction existe cependant : les protections en toile déroulées devant les fenêtres risquent de ne pas résister aux contraintes mécaniques dues aux courants d’air éventuels.
Protections intérieures L’installation de protections solaires intérieures limite souvent les possibilités d’ouverture des fenêtres. Les protections peuvent être fixées aux ouvrants. Dans le cas de châssis oscillo-battants ou basculants, la combinaison de la protection solaire et de la ventilation naturelle est possible. Cependant, les fabricants de stores enroulables risquent de ne pas couvrir une détérioration due à de l’air s’infiltrant entre la protection et le vitrage du fait de fenêtres voisines ouvertes.

Si la protection est fixée sur le dormant, l’ouverture des fenêtres n’est guère possible lorsque la protection est déployée, que ce soit pour des raisons de maintien de la protection dans ses guides ou de leur résistance mécanique aux courants d’air. De même, lorsque la protection est abaissée, il est bon de prévenir l’ouverture subite d’une fenêtre suite à un courant d’air.

Lorsque la protection intérieure est relevée, il faut pouvoir conserver la liberté d’ouverture de la fenêtre :

  • Si la protection est fixée au dormant ou au linteau, l’ouvrant ne peut heurter ni la protection repliée, ni ses guides.
  • Si la protection est solidaire de l’ouvrant, les charnières latérales de la fenêtre doivent se situer suffisamment loin des retours de fenêtre pour garantir une ouverture complète.

Choisir le facteur lumineux


Transmission lumineuse d’un vitrage simple TL = 0,9.

Quelle transmission lumineuse faut-il choisir ?

La transmission lumineuse de la protection doit être suffisamment faible pour supprimer l’éblouissement des occupants et suffisamment élevée pour que la diminution de la quantité de lumière pénétrant à l’intérieur du local ne rende pas obligatoire l’utilisation de la lumière artificielle. La possibilité de vue de l’intérieur vers l’extérieur sera en outre souvent recherchée.

Fixons les ordres de grandeur par un exemple :

Définition d’un bureau type

Illustration bureau type.

Les murs sont de couleur claire et le sol recouvert de moquette.

Éclairement recommandé

Type d’activité Éclairement
Travail de bureau (attention soutenue). min. 500 lux
Activité ne demandant pas une attention soutenue
(ex : un séjour).
min. 200 lux
Travail sur ordinateur. max. 1 000 lux

Apports lumineux enregistrés dans le local

Schéma apports lumineux enregistrés dans le local.

La figure ci-dessus représente l’éclairement dans la pièce, au niveau d’un plan de travail, en fonction de la distance à la fenêtre, avec :

  • un double vitrage clair,
  • un double vitrage et une protection peu transparente (TL de la protection = 0,10),
  • un double vitrage avec une protection transparente (TL de la protection = 0,19).

Cette simulation se déroule le 15 juin à 16h, par ciel serein.
La fenêtre est orientée à l’ouest. Les conditions d’ensoleillement sont donc très favorables pour l’éclairage naturel du local (soleil fort pénétrant). Les valeurs minimum de transmission lumineuse déduites de cet exemple peuvent donc être considérées comme des extrêmes à ne pas dépasser sous peine de rendre le local trop obscur.

Transmission lumineuse recommandée

Le tableau suivant reprend les valeurs de transmission lumineuse minimum que doivent respecter les protections pour garantir un éclairement suffisant (300 lux) dans la pièce pour assurer le confort visuel lorsque la protection est déployée en période d’ensoleillement.

Ouest Sud Est
Distance à la fenêtre Juin
16 h (1)
Décembre
14 h
Juin
12 h
Décembre
12 h
Juin
7 h
Décembre
9 h
1 m 0.01 0.08 0.03 0.04 0.01 0.08
2 m 0.06 0.20 0.09 0.05 0.02 0.16
3 m 0.11 0.40 0.17 0.06 0.08 0.29
4 m 0.20 0.58 0.28 0.07 0.14 0.46
5 m 0.26 0.79 0.38 0.08 0.19 0.65

(1) Heure universelle; heure réelle en été = heure universelle + 2 h; heure réelle en hiver = heure universelle + 1 h.

Exemple.

Si l’on souhaite garantir 300 lux sur une table de travail, à 3 m de la fenêtre, dans un local orienté à l’ouest, on choisira un store dont le TL est :

  • Supérieur à une valeur de 0.11 si le store n’est utilisé qu’en été,
  • supérieur à une valeur de 0.40 si le store est aussi utilisé en hiver.

Choisir le facteur solaire (FS)


Facteur solaire d’un vitrage simple FS = 0,86.

Quel facteur solaire faut-il atteindre ?

Le choix du facteur solaire minimum à rechercher est fonction de chaque cas. Il n’est donc pas possible de citer un chiffre unique.

Fixons des ordres de grandeur par un exemple.

Valeur de référence

Dans les immeubles de bureaux, on peut estimer qu’un refroidissement devient nécessaire en été lorsque la somme des apports internes et externes atteint  60 W/m² au sol du local. Si on estime d’une manière générale les apports internes d’un bureau moyennement équipé comme suit : un ordinateur (+ 150 W/ordinateur), une personne (70 W/pers.), l’éclairage (10 W/m²) et 1 personne/13 m² au sol, les apports internes totalisent 27 W/m². Pour éviter le recours à la climatisation, il est donc nécessaire de limiter les apports solaires à 33 W/m² au sol.

Apports thermiques

Le tableau suivant représente pour une journée ensoleillée du mois de juillet, la puissance énergétique maximum due à l’ensoleillement, réellement transmise à l’ambiance d’un local de 30 m² au sol, en fonction de l’inertie du bâtiment. La fenêtre du local est équipée d’un double vitrage clair (de 6 m²) orienté respectivement à l’est, au sud et à l’ouest.

Bâtiment lourd Bâtiment moyen Bâtiment léger
Est 245 49 267 53 351 70
Sud 198 40 210
42
252
50
Ouest 250 50 263 53 356 71
W/m² de vitrage W/m² au sol W/m² de vitrage W/m² au sol W/m² de vitrage W/m² au sol

Facteur solaire recommandé

Bâtiment lourd Bâtiment moyen Bâtiment léger
Est 0.51 0.47 0.36
Sud 0.63 0.60 0.50
Ouest 0.50 0.47 0.35
FS FS FS

Facteur solaire minimum de l’ensemble vitrage + protection nécessaire
pour limiter les apports solaires à 33 W/m² au sol.