Impacts environnementaux : focus sur les fenêtres

Dans cette page, nous proposons une comparaison des impacts environnementaux des parois reprises dans la bibliothèque de TOTEM durant l’été 2023, afin d’identifier de bonnes pratiques en termes de choix constructifs. En particulier, nous nous intéressons aux toitures.

Recommandations avant comparaison:

 

Ca change vite

Les bibliothèques TOTEM s’enrichissent régulièrement, les EPD (déclaration environnementale de produit)  se multiplient… L’exercice fait ici est donc vrai pour en un temps t, et l’analyse peut changer rapidement. Cependant, puisqu’il ne s’agit pas de trouver un « meilleur élève », mais d’identifier des tendances, l’exercice vaut la peine.

Travailler à l’échelle de l’élément

Totem préconise la comparaison à partir du niveau hiérarchique correspondant aux éléments, de façon à considérer matériaux mis en œuvre ! En effet, si l’on comparait par exemple deux matériaux non mis en œuvre (deux isolants par exemple), on négligerait l’impact des matériaux additionnels nécessaires à celle-ci (fixation, mortier éventuel,…), et l’on pourrait mal estimer la durée de vie des matériaux, qui elle aussi peut dépendre des conditions de mise en œuvre .

Nous travaillons donc ici sur base des bibliothèques d’éléments prédéfinis dans TOTEM (planchers, murs, toitures,…). Il s’agit donc de bien de discuter de complexes multicouches, et non de matériaux individuellement.

Peut-on comparer des éléments n’ayant pas la même valeur U ?

L’impact environnemental de l’énergie consommée durant la phase d’utilisation de l’élément est pris en compte dans le score environnemental global. Une telle comparaison est donc possible, pour autant que l’on s’en tienne à une comparaison de l’impact sur l’ensemble des étapes du cycle de vie. Cela n’aurait évidemment aucun sens de comparer uniquement la phase de fabrication de parois n’ayant pas la même performance thermique.

Précisons cependant que la méthode de calcul utilisée pour l’évaluation de l’énergie consommée « in use » est discutable car relativement simpliste (méthode des degrés jours), et que l’impact de cette énergie n’est pas le même selon le type de système énergétique considérée (chauffage gaz ? pompe à chaleur ?). Les comparaisons qui sont faite sont donc à nuancer et contextualiser.

Peut-on comparer des éléments n’ayant pas la même durée de vie ?

Si l’on travaille à l’échelle des éléments, TOTEM uniformise les durées de vie à 60 ans, en intégrant un rythme de remplacement des éléments qui ne vivraient pas autant. La comparaison est donc possible.

Si vous voulez en savoir plus sur les hypothèses de calcul de TOTEM, dont la durée de vie, nous vous recommandons la video ci-dessous :

Peut-on comparer des élément n’ayant pas le même statut (Neuf ><Réno) ?

Oui et non. Il est intéressant de regrouper ces deux type d’éléments, pour mettre en évidence l’intérêt relative de la conservation d’éléments ou de composants existants. Mais une fois cela établi, c’est la comparaison d’éléments similaires qui a le plus d’intérêt pratique.


Vue générale sur les fenêtres

Le graphique ci-dessous représente l’ensemble des fenêtres répertoriés dans la bibliothèque TOTEM. En abscisse sont reprises les valeurs U (W/m2K) et en ordonnée le score agrégé de performance environnementale en millipoints par unité fonctionnelle.

Notons d’abord que plusieurs de ces fenêtres ne respectent pas l’exigence minimale U=< 1.5 W/m²K. Si l’on se concentre sur les autres, on remarque ne assez grande variabilité de score environnemental, puisque celui-ci varie entre 43 et 74 mPt/UF.

Comparaison d’éléments : les fenêtres prédéfinies de la bibliothèque TOTEM

Quelles tendances identifier ?

  • Premièrement, les fenêtres avec châssis bois présentent le meilleur score environnemental, que ce soit en simple ou, encore mieux, en triple vitrage. Le bois-alu arrive deuxième, et le PVC troisième. Le châssis aluminium ferme la marche.
  • Deuxièmement, le passage au triple vitrage permet systématiquement d’améliorer le score environnemental global, à matériau de châssis équivalent. L’ordre de grandeur de ce bénéfice est cependant inférieur à celui d’un changement de matériau de châssis. Par exemple, passer d’un châssis aluminium double vitrage à un aluminium triple vitrage vous fera gagner une dizaine de millipoints, alors que le passage vers un châssis bois double vitrage vous en fait gagner près de 20.

Attention cependant, ce chapitre de la bibliothèque TOTEM ne contient que peu de points. L’analyse sera donc à refaire lorsque cette bibliothèque se sera enrichie.


Vers une trop grande complexité de vitrages ?

Pour compléter l’analyse générale ci-dessous, nous pouvons nous trouver vers les recherche du dr. Jean Souviron((Jean Souviron. Glazing Beyond Energy Efficiency: An Environmental Analysis of the Socio-Technical Trajectory of Architectural Glass. Architecture, space management. Université Libre de Bruxelles (U.L.B.), Belgium, 2022. English.)), dont la thèse de doctorat porte sur l’analyse de cycle de vie des vitrages. En particulier, il analyse la tendance à la complexification des technologies de vitrages ces dernières décennies (doublement puis triplement des feuilles de verre, ajout de couches basses émissivité, remplissages gazeux, etc.) et s’interroge sur le bilan environnemental de ces vitrages dans un scénario de rénovation énergétique de bureaux : est-ce que les bénéfices des ces technologies lors de l’utilisation du bâtiment surpassent le coût environnemental d’une production plus complexe ? Ceci en se basant sur une analyse détaillée des cycles de production et des potentiels de récupérations et recyclage des vitrages.

Pour vous la faire courte, voici ses principales conclusions :

  • le meilleur vitrage est … celui qu’on ne produit pas. avant de se questionner sur quel vitrage pour remplacer ceux en fin de vie, il convient de se pencher sur la nécessité de ces vitrages, dnas une logique de réduction globale des quantités de matières utilisées. A noter cependant qu’il centre sont travail sur la rénovation des murs rideaux, pour lesquels effectivement la quantité de verre peut être mise en question. La situation est différente pour une architecture de fenêtres.

The most significant (impact) would be to minimise the production of flat glass due to the energy-intensive nature of float plants and their dependence on fossil fuels.

  • l’impact environnemental des vitrages est grevé par une grande difficulté à recycler les produits développés aujourd’hui, principalement du fait des difficultés à dissocier les composants des complexes de vitrage.

This means that the design of insulating glass units itself should be revised so that they provide sufficient acoustic and thermal insulation, while the materials from which they are made can be easily separated.

  • Sur la valeur ajoutée des vitrages « complexes », il pointe l’énorme incertitude qui entoure les analyses de cycle de vie actuelles, dans un contexte climatique changeant, un mix énergétique en transition, une variété d’hypothèses d’utilisation et de gains internes ou de systèmes HVAC et, potentiellement, une remise en question des ambiances intérieures à maintenir dans les bâtiments à l’avenir.

If the hypotheses and the definition of the life cycle scenarios can significantly change the conclusions of an LCA, how can the uncertainties related to the socio-technical trajectory of buildings be better taken into account?

  • Pour en venir au choix des complexes de vitrage dans une situation donnée, ses résultats indiquent une … équivalence de consommations énergétique globale pour les simples (sg), double (dg) et triples vitrages (tg). Signe que les vraies pistes de réduction d’impact ne sont peut-être pas dans un choix de technologie.
Figure 4.29 de la thèse du dr. Jean Souviron, montrant la consommation d’énergie totale sur le cycle de vie de différentes solutions de vitrages simple (sg), double (dg) ou triple (tg), pour une application de bureau et différentes solutions d’ombrage

Incohérent avec ce qui précède ? Non, nous ne le pensons pas. L’incertitude des analyses de cycle de vie est aujourd’hui encore grande, tout le monde le reconnais. Des résultats non convergents sont donc « attendus ». A ce stade des connaissances, les ACV peuvent donner des indications, pas des certitudes. Et dans le cas présent, concluons qu’aucune tendance claire en fonction de l’une ou l’autre technologie ne se dégage au niveau des vitrages « classiques » (résultats du dr. Souviron) et qu’au niveau des châssis, le bois semble tirer son épingle du jeu (résultats TOTEM).

Cet article a été révisé pour la dernière fois en été 2023. Les données et analyses présentées reflètent l’état des connaissances et des ressources disponibles à ce moment-là. Le domaine de la construction et de l’évaluation environnementale évoluant rapidement, nous encourageons nos lecteurs à vérifier si des mises à jour ou des compléments d’information ont été publiés depuis.

Impacts environnementaux : focus sur les toitures

Dans cette page, nous proposons une comparaison des impacts environnementaux des parois reprises dans la bibliothèque de TOTEM durant l’été 2023, afin d’identifier de bonnes pratiques en termes de choix constructifs. En particulier, nous nous intéressons aux toitures.

Recommandations avant comparaison

Ca change vite

Les bibliothèques TOTEM s’enrichissent régulièrement, les EPD (déclaration environnementale de produit)  se multiplient… L’exercice fait ici est donc vrai pour en un temps t, et l’analyse peut changer rapidement. Cependant, puisqu’il ne s’agit pas de trouver un « meilleur élève », mais d’identifier des tendances, l’exercice vaut la peine.

Travailler à l’échelle de l’élément

Totem préconise la comparaison à partir du niveau hiérarchique correspondant aux éléments, de façon à considérer matériaux mis en œuvre ! En effet, si l’on comparait par exemple deux matériaux non mis en œuvre (deux isolants par exemple), on négligerait l’impact des matériaux additionnels nécessaires à celle-ci (fixation, mortier éventuel,…), et l’on pourrait mal estimer la durée de vie des matériaux, qui elle aussi peut dépendre des conditions de mise en œuvre .

Nous travaillons donc ici sur base des bibliothèques d’éléments prédéfinis dans TOTEM (planchers, murs, toitures,…). Il s’agit donc de bien de discuter de complexes multicouches, et non de matériaux individuellement.

Peut-on comparer des éléments n’ayant pas la même valeur U ?

L’impact environnemental de l’énergie consommée durant la phase d’utilisation de l’élément est pris en compte dans le score environnemental global. Une telle comparaison est donc possible, pour autant que l’on s’en tienne à une comparaison de l’impact sur l’ensemble des étapes du cycle de vie. Cela n’aurait évidemment aucun sens de comparer uniquement la phase de fabrication de parois n’ayant pas la même performance thermique.

Précisons cependant que la méthode de calcul utilisée pour l’évaluation de l’énergie consommée « in use » est discutable car relativement simpliste (méthode des degrés jours), et que l’impact de cette énergie n’est pas le même selon le type de système énergétique considérée (chauffage gaz ? pompe à chaleur ?). Les comparaisons qui sont faite sont donc à nuancer et contextualiser.

Peut-on comparer des éléments n’ayant pas la même durée de vie ?

Si l’on travaille à l’échelle des éléments, TOTEM uniformise les durées de vie à 60 ans, en intégrant un rythme de remplacement des éléments qui ne vivraient pas autant. La comparaison est donc possible.

Si vous voulez en savoir plus sur les hypothèses de calcul de TOTEM, dont la durée de vie, nous vous recommandons la video ci-dessous :

Peut-on comparer des élément n’ayant pas le même statut (Neuf ><Réno) ?

Oui et non. Il est intéressant de regrouper ces deux type d’éléments, pour mettre en évidence l’intérêt relative de la conservation d’éléments ou de composants existants. Mais une fois cela établi, c’est la comparaison d’éléments similaires qui a le plus d’intérêt pratique.


Vue générale sur les toitures plates

Le graphique ci-dessous représente l’ensemble des toitures plates répertoriés dans la bibliothèque TOTEM. En abscisse sont reprises les valeurs U (W/m2K) et en ordonnée le score agrégé de performance environnementale en millipoints par unité fonctionnelle de chaque complexe de paroi.

Avant de commencer, pointons qu’un élément en béton cellulaire affichant un score dépassant les 250 mPt/UF a été supprimé du graphique. Alors que tous les autres éléments restent sous la barre des 100 mPt / UF, celui-là venait écraser les résultat et complexifier la lecture.

Cet élément (ID ET969) a été fortement impacté par une récente mise à jour, qui l’a fait passer 13,95 mPt/UF à 256,84 mPt/UF. Il est donc passé du « podium » à « l’élimination ».

Comparaison d’éléments : les toitures plates prédéfinies de la bibliothèque TOTEM

Qu’observons nous ?

  • Les éléments de charpente en bois scorent généralement mieux que les charpente en acier ou en béton. Sachant que le bois a cette capacité de stocker du CO2 pendant une partie de son cycle de vie, ce meilleur score par rapport à d’autre éléments structurels en maçonnerie ou métallique était attendu. On ne voit pas ici les nuances qu’il a fallu apporter dans l’analyse des murs extérieures à ossature bois.
  • Indépendamment du cas exceptionnel pointé plus haut, les éléments préfabriqués en béton (Dalle TT ou poutres en béton précontraint) affichent des scores variables dont certains voisins de bons profilés de charpente en bois. Par exemple, l’élément ET270 « TP_Dalle TT_Béton précontraint_BIB_Neuf_01 » affiche un score respectable de 15,4 mPt/UF, très proche de l’élément ET286 « TP_Solives et arbalétriers_Bois résineux_BIB_Neuf_04 » pour un même U= 0.23 W/m²K.

Podium des toitures plates

Voici les trois compositions de paroi présentant le meilleur score environnemental parmi les toitures plates :

  • Une toiture avec profilés FIJ et flocons de cellulose (référence TOTEM : TP_Profilés FJI 350_Bois lamellé_BIB_Neuf_01, ID  ET275) : U=0.13 W/m²K pour 9,9 mPt/UF et 28cm
C1 : Feuille d’étanchéité en EPDM ; C2 : Panneau de laine de roche (60 mm) ; C3 : Feuille d’étanchéité PP – LDPE ; C4 : Panneau OSB vissé ; C5 : Profilés en bois résineux ; C6 : couche composée : Profilés FJI 350 en bois lamellé – OSB (5%), combiné à des flocons de cellulose (95%) (240 mm) ; C7 : Lattes en bois résineux ; C8 : Panneau en plâtre ; C9 : Peinture acrylique
  • Une toiture avec solives en bois résineux et flocons de cellulose (référence TOTEM TP_Solives bois résineux_BIB_Neuf_02, (ID  ET273) : U=0.17 W/m² K pour 11,42 mPt/UF et 39 cm
C1 : Feuille d’étanchéité en EPDM ; C2 : Panneau de laine de roche (60 mm) ; C3 : Feuille d’étanchéité PP – LDPE ; C4 : Panneau OSB vissé ; C5 : Profilés en bois résineux ; C6 : couche composée : solives en bois résineux (22%), combiné à flocons de cellulose (78%) (225 mm) ; C7 : Lattes en Bois résineux ; C8 : Panneau en plâtre ; C9 : Peinture acrylique
  • Une variante de la précédente avec isolation en laine de roche uniquement par au-dessus (référence TOTEM TP_Solives bois résineux_BIB_Neuf_04, ID  ET286) : U=0.23 W/m²K pour 14,09 mPt/UF et 46cm

 

C1 : Feuille d’étanchéité EPDM ; C2 : Panneau de laine de roche (130 mm) ; C3 : Feuille d’étanchéité PP – LDPE ; C4 : Panneau OSB vissé ; C5 : Profilés en bois résineux ; C6 : Solives en bois résineux ; C7 : Lattes en bois résineux ; C8 : Panneau en fibre-gypse ; C9 : Papier peint

 

Le trio de tête est donc constitué de parois bois, et deux d’entre elles proposent une isolation en flocons de cellulose. Mais il nous semble nécessaire de mentionner que le 4ème meilleur score est atteint par une paroi béton (Référence TOTEM : TP_Dalle TT_béton précontraint_BIB_Neuf_01,  ID  ET273) : U=0.24 W/m²K pour 15,4 mPt/UF et 53cm:

C1 : Feuille d’étanchéité EPDM ; C2 : Panneau PUR (100 mm) ; C3 : Feuille d’étanchéité en bitume ; C4 : Enduit épais en béton maigre ; C5 : Béton coulé sur site ; C6 : Dalle TT en béton précontraint ; C7 : Enduit épais en plâtre ; C8 : Peinture acrylique

 


Vue générale sur les toitures en pente

Comparaison d’éléments : les toitures en pente prédéfinies de la bibliothèque TOTEM

On retrouve ici des éléments d’analyse similaires à ceux des murs extérieurs :

  • Il n’y a pas de corrélation évidente entre niveau U et score environnemental. Si les toitures « passives » (U<0,15W/m2K) ont de bons résultats environnementaux, on trouve également des parois à U=0,15W/m2K dont le score est très haut.
  • Les ossatures métalliques sont globalement à exclure.
  • Les ossatures bois présentent une grande variété de scores, signe que le mode constructif ne fait pas tout.
  • Plus spécifique aux toitures : les fermes semblent plus intéressantes que les fermettes.

Podium des toitures en pente

Voici les trois compositions de paroi présentant le meilleur score environnemental parmi les toitures inclinées :

  • Une toiture « passive » avec profilés FJI et laine de roche (référence TOTEM TI_Fermes en forme de A_Bois résineux_BIB_Neuf_02, ID  ET298) : U=0.11 W/m²K pour 8.54 mPt/UF et 68cm
C1 : Tuiles céramique non émaillée ; C2 et C3 : Lattes en bois résineux ; C4 : Panneau en fibre de bois ; C5 : Couche composée : profilés FJI en bois lamellé (5%), combiné à un matelas de laine de roche (95%) (360 mm) ; C6 : Poutres en bois résineux ; C7 : Feuille d’étanchéité PP – LPDE ; C8 : Lattes en bois résineux ; C9 : Panneau en plâtre ; C10 : Peinture acrylique
  • Une toiture avec profilés FJI et flocons de cellulose (référence TOTEM TI_Fermes en forme de A_Bois résineux_BIB_Neuf_03, ID  ET299) : U=0.17 W/m²K pour 9.23 mPt/UF et 56 cm
C1 : Tuiles céramique non émaillée ; C2 et C3 : Lattes en bois résineux ; C4 : Panneau en fibre de bois ; C5 : Couche composée : profilés FJI en bois lamellé (5%), combiné à un matelas de laine de roche (95%) (240 mm) ; C6 : Poutres en bois résineux ; C7 : Feuille d’étanchéité PP – LPDE ; C8 : Lattes en bois résineux ; C9 : Panneau en plâtre ; C10 : Peinture acrylique
  • Une toiture avec profilés FJI et laine de verre (référence TOTEM TI_Pannes bois résineux_BIB_Neuf_15, ID  ET323) : U=0.24 W/m²K pour 10.24 mPt/UF et 48 cm
C1 : Tuiles céramique non émaillée ; C2: Lattes en bois résineux ; C3 : Feuille d’étanchéité PE ; C4 : Panneau de toiture ouvert : 12mm particules + 170mm laine de verre ; C5 : Papier peint ; C6 : Poutres en bois résineux

Ces parois sont assez proches dans leur nature, la principale différence étant le choix du matériau isolant, avec le matelas de laine de roche (360mm) en pole position, devant la cellulose (240mm) et la laine de verre (170mm). Notons que les valeurs U atteintes ne sont pas identiques, la meilleur paroi étant aussi la plus isolante (U=0,11 W/m2K).

Cet article a été révisé pour la dernière fois en été 2023. Les données et analyses présentées reflètent l’état des connaissances et des ressources disponibles à ce moment-là. Le domaine de la construction et de l’évaluation environnementale évoluant rapidement, nous encourageons nos lecteurs à vérifier si des mises à jour ou des compléments d’information ont été publiés depuis.

Impacts environnementaux : focus sur les murs extérieurs

Dans cette page, nous proposons une comparaison des impacts environnementaux des parois reprises dans la bibliothèque de TOTEM durant l’été 2023, afin d’identifier de bonnes pratiques en termes de choix constructifs. En particulier, nous nous intéressons aux murs extérieurs.

Recommandations avant comparaison

Ca change vite

Les bibliothèques TOTEM s’enrichissent régulièrement, les EPD (déclaration environnementale de produit) se multiplient… L’exercice fait ici est donc vrai pour en un temps t, et l’analyse peut changer rapidement. Cependant, puisqu’il ne s’agit pas de trouver un « meilleur élève », mais d’identifier des tendances, l’exercice vaut la peine.

Travailler à l’échelle de l’élément

Totem préconise la comparaison à partir du niveau hiérarchique correspondant aux éléments, de façon à considérer matériaux mis en œuvre ! En effet, si l’on comparait par exemple deux matériaux non mis en œuvre (deux isolants par exemple), on négligerait l’impact des matériaux additionnels nécessaires à celle-ci (fixation, mortier éventuel,…), et l’on pourrait mal estimer la durée de vie des matériaux, qui elle aussi peut dépendre des conditions de mise en œuvre .

Nous travaillons donc ici sur base des bibliothèques d’éléments prédéfinis dans TOTEM (planchers, murs, toitures,…). Il s’agit donc de bien de discuter de complexes multicouches, et non de matériaux individuellement.

Peut-on comparer des éléments n’ayant pas la même valeur U ?

L’impact environnemental de l’énergie consommée durant la phase d’utilisation de l’élément est pris en compte dans le score environnemental global. Une telle comparaison est donc possible, pour autant que l’on s’en tienne à une comparaison de l’impact sur l’ensemble des étapes du cycle de vie. Cela n’aurait évidemment aucun sens de comparer uniquement la phase de fabrication de parois n’ayant pas la même performance thermique.

Précisons cependant que la méthode de calcul utilisée pour l’évaluation de l’énergie consommée « in use » est discutable car relativement simpliste (méthode des degrés jours), et que l’impact de cette énergie n’est pas le même selon le type de système énergétique considérée (chauffage gaz ? pompe à chaleur ?). Les comparaisons qui sont faite sont donc à nuancer et contextualiser.

Peut-on comparer des éléments n’ayant pas la même durée de vie ?

Si l’on travaille à l’échelle des éléments, TOTEM uniformise les durées de vie à 60 ans, en intégrant un rythme de remplacement des éléments qui ne vivraient pas autant. La comparaison est donc possible.

Si vous voulez en savoir plus sur les hypothèses de calcul de TOTEM, dont la durée de vie, nous vous recommandons la video ci-dessous :

Peut-on comparer des élément n’ayant pas le même statut (Neuf ><Réno) ?

Oui et non. Il est intéressant de regrouper ces deux type d’éléments, pour mettre en évidence l’intérêt relative de la conservation d’éléments ou de composants existants. Mais une fois cela établi, c’est la comparaison d’éléments similaires qui a le plus d’intérêt pratique.


Vue générale

Le graphique ci-dessous représente l’ensemble des murs extérieures (79) répertoriés dans la bibliothèque TOTEM. En abscisse sont reprises les valeurs U (W/m2K) et en ordonnée le score agrégé de performance environnementale en millipoints par unité fonctionnelle de chaque complexe de paroi.

Les différents types de murs extérieurs sont regroupés selon le matériau de l’élément porteur du mur. Par exemple, on retrouve un groupe (vert) d’ossatures bois, un groupe (rouge) de mur en maçonnerie composé de briques isolantes, un groupe (bleu) de mur dont l’ossature est de l’acier, … Les points violets – de plus petite taille que les autres points colorés – représentent les complexes de parois de type RENO. Il s’agit dans ce cas-ci de murs extérieurs en briques.

Comparaison d’éléments : les 79 murs extérieurs prédéfinis de la bibliothèque TOTEM

Que peut-on observer en première lecture ?

  • Presque tous les murs issus de la bibliothèque TOTEM ont des valeurs U réglementaires ou améliorées. La bibliothèque est donc composée d’éléments prédéfinis représentatifs de parois neuves ou lourdement rénovées mais non représentatives du bâti « à rénover ». Pour le devenir, ces éléments prédéfinis sont modifiables par l’utilisateur lorsque ceux-ci sont mobilisés au sein d’un projet. En consultation (en lecture seule), il ne sont pas modifiables. La volonté de Totem est d’étoffer des éléments prédéfinis « reno » présents dans la bibliothèque, mais à l’heure actuelle ces éléments sont encore marginaux.
  • Les scores environnementaux sont assez dispersées mais on pressent l’émergence de certains clusters. Les éléments en ossature acier (points bleus) apparaissent d’emblée comme les « moins bons élèves » tandis que les points représentant des éléments en lamellé-collé, des éléments en briques, des éléments en ossature bois, des éléments de maçonnerie constitués de blocs creux s’agglutinent dans le « bon peloton ». Ce peloton correspond aux points qui tendent à rejoindre le bas du graphique, entre 10 et 20 mPt/UF.
  • Les éléments situés vers le coin inférieur gauche du graphique conjuguent un faible impact environnemental (score bas en mPt) ainsi qu’une petite valeur U (bonne isolation). On voit que les parois les plus isolées ne sont pas nécessairement les moins impactantes, sans pour autant moins bien « performer » que les autres, signe que la question de l’impact environnemental ne se limite pas à une question d’isolation : les autres éléments de la paroi ont un rôle important dans la discussion.

Il ne faut néanmoins pas aller trop vite sur l’idée de clusters. Si certains groupes de parois semblent se distinguer par des impacts relativement faibles (lamellé-collé, briques), on voit bien que tous les éléments d’une même sous-catégorie ne scorent pas de façon homogène. Comme l’atteste par exemple cet élément en lamellé-collé qui se détache du « bon peloton » et affiche un score plus impactant.


Zoom sur les parois PEB conformes

Intéressons-nous maintenant aux éléments présentant une bonne valeur U proche de la réglementation actuelle ( < ou égal 0,24 W/m²K).

Le graphique ci-dessous présente un zoom sur quelques « brochettes » d’éléments tirées de la figure précédente, constituées d’empilements d’éléments autour des valeurs U suivantes: 0.22 W/m²K, 0.23 W/m²K et 0.24 W/m²K.

Comparaison de murs extérieurs présentant un U proche de la réglementation en vigueur.

On constate d’emblée un empilement hétérogène des valeurs qui ne permet pas de tirer de grandes généralité. Des supposés « bons élèves » peuvent présenter un score très haut. On s’attendrais par exemple à ce que toutes les parois « bois » aient un score en mPt/UF bas, mais ce n’est pas le cas.

Il faut regarder en détail afin d’identifier dans leur groupe respectif les parois qui se distinguent de façon trop impactantes. Par exemple, dans le groupe des éléments en ossature bois, celles qui ont un score haut le doivent à chaque fois à une des couches du complexe de paroi (une isolation en laine de mouton, un bardage plastique ou des profilés alu pour plaques de revêtement en céramique émaillée). Une première conclusion s’impose: il ne suffit pas de définir l’élément structurel de la paroi pour atteindre un faible score, mais de bien réfléchir le complexe de paroi dans son ensemble.

Ceci dit, les ossatures d’acier se distinguent assez nettement dans le haut de la pile (allant de 28 à 71 mPt/UF), du fait de l’impact très lourd de la production de l’acier…


Podium

Le meilleur élément de la figure est ce point mauve apparaissant à la base de la « brochette » 0.22 W/m²K). Il s’agit d’une paroi de briques pleines en terre cuite « Reno ». Cela veut dire que certains composants de cet élément n’ont pas le même statut que celui de la majorité des éléments prédéfinis : les phases de production et chantier ne sont pas considérées pour ceux-ci. C’est donc une situation particulière.

En dehors de ce cas particulier, les éléments sur le podium sont :

  • une structure en lamellé-collé isolée en cellulose et avec un enduit extérieur posé sur un panneau de fibre de bois (référence TOTEM : ME_Profilés FJI 250_Bois lamellé_BIB_Neuf_02, ID ET44) : U=0.17 W/m²K pour 9,68 mPt/UF et 32 cm
C1 : Enduit épais : enduit traditionnel; C2 : Panneau de fibre de bois (18 mm); C3 : Couche composée : Profilés FJI 250 (5%), combinés à des flocons de cellulose insufflé sur site (95%) (240 mm); C4 : Panneau OSB vissé; C5 : Feuille d’étanchéité PP – PE; C6 : Lattes en bois résineux; C7 : Panneau en plâtre; C8 : Peinture acrylique
  • La paroi « biosourcée » type : Une ossature bois isolée par ballots de paille, avec enduits d’argile intérieures et extérieures (référence TOTEM : ME_Ossature_Bois résineux_BIB_Neuf_01, ID  ET103) : U=0.14 W/m² K pour 9,98 mPt / UF et 53 cm
C1 : Enduit épais : Mortier de chaux-trass ; C2 : Couche composée : Ossature en bois résineux (11%), combinés à des ballots de paille (89%) (480 mm) ; C3 : Enduit à l’argile
  • Une paroi maçonnée avec isolé collé EPS et revêtement en plaquette (référence TOTEM : ME_Briques isolantes_terre cuite_BIB_Neuf_09, ID  ET77) : U=0.22 W/m²K pour 11,17 mPt / UF et 33 cm
C1 : Plaquettes de terre cuite ; C2 : Enduit épais ; C3 : Panneau EPS (150 mm) ; C4 : Briques isolantes en terre cuite ; C5 : Enduit plâtre ; C6 : Papier peint

 


Maçonnerie ou ossature bois ?

La présence d’une paroi en maçonnerie dans notre podium invite à s’intéresser plus largement au nuage de points rouges. Celui-ci performe plutôt bien, chacun de ces points étant situés à la base de chaque « brochette ». La construction en maçonnerie n’est pas antinomique avec réduction d’impact environnemental global.

Le graphique suivant reprend l’ensemble des parois en maçonnerie de briques isolantes et des parois ossature bois, pour comparaison.

Comparaison d’éléments à base briques isolantes ou d’ossature bois

Difficile de tirer une généralité, mais nous voyons que certains éléments en ossature-bois affichent des scores intéressants, à la fois en terme de performance environnementale et de performance énergétique. Ceux-là présentent des isolations en paille, laine de roche ou cellulose). Mais d’autres sont bien moins intéressant. Le point isolé (44mPt/UF) présente une isolation en granulés de liège expansé, mais ne nous y laissons pas prendre : ce n’est nullement la couche isolante qui est impactante dans cet élément, mais bien la couche de revêtement intérieure en céramique ! Le graphique affichant le détail par composant est très instructif en la matière lorsqu’il s’agit de se rendre compte de ce qui est impactant au sein de l’élément.

Nous constatons également que le nuage de points des parois en briques isolantes est relativement homogène avec un score qui s’échelonne entre 11 mPt/UF pour celle isolée avec de l’EPS (polystyrène expansé) et 16 mPt /UF pour celle isolée en XPS (polystyrène extrudé). Cette famille a donc l’avantage d’une relative prévisibilité des performances. Par contre, elle présente un moindre potentiel de réemploi des composants, vu l’emploi fréquent de colles pour les isolants et revêtements.

Le chauffage de proximité en test à l’UCLouvain

Une expérience pilote((Lire le détail sur : https://dial.uclouvain.be/pr/boreal/fr/object/boreal%3A275611/datastreams)) de dispositifs de chauffage de proximité s’est tenue dans bureaux de la faculté LOCI et de l’institut LAB de l’UCLouvain, en décembre et janvier 2023. L’objectif est de démontrer qu’il est possible de maintenir la satisfaction des occupants tout en abaissant les températures intérieures des espaces de travail, grâce à l’utilisation de systèmes de correction thermique individuels. Cette expérience s’inspire bien entendu de la démarche Slowheat.


Démarche

L’expérience fait appel à des volontaires, qui reçoivent un « kit » de solutions chauffantes. En échange, ils s’engagent à chercher à moduler la température de leur bureau (a priori à la baisse) jusqu’à trouver leur point d’équilibre. Ont répondu à l’appel 34 personnes (24 femmes pour 10 hommes), certains disposant de leur propre bureau, d’autres partageant un même espace.

Le matériel suivant a été proposé aux participants:

  • Un chauffe-main de 115 Watt
  • Un dossier de chaise chauffant de 60 Watt
  • Un panneau chauffe pied de 85 Watt

La sélection du matériel s’est basée, principalement, sur la disponibilité, le coût, et le présence d’un moyen de contrôle dans le temps de l’apport de chaleur (auto-stop), de façon à limiter les risques de surconsommation d’énergie.


Températures d’ambiance

Des enregistreurs de température ont été placés dans les bureaux des participants. Les résultats présentés ici ne couvrent que les heures d’occupation. Dans la moitié des locaux environ, les relevés montrent une température sensiblement inférieure à la cible institutionnelle de 19°C. Dans l’autre moitié, les températures sont relativement proche de cette cible. Selon les déclarations des participants dans les locaux les plus froid, cette chute de température est bien due à leur action sur les vannes thermostatiques. Il sont plusieurs à avoir complètement coupé le chauffage. Notons cependant que les locaux adjacents, couloirs, etc… restaient chauffés, ce qui assure une apport thermique de base.

Distribution des températures intérieures entre le 1 décembre et le 20 janvier, en période d’occupation,
dans les différents bureaux des participants.


Confort thermique

Des questionnaires remplis à intervalles réguliers permettent d’avoir une idée de la satisfaction des participants. Ceux-ci montrent pendant l’expérience une perception de l’ambiance plus centrée sur la neutralité (« ni trop chaud ni trop froid ») que lors de la période de référence avant expérience.

Distribution des réponse à la question « Comment décririez-vous, au moment de remplir ce questionnaire,
l’ambiance thermique à votre poste de travail ? », sur une échelle allant de -3 (très froid) à +3 (très chaud), avec un neutre à 0.

Ils montrent aussi une augmentation sensible de la satisfaction thermique pendant l’expérience.

Distribution des réponse à la question « Comment jugez-vous l’ambiance thermique à votre poste de travail ? »
sur une échelle allant de 1 (très insatisfaisant) à 6 (très satisfaisant), sans possibilité de réponse neutre.


Avis sur les dispositifs de correction thermique

L’enquête révèle une disparité importante de satisfaction vis-à-vis des différents dispositifs de correction thermique distribués. Si le chauffe-main fait l’unanimité, le dossier de chaise présente un résultat plus contrasté tout en restant très majoritairement apprécié, alors que le chauffe-pied est unanimement jugé insatisfaisant.
Ce tableau résume les avantages et inconvénients de ces différentes solutions :

Dispositif Avantage Inconvénient
Chauffe-main
  • peu encombrant
  • Efficace
  • Sensation de chaleur immédiate
  • Chaleur ressentie au-delà des mains
  • Parfois jugé trop puissant ou insuffisamment modulable en température
  • Odeur de plastique chaud lors des premiers usages
  • En cas de grand froid (12°), jugé efficace pour les paumes et poignets ,mais inefficace pour le haut des main.
  • L’apport de chaleur sous un laptop pose question sur le bon fonctionnement de celui-ci
Dossier et assise chauffants
  • Puissant, rapide et efficace. « Parfait quand il fait entre 16-17,5°C »
  • Apport de chaleur au niveau du dos apprécié
  • Fil encombrant
  • Jugé parfois trop puissant, même en puissance minimale
  • Contraste trop important de ressenti entre la position assise et lorsque l’on se relève, ou entre le dos et les extrémités du corps
  • Apport de chaleur au niveau de l’assise pas toujours apprécié, et pose de question de santé à terme (apport de chaleur sur la zone génitale)
Chauffe-pied
  • Néant
  • Très souvent jugé non nécessaire
  • Peu efficace lorsqu’utilisé : trop faible sensation de chaleur
  • Cable au sol encombrant

Conclusions

L’expérience confirme le potentiel des systèmes de correction thermique individuels. Ceux-ci peuvent effectivement augmenter la satisfaction individuelle et, dans certains cas, garantir celle-ci dans des conditions « hors normes ». En effet, les participants sont plutôt d’accord avec les affirmations selon lesquelles :

  • les dispositifs de correction proposés sont en mesure de corriger une situation de départ inconfortable, et
  • ceux-ci permettent de réduire les températures sans perte de bien-être.

Cependant, il apparait également que pour une partie non négligeable des participants, ces dispositifs n’ont pas permis de réduire la température. Ils ont alors servi de moyen d’améliorer la satisfaction dans les ambiances telles que prévues par la régulation centralisée (entre 18 et 20°C).

Il serait donc abusif, sur base de cette seule expérience, de présenter les systèmes de correction thermique comme une panacée permettant de réduire de façon centralisée les températures cibles.

Réduction des températures intérieures à Malmédy

Vue sur le monastère de Malmedy
Monastère de Malmedy, siège, entre autres, de l’administration communale

Durant l’hiver 2023, face à l’augmentation du prix de l’énergie (le prix au MWh est passé de 42.63€ en 2022 à 64.44€ soit une augmentation de 52%), l’administration communale de Malmédy a fait un effort de réduction des températures intérieures. Voici leur retour d’expérience.


Cas d’étude

Le bâtiment du monastère, situé à Malmédy, est une ancienne abbaye dont la construction date du XIIIème siècle, mais donc les bâtiments actuels sont du XVIIIème. La commune l’utilise pour diverse fonctions : bureaux, salles de réception, musée,…

La commune a déjà mis en oeuvre divers travaux d’amélioration de la performance énergétique, notamment des remplacement de châssis et la fermeture du cloître par une verrière. La qualité patrimoniale du site complique cependant les interventions.

L’installation de chauffage présente des circuits séparés pour les différentes fonctions du bâtiment, avec régulation par vannes thermostatiques et alimentation par des chaudières gaz de 250 kW. Selon un audit réalisé en 2023, reprenant les factures de l’année 2021, les consommations du bâtiment sont de 114 MWh/an d’électricité et 740 MWh/an de gaz, pour un coût d’environ 24 000 et 31 000 EUR/an respectivement.


Démarche

La commune a invité le personnel à vérifier le réglage des vannes thermostatiques en visant une position « 2.5» . Celle-ci correspond normalement  à une température de l’ordre de 19C°. Des affiches ont été apposées pour sensibiliser le personnel.

Aucune autre action n’a été prise au niveau de la régulation. C’est donc bien une démarche volontaire des participants, dans un contexte de crise énergétique.

Affiche de sensibilisation
Affiche apposée par la commune de Malmedy dans les locaux du monastère

Aider les plus sensibles

Pour ceux souffrant du froid, l’administration a mis à disposition des dispositifs de chauffage de proximité sous la forme de 35 sous-main chauffants, pour 65 employés. Ceux-ci ont une puissance maximale de 80W et deux positions de réglage, qui leur permettent de monter à 35 ou 60°C au choix de l’utilisateur. L’objectif est de chauffer les poignets par contact et les mains par rayonnement, car il s’agit d’une des zones les plus sensible du corps, et souvent la première à s’engourdir lors du travail de bureau en ambiance fraîche.

Sous-main chauffant
Exemple de sous-main chauffant

Résultats

Suite à la compagne de sensibilisation, les occupants ont réduit les températures d’environ 1°C en moyenne. Cela a permis une économie de 57.168 kWh soit une diminution de 9%. Puisque les 2 hivers sont comparables, l’abaissement de température expliquent donc cette diminution.

Au final, une économie de près de 3500 EUR par an pour la ville. Cela couvre très largement le prix d’achat (environ 15 EUR pièce) et les consommations des tapis chauffants. Celle-ci peut en effet être estimée à :

  • 80W (au maximum)
  • 6 heures par jour
  • 150 jours par an
  • = 80*6*150 = 72 000 Wh/an, ou 72 kWh/an
  • un kWh électrique à environ 40 centimes d’euro,
  • soit une trentaine d’euros par an et par sous-main, avec des hypothèses très défavorables.

Au niveau ressenti, le responsable énergie de la commune n’a relevé aucune perte de confort :

« Il n’y a pas eu de perte de confort dû à la baisse de T°. Que du contraire, puisque les tapis sous-mains chauffant ont même augmenté le confort des personnes les plus frileuses. »

Le slowheating… un peu trop vite ?

  1. Dossiers de chaise chauffants.
  2. Sous-mains chauffants.
  3. Panneaux radiants.
  4. Plaids chauffants.

Retour d’expérience d’un projet de slowheating dans des bureaux namurois.


De quoi s’agit-il ?

Le slowheating est une stratégie de chauffage basée sur le maintien d’une température d’ambiance plus basse que les standards habituels, avec compensation par des dispositifs chauffant à l’échelle des personnes, ainsi que des changements comportementaux et organisationnels.

L’expérience rapportée ici est celle d’un bureau d’études wallon qui a mis en place une expérience de ce type durant l’hiver 2023.


Mise en place

Ce bureau dispose de différents espaces de travail de type open space et bureaux individuels, distribués dans des anciens bâtiments à la performance énergétique médiocre. L’installation de chauffage est vétuste, et constituée d’un circuit de chauffage central alimenté par une chaudière fuel, sans thermostats d’ambiance. La régulation se faisait jusque-là sur base d’une courbe de chauffe et de vannes thermostatiques. Mais la régulation de la chaufferie est défectueuse et les vannes thermostatiques peu précises. On est donc en pratique dans une situation de chauffage permanent avec un réglage de la température ambiante difficile et dépendant des conditions météo.

A l’initiative du personnel, un séminaire interne à l’entreprise a été animé avant l’hiver par un expert en slowheating : l’occasion de présenter le concept et d’échanger sur la pertinence de sa mise en place dans le bureau. Suite à quoi un groupe de travail interne s’est mis en place pour préparer l’expérience.

Plusieurs options ont été explorées, pour finalement aboutir à une décision de réduction de la température d’ambiance dans deux des trois espaces open space. Cela implique environ la moitié de l’équipe la plus motivée a priori par la démarche. Cette première expérience a eu lieu en février 2023. La chute de température a été obtenue en fermant les vannes des radiateurs des locaux concernés. Sans contrôle donc sur la température résultante, qui en pratique était de l’ordre de 16 à 17°C le matin. Peu d’élévation de température en cours de journée est signalé, notamment du fait d’une ventilation « à l’ancienne » par ouverture de fenêtre.

A titre de compensation, du matériel chauffant a été mis à disposition, en « libre-service ». Chaque travailleur ne disposait pas de matériel attribué, faute de connaissance en amont de quels dispositifs pourraient satisfaire les employés. La direction a dès lors investi dans quelques sous-mains chauffants, des panneaux radiants, des dossiers de chaise chauffants et des plaids chauffants. Ce matériel n’est cependant arrivé que tardivement, et après le début de l’expérience. Dans un premier temps, les employés ont donc « fait avec », et joué sur leur habillement principalement. Une mobilité entre bureaux était possible, mais n’a pas été exploitée par les travailleurs.

En fin d’hiver, la décision a été prise de couper complètement le chauffage, vu le redoux. Peut-être un peu trop hâtivement, car un WE froid et venteux a entraîné des températures de l’ordre de 14°C un lundi matin, dans l’ensemble des open-spaces, … sans que du matériel chauffant complémentaire n’ait été prévu.


Retours d’expérience des membres du personnel

Les retours des participants sont divers. Si certains ont globalement apprécié la démarche, d’autres étaient beaucoup plus critiques. Puisque l’on apprend surtout de nos erreurs, concentrons-nous sur les difficultés rencontrées :

  • Certains expriment une frustration quant à l’absence de matériel chauffant en suffisance, en particulier lors de l’élargissement de la coupure de chauffage. Cette frustration est multipliée par le fait que les personnes touchées à ce moment-là n’étaient pas volontaires au départ.
  • Certains ont exprimé des critiques sur le matériel mis à disposition. Les sous-mains chauffants auraient dans un cas déformé un clavier plat posé dessus. Les panneaux radiants posés sur le bureau entravent la vue et la communication entre collègues, sans régler l’inconfort au niveau des pieds. Etc.
  • Certains expriment plus généralement une difficulté d’adhésion à l’idée d’un inconfort sur son poste de travail : « On vient pour bosser. Si en plus il fait froid… »
  • Certains expriment un dilemme émotionnel. D’une part leur conscience environnementale les mène rationnellement à comprendre la démarche. D’autre part, l’expérience physique d’inconfort est difficile à assumer. « Je n’osais pas me plaindre ».
  • Le fait qu’un espace de convivialité tel que le local de pause et de lunch ait également été froid a aussi été pointé comme une difficulté :  « on n’a même pas envie de rester à la machine à café car on ne s’y réchauffe pas ».
  • Enfin, l’installation de chauffage ne permettant pas de mesurer un bénéfice environnemental a été pointé comme un défaut. Pour certains, il est nécessaire de voir « le bénéfice de l’effort » pour maintenir de la motivation. Notons cependant qu’aucune gratification du personnel n’était associée à des économies d’énergie… On parle donc ici uniquement de motivation environnementale.

Quelques autres retours intéressants :

  • Entrer dans cette démarche a rendu certains hyper critiques envers le fonctionnement thermique d’autres espaces. Par exemple, des WC chauffés plus que les bureaux a interpellé sur le sens des priorités.
  • Au-delà des avantages et inconvénients des différents dispositifs chauffants (à ce stade jugés globalement trop peu durables), la clef du confort semble se situer dans l’habillement. Une fois celui-ci adapté à des températures fraiches, seul le confort des mains et des pieds peut être problématique. Cependant, les différences de températures fortes entre locaux peuvent poser problème si l’on est « trop habillé ».
  • Le fait d’être habillé chaudement est perçu par certains comme une gêne pour des tâches de bureau. D’autres évoquent également le fait qu’il est aussi plus difficile d’être coquet lorsqu’on est emmitouflé sous des couches épaisses.
  • Il a été perçu comme non acceptable de diminuer la température dans les salles de réunion, vu que celles-ci accueillent des externes pas au courant ni sensibilisé à la démarche (et du coup pas habillé en conséquence)
  • Certains des convaincus mentionnaient, malgré leur adhésion, une forme de fatigue au fil du temps.
  • « Si on a froid en arrivant, c’est foutu, on n’arrive pas à se réchauffer » … d’où l’intérêt d’un bon équipement également pour l’extérieur, notamment par temps pluvieux. Certains ont relevés qu’il fallait s’habiller plus chaudement pour du travail de bureau à l’intérieur que pour circuler à l’extérieur.  Cela est à l’opposé de nos habitudes et perturbe.
  • Les courants d’air froids et la température de surface des parois impactent sensiblement le confort, or ceci n’est pas mesuré par les thermomètres ni les vannes thermostatiques. Il n’est pas facile au début d’identifier la source de son inconfort, et donc les solutions pour l’améliorer.  Essayer trop brusquement de descendre la température ambiante risque dès lors de tuer la démarche Slowheat dans l’œuf.

Enseignements

De l’expérience de ce bureau, nous pouvons tirer quelques enseignements. A garder à l’esprit pour de futures expériences :

  • Assurer de l’adhésion en amont, ce qui implique des explications, une préparation, un temps d’expérimentation et un réel espace de discussion sur les modalités concrètes. Le sentiment d’une démarche imposée ou insuffisamment préparée (manque de matériel par exemple) pèse lourdement dans le résultat mitigé de cette expérience.
  • Assurer de la cohérence : Pour être accepté, le slowheating doit s’inscrire dans une démarche cohérente de bonne gestion énergétique. Sans cela, l’engagement du personnel sera difficile à assurer.
  • Donner de la flexibilité : Un changement des conditions de travail tel que visé ici devrait probablement aller de pair avec une réflexion plus large sur l’organisation des espaces de travail. On peut regrouper les personnes partageant des sensibilités proches. Ou rassembler les personnes aux horaires semblables pour justifiant des moments de remontées en température. En tous les cas, la tendance à aller vers des grands open-spaces et bureaux partagés ne facilite pas le slowheating. Et quand bien même cette flexibité serait-elle présente (c’est le cas ici), elle n’est pas si facile à mettre en œuvre en pratique. Certains sont attachés à leur poste de travail ou sont contraints par le matériel au vu des tâches qu’ils font.
  • Individualiser les dispositifs de compensation : Le partage d’équipements chauffants semblait ici problématique pour trois raisons. Premièrement, ce qui s’assimile à des vêtements (plaids,…) pose des questions d’hygiène. Deuxièmement, certains dispositifs sont encombrants et donc peu mobiles. Troisièmement, l’organisation du partage n’est pas évidente (premier arrivé = premier servi ?). Faut-il dès lors aller vers la distribution de bons d’achat plutôt que de matériel ? Ou l’organisation par l’employeur d’un achat groupé mais dans lequel chacun peut, après expérience sur du matériel de démonstration, sélectionner les dispositifs qui lui conviennent ?

Conclusion : Chi va piano va sano e va lontano ?

Avec notre regard extérieur, il nous semble que l’expérience partagée ici était peut-être trop ambitieuse.  une réduction trop forte des températures intérieures, trop rapidement ?

Pourquoi cette impression ? parce que beaucoup des personnes interrogées parlent d’un effort à faire, de motivation à entretenir, … Or, l’idée du slowheating est de changer de mode de fonctionnement pour trouver un nouvel équilibre. Si tout changement est un effort, la situation d’arrivée ne devrait pas en être un, faute de quoi la poursuite dans la durée sera difficile.

Dans ce cas-ci, la faible flexibilité de gestion de l’installation de chauffage au départ est en partie responsable. Ne pas pouvoir gérer l’installation de chauffage pour disposer de la température souhaitée n’aide évidemment pas à garder le contrôle. Or, la capacité à choisir la température d’ambiance et à se réchauffer lorsque besoin est un élément clé de toute démarche de slowheating. Comme le disait un des employés :

« Nous avons plus fait une expérience de résistance au froid qu’une expérience de slowheating ».

Chauffage de proximité

Principe:

Les systèmes de chauffage de proximité sont un ensemble d’équipements de chauffage permettant un apport d’énergie thermique de façon très précise dans l’espace et le temps. En particulier, il s’agit de dispositifs mobiliers permettant de chauffer directement le corps, par conduction (contact) ou rayonnement infra-rouge. Ils s’utilisent en complément du système de chauffage central pour assurer le confort individuel, en particulier dans une approche de slowheating.


Palette de solutions

Crédit Denis De Grave

On peut considérer un grand nombre d’équipements mobilier ou vestimentaires comme des chauffages de proximité. C’est pourquoi le projet de recherche Slowheat en propose une classification pour les espaces de logement sur base de leur sobriété énergétique. Cette classification, adaptée ici pour des usage de (télé)travail, les présente comme prioritaires sur le chauffage central :

Classe Puissance Familles de solutions Exemples

Classe A, le bon sens non-énergétique

0 watts Habillement, cloisonnement, acclimatation, adéquation de l’activité Mettre un pull, fermer une porte, alterner des périodes statiques et des périodes de mouvement…

Classe B, le chauffage de proximité basse puissance des corps [Par conduction]

± 50 W/corps Accessoires vestimentaires et/ou du mobilier chauffants en contact avec le corps. Chaise chauffante, gilet chauffant, sous-clavier chauffant…

Classe C, le chauffage de proximité moyenne puissance de l’environnement proche des corps [Principalement par rayonnement]

± 300 W/corps Par des éléments radiants et/ou du mobilier chauffant à proximité directe des bénéficiaires. Panneau radiant, table chauffante…

Classe D, le chauffage centralisé d’une pièce entière [Principalement par convection]

± 1 500 W/pièce Les vannes thermostatiques, le(s) radiateur(s) en place, un thermostat adapté. Chauffer une pièce à 15-17° quand on y est pour que les solutions ABC restent suffisantes.

Classe E, le chauffage centralisé du bâtiment entier

±5 000 W/logement Le chauffage central Garder le chauffage central en alerte pour maintenir le bâtiment hors gel (8 °C) ou à une température « de passage”, par exemple 12-15 °C.

Outre les accessoires mobiliers, des éléments de chauffage plus classiques pourraient être considérées comme des systèmes de chauffage de proximité. On pense notamment aux plafonds chauffants. Il faut cependant pour cela qu’ils répondent à trois exigences :

  • Etre pensés à une petite échelle : il ne s’agit pas ici d’élément chauffant uniformément un grand espace.
  • Pouvoir se réguler directement par l’occupant, en fonction de son ressenti, et non sur base d’une consigne d’ambiance.
  • Avoir une grande réactivité : pas plus de quelques minutes entre la demande de chaleur et le ressenti par l’occupant.

Efficacité énergétique

La littérature scientifique exprime souvent l’impact de ces système de chauffage en « degrés équivalents ». L’idée est la suivante : on mesurer le confort d’une cohorte d’individus dans une ambiance de référence, sans équipement de chauffage de proximité, puis le confort d’une autre cohorte dans une ambiance plus fraiche mais avec la possibilité d’utiliser de tels équipement. En multipliant les expériences pour différentes températures d’ambiance, on peut identifier celle qui mène à une satisfaction moyenne équivalent à la situation de référence. L’écart entre cette température et celle de référence donne une idée de l’impact des équipements testés.

Parallèlement, la consommation d’énergie liée à ces dispositifs peut être monitorée, et exprimée en watt par degré d’ambiance compensé.

De façon plus synthétique, un « review » de la littérature publié en 2022 a identifiée 20 études rigoureuses impliquant des systèmes de chauffage individuels, de 5 types différents((Thermal comfort and energy performance of personal comfort systems (PCS): A systematic review and meta-analysis, Song, Z. Zhang, Z. Chen, F. Wang and B. Yang, Energy and Buildings 2022 Vol. 256, DOI: 10.1016/j.enbuild.2021.111747)) : chaises chauffantes, chauffes pieds, tapis de sol chauffant, souffleur d’air chaud de table ou une combinaison de solutions. Leur analyse est résumée par la figure suivante, qui met en regard la température d’ambiance de confort pouvant être atteinte et la consommation d’énergie de compensation par le système de chauffage individuel :

Efficacité de différents dispositifs de chauffage de proximité, mesurée par la puissance nécessaire par degré de réduction d’ambiance pour un confort équivalent. Inspiré de Song et al, 2022.

On voit un potentiel de réduction des températures très importante, mais aussi très variable selon les études, signe d’une grande diversité de potentiel selon les dispositifs testés. Ce qui semble clair par contre c’est la très faible puissance nécessaire pour assurer le confort dans ces températures basses : de l’ordre de l’une ou l’autre dizaine de watt par degré (et par personne). En effet, parmi les dispositifs testés, les chaises chauffantes semble avoir la meilleure efficacité énergétique (moins de watt par degré de réduction d’ambiance). A l’opposé, des tapis de pied chauffants seraient les moins efficaces au niveau énergie.


Parties du corps à viser

Concernant les zones du corps à viser en priorité, un autre review indique que dans un environnement froid, c’est l’apport de chaleur au niveau de l’abdomen qui serait perçu comme le plus confortable((Effectiveness of personal comfort systems on whole-body thermal comfort – A systematic review on which body segments to target, W. Luo, R. Kramer, Y. de Kort and W. van Marken Lichtenbelt, Energy and Buildings 2022 Vol. 256, DOI: 10.1016/j.enbuild.2021.111766)). Par contre, l’apport de chaleur au niveau de la tête n’aurait que très peu d’impact.

Quant aux extrémités (mains et pieds), zones sensibles au froid, elles seraient positivement affectées par une apport de chaleur indirect au niveau du torse et du bas du dos, signe que des apports de chaleur locaux peuvent avoir des impacts plus larges sur le corps. Mais avec des limites : la perception de chaleur au niveau de la tête étant par exemple très peu impactée par un apport de chaleur sur d’autres parties du corps.

L’un dans l’autre, il semble que c’est la combinaison d’un apport de chaleur au niveau du torse (grande surface de contact) pour le confort général et au niveau des extrémité (zone sensible) pour la résolution d’inconforts localisés qui soit le plus efficace…. Si nous sommes relativement peu vêtus. Si l’on multiplie les couches vestimentaires, en particulier au niveau du torse, c’est l’apport de chaleur a niveau des extrémités qui devient crucial.

« The current knowledge indicates that, in an office context, in mild excursions outside the thermal comfort zone, hands and feet are the sources of thermal discomfort in the cold and the head is the source of thermal discomfort in the warmth. A novel Personnel Comfort System scheme, which targets only the extremities and head, is suggested. This scheme may eliminate the local thermal discomfort of the extremities and head while maintaining the thermal excitation to the torso in mild cold/warm conditions, thus providing a solution for creating a healthy and comfortable indoor environment. »((id.))

 

Dispositif de confor de proximité idéal : le torse correctement couvert mais laissé en interaction avec l’ambiance (1 et 3), tandis que les extrémités reçoivent des apports spécifique, de chaleur en hiver sur les pieds et les mains (2) et de faicheur sur la tête en été (4). D’après Luo et al, 2022.

Retours d’expériences

Différentes expériences de mise en œuvre des principes du slowheating, incluant le recours à des systèmes de chauffage de proximité sont racontées dans nos études de cas (dans une école, dans un bureau, dans une administration). De celles-ci, nous pouvons tirer les enseignements suivants :

  • Il est important que la puissance puisse être modulée. Jouez sur l’intensité ou sur des cycles marche-arrêt.
  • Tout le monde n’apprécie pas les mêmes apports de chaleur. Les sous-claviers chauffants semblent récolter une quasi-unanimité. Mais les apports de chaleur sur le dos et, surtout, les cuisses, ne plaisent pas à tout le monde. Il est donc important de prévoir différents dispositifs et de laisser chacun expérimenter.
  • Les expériences de partage de dispositifs dont nous avons eu vent ne semblent pas concluantes. A priori, à chacun son matériel. Surtout s’il s’agit d’élément en contact avec le corps.
  • Les études de cas montrent beaucoup de frustration. La qualité et durabilité des éléments actuellement présents sur le marché pose question.