Outil d'aide à la décision en efficacité énergétique des bâtiments du secteur tertiaire. Réalisé par Architecture et Climat, Faculté d'architecture, d'ingénierie architecturale, d'urbanisme (LOCI), site de Louvain-la-Neuve, Université catholique de Louvain, Belgique avec le soutien de la Wallonie.
Outil d'aide à la décision en efficacité énergétique des bâtiments du secteur tertiaire. Réalisé par Architecture et Climat, Faculté d'architecture, d'ingénierie architecturale, d'urbanisme (LOCI), site de Louvain-la-Neuve, Université catholique de Louvain, Belgique avec le soutien de la Wallonie.
Dans cette page, nous proposons une comparaison des impacts environnementaux des parois reprises dans la bibliothèque de TOTEM durant l’été 2023, afin d’identifier de bonnes pratiques en termes de choix constructifs. En particulier, nous nous intéressons aux toitures.
Recommandations avant comparaison:
Ca change vite
Les bibliothèques TOTEM s’enrichissent régulièrement, les EPD (déclaration environnementale de produit) se multiplient… L’exercice fait ici est donc vrai pour en un temps t, et l’analyse peut changer rapidement. Cependant, puisqu’il ne s’agit pas de trouver un « meilleur élève », mais d’identifier des tendances, l’exercice vaut la peine.
Travailler à l’échelle de l’élément
Totem préconise la comparaison à partir du niveau hiérarchique correspondant aux éléments, de façon à considérer matériaux mis en œuvre ! En effet, si l’on comparait par exemple deux matériaux non mis en œuvre (deux isolants par exemple), on négligerait l’impact des matériaux additionnels nécessaires à celle-ci (fixation, mortier éventuel,…), et l’on pourrait mal estimer la durée de vie des matériaux, qui elle aussi peut dépendre des conditions de mise en œuvre .
Nous travaillons donc ici sur base des bibliothèques d’éléments prédéfinis dans TOTEM (planchers, murs, toitures,…). Il s’agit donc de bien de discuter de complexes multicouches, et non de matériaux individuellement.
Peut-on comparer des éléments n’ayant pas la même valeur U ?
L’impact environnemental de l’énergie consommée durant la phase d’utilisation de l’élément est pris en compte dans le score environnemental global. Une telle comparaison est donc possible, pour autant que l’on s’en tienne à une comparaison de l’impact sur l’ensemble des étapes du cycle de vie. Cela n’aurait évidemment aucun sens de comparer uniquement la phase de fabrication de parois n’ayant pas la même performance thermique.
Précisons cependant que la méthode de calcul utilisée pour l’évaluation de l’énergie consommée « in use » est discutable car relativement simpliste (méthode des degrés jours), et que l’impact de cette énergie n’est pas le même selon le type de système énergétique considérée (chauffage gaz ? pompe à chaleur ?). Les comparaisons qui sont faite sont donc à nuancer et contextualiser.
Peut-on comparer des éléments n’ayant pas la même durée de vie ?
Si l’on travaille à l’échelle des éléments, TOTEM uniformise les durées de vie à 60 ans, en intégrant un rythme de remplacement des éléments qui ne vivraient pas autant. La comparaison est donc possible.
Si vous voulez en savoir plus sur les hypothèses de calcul de TOTEM, dont la durée de vie, nous vous recommandons la video ci-dessous :
Peut-on comparer des élément n’ayant pas le même statut (Neuf ><Réno) ?
Oui et non. Il est intéressant de regrouper ces deux type d’éléments, pour mettre en évidence l’intérêt relative de la conservation d’éléments ou de composants existants. Mais une fois cela établi, c’est la comparaison d’éléments similaires qui a le plus d’intérêt pratique.
Vue générale sur les fenêtres
Le graphique ci-dessous représente l’ensemble des fenêtres répertoriés dans la bibliothèque TOTEM. En abscisse sont reprises les valeurs U (W/m2K) et en ordonnée le score agrégé de performance environnementale en millipoints par unité fonctionnelle.
Notons d’abord que plusieurs de ces fenêtres ne respectent pas l’exigence minimale U=< 1.5 W/m²K. Si l’on se concentre sur les autres, on remarque ne assez grande variabilité de score environnemental, puisque celui-ci varie entre 43 et 74 mPt/UF.
Comparaison d’éléments : les fenêtres prédéfinies de la bibliothèque TOTEM
Quelles tendances identifier ?
Premièrement, les fenêtres avec châssis bois présentent le meilleur score environnemental, que ce soit en simple ou, encore mieux, en triple vitrage. Le bois-alu arrive deuxième, et le PVC troisième. Le châssis aluminium ferme la marche.
Deuxièmement, le passage au triple vitrage permet systématiquement d’améliorer le score environnemental global, à matériau de châssis équivalent. L’ordre de grandeur de ce bénéfice est cependant inférieur à celui d’un changement de matériau de châssis. Par exemple, passer d’un châssis aluminium double vitrage à un aluminium triple vitrage vous fera gagner une dizaine de millipoints, alors que le passage vers un châssis bois double vitrage vous en fait gagner près de 20.
Attention cependant, ce chapitre de la bibliothèque TOTEM ne contient que peu de points. L’analyse sera donc à refaire lorsque cette bibliothèque se sera enrichie.
Vers une trop grande complexité de vitrages ?
Pour compléter l’analyse générale ci-dessous, nous pouvons nous trouver vers les recherche du dr. Jean Souviron((Jean Souviron. Glazing Beyond Energy Efficiency: An Environmental Analysis of the Socio-Technical Trajectory of Architectural Glass. Architecture, space management. Université Libre de Bruxelles (U.L.B.), Belgium, 2022. English.)), dont la thèse de doctorat porte sur l’analyse de cycle de vie des vitrages. En particulier, il analyse la tendance à la complexification des technologies de vitrages ces dernières décennies (doublement puis triplement des feuilles de verre, ajout de couches basses émissivité, remplissages gazeux, etc.) et s’interroge sur le bilan environnemental de ces vitrages dans un scénario de rénovation énergétique de bureaux : est-ce que les bénéfices des ces technologies lors de l’utilisation du bâtiment surpassent le coût environnemental d’une production plus complexe ? Ceci en se basant sur une analyse détaillée des cycles de production et des potentiels de récupérations et recyclage des vitrages.
Pour vous la faire courte, voici ses principales conclusions :
le meilleur vitrage est … celui qu’on ne produit pas. avant de se questionner sur quel vitrage pour remplacer ceux en fin de vie, il convient de se pencher sur la nécessité de ces vitrages, dnas une logique de réduction globale des quantités de matières utilisées. A noter cependant qu’il centre sont travail sur la rénovation des murs rideaux, pour lesquels effectivement la quantité de verre peut être mise en question. La situation est différente pour une architecture de fenêtres.
The most significant (impact) would be to minimise the production of flat glass due to the energy-intensive nature of float plants and their dependence on fossil fuels.
l’impact environnemental des vitrages est grevé par une grande difficulté à recycler les produits développés aujourd’hui, principalement du fait des difficultés à dissocier les composants des complexes de vitrage.
This means that the design of insulating glass units itself should be revised so that they provide sufficient acoustic and thermal insulation, while the materials from which they are made can be easily separated.
Sur la valeur ajoutée des vitrages « complexes », il pointe l’énorme incertitude qui entoure les analyses de cycle de vie actuelles, dans un contexte climatique changeant, un mix énergétique en transition, une variété d’hypothèses d’utilisation et de gains internes ou de systèmes HVAC et, potentiellement, une remise en question des ambiances intérieures à maintenir dans les bâtiments à l’avenir.
If the hypotheses and the definition of the life cycle scenarios can significantly change the conclusions of an LCA, how can the uncertainties related to the socio-technical trajectory of buildings be better taken into account?
Pour en venir au choix des complexes de vitrage dans une situation donnée, ses résultats indiquent une … équivalence de consommations énergétique globale pour les simples (sg), double (dg) et triples vitrages (tg). Signe que les vraies pistes de réduction d’impact ne sont peut-être pas dans un choix de technologie.
Figure 4.29 de la thèse du dr. Jean Souviron, montrant la consommation d’énergie totale sur le cycle de vie de différentes solutions de vitrages simple (sg), double (dg) ou triple (tg), pour une application de bureau et différentes solutions d’ombrage
Incohérent avec ce qui précède ? Non, nous ne le pensons pas. L’incertitude des analyses de cycle de vie est aujourd’hui encore grande, tout le monde le reconnais. Des résultats non convergents sont donc « attendus ». A ce stade des connaissances, les ACV peuvent donner des indications, pas des certitudes. Et dans le cas présent, concluons qu’aucune tendance claire en fonction de l’une ou l’autre technologie ne se dégage au niveau des vitrages « classiques » (résultats du dr. Souviron) et qu’au niveau des châssis, le bois semble tirer son épingle du jeu (résultats TOTEM).
Cet article a été révisé pour la dernière fois en été 2023. Les données et analyses présentées reflètent l’état des connaissances et des ressources disponibles à ce moment-là. Le domaine de la construction et de l’évaluation environnementale évoluant rapidement, nous encourageons nos lecteurs à vérifier si des mises à jour ou des compléments d’information ont été publiés depuis.
Explorant l’impact environnemental des parois dans la rénovation énergétique, ce dossier thématique aborde la dimension de durabilité en construction.
Ce dossier a été réalisé notamment grâce à l’outil TOTEM, qui évalue les choix de matériaux et techniques dans le contexte de l’économie circulaire. Par une série d’analyses de parois (toitures plates, façades maçonnées, murs creux, dalles sur sol, …), nous mettons en lumières les choix les plus adéquats en fonction de la situation, pour une gestion plus éco-responsable du bâti existant.
Dans cette page, nous proposons une comparaison des impacts environnementaux des parois reprises dans la bibliothèque de TOTEM durant l’été 2023, afin d’identifier de bonnes pratiques en termes de choix constructifs. En particulier, nous nous intéressons aux toitures.
Recommandations avant comparaison
Ca change vite
Les bibliothèques TOTEM s’enrichissent régulièrement, les EPD (déclaration environnementale de produit) se multiplient… L’exercice fait ici est donc vrai pour en un temps t, et l’analyse peut changer rapidement. Cependant, puisqu’il ne s’agit pas de trouver un « meilleur élève », mais d’identifier des tendances, l’exercice vaut la peine.
Travailler à l’échelle de l’élément
Totem préconise la comparaison à partir du niveau hiérarchique correspondant aux éléments, de façon à considérer matériaux mis en œuvre ! En effet, si l’on comparait par exemple deux matériaux non mis en œuvre (deux isolants par exemple), on négligerait l’impact des matériaux additionnels nécessaires à celle-ci (fixation, mortier éventuel,…), et l’on pourrait mal estimer la durée de vie des matériaux, qui elle aussi peut dépendre des conditions de mise en œuvre .
Nous travaillons donc ici sur base des bibliothèques d’éléments prédéfinis dans TOTEM (planchers, murs, toitures,…). Il s’agit donc de bien de discuter de complexes multicouches, et non de matériaux individuellement.
Peut-on comparer des éléments n’ayant pas la même valeur U ?
L’impact environnemental de l’énergie consommée durant la phase d’utilisation de l’élément est pris en compte dans le score environnemental global. Une telle comparaison est donc possible, pour autant que l’on s’en tienne à une comparaison de l’impact sur l’ensemble des étapes du cycle de vie. Cela n’aurait évidemment aucun sens de comparer uniquement la phase de fabrication de parois n’ayant pas la même performance thermique.
Précisons cependant que la méthode de calcul utilisée pour l’évaluation de l’énergie consommée « in use » est discutable car relativement simpliste (méthode des degrés jours), et que l’impact de cette énergie n’est pas le même selon le type de système énergétique considérée (chauffage gaz ? pompe à chaleur ?). Les comparaisons qui sont faite sont donc à nuancer et contextualiser.
Peut-on comparer des éléments n’ayant pas la même durée de vie ?
Si l’on travaille à l’échelle des éléments, TOTEM uniformise les durées de vie à 60 ans, en intégrant un rythme de remplacement des éléments qui ne vivraient pas autant. La comparaison est donc possible.
Si vous voulez en savoir plus sur les hypothèses de calcul de TOTEM, dont la durée de vie, nous vous recommandons la video ci-dessous :
Peut-on comparer des élément n’ayant pas le même statut (Neuf ><Réno) ?
Oui et non. Il est intéressant de regrouper ces deux type d’éléments, pour mettre en évidence l’intérêt relative de la conservation d’éléments ou de composants existants. Mais une fois cela établi, c’est la comparaison d’éléments similaires qui a le plus d’intérêt pratique.
Vue générale sur les toitures plates
Le graphique ci-dessous représente l’ensemble des toitures plates répertoriés dans la bibliothèque TOTEM. En abscisse sont reprises les valeurs U (W/m2K) et en ordonnée le score agrégé de performance environnementale en millipoints par unité fonctionnelle de chaque complexe de paroi.
Avant de commencer, pointons qu’un élément en béton cellulaire affichant un score dépassant les 250 mPt/UF a été supprimé du graphique. Alors que tous les autres éléments restent sous la barre des 100 mPt / UF, celui-là venait écraser les résultat et complexifier la lecture.
Cet élément (ID ET969) a été fortement impacté par une récente mise à jour, qui l’a fait passer 13,95 mPt/UF à 256,84 mPt/UF. Il est donc passé du « podium » à « l’élimination ».
Comparaison d’éléments : les toitures plates prédéfinies de la bibliothèque TOTEM
Qu’observons nous ?
Les éléments de charpente en bois scorent généralement mieux que les charpente en acier ou en béton. Sachant que le bois a cette capacité de stocker du CO2 pendant une partie de son cycle de vie, ce meilleur score par rapport à d’autre éléments structurels en maçonnerie ou métallique était attendu. On ne voit pas ici les nuances qu’il a fallu apporter dans l’analyse des murs extérieures à ossature bois.
Indépendamment du cas exceptionnel pointé plus haut, les éléments préfabriqués en béton (Dalle TT ou poutres en béton précontraint) affichent des scores variables dont certains voisins de bons profilés de charpente en bois. Par exemple, l’élément ET270 « TP_Dalle TT_Béton précontraint_BIB_Neuf_01 » affiche un score respectable de 15,4 mPt/UF, très proche de l’élément ET286 « TP_Solives et arbalétriers_Bois résineux_BIB_Neuf_04 » pour un même U= 0.23 W/m²K.
Podium des toitures plates
Voici les trois compositions de paroi présentant le meilleur score environnemental parmi les toitures plates :
Une toiture avec profilés FIJ et flocons de cellulose (référence TOTEM : TP_Profilés FJI 350_Bois lamellé_BIB_Neuf_01, ID ET275) : U=0.13 W/m²K pour 9,9 mPt/UF et 28cm
C1 : Feuille d’étanchéité en EPDM ; C2 : Panneau de laine de roche (60 mm) ; C3 : Feuille d’étanchéité PP – LDPE ; C4 : Panneau OSB vissé ; C5 : Profilés en bois résineux ; C6 : couche composée : Profilés FJI 350 en bois lamellé – OSB (5%), combiné à des flocons de cellulose (95%) (240 mm) ; C7 : Lattes en bois résineux ; C8 : Panneau en plâtre ; C9 : Peinture acrylique
Une toiture avec solives en bois résineux et flocons de cellulose (référence TOTEM TP_Solives bois résineux_BIB_Neuf_02, (ID ET273) : U=0.17 W/m² K pour 11,42 mPt/UF et 39 cm
C1 : Feuille d’étanchéité en EPDM ; C2 : Panneau de laine de roche (60 mm) ; C3 : Feuille d’étanchéité PP – LDPE ; C4 : Panneau OSB vissé ; C5 : Profilés en bois résineux ; C6 : couche composée : solives en bois résineux (22%), combiné à flocons de cellulose (78%) (225 mm) ; C7 : Lattes en Bois résineux ; C8 : Panneau en plâtre ; C9 : Peinture acrylique
Une variante de la précédente avec isolation en laine de roche uniquement par au-dessus (référence TOTEM TP_Solives bois résineux_BIB_Neuf_04, ID ET286) : U=0.23 W/m²K pour 14,09 mPt/UF et 46cm
C1 : Feuille d’étanchéité EPDM ; C2 : Panneau de laine de roche (130 mm) ; C3 : Feuille d’étanchéité PP – LDPE ; C4 : Panneau OSB vissé ; C5 : Profilés en bois résineux ; C6 : Solives en bois résineux ; C7 : Lattes en bois résineux ; C8 : Panneau en fibre-gypse ; C9 : Papier peint
Le trio de tête est donc constitué de parois bois, et deux d’entre elles proposent une isolation en flocons de cellulose. Mais il nous semble nécessaire de mentionner que le 4ème meilleur score est atteint par une paroi béton (Référence TOTEM : TP_Dalle TT_béton précontraint_BIB_Neuf_01, ID ET273) : U=0.24 W/m²K pour 15,4 mPt/UF et 53cm:
C1 : Feuille d’étanchéité EPDM ; C2 : Panneau PUR (100 mm) ; C3 : Feuille d’étanchéité en bitume ; C4 : Enduit épais en béton maigre ; C5 : Béton coulé sur site ; C6 : Dalle TT en béton précontraint ; C7 : Enduit épais en plâtre ; C8 : Peinture acrylique
Vue générale sur les toitures en pente
Comparaison d’éléments : les toitures en pente prédéfinies de la bibliothèque TOTEM
On retrouve ici des éléments d’analyse similaires à ceux des murs extérieurs :
Il n’y a pas de corrélation évidente entre niveau U et score environnemental. Si les toitures « passives » (U<0,15W/m2K) ont de bons résultats environnementaux, on trouve également des parois à U=0,15W/m2K dont le score est très haut.
Les ossatures métalliques sont globalement à exclure.
Les ossatures bois présentent une grande variété de scores, signe que le mode constructif ne fait pas tout.
Plus spécifique aux toitures : les fermes semblent plus intéressantes que les fermettes.
Podium des toitures en pente
Voici les trois compositions de paroi présentant le meilleur score environnemental parmi les toitures inclinées :
Une toiture « passive » avec profilés FJI et laine de roche (référence TOTEM TI_Fermes en forme de A_Bois résineux_BIB_Neuf_02, ID ET298) : U=0.11 W/m²K pour 8.54 mPt/UF et 68cm
C1 : Tuiles céramique non émaillée ; C2 et C3 : Lattes en bois résineux ; C4 : Panneau en fibre de bois ; C5 : Couche composée : profilés FJI en bois lamellé (5%), combiné à un matelas de laine de roche (95%) (360 mm) ; C6 : Poutres en bois résineux ; C7 : Feuille d’étanchéité PP – LPDE ; C8 : Lattes en bois résineux ; C9 : Panneau en plâtre ; C10 : Peinture acrylique
Une toiture avec profilés FJI et flocons de cellulose (référence TOTEM TI_Fermes en forme de A_Bois résineux_BIB_Neuf_03, ID ET299) : U=0.17 W/m²K pour 9.23 mPt/UF et 56 cm
C1 : Tuiles céramique non émaillée ; C2 et C3 : Lattes en bois résineux ; C4 : Panneau en fibre de bois ; C5 : Couche composée : profilés FJI en bois lamellé (5%), combiné à un matelas de laine de roche (95%) (240 mm) ; C6 : Poutres en bois résineux ; C7 : Feuille d’étanchéité PP – LPDE ; C8 : Lattes en bois résineux ; C9 : Panneau en plâtre ; C10 : Peinture acrylique
Une toiture avec profilés FJI et laine de verre (référence TOTEM TI_Pannes bois résineux_BIB_Neuf_15, ID ET323) : U=0.24 W/m²K pour 10.24 mPt/UF et 48 cm
C1 : Tuiles céramique non émaillée ; C2: Lattes en bois résineux ; C3 : Feuille d’étanchéité PE ; C4 : Panneau de toiture ouvert : 12mm particules + 170mm laine de verre ; C5 : Papier peint ; C6 : Poutres en bois résineux
Ces parois sont assez proches dans leur nature, la principale différence étant le choix du matériau isolant, avec le matelas de laine de roche (360mm) en pole position, devant la cellulose (240mm) et la laine de verre (170mm). Notons que les valeurs U atteintes ne sont pas identiques, la meilleur paroi étant aussi la plus isolante (U=0,11 W/m2K).
Cet article a été révisé pour la dernière fois en été 2023. Les données et analyses présentées reflètent l’état des connaissances et des ressources disponibles à ce moment-là. Le domaine de la construction et de l’évaluation environnementale évoluant rapidement, nous encourageons nos lecteurs à vérifier si des mises à jour ou des compléments d’information ont été publiés depuis.
Dans cette page, nous proposons une comparaison des impacts environnementaux des parois reprises dans la bibliothèque de TOTEM durant l’été 2023, afin d’identifier de bonnes pratiques en termes de choix constructifs. En particulier, nous nous intéressons aux murs extérieurs.
Recommandations avant comparaison
Ca change vite
Les bibliothèques TOTEM s’enrichissent régulièrement, les EPD (déclaration environnementale de produit) se multiplient… L’exercice fait ici est donc vrai pour en un temps t, et l’analyse peut changer rapidement. Cependant, puisqu’il ne s’agit pas de trouver un « meilleur élève », mais d’identifier des tendances, l’exercice vaut la peine.
Travailler à l’échelle de l’élément
Totem préconise la comparaison à partir du niveau hiérarchique correspondant aux éléments, de façon à considérer matériaux mis en œuvre ! En effet, si l’on comparait par exemple deux matériaux non mis en œuvre (deux isolants par exemple), on négligerait l’impact des matériaux additionnels nécessaires à celle-ci (fixation, mortier éventuel,…), et l’on pourrait mal estimer la durée de vie des matériaux, qui elle aussi peut dépendre des conditions de mise en œuvre .
Nous travaillons donc ici sur base des bibliothèques d’éléments prédéfinis dans TOTEM (planchers, murs, toitures,…). Il s’agit donc de bien de discuter de complexes multicouches, et non de matériaux individuellement.
Peut-on comparer des éléments n’ayant pas la même valeur U ?
L’impact environnemental de l’énergie consommée durant la phase d’utilisation de l’élément est pris en compte dans le score environnemental global. Une telle comparaison est donc possible, pour autant que l’on s’en tienne à une comparaison de l’impact sur l’ensemble des étapes du cycle de vie. Cela n’aurait évidemment aucun sens de comparer uniquement la phase de fabrication de parois n’ayant pas la même performance thermique.
Précisons cependant que la méthode de calcul utilisée pour l’évaluation de l’énergie consommée « in use » est discutable car relativement simpliste (méthode des degrés jours), et que l’impact de cette énergie n’est pas le même selon le type de système énergétique considérée (chauffage gaz ? pompe à chaleur ?). Les comparaisons qui sont faite sont donc à nuancer et contextualiser.
Peut-on comparer des éléments n’ayant pas la même durée de vie ?
Si l’on travaille à l’échelle des éléments, TOTEM uniformise les durées de vie à 60 ans, en intégrant un rythme de remplacement des éléments qui ne vivraient pas autant. La comparaison est donc possible.
Si vous voulez en savoir plus sur les hypothèses de calcul de TOTEM, dont la durée de vie, nous vous recommandons la video ci-dessous :
Peut-on comparer des élément n’ayant pas le même statut (Neuf ><Réno) ?
Oui et non. Il est intéressant de regrouper ces deux type d’éléments, pour mettre en évidence l’intérêt relative de la conservation d’éléments ou de composants existants. Mais une fois cela établi, c’est la comparaison d’éléments similaires qui a le plus d’intérêt pratique.
Vue générale
Le graphique ci-dessous représente l’ensemble des murs extérieures (79) répertoriés dans la bibliothèque TOTEM. En abscisse sont reprises les valeurs U (W/m2K) et en ordonnée le score agrégé de performance environnementale en millipoints par unité fonctionnelle de chaque complexe de paroi.
Les différents types de murs extérieurs sont regroupés selon le matériau de l’élément porteur du mur. Par exemple, on retrouve un groupe (vert) d’ossatures bois, un groupe (rouge) de mur en maçonnerie composé de briques isolantes, un groupe (bleu) de mur dont l’ossature est de l’acier, … Les points violets – de plus petite taille que les autres points colorés – représentent les complexes de parois de type RENO. Il s’agit dans ce cas-ci de murs extérieurs en briques.
Comparaison d’éléments : les 79 murs extérieurs prédéfinis de la bibliothèque TOTEM
Que peut-on observer en première lecture ?
Presque tous les murs issus de la bibliothèque TOTEM ont des valeurs U réglementaires ou améliorées. La bibliothèque est donc composée d’éléments prédéfinis représentatifs de parois neuves ou lourdement rénovées mais non représentatives du bâti « à rénover ». Pour le devenir, ces éléments prédéfinis sont modifiables par l’utilisateur lorsque ceux-ci sont mobilisés au sein d’un projet. En consultation (en lecture seule), il ne sont pas modifiables. La volonté de Totem est d’étoffer des éléments prédéfinis « reno » présents dans la bibliothèque, mais à l’heure actuelle ces éléments sont encore marginaux.
Les scores environnementaux sont assez dispersées mais on pressent l’émergence de certains clusters. Les éléments en ossature acier (points bleus) apparaissent d’emblée comme les « moins bons élèves » tandis que les points représentant des éléments en lamellé-collé, des éléments en briques, des éléments en ossature bois, des éléments de maçonnerie constitués de blocs creux s’agglutinent dans le « bon peloton ». Ce peloton correspond aux points qui tendent à rejoindre le bas du graphique, entre 10 et 20 mPt/UF.
Les éléments situés vers le coin inférieur gauche du graphique conjuguent un faible impact environnemental (score bas en mPt) ainsi qu’une petite valeur U (bonne isolation). On voit que les parois les plus isolées ne sont pas nécessairement les moins impactantes, sans pour autant moins bien « performer » que les autres, signe que la question de l’impact environnemental ne se limite pas à une question d’isolation : les autres éléments de la paroi ont un rôle important dans la discussion.
Il ne faut néanmoins pas aller trop vite sur l’idée de clusters. Si certains groupes de parois semblent se distinguer par des impacts relativement faibles (lamellé-collé, briques), on voit bien que tous les éléments d’une même sous-catégorie ne scorent pas de façon homogène. Comme l’atteste par exemple cet élément en lamellé-collé qui se détache du « bon peloton » et affiche un score plus impactant.
Zoom sur les parois PEB conformes
Intéressons-nous maintenant aux éléments présentant une bonne valeur U proche de la réglementation actuelle ( < ou égal 0,24 W/m²K).
Le graphique ci-dessous présente un zoom sur quelques « brochettes » d’éléments tirées de la figure précédente, constituées d’empilements d’éléments autour des valeurs U suivantes: 0.22 W/m²K, 0.23 W/m²K et 0.24 W/m²K.
Comparaison de murs extérieurs présentant un U proche de la réglementation en vigueur.
On constate d’emblée un empilement hétérogène des valeurs qui ne permet pas de tirer de grandes généralité. Des supposés « bons élèves » peuvent présenter un score très haut. On s’attendrais par exemple à ce que toutes les parois « bois » aient un score en mPt/UF bas, mais ce n’est pas le cas.
Il faut regarder en détail afin d’identifier dans leur groupe respectif les parois qui se distinguent de façon trop impactantes. Par exemple, dans le groupe des éléments en ossature bois, celles qui ont un score haut le doivent à chaque fois à une des couches du complexe de paroi (une isolation en laine de mouton, un bardage plastique ou des profilés alu pour plaques de revêtement en céramique émaillée). Une première conclusion s’impose: il ne suffit pas de définir l’élément structurel de la paroi pour atteindre un faible score, mais de bien réfléchir le complexe de paroi dans son ensemble.
Ceci dit, les ossatures d’acier se distinguent assez nettement dans le haut de la pile (allant de 28 à 71 mPt/UF), du fait de l’impact très lourd de la production de l’acier…
Podium
Le meilleur élément de la figure est ce point mauve apparaissant à la base de la « brochette » 0.22 W/m²K). Il s’agit d’une paroi de briques pleines en terre cuite « Reno ». Cela veut dire que certains composants de cet élément n’ont pas le même statut que celui de la majorité des éléments prédéfinis : les phases de production et chantier ne sont pas considérées pour ceux-ci. C’est donc une situation particulière.
En dehors de ce cas particulier, les éléments sur le podium sont :
une structure en lamellé-collé isolée en cellulose et avec un enduit extérieur posé sur un panneau de fibre de bois (référence TOTEM : ME_Profilés FJI 250_Bois lamellé_BIB_Neuf_02, ID ET44) : U=0.17 W/m²K pour 9,68 mPt/UF et 32 cm
C1 : Enduit épais : enduit traditionnel; C2 : Panneau de fibre de bois (18 mm); C3 : Couche composée : Profilés FJI 250 (5%), combinés à des flocons de cellulose insufflé sur site (95%) (240 mm); C4 : Panneau OSB vissé; C5 : Feuille d’étanchéité PP – PE; C6 : Lattes en bois résineux; C7 : Panneau en plâtre; C8 : Peinture acrylique
La paroi « biosourcée » type : Une ossature bois isolée par ballots de paille, avec enduits d’argile intérieures et extérieures (référence TOTEM : ME_Ossature_Bois résineux_BIB_Neuf_01, ID ET103) : U=0.14 W/m² K pour 9,98 mPt / UF et 53 cm
C1 : Enduit épais : Mortier de chaux-trass ; C2 : Couche composée : Ossature en bois résineux (11%), combinés à des ballots de paille (89%) (480 mm) ; C3 : Enduit à l’argile
Une paroi maçonnée avec isolé collé EPS et revêtement en plaquette (référence TOTEM : ME_Briques isolantes_terre cuite_BIB_Neuf_09, ID ET77) : U=0.22 W/m²K pour 11,17 mPt / UF et 33 cm
La présence d’une paroi en maçonnerie dans notre podium invite à s’intéresser plus largement au nuage de points rouges. Celui-ci performe plutôt bien, chacun de ces points étant situés à la base de chaque « brochette ». La construction en maçonnerie n’est pas antinomique avec réduction d’impact environnemental global.
Le graphique suivant reprend l’ensemble des parois en maçonnerie de briques isolantes et des parois ossature bois, pour comparaison.
Comparaison d’éléments à base briques isolantes ou d’ossature bois
Difficile de tirer une généralité, mais nous voyons que certains éléments en ossature-bois affichent des scores intéressants, à la fois en terme de performance environnementale et de performance énergétique. Ceux-là présentent des isolations en paille, laine de roche ou cellulose). Mais d’autres sont bien moins intéressant. Le point isolé (44mPt/UF) présente une isolation en granulés de liège expansé, mais ne nous y laissons pas prendre : ce n’est nullement la couche isolante qui est impactante dans cet élément, mais bien la couche de revêtement intérieure en céramique ! Le graphique affichant le détail par composant est très instructif en la matière lorsqu’il s’agit de se rendre compte de ce qui est impactant au sein de l’élément.
Nous constatons également que le nuage de points des parois en briques isolantes est relativement homogène avec un score qui s’échelonne entre 11 mPt/UF pour celle isolée avec de l’EPS (polystyrène expansé) et 16 mPt /UF pour celle isolée en XPS (polystyrène extrudé). Cette famille a donc l’avantage d’une relative prévisibilité des performances. Par contre, elle présente un moindre potentiel de réemploi des composants, vu l’emploi fréquent de colles pour les isolants et revêtements.