150 m² de capteurs solaires thermiques à la résidence 3ème âge Aux Lilas de Bonlez

Introduction

Située au cœur du village de Bonlez, à proximité de Wavre et de Louvain la Neuve, la maison de repos « Aux Lilas » accueille 52 résidents dans 40 chambres individuelles et 6 chambres doubles réparties sur 2 étages.

Totalement rénovée récemment, le choix a été fait de couvrir 100 % de ses besoins en chaleur grâce aux technologies renouvelables.

  • 60 % à 70 % de la préparation de l’eau chaude sanitaire est assurée par des capteurs solaires, le reste par la chaudière du chauffage central.
  • Le chauffage central du bâtiment est assuré par une chaudière à pellets. Le système de chauffage est décrit dans l’étude de cas : 100 % de chaleur verte à la résidence 3ème âge Aux Lilas de Bonlez.

L’installation de chauffage solaire et la chaufferie sont situées dans deux locaux séparés.


Choix de la technologie

Il existe deux types de circuits primaires dans les capteurs solaires thermiques : le système classique, sous pression et le système à drainage gravitaire.

Le système classique sous pression comprend entre autres un vase d’expansion et une soupape de sécurité et de vidange manuelle avec recueil des fluides évacués. Il ne se vidange pas à l’arrêt de la pompe. Le liquide reste dans les capteurs, surchauffe, se vaporise et se détériore avec le temps. De plus, l’utilisation d’antigel dans le fluide solaire est nécessaire, car en hiver, par temps clair, la température des capteurs peut descendre fortement sous 0 °C.
La surchauffe limite techniquement le dimensionnement à environ 40 % à 45 % de fraction solaire (pourcentage d’économie pouvant être réalisé). Ce système nécessite une maintenance plus importante. Il est le seul utilisable lorsqu’il n’est pas possible d’éviter les contre-pentes dans le circuit.

Système classique sous pression.

Le système basé sur le drainage gravitaire (drainback), va permettre aux capteurs solaires de se vidanger de façon naturelle et passive à chaque arrêt de la pompe de circulation. Le fluide est ainsi à l’abri des surchauffes et du gel. Le circuit ne peut évidemment pas présenter la moindre contre-pente.
Ce circuit est rempli partiellement d’air et de fluide solaire. La régulation ordonne à la pompe de fonctionner dès le moment où elle perçoit que de l’énergie solaire peut être délivrée aux ballons d’eau sanitaire. Une fois les ballons à température ou lorsque l’apport énergétique délivré par les capteurs est devenu insuffisant, la pompe est mise à l’arrêt. Le fluide contenu dans les capteurs redescend par gravité dans le réservoir de drainage placé en chaufferie. Il prend la place occupée par l’air qui remonte naturellement vers les capteurs. Les capteurs sont alors hors gel et hors surchauffe. Au contraire du fluide dans un système sous pression, l’air peut être chauffé et comprimé sans se dégrader de façon irréversible et sans endommager le reste de l’installation.

Système à drainage gravitaire.

A Bonlez, c’est le système à drainage gravitaire qui a été placé. Grâce à cela, une plus grande surface de capteurs solaires a pu être installée sans risque de surchauffe.

Les apports solaires dépendent de la surface des capteurs solaires. Le graphique ci-dessus montre bien que l’augmentation de la surface de capteurs permise grâce au système gravitaire fait passer la fraction solaire de 40-45 % à 60-70 %.


Choix de la surface optimale

L’énergie nécessaire pour chauffer l’eau chaude sanitaire de la maison de repos est de : 67 240 kWh par an.

Plus on place de surface de capteur solaire, plus on couvrira une partie importante du besoin en énergie avec de l’énergie solaire, plus le coût de l’installation augmentera également.

Des simulations sont effectuées pour différentes surfaces de capteurs et différents volumes de stockage pour déterminer pour chacune d’elle l’apport solaire total annuel et donc la fraction solaire.

 

Fraction solaire en fonction de la surface du capteur.

Résultat des simulations.

Les aides publiques favorisant l’installation d’un système solaire thermique en Région wallonne étant liées au nombre de lits, la courbe du coût total du chauffage de l’eau de l’eau sur 20 ans possède un point bas marqué pour environ 200 m² de capteurs solaires.

Coût total pour chauffer l’eau sur 20 ans.

Ce point bas reste le même pour les trois scénarios de l’évolution de l’énergie.

  • Scénario 1 : le prix du pétrole évolue comme il l’a fait les 15 dernières années.
  • Scénario 2 : le prix du pétrole évolue un peu moins.
  • Scénario 3 : le prix du pétrole évolue beaucoup moins.

Influence du prix du pétrole sur le coût total.


Le choix du client

Le client a choisi une installation de dimensions légèrement inférieures à l’optimum pour réduire son investissement de départ tout en conservant une fraction solaire élevée. La surface des capteurs correspond également à la surface disponible en toiture ce qui optimise les coûts.

Le tableau ci-dessous compare pour le scénario 1 (le prix du pétrole évolue comme il l’a fait les 15 dernières années) les résultats pouvant être théoriquement atteints en fonction des différents choix :

  • sans solaire;
  • système solaire classique;
  • système solaire optimum;
  • système solaire choisi par le client.

Le client a choisi une installation de dimensions légèrement inférieures à l’optimum pour réduire son investissement de départ tout en conservant une fraction solaire élevée.


L’installation réalisée

Schéma de l’installation telle qu’elle a été réalisée.

5 lignes de 12 capteurs de 2.5 m² ont été installées, pour une superficie totale de 150 m².

Les capteurs solaires.

Il y a 7 réservoirs de stockage.

Les réservoirs de stockage.

Un échangeur à plaque est placé entre le circuit primaire et le circuit secondaire. Le système du circuit primaire est à drainage gravitaire. Un réservoir de drainage isolé thermiquement de 400 litres recueille le fluide du circuit primaire lorsque le système est à l’arrêt.

L’échangeur thermique entre le circuit primaire et le circuit secondaire.

L’eau chaude sanitaire est chauffée par le système solaire thermique grâce à un échangeur à plaques.

L’échangeur à plaque pour le chauffage de l’ECS.

Le boiler pour l’eau chaude sanitaire est situé dans la chaufferie. Le système central du chauffage assure l’appoint nécessaire en cas d’insuffisance solaire.

Le boiler ECS.


Bilans

Bilan énergétique

Les simulations ont montré que la fraction solaire utile est de 63.1 %.
L’énergie économisée par an est de 67 265 kWh x 0.631 = 42 444 kWh.
Cette énergie fournie chaque année par le rayonnement solaire ne doit pas être produite par la chaufferie.

  • 95 % de cette énergie aurait été produite par la chaudière à pellets : 40 322 kWh.
  • 5 % de cette énergie aurait été produite par la chaudière d’appoint au mazout : 2 122 kWh.

Le rendement de la chaudière à pellets étant de 90 %, l’énergie consommée par celle-ci aurait été de 40 322 kWh / 0.90 = 44 802 kWh extraits de la biomasse.

Le rendement de la chaudière à mazout étant de 96 %, l’énergie consommée par celle-ci aurait été de 2 122 kWh / 0.96 = 2 210 kWh extraits d’un combustible fossile.

Gain économique

Au prix du mazout de 2016, soit environ 0.53 €/l (tarif 14/06/2016), le gain économique annuel sur la facture de mazout, consécutif à l’installation du système solaire est d’environ 117.00 €.

Au prix des pellets de 2016, soit environ 0.25 €/kg, le gain économique annuel sur la facture de pellets, consécutif à l’installation du système solaire est d’environ 2016.00 €.

Le gain économique total est donc de 2 133.00 €/an. correspondant à une réduction de la facture de 63 % pour la production d’ECS.

L’avantage économique majeur du système solaire réside dans le prix constant du kWh solaire. Alors que, pour les énergies fossiles ou issues de la biomasse, les scénarios les plus réalistes tablent sur une augmentation des prix de l’énergie dans le futur. Il va de soi que si le prix du combustible double, l’économie financière réalisée est également doublée.

Bilan environnemental

Émissions de CO2 évitées

Chauffer l’eau avec le soleil diminue d’autant la production de CO2. Même si l’énergie utilisée pour chauffer l’eau avait été produite à partir de pellets dont la combustion est censée ne pas produire de CO2 , ceux-ci auraient pu être utilisés ailleurs. La seule production de CO2 proviendrait de la combustion du mazout utilisé comme combustible d’appoint en remplacement des pellets.

Dans ce home, la combinaison du chauffage solaire pour l’ECS avec un appoint produit par la biomasse est particulièrement favorable à la préservation du climat.

Autres Impacts

Les autres impacts positifs d’un tel projet résident dans la visibilité du système solaire, rejaillissant sur l’image « durable » de la maison de repos Aux Lilas.


Partenaires du projet et contacts

Cette étude de cas a été rédigée à l’aide des informations fournies par les entreprises qui ont mis en place les installations et du facilitateur Énergie Solaire Thermique.

  • Service Facilitateur Energie Solaire Thermique – Grands Systèmes – Région wallonne
    Monsieur Bernard HUBERLANT
    FacSolthermWallonie@3E.eu

 

Régulation simplifiée au lycée La Retraite à Bruxelles

Régulation simplifiée au lycée La Retraite à Bruxelles


L’école

L’école La retraite qui accueille chaque jour près de 530 élèves à Bruxelles. On distingue deux bâtiments principaux : le plus ancien de 3 500 m² construit aux environs des années 1880 et un second de 940 m² construit en 1995. Ces deux bâtiments ont chacun un système de chauffage distinct. Le plus grand des deux, le plus ancien, avait un chauffage central au mazout qui a été remplacé par un chauffage central au gaz. Il fera l’objet de ce document.


Le programme PLAGE

En 2009, Bruxelles Environnement a lancé le programme « PLAGE écoles » ou Programme Local d’Action de Gestion de l’Énergie pour une durée de 4 ans.

Il s’agissait d’établir un cadastre énergétique des écoles de Bruxelles et d’aider un échantillon d’établissements à mettre en place une politique d’utilisation rationnelle de l’énergie et à se réapproprier la question énergétique, plus souvent « subie » que réellement « gérée ».

Cette mission consistait à définir une méthode centrée sur l’URE et à accompagner les acteurs dans cette démarche, sur quatre années.

Sur l’ensemble des écoles étudiées pour le réseau du SeGEC, seulement vingt ont été définies comme étant prioritaires, soit 10 % des implantations scolaires de ce réseau. Malheureusement, bien qu’il ait été auditionné, le lycée La Retraite n’en faisait pas partie. Il a pu cependant bénéficier d’un accompagnement et de conseils dans sa démarche de rénovation.


Description de l’ancienne installation

photo aérienne bâtiment.

Schéma de principe de l’installation

L’ancienne installation de chauffage comprenait une chaudière à mazout unique et un réseau de distribution classique. Les corps de chauffe sont du type radiateur.

Schéma de principe de l’ancienne installation de chauffage du Lycée « La Retraite ».

À la production, on trouvait  une chaudière au mazout de 450 kW avec un brûleur à deux allures.

L’installation était simple et la consommation relativement faible, mais au détriment du confort.

De plus, la chaudière, peu performante était en mauvais état et tombait souvent en panne. L’installation contenait de l’amiante. La citerne à mazout était ancienne et encombrante. Une odeur de mazout flottait dans les caves. L’impact environnemental était loin d’être idéal.

Il a donc été décidé de rénover la chaufferie.


Choix de la nouvelle installation

Une installation est traditionnellement pilotée au moyen d’une régulation numérique relativement complexe connectée à diverses sondes. Souvent des nouvelles installations sont calquées sur ce modèle complexe de régulation (cf. schéma ci-dessous).

 

Schéma d’une installation classique de chauffage avec production d’eau chaude sanitaire.

Dans les écoles, la mise en service d’une telle installation présente certaines inconvénients et difficultés.

  • Comment choisir un local témoin pour placer les sondes de compensation au Sud ? Dans les classes, la présence des élèves modifie rapidement la température de l’air. Dans le local témoin, cette température est détectée par la sonde qui agit sur les vannes mélangeuses. Mais, toutes les classes ne sont pas occupées en même temps de la même manière et ne demandent donc la même chaleur. La régulation est donc faussée.
  • La demande en eau chaude sanitaire n’est pas synchronisée avec la demande en chaleur. Elle existe également en été. Elle nécessite aussi temporairement de l’eau à une température plus élevée, ce qui n’est pas favorable au rendement des chaudières à condensation.
  • La régulation est complexe et peu intuitive (effet de boîte noire). Elle nécessite aussi des réglages en début de fonctionnement. Le chauffagiste sous-traite souvent cette régulation au fabricant… qui ne connaît pas bien le bâtiment.  Les réglages risquent d’être mauvais, le rendement de l’installation ou le confort diminuent. Dans le pire des cas, la régulation finit par être mise en mode manuel avec toutes les conséquences néfastes que l’on peut imaginer pour le rendement.

Installation traditionnelle existante (conservée) dans le bâtiment de 1995.

Il a donc été décidé de réaliser une installation simplifiée possible grâce aux évolutions techniques apparues ces dernières années.

  • La préparation de l’eau chaude sanitaire sera réalisée par une production indépendante décentralisée.
  • Les radiateurs seront équipés de vannes thermostatiques.
  • La température de la chaudière sera modulée en fonction de la température extérieure (régulation climatique).
  • Des vannes à trois voies motorisées pour régler la température des boucles secondaires ne sont pas nécessaires.
  • Un seul circulateur à vitesse variable sera placé à la sortie de la chaudière. Il sera mis en fonctionnement par une horloge annuelle, pontée par un contact antigel et un bouton de dérogation pour gérer les imprévus. Le tout ne fonctionnera que si la température extérieure est inférieure à 15°C.
  • Le circuit primaire sera de type ouvert.
  • La chaudière à condensation sera capable de supporter un débit nul. Elle n’est mise en route que si le circulateur est en demande.

Il ne reste dès lors qu’à régler la courbe de chauffe de la chaudière et l’horloge du circulateur ainsi que la température extérieure qui l’enclenche. La conduite est simple et efficace.

Grâce aux vannes thermostatiques, la régulation est précise et spécifique à chaque local quels que soient son taux d’occupation, sa localisation, la température demandée et les conditions atmosphériques.

Schéma de l’installation de chauffage réalisée.

Les différents éléments

 

La nouvelle chaudière gaz à condensation de 400 kW.

 

La régulation très simplifiée intégrée à la chaudière explicite et facile à l’emploi.

 

Un seul circulateur à vitesse variable.

 

Circuit primaire de type ouvert avec le départ des différentes boucles de chauffage (pas de vanne à trois voies motorisée).
Les conduites sont correctement isolées.

 

Les nouvelles vannes thermostatiques de type « institution ».

 

Attention, lorsque la vanne est cassée, il n’y a plus de régulation.
Le circuit est entièrement ouvert et la pompe tourne.
(Dans les endroits où le risque de heurter la vanne est grand,
il est intéressant de placer celle-ci parallèlement au mur.)


Quelques chiffres (en 2010)

Coût des travaux

Raccordement (adduction gaz) 6 762 €
Détection gaz 3 525 €
Raccordement eau (+ traitement) 2 692 €
Chaudière 22 650 €
Évacuation gaz (tubage cheminée) 4 882 €
Circulateur 4 450 €
Vase d’expansion 2 350 €
Hydraulique 13 515 €
Électricité 3 800 €
Réception 1 000 €
Démontage hydraulique existant 2 000 €
67 626 €
Vannes thermostatiques (117 pièces) 14 101 €
Neutralisation citerne 1 600 €
15 701 €
TOTAL HTVA 83 327 €

Consommation du bâtiment

  • Avant les travaux : 37 000 litre de mazout par an -> 105 kWh/m².an
  •  Après les travaux : 28 000 m³ de gaz par an -> 80 kWh/m².an

Diminution de la consommation : +/- 24 % avec une augmentation importante du confort dans les classes.

Informations complémentaires

Cette étude de cas a été réalisée avec l’aide de l’asbl CRAIE – Cellule pour la rationalisation et l’aide à la gestion énergétique. Cette structure a été mise en place par d’anciens membres du projet PLAGE. Elle est opérationnelle depuis  janvier 2015. Elle est agréée pour la réalisation de certificats PEB  (bâtiments publics). Elle s’occupe actuellement exclusivement  des écoles catholiques à Bruxelles.

CRAIE – ASBL
Avenue de l’Eglise Saint-Julien 15
1160 BRUXELLES
E-mail : info@craie-asbl.be

100 % de chaleur verte à la résidence 3ème âge Aux Lilas de Bonlez

Introduction

Située au cœur du village de Bonlez, à proximité de Wavre et de Louvain la Neuve, la maison de repos  « Aux Lilas » accueille 52 résidents dans 40 chambres individuelles et 6 chambres doubles réparties sur 2 étages.

Totalement rénovée récemment, le choix a été fait de couvrir 100 % de ses besoins en chaleur grâce aux technologies renouvelables.

 


Description de l’installation de chauffage au bois

La chaudière à pellets

La chaudière à pellet 220 kW avec ses accessoires.

La chaudière à pellets KÖB PYROT  a une puissance nominale de 220 kW alors que la puissance maximale demandée lors des froids extrêmes est de 320 kW. Soit environ 70 % de la puissance totale. Ce choix se justifie par une étude préalable dont les résultats sont représentés dans les deux figures suivantes. En effet, à cette puissance, la chaudière peut couvrir environ 95 % de la consommation annuelle.

Appels de puissance dans le bâtiment sur une saison de chauffe.

Taux de couverture de la chaudière en fonction du
rapport entre sa puissance et de la puissance totale.

Résultats :

  • La durée de vie de la chaudière est optimisée. Elle fonctionnera environ 2 000 heures par an sans s’arrêter et redémarrer trop fréquemment.

 

  • Pour environ la même production d’énergie, l’investissement est plus faible que si une chaudière plus puissante avait été choisie et sera donc plus vite amorti.

La chaudière

  1. Ventilateur à rotation. Il ne crée pas de surpression, mais favorise la combustion par turbulence;
  2. chargement automatique du combustible (ici des pellets);
  3. foyer;
  4. extracteur des fumées;
  5. décendrage interne;
  6. système de recirculation des gaz de fumées/air secondaire régulé;
  7. ventilateur d’allumage.

La chaudière est également équipée d’une série d’accessoires en option qui maintiennent la chaudière à son meilleur niveau de fonctionnement et espace la fréquence entre les interventions :

  • Nettoyage pneumatique automatique des carnaux;
  • dépoussiéreur ;
  • décendrage automatique.

Grâce à ces équipements, les nettoyages/entretiens ne sont nécessaires que toutes les 300 heures de fonctionnement. Lors de l’entretien, le technicien effectue non seulement toutes les interventions prévues à l’échéancier, mais également toutes les autres de manière à être certain qu’aucune ne soit oubliée entre les entretiens. Il a lieu environ 6 fois par an. (1 800 à 2 000 heures de fonctionnement divisées par 300).

Il est à noter qu’un espace important est requis pour le nettoyage de certaines parties. Par exemple, il faut un espace suffisant pour pouvoir introduire les écouvillons dans les tubes situés au-dessus du foyer lorsqu’il est nécessaire de les nettoyer.

La chaudière d’appoint

Une chaudière d’appoint au mazout, de la puissance totale à fournir (320 kW) servira à prendre le relais lorsque la chaudière à pellets ne suffit plus (puisqu’elle ne couvre que 95 % des besoins). Elle servira aussi de backup en cas de panne (ce qui n’est pas encore arrivé) ou lors des entretiens qui nécessitent la tombée en température de la chaudière à pellets. Cela demande un certain temps à cause de son inertie thermique. La chaudière est arrêtée le soir de la veille du jour de l’entretien pour que sa température soit suffisamment basse au matin pour que les techniciens puissent agir. L’entretien lui-même dure environ une demi-journée.

La chaudière à mazout d’appoint 320 kW.

Les ballons de stockage

Le cycle de démarrage et d’arrêt d’une chaudière à pellet est très long (1 h – 2 h). Il faut donc prévoir un stockage thermique adapté. Dans le bâtiment concerné, 3 ballons tampons ont été placés. Ils contiennent ensemble environ 5 500 litres (2 x 2 000 litres + 1 x 1 500 litres).

Les trois ballons tampons.

Schéma de l’installation.


Le silo à pellets

La partie du bâtiment où devait s’installer les chaufferies est neuve. Son sous-sol pouvait donc être aménagé de manière optimale. Une zone a été réservée à la chaufferie, au silo à pellets et au local de préparation de l’eau chaude sanitaire par capteurs solaires thermiques. Le silo a donc pu être placé juste à côté de la chaufferie à proximité directe d’une cour facilement accessible de la rue au camion de livraison. Cela facilite l’approvisionnement même si en pratique le camion pourrait se trouver à une distance maximale de 30 m du silo puisque les pellets sont soufflés et pas déversés.

Configuration de la zone « chauffage à pellets ».

Le silo qui a été choisi est de forme rectangulaire allongée avec des planchers inclinés qui ramène les pellets vers une vis sans fin. La présence du fond incliné fait perdre une partie de l’espace disponible : près de 50 %. La perte augmente lorsque le local est plus large et lorsque la pente du fond est plus raide. D’autres solutions existent en fonction de la géométrie du local de stockage.

Silo – coupe transversale : le local ne peut être rempli complètement à cause des planchers inclinés.

Silo : espace non occupé sous les planchers inclinés.

Les pellets sont introduits dans le silo par insufflation. Leur vitesse est très grande et ils viennent frapper violemment le mur du fond. Une bâche souple et solide a été suspendue devant le mur pour absorber les chocs. On empêche ainsi la pulvérisation des pellets et l’érosion de la maçonnerie.

La bâche de protection au fond du silo.


Consommation, autonomie

Le cas de l’installation au bois de la maison de repos Aux Lilas à Bonlez illustre les enjeux de la conception d’une installation au bois.

Le vecteur énergétique est le pellet. La consommation annuelle moyenne estimée est de 86 tonnes/an ce qui correspond à environ 360 000 kWh/an Net (output chaudière). Les besoins totaux calculés étant de 379 000 kWh/an, la différence de 19 000 kWh/an est assurée par la chaudière au mazout qui consomme ainsi environ 2 000 litres par an.

Le silo a un volume utilisable d’environ 34 m³. Sa capacité est donc d’environ 22 tonnes. La quantité de pellets fournie par livraison est d’environ 17 m³, soit 11 tonnes. En fonctionnement, la chaudière consomme +/- 49 kg de pellets par heure ce qui lui donne une autonomie d’environ 224 heures de fonctionnement.

Pendant les mois de décembre, janvier et février la chaudière consomme +/-15 tonnes/mois. Cela représente 52 % de sa consommation annuelle. Durant cette période, la fréquence d’approvisionnement est donc légèrement inférieure à 1 livraison / mois. Le tampon de 11 tonnes permet évidemment une certaine souplesse. Les pellets brûlés durant les 6 mois d’hiver (période où la puissance demandée est supérieure à 30 % de la puissance disponible) représentent 87 % de la consommation annuelle.

Le bâtiment a été entièrement transformé et une nouvelle installation de chauffage devait de toute façon être placée. Il fallait choisir le combustible. Ce choix s’est porté sur les pellets.

Les chaudières au bois sont plus chères que leurs homologues au mazout, de plus, le gros œuvre fait croître considérablement les coûts.

Pour rentabiliser le surinvestissement  par rapport à une chaudière fuel, les pellets doivent être par kWh significativement moins chers que le mazout. Ce n’est malheureusement pas le cas actuellement (en 2016), car le prix du mazout est particulièrement bas. L’histoire nous a cependant montré que le prix des combustibles fossiles est particulièrement volatil comme le montre la figure ci-après.  Il fluctue fortement en fonction de la situation politico-économique mondiale. Outre l’insécurité que cela provoque, on constate que sa tendance est en moyenne à la hausse. Le prix des pellets est beaucoup plus stable. La source d’approvisionnement étant plus proche, la disponibilité et le coût sont moins tributaires des marchés internationaux ce qui garantit une meilleure sécurité.

Si on prend les prix d’octobre 2012 : mazout à 8.0 c€/kWh et 5.0 c€/kWh pour les pellets, on obtient une différence de 3.0 c€/kWh. En supposant que la chaudière au bois a un rendement équivalent à une chaudière au mazout standard, on retrouve cette différence de 3 c€ au niveau de la facture. La chaudière consomme 360 000 kWh/an. Par conséquent, si le prix des énergies devait rester stable à ce niveau, chaque année la consommation de pellets à la place de mazout permet d’économiser 10 800 €.  Au regard de la durée d’utilisation d’un tel matériel qui avoisine les 20 ans, la rentabilité économique du projet serait clairement prouvée.


Performance environnementale

Si on considère les émissions de gaz nocifs émis par la combustion, on voit que la chaudière à pellets permet de réduire significativement l’empreinte environnementale. Les pellets ou granulés de bois sont issus de sous-produits du bois la sciure qui est affinée, séchée et ensuite comprimée sans colle ni additif. Leur fabrication n’influence la bonne gestion des forêts.
Si on considère le cycle complet du combustible, c’est-à-dire en intégrant les processus énergivores de l’extraction, du conditionnement et du transport, on peut prendre une émission de 327 grammes d’équivalent CO2 émis par kWh pour le mazout et de 25 grammes par kWh pour les pellets. Si on intègre le cycle de vie complet, l’impact du bois-énergie sur l’émission de gaz à effet de serre n’est pas nul, mais il est de loin inférieur par rapport aux énergies fossiles. Dans le cas du mazout, la différence est estimée à 302 grammes de CO2 par kWh. Si on reprend la consommation annuelle de la chaudière de 360 000 kWh, les pellets permettent de réduire l’émission de 108 tonnes d’équivalents CO2 par an ! En termes de production de SO2, cette réduction serait de 200 kg/an.

Partenaires du projet et contacts

Cette étude de cas a été rédigée à l’aide des informations fournies par les entreprises qui ont mis en place les installations et du facilitateur Bois-Énergie.

  • Service Facilitateur Bois Energie – Secteur Public – Région wallonne
    Fondation Rurale de Wallonie
    Monsieur Francis FLAHAUX
    pbe@frw.be
  • Installation de chauffage
    Monsieur Alain HEEREN
    hrea@viessmann.be