Lampes et luminaires LED

Lampes et luminaires LED


Terminologie

Puce (ou chip) LED

Puce (ou chip) LED

La puce LED est le composant semi-conducteur intégré dans une capsule appropriée permettant une connexion électrique ou un assemblage simplifié. Les puces LED peuvent être combinées entre elles sur un circuit imprimé.

Lampe LED

Lampe LED.

La lampe LED est un système complet conçu de manière à permettre le remplacement aisé des technologies traditionnelles moins efficaces (retrofit). Ces lampes reprennent pour cela les formes et les culots normalisés des lampes traditionnelles.

Module LED

Module LED.

Le module LED est constitué d’une ou plusieurs puces LED montées avec d’éventuels composants optiques, électriques ou thermiques (généralement externes).

Luminaire LED

Luminaire LED.
Luminaire encastré.

Luminaire LED.
Luminaire plafonnier.

Le luminaire LED est un système complet composé de puces LED, de lampe(s) à LEDs ou encore de module(s) LED, comprenant l’électronique, l’enveloppe, le câblage, etc. Il peut éventuellement être conçu pour recevoir des modules remplaçables.


Conception d’une lampe ou d’un luminaire LED

La plupart des constructeurs de lampes ou de luminaires sérieux ne font que concevoir les lampes ou les luminaires en se fournissant en unités LED chez les électroniciens. Afin d’assurer une homogénéité dans l’application, le choix des LEDs utilisés se fait suite à une sélection (appelée binning) en fonction de critères spécifiques de couleur, flux lumineux et tension.

Pour répondre aux attentes des marchés, les objectifs des constructeurs sont principalement :

  • de fournir un éventail de lampes et de luminaires avec un large panel de photométries différentes ;
  • d’obtenir une esthétique attrayante ;
  • d’optimiser les performances énergétiques (lm/W) ;
  • d’allonger la durée de vie (heures de fonctionnement);
  •   …

Des études sur la thermique sont impératives de manière à bien « drainer » la chaleur en dehors de la lampe ou du luminaire. Ces études influencent bien entendu la conception de la lampe ou du luminaire.


 Caractéristiques générales

Durée de vie des lampes et luminaires LED

Même si aujourd’hui une source LED (chip) seule peut atteindre une durée de vie de 50 000 h, cet objectif n’est pas encore atteint pour les applications intérieures (lampes et luminaires). Selon une étude du U.S. Department of Energy (Energy Savings Potential of Solid State Lighting in General Illumination Applications. 2012), on peut raisonnablement prévoir  l’évolution suivante dans le futur :

Évolution prévue de la durée de vie des applications LED.

Efficacité lumineuse des lampes et luminaires LED

L’efficacité lumineuse des lampes et luminaires à LEDs est bien différente de l’efficacité lumineuse annoncée pour les puces LED.
En effet, cette dernière est évaluée en test éclair et pour une température de jonction de 25°C (soit une température très basse par rapport à la température à laquelle la jonction est soumise en conditions d’utilisation réelle).

En réalité, l’efficacité lumineuse d’un luminaire LED est d’environ 20 % à 30 % plus faible que la valeur annoncée pour la chip LED.
Voici deux exemples :

Grâce à ces exemples, on se rend compte que l’efficacité lumineuse réelle des lampes et luminaires à LEDs est pour le moment équivalente à celle des lampes fluorescente :

Selon l’étude du U.S. Department of Energy, l’évolution des LEDs devrait permettre d’atteindre 200 lm/W vers 2020-2025.  De quoi alors surpasser tous les autres types de sources lumineuses !

Évolution prévue de l’efficacité lumineuse des applications LED.

Rendu des couleurs et température de couleurs

Avec les lampes et luminaires à LEDs, on peut obtenir un indice de rendu de couleur entre 60 et 98. De plus, il est possible, avec certains types de LED, de moduler la température de couleur de manière continue.


Aspect thermique

Malgré que le rayonnement lumineux de la LED ne génère pas d’infrarouge (et donc pas de chaleur dans le sens du flux lumineux), la dissipation de la chaleur de la jonction est un des problèmes majeurs des lampes et des luminaires à LEDs. En effet, entre  50 % et 70 % de la consommation d’une LED est transformée directement en chaleur qui doit être absolument évacuée sous peine de réduire l’efficacité lumineuse et la durée de vie.

Comparatif thermique entre une LED et une lampe à incandescence.

Des études de dissipation thermique, pour chaque modèle sont donc nécessaires pour pouvoir concevoir une lampe ou un luminaire à LEDs avec  son dissipateur de chaleur intégré.

Cas des lampes

La complexité de l’évacuation de la chaleur générée par les unités LED composant la lampe s’accentue vu la nécessité d’éviter le « drainage » de la chaleur vers l’arrière de la lampe. En effet, le risque est d’accumuler la chaleur de jonction au niveau de l’alimentation intégrée dans le culot. On dit que la lampe LED « claque » non pas par une surchauffe des unités LED mais plutôt de l’alimentation. D’où la nécessité d’évacuer la chaleur par l’avant de la lampe.

Exemple d’étude thermique d’une lampe LED.

Cas des luminaires

Dans le cas des luminaires, le problème de la surchauffe de l’alimentation peut être éliminé vu la possibilité de la déporter hors du luminaire. Il reste aux constructeurs à bien concevoir le dissipateur en fonction d’un luminaire prévu pour être monté en saillie ou encastré.

Étude thermique (source ETAP).


Aspect optique

De par sa taille réduite, l’association de puces LED, de lentille, de diffuseurs et de réflecteurs permet d’obtenir à peu près toutes les distributions lumineuses possibles.

Cependant, à cause de cette petite taille combinée à une puissance lumineuse en constante augmentation, la luminance de la source devient très importante et peut atteindre des valeurs de 10 à 100 millions de Cd/m². Les fabricants prévoient donc des systèmes optiques comme les lentilles, les réflecteurs ou/et des diffuseurs pour éviter l’exposition directe du regard et le risque d’éblouissement.

Type de lampe Luminance (Cd/m²)
Fluo linéaire – T8 14 000
Fluo linéaire – T5 15 000 – 33 000
Fluo compact 50 000
LED nue 100 000 000
Soleil 1 000 000 00
Suivant l’application, on peut obtenir les résultats suivants :

Des lentilles seules, par exemple, permettent de réduire la luminance de crête :

Des réflecteurs combinés avec un diffuseur permettent d’obtenir une lumière douce :

Sources LED

Sources LED

N.B. : cette page reprend uniquement la description du fonctionnement et des caractéristiques de la puce LED. Pour en savoir plus sur son application sous forme de lampe ou de luminaire.


Comment fonctionne une LED ?

Schéma description LED.

Une LED (Light Emitting Diode) est une diode électroluminescente qui émet de la lumière lorsqu’elle est parcourue par un courant continu dans le sens passant.

Schéma description LED - 02. Schéma description LED - 03.

Comme le montre la figure suivante, la quantité de lumière générée par la LED est  proportionnelle à l’intensité du courant qui la traverse.

Couleur des LEDs

Schéma couleur des LEDs.

La LED émet une lumière quasi monochromatique. Sa couleur dépend des caractéristiques des matériaux utilisés durant la production (composition des semi-conducteurs et de leur dopage, température de jonction, …). Il est ainsi possible de balayer toutes les couleurs du spectre visible.

En éclairage artificiel d’intérieur, on cherche cependant essentiellement à se rapprocher de la couleur de la lumière naturelle, à savoir la lumière blanche. Pour obtenir une lumière blanche, il est nécessaire de combiner plusieurs sources lumineuses de composantes. Ainsi, la couleur blanche peut être produite soit par mélange additif de LED rouges, vertes et bleues, soit par conversion d’un LED bleu au moyen de poudre phosphorescente, selon le même principe utilisé dans les tubes fluorescents. Ce dernier principe est généralement utilisé en éclairage intérieur.

Les LEDs pour l’éclairage

Avant de devenir incontournables dans le domaine de l’éclairage, les LEDs doivent encore relever plusieurs défis non négligeables en termes :


Caractéristiques générales

Il importe de bien distinguer la performance (et son potentiel d’évolution) d’une puce LED par rapport à celle d’une lampe LED et à celle d’un luminaire LED.

Si les performances (efficacité lumineuse, durée de vie, etc.) des puces LED sont intéressantes pour évaluer le potentiel intrinsèque de la technologie, elles sont inutiles pour comparer la technologie de l’éclairage LED par rapport aux autres technologies disponibles (notamment les lampes fluorescentes).

Sous différents aspects, la LED est très prometteuse sachant que ses performances énergétiques, sa durée de vie, … s’améliorent de jour en jour.

Techniques

Pour en savoir plus sur les applications LED (lampes et luminaires) et leurs performances.

Durée de vie d’un « chip » LED

La durée de vie des puces LED avoisine théoriquement les 50 000 heures, durée pendant laquelle le flux lumineux reste au-dessus de 70 % du flux initial.

Schéma durée de vie d'un "chip" LED.

Cependant, cette durée dépend de plusieurs paramètres comme le courant qui la traverse et, donc indirectement de la température. Les 50 000 heures sont atteignables pour autant que la température de jonction ne dépasse pas 80-85 °C.

L’absence de « pièce fragile » comme le filament de nombreuses lampes, permet d’augurer une durée de vie plus importante. Par contre, comme tout composant électronique, la chip LED est sensible aux influences électromagnétiques. Pour ne pas raccourcir sa durée de vie, il est important que les constructeurs prévoient une bonne connexion à la terre.

Ces valeurs élevées doivent être vues comme une démonstration du potentiel élevé de la technologie LED.

Efficacité lumineuse des chip LED

L’efficacité lumineuse (lm/W) représente un des critères essentiels d’une source lumineuse. Certains fabricants annoncent une efficacité lumineuse de l’ordre de 100 lm/W sous forme commerciale et de 200 lm/W en laboratoire. Le maximum théorique serait de 230 lm/W (pour une température de jonction de 25°C).
De même que pour la durée de vie, ces valeurs élevées doivent être vues comme une démonstration du potentiel élevé de la technologie LED.

La température de jonction influence aussi le flux lumineux de la puce LED et donc son efficacité lumineuse. C’est principalement pour cette raison que les LEDs conviennent particulièrement bien pour les applications à basse température (surgélation, réfrigération, …) sachant que le flux lumineux augmente avec l’abaissement de la température de jonction. De plus, pour les basses températures, la durée de vie augmente.

Flux lumineux de démarrage

Contrairement à la plupart des lampes fluorescentes qui mettent un certain temps à atteindre leur flux lumineux optimal, les LEDs l’atteignent  quasi instantanément. De plus, elles peuvent être commutées ON/OFF à chaud sans altération de leur durée de vie. Ce n’est pas le cas pour les lampes à décharge par exemple.

La gradation du flux lumineux

La gradation du flux lumineux des LEDs s’opère sur une large plage (presque 0 % à 100 %). Les pertes par gradation sont sensiblement les mêmes que pour les lampes fluorescentes équipées d’un ballast électronique performant.

Schéma gradation du flux lumineux.

À 0 % de flux lumineux, la consommation résiduelle est de l’ordre de 10-15 % de la puissance nominale.

Rayonnement IR et UV

Les LEDs ne génèrent pas ou peu de rayonnement infrarouge (IR) ou ultraviolet (UV) dans le flux lumineux. Il est clair qu’elles génèrent de la chaleur, mais en grande partie de manière convective et non radiative. Autrement dit, la chaleur n’est pas émise dans le sens du flux lumineux. De par ces propriétés, les lampes LED sont intéressantes dans le cas d’application comme pour l’éclairage des œuvres d’art, des denrées alimentaires, des vêtements, …

Par contre l’élimination de la chaleur reste un problème majeur pour toutes les applications LED. Pour en savoir plus, cliquez ici !


Métier de la LED

Dans le monde de la conception LED apparaissent deux métiers : les concepteurs de puces LED et les  concepteurs de luminaires ou lampes LEDs. Les premiers sont plutôt issus de l’industrie électronique, les seconds de la conception en éclairage (lampe ou luminaire). Dans ce domaine, à l’heure actuelle, il convient de prendre un certain recul par rapport à la tendance qu’ont les électroniciens à s’improviser professionnel de l’éclairage.

Techniques

pour en savoir plus sur les lampes et luminaires à LEDs.

Données

Pour connaitre les valeurs caractéristiques des lampes LED.

Données

Pour consulter un récapitulatif des caractéristiques des différents types de lampe.