Grandeurs caractéristiques des ventilateurs

Grandeurs caractéristiques des ventilateurs


Diamètre nominal

 La plupart des ventilateurs ne sont pas construits à partir de dimensions arbitraires. Celles-ci sont normalisées, ce qui permet leur interchangeabilité et les comparaisons de prix.

Le diamètre nominal d’un ventilateur est le diamètre de la section de raccordement placée à l’aspiration dans le cas d’un raccordement direct à un conduit. Lorsque le ventilateur est équipé différemment (par ex.: présence d’un pavillon à l’aspiration), on se réfère au ventilateur équivalent en raccordement direct.

Diamètres nominaux en mm

63

71

80

90

100

112

125

140

160

180

200

224

250

280

315

355

400

450

550

560

630

710

800

900

1 000

1 120

1 250

1 400

1 600

1 800

2 000


Courbes caractéristiques

Les performances des ventilateurs sont répertoriées sous forme de courbes caractéristiques reprises dans la documentation des fabricants.

On retrouve dans les courbes caractéristiques :

  • la hauteur manométrique totale que peut fournir un ventilateur en fonction du débit (ou point de fonctionnement),
  • la vitesse du ventilateur pour chaque point de fonctionnement,
  • le rendement du ventilateur pour chaque point de fonctionnement,
  • la pression dynamique à la sortie du ventilateur,
  • la puissance absorbée à l’arbre du moteur.

Courbes caractéristiques d’un ventilateur centrifuge à aubes inclinées vers l’arrière.

Pour fournir un débit de 8 000 m³/h, le ventilateur délivre une pression dynamique de 45 Pa.

Pour un réseau ayant, avec ce débit une perte de charge de 955 PA, la hauteur manométrique
du ventilateur est de 1 000 PA Pour obtenir ce point de fonctionnement le ventilateur
doit tourner à 1 950 tr/min.
Pour ce point de fonctionnement, son rendement sera de 81 %
et la puissance à l’arbre sera proche de 2,8 kW.

Certaines courbes caractéristiques reprennent de façon semblable la puissance acoustique émise par le ventilateur pour chaque point de fonctionnement.

De même, si l’angle de calage des aubes du ventilateur (ventilateur hélicoïde) peut varier ou si le ventilateur est équipé d’un aubage de prérotation, on retrouvera sur les courbes caractéristiques les différentes performances du ventilateur en fonction du réglage choisi.

On peut également signaler que l’imprécision des mesures des caractéristiques en laboratoire a conduit à éditer des classes de tolérance permettant de se faire une idée de la qualité de la documentation technique fournie par le fabricant.

Classe de tolérance

0

1

2

3

Débit d’air

+/- 1 %

+/- 2,5 %

+/- 5 %

+/- 10 %

Pression

+/- 1 %

+/- 2,5 %

+/- 5 %

+/- 10 %

Puissance absorbée

+ 2 %

+ 3 %

+ 8 %

+ 16 %

Rendement

– 1 %

– 2 %

– 5 %

Puissance acoustique

+ 3 dB

+ 3 dB

+ 4 dB

+ 6 dB


Sens de rotation et position de l’enveloppe

C’est la situation de la manchette de refoulement qui permet de différencier la position de l’enveloppe (0, 90, 180 ou 270 degrés avec parfois des angles intermédiaires comme 45, 135, 270 ou 315 degrés).

Quant au sens de rotation d’une roue, il se détermine comme suit : l’observateur se place face au ventilateur du côté du moteur (ou du manchon d’accouplement ou de la poulie) et regarde dans le prolongement de l’axe de rotation du ventilateur. Si l’observateur voit alors le ventilateur tourner dans le sens des aiguilles d’une montre, le ventilateur est dit tourner « à droite » ou dans le « sens direct » ; s’il le voit tourner dans le sens inverse des aiguilles d’une montre, le ventilateur est dit tourner « à gauche » ou dans le « sens inverse ».


Règles de similitude

Variation des grandeurs caractéristiques d’un ventilateur lorsqu’on modifie sa vitesse à partir d’un point de fonctionnement donné.

Variation des grandeurs caractéristiques d’un ventilateur lorsqu’on modifie sa vitesse à partir d’un point de fonctionnement donné

q/ q= n1 / n2

Légende :

q = débit volume (m³/h)

n = vitesse de rotation (tr/min)

p = gain de pression (Pa)

P= puissance sur l’arbre (kW)

p/ p= (n1 / n2)² = (q1 / q2

Pw1 / Pw2 = (n/ n2)³ = (q/ q2

Variation du diamètre de l’ouïe d’aspiration pour un ventilateur tournant à vitesse constante

V/ V= (d/ d2

Légende :

d = diamètre de l’ouïe d’aspiration (mm)

p/ p= (d/ d2

Pw1 / Pw2 = (d1 / d2)5

Absorbeurs acoustiques

Absorbeurs acoustiques


Les silencieux à absorption

Le silencieux à absorption est le plus utilisé dans les installations de ventilation et de climatisation.

Physiquement, l’énergie acoustique du signal sonore est absorbée par les parois et convertie en chaleur.

  1. gaine d’écoulement.
  2. enveloppe perméable aux sons.
  3. matériau d’absorption acoustique.

Le principe consiste à faire circuler l’air entre des plaques de matériau absorbant, appelées baffles (garnie de plaques métalliques dans le cas des silencieux pour basse fréquence). L’atténuation acoustique d’un silencieux est fonction de l’épaisseur des baffles, de l’écartement entre deux baffles et de la longueur de ces derniers

  • Silencieux composés de cinq baffles.
  • Baffle pour silencieux efficace pour les hautes fréquences.
  • Baffle pour silencieux, recouvert en partie d’une tôle métallique pour les basses fréquences.

 

Tourelles d’extraction équipées d’un silencieux.

Il existe également des baffles cylindriques dans lesquels le matériau absorbant est recouvert d’un tube  perforé. Ceux-ci ne permettent pas une atténuation aussi importante que leurs homologues rectangulaires, mais provoquent moins de pertes de charges. Pour les plus grands diamètres, ce type de silencieux est en outre équipé d’un cylindre central (appelé bulbe) pour augmenter ses performances.

    

Silencieux cylindriques sans et avec bulbe.


Les silencieux actifs

L’absorption acoustique a comme principe de créer à l’aide d’un circuit électronique une onde déphasée par rapport à l’onde acoustique qui se propage dans le réseau, annulant cette dernière :

Le bruit incident dans la gaine est transmis par le microphone de détection (situé vers le ventilateur) au calculateur électronique. Celui-ci analyse ce signal entrant, le décompose, calcule le signal inverse et le restitue au haut-parleur. Ce dernier émet le bruit contraire ainsi créé dans le flux d’air qui interfère de manière destructive avec le bruit incident pour l’atténuer. Un microphone de contrôle (à l’opposé du ventilateur) transmet au calculateur le bruit atténué résultant pour qu’il corrige et optimise cette atténuation.

Silencieux actif.

L’énorme avantage de cette technique est de ne créer que peu de perte de charge, contrairement à tous les systèmes dits « passifs ».

Les silencieux actifs sont capables d’éliminer aussi bien des bruits complexes que des sons purs. Ils sont particulièrement efficaces dans l’atténuation des basses fréquence sans sélectivité.

Ils peuvent ainsi être complémentaire aux silencieux à absorption car leur association permet de réduire des niveaux de bruit sur de larges bandes allant des basses aux hautes fréquences.

Les silencieux actif s’insère directement sur un réseau de gaines circulaires mais, pour les gaines rectangulaires des pièces d’adaptation sont nécessaires.

Les turbulences au sein de l’écoulement d’air diminuent les performances de ce type de silencieux. Il faut donc être attentif à les placer dans une portion du réseau où l’air se répartit le plus uniformément sur toute sa section.


La manchette de compensation

La manchette de compensation, ou compensateur élastique, a pour mission de couper les bruits transmis par les solides, grâce à son élasticité.

Tout particulièrement, elle permet de stopper les vibrations générées par le ventilateur dans le caisson de climatisation.

Elle est réalisée en toile à voile, en tissu plastifié ou en matière synthétique.


Le revêtement absorbant de conduit

Un revêtement intérieur fibreux (généralement, il s’agit de panneaux de laine minérale) renforce l’atténuation du son transporté par un conduit d’air.

Il existe des matériaux avec protection contre la désagrégation (pour éviter un détachement des fibres du matériau acoustique), par exemple des panneaux de fibres minérales enduits au néoprène. Cet enduit ne doit pas dépasser 0,1 mm d’épaisseur, sans quoi le pouvoir d’absorption est diminué. Les panneaux pouvant émettre des fibres dans le réseau de ventilation sont, quant à eux, à éviter.

Ces panneaux ont pour avantage de créer simultanément une isolation thermique entre le fluide et les locaux traversés… mais ont pour désavantages d’augmenter les pertes de charge, de retenir les poussières et de favoriser le développement de milieux peu hygiéniques…

Exemple : imaginons un conduit de 0,15 m x 0,15 m de section, d’une longueur de 11 m, munie d’un revêtement absorbant sur 1 m. Quelle sera l’atténuation sonore totale ?

Voici l’atténuation du niveau sonore annoncée par un fabricant de panneaux absorbants [en dB/m] :

Section du conduit

125 Hz

250 Hz

500 Hz

1 000 Hz

2 000 Hz

4 000 Hz

0,15 m x 0,15 m

4,5

4

11

16,5

19

17,5

0,30 m x 0,30 m

1,5

1,5

6

15

10

7

0,60 m x 0,60 m

1

1,5

5

12

7

4,5

Remarque.

On constate que l’absorption acoustique d’un matériau fibreux est nettement plus élevée pour les hautes fréquences (sons aigus) que les basses fréquences (sons graves). On constate également que le même absorbant est plus efficace dans un conduit de faible diamètre (la fréquence des chocs avec les parois est beaucoup plus élevée).

Voici l’atténuation linéaire [en dB/m] d’un conduit en tôle d’acier :

Section du conduit

125 Hz

250 Hz

500 Hz

1 000 Hz

2 000 Hz

4 000 Hz

0,15 m x 0,15 m

0,6

0,45

0,3

0,3

0,3

0,3

Additionnons les atténuations [en dB] sur les 11 m de conduit :

125 Hz

250 Hz

500 Hz

1 000 Hz

2 000 Hz

4 000 Hz

10 m sans revêtement

6

4,5

3

3

3

3

1 m avec revêtement

4,5

4

11

16,5

19

17,5

Atténuation totale

10,5

8,5

14

19,5

22

20,5

Conclusions : Il est très frappant de voir l’efficacité de 1 m de matériau absorbant par rapport à 10 m de tôle non couverte ! En fait, les conduits en tôle avec revêtement absorbant ne sont rien d’autre que des silencieux à absorption…