Caractéristiques thermiques des sols

Caractéristiques thermiques des sols

Type de roche

Conductivité thermique
λ (W/mK)

Capacité thermique volumétrique
ρC (MJ/m³K)

min

valeur typique

max

Roches magmatiques

Basalte

1.3

1.7

2.3

2.3 – 2.6

Diorite

2.0

2.6

2.9

2.9

Gabbro

1.7

1.9

2.5

2.6

Granit

2.1

3.4

4.1

2.1 – 3.0

Péridotite

3.8

4.0

5.3

2.7

Rhyolithe

3.1

3.3

3.4

2.1

Roches métamorphiques

Gneiss

1.9

2.9

4.0

1.8 – 2.4

Marbre

1.3

2.1

3.1

2.0

Métaquartzite

env. 5.8

2.1

Mécaschistes

1.5

2.0

3.1

2.2

Schistes argileux

1.5

2.1

2.1

2.2 – 2.5

Roches sédimentaires

Calcaire

2.5

2.8

4.0

2.1 – 2.4

Marne

1.5

2.1

3.5

2.2 – 2.3

Quartzite

3.6

6.0

6.6

2.1 – 2.2

Sel

5.3

5.4

6.4

1.2

Grès

1.3

2.3

5.1

1.6 – 2.8

Roches argileuses limoneuses

1.1

2.2

3.5

2.1 – 2.4

Roches non consolidées

Gravier sec

0.4

0.4

0.5

1.4 – 1.6

Gravier saturé d’eau

env. 1.8

env. 2.4

Moraine

1.0

2.0

2.5

1.5 – 2.5

Sable sec

0.3

0.4

0.8

1.3 – 1.6

Sable saturé d’eau

1.7

2.4

5.0

2.2 – 2.9

Argile/limon sec

0.4

0.5

1.0

1.5 – 1.6

Argile/limon saturé d’eau

0.9

1.7

2.3

1.6 – 3.4

Tourbe

0.2

0.4

0.7

0.5 – 3.8

Autres substances

Bentonite

0.5

0.6

0.8

env. 3.9

Béton

0.9

1.6

2.0

env. 1.8

Glace (-10°C)

2.32

1.87

Plastique (PE)

0.39

Air (0-20°C, sec)

0.02

0.0012

Acier

60

3.12

Eau (+10°C)

0.58

4.19

Conductivité thermique des matériaux (λ)

Conductivité thermique des matériaux (λ)


 

Remarques générales

  • Les valeurs  de conductivité thermique reprises ici sont des valeurs par défaut, issues de la réglementation (Extrait de l’AGW du 17 avril 2008, Annexe A de l’Annexe VII).
  • Le site www.epbd.be produit conjointement par les trois régions donne des valeurs reconnues pour le calcul PEB. Elles concernent notamment la conductivité thermique, la résistance thermique et la masse volumique des principaux produits d’isolation et de construction opaque disponibles sur le marché belge.
  • L’emploi des valeurs λU,e ou  λU,i  dépend des conditions d’utilisation du matériau :
    •  λU,i : Conductivité thermique utilisée pour un matériau dans une paroi intérieure ou dans une paroi extérieure, à condition que ce matériau soit protégé contre l’humidité due à la pluie ou à la condensation.
    • λU,e : Conductivité thermique utilisée pour un matériau dans une paroi extérieure qui n’est pas protégé contre l’humidité due à la pluie ou à la condensation.
  • La masse volumique des blocs/briques perforés  correspond au rapport entre leur masse réelle et leur volume hors-tout.
  • Les blocs creux ne sont pas des blocs perforés. En effet, pour ces blocs,  la chaleur se propage en même temps par conduction, convection et rayonnement (la valeur λ n’est donc pas représentative).  Leur résistance thermique RU est directement calculée en laboratoire. Les normes reprennent des valeurs par défaut pour ces composants.

Pour en savoir plus sur la conductivité thermique d’un matériau : cliquez ici !


Les métaux

Tableau A.1  – Métaux

Matériau

λUi
W/(m.K)
λUe
W/(m.K)
Chaleur massique c
J/(kg.K)
Masse volumique
ρ (kg.m³)

Plomb

35 35  130  11 300

Cuivre

380 380  380  8 900

Acier

50 50  450  7 800

Aluminium 99%

160 160  880  2 800

Fonte

50 50  450  7 500

Zinc

110 110  380  7 200

Les pierres naturelles

Tableau A.2  – Pierres naturelles
La chaleur massique c vaut 1 000 J/(kg.K)

Matériau

λUi
W/(m.K)
λUe
W/(m.K)
 

Masse volumique
ρ (kg.m³)

Pierres lourdes (granit, gneiss, basalte, porphyre)

3.50 3.50 2 700 ≤ ρ ≤ 3 000

« Petit granit » (pierre bleue), pierre calcaire

2.91 3.50 2 700

Marbres

2.91 3.50 2 800

Pierres dures

2.91 2.68 2 550

Pierres fermes

1.74 2.09 2 350

Pierres demi-fermes (o.a. moellon)

1.40 1.69 2 200

Les briques en terre cuite

Tableau A.3 – Briques en terre cuite
La chaleur massique c vaut 1 000 J/(kg.K)
Masse volumique
ρ (kg.m³)
λUi
W/(m.K)
λUe
W/(m.K)
ρ ≤ 700 0.22 0.43
700 < ρ ≤ 800 0.25 0.49
800 < ρ ≤ 900 0.28 0.56
900 < ρ ≤ 1000 0.32 0.63
1000 < ρ ≤ 1100 0.35 0.70
1100 < ρ ≤ 1200 0.39 0.77
1200 < ρ ≤ 1300 0.42 0.84
1300 < ρ ≤ 1400 0.47 0.93
1400 < ρ ≤ 1500 0.51 1.00
1500 < ρ ≤ 1600 0.55 1.09
1600 < ρ ≤ 1700 0.60 1.19
1700 < ρ ≤ 1800 0.65 1.28
1800 < ρ ≤ 1900 0.71 1.40
1900 < ρ ≤ 2000 0.76 1.49
2000 < ρ ≤ 2100 0.81 1.61

Les briques/blocs silico-calcaires

Tableau A.4 – Briques/blocs silico-calcaires
La chaleur massique c vaut 1 000 J/(kg.K)
Masse volumique
ρ (kg.m³)
λUi
W/(m.K)
λUe
W/(m.K)
ρ ≤ 900 0.36 0.78
900 < ρ ≤ 1000 0.37 0.81
1000 < ρ ≤ 1100 0.40 0.87
1100 < ρ ≤ 1200 0.45 0.97
1200 < ρ ≤ 1300
0.51 1.11
1300 < ρ ≤ 1400 0.57 1.24
1400 < ρ ≤ 1500 0.66 1.43
1500 < ρ ≤ 1600 0.76 1.65
1600 < ρ ≤ 1700 0.87 1.89
1700 < ρ ≤ 1800 1.00 2.19
1800 < ρ ≤ 1900 1.14 2.49
1900 < ρ ≤ 2000 1.30 2.84
2000 < ρ ≤ 2100 1.49 3.25
2100 < ρ ≤ 2200 1.70 3.71

Les blocs de béton avec granulats ordinaires

Tableau A.5 – Blocs de béton avec granulats ordinaires
La chaleur massique c vaut 1 000 J/(kg.K)
Masse volumique
ρ (kg.m³)
λUi
W/(m.K)
λUe
W/(m.K)
ρ ≤ 1600 1.07 1.39
1600 < ρ ≤ 1700 1.13 1.47
1700 < ρ ≤ 1800 1.23 1.59
1800 < ρ ≤ 1900 1.33 1.72
1900 < ρ ≤ 2000
1.45 1.88
2000 < ρ ≤ 2100 1.58 2.05
2100 < ρ ≤ 2200 1.73 2.24
2200 < ρ ≤ 2300 1.90 2.46
2300 < ρ ≤ 2400 2.09 2.71

Les blocs de béton d’argile expansé (billes d’argex par exemple)

Tableau A.6 – Blocs de béton d’argile expansé
La chaleur massique c vaut 1 000 J/(kg.K)
Masse volumique
ρ (kg.m³)
λUi
W/(m.K)
λUe
W/(m.K)
ρ ≤ 400 0.14 (1)
400 < ρ ≤ 500 0.18 (1)
500 < ρ ≤ 600 0.21 0.28
600 < ρ ≤ 700 0.25 0.33
700 < ρ ≤ 800
0.30 0.39
800 < ρ ≤ 900 0.33 0.44
900 < ρ ≤ 1000 0.38 0.50
1000 < ρ ≤ 1100 0.43 0.57
1100 < ρ ≤ 1200 0.49 0.65
1200 < ρ ≤ 1300 0.55 0.73
1300 < ρ ≤ 1400 0.61 0.80
1400 < ρ ≤ 1500 0.67 0.88
1500 < ρ ≤ 1600 0.75 0.99
1600 < ρ ≤ 1700 0.83 1.10

(1) L’exposition directe de ces matériaux aux conditions climatiques extérieures n’est en règle générale pas recommandée.


Les  blocs de béton léger

Tableau A.7 – Blocs de béton avec d’autres granulats légers
La chaleur massique c vaut 1 000 J/(kg.K)
Masse volumique
ρ (kg.m³)
λUi
W/(m.K)
λUe
W/(m.K)
ρ ≤ 500 0.30 (1)
500 < ρ ≤ 600 0.33 0.43
600 < ρ ≤ 700 0.37 0.47
700 < ρ ≤ 800 0.41 0.52
800 < ρ ≤ 900
0.46 0.58
900 < ρ ≤ 1000 0.51 0.65
1000 < ρ ≤ 1100 0.57 0.73
1100 < ρ ≤ 1200 0.64 0.82
1200 < ρ ≤ 1300 0.72 0.91
1300 < ρ ≤ 1400 0.82 1.04
1400 < ρ ≤ 1500 0.92 1.17
1500 < ρ ≤ 1600 1.03 1.31
1600 < ρ ≤ 1800 1.34 1.70

(1) L’exposition directe de ces matériaux aux conditions climatiques extérieures n’est en règle générale pas recommandée.


Les  blocs de béton cellulaire autoclavés

Tableau A.8 – Blocs de béton cellulaire autoclavés
La chaleur massique c vaut 1 000 J/(kg.K)
Masse volumique
ρ (kg.m³)
λUi
W/(m.K)
λUe
W/(m.K)
ρ ≤ 300 0.10 (1)
300 < ρ ≤ 400 0.13 (1)
400 < ρ ≤ 500 0.16 (1)
500 < ρ ≤ 600 0.20 0.32
600 < ρ ≤ 700
0.22 0.36
700 < ρ ≤ 800 0.26 0.42
800 < ρ ≤ 900 0.29 0.48
900 < ρ ≤ 1000 0.32 0.52

(1) L’exposition directe de ces matériaux aux conditions climatiques extérieures n’est en règle générale pas recommandée.


Les éléments de construction sans joints en béton lourd normal

Tableau A.9 – Béton lourd normal
La chaleur massique vaut 1 000 J/(kg.K)

Béton lourd normal

λUi
W/(m.K)
λUe
W/(m.K)
 Masse volumique ρ (kg/m³)

Armé

1.70 2.20 2 400

Non armé

1.30 1.70 2 400

Les éléments de construction sans joints en béton léger

Tableau A.10 – Béton léger en panneaux pleins ou en dalle(2) (béton d’argile expansé, béton cellulaire, béton de laitier, de vermiculite, de liège, de perlite, de polystyrène, etc.)
La chaleur massique c vaut 1000 J/(kg.K). Si des valeurs λ sont mentionnées dans les tableaux A.3 à A.8 pour ces produits, ces dernières seront utilisées. Les valeurs ci-dessous ne sont alors pas d’application.
Masse volumique
ρ (kg.m³)
λUi
W/(m.K)
λUe
W/(m.K)
ρ < 350 0.12 (1)
350 ≤ ρ < 400 0.14 (1)
400 ≤ ρ < 450 0.15 (1)
450 ≤ ρ < 500 0.16 (1)
500 ≤ ρ < 550
0.17 (1)
550 ≤ ρ < 600 0.18 (1)
600 ≤ ρ <650 0.20 0.31
650 ≤ ρ < 700 0.21 0.34
700 ≤ ρ < 750 0.22 0.36
750 ≤ ρ < 800 0.23 0.38
800 ≤ ρ < 850 0.24 0.40
850 ≤ ρ < 900 0.25 0.43
900 ≤ ρ < 950 0.27 0.45
950 ≤ ρ < 1000 0.29 0.47
1000 ≤ ρ < 1100 0.32 0.52
1100 ≤ ρ < 1200 0.37 0.58

(1) L’exposition directe de ces matériaux aux conditions climatiques extérieures n’est, en règle générale, pas recommandée.
(2) Dans le cas où les dalles ou les panneaux sont pourvus d’une armature parallèle au sens du flux thermique (ex. colliers, treillis d’armature), le transfert thermique sera pris en compte dans la détermination de la valeur U selon la NBN EN 10211.


Les plâtres

Tableau A.11 – Plâtre avec ou sans granulats légers
La chaleur massique c vaut 1 000 J/(kg.K)
Masse volumique
ρ (kg.m³)
λUi
W/(m.K)
λUe
W/(m.K)
ρ ≤ 800 0.22 (1)
800 < ρ ≤ 1 100 0.35 (1)
1 100 < ρ 0.52 (1)

(1) L’exposition directe de ces matériaux aux conditions climatiques extérieures n’est en règle générale pas recommandée.


Les  enduits

Tableau A.12 – Enduits
La chaleur massique c vaut 1 000 J/(kg.K)

 Enduits

Masse volumique
ρ (kg.m³)
λUi
W/(m.K)
λUe
W/(m.K)

Mortier de ciment

1 900 0.93 1.50

Mortier de chaux

1 600 0.70 1.20

Plâtre

1 300 0.52 (1)

(1) L’exposition directe de ces matériaux aux conditions climatiques extérieures, avec entre autre un risque d’humidification par la pluie, n’est en règle générale pas recommandée.


Les bois

Tableau A.13 – Bois et dérivés de bois

 Matériau

Masse volumique
ρ (kg.m³)
λUi
W/(m.K)
λUe
W/(m.K)
 c
[J/kg.K]

Bois de charpente en

≤ 600 0.13 0.15  1880
> 600 0.18 0.20  1880

Panneau de contreplaqué

<400 0.09 0.11 1880
400 ≤ ρ < 600 0.13 0.15
600 ≤ ρ < 850
0.17 0.20
≥ 850 0.24 0.28

Panneau de particules ou d’aggloméré

< 450 0.10 (1)   1880
450 ≤ ρ < 750 0.14 (1)
≥ 750 0.18 (1)

Panneau de fibres liées au ciment

1200 0.23 (1)  1470

Panneau d’OSB
(oriented strand board)

650 0.13 (1)  1880

Panneau de fibres de bois (y compris MDF)

< 375 0.07 (1)  1880

 

375 ≤ ρ < 500 0.10 (1)
500 ≤ ρ < 700 0.14 (1)
≥ 700 0.18 (1)

(1) L’exposition directe de ces matériaux aux conditions climatiques extérieures n’est, en règle générale, pas recommandée.


Les matériaux d’isolation thermique

Tableau A.14  – Matériaux d’isolation thermique

Matériau d’isolation

λUi
W/(m.K)
λUe
W/(m.K)
 

Chaleur
massique
J/(kg.K)

Liège (ICB)

0.050 (1) 1 560

Laine minérale (MW)

0.045 (1) 1 030

Polystyrène expansé (EPS)

0.045 (1) 1 450

Polyéthylène extrudé (PEF)

0.045 (1) 1 450

Mousse phénolique – revêtu (PF)

0.045(2) (1) 1 400

Polyuréthane – revêtu (PUR/PIR)

0.035 (1) 1 400

Polystyrène extrudé (XPS)

0.040 (1) 1 450

Verre cellulaire (CG)

0.055 (1) 1 000

Perlite (EPB)

0.060 (1) 900

Vermiculite

0.065 (1) 1 080

Vermiculite expansée (panneaux)

0.090 (1) 900

(1) L’exposition directe de ces matériaux aux conditions climatiques extérieures n’est en règle générale pas recommandée.
(2) Pour les panneaux d’isolation revêtus en mousse de phénol à cellules fermées, cette valeur est ramenée à 0.030 W/(m.K)


Matériaux divers

Tableau A.15  – Matériaux divers

Matériau

λUi
W/(m.K)
λUe
W/(m.K)
 

Chaleur
massique
J/(kg.K)

Masse volumique
ρ (kg/m³)

Verre

1.00 1.00 750  2 500

Carreaux de terre cuite

0.81 1.00 1 000  1 700

Carreaux de grès

1.20 1.30 1 000  2 000

Caoutchouc

0.17 0.17 1 400  1 500

Linoléum, carreaux de PVC

0.19 1 400  1 200

Panneaux en ciment renforcé de fibres minérales naturelles

0.35 0.50 1 000  1 400 < ρ <1 900

Asphalte coulé

0.70 0.70 1 000  2 100

Membrane bitumeuse

0.23 0.23 1 000  1 100

 

Coefficient de résistance à la diffusion de vapeur des matériaux

Coefficient de résistance à la diffusion de vapeur des matériaux

QUELQUES VALEURS DE µ (coefficient de résistance à la diffusion de vapeur d’un matériau)
(suivant publication du Ministère de la Région Wallonne :
Isolation thermique des logements neufs en région wallonne
Caractéristiques hygrothermiques des matériaux.
Édition 88.002.)
Matériau µ sec µ humide

Air

1

Métaux infini

Granit, basalte, porphyre, marbre

infini infini

Pierre bleue (petit granit)

infini infini

Schiste ardoisier

> 600

Pierre ferme

2 160 – 2 349 kg/m³ 70 – 90

Pierre tendre

1 650 – 1 839 kg/m³ 26 – 32
1 100 – 1 500 kg/m³ 5 – 10 5 – 10

Maçonnerie de briques, légère

700 – 1 000 kg/m³ 5 – 10

Maçonnerie de briques, moyenne

1 300 kg/m³ 7.5
1 500 kg/m³ 8

Maçonnerie de briques, lourde

1 700 – 1 900 kg/m³ 9 – 14
2 100 kg/m³ 31

Blocs pleins de béton cellulaire

500 – 549 kg/m³ 6 3

Blocs pleins de béton cellulaire

600 – 699 kg/m³ 10 6

Blocs pleins de béton très léger

500 – 800 kg/m³ 5 – 10

Blocs pleins de béton mi-lourd

< 1 400 kg/m³ 5 – 10
> 1 401 kg/m³ 10 – 15

Maçonnerie en briques silico-calcaire

< 1 400 kg/m³ 5 – 10
> 1 400 kg/m³ 15 – 25
2 000 kg/m³ 25

Maçonnerie en blocs de plâtre

9 6

Béton plein très léger

200 kg/m³ 2.8
300 kg/m³ 3.5
500 kg/m³ 4.5

Béton plein léger

700 kg/m³ 5.5

Béton plein moyennement léger

1 000 kg/m³ 6.5
1 300 kg/m³ 7.5
1 600 kg/m³ 8

Béton plein lourd

1 900 kg/m³ 13
2 300 kg/m³ 135 30

Béton lourd non compacté non armé

2 200 kg/m³ 23 – 200
2 400 kg/m³ 31 – 200

Béton lourd non compacté, armé

2 300 kg/m³ 27 – 200

Béton lourd compacté, armé

2 500 kg/m³ 37 – 200

Béton plein isolant

300 – 700 kg/m³ 4.5 – 5.5

Béton plein de granulats EPS

350 – 400 kg/m³ 7.5 – 11

Béton plein cellulaire
(ciment ou chaux)

400 – 750 kg/m³ 3.7 – 6.5

Béton plein cellulaire

400 kg/m³ 3 – 7.5
480 kg/m³ 6 3
600 kg/m³ 11 5
700 kg/m³ 4.5 – 7.5
1 000 kg/m³ 5.5 – 7.5
1 300 kg/m³ 7.5 – 9

Béton plein d’argile expansé

550 – 1 000 kg/m³ 5 – 6.5
1 000 – 1 800 kg/m³ 6.5 – 12

Béton plein de bims

700 – 1 000 kg/m³ 6
1 000 – 1 400 kg/m³ 6.5 – 12

Béton plein à base de granulés d’argile expansé

900 – 1 000 kg/m³ 10 – 16 10 – 16

Béton plein de laitier de haut fourneau

1 000 kg/m³ 6.5
1 300 kg/m³ 8
1 600 kg/m³ 10
1 900 kg/m³ 14

Béton plein de laitier de haut fourneau + sable du Rhin

1 500 kg/m³ 10
1 700 kg/m³ 40
1 900 kg/m³ 60

Béton plein aggloméré « en granulés »

2 100 kg/m³ 18 16

Enduit en mortier de ciment

15 – 41

Enduit en mortier de chaux

9 – 41

Enduit en plâtre

6 – 10

Enduit de résine synthétique

10 – 125

Saule, bouleau, hêtre tendre

120 18

Teck

37 – 370

Chêne, hêtre, frène, noyer, méranti

370 40

Pin

370 9

Epicéa

9 – 370

Sapin rouge du Nord, Orégon

120 18

Bois résineux

18 – 120

Sapin

18 – 120

Pitchpine

370 40

Multiplex

400 – 499 16
500 – 599 175 50
700 40 – 100
800 50 – 400

Contreplaqué marin

1 000 46 – 75

Panneau de particules type tendre

< 300 5

Panneau de copeaux colle U.F.

550 – 700 40 – 140 +/- 25

Panneau de copeaux colle mélam.

550 – 700 30 – 100 +/- 30

Panneau de copeaux colle P.F.

600 – 700 50 – 150 +/- 20

Panneau de particules type lourd

1 000 46 – 75

Panneaux de fibre de bois au ciment

3.7 – 10 4

Laine minérale

1.1 – 1.8

Liège expansé

4.5 – 29

Liège expansé imprégné

9 – 46

Polystyrène expansé

15 – 150

Polystyrène extrudé avec peau de surface

115 – 300

Mousse de polyuréthane

23 – 185

Perlite expansée pure

50 – 80 kg/m³ 1.5

Perlite expansée en panneau

170 kg/m³ 7 5

Vermiculite expansée pure

80 – 100 kg/m³ 1.5

Vermiculite expansée en panneau

350 kg/m³ 8

Verre cellulaire en plaque

70 000 – infini

Verre cellulaire en granulés

1.5

Verre

infini

Céramique de verre

infini

Carreaux de céramique

150 – 300

Caoutchouc

900

Linoléum

1 800

Asbeste-ciment

800 14
1 600 – 1 900 37 – 150

Bitume oxydé

70 000 – 120 000

Feutre bitumé

15 000

Polyisobuthylène

80 000 – 260 000

EPDM

65 000

Butyl

300 000

PVC

20 000 – 40 000

Feutre bitumé, goudronné et sablé

50

Voile de verre bitumé

20 – 180

Tuiles de terre cuite

36 – 44

Vernis d’adhérence

400 – 900

Papier

100

Feuille de PVC

10 000 – 100 000

Feuille de polyisobutylène

360 000

Feuille de Polyester

13 000

Feuille de Polyéthylène

50 000 – 320 000 285 000

Conductivité thermique d’un matériau

Conductivité thermique d'un matériau


Représentation physique

La conductivité thermique (λ) est une caractéristique propre à chaque matériau.
Elle indique la quantité de chaleur qui se propage par conduction thermique :

  • en 1 seconde,
  • à travers 1 m² d’un matériau,
  • épais d’un 1 m,
  • lorsque la différence de température entre les deux faces est de 1 K (1 K = 1 °C).

Schéma principe conductivité thermique.

> La conductivité thermique s’exprime en W/mK.

Plus la conductivité thermique est élevée, plus le matériau est conducteur de chaleur. Plus elle est faible, plus le produit est isolant.

Ce coefficient n’est valable que pour les matériaux homogènes. Il n’a pas de sens pour les matériaux hétérogènes au travers desquels la chaleur se propage en même temps par conduction, convection et rayonnement.

Le coefficient de conductivité thermique λ d’un matériau varie en fonction de la température et de l’humidité de celui-ci.
Les documentations technico commerciales des matériaux devront donc préciser avec la valeur du λ les conditions dans lesquelles cette valeur est obtenue (et utilisable!). On tâchera de s’approcher des valeurs normales d’utilisation (Température entre 10 °C et 20 °C).

Pratiquement on distinguera :

λi Conductivité thermique d’un matériau dans une paroi intérieure ou dans une paroi extérieure, à condition que le matériau soit protégé contre l’humidité due à la pluie ou à la condensation.
λe Conductivité thermique d’un matériau dans une paroi extérieure qui n’est pas protégé contre l’humidité due à la pluie ou à la condensation.

Remarque : λ est une caractéristique physique du matériau indépendant de sa forme.


Échelle de valeurs

Les coefficients de conductivité thermique des matériaux varient énormément en fonction de la nature de ceux-ci. (Valeurs par défaut extraites de l’annexe B1 de l’AGW du 15 mai 2014).

  • Les métaux : 35 (plomb) à 380 (cuivre) W/mK ;
  • Les pierres : 1.4 (pierre demi-fermes) à 3.5 (pierres lourdes) W/mK :
  • Les bétons lourds : 1.3 (non armé sec) à 2.2 (armé humide) W/mK ;
  • Les briques :  0.22 (léger sec) à 1.61 (lourd humide) W/mK ;
  • Le bois : 0.13 (résineux sec) à 0.20 (feuillu humide) W/mK ;
  • Les isolants : 0.035 (polyuréthane revêtu) à 0.090 (vermiculite expansée en panneau) W/mK.

Ainsi, :

  • le cuivre est plus de 10.000 fois plus conducteur de chaleur que le polyuréthane.
  • le polyuréthane conduit 100 fois moins la chaleur que la pierre lourde !

 


Valeurs reconnues pour les matériaux de construction

La valeur déclarée

La valeur déclarée λD d’un matériau de construction est généralement fournie par son fabricant. Cette valeur est certifiée sur base d’un agrément technique (ATG, CE, ETA, ETZ, …). Elle est obtenue dans des conditions de référence données de température et d’humidité (d’après les principes donnés dans la EN ISO 10456).

Les valeurs de calcul

À partir de cette valeur λD, il est possible de déduire les valeurs de calcul de la conductivité thermique λU,i et λU,e. Ces valeurs sont en fait recalculées pour des conditions spécifiques à l’utilisation du matériau (interne ou externe). Il existe un site officiel qui indique, pour les trois régions belges, les valeurs λU,i et λU,e de certains matériaux qui peuvent directement être utilisées pour le calcul des performances thermiques des parois suivant la réglementation PEB : www.epbd.be

Les valeurs de calcul par défaut

Des valeurs de calcul  λU,i et λU,e par défaut peuvent toujours être utilisées lorsque le matériau ne possède pas de valeur λD certifiée ou n’est connu que par sa nature. Ces valeurs sont reprises dans divers tableaux de la réglementation.

Transmission lumineuse des matériaux

Transmission lumineuse des matériaux


Caractéristiques lumineuses

Lorsque la lumière visible du soleil est interceptée par une paroi, une partie de la lumière est réfléchie (RL) vers l’extérieur, une partie est absorbée (AL) par les matériaux, une partie est transmise à l’intérieur.

Le pourcentage de lumière transmis est appelé transmission lumineuse de la paroi, TL (les sigles LTA ou Tv sont également employés).

L’éventuel air chaud emprisonné entre la protection solaire et le vitrage n’a pas d’impact sur la quantité de lumière transmise à l’intérieur d’un local. Dans la description des différents types de protection, on considérera donc la transmission lumineuse de la protection seule et non de l’ensemble vitrage + protection.

Exemple (ci-contre) : la transmission lumineuse d’un simple vitrage clair = 0,9.


Caratéristiques énergétiques

Le facteur solaire (facteur g).

La transmission lumineuse et le facteur solaire sont souvent liés dans le sens où un vitrage sélectif, par exemple, permet de réduire la transmission de la composante IR du rayonnement solaire au prix du placement d’une ou plusieurs couches d’oxyde métallique en surface de vitrage. Cette ou ces couches influencent la transmission lumineuse du vitrage.

Comportement au feu des matériaux

Comportement au feu des matériaux


La classification

La réaction au feu d’un matériau de construction est l’ensemble de ses propriétés considérées en relation avec la naissance et le développement d’un incendie.

La norme française NF P92-501, la norme britannique BS 476 part 7, et la norme néerlandaise NEN 6067 décrivent des catégories décrivent des méthodes d’essai qui permettent de répartir les matériaux en catégories en fonction soit de leur sensibilité sous l’influence d’une source de chaleur (NF), soit de leur faculté à propager les flammes lorsqu’ils sont en position horizontale (BS et EN).


Les prescriptions

Le maître de l’ouvrage a toujours intérêt à prendre un maximum de précautions contre les risques d’incendie.

Dans certains cas, ces précautions sont obligatoires.

Les normes de base en matière de prévention contre l’incendie, auxquelles les bâtiments nouveaux doivent satisfaire depuis le 01 janvier 1998 sont l’A.R. du 07.07.1994, modifié par l’A.R. du 19.12.1997.

Elles ne concernent cependant pas les maisons unifamiliales, les bâtiments de moins de trois niveaux ayant une superficie totale inférieure ou égale à 100 m² et les bâtiments industriels.

Les bâtiments sont répartis en 3 catégories en fonction de la hauteur h entre le niveau fini du plancher de l’étage le plus élevé et le niveau le plus bas de la voirie entourant le bâtiment. Une toiture comprenant exclusivement des locaux techniques n’intervient pas dans le calcul de la hauteur.

Bâtiment élevé h > 25 m
Bâtiment moyen 10 m < ou = h < ou = 25 m
Bâtiment Bas h < 10 m

 

En ce qui concerne les bâtiments annexes (construction, auvent, encorbellement, avancée de toiture, …), si des façades vitrées les dominent, les matériaux superficiels de la couverture sont de classe A1 sur une distance d’au moins 8 m pour les bâtiments élevés et d’au moins 6 m pour les bâtiments moyens et bas.

Certains bâtiments ne sont soumis à aucune exigence.

Il s’agit :

  • des maisons unifamiliales ;
  • des bâtiments de moins de 100 m² comptant maximum deux étages ;
  • des bâtiments industriels ;
  • des travaux d’entretien.

Les membranes bitumineuses

Le comportement au feu des membranes bitumineuses est peu satisfaisant et varie suivant les produits.
Il dépend :

    • de la présence ou non d’une protection en paillettes d’ardoise ;
    • de la combustibilité spécifique de l’armature en polyester ;
    • du pourcentage de charges minérales ;
    • du type de bitume utilisé ;
    • du comportement des liants à température élevée.

Aussi, pour améliorer le comportement au feu des membranes bitumineuses, des minéraux et des produits chimiques ont été mélangés au liant et les armatures ont été modifiées.

On a ainsi obtenu des membranes dites « ANTI-FEU« .

Les membranes synthétiques

On remarque que parmi les 13 sortes de membranes synthétiques reprises dans la NIT 151 du CSTC, seules quatre bénéficient d’un agrément technique ATG : PVC, EPDM, CPE et PIB. Parmi celles-ci, deux seulement sont utilisées de manière significative, un plastomère :

le PVC (12 % du marché belge), et un élastomère : l’EPDM (8 % du marché belge).

L’EPDM a un comportement peu satisfaisant au feu. Il existe cependant une qualité auto-extinguible (NO-FLAM) qui est un mélange d’élastomère avec des retardateurs de flammes.

Le PVC a un comportement satisfaisant au feu.


Les supports

Extrait de la NIT 215 du CSTC.

Si le feu provient de l’intérieur, c’est avant tout la résistance au feu du plancher de toiture qui est déterminante. Dans le cas d’une épaisse chape de béton, l’inflammabilité éventuelle des matériaux de toiture n’exerce que peu d’influence, voire aucune, sur l’évolution de l’incendie, sauf au droit des percements de toiture comme les coupoles et les évacuations d’air.

En présence de planchers de toiture en bois et en métal, l’inflammabilité de l’écran pare-vapeur, de l’isolation et de leurs adhésifs joue un rôle important. Il est préconisé, dans ce cas d’utiliser des matériaux ignifuges pour réaliser la finition du plafond.

Par ailleurs, la présence, sur des planchers de toiture à joints ouverts, de bitume fondu ou d’un isolant fondu peut occasionner une propagation rapide de l’incendie, celui-ci pouvant même gagner les autres bâtiments.

Hygroscopicité des matériaux


Définitions

Hygroscopicité – teneur en humidité hygroscopique

Un matériau donné, poreux et à pores ouverts placés dans un air humide va absorber une certaine quantité d’humidité qui dépend uniquement de l’humidité relative (φ) de l’air et qui lui est proportionnelle.
Ainsi, un matériau tout à fait sec placé dans l’air humide voit sa masse augmenter. Un état d’équilibre s’établit après un certain temps.

Représentation schématique du mécanisme lorsque l’humidité relative augmente :

1. Pour une faible humidité relative, de l’eau est absorbée par le matériau et forme une fine couche d’eau sur les parois des pores.

2. Lorsque l’humidité relative augmente, l’épaisseur de la couche absorbée augmente. Dans les canaux les plus étroits, les couches se touchent.

3. Lorsque l’humidité relative augmente encore, de la condensation se forme dans les pores les plus étroits du matériau; on dit qu’il y a condensation capillaire.
Plus les pores sont étroits, plus la formation de condensation capillaire est rapide.

La teneur en humidité hygroscopique (WH) d’un matériau poreux dans un air à une humidité relative donnée, est la teneur en eau par unité de volume de matériau sec (en kg/m³) qu’il contient à l’équilibre dans cette ambiance.
C’est la teneur en humidité minimale contenue dans un matériau poreux.

Courbe hygroscopique d’un matériau – Matériau hygroscopique

La décomposition du mécanisme d’hygroscopicité lorsque l’humidité relative augmente tel qu’expliqué ci-dessus, explique la courbe en « S » de la courbe hygroscopique d’un matériau. Celle-ci donne la teneur en humidité hygroscopique d’un matériau en fonction de l’humidité relative.

Exemple : WH95 % = 8 à 11 (kg/m³) pour une brique de parement.

Arbitrairement, on a fixé la valeur de la teneur maximale en humidité hygroscopique d’un matériau à la teneur correspondant à une humidité relative de 98 %.

A 100 % d’humidité relative, on atteint une teneur en humidité d’équilibre qui correspond à celle après aspiration capillaire depuis un plan d’eau. C’est la teneur en humidité capillaire.

Un matériau hygroscopique est un matériau où la condensation capillaire se forme rapidement (pour des humidités relatives faibles). Ainsi, il résulte de ce qui précède, qu’un matériau hygroscopique est un matériau avec un pourcentage élevé de pores très étroits (micropores).

Le tableau ci-dessous donne le pourcentage moyen de micropores (pores dont le diamètre moyen est inférieur à 0,1 micromètre) pour quelques matériaux de construction.

Matériau

Masse volumique (kg/m3) Pourcentage de micropores (% du volume de matériau) en (m³/m³)
Brique 1 950 0,8 – 1,1
Béton cellulaire 40 4 – 12
Plafonnage de chaux 1 800 4,7
Plaques de plâtre 800 – 1 400 10
Bois résineux 500 12 – 15

Il montre que ce sont les matériaux traditionnels de parachèvement (plaques de plâtres, plafonnage à base de chaux, bois) qui sont les plus hygroscopiques.


Risque lié à l’hygroscopicité des matériaux et mesures à prendre

Risque de développement de moisissures

Lorsque l’humidité relative de l’air est élevée, la teneur en humidité à l’équilibre des matériaux hygroscopique est si élevée qu’elle favorise le développement de moisissures.

Des moisissures apparaissent :

  • sur des objets en cuir : pour une humidité relative (φ) à partir de 76 %
  • sur du bois et de la laine : pour φ > 85 %
  • sur du coton et de la laine de verre : pour φ > 96 %

ainsi, des moisissures peuvent apparaître sur les meubles, sur les vêtements, sur les chaussures,… dans des bâtiments ou l’humidité relative est en permanence élevée.

Remarquons cependant qu’il faut un certain temps avant que la teneur en humidité à l’équilibre s’établisse. Aussi une humidité relative temporaire élevée, telle qu’on en rencontre dans les salles de bain ou les cuisines, ne provoque pas de moisissures.

Mesures à prendre

L’humidité relative à l’intérieur des bâtiments doit être maintenue en dessous de la valeur qui va provoquer des moisissures dans les matériaux hygroscopiques.

L’humidité relative conseillée, pour des raisons d’hygiène, va de 30 à 70 %. Des études ont montré que l’humidité relative la plus intéressante est de 50 %.

Pour ces humidités relatives conseillées, la teneur en humidité à l’équilibre des matériaux hygroscopiques est suffisamment basse pour ne pas engendrer de problèmes.

Porosité des matériaux

Porosité des matériaux


La porosité est la propriété d’un matériau qui contient des pores ou cavités de petite taille et pouvant contenir des fluides (liquide ou gaz).

Une structure poreuse peut être :

  • fermée, lorsque les pores ne sont pas reliés entre eux (exemple : le verre cellulaire),
  • ouverte, lorsque les pores sont reliés entre eux (exemples: brique, béton) et forment des canaux très fins.

Lorsque la structure est ouverte, elle permet :

  • l’absorption d’eau : les canaux se comportent comme des tubes capillaires; on parle de matériaux capillaires,
  • la progression de la vapeur d’eau : on parle de matériaux perméables à la vapeur d’eau,
  • le passage de l’air : on parle de matériaux perméables à l’air.