Régulation du ventilo-convecteur deux tubes – Schéma 3

Comment réguler le ventilo ?

– schéma 3 »» [0] [1] [2] [3] [4]

Régulation du ventilo-convecteur deux tubes - Schéma 3

La  régulation de la pression du réseau par soupape différentielle.

2° Régulation des débits

Dans les circuits sans vannes ou avec des vannes à trois voies, le débit hydraulique total de l’installation est constant (grâce à la vanne de réglage placée sur le bypass).

Par contre, dans les installations avec vannes deux voies, deux solutions sont possibles :

> schéma 3

Soit une vanne à décharge (encore appelée vanne à soupape différentielle) est placée en parallèle sur le réseau de distribution. La pompe est protégée, elle travaille à débit constant, mais la consommation est constante également !

Régulation du ventilo-convecteur deux tubes – Schéma 2

Comment réguler le ventilo ?

– schéma 2 »» [0] [1] [2] [3] [4]

Régulation du ventilo-convecteur deux tubes - Schéma 2

La régulation par action sur la vitesse du ventilateur.

> schéma 2

La vitesse du ventilateur est cette fois réalisée automatiquement en fonction de l’écart de température par rapport à la consigne. La température de l’eau (froide ou chaude) est alors constante. Ce système est très bon marché.

L’avantage de ce système est de limiter le coût de fonctionnement du ventilateur. Mais l’inconvénient est de créer des trains d’air chaud/d’air froid, surtout si le ventilateur n’a qu’une seule vitesse (fonctionnement en tout ou rien)… un différentiel de 4° est alors parfois rencontré, ce qui n’est pas très confortable !

De l’eau trop chaude augmente ce différentiel ainsi que les pertes par convection naturelle lors de l’arrêt du ventilateur…

Dans ce schéma, il est utile de placer la sonde thermostatique dans l’ambiance : si elle était placée dans la reprise d’air, il faudrait laisser le ventilateur en 1ère vitesse même lorsque la température ambiante est en plage neutre…!

Régulation du ventilo-convecteur deux tubes – Schéma 1

Comment réguler le ventilo ?

– schéma 1 »» [0] [1] [2] [3] [4]

Régulation du ventilo-convecteur deux tubes - Schéma 1

La régulation du débit par vanne trois voies.

1° Régulation de température.

>  schéma 1

Une sonde de température est insérée à la prise d’air. En fonction de l’écart à la consigne, on module l’ouverture d’une vanne à trois voies, et donc le débit d’eau chaude (hiver) ou d’eau glacée (été).

Il s’agit généralement d’un régulateur à action progressive, qui peut commander plusieurs ventilos d’un même local.

Astuce ! En hiver, plus le local est froid, plus il faut ouvrir la vanne d’eau chaude. En été, c’est l’inverse, c’est  la montée en température qui doit ouvrir la vanne d’eau glacée…

Pour commuter de la rampe « chaud » vers la rampe « froid », on agira via un thermostat d’inversion dont la sonde détecte « la saison » en fonction de la température de l’eau du réseau ! La rampe peut également être inversée par un commutateur manuel, ou par un signal de la Gestion Technique Centralisée du bâtiment.

Ventilo_2v3-fs.gif (1820 octets)

On constate la présence d’une zone neutre (minimum 2 degrés) pour laquelle l’installation n’est plus alimentée.

Ceci étant dit, l’occupant peut également agir sur la vitesse du ventilateur pour donner ou non de la pêche à l’émetteur.

En pratique, il n’accepte le bruit de la grande vitesse que pour la relance du matin en hiver ou pendant les canicules en été (« bruit ou sueur, il faut choisir » !…).

Régulation du ventilo-convecteur deux tubes – Schéma 0

Comment réguler le ventilo ?

– schéma 0 »» [0] [1] [2] [3] [4]

Régulation du ventilo-convecteur deux tubes - Schéma 0

La régulation du ventilo-convecteur deux tubes.

Stockage de glace dans les bacs à nodules – schéma 4

Le stockage de glace dans les bacs à nodules – schéma 4 »» [1] [2] [3] [4]

> schéma 4 : déstockage seul
La machine frigorifique est arrêtée.

Stockage de glace dans les bacs à nodules – schéma 3

Le stockage de glace dans les bacs à nodules – schéma 3 »» [1] [2] [3] [4]

> schéma 3 : déstockage et production directe
La puissance frigorifique est inférieure à la puissance appelée par les batteries froides (en fin d’après-midi , par exemple).
Les deux pompes sont en service et la vanne trois voies régule pour maintenir une température de départ de l’eau glacée constante.
Puisque le débit de distribution est supérieur au débit de production, le solde est assuré par le passage du fluide au travers du stockage qui se décharge.

Stockage de glace dans les bacs à nodules – schéma 2

Le stockage de glace dans les bacs à nodules – schéma 2 »» [1] [2] [3] [4]

> schéma 2 : stockage et production directe
La puissance frigorifique est supérieure à la puissance appelée par les batteries froides (en début de journée, par exemple).
La pompe de distribution P2 est en service et la vanne trois voies régule pour maintenir une température de départ de l’eau glacée constante.
Puisque le débit de distribution est inférieur à celui pulsé par la pompe de production P1, le solde du débit de production remonte dans le réservoir de stockage.

Stockage de glace dans les bacs à nodules – schéma 1

Le stockage de glace dans les bacs à nodules – schéma 1 »» [1] [2] [3] [4]

4 régimes de fonctionnement sont proposés :

> schéma 1 : le stockage seul
Le réseau de distribution n’est pas demandeur (la nuit, par exemple). La pompe de distribution P2 est arrêtée. La vanne trois voies est fermée.
Le groupe frigorifique refroidit les nodules qui se cristallisent progressivement, de la périphérie vers le centre. La température à l’évaporateur reste stable.
La puissance frigorifique appelée par le réservoir diminue progressivement, suite au gel des nodules. Les nodules étant gelés, le groupe frigorifique va provoquer une diminution rapide de la température de la boucle de fluide refroidissant. Cette chute de température sera détectée par le thermostat de régulation qui va arrêter le groupe frigorifique, arrêter la pompe et fermer la vanne d’arrêt.

Stockage de glace dans les bacs à faisceaux tubulaires – schéma 3

Le stockage de glace dans les bacs à faisceaux tubulaires – schéma 3 »» [1] [2] [3]

> schéma 3
le circuit présenté au schéma 3 permet une autre solution : l’usage d’un réservoir à glace à la pression atmosphérique.
L’échangeur intermédiaire permet la séparation du circuit de distribution sous pression du circuit du bac à glace ouvert.

Stockage de glace dans les bacs à faisceaux tubulaires – schéma 2

Le stockage de glace dans les bacs à faisceaux tubulaires – schéma 2 »» [1] [2] [3]

> schéma 2

le schéma 2 présente la phase de fonte de la glace.

Un tel circuit permet à la fois le déstockage du réservoir et la production frigorifique instantanée.

L’échangeur intermédiaire permet de séparer le circuit de distribution rempli d’eau, du circuit de production rempli d’eau glycolée, ce qui diminue l’importance du volume de glycol à mettre en jeu.

On pourra également s’inspirer du schéma du stockage de glace dans les bacs à nodules qui permet plus de variantes dans la régulation.

Stockage de glace dans les bacs à faisceaux tubulaires – schéma 1

Le stockage de glace dans les bacs à faisceaux tubulaires – schéma 1 »» [1] [2] [3]

> schéma 1
Le schéma 1 présente la phase de prise en glace.

Stockage d’eau glacée – schéma 3

Le stockage d’eau glacée – schéma 3 »» [1] [2] [3]

schéma 3 
Le ballon de stockage est un élément tampon intermédiaire, séparant le circuit de production de l’eau glacée du circuit de l’utilisation.
» les deux circuits sont découplés hydrauliquement, chacun disposant de sa propre pompe. Le ballon se comporte comme une bouteille de découplage hydraulique (casse pression).

Stockage d’eau glacée – schéma 2

Le stockage d’eau glacée – schéma 2 »» [1] [2] [3]

schéma 2 
Le ballon de stockage est placé en série, sur le départ de l’eau glacée vers les batteries froides.
» la température de l’eau d’alimentation des batteries froides est stable.

Stockage d’eau glacée – schéma 1

Le stockage d’eau glacée – schéma 1 »» [1] [2] [3]

schéma 1 
Le ballon de stockage est placé en série, sur le retour d’eau glacée des batteries froides.
» le fonctionnement du groupe frigorifique est stable.

Liaison froide [Froid alimentaire]

Liaison froide [Froid alimentaire]

En liaison froide, les plats sont préparés en cuisine centrale. Après cuisson, les denrées subissent une réfrigération rapide avant d’être stockées à basse température. Suivant la durée de conservation recherchée (quelques jours ou quelques mois), on procède à une liaison froide positive ou une liaison froide négative.


Liaison froide positive

Les plats se conservent au maximum pendant 6 jours*.

  • Après confection, les plats sont conditionnés en rations individuelles ou en plats collectifs, dans des barquettes fermées par thermosoudage.
  • Une cellule de refroidissement rapide abaisse la température au cœur des aliments de +65°C à +10°C en moins de 2 heures (y compris la durée de manutention).
  • Les barquettes sont placées dans une armoire ou chambre de stockage à une température oscillant entre 0 et +3°C.
  • Le transport à destination des restaurants satellites s’effectue en véhicules réfrigérants (+3°C)  ou isothermes.
  • Sur chaque site, les produits sont entreposés en armoire réfrigérée (+3°C).
  • Avant consommation, ils subissent un réchauffement rapide à au moins 65°C à cœur, en moins d’une heure.

* : plus précisément, les plats se conservent :

  • 3 jours, en règle générale.
  • 5 jours pour certains produits.
  • 1 jour pour certains produits tels que les crevettes.

Pour en savoir plus, voir « HACCP pour PME – Gemploux ».


Liaison froide négative

Elle est aussi appelée liaison surgelée.
Les plats se conservent pendant plusieurs mois.

  • Après confection, les plats sont conditionnés en rations individuelles ou en plats collectifs, dans des barquettes fermées par thermosoudage.
  • Une cellule de refroidissement rapide abaisse la température au cœur des aliments de +65°C à +10°C en moins de 2 heures (y compris la durée de manutention).
  • Les plats passent dans un tunnel de refroidissement rapide qui porte les températures des aliments de +10°C à -18°C en moins de 3 heures après la fin de la cuisson.
  • Le transport à destination des restaurants satellites s’effectue en véhicules réfrigérants (-18°C).
  • Sur chaque site, les produits sont stockés à -18°C.
  • Avant consommation, ils subissent un réchauffement rapide à au moins 65°C, en moins d’une heure.

Remarque : plutôt que de passer dans une cellule de refroidissement rapide puis un tunnel de refroidissement, les aliments peuvent aussi simplement passer dans une cellule de congélation rapide.


Avantages

C’est un mode de préparation très hygiénique. Les qualités nutritives sont conservées.

La fabrication et la consommation peuvent être dissociées dans le temps et dans l’espace. Ce qui permet une production en continu et donc une meilleure répartition des tâches sur la journée et sur la semaine de travail.

Elle permet d’ajuster les quantités préparées à celles commandées et limite donc les pertes.

Elle augmente le choix des consommateurs.

Elle permet le regroupement des achats (incidence sur les prix)


Inconvénients

L’investissement en équipement est élevé (environ 30 % supérieur à celui nécessaire à une liaison chaude). On ne peut pas tout servir. On ne peut pas servir de frites par exemple.

Boucles frigoporteuses

Boucles frigoporteuses

Boucle frigoporteur à eau glycolée (source : Delhaize).


Définitions

Détente directe

On parle de détente directe lorsque le fluide frigorigène assure lui-même le transfert de chaleur « utile » aux applications de froid alimentaire (meubles frigorifiques, les ateliers de boucherie, les chambres de stockage, …).

 Refroidissement par détente directe.

Refroidissement indirect

Le refroidissement est indirect lorsque le transfert de chaleur « utile » n’est pas assuré par le fluide frigorigène lui-même, mais plutôt par un fluide intermédiaire appelé frigoporteur.

 Refroidissement indirect par boucle secondaire monotube.

Frigoporteur

En raison de la simplicité avec laquelle les frigoporteurs assurent le transfert de chaleur « utile » entre deux points sans gros risque de toxicité et d’inflammabilité et dans un souci de réduire les fuites de fluide frigorigène (néfastes à la couche d’ozone et à l’effet de serre), ce type de configuration revient en force dans le domaine du froid alimentaire.


Les types de frigoporteur

On retrouve 2 principaux types de frigoporteur :

  • Les frigoporteurs monophasiques composés d’un liquide incongelable dans la gamme des températures standard du froid alimentaire (-3 à – 38 °C par exemple).
  • Les frigoporteurs biphasiques composés :
    • d’un liquide et d’un solide;
    • d’un liquide et de sa vapeur.

Frigoporteurs monophasiques

L’eau glacée constitue le plus connu des frigoporteurs monophasiques. Tout le transfert de la chaleur est effectué par la variation de la température (chaleur sensible) du frigoporteur.

Des débits importants sont nécessaires pour travailler en chaleur sensible. Ceci signifie que les boucles de distribution utilisent des sections de passage importantes et constituent donc une dépense énergétique non négligeable pour faire circuler le frigoporteur.

On retrouve sur le marché différents frigoporteurs :

  • les substances pures telles que l’eau, les hydrocarbures liquides, les alcools simples (méthanol, éthanol), les polyalcools (éthylène glycol, propylène glycol, …);
  • les mélanges tels que l’eau + sel (saumure), l’eau + ammoniac (alcali), …

Il est clair qu’en froid alimentaire, le type de frigoporteur ne doit pas altérer les denrées et ne pas constituer un risque de toxicité et d’inflammabilité pour les personnes; ce qui limite le choix.

Pour donner un ordre de grandeur, on parle pour les frigoporteurs monophasiques de transfert de chaleur de  ~ 20 [kJ/kg] en chaleur sensible.

Avantages

  • Équipements de boucle simples.

Inconvénients

  • Débit important.
  • Dimensionnement conséquent.
  • Dépense énergétique non négligeable.

Frigoporteurs diphasiques (liquide + solide)

On rencontre ce type de frigoporteur sous forme de « coulis » ou « sorbet » dans les applications de froid positif. On parle ici de chaleur latente de fusion dans les transferts de chaleur; ce qui permet d’augurer des réductions de débits pour évacuer la même quantité de chaleur qu’un frigoporteur fonctionnant en chaleur sensible.

De même, un ordre de grandeur acceptable de transfert de chaleur est de  ~ 250 [kJ/kg].

Avantages

  • Chaleur latente de fusion importante.
  • Débit réduit par rapport à la solution type chaleur sensible.
  • Dimensionnement réduit des conduites et des pompes.
  • Consommation énergétique plus faible qu’avec un frigoporteur à chaleur latente.

Inconvénients

  • Coût élevé de l’évaporateur.

Frigoporteurs diphasiques (liquide + vapeur)

On rencontre ce type de frigoporteur dans les applications de froid négatif par exemple les installations à frigoporteur au CO2. On parle ici de chaleur latente de vaporisation dans les transferts de chaleur. Cette chaleur de vaporisation est en général fort importante.

Pour une température d’application de -40°C, sachant que l’évaporation n’est pas totale, sur une chaleur totale de vaporisation de ~ 322 [kJ/kg], on peut envisager disposer de 107 [kJ/kg] (pour un titre à la sortie de l’évaporateur de l’ordre de 33 %).

Avantages

  • Chaleur latente de vaporisation importante.
  • Bon coefficient d’échange thermique.
  • Faibles volumes massiques du liquide et de la vapeur.
  • Tuyauterie de faible diamètre.
  • Absence d’huile.
  • Prix faible.
  • Peu d’influence sur l’environnement.
  • Très faible impact sur l’effet de serre (GWP = 1). À titre de comparaison, le GWP du R404A est de 3 800 et celui du R134a est de 3 260.
  • Frigoporteur naturel, largement disponible.
  • Applications pouvant aller jusqu’à -54°C.
  • Aux basses températures, sa viscosité reste faible évitant des pertes de charge importantes.

Inconvénients

  • Danger d’asphyxie au-delà de concentration > 8 %.
  • Les dégivrages demandent des précautions particulières.
  • Peu de techniciens formés.
  • Nécessite une déshydratation très poussée de la boucle (sinon formation d’acide avec l’eau).
  • En cas d’arrêt prolongé, perte de charge de CO2 (dégazage).
  • Fortes pressions de service.

Les types de boucle

Ces types de boucle utilisent les technologies monotube et bitube.

Technologie monotube

Cette technologie, comme son nom l’indique est composée d’une boucle à un seul tuyau qui alimente les évaporateurs terminaux en série. Le même tube dessert les entrée et sortie de chaque évaporateur.

Schéma de principe Technologie monotube.

Avantages

  • Très modulable en exploitation.
  • Débit pratiquement constant dans la boucle frigoporteur.
  • Pas de nécessité de variateur de fréquence sur les pompes de mise en circulation du frigoporteur (investissement réduit).

Inconvénients

  • Coût important.
  • Maintenance des circulateurs des applications terminales alors que dans le cas du bitube, il n’y a que des électrovannes sans beaucoup d’entretien (augmentation de l’ordre de 10 % des coûts d’entretien).
  • La non-variation du débit entraîne des pertes énergétiques lorsque la demande frigorifique est faible.

Technologie bitube simple

Cette technologie positionne les évaporateurs terminaux en parallèle sur la boucle frigoporteur.

Schéma de principe technologie bitube simple

Avantages

  • Une simple vanne suffit à alimenter un évaporateur terminal.
  • Le débit variable des pompes de circulation du frigoporteur permet de réduire les consommations énergétiques.

Inconvénients

  • Mise en œuvre plus conséquente de par la nécessité d’adapter les sections des tuyauteries tout au long de l’aller et du retour de boucle.
  • Pertes de charge variables nécessitant une régulation du débit des pompes de circulation (investissement dans des variateurs de fréquence).

Technologie bitube avec vannes 3 voies montées en décharge

Cette technique permet de remédier au problème de débit variable grâce au placement de « by-pass » des évaporateurs terminaux.

Schéma de principe technologie bitube avec vannes 3 voies montées en décharge.

Avantages

  • Débit constant au niveau des pompes de circulation du frigoporteur.

Inconvénients

  • Sans débit variable au niveau des pompes, les pertes énergétiques sont plus importantes.
  • Les coûts d’investissement sont importants.

Circulateurs [ECS]

Circulateurs [ECS]


Les pompes in-line et les circulateurs à rotor noyé

Dans les installations de chauffage, on peut retrouver 2 types de circulateurs :

  • Les circulateurs à rotor noyé se retrouvent dans toutes les installations. Ils sont montés directement sur la tuyauterie. Le moteur est, en partie, directement refroidi par l’eau de l’installation. Ils sont sans entretien et de coût modeste. Leur rendement est cependant faible mais une partie de leur perte est récupérée par l’eau de chauffage.
  • Les pompes in-line sont aussi directement montées sur la tuyauterie mais le moteur n’est plus refroidi par l’eau du réseau de chauffage. Elles sont pourvues d’une garniture mécanique qui sépare la pompe du moteur. Le refroidissement est assuré par un ventilateur. Les pompes in-line se retrouvent principalement dans les grandes installations de chauffage ou dans les installations de refroidissement pour lesquelles la perte du moteur devient une charge calorifique supplémentaire à compenser.

Circulateur à rotor noyé et pompe in-line (les deux types de circulateur existent en version électronique).


Courbes caractéristiques

Les performances des circulateurs sont répertoriées sous forme de courbes caractéristiques reprises dans la documentation des fabricants. Attention, les données ainsi reprises sont le résultat de mesures qui, faute d’une normalisation en la matière, peuvent différer d’un fabricant à un autre.

On retrouve, dans les courbes caractéristiques, la hauteur manométrique totale (en mCE ou en bar) que peut fournir le circulateur en fonction du débit, pour chaque vitesse possible du circulateur.

On peut retrouver en parallèle, la puissance électrique absorbée par le moteur, soit sous forme de graphe pour chacun des points de fonctionnement possibles, soit sous forme de tableaux, pour chaque vitesse. Dans ce dernier cas, il est difficile de savoir à quel point de fonctionnement correspond cette puissance (est-ce ou non pour la zone de rendement maximal ?). Il n’y a pas de norme et chaque fabricant peut adopter une règle différente.

Courbes caractéristiques d’un circulateur électronique. On y repère les courbes de régulation (ici, diminution linéaire de la hauteur manométrique avec le débit) et pour chaque point de fonctionnement, on peut établir la puissance électrique absorbée. On y repère les courbes caractéristiques correspondant au régime de ralenti (de nuit). Rem : P1 correspond à la puissance électrique absorbée par le moteur, P2, à la puissance transmise par le moteur à la roue et P3, à la puissance transmise à l’eau.

Courbes caractéristiques d’un circulateur standard à 3 vitesses.

Vitesse P1 [W] In [A]
3 960 1,8
2 590 1,05
1 250 0,47

Puissance et courant nominal absorbés par le circulateur en fonction de sa vitesse.


Les circulateurs standards

On entend par « circulateur standard », un circulateur à rotor noyé dont la vitesse de rotation est réglée manuellement et reste fixe quelles que soient les conditions d’exploitation de l’installation.

On retrouve des circulateurs à 1 ou plusieurs vitesses (3 ou 4), équipés d’un moteur monophasé ou triphasé.

Circulateur à trois vitesses.

Courbes caractéristiques d’un circulateur à 3 vitesses.

Certains circulateurs (c’est valable également pour les circulateurs électroniques) peuvent être équipés d’une coquille isolante sur mesure qui diminue ses déperditions calorifiques.

On peut également y joindre un « display » permanent qui permet de visualiser en temps réel les caractéristiques électriques de fonctionnement telles que la puissance absorbée, l’ampérage, la consommation et les heures de fonctionnement, …

Circulateur équipé d’un module d’affichage des caractéristiques de fonctionnement.


Les circulateurs électroniques ou à vitesse variable

Les circulateurs électroniques ou « à vitesse variable » sont des circulateurs dont la vitesse peut être régulée en continu en fonction de la variation de pression régnant dans le circuit de distribution.

Circulateur avec convertisseur de fréquence intégré.

La régulation de vitesse est intégrée directement dans le circulateur. Elle se fait par cascade d’impulsions pour les petits circulateurs ou au moyen d’un convertisseur de fréquence (technologie semblable à celle utilisée en ventilation) pour les circulateurs de plus de 200 W.

Mode de régulation

Lorsque sous l’effet d’apports de chaleur gratuits, les vannes thermostatiques (où les vannes 2 voies de zone) se ferment, la pression dans le réseau augmente avec une influence néfaste sur le fonctionnement des vannes restées ouvertes.

Les circulateurs électroniques vont automatiquement adapter leur vitesse en fonction de la fermeture des vannes de régulation (donc en fonction des besoins thermiques). Deux types de régulation sont possibles dans ce type d’équipement :

  • soit la vitesse de rotation du circulateur est adaptée automatiquement pour maintenir la pression constante dans le circuit, quel que soit le degré d’ouverture des vannes des régulations,
  • soit la vitesse de rotation du circulateur est adaptée automatiquement en fonction de l’ouverture des vannes de régulation, en diminuant de façon linéaire la pression du circuit. Cette deuxième option est énergétiquement plus intéressante. En effet, si des vannes thermostatiques se ferment, le débit circulant dans le réseau diminue, entraînant une baisse des pertes de charge dans les tronçons communs. Le circulateur peut donc diminuer sa hauteur manométrique,
  • soit la vitesse est commandée par la température extérieure ou la température de l’eau. Dans les installations à débit constant (sans vanne thermostatique), la régulation du circulateur diminue linéairement la pression du circulateur quand la température de l’eau véhiculée diminue. Ce type de régulation peut être utilisée pour accélérer la coupure et la relance de l’installation (notamment pour un chauffage par le sol).

Utilisation d’un circulateur à vitesse variable : le circulateur diminue sa vitesse automatiquement pour assurer le maintien d’une pression différentielle constante en un point choisi du réseau. La solution de la prise de pression entre le départ et le retour en un point du circuit n’est pas standard pour les circulateurs à rotor noyé. La plupart de ceux-ci ne sont, en fait, pas équipés de prises de pression. Le régulateur interne à l’appareil travaille en fonction d’une mesure du courant absorbé, image de sa hauteur manométrique.


Evolution du débit du circulateur lorsque les vannes thermostatiques se ferment : le point de fonctionnement passe de B à A. Si on diminue la vitesse du circulateur en maintenant une pression constante dans le réseau : le point de fonctionnement passe de B à D. La consommation électrique du circulateur étant proportionnelle à la surface (hauteur manométrique x débit) diminue proportionnellement au débit.

Evolution du débit du circulateur, si on diminue la vitesse du circulateur en diminuant linéairement la pression dans le réseau : le point de fonctionnement passe de B à E. La consommation électrique du circulateur étant proportionnelle à la surface (hauteur manométrique x débit) diminue proportionnellement au débit.

Théories

Pour en savoir plus sur la régulation de vitesse des circulateurs en fonction de la fermeture des vannes thermostatiques.

Régime jour/nuit

Certains circulateurs électroniques permettent également la programmation d’un régime jour et d’un régime nuit. Cette dernier correspond à une vitesse de rotation fortement réduite.

Pour les circulateurs électroniques traditionnels, la commande du régime de nuit se fait par la régulation centrale de l’installation. Pour les nouveaux circulateurs à aimant permament, la régulation est intégrée au circulateur. Celui-ci diminue sa vitesse s’il mesure, en son sein, une baisse de température d’eau de 10 .. 15°C pendant 2 h. Il revient au régime normal si la température de l’eau augmente d’une dizaine de degré.

Programmation et visualisation des paramètres

Les circulateurs électroniques peuvent être programmés par télécommande infrarouge : mode et paramètre de régulation.

Photo de télécommande infrarouge pour circulateurs électroniques.

Ces télécommandes permettent en outre un contrôle des paramètres de fonctionnement des pompes : hauteur monométrique, débit, vitesse de rotation, température de l’eau véhiculée, puissance absorbée, … .

Coût

Le coût d’un circulateur électronique dépend de la puissance installée : pour les circulateurs de moins de 200 W, la différence de prix, par rapport à un circulateur traditionnel est faible (de l’ordre de 40 %). dès 250 W, la variation de vitesse implique plus que le doublement du prix.

Prix des circulateurs de la marque « x » (à titre indicatif).


Les circulateurs à moteur synchrone ou à aimant permanent

Les circulateurs traditionnels sont équipés d’un moteur électrique asynchrone ayant un rendement souvent médiocre.

Il existe maintenant sur le marché des circulateurs à rotor noyé équipé d’un moteur synchrone à commande électronique.

   

Roue et moteur d’un circulateur à moteur synchrone.

Nous ne disposons actuellement pas d’information neutre concernant les performances énergétiques de ce type de matériel. De l’avis des différents fabricants, ce type de moteur couvrira dans quelques années tout le marché.

Exemple.

Pour un point de fonctionnement de 10 m³/h et 6 mCE, voici la puissance électrique absorbée, mentionnée par les catalogues de la marque x, pour deux circulateurs de la même taille :

Circulateur électronique standard
(ancienne génération)

470 W

Circulateur électronique à aimant permanent

380 W

Soit une économie de 20 %.

Pour un point de fonctionnement de 15 m³/h et 5 mCE, voici la puissance électrique absorbée, mentionnée par les catalogues de la marque y, pour deux circulateurs de la même taille :

Circulateur électronique standard
(ancienne génération)

570 W

Circulateur électronique à aimant permanent

420 W

Soit une économie de 26 %. Notons que dans ce deuxième exemple, en plus du moteur, la configuration hydraulique de la roue du circulateur a également été optimalisée pour augmenter le rendement.

Chaudières à condensation [ECS]

Chaudières à condensation [ECS]

Principe de la chaudière à condensation : le retour de circuit de chauffage à basse température amène les fumées de combustion en dessous du point de rosée au sein de l’échangeur, une partie plus ou moins importante de l’eau contenue dans les fumées condense.


Principe de la condensation dans les chaudières

Pouvoir calorifique inférieur (PCI) et supérieur (PCS)

Les produits normaux d’une bonne combustion sont essentiellement du CO2 et de l’H2O. Juste après la réaction de combustion, cette eau issue du combustible se trouve à l’état gazeux dans les fumées. Notons que l’eau à l’état gazeux n’est pas visible, elle est transparente. D’ailleurs, l’air ambiant en contient toujours une certaine quantité.

Imaginons que nous puissions réaliser une combustion parfaite d’un combustible, libérant ainsi le maximum d’énergie sous forme thermique (énergie qui était initialement contenue sous forme chimique dans le combustible).  L’énergie libérée est transmise, d’une part, à la chaudière et, d’autre part, est contenue dans les fumées à température élevée. Si on peut aussi récupérer l’énergie contenue dans ces fumées en abaissant leur température jusqu’à la température ambiante, on dispose théoriquement de toute l’énergie que le combustible contenait initialement. Il s’agit du pouvoir calorifique. Néanmoins, comme évoqué ci-dessus, les fumées contiennent de l’H2O à l’état gazeux. En abaissant la température des fumées, l’eau peut passer à l’état liquide cédant ainsi une énergie, la chaleur de condensation ou énergie latente. Si on est capable de récupérer cette énergie, on parlera du pouvoir calorifique supérieur (PCS). Par contre, si, dans la phase de récupération de l’énergie des fumées, on ne sait pas la récupérer, alors on parlera de pouvoir calorifique inférieur (PCI).

Le pouvoir calorifique supérieur est par définition supérieur au pouvoir calorifique inférieur (PCS > PCI). En effet, on a récupéré la chaleur latente de la vapeur d’eau contenue dans les fumées. Voici les valeurs de pouvoir calorifique pour les combustibles liés à la technologie des chaudières à condensation :

  • Pour le gaz naturel (type L) : PCS = 9,79 kWh/m³N et PCI = 8.83 kWh/m³N, soit PCS = PCI  + 10.8 %
  • Pour le gaz naturel (type H) : PCS = 10.94 kWh/m³N et PCI = 9.88 kWh/m3N, soit PCS = PCI + 10.7 %
  • Pour le mazout (standard) : PCS = 12.67 kWh/kg et PCI = 11.88 kWh/kg, soit PCS =  PCI + 6.6 %

Dans le cas du gaz naturel ?

On voit que l’on peut récupérer jusqu’à 10 % de rendement supplémentaire si on peut condenser la vapeur d’eau des fumées et récupérer parfaitement cette chaleur. On voit donc que le potentiel d’une telle technique pour le gaz naturel est substantiel. À l’heure actuelle, on trouve des chaudières condensation gaz pour toutes les gammes de puissance.

Dans le cas du fuel ?

La technique de la condensation est principalement utilisée dans les chaudières gaz. Il existe également des chaudières fuel à condensation, mais leur utilisation est actuellement moins répandue, pour trois raisons :

  • Teneur en eau plus faible : La teneur en vapeur d’eau des fumées issues du fuel est plus faible que pour le gaz naturel. Il en résulte une différence plus faible entre le PCS et le PCI (pour le fuel : PCS = PCI + 6 %). La quantité de chaleur maximum récupérable est donc plus faible, ce qui rend moins facile la rentabilité du surcoût de la technologie « condensation ».
  • Point de rosée plus bas : Pour que l’eau à l’état gazeux dans les fumées se condense totalement, il faut que la température des fumées soit bien inférieure à la température dite de « rosée » (c’est-à-dire la température à partir de laquelle la vapeur d’eau des fumées se met à condenser, à ne pas confondre avec la température du « rosé » qui, lui, se sert bien frais). Si la différence n’est pas suffisante, autrement dit, la température des fumées pas assez basse, seule une fraction de l’eau condense. On perd donc en efficacité. Parallèlement, on peut difficilement descendre les fumées avec un échangeur en dessous d’un certain seuil. En effet, les chaudières ne possèdent pas des échangeurs de taille infinie. Typiquement, on peut descendre jusqu’à 30 °C dans de bonnes conditions. Le problème est que, dans le cas du mazout, la température à partir de laquelle les fumées condensent (point de rosée) est plus basse (d’une dizaine de °C) que dans le cas du gaz. Il faut donc descendre les fumées à une température relativement plus faible pour pouvoir bénéficier pleinement de l’avantage de la condensation. Or, la température de retour du circuit de chauffage qui assure le refroidissement des fumées dépend, d’une part, du dimensionnement, mais aussi des conditions météorologiques (la température de retour est plus élevée si la température extérieure est plus faible, et donc le besoin de chauffage grand). Dans ces conditions, il est possible que l’on ait moins de périodes où la chaudière condense avec une chaudière mazout qu’avec une chaudière gaz.

Température de condensation des fumées (point de rosée) de combustion du gaz et du fuel, en fonction de leur teneur en CO2. : pour les coefficients d’excès d’air typiques pour le gaz et le fioul, c’est-à-dire 1.2, la concentration en CO2 est de, respectivement, 10 et 13 % donnant une température de rosée d’approximativement 55 °C et 47.5 °C.

  • Présence de Soufre et acidité : Le fuel contient du soufre et génère des condensats plus acides (présence d’H2SO4), corrosifs pour la cheminée et l’échangeur. De plus, lorsque la température d’eau de retour du circuit de chauffage se situe à la limite permettant la condensation des fumées, la quantité d’eau condensée est faible, mais sa concentration en acide sulfurique est très élevée, ce qui est fort dommageable pour l’échangeur. Cela explique pourquoi les fabricants ont mis plus de temps pour le mazout pour développer des chaudières à condensation résistantes aux condensats.

Notons cependant que les gros fabricants de chaudières ont quasiment tous développé des chaudières à condensation fonctionnant au fuel. Néanmoins, ils ne proposent pas toujours ces produits dans toutes les gammes de puissance. L’acier inoxydable de l’échangeur a été étudié pour résister aux condensats acides.
Ainsi, l’existence d’un fuel à très faible teneur en souffre (« Gasoil Extra » avec une teneur en souffre inférieure à 50 ppm) officialisée par un arrêté royal publié le 23 octobre 02, peut ouvrir de nouvelles perspectives aux chaudières à condensation fonctionnant au fuel. Suivant la technologie de la chaudière à condensation au mazout, on est obligé de fonctionner avec un mazout Extra à faible teneur en Soufre ou, si la chaudière le permet, on peut fonctionner avec un mazout standard.

Dans le cas du bois ?

Certains fabricants de chaudières au bois proposent des chaudières à condensation. À l’heure actuelle, cela reste assez rare, mais cela existe. Manquant de retour et de références à ce sujet, nous ne donnerons plus d’information.


Intérêt énergétique d’une chaudière à condensation

Que rapporte une chaudière à condensation par rapport à une chaudière traditionnelle ?

Le gain énergétique réalisé grâce à une chaudière à condensation se situe à deux niveaux :

  1. Gain en chaleur latente : La condensation de la vapeur d’eau des fumées libère de l’énergie. Pour une chaudière gaz, ce gain maximum est de 11 % du PCI tandis qu’il s’élève à 6 % pour le mazout.
  1. Gain en chaleur sensible : La diminution de la température des fumées récupérée au travers de la surface de l’échangeur (de .. 150.. °C à .. 45 °C ..).

Pour comparer le rendement des chaudières à condensation et celui des chaudières classiques, il faut comparer leur rendement global annuel ou rendement saisonnier, qui prend en compte toutes les pertes de la chaudière (par les fumées, par rayonnement et d’entretien), en fonction de la charge réelle de la chaudière durant toute la saison de chauffe.

Ce gain réel obtenu par une chaudière à condensation est difficile à estimer d’une manière générale, car il dépend de la température d’eau qui irrigue la chaudière et qui est évidemment variable (elle dépend de la courbe de chauffe choisie et donc du dimensionnement des émetteurs).

Exemple pour le gaz naturel : 

 

Exemple pour le mazout :

Représentation du rendement utile (sur PCI et sur PCS) d’une chaudière gaz traditionnelle et d’une chaudière à condensation.

Par exemple pour le gaz naturel, avec une température d’eau de 40 °C, on obtient des produits de combustion d’environ 45 °C, ce qui représente des pertes de 2 % en chaleur sensible et des pertes de 5 % en chaleur latente (on gagne sur les 2 tableaux). Le rendement sur PCI est donc de :

((100 – 2) + (11 – 5)) / 100 = 104 %
(ce qui correspond à 93 % sur PCS)

Par exemple pour le mazout, des produits de combustion donnent des pertes de 2 % en chaleur sensible et des pertes de 2 % en chaleur latente. Le rendement sur PCI est donc de :

((100 – 2) + (6 – 2)) / 100 = 102 %

(ce qui correspond à 96 % sur PCS)

Un rendement supérieur à 100 % ?

Ceci est scientifiquement impossible.

Lorsque l’on a commencé à s’intéresser au rendement des chaudières, la technologie de la condensation n’existait pas. On comparait donc l’énergie produite par une chaudière à l’énergie maximale récupérable pour l’époque c’est-à-dire à l’énergie sensible contenue dans le combustible ou PCI (ou HI) du combustible.

De nos jours, ce mode de calcul a été maintenu même si, dans les chaudières à condensation, on récupère aussi une partie de la chaleur latente. On a alors l’impression de produire plus d’énergie que le combustible n’en contient. C’est évidemment faux.

Si l’on voulait être scientifiquement rigoureux, il faudrait comparer l’énergie produite par une chaudière à condensation au PCS (ou Hs) du combustible. Si on commet l’erreur de comparer avec les valeurs PCI d’autres chaudières, on aurait l’impression qu’une chaudière à condensation a un plus mauvais rendement qu’une chaudière traditionnelle, ce qui est aussi erroné.

Par exemple, un rendement utile de chaudière au gaz à condensation de 104 % sur PCI, correspond à un rendement de 93 % sur PCS.

Le tableau ci-dessous indique pour les différents rendements exprimés en fonction du PCS, l’équivalence pour le fioul ou le gaz exprimée en fonction du PCI

Rendement PCS Rendement PCI
 Fioul Gaz naturel

79,0
80,0
81,0
82,0
83,0
84,0
85,0
86,0
87,0
88,0
89,0
90,0
91,0
92,0
93,0
94,0
95,0
96,0
97,0
98,0
99,0
100,0

84,4
85,5
86,6
87,6
88,7
89,8
90,8
91,9
93,0
94,0
95,1
96,2
97,2
98,3
99,4
100,4
101,5
102,6
103,7
104,7
105,8
106,9

87,6
88,7
89,8
90,9
92,0
93,1
94,2
95,3
96,4
97,6
98,7
99,8
100,9
102,0
103,1
104,2
105,3
106,4
107,5
108,6
109,8
110,9

Le tableau ci-dessous indique pour les différents rendements exprimés en fonction du PCS, l’équivalence pour le fioul ou le gaz exprimée en fonction du PCI

Rendement PCS Rendement PCI
 Fioul Gaz naturel

79,0
80,0
81,0
82,0
83,0
84,0
85,0
86,0
87,0
88,0
89,0
90,0
91,0
92,0
93,0
94,0
95,0
96,0
97,0
98,0
99,0
100,0

84,4
85,5
86,6
87,6
88,7
89,8
90,8
91,9
93,0
94,0
95,1
96,2
97,2
98,3
99,4
100,4
101,5
102,6
103,7
104,7
105,8
106,9

87,6
88,7
89,8
90,9
92,0
93,1
94,2
95,3
96,4
97,6
98,7
99,8
100,9
102,0
103,1
104,2
105,3
106,4
107,5
108,6
109,8
110,9

Besoin d’une température de retour la plus basse possible et émetteurs de chaleur

Pour obtenir les meilleurs rendements, il faut que la température des fumées soit la plus basse possible. Du coup, il faut une température de retour du circuit de distribution de chauffage la plus basse. Cela s’obtient par une bonne conception du circuit hydraulique, essentiellement, en travaillant avec une température de départ plus basse et des émetteurs de chaleur qui travaillent à basse température. On pense naturellement au chauffage par le sol (basé sur le rayonnement). Néanmoins, les radiateurs ou convecteurs basse température peuvent aussi convenir pour atteindre cet objectif.

Rendement théorique utile des chaudières gaz et mazout à condensation en fonction de la température à laquelle on a pu descendre les fumées dans la chaudière : le coefficient d’excès d’air est pris égal à 1.2. On voit que le point d’inflexion où la chaudière au gaz commence à condenser se situe autour de 55 °C alors que ce point se déplace à 47.5 °C pour le mazout.

Quelles sont les conclusions de ce dernier graphe :

  • On voit que la température à laquelle débute la condensation (point de rosée) commence plus tôt pour le gaz (55 °C) que pour le mazout (47.5 °C). Physiquement, c’est dû à la composition des fumées.
  • On remarque que les gains de rendement potentiels grâce à la condensation sont plus faibles avec le mazout que le gaz. Physiquement, c’est dû à une moindre présence d’hydrogène dans le mazout donnant, après réaction, moins d’eau dans les fumées.
  • On remarque qu’il faut être bien en dessous de la température de rosée pour atteindre les meilleurs rendements. En effet, il ne suffit pas d’être à quelques degrés inférieurs à ce point critique. Il faut de l’ordre d’une dizaine de degrés pour assurer une augmentation significative. Encore une fois, la température des fumées dépendra des conditions climatiques et du dimensionnement de l’installation de chauffage.

Intérêt d’une chaudière à condensation pour améliorer une ancienne installation de chauffage ? Oui si régulation adaptée !

Il y a-t-il un intérêt de placer une chaudière à condensation sur un réseau de radiateurs dimensionnés en régime 90°/70 °C ? En effet, si la température de retour est de 70 °C, alors la chaudière ne condensera pas !
Pourtant, il y a bien un intérêt à placer une chaudière à condensation :

  • D’une part, la température de retour ne sera de 70 °C que pendant les périodes plus froides de l’année. En effet, le régime de radiateur 90°/70 °C correspond aux températures extérieures les plus basses, plus particulièrement à la température de dimensionnement de l’installation (en d’autres termes, la température de base qui varie suivant les régions, mais tourne autour de – 10 °C). Si la température de départ est adaptée à la température extérieure (régulation climatique ou glissante), la température de retour sera plus faible pendant les périodes moins froides de l’année pouvant finalement donner lieu à la condensation dans la chaudière.

   

Sur la première figure, il s’agit de l’évolution de la température glissante de retour en fonction de la température extérieure pour une installation conçue en régime 90°/70° (à une température de dimensionnement de – 10 °C) : on voit que le point de rosée pour le gaz et le mazout est obtenu à des températures extérieures supérieures à  ~ – 10 °C et ~ – 4 °C, respectivement.  Dans notre calcul, on a pris une température de retour limite à partir de laquelle commence la condensation de 5 °C inférieure à la température de rosée pour tenir compte de l’imperfection de l’échangeur de la chaudière. Sur base des conditions météorologiques rencontrées en moyenne (année standard), on voit sur la seconde figure que les chaudières gaz et mazout condensent sur une grande partie de la période de chauffe. En termes d’énergie, en faisant l’hypothèse que les besoins du bâtiment sont proportionnels à la température extérieure, on voit avec la troisième figure que la chaudière gaz à condensation condense 75 % du temps et la chaudière mazout approximativement 40 %.

  • D’autre part, même en l’absence de condensation, les rendements utiles minimum obtenus (95 %) sont supérieurs aux valeurs que l’on rencontre avec les chaudières traditionnelles haut rendement (92 … 94 %). En effet, les chaudières à condensation sont équipées d’échangeurs de chaleur avec une surface plus grande que les chaudières traditionnelles. À température de retour égale, la chaudière à condensation amènera les fumées à un niveau de température plus bas.

Sur base des arguments suivants, le potentiel d’une chaudière à condensation sur une ancienne installation dimensionnée en régime 90°/70° est justifié pour le gaz naturel. Pour les installations au mazout, l’amélioration induite par la condensation est bel et bien présente, mais moins importante : ceci est dû à la température du point de rosée qui est plus basse pour le mazout.

On voit au moyen des figures suivantes que la situation est encore plus favorable à la condensation en présence d’émetteurs dimensionnés en régime 70 °C/50 °C. Dans le cas de la chaudière au gaz, on peut potentiellement avoir une condensation quasi permanente de la chaudière. Pour le mazout, la condensation est aussi majoritairement présente. Par conséquent, pour s’assurer de l’efficacité des installations équipées de chaudières à condensation, il peut être intéressant de redimensionner l’installation en régime 70°/50 °C. C’est généralement possible, dans la mesure où, d’une part, les émetteurs des anciennes installations de chauffage sont souvent largement surdimensionnés en régime 90°/70 °C, et, d’autre part, que la rénovation d’une installation de chauffage va souvent de pair avec l’amélioration des performances de l’enveloppe (rénovation), ce qui réduit significativement la puissance nécessaire des émetteurs.

    

Sur la première figure, il s’agit de l’évolution de la température glissante de retour en fonction de la température extérieure pour une installation conçue en régime 70°/50° (à une température de dimensionnement de – 10 °C) : on voit que le point de rosée pour le gaz et le mazout est obtenu à des températures extérieures supérieures à  ~-10 °C et ~- 4 °C, respectivement.  Dans notre calcul, on a pris une température de retour limite à partir de laquelle commence la condensation de 5 °C inférieure à la température de rosée pour tenir compte de l’imperfection de l’échangeur de la chaudière . Sur base des conditions météorologiques rencontrées en moyenne (année standard), on voit sur la seconde figure que les chaudières gaz et mazout condensent la majeure partie de la période de chauffe. En termes d’énergie, en faisant l’hypothèse que les besoins du bâtiment sont proportionnels à la température extérieure, on voit avec la dernière figure que la chaudière gaz à condensation condense 100 % du temps et la chaudière mazout approximativement 93 %.

L’intérêt des chaudières à condensation démontré, il faut néanmoins savoir que le circuit hydraulique de distribution de chaleur devra être éventuellement modifié pour assurer une température de retour la plus faible à la chaudière.

Influence de l’excès d’air

L’excès d’air a une influence sur les performances d’une chaudière à condensation. En effet, plus l’excès d’air est important et plus la température de rosée diminue. Comme la température de retour du réseau de distribution de chaleur dépend de sa conception, mais aussi des conditions météorologiques, cette température de rosée devrait être la plus haute possible pour être certain que la chaudière condense efficacement le plus souvent. Autrement, le risque est d’avoir une température de fumée trop élevée et donc de l’eau qui reste à l’état de vapeur dans ces fumées. En conclusion, il faut que l’excès d’air soit le plus faible possible pour avoir une température de rosée la plus haute et de meilleures conditions de condensation.

Rendement utile d’une chaudière gaz de type L en fonction de la température des fumées (fonction de la température de l’eau) et de l’excès d’air (λ = 1,3 équivaut à un excès d’air de 30 %).

Remarque : ce schéma montre que les anciennes chaudières atmosphériques à condensation avaient de moins bonnes performances puisqu’elles fonctionnaient avec un excès d’air supérieur à 50 % (λ = 1,5).

Gains sur le rendement saisonnier

Le gain obtenu sur le rendement saisonnier et donc sur la facture énergétique en choisissant une chaudière à condensation plutôt qu’une chaudière traditionnelle haut rendement peut donc varier entre : 1 et 14 %.

Si on compile les informations de l’ARGB pour le gaz et le résultat des programmes de simulation de certains fabricants, on peut dire que 6 .. 9 % d’économie sur la consommation annuelle est un ordre de grandeur réaliste pouvant être utilisé pour guider le choix de la nouvelle chaudière (voir peut-être un peu plus pour les meilleures installations).


Constitution d’une chaudière à condensation

Type d’échangeur

Les chaudières à condensation actuelles sont composées de deux ou trois échangeurs en série. Ces échangeurs sont soit séparés sous une même jaquette, soit intégrés dans un ensemble monobloc.

Le dernier échangeur sur le circuit des fumées (ou la dernière partie de l’échangeur monobloc) est appelé « condenseur ». C’est dans ce dernier que les fumées doivent céder leur chaleur latente. C’est donc également au niveau de ce dernier que se raccorde le retour d’eau à température la plus basse possible. Cet échangeur est conçu en un matériau supportant la condensation sans risque de corrosion (acier inox, fonte d’aluminium).

Il est également possible d’utiliser un condenseur séparé, rajouté à une chaudière traditionnelle, de manière à en augmenter son rendement. Cela est en principe possible pour toute chaudière gaz et fioul existante. C’est la seule solution si on veut exploiter la condensation avec des chaudières de plus d’un MW.

    

Échangeurs-condenseurs s’adaptant à une chaudière traditionnelle.

Pour obtenir le meilleur rendement de l’échangeur-condenseur, il est important que l’évacuation des fumées se fasse dans le même sens que l’écoulement des condensats, c’est-à-dire vers le bas. Dans le cas contraire, les fumées s’élevant risqueraient de revaporiser les condensats, ce qui ferait perdre l’avantage de la condensation.

Évacuation des fumées dans une chaudière à condensation, dans le sens de l’écoulement des condensats.

Le rendement de combustion obtenu dépend entre autres de la qualité de l’échangeur. Un bon échangeur permettra d’obtenir des fumées dont la température à la sortie de la chaudière est au maximum de 5 °C supérieure à la température de l’eau de retour. Attention, sur les plus mauvaises chaudières à condensation, cette différence de température peut aller jusqu’à 15 °C.

Circuits retour

Certaines chaudières comportent deux branchements de retour : un retour « basse température » au niveau du condenseur et un retour « haute température » au niveau du premier échangeur. Cette configuration permet l’utilisation d’une chaudière à condensation même lorsqu’une partie des utilisateurs demandent une température d’eau élevée (production d’eau chaude sanitaire, batteries à eau chaude, circuits de radiateurs à différents niveaux de température, …). Les circuits qui leur sont propres sont alors raccordés du côté « haute température », les circuits pouvant fonctionner en basse température (circuits radiateurs basse température, chauffage par le sol, …) étant dédiés au retour « basse température ».

Il faut toutefois faire attention : le retour « froid » reste le retour principal de la chaudière.  Le retour chaud by-passe une partie de la surface d’échange.  Il est donc important de maintenir un rapport (60% min, 40% max) entre le retour froid et le retour chaud !

Si l’on place la production ECS sur le retour « chaud » , tout l’été, la chaudière va fonctionner dans de mauvaises conditions, car il n’y a pas de retour « froid ».  Il est donc préférable dans ce cas de surdimensionner la production ECS, de manière à revenir plus froid sur la chaudière, et n’utiliser qu’un seul retour, à savoir le retour « froid » dans ce cas !

Type de brûleur

En gros, en fonction du type de brûleur, on retrouve trois types de chaudière à condensation :

  1. Des chaudières dont le brûleur est un brûleur gaz pulsé traditionnel (souvent 2 allures) commercialisé séparément de la chaudière à condensation.
  2. Des chaudières dont le brûleur est un brûleur à prémélange avec ventilateur (rampe de brûleurs, brûleurs radiant, …), modulant (de 10 à 100 % de leur puissance nominale). La modulation du brûleur se fait soit par variation de vitesse du ventilateur, soit par étranglement variable de la pulsion d’air et de gaz.
  3. Des chaudières gaz à brûleur atmosphérique à prémélange, sans ventilateur. Ces brûleurs sont à une ou 2 allures. Étant donné la technologie assez basique appliquée (contrôle moindre de l’excès d’air, pas de modulation de la puissance), ces chaudières présentent généralement de moins bonnes performances que les 3 premières catégories ci-dessus.

Type d’alimentation en air

Dans certaines chaudières avec brûleur à prémélange, l’air comburant est aspiré le long des parois du foyer avant d’être mélangé au gaz. Il est ainsi préchauffé en récupérant la perte du foyer. Les pertes vers l’ambiance sont dès lors minimes.

Cette configuration liée à une régulation qui fait chuter directement la température de la chaudière à l’arrêt et à un brûleur modulant fonctionnant quasi en permanence en période de chauffe rend inutile la présence d’isolation dans la jaquette de la chaudière.

Chaudière sans isolation, dont l’air est aspiré le long du foyer.

Ces chaudières peuvent être équipées d’un système de combustion étanche (ou à ventouse) dans lequel l’air comburant est directement aspiré à l’extérieur du bâtiment.

Irrigation

Il existe de trois types de chaudière, en fonction du degré d’irrigation minimum exigé :

  • Sans irrigation imposée (chaudières à grand volume d’eau),
  • Avec irrigation faible ou moyenne imposée (chaudières à faible volume d’eau),
  • Avec irrigation importante impérative (chaudières à faible volume d’eau).

Le circuit hydraulique qui sera associé à la chaudière à condensation dépend des exigences suivantes :

  • Pour les chaudières avec faible ou moyenne exigence d’irrigation, c’est la régulation qui doit assurer un débit minimum en toute circonstance, par exemple, par action sur les vannes mélangeuses.
  • Pour les chaudières sans irrigation imposée, les circuits de distribution peuvent être extrêmement simples et optimalisés pour garantir une condensation maximale.

Dans les deux cas de figure, il est impératif d’avoir une régulation performante qui régule la température de départ chaudière en fonction des besoins et /ou de la température extérieure, afin d’optimiser les performances chaudières et limiter les pertes de distribution.

Pertes vers l’ambiance, pertes à l’arrêt et isolation

Certaines nouvelles chaudières gaz à condensation se caractérisent par l’absence d’isolation dans la jaquette. Et pourtant, leurs pertes vers l’ambiance sont très faibles.
Il y a plusieurs raisons à cela :

  • Ces chaudières sont équipées de brûleurs modulants dont la plage de modulation est grande. En journée, puisque le brûleur adapte en permanence sa puissance aux besoins. Celui-ci ne présente nettement moins de périodes d’arrêt.
  • Parallèlement à cela, l’air de combustion est aspiré par le brûleur entre le foyer et la jaquette de la chaudière. Durant le fonctionnement du brûleur, l’air lèche le foyer avant d’être mélangé au gaz. La perte du foyer est ainsi récupérée en grande partie par le brûleur.
  • Lorsque le brûleur s’arrête (par exemple, au moment de la coupure nocturne), la chaudière retombe directement en température (si son irrigation s’arrête). Elle ne présente donc plus de perte.

 Exemples de chaudière à condensation

Exemples de chaudières à condensation : 

Chaudière gaz à condensation, équipée d’un brûleur modulant 10 .. 100 % et d’un réglage automatique de la combustion par sonde d’O2.

Chaudière gaz à condensation à équiper d’un brûleur pulsé traditionnel.

Chaudière gaz à condensation avec brûleur modulant à prémélange et aspiration d’air le long du foyer en fonte d’aluminium.

 

Chaudière fioul à condensation avec brûleur à air pulsé.

Chaudière à pellets à condensation : le refroidissement des fumées s’opère en deux fois. Le premier échangeur correspond aux plus hautes températures tandis que la condensation s’opère dans le second. Cette séparation permet de récupérer le condensat efficacement sans polluer le cendrier de la chaudière.


Circuits hydrauliques associés à une chaudière à condensation

Une chaudière à condensation n’a ses performances optimales que si elle est alimentée avec une eau à basse température, en tout cas inférieure à la température de rosée des fumées (de 53 à 58 °C pour les fumées issues de la combustion du gaz naturel, environ 45 °C pour les chaudières au mazout). Plus la température d’eau de retour est froide, plus la quantité de fumée condensée est importante et meilleur est le rendement.

La configuration des circuits de distribution doit donc être adaptée en conséquence avec comme principes :

  • De ne jamais mélanger, avant le condenseur, l’eau de retour froide et l’eau chaude de départ,
  • D’alimenter le condenseur avec les retours les plus froids.

Cumul imaginaire des recyclages d’eau chaude possibles vers la chaudière. Situations à éviter.

Exemples : schémas hydrauliques proposés par les fabricants de chaudières. Remarque : d’autres schémas sont également proposés par certains fabricants. Il est impossible de les reprendre tous ici. Certains sont particulièrement complexes, pour ne pas dire « biscornus ». Nous ne critiquons pas ici leur efficacité énergétique. Nous pensons cependant qu’il est préférable de choisir les schémas les plus simples, pour des raisons de facilité de conception (diminution des erreurs de conception), de rationalisation de l’investissement et de facilité d’exploitation.

Chaufferie comprenant une chaudière à condensation pouvant fonctionner à débit variable

Exemple 1

La chaudière alimente des circuits de chauffage par radiateurs régulés en température glissante (garantis un retour le plus froid possible vers le condenseur) et une production d’eau chaude sanitaire. Les configurations de la régulation (où la température de départ de la chaudière peut rester constante) et du circuit primaire en boucle ouverte sont extrêmement simples (il n’y a pas de circulateur primaire). Des aérothermes devant fonctionner à haute température d’eau peuvent être raccordés de façon identique à la production d’eau chaude sanitaire.

ATTENTION : Le retour « haute température » by-pass une partie de la chaudière.  Pour l’ECS en été, la chaudière fonctionnera dans de mauvaises conditions !!!  Dans le cas de l’utilisation de deux retours d’eau, le retour « froid » doit rester le principal retour, avec min 60 % du débit contre 40 % max pour le retour « chaud », dans toutes les conditions d’exploitation.

Exemple 2

Le branchement de la production d’eau chaude sanitaire sur le retour « froid » de la chaudière est rendu possible par un dimensionnement de l’échangeur en régime 70°/40°. On peut également raccorder sur ce même retour froid, des batteries de traitement d’air dimensionnées en régime 70°/40° ou des ventilos-convecteurs dimensionnés en régime 55°/40°.

Exemple 3

La présence d’un circuit à très basse température comme le chauffage par le sol est à valoriser pour augmenter la condensation. La chaudière à condensation aura de bonnes performances si la puissance du circuit « basse température » équivaut au minimum à 60 % de la puissance thermique totale.

Chaufferie composée comprenant une chaudière à condensation pouvant fonctionner à débit variable, et une chaudière traditionnelle

Exemple 1

L’enclenchement des chaudières est régulé en cascade. Dans l’ordre d’enclenchement, la chaudière à condensation est prioritaire.

Exemple 2

Le fonctionnement de ce schéma est identique au précédent, mais avec une production d’eau chaude sanitaire fonctionnant en régime 70°/40°.

Exemple 3

La chaudière à condensation et la chaudière traditionnelle sont raccordées en série. La chaudière à condensation préchauffe l’eau de retour. Si la température de consigne du collecteur n’est pas atteinte, la vanne trois voies (1) bascule pour alimenter la chaudière traditionnelle qui se met alors en fonctionnement.

Chaufferie comprenant une chaudière à condensation devant fonctionner à débit constant : bouteille casse-pression et circulateur sur boucle primaire

La chaudière alimente en température glissante les circuits de chauffage par radiateurs.

Le débit constant dans la chaudière est obtenu au moyen d’une bouteille casse pression qui recycle une partie de l’eau de départ lorsque les vannes mélangeuses des circuits secondaires se ferment. Pour obtenir la condensation, malgré la possibilité de retour d’eau chaude de départ vers le condenseur (via la bouteille casse-pression), il est impératif que la température (1) à la sortie de la chaudière suive au plus près la température (2) des circuits secondaires et garantisse une ouverture maximale des vannes mélangeuses. Une régulation climatique peut assurer que la température des radiateurs est mieux adaptée aux besoins de chaleur et, donc, que les vannes mélangeuses sont plus ouvertes.

Ce type de schéma est plus complexe et risque de conduire à des performances moindres puisqu’il est quasi impossible d’empêcher le recyclage partiel d’eau chaude dans la bouteille casse-pression :

  • Les différents circuits n’ont jamais la même température de consigne,
  • Les circulateurs des circuits primaires et secondaires (et donc les débits mis en œuvre) ne sont jamais dimensionnés avec la précision voulue.

De plus, il n’est guère possible de combiner une production d’eau chaude sanitaire avec ce type de chaudière. En effet, celle-ci ne pourra, à la fois, suivre au plus près la température des circuits secondaires et produire de l’eau chaude à plus de 60 °C.

Une solution est de placer un circulateur primaire à vitesse variable. Celui-ci diminuera sa vitesse lorsque la demande des circuits secondaires diminue, empêchant le recyclage d’eau chaude dans la bouteille casse-pression. Il s’agit cependant de rester dans les limites de débit exigé par la chaudière.

Par exemple, la régulation de la vitesse du circulateur peut être réalisée comme suit : la vitesse est augmentée si la température en amont de la bouteille (T°G) est supérieure à la température en aval de la bouteille (T°D) augmentée de 2 K. Inversément, elle sera diminuée si la T°G est inférieure à T°D + 2 K. De la sorte, on est assuré du fait que l’eau de retour remontera en faible quantité dans la bouteille et que l’eau de chaudière ne sera jamais recyclée.

Chaufferie composée comprenant une chaudière à condensation devant fonctionner à débit constant et une chaudière traditionnelle

Dans un tel schéma, la chaudière à condensation est prioritaire dans l’ordre d’enclenchement de la régulation en cascade.
Pour réguler une installation de ce type en favorisant au maximum la condensation sans créer d’inconfort, il est impératif que la consigne de température des chaudières soit d’une part très proche de la température des circuits secondaires (pour éviter un retour d’eau chaude via la bouteille casse-pression) et d’autre part, que cette température soit mesurée en aval de la bouteille casse-pression (en 2 et non en 1, pour éviter une incompatibilité de débit entre le circuit des chaudières et les circuits radiateurs).

Le risque de retour d’eau chaude dans la bouteille casse-pression est moins grand que dans le cas d’une seule chaudière. En effet lorsque les besoins sont moindres et que les vannes mélangeuses des circuits secondaires se ferment, on peut imaginer que seule la chaudière à condensation est en demande. Le débit primaire est alors diminué par 2.

On peut aussi imaginer que, le raccordement du retour vers les chaudières se fasse séparément au départ d’une bouteille casse-pression verticale. Le retour vers les chaudières traditionnelles se raccordera plus haut que le retour des circuits secondaires, qui lui-même sera plus haut que le retour vers la chaudière à condensation. Cette façon de faire permet de diriger le recyclage éventuel d’eau chaude dans la bouteille casse-pression vers la chaudière traditionnelle.


Cheminées associées à la condensation

Les produits de combustion issus d’une chaudière à condensation sont saturés en vapeur d’eau dont une partie va se condenser sur les parois de la cheminée. Cela exclut une évacuation par une cheminée traditionnelle en maçonnerie, car l’humidité provoquerait de graves dommages au bâtiment. De plus, la température trop froide créé une dépression naturelle.

Des solutions particulières ont donc été mises au point pour évacuer les produits de combustion des chaudières à condensation. On rencontre ainsi principalement les deux techniques suivantes :

  1. La cheminée étanche à l’humidité, en acier inoxydable ou matériau synthétique. Elle permet de maintenir une température inférieure au point de rosée sans que l’humidité ne la traverse et attaque la maçonnerie. Fonctionnant en surpression, elle est aussi étanche aux produits de combustion.
  2. Le tubage, qui s’applique en rénovation à une cheminée ancienne. Il doit être étanche, résistant à la corrosion et installé dans une cheminée. Le tubage doit pouvoir fonctionner en surpression dans toute sa longueur. Il peut être réalisé en conduit rigide ou flexible. Dans le cas d’un tubage en conduit flexible, l’aluminium, même de qualité requise, est interdit. Le bas du conduit d’évacuation des produits de combustion doit être équipé d’une purge munie d’un siphon et reliée au réseau d’eaux usées par un conduit en matériau résistant aux condensats, le tube en PVC est réputé convenir pour cet usage.

Notons qu’il existe un agrément technique concernant les conduits de cheminée utilisables en combinaison avec une chaudière à condensation. Seuls ceux-ci peuvent être choisis.

En principe, dans une chaudière à condensation la température des fumées est supérieure à la température de l’eau entrant dans la chaudière d’environ 5 °C. La température des fumées ne peut donc jamais dépasser 110 °C qui est la limite de fonctionnement d’une chaudière. Cependant pour pallier à un défaut de la régulation de cette dernière, un thermostat de sécurité coupant la chaudière si la température des fumées dépasse 120 °C doit être prévu dans les raccordements vers la cheminée en matériau synthétique.

Il est important aussi de signaler que l’on ne peut raccorder sur un même conduit de cheminée, une chaudière traditionnelle et une chaudière à condensation.

Notons également qu’il existe des chaudières à condensation à combustion étanche (dites « à ventouse ») dont l’alimentation en air et l’évacuation des fumées se font par deux conduits concentriques (l’air est aspiré au centre et les fumées rejetées par le conduit extérieur). Une telle configuration est possible jusqu’à une puissance de 1 000 kW en conduit vertical et 160 kW en conduit horizontal.

Chaudières raccordées à un système de combustion étanche (à « ventouse »).

Pour plus d’information concernant la conception des cheminées.


Évacuation des condensats

À l’heure actuelle, il n’existe pas de normes ou de prescription en vigueur pour l’évacuation des condensats. De manière générale, les condensats sont évacués vers l’égout au moyen d’un conduit.

Photo évacuation des condensats vers les égouts.

 Photo face isolée arrière d'une chaudière à condensation au gaz avec son tuyau d'évacuation des fumées.   Photo partie inférieure du conduit de cheminée munie d'un conduit d'évacuation des condensats.

La première figure montre l’évacuation des condensats vers les égouts, la deuxième figure montre la face isolée arrière d’une chaudière à condensation au gaz avec son tuyau d’évacuation des fumées et son conduit d’évacuation des condensats (en blanc), tandis que la dernière figure montre la partie inférieure du conduit de cheminée munie d’un conduit d’évacuation des condensats.

En régime permanent, une chaudière gaz à condensation de 250 kW produit en moyenne environ 14 litres/h de condensat. Ces condensats pour le gaz naturel sont légèrement acides (H2O + CO2). Le degré d’acidité est du même ordre de grandeur que celui de l’eau de pluie (pH : 4 .. 4,5). De plus, l’acidité de ceux-ci est souvent compensée par le caractère plutôt basique des eaux ménagères. Ceci explique qu’il ne soit pas obligatoire de traiter les condensats avant leur évacuation à l’égout. Pour les grandes installations où la production de condensat devient importante devant la quantité d’eau domestique, il peut être judicieux de traiter les condensats avant de les évacuer.

Graphe représentant différents niveaux d’acidité et comparaison avec les condensats des chaudières mazout et gaz.

Dans le cas du mazout, le niveau d’acidité est plus important et est dû à la présence plus importante du soufre au sein du combustible. Le mazout extra, pauvre en Soufre, permet de limiter l’acidité. Dans ce cas de figure, les remarques pour les condensats des chaudières gaz peuvent être appliqué pour la chaudière au mazout extra. Dans le cas du mazout standard, nous conseillons le lecteur de clarifier la situation avec l’installateur ou le bureau d’études. En effet, dans les grandes installations (Pn > ~100 kW), une neutralisation des condensats pourrait s’avérer nécessaire, par exemple, dans le cas d’une utilisation continue de la chaudières (ex. piscine) qui occasionnerait une plus grande production de condensat. Pour relever le pH des condensats, on peut utiliser un bac de neutralisation équipé de filtres de charbon actif : les filtres devront être remplacés de manière périodique pour maintenir l’efficacité.

Dans le cas d’une chaufferie en toiture, il est recommandé de ne pas faire couler les condensats sur la toiture ou directement dans les gouttières (légère acidité, risque de gel et de bouchage des évacuations). Un conduit en matière synthétique raccordé directement à l’égout est indiqué.

Chaudières traditionnelles [ECS]

Chaudières traditionnelles [ECS]

On parle de « chaudière traditionnelle » en opposition aux « chaudières à condensation« . Les « chaudières traditionnelles » sont conçues et exploitées de manière à éviter la condensation des fumées.

La chaleur latente de celles-ci n’étant pas récupérée, les « chaudières traditionnelles » auront toujours un moins bon rendement que les « chaudières à condensation ».


Chaudières gaz ou fuel à brûleur pulsé

Les chaudières à brûleur pulsé sont des chaudières dont le brûleur est choisi indépendamment de la chaudière. Celui-ci peut fonctionner au gaz ou au fuel.

Les chaudières actuelles de ce type sont dites « à foyer pressurisé », c’est-à-dire que le trajet des fumées dans la chaudière est assuré grâce à la pression fournie par le ventilateur du brûleur.

   

Chaudière à foyer pressurisé sans et avec son brûleur.

Types de foyer

En gros, il existe actuellement deux types de chaudière (de puissance > 70 kW) :

  • les chaudières « à triple parcours »,
  • les chaudières « à inversion de flamme ».

Chaudière triple parcours en acier : les fumées quittent le foyer par l’arrière et parcourent à trois reprises la longueur de la chaudière avant d’être récoltées au dos de celle-ci.

Elément d’une chaudière triple parcours en fonte. Les chaudières performantes de ce type possèdent un premier et un dernier élement (refermant le foyer) entièrement parcourus par l’eau, ce qui augmente les surfaces d’échange et diminue les pertes par parois sèches.

Chaudière à inversion de flamme en acier. Dans ces chaudières, souvent de grosse puissance, le foyer est « borgne ». Les fumées ressortent de celui-ci par l’avant (le long de la flamme) avant de parcourir des tubes de fumée. Dans ceux-ci, des turbulateurs (spirales, lamelles métalliques, …) ralentissent les fumées pour augmenter l’échange avec l’eau et doser celui-ci pour éviter les condensations.

La principale différence entre ces deux configurations se situe au niveau des émissions de NOx. En effet, les chaudières à « triple parcours » permettent un court temps de séjour des fumées dans la zone de combustion, contrairement aux chaudières à inversion de flamme dans lesquelles les fumées doivent retransiter par la zone de combustion. Rappelons que un long temps de séjour des fumées dans la zone à plus haute température est favorable à la formation des NOx.

Rendement

Pertes à l’arrêt

Les pertes à l’arrêt des chaudières à brûleur pulsé modernes sont extrêmement faibles (de l’ordre 0,1 … 0,4 % de la puissance nominale de la chaudière).
Cela est la conséquence :

  • d’un degré d’isolation de la jaquette important, équivalent à une épaisseur de laine minérale de 10 cm enveloppant l’ensemble de la chaudière,
  • de la présence d’un clapet (motorisé, pneumatique, …) refermant l’aspiration d’air du brûleur lorsque celui-ci est à l’arrêt.

Isolation de la jaquette d’une chaudière à brûleur pulsé.

Rendement de combustion

Le rendement de combustion de ces chaudières est dépendant du choix du brûleur et de son réglage. Avec un brûleur finement réglé, un rendement de combustion de 93 .. 94 % est tout à fait possible dans les chaudières actuelles les plus performantes.

Rendement saisonnier

Les faibles pertes à l’arrêt et la possibilité d’obtenir des rendements de combustion les plus élevés (sans condenser), font des chaudières à brûleur pulsé les chaudières les plus performantes dans la catégorie des chaudières dites « traditionnelles »:

Exemple. Soit une chaudière correctement dimensionnée (facteur de charge (nB/nT) de 0,3) avec des pertes à l’arrêt (qE) de 0,2 % et un rendement utileutile )de 93 %.

Le rendement saisonnier de cette chaudière est estimé à :

ηsais = ηutile / (1 + qx (NT/NB – 1))

ηsais = 93 [%] / (1 + 0,002 x ((1/0,3) – 1)) = 92,6 [%]


Chaudières gaz atmosphériques

Les chaudières gaz atmosphériques sont des chaudières dont le brûleur ne possède pas de ventilateur.

Ces chaudières sont composées de rampes de brûleurs placés en dessous du foyer. L’aspiration d’air par le brûleur se fait naturellement par le gaz et les flammes. On parle de brûleur atmosphérique traditionnel quand une grande partie de l’air est aspirée au niveau de la flamme et on parle de brûleur à prémélange quand l’air est mélangé au gaz avant la flamme.

Chaudière gaz à brûleur gaz atmosphérique à prémélange.

Un coupe tirage (ouverture de la buse d’évacuation vers la chaufferie), placé à l’arrière de la chaudière annule l’influence du tirage de la cheminée sur la combustion en maintenant une pression constante à la sortie de la chaudière.

Chaudière atmosphérique :

  1. Corps de chauffe (en fonte)
  2. Échangeur à ailettes profilées
  3. Isolation
  4. Bouclier thermique
  5. Buse de fumée avec coupe-tirage intégré
  6. Tableau de commande
  7. Jaquette
  8. Porte d’accès (pivotante)
  9. Collecteur de départ
  10. Collecteur de retour
  11. Brûleur à prémélange (bas NOx)
  12. Rampe gaz
  13. Électrode d’allumage et sonde d’ionisation
  14. Transfo d’allumage
  15. Connecteurs électriques
  16. Vanne gaz à 2 allures
  17. Vanne de vidange

Avantages

  • Le prix moindre. Une chaudière atmosphérique de conception « bas de gamme » coûte moins cher qu’une chaudière équipée d’un brûleur gaz pulsé.
  • L’absence de bruit. Une chaudière atmosphérique ne comportant pas de ventilateur est nettement moins bruyante qu’un brûleur pulsé.
  • La facilité de montage et de réglage.

Inconvénients

  • Un rendement utile moindre. La gestion moins précise de l’excès d’air diminue le rendement utile des chaudières qui est voisin de 91 .. 92 % pour les nouvelles chaudières à prémélange et inférieur à 90 % pour les chaudières de conception plus ancienne (chaudières répondant juste aux exigences de l’AR du 18 mars 97 et encore vendues), alors que l’on peut espérer un rendement de 93 .. 94 % avec une chaudière moderne à brûleur pulsé bien réglée.
  • Une production importante de NOx. Les chaudières atmosphériques « bas de gamme » émettent généralement une quantité importante de NOx, à telle point que certains modèles ne peuvent plus être vendus qu’en Wallonie (émission de NO> 150 mg/kWh) où il n’y a pas de réglementation en la matière. Les technologies du prémélange et le refroidissement de la flamme au moyen de barres métalliques diminuent fortement les émissions de NOx (< 60 .. 70 mg/kWh) pour les rendre compatibles avec la plupart des labels européens.

Brûleur à prémélange « LOW NOx« .

  • Des pertes à l’arrêt plus importantes. Les chaudières purement atmosphériques (c’est-à-dire sans ventilateur) sont généralement parcourues à l’arrêt par un flux d’air continu provoquant des pertes par balayage. Par rapport aux anciens modèles de chaudière atmosphérique, celles-ci sont maintenant limitées : limitation des ouvertures de passage d’air dans les brûleurs à prémélange, ajout sur certains modèles d’un clapet sur les fumées se fermant à l’arrêt. Quelques importants fabricants de chaudières annoncent ainsi (d’autres ne donnent pas de chiffre) des pertes à l’arrêt de leurs chaudières atmosphériques de l’ordre de 0,8 .. 1,3 % de la puissance de la chaudière, sans clapet sur les fumées et de l’ordre de 0,6 .. 0,7 % avec un clapet d’obturation des fumées (pour une température d’eau de 60°C). À titre de comparaison, les pertes à l’arrêt des chaudières à brûleur pulsé modernes sont de l’ordre de 0,1 .. 0,4 %.

Pertes à l’arrêt d’une chaudière atmosphérique à prémélange actuelle de la marque « x » en fonction de la température de l’eau de chaudière.

Exemple.

Il existe sur le marché des chaudières gaz atmosphériques composées de deux ensembles brûleur-échangeur séparés, ce sous une même jaquette. Cette chaudière intègre également la régulation lui permettant de réguler en cascade les deux brûleurs. Des vannes d’isolement permettent également l’isolation hydraulique de l’échangeur à l’arrêt. Cette technique de construction permet donc, dans une seule chaudière, d’offrir les avantages de deux chaudières séparées régulées en cascade : réduction des pertes à l’arrêt, augmentation du temps de fonctionnement des brûleurs.


Chaudières gaz à prémélange avec ventilateur

On associe aussi aux chaudières gaz atmosphériques les chaudières à prémélange total mais équipées d’un ventilateur qui pulse le mélange air/gaz vers le brûleur ou placé sur l’évacuation des fumées, qui aide à vaincre la perte de charge de la chaudière. Le brûleur intégré à ces chaudières peut être un brûleur à rampes comme pour les chaudières atmosphériques ou un brûleur radiant.

Par rapport aux chaudières gaz atmosphériques (sans ventilateur), les chaudières gaz à prémélange avec ventilateur présentent les avantages complémentaires suivants :

  • Les pertes à l’arrêt sont légèrement moindres (0,5 .. 0,7 %, pour une température d’eau de 60°C), soit parce qu’un clapet d’air supprime le tirage au travers du foyer à l’arrêt, soit parce que la configuration du brûleur et du foyer est telle que le balayage d’air est moindre.
  • La technologie du brûleur radiant permet une diminution importante des émissions de NOx.
  • En outre, les brûleurs de ces chaudières sont souvent modulants, (jusqu’à 25 % pour les chaudières qui ne sont pas à condensation) ce qui implique une diminution du nombre de démarrages, donc des émissions polluantes, une diminution des temps d’arrêt de la chaudière, donc des pertes à l’arrêt et une augmentation du rendement utile à charge partielle.
  • Dans le cas d’atmosphère corrosive pour les chaudières, certaines de ces chaudières peuvent être équipées d’un système de combustion étanche (dites « à ventouse ») dont l’alimentation en air et l’évacuation des fumées se fait par deux conduits concentriques (l’air est aspiré par le conduit périphérique et les fumées rejetées par le conduit central). Une telle configuration est possible jusqu’à une puissance de 1 000 kW en conduit vertical.

Chaudières gaz reliées à un système de combustion étanche.

Il est ainsi possible d’atteindre, avec ces chaudières des rendements saisonniers proches de ceux des chaudières pressurisées à brûleur pulsé.


Les technologies « très basse température »

Actuellement, on retrouve sur le marché des chaudières traditionnelles dites :

  • « Basse température », dont la température moyenne d’eau interne ne peut descendre en dessous d’une certaine valeur, de l’ordre de 50 …60°C (on parle aussi dans la réglementation de chaudières « standards »).
  • « Très basse température », ne présentant aucune contrainte en ce qui concerne la température de l’eau.

La troisième catégorie de chaudières étant les chaudières à condensation conçues, elles, pour favoriser la condensation des fumées et fonctionnant avec les températures d’eau les plus basses.

Conception des chaudières « très basse température »

Pour éviter que les fumées ne condensent dans les chaudières « très basse température », les échangeurs de chaleur sont conçus pour qu’à aucun moment la température de paroi de l’échangeur du côté des fumées ne puisse descendre en dessous du point de rosée (.. 45°C .. pour le fuel et .. 55°C .. pour le gaz).

Exemple.

Pour certaines chaudières en fonte, le parcours de l’eau dans la chaudière est conçu pour que l’eau froide de retour n’entre pas en contact direct avec l’échangeur.

Thermographie infrarouge d’un élément en fonte d’une chaudière. l’eau de retour rentre dans l’élément par le dessus (rond bleu). Elle est dirigée vers l’extérieur de l’élément (couronne bleue, jaune et verte). Elle ne longe, ainsi, le foyer et les tubes de fumées qu’une fois réchauffée (zone rouge).

Dans les chaudières en acier, les fabricants utilisent, par exemple, des échangeurs « double parois ». Cela permet à la paroi de l’échangeur, côté fumée, d’être maintenue à une température supérieure à 60°C, même si la température de l’eau est très basse (l’échangeur se comporte comme un double vitrage).

Échangeur d’une chaudière très basse température : les fumées circulent dans les tubes doubles parois. L’absence partielle de contact entre le tube coté fumée et le tube coté eau permet aux fumées de ne pas condenser au contact de la paroi, quelle que soit la température de l’eau dans la chaudière. Sans la double paroi, la température du tube coté fumée serait presqu’égale à la température de l’eau,même si les fumées au centre du tube ont une température élevée, puisque le coefficient d’échange coté eau est nettement plus important que du coté des fumées. Les fumées condenseraient alors le long de la paroi si la température de l’eau descend sous 60°C.

Comparaison énergétique « basse température » et « très basse température »

Rendement de production

En théorie, les chaudières « très basse température » régulées en température glissante présentent un rendement saisonnier supérieur aux chaudières « basse température ». En effet, plus la température de l’eau est basse :

En pratique, la différence n’est pas aussi tranchée. En effet, le rendement de production d’une chaudière « très basse température » ne se démarque pas toujours énormément de celui d’une chaudière « basse température ».

En effet, dans les chaudières « très basse température », pour éviter que les fumées ne condensent au contact de parois de la chaudière irriguées avec de l’eau à température inférieure à 60°C, les constructeurs conçoivent des échangeurs dans lesquels l’échange de chaleur entre l’eau et les fumées est ralenti (par exemple, les tubes doubles parois).

Il en résulte un moins bon échange qu’imaginé théoriquement puisque la température de surface de l’échangeur ne descend pas sous 60° même si la température de l’eau est plus basse. La température des fumées n’est donc pas forcément plus basse pour une chaudière « très basse température » que pour une chaudière « basse température ». Pour limiter cet impact, les constructeurs augmentent la surface d’échange, ce qui augmente la taille des chaudières et leur coût.

Dans les chaudières « basse température », si la température de l’eau ne descend pas en dessous de 60°C, il n’y a aucun risque de condensation côté fumée, et on peut optimiser les surfaces d’échanges et ainsi entraîner une température de fumée plus basse et donc le meilleur rendement de combustion possible.

Pertes à l’arrêt

De plus, il est vrai que la chaudière « basse température » présente des pertes à l’arrêt légèrement supérieures mais celles-ci fortement limitées du fait d’une isolation renforcée et de la suppression des pertes par balayage avec les brûleurs pulsés (pour autant que le clapet d’air se referme effectivement à l’arrêt !).

Attention, cette conclusion n’est plus valable si on choisit une chaudière atmosphérique d’une ancienne conception, et/ou si l’installation est fortement surdimensionnée.

Pertes de distribution et de régulation

La diminution de la température moyenne de l’eau dans la chaudière, en fonction de la saison, n’a pas un intérêt énergétique que sur le rendement de la chaudière :

  • la limitation des pertes par distribution dans le collecteur primaire, dans le cas des circuits avec distribution secondaire possédant sa propre régulation de température (vannes mélangeuses),
  • la limitation des pertes de distribution dans l’ensemble du réseau de distribution dans le cas des installations sans circuit secondaire,

Cela permet également de simplifier la conception des circuits hydrauliques, puisqu’il ne faut plus faire attention à la température de l’eau qui alimentera la chaudière.

Pompes à chaleur

Pompes à chaleur

Pompe air-eau à chaleur réversible.


Vous avez dit « pompe à chaleur » ?

Elle transfère de l’énergie d’un milieu à un autre

Source : ef4.

Une pompe à chaleur (PAC) est une machine dont le but est de valoriser la chaleur gratuite présente dans l’environnement : celle présente dans l’air extérieur, les rivières, le sol. En effet, tout corps, même « froid » contient une quantité importante d’énergie qui peut être récupérée.

Pratiquement, grâce à un fluide décrivant un cycle thermodynamique, la pompe à chaleur retire de la chaleur à une source dite « froide » et la rejette dans une source dite « chaude ». Ce transfert fait appel à un processus forcé, puisque chacun sait que la chaleur se déplace de façon naturelle d’une zone chaude vers une zone froide. C’est pourquoi, la PAC doit être entraînée par un compresseur qui lui amènera l’énergie nécessaire à son fonctionnement.

À titre d’exemple,  pompe à chaleur à placer sur la toiture d’un atelier industriel.

Il est important de préciser que l’on parle ici d’appareils réalisant un transfert, et non une création de chaleur. L’objectif visé – le coefficient de performance – se situe autour de 3 unités de chaleur fournies à la source chaude par unité injectée au compresseur. Cela signifie que pour un kWh consommé et payé, on en reçoit 3 gratuitement

Mais la PAC est un producteur de chaleur « dynamique » : contrairement à une chaudière, une PAC voit ses performances varier selon les conditions d’utilisation. Elle aura ainsi de très bonnes performances de chauffage … en été alors que ce n’est pas en cette période que le besoin de chauffage est présent ! La tâche la plus difficile pour le projeteur, consiste à prendre en considération ce comportement dynamique et à équiper l’installation de telle manière que les conditions limites de fonctionnement ne soient pas dépassées.

Un boom commercial

Il s’agit d’une technologie qui bénéficie d’un fort regain d’intérêt ces dernières années après un premier boom (et une déception…) lors de la crise pétrolière des années 70. Le marché est en pleine expansion :

Développement des ventes de pompes à chaleur en Europe 2005-2013, par catégorie.

Source : https://www.ehpa.org.

Un outil « propre » ?

La PAC permet d’utiliser l’énergie électrique à bon escient. La pompe à chaleur s’inscrit-elle alors dans la démarche « développement durable » ? Il convient de nuancer la réponse.

La pompe à chaleur en tant que telle est une machine intéressante dans la mesure où un kWh payé au niveau mécanique (pour faire tourner le compresseur), on produit 3 à 4.5 kWh d’énergie thermique (suivant la technologie utilisée et la qualité de la mise en œuvre). Néanmoins, toute la question de l’impact environnemental d’une pompe à chaleur se trouve dans la façon de produire ce kWh mécanique. La majorité des PAC utilisent de l’énergie électrique pour réaliser ce travail moteur. Les performances environnementales d’une PAC sont donc directement liées aux performances environnementales de l’électricité que l’on utilise. Prenons différents cas de figure :

  • Dans le cas, plutôt marginal à l’heure actuelle, où l’électricité serait produite par des énergies purement renouvelables, comme des éoliennes ou panneaux photovoltaïques, l’impact d’une PAC est remarquable dans la mesure où elle multiplie l’efficacité des énergies renouvelables pour la production thermique, et globalement, l’impact environnemental est nul. Dans ce cas de figure, il n’y a pas lieu de nuancer le propos : les PACs ont un impact positif.
  • Si l’on consomme l’électricité du réseau électrique belge, les performances environnementales des PAC sont alors à nuancer. À l’heure actuelle, la production électrique est largement dominée par les centrales nucléaires. Celles-ci réalisent autour de 60 % de le production électrique. Le restant de la production est essentiellement réalisé par des centrales travaillant avec les combustibles fossiles (gaz et charbon). Les centrales nucléaires sont caractérisées par des émissions d’équivalent CO2 relativement moindres que les centrales classiques (quoi que cet argument est parfois remis en cause). Du coup, si on fait un bilan global, travailler avec des PAC et l’électricité du réseau émet moins de CO2 que de brûler du gaz ou du mazout localement dans la chaudière de chaque habitation. Néanmoins, gros bémol, il reste la problématique des déchets nucléaires. Même si à court terme, la gestion ou du moins, l’entreposage des déchets nucléaires, est gérable, à long terme, cela peut engendrer de gros soucis. Si on s’intéresse à la consommation en combustible fossile, la PAC combinée à l’électricité du réseau est intéressante comparée à la combustion directe dans l’habitat uniquement si la pompe à chaleur à de bonnes performances, c’est-à-dire si l’on travaille avec du bon matériel, bien conçu par rapport au bâtiment et bien installé. En fait, les centrales utilisent 2 à 2.5 kWh de combustible fossile pour générer 1 kWh électrique. En intégrant les pertes du réseau électrique, il faut que la PAC produise plus de 3 kWh thermiques sur base de ce kWh électrique pour que le bilan environnemental soit intéressant.

Conclusion, l’intérêt environnemental de placer une pompe à chaleur est dépendant de la qualité de l’électricité qui est utilisée pour alimenter la PAC. Dans le cas du réseau électrique belge actuel, l’intérêt d’une PAC est présent sur les émissions de CO2 mais, en ce qui concerne la consommation en énergie primaire, uniquement si les performances thermiques des PAC sont optimisées.


Types de pompes à chaleur

 

Source : ef4.

Les pompes à chaleur sont désignées en fonction des fluides caloporteurs dans lesquels baignent les échangeurs de chaleur de l’évaporateur et du condenseur. Attention, il s’agit bien du fluide caloporteur au niveau de l’évaporateur et du condenseur et qui n’est pas toujours équivalent au type de source chaude ou froide (l’air, l’eau ou le sol). En effet, on peut trouver intercalé, entre le condenseur et la source chaude, ou entre l’évaporateur et la source froide, un circuit intermédiaire. Prenons à titre d’exemple, les PAC Saumure/eau. On trouve du coté évaporateur de l’eau glycolée, eau glycolée dans un circuit qui parcourt ensuite le sol afin d’en extraire la chaleur. Du coté condenseur, on trouve un circuit d’eau qui, par exemple, alimente un circuit de chauffage par le sol pour se décharger de son énergie.

Les principaux types de PAC

Désignation

Évaporateur

Condenseur

Boucle intermédiaire : source froide/évaporateur

Boucle intermédiaire : condenseur/source chaude

PAC Eau/ Eau

Eau

Eau

Non

Oui

PAC Air/ Eau

Air

Eau

Non

Oui

PAC Saumure/ Eau

Saumure

Eau

Oui

Oui

PAC Air/ Air

Air

Air

Non

Non

PAC Sol/Sol

Sol

Sol

Non

Non

Exemple de désignation abrégée :

Type : Eau/ Eau
Température entrée évaporateur : 10 °C
Température sortie condenseur : 45 °C
Désignation abrégée : W10/W45

L’expression W10/W45 signifie que la source froide est une eau à 10 °C et la source chaude une eau à 45 °C. C’est sous cette forme que les fournisseurs désignent leurs produits. Une source de chaleur telle une nappe phréatique ou une eau de surface sera désignée par « eau », l’air atmosphérique ou des rejets gazeux par « air », un mélange eau-glycol qui circule dans le circuit fermé entre une source de chaleur et l’évaporateur par « saumure ». De ce fait, les pompes à chaleur puisant l’énergie du sol seront parfois désignées sous le terme de « saumure ».

Les systèmes les plus répandus sont les systèmes Air/Eau puis Saumure/Eau dont la source de chaleur est souterraine. Les pompes à chaleur Eau/Eau sont souvent soumises à autorisation et sont donc moins courantes en Belgique.


Principe de fonctionnement d’une pompe à chaleur

     

Source : ef4.

Le principe de fonctionnement est le même que celui de la machine frigorifique mais l’application travaille en sens inverse.

Cette fois, l’objectif consiste à extraire la chaleur gratuite d’un milieu extérieur : l’eau d’une rivière, l’air extérieur, l’eau d’une nappe souterraine, … (on parle de « source froide »). Physiquement, l’air extérieur à 0 °C contient beaucoup d’énergie puisque sur l’échelle des températures absolues, l’air se situe en réalité à 273 K !

Schéma du principe de fonctionnement d’une pompe à chaleur.

L’évaporateur est à l’extérieur et la température du fluide frigorigène sera environ 5 à 8 °C inférieure à la température de la source froide. L’énergie thermique captée sera « remontée » à un niveau de température utilisable (pour le chauffage d’une maison, par exemple) via le compresseur : le condenseur est donc à l’intérieur.

Bien sûr, on choisira un émetteur de chaleur à une température la plus basse possible (par exemple, chauffage à air chaud, chauffage à eau chaude par serpentin dans le sol, …). L’écart de température entre l’entrée et la sortie du compresseur doit être en effet le plus faible possible pour limiter le travail du compresseur.

Exemple.

Refroidir l’eau d’une rivière initialement à 10 °C pour assurer le chauffage d’une habitation par de l’air à 35 °C. Le fluide frigorigène passera à 6 °C dans la rivière et à 40 °C dans l’échangeur de chauffage de l’air du bâtiment.


Différents coefficients de performance

SC = source de chaleur (source de froide),   Acc = accumulateur.

L’évaluation de la performance instantanée

On peut déduire le rendement d’une PAC (appelé « ε », indice de performance) sur base du rapport entre l’énergie thermique utile délivrée au condenseur par rapport à l’énergie électrique fournie (et payée) au compresseur.

ε = chaleur au condenseur/travail du compresseur = Q2 / W.

Par exemple, si, à un moment de mesure donné, les températures des sources chaudes et froides d’une certaine PAC sont telles qu’elle transmet via son condenseur une puissance de 3 kW alors qu’au même moment son compresseur requiert une puissance de 1 kW, on pourra dire que son indice de performance vaut 3 kW / 1 k W = 3 pour ces conditions de température.

Ce rapport peut être obtenu ou déduit du catalogue du fournisseur, à partir de mesures qu’il aura effectuées dans des conditions standards.

L’évaluation de la performance instantanée, auxiliaires compris

Cette fois, on parle d’un coefficient de performance « COP ».

C’est la norme européenne EN 255 qui définit le coefficient de performance en lieu et place de l’indice de performance présenté ci-dessus. Pour le calculer, en plus de la puissance du compresseur, on devra prendre en compte la puissance des dispositifs auxiliaires qui assurent le bon fonctionnement de la pompe à chaleur : le dispositif antigel, la commande/régulation et les installations mécaniques (pompe, ventilateur).

Toutefois, ces mesures ne concernent que les éléments rattachés à la pompe à chaleur et sont indépendantes de l’installation de chauffage, de l’accumulateur, etc. La norme fixe des conditions de mesures standardisées très précises qui ne correspondent aux situations réelles que dans certaines circonstances particulières. Il ne faut pas perdre cela de vue lorsque l’on travaille avec le COP pour estimer les performances d’une PAC.

Reprenons l’exemple de PAC ci-dessus. Dans les conditions imposées par la norme EN 255, la puissance mise à disposition au condenseur ne sera peut-être pas 3 kW mais 3,2 kW pour une température de sortie du condenseur identique. De plus, la puissance absorbée par l’ensemble des équipements à prendre en compte ne sera peut-être pas de 1 kW mais de 1,1 kW. Le coefficient de performance vaudra alors 3,2 / 1,1 = 2,9.

L’évaluation de la performance annuelle, auxiliaires compris :

Le coefficient de performance annuel (« COPA ») est l’indice le plus important dans l’examen d’une installation de pompe à chaleur. Toutes les quantités d’énergie produites et injectées pendant une année y sont comparées les unes aux autres. Il ne s’agit plus ici d’une valeur théorique calculée à partir de puissance installées, mais d’une mesure réelle sur site de la quantité d’énergie consommée et fournie. C’est le coefficient de performance annuel qui donne vraiment idée du « rendement » et de l’efficacité de l’installation.

Imaginons que notre PAC exemple fasse maintenant partie de toute une installation de chauffage. Les variations de température des sources froides et chaudes, les pertes par émission du réseau de distribution, la consommation d’un chauffage d’appoint, etc… font que 13 000 kWh* de chaleur sont produits sur une année, tandis que les consommations globales s’élèvent à 6 200 kWh* d’énergie électrique. On dira alors que le COPA de cette installation vaut 13 000 kWh / 6 000 kWh = 2,17.

*Ces valeurs ne servent qu’à illustrer la définition du COPA. Il ne s’agit pas d’une quelconque moyenne d’installations existantes ou du résultat d’une étude de cas.

L’évaluation théorique de la performance annuelle :

Il s’agit du Facteur de Performance Saisonnier (« SPF »).

Alors que le COPA est le rapport entre les valeurs mesurées sur un an de l’énergie calorifique donnée utilement au bâtiment et de l’énergie (souvent électrique) apportée à l’installation, le SPF est le rapport de ces mêmes quantités d’énergie fournies et apportées en un an calculées de façon théorique sur base du COP instantané à différentes températures.

Il s’agit donc bien d’une valeur théorique mais prenant en compte les variations de température de la source froide et non pas d’une valeur mesurée en situation réelle comme le COPA. De plus, le SPF décrit une PAC tandis que le COPA décrit une installation complète. On ne tiendra donc pas compte pour le calcul du SPF des pertes de l’accumulateur par exemple, ou d’un mauvais réglage d’un dispositif de dégivrage, qui augmenteraient la quantité d’énergie demandée au compresseur et donnerait une valeur finale moins avantageuse mais plus réelle. On calculera le SFP comme ceci :

où,

  • Qdemandée est la quantité d’énergie demandée à la PAC durant la période de chauffe [kWh/an].
  • P(Text) est la puissance à apporter lorsque la température de la source froide est Text (par exemple les déperditions thermiques d’une maison selon la température extérieure) [kW].
  • t(Text) est le temps durant lequel la température de la source froide est Text [h/an].
  • COP(Text) est le coefficient de performance de la pompe à chaleur lorsque la température de la source froide est Text.

Un rendement qui dépasse 100 % !?

Quel bilan énergétique de la PAC ?

Qu’est-ce qui coûte dans l’exploitation d’une installation de pompe à chaleur ?

  • pas l’énergie de la « source froide » : elle est gratuite,
  • mais bien l’énergie électrique du compresseur.

D’où la notion de rendement donné par « ε », l’indice de performance :

ε = chaleur au condenseur/travail du compresseur = Q2 / W.

Or Q2 = Q1 + W = chaleur captée à la source froide + énergie développée par le travail du compresseur (loi de conservation des énergies).

Dès lors, Q2 est toujours plus grand que W et ε est toujours nettement plus élevé que 1.

Est-il normal de rencontrer une machine dont le « rendement » dépasse 100 % ?

En réalité, il ne s’agit pas ici d’une machine de conversion, de transformation d’énergie comme une chaudière (c’est-à-dire transformation d’énergie chimique en chaleur), mais bien d’une machine qui transfère une quantité d’énergie thermique d’un seuil de température à un autre. L’indice de performance n’est donc pas un rendement (de conversion) mais une évaluation de la performance du transfert.

Si l’écart entre les 2 seuils de température augmente, l’efficacité (ε ou COP) diminue.

Quel est le « ε » théorique d’une pompe à chaleur ?

Puisque W = Q2 – Q1, on écrit encore : ε = Q2 / (Q2 – Q1)

Si l’on considère un travail sans pertes, les lois de la thermodynamique établissent le lien entre l’énergie contenue dans un fluide (Q) et la température absolue de ce fluide (T), si bien que l’on admettra sans démonstration l’expression suivante du COP théorique :

ε théorique = T2 / (T2 – T1) [T étant exprimé en Kelvin]

Où :

  • T2 = température de condensation [K].
  • T1 = température d’évaporation [K].

Il faudra donc une température d’évaporation maximale et une température de condensation minimale. Attention cependant à ne pas confondre les températures T1 et T2 du fluide frigorigène avec celles des sources chaudes et froides, même si, par voie de conséquence, le coefficient de performance instantané est d’autant meilleur :

  • que la température de la source de chaleur (= la « source froide ») est élevée,
  • que la température du réseau de chauffage est basse (T2 proche de T1).

Alors que l’on ne peut guère influencer la température de la source de chaleur (la source froide), celle au départ du chauffage sera définie par le projeteur ! Par conséquent, il aura tendance à choisir un chauffage par le sol ou un chauffage à air chaud.

Exemple d’une pompe à chaleur AIR – AIR

Soit T°ext = 0 °C (= 273 °K) et T°chauff. = 40 °C

εthéor = (273 + 40) / (40) = 7,8 !

En théorie, la pompe fournira 8 x plus d’énergie au condenseur que d’énergie demandée au compresseur ! … (les 7/8 de la chaleur étant captés dans l’air extérieur).

Et quel COP pratique ?

En pratique, plusieurs éléments vont faire chuter la performance :

  • Il existe un écart de température entre le fluide frigorigène et les sources.
    Par exemple : si T°ext = 0 °C, T°évaporateur = … – 8 °C… Et si T°chauff. = 40 °C, T°condenseur = … 48 °C… D’où ε = (273 + 48) / (56) = 5,7.
    Le coefficient de convection entre l’eau et l’évaporateur étant nettement meilleur que le coefficient de convection entre l’air et l’échangeur, on aura tendance à privilégier les PAC eau/eau et eau/air. Encore faut-il avoir une rivière au fond de son jardin ou une nappe phréatique sur laquelle il est possible de puiser (autorisation obligatoire). En général, il faudra se résoudre à prendre l’air extérieur comme source froide.
  • Or dans ce cas, si la T°ext < 5 ° C, alors T°fluide évaporateur = 0 °C. Dès lors, du givre apparaît sur les ailettes, la glace bouche l’échangeur extérieur, d’où nécessité de dégivrer (soit un courant électrique est envoyé sur l’échangeur pour faire fondre la glace, soit le cycle est inversé et des gaz chauds sont envoyés dans l’évaporateur).
    Avec la consommation de dégivrage, l’indice de performance moyen diminue fortement.
  • Lorsque la température de l’air extérieur descend sous 0 °C, le compresseur a de plus en plus de mal à fonctionner : la puissance délivrée au condenseur de la pompe à chaleur devient très faible et il faut parfois ajouter des résistances de chauffage électrique directe à l’installation . Paradoxe malheureux, c’est quand il fait très froid que l’habitation demandera le plus de puissance et que la pompe à chaleur lui en donnera le moins!
  • Il y a nécessité de faire fonctionner les ventilateurs des sources froides et chaudes, d’où une consommation électrique supplémentaire de ces auxiliaires.

Exemple. Voici les spécifications techniques d’un climatiseur réversible présent sur le marché. En hiver, ce climatiseur peut fournir de la chaleur au local : il fonctionne alors en mode « pompe à chaleur ».

Unité intérieure

FHYB35FJ

Unité extérieure

RY35D7

Puissance frigorifique

kcal/h

3 100

Btu/h

12 300

kW

3,60

Puissance calorifique

kcal/h

3 500

Btu/h

14 000

kW

4,10

Puissance absorbée

rafraîchissement

kW

1,51

chauffage

kW

1,33

On y repère :

  • l’efficacité frigorifique, E.F., ou COPfroid (coefficient de performance en froid)

puissance frigorifique / puissance absorbée =
3,6 kW / 1,5 kW = 2,4
 

  • l’indice de performance au condenseur, ε

puissance calorifique (au condenseur) / puissance absorbée =
4,1 kW / 1,3 kW 
= 3,2

Attention ! Ce coefficient est obtenu dans des conditions très favorables ! En petits caractères, le fabriquant précise qu’il s’agit de valeurs obtenues pour 7 °C extérieurs… Cette performance va s’écrouler en période plus froide. En réalité, c’est le rendement moyen saisonnier qui nous intéresse… mais celui-ci n’est jamais donné puisqu’il dépend des conditions d’exploitation.


Pompe à chaleur sur boucle d’eau

Plusieurs pompes à chaleur sont connectées sur une boucle d’eau commune.

  • En été, elles fonctionnent en machine frigorifique dont le condenseur est refroidi par la boucle d’eau. Celle-ci se refroidit elle-même via par exemple une tour de refroidissement posée en toiture.
  • En hiver, elles fonctionnent en pompe à chaleur dont la boucle d’eau constitue la source « froide ». Celle-ci est elle-même réchauffée par une chaudière placée en série sur la boucle.
  • En mi-saison, ce système prend tout son sens : si simultanément des locaux sont refroidis et d’autres réchauffés, la boucle qui les relie permet le transfert d’énergie entre eux, avec une performance URE remarquable.

Ce système est optimalisé s’il dispose en plus d’un système pour stocker la chaleur et la restituer à la demande, en différé.

Ces PAC/climatiseurs sont constitués de deux parties :

  • Une partie traitement de l’air du local composée principalement d’un filtre, d’un échangeur Air/fréon et d’un ventilateur de soufflage.
  • Une partie circuit frigorifique constituée d’un compresseur, d’une vanne 4 voies d’inversion de cycle, d’un échangeur Eau/fréon raccordé à la boucle d’eau, d’un détendeur capillaire.

Suivant les cycles de fonctionnement, les échangeurs Eau/fréon et Air/fréon sont tour à tour le condenseur ou l’évaporateur du circuit frigorifique; ce basculement est rendu possible par la vanne 4 voies d’inversion de cycle canalisant les gaz chauds sous pression, en sortie du compresseur, vers l’un ou l’autre des échangeurs dans lesquels le fluide frigorigène sera alors condensé en abandonnant ses calories à l’eau ou l’air.


Impact sur l’environnement

Impact sur la couche d’ozone

Les pompes à chaleur récentes sont en général chargées avec des fluides frigorigènes  tels que les HFC, l’ammoniac, le CO2 ou le propane qui n’ont pas d’impact sur la couche d’ozone.

Impact sur l’effet de serre

Pour calculer l’impact sur l’effet de serre d’une pompe à chaleur, et donc la quantité d’équivalents CO2 qu’elle produit, on doit connaître les éléments suivants :

Éléments liés au fluide frigorigène

  1. Le potentiel de participation au réchauffement climatique sur 100 ans du fluide frigorigène choisi (le GWP100 en anglais). Voir ici  pour connaître ces valeurs en kg de CO2 par kg de fluide frigorigène.
  2. La quantité de fluide frigorigène chargée : m en kg, qui dépend du type de PAC. Il faut en effet dix fois plus de fluide frigorigène dans une PAC « sol/sol » à détente directe (à la source froide ET à la source chaude), par rapport à une PAC eau/eau ou eau glycolée/eau.
  3. La quantité annuelle de fluide frigorigène perdue à cause des fuites : L en kg/an que l’on estime à 3 % de la charge m de fluide frigorigène, si la pompe à chaleur est assemblée et testée en usine et non sur chantier. Si la PAC est assemblée sur chantier, on suppose que 10 % de la masse en fluide frigorigène est perdue par les fuites.
  4. Le taux de récupération du fluide frigorigène lors du démontage de la pompe à chaleur : αrecovery qui est estimé à 75 %.

Éléments liés à l’énergie primaire utilisée pour le fonctionnement de la pompe à chaleur et des auxiliaires

  1. La consommation électrique annuelle : E en kWh/an.
  2. Le coefficient d’émissions de CO2 dues à la production d’électricité : β = 0,456 kg de CO2/kWhélectrique si l’on considère que l’électricité est produite dans une centrale TGV.

Éléments liés à la l’utilisation de la pompe à chaleur

  1. Le nombre d’années d’utilisation : n.

Ces éléments entrent dans la formule du TEWI (Total Equivalent Warming Impact) en kg de CO2 :

TEWI = GWP100 x L x n  +  GWP100 x m x (1 – αrecovery)  +  n x E x β         (*)

Le tableau illustre les quantités de CO2 émises par différents types de PAC de 20 kW calorifiques, toutes chargées avec le fluide frigorigène R407C (GWP100 = 1 800 kg CO2/kg FF).

PAC air extérieur/eau
(A2/W35)
PAC eau/eau
(W10/W35)
PAC eau glycolée/eau
(B0/W35)
PAC sol/eau (évaporation directe)
(S-5/W35)
PAC sol/sol (évaporation et condensation directes)
(S-5/S35)
Puissance calorifique 20 kW 20 kW 20 kW 20 kW 20 kW
COP saisonnier moyen 3,5 4,5 4 4 4
Puissance électrique absorbée 20 kW / 3,5
= 5,7 kW
20 kW / 4,5
= 4,5 kW
20 kW / 4
= 5 kW
20 kW / 4
= 5 kW
20 kW / 4
= 5 kW
Consommation électrique E 5,7 kW x 2 000 h
= 1 1400 kWh/an
4,5 kW x 2 000 h
= 9 000 kWh/an
5 kW x 2 000 h
= 10 000 kWh/an
5 kW x 2 000 h
= 10 000 kWh/an
5 kW x 2 000 h
= 10 000 kWh/an
Consommation appoint 4 kW x 300 h/an
= 1 200 kWh/an
0 0 0 0
Quantité de FFm 6 kg 2,5 kg 2,5 kg 10 kg 18 kg
Quantité annuelle de FF perdue par les fuites L 3 % de 6 kg
= 0,18 kg/an
3 % de 2,5 kg
= 0,075 kg/an
3 % de 2,5 kg
= 0,075 kg/an
10 % de 10 kg
= 1 kg/an
10 % de 18 kg
= 1,8 kg/an
Premier terme de (*) 1 800 x 0,18 x 20
= 6 480 kg CO2
1 800 x 0,075 x 20
= 2 700 kg CO2
1 800 x 0,075 x 20
= 2 700 kg CO2
1 800 x 1 x 20
= 36 000 kg CO2
1 800 x 1,8 x 20
= 64 800 kg CO2
Second terme de (*) 1 800 x 6 x (1 – 0,75)
= 2 700 kg CO2
1 800 x 2,5 x (1 – 0,75)
= 1 125 kg CO2
1 800 x 2,5 x (1 – 0,75)
= 1 125 kg CO2
1 800 x 10 x (1 – 0,75)
= 4 500 kg CO2
1 800 x 18 x (1 – 0,75)
= 8 100 kg CO2
Dernier terme de (*) 20 x (11 400 + 1 200) x 0,456
= 114 912 kg CO2
20 x 9 000 x 0,456
= 82 080 kg CO2
20 x 10 000 x 0,456
= 91 200 kg CO2
20 x 10 000 x 0,456
= 91 200 kg CO2
20 x 10 000 x 0,456
= 91 200 kg CO2
Émissions 124 092 kg 85 905 kg CO2 95 025 kg CO2 131 700 kg CO2 164 100 kg CO2
Annuelles de CO2 CO2
/ 20 ans
= 6 205 kg CO2/an
/ 20 ans
= 4 295 kg CO2/an
/ 20 ans
= 4 751 kg CO2/an
/ 20 ans
= 6 585 kg CO2/an
/ 20 ans
= 8 205 kg CO2/an

On voit que le troisième terme de l’expression (*) est de loin le plus important en ce qui concerne les 3 premières PAC de 20 kW étudiées : c’est l’électricité consommée par la pompe à chaleur et ses auxiliaires qui génère le plus de CO2 (entre 80 et 95 % des émissions totales). Les quantités de fluide frigorigène sont par contre tellement élevées dans les PAC à détende directe (les deux dernières colonnes), que les émissions de CO2 leur sont en grande partie dues.

Une pompe à chaleur de 20 kW calorifiques chargée au R407C (deux fois moins polluant que le R404A) génère ainsi entre 4 000 et 8 300 kg de CO2 par an en fonction du type de PAC. En comparaison aux chaudières à mazout (13 600 kg de CO2 par an pour une puissance calorifique de 20 kW) ou au gaz (11 200 kg de CO2 pour cette même puissance), la pompe à chaleur est beaucoup moins polluante.  Les PAC qui présentent l’impact sur l’effet de serre le moins important sont les PAC sur eau de surface, car il n’y a pas lieu de forer et leur COP est élevé.

Les pompes à chaleur à électricité d’origine renouvelable

Les émissions de CO2 générées par l’utilisation d’une pompe à chaleur sont très faibles si l’électricité nécessaire à son fonctionnement est produite par des panneaux photovoltaïques ou par une autre énergie renouvelable. L’impact sur l’effet de serre n’est plus alors causé que par les fuites de fluide frigorigène et par sa récupération en fin de vie de la PAC. Alors, si possible, il faut éviter les grandes quantités de fluide frigorigène, qui annuleraient tout l’effort d’économies de CO2 permis par la production renouvelable d’électricité…

Impact sonore

La pompe à chaleur est une technologie qui émet un fond bruyant. En effet, les pièces mécaniques en mouvement, la circulation d’air, etc., occasionnent un niveau sonore qui sera d’autant plus élevé que les conditions extérieures sont mauvaises (la PAC fonctionne au maximum de ses performances par temps froid). Les compresseurs et ventilateurs sont en l’occurrence, les éléments fautifs…

Une PAC émet entre 50 et 60 décibels à 1 mètre et environ 40 dB à 5 mètres. Une telle installation ne sera tolérable que si elle n’occasionne pas de gêne sonore pour les occupants de l’immeuble et pour le voisinage. Il faut donc l’installer suffisamment loin des fenêtres, des pièces de travail, de repos, etc. La PAC devra être posée sur un silent block (plots antivibratiles).

Autres impacts

L’installation d’une PAC eau/eau sur nappe phréatique montrera un impact non négligeable sur les eaux souterraines. Il existe des réglementations pour ce type de PAC, dont la sévérité dépend de la potabilité de l’eau extraite et du débit nécessaire.

Voir le site de la base de données juridique de la Région Wallonne pour connaître la réglementation concernant les prélèvements et les rejets d’eau souterraine : ouverture d'une nouvelle fenêtre !  wallex.wallonie.be : « Arrêté du Gouvernement wallon modifiant l’arrêté du Gouvernement wallon du 4 juillet 2002 arrêtant la liste des projets soumis à étude d’incidences et des installations et activités classées » du 22 janvier 2004.
L’injection d’eau refroidie dans les eaux de surface peut avoir un impact sur le milieu.

Absorbeurs acoustiques

Absorbeurs acoustiques


Les silencieux à absorption

Le silencieux à absorption est le plus utilisé dans les installations de ventilation et de climatisation.

Physiquement, l’énergie acoustique du signal sonore est absorbée par les parois et convertie en chaleur.

  1. gaine d’écoulement.
  2. enveloppe perméable aux sons.
  3. matériau d’absorption acoustique.

Le principe consiste à faire circuler l’air entre des plaques de matériau absorbant, appelées baffles (garnie de plaques métalliques dans le cas des silencieux pour basse fréquence). L’atténuation acoustique d’un silencieux est fonction de l’épaisseur des baffles, de l’écartement entre deux baffles et de la longueur de ces derniers

  • Silencieux composés de cinq baffles.
  • Baffle pour silencieux efficace pour les hautes fréquences.
  • Baffle pour silencieux, recouvert en partie d’une tôle métallique pour les basses fréquences.

 

Tourelles d’extraction équipées d’un silencieux.

Il existe également des baffles cylindriques dans lesquels le matériau absorbant est recouvert d’un tube  perforé. Ceux-ci ne permettent pas une atténuation aussi importante que leurs homologues rectangulaires, mais provoquent moins de pertes de charges. Pour les plus grands diamètres, ce type de silencieux est en outre équipé d’un cylindre central (appelé bulbe) pour augmenter ses performances.

    

Silencieux cylindriques sans et avec bulbe.


Les silencieux actifs

L’absorption acoustique a comme principe de créer à l’aide d’un circuit électronique une onde déphasée par rapport à l’onde acoustique qui se propage dans le réseau, annulant cette dernière :

Le bruit incident dans la gaine est transmis par le microphone de détection (situé vers le ventilateur) au calculateur électronique. Celui-ci analyse ce signal entrant, le décompose, calcule le signal inverse et le restitue au haut-parleur. Ce dernier émet le bruit contraire ainsi créé dans le flux d’air qui interfère de manière destructive avec le bruit incident pour l’atténuer. Un microphone de contrôle (à l’opposé du ventilateur) transmet au calculateur le bruit atténué résultant pour qu’il corrige et optimise cette atténuation.

Silencieux actif.

L’énorme avantage de cette technique est de ne créer que peu de perte de charge, contrairement à tous les systèmes dits « passifs ».

Les silencieux actifs sont capables d’éliminer aussi bien des bruits complexes que des sons purs. Ils sont particulièrement efficaces dans l’atténuation des basses fréquence sans sélectivité.

Ils peuvent ainsi être complémentaire aux silencieux à absorption car leur association permet de réduire des niveaux de bruit sur de larges bandes allant des basses aux hautes fréquences.

Les silencieux actif s’insère directement sur un réseau de gaines circulaires mais, pour les gaines rectangulaires des pièces d’adaptation sont nécessaires.

Les turbulences au sein de l’écoulement d’air diminuent les performances de ce type de silencieux. Il faut donc être attentif à les placer dans une portion du réseau où l’air se répartit le plus uniformément sur toute sa section.


La manchette de compensation

La manchette de compensation, ou compensateur élastique, a pour mission de couper les bruits transmis par les solides, grâce à son élasticité.

Tout particulièrement, elle permet de stopper les vibrations générées par le ventilateur dans le caisson de climatisation.

Elle est réalisée en toile à voile, en tissu plastifié ou en matière synthétique.


Le revêtement absorbant de conduit

Un revêtement intérieur fibreux (généralement, il s’agit de panneaux de laine minérale) renforce l’atténuation du son transporté par un conduit d’air.

Il existe des matériaux avec protection contre la désagrégation (pour éviter un détachement des fibres du matériau acoustique), par exemple des panneaux de fibres minérales enduits au néoprène. Cet enduit ne doit pas dépasser 0,1 mm d’épaisseur, sans quoi le pouvoir d’absorption est diminué. Les panneaux pouvant émettre des fibres dans le réseau de ventilation sont, quant à eux, à éviter.

Ces panneaux ont pour avantage de créer simultanément une isolation thermique entre le fluide et les locaux traversés… mais ont pour désavantages d’augmenter les pertes de charge, de retenir les poussières et de favoriser le développement de milieux peu hygiéniques…

Exemple : imaginons un conduit de 0,15 m x 0,15 m de section, d’une longueur de 11 m, munie d’un revêtement absorbant sur 1 m. Quelle sera l’atténuation sonore totale ?

Voici l’atténuation du niveau sonore annoncée par un fabricant de panneaux absorbants [en dB/m] :

Section du conduit

125 Hz

250 Hz

500 Hz

1 000 Hz

2 000 Hz

4 000 Hz

0,15 m x 0,15 m

4,5

4

11

16,5

19

17,5

0,30 m x 0,30 m

1,5

1,5

6

15

10

7

0,60 m x 0,60 m

1

1,5

5

12

7

4,5

Remarque.

On constate que l’absorption acoustique d’un matériau fibreux est nettement plus élevée pour les hautes fréquences (sons aigus) que les basses fréquences (sons graves). On constate également que le même absorbant est plus efficace dans un conduit de faible diamètre (la fréquence des chocs avec les parois est beaucoup plus élevée).

Voici l’atténuation linéaire [en dB/m] d’un conduit en tôle d’acier :

Section du conduit

125 Hz

250 Hz

500 Hz

1 000 Hz

2 000 Hz

4 000 Hz

0,15 m x 0,15 m

0,6

0,45

0,3

0,3

0,3

0,3

Additionnons les atténuations [en dB] sur les 11 m de conduit :

125 Hz

250 Hz

500 Hz

1 000 Hz

2 000 Hz

4 000 Hz

10 m sans revêtement

6

4,5

3

3

3

3

1 m avec revêtement

4,5

4

11

16,5

19

17,5

Atténuation totale

10,5

8,5

14

19,5

22

20,5

Conclusions : Il est très frappant de voir l’efficacité de 1 m de matériau absorbant par rapport à 10 m de tôle non couverte ! En fait, les conduits en tôle avec revêtement absorbant ne sont rien d’autre que des silencieux à absorption…

Objectifs d’une protection solaire

Objectifs d'une protection solaire


Limiter les surchauffes

En période d’ensoleillement la quantité d’énergie solaire transmise au travers de vitrages peut entraîner par effet de serre, des surchauffes inadmissibles pour le confort des occupants. Dans le cas de locaux climatisés, la présence de protections solaires efficaces doit permettre une diminution notable de la quantité de froid à produire.

Améliorer

En cliquant ici, vous pouvez visualiser les résultats d’une simulation du comportement d’un bureau standard. On y a comparé les coûts d’achat et d’exploitation d’un climatiseur et d’un store extérieur.

De plus, malgré une température ambiante supportable, le rayonnement chaud du vitrage et le rayonnement direct du soleil sur une partie du corps peuvent devenir rapidement insupportable pour les occupants.

Comment déterminer si le soleil est à l’origine de la surchauffe ?

Dans les locaux fortement vitrés et orientés à l’est, au sud ou à l’ouest, les gains solaires constituent souvent les apports gratuits les plus importants.
Notons que l’orientation ouest est souvent la plus critique car les apports solaires viennent s’ajouter à la chaleur emmagasinée durant la journée.

Rénovation énergétique 

Pour en savoir plus sur comment repérer l’origine de la surchauffe, cliquez-ici !

Calculs

On peut établir un bilan de l’ensemble des apports de chaleur d’un local en cliquant ici !

Il calcule la puissance frigorifique nécessaire pour maintenir une température de consigne (24°C par exemple) dans le local, alors que la température extérieure est de 30°C. Il est possible ainsi de mesurer l’impact d’une protection solaire sur les besoins en froid. On peut également visualiser l’importance d’avoir un local avec une inertie thermique importante. Ou encore une toiture isolée.


Limiter l’éblouissement

L’ensoleillement direct pour être aveuglant tout comme une luminance trop élevée d’une paroi peut impacter le confort visuel. Hors, le confort visuel joue un rôle important sur la possibilité de réalisation de certaines tâches et donc sur la productivité des occupants d’un local.

Ce phénomène n’est pas forcément le plus crucial pour des fenêtres orientées au sud durant la saison chaude. Les problèmes d’éblouissement sont également très importants lorsque le soleil est bas sur l’horizon : le matin pour les fenêtres orientées à l’est, le soir pour l’orientation ouest, ou encore au sud en hiver. De même, dans les locaux nord, la vision directe d’un ciel trop lumineux peut devenir gênante et nécessiter aussi une protection.


Les objectifs secondaires

Augmenter le pouvoir isolant de la fenêtre

L’utilisation de protections solaires modifie de façon plus ou moins importante les caractéristiques de transmission thermique des vitrages. Cette propriété sera principalement recherchée durant les nuits en hiver.

Assurer l’intimité des occupants ou occulter un local

Ces deux objectifs sont des cas particuliers. On parlera alors plus d’occultation que de protection solaire.

Quelles soient intérieures ou extérieures, les protections parallèles au vitrage permettront d’apporter une certaine intimité voire d’occulter le local. Cette propriété dépendra principalement des vides laissés par la protection solaire et de sa couleur.

Décorer la fenêtre

De nombreuses protections ont un but décoratif plutôt qu’énergétique. Cet objectif est souvent associé avec le souhait de garantir l’intimité des occupants.

Institut du Monde Arabe – Paris.

Rendement des appareils de cuisson

Rendement des appareils de cuisson

De l’énergie totale nécessaire à la cuisson des aliments, seule une part parvient finalement sur la table. L’autre part est utilisée au chauffage et au maintien en température des appareils pendant la cuisson. Le rapport entre l’énergie absorbée par la charge et l’énergie totale consommée est désigné par rendement. Ce dernier dépend du genre de procédé de cuisson, du mode de transmission de la chaleur, de la température utile, de la pression, de l’humidité et de la quantité de charge traitée.

Pour les procédés de cuisson et étuvage à la vapeur, il peut atteindre approximativement 90 %. Alors que pour les procédés de rôtissage ou de cuisson au four, il est considérablement inférieur.

L’énergie non transmise à la charge est désignée par énergie perdue. Elle réchauffe le local, fuit à l’extérieur ou dans les locaux adjacents plus froids au travers des parois, fenêtres, installations de ventilation ou s’écoule à la canalisation avec l’eau de cuisson inutilisée. L’énergie perdue contribue au réchauffement de la cuisine, donc à la détérioration du climat ambiant.

L’installation de ventilation et les machines frigorifiques sont mises à rude contribution pour en assurer l’équilibre.

Pour des charges nominales, on peut caractériser chaque appareil de cuisson par son rendement.

Il peut s’exprimer par :

h = P2 / P1

Où :

  • P1 : puissance absorbée (W),
  • P2 : puissance utile (W).
Rendement approximatif des appareils de cuisson les plus courants

Fourneau électrique :

plaque en fonte : 60 %
plaque vitrocéramique : 75 %
plaque à induction : 90 %

Fourneau à gaz :

feu ouvert : 58 %
plaque de mijotage : 60 %
plaque vitrocéramique : 75 %

Sauteuse :

électrique : 30 %
à gaz : 25 %

Grill :

électrique : 20 %
à gaz : 15 %

Salamandre :

électrique : 20 %
à gaz : 15 %

Marmite :

électrique : 50 %
à gaz : 50 %

Four à air pulsé :

électrique : 80 %
à gaz : 70 %

Four statique :

électrique : 45 %
à gaz : 40 %
Cuiseur à la vapeur électrique : 80 %

Bain-marie :

électrique : 50 %
à gaz : 45 %

Friteuse :

électrique : 50 %
à gaz : 45 %

Pour un même type d’appareil, le rendement dépend principalement des facteurs suivants :

  • l’inertie de l’élément chauffant
  • la qualité d’isolation pour les enceintes fermées
  • l’efficacité des dispositifs de réglage.

Pare-vapeur

Pare-vapeur


Généralités

Toutes les matières sont plus ou moins perméables à la vapeur.

Sous l’influence de la différence de pression de vapeur d’eau des deux côtés d’une paroi, la vapeur a tendance à vouloir migrer par diffusion à travers celle-ci.

Pour éviter les phénomènes de condensation interne, il est parfois nécessaire de placer du côté chaud de l’isolant d’une paroi, une couche de matériau relativement étanche à la vapeur d’eau.

Cette couche de matériau est appelée « écran pare-vapeur ».

Le pare-vapeur remplit les fonctions suivantes :

  • Éviter une condensation excessive.
  • Empêcher, dans l’isolant thermique, l’absorption d’eau par capillarité en provenance des éléments de construction contigus.
  • Assurer l’étanchéité provisoire à l’eau de pluie lors de la construction.
  • Assurer l’étanchéité à l’air.

Selon les exigences :

Classe Résistance à la diffusion de vapeur Exemples de matériaux utilisables comme pare-vapeur
E1 2 m < µd < 5 m Papier bitumé
Film en PE 0,2 mm
Papier de tapisserie plastifié
Peinture à l’huile
Peinture au caoutchouc chloré
E2 5 m < µd < 25 m Carton-plâtre recouvert d’une feuille d’aluminium
Film de PE 0,2 mm et laminé d’aluminium
Voile de polyester bitumineux P150/16
Voile de verre bitumineux V50/16
Membrane en PVC épaisseur > 1 mm
E3 25 m < µd < 200 m Bitume armé P3 ou P4 ou V3 ou V4
Bitume polymère APP ou SBS
Film PIB
E4 200 m < µd Bitumes armés avec film métallique (alu 3)
Système bitumineux multicouche ( ³ 8 mm)

Pare-vapeur, freine vapeur ou membranes intelligentes ?

Le risque principal de condensation est lié à la diffusion de vapeur en hiver, ou quand la pression de vapeur est plus importante à l’intérieur qu’à l’extérieur et que la vapeur a donc tendance à traverser la paroi de l’intérieur vers l’extérieur.

Les modèles d’évaluation statiques (comme celui de Glaser) entraînent presque systématiquement le choix d’une membrane très étanche à la vapeur du côté intérieur.

Néanmoins, essayer d’éviter le risque principal de condensations internes par diffusion en choisissant une membrane totalement étanche à la vapeur peut engendrer un risque secondaire à cause de la difficulté qu’a le mur pour sécher du côté intérieur

Lorsque l’on affine l’analyse, il apparaît que le choix d’une membrane plus faiblement étanche à la vapeur est parfois suffisant.

On parle alors de « freine-vapeur ». La valeur μd des pare-vapeur n’est pas définie avec précision, mais en pratique, elle sera de plusieurs dizaines de mètres (par exemple 50 ou même 100 m) alors que la valeur μd des freine-vapeur ne sera que de quelques mètres seulement (par exemple 2 m à 5 m, mais rarement plus de 10 m).

Le choix d’un freine-vapeur, plus ouvert au passage de la vapeur, permet souvent de se prémunir du risque, dit secondaire, de condensations internes en été ou au printemps, ou quand la pression de vapeur est plus importante à l’extérieur qu’à l’intérieur et que la vapeur a donc tendance à traverser la paroi de l’extérieur vers l’intérieur. En effet, le flux de vapeur n’est pas complètement bloqué vers l’intérieur ce qui facilite le séchage du mur.

Les membranes intelligentes

D’autres membranes, dites intelligentes, sont de ce point de vue encore plus adaptées. En effet, leur perméabilité à la vapeur évolue avec l’humidité relative. Elles sont conçues pour être relativement fermées à la vapeur quand l’humidité relative est faible et pour s’ouvrir au passage de la vapeur quand l’humidité relative est plus élevée. Ce principe est illustré sur l’illustration ci-contre. Dès lors, elles freinent le passage de la vapeur quand l’air intérieur est plus sec (généralement en hiver), et permettent le séchage du mur, lorsque l’humidité relative intérieure est plus élevée (généralement en été ou au printemps).

Principe de fonctionnement d’une membrane intelligente.

Source : Proclima.

Plusieurs types de membranes intelligentes existent avec une valeur  μd moyenne allant de quelques mètres à une dizaine de mètres. Remarquons que ces changements de μd ne sont pas instantanés et que le choix de la membrane doit d’abord se faire sur base de l’ambiance globale du local pour éviter le risque principal de condensations internes par diffusion. On pense ici au cas des salles d’eau qui sont le lieu des charges d’humidité élevées, mais ponctuelles dans temps.


Le placement

Le pare-vapeur doit être placé de manière continue et avec des joints étanches.

Les films seront posés autant que possible sans joint. Les joints inévitables et les jonctions avec d’autres éléments de construction sont à réaliser par collage ou soudage avec recouvrement, de manière à assurer la continuité du pare-vapeur.

La classe E4 exige une mise en œuvre sur support continu.

Remarquons enfin que la présence d’une membrane, en plus de permettre la régulation de la vapeur, permet aussi de bloquer le passage de l’air (et des pertes de chaleur associées) et donc d’éviter le risque de condensation par convection, pour autant bien sûr que la mise en œuvre soit d’une qualité irréprochable (notamment au niveau des nœuds constructifs).

Attention !
Un matériau pare-vapeur placé à un mauvais endroit peut fortement perturber le comportement hygrothermique de la toiture (entre autres augmenter les condensations internes ou empêcher l’élimination de l’humidité de construction).

Source : certains passages de cette feuille sont extraits du guide Isolation thermique par l’intérieur des murs existants en briques pleines réalisé par Arnaud Evrard, Aline Branders et André De Herde (Architecture et Climat-2010) dans le cadre de la recherche ISOLIN, financée par le département Énergie et Bâtiment durable du Service Public de Wallonie. Disponible sur le site : energie.wallonie.be

 

Luminaires extérieurs

Luminaires extérieurs


Classification des luminaires extérieurs

Luminaires fonctionnels Luminaires décoratifs Projecteurs

Type 1 : asymétriques (type éclairage public).

Type 3 : asymétriques.

Type 5 : asymétriques.

Type 2 : symétriques avant-arrière.

Type 4 : symétriques avant-arrière.

Type 6 : symétriques.

   

Distribution lumineuse des luminaires asymétriques et des luminaires symétriques.

Les projecteurs se distinguent des autres luminaires parce qu’ils sont orientables en azimut et en inclinaison. Un luminaire d’éclairage public éclaire grosso modo une bande d’une largeur égale à la hauteur de feu. Cette largeur peut atteindre 2,5 fois la hauteur pour un projecteur.

     

Distribution lumineuse des luminaires et des projecteurs.

  

Orientation d’un projecteur.

Pour éviter toute pollution lumineuse, on évitera d’utiliser des luminaires décoratifs éclairant vers le ciel.


Matériaux utilisés

Matériaux pour armatures

Matériaux pour armature

Traitement de surface

Finition

Avantages

Inconvénients

Acier inoxydable

Aucun

Peinture cuite au four

Très bonne tenue dans le temps, limitation du dépôt de poussières, grand choix des couleurs.

Coût, poids.

Acier

Galvanisation

Peinture cuite au four

Très bonne tenue dans le temps, limitation du dépôt de poussière, grand choix des couleurs.

Veiller à ce que la couche de galvanisation soit suffisante, poids.

Aucune

Bonne tenue dans le temps.

Surface moins lisse, plus salissante, couleur unique.

Aluminium et alliages

Chromatation

Peinture cuite au four

Très bonne tenue dans le temps, poids, limitation du dépôt de poussières, grand choix des couleurs.

Anodisation

Aucune

Bonne tenue dans le temps.

Couleur unique, plus salissante.

Cuivre

Aucun

Aucune

Moins coûteux que les autres.

Oxydation naturelle.

Polissage

Vernis

Maintien de l’aspect initial dans le temps.

Oxydation

Aucune

Bonne tenue dans le temps.

Couleur noire uniquement, impossibilité de voir si c’est du cuivre.

Bronze

Aucun

Aucun

Matériau noble.

Coût, poids, oxydation naturelle.

Couche de primer

Peinture liquide

Bonne tenue dans le temps, limitation du dépôt de poussières, grand choix de couleurs.

Coût, poids.

Matières synthétiques

Peintes dans la masse

Aucun

Légèreté, pas de risque de couple galvanique.

Faible résistance mécanique et thermique, choix de couleurs limité.

Couche de primer

Peinture liquide

Légèreté, pas de risque de couple galvanique, grand choix de couleurs.

Faible résistance mécanique et thermique,  risque de décollement de la peinture.

Matériaux pour réflecteurs

Matériaux pour réflecteurs

Procédé de fabrication

Traitement

Avantages

Inconvénients

Aluminium

Emboutissage

Anodisation

Légèreté, très répandu, coût, très bonnes qualités de réflexion.

Toutes les formes ne sont pas permises.

Chromatation puis métallisation

Qualités de réflexion optimales.

Coût, fragilité mécanique du traitement.

Extrusion

Chromatation puis métallisation

Qualités de réflexion optimales.

Coût, fragilité mécanique du traitement.

Matière synthétique

Injection

Métallisation

Légèreté, grande liberté des formes, qualités de réflexion optimales.

Coût, limitation thermique, fragilité mécanique du traitement.

Verre

Soufflage

Aucun

Esthétique lorsque le réflecteur est visible, la vasque et le réflecteur peuvent ne faire qu’un.

Poids, coût.

Matériaux pour protecteurs

Matériaux pour protecteurs

Aspect

Avantages

Inconvénients

Métacrylate (PMMA ou polymétacrylate de méthyle)

Clair

Coût, légèreté, ne perturbe pas la distribution de la lumière, pas de jaunissement avec les UV.

Cassant.

Structuré

Coût, légèreté, très faible perturbation de la distribution de la lumière, moins éblouissant que le clair.

Opalin

Coût, légèreté, éblouissement très faible.

Cassant, distribution de la lumière tout à fait diffusante (réflecteur inutile).

Polycarbonate

Clair

Coût, légèreté, ne perturbe pas la distribution de la lumière, très résistant aux chocs.

Nécessite, pour éviter le jaunissement, un traitement anti-UV dans la masse, voire un film protecteur supplémentaire lorsqu’on utilise des sources qui émettent beaucoup d’UV comme les lampes à induction et les iodures métalliques.

Structuré

Comme le métacrylate, mais très résistant aux chocs.

Opalin

Comme le métacrylate, mais très résistant aux chocs.

Comme le métacrylate.

POND (Partially Obscured Non Diffusing)

Traitement de surface qui ne perturbe que très faiblement la distribution de la lumière ; malgré un aspect légèrement opalin.

Coût.

Verre

Clair

Esthétique d’un matériau noble, ne perturbe pas la distribution de la lumière, ne s’altère pas.

Coût, poids, matériau très cassant sauf quand il est trempé ou feuilleté et qu’il a une forme étudiée pour résister (p.e. bombé, cintré).

Strié

Esthétique d’un matériau noble, ne perturbe pas la distribution de la lumière, ne s’altère pas, les stries permettent une distribution améliorée selon le besoin.

Sablé

Ne perturbe pas la distribution de la lumière, ne s’altère pas, comparable à l’opalin des matières synthétiques.

Distribution de la lumière plus aléatoire comme pour les opalins.

Matériaux pour poteaux et consoles

Matériaux pour poteaux

Avantages

Inconvénients

Aluminium

Légèreté.
Pas besoin nécessairement de peinture.
Coût.

Très grande transmission des vibrations.
Apparition de déformations permanentes lors de chocs.
Limitation au niveau des formes.

Acier

Très grande résistance mécanique.
Transmet peu les vibrations.
Résistance aux chocs.
Grande variété de formes et d’adaptations.
Très grandes hauteurs possibles.

Nécessite un grand soin de traitement de surface : galvanisation + nettoyage.

Fonte

Grande variété de formes.
Matériau noble.
Rendu des détails excellent (ex : armoiries, détails végétaux,…).

Poids, coût, limitation en hauteur, poteaux en plusieurs pièces.
Nécessite un grand soin de traitement de surface : métallisation + peinture riche en zinc.
Matériau cassant sauf les fontes nodulaires.


Contrôle de l’éblouissement

Les luminaires extérieurs sont classés en fonction de leur contrôle de l’éblouissement et de la pollution lumineuse :

Classe Intensité lumineuse maximale pour tous les demi-plans C (en cd/klm) Maîtrise de l’éblouissement et de la pollution lumineuse
à γ = 70° à γ = 80° à γ = 90°
G1 200 50 Maîtrise très réduite.
G2 150 30 Réduite.
G3 100 20 Faible.
G4 500 100 10 Moyenne.
G5 350 100 10 Bonne.
G6 350 100 0 Excellente.

Friteuse au gaz

Friteuse au gaz


Description

Une friteuse est un appareil comportant un bac à huile ou à graisse chauffé par un ou plusieurs brûleurs.

Actuellement, la majorité des friteuses sont dites « à zone froide », c’est-à-dire que la forme de la cuve et l’emplacement des brûleurs permettent de ménager dans le bain d’huile une zone à plus faible température (inférieure d’au moins 60°C à celle du bain). Cette disposition présente l’avantage de permettre le dépôt des particules d’aliments détachées lors de la cuisson par suite d’une baisse très sensible des courants de convection. La durée d’utilisation de l’huile s’en trouve ainsi prolongée et, de plus, cela évite la transmission de goûts et d’odeurs sous l’effet de la carbonisation de ces particules.

Il existe principalement deux types de friteuse à zone froide :

  • Dans l’une le chauffage se fait par le fond. L’entretien est aisé, mais le rendement est moins bon.
  • Dans l’autre, les gaz brûlés produits par le brûleur passent dans un tube qui est immergé dans le bain d’huile. Le rendement est meilleur, mais l’entretien est plus difficile.


Utilisation

Les friteuses sont utilisées non seulement pour la cuisson des pommes de terre frites, mais aussi pour la préparation des beignets, poissons, …

Elles sont adaptées aux aliments frais et aux aliments congelés.

Les aliments sont placés dans des paniers en fil d’acier chromé. Deux paniers utilisés dans la même cuve permettent une plus grande souplesse d’utilisation. Des friteuses à panier « transfert » donnent une productivité accrue. Il s’agit d’un système permettant l’abaissement/élévation, puis la translation du panier. Le fond du panier est généralement composé de volets perforés, facilement ouverts en manœuvrant une poignée. On peut ainsi faire passer rapidement et sans effort les aliments depuis la friteuse jusqu’à un plateau ou bac de réception. Un tel dispositif peut être associé à deux éléments de cuisson, chaque panier se déversant à tour de rôle dans une structure porte-plats disposée entre les deux friteuses.

Pour choisir le matériel adapté à ses besoins, on déterminera, en fonction du mode de distribution et de la régularité de la consommation, la production horaire qu’il convient d’obtenir. On compte environ 300 grammes de frites par personne. La production horaire annoncée par le constructeur pourra être différente dans la réalité, notamment lors de l’utilisation de frites déjà cuites, elle sera largement supérieure.


Gamme

Les capacités des friteuses vont d’environ 6 à 80 litres avec des puissances se situant entre 7,5 et 60 kW.


Efficacité énergétique

Plusieurs fabricants ont développé des friteuses optimisant leur rendement. Cette amélioration se base sur l’utilisation du brûleur séquentiel, une meilleure isolation, un meilleur transfert de chaleur et un allumage électronique.

Le meilleur transfert s’obtient par le choix du matériau pour l’échangeur (cuivre bon conducteur) et par le choix de la géométrie des parois d’échange thermique  : trajet des gaz chauds plus long, plus turbulent (ailettes, tétons).

Exemple: l’air brûlé est poussé par des ventilateurs dans des carnots se trouvant tout autour de la cuve mais à l’extérieur de celle-ci (rendant son entretien plus facile).

L’allumeur électronique est plus facile à manipuler que le piezzo. On arrêtera donc plus volontiers l’appareil.

Grâce à ces techniques, il existe une friteuse au gaz à haut rendement (88 %) fabriquée en Hollande. Ce rendement est à comparer aux 45 % d’une friteuse au gaz classique.

Chauffage électrique à accumulation

Chauffage électrique à accumulation


Les appareils à accumulation

Les accumulateurs renferment un noyau accumulant la chaleur; celui-ci est constitué de briques en magnésite, féolite, forstérite, fonte ou autres… pouvant être chauffées à des températures de 650 à 800°C.

Les briques peuvent avoir des formes diverses, en fonction de la conception du noyau et du mode d’installation des résistances entre les briques. Le noyau est entouré de matériau isolant approprié afin de limiter la température des parois.

  1. Vermiculite isolante.
  2. Briques magnétiques.
  3. Eléments chauffants.
  4. Contrôleur de charge.
  5. Borne de branchement.
  6. Sortie d’air.
  7. Entrée d’air.
  8. Ventilateur.

La température du noyau est le reflet de la charge contenue dans l’appareil et est contrôlée par un thermostat de charge.

Différents types d’accumulateurs

Accumulateurs statiques

Ils ne sont pas équipés d’un système de réglage de restitution de chaleur. Celle-ci s’effectue sous forme de rayonnement et de convection naturelle par les parois de l’appareil.

Accumulateurs statiques à restitution de chaleur réglable

En plus de la restitution de chaleur par les parois, ces appareils émettent également de la chaleur par convection naturelle de l’air entre les briques du noyau de l’accumulateur. Le réglage de la restitution de chaleur s’opère au moyen de clapets thermostatiques montés sur l’évacuation d’air dans la partie supérieure de l’appareil.

Accumulateurs statiques compensés

Il s’agit d’accumulateurs statiques pourvus d’un chauffage auxiliaire direct sous forme de convecteur. Ces appareils sont caractérisés par une puissance de raccordement plus faible et une capacité d’accumulation relativement limitée, qui permet néanmoins de réaliser au moins 60 % de la consommation annuelle au tarif de nuit.

Accumulateurs dynamiques

À l’opposé des accumulateurs statiques, la restitution de chaleur s’effectue essentiellement par une convection forcée de l’air à travers des canaux prévus entre les briques du noyau d’accumulation.

Dans ce cas, les accumulateurs sont équipés d’un ou plusieurs ventilateurs commandés par un thermostat d’ambiance.

Accumulateurs dynamiques à résistance d’appoint

Il s’agit d’accumulateurs dynamiques équipés d’une résistance de chauffe auxiliaire qui, en cas de restitution insuffisante de chaleur par le noyau d’accumulation, est enclenchée par le thermostat d’ambiance. La résistance d’appoint se situe dans le flux d’air.

Une distinction suivant le mode de restitution de la chaleur

Les accumulateurs « 9 heures »

Les accus 9 heures sont construits de telle façon que la capacité d’accumulation et la résistance électrique soient suffisamment importantes pour charger en neuf heures l’énergie nécessaire au chauffage pendant toute la journée. L’usage de ces appareils est optimalisé en tarification exclusive de nuit.

Les accus dynamiques 9 heures peuvent être équipés d’une résistance d’appoint.

Les accumulateurs « Hors-Pointes »

Les accumulateurs « Hors-pointes » sont des appareils dynamiques sans résistance d’appoint.

Leurs résistances de charge se trouvent dans le circuit d’air qui traverse le noyau. Cette caractéristique constructive permet un chauffage rapide même en cas de décharge complète du noyau.

La durée de charge nocturne et diurne de ces accumulateurs atteint au moins 16 heures par jour.

Les avantages par rapport à l’accu 9 heures se concrétisent par une puissance de raccordement plus faible et des dimensions plus réduites.

Le dimensionnement et la régulation de charge permettent de limiter la charge diurne à un strict minimum. L’usage de ces appareils est optimalisé en tarification trihoraire ou en EHP.


L’accumulation dans le sol

Photo chauffage par le sol.

L’assurance d’obtenir un chauffage de qualité commence par le choix du conducteur chauffant. Les écarts de température à la surface du sol, même lors de l’emploi d’un recouvrement céramique, doivent rester en dessous de la valeur normalisée de 1,5 K.

Le câble étant incorporé dans le béton accumulateur, la chaleur qu’il dégage se disperse dans tous les sens et chauffe ainsi la masse accumulatrice. La température limite du béton accumulateur mesurée à hauteur des conducteurs chauffants se situe entre 50 et 60°C.

Le chauffage par le sol est dimensionné de telle sorte qu’on obtient une température de contact au sol limitée à 26,5°C. Il est ainsi en mesure de dissiper 70 W au m².

Si la puissance requise n’est pas disponible par le sol, le complément sera obtenu par un chauffage additionnel (convecteurs ou chauffage d’appoint dans le sol le long des murs). Le cas échéant, lors de l’emploi de chauffage additionnel dans le sol, limité aux zones périphériques de la pièce, la température de contact au sol pourra atteindre 34°C, permettant ainsi de dissiper une puissance de 150 W au m².

Pour éviter des pertes de chaleur importante vers le dessous du plancher, celui-ci doit présenter une isolation suffisante.

Calculs

 Pour estimer la perte d’un chauffage par le sol situé au-dessus d’une cave, en fonction du degré d’isolation.

La dalle est subdivisée au moyen de joints de dilatation et de mouvement afin d’absorber les contraintes mécaniques dues aux phénomènes de dilatation et de mouvement inhérents à une dalle flottante.

Le chauffage à accumulation par le sol est normalement complété par un chauffage d’appoint direct dont la puissance diminue en fonction des heures de charge complémentaires disponibles pendant la journée.

En matière de restitution de la chaleur, l’accumulation par le sol est assimilable à un appareil à accumulation statique.

Question : la dalle de béton chauffante ne doit-elle pas être bordée d’une matière souple pour reprendre les dilatations ? Cela se fait dans pour le chauffage par le sol par tuyauteries d’eau chaude –> on peut penser que le schéma ci-dessus est incomplet à ce niveau…Question : la dalle de béton chauffante ne doit-elle pas être bordée d’une matière souple pour reprendre les dilatations ? Cela se fait dans pour le chauffage par le sol par tuyauteries d’eau chaude –> on peut penser que le schéma ci-dessus est incomplet à ce niveau…

  1. Revêtement de sol.
  2. Dalle en béton accumulateur (6,5 à 14 cm selon l’inertie du local, le recouvrement du sol et la durée de charge; une valeur moyenne de 10 à 12 cm pour une durée de charge de 8h, et de 6,5 cm pour une alimentation en 7 h + 9 h de charge).
  3. Tube de protection à embout cuivre pour sonde de mesure.
  4. Nappe chauffante – profondeur d’encastrement : dans le tiers inférieur de la couche de béton – minimum 3 cm au dessus de la couche d’étanchéité.
  5. Couche d’étanchéité : 0,2 (0,5) mm pe ou apprêt de bitume de 250 gr.
  6. Isolation (résistante à une température de 85 °C).
  7. Couche d’étanchéité habituelle.
  8. Infrastructure porteuse.
  9. Chauffage d’appoint éventuel dans le sol.
  10. Plinthe.
  11. Ruban souple d’étanchéité.

 Source : d’après Le code de bonne pratique pour la réalisation des installations de chauffage électrique – Communauté de l’Electricité – CEG.

Cuisiner ou assembler ?

Cuisiner ou assembler ?

Les gammes de produits

Produits de première gamme

Il s’agit des produits bruts traditionnels, c’est-à-dire :
  • crus et non épluchés pour les fruits et les légumes,
  • en carcasse, quartier ou muscles pour les viandes,
  • à vider ou prêts à cuire pour les poissons et les volailles…

Ces produits nécessitent des conditions de stockage précises en termes de température,d’hygrométrie. Pour éviter des souillures éventuelles et des transferts d’odeurs, ils doivent être isolés.

Produits de deuxième gamme

Ce sont tous les produits aseptisés (conserves et semi-conserves), c’est-à-dire des aliments conditionnés en emballage étanche aux liquides, aux gaz, aux micro-organismes et ayant subi un traitement thermique susceptible de détruire ou d’inhiber « d’une part les enzymes et d’autre part les micro-organismes et leurs toxines « .

Produits de troisième gamme

Sont rassemblés dans cette catégorie les produits conservés en froid négatif (congélation et surgélation).
Ils ont généralement subis des traitements préliminaires (épluchages, blanchiment… ), sont conditionnés en emballage non étanche (carton poche plastique) et se conservent à -18°C.

Produits de quatrième gamme

Ce sont des produits végétaux ayant subi des traitements d’épluchage, de parage, de coupage. Ils sont prêts à l’emploi pour les préparations de crudités ou prêts à la mise en cuisson dans des plats cuisinés ou potages. Conditionnés en emballage étanche, sous atmosphère contrôlée ou raréfiée (« sous vide »), ils se conservent à une température inférieure à +4°C.

Produits de cinquième gamme

Cette catégorie qui est apparue plus récemment sur le marché, regroupe les produits cuisinés prêts à être servis. Ils sont conditionnés en atmosphère raréfiée (avant ou après cuisson) et se conservent à +3°C.

Produits semi élaborés

Enfin et pour être complet, il faut ajouter une famille de produits appartenant au secteur de l’épicerie sèche, très souvent déshydratée, qui permet de réaliser des préparations culinaires ou pâtissières en « sautant  » certaines étapes du cycle normal de production.


Cuisiner ou assembler ?

La cuisine d’assemblage consiste à réaliser une production culinaire (hors d’œuvre, plats garnis, dessert), à partir de produits achetés dans un état déjà plus ou moins élaboré, en les assemblant dans le cadre de la recette, avec ou sans cuisson.

Elle a pour effet de transférer vers l’amont, en l’occurrence les industries agro-alimentaires, certaines phases de la production classique d’une cuisine, notamment les étapes préliminaires, permettant ainsi la réalisation d’effets d’échelle et de gain de productivité.

Schéma cuisine traditionnelle / cuisine assemblage.

Moteur à courant continu

Moteur à courant continu


 

Généralité

On rencontre encore régulièrement des moteurs à courant continu à excitation indépendante dans les salles des machines des immeubles d’un certain âge. En général, ils font partie d’un groupe Ward-Leonard qui permet d’aisément faire varier la vitesse de rotation.

Actuellement, du groupe Ward-Leonard, on ne conserve que le moteur à courant continu qui, cette fois, est associé à un variateur de vitesse statique (variateur électronique) dont la technologie est plus simple et peu onéreuse tout en demandant peu d’entretien et en offrant des performances élevées dans une plage de vitesse très large (de 1 à 100 %).


Principe de fonctionnement

Le moteur à courant continu se compose :

  • de l’inducteur ou du stator,
  • de l’induit ou du rotor,
  • du collecteur et des balais.

Lorsque le bobinage d’un inducteur de moteur est alimenté par un courant continu, sur le même principe qu’un moteur à aimant permanent (comme la figure ci-dessous), il crée un champ magnétique (flux d’excitation) de direction Nord-Sud.

Une spire capable de tourner sur un axe de rotation est placée dans le champ magnétique. De plus, les deux conducteurs formant la spire sont chacun raccordés électriquement à un demi collecteur et alimentés en courant continu via deux balais frotteurs.

D’après la loi de Laplace (tout conducteur parcouru par un courant et placé dans un champ magnétique est soumis à une force), les conducteurs de l’induit placés de part et d’autre de l’axe des balais (ligne neutre) sont soumis à des forces F égales mais de sens opposé en créant un couple moteur : l’induit se met à tourner !

Schéma principe de fonctionnement.

Si le système balais-collecteurs n’était pas présent (simple spire alimentée en courant continu), la spire s’arrêterait de tourner en position verticale sur un axe appelé communément « ligne neutre ». Le système balais-collecteurs a pour rôle de faire commuter le sens du courant dans les deux conducteurs au passage de la ligne neutre. Le courant étant inversé, les forces motrices sur les conducteurs le sont aussi permettant ainsi de poursuivre la rotation de la spire.

Dans la pratique, la spire est remplacée par un induit (rotor) de conception très complexe sur lequel sont montés des enroulements (composés d’un grand nombre de spires) raccordés à un collecteur « calé » en bout d’arbre. Dans cette configuration, l’induit peut être considéré comme un seul et même enroulement semblable à une spire unique.


Caractéristiques

Les avantages et inconvénients du moteur à courant continu sont repris ci-dessous :

(+)

  • accompagné d’un variateur de vitesse électronique, il possède une large plage de variation (1 à 100 % de la plage),
  • régulation précise du couple,
  • son indépendance par rapport à la fréquence du réseau fait de lui un moteur à large champ d’application,

(-)

  • peu robuste par rapport au machine asynchrone,
  • investissement important et maintenance coûteuse (entretien du collecteur et des balais,

Machine réversible

Dans le régime de fonctionnement des ascenseurs à traction, le treuil à courant continu peut :

  • Tantôt fonctionner en moteur lorsque le système cabine et contre-poids s’oppose au mouvement de rotation (charge dite « résistante »); le moteur prend de l’énergie au réseau.
  • Tantôt travailler en générateur lorsque le même système tend à favoriser la rotation (charge dite « entrainante »); le générateur renvoie de l’énergie au réseau.

Type de moteur à courant continu

Suivant l’application, les bobinages du l’inducteur et de l’induit peuvent être connectés de manière différente. On retrouve en général :
Des moteurs à excitation indépendante.

Des moteurs à excitation parallèle.

Des moteurs à excitation série.

Des moteurs à excitation composée.

La plupart des machines d’ascenseur sont configurées en excitation parallèle ou indépendante. L’inversion du sens de rotation du moteur s’obtient en inversant soit les connections de l’inducteur soit de l’induit.


L’inducteur

L’inducteur d’un moteur à courant continu est la partie statique du moteur. Il se compose principalement :

  • de la carcasse,
  • des paliers,
  • des flasques de palier,
  • des portes balais.

   

Inducteur.

Le cœur même du moteur comprend essentiellement :

  • Un ensemble de paires de pôles constitué d’un empilement de tôles ferro-magnétiques.
  • Les enroulements (ou bobinage en cuivre) destinés à créer le champ ou les champs magnétiques suivant le nombre de paires de pôles.

Pour des moteurs d’une certaine puissance, le nombre de paires de pôles est multiplié afin de mieux utiliser la matière, de diminuer les dimensions d’encombrement et d’optimaliser la pénétration du flux magnétique dans l’induit.


L’induit

L’induit du moteur à courant continu est composé d’un arbre sur lequel est empilé un ensemble de disques ferro-magnétiques. Des encoches sont axialement pratiquées à la périphérie du cylindre formé par les disques empilés. Dans ces encoches les enroulements (bobines de l’induit) sont « bobinés » selon un schéma très précis et complexe qui nécessite une main d’œuvre particulière (coûts importants). Pour cette raison, on préfère, en général, s’orienter vers des moteurs à courant alternatif plus robuste et simple dans leur conception.

   

Induit.

Chaque enroulement est composé d’une série de sections, elles même composées de spires; une spire étant une boucle ouverte dont l’aller est placé dans une encoche de l’induit et le retour dans l’encoche diamétralement opposée. Pour que l’enroulement soit parcouru par un courant, ses conducteurs de départ et de retour sont connectés aux lames du collecteur (cylindre calé sur l’arbre et composé en périphérie d’une succession de lames de cuivre espacée par un isolant).

Composition de l’induit.

L’interface entre l’alimentation à courant continu et le collecteur de l’induit est assuré par les balais et les porte-balais.


Les balais

Les balais assurent le passage du courant électrique entre l’alimentation et les bobinages de l’induit sous forme d’un contact par frottement. les balais sont en graphite et constituent, en quelques sortes, la pièce d’usure. Le graphite en s’usant libère une poussière qui rend le moteur à courant continu sensible à un entretien correct et donc coûteux.

L’ensemble balais, porte-balais et collecteur.

Le point de contact entre les balais et le collecteur constitue le point faible du moteur à courant continu. En effet, c’est à cet endroit, qu’outre le problème d’usure du graphite, la commutation (inversion du sens du courant dans l’enroulement) s’opère en créant des micros-arcs (étincelles) entre les lamelles du collecteur; un des grands risques de dégradation des collecteurs étant leur mise en court-circuit par usure.


Pilotage de la vitesse de rotation

Relation Vitesse et force contre-électromotrice à flux constant

Lorsque l’induit est alimenté sous une tension continue ou redressée U, il se produit une force contre-électromotrice E.
On a :

E = U – R x I [volts]

Où,

  • R = la résistance de l’induit [ohm].
  • I = le courant dans l’induit [ampère].

La force contre-électromotrice est liée à la vitesse et à l’excitation du moteur.
On a :

E = k  x  ω x Φ[volt]

Où,

  • k = constante propre au moteur (dépendant du nombre de conducteurs de l’induit).
  • ω = la vitesse angulaire de l’induit [rad/s].
  • Φ= le flux de l’inducteur [weber].

En analysant la relation ci-dessus, on voit, qu’à excitation constante Φ, la force contre-électromotrice E est proportionnelle à la vitesse de rotation.

Relation Couple et flux

Quant au couple moteur, il est lié au flux inducteur et au courant de l’induit par la relation suivante.

On a :

C = k x Φ x I [N.m]

Où,

  • k = constante propre au moteur (dépendant du nombre de conducteurs de l’induit).
  • Φ= le flux de l’inducteur [weber].
  • I = le courant dans l’induit [ampère].

En analysant la relation ci-dessus, on voit qu’en réduisant le flux, le couple diminue.

Variation de la vitesse

Au vu des relations existant entre la vitesse, le flux et la force contre-électromotrice, il est possible de faire varier la vitesse du moteur de deux manières différentes. On peut :

  • Augmenter la force contre-électromotrice E en augmentant la tension au borne de l’induit tout en maintenant le flux de l’inducteur constant. On a un fonctionnement dit à « couple constant ». Ce type de fonctionnement est intéressant au niveau de la conduite d’ascenseur.
  • Diminuer le flux de l’inducteur (flux d’excitation) par une réduction du courant d’excitation en maintenant la tension d’alimentation de l’induit constante. Ce type de fonctionnement impose une réduction du couple lorsque la vitesse augmente.


Le groupe Ward-Leonard

Le groupe Ward-Léonard représente l’ancienne génération des treuils d’ascenseur à traction à câbles. Ce système permettait de faire varier la vitesse d’un moteur à courant continu à excitation indépendante en réglant la tension de l’induit par l’intermédiaire d’une génératrice à courant continu dont on faisait varier l’excitation; la génératrice étant entraînée mécaniquement par un moteur à courant alternatif classique.

Pour une faible variation du courant d’excitation de la génératrice, il était possible de maîtriser des puissances énormes de moteurs à courant continu dans une plage de variation de vitesse très étendue.

L’électronique de régulation de vitesse est venue supplanter le système du groupe Ward-Léonard où le variateur de vitesse électronique vient contrôler :

  • soit directement un moteur à courant alternatif,
  • soit le moteur à courant continu seul rescapé du groupe Ward-Léonard.

 

Détendeurs [Climatisation]

Détendeurs [Climatisation]


Fonctionnement

Dans l’ensemble du fonctionnement d’une machine frigorifique, le détendeur module le débit de fluide réfrigérant à l’entrée de l’évaporateur.

Schéma fonctionnement du détendeur.

La différence de pression entre le condenseur et l’évaporateur nécessite d’insérer un dispositif « abaisseur de pression » dans le circuit. C’est le rôle du détendeur. Le fluide frigorigène se vaporise partiellement dans le détendeur pour abaisser sa température.

Un mauvais contrôle de la quantité de fluide frigorigène admise dans l’évaporateur, entraîne les conséquences suivantes :

  • Trop peu de fluide frigorigène : il est immédiatement évaporé et il continue à se réchauffer. C’est l’effet de surchauffe. L’efficacité de l’évaporateur diminue.
  • Trop de fluide injecté : l’excès de fluide n’est pas évaporé par manque de chaleur disponible. Une partie du fluide reste liquide et est aspirée par le compresseur. Celui-ci peut alors être sérieusement endommagé (coup de liquide).

Différentes technologies de détendeurs

Le détendeur thermostatique

C’est le dispositif le plus fréquemment utilisé. Le détendeur thermostatique est une vanne qui règle le débit du réfrigérant, en maintenant une différence constante entre la température d’évaporation du réfrigérant et la température des gaz à la sortie de l’évaporateur. La différence entre ces deux températures s’appelle la « surchauffe à l’évaporateur », typiquement 6 à 8 K. De cette façon, on est certain que tout le liquide injecté s’est évaporé.

Si la charge thermique augmente, la sonde (3) détectera une montée de température, agira sur la membrane (4) et le détendeur s’ouvrira (le pointeau est renversé : plus on l’enfonce, plus il s’ouvre) afin d’augmenter le débit de réfrigérant (1).

Le détendeur électronique

Photo détendeur électronique.

Il fonctionne sur le même principe, mais ce type de détendeur permet un réglage plus précis de l’évaporateur. Une surchauffe plus faible sera nécessaire. La température d’évaporation remontera de 2 à 3 K, ce qui diminuera la consommation du compresseur.

Son avantage est de pouvoir bénéficier de l’intelligence de la régulation numérique : adapter son point de fonctionnement en fonction de divers paramètres.

De là, plusieurs propriétés :

  • régulation modulante de la température du milieu à refroidir,
  • injection optimale du réfrigérant,
  • dégivrage optimalisé.

Technologiquement, il dispose d’une vanne à pointeau, commandée par un moteur pas à pas à 2 500 positions.

Le détendeur capillaire

Dans de petites installations, tels les appareils frigorifiques ou les petits climatiseurs, on se contente, comme dispositif de réglage, d’un étranglement dans la conduite du réfrigérant avant l’évaporateur. L’étranglement est assuré par un tube capillaire (de très faible diamètre) dans lequel la détente du fluide est obtenue par la perte de charge dans le tube.

Le détendeur pressostatique

Il maintient une pression d’évaporation constante, indépendante de la charge. La totalité de la surface d’échange de l’évaporateur n’est utilisée qu’une fois en régime. C’est pourquoi il n’est utilisé que dans le cas d’installations dans lesquelles la charge ne varie pas beaucoup (machines à glace par exemple).

Détendeurs [Froid alimentaire]

Détendeurs [Froid alimentaire]


Fonctionnement

Dans l’ensemble du fonctionnement d’une machine frigorifique, le détendeur module le débit de fluide réfrigérant à l’entrée de l’évaporateur.

Schéma fonctionnement détendeur.

La différence de pression entre le condenseur et l’évaporateur nécessite d’insérer un dispositif « abaisseur de pression » dans le circuit. C’est le rôle du détendeur. Le fluide frigorigène se vaporise partiellement dans le détendeur pour abaisser sa température.

Un mauvais contrôle de la quantité de fluide frigorigène admise dans l’évaporateur, entraîne les conséquences suivantes :

  • Trop peu de fluide frigorigène : il est immédiatement évaporé et il continue à se réchauffer. C’est l’effet de surchauffe. L’efficacité de l’évaporateur diminue.
  • Trop de fluide injecté : l’excès de fluide n’est pas évaporé par manque de chaleur disponible. Une partie du fluide reste liquide et est aspirée par le compresseur. Celui-ci peut alors être sérieusement endommagé (coup de liquide).

La régulation de la surchauffe à la sortie de l’évaporateur conditionne l’ouverture ou la fermeture du détendeur. Cette régulation « auto-adaptative » se base sur le principe que l’évaporateur a une valeur minimale de surchauffe stable qui évolue en fonction des variations de sa charge Q0. Entre d’autres termes, la valeur minimale de surchauffe stable est celle qui permet, quelle que soit la charge, de vaporiser la dernière goutte liquide du fluide frigorigène juste à la sortie de l’évaporateur.

Surchauffe minimale (source : Danfoss).

  • Si la dernière goutte de fluide est vaporisée juste avant la sortie de l’évaporateur, la surchauffe mesurée en température est élevée et ne permet pas à l’évaporateur d’évacuer la chaleur Q0 complètement et, par conséquent, le travail de l’évaporateur n’est pas optimum.
  • Si la dernière goutte de fluide est vaporisée après la sortie de l’évaporateur ou ne se vaporise simplement pas, la surchauffe mesurée en température est faible. La présence de liquide à l’aspiration du compresseur risque de l’endommager.


Différentes technologies de détendeurs

Le détendeur thermostatique

C’ est le dispositif le plus fréquemment utilisé. Le détendeur thermostatique est une vanne qui règle le débit du réfrigérant, en maintenant une différence constante entre la température d’évaporation du réfrigérant et la température des gaz à la sortie de l’évaporateur. La différence entre ces deux températures s’appelle la « surchauffe à l’évaporateur », typiquement 6 à 8 K. De cette façon, on est certain que tout le liquide injecté s’est évaporé.

Schéma détendeur thermostatique.

Si la charge thermique augmente, la sonde (3) détectera une montée de température, agira sur la membrane (4) et le détendeur s’ouvrira (le pointeau est renversé : plus on l’enfonce, plus il s’ouvre) afin d’augmenter le débit de réfrigérant (1).

Le détendeur électronique

Schéma détendeur électronique.

Il fonctionne sur le même principe, mais ce type de détendeur permet un réglage plus précis de l’évaporateur. Une surchauffe plus faible sera nécessaire. La température d’évaporation remontera de 2 à 3 K, ce qui diminuera la consommation du compresseur.
Son avantage est de pouvoir bénéficier de l’intelligence de la régulation numérique : adapter son point de fonctionnement en fonction de divers paramètres.

De là, plusieurs propriétés :

  • régulation modulante de la température du milieu à refroidir,
  • injection optimale du réfrigérant,
  • dégivrage optimalisé.

Technologiquement, il dispose d’une vanne à pointeau, commandée par un moteur pas à pas à 2 500 positions.

Le détendeur capillaire

Dans de petites installations, tels les appareils frigorifiques ou les petits climatiseurs, on se contente, comme dispositif de réglage, d’un étranglement dans la conduite du réfrigérant avant l’évaporateur. L’étranglement est assuré par un tube capillaire (de très faible diamètre) dans lequel la détente du fluide est obtenue par la perte de charge dans le tube.

Le détendeur pressostatique

Il maintient une pression d’évaporation constante, indépendante de la charge. La totalité de la surface d’échange de l’évaporateur n’est utilisée qu’une fois en régime. C’est pourquoi il n’est utilisé que dans le cas d’installations dans lesquelles la charge ne varie pas beaucoup (machines à glace par exemple).


Comparaison entre les détendeurs thermostatiques et électroniques

La régulation des détendeurs est surtout liée à leur technologie : jusqu’il y a peu, la technologie vraiment éprouvée était le détendeur thermostatique.

À l’heure actuelle, la plupart des installations de petite à moyenne puissance utilisent encore cette technologie. La régulation du débit d’alimentation de l’évaporateur et, par conséquent, de la surchauffe obéit à une loi proportionnelle en fonction de la charge frigorifique demandée à l’évaporateur.

Le détendeur thermostatique

Lorsqu’un détendeur thermostatique est utilisé pour réguler l’injection de fluide frigorigène, il réagit de manière linéaire en fonction de la demande de froid Q0.

Le réglage de l’injection de fluide réfrigérant au départ doit garantir une surchauffe quelle que soit la charge afin d’éviter que du fluide se retrouve en phase liquide à la sortie de l’évaporateur. Ce réglage s’effectue au niveau d’une vis agissant sur le ressort d’équilibrage de pression.

La courbe de réglage du détendeur thermostatique étant une droite proportionnelle à la différence entre les températures mesurées par le bulbe à la sortie de l’évaporateur et la température d’évaporation (traduite par la pression régnant en sortie du détendeur), pour garantir la surchauffe, elle doit se situer à droite (en bleu) de la courbe de surchauffe minimale stable (en rouge). Dans ces conditions, la surchauffe est garantie, mais exagérée se traduisant par :

  • une efficacité de l’évaporateur réduite pour certaines charges;
  • une durée de marche accrue du compresseur pour conserver la température souhaitée à l’évaporateur; d’où une augmentation de la consommation énergétique.

À l’inverse, un réglage trop à gauche de la courbe de surchauffe minimale (en noir) provoque un fonctionnement de l’évaporateur en surchauffe insuffisante et risquerait d’être dommageable pour le compresseur à certaines charges (liquide présent à la sortie de l’évaporateur).

Le détendeur électronique

Les nouvelles technologies permettent de suivre au plus près la courbe des valeurs minimales de surchauffe stable en associant des détendeurs électroniques à des régulateurs analogiques ou digitaux. Le schéma suivant montre une régulation électronique optimisée qui assure en permanence un bon remplissage de l’évaporateur. On remarquera que la régulation assure toujours que le fluide reste bien vaporisé dans l’évaporateur en évitant d’envoyer du liquide au niveau du compresseur (on reste à droite de la courbe).

À l’heure actuelle, les fabricants de régulateurs y arrivent facilement par le développement d’algorithmes sophistiqués prenant en compte les différents types de fluide frigorigène indépendamment des caractéristiques initiales de l’évaporateur et de leur évolution en fonction de la charge. Comme le montre la figure ci-dessus, le régulateur calcule l’ouverture du détendeur en fonction :

  • de la température en sortie de l’évaporateur (capteur de température par contact sur la tuyauterie);
  • de la pression d’évaporation (capteur de pression sur la conduite d’aspiration du compresseur) traduite en température d’évaporation par le régulateur.

La différence entre ces deux valeurs représente la valeur réelle de la surchauffe et est comparée à la courbe de surchauffe minimale.

Machine frigorifique à compression [Climatisation]

Machine frigorifique à compression


L’installation frigorifique, vue de l’extérieur

Dans les installations de climatisation, la machine frigorifique permet d’évacuer vers l’extérieur la chaleur excédentaire des locaux.

En pratique, elle prépare de l’air froid ou de l’eau froide qui viendront compenser les apports de chaleur du soleil, des équipements de bureautique, des occupants,… de telle sorte que le bilan chaud-froid soit à l’équilibre et que la température de consigne soit maintenue dans les locaux.

La technique la plus simple consiste à préparer de l’air froid qui sera diffusé via des gaines de distribution.

Distribution de l’air froid dans le bâtiment.

Traitement de l’air dans des caissons de climatisation.

Pour le groupe frigorifique, on distingue deux modes principaux d’action :

  • Soit le fluide frigorigène refroidit l’air en passant directement dans la batterie de refroidissement : on parle de « système à détente directe » parce que l’évaporateur de la machine frigorifique prend la place de la batterie de froid dans le caisson de climatisation.

Réfrigération « à détente directe ».

  • Soit l’installation frigorifique prépare de l’eau froide à …6°C… (généralement appelée « eau glacée »), eau qui alimentera la batterie de refroidissement du caisson de traitement d’air.

Réfrigération par circuit d’eau glacée.

Mais le transport de froid par l’air est très coûteux à l’investissement (gainage).

À titre d’exemple, comparons l’encombrement demandé pour le transfert de 10 kW de froid :

Transport par air Transport par eau
Delta T° : 9°C (de +16° pulsé à +25°C d’ambiance, par ex.) Delta T° : 5°C ( boucle d’eau glacée au régime 7° – 12°C, par ex.)
Débit d’air : 3 270 m³/h Débit d’eau : 1,72 m³/h
Vitesse : 15 m/s Vitesse : 0,8 m/s
Section de gaine : 300 x 220 mm ( ou Ø 300 mm) Diamètre de conduite : Ø 40 mm

De plus, à l’exploitation, la consommation des ventilateurs représente de 10 à 30 % de l’énergie transportée contre 2 % pour la consommation des pompes de circulation.

Circuit d’eau glacée pour l’air neuf et les ventilo-convecteurs.

Aussi, on rencontre souvent des installations où le refroidissement des locaux est principalement assuré par de l’eau glacée alimentant les batteries froides des ventilo-convecteurs.

Un complément de froid peut être donné par le rafraîchissement de l’air neuf de ventilation.

Bien sûr, « produire du froid » sous-entend évacuer de la chaleur. Aussi, à l’extérieur du bâtiment, souvent en toiture, on trouvera un équipement chargé de refroidir.

  • soit le fluide frigorigène directement : c’est le condenseur de l’installation frigorifique.
  • soit de l’eau, qui elle-même sert à refroidir le fluide frigorigène : c’est la tour de refroidissement.

On distingue trois types de tour :

La tour ouverte

l’eau est pulvérisée devant un ventilateur et le refroidissement est alors renforcé par la vaporisation partielle de cette eau (la chaleur de la vaporisation est « pompée » sur la goutte d’eau qui reste et qui donc se refroidit). Après refroidissement, cette eau sera conduite vers un condenseur à eau se trouvant près du compresseur.

Schéma principe tour ouverte.

La tour fermée
l’eau venant du condenseur reste à l’intérieur d’un circuit tubulaire fermé, mais se fait « arroser » par un jet d’eau de refroidissement. Cette eau s’évaporant partiellement, sera également fortement refroidie. Mais cette fois, l’eau qui a été au contact de l’air extérieur (son oxygène et ses poussières), n’est plus en contact direct avec le condenseur à eau évitant de bien pénibles ennuis de corrosion…

Schéma principe tour fermée.

Le dry cooler
il s’agit d’une tour fermée, que l’on n’arrose pas, que l’on refroidit simplement par l’air extérieur pulsé par des ventilateurs. Cette batterie d’échange convient en toute saison, puisque en ajoutant un antigel (type glycol), elle est insensible au gel. Elle n’est pas aussi performante que les précédentes puisque la température de refroidissement est limitée à la température de l’air extérieur…

Pour davantage d’informations :

Techniques

Pour connaître la technologie des condenseurs et des tours de refroidissement, cliquez-ici !

L’installation frigorifique, vue de l’intérieur

Le transfert de chaleur, entre intérieur et extérieur, ne peut se faire que si un équipement rehausse le niveau de température entre le milieu où la chaleur est prise (air ou eau) et le milieu où la chaleur est évacuée (air extérieur) : c’est le rôle de la machine frigorifique.

Elle se compose au minimum des 4 éléments suivants :

  • 1 évaporateur
  • 1 condenseur
  • 1 compresseur
  • 1 organe de détente

Voici le fonctionnement de chacun de ces composants.

Tout est basé sur les propriétés physiques du fluide frigorigène

La machine frigorifique est basée sur la propriété des fluides frigorigènes de s’évaporer et de se condenser à des températures différentes en fonction de la pression.

Pour expliquer le fonctionnement, nous prendrons les caractéristiques du R 22 parce c’est le fluide le plus couramment utilisé en climatisation. Mais ce n’est plus celui que l’on choisira dans les installations nouvelles.

A la pression atmosphérique :

Le R22 est liquide à – 45°C et se met à « bouillir » aux alentours de – 40°C.

>  Si du fluide R 22 à -45°C circule dans un serpentin et que l’air à 20° C passe autour de ce tuyau, l’air se refroidira : il cédera sa chaleur au fluide qui lui s’évaporera. C’est le rôle de l’évaporateur de la machine frigorifique.

A la pression de 13 bars :

cette fois, le R 22 ne va « bouillir » qu’à 33°C. Autrement dit, si de la vapeur de fluide à 13 bars et à 65°C circule dans un serpentin et que de l’air à 20° C passe autour de ce tuyau, le fluide se refroidira et à partir de 33°C, il se liquéfiera, il se condensera. En se condensant, il va libérer énormément de chaleur. C’est le rôle du condenseur de la machine frigorifique.

> Si l’on souhaite donc que le fluide puisse « prendre » de la chaleur : il doit être à basse pression et à basse température sous forme liquide, pour lui permettre de s’évaporer.

>  Si l’on souhaite qu’il puisse céder sa chaleur : il doit être à haute température et à haute pression, sous forme vapeur, pour lui permettre de se condenser.

Pour réaliser un cycle dans lequel de la chaleur est extraite d’un côté et donnée de l’autre, il faut compléter l’installation par 2 éléments :

  1. Le compresseur, qui comprime le gaz en provoquant l’augmentation de température jusqu’à + 65°C.
  2. Le détendeur, qui, au départ d’un fluide à l’état liquide, « lâche » la pression : le fluide se vaporise partiellement et donc se refroidit. Le liquide retombe à la température de – 40°C (bien sûr, on choisira – 40°C pour faire de la congélation, et entre 0°C et + 5°C pour de la climatisation).

Si ces différents équipements sont bouclés sur un circuit, on obtient une machine frigorifique.

En pratique, suivons le parcours du fluide frigorigène dans les différents équipements et repérons le tracé de l’évolution du fluide frigorigène dans le diagramme des thermo-dynamiciens, le diagramme H-P, enthalpie (ou niveau d’énergie) en abscisse et pression en ordonnée.

Dans l’évaporateur

Le fluide frigorigène liquide entre en ébullition et s’évapore en absorbant la chaleur du fluide extérieur. Dans un deuxième temps, le gaz formé est encore légèrement réchauffé par le fluide extérieur, c’est ce qu’on appelle la phase de surchauffe (entre 7 et 1).

Fonctionnement de l’évaporateur.

Dans le compresseur

Le compresseur va tout d’abord aspirer le gaz frigorigène à basse pression et à basse température (1). L’énergie mécanique apportée par le compresseur va permettre d’élever la pression et la température du gaz frigorigène. Une augmentation d’enthalpie en résultera.

Fonctionnement du compresseur.

Dans le condenseur

Le gaz chaud provenant du compresseur va céder sa chaleur au fluide extérieur. Les vapeurs de fluide frigorigène se refroidissent (« désurchauffe »), avant l’apparition de la première goutte de liquide (point 3). Puis la  condensation s’effectue jusqu’à la disparition de la dernière bulle de vapeur (point  4). Le fluide liquide peut alors se refroidir de quelques degrés (sous-refroidissement) avant de quitter le condenseur.

Fonctionnement du condenseur.

Dans le détendeur

La différence de pression entre le condenseur et l’évaporateur nécessite d’insérer un dispositif « abaisseur de pression » dans le circuit. C’est le rôle du détendeur. Le fluide frigorigène se vaporise partiellement dans le détendeur pour abaisser sa température.

Fonctionnement du détendeur.

Fonctionnement complet

Le cycle est fermé, le fluide frigorigène évolue sous l’action du compresseur dans les quatre éléments constituant la machine frigorifique.

Cycle frigorifique élémentaire.

L’ensemble du cycle peut être représenté dans le diagramme enthalpie-pression. Sous la courbe en cloche se situent les états de mélange liquide-vapeur; à gauche de la cloche, le fluide est à l’état liquide (il se « sous-refroidit »), à droite, le fluide est à l’état vapeur (il « surchauffe »).

Diagramme enthalpique du cycle frigorifique.


Un fonctionnement de la machine frigorifique en équilibre permanent

Le cycle réel de fonctionnement d’une machine frigorifique se stabilise à partir des températures du milieu qu’il faut refroidir, de l’air extérieur où la chaleur est rejetée, et des caractéristiques dimensionnelles de l’appareil.

Ainsi, la température d’évaporation se stabilisera quelques degrés en dessous de la température du fluide refroidi par l’évaporateur. De même, la température de condensation se stabilisera quelques degrés au-dessus de la température du fluide de refroidissement du condenseur.

Or, les besoins de froid évoluent en permanence et la température extérieure varie toute l’année !

Tout cela va bien sûr entraîner une modification du taux de compression et une variation de la puissance absorbée. En fonction du régime d’évaporation et de condensation, le compresseur aspirera un débit masse plus ou moins grand de fluide frigorigène définissant ainsi la puissance frigorifique à l’évaporateur et calorifique au condenseur.

Exemple

Afin d’imaginer ces évolutions, partons d’un cas concret.

Évaporateur

Évolution des fluides dans l’évaporateur.

La boucle d’eau glacée fonctionne au régime 5°-11°. L’échange de chaleur s’effectue en deux phases :

  • ébullition du fluide
  • surchauffe des vapeurs

La température d’évaporation qui s’établit est de 0°C. Dans le cas du R22, ceci correspond à une basse pression de 4 bar (lecture du manomètre), soit 5 bar absolu (comparé au vide).

Condenseur

Évolution des fluides dans le condenseur.

Le condenseur est directement refroidi par l’air extérieur. Supposons que celui-ci entre à 30°C dans le condenseur. L’échange de chaleur s’effectue en trois phases :

  • désurchauffe des gaz chauds provenant du compresseur,
  • condensation du fluide,
  • sous-refroidissement du liquide.

La température de condensation qui s’établit est de 40°C. Dans le cas du R 22, ceci correspond à une haute pression de 14,5 bar, soit 15,5 bar absolu.

Analysons le comportement du compresseur sur base des caractéristiques nominales données par le fournisseur.

Extrait d’un catalogue de compresseurs.

On constate que pour une température d’évaporation de 0°C et pour une température de condensation de 40°C,

  • la puissance électrique absorbée par le compresseur sera de 6,3 kW
  • la puissance frigorifique donnée à l’évaporateur sera de 21,9 kW

Remarque : en réalité, une adaptation de quelques pour cent devrait avoir lieu car le constructeur fournit des indications pour un fonctionnement normalisé de son appareil (surchauffe de 0K, sous-refroidissement de 25 K selon DIN 8928 et bientôt la CEN) mais ceci dépasse la portée de ces propos.

Supposons à présent que le condenseur soit mal entretenu. L’échange de chaleur se fait moins bien, la température au condenseur augmente, le compresseur va travailler davantage et va augmenter la pression de sortie des gaz. Une nouvelle température de condensation va se mettre en place : supposons qu’elle atteigne une température de 50°C. Comme la température du liquide s’élève à l’entrée du détendeur, la température d’évaporation s’élève également de 1 ou 2°. Le diagramme constructeur prévoit une augmentation de la puissance électrique absorbée : 7 kW, pour une puissance frigorifique diminuée : 18,2 kW…

Le « rendement » de la machine s’est dégradé :

> AVANT : (21,9 kW produits) / (6,3 kW absorbés) = 3,5.

> APRES : (18,2 kW produits) / (7 kW absorbés) = 2,6.

On dira que « l’efficacité énergétique » de la machine frigorifique a diminué de 25 %. À noter que l’on serait arrivé au même résultat si la température extérieure s’était élevée de 10°.


Plusieurs régulations imbriquées dans la machine frigorifique

On peut voir la machine frigorifique comme un ensemble d’équipements, réunis par le réseau de fluide frigorigène et régulés chacun en poursuivant divers objectifs en parallèle.

Adapter la puissance fournie à la puissance requise : la régulation du compresseur

Une machine frigorifique est dimensionnée pour vaincre les apports thermiques maximum (ciel bleu, soleil éclatant et 32°C de température, par exemple). Elle est donc la plupart du temps sur-puissante. Il faut donc pouvoir adapter la puissance frigorifique du compresseur à la charge partielle réelle.

Diverses techniques de régulation du compresseur sont possibles :

  • arrêter le compresseur par « tout ou rien » ou par étages,
  • réduire sa vitesse de rotation,
  • le mettre partiellement hors service (décharge de cylindres,…),
  • prévoir un bypass refoulement-aspiration,
  • obturer l’orifice d’aspiration,

Limiter la pression maximale à la sortie du compresseur : le pressostat HP

La plus importante partie d’une installation frigorifique est sans aucun doute le compresseur. Il doit maintenir la quantité nécessaire d’agent frigorifique en circulation; il opère ainsi donc comme une pompe. La pression différentielle entrée-sortie est très importante et, selon le point de travail et le fluide frigorifique, elle se situe entre 5 et 20 bar, environ.

Imaginons une panne du ventilateur du condenseur ou une période de forte chaleur de l’air extérieur. Le refroidissement des gaz chauds dans le condenseur est insuffisant, la température à l’évaporateur va augmenter, la pression à l’entrée du compresseur augmente. Le compresseur pourrait alors développer une pression de sortie supérieure au niveau permis. Afin de protéger l’installation, il est prévu sur cette partie Haute Pression (HP) un pressostat qui déclenche le moteur d’entraînement lorsque la pression dépasse le niveau maximal permis par le constructeur.

Limiter la pression minimale à l’entrée du compresseur : le pressostat BP

La basse pression avant le compresseur est également surveillée. Par exemple, en cas de demande de froid insuffisante à l’évaporateur, la chaleur d’évaporation transmise au fluide frigorifique n’est pas suffisante. Cela conduit à une diminution de la pression du côté basse pression du compresseur avec pour conséquence une diminution de la température d’évaporation ainsi que le givrage de la batterie de froid ou le gel de l’eau glacée.

Or quand une batterie givre, le coefficient d’échange diminue, la température d’évaporation diminue encore et le phénomène s’accélère. C’est pourquoi la basse pression est contrôlée et le compresseur est déclenché par le pressostat BP lorsque la Basse Pression descend en dessous d’une valeur minimale. Ainsi, en cas de fuite de réfrigérant, il est important de faire déclencher le compresseur, autrement il tournera sans réfrigérant et se détériorera en très peu de temps. Normalement la pression dans l’évaporateur est largement supérieure à la pression atmosphérique.

Éviter la surchauffe du moteur

Il faut éviter que la machine ne démarre et ne s’arrête trop souvent. En effet, des enclenchements répétitifs entraînent la surchauffe du moteur (le courant de démarrage est plus élevé que le courant nominal). Un temps de fonctionnement minimal est nécessaire pour évacuer cet excédent de chaleur.

Un dispositif, appelé « anti-court-cycle », limite la fréquence de démarrage des compresseurs et assure un temps minimal de fonctionnement.

Lubrifier le compresseur

Les pistons d’un moteur de voiture nécessitent une lubrification constante pour éviter aux anneaux de piston d’être « rongés ». Il existe le même problème dans les compresseurs frigorifiques. L’huile qui lubrifie le compresseur suit également la vapeur du fluide frigorigène et se trouve ainsi dans le système de circulation. Le technicien de service doit contrôler que l’huile retourne bien au compresseur, par la pose adéquate des tuyauteries frigorifiques, le cas échéant en incorporant un séparateur d’huile.

Lorsque le compresseur n’est pas en service, un réchauffage du carter est réalisé. En effet, en cas de faibles températures ambiantes, l’huile peut absorber un peu de vapeur du fluide frigorigène. Comme cette huile se trouve principalement dans la cuvette du carter, il peut y avoir à cet endroit une concentration importante d’agent frigorigène dans l’huile. Lorsque l’installation est mise en service, une très rapide chute de pression apparaît, l’agent frigorigène tente de se vaporiser et de se séparer de l’huile. Celle-ci commence à mousser, ce qui peut provoquer des coups de liquide et un manque d’huile dans le compresseur. Afin d’empêcher l’huile d’absorber du fluide frigorigène, la cuvette du carter est, lors du déclenchement de l’installation, réchauffée à l’aide d’une résistance électrique.

Éviter les coups de liquide réfrigérant

Le compresseur a pour fonction de comprimer un gaz. Les liquides étant pratiquement incompressibles, le compresseur sera endommagé si le réfrigérant le traverse en phase liquide plutôt que vapeur. Si le piston pousse contre un agent non compressible, il s’ensuit un « coup de liquide », et donc la casse du piston et des clapets.

Lorsque l’installation est hors service, le liquide peut s’accumuler avant le compresseur et lors du ré-enclenchement provoquer un coup de liquide. Pour éviter cela, une vanne magnétique est souvent placée avant le détendeur. La vanne magnétique se ferme lorsque l’installation est déclenchée et évite à l’agent réfrigérant de retourner à l’évaporateur. Le raccordement électrique est effectué de telle sorte que le compresseur puisse fonctionner après la fermeture de cette vanne. Le compresseur s’arrête lorsque le pressostat basse pression déclenche. Aussitôt que la pression augmente à nouveau, le processus est répété. Ce processus est parfois appelé « le pump down ».

Remarque : les coups de liquides ne concernent quasiment que les compresseurs à pistons. Les profils des vis ou des labyrinthes de Scroll peuvent s’écarter en cas d’aspiration de liquide. Et les turbocompresseurs ne sont pas des compresseurs volumétriques.


L’efficacité énergétique ou COP-froid

Un climatiseur est énergétiquement efficace s’il demande peu d’énergie électrique au compresseur pour atteindre une puissance frigorifique donnée.

En comparant les offres, on établit le rapport entre puissance frigorifique fournie et puissance électrique absorbée par le compresseur.

Exemple : voici les spécifications techniques d’un climatiseur réversible présent sur le marché.

Unité intérieure FHYB35FJ
Unité extérieure RY35D7
Puissance frigorifique kcal/h 3 100
Btu/h 12 300
kW 3,60

Puissance calorifique

kcal/h 3 500
Btu/h 14 000
kW 4,10

Puissance absorbée

rafraîchissement

kW 1,51

chauffage

kW 1,33

On y repère :

  • l’efficacité frigorifique, E.F., ou COPfroid (coefficient de performance en froid)

puissance frigorifique / puissance absorbée =
3,6 kW / 1,5 kW = 2,4

  • energy efficiency ratio, E.E.R

puissance frigorifique / puissance absorbée =
12,3 Btu/h / 1,5 kW
= 8,2

Et si l’on souhaite utiliser l’appareil en mode chauffage :

  • le coefficient de performance au condenseur, COPchaud

puissance calorifique (au condenseur) / puissance absorbée =
4,1 kW / 1,3 kW 
= 3,2

Remarques.

  1. Il ne faut pas confondre COPfroid et COPchaud ! Le COPchaud est le rapport entre l’énergie thermique délivrée au condenseur et l’énergie électrique demandée par le compresseur (c’est un terme qui vient de l’évaluation du rendement d’une pompe à chaleur). Alors que le COPfroid part de la chaleur captée à l’évaporateur. La confusion étant fréquente, il n’est pas inutile lorsque l’on compare le rendement des machines dans les documentations de constructeurs, de vérifier ce qui se trouve derrière l’appellation COP.
  2. Il est intéressant de s’inquiéter également de l’efficacité globale de la machine frigorifique installée, c’est à dire du rapport entre le froid produit et l’ensemble de toutes les consommations électriques engendrées, y compris les ventilateurs aux échangeurs, les pompes… Une machine frigorifique, avec une efficacité excellente, placée sur le toit d’un immeuble de plusieurs étages, peut voir son efficacité fortement chuter si la machine est placée en cave et que le condenseur est refroidi via un gainage d’air traversant les étages ! La consommation du ventilateur sera importante dans le bilan final.
  3. Il est très important de se rendre compte que l’énergie mécanique des ventilateurs et des pompes se dégradera en chaleur. Cette chaleur vient en diminution de la puissance frigorifique pour les éléments du côté froid. Ce n’est donc pas seulement le COP ou l’EE qui se dégradent par la consommation électrique supplémentaire, c’est aussi la puissance frigorifique qui diminue.

Lampes à décharge : généralités

Lampes à décharge : généralités

On reprend généralement sous la dénomination « lampes à décharge »

Mais les tubes fluorescents, les lampes fluocompactes et les lampes à induction sont aussi des lampes à décharge (la lumière y est aussi produite par une décharge électrique dans un gaz).


Principe de fonctionnement

 Schéma principe de fonctionnement lampes à décharge.

Une lampe dite « à décharge » fonctionne par décharge d’un courant électrique dans une atmosphère gazeuse. La décharge se fait au travers d’un tube à décharge qui se trouve lui-même dans une ampoule vide.

Schéma principe de fonctionnement lampes à décharge.

Lorsqu’on met la lampe sous tension, des électrons sont émis par les deux électrodes de tungstène. Lors de leur trajet au travers du tube à décharge, ils entrent en collision avec les atomes de gaz. Il en résulte une libération d’énergie soit sous forme de lumière visible, soit sous forme de rayonnement ultraviolet invisible (principalement pour les lampes au mercure haute pression). Ce dernier est absorbé par le revêtement fluorescent présent sur la face interne de la lampe et converti en rayonnement visible.

Selon la pression du gaz dans le tube ou l’ampoule, on distingue les lampes à basse et à haute pression.

Les lampes à décharge ont besoin des éléments suivants pour fonctionner :

Photo amorceur.

– d’un amorceur (l’équivalent du starter des lampes fluorescentes),

Photo ballast.   Photo condensateur.

– d’un ballast  et d’un condensateur.

Ces trois éléments sont nécessaires pour :

  • atteindre pendant un court instant la tension élevée d’amorçage de la décharge électrique dans le gaz ionisé ou dans la vapeur de métal,
  • limiter le courant après l’amorçage pour empêcher la destruction de la lampe,
  • garder un cos φ proche de 1.

Principales dénominations commerciales

Type de lampe / Marques *

Philips

Osram

Sylvania

Sodium basse pression SOX SOX SLP
Sodium haute pression SDW
SON
NAV SHP
SHX
Mercure haute pression HPL HQL
HWL
HSL
HSB
Halogénures ou iodures métalliques HPI
MHN/MHW
CDM
HQI
HCI
HSI
MS
MP
Induction QL

 * Liste non exhaustive.

Données

 Pour connaitre les caractéristiques des lampes à décharge

Données

 Pour consulter un récapitulatif des caractéristiques des différents types de lampe.

Grilles de transfert

Grilles de transfert

Les dispositifs de transfert de l’air sont nécessaires pour permettre le passage de l’air entre les locaux dans lesquels l’air neuf est amené et les locaux dans lesquels l’air vicié est évacué.


Grilles dans les portes intérieures

   

Grille de transfert à placer dans une porte.

Le débit nominal de la grille est mentionné dans la documentation des fournisseurs pour une différence de pression de 2 Pa. Les grilles de transfert ne peuvent pas être réglées. Elles sont généralement composées de lamelles obliques formant écran à la vue.

Différentes possibilités de vision au travers d’une grille.

Sur le plan acoustique, les grilles intérieures courantes entraînent une diminution considérable de la valeur d’isolation de la porte. Il existe toutefois des modèles qui ont une meilleure valeur d’isolation acoustique. Elles sont composées d’une chicane enrobée d’une matériau absorbant.

Ouvertures de transfert acoustiques.

Grilles de transfert acoustiques.

Coupe dans une porte munie d’une ouverture de transfert acoustique garnie d’un matériau absorbant.


Grilles dans les murs intérieurs

Les grilles peuvent être encastrées dans les murs intérieurs mêmes. Comme ces derniers ont habituellement une épaisseur plus importante, ce genre d’ouverture de transfert offre plus de possibilités sur le plan des performances acoustiques. En outre, leur encastrement est plus esthétique et moins visible. Elles peuvent être disposées derrière un meuble, un radiateur. Leur inconvénient est qu’elles doivent généralement être prévues lors du gros œuvre.


Fentes sous les portes

Des simples fentes sous une porte peuvent également servir d’ouverture de transfert. La section nette de la totalité des fentes doit s’élever à au moins 70 cm² par local. Lors de l’installation de la porte, il importe de tenir compte du parachèvement du sol pour qu’en final subsiste une ouverture suffisante. Par exemple, lorsque le sol doit être ultérieurement recouvert de moquette, l’épaisseur du tapis à prendre en compte pour déterminer la hauteur de la fente est au moins de 10 mm (attention cependant à ce que ce relèvement de la porte ne soit considéré comme une erreur de finition !).

Schéma fentes sous les portes.

Les performances acoustiques des fentes sous une porte sont assez médiocres. Par exemple, une fente de 10 mm de hauteur correspond à une diminution de l’isolation acoustique de 11 dB.


Grilles coupe-feu

L’A.R. du 19 décembre 97 impose que toute paroi séparant un lieu de travail d’un chemin d’évacuation (en gros les couloirs) soit classée « Rf 1/2 h ».

Pour répondre à cette exigence, il existe des grilles dont les lames sont composées d’un matériau intumescent. Les lames gonflent lorsque la température s’élève (de l’ordre d’une centaine de degrés), obturant ainsi l’ouverture et fournissant une résistance au feu de l’ordre d’une heure.

Grille coupe-feu.

Principes de base de la ventilation

 

© Architecture et climat 2023.

La qualité d’air intérieur dépend notamment de :

  1. L’air extérieur
  2. Le mobilier
  3. Les produits et équipements de construction
  4. La ventilation
  5. Le comportement des usagers

Pourquoi faut-il ventiler ?

Pour maitriser l’énergie

La ventilation hygiénique fait partie du trio indissociable formé avec l’étanchéité à l’air et l’isolation thermique permettant le bon achèvement d’un bâtiment confortable et performant énergétiquement. L’un ne va pas sans l’autre. En effet, augmenter l’isolation sans penser aux pertes dues au niveau d’étanchéité à l’air du bâtiment n’a pas de sens… Et dès lors que le bâtiment est suffisamment étanche à l’air, il devient impératif de ventiler pour assurer une bonne qualité de l’air intérieur et garantir des ambiances intérieures confortables.

Pour garantir une bonne qualité de l’air intérieur

Ainsi, l’être humain passe entre 80% et 90% de son temps dans un espace intérieur clos et y respire de l’air intérieur bien souvent plus pollué que l’air extérieur. Pour évacuer ces polluants présents dans l’air et garantir une bonne qualité de l’air pour notre confort respiratoire et notre santé, il est nécessaire de ventiler les locaux dans lesquels nous vivons. De même, il peut être nécessaire d’évacuer le surplus d’humidité des bâtiments afin d’éviter tous dégâts dus à la condensation et garantir la bonne santé du bâtiment autant que celle des occupants.

Pour oxygéner le bâtiment

Dès lors que le bâtiment est un tant soit peu étanche à l’air et que les appareils de combustion se trouve à l’intérieur du volume protégé, il devient nécessaire d’assurer l’alimentation en air et donc en oxygène du bâtiment pour permettre la combustion utile au système de chauffage.


Comment ventiler ?

Pour atteindre les débits d’air et les renouvellements d’air prévus par les normes ou ceux nécessaires afin de garantir le confort respiratoire et la santé des occupants et du bâtiment, un système de ventilation hygiénique de base doit prévoir :

  • une amenée d’air frais dans les locaux dits « secs » : bureaux, salle de réunion, salle de séjour, chambre…
  • une évacuation de l’air vicié et humide dans les locaux dits « humides » : sanitaires, vestiaires, cuisine, salle de bain…
  • un transfert de l’air des locaux secs aux locaux humides
  • une gestion efficace pour garantir les débits voulus tout en limitant les pertes énergétiques

Les locaux où l’air doit être fournit doivent donc disposer d’une alimentation en air et ceux où l’air doit être enlevé, d’une extraction. Celles-ci peuvent être naturels (simple ouverture vers l’extérieur) ou mécanique (équipée d’un ventilateur). Ceci donne lieu à une classification des systèmes de ventilation en 4 modes principaux :

Évacuation Alimentation
Naturelle Mécanique

Naturelle

Système A ou Ventilation naturelle Système B ou Simple flux par insufflation

Mécanique

Système C ou Simple flux par extraction
Système D ou Double flux

Les dénominations A, B, C et D proviennent de la norme NBN D50-001 qui traitent des dispositifs de ventilation dans les bâtiments d’habitation et sont donc propres au milieu résidentiel. Cette norme distingue également trois type d’ouverture nécessaire à la ventilation correcte des locaux :

OAR

Ouverture d’amenée d’air réglable ou entrée d’air naturelle comportant au minimum 3 positions de réglage entre la position fermée et l’ouverture maximum (grille, vasistas, …).

OER

Ouverture d’évacuation d’air réglable ou évacuation naturelle d’air comportant au minimum 3 positions de réglage entre la position fermée et l’ouverture maximum (conduit vertical), la position fermée laissant passer un débit de fuite de 15 à 25 % du débit en position complètement ouverte.

OT

Ouverture de transfert ou ouverture permettant le transfert naturel d’air entre deux locaux (grille, interstice sous les portes, …)

Quels types de ventilation ?

  • La ventilation naturelle se fait par les interstices (infiltration) et par les ouvertures (ventilation) du bâtiment. L’air circule sous l’effet du vent, des différences de températures et des jeux de pressions. L’ouverture des grilles, bouches ou fenêtres peut se faire manuellement ou mécaniquement.
  • La ventilation mécanique utilise des composants motorisés, ventilateurs, pour forcer la circulation l’air à l’intérieur du bâtiment. On parle de simple flux par extraction si le ventilateur sert à faire sortir l’air du bâtiment, de simple-flux par insufflation s’il sert à faire entrer l’air ou de double flux si le système combine les deux.
  • La ventilation hybride correspond à une ventilation naturelle assistée ou remplacée mécaniquement sur certaines périodes de fonctionnement.
  • La ventilation de base consiste à alimenter le bâtiment en air frais en permanence durant les activités normales.
  • La ventilation intensive est nécessaire en cas d’occupation et de besoins particuliers comme une surchauffe exceptionnelle, un ensoleillement intensif, des activités exceptionnellement polluantes, … afin que le climat reste dans des limites acceptables.

Exemple de ventilation naturelle – Cas de l’hébergement


© Architecture et climat 2023.

  1. Amenées d’air naturel
  2. Grille de transfert
  3. Bouche d’extraction
  4. Evacuation naturelle

L’air est introduit naturellement dans les chambres par des ouvertures en façade et évacué naturellement par des conduits verticaux dans les sanitaires.


Exemple de ventilation simple flux (pulsion) – Cas de l’hébergement

© Architecture et climat 2023.

  1. Prise d’air extérieur
  2. Filtre
  3. Préchauffage
  4. Ventilateur
  5. Gestion des débits
  6. Evacuation naturelle
  7. Bouche d’extraction
  8. Bouche de pulsion
  9. Grille de transfert

L’air est pulsé dans les chambres et évacué naturellement par des conduits verticaux dans les sanitaires.


Exemple de ventilation simple flux (extraction) – Cas d’une école

© Architecture et climat 2023.

  1. Amenée d’air naturelle
  2. Grille de transfert
  3. Gestion des débits
  4. Ventilateur
  5. Bouche d’extraction
  6. Conduit

L’air est introduit naturellement dans les classes par des ouvertures en façade et évacué mécaniquement (en tout ou en partie) dans les sanitaires.


Exemple de ventilation double flux – Cas d’un immeuble de bureaux

© Architecture et climat 2023.

  1. Prise d’air extérieur
  2. Filtre
  3. Préchauffage
  4. Ventilateur
  5. Gestion des débits
  6. Bouche d’extraction
  7. Conduits
  8. Grille de transfert

L’air est pulsé dans les bureaux évacué mécaniquement (en tout ou en partie) dans les sanitaires.

Luminaires intérieurs pour tubes fluorescents

Luminaires intérieurs pour tubes fluorescents


Luminaires ouverts à ventelles

Luminaires ouverts à ventelles droites

Les ventelles d’un luminaire ont pour but de limiter la vue directe des lampes à partir d’un certain angle de vision appelé angle de défilement. Le contrôle de la diffusion de la lumière par ces ventelles (dans le sens longitudinal du luminaire) et par le réflecteur (dans le sens transversal) déterminera la luminance du luminaire, c’est-à-dire sa brillance, pour chacun des angles sous lequel on le regarde. La norme EN 12464-1 spécifie l’angle de défilement minimum en fonction de la luminance de la lampe.

Luminaires ouverts à ventelles paraboliques (basse luminance)

Pour limiter l’éblouissement via les écrans d’ordinateur, les luminaires performants présentent une luminance moyenne faible pour des angles ϒ supérieurs à leur angle de défilement (voir illustration ci-après). Ils sont caractérisés par des optiques en aluminium équipées de ventelles symétriques et de forme parabolique. Celles-ci permettent un contrôle de la lumière qui évite les réflexions sur les écrans d’ordinateur verticaux ou légèrement inclinés ; ce que ne permettent pas des ventelles planes. On les appelle généralement luminaire « basse luminance ».

Pour les luminaires éclairant des postes de travail avec équipement de visualisation , la norme EN 12464-1 spécifie que pour des angles d’élévation supérieurs ou égales à 65°, la luminance moyenne des luminaires ne doit pas dépasser les valeurs reprises dans le tableau suivant, et ce en fonction de la luminance moyenne propre des écrans concernés :

État de luminance élevé de l’écran

Écran à haute luminance
L > 200 cd.m-2

Écran à luminance moyenne
L ≤ 200 cd.m-2

Cas A

(polarité positive et exigences normales concernant la couleur et le détail des informations affichées, comme pour les écrans utilisés dans les bureaux, pour l’éducation, etc.)

≤ 3 000 cd/m²

≤ 1 500 cd/m²

Cas B

(polarité négative et/ou exigences plus élevées concernant la couleur et le détail des  informations affichées, comme pour les écrans utilisés pour le contrôle des couleurs en conception assistée par ordinateur, etc.)

≤ 1 500 cd/m²

≤ 1 000 cd/m²

Contrôle de la luminance par des ventelles .

Comparatif ventelles plates et paraboliques .

Ventelle parabolique.

Il existe également des luminaires équipés de ventelles « crantées ou en sapin ». Ce ne sont pas, à proprement parlé, des luminaires « basse luminance ». Ils constituent un compromis entre les luminaires à ventelles planes et les luminaires à ventelles paraboliques.

Photo ventelles "crantées ou en sapin".

De plus, un luminaire présente souvent ce que l’on appelle des luminances de crête. Celles-ci, gênantes lorsque l’on travaille de façon intensive sur ordinateur, sont dues à la réflexion de la lumière émise par la lampe sur le dos des ventelles.

Luminance de crête.

Pour prévenir ces taches lumineuses, certains fabricants prévoient des ventelles dont le dos profilé réoriente la lumière réfléchie pour éviter tout éblouissement.

   

  

Exemples de ventelles profilées.

Attention ! Les luminaires de qualité médiocre présentent parfois des ventelles dont le dos n’est pas fermé ou peint en noir. Dans ce cas, les luminances de crête sont éliminées, mais au prix d’une importante perte de rendement !


Luminaires « lumière douce »

Diffusion de la lumière
avec un luminaire lumière douce.

Photo luminaire lumière douce.

Le luminaire dit « lumière douce » n’est pas à proprement parler un luminaire basse luminance. Son intérêt réside dans l’absence de point lumineux à forte luminance. Il est caractérisé par une luminance également répartie dans toutes les directions (de l’ordre de 1 500 cd/m²). Il est composé d’un diffuseur perforé et d’un réflecteur qui assure une diffusion uniforme de la lumière sur toute la surface du luminaire. Ce type de luminaire se rapproche d’un luminaire de type mixte (composante directe et indirecte) car une partie du flux lumineux est dirigée via le réflecteur vers les murs et le plafond, générant une répartition agréable de la lumière vers les parois du local.
Le rendement total de ce luminaire atteint 70 %. Il se divise en un rendement inférieur de 50 % et un rendement supérieur de 20 %.

Photo luminaire lumière douce.

Leur gros inconvénient est que le diffuseur (appelé aussi paralume) devient rapidement un réceptacle à poussières et insectes morts. Il demande donc un entretien fréquent (ou une protection anti-mouche mais cette protection diminue encore le rendement du luminaire).

      

Répartition lumineuse dans un local avec luminaires direct
et avec lumière douce.

Remarque : certains luminaires présentant un diffuseur fermé en plexiglass peuvent procurer un résultat similaire à celui de  luminaires « lumière douce » :

 


Luminaires fermés

Pour leur garantir un degré d’étanchéité (classe IP) ou de protection au choc (classe IK) plus important, le luminaire peut être fermé par un diffuseur ou protecteur translucide. Celui-ci peut être en :

Méthacrylate.

Polycarbonate.

Verre trempé.

Le polycarbonate injecté ou le verre trempé sont nettement plus résistants aux chocs (résistance supérieure à 6 joules) que le méthacrylate (résistance de l’ordre de 0,225 .. 0,5 joules).

De plus parmi les diffuseurs en polycarbonate, le polycarbonate injecté (moulé par injection) sera nettement plus résistant que le polycarbonate thermoformé (moulé par emboutissage), ce dernier ne permet pas non plus un contrôle optimal de la transmission lumineuse.

Le polycarbonate jaunit avec le temps s’il ne possède pas de protection contre les UV. Le méthacrylate et le verre ont, quant à eux, la réputation de ne pas s’altérer.
Contrairement au passé (anciens luminaires à diffuseur opalin), les luminaires fermés actuels peuvent présenter des rendements supérieurs à 70 %, voire 80 %.


Mode de pose

Encastré

Les luminaires à encastrer sont utilisés avec un faux plafond démontable.

Pour chaque type de luminaire, il existe différents modèles pouvant s’adapter à différents types et dimensions de faux plafonds.

Luminaires encastrés dans un faux plafond en dalles de laine de roche.

Luminaires encastrés dans un faux plafond fixe (ex : faux plafond en plaques de plâtre).

Dans les plafonds fixes, l’emplacement des luminaires doit être prévu dès la conception. En rénovation, les luminaires encastrés ne seront donc utilisés qu’avec des faux plafonds démontables (ou si le nouveau luminaire a les mêmes dimensions ou couvre l’ouverture dans le plafond).

Apparent

Les luminaires de type apparent sont utilisés avec tous types de plafonds.

En  rénovation, ils sont en principe utilisés lorsqu’on ne dispose pas d’un faux plafond, ou lorsque le faux plafond est fixe (ex : faux plafond en plaques de plâtre).

Suspendu

Photo luminaire suspendu.

Les luminaires peuvent être suspendus au plafond soit par des câbles, soit par des tubes qui contiennent en même temps l’alimentation électrique.

 Cas particulier : les rails industriels

Photo rails industriels.

On trouve chez les fabricants, des luminaires précâblés pouvant se raccorder par encliquetage immédiat sur des rails modulaires. Ils conviennent aussi bien pour les lignes continues de luminaires (luminaires disposés les uns derrière les autres, sans espace entre eux) que pour les lignes discontinues.

LuminaireRail2.jpg (9262 octets)

Il existe des rails précâblés permettant une commande individuelle ou par groupe de luminaires, grâce à des modules adressables intégrés.


Matériaux utilisés pour le réflecteur et les ventelles

Les matériaux utilisés influencent les caractéristiques photométriques des luminaires (rendement, luminance).

D’une manière générale, grâce à un meilleur contrôle de la diffusion de lumière, les optiques miroitées ont des rendements lumineux nettement supérieurs et présentent moins de risques de réflexion sur les surfaces brillantes que les optiques peintes (en blanc ou gris). En effet, les optiques mates présentent une surface ne contrôlant aucune réflexion. Elles sont de ce fait caractérisées par une luminance plus importante.

Parmi les optiques miroitées, on rencontre les réflecteurs spéculaires (aluminium poli ou brillanté), ou semi-spéculaires (aluminium satiné ou martelé). Pour les réflecteurs en tôle peinte en blanc ou en matériau plastique, on parlera de réflecteur diffusant.

    Schéma principe réflecteurs spéculaires, semi-spéculaires.    

Aluminium brillanté

Photo luminaires aluminium brillanté.   

L’aluminium brillanté offre la plus faible luminance propre. Cependant, les réflexions parasites de l’environnement dans le luminaire (on s’y voit presque comme dans un miroir) peuvent être désagréables. En outre, son encrassement est plus rapidement perceptible.

Aluminium martelé

Photo luminaires aluminium martelé.

L’aluminium martelé est surtout utilisé dans l’industrie, car il est nettement moins sensible à l’encrassement que les deux matériaux cités ci-dessus.


Le prix des luminaires

Il nous est IMPOSSIBLE de donner le prix d’achat du matériel d’éclairage.

Le prix remis par le fabricant ou le grossiste sera différent s’il s’agit d’une petite ou d’une grosse commande. Il sera fortement réduit pour un bon client ou pour un client qui représente un marché potentiel important. Il pourra aussi être fort avantageux si le fabricant, en concurrence avec une autre marque, veut absolument le marché.

Si le client n’a pas d’équipe pour placer l’installation, il fait alors appel à un installateur, qui, de la même façon, aura de meilleurs prix pour une marque plutôt que pour une autre.

Dans cette politique de marché, les seuls prix comparables sont les prix bruts.

Les fabricants ont des prix bruts sur lesquels ils accordent une remise. Cette remise peut atteindre 50 %. Chaque intermédiaire prendra sa part sur cette remise. Le prix résultant sera le prix net accordé au client. Suivant le nombre d’intermédiaires, la différence entre le prix brut et le prix net sera plus ou moins importante.

Note : Le prix des luminaires doit toujours être mis en parallèle avec les frais d’entretien et les frais de consommation électrique dans une vision globale d’utilisation.


Les luminaires pour chambre d’hôpital

Le plus souvent, l’éclairage des chambres est réalisé à partir d’une gaine murale à usages multiples (matériel standard et modulaire chez les fabricants). Ce qui facilite l’utilisation de divers dispositifs requis à proximité du lit :

  • éclairage général indirect,
  • éclairage direct de lecture,
  • éclairage d’examen obtenu en combinant éclairage de lecture et général,
  • éclairage de veille,
  • courants forts,
  • courants faibles,
  • fluides médicaux.

Des luminaires semblables existent également non intégrés dans une gaine technique générale. Ils comprennent seulement un éclairage général indirect et une liseuse. Ceux-ci s’adaptent à des centres d’hébergement tels que des maisons de retraite.


Les luminaires pour ambiance explosive

Photo luminaires pour ambiance explosive.  Photo luminaires pour ambiance explosive.

Les luminaires pour ambiance explosive, dénommés aussi -luminaires sont équipés pour éviter des températures excessives et l’apparition d’étincelles à l’intérieur ou sur le matériel électrique ou encore pouvant supporter une explosion interne sans transmission à l’ambiance environnante.

Ces luminaires utilisent par exemple des lampes fluorescentes spéciales à un seul contact électrique de chaque côté de la lampe et fonctionnant sans starter.

Les luminaires doivent répondre aux exigences de la norme EN 50014 et disposer d’un certificat de conformité délivré par un organisme agréé. Les différents modes de protection sont définis par les normes européennes EN 50019, 50018 et 50017. Chaque luminaire doit être spécifiquement adapté à l’ambiance particulière rencontrée (type de gaz ou de poussières déflagrantes rencontrés). Il faut donc vérifier auprès du fabricant si le luminaire choisi répond bien aux besoins spécifiques.


Protection contre les bris de lampe

Dans certains espaces fonctionnels, par exemple des cuisines industrielles, il est souhaitable, pour des raisons de sécurité et d’hygiène, de se protéger contre tout risque de projection provenant du bris d’une lampe.

Cette protection peut être réalisée par exemple grâce à un film synthétique entourant les tubes fluorescents. En cas de bris de la lampe, les morceaux ne s’éparpillent pas. Ces lampes avec film synthétique (PET) ne sont cependant pas recyclables.

Une alternative est de prévoir des luminaires fermés, équipés de sources recyclables (p.ex. lampes fluorescentes sans film synthétique).

Free-chilling

Free-chilling


Principe de base

Le principe de base est simple

Lorsque la température extérieure descend sous les 8 à 10 °C, on peut fabriquer de l’eau glacée sans utiliser le groupe frigorifique. L’eau est directement refroidie par l’air extérieur et la machine frigorifique est mise à l’arrêt.

L’économie d’énergie est évidente ! La rentabilité du projet est d’autant plus élevée que les besoins de refroidissement sont importants en hiver et que l’installation s’y prête. Étudions cela en détail.

Qu’est-ce qu’une installation adaptée au free-chilling ?

Au départ, il faut que des besoins de froid soient prévus en hiver.

L’intérêt est augmenté si les échangeurs des unités terminales qui seront choisis travaillent à « haute » température : ce sera le cas de plafonds froids (régime 15-17 °C), de poutres froides ou de ventilos-convecteurs surdimensionnés pour travailler au régime 12-17 °C ou 14-19 °C,… À noter qu’un tel dimensionnement diminue les pertes du réseau et la consommation liée à la condensation de la vapeur d’eau contenue dans l’air des ambiances, ce qui amplifie l’économie d’énergie.

Si l’installation demande une puissance de refroidissement faible en mi-saison ou en hiver (de l’ordre de 50 W/m²), on pourrait faire travailler les plafonds froids au régime 17° – 19 °C, ce qui permet un refroidissement par l’air extérieur tant que la température de l’air est inférieure à 14 °C. On peut alors imaginer une modulation de la température de consigne de l’eau des plafonds froids en fonction de la température extérieure.

Enfin, le projet se présente très favorablement si un condenseur à eau est prévu : on pourra utiliser la tour de refroidissement pour refroidir l’eau glacée directement par l’air extérieur. Dans la tour, grâce à l’évaporation partielle de l’eau, la température de l’air extérieur sera encore diminuée. Ainsi, de l’air à 15 °C et 70 % HR permet de créer de l’eau de refroidissement à 12° (limite basse théorique appelée température « bulbe humide »). Malheureusement, un échangeur sera nécessaire entre le circuit de la tour (eau glycolée) et le circuit d’eau glacée du bâtiment. Une partie de l’avantage est donc perdu…

Le problème du gel…

De l’eau glacée refroidie par l’air extérieur pose le problème du gel dans la tour. La solution la plus courante est l’addition de glycol, mais :

  • le glycol coûte cher,
  • le glycol diminue les capacités d’échange thermique et augmente la densité du liquide, ce qui entraîne une augmentation de puissance des pompes,
  • en général, on limite le circuit glycol au dernier tronçon en contact avec l’extérieur (l’eau de la boucle d’eau glacée n’est pas glycolée car, en cas de vidange, c’est l’entièreté du circuit qui est à remplacer),
  • un échangeur supplémentaire doit alors être prévu, entraînant une consommation électrique liée à sa perte de charge et un écart de température qui diminue la période de fonctionnement du free-chilling…
  • attention lorsque l’on rajoute de l’eau ultérieurement…

Il est aussi possible de placer des cordons chauffants (mais peut-on protéger totalement ainsi une tour ?) ou de prévoir un circuit de chauffage spécifique qui se met en place en période de gel, mais on risque de manger le bénéfice !

Le free-chilling : une solution miracle pour toutes les installations ?

Certainement pas. De nombreuses contraintes apparaissent.
Quelques exemples :

  • Lorsque l’installation travaille à charge partielle, il y a intérêt à ce que la température moyenne de l’eau « glacée » soit la plus élevée possible pour favoriser l’échange avec l’air extérieur. On appliquera donc une régulation des échangeurs par débit variable pour augmenter l’écart de température entre départ et retour.
  • Une tour de 300 kW pèse 3 à 4 tonnes et une tour de 1 000 kW pèse 9 à 12 tonnes, ce qui génère parfois des frais d’adaptation du génie civil.
  •  …

Adapter cette technique nécessite donc toujours une étude particulière (cadastre des énergies de froids prévues avec leur niveau de température, répartition été/hiver, …) pour apprécier la rentabilité.

Mais il est en tous cas impératif d’y penser lors d’une nouvelle installation !


Schémas de réalisation

Différents systèmes de refroidissement par free-chilling sont possibles :

  • via un aérorefroidisseur à air spécifiqueDeux schémas sont possibles :
> Soit un montage en série avec l’évaporateur, où l’aérorefroidisseur est monté en injection (la température finale est alors régulée par la machine frigorifique, qui reste en fonctionnement si la température souhaitée n’est pas atteinte).

> Soit par un montage en parallèle avec basculement par une vanne à 3 voies en fonction de la température extérieure (aucune perte de charge si la machine frigorifique est à l’arrêt mais fonctionnement en tout ou rien de l’aérorefroidisseur).
  • via un appareil mixteCertains fabricants proposent des appareils qui présentent 2 condenseurs : un échangeur de condensation du fluide frigorifique et un aérorefroidisseur pour l’eau glacée, avec fonctionnement alternatif suivant le niveau de température extérieure (attention à la difficulté de nettoyage des condenseurs et aux coefficients de dilatation différents pour les 2 échangeurs, ce qui entraîne des risques de rupture).
  • via la tour fermée de l’installationDans le schéma ci-dessous, l’installation fonctionne sur base de la machine frigorifique. Lorsque la température de l’air extérieur est suffisamment froide, la vanne 3 voies bascule et l’eau glacée prend la place de l’eau de réfrigération du chiller. Dans une tour fermée, l’eau n’est pas en contact direct avec l’air extérieur; c’est un circuit d’eau indépendante qui est pulvérisée sur l’échangeur et qui refroidit par évaporation. Mais le problème de la protection au gel reste posé : il est difficile d’envisager de mettre du glycol dans tout le réseau d’eau glacée (échange thermique moins bon, densité plus élevée donc diminution des débits, …) .
  • via la tour ouverte de l’installationDans ce cas, l’eau glacée est pulvérisée directement face à l’air extérieur. Elle se charge d’oxygène, de poussières, de sable,… Ces impuretés viennent se loger dans les équipements du bâtiment (dont les vannes de réglage des ventilos !). Les risques de corrosion sont tels que cette solution est à proscrire.
  • via un échangeur à air placé devant les orifices d’aspiration d’une tour de refroidissement Ceci permet de réutiliser les ventilateurs de la tour mais crée une perte de charge permanente.
  • via un échangeur à plaques traditionnel L’échangeur se place entre le réseau d’eau glacée et le circuit de la tour de refroidissement. Cette solution est simple, elle minimise la présence du glycol dans le circuit de la tour mais, en plus de l’investissement à réaliser, elle entraîne un écart de température supplémentaire de minimum 2°C dans l’échangeur entre l’eau glacée et l’eau de la tour, ce qui diminue la plage de fonctionnement du refroidissement par l’air extérieur. C’est le choix qui a été fait au Centre Hospitalier du Bois de l’Abbaye.

L’installation de free-chilling au Centre Hospitalier du Bois de l’Abbaye

Monsieur Tillieux, gestionnaire technique de l’hôpital, avait conscience que des besoins de froid existaient durant toute l’année, donc également pendant l’hiver :

  • des cabinets de consultation installés dans les niveaux inférieurs à refroidir en permanence.
  • ainsi que des locaux techniques utilisant le réseau glacée en hiver (salle de radiographie, blocs opératoires, salle informatique,…).

Profitant de la rénovation d’une tour de refroidissement, il adopta la technique du free-chilling sur le circuit d’eau glacée. Il adapta également les émetteurs pour que ceux-ci puissent travailler au régime 12-17°C. Il favorisa le refroidissement nocturne des locaux, ce qui ne crée pas d’inconfort pour les occupants et valorise mieux le free-chilling puisque la température est plus basse la nuit.

En collaboration avec la société de maintenance, il adopta le schéma de principe suivant :

Le schéma de gauche représente le circuit classique de refroidissement de l’eau glacée dans l’évaporateur. L’eau du condenseur est refroidie dans la tour de refroidissement.

Schéma groupe frigo en fonctionnement.Schéma groupe frigo à l'arrêt et free-chiling.

Sur le premier schéma, le groupe frigo est arrêté et l’eau glacée est by-passée dans un échangeur. L’eau de refroidissement est envoyée directement dans la tour de refroidissement.

Un jeu d’électrovannes permet le basculement d’un système à l’autre, dès que la température extérieure descend sous les 8°C. Le dimensionnement de la tour a été calculé en conséquence.

Problème rencontré lors de la mise en route

Lorsque le système basculait du mode « free-chilling » vers le mode « machine frigorifique », celle-ci déclenchait systématiquement !

Pourquoi ? Un condenseur traditionnel travaille avec un régime 27/32°C par 10° extérieurs. Or en mode free-chilling, la température du condenseur est nettement plus basse. La pression de condensation aussi. Le détendeur ne l’accepte pas : il a besoin d’une différence de pression élevée (entre condensation et évaporation) pour bien fonctionner et laisser passer un débit de fluide frigorifique suffisant vers l’évaporateur. Le pressostat Basse Pression déclenche…

Solution ? Une vanne trois voies motorisée a été installée : lors du ré-enclenchement de la machine frigo, le débit d’eau de la tour était modulée pour s’adapter à la puissance de refroidissement du condenseur.

Quelle rentabilité ?

Faute d’une mesure effective, nous allons estimer l’économie réalisée par l’arrêt du groupe frigorifique de 300 kW. Si le fichier météo de Uccle annonce 3.550 heures sous les 8°C, on peut estimer que le refroidissement effectif se fait durant 2.000 heures.

Sur base d’un COP moyen de 2,5, c’est donc 120 kW électriques qui sont évités au compresseur. Une consommation supplémentaire de 5 kW est observée pour le pompage de l’eau au travers de l’échangeur et dans la tour. Soit un gain de 115 kW durant 2 000 heures. Sur base de 0,075 €/kWh, c’est 17 000 € qui sont économisés sur la facture électrique.

L’investissement a totalisé 60 000 €, dont moitié pour la tour fermée de 360 kW, le reste en tuyauteries, régulation et génie civil.

Le temps de retour simple est donc de l’ordre de 4 ans.

Séquences de régulation de la tour

  • si T° < 2°C, échange eau-air non forcé.
  • si 2°C < T°ext < 4°C, échange eau- air forcé.
  • si T°ext > 4°C, échange eau-air humide par pulvérisation.

Liaison chaude

Liaison chaude


Principe

En liaison chaude, les plats sont préparés en cuisine centrale et consommés dans les deux heures. De la cuisson à la consommation, pour éviter la prolifération des germes, la température des mets ne doit jamais être inférieure à 65 °C.

Deux cas peuvent se présenter :

  • Le self-service est contigu à la cuisine.
    Dans ce cas, après cuisson, les récipients sont maintenus au chaud à plus de 65 °C. À l’heure voulue, les mets sont conditionnés soit en portions individuelles, soit en plats collectifs, puis distribués immédiatement.
  • Des restaurants satellites plus ou moins éloignés sont à desservir.

Dans ce cas, dès la fin de la cuisson, les mets cuisinés sont conditionnés, soit en portions individuelles, soit en plats collectifs, puis disposés en containers isothermes. Un maintien à une température supérieure à 65 °C est obligatoire pendant toute la durée du stockage et du transport. Dans les restaurants satellites, le maintien à 65 °C est assuré par des équipements spécifiques : bain-marie, étuves, armoires de maintien en température. A l’heure voulue, les mets sont distribués.


Avantages

Les équipements sont relativement peu nombreux.

La cuisine n’engendre pas de changements dans les habitudes alimentaires des gens habitués à la cuisine traditionnelle.
Tout peut être préparé (steak, frites…)


Inconvénients

Il y a un risque de prolifération microbienne.

La consommation doit se faire un peu après la confection. Ce qui engendre des contraintes d’organisation et la capacité des équipements doit correspondre au nombre maximum de repas à préparer en deux heures avec un remplissage non optimal.

Tous les repas qui ne sont pas consommés dans la journée doivent être jetés.

Brûleurs gaz

Brûleurs gaz

Les différentes technologies de brûleurs gaz sont revues selon un ordre chronologique :

  • Au départ, on trouve les brûleurs atmosphériques associés aux chaudières atmosphériques au gaz. À l’heure actuelle, on ne conçoit plus de nouvelles installations au départ de cette technologie. En effet, les autres types de brûleurs présentent des avantages majeurs par rapport aux brûleurs atmosphériques. Néanmoins, ceux-ci se rencontrent encore dans des installations existantes. C’est pourquoi ils seront traités ci-dessous.
  • Plus tard, les brûleurs à air pulsé ont fait leur apparition permettant d’obtenir de meilleures performances énergétiques, essentiellement grâce à un plus grand potentiel de modulation en puissance et un meilleur contrôle de l’excès d’air.
  • Ultérieurement, les brûleurs à pré-mélange avec ventilateur se sont développés. Ils permettent d’atteindre un plage de modulation plus large que les brûleurs à air pulsé, et ceci, dès les faibles puissances installées. En outre, ils sont moins chers que les brûleurs pulsés.
  • Néanmoins, pour les niveaux de puissance plus importants (Pn > 1-3 MW), il sera inévitablement nécessaire de travailler avec ces brûleurs à air pulsé  (technologiquement, il est difficile d’atteindre ces niveaux de puissance par des chaudières gaz à pré-mélange).
  • De manière générale, il faut aussi mentionner que le brûleur pulsé et la chaudière sont deux éléments qui peuvent être achetés indépendamment (à partir du moment où l’on respecte les règles de compatibilité entre les deux parties). Par contre, les chaudières atmosphériques et à pré-mélange sont essentiellement des chaudières de type « unit », c’est-à-dire un ensemble indissociable. Par conséquent, les brûleurs pulsés permettent de changer de combustible (gaz/mazout) tout en gardant la même chaudière : seul le brûleur doit être modifié.

Les brûleurs atmosphériques

Les brûleurs atmosphériques sont des brûleurs gaz dans lesquels l’alimentation en air ne se fait pas par un ventilateur. L’air est entraîné dans un venturi par le jet de gaz au niveau d’injecteurs.

Schéma principe brûleur atmosphérique.

Principe de fonctionnement d’un brûleur gaz atmosphérique.

Le rétrécissement dans le tube mélangeur augmente la vitesse du gaz (voir la chambre de mélange dans la figure ci-dessus). Cela crée une dépression qui aspire « naturellement » une partie de l’air comburant (appelée « air primaire ») et le mélange au gaz.

Le mélange airprimaire-gaz débouche au niveau d’une série de trous (circulaires, pentes, …) disposés sur une ou plusieurs rampes.

L’allumage du mélange se fait au moyen d’une veilleuse ou d’un système électrique (étincelle ou électrode incandescente). Le complément d’air nécessaire à la combustion (appelé « air secondaire ») est aspiré au niveau de la flamme par induction due à la force ascensionnelle (c’est-à-dire par convection naturelle).

Electrode incandescente d’allumage d’un brûleur atmosphérique.

Dans ce type de brûleur, le pourcentage d’air primaire varie de 40 à 50 %.

Toutes les parties du brûleur (injecteurs, tube de mélange, rampes, …) doivent être adaptées les unes aux autres pour permettre une combustion stable, sans décrochement et sans retour de flamme. C’est pourquoi les possibilités de réglage sur ce type de brûleur sont nulles.

Le gros avantage des chaudières équipées d’un brûleur atmosphérique (puissance jusqu’à 1 MW) est la simplicité du système. Les gros désavantages sont :

  • l’absence de fermeture automatique du foyer à l’arrêt du brûleur. Il en résulte des pertes à l’arrêt importantes pour les chaudières ;
  • l’excès d’air trop important provoquant un mauvais rendement de combustion ;
  • la manque de modulation (fonctionnement en « tout ou rien »)
  • une production importante de NOx.

Composants d’un brûleur gaz à air pulsé

Schéma composants d'un brûleur gaz à air pulsé.

Brûleur gaz à air pulsé

  1. Moteur.
  2. Boîte de contrôle.
  3. Transformateur.
  4. Pressostat mini air (brûleur 1 allure).
  5. Pressostat mini air (brûleur 2 allures).
  6. Electrodes.
  7. Moteur volet d’air.
  8. Electrovanne (2ème allure).
  9. Electrovanne de sécurité.
  10. Pressostat mini gaz.
  11. Electrovanne (1ère allure).
  12. Régulateur de pression.

Le brûleur gaz à air pulsé a pour fonction de fournir, dans des proportions correctes, l’air comburant et le gaz pour permettre une combustion efficace. Le gaz et l’air comburant sont mélangés au niveau de la tête de combustion, un peu en aval de la combustion. Il n’y donc pas véritablement de pré-mélange. L’alimentation en air est assurée par un ventilateur qui puise l’air ambiant de la chaufferie. L’alimentation en gaz est assurée par une électrovanne et des régulateurs de pression.

Principe de fonctionnement d’un brûleur gaz à air pulsé.


Composants d’un brûleur gaz à air pulsé : vannes gaz et réglage du débit

Le Champ magnétique créé par le bobinage sous tension attire le noyau mobile qui porte le clapet de fermeture.

Électrovanne hors tension (fermée).

Électrovanne sous tension (ouverte).

  1. Bobinage.
  2. Armature concentrant le champ magnétique.
  3. Noyau mobile.
  4. Clapet de fermeture.
  5. Siège du clapet.
  6. Corps de vanne.
  7. Ressort.
  8. Partie métallique non conductrice de champ magnétique.

La pression d’alimentation de gaz est constante, le réglage du débit nominal se fait, par étranglement, avant l’entrée dans la tête du brûleur :

  • soit par un « té » de réglage indépendant de la vanne gaz ;
  • soit par un boisseau incorporé à la vanne gaz ;
  • soit par un limitateur de déplacement du clapet de la vanne gaz.

Dans les brûleurs à deux allures, les électrovannes sont composées de deux bobinages et de deux noyaux mobiles.

Il existe également des vannes hydrauliques dont le clapet est manœuvré par un piston à huile. L’avantage de ce système est une ouverture plus progressive liée à la vitesse de la pompe et une fermeture plus rapide liée à la pression du ressort plus importante que pour les électrovannes. Un démarrage plus lent peut être obtenu au moyen de deux vannes magnétiques montées en parallèle. Les vannes gaz comportent un contact de fin de course qui interdit le démarrage du brûleur si le clapet n’est pas correctement fermé.

La puissance du brûleur

La puissance « P » du brûleur dépend du débit « qgaz » de gaz. Celui-ci peut être mesuré au niveau du compteur gaz. En première approximation, en négligeant l’influence de la pression et de la température sur le débit ainsi que la variation du pouvoir calorifique du gaz distribué, on peut déterminer la puissance du brûleur par :

P [kW] = qgaz [m³/min] x 60 [min/h] x 10 [kWh/m³]


Composants d’un brûleur gaz à air pulsé : l’alimentation en air

L’air nécessaire à la combustion est amené dans le brûleur au moyen d’un ventilateur centrifuge. Ce ventilateur doit assurer le débit d’air nécessaire à la combustion en vainquant la résistance que rencontre l’air jusqu’à la flamme, la résistance que rencontrent la flamme et les fumées dans la chambre de combustion.

Le ventilateur tournant à vitesse constante, un registre d’air permet de régler le débit d’air nominal garantissant une combustion correcte (il faut 10 .. 13 m³ d’air pour brûler 1 m³ de gaz). Ce registre peut être installé à l’aspiration ou au refoulement du ventilateur. Dans le cas d’un brûleur pulsé une allure, la puissance est constante et égale à la puissance nominale. Le débit d’air nécessaire reste égal au au débit d’air nominal réglé par le clapet. Comme on ne doit pas changer de débit d’air, aucun dispositif supplémentaire n’est nécessaire pour modifier celui-ci.

Le réglage manuel du registre d’air d’un brûleur une allure se fait souvent au moyen d’un secteur gradué.

Pour limiter le balayage du foyer de la chaudière lorsque le brûleur est à l’arrêt et donc l’évacuation de sa chaleur par tirage naturel vers la cheminée (ce que l’on appelle les pertes par balayage), les fabricants prévoient sur les brûleurs une fermeture automatique du registre d’air lorsque le brûleur est à l’arrêt :

  • soit avec un servo-moteur électrique assurant l’ouverture et la fermeture ;
  • soit avec un contrepoids (qui peut être le propre poids du registre) ou un ressort. Dans ce cas, la dépression ouvre le registre et le flux d’air le maintient en position ouverte.

Clapet par servomoteur qui assure la fermeture de l’arrivée d’air à l’arrêt.

Dans les brûleurs pulsé 2 allures, il faut adapter le débit d’air aux deux niveaux de puissance. La détermination de la position du registre d’air peut, entre autres, être réglée au moyen de cames dans le cas d’un système de réglage mécanique.

La came bleue commande la fermeture totale à l’arrêt,
la came orange commande l’ouverture en première allure,
la came rouge commande l’ouverture en deuxième allure,
la came noire commande l’ouverture de la vanne gaz de deuxième allure.
Un disque repère situé en bout d’arbre permet de visualiser les différentes positions d’ouverture.

Notons en outre que pour des raisons de sécurité, la pression d’air est contrôlée en permanence avant la tête de combustion par un (brûleur une allure) ou deux pressostats (brûleur 2 allures). En cas de défaut, le coffret de commande stoppe l’alimentation de gaz.

Dans le cas d’un brûleur pulsé modulant, le débit d’air est adapté de manière continue au débit de gaz (suivant le niveau de puissance souhaité). Cela peut se faire par un déplacement continu du registre d’air ou par une régulation basée sur la vitesse du ventilateur.


Composants d’un brûleur gaz à air pulsé : la tête de combustion

La tête de combustion du brûleur pulsé est constituée d’un embout ou gueulard qui guide la flamme. Celle-ci est allumée au moyen d’électrodes alimentées en haute tension, créant un arc électrique. La flamme est maintenue en position grâce au déflecteur. En effet, le flux d’air autour de ce dernier crée une dépression qui maintient la flamme en position.

     

Tête de combustion d’un brûleur gaz (gauche) et déflecteur (droite).

Le réglage de la tête de combustion, c’est-à-dire de la distance entre le déflecteur et l’embout, est essentiel au bon fonctionnement du brûleur en répartissant les débits d’air primaire (passant au centre du déflecteur) et d’air secondaire (passant à la périphérie). Il s’agit d’obtenir une vitesse de mélange air/combustible correcte. Une vitesse trop importante entraîne des difficultés d’allumage et d’accrochage de la flamme. Une vitesse trop lente provoque une combustion oscillatoire. Dans les 2 cas, il y a des risques d’accumulation de gaz dans la chaudière et donc d’explosion.

Photo brûleur gaz à air pulsé.

Les modèles de brûleur gaz à air pulsé se différencient pas la forme de la tête de combustion. On retrouve ainsi des tubes percés de trous ou de fente, des tubes à gaz, des dispositifs tourbillonneurs, des accroche-flammes à fentes ou trous, …


Composants d’un brûleur gaz à air pulsé :  dispositif de sécurité

Un contrôle continu de la flamme du brûleur est nécessaire pour arrêter ce dernier immédiatement en cas de défaut :

  • si la flamme n’apparaît pas quand le combustible est libéré ;
  • si la flamme disparaît en cours de fonctionnement ;
  • si une flamme parasite apparaît alors que le brûleur est en phase de démarrage.

De plus, le défaut doit être signalé par une alarme, qui avertit un technicien chargé du dépannage. Le but est d’éviter d’admettre du gaz dans une chaudière sans le brûler. L’allumage intempestif de ce gaz pourrait provoquer une explosion. Comme élément de détection de la flamme on utilise :

  • un thermocouple sensible à la chaleur de la flamme (système de détection lent utilisé sur les chaudières atmosphériques de moins de 70 kW ;
  • un détecteur infrarouge également sensible à la chaleur de la flamme ;
  • une cellule UV qui émet un signal électrique grâce à l’ionisation d’un gaz contenu dans la cellule, sous l’effet des rayons UV émis par les flammes gaz ;
  • une sonde d’ionisation. Cette sonde est sensible à la présence d’ions et d’électrons dans toute flamme. Il suffit dès lors d’essayer de faire passer un courant dans la flamme. Si le courant passe, c’est qu’il y a une flamme.

Composants d’un brûleur gaz à air pulsé : 1, 2 allures et modulant

On répertorie 4 modes de fonctionnement des brûleurs gaz pulsés :

  • en tout ou rien ;
  • en 2 allures ;
  • en tout ou peu progressivement ;
  • en modulation.

Brûleur pulsé « tout ou rien » (Pn < 100-150 kW)

On parle de brûleur tout ou rien lorsque pour toute demande de chaleur, le brûleur s’enclenche, fournit sa pleine puissance, et s’arrête lorsque les besoins sont satisfaits.

Les brûleurs tout ou rien se différencient par leur mode de démarrage : en pleine puissance, à débit limité et à petite allure.

Démarrage à pleine puissance

Ce type de brûleur est utilisé pour les puissances inférieures à 100 .. 120 kW. Lors de la demande de chaleur, le brûleur démarre directement à pleine puissance.

Démarrage à débit limité

Lors d’une demande de chaleur et grâce à un jeu d’électrovannes (2 vannes magnétiques ou bien d’une seule vanne à 2 étages), le brûleur démarre avec une puissance de l’ordre de 75 % et passe à sa pleine puissance après le temps de post-allumage. Cela permet d’atténuer l’onde de choc provoquée par l’allumage du combustible. Comme dans ce type de brûleur, le réglage du registre d’air est manuel, la phase initiale du démarrage se produit avec un excès d’air trop important et donc une combustion médiocre.

Démarrage à petite allure

Ce mode de démarrage repose sur le même principe que dans le cas précédent. Il s’en différencie cependant par la réduction plus importante de la puissance au démarrage. Il s’agit en fait de brûleurs 2 allures mais dont la commande ne permet pas le choix de l’allure en fonction des besoins. Le temps séparant l’allumage du passage à la deuxième allure est fixé (relais programmable).

Brûleur pulsé 2 allures (Pn entre 100-250kW)

En cas de demande de chaleur, le brûleur est enclenché en première allure (qui représente entre 40 et 60 % de la puissance nominale). Après un délai déterminé (relais programmable), le brûleur passe à pleine puissance sauf si le régulateur signale que cette pleine puissance n’est pas nécessaire. Dans ce dernier cas, la première allure est maintenue.

Lorsque le brûleur fonctionne en deuxième allure, il est possible que le régulateur estime que la pleine puissance n’est plus requise et le brûleur repasse en première allure. Si la puissance requise est inférieure à la puissance en allure réduite, le brûleur s’arrête. Dans le cas inverse, il repasse en deuxième allure.

Brûleur gaz 2 allures.

Brûleur gaz modulant.

Le brûleur 2 allures présentent des avantages énergétiques indéniables :

  • L’adaptation de la puissance aux besoins allonge le temps de fonctionnement du brûleur et diminue le nombre de cycles d’allumage source d’imbrûlés et d’émissions polluantes.
  • Les temps d’arrêt de la chaudière et donc les pertes du même nom sont moindres.
  • La diminution de la puissance du brûleur par rapport à la puissance de la chaudière augmente le rendement de combustion. En effet, la taille de l’échangeur augmente par rapport à la puissance de la flamme et donc les fumées sortent plus froides de la chaudière. Un gain de rendement de combustion de 2 .. 2,5 % est ainsi possible entre la petite allure (60 % de la puissance nominale) et la grande allure.

Brûleur pulsé « tout ou peu progressif »

Le principe de fonctionnement de ce type de brûleur est semblable à celui d’un brûleur 2 allures. Ce brûleur ne permet que 2 allures. Le passage de la première à la deuxième allure n’est cependant plus brutal, mais progressif (en un temps minimum de 30 secondes).

Si la demande de chaleur est inférieure à la puissance en première allure, le brûleur se met à l’arrêt. Si elle y correspond, le brûleur maintient son fonctionnement en première allure. Si elle en est supérieure, le brûleur passe progressivement en deuxième allure.

Brûleur pulsé modulant (Pn > 150kW)

Avec un brûleur modulant, toutes les allures de fonctionnement sont possibles, au-delà d’un minimum souvent de l’ordre de 30 %. Les débits d’air et de fuel sont réglés en continu en fonction de la puissance de chauffage requise, ce qui permet un fonctionnement quasi continu.

Brûleur gaz modulant.

Les avantages du brûleur modulant sont du même ordre que ceux du brûleur 2 allures. L’adaptation de la puissance est cependant encore plus fine, ce qui limite encore les temps d’arrêt d’un brûleur. La modulation a cependant ses limites. En effet, à basse puissance, le réglage de l’excès d’air devient difficile. C’est pourquoi les brûleurs modulants ne peuvent descendre en dessous d’une puissance de l’ordre de 30 % et à ce moment.


Brûleurs à prémélange (prémix)

Pour éviter les imbrûlés et la production de CO, les brûleurs atmosphériques doivent fonctionner avec un excès d’air important. Il en résulte une production importante de NOx.

L’évolution technologique de ces brûleurs conduit à ce qu’on appelle les brûleurs à prémélange. Dans ces brûleurs, l’air est mélangé au gaz dans une chambre de prémélange, avec ou sans l’aide d’un ventilateur. Dans le cas d’un brûleur à prémélange, le mélange est ensuite réparti sur une surface d’accrochage (par exemple, en treillis métallique) où se développe la flamme. Si tout l’air de combustion est fourni durant le prémélange (air primaire), on parlera de prémélange total tandis que si une fraction doit encore être fournie plus loin en aval (air secondaire), on parlera de prémélange partiel.

Brûleur à prémélange sans ventilateur

Brûleur à prémélange sans ventilateur et sa chaudière.

La technique de prémélange permet d’affiner le dosage entre l’air et le gaz et donc de diminuer l’excès d’air. De plus, la surface d’accrochage peut être étudiée pour augmenter la surface des flammes et diminuer leur longueur. Il en résulte une augmentation du rendement de combustion et une diminution des émissions polluantes (NOx).

  

Flamme d’un brûleur atmosphérique à prémélange, en forme de trèfle.

Brûleur à prémélange avec ventilateur

On pense essentiellement à ce type de brûleur lorsque l’on évoque les chaudières gaz à prémélange. On sous-entend que le brûleur fonctionne avec un ventilateur. La présence du ventilateur permet :

  • d’améliorer le mélange air/gaz par un meilleur contrôle du débit d’air ;
  • de vaincre les pertes de charge des brûleurs et des foyers dont l’échange est optimisé (notamment pour les chaudières à condensation) ;
  • de moduler la puissance du brûleur en faisant varier la vitesse du ventilateur ou en freinant le mélange air/gaz par un clapet. Typiquement, on peut atteindre des plages de modulation continue de puissance qui vont de 20 à 100 % de la puissance nominale. La plage est donc un peu plus large qu’avec les brûleurs à air pulsé.

Principe d’un type de brûleur à prémélange dans une chaudière à condensation. Dans ce cas-ci, le mélange air/combustible se fait en aval du ventilateur. Le clapet de régulation gaz piloté par un régulateur de pression permet d’adapter la quantité de combustible à la quantité d’air pulsée par le ventilateur. Une fois le mélange devenu homogène, la combustion a lieu dans la chambre.


Brûleurs low-NOx

Les derniers développements en matière de brûleur ont principalement visé à diminuer les émissions polluantes comme les imbrûlés, CO, NOx.

Idéalement lors d’une réaction de combustion, l’azote N2 contenu dans l’air comburant, est rejeté tel quel sans être modifié. Cependant, sous certaines conditions, il se combine avec l’oxygène pour former des NOx.

Non seulement ceux-ci peuvent être directement toxiques pour la santé, mais contribuent à la formation d’ozone, de smog et de pluies acides. Ils font également partie des gaz à effet de serre. Leur émission doit donc être réduite au minimum. On peut consulter la législation belge pour les performances minimales à atteindre pour les nouvelles chaudières en termes d’émission de NOx.

Les paramètres favorisant la production de NOx sont :

  • la température élevée de la flamme (supérieure à 1 200 °C) ;
  • l’excès d’air, c’est-à-dire la présence importante d’oxygène (O2) n’ayant pas réagi dans les fumées ;
  • le temps de séjour des atomes d’azote (N) dans la zone chaude de la flamme ;
  • une concentration plus élevée du combustible en N2.

Les deux premiers paramètres dépendent de la conception du brûleur, le troisième dépend de la conception de la chaudière.

Evolution de la production de NOx en fonction de la température de la flamme.

Brûleur pulsé « Low-NOx » par recyclage des gaz

Les technologies appliquées sont semblables pour les brûleurs pulsés gaz ou les brûleurs pulsés fuel.

Pour les brûleurs pulsés (fuel ou gaz), la technique la plus courante pour diminuer les émissions d’oxyde d’azote est le recyclage des gaz de combustion dans la tête du brûleur.

En fait, cela consiste à mélanger une partie des gaz de fumée à l’air comburant, dans le but de :

  • diminuer la température de la flamme, car même avec plusieurs centaines de degrés, les gaz brûlés sont plus froids que la flamme ;
  • réduire la concentration en oxygène du mélange ;
  • favoriser la vaporisation des combustibles liquides et de modifier favorablement les conditions de combustion.

La configuration aéraulique pour réaliser cette re-circulation des gaz varie selon les constructeurs. D’une manière générale, c’est l’impulsion de l’air de combustion en mouvement qui sert de force motrice au recyclage : un passage plus étroit au niveau de la tête de combustion provoque une accélération du flux de gaz. Cela génère une dépression et amorce la re-circulation des gaz de combustion.

On peut également encore descendre la température de la flamme en élargissant le front de flamme. Dans ce cas, on recherche ainsi à avoir une flamme en forme d’entonnoir, ce qui augmente sa surface de refroidissement et donc diminue sa température.

Par rapport au brûleur « classique », le brûleur Low-NOx à re-circulation interne des gaz de combustion présente les inconvénients suivants :

  • La re-circulation demande de l’énergie. La comparaison entre un brûleur à pulvérisation traditionnel et un brûleur Low NOx (le ventilateur et la chambre de combustion étant identiques) montre que la dépression au niveau la tête du brûleur Low NOx réduit la puissance calorique maximale et modifie les caractéristiques intrinsèques du brûleur.
  • La vitesse d’écoulement élevée suscite des turbulences à hauteur du venturi. Il peut en résulter un accroissement du niveau sonore.
  • La re-circulation des gaz de combustion dans la tête du brûleur entraîne un encrassement plus rapide des électrodes d’allumage. Un entretien préventif est dès lors nécessaire.

En revanche, un brûleur Low-NOx produit de 20 à 50 % d’émissions NOx en moins qu’un brûleur traditionnel.

              

 Brûleurs Low NOx (ici en version fuel) basés sur le principe de recirculation : la re-circulation s’effectue dans le foyer à hauteur de la tête de combustion. Une zone de dépression aspire à nouveau les gaz de combustion et les mélange à la flamme. La re-circulation peut également être externe.

Brûleurs à prémélange radiants ou rayonnants

Bien que la transition d’un brûleur atmosphérique à un brûleur à prémélange réduit considérablement l’émission de NOx (essentiellement, par un meilleur contrôle de l’excès d’air), les brûleurs rayonnants ou radiants vont encore plus loin dans l’optimalisation des émissions. Le but est de réduire au maximum la température de la flamme. Si la surface d’accrochage de la flamme est en matériau réfractaire (céramique ou acier inoxydable réfractaire), elle va absorber une partie de la chaleur de réaction et la restituer par rayonnement au foyer. La température de combustion s’en trouve abaissée sous 1 200 °C, ce qui réduit fortement la production d’oxydes d’azote (NO< 15 mg/kWh).

Exemple de brûleur radiant :

 

Une application de cette technologie est le brûleur hémisphérique radiant. Il est composé d’une grille en forme de demi-sphère. La grille est en acier inoxydable spécial réfractaire. Elle rougeoie et recède sa chaleur par rayonnement.

Schéma brûleur hémisphérique radiant.

Brûleur hémisphérique radiant (existe aussi en version plane) : le mélange air-gaz réparti sur la surface de combustion avec une vitesse très faible puisque cette surface est nettement plus importante que pour les brûleurs atmosphériques traditionnels. Le mélange brûle alors directement, pratiquement sans flamme visible et cède une partie de sa chaleur directement à l’élément réfractaire.


Synthèse sur la modulation en puissance pour les brûleurs gaz

Le potentiel de modulation des différentes approches a été évoqué précédemment. Néanmoins, pour des questions de clarté, ces propriétés sont résumées dans le tableau ci-dessous.

Puissance nominale Brûleur gaz atmosphérique Brûleur gaz à air pulsé Brûleur gaz à prémélange avec ventilateur
Pn < 100 – 150 kW Tout ou rien, voire deux allures

 

Tout ou rien Modulant (10 – 20 à 100 %).

 

Pn < 150 – 250 kW Deux allures
Pn >  150 – 250 kW Modulant (30 – 100 %)
Pn > ~ 1 MW Chaudières en cascade Chaudières en cascade.
Pn > ~ 3 MW Techniquement trop complexe Techniquement trop complexe.

On voit que pour les puissances faibles, le brûleur à air pulsé fonctionne en « tout ou rien » alors que le brûleur à prémélange offre déjà une large plage de modulation, de l’ordre de 10-20 % à 100 %. Pour les puissances plus élevées, typiquement au-delà d’~1 MW, il est techniquement difficile de réaliser des chaudières à prémélange. Par conséquent, pour pouvoir augmenter la puissance installée au-dessus de ce seuil, on travaille avec plusieurs chaudières à prémélange en cascade. En outre, ceci va améliorer les capacités de modulation de l’ensemble de l’installation et une meilleure sécurité d’approvisionnement. Néanmoins, au-delà de 3 chaudières montées en cascade, les installations deviennent difficiles à piloter et maintenir. À partir de 3 MW, on ne trouvera donc plus raisonnablement d’installations basées sur des chaudières/brûleurs à prémélange. En fait, les chaudières et brûleurs à air pulsé vont progressivement prendre le relais à partir des installations de 1-3 MW.

Exemple d’évolution du rendement avec la modulation en puissance : 

Évolution du rendement de combustion des brûleurs actuels en fonction de la modulation de sa puissance.

Pour les brûleurs pulsés modulants traditionnels (fuel ou gaz) (de 30 à 100 %) : dans un premier temps, lorsque la puissance du brûleur diminue (à partir de 100 % de puissance), la température des fumées diminue et le rendement augmente. À partir d’un certain moment, la diminution de la quantité de particules de combustible et leur dispersion imposent d’augmenter l’excès d’air pour éviter les imbrûlés. Le rendement diminue de nouveau.

Pour les nouveaux brûleurs gaz modulant à prémélange avec ventilateur  (de 10 ou 20 à 100 %) : le contrôle de la combustion permet de maintenir un excès d’air correct, sans production d’imbrûlé, sur toute la plage de modulation. On obtient donc une plage de modulation plus grande (~ 10 à 100 %) avec une qualité de combustion constante et des fumées qui se refroidissent de plus en plus (pour arriver à la condensation).

Pour les brûleurs gaz atmosphérique 2 allures (sans ventilateur) (50 % / 100 %) : l’air de combustion est amené dans la chaudière naturellement. L’excès d’air n’est donc pas contrôlé. Si la puissance du brûleur diminue de moitié, ce n’est pas le cas de la quantité d’air aspirée. L’excès d’air augmente donc et le rendement chute.

   

Exemple de nouveau brûleur pulsé modulant (10 à 100 %) à prémélange : la modulation se fait, par exemple, grâce à un cylindre coulissant découvrant progressivement la tête de combustion.

Salamandre électrique

Salamandre électrique


Principe

Des résistances radiantes cuisent par rayonnement, comme au-dessus de la braise.

La salamandre gratine rapidement des plats souvent en finition.


Description

Une salamandre comporte :

  • Des résistances électriques blindées et des résistances électriques nues disposées dans des tubes de quartz qui sont placés en voûte,
  • des briques infrarouges,
  • des réflecteurs généralement en acier inoxydable assurant une bonne répartition des rayons infrarouges,
  • une grille coulissante ou non, réglable en hauteur permettant différents types de finition,
  • un plateau amovible ou non recueillant les déchets et les graisses.


Commande et régulation

La commande de l’appareil est assurée par un commutateur à plusieurs positions.


Gamme

Elle est peu étendue. La puissance installée varie de 3 à 10 kW pour une surface de cuisson de 17,5 à 35 dm2.


Utilisation

Les salamandres sont réservées aux finitions des plats à glacer, à dorer, à gratiner.

Cet appareil est généralement utilisé en restauration commerciale.

En restauration rapide, on peut utiliser des appareils combinés (grill-salamandre, rôtissoire-salamandre).

Distribution de vapeur

Distribution de vapeur

La distribution de vapeur qu’elle soit centrale ou locale doit être bien pensée de manière à assurer les débits de vapeur à n’importe quel moment du cycle de stérilisation.


Les conduites

Photo stérilisation - conduites.

Le réseau de distribution est digne de celui d’une centrale électrique; les conduites vont dans tous les sens. Elles sont en acier inoxydable ou en cuivre.

Ce réseau véhicule de la vapeur à haute température (134 °C) et sous haute pression (3 bar). La mise en œuvre doit donc être très soignée. Thermiquement parlant, ces tuyauteries constituent autant de radiateurs; en d’autres termes, il faut les isoler correctement afin de réduire :

  • le risque de brûlure,
  • les déperditions au travers des parois vers l’ambiance,
  • la production de condensas qui, s’ils ne sont pas récupérés, constituent une perte énergétique non négligeable.

Un soin particulier doit aussi être pris pour la récupération des condensas: il est nécessaire de penser tout le réseau de distribution en pente douce:

  • soit vers le générateur,
  • soit vers les points de purges sachant qu’ils faut prévoir un système de récupération de condensas derrière.

Les vannes

Les vannes sont de construction robuste car elles travaillent dans des conditions difficiles. La commande des vannes côté vapeur s’effectue, en général, de manière pneumatique.
Il est nécessaire de les isoler aussi de manière à réduire les risques de brûlure par contact et les déperditions thermiques.

Photo stérilisation - vannes.

Dégivrage

Dégivrage


Origine du givre et conséquences sur l’installation frigorifique

L’air ambiant autour de l’évaporateur contient de l’eau. Cette eau givre au contact des surfaces froides de l’évaporateur lorsque la température dans la batterie est inférieure à 0°.

Du côté de la chambre froide ou du meuble frigorifique

Le givre diminue le transfert thermique entre l’air et la surface extérieure de la batterie.
Le givre sur les tubes à ailettes de l’évaporateur gêne la circulation de l’air soufflé par le ventilateur. Le débit d’air diminue puisque la résistance à l’écoulement de l’air au travers de la batterie givrée s’accroît. L’apport de froid vers la chambre se fait moins bien. La température de la chambre froide monte quelque peu.

Du côté du circuit frigorifique

Les résultats de ces effets sont :

  • Suite à la résistance thermique qui se crée entre la batterie et l’air (c’est une « couche isolante » entre l’échangeur et la chambre froide), le réfrigérant ne s’évapore pas entièrement dans l’évaporateur.
  • La quantité de vapeur produite diminue, mais le compresseur continue d’aspirer puisque la température de consigne n’est pas atteinte. La pression à l’entrée du compresseur (BP) diminue. Si la pression diminue, la température d’évaporation diminue également. À court terme, cela augmente le froid donné à la chambre (l’écart de température « chambre-évaporateur » augmente), mais cela augmente l’effet de givrage.
  • Le détendeur va réagir : il constate que la surchauffe des gaz est trop faible, il imagine que c’est parce que la charge frigorifique dans la chambre a diminué et il diminue le débit de fluide. La quantité de vapeur produite diminue encore, la Basse Pression diminue également et le givrage s’accentue.
  • Au point que la conduite d’aspiration vers le compresseur peut complètement givrer. Quelques gouttes liquides de réfrigérant peuvent alors se retrouver à l’entrée du compresseur, avec le risque de créer des « coups de liquide » au compresseur.

Globalement, le compresseur de la machine frigorifique travaille avec une mauvaise efficacité énergétique : la couche de glace sur l’évaporateur peut être comparée à une couverture posée sur un radiateur (pour obtenir la même chaleur, il faudra augmenter la température de l’eau et diminuer le rendement en chaudière).


Les étapes du dégivrage

Voici la séquence de dégivrage la plus utilisée :

1. Arrêt du fluide frigorigène dans la batterie à dégivrer

On coupe l’alimentation électrique de la vanne magnétique qui se trouve sur le circuit juste avant l’évaporateur. La vanne se ferme. La Basse Pression au compresseur descend et le compresseur s’arrête dès que le niveau réglé sur le pressostat Basse Pression est atteint.

Quand il n’y a pas de vanne magnétique, le compresseur est directement arrêté électriquement (contacteur). Mais dans ce cas, une migration de réfrigérant peut se produire et encore continuer à s’évaporer, ce qui peut poser problème.

2. Arrêt de la ventilation de l’évaporateur

En arrêtant la ventilation, on évite une diffusion dans la chambre froide de la chaleur dégagée par l’évaporateur en cours de dégivrage.

Des fabricants d’évaporateurs ont même imaginé des manchons souples en fibre polyester (encore appelés « shut up »), placés à la sortie du ventilateur de l’évaporateur et d’environ 50 cm de long. Lorsque la ventilation est à l’arrêt, ce manchon retombe et se rabat sur la surface de pulsion du ventilateur. Une barrière physique autour de la chaleur produite dans l’évaporateur est créée.

3. Réchauffage de la batterie jusqu’à une température supérieure à 0°C pour faire fondre la glace

Le positionnement d’une sonde de fin de dégivrage est nécessaire dans la batterie pour permettre le contrôle de la température à 0° et permettre à la production de froid de reprendre. En pratique, la position idéale de la sonde n’est pas facile à déterminer, car le givre n’est pas toujours uniforme sur l’évaporateur.

4. Remise en circulation du fluide frigorigène

Après disparition du givre et égouttage soigné de la batterie pour éliminer l’eau de fusion, le fluide frigorigène est remis en circulation pour refroidir la batterie.

Pour s’assurer du parfait égouttage, une temporisation est prévue entre la fin du dégivrage et l’ouverture de la vanne magnétique permettant à la production frigorifique de reprendre.

5. Remise en fonctionnement de la ventilation

C’est seulement après l’ouverture de la vanne magnétique et après une deuxième temporisation (permettant à la batterie d’atteindre une température moyenne inférieure ou égale à celle de l’enceinte) que les ventilateurs de l’évaporateur sont remis en fonctionnement (technique encore appelée « snap freeze »).

À défaut, la remise en route prématurée des ventilateurs peut envoyer de la chaleur dans la chambre froide et/ou des gouttelettes d’eau encore présentes.

6. Reprise du cycle normal de refroidissement


Les différentes techniques de réchauffage de la batterie

Le réchauffage de la batterie pour assurer la fusion du givre peut se faire de diverses façons.

  • Par résistance chauffante
    Des résistances chauffantes sont imbriquées dans les tubes en cuivre qui composent la batterie de l’évaporateur. Leur position et leur puissance sont étudiées par le fabricant de manière à répartir uniformément la chaleur produite à l’ensemble de la batterie.
  • Par introduction de vapeurs refoulées par le compresseur
    Cette technique, encore appelée dégivrage par « vapeurs chaudes » ou par « gaz chauds », consiste à inverser le cycle et à faire fonctionner l’évaporateur, le temps du dégivrage, en condenseur.
  • Par aspersion d’eau sur la surface externe, givrée, de la batterie

  • Par circulation d’air de la chambre
    De l’air provenant soit de l’intérieur de la chambre même, soit de l’extérieur, est envoyé sur l’échangeur. Dans le premier cas, le dégivrage est très lent. Dans le second, il faut isoler l’évaporateur de la chambre, ce qui n’est pas pratique.
    L’inertie des produits stockés suffit à maintenir l’ambiance dans une fourchette de température acceptable.

Régulation du dégivrage

La régulation par horloge

C’est la méthode la plus simple : les opérations de début et de fin de dégivrage sont commandées par de simples horloges à contacts.

La régulation électronique intelligente

La programmation des opérations de dégivrage est plus délicate qu’il n’y paraît. La commande optimale de ces opérations exige que l’initiation du dégivrage soit commandée par la présence effective de givre déposée sur la batterie, et que la fin du dégivrage soit commandée par la vérification que tout le givre a disparu de sa surface. Encore faut-il disposer des capteurs adéquats.

Voici les principes de fonctionnement rencontrés chez deux fabricants.

Première technique

Initialement, une programmation horaire traditionnelle des dégivrages est organisée.

Le régulateur analyse la courbe de montée en température : s’il n’aperçoit pas de plancher horizontal lui indiquant une phase de fusion de la glace (pendant laquelle la température reste constante), il en déduit qu’il n’y avait pas de givre et ralentira la cadence des dégivrages ! En pratique, il enregistre le temps total de montée en température : si ce temps est très court, il sait qu’il n’y a pas eu de période de fusion. La programmation initiale reste, mais en fonction d’une statistique établie sur la mesure du temps des 10 derniers dégivrages, il décide de sauter ou non le dégivrage suivant. Le nombre de dégivrages diminue sensiblement.

La durée d’une période de dégivrage dépend :

  • de l’échauffement et du refroidissement de l’évaporateur (fixe),
  • de l’échauffement et de la fusion du givre (variable).

Seconde technique

Ce second système associe, en fait, une régulation de dégivrage proprement-dite à un choix d’une technique de dégivrage (dégivrage par résistance chauffante ou par circulation d’air de la chambre).

Au niveau de la régulation du dégivrage proprement-dite, une sonde sert à mesurer la température ambiante de la chambre (reprise d’air à l’évaporateur), l’autre est placée dans les ailettes de l’évaporateur. Cette dernière peut déduire des températures enregistrées la présence de glace, selon une technique qui ne nous a pas été détaillée.
Chez ce fabricant, le critère d’arrêt du dégivrage classique est une température d’évaporateur de 10 °C. Cela semble élevé mais c’est, semble-t-il, une sécurité par rapport à l’absence totale de glace.

Quant au choix de la technique de dégivrage, le système part d’un raisonnement fort intéressant :

En « temps normal », il ne faut pas faire fondre cette glace par une source de chaleur extérieure, mais bien par l’air de la chambre. Toute l’énergie latente contenue dans la glace sera restituée à l’ambiance. Le compresseur s’arrête et le ventilateur continue à pulser l’air ambiant sur la batterie.

  • Si la chambre est positive (stockage de fruit et légumes, de viandes, .), l’air à + 4 ou + 5 °C fera fondre la glace et restituera le froid vers l’ambiance. À noter que l’humidité est également restituée, entraînant une teneur en eau plus forte dans la chambre, ce qui est favorable à la conservation des victuailles.
  • S’il s’agit d’un congélateur à – 20 °C, la glace présente sur l’échangeur est une glace à – 25.- 27 °C, glace fort poudreuse qui ne « colle » pas fortement à l’évaporateur. Il semble que l’air de la chambre à – 20 °C va alors provoquer la sublimation de la glace (passage de l’état solide à l’état vapeur).

Par contre, si une entrée importante de marchandises est organisée, un dégivrage classique par résistance chauffante aura probablement lieu : il n’est pas possible d’attendre la fusion de la glace par l’air ambiant, le compresseur fonctionnant à pleine charge.

Quel que soit le système de régulation intelligente, la souplesse de ces appareils par rapport aux thermostats mécaniques permet d’affiner les réglages et de proposer des fonctions complémentaires :

  • alarmes,
  • possibilité de faire fonctionner le congélateur avec une consigne abaissée de 5°C la nuit (pour bénéficier du courant de nuit),
  • possibilité de délester durant la pointe 1/4 horaire,

Climatiseur individuel

Climatiseur individuel


Principe de fonctionnement

Un climatiseur de local est une machine frigorifique prévue pour extraire la chaleur des locaux et la rejeter à l’extérieur.

Schéma principe climatiseur de local

Le fonctionnement d’un climatiseur est basé sur le changement de phase d’un fluide frigorigène :

  • dans l’évaporateur, le fluide capte la chaleur dans l’air du local et s’évapore;
  • dans le condenseur, le fluide redevient liquide car il est refroidi par l’air extérieur.

Le compresseur a pour rôle de comprimer le gaz, opération accompagnée d’une forte élévation de température qui permettra au fluide frigorifique de céder sa chaleur à l’air extérieur.

Le détenteur relâche la pression, opération accompagnée d’une forte diminution de température nécessaire à l’échange de chaleur avec l’air ambiant.


Typologie des climatiseurs de locaux

On distingue plusieurs types de climatiseurs :

Le climatiseur mobile

C’est un appareil à faible puissance frigorifique (max 2,5 kW), principalement destiné à un usage local. Il impose de laisser un ouvrant entrouvert, ce qui diminue l’étanchéité du local à l’air et aux bruits extérieurs !

Ce système est de moins en moins utilisé. Son emploi se limite souvent aux situations provisoires.

Photo climatiseur mobile.Schéma principe climatiseur mobile.

S’il est monobloc, l’air de refroidissement du condenseur peut être pris soit dans la pièce (perte de puissance jusqu’à 30 % par rapport à la puissance frigorifique annoncée), soit à l’extérieur (cas le plus favorable). Il est rejeté systématiquement à l’extérieur par une gaine flexible;

Photo climatiseur mobile séparé.Schéma principe climatiseur mobile séparé.

S’il est séparé, pour des raisons de mobilité de l’unité extérieure, le compresseur est situé dans l’unité intérieure. La distance entre les deux unités est généralement limitée à 2 m.

Le « Window Unit » ou climatiseur de fenêtre

Le climatiseur de « fenêtre » (« window »), est un climatiseur monobloc installé dans un percement effectué dans une paroi extérieure (mur ou baie).

Schéma principe climatiseur de fenêtre - 01.Schéma principe climatiseur de fenêtre - 02.

Généralement, un seul moteur entraîne simultanément le compresseur et les deux ventilateurs. Si bien que tous les bruits de fonctionnement sont fournis en prime dans le local ! Seuls les amateurs de polars américains (où il y a toujours un window qui vrombit à l’arrière de l’inspecteur, celui-ci basculant sur sa chaise, les deux pieds sur son bureau…) peuvent apprécier ce type de confort … !

Le « split system »

« Split System » signifie « climatiseur à éléments séparés », à savoir que l’unité de condensation est séparée de l’unité d’évaporation.

Avec un split, l’évaporateur est souvent situé dans le local à traiter, tandis que condenseur et compresseur sont situés à l’extérieur (en terrasse, au sol,…), ce qui permet de diminuer le bruit !

Schéma Le "split system" - 01. Schéma Le "split system" - 02. Schéma Le "split system" - 03. Schéma Le "split system" - 04. Schéma Le "split system" - 05. Schéma Le "split system" - 06.

Dans chacun des cas, les unités sont reliées par liaison frigorifique (fluide frigorigène) et cable électrique, dont les longueurs peut être adaptées au cas traité, ce qui autorise une grande souplesse d’installation.

Schéma principe "split system".

Remarque.

pour des raisons esthétiques ou de sécurité, il est également possible de ne pas disposer le condenseur à l’extérieur mais en cave. Ceci n’est uniquement possible que si on garantit une ventilation de la cave (pulsion-extraction) d’un débit au moins égal au débit d’air nécessaire pour le bon fonctionnement du condenseur. Éventuellement, une ventilation mécanique peut être asservie à un thermostat d’ambiance dans la cave pour garantir le débit nécessaire.

Le « multi-split system »

Les unités de condensation et d’évaporation sont séparées et reliées par des liaisons frigorifiques et électriques dont la longueur peut être adaptée au cas traité, ce qui autorise une grande souplesse d’installation.

Schéma multi-split system.

Les unités d’évaporation peuvent être posées diversement, y compris dans un local annexe avec des gaines de soufflage dans 1 ou 2 locaux.

Cas particulier : le Roof-Top

Schéma Roof-Top.

L’unité de condensation et d’évaporation sont intégrées dans le même appareil posé en toiture et relié par une gaine à un diffuseur d’air séparé.

Vue d’un roof-top posé sur une toiture.


Détails technologiques

L’unité d’évaporation

Un ventilateur centrifuge fait circuler l’air intérieur au travers d’un filtre, puis de l’évaporateur, avant de le rejeter au travers de grilles de diffusion dont l’inclinaison est réglable.

Divers emplacements sont possibles pour l’insertion de l’évaporateur :

Schéma insertion de l'évaporateur.

En voici quelques exemples :

En allège.

Au plafond.

En cassette insérée dans un faux plafond.

Remarque.

La vapeur d’eau contenue dans l’air ambiant risque de se condenser au contact de l’évaporateur très froid, aussi doit-on prévoir une conduite d’évacuation des condensats vers l’égout. Si l’écoulement naturel par gravité n’est pas possible, il faudra insérer une petite pompe de relevage des condensats.

L’unité de condensation

Le fluide frigorigène (à l’état vapeur) est comprimé par le motocompresseur hermétique, puis refroidit dans le condenseur, avant d’être détendu et de repartir vers le local.

Photo unité de condensation.

Les liaisons frigorifiques et électriques

Pour simplifier la tâche sur chantier (et rendre l’installation accessible à des non-frigoristes), les conduites de raccordement en cuivre sont préchargées en fluide frigorigène et équipées de raccords rapides. Lors du montage, les opercules sont automatiquement perforés.

Leur longueur ne dépasse pas 10 à 15 m généralement pour limiter les pertes de charge. La tuyauterie ramenant le fluide détendu vers l’évaporateur sera soigneusement isolée car l’échauffement du fluide dans le conduit,… c’est autant de puissance frigorifique perdue pour l’évaporateur. Et même si elle reste suffisante, c’est une perte qui diminue le rendement de la machine : son coefficient de performance.

Voici les connexions d’un multisplit : 3 évaporateurs sont reliés à un condenseur commun.

Le retour d’huile

L’huile est naturellement entraînée par le fluide frigorigène liquide vers l’évaporateur. Par contre, il est nécessaire d’organiser volontairement le retour de l’huile vers le compresseur lorsque le fluide est à l’état vapeur :

  • Soit le compresseur est situé plus bas que l’évaporateur, et la gravité fera le travail sur base d’une pente descendante de 1 cm par mètre.
  • Soit le compresseur est situé plus haut que l’évaporateur, et un siphon devra être prévu; on provoque alors volontairement un bouchon d’huile afin que la vapeur, en forçant le passage, entraîne l’huile avec elle. Comme ce système ne fonctionne que sur quelques mètres, un tel siphon devra être prévu au minimum tous les 5 mètres de dénivellation.

À défaut, c’est la lubrification du compresseur qui risque d’être insuffisante, et sa longévité aussi…


En option : la fonction « chauffage »

Si une fonction « chauffage » est recherchée, trois systèmes sont possibles.

Solution 1 : incorporer une résistance électrique d’appoint, en fonctionnement direct

Cette solution est coûteuse à l’exploitation, vu le prix du kWh de jour.

Solution 2 : incorporer une batterie d’eau chaude alimentée par le réseau de chauffage du bâtiment

Cette solution est peu utilisée car coûteuse à l’investissement. Un thermostat d’ambiance commande l’apport de chaleur, soit via une vanne trois voies modulant la température de l’eau, soit directement sur le ventilateur.

Solution 3 : sélectionner une machine frigorifique « réversible » capable de fonctionner en pompe à chaleur

Dans une machine frigorifique, le cycle peut être inversé grâce à l’utilisation d’une vanne à quatre voies à la sortie du compresseur : l’évaporateur devient condenseur et le condenseur devient évaporateur. C’est un climatiseur dit « réversible ».

On parle d’un fonctionnement en « pompe à chaleur » puisque c’est la chaleur de l’air extérieur qui est utilisée pour chauffer l’air du local.

Le surcoût de l’appareil est faible (de 15 à 25 %) et le prix de revient du kWh fourni est 2 à 3 fois plus faible que dans le cas du chauffage direct, … Hélas, la puissance de l’appoint de chaleur est le plus faible au moment où on en a le plus besoin, c.-à-d. par période de gel… Et à ce moment, le coefficient de performance frigorifique est assez dégradé.


En option : la fonction « ventilation »

Certains appareils disposent d’une prise d’air neuf permettant d’adjoindre une fonction ventilation au matériel.

A ne pas confondre avec le brassage d’air en recyclage total proposé par tous les appareils : dans ce cas, le ventilateur fonctionne seul et l’air du local passe simplement par le filtre sommaire qui retient les plus grosses particules en suspension. Il est, par exemple, impossible d’améliorer la qualité de l’air d’un local « fumeur » avec ce principe. Seule, une réelle dilution par de l’air neuf apportera l’amélioration recherchée.


La régulation du climatiseur

La régulation de la température ambiante

La température ambiante du local conditionné est régulée au moyen d’un thermostat d’ambiance agissant sur le fonctionnement du compresseur. Le ventilateur de soufflage fonctionne en même temps que le compresseur, ou fonctionne en continu. Ce deuxième mode de fonctionnement est plus favorable au confort car il entretient un brassage continu de l’air et prévient toute stagnation inconfortable d’air chaud ou froid.

photo télécommande.

Au simple contrôle de la température ambiante doivent s’ajouter des fonctions de programmation de l’occupation, avec arrêt et reprise (éventuellement anticipées) de manière intelligente.

La régulation du compresseur

Un climatiseur, dimensionné pour vaincre les apports thermiques maximum (solaires, par exemple), fonctionne très souvent à charge partielle. Le contrôle traditionnel par mode MARCHE/ARRET du climatiseur entraîne des fluctuations inconfortables de la température du local et des mauvaises conditions de rendement du compresseur.

Schéma régulation - 01.

Les climatiseurs équipés de compresseurs à vitesse variable peuvent adapter leur puissance frigorifique à la charge thermique du local. Ce mode de régulation est appelé « INVERTER ». Il permet une variation de vitesse du compresseur sans pertes importantes de rendement. Le démarrage du compresseur se fait alors à basse vitesse, ce qui réduit la pointe de courant au démarrage.

La technologie INVERTER présentait autrefois quelques inconvénients tels les parasites qu’elle induit dans le réseau électrique. Dans un très proche avenir, ces inconvénients devraient disparaître (utilisation de moteurs à courant continu pour les plus petites puissances, marquage « CE », …) et permettre au système « INVERTER » de couvrir le marché.

Schéma régulation - 02.

Lorsqu’une unité extérieure alimente plusieurs unités intérieures (système multi split), l’ambiance de chaque local doit pouvoir être régulée séparément (y compris la coupure en cas d’inoccupation). Dans ce cas, une régulation en vitesse variable du compresseur permettra d’adapter la puissance de production de froid en fonction des besoins totaux réels.

Suite à ce nouveau mode de régulation, la technique traditionnelle du compresseur alternatif (piston et vilebrequin), d’une fiabilité légendaire, est progressivement remplacée par :
>  le compresseur rotatif :

  • rendement similaire,
  • niveau sonore moindre,
  • fonctionnement à vitesse variable.

>  le compresseur scroll :

  • rendement plus élevé,
  • niveau sonore encore plus faible,
  • fonctionnement à vitesse variable.

La régulation du condenseur

Certains locaux à charges internes importantes (par exemple, les salles informatiques) doivent être climatisés en été, mais aussi en mi-saison ou encore en hiver. Dans ce cas, lorsque la température de l’air extérieur diminue, la capacité de refroidissement du condenseur augmente.

Paradoxalement, cette situation perturbe le fonctionnement correct de l’évaporateur et entraîne une perte de puissance de ce dernier dernier (voir détails dans la régulation de la machine frigorifique). Le confort dans le local n’est alors plus assuré. À l’extrême, le pressostat basse pression de sécurité de l’appareil peut commander l’arrêt de l’installation.

Pour remédier à ce problème, il faut que la puissance du condenseur soit régulée en fonction de la température extérieure. Si la température de l’air diminue, le débit d’air doit aussi diminuer afin de conserver un échange constant.

Idéalement, on choisira un ventilateur de condenseur à vitesse variable. Ainsi, un climatiseur devant fonctionner pour des températures extérieures inférieures à 17°C doit être équipé d’un ventilateur de condenseur à vitesse variable. La diminution de vitesse du ventilateur est alors commandée par un pressostat ou un thermostat placé sur le condenseur. La puissance d’échange de celui-ci est ainsi maintenue constante quelle que soit la saison.

À défaut, la vitesse sera modulée par paliers. Au minimum, le fonctionnement du ventilateur sera commandé en tout ou rien.

Choix et emplacement du thermostat d’ambiance

Au simple contrôle de la température ambiante doit s’ajouter, pour assurer un fonctionnement économique, des fonctions de programmation de l’occupation, avec arrêt et reprise éventuellement anticipés de manière intelligente.

De plus, idéalement, le climatiseur devrait pouvoir profiter d’une régulation de température de consigne compensée en fonction de la température extérieure. Ce lien, qui est automatisé dans les installations complètes de conditionnement d’air, doit être réalisé manuellement pour les climatiseurs.

Ainsi, un écart de 6°C maximum sera créé, afin de ne pas provoquer de « choc thermique » inconfortable lors de l’accès au bâtiment.

Il revient donc à l’occupant consciencieux de modifier manuellement la consigne de température en fonction de la température extérieure. Pour des raisons d’économies d’énergie et de confort, on ne peut maintenir une consigne de température à 22°C, par exemple, si la température extérieure est de 32°C. Dans ce cas la consigne doit être ajustée à 26°C au minimum.

Le ventilateur de soufflage est soit commandé en même temps que le compresseur, soit fonctionne en continu. Ce deuxième mode de fonctionnement est plus favorable au confort, car il entretient un brassage continu de l’air et prévient toute stagnation inconfortable d’air chaud ou froid. Mais il suppose que les aspects acoustiques soient soigneusement étudiés.

L’emplacement du thermostat joue un rôle important sur la consommation et sur le confort. Il doit être placé à un endroit représentatif de la température moyenne du local, c’est-à-dire éloigné des sources chaudes ou froides (lampe, fenêtre en été, zone ensoleillée, dans la zone de soufflage de l’appareil, …). Le placer dans le local sera donc préférable que de le placer dans la bouche de reprise. Par exemple, si la commande se trouve sur l’appareil au plafond, l’occupant ne prendra pas la peine d’ajuster la consigne de température !

Dans le cas contraire, il devra être étalonné.

Exemple.

Le thermostat est placé à l’extrémité d’un bureau, dans la zone d’influence du climatiseur, mais éloigné de la zone d’occupation habituelle. Lorsque celui-ci mesure 28°C, une température de 24°C règne à l’endroit où les personnes se trouvent.

Les occupants, croyant agir alors correctement, risquent d’abaisser le thermostat jusqu’à 24°C, entraînant une chute de la température ambiante inconfortable et des surconsommations inutiles.

La commande du thermostat doit donc être étalonnée pour être représentative de l’ambiance réelle.

Zones à proscrire pour l’implantation de la sonde de régulation

  1. Influence d’une source chaude.
  2. Influence de l’air extérieur.
  3. Influence de l’ensoleillement.
  4. h < 1 m.
  5. h > 2 m.
  6. Influence de l’air soufflé.

L’emplacement de la commande du thermostat et sa facilité de manipulation jouera un rôle sur la gestion efficace de l’ambiance par l’occupant. Par exemple, si la commande se trouve sur l’appareil au plafond, l’occupant ne prendra pas la peine d’ajuster la consigne de température…

 

Modèles d’isolation – plancher lourd sans aire de foulée

Modèles d'isolation - plancher lourd sans aire de foulée

L’isolation du plancher lourd de combles non circulables peut se faire par divers systèmes :


Matelas souple ou semi-rigide sur le plancher

L’isolant utilisé, en générale de la laine minérale, peut être souple (en rouleaux) ou semi-rigide (en panneaux). Les rouleaux peuvent éventuellement être revêtus d’un papier kraft et/ou d’un pare-vapeur.

Le pare-vapeur éventuel est déroulé soigneusement sur le plancher lourd.

L’isolant est ensuite déposé de façon continue, les panneaux ou rouleaux étant parfaitement jointifs. Si l’isolant est muni d’un pare-vapeur, celui-ci doit se trouver en dessous de l’isolant.

L’isolant sera correctement fixé sur les parties verticales ou inclinées.

Matelas isolant souple ou semi-rigide au-dessus d’un plancher lourd non circulable.

  1. Isolant.
  2. Pare-vapeur éventuel.
  3. Support lourd.
  4. Finition du plafond.

Panneaux rigides sur le plancher

L’isolant utilisé peut être de la mousse synthétique ou du verre cellulaire.

La face supérieure du plancher lourd doit être bien plane. Il faut donc, au besoin, l’égaliser à l’aide d’une fine chape ou de sable.

Le pare-vapeur éventuel est déroulé soigneusement sur le plancher lourd avant la pose de l’isolant.

L’isolant est ensuite déposé de façon continue.

Les panneaux en mousse synthétique sont munis de rainures et languettes, ils doivent être correctement emboîtés.

Les panneaux en verre cellulaire sont posés jointifs.
L’isolant doit être correctement fixé sur les parties inclinées ou verticales éventuelles.

Isolant rigide au-dessus d’un plancher lourd non circulable.

  1. Isolant.
  2. Emboîtement.
  3. Pare-vapeur éventuel.
  4. Egalisation éventuelle.
  5. Support lourd.
  6. Finition du plafond.

Flocons ou granulés d’isolant sur le plancher

Le matériau isolant utilisé est constitué de granulés de perlite ou de polystyrène expansé, ou de flocons de laine minérale posés en vrac sur le plancher lourd.

On sera attentif à ce que l’épaisseur soit régulière.

Lorsqu’un pare-vapeur est nécessaire, celui-ci est placé sur le plancher avant pose de l’isolant.

Isolant posé en vrac au-dessus d’un plancher lourd non circulable.

  1. Isolant en vrac.
  2. Pare-vapeur éventuel.
  3. Support lourd.
  4. Finition du plafond.

Isolant sous le plancher : une solution à éviter !

L’isolant est fixé sous le plancher lourd.

La fixation est difficile et dépend du type d’isolant.

Un pare-vapeur efficace indispensable (sauf en cas d’utilisation du verre cellulaire) est soigneusement placé sous l’isolant. Les joints seront particulièrement soignés. Il ne peut pas être déchiré.

La finition du plafond est ensuite réalisée en prenant toutes les précautions nécessaires pour éviter de blesser le pare-vapeur.

Aucune installation technique ne pourra être aménagée dans le plafond.

Le plancher lui-même ne pourra être percé.

Un espace technique pourrait éventuellement être aménagé entre le pare-vapeur et le plafond.

Toute cette mise en œuvre nécessite un soin parfait difficile à réaliser sur chantier.

Isolation en dessous du plancher lourd non circulable.

  1. Plancher lourd.
  2. Isolant.
  3. Pare-vapeur.
  4. Finition du plafond.

Lampes au sodium basse pression

Lampes au sodium basse pression


Comment fonctionne une lampe au sodium basse pression ?

La lampe au sodium basse pression fait partie des lampes à décharge. Son principe de fonctionnement est donc identique.

L’ensemble amorceur, ballast conventionnel et condensateur peut être remplacé par un ballast électronique.

Particularités

Cette lampe est constituée d’un tube à décharge en forme de « U » logé dans une ampoule extérieure.

Le tube à décharge contient un mélange de vapeur de sodium et de gaz tels que le néon et l’argon.

La lumière est émise, en majeure partie sous forme de rayonnements visibles, sa face interne n’est donc pas recouverte d’une couche de poudre fluorescente.


Caractéristiques générales

La lampe au sodium basse pression émet une lumière monochromatique jaune-orangée au maximum de la sensibilité de l’œil.

Cette lumière monochromatique lui confère la plus haute efficacité lumineuse de toutes les lampes communes (hors LED).

Mais c’est également cette caractéristique qui lui donne un très mauvais indice de rendu des couleurs (IRC).

Après une coupure du réseau, elle redémarre immédiatement.

Elle est principalement utilisée pour l’éclairage des autoroutes car l’efficacité lumineuse est très élevée et que le rendu des couleurs n’y est pas primordial.

Données

Pour connaitre les caractéristiques des lampes au sodium basse pression.

Données

Pour consulter un récapitulatif des caractéristiques des différents types de lampe.

Registres et clapets

Registres et clapets

Clapets de réglage des débits.


Registres de réglage

Ces registres servent

  • Au réglage de débit d’air, par création d’une perte de charge variable, qui n’est pas directement proportionnelle à l’angle de pivotement des volets : la variation du débit dépend essentiellement de la pente de la courbe débit-pression du ventilateur ; si cette pente est fortement descendante, le débit diminuera lorsque le registre sera près de la fermeture (avec un risque de bruits importants).
  • À l’isolement entre un conduit d’air et un ou plusieurs autres. Par exemple, pour remplacer une alimentation en air recyclé par une alimentation en air neuf ou pour isoler un échangeur de température. Une étanchéité rigoureuse n’est généralement pas demandée.

En général de section rectangulaire, ils comportent plusieurs lames ou volets pivotant autour d’axes parallèles, depuis une position « ouvert » où ils présentent leur tranche à l’écoulement de l’air, jusqu’à une position « fermée » où leurs bords se rejoignent : comme chaque volet a un effet directionnel, on les actionnent de manière à ce que leur sens de pivotement soit contraire d’un volet à l’autre. On évite ainsi que la déviation du flux d’air aval ne perturbe trop l’écoulement loin à l’aval du registre.

Dans le cas de sections circulaires, on utilise parfois (pour une facilité d’approvisionnement et de fabrication) des registres de section carrée, dont les coins débordent. Un registre de section ronde à un seul volet rond créerait une dissymétrie perturbant trop l’écoulement aval. Les registres à deux volets semi-circulaires sont préférables.

   

Volets de réglage.

Il est difficile de réaliser des registres très étanches. Néanmoins, il est possible de réduire les fuites en position fermée à quelques pour-cent du débit normal avec des bords de volet se recouvrant et munis de joints souples. Le jeu entre volets et parois doit être réduit au minimum tout en restant compatible avec un pivotement facile des volets.

Dans les régions froides, des résistances électriques peuvent être incorporées aux bords des volets placés à l’extérieur.


Clapets d’obturation

Il s’agit des dispositifs permettant la fermeture quasi parfaite d’un conduit. Ils peuvent être actionnés mécaniquement et même automatiquement dès que la vitesse de l’air diminue ou tend à s’inverser. Ils ne comportent généralement qu’un seul volet dont la section est supérieure à celle du conduit. Ils reposent par leur pourtour sur un siège souvent garni d’un joint souple laissant libre une section égale à celle du conduit.

  

Clapet anti-retour et clapet de fermeture.

De tels clapets se rencontrent souvent au refoulement de ventilateurs, fonctionnant en parallèle, afin d’éviter un retour en arrière à travers un ventilateur arrêté. Sans ce dispositif le ventilateur risque d’avoir des temps de démarrage plus long provoquant un échauffement important du rotor du moteur électrique. De tels clapets s’imposent également quand un conduit doit être isolé pour des questions d’entretien ou de sécurité (désenfumage en cas d’incendie).

On utilise également des clapets plus légers dits « anti-retour » comprenant souvent plusieurs lames comme les registres, ces lames retombant sous leur propre poids quand la circulation d’air s’arrête ou s’inverse.


Diaphragmes de réglage

L’utilisation de diaphragmes fixes ou réglables est parfois nécessaire pour modifier la perte de charge d’un circuit pour équilibrer les débits réels par rapport aux prévisions.

Diaphragme de réglage des débits.

Les diaphragmes sont des sources de bruit et créent des zones d’accumulation de poussières. Ils sont réalisés sous des formes différentes

  • Lame plane pénétrant dans le conduit entre deux brides d’assemblage, fixée au montage ou coulissante dans des rainures pour obtenir un réglage. Sa position peut être bloquée par pose d’une goupille.
  • Lame fixée contre un côté intérieur du conduit et pouvant pivoter par déformation sous la poussée d’une tige articulée ressortant de la paroi. La lame est solidarisée à la paroi après obtention d’un réglage correct.
  • Grille, grillage ou tôle perforée qui répartissent mieux la perte de charge et ont l’avantage de ne perturber l’écoulement aval que sur une courte distance et d’homogénéiser le flux d’air.

Clapets coupe-feu

Lorsqu’un conduit de ventilation traverse une paroi présentant une exigence de résistance au feu, il est obligatoire de prévoir des équipements qui pallient à la faiblesse ainsi crée et permettent de bloquer la distribution des fumées. On recours pour cela à différents équipements selon la section du conduit:

  • si la section du conduit est > 130 cm² : 1 clapet coupe-feu est placé au droit de la paroi de la trémie. Grâce à un fusible thermique, il se fermera soit quand la température de l’air dépasse une certaine température (typiquement 80°C). Pour éviter une propagation des fumées à des températures moindres, certains sont équipés également d’une détection de fumée.

Photo clapets coupe-feu.

  • si la section du conduit est < 130 cm² : Des grilles foisonnantes ou intumescentes sont placées au droit de la paroi entourant la trémie. Elles gonfleront sous l’effet de la chaleur et bloqueront le passage du feu (usage unique !).

Osmoseur inverse

Osmoseur inverse


Principes fondamentaux de l’osmose et de l’osmose inverse

L’osmose

Au même titre qu’un caillou ne peut évoluer que d’une altitude plus élevée vers une altitude plus basse (différence de potentiel), un système chimique évoluera naturellement d’une enthalpie libre (rôle du potentiel) plus élevée vers une plus faible (premier principe de la thermodynamique). L’enthalpie libre d’un système chimique constitué d’un solvant (l’eau de ville à traiter) et de solutés (sel minéraux, matières organiques, …) est fonction de la concentration de chacun de ses constituants: le potentiel d’une solution saline est plus élevé que celui d’une solution moins saline.

Eau « pure ».

Eau + soluté.

Migration de l’eau.

 

Équilibre osmotique.

Si les deux solutions sont mises en contact par l’intermédiaire d’une membrane semi-perméable, les solutés (les sels) de la solution la plus concentrée ne pouvant la traverser, c’est le solvant (l’eau) de la solution la moins concentrée qui la traversera afin de réduire l’enthalpie libre et ce jusqu’à ce que le système soit en équilibre. Cet équilibre est atteint quand la différence de hauteur entre les deux solutions correspond à la pression osmotique (correspondance des deux concentrations de part et d’autre de la membrane).

La valeur de la pression osmotique est principalement fonction des solutés présents dans la solution (potentiel chimique) et de leur concentration.

L’osmose inverse

Schéma principe osmoseur inverse.

Si on fournit de l’énergie au système, le phénomène de l’osmose est réversible. En exerçant une pression inverse à la pression osmotique sur la solution la plus concentrée, l’eau uniquement retraversera la membrane en sens inverse: c’est l’osmose inverse.

Si seule l’eau d’une solution chargée en sel et en matières organiques traverse la membrane semi-perméable, on obtient un système de filtration ultra efficace.

En imaginant une eau de ville à épurer pour la stérilisation, envoyée contre une membrane semi-perméable au travers d’une pompe de mise en pression supérieure à la pression osmotique, à la sortie de l’osmoseur inverse, l’eau est débarrassée de ses impuretés. Cependant, à force d’épurer l’eau, la concentration en solutés en amont de la membrane augmente et risque d’empêcher l’eau de passer au travers. Pour cette raison, il est nécessaire de créer une fuite contrôlée vers l’égout de manière à réduire la concentration des solutés.

Généralement, on emploie les termes suivants :

  • l’alimentation est la solution à épurer;
  • le perméat est la solution qui traverse la membrane;
  • le concentrat est le rejet.

Technologie de l’osmoseur inverse

Avant toute chose, il est utile de préciser que dans le but de préserver l’osmoseur inverse et de « dégrossir » le travail, on trouve en amont un adoucisseur permettant de réduire la concentration en ions calcium et magnésium de l’eau.

Photo osmoseur inverse.

Sans rentrer dans les détails l’osmoseur inverse se compose principalement :

En amont des membranes

  • d’un filtre d’entrée;
  • d’un pressostat de sécurité;
  • d’un manomètre pour le réglage de la pression;
  • d’un pompe de mise en pression des membranes;
  • de membranes travaillant en alternance:
  • d’un contrôle des débits de perméat et de concentrat
  • d’un contrôle des pressions

En aval des membranes

  • d’un contrôle du débit de concentrat;
  • d’un conductimètre (mesure la qualité de l’eau en µSiemens);

Les membranes

Photo membrane.

Schéma membrane.

Pour la petite histoire, l’abbé nollet avait déjà observé à la fin du 17ème siècle qu’une membrane constituée d’une vessie de porc laissait passer un flux d’eau douce pour diluer une solution saline séparée de celle-ci par la membrane; probablement la première observation du phénomène d’osmose.

Depuis, la technique a quand même évolué et la venue des matières synthétiques sur le marché a permis de réaliser des membranes semi-perméables de manière industrielle.

On distingue plusieurs types de membranes :

  • Isotropes, où les propriétés structurelles sont constantes sur toute l’épaisseur de la cartouche.
  • Anisotropes, où les propriétés structurelles varient sur l’épaisseur de la cartouche.
  • Liquides.

En fonction de la nature des matériaux constituant les couches des membranes, on parle de :

  • Membranes organiques fabriquées à partir de polymères organiques tels que l’acétate de cellulose, de polyamides, …
  • Membranes minérales constituées de matériaux tels que les matières céramiques, le métal fritté et le verre. Ces matériaux résistent bien aux hautes températures et aux agressions chimiques.
  • Membranes composites caractérisées par la structure asymétrique d’une peau très fine et constituées de plusieurs couches différenciées par leur nature physico-chimique (organique, organo-minérale ou minérale).
  • Membranes échangeuses d’ions.

Suivant la géométrie des supports (modules) de ces membranes, on trouve sur le marché :

  • Les modules tubulaires qui utilisent une technologie simple, facile d’utilisation et de nettoyage mais de compacité réduite où la consommation d’énergie est important pour un faible débit de perméat.
  • Les modules composés d’un ensemble important de fibres creuses (grand débit de perméat).
  • Les modules plans où les membranes sont empilées à la manière d’un « mille-feuilles » séparées par des cadres intermédiaires qui assurent la circulation des fluides. On retrouve souvent dans les installations d’osmose inverse des modules spiralés.

La conductivité de l’eau

La conductivité électrique d’une eau correspond à la conductance d’une colonne d’eau comprise entre deux électrodes métalliques de 1 cm² de surface et séparées l’une de l’autre de 1 cm. L’unité de conductivité est le micro-siemens par centimètre (µS/cm). La conductivité traduit la minéralisation totale de l’eau. Sa valeur varie en fonction de la température. Elle est donnée à 20°C. Sa mesure permet de déceler immédiatement une variation de la composition de l’eau, par exemple :

  • Baisse de conductivité de l’eau d’un réseau de chauffage due à l’entartrage.- Réglage de la purge d’une chaudière ou d’un circuit de refroidissement pour limiter la concentration des sels dissous.
  • Contrôle de la production d’une chaîne de déminéralisation. Approximativement, la valeur en µS/cm correspond à la salinité en mg/l. On utilise également la résistivité, inverse de la conductivité, mesurée en ohms.cm : Résistivité (ohms.cm) = 1 000 000 / conductivité (en µS/cm)

Niveau guide de la conductivité à 20°C d’une eau destinée à la consommation humaine : 400 µS/cm

  • < 15 : qualité de l’eau de stérilisation;
  • 50 à 400 : qualité excellente;
  • 400 à 750 : bonne qualité;
  • 750 à 1500 : qualité médiocre mais eau utilisable;
  • > 1500 : minéralisation excessive.

Moteur synchrone

Moteur synchrone


 

Généralité

Le moteur synchrone est aussi un moteur utilisé pour la motorisation des ascenseurs. Ces dernières années ont vu ce type de moteur revenir en force parallèlement au développement des variateurs de vitesse.


Principe de fonctionnement

Le moteur synchrone se compose, comme le moteur asynchrone, d’un stator et d’un rotor séparés par un entrefer. La seule différence se situe au niveau de la conception du rotor. La figure ci-dessous montre un rotor à pôles saillants constitués d’aimants permanents ou d’électro-aimants alimentés en courant continu.

Schéma principe de fonctionnement.

Après le démarrage, le moteur tourne en synchronisme avec le champ tournant. A vide les axes des pôles du champ tournant et du rotor sont confondus. En charge, les axes sont légèrement décalés. La vitesse du moteur synchrone est constante quelle que soit la charge. On notera aussi que :

  • La charge (le système d’ascenseur) ne doit pas dépasser l’effort de démarrage entre le rotor et le champ tournant.
  • Le couple moteur est proportionnel à la tension à ses bornes.

Caractéristiques

Les avantages et inconvénients du moteur synchrone sont repris ci-dessous :

(+)

  • il peut travailler avec un facteur de puissance proche de 1 (cos φ~ 1). Il contribue donc à redresser le cos φglobal de l’installation électrique.
  • la vitesse du moteur est constante quelle que soit la charge (intéressant dans le cas des ascenseurs).
  • Il peut supporter des chutes de tension important sans décrocher.

(-)

  • S’il n’est pas associé à un variateur de vitesse, il a des difficultés à démarrer.
  • il peut décrocher en cas de forte charge (pas intéressant au niveau des ascenseurs nécessitant un couple important).


Le stator

Le stator d’un moteur triphasé (le plus courant en moyenne et grosse puissance), comme son nom l’indique, est la partie statique du moteur synchrone. Il s’apparente fort au stator des moteurs asynchrone. Il se compose principalement :

  • de la carcasse,
  • des palier,
  • des flasques de palier,
  • du ventilateur refroidissant le moteur,
  • le capot protégeant le ventilateur.

   

Stator.

L’intérieur du stator comprend essentiellement :

  • un noyau en fer feuilleté de manière à canaliser le flux magnétique,
  • les enroulements (ou bobinage en cuivre) des trois phases logés dans les encoches du noyau.

Dans un moteur triphasé les enroulements sont au nombre minimum de trois décalés l’un de l’autre de 120° comme le montre le schéma ci-dessous.

Variation de la vitesse en fonction du nombre de paires de pôles.

Lorsque les enroulements du stator sont parcourus par un courant triphasé, ceux-ci produisent un champs magnétique tournant à la vitesse de synchronisme. La vitesse de synchronisme est fonction de la fréquence du réseau d’alimentation (50 Hz en Europe) et du nombre de paire de pôles. Vu que la fréquence est fixe, la vitesse du moteur peut varier en fonction du nombre de paires de pôles.

Paires de pôles 1 2 3 4 6
Nombre de pôles 2 4 6 8 12
n0 [tr/min] 3 000 1 500 1 000 750 500


Le rotor

Le rotor est la partie mobile du moteur synchrone. Couplé mécaniquement à un treuil d’ascenseur par exemple, il va créer un couple moteur capable de fournir un travail de montée et de descente de la cabine d’ascenseur. Il se compose essentiellement d’une succession de pôles Nord et Sud intercalés sous forme d’aimants permanents ou de bobines d’exitation parcourues par un courant continu. On distingue donc deux types de moteurs :

  • à aimants permanents,
  • à rotor bobinés.

Rotor à aimant permanent

Ce sont des moteurs qui peuvent accepter des courants de surcharge importants pour démarrer rapidement. Associés à des variateurs de vitesse électronique, ils trouvent leur place dans certaines applications de motorisation d’ascenseurs lorsque l’on cherche une certaine compacité et une accélération rapide (immeuble de grande hauteur par exemple).

Rotor bobiné

Ce type de machines est réversible car elles peuvent fonctionner en régime moteur comme en régime alternateur. Pour les moyennes et grosses puissances, les moteurs synchrones à rotor bobiné, associé avec un variateur de vitesse, sont des machines performantes.

Comme le montre la figure ci-dessous, le rotor est composé d’un empilement de disques ferro-magnétiques. Comme dans le stator du moteur, des enroulements sont logés dans des encoches pratiquées sur le rotor et reliés électriquement aux bagues de bout d’arbre. L’alimentation en courant continu s’effectue via l’ensemble bagues-balais.

Photo rotor bobiné.


Pilotage de la vitesse de rotation

Le pilotage de la vitesse de rotation du moteur synchrone est essentiel pour beaucoup d’applications.

La relation suivante permet de cerner quels sont les paramètres qui peuvent influencer la vitesse de rotation.
On a :

n0 =  n

Avec,

  • n0 = vitesse du champ tournant [tr/min].
  • n = la vitesse de rotation de l’arbre du moteur [tr/min].

Ou :

n =   f / p

Avec,

  • f = fréquence du réseau [Hz].
  • p = le nombre de paires de pôles du stator.

On peut donc piloter la vitesse de rotation en intervenant sur :

  • le nombre de paires de pôles (moteur à nombre de pôles variable),
  • la fréquence du réseau.

Régulation de fréquence

À l’heure actuelle, le pilotage de la vitesse des moteurs synchrones se fait électroniquement grâce à des variateurs de vitesse. Pour cette raison, on ne parlera ici que du contrôle de la fréquence qui de loin la plus courante. Vu la nécessite pour un moteur synchrone d’être démarré avec un système auxiliaire (le rotor ne peut pas « accrocher » un champ tournant statorique trop rapide de 3 000 [tr/min]), le variateur de fréquence associé au moteur synchrone permet de le démarrer avec une fréquence statorique faible voire nulle.

Sans perte de puissance, on peut piloter la vitesse de rotation du moteur en faisant varier la fréquence et la tension car la vitesse de rotation du champ tournant au niveau du stator change.

A remarquer que le couple d’un moteur synchrone ne change pas en fonction de la vitesse puisqu’il n’y a pas de glissement.

Variation de la vitesse à couple constant (moteur synchrone).

Le pilotage du moteur synchrone par un variateur de fréquence montre des intérêts certains; à savoir principalement :

  • La limitation du courant de démarrage (de l’ordre de 1,5 fois le courant nominal),
  • Un couple constant quelle que soit la vitesse du moteur.

 

Lampes aux halogénures métalliques

Lampes aux halogénures métalliques


Comment fonctionne une lampe aux halogénures métalliques ?

La lampe aux iodures métalliques fait partie des lampes à décharge. Son principe de fonctionnement est donc identique.

Pour certaines lampes, l’ensemble amorceur, ballast conventionnel et condensateur peut être remplacé par un ballast électronique.

Particularités

L’ampoule contient de la vapeur de mercure haute pression dans laquelle on a ajouté des halogénures métalliques. Suivant le fabricant, les iodures métalliques sont différents (dysprosium, scandium, sodium, tallium, indium, etc.). La température de couleur dépend des iodures métalliques présents.

Schéma principe lampe aux halogénures métalliques.

La lumière est émise, en majeure partie sous forme de rayonnements visibles, mais une petite partie est émise sous forme de rayonnements ultraviolets invisibles. Dans les lampes ellipsoïdes, on tente de récupérer ces rayons en tapissant la paroi intérieure de l’ampoule d’une poudre qui absorbe les U.V. et les transforme en rayons visibles de couleur chaude, de manière à obtenir une couleur globale moins froide. Cette poudre rend l’ampoule opaline.

Remarque.
Certaines lampes particulières ont un starter incorporé. Elles s’utilisent alors bien sûr sans amorceur.


Caractéristiques générales

Technologies quartz et céramique

Les premières générations de lampe à halogénure métallique ont fait appel à un brûleur quartz. Cette technologie est tout doucement remplacée par la céramique qui :

  • supporte mieux les plus hautes températures permettant une miniaturisation des lampes ;
  • est moins sensible à la corrosion des halogénures métalliques ;
  • est moins poreux aux éléments de remplissage ;
  • améliore l’efficacité lumineuse et le rendu de couleur.

Comment les reconnaître ?

Lampe ovoïde de puissance élevée (250 - 400 W). Lampe ovoïde de puissance élevée (250 – 400 W) équipée :

  • d’un tube à décharge au quartz,
  • d’un culot standard.
Lampe tubulaire de puissance élevée (250 - 2 000 W). Lampe tubulaire de puissance élevée (250 – 2 000 W) transparente équipée :

  • d’un tube à décharge au quartz,
  • d’un culot standard.
Lampe compacte (70 - 150 W). Lampe compacte (70 – 150 W) équipée d’un brûleur céramique.
Lampe compact (35 -150 W). Lampe compact (35 -150 W) équipée d’un brûleur céramique.
Lampe (35 - 70 W). Lampe (35 – 70 W) équipée d’un brûleur céramique à culot standard.

Avantage et inconvénient

  • Elles ont un flux lumineux élevé et un bon rendement.
  • Pour certaines applications (dans les bureaux par exemple), il faut une protection contre les U.V. Cette protection peut se faire soit au niveau de la lampe, soit au niveau du luminaire.
  • Il existe des lampes aux iodures métalliques qui peuvent être utilisées en remplacement direct des lampes au sodium haute pression. Il suffit de changer l’ampoule, il ne faut aucune modification de ballast, d’armature ou de câblage.
  • Suivant le type d’halogénures présent dans la lampe, les caractéristiques électriques sont différentes, ce qui ne rend pas ces lampes toutes interchangeables.
  • Les lampes aux halogénures métalliques ne sont pas stables dans le temps. Dans le brûleur (ou tube à arc), il y a des poudres stabilisantes, mais le brûleur classique est en quartz et ces poudres s’échappent, ce qui explique que la couleur de ces lampes peut devenir bleue ou rose après un certain temps.
  • Certains fabricants ont remplacé le brûleur en quartz des lampes aux halogénures métalliques par un brûleur en céramique du même type que celui des lampes sodium haute pression. La couleur de la lampe est alors stable dans le temps, de plus son efficacité lumineuse ainsi que son IRC sont légèrement améliorés.
    Cependant, ces lampes n’existent pas encore dans la gamme des grandes puissances (> 150 W).
  • Elles ont une position de fonctionnement bien déterminée.
  • À l’allumage, le flux lumineux nominal n’est atteint qu’après plusieurs minutes et après extinction, le réamorçage ne peut se faire qu’après une dizaine de minutes. Utilisées avec un ballast électronique à allumage à chaud pour lampes aux iodures métalliques, le réamorçage est immédiat en cas d’extinction. Mais ces ballasts n’existent que pour de faibles puissances.
  • De même, certains modèles particuliers permettent un réamorçage immédiat. Ces lampes couvrent toute la gamme de puissance. Néanmoins, elles doivent être utilisées avec des accessoires adéquats : l’amorceur doit procurer une tension très élevée pour permettre cet allumage instantané.
  • Ces lampes peuvent exploser,  il faut donc les utiliser avec une glace de protection sauf pour les modèles spéciaux qui possèdent un revêtement extérieur en téflon qui les protège contre l’éclatement et qui permet de les utiliser dans des luminaires ouverts.

Données

Pour connaitre les caractéristiques des lampes aux halogénures métalliques.

Données

Pour consulter un récapitulatif des caractéristiques des différents types de lampe.

Eclairage direct

Eclairage direct

La lumière est projetée directement du luminaire vers la surface de travail.

Avantages

La lumière n’est pas réfléchie avant d’atteindre la tâche à éclairer. Le rendement est donc meilleur que celui d’un système comprenant une partie indirecte.

Inconvénients

Il existe un risque d’éblouissement et de contraste entre des zones sombres (par exemple le plafond) et des zones lumineuses. Dans le but de réduire l’éblouissement direct, on placera, par exemple, des  ventelles de défilement.

Entraînements pour ventilateurs

Ventilateur entraîné par courroies.


Entraînement direct

Dans ce cas, la roue est directement calée sur l’arbre du moteur. Avec de petits ventilateurs, on peut également caler la roue sur le rotor d’un moteur à rotor extérieur.

Ventilateur à entraînement direct.

Les avantages de l’entraînement direct proviennent de son coût d’investissement moindre, de son meilleur rendement (pertes de 2 à 5 % contre 2 à 10 % pour l’entraînement par courroies), de son encombrement réduit et de son faible coût d’entretien.

Son principal inconvénient provient sans aucun doute de l’impossibilité, sans disposer d’un variateur de vitesse, d’ajuster a posteriori la vitesse du ventilateur pour régler au plus juste le point de fonctionnement nominal, à quoi s’ajoute dans le cas des gros ventilateurs une plus importante sollicitation des paliers. Par ailleurs, ce type d’entraînement ne convient pas dans le cas de températures d’aspiration élevées.


Entraînement par accouplement élastique et coupleurs centrifuges ou hydrauliques

Les accouplements sont des liaisons d’arbres permanentes, tournant à la même vitesse.

C’est un type d’entraînement qui est principalement utilisé dans le cas de roues de grandes dimensions et dont la masse à mettre en mouvement est importante. Les paliers du ventilateur et du moteur sont alors indépendants.

Dans un accouplement élastique, un élément élastique est interposé entre les deux moitiés de l’accouplement. Dans les coupleurs centrifuges, la transmission du couple se fait grâce à la force centrifuge qui presse des éléments mobiles entraînés par l’arbre du moteur contre la partie du coupleur solidaire du ventilateur. Dans les coupleurs hydrauliques, c’est le déplacement d’un fluide qui assure la transmission du mouvement.

L’avantage des accouplements élastiques provient de l’amortissement des faibles mouvements d’arbre dans une direction longitudinale par suite de variations de température ou de pression d’aspiration. Celle-ci provient, particulièrement dans le cas de ventilateurs à simple ouïe d’aspiration, de ce que les fluctuations de pression amont modifient également la poussée axiale. Un autre avantage provient de l’équilibrage des vibrations produites par le couple moteur.

Les coupleurs permettent, eux, de faciliter le démarrage en réduisant la période de surcharge du réseau par un courant de démarrage élevé.

Comme pour l’entraînement direct, l’inconvénient de ces types d’entraînement tient au fait qu’on ne peut faire varier a posteriori la vitesse de rotation du ventilateur pour ajuster le point de fonctionnement nominal. On ne peut donc pas faire de correction du point de fonctionnement en agissant sur la vitesse de rotation.

Entraînement par coupleur élastique. et  par courroies et coupleur centrifuge.

Remarquons qu’un entraînement par courroies peut être raccordé au moteur via un accouplement du type centrifuge.


Entraînement par courroies

nventilateur = nmoteur x (Dmoteur / Dventilateur)

ou,

  • nventilateur  et Dventilateur = vitesse et diamètre de la poulie du ventilateur (fond de gorge).
  • nmoteur  et Dmoteur = vitesse et diamètre de la poulie du moteur (fond de gorge).

La vitesse du moteur est connue en lisant sa plaque signalétique.

Les courroies les plus courantes sont les courroies trapézoïdales étroites.

Son grand avantage réside dans le fait que l’on n’est pas lié aux vitesses de synchronisme, ce qui donne plus de latitude quant au choix du ventilateur. On peut par exemple choisir un moteur tournant plus vite donc moins coûteux. Il est en outre toujours possible d’effectuer ultérieurement des corrections du point de fonctionnement par échange des poulies. En prenant quelques mesures complémentaires appropriées, ce mode d’entraînement convient aussi très bien dans le cas de températures d’aspiration élevées.

Ses inconvénients viennent de son rendement pas très élevé ainsi que de l’usure des courroies, ce qui entraîne des frais d’entretien supplémentaires.

La tension de la courroie joue un rôle important sur son bon fonctionnement :

  • Une trop faible tension a pour conséquence un glissement élevé, donc un échauffement de la courroie et une usure prématurée.
  • Une trop forte tension entraîne la surcharge des paliers.

Bien réglée, un transmission par courroies a un rendement de l’ordre de 97 %. Ce rendement peut chuter à 80 % pour des poulies très petites.

Des entraînements par courroies trapézoïdales munis de poulies trop petites ou inutilement de courroies doubles et dont la tension est mal réglée entraînent des pertes de 10 à 20 %.

Un autre inconvénient est l’augmentation des frais d’entretien et de surveillance.

Lorsque l’on met deux courroies (ou plus) en parallèle, là où une seule suffirait, cela peut provoquer des vibrations, des bruits et une usure irrégulière. La durée de vie des courroies est réduite, ainsi que le rendement de transmission.


Entraînement direct par moteur à rotor extérieur

Le moteur à rotor extérieur est sans aucun doute d’une solution très bon marché et ne nécessitant que peu de maintenance pour entraîner de petits ventilateurs dont le gain de pression est faible. La vitesse de rotation de tels moteurs est réglable par variation de tension d’où la possibilité d’adapter en souplesse le fonctionnement du ventilateur aux exigences de l’installation.

Comme avantage complémentaire, on peut citer son encombrement réduit.

Au titre des inconvénients, on peut mentionner les faibles températures d’aspiration admissibles, qui se situent en général à 40 ou 50°C au maximum. Par ailleurs, le rendement global du ventilateur est relativement faible avec ce type d’entraînement.


Rendements

Mode d’entraînement

Pertes
Moteur à entraînement direct (roue de ventilateur directement calée sur l’arbre du moteur) 2 à 5 %
Entraînement par accouplement 3 à 8 %
Transmission par courroies Pmot < 7,5 kW : 10 %
7,5 kW < Pmot < 11 kW : 8 %
11 kW < Pmot < 22 kW : 6 %
22 kW < Pmot < 30 kW : 5 %
30 kW < Pmot < 55 kW : 4 %
55 kW < Pmot < 75 kW : 3 %
75 kW < Pmot < 100 kW : 2,5 %

Amenées d’air naturelles

Amenées d'air naturelles


Amenées d’air naturelles : définition

Une amenée d’air naturelle est définie dans la norme NBN D 50-001 relative à la ventilation des locaux d’hébergement comme :

Une « ouverture d’alimentation réglable » ou « OAR »

C’est-à-dire une ouverture prévue dans une paroi extérieure, dans ou autour d’une fenêtre ou d’une porte extérieure dont la surface peut être modifiée manuellement ou automatiquement en continu ou au minimum en trois positions entre la position fermée et la position entièrement ouverte.

De plus, suivant la NBN D 50-001, une ouverture « de fuite » peut subsister en position fermée, pour permettre un certain renouvellement d’air même en cas de fermeture de toutes les alimentations d’air. En pratique, cette ouverture minimum équivaut à maximum 3 % de l’ouverture maximum.

La norme précise en outre qu’une ouverture d’alimentation réglable ne peut en aucun cas augmenter le risque d’effraction.

En pratique, une OAR est une grille ou un vasistas.


Les grilles de ventilation

Photo grilles de ventilation.  Photo grilles de ventilation.

Grille intégrée entre le vitrage et la menuiserie et grille verticale intégrée dans la menuiserie.

Photo grilles de ventilation.   Photo grilles de ventilation.

Grilles réglables à insérer dans la maçonnerie et grille intégrée au dessus du châssis, contre la battée.

Les grilles de ventilation peuvent, en pratique, faire l’objet de nombreuses applications. On peut notamment les distinguer selon leur emplacement dans les façades extérieures

  • dans la menuiserie même,
  • entre le vitrage et le profilé de menuiserie,
  • entre les profilés de menuiserie,
  • entre la menuiserie et la maçonnerie,
  • dans la maçonnerie

Leur débit nominal varie entre 30 et 180 m³/h par m courant (sous 2 Pa), les dimensions (principalement en épaisseur) étant d’autant plus importantes que le débit est grand. Le réglage manuel du débit d’air se fait soit par une glissière, un cylindre rotatif ou encore un clapet. La manipulation de la grille est possible grâce à une manette, une cordelette, une tringle ou encore une glissière pour les grilles disposées à des hauteurs difficilement accessibles.

Il existe également sur le marché :

Des grilles à coulisses

Les grilles à coulisse ne présentant pas de chicane sur le trajet de l’air. Ces grilles, de moins en moins utilisées, ne freinent pas le flux d’air, ce qui peut provoquer un léger courant d’air à proximité de la grille.

Illustration grilles à coulisses.

Grille à coulisse.

Des grilles à profilés minces

Les grilles pouvant s’adapter à toutes les épaisseurs usuelles de vitrage. Des grilles avec profilés plus minces s’adaptent également aux fenêtres coulissantes.

Illustration grilles à profilés minces.

Grille autoréglable pour châssis coulissant.

Des grilles autoréglables

Les grilles dites « autoréglables » qui ont pour but de maintenir un débit constant quelle que soit la pression du vent. Ces grilles comprennent une bavette souple réduisant automatiquement la section d’ouverture quand la pression augmente. Elles permettent ainsi d’obtenir un débit d’air relativement constant dans une plage de pression différentielle de 10 à 200 Pa. Non seulement elles assurent une alimentation en air plus ou moins constante (malgré tout nettement supérieure au débit de dimensionnement, puisqu’elles ne réagissent qu’à partir de 10 Pa alors que la pression de dimensionnement est de 2 Pa) mais elles évitent également que les utilisateurs ne bouchent complètement les grilles pour éviter les courants d’air inévitables par vent fort.

Schéma principe grilles autoréglables.  Illustration grilles autoréglables.

Exemple de grilles autoréglables.

Des grilles hygroréglables

Les grilles dites « hygroréglables » qui adaptent leur ouverture en fonction du degré d’humidité ambiante du local. Elles sont constituées d’un élément sensible à l’humidité relative (tresse de nylon) qui commande l’ouverture par sa dilatation. Leur bon fonctionnement est conditionné par l’absence d’influence de l’ambiance extérieure sur l’élément hygrosensible. Celui-ci doit être parcouru par de l’air intérieur et sa température doit être la plus proche possible de cet air.

Schéma principe grilles hygroréglables.

Grille hygroréglable.

Des grilles à coupure thermique

Les grilles à coupure thermique (absence de contact ou matériau isolant) entre les matériaux en contact avec l’extérieur et les matériaux en contact avec l’intérieur. Ces grilles évitent qu’en position fermée des condensations n’apparaissent sur la face intérieure.

Schéma principe grilles à coupure thermique. 

Des grilles isophoniques

Les grilles possédant aussi des systèmes d’insonorisation évitant la transmission trop importante des bruits extérieurs. Ces grilles possèdent des chicanes obligeant l’air à passer entre des surfaces garnies de matériaux absorbants.

Illustration systèmes d'insonorisation.Illustration systèmes d'insonorisation.

Exemple de grilles isophoniques.

Des grilles motorisées

Avec ouverture motorisée ou des grilles assistées par un ventilateur interne et pouvant être raccordées à un régulateur (thermostats, hygrostat) commandant la mise en route en fonction des besoins en ventilation intensive.

Photo grilles motorisées.     

Exemple de grille motorisée avec commande par potentiomètre ou thermostat – hygrostat.

Des grilles pour ventilation intensive

Les grilles d’aération traditionnelles suffisent pour assurer la ventilation hygiénique. Pour augmenter les débits d’air et pratiquer une ventilation intensive (rafraîchissement nocturne, évacuation d’un polluant occasionnel,…), il existe des grilles nettement plus grandes qui placée devant un ouvrant de fenêtre permettent des débits d’air important tout en protégeant le bâtiment contre l’intrusion, le passage des insectes, la pluie. Ces grilles se placent facilement de l’intérieur dans les ouvrants existants. Elles peuvent par exemple être installées en été et retirées en hiver. Une fois en place, la grille ne perturbe nullement l’ouverture de la fenêtre.

Photo grilles pour ventilation intensive.

Grille de ventilation nocturne intensive.


Les vasistas

Les vasistas sont de petites fenêtres ouvrantes qui (dans la tradition belge) s’ouvrent généralement vers l’intérieur et s’articulent par le bas. Ce type de fenêtre se rencontre fréquemment dans les toilettes mais peut également être utilisé dans d’autres pièces. Aux Pays-Bas, les vasistas s’articulent par le haut et s’ouvrent vers l’extérieur. Ils servent souvent d’amenées d’air pour la ventilation de base.

Photo vasistas.   Schéma vasistas..

Vasistas s’ouvrant vers l’extérieur ou vers l’intérieur.

Notons que se développent actuellement des systèmes plus sophistiqués permettant de régler assez précisément la position d’ouverture de ces fenêtres, soit manuellement, soit automatiquement.


Les portes et fenêtres

Les portes et les fenêtres ont depuis toujours été utilisées pour ventiler les bâtiments. Dans le cadre de la norme sur la ventilation, elles ne conviennent pas, car les débits amenés sont beaucoup trop élevés pour la ventilation de base. Leurs surfaces ouvertes génèrent des débits qui dépassent le débit maximum autorisé. En outre, les possibilités de réglage sont trop limitées. Dans l’esprit de la norme, les fenêtres et portes ouvertes ne peuvent donc servir que comme dispositifs de « ventilation périodique intensive ». Notons toutefois une exception pour les petits vasistas réglables.


Les conduits ouverts

Les conduits de ventilation ouverts (ouvertures non obturables dans les murs ou les sols) ne conviennent pas non plus, étant donné qu’ils engendrent de trop grands débits (plus du maximum autorisé de deux fois le débit nominal) et ne sont pas réglables. Les conduits ouverts peuvent dès lors être utilisés, dans le cadre de la norme, comme dispositifs pour les locaux ou espaces spéciaux : garages, les caves, les débarras, les chaufferies, les greniers, etc.

Toiture combinée

Toiture combinée


La toiture combinée consiste en un mélange des techniques « toiture chaude » et « toiture inversée« .

L’isolation est mise en place en deux couches.

La première couche d’isolant est recouverte par la membrane d’étanchéité.

La deuxième couche d’isolant est placée sur la membrane d’étanchéité. La technique de la toiture combinée protège ainsi la membrane d’étanchéité contre les chocs thermiques et le rayonnement ultraviolet, et de ce fait, ralentit son vieillissement.

Un écran pare-vapeur est parfois interposé entre le support et l’isolant inférieur.Celui-ci n’est pas nécessaire lorsque la résistance thermique de la couche supérieure est deux fois plus importante que la résistance thermique de la couche inférieure.
Le lestage est nécessaire.

  1. Lestage
  2. Natte de protection
  3. Isolant 1
  4. Membrane d’étanchéité
  5. Isolant 2
  6. Pare vapeur
  7. Support

Toiture froide

Toiture froide


Généralités

La toiture froide désigne la toiture plate dont l’isolant est placé en dessous du support de l’étanchéité avec une lame d’air ventilée interposée.

Jadis régulièrement mis en œuvre, ce système est actuellement complètement dépassé et est à proscrire.

  1. Lestage (éventuel)
  2. Membrane d’étanchéité
  3. Support
  4. Lame d’air ventilée
  5. Isolant
  6. Pare vapeur étanche à l’air
  7. Plafond

En effet, l’isolation d’une toiture plate par ce système provoque presque inévitablement de la condensation interne.

La vapeur d’eau qui migre de l’intérieur vers l’extérieur se condense sur le support d’étanchéité, dans l’isolant ou dans l’espace aéré et retombe sur l’isolant. La ventilation réelle de la lame d’air est souvent plus faible que celle nécessaire.

Le support d’étanchéité est parfois beaucoup plus froid que l’air extérieur de ventilation dont la vapeur se condense sur la face inférieure de l’étanchéité (surrefroidissement).

Lorsque le plafond n’est pas étanche à l’air, l’air intérieur chaud est aspiré dans l’espace ventilé et s’y condense d’autant plus que les courants d’air sont importants.

Cette condensation peut entraîner  l’altération de l’isolant et la suppression de son efficacité, la pourriture des planchers, le gel des matériaux, le décollement ou le ramollissement des matériaux agglomérés, le développement de moisissures, etc. 


Variantes

De même que l’on évitera de réaliser des toitures froides, on s’abstiendra en règle générale de placer l’isolant à la face inférieure du plancher de toiture, dans un faux plafond, ou entre le plancher et le béton de pente.

Isolation par l’intérieur

  1. Lestage (éventuel)
  2. Membrane d’étanchéité
  3. Support
  4. Isolant
  5. Pare vapeur (éventuel)

Isolation dans le faux plafond

  1. Lestage (éventuel)
  2. Membrane d’étanchéité
  3. Support
  4. Vide du plafond
  5. Isolant
  6. Pare-vapeur
  7. Plafond

Isolation sous béton de pente

  1. Lestage (éventuel)
  2. Membrane d’étanchéité
  3. Béton de pente
  4. Isolant
  5. Pare vapeur
  6. Support

Ventilation naturelle

© Architecture et climat 2023.

  1. Amenée d’air naturel
  2. Grille de transfert
  3. Evacuation naturelle

Principe

Dans la ventilation naturelle, ou système A, suivant la norme NBN D50-001, aucun ventilateur n’intervient. L’air se déplace grâce aux différences de pression dues au vent qui existent entre les façades du bâtiment et grâce à la différence de masse volumique en fonction de sa température, c’est le tirage thermique ou l’effet cheminée. La circulation de l’air est donc totalement naturelle !

L’air peut pénétrer dans un bâtiment au travers des inétanchéités. On ne peut considérer à proprement parler ce phénomène comme de la ventilation. En effet, les débits d’air résultants sont tout à fait incontrôlables en fonction du vent, des ouvertures parasites… On parle dans ce cas d’infiltrations.

Des amenées d’air (grilles réglables, vasistas) doivent être disposées en façade pour les locaux dits « propres » (bureaux, séjours, …). Des ouvertures de transfert (détalonnage des portes ou grilles) permettent le passage de l’air vers les locaux dits « humides » ou « viciés » (sanitaires, cuisine, …). Dans ces derniers, l’air est évacué grâce à des conduits verticaux débouchant en toiture.

© Architecture et climat 2023.

  1. Air neuf
  2. Air vicié

Avantages

La ventilation entièrement naturelle ne demande aucune consommation électrique, le moteur du déplacement d’air étant la pression du vent et les différences de température. Elle est en ce sens économique et réduit l’impact du bâtiment sur l’environnement.

En outre, les éléments de ventilation naturelle demandent généralement très peu d’entretien et ne comprennent pas de ventilateurs bruyants.


Inconvénients

Cette apparente économie d’énergie doit être mise en balance avec la garantie de performance que l’on peut obtenir avec un tel mode de ventilation. En effet, la ventilation naturelle étant liée aux phénomènes naturels de mouvement de l’air, la qualité de l’air risque de ne pas être garantie dans tous les locaux. Le renouvellement d’air peut être fortement perturbé par le vent, par l’ouverture de fenêtres… Les débits d’air recommandés par les normes sont ainsi difficilement atteignables sur la durée et la ventilation naturelle n’est jamais privilégiée lors d’une nouvelle construction.

Pour garantir un bon fonctionnement d’une évacuation naturelle, celle-ci doit consister en un conduit vertical débouchant correctement en toiture. Si cette condition, parfois difficile à mettre en œuvre, ne peut être remplie, l’évacuation naturelle doit être abandonnée.

Comme pour la ventilation simple flux (extraction mécanique) :

  • L’air neuf n’est pas filtré et les grilles d’amenée d’air peuvent laisser filtrer les bruits extérieurs, ce qui peut être délicat en site urbain ou fortement pollué.
  • Les grilles d’ouvertures peuvent engendrer un inconfort, par exemple en plein hiver, sauf si la grille d’ouverture est placée à une hauteur supérieure à 1,80 m par rapport au sol.

  • Les ouvertures entre locaux, favorisent le passage de bruits pouvant être très gênants. Un traitement acoustique des grilles doit alors être prévu. Mais en pratique, la présence d’absorbeur acoustique dans une ouverture augmente son épaisseur et sous-entend généralement que la grille doit être placée dans l’épaisseur du mur (et non dans le vitrage ou dans la porte).
  • Enfin, les ouvertures dans les façades ne sont pas toujours du goût des architectes !

Régulation

Il est plus qu’utile d’adapter le fonctionnement de la ventilation en fonction des besoins (en période d’occupation, la nuit, week-end). Il existe plusieurs possibilités de réguler la ventilation naturelle : bouches réglables, grilles hygroréglables, grilles commandées électriquement, bras mécaniques pour l’ouverture des fenêtres… par exemple en fonction d’un horaire ou d’une sonde CO2.

Une ventilation naturelle par ouverture manuelle des fenêtres est également fortement conditionnée par le comportement des occupants et leur conscience du niveau de pollution du local. Il peut donc être utile d’utiliser un appareil avertisseur basé sur la concentration en CO2 par exemple pour conscientiser l’usager sur la qualité de son air.

Détecteurs de mouvement et de présence/absence [Eclairage]

Détecteurs de mouvement et de présence/absence [Eclairage]


 

Utilisation

Les détecteurs de présence, associés ou pas à des boutons poussoirs, permettent d’aider les gestionnaires de bâtiments dans leur « quête » à l’économie d’énergie. Ces dernières années, leur domaine d’applications s’est considérablement étendu. En effet, outre la commande de l’éclairage intérieur et extérieur, ils sont actuellement utilisés pour la commande d’automatismes tels que :

  • la gestion de la ventilation, dans les locaux à occupation intermittente comme les salles de conférence par exemple ;
  • la régulation des installations de chauffage et de climatisation ;
  • le déclenchement de l’alarme, puisque ce même principe est utilisé pour la détection d’intrusion ;
  • jusqu’au déclenchement de la chasse des toilettes, … pour utiliser l’eau de ville à bon escient, bien sûr,… et non pour enregistrer la fréquence et la durée des utilisateurs !

En éclairage, le détecteur de présence allume les luminaires lors de l’entrée de l’occupant et les éteint quelques temps après sa sortie. Une temporisation à l’extinction est nécessaire pour ne pas réduire la durée de vie des lampes par des cycles d’allumage/extinction trop fréquents. Par exemple, une absence de 1 ou 2 minutes ne peut entraîner l’extinction des lampes.

Calculs

Les économies engendrées par le placement de détecteurs de présence se situent, selon certaines sources, entre 35 et 45 %. Pour analyser au cas par cas l’intérêt de placer des détecteurs de présence.

À noter, toutefois, qu’un détecteur a sa consommation propre. S’il est de bonne qualité, cette consommation est réduite (< 1W).


Principe de fonctionnement

Dans le jargon des professionnels, un détecteur de mouvements se différencie d’un détecteur de présence par sa grande sensibilité.

Différentes technologies existent sur le marché. La technologie à infrarouge (IR) est la plus répandue dans le domaine de l’éclairage. Cependant, quelques applications de gestion d’éclairage, comme dans les sanitaires par exemple, font appel aux technologies ultrasoniques (US), combinées IR et US ou encore sonore.

En général, l’électronique des détecteurs permet de développer des logiques de gestion de l’éclairage en détection de présence ou d’absence. En d’autres termes :

  • Pour une gestion de présence, le détecteur peut travailler seul. Dès qu’une personne entre dans la zone de détection, l’éclairage est allumé. Ce principe est applicable dans les locaux où les détections sont fréquentes, mais de courte durée.
  • Pour une gestion d’absence, le détecteur doit être combiné avec un système de commande volontaire (type bouton-poussoir). Une personne entrant dans un local avec accès à la lumière naturelle peut choisir d’allumer ou pas l’éclairage en fonction du niveau d’éclairement régnant dans le local. Si elle choisit d’allumer, le détecteur ne coupera l’éclairage qu’après un délai réglable d’absence de la personne. Ce principe permet, en général, de responsabiliser les occupant.
  • Ces détecteurs permettent en réalité  d’imaginer toute sorte de fonctionnement. Par exemple, pour des couloirs : en cas d’absence la lumière est dimmée (intensité réduite) et dès détection de présence, l’éclairage est remis à 100 %. L’extinction arrive seulement en cas d’absence plus longue.


Technologies des détecteurs

Détecteur  à infrarouge (IR)

Schéma détecteur  à infrarouge.

Ils détectent le mouvement du corps humain par la mesure du rayonnement infrarouge (= chaleur) émis par le corps humain.

Ils sont dits « passifs » car ils n’émettent aucune radiation, contrairement aux détecteurs à infrarouge actif de type « barrière ». Ils mesurent le rayonnement infrarouge émis par les surfaces chaudes.

Ils fournissent une indication de changement d’occupation d’un lieu : absence ou présence. Ils ne permettent pas de connaître le taux d’occupation d’un local ou le nombre d’occupants.

Photo détecteur  à infrarouge.

Plus précisément, les détecteurs de mouvement à infrarouge comportent un certain nombre de facettes sensibles. Leur rayon d’action est ainsi découpé en une série de segments. C’est le passage d’un corps (et donc de chaleur) du rayon de vision d’une facette vers celui d’une autre facette qui permet de détecter le mouvement.

La sensibilité d’un détecteur dépend donc du nombre de segments sensibles. Par exemple, un détecteur dont le rayon de détection est découpé en peu de segments risque de ne pas détecter une personne se dirigeant vers lui.

Pour certains modèles perfectionnés, cette sensibilité est réglable. Le réglage sera différent selon le type de local : dans un bureau où les mouvements sont parfois minimes (travail sur ordinateur, par exemple) on le réglera sur une forte sensibilité, tandis que dans un local sujet à des courants d’air, on le réglera sur une sensibilité plus faible.

La limite d’utilisation des détecteurs IR réside dans son incapacité à effectuer une détection au travers d’une paroi par exemple. C’est le cas dans les sanitaires ou les bureaux paysagers aménagés avec des cloisons antibruit ou des armoires hautes.

Détecteurs ultrasoniques (US)

Schéma détecteurs ultrasoniques.

Les détecteurs US sont de type émetteur/récepteur et fonctionne sur le principe de l’effet Doppler. Toute onde ultrasonique (32 kHz à 45 kHz) émise par le détecteur qui rencontre un objet sur son parcours, « rebondit » en direction inverse avec une fréquence différente. Le détecteur est capable de mesurer l’écart de fréquence et de générer ainsi un signal de présence. Les détecteurs US ont une portée limitée mais peuvent détecter des mouvements mineurs et ce même autour de certains obstacles.

Détecteurs à double technologie

Schéma détecteurs à double technologie.

Les détecteurs de présence à infrarouges risquent de ne pas détecter les mouvements légers. Par contre des détecteurs à ultrasons peuvent être trop sensibles et risquent de déclencher l’allumage de l’éclairage lors du passage « d’une mouche ». Pour éviter cet inconvénient tout en gardant une sensibilité importante, certains détecteurs, appelés « détecteurs à double technologie » combinent ultrasons et infrarouge.
Cette combinaison permet d’augmenter la fiabilité des détecteurs et élimine les détections indésirables.

Détecteurs sonores

Comme son nom l’indique les détecteurs sonores réagissent au bruit. Cette technologie pourra être utilisée dans les sanitaires par exemple. Pratiquement, on n’utilisera qu’un seul détecteur de ce type dans les communs des sanitaires sans être obligé d’en placer un dans chaque WC. Le moindre bruit émis au travers des parois des WC permettrait de pouvoir prolonger la lecture de son journal en toute quiétude (« pour les amateurs de sieste au WC, dorénavant s’abstenir ! »).

Détecteurs « intelligents »

Ce type de détecteur à double technologie enregistre pendant plusieurs mois le mode d’occupation du local et adapte automatiquement sa sensibilité.


Types de détecteurs

On distingue deux familles d’équipement :

Les détecteurs à pouvoir de coupure (peut couper l’alimentation de la lampe)

Les détecteurs montés à  la place des interrupteurs

Ceux-ci se placent dans les circulations, sanitaires, petits bureaux etc. On profite du câblage existant laissé par l’interrupteur classique pour commander les luminaires. Il est un fait certain qu’en conception, pour autant que les utilisateurs acceptent de ne plus pouvoir intervenir dans la commande des luminaires, on placera directement le détecteur à proximité des luminaires pour réduire le câblage et permettre aussi une amélioration de la modularité de la commande (changement facile de l’emplacement du détecteur).
L’ensemble de l’interrupteur automatique est composé de 3 parties : un mécanisme, un capteur et une plaque de recouvrement.

Mécanisme … Capteur … et … Plaque de recouvrement.

Certains modèles possèdent, en plus de la détection automatique, un bouton de commande manuelle. La commande peut alors se faire automatiquement ou manuellement. La commande manuelle peut être verrouillée.
On trouve deux types de capteurs

  • Un capteur qui permet une détection horizontale seulement.
    C’est ce capteur qui est généralement placé dans les locaux intérieurs.
  • Un capteur qui permet une détection horizontale et verticale (surveillance en zone basse).
    Celui-ci s’utilise pour détecter une présence dans des escaliers par exemple.

Les détecteurs placés au plafond

Photo détecteurs placés au plafond.

Dans les entrepôts de grand volume ou les bureaux aménagés de cloisons montant à mi-hauteur, le champ de vision d’un détecteur à infrarouge de 90° risque d’être masqué. Il est dès lors recommandé d’utiliser des détecteurs panoramiques dont l’angle d’ouverture est de 360°.

Ils seront également utilisés dans les grands locaux tels que salles de sports de manière à pouvoir couvrir l’ensemble de l’espace.

Les détecteurs intégrés dans le luminaire

Photo détecteurs placés dans le luminaire.

Ce type de détecteur commande directement et individuellement le luminaire sur lequel il est monté. Dans la nouvelle norme EN 12464-1 l’éclairage individuel prend toute son importance par le fait que la zone de travail est précise et peut être mobile. De ce fait, le détecteur « embarqué » permet d’améliorer la gestion de présence individuellement.

Les détecteurs gradables (agit sur la commande 1-10V du ballast dimmable)

Les détecteurs gradables

Photo détecteurs gradables.

On rencontre deux types de détecteurs gradables :

  • analogique : connecté au ballast électronique dimmable, ce type de détecteur agit comme le potentionmètre (ou dimmer) sur le ballast en faisant varier la tension de commande de 1 à 10 Volt,
  • digital : connecté à un ballast type DALI ou sur un réseau type DALI, ce genre de détecteur peut agir sur un ou des groupes de luminaires.

Les multidétecteurs

Photo multidétecteurs.

À l’heure actuelle, de part la percée effectuée par les réseaux d’éclairage (ON, DALI, …), les détecteurs combinent plusieurs fonctions afin de commander, de réguler, de gérer un ou des groupes de luminaires :

  • la détection de présence,
  • la régulation en fonction du niveau d’éclairage naturel,
  • la réception IR d’un signal de commande à distance (télécommande).

Caractéristiques générales des détecteurs infrarouges (IR)

Un détecteur placé sur une paroi verticale est caractérisé par :

  • un angle de détection horizontal,
  • une portée latérale,
  • une portée frontale.

Un détecteur placé au plafond est caractérisé par :

  • un rayon d’action de 360°,
  • un diamètre de détection maximal (ou couverture maximale (en m²)) pour une hauteur maximale.

Lorsqu’on diminue la hauteur d’installation, la zone de couverture diminue, mais la sensibilité augmente.
Par contre, au-delà de la hauteur maximale, la sensibilité n’est plus suffisante.

Attention : le détecteur ne traverse aucune cloison, pas même en verre !

Si plusieurs détecteurs sont placés dans un même lieu, il est intéressant de prendre un modèle de détecteur avec un mécanisme « maître » (ou « master ») et un ou plusieurs avec mécanisme « esclave » (ou « slave »). Un détecteur avec mécanisme « maître » est plus cher, mais les mécanismes « esclave » sont beaucoup moins chers, ce qui rend l’ensemble intéressant économiquement.

Y a-t-il des différences entre détecteurs pour la gestion de l’éclairage et détecteurs pour la gestion de la ventilation ?

Les sondes utilisées dans un but de gestion de l’éclairage ne possèdent pas de temporisation à l’enclenchement/déclenchement. Le détecteur possède une temporisation après le dernier mouvement. Pour certains modèles, cette temporisation est réglable  (de 5 secondes à 5 minutes par exemple). La temporisation peut aller jusqu’à 30′ pour les modèles perfectionnés.

De plus, elles intègrent souvent un détecteur de luminosité : en général, le détecteur comporte un interrupteur crépusculaire dont le seuil de luminosité peut être réglé (de 5 à 1 000 lux par exemple).

En éclairage, il existe deux types de mécanismes :

  • Un mécanisme avec triac qui ne permet de commander que des lampes à incandescence ou halogène 230 V.
  • Un mécanisme avec relais qui permet de commander également des lampes fluorescentes.

Si les sondes destinées à la régulation de la ventilation sont d’un principe identique, elles intègrent par contre des temporisations à l’enclenchement et au déclenchement nécessaires pour éviter des sollicitations trop fréquentes du système de ventilation.

Ces temporisations sont généralement réglables de quelques minutes à une dizaine de minutes.

À noter qu’il existe des bouches de soufflage qui intègrent une sonde de présence directement :

Photo bouches de soufflage avec détecteur.


Emplacement

L’espace couvert par un détecteur détermine l’emplacement des détecteurs.
Les détecteurs doivent être placés de manière à couvrir tout l’espace à détecter.

Exemple.
On souhaite placer des détecteurs de présence pour commander l’éclairage du hall ci-dessous.

Caractéristiques du détecteur :

Interrupteurs automatiques 

  • Angle de détection : 180°
  • Portée latérale : 2 x 6 m
  • Portée frontale : 12 m

Schéma emplacement des détecteurs.

Trois détecteurs seront placés. Ils couvriront l’ensemble du hall.

Le choix de l’emplacement du détecteur a une grande importance sur son bon fonctionnement. Il ne faut pas que le détecteur soit influencé par une source de lumière permanente (dans ce cas, croyant l’éclairage suffisant, il ne commandera pas l’allumage) ou encore par un mouvement en-dehors de la zone commandée (ouverture de porte, …).

On peut souhaiter réaliser un zonage dans un même local. Dans certains cas, ce zonage peut être réalisé uniquement en choisissant bien l’emplacement des détecteurs; dans d’autres cas il faudra placer des « jalousies » sur le détecteur, de manière à ce qu’il ne voit que d’un seul côté.


Schémas de raccordement (en gestion de l’éclairage)

Situation 1 : il n’y a qu’un seul détecteur

Selon le type de mécanisme, le raccordement du détecteur se fait avec 2 ou 3 conducteurs

  • Un mécanisme avec triac (pour lampes à incandescence ou halogènes 230 V) doit être raccordé à la phase, un conducteur sort vers les lampes (= raccordement 2 fils).
  • Un mécanisme avec relais (pour lampes incandescentes, halogènes et fluorescentes) doit être raccordé à la phase et au neutre (ou 2° phase), un conducteur sort vers les lampes (= raccordement 3 fils).

Montage à 2 fils.

Montage à 3 fils.

Application en rénovation lorsqu’on utilise des interrupteurs automatiques :

Lorsqu’on utilise un mécanisme à relais (montage à 3 conducteurs obligatoire pour tubes fluorescents par exemple), et lorsqu’on utilise des interrupteurs automatiques) il faudra vérifier qu’une phase et un neutre (ou 2 phases) arrivent bien à l’interrupteur existant.
En effet, dans certains types de câblage (« câblage par le haut »), un seul fil arrive à l’interrupteur.

Dans ce cas, il faudra tirer un nouveau conducteur entre les lampes et le(s) détecteur(s), ce qui augmente les coûts, surtout lorsque les câbles sont encastrés.

Situation 2 : il y a plusieurs détecteurs

S’il y a plusieurs points de détection dans un même lieu, on monte les détecteurs en parallèle, ou encore on monte un détecteur avec mécanisme « maître » et un (ou plusieurs) détecteur(s) avec mécanisme « esclave » :

Détecteurs en parallèle

Montage à 2 fils.

Montage à 3 fils.

En plus de la phase (et éventuellement du neutre ou d’une deuxième phase) qui arrive au détecteur, on doit disposer d’un conducteur entre les détecteurs.

Application en rénovation lorsqu’on utilise des interrupteurs :

Si l’installation existante comporte des interrupteurs à deux directions, utilisés lorsque deux interrupteurs commandent les mêmes lampes, on dispose déjà de ce câble dans l’installation existante (câble à 3 conducteurs). Si l’installation comporte des interrupteurs-inverseurs, utilisés en plus des interrupteurs à deux directions lorsque plus de deux interrupteurs commandent les mêmes lampes, on dispose également de ce câble.
Par contre, si dans l’ancienne installation, les luminaires sont commandés par un seul interrupteur il faudra tirer ce conducteur entre les détecteurs ; ce qui engendre un surcoût.

Pompe à chaleur sur lave-vaisselle

Pompe à chaleur sur lave-vaisselle


Pompe à chaleur avec récupération sur les buées

De la chaleur est prise sur les buées au niveau de la tubulure d’échappement pour la donner à l’eau.L’avantage d’une pompe à chaleur sur un simple récupérateur de chaleur est que, grâce à l’utilisation d’un fluide intermédiaire et d’un compresseur,  la température de la source de chaleur (ici, l’air chargé de buées)  peut être plus basse que celle du fluide auquel on donne la chaleur (ici, l’eau de lavage).

Par exemple, imaginons des buées à 40°C et de l’eau de lavage à 60°C. Dans un premier échangeur (l’évaporateur), le fluide frigorigène de la pompe à chaleur passera à 30°C, il captera la chaleur des buées, puis se fera comprimer par le compresseur pour atteindre 70°C. À cette température, il pourra donner sa chaleur vers l’eau de lavage, dans un deuxième échangeur (le condenseur).

Quel est le bilan énergétique du processus ? D’une part, la chaleur captée sur les buées sera transférée vers l’eau de lavage. Mais d’autre part, il a fallu alimenter électriquement le compresseur. On pourrait montrer que cette énergie électrique est également convertie en chaleur et transférée (dans le deuxième échangeur) vers l’eau de lavage. Si bien que l’on peut écrire :

Puissance captée dans les buées + Puissance du compresseur = Puissance donnée à l’eau de lavage.

Exemple de puissances injectées, perdues et récupérées sur un lave-vaisselle muni dune pompe à chaleur.

Source : société Stierlen.

Dans l’exemple ci-dessus, avec les 20 kW du compresseur on a « créé » 75 kW (20 + 55) ! On parle d’un coefficient de performance ou COP de 75/20 = 3,75.

Une pompe à chaleur va permettre de diminuer la puissance totale installée ainsi que la consommation d’environ 45 %.

D’après nos sources, le COP d’une pompe à chaleur sur un lave-vaisselle est d’environ 4.


Pompe à chaleur avec récupération sur les buées et sur l’air ambiant

Certaines machines avec pompe à chaleur intégrée sont encore plus performantes que les pompes à chaleur qui récupèrent de la chaleur sur les buées, puisqu’elles récupèrent aussi de la chaleur sur l’air ambiant.

Cette deuxième récupération permet d’accroître la chaleur cédée au niveau de l’évaporateur et par conséquent celle cédée à l’eau de lavage et de rinçage. L’économie d’énergie et de puissance installée est donc plus importante : elle peut aller jusqu’à 55 %.

Le COP, coefficient de performance de la pompe à chaleur, a tendance à diminuer puisque l’on cherche à capter la chaleur d’une ambiance qui est à basse température. D’une façon générale, le COP est d’autant meilleur que l’écart de température entre évaporateur et condenseur est faible. Ici, l’écart entre la température de l’ambiance et la température de l’eau de lavage est plus élevé, le compresseur a donc plus de travail à réaliser. Pour limiter cet impact, on placera les deux sources de chaleur en série, d’abord l’air ambiant, ensuite les buées chaudes.

Pompe à chaleur avec récupération sur les buées uniquement Pompe à chaleur avec récupération sur les buées et sur l’air ambiant
Schéma PAC avec récupération sur les buées uniquement. Schéma PAC avec récupération sur les buées et sur l'air ambiant.

Ce système présente un deuxième avantage non négligeable : l’air ambiant de la cuisine est refroidi, ce qui va améliorer le confort des occupants.

Attention : si l’humidité absolue de l’air du local diminue par condensation dans l’évaporateur de la pompe à chaleur, l’humidité relative du local va augmenter, ce qui ne contribuera pas à l’amélioration du confort à ce niveau.

Ce phénomène peut se comprendre sur le diagramme d’enthalpie de l’air.

Exemple : l’air sort de l’évaporateur à 18°C et 100 % d’humidité relative (point A). Il est mélangé à de l’air ambiant à 26°C et 80 % d’humidité relative (point B). Le mélange se trouvera quelque part (en fonction des proportions du mélange) sur la droite qui rejoint le point A au point B. On voit donc que  l’humidité relative sera de toute façon supérieure à celle de l’air  ambiant.

On en conclut que de l’air sec devra de toute façon être apporté au local pour diminuer son taux d’humidité, mais en quantité nettement plus faible. Autrement dit, la présence d’une pompe à chaleur sur le lave-vaisselle qui extrait l’humidité de l’ambiance permettra un débit d’extraction d’air dans la laverie nettement plus faible.

Isolation par panneaux rigides au-dessus des chevrons ou des fermettes (Toiture « Sarking »)

Isolation par panneaux rigides au-dessus des chevrons ou des fermettes (Toiture "Sarking")

Isolation au-dessus des chevrons ou des fermettes.

  1. couverture
  2. contre-lattes
  3. lattes
  4. sous-toiture
  5. isolant
  6. pare-vapeur
  7. chevrons ou fermettes
  8. pannes

La toiture « SARKING »

Le système sarking est un procédé d’isolation thermique des toitures inclinées caractérisé par la pose de panneaux isolants rigides au-dessus des chevrons ou des fermettes.

La toiture sarking vu de l’intérieur.

Les panneaux sont généralement en mousse synthétique ou en verre cellulaire, plus rarement en laine de roche rigide incompressible.

Les joints entre panneaux isolants étant rendus étanches à l’air, les panneaux isolants assument, à eux seuls, 3 fonctions de la toiture :

Lorsque les joints entre les panneaux isolants ne sont pas rendus étanches, une sous-toiture souple capillaire permettant la diffusion de vapeur est posée sur l’isolant.

Un écran rigide, sorte de plancher incliné dans le plan de la couverture, peut être éventuellement placé directement sur les chevrons ou fermettes, sous les panneaux isolants. Il peut alors servir de finition intérieure, de sécurité incendie. En outre il facilite grandement la pose d’un éventuel pare-vapeur pour lequel il sert de support.

Il est constitué, par exemple, de :

  • panneaux multiplex ou de bois aggloméré,
  • voliges rainurées bouvetées ou non,
  • plaques de fibre-ciment.

La mise en œuvre de verre cellulaire ou de laine de roche rigide incompressible, impose ce support rigide.

Isolant supporté par une plaque rigide.

  1. Couverture.
  2. Lattes.
  3. Contre-lattes.
  4. Isolant.
  5. Plaque de support.
  6. Chevrons ou fermettes.
  7. Pannes.

En l’absence de plancher, la finition intérieure est réalisée sous les chevrons, en plaques de plâtre, par exemple.

La finition intérieure, qu’elle soit constituée du support ou d’une autre finition, doit être en matériau isolant au feu de manière à retarder la transmission de flammes vers les isolants en mousses synthétiques (PUR, PIR, XPS, EPS) qui sont combustibles.

Les contre-lattes sont clouées dans les chevrons ou les fermettes au travers de l’isolant.


Conseils de mise en œuvre

Les panneaux isolants rigides de mousse synthétique (XPS, EPS) de la toiture « Sarking » sont placés parallèlement à l’horizontale.

Les joints verticaux des panneaux se retrouvent de préférence au-dessus et à l’axe du support (chevron ou fermette).

Bâtiments de classe de climat intérieur I, II ou III

Dans les bâtiments de classe de climat intérieurI, II ou III, la fonction d’étanchéité à l’air et à la vapeur est assurée par le panneau isolant lui-même à condition d’avoir des joints et des raccords étanches.
L’étanchéité à l’air et à la vapeur des joints et des raccords peut être obtenue :

  • par la mise en place de bandes de mousse souple d’épaisseur suffisante à l’intérieur des joints, ou
  • par des cordons de mastic élastique compatible à la jonction des panneaux, ou encore
  • par des bandes auto-collantes disposées sur les joints.

La fonction « sous-toiture » peut être assurée par le panneau isolant à condition de rendre étanche à l’eau la face supérieure de tous les joints entre panneaux et des raccords. Dans ce cas, une bavette collée sur la dernière rangée de panneaux ou engagée dans l’épaisseur de cette dernière, doit assurer l’évacuation des infiltrations d’eau éventuelles.

  1. Panne sablière.
  2. Chevron ou fermette.
  3. Planche de rive.
  4. Cale de bois.
  5. Panneaux isolants.
  6. Isolant entre chevrons ou fermette.
  7. Sous-toiture éventuelle.
  8. Contre-latte.
  9. Lattes.
  10. Latte plâtrière.
  11. Couverture.
  12. Gouttière.
  13. Bavette indépendante.
  14. Peigne.
  15. Finition intérieure.

Une autre solution consiste à poser sur les panneaux isolants ou à intégrer à ceux-ci, lors de leur fabrication, une sous-toiture sous forme de membrane ou de plaques rigides imperméables à l’eau mais très perméables à la vapeur. La sous-toiture souple est posée sur l’isolant avec recouvrement des joints longitudinaux et transversaux. La sous-toiture rigide est posée sur l’isolant avec recouvrement des joints longitudinaux. La jonction verticale se fait bord à bord, dans l’axe des chevrons ou fermettes. Le joint vertical est comprimé par la contre-latte fixée au chevron ou à la fermette à travers l’isolant. Les joints verticaux de l’isolant et de la sous-toiture rigide ne peuvent pas se superposer. La sous-toiture doit être prolongée dans le bas du versant jusqu’à la gouttière ou au-delà de la façade pour assurer l’évacuation des infiltrations d’eau éventuelles.

Exemple, système proposé par un fabricant.

Joint horizontal entre deux panneaux

  1. chevron ou fermette
  2. crochet de mise en place cloué au chevron
  3. panneau isolant
  4. bande de mousse souple adhésive
  5. latte de mise en place
  6. deuxième rangée de panneaux isolants à glisser contre la première rangée
  7. couche de revêtement avec rebord (200 mm) (= sous-toiture)

Joint vertical entre deux panneaux

  1. chevron ou fermette
  2. bande adhésive
  3. panneau isolant avec sous-toiture souple intégrée
  4. contre-latte

Les joints verticaux sont alignés au-dessus et à l’axe du chevron. De cette façon, l’étanchéité à l’air est assurée par la contre-latte. Une étanchéité à l’air supplémentaire peut être obtenue en plaçant une bande adhésive souple sur le support avant la mise en place des panneaux et en appliquant une même bande sur la face supérieure des joints avant la pose des contre-lattes.

Autre exemple, système proposé par un autre fabricant : 

Panneau rainuré et languetté sur le pourtour + profil le rendant étanche à l’air et à la vapeur d’eau. En outre, la face supérieure est pourvue d’une membrane de sous-toiture étanche à l’eau qui chevauche le panneau de part et d’autre.

On trouve sur le marché des panneaux de polystyrène expansé à rainures et languettes dont le fabricant propose simplement, pour réaliser l’étanchéité entre panneaux, la pose par-dessus le panneau isolant, d’une membrane étanche à l’eau de pluie et perméable à la vapeur, sans étanchéité à l’air et à la vapeur supplémentaire à la face inférieure des panneaux.

Les tenons des plaques doivent toujours être orientés vers le haut.

Ce système est moins exigeant au niveau hygrothermique que l’ensemble des précautions énoncées ci-dessus et extraites de l’article « Dossier : la toiture SARKING », paru dans le magasine « Roof Belgium » de septembre 1998, écrit sur base d’un document technique du CSTC exposant les aspects principaux de la toiture Sarking. Néanmoins, ce système, pour autant qu’il soit pourvu d’un plancher ou d’une finition intérieure étanche à l’air sous les chevrons, est conforme aux recommandations du CSTC concernant le choix du pare-vapeur, puisque ces recommandations n’exigent pas de pare-vapeur dans le cas d’une sous-toiture capillaire et perméable à la vapeur d’eau.

Bâtiments de classe de climat intérieur IV

Dans les bâtiments de classe de climat intérieur IV, les recommandations ci-dessus concernant la fonction « sous-toiture » restent valables, tandis que la fonction d’étanchéité à la vapeur d’eau nécessite la pose d’un pare-vapeur continu. La mise en place de celui-ci sera facilitée par la présence, sous les panneaux isolants, d’un « plancher » sur lequel il sera posé.

Remarque générale.

Pour une construction sûre en matière d’incendie, on doit prévoir une finition intérieure en carton-plâtre ou en tout autre matériau résistant au feu. Celle-ci permet de retarder la transmission de flammes vers les mousses synthétiques (PUR, PIR, XPS, EPS) qui sont combustibles.

Moteur asynchrone

Moteur asynchrone

Généralité

Le moteur asynchrone couplé à un variateur de fréquence est de loin le type de moteur le plus utilisé pour les applications où il est nécessaire de contrôler la vitesse et le déplacement d’une charge.

Le système moteur-variateur convient bien pour des applications tels que les ascenseurs car on recherche une excellente précision à fois au niveau de la vitesse (confort des utilisateurs) et de la précision de la position de la cabine par rapport aux paliers.

Quant au moteur asynchrone seul, sa popularité résulte du peu d’entretien nécessaire, de sa simplicité de construction, de sa standardisation et de sa robuste.

photo moteur asynchrone


Principe de fonctionnement

Le principe de fonctionnement d’un moteur asynchrone repose :

  • D’une part sur la création d’un courant électrique induit dans un conducteur placé dans un champ magnétique tournant. Le conducteur en question est un des barreaux de la cage d’écureuil ci-dessous constituant le rotor du moteur. L’induction du courant ne peut se faire que si le conducteur est en court-circuit (c’est le cas puisque les deux bagues latérales relient tous les barreaux).
  • D’autre part, sur la création d’une force motrice sur le conducteur considéré (parcouru par un courant et placé dans un champ magnétique tournant ou variable) dont le sens est donné par la règle des trois doigts de la main droite.

Schéma principe de fonctionnement.

Comme montré sur le schéma ci-dessus, le champ tournant , à un instant donné, est orienté vers le haut. En considérant deux conducteurs diamétralement opposés, on constate que les courants induits dans ces deux conducteurs sont en sens inverse et, associés au champ magnétique, créent des forces motrices en sens inverse. Le rotor étant libre de tourner sur l’axe X-Y, les deux forces s’associent pour imprimer aux deux conducteurs un couple permettant la rotation de la cage d’écureuil : le moteur électrique est inventé.

Pour entretenir la rotation du moteur, il est nécessaire de faire varier soit le courant dans les conducteurs de la cage, soit le champ magnétique. Dans un moteur asynchrone, c’est le champ magnétique qui varie sous forme de champ tournant créé dans le stator.

Au démarrage le champ tournant balaye les conducteurs de son flux à la vitesse angulaire de synchronisme. Le rotor mis en rotation tend à rattraper le champ tournant. Pour qu’il y ait un couple entretenu au niveau des conducteurs, la variation de flux doit être présente en permanence; ce qui signifie que si les conducteurs tournent à la vitesse de synchronisme comme le champ tournant, la variation de flux sur les conducteurs devient nulle et le couple moteur disparaît.

Un rotor de moteur asynchrone ne tourne donc jamais à la vitesse de synchronisme (50 Hz). Pour un moteur à une paire de pôles (à 50 Hz, la vitesse de rotation du champ tournant est de 3 000 [tr/min]) la vitesse de rotation du rotor peut être de 2 950 [tr/min] par exemple; intervient ici la notion de glissement.


Le stator

Le stator d’un moteur triphasé (le plus courant en moyenne et grosse puissance), comme son nom l’indique, est la partie statique du moteur asynchrone. Il se compose principalement :

  • de la carcasse,
  • des paliers,
  • des flasques de palier,
  • du ventilateur refroidissant le moteur,
  • le capot protégeant le ventilateur.

   

Stators.

L’intérieur du stator comprend essentiellement :

  • un noyau en fer feuilleté de manière à canaliser le flux magnétique,
  • les enroulements (ou bobinage en cuivre) des trois phases logés dans les encoches du noyau.

Dans un moteur triphasé les enroulements sont au nombre minimum de trois décalés l’un de l’autre de 120° comme le montre le schéma ci-dessous.

Schéma principe moteur triphasé.

Influence du nombre de paires de pôles sur la vitesse de rotation et de la forme du champ statorique résultant.

Lorsque les enroulements du stator sont parcourus par un courant triphasé, ceux-ci produisent un champ magnétique tournant à la vitesse de synchronisme. La vitesse de synchronisme est fonction de la fréquence du réseau d’alimentation (50 Hz en Europe) et du nombre de paires de pôles. Vu que la fréquence est fixe, la vitesse de rotation du champ tournant du moteur ne peut varier qu’en fonction du nombre de paires de pôles.

Paires de pôles 1 2 3 4 6
Nombre de pôles 2 4 6 8 12
n0 [tr/min] 3 000 1 500 1 000 750 500


Le rotor

Le rotor est la partie mobile du moteur asynchrone. Couplé mécaniquement à un treuil d’ascenseur par exemple, il va créer un couple moteur capable de fournir un travail de montée et de descente de la cabine d’ascenseur. Il se compose essentiellement :

  • D’un empilage de disques minces isolés entre eux et clavetés sur l’arbre du rotor afin de canaliser et de faciliter le passage du flux magnétique.
  • D’une cage d’écureuil en aluminium coulé dont les barreaux sont de forme trapézoîdale pour les moteurs asynchrones standards et fermés latéralement par deux « flasques » conductrices.

Photo rotor.   Photo rotor.


Glissement

Comme on l’a vu au niveau du principe de fonctionnement d’un moteur asynchrone, la vitesse de rotation de l’arbre du moteur est différente de la vitesse de synchronisme (vitesse du champ tournant).

Le glissement représente la différence de vitesse de rotation entre l’arbre du moteur et le champ tournant du stator; il s’exprime par la relation suivante :

s = n0 – nn

Avec,

  • n0 = vitesse du champ tournant.
  • nn = vitesse de rotation de l’arbre.

Le glissement est généralement exprimé en pourcentage de la vitesse de synchronisme n0.

s = (n0 – nn) / n0 [%]

La vitesse de synchronisme, quant à elle, est fonction de la fréquence du réseau et du nombre de paires de pôles. Elle s’exprime par la relation suivante :

n0 = (f x 60) /p

Avec,

  • n0 = vitesse du champ tournant.
  • f = la fréquence du réseau (en général 50 Hz).
  • p = le nombre de paires de pôles.

Couple

Le couple C d’un moteur asynchrone est fonction de la puissance P et de la vitesse de rotation n du moteur. Il s’exprime par la relation suivante :

C = (P x 9 550) / n

Avec,

  • P = Puissance du moteur [W].
  • n = la vitesse de rotation du moteur [tr/min].

Une des courbes la plus caractéristique des moteurs asynchrones est celle du couple en fonction du glissement :

Couple en fonction du rapport :
vitesse de rotation/vitesse de synchronisme.

Sur le graphe ci-dessus on voit tout de suite qu’il faut choisir le type de moteur en fonction de l’application : pour les motorisations des ascenseurs, on préférera les moteurs à double cage présentant un profil de courbe plus plat en fonction du glissement afin de bénéficier d’un couple relativement constant quelle que soit la charge.

Une des caractéristiques importante du moteur asynchrone, est qu’il peut, dans certaines conditions, se transformer en générateur asynchrone. Lorsqu’une cabine d’ascenseur redescend en charge maximum, le moteur renvoie de l’énergie au réseau.

Les courbes suivantes montrent ce phénomène :

Fonction en moteur ou en générateur suivant le couple résistant .

Pour être complet, on peut noter qu’un moteur asynchrone classique a les caractéristiques suivantes :

  • Le courant de démarrage est de l’ordre de 6 à 7 fois le courant nominal. Il est impératif de prévoir des systèmes de limitation de courant au démarrage (étoile/triangle, variateur de fréquence, …).
  • Le couple de démarrage est important (de l’ordre de 2,5 fois le couple nominal).
  • Le couple est maximum pour un glissement de l’ordre de 30 %.

Caractéristiques d’un moteur asynchrone classique.


Pilotage de la vitesse de rotation

Le pilotage de la vitesse de rotation du moteur asynchrone est essentielle pour beaucoup d’applications.

La relation suivante permet de cerner quels sont les paramètres qui peuvent influencer la vitesse de rotation.

On a :

s = (n0 – n) / n0

Avec,

  • s = glissement [%].
  • n0 = vitesse du champ tournant [tr/min].
  • n = la vitesse de rotation de l’arbre du moteur [tr/min].

Ou :

n = ( (1 – s) x (f x 60)) / p

Avec,

  • f x 60 = fréquence du réseau [Hz] multipliée par le nombre de secondes par minute.
  • p = le nombre de paire de pôle.

On peut donc piloter la vitesse de rotation en intervenant sur :

  • le nombre de paire de pôle (moteur à deux vitesses par exemple),
  • le glissement du moteur (moteur à bague),
  • la fréquence du réseau.

Pilotage en modifiant le nombre de pôles

Des anciennes installations d’ascenseur fonctionnent encore avec des moteurs à deux vitesses. La plupart du temps se sont des moteurs dont le rotor est composé de deux nombres différents de paires de pôles. Les enroulements sont disposés dans les encoches du stator d’une manière particulière qui en fait tout sa complexité. Les différents couplages par paire de pôles permet d’obtenir différentes vitesses.

Un moteur bipolaire a une vitesse de rotation de 3 000 [tr/min], tandis qu’un quadripolaire tourne à 1 500 [tr/min] ou à 3 000 [tr/min].

Donc pour autant que l’on puisse réaliser des couplages différents sur des moteurs à deux nombres différents de paires de pôles, on obtient des vitesses différentes.


Régulation de fréquence

À l’heure actuelle, le pilotage de la vitesse des moteurs asynchrones se fait électroniquement grâce à des variateurs de vitesse. Pour cette raison, on ne parlera ici que du contrôle de la fréquence qui de loin la plus courante.

Sans perte de puissance, on peut piloter la vitesse de rotation du moteur en faisant varier la fréquence car la vitesse de rotation du champ tournant au niveau du stator change. Pour conserver le couple moteur (intéressant pour les ascenseurs), il faut que la tension du moteur se modifie avec la fréquence dans un rapport constant. En effet, le couple est lié à la fréquence, la tension et le courant par la formule suivante.

On a :

C ~ (U/f) x I

Avec,

  • C = couple moteur [Nm].
  • U = tension du réseau[V].
  • I = courant absorbé par le moteur.

Si le rapport entre la tension et la fréquence reste constant, le couple le reste aussi.

Pilotage en fréquence et en tension.

Le pilotage du moteur par un variateur de fréquence et de tension montre des intérêts certains; à savoir principalement :

  • la limitation du courant de démarrage (de l’ordre de 1,5 fois le courant nominal);
  • un coupe relativement constant quelle que soit la vitesse du moteur.

Charpente

Charpente

La charpente en bois reste la plus courante pour réaliser la structure portante de la toiture inclinée.

Cependant, pour des raisons thermiques, acoustiques ou de stabilité, la structure portante peut consister en dalles inclinées de béton coulées sur place ou en hourdis de béton lourd ou cellulaire posés en pente.


Charpente traditionnelle (à pannes et chevrons)

Le principe de la structure traditionnelle est de superposer, en les croisant perpendiculairement, des éléments linéaires. La portée diminuant au fur et à mesure des différentes couches, leur section et entre axe diminue également jusqu’à la pose aisée des éléments de couverture.

La charpente traditionnelle proprement dite, est constituée de pannes et de chevrons*.
Les pannes sont portées par les murs pignons et les murs porteurs de refend; des fermes peuvent remplacer les murs de refend si l’on veut garder de grands espaces sous la toiture.

* Remarque : dans le cas d’une isolation par panneaux autoportants, la charpente ne nécessite pas de chevrons; les panneaux sont directement fixés sur les pannes.

Schéma charpente traditionnelle.

  1. Ferme.
  2. Panne.
  3. Panne faîtière.
  4. Panne sablière.
  5. Chevrons.
  6. Sous-toiture éventuelle.
  7. Contre-lattes.
  8. Panneaux de toiture autoportants.
  9. Liteaux ou voliges.

Charpente traditionnelle à pannes et chevrons.

Le bois de charpente doit, de préférence, avoir été traité (pour résister aux insectes, aux champignons, …).

Les pannes (structure primaire)

Les pannes sont parallèles au faîte.
Outre les pannes, la structure primaire peut comprendre des sablières, des échelles de corniche, des noues, des arêtiers et des fermes.

Dans le cas d’une corniche en bois, une échelle en bois, mise à plat au-dessus du mur porteur et du parement, remplace ou supporte la panne sablière. L’échelle permet, d’une part de réaliser le porte à faux au-delà du mur porteur, d’autre part d’assurer une jonction continue entre l’isolation du mur et de la toiture.

Schéma pannes.

  1. Gîte de versant + isolant.
  2. Echelle de corniche.
  3. Maçonnerie renforcée.
  4. Cale de pente.
  5. Planche de face.
  6. Fermeture.

Echelle de corniche (N°2).

Les chevrons (structure secondaire)

Auparavant, les chevrons destinés à des toitures-greniers non isolées étaient de section carrée. Actuellement, les chevrons sont parfois remplacés par des « gîtes de versant », pièces de bois plus hautes, de largeur minimale de 38 mm et de hauteur minimale de 100 mm. Ces pièces permettent de poser une couche d’isolant plus épaisse en une seule fois. En outre, elles diminuent le nombre de pannes nécessaires, ce qui libère en partie l’espace sous-toiture.

Remarque : Dans ce cas, les pannes doivent être calculées pour reprendre des charges plus importantes. Elles portent en effet de plus grandes surfaces de toiture.

Au-dessus du mur pignon, une échelle de bois sert parfois de structure secondaire. Elle couvre toute l’épaisseur du mur (mur porteur – vide isolé – mur de parement). Elle permet, de réaliser le porte à faux au-delà du mur porteur. Elle permet également d’assurer une jonction continue entre l’isolation du mur et de la toiture.

Schéma chevrons.

Échelle de pignon.

Le support de couverture (contre-lattes, liteaux ou lattes, voligeage)

En général, lorsque la couverture est constituée de tuiles ou d’ardoises fixées au moyen de crochets, leur support est constitué de liteaux ou lattes. Lorqu’elle est constituée d’ardoises posées au moyen de clous, de « feuilles » ou de petits éléments relativement souples (ex : bardeau bitumineux), leur support est constitué d’un voligeage.
La pose d’ardoises sur liteaux est de plus en plus pratiquée, mais dans le cas de petites ardoises, la pose au clou sur voliges reste plus indiquée.

Actuellement, des panneaux de bois peuvent remplacer les voliges; dans ce cas, on veillera particulièrement, à suivre les prescriptions des fabricants et des agréments techniques.

Des voliges sont également utilisées comme support des ouvrages de rives et de raccords (rives libres, rives en butée, faîtes, noues, arêtiers, bacs de cheminée, corniches …).

Schéma support de couverture.

  1. Couverture.
  2. Lattes.
  3. Volige.
  4. Chéneau en zinc.
  5. Contre-lattes.
  6. Sous-toiture.
  7. Isolant.
  8. Pare-vapeur.
  9. Espace technique.
  10. Finition intérieur.

Noue.


Charpente à fermettes

Les fermettes remplacent les chevrons ou gîtes de versant, ainsi que les pannes.
Elles sont réalisées en atelier.

Remarque.
Une fermette se distingue d’une ferme de charpente par la section plus réduite des pièces qui la constitue et par la distance qui la sépare de la pièce voisine.

Schéma charpente à fermettes.

  1. Fermette.
  2. Entrait (de la fermette).
  3. Sablière.
  4. Sous-toiture (éventuelle).
  5. Contre-latte.
  6. Liteau ou voligeage.

Charpente préfabriquée avec fermettes.

Vu que la charpente est constituée uniquement d’éléments verticaux, un contre-ventement doit être prévu entre les fermettes.

Les fenêtres de toitures, lucarnes et raccords entre versants sont un peu plus compliqués à réaliser que pour une charpente traditionnelle.

Il existe des fermettes pour combles utilisables ou non utilisables.
Fermette pour combles non utilisables

Exemple schématique.
Combles non utilisables.

Fermette pour combles utilisables

Exemple schématique.
Combles utilisables.

Généralement, les fermettes sont posées au niveau du plafond de l’étage inférieur. Elles constituent la structure portante du plafond et éventuellement du plancher des combles à condition d’être calculée en conséquence.

Pour le reste, les principes sont identiques à ceux d’une charpente traditionnelle.

Machine frigorifique à ab/adsorption

Machine frigorifique à ab/adsorption


Principe de la machine à ab/adsorption

Le principe consiste à pulvériser de l’eau en fines gouttelettes dans un récipient sous vide. Du fait de la basse pression, l’eau s’évapore. Pour cela elle a besoin d’une certaine quantité de chaleur qui est extraite de l’eau à rafraîchir, circulant dans un circuit à travers le récipient.

Schéma principe de la machine à ab/adsorption.

Mais ce système ne peut fonctionner très longtemps : rapidement, le récipient sous vide sera saturé de vapeur d’eau, et l’eau dispersée ne s’évaporera plus. Il faut donc un moyen pour maintenir ou recréer le vide dans le récipient !

C’est là qu’intervient le sorbant. C’est soit un liquide, on parle alors d’absorbant, ou un solide poreux, on parle alors d’adsorbant. Il « boit » la vapeur d’eau contenue dans l’ambiance, et la retient. Au fur et à mesure qu’il ab/adsorbe de la vapeur, sa capacité d’ab/adsorption diminue jusqu’à être nulle, à saturation. Le sorbant est alors chauffé à une certaine température et « rend » la vapeur d’eau. Il récupère alors toutes ses propriétés d’ab/adsorption.

Exemple d’absorbant.

Dans les machines frigorifiques à absorption utilisées en climatisation, la substance absorbante est généralement le bromure de lithium (LiBr), le fluide réfrigérant, de l’eau. Ce type de machine permet de refroidir de l’eau jusque environ 5°C. La température de l’eau utilisée pour la régénération de l’absorbant doit être comprise entre 80 et 120°C.

Exemple d’adsorbant.

Le gel de silicium couplé avec de l’eau comme fluide réfrigérant. La température de l’eau utilisée pour la régénération de l’adsorbant doit être comprise entre 65 à 80 °C. Cette température plus basse est un avantage par rapport à la machine à absorption.


Fonctionnement

La machine à absorption

Photo machine à absorption.

La machine frigorifique à absorption se divise en quatre composants principaux :

  1. l’évaporateur,
  2. l’absorbeur,
  3. le concentrateur,
  4. le condenseur.
  1. Dans l’évaporateur, le réfrigérant (ici de l’eau) est pulvérisé dans une ambiance à très faible pression. L’évaporateur est parcouru par un circuit à eau. En s’évaporant, le réfrigérant soustrait sa chaleur à cette eau qui est ainsi refroidie.
    Une partie du réfrigérant pulvérisé ne s’évapore pas et tombe dans le fond de l’évaporateur où elle est pompée pour être à nouveau pulvérisée.

  1. La vapeur d’eau créée dans l’évaporateur est amenée à l’absorbeur. Il contient la solution absorbante (LiBr) qui est continuellement pompée dans le fond du récipient pour y être pulvérisée. Le LiBr absorbe la vapeur d’eau hors de l’évaporateur et y maintient ainsi la basse pression nécessaire à la vaporisation du réfrigérant.

Au fur et à mesure qu’elle absorbe la vapeur d’eau, la solution absorbante est de plus en plus diluée. Elle finirait par être saturée et ne plus rien pouvoir absorber.

  1. La solution est donc régénérée dans le concentrateur. Elle est réchauffée, par une batterie à eau chaude (environ 85°C) et une partie de l’eau s’évapore. La solution régénérée retourne à l’absorbeur.

  1. Enfin, la vapeur d’eau extraite du concentrateur est amenée dans le condenseur, où elle est refroidie par une circulation d’eau froide. L’eau condensée retourne à l’évaporateur.

Deux compléments au système augmentent son efficacité :

  • Une circulation d’eau froide dans l’absorbeur.
    Le phénomène d’absorption génère de la chaleur. La circulation d’eau froide dans le fluide absorbant évite sa montée en température, ce qui diminuerait son efficacité.
    Remarque : l’eau de refroidissement de l’absorbeur peut ensuite passer dans la batterie de refroidissement du condenseur.
  • Un échangeur de chaleur sur le circuit du fluide absorbant.
    Le fluide chaud sortant du concentrateur qui retourne à l’absorbeur préchauffe le fluide qui va vers le concentrateur, économisant ainsi une partie de l’énergie nécessaire pour chauffer le fluide à régénérer.

La machine à adsorption

L’adsorbant étant solide, il est impossible de l’amener au fur et à mesure vers la source de chaleur pour être régénéré.

La machine fonctionne donc de manière cyclique. Deux récipients servent, tour à tour, d’adsorbeur et de désorbeur. Dans la première période, le premier adsorbant est utilisé pour la production de froid, tandis que l’autre est parcouru par l’eau chaude, et ainsi régénéré. Dans la seconde période, lorsque le premier adsorbant est saturé, il est remplacé par le second pour la production de froid, et est alors lui-même régénéré.

Techniques

L’utilisation des roues dessicantes est une application de ce principe.


Analogie avec la machine frigorifique traditionnelle

Bien que la machine à sorption semble assez différente de la machine frigorifique traditionnelle, le principe de base de fonctionnement reste le même :

  • circulation d’un fluide réfrigérant,
  • évaporation du fluide avec production de froid,
  • compression du fluide demandant un apport d’énergie,
  • condensation du fluide avec production de chaleur.

La différence réside dans :

  • Le moyen de comprimer le fluide,
    • mécanique dans le cas d’une machine traditionnelle,
    • thermochimique dans le cas de la machine à sorption.
  • Le type d’énergie nécessaire à cette compression
    • électrique dans le cas d’une machine traditionnelle,
    • calorifique dans le cas de la machine à sorption.

Machine frigo traditionnelle.

Machine frigo à absorption.


L’efficacité énergétique ou COP-froid

Une machine frigorifique est énergétiquement efficace si elle demande peu d’énergie pour fournir une puissance frigorifique donnée.

Schéma principe efficacité énergétique ou COP-froid.

On évalue son efficacité par le calcul du COP (coefficient de performance) : rapport entre la puissance frigorifique produite et la puissance fournie au compresseur.

  • Dans le cas d’une machine frigorifique traditionnelle, la puissance fournie est électrique. Le COP d’une telle machine peut atteindre la valeur de 3, voire plus.
  • Dans le cas d’une machine frigorifique à absorption, le COP réel tourne autour de 0.7; celui d’une machine à adsorption varie entre 0.5 et 0.6.

Quel est alors l’intérêt d’une telle machine ?

Un premier avantage réside dans l’absence de compresseur mécanique, donc de vibrations et de bruits. D’où le fait que ces machines demandent un entretien limité et présentent une grande longévité.

Le second avantage vient de la possibilité de valoriser une énergie calorifique disponible et d’éviter ainsi la consommation électrique d’un compresseur.


Quelles sources de chaleur ?

La machine à sorption « fait du froid avec du chaud » !

Voici de quoi éveiller notre désir d’utiliser de la chaleur « gratuite » ! Ce n’est pas pour rien que ce type de machine est surtout répandue dans le secteur industriel parce que certains process libèrent une chaleur importante dont il est possible de tirer une puissance frigorifique utile par ailleurs.

Dans le secteur du bâtiment, on peut imaginer deux possibilités :

Refroidissement solaire

L’intérêt du refroidissement solaire réside dans la simultanéité de la demande de froid et de l’ensoleillement. Lorsque la chaleur nécessaire au fonctionnement de la machine frigo est fournie par le soleil, le froid fourni est gratuit (pas de coût, pas de pollution).
Ce système n’est pourtant pas encore utilisé en Belgique pour deux raisons :

  1. Pour fonctionner, la machine frigo à absorption demande une température d’eau minimale qui se situe entre 70 et 95°C en fonction du couple solvant-réfigérant. Pour atteindre cette température, l’emploi de capteurs performants est indispensable (sélectifs, sous vide, à faible concentration), ce qui induit un coût d’investissement assez important.
  2. Lorsque l’ensoleillement n’est pas suffisant pour fournir de l’eau à température adéquate, une autre source de chaleur (d’appoint ou de substitution) doit permettre le fonctionnement du système. Des solutions de stockage peuvent résoudre le problème à certaines périodes, mais il reste toujours un certain nombre d’heures de fonctionnement où la chaleur doit être produite par du gaz ou du fuel. Pendant ces heures, le rendement du système est faible comparé au système classique de la machine frigorifique à compression.
    L’intérêt de la machine frigorifique à absorption couplée avec des capteurs solaires doit donc être évalué sur base d’une moyenne annuelle, en tenant compte des heures d’ensoleillement exploitables. Cette évaluation dépend de nombreuses valeurs à estimer :

    • rendement de la chaudière,
    • rendement de la machine frigorifique à absorption,
    • proportion de la demande de froid qu’on peut produire avec l’énergie solaire (X) qui dépend du nombre d’heures d’ensoleillement exploitables,
      rendement moyen de la production électrique en centrale,
    • COP de la machine frigorifique à compression.

    Avec les hypothèses prises dans le schéma ci-dessus, le bilan au niveau de la consommation d’énergie primaire est favorable au système de refroidissement solaire si au moins 51 % de la demande de froid peut être satisfaite par l’énergie solaire. Pour évaluer la rentabilité économique du système, il faudrait tenir compte des prix de l’énergie et des coûts d’investissement.
    On peut néanmoins conclure de cette comparaison grossière qu’un tel système est à exclure, sous notre climat, pour un bâtiment dont la demande de froid proviendrait principalement des charges internes : la demande ne pourrait alors certainement pas être rencontrée par l’ensoleillement plus de la moitié du temps.
    Il pourrait par contre être envisagé pour un bâtiment dont la demande de froid est limitée aux mois d’été grâce à une conception adéquate (protections solaires, valorisation de l’inertie thermique, free cooling ou free chilling,…).

 

Bâches à eau glacée

Bâches à eau glacée


Principe

Il s’agit d’un réservoir d’eau glacée, disposé sur le circuit d’eau glacée des installations de climatisation. Il permet d’accumuler du froid, particulièrement durant la nuit.

On l’appelle encore « ballon d’eau glacée » ou « bâche d’eau glacée ».

Il se dissocie de son « concurrent », le stockage par bac à glace, par le fait que la réserve de froid ne se fait que sur la chaleur sensible de l’eau, entre 12° et 5°C. D’où :

> Inconvénient : le stockage de kWh frigorifiques est fort limité…

> Avantages :

  1. La machine frigorifique conserve ses caractéristiques traditionnelles de température de travail, et donc son rendement !
  2. L’installation est simple et sa régulation aussi.
  3. Pour les grands bâtiments, il est parfois possible de valoriser le réservoir d’eau obligatoire pour la protection incendie

Applications

La bâche d’eau glacée est surtout utilisée dans le but de constituer un grand réservoir tampon, permettant

  • D’augmenter le temps de fonctionnement des compresseurs (qui sont souvent surdimensionnés, puisque calculés pour les charges extrêmes de l’été …)
  • De délester le groupe frigorifique au moment de la pointe quart-horaire.
Exemple.

Au CHR de Mouscron, un ancien réservoir à eau chaude sanitaire est utilisé comme réservoir d’eau glacée, ce qui permet au gestionnaire de couper sa machine frigorifique lors de la pointe !


Technologies

On distingue plusieurs types de bâche d’eau glacée :

Simple bâche tampon 

Schéma simple bâche tampon.

Ce système rudimentaire engendre un mélange entre l’eau de retour, chaude, et l’eau glacée du réservoir.

La température de l’eau glacée augmente donc progressivement.

A la limite, un réservoir d’eau chaude sanitaire pourrait convenir.

Bâche à chicanes

Schéma bâche à chicanes.

Un compartimentage à l’intérieur du bac permet de limiter les mélanges entre eau de retour et eau de départ.
Bâche à membrane flexible 

Schéma bâche à membrane flexible. 

Le mélange entre l’eau chaude et l’eau froide est évité.
Réserve naturelle  Pièce d’eau associée au bâtiment, rivière, fleuve, mer.

Variante : le stockage d’eau glycolée

Afin de pouvoir augmenter le DT° de stockage, on peut réaliser un stockage en eau glycolée. La température de stockage peut alors descendre sous 0°C (mais sans profiter de l’énorme réservoir que constitue la chaleur latente de solidification …).

De plus, souvent un échangeur intermédiaire est ajouté afin de conserver le circuit de distribution en eau glacée sans glycol. L’intérêt est donc faible…

Les schémas d’installation sont similaires à ceux présentés pour les bâches d’eau glacée.


Schémas d’installation

On distingue trois types de schémas d’installation ouverture d'une nouvelle fenêtre !

  • stockage en amont de l’évaporateur
  • stockage en aval de l’évaporateur
  • stockage en position intermédiaire

Humidificateurs à pulvérisation d’eau froide

Humidificateurs à pulvérisation d'eau froide


Principe de fonctionnement

Un humidificateur à pulvérisation d’eau froide peut être utilisé :

  • soit pour l’humidification directe des grands locaux (halls de fabrication, ateliers, …),
  • soit comme un des éléments insérés dans une centrale de traitement d’air.

Le principe commun à tous les systèmes à pulvérisation est de créer un fin brouillard par des micro-gouttelettes d’eau froide en suspension. Le mélange eau – air doit être intime afin que l’évaporation de l’eau puisse se faire le plus rapidement possible.

Schéma de principe de fonctionnement.

Quelques gouttelettes non évaporées risquent d’être entraînées par le jet d’air, si bien que l’on prévoit un casse-gouttelettes à la sortie : si l’air évolue souplement entre les lamelles, les gouttes se fracassent sur les ailettes, entraînées par leur masse cinétique !

Il existe des systèmes où l’on travaille « à refus », avec comme objectif d’approcher la saturation de l’air. Dans ce cas, l’eau excédentaire, qui n’a pas pu s’évaporer, retombe dans le bac au fond du caisson où une pompe la recycle vers la rampe de gicleurs.

Dans d’autres systèmes, on pulvérise seulement la quantité d’eau nécessaire, en travaillant à débit variable en fonction des besoins.


Évolution dans le diagramme de l’air humide

Dans l’humidificateur, les micro-gouttelettes passent de l’état liquide (eau) à l’état gazeux (vapeur). Ce changement d’état demande de la chaleur (dite « chaleur de vaporisation »).

Cette chaleur est prise sur l’air qui se refroidit en traversant le caisson (c’est un peu comme l’impression de froid ressentie en sortant du bain : l’eau présente sur notre peau s’évapore, en prenant la chaleur de vaporisation sur notre corps … qui se refroidit !).

Le bilan énergétique global est neutre : la chaleur perdue par l’air est transférée dans la vapeur d’eau contenue dans l’air. On parle d’un bilan enthalpique neutre. On dit encore qu’il s’agit d’un humidificateur isenthalpique ou adiabatique. Dans le diagramme de l’air humide, l’air subit un refroidissement dessiné le long d’une isenthalpique.

Exemple : de l’air à 20°C 30 % HR sort de l’humidificateur à 12°C et 85 % HR.
Remarques.

  • En réalité, cette évolution s’écarte légèrement d’une isenthalpe, car on devrait tenir compte de l’enthalpie de l’eau froide, mais la différence est négligeable.
  • Lorsque l’eau est recyclée en permanence, la température de l’eau se stabilise à la température de bulbe humide th de l’air (dans l’exemple : 11,3°C)

Il est intéressant de prendre conscience de l’impact technologique de ce type d’humidification sur le traitement d’air en hiver : deux échangeurs de chaleur seront nécessaires, au moins pour les humidificateurs sans recyclage, pour réaliser préchauffe et postchauffe.


Technologie

Technologie sans recyclage

Appareils à pulvérisation par centrifugation

Il s’agit de disques tournant à plusieurs milliers de tours/minute qui, par l’action de la force centrifuge, pulvérisent des aérosols aqueux d’un diamètre de l’ordre de 5 à 30 microns (µm). Ces micro-gouttelettes sont cette fois totalement évaporée dans l’air pulsé.

Schéma principe appareils à pulvérisation par centrifugation.

Il est intéressant de se rendre compte qu’un débit variable peut être obtenu par une modulation du débit d’eau avec une vitesse de rotation reste inchangée (ainsi que la taille des gouttelettes).

Dans ces systèmes, les micro-gouttelettes sont cette fois totalement évaporée dans l’air pulsé, si bien que les sels présents dans l’eau sont véhiculés vers les locaux ! La décision d’alimenter ces appareils avec de l’eau déminéralisée dépend des exigences hygiéniques et de la sensibilité des équipements présents dans les locaux (matériel informatique, par exemple). Le traitement de l’eau ne peut pas se faire par un adoucisseur traditionnel (car son principe est basé sur l’échange entre sels calcium et sels sodium) mais, par exemple, un système par osmose inverse.

Ce type d’appareil demande un espace suffisant pour que les micro-gouttelettes puissent s’évaporer avant de rentrer en contact avec un obstacle quelconque.

Si un appareil à centrifugation est introduit dans un caisson de climatisation en remplacement d’un laveur, par exemple, le dimensionnement en sera fort critique puisque la longueur minimale de vaporisation est fonction de la température de l’air, des débits d’eau et d’air, de l’humidité absolue recherchée, de la section du caisson, de la vitesse de l’air, … Le risque est amplifié par le fait que le séparateur de gouttelettes n’est pas toujours capable d’arrêter d’aussi fines particules. Un certain nombre d’entre elles seront entraînées par le flux d’air. Une solution consiste alors à placer un filtre à poche en aval de l’humidificateur. Ce filtre humide retiendra d’ailleurs une partie des minéraux. Mais… d’une part ces sels calcaires colmateront le filtre par des dépôts durs (augmentant les pertes de charge) et d’autre part ce milieu humide sera propice au développement de germes !

Pour les appareils à humidification directe, il existe des modèles déposés sur pied, suspendus au plafond, ou fixés sur un mur.

Schéma principe appareils à pulvérisation par centrifugation.

a. Pulvérisation avec recyclage
i. Régulation via point de rosée
ii. Pré-chauffe + post-chauffe
b. Humidificateur par centrifugation avec réservoir d’eau
c. Humidificateur par ultrasons avec réservoir d’eau
i. Faible débit (50W à 100W par kg d’eau pulvérisée)

Variante : appareils à pulvérisation par buses fixes à débit variable

Il est possible d’équiper les humidificateurs de pompes à débit variable (via un convertisseur de fréquence, par exemple). Si deux rampes sont prévues, une peut être fixe et l’autre variable, afin d’assurer en permanence une bonne adaptation du débit aux besoins des locaux. La régulation n’est cependant pas aussi précise qu’avec des humidificateurs à vapeur.

Les inconvénients du recyclage sont évités, ce qui est favorable sur le plan hygiénique, mais les sels restent en suspension dans l’air, ce qui peut entraîner le besoin de traiter l’eau au préalable.

Shéma principe appareils à pulvérisation par buses fixes à débit variable.

Dans un hall industriel.

Dans un caisson de traitement d’air.

 

Technologie avec recyclage

Appareils à pulvérisation par buses fixes, à eau recyclée, à débit constant

Dans ce cas, on parle d’un caisson « laveur d’air », dans lequel un brouillard est créé par la pulvérisation de micro-gouttelettes d’eau. L’air est pulsé au travers de cette « drache nationale » et en ressort … mouillé ! En pratique, le degré hygrométrique de l’air à la sortie est proche de 95 %. en réalité, seulement 1 % peut-être du débit d’eau pulsé est évaporé !

Les laveurs à pulvérisation présentent une ou deux rampes de gicleurs, disposées à courants parallèles et/ou à contre-courant.

L’eau évaporée ne contient pas de sels. Ceux-ci retombent avec l’eau excédentaire dans le bac, au fond de l’humidificateur. La concentration en sel dans l’eau du bac augmente régulièrement si bien qu’il est prévu une déconcentration par un renouvellement périodique de cette eau. Un robinet à flotteur permet l’alimentation automatique en eau d’appoint pour compenser les pertes par évaporation et le débit de déconcentration. À noter que la fréquence de déconcentration peut être automatisée par une mesure de la conductivité thermique qui augmente avec la teneur en sels.

Le châssis du laveur sera agressé par le mélange eau-air. Il est donc recommandé d’utiliser une structure en matériau synthétique, armé de fibres de verre. Son isolation thermique est également meilleure, ainsi que sa tenue aux produits d’entretien et désinfectants. Si de l’eau déminéralisée est utilisée, le châssis en matériau synthétique s’impose. Les châssis en acier galvanisé ne sont plus à recommander.

L’efficacité d’un laveur d’air, c’est-à-dire le pourcentage d’humification effectif ramené au pourcentage d’humidification maximal (celui qui amène l’air à la saturation) est de l’ordre de 85 à 95 %. Ceci est fonction :

  • du nombre de gicleurs,
  • de la direction de la pulvérisation (l’efficacité étant meilleure à contre-courant),
  • de la longueur du caisson (en général de 1,5 à 3 m),
  • de la vitesse de l’air (généralement 2 à 4 m/s, mais pouvant atteindre 7 m/s),
  • du degré de pulvérisation, soit le rapport masse en eau/masse en air (en général de 0,3 kg d’eau par m3 d’air)

Il importe de ne pas confondre un rendement d’humidificateur de 85 % et un humidificateur qui humidifie l’air jusqu’à 85 % HR ! De l’air entrant à 40 % dans un laveur à 85 % d’efficacité en ressort à 40 % + 0,85 x (100 % – 40 %) = 91 % HR.

Variante : appareils à pulvérisation par buses fixes à eau pressurisée

De l’eau, sous une pression de 70 bars, est pulvérisée sur une aiguille qui brise le jet. Des aérosols de 2 à 50 microns sont produits, avec un débit fonction de la pression.

Les applications se situent essentiellement dans l’humidification des grands espaces industriels et agricoles.

Variante : appareils à pulvérisation par buses fixes à eau et air comprimé

Cette fois, c’est l’air comprimé qui est le propulseur et qui entraîne l’eau par dépression.

Ceci permet des aérosols de très faibles diamètres (5 à 10 microns) et une très bonne diffusion de ceux-ci dans l’air.

Schéma principe appareils à pulvérisation par buses fixes à eau et air comprimé.

Photo appareils à pulvérisation par buses fixes à eau et air comprimé.

L’air pulsé doit être exempt de toutes impuretés.

Ils sont souvent utilisés pour l’humidification directe des grands espaces (débits importants de plus de 250 kg/h) mais également pour l’humidification de caissons de climatisation très volumineux. Dans ce cas, un séparateur de gouttelettes est superflu, vu la dimension des particules.

À titre d’exemple, une augmentation d’humidité absolue de 5 gr d’eau par kg d’air sec et une vitesse d’air de 2,5 m/s demande une profondeur pour le dard d’humidification de 3 à 4 m.

Dès lors, en climatisation par réseau de gaines, la difficulté réside dans l’emplacement des équipements.

De plus, la technologie à mettre en place (et leur maintenance…) est plus lourde, vu les deux fluides à préparer.

La régulation se fait par action sur la proportion d’air comprimé.

Le coût d’exploitation est généralement plus élevé que dans le cas des autres systèmes à pulvérisation.

Variante : appareils à pulvérisation par ultrasons

Schéma principe appareils à pulvérisation par ultrasons.

Photo appareils à pulvérisation par ultrasons.

Photo appareils à pulvérisation par ultrasons.

Le principe de fonctionnement de l’appareil est basé sur la mise en vibration d’une lame métallique (convertisseur piézo-électrique) à 1,65 MHz, cette lame étant située sous une couche d’eau. L’inertie de l’eau est telle qu’elle ne peut suivre le rythme. Les dépressions et les surpressions successives créent des micro-bulles qui remontent vers la surface. Du bouillonnement, jaillissent en surface des micro-gouttelettes (7 à 10 microns). De plus, des ondes sonores sont générées en surface, ce qui renforce les chocs entre les molécules.

Un brouillard s’élève de la surface…

Le débit d’eau atomisée est situé entre 1 et 20 kg/h, suivant le type d’appareil.

La puissance électrique absorbée est faible puisque l’énergie de vaporisation n’est pas assurée par l’appareil (seul le fractionnement mécanique en gouttelettes est réalisé). Elle se situe autour des 50 à 100 W par kg/h, soit moins de 10 % de la puissance demandée par un humidificateur à vapeur.

L’eau doit être déminéralisée préalablement.

Un rinçage automatique est conseillé (remplacement périodique de l’eau dans l’appareil), afin d’éviter le développement de germes, mais la consommation totale en eau de l’appareil reste beaucoup plus faible que dans les autres types d’humidificateurs.

Si l’appareil est disposé dans une gaine, une vitesse de 1,5 à 3 m/s est requise pour le balayage de l’air au-dessus de la surface de l’eau. Ceci sous-entend parfois que la section du gainage soit augmentée pour réduire la vitesse.

L’humidificateur à ultrasons peut être placé directement dans l’ambiance à traiter. Il existe également des modèles prévus pour être intégrés dans un ventilo-convecteur.

 


Avantages

D’une façon générale, les humidificateurs par pulvérisation :

  • Engendrent moins de pertes de charge que le laveur à ruissellement.
  • Ne présentent pas l’inconvénient de l’encrassement de la surface de ruissellement.

Les humidificateurs à eau froide prennent sur l’air la chaleur de vaporisation de l’eau. L’énergie de vaporisation est donc apportée par le chauffage de l’air, au moyen d’une batterie de chauffe, par exemple. Ceci permet d’utiliser un combustible traditionnel (fuel, gaz, …), plus avantageux que le vecteur électrique utilisé dans la plupart des humidificateurs à vapeur, par exemple (voir comparaison du prix des énergies).
En particulier,

  • Les appareils à pulvérisation par centrifugation ou par buse rotative, permettent une régulation du débit d’eau sur hygrostat.
  • Les appareils à pulvérisation directe dans un local sont de puissance électrique faible et de grande facilité d’installation.

Inconvénients

Les humidificateurs par pulvérisation avec eau recyclée présentent les inconvénients hygiéniques liés à la stagnation de l’eau au fond du bac de ruissellement. Un entretien régulier est indispensable ce qui augmente les coûts d’exploitation.

Les systèmes par buse impliquent une maintenance complexe liée à la présence du compresseur, de la gaine d’eau ou d’air comprimé, et en particulier à l’encrassement des buses. Un traitement de l’eau par osmose inverse est recommandé pour limiter la maintenance des buses.

La consommation en eau liée à la déconcentration n’est pas négligeable.

L’intégration des humidificateurs par pulvérisation sans recyclage d’eau n’est pas toujours aisée dans un caisson de climatisation vu la portée du diffuseur et le risque d’humidification des conduits par des micro-gouttelettes non arrêtées par le séparateur.


Maintenance

Lorsqu’on parle d’humidification surgit très souvent la crainte de la légionellose. Il faut savoir que les légionelles se multiplient à partir d’une température de 20°C; la croissance est maximum jusqu’à environ 45°C. Elles meurent dès qu’on dépasse 60°C.

Ce type de bactérie se développe en eau stagnante, en présence de substances organiques, d’algues vertes, d’amibes, tartre, etc.

Il est conseillé, sous réserve des précautions habituelles, de désinfecter les agrégats pendant 48 heures avec 5 à 10 ppm de chlore dans l’eau.

Précautions à prendre

Pour minimiser les risques de présence excessive de légionelles, on peut :

  • Se rappeler qu’en été la température de l’eau de ville est plus élevée qu’en hiver. Un bac stockant de l’eau risque d’être un bouillon de culture.Éviter des tuyauteries plastiques transparentes. L’eau déminéralisée semble être sensible à la lumière et cela favorise l’apparition d’algues.
  • Les humidificateurs travaillant avec de l’eau à une température supérieure à 60°C ne présentent pas de risque, pour autant qu’il n’y ait pas de longues interruptions sans vidange.
  • Installer des appareils avec rayons ultraviolets. En effet les rayons UV ont la propriété de tuer les légionelles. Mais la durée de vie des lampes à ultraviolets est limitée dans le temps. Un remplacement s’impose après un certain nombre d’heures.
  • Attention aux périodes d’arrêt de l’installation, qui entraînent la prolifération de germes ! Une vidange et un nettoyage s’imposent, au moins deux fois par an et au mieux une fois par mois. Idéalement, on peut automatiser la chose :
    • par horloge,
    • par un système de mesures qui commande la vidange dès que la température de l’eau dépasse un seuil (en fonctionnement, la température s’abaisse à la*température de bulbe humide* de l’air),
    • on sera attentif, lors de la sélection du matériel, à la facilité de démontage des buses pour un entretien facile.
  • Le contrôle d’une éventuelle humidification de la gaine à la sortie du caisson est utile pour prévenir tout foyer de développement de germes. Cela pourrait être la conséquence d’une vitesse trop élevée de l’air dans le caisson, emportant les gouttelettes au-delà du séparateur.

Traitement de l’eau

Afin d’éviter l’entartrage des pulvérisateurs, il est conseillé d’utiliser une eau ayant subi un adoucissement puis un mitigeage pour atteindre 10 à 15°F de dureté.

Le constructeur précise le pourcentage de déconcentration à adopter en fonction de la qualité de l’eau initiale. Un calcul du débit de déconcentration est proposé.

Dans le cas des humidificateurs à pulvérisation sans recyclage, pour éviter que les sels ne soient dispersés dans l’ambiance, il est utile de déminéraliser l’eau pulvérisée. Il faut distinguer ici « déminéralisation » et « adoucissement » de l’eau. La déminéralisation élimine les sels présents (par carbonation ou osmose inverse) tandis que l’adoucissement échange les ions calcaires et magnésium par des ions sodium. Adoucir, technique plus classique et moins onéreuse, n’évite pas le problème de la diffusion des sels dans l’ambiance.


Régulation

Pour les humidificateurs d’ambiance directe

On utilise généralement des humidificateurs par action tout ou rien sur la pompe de gicleurs ou par étagement de rampes, l’hygrostat enclenchant l’appareil lors du dépassement d’un seuil réglable. Un hygrostat supplémentaire de sécurité est également prévu pour limiter le risque en cas de panne du premier régulateur.

Pour les humidificateurs en conditionnement d’air

Pour les humidificateurs à ultrasons comme pour les systèmes à pulvérisation, on préférera une régulation à action progressive. Si l’humidificateur est placé dans une gaine, on complétera par un limiteur maximal d’humidité.

Pour les laveurs d’air

La régulation des laveurs d’air est traditionnellement basée sur le point de rosée du point de soufflage. Autrement dit, l’humidificateur fonctionne en continu et humidifie toujours l’air au maximum ( …85 %… en pratique). Le réglage de la batterie de post-chauffe se fait sur la température de l’ambiance, le réglage de la batterie de préchauffe se fait sur le degré d’humidité relative de l’ambiance.

Cette régulation est tout à fait correcte en hiver, mais pose des problèmes en mi-saison et en été. Si elle est choisie, l’arrêt de l’humidificateur pour une température extérieure dépassant un seuil (de 5°C à 10°C), évite ce risque et permet des économies énergétiques importantes, mais le respect d’une consigne fixe de 50 % HR ne pourra plus être assuré…

Précautions générales

  • Il est prudent d’asservir le fonctionnement de l’humidificateur à celui du ventilateur, pour éviter tout risque d’humidification des gainages.
  • De prendre des dispositions particulières en vue de protéger la tuyauterie d’alimentation en eau et le réservoir d’eau de l’humidificateur de tout risque de gel.

Toiture plate : types de supports

Toiture plate : types de supports

Tant en construction neuve qu’en rénovation, la nature du support du complexe isolant-étanchéité est généralement défini.

C’est donc la nature du support qui influencera les techniques choisies pour réaliser l’isolation thermique et l’étanchéité, et non l’inverse.

Les supports sont à considérer en fonction de leur :

  • capacité portante,
  • déflexion,
  • coefficient de transmission thermique,
  • comportement hygrothermique.

On distinguera :


Les dalles monolithes

La dalle monolithe peut-être :

  • Un béton armé plein coulé sur place.

Béton coulé sur place.

  • La couche de compression d’éléments préfabriqués en béton ou en terre cuite.

Couche de compression sur poutrains et claveaux.

  • Un béton de pente avec granulats lourds ou légers.

La forme de pente ne peut être réalisée en béton léger (NIT 134 p 30).

Béton de pente.


Les éléments fractionnés en béton ou en terre cuite

Sont compris dans cette catégorie

  • Les éléments préfabriqués en béton sans couche de compression.
  • Les éléments en terre cuite sans couche de compression.
  • Les éléments préfabriqués en béton léger.

Éléments préfabriqués sans couche de compression.


Les planchers en bois et les panneaux en matière végétale

Cette catégorie comprend

  • Les planchers ou voligeages en bois.

Tous les éléments en bois doivent être traités contre les champignons et les insectes avant d’être mis en œuvre. Les produits de traitement doivent être compatibles avec les autres matériaux mis en œuvre : isolation, pare-vapeur, étanchéité, accessoires, etc.

Plancher en bois.

  • Les panneaux de particules de bois.

Si la structure est un panneau de bois aggloméré celui-ci doit appartenir à la classe « B » suivant STS 04.6

Panneau en bois aggloméré.

  • Les panneaux multiplex.

Si la structure porteuse est en multiplex, celui-ci doit être de qualité pour menuiserie extérieure.

Panneau en bois multiplex.


Les panneaux en fibres organiques liées au ciment

Panneau en fibres de bois liées au ciment.


Les tôles profilées

Tôle profilée.


Les panneaux de toiture composites

Panneaux composites agglo + EPS + agglo
renforcé par des poutrelles métalliques.

Hygromètres et psychromètres

Hygromètres et psychromètres


Hygromètre à cheveu

La longueur d’un cheveu varie sous l’effet de la vapeur d’eau.

L’appareil enregistre la variation de longueur d’un faisceau de cheveux suite à la variation de l’humidité.

La précision est de l’ordre de 5 %, si l’appareil est régulièrement étalonné. Autrement, la lecture n’est pas fiable;

Le temps de réponse est de l’ordre de 20 minutes.

Le cheveu peut être remplacé par un fil de soie ou de coton, voire par une fibre synthétique.

La plage normale de mesure s’étale entre 30 et 90 % et entre – 10°C et + 50° de température sèche.

Il existe également des appareils électroniques qui convertissent la variation de longueur en signal de tension (mesure de résistance électrique ou magnéto-inductive).


Hygromètre à cellule hygroscopique

Le plus connu est l’hygromètre à cellule hygroscopique au chlorure de lithium. Le chlorure de lithium est une solution saline (LiCl). Ses propriétés hygroscopiques lui font absorber constamment de la vapeur d’eau contenue dans l’air.

L’appareil comprend deux électrodes entourant une couche de fibre de verre imbibée de Licl Le tout est monté sur un capteur de température.

Lorsque les électrodes sont sous tension, le courant circulant au travers du tissu imbibé de Licl produit de la chaleur qui évapore une partie de l’eau. Par évaporation, la résistance électrique du tissu augmente (la conductivité du tissu diminue), la puissance calorifique diminue, donc aussi la température sur la sonde intérieure. Une température d’équilibre s’établit finalement sur la sonde.

Cette température est utilisée pour mesurer la pression partielle de vapeur d’eau de l’air et de là le niveau d’humidité absolue de l’air.

Cette technique réclame un entretien important, la solution de chlorure de lithium devant être régénérée régulièrement.


Hygromètre à variation de capacité

Les hygromètres électroniques à cellule capacitive sont basés sur la modification de la valeur d’un condensateur en fonction de l’humidité. Plus précisément, c’est le diélectrique du condensateur qui est sensible à l’humidité relative de l’air ambiant.

La variation de la capacité (et donc de son impédance) entraîne une variation d’un signal de tension.

L’appareil est fiable et ne demande un étalonnage que tous les 2 ans. La précision est de 3 %. Le temps de réponse est court (de l’ordre de la dizaine de secondes). Et la plage de mesure est large. Que demander de plus ? !

Si, ils ont un petit défaut : être sensible aux polluants chimiques ! On sera dès lors attentif à ne pas les nettoyer avec des solvants organiques (chlore,…).

Leur durée de vie est estimée à une dizaine d’années.


Psychromètre

Le fonctionnement du psychromètre mécanique est basé sur la lecture de deux températures : la température sèche ordinaire et la température dite « bulbe humide « .

Pour connaître cette dernière, on enrobe la base du thermomètre d’ouate humide. On force l’air à passer au travers de cette ouate (par un ventilateur ou par déplacement rapide dans l’air au moyen d’une fronde). L’air qui passe au travers de l’ouate s’humidifie L’évaporation de l’eau refroidit l’air. Plus il se refroidit, plus il était sec au départ !

En comparant les deux mesures, on peut déduire le taux d’humidité de l’ambiance. Par exemple, supposons que le thermomètre sec mesure une température ambiante de 20°C, tandis que la température lue au bulbe humide soit de 16°C. En prenant l’intersection entre l’isenthalpe passant par le point 16°C – 100 % HR, et la droite des points à 20°C, on trouve une humidité relative de 67 %.

Autrement dit, l’air ambiant à 20° et 67 % HR, lorsqu’il est humidifié se refroidit jusque 16° 100 % HR, ce que lit le thermomètre « bulbe humide ».

La précision sur cette mesure est de 0,3°C sur la température bulbe humide et de 2 % sur l’humidité relative qui s’en déduit.

Un entretien périodique est nécessaire, mais la fiabilité est bonne.

La plage normale de mesure s’étale entre – 10°C et + 60° de température sèche.

Dans le psychromètre électronique, la mesure des températures est réalisée sur base des valeurs données par des thermistances à Coefficient de Température Négatif (CTN).

Economiseurs d’écran – économiseur d’énergie

Economiseurs d'écran - économiseur d'énergie

Une confusion communément rencontrée consiste à assimiler « économiseur d’écran » et « économiseur d’énergie ».

Dans le premier cas : « l’économiseur d’écran« , il s’agit d’éviter l’affichage prolongé d’une même image afin de protéger le revêtement chimique interne au tube cathodique, assurant la brillance de celui-ci, lorsque ni la souris, ni le clavier ne sont sollicités pendant un délai ajustable.

Si on augmente ainsi la durée de vie de l’écran, l’économiseur d’écran n’engendre pratiquement pas d’économie d’énergie (diminution de puissance de 10 à 20 W par le passage souvent choisi d’un écran clair à un écran foncé).

Remarque : ces dernières années, vu les progrès considérables du matériel électronique en terme de fiabilité, l’économiseur d’écran a perdu un peu de son sens.

Dans le second cas, « économiseur d’énergie » il s’agit, à partir d’une scrutation identique de l’activité souris ou clavier, de diminuer la consommation d’électricité en passant dans un mode plus sobre sur le plan de l’énergétique (coupure partielle de l’écran, du disque dur, ventilateur etc.).

Lave-vaisselle – Description

Lave-vaisselle - Description


Le lavage de la vaisselle

Les conditions d’un lavage de qualité

Quatre types d’actions déterminent la qualité d’un bon lavage :

L’action de la température

Elle sera différente suivant l’opération et le résultat que l’on veut obtenir :

  • prélavage : environ 45°C,
  • lavage : 60°C,
  • rinçage et séchage : 85°C minimum,

L’action chimique

Cette action est due aux produits lessiviels utilisés pour le lavage et le rinçage. Ces produits sont injectés automatiquement dans la machine à partir de la quantité d’eau consommée.

Les dosages moyens utilisés sont :

  • pour les produits lessiviels : 1 g par litre d’eau,
  • pour les produits tensio-actifs (ou dispersants) : 0,1 g par litre d’eau de rinçage.

Action du temps de contact eau-vaisselle

Cette action a pour but de décoller efficacement les restes accrochés plus ou moins fortement aux pièces de vaisselle sale.

Action mécanique

Elle est due au débit et à la pression des jets d’eau.

Ces 4 actions sont intimement liées. Toute modification de l’une entraîne un réajustement des 3 autres.

Les étapes du lavage

Le programme de base d’un lave-vaisselle comporte le lavage et le rinçage.
Sur les machines à déplacement automatique, un pré-lavage, un pré-rinçage et un séchage peuvent s’ajouter. Un cycle de lavage comporte la succession de toutes les étapes prévues.

Les températures varient selon le cycle de lavage.

Le pré-lavage se fait avec de l’eau froide ou tiède entre 40 et 50°C.
Le pré-lavage a pour but de réhumidifier les souillures et de les éliminer grâce à l’action mécanique de jets.
Le pré-lavage a pour avantage que la température de la solution détergente qui intervient dans l’étape suivante peut être élevée sans problème.

Cette opération n’existe que sur les machines à déplacement automatique. Pour les machines à panier statique, cette étape est réalisée manuellement à l’aide de la douchette.

Outre les avantages cités, le pré-lavage permet également de réduire l’importance des souillures dans le ou les bacs de lavage. Il en résulte une nécessité moindre de produits lessiviels, par conséquent une économie réelle.

Le lavage se fait entre 55 et 60°.

À l’élévation de température et à l’action mécanique des jets liés à la puissance de la pompe s’ajoute la durée du contact solution du produit lessiviel / vaisselle.

Le pré-rinçage éventuel se fait entre 60 et 65°C.

Son but est de commencer l’élimination de la solution détergente pour éviter la précipitation des éléments minéraux lors du rinçage et du séchage. Il doit en outre élever la température des pièces pour faciliter l’opération suivante.

Le dernier rinçage se fait entre 80 et 90°C. Pour des raisons d’hygiène, la température de 90°C doit obligatoirement être atteinte, s’il n’y a pas de séchage.

Toute trace de liquide doit être éliminée pour deux raisons :

  • d’esthétique : la vaisselle qui doit rester nette et brillante,
  • d’hygiène alimentaire par l’absence de produit détergent qui peut provoquer des intoxications plus ou moins graves que l’on attribue le plus souvent à la nourriture.
    Il est important de faire vérifier le bon fonctionnement des appareils et d’y ajouter un contrôle par analyse de la vaisselle propre dans les grandes unités.

Le séchage

Le séchage est réalisé par circulation forcée d’air chaud à 70/80°C dans l’enceinte. L’air est chauffé par une résistance ou un échangeur alimenté en vapeur.

Cette pulsion se fait le plus souvent dans un tunnel ajouté à la sortie de la machine.
Cet accessoire n’existe que sur les machines à déplacement automatique (ou à translation).

Sur les machines à panier statique,  le séchage est assuré par l’élévation de la température de l’eau et de la vaisselle (évaporation) jointe à l’action d’un produit tensio-actif ajouté à l’eau de rinçage transformant les gouttes d’eau en film tendu à la surface de la vaisselle et séchant rapidement sans laisser de traces.


Conception technique

Dans tous les matériels, on trouve :

  • Des rampes fixes ou mobiles, munies de gicleurs de taille et débit variables selon le cycle, pour projeter l’eau sur la vaisselle.

Photo rampes fixes ou mobiles, munies de gicleurs. Photo rampes fixes ou mobiles, munies de gicleurs.

  • Des pompes de circulation d’eau captant l’eau en partie basse des bacs de prélavage, de lavage et de rinçage, pour, après filtrage, la projeter sur la vaisselle.

Photo pompes de circulation.

  • Une vidange partielle par débordement dans le bac de prélavage et de lavage qui assure l’élimination de la plus grande partie des déchets. La vidange totale est déclenchée manuellement après chaque service.
  • Deux doseurs : l’un de produits lessiviels, l’autre de produits de rinçage tensioactifs pour assurer automatiquement la diffusion de produit.
  • Des paniers adaptés aux différents types de vaisselle facilitent l’entreposage et la manutention.

Dans les lave-vaisselles à bacs multiples, l’eau est amenée par cascade de la zone la plus propre vers la zone la plus sale : rinçage -> pré-rinçage -> lavage -> prélavage. De l’eau claire n’est introduite dans le lave-vaisselle que lors de son remplissage initial et lors du rinçage. Un volume équivalent à l’eau utilisée lors du rinçage est évacué à l’égout au départ de la première zone de la machine (prélavage ou lavage). Ceci permet de limiter la consommation d’énergie, d’eau et des produits lessiviels.

Schéma principe lave-vaisselles à bacs multiples.

Dans les lave-vaisselle « mono-bac » ou « à panier statique« , le principe est le même, l’apport d’eau fraîche (claire) se fait également lors du rinçage, eau qui régénère l’eau de lavage.

L’eau chaude dans les bacs de pré-lavage et de lavage « tourne » donc en circuit fermé. Elle est envoyée sur la vaisselle par la pompe via les gicleurs des bras ou rampes de lavage. Elle retombe ensuite dans les bacs via des filtres, etc.

Détail d’un filtre et d’un bac de lavage.

Une machine à laver doit être alimentée « deux fois » : une fois au remplissage avant le service, une seconde fois pour l’eau de rinçage dès la vaisselle commencée. Elle est alimentée à ces deux niveaux, soit à l’eau chaude, soit à l’eau froide. Suivant le cas, les différentes puissances internes mises en jeu seront plus ou moins importantes. Mais dans les deux cas, il faut :

  • Une puissance pour l’eau de lavage.
    Cette puissance est, en principe, dimensionnée pour maintenir l’eau de lavage à bonne température (+/- 60°C).
    On pourrait croire qu’une résistance n’est pas nécessaire pour le maintien en température vu que l’eau de lavage provient du rinçage à température plus élevée (+/- 85°C).
    Cependant, d’une part, l’eau de rinçage se refroidit au contact de la vaisselle, d’autre part, les débits de lavage sont beaucoup plus élevés (action mécanique) que les débits de rinçage et ces derniers à température plus élevée ne suffisent donc pas à maintenir l’eau de lavage à bonne température.
    La résistance ainsi dimensionnée sert également à chauffer l’eau de la cuve de remplissage (+/- 20 litres dans le cas d’une machine à capot et de 90 à 550 litres dans le cas d’une machine à déplacement) en début de service.
    Dans le cas d’une alimentation de l’eau de remplissage à l’eau froide, la montée en température risque donc de prendre un certain temps.
  • Une autre puissance pour l’eau de rinçage.
    Celle-ci doit être suffisante pour chauffer cette eau jusqu’à la température de rinçage (85°C) à partir de la température du réseau de distribution dans le cas d’une alimentation en eau froide de cette eau de rinçage ou « simplement » à partir de la température de l’eau chaude dans le cas d’une alimentation en eau froide de cette eau de rinçage.
  • De plus si le lave-vaisselle dispose d’une zone de séchage, il faudra une puissance supplémentaire pour réchauffer l’air de séchage.

Remarques :

Les puissances internes peuvent provenir de résistances électriques. Mais elles peuvent également provenir d’un circuit de vapeur. L’alimentation vapeur consiste en le raccordement des organes de chauffe à une installation produisant de la vapeur. La vapeur circule dans des tubulures placées dans les différents bacs, l’échange de chaleur se faisant par contact de l’eau des bacs ou du surchauffeur avec les tubulures contenant la vapeur.
Actuellement, on trouve également des lave-vaisselle dont l’eau chaude est produite par un circuit d’eau chaude provenant d’une chaudière au gaz propre au lave-vaisselle.

Exemple de fonctionnement d’une machine à panier statique

1. Remplissage

Ouverture de la vanne électromagnétique A.

L’eau remplit la cuve E par les gicleurs de rinçage D. Le niveau atteint, fermeture de la vanne électromagnétique A. L’eau est chauffée par la résistance de lavage dans la cuve (cette résistance sert, dans la suite, à maintenir l’eau de lavage à température).

2. Lavage (circuit fermé)

La pompe G aspire la solution de lavage au travers de la crépine J et la refoule dans les gicleurs de lavage F.

3. Rinçage (circuit ouvert)

Ouverture de la vanne électromagnétique A.
Le produit de rinçage est injecté par le doseur B.
L’eau chauffée par C est pulvérisée par les gicleurs de rinçage.
Le niveau monte, le trop plein s’écoule par la bonde K.

Remarque : la capacité du boiler de rinçage correspond approximativement à la quantité d’eau de rinçage nécessaire à un cycle (exemple : 3 litres).
Sur certains matériels, le cycle ne peut commencer tant que la température de l’eau de rinçage n’est pas atteinte.

4. Vidange

En fin de service, enlèvement de la bonde K. L’eau de la cuve  E s’écoule vers la vidange.

Exemple de schéma de fonctionnement d’une machine à déplacement automatique de la vaisselle : machine à 4 zones de lavage : prélavage, lavage, rinçage, séchage

A : Prélavage, B : lavage, C : rinçage, D : Séchage.

1 : Pompe
2 : Bacs de prélavage et de lavage
3 : Filtres des bacs
4 : Chauffe-eau de rinçage
5 : Bras de lavage
6 : Résistance de lavage

Les différentes étapes

Le lave-vaisselle est rempli d’eau avant le service. L’eau est réchauffée jusqu’à bonne température par les résistances de lavage. Dès que l’eau de remplissage est arrivée à bonne température, le lavage peut commencer. La vaisselle passe dans les différentes zones où les différents éléments (pompes, résistances chauffantes, etc) se mettent à fonctionner au fur et à mesure du passage de la première vaisselle. En régime toutes les zones sont occupées en même temps; les différentes puissances fonctionnent en permanence.
Il existe une norme allemande, la DIN 10510, qui recommande un minimum de 2 minutes de temps de contact entre la vaisselle et l’eau (prélavage éventuel, lavage, rinçage(s)).

Le prélavage, le prérinçage et le séchage peuvent être absents sur les petites machines à paniers mobiles.


Commande et régulation

L’appareil est équipé d’un commutateur marche-arrêt et d’une minuterie.

Sur les machines à convoyeur, un dispositif de réglage commande la vitesse du convoyeur.

Des thermostats assurent la régulation de la température.

Des pressostats commandent les alimentations d’eau.

Il y a un arrêt automatique du convoyeur lorsque la vaisselle n’a pas été débarrassée.

On peut également éventuellement trouver des thermomètres indiquant les températures lors des différentes phases de lavage et des détecteurs de vaisselle au niveau du séchage.

Des unités de contrôle permettent de gérer et de contrôler la machine durant son fonctionnement. En fonction de leur sophistication, la quantité et qualité des informations peuvent varier du simple affichage des températures de lavage et de rinçage à la consommation d’énergie, l’indication en clair et la mémorisation des dysfonctionnements, l’impression de « rapports HACCP » ou le transfert des données vers un ordinateur permettant de surveiller le bon fonctionnement de la machine à distance.


Gamme

Les machines à panier fixe couvrent une gamme allant de 200 à 2 000 assiettes par heure (machine à double paniers).

Les machines à paniers mobiles ou à convoyeur couvrent une gamme allant de 1 600 à 8 000 assiettes par heure et parfois plus.

La puissance électrique varie selon la capacité, mais également selon le mode d’alimentation en eau (chaude ou froide). La gamme est donc très étendue : 4 kW à 100 kW.


Précautions d’utilisation

Il peut être intéressant de prévoir plusieurs appareils adaptés au type de vaisselle.

Le tri initial et l’élimination des déchets (« décrochage »), exécutés manuellement, conditionnent les performances de la machine.

Les couverts en inox peuvent nécessiter en outre un trempage manuel préalable.

Les plateaux nécessitent en complément un séchoir à plateaux par air pulsé préchauffé ou non.

Il est nécessaire d’utiliser de l’eau adoucie.
Ce résultat peut être obtenu par un adoucisseur d’eau spécialisé placé sur le réseau d’alimentation ou intégré à l’appareil.

Les produits lessiviels en poudre ou liquides sont utilisés pour le lavage et le rinçage.

Les opérations de chargement et de déchargement doivent être exécutées dans des délais compatibles avec la durée du cycle :


Entretien

Après chaque service, un nettoyage complet de la machine (cuve, filtre) est nécessaire.

Un programme d’entretien préventif par l’installateur de la machine est conseillé pour garantir son bon fonctionnement à long terme.


« Accessoires »

L’après-rinçage à l’eau déminéralisée

Lorsque l’eau présente une forte teneur minérale, les aptitudes performantes des produits de rinçage se voient imposer des limites. Pour pallier à cela, l’utilisation d’eau déminéralisée apporte une solution. Afin de limiter le coût de traitement de l’eau, l’usage d’eau déminéralisée peut être limité à certaines pièces comme couverts et verres. Ils sont placés en paniers spéciaux équipés d’un système mécanique, optique ou magnétique d’enclenchement des jets d’eau déminéralisée à leur passage lors du rinçage final. De nombreuses machines à avancement automatique sont déjà équipées d’un tel système de rinçage.
Ce déclenchement sélectif permet de ne pas gaspiller inutilement l’eau déminéralisée pour des pièces de vaisselle n’en nécessitant pas (porcelaine, plateaux, récipients.etc.).

Les bacs et cuves thermoformés

L’utilisation du polypropylène comme matériau de fabrication des cuves présente quelques avantages :

  • diminution du poids des équipements,
  • suppression des soudures source d’accrochage et dépose des aliments et résidus,
  • diminution de la conductivité thermique avec économie d’énergie,
  • diminution du bruit au niveau du brassage de l’eau.

Grill et plaques à snacker électriques

Grill et plaques à snacker électriques


Principe

Le grill est utilisé pour des cuissons de pièces peu épaisses par contact avec l’élément chauffant.


Description

Il existe plusieurs types d’appareils comportant  :

  • Soit des plaques lisses (plaques à snacker) ou rainurées, en fonte, en chrome ou en vitrocéramique, chauffées par des résistances.
  • Soit des barreaux rapprochés en fonte, en acier, ou en acier inox, les éléments chauffants étant incorporés (cuisson par contact), ou dissociés des barreaux (cuisson par rayonnement).
  • Soit des grilles situées au-dessus d’un lit de blocs en céramique portés à incandescence par des résistances : cuisson par rayonnement.

Certains appareils sont dotés de deux plaques chauffantes rainurées superposables et articulées dont l’écartement varie selon l’épaisseur de l’aliment; ils permettent une cuisson simultanée sur deux faces.

Dans tous les cas, la répartition de la température doit, être uniforme sur toute la surface de cuisson.

L’inclinaison donnée aux plaques facilite l’évacuation des jus de cuisson dans une rigole placée à l’avant.

Pour les grills à barreaux, le jus de cuisson tombe dans un tiroir de récupération contenant de l’eau.


Commande et régulation

La régulation est assurée par thermostat ou par doseur d’énergie avec limiteur de température.


Gamme

Pour une production horaire moyenne de 40 à 250 portions, les surfaces s’échelonnent de 5 dm2 à 35 dm2.

En général, il faut prévoir 0,1 dm² par rationnaire, la puissance électrique étant de l’ordre de 200 à 300 W par dm2.


Utilisation

(viandes, poissons); les plaques lisses ont d’autres usages tels que la cuisson des œufs.

Cet appareil trouve sa place aussi bien en restauration rapide qu’en restauration commerciale et collective.
Il est utilisé dans les services diététiques des établissements à caractère hospitalier.

Variateurs de vitesse

Variateurs de vitesse

(Source : « L’essentiel sur les variateurs de vitesse »; Danfoss drive a/s).


 

Principe de base des variateurs de vitesse

Depuis la venue de la technologie des semi-conducteurs, la variation de vitesse électronique des moteurs électriques a pris le dessus sur les anciens systèmes tels que les groupes Ward-Léonard.

Cette technologie, devenue fiable, part toujours du même principe : à partir d’une source, la plupart du temps triphasée alternative pour les ascenseurs, le variateur de vitesse va recréer en sortie :

  • Une tension triphasée variable en fréquence et en amplitude pour les moteurs à courant alternatif.
  • Une tension continue variable en amplitude pour les moteurs à courant continu.

Le variateur de vitesse est composé essentiellement :

  • d’un redresseur qui, connecté à une alimentation triphasée (le réseau), génère une tension continue à ondulation résiduelle (le signal n’est pas parfaitement continu). Le redresseur peut être de type commandé ou pas,
  • d’un circuit intermédiaire agissant principalement sur le « lissage » de la tension de sortie du redresseur (améliore la composante continue). Le circuit intermédiaire peut aussi servir de dissipateur d’énergie lorsque le moteur devient générateur,
  • d’un onduleur qui engendre le signal de puissance à tension et/ou fréquence variables,
  • d’une électronique de commande pilotant (transmission et réception des signaux) le redresseur, le circuit intermédiaire et l’onduleur.

Le variateur de vitesse est principalement caractérisé selon la séquence de commutation qui commande la tension d’alimentation du moteur. On a :

  • les variateurs à source de courant (CSI),
  • les variateurs à modulation d’impulsions en amplitude (PAM),
  • les variateurs à modulation de largeur d’impulsion (PWM/VVC).


Fonction des variateurs de vitesse

Au niveau des ascenseurs, parmi la multitude de possibilités de fonctions qu’offrent les variateurs de vitesse actuels, on épinglera :

  • l’accélération contrôlée,
  • la décélération contrôlée,
  • la variation et la régulation de vitesse,
  • l’inversion du sens de marche,
  • le freinage d’arrêt.

L’accélération contrôlée

Le profil de la courbe de démarrage d’un moteur d’ascenseur est avant tout lié au confort des utilisateurs dans la cabine. Il peut être soit linéaire ou en forme de « s ». Ce profil ou « rampe » est la plupart du temps ajustable en permettant de choisir le temps de mise en vitesse de l’ascenseur.

La décélération contrôlée

Les variateurs de vitesse permettent une décélération contrôlée sur le même principe que l’accélération. Dans le cas des ascenseurs, cette fonction est capitale dans sens où l’on ne peut pas se permettre de simplement mettre le moteur hors tension et d’attendre son arrêt complet suivant l’importance du couple résistant (le poids du système cabine/contre-poids varie en permanence); Il faut impérativement contrôler le confort et la sécurité des utilisateurs par le respect d’une décélération supportable, d’une mise à niveau correcte, …
On distingue, au niveau du variateur de vitesse deux types de freinage :

  • En cas de décélération désirée plus importante que la décélération naturelle, le freinage peut être électrique soit par renvoi d’énergie au réseau d’alimentation, soit par dissipation de l’énergie dans un système de freinage statique.
  • En cas de décélération désirée moins importante que la décélération naturelle, le moteur peut développer un couple moteur supérieur au couple résistant de l’ascenseur et continuer à entraîner la cabine jusqu’à l’arrêt.

La variation et la régulation de vitesse

Parmi les fonctionnements classiques des variateurs de vitesse, on distingue :

  • La variation de vitesse proprement dite où la vitesse du moteur est définie par une consigne d’entrée (tension ou courant) sans tenir compte de la valeur réelle de la vitesse du moteur qui peut varier en fonction de la charge, de la tension d’alimentation, … On est en boucle « ouverte » (pas de feedback).

Boucle ouverte.

  • La régulation de vitesse où la consigne de la vitesse du moteur est corrigée en fonction d’une mesure réelle de la vitesse à l’arbre du moteur introduite dans un comparateur. La consigne et la valeur réelle de la vitesse sont comparées, la différence éventuelle étant corrigée. On est en boucle « fermée ».

Boucle fermée.

L’inversion du sens de marche

Sur la plupart des variateurs de vitesse, il est possible d’inverser automatiquement le sens de marche. L’inversion de l’ordre des phases d’alimentation du moteur de l’ascenseur s’effectue :

  • soit par inversion de la consigne d’entrée,
  • soit par un ordre logique sur une borne,
  • soit par une information transmise par une connexion à un réseau de gestion.

Le freinage d’arrêt

C’est un freinage de sécurité pour les ascenseurs :

  • Avec des moteurs asynchrones, le variateur de vitesse est capable d’injecter du courant continu au niveau des enroulements statoriques et par conséquent stopper net le champ tournant; la dissipation de l’énergie mécanique s’effectuant au niveau du rotor du moteur (danger d’échauffement important).
  • Avec des moteurs à courant continu, le freinage s’effectue au moyen d’une résistance connectée sur l’induit de la machine.


Le redresseur

Redresseur triphasé.

Les ascenseurs sont généralement alimentés par un réseau triphasé alternatif à fréquence fixe (50 Hz). La fonction du redresseur au sein du variateur de vitesse est de transformer la tension triphasée alternative en tension continue monophasée. Cette opération se réalise par l’utilisation :

  • soit d’un pont de diodes, le redresseur est « non-commandé »,
  • soit d’un pont de thyristors, alors le redresseur est commandés.

Le redresseur non commandé

Comme le montre la figure ci-dessous, des deux alternances d’une tension monophasée alternative (positive et négative), seule l’alternance positive passe à travers la diode entre les électrodes couramment appelées « anode » et « cathode »; on dit que la diode est « passante ».

Fonctionnement de la diode .

Pour obtenir une tension continue à la sortie du redresseur, il est nécessaire de trouver un système qui permette d’exploiter les deux alternances; c’est le pont de diodes.

Dans un redresseur triphasé non-commandé, le pont de diodes permet, comme le montre la figure ci-dessus, de générer une tension continue en redressant l’alternance négative de chaqu’une des trois tensions composées. On voit que la tension de sortie n’est pas tout à fait continue et comporte une ondulation résiduelle.

Redresseurs non-commandés.

La tension à ondulation résiduelle sortant du redresseur a une valeur moyenne de l’ordre de 1,35 fois la tension du réseau.

Tension à ondulation résiduelle.

Le redresseur commandé

Dans le redressement commandé d’une tension alternative, la diode est remplacée par le thyristor qui possède la particularité de pouvoir contrôler le moment ou il deviendra « passant » dans l’alternance positive. C’est la troisième électrode, appelée « gâchette », qui, lorsqu’elle est alimenté sur commande par la régulation du redresseur, devient conductrice. Tout comme la diode, le thyristor est « bloquant » durant l’alternance « négative ».

Fonctionnement du thyristor.

On voit tout de suite l’intérêt du thyristor par rapport à la diode : on peut faire varier la valeur de la tension moyenne de sortie en contrôlant le moment où l’impulsion sera donnée sur la gâchette pour rendre le thyristor « passant ».
Dans un redresseur triphasé commandé, le pont de thyristors permet, comme le montre la figure ci-dessus :

  • De générer une tension continue en redressant l’alternance négative de chaqu’une des trois tensions composées. On voit que la tension de sortie n’est pas tout à fait continue et comporte une ondulation résiduelle.
  • De faire varier le niveau de tension moyenne à la sortie du redresseur.

Redresseurs commandés.

Tension de sortie du redresseur.


Le circuit intermédiaire

Circuit auxiliaire.

Ce circuit joue plusieurs rôles suivant les options prises sur le type de variateur dont principalement le lissage en courant ou en tension du signal de sortie du redresseur et le contrôle du niveau de tension ou de courant d’attaque de l’onduleur. Il peut aussi servir à :

  • découpler le redresseur de l’onduleur,
  • réduire les harmoniques,
  • stocker l’énergie due aux pointes intermittentes de charge.

On différentie le circuit intermédiaire à :

  • À courant continu variable lorsque le redresseur est commandé (variation de la tension de sortie du redresseur).
  • À tension continue variable ou constante lorsque le redresseur est respectivement commandé ou pas.
  • À tension variable lorsque le redresseur est non-commandé.

Le circuit intermédiaire à courant continu variable

Ce type de circuit intermédiaire caractérise les variateurs à source de courant. Il est composé d’une bobine (ou self) de lissage « passe bas » (filtration des basses fréquences) permettant de réduire l’ondulation résiduelle. En d’autres termes la bobine transforme la tension de sortie du redresseur à ondulation résiduelle en un courant continu.

Circuit intermédiaire à courant continu variable.

Le circuit intermédiaire à tension continue constante ou variable

Ce type de circuit intermédiaire caractérise les variateurs à source de tension. Il est composé d’une bobine (ou self) de lissage « passe bas » (filtration des basses fréquences) et d’un condensateur « passe haut » (filtration des hautes fréquences) permettant de réduire l’ondulation résiduelle.

Pour un redresseur commandé, le circuit intermédiaire transforme la tension de sortie à ondulation résiduelle du redresseur en tension continue d’amplitude variable.

Pour un redresseur non-commandé, la tension à l’entrée de l’onduleur est une tension continue dont l’amplitude est constante.

Circuit intermédiaire à tension continue constante ou variable.

Le circuit intermédiaire à tension variable

À l’entrée du filtre est ajouté un hacheur composé d’un transistor et d’une diode « roue libre ». Dans ce cas, le circuit intermédiaire transforme la tension continue de sortie du redresseur à ondulation résiduelle en une tension carrée lissée par le filtre. Il en résulte la création d’une tension variable suivant que le pilote du hacheur rende le transistor « passant » ou pas.

Circuit intermédiaire à tension variable.


L’onduleur

Onduleur triphasé.

L’onduleur constitue la dernière partie du variateur de vitesse dans le circuit puissance.

Alimenté à partir du circuit intermédiaire par :

  • une tension continue variable ou constante,

Onduleur pour tension intermédiaire variable ou continue.

  • un courant continu variable,

Onduleur pour courant intermédiaire continu variable.

L’onduleur fournit au moteur une grandeur variable en tension ou en fréquence ou les deux en même temps suivant le cas. En effet, une alimentation de l’onduleur :

  • En tension ou en courant continue variable, lui permet de réguler la vitesse du moteur en fréquence.
  • En tension continue constante, lui impose de réguler la vitesse du moteur en tension et en fréquence.

Bien que les fonctionnements des onduleurs soient différents, la technologie reste plus ou moins identique. Pour une raison de souplesse de commande en fréquence, les onduleurs sont maintenant équipés de transistors haute fréquence plutôt que de thyristors. Ce type de transistor de puissance peut être allumé et éteint très rapidement et, par conséquent, couvrir une large plage de fréquence (entre 300 Hz et 20 kHz).


Modes de fonctionnement de l’onduleur

On distingue plusieurs modes de fonctionnement des onduleurs en fonction principalement du signal de sortie du circuit intermédiaire :

  • le fonctionnement en modulation d’impulsion en amplitude (PAM : Pulse Amplitude Modulation),
  • le fonctionnement en modulation de largeur d’impulsion (PWM : Pulse Width Modulation).

Mode de modulation en amplitude ou en largeur d’impulsion.

Modulation d’impulsion en amplitude

Ce type de modulation est utilisé lorsque le variateur de vitesse est à tension intermédiaire variable.
Comme on l’a vu dans le circuit intermédiaire :

  • Pour les variateurs avec redresseurs non-commandés, un hacheur est nécessaire pour générer une tension variable au niveau de l’onduleur.
  • Pour les variateurs avec redresseurs commandés, la variation de l’amplitude de la tension est générée par le redresseur lui-même.

Circuit intermédiaire à tension variable par le hacheur.

Quel que soit le système, l’onduleur reçoit à son entrée une tension continue variable en amplitude. Dans ce cas, l’onduleur, lui, ne fait varier que la fréquence d’allumage et d’extinction des thyristor ou des transistors en fonction du niveau de la tension d’entrée pour recréer une tension sinuzoidale (dans le cas d’un moteur à courant alternatif).

Modulation de largeur d’impulsion (PWM)

Ce type de modulation est souvent utilisé pour générer une tension triphasée à fréquence et tension variables.

Il existe 3 manières de gérer la commutation des thyristors ou des transistors de puissance :

  • PWM à commande par sinusoïde,
  • PWM synchrone pour limiter les harmoniques,
  • PWM asynchrone pour améliorer la réaction du moteur à toute modification rapide de la commande du variateur de fréquence.

Dans un souci de clarté, seule la PWM à commande par sinusoïde est expliquée ci-dessous :

Le principe de commande de l’onduleur réside dans l’utilisation d’un comparateur de tensions. Ce comparateur superpose à trois tensions sinusoïdales de référence une tension de forme triangulaire. La fréquence des trois sinusoïdes de référence correspondent à celle des tensions souhaitées à la sortie de l’onduleur. Les intersections entre les sinusoïdes et l’onde triangulaire détermine l’allumage ou l’extinction des thyristors (ou des transistors de puissance) selon le cas. Il en résulte un temps d’impulsion « passante » ou « non-passante » variable reconstituant un courant sinusoïdal en sortie du variateur de vitesse.

Principe PWM à commande par sinusoïde.

Attention, dans ce type de commande, il faudra être attentif à la génération d’harmoniques responsables de perturbation du réseau amont. Dans ce cas, une commande PWM synchrone limite la création d’harmoniques.


Le circuit de commande

Le circuit de commande ne fait pas partie du circuit puissance du variateur de vitesse. Ce circuit doit garantir quatre fonctions essentielles :

  1. La commande des semi-conducteurs du variateur de vitesse.
  2. L’échange d’informations de commande, de régulation et d’analyse avec les périphériques.
  3. Le contrôle des défauts (interprétation et affichage).
  4. La protection du variateur de vitesse et du moteur.

La venue des microprocesseurs a permis d’accroître la vitesse d’exécution des informations de commande et de régulation du circuit de commande vis à vis des autres circuits (circuit intermédiaire, onduleur, …).

Le circuit de commande est donc en mesure de déterminer le schéma optimum d’impulsions des semi-conducteurs pour chaque état de fonctionnement du moteur par rapport à la charge, au réseau, aux consignes de commande, …

La régulation de vitesse de moteurs triphasés à courant alternatif évolue selon deux principes de commandes différents :

  • la commande U/f (Scalaire),
  • la commande vectorielle de flux (VVC : Voltage Vector Control).

Ces principes déterminent la manière de programmation des algorithmes de commande et de régulation des variateurs de vitesses. Les deux méthodes présentent des avantages en fonction des exigences spécifiques des performances (couple, vitesse, …) et de la précision de l’entraînement.

La commande U/f (scalaire)

La commande U/f se base sur la mesure de grandeurs scalaires (valeurs d’amplitude en tension et en fréquence). C’est le système de commande de base des variateurs de fréquence standards.

Afin de garder un flux constant dans le moteur et donc aussi une variation de vitesse à couple constant la tension et la fréquence varient proportionnellement jusqu’à la fréquence nominale du moteur (50 Hz). Lorsque la tension nominale est atteinte, la tension ne sachant plus augmenter, il est toujours possible d’augmenter la fréquence; dans ce cas la variation se fait à puissance constante , le couple diminue avec la vitesse. Ce mode de fonctionnement est intéressant pour des charges à couple constant tels que les ascenseurs. En effet, le couple moteur « colle » mieux au profil du couple résistant; ce qui signifie que les consommations qui en découlent sont moindres.

Fonctionnement U/f constant.

Fonctionnement à couple constant sous une fréquence de 50 Hz.

La figure ci-dessous montre les profils des courbes du couple en fonction de la vitesse pour différents rapports U/f :

Fonctionnement à couple constant.

La commande U/f a les avantages et les inconvénients suivants :

(+)

  • facilité d’adaptation du variateur de vitesse au moteur.
  • supporte aisément les variations de charge dans toute la plage de vitesses.
  • le couple moteur reste plus ou moins constant en fonction de la vitesse.

(-)

  • plage de régulation de la vitesse limitée à 1/20.
  • à faible vitesse, pas de compensation par rapport au glissement et à la gestion de la charge.

La commande vectorielle de tension (ou de flux)

Pour ce type de commande, il est nécessaire de fournir des indications précises sur les paramètres du moteur (encodage de la plaque signalétique).

La commande vectorielle en tension (VVC : Voltage Vector Control) agit selon le principe de calcul de la magnétisation optimale du moteur à différentes charges à l’aide de paramètres de compensation permettant de contrôler le glissement et la charge du moteur.

Comme son nom l’indique, la commande vectorielle en tension travaille avec les vecteurs de tension à vide et de compensation par rapport à la variation de la charge.

La commande vectorielle à champ orienté travaille avec les valeurs des courants actifs, de magnétisation (flux) et du couple. Par un modèle mathématique approprié, il est possible de déterminer le couple nécessaire au moteur en fonction des vecteurs du flux statorique et du courant rotorique et ce afin d’optimiser et réguler le champ magnétique et la vitesse du moteur en fonction de la charge.

La commande vectorielle de flux a les avantages et inconvénients suivants :

(+)

  • bonne réaction aux variations de charge.
  • régulation précise de la vitesse.
  • couple intégral à vitesse nulle.
  • performance semblable aux entraînements à courant continu.
  • réaction rapide aux variations de vitesse et large plage de vitesses (1/100).
  • meilleure réaction dynamique aux variations de sens de rotation.
  • une seule stratégie de commande pour toute la plage de vitesse est nécessaire.

(-)

  • nécessite de connaître les caractéristiques précises du moteur.


L’optimisation automatique de l’énergie

Dans des applications telles que celles des ascenseurs (faible charge des ascenseurs à traction), des économies d’énergie peuvent être réalisées en réduisant la force du champ magnétique et par conséquent les pertes dans le moteur. En effet, en général, pour des installations classiques, les moteurs sont surmagnétisés par rapport au couple à fournir.

Dans beaucoup d’applications, on pourra fixer le rapport U/f afin d’optimiser les consommations énergétiques. Un compromis sera trouvé entre l’économie d’énergie et les besoins réels du moteur en couple minimal pour un rotor bloqué (ou couple de décrochage).

L’économie d’énergie pour des systèmes moyens d’entraînement est de l’ordre de 3 à 5 % pour des faibles charges.

 

Compresseurs frigorifiques [Froid alimentaire]

Compresseurs frigorifiques [Froid alimentaire]


Compresseur à pistons

Schéma compresseurs à pistons, construction ouverte.

Compresseurs à pistons, construction ouverte

Dans ce groupe de compresseurs, le moteur et le compresseur ne sont pas dans le même logement. L’arbre d’entraînement (vilebrequin) émerge du carter du compresseur. On peut y raccorder un moteur électrique, diesel ou à gaz. L’association se fait soit par un manchon d’accouplement, soit par une courroie.

L’accès à tous les éléments du compresseur est possible.

La puissance est réglée par la mise à l’arrêt de certains cylindres ou par changement de régime du moteur d’entraînement.

On utilise les compresseurs de construction ouverte dans les installations d’une puissance de réfrigération jusqu’à 500 kW.

Compresseur ouvert (source : Bitzer).

Compresseurs à pistons, construction semi-hermétique
( ou « hermétique accessible »)

La technologie des compresseurs à pistons est différente selon que l’application est en froid positif ou négatif. Il faut rappeler que si le taux de compression HP/BP est supérieur à 8 (rapport pression de sortie/ pression d’aspiration) le rendement volumétrique du compresseur diminue et par conséquent la performance énergétique se dégrade (COPfroid).

Froid positif

En froid positif, les taux de compression restent la plupart du temps inférieurs à 8, signifiant que les compresseurs peuvent être de la technologie mono-étage.

Compresseur mono-étage (source : Bitzer).

Froid négatif

En froid négatif, les taux de compression sont supérieurs à 8, imposant que les compresseurs soient de la technologie bi-étage.

Compresseur bi-étages.

Technologie

Compresseur et moteur d’entraînement sont logés dans un carter commun. L’entraînement est habituellement assuré par un moteur électrique. Il est généralement refroidi par les gaz froids du réfrigérant (gaz aspirés), quelquefois par un ventilateur ou un serpentin d’eau enroulé sur le bâti du moteur.

Pour des réparations, on peut accéder à chaque partie de la machine et même séparer le compresseur du moteur (plaques boulonnées sur le bâti, avec présence de joints intercalaires).

La puissance est réglée par mise hors service de certains cylindres ou par changement de la vitesse de rotation du moteur d’entraînement.

On utilise des compresseurs de construction semi-hermétiques dans des installations jusqu’à 100 kW ou, en recourant à plusieurs compresseurs, jusqu’à 400 kW environ.


Compresseur spiro-orbital, dit « scroll »

Le compresseur SCROLL est composé de deux rouleaux identiques en forme de spirale. Le premier est fixe, le second décrit un mouvement circulaire continu sans tourner sur lui même. Les spirales sont déphasées de 180°.

Le mouvement orbital entraîne le déplacement vers le centre des poches de gaz, ce déplacement est accompagné d’une réduction progressive de leur volume jusqu’à disparition totale. C’est ainsi que s’accomplit le cycle de compression du fluide frigorigène.

Photo compresseur spiro-orbital, dit "scroll".   Schéma principe compresseur spiro-orbital, dit "scroll".

La réduction du nombre de pièces par rapport à un compresseur à pistons de même puissance est de l’ordre de 60 %. L’unique spirale mobile remplace pistons, bielles, manetons et clapets. Moins de pièces en mouvement, moins de masse en rotation et moins de frottements internes, cela se traduit par un rendement supérieur à celui des compresseurs à pistons.

Cela se traduit par un COP frigorifique de l’ordre de 4,0 en moyenne annuelle alors qu’il se situe aux alentours de 2,5 pour les compresseurs à pistons (information constructeur).

Les variations de couple ne représentent que 30 % de celles d’un compresseur à pistons. Il n’impose donc que de très faibles contraintes au moteur, facteur de fiabilité.

Il reste limité en puissance (autour des 50 kW) mais plusieurs scrolls peuvent être mis en parallèle (jusqu’à 300 kW par exemple).

À noter également sa faible sensibilité aux coups de liquide.

Diverses méthodes de régulation de vitesse sont possibles :

  • Régulation « tout ou rien ».
  • Régulation par moteur à 2 vitesses.
  • Régulation par variateur de vitesse.

Attention : en cas de rotation en sens contraire, il n’y a pas de compression et un bruit insolite avertit le technicien !


Compresseur à vis

 Photo compresseur à vis.

Compresseur à vis (source Bitzer).

  • Type : Machine ouverte ou fermée.
  • Plage de réglage : De 10 à 100 % avec un rendement assez constant.
  • Fonctionnement : Le fluide frigorigène gazeux est comprimé par une vis hélicoïdale (un peu comme dans un hache-viande) tournant à grande vitesse. Le compresseur est entraîné par un moteur électrique.

On rencontre des compresseurs à vis selon deux technologies : les bi-rotors (type SRM) et les mono-rotors (type ZIMMERN).

Caractéristiques

  • Le rendement volumétrique d’un compresseur à vis est bon grâce à l’absence d’espaces morts, comme dans les compresseurs à pistons. Cette propriété permet d’assurer des taux de compression élevés avec un bon rendement volumétrique.

  • Les compresseurs à vis modernes ont des rotors à profils asymétriques, ce qui est préférable au niveau énergétique.

  • Les variations de puissance s’obtiennent dans les grosses machines par l’action d’un « tiroir » qui décide de l’utilisation d’une plus ou moins grande longueur de vis dans la compression des gaz, et donc induit un plus ou moins grand taux de compression. Dans les petites machines, toujours très grandes comparées à des compresseurs à piston, la modulation de puissance s’obtient par variation de la vitesse de rotation ou par utilisation de ports d’aspiration auxiliaires, soit par les deux.

Les avantages du compresseur à vis sont sa faible usure et son réglage facile. Il est toutefois encore coûteux.

Le compresseur à vis doit être abondamment lubrifié, pour assurer l’étanchéité entre les pièces en mouvement et pour réduire le niveau sonore, mais aussi pour refroidir le fluide frigorigène : on peut alors atteindre des taux de compression élevés (jusqu’à 20) sans altérer le fluide frigorigène.

Depuis peu, on utilise le compresseur à vis pour des puissances de réfrigération à partir de 20 kW environ.

Fluides frigorigènes [Froid alimentaire]

Fluides frigorigènes [Froid alimentaire]


L’impact environnemental

Depuis quelques décennies, l’impact des fluides frigorigènes sur l’environnement est devenu un enjeu majeur. En effet, de par la présence de fuites au niveau du circuit frigorifique, la responsabilité de ces fluides dans la destruction de la couche d’ozone et l’augmentation de l’effet de serre n’est plus à démontrer.

Trou d’ozone au pôle sud.

Que ce soit en conception, en rénovation ou même en maintenance, les fuites de fluides sont donc à éviter. Elles dépendent essentiellement de la qualité :

  • du choix et de la mise en œuvre des équipements (soudures et connexions des conduites de distribution par exemple);
  • de l’optimisation du cycle frigorifique;
  • de la maintenance;

En France, en 1997, une étude a montré que le taux de fuites annuelles pouvait atteindre 30 % de la quantité totale en poids (ou en masse) de fluides frigorigènes présent dans les installations frigorifiques des grandes surfaces (Réf.: Zéro fuite – Limitation des émissions de fluides frigorigènes, D. Clodic, Pyc Éditions, 1997).

Depuis lors, les réglementations se sont attaquées à ces problèmes :

  • Suite au protocole de Montréal (1987) les fluides frigorigènes CFC (chlorofluorocarbures, principaux responsables de la destruction de la couche d’ozone) ont été définitivement abandonnés et remplacés progressivement par les HCFC.
  • Les réglementations européennes 2037/2000, 842/2006 et 517/2014 ont notamment imposé :
    •  l’interdiction d’utilisation des HCFC à fort impact sur l’effet de serre (GWP ou global Warming Potential);
    • le remplacement progressif des HFC à haut GWP;
    • le confinement des installations frigorifiques permettant de réduire la quantité de fluide frigorigène;
    • des contrôles réguliers d’étanchéité des installations;
    •  …

Indices d’impact

Pour établir l’impact des fluides frigorigènes sur la couche d’ozone et l’effet de serre, trois indices principaux ont été définis :

  • ODP : Ozone Depletion Potential;
  • GWP : Global Warning Potential;
  • TEWI : Total Equivalent Warning Impact.

ODP (Ozone Depletion Potential)

C’est un indice qui caractérise la participation de la molécule à l’appauvrissement de la couche d’ozone. On calcule la valeur de cet indice par rapport à une molécule de référence, à savoir soit R11 ou R12 qui ont un ODP = 1.

GWP (Global Warning Potential)

C’est un indice qui caractérise la participation de la molécule à l’effet de serre. On calcul la valeur de cet indice par rapport à une molécule de référence, à savoir le CO2, et pour des durées bien déterminées (20, 100, 500 ans). Le CO2 à un GWP = 1.

TEWI (Total Equivalent Warning Impact)

Le TEWI est un concept permettant de valoriser le réchauffement planétaire (global warming) durant la vie opérationnelle d’un système de réfrigération par exemple, utilisant un fluide frigorigène déterminé en tenant compte de l’effet direct dû aux émissions de fluide frigorigène et à l’effet indirect dû à l’énergie requise pour faire fonctionner le système.
À titre indicatif, il est donné par la formule :

TEWI = (GWP x L x n) + (GWP x m[1-C]) + n x E x β

Où :

  • GWP : global warming potential;
  • L : émissions annuelles de fluide en kg;
  • n : durée de vie du système en années;
  • m : charge en fluide frigorigène en kg;
  • C : facteur de récupération / recyclage compris entre 0 et 1;
  • E : consommation annuelle d’énergie en kWh;
  • β : émission de CO2 en kg / kWh.

Voici, pour chaque fluide frigorigène, le Ozone Depletion Potential (potentiel de destruction de la couche d’ozone) et le Global Warming Potential (potentiel de participation au réchauffement climatique) sur 100 ans :

ODP GWP100
R717 Amoniac 0 0
R744 CO2 0 1
R290 Propane 0 20
R32 HFC, fluide pur 0 675
R134a HFC, fluide pur 0 1 430
R407C HFC, mélange 0 1 800
R22 HCFC 0,05 1 810
R410A HFC, mélange 0 2 100
R427A HFC, mélange 0 2 100
R417A HFC, mélange 0 2 300
R422D HFC, mélange 0 2 700
R125 HFC, fluide pur 0 3 500
R404A HFC, mélange 0 3 900
R12 CFC 0,82 10 900

Source : 4ème rapport de l’IPCC (Intergovernmental Panel on Climate Change).


Les fluides frigorigènes fluorés

Fluides frigorigènes fluorés

Les fluides frigorigènes fluorés sont en grande partie responsables de la destruction de la couche d’ozone et contribuent à augmenter l’effet de serre. Les interactions entre les deux phénomènes sont réelles mais d’une grande complexité.

On en distingue plusieurs types :

  • CFC;
  • HCFC;
  • HFC.

CFC (chlorofluorocarbures) (interdits de production depuis janvier 1995)

Ce sont des molécules composées de carbone, de chlore et de fluor. Elles sont stables; ce qui leur permet d’atteindre la stratosphère sans trop de problèmes. À ce stade, en se transformant elles contribuent à la destruction de la couche d’ozone.

R-11 Groupes centrifuges « basse pression ».
R-12 Essentiellement froid domestique et climatisation automobile, mais aussi dans les groupes refroidisseurs d’eau centrifuges.
R-13 Rares utilisations en froid très basse température.
R-14 Rares utilisations en froid très basse température.
R-113 Abandonné avant son interdiction.
R-114 Pompes à chaleur et climatisation de sous-marin.
R-115 Fluide pas utilisé seul, mais dans le R-502, mélange azéotropique très utilisé en froid commercial basse température.

HCFC (hydrochlorofluorocarbures) (utilisation interdite au Ier Janvier 2015)

Ce sont des molécules composées de carbone, de chlore, de fluor et d’hydrogène. Elles sont moins stables que les CFC et détruisent l’ozone dans une moindre mesure. Elles sont appelées substances de transition.

R-22 Fluide frigorigène le plus souvent utilisé, aussi bien en froid industriel qu’en climatisation.
R-123 Remplace le R-11 dans les groupes centrifuges.
R-124 Essentiellement utilisé dans certains mélanges.

HFC (hydrofluorocarbures) (utilisation réduite progressivement jusqu’en 2030)

Ce sont des molécules composées de carbone, de fluor et d’hydrogène. Elles ne contiennent pas de chlore et donc ne participent pas à la destruction de la couche d’ozone. Par contre, les HFC présentent un Global Warming Potential (contribution à l’effet de serre) sur 100 ans élevé.

R-134a

(Solkane)

Fluide frigorigène qui a remplacé le R-12 en froid domestique et en climatisation automobile.

En application « chauffage », il présente l’avantage de faire fonctionner les pompes à chaleur à haute température (généralement jusqu’à 65 °C) et à relativement basse pression. Son utilisation est compatible avec une production d’eau chaude pour radiateurs en lieu et place d’une chaudière.

C’est également un composant majeur de la plupart des mélanges de remplacement.

R-125 N’est jamais utilisé pur en raison de sa pression critique trop faible (66°C). Il entre dans la composition de nombreux mélanges compte tenu de son pouvoir « extincteur ».
R-32,
R-152a
R-143a
Inflammables et donc utilisés uniquement en mélange avec d’autres composants qui « neutralisent » leur inflammabilité.

Mélange de fluides frigorigènes

On peut les classer en fonction du type de composants fluorés qu’ils contiennent.
Ils se distinguent également par le fait que certains mélanges sont :

  • Zéotropes : au cours d’un changement d’état (condensation, évaporation), leur température varie.
  • Azéotropes : ils se comportent comme des corps purs, sans variation de température lors du changement d’état.

Il va de soi que les frigoristes apprécient cette propriété d’azéotropie pour le fonctionnement de la machine frigorifique.

Le R407C (R134a : 52 % + R125 : 25 % + R32 : 23 %)

Le R407C est un fluide non azéotrope (il est composé de plusieurs fluides) afin d’obtenir sa température de changement d’état.

Ce fluide frigorigène présente les particularités suivantes :

  • Il est ininflammable.
  • Lors des changements de phase, la température « glisse » d’environ 5 K car les températures d’évaporation et de condensation des fluides frigorigènes qui le constituent sont différentes. Ceci rend les réglages plus difficiles et impose des échangeurs à contre-courant pour tirer le meilleur parti de ce fluide.
  • En cas de micro-fuite, le composé ayant les molécules les plus volatiles s’échappe préférentiellement. Il en résulte un fluide frigorigène déséquilibré. Il est dès lors nécessaire de vider entièrement l’installation avant de la recharger, le gaz retiré étant recyclé.
  • Les pressions sont moindres avec ce fluide frigorigène.
  • Il est moins performant que le R410A …
Le R410A (R32 : 50 % + R125 : 50 %)

Le R410A présente de meilleures qualités thermodynamiques que le R407C et le R22. D’autre part, l’étanchéité des installations est plus élevée avec le R410A, les pertes de pression sont donc faibles et les vitesses de fonctionnement peuvent être élevées. Les composants sont dès lors plus compacts.

Le R410A est cependant toxique ! De plus, il se comporte comme un réfrigérant mono-moléculaire lorsqu’il change de phase : le passage d’un état à un autre se produit à température quasiment constante (le glissement de température est négligeable). On ne doit donc pas vider complètement l’installation avant de la recharger.Pour terminer, les pressions de fonctionnement sont 60 % plus élevées que dans le cas du R22. Ceci limite donc son utilisation aux températures de condensation moyennes : maximum 45 °C.

Le R404A (R143a : 52 % + R125 : 44 % + R134a : 4 %)

Le R404A présente des caractéristiques communes avec le R410A (il se comporte aussi comme un fluide quasi-azéotropique) mais sa pression de fonctionnement est plus basse. Sa particularité est de ne pas beaucoup s’échauffer pendant la compression. La température des vapeurs surchauffées en sortie de compresseur reste donc modérée, ce qui convient parfaitement à la mise en œuvre des PAC fluide/fluide.


Les fluides à bas « effet de serre »

Ils sont considérés comme moins inquiétants pour l’environnement, car à la fois sans action sur l’ozone stratosphérique et d’un faible impact sur l’effet de serre.

Ils présentent tous des inconvénients, soit au niveau sécurité, soit au niveau thermodynamique.

L’ammoniac (NH3) ou R-717

L’ammoniac présente de nombreux avantages en tant que fluide frigorigène :

  • Impact environnemental nul (ODP et GWP100 nuls);
  • très bon coefficient de transfert de chaleur;
  • efficacité énergétique élevée (au moins aussi bonne que le R22, meilleure dans certaines conditions);
  • le gaz ammoniac est plus léger que l’air;
  • faibles pertes de charge;
  • fuites aisément détectables;
  • faible prix de revient et faibles frais d’entretien des installations;
  • très difficilement inflammable, limite d’explosion élevée et petits champs d’explosion;
  • chimiquement stable;
  • aisément absorbable dans l’eau;
  • pas très sensible à l’humidité dans le circuit;
  • naturel donc biodégradable;
  • grâce à sa haute température critique, il permet de réaliser des températures de condensation très élevées et de concevoir des PAC à haute température.

Les COP obtenus avec ce fluide frigorigène peuvent être équivalents à ceux obtenus avec des HFC.

L’ammoniac est par contre toxique (mais pas cumulativement dans le temps) et irritable. Il peut être explosif dans des cas exceptionnels (les limites inférieure et supérieure d’inflammabilité doivent être très proches l’une de l’autre). Il sera également explosif dans des locaux non aérés où il se crée un mélange d’air, d’azote et d’ammoniac. Les locaux doivent donc absolument être ventilés et le passage de l’air doit également être totalement libre. De plus, le NH3 corrode facilement le cuivre et ses alliages ainsi que le zinc. Les installateurs sont donc obligés d’utiliser de l’acier. Pour terminer, l’ammoniac n’étant pas miscible et soluble dans les huiles minérales, il faut prévoir un séparateur d’huile après le compresseur.

Les installations à l’ammoniac l’utilisent liquide et sa quantité est réduite : la quantité de gaz perdu par fuites est donc faible.

Il est à l’heure actuelle principalement utilisé dans le froid industriel.

Les hydrocarbures (HC) comme R-290 R-600a

Il s’agit essentiellement du propane (R-290), du butane (R-600) et de l’isobutane (R-600a).

Ces fluides organiques présentent de bonnes propriétés thermodynamiques, mais sont dangereux par leur inflammabilité. Le monde du froid s’est toujours méfié de ces fluides, même s’ils sont réapparus récemment dans des réfrigérateurs et des mousses isolantes. Leur utilisation future paraît peu probable en climatisation, vu le coût de la mise en sécurité aussi bien mécanique qu’électrique. En PAC, on l’utilise donc dans des quantités les plus faibles possible (maximum 3 kg pour les applications résidentielles), de préférence à l’extérieur des bâtiments.

Le dioxyde de carbone (CO2) ou R-744

Fluide inorganique, non toxique, non inflammable, mais moins performant au niveau thermodynamique. Son usage implique des pressions élevées et des compresseurs spéciaux.

Il possède cependant de bonnes qualités en application PAC pour le chauffage ou l’eau chaude sanitaire. Il est peu coûteux, et sa récupération et son recyclage sont simples à mettre en œuvre.

Actuellement, les spécialistes s’y intéressent à nouveau de par :

  • son faible impact sur l’environnement (ODP = 0, GWP = 1);
  • son faible volume massique entraînant des installations à faible volume (fuites réduites);

Il a la particularité de posséder une température critique basse à 31 °C  pour une pression de 73,6 bar.
À noter que l’utilisation de ce type de réfrigérant entraîne aussi des contraintes non négligeables telles que la nécessité de travailler :

  • à des pressions élevées (80 voire plus de 100 bar);
  • en transcritique qui demande une maîtrise de la condensation en phase gazeuse (gaz cooler);

L’eau (H2O)

Fluide inorganique, bien entendu sans toxicité. Même si sa grande enthalpie de vaporisation est intéressante, il ne se prête pas à la production de froid sous 0°C. Il est peu adapté au cycle à compression et ses applications sont rares.

Synthèse

Frigorigène Fluide naturel ODP3 GWP (100ans) valeurs IPCC 3 GWP (100ans) valeurs WMO 4 Temp. critique (°C) Pression critique (MPa) Inflammabilité Toxicité Coût relatif Puissance volumétrique
R290

(HC) CH3CH2CH3

Oui 0 20 20 96,7 4,25 Oui Non 0,3 1,4
R717 (Ammoniac NH3) Oui 0 <1 <1 132,3 11,27 Oui Oui 0,2 1,6
R 744 (CO2) Oui 0 1 1 31,1 7,38 Non Non 0,1 8,4
R718 (H2O) Oui 0 0

Caractéristiques environnementales des fluides frigorigènes naturels.


Nomenclature

Les fluides frigorigènes sont soumis à une nomenclature qui se veut internationale. L’ASHRAE, une des plus utilisées, désigne les fluides frigorigènes par la lettre R associée à 2,3 ou 4 chiffre + une lettre (R134a par exemple).

Le tableau ci-dessous montre la méthode de désignation des fluides réfrigérants :

R-WXYZ§

Nomenclature

Appellation courante

R12

R134a

R1270

Appellation pour la détermination de la formule

R-0012

R-0134a

R-1270

CFC

W = Nombre d’insaturation

Carbone = Carbone (C=C)

C=C (double liaison)

0

0

1

X = nombre de Carbone -1

nombre d’atomes de Carbone C = X + 1

1

2

3

Y = nombre de Hydrogène +1

nombre d’atomes d’Hydrogène H = Y – 1

0

2

6

Z = nombre de Fluor

nombre d’atomes de Fluor F = Z

2

4

0

R401A

nombre d’atomes de Chlore Cl*

2

0

0

Formule chimique

C Cl2F2

C2H2F4

CH3 CH=CH2

Si § = A-E => symétrie

Si § = a-b => asymétrie (avec a moins asymétrique que b)

symétrie de la molécule

symétrique

asymétrique

symétrique

Calcul du nombre d’atomes de chlore : Pour les molécules saturées (w = 0), Le nombre d’atomes de chlore s’obtient à partir de la formule suivante : Cl = 2.(C = 1) – H – F.

Étanchéité à l’eau et à l’air des châssis

Étanchéité à l'eau et à l'air des châssis

Le châssis associé au vitrage doit être imperméable à l’eau et à l’air. Il peut cependant permettre le renouvellement périodique de l’air mais de façon contrôlée.

L’étanchéité à l’air conditionne le niveau d’isolation acoustique et de confort thermique. L’étanchéité à l’eau est indispensable afin de préserver un taux d’humidité convenable et d’éviter les dégradations des matériaux.


Les niveaux de performance

Concernant les châssis, les STS définissent des niveaux de performance d’étanchéité à l’eau (PE2, PE3, PE4, PEe ) et à l’air ( PA2, PA2B, PA3 ) recommandés en fonction de la hauteur du châssis par rapport au sol.

Les niveaux PE2, PE3, PE4, PEe signifient qu’aucune infiltration d’eau ne peut se produire jusqu’à une pression respectivement de 150 Pa, 300 PA, 500 PA, et une pression maximale à précisé, et cela pour une vitesse de vent correspondante respectivement de 56 , 80, 103, et maximale (km/h).

Les niveaux PA2, PA2B, PA3 représentent des plages définies dans des graphiques donnant le débit d’air en fonction de la pression de vent. Lors des tests d’étanchéité, les résultats sont placés dans le graphique et le niveau de résistance d’étanchéité au vent correspond à celui de la zone dans laquelle le résultat se trouve.

Ces niveaux de performance doivent être établis au cours de tests réglementés d’étanchéité à l’air et à l’eau réalisés sur un échantillonnage des châssis commandés.
S’il s’agit de châssis standards agréés, ces niveaux de performance sont signalés dans leurs agréments techniques.


Facteurs influençant le niveau d’étanchéité des châssis

Le type de matériau

Le choix du matériau pour le châssis a peu d’influence sur la classe d’étanchéité de la fenêtre. Les châssis en bois, en aluminium, et en matière plastique présentent en effet une étanchéité à peu près pareille.

Le type d’ouvrant

Le type d’ouvrant influence fortement le niveau d’étanchéité.

Le tableau suivant commenté reprend une évaluation des performances d’étanchéité des différents types d’ouvrants.

Type d’ouvrant Pivot à axe vertical Pivot à axe horizontal Coulissante
à la française double battant sans meneau double battant avec meneau à l’anglaise pivotant simple pivotant à axe horizontal à visière oscillo-battantt basculante coulissante guillotine
Étanchéité à l’eau bon difficile
pourquoi ?[1]
bon excellent difficile
pourquoi ?[2]
difficile
pourquoi ?[2]
bon excellent bon moyen
pourquoi ?[4]
moyen
pourquoi ?
Étanchéité à l’air bon moyen
pourquoi ?[1]
bon excellent moyen
pourquoi ?[2]
moyen
pourquoi ?[2]
difficile
pourquoi ?[3]
bon bon bon difficile
pourquoi ?[5]
  1. Il existe un point faible au droit de la rencontre des deux battants dans la partie supérieure et intérieure. La déformation du châssis dans le temps accentue les risques de fuites locales à cet endroit. Cependant des améliorations sont possibles, par adjonction d’une ouverture de drainage au milieu de la traverse inférieure.
  2. Il existe des infiltrations d’eau et d’air par les pivots où l’interruption des joints d’étanchéité est inévitable. Les infiltrations d’eau sont les plus conséquentes. Possibilité d’utiliser des pivots compliqués et coûteux pour remédier à cet inconvénient.
  3. Il existe des infiltrations d’air par les pivots où l’interruption des joints d’étanchéité est inévitable.
  4. Infiltration d’eau inévitable dans le bas du châssis, entre la partie fixe et le ventail coulissant même si la pression du vent est très faible.
    Une amélioration possible : l’adjonction de profilés d’une hauteur suffisant du côté intérieur de la fenêtre permet souvent d’éviter que l’eau pénétrant dans la fenêtre ne s’introduise à l’intérieur de l’habitation. L’eau sera alors évacuée par des systèmes de drainage adéquats. Le montage doit être soigné afin d’obtenir autant que possible une continuité entre les joints verticaux et horizontaux.
  5. L’étanchéité à l’eau reste mauvaise étant donné le nombre réduit de points de fermeture qu’offre ce type de châssis.

On remarque une tendance croissante à utiliser les châssis oscillo-battants à la place des châssis pivotants horizontaux. Il offre en effet de nombreux avantages pratiques et une très bonne étanchéité à l’eau et à l’air en raison du nombre élevé de fermetures dont il dispose.


Détails de conception permettant d’améliorer l’étanchéité des châssis

Des améliorations peuvent être réalisées au niveau :

  • du détail des profilés
  • des détails des dispositifs architecturaux de protection de la façade

Détail des profilés

Selon le niveau d’étanchéité recherché, des améliorations importantes peuvent être apportées aux profilés.

Le niveau d’étanchéité au vent et à l’eau dépend :

  • Du nombre de frappes (simple, double ou triple) entre les ouvrants et les dormants.
  • De la présence et de l’emplacement des joints et le soin accordé au joint entre le châssis et le vitrage.
  • De la continuité des joints dans un même plan et dans les angles.
  • Des précautions prises contre les déformations du châssis, créant des espacements propices aux infiltrations d’eau et d’air.

Dès lors, on accordera une attention particulière …..

– Aux barrières d’étanchéité

  • Actuellement, le principe de la double barrière d’étanchéité est appliqué à la quasi-totalité des châssis de menuiserie extérieure.
  • Les barrières d’étanchéité à l’eau et à l’air devront être continues et chacune située idéalement dans un même plan.
  • Il faudra choisir, en fonction du profilé, des barrières d’étanchéité à l’air adaptées et qui conservent leur élasticité dans le temps afin d’assurer un écrasement suffisant contre la battée. Un défaut d’étanchéité à l’air compromet l’efficacité de la barrière d’étanchéité à l’eau mais aussi le contrôle de la ventilation et de l’isolation acoustique.
  • Il faudra préciser en cas de châssis en bois, les protections en aluminium ou en PVC à incorporer au profilé.

– A la prévention des risques de déformation des profilés de châssis par :

  • Un bon dimensionnement des sections des profilés afin d’assurer, sous l’effet des sollicitations, une flèche de ces derniers inférieure à 1/300, compte non tenu de la raideur apportée par le vitrage.
  • Un renforcement des profilés (conseillé si il s’agit de châssis en PVC).
  • Une quincaillerie adaptée et résistante.
  • Pour les châssis en bois : prévenir les déformations dues au travail du bois, au niveau des joints d’étanchéité.

Compte tenu des déformations inévitables des châssis, on procédera à un réglage régulier de la quincaillerie de façon à maintenir un écrasement du préformé d’étanchéité à l’air de 2 mm.

– Aux dispositifs d’évacuation des eaux infiltrées

  • Il faut prévoir une chambre de décompression pour recueillir les eaux d’infiltration éventuelles (étanchéité à la pluie) et pour réduire la pression du vent sur le préformé d’étanchéité (étanchéité au vent).
  • Il faut veiller à ce qu’en cas de double barrière d’étanchéité, le drainage de la feuillure du vitrage soit assuré en amont de l’étanchéité à l’air du profilé.

Accorder une importance au dimensionnement et à la mise en  place correcte du casse-gouttes

En cas de châssis en bois, on veillera à ne pas recouvrir les joints d’étanchéité lors de l’application de la finition/protection du bois, sans toutefois négliger le traitement du casse-goutte.

Détails des dispositifs architecturaux de protection pouvant limiter les risques d’infiltration

Détails architecturaux.

 

  • Dépassant de toitures, balcons,….
  • Le retour de baie sera d’autant plus efficace que le profilé est situé en retrait par rapport au nu des façades.
  • Un casse-goutte (ou lamier) en amont du châssis de façon à empêcher l’eau ruisselante sur les façades d’atteindre les profilés.
  • L’inclinaison suffisante des seuils de fenêtre de façon à limiter les éclaboussures et la stagnation de l’eau.
  • Dépassant de toitures, balcons,….
  • Le retour de baie sera d’autant plus efficace que le profilé est situé en retrait par rapport au nu des façades.
  • Un casse-goutte (ou lamier) en amont du châssis de façon à empêcher l’eau ruisselante sur les façades d’atteindre les profilés.
  • L’inclinaison suffisante des seuils de fenêtre de façon à limiter les éclaboussures et la stagnation de l’eau.

Types de lave-vaisselle

Types de lave-vaisselle

Il existe des machines polyvalentes pour toute vaisselle et d’autres à utilisation spécialisée telles que machines à laver les verres, machines à laver les ustensiles de cuisine, …


Les machines polyvalentes

On classe les machines à laver polyvalentes en deux groupes :

  

Machines à panier statique et machines à déplacement automatique de la vaisselle ou machines à translation.

Les machines à panier statique

Le panier reste fixe et les différentes phases de lavage (lavage proprement dit et rinçage) se réalisent au même emplacement.
L’avancement des paniers à l’entrée ou à la sortie est commandé par l’employé.
Le prélavage peut se faire manuellement au moyen d’une douchette avant l’entrée dans la machine.

Les machines à panier statique sont à ouverture frontale ou à capot mobile (ou à porte guillotine).
Certains appareils présentent un panier à mouvement rotatif.

Machine à ouverture frontale, machine à capot relevable et machine à panier à mouvement rotatif.

La capacité des machines à laver à panier statique s’exprime en assiettes/heure ou en paniers/heure.

Elles sont réservées aux petites exploitations jusqu’à 200 rationnaires environ.

Les machines à déplacement automatique de la vaisselle (ou à translation)

Ces machines permettent le déplacement de la vaisselle de façon linéaire sur un tapis articulé et motorisé, à vitesse fixe ou variable. Les différentes phases de lavage se font au fur et à mesure de l’avancement de la vaisselle dans la machine.

Ces machines sont aussi appelées machines à tunnel.

Schéma principe machines à tunnel.

Sur les modèles les plus simples, les zones de prélavage et de séchage n’existent pas.

Il en existe de deux sortes :

La machine à paniers mobiles

La vaisselle est placée préalablement dans des paniers.

Schéma principe machine à paniers mobiles.

Le déplacement des paniers se fait, par exemple, à l’aide d’un entraînement mécanique à « cliquets ».

La capacité des machines à paniers mobiles s’exprime en assiettes/heure ou en paniers/heure.

Ces machines sont réservées aux exploitations de taille moyenne, jusqu’à environ 600 à 700 couverts par service.

La machine à convoyeur ou à bande 

Elle est appelée ainsi car le convoyeur de chargement et de déchargement, fait partie de la machine.

Schéma principe machine à convoyeur ou à bande.

Les pièces à laver sont directement posées et accrochées sur le convoyeur pourvu de doigts.  Des paniers ne sont utilisés que pour les petites pièces.

À titre d’information, il existe des lave-vaisselle multi-pistes, chaque piste correspondant à une application bien précise (dépose des couverts sur l’une, dépose de la porcelaine ou de plateaux sur l’autre etc.). Ces convoyeurs multi-pistes sont davantage utilisés dans des configurations semi-automatiques où les couverts sont enlevés des plateaux à l’aide d’un extracteur magnétique qui les dépose ensuite sur la piste à couverts.

La capacité des machines à convoyeur s’exprime en assiettes/heure ou en m/min.

Ces machines sont réservées aux exploitations de grande taille (plus de 700 rationnaires) ou aux exploitations de type cafétéria de moindre effectif qui veulent travailler en continu : le même personnel réalise le débarrassage des tables en salle à manger et le lavage de la vaisselle.


Les machines spécifiques

Le lave-ustensiles (batterie de cuisine)

Le lave-ustensiles est une machine capable de laver la batterie de cuisine jusqu’à la dimension GN 2/1.

Il existe un nouveau type de machine qui utilise des granulés en plastique.

Ces machines utilisent le même principe que celui du sablage.

La phase de lavage des ustensiles se fait par des jets d’eau chargés de billes de plastique, ce qui a pour effet d’augmenter l’effet mécanique du nettoyage. Selon le degré de « brûlure » du plat, la durée de la phase de lavage sera plus ou moins longue.

Les granulés de plastique doivent être suffisamment durs pour pouvoir éliminer efficacement les restes alimentaires, tout en étant assez souples pour ne pas abîmer les plats.

L’efficacité des granulés permet de diminuer la consommation de produits lessiviels. Les ustensiles ne nécessitent plus de pré-trempage.
Les granulés sont réutilisés pour plusieurs cycles.

La laveuse de plateaux

Le plateau est la pièce de vaisselle la moins souillée et la plus volumineuse nécessitant un grand espace de passage en machine.

La laveuse de plateaux trouve sa place en bout de convoyeur d’amenée de la vaisselle sale.
La laveuse de plateaux permet un lavage spécifique des plateaux en direct, sans manutention.

Il est recommandé de le coupler avec un chargeur automatique et rangement sur chariot à niveau constant.

Empileur de plateaux.

La machine à laver les verres

Elle permet d’améliorer la qualité du lavage par un traitement spécifique.

Les verres qui ne sont pas particulièrement souillés ne nécessitent pas un traitement de choc comme le reste de la vaisselle. Par ailleurs, l’eau utilisée est de plus en plus chargée en éléments minéraux qui précipitent et déposent sur la machine mais aussi sur les verres, les rendant ternes.

Ces machines ne nécessitant que de faibles quantités d’eau, peuvent fonctionner à l’eau déminéralisée pour un coût intéressant. Alors que cette amélioration appliquée à toute la vaisselle sur une machine unique serait prohibitive.

Actuellement, ce principe s’utilise de manière sélective sur les machines polyvalentes.

Condenseurs et tours de refroidissement

Condenseurs et tours de refroidissement


Vue synoptique

La chaleur extraite par une machine frigorifique doit être évacuée vers l’extérieur. Le plus simple est de refroidir le fluide frigorigène avec l’air extérieur :

Mais la puissance de refroidissement est parfois trop faible. On peut la renforcer grâce à l’évaporation d’eau supplémentaire (lorsque de l’eau s’évapore, la chaleur de la vaporisation est « pompée » sur la goutte d’eau qui reste et qui donc se refroidit):

Problème : parfois, la distance entre le groupe et la toiture est fort élevée et la perte de charge sur le circuit frigorifique serait trop importante.

Aussi, un circuit d’eau est créé : l’eau refroidit le fluide frigorifique et l’air refroidit l’eau !

Trois types d’échangeur sont rencontrés :

1° L’aéro-refroidisseur :

L’eau est directement refroidie par l’air.

Schéma principe aéro-refroidisseur - 01.
Schéma principe aéro-refroidisseur - 02.

2° La tour de refroidissement fermée :

Une puissance supplémentaire est donnée par pulvérisation d’une eau indépendante du circuit.

Schéma principe tour de refroidissement fermée - 01.
Schéma principe tour de refroidissement fermée - 02.

3° La tour de refroidissement ouverte :

Cette fois, c’est l’eau qui traverse le condenseur qui est directement pulvérisée et en partie évaporée.

Schéma principe tour de refroidissement ouverte - 01.
Schéma principe tour de refroidissement ouverte - 02.


Fonctionnement d’un condenseur

Le fonctionnement du condenseur s’intègre dans un fonctionnement global de la machine frigorifique.

En théorie, la condensation se déroule en 3 phases :

> Phase 1, la désurchauffe du fluide frigorigène, qui, sortant du compresseur sous forme de gaz très chauds (parfois jusqu’à 70°C), va se refroidir et donner sa chaleur sensible.

> Phase 2, la condensation du fluide, moment où l’essentiel de la chaleur est donnée sous forme de chaleur latente.

> Phase 3, le sous-refroidissement du liquide, communiquant encore de la chaleur sensible au fluide refroidisseur.

En pratique, ce découpage en phases ne se fait pas vraiment ainsi. Le fluide frigorigène circule dans un tube en contact avec l’eau ou l’air. Le fluide qui touche le tube est liquide et se sous-refroidit. Le fluide qui est en contact avec ce liquide condense à son tour. Enfin, le gaz qui est au centre du tube désurchauffe simplement. A la limite, le gaz au cœur du tube ne sait pas qu’il y a un refroidissement sur les parois !

Les 3 phases sont donc simultanées…


Fonctionnement d’une tour de refroidissement

Un litre d’eau évaporée évacue 2 500 kJ de chaleur.

Pour obtenir le même effet avec le refroidissement de l’eau, on devrait refroidir 60 litres d’eau de 10°C… (sur base d’une capacité calorifique de l’eau de 4,18 [kJ/kg.K].

C’est sur ce principe physique que la tour de refroidissement fonctionne. Ainsi, dans la tour ouverte, l’eau chaude issue du condenseur est pulvérisée en micro-goutelettes, puis ruisselle sur une surface d’échange eau-air. Un ou plusieurs ventilateurs provoquent un courant contraire ascendant. Du fait de l’échange avec l’air froid et de l’évaporation partielle, la température de l’eau diminue. L’eau refroidie est recueillie dans un bac et repart vers le condenseur.
En théorie, si l’échange était parfait (surface d’échange infinie), l’eau refroidie atteindrait la température humide de l’air. Par exemple, si l’air extérieur est de 30°C, 40 % HR, sa température humide est de 20°C 100 % HR. Mais l’eau n’atteindra pas cette valeur. En pratique, elle sera de 3 à 8°C au-dessus de cette valeur, suivant le dimensionnement du bureau d’études (pour atteindre 3°C, il faut dimensionner largement la tour). Cette valeur est appelée l' »approche ».

Comparons les systèmes en fixant des valeurs moyennes : une température d’air de 30°C 40 % HR, une « approche » de 5°C, un pincement des échangeurs de 6°C et un échauffement de la température de l’eau de 7°C.

Entrée condens. Sortie condens. T°condensat.
fluide frig.
Condens. à air normal T° air sec = 30° T° air = 30° T° air = 37° 43°
avec évaporation d’eau T° air sec = 30° T° air = 25° T° air = 32° 38°
Condens. à eau tour ouverte T° air humide = 20° T° eau cond = 25° T° eau cond = 32° 38°
tour fermée T° eau pulvér. = 25° T° eau cond = 31° T° eau cond = 38° 44°
dry-cooler T° air séche = 30° T° eau cond = 36° T° eau cond = 43° 49°

Cette approche simplifiée situe l’ordre de grandeur de la température de condensation, et donc l’impact sur la consommation du compresseur.


Les condenseurs à air

L’évacuation de la chaleur du circuit frigorifique est assurée au travers d’un échangeur direct fluide frigorigène/air.

Schéma principe condenseurs à air.

Le gaz chaud du réfrigérant cède sa chaleur à l’air traversant le condenseur et passe à l’état liquide. Le débit et la température du flux d’air déterminent la puissance du condenseur.

La vitesse moyenne de passage de l’air est de 2 à 4 m/s. Ordre de grandeur du coefficient d’échange d’un condenseur à air : 20 à 30 [W/m².K]

Deux types de ventilateur sont utilisés :

  

Ventilateur axial et ventilateur centrifuge.


Les condenseurs à eau

On parle de condenseur à « refroidissement indirect », puisque cette fois, le gaz chaud du réfrigérant cède sa chaleur à de l’eau circulant dans le condenseur.

Schéma principe condenseurs à eau.

Ordre de grandeur du coefficient d’échange d’un condenseur à eau : 700 à 1 100 [W/m².K]

Les performances du condenseur seront fonction de :

  • la différence de température entre le réfrigérant et l’eau,
  • la vitesse de l’eau (le débit),
  • le coefficient d’encrassement,
  • la nature du fluide frigorigène.

Pour le refroidissement, on peut utiliser l’eau du réseau (eau potable), mais cette solution n’est pas adéquate vu la consommation exorbitante d’eau qu’elle entraîne !

On peut utiliser également l’eau de nappes phréatiques, de lac ou de rivière (demander l’autorisation). Les eaux contiennent alors plus ou moins d’impuretés qui se déposent sur les tubes. Ces dépôts peuvent réduire considérablement le coefficient de transfert de chaleur. À défaut de la mise en place d’un système de nettoyage automatique, il faut surdimensionner l’échangeur de sorte que les performances de l’installation restent suffisantes.

Plus classiquement, il s’agira d’un circuit d’eau, ouvert ou fermé. C’est le cas le plus fréquent. Il entraîne l’utilisation d’une tour de refroidissement.


Les aéro-refroidisseur (ou dry cooler)

L’aérorefroidisseur est un simple échangeur eau/air : un ou plusieurs ventilateurs forcent le passage de l’air extérieur pour accélérer le refroidissement.

Illustration aéro-refroidisseur.

Cette batterie d’échange convient en toute saison, puisqu’ en ajoutant un antigel (type glycol), elle est insensible au gel.

Elle présente donc l’intérêt de refroidir le condenseur de la machine frigorifique … à distance ! Le groupe frigorifique peut être en cave et l’aéro-refroidisseur en toiture : la boucle d’eau organisera le transfert.

Un exemple simple est donné par une armoire de climatisation d’un local informatique :

Elle n’est pas aussi performante qu’une tour de refroidissement avec pulvérisation d’eau puisque la température de refroidissement est limitée à la température de l’air extérieur…

Boucle d’eau

L’eau de refroidissement tourne en circuit fermé entre le condenseur et l’aéro-refroidisseur. On doit dès lors prévoir un vase d’expansion et une soupape de sûreté sur la boucle. Des purgeurs seront placés aux points hauts de la boucle.

Un gros avantage (surtout par rapport aux tours ouvertes) est qu’il n’y a pas de risque d’entartrage ou de corrosion du circuit puisqu’il s’agit toujours de la même eau qui circule (« eau morte »).

Régulation

Généralement, un thermostat placé sur la boucle d’eau actionne le ou les ventilateurs en fonction de la température.
C’est le point faible de l’aérorefroidisseur : la température de l’eau de refroidissement est élevée

  • D’une part, parce qu’il y a un double échange : fluide/eau glycolée – eau glycolée/air, et donc un Delta T° supplémentaire.
  • D’autre part, parce que l’air de refroidissement peut être élevé en été.

Or, si l’air de refroidissement est chaud, l’eau sera encore plus chaude et, dans le condenseur, la pression de condensation sera très élevée. Le compresseur verra dès lors sa consommation énergétique augmenter.

Proportionnellement, la tour de refroidissement aura un meilleur rendement… mais une sensibilité à la corrosion plus forte…

Ce système doit donc être limité aux installations de moyenne puissance.


Les tours de refroidissement

Dans une tour de refroidissement, on va profiter de l’effet de refroidissement créé par la vaporisation de l’eau. En effet, pour passer à l’état vapeur, l’eau a besoin d’énergie. Et cette énergie, elle la prend sur elle-même. Une eau qui s’évapore … se refroidit.

Tour ouverte

On parle de tour « ouverte » si c’est l’eau de refroidissement elle-même, venant du condenseur, qui est pulvérisée. C’est le système le plus efficace qui entraîne le refroidissement le plus élevé. Mais le contact entre l’eau et l’atmosphère est source de corrosion (oxygénation de l’eau, introduction de poussières et de grains de sable qui risquent de se déposer dans le condenseur, risque de gel accru,…).

Un exemple simple est donné ci-dessous pour une armoire de climatisation d’un local informatique :

Schéma principe armoire de climatisation d'un local informatique.

À noter qu’il existe des tours ouvertes sans ventilateurs. La pulvérisation d’eau est réalisée avec une pression assez élevée et cette pulsion d’eau entraîne l’air avec elle par effet induit (effet Venturi). L’avantage premier est la diminution des bruits et des vibrations.

Tour fermée

On parle de tour « fermée » si l’eau du circuit de refroidissement circule dans un échangeur fermé sur lequel de l’air extérieur est pulsé, et de l’eau est pulvérisée. Il s’agit soit d’une tour …?

L’évaporation partielle de l’eau entraîne un refroidissement plus faible que dans le cas de la tour ouverte, mais les risques de corrosion sont annulés.

Voici l’exemple adapté pour une armoire de climatisation :

Schéma principe tour fermée.

La consommation d’eau se limite à la quantité d’eau évaporée (présence d’une alimentation par flotteur), plus un faible volume lors de purges pour éliminer les impuretés qui se sont concentrées dans le fond du bac.

 

Lampes au mercure haute pression

Lampes au mercure haute pression


Comment fonctionne une lampe au mercure haute pression ?

La lampe au mercure haute pression fait partie des lampes à décharge. Son principe de fonctionnement est donc identique.

Particularités

Schéma principe lampe au mercure haute pression.

L’ampoule contient de la vapeur de mercure et de l’argon.

La lumière est émise exclusivement sous forme de rayons ultraviolets invisibles rendus visibles par les poudres fluorescentes placées sur la face interne de l’ampoule.

La lampe à mercure haute pression dispose d’électrodes auxiliaires servant de démarreur interne. Pour bien fonctionner, elle ne doit donc être équipée que d’un ballast et d’un condensateur.


Caractéristiques générales

La lampe à vapeur de mercure haute pression est aujourd’hui démodée pour plusieurs raisons : son efficacité lumineuse est faible, de même que son indice de rendu des couleurs. De plus, sa durée de vie n’est pas très élevée et elle est défavorable à l’environnement.

Il existe également une lampe au mercure haute pression donnant une lumière plus chaude (3 400 – 3 500 K). Son efficacité lumineuse est légèrement plus élevée.

Cette lampe a été surtout utilisée en éclairage public. Actuellement, elle n’est plus utilisée que pour le remplacement des lampes existantes. À noter qu’il existe des lampes à vapeur de sodium haute pression compatibles avec certains équipements de lampes à vapeur de mercure haute pression et directement interchangeables.

Dans la plupart des cas, les lampes à vapeur de mercure sont couplées avec des ballasts électromagnétiques.

Données

Pour connaitre les caractéristiques des lampes au mercure haute pression.

Données

Pour consulter un récapitulatif des caractéristiques des différents types de lampe.

Armoires de climatisation

Armoires de climatisationArmoires de climatisation


Principe

Une armoire de climatisation constitue en quelque sorte un « caisson de traitement d’air vertical » surtout lorsqu’elles constituent la seule demande du bâtiment.

Elle s’installe généralement directement dans la pièce à climatiser. Typiquement, c’est la solution adoptée pour climatiser une salle informatique.

En pratique, cette armoire métallique verticale peut regrouper tous les éléments nécessaires au traitement

  • un filtre,
  • une batterie froide,
  • une batterie chaude (électrique ou à eau),
  • un humidificateur,
  • un ventilateur centrifuge.

On parle de climatiseur « autonome » parce que la batterie froide est généralement parcourue directement par le fluide frigorifique : la machine frigorifique est intégrée dans l’armoire et la batterie froide en constitue l’évaporateur. On parle alors de fonctionnement en « détente directe ».

Schéma de principe climatiseur "autonome".

On notera que la présence du compresseur dans le local impose une isolation acoustique sérieuse des paroi de l’armoire !

Mais il existe aussi des armoires de climatisation dont la batterie froide est raccordée à la boucle d’eau glacée du bâtiment.

Dans la plupart des cas, l’air repris est aspiré en partie inférieure et pulsé en partie supérieure de l’armoire, éventuellement via un réseau de gainage restreint.

Mais on peut imaginer une solution inverse où l’air est repris en partie supérieure puis distribué en partie inférieure via un faux plancher : c’est une belle solution dans les locaux informatiques où le passage de nombreux câbles impose de toute façon l’installation d’un faux plancher sur vérins. La distribution d’air froid autour des ordinateurs est alors idéale. On peut par exemple prévoir des dalles pleines de 60 x 60 pour porter le matériel et des dalles perforées pour servir de bouches de distribution. Une modification d’emplacement des ordinateurs ? Les dalles 60 x 60 sont interverties, sans problèmes puisque tout le faux plancher est mis sous pression et fait office de plénum de distribution !

Schéma de principe climatiseur "autonome"- 02.


Aspects technologiques

Photo armoires de climatisation.

Le chauffage de l’air

Suivant l’importance des gains gratuits dans le local, on peut envisager

  • soit de ne pas installer d’élément chauffant,
  • soit de placer une résistance électrique d’appoint, (investissement faible mais coût d’exploitation élevé),
  • soit d’insérer une batterie de chauffe alimentée par le réseau de chauffage du bâtiment,
  • soit enfin de sélectionner une machine frigorifique réversible, fonctionnant en pompe à chaleur en hiver.

L’humidification de l’air

Si l’humidité de l’air de l’ambiance doit être contrôlée, un humidificateur peut être incorporé à l’armoire de climatisation, généralement via un humidificateur à vapeur.

Cet humidificateur est parfois inséré au départ des gaines, si celles-ci sont existantes dans le prolongement de l’armoire.

Mais les armoires de climatisation se distinguent essentiellement au niveau du condenseur :

Le condenseur à air intégré à l’armoire

La paroi au dos de l’armoire est percée afin que le rejet de chaleur puisse se faire directement vers l’extérieur (attention au pont acoustique ainsi créé !). Il est également possible d’amener et d’évacuer l’air de refroidissement par gaine.

Le condenseur à air séparé

Le fluide frigorifique est directement refroidi dans le condenseur placé à l’extérieur (sur une terrasse, sur le sol,…). L’éloignement est limité afin de ne pas amplifier les pertes de charge sur le circuit du fluide frigorifique. La surélévation du condenseur doit être limitée pour pouvoir gérer le retour de l’huile vers le compresseur.

Schéma de principe condenseur à air séparé.

Le condenseur à eau recyclée

Cette fois, le condenseur est refroidi par de l’eau glycolée, eau qui est elle-même refroidie à l’extérieur.

L’installation est très souple : plus de contraintes liées à la distance entre armoire et refroidisseur, ou à la différence de niveaux. Il est même possible de raccorder plusieurs armoires sur la même boucle de refroidissement.

Mieux, il est facile à présent de récupérer cette chaleur pour préchauffer de l’air de ventilation, de l’eau chaude sanitaire,…

Pour refroidir l’eau de refroidissement, on rencontre trois types d’échangeur avec l’air extérieur :

L’aéro-refroidisseur : l’eau est refroidie dans un échangeur à air; un ou plusieurs ventilateurs forcent le passage de l’air extérieur pour accélérer le refroidissement. Un mode de régulation très simple consiste à actionner le(s) ventilateur(s) en fonction de la température de la boucle d’eau. Seul inconvénient : la performance frigorifique de l’armoire de climatisation ne sera pas excellente. En effet, la température de la boucle d’eau va monter avec la température extérieure. En plein été, le condenseur sera mal refroidi, la pression en sortie de compresseur sera plus élevée, le rendement de la machine frigorifique va se dégrader… Et ceci est renforcé par la présence du double échangeur (fluide/eau glycolée – eau glycolée/air). L’usage de l’aérorefroidisseur sera dès lors limité à des moyennes puissances.

La tour de refroidissement ouverte : cette fois, l’eau de refroidissement du condenseur est pulvérisée à contre-courant du débit d’air extérieur pulsé par un ventilateur. L’échange est particulièrement efficace et, surtout, il entraîne l’évaporation d’une partie de l’eau pulvérisée. Or, cette vaporisation entraîne un fort refroidissement de l’eau. A tel point que l’eau peut descendre sous la température de l’air extérieur. Un tel refroidissement permet de limiter la pression du condenseur et donc de diminuer le travail du compresseur. Si c’est la meilleure solution énergétique, elle pose par contre assez bien de problèmes au service de maintenance (corrosion, encrassement, gel,…). C’est la conséquence d’un circuit ouvert aux conditions atmosphériques… Pour plus de détails, on consultera le choix de la tour de refroidissement ouverte.

La tour de refroidissement fermée : un compromis à la belge ! Les avantages de l’évaporation de l’eau … sans les inconvénients du circuit ouvert (corrosion). En pratique, le circuit de l’eau de refroidissement reste fermé, l’eau glycolée n’est plus en contact avec l’air extérieur, mais l’échangeur est aspergé par de l’eau qui, elle, « tourne » de façon totalement indépendante du circuit de refroidissement. Bien sûr, la température de l’eau de refroidissement est plus élevée que dans la tour ouverte.

Le condenseur à eau perdue

Par « eau perdue », on entend :

  • Soit de l’eau de ville qui serait évacuée vers l’égout après usage : solution à proscrire vu le coût du m³ d’eau… !
  • Soit de l’eau issue d’une source naturelle (rivière, lac, puits,…) : cette solution est économique à l’exploitation, mais les coûts d’investissement sont très variables d’une situation à l’autre… L’efficacité énergétique de l’installation frigorifique est excellente puisque la température de condensation sera 8…10°C plus chaude que la température de l’eau puisée. Reste à vérifier que le captage (et/ou le réchauffage de l’eau) est autorisé par la réglementation locale ou régionale… (les choses évoluent beaucoup dans ce domaine, il est donc prudent de s’informer directement auprès des personnes concernées).

Régulation

La régulation en température du local peut se faire via un simple régulateur thermostatique. Imaginons le démarrage au matin en mi-saison, la résistance électrique est enclenchée. Puis la présence du personnel, des équipements permet à la température de rester en « zone neutre » sans intervention du climatiseur. En début d’après-midi, des apports solaires importants entraînent une surchauffe et l’enclenchement du groupe frigorifique.

La présence d’une cascade sur l’enclenchement des résistances chauffantes, la régulation progressive via par un variateur de puissance (résistance électrique) ou par une vanne (batterie à eau chaude) entraînera un meilleur confort, une stratification de températures plus faible et donc une consommation moindre. De même une régulation à vitesse variable sur le motocompresseur sera bénéfique.

  

Un principe de régulation similaire est possible pour contrôler le niveau d’humidité.

La déshumidification est ici réalisée via la condensation de la vapeur d’eau ambiante sur l’évaporateur de l’armoire. Le compresseur est alors mis en route pour déshumidifier.

Domaines d’application de la pompe à chaleur

Domaines d'application de la pompe à chaleur


Le chauffage des locaux

Un nouvel essor dans le secteur domestique

En construction domestique neuve (avec une bonne isolation), le chauffage par pompe à chaleur (PAC) connaît un regain d’intérêt.

Les pompes à chaleur Air/Eau domestiques (puissance calorifique nominale entre 1 et 19 kW environ) sont proposées par différents fournisseurs et sont de plus en plus éprouvées. En Europe, le marché des PAC suit une croissance continuelle. Les régions phares sont la Suède (333 000 unités en 2000), l’Allemagne (63 000 unités), la Suisse (61 000 unités) et l’Autriche (33 000 unités). La part de marché de la PAC en construction neuve atteint 95 % en Suède. L’origine hydraulique de l’électricité n’y est sans doute pas pour rien…

Statistiques du marché des pompes à chaleur tous modèles confondus entre 2005 et 2009 dans quelques pays européens.

Source : EHPA Outlook 2009,  Heat Pump Statistics.

La petite PAC de chauffage domestique est disponible de série. Par exemple, pour une maison familiale très isolée dont les besoins thermiques maximums se montent à 8 kW, une PAC compacte de 4 kW de puissance thermique (1.3 kW au compresseur) fonctionnant en mode bivalent peut couvrir près de 70 % des besoins de chauffage annuel.

Ce genre d’appareil se branche sur les réseaux de distribution de chaleur comme les chaudières classiques. Le but des fournisseurs est d’offrir aux acheteurs et aux installateurs une pompe à chaleur qui soit pour eux aussi simple d’utilisation que n’importe quel autre générateur de chaleur.

Fonctionnant en général avec l’air extérieur comme source froide, ces modèles sont universels et demandent des frais d’installation relativement limités (conduites d’amenée d’air,…). Ils peuvent donc être adaptés à des réseaux de distribution existants lors du remplacement d’une chaudière.

Par rapport à un chauffage traditionnel, le bilan en énergie primaire est relativement neutre.

Deux éléments peuvent jouer en faveur de la pompe à chaleur : un environnement particulièrement propice (source) ou un domaine d’application pour lequel elle serait particulièrement performante :

  • Il est clair que s’il y a présence d’une source froide de qualité (nappe phréatique, rivière, grande étendue ensoleillée), cette technique devrait tout particulièrement inciter les concepteurs et maîtres d’ouvrages à réaliser des études de rentabilité.
  • L’investissement élevé se justifie parfois parce que les PAC sont des outils capables de faire du chaud et du froid. Même si c’est un constat d’échec pour la conception architecturale du bâtiment domestique qui dans nos régions doit pouvoir se passer de climatisation, c’est effectivement un moyen pour corriger le défaut et combattre les surchauffes.

Les lieux d’hébergement collectifs

La solution type, rencontrée par exemple pour les immeubles d’appartements jusqu’à une cinquantaine de logements, est la pompe à chaleur Air/Eau, avec appoint électrique centralisé et distribution par chauffage par le sol. Bien que la pompe à chaleur puisse fonctionner avec les niveaux d’isolation courants, un renforcement de cette isolation est conseillé pour limiter la température de l’eau de chauffage et améliorer ainsi les performances de l’installation. Cette PAC assure une température de base avec des charges de chauffage faibles et laisse à chaque utilisateur le soin de régler sa température de confort via des chauffages d’appoint décentralisés (convecteurs dans les appartements) de faible puissance.

On détecte 3 points faibles à cette installation

  • Le chauffage par le sol de nuit, qui ne permet pas une régulation valable (il est possible que le soleil apparaisse le lendemain et que l’accumulation de chaleur de nuit consentie était inutile),
  • Le complément électrique centralisé qui se fait avec un COP de 1 et qui donc détruit partiellement la performance de la PAC,
  • Les compléments électriques décentralisés qui sont fournis au courant de jour, dont au prix fort.

La pompe à chaleur, pour dégager une économie, devra couvrir plus de la moitié de l’écart de température de base (écart entre la température de confort et la température de dimensionnement). Autrement dit, pour une température intérieure désirée de 20 °C et une température de base de – 10 °C en Belgique, la PAC doit pouvoir fournir seule la chaleur nécessaire jusqu’à une température extérieure de 5 °C pour être rentable.

Il faut éviter de surdimensionner la PAC pour ne pas multiplier les courts cycles et faire face à une usure accélérée du matériel.

Les PAC Air/Eau avec chauffage par le sol peuvent être réversibles et assurer un rafraîchissement (gain de 3 à 5 K). Il ne s’agit pas d’un système de climatisation à proprement parler, mais d’un apport de confort. La température de l’eau dans les planchers rafraîchissants ne descend pas sous 18 °C (température au sol de 20 à 22 °C), même si la charge à absorber en demanderait davantage. Le seul surcoût d’investissement est un système de régulation un peu plus complexe.

A nouveau le choix de la source de chaleur est très important. Ainsi, lorsqu’une nappe phréatique est présente, l’avantage sera donné aux PAC Eau/Eau qui ont une meilleure performance et sont moins limitées en puissance. Les ensembles de logements pouvant assumer des investissements financiers plus importants que les particuliers, ils peuvent également envisager des PAC Sol/Eau avec forage de grande profondeur pour obtenir une plus grande puissance.


Chauffage et refroidissement d’un ou plusieurs locaux par système split

L’installation d’un système split consiste généralement en une simple pompe à chaleur Air/Air,

  • dont l’évaporateur est placé à l’extérieur,
  • et dont le condenseur est soit dans un local technique où il est relié à un réseau de distribution, soit directement dans le local à chauffer, par exemple dans un ventilo-convecteur.

Structure type d’un système split.

Le transfert de chaleur entre l’intérieur et l’extérieur se fait par le fluide frigorigène qui traverse la peau du bâtiment dans des canalisations calorifugées.

Exemple de produit : Un fournisseur offre une gamme d’installations dont la puissance va de 1 à 8 kW. La distance autorisée entre le condenseur et l’évaporateur est de 15-20 mètres avec des dénivellations d’une dizaine de mètres. Les prix vont de 1 600 à 4 000 €.

Les systèmes split installés directement dans les locaux ont l’avantage de la souplesse d’installation : un simple réseau bitube est suffisant pour le transport du fluide frigorigène, on évite les intermédiaires puisque la PAC chauffe directement l’air du local, il ne faut pas d’accumulateur ni de régulation complexe d’un réseau hydraulique, … en contrepartie, ils présentent un plus grand risque de fuite de fluide frigorigène.

Réversible, la PAC peut aussi constituer une source de rafraîchissement pour l’ambiance.

Lorsque l’on multiplie le nombre d’échangeurs de chaleur, on parle de système multi-split. Les différents échangeurs intérieurs, par exemple un par local, sont alors tous reliés à un (ou plusieurs) échangeurs de chaleur extérieur. Différentes « boucles » sont donc « juxtaposées » avec comme seule interconnexion la ou les unités extérieures.

Un condenseur commun et plusieurs unités intérieures = multi-split.

Exemple de produit multi-split :

Un fournisseur propose une gamme standard d’installations multi-split complètes dont l’unité extérieure a une puissance frigorifique maximale allant de 1 à 11,5 kW et une puissance calorifique maximale de 0,9 à 17,2 kW, pour des débits d’air d’environ 2 100 m³/h. La longueur maximale de tuyauterie autorisée va de 35 à 70 mètres au total selon l’unité extérieure choisie dans la gamme. Le branchement de plus de 4 unités intérieures par unité extérieure n’est pas possible. Les unités intérieures peuvent être murales, en consoles, gainables ou en cassette 2 ou 4 voies. Leur puissance frigorifique varie entre 1 et 4,5 kW et leur puissance calorifique entre 1,1 et 6,4 kW. Chaque unité intérieure accepte une longueur de tuyauterie de 25 m. Le prix des groupes de condensation (unité extérieure) est entre 2 285 et 4 150 €, celui des unités intérieures de 585 à 2 235 € pièce.

Climatisation

Pour plus d’informations sur le choix des systèmes splits.

Chauffage et refroidissement des locaux par système à Débit de Réfrigérant Variable

Parmi les systèmes multi-split, un système permet une économie d’énergie en réalisant le transfert de chaleur entre les zones aperditives et déperditives d’un même bâtiment : il s’agit des installations à « Débit de Réfrigérant Variable (DRV) ».

Illustration installations à "Débit de Réfrigérant Variable (DRV)".

Attention : tous les systèmes DRV ne disposent pas de cette possibilité. Il faut que chaque unité intérieure puisse travailler aussi bien en froid (= évaporateur) qu’en chaud (= condenseur) et que le système organise le transfert de l’un vers l’autre. Cette version de DRV est d’ailleurs 40 % plus chère que la version qui ne peut faire que du chaud ou que du froid, alternativement.

Cette variante, dite « à récupération d’énergie », est particulièrement intéressante si l’on prévoit des apports internes élevés durant l’hiver : salle informatique, locaux intérieurs, … La chaleur extraite pourra être restituée vers les locaux demandeurs en façade. Elle peut être intéressante également en mi-saison (façades d’orientation différentes).

Ce potentiel augmente également si, au lieu de prendre une structure classique rectangulaire (bureaux en façade et couloir central), une structure carrée avec beaucoup de locaux internes est décidée, ou si des étages enterrés en sous-sol sont programmés.

Climatisation 

Pour plus d’informations sur le choix des systèmes à DRV.

Chauffage et refroidissement des locaux par ventilo-convecteurs réversibles 2 tubes/2 fils

Schéma de principe ventilo-convecteurs réversibles 2 tubes/2 fils.

Une pompe à chaleur Air/Eau réversible, souvent placée en toiture, alimente en chaud ou en froid le circuit hydraulique du bâtiment, jouant le rôle de chauffage central et de groupe de froid. Le circuit de distribution est constitué de 2 canalisations calorifugées véhiculant l’eau glacée et l’eau chaude. Des ventilo-convecteurs réversibles 2 tubes/ 2 fils émettent l’action calorifique vers l’air des locaux, en apportant si nécessaire un appoint de chaleur électrique direct lorsque les conditions de fonctionnement des locaux sont trop différentes. L’air neuf est apporté et traité par un réseau indépendant.

La régulation de la PAC et le « change over » (basculement du mode chaud au mode froid) sont basés sur la température extérieure. Il est indispensable de prévoir une plage neutre importante entre les températures de basculement pour éviter des alternances trop fréquentes. En effet, le basculement génère une destruction d’énergie importante : l’ensemble de l’eau contenue dans le circuit hydraulique passe d’eau glacée (8 °C) à eau de chauffage (35 °C) ou l’inverse. Idéalement, il y a deux basculements par jour en mi-saison : de chaud en froid dans la journée, et de froid en chaud la nuit.

Avantages

  • Économie d’investissement puisque d’une part il s’agit d’un réseau 2 tubes et pas 4, et d’autre part une seule machine fournit l’eau chaude et l’eau glacée au départ d’une seule source d’énergie, ce qui simplifie l’installation.
  • Souplesse du système. La PAC peut être remplacée par une chaudière classique et une machine frigorifique sans apporter de modifications importantes au réseau de distribution. L’inverse est tout aussi vrai et cette solution est donc à envisager lors de la rénovation des systèmes de traitement d’air par ventilo-convecteurs.
  • Les ventilo-convecteurs 2 tubes/ 2 fils permettent une régulation adaptée à chaque local. Il s’agit donc d’une souplesse supplémentaire par rapport aux appoints centralisés.

Désavantages

  • L’utilisation des résistances électriques d’appoint des ventilo-convecteurs se fait au tarif de jour est donc onéreuse. Une bonne régulation de la température de l’eau dès la sortie de la PAC est très importante pour réduire ces coûts. Pour des raisons de confort, il est d’ailleurs plus fréquent, en Belgique, d’installer des réseaux 4 tubes. Mais dans ce cas, le fonctionnement ne peut se faire avec une seule machine réversible.
  • L’installation ne fournit pas d’air neuf. Il faut donc l’accompagner par une centrale de traitement d’air et un réseau de distribution pour l’alimentation en air hygiénique. La centrale de traitement d’air peut disposer d’un récupérateur d’énergie sur l’air extrait et être alimentée en chaleur par la PAC.

Généralement, les systèmes réversibles amènent à un surdimensionnement de la puissance de chauffage pour pouvoir assurer la charge frigorifique. Or, il est intéressant d’économiser l’énergie électrique durant les périodes de chauffe (tarifs pleins). Une économie possible consiste à détourner le circuit de retour des ventilo-convecteurs vers un échangeur à plaque afin de préchauffer l’eau chaude sanitaire. Ce détour limite le surdimensionnement et permet une économie de près de 50 % sur la production d’ECS (campagne de mesure réalisée en France dans l’hôtellerie).


Chauffage et refroidissement des locaux par pompes à chaleur sur boucle d’eau

Description du principe

Schéma principe pompes à chaleur sur boucle d'eau.

La technologie des PAC sur boucle d’eau s’établit autour des trois composantes du système :

  • les PAC ou climatiseurs réversibles (Eau/Air) assurent le chauffage ou le refroidissement des locaux suivant les besoins thermiques de ceux-ci,
  • la boucle d’eau, circuit d’eau fermé raccordé aux climatiseurs réversibles et aux échangeurs de chaleur, assure la circulation d’énergie thermique dans le bâtiment,
  • une chaudière et une tour de refroidissement assurent le maintien en température de la boucle d’eau en apportant ou en évacuant les calories suivant le bilan thermique global du bâtiment.

La boucle d’eau assure ainsi le transport d’énergie entre l’ensemble des locaux et le transfert de chaleur des zones aperditives du bâtiment (zones internes, salles de réunion, locaux informatiques, locaux sur façade ensoleillée) vers les zones déperditives (locaux périphériques, locaux sur façades à l’ombre).

Elle permet donc d’effectuer en permanence le calcul simultané des besoins thermiques globaux du bâtiment et, en contrôlant sa température, de puiser ou de rejeter, sur l’extérieur, l’énergie nécessaire à l’équilibre thermique de l’immeuble.

Consommation

Comme tout système avec échangeur direct (l’air du local passe directement dans l’évaporateur), la très basse température de l’échangeur génère un supplément de consommation non négligeable lié à la déshumidification de l’air ambiant (à ce titre, le ventilo-convecteur dont l’échangeur est dimensionné sur base d’un régime 12 °C – 17 °C est nettement plus performant).

L’évacuation des condensats est d’ailleurs un point délicat. Si elle ne peut être gravitaire, elle est confiée à une pompe de relevage intégrée dans l’appareil. Généralement, les pompes prévues par le constructeur sont moins bruyantes que celles ajoutées sur place par l’installateur. Autant donc le prévoir dès la sélection de la machine.

Régulation

Au niveau des pompes à chaleur, une zone neutre de 2 à 3 °C doit être prévue dans la consigne entre chauffage et refroidissement.

Un commutateur manuel peut permettre à l’utilisateur de sélectionner la vitesse de rotation du ventilateur (et donc le niveau de bruit qu’il accepte de subir !)

Mais c’est au niveau de la boucle que la régulation doit être la mieux étudiée pour optimaliser la performance énergétique. Plusieurs scénarii sont possibles. Par exemple, on peut laisser flotter la température entre 18 et 32 °C (autrement dit, la chaudière s’enclenche sous les 18 °C et la tour s’enclenche au-dessus des 32 °C). La récupération de chaleur entre locaux demande d’ailleurs un large différentiel, mais il ne faut pas pour autant pénaliser le COP des machines ! En plein hiver et en plein été, il faudra étudier quelle est la température qui optimalise au mieux l’ensemble.

Ainsi, si on diminue l’écart entre ces 2 seuils d’enclenchement, le COP des pompes à chaleur sera amélioré, mais la consommation énergétique au niveau central sera accrue.

Exemple.

Dans la galerie commerciale, il est possible que les locaux doivent être réchauffés le matin (relance après la nuit) et refroidis l’après-midi suite à l’éclairage et à l’occupation. Idéalement, c’est alors l’inertie de la boucle qui devrait jouer, inertie renforcée par un ballon de stockage placé en série sur la boucle.

Durant l’après-midi, les machines frigorifiques chargent la boucle et son stockage. Le lendemain, en fin de nuit (pour profiter du tarif de nuit plus avantageux), les locaux sont remis en température avant l’arrivée des occupants… et le stockage est déchargé, sans consommation de la tour.

À noter : pour réduire l’encombrement du ballon de stockage, on peut envisager de le remplir avec des nodules eutectiques dont la température de solidification se situe dans la zone neutre de fonctionnement de la boucle.

Si un de nos lecteurs dispose d’une installation de ce type dans son bâtiment, nous serions heureux de participer à la mise au point de la régulation de ce système et de pouvoir en transcrire ici les résultats, en vue d’une prochaine version d’Énergie+ ! Notre adresse électronique est la suivante : energieplus@uclouvain.be.

Domaine d’application

D’une manière générale, ce système est adapté aux bâtiments dont on prévoit que les charges thermiques seront en opposition (façades d’orientation différentes). On pense tout particulièrement aux bâtiments ayant des salles aveugles avec fort taux d’éclairage, forte occupation, … et à la fois des locaux en façade Nord avec fortes déperditions (fort taux de vitrage).

Il permet une régulation individualisée. Il permet une sensibilisation de l’utilisateur final puisque la consommation propre des PAC installées dans ses locaux peut lui être facturée.

Mais il ne contrôle pas l’hygrométrie de l’air du local. La nuisance acoustique est parfois importante. Et l’utilisation d’énergie électrique aux heures pleines reste coûteuse.

De plus, aujourd’hui il entre en concurrence avec le système à « Débit de Réfrigérant Variable », (qui lui même dans une de ses variantes peut aussi comporter une boucle d’eau reliant les différentes unités extérieures).

Ce système est fréquemment utilisé dans les centres commerciaux. Chaque local est livré nu de tout équipement, sinon de la présence de la boucle et de raccordements en attente. Le commerçant investit dans une ou plusieurs machines réversibles et « pompe » le chaud ou le froid qu’il souhaite sur la boucle. On peut facilement mesurer la part individuelle de la consommation de chaque appareil dans le bilan total.

Étude de cas

Dans une galerie commerciale de Liège, un très gros circulateur à vitesse variable avait été mis sur la boucle d’eau. Sa régulation se faisait classiquement en fonction de la pression d’eau du réseau. Or les échangeurs des pompes à chaleur sont toujours alimentés à débit constant pour éviter le gel des évaporateurs. Donc l’eau tournait à grande vitesse et le Delta T° sur la boucle était seulement de 2 K, départ-retour.

Il a été imaginé de moduler la vitesse de rotation du circulateur en fonction du maintien d’un Delta T° de 6 K. Ainsi, si la demande augmente, le delta de T° augmente et la vitesse est adaptée. La température est maîtrisée et le gel est impossible.

Une chute drastique de la consommation électrique en a résulté.

Avantages du système

  • Régulation de température individualisée.
  • Conception simple, relativement facile à mettre en œuvre.
  • Système intéressant du point de vue énergétique en intersaison ou plus exactement lorsque les charges dans les différents locaux sont opposées et que la boucle est proche de l’équilibre thermique.
  • Les PAC sont relativement fiables à condition de respecter les débits d’air et d’eau.
  • Extension facile de l’installation.
  • Facilité d’installation, de démontage et de réemploi des PAC suivant l’occupation des locaux ou des réparations.
  • Sensibilisation de l’utilisateur final aux économies, car il supporte directement les frais électriques liés au fonctionnement des PAC installées dans ses locaux.
  • Réduction de la puissance de la production thermique centralisée.

Désavantages

  • Pas de contrôle de l’hygrométrie de l’air du local.
  • Problème de niveau sonore : puissance acoustique non négligeable, donc nécessité de traitement spécifique.
  • Besoin de raccordement des condensats vers l’égout.
  • Les économies sont relativement modestes. Les PAC consomment essentiellement de l’énergie électrique au qui ne peut être différée en heure creuse.
  • Le risque de panne ou d’intervention sur la boucle d’eau, sur les dispositifs centralisés, rend le système inquiétant pour les utilisateurs de climatisation critique (locaux informatiques, salles de fabrication…). Cette crainte conduit à séparer ces installations de l’installation principale ou à en dédoubler les équipements en cas de problèmes.

Choix des PAC réversibles

Ces PAC se présentent essentiellement sous trois formes :

  • Le modèle console en allège, installé contre les murs extérieurs, de préférence sous la fenêtre : il peut être carrossé ou bien intégré dans un habillage de façade ; il doit être installé dans le local à traiter et l’habillage de l’appareil doit faire l’objet d’un renforcement acoustique.
  • Le modèle plafonnier horizontal, installé généralement en faux plafond : il est conseillé d’installer la PAC à l’extérieur du local à traiter (circulation de bureau par exemple) et d’assurer le raccordement au diffuseur de soufflage par l’intermédiaire de gaines isolées thermiquement et phoniquement.
  • Le modèle vertical type armoire, installé dans un placard technique : un réseau de gaines de soufflage et éventuellement de reprise, assure la liaison entre la PAC et le local à traiter.

L’installation doit permettre de maintenir un accès aisé à l’appareil pour les opérations d’entretien. Les opérations de maintenance courantes consistent en nettoyage ou remplacement des filtres (opérations pouvant être effectuées par du personnel non qualifié).

Les opérations d’entretien, de réparation ou de remplacement de composant électrique (principalement le moteur du ventilateur de soufflage) sont possibles depuis les panneaux d’accès démontables.

En cas d’intervention sur le circuit frigorifique, il est recommandé de procéder à un échange standard de l’appareil et d’assurer la réparation en atelier.

La sélection doit être faite en fonction des besoins thermiques des locaux et de leur application. Il est souvent préférable de sélectionner un appareil d’une puissance légèrement inférieure aux besoins déterminés pour les conditions les plus défavorables; cela permet une meilleure adaptation de la puissance à la charge thermique moyenne à combattre et allonge les durées des cycles de fonctionnement de l’unité en évitant des inversions de cycle trop fréquentes.

Enfin, un réseau d’évacuation des condensats est à raccorder sur chaque appareil.
On sera attentif à la bonne isolation phonique du compresseur puisqu’il est ici situé dans le local !

Il existe des versions en apparent et des versions destinées à être insérées dans un habillage (en allège ou en faux plafond). S’il peut être placé dans un local technique attenant et relié au local par une gaine, l’installation sera nettement moins bruyante. La maintenance en sera également facilitée.

On veillera tout particulièrement à éviter la transmission des vibrations de l’appareil au bâtiment par l’usage de silentblocs ou de semelles antivibratiles. L’usage de raccordements flexibles est également favorable sur le plan acoustique et facilitera le démontage de l’appareil (prévoir des vannes d’isolement étanches).

Choix de la boucle d’eau

La boucle d’eau doit être un circuit d’eau fermé, préféré à un circuit d’eau ouvert en raison des problèmes d’embouage, d’entartrage et de corrosion. Ce circuit d’eau à température tempérée (15 °C à 35 °C environ) reçoit les composantes suivantes :

  • Les pompes de circulation prévues, l’une en fonctionnement normal, l’autre en secours, afin d’éviter tout risque de panne totale.
  • Une filtration de l’eau à réaliser au niveau des pompes de circulation et près des climatiseurs.
  • Un échangeur d’évacuation des calories, généralement du type échangeur à plaques, équipé d’un by-pass permettant les opérations de nettoyage, raccordé à un réseau d’eau de refroidissement.
  • Un réchauffeur d’eau équipé d’un by-pass.
  • Un réseau de distribution en tubes d’acier noir non calorifugé (sauf à l’extérieur); néanmoins la T°C modérée de l’eau permet l’utilisation de tuyauteries en PVC.
  • Des vannes d’isolement et d’équilibrage du réseau et, notamment, pour chaque raccordement à un climatiseur; ce raccordement sera réalisé en tuyauterie flexible facilitant l’installation, évitant les transmissions de vibrations et simplifiant les opérations de maintenance.
  • Des accessoires tels que vases d’expansion, vannes de vidange et systèmes de purge d’air (manuel et automatique), ainsi qu’un système d’appoint d’eau.

Choix de l’échangeur « froid »

L’échangeur froid doit permettre l’évacuation des calories excédentaires de la boucle d’eau. Différents systèmes sont utilisés :

  • Raccordés à la boucle d’eau par l’intermédiaire d’un échangeur à plaques, on trouve fréquemment des tours de refroidissement à circuit ouvert ou un réseau d’eau de pompage dans la nappe phréatique, dans la mer, une rivière, un lac,…
  • Raccordés directement à la boucle d’eau, on utilise des tours de refroidissement à circuit fermé ou des appareils appelés « dry-cooler ».

Le choix entre ces différents appareils s’établit en fonction de leur existence (eau de mer, nappe phréatique…), des critères dimensionnels (tours de refroidissement ouvertes ou fermées) et des contraintes acoustiques.

Il faut noter que l’utilisation de « dry-cooler » nécessite de relever la température de la boucle d’eau en été à 40 °C environ, ce qui oblige à l’emploi de PAC adaptées.

Choix de l’échangeur « chaud »

Il doit permettre d’apporter les calories nécessaires au maintien en température de la boucle d’eau. Les sources de chaleur pouvant être utilisées sont variées :

  • chaufferie alimentée au gaz ou au fuel
  • sous-station de chauffage urbain
  • PAC Air/Eau sur l’air extérieur

L’utilisation d’un échangeur de transfert d’énergie n’est pas forcément nécessaire lors de l’utilisation de chaufferies ou de sous-stations de chauffage urbain.

L’utilisation d’une nappe phréatique nécessite de descendre le niveau de T°C de la boucle d’eau, en hiver, à 12 °C environ, ce qui oblige à l’emploi de PAC adaptées et de calorifuger tout ou partie du réseau de distribution.

On trouvera dans le Tome 4 de la collection Climatisation et conditionnement d’air de J. Bouteloup différents schémas de montage des installations.


Le chauffage de l’eau chaude sanitaire

Ici encore, l’usage de la pompe à chaleur en remplacement des chauffe-eau électriques pour la préparation de l’ECS paraît logique, d’autant plus que le bilan de la pompe à chaleur en été est très performant.

Et cette fois, l’usage d’une installation électrique peut se justifier par l’arrêt possible de l’installation de chauffage du bâtiment. Mais la PAC aura bien du mal à fournir les 60° demandés dans le ballon d’eau chaude (température demandée depuis les mesures anti-légionnelles). Un préchauffage à 45 °C convient mieux à la PAC. Ceci sous-entend le placement d’un deuxième ballon en série pour rehausser la température à 60 °C.

Finalement, PAC + ballon de préchauffage : l’investissement paraîtra fort élevé par rapport à une simple résistance électrique…

Eau chaude sanitaire 

Pour plus d’informations sur le choix des PAC pour le chauffage de l’eau chaude sanitaire.

Les groupes de préparation d’air des bâtiments tertiaires

Du chaud et du froid par le même équipement

Une des applications les plus courantes de la PAC est l’alimentation en chaud et en froid des groupes de préparation d’air par des installations réversibles Air/Air. Ces installations sont très avantageuses puisqu’un seul appareil réversible assure deux fonctions pour un investissement initial raisonnable. La performance de la pompe à chaleur est élevée puisque les températures demandées sont faibles.

Concrètement, une pompe à chaleur est couplée à un caisson de traitement d’air classique, un des échangeurs de la PAC étant dans le caisson, l’autre étant à l’extérieur.

Exemple de modèle disponible sur le marché :

Modèle 1

Puissance frigorifique nominale

kW 13,5

Puissance calorifique nominale

kW 14,55

Débit d’air maximal

m³/h 2 400

Pression acoustique

dB(A) 65

Réfrigérant

R 22

Hauteur
Largeur
Longueur

mm
mm
mm
485
1 022
1 261

Poids net

Kg 88

Prix

5 085

Des puissances plus importantes sont bien sûr possibles et suffisantes pour remplacer les installations traditionnelles.

En été, la pompe à chaleur fonctionne comme unité de climatisation classique, la batterie placée dans le caisson constituant l’évaporateur et la batterie extérieure le condenseur. On peut atteindre un COP saisonnier de réfrigération de l’ordre de 3. Attention, le fonctionnement en détente directe entraîne des températures très basses dans l’échangeur et donc une déshumidification de l’air parfois exagérée par rapport aux besoins. En hiver, le cycle est inversé et la batterie interne devient condenseur tandis que l’échangeur externe joue le rôle d’évaporateur. Le COP varie alors selon la température externe, le dégivrage et le besoin d’appoint électrique. En intégrant ces divers auxiliaires, on atteint un COP saisonnier de l’ordre 2,5.

Une gestion délicate lors du dégivrage

Une difficulté reste : le chauffage de l’air est sans inertie (par opposition à un chauffage du sol ou d’un ballon d’eau). Donc, lors des périodes de dégivrage de l’évaporateur, de l’air froid risque d’être pulsé sur les occupants. L’arrêt de la pulsion de l’air étant difficile, une solution peut consister à travailler avec des pompes à chaleur modulaires. Quand un module dégivre, il s’arrête et un autre module produit.

Récupérer sur l’air extrait ?

Pour améliorer l’installation, il est possible de faire passer l’air extrait par l’échangeur extérieur lorsqu’il joue le rôle d’évaporateur. La récupération de chaleur à l’échangeur sera améliorée du fait de la grande différence de température entre l’air vicié et la basse température d’évaporation du fluide frigorigène en hiver. Cet apport de chaleur à l’évaporateur permettra de remonter la température d’évaporation et de diminuer le dégivrage, donc d’améliorer le COP.

La sélection de la puissance de la pompe à chaleur dépend du bilan thermique été et du bilan thermique hiver. Dans les secteurs commercial et tertiaire, les besoins frigorifiques en été sont souvent supérieurs aux besoins calorifiques en hiver. La pompe à chaleur sera alors surdimensionnée pour le régime de chauffe et le chauffage d’appoint ne sera alors que rarement nécessaire.


Récupération de chaleur sur l’air des locaux humides (piscines, buanderies, …)

Le traitement des locaux humides

Les bâtiments où une humidité importante est produite, et donc dans lesquels un contrôle de l’hygrométrie aura lieu (piscines, blanchisseries, cuisines industrielles,…), sont propices à l’usage d’une PAC : toute l’énergie de condensation de la vapeur d’eau peut être réutilisées sous forme de chaleur à haute température (chauffage de l’air, chauffage de l’eau chaude sanitaire). Il semble que la difficulté provienne de l’excédent des apports en mi-saison et en été.

Les piscines constituent une application particulière des PAC

Les piscines consomment beaucoup d’énergie pour diminuer le taux d’humidité et éviter ainsi les condensations sur les parois (particulièrement les surfaces vitrées). D’autre part des besoins de chaleur importants sont liés à la température élevée de l’air pour assurer pour le confort des baigneurs. Une humidité maximum de 75 % est à maintenir dans les piscines bien isolées avec pulsion d’air chaud au pied des vitrages. Mais l’humidité maximum peut descendre à 65 % si les parois sont mal isolées, et donc froides. À noter qu’avec les nouveaux vitrages isolants à basse émissivité, ce critère de pulsion au pied des vitrages n’est plus obligatoire.

Deux systèmes de PAC sont possibles pour ce type de bâtiment.

Pompe à chaleur en déshumidification

Le principe consiste à faire passer l’air à du local à déshumidifier sur l’évaporateur de la PAC. Il y est refroidi et surtout déshumidifié. L’air passe ensuite, mélangé à l’air frais hygiénique, sur le condenseur où il est réchauffé. Le condenseur de la PAC permet le chauffage de l’air ambiant, mais aussi le chauffage partiel de l’eau sanitaire (piscine, douches) particulièrement en mi-saison.

La solution est intéressante. Toutefois, au creux de l’hiver, la déshumidification ne fournit pas assez de chaleur et la pompe à chaleur ne suffit pas à elle seule à assurer tous les besoins énergétiques. Un chauffage d’appoint est donc nécessaire et le COP global est diminué.

Il faut se rendre compte que dans cette application précise le COP de la PAC n’est plus le rapport entre les kW thermiques utiles disponibles au condenseur et les kW absorbés par le compresseur. En fait,

Ceci est dû au fait que la chaleur sensible prélevée à l’air vicié par l’évaporateur lui est rendue par le condenseur et ne doit donc pas être considérée comme chaleur utile dans le calcul du COP. La source froide recherchée ici est la chaleur latente de condensation de l’humidité. On pompe l’énergie sur la déshumidification, pas sur le refroidissement de l’air. En fait, plus le besoin de déshumidification est important (forte activité dans la piscine, faible isolation,..), plus l’énergie puisée à l’évaporateur sera importante et plus le COP global de l’installation sera élevé.

Pour le calcul des performances de l’installation, il ne faut pas oublier de prendre en compte l’influence des heures de non-occupation, qui entraînent un taux d’évaporation plus faible et un COP instantané plus bas. On peut envisager un COP global de 2,5. (Valeur avancée par Paul H.Cobut, Pompes à chaleur, Atic – cours de perfectionnement).

Remarque : ce type d’installation est intéressante dès qu’il s’agit de climatiser un local où il y a une forte production de vapeur (bassins de toutes sortes, pressings, séchoirs à linge, certains locaux industriels ou laboratoires,…).

Pompe à chaleur – récupérateur

Dans ce cas, la PAC prélève une partie de l’énergie dans l’air extérieur et une autre partie dans l’air extrait. Contrairement au système précédent, l’évaporateur puisera l’énergie sur le refroidissement de l’air mélangé.

Un hygrostat raccordé à une sonde extérieure permet le dosage de l’air neuf. La PAC sera dimensionnée pour réaliser à elle seule l’effort thermique jusqu’à 0 °C environ. En dessous de cette température, un appoint sera nécessaire. Le COP de la PAC varie en fonction de la température de l’air extérieur.

Un COP global annuel de 3,3 est possible, ce qui représente un gain de 30 % par rapport à la PAC en déshumidification. Les déperditions plus importantes dues à l’introduction d’air neuf en plus grande quantité que dans l’autre système pour assurer la déshumidification représentent un accroissement des besoins calorifiques de moins de 10 % sur l’année (valeurs avancées par Paul H.Cobut, « Pompes à chaleur », Atic – cours de perfectionnement).

Il faut noter toutefois que ces résultats sont basés sur un taux d’hygrométrie tolérable assez élevé grâce à l’usage d’un vitrage très isolant. Dans le cas d’un vitrage moins isolant, le taux d’humidité acceptable est plus bas. Il faut donc un plus grand effort de déshumidification, ce qui favorise le premier type d’installation et la différence de performance entre les deux systèmes diminue.


Récupération de chaleur sur des rejets thermiques

Dans de nombreuses entreprises, une grande quantité d’énergie est gaspillée dans les extractions d’air ou de gaz. Très souvent, le volume extrait et la température du fluide sont quasi constants, ce qui simplifie l’installation. Une bâche tampon sera installée sur l’évaporateur en cas de variation importante de ces paramètres. Il en sera de même sur le condenseur en cas de charge thermique variable.

Ceci dépasse le cadre d’un bâtiment tertiaire. Et pourtant, des applications spécifiques sont parfois possibles avec une très bonne rentabilité. Parmi celles-ci, les supermarchés avec rayon surgelés conviennent particulièrement bien. Il est possible, par exemple, que la chaleur extraite des frigos soit utilisée pour chauffer le magasin ou le rideau d’air chaud à l’entrée du magasin (= condenseur de la PAC ainsi créée). En été, un clapet rejettera la chaleur vers l’extérieur.

Récupération de chaleur dans la grande distribution

Les supermarchés sont actuellement équipés d’un nombre de plus en plus important de meubles frigorifiques qui rendent parfois désagréable l’ambiance des allées empruntées par les clients.

Monsieur Marc Van Damme de la société alimentaire Delhaize a mis au point, en collaboration avec un fabricant espagnol de meubles frigorifiques verticaux, un système qui récupère la chaleur de l’unité de condensation du réfrigérateur du circuit frigorifique pour, en hiver, chauffer les allées des meubles frigorifiques.

Principe de fonctionnement

L’unité de condensation est installée sur le haut du meuble. La chaleur produite par le condenseur est récupérée et en hiver, celle-ci circule à l’arrière du meuble et est insufflée par la partie inférieure de celui-ci via une grille linéaire en inox. En été, cette chaleur est évacuée à l’extérieur du magasin par l’intermédiaire d’un conduit.

Conséquences

L’influence de cet équipement sur le chiffre d’affaires est évidente. En effet, une température douce aux rayons crémerie ou boucherie incite le client à faire ses achats dans une température confortable. Cette nouvelle technique permet également d’augmenter le confort pour l’ensemble du personnel qui doit régulièrement approvisionner ces linéaires. Cependant les gains réalisés au niveau des coûts d’exploitation amortissent facilement l’investissement.

Grâce à cette technique, l’air chaud à 40 °C ainsi récupéré et insufflé par le bas du meuble permet de maintenir dans l’allée une température de 23 °C. Ce qui est appréciable en hiver. Un système de sondes, installées en des points stratégiques du point de vente, permet un fonctionnement automatique du clapet été/hiver.

Un chauffage d’appoint est nécessaire en cas de températures extrêmes, pour le rideau d’air chaud à l’entrée du magasin, très « énergivore » et pour les zones éloignées non équipées de linéaires.

Découvrez cet exemple de PAC dans un supermarché de la région d’Anvers.

Échangeur à régénération

Échangeur à régénération


Principe

Le principe général des récupérateurs par accumulation ou encore appelé récupérateurs à régénération est de récupérer la chaleur contenue dans l’air extrait en faisant transiter cet air au travers d’un matériau accumulateur. Ce matériau accumulateur est ensuite soumis au flux d’air neuf et lui cède sa chaleur.

Le matériau accumulateur peut être imprégné ou non d’un produit hygroscopique de manière à permettre les échanges tant de chaleur sensible que d’humidité.

Il existe plusieurs types de récupérateur applicant cette technique.

Les roues

Photo roues.

Échangeur rotatif.

Un matériau accumulateur cylindrique en rotation lente (de 5 à 20 tours/min) est traversé dans une direction par l’air rejeté et dans l’autre par l’air neuf. Il se compose d’un média de transfert en aluminium, acier inoxydable ou matériau synthétique formant de très nombreux petits canaux.

Le matériau accumulateur est alternativement traversé par l’air chaud rejeté où il se charge d’énergie, et l’air neuf froid où il se décharge. En vue d’éviter le mélange d’air neuf et d’air rejeté, il est prévu un secteur de nettoyage dans lequel l’air rejeté est chassé par l’air neuf. Une légère contamination est toutefois inévitable. Dans certains cas, le transfert d’humidité est aussi à l’origine de transferts d’odeurs ou de germes et ceci limite l’emploi de tels échangeurs.

Schéma principe roues.

Une faible consommation d’énergie électrique est nécessaire pour entraîner la rotation de la roue. Les pertes de charge sont assez faibles.

Les écoulements aérauliques d’air neuf et d’air repris doivent être disposés de telle façon que la circulation de l’air s’effectue à contre-courant. Sinon, étant donné la très fine structure du matériau accumulateur, le rotor pourrait s’encrasser très rapidement, tout particulièrement sur la face avant.

Par contre, un écoulement des veines d’air à contre-courant permet ce qu’on appelle un effet d’auto-nettoyage car toute poussière qui se serait déposée sur la face avant de chacune des moitiés du rotor (donc en amont de l’échangeur tant sur l’air neuf que sur l’air repris) serait délogée dans l’autre moitié du rotor puisque l’air y circule dans l’autre sens. C’est pourquoi, en règle générale, on ne prévoit pas de filtre en amont d’un échangeur rotatif et ce tant sur l’air neuf que sur l’air repris.

Par ailleurs, il est à signaler que la fine structure du matériau accumulateur du rotor l’oblige à tourner sans arrêt (à la vitesse minimale) ou tout au moins par intermittence même en période où l’on ne souhaite pas de récupération de chaleur ou de froid et ce afin d’éviter tout risque de colmatage par encrassement des petits canaux du matériau accumulateur.

Les régénérateurs statiques à clapet unique

Dans un régénérateur statique à clapet, le trajet de l’air est modifié par un clapet pour que le medium accumulateur soit alternativement traversé par l’air neuf et l’air recyclé.

Cycle de fonctionnement d’un régénérateur statique à clapet unique.

Par rapport à la roue, ce système présente 2 inconvénients au moment du basculement du clapet :

  • Les ventilateurs de pulsion et d’extraction se retrouvent durant un cours instant en série, créant des perturbations aérauliques.
  • La contamination peut être importante. Elle sera fonction de la distance qui sépare le récupérateur de la grille extérieure d’extraction. En effet, au moment de basculement, l’entièreté de l’air vicié contenu dans ce tronçon va être emporté avec l’air neuf.

Les régénérateurs statiques à volets

Le principe de fonctionnement de ces régénérateurs est identique au régénérateur à clapet unique, à la différence près que le jeu des volets permet de limiter le risque de contamination. La quantité d’air vicié entraîné dans l’air neuf au basculement des volets ne correspond plus qu’au contenu du récupérateur, soit environ 3 % de l’air pulsé.

Cycle de basculement des volets : environ toutes les minutes.


Facteur influençant le rendement

Prenons un exemple de roue :

Soit un débit de 15 000 m³/h (4,2 m³/s) pour un modèle de roue type 240 et un rapport Volume Air neuf / Volume air vicié de 1, le graphique du constructeur fournit un rendement de 80 %. soit le diagramme suivant fourni par le constructeur :

Courbe de rendement.

Le 2ème graphe permet également de calculer la température de sortie air neuf (t2).

Pour une température d’air rejeté t= 22°C et d’air neuf t= – 10°C (t– t= 32°C), on trouve t= 17°C.

Dans le graphe ci-dessous on peut percevoir l’influence de la vitesse de rotation de la roue sur le rendement de l’échange.

Influence de la vitesse de rotation de la roue sur le rendement.

Les rendements d’échange sont généralement très élevés; ils sont essentiellement fonction de :

  • la nature du matériau accumulateur,
  • la vitesse de l’air et de la vitesse de rotation de la roue ou de basculement, ces deux dernières variables déterminant le temps de passage de l’air dans l’échangeur.

> l’efficacité thermique se situe généralement entre 75 – 95 %.


Avantages – Désavantages

Avantages

  • Dépendant du média de transfert choisi, l’énergie sensible et l’humidité peuvent être transférées, ce qui permet de diminuer la taille de l’humidificateur éventuel,
  • rendement très élevé (de 75 à 95%),
  • perte de charge relativement faible en comparaison de l’efficacité,
  • faible encombrement pour la roue,
  • fonctionnement été possible dans le cas de matériau hygroscopique,
  • pas d’évacuation de condensats,
  • encrassement et givrage limité du fait de l’inversion régulière du sens des flux d’air (la filtration reste cependant obligatoire).

Désavantages

  • Contamination de l’air neuf possible, principalement avec les régénérateurs statiques à clapet unique.
  • amenée et évacuation d’air doivent être adjacentes,
  • consommation d’énergie pour l’entraînement de la roue,
  • nécessité de l’entretien du système d’entraînement,
  • dans les roues la section de purge qui limite la contamination réduit l’efficacité de récupération,
  • le rendement est influencé par les positions relatives de l’échangeur de récupération et des ventilateurs de pulsion et de reprise.

Régulation

En demi-saison

Un système de régulation est nécessaire en mi-saison et en été pour éviter la surchauffe de l’air à la sortie du récupérateur : il faut réduire l’échange pour éviter que la température de l’air neuf devienne telle qu’elle contribue à surchauffer l’ambiance intérieure.

Lorsqu’en demi-saison il y a apparition de charges qui nécessitent de souffler dans les locaux de l’air plus froid que la température ambiante de consigne il est alors nécessaire de pouvoir réguler la puissance de l’échangeur de chaleur grâce à une variation de vitesse de rotation de la roue ou un by-pass du régénérateur.

En hiver

Dans les récupérateurs à batteries (échangeurs à plaques, à eau glycolée), si l’échange est tel que la température de l’air extrait chute sous 0°C, il faut réduire le transfert de chaleur pour éviter le givre de l’échangeur.

Dans les récupérateurs par accumulation, on peut partir de la règle empirique suivant laquelle il n’y a risque de gel que lorsque la moyenne des températures de l’air neuf et de l’air repris tombe en dessous de 0 °C et que, simultanément, il y a excès d’humidité dans l’accumulateur, c’est-à-dire que l’humidité qui s’est condensée côté air repris n’a pas pu être entièrement absorbée par l’air neuf.

Dans le cas contraire, le risque d’accumulation de givre du côté de l’air extrait est minime puisqu’à chaque cycle, ce côté est réchauffé. Ceci permet de profiter de la pleine puissance de récupération même pour des températures hivernales extrêmes et de tenir compte de cette puissance dans le dimensionnement des batteries de chauffage et des chaudières.

Dans certains cas particuliers (fonctionnement nocturne, faible température ambiante, rapport débit air neuf/air repris défavorable), il faut s’en remettre à l’expérience du fabricant. S’il y a risque de gel de l’échangeur, la solution consiste là aussi à faire varier la vitesse de rotation de la roue ou à by-passer l’accumulateur. Lorsqu’on diminue la puissance de récupération de la roue en hiver, la batterie de chauffage se trouvant après le récupérateur doit être dimensionnée en conséquence.


Entretien

Le contrôle de l’état de propreté de l’équipement de récupération est primordial.

En effet, l’encrassement des surfaces d’échange a deux conséquences néfastes sur la récupération : la réduction du coefficient d’échange de chaleur et la réduction des débits d’air.

Le tableau ci-dessous donne les différents points à contrôler lorsque l’on fait la maintenance :

Échangeur rotatif

v

1 État des surfaces d’échange (nettoyage régulier)

X

Contrôle des éventuelles fuites d’air
fuites externes

X

fuites internes

X

fuites par turbulences

X

fuites au niveau du clapet de by-pass

X

3 – Contrôle de la régulation
régulation de la vitesse de rotation

X

régulation du / des clapets de by-pass

X

régulation antigel

X


Exemple

En vue de comparer les différents systèmes de récupération, nous développons ici le calcul du rendement de l’installation pour les différents systèmes de récupération présentés.

Prenons comme exemple une installation de traitement d’air d’un immeuble de bureaux, fonctionnant en tout air neuf, 10 heures/jour, 5 jours/semaine.

Les groupes de pulsion et d’extraction GP/GE sont de même débit : 21 000 m³/h – section de 1 525 x 1 525 mm, soit une vitesse d’air de 2,5 m/s.

Dans le cas d’un échangeur rotatif à régénération, on déduit du catalogue du constructeur :

  • le choix d’une roue sélectionnée au point de vue prix, dans sa configuration la plus chère, c.-à-d. avec caisson de visite en amont et en aval ainsi qu’avec sa régulation de vitesse,
  • le fonctionnement dans les conditions extrêmes :

  • l’évolution dans le diagramme de l’air humide :

On constate que l’air extrait donne chaleur et humidité à l’air neuf qui voit sa température augmenter ainsi que son taux d’humidité absolue.

  • l’efficacité thermique instantanée :

ε= t– t/ t– t= (14,3 – (- 10)) / (22 – (- 10)) = 0,76 = 76 %

L’équipement sélectionné a entraîné les températures de sortie des fluides. On en déduit que le récupérateur a donné un accroissement de température de l’air neuf de 76 % de l’écart maximal entre les fluides, soit 0.76 x 32° = 24,3°.

Remarque : cette fois, le rendement thermique (rapport des enthalpies) donnerait une valeur identique :

η = h– h/ h– h= (29,5 – (- 6,5)) / (41 – (- 6,5)) = 0,76 = 76 %

Ceci montre que 76 % de l’énergie latente à été transférée simultanément aux 76 % de transfert d’énergie sensible).

La puissance maximale récupérée doit être estimée par le bilan enthalpique :

Pmax. réc. = 0,34 [W/(m³/h).°C] x 21 000 [m³/h] x (29,5 – (- 6,5)) = 251 [kW]

0,34 [W/(m³/h).°C] = chaleur spécifique de l’air

Si l’humidification de l’air est réalisée via une pulvérisation d’eau froide, une réduction de la puissance de la chaudière à installer de 251 kW est à prévoir. Si par contre l’humidification est réalisée par pulvérisation de vapeur, la chaudière sera diminuée de la puissance sensible (170 kW) et le système de production de vapeur sera réduit de la puissance latente (81 kW).

L’efficacité thermique, calculée dans les conditions extrêmes (- 10°C), reste sensiblement identique aux autres températures de la saison de chauffe. Aussi, la température moyenne extérieure en journée étant de 8°C, la puissance moyenne récupérée sera de :

Pmoy. réc. = 251 [kW] x (22° – (8°)) / (22° – (- 10°)) = 110 [kW]

Cela entraîne une économie thermique de :

Eréc = 110 [kW] x 10 [h/j] x 5 [j/sem] x 35 [sem] / 0,8 = 240 370 [kWh]

Le facteur 0.8 correspond au rendement saisonnier de la production de chaleur pour une installation nouvelle et dont les conduites sont isolées. On prendrait 0.7 pour une installation plus ancienne. 35 semaines correspondent à la durée de la saison de chauffe.

Suite à la présence du récupérateur, les puissances des ventilateurs sont modifiées comme suit :

Avant Après
GE GP GE GP
2,2 kW 5,2 kW 3,7 kW 6,2 kW

Ce à quoi il faut ajouter une puissance de 0,2 kW pour le moteur de la roue.


Visualisation de la récupération de la chaleur latente

Le diagramme ci-dessous fournit cette fois la courbe des fréquences cumulées des enthalpies tout au long d’une année. C’est le même principe que pour la courbe cumulée des températures mais cette fois-ci on pense en terme d’enthalpie pour tenir compte de l’énergie totale (latente + sensible).

On peut y lire le travail réalisé par un récupérateur de type « roue », dont l’efficacité a été choisie à 75 % (valeur maximale). L’air neuf est pulsé en permanence à 16° – 55 % HR, tandis que l’air vicié est extrait à 18° – 60 % HR.

Le « travail » du récupérateur y est visualisé, en hiver comme en été, et on peut y repérer également la régulation de la vitesse de rotation de la roue : pour ne pas entraîner de surchauffe en mi-saison, la roue est ralentie. En été, dès que l’enthalpie de l’air extrait devient inférieure à celle de l’air extérieur, la roue est remise à la vitesse maximale.

Exemple de fonctionnement d’un échangeur rotatif (Courbes d’enthalpies).

Description des châssis

Description des châssis

Les châssis se différencient entre eux par leur matériau constitutif principal, par leur mode d’ouverture, par le détail du profil des ouvrants et par leur performance thermique.


Les parties du châssis

Le dormant

Partie du châssis fixée au gros œuvre. Si le châssis n’a pas d’ouvrant (châssis appelé fixe), le dormant comprendra la feuillure et la parclose de fixation du vitrage

L’ouvrant

Partie mobile du châssis. Les profilés constituant l’ouvrant créent avec ceux du dormant, des barrières étanches à l’eau et à l’air.
Il existe de nombreux types d’ouvrants.

La double barrière d’étanchéité

La barrière d’étanchéité à l’eau et la barrière d’étanchéité à l’air sont physiquement dissociées :

 

  1. L’étanchéité à l’eau.
    Son rôle est d’empêcher au maximum le passage de l’eau. Elle est située du côté extérieur, protégeant la barrière d’étanchéité à l’air des sollicitations climatiques.
  2. L’étanchéité à l’air.
    Elle est située du côté intérieur et composée habituellement de joints d’étanchéité en matériau souples susceptibles de perdre leur efficacité sous l’action de l’humidité et des rayons ultraviolets.

Entre les deux barrières se trouve une zone de drainage, appelée chambre de décompression.

Une troisième barrière (ou frappe) peut être prévue dans le profilé assurant une amélioration de l’isolation acoustique du châssis. Celle-ci se place du côté intérieur du châssis.

Le principe de la double barrière d’étanchéité est actuellement appliqué sur la quasi-totalité des châssis de menuiserie extérieure et ceci quel que soit le matériau de base (bois, aluminium, PVC, PUR).

Remarque.
Le niveau d’étanchéité au vent et à l’eau dépend :

  • du nombre de frappes (simple, double ou triple) entre les ouvrants et les dormants,
  • de la présence et de l’emplacement des joints,
  • de la continuité des joints dans un même plan et dans les angles).

La chambre de décompression

Elle se trouve entre les barrières d’étanchéité à l’air et à l’eau.

Elle assure :

  • Le drainage et l’évacuation, par le biais des exutoires de drainage, des eaux qui n’ont pas pu être retenues par la barrière d’étanchéité à l’eau.
  • La réduction de la pression du vent sur le joint d’étanchéité à l’eau.
  • L’absence d’eau en contact avec le joint d’étanchéité à l’air.

Schéma chambre de décompression.

Le principe d’équilibre des pressions dans la chambre de décompression :

La pression atmosphérique qui règne dans la chambre de décompression est identique à celle exercée du côté extérieur du châssis étant donné que ces deux zones communiquent entres elles par le biais des exutoires de drainage. Par contre, la chambre de décompression est isolée de l’ambiance intérieure par la barrière à l’air.
Dès lors, une goutte d’eau située à la hauteur de la barrière d’étanchéité à l’eau ne subit aucune poussée vers l’intérieur permettant ainsi de limiter les risques d’infiltration d’eau au sein du châssis.

Feuillure et parcloses

La feuillure permet de recueillir l’eau infiltrée dans le joint entre le vitrage et le châssis, suite à une perte d’efficacité ou d’une discontinuité du joint d’étanchéité en mastic.

Le fond de feuillure doit permettre un positionnement correct des cales de support du vitrage.

Le drainage de fond de feuillure est obligatoire pour le double vitrage : il évite toute présence d’eau stagnante dans la feuillure, risquant de s’infiltrer entre les deux vitres.
Le tableau suivant donne les hauteurs utiles minimales (en mm) des feuillures en fonction de la surface du vitrage en m². Ces hauteurs doivent être augmentées des déformations éventuelles des supports.

Surface S du vitrage [en m²]
< 0.25 0.25 < S < 2 2 < S < 6 6 < S
Simple vitrage 10 mm 13 mm 18 mm 25 mm
Double vitrage 18 mm 8 mm 18 mm 25 mm

Les parcloses servent à fixer le vitrage et à permettre son emplacement. Leur hauteur doit araser celle de la feuillure. Elles doivent pouvoir se démonter pour permettre le remplacement du vitrage.
Les systèmes de fixation des parcloses sont multiples :

  • par pointage ou vissage,
  • par clipsage sur des boutons,
  • par clipsage sur des ressorts ou des rainures,
  • par vissage en applique.

Les conduits de drainage

Ils permettent l’évacuation des eaux infiltrées dans la chambre de décompression ou dans la feuillure.

Schéma conduits de drainage.

Ils doivent répondre à certains critères :

  • Ils doivent déboucher à l’extérieur ou en amont de l’étanchéité à l’air.
  • Ils doivent être équidistants de 50 cm au maximum et situés à proximité immédiate des angles du châssis.
  • Leur section doit être comprise entre 0,5 et 2,5 cm², selon leur exposition.
  • La différence de niveau entre la chambre de décompression et le débouché de l’exutoire doit être de 4 mm au minimum (14 mm est recommandé).

Les calages

Leur fonction est d’assurer le maintien correct du vitrage dans la feuillure. Des cales ponctuelles évitent le contact entre le vitrage et le châssis et permettent de reporter le poids du vitrage sur des points précis du châssis.

Un mauvais calage entraîne souvent un décollement des intercalaires entre les feuilles des doubles vitrages. Il y a donc embuage, ce qui rend ce vitrage inopérant thermiquement et crée un voile intérieur.

Les cales doivent être en matériaux imputrescibles et compatibles avec les produits de calfeutrement choisis et avec les matériaux des châssis (en bois, en polychloroprène, en élastomères, en plomb, …).

Il existe différents types de cales :

Schéma cales.

  1. Les cales latérales ou d’espacement (C1) :
    ces cales empêchent le vitrage de bouger. Elles sont nécessaires durant la période pendant laquelle le mastic n’a pas encore acquis sa plasticité définitive.
  2. Les cales périphériques ou de distance (C2) :
    ces cales doivent permettre la libre dilatation du verre et pour se faire, elles ne sont jamais placées en serrage (on laisse un léger jeu ou on utilise un matériau de dureté moindre que celui utilisé pour les cales d’appui).
  3. Les cales d’assises ou de support (C3) : ces cales doivent avoir une largeur suffisante pour assurer un appui efficace sur toute l’épaisseur du vitrage.

L’emplacement des cales dépend de plusieurs paramètres tels que le type d’ouvrant, le système de verrouillage et le système de suspension.

Les joints d’étanchéité

Ils assurent l’étanchéité des feuillures à l’eau et à l’air tout en compensant ou en absorbant les dilatations, les déformations et les vibrations sans perdre leurs caractéristiques avec les temps.

On distingue les mastics plasto-élastiques associés aux préformés de bourrage et les préformés élastiques.

Le casse-goutte

Schéma casse-goutte.

Il est destiné à empêcher que l’eau accidentellement attirée vers l’intérieur du châssis ne puisse atteindre la barrière d’étanchéité à l’air. Ce dispositif est donc placé en aplomb de la chambre de décompression et en avant de la barrière d’étanchéité à l’air.

Pour assurer une efficacité suffisante du casse-goutte en cas de châssis fortement exposé, les grandeurs suivantes sont recommandées : une largeur de 6 mm et une profondeur de 4 mm minimum.


Les types d’ouvrants

Types d’ ouvrants (vus de l’intérieur)

Pivot à axe vertical :

À la française : vantail ouvrant vers l’intérieur.

À l’anglaise : vantail ouvrant vers l’extérieur.

Pivotant simple : vantail ouvrant vers l’intérieur en partie gauche vers l’extérieur en partie droite.

Pivot à axe horizontal :

Pivotant à axe horizontal : vantail ouvrant vers l’intérieur en partie haute et vers l’extérieur en partie basse.

À visière : vantail ouvrant principalement vers l’extérieur.

Oscillo-battant : 2 types d’ouverture vers l’intérieur.

Basculante : vantail ouvrant vers l’intérieur.

Coulissant :

Coulissante : translation horizontale.

A guillotine : translation verticale.


Le châssis en bois

Châssis en bois.

  1. Première frappe : étanchéité à l’eau.
  2. Chambre de décompression.
  3. Exutoires de drainage.
  4. Deuxième frappe : étanchéité à l’air.
  5. Canal de drainage de la feuillure du vitrage.

Châssis bois avec rejet d’eau en aluminium fixé au dormant.

  1. Première frappe : étanchéité à l’eau.
  2. Chambre de décompression drainée
  3. Récupération des eaux et évacuation vers l’extérieur.
  4. Deuxième frappe avec joint périphérique continu : étanchéité à l’air
  5. Chambre pour loger la quincaillerie.
  6. Troisième frappe : amélioration acoustique.

Caractéristiques thermiques

Les châssis en bois ont un coefficient de transmission thermique Uf  peu élevé par rapport à leur homologue métallique.

De plus, certains châssis d’apparence bois comprenant des cavités ou constituées de plusieurs plis de lamellés collés présentent des performances thermiques accrues.

Les types de bois pour les menuiseries

Le tableau suivant reprend les caractéristiques des différents types de bois (nomenclature et durabilité) et leurs performances.

Nom commercial Nom botanique Durabilité Couleur Préservation (*)
  Convient pour portes et fenêtres :
Acajou d’Afrique Khaya spp III rose à rouge brun clair 1
Acajou d’Amérique Swietenia macrophylla II rouge brun à brun clair 1
Afromosia Pericopsis elata I/II brun doré 1
Chanfuta, Lingué Afzelia spp. I ocre clair à rouge brun 1
Afzélia Doussié Afzelia bipindensis I ocre clair à rouge brun 1
Chêne d’Europe Quercus robut et Q. petrea II/III jaune à jaune brun pâle 2
Chêne blanc d’Amérique Quercus spp. II/III clair à brun doré 2
Epicea Picea abies IV jaune brun blanchâtre 3
Framiré Terminialia ivorensis II/III jaune à jaune brun pâle 2/3
Hemlock Tsuga heterophylla IV gris jaune à gris brun 3
Iroko (Kambala) Chlorophora excelsa et C. regia I/II jaune doré à brun foncé 1
Jatoba Hymenaea courbaril II rouge orangé à brun 1
Makoré Tieghemelle hexkelii I brun rosâtre à brun rouge 1
Mengkulang Heritiera app. IV brun rouge 3
Merandi,Red Shorea spp. II/IV brun rouge à brun rosâtre 2/3
Merbeau Intsia I/II brun clair à brun rouge 1
Moabi Baillonella toxisperma I brun rosâtre à brun rouge 1
Movingi Distemonanthus benthamianus III jaune pâle à jaune 2
Niangon Hertiera utili et h.densiflora III brun rosâtre à brun rouge 1
Douglas ( ou Oregon pine) Pseudotsuga menzieslii III clair à brun clair 2/3
Padouk Pterocarpus soyauxii I rouge à brun violacé 1
Panga-panga Millettia stuhlmannii II brun noir 1
Pin des Landes Pinus penaster III/IV brun rougeâtre strié 3
Pin du Nord Pinus sylvestris III/IV clair à brun rouge jaunâtre 3
Pin sylvestre Pinus sylvestris III/IV clair à brun rouge jaunâtre 3
Pitch-pine Pinus caribea III brun clair à brun rouge 2/3
Sapelli Entandrophragma cylindricum III brun rouge 1
Sipo Entandrophragma utile II/III brun rouge 1
Southern pine Pinus spp. III brun jaune clair 3
Tatajuba Bagassa quianensis I/II brun doré 1
Teck Tectona grandis I brun moyen à foncé 1
Tola Gossweilerodendron balsamiferum II/III brun jaune rosâtre 2
Tornillo Cedrelinga catenaeformis III brun rose à brun havane 2
Wengé Millettia laurentii II brun noir 1
Western pine Pinus spp. IV jaune à brun rouge clair 3
Western red cedar Thuya plicata II brun 2
  Convient moins pour portes et fenêtres :
Azobé Lophira alata I/II rouge mauve 1
Balau, Red Shorea spp. III/IV rouge brun à brun gris 2/3
Balau, Yellow/ Bangkirai Shorea spp. II/III brun jaune à brun rouge 1
Bilinga Naucla diderrichij et N. gilletii I jaune orangé à ocre 1
Jarrah Eucalyptus marginata I brun rouge 1
Kapur Dryobalanops spp. II rouge brun à brun gris 1
Keruing Dipterocarpus spp. III brun à brun rouge 1
Kosipo Entandrophragma candollei II/III rouge violacé à brun 1
Mélèze Larix decidua III brun rouge 2/3
Robinier Robinia pseudoacacia I/II vert jaune à brun doré 1
Tiama Entandrophragma angolense III rouge brun à brun gris 1

(*) La préservation du bois :

  • 1 = pas nécessaire
  • 2 = finition comprenant ou précédée d’un traitement de surface C1
  • 3 = préservation en profondeur souhaitable
  • 2/3 = préservation souhaitable en cas de présence d’une part importante d’aubier ou de durabilité générale inférieure des éléments concernés (pour plus de détail, se référer au point suivant : traitement et entretien du bois).

Traitement et entretien de la menuiserie

Un traitement de la menuiserie comprend deux opérations distinctes :

  • La protection
  • La finition

Un choix adéquat de la protection et de la finition ainsi qu’un entretien régulier et approprié de la finition assurera la conservation des menuiseries extérieures.

La protection

La protection est nécessaire lorsque le bois n’a pas une durabilité naturelle suffisante contre les attaques éventuelles de champignons et/ou d’insectes.

Type de protection Description du produit
A3 : procédé de préservation
  • produit soluble dans l’eau, appliqué par immersion ou par imprégnation sous vide;
  • non filmogène (perméable à la vapeur d’eau);
  • contient des fongicides contre la pourriture, un insecticide et un agent antibleu ( facultatif).
C1 : produit de préservation
  • incolore ou légèrement pigmenté
  • non filmogène (perméable à la vapeur d’eau), teneur en matières sèches : 10 à 20 %;
  • contient un fongicide contre le bleuissement et la pourriture ainsi qu’un insecticide;
  • épaisseur indicative par couche : 1 à 5 µm ( à l’état sec).

La finition

La finition du bois est réalisée après la protection éventuelle du matériau et comprend généralement plusieurs couches.

Elle est obligatoire. En effet, la pose d’une menuiserie extérieure en bois sans finition n’est pas conforme aux dispositions générales des STS.

Elle ne peut être appliquée que sur des éléments en bois suffisamment durables pour résister à tous les agents d’agression susceptibles d’affecter le matériau.

Elle permet de remplir les fonctions suivantes :

  • Rehausser l’aspect esthétique.
  • Préserver le bois des agressions climatiques telles que :
    • les rayonnements ultraviolets et infrarouges, grâce aux pigments;
    • les variations importantes du taux d’humidité sous l’effet des précipitations, de l’humidité relative de l’air et des vents, augmentant les risques de fissuration et de déformation des éléments des menuiseries.
    • le lessivage des substances ligneuses et le tachage dû à l’humidité.
  • Faciliter l’entretien.
  • Accroître la longévité de la menuiserie.

Les produits de finition se différencient par le degré de perméabilité à la vapeur qu’ils offrent, allant de peu perméable (filmogène) à perméable (peu filmogène).

Types de finitions

Descriptions

Peu filmogène :

C2 : lasure légèrement pénétrante avec fongicide
  • pigmentée;
  • légèrement filmogène, teneur en matières sèches : 20 à 35 %;
  • contient des biocides pouvant avoir une action fongicide (contre les champignons), insecticide et anti-bleuissement;
  • épaisseur indicative par couche : 15 à 20 µm (à l’état sec).

Ce type de finition est le seul assurant en outre une protection préventive du bois.

Entretien : nettoyage de la menuiserie, suivi immédiatement de l’application d’une nouvelle couche de produit 1 à 2 an après la mise en œuvre.

Semi filmogène :

C3 : lasure légèrement pénétrante sans fongicide
  • pigmentée;
  • nettement filmogène, teneur en matières sèches : 20 à 35 %;
  • contient uniquement un fongicide contre le bleuissement;
  • épaisseur indicative par couche : 15 à 20 µm (à l’état sec).
CTOP : lasure satinée ou top coat
  • pigmentée;
  • nettement filmogène, teneur en matières sèches : 35 à 60 %;
  • contient uniquement un fongicide contre le bleuissement (ne protège que le film);
  • épaisseur indicative par couche : 20 µm (à l’état sec).
Entretien : nettoyage, puis un léger ponçage du bois et dépoussiérage, suivis de nouvelles applications du produit 2 à 4 après le dernier traitement.

Filmogène :

Peinture
  • pigmentée;
  • caractère filmogène prononcé, teneur élevée en matières sèches;
  • ne contient pas de biocides;
  • épaisseur indicative par couche : > 30 µm (à l’état sec).
Entretien : nettoyage, décapage, dépoussiérage et remise en peinture des portes et des fenêtres 3 à 7 ans (ou plus) après la première mise en peinture.

La durabilité de la finition dépend des facteurs suivants :

  • l’état et la préparation du support;
  • la méthode d’application et l’utilisation correcte du produit;
  • la conception des éléments de la menuiserie (forme des profilés, assemblage, drainage du vitrage, éviter la stagnation d’eau, …)
  • l’exposition de la menuiserie aux conditions climatiques, …

Notons que l’entretien d’une finition peu filmogène, lorsqu’il est effectué en temps opportun est sensiblement plus aisé (simple enduisage) que celui d’une finition filmogène. Cette dernière bien que plus durable exige une plus grande maîtrise de la part de l’applicateur.

Entretien curatif

Si l’entretien est inexistant ou n’a pas été réalisé régulièrement, le bois sous-jacent sera sensiblement dégradé et fissuré. Les travaux préparatoires à la rénovation complète de la finition exigeront bien plus qu’un simple grattage des couches anciennes de la finition et l’application de nouvelles couches. Ils comprendront notamment :

  • le dégraissage,
  • le ponçage de la surface du bois,
  • le bouchage des fissures,
  • l’application de mastic dans les joints des vitrages et le remplacement éventuel des parecloses détériorées,
  • la réfection des assemblages disloqués.

Mesures de protection contre la condensation interne au bois

La condensation interne dans la masse du bois des menuiseries est évitée lorsque la résistance à la diffusion de vapeur de la finition intérieure est suffisamment grande par rapport à celle de la finition extérieure.

Schéma condensation interne.

Le bois étant perméable à la vapeur d’eau, celle-ci aura tendance à traverser le châssis de l’intérieur vers l’extérieur pour atteindre l’équilibre.
Si une couche de finition extérieure peu perméable à la vapeur empêche celle-ci de sortir du châssis, celle-ci risque de rester piégée au sein du châssis.

C’est pourquoi on préfère limiter les risques d’infiltration et empêcher au maximum la vapeur de pénétrer dans le châssis par l’intérieur.
Ce principe est respecté lorsque la finition intérieure est filmogène (peinture ou vernis) et la finition extérieure est non filmogène.

Si les finitions intérieures et extérieures sont toutes 2 des peintures, le nombre de couches intérieures doit être suffisant par rapport au nombre de couches extérieures.

Coût des châssis en bois (estimation vitrages non compris)

Leur prix varie selon le type de bois utilisés :

Dark Red Meranti 148 à 190 €/m² de baie
Merbau 170 à 228 €/m² de baie
Afzélia 200 à 297 €/m² de baie

Il faut y rajouter les traitements du bois :

Couche d’imprégnation + 2 couches de finition : 12 à 14 €/m² de baie
Couche supplémentaire d’entretien : 4 à 5 €/m² de baie

Remarque : les fourchettes de prix mentionnées sont données à titre indicatif. Les prix prévoient la fourniture et la mise en œuvre hors TVA, mais ne tiennent pas compte des traitements de protection. Ils concernent les ouvrages courants. Ils dépendent des dimensions moyennes des châssis, de leurs formes et des types d’ouvertures.


 Le châssis en aluminium

Très différents des menuiseries en bois, les châssis en aluminium comportent des profilés extrudés creux fixés au moyen d’attaches mécaniques.
Étant donné la forte conductivité thermique de l’aluminium, un principe de coupure thermique en matériau isolant a été conçu pour répondre aux exigences en matière de confort thermique : une isolation est introduite entre deux profilés, l’un intérieur et l’autre extérieur, évitant ainsi tout contact alu-alu.

Châssis en aluminium à coupure thermique.

  1. Première frappe : étanchéité à l’eau.
  2. Chambre de décompression drainée.
  3. Récupération des eaux et évacuation vers l’extérieur.
  4. Deuxième frappe : étanchéité à l’air
  5. Chambre pour loger la quincaillerie.
  6. Troisième frappe : amélioration acoustique.
  7. Mousse isolante.

Il existe de nombreux types de profilés isolés mais le choix d’isolants formant la coupure thermique est nettement plus limité. Les isolants utilisés sont souvent un polyamide renforcé en fibre de verre ou des isolants fabriqué à partir de résines.

Caractéristiques thermiques

Pour ces châssis, la performance thermique dépendra largement du détail de la fenêtre.
Actuellement, on ne conçoit plus un châssis en aluminium sans coupure thermique.

Pour connaitre les valeurs du coefficient de transmission thermique Uf des châssis en aluminium.

Traitement de surface

Le châssis en aluminium ne requiert aucun traitement pour être maintenu en bon état. C’est l’oxydation naturelle se formant sur la surface qui assure la protection. Toutefois, le métal vieillit et prend une couleur grise irrégulière. C’est donc pour des raisons esthétiques que l’on traite la surface :

  • soit, par la pose d’une couche de laque,
  • soit, par anodisation.

Coût (estimation vitrages non compris)

Aluminium laqué avec coupure thermique : 245 314 €/m2 de baie

Les fourchettes de prix mentionnées sont données à titre indicatif. Les prix prévoient la fourniture et la mise en œuvre hors TVA, mais ne tiennent pas compte des traitements de protection. Ils concernent les ouvrages courants. Ils dépendent des dimensions moyennes des châssis, de leurs formes et des types d’ouvertures.


Le châssis en acier

Comme les châssis en aluminium, les châssis en acier comportent des profilés extrudés creux fixés au moyen d’attaches mécaniques.
Étant donné la forte conductivité thermique de l’acier, un principe de coupure thermique en matériau isolant a été conçu pour répondre aux exigences en matière de confort thermique.

Châssis en acier.

  1. Première frappe : étanchéité à l’eau.
  2. Chambre de décompression drainée
  3. Récupération des eaux et évacuation vers l’extérieur.
  4. Deuxième frappe : étanchéité à l’air
  5. Chambre pour loger la quincaillerie.
  6. Mousse isolante.

Caractéristiques thermiques

Pour connaitre les valeurs du coefficient de transmission thermique Uf des châssis en acier.

Coût (estimation vitrages non compris)

Acier laqué 248 322 €/m2 de baie

La fourchette de prix mentionnée est donnée à titre indicatif. Le prix prévoit la fourniture et la mise en œuvre hors TVA. Ils concernent les ouvrages courants. Ils dépendent des dimensions moyennes des châssis, de leurs formes et des types d’ouvertures.


Le châssis en PVC

Le PVC est thermoplastique c’est-à-dire susceptible de ramollir sous l’action de la chaleur et de durcir sous l’action du froid.

La composition chimique de ce matériau est variable et les adjuvants au PVC jouent un rôle considérable.
Ils permettent :

  • de réduire la fragilité du matériau : on parlera de raideur de type A ou B selon la composition,
  • de faciliter sa mise en forme,
  • d’empêcher les dégradations causées par la chaleur, l’oxydation et le rayonnement solaire.

Châssis en PVC à trois chambres.

  1. Première frappe : étanchéité à l’eau.
  2. Chambre de décompression drainée
  3. Récupération des eaux et évacuation vers l’extérieur.
  4. Deuxième frappe : étanchéité à l’air
  5. Chambre pour loger la quincaillerie.
  6. Troisième frappe : amélioration acoustique.
  7. Renfort en acier zingué éventuel.

Lorsque ce type de châssis est amené à former de grandes baies, il convient de le rigidifier. Certaines marques de châssis en PVC peuvent être renforcés par des profils métalliques (tel le renfort en acier zingué illustré sur le schéma ci-dessus). D’autres prévoient des renforcements uniquement pour certaines pièces en fonction des sollicitations auxquelles elles sont soumises, et de la raideur du PVC utilisé.

Caractéristiques thermiques

Pour connaitre les valeurs du coefficient de transmission thermique Uf des châssis en PVC, cliquer ici !

Le terme « chambres » est utilisé pour désigner les subdivisions se succédant dans la largeur du profilé extrudé creux.

Coût (estimation vitrages non compris)

PVC 170 220 €/m² de baie
PVC renforcé 185 240 €/m² de baie

Les fourchettes de prix mentionnées sont données à titre indicatif. Les prix prévoient la fourniture et la mise en œuvre hors TVA. Ils concernent les ouvrages courants. Ils dépendent des dimensions moyennes des châssis, de leurs formes et des types d’ouvertures.


Le châssis en fibre de verre

Il s’agit des profilés creux réalisés par pultrusion qui sont joints ensemble par des attaches mécaniques.

Caractéristiques thermiques

Des menuiseries en fibre de verre ont été lancées sur le marché mais la nouveauté du produit fait que les performances en service doivent encore être déterminées. En général, le châssis en fibre de verre, s’il est bien conçu, possède une valeur isolante plus élevée que le châssis de bois.


Le châssis en polyuréthane

Le châssis en polyuréthane est constitué d’un matériau thermodurcissable utilisé notamment pour la fabrication de pièces plastiques, de peintures, de mousses isolantes,… Ce matériau offre une très grande liberté de conception.

Châssis en polyuréthane.

  1. Première frappe : étanchéité à l’eau.
  2. Chambre de décompression drainée
  3. Récupération des eaux et évacuation vers l’extérieur.
  4. Deuxième frappe : étanchéité à l’air
  5. Chambre pour loger la quincaillerie.
  6. Troisième frappe : amélioration acoustique.
  7. Insert tubulaire en aluminium.

Lorsque ce type de châssis est amené à former de grandes baies, il convient de le rigidifier au moyen de profils métalliques (tel l’insert tubulaire en aluminium illustré sur le schéma ci-dessus).

Caractéristiques thermiques

Pour connaitre les valeurs du coefficient de transmission thermique Uf des châssis en polyuréthane.

Coût (estimation vitrages non compris)

PUR laqué 248 322 €/m² de baie

La fourchette de prix mentionnée est donnée à titre indicatif. Le prix prévoit la fourniture et la mise en œuvre hors TVA. Ils concernent les ouvrages courants. Ils dépendent des dimensions moyennes des châssis, de leurs formes et des types d’ouvertures.


Les châssis composés

Il s’agit de menuiseries faites de matériaux combinés.

De nombreuses combinaisons sont possibles à condition que les matériaux soient chimiquement compatibles.
Les performances des châssis composés sont généralement difficiles à évaluer. En toute logique, l’objectif est d’exploiter les avantages des différents matériaux.

Par châssis composés, on entend soit :

Des châssis composés d’un ouvrant et d’un dormant de matériaux différents

Par exemple :

  • le dormant est en aluminium et l’ouvrant en PVC,
  • le dormant est en bois recouvert d’aluminium et l’ouvrant en aluminium.

Des châssis dont le profil est constitué de plusieurs matériaux :

  • Les châssis en bois et aluminium :

Ces châssis sont construits en bois divers, leur face extérieure est recouverte de profilés étirés d’aluminium, d’une épaisseur de 2 mm brossés ou prélaqués. Entre le bois et l’aluminium se trouve un profilé en PVC (λ = 0,14 W/mK), servant de coupure thermique évitant le contact entre les deux matériaux.

  1. Profilés étirés en aluminium
  2. Profilés en PVC
  3. Châssis en bois
  4. Vide ventilé.

Précautions particulières

Le revêtement en aluminium ne doit pas être en contact avec le verre car cela augmente le risque de casse thermique et de condensation interne.

Étant donné que le revêtement en aluminium empêche le passage de la vapeur vers l’extérieur, il faut  veiller à ce que les autres surfaces du bois comportent un pare-vapeur (peinture ou vernis) afin d’être  protégées contre l’accumulation excessive d’humidité à la surface extérieure du bois.
En théorie, le vide ventilé par l’extérieur prévu entre le bois et le profilé en aluminium permet l’évacuation  des eaux condensées dans le bois, afin d’éviter le pourrissement de ce dernier.

  • Les châssis en bois et liège :

Le liège inséré dans le châssis permet d’augmenter l’isolation thermique de celui-ci.

Châssis en bois et liège.

    1. Bois.
    2. Liège.
    3. Première frappe : étanchéité à l’eau.
    4. Deuxième frappe : étanchéité à l’air.
    5. Troisième frappe : amélioration acoustique.

 

Préparateur d’eau chaude sanitaire avec pompe à chaleur

Préparateur d'eau chaude sanitaire avec pompe à chaleur


Fonctionnement

Le principe de fonctionnement d’une pompe à chaleur est le même que celui de la machine frigorifique mais l’application travaille en sens inverse.

L’objectif consiste à extraire la chaleur gratuite d’un milieu extérieur : l’eau d’une rivière, l’air extérieur, l’eau d’une nappe souterraine, … (on parle de « source froide »). Physiquement, l’air extérieur à 0°C contient beaucoup d’énergie puisque sur l’échelle des températures absolues, l’air se situe en réalité à 273° K !

Schéma fonctionnement.

L’évaporateur est à l’extérieur et la température du fluide frigorigène sera environ 5 à 8°C inférieure à la température de la source froide. L’énergie thermique captée sera « remontée » à un niveau de température utilisable (pour le chauffage de l’eau chaude sanitaire) via le compresseur : la chaleur du condenseur est donc donnée au ballon.

Bien sûr, on aura intérêt à ce que l’eau chaude soit à une température la plus basse possible. L’écart de température entre l’entrée et la sortie du compresseur doit être en effet le plus faible possible pour limiter le travail du compresseur.

Exemple d’application.

Refroidir l’air extérieur à 0°C pour assurer le chauffage de l’eau chaude sanitaire à 45°C.

Le fluide frigorigène sera à .- 5°C. dans l’échangeur avec l’air et à .53°C. dans l’échangeur du ballon d’eau.

Cet écart est donc fort grand, ce qui va diminuer la performance de l’équipement.


Coefficient de performance

Le bilan énergétique de la PAC

Qu’est-ce qui coûte dans l’exploitation d’une installation de pompe à chaleur ?

  • pas l’énergie de la « source froide » : elle est gratuite,
  • mais bien l’énergie électrique du compresseur.

D’où la notion de rendement donné par le « COP », coefficient de performance :

COP = chaleur au condenseur/travail du compresseur = Q2 / W

Or Q2 = Q1 + W = chaleur captée à la source froide + énergie développée par le travail du compresseur (loi de conservation des énergies).
Dès lors, Q2 est toujours plus grand que W et le COP est toujours nettement plus élevé que 1.

Est-il normal de rencontrer une machine dont le « rendement » dépasse 100 % ?

En réalité, ce n’est pas ici une machine de conversion, de transformation d’énergie comme une chaudière, mais bien une machine qui transfère une quantité d’énergie thermique d’un seuil de température à un autre. Le COP n’est donc pas un rendement mais une évaluation de la performance du transfert.

Si l’écart entre les 2 seuils de température augmente, l’efficacité (ε ou COP) diminue.

Comment évaluer le COP d’une pompe à chaleur ?

Puisque W = Q2 – Q1, on écrit encore : COP = Q2 / (Q2 – Q1)

Si l’on considère un travail sans pertes, les lois de la thermodynamique établissent le lien entre l’énergie contenue dans un fluide (Q) et la température absolue de ce fluide (T), si bien que l’on admettra sans démonstration l’expression suivante du COP théorique :

COPthéorique = T2 / (T2 – T1) [T étant exprimé en Kelvin]

Le coefficient de performance instantané est d’autant meilleur :

  • que la température T1 de la source de chaleur (dite la « source froide ») est élevée,
  • que la température du réseau de chauffage est basse (T2 proche de T1).

Alors que l’on ne peut guère influencer la température de la source de chaleur, celle du ballon d’eau chaude sera définie par le projeteur ! Il aura intérêt à la laisser minimale.

Exemple d’une pompe à chaleur AIR-AIR.

Soit T°ext = 0°C (= 273° K) et T°chauff. = 40°C

COPthéor = (273 + 40) / (40) = 7,8 !

En théorie, la pompe fournira 8 x plus d’énergie au condenseur que d’énergie demandée au compresseur ! … (les 7/8 de la chaleur étant captés dans l’air extérieur).

En théorie … car en pratique, plusieurs éléments vont faire chuter cette performance :

  • Il existe un écart de température entre le fluide frigorigène et les sources.
    Par exemple : si T°ext = 0°C, T°évaporateur = … – 8°C… Et si T°chauff. = 40°C, T°condenseur = … 48°C… d’où un COP = (273 + 48) / (56) = 5,7.
    Le coefficient de convection entre l’eau et l’évaporateur étant nettement meilleur que le coefficient de convection entre l’air et l’échangeur, on aura tendance à privilégier les PAC eau/eau. Encore faut-il avoir une rivière au fond de son jardin ou une nappe phréatique sur laquelle il est possible de puiser (autorisation obligatoire). en général, il faudra se résoudre à prendre l’air extérieur comme source froide.
  • Or dans ce cas, si la T°ex < 5° C, alors T°fluide évaporateur = 0°C. Dès lors, du givre apparaît sur les ailettes, la glace bouche l’échangeur extérieur, d’où nécessité de dégivrer (soit un courant électrique est envoyé sur l’échangeur pour faire fondre la glace, soit le cycle est inversé et des gaz chauds sont envoyés dans l’évaporateur).
    Avec la consommation de dégivrage, le COP moyen diminue fortement.
  • Lorsque la température de l’air extérieur descend sous 0°C, le compresseur a de plus en plus de mal à fonctionner : la puissance délivrée au condenseur de la pompe à chaleur devient très faible et il faut parfois ajouter des résistances de chauffage électrique directe à l’installation.
  • Il y a nécessité de faire fonctionner le ventilateur de la source froide, d’où une consommation électrique supplémentaire de cet auxiliaire.

Quels COP rencontrés en pratique ?

Nous n’avons pas de résultats de mesures « neutres » qui fourniraient un COP annuel sur une machine existante.

On peut imaginer à la fois que le COP est dégradé par la haute température de l’eau chaude, mais également que sa performance est élevée en été.

On pourrait interpréter les données fournies par les fabricants :

Exemple.

Imaginons les spécifications techniques dans un catalogue

Puissance calorifique

kcal/h 3 500
Btu/h 14 000
kW 4,10
Puissance absorbée kW 1,33

On en déduit le coefficient de performance :

puissance calorifique (au condenseur) / puissance absorbée =
4,1 kW / 1,3 kW 
= 3,2

Attention ! Ce coefficient est obtenu dans des conditions bien spécifiques ! Par exemple, en petits caractères, le fabricant précise qu’il s’agit de valeurs obtenues pour 7°C extérieur… Cette performance va s’écrouler en période plus froide. En réalité, c’est le rendement moyen saisonnier qui nous intéresse… mais celui-ci n’est jamais donné puisqu’il dépend des conditions d’exploitation.

Dans le programme de promotion des économies d’énergie suisse « Ravel », on annonce un COP annuel de 3 pour une pompe à chaleur Air-Eau et de 4,5 si la pompe capte l’énergie souterraine, pour autant que le chauffage de l’eau soit limité à 50°C. Si le stockage est prévu à 60°C, une batterie électrique fournit le complément avec de l’électricité directe (COP = 1).

Attention au bilan final : imaginons le chauffage d’1 m³ de 10 à 60°C par une pompe à chaleur air-eau.

L’énergie nécessaire au chauffage de 10 à 50°C par la PAC sera de :

Énergie = 1 m³ x 1,163 kWh/m³ x (50 – 10) / 3 = 15,5 kWh

L’énergie complémentaire pour passer de 50 à 60°C sera de

Energie = 1 m³ x 1,163 kWh/m³ x (60 – 50) = 11,6 kWh

Le COP moyen annuel est alors de :

COP = Energie produite / Energie fournie

= [1 m³ x 1,163 kWh/m³ x (60 – 10)] / [15,5 + 11,6] = 2,15


Technologies

Afin de pouvoir satisfaire les débits de pointe, la pompe à chaleur est associée à un ballon accumulateur d’eau chaude, d’une capacité comprise entre 250 et 1 000 litres. Ceci permet également de faire fonctionner la pompe à chaleur durant la nuit, avec un tarif réduit.
On distingue :

  • Une installation compacte dans laquelle évaporateur à lamelles et compresseur sont situés sur le ballon et le condenseur y est intégré.
  • Une installation « split » où évaporateur et compresseur sont installés séparément, notamment parce que la source de chaleur et le chauffe-eau ne se trouvent pas au même endroit.

Entre le ballon et la pompe à chaleur, différents modes de transport de la chaleur sont possibles :

  • Par le fluide frigorigène (coefficient de performance élevé mais nécessité d’une construction anticorrosion limitant le risque de contact avec l’eau potable). On utilise généralement des conduites pré-chargées de fluide frigorigène et obturées par une feuille métallique. Lors du vissage des conduites, une broche percera la feuille métallique.

  • Par l’eau du ballon, au moyen d’un échangeur de chaleur extérieur à celui-ci.

  • Par un liquide intermédiaire, construction plus complexe mais sécurité accrue (le circuit du fluide intermédiaire doit être équipé d’un dispositif automatique de dégazage).

  • Par un condenseur extérieur disposé autour de l’accumulateur d’eau chaude, toute infiltration du frigorigène étant alors exclue.

Certains appareils possèdent en outre une résistance électrique d’appoint pour porter l’eau à plus haute température (55 à 60°C).

Il existe des appareils avec évaporateur statique (sans ventilateur), dont la surface d’échange est étendue.


Installation

Le raccordement électrique (disjoncteur, …) est similaire à celui d’un chauffe-eau électrique.

Il faut cependant prévoir en plus un conduit d’évacuation des condensats provenant de l’humidité de l’air.

Isolation sur les pannes (panneaux auto-portants)

Isolation sur les pannes (panneaux auto-portants)

Isolation par panneaux autoportants.

  1. Couverture.
  2. Languette d’assemblage.
  3. Lattes.
  4. Panneau de toiture préfabriqué.
  5. Raidisseur du panneau.
  6. Isolant du panneau.
  7. Pare-vapeur intégré éventuel.
  8. Plaque inférieure du panneau.
  9. Panne.

Le principe

Les éléments de toiture auto-portants préfabriqués en usine sont directement posés parallèlement à la pente de toiture, sur les pannes.

Les panneaux isolants préfabriqués.

Les joints entre éléments autoportants étant rendus étanches à l’eau à leur face supérieure et à l’air et à la vapeur à leur face inférieure (exemple : par injection de mousse), ils assument à eux seuls, 4 fonctions de la toiture :

  • celle de la sous-toiture,
  • celle de l’isolant,
  • celle de l’écran étanche à l’air et à la vapeur,
  • et celle de la finition intérieure du plafond.


Jonction entre éléments.

En outre, ils remplacent les chevrons et les contre-lattes.


Les éléments autoportants

Les éléments autoportants peuvent être classés en deux grands groupes :

1. Les éléments autoportants ouverts

Élément autoportant ouvert.

Ils sont constitués d’une plaque de particules ou de multiplex de 1 à 6 m (ou plus) de longueur raidis par des chevrons; les compartiments ainsi formés, sont remplis d’isolant, visible sur la face supérieure des éléments.

  1. Lattes en bois servant de chevron et de contre-latte.
  2. Isolation (PUR, PIR, XPS, EPS).
  3. Plaque continue.

Il existe également sur le marché, des éléments autoportants à isolation continue. Dans ce cas il n’y a pas de chevrons fixés à la palque de base mais des contre-lattes sont fixées au-dessus de l’isolant.

Élément autoportant ouvert à isolation continue.

2. Les éléments autoportants sandwiches

Eléments autoportants sandwiches.

Les éléments autoportants sandwiches sont constitués d’un isolant revêtu sur ses deux faces d’une plaque de particule ou d’un multiplex. La face supérieure est généralement munie de contre-lattes.

  1. Contre-latte.
  2. Isolation.
  3. Plaques.
  4. Languette mobile.

Isolation
en laine de roche.

Isolation
en polyuréthane.

Isolation
en polystyrène.


Conseils de mise en œuvre

Les panneaux autoportants sont placés sur les pannes parallèlement à la pente de toiture.

Les joints parallèles au faîtage sont à éviter, car leur étanchéité à la pluie est difficile à réaliser. On choisit donc des panneaux suffisamment long que pour couvrir toute la longueur de la toiture.

La plupart des éléments auto-portants sont conçus pour prévenir tout pont thermique à la jonction de deux éléments ainsi que pour empêcher tout mouvement différentiel dans le versant.

Exemple : rainures avec interposition d’une languette mobile dans celles-ci.

Languette entre deux panneaux.

Dans tous les cas, les joints doivent être étanche à l’eau à leur face supérieure et étanche à l’air et à la vapeur à leur face inférieure.

Exemple.

L’étanchéité à la pluie est, ici, réalisée par injection de mousse isolante au-dessus de la languette de jonction et par une bande d’aluminium adhésive sur l’ensemble mousse isolante injectée et chevrons intégrés aux panneaux.

Réalisation de l’étanchéité à la pluie

Schéma réalisation de l'étanchéité à la pluie.
  1. Bande d’aluminium adhésive.
  2. Mousse isolante injectée.
  3. Languette de jonction.

L’étanchéité à l’air et à la vapeur n’est assurée que si les joints sont, à leur face inférieure, injectés (ex : de mousse) ou collés au moyen de matériaux restant élastiques.

Il est recommandé de n’utiliser que les panneaux disposant d’un agrément technique de l’UBAtc (Union belge pour l’agrément technique de la construction).

La pose des panneaux autoportants est très délicate et varie d’un système à l’autre. Les prescriptions des fabricants et de l’agrément technique doivent être scrupuleusement suivies.

Échangeur à plaques

Échangeur à plaques


Principe

Photo échangeur à plaques.

L’échangeur de chaleur est constitué de plaques, de tubes ou de gaufrages de type « nid d’abeilles », de faible épaisseur en aluminium ou matière plastique qui séparent les veines d’air. Le matériau utilisé pour la fabrication des plaques est variable, ce peut être du verre (il est insensible à la corrosion mais est lourd et cassant) ou bien de l’aluminium, de l’acier inoxydable ou un matériau synthétique.

Schéma principe échangeur à plaques.

Les plaques sont assemblées entre elles par collage ou soudage et placées dans un châssis rigide. L’épaisseur d’une plaque oscille généralement entre 0,1 et 0,8 mm, la distance entre les plaques est très faible, entre 5 et 10 mm, et les courants sont généralement croisés. Afin de maximiser l’échange convectif, les plaques peuvent être gaufrées et créer de la sorte une turbulence.

Schéma échangeur à plaques.

Echangeur à plaques.

En faisant varier la dimension des plaques et leur nombre, on peut obtenir de multiples variantes.

On peut également :

    • Augmenter la longueur de l’échangeur ce qui à la place d’un échange classique à courants croisés autorise un échange mixte à courants croisés et contre-courant.

On parle d’échangeur à plaque double.

  • Monter en série deux échangeurs de chaleur fonctionnant là aussi en courants croisés / contre-courant.

Si les échangeurs de chaleur sont montés en série, les circulations des veines d’air sont telles que les raccordements tant de l’air neuf que de l’air repris restent au même niveau, ce qui est toujours préférable.

Pour prévenir une surchauffe, la récupération de chaleur doit pouvoir être interrompue en été ou en mi-saison : un by-pass devra être prévu.

Lorsque les surfaces de l’échangeur sont suffisamment froides (température inférieure à la température de rosée de l’air extrait), la vapeur d’eau contenue dans l’air extrait se refroidit et se condense, ce qui a pour conséquence l’augmentation du transfert de chaleur. Pour éliminer la condensation, les plaques sont souvent placées verticalement. Les groupes doivent alors être superposés, et des contraintes d’emplacement apparaissent.

Pour des températures extérieures très basses, les condensats peuvent même geler. Pour éviter ces problèmes de gel et de surchauffe une régulation est donc à prévoir.

De même, vu les risques d’encrassement, des filtres sont à prévoir, tant sur la veine d’air neuf que sur la veine d’air repris.

L’encrassement de l’installation pouvant provoquer outre une diminution de la transmission de chaleur, également un changement dans le type d’écoulement d’air. Il faut donc prévoir un entretien régulier du récupérateur.


Facteur influençant le rendement

Prenons un exemple :

Soit un débit d’air neuf de 100 m³/h (+/- 28 dm³/s).

Avec un débit d’air rejeté de 110 m³/h (mise en dépression du local), le rapport Van/Vav vaut 100 / 110 = 0.9. Sur le catalogue d’un constructeur, on déduit une efficacité de l’échangeur à plaques de +/- 67 %.

Courbes de rendement.

Le rendement de récupération est fonction  de :

  • la configuration de l’écoulement de l’air,
  • l’écartement des plaques,
  • la surface des plaques,
  • l’état de surface des plaques (rugosité, …).

> l’efficacité thermique se situe généralement entre 50 – 85 %


Avantages – Désavantages

Avantages

  • Simple et fiable,
  • grande durée de vie et pratiquement pas de panne,
  • absence de pièces en mouvement, sécurité de fonctionnement,
  • peu de maintenance nécessaire,
  • faible risque de contamination de l’air frais en cas de bonne conception,
  • exécution en divers matériaux et nombreuses combinaisons possibles,
  • la solution la plus adaptée (rentabilité) aux petits débits d’air (< 5 000 m³/h).

Désavantages

  • Disposition Air neuf/Air rejeté proche,
  • sans by-pass, il n’y a pas de régulation de température et donc un risque de surchauffe en été,
  • danger de givre par température extérieure basse et par dépassement du point de rosée, il faut être attentif à la régulation si on souhaite tenir compte du récupérateur pour dimensionner les chaudières et les batteries de chauffe,
  • l’échangeur présente une perte de charge relativement importante, surtout à de grands débits,
  • en cas de panne des équipements mal conçus peuvent être source de bruit ainsi que de fuites et donc de contamination.

Régulation

Tous les types de récupérateurs nécessitent un système de régulation :

  • En hiver pour éviter le gel du côté de l’air extrait : si l’échange est tel que la température de l’air extrait chute sous 0°C, il faut réduire le transfert de chaleur pour éviter le givre de l’échangeur, ou pratiquer un dégivrage périodique.
  • En mi-saison et en été pour éviter la surchauffe de l’air à la sortie du récupérateur : il faut réduire l’échange pour éviter que la température de l’air neuf devienne telle qu’elle contribue à surchauffer l’ambiance intérieure.

Dans le cas d’un échangeur à plaques, seule une régulation par by-pass d’une partie de l’air neuf est possible. Au moyen de registres à volets conjugués, on diminue le débit d’air neuf qui transite dans l’échangeur tandis qu’on augmente simultanément le débit d’air neuf court-circuité . Il est ainsi possible de réduire en continu jusqu’à 0 % la puissance du récupérateur de chaleur.

En hiver

Du fait même de la technologie d’un échangeur de chaleur, les températures des deux veines d’air à la sortie de l’échangeur ne sont pas identiques. Et même lorsque la température de l’air rejeté est choisie de telle façon (par exemple + 3°C) que tout risque de gel soit exclu, il n’en reste pas moins qu’il existe à l’intérieur de l’échangeur des « coins froids » dans lesquels de l’air neuf froid se trouve en contact avec de l’air repris déjà refroidi ce qui fait que la température des plaques peut localement tomber en dessous de 0°C.

Si, en cet endroit, la température superficielle des plaques est inférieure à la température de rosée de l’air rejeté, une partie de la vapeur d’eau contenue dans cet air va se condenser et geler. Si l’on peut admettre le gel d’une petite partie de l’échangeur pendant un court laps de temps, il n’en est plus de même sur une longue durée car les particules de glace vont colmater les canaux et entraver la circulation de l’air, d’où une augmentation de la perte de charge et une plus grande consommation d’électricité du ventilateur si l’on souhaite maintenir le même débit d’air.

On peut définir une température extérieure en dessous de laquelle, compte tenu bien entendu de la température d’entrée de l’air repris dans l’échangeur et des débits mis en œuvre, il y a risque de gel à l’intérieur de l’échangeur (cette température est dite « température extérieure limite »).

Lorsque la température extérieure est telle qu’un risque de gel à l’intérieur de l’échangeur est à craindre (par exemple fonctionnement de nuit lorsque la température extérieure est plus basse, démarrage le matin lorsque la température a chuté la nuit ou tout simplement lorsque les conditions climatiques sont extrêmes), il est nécessaire de prendre un certain nombre de mesures pouvant consister :

  • À by-passer une partie de la veine d’air neuf ce qui permet de faire chuter le rapport des débits : air neuf / air repris. Mais la puissance de la batterie de réchauffage qui suit doit être alors plus importante.
  • À by-passer une partie de la veine d’air neuf et en parallèle réduire de débit d’air neuf au niveau du ventilateur (ventilateur à 2 vitesses ou à vitesse variable), lors de dégivrages périodiques de courte durée. Cela permet de ne pas surdimensionner la batterie de chauffe mais il faut rester dans des limites de confort respiratoire correctes.
  • À recycler entièrement l’air rejeter, durant une courte période de dégrivage et à le réinjecter du côté de l’air pulsé. Aucun surdimensionnement de la batterie de chauffe n’est alors nécessaire, mais l’air pulsé est momentanément contaminé par l’air vicié.

Recyclage de l’air extrait pour dégivrer le récupérateur.

  • À préchauffer l’air neuf à une température comprise entre – 10 et – 5°C au moyen d’une batterie à eau chaude ou électrique.

Pour détecter le gel d’une partie d’un échangeur de chaleur, on procède par mesure de la pression différentielle entre l’amont et l’aval de la veine d’air repris car au fur et à mesure que la couche de glace s’étend et s’épaissit, la perte de charge de l’échangeur sur la veine d’air repris augmente rapidement.


Entretien

Le contrôle de l’état de propreté de l’équipement de récupération est primordial.

En effet, l’encrassement des surfaces d’échange a deux conséquences néfastes sur la récupération : la réduction du coefficient d’échange de chaleur et la réduction des débits d’air.

Le tableau ci-dessous donne, pour les échangeurs à plaques, les différents points à contrôler lorsque l’on fait la maintenance :

Échangeur à plaques

v

1 État des surfaces d’échange (nettoyage régulier)

X

2 Contrôle des éventuelles fuites d’air
fuites externes

X

fuites internes

X

fuites au niveau du clapet de by-pass

X

3 Contrôle de la régulation
régulation du/des clapets de by-pass

X

régulation antigel

X


Exemple

En vue de comparer les différents systèmes de récupération, nous développons ici le calcul du rendement de l’installation pour les différents systèmes de récupération présentés.

Prenons comme exemple une installation de traitement d’air d’un immeuble de bureaux, fonctionnant en tout air neuf, 10 heures/jour, 5 jours/semaine.

Les groupes de pulsion et d’extraction GP/GE sont de même débit : 21 000 m³/h – section de 1 525 x 1 525 mm, soit une vitesse d’air de 2,5 m/s.

Dans le cas d’un échangeur à plaques, on déduit du catalogue du constructeur :

  • le choix d’un récupérateur à plaques en Aluminium, avec by-pass.
  • le fonctionnement dans les conditions extrêmes :

  • l’évolution dans le diagramme de l’air humide :

On constate qu’une part de l’énergie thermique transmise à l’air neuf provient de la condensation de la vapeur d’eau de l’air extrait. Celui-ci ne reçoit aucune humidité et évolue donc à humidité absolue constante.

  • l’efficacité thermique instantanée :

ε= t– t/ t– t= (14 – (- 10)) / (22 – (- 10)) = 0,75 = 75 %

L’équipement sélectionné a entraîné les températures de sortie des fluides. On en déduit que le récupérateur a donné un accroissement de température de l’air neuf de 75 % de l’écart maximal entre les fluides, soit 0.75 x 32° = 24°.

Remarque : en réalité, le rendement thermique (rapport des enthalpies) donnerait :

η = h– h/ h– h= (17,5 – (- 6,5)) / (41 – (- 6,5)) = 0,51 = 51 %

Seulement 51 % du transfert maximal (en chaleur sensible et latente) est réalisé par le récupérateur).

La puissance maximale récupérée représente :

Pmax. réc. = 0,34 [W/(m³/h).°C] x 21 000 [m³/h] x (14° – (- 10°)) = 167 [kW]

0,34 [W/(m³/h).°C] = chaleur spécifique de l’air.

Cette puissance pourra être déduite de la puissance de la chaudière à installer si la régulation du dégivrage le permet.

L’efficacité thermique, calculée dans les conditions extrêmes (- 10°C), reste sensiblement identique aux autres températures de la saison de chauffe. Aussi, la température moyenne extérieure en journée étant de 8°C, la puissance moyenne récupérée sera de :

Pmoy. réc. = 167 [kW] x (22° – (8°)) / (22° – (- 10°)) = 73 [kW]

Cela entraîne une économie thermique de :

Eréc = 73 [kW] x 10 [h/j] x 5 [j/sem] x 35 [sem] / 0,8 = 160 245 kWh

Le facteur 0.8 correspond au rendement saisonnier de la production de chaleur pour une installation nouvelle, dont les conduites sont isolées. On prendrait 0.7 pour une installation plus ancienne. 35 semaines correspondent à la durée de la saison de chauffe.

Suite à la présence du récupérateur (pertes de charge complémentaires), les puissances des ventilateurs sont modifiées comme suit :

Avant Après
GE GP GE GP
2,2 kW 5,2 kW 5,5 kW 6,6 kW

Intérêt pour le refroidissement

Dans un bâtiment climatisé en été, l’intérêt d’installer un récupérateur pour prérefroidir l’air neuf et diminuer les coûts de la climatisation est faible. En effet, la période durant laquelle cela peut se passer et la très faible différence de température entre l’air neuf et l’air vicié rend l’énergie totale récupérée en été négligeable.

Pour contourner cet obstacle, il existe des échangeurs à plaques dans lequel l’air vicié est refroidi plus fortement par humidification.

Techniques

Pour en savoir plus sur ce système refroidissement dit adiabatique.

Condenseurs [Froid alimentaire]

Condenseurs [Froid alimentaire]


Vue synoptique

La chaleur extraite par une machine frigorifique doit être évacuée vers l’extérieur. Le plus simple est de refroidir le fluide frigorigène avec l’air extérieur :

         

Mais la puissance de refroidissement est parfois trop faible. On peut la renforcer grâce à l’évaporation d’eau supplémentaire (lorsque de l’eau s’évapore, la chaleur de la vaporisation est « pompée » sur la goutte d’eau qui reste et qui donc se refroidit) :

          

Problème : parfois, la distance entre le groupe et la toiture est fort élevée et la perte de charge dans le circuit frigorifique serait trop importante. Aussi, un circuit d’eau est créé, l’eau refroidit le fluide frigorifique et l’air refroidit l’eau !

Trois types d’échangeur sont rencontrés :

L’aéro-refroidisseur

Le fluide frigorigène est directement refroidi par l’air.

Schéma principe aéro-refroidisseur.

Le condenseur évaporatif

Une puissance supplémentaire est donnée par pulvérisation d’une eau  indépendante du circuit.

Schéma condenseur évaporatif.

Le condenseur adiabatique

De l’eau d’une source externe (eau de pluie par exemple) imbibe des matelas à un débit tel que toute l’eau est entièrement évaporée dans l’air entrant, ce qui permet de le refroidir.

Schéma condenseur adiabatique.


Fonctionnement d’un condenseur à air

Le fonctionnement du condenseur s’intègre dans un fonctionnement global de la machine frigorifique.

En théorie, la condensation se déroule en 3 phases :

  • Phase 1, la désurchauffe du fluide frigorigène, qui, sortant du compresseur sous forme de gaz très chauds (parfois jusqu’à 70 °C), va se refroidir et donner sa chaleur sensible.
  • Phase 2, la condensation du fluide, moment où l’essentiel de la chaleur est donné sous forme de chaleur latente.
  • Phase 3, le sous-refroidissement du liquide, communiquant encore de la chaleur sensible au fluide refroidisseur.

Schéma fonctionnement d'un condenseur à air.


Fonctionnement des condenseurs évaporatifs et adiabatiques

Un litre d’eau évaporée évacue 2 500 kJ de chaleur. Pour obtenir le même effet de refroidissement sur le fluide frigorigène sans l’évaporation de l’eau, par exemple dans un condenseur à eau, on devrait faire couler dans les tuyaux du condenseur 60 litres d’eau qui se réchaufferaient de 10 °C … (sur base d’une capacité calorifique de l’eau de 4,18 [kJ/kg.K]).

Condenseur évaporatif simple

Schéma condenseur évaporatif simple.

Un condenseur évaporatif simple est équipé d’un dispositif simple d’aspersion de la batterie de condensation. Il travaille essentiellement en « température de bulbe humide » permettant de valoriser la chaleur de vaporisation et, par conséquent, de réduire la température de condensation de l’ordre de 4 à 5°C. C’est sur le principe physique de l’évaporation de l’eau que le condenseur évaporatif fonctionne. Ainsi, l’eau est pulvérisée en microgouttelettes au niveau de la batterie de condensation en assurant le refroidissement du fluide frigorigène par la combinaison :

  • d’un échange de chaleur sensible, dû à la température du mélange de l’eau et de l’air ascendant;
  • et d’un échange de chaleur latente, dû à l’évaporation de l’eau dans l’air au contact de la batterie de condensation.

En théorie, si l’échange était parfait (surface d’échange infinie), le fluide frigorigène refroidi atteindrait la température humide de l’air.

Par exemple, si l’air extérieur est de 30°C, 40 % HR, sa température humide est de 20 °C 100 % HR. Mais l’eau n’atteindra pas cette valeur. En pratique, elle sera de 3 à 8 °C au-dessus de cette valeur, suivant le dimensionnement du bureau d’études (pour atteindre 3 °C, il faut dimensionner largement le condenseur). Cette valeur est appelée « approche ».

Approche.

Condenseur évaporatif mixte

Photo condenseur évaporatif mixte.

Condenseur évaporatif (550 kW).

Le condenseur évaporatif mixte optimise la consommation d’eau de refroidissement grâce à trois modes de fonctionnement :

  • mode sec;
  • mode adiabatique;
  • mode combiné sec et humide.

Mode sec

Mode sec.

En mode sec, le condenseur évaporatif fonctionne comme un condenseur à air. La vanne trois voies du circuit du fluide frigorigène est ouverte de manière à laisser passer le fluide en série dans les deux batteries de condensation :

  • d’abord dans la batterie supérieure (batterie à ailettes). Le sens d’écoulement du fluide est de haut en bas;
  • ensuite dans la batterie inférieure (batterie lisse). Dans cette batterie, le sens d’écoulement du fluide est inversé (de bas en haut) et ce, afin de favoriser l’échange avec l’air.

La pompe d’alimentation en eau ne débite pas.
Ce mode de fonctionnement convient quand la température externe basse autorise la condensation  par un échange basé uniquement sur la chaleur sensible (échange de chaleur dû à l’écart de température entre le fluide frigorigène et l’air externe).

Mode adiabatique

 Mode adiabatique.

En mode adiabatique, la vanne trois voies ne permet au fluide frigorigène que de se condenser dans l’échangeur supérieur à ailettes.

La pompe à eau fonctionne et permet l’aspersion du « matelas » qui s’imbibe d’eau. Le débit est régulé de telle manière à évaporer l’eau dans l’air qui traverse le matelas. Le pré-refroidissement (adiabatique) de l’air assure une température de condensation inférieure à celle espérée en mode « sec » (on peut gagner, selon un constructeur de 5 à 7°C par rapport à un refroidissement en chaleur sensible).

Mode combiné sec et humide

 

Mode mixte.

En mode combiné la chaleur sensible et latente (due à l’évaporation de l’eau dans le flux d’air). La batterie supérieure à ailettes travaille à 100 % de sa capacité aidée par la batterie à surface lisse qui module en fonction de la pression de condensation. Par ce système, il est possible de garantir une température de condensation basse et donc d’améliorer les performances du compresseur (taux de compression HP/BP plus faible).

Ce mode de fonctionnement, tout comme les tours de refroidissement, exige un suivi important au niveau maintenance afin de limiter les risques de développement de légionelles. C’est sans doute pour cette raison, mais aussi pour une question de puissance que ce genre de condenseur est très peu répandu.

Condenseur adiabatique

 

Condenseur adiabatique.

Le principe de fonctionnement du condenseur adiabatique est le même que l’évaporatif. Les seules différences sont les suivantes :

  • L’évaporation de l’eau est réalisée exclusivement au niveau des « matelas » avant la batterie de condensation. C’est un pré-refroidissement (adiabatique) de l’air.
  • Le débit d’eau qui imbibe les « matelas », est régulé de telle manière que toute l’eau s’évapore. Par ce procédé, on limite le risque de développement des légionelles vu qu’il n’y a pas de fines gouttelettes en suspension dans l’air. D’après un constructeur de ce type de condenseur, les rapports d’analyse bactérienne sont très prometteurs.

Comparaison des performances

Comparons les systèmes en fixant des valeurs moyennes : une température d’air de 30°C 40 % HR, une « approche » de 5 °C, un pincement des échangeurs de 6°C et un échauffement de la température de l’eau de 7 °C.

Type de condenseur T° air sec Entrée condens. Sortie condens. T°condensat.
fluide frig.
à air 30° T° air = 30° T° air = 37° 43°
évaporatif et adiabatique 30° T° air = 25° T° air = 32° 38°

Cette approche simplifiée situe l’ordre de grandeur de la température de condensation, et donc l’impact sur la consommation du compresseur.


Technologie des condenseurs à air

Batterie de condensation

L’évacuation de la chaleur du circuit frigorifique est assurée au travers d’un échangeur direct fluide frigorigène/air.

     

Batterie de condenseur (source : Balticare).

Le gaz chaud du réfrigérant cède sa chaleur à l’air traversant le condenseur et passe à l’état liquide. Le débit et la température du flux d’air déterminent la puissance du condenseur.

La technologie des batteries de condensation est extrêmement complexe quant à l’optimisation de l’échange de chaleur.

Cette batterie d’échange convient en toute saison, car elle est insensible au gel.
Néanmoins, elle n’est pas aussi performante qu’un condenseur avec pulvérisation d’eau puisque la température de refroidissement est limitée à la température de l’air extérieur; c’est le point faible du condenseur à air. En effet, l’air de refroidissement peut être élevé en été.

Plus chaud sera l’air , plus la pression de condensation sera très élevée. Le compresseur verra dès lors sa consommation énergétique augmenter.

Proportionnellement, le condenseur évaporatif aura un meilleur rendement… mais une sensibilité à la corrosion plus forte …

Ce système doit donc être limité aux installations de petite et moyenne puissance.

Ordres de grandeur

  • coefficient d’échange d’un condenseur à air : 20 à 30 [W/m².K];
  • puissance de réjection (puissance d’évacuation de la chaleur) : de quelques kW à plusieurs centaines de kW au niveau du froid commercial;

Particularités

  • Les batteries peuvent être positionnées :
    • horizontalement (répartition de la charge sur une plus grande surface au sol; ce qui intéressant lorsqu’on les place en toiture);
    • verticalement (gain de place au sol);
    • en V;
  • Les ailettes de batterie sont en général protégées contre les agressions (corrosion, entartrage, …) par un revêtement en « époxy ».
  • Le dimensionnement d’un condenseur doit tenir compte du sous-refroidissement. Le condenseur est alors légèrement surdimensionné afin d’offrir au fluide frigorigène une surface d’échange suffisante pour condenser complètement (meilleure performance du cycle frigorifique, réduction du risque de « flash gaz » au niveau du détendeur).

    

Condenseur horizontal (source Delhaize).

Ventilateur

Particularités

  • Deux types de ventilateur sont utilisés :

     

Ventilateur axial et ventilateur centrifuge.

  • La vitesse moyenne de passage de l’air est de 2 à 4 m/s.
  • Dans certaines applications, les ventilateurs doivent être munis de silencieux afin de réduire les nuisances sonores surtout en milieu urbain.

 Silencieux (source Balticare).

  • En général, sur les condenseurs de faible puissance,  un seul voire deux ventilateurs axiaux en parallèle assure l’évacuation de la chaleur de condensation.
  • Par contre, pour les grandes puissances, plusieurs ventilateurs permettent de moduler la puissance de dissipation par leur mise en cascade ou en parallèle avec variation de vitesse sur chacun d’eux.

Régulation de la vitesse

Une des particularités les plus importantes des condenseurs à air est la régulation de la vitesse des ventilateurs en fonction des conditions externes de température et de la chaleur de réjection à évacuer. En effet, elle permet de profiter de notre climat tempéré pour abaisser au maximum la température de condensation qui influence énormément les consommations du compresseur.

     

Coffret avec variateur de vitesse (source Balticare) et variateur de vitesse (source Delhaize).


Technologie des condenseurs évaporatifs

Condenseur évaporatif mixte et condenseur adiabatique.

Principe

Les condenseurs évaporatifs  se comportent comme des tours de refroidissement fermées, à la différence près que le fluide réfrigérant se condense directement au niveau de la batterie sans passer par un circuit intermédiaire d’eau de refroidissement.

Performances

Vu la présence de système de refroidissement par évaporation d’eau, les condenseurs évaporatifs ont des performances plus élevées que les condenseurs à air. Naturellement, la puissance de réjection est plus importante aussi. Les plus petites unités ont des puissances de l’ordre de 100 KW. Ce type de condenseur s’adresse donc à des moyennes et grandes surfaces.

Les performances du condenseur seront fonction de :

  • la différence de température entre le réfrigérant et l’eau,
  • la vitesse de l’eau (le débit),
  • le coefficient d’encrassement,
  • la nature du fluide frigorigène.

Utilisation de l’eau

Eau de ville

Pour le refroidissement, on peut utiliser l’eau du réseau (eau potable), mais cette solution n’est pas adéquate vu la consommation exorbitante d’eau qu’elle entraîne !

On peut utiliser également l’eau de nappes phréatiques, de lac ou de rivière (demander l’autorisation). Les eaux contiennent alors plus ou moins d’impuretés qui se déposent sur les tubes. Ces dépôts peuvent réduire considérablement le coefficient de transfert de chaleur. À défaut de la mise en place d’un système de nettoyage automatique, il faut surdimensionner l’échangeur de sorte que les performances de l’installation restent suffisantes. Néanmoins, à l’heure actuelle, les moyens de filtration mis à disposition permettent d’obtenir des qualités d’eau correctes.

Eau de pluie

Aussi, on oublie  trop souvent de parler de la récupération d’eau de pluie qui représente une source non négligeable de réduction de la facture d’eau du réseau. Certains diront que l’eau de pluie est agressive et risquerait de corroder le condenseur. N’oublions pas qu’actuellement  la plupart des batteries de condensation sont protégées (« coating ») par une couche époxy qui permet de réduire le risque de dégradation. Par contre, il faut souligner que l’eau de pluie provoque peu d’entartrage.

 Schéma principe de récupération eau de pluie.

 Schéma principe de récupération eau de pluie - 2.

Types de condenseur évaporatif

Les condenseurs évaporatifs simples

Schéma principe condenseurs évaporatifs simples.

Les condenseurs évaporatifs simples sont, en général, équipés :

  • d’une batterie de condensation à surface lisse;
  • d’un ventilateur axial ou centrifuge suivant la puissance de réjection;
  • d’une rampe d’aspersion;
  • d’un bac de récupération d’eau;
  • d’une pompe;
  • d’accessoires de régulation;

Les condenseurs adiabatiques

Schéma principe condenseurs adiabatiques.

Ils se différencient des condenseurs évaporatifs simples par le procédé d’évaporation de l’eau :

  • Le condenseur évaporatif simple réalise l’évaporation directement au niveau de la batterie de condensation. Aussi, toute l’eau aspergée n’étant pas évaporée, la partie liquide est récoltée au point bas de l’équipement.
  • Le condenseur adiabatique, quant à lui, est équipé de « matelas » qui s’imbibe d’eau. En principe toute l’eau est évaporée par le passage de l’air au travers des matelas. Il agit surtout comme pré-refroidisseur de l’air qui passera au travers de la batterie de condensation.

Le condenseur adiabatique est souvent équipé :

  • d’une batterie de condensation à ailettes;
  • d’un ventilateur axial;
  • de matelas refroidisseurs;
  • d’accessoires de régulation;

Les condenseurs mixtes

Les condenseurs évaporatifs mixtes allient les technologies des condenseurs évaporatifs simples et adiabatiques. Ils sont en général prévus pour évacuer des grandes quantités de chaleur. On les retrouve plutôt dans les industries agro-alimentaires. Néanmoins, il pourrait très bien convenir pour les grandes surfaces (ordre de grandeur : puissance de réjection > 500 kW).

Schéma principe condenseurs mixtes.

Ce type de condenseur est composé principalement des pièces suivantes :

Schéma principe condenseurs mixtes, description.

  1. Entrée d’air.
  2. Sortie d’air.
  3. Entrée fluide frigorigène (gaz).
  4. Sortie fluide frigorigène (liquide).
  5. Surface d’échange adiabatique.
  6. Bassin de récupération d’eau.
  7. Rampe d’aspersion.
  8. Batterie à surface lisse (évaporatif).
  9. Pompe d’alimentation en eau.
  10. Séparateur de gouttes.
  11. Bâti.
  12. Batterie à ailettes (sec).
  13. Ventelles d’entrée d’air.
  14. Vanne trois voies modulante.
  15. Capteur de pression.

Échangeur à caloduc

Échangeur à caloduc


Principe

Le caloduc est un superconducteur de chaleur fonctionnant en cycle fermé selon le principe évaporation – condensation, avec retour de liquide soit par gravité, soit par capillarité.

Schéma principe échangeur à caloduc - 01.

Son intérêt provient de la valeur très élevée de la chaleur latente de changement de phase comparée à la chaleur spécifique.

Il est constitué d’une enceinte hermétiquement scellée, contenant un fluide frigorigène. Le choix du fluide caloporteur dépend de la température de travail prévue.

Schéma principe échangeur à caloduc - 02.

Caloduc.

Le flux d’air chaud circulant dans la partie inférieure du tube cède sa chaleur au fluide liquide et le porte à ébullition. La vapeur ainsi formée monte dans la partie haute du tube où elle se trouve en contact avec l’air froid. Le gaz va se condenser sur la paroi interne du tube en cédant sa chaleur de condensation, puis va retomber naturellement par gravité dans la partie inférieure pour un nouveau cycle.

De nombreux caloducs toujours en fonctionnement travaillent avec un fluide frigorigène de la catégorie des chlorofluorocarbures (CFC) actuellement interdits dans les nouveaux matériels.

La disposition verticale est caractéristique du type à gravité. Il existe également des tubes horizontaux où la circulation se fait par capillarité. Ce dernier système est alors réversible et peut donc fonctionner en été.

Ce type de récupérateur se caractérise par sa faible masse, l’absence de pièces en mouvement et un encombrement réduit. Les conduits d’air repris et d’air neuf doivent cependant être proches.

Concernant le fonctionnement, une régulation est à prévoir, de même il faut également prévoir un entretien du récupérateur.


Facteur influençant le rendement

Soit le diagramme suivant fourni par un constructeur :

Graphe de performance.

Ce diagramme est conçu en fonction d’une température entre l’air vicié et l’air neuf de 30°C mais peut cependant s’appliquer également avec une bonne fiabilité dans toute la plage comprise entre 20°C et 40°C. Le diagramme ci-dessus suppose que les débits d’air neuf et d’air vicié sont identiques.

Le rendement de récupération est donc fonction ici :

  • du débit d’air,
  • de la taille de l’échangeur.

> l’efficacité thermique se situe généralement entre 50-60 %.


Avantages – Désavantages

Avantages

  • Faible encombrement,
  • peu de maintenance,
  • système statique (pas d’énergie d’appoint),
  • réversibilité pour le type horizontal à capillarité.

Désavantages

  • Amenée et évacuation d’air doivent être adjacentes,
  • régulation de température limitée,
  • risque de givre mais seuil assez bas,
  • en cas de panne, il y a risque de contamination de l’air par le fluide frigorigène,
  • pas réversible, donc pas de fonctionnement d’été possible pour le type gravitaire.

Régulation

Tous les types de récupérateurs nécessitent un système de régulation :

  • En hiver pour éviter le gel du côté de l’air extrait : si l’échange est tel que la température de l’air extrait chute sous 0°C, il faut réduire le transfert de chaleur pour éviter le givre de l’échangeur.
  • En mi-saison et en été pour éviter la surchauffe de l’air à la sortie du récupérateur : il faut réduire l’échange pour éviter que la température de l’air neuf devienne telle qu’elle contribue à surchauffer l’ambiance intérieure.

Pour les échangeurs verticaux, la régulation antigel s’effectue par by-pass d’une partie de l’air neuf qui est injecté directement sans passer par le récupérateur. On limite ainsi la diminution de température de l’air rejeté. C’est en fonction de l’état de l’air repris que les diagrammes des fabricants permettent de déterminer les conditions pour lesquelles on risque d’atteindre la limite de gel. Il faut en outre tenir compte de cette possibilité de by-pass pour dimensionner la batterie de préchauffe complémentaire placée sur l’air neuf.

Pour réguler les échangeurs caloducs horizontaux, on le dispose sur une balance, de légères inclinaisons de +- 5 à 10 degrés accélérant le retour des condensats (augmentation de puissance) ou le ralentissement (diminution de puissance) progressivement. On parle de régulation par basculement.


Entretien

Le contrôle de l’état de propreté de l’équipement de récupération est primordial.

En effet, l’encrassement des surfaces d’échange a deux conséquences néfastes sur la récupération : la réduction du coefficient d’échange de chaleur et la réduction des débits d’air.

Le tableau ci-dessous donne, pour les caloducs, les différents points à contrôler lorsque l’on fait la maintenance :

Caloducs

v

1 État des surfaces d’échange (nettoyage régulier)

X

2 Contrôle des éventuelles fuites d’air
fuites externes

X

fuites internes

X

fuites au niveau du clapet de by-pass

X

3 Contrôle de la régulation
régulation à bascule

X

régulation du/des clapets de by-pass

X

régulation antigel

X

4 Contrôle du fluide caloporteur
contrôle du remplissage du circuit

X


Exemple

En vue de comparer les différents systèmes de récupération, nous développons ici le calcul du rendement de l’installation pour les différents systèmes de récupération présentés.

Prenons comme exemple une installation de traitement d’air d’un immeuble de bureaux, fonctionnant en tout air neuf, 10 heures/jour, 5 jours/semaine.

Les groupes de pulsion et d’extraction GP/GE sont de même débit : 21 000 m³/h – section de 1 525 x 1 525 mm, soit une vitesse d’air de 2,5 m/s.

Dans le cas d’un échangeur à caloduc, on déduit du catalogue du constructeur :

  • le choix d’un caloduc en Cu/Al avec 8 rangs,
  • le fonctionnement dans les conditions extrêmes :

  • l’évolution dans le diagramme de l’air humide :

On constate qu’une part de l’énergie thermique transmise à l’air neuf provient de la condensation de la vapeur d’eau de l’air extrait. Celui-ci ne reçoit aucune humidité et évolue donc à humidité absolue constante.

  • l’efficacité thermique instantanée :

ε= t2 – t/ t– t= (9,6 – (- 10)) / (22 – (- 10)) = 0,61 = 61 %

L’équipement sélectionné a entraîné les températures de sortie des fluides. On en déduit que le récupérateur a donné un accroissement de température de l’air neuf de 61 % de l’écart maximal entre les fluides, soit 0.61 x 32° = 19,6°.

Remarque : en réalité, le rendement thermique (rapport des enthalpies) donnerait :

η = h– h/ h– h= (13,5 – (- 6,5)) / (41 – (- 6,5)) = 0,42 = 42 %

Seulement 42 % du transfert maximal (en chaleur sensible et latente) est réalisé par le récupérateur).

La puissance maximale récupérée représente :

Pmax. réc. = 0,34 [W/(m³/h).°C] x 21 000 [m³/h] x (9,6° – (- 10°)) = 136 [kW]

0,34 [W/(m³/h).°C] = chaleur spécifique de l’air

Cette puissance pourra être déduite de la puissance de la chaudière à installer.

L’efficacité thermique, calculée dans les conditions extrêmes (- 10°C), reste sensiblement identique aux autres températures de la saison de chauffe. Aussi, la température moyenne extérieure en journée étant de 8°C, la puissance moyenne récupérée sera de :

Pmoy. réc. = 136 [kW] x (22° – (8°)) / (22° – (- 10°)) = 60 [kW]

Cela entraîne une économie thermique de

Eréc = 60 [kW] x 10 [h/j] x 5 [j/sem]. x 35 [sem] / 0,8 = 130 870 [kWh]

Le facteur 0.8 correspond au rendement saisonnier de la production de chaleur pour une installation de chauffage nouvelle et dont les conduites sont isolées. On prendrait 0.7 pour une installation plus ancienne. 35 semaines correspondent à la durée de la saison de chauffe.

Suite à la présence du récupérateur (pertes de charge complémentaires), les puissances des ventilateurs sont modifiées comme suit :

Avant  

Après

 

GE GP GE GP
2,2 kW 5,2 kW 4,4 kW 6,6 kW

Eclairage à deux composantes

Eclairage à deux composantes

Une première composante assure un éclairage général direct ou indirect de faible éclairement (environ 300 lux sur le plan de travail); une deuxième composante assure l’appoint directement sur la place de travail.

Avantages

Ce système est énergétiquement le plus intéressant : il associe un faible niveau d’éclairement général et des luminaires ponctuels, en fonction des besoins.

Inconvénients

L’inconvénient de l’éclairage ponctuel est qu’il peut générer des contrastes, des ombres marquées ainsi que des réflexions gênantes. Ceci dit, le fait de veiller à une bonne uniformité permet de limiter les effets néfastes des contrastes.

Types de programmateur d’intermittence

Types de programmateur d'intermittence

Pratiquer une intermittence du chauffage durant les périodes d’inoccupation du bâtiment conduit toujours à des économies d’énergie. Celles-ci seront plus ou moins importantes en fonction du type de bâtiment (inertie, isolation) et de la durée d’inoccupation. Elles dépendent aussi du type de programmateur utilisé. L’ordre dans lequel ces derniers sont décrits ici correspond à une gradation dans le potentiel d’économie d’énergie réalisable. Les programmateurs peuvent agir soit directement sur la chaudière dans le cas d’un circuit de distribution unique et/ou sur la régulation des circuits secondaires.


Abaissement de courbe de chauffe

Ce type de programmateur est encore extrêmement répandu dans nos chaufferies.

Il est appliqué sur bon nombre de régulateurs travaillant sur base d’une sonde extérieure. Dans ces derniers, la température de l’eau de chauffage est régulée en fonction de la température via une courbe de chauffe.

Le ralenti de chauffage consiste alors en un changement de courbe de chauffe programmé (souvent en fonction d’une horloge hebdomadaire) pour les périodes d’inoccupation.

Les régulateurs proposent généralement un déplacement parallèle de la courbe de chauffe pour le ralenti via :

  • un potentiomètre gradué en température d’eau. Pour des corps de chauffe dimensionnés pour un régime d’eau 90/70°, on considère souvent qu’une variation de température d’eau de 4 .. 5°C entraîne une variation de température ambiante de 1°C,
  • un potentiomètre gradué en température ambiante. Cette grandeur est indicative puisqu’aucune sonde intérieure ne permet de vérifier la température ambiante qui sera atteinte durant le ralenti,
  • un potentiomètre gradué de 0 à 10,
  • un boîtier de dialogue (appareils digitaux).

Potentiomètres basés sur la température ambiante ou sur la température d’eau.

En fonction du type de régulateur, le déplacement de ralenti proposé correspond,

  • soit à une translation par rapport à la courbe réelle de jour qui a été définie,
  • soit à une translation par rapport à la courbe de base du régulateur qui correspond au point pivot préréglé du régulateur.

Abaissement de la courbe de chauffe par rapport à la courbe de base du régulateur ou par rapport à la courbe de chauffe réelle de jour

Il est donc important de vérifier dans le mode d’emploi du régulateur le type de réglage qui est pratiqué.

Avec un tel mode de régulation, on parle de ralenti et non de coupure nocturne car, en période d’inoccupation, on continue toujours à fournir de la chaleur au bâtiment, moins qu’en période d’occupation, mais en quantité suffisante pour ne pas permettre un abaissement rapide de la température intérieure.

La relance du chauffage se fait :

  • Soit avec la température d’eau définie par la courbe de chauffe de jour. Dans ce cas, la puissance maximale n’est pas appliquée, ce qui rallonge la période de remise en température du bâtiment.
  • Soit avec une température dite « de régime accéléré », ce qui diminue le temps de relance.

Notons que, pour protéger de la condensation les chaudières dont la température d’eau ne peut descendre en dessous d’une certaine valeur, des régulateurs permettent une limitation basse de la température de départ de l’eau (par exemple 50°C). Si c’est la cas et si le réglage de la température d’eau s’effectue directement au niveau de la chaudière, il n’y aura quasi plus de ralenti de nuit lorsque la température extérieure dépasse un certain seuil.

Courbe de chauffe appliquée à une chaudière « basse température » ne pouvant descendre en-dessous de 50°C. Le ralenti nocturne est réalisé par un abaissement de la température d’eau de la chaudière de 20°C. À partir d’une température extérieure d’environ 0°C, l’intensité du ralenti diminue. Le ralenti disparaît lorsque la température extérieure dépasse 7°C.


Coupure et relance à heures fixes

Ce type de programmateur assure à heures fixes (en fonction d’une horloge quotidienne, hebdomadaire ou annuelle) :

  • le fonctionnement normal du chauffage en période d’occupation, régulé par exemple en fonction de la température extérieure,
  • l’arrêt complet du chauffage (arrêt des chaudières, fermeture des vannes mélangeuses, arrêt des circulateurs, …) en fin de période d’occupation,
  • la relance du chauffage à allure réduite pendant la période d’inoccupation si la température intérieure, mesurée par une sonde d’ambiance, descend en dessous d’une valeur limite (par exemple 16° en semaine et 14° le week-end),
  • la relance du chauffage, à pleine puissance.

Ce type de programmation permet l’arrêt complet du chauffage et la remise rapide en température du bâtiment. Un inconvénient subsiste : la coupure et la relance s’effectuent à heures fixes. Or le temps d’abaissement et de remontée de la température intérieure varie en fonction de la température extérieure, en fonction de la température atteinte pendant la coupure, en fonction de la chaleur emmagasinée dans le bâtiment durant l’occupation, …


Optimiseurs

Par rapport aux programmateurs assurant une coupure et une relance à heures fixes, les optimiseurs font varier le moment de ces dernières en fonction de différents paramètres.

Sur base de la température extérieure

Le moment de la coupure et de la relance varie en fonction de la température extérieure. Lorsqu’il fait plus chaud, le refroidissement du bâtiment est plus lent. L’heure de coupure est donc avancée automatiquement. De même, la température intérieure atteinte durant l’inoccupation et l’énergie nécessaire à la relance est plus faible. L’heure de la relance est donc retardée.

Ce type d’optimiseur ne mesurant pas la température intérieure présente une certaine imprécision en ce qui concerne le moment précis où la température intérieure d’occupation sera atteinte.

Sur base de la température extérieure et intérieure

L’adjonction de la température intérieure atteinte durant l’inoccupation comme paramètre de décision pour enclencher la relance permet une plus grande précision dans la définition de l’heure de relance. Cela limite les risques d’inconfort et optimalise le temps de coupure et donc l’énergie économisée.

La paramétrisation de ce type de programmateur reste délicate, en effet, il faut procéder par essais – erreurs, puisque plusieurs paramètres importants restent inconnus de l’utilisateur : l’inertie thermique du bâtiment, le degré de surpuissance du chauffage, ….

Autoadaptation

On parle d' »optimiseurs autoadaptatifs ».

Le programmateur adapte automatiquement ses paramètres de réglage au jour le jour, en fonction des résultats qu’il a obtenu les jours précédents. Par rapport à l’optimiseur décrit ci-avant et bien réglé, l’optimiseur autoadaptatif n’apportera pas d’économie d’énergie complémentaire. Son rôle est de faciliter (l’utilisateur ne doit plus intervenir) et donc d’optimaliser le réglage.

Exemple.

Lors de la relance matinale, le but définit à l’optimiseur est d’atteindre la température de 20°C au moment de l’occupation du bâtiment.

Le premier jour, comme l’optimiseur ne connaît pas le bâtiment, ni la surpuissance de l’installation, il démarrera l’installation uniquement en se basant sur la température extérieure et la température intérieure.

Dès lors, il est plus que probable que la température de consigne diurne soit atteinte trop tôt.

Le lendemain, l’optimiseur décalera automatiquement le moment de la relance. Ainsi de suite, jusqu’à ce qu’il trouve seul le bon réglage.

On peut considérer qu’il faut 4 jours à un optimiseur autoadaptatif pour définir correctement la loi qui relie la température extérieure, la température intérieure et le moment de la relance.

L’optimiseur fera le même exercice pour anticiper le moment de la coupure, tout en garantissant le confort des occupants.


Comparaison de l’économie réalisée en fonction du type de programmateur

La consommation d’une installation de chauffage est proportionnelle à la différence de température entre l’intérieur et l’extérieur. Plus cette différence diminue, moins on consommera.

Graphiquement, on peut représenter la consommation de chauffage comme suit :

Image de la consommation de chauffage sans intermittence et avec intermittence.

On voit donc que plus la température intérieure chute et plus le temps pendant lequel cette température est basse est important, plus l’économie d’énergie réalisée grâce à l’intermittence est importante.

Comparons l’évolution de la température intérieure (donc l’évolution de l’économie d’énergie) en fonction du programmateur choisi (cas de la mi-saison) :

Abaissement de la température de l’eau.
La réduction de température intérieure est lente, de même que la relance.

Coupure complète et relance à heures fixes.
Le moment où la température de consigne d’occupation est atteinte dépend de la saison.

Optimiseur.
Les moments de la coupure et de la relance sont adaptés soit automatiquement, soit par réglage de l’utilisateur. La précision du réglage et la différence d’économie entre les 3 types d’optimiseurs dépendent de ce dernier.

Comparaison qualitative entre les types de programmateur.


Dérogation

Il est souvent nécessaire dans le cas d’immeubles tertiaires de prévoir une possibilité de dérogation sur le fonctionnement de ralenti.

Un exemple de dérogation particulièrement intéressant est la possibilité de relancer l’installation pour une durée limitée (par exemple, 2 heures). Après cette période l’installation repasse en mode automatique, évitant ainsi tout oubli. Si l’occupant est encore présent, il peut remettre l’installation en dérogation et obtiendra de nouveau 2 heures de chauffage.

Liaisons froides [cuisine collective]

Liaisons froides [cuisine collective]

En liaison froide, les plats sont préparés en cuisine centrale. Après cuisson, les denrées subissent une réfrigération rapide avant d’être stockées à basse température. Suivant la durée de conservation recherchée (quelques jours ou quelques mois), on procède à une liaison froide positive ou une liaison froide négative.


Liaison froide positive

Les plats se conservent au maximum pendant 6 jours*.

  • Après confection, les plats sont conditionnés en rations individuelles ou en plats collectifs, dans des barquettes fermées par thermosoudage.
  • Une cellule de refroidissement rapide abaisse la température au cœur des aliments de +65°C à +10°C en moins de 2 heures (y compris la durée de manutention).
  • Les barquettes sont placées dans une armoire ou chambre de stockage à une température oscillant entre 0 et +3°C.
  • Le transport à destination des restaurants satellites s’effectue en véhicules réfrigérants (+3°C)  ou isothermes.
  • Sur chaque site, les produits sont entreposés en armoire réfrigérée (+3°C).
  • Avant consommation, ils subissent un réchauffement rapide à au moins 65°C à cœur, en moins d’une heure.

* : plus précisément, les plats se conservent :

  • 3 jours, en règle générale.
  • 5 jours pour certains produits.
  • 1 jour pour certains produits tels que les crevettes.

Pour en savoir plus, voir « HACCP pour PME – Gemploux ».


Liaison froide négative

Elle est aussi appelée liaison surgelée.
Les plats se conservent pendant plusieurs mois.

  • Après confection, les plats sont conditionnés en rations individuelles ou en plats collectifs, dans des barquettes fermées par thermosoudage.
  • Une cellule de refroidissement rapide abaisse la température au cœur des aliments de +65°C à +10°C en moins de 2 heures (y compris la durée de manutention).
  • Les plats passent dans un tunnel de refroidissement rapide qui porte les températures des aliments de +10°C à -18°C en moins de 3 heures après la fin de la cuisson.
  • Le transport à destination des restaurants satellites s’effectue en véhicules réfrigérants (-18°C).
  • Sur chaque site, les produits sont stockés à -18°C.
  • Avant consommation, ils subissent un réchauffement rapide à au moins 65°C, en moins d’une heure.

Remarque : plutôt que de passer dans une cellule de refroidissement rapide puis un tunnel de refroidissement, les aliments peuvent aussi simplement passer dans une cellule de congélation rapide.


Avantages

C’est un mode de préparation très hygiénique. Les qualités nutritives sont conservées.

La fabrication et la consommation peuvent être dissociées dans le temps et dans l’espace. Ce qui permet une production en continu et donc une meilleure répartition des tâches sur la journée et sur la semaine de travail.

Elle permet d’ajuster les quantités préparées à celles commandées et limite donc les pertes.

Elle augmente le choix des consommateurs.

Elle permet le regroupement des achats (incidence sur les prix)


Inconvénients

L’investissement en équipement est élevé (environ 30 % supérieur à celui nécessaire à une liaison chaude). On ne peut pas tout servir. On ne peut pas servir de frites par exemple.

Lampes incandescentes

Lampes incandescentes


Comment fonctionne une lampe incandescente ?

Schéma principe lampes incandescentes.

Le courant électrique passe dans le filament en tungstène et le porte à une température élevée par effet Joule. Le filament devient incandescent : il émet de la lumière ainsi que de la chaleur. Des atomes de tungstène sont éjectés du filament par sublimation et sont déposés au niveau de la surface interne de l’ampoule en verre plus froide. Il s’ensuit un noircissement de l’ampoule après un temps d’utilisation relativement court.
Une des parades au noircissement est l’augmentation de la surface des ampoules à incandescence. Raison pour laquelle ce type d’ampoule est de taille importante par rapport aux lampes halogènes par exemple.
Le flux lumineux des lampes à incandescence peut être diminué ou augmenté par variation de la tension (« dimming« ). Cette modulation se fera cependant avec une diminution de la température de couleur et du rendement lumineux.


Itinéraire d’une fin programmée

Depuis septembre 2009, l’utilisation de la lampe à incandescence est en chute libre ! En effet, par rapport à d’autres types de lampe, la lampe à incandescence est très énergivore. Pour cette raison, elle a été retirée progressivement du marché.

Type Puissance 2009 2010 2011 2012 2013 2014 2015 2016
Incandescente Claire
15 W Classe E* Classe E* Classe E* Classe C* Second niveau d’exigences de fonctionnalité Réexamen Classe B
25 W Classe E* Classe E* Classe E* Classe C* Classe B
40 W Classe E* Classe E* Classe E* Classe C* Classe B
60 W Classe E* Classe E* Classe C* Classe C* Classe B
75 W Classe E* Classe C* Classe C* Classe C* Classe B
100 W Classe C* Classe C* Classe C* Classe C* Classe B
Non – claire
Classe A Classe A Classe A Classe A Classe A

Disponibilité

* Classe E pour les culots 514, 515, 519 (linolites)

Indisponibilité

Réglementation 

 Pour en savoir plus sur les classes énergétiques des lampes

Données

 Pour connaitre les caractéristiques des lampes à incandescence

Données 

Pour consulter un récapitulatif des caractéristiques des différents types de lampe

Sonde COV

Sonde COV


Domaine d’application

Il s’agit d’une sonde de qualité de l’air, permettant notamment de réguler la ventilation en fonction des besoins. La mesure des Composés Organiques Volatiles (« mixed-gas sensors » ou VOC en anglais) est surtout réalisée dans les lieux fortement pollués par la présence de fumée de tabac ou d’odeurs.

La sonde présente en effet une grande sensibilité aux odeurs d’origine humaine, à la fumée de cigarette et aux émissions provenant des matériaux d’ameublement et de décoration, aux produits d’entretien ménager,… Bref, aux bonnes comme aux mauvaises odeurs! Il ne faut donc pas interpréter trop vite l’emballement du ventilateur lorsque la secrétaire rentre dans son bureau : c’est seulement la puissance de son parfum !

Elle permet une mesure simple, peu onéreuse, bien adaptée aux applications qui réclament une évaluation non sélective des polluants dans les bâtiments. Sa concurrente directe est la sonde CO2 plus fidèle pour détecter le nombre de personnes présentes dans un local, par exemple.


Fonctionnement

La sonde COV utilise le principe de Taguchi. Elle dispose d’un semi-conducteur (le plus souvent du dioxyde d’étain), mis en température par une résistance chauffante.

La surface du semi-conducteur est recouverte d’une très fine couche d’oxydes métalliques. Il s’y produit une oxydation des gaz et vapeurs, d’autant plus prononcée que le matériau est poreux et présente une surface d’échange importante. Sa résistance électrique varie en fonction de la quantité de molécules de composés organiques en contact. Le spectre des molécules auquel cet élément est sensible est très large, cette faible sélectivité (faible mais non nulle) la rend adaptée aux émanations humaines, à la fumée de tabac et à bien d’autres composés.

Suite à la variation de la résistance électrique du semi-conducteur, une simple mesure de tension électrique permet de connaître la quantité de gaz et de vapeur en présence.


Présentation

Il existe deux modèles de sondes COV : celles qui s’installent en paroi, dans le local et celles qui prennent place dans les conduits aérauliques.

Leurs présentations et leurs encombrements sont similaires à celles des sondes de température.


Emplacement

Il est préférable de choisir une sonde à placer en conduit aéraulique et de l’installer dans le conduit de reprise d’air. Ainsi, la mesure est plus représentative de la qualité d’air moyenne du local et la sonde n’est moins soumise aux perturbations locales et à l’empoussièrement.

Il convient toutefois de prendre quelques précautions. Les sondes ne doivent pas être installées ni trop loin, ni trop près de la grille de reprise, de façon à

  • éviter les dépôts sur la partie sensible de la sonde,
  • ne pas augmenter par trop le temps de réponse,
  • éviter les risques de condensation de vapeur d’eau sur la sonde,
  • garder un accès aisé.

Dans le cas où la sonde est placée dans le local, on sera attentif à

  • les éloigner des portes et fenêtres (pour éviter l’influence de l’air extérieur),
  • éviter les coins (mauvaise circulation de l’air).

Output

Ces sondes délivrent un signal analogique standard de type 0 – 10 V, proportionnel à la présence de composés organiques volatiles. Leur réponse est quelquefois exprimée en 0 – 100 % de qualité d’air.


Fiabilité

Des études ont montré une perte de sensibilité du semi-conducteur lors de son vieillissement. Par ailleurs, il semblerait que les conditions de température et d’humidité ambiante aient une influence sur la réponse.

Mise sue le marché au début des années 80, ces sondes ont connus des problèmes de jeunesses mais leur fiabilité s’est accrue depuis lors.

Les durées de remise en régime de ces sondes, d’une quinzaine de minutes au maximum, sont suffisantes pour recouvrer une réponse correcte et stable après interruption de l’alimentation électrique même de longue durée (plus d’une dizaine d’heures), contrairement aux indications des notices techniques.


Coût

Le prix moyen d’une sonde de COV est de 225 €.


Maintenance

Les mesures de composés organiques volatiles à semi-conducteurs requièrent un étalonnage fréquent bien qu’il ne soit pas toujours spécifié par les constructeurs. Une périodicité de 6 mois au plus est conseillée.

Le choix du mélange de référence est ouvert.

Le ré-étalonnage nécessite de prendre des précautions quant au choix du mélange de référence. Quelques notices techniques de fournisseurs préconisent de réaliser un étalonnage pour une concentration de méthane de 1 000 ppm. Il semble que l’acétone puisse être utilisée pour simuler les odeurs corporelles et le monoxyde de carbone pour la fumée de tabac.

Lampes halogènes

Eté 2008 : Brieuc.
22-10-2008 : 1er passage de mise en page [liens internes, tdm, en bref !, rapide passage général sur la mise en page de la feuille] – Sylvie
22-10-2008 : WinMerge ok – Sylvie
30-03-2009 : Application des nouveaux styles de mise en page. Julien.
08-03- 2013 : actualisation, Didier D et Olivier

Comment fonctionne une lampe halogène ?

La lampe halogène fonctionne sur le même principe qu’une lampe à incandescence : elle produit de la lumière visible à partir d’un filament de tungstène porté à incandescence. Pour éviter une dégradation très rapide du filament, celui-ci est placé dans une ampoule à verre de quartz (pour les hautes températures) renfermant des gaz halogénés à haute pression comme l’iode et le brome.

A la différence de la lampe à incandescence, les atomes de tungstène expulsés du filament par sublimation sont captés par le gaz halogène évitant le dépôt du tungstène sur la paroi intérieure de l’ampoule.
En effet, les atomes de tungstène et les halogènes forment directement des halogénures de tungstène qui par convection naturelle se déplace librement et migre vers le filament plutôt que vers le point froid que constitue la paroi intérieure de l’ampoule de verre.
Sous l’effet de la chaleur, les halogénures de tungstène se dissocient permettant aux atomes de tungstène de se fixer sur le filament et les halogènes d’être libres pour le cycle suivant.
Cette caractéristique de la lampe halogène lui permet de travailler avec une surface d’ampoule beaucoup plus petite.

La lampe halogène fonctionne soit à très basse tension (12 V par exemple), soit à la tension du réseau (230 V).

Types et caractéristiques générales

Lampe à la tension du réseau

À la tension du réseau 230 V, la lampe est directement raccordée au réseau. Lorsqu’elle possède un culot à visser, elle peut directement remplacer une lampe à incandescence.

Lampe à très basse tension

En très basse tension, la lampe doit être raccordée au réseau 230 V au moyen d’un transformateur.
Par rapport à la lampe « tension du réseau », l’efficacité énergétique d’une lampe à très basse tension est plus élevée, mais son équipement est plus contraignant (il faut un transformateur) et en cas de dimming, le gradateur est plus compliqué…
Remarque : une lampe basse tension ne consomme pas moins qu’une lampe alimentée en 230 V. C’est sa puissance qui est déterminante. Ainsi, une lampe 50 Watts-25 Volts et une lampe 50 Watts-230 Volts consomment toutes deux 1 kWh en 20 heures de fonctionnement.

Les lampes à très basse tension sans réflecteur

Il faut éviter de toucher cette lampe (la capsule) : une trace de graisse provoque la destruction de la lampe lors de l’allumage (par mesure de précaution, frotter la lampe à l’alcool avant l’emploi).

Les lampes à très basse tension avec réflecteur

Ce type de lampe, plus connue sous le nom de lampe « dichroïque », est directement équipé d’un réflecteur performant.

Gradation du flux lumineux

La gradation du flux lumineux (dimming) est possible par variation de la tension d’alimentation.
À sa tension nominale, la lampe halogène ne noircit pas avec le temps. Il n’y a donc pas de diminution du flux lumineux avec l’âge.
Par contre, le fonctionnement des lampes halogènes à très basse tension provoque, lui, un noircissement de l’ampoule. Pour remédier à cet inconvénient, il est conseillé de faire fonctionner de temps en temps les lampes à leur tension nominale pour rétablir le cycle halogène.

Traitement de la chaleur émise par la lampe

Toutes les sources lumineuses à incandescence produisent des ondes visibles, mais aussi des ondes infrarouges (chaleur) pouvant créer un problème dans le cas d’éclairage de produits alimentaires ou d’étoffes fragiles. Le réflecteur dichroïque peut sélectionner les diverses ondes de lumière et ne réfléchir que les ondes du spectre visible. Les ondes infrarouges sont, à l’inverse, filtrées par le réflecteur. Une lampe à réflecteur dichroïque rejette donc les rayons infrarouges vers l’arrière.

Données

pour connaitre les caractéristiques des lampes halogènes 

Données

pour consulter un récapitulatif des caractéristiques des différents types de lampe

Itinéraire d’une fin programmée

Petit à petit les lampes inefficaces sont retirées du marché.
Actuellement, certaines lampes halogènes échappent au retrait du marché. Ce sont essentiellement les lampes à incandescences dites de type amélioré (classe énergétique C au minimum) comme :

  • Les lampes halogènes au xénon (classe C) ;
  • Les lampes halogènes à revêtement infrarouge (classe B).
Type Puissance 2009 2010 2011 2012 2013 2014 2015 2016
Hallogène Claire 12 V
5 W Classe E Classe E Classe E Classe C Second niveau d’exigences de fonctionnalité

 

Réexamen

 

Classe B
10 W Classe E Classe E Classe E Classe C Classe B
25 W Classe E Classe E Classe E Classe C Classe B
40 W Classe E Classe E Classe C Classe C Classe B
60 W Classe E Classe C Classe C Classe C Classe B
75 W Classe C Classe C Classe C Classe C Classe B
100 W Classe C Classe C Classe C Classe C Classe B
Claire 230 V
25 W Classe E Classe E Classe E Classe C Classe B**
40 W Classe E Classe E Classe C Classe C Classe B**
60 W Classe E Classe C Classe C Classe C Classe B**
75 W Classe C Classe C Classe C Classe C Classe B**
100 W Classe C Classe C Classe C Classe C Classe B**
200 W Classe C Classe C Classe C Classe C Classe B**
300 W Classe C Classe C Classe C Classe C Classe B**
500 W Classe C Classe C Classe C Classe C Classe B**
Non – claire Classe A Classe A Classe A Classe A Classe A

Disponibilité

** Classe pour les culots G9 et R7

Disponibilité réduite

Indisponibilité

Réglementation

Pour en savoir plus sur les classes énergétiques des lampes 

Données

pour connaitre les caractéristiques des lampes halogènes

Données

pour consulter un récapitulatif des caractéristiques des différents types de lampe

Déflecteurs de lumière naturelle

Déflecteurs de lumière naturelle

By Julian A. Henderson – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=19588365


Les stores réfléchissants

Schéma principe stores réfléchissants - 01.

Les stores réfléchissants actuels sont utilisés dans le double but d’ombrager un espace du rayonnement solaire direct et de rediriger la lumière naturelle vers le fond du local.

Ces stores peuvent être fixes ou mobiles. Les stores réfléchissants peuvent être considérés comme un développement compact d’un light shelf. Cependant, les lamelles ombragent la fenêtre moins complètement et redirigent moins efficacement la lumière vers le fond de la pièce qu’un light shelf.

 Schéma principe stores réfléchissants - 02.

Il existe des stores réfléchissants dont l’inclinaison des lames peut être variable en fonction de leur emplacement dans la fenêtre : la partie supérieure de la fenêtre redirige la lumière vers le plafond, alors que la zone inférieure produit un ombrage du même type que les stores vénitiens conventionnels.

Le schéma ci-contre accentue le principe. Cette configuration a pour but de laisser pénétrer la lumière naturelle à l’intérieur du local, même lorsque les occupants ferment complètement les stores.


Les vitrages directionnels

Les vitrages directionnels redirigent très efficacement les rayons solaires directs vers le fond d’une pièce. Ils peuvent aussi être employés pour rediriger la lumière zénithale vers le bas d’un atrium ou vers une salle en sous-sol. Cependant, sous ciel gris, le niveau lumineux en fond de local est inférieur à celui d’un double vitrage classique. Les panneaux directionnels sont utilisés en configurations fixes et mobiles.

Schéma principe vitrages directionnels.Schéma principe vitrages prismatiques.

Les vitrages prismatiques peuvent soit rediriger la lumière naturelle plus profondément dans le bâtiment soit exclure la lumière d’un espace. Bien qu’ils soient habituellement transparents, ils obscurcissent la vue vers l’extérieur. Il vaut donc mieux les utiliser pour la partie supérieure d’une fenêtre afin de ne pas couper la vue des occupants vers l’extérieur.

La lumière naturelle peut également être déviée par des éléments acryliques concaves disposés verticalement à l’intérieur d’un double vitrage. Ce vitrage doit être positionné au-dessus de l’angle de vision. Dans nos régions, la meilleure orientation pour ce type de vitrage est le sud.


Les laser-cut panels

Schéma principe laser-cut panels.

Le laser-cut panel est un système de redirectionnement de la lumière produit par des coupures réalisées par un laser dans un matériau acrylique. Ces panneaux assurent une bonne visibilité vers l’extérieur. Placés verticalement, ils induisent une déflexion de la lumière provenant des angles d’incidence élevés (> 30°) alors qu’ils transmettent la lumière à de faibles incidences. Placés horizontalement, ils agissent en tant que protection solaire. Ils peuvent être employés comme système fixe ou mobile. Pour éviter certains risques d’éblouissement, il faut qu’ils soient situés au-dessus du niveau visuel. Le laser-cut panel coûte encore très cher.


Les systèmes holographiques

Schéma principe systèmes holographiques.

Les systèmes holographiques ne sont encore qu’au début de leur développement. Le procédé holographique consiste en une couche de matériau diffractant qui est choisie pour rediriger la lumière selon un angle spécifique, en fonction de l’angle d’incidence de la lumière. Il s’agit d’un système pratique en rénovation puisqu’il suffit d’ajouter un film à une fenêtre classique. Ils peuvent également être employés pour obtenir un effet décoratif coloré.


Les déflecteurs diffusants dans des ouvertures zénithales

Pour améliorer l’effet produit par l’ajout d’une ouverture zénithale, il est utile de concevoir un système de déflecteurs blancs diffusants au niveau du plafond. Si ces déflecteurs sont verticaux, l’éclairement lumineux dans l’espace est amélioré. Des déflecteurs inclinés diminuent le niveau d’éclairement maximum mais, par contre, uniformisent l’éclairage. Les deux figures ci-dessous montrent un exemple de déflecteurs verticaux conçus pour une orientation est-ouest d’un lanterneau et un exemple de déflecteurs inclinés conçus pour une dent de scie orientée vers le sud.

Schéma déflecteurs diffusants dans des ouvertures zénithales.Schéma déflecteurs diffusants dans des ouvertures zénithales.

Gestion des installations par bus de terrain


Objectif

L’objectif d’une telle installation est double :

> Flexibilité : dans les bâtiments tertiaires, les extensions et modifications dans l’utilisation des réseaux entraînent de fréquents recâblages. Les câbles s’ajoutent aux câbles et leur densité devient telle que les nouvelles interventions sont de plus en plus longues et coûteuses.

> Gestion énergétique : les occupants des bâtiments tertiaires ne sont guère soucieux de la gestion des installations techniques. Ce n’est d’ailleurs pas leur mission. Il faut donc pallier à cette déresponsabilisation en créant la fonction de « concierge automatique », tout en ne perturbant pas le confort des occupants.

Une installation électrique traditionnelle montre ses limites par rapport à ces deux objectifs, principalement en ce qui concerne la flexibilité.


Principe général

Ce qui différencie une installation électrique pilotée par un réseau de communication et une installation « traditionnelle » est la séparation entre les circuits de puissance et les circuits de commande.

En effet, dans une installation traditionnelle, les organes de commande font partie intégrante du circuit de distribution « courant fort ». Il n’existe qu’un seul circuit : commande et puissance sont mélangées.

Dans une installation avec réseau de communication, on distingue deux réseaux physiquement séparés :

  1. la distribution d’énergie aux équipements. C’est le circuit de puissance;
  2. le pilotage et la commande des équipements. C’est le circuit de commande.


Circuit de commande

Le circuit de commande est réalisé à partir d’un câble (de type paire torsadée, coaxial, ondes radios, …) appelé « bus » ou « bus de terrain ».

Ce support de communication permet à tous les produits connectés (équipements, capteurs, actionneurs) d’échanger des informations suivant un « protocole de communication » déterminé (ensemble de règles de communication).

Dans une version avec câblage filaire, l’ensemble des participants au réseau sont connectés en parallèle aux deux mêmes conducteurs du bus, ce qui limite et simplifie le câblage, ce dernier parcourant le bâtiment en étoile, en arborescence, en boucle, …

Le protocole de communication permet aux participants au réseau de communiquer entre eux : qui prend la parole ? Comment on communique ? Avec qui ? Avec quelle autorité ? … C’est ainsi que chaque produit, capteur ou actionneur relié au réseau possède suffisamment d’intelligence pour détecter seul un changement d’état et de transmettre, en fonction de son programme, le message adéquat. Les capteurs et les actionneurs sont donc devenus communicants.

Dans un tel système, les capteurs sont des donneurs d’ordre (boutons-poussoirs, interrupteurs, régulateurs, sondes, …). Les actionneurs représentent les sorties du système qui font office d’interfaces de puissance pour piloter les équipements terminaux.

Actionneur : module à 4 sorties permettant la transmission de la commande vers 4 équipements.

L’intelligence des réseaux modernes de communication est répartie.

Les automates de la première génération nécessitaient un raccordement en étoile vers les participants. Chaque capteur ou actionneur était uniquement raccordé à l’automate qui gérait le fonctionnement. Les évolutions électroniques ont permis des solutions plus simples à câbler et à utiliser.

Grâce à leur électronique interne, chaque émetteur et récepteur d’ordre est devenu autonome. Il dispose en interne d’une capacité de communication et d’une mémoire reprogrammable qui lui permettent d’émettre des ordres, d’en recevoir, de les interpréter et de les exécuter. N’importe quel produit peut communiquer avec n’importe quel autre.

 

Les capteurs sont composés d’un module standard de communication avec le bus qui contient toute l’intelligence décentralisée. Sur ce module peut se placer n’importe quel type de capteur : simple interrupteur, interrupteur à plusieurs sortie, dimmer, détecteur de présence, thermostat, … . Ils sont tous interchangeables ce qui permet une grande flexibilité.

Exemple : le codage d’un signal dans le système

bus EIB.

Pour dialogueur entre eux, les produits échangent des informations traduites en signaux binaires (0-1). Ces données sont transmises en mode série et se superposent à la tension d’alimentation du bus (29 V DC). La transmission s’effectue en mode différentiel. Les données sont émises simultanément sur les deux conducteurs du bus, garantissant une très bonne immunité aux perturbations, d’autant plus que le système est isolé de la terre.

L’unité d’information élémentaire (le bit) se présente sous forme d’un signal de type alternatif de 5 V pour le 0 et d’un blanc pour le 1.

Exemple : schéma de raccordement de l’éclairage de bureaux.

La commande de l’éclairage est constituée de boutons-poussoirs dans chaque bureau. Un bouton-poussoir général permet au gardiennage une extinction centralisée.

Les circuits de puissance et de commande sont câblés comme suit :

La configuration du système va consister à relier les différents organes de commande et les équipements.

La première étape est l’identification des entrées et des sorties. Dans les systèmes simples, la sélection des émetteurs et des récepteurs d’ordre pour l’élaboration des liens de configuration est obtenue grâce à des boutons-poussoirs de validation au niveau d’un module de configuration raccordé au bus. On définit ainsi qui commande quoi. Il faut ensuite spécifier comment s’effectue la commande. Cela peut se faire sur les produits directement ou à l’aide d’un outil de configuration.

Module de configuration branché sur le bus.

Porte de communication pouvant se placer sur le module de communication d’un capteur et permettant de brancher un ordinateur portable sur le bus pour la configuration.

Par exemple, il y aurait deux types de commande à paramétrer :

  • La fonction marche/arrêt pour les boutons-poussoirs de chaque bureau (inversion d’état à chaque appui);
  • La fonction d’extinction pour toutes les sorties éclairage du même niveau par le bouton-poussoir central.

La configuration consiste donc à associer à chaque organe de commande une ou plusieurs sorties et à définir le type d’action souhaitée.

De câblée et figée dans une installation est opérationnelle, la relation entre l’organe de commande et les récepteurs se transforme, dans une installation communicante, en un système basé sur des liens logiques, souples et évolutifs.

Cette notion d’adressage logique permet des modifications aisées, la plupart du temps sans aucune intervention sur le câblage.


LON bus, EIB bus, … ?

Actuellement, deux standards de communication semblent se développer : le LON bus et le EIB bus.

On parle de « standards » car ces systèmes sont reconnus par un ensemble de fabricants de matériel électrique et permettent donc à de nombreuses marques de se raccorder sur un même réseau et de communiquer ensemble.

Tous les éléments portant le label « LON Mark » sont compatibles. Il en va de même pour les éléments portant le label « EIB ».

Ceci en opposition avec un système dit « propriétaire » qui ne peut fonctionner qu’avec les équipements de la marque qu’il l’a créé.

Le label « EIB » a été créé par un ensemble de fabricants de matériel électrique. Il est développé par une association indépendante. Par exemple si le fabricant « x » désire créer un module de comptage compatible EIB, il doit attendre que l’association développe le protocole de communication de ce module, s’il n’existe pas encore. Ceci a comme désavantage que les fabricants ne peuvent créer librement de nouvelles fonctionnalités à leur système, mais comme avantage que tous les produits portant le label EIB sont directement raccordables entre eux et entièrement compatible, sans programmation.

Le label « LON Mark » a été créé par un ensemble de fabricants de matériel HVAC. Dans le cas de ce standard, les fabricants peuvent directement créer leurs applications suivant un protocole commun. La compatibilité entre les équipements de marques différentes n’est pas toujours totale puisque les fabricants désirent souvent garder un certain secret de fabrication. Le raccordement d’éléments de marques différentes sur un bus « LON » demande donc souvent un certain travail de programmation pour rendre l’ensemble compatible.

Type de bus Caractéristiques
EIB Compatibilité directe sans programmation.

Toute nouvelle application doit attendre le développement par une association centralisatrice.

Potentialités pour la gestion des équipements HVAC limitées (en cours de développement).

LON Mark Facilité pour les fabricants de créer de nouvelles applications.

La compatibilité globale demande une programmation.

Orienté HVAC.

Signalons qu’un regroupement vient de se finaliser entre le système EIB et les systèmes de bus BATIBUS et EHS pour créer un standard commun sous le nom de Konnex (ou « KNX »).

Il est possible de raccorder ensemble un réseau EIB, un réseau LON et des applications conçues avec un bus propriétaire. Cela demande l’utilisation d’interface de communication et une programmation au niveau d’un système de supervision pour rendre l’ensemble compatible. Il y a encore peu de temps, cela semblait relativement ardu à mettre en œuvre, mais une standardisation semble petit à petit se développer via les standards « BACnet » ou « OPC ».

Schéma d’intégration de différents protocoles de communication au sein d’un système de gestion complet du bâtiment.


Immotique

On comprend aisément que le réseau communiquant peut déborder de la simple gestion des équipements électriques. On peut rajouter dans un système de gestion complet d’un bâtiment : la régulation d’accès au bâtiment, le contrôle anti-infraction, le contrôle incendie, la gestion des protections solaires, le contrôle des fluides dans les hôpitaux, …

Exemple : schéma de gestion complet des installations techniques. 

Protections intégrées aux vitrages doubles

Protections intégrées aux vitrages doubles

Store vénitien inséré dans un vitrage double.


Certaines caractéristiques de ces types de store sont tout à fait semblables à celles des autres stores enroulables (en particulier les stores intérieurs réfléchissants) ou vénitiens. Nous ne décrirons donc ici que les propriétés propres à l’insertion de ces produits à l’intérieur du double vitrage.


Les stores enroulables réfléchissants

Description

Photo stores enroulables réfléchissants.

Un store en toile réfléchissante se déroule dans l’espace intérieur du double vitrage. L’épaisseur de la lame d’air doit alors être au minimum de 12 mm.

Facteur solaire

D’une manière générale : FS associé à un double vitrage = .. 0,12 ..

Transmission lumineuse

D’une manière générale : TL = 0,03 ..0,04

Pouvoir isolant

Le coefficient U d’un double vitrage clair standard (remplissage air) peut diminuer de près de 35 % grâce au déploiement de la protection.


Les stores vénitiens

Description

Photo stores vénitiens.

Des lames orientables sont montées horizontalement à l’intérieur du double vitrage.

Facteur solaire

D’une manière générale : FS associé à un double vitrage = .. 0,17 ..
Le degré de protection dépend de l’inclinaison des lames par rapport aux rayons du soleil.
Exemple :

Pouvoir isolant

Lorsque les lamelles sont orientées en position verticale, le coefficient U d’un double vitrage peut diminuer de 20 à 30 % (en fonction de la couleur des lamelles) grâce à la protection. Une orientation des lames à 45° réduit ce gain de moitié.

Moduler la protection par rapport aux besoins

Contrairement aux stores vénitiens extérieurs ou intérieurs, les stores vénitiens intégrés ne peuvent être remontés. La modulation de la protection est réalisée uniquement par l’orientation des lamelles.

Enduits extérieurs

Enduits extérieurs


Les types d’enduits

Il existe trois grands groupes d’enduits applicables sur les panneaux isolants : les enduits minéraux, les enduits résineux et les enduits aux silicates et aux silicones.

L’enduit faisant partie d’un système isolant-enduit sera de préférence prédosé en usine. Il est composé de charges, d’eau, d’un ou plusieurs liants, et éventuellement d’adjuvants et de pigments.

Le liant d’un enduit minéral est le ciment ou la chaux, ou encore un mélange des deux.
Le liant d’un enduit résineux est constitué d’un ou de plusieurs types de résines.
Le liant d’un enduit aux silicates et aux silicones est un liant silicieux.

Les enduits minéraux sont plus épais que les enduits synthétiques ou aux silicates et aux silicones.

Les enduits utilisés sur les panneaux isolants sont généralement « décoratifs » et diffèrent par leur aspect et leur couleur. Ils peuvent être lisse, crépi, roulé, peigné, gratté, lavé, projeté, etc.

Les enduits appliqués sur isolant sont munis d’un treillis de renforcement, synthétique ou métallique, résistant aux alcalis et à la corrosion.


Les précautions à prendre

L’isolation extérieure couverte d’un enduit est un système qui combine l’usage de plusieurs produits. Chaque système doit avoir été étudié et testé par son fabricant. Il devrait idéalement faire l’objet d’un agrément technique. Le système doit être mis en œuvre en respectant les prescriptions du fabricant et de l’agrément technique éventuel. Les limites d’utilisations prescrites doivent également être respectées.
Le système doit être appliqué dans son ensemble : isolant, enduit, fixation, armature, finition, accessoires, détails techniques, etc.

Le support doit être vérifié et préparé avant pose du système.

La date limite d’utilisation des matériaux livrés sera vérifiée à la réception.

Le transport et le stockage se feront dans les emballages d’origine, en tenant compte des précautions prescrites.

Les enduits préfabriqués proviendront par façade d’un même lot de fabrication afin d’éviter les différences de teintes surtout si l’enduit est coloré.

Des protections seront utilisées contre les conditions climatiques défavorables.

L’enduit ne pourra être appliqué dans des conditions extrêmes. Outre les limites expresses imposées par le fabricant ou l’agrément technique, l’enduit ne sera pas appliqué :

  • lorsque la température risque de monter au-dessus de + 30 °C ou de descendre en dessous de + 5 °C pendant l’application ou le durcissement;
  • lorsque le mur est en plein soleil;
  • par vent sec;
  • par pluies battantes;
  • lorsque le support est humide ou gelé.

L’entretien de l’enduit

Les facteurs extérieurs peuvent, avec le temps, altérer l’aspect de l’enduit et le dégrader par endroit.

On déterminera d’abord les causes éventuelles des désordres. Les fines fissures stabilisées sont pontées avant application d’un enduit de réparation. Les parties désolidarisées (qui sonnent creux) décapées et refaites.

Les algues et mousses sont éliminées à l’aide de produits appropriés et les matières mortes sont brossées.

Les efflorescences sont éliminées à sec.

L’enduit est ensuite brossé à sec ou nettoyé au jet d’eau.

On applique généralement une peinture perméable à la vapeur d’eau, adaptée à l’enduit. On peut également appliquer une couche supplémentaire d’enduit si la couche existante possède les qualités mécaniques nécessaires et permet l’adhérence de la nouvelle couche.

Les microfissures stabilisées sont colmatées par une peinture à base de ciment ou une fine couche d’enduit.


Les informations utiles

La note d’information technique (NIT) n° 209 du CSTC concerne les enduits posés, entre autres, sur des panneaux d’isolation thermique.

Modèles d’isolation – plancher léger avec aire de foulée

Modèles d'isolation - plancher léger avec aire de foulée

L’isolation du plancher léger de combles circulables peut se faire par divers systèmes :


Panneaux semi-rigide entre les gîtes

L’isolant semi-rigides est généralement de la laine minérale.

Il est posé entre les gîtes, sur le plafond de l’étage inférieur.

La largeur de l’isolant est légèrement supérieure à l’espace disponible entre les gîtes (1 ou 2 cm). De cette façon l’isolant est bien maintenu hermétiquement contre les gîtes et les courants d’air accidentels sont évités.

L’isolant peut occuper toute la hauteur de l’espace entre les gîtes ou une partie seulement.

Lorsqu’un pare-vapeur est nécessaire, celui-ci est fixé sous les gîtes avant la réalisation du plafond.

Finalement, l’aire de foulée est placée au-dessus du gîtage.

Isolant semi-rigide entre gîtes d’un plancher circulable.

  1. Gîte.
  2. Isolant (remplissage partiel).
  3. Pare-vapeur.
  4. Finition du plafond.
  5. Isolant (remplissage complet).
  6. Aire de foulée.

Matelas souples à languettes entre les gîtes

Le matelas souple muni d’un pare-vapeur est un matelas de laine minérale revêtu, par exemple, de papier kraft et de kraft-aluminium sur la face chaude (côté inférieur). Le kraft aluminium fait office de pare-vapeur. Il dépasse de quelques cm les bords du matelas isolant (languettes).

Le matelas isolant est placé par dessous. Les languettes sont agrafées à la face inférieure des gîtes en se recouvrant partiellement. Les plafonds sont finalement mis en place.

L’isolant peut occuper toute la hauteur de l’espace entre les gîtes ou une partie seulement.

L’aire de foulée peut être posée avant ou après l’isolant.

Remarque : la largeur du matelas doit être adaptée à l’entre-axe des gîtes.

Matelas de laine minérale en rouleau à languettes.

Matelas isolant avec languettes entre gîtes d’un plancher circulable.

  1. Gîte.
  2. Isolant souple.
  3. Papier Kraft.
  4. Languettes superposées agrafées.
  5. Pare-vapeur en Kraft-Aluminium.
  6. Finition du plafond.
  7. Aire de foulée.

Panneaux rigides entre les gîtes

L’isolant rigide est généralement de la mousse synthétique (PUR, PIR, XPS, EPS).

Il est posé entre les gîtes, sur le plafond de l’étage inférieur.

L’isolant étant rigide, il est difficile de l’ajuster exactement avec les gîtes. Pour cette raison, la largeur de l’isolant mis en œuvre est légèrement inférieure à l’espace disponible entre les gîtes (1 ou 2 cm). Ainsi, une mousse de polyuréthane peut être injectée facilement entre l’isolant et la gîte.

Cette mousse assure une continuité de l’isolant jusqu’à la gîte et une protection contre les courants d’air accidentels.

L’isolant peut occuper toute la hauteur de l’espace entre les gîtes ou une partie seulement.

Lorsque un pare-vapeur est nécessaire, celui-ci est fixé sous les gîtes avant la réalisation du plafond.

Finalement, l’aire de foulée est placée au dessus du gîtage.

Panneaux isolants rigides entre gîtes d’un plancher circulable .

  1. Gîte.
  2. Pare-vapeur.
  3. Finition du plafond.
  4. Isolant rigide.
  5. Aire de foulée.
  6. Mousse injectée.

Flocons ou granulés d’isolant entre les gîtes

Le matériau isolant utilisé est constitué de granulés de perlite ou de polystyrène expansé, ou de flocons de laine minérale posés en vrac entre les gîtes, sur le plafond de l’étage inférieur.

Lorsque un pare-vapeur est nécessaire, celui-ci est fixé sous les gîtes avant la réalisation du plafond.

Finalement, l’aire de foulée est placée au dessus du gîtage.

Isolant posé en vrac entre les gîtes d’un plancher circulable.

  1. Gîte.
  2. Pare-vapeur
  3. Finition du plafond.
  4. Isolant en vrac.
  5. Aire de foulée.

Isolation semi-rigide entre lambourdes sur une plaque de support

L’isolant semi-rigide est généralement de la laine  minérale.

Sur le gîtage est posé un plancher destiné à supporter l’isolant. Le pare-vapeur éventuel est déroulé soigneusement sur ce plancher.

Des lambourdes d’une épaisseur au moins équivalente à celle de l’isolant sont ensuite placées à intervalle régulier sur le plancher support et son pare-vapeur éventuel.

L’espace entre les lambourdes est déterminé par la largeur des panneaux isolants prévus (largeur de panneau moins +/- 2 cm).

De cette façon l’isolant est bien maintenu hermétiquement contre les lambourdes et les courants d’air accidentels sont évités.

Si pour des raisons techniques, l’entredistance entre les lambourdes devaient être différents, la largeur des panneaux doit être adaptée.

L’étanchéité sera assurée par le pare-vapeur s’il existe, sinon à l’air par le plafond ou la plaque de support de l’isolant.

Finalement, l’aire de foulée est fixée à la face supérieure des lambourdes.

Isolation entre lambourdes au-dessus du gîtage d’un plancher circulable .

  1. Lambourdes.
  2. Isolant.
  3. Pare-vapeur.
  4. Plancher support de l’isolant.
  5. Aire de foulée.
  6. Finition du plafond.

Isolation rigide sur une plaque de support

L’isolant rigide est généralement de la mousse synthétique (PUR, PIR XPS, EPS).

Sur le gîtage est posé un plancher destiné à supporter l’isolant. Le pare-vapeur éventuel est déroulé soigneusement sur ce plancher.

L’isolant est ensuite déposé de façon continue, les panneaux étant parfaitement jointifs.

L’étanchéité à l’air sera assurée par le pare-vapeur s’il existe, sinon par le plafond ou la plaque de support de l’isolant.

L’aire de foulée est posée soit directement sur l’isolant, soit, lorsqu’il s’agit de planches en bois, sur des lattes posées sur l’isolant. Le plancher de bois est cloué sur ces lattes.

Isolation continue au-dessus du gîtage d’un plancher circulable.

  1. Aire de foulée.
  2. Isolant.
  3. Pare-vapeur.

Débit d’air variable

Débit d'air variable


Principe de fonctionnement

Pourquoi une variation du débit ?

Situons-nous en été. Comment répondre aux variations de charge d’un local ? Que se passe-t-il lorsque le soleil perce enfin l’épaisse couche nuageuse et fait monter la température ?

Un système de conditionnement d’air « classique » délivre un air plus froid (de 20°, l’air passe à 16°C, par exemple). Le débit d’air pulsé reste le même, mais la température diminue. On parle alors de « système à débit d’air constant ».

Une alternative consiste à garder la température constante tout l’été (16°C par exemple) mais à augmenter le débit d’air pulsé. On parle de « système à Débit d’Air Variable ». DAV disent les Français, VAV disent les anglophones (que l’on traduit en Volume d’Air Variable).

Dans un système « tout air-VAV », le débit d’air varie donc entre le minimum hygiénique pour les occupants et le maximum nécessaire pour reprendre toutes les charges du local (soleil, bureautique, personnes,…).

En pratique, le débit varie entre 30 et 100 % du débit nominal. La variation de débit est faite en agissant :

  • soit sur un volet motorisé,
  • soit directement sur les bouches de soufflage (conçues pour le débit variable).

Qui dit variation de débit, dit perturbation de la pression du réseau…

Si les bouches se ferment, la pression de gaine va augmenter. Toute la distribution de l’air en sera perturbée. Dès lors, on modulera la vitesse des ventilateurs pour maintenir une pression de gaine constante. Et par la même occasion, la consommation des ventilateurs en sera diminuée (voir aussi « la gestion de la ventilation à la demande« ).

Si la température est constante (16° par exemple), comment chauffer en hiver ?

Si l’installation doit aussi chauffer les locaux en hiver, le problème se complique !

On rencontre alors les variantes :

  • – monogaine
    • – avec chauffage par radiateurs indépendants
    • – avec chauffage par batterie terminale
  • – double gaine (une d’air froid et une d’air chaud)

Quel intérêt majeur par rapport aux systèmes à débit constant ?

Lorsque l’on sait que le coût du transport de l’air représente de 20 à 40 % du coût d’exploitation, le débit d’air variable se justifie certainement.

Encore faut-il que la réduction du débit d’air dans les locaux entraîne effectivement la réduction de la consommation du(es) ventilateur(s) ! Ainsi, certains systèmes créent un by-pass dans le faux plafond :  lorsque le débit pulsé diminue, l’air non utilisé est renvoyé en centrale…

Une installation VAV est particulièrement bien placée pour une utilisation optimale des énergies gratuites :

  • En hiver, de l’air frais extérieur peut alimenter les zones à rafraîchir sans nécessiter l’enclenchement des groupes frigorifiques.
  • En été, une ventilation nocturne peut décharger le bâtiment de la chaleur accumulée en journée.

Remarque : pour diminuer les sections de gaine, il est possible de distribuer l’air sous haute pression, à des vitesses variant entre 5 et 15 m/s.


Domaine d’application

Dans sa version simple (modulation du débit sans visée thermique si ce n’est pas le free cooling), une installation VAV peut s’appliquer à un grand nombre de situation : il s’agit ni plus ni moins d’un réseau de ventilation mécanique avec une capacité de moduler les débits local (ou groupe de local) par local. L’encombrement est limité puisque basé sur le débit hygiénique éventuellement légèrement majoré (+50 à +100%). Seul l’investissement dans les clapets de réglage et le système de gestion et d’optimisation est un frein.

Si par contre le VAV est la base d’un système de climatisation tout air, on rencontre les limites propre à cette approche du refroidissement : les gaines sont dimensionnées pour pouvoir refroidir tout le bâtiment avec de l’air. Un tel système de climatisation par l’air est encombrant et coûteux. Il ne justifie que lorsqu’une alimentation en air hygiénique importante est nécessaire, donc une présence nombreuse d’occupants. Si de plus cette présence est variable dans le temps, si les charges thermiques sont variables, il sera opportun de pouvoir moduler le débit : c’est l’objet du VAV.

On rencontre tout particulièrement cette application thermique du VAV dans les grands bureaux paysagers, ou dans les larges plateformes avec locaux de réunion, salles de conférences au centre du bâtiment : un apport d’air neuf est nécessaire en permanence. De plus, le refroidissement du centre du bâtiment est nécessaire toute l’année. Du free cooling est alors possible et permet d’éviter d’enclencher les groupes frigorifiques en hiver, voire en mi-saison. Les coûts d’exploitation en seront fortement réduits.

A la limite, c’est le concepteur qui devra organiser la fonction des locaux pour créer des zones thermiquement homogènes.

Les installations VAV « à bypass » (l’air non utilisé est renvoyé en centrale) sont à rejeter puisque le traitement de l’air reste total. On peut juste l’admettre dans le cas d’une grande zone à débit d’air constant (une grande usine) à côté de laquelle sont situés quelques locaux (les bureaux à coté de l’usine). Dans ce cas, un VAV à bypass sur l’alimentation des bureaux est compréhensible.


Différentes variantes technologiques

On distingue différentes variantes technologiques :

Les systèmes VAV mono gaine sans réchauffage terminal

Shéma principe systèmes VAV mono gaine sans réchauffage terminal.

On ne pulse que de l’air froid en été (entre 12 et 18°C) et de l’air chaud en hiver (entre 25 et 40°C). L’air est préparé en centrale et chaque local régule le débit d’air juste nécessaire en fonction de la température souhaitée, avec un débit minimum ajusté au débit d’air hygiénique.

Le plus simple est d’avoir une consigne fixe pour chaque saison et le passage d’une consigne à l’autre est réalisé par un thermostat extérieur : il y a basculement pour une température extérieure de +15°C, par exemple.

Les systèmes VAV mono gaine avec réchauffage terminal

L’idée est de prévoir un circuit d’air froid pour tous les locaux, à débit variable, complété par des batteries de chauffe pour les locaux périphériques.

Trois principes sont possibles :

> 1° soit l’apport de chaleur est réalisé par des corps de chauffe traditionnels (radiateurs, convecteurs).

Généralement, ces corps de chauffe sont placés en périphérie du bâtiment, le long des façades, pour vaincre les déperditions par les parois. Le système VAV assure la ventilation hygiénique toute l’année, refroidit le cœur du bâtiment en hiver et refroidit tout le bâtiment en été.

Schéma principe systèmes VAV mono gaine avec réchauffage terminal- 01.

>  2° soit les batteries de chauffe sont placées en série sur la gaine d’air.

Schéma principe systèmes VAV mono gaine avec réchauffage terminal- 02.

Une régulation spécifique est nécessaire :

Schéma régulation.

Par exemple, si la sonde d’ambiance détecte une température inférieure à 21°C, la vanne de chaud est ouverte à 100 % et le débit d’air est réduit au seuil minimal hygiénique. Lorsque la température intérieure approche de 23°, la vanne chaud se ferme progressivement. Lorsque la température dépasse 23°, la vanne chaud est fermée et le débit d’air frais augmente progressivement jusqu’à atteindre le débit maximal à 24°C. Ici encore, l’insertion d’une zone neutre entre chaud et froid sera énergétiquement préférable.

En pratique, la batterie de chauffe est souvent intégrée dans la boîte de détente. Elle est alimentée en eau chaude, ou remplacée par une résistance électrique.

> 3° soit les batteries sont placées en parallèle par rapport au local :

Schéma principe systèmes VAV mono gaine avec réchauffage terminal- 03.

La régulation est complétée par l’enclenchement du ventilateur d’air recyclé lorsque le chauffage est enclenché :

Schéma régulation.

Chaque batterie chaude voit son débit modulé en fonction du thermostat d’ambiance de la zone qu’elle alimente.


Avantages

  • Lors de la conception, un grand avantage du système à débit d’air variable est de pouvoir diminuer les dimensions de la centrale de traitement.Comparons les systèmes :
    • Avec un système à débit d’air constant, chaque zone sera dimensionnée avec un débit d’air permettant de répondre à la charge frigorifique extrême; dans le caisson de traitement d’air central, on devra traiter (en permanence !) le total des débits maximaux de toutes les zones !
    • Par contre, avec le système VAV, on va tenir compte du fait que le soleil tourne autour du bâtiment et que la charge maximale de la zone Ouest survient lorsque la zone Est est à faible demande; la centrale de préparation sera dimensionnée sur base du cumul instantané possible entre toutes les zones,… ce qui est déjà nettement plus raisonnable !

    Il en résulte une économie du coût d’investissement (par rapport à un système à débit constant de même puissance).

  • L’avantage énergétique suit directement : pourquoi pulser en permanence le débit maximal dans chaque zone ? Tout particulièrement en mi-saison, pourquoi pulser un maximum d’air à une température « neutre » (20°C) alors les besoins sont nuls (la température ambiante est dans la zone neutre) ? La force du VAV est de réduire la vitesse du ventilateur à ce moment et de ne pulser que le débit d’air hygiénique. La consommation du ventilateur (proportionnelle au cube du débit d’air pulsé) est fortement réduite.Il en résulte une économie du coût d’exploitation (par rapport à un système à débit constant de même puissance). Le chiffre de 20 % d’économie thermique et électrique (ventilateur) est couramment cité, entre un VAV simple (sans réchauffage terminal) et un système unizone à débit constant.
  • L’avantage acoustique lui est lié encore : la grande vitesse (et donc les niveaux sonores les plus élevés) est réservée aux charges extrêmes. Ce qui est particulièrement apprécié par les occupants.
  • Par rapport aux installations de type « air-eau » (ventilo-convecteurs,…), le VAV permet également de réaliser du free cooling des bâtiments en hiver et en mi-saison : l’air extérieur vient directement refroidir le bâtiment, sans participation du groupe frigorifique.

Inconvénients

  • Le réglage d’un débit d’air est moins aisé que le réglage d’une température. Il semble que sur le terrain la mise au point d’une installation VAV donne parfois quelques cheveux blancs ! Tout particulièrement, le réglage des registres d’air neuf paraît délicat.
  • Le coût d’installation reste élevé, au moins par rapport à une installation de ventilos-convecteurs.
  • L’encombrement n’est pas négligeable, comme pour toutes les installations « tout air ». Les gaines dans chaque zone sont dimensionnées pour transporter le débit maximum, correspondant à la charge extrême de l’été…

  • L’air extérieur gratuit de l’hiver doit être préchauffé dès que sa température devient inférieure à la température de pulsion. Et ce chauffage finit par coûter fort cher. Un recyclage de l’air extrait permet de supprimer ce budget mais n’est pas toujours souhaité pour des raisons hygiéniques. Un récupérateur de chaleur lui est préféré, mais il suppose d’en faire l’investissement.

Réglage du débit des ventilateurs

Réglage du débit des ventilateurs


Principe

Pour rappel (Règles de similitude), le débit d’un ventilateur varie proportionnellement à la variation de sa vitesse, la pression proportionnellement au carré de sa vitesse et la puissance proportionnellement au cube de sa vitesse.
Ainsi, il existe plusieurs techniques de régulation du débit :


Régulation par étranglement

Il s’agit là du système le plus simple et le moins onéreux pour faire varier un débit. Grâce à un registre (appelé registre de laminage) placé dans un conduit d’air, on peut augmenter ou diminuer la perte de charge de l’installation. Le positionnement du registre peut se faire tant manuellement qu’automatiquement au moyen d’un servomoteur.

Régulateur automatique de débit.

Par exemple, si le registre se ferme, le point de fonctionnement de l’installation va passer de 1 à 2 par suite du laminage, ce qui va conduire à une modification de la courbe caractéristique du circuit (elle se redresse). Pour les ventilateurs à courbe caractéristique fort pentue, on constate qu’une augmentation de perte de charge relativement importante va entraîner une diminution de débit comparativement faible, ce débit-volume passant de q1 à q2. Pour avoir un réglage significatif, le clapet d’étranglement devra souvent fonctionner proche de la fermeture, avec les risques de bruit important que cela comporte. Le rectangle hachuré compris entre de p2 et p3 est considéré comme la perte du système de réglage par rapport au réglage optimum représenté par le point de fonctionnement 3.

Schéma principe régulation par étranglement.

Le ventilateur à aubes recourbées vers l’avant, ayant une courbe caractéristique plus plate, est mieux adapté à une régulation par étranglement que le ventilateur à aubes recourbées vers l’arrière, pour lequel la puissance absorbée ne diminue que peu à cause de l’augmentation de pression statique.

Dans le cas de ventilateurs hélicoïdes, ce type de régulation peut devenir problématique lorsque le point de fonctionnement se déplace encore plus vers la gauche, car on peut atteindre facilement la zone de fonctionnement instable.

Si, pour un ventilateur, on choisit une régulation par étranglement, il faut alors veiller à ce que le point de fonctionnement le plus fréquent se trouve dans la zone de rendement optimal. Dans tous les cas, il faut choisir le débit maximal si possible à droite de la plage de rendement optimale. On reste ainsi dans le voisinage de ce dernier, lorsque la courbe caractéristique du circuit se déplace vers la gauche.


Réglage par by-pass

Le by-pass consiste à court-circuiter une partie du débit de ventilation via un conduit de dérivation, pour diminuer le débit alimentant les locaux.

Schéma principe réglage par by-pass.

Lorsque le registre de by-pass s’ouvre, le débit dans le réseau principal chute de q1 à q2. Le débit passant dans le by-pass est égal à (q3 – q2). Le rectangle hachuré compris entre (q3 – q2) est considéré comme la perte de ce système de réglage.


Régulation par aubage mobile de prérotation

Un aubage mobile de prérotation (appelé aussi distributeur, ventelles, aubes directrices) est un dispositif muni d’ailettes orientables au moyen d’un servomoteur. Il permet d’incliner les filets de fluide gazeux avant leur entrée dans la roue.

Aubage de prérotation sur l’ouïe d’aspiration.

Si le sens de prérotation de la veine de fluide est le même que le sens de rotation de la roue, on peut réduire le débit par rapport au débit nominal. Pour les ventilateurs hélicoïdes, on peut aussi opposer les deux sens de rotation. Dans ce cas, il y a augmentation du débit par rapport au débit nominal. Ce dernier réglage ne fonctionne pas pour les ventilateurs centrifuges.

La régulation par ventelles ne convient que pour des ventilateurs centrifuges à aubes recourbées vers l’arrière ou des ventilateurs hélicoïdes. Dans le cas de ventilateurs centrifuges à aubes recourbées vers l’avant, le mouvement rotatoire influencerait beaucoup trop l’écoulement tridimensionnel dans la roue, ce qui entraînerait une trop forte diminution du rendement.

Il existe différents types d’aubages mobiles de prérotation : intégré en amont du pavillon d’aspiration ou directement monté dans ce dernier.

Ventilateur centrifuge avec aubage de prérotation axial.

Ventilateur centrifuge à double ouïe d’aspiration avec aubage de prérotation radial.

A chaque angle de prérotation correspond une nouvelle courbe caractéristique du ventilateur qui va se situer en dessous de la courbe caractéristique correspondant à un aubage entièrement ouvert.

Schéma principe régulation par aubage mobile de prérotation.

Si son angle de positionnement est nul, l’aubage de prérotation est réputé ouvert. S’il est égal à 90°, il est réputé fermé. Des mesures ont montré qu’entre les courbes caractéristiques d’un ventilateur sans aubage de prérotation et avec aubage incorporé en position d’ouverture maximale la différence était si faible qu’on pouvait facilement la négliger dans la pratique.

Un aubage de prérotation permet d’obtenir n’importe quelle courbe de réglage. Toutefois, et afin de conserver une caractéristique de réglage aussi sensible que possible, la courbe de réglage désirée doit pouvoir être obtenue avec un angle de calage de l’aubage ne dépassant pas 80°. En fonction du point de détermination de la courbe de réglage, cette position est obtenue pour un débit se situant entre 50 et 60 % du débit maximal. Notons en outre que lorsque la prérotation initiale est trop importante, l’entrée dans la roue ne peut plus se faire sans à-coups, si bien que les pertes deviennent encore plus importantes et qu’il faut alors compter sur une diminution du rendement. C’est pour cela que l’utilisation la plus rentable d’un aubage de prérotation se situe, à vitesse de rotation constante, entre 60 % et 100 % du débit nominal.

Pour obtenir un plus grande plage de réglage, on peut combiner des aubages de prérotation et des moteurs à deux vitesses. Pour des raisons de sensibilité de la régulation, on veillera à ce que le passage sur la plus petite vitesse de rotation s’effectue avant que l’angle de calage de l’aubage de prérotation n’atteigne 80°.


Réglage de la vitesse de rotation du ventilateur par variation de vitesse du moteur

La vitesse de rotation (n) d’un moteur asynchrone dépend de la fréquence du réseau (f), du nombre de paires de pôles du moteur (P) et du glissement (s) :

n [tr/min] = f [Hz ] x 60 x (1-s [-]) / P [-]

La régulation de la vitesse de rotation se fait en pratique en modifiant un de ces 3 paramètres.

Modification du nombre de paires de pôles

Il existe trois manières de modifier le nombre de paires de pôles d’un moteur asynchrone à cage d’écureuil. Le stator peut être équipé :

  • avec deux bobinages séparés ou plus ;
  • avec un bobinage à nombre de pôles commutable ;
  • avec une combinaison des deux solutions ci-dessus.
Nombre de paires de pôles Vitesse synchrone à 50 Hz [tr/min]
1 3 000
2 1 500
3 1 000
4 750
1 + 2 3 000 / 1 500
2 + 3 1 500 / 1 000
3 + 4 1 000 / 750
2 + 3 + 4 1 500 / 1 000 / 750
3 + 4 + 5 1 000 / 750 / 600

Théoriquement, les combinaisons de vitesse de rotation sont illimitées. Cependant, pour des raisons de place, on voit rarement un nombre de paires de pôles supérieur à 4 (8 pôles) en combinaison avec d’autres bobinages. Autrement, les moteurs deviendraient trop gros pour une puissance donnée. Pour cette raison, il faudrait plus souvent envisager d’utiliser deux moteurs différents, directement reliés aux deux extrémités de l’arbre du ventilateur.

 Bobinages séparés

Les moteurs à bobinages séparés sont plus gros à puissance égale.

Par exemple, les moteurs à deux bobinages séparés utilisés en technique de ventilation peuvent délivrer à la grande vitesse, en première approximation, le 80 % de la puissance que pourrait délivrer un moteur de même taille à un seul bobinage, tournant au même régime.

Le rendement d’un moteur à plusieurs bobinages, fonctionnant à la grande vitesse, est toujours un peu plus faible que le rendement d’un moteur à un seul bobinage délivrant la même puissance et tournant à la même vitesse.

De plus, avec plusieurs bobinages, la vitesse la plus élevée a le meilleur rendement. Pour les autres vitesses, le rendement est plus faible, il diminue avec l’augmentation du nombre de pôles.

Commutation entre deux séries de pôles : petite vitesse et grande vitesse.

 Pôles commutables

Il existe plusieurs possibilités de rendre un bobinage commutable et obtenir ainsi une meilleure utilisation de la taille du moteur. Par souci de simplicité du système de commutation, on utilise en pratique soit le couplage Lindstrôm-Dahlander ou le couplage à modulation d’amplitude de pôle (PAM).

Le couplage Dahlander permet un rapport de nombre de paires de pôles de 1 : 2. Le couplage PAM autorise d’autres possibilités et permet une meilleure utilisation de la taille du moteur.

Commutation des raccordements des moteurs Dahlander : raccordement en série (petite vitesse), raccordement en parallèle (grande vitesse).

Commutateurs de vitesse pour moteur à pôles séparés ou moteur Dalhander.

Modification du glissement

Pour augmenter le glissement d’un moteur, il faut augmenter l’écart entre le champ magnétique tournant et la vitesse de rotation du moteur. Le principe de base, commun à tous ces systèmes est de faire chuter la tension, la fréquence et le nombre de pôles restants identiques.

Pour cela, on utilise des transformateurs (appelés auto-transformateurs) commandés par servomoteur ou des systèmes de hachage par triacs/thyristors (appelés régulateurs de vitesse électroniques).

Variateurs de tension manuel et automatique.

La grande majorité de ces systèmes équipent seulement de petits ventilateurs. Ils permettent un réglage de 0 à 100 %.

Attention, il faut cependant que le moteur soit au départ conçu pour fonctionner à tension variable. En effet sur les moteurs standards, la baisse de tension a pour conséquence une augmentation de l’intensité inadmissible pour le moteur.

Le système de réglage par hachage de phase crée des harmoniques qui non seulement perturbent le fonctionnement du moteur, mais polluent le réseau de distribution. Le réglage par transformateur ne crée par contre pas d’harmonique.

Le prix est le principal avantage de ces systèmes de régulation.

Les systèmes par transformateurs permettent une adaptation du régime par paliers, alors que les systèmes à hachage de phase autorisent un réglage progressif continu. Il faut toutefois prendre garde à ne pas démarrer sur un petit régime au risque de détruire le moteur.

Les performances énergétiques de ces systèmes ne sont pas bonnes, quoique quand même préférables à par exemple une régulation par étranglement ou by-pass.

Convertisseurs de fréquence

La régulation de vitesse la plus favorable du point de vue consommation d’énergie est celle obtenue avec un convertisseur de fréquence.

Gamme de convertisseurs de fréquence.

Les convertisseurs de fréquence comportent généralement les éléments suivants

  • Un redresseur transformant la tension alternative 50 Hz du réseau en tension continue.
  • Un onduleur transformant la tension continue fournie par le redresseur en une tension alternative (mono- ou triphasée) de fréquence réglable alimentant le ou les moteurs. Cette tension n’est pas une vraie sinusoïde : la sinusoïde est « reconstituée » par des trains d’impulsions de longueur modulée et de hauteur fixe.
  • L’amplitude de la tension est par ailleurs également réglable. C’est ce qui permet d’ajuster le cos φ pour les faibles charges et d’optimaliser les caractéristiques de démarrage en fonction du couple demandé.
  • Un régulateur permettant de piloter le convertisseur au moyen d’un signal de consigne variable. Ceci permet de faire dépendre la vitesse de n’importe quelle loi choisie en fonction de l’application. Par exemple :
    • vitesse fonction d’une différence de pression;
    • vitesse fonction d’une température;
    • vitesse fonction d’une différence de température.

Mis à part le réglage de la vitesse, le convertisseur de fréquence présente les avantages suivants :

  • Grande fiabilité.
  • Permet le contrôle du démarrage du moteur (couple et intensité de courant). De ce fait, les contacteurs de démarrage étoile-triangle et leur commande ne sont pas nécessaires (économie de matériel, de place dans le tableau et de main-d’œuvre, dans le cas d’installations nouvelles).
  • Permet de fixer des limites hautes et basses de vitesse, pour définir une plage de réglage.
  • La vitesse nominale correspondant aux 50 Hz du réseau peut être dépassée.
  • Le cos φ est bon (environ 0,9). Une compensation n’est donc pas nécessaire.
  • Permet d’éviter des entraînements intermédiaires (poulies- courroies).
  • Offre la possibilité d’utiliser un convertisseur de puissance plus faible que la puissance nominale du moteur (adaptation à la puissance nécessaire dans les conditions réelles d’utilisation).
  • Peut régler la vitesse de plusieurs moteurs.
  • Accroît la longévité des roulements.
  • Permet de résoudre les problèmes de bruits dus à la mise en résonance de certaines parties de l’installation en ne modifiant que légèrement la vitesse de rotation.
Les inconvénients peuvent être (plus ou moins importants selon les marques) :
  • création d’harmoniques et d’interférences radio. Ceux-ci peuvent être gênants pour :
    • Le réseau où ils engendrent des perturbations, nuisibles en particulier pour l’informatique. L’adjonction d’un filtre peut être nécessaire (coût supplémentaire).
    • Les moteurs, car ils provoquent une augmentation des pertes par effet Joule, donc une élévation de température pouvant nécessiter une diminution de la puissance ou l’adjonction d’un ventilateur supplémentaire à vitesse fixe, surtout aux basses vitesses (< à 30 % du régime nominal). Ce « déclassement », de l’ordre de 10 %, peut être ramené à 5 % par l’utilisation de filtre antiharmonique.
  • En principe, le marquage CE garantit l’absence de ce type de problème et le respect de la directive européenne EMC. Cependant, la conformité des appareils portant ce marquage n’est pas vérifiée par un organisme tiers mais apposé par le fabricant.
  • Le rendement du convertisseur n’est pas de 100 % ; il est moindre à faible charge (0,75 à 20 Hz, par exemple) qu’à la puissance nominale où il peut dépasser 0,95. En outre lorsque le ventilateur est arrêté, il vaut la peine de mettre également hors service le convertisseur, de manière à supprimer les pertes de veille qui deviennent non négligeables lorsqu’on considère la consommation annuelle.

  • Sollicitation plus importante des isolants du moteur à cause des ondes de tension à flanc raide et à fréquence élevée, servant à générer la sinusoïde.

Lors d’une demande de prix et pour les comparaisons du matériel proposé par les différents fournisseurs, il faut être attentif aux possibilités de réglage et de signalisation offertes ainsi qu’au degré des inconvénients. En particulier, si le montage d’un filtre d’harmoniques est nécessaire, il peut renchérir sensiblement l’équipement.

Il existe 2 principaux types de convertisseurs de fréquence : le convertisseur à circuit intermédiaire piloté en fonction d’un courant et le convertisseur à circuit intermédiaire piloté en fonction d’une tension.

Pour autant que la puissance ne dépasse pas 500 kW, les deux systèmes sont d’un coût d’investissement à peu près identique.

Par contre, du point de vue rendement, celui d’un convertisseur à circuit intermédiaire tension est meilleur dans une plage de réglage allant de 100 % à 60 % de la vitesse de rotation nominale, alors qu’un convertisseur à circuit intermédiaire intensité est plus intéressant pour la plage de réglage allant de 60 % à 30 % de la vitesse de rotation nominale.


Variation de l’angle de calage des aubes des ventilateurs hélicoïdes

Si l’on excepte les petits ventilateurs régulés par transformateur, le système de régulation consistant à agir sur l’angle de calage des aubes de la roue constitue le moyen le plus courant de régulation d’un ventilateur hélicoïde.

La modication de positionnement des aubes peut se faire soit manuellement à l’arrêt (réglage à la mise en route), soit mécaniquement en cours de marche grâce à un servomoteur approprié. Toutefois, lorsqu’on parle de régulation par variation de l’angle de calage, on sous-entend presque toujours le positionnement automatique des aubes, opération qui s’effectue généralement au moyen de systèmes de type pneumatique.

À chaque angle de calage des aubes de la roue correspond, à vitesse de rotation constante, une nouvelle courbe caractéristique de ventilateur.

Toute diminution de l’angle de calage a pour conséquence de faire chuter le gain total de pression et, par conséquent, le débit. Mais contrairement à ce qui se passe avec un système de régulation par aubage de prérotation, le rendement varie peu sur une très large plage de mesure.

Il en résulte que, rapporté à la puissance nécessaire sur l’arbre du ventilateur, la puissance absorbée est très favorable.

Un autre avantage du système à aubage de prérotation provient de ce qu’il est tout à fait possible de faire varier le débit-volume entre 100 % et 0 %. Lorsque l’on désire maintenir un débit constant, ce mode de réglage ne pose aucun problème.

Il n’y a en fait que si on veut maintenir une pression constante qu’il faut prendre des précautions pour éviter la limite de pompage. Pour cela, il existe divers équipements de contrôle permettant d’éviter tout débordement dans la zone de pompage. Si le point de fonctionnement venait à se rapprocher de la zone critique, il y aurait immédiatement correction de l’angle de calage des aubes de telle façon que ce point de fonctionnement revienne vers la zone stable.

Quant à l’entretien, il est des plus réduits puisqu’il se résume à assurer une lubrification par bague de graissage.


Comparaison

Critères de comparaison

Les critères de choix d’un système de réglage sont en autres :

  • la plage de réglage,
  • l’économie d’énergie,
  • le bruit.

Plage de réglage

Plage de réglage des différents systèmes de régulation des ventilateurs

Plage possible Plage recommandée
Ventilateurs centrifuges et hélicoïdes Etranglement 100 à 70 % 100 à 90 %
By-pass 100 à 0 % 100 à 80 %
Prérotation 100 à 40 % 100 à 60 %
Boîte de vitesse 100 à 10 % 100 à 20 %
Vitesse du moteur 100 à 20 % 100 à 20 %
Ventilateurs hélicoïdes Calage des aubes 100 à 0 % 100 à 0 %

Tous les modes de réglage ne conviennent pas en fonction de la courbe de réglage choisie. En effet, lorsque le point de fonctionnement se déplace fortement vers la gauche, on risque de tomber dans la zone de fonctionnement instable du ventilateur, provoquant ainsi des bruits nuisant au confort.

Ce sera le cas par exemple :

  • Lorsque l’on désire maintenir une pression constante à la sortie du ventilateur par exemple par variation de vitesse.
  • Lorsque l’on régule par étranglement un ventilateur hélicoïde.
  • Lorsque l’on fait varier les débits par variation de vitesse et que l’on désire maintenir une pression constante dans un local (cas des salles blanches). Dans ce cas, seul la variation de l’angle de calage des aubes et les aubages de prérotation peuvent convenir sur une grande plage de réglage du débit.

Réglage par variation de vitesse dans les installations à pression externe constante.

Réglage par aubage de prérotation dans les installations à pression externe constante.

Efficacité énergétique

Pour obtenir un même débit, la puissance absorbée par le moteur peut être tout à fait différente en fonction du système de réglage choisi.

Ces courbes ont été établies pour des ventilateurs centrifuges à aubes arrières. Elles ne sont donc qu’indicatives pour les autres ventilateurs. La variation de l’angle de calage des aubes des ventilateurs hélicoïdes a été intégrée au graphe à titre de comparaison.

La régulation par registre de laminage ne conduit pas à des économies d’énergie importantes. Étant donné son faible coût d’investissement, elle peut cependant être utilisée pour de très faibles diminutions de débit et dans le cas de ventilateurs à aubes recourbées vers l’avant. Notons cependant que pour des petits ventilateurs, la régulation par étranglement peut, dans certains cas, être énergétiquement meilleure que la régulation de la vitesse de rotation (la différence peut être de 15 %), car les pertes de celle-ci pour des petits moteurs et de petits écarts par rapport au débit nominal, peuvent être plus grandes.

Une régulation par by-pass n’a pas sa place dans le cadre d’une utilisation rationnelle de l’énergie électrique, parce que si ce système permet de diminuer le débit dans le réseau de gaines, celui du ventilateur augmente entraînant, avec lui une augmentation de la puissance absorbée et de la consommation. L’augmentation de puissance absorbée peut être très conséquente et surcharge même dans certains cas le moteur.

La régulation par aubage mobile de prérotation permet une diminution importante de la puissance absorbée. Cependant, plus le débit diminue par rapport au débit nominal, plus le rendement du ventilateur diminue. Cette diminution est raisonnable pour les petites variations de débit. Pour des plus grandes plages de réglage la régulation par variation de vitesse est donc préférable.

La solution de réglage la plus élégante pour un ventilateur est celle par régulation de la vitesse de rotation. En effet, lorsque le réglage du débit doit suivre la courbe caractéristique du circuit de distribution, la variation de vitesse du ventilateur permet au ventilateur de toujours travailler à son meilleur rendement. Par contre, lorsque la pression doit rester constante, l’économie d’énergie est moins intéressante.

Sauf pour les très faibles variations de débit, c’est la solution du convertisseur de fréquence qui est énergétiquement le plus efficace. Les solutions par transformateurs ou modification du nombre de pôles présente de plus mauvais rendements (quoique meilleurs que le laminage et le by-pass).

Les progrès actuels et futurs dans le domaine de la régulation des moteurs donnent les meilleures chances d’avenir au ventilateur avec réglage de la vitesse de rotation.

Pour les ventilateurs hélicoïdes, la variation de l’angle de calage des aubes présente de très bon rendements. On peut dire que, du point de vue puissance absorbée, une régulation par variation de l’angle de calage des aubes se situe entre une régulation par aubage de prérotation et une régulation du moteur.

Classification des modes de réglage (dans l’ordre décroissant)

Économie d’énergie Investissement
1 calage des aubes 1 variation de vitesse
2 variation de vitesse 2 calage des aubes
3 aubage de prérotation 3 aubage de prérotation
4 registre 4 registre

Bruit

Schéma bruit.

Les registres d’étranglement posent clairement des problèmes de bruit et ne doivent donc être utilisés que pour de faibles réduction de débit. Cet inconvénient s’ajoute à la mauvaise efficacité énergétique du système.

Les aubages de prérotation, énergétiquement efficaces, peuvent aussi poser des problèmes de bruit.

Le comportement acoustique d’un système de régulation de ventilateur hélicoïde par variation de l’angle de calage des aubes est excellent et se rapproche de celui d’un système de régulation de la vitesse d’un moteur.

La diminution de la vitesse du ventilateur est quant à elle très favorable à la diminution de la puissance sonore.

Notons que le bruit du groupe moto-ventilateur ne peut être réduit à une valeur inférieure à celle du bruit du seul moteur utilisé.

Robinetterie

Robinetterie


Le mitigeur mécanique de lavabo avec limitation

Photo mitigeur mécanique de lavabo avec limitation.

  • Coût moyen
    85 € (contre 70 pour les mitigeurs mécaniques classiques).
  • Économie
    m³ sur l’année pour une famille de 4 personnes.
  • Temps de retour
    < 1 an.
  • Fonctionnement
    Le réglage de la température se fait de manière classique. Par contre, la manette possède une limitation pour le réglage du débit vers 8 litres/mn (butée ou point dur) qui demande un effort, ou un geste supplémentaire, pour atteindre la pleine ouverture du mitigeur (au moins 12 litres/mn).
  • Conseils d’utilisation
    Pas de remarque particulière.
  • Normes
    EN 817.

Le mitigeur électronique

Photo mitigeur électronique.

  • Coût moyen
    180 €.
    L’économie reste difficilement appréciable.
  • Fonctionnement
    Une cellule électronique détecte la présence des mains de l’usager et commande l’ouverture du débit. Le réglage en température se fait de manière classique grâce à la manette de commande. Une fois les mains en dehors du champ de détection, l’écoulement est stoppé.
  • Conseils d’utilisation
    Les points faibles de ces robinetteries sont les électro-vannes. Il est donc conseillé de placer des filtres en amont afin de protéger la robinetterie contre les particules qui pourraient nuire à son bon fonctionnement.
  • Application
    Ce type d’équipement est plus approprié aux collectivités ou aux établissements recevant du public.
  • Normes
    Aucune.

L’aérateur

Photo aérateur.

  • Coût moyen
    5 €.
  • Économie
    12 m³ sur l’année pour une famille de 4 personnes.
  • Temps de retour
    < 1 an.
  • Fonctionnement
    L’aérateur standard (sans limiteur de débit) permet l’obtention d’un jet régulier et participe à l’amélioration des caractéristiques acoustiques.
    L’adjonction d’un limiteur de débit permet par exemple de réduire le débit lors de la pleine ouverture de la robinetterie à un débit voisin de 6 litres/mn pour certains limiteurs (il existe plusieurs modèles de limiteur avec différents débits associés : 8 litres/mn, …). Le limiteur de débit est constitué d’une pastille qui change de forme suivant la pression qui est exercée par la vitesse de l’écoulement afin de réduire la section de passage pour les débits élevés.
  • Conseils d’utilisation
    Nettoyer régulièrement afin d’éliminer les dépôts calcaires.
  • Normes
    EN 246.

Le réducteur de pression

Photo réducteur de pression.

  • Coût moyen
    30 €.
    L’économie reste difficilement appréciable.
  • Fonctionnement
    Le réducteur de pression est composé d’une membrane élastomère sur laquelle vient s’exercer la pression de l’eau et la pression du ressort qui permet le réglage précis de la pression aval (ex.: entre 1,5 et 5,5 bars). La valeur de la pression est alors le résultat de l’équilivre entre les forces exercées sur la membrane.
  • Conseils d’utilisation
    Ne pas installer le réducteur de pression sur un by-pass car l’équilibre des pressions est alors possible en cas de mauvaise étanchéité de la vanne de by-pass.
    De plus, son montage sur la seule production d’eau chaude sanitaire est déconseillé car le déséquilibre des pressions qu’il entraîne (entre les réseaux d’eau froide et d’eau chaude) empêche le bon fonctionnement des robinetteries.
  • Normes
    EN 1567.

Le mitigeur mécanique de douche

Photo mitigeur mécanique de douche

  • Coût moyen
    50 €.
  • Économie
    2 m³ sur l’année pour une famille de 4 personnes.
  • Temps de retour
    < 1 an.
  • Fonctionnement
    Le réglage de la température et du débit est classiquement obtenu grâce à la manette. Pour ce qui est des robinetteries avec limitation de débit au niveau de la cartouche, un point « dur » ou une butée, délimite deux zones de fonctionnement : une zone économique (de 0 à environ 5 litres/mn), et une zone de confort (jusqu’à environ 12 litres/mn).
  • Conseils d’utilisation
    Eviter la fermeture rapide.
  • Norme
    EN 817.

Le mitigeur thermostatique de douche

Photo mitigeur thermostatique de douche.

  • Coût moyen
    100 €.
  • Économie
    4 m³ sur l’année pour une famille de 4 personnes.
  • Temps de retour
    4 ans.
  • Fonctionnement
    Le thermostatique est équipé d’un réglage en température et d’un réglage en débit. La température est maintenue constante par une action simultanée, indirecte et progressive, sur les deux vannes d’arrivée d’eau froide et d’eau chaude. L’ensemble du système est piloté par un élément de détection de température très sensible (bilame ou cartouche à cire dilatable).

    D’autre part, le thermostatique est souvent équipé d’une butée en température qui évite ainsi les risques de brûlure.

  • Conseils d’utilisation
    Veiller à ce que la robinetterie thermostatique soit bien équipée de clapets de non-retour. La mise en place de filtre en amont, voire d’un adoucisseur, est conseillée dans le cas d’une eau entartrante.
  • Norme
    EN 111.

Conduits d’air

Conduits d'air


Matériaux

Il existe des gaines de distribution en :

  • acier galvanisé,
  • aluminium,
  • inox,
  • matière synthétique,
  • ciment (les conduits en Eternit et boisseau ont une rugosité de 1,5 à 2 fois supérieure aux conduits galvanisés et donc des pertes de charge nettement plus élevées).

Forme et type de conduit

Les conduits cylindriques

Avantages

  • Demandant moins de matière pour une même section, ils sont plus légers et plus économiques.
  • Ils sont faciles et rapides à poser.
  • Ils se prêtent bien aux changements de direction en plan et en élévation.
  • Leur étanchéité est très bonne, particulièrement si les raccords entre conduits se fait avec double joint.

Inconvénients

  • Les piquages et le placement de bouches en parois sont plus compliqués.
  • Leur encombrement en hauteur est plus important

Photo conduits cylindriques.

Conduit circulaire avec joint aux raccords.

Les conduits rectangulaires

Avantages

  • L’encombrement en hauteur peut être plus réduit.
  • Les piquages et les bouches en flanc de conduit sont faciles à réaliser.
  • Les coudes peuvent facilement être équipés d’aubes directrices.

Schéma conduits rectangulaires.

Inconvénients

  • La quantité de matière utilisée est plus importante. Le réseau est donc plus lourd et plus coûteux.
  • Pour une même section, la perte de charge linéaire est donc aussi plus élevée pour un même débit.
  • La déformation des conduits est plus rapide.
  • L’étanchéité du réseau dépend très fort de la mise en œuvre et de la qualité des joints. Il est presque impossible d’atteindre l’étanchéité des conduits circulaires.

 Adhésif d’étanchéité des conduits rectangulaires.

Les conduits oblongs

Ils sont un compromis entre les conduits circulaires et les conduits rectangulaires : ils sont faciles à placer et étanches et ils prennent moins de place en hauteur que les conduits circulaires.

Photo conduits oblongs.

Les conduits autoportants et isolants

Avantages

  • L’isolation du conduit est directement intégrée.

Inconvénients

  • Ce type de conduit est plus complexe et donc plus fragile, lors de sa mise en place et son nettoyage.

Photo conduits autoportants et isolants.

Conduits d’isolant

Les conduits souples ou semi-rigides

Les conduits souples ne sont pas recommandés car ils entrainent de pertes de charge importante par rapport à des conduits rigides.

Avantages

  • Ils sont utiles pour les raccords difficiles au niveau des bouches ou autres appareils.
  • Les vibrations et le bruit du au déplacement de l’air sont plus facilement absorbé ce qui en fait des conduits intéressant pour atteindre des performances acoustiques plus élevées.

Inconvénients

  • Les conduits souples entrainent des pertes de charge plus importantes qu’un conduit rigide ou semi-rigide.
  • De part le matériau utilisé, ce type de conduit est généralement fragile ce qui ne facilite pas son nettoyage.
  • Si l’intérieur du conduit n’est pas lisse, l’encrassement sera plus important.

Les conduits diffusants

Photo conduits diffusants.

Manchon perforé permettant la pulsion d’un débit d’air important  à très haute vitesse (chaque trou sert de buse de soufflage).
La vitesse élevée de sortie assure un mélange rapide  avec l’air ambiant par induction (ventilation des grands halls).

Avantages

  • Grâce aux perforations de la parois ou au textile, l’air est diffusé de façon homogène dans le local.
  • Ils combinent distribution et diffusion de l’air permettant ainsi de faire l’économie d’une ou de bouche(s) de pulsions.

Inconvénients

  • Ce type de conduit ne peut évidemment être utilisé que pour la pulsion et la diffusion de l’air, il devra donc être apparents et directement dans le local à désservir en air frais.
  • Ils ne peuvent pas être isolé thermiquement ou recouvert.

Coudes, changements de section, piquages

 La forme des coudes, changements de direction, de section ou dérivations jouent un rôle important dans les pertes de charge du réseau de distribution.


Emplacement

Apparents

Avantages

  • La hauteur sous plafond est conservée.
  • Participe à l’esthétique de l’architecture ?
  • Les conduits n’entravent pas le gain énergétique du à l’inertie de la dalle.
  • Il est possible de placer un conduit diffusant et donc de se passer de bouche de pulsion.

Inconvénients

  • C’est rarement au goût des architectes… et des occupants.
  • Les conduits apparents participent à l’encombrement du local d’autant plus que le plafond est bas.

Dans un faux plafond ou plancher ou encastrés dans les murs

Avantages

  • Les conduits sont cachés au même titre que toutes les autres techniques.

Inconvénients

  • Pour effectuer le contrôle et le nettoyage des gaines, certaines parties doivent restées accessibles grâce à une trappe ou un plafond/plancher amovible.
  • Le faux plafond/plancher isole l’ambiance intérieur de la dalle et ne permet pas de faire participer activement son inertier.

Dans la chape

Avantages

  • L’inertie de la dalle est disponible.
  • Les conduits sont non-visibles.
  • L’étanchéité est assurée par la chape.

Inconvénients

  • Le réseau n’est plus accessible pour entretien, réparation, rénovation ou remplacement !

Isolation thermique

Dans le cas d’une ventilation double flux avec récupérateur de chaleur, il est utile d’isoler les conduits situé entre le groupe de ventilation et l’enveloppe extérieur du bâtiment, que le groupe soit situé à l’intérieur ou à l’extérieur du volume protégé. Cela pour limiter les pertes de chaleurs, et donc s’assurer la récupération maximale, et les risques de condensation.

Pour limiter les pertes thermiques lorsque le réseau véhicule de l’air chaud ou de l’air froid, il existe des conduits isolés thermiquement. L’isolant peut être apposé après pose des conduits. Les conduits peuvent également être directement composés du matériau isolant. Dans ce cas, une attention particulière sera portée sur la tenue mécanique de la surface interne du conduit qui ne doit pas présenter de rugosité excessive (augmentation des pertes de charge) et résister à l’arrachement.

Dans le cas de conduits véhiculant de l’air froid, les risques de condensation lors de la traversée d’un local plus chaud que l’air transporté sont éliminés au moyen d’un film pare-vapeur (tissu imprégné, film plastique ou métallique). Il existe des isolants déjà revêtus de tels films. Dans ce cas les joints doivent se refermer au moyen de ruban adhésif.

Il existe également des conduits rectangulaires directement composés de panneaux de laine minérale. Ceux-ci sont d’office enrobés d’un film pare-vapeur. Ces conduits ont par la même occasion des caractéristiques d’absorption acoustique.

Conduits composés de panneaux de laine minérale.

Isolant (épaisseur 25 mm) pour conduit
recouvert d’une feuille d’aluminium.


Isolation acoustique

Un système de ventilation est source de bruit. Les nuisances acoustiques sont principalement dues au fonctionnement du ventilateur et au déplacement de l’air dans les conduits.

Ainsi pour éviter la propagation de ces nuisances divers solutions sont possibles :

  • Isoler acoustiquement les conduits diminue le rayonnement du bruit dans les pièces.
  • Utiliser des supports anti-vibratiles pour le groupe de ventilation limite la propagation des bruits structurels.
  • Placer des dispositifs particulier tels que les absorbeurs acoustiques atténue le bruit transmis dans les conduits.
  • Concevoirle réseau sans obstacles réduit les turbulences et donc les sources de nuisances acoustiques.
  • Limiter la vitesse de l’air dans les conduits terminaux.
  • Disposer le groupe de ventilation dans un endroit reculé des pièces de séjour ou de travail.

Étanchéité à l’air

La norme NBN EN 12237 définit des classes d’étanchéité à l’air pour les conduits de ventilation en fonction d’un taux de fuite maximale admissible.

Le réseau de conduits doit être étanche à l’air pour limiter au maximum les fuites d’air afin :

  • de garantir les débits d’air définis,
  • d’éviter des sources de nuisances acoustiques,
  • de se protéger contre un encrassement ou de la condensation supplémentaire,

Il faut donc faire particulièrement attention aux endroits d’assemblage et de raccord entre les conduits entre eux et entre les conduits et un composants du système de ventilation : privilégier les joints montés en usine prévu dès la fabrication du conduits, assurer l’étanchéité finale par ruban adhésif (1,5 fois le contour du conduit) si nécessaire, limiter les découpes et les percements des conduits,…


Normalisation des sections

Le standard Eurovent 2/3 fixe la section des conduits de ventilation à des valeurs standards :

Conduits circulaires

Série des diamètres intérieurs (mm)

63 80 100 125 160 200 250
315 400 500 630 800 1 000 1 250

Rapport de grandeur entre 2 diamètres successifs

Diamètres (mm) 1,26
Sections (m²) 1,58
Vitesses (m/s) 1,58
Pressions dynamiques (Pa) 2,51
Pertes de charge linéaires (PA/m) 3,16

Conduits rectangulaires

Les conduits rectangulaires sont donnés en fonction de leurs côtés. La norme précise également la section obtenue Ac en m², le diamètre hydraulique dh en mm, le diamètre équivalent de en mm et l’aire de surface latérale Ai en m²/m.

  • dh = le diamètre du conduit circulaire ayant les mêmes pertes de charge pour une vitesse d’air identique.
  • de = le diamètre du conduit circulaire ayant les mêmes pertes de charge pour un débit identique (avec les mêmes coefficients de frottement).

Le standard Eurovent 2/3 fournit également les correspondances entre les dimensions des conduits rectangulaires, dh, de, Ac et ai sous forme d’abaques.

Grand coté
(mm)

Petit côté (mm)

100 150 200 250 300 400 500 600 800 1 000 1 200
200 0,020 0,030 0,040 Ac
133 171 200 dh
149 186 218 de
0,60 0,70 0,80 ai
250 0,025 0,038 0,050 0,063 Ac
143 188 222 250 dh
165 206 241 273 de
0,70 0,80 0,90 1,00 ai
300 0,030 0,045 0,060 0,075 0,090 Ac
150 200 240 273 300 dh
180 224 262 296 327 de
0,80 0,90 1,00 1,10 1,20 ai
400 0,040 0,060 0,080 0,100 0,120 0,160 Ac
160 218 267 308 343 400 dh
205 255 299 337 373 436 de
1,00 1,10 1,20 1,30 1,40 1,60 ai
500 0,075 0,100 0,125 0,150 0,200 0,250 Ac
231 286 333 375 444 500 dh
283 331 374 413 483 545 de
1,30 1,40 1,50 1,60 1,80 2,00 ai
600 0,090 0,120 0,150 0,180 0,240 0,300 0,360 Ac
240 300 353 400 480 545 600 dh
307 359 406 448 524 592 654 de
1,50 1,60 1,70 1,80 2,00 2,20 2,40 ai
800 0,160 0,200 0,240 0,320 0,400 0,480 0,640 Ac
320 381 436 533 615 686 800 dh
410 463 511 598 675 745 872 de
2,00 2,10 2,20 2,40 2,60 2,80 3,20 ai
1 000 0,250 0,300 0,400 0,500 0,600 0,800 1,000 Ac
400 462 571 667 750 889 1 000 dh
512 566 662 747 825 965 1 090 de
2,50 2,60 2,80 3,00 3,20 3,60 4,00 ai
1 200 0,360 0,480 0,600 0,720 0,960 1,200 1,440 Ac
480 600 706 800 960 1 091 1 200 dh
614 719 812 896 1 049 1 184 1 308 de
3,00 3,20 3,40 3,60 4,00 4,40 4,80 ai
1 400 0,560 0,700 0,840 1,120 1,400 1,680 Ac
622 737 840 1 018 1 167 1 292 dh
771 871 962 1 125 1 270 1 403 de
3,60 3,80 4,00 4,40 4,80 5,20 ai
1 600 0,640 0,800 0,960 1,280 1,600 1,920 Ac
640 762 873 1 067 1 231 1 371 dh
819 925 1 022 1 195 1 350 1 491 de
4,00 4,20 4,40 4,80 5,20 5,60 ai
1 800 0,900 1,080 1,440 1,800 2,160 Ac
783 900 1 108 1 286 1 440 dh
976 1 078 1 261 1 424 1 573 de
4,60 4,80 5,20 5,60 6,00 ai
2 000 1,000 1,200 1,600 2,000 2,400 Ac
800 923 1 143 1 333 1 500 dh
1 024 1 131 1 323 1 494 1 650 de
5,00 5,20 5,60 6,00 6,40 ai

Normalisation de l’étanchéité

Le standard EUROVENT 2/2 est basée sur des tests réalisés en laboratoire et sur site sur des conduits mis en œuvre suivant les codes de bonne pratique. Elle concerne le taux de fuite dans les conduits allant de la sortie de la centrale de traitement d’air aux éléments terminaux.

Un certain degré de fuite dans les réseaux de ventilation est inévitable (et toléré sauf évidemment dans les réseaux transportant des gaz dangereux). Il est en outre reconnu que le transport, le stockage et la mise en œuvre est source d’agravation des risques de fuite.

EUROVENT 2/2 définit des classes d’étanchéité basées sur le rapport entre la quantité de fuite dans les conduits et la surface du réseau de distribution d’air, bien que les fuites proviennent principalement des joints.

Classe d’étanchéité à l’air des conduits de ventilation selon EUROVENT 2/2

Mesure sur des conduits installés

Taux de fuite
[l.s-1.m-2]
p = pression statique d’essai [Pa]
Surface de fuite équivalente en cm² par m² de conduit

Classe EUROVENT

0.009 x p0,65 <…< 0.027 x p0,65

0.21 <…< 0.64

A

0.003 x p0,65 <…< 0.009 x p0,65

0.07 <…< 0.21

B

< 0.003 x p0,65

< 0.07

C

Mesure en laboratoire

Taux de fuite
[l.s-1.m-2]
p = pression statique d’essai [Pa]

Surface de fuite équivalente en cm² par m² de conduit

Classe EUROVENT

0.0045 x p0,65 <…< 0.0135 x p0,65

0.21 <…< 0.64

A

0.0015 x p0,65 <…< 0.0045 x p0,65

0.07 <…< 0.21

B

< 0.0015 x p0,65

< 0.07

C

Vases d’expansion

Rôle du vase d’expansion

Le vase d’expansion sert dans un premier temps à compenser les variations de volume que subit la masse d’eau de l’installation suite aux fluctuations de température.

Exemple.

Une ancienne installation est équipée de radiateurs à panneaux et d’une chaudière en fonte de 400 kW. Sa contenance en eau est estimée à 4 000 [l].

Le volume d’expansion de l’eau en passant de 10°C (eau de ville) à 90°C est de 142 [l].

Le deuxième rôle du vase d’expansion est de maintenir la pression dans l’installation quand celle-ci est complètement refroidie. Dans ce cas, la pression du vase doit empêcher une dépression dans l’installation et ainsi la pénétration d’air source de corrosion.


Vase d’expansion fermé à pression variable

Un vase d’expansion fermé est constitué, dans une enveloppe fermée, d’un volume d’air et d’un volume d’eau séparés par une membrane.

Avant remplissage de l’installation par de l’eau, le vase d’expansion est « gonflé » à une certaine pression d’air (pression calculée lors du dimensionnement).

Lorsque l’on remplit l’installation d’eau, cette dernière envahit une partie du vase jusqu’à ce qu’une pression minimale dans l’installation (pression mesurée par le manomètre de l’installation et également calculée lors du dimensionnement). Le volume d’eau ainsi contenu dans le vase servira de volume de réserve à l’installation.

Lorsque l’installation est mise en route, l’eau chauffée se dilate et le volume d’eau dans le vase augmente, comprimant l’air. La pression dans l’installation augmente donc.

C’est pourquoi on parle de vase d’expansion « à pression variable ».

Vase d’expansion avec membrane et à vessie

   

Vase d’expansion à membrane ou à vessie.

Il existe des vases d’expansion à membrane ou à vessie. La deuxième solution est plus durable car elle présente moins de risque d’inétanchéité notamment car elle ne présente pas de joint avec la paroi du vase.


Vase d’expansion fermé à pression constante

Un vase d’expansion fermé à pression constante est également constitué.

Vase d’expansion à pression variable et à pression constante.


Vase d’expansion ouvert

Il existe encore dans certaines anciennes installations, des vases d’expansion « ouvert ».

Il s’agit de réservoirs disposés au point le plus haut de l’installation. Ils sont ouverts à l’air libre et constituent une réserve d’eau pour l’installation. Ce système a comme inconvénient une absorption permanente d’oxygène par l’eau de chauffage. Celle-ci est d’autant plus importante qu’une circulation importante est entretenue dans le vase.

À ce titre, il est évident que ce type de vase d’expansion doit être remplacé par un système fermé.