Isolation à l’intérieur de la structure

Isolation  à l'intérieur de la structure

Cette technique, délicate par la résolution des risques de condensation et ponts thermiques, consiste au placement d’isolation entre les éléments de structure.

Aperçu des modèles d’isolation de l’espace protégé [Enveloppe – toiture inclinée]

Les combles qui seront occupés et chauffés doivent être isolés de l’ambiance extérieure.

Le toit incliné est dans ce cas la limite de l’espace protégé. C’est donc à ce niveau que doit être posé l’isolant et son pare-vapeur éventuel.

L’isolant peut être situé entre les éléments de charpente et/ou en dessous de ceux-ci (isolation par l’intérieur), ou au-dessus des éléments de charpente (isolation par l’extérieur).

Isolation par l’intérieur :

    1. couverture
    2. contre-lattes
    3. lattes
    4. sous-toiture
    5. chevrons ou fermettes
    6. isolant
    7. pare-vapeur
    8. finition intérieure
    9. panne

[1]  Isolation entre chevrons ou fermettes

Isolation par l’extérieur :

[1]  Isolation au-dessus des chevrons ou des fermettes (« Sarking »)

    1. couverture
    2. contre-lattes
    3. lattes
    4. sous-toiture
    5. isolant
    6. pare-vapeur
    7. chevrons ou fermettes
    8. pannes

[2]  Isolation au-dessus des pannes à l’aide de panneaux préfabriqués

    1. couverture
    2. languette d’assemblage
    3. lattes
    4. panneau de toiture préfabriqué
    5. raidisseurs du panneau
    6. isolant du panneau
    7. pare-vapeur intégré éventuel
    8. plaque inférieure du panneau
    9. pannes

Aperçu des modèles d’isolation du plancher des combles [Enveloppe – Le plancher des combles ]

Lorsque les combles ne sont pas prévus pour être chauffés, le plancher de celui-ci constitue la limite supérieure de l’espace protégé. C’est donc à ce niveau que doit être posé l’isolant et son pare-vapeur éventuel. Ce qui permet :

On distingue les planchers légers (en général, constitués d’une structure en bois supportant un plancher en bois et/ou un plafond en plâtre), des planchers lourds (en général, constitué de béton ou de terre-cuite).
Dans les deux cas, on précisera si le plancher des combles doit être circulable, pour permettre le rangement d’objets par exemple.

Les planchers légers

[1]   léger sans aire de foulée

  1. Gîte.
  2. Isolant.
  3. Pare-vapeur.
  4. Finition du plafond.

[2]  Plancher léger avec aire de foulée

  1. Gîte.
  2. Isolant (remplissage partiel).
  3. Pare-vapeur.
  4. Finition du plafond.
  5. Isolant (remplissage complet).
  6. Aire de foulée.

Les planchers lourds

[1]  Plancher lourd sans aire de foulée

  1. Isolant.
  2. Pare-vapeur.
  3. Support lourd.
  4. Finition du plafond.

[2]  Plancher lourd avec aire de foulée

  1. Aire de foulée.
  2. Lambourde (facultative).
  3. Isolant.
  4. Pare-vapeur.
  5. Support lourd.
  6. Finition du plafond.

Longueur du chemin de moindre résistance thermique

Longueur du chemin de moindre résistance thermique

Il existe des situations dans lesquelles les couches isolantes ne peuvent pas se joindre directement et dans lesquelles il n’est pas possible d’intercaler un élément isolant (par exemple, pour des raisons de stabilité). La coupure thermique ne peut pas, dans de telles situations, être conservée. Cela ne signifie pas pour autant qu’on ait à faire à un détail mal étudié. La réglementation PEB prévoit en effet une possibilité d’obtenir quand même, sans coupure thermique, un nœud constructif suffisamment performant du point de vue thermique.

Le flux thermique suivra toujours le chemin le plus facile de l’intérieur vers l’extérieur. Si la coupure thermique n’est pas présente, alors cela signifie que le flux thermique suit le chemin vers l’extérieur qui passe par l’interruption des couches isolantes, ce que l’on appelle le chemin de moindre résistance.  Le chemin de moindre résistance ne passe donc jamais à travers une couche isolante.

Exemple : poutre extérieure.

Exemple : fondation.

Le chemin de moindre résistance est strictement défini comme le plus court trajet entre l’environnement intérieur, et l’environnement extérieur ou un espace adjacent non chauffé, et qui ne coupe nulle part une couche d’isolante ou un élément isolant d’une, ont la résistance thermique est plus grande, supérieure ou égale à la plus petite des deux résistances R1 et R2 (= les résistances thermiques des couches isolantes des parois). Cela signifie qu’on doit dessiner, sur le plan de coupe du nœud constructif, la ligne la plus courte, de l’intérieur vers l’extérieur ou vers un EANC qui ne coupe nulle part une couche isolante.  Si la longueur totale de cette ligne est inférieure à 1 mètre, alors il est alors recommandé d’ajouter de l’isolant, à condition que cet isolant présente une résistance thermique plus grande, supérieure ou égale à la plus petite des valeurs de R1 et R2.  Le chemin de moindre résistance doit contourner les « obstacles », ce qui l’allonge automatiquement et permet de satisfaire l’exigence pour le nœud constructif.

Exemple : poutre extérieure.

Exemple : fondation.

Dans le cadre de la réglementation PEB, on considère le nœud constructif comme suffisamment performant du point de vue thermique lorsque le chemin de moindre résistance est suffisamment long, à savoir, plus grand ou égal à 1 mètre. Lorsque c’est le cas, le flux thermique doit franchir une distance suffisamment grande et la déperdition thermique peut rester limitée.

Interposition d’éléments isolants

Interposition d'éléments isolants


Dans certains cas, les couches isolantes ne peuvent pas se raccorder directement l’une à l’autre. Il existe alors la possibilité d’intercaler des éléments isolants. Ces éléments isolants assument localement la fonction d’isolation thermique des couches isolantes, de manière à maintenir ainsi la coupure thermique, comme par exemple au raccord d’un toit plat avec un mur extérieur ou à un appui de fondation.

Élément isolant en verre cellulaire entre la couche
isolante de la façade et celle du plancher inférieur.

La réglementation PEB indique que pour que le nœud constructif soit conforme,  tous les éléments isolants doivent répondre simultanément aux trois exigences suivantes :

  1. La conductivité thermique λ de la couche isolante de l’élément isolant ne peut pas dépasser 0.2 W/m.k.
  2. La résistance thermique de l’élément isolant doit être plus grande que la moitié  de la résistance thermique de la couche isolante  des parois la moins thermiquement résistante ou être supérieure à 2 m²K/W.Cas particulier des châssis et portes
    Lorsqu’un châssis de fenêtre ou de porte joint l’élément isolant, il n’est pas tenu compte de la résistance thermique de la fenêtre, mais uniquement  de la résistance thermique de la couche isolante de la paroi opaque. La résistance thermique de l’élément isolant doit être plus grande que la moitié  de la résistance thermique de la couche isolante de cette paroi ou être supérieure à 1.5 m²K/W.
  3. L’épaisseur de contact entre l’élément isolant et la couche isolante de la paroi jointe doit être au moins égale à la moitié de l’épaisseur de la couche isolante de la paroi jointe ou de l’épaisseur de l’élément isolant.
    Si un élément isolant est accolé à un autre élément isolant, l’épaisseur de contact doit être au moins égale à la moitié de l’épaisseur de l’élément isolant le moins épais.
    Ces épaisseurs doivent être mesurées perpendiculairement aux couches isolantes.

 

L’épaisseur de contact minimale doit être respectée pour tous les raccords.

           Cas particulier des châssis et portes

  • Châssis de fenêtre ou de porte sans coupure thermique
    L’épaisseur de contact doit être au moins égale à la moitié de l’épaisseur de l’élément isolant ou de l’épaisseur du dormant du châssis mesurée perpendiculairement au plan du vitrage.

Exemple : coupe en plan du piédroit SANS coupure thermique.

  • Châssis avec coupure thermique
    L’élément isolant doit nécessairement être en contact direct avec la coupure thermique, et ce, sur toute l’épaisseur de la coupure thermique.

Exemple : coupe en plan du piédroit AVEC coupure thermique.

Continuité de l’isolant

Continuité de l'isolant

Pour qu’un nœud constructif soit considéré comme thermiquement performant, il suffit que la coupure thermique soit garantie. Cela signifie que les couches isolantes de 2 parois jointives de la surface de déperdition doivent s’accoler de manière toujours continue. Cela signifie au moins qu’on peut parcourir à l’aide d’un crayon les couches isolantes et les parties isolantes intercalées sans devoir relever ce crayon.

Continuité de l’isolant au raccord de deux façades.

La continuité des couches isolantes n’est garantie que si elles sont jointes directement l’une à l’autre avec une épaisseur de contact minimale.

Du point de vue thermique, la meilleure solution pour ces nœuds constructifs est de joindre au maximum les couches isolantes l’une à l’autre, ce qui signifie que l’épaisseur de contact entre les deux couches isolantes (d contact) doit être égale à l’épaisseur de la couche. Du point de vue pratique cette situation n’est pas toujours faisable. C’est pourquoi, la réglementation PEB prévoit la possibilité de s’écarter jusqu’à une certaine limite de cette situation thermiquement idéale.

L’épaisseur de contact doit être au moins égale à la moitié de l’épaisseur de la couche isolante la moins épaisse des parois qui se joignent. Ces épaisseurs doivent être mesurées perpendiculairement aux couches isolantes.


Exemple : coupe en plan à l’angle de deux façades.
Schéma coupe en plan à l’angle de deux façades.

Cas particulier des châssis et portes

Châssis de fenêtre ou de porte sans coupure thermique

L’épaisseur de contact doit être au moins égale à la moitié de l’épaisseur de la couche isolante de la paroi ou de l’épaisseur du dormant du châssis mesurée perpendiculairement au plan du vitrage.

Schéma châssis de fenêtre ou de porte sans coupure thermique.

Exemple : coupe en plan du piédroit d’une fenêtre SANS coupure thermique.

Châssis avec coupure thermique

La couche isolante de la paroi doit nécessairement être en contact direct avec la coupure thermique, et ce, sur toute l’épaisseur de la coupure thermique.

Schéma châssis avec coupure thermique.

Exemple : coupe en plan du piédroit d’une fenêtre AVEC coupure thermique.

Définition de la couche isolante dans le cadre de la prise en compte des nœuds constructifs

La couche isolante d’une paroi de la surface de déperdition est par définition la couche de matériau avec la plus grande résistance thermique.

La couche isolante peut également être constituée de plusieurs couches de matériaux, homogènes ou non (les membranes doivent être négligées). À condition que :

  • les couches accolées de matériaux se succèdent  ET
  • il n’y ait aucune couche d’air intercalée ET
  • chacune des couches de matériaux ait une valeur λ inférieure ou égale à 0.2 W/mK.

Dans ce cas, les couches isolantes doivent être considérées comme une couche isolante assemblée, avec une épaisseur d  égale à la somme des épaisseurs de chacune des couches di et la résistance thermique R égale à la somme des résistances thermiques de chacune des couches Ri

Pour l’application de la réglementation PEB relative aux nœuds constructifs, s’il y a plusieurs couches isolantes non accolées, une seule des couches isolantes est prise en considération. C’est celle qui a la plus grande résistance thermique qui sera considérée comme la couche isolante de la paroi.

Isolation à l’intérieur de l’ossature d’un plancher inférieur

Isolation à l’intérieur de l’ossature d’un plancher inférieur


Principe technique

On profite de l’espace disponible entre les éléments de l’ossature pour poser un maximum d’isolant.

  1. L’isolant peut être placé en matelas fabriqués en usine. Ceux-ci sont découpés à la forme des cavités présentes dans la paroi. La fermeture d’une des faces de ces cavités par des panneaux ou des membranes se fait avant la pose de l’isolant.
  2. La pose de l’isolant peut également se faire par dépose de flocons ou de billes en vrac dans les cavités. Ce travail doit être confié à un entrepreneur spécialisé, car, pour que la pose soit correcte, il nécessite une bonne expérience et un outillage adapté. On évite ainsi que l’isolant soit insuffisamment ou trop tassé, voir mal réparti. La face inférieure du plancher est posée avant placement  de l’isolant. La face supérieure est généralement posée lorsque l’isolant est en place.

Les isolants généralement utilisés seront suffisamment souples et élastiques pour assurer un calfeutrement parfait contre les éléments de structures. Ainsi des fibres organiques ou minérales conviennent parfaitement. On sera cependant très attentif à prévoir du côté intérieur (côté chaud de l’isolant) un freine-vapeur ou pare-vapeur adapté à l’hygroscopicité de l’isolant à la perméabilité à la vapeur de la finition extérieure et  aux caractéristiques du climat intérieur. Cette protection indispensable fera également office de barrière d’étanchéité à l’air, point faible des parois à ossature.


Schémas de principe

  1. Revêtement de sol
  2. Freine-vapeur, étanchéité à l’air
  3. Structure du plancher
  4. Isolant
  5. Finition
  6. Vide

Précautions

  • Les isolants utilisés devront avoir une bonne stabilité dans le temps (tassement, humidité, vermine, …)

Isolation au-dessus du plancher support, sous l’aire de foulée

Isolation au-dessus du plancher support, sous l'aire de foulée


Principe technique

L’isolant est posé sur le support du plancher (béton armé, hourdis, …). Sur l’isolant est posée l’aire de foulée (chape + finition, panneaux, …). La chape peut être chauffante. C’est configuration peut s’appliquer tant pour les planchers sur sol que pour les planchers sur vide.


Schémas de principe

  1. Revêtement de sol.
  2. Chape.
  3. Couche de séparation.
  4. Isolant.
  5. Plancher portant.
  6. Sol ou vide

Précautions

  • L’isolant doit résister à la compression. Il n’est pas soumis à l’humidité.
  • Les canalisations hydrauliques (chauffage, ECS) dans le sol doivent se trouver au-dessus de l’isolant pour des raisons d’économie d’énergie.
  • Les nœuds constructifs aux appuis des maçonneries en élévation doivent être conçus afin d’éviter au maximum les ponts thermiques.
  • Les mouvements libres en périphérie (tassement et dilatation).
  • La chape qui recouvre l’isolant doit être suffisamment résistante (flexion et poinçonnement).
  • L’impact de la diminution de l’inertie thermique devrait être évalué (réduction de la capacité d’absorption et de déphasage par rapport à une dalle non isolée : avantageux dans le cas du chauffage par le sol mais désavantageux pour la gestion de la surchauffe.)

Isolation sous le plancher sur vide

Isolation sous le plancher sur vide


Principe technique

La pose de l’isolant sur la face extérieure des parois délimitant volume protégé amène de nombreux avantages : continuité de l’isolant, maintien de la paroi à une température constante intérieure, moins de risque de condensation interne, meilleure inertie thermique, etc. C’est également le cas pour les planchers situés au-dessus du vide.


Schémas de principe

  1. Revêtement de sol
  2. Chape
  3. Plancher portant
  4. Isolant
  5. Finition (éventuelle)
  6. Vide

Précautions

  • Tous les isolants conviennent.
  • Prévoir ou non une finition extérieure ventilée.
  • Nœuds constructifs aux appuis sur les fondations.

Isolation sous le plancher sur sol

Isolation sous le plancher sur sol


Principe technique

La pose de l’isolant sur la face extérieure des parois délimitant le volume protégé amène de nombreux avantages : continuité de l’isolant, maintien de la paroi à une température constante intérieure, moins de risque de condensation interne, meilleure inertie thermique, etc. C’est également le cas pour les planchers contre terre.


Schémas de principe

  1. Revêtement de sol
  2. Chape
  3. Plancher portant
  4. Couche de séparation
  5. Isolant
  6. Terre

Schémas de principe avec support, étanchéité éventuelle, isolation, protection éventuelle, drainage éventuel (prévoir des variantes : avec ou sans nappe phréatique ; radiers <-> semelles et dalles ; etc.)

Précautions

Les isolants utilisés devront avoir certaines caractéristiques

  • Ils devront être étanches à l’eau pour conserver leurs  performances thermiques,
  • Ils devront résister à l’écrasement.

Isolation enterrée

Isolation enterrée


Principe technique

La pose de l’isolant sur la face extérieure des parois appartenant à l’enveloppe du volume protégé amène de nombreux avantages : continuité de l’isolant ; maintien de la paroi à une température constante intérieure ; moins de risque de condensation interne ; meilleure inertie thermique ; etc. C’est également le cas pour les  murs contre terre.

  1. Mur enterré
  2. Étanchéité
  3. Isolant thermique
  4. Filtre
  5. Drain
  6. Fondation du drain
  7. Raccord entre le mur enterré et le bas de la façade
  1. Mur du local enterré
  2. Isolant thermique
  3. Matelas drainant
  4. Bavette en attente pour la finition supérieure
  1. Membrane d’étanchéité éventuelle
  2. Isolant thermique
  3. Filtre
  4. Drain
  1. Isolant thermique
  2. Drain (sable)
  3. Exemple de raccord d’étanchéité dans le haut du mur enterré

Schémas de principe avec support, étanchéité éventuelle, isolation, protection éventuelle, drainage éventuel (prévoir des variantes : avec ou sans nappe phréatique.


Précautions

Les isolants utilisés devront avoir certaines caractéristiques

  • Ils devront être étanches à l’eau pour conserver leurs  performances thermiques ;
  • Ils devront résister à l’écrasement.

Isolation à l’intérieur de l’ossature en bois d’un mur

Isolation à l'intérieur de l'ossature en bois d’un mur


Principe technique

On profite de l’espace disponible entre les éléments de l’ossature pour poser un maximum d’isolant.

  1. Structure bois
  2. Pare-pluie
  3. Cavité
  4. Isolant
  5. Freine vapeur

Ossature bois avant la pose de l’isolation.

1. L’isolant peut être placé en panneaux fabriqués en usine découpés à la forme des cavités présentes dans la paroi. La fermeture d’une des faces de ces cavités par des panneaux ou des membranes se fait après la pose de l’isolant.

 

Isolation à l’aide de matelas souples.

2. La pose de l’isolant peut également se faire par insufflation de flocons dans les cavités qui, dans ce cas, sont complètement fermées avant insufflation. Ce travail doit être confié à un entrepreneur spécialisé, car, pour que la pose soit correcte, il nécessite une bonne expérience et un outillage adapté. On évite ainsi que l’isolant soit insuffisamment ou trop tassé, ou bien que des vides sans isolant subsistent.

  

Insufflation, pare-vapeur en feuille transparente.

Avant insufflation, pare-vapeur réalisé à l’aide de panneaux.

Les isolants généralement utilisés seront suffisamment souples et élastiques pour assurer un calfeutrement parfait contre les éléments de structures. Ainsi, des fibres organiques ou minérales conviennent parfaitement. On sera cependant très attentif à prévoir du côté intérieur un freine-vapeur ou pare-vapeur adapté à l’hygroscopicité de l’isolant à la perméabilité à la vapeur de la finition extérieure et aux caractéristiques du climat intérieur. Cette protection indispensable fera également office de barrière d’étanchéité à l’air, point faible des parois à ossature.

Schémas de principe avec ossature bois, isolant, finitions intérieure et extérieure, pare-vapeur, espace technique, …


Précautions

Les isolants utilisés devront avoir une bonne stabilité dans le temps (tassement, humidité, vermine, …).

Modèles d’isolation – plancher lourd sans aire de foulée

Modèles d'isolation - plancher lourd sans aire de foulée

L’isolation du plancher lourd de combles non circulables peut se faire par divers systèmes :


Matelas souple ou semi-rigide sur le plancher

L’isolant utilisé, en générale de la laine minérale, peut être souple (en rouleaux) ou semi-rigide (en panneaux). Les rouleaux peuvent éventuellement être revêtus d’un papier kraft et/ou d’un pare-vapeur.

Le pare-vapeur éventuel est déroulé soigneusement sur le plancher lourd.

L’isolant est ensuite déposé de façon continue, les panneaux ou rouleaux étant parfaitement jointifs. Si l’isolant est muni d’un pare-vapeur, celui-ci doit se trouver en dessous de l’isolant.

L’isolant sera correctement fixé sur les parties verticales ou inclinées.

Matelas isolant souple ou semi-rigide au-dessus d’un plancher lourd non circulable.

  1. Isolant.
  2. Pare-vapeur éventuel.
  3. Support lourd.
  4. Finition du plafond.

Panneaux rigides sur le plancher

L’isolant utilisé peut être de la mousse synthétique ou du verre cellulaire.

La face supérieure du plancher lourd doit être bien plane. Il faut donc, au besoin, l’égaliser à l’aide d’une fine chape ou de sable.

Le pare-vapeur éventuel est déroulé soigneusement sur le plancher lourd avant la pose de l’isolant.

L’isolant est ensuite déposé de façon continue.

Les panneaux en mousse synthétique sont munis de rainures et languettes, ils doivent être correctement emboîtés.

Les panneaux en verre cellulaire sont posés jointifs.
L’isolant doit être correctement fixé sur les parties inclinées ou verticales éventuelles.

Isolant rigide au-dessus d’un plancher lourd non circulable.

  1. Isolant.
  2. Emboîtement.
  3. Pare-vapeur éventuel.
  4. Egalisation éventuelle.
  5. Support lourd.
  6. Finition du plafond.

Flocons ou granulés d’isolant sur le plancher

Le matériau isolant utilisé est constitué de granulés de perlite ou de polystyrène expansé, ou de flocons de laine minérale posés en vrac sur le plancher lourd.

On sera attentif à ce que l’épaisseur soit régulière.

Lorsqu’un pare-vapeur est nécessaire, celui-ci est placé sur le plancher avant pose de l’isolant.

Isolant posé en vrac au-dessus d’un plancher lourd non circulable.

  1. Isolant en vrac.
  2. Pare-vapeur éventuel.
  3. Support lourd.
  4. Finition du plafond.

Isolant sous le plancher : une solution à éviter !

L’isolant est fixé sous le plancher lourd.

La fixation est difficile et dépend du type d’isolant.

Un pare-vapeur efficace indispensable (sauf en cas d’utilisation du verre cellulaire) est soigneusement placé sous l’isolant. Les joints seront particulièrement soignés. Il ne peut pas être déchiré.

La finition du plafond est ensuite réalisée en prenant toutes les précautions nécessaires pour éviter de blesser le pare-vapeur.

Aucune installation technique ne pourra être aménagée dans le plafond.

Le plancher lui-même ne pourra être percé.

Un espace technique pourrait éventuellement être aménagé entre le pare-vapeur et le plafond.

Toute cette mise en œuvre nécessite un soin parfait difficile à réaliser sur chantier.

Isolation en dessous du plancher lourd non circulable.

  1. Plancher lourd.
  2. Isolant.
  3. Pare-vapeur.
  4. Finition du plafond.

Toiture froide

Toiture froide


Généralités

La toiture froide désigne la toiture plate dont l’isolant est placé en dessous du support de l’étanchéité avec une lame d’air ventilée interposée.

Jadis régulièrement mis en œuvre, ce système est actuellement complètement dépassé et est à proscrire.

  1. Lestage (éventuel)
  2. Membrane d’étanchéité
  3. Support
  4. Lame d’air ventilée
  5. Isolant
  6. Pare vapeur étanche à l’air
  7. Plafond

En effet, l’isolation d’une toiture plate par ce système provoque presque inévitablement de la condensation interne.

La vapeur d’eau qui migre de l’intérieur vers l’extérieur se condense sur le support d’étanchéité, dans l’isolant ou dans l’espace aéré et retombe sur l’isolant. La ventilation réelle de la lame d’air est souvent plus faible que celle nécessaire.

Le support d’étanchéité est parfois beaucoup plus froid que l’air extérieur de ventilation dont la vapeur se condense sur la face inférieure de l’étanchéité (surrefroidissement).

Lorsque le plafond n’est pas étanche à l’air, l’air intérieur chaud est aspiré dans l’espace ventilé et s’y condense d’autant plus que les courants d’air sont importants.

Cette condensation peut entraîner  l’altération de l’isolant et la suppression de son efficacité, la pourriture des planchers, le gel des matériaux, le décollement ou le ramollissement des matériaux agglomérés, le développement de moisissures, etc. 


Variantes

De même que l’on évitera de réaliser des toitures froides, on s’abstiendra en règle générale de placer l’isolant à la face inférieure du plancher de toiture, dans un faux plafond, ou entre le plancher et le béton de pente.

Isolation par l’intérieur

  1. Lestage (éventuel)
  2. Membrane d’étanchéité
  3. Support
  4. Isolant
  5. Pare vapeur (éventuel)

Isolation dans le faux plafond

  1. Lestage (éventuel)
  2. Membrane d’étanchéité
  3. Support
  4. Vide du plafond
  5. Isolant
  6. Pare-vapeur
  7. Plafond

Isolation sous béton de pente

  1. Lestage (éventuel)
  2. Membrane d’étanchéité
  3. Béton de pente
  4. Isolant
  5. Pare vapeur
  6. Support

Toiture combinée

Toiture combinée


La toiture combinée consiste en un mélange des techniques « toiture chaude » et « toiture inversée« .

L’isolation est mise en place en deux couches.

La première couche d’isolant est recouverte par la membrane d’étanchéité.

La deuxième couche d’isolant est placée sur la membrane d’étanchéité. La technique de la toiture combinée protège ainsi la membrane d’étanchéité contre les chocs thermiques et le rayonnement ultraviolet, et de ce fait, ralentit son vieillissement.

Un écran pare-vapeur est parfois interposé entre le support et l’isolant inférieur.Celui-ci n’est pas nécessaire lorsque la résistance thermique de la couche supérieure est deux fois plus importante que la résistance thermique de la couche inférieure.
Le lestage est nécessaire.

  1. Lestage
  2. Natte de protection
  3. Isolant 1
  4. Membrane d’étanchéité
  5. Isolant 2
  6. Pare vapeur
  7. Support

Isolation par panneaux rigides au-dessus des chevrons ou des fermettes (Toiture « Sarking »)

Isolation par panneaux rigides au-dessus des chevrons ou des fermettes (Toiture "Sarking")

Isolation au-dessus des chevrons ou des fermettes.

  1. couverture
  2. contre-lattes
  3. lattes
  4. sous-toiture
  5. isolant
  6. pare-vapeur
  7. chevrons ou fermettes
  8. pannes

La toiture « SARKING »

Le système sarking est un procédé d’isolation thermique des toitures inclinées caractérisé par la pose de panneaux isolants rigides au-dessus des chevrons ou des fermettes.

La toiture sarking vu de l’intérieur.

Les panneaux sont généralement en mousse synthétique ou en verre cellulaire, plus rarement en laine de roche rigide incompressible.

Les joints entre panneaux isolants étant rendus étanches à l’air, les panneaux isolants assument, à eux seuls, 3 fonctions de la toiture :

Lorsque les joints entre les panneaux isolants ne sont pas rendus étanches, une sous-toiture souple capillaire permettant la diffusion de vapeur est posée sur l’isolant.

Un écran rigide, sorte de plancher incliné dans le plan de la couverture, peut être éventuellement placé directement sur les chevrons ou fermettes, sous les panneaux isolants. Il peut alors servir de finition intérieure, de sécurité incendie. En outre il facilite grandement la pose d’un éventuel pare-vapeur pour lequel il sert de support.

Il est constitué, par exemple, de :

  • panneaux multiplex ou de bois aggloméré,
  • voliges rainurées bouvetées ou non,
  • plaques de fibre-ciment.

La mise en œuvre de verre cellulaire ou de laine de roche rigide incompressible, impose ce support rigide.

Isolant supporté par une plaque rigide.

  1. Couverture.
  2. Lattes.
  3. Contre-lattes.
  4. Isolant.
  5. Plaque de support.
  6. Chevrons ou fermettes.
  7. Pannes.

En l’absence de plancher, la finition intérieure est réalisée sous les chevrons, en plaques de plâtre, par exemple.

La finition intérieure, qu’elle soit constituée du support ou d’une autre finition, doit être en matériau isolant au feu de manière à retarder la transmission de flammes vers les isolants en mousses synthétiques (PUR, PIR, XPS, EPS) qui sont combustibles.

Les contre-lattes sont clouées dans les chevrons ou les fermettes au travers de l’isolant.


Conseils de mise en œuvre

Les panneaux isolants rigides de mousse synthétique (XPS, EPS) de la toiture « Sarking » sont placés parallèlement à l’horizontale.

Les joints verticaux des panneaux se retrouvent de préférence au-dessus et à l’axe du support (chevron ou fermette).

Bâtiments de classe de climat intérieur I, II ou III

Dans les bâtiments de classe de climat intérieurI, II ou III, la fonction d’étanchéité à l’air et à la vapeur est assurée par le panneau isolant lui-même à condition d’avoir des joints et des raccords étanches.
L’étanchéité à l’air et à la vapeur des joints et des raccords peut être obtenue :

  • par la mise en place de bandes de mousse souple d’épaisseur suffisante à l’intérieur des joints, ou
  • par des cordons de mastic élastique compatible à la jonction des panneaux, ou encore
  • par des bandes auto-collantes disposées sur les joints.

La fonction « sous-toiture » peut être assurée par le panneau isolant à condition de rendre étanche à l’eau la face supérieure de tous les joints entre panneaux et des raccords. Dans ce cas, une bavette collée sur la dernière rangée de panneaux ou engagée dans l’épaisseur de cette dernière, doit assurer l’évacuation des infiltrations d’eau éventuelles.

  1. Panne sablière.
  2. Chevron ou fermette.
  3. Planche de rive.
  4. Cale de bois.
  5. Panneaux isolants.
  6. Isolant entre chevrons ou fermette.
  7. Sous-toiture éventuelle.
  8. Contre-latte.
  9. Lattes.
  10. Latte plâtrière.
  11. Couverture.
  12. Gouttière.
  13. Bavette indépendante.
  14. Peigne.
  15. Finition intérieure.

Une autre solution consiste à poser sur les panneaux isolants ou à intégrer à ceux-ci, lors de leur fabrication, une sous-toiture sous forme de membrane ou de plaques rigides imperméables à l’eau mais très perméables à la vapeur. La sous-toiture souple est posée sur l’isolant avec recouvrement des joints longitudinaux et transversaux. La sous-toiture rigide est posée sur l’isolant avec recouvrement des joints longitudinaux. La jonction verticale se fait bord à bord, dans l’axe des chevrons ou fermettes. Le joint vertical est comprimé par la contre-latte fixée au chevron ou à la fermette à travers l’isolant. Les joints verticaux de l’isolant et de la sous-toiture rigide ne peuvent pas se superposer. La sous-toiture doit être prolongée dans le bas du versant jusqu’à la gouttière ou au-delà de la façade pour assurer l’évacuation des infiltrations d’eau éventuelles.

Exemple, système proposé par un fabricant.

Joint horizontal entre deux panneaux

  1. chevron ou fermette
  2. crochet de mise en place cloué au chevron
  3. panneau isolant
  4. bande de mousse souple adhésive
  5. latte de mise en place
  6. deuxième rangée de panneaux isolants à glisser contre la première rangée
  7. couche de revêtement avec rebord (200 mm) (= sous-toiture)

Joint vertical entre deux panneaux

  1. chevron ou fermette
  2. bande adhésive
  3. panneau isolant avec sous-toiture souple intégrée
  4. contre-latte

Les joints verticaux sont alignés au-dessus et à l’axe du chevron. De cette façon, l’étanchéité à l’air est assurée par la contre-latte. Une étanchéité à l’air supplémentaire peut être obtenue en plaçant une bande adhésive souple sur le support avant la mise en place des panneaux et en appliquant une même bande sur la face supérieure des joints avant la pose des contre-lattes.

Autre exemple, système proposé par un autre fabricant : 

Panneau rainuré et languetté sur le pourtour + profil le rendant étanche à l’air et à la vapeur d’eau. En outre, la face supérieure est pourvue d’une membrane de sous-toiture étanche à l’eau qui chevauche le panneau de part et d’autre.

On trouve sur le marché des panneaux de polystyrène expansé à rainures et languettes dont le fabricant propose simplement, pour réaliser l’étanchéité entre panneaux, la pose par-dessus le panneau isolant, d’une membrane étanche à l’eau de pluie et perméable à la vapeur, sans étanchéité à l’air et à la vapeur supplémentaire à la face inférieure des panneaux.

Les tenons des plaques doivent toujours être orientés vers le haut.

Ce système est moins exigeant au niveau hygrothermique que l’ensemble des précautions énoncées ci-dessus et extraites de l’article « Dossier : la toiture SARKING », paru dans le magasine « Roof Belgium » de septembre 1998, écrit sur base d’un document technique du CSTC exposant les aspects principaux de la toiture Sarking. Néanmoins, ce système, pour autant qu’il soit pourvu d’un plancher ou d’une finition intérieure étanche à l’air sous les chevrons, est conforme aux recommandations du CSTC concernant le choix du pare-vapeur, puisque ces recommandations n’exigent pas de pare-vapeur dans le cas d’une sous-toiture capillaire et perméable à la vapeur d’eau.

Bâtiments de classe de climat intérieur IV

Dans les bâtiments de classe de climat intérieur IV, les recommandations ci-dessus concernant la fonction « sous-toiture » restent valables, tandis que la fonction d’étanchéité à la vapeur d’eau nécessite la pose d’un pare-vapeur continu. La mise en place de celui-ci sera facilitée par la présence, sous les panneaux isolants, d’un « plancher » sur lequel il sera posé.

Remarque générale.

Pour une construction sûre en matière d’incendie, on doit prévoir une finition intérieure en carton-plâtre ou en tout autre matériau résistant au feu. Celle-ci permet de retarder la transmission de flammes vers les mousses synthétiques (PUR, PIR, XPS, EPS) qui sont combustibles.

Isolation sur les pannes (panneaux auto-portants)

Isolation sur les pannes (panneaux auto-portants)

Isolation par panneaux autoportants.

  1. Couverture.
  2. Languette d’assemblage.
  3. Lattes.
  4. Panneau de toiture préfabriqué.
  5. Raidisseur du panneau.
  6. Isolant du panneau.
  7. Pare-vapeur intégré éventuel.
  8. Plaque inférieure du panneau.
  9. Panne.

Le principe

Les éléments de toiture auto-portants préfabriqués en usine sont directement posés parallèlement à la pente de toiture, sur les pannes.

Les panneaux isolants préfabriqués.

Les joints entre éléments autoportants étant rendus étanches à l’eau à leur face supérieure et à l’air et à la vapeur à leur face inférieure (exemple : par injection de mousse), ils assument à eux seuls, 4 fonctions de la toiture :

  • celle de la sous-toiture,
  • celle de l’isolant,
  • celle de l’écran étanche à l’air et à la vapeur,
  • et celle de la finition intérieure du plafond.


Jonction entre éléments.

En outre, ils remplacent les chevrons et les contre-lattes.


Les éléments autoportants

Les éléments autoportants peuvent être classés en deux grands groupes :

1. Les éléments autoportants ouverts

Élément autoportant ouvert.

Ils sont constitués d’une plaque de particules ou de multiplex de 1 à 6 m (ou plus) de longueur raidis par des chevrons; les compartiments ainsi formés, sont remplis d’isolant, visible sur la face supérieure des éléments.

  1. Lattes en bois servant de chevron et de contre-latte.
  2. Isolation (PUR, PIR, XPS, EPS).
  3. Plaque continue.

Il existe également sur le marché, des éléments autoportants à isolation continue. Dans ce cas il n’y a pas de chevrons fixés à la palque de base mais des contre-lattes sont fixées au-dessus de l’isolant.

Élément autoportant ouvert à isolation continue.

2. Les éléments autoportants sandwiches

Eléments autoportants sandwiches.

Les éléments autoportants sandwiches sont constitués d’un isolant revêtu sur ses deux faces d’une plaque de particule ou d’un multiplex. La face supérieure est généralement munie de contre-lattes.

  1. Contre-latte.
  2. Isolation.
  3. Plaques.
  4. Languette mobile.

Isolation
en laine de roche.

Isolation
en polyuréthane.

Isolation
en polystyrène.


Conseils de mise en œuvre

Les panneaux autoportants sont placés sur les pannes parallèlement à la pente de toiture.

Les joints parallèles au faîtage sont à éviter, car leur étanchéité à la pluie est difficile à réaliser. On choisit donc des panneaux suffisamment long que pour couvrir toute la longueur de la toiture.

La plupart des éléments auto-portants sont conçus pour prévenir tout pont thermique à la jonction de deux éléments ainsi que pour empêcher tout mouvement différentiel dans le versant.

Exemple : rainures avec interposition d’une languette mobile dans celles-ci.

Languette entre deux panneaux.

Dans tous les cas, les joints doivent être étanche à l’eau à leur face supérieure et étanche à l’air et à la vapeur à leur face inférieure.

Exemple.

L’étanchéité à la pluie est, ici, réalisée par injection de mousse isolante au-dessus de la languette de jonction et par une bande d’aluminium adhésive sur l’ensemble mousse isolante injectée et chevrons intégrés aux panneaux.

Réalisation de l’étanchéité à la pluie

Schéma réalisation de l'étanchéité à la pluie.
  1. Bande d’aluminium adhésive.
  2. Mousse isolante injectée.
  3. Languette de jonction.

L’étanchéité à l’air et à la vapeur n’est assurée que si les joints sont, à leur face inférieure, injectés (ex : de mousse) ou collés au moyen de matériaux restant élastiques.

Il est recommandé de n’utiliser que les panneaux disposant d’un agrément technique de l’UBAtc (Union belge pour l’agrément technique de la construction).

La pose des panneaux autoportants est très délicate et varie d’un système à l’autre. Les prescriptions des fabricants et de l’agrément technique doivent être scrupuleusement suivies.

Modèles d’isolation – plancher léger avec aire de foulée

Modèles d'isolation - plancher léger avec aire de foulée

L’isolation du plancher léger de combles circulables peut se faire par divers systèmes :


Panneaux semi-rigide entre les gîtes

L’isolant semi-rigides est généralement de la laine minérale.

Il est posé entre les gîtes, sur le plafond de l’étage inférieur.

La largeur de l’isolant est légèrement supérieure à l’espace disponible entre les gîtes (1 ou 2 cm). De cette façon l’isolant est bien maintenu hermétiquement contre les gîtes et les courants d’air accidentels sont évités.

L’isolant peut occuper toute la hauteur de l’espace entre les gîtes ou une partie seulement.

Lorsqu’un pare-vapeur est nécessaire, celui-ci est fixé sous les gîtes avant la réalisation du plafond.

Finalement, l’aire de foulée est placée au-dessus du gîtage.

Isolant semi-rigide entre gîtes d’un plancher circulable.

  1. Gîte.
  2. Isolant (remplissage partiel).
  3. Pare-vapeur.
  4. Finition du plafond.
  5. Isolant (remplissage complet).
  6. Aire de foulée.

Matelas souples à languettes entre les gîtes

Le matelas souple muni d’un pare-vapeur est un matelas de laine minérale revêtu, par exemple, de papier kraft et de kraft-aluminium sur la face chaude (côté inférieur). Le kraft aluminium fait office de pare-vapeur. Il dépasse de quelques cm les bords du matelas isolant (languettes).

Le matelas isolant est placé par dessous. Les languettes sont agrafées à la face inférieure des gîtes en se recouvrant partiellement. Les plafonds sont finalement mis en place.

L’isolant peut occuper toute la hauteur de l’espace entre les gîtes ou une partie seulement.

L’aire de foulée peut être posée avant ou après l’isolant.

Remarque : la largeur du matelas doit être adaptée à l’entre-axe des gîtes.

Matelas de laine minérale en rouleau à languettes.

Matelas isolant avec languettes entre gîtes d’un plancher circulable.

  1. Gîte.
  2. Isolant souple.
  3. Papier Kraft.
  4. Languettes superposées agrafées.
  5. Pare-vapeur en Kraft-Aluminium.
  6. Finition du plafond.
  7. Aire de foulée.

Panneaux rigides entre les gîtes

L’isolant rigide est généralement de la mousse synthétique (PUR, PIR, XPS, EPS).

Il est posé entre les gîtes, sur le plafond de l’étage inférieur.

L’isolant étant rigide, il est difficile de l’ajuster exactement avec les gîtes. Pour cette raison, la largeur de l’isolant mis en œuvre est légèrement inférieure à l’espace disponible entre les gîtes (1 ou 2 cm). Ainsi, une mousse de polyuréthane peut être injectée facilement entre l’isolant et la gîte.

Cette mousse assure une continuité de l’isolant jusqu’à la gîte et une protection contre les courants d’air accidentels.

L’isolant peut occuper toute la hauteur de l’espace entre les gîtes ou une partie seulement.

Lorsque un pare-vapeur est nécessaire, celui-ci est fixé sous les gîtes avant la réalisation du plafond.

Finalement, l’aire de foulée est placée au dessus du gîtage.

Panneaux isolants rigides entre gîtes d’un plancher circulable .

  1. Gîte.
  2. Pare-vapeur.
  3. Finition du plafond.
  4. Isolant rigide.
  5. Aire de foulée.
  6. Mousse injectée.

Flocons ou granulés d’isolant entre les gîtes

Le matériau isolant utilisé est constitué de granulés de perlite ou de polystyrène expansé, ou de flocons de laine minérale posés en vrac entre les gîtes, sur le plafond de l’étage inférieur.

Lorsque un pare-vapeur est nécessaire, celui-ci est fixé sous les gîtes avant la réalisation du plafond.

Finalement, l’aire de foulée est placée au dessus du gîtage.

Isolant posé en vrac entre les gîtes d’un plancher circulable.

  1. Gîte.
  2. Pare-vapeur
  3. Finition du plafond.
  4. Isolant en vrac.
  5. Aire de foulée.

Isolation semi-rigide entre lambourdes sur une plaque de support

L’isolant semi-rigide est généralement de la laine  minérale.

Sur le gîtage est posé un plancher destiné à supporter l’isolant. Le pare-vapeur éventuel est déroulé soigneusement sur ce plancher.

Des lambourdes d’une épaisseur au moins équivalente à celle de l’isolant sont ensuite placées à intervalle régulier sur le plancher support et son pare-vapeur éventuel.

L’espace entre les lambourdes est déterminé par la largeur des panneaux isolants prévus (largeur de panneau moins +/- 2 cm).

De cette façon l’isolant est bien maintenu hermétiquement contre les lambourdes et les courants d’air accidentels sont évités.

Si pour des raisons techniques, l’entredistance entre les lambourdes devaient être différents, la largeur des panneaux doit être adaptée.

L’étanchéité sera assurée par le pare-vapeur s’il existe, sinon à l’air par le plafond ou la plaque de support de l’isolant.

Finalement, l’aire de foulée est fixée à la face supérieure des lambourdes.

Isolation entre lambourdes au-dessus du gîtage d’un plancher circulable .

  1. Lambourdes.
  2. Isolant.
  3. Pare-vapeur.
  4. Plancher support de l’isolant.
  5. Aire de foulée.
  6. Finition du plafond.

Isolation rigide sur une plaque de support

L’isolant rigide est généralement de la mousse synthétique (PUR, PIR XPS, EPS).

Sur le gîtage est posé un plancher destiné à supporter l’isolant. Le pare-vapeur éventuel est déroulé soigneusement sur ce plancher.

L’isolant est ensuite déposé de façon continue, les panneaux étant parfaitement jointifs.

L’étanchéité à l’air sera assurée par le pare-vapeur s’il existe, sinon par le plafond ou la plaque de support de l’isolant.

L’aire de foulée est posée soit directement sur l’isolant, soit, lorsqu’il s’agit de planches en bois, sur des lattes posées sur l’isolant. Le plancher de bois est cloué sur ces lattes.

Isolation continue au-dessus du gîtage d’un plancher circulable.

  1. Aire de foulée.
  2. Isolant.
  3. Pare-vapeur.

Toiture inversée

Toiture inversée


La toiture chaude inversée désigne la toiture plate dont l’étanchéité est placée sur le support et dont l’isolant est posé sur l’étanchéité. L’isolant est donc mouillé par les eaux pluviales, ce qui diminue ses performances.

L’isolant est lesté.

  1. Lestage
  2. Natte de protection
  3. Isolant
  4. Membrane d’étanchéité
  5. Support

En cas de rénovation, dans un but d’amélioration de l’isolation de la toiture, la membrane d’étanchéité existante peut être conservée, si elle est encore bonne.

La membrane d’étanchéité fait en même temps office de pare-vapeur. La technique de la toiture inversée protège la membrane d’étanchéité contre les chocs thermiques et le rayonnement ultraviolet, et de ce fait, ralentit son vieillissement.

Les structures porteuses en matières végétales ou en fibres organiques et minérales liées au moyen d’un liant minéral, doivent avoir une épaisseur minimale de 18 mm afin de garantir une résistance thermique minimale de 0.2 m²K/W (NIT 134 p31).

Une couche filtrante d’une charge surfacique d’au moins 120 gr/m² est placée entre l’isolant et la couche de lestage et de protection.
Cette couche filtrante doit permettre la diffusion de vapeur, retenir peu d’eau et en rompre le film. Elle doit résister aux intempéries et être imputrescible.

Il est déconseillé de poser deux couches d’isolant. Il peut, en effet, y avoir entre les deux couches un film d’eau qui agit en barrière de vapeur provoquant ainsi l’imprégnation de la couche inférieure par l’eau.

La couche filtrante et la couche d’usure doivent être perméables à la vapeur pour éviter le même phénomène.

REM: La somme des résistances thermiques des couches situées sous l’étanchéité ne peut excéder 30 % de la résistance thermique globale afin d’éviter que de la condensation ne se forme avant l’étanchéité (vers l’intérieur). Lorsque les conditions climatiques intérieures sont très sévères (classe de climat IV) ou lorsque le support a un effet isolant, il est de plus nécessaire de déterminer par calcul l’absence de condensation sous l’étanchéité et l’absence de glace sous l’isolant.

Isolation par l’extérieur

Date :

  • page réalisée sous l’hégémonie Dreamweaver

Auteur :

  • les anciens

Notes :

  • Pas de contenu manquant (WinMerge ok, Sylvie)
  • Conforme à la mode PEB aout 2008
  • Eté 2008 : Brieuc.
  • 22-08-2008 : 1er passage de mise en page [liens internes, tdm, en bref !, rapide passage général sur la mise en page de la feuille] – Sylvie
  • 27-03-2009 : Application des nouveaux styles de mise en page. Julien.

Antidote :

  • Oui

Winmerge :

  • Ok

Isolation par l'extérieur


Les systèmes à structure

Cette technique peut être déclinée en de nombreuses variantes et de nombreux matériaux peuvent être utilisés mais on retrouvera toujours :

  • Une structure en bois massif, bois composite ou dérivés ou encore métal. La structure est uniquement fixée à la façade existante ou supportée en bas de mur. Elle peut aussi être fermée pour former des caissons dans lesquels l’isolation peut être insufflée.
  • Un isolant thermique remplissant l’intervalle de l’ossature. On peut trouver une isolation en laine végétale ou minérale, en cellulose, en panneaux dérivés du bois ou des produits pétroliers, etc.
  • Une finition extérieure fixée sur la structure. Cette finition peut être constituée d’un panneau enduit minéral ou synthétique ou d’un bardage en bois, métallique ou en plastique.
  • Une membrane d’étanchéité à l’air peut être intégrée au système.

Cette technique permet de conserver l’indépendance des éléments, grâce à leur assemblage mécanique, et donc la possibilité de les désassembler complètement ou partiellement en fin de vie.

L’ensemble peut également être constitué d’éléments préfabriqués.

Schéma du principe de systèmes à structure [1]Schéma du principe de systèmes à structure [2]

  1. Mur plein existant.
  2. Ancrages.
  3. Isolant thermique.
  4. Ossature.
  5. Lame d’air, ventilée ou non.
  6. Structure, verticale ou horizontale, support de la finition.
  7. Panneaux, support de l’enduit.
  8. Enduit.
  9. Lattage, fixé transversalement à la structure.
  10. Bardage.

Remarques.
La structure bois doit être traitée contre les attaques par les champignons et les insectes.

Ci-dessus, on n’a représenté que la partie courante du mur. L’isolation par l’extérieure de la partie du mur enterré n’est pas représentée.


Les panneaux isolants collés

Ce système est le plus courant. Il est constitué :

  • D’un mortier de collage et/ou de fixation mécanique. Le collage des panneaux isolant rend très difficile tout tri et recyclage des éléments en fin de vie. Les fixations mécaniques, même si elles constituent des faiblesses thermiques, sont préférables.Pour un support ancien recouvert de peinture ou d’un enduit, il y a lieu de vérifier leur bonne adhérence à la maçonnerie et leur comptabilité avec le produit de collage de l’isolant. Toute partie qui ne serait pas stable doit être décapée. Si la surface de l’enduit est irrégulière, celle-ci doit être ragréée. La surface doit être propre, dépoussiérée (brossage) et sèche.
  • De panneaux d’isolant : le polystyrène expansé et de panneaux semi-rigides de laine minérale sont les isolants les plus fréquemment mis en œuvre. Les panneaux de fibre de bois et de liège sont des alternatives plus écologiques, le verre cellulaire est utilisé pour son comportement au feu et sa perméabilité à la vapeur d’eau, le polystyrène extrudé (XPS), la mousse polyuréthane (PUR), la mousse phénolique (PF), très performants thermiquement, peuvent également être utilisés.
  • D’un enduit de finition armé d’un treillis synthétique ou métallique.

Schéma du principe de panneaux isolants collés.

  1. Mur plein existant.
  2. Mortier de collage de l’isolant.
  3. Panneau d’isolation.
  4. Armature synthétique ou métallique + sous-couche de l’enduit.
  5. Enduit de finition.

Bruxelles Environnement a édité une vidéo illustrative de la mise en œuvre correcte des panneaux d’isolation collés :
    Isolation : Éviter les ponts thermiques lors du placement d’isolant en panneaux [Vidéo réalisée dans le cadre du projet Conclip, soutenu par Bruxelles Environnement].

Remarques.

La plupart des ciment-colle ont des impacts environnementaux très lourds. Même utilisés en faible épaisseurs, ils font de ce type de système un système peu écologique.

Les systèmes à enduit nécessitent un entretien au minimum tous les 10 ou 15 ans pour des raisons esthétiques (encrassement de l’enduit). Des problèmes d’apparition de mousses peuvent survenir sur les façades non exposées au soleil.

Ci-dessus, on n’a représenté que la partie courante du mur. L’isolation par l’extérieur de la partie du mur enterré n’est pas représentée.


La création d’un mur creux isolé

Le but est d’obtenir un réel mur creux « moderne » composé de :

  • La surface de la maçonnerie existante qui doit être sèche, propre et dépoussiérée.
  • Un isolant posé contre le mur plein. Il est fixé mécaniquement à la paroi à l’aide de crochets et rondelles.
  • un mur de parement monté devant l’isolation en laissant ou non un espace formant coulisse, dans ce cas, celle-ci a une épaisseur de 2 à 3 cm. Le mur de parement est également relié mécaniquement au mur porteur via les crochets.

Dans le cas d’une remplissage partiel de la coulisse, tous les panneaux isolants sont fixés. On contrôle ensuite toute la surface (fermeture des joints, ancrage des crochets, intégrité des panneaux…). Ensuite seulement, le mur de parement est monté.

Dans le cas d’une remplissage intégral, l’isolant est en général une laine minérale traitée (hydrophobe et non capillaire). Le mur de parement est monté en même temps que l’isolant.

Schéma du principe d'un mur creux isolé

  1. Maçonnerie existante.
  2. Cornière métallique avec protection anti-corrosion, ancrée mécaniquement au mur porteur.
  3. Membrane d’étanchéité pour protéger l’isolant contre l’humidité.
  4. Membrane d’étanchéité collée au mur porteur et engravée, et joint vertical ouvert.
  5. Isolant thermique.
  6. Mur de parement.

Bruxelles Environnement a édité une vidéo illustrative de la mise en œuvre correcte des panneaux d’isolation en mur creux :

    Isolation : Isolation correcte d’un mur creux [Vidéo réalisée dans le cadre du projet Conclip, soutenu par Bruxelles Environnement].

Remarques.

Les déchets de mortier dans la coulisse doivent être enlevés au fur et à mesure de l’élévation du parement.

Une membrane d’étanchéité et un joint vertical ouvert doit être prévu à toute interruption de la coulisse (pied de mur, linteau) pour drainer vers l’extérieur les eaux infiltrées dans la coulisse.

Les joints de la maçonnerie de parement doivent être bien fermés de manière à éviter les infiltrations d’eau.


Les enduits isolants

L’enduit isolant consiste en une couche isolante constituée par un mortier composé de granulés (polystyrène expansé et/ou perlite, …) et d’un liant de type ciment. Si le mur est très absorbant, un mortier d’accrochage est préalablement projeté sur celui-ci pour assurer une bonne adhérence entre le support et l’enduit isolant. La couche isolante est ensuite recouverte d’une couche de finition le plus souvent à base d’un liant hydraulique (cimentage).

Schéma sur les enduits isolants.

  1. Mur existant.
  2. Couche d’accrochage.
  3. Enduit isolant.
  4. Enduit minéral décoratif.

Remarque.
Les mortiers constitués de ciment et de billes de polystyrène expansé ou de perlite siliconée ont, en général, une masse volumique comprise entre 200 et 450 kg/m³ et un coefficient de conductivité thermique λ entre 0,07 et 0,12 W/mxK. Ces enduits dits « isolants » ne peuvent donc être considérés comme des isolants proprement dits.

Dès lors, cette technique nécessite des épaisseurs excessives pour atteindre un coefficient de transmission thermique U de 0,24 W/m²K demandé par la réglementation.


Comportement à l’étanchéité à l’eau de pluie

La mise en œuvre d’une isolation par l’extérieur exige que l’isolant soit protégé de l’eau de pluie. Dans le cas d’un parement extérieur non étanche à l’eau (bardage, maçonnerie, …), il est nécessaire de prévoir une coulisse pour drainer l’eau qui se serait infiltrée au-delà du parement ainsi qu’une sortie au pied du mur pour évacuer cette eau vers l’extérieur. Cette technique peut également être utilisée lorsque l’enduit est supporté par la structure indépendante.

Lorsque l’enduit est directement appliqué sur l’isolant, c’est lui qui assure l’étanchéité à la pluie. Il doit être choisi tel qu’il n’absorbe pas trop d’eau et que celle qu’il aurait absorbée sèche rapidement par l’extérieur.


Comportement à la condensation superficielle

L’isolant thermique extérieur suffisamment épais et correctement mis en œuvre permet de supprimer tout risque de condensation superficielle sur la face intérieure du mur. En effet, elle permet, dans la plupart des cas, d’éviter tous les ponts thermiques.

Il faut toutefois veiller à la continuité de l’isolation au niveau des détails suivants :

  • soubassement de façade,
  • retour de baie,
  • éléments en encorbellement (balcons, corniches, …),
  • jonction entre le mur isolé et le mur extérieur (mur coupe-vent, par exemple).

Comportement à la condensation interne

Le mur plein isolé par l’extérieur ne présente pas de risque de condensation interne pour autant que la migration de vapeur puisse se faire normalement de l’intérieur vers l’extérieur. Ce qui peut s’obtenir des 3 façons suivantes :

  • Soit par une finition extérieure perméable à la vapeur tout en étant imperméable à la pluie battante, pour autant que le climat intérieur soit « normal » (classe de climat intérieur inférieure à III).

Schéma sur le comportement à la condensation interne.

La mise en œuvre de l’isolation du côté extérieur empêche la formation de condensation interne pour autant que l’isolation ne reçoive pas une finition étanche à la vapeur d’eau.

  • Soit par une lame d’air ventilée entre l’isolant et la finition extérieure.
  • Soit dans le cas d’un revêtement extérieur imperméable à la vapeur, en plaçant un pare-vapeur sur la face intérieure du mur ou du côté chaud de l’isolant.

Comportement à l’étanchéité à l’air

Il faut éviter, à tout prix, que de l’air froid extérieur, ne puisse s’infiltrer du côté intérieur du mur; ce qui réduirait sensiblement l’efficacité de l’isolation. Pour que cette étanchéité soit effective, il faut que les panneaux isolants soient posés de manière bien jointive. De plus, si l’isolant est perméable à l’air (laine minérale, par exemple), il doit être posé sur un support lui-même étanche à l’air.

De plus, pour éviter  les courants de convection, les panneaux doivent être appliqués contre le mur-support. Le risque est encore plus important lorsqu’il y a une lame d’air ventilée entre l’isolant et le parement extérieur.

Schéma sur le comportement à l'étanchéité à l'air.

Enfin, il faut éviter toute perforation de la maçonnerie intérieure qui permettrait une pénétration directe d’air intérieur (humide) dans l’isolant.


Comportement thermique du bâtiment isolé par l’extérieur

L’isolation extérieure permet de garder accès à la capacité thermique du bâtiment; ce qui entraîne des refroidissements et réchauffements moins brutaux du climat intérieur.

Cela permet de réduire les risques de surchauffe en été.

Mais en cas de chauffage intermittent, le réchauffement prendra plus de temps.


Comportement aux fissurations du mur plein isolé par l’extérieur

Le placement de l’isolant du côté extérieur de la maçonnerie réduit très fortement les variations de température au sein de la maçonnerie. En effet, celles-ci restent très proches des températures intérieures relativement constantes par rapport aux températures extérieures. Ce qui supprime pratiquement les risques de fissurations d’origine thermique de la maçonnerie.

Schéma sur le comportement aux fissurations du mur plein isolé par l'extérieur.

Évolution de la température au sein d’un mur plein isolé par l’extérieur lors d’une journée d’été et lors d’une journée d’hiver.

  1. Enduit extérieur.
  2. Isolation thermique (5 cm).
  3. Maçonnerie.
  4. Enduit intérieur.

Par contre, vu la position de l’isolant et la faible inertie thermique de l’enduit extérieur, celui-ci peut être soumis à des écarts de température allant jusqu’à plus de 50°C. Pour réduire le risque de fissuration de l’enduit (sans l’exclure), celui-ci doit donc être muni d’une armature.

Remarque : ce sont les variations de température de courte période qui provoquent le plus de sollicitations thermiques dans l’enduit extérieur.

Découvrez ces exemples de rénovation de l’enveloppe : les bâtiments existants du CoRI, les locaux du bureau d’études écoRce à Liège et le Centre d’accueil pour réfugiés « Le Merisier » à Fraipont.

Isolation de la toiture inclinée en résumé

Isolation de la toiture inclinée en résumé

Les combles qui seront occupés et chauffés doivent être isolés de l’ambiance extérieure.

Le toit incliné est dans ce cas la limite de l’espace protégé. C’est donc à ce niveau que doit être posé l’isolant et son pare-vapeur éventuel.

L’isolant peut être situé entre les éléments de charpente et/ou en dessous de ceux-ci (isolation par l’intérieur), ou au-dessus des éléments de charpente (isolation par l’extérieur.


Isolation par l’intérieur

[1]  Isolation entre chevrons ou fermettes

Schéma isolation entre chevrons ou fermettes.
    1. couverture
    2. contre-lattes
    3. lattes
    4. sous-toiture
    5. chevrons ou fermettes
    6. isolant
    7. pare-vapeur
    8. finition intérieure
    9. panne

[2]  Isolation sous les chevrons ou les fermettes

Schéma isolation sous les chevrons ou les fermettes.
    1. couverture
    2. contre-lattes
    3. lattes
    4. sous-toiture
    5. chevrons ou fermettes
    6. isolant
    7. pare-vapeur
    8. finition intérieure
    9. pannes

Isolation par l’extérieur

[1]  Isolation au-dessus des chevrons ou des fermettes (« Sarking »)

Schéma isolation au-dessus des chevrons ou des fermettes ("Sarking").
    1. couverture
    2. contre-lattes
    3. lattes
    4. sous-toiture
    5. isolant
    6. pare-vapeur
    7. chevrons ou fermettes
    8. pannes

[2]  Isolation au-dessus des pannes à l’aide de panneaux préfabriqués

Schéma isolation au-dessus des pannes à l'aide de panneaux préfabriqués.
    1. couverture
    2. languette d’assemblage
    3. lattes
    4. panneau de toiture préfabriqué
    5. raidisseurs du panneau
    6. isolant du panneau
    7. pare-vapeur intégré éventuel
    8. plaque inférieure du panneau
    9. pannes

Retour vers l’accueil.

Isolation entre chevrons ou fermettes

Date :

  • page réalisée sous l’hégémonie Dreamweaver

Auteur :

  • les anciens

Notes :

  • Pas de contenu manquant (WinMerge ok, Sylvie)
  • Conforme à la mode PEB aout 2008
  • Eté 2008 : Brieuc.
  • 22-08-2008 : 1er passage de mise en page [liens internes, tdm, en bref !, rapide passage général sur la mise en page de la feuille] – Sylvie
  • 27-03-2009 : Application des nouveaux styles de mise en page. Julien.

Antidote :

  • Oui

Winmerge :

  • Ok

Isolation entre chevrons

  1. couverture
  2. contre-lattes
  3. lattes
  4. sous-toiture
  5. chevrons
  6. isolant
  7. pare-vapeur
  8. finition intérieure
  9. panne

Isolation entre fermettes

  1. couverture
  2. contre-lattes
  3. lattes
  4. sous-toiture
  5. fermettes
  6. isolant
  7. pare-vapeur
  8. finition intérieure

Composition

L’isolation entre chevrons ou fermes peut être réalisée :

  • par de simples panneaux de laine minérale semi-rigides (très perméables à la vapeur), mais également,
  • par des matelas de laine minérale revêtus d’un pare-vapeur,
  • par de l’isolant en vrac insufflé dans des caissons formés au préalable par la charpente, la sous-toiture et le freine vapeur.
  • ou par des panneaux de mousse synthétique étanches à l’air (PUR, PIR, XPS, EPS, CG).

Panneaux semi-rigides de laine de roche.

Matelas de laine de roche revêtus d’un pare-vapeur.

Panneaux de mousse synthétique.

Lorsqu’elle est réalisée par de simple panneaux de laine de roche non revêtu, l’isolation entre chevrons ou fermes est la forme la plus classique de tous les modèles d’isolation : chacune des fonctions de la toiture est assurée par une couche différente : le panneau isolant (3) ne remplit que la fonction « isolation »; il doit être complété :

à l’extérieur par :

et à l’intérieur par :

Dans les deux autres cas (les matelas de laine de roche revêtus d’un pare-vapeur, ou les panneaux étanches à l’air) la couche assume 2 fonctions de la toiture :

  • celle de l’isolant,
  • et celle de l’écran étanche à l’air et à la vapeur.

Les joints périphériques et entre plaques doivent être rendus étanches. Ainsi, la couche isolante peut assurer, à elle seule, ces 2 fonctions sur l’ensemble de la toiture.

Étapes de construction

La toiture isolée entre les chevrons ou fermettes est réalisée en 3 étapes successives, correspondant à l’intervention des différents corps de métiers :

  • Le charpentier réalise la charpente.
  • Le couvreur pose la sous-toiture et ses contre-lattes, la couverture et ses lattes ou voliges. Il réalise les ouvrages de raccord (rives, gouttières ou chéneaux, etc.).
  • La personne désignée pour réaliser la finition intérieure (menuisier, plafonneur ou le propriétaire), pose l’isolant, le pare-vapeur éventuel et la finition intérieure.

Conseils de mise en œuvre

L’isolation entre les chevrons ou fermettes pourra se faire :

  • Par panneaux semi-rigide de laine minérale
  • Par matelas souples de laine minérale à languette
  • Par plaques rigides

Par panneaux semi-rigides de laines minérales

Isolation semi-rigide entre chevrons.

Les panneaux doivent avoir une surlargeur de 10 à 20 mm par rapport à l’espace à isoler. Grâce à la déformabilité de la laine minérale, l’isolant est serré entre les chevrons ou les fermes.
Dans le cas d’une toiture avec sous-toiture (toiture neuve ou rénovation avec sous-toiture), les panneaux sont appliqués contre celle-ci pour éviter les courants convectifs.

Les courants convectifs :

L’air chauffé à l’intérieur d’un bâtiment se dilate. Il devient ainsi plus léger et monte. Il est alors remplacé par de l’air plus froid qui se réchauffe à son tour. Il s’établit ainsi une circulation d’air dans le local. C’est la convection. Dans une toiture, le même phénomène de rotation de l’air peut se développer autour des panneaux isolants si les joints ne sont pas fermés correctement. Il s’en suit des pertes de chaleur importantes et des risques de condensation dus à la vapeur d’eau dans l’air.

Dans le cas d’une rénovation sans sous-toiture, les panneaux ne peuvent être placés contre les éléments de couverture mais, au contraire, doivent être maintenus à une certaine distance de ceux-ci.
Si la hauteur des chevrons ou des fermes est insuffisante pour placer l’isolant dans l’épaisseur voulue, on réalise un contre-chevronnage et on place une seconde couche d’isolant.

Deuxième couche d’isolant.

Remarque : si on pose une seconde couche d’isolant, il faut utiliser un matériau isolant sans pare-vapeur pour la première couche (couche supérieure). Les joints doivent être alternés.

  1. couverture
  2. contre-lattes
  3. lattes
  4. sous-toiture
  5. chevrons
  6. isolant 1ère couche
  7. isolant 2ème couche
  8. pare-vapeur
  9. finition intérieure
  10. pannes
  11. contre-chevrons

Ensuite, si nécessaire, on pose un pare-vapeur indépendant avant la finition intérieure.
Ce système convient à tous les types de toiture même très irrégulières, car il permet une isolation sur mesure.

Par matelas souples de laines minérales revêtus d’un pare-vapeur

Le matelas souple revêtu d’un pare-vapeur (encore appelé « matelas souple à languettes ») est un matelas de laine minérale revêtu, par exemple, de papier kraft et d’aluminium, dont la largeur doit être supérieure de 10 à 20 mm à celle de l’espace à couvrir par l’isolant et d’une épaisseur égale à la hauteur des chevrons ou des éléments des fermettes.

 Matelas isolant à languette.

Ce système est réservé aux toitures de forme simple, présentant peu de pénétration et une distance constante entre les chevrons ou les fermettes.

Les rouleaux ne peuvent pas être trop étroits.

Les languettes sont agrafées, avec chevauchement, sur la partie inférieure de la structure du toit.

Si l’isolant est trop enfoncé les languettes ne se superposent pas.

Le recouvrement est fermé au moyen d’une bande adhésive ou assuré par une latte en bois pour garantir l’étanchéité à l’air et à la vapeur.

Le matelas doit avoir une épaisseur correspondant à la hauteur des chevrons. Ainsi les matelas sont appliqués contre la sous-toiture (cas d’une toiture neuve ou d’une rénovation avec sous-toiture); on évite ainsi les courants convectifs. Dans le cas d’une rénovation sans sous-toiture, les matelas sont ainsi maintenus à une certaine distance des éléments de couverture.

Par plaques rigides

Les plaques de mousses synthétique (EPS, XPS, PUR, PIR) ou de verre cellulaire sont glissées entre les chevrons ou les fermes de telle manière que l’on crée éventuellement, du côté intérieur, un vide technique permettant le passage des conduites ou l’encastrement d’appareils.
Dans le cas d’une toiture avec sous-toiture (toiture neuve ou rénovation avec sous-toiture), les panneaux sont appliqués contre celle-ci pour éviter les courants convectifs. Dans le cas d’une rénovation sans sous-toiture, les panneaux ne peuvent être placés contre les éléments de couverture mais, au contraire, doivent être maintenus à une certaine distance de ceux-ci.
L’étanchéité à l’air et à; la vapeur d’eau des joints, d’une part entre les panneaux, d’autre part, entre les panneaux et la charpente ou les murs, doit être assurée par l’injection de mousse de polyuréthane (PUR) ou par collage de bandes de joints.
Les spots ne peuvent être encastrés dans l’isolant lui-même !
S’ils sont encastrés dans un vide technique situé sous l’isolant, ce dernier doit être protégé contre la chaleur des spots ou pouvoir y résister.

Isolation dans la coulisse

Isolation dans la coulisse


En conception : le mur creux à remplissage intégral

Lors du montage du mur creux à remplissage intégral, les panneaux isolants doivent être placés de manière à être jointifs entre eux mais également avec les châssis de fenêtres, avec les fondations et avec la toiture.

Le mode de construction traditionnellement utilisé en Belgique consiste à élever les maçonneries par tronçons en commençant par le parement, puis par le mur intérieur et en incluant l’isolant au fur et à mesure. Cette technique permet de dresser le mur extérieur par tronçon à partir des dalles aux différents niveaux du bâtiment et permet donc l’économie d’un échafaudage placé à l’extérieur pour le montage du parement (*).

Cette technique de construction permet de réaliser un travail correct du point de vue thermique. En effet, de par le fait que la coulisse est « bourrée » d’isolant, le remplissage intégral du creux d’un mur souffre peu des erreurs de pose; il faudrait vraiment une (mauvaise) volonté délibérée de l’entrepreneur pour que des erreurs de mise en œuvre puissent avoir une influence réelle sur le coefficient de transmission thermique réel du mur (déchets de mortiers laissés entre les panneaux, absence de protection contre les pluies en cours de chantiers, etc.).

Cependant, aucun contrôle visuel de la qualité d’exécution de l’isolation n’est possible avec cette technique.

Un contrôle de la qualité de l’isolation, de sa fixation, ainsi qu’un contrôle des crochets de liaison et des membranes d’étanchéité qui doivent être placées en attente n’est possible que lorsque la paroi est réalisée de la manière suivante :

  • on construit d’abord le mur porteur intérieur sur toute sa hauteur,
  • on y applique et fixe le matériau isolant,
  • on construit enfin l’ensemble du parement.

(Cette méthode est, par ailleurs, la seule acceptable pour le mur creux à remplissage partiel).

(*) L’économie d’échafaudage dépend de l’organisation de l’entrepreneur. Certains entrepreneurs disposent de leurs propres échafaudages, d’autres doivent les louer. En principe, l’échafaudage est, de toute façon, nécessaire par la suite pour le jointoyage a posteriori de la façade. Mais cet échafaudage peut être plus léger. Pour diverses raisons, le jointoiement au fur et à mesure du montage du mur est à déconseiller au profit du jointoiement ultérieur, et ce, d’autant plus dans le cas d’un mur isolé pour lequel des exigences plus strictes sont formulées quant à la qualité des briques et du mortier mis en œuvre (« Eclatement de joints de mortier ». Revue CSTC n°1, janvier-mars 1986. Bruxelles.).


En conception : le mur creux à remplissage partiel

Lors du montage du mur creux à remplissage partiel, les panneaux isolants doivent être placés de manière à être jointifs entre eux mais également avec les châssis de fenêtres, avec les fondations et avec la toiture.

Pour réaliser correctement le remplissage partiel de la coulisse, on procède de la manière suivante :

  • on construit d’abord le mur porteur intérieur sur toute sa hauteur,
  • on y applique et fixe le matériau isolant,
  • on construit enfin l’ensemble du parement.

Il faut, non seulement, que les panneaux soient correctement pressés l’un contre l’autre mais aussi que ces panneaux soient plaqués contre le mur intérieur grâce à des ancrages spéciaux.

Une pose négligée de l’isolant dans la cadre d’un remplissage partiel du creux détériore fortement le coefficient de transmission thermique réel d’une paroi. En effet, l’espace disponible dans le creux du mur autorise, en cas de pose négligée, une rotation spontanée de l’air autour des panneaux, même lorsque ces derniers sont quasi jointifs dans le plan vertical. Un espace de 5 mm suffit à obtenir cet effet néfaste.

Pour illustrer ce propos, voici des résultats de mesures de coefficients de transmission thermique (U) moyens réels, effectués par la KUL, sur des murs creux où la mise en œuvre de l’isolant a été soignée et sur les mêmes murs creux où la mise en œuvre a été exécutée sans soin particulier et ce, pour des murs creux isolés avec remplissage partiel.

Uthéorique (W/m²xK) Upratique (W/m²xK)
Pas d’isolant dans le mur creux 1,34 1,35

Remplissage partiel du creux

Pose correcte de l’isolant. 0,42 à 0,49 0,54 à 0,61
Pose déficiente de l’isolant. 0,42 à 0,49 0,99

En conclusion

L’application et la fixation de l’isolant au mur intérieur préalablement à la construction du parement doit tendre à se généraliser sur tous les chantiers. Cette méthode de construction est d’ailleurs recommandée par la norme NBN B 24-401(**).

(**) : « Il est conseillé de maçonner d’abord la feuille intérieure (mur portant) et ensuite la feuille extérieure (parement) pour garantir un bon placement de l’isolation et une exécution des joints sans bavure ».

(**) « Exécution des maçonneries ». IBN. Bruxelles – juin 1981.


En rénovation : l’isolation par injection

Principe

Des mousses obtenues par moussage sur chantier de deux composants sont injectées au moyen d’un pistolet dans la coulisse du mur creux au travers de petits orifices pratiqués dans le mur extérieur. Ces mousses se gélifient en place dans la minute qui suit l’injection. Les orifices sont refermés.

Les différents isolants utilisés sont :

  • la mousse d’urée-formaldéhyde (UF),
  • la mousse de polyuréthanne (PUR),
  • les perles de polystyrène expansé (injectés en même temps qu’une colle).

Avantages

L’isolation thermique s’adapte aux interstices de forme irrégulière.

Inconvénients

La mousse d’urée-formaldéhyde (UF) peut provoquer des allergies chez certaines personnes. Si elle est mise en œuvre, il faut assurer une parfaite étanchéité à l’air de la paroi interne du mur.

La mousse d’urée-formaldéhyde (UF) est légèrement capillaire. Cependant cette légère capillarité ne donne pas obligatoirement lieu à des problèmes, car son retrait important permet à l’eau qui aurait traversé le mur de parement de s’écouler sans atteindre l’isolant.

Le contrôle du remplissage est assez difficile à réaliser (éventuellement par thermographie).

L’injection doit être réalisée prudemment par du personnel formé pour maîtriser les pressions exercées par l’expansion de l’isolant sur les faces internes de la coulisse.


En rénovation : le remplissage par insufflation des isolants en vrac

Principe

Un matériau isolant en vrac est insufflé par une machine dans la coulisse du mur creux, soit par des orifices percés dans l’une des parois, soit par le haut depuis les combles. Les éventuels orifices sont ensuite refermés.

Les différents isolants utilisés sont :

  • la laine minérale (de roche ou de verre) hydrofugée en flocons,
  • des perles de polystyrène expansé,
  • des perles de perlite siliconée.

Avantages

Le produit isolant est mis en place à l’état sec.

Inconvénients

Les isolants en vrac se tassent avec le temps.

Le contrôle du remplissage est assez difficile à réaliser (éventuellement par thermographie).

Toiture chaude

Toiture chaude


Généralités

La toiture chaude désigne la toiture plate dont l’isolant est placé sur le support sans lame d’air entre les différentes couches.

L’isolant est recouvert par la membrane d’étanchéité, qui le protège. Il reste donc sec et conserve ainsi toutes ses caractéristiques thermiques.

Dans la plupart des cas un écran pare-vapeur doit être interposé entre le support et l’isolant. (En cas de rénovation, il peut s’agir de l’ancienne étanchéité que l’on décide de conserver).

Le lestage n’est pas nécessaire. L’isolant et la membrane peuvent être fixés mécaniquement ou par collage. Il est dans ce cas relativement léger, et peut être appliqué sur des structures existantes qui ne supportent pas une augmentation de charge.


Cas particulier : la toiture compacte

Dans une toiture compacte, l’isolant en plaques de verre cellulaire est directement collé sur le support dans un bain de bitume chaud. Les joints entre les plaques sont remplis de bitume. L’étanchéité est ensuite collée en adhérence totale sur l’isolant, soit à la flamme, soit au bitume chaud.

 

Cette toiture forme un ensemble étanche exempt de couche susceptible de véhiculer l’air ou l’eau. En cas de défectuosité locale, l’eau ne s’infiltre pas. Les désordres sont limités.
On peut en général renoncer au pare-vapeur du fait que l’isolant et les joints entre plaques sont étanches à la vapeur.

Plancher des combles en résumé

Plancher des combles en résumé


Lorsque les combles ne sont prévus pour être chauffés, le plancher de celui-ci constitue la limite supérieure de l’espace protégé. C’est donc à ce niveau que doit être posé l’isolant et son pare-vapeur éventuel. Ce qui permet :

On distingue les planchers légers

(en général, constitués d’une structure en bois supportant un plancher en bois et/ou un plafond en plâtre), des planchers lourds (en général, constitué de béton ou de terre-cuite).

Dans les deux cas, on précisera si le plancher des combles doit être circulable, pour permettre le rangement d’objets par exemple.


Les planchers légers

[1]   léger sans aire de foulée

  1. Gîte.
  2. Isolant.
  3. Pare-vapeur.
  4. Finition du plafond.

[2]  Plancher léger avec aire de foulée

  1. Gîte.
  2. Isolant (remplissage partiel).
  3. Pare-vapeur.
  4. Finition du plafond.
  5. Isolant (remplissage complet).
  6. Aire de foulée.


Les planchers lourds

[1]  Plancher lourd sans aire de foulée

  1. Isolant.
  2. Pare-vapeur.
  3. Support lourd.
  4. Finition du plafond.

[2]  Plancher lourd avec aire de foulée

  1. Aire de foulée.
  2. Lambourde (facultative).
  3. Isolant.
  4. Pare-vapeur.
  5. Support lourd.
  6. Finition du plafond.

Modèles d’isolation – plancher léger sans aire de foulée

Modèles d'isolation - plancher léger sans aire de foulée

L’isolation du plancher léger de combles non circulables peut se faire par divers systèmes :


Panneaux semi-rigides entre gîtes

L’isolant semi-rigide est généralement de la laine minérale.

Il est posé entre les gîtes, sur le plafond de l’étage inférieur.

La largeur de l’isolant est légèrement supérieure à l’espace disponible entre les gîtes (1 ou 2 cm). De cette façon l’isolant est bien maintenu hermétiquement contre les gîtes et les courants d’air accidentels sont évités.

Lorsqu’un pare-vapeur est nécessaire, celui-ci est fixé sous les gîtes avant la réalisation du plafond.

 Isolant semi-rigide entre gîtes d’un plancher non circulable.

  1. Gîte.
  2. Isolant semi-rigide.
  3. Pare-vapeur.
  4. Finition du plafond.

Matelas souples à languettes entre les gîtes

Le matelas souple muni d’un pare-vapeur est un matelas de laine minérale revêtu, par exemple, de papier kraft et de kraft-aluminium sur la face chaude (côté inférieur). Le kraft aluminium fait office de pare-vapeur. Il dépasse de quelques cm les bords du matelas isolant (languettes).

Le matelas isolant est placé par dessous. Les languettes sont agrafées à la face inférieure des gîtes en se recouvrant partiellement. Le recouvrement est fermé; au moyen d’une bande adhésive ou assuré par une latte en bois pour garantir l’étanchéité à l’air et à la vapeur. Le plafond est finalement mis en place.

Remarque : la largeur du matelas doit être adaptée à l’entre-axe des gîtes. Il faut choisir un matelas dont la largeur est 1 à 2 cm supérieure à l’écarts entre les gîtes. Il faut veiller à poser les matelas de manière tendue et jointive.

Matelas de laine minérale en rouleau à languettes.

  Matelas isolant avec languettes entre gîtes d’un plancher non circulable.

  1. Gîte.
  2. Isolant souple.
  3. Papier Kraft.
  4. Languettes superposées agrafées.
  5. Pare-vapeur en Kraft-Aluminium.
  6. Finition du plafond.

Panneaux rigides entre gîtes

L’isolant rigide est généralement de la mousse synthétique (PUR , PIR, XPS, EPS).

Il est posé entre les gîtes, sur le plafond de l’étage inférieur.

L’isolant étant rigide, il est difficile de l’ajuster exactement avec les gîtes. Pour cette raison, la largeur de l’isolant mis en œuvre est légèrement inférieure à l’espace disponible entre les gîtes (1 ou 2 cm). Ainsi, une mousse de polyuréthane peut être injectée facilement entre l’isolant et la gîte.

Cette mousse assure une continuité de l’isolant jusqu’à la gîte et une protection contre les courants d’air accidentels.

Lorsqu’un pare-vapeur est nécessaire, celui-ci est fixé sous les gîtes avant la réalisation du plafond.

Panneaux isolants rigides entre gîtes d’un plancher non circulable.

  1. Gîte.
  2. Isolant rigide.
  3. Pare-vapeur.
  4. Finition du plafond.
  5. Mousse injectée.

Flocons ou granulés d’isolant entre gîtes

Le matériau isolant utilisé est constitué de granulés de perlite ou de polystyrène expansé, ou de flocons de laine minérale posés en vrac entre les gîtes, sur le plafond de l’étage inférieur.

Lorsqu’un pare-vapeur est nécessaire, celui-ci est fixé sous les gîtes avant la réalisation du plafond.

Isolant posé en vrac entre les gîtes d’un plancher non circulable.

  1. Gîte.
  2. Isolant en vrac.
  3. Pare-vapeur.
  4. Finition du plafond.

Matelas souple qui enveloppe l’ensemble du plancher

Les matelas d’isolant souples (laine minérale) suivent la forme du support. De cette façon, il n’y a pas d’interruption dans la couche isolante.

Lorsqu’un pare-vapeur est nécessaire, celui-ci est fixé sous les gîtes avant la réalisation du plafond. Il est également possible de poser le pare-vapeur en contournant les gîtes par dessus, mais une réalisation correcte est délicate et plus difficile.

Isolation enveloppant l’ensemble du plancher non circulable.

  1. Gîte.
  2. Isolant souple.
  3. Pare-vapeur.
  4. Finition du plafond.

Isolant posé au-dessus du gîtage

L’isolant utilisé peut être souple, semi-rigide ou rigide.

Sur le gîtage est posé un plancher destiné à supporter l’isolant. Le pare-vapeur éventuel est déroulé soigneusement sur ce plancher.

L’isolant est ensuite déposé de façon continue, les panneaux ou rouleaux étant parfaitement jointifs.

L’étanchéité  à l’air sera assurée par le pare-vapeur s’il existe, sinon par le plafond ou la plaque de support de l’isolant.

Isolation continue au-dessus du gîtage d’un plancher non circulable.

  1. Gîte.
  2. Isolant.
  3. Pare-vapeur.
  4. Plancher.
  5. Finition du plafond.

Isolation par l’intérieur

Date :

  • page réalisée sous l’hégémonie Dreamweaver

Auteur :

  • les anciens

Notes :

  • Pas de contenu manquant (WinMerge ok, Sylvie)
  • Conforme à la mode PEB aout 2008
  • Eté 2008 : Brieuc.
  • 22-08-2008 : 1er passage de mise en page [liens internes, tdm, en bref !, rapide passage général sur la mise en page de la feuille] – Sylvie
  • 27-03-2009 : Application des nouveaux styles de mise en page. Julien.

Antidote :

  • Oui

Winmerge :

  • Ok

Dans le cadre de la recherche ISOLIN financée par le département Énergie et Bâtiment durable du Service Public de Wallonie, un guide sur l’isolation thermique par l’intérieur des murs existants en briques pleines a été réalisé par la cellule de recherche Architecture et Climat. La présentation des différents systèmes d’isolation par l’intérieur est issue de ce guide.

Les systèmes à structure

Ce système permet de rattraper les défauts de planéité du mur. Un isolant souple est posé dans une ossature bois ou métallique fixée au mur et formant des caissons. Un isolant en vrac peut également être insufflé dans l’ossature. Les éléments de structure diminuent le pouvoir isolant du complexe.
Pour limiter cet effet, une plaque d’isolant rigide peut être posée sur les structures avant le pare-vapeur éventuel et la finition.

Matériaux

Les matériaux utilisés le plus couramment sont les rouleaux de laine minérale (MW) ou végétale, ou les isolants projetés comme la cellulose (CEL). Pour ce système, les fabricants proposent souvent des profilés métalliques à la place des lattes en bois.

Mise en œuvre

La mise en œuvre doit être soignée. Il faut veiller à ce que les interruptions de l’isolant au droit de la structure soient limitées. La membrane pour réguler la vapeur doit être parfaitement continue.

  1. Mur existant.
  2. Ossature.
  3. Isolant thermique souple ou en vrac.
  4. Pare- ou freine-vapeur.
  5. Finition intérieure.

Remarque : Pour l’ensemble des systèmes d’isolation par l’intérieur, il est toujours préférable de prévoir une contre-cloison technique du côté intérieur (de 2 à 10 cm). Celle-ci est réalisée après la pose de l’isolant et de la membrane pour réguler la vapeur (et l’air) et permet de distribuer les câbles, tuyaux ou gaines (électricité, chauffage…) sans percer la membrane. La contre-cloison technique peut éventuellement être remplie d’isolant (si l’épaisseur reste faible par rapport à l’épaisseur d’isolation totale). Elle peut également être remplie d’un matériau à forte inertie thermique (éléments de terre crue par exemple).

Les panneaux isolants collés

Ce système est généralement le plus simple à mettre en œuvre, mais la surface intérieure du mur doit être relativement plane : les défauts de planéité ne peuvent pas dépasser 15 mm sur une règle de 2 m.

Matériaux

On rencontre souvent le polystyrène expansé (EPS) ou extrudé (XPS), le polyuréthane (PUR) ou les panneaux en fibres de bois. Des panneaux sandwich avec isolant, membrane et finition sont proposés sur le marché (la continuité entre les éléments doit alors être soignée). Des blocs ou des panneaux isolants en silicate de calcium collés entre eux et au support peuvent aussi être utilisés.

Mise en œuvre

La mise en œuvre doit être très soignée de façon à ce que les différents panneaux soient parfaitement jointifs et que les liaisons avec les autres parois soient aussi correctement réalisées. Les panneaux isolants peuvent être recouverts de plaques de finition ou d’un enduit (lequel peut être renforcé d’une trame).

  1. Mur existant.
  2. Isolation rigide collée.
  3. Pare- ou freine-vapeur.
  4. Panneaux de finition.

Remarque : une variante consiste à placer un lattage (profilés bois ou métalliques) contre la surface du mur existant pour récupérer une bonne planéité afin de pouvoir poser les panneaux isolants correctement. Dans ce cas, il est recommandé de bourrer l’espace entre les lattes d’un isolant légèrement compressible afin d’éviter les courants de convection et de maximiser la performance thermique du mur.

L’isolation projetée

Certains isolants peuvent être directement projetés sur le mur existant en brique. Les irrégularités du mur ne posent alors plus de problèmes.

Matériaux

L’isolant utilisé le plus couramment est la mousse de polyuréthane (PUR) projetée recouverte d’un enduit (qui rend les panneaux jointifs). Ces propriétés sont alors proches du cas des panneaux de XPS simulés dans l’outil ISOLIN. D’autres options existent : les mélanges chaux-chanvre (LHM), les enduits isolants à base de billes de polystyrène expansé (EPS) ou de vermiculite…

Mise en œuvre

La mousse de polyuréthane est projetée par couches successives, jusqu’à l’épaisseur souhaitée et sèche en quelques minutes. La mise en œuvre des mélanges chaux-chanvre est plus délicate et plus longue et demande des temps de séchage beaucoup plus importants. Selon leur dosage en liant (à base de chaux aérienne), les mélanges chaux-chanvre peuvent être soit projetés directement sur le support (manuellement ou mécaniquement), soit coffrés contre le support le temps de la mise en œuvre. La finition est généralement réalisée à l’aide d’un enduit à la chaux dont il faut assurer la parfaite continuité.

  1. Mur existant.
  2. Isolant projeté.
  3. Finition intérieure.

Le système avec contre-cloison maçonnée

Ce système permet de rajouter un matériau lourd devant l’isolant et donc de récupérer au moins une partie de l’inertie thermique perdue. Cette solution est toutefois rarement envisageable étant donné la perte d’espace qu’elle engendre. Le poids de la contre-cloison peut également poser un problème.
Une paroi auto-stable est réalisée à l’intérieur, parallèlement et à une certaine distance du mur. Les matériaux les plus utilisés sont les briques de terre cuite (ou de terre crue), les carreaux de plâtre, les blocs de béton… L’isolant est incorporé entre la contre-cloison et le mur. Il peut être en vrac, ou en panneaux.

Matériaux

Au niveau des panneaux isolants, il peut s’agir de polystyrène expansé (EPS), de laine minérale semi-rigide (MW) ou de polyuréthane expansé (PUR).
Les panneaux présentent l’inconvénient de moins facilement remplir tout l’espace entre le mur et la contre-cloison. Les isolants en vrac sont a priori plus intéressants pour cette technique : perlite, vermiculite, liège… Étant donné l’absence de véritable régulateur de vapeur du côté intérieur, il faut éviter les isolants putrescibles si le mur existant est humide ou s’il risque de le devenir.

Mise en œuvre

L’isolant est placé au fur et à mesure que la cloison monte. La mise en œuvre doit être soignée afin de remplir complètement d’isolant l’espace entre le mur et la contre-cloison et d’éviter tout tassement. Lorsqu’on utilise un isolant en vrac pour la première partie du mur, des panneaux isolants peuvent être utilisés avant la pose des derniers rangs de briques pour faciliter la réalisation de la partie haute du mur.

  1. Mur existant.
  2. Isolant souple ou en vrac.
  3. Paroi auto-stable.

Risque de ponts thermiques et de condensation de surface

Le fait même d’apporter une isolation sur la face intérieure des murs de façades va créer des ponts thermiques. Outre des déperditions thermiques, ces ponts thermiques peuvent provoquer de la condensation superficielle ou/et des moisissures.

Certains ponts thermiques sont très difficiles à éviter

Liaison avec un mur intérieur (coupe horizontale).

Fondation (coupe verticale).

Appui de plancher (coupe verticale).

Cas des planchers en bois

Dans les vieilles maisons à planchers à solives, après isolation par l’intérieur, les têtes de solives sont soumises à des températures plus basses qu’avant. De plus, alors qu’il est possible d’éviter le transfert de vapeur interne au travers du mur par l’usage d’un pare-vapeur, il n’existe pas de moyen efficace pour éviter ce transfert au niveau du plancher. Ainsi, il y a risque de condensation à proximité des têtes de solives et possibilité de pourrissement de ces dernières.

Encastrement des planchers en bois.

D’autres peuvent être évités

Mauvais ! Bon !

Linteau (coupes verticales).

Mauvais ! Bon !

Seuil de fenêtre (coupes verticales).

Bon !

Retour de fenêtre (coupe horizontale).

Risque de condensation interne par diffusion de vapeur

Le risque de condensation interne est grand lorsqu’une isolation (perméable à la vapeur) est posée du côté intérieur sans pare-vapeur ou avec un pare-vapeur mal posé.

Explication

Pv : pression de vapeur.
En hiver, la pression de vapeur d’eau de l’air chaud à l’intérieur d’un bâtiment est toujours supérieure à celle de l’air extérieur.
En effet, l’usage d’un bâtiment (occupants, cuisine, bains, plantes, etc.) augmente la quantité de vapeur d’eau contenue dans l’air dont la capacité à contenir de la vapeur d’eau croît en fonction de la température.

Pv : pression de vapeur.
Tout comme la chaleur qui se déplace des zones à température élevée vers les zones à température plus basse, la vapeur d’eau diffuse des zones à forte concentration en vapeur d’eau vers les zones à faible concentration en vapeur d’eau : on parle de diffusion de vapeur. La diffusion crée un flux de vapeur à travers la paroi, de l’intérieur, vers l’extérieur.

Pv : pression de vapeur.
La chute de pression dans chacune des différentes couches de matériaux est d’autant plus grande que la résistance à la diffusion de vapeur (μ d) des couches de matériaux est élevée; en régime stationnaire, elle est en fait directement proportionnelle à cette résistance à la diffusion de vapeur.

T : température.
D’autre part, la baisse de température dans les différentes couches de matériaux est d’autant plus grande que la résistance thermique (R) des matériaux est importante.

Pvs : pression de vapeur de saturation.
De plus, à chaque température régnant à l’intérieur d’un matériau correspond une pression de vapeur de saturation.

Pv : pression de vapeur.
Pvs : pression de vapeur de saturation.
La condensation interne, se produit si à un endroit d’une couche, la pression de vapeur réelle devient égale à la pression de saturation correspondant à la température régnant à cet endroit.
Il y a moins de risque de condensation interne lorsque, de l’intérieur vers l’extérieur, les matériaux sont de plus en plus perméables à la vapeur d’eau.
Par contre, le risque de condensation interne est grand lorsque l’isolation par l’intérieur est réalisée avec un matériau isolant perméable à la vapeur (c’est à dire, peu résistant à la diffusion de vapeur) (laine minérale par exemple) sans pare-vapeur du côté intérieur (ou avec un pare-vapeur posé de manière discontinue). En effet, de l’intérieur vers l’extérieur, la chute de température (et avec elle, la chute de la pression de saturation) est grande dans l’isolant alors que la pression de vapeur est restée importante. Cette dernière va, à un moment donné, dépasser la pression de saturation : il y a condensation interne.
Remarque.
Le risque de condensation à l’interface isolant-mur plein est d’autant plus grand que :

  • Le climat intérieur est chaud et humide.
  • La résistance à la diffusion de vapeur (μ d) du mur extérieur par rapport à l’isolant, est élevée (béton lourd, par exemple).
  • La résistance à la diffusion de vapeur (μ d) de la finition intérieure et de celle de la couche isolante sont faibles.
  • La pose du pare-vapeur et/ou de l’isolant est mal soignée.

Réalisation correcte

Réalisation correcte d’une isolation par l’intérieur avec isolant perméable à la vapeur.

Pv : pression de vapeur
Pvs : pression de vapeur de saturation
L’utilisation d’un isolant peu ou pas perméable à la vapeur (EPS, XPS, PUR, CG) collé sur la maçonnerie , ne nécessite pas l’interposition d’un pare-vapeur pour autant que de l’air intérieur ne puisse circuler entre isolant et maçonnerie.
Par contre si ce type d’isolant est mis en œuvre entre lattes, la pose du pare-vapeur reste indispensable. Celui-ci couvre alors l’ensemble du système « isolant + lattes ».

Risque de condensation interne par transport de vapeur par convection

En période froide, l’air intérieur chaud et humide qui passerait derrière l’isolant, à cause d’une discontinuité dans celui-ci, rencontrerait une surface froide et condenserait.

A gauche, l’air chaud et humide passe
sous la plinthe et sous l’isolant discontinu.

Des discontinuités dans l’isolant peuvent exister dès le placement de celui-ci ou apparaître par son percement ultérieur (placement d’une prise, suspension d’un objet, etc.).
Remarque.
La condensation interne liée au transport de vapeur par convection est bien plus fréquente que celle due à la diffusion de vapeur. Les quantités de condensat sont également plus importantes. Toutefois, il n’existe pas de méthode de calcul pratique pour évaluer ce problème.

Risque de condensation en été

Lorsque la maçonnerie d’un mur de façade isolé par l’intérieur, est susceptible d’être humide dans la masse (infiltration d’eau de pluie, humidité ascensionnelle ou même humidité de construction), il y a, en été, un risque de condensation interne contre le pare-vapeur.
En effet, dans ce cas, en période d’été, la vapeur d’eau d’eau provoquée par le séchage de la maçonnerie peut diffuser partiellement vers l’intérieur du bâtiment et donner lieu à la formation de condensation à l’interface isolant/pare-vapeur. Cette condensation provient du fait que, suite à la position de l’isolant, la finition intérieure du mur atteint des températures sensiblement inférieures à celles de la maçonnerie.

Pv : pression de vapeur
Pvs : pression de vapeur de saturation

Condensation interne en été.

Risque de dégradation de la maçonnerie

Lorsqu’un mur de façade est isolé, la chute de température entre l’intérieur et l’extérieur se produit principalement dans l’épaisseur de l’isolant.

Evolution de la température dans un mur plein.
(Remarque : on a négligé les résistances thermiques d’échange : 1/he et 1/hi).

Evolution de la température dans un mur plein isolé du côté intérieur.
(Remarque   on a négligé les résistances thermiques d’échange : 1/he et 1/HI).

Dès lors, lorsqu’on place un isolant du côté intérieur d’un mur plein, le mur est plus froid en hiver et plus chaud en été que le même mur sans isolant intérieur. Le mur isolé par l’intérieur subit donc des variations de température plus grandes et plus fréquentes.
Il ressort d’études sur l’évolution de la température au sein des murs de façade que les écarts de température été-hiver dans les maçonneries situées du côté extérieur par rapport à l’isolant thermique sont de l’ordre de 30 à 36 K, qu’il s’agisse d’une maçonnerie de parement ou d’un mur monolithique isolé par l’intérieur.
Par ailleurs, le rapport Scheuren in woningen du Stichting Bouwresearch montre que, selon la nature de la maçonnerie, la fissuration peut déjà se produire pour des écarts de température compris entre 17 et 35 K.
De plus aux tensions dues aux variations de température, il convient d’ajouter celles résultant des alternances d’humidification et de séchage des maçonneries.
Les déformations mécaniques (retraits/dilatations) liées à ces variations peuvent engendrer des ruptures locales dans la surface du mur, entraînant l’apparition de fissures. Ces fissures n’ont parfois que des conséquences esthétiques, mais peuvent aussi porter atteinte à la stabilité du mur ou favoriser la pénétration en profondeur de l’humidité.

Toutefois, le risque de fissuration est fonction des paramètres suivants :

  • la dimension de la façade,
  • le niveau d’exposition,
  • les caractéristiques mécaniques des matériaux constituant la maçonnerie,
  • la stabilité dimensionnelle de la maçonnerie (coefficient de dilatation, retrait hydraulique, etc.),
  • teinte du parement.

En outre, vu l’abaissement de la température moyenne d’hiver d’un mur isolé par l’intérieur, le séchage est ralenti. L’humidification prolongée de la maçonnerie peut favoriser une dégradation des matériaux par le gel.

Réduction du potentiel de séchage et dégâts dus au gel

Le potentiel de séchage d’un mur est généralement réduit lors de l’application d’un système d’isolation par l’intérieur. Les figures ci-dessous illustrent cette notion : l’exposition du mur aux intempéries reste inchangée, mais d’une part la maçonnerie après isolation est globalement plus froide (évaporation en surface réduite) et d’autre part, son séchage vers l’intérieur est parfois empêché par l’utilisation d’une membrane pour réguler la vapeur.

Humidification du mur due à la réduction du potentiel de séchage causée par l’application d’une isolation par l’intérieur et d’un pare-vapeur.

Le fait que le mur soit globalement plus froid et plus humide (le « front d´humidité » pénètre plus profondément dans le mur) peut provoquer des désordres liés au gel sur la face extérieure. En effet, la formation de gel provoque une dilatation de l’eau dans les pores de la brique qui peut conduire à une forte dégradation mécanique de celle-ci.

Ces désordres dépendent de trois conditions :

  • la sensibilité au gel de la brique ;
  • la teneur en eau atteinte dans la brique :
  • la température atteinte dans la brique (le gel n’apparait que si celle-ci descend sous 0°C).

Exemple de briques gélives soumises au gel.

Photo : A. Holm in Isolation thermique par l’intérieur des murs existants en briques pleines – SPW 2011.

Source : guide Isolation thermique par l’intérieur des murs existants en briques pleines réalisé par Arnaud Evrard, Aline Branders et André De Herde (Architecture et Climat-2010) dans le cadre de la recherche ISOLIN, financée par le département Énergie et Bâtiment durable du Service Public de Wallonie. Disponible sur le site : energie.wallonie.be.

Diminution de l’inertie thermique et risque de surchauffes en été

La présence d’un isolant du côté intérieur du mur de façade diminue l’inertie thermique du bâtiment : le mur de façade isolé par l’intérieur ne peut plus accumuler puis restituer la chaleur (ou la fraîcheur) intérieure. Le local est rapidement chauffé, mais se refroidit tout aussi vite. En été il y a risque de surchauffe.
Cependant, les bâtiments avec des parois internes lourdes et épaisses (murs intérieurs, planchers), peuvent conserver une inertie thermique globale suffisante malgré la perte de l’inertie thermique des murs de façade.

Ponts thermiques et de condensation de surface

Le fait même d’apporter une isolation sur la face intérieure des murs de façades va créer des ponts thermiques. Outre des déperditions thermiques, ces ponts thermiques peuvent provoquer de la condensation superficielle ou/et des moisissures.

Certains ponts thermiques sont très difficiles à éviter

Liaison avec un mur intérieur (coupe horizontale).

Fondation (coupe verticale).

Appui de plancher (coupe verticale).

Cas des planchers en bois

Dans les vieilles maisons à planchers à solives, après isolation par l’intérieur, les têtes de solives sont soumises à des températures plus basses qu’avant. De plus, alors qu’il est possible d’éviter le transfert de vapeur interne au travers du mur par l’usage d’un pare-vapeur, il n’existe pas de moyen efficace pour éviter ce transfert au niveau du plancher. Ainsi, il y a risque de condensation à proximité des têtes de solives et possibilité de pourrissement de ces dernières.

Encastrement des planchers en bois.

D’autres peuvent être évités

Mauvais ! Bon !

Linteau (coupes verticales).

Mauvais ! Bon !

Seuil de fenêtre (coupes verticales).

Bon !

Retour de fenêtre (coupe horizontale).

Modèles d’isolation – plancher lourd avec aire de foulée

Modèles d'isolation - plancher lourd avec aire de foulée

L’isolation du plancher lourd de combles circulables peut se faire par divers systèmes :


Panneaux semi-rigides ou matelas souple sur le plancher

L’isolant utilisé, généralement de la laine minérale, peut être souple (en rouleaux) ou semi-rigide (en panneaux). Les rouleaux peuvent éventuellement être revêtus d’un papier kraft.

Le pare-vapeur éventuel est déroulé soigneusement sur le plancher lourd.

On place ensuite, à intervalles réguliers, des lambourdes qui vont servir à porter le plancher. L’intervalle entre les lambourdes est déterminé par la largeur des rouleaux ou des plaques d’isolant et par les caractéristiques des plaques de l’aire de foulée.

L’isolant est posé entre les lambourdes.

Les plaques de l’aire de foulée sont clouées sur les lambourdes.

Matelas isolant souple ou semi-rigide au-dessus d’un plancher lourd circulable.

  1. Aire de foulée.
  2. Lambourde.
  3. Isolant souple ou semi-rigide.
  4. Pare-vapeur éventuel.
  5. Support lourd.
  6. Finition du plafond.

Panneaux rigides sur le plancher

L’isolant utilisé peut être de la mousse synthétique ou du verre cellulaire.

Les panneaux rigides nécessitent un support lisse pour pouvoir bien s’emboîter. Il faut donc, au besoin, égaliser le plancher lourd au moyen d’une fine chape d’égalisation ou d’une fine couche de sable.

Le pare-vapeur éventuel est déroulé soigneusement sur le plancher lourd avant la pose de l’isolant.

L’isolant est ensuite déposé de façon continue.

Les panneaux en mousse synthétique sont munis de rainures et languettes, ils doivent être correctement emboîtés.

Les panneaux en verre cellulaire sont posés jointifs.

Les plaques de l’aire de foulée sont posées soit directement sur l’isolant, soit sur des lattes posées sur l’isolant. Les plaques (généralement des planches de bois) sont alors cloués sur ces lattes.

Isolant rigide au-dessus d’un plancher lourd circulable.

  1. Aire de foulée.
  2. Lattes éventuelles.
  3. Isolant.
  4. Emboîtement.
  5. Pare-vapeur éventuel.
  6. Égalisation éventuelle.
  7. Support lourd.
  8. Finition du plafond.

Isolation sous le plancher : une solution à éviter !

L’isolant est fixé sous le plancher lourd.

La fixation est difficile et dépend du type d’isolant. Un pare-vapeur efficace indispensable (sauf en cas d’utilisation du verre cellulaire) est soigneusement placé sous l’isolant. Les joints seront particulièrement soignés. Il ne peut pas être déchiré.

La finition du plafond est ensuite réalisée en prenant toutes les précautions nécessaires pour éviter de blesser le pare-vapeur.

Aucune installation technique ne pourra être aménagée dans le plafond.

Le plancher lui-même ne pourra être percé.

Un espace technique pourrait éventuellement être aménagé entre le pare-vapeur et le plafond.

Toute cette mise en œuvre nécessite un soin parfait difficile à réaliser sur chantier.

L’aménagement de l’aire de foulée se fera de façon traditionnelle sur un plancher lourd (chape + carrelage, par exemple).

Isolation en dessous du plancher lourd circulable.

  1. Plancher lourd.
  2. Isolant.
  3. Pare-vapeur.
  4. Finition du plafond.

Systèmes de pause et d’accrochage pour toiture plate

Systèmes de pause et d'accrochage pour toiture plate


Les types de pose des étanchéités bitumineuses

Les étanchéités bitumineuses peuvent être :

Elles peuvent être posées sur le support de différentes manières :

  • en indépendance, c’est-à-dire que la membrane n’est pas du tout fixée au support,
  • en adhérence totale, c’est-à-dire que la membrane adhère en tous points à son support,
  • en semi-indépendance, c’est-à-dire que la membrane n’adhère à son support que sur une partie de la surface (plots, bandes, …),
  • par fixation mécanique, c’est-à-dire que la membrane est fixée au support par des vis et des clous, éventuellement à travers les couches de matériaux intermédiaires (pare-vapeur et/ou isolant) si elles existent.

Dans les systèmes multicouches les différentes couches sont toujours assemblées en adhérence totale par soudage, collage au bitume chaud ou collage à froid.

⇒ Compositions des étanchéités bitumineuses monocouches

Les étanchéités bitumineuses monocouches peuvent être posées suivant différentes possibilités de combinaisons de techniques de fixation.

Indépendance sur le support

  • Couche unique posée librement (LL)

Adhérence totale au support

  • Couche unique soudée à la flamme (TS)
  • Couche unique collée à froid (TC)

Semi-indépendance sur le support

  • Sous-couche perforée VP 45/30 collée au bitume chaud, couche supérieure soudée à la flamme (PBs)
  • Sous-couche perforée VP 45/15 déroulée librement, couche supérieure soudée à la flamme (PLs)
  • Couche unique soudée à la flamme (PS)
  • Couche unique collée à froid (PC)

Fixation mécanique au support

  • Couche unique vissée dans les recouvrements (MV)

(LL) Monocouche / pose en indépendance

On applique successivement sur le support :

  • une couche facultative de désolidarisation (voile de verre ou natte de polyester),
  • une membrane de minimum 4 mm de bitume polymère avec recouvrements soudés,
  • une couche de protection lourde.

Schéma  Monocouche / pose en indépendance.

Système (LL)

  1. Support.
  2. Couche de désolidarisation éventuelle.
  3. Membrane en bitume polymère posée librement
  4. Protection lourde.

* * *

(TS) Monocouche / adhérence totale / soudage à la flamme

On applique successivement sur le support :

  • un vernis d’adhérence bitumineux si le support est en béton,
  • une membrane de minimum 4 mm de bitume polymère soudée à la flamme, avec recouvrements soudés.

Schéma Monocouche / adhérence totale / soudage à la flamme.

Système (TS)

  1. Support.
  2. Vernis d’adhérence (si support en béton).
  3. Membrane en bitume polymère soudée à la flamme.

* * *

(TC) Monocouche / adhérence totale / collage à froid

On applique successivement sur le support :

  • un vernis d’adhérence bitumineux si le support est en béton,
  • une couche de colle bitumineuse à froid,
  • une membrane de minimum 4 mm de bitume polymère déroulée dans la colle, avec recouvrements soudés.

Schéma Monocouche / adhérence totale / collage à froid.

Système (TC)

  1. Support.
  2. Vernis d’adhérence (si support en béton).
  3. Couche de colle à froid.
  4. Membrane en bitume polymère déroulée dans la colle.

* * *

(PBs) Monocouche / semi-indépendance / sous-couche perforée (VP45/30) collée au bitume chaud / couche finale soudée

On applique successivement sur le support :

  • un vernis d’adhérence bitumineux si le support est en béton,
  • une membrane perforée VP45/30 posée librement,
  • une couche de bitume soufflé chaud,
  • une membrane de minimum 4 mm de bitume polymère soudée à la flamme, avec recouvrements soudés.

Schéma Monocouche / semi-indépendance / sous-couche perforée (VP45/30) collée au bitume chaud / couche finale soudée.

Système (PBs)

  1. Support.
  2. Vernis d’adhérence (si support en béton).
  3. Membrane perforée posée librement.
  4. Couche de bitume chaud.
  5. Membrane en bitume polymère soudée.

* * *

(PLs) Monocouche / semi-indépendance / sous-couche perforée / soudage à la flamme

On applique successivement sur le support :

  • un vernis d’adhérence bitumineux si le support est en béton,
  • une membrane perforée VP40/15 posée librement,
  • une membrane de minimum 4 mm de bitume polymère soudée à la flamme, avec recouvrements soudés.

Schéma Monocouche / semi-indépendance / sous-couche perforée / soudage à la flamme.

Système (PLs)

  1. Support.
  2. Vernis d’adhérence (si support en béton).
  3. Membrane perforée posée librement.
  4. Membrane en bitume polymère soudée à la flamme.

* * *

(PS) Monocouche / semi-indépendance / soudage à la flamme

On applique successivement sur le support :

  • un vernis d’adhérence bitumineux si le support est en béton,
  • une membrane de minimum 4 mm de bitume polymère comportant des zones d’adhérence par points ou par bande, soudée à la flamme, avec recouvrements soudés.

Schéma Monocouche / semi-indépendance / soudage à la flamme.

Système (PS)

  1. Support.
  2. Vernis d’adhérence (si support en béton).
  3. Membrane en bitume polymère avec points d’adhérence soudée à la flamme.

* * *

(PC) Monocouche / semi-indépendance / collage à froid

On applique successivement sur le support :

  • un vernis d’adhérence bitumineux si le support est en béton,
  • une couche de colle à froid, par bandes ou par plots,
  • une membrane de minimum 4 mm de bitume polymère déroulée dans la colle, avec recouvrements soudés.

Schéma Monocouche / semi-indépendance / collage à froid.

Système (PC)

  1. Support.
  2. Vernis d’adhérence (si support en béton).
  3. Couche de colle à froid par bandes ou plots.
  4. Membrane en bitume polymère déroulée dans la colle.

* * *

(MV) Monocouche / fixation mécanique / vissage

On applique sur le support :

  • Une couche facultative de désolidarisation,
  • une membrane de minimum 4 mm de bitume polymère fixée mécaniquement au niveau des recouvrements, avec recouvrements soudés.

Schéma Monocouche / fixation mécanique / vissage.

Système (MV)

  1. Support.
  2. Membrane en bitume polymère fixée mécaniquement.

⇒ Compositions des étanchéités bitumineuses multicouches

Les étanchéités bitumineuses multicouches peuvent être posées suivant différentes possibilités de combinaisons de techniques de fixation.

Indépendance sur le support

Sous couche posée librement

  • Couche supérieure soudée à la flamme (LLs)
  • Couche supérieure collée à froid (LLc)

Adhérence totale au support

Sous-couche collée au bitume chaud

  • Couche supérieure soudée à la flamme (TBs)

Sous-couche soudée à la flamme

  • Couche supérieure soudée à la flamme (TSs)

Sous-couche collée à froid

  • Couche supérieure soudée à la flamme (TCs)

  • Couche supérieure collée à froid (TCc)

Semi-indépendance sur le support

Couche intermédiaire collée au bitume chaud sur sous-couche perforée collée au bitume chaud

  • Couche supérieure soudée à la flamme (PBBs)

Sous-couche avec plots ou bande soudée en semi-indépendance à la flamme

  • Couche supérieure soudée à la flamme (PSs)

Sous-couche collée à froid

  • Couche supérieure soudée à la flamme (PCs)
  • Couche supérieure collée à froid (PCc)

Fixation mécanique au support

Sous-couche vissée

  • Couche supérieure soudée à la flamme (MVs)
  • Couche supérieure collée à froid (MVc)

Sous-couche clouée

  • Couche supérieure soudée à la flamme (MNs)
  • Couche supérieure collée à froid (MNc)

(LLs) Multicouche / pose en indépendance / couche supérieure soudée à la flamme

On applique successivement sur le support :

Schéma Multicouche / pose en indépendance / couche supérieure soudée à la flamme.

Système (LLs)

  1. Support.
  2. Couche de désolidarisation éventuelle.
  3. Membrane de sous couche posée librement.
  4. Couche de bitume chaud.
  5. Membrane en bitume polymère soudée à la flamme.
  6. Protection lourde.

* * *

(Llc) Multicouche / pose en indépendance / couche supérieure collée à froid

On applique successivement sur le support :

Schéma Multicouche / pose en indépendance / couche supérieure collée à froid

Système (Llc)

  1. Support.
  2. Couche de désolidarisation éventuelle.
  3. Membrane de sous couche posée librement.
  4. Couche de colle à froid.
  5. Membrane en bitume polymère déroulée dans la colle.
  6. Protection lourde.

* * *

(TBs) Multicouche / adhérence totale / sous-couche collée au bitume chaud / couche supérieure soudée à la flamme

On applique successivement sur le support :

Schéma Multicouche / adhérence totale / sous-couche collée au bitume chaud / couche supérieure soudée à la flamme

Système (TBs)

  1. Support.
  2. Vernis d’adhérence (si support en béton).
  3. Couche de bitume chaud.
  4. Membrane en bitume (sauf APP) déroulée dans le bitume chaud.
  5. Membrane en bitume polymère soudée à la flamme.

* * *

(TSs) Multicouche / adhérence totale / sous couche soudée à la flamme / couche supérieure soudée à la flamme

On applique successivement sur le support :

Schéma Multicouche / adhérence totale / sous couche soudée à la flamme / couche supérieure soudée à la flamme

Système (TSs)

  1. Support.
  2. Vernis d’adhérence (si support en béton).
  3. Membrane en bitume soudée à la flamme.
  4. Membrane en bitume polymère soudée à la flamme.

* * *

(TCs) Multicouche / adhérence totale / sous couche collée à froid / couche supérieure soudée

On applique successivement sur le support :

Schéma Multicouche / adhérence totale / sous couche collée à froid / couche supérieure soudée.

Système (TCs)

  1. Support.
  2. Vernis d’adhérence (si support en béton).
  3. Couche de colle à froid.
  4. Membrane en bitume déroulée dans la colle.
  5. Membrane en bitume polymère soudée.

* * *

(TCc) Multicouche / adhérence totale / sous couche collée à froid / couche supérieure collée à froid

On applique successivement sur le support :

Schéma Multicouche / adhérence totale / sous couche collée à froid / couche supérieure collée à froid.

Système (TCc)

  1. Support.
  2. Vernis d’adhérence (si support en béton).
  3. Couche de colle à froid.
  4. Membrane en bitume déroulée dans la colle.
  5. Couche de colle à froid.
  6. Membrane en bitume polymère déroulée dans la colle.

* * *

(PBBs) Multicouche/semi-indépendance/couche intermédiaire collée au bitume chaud sur sous-couche perforée collée au bitume chaud/couche supérieure soudée à la flamme

On applique successivement sur le support :

Schéma Multicouche/semi-indépendance/couche intermédiaire collée au bitume chaud sur sous-couche perforée collée au bitume chaud/couche supérieure soudée à la flamme

Système (PBBs)

  1. Support.
  2. Vernis d’adhérence (si support en béton).
  3. Membrane perforée collée au bitume chaud.
  4. Couche de bitume chaud.
  5. Membrane intermédiaire.
  6. Membrane en bitume polymère soudée.

* * *

(PSs) Multicouche / semi-indépendance / sous-couche avec plots ou bandes soudée à la flamme / couche supérieure soudée à la flamme

On applique successivement sur le support :

Schéma Multicouche / semi-indépendance / sous-couche avec plots ou bandes soudée à la flamme / couche supérieure soudée à la flamme.

Système (PSs)

  1. Support.
  2. Vernis d’adhérence (si support en béton).
  3. Membrane en bitume avec points d’adhérence soudée à la flamme.
  4. Membrane en bitume polymère soudée à la flamme.

* * *

(PCs) Multicouche / semi-indépendance / sous-couche collée à froid / couche supérieure soudée à la flamme

On applique successivement sur le support :

Schéma Multicouche / semi-indépendance / sous-couche collée à froid / couche supérieure soudée à la flamme.

Système (PCs)

  1. Support.
  2. Vernis d’adhérence (si support en béton).
  3. Couche de colle à froid par bandes ou plots.
  4. Membrane en bitume déroulée dans la colle.
  5. Membrane en bitume polymère soudée à la flamme.

* * *

(PCc) Multicouche / semi-indépendance / sous-couche collée à froid / couche supérieure collée à froid

On applique successivement sur le support :

Schéma Multicouche / semi-indépendance / sous-couche collée à froid / couche supérieure collée à froid.

Système (PCc)

  1. Support.
  2. Vernis d’adhérence (si support en béton).
  3. Couche de colle à froid par bandes ou plots.
  4. Membrane en bitume déroulée dans la colle.
  5. Couche de colle à froid.
  6. Membrane en bitume polymère déroulée dans la colle.

* * *

(MVs) Multicouche/fixation mécanique/sous-couche vissée/couche supérieure soudée à la flamme

On applique successivement sur le support :

Schéma Multicouche/fixation mécanique/sous-couche vissée/couche supérieure soudée à la flamme.

Système (MVs)

  1. Support.
  2. Membrane en bitume fixée mécaniquement à l’aide de vis.
  3. Membrane en bitume polymère soudée à la flamme.

* * *

(Mvc) Multicouche / fixation mécanique / sous-couche vissée / couche supérieure collée à froid

On applique successivement sur le support :

  • une couche éventuelle de désolidarisation,
  • une membrane P4 fixée avec des vis et des plaquettes de répartition, recouvrements collés à froid,
  • une couche de colle bitumineuse à froid,
  • une membrane de minimum 4 mm de bitume polymère déroulée dans la colle, avec recouvrements soudés.

Schéma Multicouche / fixation mécanique / sous-couche vissée / couche supérieure collée à froid.

Système (Mvc)

  1. Support.
  2. Membrane en bitume fixée mécaniquement à l’aide de vis.
  3. Couche de colle à froid.
  4. Membrane en bitume polymère déroulée dans la colle.

* * *

(MNs) Multicouche / fixation mécanique / sous-couche clouée / couche supérieure soudée à la flamme

On applique successivement sur le support :

Schéma Multicouche / fixation mécanique / sous-couche clouée / couche supérieure soudée à la flamme.

Système (MNs)

  1. Support.
  2. Membrane en bitume fixée mécaniquement à l’aide de clous.
  3. Membrane en bitume polymère soudée à la flamme.

* * *

(MNc) Multicouche / fixation mécanique / sous-couche clouée / couche supérieure collée à froid

On applique successivement sur le support :

  • une couche de désolidarisation (voile de verre ou natte de polyester),
  • une membrane P4 clouée, recouvrements collés à froid,
  • une couche de colle bitumineuse à froid,
  • une membrane de minimum 4 mm de bitume polymère déroulée dans la colle, avec recouvrements soudés.

Schéma Multicouche / fixation mécanique / sous-couche clouée / couche supérieure collée à froid.

Système (MNc)

  1. Support.
  2. Membrane en bitume fixée mécaniquement à l’aide de clous.
  3. Couche de colle à froid.
  4. Membrane en bitume polymère déroulée dans la colle.

Les types de pose des étanchéités synthétiques

Les étanchéités synthétiques sont en général toujours monocouches.

Les étanchéités peuvent être posées sur le support de différentes manières :

  • en indépendance,
  • en adhérence totale,
  • en semi-indépendance,
  • par fixation mécanique.

La pose des membranes d’étanchéité synthétiques varie selon le produit. Elle doit donc être effectuée conformément aux prescriptions des fabricants et des agréments techniques des produits, par du personnel connaissant la technique de pose.  Celle-ci diffère généralement des techniques traditionnellement utilisées pour les membranes bitumineuses.

Application sur le support

Les membranes pourront, suivant leurs types, être :

  • posées librement sur le support,
  • collées au support à l’aide de colle de contact,
  • collées au support à l’aide de bitume chaud modifié ou non,
  • collées à froid sur le support à l’aide de colle bitumineuse,
  • collées au support à l’aide de colle spéciale en haut polymères,
  • fixées mécaniquement au support selon différentes techniques.

Étanchéité des recouvrements

Les recouvrements pourront être :

  • soudés à l’aide de solvants,
  • soudés à l’air chaud,
  • soudés par ondes à haute fréquence,
  • collés par application de colle,
  • collés par application de bandes collantes sur le joint ou dans le joint.

L’application de certaines de ces techniques est délicate et nécessite un soin particulier.

Des conditions atmosphériques favorables, et la pose correcte des produits surtout lorsqu’il contiennent des solvants sont indispensables. Certaines membranes ne peuvent être posées lorsqu’il y a trop de vent, trop de poussière ou trop d’humidité, ou lorsqu’il fait trop froid.

Le personnel qui effectue la pose doit donc être très soigneux et très qualifié.


Les systèmes d’accrochage des membranes

Pour contrer les effets de succion dus au vent qui peuvent être très importants, il est nécessaire de maintenir les systèmes d’étanchéité sur leur support.

Cela peut se faire de plusieurs manières :

Lorsque l’étanchéité comprend plusieurs couches, les différentes couches doivent être solidarisées. Elles le sont uniquement par collage ou soudage.

* * *

Lestage

Lorsque l’étanchéité n’est pas fixée au support, on dit qu’elle est posée en indépendance. Il est alors nécessaire de la lester. Le poids du lest doit être déterminé en fonction des contraintes.

Lestage.

Le lestage fait en même temps fonction de protection de la membrane d’étanchéité contre les rayonnements UV du soleil.

Dans le cas de la toiture inversée, l’isolation est posée entre l’étanchéité et le lestage.

Lestage d’une toiture inversée.

La fixation de l’isolant est toujours conseillée, même sous une étanchéité posée en indépendance.

* * *

Fixation mécanique

La fixation mécanique de l’étanchéité est théoriquement possible sur tout support, mais elle est surtout utilisée sur des supports en bois, en béton cellulaire ou en tôles d’acier.

La fixation au support se fait à l’aide de clous ou de vis autoforantes munies de plaquettes de répartition.

Exemple de fixation mécanique.

L’étanchéité est fixée (à travers l’isolant, s’il s’agit d’une toiture chaude) au support. Les fixations sont placées dans les recouvrements ou dans la sous-couche de l’étanchéité à laquelle est ensuite collée la couche supérieure.

Membrane fixée par vis à travers l’isolant.

Le nombre de fixations nécessaires pour résister au vent, dépend de l’étanchéité à l’air du bâtiment, de la situation du bâtiment, de la hauteur du bâtiment, du support de l’étanchéité et de la résistance utile au vent des fixations, ainsi que de la zone de toiture concernée.

* * *

Collage au bitume chaud

La méthode de collage à plein bain de bitume, consiste à déverser sur le support un bitume chaud et liquide et à déposer dans celui-ci le matériau (membrane ou isolant) à faire adhérer.

Collage au bitume chaud.

Le bitume que l’on utilise pour le collage à chaud est le bitume soufflé (aussi appelé bitume oxydé).

Le type recommandé est le 110/30. Il convient pour les pentes supérieures à 5 % et pour les relevés à cause de son point de ramollissement élevé grâce auquel il résiste mieux au fluage.

Ce système convient à tous les supports de toiture sauf aux tôles profilées en acier. Il est parfois nécessaire d’appliquer un vernis d’adhérence sur certains supports avant de couler le bitume.

La quantité dépend du support avec un minimum de 1 Kg/m².

Le bitume doit être suffisamment chaud (± 200°C) pour pénétrer correctement dans le support, mais pas trop pour que la couche de bitume soit suffisamment épaisse.

Les membranes revêtues d’un film thermofusible ne peuvent être collées au bitume chaud.

Les membranes à base de bitume APP ne peuvent être collées au bitume à chaud, car leur point de ramollissement est trop élevé.

* * *

Soudage à la flamme

La méthode consiste à chauffer à la flamme et jusqu’à fusion d’une certaine épaisseur, la face inférieure de la membrane à coller, tout en la déroulant sur le support. La masse bitumineuse fondue fait adhérer la membrane au support.

La membrane est chauffée sur toute sa largeur. Un bourrelet de bitume fondu est poussé par le rouleau que l’on déroule.

Soudure à la flamme.

Cette technique nécessite l’usage de brûleurs spécialement conçus pour l’étanchéité. Il existe des appareils spéciaux avec rampe de brûleurs qui, en répartissant mieux la chaleur, permettent de travailler plus vite tout en assurant une pose plus régulière.

Rampe de brûleurs.

Le rouleau est tiré pour permettre un contrôle visuel permanent de la continuité du collage.

Certaines membranes sont munies en face inférieure d’un film thermofusible destiné à augmenter l’efficacité de la méthode.

Les membranes à souder ont au moins une épaisseur de 3 mm.

* * *

Pose avec colle bitumineuse à froid

La méthode du collage à froid consiste à coller la membrane en la pressant dans une couche de colle bitumineuse froide.

Pose à la colle bitumineuse à froid.

La quantité de colle à utiliser dépend de la qualité du support,de la qualité du matériau à coller et de l’action du vent sur la toiture.

La colle est appliquée sur l’entièreté de la surface du support ou sur une partie de celui-ci, par bandes ou plots.

La pente du support ne peut pas dépasser 15 %.

Les relevés devront toujours être réalisés par soudage à la flamme.

* * *

Pose avec adhésif non bitumineux

La pose de certaines membranes synthétiques fait appel à des colles synthétiques de contact ou à des hauts polymères spéciaux.

Pose à la colle synthétique.

Ces produits doivent être fournis ou agréés par les fabricants des membranes. Les techniques d’application sont définies par le fabricant. Elles sont parfois compliquées et nécessitent une main-d’œuvre spécialisée.

La pose ne peut se faire que lorsque les conditions atmosphériques sont favorables.


Les systèmes d’accrochage des isolants

Pour contrer les effets de succion dus au vent qui peuvent être très importants, il est nécessaire de maintenir les isolants sur le support.
Cela peut se faire de plusieurs manières :

***

Lestage

Lorsque l’isolant n’est pas fixé au support, on dit qu’il est posé en indépendance.

Il est alors nécessaire de le lester (toiture inversée),

Lestage de la toiture inversée.

ou de lester l’étanchéité qui le couvre (toiture chaude).

Lestage de la toiture chaude.

Les matériaux utilisés pour le lestage servent également de protection. Ce sont les protections lourdes.

Le poids du lest doit être déterminé en fonction des contraintes (dimensionnement du système d’accrochage).

La pose en indépendance ne convient pas pour le verre cellulaire (CG).

Attention !
La fixation de l’isolant est toujours conseillée, même sous une étanchéité posée en indépendance.

***

Fixation mécanique

La fixation mécanique de l’isolant est théoriquement possible sur tout support, mais elle est surtout utilisée sur des supports en bois ou en tôles d’acier.

L’isolant est fixé au support à l’aide de clous ou de vis autoforantes munies de plaquettes de répartition.

Vis d’accrochage de l’isolant.

Soit, l’isolant est fixé mécaniquement au support et ensuite l’étanchéité est collée à l’isolant,

Membrane collée à l’isolant
fixé mécaniquement.

soit l’étanchéité est fixée à travers l’isolant au support.

Membrane fixée mécaniquement
à travers l’isolant.

Le nombre de fixations nécessaires pour résister au vent, dépend de l’étanchéité à l’air du bâtiment, de la situation du bâtiment, de la hauteur du bâtiment, du support de l’étanchéité et de la résistance utile au vent des fixations, ainsi que de la zone de toiture concernée. (Dimensionnement du système d’accrochage).

L’isolant doit être suffisamment épais.

Cette méthode ne convient pas pour le verre cellulaire.

***

Collage au bitume chaud

La méthode de collage à plein bain de bitume, consiste à déverser sur le support un bitume chaud et liquide et à déposer immédiatement dans celui-ci l’isolant à faire adhérer.

Isolant collé au bitume chaud.

Le bitume que l’on utilise pour le collage à chaud est le bitume soufflé (aussi appelé bitume oxydé) chauffé à environ 200°C.

Ce système convient à tous les supports de toiture sauf aux tôles profilées en acier. En effet, sur l’acier le bitume refroidit trop vite, surtout par temps froid. De plus, la surface de collage est réduite de par la forme des profilés.

Il est parfois nécessaire d’appliquer un vernis d’adhérence sur certains supports, comme le béton ou l’acier, avant de couler le bitume.

Le verre cellulaire peut être collé au bitume chaud sur des tôles profilées en acier, à condition de tremper les panneaux dans un bac de bitume chaud, et d’adapter l’ouverture des nervures et la rigidité des tôles, à l’épaisseur du verre cellulaire.

***

Pose avec colle bitumineuse à froid

La méthode du collage à froid consiste à coller l’isolant en le pressant dans une couche de colle bitumineuse froide.

La quantité de colle à utiliser dépend de la qualité du support,de la qualité du matériau à coller et de l’action du vent sur la toiture.

La colle est appliquée sur l’entièreté de la surface du support ou sur une partie de celui-ci, par bandes ou plots.

Il est parfois nécessaire d’appliquer un vernis d’adhérence sur certains supports, comme le béton ou l’acier, avant d’appliquer la colle.

La pente du support ne peut pas dépasser 15 %.

La technique du collage à froid n’est pas permise pour le polystyrène expansé (EPS).

En règle générale, il faut s’assurer de la compatibilité de la colle à froid avec l’isolant.

***

Pose avec une colle synthétique

Cette méthode consiste à coller l’isolant en le pressant dans une couche de colle synthétique.

La quantité de colle à utiliser dépend de la qualité du support,de la qualité du matériau à coller et de l’action du vent sur la toiture.

La colle est généralement appliquée sur une partie de la surface du support, par bandes.

Ces produits doivent être fournis ou agréés par les fabricants des isolants. Les techniques d’application sont définies par le fabricant et doivent être respectées.