Types d’isolants : généralités

Types d'isolants : généralités

Un matériau est généralement considéré comme « isolant » lorsque son coefficient de conductivité thermique à l’état sec est inférieur ou égal à 0.07 W/mK.


Les grandes catégories d’isolants

Les isolants synthétiques

On regroupe sous ce nom les isolants tels que les mousses de polyuréthane et de polystyrène. Ces matériaux sont très défavorables. Issus de la chimie du chlore et du pétrole, ils sont produits à partir de matières non renouvelables et selon des procédés énergivores.

Ces isolants contiennent des substances qui appauvrissent la couche d’ozone (comme les HCFC) et libèrent des gaz toxiques et mortels en cas d’incendie. Des substituts aux CFC commencent à être utilisés et on a recours lors de la fabrication à de plus en plus de matériaux recyclés.

Dans cette catégorie, la mousse phénolique semble faire exception. Ces très bonnes caractéristiques thermiques associées à son caractère renouvelable, au faible rejet de polluant au long de sa durée de vie la rendent plus intéressante que les autres isolants synthétiques. Mais ce matériau récent ne possède pas encore réellement de filière de distribution et le retour pratique sur son utilisation et sa mise en œuvre est encore réduite.

Pour en savoir plus sur les isolants synthétiques : cliquez ici !

Les laines minérales

Ces isolants sont issus de matériaux abondants (roches volcaniques et sable) et présents en Europe. Ils sont souvent composés de matériaux recyclés. Tant que la teneur en liant reste inférieure à 5%, leur élimination se fait par mise en décharge comme matériaux inertes ou par recyclage complet (laine de roche). Leur procédé de fabrication est toutefois également très énergivore.

Pour en savoir plus sur les laines minérales.

Les isolants biosourcés

Ces isolants combinent généralement un matériau issu de sources renouvelables (végétaux, cellulose recyclée), et un mode de production peu énergivore.

Remarquons que la matière première est parfois peu abondante, ou disponible uniquement dans certaines régions (ex. liège).

En général, l’élimination des isolants « écologiques » peut se faire sans danger par compostage. Mais cela dépend du mode de fabrication. Par exemple, les isolants à base de chanvre ou de lin contiennent souvent du polyester.

Pour en savoir plus sur les isolants biosourcés.


Les formes d’isolant

Selon leur nature, les matériaux isolants présentent différentes formes, raideurs et résistances à la compression :

Formes Matériaux
Matelas semi-rigide ou souple : La laine de roche, la laine de verre, les fibres traitées organiques (chanvre, …) ou animales (laine, ….) …
Panneaux rigides : La mousse de polyuréthane, de polystyrène expansé ou extrudé, le verre cellulaire, les panneaux organiques (fibre de bois avec liant bitumineux ou caoutchouc, …), le liège …
Les flocons ou granulés : Les granulés de perlite ou de vermiculite, les granulés de polystyrène expansé, les granulés de liège, les flocons de laine minérale insufflés, les flocons de papier recyclé …

Les matériaux composites

Il existe des matériaux composites qui sont constitués de plaques juxtaposées de matériaux différents, isolants ou non.

Ces panneaux combinent les propriétés des matériaux qui les composent : résistance à la compression, imperméabilité à la vapeur, qualités thermiques, comportement au feu, comportement à l’humidité, aspect fini, etc.
Exemples :

Panneaux sandwiches autoportants avec ou sans armature de renforcement.

Panneaux de mousse PUR avec lestage ou surface circulable en béton.

Panneau complexe.

Panneaux complexes comprenant une couche d’isolant collé à une plaque de plâtre enrobé de carton avec interposition éventuelle d’un pare-vapeur entre le plâtre et l’isolant. L’isolant peut être de la mousse de polystyrène expansé ou extrudé, de la mousse de polyuréthanne, de la laine minérale.

Les isolants à pente intégrée

Les mousses synthétiques, le verre cellulaire, la laine de roche existent sous forme de panneaux dont les faces ne sont pas parallèles et forment un système permettant de faire varier l’épaisseur de l’isolant de façon continue. Des panneaux à double pente et des pièces spéciales de noues et d’arêtes sont en général également disponibles.

Isolant à pente intégrée sur une
toiture plate avant pose de l’étanchéité.

Grâce à ce système, il est possible de créer ou d’augmenter la pente de la couverture.

Les fabricants disposent généralement de services qui étudient la toiture et fournissent un plan de pose des isolants à pente intégrée.

Avantages

La réalisation ou la correction de la pente ne nécessite qu’une seule opération.

La charge sur le support est plus faible que s’il est fait usage d’un autre matériau pour réaliser la pente.

Inconvénients

L’épaisseur n’étant pas constante, l’isolation de la toiture plate le sera également. L’isolation devant être suffisante partout, une épaisseur suffisante d’isolant doit être prévue au point bas de la pente.

Pour former les pentes, une quantité importante d’isolant est donc nécessaire avec une conséquence sur le coût. À cela s’ajoutent les coûts liés aux difficultés de fabrication et d’études.


Quel isolant pour quel usage ?

Le tableau suivant présente une partie des choix envisageables pour isoler un bâtiment. Cette liste n’est bien entendue pas exhaustive. La colonne « choix traditionnel » montre ce qui est traditionnellement réalisé. Les deux autres colonnes, montre vers quelles solutions il faut se tourner lorsque l’on veut se rapprocher d’une démarche d’éco-construction.

Choix traditionnel

Choix plus écologique

Choix plus écologique

+

++

Dalle de sol

Polyuréthane

Polystyrène

Laine de roche haute densité

Verre cellulaire.

Argile expansé.

Double mur extérieur

Polyuréthane

Polystyrène

Laine minérale

Laine végétale et animale.

Chaux-chanvre (ossature bois).

Flocons de cellulose (ossature bois).

Toiture à versants

Laine minérale

Laine végétale et animale.

Chaux-chanvre (ossature bois).

Flocons de cellulose (ossature bois).

Toiture plate

Polyuréthane

Polystyrène

Laine minérale

Verre cellulaire.

Argile expansée.

Flocons de cellulose (ossature bois).

Tableau présentant les différentes solutions techniques d’isolation envisagées classiquement.


Caractéristiques principales des différents matériaux isolants

TYPE

Matériau

Masse

Conduct. therm.λi

Perm. à la vapeur µ moyen

Résist. à la compr.

Réact.
au feu

Kg/m³

W/mK

kg/cm²

 Minéral

MW

  Laine de roche

150 à 175

0.045

1.5

0.7 à 1.3 (*)

+

GW

 Laine de verre

13 à 60

0.045

1.5

0.2 (*)

+

CG

 Verre cellulaire

120 à 135

0.055

infini

7 à 16 (**)

+

EPB

 Perlite expansée

170

0.060

5 à 10

3,5 (*)

+

 Synthétique

PUR

 Polyuréthane

30

0.035

100

1.2 (*)

PIR

Polyisocyanurate

30

0.035

50

1.2 (*)

+

PF

Mousse phénolique

40

0.045***

80

1.2 (*)

+

EPS

 Polystyrène expansé

15 à 40

0.045

20 à 150

0.7 à 3.5 (*)

XPS

 Polystyrène extrudé

32 à 45

0.040

225

3 à 7 (*)

 Végétal

ICB

 Liège

100 à 120

0.050

12 à 28

+

Produits minces réfléchissants

PMR

 Multicouche composé de feuilles d’aluminium, mousses plastiques, polyéthylène, …

+ 70

0.050

12 à 28

+

(*) à 10 % de déformation (valeur moyenne)
(**) à la rupture
(***) pour les plaques en mousse résolique à cellules fermées revêtues, cette valeur est ramenée à 0,03 W/(mxK).

Remarques.

  • Les valeurs de λi sont tirées de l’annexe VII de la PEB. Elles correspondent à des matériaux non certifiés. Ces valeurs sont pessimistes.
  • Des valeurs plus favorables peuvent être considérées lorsque le matériau est connu quant à sa nature et certifié. Ces valeurs sont également données dans la NBN B 62-002/A1.
  • Lorsque les matériaux sont connus quant à leur nature, leur nom de marque et leur type et qu’ils sont certifiés, on considère leλi donné dans leurs certificats BENOR, ATG ou documents équivalents. Ces valeurs peuvent être beaucoup plus favorables que les précédentes, comme le montre le graphique ci-dessous.

Conductivité thermique maximale et minimale des isolants fournies par les spécifications techniques européennes de l’EOTA (European Organisation for Technical Approvals), les déclarations volontaires de qualité ATG (Agréments Techniques de l’UBAtc – Union Belge pour l’agrément technique dans la construction) ou les certificats Keymark du CEN (Comité Européen de Normalisation), quels que soient l’application et les autres facteurs d’influence éventuels.

Données

Pour connaitre les valeurs conductivité thermique d’autres matériaux : cliquez ici !


Coût des différents types d’isolant

Les coûts repris ci-dessous sont indicatifs des matériaux que l’on peut trouver facilement en Belgique en 2008. Il s’agit de tarifs moyens annoncés par quelques fournisseurs. En effet, les prix varient en fonction des quantités achetées.

Coût Unité Épaisseur

Polystyrène extrudé

7 à 25 € /m² hTVA 40 à 120 mm

Polystyrène expansé

5 à 15 € /m² hTVA 40 à 120 mm

Polyuréthane

6.5 à 27.5 € /m² hTVA 40 à 120 mm

Laine de verre

5 à 18 € /m² hTVA 40 à 180 mm

Laine de roche

5 à 18 € /m² hTVA 40 à 180 mm

Verre cellulaire

25 à 35 € /m² hTVA 40 à 60 mm

Perlite expansée pure

0.1 à 0.2 € /l hTVA /

Vermiculite expansée pure

0.1 à 0.2 € /l hTVA /

Argile expansé

7 à 12 € /m² hTVA 10 mm

Panneaux fibre de bois

7 à 24 € /m² hTVA 30 à 100 mm

Cellulose en vrac

0.13 € /l hTVA /

Laine de cellulose en vrac

0.25 € /l hTVA /

Laine de cellulose en panneaux

7 à 25 € /m² hTVA 40 à 160 mm

Liège en vrac

0.2 € /m² hTVA /

Liège en panneaux

5 à 12 € /kg hTVA 20 à 80 mm

Liège en rouleaux

5 à 15 € /m² hTVA 2 à 6 mm

Laine de chanvre

5 à 30 € /m² hTVA 5 à 200 mm

Feutre de jute

4.5 € /m² hTVA /

Laine de mouton

0.7 à 1.2 € /kg hTVA /


Impact sur la santé

L’impact des isolants sur la santé est encore difficilement estimable. En effet, si l’effet d’un composé est aujourd’hui connu, l’effet de la combinaison de produits toxiques est plus compliqué à analyser.  De plus pour déterminer les impacts des polluants, il y a toujours lieu de prendre en compte simultanément les trois paramètres suivants :

  • temps d’exposition
  • intensité de la pollution
  • sensibilité de la personne

En ce qui concerne les isolants synthétiques, ils dégagent tout au long de leur durée de vie des produits gazeux dangereux, mais comme ils ne sont pas en contact direct avec l’ambiance, on estime que leur impact est limité. Une chose reste sûre, ils ont le défaut de dégager des fumées très toxiques en cas d’incendie !

Les isolants fibreux ne posent pas non plus de problème une fois qu’ils ont été posés. Mais il faudra être très vigilant lors de leur mise en place, car leur structure fibreuse peut dans certains cas provoquer des problèmes pulmonaires suite à l’inhalation de particules fines. Cela dépendra du type de fibre et leur bio-persistance.  Ils ont le grand avantage d’être peu ou non combustible de par leur nature et leur structure, ou suite à un traitement au sel de bore.

Isolants minéraux

Isolants minéraux

On distingue généralement les laines minérales des isolants minéraux  à proprement dits.


Les laines d’origine minérale

La laine de roche (MW)

Photo laine de roche (MW).Photo laine de roche, détail.

Les fibres de la laine de roche sont obtenues par la fonte de la roche diabase. Elles sont liées à l’aide de résines synthétiques polymérisées pour former des rouleaux et des panneaux. Ceux-ci peuvent présenter différentes rigidités et finitions de surface. La laine de roche a une composition non uniforme (parties infibrées).

La laine de roche est totalement perméable à la vapeur d’eau, mais est non hygroscopique. Elle est non capillaire (n’absorbe pas l’eau). Elle est totalement perméable à l’air. Elle se caractérise par une bonne stabilité thermique, un bon comportement au feu. Elle est fort compressible et résiste mal au délaminage.

Les panneaux de laine de roche destinés aux toitures plates seront de densité importante (ρ= 150 à 175 kg/m³) et de fabrication particulière (sens des fibres) pour garantir une rigidité suffisante, et une résistance suffisante au délaminage. Ces panneaux sont surfacés de voile de verre et/ou de bitume.

La laine de verre (GW)

Photo laine de verre (GW).    Photo laine de verre, détail.

Les fibres de la laine de verre sont obtenues par la fonte de verre et de sable quartzeux. Elles sont traitées par un produit hydrofuge. Elles sont liées à l’aide d’un produit thermodurcissant pour former des rouleaux et des panneaux. Ceux-ci peuvent présenter différentes rigidités et finitions de surface. La laine de verre a une composition uniforme.

Tout comme la laine de roche, la laine de verre est totalement perméable à la vapeur d’eau, mais est non hygroscopique. Elle est non capillaire (n’absorbe pas l’eau). Elle est totalement perméable à l’air. Elle se caractérise par une bonne stabilité thermique, un comportement au feu légèrement moins bon que la laine de roche.

La laine de verre n’est plus utilisée pour les toitures plates à cause de sa faible résistance au délaminage et à la compression.


Les isolants minéraux

Le verre cellulaire (CG)

Photo verre cellulaire (CG).   Photo verre cellulaire, détail.

Le verre cellulaire est une mousse de verre obtenue par expansion de celui-ci lorsqu’il est en fusion. Les cellules ainsi formées contiennent un gaz inerte.

Son procédé de fabrication conduit à la production d’un isolant léger à cellules fermées. Le verre cellulaire est ainsi est complètement étanche à la vapeur d’eau, à l’eau et à l’air. Il se caractérise par une bonne stabilité thermique et un bon comportement au feu. Bien qu’incompressible, ce matériau est relativement fragile et nécessite un support régulier et rigide lorsqu’il est soumis à des contraintes mécaniques.

Disponible en panneaux ou en gros granulés, son seul défaut, en plus de son coût élevé, est d’être produit par des procédés de fabrication très énergivore.

La perlite expansée (EPB)

Photo perlite expansée (EPB).

La perlite expansée est obtenue à partir de pierre volcanique rhyolitique concassée et expansée à une température de +/- 900°C.

La perlite expansée est mélangée à des fibres cellulosiques et à un liant bitumineux pour former des panneaux mais peut aussi être utilisée en vrac.

La perlite expansée se caractérise par une grande résistance à la compression et au poinçonnement, un bon comportement au feu et une résistance limitée au pelage. Elle ne résiste pas à une humidification prolongée.

La vermiculite

Photo vermiculite.
Granule de vermiculite grossi.
(doc. Agroverm).

La vermiculite est produite à partir de mica expansé. Elle est disponible sous forme de granulés ou de panneaux. Comme la perlite, ce matériau peut être déversé en vrac ou être incorporé dans les mortiers, bétons allégés, enduits isolants et dans les blocs de constructions.

L’argile expansée

Elle est vendue en vrac, en panneaux ou incorporée dans des bétons allégés, des blocs de construction préfabriqués.

L’argile expansée présente un excellent classement au feu et offre une bonne résistance à l’humidité.

Photo argile expansée. 

Granules d’argile expansée et Granule d’argile expansée grossie et coupée (doc. TBF).

isolants écologiques dans le cadre d'une rénovation

Isolants biosourcés

Date :

  • Janvier 2009

Auteur :

  • B.J., corrigé par Arnaud Evrard et Sophie Trachte

Notes :

  • Conforme à la mode PEB août 2008
  • En attente des droits de publications des photos issues du livre de Oliva.
  • 26-03-2009 : Application des nouveaux styles de mise en page. Julien.

Source :

  • IBGE, Infos fiches-éco-construction, Mat05, Isolation thermique : Choisir des matériaux sains et écologiques. Consultable dans la farde ENERGIE+\2008\ISOLATION1
  • Réseau éco-consommation, fiche n°79, Les matériaux d’isolation : les connaître pour bien les choisir. Consultable dans la farde ENERGIE+\2008\ISOLATION1
  • Une isolation plus saine, conseil et fiches matériaux, de www.pie.dromenet.org. Consultable dans la farde ENERGIE+\2008\ISOLATION1

Antidote :

  • Oui

Photo : Aline Branders.

Pour s’inscrire dans une démarche d’éco-construction, il est nécessaire de ne pas choisir un isolant uniquement sur base de ses propriétés thermiques, techniques et économiques.
Il y a lieu d’évaluer son impact environnemental (et sur la santé) tout au long de sa vie :

  • en tenant compte de l’énergie grise (renouvelable et non renouvelable) consommée sur l’ensemble de son cycle de vie (traitement en fin de vie inclus) ;
  • en tenant compte des différentes émissions (gaz à effet de serre, gaz acidifiant, gaz à formation d’ozone…) sur l’ensemble du cycle de vie, qui auront un impact sur l’environnement et la santé ;
  • en tenant compte des matières premières et de l’eau consommée ;
  • en tenant compte des substances nocives utilisées lors de la fabrication et pendant la mise en œuvre (solvants, COV…) ;
  • en estimant les émissions de composés organiques volatiles (COV), formaldéhydes et autres produits nocifs durant sa vie en œuvre ;
  • en appréciant les possibilités de recyclage pour la phase de déconstruction.

La prise en compte de tous ces paramètres conduit à l’utilisation d’isolants dits « écologiques ». Nous parlerons dans la suite de cet article plus particulièrement des isolants dits « biosourcés », c’est-à-dire d’origine végétale ou animale.

Origines, traitements, transformations, domaines d’application et spécificités de chacun des isolants permettront d’approcher la notion de développement durable dans le bâtiment. Nous y verrons les isolants suivants :

  • Isolants à base de cellulose
  • Isolants sous forme de laine d’origine végétale ou animale
  • Isolants à base de fibre de bois
  • Isolants à base de liège
  • Isolants à base de chanvre
  • Isolants à base de paille
  • Isolants à base de textile recyclé

Ils seront passés en revue afin de donner un aperçu des avantages et inconvénients à prendre en compte dans le choix de l’isolant.

De l’approche classique à l’éco-construction

Certaines lignes directrices simples, énoncées dans le tableau suivant, permettent d’évoluer vers une démarche éco-constructive en partant d’une approche tout à fait classique.

Déconseillé Les isolants minces réfléchissants. Ces isolants sont difficiles à mettre en œuvre, leurs performances  sont réduites et il est très difficile de les recycler (assemblage de plusieurs matériaux)
Minimum Éviter les isolants synthétiques (mousses de polyuréthane, de polystyrène…) autant que possible. Dans les situations où ces isolants ne s’imposent pas, leur préférer les laines végétales et animales, les laines minérales, ou le verre cellulaire.
Conseillé Choisir des matériaux naturels à la place des matériaux courants : laines végétales ou animales et isolants à base de cellulose, de liège, de chanvre ou d’autres sources renouvelables…

Mais attention, beaucoup de ces isolants ne possèdent pas d’agrément technique belge ou européen

Tableau inspiré de la fiche « Matériaux d’isolation thermique : Choisir des matériaux sains, avec un écobilan favorable » de l’IBGE.

Les types d’isolants biosourcés classiques

Isolants à base de cellulose

Isolants à base de papier ou journal recyclé, leur conductivité est comparable à celle des laines minérales. Ce matériau possède la caractéristique de pouvoir absorber la vapeur d’eau et permet ainsi de réguler l’humidité. Son absorption acoustique est excellente.

Les flocons de cellulose sont soufflés sous pression soit dans des caissons fermés soit sur des surfaces horizontales. Certains critères ont été définis afin de garantir le non-tassement ultérieur des flocons dans les caissons.

Ces isolants à base de cellulose existent aussi sous forme de panneaux semi-rigides ou flexibles. Ils sont utilisés pour l’isolation des sols, des toitures, des cloisons légères et des murs à ossature bois.Bien qu’elle constitue un bon rempart contre l’humidité, l’ouate de cellulose n’est pas résistante au feu ! Par conséquent, un traitement chimique nécessaire dévalorise sa valeur écoresponsable. En effet, afin de protéger cet isolant des attaques d’insectes, de champignons ou du feu, un traitement au sel de bore est nécessaire. Aussi, si vous privilégiez ce type d’isolant, prenez soin de vous poser des questions relatives à la provenance et à la teneur en résidus d’encre dans l’ouate de cellulose afin d’anticiper les odeurs désagréables sur le long terme. Enfin, insufflée, elle provoque beaucoup de poussières et implique l’utilisation d’équipements de protection adéquats.

     

Panneaux de cellulose (doc. Homatherm) et flocons de cellulose humidifiés et projetés.

Jean-Pierre Oliva , L’isolation écologique, conception, matériaux, mise en œuvre, éditions Terre vivante, 2001.

Isolants sous forme de laine d’origine végétale ou animale

Il existe de nombreux types de laine végétale ou animale disponibles en vrac, en feutre fin,  en rouleaux ou en panneaux semi-rigides. On trouve par exemple des laines en fibre de coco, de lin, de chanvre, de bois ou en mouton. Certains de ces isolants reçoivent un traitement au sel de bore qui les protège des attaques d’insectes, des champignons et du feu.
Ils possèdent la capacité d’absorber et de restituer l’humidité (la laine de mouton peut absorber jusqu’à 33% de son poids en eau((Les matériaux biosourcés dans le bâtiment, FFB, novembre 2015))), remplissant ainsi la fonction de régulateur d’humidité.

Son domaine d’application est l’isolation des murs, des combles et des rampants de toiture. Sa version conditionnée sous forme d’écheveaux sert à l’isolation de gaines et de tuyaux, mais également de calfeutrement. Sous forme de panneaux ou rouleaux, elle se pose de façon classique. Seul le soufflage de la laine en vrac demande l’intervention d’un professionnel spécialisé.

De par leur caractère fibreux, ces isolants possèdent aussi de très bonnes caractéristiques acoustiques. En plus de ses vertus d’isolant acoustique, elle est difficilement inflammable, ne dégage pas de gaz toxiques en cas d’incendie et est une ressource renouvelable.

En termes d’inconvénients, certains de ces isolants reçoivent, tout comme la cellulose, un traitement au sel de bore qui les protège des attaques d’insectes, des champignons et du feu. De plus, même si la laine (de type animale) subit un lavage et un pressage, elle pourrait, après sa pose, dégager une odeur désagréable.

Laine de lin en vrac, laine de lin en rouleaux et laine de lin en panneaux (doc. Textinap).

Laine de chanvre en rouleaux (doc. LCDA) et laine de chanvre en panneaux semi-rigides (doc. Haga).

Noix de coco sciée et panneaux et rouleaux de laine de coco (doc. EMFA).

Jean-Pierre Oliva , L’isolation écologique, conception, matériaux, mise en œuvre, éditions Terre vivante, 2001.

Isolants à base de fibre de bois

Les panneaux de fibre de bois sont fabriqués à partir de déchets de scierie.

Après son sciage, le bois peut :

  • se transformer directement en matériaux pour structures portantes et bardages
  • être broyé ou défibré pour servir à la production de copeaux en vrac ou de fibre de bois pour la confection de la laine isolante
  • être déroulé, tranché et lié afin de servir à la fabrication de panneaux isolants solides pour la construction.

Les panneaux sont perméables à la vapeur, ils complètent très bien les autres isolants.

Son domaine d’application concerne principalement l’isolation thermique intérieure et extérieure de murs, combles et rampants de toiture lorsqu’il est sous forme de laine ou de fibres utilisées en partie aussi pour leurs qualités acoustiques.

Lorsque plusieurs panneaux sont collés ensemble pour obtenir une plus grosse épaisseur d’isolant, de la colle est utilisée, ce qui dévalorise son caractère écologique. Le bois peut aussi servir d’isolant sous son format en vrac, mais va alors nécessiter un traitement chimique préventif, fongicide et insecticide((Les matériaux biosourcés dans le bâtiment, FFB, novembre 2015)).

Panneaux de bois feutré (doc. Pavatex).

Jean-Pierre Oliva , L’isolation écologique, conception, matériaux, mise en œuvre, éditions Terre vivante, 2001.

Isolants à base de liège

Cet isolant est extrait des écorces des chênes-liège ou du recyclage de bouchons, le liège est broyé pour former des granulats de liège en vrac, puis assemblé pour la fabrication de panneaux et de rouleaux qui nécessitent l’intervention d’un liant chimique.

Les panneaux en liège constituent une alternative écologique idéale pour l’isolation

  • des planchers
  • des murs par l’intérieur ou l’extérieur
  • des combles perdus
  • des rampants de toiture.

Tout comme le bois, les avantages en termes d’isolation thermique et acoustique sont incontestables. Ajoutons son imputrescibilité, cet isolant est également difficile inflammable.

Du point de vue des inconvénients, certains panneaux sont renforcés avec des colles synthétiques et dégagent du formaldéhyde, il est donc important de se renseigner avant l’achat afin d’éviter ce type d’isolants à base de liège. Mais le principal problème, en plus de son coût élevé, réside dans sa disponibilité. Il perd en effet de sa valeur écologique et locale à cause de son importation.

Liège.

Isolants à base de chanvre

Fabriqué à partir du défibrage de la tige de chanvre, on peut obtenir à partir de cette plante deux supports de base :

  • la fibre en vrac ou qui servira pour la laine ;
  • la chévenotte utilisée pour la fabrication de panneaux, enduits et bétons (composée d’un mélange de lient à base de chaux aérienne et de copeaux de chanvre).

Le chanvre est par ailleurs une plante à croissance rapide qui ne nécessite pas ou peu d’engrais.

Compressé, il sert pour l’isolation des murs, des sols, des façades intérieures et extérieures et des combles non aménageables après sa transformation en

  • Blocs de béton
  • Laine
  • Panneaux

En vrac, il sert dans l’isolation des murs et des combles non aménageables par soufflage.

Actuellement l’usage le plus fréquent de ce type d’isolant est le remplissage des murs à ossature bois (30 cm) ou d’enduits isolants (10 cm) sur un support existant.

Son coefficient d’isolation est proche de celui du bois massif (λ = ± 0.1), mais le matériau possède d’importantes qualités du point de vue de l’inertie thermique et de la régulation de la vapeur d’eau. Sa résistance au feu lorsqu’il est sous forme de béton, sa fourniture locale ainsi que ses caractéristiques naturellement insecticides constitue également des avantages non négligeables.

Isolants à base de paille

La paille, en tant que matériaux biosourcés, revêt différentes formes :

  • D’un mélange de terre et de paille naît un enduit appelé « terre/paille »
  • Sans pressage, elle se présente sous forme de bottes de paille compressée sous forme de ballot, forme utilisée depuis très longtemps  comme isolant à part entière ou au sein d’une structure propre.

Produit local, la paille constitue un isolant bon marché qui ne nécessite que très peu de traitement en usine ce qui lui confère une réelle valeur ajoutée dans la construction à caractère écologique. Aujourd’hui, ce type d’isolant est  de plus en plus documenté, référence et normalisé comme système de construction et comme isolant reconnu.

Le ballot de paille n’a pas des caractéristiques thermiques homogènes. L’orientation de ses fibres par rapport au flux de chaleur va impacter sur sa conductivité thermique. Celle-ci sera plus faible si les fibres sont perpendiculaires au flux (λ d’environ 0,05) et plus élevés si les fibres sont parallèles aux flux (λ variant autour de 0,07… 0,08). Il est en plus nécessaire de s’assurer des ballots de pailles de qualité pour rencontrer les exigences du monde de la construction.

Toutefois, suite à l’étude de construction paille en occupation, il a été montré que si elle est correctement mise en œuvre et à l’abri de pluies battantes, les risques de dégradations à long terme sont négligeables et la paille comme isolant est capable d’apporter de bonnes performances thermiques ainsi que les conforts d’été et d’hiver attendus.
En outre, la paille n’a pas seulement un rôle isolant, le ballot de paille peut également servir de support à un enduit voir de structure en soi sans en altérer ses caractéristiques. Ainsi, combiner plusieurs de ces rôles (isolant et mécanique et/ou structurel) permet de diminuer le bilan écologique de la paroi. Attention cependant, à utiliser une paille provenant de culture durable.

L’inconvénient de la paille réside dans l’inconfort de pose à cause du poids de chaque botte. De plus, son volume implique de concevoir des murs d’une épaisseur relativement conséquente à isoler.

Si vous souhaitez en savoir plus sur l’isolant à base de paille, consultez le site www.apropaille.be  qui réunit le monde pas si petit que ça de la paille en Belgique.

Isolants à base de textile recyclé

Né du recyclage des textiles usagés ou des déchets des fabricants de vêtements, le textile recyclé est traité en usine avant de devenir un matériau de construction en soi.

D’abord effiloché, on le métamorphose ensuite en panneaux et rouleaux isolants grâce à des techniques de pressage. Sa version en vrac permet, tout comme l’ouate, d’être insufflée et d’isoler les murs.

Alternative idéale pour isoler pour les murs et les combles non aménageables en priorisant l’économie circulaire, notez que les isolants et autres matériaux de construction en textile recyclé sont traités chimiquement pour résister aux flammes. Parmi les autres inconvénients, prenez en compte que son application verticale implique un tassement du matériau sur le long terme.

Par contre, ce matériau biosourcé reste très facile à poser et il ne nécessite pas de formation préalable ou obligatoire. Grâce à sa compression, le textile recyclé n’émet aucune poussière. Enfin, il peut absorber jusqu’à 25% de son poids en eau, ce qui constitue un isolant contre l’humidité très efficace((Les matériaux biosourcés dans le bâtiment, FFB, novembre 2015)).

Performances des isolants biosourcés

La performance thermique des isolants est renseignée par la valeur de la conductivité thermique  (λ). Plus celle-ci est élevée, moins le matériau sera isolant. Mais cela ne veut pas dire qu’il faut nécessairement abandonner l’utilisation d’un matériau qui aurait un λ élevé. En effet, il suffit d’augmenter l’épaisseur de la couche isolante pour obtenir une performance thermique globale équivalente!
Pour choisir son isolant, il faut donc tenir compte de plusieurs critères en même temps:

  • la conductivité thermique  (λ)
  • le coût (plus l’épaisseur augmente, plus le coût augmente)
  • l’encombrement

Les performances des isolants biosourcés sont reprises dans le tableau suivant.

Résistance mécanique Conductibilité thermique Conductibilité thermique Diffusion de la vapeur d’eau Diffusion de la vapeur d’eau Inflammable
ρ [daN/m³] λ [W/mK] λ [W/mK] μ [-] μ [-]
Selon la documentation Selon la norme NBN B62-002 (humide et sec) (humide et sec) selon la documentation
Perlite expansée pure 50-80 0.046 / 5 à 7 / Non
Vermiculite expansée pure <100 0.058 / 5 à 7 / Non
Argile expansée 0.103 à 0.108 / / / Non
Bois feutré en panneaux mous ± 160 ± 0.042 / / 3 à 4 Difficilement
Bois feutré en panneaux mi-durs ± 270 ± 0.07 / / 3 à 4
Cellulose en vrac 35-50 0.035 à 0.04 / / 1 à 2
Laine de cellulose en panneaux 70-100 0.04 / / / Auto-extingible
Liège expansé 18 0.04 à 0.045 / 4.5 à 29 / Difficilement
Liège expansé en panneaux 80-120 0.032 à 0.045 / / 5 à 30
Chanvre ou laine de chanvre 25-210 0.039 à 0.08 / / 1 à 2 Difficilement
Lin en vrac 18-35 0.037 à 0.045 / / 1à 2 Difficilement
Lin en panneaux 400-500 0.05 à 0.065 / / / Difficilement
Laine de coco 20-50 0.047 à 0.05 / / 1à 2 Ignifugé au sel de bore
Laine de coton 20-30 0.04 / / 1 à 2 Sans dégagement toxique
Panneaux de roseau ± 100 0.056 / / 1 à 1.5
Laine de mouton 10-30 0.035 à 0.045 / / 1 à 2 Sans dégagement toxique
Paille (dans le sens des tiges) rechercher valeurs 0.08 / / / /
Paille (perpendiculairement aux tiges) rechercher valeurs 0.052 / / / /
Valeurs issues de l’ouvrage L’isolation thermique de la toiture inclinée, ministère de la Région Wallone, L’isolation écologique de J-P. Olivia, éditions terre Vivante, 2001, ouverture d'une nouvelle fenêtre ! www.livios.be, ainsi que des documentations des fabricants.

La PEB impose, lors du calcul du coefficient de transmission des parois (U) que l’on utilise pour les différents constituants des valeurs de conductivité thermique (λ) certifiées (essais réalisés conformément aux normes européennes EN ISO 10456) ou les valeurs par défaut reprises dans l’annexe VII de la PEB.
Malheureusement, l’Annexe VII de la PEB ne fournit pas de valeur pour les matériaux repris dans le tableau ci-dessus. Si aucune certification (agréments techniques…) n’existe, la couche d’isolant ne pourra pas être prise en compte dans le calcul du U des parois pour la PEB  qui est d’application pour les travaux soumis à permis d’urbanisme.

Intérêts des isolants biosourcés

Comme le montre le tableau suivant, les isolants possédant une capacité thermique élevée, garante d’une diffusivité faible et d’une effusivité importante sont généralement les isolants « écologiques » :

ρ ρ * c
[kg/m³] [Wh/m³]
Laine de bois 160 90
Laine de bois 55 31
Liège expansé (vrac) 60 31
Ouate de Cellulose (insufflée) 60 31
Perlite expansée 80 22
Polyuréthane rigide 30 12
Laine de mouton 10 5
Polystyrène 7 3

Mais attention, si le confort d’été est amélioré, l’utilisation d’isolant permettant d’obtenir ces caractéristiques peut conduire à un autre problème. En effet, une trop grande effusivité produira dans la pièce une sensation de surface froide au toucher.

Pour aller plus profondeur sur ce sujet, n’hésitez pas également à visiter notre page consacrée à l’inertie thermique.

Stockage de CO2

Les isolants à base de végétaux, via le processus de photosynthèse, permettent de stocker le CO2 atmosphérique.

Performances hygrothermiques

Outre leur caractère “écologique”, les isolants biosourcés qui nous intéressent ici possèdent des propriétés hygrothermiques prometteuses. Par leur capacité plus ou moins grande à absorber l’humidité, les matériaux en contact avec l’ambiance intérieure peuvent stabiliser les conditions hygrothermiques d’un local et, de la sorte, avoir un impact positif sur le confort.

De nombreuses recherches ont été menées sur ce sujet. Comme par exemple celle réalisée par le département d’ingénierie de la Technical University of Denmark qui a conduit à la définition du paramètre appelé Moisture Buffer Value (valeur de régulation de l’humidité) qui indique la quantité d’eau que l’isolant absorbe et restitue par  unité de surface durant une certaine période quand il est soumis à des variations de l’humidité relative de son environnement. Ce paramètre permet d’analyser le rôle de régulateur d’humidité joué par l’isolant.

Certifications

C’est à ce niveau que se complique la démarche d’éco-construction ! Comme dit auparavant, lors du calcul du U des parois, la PEB implique que l’on utilise comme valeur de λ :

  • une valeur certifiée sur base de la norme de produit NBN EN ou d’un ATE (Agrément Technique Européen). Ces valeurs sont regroupées sur le site ouverture d'une nouvelle fenêtre ! www.epbd.be.
  • ou la valeur par défaut renseignée dans l’annexe VII de la PEB.

Cette manière de faire a pour but de protéger le consommateur, en garantissant la qualité des matériaux utilisés.

Le problème avec les matériaux d’isolations biosourcés est que ces derniers ne sont pas repris dans l’Annexe VII de la PEB et l’utilisation de ceux-ci nécessite donc la réalisation d’une certification pour tous travaux soumis à permis.

Labellisation

Comme annoncé précédemment, l’utilisation d’un matériau issu de sources renouvelables ne garantit pas en pratique le caractère “écologique” de l’isolant (ajout de colle, procédé de fabrication énergivore…). Pour s’assurer que l’isolant a été réalisé dans les règles de l’art, on peut se tourner vers les labels comme www.svanen.se en Suède www.blauer-engel.de en Allemagne ou encore www.certivea.fr en France.

Pour en savoir plus sur les normes en vigueur qui régissent l’utilisation de chacun de ces isolants, voici quelques sources qui peuvent être utiles :

Concernant les isolants à base de cellulose :

Concernant les isolants à base de laine d’origine végétale ou animale :

Concernant les isolants à base de fibre bois :

Concernant les isolants à base de liège :

Concernant les isolants à base de chanvre :

  • réglementation professionnelle et validation en laboratoire des enduits chaux/chanvre pour béton : construire-en-chanvre.fr

Concernant les isolants à base de paille :

Concernant les isolants à base de textile recyclé :

Objectifs d’une protection solaire

Objectifs d'une protection solaire


Limiter les surchauffes

En période d’ensoleillement la quantité d’énergie solaire transmise au travers de vitrages peut entraîner par effet de serre, des surchauffes inadmissibles pour le confort des occupants. Dans le cas de locaux climatisés, la présence de protections solaires efficaces doit permettre une diminution notable de la quantité de froid à produire.

Améliorer

En cliquant ici, vous pouvez visualiser les résultats d’une simulation du comportement d’un bureau standard. On y a comparé les coûts d’achat et d’exploitation d’un climatiseur et d’un store extérieur.

De plus, malgré une température ambiante supportable, le rayonnement chaud du vitrage et le rayonnement direct du soleil sur une partie du corps peuvent devenir rapidement insupportable pour les occupants.

Comment déterminer si le soleil est à l’origine de la surchauffe ?

Dans les locaux fortement vitrés et orientés à l’est, au sud ou à l’ouest, les gains solaires constituent souvent les apports gratuits les plus importants.
Notons que l’orientation ouest est souvent la plus critique car les apports solaires viennent s’ajouter à la chaleur emmagasinée durant la journée.

Rénovation énergétique 

Pour en savoir plus sur comment repérer l’origine de la surchauffe, cliquez-ici !

Calculs

On peut établir un bilan de l’ensemble des apports de chaleur d’un local en cliquant ici !

Il calcule la puissance frigorifique nécessaire pour maintenir une température de consigne (24°C par exemple) dans le local, alors que la température extérieure est de 30°C. Il est possible ainsi de mesurer l’impact d’une protection solaire sur les besoins en froid. On peut également visualiser l’importance d’avoir un local avec une inertie thermique importante. Ou encore une toiture isolée.


Limiter l’éblouissement

L’ensoleillement direct pour être aveuglant tout comme une luminance trop élevée d’une paroi peut impacter le confort visuel. Hors, le confort visuel joue un rôle important sur la possibilité de réalisation de certaines tâches et donc sur la productivité des occupants d’un local.

Ce phénomène n’est pas forcément le plus crucial pour des fenêtres orientées au sud durant la saison chaude. Les problèmes d’éblouissement sont également très importants lorsque le soleil est bas sur l’horizon : le matin pour les fenêtres orientées à l’est, le soir pour l’orientation ouest, ou encore au sud en hiver. De même, dans les locaux nord, la vision directe d’un ciel trop lumineux peut devenir gênante et nécessiter aussi une protection.


Les objectifs secondaires

Augmenter le pouvoir isolant de la fenêtre

L’utilisation de protections solaires modifie de façon plus ou moins importante les caractéristiques de transmission thermique des vitrages. Cette propriété sera principalement recherchée durant les nuits en hiver.

Assurer l’intimité des occupants ou occulter un local

Ces deux objectifs sont des cas particuliers. On parlera alors plus d’occultation que de protection solaire.

Quelles soient intérieures ou extérieures, les protections parallèles au vitrage permettront d’apporter une certaine intimité voire d’occulter le local. Cette propriété dépendra principalement des vides laissés par la protection solaire et de sa couleur.

Décorer la fenêtre

De nombreuses protections ont un but décoratif plutôt qu’énergétique. Cet objectif est souvent associé avec le souhait de garantir l’intimité des occupants.

Institut du Monde Arabe – Paris.

Pare-vapeur

Pare-vapeur


Généralités

Toutes les matières sont plus ou moins perméables à la vapeur.

Sous l’influence de la différence de pression de vapeur d’eau des deux côtés d’une paroi, la vapeur a tendance à vouloir migrer par diffusion à travers celle-ci.

Pour éviter les phénomènes de condensation interne, il est parfois nécessaire de placer du côté chaud de l’isolant d’une paroi, une couche de matériau relativement étanche à la vapeur d’eau.

Cette couche de matériau est appelée « écran pare-vapeur ».

Le pare-vapeur remplit les fonctions suivantes :

  • Éviter une condensation excessive.
  • Empêcher, dans l’isolant thermique, l’absorption d’eau par capillarité en provenance des éléments de construction contigus.
  • Assurer l’étanchéité provisoire à l’eau de pluie lors de la construction.
  • Assurer l’étanchéité à l’air.

Selon les exigences :

Classe Résistance à la diffusion de vapeur Exemples de matériaux utilisables comme pare-vapeur
E1 2 m < µd < 5 m Papier bitumé
Film en PE 0,2 mm
Papier de tapisserie plastifié
Peinture à l’huile
Peinture au caoutchouc chloré
E2 5 m < µd < 25 m Carton-plâtre recouvert d’une feuille d’aluminium
Film de PE 0,2 mm et laminé d’aluminium
Voile de polyester bitumineux P150/16
Voile de verre bitumineux V50/16
Membrane en PVC épaisseur > 1 mm
E3 25 m < µd < 200 m Bitume armé P3 ou P4 ou V3 ou V4
Bitume polymère APP ou SBS
Film PIB
E4 200 m < µd Bitumes armés avec film métallique (alu 3)
Système bitumineux multicouche ( ³ 8 mm)

Pare-vapeur, freine vapeur ou membranes intelligentes ?

Le risque principal de condensation est lié à la diffusion de vapeur en hiver, ou quand la pression de vapeur est plus importante à l’intérieur qu’à l’extérieur et que la vapeur a donc tendance à traverser la paroi de l’intérieur vers l’extérieur.

Les modèles d’évaluation statiques (comme celui de Glaser) entraînent presque systématiquement le choix d’une membrane très étanche à la vapeur du côté intérieur.

Néanmoins, essayer d’éviter le risque principal de condensations internes par diffusion en choisissant une membrane totalement étanche à la vapeur peut engendrer un risque secondaire à cause de la difficulté qu’a le mur pour sécher du côté intérieur

Lorsque l’on affine l’analyse, il apparaît que le choix d’une membrane plus faiblement étanche à la vapeur est parfois suffisant.

On parle alors de « freine-vapeur ». La valeur μd des pare-vapeur n’est pas définie avec précision, mais en pratique, elle sera de plusieurs dizaines de mètres (par exemple 50 ou même 100 m) alors que la valeur μd des freine-vapeur ne sera que de quelques mètres seulement (par exemple 2 m à 5 m, mais rarement plus de 10 m).

Le choix d’un freine-vapeur, plus ouvert au passage de la vapeur, permet souvent de se prémunir du risque, dit secondaire, de condensations internes en été ou au printemps, ou quand la pression de vapeur est plus importante à l’extérieur qu’à l’intérieur et que la vapeur a donc tendance à traverser la paroi de l’extérieur vers l’intérieur. En effet, le flux de vapeur n’est pas complètement bloqué vers l’intérieur ce qui facilite le séchage du mur.

Les membranes intelligentes

D’autres membranes, dites intelligentes, sont de ce point de vue encore plus adaptées. En effet, leur perméabilité à la vapeur évolue avec l’humidité relative. Elles sont conçues pour être relativement fermées à la vapeur quand l’humidité relative est faible et pour s’ouvrir au passage de la vapeur quand l’humidité relative est plus élevée. Ce principe est illustré sur l’illustration ci-contre. Dès lors, elles freinent le passage de la vapeur quand l’air intérieur est plus sec (généralement en hiver), et permettent le séchage du mur, lorsque l’humidité relative intérieure est plus élevée (généralement en été ou au printemps).

Principe de fonctionnement d’une membrane intelligente.

Source : Proclima.

Plusieurs types de membranes intelligentes existent avec une valeur  μd moyenne allant de quelques mètres à une dizaine de mètres. Remarquons que ces changements de μd ne sont pas instantanés et que le choix de la membrane doit d’abord se faire sur base de l’ambiance globale du local pour éviter le risque principal de condensations internes par diffusion. On pense ici au cas des salles d’eau qui sont le lieu des charges d’humidité élevées, mais ponctuelles dans temps.


Le placement

Le pare-vapeur doit être placé de manière continue et avec des joints étanches.

Les films seront posés autant que possible sans joint. Les joints inévitables et les jonctions avec d’autres éléments de construction sont à réaliser par collage ou soudage avec recouvrement, de manière à assurer la continuité du pare-vapeur.

La classe E4 exige une mise en œuvre sur support continu.

Remarquons enfin que la présence d’une membrane, en plus de permettre la régulation de la vapeur, permet aussi de bloquer le passage de l’air (et des pertes de chaleur associées) et donc d’éviter le risque de condensation par convection, pour autant bien sûr que la mise en œuvre soit d’une qualité irréprochable (notamment au niveau des nœuds constructifs).

Attention !
Un matériau pare-vapeur placé à un mauvais endroit peut fortement perturber le comportement hygrothermique de la toiture (entre autres augmenter les condensations internes ou empêcher l’élimination de l’humidité de construction).

Source : certains passages de cette feuille sont extraits du guide Isolation thermique par l’intérieur des murs existants en briques pleines réalisé par Arnaud Evrard, Aline Branders et André De Herde (Architecture et Climat-2010) dans le cadre de la recherche ISOLIN, financée par le département Énergie et Bâtiment durable du Service Public de Wallonie. Disponible sur le site : energie.wallonie.be

 

Charpente

Charpente

La charpente en bois reste la plus courante pour réaliser la structure portante de la toiture inclinée.

Cependant, pour des raisons thermiques, acoustiques ou de stabilité, la structure portante peut consister en dalles inclinées de béton coulées sur place ou en hourdis de béton lourd ou cellulaire posés en pente.


Charpente traditionnelle (à pannes et chevrons)

Le principe de la structure traditionnelle est de superposer, en les croisant perpendiculairement, des éléments linéaires. La portée diminuant au fur et à mesure des différentes couches, leur section et entre axe diminue également jusqu’à la pose aisée des éléments de couverture.

La charpente traditionnelle proprement dite, est constituée de pannes et de chevrons*.
Les pannes sont portées par les murs pignons et les murs porteurs de refend; des fermes peuvent remplacer les murs de refend si l’on veut garder de grands espaces sous la toiture.

* Remarque : dans le cas d’une isolation par panneaux autoportants, la charpente ne nécessite pas de chevrons; les panneaux sont directement fixés sur les pannes.

Schéma charpente traditionnelle.

  1. Ferme.
  2. Panne.
  3. Panne faîtière.
  4. Panne sablière.
  5. Chevrons.
  6. Sous-toiture éventuelle.
  7. Contre-lattes.
  8. Panneaux de toiture autoportants.
  9. Liteaux ou voliges.

Charpente traditionnelle à pannes et chevrons.

Le bois de charpente doit, de préférence, avoir été traité (pour résister aux insectes, aux champignons, …).

Les pannes (structure primaire)

Les pannes sont parallèles au faîte.
Outre les pannes, la structure primaire peut comprendre des sablières, des échelles de corniche, des noues, des arêtiers et des fermes.

Dans le cas d’une corniche en bois, une échelle en bois, mise à plat au-dessus du mur porteur et du parement, remplace ou supporte la panne sablière. L’échelle permet, d’une part de réaliser le porte à faux au-delà du mur porteur, d’autre part d’assurer une jonction continue entre l’isolation du mur et de la toiture.

Schéma pannes.

  1. Gîte de versant + isolant.
  2. Echelle de corniche.
  3. Maçonnerie renforcée.
  4. Cale de pente.
  5. Planche de face.
  6. Fermeture.

Echelle de corniche (N°2).

Les chevrons (structure secondaire)

Auparavant, les chevrons destinés à des toitures-greniers non isolées étaient de section carrée. Actuellement, les chevrons sont parfois remplacés par des « gîtes de versant », pièces de bois plus hautes, de largeur minimale de 38 mm et de hauteur minimale de 100 mm. Ces pièces permettent de poser une couche d’isolant plus épaisse en une seule fois. En outre, elles diminuent le nombre de pannes nécessaires, ce qui libère en partie l’espace sous-toiture.

Remarque : Dans ce cas, les pannes doivent être calculées pour reprendre des charges plus importantes. Elles portent en effet de plus grandes surfaces de toiture.

Au-dessus du mur pignon, une échelle de bois sert parfois de structure secondaire. Elle couvre toute l’épaisseur du mur (mur porteur – vide isolé – mur de parement). Elle permet, de réaliser le porte à faux au-delà du mur porteur. Elle permet également d’assurer une jonction continue entre l’isolation du mur et de la toiture.

Schéma chevrons.

Échelle de pignon.

Le support de couverture (contre-lattes, liteaux ou lattes, voligeage)

En général, lorsque la couverture est constituée de tuiles ou d’ardoises fixées au moyen de crochets, leur support est constitué de liteaux ou lattes. Lorqu’elle est constituée d’ardoises posées au moyen de clous, de « feuilles » ou de petits éléments relativement souples (ex : bardeau bitumineux), leur support est constitué d’un voligeage.
La pose d’ardoises sur liteaux est de plus en plus pratiquée, mais dans le cas de petites ardoises, la pose au clou sur voliges reste plus indiquée.

Actuellement, des panneaux de bois peuvent remplacer les voliges; dans ce cas, on veillera particulièrement, à suivre les prescriptions des fabricants et des agréments techniques.

Des voliges sont également utilisées comme support des ouvrages de rives et de raccords (rives libres, rives en butée, faîtes, noues, arêtiers, bacs de cheminée, corniches …).

Schéma support de couverture.

  1. Couverture.
  2. Lattes.
  3. Volige.
  4. Chéneau en zinc.
  5. Contre-lattes.
  6. Sous-toiture.
  7. Isolant.
  8. Pare-vapeur.
  9. Espace technique.
  10. Finition intérieur.

Noue.


Charpente à fermettes

Les fermettes remplacent les chevrons ou gîtes de versant, ainsi que les pannes.
Elles sont réalisées en atelier.

Remarque.
Une fermette se distingue d’une ferme de charpente par la section plus réduite des pièces qui la constitue et par la distance qui la sépare de la pièce voisine.

Schéma charpente à fermettes.

  1. Fermette.
  2. Entrait (de la fermette).
  3. Sablière.
  4. Sous-toiture (éventuelle).
  5. Contre-latte.
  6. Liteau ou voligeage.

Charpente préfabriquée avec fermettes.

Vu que la charpente est constituée uniquement d’éléments verticaux, un contre-ventement doit être prévu entre les fermettes.

Les fenêtres de toitures, lucarnes et raccords entre versants sont un peu plus compliqués à réaliser que pour une charpente traditionnelle.

Il existe des fermettes pour combles utilisables ou non utilisables.
Fermette pour combles non utilisables

Exemple schématique.
Combles non utilisables.

Fermette pour combles utilisables

Exemple schématique.
Combles utilisables.

Généralement, les fermettes sont posées au niveau du plafond de l’étage inférieur. Elles constituent la structure portante du plafond et éventuellement du plancher des combles à condition d’être calculée en conséquence.

Pour le reste, les principes sont identiques à ceux d’une charpente traditionnelle.

Étanchéité à l’eau et à l’air des châssis

Étanchéité à l'eau et à l'air des châssis

Le châssis associé au vitrage doit être imperméable à l’eau et à l’air. Il peut cependant permettre le renouvellement périodique de l’air mais de façon contrôlée.

L’étanchéité à l’air conditionne le niveau d’isolation acoustique et de confort thermique. L’étanchéité à l’eau est indispensable afin de préserver un taux d’humidité convenable et d’éviter les dégradations des matériaux.


Les niveaux de performance

Concernant les châssis, les STS définissent des niveaux de performance d’étanchéité à l’eau (PE2, PE3, PE4, PEe ) et à l’air ( PA2, PA2B, PA3 ) recommandés en fonction de la hauteur du châssis par rapport au sol.

Les niveaux PE2, PE3, PE4, PEe signifient qu’aucune infiltration d’eau ne peut se produire jusqu’à une pression respectivement de 150 Pa, 300 PA, 500 PA, et une pression maximale à précisé, et cela pour une vitesse de vent correspondante respectivement de 56 , 80, 103, et maximale (km/h).

Les niveaux PA2, PA2B, PA3 représentent des plages définies dans des graphiques donnant le débit d’air en fonction de la pression de vent. Lors des tests d’étanchéité, les résultats sont placés dans le graphique et le niveau de résistance d’étanchéité au vent correspond à celui de la zone dans laquelle le résultat se trouve.

Ces niveaux de performance doivent être établis au cours de tests réglementés d’étanchéité à l’air et à l’eau réalisés sur un échantillonnage des châssis commandés.
S’il s’agit de châssis standards agréés, ces niveaux de performance sont signalés dans leurs agréments techniques.


Facteurs influençant le niveau d’étanchéité des châssis

Le type de matériau

Le choix du matériau pour le châssis a peu d’influence sur la classe d’étanchéité de la fenêtre. Les châssis en bois, en aluminium, et en matière plastique présentent en effet une étanchéité à peu près pareille.

Le type d’ouvrant

Le type d’ouvrant influence fortement le niveau d’étanchéité.

Le tableau suivant commenté reprend une évaluation des performances d’étanchéité des différents types d’ouvrants.

Type d’ouvrant Pivot à axe vertical Pivot à axe horizontal Coulissante
à la française double battant sans meneau double battant avec meneau à l’anglaise pivotant simple pivotant à axe horizontal à visière oscillo-battantt basculante coulissante guillotine
Étanchéité à l’eau bon difficile
pourquoi ?[1]
bon excellent difficile
pourquoi ?[2]
difficile
pourquoi ?[2]
bon excellent bon moyen
pourquoi ?[4]
moyen
pourquoi ?
Étanchéité à l’air bon moyen
pourquoi ?[1]
bon excellent moyen
pourquoi ?[2]
moyen
pourquoi ?[2]
difficile
pourquoi ?[3]
bon bon bon difficile
pourquoi ?[5]
  1. Il existe un point faible au droit de la rencontre des deux battants dans la partie supérieure et intérieure. La déformation du châssis dans le temps accentue les risques de fuites locales à cet endroit. Cependant des améliorations sont possibles, par adjonction d’une ouverture de drainage au milieu de la traverse inférieure.
  2. Il existe des infiltrations d’eau et d’air par les pivots où l’interruption des joints d’étanchéité est inévitable. Les infiltrations d’eau sont les plus conséquentes. Possibilité d’utiliser des pivots compliqués et coûteux pour remédier à cet inconvénient.
  3. Il existe des infiltrations d’air par les pivots où l’interruption des joints d’étanchéité est inévitable.
  4. Infiltration d’eau inévitable dans le bas du châssis, entre la partie fixe et le ventail coulissant même si la pression du vent est très faible.
    Une amélioration possible : l’adjonction de profilés d’une hauteur suffisant du côté intérieur de la fenêtre permet souvent d’éviter que l’eau pénétrant dans la fenêtre ne s’introduise à l’intérieur de l’habitation. L’eau sera alors évacuée par des systèmes de drainage adéquats. Le montage doit être soigné afin d’obtenir autant que possible une continuité entre les joints verticaux et horizontaux.
  5. L’étanchéité à l’eau reste mauvaise étant donné le nombre réduit de points de fermeture qu’offre ce type de châssis.

On remarque une tendance croissante à utiliser les châssis oscillo-battants à la place des châssis pivotants horizontaux. Il offre en effet de nombreux avantages pratiques et une très bonne étanchéité à l’eau et à l’air en raison du nombre élevé de fermetures dont il dispose.


Détails de conception permettant d’améliorer l’étanchéité des châssis

Des améliorations peuvent être réalisées au niveau :

  • du détail des profilés
  • des détails des dispositifs architecturaux de protection de la façade

Détail des profilés

Selon le niveau d’étanchéité recherché, des améliorations importantes peuvent être apportées aux profilés.

Le niveau d’étanchéité au vent et à l’eau dépend :

  • Du nombre de frappes (simple, double ou triple) entre les ouvrants et les dormants.
  • De la présence et de l’emplacement des joints et le soin accordé au joint entre le châssis et le vitrage.
  • De la continuité des joints dans un même plan et dans les angles.
  • Des précautions prises contre les déformations du châssis, créant des espacements propices aux infiltrations d’eau et d’air.

Dès lors, on accordera une attention particulière …..

– Aux barrières d’étanchéité

  • Actuellement, le principe de la double barrière d’étanchéité est appliqué à la quasi-totalité des châssis de menuiserie extérieure.
  • Les barrières d’étanchéité à l’eau et à l’air devront être continues et chacune située idéalement dans un même plan.
  • Il faudra choisir, en fonction du profilé, des barrières d’étanchéité à l’air adaptées et qui conservent leur élasticité dans le temps afin d’assurer un écrasement suffisant contre la battée. Un défaut d’étanchéité à l’air compromet l’efficacité de la barrière d’étanchéité à l’eau mais aussi le contrôle de la ventilation et de l’isolation acoustique.
  • Il faudra préciser en cas de châssis en bois, les protections en aluminium ou en PVC à incorporer au profilé.

– A la prévention des risques de déformation des profilés de châssis par :

  • Un bon dimensionnement des sections des profilés afin d’assurer, sous l’effet des sollicitations, une flèche de ces derniers inférieure à 1/300, compte non tenu de la raideur apportée par le vitrage.
  • Un renforcement des profilés (conseillé si il s’agit de châssis en PVC).
  • Une quincaillerie adaptée et résistante.
  • Pour les châssis en bois : prévenir les déformations dues au travail du bois, au niveau des joints d’étanchéité.

Compte tenu des déformations inévitables des châssis, on procédera à un réglage régulier de la quincaillerie de façon à maintenir un écrasement du préformé d’étanchéité à l’air de 2 mm.

– Aux dispositifs d’évacuation des eaux infiltrées

  • Il faut prévoir une chambre de décompression pour recueillir les eaux d’infiltration éventuelles (étanchéité à la pluie) et pour réduire la pression du vent sur le préformé d’étanchéité (étanchéité au vent).
  • Il faut veiller à ce qu’en cas de double barrière d’étanchéité, le drainage de la feuillure du vitrage soit assuré en amont de l’étanchéité à l’air du profilé.

Accorder une importance au dimensionnement et à la mise en  place correcte du casse-gouttes

En cas de châssis en bois, on veillera à ne pas recouvrir les joints d’étanchéité lors de l’application de la finition/protection du bois, sans toutefois négliger le traitement du casse-goutte.

Détails des dispositifs architecturaux de protection pouvant limiter les risques d’infiltration

Détails architecturaux.

 

  • Dépassant de toitures, balcons,….
  • Le retour de baie sera d’autant plus efficace que le profilé est situé en retrait par rapport au nu des façades.
  • Un casse-goutte (ou lamier) en amont du châssis de façon à empêcher l’eau ruisselante sur les façades d’atteindre les profilés.
  • L’inclinaison suffisante des seuils de fenêtre de façon à limiter les éclaboussures et la stagnation de l’eau.
  • Dépassant de toitures, balcons,….
  • Le retour de baie sera d’autant plus efficace que le profilé est situé en retrait par rapport au nu des façades.
  • Un casse-goutte (ou lamier) en amont du châssis de façon à empêcher l’eau ruisselante sur les façades d’atteindre les profilés.
  • L’inclinaison suffisante des seuils de fenêtre de façon à limiter les éclaboussures et la stagnation de l’eau.

Description des châssis

Description des châssis

Les châssis se différencient entre eux par leur matériau constitutif principal, par leur mode d’ouverture, par le détail du profil des ouvrants et par leur performance thermique.


Les parties du châssis

Le dormant

Partie du châssis fixée au gros œuvre. Si le châssis n’a pas d’ouvrant (châssis appelé fixe), le dormant comprendra la feuillure et la parclose de fixation du vitrage

L’ouvrant

Partie mobile du châssis. Les profilés constituant l’ouvrant créent avec ceux du dormant, des barrières étanches à l’eau et à l’air.
Il existe de nombreux types d’ouvrants.

La double barrière d’étanchéité

La barrière d’étanchéité à l’eau et la barrière d’étanchéité à l’air sont physiquement dissociées :

 

  1. L’étanchéité à l’eau.
    Son rôle est d’empêcher au maximum le passage de l’eau. Elle est située du côté extérieur, protégeant la barrière d’étanchéité à l’air des sollicitations climatiques.
  2. L’étanchéité à l’air.
    Elle est située du côté intérieur et composée habituellement de joints d’étanchéité en matériau souples susceptibles de perdre leur efficacité sous l’action de l’humidité et des rayons ultraviolets.

Entre les deux barrières se trouve une zone de drainage, appelée chambre de décompression.

Une troisième barrière (ou frappe) peut être prévue dans le profilé assurant une amélioration de l’isolation acoustique du châssis. Celle-ci se place du côté intérieur du châssis.

Le principe de la double barrière d’étanchéité est actuellement appliqué sur la quasi-totalité des châssis de menuiserie extérieure et ceci quel que soit le matériau de base (bois, aluminium, PVC, PUR).

Remarque.
Le niveau d’étanchéité au vent et à l’eau dépend :

  • du nombre de frappes (simple, double ou triple) entre les ouvrants et les dormants,
  • de la présence et de l’emplacement des joints,
  • de la continuité des joints dans un même plan et dans les angles).

La chambre de décompression

Elle se trouve entre les barrières d’étanchéité à l’air et à l’eau.

Elle assure :

  • Le drainage et l’évacuation, par le biais des exutoires de drainage, des eaux qui n’ont pas pu être retenues par la barrière d’étanchéité à l’eau.
  • La réduction de la pression du vent sur le joint d’étanchéité à l’eau.
  • L’absence d’eau en contact avec le joint d’étanchéité à l’air.

Schéma chambre de décompression.

Le principe d’équilibre des pressions dans la chambre de décompression :

La pression atmosphérique qui règne dans la chambre de décompression est identique à celle exercée du côté extérieur du châssis étant donné que ces deux zones communiquent entres elles par le biais des exutoires de drainage. Par contre, la chambre de décompression est isolée de l’ambiance intérieure par la barrière à l’air.
Dès lors, une goutte d’eau située à la hauteur de la barrière d’étanchéité à l’eau ne subit aucune poussée vers l’intérieur permettant ainsi de limiter les risques d’infiltration d’eau au sein du châssis.

Feuillure et parcloses

La feuillure permet de recueillir l’eau infiltrée dans le joint entre le vitrage et le châssis, suite à une perte d’efficacité ou d’une discontinuité du joint d’étanchéité en mastic.

Le fond de feuillure doit permettre un positionnement correct des cales de support du vitrage.

Le drainage de fond de feuillure est obligatoire pour le double vitrage : il évite toute présence d’eau stagnante dans la feuillure, risquant de s’infiltrer entre les deux vitres.
Le tableau suivant donne les hauteurs utiles minimales (en mm) des feuillures en fonction de la surface du vitrage en m². Ces hauteurs doivent être augmentées des déformations éventuelles des supports.

Surface S du vitrage [en m²]
< 0.25 0.25 < S < 2 2 < S < 6 6 < S
Simple vitrage 10 mm 13 mm 18 mm 25 mm
Double vitrage 18 mm 8 mm 18 mm 25 mm

Les parcloses servent à fixer le vitrage et à permettre son emplacement. Leur hauteur doit araser celle de la feuillure. Elles doivent pouvoir se démonter pour permettre le remplacement du vitrage.
Les systèmes de fixation des parcloses sont multiples :

  • par pointage ou vissage,
  • par clipsage sur des boutons,
  • par clipsage sur des ressorts ou des rainures,
  • par vissage en applique.

Les conduits de drainage

Ils permettent l’évacuation des eaux infiltrées dans la chambre de décompression ou dans la feuillure.

Schéma conduits de drainage.

Ils doivent répondre à certains critères :

  • Ils doivent déboucher à l’extérieur ou en amont de l’étanchéité à l’air.
  • Ils doivent être équidistants de 50 cm au maximum et situés à proximité immédiate des angles du châssis.
  • Leur section doit être comprise entre 0,5 et 2,5 cm², selon leur exposition.
  • La différence de niveau entre la chambre de décompression et le débouché de l’exutoire doit être de 4 mm au minimum (14 mm est recommandé).

Les calages

Leur fonction est d’assurer le maintien correct du vitrage dans la feuillure. Des cales ponctuelles évitent le contact entre le vitrage et le châssis et permettent de reporter le poids du vitrage sur des points précis du châssis.

Un mauvais calage entraîne souvent un décollement des intercalaires entre les feuilles des doubles vitrages. Il y a donc embuage, ce qui rend ce vitrage inopérant thermiquement et crée un voile intérieur.

Les cales doivent être en matériaux imputrescibles et compatibles avec les produits de calfeutrement choisis et avec les matériaux des châssis (en bois, en polychloroprène, en élastomères, en plomb, …).

Il existe différents types de cales :

Schéma cales.

  1. Les cales latérales ou d’espacement (C1) :
    ces cales empêchent le vitrage de bouger. Elles sont nécessaires durant la période pendant laquelle le mastic n’a pas encore acquis sa plasticité définitive.
  2. Les cales périphériques ou de distance (C2) :
    ces cales doivent permettre la libre dilatation du verre et pour se faire, elles ne sont jamais placées en serrage (on laisse un léger jeu ou on utilise un matériau de dureté moindre que celui utilisé pour les cales d’appui).
  3. Les cales d’assises ou de support (C3) : ces cales doivent avoir une largeur suffisante pour assurer un appui efficace sur toute l’épaisseur du vitrage.

L’emplacement des cales dépend de plusieurs paramètres tels que le type d’ouvrant, le système de verrouillage et le système de suspension.

Les joints d’étanchéité

Ils assurent l’étanchéité des feuillures à l’eau et à l’air tout en compensant ou en absorbant les dilatations, les déformations et les vibrations sans perdre leurs caractéristiques avec les temps.

On distingue les mastics plasto-élastiques associés aux préformés de bourrage et les préformés élastiques.

Le casse-goutte

Schéma casse-goutte.

Il est destiné à empêcher que l’eau accidentellement attirée vers l’intérieur du châssis ne puisse atteindre la barrière d’étanchéité à l’air. Ce dispositif est donc placé en aplomb de la chambre de décompression et en avant de la barrière d’étanchéité à l’air.

Pour assurer une efficacité suffisante du casse-goutte en cas de châssis fortement exposé, les grandeurs suivantes sont recommandées : une largeur de 6 mm et une profondeur de 4 mm minimum.


Les types d’ouvrants

Types d’ ouvrants (vus de l’intérieur)

Pivot à axe vertical :

À la française : vantail ouvrant vers l’intérieur.

À l’anglaise : vantail ouvrant vers l’extérieur.

Pivotant simple : vantail ouvrant vers l’intérieur en partie gauche vers l’extérieur en partie droite.

Pivot à axe horizontal :

Pivotant à axe horizontal : vantail ouvrant vers l’intérieur en partie haute et vers l’extérieur en partie basse.

À visière : vantail ouvrant principalement vers l’extérieur.

Oscillo-battant : 2 types d’ouverture vers l’intérieur.

Basculante : vantail ouvrant vers l’intérieur.

Coulissant :

Coulissante : translation horizontale.

A guillotine : translation verticale.


Le châssis en bois

Châssis en bois.

  1. Première frappe : étanchéité à l’eau.
  2. Chambre de décompression.
  3. Exutoires de drainage.
  4. Deuxième frappe : étanchéité à l’air.
  5. Canal de drainage de la feuillure du vitrage.

Châssis bois avec rejet d’eau en aluminium fixé au dormant.

  1. Première frappe : étanchéité à l’eau.
  2. Chambre de décompression drainée
  3. Récupération des eaux et évacuation vers l’extérieur.
  4. Deuxième frappe avec joint périphérique continu : étanchéité à l’air
  5. Chambre pour loger la quincaillerie.
  6. Troisième frappe : amélioration acoustique.

Caractéristiques thermiques

Les châssis en bois ont un coefficient de transmission thermique Uf  peu élevé par rapport à leur homologue métallique.

De plus, certains châssis d’apparence bois comprenant des cavités ou constituées de plusieurs plis de lamellés collés présentent des performances thermiques accrues.

Les types de bois pour les menuiseries

Le tableau suivant reprend les caractéristiques des différents types de bois (nomenclature et durabilité) et leurs performances.

Nom commercial Nom botanique Durabilité Couleur Préservation (*)
  Convient pour portes et fenêtres :
Acajou d’Afrique Khaya spp III rose à rouge brun clair 1
Acajou d’Amérique Swietenia macrophylla II rouge brun à brun clair 1
Afromosia Pericopsis elata I/II brun doré 1
Chanfuta, Lingué Afzelia spp. I ocre clair à rouge brun 1
Afzélia Doussié Afzelia bipindensis I ocre clair à rouge brun 1
Chêne d’Europe Quercus robut et Q. petrea II/III jaune à jaune brun pâle 2
Chêne blanc d’Amérique Quercus spp. II/III clair à brun doré 2
Epicea Picea abies IV jaune brun blanchâtre 3
Framiré Terminialia ivorensis II/III jaune à jaune brun pâle 2/3
Hemlock Tsuga heterophylla IV gris jaune à gris brun 3
Iroko (Kambala) Chlorophora excelsa et C. regia I/II jaune doré à brun foncé 1
Jatoba Hymenaea courbaril II rouge orangé à brun 1
Makoré Tieghemelle hexkelii I brun rosâtre à brun rouge 1
Mengkulang Heritiera app. IV brun rouge 3
Merandi,Red Shorea spp. II/IV brun rouge à brun rosâtre 2/3
Merbeau Intsia I/II brun clair à brun rouge 1
Moabi Baillonella toxisperma I brun rosâtre à brun rouge 1
Movingi Distemonanthus benthamianus III jaune pâle à jaune 2
Niangon Hertiera utili et h.densiflora III brun rosâtre à brun rouge 1
Douglas ( ou Oregon pine) Pseudotsuga menzieslii III clair à brun clair 2/3
Padouk Pterocarpus soyauxii I rouge à brun violacé 1
Panga-panga Millettia stuhlmannii II brun noir 1
Pin des Landes Pinus penaster III/IV brun rougeâtre strié 3
Pin du Nord Pinus sylvestris III/IV clair à brun rouge jaunâtre 3
Pin sylvestre Pinus sylvestris III/IV clair à brun rouge jaunâtre 3
Pitch-pine Pinus caribea III brun clair à brun rouge 2/3
Sapelli Entandrophragma cylindricum III brun rouge 1
Sipo Entandrophragma utile II/III brun rouge 1
Southern pine Pinus spp. III brun jaune clair 3
Tatajuba Bagassa quianensis I/II brun doré 1
Teck Tectona grandis I brun moyen à foncé 1
Tola Gossweilerodendron balsamiferum II/III brun jaune rosâtre 2
Tornillo Cedrelinga catenaeformis III brun rose à brun havane 2
Wengé Millettia laurentii II brun noir 1
Western pine Pinus spp. IV jaune à brun rouge clair 3
Western red cedar Thuya plicata II brun 2
  Convient moins pour portes et fenêtres :
Azobé Lophira alata I/II rouge mauve 1
Balau, Red Shorea spp. III/IV rouge brun à brun gris 2/3
Balau, Yellow/ Bangkirai Shorea spp. II/III brun jaune à brun rouge 1
Bilinga Naucla diderrichij et N. gilletii I jaune orangé à ocre 1
Jarrah Eucalyptus marginata I brun rouge 1
Kapur Dryobalanops spp. II rouge brun à brun gris 1
Keruing Dipterocarpus spp. III brun à brun rouge 1
Kosipo Entandrophragma candollei II/III rouge violacé à brun 1
Mélèze Larix decidua III brun rouge 2/3
Robinier Robinia pseudoacacia I/II vert jaune à brun doré 1
Tiama Entandrophragma angolense III rouge brun à brun gris 1

(*) La préservation du bois :

  • 1 = pas nécessaire
  • 2 = finition comprenant ou précédée d’un traitement de surface C1
  • 3 = préservation en profondeur souhaitable
  • 2/3 = préservation souhaitable en cas de présence d’une part importante d’aubier ou de durabilité générale inférieure des éléments concernés (pour plus de détail, se référer au point suivant : traitement et entretien du bois).

Traitement et entretien de la menuiserie

Un traitement de la menuiserie comprend deux opérations distinctes :

  • La protection
  • La finition

Un choix adéquat de la protection et de la finition ainsi qu’un entretien régulier et approprié de la finition assurera la conservation des menuiseries extérieures.

La protection

La protection est nécessaire lorsque le bois n’a pas une durabilité naturelle suffisante contre les attaques éventuelles de champignons et/ou d’insectes.

Type de protection Description du produit
A3 : procédé de préservation
  • produit soluble dans l’eau, appliqué par immersion ou par imprégnation sous vide;
  • non filmogène (perméable à la vapeur d’eau);
  • contient des fongicides contre la pourriture, un insecticide et un agent antibleu ( facultatif).
C1 : produit de préservation
  • incolore ou légèrement pigmenté
  • non filmogène (perméable à la vapeur d’eau), teneur en matières sèches : 10 à 20 %;
  • contient un fongicide contre le bleuissement et la pourriture ainsi qu’un insecticide;
  • épaisseur indicative par couche : 1 à 5 µm ( à l’état sec).

La finition

La finition du bois est réalisée après la protection éventuelle du matériau et comprend généralement plusieurs couches.

Elle est obligatoire. En effet, la pose d’une menuiserie extérieure en bois sans finition n’est pas conforme aux dispositions générales des STS.

Elle ne peut être appliquée que sur des éléments en bois suffisamment durables pour résister à tous les agents d’agression susceptibles d’affecter le matériau.

Elle permet de remplir les fonctions suivantes :

  • Rehausser l’aspect esthétique.
  • Préserver le bois des agressions climatiques telles que :
    • les rayonnements ultraviolets et infrarouges, grâce aux pigments;
    • les variations importantes du taux d’humidité sous l’effet des précipitations, de l’humidité relative de l’air et des vents, augmentant les risques de fissuration et de déformation des éléments des menuiseries.
    • le lessivage des substances ligneuses et le tachage dû à l’humidité.
  • Faciliter l’entretien.
  • Accroître la longévité de la menuiserie.

Les produits de finition se différencient par le degré de perméabilité à la vapeur qu’ils offrent, allant de peu perméable (filmogène) à perméable (peu filmogène).

Types de finitions

Descriptions

Peu filmogène :

C2 : lasure légèrement pénétrante avec fongicide
  • pigmentée;
  • légèrement filmogène, teneur en matières sèches : 20 à 35 %;
  • contient des biocides pouvant avoir une action fongicide (contre les champignons), insecticide et anti-bleuissement;
  • épaisseur indicative par couche : 15 à 20 µm (à l’état sec).

Ce type de finition est le seul assurant en outre une protection préventive du bois.

Entretien : nettoyage de la menuiserie, suivi immédiatement de l’application d’une nouvelle couche de produit 1 à 2 an après la mise en œuvre.

Semi filmogène :

C3 : lasure légèrement pénétrante sans fongicide
  • pigmentée;
  • nettement filmogène, teneur en matières sèches : 20 à 35 %;
  • contient uniquement un fongicide contre le bleuissement;
  • épaisseur indicative par couche : 15 à 20 µm (à l’état sec).
CTOP : lasure satinée ou top coat
  • pigmentée;
  • nettement filmogène, teneur en matières sèches : 35 à 60 %;
  • contient uniquement un fongicide contre le bleuissement (ne protège que le film);
  • épaisseur indicative par couche : 20 µm (à l’état sec).
Entretien : nettoyage, puis un léger ponçage du bois et dépoussiérage, suivis de nouvelles applications du produit 2 à 4 après le dernier traitement.

Filmogène :

Peinture
  • pigmentée;
  • caractère filmogène prononcé, teneur élevée en matières sèches;
  • ne contient pas de biocides;
  • épaisseur indicative par couche : > 30 µm (à l’état sec).
Entretien : nettoyage, décapage, dépoussiérage et remise en peinture des portes et des fenêtres 3 à 7 ans (ou plus) après la première mise en peinture.

La durabilité de la finition dépend des facteurs suivants :

  • l’état et la préparation du support;
  • la méthode d’application et l’utilisation correcte du produit;
  • la conception des éléments de la menuiserie (forme des profilés, assemblage, drainage du vitrage, éviter la stagnation d’eau, …)
  • l’exposition de la menuiserie aux conditions climatiques, …

Notons que l’entretien d’une finition peu filmogène, lorsqu’il est effectué en temps opportun est sensiblement plus aisé (simple enduisage) que celui d’une finition filmogène. Cette dernière bien que plus durable exige une plus grande maîtrise de la part de l’applicateur.

Entretien curatif

Si l’entretien est inexistant ou n’a pas été réalisé régulièrement, le bois sous-jacent sera sensiblement dégradé et fissuré. Les travaux préparatoires à la rénovation complète de la finition exigeront bien plus qu’un simple grattage des couches anciennes de la finition et l’application de nouvelles couches. Ils comprendront notamment :

  • le dégraissage,
  • le ponçage de la surface du bois,
  • le bouchage des fissures,
  • l’application de mastic dans les joints des vitrages et le remplacement éventuel des parecloses détériorées,
  • la réfection des assemblages disloqués.

Mesures de protection contre la condensation interne au bois

La condensation interne dans la masse du bois des menuiseries est évitée lorsque la résistance à la diffusion de vapeur de la finition intérieure est suffisamment grande par rapport à celle de la finition extérieure.

Schéma condensation interne.

Le bois étant perméable à la vapeur d’eau, celle-ci aura tendance à traverser le châssis de l’intérieur vers l’extérieur pour atteindre l’équilibre.
Si une couche de finition extérieure peu perméable à la vapeur empêche celle-ci de sortir du châssis, celle-ci risque de rester piégée au sein du châssis.

C’est pourquoi on préfère limiter les risques d’infiltration et empêcher au maximum la vapeur de pénétrer dans le châssis par l’intérieur.
Ce principe est respecté lorsque la finition intérieure est filmogène (peinture ou vernis) et la finition extérieure est non filmogène.

Si les finitions intérieures et extérieures sont toutes 2 des peintures, le nombre de couches intérieures doit être suffisant par rapport au nombre de couches extérieures.

Coût des châssis en bois (estimation vitrages non compris)

Leur prix varie selon le type de bois utilisés :

Dark Red Meranti 148 à 190 €/m² de baie
Merbau 170 à 228 €/m² de baie
Afzélia 200 à 297 €/m² de baie

Il faut y rajouter les traitements du bois :

Couche d’imprégnation + 2 couches de finition : 12 à 14 €/m² de baie
Couche supplémentaire d’entretien : 4 à 5 €/m² de baie

Remarque : les fourchettes de prix mentionnées sont données à titre indicatif. Les prix prévoient la fourniture et la mise en œuvre hors TVA, mais ne tiennent pas compte des traitements de protection. Ils concernent les ouvrages courants. Ils dépendent des dimensions moyennes des châssis, de leurs formes et des types d’ouvertures.


 Le châssis en aluminium

Très différents des menuiseries en bois, les châssis en aluminium comportent des profilés extrudés creux fixés au moyen d’attaches mécaniques.
Étant donné la forte conductivité thermique de l’aluminium, un principe de coupure thermique en matériau isolant a été conçu pour répondre aux exigences en matière de confort thermique : une isolation est introduite entre deux profilés, l’un intérieur et l’autre extérieur, évitant ainsi tout contact alu-alu.

Châssis en aluminium à coupure thermique.

  1. Première frappe : étanchéité à l’eau.
  2. Chambre de décompression drainée.
  3. Récupération des eaux et évacuation vers l’extérieur.
  4. Deuxième frappe : étanchéité à l’air
  5. Chambre pour loger la quincaillerie.
  6. Troisième frappe : amélioration acoustique.
  7. Mousse isolante.

Il existe de nombreux types de profilés isolés mais le choix d’isolants formant la coupure thermique est nettement plus limité. Les isolants utilisés sont souvent un polyamide renforcé en fibre de verre ou des isolants fabriqué à partir de résines.

Caractéristiques thermiques

Pour ces châssis, la performance thermique dépendra largement du détail de la fenêtre.
Actuellement, on ne conçoit plus un châssis en aluminium sans coupure thermique.

Pour connaitre les valeurs du coefficient de transmission thermique Uf des châssis en aluminium.

Traitement de surface

Le châssis en aluminium ne requiert aucun traitement pour être maintenu en bon état. C’est l’oxydation naturelle se formant sur la surface qui assure la protection. Toutefois, le métal vieillit et prend une couleur grise irrégulière. C’est donc pour des raisons esthétiques que l’on traite la surface :

  • soit, par la pose d’une couche de laque,
  • soit, par anodisation.

Coût (estimation vitrages non compris)

Aluminium laqué avec coupure thermique : 245 314 €/m2 de baie

Les fourchettes de prix mentionnées sont données à titre indicatif. Les prix prévoient la fourniture et la mise en œuvre hors TVA, mais ne tiennent pas compte des traitements de protection. Ils concernent les ouvrages courants. Ils dépendent des dimensions moyennes des châssis, de leurs formes et des types d’ouvertures.


Le châssis en acier

Comme les châssis en aluminium, les châssis en acier comportent des profilés extrudés creux fixés au moyen d’attaches mécaniques.
Étant donné la forte conductivité thermique de l’acier, un principe de coupure thermique en matériau isolant a été conçu pour répondre aux exigences en matière de confort thermique.

Châssis en acier.

  1. Première frappe : étanchéité à l’eau.
  2. Chambre de décompression drainée
  3. Récupération des eaux et évacuation vers l’extérieur.
  4. Deuxième frappe : étanchéité à l’air
  5. Chambre pour loger la quincaillerie.
  6. Mousse isolante.

Caractéristiques thermiques

Pour connaitre les valeurs du coefficient de transmission thermique Uf des châssis en acier.

Coût (estimation vitrages non compris)

Acier laqué 248 322 €/m2 de baie

La fourchette de prix mentionnée est donnée à titre indicatif. Le prix prévoit la fourniture et la mise en œuvre hors TVA. Ils concernent les ouvrages courants. Ils dépendent des dimensions moyennes des châssis, de leurs formes et des types d’ouvertures.


Le châssis en PVC

Le PVC est thermoplastique c’est-à-dire susceptible de ramollir sous l’action de la chaleur et de durcir sous l’action du froid.

La composition chimique de ce matériau est variable et les adjuvants au PVC jouent un rôle considérable.
Ils permettent :

  • de réduire la fragilité du matériau : on parlera de raideur de type A ou B selon la composition,
  • de faciliter sa mise en forme,
  • d’empêcher les dégradations causées par la chaleur, l’oxydation et le rayonnement solaire.

Châssis en PVC à trois chambres.

  1. Première frappe : étanchéité à l’eau.
  2. Chambre de décompression drainée
  3. Récupération des eaux et évacuation vers l’extérieur.
  4. Deuxième frappe : étanchéité à l’air
  5. Chambre pour loger la quincaillerie.
  6. Troisième frappe : amélioration acoustique.
  7. Renfort en acier zingué éventuel.

Lorsque ce type de châssis est amené à former de grandes baies, il convient de le rigidifier. Certaines marques de châssis en PVC peuvent être renforcés par des profils métalliques (tel le renfort en acier zingué illustré sur le schéma ci-dessus). D’autres prévoient des renforcements uniquement pour certaines pièces en fonction des sollicitations auxquelles elles sont soumises, et de la raideur du PVC utilisé.

Caractéristiques thermiques

Pour connaitre les valeurs du coefficient de transmission thermique Uf des châssis en PVC, cliquer ici !

Le terme « chambres » est utilisé pour désigner les subdivisions se succédant dans la largeur du profilé extrudé creux.

Coût (estimation vitrages non compris)

PVC 170 220 €/m² de baie
PVC renforcé 185 240 €/m² de baie

Les fourchettes de prix mentionnées sont données à titre indicatif. Les prix prévoient la fourniture et la mise en œuvre hors TVA. Ils concernent les ouvrages courants. Ils dépendent des dimensions moyennes des châssis, de leurs formes et des types d’ouvertures.


Le châssis en fibre de verre

Il s’agit des profilés creux réalisés par pultrusion qui sont joints ensemble par des attaches mécaniques.

Caractéristiques thermiques

Des menuiseries en fibre de verre ont été lancées sur le marché mais la nouveauté du produit fait que les performances en service doivent encore être déterminées. En général, le châssis en fibre de verre, s’il est bien conçu, possède une valeur isolante plus élevée que le châssis de bois.


Le châssis en polyuréthane

Le châssis en polyuréthane est constitué d’un matériau thermodurcissable utilisé notamment pour la fabrication de pièces plastiques, de peintures, de mousses isolantes,… Ce matériau offre une très grande liberté de conception.

Châssis en polyuréthane.

  1. Première frappe : étanchéité à l’eau.
  2. Chambre de décompression drainée
  3. Récupération des eaux et évacuation vers l’extérieur.
  4. Deuxième frappe : étanchéité à l’air
  5. Chambre pour loger la quincaillerie.
  6. Troisième frappe : amélioration acoustique.
  7. Insert tubulaire en aluminium.

Lorsque ce type de châssis est amené à former de grandes baies, il convient de le rigidifier au moyen de profils métalliques (tel l’insert tubulaire en aluminium illustré sur le schéma ci-dessus).

Caractéristiques thermiques

Pour connaitre les valeurs du coefficient de transmission thermique Uf des châssis en polyuréthane.

Coût (estimation vitrages non compris)

PUR laqué 248 322 €/m² de baie

La fourchette de prix mentionnée est donnée à titre indicatif. Le prix prévoit la fourniture et la mise en œuvre hors TVA. Ils concernent les ouvrages courants. Ils dépendent des dimensions moyennes des châssis, de leurs formes et des types d’ouvertures.


Les châssis composés

Il s’agit de menuiseries faites de matériaux combinés.

De nombreuses combinaisons sont possibles à condition que les matériaux soient chimiquement compatibles.
Les performances des châssis composés sont généralement difficiles à évaluer. En toute logique, l’objectif est d’exploiter les avantages des différents matériaux.

Par châssis composés, on entend soit :

Des châssis composés d’un ouvrant et d’un dormant de matériaux différents

Par exemple :

  • le dormant est en aluminium et l’ouvrant en PVC,
  • le dormant est en bois recouvert d’aluminium et l’ouvrant en aluminium.

Des châssis dont le profil est constitué de plusieurs matériaux :

  • Les châssis en bois et aluminium :

Ces châssis sont construits en bois divers, leur face extérieure est recouverte de profilés étirés d’aluminium, d’une épaisseur de 2 mm brossés ou prélaqués. Entre le bois et l’aluminium se trouve un profilé en PVC (λ = 0,14 W/mK), servant de coupure thermique évitant le contact entre les deux matériaux.

  1. Profilés étirés en aluminium
  2. Profilés en PVC
  3. Châssis en bois
  4. Vide ventilé.

Précautions particulières

Le revêtement en aluminium ne doit pas être en contact avec le verre car cela augmente le risque de casse thermique et de condensation interne.

Étant donné que le revêtement en aluminium empêche le passage de la vapeur vers l’extérieur, il faut  veiller à ce que les autres surfaces du bois comportent un pare-vapeur (peinture ou vernis) afin d’être  protégées contre l’accumulation excessive d’humidité à la surface extérieure du bois.
En théorie, le vide ventilé par l’extérieur prévu entre le bois et le profilé en aluminium permet l’évacuation  des eaux condensées dans le bois, afin d’éviter le pourrissement de ce dernier.

  • Les châssis en bois et liège :

Le liège inséré dans le châssis permet d’augmenter l’isolation thermique de celui-ci.

Châssis en bois et liège.

    1. Bois.
    2. Liège.
    3. Première frappe : étanchéité à l’eau.
    4. Deuxième frappe : étanchéité à l’air.
    5. Troisième frappe : amélioration acoustique.

 

Déflecteurs de lumière naturelle

Déflecteurs de lumière naturelle

By Julian A. Henderson – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=19588365


Les stores réfléchissants

Schéma principe stores réfléchissants - 01.

Les stores réfléchissants actuels sont utilisés dans le double but d’ombrager un espace du rayonnement solaire direct et de rediriger la lumière naturelle vers le fond du local.

Ces stores peuvent être fixes ou mobiles. Les stores réfléchissants peuvent être considérés comme un développement compact d’un light shelf. Cependant, les lamelles ombragent la fenêtre moins complètement et redirigent moins efficacement la lumière vers le fond de la pièce qu’un light shelf.

 Schéma principe stores réfléchissants - 02.

Il existe des stores réfléchissants dont l’inclinaison des lames peut être variable en fonction de leur emplacement dans la fenêtre : la partie supérieure de la fenêtre redirige la lumière vers le plafond, alors que la zone inférieure produit un ombrage du même type que les stores vénitiens conventionnels.

Le schéma ci-contre accentue le principe. Cette configuration a pour but de laisser pénétrer la lumière naturelle à l’intérieur du local, même lorsque les occupants ferment complètement les stores.


Les vitrages directionnels

Les vitrages directionnels redirigent très efficacement les rayons solaires directs vers le fond d’une pièce. Ils peuvent aussi être employés pour rediriger la lumière zénithale vers le bas d’un atrium ou vers une salle en sous-sol. Cependant, sous ciel gris, le niveau lumineux en fond de local est inférieur à celui d’un double vitrage classique. Les panneaux directionnels sont utilisés en configurations fixes et mobiles.

Schéma principe vitrages directionnels.Schéma principe vitrages prismatiques.

Les vitrages prismatiques peuvent soit rediriger la lumière naturelle plus profondément dans le bâtiment soit exclure la lumière d’un espace. Bien qu’ils soient habituellement transparents, ils obscurcissent la vue vers l’extérieur. Il vaut donc mieux les utiliser pour la partie supérieure d’une fenêtre afin de ne pas couper la vue des occupants vers l’extérieur.

La lumière naturelle peut également être déviée par des éléments acryliques concaves disposés verticalement à l’intérieur d’un double vitrage. Ce vitrage doit être positionné au-dessus de l’angle de vision. Dans nos régions, la meilleure orientation pour ce type de vitrage est le sud.


Les laser-cut panels

Schéma principe laser-cut panels.

Le laser-cut panel est un système de redirectionnement de la lumière produit par des coupures réalisées par un laser dans un matériau acrylique. Ces panneaux assurent une bonne visibilité vers l’extérieur. Placés verticalement, ils induisent une déflexion de la lumière provenant des angles d’incidence élevés (> 30°) alors qu’ils transmettent la lumière à de faibles incidences. Placés horizontalement, ils agissent en tant que protection solaire. Ils peuvent être employés comme système fixe ou mobile. Pour éviter certains risques d’éblouissement, il faut qu’ils soient situés au-dessus du niveau visuel. Le laser-cut panel coûte encore très cher.


Les systèmes holographiques

Schéma principe systèmes holographiques.

Les systèmes holographiques ne sont encore qu’au début de leur développement. Le procédé holographique consiste en une couche de matériau diffractant qui est choisie pour rediriger la lumière selon un angle spécifique, en fonction de l’angle d’incidence de la lumière. Il s’agit d’un système pratique en rénovation puisqu’il suffit d’ajouter un film à une fenêtre classique. Ils peuvent également être employés pour obtenir un effet décoratif coloré.


Les déflecteurs diffusants dans des ouvertures zénithales

Pour améliorer l’effet produit par l’ajout d’une ouverture zénithale, il est utile de concevoir un système de déflecteurs blancs diffusants au niveau du plafond. Si ces déflecteurs sont verticaux, l’éclairement lumineux dans l’espace est amélioré. Des déflecteurs inclinés diminuent le niveau d’éclairement maximum mais, par contre, uniformisent l’éclairage. Les deux figures ci-dessous montrent un exemple de déflecteurs verticaux conçus pour une orientation est-ouest d’un lanterneau et un exemple de déflecteurs inclinés conçus pour une dent de scie orientée vers le sud.

Schéma déflecteurs diffusants dans des ouvertures zénithales.Schéma déflecteurs diffusants dans des ouvertures zénithales.

Enduits extérieurs

Enduits extérieurs


Les types d’enduits

Il existe trois grands groupes d’enduits applicables sur les panneaux isolants : les enduits minéraux, les enduits résineux et les enduits aux silicates et aux silicones.

L’enduit faisant partie d’un système isolant-enduit sera de préférence prédosé en usine. Il est composé de charges, d’eau, d’un ou plusieurs liants, et éventuellement d’adjuvants et de pigments.

Le liant d’un enduit minéral est le ciment ou la chaux, ou encore un mélange des deux.
Le liant d’un enduit résineux est constitué d’un ou de plusieurs types de résines.
Le liant d’un enduit aux silicates et aux silicones est un liant silicieux.

Les enduits minéraux sont plus épais que les enduits synthétiques ou aux silicates et aux silicones.

Les enduits utilisés sur les panneaux isolants sont généralement « décoratifs » et diffèrent par leur aspect et leur couleur. Ils peuvent être lisse, crépi, roulé, peigné, gratté, lavé, projeté, etc.

Les enduits appliqués sur isolant sont munis d’un treillis de renforcement, synthétique ou métallique, résistant aux alcalis et à la corrosion.


Les précautions à prendre

L’isolation extérieure couverte d’un enduit est un système qui combine l’usage de plusieurs produits. Chaque système doit avoir été étudié et testé par son fabricant. Il devrait idéalement faire l’objet d’un agrément technique. Le système doit être mis en œuvre en respectant les prescriptions du fabricant et de l’agrément technique éventuel. Les limites d’utilisations prescrites doivent également être respectées.
Le système doit être appliqué dans son ensemble : isolant, enduit, fixation, armature, finition, accessoires, détails techniques, etc.

Le support doit être vérifié et préparé avant pose du système.

La date limite d’utilisation des matériaux livrés sera vérifiée à la réception.

Le transport et le stockage se feront dans les emballages d’origine, en tenant compte des précautions prescrites.

Les enduits préfabriqués proviendront par façade d’un même lot de fabrication afin d’éviter les différences de teintes surtout si l’enduit est coloré.

Des protections seront utilisées contre les conditions climatiques défavorables.

L’enduit ne pourra être appliqué dans des conditions extrêmes. Outre les limites expresses imposées par le fabricant ou l’agrément technique, l’enduit ne sera pas appliqué :

  • lorsque la température risque de monter au-dessus de + 30 °C ou de descendre en dessous de + 5 °C pendant l’application ou le durcissement;
  • lorsque le mur est en plein soleil;
  • par vent sec;
  • par pluies battantes;
  • lorsque le support est humide ou gelé.

L’entretien de l’enduit

Les facteurs extérieurs peuvent, avec le temps, altérer l’aspect de l’enduit et le dégrader par endroit.

On déterminera d’abord les causes éventuelles des désordres. Les fines fissures stabilisées sont pontées avant application d’un enduit de réparation. Les parties désolidarisées (qui sonnent creux) décapées et refaites.

Les algues et mousses sont éliminées à l’aide de produits appropriés et les matières mortes sont brossées.

Les efflorescences sont éliminées à sec.

L’enduit est ensuite brossé à sec ou nettoyé au jet d’eau.

On applique généralement une peinture perméable à la vapeur d’eau, adaptée à l’enduit. On peut également appliquer une couche supplémentaire d’enduit si la couche existante possède les qualités mécaniques nécessaires et permet l’adhérence de la nouvelle couche.

Les microfissures stabilisées sont colmatées par une peinture à base de ciment ou une fine couche d’enduit.


Les informations utiles

La note d’information technique (NIT) n° 209 du CSTC concerne les enduits posés, entre autres, sur des panneaux d’isolation thermique.

Protections intégrées aux vitrages doubles

Protections intégrées aux vitrages doubles

Store vénitien inséré dans un vitrage double.


Certaines caractéristiques de ces types de store sont tout à fait semblables à celles des autres stores enroulables (en particulier les stores intérieurs réfléchissants) ou vénitiens. Nous ne décrirons donc ici que les propriétés propres à l’insertion de ces produits à l’intérieur du double vitrage.


Les stores enroulables réfléchissants

Description

Photo stores enroulables réfléchissants.

Un store en toile réfléchissante se déroule dans l’espace intérieur du double vitrage. L’épaisseur de la lame d’air doit alors être au minimum de 12 mm.

Facteur solaire

D’une manière générale : FS associé à un double vitrage = .. 0,12 ..

Transmission lumineuse

D’une manière générale : TL = 0,03 ..0,04

Pouvoir isolant

Le coefficient U d’un double vitrage clair standard (remplissage air) peut diminuer de près de 35 % grâce au déploiement de la protection.


Les stores vénitiens

Description

Photo stores vénitiens.

Des lames orientables sont montées horizontalement à l’intérieur du double vitrage.

Facteur solaire

D’une manière générale : FS associé à un double vitrage = .. 0,17 ..
Le degré de protection dépend de l’inclinaison des lames par rapport aux rayons du soleil.
Exemple :

Pouvoir isolant

Lorsque les lamelles sont orientées en position verticale, le coefficient U d’un double vitrage peut diminuer de 20 à 30 % (en fonction de la couleur des lamelles) grâce à la protection. Une orientation des lames à 45° réduit ce gain de moitié.

Moduler la protection par rapport aux besoins

Contrairement aux stores vénitiens extérieurs ou intérieurs, les stores vénitiens intégrés ne peuvent être remontés. La modulation de la protection est réalisée uniquement par l’orientation des lamelles.

Protections extérieures

Protections extérieures


Brise-soleil.

Stores vénitiens.

Stores enroulables.


Les brise-soleil

Description

Les brise-soleil sont composés généralement de lames en aluminium disposées sur un châssis. La position de la protection peut être :

Photo brise-soleil.

  • Horizontale, perpendiculaire au plan de la fenêtre, pour les fenêtres orientées au sud,
  • verticale, perpendiculaire au plan de la fenêtre pour les fenêtres orientées à l’est ou à l’ouest,
  • parallèle au plan de la fenêtre, soit directement devant la fenêtre (on peut parler dans ce cas de claustra), soit écartée de celle-ci.

La combinaison des possibilités précédentes est envisageable.

Facteur solaire

FS associé à du double vitrage clair = .. 0,09 .. lorsque le vitrage est complètement ombré.

Transmission lumineuse et éblouissement

Contrairement aux protections déployées devant les vitrages, la vue du monde extérieur reste pratiquement inchangée. La pénétration de lumière à l’intérieur du local reste importante. En effet la composante réfléchie (par le sol et les bâtiments voisins) de la lumière du soleil n’est pratiquement pas interceptée tandis que les lames diffusent une partie de sa composante directe.

L’éblouissement, par vue directe du soleil ou par réflexion du rayonnement solaire par l’environnement, n’est cependant pas maitrisable à toute période de l’année.

Pouvoir isolant

Un brise soleil ne permet pas d’augmenter le pouvoir isolant de la fenêtre.

Moduler la protection par rapport aux besoins

Le degré de protection dépend :

  • De la position de la protection par rapport à la fenêtre,
  • de la hauteur du soleil,
  • du rapport entre la largeur de la protection et la hauteur ou longueur (en position verticale) de la fenêtre,
  • de l’espacement et de l’orientation des lames.

Exemple : la figure ci-dessous représente la protection réalisée par un brise-soleil horizontal, pour une fenêtre orientée au sud, au mois de juin, à 16 h.

Une protection adéquate ne pourra être obtenue que grâce à une étude précise tenant compte des risques de surchauffe et d’éblouissement dus à l’ensoleillement en fonction de la position du soleil et de la saison. Une amélioration de la situation peut être obtenue par une combinaison de protections horizontale et verticale. Il est à noter qu’il est possible de rendre amovibles des parties entières de la protection pour s’adapter aux conditions. Cependant cette solution n’est guère souple et généralement coûteuse car non standard.

Concevoir

Pour obtenir une méthode de dimensionnement des protections fixes.

Possibilité de ventilation naturelle des locaux

Les brise-soleil autorisent tout à fait la ventilation naturelle des locaux grâce à l’ouverture des fenêtres.

Résister aux contraintes mécaniques et à l’encrassement

Les brise-soleil sont prévus pour résister aux charges du vent et des autres perturbations atmosphériques. Un entretien minimum est indispensable sous peine de voir l’aluminium perdre ses caractéristiques esthétiques. En principe, les systèmes sont résistants à la corrosion.

Placement possible en rénovation sur une fenêtre existante

Le placement de brise-soleil est technologiquement possible en rénovation. Cependant le projet devrait être prévu dès la conception du bâtiment puisque la structure architecturale du bâtiment se trouve modifiée.

Intimité des occupants

Les protections qui ne se déploient pas devant les fenêtres ne peuvent soustraire au regard l’intérieur des locaux. Si l’intimité des occupants devient un objectif primordial, ce type de protection doit être installée sous forme de claustra.


Les stores vénitiens à lamelles

Description

Photo store vénitien à lamelles.

Les stores vénitiens extérieurs sont composés de lamelles généralement en aluminium. L’ensemble du store peut être remonté et les lamelles peuvent être orientées grâce à un système de câbles ou de chaînes.

Facteur solaire

FS associé à du double vitrage clair = .. 0,08 ..
La protection dépend de l’orientation donnée aux lamelles.

Transmission lumineuse

Schéma transmission lumineuse.

L’orientabilité des lamelles permet une variation de la transmission lumineuse. Selon l’inclinaison, les réflexions entre lamelles permettent alors un éclairage naturel du local plus ou moins important tout en protégeant les occupants du rayonnement direct du soleil.

Une orientation judicieuse des lames favorisera une répartition plus équitable de la lumière dans les locaux, diminuant l’éblouissement auprès des fenêtres et diffusant la lumière à l’intérieur (figure ci-contre).

La réflexion de la lumière par les lamelles dépendra du type et de la couleur du matériau de surface utilisé (réflexion spéculaire ou diffuse).
À titre d’exemple : la transmission lumineuse au travers d’un double vitrage clair muni de stores à lamelles inclinés à 45° varie entre 5 % (couleur sombre des lamelles) et 10 % (couleur clair).

Pouvoir isolant

L’inétanchéité de la protection supprime souvent tout effet d’isolation supplémentaire.

Moduler la protection par rapport aux besoins

La modulation de la protection est la propriété principale des stores à lames orientables. L’adaptation aux besoins peut se faire tant par retrait (latéral ou vertical en fonction du type de store) que par inclinaison des lamelles.

La manipulation des protections peut être réalisée grâce à des manivelles ou peut être motorisée, ce qui en facilite l’utilisation. Une automatisation est également possible.

Possibilité de ventilation naturelle des locaux

L’ouverture des fenêtres lorsque les stores sont abaissés ne pose pas de problème :

  • La position extérieure laisse toute liberté à l’ouvrant.
  • La résistance mécanique de la protection anti-tempête (patins latéraux) rend le système insensible aux courants d’air éventuels.

Résister aux contraintes mécaniques et à l’encrassement

Les extrémités des lamelles peuvent être munies de patins coulissant dans deux rails latéraux. Cette disposition confère à l’ensemble une bonne résistance mécanique, notamment aux vents. Cependant, les grands vents peuvent provoquer une vibration des lames et un bruit important. Certains produits possèdent également un système antivol de verrouillage en position fermée.

Placement possible en rénovation sur une fenêtre existante

Le store, en position remontée, occupe une place non négligeable (15 à 40 cm). Son placement devant une fenêtre existante fera donc perdre une partie de sa surface utile lorsque le store n’est pas abaissé. Pour éviter cet inconvénient, il est possible de fixer le dispositif devant le linteau.

En tout état de cause, l’aspect extérieur du bâtiment se verra modifié.

Vision au travers et intimité des occupants

En fonction de l’orientation des lamelles, il est souvent possible de conserver une vue de l’intérieur vers l’extérieur tout en limitant les indiscrétions.


Les stores en toiles enroulables (screen)

Description

Photo stores en toiles enroulables.

Les stores enroulables sont composés d’une toile qui se déploie devant la fenêtre. La protection est complètement amovible.

Généralement seules les extrémités de la partie inférieure de la toile coulissent soit dans des rails latéraux, soit le long de câbles tendus.

La manipulation des stores se fait depuis l’intérieur des locaux au moyen de manivelles. Elle peut être motorisée et automatisée.

Facteur solaire

FS associé à du double vitrage clair = 0,05 .. 0,15

Le degré de protection dépend du coefficient d’ouverture, du type de maillage (les spécialistes distinguent le sergé du natté) et de la couleur de la toile.

Transmission lumineuse

D’une manière générale : TL : 0,04 .. 0,26 pour le store seul

Tout comme le facteur solaire, la transmission lumineuse dépend du coefficient d’ouverture ainsi que de la teinte du store. Plus la protection sera claire, plus sa transmission lumineuse sera importante.

Pouvoir isolant

Le pouvoir isolant d’une fenêtre peut être augmenté par la présence d’un store extérieur (amélioration du coefficient U de la fenêtre jusqu’à 20 %).

Tout dépendra cependant de la perméabilité du store. De plus, son déploiement durant la nuit implique sa résistance aux conditions hivernales (vent, pluie, …) et au vandalisme. L’efficacité dépend d’une collaboration totale des occupants ou une automatisation intégrant les différents paramètres atmosphériques.

Moduler la protection par rapport aux besoins

La protection par store enroulable est par définition modulable. En fonction de la saison ou de l’heure de la journée, le store peut être abaissé ou relevé partiellement ou entièrement en fonction des besoins en apports solaires. Cette modulation peut être gérée par l’occupant de façon manuelle ou motorisée (il existe aussi des systèmes avec télécommande) ou de façon automatique grâce à un régulateur.

Possibilité de ventilation naturelle des locaux

L’ouverture des fenêtres reste physiquement possible lorsque le store est baissé. Cependant, les courants d’air engendrés par une ventilation naturelle importante risquent de détériorer rapidement la protection.

Résister aux contraintes mécaniques et à l’encrassement

Les stores enroulables extérieurs sont sensibles au vent.

Leur tenue mécanique n’est généralement plus garantie lorsque la vitesse du vent est supérieure à environ 10 m/s (36 km/h).

Placement possible en rénovation sur une fenêtre existante.

Vision au travers et intimité des occupants

Les stores extérieurs modifient la vue de et vers l’intérieur de la pièce.

Pour les stores enroulables de type toile (screen), cette propriété dépendra à la fois de la couleur et du coefficient d’ouverture de la toile : à même coefficient d’ouverture, une toile foncée permettra une meilleur vue au travers. A même couleur, une toile avec un coefficient d’ouverture plus élevé permettra une meilleure vue au travers.

Exemple : vues au travers de différentes protections solaires enroulables de type « toile »

Vue au travers de jour depuis l’intérieur Vue au travers de nuit depuis l’extérieur
Noir
Coefficient d’ouverture  (C.O.) : 3.3
Noir
C.O.:19.8
Blanc
C.O. :4.3
Blanc
C.O. :12.1
Source : Projet PROSOLIS UCL-CSTC financé le SPW). Publié dans CSTC Contact 2014/3. Outil d’aide au choix des protections solaires disponible sur : ouverture d'une nouvelle fenêtre ! www.prosolis.be.


Les éléments architecturaux, les auvents, les stores ou volets projetés à l’italienne

Ces divers types de protection associent les propriétés des brise-soleil et des stores enroulables. Nous ne décrirons donc ici que leurs caractéristiques les plus marquantes.

Les éléments architecturaux

Schéma éléments architecturaux - 01.Schéma éléments architecturaux - 02.

Les éléments architecturaux sont des éléments fixes intégrés dans la structure du bâtiment comme, par exemple, des surplombs.

Par définition, ils doivent être projetés dès la conception du bâtiment. Leur utilisation en rénovation est donc extrêmement limitée.

Leur performance est semblable aux brise-soleil, certaines configurations pouvant être conçues pour favoriser la transmission de la lumière naturelle à l’intérieur des locaux.

Schéma éléments architecturaux - 03.

Les auvents

Photo auvent.

Les auvents (appelés aussi marquises ou tentes solaires) sont des toiles enroulables déployées à l’horizontale.

Ils offrent une protection tout à fait variable en fonction des besoins mais sont sensibles au vent.

Les stores ou volets projetés à l’italienne

Photo store ou volet projeté.

Ces systèmes permettent de combiner les propriétés des protections enroulables verticales et des protections horizontales.

L’emploi de volets peut contribuer à l’isolation nocturne de l’enveloppe pour autant qu’ils soient étanches lors de leur fermeture (réduction jusqu’à 20 % des déperditions par le vitrage).

Les volets joueront également un rôle de protection face aux intrusions et vandalisme (suppression de la vue vers l’intérieur).

Protections intérieures

Protections intérieures


Les stores enroulables et les stores plissés

Description

Photo stores plissés.

Le mécanisme des stores enroulables intérieurs est similaire à celui de leurs homologues extérieurs.

Les stores plissés peuvent être à simple ou double paroi (structure alvéolaire). Ils associent une certaine esthétique à la protection.

Facteur solaire

Le facteur solaire d’un ensemble vitrage-store intérieur dépend de la composition de la toile :

  • Composée de feuilles réfléchissantes : FS associé à du double vitrage clair = … 0,2 …
  • En tissu (semblable aux stores extérieurs) en simple ou double paroi : FS associé à du double vitrage = 0,33 .. 0,55.

en fonction de la couleur et du coefficient d’ouverture de la toile. A même coefficient d’ouverture, plus le store est foncé, moins la protection est efficace. Pour que la protection solaire soit la plus efficace possible contre les surchauffes, on cherchera donc des toiles avec un coefficient de réflexion élevé (couleurs claires).

Transmission lumineuse

D’une manière générale :

TL = 0,02 .. 0,08 pour les stores réfléchissants et 0,04 .. 0,38 pour les stores en tissu.

La transmission lumineuse dépend de la couleur et du coefficient d’ouverture du store. Plus celui-ci sera clair, plus la lumière transmise sera importante. Remarquons que la transmission lumineuse de certains stores réfléchissants peut être insuffisante pour assurer un éclairage naturel lors du déploiement.

Pouvoir isolant

Dans le cas de stores en tissu, le coefficient U d’un double vitrage peut diminuer de 10 (tissu simple) à 25 % grâce à l’adjonction de la protection. Notons que l’ajout d’une protection intérieure permet aussi d’augmenter le confort de l’occupant à proximité de la fenêtre en coupant l’effet de rayonnement « froid » (particulièrement important pour les vitrages simples ou doubles anciens).

Moduler la protection par rapport aux besoins

Les possibilités de modulation sont semblables au cas des stores extérieurs. Les stores plissés sont généralement manœuvrés manuellement. Tandis que les stores enroulables peuvent être motorisés et automatisés

Notons que certains fabricants proposent des stores pouvant être rétractés soit en partie supérieure, soit en partie inférieure de la fenêtre. Ceci est un plus en matière de gestion de l’éclairage naturel. En effet, la partie haute de la fenêtre joue un rôle important en matière de distribution de la lumière en profondeur dans les locaux.

Résister aux contraintes mécaniques et à l’encrassement

Les stores intérieurs ne sont évidemment pas soumis aux perturbations extérieures. Ceci élimine un des objectifs d’une automatisation éventuelle si on ne doit pas craindre le vandalisme (lieux publics).

Possibilité de ventilation naturelle des locaux

Les fabricants risquent de ne pas couvrir une détérioration du store due à l’ouverture d’une fenêtre (air s’infiltrant entre la protection et le vitrage du fait de fenêtres voisines ouvertes pour les stores solidaires de l’ouvrant, courant d’air ou ouverture subite de la fenêtre pour les stores fixés au dormant ou au linteau).

Placement possible en rénovation sur une fenêtre existante

Les stores ne modifient en rien l’aspect extérieur du bâtiment.

Ils peuvent être fixés au dormant ou à l’ouvrant de la fenêtre ou encore au linteau.

Dans le cas de fenêtres ouvrantes, la place disponible doit être suffisante pour conserver la liberté d’ouverture lorsque le store est relevé. Lorsque le store est fixé au dormant ou au linteau, l’ouvrant ne peut heurter ni le store roulé, ni les guides éventuels. Lorsque le store est solidaire de l’ouvrant, les charnières latérales de la fenêtre doivent se situer suffisamment loin des retours de fenêtre pour garantir une ouverture complète.

Les stores plissés peuvent en outre s’adapter aux fenêtres de forme non rectangulaire.

Vision au travers et intimité des occupants

Les stores extérieurs modifient la vue de et vers l’intérieur de la pièce..

Pour les stores enroulables de type toile (screen), cette propriété dépendra à la fois de la couleur et du coefficient d’ouverture de la toile : à même coefficient d’ouverture, une toile foncée permettra une meilleur vue au travers. A même couleur, une toile avec un coefficient d’ouverture plus élevé permettra une meilleure vue au travers.

Exemple : vues au travers de différentes protections solaires enroulables de type « toile »

Vue au travers de jour depuis l’intérieur

Vue au travers de nuit depuis l’extérieur

Noir
Coefficient d’ouverture  (C.O.) : 3.3

Noir
C.O.:19.8

Blanc
C.O. :4.3

Blanc
C.O. :12.1

Source : Projet PROSOLIS UCL-CSTC financé le SPW). Publié dans CSTC Contact 2014/3. Outil d’aide au choix des protections solaires disponible sur : ouverture d'une nouvelle fenêtre ! www.prosolis.be.


Les stores à lamelles et les stores vénitiens

Description

Photo store à lamelles.

Les stores à lamelles verticales et les stores vénitiens peuvent être considérés comme un mode semblable de protection.

Les premiers sont composés de lames verticales orientables et escamotables de part et d’autre de la fenêtre, en aluminium laqué ou en tissu (semblable au tissu des stores enroulables).

Les stores vénitiens comportent des lames horizontales orientables en aluminium laqué, matière plastique ou bois. Certains stores peuvent avoir des lamelles perforées. Les stores peuvent être remontés ou abaissés selon les désirs. La largeur des lames peut être choisie en fonction de l’effet esthétique recherché.

Facteur solaire

D’une manière générale : FS associé à un double vitrage = 0,36 .. 0,60

Le degré de protection dépend entre autres de la couleur du store. Plus les lames seront de couleur claire et réfléchissante, plus la protection sera importante.

Les stores à lamelles ou vénitiens intérieurs offrent une protection souvent insuffisante contre les surchauffes.

Leur impact sur le confort thermique des occupants se limite principalement (ce qui peut être suffisant en fonction des besoins) à ‘couper’ le rayonnement chaud en provenance du vitrage ensoleillé.

Le choix de ce type de store sera principalement commandé par des objectifs visuels et/ou esthétiques.

Photo store à lamelles.

Transmission lumineuse

Le principal objectif de ce type de store est de gérer l’éclairement naturel d’un local. La quantité de lumière transmise à l’intérieur d’un local dépendra de l’orientation des lames que choisira l’utilisateur en fonction de ses besoins.

Comme pour les stores vénitiens extérieurs, une orientation judicieuse des lames permettra de diffuser la lumière plus profondément dans les locaux tout en protégeant les occupants de l’éblouissement aux abords des fenêtres.

Certains stores en tissu conservent une certaine transparence lorsque les lamelles sont complètement fermées. Dans ce cas, ils ont une TL semblable aux stores enroulables en tissu.

Exemple : Un store vénitien avec des lames de 16 mm.

Pouvoir isolant

L’impact de la protection sur les déperditions du vitrage sera faible.

Moduler la protection par rapport aux besoins

La modulation de la protection est la propriété principale des stores à lames orientables. L’adaptation aux besoins peut se faire tant par retrait (latéral ou vertical en fonction du type de store) que par inclinaison des lamelles.

La manipulation des protections peut être réalisée grâce à des cordons, des chaînettes ou des manivelles ou peut être motorisée, ce qui facilite l’utilisation.

Résister aux contraintes mécaniques et à l’encrassement

Les stores à lamelles, étant intérieurs, sont peu soumis aux contraintes mécaniques.

Possibilité de ventilation naturelle des locaux

L’ouverture des fenêtres sera parfois malaisée lorsque l’on veut profiter de la protection. En effet, la protection sera souvent fixée à la partie fixe de la fenêtre (linteau, dormant). Pour les fenêtres basculantes, certains fabricants proposent des stores solidaires de l’ouvrant et des guides qui permettent l’ouverture tout en conservant la protection.

Placement possible en rénovation sur une fenêtre existante

Comme pour la plupart des protections intérieures, le placement des stores derrière des fenêtres existantes ne pose guère de problème.

Intimité des occupants

En fonction de l’orientation des lamelles, il est souvent possible de conserver une vue de l’intérieur vers l’extérieur tout en limitant les indiscrétions.


Les films adhésifs

Description

Photo film adhésif.

Un film est apposé de façon indélébile (le décollement du film est possible mais très difficile) sur une face du vitrage (généralement à l’intérieur).

Facteur solaire

La pose d’un film permet de réduire les gains solaires à travers de la fenêtre de 10 à 80 % en fonction du film choisi.
Dans certaines conditions défavorables, la pose d’un film peut entraîner le bris du vitrage sous les contraintes thermiques. Pour prévenir ce problème, il faut :

  • Choisir parmi les produits présents sur le marché et apportant une protection solaire satisfaisante, des films dont les capacités à absorber la chaleur sont très réduites (choisir les couleurs claires et très réfléchissantes).
  • Procéder à un examen de l’état des menuiseries et du vitrage. Un vitrage qui n’a pas de possibilité de dilatation (coincé dans le châssis, joints durcis, … ) risque de se briser.

Pour prévenir tout désagrément ultérieur, des garanties et un examen de sa propre situation peuvent être demandés aux fabricants de films.

Remarquons que le problème de tensions thermiques dans le vitrage est surtout crucial lorsque le film est placé à l’intérieur. En position extérieure, le film réfléchit le rayonnement avant qu’il n’atteigne le vitrage, évitant ainsi l’échauffement du verre.

Transmission lumineuse

Il faut évidemment considérer que lorsque la transmission énergétique au travers de la protection diminue, la transmission lumineuse diminue aussi.

D’une manière générale : TL = 0,04 ..0,80

Pouvoir isolant

Certains films sont dits « à basse émissivité ». Ils réfléchissent le rayonnement de chaleur vers l’intérieur. Leur application permet une diminution des pertes en énergie au travers d’un vitrage pouvant aller jusqu’à 30 %.

Il n’existe pas de relation entre le pouvoir isolant du film et son facteur solaire.

Moduler la protection par rapport aux besoins

La modulation est par définition nulle. De plus, on peut considérer que la protection est placée de façon indélébile. Après installation, un enlèvement ultérieur n’est souvent plus possible.

Ceci implique une réflexion préalable au choix des caractéristiques du film, ce choix ne pouvant plus être modifié après la pose.

Résister aux contraintes mécaniques et à l’encrassement

La plupart des films sont apposés sur la face intérieure du vitrage et ne sont soumis a priori à aucune contrainte mécanique. Le nettoyage de la vitre avec film est semblable au nettoyage de la vitre non protégée.

Certains films sont prévus pour une pose extérieure. Des garanties quant à leur résistance aux contraintes extérieures sont à demander aux fabricants.

Il existe des films qui associent protection solaire et protection du vitrage en cas de choc. Ces films sécurité constituent une défense contre les effractions et limitent les risques résultant des bris de verre.

Possibilité de ventilation naturelle des locaux

Les possibilités d’ouverture des fenêtres après pose du film restent inchangées.

Placement possible en rénovation sur une fenêtre existante

La pose de films protecteurs s’applique typiquement à la rénovation. Elle permet de corriger un mauvais choix des caractéristiques des vitrages.

La mise en place de la protection est rapide et ne demande pas de travaux lourds.

La possibilité de coller certains films sur la face extérieure du vitrage facilite certaines rénovation comme par exemple la protection des fenêtres de toit élevées.

L’aspect du film (couleur, réfléchissant, …) modifiera l’aspect extérieur du bâtiment, lui apportant parfois un « plus » esthétique. Par contre la forme de l’enveloppe du bâtiment est totalement inchangée.

Intimité des occupants

Certains films permettent une vue de l’intérieur vers l’extérieur mais pas l’inverse.

Etanchéités

Etanchéités

Par étanchéité, on entend la couche ou l’ensemble des couches rendant la construction étanche à l’eau de pluie, à la neige et à l’eau de fonte des neiges.

On distingue les types d’étanchéités suivants :


Les membranes bitumineuses

La membrane bitumineuse est actuellement l’étanchéité la plus utilisée sur le marché belge (+/- 80 %).

Une membrane bitumineuse est constituée d’une armature enrobée de bitume.

L’étanchéité des toitures plates s’obtient par la pose d’une ou plusieurs membranes bitumineuses superposées dont les lés sont soudés latéralement les uns aux autres et en bouts.

On parlera d’un système « monocouche » lorsqu’une seule épaisseur de membrane est posée, et d’un système « multicouche » lorsque plusieurs membranes, généralement deux (système bicouche), sont superposées.

Le système multicouche offre plus de garanties d’étanchéité que le système monocouche qui nécessite un soin particulier lors de l’exécution et donc une main-d’œuvre spécialisée et une surveillance régulière et exigeante.

On distingue la couche supérieure des éventuelles sous-couches.

La couche supérieure

La couche supérieure (la seule couche dans le cas d’un système monocouche) d’une étanchéité bitumineuse doit résister au vieillissement dû aux rayonnements solaires et aux sollicitations mécaniques et thermiques.

C’est la raison pour laquelle elle sera toujours armée d’un voile de polyester, et le bitume utilisé sera amélioré par addition de polymères qui en augmenteront considérablement les performances. Elle doit posséder un agrément technique avec certification (ATG). Son épaisseur sera d’au moins 4 mm. Les bitumes utilisés sont appelés bitumes améliorés, bitumes polymères ou bitumes modifiés.

Les polymères additionnés peuvent être de deux types :

  • les plastomères (APP, polypropylène atactique) qui mélangés à raison d’environ 30 % donnent au bitume des propriétés plastiques,
  • les élastomères (SBS, styrène-butadiène-styrène) qui mélangés à raison d’environ 12 % donnent au bitume des propriétés élastiques.

D’autres polymères font actuellement leur apparition.

La (les) sous-couche(s) éventuelle(s)

Les matériaux à base de bitume soufflé donnent de bon résultats comme sous-couche ou couche intermédiaire.

Ils peuvent être armés d’un voile de verre, d’une feuille d’aluminium ou d’un voile de polyester.

Types de sous-couches et couches intermédiaires (NIT 215 du CSTC).

Membrane Armature
type Kg/m² ép. mm perforations. type g/m²
VP50/16 1.6 non V.verre > 50
VP45/30 3 oui (3 – 6 %) V.verre > 45
VP40/15 1.5 oui (12 – 18 %) V.verre > 40
V3 3 3 non V.verre > 50
V4 4 4 non V.verre > 50
ALU3 3 3 non Aluminium > 250
P150/16 1.6 non V.polyester > 150
EP2 1.25 2 non V.polyester > 150
P3 3 3 non V.polyester
P4 4 4 non V.polyester > 150

Les types V3, V4, P3 et P4 peuvent être en bitume oxydé ou en bitume amélioré, APP ou SBS.


Les étanchéités synthétiques

Les matériaux utilisés sont également appelés « hauts polymères ».

Ils se composent principalement de produits de polymérisation d’hydrocarbures insaturés provenant de la pétrochimie.

Ils ont de bonnes caractéristiques mécaniques. Ils résistent bien au froid, à la chaleur, aux produits chimiques et aux influences atmosphériques.

Les étanchéités synthétiques sont posées en une seule épaisseur (système monocouche).

La pose varie selon le produit. C’est pourquoi la plupart des fabricants de membranes synthétiques ne confient la pose de leur système qu’à des entreprises dont ils ont formé les ouvriers. Vu que le système est monocouche, des erreurs au niveau de l’assemblage des lés provoqueraient directement des fuites.

Parmi les 13 sortes de membranes synthétiques reprises ci-dessous, seules, quatre bénéficient d’un agrément technique ATG : le PVC, l’EPDM, le CPE et le PIB. Parmi celles-ci, deux seulement sont utilisées de manière significative, un plastomère : le PVC (12 % du marché belge), et un élastomère : l’EPDM (8 % du marché belge). Il semble cependant que leur utilisation devient plus fréquente, surtout en ce qui concerne l’EPDM.

Les étanchéités synthétiques sont de trois types :

  • les élastomères
  • les élastomères thermoplastiques
  • les plastomères

Les élastomères

IIR Butil  copolymère d’isoprène et d’isobutylène vulcanisé

Couramment appelé BUTIL, d’épaisseur 1.5 et 2 mm, de couleur noire, il a un comportement satisfaisant au feu. Il ne résiste pas très bien aux solvants organiques. Il résiste bien au bitume. Il résiste bien aux influences climatiques, mais il a tendance à se déformer sous l’influence de la chaleur en été. Il résiste de manière satisfaisante au poinçonnement.

Il sera posé en adhérence totale, en adhérence partielle ou en pose libre lestée.

L’adhérence au support se fait par collage à l’aide de colle à chaud à base de bitume et de butyl, ou à l’aide de colle de contact.

La jonction des lés se fait sur chantier à l’aide de « gumtape » et de colle. En atelier la jonction des lés se fait par soudure à chaud et bande adhésive (bâches préassemblées en usine).

EPDM  Copolymère d’éthylène, de propylène et de diène-monomère vulcanisé

Également appelé EPT, d’épaisseur minimale 1.1 mm, de couleur noire ou grise, il est actuellement le plus utilisé des hauts polymères élastomères sous forme de membrane. Aux États-Unis, l’EPDM contrôle un tiers du marché des toitures plates. Il a un comportement peu satisfaisant au feu. Il existe une qualité auto-extinguible qui est un mélange d’élastomères et de retardateurs de flamme. L’EPDM ne résiste pas très bien aux solvants organiques. Il résiste bien au bitume. Il résiste bien aux influences climatiques, mais il a tendance à se déformer sous l’influence de la chaleur en été. Il résiste de manière satisfaisante au poinçonnement. Actuellement, les problèmes de pose et de rejointoiement connus jadis, ont été résolus, et le produit bénéficie d’une grande longévité.

Il sera posé en adhérence totale, en adhérence partielle ou en pose libre lestée.

L’adhérence au support se fait par collage à l’aide de colle à chaud à base de bitume et d’EPDM, à laide de colle de contact, ou à l’aide de bitume lorsque les feuilles sont pourvues d’une couche dorsale constituée d’un voile qui sert à réaliser l’adhérence avec le bitume..

La jonction des lés se fait sur chantier à l’aide de « gumtape » et de colle. En atelier la jonction des lés se fait par soudure à chaud et bande adhésive (bâches préassemblées en usine).

Des membranes EPDM pourvues en leur sous-face d’une couche de bitume SBS existent. Elles peuvent être soudées au chalumeau.

CR  Polychloroprène vulcanisé

Membrane en caoutchouc munie d’une couche dorsale en voile de verre destinée à améliorer l’adhérence de la colle. Elle existe en 1.0, 1.2, 1.5 et 2.0 mm d’épaisseur et est de couleur noire. Elle a un comportement satisfaisant au feu. Sa résistance aux solvants organiques est satisfaisante. Elle résiste bien au bitume. Les données dont on dispose ne permettent pas de donner un jugement sur sa résistance aux influences climatiques. Elle ne résiste pas très bien au poinçonnement.

Elle sera posée en adhérence totale.

L’adhérence au support se fait par collage à l’aide de bitume ou à l’aide de colle de contact.

La jonction des lés se fait à l’air chaud + bande de soudure ou à la colle à froid.

CSM  Polyéthylène chlorosulfoné partiellement vulcanisé

La membrane est constituée de polyéthylène chlorosulfoné partiellement vulcanisé calendré sur une armature en polyester, avec possibilité latente de complète vulcanisation. Elles ne deviennent complètement élastomère qu’après la pose des feuilles. Son épaisseur minimale est de 1.2 mm armature comprise. Elle existe en gris, noir, blanc ou beige. Elle est autoextinguible. Elle ne résiste pas très bien aux solvants organiques. Elle ne résiste pas très bien au poinçonnement. Elle résiste bien au bitume. Elle résiste bien aux influences climatiques.

Elle sera posée en adhérence totale ou en pose libre lestée. Elle peut également être fixée mécaniquement.

L’adhérence au support se fait par collage à l’aide de bitume, à l’aide de colle de contact ou à l’aide de colle en dispersion.

La jonction des lés se fait à l’air chaud + bande de soudure ou à la colle à froid.

NBR  Caoutchouc nitrile vulcanisé

La membrane est munie d’une couche dorsale en voile de verre. Elle a une épaisseur de 1.1 ou 1.5 mm. Elle est de couleur noire. Elle a un comportement peu satisfaisant au feu. Elle résiste bien aux solvants organiques et aux bitumes. Elle résiste bien aux influences climatiques. Les données dont on dispose ne permettent pas de donner un jugement sur sa résistance au poinçonnement.

Elle sera posée en adhérence totale ou en pose libre lestée.

L’adhérence au support se fait par collage à l’aide de bitume ou à laide de colle de contact.

La jonction des lés se fait à l’aide de colle à deux composants.

Les élastomères thermoplastiques

TPV Elastomère thermoplastique vulcanisé

Membranes, composées d’un assemblage de polymères élastomères et plastomères vulcanisés. Elles peuvent être teintées dans la masse. Elles ont une épaisseur minimale de 1.1 mm. Elles possèdent une bonne résistance aux rayons UV et aux produits chimiques. Elles présentent une élasticité comparable au caoutchouc.

Il sera posé en adhérence totale, en adhérence partielle ou en pose libre lestée.

L’adhérence au support se fait par collage à l’aide de colle à chaud à base de bitume et d’EPDM, à l’aide de colle à froid, ou par fixation mécanique.

La jonction des lés se fait par soudage thermique.

TPO Polyoléfine thermoplastique

Membranes réalisées à l’aide de copolymères de polypropylène. Elles ne contiennent aucun plastifiant. Elles possèdent une bonne résistance aux rayons UV et aux produits chimiques. Elles ont une épaisseur minimale de 1.2 mm.

Il sera posé en adhérence totale, en adhérence partielle ou en pose libre lestée.

Les membranes en TPO peuvent être soit fixées mécaniquement, soit être posées en semi-indépendance à l’aide de colle à froid ou de bitume chaud, soit être posées librement et lestées.

La jonction des lés se fait par soudure homogène à l’air chaud.

Les plastomères

PIB  Polymère non vulcanisé de polyisobutylène

Actuellement les membranes PIB sont toujours doublées sur leur face inférieure d’une armature épaisse en feutre de polyester. Elles ont une épaisseur minimale de 1.5 mm. Elles sont de couleur noire. Elles ont un comportement peu satisfaisant au feu et des mesures complémentaires s’imposent. Elles résistent bien aux bitumes, mais pas aux solvants organiques. Elles résistent bien aux influences climatiques. Elles résistent bien au poinçonnement. Le produit existe depuis assez longtemps et a prouvé sa fiabilité.

Elles seront posées en adhérence totale, en adhérence partielle ou en pose libre lestée.

L’adhérence au support se fait par collage à l’aide de bitume ou à l’aide de colle à froid.

La jonction des lés se fait à l’aide de bandes d’étanchéité auto-adhésive, et par soudure par gonflement pour les joints transversaux.

EVA  Copolymère d’acétate de vinyle et d’éthylène non vulcanisé

Les membranes VAE ont une épaisseur minimale de 1.2 mm (couche de feutre non comprise). Elles sont de couleur blanche. Elles ont un comportement peu satisfaisant au feu et des mesures complémentaires s’imposent. Elles résistent bien aux bitumes, mais pas aux solvants organiques. Elles résistent bien aux influences climatiques. Les données dont on dispose ne permettent pas de donner un jugement sur sa résistance au poinçonnement.

Elles seront posées en adhérence totale ou en pose libre lestée.

L’adhérence au support se fait par collage à l’aide de bitume ou à l’aide de colle de contact.

La jonction des lés se fait par soudure par gonflement ou par soudure à air chaud.

ECB  Copolymère d’acétate de polyvinyle et d’éthylène non vulcanisé, et bitume

Membrane extrudée d’un mélange homogène d’un copolymère EVA non vulcanisé et de bitume. Il n’y a pas d’armature. La membrane est pourvue d’une couche dorsale en voile de verre ou en polyester destinée à améliorer l’adhérence de la colle. L’épaisseur de la membrane est généralement de 2 mm. Elle est de couleur noire. Elle a un comportement peu satisfaisant au feu et des mesures complémentaires s’imposent. Elle résiste bien aux bitumes, mais pas aux solvants organiques. Elle résiste bien aux influences climatiques. Elle résiste bien au poinçonnement.

Elle sera posée en adhérence totale, en adhérence partielle ou en pose libre lestée. Elle peut également être fixée mécaniquement.

L’adhérence au support se fait par collage à l’aide de bitume.

La jonction des lés se fait par soudure à air chaud.

Lors de la pose, la surface de ce matériau est visqueuse. Cette caractéristique disparaît après quelques semaines d’exposition.

CPE  Polymère de polyéthylène chloré non vulcanisé et exempt de plastifiant

Le CPE est très semblable au PVC. Une différence se trouve dans le fait que le mélange des polymères utilisés est chimiquement extrêmement stable. Il ne subit pas de perte de plastifiant. Il est cependant moins souple que le PVC.

Ces membranes sont soit des membranes simples, soit des membranes composées de deux membranes incorporant ou non une armature en polyester tissé, soit des membranes composées de deux membranes avec un feutre de polyester extérieur. L’épaisseur minimale de la membrane est de 1.2 mm. La face supérieure est de couleur grise. La face inférieure est grise ou noire. Elles ont un comportement satisfaisant au feu. Elles résistent bien aux bitumes et aux solvants organiques. Elles résistent bien aux influences climatiques. Elles résistent bien au poinçonnement lorsqu’elles sont armées.

Elle sera posée en adhérence totale, en adhérence partielle ou en pose libre lestée. Elle peut également être fixée mécaniquement.

L’adhérence au support se fait par collage à l’aide de bitume. Il peut également se faire à la colle de contact lorsque la membrane est pourvue d’un feutre de polyester extérieur.

La jonction des lés se fait toujours par soudure à l’air chaud. Lorsque la membrane est pourvue d’une armature tissée, le joint est mastiqué au moyen d’une pâte à base de CPE.

PVC  Polymère de chlorure de polyvinyle avec plastifiant

La membrane de est de type 1 lorsque le plastifiant est monomère, ou bien de type 2 lorsque le plastifiant est polymère.

Afin d’éviter l’important retrait caractéristique du PVC, on n’utilise que des membranes armées de fibre de verre (sans retrait) ou armée de polyester (avec faible retrait). Les feuilles sont constituées de deux couches entre lesquelles l’armature est calendrée.

Le PVC armé a une épaisseur minimale de 1.2 mm. Le PVC non armé a une épaisseur minimale de 1.5 mm.

Les étanchéités en PVC résistent ou non aux rayonnements UV. En cas d’absence de lestage sur l’étanchéité, il faut placer une membrane résistante aux UV. La composition des membranes et les techniques d’exécution ayant évolué, le PVC est devenu actuellement une étanchéité fiable.

La membrane de type 1 sera généralement grise ou beige. La membrane de type 2 aura des faces inférieures et supérieures de couleurs différentes. Elles ont un comportement satisfaisant au feu. Les membranes de type 2 résistent bien aux bitumes et aux solvants organiques, ce qui n’est pas le cas des membranes de type 1. Elles résistent bien aux influences climatiques lorsqu’elles sont stabilisées aux UV. Elles résistent bien au poinçonnement.

Lorsqu’une membrane en PVC ne résiste pas au bitume, il faut poser une couche de séparation entre le PVC et les matériaux bitumeux.

Les membranes en TPO peuvent être soit fixées mécaniquement, soit être posées en semi-indépendance à l’aide de colle à froid ou de bitume chaud, soit être posées librement et lestées.

La jonction des lés se fait par soudure par gonflement ou par soudure à air chaud. Dans les deux cas, le joint est mastiqué au moyen d’une pâte en PVC.


Les feuilles métalliques

Les feuilles métalliques (zinc, cuivre, ou plomb) peuvent être utilisées en toiture plate et en toiture inclinée.

Illustration feuille métallique.

Feuilles métalliques sur plateforme en bois.

Dans le cas de la toiture plate, les feuilles métalliques sont soudées entre elles. La surface totale de la plate-forme ne peut dépasser 15 m² et la longueur ne peut dépasser 6.75 m à cause des contraintes liées à la dilatation.

La pente de la plate-forme sera obligatoirement comprise entre 1 % et 5 %.

Les feuilles reposent sur un voligeage aéré en sous-face.


Les enduits d’étanchéité

Le système consiste à épandre sur la toiture des résines synthétiques (polyuréthanne, acrylique, polyméthylmétacrylate, polyester, … ) en y incorporant des armatures (textile polyester). On forme ainsi, in situ, une membrane sans raccord.
Suivant le type, l’armature et la finition supérieure, elle peut être non circulable, circulable aux piétons ou circulable aux véhicules légers.
Différents aspects de finition sont possibles (couleur, rugosité, …).

 

Étanchéité liquide armée.

Avantages

  • On évite le problème de jonction entre les lés.
  • L’étanchéité peut épouser la forme de toitures compliquées.
  • Certaines étanchéités ainsi mises en œuvre conviennent comme surface circulable (terrasses circulables).

Inconvénients

  • Ces techniques demandent l’intervention d’un personnel très qualifié.
  • Elles requièrent, pour leur mise en œuvre, des conditions atmosphériques particulièrement favorables.
  • Prix élevé pour des toitures simples.
  • Épaisseur faible de certains systèmes.
  • Résistance limitée aux eaux stagnantes.

Les revêtements épais

L’asphalte coulé est un mélange correctement dosé de bitume en poudre et d’agrégats : asphalte naturel, sable, filler.

Il est appliqué sans compactage en une couche de plusieurs centimètres.

Étanchéité en asphalte coulé.

Le mélange doit être exempt de cavités et de matériaux gélifs.

Ce type d’étanchéité constitue une bonne couche d’usure et de répartition des charges pour la circulation piétonne.

Il ne faut pas confondre l’asphalte coulé avec les enrobés hydrocarbonnés. Ceux-ci contiennent des graviers et des cavités. Ce ne sont pas des revêtements d’étanchéité.

Cas particulier : La protection des fenêtres en toiture

Cas particulier : La protection des fenêtres en toiture

Les principes généraux de la protection des fenêtres en toiture sont semblables aux principes de la protection de fenêtres verticales.

Des systèmes de protection comparables sont ainsi appliqués :

Les brise-soleil en aluminium, fixes ou orientables


Les stores plissés, enroulables ou vénitiens intérieurs, coulissant sur des guides


Critères de choix

D’une manière générale, les critères de choix traditionnels (efficacité par rapport aux surchauffes, à l’éblouissement, isolation complémentaire, résistance aux contraintes mécaniques, possibilité d’ouverture des fenêtres, placement en rénovation, modularité) restent d’application pour le choix d’une protection en toiture.

Notons cependant que les locaux sous toiture sont particulièrement sensibles aux surchauffes suite à l’inclinaison des ouvertures (perpendiculaires au soleil) et à leur faible inertie thermique. Une attention toute particulière devra donc être apportée au choix du facteur solaire du système.

En outre, certaines dispositions propres aux fenêtres de toit limiteront la panoplie de possibilités.

Les fenêtres (presque) horizontales et les coupoles

La position horizontale de l’ouverture est surtout utilisée pour favoriser un apport lumineux dans des locaux profonds. En hiver, leur impact sur les apports thermiques extérieurs est très faible, puisque le soleil reste bas sur l’horizon. Par contre en été, l’inconfort, tant lumineux (éblouissement) que thermique peut être rapide.

Dans ce cas, les avantages des protections mobiles (valorisation des apports en hiver et protection en été) sur les protections permanentes (vitrage réfléchissant, film) ne sont plus aussi flagrants.

Si le choix se porte alors sur une protection permanente, il sera nécessaire de choisir une protection ayant une TL assez importante et un FS faible pour profiter d’un apport lumineux suffisant en hiver, sans désagrément en été. Il existe notamment des vitrages à contrôle solaire ayant une transmission lumineuse proche de 0,6 et un Facteur solaire proche de 0,3.

La forme des couvertures (bombées, pyramidales, …) limite souvent le choix à des protections intérieures coulissantes. Dans ce cas, une attention particulière sera accordée au matériau utilisé. Les toiles réfléchissantes seront préférées en raison de leur meilleur facteur solaire.

Les verrières élevées

Difficultés d’entretien

La difficulté d’entretien des verrières élevées peut conduire au choix d’une protection extérieure. L’entretien des protections intérieures sera nettement moins fréquent mais demandera souvent l’utilisation de nacelles ou échafaudages.

De même, pour des raisons de maintenance, la mise en œuvre d’éléments de protection extérieurs mobiles est généralement déconseillée. Les protections fixes étant pénalisantes pendant la saison hivernale, les protections semi-mobiles (deux positions saisonnières) permettront de résoudre ce problème. Ces systèmes pourront être manipulés deux fois par an seulement (aux équinoxes par exemple).

Manipulation

Dans le secteur tertiaire, la manipulation des protections mobiles de toiture doit être au minimum motorisée. De plus, la présence des verrières se rencontrant souvent dans des lieux que l’on peut associer à des lieux publics (aucune personne n’est responsable de la gestion des systèmes locaux), une automatisation peut s’avérer un atout supplémentaire.

Sous-toiture

Sous-toiture

Parmi les différentes couches qui constituent la toiture inclinée, la sous-toiture remplit un rôle spécifique important principalement lorsque les combles sont aménagés et lorsque l’isolant lui-même ne remplit pas ce rôle. Mais …


Quel est le rôle de la sous-toiture ?

La sous-toiture remplit différentes fonctions :

> Avant la pose de la couverture, elle protège provisoirement et évacue l’eau de pluie vers l’extérieur du bâtiment.

> Lorsque la couverture est en place, elle recueille l’eau en cas d’infiltration accidentelle et l’évacue vers l’extérieur du bâtiment :

  • en cas d’envol ou de rupture d’une tuile ou ardoise;
  • en cas de pluies torrentielles par grand vent;
  • en cas de chute de neige poudreuse ‘folle’ sous les charges de vent.

> Par temps froid, elle évacue l’eau qui se serait condensée sur la face interne de la couverture suite au sur-refroidissement. En effet, la nuit, par ciel serein, la couverture émet des rayonnements infrarouges vers la voûte céleste. La température de la couverture peut ainsi descendre jusqu’à 10°C plus bas que celle de l’air extérieur. De la condensation ou du givre peut se former sur la face inférieure de la couverture. Lorsque l’eau de condensation s’écoule, elle est recueillie par la sous-toiture et évacuée.

> Elle protège les combles contre les infiltrations d’air et de poussières.

> Elle protège l‘isolation.

> Elle renforce la résistance de la couverture lors d’une tempête.

Pour remplir ces différentes fonctions, il est donc toujours conseillé de doter la toiture d’une sous-toiture, sauf dans des cas particuliers comme un hangar non isolé où la production d’humidité est très importante.

Remarque importante
La sous-toiture ne remplit pas le rôle couverture. Elle ne sert pas à pallier à une mauvaise qualité ou à une mauvaise exécution de la couverture.


Où place-t-on la sous-toiture ?

La sous-toiture se trouve juste sous la couverture de la toiture, lattes et contre-lattes comprises. Elle se trouve au-dessus de l’isolation et de la charpente. La sous-toiture devrait idéalement êre posée directement sur l’isolant, sans espace intercalaire.

Parfois, l’isolant lui-même ou les panneaux isolants préfabriqués autoportants font eux-mêmes office de sous-toiture. Ils permettent de faire l’économie d’une sous-toiture supplémentaire.

  1. Lattes
  2. Contre-lattes
  3. Sous-toiture
  4. Isolant
  5. Charpente
  6. Pare-vapeur
  7. Finition du plafond

Position de la sous-toiture dans un versant isolé.


Quels sont les différents types de sous-toitures ?

Les sous-toitures sont idéalement perméables à la vapeur. Elles se distinguent entre elles par trois caractéristiques principales :

  • leur capillarité, elles peuvent être capillaires ou non capillaires;
  • leur raideur, elles peuvent être rigides ou souples;
  • leur continuité, elles peuvent être continues ou en bandes.

Ainsi existe-t-il :

– des sous-toitures capillaires :

  • rigides (panneaux de fibres ciment-cellulose, panneaux de fibres de bois);
  • souples :
    • en bandes (papier fort, toiles en fibre de verre ou en matière synthétique);
    • continues;

– des sous-toitures non capillaire :

  • rigides (plaques multicouches perforées de plastique);
  • souples :
    • en bandes (feuilles synthétiques microperforées renforcées);
    • continues (feuilles peu perméables à la vapeur avec joints étanches).

Panneaux de fibre ciment-cellulose.

Panneaux de fibre de bois.

Toile de fibres synthétiques.

Plaque multicouche perforée de plastique.

Feuille synthétique microperforée renforcée.

Light-shelf [composants de l’enveloppe]

Light-shelf [composants de l'enveloppe]


Description

Un light shelf est un auvent, dont la surface supérieure est réfléchissante, combiné à un bandeau lumineux, dont le rôle est de permettre la pénétration dans le local, du rayonnement solaire réfléchi sur la partie supérieure du light shelf.

Schéma principe light-shelf.Photo light-shelf.

L’objectif d’un light shelf est de rediriger la lumière naturelle vers le plafond, en protégeant l’occupant des pénétrations directes du soleil. Il existe diverses variantes de light shelves : horizontales ou inclinées, droites ou incurvées, situées à l’intérieur et/ou à l’extérieur de la fenêtre.

Les principales propriétés d’un light shelf sont de faire pénétrer la lumière profondément dans la pièce, de réduire les charges de refroidissement en diminuant partiellement les gains solaires, et d’augmenter le confort visuel.

Les light shelves permettent de contrôler la lumière directe du soleil en réduisant l’éblouissement, tout en admettant la lumière du ciel et les rayons solaires réfléchis.

La surface du light shelf doit être aussi réfléchissante que possible mais peut-être mate, brillante ou spéculaire. Une surface spéculaire renvoie théoriquement plus de lumière mais il faut pour cela qu’elle soit nettoyée très régulièrement. En pratique, un light shelf brillant (semi-spéculaire) est sans doute le meilleur choix. Le maintien de la haute réflectivité des light shelves implique bien sûr un nettoyage régulier, qui n’est pas toujours aisé.

Schéma principe light-shelf.

À noter qu’un store réfléchissant peut constituer une forme de light shelf, à un coût … plus abordable.

Performance du plafond associé

Le plafond est aussi un élément important influençant les performances des light shelves car il joue le rôle de distributeur de la lumière naturelle qui est redirigée vers l’intérieur par le light shelf. Il est donc important de combiner le light shelf avec un plafond très réfléchissant, de manière à obtenir une bonne efficacité. Les caractéristiques du plafond importantes au niveau de ce processus sont sa finition, liée à son degré de spécularité, sa couleur et sa pente.

Bien qu’un plafond présentant une surface spéculaire réfléchira plus de lumière dans le local, il faut savoir qu’il augmentera aussi les risques d’éblouissement à proximité du light shelf. La couleur du plafond doit être aussi claire que possible pour augmenter la réflexion de la lumière dans l’espace. Enfin, la pente du plafond a beaucoup d’importance : un plafond incliné vers le fond du local ou de forme arrondie incurvée vers l’intérieur de l’espace augmentera fortement la profondeur de pénétration de la lumière dans un local.


Efficacité lumineuse d’un light-shelf

Les simulations ci-dessous comparent la distribution lumineuse du module de base et celle du même local auquel sont ajoutés un vitrage en partie supérieure et un light shelf de 2 m de long, qui combine un light shelf intérieur (1 m) et un light shelf extérieur (1 m). Notons que le module avec light shelf présente une surface vitrée supplémentaire correspondant à 10 % de la surface du plancher. Ces calculs ont été réalisés pour une ouverture orientée au sud, le 15 juin à 13 huniv. par ciel clair avec soleil. Le light shelf combiné uniformise les niveaux d’éclairement dans la pièce.

Schéma efficacité lumineuse d'un light-shelf - 01.

Schéma efficacité lumineuse d'un light-shelf - 02.

Pour pouvoir comparer les apports donné spécifiquement par le light shelf, on peut partir d’un local uniquement équipé d’une bande vitrée en partie supérieure. La première simulation ci-dessous présente le cas d’un local éclairé uniquement par ce vitrage orienté au sud, le 15 juin à 13 huniv..

Schéma efficacité lumineuse d'un light-shelf - 03.

Les deux graphes suivants donnent les niveaux d’éclairement dans ce local suite à l’ajout d’un light shelf d’un mètre de long, placé respectivement à l’intérieur et à l’extérieur de la pièce.

Schéma efficacité lumineuse d'un light-shelf - 04.

Schéma efficacité lumineuse d'un light-shelf - 05.

La dernière simulation montre l’influence d’un light shelf combiné de 2 m de profondeur, centré au niveau du vitrage.

Schéma efficacité lumineuse d'un light-shelf - 06.

On observe que le light shelf extérieur augmente les niveaux d’éclairement du local tandis que le light shelf intérieur arrête le rayonnement solaire direct qui passe par le clerestory. Le light shelf combiné diminue faiblement l’éclairement en fond de pièce tout en uniformisant la distribution lumineuse de cet espace.


Les systèmes anidoliques

Les systèmes anidoliques sont des light shelves particuliers qui utilisent des réflecteurs spéculaires courbes, conçus pour profiter de la lumière diffuse du ciel. L’éblouissement potentiel provenant du rayonnement solaire direct doit être contrôlé par une protection solaire mobile à l’entrée du système anidolique.

Photo systèmes anidoliques.

Les deux photos ci-dessous présentent, sous un ciel couvert, les vues extérieures et intérieures de la façade sud du LESO où des réflecteurs anidoliques de 25 mètres de long ont été intégrés.

   

LESO – Architecte : D. Pagadaniel.

Le plafond anidolique est un système de distribution intensif de la lumière naturelle, adapté au ciel couvert. Il s’agit en fait d’un conduit lumineux intégré dans un plafond suspendu jusqu’au milieu de la pièce.

Schéma principe système anidolique.

Les éléments anidoliques sont placés aux deux extrémités du conduit lumineux : à l’extérieur pour collecter la lumière du ciel et à l’intérieur pour contrôler la direction de la lumière émise dans le local. Le problème des conduits lumineux traditionnels pour récolter la lumière du ciel réside dans leur section importante qui nécessite l’ajout d’un volume supplémentaire aux volumes habitables du bâtiment. L’adjonction d’un système anidolique permet de diminuer fortement la section du conduit lumineux par concentration de la lumière. Ce système permet donc d’augmenter le niveau d’éclairement dû à la lumière naturelle dans les espaces profonds, ce qui peut devenir considérable par ciel couvert, tout en occupant l’espace réduit d’un faux plafond.

Ces plafonds anidoliques ne sont toutefois pas encore disponibles sur le marché.


Annexe : les paramètres de simulation

Les simulations présentées ci-dessus proviennent du logiciel SUPERLITE, programme d’éclairage naturel faisant partie du progiciel ADELINE.

Elles sont toutes réalisées à partir d’un module de base de 7,2 m de profondeur, 4,8 m de largeur et 3 m de hauteur, éclairé par une fenêtre latérale de 4,58 m de large et de 1,13 m de haut, centrée horizontalement. Le plan de travail et le rebord inférieur de l’ouverture sont situés à 0,75 m du sol. La fenêtre couvre une aire de 5,2 m², ce qui correspond à 15 % de la superficie du plancher de ce local.

Schéma les paramètres de simulation.

Les simulations tiennent compte d’un double vitrage, dont le coefficient de transmission lumineuse est de 78 %. Cette vitre est placée en retrait de 0,15 m par rapport au plan de la façade. Le module simulé est situé en site parfaitement dégagé, sans élément d’ombrage. Les coefficients de réflexion des parois intérieures valent 15 % pour le sol, 45 % pour les murs et 70 % pour le plafond.

Les données météorologiques utilisées pour les calculs sont celles d’Uccle (Bruxelles) : 50,8° de latitude (nord), – 4,4° de longitude (est) et 100 m d’altitude. Le moment de la journée simulé est toujours précisé en fonction des heures universelles. Chaque fois qu’un paramètre de ce module de base a été modifié dans une simulation, le changement effectué est clairement précisé.

Finitions et protections superficielles de la toiture plate

Finitions et protections superficielles de la toiture plate

Les couches de protection assurent plusieurs rôles : protéger des rayonnements UV, améliorer l’aspect, réduire la température superficielle en cas d’ensoleillement.
On distingue

Les protections lourdes peuvent également servir de lestage et permettre la circulation.


Les protections légères

Les protections légères peuvent être de trois types.

Une couche de paillettes d’ardoise

Les paillettes sont uniquement appliquées sur les étanchéités bitumineuses. Elles peuvent être de couleurs différentes. Les couleurs foncées sont les plus courantes. Les paillettes sont directement appliquées sur les membranes en usine.

Protection par paillettes d’ardoise.

Une couche de peinture

La peinture est appliquée sur chantier. Pour éviter tout problème d’incompatibilité, il faut utiliser uniquement des peintures agréées par le fabricant des membranes.

La peinture est la seule protection légère qui peut être appliquée sur les membranes synthétiques qui dans la plupart des cas n’en nécessitent pas.

 

Protection par peinture.

Une feuille métallique

Certaines membranes en bitume modifié SBS sont revêtues en usine d’une feuille de cuivre ou d’aluminium gaufrée destinée à réfléchir les rayonnements solaires.
Le métal s’oxydant, l’effet réfléchissant disparaît au bout de quelques années.

Protection par feuille métallique.


Les protections lourdes

Les protections lourdes peuvent être de quatre types.

Du gravier

Le gravier peut être roulé ou concassé. Il est appliqué en une couche de 4 à 6 cm d’épaisseur, il a une granulométrie sélective qui peut varier de 16 à 45 mm. Il pèse ± 80 Kg/m² pour une épaisseur de 5 cm. La pente de la toiture ne peut pas être supérieure à 5 %.

Gravier roulé.

Dans les zones critiques, le lestage par gravier peut être insuffisant et doit parfois être complété par la pose de dalles en béton.

Les graviers roulés peuvent être déposés directement sur l’étanchéité.

Dans ce cas le taux de graviers cassés ne doit pas dépasser 15 % et ceux-ci doivent être uniformément répartis dans l’ensemble.

Les graviers concassés sont plus agressifs vis-à-vis des membranes.

Ils ne peuvent être posés que sur des membranes épaisses de type bitume modifié APP ou SBS armées d’un voile polyester. Une couche de protection intermédiaire constituée d’une natte de polyester ou de polypropylène, est conseillée sous le lestage. Cette couche est toujours nécessaire dans le cas d’une toiture inversée.

Des dalles

Les dalles peuvent être posées sur plots, ou sur une chape armée. Les dalles doivent être ingélives.

Dalles sur plots

Les dalles sont en général de grandes dimensions. Elles sont posées aux quatre coins sur des plots constitués de taquets réglables en hauteur ou de plaquettes en superposition.

Dalles sur plots.

L’embase des plots doit être suffisante pour qu’ils ne puissent s’imprimer dans les membranes bitumineuses sous l’effet du fluage par temps chaud.

Plots réglables à grande embase.

L’évacuation de l’eau se fait sous le dallage qui, de ce fait, sèche rapidement après la pluie. La hauteur des plots sera d’au moins 2.5 cm.

Régulièrement, certaines dalles doivent être enlevées pour permettre le nettoyage des boues accumulées sous le pavement. Il est parfois difficile de remettre correctement les dalles en place après démontage.

Les dalles ne doivent pas nécessairement suivre la pente du toit. Elles peuvent être posées horizontalement grâce au réglage possible des plots en hauteur.

Dalles drainantes

On peut également poser sur l’étanchéité (ou sur l’isolant, dans le cas d’une toiture inversée) des dalles drainantes. Il s’agit de dalles de grandes dimensions, largement rainurées en face inférieure. L’eau s’évacue par les rainures.

Dalles drainantes.

L’espace réservé à l’écoulement est plus réduit que dans le cas des dalles sur plots. Il risque de s’obstruer plus rapidement.

Étant donné l’absence de plots, le réglage vertical n’est pas possible. Il faut donc que la planéité de l’assise des dalles soit particulièrement régulière.

La grande dimension de la surface de contact diminue les risques d’écrasement et de fluage du support.

Dalles complexes isolantes

La dalle se compose d’un panneau isolant en mousse rigide de polystyrène extrudé sur lequel est ancrée une couche supérieure en béton renforcé de fibre.

Dalles complexes isolantes.

En fonction de la nature et de l’épaisseur du béton, ces dalles peuvent être circulables aux piétons, ou n’être accessibles que pour l’entretien de la toiture.

Les dalles sont posées librement sur la membrane d’étanchéité, les unes contre les autres. Ils peuvent être munis de rainures et languettes, ou pas.

La toiture ainsi constituée sera du type « toiture inversée » ou « toiture combinée ».

Dalles sur chape

Les dalles sont posées à plein bain de mortier sur une chape armée posée en indépendance de l’étanchéité.

Une couche de désolidarisation est placée entre l’étanchéité et la chape. Elle assure en même temps l’écoulement de l’eau d’infiltration au niveau de l’étanchéité.

Carrelage sur chape armée au-dessus de l’étanchéité.

La chape de pose doit être réalisée à l’aide de mortier ou de microbéton à sécrétions calcaires réduites.

Les dalles sur chape sont plus faciles à entretenir que les dalles sur plots, mais l’accès à la membrane pour une réparation est pratiquement impossible.

Des matériaux coulés en place : béton ou asphalte

Chape en mortier ou en béton coulé

Protection par chape armée.

Ce genre de protection peut se justifier lorsqu’il est nécessaire de protéger les couches sous-jacentes des sollicitations mécaniques importantes.

Cette chape subit des contraintes thermiques très importantes surtout la toiture est isolée et qu’elle ne bénéficie pas de la stabilité thermique du bâtiment. La chape doit donc être fractionnée et doit pouvoir glisser sur l’étanchéité. Les variations dimensionnelles seront résorbées dans des joints souples et étanches. Une feuille de glissement sera interposée entre l’étanchéité et la chape. Ces couches de protection seront découpées en zones de maximum 4 m de côté et assemblées entre elles au moyen de joints continus.

La protection doit être réalisée en microbéton à sécrétions calcaires réduites ou en béton à texture dense et présenter une épaisseur minimale de 50 mm.

Asphalte coulé

L’asphalte coulé est posé sur l’étanchéité en interposant une couche de séparation dont la fonction consiste à permettre l’évacuation des gaz qui se forment entre les membranes bitumineuses et l’asphalte lors de sa mise en place. Ces gaz proviennent du bitume réchauffé par la température de l’asphalte liquide.

Protection en asphalte.

Des joints de fractionnement doivent être prévus lorsque les dimensions de la toiture sont importantes.

Des pavements sur gravillon

Des pavés en béton de petit format sont posés sur une couche de gravier de granulométrie de 5 à 8 mm. La couche de gravier a une épaisseur d’environ 3 cm.

Attention !

Il doit être tenu compte du poids de la protection lourde lors du calcul de la résistance et de la flèche du support.

Le gravier et les dalles en pose libre (drainantes, sur plots, sur gravillon ou complexes isolants) rendent l’entretien, le contrôle et les réparations de l’étanchéité plus difficiles.

Ils permettent également la formation de poussière et la prolifération de végétaux.

Les matériaux coulés en place et les dalles sur chape ne permettent pas un accès à l’étanchéité sans détruire la couche de protection.

Bitumes

Bitumes

Les bitumes sont utilisés pour la fabrication des membranes d’étanchéité et pour le collage à chaud des différentes couches qui constituent une toiture plate : pare-vapeur, isolant, membrane d’étanchéité.

Ils entrent également dans la composition de l’asphalte.

Le bitume est un mélange visqueux noir ou brun foncé, d’hydrocarbures obtenu par distillation du pétrole.
On distingue


Les bitumes natifs

Comme leur nom l’indique, ces bitumes se trouvent à l’état naturel dans les couches géologiques.

Les bitumes de pénétration

Aussi appelés bitumes de distillation directe, ils sont obtenus industriellement par distillation de pétroles bruts après extractions des fractions plus légères comme l’essence, le mazout, les huiles.

Les bitumes oxydés

Aussi appelés bitumes soufflés, ils sont obtenus à partir de bitumes de pénétration, par adjonction d’huiles et insufflage d’air à haute pression.
Ils entrent dans la fabrication de membranes pouvant servir de sous-couche aux membranes bitumineuses d’étanchéité, et servent au collage à chaud.
Les différents types de bitumes oxydés sont identifiés par deux nombres :

  • Leur température moyenne de amollissement (en °C) testé selon la méthode « Ring and Ball ».
  • La profondeur de pénétration (en 1/10 mm) d’une aiguille dans les conditions de ce test.

On trouvera ainsi des bitumes 85/25, 95/25, 95/35, 100/15, 100/25, 105/35, 110/30, 115/15.

Les types les plus utilisés sont le 85/25 et le 110/30.

Pour fixer a membrane, on préférera le 110/30 qui se ramollit moins au soleil, et évite à la membrane de glisser.

Pour fixer l’isolant du 85/25 convient étant donné que le bitume est protégé de la chaleur par l’isolant.

Dans le cas du verre cellulaire, les fabricants d’isolant préconisent l’emploi du 100/25 qui reflue très aisément dans les joints, et se fige plus rapidement de sorte que les plaques d’isolant n’ont pas tendance à flotter dans le bitume.


Les bitumes modifiés

Ils sont également appelés bitume polymère.

Afin d’améliorer le comportement des bitumes à basse et haute température, et d’en augmenter la longévité, des polymères ont été additionnés aux bitumes soufflés.

Les bitumes modifiés qui entrent dans la composition des membranes d’étanchéité sont de deux types :

  • Les bitumes APP obtenus par adjonction de +/- 30 % de polypropylène atactique, qui ont des propriétés plastiques.
  • Les bitumes SBS obtenus par adjonction de +/- 12 % de caoutchouc styrène-butadiène-styrène qui ont des propriétés élastiques.

D’autres polymères font actuellement leur apparition dans la composition des bitumes améliorés.

Les bitumes modifiés pourraient également être utilisés comme produit de collage, mais leur coût est supérieur à celui du bitume oxydé dont les qualités sont suffisantes.

Isolants synthétiques

Isolants synthétiques


Les mousses synthétiques

La mousse de polyuréthanne (PUR)

Photo mousse de polyuréthanne (PUR).

Il s’agit de panneaux à base de mousse expansée de polyuréthanne.

Le polyuréthanne se caractérise par un pouvoir isolant élevé. Il résiste cependant mal à la chaleur, au feu et au rayonnement ultra-violet.

Les panneaux de polyuréthanne destinés aux toitures plates auront une densité volumique (ρ) au moins égale à 30 kg/m³. Ces panneaux sont surfacés d’un revêtement synthétique ou d’un voile de verre bitumé sur les deux faces, destinés à faciliter les liaisons avec les couches inférieures et supérieures.

La mousse de polyisocyanurate (PIR)

Il s’agit de panneaux à base de mousse expansée de polyisocyanurate.

Le polyisocyanurate se caractérise par un meilleur comportement au feu que le polyuréthane mais ses propriétés mécaniques sont plus faibles.

Les panneaux de polyisocyanurate destinés aux toitures plates sont surfacés d’un revêtement synthétique ou d’un voile de verre bitumé sur les deux faces, destinés à faciliter les liaisons avec les couches inférieures et supérieures.

La mousse de polystyrène expansé (EPS et EPS-SE)

Photo mousse de polystyrène expansé (EPS et EPS-SE).Photo mousse de polystyrène expansé, détail.

Il s’agit de panneaux à base de mousse expansée de polystyrène.

Le polystyrène expansé se caractérise par un retrait de naissance important. Il ne peut être exposé longtemps à une température supérieure à 70°C. Il résiste mal au feu. Il existe cependant des panneaux dont le comportement au feu est meilleur (qualité SE).

Les panneaux en polystyrène expansé destinés aux toitures plates sont recouverts sur les deux faces d’un voile de verre bitumé avec recouvrement au droit des joints.

La mousse de polystyrène extrudé (XPS)

Photo mousse de polystyrène extrudé (XPS).   Photo mousse de polystyrène extrudé, détail.

  

Il s’agit de panneaux à base de mousse extrudée de polystyrène.

Le polystyrène extrudé se caractérise par une structure cellulaire fermée et une surface d’extrusion qui empêchent l’absorption d’humidité. Son coefficient de dilatation thermique est très élevé. Il résiste mal au feu et à une exposition prolongée à une température supérieure à 75°C.

La mousse phénolique (PF)

Il s’agit de panneaux à base de mousse résolique à structure cellulaire fermée.

La mousse phénolique se caractérise par un bon comportement au feu et un pouvoir isolant très élevé.

Autres caractéristiques des mousses synthétiques

Les mousses synthétiques sont étanches à l’eau, faiblement perméables à la vapeur d’eau et très faiblement perméable à l’air.

Les isolants sous vide

Faisant partie de la toute nouvelle génération d’isolant, les isolants sous vide séduisent notamment par leurs performances thermiques impressionnantes, mais aussi par leur faible épaisseur.

Qu’est-ce qu’un isolant sous vide ?

Matériau très récent dans les pratiques de l’isolation en construction neuve ou en rénovation, l’isolant sous vide est également connu sous le nom de PIV (Panneau Isolant sous Vide).

Un isolant sous vide est généralement constitué d’une nano-poudre de silice emballée dans un film étanche et mis sous vide. Il faut préciser que ce type d’isolant est conçu pour être utilisé sur une surface plane. Selon les fabricants, ce type d’isolant est particulièrement recommandé pour l’isolation du sol, des toitures plates, ainsi que les terrasses et balcons.

Les avantages de l’isolant sous vide

Sa faible conductivité thermique

La première caractéristique que l’on connaît et qui distingue l’isolant sous vide des autres types d’isolants c’est bien sa performance en terme d’isolation grâce à sa faible conductivité thermique dont la valeur se trouve entre 0,0052 et 0,0070 W/m.K. Si on compare avec les isolants plus traditionnels comme la laine minérale (entre 0,031 et 0,045 W/m.K) ou le Polyuréthane (entre 0,022 et 0,028 W/m.K), l’isolant sous vide a une conductivité thermique 6 fois plus basse que la laine de roche et 4 fois plus basse que le Polyuréthane.

Sa faible épaisseur

Les isolants sous vide permettent également de gagner de l’espace par rapport aux isolants classiques. Comme sa conductivité thermique est faible, il suffit d’une faible épaisseur pour que l’isolation réponde aux exigences actuelles en matière de performance thermique.

Les inconvénients de l’isolation sous vide

Les isolants sous vide sont des matériaux très récents sur le marché. Il ne suffit pas juste de les adopter, il faut aussi savoir les poser et les utiliser pour qu’ils puissent être le plus efficaces possible.

Sa fragilité

Les panneaux d’isolants sous vide sont non seulement des matériaux récents, mais leur usage est encore en quelque sorte en phase expérimentale. L’installation de ce type d’isolant est actuellement plus complexe qu’une pose d’un isolant classique. La raison est sa fragilité qui requiert d’être particulièrement prudent lors de la pose. Cet isolant ne peut être troué, percé ou découpé, contrairement aux autres isolants rigides comme le polyuréthane ou le polystyrène expansé ou extrudé.

Son coût

Ces matériaux sont encore produits en petite quantité par rapport aux isolants classiques. Qui plus est, la conception du panneau d’isolant sous vide est assez technique. Dès lors, le coût de tels matériaux s’avère actuellement être très élevé.


Les isolants minces réfléchissants

Photo isolants minces réfléchissants.  Photo isolants minces réfléchissants.  Photo isolants minces réfléchissants.

Présents sur le marché belge depuis plusieurs années, les produits minces réfléchissants sont sujets à controverse. Certains fabricants annoncent des performances thermiques équivalentes à celles d’isolants traditionnels d’épaisseur élevée, qui seraient atteintes grâce à l’effet réfléchissant des couches superficielles, voire même parfois internes au produit mince. Les performances réelles sont-elles celles annoncées ? Nous reprenons in extenso, le rapport du CSTC qui a fait le point sur la question.

1. Description et principe

Un produit mince réfléchissant (PMR), également dénommé isolant mince réfléchissant, thermoréflecteur ou multiréflecteur, est constitué, dans sa partie centrale, d’une mince couche de matériau (mousse plastique, film de polyéthylène emprisonnant des bulles d’air ou une matière fibreuse) recouverte sur une ou deux faces de feuilles réfléchissantes (feuilles d’aluminium ou films aluminisés). Certains produits sont de types multicouches, les couches précitées étant séparées par des feuilles réfléchissantes intermédiaires. L’épaisseur totale est généralement comprise entre 5 et 30 mm.

Vu son épaisseur, un PMR possède une résistance thermique intrinsèque faible. Pour pouvoir bénéficier de l’effet réfléchissant (basse émissivité) des couches superficielles, le produit doit être placé en vis-à-vis d’une, ou mieux, de deux lames d’air non ventilées. La basse émissivité des couches superficielles a pour effet de réduire le transfert de chaleur par rayonnement thermique et d’augmenter ainsi la résistance thermique de la ou des lames d’air; pour être efficaces, ces dernières ne peuvent toutefois pas être ventilées.

Les PMR sont principalement utilisés en rénovation pour l’isolation thermique des toitures, des planchers et plafonds, des murs, des portes de garage, etc.

2. L’étude menée au CSTC

Soucieux d’apporter une réponse scientifique aux demandes répétées du secteur, le CSTC, en collaboration avec la Région wallonne, le SPF « Économie », les universités de Liège et de Louvain-La-Neuve ainsi que certains fabricants de PMR, a engagé une campagne de mesures – récemment achevée – sur plusieurs produits minces réfléchissants ainsi que sur un isolant traditionnel témoin afin de déterminer leurs performances thermiques en période hivernale.

La méthodologie suivie, établie sur la confrontation d’essais réalisés en laboratoire, mais aussi dans des conditions extérieures réelles, a porté sur des produits scrupuleusement mis en œuvre dans l’état de leur fourniture, c’est-à-dire dans des conditions optimales (pas d’essai de vieillissement envisagé).

La valeur mesurée de la résistance thermique intrinsèque d’un PMR varie, selon les produits, de 0,2 à 0,6 m²K/W, celle de l’émissivité des couches superficielles de 0,05 à 0,20.

Posés de façon optimale, entre deux lames d’air non ventilé de 2 cm d’épaisseur, les produits présentent, suivant leur type et le sens du flux thermique les traversant, une résistance thermique totale (résistance thermique intrinsèque du PMR et résistance thermique des deux lames d’air) mesurée entre 1,0 et 1,7 m²K/W. Le tableau 1 illustre les résultats d’un essai consistant à mesurer simultanément, en conditions extérieures réelles, les performances thermiques de différents composants, à savoir :

  • composant n° 1 : PMR 1 associé à deux lames d’air non ventilées de 2 cm d’épaisseur.
  • Composant n° 2 : PMR 2 associé à deux lames d’air non ventilées de 2 cm d’épaisseur.
  • Composant n° 3 : PMR 1 associé à deux lames d’air non ventilées de 1 cm d’épaisseur.
  • Composant n° 4 : isolant traditionnel en laine minérale de 10 cm d’épaisseur.
  • Composant n° 5 : isolant traditionnel en laine minérale de 20 cm d’épaisseur.
COMPOSANT N°1 N°2 N°3 N°4 N°5
Résistance thermique [m²K/W] Valeur mesurée 1,72 1,73 1,43 3,12 6,34
Valeur calculée 1,63 1,49 1,29 3,11 6,21
Tableau 1 : Résistance thermique mesurée en conditions extérieures réelles et calculée selon la norme NBN EN ISO 6946.

Les performances thermiques obtenues sont sensiblement moins optimistes que celles avancées par certains fabricants. Même posés de façon optimale, les PMR associés à deux lames d’air non ventilées de 2 cm d’épaisseur peuvent prétendre, tout au plus, égaler une isolation en laine minérale de 4 à 6 cm d’épaisseur. En présence d’une seule lame d’air non ventilée ou d’une lame d’air d’épaisseur inférieure à 2 cm, les performances sont encore réduites.

Les valeurs mesurées de la résistance thermique ont été comparées à des valeurs déterminées selon la méthode de calcul de la résistance thermique des composants du bâtiment proposée dans la norme belge NBN EN ISO 6946 (qui sera intégrée à la nouvelle version de la norme NBN B 62-002 en préparation). Le cas d’une lame d’air délimitée par une surface réfléchissante (à basse émissivité) y est traité. L’écart moyen entre les valeurs de résistance thermique calculées selon la norme et les valeurs mesurées au cours de cette étude, de l’ordre de 0,1 m²K/W, est inférieur à 6 %, les intervalles de fiabilité de la mesure et du calcul se chevauchant.

Le rapport complet de cette étude sera prochainement disponible sur le site Internet du CSTC.

3. Mise en œuvre

Quoique nous n’ayons pas pu vérifier les performances des PMR dans des réalisations pratiques autres que celles retenues lors des essais, nous avons essayé d’examiner les répercussions que l’intégration de ces produits pourrait avoir sur le comportement des parois et ce, à la lumière des résultats de la recherche et de nos connaissances dans le domaine de l’hygrothermie. Dans cet article, seule l’application du PMR en toiture sera développée.

3.1 Règlements thermiques régionaux

Dans les différentes Régions du pays, les valeurs U (coefficients de transmission thermique calculés sur la base de la norme NBN B 62-002) des parois (ou parties de paroi) nouvellement construites ou rénovées appartenant à la surface de déperdition calorifique du bâtiment ne peuvent dépasser certaines valeurs limites.

Pour les toitures, par exemple, la valeur Umax à considérer est de 0,4 W/m²K en Région wallonne et bruxelloise (et prochainement également en Région flamande).

3.2 Les PMR selon diverses configurations

Appliqué en toiture sous les chevrons ou sur ceux-ci – en y associant, dans ce dernier cas, une fonction de sous-toiture –, le PMR ne sera pleinement exploité que s’il peut être placé en vis-à-vis d’une, ou mieux, de deux lames d’air non ventilées d’une épaisseur au moins égale à 2 cm.

Selon la norme belge NBN EN ISO 6946 définissant la méthode de calcul à adopter pour déterminer la résistance thermique d’une paroi, une lame d’air horizontale peut être considérée respectivement comme non ventilée ou faiblement ventilée lorsque la surface totale des fuites d’air vers l’extérieur n’excède pas 500 mm² (ex. fente de 0,5 mm sur une longueur de 1 m) ou 1500 mm² par m² de surface.

De telles exigences sont particulièrement difficiles à garantir, en particulier lorsque le PMR est appliqué sur les chevrons et qu’il remplit le rôle de sous-toiture. Posés perpendiculairement aux chevrons, les lés ne pourront être collés correctement entre eux que sous réserve de disposer d’un support continu sur lequel le produit est susceptible de s’appuyer. Les raccords en pied de versant, au faîte ainsi qu’au droit des rives seront également autant de détails dont l’étanchéité à l’air devra être particulièrement soignée. Si les recommandations précitées sont respectées, il convient en outre de veiller aux performances d’étanchéité à l’air et à la vapeur d’eau du côté intérieur du complexe toiture afin d’éviter tout risque de condensation interne, considérant que la perméabilité à la vapeur d’un PMR posé de cette manière, est très faible (µd supérieur ou égal à 50 m selon certains fabricants; cf. Infofiche n° 12).

Coupe

PMR posé sur les chevrons.

Couverture + PMR + lame d’air faiblement ventilée + finition intérieure.

Application

PMR comme sous-toiture :

  • 1 lame d’air fortement ventilée au-dessus du PMR
  • 1 lame d’air faiblement ventilée sous le PMR

Valeur U : 1,66 W/m²K

Commentaires

  • Étanchéité à l’air à assurer simultanément au niveau du PMR et de la finition intérieure.
  • Difficulté de garantir une lame d’air, même faiblement ventilée, entre les chevrons compte tenu notamment des nombreuses fuites d’air inévitables aux raccords.
  • Risque de condensation interne à la sous-face du PMR dans le cas d’un climat intérieur relativement humide (classes de climat III et IV).

Coupe

PMR posé sous les chevrons.

Couverture + sous-toiture éventuelle + lame d’air faiblement ou fortement ventilée + PMR + lame d’air de 2 cm, non ventilée ou faiblement ventilée + finition intérieure.

Application

Avec sous-toiture :

  • 1 lame d’air faiblement ventilée au-dessus du PMR
  • 1 lame d’air non ventilée (a) ou faiblement ventilée (b) sous le PMR

Valeur U : 0,63 W/m²K (a)
1,66 W/m²K (b)

Avec ou sans sous-toiture :

  • 1 lame d’air fortement ventilée au-dessus du PMR
  • 1 lame d’air non ventilée (a) ou faiblement ventilée (b) sous le PMR

Valeur U : 0,73 W/m²K (a)
1,66 W/m²K (b)

Commentaires

  • Étanchéité à l’air à assurer simultanément au niveau du PMR et de la finition intérieure. La réalisation étanche des raccords du PMR posé du côté intérieur et des autres détails peut se faire avec davantage de soin.
  • Difficulté de garantir une lame d’air faiblement ventilée entre les chevrons. La situation envisageant une ventilation de la lame d’air au-dessus du PMR est plus représentative d’une situation réelle, même en présence d’une sous-toiture.
  • Risque de condensation interne dans le cas d’un climat intérieur relativement humide (classes III et IV).

 

3.2.1 Le PMR comme seule isolation thermique d’un versant de toiture

Le tableau 2 résume différentes configurations possibles lorsque le PMR est utilisé comme seul isolant. Sa résistance thermique intrinsèque ainsi que l’émissivité de ses couches superficielles ont été choisies volontairement sur la base des meilleurs résultats obtenus lors de la campagne de mesures (e = 0,05 – RPMR = 0,6 m²K/W).

Selon la norme NBN EN ISO 6946, lorsque la résistance thermique totale des couches situées entre la lame d’air faiblement ventilée et l’ambiance extérieure est supérieure à 0,15 m²K/W, il y a lieu de plafonner cette valeur à 0,15 m²K/W.

Les valeurs U indiquées au tableau 2 ont été déterminées en partie courante de l’ouvrage. Elles se situent entre 1,66 et 0,63 W/m²K, selon que le PMR est en présence d’une ou deux lames d’air et que ces dernières sont ventilées, faiblement ventilées ou non ventilées.

Nous constatons que l’usage du PMR comme seul isolant thermique ne permet pas de satisfaire aux exigences des réglementations thermiques en vigueur dans les trois Régions du pays.

3.2.2 Le PMR comme complément d’une isolation thermique traditionnelle

Disposé en complément d’une isolation traditionnelle, le PMR permet d’augmenter la résistance thermique d’une paroi existante, surtout s’il est associé à une ou deux lames d’air non ventilées. Dans les configurations proposées au tableau 3, le PMR est appliqué selon ce principe, en tenant compte des réserves formulées ci-avant et en considérant une épaisseur de 6 cm d’isolant traditionnel de conductivité thermique non certifiée égale 0,045 W/mK (ex. laine minérale, polystyrène expansé, …).

Le PMR associé à une, voire deux lames d’air non ventilées confère une résistance thermique complémentaire (par rapport à celle du matériau isolant traditionnel) comprise entre 0,6 et 1,5 m²K/W. S’il est posé du côté intérieur avec soin (en veillant à l’étanchéité des raccords), il peut être intéressant de lui adjoindre une fonction d’étanchéité à l’air et à la vapeur. Sa résistance élevée à la diffusion de vapeur, présentée comme un atout dans ce cas, le pénalise toutefois lorsqu’il est utilisé comme sous-toiture. Il est par conséquent nettement moins recommandable dans cette dernière configuration.

Coupe

PMR posé sur les chevrons.

Couverture + PMR + isolant traditionnel + pare-vapeur + finition intérieure.

Application

PMR comme sous toiture : aucune lame d’air non ventilée ou faiblement ventilée Valeur U : 0,44 W/m²K.

Commentaires

  • Étanchéité à l’air à assurer au niveau du complexe toiture.
  • Absence de lame d’air entre le PMR et l’isolant traditionnel disposé entre les chevrons (pour limiter le risque de convection). La résistance thermique apportée par le PMR se limite à celle du PMR seul (sans lames d’air).
  • Risque de condensation sous le PMR compte tenu de sa faible perméabilité à la vapeur. Performances d’étanchéité à l’air et à la vapeur élevées à garantir du coté chaud, ce qui peut nécessiter un support continu pour la pose du pare-vapeur (cf. Infofiche n° 12).
Coupe

PMR posé sous les chevrons.

Couverture + sous toiture + isolant traditionnel (sans pare-vapeur) + lame d’air non ventilée + PMR + lame d’air non ventilée + finition intérieure.

Application

Le PMR fait office de pare-vapeur :

  • 1 lame d’air non ventilée au-dessus du PMR
  • 1 lame d’air non ventilée sous le PMR

Valeur U : 0,32 W/m²K

Commentaires

  • Étanchéité à l’air et à la vapeur à assurer au niveau du PMR et étanchéité à l’air à assurer au niveau de la finition intérieure. Soin à accorder à l’étanchéité des raccords et autres détails.
  • Configuration optimisant l’usage du PMR.

Tableau 3 : Configurations possibles pour les PMR utilisés en complément d’un isolant traditionnel.

4. Conclusions

Même posé de façon optimale, un PMR associé à deux lames d’air non ventilées de 2 cm d’épaisseur (soit une épaisseur totale de ≈ 5 à 6 cm) peut tout au plus prétendre égaler une isolation traditionnelle (laine minérale, polystyrène expansé, …) d’épaisseur équivalente, soit 4 à 6 cm. Lorsque les lames d’air sont ventilées, même faiblement, les performances sont encore réduites. Or, l’étanchéité à l’air est souvent très difficile à garantir en pratique, surtout si le PMR est posé sur les chevrons. De manière générale, notons que la plupart des toitures traditionnelles sont aujourd’hui conçues en évitant d’y intégrer des lames d’air pouvant favoriser les échanges convectifs.

Posés de manière correcte en complément d’un isolant traditionnel, ils peuvent contribuer à améliorer la performance thermique totale de l’ouvrage, mais ne peuvent à eux seuls satisfaire aux exigences réglementaires. Le cas échéant, leur faible perméabilité intrinsèque à la vapeur d’eau les prédispose naturellement à être utilisés comme pare-vapeur et non comme sous-toiture.

Une évaluation complète des performances thermiques de ce type de produit requiert une étude de la pérennité des propriétés thermiques et en particulier de l’émissivité de la couche superficielle du produit, sujette au vieillissement (salissure, oxydation).

Rappelons enfin qu’à l’inverse de la plupart des isolants traditionnels, les PMR ne disposent pas, à ce jour, d’agrément technique en Belgique.

N’hésitez pas également à consulter notre page consacrée aux isolants biosourcés.

Vitrage à haute résistance

Vitrage à haute résistance

Parmi les vitrages à haute résistance, on distingue :

Ces vitrages peuvent être montés en double vitrage avec un verre classique ou présentant des propriétés de réflexion ou d’absorption. Ils peuvent prendre place dans un système équipé d’une couche basse émissivité ou de gaz acoustique.


Le verre trempé

Pour augmenter la résistance du verre à la flexion lors de sollicitations d’origines thermiques et/ou mécaniques, on met ses deux faces en précontrainte sur une fine épaisseur au cours d’un traitement appelé la trempe du verre.

Lorsque le verre est soumis à un effort de flexion, les efforts de traction induits dans une de ses faces vont progressivement compenser la compression présente dans le verre. Ce n’est qu’au-delà de ce stade que la glace risquera de se briser.

Il existe deux types de trempe :

La trempe thermique

La glace est chauffée jusqu’à une température de 700°C et se dilate sous l’action de la chaleur. Elle est ensuite refroidie brusquement par pulsion d’air. De ce fait, la surface refroidit et se fige avant la partie centrale. Lorsque cette dernière se refroidit à son tour, elle tire sur les deux faces qui l’entourent induisant des contraintes de compression permanentes sur une fine épaisseur près de la surface.

Schéma principe trempe thermique.

La trempe chimique

La mise en compression de la surface de la glace se réalise en remplaçant un partie des ions de sodium du verre par de ions de potassium plus volumineux. Ces ions proviennent d’un sel fondu mis en contact avec le verre. Comme l’espace dans lequel ils vont s’introduire est légèrement restreint, leur insertion entre les autres ions va créer des efforts de compression.
L’épaisseur de la zone en compression est plus fine que par le procédé de la trempe thermique, ce qui permet d’appliquer ce procédé à des verres très minces. Ce type de verre n’est pas utilisé dans le bâtiment.

Schéma principe trempe chimique.

Quel que soit le type de trempe, les verres trempés ne peuvent plus être coupés, sciés ou percés après l’opération de trempe.

Caractéristiques physiques

  • Résistance à la traction (50 N/mm²) cinq fois plus élevée qu’un verre classique (10 N/mm²).
  • Très bonne résistance aux chocs thermiques : ils peuvent résister à un différentiel de température de 200°C.
  • Mode de rupture tel qu’il se brise en morceaux très petits aux arêtes émoussées, limitant le risque de blessure.

Illustration caractéristiques physiques verre trempé

La pose

Les verres trempés peuvent être montés en double vitrage avec un vitrage classique. On veillera à poser le verre trempé du coté intérieur de façon à limiter les risques de blessure par de grands éclats vers les personnes présentes dans les locaux.

Caractéristiques énergétiques et lumineuses

  • Le procédé de trempe ne modifie pas les valeurs du coefficient de transmission thermique U du vitrage.
  • Par contre, le procédé de trempe peut donner lieu à des dessins colorés dus à des phénomènes d’interférence appelés  »fleurs de trempe » modifiant quelque peu l’aspect superficiel et les propriétés de réflexion du vitrage. De plus pour les verres trempés verticalement, les pinces provoquent des déformations appelées  »point de trempe ».

Le verre durci

Il s’agit d’un verre qui a subit un traitement thermiques semblables à la trempe thermique mais pour lequel le niveau de contraintes obtenu est inférieur à celui du verre trempé, car le refroidissement a été réalisé de manière plus lente.

Les verres durcis ne peuvent plus être coupés, sciés ou percés après l’opération de durcissement.

Caractéristiques physiques

  • Une valeur de résistance à la rupture par flexion supérieure à celle du verre recuit mais qui sera précisée au cas par cas par un agrément technique.
  • Une bonne résistance aux chocs thermiques : ils peuvent résister à un différentiel de température de 100°C.
  • Un mode de rupture en étoile entraînant des morceaux pouvant provoquer des blessures. Dès lors, les verres durcis ne sont jamais considérés comme des verres de sécurité !

Illustration caractéristiques physiques verre durci.

Casse d’un verre durci.

Caractéristiques énergétiques et lumineuses

  • Le procédé de durcissement ne modifie pas les valeurs du coefficient de transmission thermique U du vitrage.
  • Par contre, le procédé de durcissement peut donner lieu à des dessins colorés dus à des phénomènes d’interférence modifiant quelque peu l’aspect superficiel et les propriétés de réflexion du vitrage.

Le verre feuilleté

Schéma principe verre feuilleté.

Le verre feuilleté est un assemblage constitué d’au moins deux feuilles de verre, liés intimement sur toute leur surface par un intercalaire.
Celui-ci a pour fonction de coller les feuilles de verre tout en donnant au produit fini des performances supplémentaires. Ces performances peuvent être la limitation du risque de blessure en cas de bris, la protection contre l’effraction, la protection contre les armes à feu et les explosions, la protection contre l’incendie, l’isolation acoustique, la décoration, …

Selon le type de performances recherchées, l’intercalaire peut être :
  • un film plastique,
  • une résine

On distingue donc :

Le verre feuilleté avec film plastique en butyral de polyvinyle (PVB) :

Deux feuilles de verre sont liés intimement sur toute leur surface par un film plastique en butyral de polyvinyle (PVB).

Caractéristiques physiques

Sa fonction première est la protection contre l’effraction et la sécurité.

Chaque film a une épaisseur de 0,38 mm. C’est principalement le nombre de films qui détermine le niveau de résistance, et moins l’épaisseur du vitrage.

Le tableau suivant reprend la valeur indicative du nombre de films en PVB à utiliser en fonction du niveau de protection souhaité :

Type de protection Degré de protection Nombre de films de PVB
Protection contre le vandalisme Protection contre le vandalisme non organisé. 3
Retardateur d’effraction Protection contre l’effraction organisée. 4
Protection de haut niveau. 6
Très haut niveau de protection contre toutes formes d’agressions à arme blanche. Compositions multifeuilletées.

Ce vitrage apporte également une amélioration au niveau de l’acoustique qui est optimale lorsque le vitrage est composé de deux feuilles de verre et de deux films de PVB de 0,38 mm d’épaisseur chacun.

Mode de rupture

Il est essentiellement utilisé comme verre de sécurité. En effet, en cas de bris, l’adhérence verre-PVB permet aux fragments du vitrage cassé de rester en place (pendant un certain temps au moins ou jusqu’à un niveau de charge déterminé).

A gauche : verre recuit, à droite : verre feuilleté.

La nomenclature

La nomenclature de ces vitrages se fait au moyen de 2 chiffres indiquant l’épaisseur des différentes feuilles de verre en mm, suivis d’un point et d’un chiffre donnant le nombre de films en PVB.

Exemple.

66.2 correspond à deux feuilles de verre de 6 mm séparées par deux films de PVB de 0,38 mm d’épaisseur chacun.

4/12/66.2 correspond à un double vitrage composé d’un vitrage feuilleté 66.2 , d’une lame d’air de 12 mm et d’un verre simple de 4 mm.

La pose

Lors de la pose d’un double vitrage comprenant un verre feuilleté. On veillera à poser le verre feuilleté du coté intérieur de façon à limiter les risques de blessure par éclats vers les personnes présentes dans les locaux.

Les vitrages à intercalaire en résine coulée :

Il s’agit d’une couche de résine de 1,0 à 2,0 mm polymérisée entre deux feuilles de verre.

Caractéristiques physiques

Ces vitrages ont été développés dans le but d’améliorer l’isolation acoustique. La résine ayant un module d’élasticité plus faible que le PVB, elle permet d’obtenir des amortissements plus importants des vibrations sonores. L’épaisseur de la résine influence directement le niveau d’isolation acoustique.

La présence de la résine n’améliore pas leur résistance à la flexion, dès lors les vitrages feuilletés à résine coulée ne se prêtent pas à la protection anti-effraction, mais ils peuvent être utilisés en toiture car en cas de bris de vitre, l’adhérence verre-résine permet aux fragments du vitrage cassé de rester en place.

La nomenclature

La nomenclature de ces vitrages se fait au moyen de 2 chiffres indiquant l’épaisseur des différentes feuilles de verre en mm, suivis d’un chiffre donnant l’épaisseur de l’intercalaire en résine coulée (RC).

Exemple.

Un vitrage composé de deux verre de 5 mm et d’une couche de résine coulée de 1,5 mm est dénommé : 55.1,5 RC

Les vitrages à intercalaire en PVB amélioré pour l’acoustique, appelé PVBa :

Le PVBa est un type de film PVB qui a été conçu pour se rapprocher des caractéristiques acoustiques des verres feuilletés avec résine, tout en conservant le niveau de performances de sécurité et de résistance à l’effraction des PVB classiques.

Remarque.
Par rapport à un simple vitrage, l’isolation acoustique d’un verre feuilleté est surtout accrue dans la zone autour de la fréquence critique des feuilles de verres (3 200 Hertz). ce puits d’isolation acoustique est limité par l’amortissement des vibrations apportées par l’intercalaire. Cet effet est plus marqué pour la résine et le PVBa. De plus, dans ces cas, le puits de résonance est décalé vers les hautes fréquences.
L’effet global est perceptible essentiellement pour Rw + C, moins pour Rw + Ctr.


Le verre armé

Photo verre armé.

Fragmentation du verre armé.

Il s’agit d’un verre dans lequel ont été incorporés, au moment de la fabrication, des fils métalliques destinés à retenir les morceaux de verre en cas de bris mais ne participant pas à la résistance mécanique.
La résistance du verre armé est inférieure à celle du verre non armé, car le treillis déforce la résistance intrinsèque du verre.

De plus, étant donné la présence de l’armature, le verre armé ne peut être trempé. Son utilisation en verre feuilleté ou en double vitrage est déconseillée.

Ce type de vitrage est à proscrire comme produit de sécurité évitant les chutes de personnes ou les blessures car sa fragmentation ne répond pas aux exigences en la matière.

Vitrage permettant le contrôle solaire

Vitrage permettant le contrôle solaire

Remarque.

Le contrôle du facteur solaire a une influence sur la transmission lumineuse d’un vitrage; toutes les combinaisons ne sont pas possibles.

En effet, le rayonnement visible forme la moitié du spectre solaire.

Spectre solaire.

Ainsi, le facteur solaire ne peut être inférieur à la moitié de la transmission lumineuse; cela correspond à la zone supérieure rouge du graphique ci-dessous, qu’il n’est donc pas possible d’atteindre.

La zone verte n’est pas intéressante car elle diminue la quantité de lumière naturelle qui peut entrer dans le bâtiment sans diminuer la quantité de gains solaires.
Et ce n’est que très récemment que les fabricants ont mis sur le marché des vitrages dont la transmission lumineuse atteint le double du facteur solaire.


Le double vitrage à verre clair + verre réfléchissant

Lorsque l’énergie solaire est interceptée par une paroi, une partie est réfléchie vers l’extérieur, une partie est absorbée par les matériaux, une partie est transmise à l’intérieur.

Simple vitrage et double vitrage.

Les facteurs énergétiques :
TE : facteur de transmission directe du vitrage, RE : facteur de réflexion directe, AE : facteur d’absorption directe, FS : facteur solaire de transmission totale d’énergie à travers le vitrage.

Le verre réfléchissant est conçu de façon à augmenter la fraction d’énergie solaire incidente réfléchie et d’en diminuer ainsi la part transmise.

La proportion entre l’énergie émise vers l’extérieur et vers l’intérieur dépend, entre autres, de la vitesse du vent et des températures de l’air extérieur et de l’air intérieur.

La propriété réfléchissante est obtenue par un dépôt d’une ou de plusieurs couches à base d’oxydes métalliques sur le vitrage, le plus souvent sur une seule face du verre et à l’intérieur du double vitrage (en position 2) de façon à réfléchir les rayons lumineux avant qu’ils ne pénètrent dans la couche d’air.

Ces couches peuvent être de plusieurs natures :

  • Des couches pyrolithiques à base d’oxydes métalliques déposées sur un float ou un verre absorbant, ces couches peuvent être placées en position 1 ou 2.
  • Des couches sous vide à base d’oxydes métalliques ou de métaux. Ces couches étant plus fragiles, elles sont obligatoirement placées à l’intérieur du double vitrage en position 2.
  • Des films adhésifs réfléchissants. Un film est apposé de façon indélébile (le décollement du film est possible mais très difficile) sur une face du vitrage (généralement à l’intérieur). Cette technique est utilisée en rénovation.

Facteurs énergétiques et lumineux

L’action sélective des métaux nobles utilisés dans les couches réfléchissantes a pour effet :

  • D’empêcher la chaleur solaire de pénétrer dans le bâtiment par réflexion du rayonnement solaire infrarouge et ultraviolet, non perceptible à l’œil, mais représentant respectivement 43 % et 3 % de l’énergie solaire.
    Les vitrages réfléchissants sont caractérisés par un facteur solaire FS variant de 0.10 à 0.63 contre 0.78 à 0.81 pour un verre clair.
  • De refléter en même temps la lumière, c’est-à-dire le rayonnement visible du spectre solaire, entraînant une transmission lumineuse plus faible que celle des vitrages clairs.
    Les vitrages réfléchissants ont un facteur de transmission lumineuse TL compris entre 0.07 et 0.66 contre 0.65 et 0.76 pour un verre clair.
  • De ne pas modifier coefficient de transmission thermique U, qui est le même, pour un double vitrage réfléchissant, que celui d’un double vitrage classique.

Les fabricants tentent de plus en plus d’obtenir le meilleur compromis entre la part d’énergie réfléchie et la part de lumière transmise.

Exemple : Les figures suivantes illustrent le principe ci-dessus en comparant les courbes de transmission du spectre solaire à travers un vitrage clair, un vitrage réfléchissant gris et un vitrage réfléchissant argenté.

Le vitrage clair

TL = 80 %    FS = 76 %

Le vitrage réfléchissant bleu

 TL = 48 %    FS = 33 %     RE = 32 %     AE = 38 %

Le vitrage réfléchissant argenté

TL = 43 %    FS = 25  %     RE = 50 %     AE = 28 %

Légende :

Le rayonnement visible du spectre solaire (la lumière) transmis par le vitrage.
Le rayonnement solaire infrarouge et ultraviolet, non perceptible à l’oeil, transmis par le vitrage.
L’énergie solaire totale incidente.

L’efficacité sélective du vitrage réfléchissant argenté permet de laisser passer une grande partie de la lumière (TL = 43 %) tout en stoppant quasi complètement le rayonnement infrarouge (FS = 25 %). Par rapport à un vitrage isolant classique, il laisse passer trois fois moins de chaleur solaire en réduisant la transmission lumineuse de 50 %.
On remarque qu’un vitrage réfléchissant est toujours absorbant (AE) dans une certaine mesure.

Remarque : il existe actuellement des vitrages réfléchissants non colorés dont l’aspect est neutre !

Précautions

  • Les verres réfléchissants sont, comme les verres absorbants, sujet à la casse thermique. Des précautions sont à prendre pour éviter les surchauffes.
  • Ces verres peuvent être clairs ou teintés (bronze, gris, argenté, vert, bleu…) conférant au vitrage des propriétés de réflexion énergétiques et lumineuses très diverses.
  • Ces vitrages réfléchissent toujours la lumière provenant du milieu le plus lumineux. Dès lors le soir, c’est l’éclairage artificiel des locaux qui sera réfléchi vers l’intérieur, la vue vers l’extérieur n’est plus possible.

Vitrages composés

Le vitrage absorbant et réfléchissant : associe les deux propriétés au sein d’un même vitrage. Une couche d’oxyde métallique est simplement déposée sur un verre absorbant.

Le vitrage basse émissivité et réfléchissant :

Il confère au vitrage un double intérêt :

  • Réduire l’intensité du rayonnement solaire, grâce à une couche d’oxydes métalliques placée sur la face 2, qui réfléchit l’énergie solaire avant qu’elle ne pénètre dans la couche d’air. Le facteur solaire du vitrage sera fonction de la nature de la couche réfléchissante.
  • Une couche basse émissivité, placée en face 3, réfléchit le rayonnement de chaleur vers l’intérieur. Ces vitrages auront un coefficient de transmission thermique nettement amélioré.

Certains films dits « à basse émissivité » associent les deux propriétés au sein d’un même film. Leur application permet une diminution des pertes en énergie au travers d’un vitrage pouvant aller jusqu’à 30 %.

Données

Pour connaitre les principales caractéristiques des différents types de vitrages.

Le double vitrage à verre clair + verre absorbant

Lorsque l’énergie solaire est interceptée par une paroi, une partie est réfléchie vers l’extérieur, une partie est absorbée par les matériaux, une partie est transmise à l’intérieur.

Simple vitrage et double vitrage.

Les facteurs énergétiques :
TE : facteur de transmission directe du vitrage, RE : facteur de réflexion directe, AE : facteur d’absorption directe, FS : facteur solaire de transmission totale d’énergie à travers le vitrage.

Le verre absorbant est conçu de façon à absorber une partie de l’énergie solaire incidente avant de l’émettre vers l’intérieur et l’extérieur sous forme d’infrarouge.

La proportion entre l’énergie émise vers l’extérieur et vers l’intérieur dépend, entre autres, de la vitesse du vent et des températures de l’air extérieur et de l’air intérieur.

Les verres absorbants sont des verres teintés dans la masse (bronze, gris, vert, rose, bleu…) par adjonction d’oxydes métalliques à la composition. Ils sont placés coté extérieur de façon à réémettre vers l’extérieur le rayonnement le plus tôt possible.

Facteurs énergétiques et lumineux

L’action sélective des verres absorbants a pour effet :

  • De diminuer le facteur solaire FS du vitrage, selon la couleur et l’épaisseur du verre. Celui-ci pourra varier de 0,46 à 0,67; ce qui correspond à une énergie solaire absorbée et réémise vers l’extérieur variant de 54 % à 33 %. À titre de comparaison, le facteur solaire varie de 0,78 à 0,81 pour un verre clair.
  • De diminuer le coefficient de transmission lumineuse TL. Celui-ci est compris entre 0,36 et 0,65 contre 0,65 et 0,76 dans le cas d’un double vitrage classique.
  • De ne pas modifier le coefficient de transmission thermique U, qui est le même que celui d’un double vitrage classique.

Ces vitrages offrent une large gamme de coloris conférant aux vitrages des propriétés d’absorption très diverses. On constate que les vitrages de couleur bleu claire ou verte, ont un coefficient de transmission lumineuse plus élevé que les vitrages teintés traditionnels de couleur bronze ou grise mais un facteur solaire moins élevé que ces derniers.

Les vitrages absorbants sont toujours réfléchissants dans une certaine mesure.

On constate que plus le taux d’absorption est grand, plus le vitrage aura un effet matifié et moins les caractéristiques de réflexion seront grandes.

Exemple de répartition de l’énergie transmise, réfléchie et absorbée pour 2 types de vitrages :

Vitrage clair non traité.

Vitrage absorbant.

Exemple de teintes et de répartition des caractéristiques de réflexion et d’absorption de certains vitrages :

Vitrage absorbant bronze :

  • FS = 42 %
  • TL = 27 %
  • AE = 63 %
  • RE = 8 %

Vitrage absorbant vert :

  • FS = 20 %
  • TL = 36 %
  • AE = 64 %
  • RE = 20 %

Vitrage absorbant doré :

  • FS = 13 %
  • TL = 20 %
  • AE = 40 %
  • RE = 50 %

Précautions

  • Pour évacuer un maximum de chaleur rayonnée vers l’extérieur, on placera le verre absorbant le moins possible en retrait du plan de la façade.
  • Les verres absorbants ont tendance à s’échauffer plus que les verres classiques, et sont sujets à la casse thermique. Il faut prendre des précautions en conséquence.
  • On utilise fréquemment le double vitrage absorbant et réfléchissant spécialement étudié contre le rayonnement solaire et associant les deux propriétés au sein d’un même vitrage.

Les vitrages à propriétés variables

Les besoins en gains solaires et en lumière naturelle varient en fonction du temps et de l’occupation. Aussi, l’idée d’un vitrage aux propriétés variables dans le temps s’avère très séduisante.

Le principe est d’intégrer dans le vitrage des matériaux chromogènes dont la caractéristique essentielle est de subir une modification importante de ses propriétés optiques sous l’effet dune variation du champ électrique, de la charge électrique, de l’intensité lumineuse, de la composition spectrale de la lumière ou de la température du matériau.

Sous tension.

Hors tension.

Action modifiant les caractéristiques optiques du vitrage

Non électrique

Le vitrage photochromique

  • Modifie ses propriétés optiques sous l’action de la lumière ultraviolette.
  • Bon contrôle de la transmission lumineuse mais peu performant pour le contrôle des gains solaires.

Le vitrage thermochromique et thermotrope

Evolution de la transmission et de la réflexion
d’un matériau thermotrope en fonction de la température.

  • Un verre thermochromique modifie ses propriétés de transmission sous l’effet d’un processus chimique initié par un changement de température. Si le processus est physique, le verre est dit thermotrope.
  • Le champ d’application s’étend au contrôle de la surchauffe et de l’éblouissement.

Électrique

Le vitrage à cristaux liquides.

Il modifie l’orientation de ses cristaux sous l’action d’un champ électrique.
Sous tension, l’orientation est régulière et rend le verre transparent, par contre hors tension l’orientation est quelconque ce qui rend le vitrage transparent diffus.

Le vitrage à particules dispersées

Le principe est similaire à celui des cristaux liquides mais ce sont des aiguilles de polyiodure en suspension dans un gel ou un liquide organique.

Le vitrage électrochrome

Son principe repose sur l’injection ou l’expulsion d’électrons et d’ions qui engendrent une décoloration de manière à pouvoir régler l’intensité de la réflexion en fonction de l’intensité lumineuse.

Vitrage isolant thermique et vitrage isolant acoustique


Le double vitrage à verre clair

Le double vitrage est constitué de deux feuilles de verre assemblées et scellées en usine, séparées par un espace hermétique clos renfermant de l’air ou un autre gaz déshydraté.

Schéma principe double vitrage à verre clair.

  1. Feuilles de verre.
  2. Air et/ou gaz déshydraté.
  3. Espaceur fixant l’espace entre les feuilles de verre.
  4. Ouverture pour l’absorption d’humidité.
  5. Première barrière d’étanchéité en polyisobuthylène.
  6. Dessicant.
  7. Seconde barrière d’étanchéité en polyuréthane, silicone ou polysulfure.

Le dessicatif introduit dans l’espaceur est destiné à assécher le gaz emprisonné à la fermeture du vitrage et à absorber la vapeur d’eau éventuelle. Le bon fonctionnement des barrières d’étanchéité et du dessicatif conditionne la durée de vie du vitrage.

La composition des doubles vitrages est données par 3 valeurs (en mm). Exemple : 4/12/4 : l’épaisseur de la feuille de verre extérieure / l’épaisseur de l’espaceur / l’épaisseur de la feuille de verre intérieure.

La garantie d’efficacité des doubles vitrages prévues dans les agréments techniques (ATG) est de 10 ans. Mais la durée de vie réelle est bien supérieure.

Le double vitrage est à présent imposé dans toutes les constructions neuves comme dans les rénovations suite aux réglementations relatives à l’isolation thermique en vigueur en Région wallonne et en Région Flamande.

Les modes de transmission de chaleur

L’intérêt du dispositif est de bénéficier du pouvoir isolant apporté par la lame d’air ou de gaz, et de faire baisser de la sorte le coefficient de transmission thermique U de l’ensemble du vitrage.

Schéma modes de transmission de chaleur.

La transmission de chaleur dans la lame d’air se fait par convection, rayonnement et conduction.
Elle se fait par conduction et rayonnement dans le verre.

La présence de la lame d’air permet de limiter les pertes de chaleur par conduction, la conductivité thermique de l’air (0.025 W/mK (à 10°C)) étant nettement inférieure à celle du verre (1 W/mK).

Caractéristiques énergétiques

Lorsque l’énergie solaire est interceptée par une paroi, une partie est réfléchie vers l’extérieur, une partie est absorbée par le matériau, une partie est transmise à l’intérieur.

La transmission solaire du double vitrage est légèrement plus faible que celle du vitrage simple car la chaleur qui traverse le vitrage est absorbée et réfléchie par deux couches et non une seule.

Les schémas suivants donnent les coefficients de tranmission thermique U et le facteur solaire FS d’un double vitrage et d’un simple vitrage :

   

Simple vitrage et double vitrage.

Améliorer la performance du double vitrage ?

Une des manières de réduire le coefficient de conductivité thermique d’un double ou triple vitrage est de travailler sur l’espace interstitiel. La première idée consiste à augmenter l’épaisseur de la lame d’air. Effectivement, l’isolation augmente dans les premiers millimètres, puis l’isolation reste pratiquement constante au delà de 14 mm. Pourquoi ? dans le premier temps, l’air constitue un matelas, mauvais conducteur de la chaleur, mais une fois que l’épaisseur d’air s’accroît, des boucles d’échange convectives se forment entre la vitre chaude et la vitre froide… Un double châssis écarté de 20 cm n’isole pas mieux qu’un double vitrage ordinaire.

On a alors pensé à remplacer l’air par un gaz moins conducteur : l’Argon, le Krypton, … Effectivement, cela apporte un « + » à l’effet d’isolation. Mais impossible de descendre en dessous d’un U de 2,5 W/m²K.

Et pourquoi pas le vide ? Effectivement, un vide d’air permet une absence de convection et de conduction. Mais mécaniquement, les deux vitres ont du mal à résister à la pression atmosphérique et se brisent. Il faut alors placer des écarteurs… qui sont eux-mêmes des conducteurs de chaleur… Cette technique est à l’étude mais n’a pas d’application industrielle aujourd’hui.

Reste à diminuer la transmission de chaleur par rayonnement : c’est l’idée du vitrage à basse émissivité dont nous reparlerons ci-dessous.

Caractéristique lumineuse

Le double vitrage assure un aspect neutre en réflexion et une grande transparence. Il est caractérisé par un coefficient de transmission lumineuse élevé mais néanmoins inférieur à celui d’un simple vitrage.

Simple vitrage, TL = 90 % et double vitrage TL = 81 %.

Caractéristique acoustique

Curieusement, l’isolation acoustique que procure le double vitrage dans les basses (bruit de trafic lent) et moyennes fréquences est légèrement inférieure à celle d’un simple vitrage de la même épaisseur.

Il est caractérisé par un indice pondéré d’affaiblissement acoustique.

Rw Rw +C Rw +Ctr
30 29 26

Certaines dispositions peuvent être prises de façon à assurer des performances acoustiques suffisantes. On se référera aux vitrages acoustiques.
À partir du double vitrage des améliorations sont possibles afin d’augmenter encore les performances énergétiques et solaires du vitrage : le vitrage basse émissivité, absorbant, réfléchissant


Le double vitrage « à basse émissivité »

Principe

Ce vitrage est aussi appelé « vitrage à haut rendement » ou « vitrage super isolant ». En anglais, il se nomme vitrage « low-E » et en France, on l’appelle « Vitrage à Isolation Renforcée » (VIR).

L’objectif est d’augmenter le pouvoir isolant du double vitrage, c.-à-d. de diminuer son coefficient de transmission thermique U.

Vous avez dit : « émissivité » ?

Quand de la chaleur ou de l’énergie solaire est absorbée par un vitrage, elle est réémise par le vitrage, soit par convection d’air le long de sa surface, soit par radiation de la surface du vitrage vers les autres surfaces plus froides. Par conséquent, la réduction de la chaleur émise par les fenêtres sous forme de radiation peut améliorer fortement ses propriétés isolantes.

La capacité d’un matériau à émettre de la chaleur de manière radiative est appelée son émissivité. Ce coefficient d’émissivité varie en fonction de la longueur d’onde du signal émis. Les fenêtres, ainsi que les matériaux que l’on trouve à l’intérieur d’un bâtiment, émettent typiquement des radiations sous forme d’infrarouges de très grande longueur d’onde. A savoir enfin que pour une longueur d’onde donnée, le coefficient d’absorption d’un matériau est égal au coefficient d’émissivité.

Les vitrages standards ont une émissivité de 0.84 sur l’entièreté du spectre. Cela signifie qu’ils émettent 84 % de l’énergie possible pour un objet à cette température. Cela signifie également qu’en ce qui concerne les rayonnements à grande longueur d’onde qui frappent la surface du verre, 84 % est absorbé et seulement 16 % est réfléchi.

Par comparaison, les couches basse-émissivité ont un coefficient d’émissivité de 0.04.

Les vitrages sur lesquels on a déposé de telles couches émettront seulement 4 % de l’énergie possible à cette température, donc absorberont seulement 4 % du rayonnement de grande longueur d’onde qui les atteint.

Autrement dit, ils réfléchiront 96 % du rayonnement infrarouge de grande longueur d’onde.

Application

Le rayonnement calorifique des objets terrestres est émis à une longueur d’onde plus élevée que ceux qui composent le spectre solaire.

Ondes électromagnétiques correspondant au rayonnement solaire et au rayonnement des corps terrestres.

D’où l’astuce : il est tout à fait possible de laisser pénétrer l’énergie solaire (à courte longueur d’onde) à travers un vitrage tout en empêchant la chaleur (à grande longueur d’onde) de quitter ce local !

La couche « basse émissivité » est, en général, une couche métallique, en argent par exemple, déposée sous vide et qui doit être placée à l’intérieur du double vitrage vu sa fragilité. Elle bloquera une partie du transfert de chaleur par rayonnement, diminuant ainsi le flux total de chaleur au travers de la fenêtre.

Importance de la position de la couche basse émissivité

La position de la couche basse émissivité dans un double vitrage n’affecte en rien le facteur U de celui-ci. Donc, en ce qui concerne les pertes de chaleur par transmission, il n’y a absolument aucune différence que la couche basse émissivité soit placée en position 2 ou en position 3.

Numérotation des vitrages.

 

La surface d’un vitrage, dans un double ou un triple vitrage, est référencée par un nombre, commençant par le numéro 1 pour la surface extérieure du vitrage extérieur vers la surface intérieure du vitrage intérieur. La surface intérieure d’un double vitrage porte donc le numéro 4.

Par contre, le facteur solaire FS du vitrage est influencé par la position de la couche.

En effet, en plus de sa capacité à inhiber les transferts d’infrarouges à grande longueur d’onde, une couche basse émissivité absorbe aussi une certaine quantité de l’énergie solaire incidente. Cette énergie absorbée est transformée en chaleur, provoquant ainsi un échauffement du vitrage.

Si l’on cherche à laisser passer la chaleur solaire (FS élevé), la couche basse émissivité sera placée sur le verre intérieur du double vitrage (en face 3). La chaleur absorbée par la vitre sera réémise vers l’intérieur.

Si l’on cherche au contraire à diminuer la chaleur solaire entrante (FS faible), la couche basse émissivité sera placée en face 2, la chaleur absorbée par le vitrage étant alors essentiellement réémise vers l’extérieur. Dans ce cas, on peut adjoindre une couche réfléchissante à la couche basse émissivité pour diminuer encore FS.

Et si on pose le châssis à l’envers ?

Lorsque les châssis et les vitrages arrivent séparément sur un chantier, on veillera à ce que la couche basse émissivité se retrouve bien à la position souhaitée pour tous les châssis du bâtiment (généralement en face 3 dans le domestique et en face 2 dans le tertiaire avec apports internes élevés).

Si l’autocollant est absent, il est possible de repérer la position de la couche au moyen de la flamme d’un briquet. En effet, 4 images de la flamme seront réfléchies par les 4 faces. La couche basse émissivité génèrera un reflet bleuté, les autres étant plus orangées.

 Caractéristiques énergétiques et lumineuses

Le double vitrage basse émissivité est caractérisé par un faible coefficient de transmission thermique U, variant de 1 à 1,9 W/m².K selon le mode d’application de la couche métallique ainsi que la nature du gaz présent entre les feuilles de verres.

Il existe une multitude de vitrages sur le marché. Des combinaisons multiples sont proposées entre le  facteur solaire FS et le facteur de transmission lumineuse  FL. Il est possible de trouver un vitrage pour lequel la présence de la couche métallique ne provoque qu’une très légère baisse des gains solaires et de la transmission lumineuse par rapport à un double vitrage classique. Autrement dit, la couche basse émissivité « ne se voit pas ».

La couche à basse émissivité peut être manipulée de manière à transmettre le rayonnement ayant certaines longueurs d’onde et à réfléchir le rayonnement ayant d’autres longueurs d’ondes.

On peut ainsi combiner les couches à basse émissivité et les couches de contrôle solaire. Il s’agit alors de couches déposées sous vide, combinant ces deux effets et placées en position 2.

Les premiers vitrages à basse émissivité ont été conçus de manière à maximiser les gains solaires en hiver. Ils devraient donc avoir un grand facteur solaire, un coefficient de transmission lumineuse important ainsi qu’un faible coefficient de transmission thermique U. Ils devaient donc transmettre les longueurs d’ondes du rayonnement solaire (rayonnements visibles et infrarouges proches) mais arrêter les infrarouges lointains (correspondant au rayonnement des corps terrestres). On appelle ces vitrages « vitrages à basse émissivité et haute transmission« .

Dans les bâtiments du secteur tertiaire, on demande souvent de minimiser les gains solaires tout en conservant une bonne transmission lumineuse et une bonne isolation. Ces vitrages doivent donc transmettre le rayonnement visible tout en arrêtant le rayonnement solaire correspondant aux infrarouges proches et le rayonnement des corps terrestres (les infrarouges lointains). Ces vitrages sont appelés « vitrages à basse émissivité sélectifs ».

Exemple.

On trouve actuellement des vitrages « haut rendement » avec un facteur solaire limité à 40 % tout en atteignant une transmission lumineuse de 70 %.

Pour diminuer encore le facteur solaire, on peut enfin placer une couche basse émissivité sur un vitrage teinté foncé ou augmenter le coefficient de réflexion des rayons lumineux de la couche elle-même, créant ainsi un produit ayant les propriétés isolantes d’un vitrage « basse émissivité », conjugué un rejet des gains solaires, perdant de facto une certaine qualité de transmission lumineuse. Ces vitrages sont appelés « vitrages à basse émissivité sélectifs et à basse transmission« .

  1. Vitrage clair.
  2. Vitrage basse émissivité et haute transmission.
  3. Vitrage basse émissivité spectralement sélectif.
  4. Vitrage basse émissivité spectralement sélectif et à basse transmission.

Le triple vitrage

Le vitrage est formé par trois feuilles de verre séparant deux espaces d’air.

Caractéristiques énergétiques et lumineuses

L’isolation thermique que procure un triple vitrage est meilleure que celle d’un double vitrage. Le coefficient de transmission thermique U d’un tel vitrage est de 1,9 W/m²K pour un triple vitrage ordinaire (deux lames d’air.) mais peut descendre jusqu’à 0.5 W/m²K pour les triples vitrages  à gaz isolants.

Par contre, les gains solaires et la transmission lumineuse sont diminués par la présence du troisième verre.

Données

Pour connaitre les principales caractéristiques des différents types de vitrages.

Une variante

Le triple vitrage est rarement appliqué, car sa forte épaisseur et son poids élevé ne s’adaptent pas aux menuiseries classiques.

Une variante consiste en un double vitrage avec un ou plusieurs films plastiques tendus dans l’espace d’air, de façon à avoir plusieurs lames d’air en série sans augmenter le poids du vitrage.

Schéma principe triple vitrage.

  1. Film tendu.
  2. Espaceur métallique.
  3. Mastic thermodurcissable.

Il existe des films ayant des propriétés basse émissivité et/ou de réflexion de l’énergie solaire.


Le vitrage isolant acoustique

Si l’on observe le spectre d’isolation acoustique d’un double vitrage, on remarque que l’isolation acoustique que procure un double vitrage est relativement mauvaise à la fréquence critique des feuilles de verres (3 200 Hertz) et dans les basses et moyennes fréquences (bruit de trafic lent).

Ce deuxième puits de résonance s’explique par le fait que le double vitrage se comporte comme un système acoustique du type MASSE/RESSORT/MASSE. La lame d’air jouant le rôle de ressort, son épaisseur est généralement trop faible pour créer un ressort suffisamment souple et le système fait entrer le verre en résonance.

Pourtant l’acoustique s’améliore lors d’un remplacement d’un châssis !

Des propos ci-dessus, on pourrait déduire que le remplacement, en rénovation, du simple vitrage par du double vitrage n’est pas intéressant du point de vue acoustique… Cette supposition est cependant erronée car le remplacement du vitrage s’accompagne, en général, du remplacement du châssis qui offre une meilleure étanchéité à l’air et donc à une meilleure isolation acoustique que l’ancien châssis; ce qui mène à une amélioration de l’isolation acoustique de l’ensemble vitrage + châssis.

Certaines dispositions permettent aussi d’améliorer l’isolation acoustique d’un double vitrage :

Les doubles vitrages dissymétriques

Chaque plaque d’un matériau d’une épaisseur donnée a une fréquence critique pour laquelle elle se met à vibrer plus facilement. À cette fréquence, le bruit se transmet beaucoup mieux.
Le principe des vitrages dissymétriques est le suivant : on utilise au sein d’un même vitrage des verres d’épaisseur suffisamment différente de sorte que chacun d’eux puisse masquer les faiblesses de l’autre lorsqu’il atteint sa fréquence critique.

La figure suivante compare les spectres d’isolation acoustique d’un double vitrage classique et d’un double vitrage dissymétrique.

Le tableau ci-dessous donne les performances acoustiques des doubles vitrages pour différents types d’assemblages.

Composition (mm) Rw + C (dB) Rw + Ctr (dB)
6-15-4 33 31
8-12-5 35 32
8-20-5 35 32
10-12-6 36 34
10-15-6 37 34
10-12-8 36 34

Les vitrages avec gaz isolant

On remplace l’air d’un double vitrage par un gaz isolant adapté (l’hexafluorure de carbone : SF6).

Cela permet de réaliser des gains appréciables dans les hautes et moyennes fréquences (bruits de trafic rapide), mais les performances s’avèrent défavorables dans les basses fréquences (bruit de trafic urbain (315 Hertz)).

La figure suivante comparant les spectres d’isolation acoustique d’un double vitrage classique et d’un double vitrage avec gaz isolant.

Ce gaz présente le désavantage de diminuer l’isolation thermique des doubles vitrages et cause des problèmes à l’environnement. Les doubles vitrages avec SF6 sont donc à déconseiller et sont, de toute façon, appelés à disparaître.

Les verres feuilletés acoustiques

En résumé…

 Rénovation !

Tableau des performances acoustiques

Type de vitrage : Rw (indice pondéré d’affaiblissement acoustique) Rw + C Rw + Ctr
Vitrage double ordinaire
(4/15air/4)
30 29 26
Vitrage thermique disymétrique
avec gaz (8/12argon/5)
38 36 32
Vitrage thermique feuilleté
(6/15air/55.2 PVB)
38 37 35

Vitrage thermique feuilleté
(8/12air/44.2 PVB)

41 40 37
Vitrage avec PVB amélioré
(12/20air/44.2 PVBa)
44 43 40
Vitrage avec résine coulée
(44.1,5RC/20argon/55.1,5RC)
49 47 42

Vernis d’adhérence

Vernis d'adhérence


Le vernis d’adhérence a pour fonction d’assurer un meilleur accrochage du bitume chaud, de la colle bitumineuse à froid ou des membranes soudées, sur certains supports.

Sur les matériaux poreux comme le béton ou la maçonnerie, le vernis fixe la poussière résiduelle et il les rend moins perméables à l’eau.

Il s’applique uniformément à la raclette, à la brosse ou à l’arrosoir sur le support bien nettoyé en évitant les surépaisseurs. Il doit être sec avant de continuer les travaux.

Le vernis d’adhérence s’applique à raison de 200 à 300 gr/m².

On distingue deux type de vernis d’adhérence :


Les émulsions bitumineuses à l’eau

Il s’agit de vernis à base de bitume en suspension dans l’eau. De par leur nature, ils peuvent être utilisés sur un support poreux en béton ou en maçonnerie légèrement humide.


Les vernis bitumineux à solvants volatils

Aussi appelés « cutbacks » ils contiennent des bitumes en suspension dans des solvants volatils.

Ils ne peuvent être appliqués que sur des supports secs, et sont recommandés pour les supports non poreux comme ceux en tôles profilées.