Capteur solaire à eau chaude

Capteur solaire à eau chaude


Principe de fonctionnement

Schéma principe de fonctionnement.

Les capteurs solaires transforment le rayonnement solaire en chaleur grâce à un absorbeur (un corps noir caractérisé par des propriétés d’absorption très élevées et d’émissivité très basse). L’absorbeur transfère la chaleur à un fluide caloporteur (généralement de l’eau glycolée) circulant au travers de chacun des capteurs.

Lorsque la différence de température entre la sonde capteur (T1) et la sonde en fond de ballon (T2) dépasse quelques degrés, les circulateurs s’enclenchent.

Le fluide caloporteur, circulant dans le circuit primaire, achemine alors l’énergie solaire depuis les capteurs vers le(s) ballon(s) de stockage à travers un échangeur.

Le(s) ballon(s) de stockage accumule(nt) la chaleur produite.

Si nécessaire, une source d’énergie d’appoint porte l’eau préchauffée à la température souhaitée. Celle-ci est alors acheminée vers les points de puisage par la boucle de distribution.

Un dispositif de régulation électronique commande le fonctionnement du système (circulateurs et appoints) selon les conditions d’ensoleillement et la demande en eau chaude.


Les principaux composants d’une installation

Un chauffe-eau solaire est toujours composé de quatre parties :

Schéma principaux composants d'une installation.

Le système de charge

Le système de charge comprend les capteurs solaires, la boucle primaire ou solaire et un échangeur de chaleur.

Le système de stockage

Il s’agit généralement d’un ou plusieurs ballon(s) d’eau bien isolé(s) thermiquement. Le stockage permet de différer la demande de puisage par rapport au moment de la production solaire.

Le système d’appoint

Pendant une bonne partie de l’année, un appoint de chaleur est nécessaire pour atteindre la température minimale de la boucle sanitaire (en général 60 °C). Cet appoint de chaleur peut être fourni par un moyen traditionnel de production de chaleur (chaudière, résistance électrique, pompe à chaleur,…).

Le système de décharge

C’est la partie de l’installation qui distribue l’eau chaude sanitaire aux différents points de puisage.

Photo capteur solaire sous vide.

Exemple de capteur solaire sous vide (avec sonde de température en 1 et purgeur en 2).
À noter le lestage des pieds de l’équipement…


Les différents types d’installation

Sous nos climats, la plupart des installations sont conçues avec une boucle fermée sous pression dont la circulation est forcée, mais il existe d’autres types d’installation :

Boucle solaire fermée (indirecte) ou ouverte (directe) ?

Si la boucle est fermée, le fluide qui chauffe dans les capteurs solaires et celui qui arrive aux points de puisages (douches…) sont distincts : l’eau de consommation est indirectement chauffée à travers un échangeur par le fluide caloporteur du circuit solaire.

Dans le cas où la boucle est dite ouverte, l’eau qui circule dans les capteurs est la même que celle qui est consommée aux points de puisage. Ce type de circuit est rarement utilisé en Belgique, notamment à cause des problèmes liés au gel. On le trouve donc plus souvent dans les pays chauds, où les capteurs constituent le seul moyen de chauffage.

Boucle fermée.

Boucle ouverte.

Circulation forcée ou thermosiphon ?

Dans les installations à thermosiphon, le fluide de la boucle solaire circule par convection naturelle (le fluide réchauffé s’élève). Le stockage est en général situé au-dessus des capteurs (à une distance de minimum 50 cm). Chez nous, ce système est difficilement maîtrisable. Il convient nettement mieux aux pays chauds et ensoleillés.

Thermosiphon.

Circulation forcée.

Les installations à circulation forcée sont équipées d’un dispositif de pompage (circulateur) provoquant la circulation forcée du fluide de la boucle solaire. La pompe est activée automatiquement par la régulation qui évalue le moment où la température du fluide à la sortie des capteurs est supérieure à la température de l’eau dans le bas du réservoir de stockage. On distingue dans cette catégorie plusieurs principes suivant le débit imposé au fluide dans le circuit solaire :

  • Les installations dites « high flow » : dans ce cas, le débit étant élevé (+/- 40 à 60 litres/heure.m²), on favorise une production d’une grande quantité de fluide avec un delta de température peu élevé.
  • Les installations dites « low flow » : dans ce cas, le débit étant faible (+/- 15 à 20 litres/heure.m²), on valorise une plus haute montée en température d’un volume de fluide réduit. Cela permet de travailler avec de plus faibles diamètres de tuyauterie et de faibles puissances de circulateur. Cependant, les pertes thermiques sont augmentées, ce qui diminue le rendement des capteurs. Ce système est généralement utilisé pour les installations de type directe ou encore pour les installations dites « à vidange ».
  • Les installations dites « mix flow » : dans ce cas, le débit est variable et ajusté en continu par la régulation afin de garantir à tout moment un delta de température fixé. Ce système est de plus en plus utilisé et permet d’éviter des enclenchements-arrêts fréquents de la pompe.

Sous pression ou à vidange ?

Les systèmes traditionnels à boucle fermée et à circulation forcée sont généralement « sous pression ». Dans ce type de système, le fluide caloporteur est constamment maintenu à une pression de 1 bar à l’arrêt et de 6 bars en fonctionnement.

Il existe aussi des systèmes « vidangeables ». La différence principale avec les systèmes traditionnels est que lorsque le système ne peut capter d’énergie, les capteurs et les tuyauteries sont vidés et la pompe arrêtée. Le fluide caloporteur est alors recueilli dans un réceptacle fermé. S’ils sont bien conçus, ces systèmes présentent une grande sécurité en cas de gel ou en cas de surchauffe estivale (cela permet d’éviter les montées en températures trop importantes dans le capteur). Ces systèmes permettent ainsi d’éviter une usure accélérée des composants et présentent une grande simplicité de construction puisqu’ils ne nécessitent ni manomètre, ni vase d’expansion, ni purgeur, ni clapet anti-retour (vu que l’installation est vidangée, il n’y a pas de risque de circulation inverse par thermosiphon).

Sous pression.

A vidange.


Les types de capteurs

Il existe deux grandes familles de capteurs : les capteurs plans et les capteurs à tubes « sous vide ».

Capteurs plans

Les capteurs plans opaques

Ce sont les capteurs les plus simples du marché. Ils sont constitués d’un ensemble de tuyaux opaques de couleur foncée qui jouent à la fois le rôle de:

  

  1. plaque absorbante qui permet la captation de l’énergie thermique du rayonnement solaire.
  2. tuyauterie dans laquelle circule directement le fluide caloporteur (généralement l’eau).

Ils ne possèdent ni isolation ni couvercle transparent. Leur rendement est donc globalement moins bon sauf s’ils sont destinés à des applications estivales à basse température (proche de la température extérieure), par exemple pour les piscines extérieures … Leur simplicité va de pair avec un coût très réduit.

Les capteurs plans vitrés

Il s’agit des capteurs que l’on rencontre le plus souvent ; ils conviennent pour la plupart des applications courantes (ECS, appoint chauffage, piscine…).

Un capteur plan vitré se compose des éléments fondamentaux suivants :

  1. Un boîtier qui contient tous les éléments constitutifs fragiles du capteur comme les tubes, la plaque absorbante…
  2. un joint d’étanchéité pour empêcher l’eau de pénétrer quand il pleut ;
  3. un couvercle transparent qui crée un effet de serre au-dessus de la plaque absorbante : en général un verre trempé dit solaire, présentant une faible teneur en fer pour permettre un haut degré de transmission lumineuse ;
  4. une isolation thermique qui réduit la déperdition de chaleur par la face arrière et les côtés du capteur ;
  5. une plaque absorbante qui permet la conversion du rayonnement solaire en énergie thermique transportée par le fluide ;
  6. les tubes traversés par le fluide caloporteur qui évacue la chaleur jusqu‘à l‘extérieur du capteur ;

Selon les modèles, différents types de réseaux hydrauliques internes aux capteurs existent :

Schéma différents types de réseaux hydrauliques internes.

Capteurs à tube sous vide

L’isolation de ce type de capteurs est assurée par le vide. Par facilité de conception, ces capteurs ont toujours une forme cylindrique, d’une longueur d’environ 2 m et d’un diamètre approximatif de 10 cm. Ces capteurs sous vide ont en général un rendement optique (correspondant au rendement de production d’eau chaude à une température égale à celle de l’ambiance) plus faible mais de meilleurs coefficients d’isolation thermique que les capteurs plans.

Ils récupéreront dès lors moins d’énergie à basse température que leurs homologues plans. Plus efficaces pour la production d’eau chaude à température élevée par rapport à l’ambiance extérieure, ils seront principalement utilisés pour des applications comme le chauffage, la climatisation par ab/adsorption ou encore certains process particuliers,…

Photo capteur solaire thermique.

Il en existe deux grandes familles selon que l’absorbeur se trouve directement sur le verre ou sur une ailette en cuivre.

Les tubes sous vide avec absorbeurs sur ailette en cuivre

L’absorbeur de ce type de capteur est déposé sur une structure en cuivre placée dans le tube. Ce type d’absorbeur sur cuivre possède une meilleure sélectivité que celui déposé sur le verre (et donc procure un rendement optique plus élevé au capteur). L’avantage principal est que l’absorbeur peut être orienté différemment par rapport à son support. Cela peut être avantageux pour des applications en façade par exemple.

C’est l’intérieur du tube (et tout ce qu’il contient) qui est soumis au vide d’air. Bien que le principe soit simple, la fabrication de ces capteurs reste délicate à cause des liaisons verre/métal nécessaires.

Composition des tubes sous vide avec ailette absorbante

Schéma composition des tubes sous vide avec ailette absorbante

  1. Un tube en verre  dans lequel on effectue le vide d’air (assurant une isolation optimale) dans lequel se trouvent tous les composants suivants.
  2. L’absorbeur posé sur un support en cuivre.
  3. Les tubes qui évacuent la chaleur, généralement aussi en cuivre. Ces tuyaux peuvent être disposés de divers manières (soit juxtaposés, soit concentriques).
  4. Le système de raccordement permet la rotation des tubes afin d’orienter au mieux l’ailette absorbante.

Il existe aussi plusieurs types de capteurs selon le fluide caloporteur et son mode de circulation:

> Les capteurs à circulation directe

> Les capteurs à caloduc (ou heat pipe)

Dans le cas de capteurs à circulation directe, l’ailette sert de support à un tube en U dans lequel circule le fluide caloporteur.

Le caloduc, lui, est un échangeur qui utilise les mécanismes de changement d’état liquide-gaz d’un fluide placé dans un tube fermé. Le principe est simple : en captant la chaleur absorbée par l’ailette, le fluide s’évapore. Il s’élève alors jusqu’en partie haute et cède sa chaleur en se condensant par contact avec le fluide caloporteur de l’installation qui circule en partie haute. De nouveau à l’état liquide, il retourne alors par gravité en bas du tube.

Schéma principe du caloduc.

Pour un fonctionnement correct, ces tubes doivent être installés avec une inclinaison minimale. Ce système permet un remplacement des tubes sans purgeage complet de l’installation.

Les tubes sous vide avec absorbeurs sur support en verre (tube Sydney)

Schéma tubes sous vide avec absorbeurs sur support en verre.

Dans ce cas, le vide est fait entre les deux couches de verre (principe du thermo) qui composent le tube en verre. L’intérieur de la bouteille est donc soumis à la pression atmosphérique. À l’intérieur, l’absorbeur et les tuyauteries évacuent la chaleur du creux atmosphérique central.

Composition des tubes sous vide avec absorbeur sur support en verre

Schéma composition des tubes sous vide avec absorbeur sur support en verre.

  1. Une bouteille de verre à double paroi est employée. Les deux parois sont reliées de manière étanche au niveau du goulot de manière à emprisonner le vide (partie grise dans le schéma).
  2. Sa surface externe (2) est laissée transparente.
  3. Un absorbeur est posé sur la face intérieure de la bouteille.
  4. Des tubes qui évacuent la chaleur sont placés dans le creux atmosphérique central.
  5. Des tuyaux sont reliés à l’absorbeur par des profilés semi-circulaires métalliques de transfert de chaleur.
  6. Éventuellement et préférablement, des réflecteurs augmentent le rayonnement solaire sur le capteur (on parle alors de tubes CPC pour Compound Parabolic Concentrator).

Le rendement et l’utilisation des capteurs

Les capteurs vont se différencier entre eux par la qualité de l’absorbeur (sa sélectivité) et du verre solaire (rendement optique), ainsi que par celle de l’isolation du capteur. L’ensemble de ces trois propriétés conféreront au capteur des plages de températures privilégiées et par là, les usages pour lesquels il sera mieux adapté.

Graphique rendement et l'utilisation des capteurs.

Ces différences de rendement selon les plages de température de fonctionnement seront à la base du choix du type de capteurs que l’on utilisera. On choisira donc préférablement le capteur qui offre le meilleur rendement pour le régime de température de travail correspondant à l’application voulue.

Les plages de régimes de travail à basse température (correspondant à des delta de températures de travail des capteurs entre 0 et 20 °C) sont essentiellement rencontrées pour le chauffage de piscine. Les déperditions thermiques n’ont pour ces températures que peu d’influence. C’est donc, dans ce cas, le rendement optique du capteur qui sera déterminant. Les capteurs plans (vitrés ou non) seront le choix idéal puisqu’ils offrent des rendements optiques plus élevés pour un prix nettement inférieur.

Pour les régimes à température moyenne (delta de T° de 20° à 100 °C), recherchés pour des applications comme la production d’eau chaude sanitaire ou le chauffage à basse (delta de 60 °C) et moyenne température (delta de 100 °C), les déperditions commencent à prendre le pas sur le rendement optique. Dans ce cas, les capteurs devront posséder outre un bon absorbeur sélectif, une bonne isolation thermique. Pour ces plages, les capteurs à tubes sous vide et les capteurs plans vitrés sont concurrentiels.

Pour les régimes à haute température (nécessaires pour des applications comme des process industriels, chauffage à très haute température, climatisation solaire), c’est l’efficacité de l’isolation qui sera déterminante. Le seul choix réaliste dans ce cas est celui des tubes sous vide.


Le raccordement des capteurs

Un champ de capteurs doit être composé de capteurs aux propriétés physiques semblables. Plusieurs raisons à cela :

  • Eviter les sources d’usure prématurée : des métaux différents peuvent provoquer des couples galvaniques, sources de corrosion interne des capteurs.
  • Eviter un problème d’équilibrage hydraulique, problème fréquent de fonctionnement des capteurs : chaque capteur doit posséder des pertes de charge similaires.

Le placement des capteurs doit permettre :

  • que la planéité des capteurs soit respectée ;
  • de placer vers le bas les orifices d’évacuation des condensats ;
  • de résister aux conditions climatiques locales (vent et neige).

Pour le raccordement des panneaux entre eux, différentes configurations sont possibles :

  • en série (a) ;
  • en parallèle respectant de préférence le principe de Tichelmann (b) ;
  • en rangée de capteurs en série (c) ;
  • en rangée de capteurs en parallèle (respectant le principe de Tichelmann) (d).
  • etc.

Schéma principes de raccordement des panneaux.

Le choix sera fonction de différents éléments :

  • La facilité de réglage (équilibrage) ;
  • la longueur nécessaire de tuyauterie (coût et pertes thermiques associés) ;
  • la configuration de l’espace disponible ;
  • le compromis entre l’efficacité des capteurs et la température de sortie.

Le raccordement en série permet une montée en température plus importante au prix de pertes thermiques plus importantes (d’autant plus si l’on travaille avec un faible débit (low flow). De fait, la montée progressive en température au fil des panneaux en série est accompagnée par une diminution du rendement. Un trop grand nombre de capteurs raccordés en série sera donc à éviter. En pratique, 5 à 6 capteurs de taille standard (environ 2 m²) est un maximum.

Énergétiquement parlant, le raccordement en parallèle est donc plus intéressant mais n’est pas toujours réaliste vu les longueurs de tuyauterie nécessaires.

L’équilibrage hydraulique des différents capteurs est un point crucial. Dans la réalité, il est souvent réalisé empiriquement par un jeu de vannes qui ne permet évidemment pas de corriger les erreurs de conception. Il est donc primordial de prendre en compte les pertes de charges liées aux capteurs  pour le dimensionnement des tuyauteries. En pratique, le raccordement en boucle de Tichelmann (longueur de tuyauterie identique quelque soit le capteur ou groupe de capteurs) est souvent préconisé pour les grandes installations. Il permet un équilibrage naturel en imposant des pertes de charges identiques pour chaque capteur/groupe de capteurs.

Selon un rapport du CTSB, on recommande généralement un rapport :

Perte de charge dans les collecteurs / Perte de charge dans les capteurs, le plus faible possible,
et donc un rapport Diamètre interne des collecteurs / Diamètre interne des circuits hydrauliques des capteurs, le plus faible possible également (rapport compris entre 1,6 et 3,3).


Le circuit primaire ou circuit solaire

Le circuit primaire (ou circuit de charge solaire) est un circuit fermé composé de tuyauteries, généralement en cuivre, qui relient les capteurs (A) à un échangeur de chaleur (B). Il transporte le fluide caloporteur. Celui-ci peut atteindre des températures allant de -20 °C en cas de gel à des températures très élevées (jusqu’à 200 °C dans les capteurs !). Il est donc impératif que les composants de ce circuit puissent résister à ces changements importants de température !


Exemple de schéma possible pour un circuit primaire (partie en couleur).

Le circuit primaire est généralement muni des composants suivants :

  • Une pompe de circulation (1) assurant la circulation du fluide caloporteur dans le circuit.
  • Un purgeur (2) manuel permettant d’éliminer l’air en partie haute du circuit lors du remplissage et des entretiens.
  • Un clapet anti-retour (3) pour éviter la formation d’un contre-courant de thermocirculation qui déchargerait le ballon de stockage de sa chaleur.
  • Plusieurs vannes d’isolement (4) pour isoler les composants principaux du système en cas d’entretien ou de remplacement.
  • Un robinet (5) permettant le remplissage et la vidange du circuit en fluide caloporteur.
  • Un débitmètre gravimétrique, appareil indiquant le débit du fluide du circuit. Situé sous le circulateur, il permet de régler la vitesse minimale de celui-ci pour assurer un débit minimum dans les capteurs.
  • Parfois un système de comptage d’énergie produite est placé. Celui-ci comprend : un débitmètre volumétrique, deux thermomètres sur l’aller et le retour des capteurs et un calculateur intégrateur.

Comme pour toute autre boucle hydraulique où un générateur de chaleur est installé, un dispositif de limitation de pression devra aussi être utilisé. Pour cela, le circuit primaire comporte :

  • Une soupape de sécurité (6) munie d’un manomètre destinée à évacuer les surpressions en cas de surchauffe de l’installation. Cette vanne est raccordée à un réservoir de collecte du fluide caloporteur avec antigel pour éviter tout rejet toxique dans le réseau d’égout.
  • Un vase d’expansion (7), placé du côté aspiration de la pompe de circulation, chargé d’absorber les différences de volume et de récolter la totalité du fluide caloporteur expulsé des capteurs en cas de surchauffe. Par rapport aux vases d’expansion traditionnels utilisés pour le chauffage, les vases d’expansion solaires doivent supporter des pressions de service maximales plus élevées (de 8 à 10 bar) et possèdent une membrane plus résistante aux hautes températures. Il est parfois judicieux, vu les hautes températures atteintes, de placer un vase tampon en amont afin de ne pas compromettre la longévité du vase d’expansion. Dans le cas d’un système à vidange, on peut omettre le vase d’expansion car le circuit primaire n’est pas mis sous pression, mais il faut prévoir la place pour installer le réservoir à vidange entre le champ de capteurs et le ballon de stockage solaire.

Le fluide caloporteur

Le circuit primaire relatif à l’installation sous pression est totalement rempli d’un fluide caloporteur résistant au gel. On utilise généralement du propylène glycol. Il existe aussi des mélanges complets qui contiennent un agent inhibiteur de corrosion, un agent anti-mousse, un agent anti-algue et un colorant.

Théoriquement, on pourrait également travailler avec de l’eau pure non glycolée dans le cas d’un système à vidange. Actuellement, pour des raisons de sécurité on utilise, même dans ce cas, de plus en plus d’antigel.

Caractéristiques essentielles d’un fluide solaire

  • Stable jusqu’à la température de stagnation maximale ;
  • Protégé contre le gel ;
  • Non corrosif  ;
  • Capacité thermique élevée ;
  • Viscosité réduite ;
  • Prix réduit et disponibilité.

En pratique, on utilise généralement un mélange d’eau et de glycol comme par exemple :

Éthylène glycol (C2H6O2)
Capacité thermique : 2 410 J.kg-1.K-1
Température de fusion : – 13 °C
Température d’ébullition : 198 °C

Polypropylène glycol (C3H8O2)
Capacité thermique: 2 500 J.kg-1.K-1
Température de fusion : – 59 °C
Température d’ébullition : 188 °C

Les conduites

Photo conduites.

Les matériaux utilisés pour les conduites du circuit solaire doivent résister aux contraintes mécaniques possibles dans le circuit (pression et plage de température en fonctionnement (de – 20 à 150 °C)) et être compatibles avec le fluide et les autres matériaux de l’installation. On utilise principalement des tubes en cuivre, en acier simple ou en acier inoxydable. Les tuyauteries en matière synthétique sont plus que déconseillées, car elles ne sont généralement pas tout-à-fait étanches (surtout à haute température) à l’oxygène qui pénètre alors par diffusion dans le circuit. Le risque de corrosion en est alors augmenté. L’acier galvanisé est lui strictement interdit, car il réagit avec le glycol présent dans le circuit primaire.

Vu les hautes températures auxquelles ces conduites sont soumises, leur isolation ne peut en aucun cas être réalisée au moyen d’un quelconque isolant utilisé pour les applications sanitaires habituelles. Ne résistant qu’à des températures de l’ordre de 110 – 120 °C, le polyuréthane est à proscrire. On utilisera généralement un caoutchouc synthétique en mousse capable de résister à des températures de l’ordre de 150 °C.

L’isolant utilisé pour la boucle solaire doit de plus :

  • résister aux U.V. (ou en être protégé) ;
  • résister à l’humidité ;
  • résister aux attaques des rongeurs et oiseaux ;
  • être étanche (au vent et à la pluie).
  • Et bien sûr, avoir une épaisseur suffisante ! (au minimum égale au diamètre du tuyau).

Sous ces hautes températures, la dilatation des conduites est aussi un phénomène à prendre en compte, car elle peut induire pour les grandes installations des mouvements importants.
Pour se faire une idée, la dilatation thermique du cuivre est de 1.7 mm/m sous un échauffement de 100 °C. On comprend vite le risque associé à plusieurs dizaines de mètres de tuyauteries !

 

Montage permettant d’absorber la dilatation thermique des tuyauteries.


Le stockage de l’eau solaire

Le stockage est un élément clé de toute installation solaire thermique. Il permet de pallier au caractère discontinu de l’énergie solaire et à la non-simultanéité de la production et des besoins. En pratique, l’énergie solaire thermique est stockée via l’eau contenue dans un ou plusieurs ballon(s) d’eau accumulateur(s) raccordé(s) en série.

Photo cuves stockage.

Un matériau résistant

Comme pour tout ballon accumulateur d’eau chaude sanitaire, le principal critère de sélection de matériau du ballon est sa résistance à la corrosion. On utilise généralement des réservoirs en acier inoxydable, ou en acier émaillé voire en cuivre avec anode de protection. Les ballons en acier galvanisé sont déconseillés du fait de leur mauvaise résistance à la corrosion.
Pour les réservoirs à eau morte, n’étant pas sous-pression, on peut envisager des réservoirs en matière synthétique, plus durable puisque non soumis à la corrosion.

Le ballon de stockage à eau solaire doit non seulement répondre à toutes les exigences d’un réservoir d’eau sanitaire classique, mais doit en plus pouvoir résister aux hautes températures auxquelles il pourrait être soumis. La température dans le ballon peut en effet monter jusqu’à 95 °C, d’où la nécessité de prévoir un mitigeur thermostatique sur la boucle de distribution.

Une forme adaptée

Par ailleurs, les ballons solaires sont en général étudiés de manière à favoriser une bonne stratification interne des températures. La stratification est basée sur une variation de masse volumique en fonction de la température : L’eau réchauffée s’élève par thermocirculation et par sa masse volumique moindre s’accumule dans le haut du ballon (phénomène de la poussée d’Archimède). L’eau froide, plus lourde, reste en bas. A chaque puisage, l’eau la plus chaude du ballon est extraite et de l’eau froide du réseau est injectée dans le bas du ballon. La stratification est donc globalement préservée, l’important étant d’éviter tout brassage.

Pour favoriser ce phénomène, le réservoir  est donc préférablement vertical et sa hauteur équivaut généralement à 2-2.5 fois le diamètre. Il existe aussi des dispositifs de charge améliorant la stratification : amenée de l’eau chaude à différentes hauteurs suivant sa température.

Une isolation primordiale

Encore plus que pour un ballon accumulateur classique, outre sa bonne compacité, un ballon solaire doit impérativement être isolé dans son entièreté (10 cm grand minimum) : attention aux parties supérieures et inférieures ainsi qu’aux différents raccords ! La parfaite isolation et une bonne stratification augmenteront indéniablement les performances du système.

Une dimension adaptée

Le volume du stockage dépend du projet envisagé, mais doit être étudié de manière précise. L’enjeu est double :
D’une part, il ne doit pas être trop petit pour ne pas limiter les gains solaires possibles et d’autre part, il ne doit pas être trop grand pour permettre une montée en température suffisante pour que l’eau soit utilisable (idéalement pour pouvoir se passer de l’appoint en été).

Le ballon solaire doit généralement pouvoir stocker l’équivalent de 30 à 40 % d’une journée de consommation d’eau chaude (à 60°) de l’établissement. La capacité fréquente des plus grands ballons est de 5 000 l, mais le recours à plusieurs ballons de stockage est en général déterminé par la place prise par les échangeurs internes de grande puissance. La question de la liaison des multiples ballons est alors posée. Dans bien des cas, on s’orientera alors vers un ballon solaire à eau morte (eau ne servant pas d’eau chaude sanitaire) permettant d’emmagasiner l’énergie solaire sans se préoccuper de la gestion de la légionellose.

N.B. : Le stockage, c’est LE défi de la recherche ! Le jour où l’on arrivera à stocker l’énergie solaire pour de plus longues périodes voire saisons, ce sera sans doute une porte d’entrée vers l’autonomie énergétique. Les recherches actuelles se portent vers des matériaux à changement de phase qui remplaceraient l’eau traditionnelle.


La charge du ballon de stockage

La charge du ballon de stockage s’effectue au moyen d’un échangeur au travers duquel la chaleur du fluide solaire est transférée à l’eau du stockage.
Comme pour toute installation, deux types d’échangeurs peuvent être employés : les échangeurs intégrés au stockage et les échangeurs extérieurs (à plaques) :

Echangeurs intégrés au stockage.

Echangeurs extérieurs au stockage.

Schéma charge du ballon de stockage- 1.

À partir de là, différents systèmes de charge sont envisageables : avec échangeur interne (a,b,c,f) ou externe (d,e). Certains systèmes permettent un renforcement de la stratification des températures à l’intérieur du/des ballon(s) par différents dispositifs :

  • cheminée interne enrobant l’échangeur solaire et diffusion en fonction des températures (b),
  • chargement à hauteur différenciée par vanne trois voies (e),
  • chargement à hauteur différenciée par échangeurs multiples (c).

Schéma différents systèmes de charge possibles.

Typiquement, pour les grands systèmes solaires (au-delà de 30 m² de capteurs) des échangeurs de chaleur externes sont souvent utilisés vu les puissances considérables qui entrent en jeu.

La disposition des échangeurs et leur raccordement se fera toujours de manière à :

  • Favoriser la stratification correcte des températures à l’intérieur des ballons et le long du circuit de charge : les températures les plus hautes doivent être les plus proches de l’appoint.
  • Assurer un rendement optimal des capteurs :
    Les pertes thermiques des capteurs dépendant de la différence de température entre le fluide à l’intérieur des capteurs et la température extérieure, on aura tout intérêt à travailler avec un fluide caloporteur à la température la plus basse possible.
  • Permettre à l’échangeur de chauffer un volume d’eau suffisamment grand.

En conséquence, l’échangeur de chaleur solaire intégré au stockage des petits systèmes, sera placé en partie basse du ballon et le retour vers les capteurs sera situé le plus bas possible dans le ballon.

Schéma principe échangeur.

L’échangeur de chaleur relié à l’appoint se trouvera quant à lui dans la partie supérieure du ballon de stockage ou dans un ballon séparé (en série avec le premier) lorsque la quantité d’eau chaude nécessaire sera plus importante.


La régulation

Démarrage et arrêt du circulateur

Pour les systèmes à circulation forcée, le système de régulation différentielle assure la mise en marche et l’arrêt adéquats de l’installation. Cette gestion de la chauffe solaire est primordiale pour tirer un maximum de profit de l’énergie solaire disponible. Le principe est basé sur la mesure continue de deux températures :

  • la température de l’eau chaude en partie basse du ballon de stockage (ou du fluide caloporteur à la sortie de l’échangeur solaire) : T°stockage.
  • la température du fluide caloporteur à la sortie des capteurs : T°capteur.

Dès que la différence de température est suffisante, la pompe est mise en marche. Elle s’arrête lorsque l’énergie solaire captée n’est plus suffisante ou n’est plus nécessaire.

En résumé :

  • Si T°capteur> T°stockage + ∆T1 : la pompe démarre.
  • Si par contre, T°capteur< T°stockage + ∆T2 : la pompe s’arrête.

Il est nécessaire de calibrer précisément ces ∆ de température afin d’optimiser l’énergie solaire récoltée (on évitera les préréglages d’usines !). Le paramétrage doit tenir compte de la configuration de l’installation et principalement de la longueur des conduites et des pertes thermiques liées. On aura évidemment tout intérêt à minimiser ces pertes en plaçant le stockage aussi proche que possible des capteurs, en isolant les conduites et en travaillant à basse température. En pratique, cette perte en ligne peut être estimée en comparant la température au niveau du capteur et la température à l’entrée du ballon en fonctionnement.

Pour éviter des arrêts et des mises en marche successifs (Phénomène de Stop and Go), la température de démarrage devra en outre prendre en compte le refroidissement du capteur lors de l’enclenchement. En effet, l’ensemble du liquide de la boucle solaire plus froid que celui des capteurs provoquera au démarrage une diminution de température du capteur.

Pour le choix de la consigne d’arrêt, on devrait, en plus des pertes thermiques, prendre en compte l’énergie minimum à récolter de sorte à ce que celle-ci soit toujours supérieure à l’énergie primaire nécessaire au fonctionnement de la pompe (consommation électrique multipliée par le facteur de conversion 2,5).

En pratique, on rencontre des ∆T :

  • Pour les valeurs de démarrage de : 5 à 7 K.
  • Pour les valeurs d’arrêt de : 3 à 4 K.

Température maximale de charge

Tout ballon de stockage possède une température de charge maximale. Le système de régulation doit prendre en compte correctement cette valeur afin de couper le circulateur pour que cette température critique ne soit pas atteinte. Une valeur d’usine est  souvent donnée par défaut pour le système de régulation, mais il serait dommage de se priver de l’énergie solaire gratuite si le ballon de stockage accepte des températures plus élevées (jusqu’à 95 °C). Si la régulation ne possède qu’une sonde de température dans le bas du ballon il faut absolument tenir compte de l’effet de stratification. C’est pour cette raison que les régulations possèdent souvent un préréglage d’usine assez bas (de l’ordre de 70 °C) pour que le haut du ballon n’atteigne pas des températures de plus de 95°C.

Température de sécurité

Lors d’une journée ensoleillée, lorsque l’ensemble du stockage est à température, le circulateur s’arrête mais la température des capteurs continue, elle, à grimper.
La régulation des systèmes à vidange tiendra évidemment compte de cette température de sécurité. À partir de celle-ci, le système s’arrête et le fluide est récupéré dans un réceptacle prévu à cet effet : l’installation se vidange par drainage gravitaire ! Cela permet d’éviter que le fluide n’entre en ébullition (et vieillisse prématurément) et ne détériore les composants de l’installation. C’est l’un des grands avantages de ce système !

Certaines régulations permettent aussi d’empêcher le redémarrage de la pompe au cas où la température du fluide caloporteur est trop élevée (+/- 120 °C), évitant ainsi l’endommagement des composants les plus sensibles.


L’apport de chaleur complémentaire

Les capteurs solaires ne peuvent à eux seuls satisfaire à tout moment l’entièreté des besoins. Pour assurer la production d’eau chaude, même en période prolongée de non ensoleillement,  un système d’appoint est nécessaire. L’appoint devra pouvoir répondre aux besoins sans intervention solaire et sera, par conséquent, envisagé de manière classique. Différentes configurations sont possibles selon la présence ou non d’un échangeur de chaleur (intégré ou non au stockage) :

 

On distingue principalement quatre cas de figure :

– L’appoint électrique (c) : Dans ce cas, une résistance est directement intégrée au ballon de stockage.

Schéma appoint électrique.

– L’appoint intégré au stockage (a, d, e, f) : L’échangeur se trouvera le plus près possible de l’endroit où s’effectue le puisage dans le(s) ballon(s) et son raccordement respectera la stratification interne des températures (les plus élevées, les plus hautes). Dans un ballon de stockage unique qui rassemble aussi la production solaire, l’échangeur d’appoint se trouvera donc en haut du ballon.

Schéma appoint intégré au stockage.

– L’appoint séparé en série (b) : L’appoint (généralement instantané ou semi-instantané) se trouve dans ce cas à l’extérieur du ballon de stockage solaire. L’eau préchauffée par les capteurs solaires est alors directement portée à température (par une chaudière au gaz à condensation par exemple).

Schéma appoint séparé en série.

– L’appoint mixte : il est bien entendu possible de combiner différents types d’appoint. Par exemple, pour une petite installation, l’idée pourrait être d’éviter le fonctionnement d’une chaudière sol au mazout grâce au recours d’un appoint électrique (mais attention à la régulation de cette résistance !).

 Notons que pour les plus grands systèmes, s’il est intégré au stockage, l’appoint peut se faire via des ballons différents…

Schéma appoint mixte.


Le circuit de décharge

La décharge du ballon de stockage solaire peut se faire de multiples manières.

  • Via un système direct (a) : l’eau de stockage est directement l’eau sanitaire.
  • Via un échangeur : interne simple (c), plongé dans une cuve de transition (d) ou externe (e) dans le cas où l’eau sanitaire est chauffée instantanément. Le ballon est alors dit à eau morte, car l’eau qu’il contient est une eau de transition et non l’eau sanitaire.
  • Via une cuve de transmission (b), principalement pour les petits systèmes combinés avec les systèmes de chauffage : préparation d’un volume réduit d’ECS dans un grand volume d’eau.

Schéma circuit de décharge.

Par rapport à une installation classique d’ECS, le circuit d’eau sanitaire comportera en plus un mitigeur thermostatique et un disconnecteur.

Le mitigeur thermostatique permet d’éviter toute brûlure au point de puisage. En été, lorsque l’on bénéficie d’un rayonnement solaire important et que le puisage est réduit, il n’est pas impossible d’atteindre dans le ballon des températures de plus de 60° (maximum toléré pour de l’eau chaude sanitaire). Le mitigeur se chargera de mélanger l’eau du ballon avec de l’eau froide pour que cette température ne soit pas dépassée.

D’autre part, une fuite de liquide caloporteur du circuit primaire au niveau de l’échangeur de chaleur solaire est toujours possible. Pour protéger le réseau de distribution de toute contamination par le fluide solaire, on place un disconnecteur.
Cet équipement à zones de pression différentielle empêche le retour de l’eau sanitaire du ballon de stockage solaire vers le réseau de distribution.

Précisons aussi que vu la toxicité du fluide caloporteur, l’évacuation directe vers les égoûts est interdite. Le disconnecteur, ainsi que les soupapes et robinets de vidange doivent donc être raccordés à des réservoirs de collecte.


La gestion de la légionellose

Plus que pour toute installation de production d’eau chaude sanitaire, un regard particulier doit être posé sur la gestion de la légionellose. En effet, les températures atteintes dans un ballon de stockage solaire sont favorables à la prolifération de ces bactéries (de 30 à 40°).
La première solution est le placement d’une pompe de « dé-stratification » via laquelle on portera régulièrement l’ensemble des ballons à une température suffisante. Dans ce cas, un circulateur supplémentaire transfère l’eau à haute température du ballon d’appoint vers le(s) ballon(s) de stockage solaire. Une bonne régulation de cette mesure anti-légionellose, par une horloge, permettra de minimiser la consommation énergétique tout en évitant la contamination : par exemple, une montée en température journalière à 60° ou hebdomadaire à 80°.

Schéma de principe : désinfection thermique par pompe de déstratification.

Une autre solution, souvent à privilégier, est l’utilisation de cuves de transitions (appelés réservoirs à eau « morte ») constituant un circuit fermé indépendant de l’eau sanitaire. L’eau sanitaire est alors réchauffée instantanément via un échangeur interne ou externe au stockage. De cette manière, on évite tout risque de contamination en séparant physiquement les eaux de températures différentes. Ce système permet d’éviter les pertes thermiques liées à la montée soudaine en température, mais implique l’utilisation d’un échangeur supplémentaire.

Installation avec une cuve de transition.

Découvrez ces exemples d’eau chaude sanitaire alimentée par capteurs solaires : 2.150 m² de capteurs solaires thermiques à la résidence 3e âge « Aux Lilas » de Bonlez et des capteurs solaires au home La Charmille de Gembloux.

Préparateur d’eau chaude sanitaire avec pompe à chaleur

Préparateur d'eau chaude sanitaire avec pompe à chaleur


Fonctionnement

Le principe de fonctionnement d’une pompe à chaleur est le même que celui de la machine frigorifique mais l’application travaille en sens inverse.

L’objectif consiste à extraire la chaleur gratuite d’un milieu extérieur : l’eau d’une rivière, l’air extérieur, l’eau d’une nappe souterraine, … (on parle de « source froide »). Physiquement, l’air extérieur à 0°C contient beaucoup d’énergie puisque sur l’échelle des températures absolues, l’air se situe en réalité à 273° K !

Schéma fonctionnement.

L’évaporateur est à l’extérieur et la température du fluide frigorigène sera environ 5 à 8°C inférieure à la température de la source froide. L’énergie thermique captée sera « remontée » à un niveau de température utilisable (pour le chauffage de l’eau chaude sanitaire) via le compresseur : la chaleur du condenseur est donc donnée au ballon.

Bien sûr, on aura intérêt à ce que l’eau chaude soit à une température la plus basse possible. L’écart de température entre l’entrée et la sortie du compresseur doit être en effet le plus faible possible pour limiter le travail du compresseur.

Exemple d’application.

Refroidir l’air extérieur à 0°C pour assurer le chauffage de l’eau chaude sanitaire à 45°C.

Le fluide frigorigène sera à .- 5°C. dans l’échangeur avec l’air et à .53°C. dans l’échangeur du ballon d’eau.

Cet écart est donc fort grand, ce qui va diminuer la performance de l’équipement.


Coefficient de performance

Le bilan énergétique de la PAC

Qu’est-ce qui coûte dans l’exploitation d’une installation de pompe à chaleur ?

  • pas l’énergie de la « source froide » : elle est gratuite,
  • mais bien l’énergie électrique du compresseur.

D’où la notion de rendement donné par le « COP », coefficient de performance :

COP = chaleur au condenseur/travail du compresseur = Q2 / W

Or Q2 = Q1 + W = chaleur captée à la source froide + énergie développée par le travail du compresseur (loi de conservation des énergies).
Dès lors, Q2 est toujours plus grand que W et le COP est toujours nettement plus élevé que 1.

Est-il normal de rencontrer une machine dont le « rendement » dépasse 100 % ?

En réalité, ce n’est pas ici une machine de conversion, de transformation d’énergie comme une chaudière, mais bien une machine qui transfère une quantité d’énergie thermique d’un seuil de température à un autre. Le COP n’est donc pas un rendement mais une évaluation de la performance du transfert.

Si l’écart entre les 2 seuils de température augmente, l’efficacité (ε ou COP) diminue.

Comment évaluer le COP d’une pompe à chaleur ?

Puisque W = Q2 – Q1, on écrit encore : COP = Q2 / (Q2 – Q1)

Si l’on considère un travail sans pertes, les lois de la thermodynamique établissent le lien entre l’énergie contenue dans un fluide (Q) et la température absolue de ce fluide (T), si bien que l’on admettra sans démonstration l’expression suivante du COP théorique :

COPthéorique = T2 / (T2 – T1) [T étant exprimé en Kelvin]

Le coefficient de performance instantané est d’autant meilleur :

  • que la température T1 de la source de chaleur (dite la « source froide ») est élevée,
  • que la température du réseau de chauffage est basse (T2 proche de T1).

Alors que l’on ne peut guère influencer la température de la source de chaleur, celle du ballon d’eau chaude sera définie par le projeteur ! Il aura intérêt à la laisser minimale.

Exemple d’une pompe à chaleur AIR-AIR.

Soit T°ext = 0°C (= 273° K) et T°chauff. = 40°C

COPthéor = (273 + 40) / (40) = 7,8 !

En théorie, la pompe fournira 8 x plus d’énergie au condenseur que d’énergie demandée au compresseur ! … (les 7/8 de la chaleur étant captés dans l’air extérieur).

En théorie … car en pratique, plusieurs éléments vont faire chuter cette performance :

  • Il existe un écart de température entre le fluide frigorigène et les sources.
    Par exemple : si T°ext = 0°C, T°évaporateur = … – 8°C… Et si T°chauff. = 40°C, T°condenseur = … 48°C… d’où un COP = (273 + 48) / (56) = 5,7.
    Le coefficient de convection entre l’eau et l’évaporateur étant nettement meilleur que le coefficient de convection entre l’air et l’échangeur, on aura tendance à privilégier les PAC eau/eau. Encore faut-il avoir une rivière au fond de son jardin ou une nappe phréatique sur laquelle il est possible de puiser (autorisation obligatoire). en général, il faudra se résoudre à prendre l’air extérieur comme source froide.
  • Or dans ce cas, si la T°ex < 5° C, alors T°fluide évaporateur = 0°C. Dès lors, du givre apparaît sur les ailettes, la glace bouche l’échangeur extérieur, d’où nécessité de dégivrer (soit un courant électrique est envoyé sur l’échangeur pour faire fondre la glace, soit le cycle est inversé et des gaz chauds sont envoyés dans l’évaporateur).
    Avec la consommation de dégivrage, le COP moyen diminue fortement.
  • Lorsque la température de l’air extérieur descend sous 0°C, le compresseur a de plus en plus de mal à fonctionner : la puissance délivrée au condenseur de la pompe à chaleur devient très faible et il faut parfois ajouter des résistances de chauffage électrique directe à l’installation.
  • Il y a nécessité de faire fonctionner le ventilateur de la source froide, d’où une consommation électrique supplémentaire de cet auxiliaire.

Quels COP rencontrés en pratique ?

Nous n’avons pas de résultats de mesures « neutres » qui fourniraient un COP annuel sur une machine existante.

On peut imaginer à la fois que le COP est dégradé par la haute température de l’eau chaude, mais également que sa performance est élevée en été.

On pourrait interpréter les données fournies par les fabricants :

Exemple.

Imaginons les spécifications techniques dans un catalogue

Puissance calorifique

kcal/h 3 500
Btu/h 14 000
kW 4,10
Puissance absorbée kW 1,33

On en déduit le coefficient de performance :

puissance calorifique (au condenseur) / puissance absorbée =
4,1 kW / 1,3 kW 
= 3,2

Attention ! Ce coefficient est obtenu dans des conditions bien spécifiques ! Par exemple, en petits caractères, le fabricant précise qu’il s’agit de valeurs obtenues pour 7°C extérieur… Cette performance va s’écrouler en période plus froide. En réalité, c’est le rendement moyen saisonnier qui nous intéresse… mais celui-ci n’est jamais donné puisqu’il dépend des conditions d’exploitation.

Dans le programme de promotion des économies d’énergie suisse « Ravel », on annonce un COP annuel de 3 pour une pompe à chaleur Air-Eau et de 4,5 si la pompe capte l’énergie souterraine, pour autant que le chauffage de l’eau soit limité à 50°C. Si le stockage est prévu à 60°C, une batterie électrique fournit le complément avec de l’électricité directe (COP = 1).

Attention au bilan final : imaginons le chauffage d’1 m³ de 10 à 60°C par une pompe à chaleur air-eau.

L’énergie nécessaire au chauffage de 10 à 50°C par la PAC sera de :

Énergie = 1 m³ x 1,163 kWh/m³ x (50 – 10) / 3 = 15,5 kWh

L’énergie complémentaire pour passer de 50 à 60°C sera de

Energie = 1 m³ x 1,163 kWh/m³ x (60 – 50) = 11,6 kWh

Le COP moyen annuel est alors de :

COP = Energie produite / Energie fournie

= [1 m³ x 1,163 kWh/m³ x (60 – 10)] / [15,5 + 11,6] = 2,15


Technologies

Afin de pouvoir satisfaire les débits de pointe, la pompe à chaleur est associée à un ballon accumulateur d’eau chaude, d’une capacité comprise entre 250 et 1 000 litres. Ceci permet également de faire fonctionner la pompe à chaleur durant la nuit, avec un tarif réduit.
On distingue :

  • Une installation compacte dans laquelle évaporateur à lamelles et compresseur sont situés sur le ballon et le condenseur y est intégré.
  • Une installation « split » où évaporateur et compresseur sont installés séparément, notamment parce que la source de chaleur et le chauffe-eau ne se trouvent pas au même endroit.

Entre le ballon et la pompe à chaleur, différents modes de transport de la chaleur sont possibles :

  • Par le fluide frigorigène (coefficient de performance élevé mais nécessité d’une construction anticorrosion limitant le risque de contact avec l’eau potable). On utilise généralement des conduites pré-chargées de fluide frigorigène et obturées par une feuille métallique. Lors du vissage des conduites, une broche percera la feuille métallique.

  • Par l’eau du ballon, au moyen d’un échangeur de chaleur extérieur à celui-ci.

  • Par un liquide intermédiaire, construction plus complexe mais sécurité accrue (le circuit du fluide intermédiaire doit être équipé d’un dispositif automatique de dégazage).

  • Par un condenseur extérieur disposé autour de l’accumulateur d’eau chaude, toute infiltration du frigorigène étant alors exclue.

Certains appareils possèdent en outre une résistance électrique d’appoint pour porter l’eau à plus haute température (55 à 60°C).

Il existe des appareils avec évaporateur statique (sans ventilateur), dont la surface d’échange est étendue.


Installation

Le raccordement électrique (disjoncteur, …) est similaire à celui d’un chauffe-eau électrique.

Il faut cependant prévoir en plus un conduit d’évacuation des condensats provenant de l’humidité de l’air.

Échangeur à plaques instantané

Échangeur à plaques instantané


Technologies

Un échangeur instantané à plaques est, par définition, un préparateur d’eau chaude sans capacité de stockage. C’est l’eau du réseau de chauffage (en provenance de la chaudière) qui chauffe l’eau sanitaire dans un serpentin tubulaire, au moment des besoins.

Schéma principe échangeur à plaques instantané.

Les capacités de chauffage sont fabuleuses… pour autant que la chaudière suive !

Exemple.

Pour un débit au primaire de 14 m³/h au régime 90/45°C, on peut réchauffer environ 230 litres par minutes, de 10 à 55°C.

Mais la puissance chaudière doit être de :

14 m³/h x 1,16 kWh/m³ x (90 – 45) = 730 kW !

Soit l’équivalent de la puissance de chauffage de 30 habitations domestiques…

Et l’alimentation hydraulique doit suivre entre la chaudière et l’échangeur.

De plus, la régulation doit être très souple pour suivre instantanément les variations de la demande. De là, l’adjonction fréquente d’un ballon tampon :

Pour résoudre à la fois ce besoin élevé de puissance et cette régulation sensible, on greffe un ballon tampon sur le secondaire de l’installation.

Échangeur extérieur à la chaudière

On rencontre généralement des serpentins tubulaires en cuivre ou des échangeurs à plaques. Ces échangeurs comportent souvent des tôles déflectrices formant chicanes, dispositifs servant à améliorer les échanges des deux circuits d’eau.

Le raccordement se fait sur l’aller du circuit de chauffage, comme tout corps de chauffe.

Échangeur incorporé à la chaudière

Si la capacité de la chambre d’eau est suffisamment importante, on l’utilise parfois comme échangeur de chaleur.

Les branchements sur la chaudière sont alors réalisés de telle façon qu’en hiver, lorsqu’il y a soutirage d’importantes quantités d’eau chaude sanitaire, c’est toute la puissance de la chaudière qui serve au réchauffage de cette eau. On parle de régulation en « eau chaude sanitaire prioritaire ».


Avantages et inconvénients

Les avantages

Les avantages d’une préparation instantanée sont liés à l’absence de stockage :

  • Le faible encombrement.
    C’est un argument-clef si la place disponible est particulièrement réduite.
  • La faible charge au sol.
    C’est un argument si la chaudière est prévue sous toiture.
  • L’absence de pertes par stockage.
    Cet argument tend à devenir négligeable, vu l’isolation poussée des ballons récents.
  • La bonne performance hygiénique.
    L’eau chaude ne stagnant pas dans le préparateur, les risques de propagation de la légionelle sont réduits.
  • Le faible coût d’investissement.
    Cette technique est relativement peu onéreuse à installer.

Les inconvénients

Les inconvénients du préparateur instantané sont plus nombreux :

  • La fluctuation de la température de l’eau au niveau de l’utilisateur.
    Malgré une régulation fine (PID) (à prévoir absolument), on reste limité par le temps de réponse des éléments mécaniques de l’installation qui rend les fluctuations inévitables. Il est déconseillé d’utiliser ce type de système dans un bâtiment ayant un profil de puisage discontinu.
  • Le rendement de production dégradé de la chaudière.
    Avec une chaudière combinée chauffage-ECS, il est indispensable de maintenir la chaudière en permanence à température élevée (min 70°C) pour garantir un temps de réponse minimum lorsqu’une demande apparaît. Ceci interdit une régulation en température glissante des chaudières et n’est donc pas optimum énergétiquement, principalement avec les anciennes chaudières ou même avec des chaudières gaz atmosphériques récentes dont les pertes à l’arrêt sont importantes.
  • Le fonctionnement du brûleur en cycles courts.
    Étant donné l’absence de réservoir tampon, chaque puisage va entraîner la mise en route de l’installation pour des temps très courts. Les temps de fonctionnement du brûleur seront donc brefs, ce qui est défavorable pour le rendement de combustion et la pollution atmosphérique.
  • La puissance élevée du générateur.
    La production instantanée demande généralement une puissance de générateur très importante. Dans le cas d’une production d’ECS combinée au chauffage, il peut être nécessaire de surdimensionner la chaudière uniquement pour l’ECS. Ce qui serait une mauvaise utilisation de l’investissement consenti.
  • La puissance des circulateurs.
    La perte de charge des échangeurs instantanés demande des pompes plus puissantes dont la consommation électrique n’est pas à négliger.
  • L’entartrage.
    La température élevée au niveau des surfaces d’échange conduit à la formation rapide de tartre (inconvénient limité par l’action de la vanne trois voies qui évite que la température au primaire de l’échangeur soit en permanence à la valeur maximale).

Préparateur d’eau chaude instantané

Préparateur d'eau chaude instantané


Technologie du préparateur électrique

En pratique, l’échangeur instantané électrique ne se rencontre pas (ou rarement) dans le secteur tertiaire. La puissance qu’il requiert est en effet trop importante.

Exemple.

Imaginons un préparateur instantané électrique alimentant 3 douches. Il se peut que les 3 douches fonctionnent simultanément. Le préparateur devra dès lors fournir 3 x 10 litres/min à 45°. Ces 30 litres/min correspondent à un débit de 1 800 litres/heure.

La puissance qui en résulte est de :

1 800 litres/h x 1,163 kWh/litre.K x (45 – 10) K = 73,3 kW

Sur base d’une alimentation 230 Volts, l’ampérage nécessaire serait de :

Courant = Puissance / Tension = 73 300 W / 230 V = 319 Ampères !!!

On n’ose imaginer le câble et le disjoncteur de protection !

Seul le petit débit d’un percolateur est admissible en électrique instantané. Il correspond également à la douceur avec lequel le grain de café finement moulu doit être arrosé … afin d’en capter tout l’arôme !

Aucune comparaison avec les besoins d’eau chaude d’un bâtiment tertiaire !

A la limite, on pourrait imaginer un préparateur instantané près d’un point de puisage (lavabo), mais on installe plus classiquement un ballon accumulateur « rapide » de 5 à 30 litres max, doté d’une puissance de 120 à 200 Watts/litre et dont le temps de chauffe n’excède pas 45 minutes. Ils permettent de ne pas devoir tirer un câble spécifique de raccordement depuis le coffret de distribution électrique.

Photo préparateur électrique.   Photo préparateur électrique.

Lors du chauffage de l’eau, son volume se dilate de 4 % environ. Il existe des appareils pour circuit ouvert ou fermé. Pour l’appareil à écoulement libre, on utilisera une robinetterie appropriée. L’appareil à circuit fermé sera lui résistant à la montée en pression.


Technologie du préparateur gaz

Comme tout préparateur instantané, il chauffe l’eau au fur et à mesure du soutirage, c’est à dire en continu lors de son passage dans l’appareil. Cette technique nécessite une puissance de production importante… qui n’est parfois utilisée que sur de très courtes périodes.

Photo préparateur gaz.

On distingue 3 classes d’appareils de ce type :

  • les appareils non raccordés à un conduit ou à un dispositif d’évacuation de fumées,
  • les appareils conçus pour être raccordés à un conduit d’évacuation des produits de combustion,
  • les appareils à circuit de combustion étanche à ventouse.

Accumulateur gaz à ventouse.

  1. Sortie ventouse en façade.
  2. Conduit de fumées.
  3. Coupe-tirage.
  4. Arrivée d’eau froide (tube plongeur).
  5. Départ d’eau chaude.
  6. Habillage à haute isolation.
  7. Anode magnésium (protection corrosion).
  8. Réservoir.
  9. Corps de chauffe.
  10. Mystère…
  11. Foyer.
  12. Socle thermo-isolant.
  13. Brûleur atmosphérique à rampes inox et régulation pneumatique avec thermostat incorporé.

Le préparateur instantané gaz est réservé à la desserte d’un petit nombre de points de puisage.

Fonctionnement d’un appareil mixte

Voici son fonctionnement en mode chauffage du circuit de radiateurs :

Mode de fonctionnement chauffage.

  1. Corps de chauffe.
  2. Thermocouple.
  3. Bouton de l’aquastat.
  4. Bouton-poussoir gaz.
  5. Pompe.
  6. Réglage puissance chauffage.
  7. Echangeur sanitaire.
  8. Robinet de gaz.
  9. Régulation sanitaire.
  10. Circuit de chauffage.
  11. Sélecteur.
  12. Robinet de remplissage du circuit de chauffage.
  13. Régulateur d’eau.
  14. Elément thermostatique.
  15. Membrane.
  16. Clapet d’admission gaz.
  17. Brûleur.
  18. Sécurité surchauffe.
  19. Arrivée eau chaude sanitaire.
  20. Point de puisage sanitaire.

Et le même appareil en fonctionnement production d’eau chaude sanitaire :

Mode de fonctionnement eau chaude sanitaire.

  1. Corps de chauffe.
  2. Thermocouple.
  3. Bouton de l’aquastat.
  4. Bouton-poussoir gaz.
  5. Pompe.
  6. Réglage puissance chauffage.
  7. Echangeur sanitaire.
  8. Robinet de gaz.
  9. Régulation sanitaire.
  10. Circuit de chauffage.
  11. Sélecteur.
  12. Robinet de remplissage du circuit de chauffage.
  13. Régulateur d’eau.
  14. Elément thermostatique.
  15. Membrane.
  16. Clapet d’admission gaz.
  17. Brûleur.
  18. Sécurité surchauffe.
  19. Arrivée eau chaude sanitaire.
  20. Point de puisage sanitaire.

Fonctionnement d’un appareil à condensation

Si la condensation de la vapeur d’eau des fumées est recherchée, un échangeur complémentaire alimenté en eau froide sera placé avant la sortie des fumées dans la cheminée.

Voici son fonctionnement en mode chauffage du circuit de radiateurs & ECS.

Mode de fonctionnement chauffage.

  1. Corps de chauffe.
  2. Thermocouple.
  3. Bouton de l’aquastat.
  4. Bouton-poussoir gaz.
  5. Pompe.
  6. Réglage puissance chauffage.
  7. Echangeur sanitaire.
  8. Robinet de gaz.
  9. Régulation sanitaire.
  10. Circuit de chauffage.
  11. Sélecteur.
  12. Robinet de remplissage du circuit de chauffage.
  13. Régulateur d’eau.
  14. Elément thermostatique.
  15. Membrane.
  16. Clapet d’admission gaz.
  17. Brûleur.
  18. Sécurité surchauffe.
  19. Arrivée eau chaude sanitaire.
  20. Point de puisage sanitaire.
  21. Condenseur.
  22. Extracteur des produits de combustion.
  23. Coupe tirage.
  24. Régulateur.
  25. Evacuation des condensats.

et le même appareil en fonctionnement production d’eau chaude sanitaire :

Mode de fonctionnement eau chaude sanitaire.

  1. Corps de chauffe.
  2. Thermocouple.
  3. Bouton de l’aquastat.
  4. Bouton-poussoir gaz.
  5. Pompe.
  6. Réglage puissance chauffage.
  7. Echangeur sanitaire.
  8. Robinet de gaz.
  9. Régulation sanitaire.
  10. Circuit de chauffage.
  11. Sélecteur.
  12. Robinet de remplissage du circuit de chauffage.
  13. Régulateur d’eau.
  14. Elément thermostatique.
  15. Membrane.
  16. Clapet d’admission gaz.
  17. Brûleur.
  18. Sécurité surchauffe.
  19. Arrivée eau chaude sanitaire.
  20. Point de puisage sanitaire.
  21. Condenseur.
  22. Extracteur des produits de combustion.
  23. Coupe tirage.
  24. Régulateur.
  25. Evacuation des condensats.

Les schémas ci-dessus sont plutôt des schémas de principe puisque, en tombant, les gouttes d’eau condensées risquent d’éteindre la flamme !

Dans la pratique, l’évacuation des condensats se fera mieux si l’échangeur de condensation est situé en dessous de l’échangeur principal. C’est ce que montre le schéma ci-dessous d’une chaudière à condensation traditionnelle, avec un conduit de fumées raccordé en partie inférieure :

Schéma chaudière à condensation traditionnelle.

Préparateur d’eau chaude à accumulation

Préparateur d'eau chaude à accumulation


Éléments communs aux différentes technologies

Un préparateur d’eau chaude à accumulation est un réservoir dans lequel l’eau froide est chauffée puis accumulée. Cette fonction « accumulatrice » lui permet de répondre rapidement à une demande importante.

Les technologies se distinguent notamment en fonction du vecteur énergétique : gaz, électricité ou à eau chaude.

Cuve résistantes à la corrosion

L’eau est naturellement agressive suite à la présence de l’oxygène. Si dans un circuit de chauffage cette eau tourne sur elle-même et est considérée comme « morte », l’eau sanitaire est au contraire toujours renouvelée. Différents types de matériaux existent

  • L’acier St 37 galvanisé au bain, à chaud, mais cette technique est abandonnée aujourd’hui.
  • Le cuivre et les alliages de cuivre, qui semble doté d’une bonne résistance à la corrosion mais pour lequel nous manquons d’expérience. Il est couramment utilisé dans les pays scandinaves et en Angleterre.
  • L’acier inoxydable (acier CrNiMo), qui doit être suffisamment allié pour la construction d’un chauffe-eau. On utilise généralement les nuances DIN 1.4435 ou 1.4571, soit des aciers à faible taux de carbone avec adjonction de molybdène. Pour les gaines de corps de chauffe, plus fortement sollicitées, on adopte des alliages plus performants à teneur élevée de nickel, tels que le IN 1.4539, l’Inconel, etc… La qualité de l’équipement est souvent liée à la réalisation des soudures et au décapage intérieur des cuves.
  • L’acier St 37 avec revêtement organique ou synthétique. L’acier est soumis à différents traitements préparatoires (traitement chimique ou sablage) pour assurer l’accrochage de l’enduit. Son usage est limité puisqu’il requiert de ne pas dépasser la température prescrite par le fournisseur (généralement 60°C).
  • Enfin l’acier St 37 émaillé. L’acier est du type pauvre en carbone. Différents traitements (chimiques ou mécaniques) sont nécessaires avant l’émaillage. Celui-ci est réalisé généralement par deux couches successives cuites au four à 890°C.

Protection cathodique contre la corrosion

Les revêtements émaillés comportent quelques pores après la cuisson. Pour exclure tout risque, les appareils émaillés sont munis d’une protection cathodique ou galvanique. Lors de la formation d’une pile électrique, c’est toujours l’anode qui se corrode. Le principe est donc de protéger l’acier (= la cathode) en le mettant en contact avec un métal moins noble que lui (= l’anode).

L’anode, plongée dans l’eau, est généralement en alliage de magnésium. Le fer « ennobli » reste intact et le magnésium sacrifié se dissout. L’anode devra être remplacée lorsque son usure dépasse 60 %.

Ce type d’anode est dégradable, mais il existe également des anodes électroniques (généralement en titane) fonctionnant sur le secteur, et qu’il ne faut en principe jamais remplacer. En cas de panne de courant, elles sont alimentées par une batterie rechargeable. Mais celle-ci n’a qu’une capacité de 1 à 2 jours. Cela suffit si le courant est coupé pendant la journée, parce que le boiler ne fonctionne que la nuit. Cela pourrait poser problème si le courant est coupé durant une période de vacances, par exemple. Le boiler ne serait plus protégé contre la corrosion.

Les pertes thermiques du ballon

Elles sont évaluées via sa constante de refroidissement Cr (puissance de déperditions du ballon) et sa constante d’entretien ce (pertes annuelles).

Mais les performances des ballons usuels sont généralement très proches de la valeur du ballon dit « surisolé » dans la norme française NF C 73-221.

Voici les critères proposés par l‘Ordonnance sur la procédure d’expertise énergétique des réservoirs d’eau chaude en Suisse (22/01/92) :

Capacité Pertes maximum admissibles
[kWh/24h]
Capacité Pertes maximum admissibles
[kWh/24h]
30 0,75 1 000 4,70
50 0,90 1 100 4,80
100 1,30 1 200 4,90
200 2,10 1 300 5,00
300 2,60 1 400 5,05
400 3,10 1 500 5,10
500 3,50 1 600 5,12
600 3,80 1 700 5,14
700 4,10 1 800 5,16
800 4,30 1 900 5,18
900 4,50 2 000 5,20

Le préparateur à accumulation gaz

Le préparateur à accumulation gaz est conçu pour chauffer et maintenir en température un certain volume d’eau variant de 75 à 200 litres.

Ce système permet de distribuer de grandes quantités d’eau chaude à plusieurs postes de puisage. L’eau est chauffée avant et durant les puisages. La reconstitution de la réserve d’eau chaude est rapide (entre 20 et 90 minutes, suivant les modèles).

Le réservoir est calorifugé et l’eau est ainsi maintenue à une consigne de 45 à 60°C.

Il existe des préparateurs « haut rendement » et des préparateurs à condensation.


L’accumulateur électrique

Le petit accumulateur décentralisé (contenance de 5 à 30 litres)

Prévu pour la fourniture d’un ou deux postes, il répond à des besoins ponctuels et supprime la nécessité de raccordement à une installation centralisée.

Certains appareils résistent à la pression (circuit fermé), d’autres sont à écoulement libre mais doivent être suivi d’une robinetterie permettant la dilatation de l’eau chauffée.

Il existe également des chauffe-eaux rapides, dotés d’une puissance de 120 à 200 Watts/litre et dont le temps de chauffe n’excède pas 45 minutes.

Photo petit accumulateur décentralisé - 01.Photo petit accumulateur décentralisé - 02.Photo petit accumulateur décentralisé - 03.

Il est possible de les encastrer (comme un réfrigérateur ou un lave-vaisselle).

L’accumulateur électrique prévu pour une préparation centralisée

La capacité d’accumulation est de plusieurs centaines de litres. Il est possible de le faire fonctionner en continu (alimentation électrique permanente) ou en accumulation en période tarifaire creuse (heures de nuit). Dans ce cas, le dimensionnement est basé sur la couverture des besoins quotidiens.

La puissance installée est de l’ordre de 10 à 12 Watts/litres (exemple : un ballon de 200 litres sera équipé d’une résistance de 2 ou 2,5 kW).

Photo accumulateur électrique.

Schéma accumulateur électrique.

Il existe également des accumulateurs à double résistance électrique, un dans la partie inférieure assurant la charge nocturne à bas tarif, alors que l’élément chauffant supérieur couvre les demandes de pointe en eau chaude pendant la journée. L’enclenchement simultané des deux résistances n’est pas réalisé pour limiter la puissance cumulée.

Les thermostats installés sur les chauffe-eau sont préréglés (60 à 65°C) et le point de consigne ne peut pas toujours être modifié.

Pour permettre la dilatation de l’eau lors du chauffage, on trouve en amont du chauffe-eau un groupe de sécurité (un par appareil). Il comporte :

  • un robinet d’arrêt, pour couper l’arrivée d’eau froide dans le chauffe-eau (démontage),
  • un clapet de retenue, pour éviter le retour d’eau chaude dans la canalisation d’eau froide,
  • une soupape de sûreté, pour limiter la pression dans le chauffe-eau,
  • un dispositif de vidange, pour vidanger le réservoir.

  1. Carrosserie.
  2. Calorifuge (laine minérale, polyuréthane sans CFC).
  3. Cuve (acier galvanisé, cuivre ou acier).
  4. Thermovitrification / émail / plastique.
  5. Prise d’eau froide.
  6. Brise-jet.
  7. Fond.
  8. Tube plongeur pour sonde de thermostat.
  9. Corps de chauffe.
  10. Pieds réglables.
  11. Capot de recouvrement.
  12. Raccordement électrique.
  13. Thermostat de réglage et de sécurité.
  14. Flasque.
  15. Anode en magnésium.
  16. Thermomètre.
  17. Prise d’eau chaude.
  18. Groupe de sécurité (là, il faut le deviner !).
  19. Vidange à l’égout.

En voici le fonctionnement. Au fur et à mesure que l’eau monte dans la cuve, la pression augmente. Un clapet de sécurité évacue l’excès de pression. Le trop-plein d’eau s’écoule par le tuyau de décharge. Un bouton ou une manette fixée sur le groupe de sécurité permet d’actionner manuellement le clapet.

En l’actionnant régulièrement (tous les mois, par exemple), on évite qu’il ne s’encrasse ou ne s’entartre.

Les corps de chauffe électriques

Schéma corps de chauffe électrique.

On rencontre essentiellement deux systèmes :

> Les résistances blindées (ou thermoplongeurs), barres chauffantes de 6 à 9 mm environ. Le fil électrique chauffant est noyé dans de l’oxyde de magnésium (MgO) très pur à haute densité, matériau qui est à la fois un très bon conducteur de la chaleur et un protecteur de l’oxydation du conducteur chauffant.

Avantages.

  • Moins de dépôt de calcaire suite aux dilatations et retraits successifs de la barre blindée.
  • Une faible masse et donc une transmission très rapide de la chaleur vers l’eau.
  • Un flasque de plus petite surface que celle d’une résistance céramique et donc une limitation des pertes énergétiques.
  • Une possibilité, lors de sa construction à froid, de préformer la barre en fonction de la forme du chauffe-eau et donc de réduire la zone froide du fond (mesure anti-légionelle).

Inconvénients.

  • La puissance élevée peut provoquer du bruit pendant la phase de réchauffage de l’eau.
  • Il est nécessaire de vider le réservoir pour remplacer le corps de chauffe.

> Les corps de chauffe en céramique, où les résistances spiralées sont tirées dans les gorges des éléments en céramique, le tout étant introduit dans un tube de protection plongeur.

Avantages.

  • Une inertie relativement importante et donc une charge plus lente qui limite la production de bruit.
  • Un remplacement aisé de la garniture céramique contenue dans un tube plongeur sans devoir vidanger le ballon.
  • Un flasque plus grand, facilitant les travaux d’entretien.

Inconvénients.

  • La formation d’une couche calcaire sur le tube plongeur et donc une moins bonne transmission de chaleur.
  • Des pertes thermiques plus élevées par les flasques, et cela malgré l’isolation thermique en céramique à l’extrémité du flasque.
  • Zone morte plus importante au bas de la cuve, favorisant la stagnation d’eau à température faible et donc le développement de la légionelle.

Appareil à double corps de chauffe

Il existe des appareils équipés de 2 résistances : l’élément chauffant inférieur assure la charge nocturne à bas tarif, alors que l’élément chauffant supérieur couvre les demandes de pointe en eau chaude durant la journée. L’enclenchement simultané des deux résistances n’est généralement pas autorisé en raison de la puissance cumulée.

Schéma appareil à double corps de chauffe.


L’accumulateur à échangeur intégré

Un serpentin de chauffage ou un faisceau tubulaire est intégré. C’est un échangeur de chaleur parcouru par un fluide caloporteur, généralement de l’eau chaude, parfois de la vapeur. Il offre la possibilité de préparer l’eau chaude via une chaudière (gaz, fuel, …), via un capteur solaire ou via une pompe à chaleur.

L’échangeur est généralement en acier inoxydable ou en tube d’acier émaillé.

L’échangeur peut également consister en un faisceau de tubes lisses ou à ailettes, fixé sur un flasque lui-même intégré au chauffe-eau ou monté sur celui-ci.


L’accumulateur mixte

L’accumulateur mixte dispose d’un double raccordement : un serpentin d’eau chaude et une résistance électrique.

Deux types d’alternance sont possibles :

  • Soit suivant la saison : chauffer par la chaudière en hiver et électriquement en été.
  • Soit suivant la complémentarité des sources : chauffage de base par capteur solaires/pompe à chaleur/récupérateur de chaleur et chauffage d’appoint électrique lorsque le niveau de température de consigne n’est pas atteint.

Schéma accumulateur mixte.

  1. Thermomètre.
  2. Tube plongeur pour sonde de thermostat.
  3. Anode en magnésium.
  4. Tube de retour de circulation.
  5. Cuve (acier galvanisé, cuivre ou acier).
  6. Thermovitrification / émail / plastique.
  7. Capot de recouvrement.
  8. Thermostat de réglage et de sécurité.
  9. Corps de chauffe.
  10. Prise d’eau froide.
  11. Brise-jet.
  12. Tube plongeur pour sonde de thermostat.
  13. Pieds réglables.
  14. Calorifuge (laine minérale, polyuréthane sans CFC).
  15. Retour chauffage.
  16. Serpentin.
  17. Aller chauffage.
  18. Prise d’eau chaude.

S’il s’agit d’un chauffage par pompe à chaleur ou par énergie solaire, la position de l’échangeur électrique doit  ors se placer en position médiane, créant 2 ballons : un demi-ballon inférieur pour le préchauffage solaire et un demi-ballon supérieur pour l’appoint électrique…

Une séparation totale en 2 ballons en série restera toujours préférable.


La stratification des températures

Lors de la charge, l’eau est chauffée, elle se dilate, sa densité diminue et elle se déplace vers le haut. Au-dessus de l’échangeur, l’eau chaude s’élève comme de la fumée au-dessus d’un feu.

Par contre, l’eau située au-dessous du corps de chauffe n’est pour ainsi dire pas chauffée et reste pratiquement froide.

Lors de la décharge du réservoir, l’eau chaude est progressivement remplacée par l’eau froide. Des perturbations peuvent se produire dans la stratification des températures. Or un « mélange » des températures intérieures est préjudiciable à la bonne utilisation du ballon.

Exemple.

Un ballon contient 200 litres à 60°C. Un puisage de 100 litres est réalisé. Il contient donc encore 100 litres à 60°C et 100 litres à 10°. Il peut être utilisé valablement.

Si des tourbillons ont entraînés le mélange de l’eau, c’est 200 litres à 35°C qui seront présents… Aucune énergie n’est perdue, mais l’eau est « inutilisable ». Un réchauffement sera nécessaire pour ramener l’eau à 60°C.

Cette situation (caricaturale) est surtout à éviter pour l’accumulateur électrique, car il appellera un appoint de jour, mais aussi pour un système traditionnel à eau chaude car il risque de relancer la chaudière suite au moindre soutirage.

Des perturbations de la stratification peuvent avoir lieu suite à :

  • une vitesse d’arrivée d’eau trop élevée,
  • une circulation interne quand l’isolation est insuffisante (refroidissement de l’eau le long des parois),
  • un retour de boucle de circulation trop froid,
  • une disposition horizontale du ballon.