Grandes familles de systèmes de refroidissement

Grandes familles de systèmes de refroidissement


Présentation des grandes familles

Souvent on distingue 3 grandes familles de systèmes de climatisation en fonction du mode de transport de l’énergie frigorifique. Le rafraîchissement des locaux peut se faire :

  1. Par l’intermédiaire d’un réseau d’air,
  2. par l’intermédiaire d’un réseau d’eau froide ou d’eau glacée,
  3. par contact direct entre l’air à refroidir et l’évaporateur de la machine frigorifique (« détente directe »).

Famille 1 : les installations centralisées « tout air »

Puisque de l’air hygiénique doit de toute façon être apporté aux occupants, la première idée consiste à profiter du réseau de distribution d’air pour fournir la chaleur ou le froid demandés par les locaux.

Mais pour un bureau le débit d’air hygiénique entraîne un renouvellement du volume d’air du local :

Exemple.

1 personne demande 30 m³/h d’apport d’air neuf. Il occupe 10 m², sur une hauteur de 3 m, soit 30 m³. Le ratio « débit/volume occupé » est de 1 [1/h].

Par contre le transport de la chaleur et du froid entraîne des débits d’air nettement plus importants : on atteint des débits correspondant à 4 … 10 renouvellements du local, chaque heure, …

Exemple.

Les apports internes et les apports solaires génèrent une puissance de 100 W/m². Pour les 10 m² de l’occupant, cela crée un besoin frigorifique de 1 000 W. Supposons que l’ambiance est à 24 °C et l’air frais apporté à 14 °C, l’écart de soufflage sera de 24 – 14 = 10 K.
Le débit nécessaire sera de : 1 000 W / (0,34 Wh/m³.K x 10 K) = 294 m³/h
C’est un débit d’air 10 x plus élevé que le débit hygiénique !

Le réseau d’air devient alors fort encombrant !

Aussi, la consommation électrique des ventilateurs peut devenir très élevée : dans les anciennes installations (installées il y a 30 ans), le coût de l’énergie électrique des ventilateurs peut atteindre 50 % du coût total de l’énergie consommée par le conditionnement d’air de tout l’immeuble !

De plus, en « tout air neuf », le coût de fonctionnement de l’installation est très élevé puisque le chauffage est assuré, en plein hiver, par de l’air extérieur qu’il faut réchauffer à grands frais.

Exemple.

Pour apporter 1,5 kW de chaleur au local, un apport de 3,5 kW est demandé au caisson de traitement d’air : 2 kW pour porter l’air de 6° à 22 °C, puis 1,5 kW pour l’amener à 40 °C.

La température de 6 °C correspond à la température moyenne de l’air extérieur.

Pour diminuer les coûts d’exploitation d’une installation « tout air », une bonne partie de cet air doit être recyclé.

Exemple.

60 m³/h sont conservés pour l’apport d’air hygiénique et 210 m³/h extraits des bureaux à 22 °C sont recyclés. La puissance de chauffe redescend à 1,9 kW :

Cette solution est plus économique, mais on reproche alors au système les risques de contamination que peut entraîner ce recyclage, … qui mélange l’air provenant de tous les locaux !

Pour limiter les coûts énergétiques sans risque de contamination, on place alors un récupérateur de chaleur sur l’air extrait.

Exemple.

Autrefois à la mode à toutes les sauces, on réserve généralement les centrales « tout air » aux locaux où les besoins en air neuf sont très importants, c’est à dire des locaux à grande densité d’occupation : des salles de réunion, des salles de conférences, … Un autre cas de figure est celui des bâtiments où les besoins de refroidissement sont faibles et bien maitrisés (par des superficies vitrées réduites, des protections solaires extérieures,…)

Dans ces cas, le débit de ventilation hygiénique se rapproche du débit thermique nécessaire …

De plus, la technique du « débit d’air variable » permet aujourd’hui de limiter le coût du transport de l’air et surtout d’adapter le débit en fonction des besoins de chaud ou de froid nécessaire.

Gros avantage du « tout air » sur le plan énergétique : pour les locaux qui doivent être refroidis en mi-saison et éventuellement même en hiver, de l’air frais extérieur gratuit est disponible. On parle alors de « free cooling mécanique ».

Famille  2 : les installations décentralisées « sur boucles d’eau »

Ici, les fonctions sont séparées :

  • L’air neuf hygiénique est traité en centrale, puis apporté dans les locaux au moyen d’un réseau de conduits.
  • La chaleur et le froid sont apportés vers des unités de traitement terminales situées dans les locaux, via une boucle d’eau chaude et une boucle d’eau froide ou d’eau glacée.

Comme unités terminales, on retrouve les ventilo-convecteurs, les pompes à chaleur sur boucle d’eau, les plafonds rafraîchissants, …
Trois problèmes sont résolus

  1. Seul de l’air neuf est véhiculé, limitant ainsi le risque hygiénique lié au recyclage partiel de l’air vicié (en quelque sorte, il s’agit d’une ventilation « double flux », améliorée par un traitement central en température et humidité).
  2. L’encombrement est limité puisque l’eau transporte de la chaleur (ou du froid) avec 3 000 fois moins de volume que l’air. De simples tuyauteries suffisent. En rénovation de bâtiments, on évite ainsi le percement des parois pour insérer des gainages d’air de grandes dimensions…
  3. Le transport de la puissance frigorifique ou calorifique se fait par l’eau, au moyen d’une pompe dont la consommation sera nettement moins consommatrice que le ventilateur correspondant au système « tout air ».

Cette séparation entre la ventilation et l’apport thermique au local est de plus un gage de bonne régulation.

Le mode de régulation de la température peut se faire local par local et est très accessible à l’utilisateur, ce qui est un confort apprécié. Une liaison par bus de communication des différentes unités terminales est possible, ce qui permet une régulation et une gestion globale de qualité par la GTC (Gestion Technique Centralisée).

Famille 3 : les appareils travaillant en « détente directe »

On retrouve dans cette famille les climatiseurs, armoires de climatisation, roof-top,… mais ces appareils ne peuvent résoudre qu’un problème de climatisation limité à un ou quelques locaux : la climatisation d’une salle informatique, d’une cafétéria, d’un hall d’atelier, … par exemple. On les retrouve dans des bâtiments qui ne sont pas munis de production centrale de froid, dans des ajouts de locaux ou dans les cas où il faut assurer en secours du froid pour une fonction vitale (ex : central téléphonique).

La consommation spécifique de ces appareils est plus élevée que dans une unité terminale d’une installation centralisée (ventilo-convecteurs, par exemple), suite au fait qu’ils travaillent avec une température d’évaporation très basse, entraînant une consommation parasite par déshumidification exagérée de l’air. Par contre, ils ne demandent pas le maintien de réseaux d’eau froide durant tout l’été et la mi-saison, ce qui est appréciable.

Un seul type de système peut climatiser l’ensemble d’un immeuble de bureaux, c’est le système dit « à Débit Réfrigérant Variable » (ou DRV). Il est souvent connu par les appellations VRV ou VRF, selon les constructeurs. Sa particularité est de véhiculer du fluide frigorigène dans les différents locaux et d’alimenter directement des échangeurs situés en allège ou en faux plafond. Suivant les besoins du local, l’échangeur peut fonctionner en mode froid (il est l’évaporateur de la machine frigorifique) ou en mode chaud (il est le condenseur de celle-ci). À noter le faible encombrement qu’il entraîne, puisqu’aucune chaufferie n’est ici nécessaire.

Il n’utilise aucun fluide intermédiaire (air ou eau). De là, le terme d’appareil à « détente directe » : l’échangeur « froid » est parcouru directement par le fluide frigorigène. Cette caractéristique est performante au niveau énergétique puisque le coût du transport de l’énergie frigorifique est évité. De plus, les systèmes à fluide réfrigérant variable permettent de récupérer la chaleur entre les zones chaudes et les zones froides du bâtiment.

Comme dans les systèmes air-eau, le mode de régulation de la température se fait local par local et est très accessible à l’utilisateur (généralement une télécommande).

Le problème du traitement de l’air hygiénique subsiste : il n’existe pas de chaudière ou de groupe frigorifique disponibles en centrale pour préparer l’air hygiénique. Des solutions décentralisées sont possibles avec un moindre confort.

Concevoir

Pour plus de détails, on peut consulter le choix d’un système à débit de réfrigérant variable.

Les solutions les plus courantes

La solution « standard » : le ventilo-convecteur

Photo ventilo-convecteur.

  • Partons du système le plus utilisé pour un immeuble de bureaux : le ventilo-convecteur sur une boucle d’eau froide et une boucle d’eau chaude (système appelé « ventilo-4 tubes »).Il a pour avantages :
    • une très grande souplesse de réaction face aux variations de charges,
    • un faible encombrement,
    • une possibilité d’accepter des charges différentes d’un local par rapport à un autre,
    • une séparation entre l’apport d’air frais hygiénique et l’apport thermique, ce qui supprime tout recyclage de l’air hors du local,
    • un prix d’investissement limité grâce à un équipement fabriqué en grande série.On sera attentif à la qualité lors de sélection du matériel et lors de la réalisation de la distribution d’air neuf (confort thermique et acoustique).
  • Si le bâtiment est très homogène dans ses besoins (« quand c’est l’hiver, c’est l’hiver pour tous les locaux ») on se contentera d’un « système à 2 tubes », moins coûteux : un seul réseau de tuyauterie véhicule alternativement de l’eau chaude en hiver et de l’eau froide en été. Mais cette solution devient de plus en plus difficile à appliquer : l’enveloppe du bâtiment étant de mieux en mieux isolée, certains locaux plus chargés en apports internes seront demandeurs de froid, même en hiver.
  • En rénovation, pour vaincre des charges d’équipements devenues inconfortables, on peut greffer une installation 2 tubes froids (« Hydrosplit »), sur la production de chauffage existante.

Le plafond froid

Photo plafond froid.

  • La technique des plafonds froids apporte un confort thermique et acoustique inégalé (moyennant un éventuel supplément de prix) : le froid est apporté par rayonnement au-dessus de la tête des occupants et aucun ventilateur ne vient perturber l’ambiance. Mais la puissance de refroidissement des plafonds est limitée. Cette technique ne s’appliquera dès lors qu’avec des bâtiments dont la conception limite les apports solaires : bâtiments avec ombre portée, stores extérieurs, stores intérieurs combinés à des vitrages performants,…
  • Le plafond froid sera d’ailleurs facilement intégré lors de la rénovation d’un bâtiment existant dont les charges sont légères et qui dispose déjà d’une installation de chauffage.
  • On pourra utiliser des poutres froides complémentaires si la puissance frigorifique souhaitée n’est pas atteinte, mais au détriment du confort aéraulique comme souvent dans les solutions dynamiques (risque de courants d’air froid).
  • Reste le problème de l’apport de chaleur en hiver. En construction nouvelle, si le bâtiment est bien isolé, la demande de chaleur en hiver est limitée.
    Il est envisageable d’apporter cette chaleur :

    • soit en alimentant en eau chaude les plafonds situés près des façades (près des baies vitrées),
    • soit via un circuit de radiateurs complémentaire,
    • soit grâce à des batteries terminales placées sur le conduit de ventilation hygiénique (si le débit de celui-ci est suffisant).

La solution spécifique pour les locaux à forte occupation : la centrale « tout air » à débit variable (VAV)

Photo centrale "tout air" à débit variable (VAV).

Le problème se pose tout autrement si une présence humaine nombreuse est prévue. Alors que l’on prévoit 12 m² par personne dans un bureau individuel ou 8 m²/pers dans un bureau paysager, ce ratio descend à 2 à 4 m²/pers dans une salle de réunion, voire 1 à 2 m²/pers dans une salle de conférence. Puisque chaque personne nécessite 30 m³/h, un réseau d’air neuf important sera nécessaire. On pense dès lors à profiter de ce réseau pour apporter les calories et frigories requises.
Un bilan s’impose :

  • Si le bâtiment présente des besoins limités (bien isolé du froid extérieur et bien protégé des apports solaires), le débit d’air hygiénique élevé pourra apporter les besoins thermiques. On parle d’un système « tout air ».
Exemple.
Soit un local de réunion assez dense : 2 m²/pers.
Réalisons le bilan des apports :
éclairage : 12 W/m²
personnes : 80 W pour 2 m² = 40 W/m²
total : 52 W/m²
Réalisons le bilan du refroidissement par le débit d’air hygiénique : débit : 30 m³/h/pers pour 2 m² = 15 m³/h/m²
puissance de refroidissement : 15 m³/h/m² x 0,34 Wh/m³K x 8 K = 41 W/m²

On voit qu’en poussant un peu le débit d’air, on peut facilement vaincre les 52 W/m² de chaleur.

  • Dans le cas où le local est soumis à des apports solaires supplémentaires, les débits nécessaires pour les besoins thermiques dépasseront de loin le débit d’air hygiénique, l’encombrement sera très important, un recyclage de l’air devra être organisé… Le système « tout air » devient inadapté.

Vu le coût d’exploitation du transport par air (coût de fonctionnement des ventilateurs), un système d’adaptation du débit d’air aux besoins réels sera prévu (système VAV, Volume d’Air Variable). Le débit maximal ne sera pulsé que dans les situations extrêmes. Mais ce système est coûteux et la mise au point de sa régulation est plus délicate.

Un grand avantage pourtant de ce système « tout air » est de pouvoir profiter d’un refroidissement gratuit par de l’air extérieur en mi-saison (free cooling diurne).

Un outsider possible pour certains bâtiments : le DRV, Débit de Réfrigérant Variable

Photo DRV, Débit de Réfrigérant Variable.

Quelques réflexions peuvent se faire :

  • Le souci de modularité dans la construction des bâtiments nouveaux entraîne faux plafond, cloisons légères, … Cette caractéristique de construction sans inertie, alliée à la présence généralisée de moquette au sol, entraîne une très grande variabilité des besoins dans le temps : il faut réchauffer le bâtiment au matin, mais le fonctionnement de la bureautique et le premier rayon de soleil entraîne un besoin de refroidissement à midi !
  • Les bâtiments nouveaux sont parfois confrontés à des besoins simultanés de chaud et de froid :
    • exemple 1 : en hiver, chauffage des locaux en périphérie et refroidissement du cœur du bâtiment,
    • exemple 2 : en mi-saison, au matin, chauffage des locaux à l’Ouest et refroidissement des locaux à l’Est déjà soumis au rayonnement solaire,
    • exemple 3 : chauffage de l’air hygiénique et refroidissement des locaux.
      Il est dommage de voir simultanément des chaudières fonctionner, ne fut-ce que pour préchauffer l’air hygiénique, et des condenseurs évacuer dans l’air extérieur la chaleur excédentaire des locaux refroidis…
  • Pourquoi passer par un fluide intermédiaire (eau ou air) et ne pas travailler directement avec le fluide frigorigène qui peut apporter chaleur ou refroidissement par simple inversion du cycle ?

Par ailleurs, la technique du « fluide réfrigérant variable » semble performante pour des locaux dont les besoins sont très variables entre eux et dans le temps. Par exemple, en hiver, un échangeur dans le faux plafond devient évaporateur lorsqu’il est placé dans un local central et condenseur lorsqu’il est dans un local en façade. Et ce même échangeur bascule en évaporateur en été.

Reste le problème d’apport de l’air neuf hygiénique et le contrôle du taux d’humidité en hiver. Ce système ne le prévoit pas.
Il faut alors :

  • Soit prévoir un caisson de préparation de l’air indépendant, mais on ne dispose pas de source de chaleur puisque pas de chaudière…
  • Soit intégrer l’air neuf dans les échangeurs intérieurs et laisser à l’unité terminale le soin de préparer la température adéquate, mais on ne gère pas le problème de l’humidité de l’air des locaux.

Un avantage de ce type d’installation : c’est une solution « tout électrique », ce qui simplifie et accélère la construction. On veillera cependant à en limiter la puissance électrique (gestion de la pointe de puissance par délestage ou par stockage de froid la nuit).

Quel que soit le système choisi…

C’est très souvent la qualité du projet qui fait la différence :

  • dimensionnement correct (absence de courant d’air, limitation du bruit,…),
  • finesse de la régulation des équipements,
  • performance des moyens de gestion qui pilotent le tout.

Ce sont les 10 % de budget supplémentaire qui feront souvent la performance globale…

Géothermie et géocooling [Climatisation]

Géothermie et géocooling


Principe

À l’état naturel, le sous-sol garde une température constante de l’ordre de 10 … 12 °C à partir d’une profondeur d’une dizaine de m.

graphe principe géothermie.

On peut donc logiquement imaginer que celui-ci puisse servir de source naturelle de froid. Il suffirait qu’un réseau véhiculant un fluide caloporteur le parcoure pour produire de l’eau à température adéquate pour refroidir un bâtiment.

On appelle cela du « géocooling ».

De même, une température de 10 .. 12 °C plus élevée et plus stable que la température extérieure hivernale est une température intéressante pour servir de source froide à une pompe à chaleur, en l’occurrence sol/eau, pour chauffer le bâtiment en hiver.

On parle alors de « géothermie ».

Refroidissement en été et chauffage en hiver vont d’ailleurs souvent de pair. En effet, si en été on extrait du « froid » du sol, ce dernier se réchauffe progressivement. Si cette opération se répète d’année en année, sans autre perturbation, le sol verra sa température moyenne augmenter jusqu’à ne plus être exploitable.

Dès lors pour éviter ce phénomène, il s’agit de régénérer le sol chaque hiver en extrayant la chaleur accumulée en été grâce à une pompe à chaleur.

On parle alors de « STOCKAGE GEOTHERMIQUE » : la chaleur du bâtiment est transférée dans le sol en été quand elle est gênante pour être utilisée en hiver quand elle est nécessaire.


Technologie des sondes géothermiques

Les systèmes fermés et ouverts

On parle de système fermé si un fluide caloporteur circule dans le sol dans un circuit fermé.

On retrouve principalement 3 types de systèmes fermés : les forages ou sondes géothermiques, les pieux géothermiques et les nappes horizontales.


3 types d’échangeur géothermique : les pieux, les sondes et les nappes.

Source : Rehau.

On parle de système ouvert lorsque c’est l’eau de la nappe phréatique ou du lit d’une rivière qui est pompée pour échanger sa chaleur avec le bâtiment et réintroduite en aval du sens d’écoulement souterrain.

Forages géothermiques

Dans ce cas les « échangeurs géothermiques » ou « sondes géothermiques » sont pour la plupart constitués de forages verticaux (diam 150 mm) d’une profondeur de 50 à 400 m (souvent 100 .. 150 m). Chaque forage contient des conduites, le plus souvent en polyéthylène (DN 32) disposées en double U et enrobées d’un coulis de ciment/bentonite (le « grout ») assurant la protection mécanique tout en permettant une certaine souplesse indispensable pour résister aux mouvements de sol.

Source : REHAU.

L’ensemble des forages forme ainsi un champ de sondes espacées entre elles de 6 à 10 m, pour limiter les interférences thermiques. Les sondes sont raccordées entre elles via des collecteurs, en série ou en parallèle ou un mix des deux.

Le champ de sondes peut être disposé à côté du bâtiment ou même sous le bâtiment (par exemple en ville).

Variantes : Sondes coaxiales en acier

Les forages géothermiques présentent une série de contraintes comme :

  • la nécessité d’espace pour effectuer les forages;
  • la gestion du forage au travers de couches de sous-sol parfois hétérogènes;
  • la nécessité de maximiser l’échange de chaleur tout en garantissant la tenue mécanique des sondes,
  •  …

Cela conduit les fabricants à proposer des alternatives aux sondes traditionnelles en « double U ».

Il existe ainsi des sondes coaxiales : l’eau en provenance du bâtiment circule dans la périphérie de la sonde et revient par le cœur pour délivrer son énergie au bâtiment.

Exemple de sonde coaxiale en PE : le fabricant annonce que les performances d’une sonde de dimension 63 mm / 40 mm
correspondent à une sonde géothermique double U de dia. 32 mm.

Source : www.hakagerodur.ch

Pour encore augmenter l’échange thermique avec le sol les sondes peuvent être réalisées en acier (avec protection cathodique) ou en inox, sans enrobage : le tube périphérique est en métal et le tube intérieur en PE.

L’augmentation du transfert de chaleur, permet alors réduire le nombre de forages et la longueur des sondes. Ainsi des tests de réponse thermique montrent qu’en moyenne, les sondes coaxiales en inox ont une résistance thermique 2 fois moindre qu’une sonde avec doubles U en PE. Cela permettrait une puissance d’extraction de 10 à 20 % supérieure.

Exemple de sondes en acier, à visser (longueur de 3 m).

Source : Thermo-pieux.

Exemple de sonde en inox introduite par forage ou « vibro-fonçage ».  La profondeur peut atteindre une centaine de mètres.

Source : geo-green.

La technologie des sondes coaxiales ouvre la porte à des installations avec des forages en étoile au départ d’un point d’entrée unique dans des lieux où l’accès pour des forages parallèles espacés n’est pas possible (par exemple, une cour intérieure dans un site existant).

 

Forages en « étoile » : on parle dans la littérature de « racines géothermiques ».

Pieux géothermiques

Une alternative aux forages consiste à intégrer les échangeurs géothermiques aux pieux de structure d’un bâtiment. Cela se justifie parce que ceux-ci sont souvent nécessaires dans des sous-sols humides, sous-sols favorables aussi à la géothermie.

On justifie cette technique par un souci de rationaliser les techniques en les combinant. Cependant, la pratique ne prouve pas que les coûts soient inférieurs par rapport à des installations distinctes. La mise en œuvre des pieux se complique également. La gestion de l’installation doit également interdire que les pieux de fondation ne gèlent en mode de chauffage hivernal.

 

Exemples de réalisation : La crèche de l’île aux oiseaux, ville de Mons : 16 pieux géothermiques de 10 m.

La crèche de l’ile aux oiseaux de Mons.

Aéroport de Zurich : 350 pieux géothermiques de 30 m de profondeur.

Nappes horizontales

La géothermie se décline également sous la forme de nappes de tuyaux déployés horizontalement à faible profondeur (0,6 à 1,2 m).

Le système est peu applicable dans le secteur tertiaire. En effet,

  • Il demande une surface de terrain très importante : de 28 à 100 m²/kW de puissance de chauffage nécessaire.
  • En hiver, elle peut conduire à un refroidissement excessif du sol préjudiciable à la végétation.
  • L’utilisation en refroidissement n’est guère possible, la température du sol étant fortement soumise à l’environnement extérieur.

Alternative pour les bâtiments de taille réduite : les sondes de faible profondeur.

Pour les petits projets, pour lesquels un forage n’est pas autorisé et où les systèmes horizontaux ne disposent pas de surface suffisante, certains fabricants proposent des sondes de petite taille constituées d’un échangeur spiralé. Ce système permet notamment de limiter l’influence que peut avoir la géothermie sur la couche de sol où se développe la végétation.

Source : SANA FONDATIONS sprl.

Cas particulier : le puits canadien

Le puits canadien ou puits provençal constitue une forme de géothermie puisque l’air neuf de ventilation est prétraité (chauffé ou refroidi) par son passage dans le sol.

Techniques

 Pour en savoir plus sur le puits canadien.

Schémas de principe

Traditionnellement, on retrouve 2 types de schéma de principe, selon que le froid est produit par échange direct avec le sol soit par la pompe à chaleur réversible utilisant le sol comme source chaude. Une troisième configuration se retrouve lorsqu’on puise directement l’eau de la nappe phréatique.

Free cooling direct

En été : le froid est produit par échange direct avec le sol et distribué via un échangeur vers les unités terminales. Le géocooling est ainsi mis en œuvre moyennant uniquement la consommation de pompes. Si on compare cette consommation à l’énergie frigorifique produite, on calcule un ESEER équivalent du système de l’ordre de …12…, voire plus en fonction des dimensionnements des équipements. Souvent une machine de production de froid vient en appoint pour satisfaire les demandes de pointes ou pour alimenter des utilisateurs demandant des températures d’eau plus basses (comme les groupes de traitement d’air).

En hiver, le sol sert de source froide à une pompe à chaleur sol/eau. Le coefficient de performance saisonnier obtenu varie entre 4,5 et 5,5. Une chaudière est utilisée en appoint pour couvrir les pointes de puissance par grands froids. Généralement, le système est dimensionné pour que la PAC couvre environ 70 % du besoin de chaud grâce à environ 30 % de la puissance totale nécessaire.

Recharge du sol par pompe à chaleur réversible

La pompe à chaleur sol/eau est réversible. En été, elle fonctionne comme un groupe de production d’eau glacée en utilisant le sol pour évacuer la chaleur de son condenseur régénérant ainsi ce dernier.

L’avantage d’un tel système est de mieux gérer la recharge du sol et peut-être de pouvoir se passer d’un groupe de froid d’appoint et d’un échangeur intermédiaire. L’investissement est donc moindre.

En contrepartie, alors que l’on peut toujours parler de stockage géothermique, il ne s’agit plus réellement de géocooling naturel puisqu’il est nécessaire de faire fonctionner une machine thermodynamique pour extraire le « froid » du sol. Le bilan énergétique global est donc moins favorable.

Systèmes ouverts

Si la nappe phréatique se situe près de la surface du sol, on peut envisager de puiser directement l’eau dans cette dernière plutôt que de la parcourir avec un échangeur et un fluide caloporteur. On parle de système ouvert. Dans ce cas, l’eau de la nappe sert par l’intermédiaire d’un échangeur :

  • En mode chauffage, de source froide à une pompe à chaleur.
  • En mode refroidissement, de source de froid directe pour une boucle d’eau.

L’eau puisée est ensuite réinjectée dans la nappe à une certaine distance créant ainsi 2 zones dans la nappe phréatique à températures différentes, l’eau passant de l’une à l’autre en fonction de la saison :

  • En hiver une zone se refroidit par l’eau réinjectée après échange avec la pompe à chaleur.
  • En été l’eau est pompée en sens inverse de cette zone et réinjectée plus chaude dans la zone de puisage hivernal.

Étant donné les mouvements dans les nappes phréatiques et en fonction de la distance entre les zones chaude et froide, l’influence d’un éventuel déséquilibre entre les besoins de chauffage et de refroidissement est nettement moindre dans le cas d’un système ouvert par rapport à un système fermé.

En outre, il est également possible de produire du chaud et du froid en même temps dans le bâtiment. En effet, si nécessaire, l’eau pompée de la nappe peut être dirigée à la fois vers la pompe à chaleur et vers l’échangeur de géocooling ou vers un échangeur commun entre les productions de chaud et de froid.

Exemples d’installations

Le schéma ci-dessous est proposé par un constructeur allemand. Il permet le chauffage par pompe à chaleur, le refroidissement libre par un échangeur vers les sondes géothermiques, éventuellement assisté par le fonctionnement réversible de la pompe à chaleur.

Le schéma ci-après, plus complet, permet un fonctionnement mixte en mi-saison : une chaudière alimente la zone périphérique en chaleur, alors que simultanément, la zone centrale est refroidie par l’échangeur dans le sol via la pompe à chaleur. Attention cependant à la destruction d’énergie qui pénalise l’intérêt énergétique de ce système.


Unités terminales associées

Les performances de la pompe à chaleur et du géocooling sont fortement dépendantes du régime de température des unités terminales :

Plus la température de l’eau de distribution est basse en saison de chauffe (température max de l’ordre 50 .. 55 °C), meilleur sera le rendement de la PAC et plus elle est élevée en été (température min de l’ordre de 15 .. 17 °C) plus grande sera la quantité d’énergie extractible directement du sol.

On doit donc choisir des unités terminales compatibles avec ces températures :

  • Plafonds refroidissants ou ilots rayonnants
    • avantages : peu d’inertie thermique et donc rendement de régulation élevé, contrôle facile de la température ambiante, réversible chaud/froid;
    • inconvénients : puissance plus limitée (plafonds).

Exemple d’îlot rayonnant.

(Source : Interalu).

  • Dalles actives
    • avantages : stockage de nuit et donc limitation de la puissance à installer;
    • inconvénients : inertie thermique importante et donc contrôle difficile de la température et rendement de régulation dégradé. Peu de flexibilité spatiale et difficulté d’utilisation en chauffage (nécessité d’un second système). Absence de faux plafond (gestion des techniques et de l’acoustique).

Étude d’un projet de géothermie

Un projet de géothermie consiste à mettre en corrélation le comportement thermique du bâtiment et celui du sous-sol. Tout cela se passe de façon dynamique : les besoins varient, le sol se charge, se décharge, échange avec son voisinage tout cela sur une échelle de temps quotidienne, mais aussi saisonnière. Cela justifie l’utilisation d’outils de simulation thermique dynamique prenant en compte la variabilité des besoins, des échanges et l’inertie du système.

Étapes de l’étude d’un projet de géothermie :

  • Définir les besoins par simulations dynamiques en évaluant différentes variantes de manière à trouver le bon équilibre entre le besoin de chaud et de refroidissement du bâtiment (niveau d’isolation, type de vitrage, protections solaires, …).

Besoins simulés de chauffage et de refroidissement d’un bâtiment, h par h ou 1/4h par 1/4 h.

  • Connaître la nature du sol par études géologique et hydrogéologique pour préévaluer les caractéristiques physiques et thermiques du sous-sol et pour évaluer les éventuels risques liés aux forages (présence de nappes phréatiques, de couche argileuse,  de quartzites, …). Cela permet de prédéfinir la pertinence et la configuration des forages (par exemple, leur longueur minimale et maximale en fonction des couches de sous-sol susceptibles d’être rencontrées).

Pour exemple, voici quelques données moyennes :

Caractéristiques du sol Puissance spécifique d »extraction
Sur 1 800 heures de fonctionnement Sur 2 400 heures de fonctionnement
Valeurs indicatives générales
Sous-sol de mauvaise qualité (sédiment sec) (λ < 1,5 W/m²K) 25 W/m 20 W/m
Sous-sol rocheux normal  et sédiment  saturé en eau (λ < 1,5 – 3.0 W/m²K) 60 W/m 50 W/m
Roche compacte à conductibilité  thermique élevée (λ < 3,0 W/m²K) 84 W/m84 W/m 70 W/m
Minéraux respectif
Gravier et sable secs < 25 W/m <20 W/m
Gravier et sable aquifères 65 – 80 55 – 65 W/m W/m
Dans le cas de fort courant des eaux souterraines dans le gravier ou le sable et d’installations uniques 80 – 100 80 – 100 W/m
Argile et glaise humides 35 – 50 W/m W/m 30 – 40 W/m
Calcaire (massif) 55 – 70 W/m 45 – 60 W/m
Grès 65 – 80 W/m 55 – 65 W/m
Roche magmatique acide (par ex. granit) 65 – 85 W/m 55 – 70 W/m
Roche magmatique basique (par ex. basalte) 40 – 65 W/m 35 – 55 W/m
Gneiss 70 – 85 W/m 60 – 70 W/m

Puissances traditionnelles extractibles.

Source Rehau.

  • Effectuer un test de réponse thermique (« TRT »). Il s’agit de réaliser un forage en taille réelle et de le soumettre à une sollicitation thermique pour pouvoir calculer la conductibilité et la capacité thermique du sol et la résistance thermique des sondes, en moyenne sur toute la longueur de la sonde. Cette sonde test pourra ensuite être valorisée dans le champ de sondes final.

Source : Group Verbeke.

  • Dimensionner le champ de sondes au moyen d’un logiciel de simulation dynamique du sous-sol : simulation du comportement du sol compte tenu des besoins du bâtiment (heure par heure) et des caractéristiques  thermiques des sondes prévues et du sol (définies par le TRT) ; optimalisation de la puissance de la PAC, du nombre et de la profondeur des sondes en s’assurant de l’équilibre à long terme de la température du sol.

Dimensionnement de l’échangeur de sol

Pour le dimensionnement des collecteurs de sol, des réfrigérateurs de plaques de fond ou de réservoirs de fondations, il est possible de consulter la DIN ISO EN 13370 « Transmission de chaleur par le procédé de calcul terrestre ».

L’objet de cette norme est l’examen du transfert de la chaleur en tenant compte des paramètres (tuyaux, isolation, masse géométrique du bâtiment, etc.) et de la conduite d’exploitation. La ligne directrice VDI 4640 « Utilisation thermique du sous-sol » convient pour l’évaluation du rendement (puissance) d’un chauffage. De plus, elle fournit des indices de planification concernant les permissions et les conditions additionnelles liées à l’environnement, mais (à notre connaissance en octobre 2003) elle n’aurait pas encore été adaptée sous l’aspect « été » du réfrigérateur.

D’après la norme DIN ISO EN 13370 (traduction non officielle !), les tableaux suivants donnent une vue d’ensemble sur les capacités d’extraction des collecteurs de chaleur et des sondes géothermiques (capacité des pompes de chaleur jusqu’à max. 30 kW) :

>  S’il s’agit de collecteurs situés à côté du bâtiment (en W/m²) :

Puissance d’extraction thermique en W/m²
Sous-sol Exploitation 1 800 h / saison Exploitation 2 400 h / saison
Sol sec, non cohérent 10 8
Humide, cohérent 20…30 16…24
Sable, gravier, imbibés d’eau 40 32

>  S’il s’agit de sondes géothermiques (en W/m courant) :

Puissance d’extraction thermique en W/m²
Sous-sol Exploitation 1 800 h / saison Exploitation 2 400 h / saison
Sédiments secs et peu conducteurs (Lambda < 1,5 W/m.K) 25 20
Roche, sédiments imbibés d’eau
(Lambda > 1,5 … 3 W/m.K)
60 50
Roche dure très conductrice
(Lambda > 3 W/m.K)
84 70

L’adaptation des calculs détaillés est de plus indiquée dans les cas suivants :

  • Modification des heures de services des pompes à chaleur par rapport aux hypothèses de base;
  • plus grande nécessité de chaleur pour la préparation d’eau chaude;
  • effet régénérateur du sol suite à un apport de chaleur par réfrigération de locaux ou à un rechargement thermique solaire;
  • grande influence des eaux souterraines (nappe phréatique).

Les valeurs de référence pour les capacités d’extraction de chaleur en hiver ne sont pas directement applicables à l’activité en été. Différentes causes sont à la base des écarts entre les capacités d’extraction et d’incorporation :

  • Lors du fonctionnement en hiver, une couche de glace se forme autour de la sonde ou des tuyaux, et influence favorablement la transmission thermique par conduction. En été, le sol peut au contraire sécher davantage, ce qui est défavorable.
  • Les couches terrestres proches du sol sont soumises à de si fortes influences climatiques qu’il faudrait parler non pas d’éléments de construction thermiques, mais plutôt d’éléments de construction solaires thermiques dans le cas de collecteurs de terre classiques non bâtis.

Pour l’évaluation de la capacité de sondes géothermiques et de pieux d’énergie dans le processus de réfrigération, un constructeur conseille :

  • Vu les raisons énoncées précédemment, de mettre les capacités d’incorporation (été) égales à 70 % des capacités d’extraction de chaleur énoncées dans la VDI 4640.
  • De valoriser si possible l’existence d’une nappe souterraine, qui suite à l’humidification des couches terrestres en dessous des fondations, améliore la conductibilité thermique. Il en résultera également des capacités de réfrigération plus constantes.
  • Une distance de pose entre les tuyaux ne dépassant pas 15 cm.
  • Des phases de régénération (suite à l’arrêt du système en journée ou suite à une réduction de la nécessité de froid (journées fraîches d’été)) qui améliorent la capacité de rendement.

Aspect réglementaire lié à la réalisation du projet

(Rédaction : 2014)

En région wallonne

En Wallonie, tout projet de réalisation de puits destiné à la géothermie doit faire l’objet d’un permis unique : Permis d’environnement (installations classées, conditions intégrales et sectorielles) + Permis d’urbanisme.

Selon l’Arrêté du Gouvernement wallon du 4/7/2002, annexe I, les systèmes géothermiques fermés sont classés dans la rubrique 45.12.01 : « Forage et équipement de puits destinés au stockage des déchets nucléaires ou destinés à recevoir des sondes géothermiques », classe de permis 2.

D’autres rubriques existent pour classer les systèmes ouverts en fonction des techniques de puisage et de rejet d’eau souterraine utilisé.

Les forages d’essais (TRT) et de l’installation définitive doivent faire l’objet d’une demande de permis propre comprenant :

  • Le formulaire général de demande de permis d’environnement et de permis unique – Annexe I.
  • Le formulaire relatif aux forages – Annexe XVIII (rubrique 45.12.01) ou le formulaire relatif aux prises d’eau – Annexe III (rubrique 41.00.03.02).

Le formulaire XVIII doit notamment comprendre :

  • Une coupe géologique probable du puits avec profondeur estimée de la nappe aquifère;
  • la description des méthodes de forage et les équipements du puits avec coupe technique;
  • un rapport technique sur la nature de la nappe aquifère éventuelle;
  • un plan de situation des puits.

Chronologiquement, étant donné les délais d’obtention, il est souvent difficile d’attendre les résultats du TRT et le dimensionnement final du champ de sondes avant l’introduction de la demande de permis pour ce dernier. De même, étant donné que le choix de l’enveloppe du bâtiment et l’équilibre géothermique sont intimement liés, il apparaît difficile de dissocier chronologiquement les demandes de permis pour le bâtiment neuf, le TRT et le champ de sondes. Dans ces différents cas, la pratique veut que les permis soient introduits en parallèle en mentionnant les hypothèses de prédimensionnement effectués.

En région bruxelloise

Il n’existe actuellement pas de législation spécifique à la géothermie en RBC. Les systèmes géothermiques sont néanmoins presque toujours composés d’installations classées soumises à déclaration ou à permis d’environnement.

Dans le cas de systèmes géothermiques fermés, les installations classées concernées sont les suivantes :

  • Pompe à chaleur < 10 kWelec  et < 3 kg de substance appauvrissant la couche d’ozone : Installation non classé et donc non soumise à autorisation (rubrique 132).
  • Pompe à chaleur > 10 kWelec mais < 100 kWelec  ou > 3  kg de substance appauvrissant la couche d’ozone : Installation classée de classe 3 et donc soumise à déclaration (rubrique 132).
  • Pompe à chaleur > 100 kWelec : Installation classée de classe 2 et donc soumise à Permis d’Environnement (rubrique 132).
  • Pompes électriques > à 100 kVA (rubrique 55).

Les forages ne sont, eux, pas classés.

Dans le cas de systèmes géothermiques ouverts, les captages d’eau souterraine sont des installations classées de classe 2 ou de classe 1B (rubrique 62) et sont donc soumis à Permis d’Environnement. En plus comme pour les captages d’eau « classiques », les systèmes géothermiques ouverts sont soumis à une « autorisation de pompage » de la part de l’IBGE.

De plus la réglementation urbanistique (COBAT) stipule que les forages géothermiques sont soumis à rapport d’incidence. Il semblerait donc que les systèmes géothermiques sont soumis à Permis d’Urbanisme (PU). Dans la pratique, il semblerait néanmoins que les systèmes géothermiques ne fassent pas l’objet d’une demande de PU à part entière. Il est donc conseillé de se renseigner auprès du service urbanisme de la commune concernée pour savoir si un PU est nécessaire.

La demande de permis d’environnement doit comprendre une série de renseignements.

Pour les systèmes géothermiques fermés (sondes verticales) :

  • Le cadre du projet de géothermique (industrie, tertiaire, logements collectifs, privés, ….
  • Le profil géologique et hydrogéologique de la zone où sont prévus les forages (et plus particulièrement déterminer les aquifères qui seront traversés par les forages) :
    • soit sur base du profil géologique et hydrogéologique obtenu à partir d’un forage réalisé sur le site (ou à proximité immédiate du site);
    • soit, en l’absence de forage, sur base des données cartographiques – carte géologique, géotechnique de Bruxelles, …- , via la base de données DOV (Databank Ondergrond Vlaanderen) ou via consultation des archives du service géologique de Belgique.

Il y a lieu de motiver la profondeur des sondes envisagée sur base de ce profil.

  • La technique de forage prévue pour le placement des sondes.
  • La description technique de l’installation géothermique :
    • puissance électrique de la pompe à chaleur (PAC) et rendement;
    • nombre de puits ou forage prévus + nombre de sondes verticales prévues;
    • profondeur des sondes;
    • type de sondes (simple boucle en U, double boucle en U, coaxiale, autre);
    • type de matériaux utilisés pour les sondes et les différentes connexions;
    • systèmes prévus pour isoler les sondes (ou les groupes de sondes) en cas de fuite (vannes d’isolement, …);
    • fluide caloporteur prévu dans les sondes;
    • surface prévue pour l’implantation des sondes (et surface disponible si différente);
    • matériaux de remplissage sont prévus pour le scellement des trous de forages (espace interstitiel).
    •  …
  • Le plan reprenant de manière claire l’emplacement des installations (PAC et champ de sondes).
  • La description détaillée (schéma de fonctionnement y compris le mode opératoire de la régulation) du système HVAC complet du bâtiment et l’intégration de l’installation de géothermie dans cet ensemble.
  • L’évaluation des besoins énergétiques :
    • la demande en chaud du bâtiment (kWh/an);
    • la demande en froid du bâtiment (kWh/an);
    • la puissance de pointe en chaud du bâtiment (kW);
    • la puissance de pointe en froid du bâtiment (kW);
    • l’énergie (chaud) soutirée au sol (kWh/an);
    • l’énergie (froid) soutirée au sol (kWh/an);
    • % de la demande en chaud couvert par la géothermie;
    • % de la demande en froid couvert par la géothermie.

Dans la mesure du possible, un (des) graphique(s) (histogramme) reprenant les besoins mensuels du bâtiment en froid et en chaud sur un an et distinguant la part produite par la géothermie de la part produite par les systèmes complémentaires (système de production de chaud et froid classiques) sera fourni.

  • Dans le cas ou un test de réponse thermique (TRT) a été réalisé : les conclusions du test.
  • La comparaison du gain énergétique du système proposé par rapport à l’utilisation d’une chaudière à condensation (réduction d’énergie primaire (%)).
  • L’évaluation du déséquilibre thermique du sous-sol et l’évolution de la performance de la PAC sur 20 ans en tenant compte de ce déséquilibre thermique.
  • Quant au rapport d’incidences, il doit également évaluer les nuisances et impacts environnementaux liés au système géothermique ainsi que les mesures prises pour éviter, supprimer ou réduire les nuisances répertoriées.  (Ex : test de mise sous pression des bouclages, mise en place d’un système de détection de fuites, étanchéité des puits,…).

Pour les systèmes géothermiques ouverts :

  • Le type de système géothermique prévu : captage/réinjection réversible (stockage chaud froid) ou captage réinjection non réversible.
  • La description technique de l’installation géothermique :
    • nombre de puits de pompage et de réinjection prévus ;
    • profondeur des puits (+ facteurs ayant servi à la détermination de la profondeur) ;
    • zone de filtre (crépine) ;
    • distance séparant les puits de captage et de réinjection ;
    • type de compteurs et nombre de compteurs prévus (+ emplacement) ;
    • puissance électrique de la pompe à chaleur (PAC) et son rendement ;
    • liquide utilisé dans le circuit secondaire ;
    • type d’échangeur – circuit primaire / circuit secondaire (double parois, simple paroi, …) ;
    • Éventuel système de détection de fuite dans le circuit secondaire.
    • plan reprenant l’emplacement de la PAC, des différents puits de captage et de réinjection.
  • La description détaillée (schéma de fonctionnement y compris le mode opératoire de la régulation) du système HVAC complet du bâtiment et l’intégration de l’installation de géothermie dans cet ensemble.
  • Le profil géologique et hydrogéologique des zones de captage et de réinjection (et plus particulièrement déterminer l’aquifère ou les aquifères qui seront traversés par les forages) :
    • soit sur base du profil géologique et hydrogéologique obtenu à partir d’un forage réalisé sur le site (ou à proximité immédiate du site);
    • soit, en l’absence de forage, sur base des données cartographiques – carte géologique, géotechnique de Bruxelles, …- , via la base de données DOV (Databank Ondergrond Vlaanderen) ou via consultation des archives du service géologique de Belgique.
  • Le débit maximum capté (m³/h, m³/j), le volume total capté par an ou par saison (m³) et si la totalité de l’eau captée est réinjectée dans la nappe. Si l’eau souterraine est utilisée à d’autres fins que la géothermie, il y a également lieu de préciser les utilisations alternatives et le débit capté (m³/j).
  • La température de réinjection maximale prévue.
  • Le dossier doit comporter une évaluation de :
    • la demande en chaud du bâtiment (kWh/an);
    • (la demande en froid du bâtiment (kWh/an)), si utilisation des puits pour refroidir;
    • la puissance de pointe en chaud du bâtiment (kW);
    • (la puissance de pointe en froid du bâtiment (kW)) → Si utilisation des puits pour refroidir;
    • l’énergie (chaud) soutirée de la nappe (kWh/an);
    • (l’énergie (froid) soutirée de la nappe (kWh/an)), si utilisation des puits pour refroidir;
    • % de la demande en chaud couvert par la géothermie;
    • (% de la demande en froid couvert par la géothermie), si utilisation des puits pour refroidir.
  • Le gain énergétique du système proposé par rapport à l’utilisation d’une chaudière à condensation  (réduction d’énergie primaire (%)) doit également être évalué.
  • Le rapport d’incidence doit évaluer le déséquilibre thermique de l’aquifère  et l’évolution de la performance de la PAC sur 20 ans en tenant compte du déséquilibre thermique.
  • Le rapport d’incidence doit évaluer la possibilité technique de mettre en place le système géothermique sur le site.
  • Le rapport d’incidence doit enfin évaluer l’impact et les nuisances du système géothermique et notamment :
    • l’impact éventuel du projet sur des captages voisins (impact hydraulique);
    • l’impact éventuel du projet sur la stabilité des constructions voisine;
    • le risque d’inondation au niveau des puits de réinjection et des constructions voisine;
    • l’impact thermique éventuel du système sur les eaux souterraines.
  • Ainsi que les mesures particulières de protection du sol et des eaux souterraines prévues (Rehaussement du puits, étanchéité des puits de forages, mesures prévues pour éviter la connexion éventuelle d’aquifères différents, mesures prévues pour éviter une contamination de l’eau pompée et réinjectée dans la nappe (type d’échangeur utilisé, système de détection de fuite, surpression du circuit secondaire (eau pompée) par rapport au circuit primaire (de la PAC), …)).

Refroidissement adiabatique

Refroidissement adiabatique


Principe de base

Le principe est le suivant : si de l’air chaud et sec traverse un filet d’eau, il en provoque l’évaporation. La chaleur nécessaire à la vaporisation d’eau étant extraite de l’air. Celui-ci se refroidit.

Schéma principe de base.

Par exemple, de l’air à 20°C, 30 % HR traversant un nuage d’eau voit sa température atteindre 12°C en se chargeant d’humidité.

Le refroidissement adiabatique peut-être

  • direct : si l’air humidifié soit directement pulsé dans l’ambiance;
  • indirect : si de l’air pulsé ou un réseau d’eau est refroidi par échange avec l’air qui aura été humidifié.

Refroidissement indirect de l’air pulsé

Il existe des échangeurs à plaques dans lequel l’air vicié est refroidi par humidification. Un tel système permet d’exploiter le « pouvoir refroidissant » de l’humidification adiabatique, tout en évitant le problème de l’humidification de l’air neuf.

Photo d’une centrale de refroidissement adiabatique.

L’air vicié et l’air neuf passent dans un double échangeur à plaques. Dans l’échangeur, l’air vicié est humidifié. On combine donc deux phénomènes dans l’échangeur : le refroidissement adiabatique de l’air vicié et le refroidissement au contact avec l’air neuf. Remarquons les volets de by-pass (sur l’air neuf et l’air vicié) permettant une régulation de la puissance échangée.

Actuellement, nous manquons de données neutres pour juger des performances et de l’intérêt énergétique d’un tel équipement. Il semblerait que si l’humidification de l’air vicié est effectuée avant l’échangeur, le refroidissement complémentaire qui en résulte ne soit pas suffisant pour augmenter significativement l’énergie récupérée en période de climatisation. C’est apparemment l’intégration de l’humidificateur dans l’échangeur, qui augmenterait les performances du système. En effet, dans ce cas, l’eau s’évapore dans l’échangeur et refroidit aussi bien celui-ci que l’air vicié. Le fabricant de ce matériel annonce, dans les meilleures conditions, un refroidissement de l’air neuf de 10 °C.

En hiver, avec l’arrêt de l’humidification, on retrouve le fonctionnement d’un groupe « traditionnel » avec échangeur à plaques.


Refroidissement indirect d’un réseau d’eau

Il existe d’autres modes de refroidissement exploitant le principe de l’évaporation de l’eau, notamment associés à des machines frigorifiques avec possibilité de free chilling via aérorefroidisseur ou tour de refroidissement.

Schéma refroidissement indirect d’un réseau d’eau.

Photo d’un refroidisseur adiabatique.

Dans ce processus, quel que soit le mode d’humidification, le principe est toujours le même : les molécules d’eau passent progressivement à l’état de vapeur, provoquant ainsi par évaporation une diminution de la température d’air.

Son efficacité sera accrue si la surface de l’eau est grande, si le débit d’air à la surface de l’eau est important et si la température de l’air est élevée.

Enfin, il est indispensable d’assurer un contrôle et une maintenance très rigoureux des équipements, car :

  • les surfaces humides présentent un terrain favorable au développement des micro-organismes;
  • l’évaporation provoque des dépôts consécutifs à la cristallisation (sels minéraux, carbonates);
  • la ventilation de l’air favorise les dépôts de poussière.

Avantages et inconvénients

  • La solution simple permettant un refroidissement naturel en exploitant des équipements existants : groupe de ventilation, tour de refroidissement, …
  • Mais le pouvoir rafraîchissant est limité.
    • Le refroidissement de l’air est d’autant plus grand que le climat est chaud et sec (un tel système est donc inutile dans les régions où le climat est tropical, c’est-à-dire que l’air chaud est déjà chargé en humidité excessive. Chez nous, on se retrouve entre les deux …
    • Le refroidissement de l’eau ne sera lui possible que pour des températures extérieures typiques de la mi-saison, voire de nuit.
  • On parle donc bien de rafraîchissement et non de climatisation au sens de la fourniture d’une puissance de froid suffisante quels que soient les besoins.
  • Le dispositif ne peut être régulé avec précision, car il dépend de l’hygrométrie extérieure. Il est d’autant plus efficace que le climat est chaud et sec.
  • La consommation en eau non négligeable, nécessite qu’elle soit de bonne qualité pour éviter l’entartrage des tuyauteries, ainsi que les problèmes de légionelles. Pour éviter ce désagrément, un traitement d‘eau est nécessaire. Évidemment, l’utilisation de l’eau de pluie réduit l’impact sur la consommation en eau potable, mais nécessite la garantie du fabricant quant à la résistance de ses équipements.

Régulation

Les éléments qui constituent l’installation : filtres, surpresseur, pressostats de sécurité, pompe, électrovanne, rampes avec buses, échangeur, vannes de purge.

La régulation du refroidissement adiabatique repose principalement sur le contrôle des débits d’air et d’eau.

La régulation pour la ventilation d’air peut être de deux types :

Régulation par étage

Des étages de ventilation s’enclenchent les uns après les autres. Lorsque 100 % de la ventilation est en fonctionnement et que la température extérieure est supérieure à la valeur de consigne d’enclenchement de la brumisation haute pression, une électrovanne s’ouvre et un surpresseur se met en route.

Régulation par variations de fréquence

La variation de vitesse régulera jusqu’à ce que 100 % du débit de ventilation soit en fonctionnement (à 50 Hz l’électrovanne de la rampe s’ouvre et le système adiabatique fonctionne).

La régulation pour le débit d’eau projeté

Un brouillard d’eau efficace offre la plus grande surface d’échange possible avec l’air.
Cette surface d’échange est d’autant plus grande que le nombre de microgouttelettes pulvérisées est important. Pour obtenir un brouillard de qualité, l’eau est donc mise sous forte pression (100 bar) et accumule ainsi, une énergie importante. Le débit d’eau de brumisation est calculé précisément afin d’apporter à l’air la juste quantité d’eau.

 

Roue dessicante


Principe de fonctionnement

Les dispositifs à dessiccation (DEC : Desiccant Evaporative Cooling) sont des systèmes de déshydratation ou de refroidissement de l’air, utilisant de l’eau et une source de chaleur.

Ce procédé repose sur le principe physique suivant : l’évaporation de la vapeur d’eau dans l’air sec réduit la température et augmente l’humidité absolue de l’air.

La dessiccation exploite un double échange de frigories et d’humidité entre les flux d’air entrant (air de process) et sortant (air de régénération) d’un bâtiment. Cette circulation d’air est généralement assurée par une centrale de traitement d’air.

Schéma de fonctionnement d’une centrale d’air à roue dessicante.

Représentation de l’évolution de l’air dans un diagramme de l’air humide.

(1>2) L’air extérieur ou air pulsé (aussi appelé « air de process ») est aspiré au travers d’un filtre, puis traverse la « roue dessicante » ou « roue à dessiccation ». Cet échangeur rotatif contient un produit de sorption solide. Ce dernier absorbe la vapeur d’eau de l’air extérieur par adsorption. L’air extérieur est ainsi déshumidifié et en contreparti, voit sa température augmenter.

(2>3) L’air extérieur est alors refroidi par échange de chaleur avec l’air intérieur extrait ou simplement l’air extrait (aussi appelé « air de régénération »). Cet échange se fait au travers d’un échangeur de chaleur rotatif (non hygroscopique).

(6>7) Pour augmenter l’échange de chaleur et donc le refroidissement de l’air pulsé, on rafraîchit au préalable l’air extrait en l’humidifiant jusqu’à saturation. On abaisse ainsi le plus possible sa température, et on bénéficie au maximum du potentiel de refroidissement dans l’échangeur.

(7>8) en passant au travers de l’échangeur de chaleur, l’air extrait se voit donc réchauffé.

(8>9) Pour pouvoir fonctionner en continu, la roue dessicante doit être régénérée c’est-à-dire que l’humidité doit être évacuée du matériau adsorbant. Pour cela la portion de roue contenant l’humidité doit croiser le flux d’air extrait qui aura été préalablement réchauffé pour atteindre une température suffisante pour vaporiser les molécules d’eau retenues dans les pores de la roue.

(9>10) Enfin l’air chaud traverse et régénère la roue dessicante pour lui permettre de poursuivre le processus continu de déshumidification. Finalement, l’air rejeté, à l’aide d’un ventilateur, sort plus haute en température et plus chargé en humidité que l’air extérieur.

(3>5) L’air pulsé peut encore être arrosé d’eau au travers d’un humidificateur. L’eau va absorber les calories restantes dans l’air avant que celui-ci soit propulsé dans le bâtiment à refroidir par un ventilateur. Cette alternative permet de refroidir l’air pulsé mais pas de le déshumidifier. Pour ce faire, il est alors nécessaire de remplacer cet humidificateur par une batterie froide.

(4>5): Ce système est dit réversible, car il peut aussi bien être utilisé en refroidissement qu’en chauffage. En hiver, cela correspond à un mode de fonctionnement normal de réchauffement par système centralisé à air, en utilisant la roue de sorption comme récupérateur de chaleur, tout en complément des apports de la chaleur solaire. La présence d’une batterie chaude permet ainsi la régulation de température de chauffe en hiver.

Résumé du comportement de l’air illustré par le diagramme de l’air humide :

En théorie, dans le diagramme de l’air humide, l’évolution de l’air dans la roue dessicante se fait selon une courbe isenthalpique pour l’air soufflé et pour l’air repris (1>2 et 9>10).
Dans l’échangeur et dans le régénérateur (batterie chaude, apports solaires, …), les transferts de chaleur se font à humidité absolue constante (2>3, 7>8 et 8>9).
Entre l’air pulsé et l’air repris par la centrale de traitement, l’air subit les apports dus au local (personnes, lampes, ordinateurs, …) et voit sa température augmenter (5>6).
La combinaison de ces différentes évolutions permet d’obtenir un point de soufflage compatible avec le rafraîchissement du bâtiment.


Aspects technologiques

La roue à dessiccation – principe d’adsorption

La sorption est un phénomène physique qui consiste à fixer les molécules d’un élément à une surface généralement granulée et poreuse. Les matériaux dessicants attirent l’eau en formant à leur surface une zone à faible pression de vapeur.
La vapeur de l’air, ayant une pression plus élevée, se déplace de l’air vers la surface du matériau ce qui garantit une déshumidification de l’air.


Photo technologie roue dessicante rotative.


Schéma d’une roue à dessiccation avec section de purge
(séparation amont/aval).

La déshumidification s’effectue soit à travers un dispositif sur lequel est posé un matériau dessicant (on parle alors de « déshydratation en phase solide »), soit dans des échangeurs dans lesquels est pulvérisée une solution dessicante (« déshydratation en phase liquide »).

La sorption peut donc prendre place entre un gaz et un solide, auquel cas on parle d’adsorption, soit entre un gaz et un liquide, il s’agit dans ce cas du phénomène d’absorption. Raison pour laquelle les roues dessicantes sont appelées également des déshydrateurs à adsorption.

Photo d’un déshydrateur à adsorption  de la marque « Ventsys » fonctionnant selon le principe de la roue dessicante.

Actuellement les sorbants les plus utilisés sont le SiO2 (Silica-gel), LiCl (Chlorure de Lithium), Al2O3 (Alumine activée) et le LiBr (Bromure de Lithium).
Ces substances sont imprégnées sur une roue rotative en céramique à structure en nids d’abeilles.
Lorsque le matériau devient saturé, la roue continue à tourner lentement et la partie exempte d’humidité est régénérée par chauffage, au départ d’une source de chaleur disponible.

L’échangeur rotatif non hygroscopique

Un échangeur non hygroscopique est une roue à rotation lente, métallique à structure en nids d’abeilles à travers laquelle passent deux flux d’air de sens opposés produisant un échange sensible entre eux (humidité absolue constante).

L’avantage de ce type d’échangeur c’est qu’il a une perte de charge faible en comparaison de son efficacité, de plus il présente peu d’encombrement.

Pour éviter les fuites de l’air entre les sections de soufflage et de retour, il est préférable d’avoir une section de purge séparant les deux sections et d’avoir les ventilateurs en aval de l’échangeur.


Intérêts du procédé

  • L’intérêt environnemental de la roue dessicante se marque si la source de chaleur utilisée est de type renouvelable. Elle peut donc fonctionner avec des capteurs solaires thermiques (on parle alors de climatisation solaire), avec un réseau de chaleur urbain alimenté en permanence en été de manière renouvelable (biomasse, géothermie profonde (> 1 500 m), etc.), ou encore en valorisant des rejets thermiques de process industriel par exemple.
    L’utilisation de capteurs solaires comme source de chaleur possède comme principal avantage de pouvoir amener le plus de froid lorsqu’il fait le plus chaud. Ce système est d’autant plus intéressant que les apports solaires sont grands, et trouve donc en toute logique son intérêt en période estivale.
    Dans ces situations et afin de garantir une utilisation prolongée, par exemple lors des périodes non ensoleillées, il est également envisageable de stocker de la chaleur emmagasinée en journée dans des ballons tampons.
    Remarque : Afin d’assurer le bon fonctionnement du processus d’adsorption, il est nécessaire que la source de chaleur puisse fournir une température suffisante à la batterie de régénération. Cette température est d’environ 70 °C quand le climat extérieur est de 25 °C et 75 % HR.
    Remarque : une autre solution, conduisant à un coût d’investissement plus faible, utilise directement l’énergie solaire de régénération par le biais de capteurs à air (et non-circulation à eau), du fait que le réfrigérant est en contact direct avec l’atmosphère.

Schéma présentant le système à roue dessiccante couplé à une installation chauffage solaire.

  • L’utilisation d’eau comme fluide réfrigérant rend ces systèmes totalement inoffensifs pour l’environnement.
  • Les humidificateurs peuvent être alimentés via l’eau de pluie ou grâce à l’eau de ville. Dans ce dernier cas, il s’agit de consommation d’eau potable dont il convient d’évaluer l’ampleur économique et environnementale.
  • La compression du fluide caloporteur est thermique, avec absence de mouvements mécaniques, ce qui augmente leur durée de vie et réduit leur bruit. Cependant une maintenance soignée est obligatoire.
  • La qualité de l’air intérieur est améliorée par l’effet bactéricide des matériaux adsorbants.
  • Ce mode de climatisation ne suffit pas pour assurer une bonne rentabilité économique, en effet le coût d’investissement pour ce genre d’installation encombrante est souvent onéreux.  Le coût spécifique [€ /(m³/h)] des centrales de traitement d’air reste trop élevé pour de petits débits. Ces systèmes tout air neuf ne sont pas adaptés pour tous les bâtiments.

Remarque : le coût spécifique va de 8 €/(m³/h) pour une centrale de traitement de 20 000 m³/h jusqu’à 16 €/(m³/h) pour une centrale de traitement de 5 000 m³/h (coût brut source fournisseur). À titre de comparaison, le coût spécifique pour une centrale de traitement d’air à roue hygroscopique va de 3.5 €/(m³/h) pour une centrale de 20 000 m³/h jusqu’à 8 €/(m³/h) pour une centrale de 5 000 m³/h.

  • Dans le cas d’utilisation de panneaux solaires comme source de chaleur, la production frigorifique varie évidemment avec les apports solaires, le dispositif ne peut fonctionner qu’en journée. Il est cependant envisageable de stocker de la chaleur emmagasinée en journée dans des ballons tampons afin d’utiliser le dispositif pendant les périodes non ensoleillées. On ne dispose donc pas d’une véritable climatisation en ce sens que la puissance de froid peut ne pas être suffisante. On parle donc plutôt de « rafraîchissement ». Si l’on souhaite réellement disposer d’une puissance de froid suffisante quels que soient les besoins, il convient de surdimensionner le système de ventilation et de recourir à une source de chaleur d’appoint bien souvent fossile ou électrique. Dans ce cas, le bilan environnemental du système peut s’effondrer.
  • La complexité d’une installation réside dans la régulation des multiples circulations de fluides avec une source thermique peut-être variable et discontinue (apports solaires). Ainsi le bon fonctionnement du système peut s’avérer délicat à garantir sur la durée. Il faut optimiser le refroidissement et la régulation, éviter les pertes thermiques et les pertes de fluides, limiter la consommation électrique, éviter la surchauffe en période estivale, se protéger contre le gel.
  • Le système est peu performant dans les climats chauds et humides.
  • En hiver, il n’est pas possible de récupérer une grande part de l’énergie latente (humidité) telle que dans le cas d’un système à roue hygroscopique. Dès lors, le besoin d’énergie pour l’humidification est plus élevé.

Bilan énergétique

Évaluation statique de l’intérêt énergétique :
Comparaison entre un système de traitement d’air à roue hygroscopique et un système de traitement d’air à roue dessicante.

Exemple en hiver

  • Air repris à une température de 20°C et une humidité absolue de 6 g/kg
  • Air extérieur à une température de 5°C et une humidité absolue de 3 g/kg
  • Air pulsé après la roue à :
    • une température de 16.25°C et une humidité absolue de 5.25 g/kg dans le cas de la roue hygroscopique. Pour l’amener à 20°C et 6 g/kg, il faut donc l’équivalent de 5 kJ/kg d’énergie (chaud) et 0.75 g/kg d’air.
    • une température de 16.25°C et une humidité absolue de 3 g/kg dans le cas de la roue dessicante. Pour l’amener à 20°C et 6 g/kg, il faut donc l’équivalent de 11 kJ/kg d’énergie (chaud) et 3 g/kg d’air.

Pour un même mode de production d’énergie, le système à roue dessicante ne peut jamais être plus intéressant que le système à roue hygroscopique.  Il nécessite plus d’eau pour humidifier l’air et plus d’énergie pour compenser le rafraichissement dû à cet apport d’eau dans l’air.

Exemple en été

  • Air repris à une température de 25°C et une humidité absolue de 13 g/kg
  • Air extérieur à une température de 23°C et une humidité absolue de 15 g/kg
  • Pour une pulsion à une température de 16°C et une humidité absolue de 11 g/kg (point de pulsion de l’air dans le cas d’une climatisation par plafonds froids en régime 17-20°C), il faut :
    • l’équivalent de 17 kJ/kg d’énergie (froid) dans le cas de la roue hygroscopique.
    • l’équivalent de 32 kJ/kg d’énergie (chaud), 2 kJ/kg d’énergie (froid) et 11.5 g/kg d’air dans le cas de la roue dessicante.

Si on considère que l’énergie de refroidissement dans le cas de la roue hygroscopique est produite avec les caractéristiques suivantes :

  • 0.781 kWh d’énergie primaire / kWh d’énergie utile
  • 0.123 kg de CO² / kWh d’énergie utile
  • 0.043 € / kWh d’énergie utile

(facteurs de conversion : ESEER machine frigo de 3,2 ; 0,395 kg CO2/kWhélectrique ; 2,5 kWhprimaire/kWhélectrique ; 0,14€/kWhélectrique).

Il faut donc que l’énergie de régénération (chaud) dans le cas de la roue dessicante ait au minimum les caractéristiques suivantes pour être intéressante en été :

  • 0.36 kWh d’énergie primaire / kWh d’énergie utile
  • 0.058 kg de CO² / kWh d’énergie utile
  • 0.021 € / kWh d’énergie utile

On peut noter qu’un réseau urbain alimenté en biomasse répond à peine à ces critères,  sans compter qu’il faudrait en plus compenser les consommations supplémentaires en hiver et la consommation d’eau des humidificateurs !

De ce fait, si on la compare à un groupe de ventilation avec roue de  récupération hygroscopique, le bilan énergétique de la roue dessicante ne semble intéressant que dans très peu de cas où l’on peut considérer que la chaleur est entièrement d’origine renouvelable ou récupérée et l’eau de l’eau de pluie.
La performance d’une installation dessicante dépend :

  • De l’efficacité de l’échangeur rotatif : choix de la roue utilisée.
  • De la température de régénération : ce paramètre est utilisé afin de modifier la puissance froide délivrée par la centrale en mode desiccant cooling.
  • Des débits de ventilation : la variation du débit engendre une variation de la puissance froide, mais également une variation du rendement d’échange dans les roues. C’est pourquoi il est nécessaire d’utiliser le système dans la plage de débit pour lequel il est dimensionné.
  • De l’efficacité de l’humidificateur: sa modification permet de contrôler la température et l’humidité de l’air de soufflage. Cela peut être utile en cas d’humidité relative intérieure inconfortable.

Domaines d’utilisation

  • Les dispositifs à dessiccation apportent une solution bien adaptée dans les régions où les apports latents sont limités et sont particulièrement efficaces en climat assez sec.
    En effet, le seul problème provient des régions trop humides, où la roue n’est pas suffisante pour déshydrater l’air ambiant, car elle nécessite une température de régénération élevée, ce qui augmente la consommation du système en énergie primaire.
  • Les systèmes à dessiccation sont utilisés pour produire directement de l’air frais (déshumidification de l’air), et non pas pour refroidir l’eau de la boucle de refroidissement comme dans le cas des machines frigorifiques classiques. Une telle installation n’est donc pas envisageable pour rechercher de grands refroidissements. Ces dispositifs peuvent souffler de l’air à une température d’environ 10°C de moins que la température extérieure (suivant les débits d’air choisis).

Photo d’une installation DEC : desiccant evaporative cooling.

  • Ce procédé est plus spécialement applicable aux bâtiments neufs ou en réhabilitation lorsqu’une source thermique à faible coût est disponible pour régénérer l’adsorbant.
  • Enfin, les systèmes dessicants peuvent être valorisés dans les bâtiments ayant un objectif de bilan « Zéro énergie » dans lesquels une déshumidification de l’air est d’office nécessaire (utilisation de plafonds froids, d’îlots rayonnants). Pour ce faire, il est nécessaire de supprimer l’humidificateur adiabatique sur le chemin de l’air neuf.

Nouvelle technologie : les Lits dessicants liquide – (LDC : Liquid dessicant cooling)

Une technique développée, toute nouvelle sur le marché, utilise pour la dessiccation de l’air un sorbant liquide : une solution eau/bromure ou chlorure de lithium.
Par rapport à un système à dessiccation utilisant un sorbant solide, ce type de système présente plusieurs avantages :

  • un plus fort taux de déshumidification pour le même niveau de température;
  • une possibilité d’un haut niveau de stockage énergétique sous la forme de solution concentrée.

Régulation du ventilo-convecteur deux tubes – deux fils – Schéma 1

Comment réguler le ventilo ?

– schéma 1 »» [0] [1]

Régulation du ventilo-convecteur deux tubes - deux fils - Schéma 1

La production frigorifique avec stockage de glace.

Schéma 1

L’équipement frigorifique peut être complété par un bac à glace, permettant de stocker du froid la nuit au moment où l’électricité est moins chère, pour l’utiliser le jour par la fonte de la glace. Une vanne trois voies mélangeuse permet de réguler la température de l’eau glacée lors de la décharge du stockage.

Régulation du ventilo-convecteur deux tubes – deux fils – Schéma 0

Comment réguler le ventilo ?

– schéma 0 »» [0] [1]

Régulation du ventilo-convecteur deux tubes - deux fils - Schéma 0

La régulation du ventilo-convecteur deux tubes – deux fils.

> Schéma 0

Une sonde dans la prise d’air permet de commander soit le débit d’alimentation de la batterie froide, soit l’alimentation de la résistance électrique.

Régulation de l’alimentation du ventilo-convecteur quatre tubes – Schéma 1

Comment réguler l’alimentation en eau chaude/eau glacée ?

– schéma 1 »» [0] [1]

Schéma 1

À cet équipement frigorifique peut être adjoint un bac à glace, permettant de stocker du froid la nuit au moment où l’électricité est moins chère, pour l’utiliser le jour par la fonte de la glace.

La production peut aussi être assurée par une machine frigorifique dont on récupère la chaleur au condenseur : à ce moment, la chaleur captée dans les locaux à refoidir est récupérée dans les locaux à réchauffer! C’est la situation rencontrée en mi-saison. L’installation est alors particulièrement économe puisque seule la consommation des compresseurs est à fournir.

En plein été, la dissipation de chaleur  se fait par un condenseur traditionnel (dit condenseur de rejet). En plein hiver, une chaudière d’appoint reste nécessaire pour vaincre la forte demande.

Régulation de l’alimentation du ventilo-convecteur quatre tubes – Schéma 0

Comment réguler l’alimentation en eau chaude/eau glacée ?

– schéma 0 »» [0] [1]

 La régulation du ventilo-convecteur quatre tubes.

> Schéma 0 : schéma de principe d’une installation ventilos 2 tubes.

La production de chaleur se fait, par exemple, par la chaudière du bâtiment.

La température de l’eau chaude distribuée est alors modulée en fonction de la température extérieure, via la courbe de chauffe du régulateur.

La production d’eau glacée est réalisée par la machine frigorifique. On y rencontre généralement une distribution à un régime constant du type aller 6° – retour 11°, mais les accro’s de l’URE savent qu’il y a là un potentiel d’énergie à récupérer (en augmentant la température de l’eau glacée, on diminue la consommation latente).

Régulation du ventilo-convecteur quatre tubes – Schéma 4

Comment réguler le ventilo ?

– schéma 4 »» [0] [1] [2] [3] [4]

Régulation du ventilo-convecteur quatre tubes - Schéma 4

La régulation vannes 2 voies (vitesse variable).

> schéma 4

La pompe travaille à vitesse variable, et maintient une pression constante dans le réseau. Ceci est nettement plus économique mais suppose qu’une protection des installations de production soit prévue lorsque le débit d’irrigation devient faible : un bypass pour la chaudière et un ballon tampon pour la machine frigorifique.

Régulation du ventilo-convecteur quatre tubes – Schéma 3

Comment réguler le ventilo ?

– schéma 3 »» [0] [1] [2] [3] [4]

Régulation du ventilo-convecteur quatre tubes - Schéma 3

La régulation par vannes deux voies (soupape différentielle).

2° Régulation du circuit hydraulique

Dans les circuits sans vannes ou avec des vannes à trois voies, le débit hydraulique total de l’installation est constant.

Par contre, dans les installations avec vannes deux voies, deux solutions sont possibles

> schéma 3

Une vanne à décharge (encore appelée vanne à soupape différentielle) est placée en parallèle sur le réseau de distribution. La pompe est protégée, elle travaille à débit constant, mais la consommation est constante également !

Régulation du ventilo-convecteur quatre tubes – Schéma 2

Comment réguler le ventilo ?

– schéma 2 »» [0] [1] [2] [3] [4]

Régulation du ventilo-convecteur quatre tubes - Schéma 2

La régulation par réglage de la vitesse du ventilateur.

> schéma 2

Variante : il existe des appareils pour lesquels la sélection de la vitesse du ventilateur est réalisée automatiquement en fonction de l’écart de température par rapport à la consigne (ce sera par exemple le cas pour des appareils ne disposant pas de vanne de réglage sur le débit d’eau).

Si plusieurs ventilos sont prévus dans un même local, il est utile de les faire fonctionner en maître-esclaves, de telle sorte que l’un ne fasse pas du froid quand l’autre fait du chaud !

Régulation du ventilo-convecteur quatre tubes – Schéma 1

Comment réguler le ventilo ?

– schéma 1 »» [0] [1] [2] [3] [4]

Régulation du ventilo-convecteur quatre tubes - Schéma 1

La régulation par vannes trois voies.

1°  régulation de la température

> schéma 1

Une sonde de température est insérée à la prise d’air. En fonction de l’écart à la consigne, on module l’ouverture d’une vanne à trois voies, et donc le débit d’eau chaude (hiver) ou d’eau glacée (été).  Il s’agit généralement d’un régulateur à action progressive. Ce régulateur peut commander plusieurs ventilos d’un même local.

On remarque la présence d’une zone neutre (minimum 2 degrés) pour laquelle l’installation n’est plus alimentée, évitant ainsi le pompage entre chaud et froid. Un agrandissement de cette zone neutre permet des économies d’énergie.

Ceci étant dit, l’occupant peut également agir sur la vitesse du ventilateur pour donner ou non de la pêche à l’émetteur. En pratique, il n’acceptera le bruit de la grande vitesse que pour la relance du matin en hiver ou pendant les canicules en été.

Régulation du ventilo-convecteur quatre tubes – Schéma 0

Comment réguler le ventilo ?

– schéma 0 »» [0] [1] [2] [3] [4]

Régulation du ventilo-convecteur quatre tubes - Schéma 0

La régulation du ventilo-convecteur quatre tubes.

> schéma 0 : schéma de principe d’une régulation du ventilo-convecteur quatre tubes.

Régulation de l’alimentation du ventilo-convecteur deux tubes – Schéma 6

Comment réguler l’alimentation en eau chaude/eau glacée ?

– schéma 6 »» [0] [1] [2] [3] [4] [5] [6]

 Distribution par zone (avec circulateur propre).

> schéma 6 : découpage par zone et ciculateur par zone

C’est une variante du schéma précédent.

Régulation de l’alimentation du ventilo-convecteur deux tubes – Schéma 5

Comment réguler l’alimentation en eau chaude/eau glacée ?

– schéma 5 »» [0] [1] [2] [3] [4] [5] [6]

 Distribution par zone (avec circulateur commun).

2ème solution : alimentation chaud et froid

> schéma 5 : découpage par zone et circulateur commun

L’inconvénient des ventilos à deux tubes, c’est l’uniformité de la température de distribution de l’eau dans tous les bureaux. De là, le souhait de découper l’installation par zones : la zone en façade Sud, la zone de la salle de conférence,…
Des vannes de commutation sont alors placées à l’entrée et à la sortie de chaque zone. Des consignes différentes sont alors possibles pour chaque local, mais le passage de la distribution d’eau glacée à la distribution d’eau chaude est fait en même temps pour tous les locaux de la zone, … après accord syndical !

En pratique, un régulateur agit sur base d’une sonde de température extérieure, une sonde d’ensoleillement et d’une sonde de compensation d’ambiance dans un local témoin,…généralement chez le chef !

Régulation de l’alimentation du ventilo-convecteur deux tubes – Schéma 4

Comment réguler l’alimentation en eau chaude/eau glacée ?

– schéma 4 »» [0] [1] [2] [3] [4] [5] [6]

 Production chaud/froid par machine réversible.

> schéma 4 : machine frigorifique réversible

La production peut aussi être assurée par une machine frigorifique réversible : lors du changement été/hiver, le sens de circulation du fluide frigorigène s’inverse, et une pompe à chaleur air-eau est créée. Un appoint de chaleur sera nécessaire pour vaincre la pointe hivernale.

Régulation de l’alimentation du ventilo-convecteur deux tubes – Schéma 3

Comment réguler l’alimentation en eau chaude/eau glacée ?

– schéma 3 »» [0] [1] [2] [3] [4] [5] [6]

Production frigorifique avec stockage nocturne.

> schéma 3 : stockage de frigories

À l’équipement frigorifique peut être adjoint un bac à glace, permettant de stocker du froid la nuit au moment où l’électricité est moins chère, pour l’utiliser le jour par la fonte de la glace.

Régulation de l’alimentation du ventilo-convecteur deux tubes – Schéma 2

Comment réguler l’alimentation en eau chaude/eau glacée ?

– schéma 2 »» [0] [1] [2] [3] [4] [5] [6]

En hiver, alimentation en eau chaude.

> schéma 2 : situation hiver

La production de chaleur se fait souvent par la chaudière du bâtiment. La température de l’eau chaude distribuée est alors très souvent modulée en fonction de la température extérieure, via la courbe de chauffe du régulateur.

On sera attentif à ce que le basculement froid/chaud se fasse avec un battement suffisamment large pour éviter un phénomène de pompage eau chaude/eau glacée et des pertes d’énergie par mélange eau chaude – eau froide…

Régulation de l’alimentation du ventilo-convecteur deux tubes – Schéma 1

Comment réguler l’alimentation en eau chaude/eau glacée ?

– schéma 1 »» [0] [1] [2] [3] [4] [5] [6]

 En été, alimentation en eau glacée.

1ère solution : alimentation chaud ou froid

> schéma 1 : situation été

La commutation eau glacée/eau chaude est réalisée via deux vannes 3 voies de commutation, encore appelées « change over ». Elles peuvent être commandées manuellement ou automatiquement (en fonction de la température extérieure et de l’ensoleillement).

La production d’eau glacée est réalisée par la machine frigorifique. On prévoit généralement une distribution à régime constant du type aller 6° – retour 11°, mais les accro’s de l’URE savent qu’il y a là un potentiel d’énergie à récupérer (en augmentant la température de l’eau glacée, on diminue la consommation latente) !

Régulation de l’alimentation du ventilo-convecteur deux tubes – Schéma 0

Comment réguler l’alimentation en eau chaude/eau glacée ?

– schéma 0 »» [0] [1] [2] [3] [4] [5] [6]

La régulation du ventilo-convecteur deux tubes.

schéma 0  : schéma de principe d’une installation ventilos 2 tubes.

Régulation du ventilo-convecteur deux tubes – Schéma 4

Comment réguler le ventilo ?

– schéma 4 »» [0] [1] [2] [3] [4]

Régulation du ventilo-convecteur deux tubes - Schéma 4

La régulation de pression du réseau par variation de vitesse du circulateur.

> schéma 4

Soit la pompe travaille à vitesse variable, en maintenant une pression constante dans le réseau. Ceci est nettement plus économique mais suppose une protection des installations de production lorsque le débit d’irrigation devient faible : un bypass pour la chaudière et un ballon tampon pour la machine frigorifique.

Régulation du ventilo-convecteur deux tubes – Schéma 3

Comment réguler le ventilo ?

– schéma 3 »» [0] [1] [2] [3] [4]

Régulation du ventilo-convecteur deux tubes - Schéma 3

La  régulation de la pression du réseau par soupape différentielle.

2° Régulation des débits

Dans les circuits sans vannes ou avec des vannes à trois voies, le débit hydraulique total de l’installation est constant (grâce à la vanne de réglage placée sur le bypass).

Par contre, dans les installations avec vannes deux voies, deux solutions sont possibles :

> schéma 3

Soit une vanne à décharge (encore appelée vanne à soupape différentielle) est placée en parallèle sur le réseau de distribution. La pompe est protégée, elle travaille à débit constant, mais la consommation est constante également !

Régulation du ventilo-convecteur deux tubes – Schéma 2

Comment réguler le ventilo ?

– schéma 2 »» [0] [1] [2] [3] [4]

Régulation du ventilo-convecteur deux tubes - Schéma 2

La régulation par action sur la vitesse du ventilateur.

> schéma 2

La vitesse du ventilateur est cette fois réalisée automatiquement en fonction de l’écart de température par rapport à la consigne. La température de l’eau (froide ou chaude) est alors constante. Ce système est très bon marché.

L’avantage de ce système est de limiter le coût de fonctionnement du ventilateur. Mais l’inconvénient est de créer des trains d’air chaud/d’air froid, surtout si le ventilateur n’a qu’une seule vitesse (fonctionnement en tout ou rien)… un différentiel de 4° est alors parfois rencontré, ce qui n’est pas très confortable !

De l’eau trop chaude augmente ce différentiel ainsi que les pertes par convection naturelle lors de l’arrêt du ventilateur…

Dans ce schéma, il est utile de placer la sonde thermostatique dans l’ambiance : si elle était placée dans la reprise d’air, il faudrait laisser le ventilateur en 1ère vitesse même lorsque la température ambiante est en plage neutre…!

Régulation du ventilo-convecteur deux tubes – Schéma 1

Comment réguler le ventilo ?

– schéma 1 »» [0] [1] [2] [3] [4]

Régulation du ventilo-convecteur deux tubes - Schéma 1

La régulation du débit par vanne trois voies.

1° Régulation de température.

>  schéma 1

Une sonde de température est insérée à la prise d’air. En fonction de l’écart à la consigne, on module l’ouverture d’une vanne à trois voies, et donc le débit d’eau chaude (hiver) ou d’eau glacée (été).

Il s’agit généralement d’un régulateur à action progressive, qui peut commander plusieurs ventilos d’un même local.

Astuce ! En hiver, plus le local est froid, plus il faut ouvrir la vanne d’eau chaude. En été, c’est l’inverse, c’est  la montée en température qui doit ouvrir la vanne d’eau glacée…

Pour commuter de la rampe « chaud » vers la rampe « froid », on agira via un thermostat d’inversion dont la sonde détecte « la saison » en fonction de la température de l’eau du réseau ! La rampe peut également être inversée par un commutateur manuel, ou par un signal de la Gestion Technique Centralisée du bâtiment.

Ventilo_2v3-fs.gif (1820 octets)

On constate la présence d’une zone neutre (minimum 2 degrés) pour laquelle l’installation n’est plus alimentée.

Ceci étant dit, l’occupant peut également agir sur la vitesse du ventilateur pour donner ou non de la pêche à l’émetteur.

En pratique, il n’accepte le bruit de la grande vitesse que pour la relance du matin en hiver ou pendant les canicules en été (« bruit ou sueur, il faut choisir » !…).

Régulation du ventilo-convecteur deux tubes – Schéma 0

Comment réguler le ventilo ?

– schéma 0 »» [0] [1] [2] [3] [4]

Régulation du ventilo-convecteur deux tubes - Schéma 0

La régulation du ventilo-convecteur deux tubes.

Stockage de glace dans les bacs à nodules – schéma 4

Le stockage de glace dans les bacs à nodules – schéma 4 »» [1] [2] [3] [4]

> schéma 4 : déstockage seul
La machine frigorifique est arrêtée.

Stockage de glace dans les bacs à nodules – schéma 3

Le stockage de glace dans les bacs à nodules – schéma 3 »» [1] [2] [3] [4]

> schéma 3 : déstockage et production directe
La puissance frigorifique est inférieure à la puissance appelée par les batteries froides (en fin d’après-midi , par exemple).
Les deux pompes sont en service et la vanne trois voies régule pour maintenir une température de départ de l’eau glacée constante.
Puisque le débit de distribution est supérieur au débit de production, le solde est assuré par le passage du fluide au travers du stockage qui se décharge.

Stockage de glace dans les bacs à nodules – schéma 2

Le stockage de glace dans les bacs à nodules – schéma 2 »» [1] [2] [3] [4]

> schéma 2 : stockage et production directe
La puissance frigorifique est supérieure à la puissance appelée par les batteries froides (en début de journée, par exemple).
La pompe de distribution P2 est en service et la vanne trois voies régule pour maintenir une température de départ de l’eau glacée constante.
Puisque le débit de distribution est inférieur à celui pulsé par la pompe de production P1, le solde du débit de production remonte dans le réservoir de stockage.

Stockage de glace dans les bacs à nodules – schéma 1

Le stockage de glace dans les bacs à nodules – schéma 1 »» [1] [2] [3] [4]

4 régimes de fonctionnement sont proposés :

> schéma 1 : le stockage seul
Le réseau de distribution n’est pas demandeur (la nuit, par exemple). La pompe de distribution P2 est arrêtée. La vanne trois voies est fermée.
Le groupe frigorifique refroidit les nodules qui se cristallisent progressivement, de la périphérie vers le centre. La température à l’évaporateur reste stable.
La puissance frigorifique appelée par le réservoir diminue progressivement, suite au gel des nodules. Les nodules étant gelés, le groupe frigorifique va provoquer une diminution rapide de la température de la boucle de fluide refroidissant. Cette chute de température sera détectée par le thermostat de régulation qui va arrêter le groupe frigorifique, arrêter la pompe et fermer la vanne d’arrêt.

Stockage de glace dans les bacs à faisceaux tubulaires – schéma 3

Le stockage de glace dans les bacs à faisceaux tubulaires – schéma 3 »» [1] [2] [3]

> schéma 3
le circuit présenté au schéma 3 permet une autre solution : l’usage d’un réservoir à glace à la pression atmosphérique.
L’échangeur intermédiaire permet la séparation du circuit de distribution sous pression du circuit du bac à glace ouvert.

Stockage de glace dans les bacs à faisceaux tubulaires – schéma 2

Le stockage de glace dans les bacs à faisceaux tubulaires – schéma 2 »» [1] [2] [3]

> schéma 2

le schéma 2 présente la phase de fonte de la glace.

Un tel circuit permet à la fois le déstockage du réservoir et la production frigorifique instantanée.

L’échangeur intermédiaire permet de séparer le circuit de distribution rempli d’eau, du circuit de production rempli d’eau glycolée, ce qui diminue l’importance du volume de glycol à mettre en jeu.

On pourra également s’inspirer du schéma du stockage de glace dans les bacs à nodules qui permet plus de variantes dans la régulation.

Stockage de glace dans les bacs à faisceaux tubulaires – schéma 1

Le stockage de glace dans les bacs à faisceaux tubulaires – schéma 1 »» [1] [2] [3]

> schéma 1
Le schéma 1 présente la phase de prise en glace.

Stockage d’eau glacée – schéma 3

Le stockage d’eau glacée – schéma 3 »» [1] [2] [3]

schéma 3 
Le ballon de stockage est un élément tampon intermédiaire, séparant le circuit de production de l’eau glacée du circuit de l’utilisation.
» les deux circuits sont découplés hydrauliquement, chacun disposant de sa propre pompe. Le ballon se comporte comme une bouteille de découplage hydraulique (casse pression).

Stockage d’eau glacée – schéma 2

Le stockage d’eau glacée – schéma 2 »» [1] [2] [3]

schéma 2 
Le ballon de stockage est placé en série, sur le départ de l’eau glacée vers les batteries froides.
» la température de l’eau d’alimentation des batteries froides est stable.

Stockage d’eau glacée – schéma 1

Le stockage d’eau glacée – schéma 1 »» [1] [2] [3]

schéma 1 
Le ballon de stockage est placé en série, sur le retour d’eau glacée des batteries froides.
» le fonctionnement du groupe frigorifique est stable.

Machine frigorifique à compression [Climatisation]

Machine frigorifique à compression


L’installation frigorifique, vue de l’extérieur

Dans les installations de climatisation, la machine frigorifique permet d’évacuer vers l’extérieur la chaleur excédentaire des locaux.

En pratique, elle prépare de l’air froid ou de l’eau froide qui viendront compenser les apports de chaleur du soleil, des équipements de bureautique, des occupants,… de telle sorte que le bilan chaud-froid soit à l’équilibre et que la température de consigne soit maintenue dans les locaux.

La technique la plus simple consiste à préparer de l’air froid qui sera diffusé via des gaines de distribution.

Distribution de l’air froid dans le bâtiment.

Traitement de l’air dans des caissons de climatisation.

Pour le groupe frigorifique, on distingue deux modes principaux d’action :

  • Soit le fluide frigorigène refroidit l’air en passant directement dans la batterie de refroidissement : on parle de « système à détente directe » parce que l’évaporateur de la machine frigorifique prend la place de la batterie de froid dans le caisson de climatisation.

Réfrigération « à détente directe ».

  • Soit l’installation frigorifique prépare de l’eau froide à …6°C… (généralement appelée « eau glacée »), eau qui alimentera la batterie de refroidissement du caisson de traitement d’air.

Réfrigération par circuit d’eau glacée.

Mais le transport de froid par l’air est très coûteux à l’investissement (gainage).

À titre d’exemple, comparons l’encombrement demandé pour le transfert de 10 kW de froid :

Transport par air Transport par eau
Delta T° : 9°C (de +16° pulsé à +25°C d’ambiance, par ex.) Delta T° : 5°C ( boucle d’eau glacée au régime 7° – 12°C, par ex.)
Débit d’air : 3 270 m³/h Débit d’eau : 1,72 m³/h
Vitesse : 15 m/s Vitesse : 0,8 m/s
Section de gaine : 300 x 220 mm ( ou Ø 300 mm) Diamètre de conduite : Ø 40 mm

De plus, à l’exploitation, la consommation des ventilateurs représente de 10 à 30 % de l’énergie transportée contre 2 % pour la consommation des pompes de circulation.

Circuit d’eau glacée pour l’air neuf et les ventilo-convecteurs.

Aussi, on rencontre souvent des installations où le refroidissement des locaux est principalement assuré par de l’eau glacée alimentant les batteries froides des ventilo-convecteurs.

Un complément de froid peut être donné par le rafraîchissement de l’air neuf de ventilation.

Bien sûr, « produire du froid » sous-entend évacuer de la chaleur. Aussi, à l’extérieur du bâtiment, souvent en toiture, on trouvera un équipement chargé de refroidir.

  • soit le fluide frigorigène directement : c’est le condenseur de l’installation frigorifique.
  • soit de l’eau, qui elle-même sert à refroidir le fluide frigorigène : c’est la tour de refroidissement.

On distingue trois types de tour :

La tour ouverte

l’eau est pulvérisée devant un ventilateur et le refroidissement est alors renforcé par la vaporisation partielle de cette eau (la chaleur de la vaporisation est « pompée » sur la goutte d’eau qui reste et qui donc se refroidit). Après refroidissement, cette eau sera conduite vers un condenseur à eau se trouvant près du compresseur.

Schéma principe tour ouverte.

La tour fermée
l’eau venant du condenseur reste à l’intérieur d’un circuit tubulaire fermé, mais se fait « arroser » par un jet d’eau de refroidissement. Cette eau s’évaporant partiellement, sera également fortement refroidie. Mais cette fois, l’eau qui a été au contact de l’air extérieur (son oxygène et ses poussières), n’est plus en contact direct avec le condenseur à eau évitant de bien pénibles ennuis de corrosion…

Schéma principe tour fermée.

Le dry cooler
il s’agit d’une tour fermée, que l’on n’arrose pas, que l’on refroidit simplement par l’air extérieur pulsé par des ventilateurs. Cette batterie d’échange convient en toute saison, puisque en ajoutant un antigel (type glycol), elle est insensible au gel. Elle n’est pas aussi performante que les précédentes puisque la température de refroidissement est limitée à la température de l’air extérieur…

Pour davantage d’informations :

Techniques

Pour connaître la technologie des condenseurs et des tours de refroidissement, cliquez-ici !

L’installation frigorifique, vue de l’intérieur

Le transfert de chaleur, entre intérieur et extérieur, ne peut se faire que si un équipement rehausse le niveau de température entre le milieu où la chaleur est prise (air ou eau) et le milieu où la chaleur est évacuée (air extérieur) : c’est le rôle de la machine frigorifique.

Elle se compose au minimum des 4 éléments suivants :

  • 1 évaporateur
  • 1 condenseur
  • 1 compresseur
  • 1 organe de détente

Voici le fonctionnement de chacun de ces composants.

Tout est basé sur les propriétés physiques du fluide frigorigène

La machine frigorifique est basée sur la propriété des fluides frigorigènes de s’évaporer et de se condenser à des températures différentes en fonction de la pression.

Pour expliquer le fonctionnement, nous prendrons les caractéristiques du R 22 parce c’est le fluide le plus couramment utilisé en climatisation. Mais ce n’est plus celui que l’on choisira dans les installations nouvelles.

A la pression atmosphérique :

Le R22 est liquide à – 45°C et se met à « bouillir » aux alentours de – 40°C.

>  Si du fluide R 22 à -45°C circule dans un serpentin et que l’air à 20° C passe autour de ce tuyau, l’air se refroidira : il cédera sa chaleur au fluide qui lui s’évaporera. C’est le rôle de l’évaporateur de la machine frigorifique.

A la pression de 13 bars :

cette fois, le R 22 ne va « bouillir » qu’à 33°C. Autrement dit, si de la vapeur de fluide à 13 bars et à 65°C circule dans un serpentin et que de l’air à 20° C passe autour de ce tuyau, le fluide se refroidira et à partir de 33°C, il se liquéfiera, il se condensera. En se condensant, il va libérer énormément de chaleur. C’est le rôle du condenseur de la machine frigorifique.

> Si l’on souhaite donc que le fluide puisse « prendre » de la chaleur : il doit être à basse pression et à basse température sous forme liquide, pour lui permettre de s’évaporer.

>  Si l’on souhaite qu’il puisse céder sa chaleur : il doit être à haute température et à haute pression, sous forme vapeur, pour lui permettre de se condenser.

Pour réaliser un cycle dans lequel de la chaleur est extraite d’un côté et donnée de l’autre, il faut compléter l’installation par 2 éléments :

  1. Le compresseur, qui comprime le gaz en provoquant l’augmentation de température jusqu’à + 65°C.
  2. Le détendeur, qui, au départ d’un fluide à l’état liquide, « lâche » la pression : le fluide se vaporise partiellement et donc se refroidit. Le liquide retombe à la température de – 40°C (bien sûr, on choisira – 40°C pour faire de la congélation, et entre 0°C et + 5°C pour de la climatisation).

Si ces différents équipements sont bouclés sur un circuit, on obtient une machine frigorifique.

En pratique, suivons le parcours du fluide frigorigène dans les différents équipements et repérons le tracé de l’évolution du fluide frigorigène dans le diagramme des thermo-dynamiciens, le diagramme H-P, enthalpie (ou niveau d’énergie) en abscisse et pression en ordonnée.

Dans l’évaporateur

Le fluide frigorigène liquide entre en ébullition et s’évapore en absorbant la chaleur du fluide extérieur. Dans un deuxième temps, le gaz formé est encore légèrement réchauffé par le fluide extérieur, c’est ce qu’on appelle la phase de surchauffe (entre 7 et 1).

Fonctionnement de l’évaporateur.

Dans le compresseur

Le compresseur va tout d’abord aspirer le gaz frigorigène à basse pression et à basse température (1). L’énergie mécanique apportée par le compresseur va permettre d’élever la pression et la température du gaz frigorigène. Une augmentation d’enthalpie en résultera.

Fonctionnement du compresseur.

Dans le condenseur

Le gaz chaud provenant du compresseur va céder sa chaleur au fluide extérieur. Les vapeurs de fluide frigorigène se refroidissent (« désurchauffe »), avant l’apparition de la première goutte de liquide (point 3). Puis la  condensation s’effectue jusqu’à la disparition de la dernière bulle de vapeur (point  4). Le fluide liquide peut alors se refroidir de quelques degrés (sous-refroidissement) avant de quitter le condenseur.

Fonctionnement du condenseur.

Dans le détendeur

La différence de pression entre le condenseur et l’évaporateur nécessite d’insérer un dispositif « abaisseur de pression » dans le circuit. C’est le rôle du détendeur. Le fluide frigorigène se vaporise partiellement dans le détendeur pour abaisser sa température.

Fonctionnement du détendeur.

Fonctionnement complet

Le cycle est fermé, le fluide frigorigène évolue sous l’action du compresseur dans les quatre éléments constituant la machine frigorifique.

Cycle frigorifique élémentaire.

L’ensemble du cycle peut être représenté dans le diagramme enthalpie-pression. Sous la courbe en cloche se situent les états de mélange liquide-vapeur; à gauche de la cloche, le fluide est à l’état liquide (il se « sous-refroidit »), à droite, le fluide est à l’état vapeur (il « surchauffe »).

Diagramme enthalpique du cycle frigorifique.


Un fonctionnement de la machine frigorifique en équilibre permanent

Le cycle réel de fonctionnement d’une machine frigorifique se stabilise à partir des températures du milieu qu’il faut refroidir, de l’air extérieur où la chaleur est rejetée, et des caractéristiques dimensionnelles de l’appareil.

Ainsi, la température d’évaporation se stabilisera quelques degrés en dessous de la température du fluide refroidi par l’évaporateur. De même, la température de condensation se stabilisera quelques degrés au-dessus de la température du fluide de refroidissement du condenseur.

Or, les besoins de froid évoluent en permanence et la température extérieure varie toute l’année !

Tout cela va bien sûr entraîner une modification du taux de compression et une variation de la puissance absorbée. En fonction du régime d’évaporation et de condensation, le compresseur aspirera un débit masse plus ou moins grand de fluide frigorigène définissant ainsi la puissance frigorifique à l’évaporateur et calorifique au condenseur.

Exemple

Afin d’imaginer ces évolutions, partons d’un cas concret.

Évaporateur

Évolution des fluides dans l’évaporateur.

La boucle d’eau glacée fonctionne au régime 5°-11°. L’échange de chaleur s’effectue en deux phases :

  • ébullition du fluide
  • surchauffe des vapeurs

La température d’évaporation qui s’établit est de 0°C. Dans le cas du R22, ceci correspond à une basse pression de 4 bar (lecture du manomètre), soit 5 bar absolu (comparé au vide).

Condenseur

Évolution des fluides dans le condenseur.

Le condenseur est directement refroidi par l’air extérieur. Supposons que celui-ci entre à 30°C dans le condenseur. L’échange de chaleur s’effectue en trois phases :

  • désurchauffe des gaz chauds provenant du compresseur,
  • condensation du fluide,
  • sous-refroidissement du liquide.

La température de condensation qui s’établit est de 40°C. Dans le cas du R 22, ceci correspond à une haute pression de 14,5 bar, soit 15,5 bar absolu.

Analysons le comportement du compresseur sur base des caractéristiques nominales données par le fournisseur.

Extrait d’un catalogue de compresseurs.

On constate que pour une température d’évaporation de 0°C et pour une température de condensation de 40°C,

  • la puissance électrique absorbée par le compresseur sera de 6,3 kW
  • la puissance frigorifique donnée à l’évaporateur sera de 21,9 kW

Remarque : en réalité, une adaptation de quelques pour cent devrait avoir lieu car le constructeur fournit des indications pour un fonctionnement normalisé de son appareil (surchauffe de 0K, sous-refroidissement de 25 K selon DIN 8928 et bientôt la CEN) mais ceci dépasse la portée de ces propos.

Supposons à présent que le condenseur soit mal entretenu. L’échange de chaleur se fait moins bien, la température au condenseur augmente, le compresseur va travailler davantage et va augmenter la pression de sortie des gaz. Une nouvelle température de condensation va se mettre en place : supposons qu’elle atteigne une température de 50°C. Comme la température du liquide s’élève à l’entrée du détendeur, la température d’évaporation s’élève également de 1 ou 2°. Le diagramme constructeur prévoit une augmentation de la puissance électrique absorbée : 7 kW, pour une puissance frigorifique diminuée : 18,2 kW…

Le « rendement » de la machine s’est dégradé :

> AVANT : (21,9 kW produits) / (6,3 kW absorbés) = 3,5.

> APRES : (18,2 kW produits) / (7 kW absorbés) = 2,6.

On dira que « l’efficacité énergétique » de la machine frigorifique a diminué de 25 %. À noter que l’on serait arrivé au même résultat si la température extérieure s’était élevée de 10°.


Plusieurs régulations imbriquées dans la machine frigorifique

On peut voir la machine frigorifique comme un ensemble d’équipements, réunis par le réseau de fluide frigorigène et régulés chacun en poursuivant divers objectifs en parallèle.

Adapter la puissance fournie à la puissance requise : la régulation du compresseur

Une machine frigorifique est dimensionnée pour vaincre les apports thermiques maximum (ciel bleu, soleil éclatant et 32°C de température, par exemple). Elle est donc la plupart du temps sur-puissante. Il faut donc pouvoir adapter la puissance frigorifique du compresseur à la charge partielle réelle.

Diverses techniques de régulation du compresseur sont possibles :

  • arrêter le compresseur par « tout ou rien » ou par étages,
  • réduire sa vitesse de rotation,
  • le mettre partiellement hors service (décharge de cylindres,…),
  • prévoir un bypass refoulement-aspiration,
  • obturer l’orifice d’aspiration,

Limiter la pression maximale à la sortie du compresseur : le pressostat HP

La plus importante partie d’une installation frigorifique est sans aucun doute le compresseur. Il doit maintenir la quantité nécessaire d’agent frigorifique en circulation; il opère ainsi donc comme une pompe. La pression différentielle entrée-sortie est très importante et, selon le point de travail et le fluide frigorifique, elle se situe entre 5 et 20 bar, environ.

Imaginons une panne du ventilateur du condenseur ou une période de forte chaleur de l’air extérieur. Le refroidissement des gaz chauds dans le condenseur est insuffisant, la température à l’évaporateur va augmenter, la pression à l’entrée du compresseur augmente. Le compresseur pourrait alors développer une pression de sortie supérieure au niveau permis. Afin de protéger l’installation, il est prévu sur cette partie Haute Pression (HP) un pressostat qui déclenche le moteur d’entraînement lorsque la pression dépasse le niveau maximal permis par le constructeur.

Limiter la pression minimale à l’entrée du compresseur : le pressostat BP

La basse pression avant le compresseur est également surveillée. Par exemple, en cas de demande de froid insuffisante à l’évaporateur, la chaleur d’évaporation transmise au fluide frigorifique n’est pas suffisante. Cela conduit à une diminution de la pression du côté basse pression du compresseur avec pour conséquence une diminution de la température d’évaporation ainsi que le givrage de la batterie de froid ou le gel de l’eau glacée.

Or quand une batterie givre, le coefficient d’échange diminue, la température d’évaporation diminue encore et le phénomène s’accélère. C’est pourquoi la basse pression est contrôlée et le compresseur est déclenché par le pressostat BP lorsque la Basse Pression descend en dessous d’une valeur minimale. Ainsi, en cas de fuite de réfrigérant, il est important de faire déclencher le compresseur, autrement il tournera sans réfrigérant et se détériorera en très peu de temps. Normalement la pression dans l’évaporateur est largement supérieure à la pression atmosphérique.

Éviter la surchauffe du moteur

Il faut éviter que la machine ne démarre et ne s’arrête trop souvent. En effet, des enclenchements répétitifs entraînent la surchauffe du moteur (le courant de démarrage est plus élevé que le courant nominal). Un temps de fonctionnement minimal est nécessaire pour évacuer cet excédent de chaleur.

Un dispositif, appelé « anti-court-cycle », limite la fréquence de démarrage des compresseurs et assure un temps minimal de fonctionnement.

Lubrifier le compresseur

Les pistons d’un moteur de voiture nécessitent une lubrification constante pour éviter aux anneaux de piston d’être « rongés ». Il existe le même problème dans les compresseurs frigorifiques. L’huile qui lubrifie le compresseur suit également la vapeur du fluide frigorigène et se trouve ainsi dans le système de circulation. Le technicien de service doit contrôler que l’huile retourne bien au compresseur, par la pose adéquate des tuyauteries frigorifiques, le cas échéant en incorporant un séparateur d’huile.

Lorsque le compresseur n’est pas en service, un réchauffage du carter est réalisé. En effet, en cas de faibles températures ambiantes, l’huile peut absorber un peu de vapeur du fluide frigorigène. Comme cette huile se trouve principalement dans la cuvette du carter, il peut y avoir à cet endroit une concentration importante d’agent frigorigène dans l’huile. Lorsque l’installation est mise en service, une très rapide chute de pression apparaît, l’agent frigorigène tente de se vaporiser et de se séparer de l’huile. Celle-ci commence à mousser, ce qui peut provoquer des coups de liquide et un manque d’huile dans le compresseur. Afin d’empêcher l’huile d’absorber du fluide frigorigène, la cuvette du carter est, lors du déclenchement de l’installation, réchauffée à l’aide d’une résistance électrique.

Éviter les coups de liquide réfrigérant

Le compresseur a pour fonction de comprimer un gaz. Les liquides étant pratiquement incompressibles, le compresseur sera endommagé si le réfrigérant le traverse en phase liquide plutôt que vapeur. Si le piston pousse contre un agent non compressible, il s’ensuit un « coup de liquide », et donc la casse du piston et des clapets.

Lorsque l’installation est hors service, le liquide peut s’accumuler avant le compresseur et lors du ré-enclenchement provoquer un coup de liquide. Pour éviter cela, une vanne magnétique est souvent placée avant le détendeur. La vanne magnétique se ferme lorsque l’installation est déclenchée et évite à l’agent réfrigérant de retourner à l’évaporateur. Le raccordement électrique est effectué de telle sorte que le compresseur puisse fonctionner après la fermeture de cette vanne. Le compresseur s’arrête lorsque le pressostat basse pression déclenche. Aussitôt que la pression augmente à nouveau, le processus est répété. Ce processus est parfois appelé « le pump down ».

Remarque : les coups de liquides ne concernent quasiment que les compresseurs à pistons. Les profils des vis ou des labyrinthes de Scroll peuvent s’écarter en cas d’aspiration de liquide. Et les turbocompresseurs ne sont pas des compresseurs volumétriques.


L’efficacité énergétique ou COP-froid

Un climatiseur est énergétiquement efficace s’il demande peu d’énergie électrique au compresseur pour atteindre une puissance frigorifique donnée.

En comparant les offres, on établit le rapport entre puissance frigorifique fournie et puissance électrique absorbée par le compresseur.

Exemple : voici les spécifications techniques d’un climatiseur réversible présent sur le marché.

Unité intérieure FHYB35FJ
Unité extérieure RY35D7
Puissance frigorifique kcal/h 3 100
Btu/h 12 300
kW 3,60

Puissance calorifique

kcal/h 3 500
Btu/h 14 000
kW 4,10

Puissance absorbée

rafraîchissement

kW 1,51

chauffage

kW 1,33

On y repère :

  • l’efficacité frigorifique, E.F., ou COPfroid (coefficient de performance en froid)

puissance frigorifique / puissance absorbée =
3,6 kW / 1,5 kW = 2,4

  • energy efficiency ratio, E.E.R

puissance frigorifique / puissance absorbée =
12,3 Btu/h / 1,5 kW
= 8,2

Et si l’on souhaite utiliser l’appareil en mode chauffage :

  • le coefficient de performance au condenseur, COPchaud

puissance calorifique (au condenseur) / puissance absorbée =
4,1 kW / 1,3 kW 
= 3,2

Remarques.

  1. Il ne faut pas confondre COPfroid et COPchaud ! Le COPchaud est le rapport entre l’énergie thermique délivrée au condenseur et l’énergie électrique demandée par le compresseur (c’est un terme qui vient de l’évaluation du rendement d’une pompe à chaleur). Alors que le COPfroid part de la chaleur captée à l’évaporateur. La confusion étant fréquente, il n’est pas inutile lorsque l’on compare le rendement des machines dans les documentations de constructeurs, de vérifier ce qui se trouve derrière l’appellation COP.
  2. Il est intéressant de s’inquiéter également de l’efficacité globale de la machine frigorifique installée, c’est à dire du rapport entre le froid produit et l’ensemble de toutes les consommations électriques engendrées, y compris les ventilateurs aux échangeurs, les pompes… Une machine frigorifique, avec une efficacité excellente, placée sur le toit d’un immeuble de plusieurs étages, peut voir son efficacité fortement chuter si la machine est placée en cave et que le condenseur est refroidi via un gainage d’air traversant les étages ! La consommation du ventilateur sera importante dans le bilan final.
  3. Il est très important de se rendre compte que l’énergie mécanique des ventilateurs et des pompes se dégradera en chaleur. Cette chaleur vient en diminution de la puissance frigorifique pour les éléments du côté froid. Ce n’est donc pas seulement le COP ou l’EE qui se dégradent par la consommation électrique supplémentaire, c’est aussi la puissance frigorifique qui diminue.

Détendeurs [Climatisation]

Détendeurs [Climatisation]


Fonctionnement

Dans l’ensemble du fonctionnement d’une machine frigorifique, le détendeur module le débit de fluide réfrigérant à l’entrée de l’évaporateur.

Schéma fonctionnement du détendeur.

La différence de pression entre le condenseur et l’évaporateur nécessite d’insérer un dispositif « abaisseur de pression » dans le circuit. C’est le rôle du détendeur. Le fluide frigorigène se vaporise partiellement dans le détendeur pour abaisser sa température.

Un mauvais contrôle de la quantité de fluide frigorigène admise dans l’évaporateur, entraîne les conséquences suivantes :

  • Trop peu de fluide frigorigène : il est immédiatement évaporé et il continue à se réchauffer. C’est l’effet de surchauffe. L’efficacité de l’évaporateur diminue.
  • Trop de fluide injecté : l’excès de fluide n’est pas évaporé par manque de chaleur disponible. Une partie du fluide reste liquide et est aspirée par le compresseur. Celui-ci peut alors être sérieusement endommagé (coup de liquide).

Différentes technologies de détendeurs

Le détendeur thermostatique

C’est le dispositif le plus fréquemment utilisé. Le détendeur thermostatique est une vanne qui règle le débit du réfrigérant, en maintenant une différence constante entre la température d’évaporation du réfrigérant et la température des gaz à la sortie de l’évaporateur. La différence entre ces deux températures s’appelle la « surchauffe à l’évaporateur », typiquement 6 à 8 K. De cette façon, on est certain que tout le liquide injecté s’est évaporé.

Si la charge thermique augmente, la sonde (3) détectera une montée de température, agira sur la membrane (4) et le détendeur s’ouvrira (le pointeau est renversé : plus on l’enfonce, plus il s’ouvre) afin d’augmenter le débit de réfrigérant (1).

Le détendeur électronique

Photo détendeur électronique.

Il fonctionne sur le même principe, mais ce type de détendeur permet un réglage plus précis de l’évaporateur. Une surchauffe plus faible sera nécessaire. La température d’évaporation remontera de 2 à 3 K, ce qui diminuera la consommation du compresseur.

Son avantage est de pouvoir bénéficier de l’intelligence de la régulation numérique : adapter son point de fonctionnement en fonction de divers paramètres.

De là, plusieurs propriétés :

  • régulation modulante de la température du milieu à refroidir,
  • injection optimale du réfrigérant,
  • dégivrage optimalisé.

Technologiquement, il dispose d’une vanne à pointeau, commandée par un moteur pas à pas à 2 500 positions.

Le détendeur capillaire

Dans de petites installations, tels les appareils frigorifiques ou les petits climatiseurs, on se contente, comme dispositif de réglage, d’un étranglement dans la conduite du réfrigérant avant l’évaporateur. L’étranglement est assuré par un tube capillaire (de très faible diamètre) dans lequel la détente du fluide est obtenue par la perte de charge dans le tube.

Le détendeur pressostatique

Il maintient une pression d’évaporation constante, indépendante de la charge. La totalité de la surface d’échange de l’évaporateur n’est utilisée qu’une fois en régime. C’est pourquoi il n’est utilisé que dans le cas d’installations dans lesquelles la charge ne varie pas beaucoup (machines à glace par exemple).

Free-chilling

Free-chilling


Principe de base

Le principe de base est simple

Lorsque la température extérieure descend sous les 8 à 10 °C, on peut fabriquer de l’eau glacée sans utiliser le groupe frigorifique. L’eau est directement refroidie par l’air extérieur et la machine frigorifique est mise à l’arrêt.

L’économie d’énergie est évidente ! La rentabilité du projet est d’autant plus élevée que les besoins de refroidissement sont importants en hiver et que l’installation s’y prête. Étudions cela en détail.

Qu’est-ce qu’une installation adaptée au free-chilling ?

Au départ, il faut que des besoins de froid soient prévus en hiver.

L’intérêt est augmenté si les échangeurs des unités terminales qui seront choisis travaillent à « haute » température : ce sera le cas de plafonds froids (régime 15-17 °C), de poutres froides ou de ventilos-convecteurs surdimensionnés pour travailler au régime 12-17 °C ou 14-19 °C,… À noter qu’un tel dimensionnement diminue les pertes du réseau et la consommation liée à la condensation de la vapeur d’eau contenue dans l’air des ambiances, ce qui amplifie l’économie d’énergie.

Si l’installation demande une puissance de refroidissement faible en mi-saison ou en hiver (de l’ordre de 50 W/m²), on pourrait faire travailler les plafonds froids au régime 17° – 19 °C, ce qui permet un refroidissement par l’air extérieur tant que la température de l’air est inférieure à 14 °C. On peut alors imaginer une modulation de la température de consigne de l’eau des plafonds froids en fonction de la température extérieure.

Enfin, le projet se présente très favorablement si un condenseur à eau est prévu : on pourra utiliser la tour de refroidissement pour refroidir l’eau glacée directement par l’air extérieur. Dans la tour, grâce à l’évaporation partielle de l’eau, la température de l’air extérieur sera encore diminuée. Ainsi, de l’air à 15 °C et 70 % HR permet de créer de l’eau de refroidissement à 12° (limite basse théorique appelée température « bulbe humide »). Malheureusement, un échangeur sera nécessaire entre le circuit de la tour (eau glycolée) et le circuit d’eau glacée du bâtiment. Une partie de l’avantage est donc perdu…

Le problème du gel…

De l’eau glacée refroidie par l’air extérieur pose le problème du gel dans la tour. La solution la plus courante est l’addition de glycol, mais :

  • le glycol coûte cher,
  • le glycol diminue les capacités d’échange thermique et augmente la densité du liquide, ce qui entraîne une augmentation de puissance des pompes,
  • en général, on limite le circuit glycol au dernier tronçon en contact avec l’extérieur (l’eau de la boucle d’eau glacée n’est pas glycolée car, en cas de vidange, c’est l’entièreté du circuit qui est à remplacer),
  • un échangeur supplémentaire doit alors être prévu, entraînant une consommation électrique liée à sa perte de charge et un écart de température qui diminue la période de fonctionnement du free-chilling…
  • attention lorsque l’on rajoute de l’eau ultérieurement…

Il est aussi possible de placer des cordons chauffants (mais peut-on protéger totalement ainsi une tour ?) ou de prévoir un circuit de chauffage spécifique qui se met en place en période de gel, mais on risque de manger le bénéfice !

Le free-chilling : une solution miracle pour toutes les installations ?

Certainement pas. De nombreuses contraintes apparaissent.
Quelques exemples :

  • Lorsque l’installation travaille à charge partielle, il y a intérêt à ce que la température moyenne de l’eau « glacée » soit la plus élevée possible pour favoriser l’échange avec l’air extérieur. On appliquera donc une régulation des échangeurs par débit variable pour augmenter l’écart de température entre départ et retour.
  • Une tour de 300 kW pèse 3 à 4 tonnes et une tour de 1 000 kW pèse 9 à 12 tonnes, ce qui génère parfois des frais d’adaptation du génie civil.
  •  …

Adapter cette technique nécessite donc toujours une étude particulière (cadastre des énergies de froids prévues avec leur niveau de température, répartition été/hiver, …) pour apprécier la rentabilité.

Mais il est en tous cas impératif d’y penser lors d’une nouvelle installation !


Schémas de réalisation

Différents systèmes de refroidissement par free-chilling sont possibles :

  • via un aérorefroidisseur à air spécifiqueDeux schémas sont possibles :
> Soit un montage en série avec l’évaporateur, où l’aérorefroidisseur est monté en injection (la température finale est alors régulée par la machine frigorifique, qui reste en fonctionnement si la température souhaitée n’est pas atteinte).

> Soit par un montage en parallèle avec basculement par une vanne à 3 voies en fonction de la température extérieure (aucune perte de charge si la machine frigorifique est à l’arrêt mais fonctionnement en tout ou rien de l’aérorefroidisseur).
  • via un appareil mixteCertains fabricants proposent des appareils qui présentent 2 condenseurs : un échangeur de condensation du fluide frigorifique et un aérorefroidisseur pour l’eau glacée, avec fonctionnement alternatif suivant le niveau de température extérieure (attention à la difficulté de nettoyage des condenseurs et aux coefficients de dilatation différents pour les 2 échangeurs, ce qui entraîne des risques de rupture).
  • via la tour fermée de l’installationDans le schéma ci-dessous, l’installation fonctionne sur base de la machine frigorifique. Lorsque la température de l’air extérieur est suffisamment froide, la vanne 3 voies bascule et l’eau glacée prend la place de l’eau de réfrigération du chiller. Dans une tour fermée, l’eau n’est pas en contact direct avec l’air extérieur; c’est un circuit d’eau indépendante qui est pulvérisée sur l’échangeur et qui refroidit par évaporation. Mais le problème de la protection au gel reste posé : il est difficile d’envisager de mettre du glycol dans tout le réseau d’eau glacée (échange thermique moins bon, densité plus élevée donc diminution des débits, …) .
  • via la tour ouverte de l’installationDans ce cas, l’eau glacée est pulvérisée directement face à l’air extérieur. Elle se charge d’oxygène, de poussières, de sable,… Ces impuretés viennent se loger dans les équipements du bâtiment (dont les vannes de réglage des ventilos !). Les risques de corrosion sont tels que cette solution est à proscrire.
  • via un échangeur à air placé devant les orifices d’aspiration d’une tour de refroidissement Ceci permet de réutiliser les ventilateurs de la tour mais crée une perte de charge permanente.
  • via un échangeur à plaques traditionnel L’échangeur se place entre le réseau d’eau glacée et le circuit de la tour de refroidissement. Cette solution est simple, elle minimise la présence du glycol dans le circuit de la tour mais, en plus de l’investissement à réaliser, elle entraîne un écart de température supplémentaire de minimum 2°C dans l’échangeur entre l’eau glacée et l’eau de la tour, ce qui diminue la plage de fonctionnement du refroidissement par l’air extérieur. C’est le choix qui a été fait au Centre Hospitalier du Bois de l’Abbaye.

L’installation de free-chilling au Centre Hospitalier du Bois de l’Abbaye

Monsieur Tillieux, gestionnaire technique de l’hôpital, avait conscience que des besoins de froid existaient durant toute l’année, donc également pendant l’hiver :

  • des cabinets de consultation installés dans les niveaux inférieurs à refroidir en permanence.
  • ainsi que des locaux techniques utilisant le réseau glacée en hiver (salle de radiographie, blocs opératoires, salle informatique,…).

Profitant de la rénovation d’une tour de refroidissement, il adopta la technique du free-chilling sur le circuit d’eau glacée. Il adapta également les émetteurs pour que ceux-ci puissent travailler au régime 12-17°C. Il favorisa le refroidissement nocturne des locaux, ce qui ne crée pas d’inconfort pour les occupants et valorise mieux le free-chilling puisque la température est plus basse la nuit.

En collaboration avec la société de maintenance, il adopta le schéma de principe suivant :

Le schéma de gauche représente le circuit classique de refroidissement de l’eau glacée dans l’évaporateur. L’eau du condenseur est refroidie dans la tour de refroidissement.

Schéma groupe frigo en fonctionnement.Schéma groupe frigo à l'arrêt et free-chiling.

Sur le premier schéma, le groupe frigo est arrêté et l’eau glacée est by-passée dans un échangeur. L’eau de refroidissement est envoyée directement dans la tour de refroidissement.

Un jeu d’électrovannes permet le basculement d’un système à l’autre, dès que la température extérieure descend sous les 8°C. Le dimensionnement de la tour a été calculé en conséquence.

Problème rencontré lors de la mise en route

Lorsque le système basculait du mode « free-chilling » vers le mode « machine frigorifique », celle-ci déclenchait systématiquement !

Pourquoi ? Un condenseur traditionnel travaille avec un régime 27/32°C par 10° extérieurs. Or en mode free-chilling, la température du condenseur est nettement plus basse. La pression de condensation aussi. Le détendeur ne l’accepte pas : il a besoin d’une différence de pression élevée (entre condensation et évaporation) pour bien fonctionner et laisser passer un débit de fluide frigorifique suffisant vers l’évaporateur. Le pressostat Basse Pression déclenche…

Solution ? Une vanne trois voies motorisée a été installée : lors du ré-enclenchement de la machine frigo, le débit d’eau de la tour était modulée pour s’adapter à la puissance de refroidissement du condenseur.

Quelle rentabilité ?

Faute d’une mesure effective, nous allons estimer l’économie réalisée par l’arrêt du groupe frigorifique de 300 kW. Si le fichier météo de Uccle annonce 3.550 heures sous les 8°C, on peut estimer que le refroidissement effectif se fait durant 2.000 heures.

Sur base d’un COP moyen de 2,5, c’est donc 120 kW électriques qui sont évités au compresseur. Une consommation supplémentaire de 5 kW est observée pour le pompage de l’eau au travers de l’échangeur et dans la tour. Soit un gain de 115 kW durant 2 000 heures. Sur base de 0,075 €/kWh, c’est 17 000 € qui sont économisés sur la facture électrique.

L’investissement a totalisé 60 000 €, dont moitié pour la tour fermée de 360 kW, le reste en tuyauteries, régulation et génie civil.

Le temps de retour simple est donc de l’ordre de 4 ans.

Séquences de régulation de la tour

  • si T° < 2°C, échange eau-air non forcé.
  • si 2°C < T°ext < 4°C, échange eau- air forcé.
  • si T°ext > 4°C, échange eau-air humide par pulvérisation.

Climatiseur individuel

Climatiseur individuel


Principe de fonctionnement

Un climatiseur de local est une machine frigorifique prévue pour extraire la chaleur des locaux et la rejeter à l’extérieur.

Schéma principe climatiseur de local

Le fonctionnement d’un climatiseur est basé sur le changement de phase d’un fluide frigorigène :

  • dans l’évaporateur, le fluide capte la chaleur dans l’air du local et s’évapore;
  • dans le condenseur, le fluide redevient liquide car il est refroidi par l’air extérieur.

Le compresseur a pour rôle de comprimer le gaz, opération accompagnée d’une forte élévation de température qui permettra au fluide frigorifique de céder sa chaleur à l’air extérieur.

Le détenteur relâche la pression, opération accompagnée d’une forte diminution de température nécessaire à l’échange de chaleur avec l’air ambiant.


Typologie des climatiseurs de locaux

On distingue plusieurs types de climatiseurs :

Le climatiseur mobile

C’est un appareil à faible puissance frigorifique (max 2,5 kW), principalement destiné à un usage local. Il impose de laisser un ouvrant entrouvert, ce qui diminue l’étanchéité du local à l’air et aux bruits extérieurs !

Ce système est de moins en moins utilisé. Son emploi se limite souvent aux situations provisoires.

Photo climatiseur mobile.Schéma principe climatiseur mobile.

S’il est monobloc, l’air de refroidissement du condenseur peut être pris soit dans la pièce (perte de puissance jusqu’à 30 % par rapport à la puissance frigorifique annoncée), soit à l’extérieur (cas le plus favorable). Il est rejeté systématiquement à l’extérieur par une gaine flexible;

Photo climatiseur mobile séparé.Schéma principe climatiseur mobile séparé.

S’il est séparé, pour des raisons de mobilité de l’unité extérieure, le compresseur est situé dans l’unité intérieure. La distance entre les deux unités est généralement limitée à 2 m.

Le « Window Unit » ou climatiseur de fenêtre

Le climatiseur de « fenêtre » (« window »), est un climatiseur monobloc installé dans un percement effectué dans une paroi extérieure (mur ou baie).

Schéma principe climatiseur de fenêtre - 01.Schéma principe climatiseur de fenêtre - 02.

Généralement, un seul moteur entraîne simultanément le compresseur et les deux ventilateurs. Si bien que tous les bruits de fonctionnement sont fournis en prime dans le local ! Seuls les amateurs de polars américains (où il y a toujours un window qui vrombit à l’arrière de l’inspecteur, celui-ci basculant sur sa chaise, les deux pieds sur son bureau…) peuvent apprécier ce type de confort … !

Le « split system »

« Split System » signifie « climatiseur à éléments séparés », à savoir que l’unité de condensation est séparée de l’unité d’évaporation.

Avec un split, l’évaporateur est souvent situé dans le local à traiter, tandis que condenseur et compresseur sont situés à l’extérieur (en terrasse, au sol,…), ce qui permet de diminuer le bruit !

Schéma Le "split system" - 01. Schéma Le "split system" - 02. Schéma Le "split system" - 03. Schéma Le "split system" - 04. Schéma Le "split system" - 05. Schéma Le "split system" - 06.

Dans chacun des cas, les unités sont reliées par liaison frigorifique (fluide frigorigène) et cable électrique, dont les longueurs peut être adaptées au cas traité, ce qui autorise une grande souplesse d’installation.

Schéma principe "split system".

Remarque.

pour des raisons esthétiques ou de sécurité, il est également possible de ne pas disposer le condenseur à l’extérieur mais en cave. Ceci n’est uniquement possible que si on garantit une ventilation de la cave (pulsion-extraction) d’un débit au moins égal au débit d’air nécessaire pour le bon fonctionnement du condenseur. Éventuellement, une ventilation mécanique peut être asservie à un thermostat d’ambiance dans la cave pour garantir le débit nécessaire.

Le « multi-split system »

Les unités de condensation et d’évaporation sont séparées et reliées par des liaisons frigorifiques et électriques dont la longueur peut être adaptée au cas traité, ce qui autorise une grande souplesse d’installation.

Schéma multi-split system.

Les unités d’évaporation peuvent être posées diversement, y compris dans un local annexe avec des gaines de soufflage dans 1 ou 2 locaux.

Cas particulier : le Roof-Top

Schéma Roof-Top.

L’unité de condensation et d’évaporation sont intégrées dans le même appareil posé en toiture et relié par une gaine à un diffuseur d’air séparé.

Vue d’un roof-top posé sur une toiture.


Détails technologiques

L’unité d’évaporation

Un ventilateur centrifuge fait circuler l’air intérieur au travers d’un filtre, puis de l’évaporateur, avant de le rejeter au travers de grilles de diffusion dont l’inclinaison est réglable.

Divers emplacements sont possibles pour l’insertion de l’évaporateur :

Schéma insertion de l'évaporateur.

En voici quelques exemples :

En allège.

Au plafond.

En cassette insérée dans un faux plafond.

Remarque.

La vapeur d’eau contenue dans l’air ambiant risque de se condenser au contact de l’évaporateur très froid, aussi doit-on prévoir une conduite d’évacuation des condensats vers l’égout. Si l’écoulement naturel par gravité n’est pas possible, il faudra insérer une petite pompe de relevage des condensats.

L’unité de condensation

Le fluide frigorigène (à l’état vapeur) est comprimé par le motocompresseur hermétique, puis refroidit dans le condenseur, avant d’être détendu et de repartir vers le local.

Photo unité de condensation.

Les liaisons frigorifiques et électriques

Pour simplifier la tâche sur chantier (et rendre l’installation accessible à des non-frigoristes), les conduites de raccordement en cuivre sont préchargées en fluide frigorigène et équipées de raccords rapides. Lors du montage, les opercules sont automatiquement perforés.

Leur longueur ne dépasse pas 10 à 15 m généralement pour limiter les pertes de charge. La tuyauterie ramenant le fluide détendu vers l’évaporateur sera soigneusement isolée car l’échauffement du fluide dans le conduit,… c’est autant de puissance frigorifique perdue pour l’évaporateur. Et même si elle reste suffisante, c’est une perte qui diminue le rendement de la machine : son coefficient de performance.

Voici les connexions d’un multisplit : 3 évaporateurs sont reliés à un condenseur commun.

Le retour d’huile

L’huile est naturellement entraînée par le fluide frigorigène liquide vers l’évaporateur. Par contre, il est nécessaire d’organiser volontairement le retour de l’huile vers le compresseur lorsque le fluide est à l’état vapeur :

  • Soit le compresseur est situé plus bas que l’évaporateur, et la gravité fera le travail sur base d’une pente descendante de 1 cm par mètre.
  • Soit le compresseur est situé plus haut que l’évaporateur, et un siphon devra être prévu; on provoque alors volontairement un bouchon d’huile afin que la vapeur, en forçant le passage, entraîne l’huile avec elle. Comme ce système ne fonctionne que sur quelques mètres, un tel siphon devra être prévu au minimum tous les 5 mètres de dénivellation.

À défaut, c’est la lubrification du compresseur qui risque d’être insuffisante, et sa longévité aussi…


En option : la fonction « chauffage »

Si une fonction « chauffage » est recherchée, trois systèmes sont possibles.

Solution 1 : incorporer une résistance électrique d’appoint, en fonctionnement direct

Cette solution est coûteuse à l’exploitation, vu le prix du kWh de jour.

Solution 2 : incorporer une batterie d’eau chaude alimentée par le réseau de chauffage du bâtiment

Cette solution est peu utilisée car coûteuse à l’investissement. Un thermostat d’ambiance commande l’apport de chaleur, soit via une vanne trois voies modulant la température de l’eau, soit directement sur le ventilateur.

Solution 3 : sélectionner une machine frigorifique « réversible » capable de fonctionner en pompe à chaleur

Dans une machine frigorifique, le cycle peut être inversé grâce à l’utilisation d’une vanne à quatre voies à la sortie du compresseur : l’évaporateur devient condenseur et le condenseur devient évaporateur. C’est un climatiseur dit « réversible ».

On parle d’un fonctionnement en « pompe à chaleur » puisque c’est la chaleur de l’air extérieur qui est utilisée pour chauffer l’air du local.

Le surcoût de l’appareil est faible (de 15 à 25 %) et le prix de revient du kWh fourni est 2 à 3 fois plus faible que dans le cas du chauffage direct, … Hélas, la puissance de l’appoint de chaleur est le plus faible au moment où on en a le plus besoin, c.-à-d. par période de gel… Et à ce moment, le coefficient de performance frigorifique est assez dégradé.


En option : la fonction « ventilation »

Certains appareils disposent d’une prise d’air neuf permettant d’adjoindre une fonction ventilation au matériel.

A ne pas confondre avec le brassage d’air en recyclage total proposé par tous les appareils : dans ce cas, le ventilateur fonctionne seul et l’air du local passe simplement par le filtre sommaire qui retient les plus grosses particules en suspension. Il est, par exemple, impossible d’améliorer la qualité de l’air d’un local « fumeur » avec ce principe. Seule, une réelle dilution par de l’air neuf apportera l’amélioration recherchée.


La régulation du climatiseur

La régulation de la température ambiante

La température ambiante du local conditionné est régulée au moyen d’un thermostat d’ambiance agissant sur le fonctionnement du compresseur. Le ventilateur de soufflage fonctionne en même temps que le compresseur, ou fonctionne en continu. Ce deuxième mode de fonctionnement est plus favorable au confort car il entretient un brassage continu de l’air et prévient toute stagnation inconfortable d’air chaud ou froid.

photo télécommande.

Au simple contrôle de la température ambiante doivent s’ajouter des fonctions de programmation de l’occupation, avec arrêt et reprise (éventuellement anticipées) de manière intelligente.

La régulation du compresseur

Un climatiseur, dimensionné pour vaincre les apports thermiques maximum (solaires, par exemple), fonctionne très souvent à charge partielle. Le contrôle traditionnel par mode MARCHE/ARRET du climatiseur entraîne des fluctuations inconfortables de la température du local et des mauvaises conditions de rendement du compresseur.

Schéma régulation - 01.

Les climatiseurs équipés de compresseurs à vitesse variable peuvent adapter leur puissance frigorifique à la charge thermique du local. Ce mode de régulation est appelé « INVERTER ». Il permet une variation de vitesse du compresseur sans pertes importantes de rendement. Le démarrage du compresseur se fait alors à basse vitesse, ce qui réduit la pointe de courant au démarrage.

La technologie INVERTER présentait autrefois quelques inconvénients tels les parasites qu’elle induit dans le réseau électrique. Dans un très proche avenir, ces inconvénients devraient disparaître (utilisation de moteurs à courant continu pour les plus petites puissances, marquage « CE », …) et permettre au système « INVERTER » de couvrir le marché.

Schéma régulation - 02.

Lorsqu’une unité extérieure alimente plusieurs unités intérieures (système multi split), l’ambiance de chaque local doit pouvoir être régulée séparément (y compris la coupure en cas d’inoccupation). Dans ce cas, une régulation en vitesse variable du compresseur permettra d’adapter la puissance de production de froid en fonction des besoins totaux réels.

Suite à ce nouveau mode de régulation, la technique traditionnelle du compresseur alternatif (piston et vilebrequin), d’une fiabilité légendaire, est progressivement remplacée par :
>  le compresseur rotatif :

  • rendement similaire,
  • niveau sonore moindre,
  • fonctionnement à vitesse variable.

>  le compresseur scroll :

  • rendement plus élevé,
  • niveau sonore encore plus faible,
  • fonctionnement à vitesse variable.

La régulation du condenseur

Certains locaux à charges internes importantes (par exemple, les salles informatiques) doivent être climatisés en été, mais aussi en mi-saison ou encore en hiver. Dans ce cas, lorsque la température de l’air extérieur diminue, la capacité de refroidissement du condenseur augmente.

Paradoxalement, cette situation perturbe le fonctionnement correct de l’évaporateur et entraîne une perte de puissance de ce dernier dernier (voir détails dans la régulation de la machine frigorifique). Le confort dans le local n’est alors plus assuré. À l’extrême, le pressostat basse pression de sécurité de l’appareil peut commander l’arrêt de l’installation.

Pour remédier à ce problème, il faut que la puissance du condenseur soit régulée en fonction de la température extérieure. Si la température de l’air diminue, le débit d’air doit aussi diminuer afin de conserver un échange constant.

Idéalement, on choisira un ventilateur de condenseur à vitesse variable. Ainsi, un climatiseur devant fonctionner pour des températures extérieures inférieures à 17°C doit être équipé d’un ventilateur de condenseur à vitesse variable. La diminution de vitesse du ventilateur est alors commandée par un pressostat ou un thermostat placé sur le condenseur. La puissance d’échange de celui-ci est ainsi maintenue constante quelle que soit la saison.

À défaut, la vitesse sera modulée par paliers. Au minimum, le fonctionnement du ventilateur sera commandé en tout ou rien.

Choix et emplacement du thermostat d’ambiance

Au simple contrôle de la température ambiante doit s’ajouter, pour assurer un fonctionnement économique, des fonctions de programmation de l’occupation, avec arrêt et reprise éventuellement anticipés de manière intelligente.

De plus, idéalement, le climatiseur devrait pouvoir profiter d’une régulation de température de consigne compensée en fonction de la température extérieure. Ce lien, qui est automatisé dans les installations complètes de conditionnement d’air, doit être réalisé manuellement pour les climatiseurs.

Ainsi, un écart de 6°C maximum sera créé, afin de ne pas provoquer de « choc thermique » inconfortable lors de l’accès au bâtiment.

Il revient donc à l’occupant consciencieux de modifier manuellement la consigne de température en fonction de la température extérieure. Pour des raisons d’économies d’énergie et de confort, on ne peut maintenir une consigne de température à 22°C, par exemple, si la température extérieure est de 32°C. Dans ce cas la consigne doit être ajustée à 26°C au minimum.

Le ventilateur de soufflage est soit commandé en même temps que le compresseur, soit fonctionne en continu. Ce deuxième mode de fonctionnement est plus favorable au confort, car il entretient un brassage continu de l’air et prévient toute stagnation inconfortable d’air chaud ou froid. Mais il suppose que les aspects acoustiques soient soigneusement étudiés.

L’emplacement du thermostat joue un rôle important sur la consommation et sur le confort. Il doit être placé à un endroit représentatif de la température moyenne du local, c’est-à-dire éloigné des sources chaudes ou froides (lampe, fenêtre en été, zone ensoleillée, dans la zone de soufflage de l’appareil, …). Le placer dans le local sera donc préférable que de le placer dans la bouche de reprise. Par exemple, si la commande se trouve sur l’appareil au plafond, l’occupant ne prendra pas la peine d’ajuster la consigne de température !

Dans le cas contraire, il devra être étalonné.

Exemple.

Le thermostat est placé à l’extrémité d’un bureau, dans la zone d’influence du climatiseur, mais éloigné de la zone d’occupation habituelle. Lorsque celui-ci mesure 28°C, une température de 24°C règne à l’endroit où les personnes se trouvent.

Les occupants, croyant agir alors correctement, risquent d’abaisser le thermostat jusqu’à 24°C, entraînant une chute de la température ambiante inconfortable et des surconsommations inutiles.

La commande du thermostat doit donc être étalonnée pour être représentative de l’ambiance réelle.

Zones à proscrire pour l’implantation de la sonde de régulation

  1. Influence d’une source chaude.
  2. Influence de l’air extérieur.
  3. Influence de l’ensoleillement.
  4. h < 1 m.
  5. h > 2 m.
  6. Influence de l’air soufflé.

L’emplacement de la commande du thermostat et sa facilité de manipulation jouera un rôle sur la gestion efficace de l’ambiance par l’occupant. Par exemple, si la commande se trouve sur l’appareil au plafond, l’occupant ne prendra pas la peine d’ajuster la consigne de température…

 

Machine frigorifique à ab/adsorption

Machine frigorifique à ab/adsorption


Principe de la machine à ab/adsorption

Le principe consiste à pulvériser de l’eau en fines gouttelettes dans un récipient sous vide. Du fait de la basse pression, l’eau s’évapore. Pour cela elle a besoin d’une certaine quantité de chaleur qui est extraite de l’eau à rafraîchir, circulant dans un circuit à travers le récipient.

Schéma principe de la machine à ab/adsorption.

Mais ce système ne peut fonctionner très longtemps : rapidement, le récipient sous vide sera saturé de vapeur d’eau, et l’eau dispersée ne s’évaporera plus. Il faut donc un moyen pour maintenir ou recréer le vide dans le récipient !

C’est là qu’intervient le sorbant. C’est soit un liquide, on parle alors d’absorbant, ou un solide poreux, on parle alors d’adsorbant. Il « boit » la vapeur d’eau contenue dans l’ambiance, et la retient. Au fur et à mesure qu’il ab/adsorbe de la vapeur, sa capacité d’ab/adsorption diminue jusqu’à être nulle, à saturation. Le sorbant est alors chauffé à une certaine température et « rend » la vapeur d’eau. Il récupère alors toutes ses propriétés d’ab/adsorption.

Exemple d’absorbant.

Dans les machines frigorifiques à absorption utilisées en climatisation, la substance absorbante est généralement le bromure de lithium (LiBr), le fluide réfrigérant, de l’eau. Ce type de machine permet de refroidir de l’eau jusque environ 5°C. La température de l’eau utilisée pour la régénération de l’absorbant doit être comprise entre 80 et 120°C.

Exemple d’adsorbant.

Le gel de silicium couplé avec de l’eau comme fluide réfrigérant. La température de l’eau utilisée pour la régénération de l’adsorbant doit être comprise entre 65 à 80 °C. Cette température plus basse est un avantage par rapport à la machine à absorption.


Fonctionnement

La machine à absorption

Photo machine à absorption.

La machine frigorifique à absorption se divise en quatre composants principaux :

  1. l’évaporateur,
  2. l’absorbeur,
  3. le concentrateur,
  4. le condenseur.
  1. Dans l’évaporateur, le réfrigérant (ici de l’eau) est pulvérisé dans une ambiance à très faible pression. L’évaporateur est parcouru par un circuit à eau. En s’évaporant, le réfrigérant soustrait sa chaleur à cette eau qui est ainsi refroidie.
    Une partie du réfrigérant pulvérisé ne s’évapore pas et tombe dans le fond de l’évaporateur où elle est pompée pour être à nouveau pulvérisée.

  1. La vapeur d’eau créée dans l’évaporateur est amenée à l’absorbeur. Il contient la solution absorbante (LiBr) qui est continuellement pompée dans le fond du récipient pour y être pulvérisée. Le LiBr absorbe la vapeur d’eau hors de l’évaporateur et y maintient ainsi la basse pression nécessaire à la vaporisation du réfrigérant.

Au fur et à mesure qu’elle absorbe la vapeur d’eau, la solution absorbante est de plus en plus diluée. Elle finirait par être saturée et ne plus rien pouvoir absorber.

  1. La solution est donc régénérée dans le concentrateur. Elle est réchauffée, par une batterie à eau chaude (environ 85°C) et une partie de l’eau s’évapore. La solution régénérée retourne à l’absorbeur.

  1. Enfin, la vapeur d’eau extraite du concentrateur est amenée dans le condenseur, où elle est refroidie par une circulation d’eau froide. L’eau condensée retourne à l’évaporateur.

Deux compléments au système augmentent son efficacité :

  • Une circulation d’eau froide dans l’absorbeur.
    Le phénomène d’absorption génère de la chaleur. La circulation d’eau froide dans le fluide absorbant évite sa montée en température, ce qui diminuerait son efficacité.
    Remarque : l’eau de refroidissement de l’absorbeur peut ensuite passer dans la batterie de refroidissement du condenseur.
  • Un échangeur de chaleur sur le circuit du fluide absorbant.
    Le fluide chaud sortant du concentrateur qui retourne à l’absorbeur préchauffe le fluide qui va vers le concentrateur, économisant ainsi une partie de l’énergie nécessaire pour chauffer le fluide à régénérer.

La machine à adsorption

L’adsorbant étant solide, il est impossible de l’amener au fur et à mesure vers la source de chaleur pour être régénéré.

La machine fonctionne donc de manière cyclique. Deux récipients servent, tour à tour, d’adsorbeur et de désorbeur. Dans la première période, le premier adsorbant est utilisé pour la production de froid, tandis que l’autre est parcouru par l’eau chaude, et ainsi régénéré. Dans la seconde période, lorsque le premier adsorbant est saturé, il est remplacé par le second pour la production de froid, et est alors lui-même régénéré.

Techniques

L’utilisation des roues dessicantes est une application de ce principe.


Analogie avec la machine frigorifique traditionnelle

Bien que la machine à sorption semble assez différente de la machine frigorifique traditionnelle, le principe de base de fonctionnement reste le même :

  • circulation d’un fluide réfrigérant,
  • évaporation du fluide avec production de froid,
  • compression du fluide demandant un apport d’énergie,
  • condensation du fluide avec production de chaleur.

La différence réside dans :

  • Le moyen de comprimer le fluide,
    • mécanique dans le cas d’une machine traditionnelle,
    • thermochimique dans le cas de la machine à sorption.
  • Le type d’énergie nécessaire à cette compression
    • électrique dans le cas d’une machine traditionnelle,
    • calorifique dans le cas de la machine à sorption.

Machine frigo traditionnelle.

Machine frigo à absorption.


L’efficacité énergétique ou COP-froid

Une machine frigorifique est énergétiquement efficace si elle demande peu d’énergie pour fournir une puissance frigorifique donnée.

Schéma principe efficacité énergétique ou COP-froid.

On évalue son efficacité par le calcul du COP (coefficient de performance) : rapport entre la puissance frigorifique produite et la puissance fournie au compresseur.

  • Dans le cas d’une machine frigorifique traditionnelle, la puissance fournie est électrique. Le COP d’une telle machine peut atteindre la valeur de 3, voire plus.
  • Dans le cas d’une machine frigorifique à absorption, le COP réel tourne autour de 0.7; celui d’une machine à adsorption varie entre 0.5 et 0.6.

Quel est alors l’intérêt d’une telle machine ?

Un premier avantage réside dans l’absence de compresseur mécanique, donc de vibrations et de bruits. D’où le fait que ces machines demandent un entretien limité et présentent une grande longévité.

Le second avantage vient de la possibilité de valoriser une énergie calorifique disponible et d’éviter ainsi la consommation électrique d’un compresseur.


Quelles sources de chaleur ?

La machine à sorption « fait du froid avec du chaud » !

Voici de quoi éveiller notre désir d’utiliser de la chaleur « gratuite » ! Ce n’est pas pour rien que ce type de machine est surtout répandue dans le secteur industriel parce que certains process libèrent une chaleur importante dont il est possible de tirer une puissance frigorifique utile par ailleurs.

Dans le secteur du bâtiment, on peut imaginer deux possibilités :

Refroidissement solaire

L’intérêt du refroidissement solaire réside dans la simultanéité de la demande de froid et de l’ensoleillement. Lorsque la chaleur nécessaire au fonctionnement de la machine frigo est fournie par le soleil, le froid fourni est gratuit (pas de coût, pas de pollution).
Ce système n’est pourtant pas encore utilisé en Belgique pour deux raisons :

  1. Pour fonctionner, la machine frigo à absorption demande une température d’eau minimale qui se situe entre 70 et 95°C en fonction du couple solvant-réfigérant. Pour atteindre cette température, l’emploi de capteurs performants est indispensable (sélectifs, sous vide, à faible concentration), ce qui induit un coût d’investissement assez important.
  2. Lorsque l’ensoleillement n’est pas suffisant pour fournir de l’eau à température adéquate, une autre source de chaleur (d’appoint ou de substitution) doit permettre le fonctionnement du système. Des solutions de stockage peuvent résoudre le problème à certaines périodes, mais il reste toujours un certain nombre d’heures de fonctionnement où la chaleur doit être produite par du gaz ou du fuel. Pendant ces heures, le rendement du système est faible comparé au système classique de la machine frigorifique à compression.
    L’intérêt de la machine frigorifique à absorption couplée avec des capteurs solaires doit donc être évalué sur base d’une moyenne annuelle, en tenant compte des heures d’ensoleillement exploitables. Cette évaluation dépend de nombreuses valeurs à estimer :

    • rendement de la chaudière,
    • rendement de la machine frigorifique à absorption,
    • proportion de la demande de froid qu’on peut produire avec l’énergie solaire (X) qui dépend du nombre d’heures d’ensoleillement exploitables,
      rendement moyen de la production électrique en centrale,
    • COP de la machine frigorifique à compression.

    Avec les hypothèses prises dans le schéma ci-dessus, le bilan au niveau de la consommation d’énergie primaire est favorable au système de refroidissement solaire si au moins 51 % de la demande de froid peut être satisfaite par l’énergie solaire. Pour évaluer la rentabilité économique du système, il faudrait tenir compte des prix de l’énergie et des coûts d’investissement.
    On peut néanmoins conclure de cette comparaison grossière qu’un tel système est à exclure, sous notre climat, pour un bâtiment dont la demande de froid proviendrait principalement des charges internes : la demande ne pourrait alors certainement pas être rencontrée par l’ensoleillement plus de la moitié du temps.
    Il pourrait par contre être envisagé pour un bâtiment dont la demande de froid est limitée aux mois d’été grâce à une conception adéquate (protections solaires, valorisation de l’inertie thermique, free cooling ou free chilling,…).

 

Bâches à eau glacée

Bâches à eau glacée


Principe

Il s’agit d’un réservoir d’eau glacée, disposé sur le circuit d’eau glacée des installations de climatisation. Il permet d’accumuler du froid, particulièrement durant la nuit.

On l’appelle encore « ballon d’eau glacée » ou « bâche d’eau glacée ».

Il se dissocie de son « concurrent », le stockage par bac à glace, par le fait que la réserve de froid ne se fait que sur la chaleur sensible de l’eau, entre 12° et 5°C. D’où :

> Inconvénient : le stockage de kWh frigorifiques est fort limité…

> Avantages :

  1. La machine frigorifique conserve ses caractéristiques traditionnelles de température de travail, et donc son rendement !
  2. L’installation est simple et sa régulation aussi.
  3. Pour les grands bâtiments, il est parfois possible de valoriser le réservoir d’eau obligatoire pour la protection incendie

Applications

La bâche d’eau glacée est surtout utilisée dans le but de constituer un grand réservoir tampon, permettant

  • D’augmenter le temps de fonctionnement des compresseurs (qui sont souvent surdimensionnés, puisque calculés pour les charges extrêmes de l’été …)
  • De délester le groupe frigorifique au moment de la pointe quart-horaire.
Exemple.

Au CHR de Mouscron, un ancien réservoir à eau chaude sanitaire est utilisé comme réservoir d’eau glacée, ce qui permet au gestionnaire de couper sa machine frigorifique lors de la pointe !


Technologies

On distingue plusieurs types de bâche d’eau glacée :

Simple bâche tampon 

Schéma simple bâche tampon.

Ce système rudimentaire engendre un mélange entre l’eau de retour, chaude, et l’eau glacée du réservoir.

La température de l’eau glacée augmente donc progressivement.

A la limite, un réservoir d’eau chaude sanitaire pourrait convenir.

Bâche à chicanes

Schéma bâche à chicanes.

Un compartimentage à l’intérieur du bac permet de limiter les mélanges entre eau de retour et eau de départ.
Bâche à membrane flexible 

Schéma bâche à membrane flexible. 

Le mélange entre l’eau chaude et l’eau froide est évité.
Réserve naturelle  Pièce d’eau associée au bâtiment, rivière, fleuve, mer.

Variante : le stockage d’eau glycolée

Afin de pouvoir augmenter le DT° de stockage, on peut réaliser un stockage en eau glycolée. La température de stockage peut alors descendre sous 0°C (mais sans profiter de l’énorme réservoir que constitue la chaleur latente de solidification …).

De plus, souvent un échangeur intermédiaire est ajouté afin de conserver le circuit de distribution en eau glacée sans glycol. L’intérêt est donc faible…

Les schémas d’installation sont similaires à ceux présentés pour les bâches d’eau glacée.


Schémas d’installation

On distingue trois types de schémas d’installation ouverture d'une nouvelle fenêtre !

  • stockage en amont de l’évaporateur
  • stockage en aval de l’évaporateur
  • stockage en position intermédiaire

Hygromètres et psychromètres

Hygromètres et psychromètres


Hygromètre à cheveu

La longueur d’un cheveu varie sous l’effet de la vapeur d’eau.

L’appareil enregistre la variation de longueur d’un faisceau de cheveux suite à la variation de l’humidité.

La précision est de l’ordre de 5 %, si l’appareil est régulièrement étalonné. Autrement, la lecture n’est pas fiable;

Le temps de réponse est de l’ordre de 20 minutes.

Le cheveu peut être remplacé par un fil de soie ou de coton, voire par une fibre synthétique.

La plage normale de mesure s’étale entre 30 et 90 % et entre – 10°C et + 50° de température sèche.

Il existe également des appareils électroniques qui convertissent la variation de longueur en signal de tension (mesure de résistance électrique ou magnéto-inductive).


Hygromètre à cellule hygroscopique

Le plus connu est l’hygromètre à cellule hygroscopique au chlorure de lithium. Le chlorure de lithium est une solution saline (LiCl). Ses propriétés hygroscopiques lui font absorber constamment de la vapeur d’eau contenue dans l’air.

L’appareil comprend deux électrodes entourant une couche de fibre de verre imbibée de Licl Le tout est monté sur un capteur de température.

Lorsque les électrodes sont sous tension, le courant circulant au travers du tissu imbibé de Licl produit de la chaleur qui évapore une partie de l’eau. Par évaporation, la résistance électrique du tissu augmente (la conductivité du tissu diminue), la puissance calorifique diminue, donc aussi la température sur la sonde intérieure. Une température d’équilibre s’établit finalement sur la sonde.

Cette température est utilisée pour mesurer la pression partielle de vapeur d’eau de l’air et de là le niveau d’humidité absolue de l’air.

Cette technique réclame un entretien important, la solution de chlorure de lithium devant être régénérée régulièrement.


Hygromètre à variation de capacité

Les hygromètres électroniques à cellule capacitive sont basés sur la modification de la valeur d’un condensateur en fonction de l’humidité. Plus précisément, c’est le diélectrique du condensateur qui est sensible à l’humidité relative de l’air ambiant.

La variation de la capacité (et donc de son impédance) entraîne une variation d’un signal de tension.

L’appareil est fiable et ne demande un étalonnage que tous les 2 ans. La précision est de 3 %. Le temps de réponse est court (de l’ordre de la dizaine de secondes). Et la plage de mesure est large. Que demander de plus ? !

Si, ils ont un petit défaut : être sensible aux polluants chimiques ! On sera dès lors attentif à ne pas les nettoyer avec des solvants organiques (chlore,…).

Leur durée de vie est estimée à une dizaine d’années.


Psychromètre

Le fonctionnement du psychromètre mécanique est basé sur la lecture de deux températures : la température sèche ordinaire et la température dite « bulbe humide « .

Pour connaître cette dernière, on enrobe la base du thermomètre d’ouate humide. On force l’air à passer au travers de cette ouate (par un ventilateur ou par déplacement rapide dans l’air au moyen d’une fronde). L’air qui passe au travers de l’ouate s’humidifie L’évaporation de l’eau refroidit l’air. Plus il se refroidit, plus il était sec au départ !

En comparant les deux mesures, on peut déduire le taux d’humidité de l’ambiance. Par exemple, supposons que le thermomètre sec mesure une température ambiante de 20°C, tandis que la température lue au bulbe humide soit de 16°C. En prenant l’intersection entre l’isenthalpe passant par le point 16°C – 100 % HR, et la droite des points à 20°C, on trouve une humidité relative de 67 %.

Autrement dit, l’air ambiant à 20° et 67 % HR, lorsqu’il est humidifié se refroidit jusque 16° 100 % HR, ce que lit le thermomètre « bulbe humide ».

La précision sur cette mesure est de 0,3°C sur la température bulbe humide et de 2 % sur l’humidité relative qui s’en déduit.

Un entretien périodique est nécessaire, mais la fiabilité est bonne.

La plage normale de mesure s’étale entre – 10°C et + 60° de température sèche.

Dans le psychromètre électronique, la mesure des températures est réalisée sur base des valeurs données par des thermistances à Coefficient de Température Négatif (CTN).

Condenseurs et tours de refroidissement

Condenseurs et tours de refroidissement


Vue synoptique

La chaleur extraite par une machine frigorifique doit être évacuée vers l’extérieur. Le plus simple est de refroidir le fluide frigorigène avec l’air extérieur :

Mais la puissance de refroidissement est parfois trop faible. On peut la renforcer grâce à l’évaporation d’eau supplémentaire (lorsque de l’eau s’évapore, la chaleur de la vaporisation est « pompée » sur la goutte d’eau qui reste et qui donc se refroidit):

Problème : parfois, la distance entre le groupe et la toiture est fort élevée et la perte de charge sur le circuit frigorifique serait trop importante.

Aussi, un circuit d’eau est créé : l’eau refroidit le fluide frigorifique et l’air refroidit l’eau !

Trois types d’échangeur sont rencontrés :

1° L’aéro-refroidisseur :

L’eau est directement refroidie par l’air.

Schéma principe aéro-refroidisseur - 01.
Schéma principe aéro-refroidisseur - 02.

2° La tour de refroidissement fermée :

Une puissance supplémentaire est donnée par pulvérisation d’une eau indépendante du circuit.

Schéma principe tour de refroidissement fermée - 01.
Schéma principe tour de refroidissement fermée - 02.

3° La tour de refroidissement ouverte :

Cette fois, c’est l’eau qui traverse le condenseur qui est directement pulvérisée et en partie évaporée.

Schéma principe tour de refroidissement ouverte - 01.
Schéma principe tour de refroidissement ouverte - 02.


Fonctionnement d’un condenseur

Le fonctionnement du condenseur s’intègre dans un fonctionnement global de la machine frigorifique.

En théorie, la condensation se déroule en 3 phases :

> Phase 1, la désurchauffe du fluide frigorigène, qui, sortant du compresseur sous forme de gaz très chauds (parfois jusqu’à 70°C), va se refroidir et donner sa chaleur sensible.

> Phase 2, la condensation du fluide, moment où l’essentiel de la chaleur est donnée sous forme de chaleur latente.

> Phase 3, le sous-refroidissement du liquide, communiquant encore de la chaleur sensible au fluide refroidisseur.

En pratique, ce découpage en phases ne se fait pas vraiment ainsi. Le fluide frigorigène circule dans un tube en contact avec l’eau ou l’air. Le fluide qui touche le tube est liquide et se sous-refroidit. Le fluide qui est en contact avec ce liquide condense à son tour. Enfin, le gaz qui est au centre du tube désurchauffe simplement. A la limite, le gaz au cœur du tube ne sait pas qu’il y a un refroidissement sur les parois !

Les 3 phases sont donc simultanées…


Fonctionnement d’une tour de refroidissement

Un litre d’eau évaporée évacue 2 500 kJ de chaleur.

Pour obtenir le même effet avec le refroidissement de l’eau, on devrait refroidir 60 litres d’eau de 10°C… (sur base d’une capacité calorifique de l’eau de 4,18 [kJ/kg.K].

C’est sur ce principe physique que la tour de refroidissement fonctionne. Ainsi, dans la tour ouverte, l’eau chaude issue du condenseur est pulvérisée en micro-goutelettes, puis ruisselle sur une surface d’échange eau-air. Un ou plusieurs ventilateurs provoquent un courant contraire ascendant. Du fait de l’échange avec l’air froid et de l’évaporation partielle, la température de l’eau diminue. L’eau refroidie est recueillie dans un bac et repart vers le condenseur.
En théorie, si l’échange était parfait (surface d’échange infinie), l’eau refroidie atteindrait la température humide de l’air. Par exemple, si l’air extérieur est de 30°C, 40 % HR, sa température humide est de 20°C 100 % HR. Mais l’eau n’atteindra pas cette valeur. En pratique, elle sera de 3 à 8°C au-dessus de cette valeur, suivant le dimensionnement du bureau d’études (pour atteindre 3°C, il faut dimensionner largement la tour). Cette valeur est appelée l' »approche ».

Comparons les systèmes en fixant des valeurs moyennes : une température d’air de 30°C 40 % HR, une « approche » de 5°C, un pincement des échangeurs de 6°C et un échauffement de la température de l’eau de 7°C.

Entrée condens. Sortie condens. T°condensat.
fluide frig.
Condens. à air normal T° air sec = 30° T° air = 30° T° air = 37° 43°
avec évaporation d’eau T° air sec = 30° T° air = 25° T° air = 32° 38°
Condens. à eau tour ouverte T° air humide = 20° T° eau cond = 25° T° eau cond = 32° 38°
tour fermée T° eau pulvér. = 25° T° eau cond = 31° T° eau cond = 38° 44°
dry-cooler T° air séche = 30° T° eau cond = 36° T° eau cond = 43° 49°

Cette approche simplifiée situe l’ordre de grandeur de la température de condensation, et donc l’impact sur la consommation du compresseur.


Les condenseurs à air

L’évacuation de la chaleur du circuit frigorifique est assurée au travers d’un échangeur direct fluide frigorigène/air.

Schéma principe condenseurs à air.

Le gaz chaud du réfrigérant cède sa chaleur à l’air traversant le condenseur et passe à l’état liquide. Le débit et la température du flux d’air déterminent la puissance du condenseur.

La vitesse moyenne de passage de l’air est de 2 à 4 m/s. Ordre de grandeur du coefficient d’échange d’un condenseur à air : 20 à 30 [W/m².K]

Deux types de ventilateur sont utilisés :

  

Ventilateur axial et ventilateur centrifuge.


Les condenseurs à eau

On parle de condenseur à « refroidissement indirect », puisque cette fois, le gaz chaud du réfrigérant cède sa chaleur à de l’eau circulant dans le condenseur.

Schéma principe condenseurs à eau.

Ordre de grandeur du coefficient d’échange d’un condenseur à eau : 700 à 1 100 [W/m².K]

Les performances du condenseur seront fonction de :

  • la différence de température entre le réfrigérant et l’eau,
  • la vitesse de l’eau (le débit),
  • le coefficient d’encrassement,
  • la nature du fluide frigorigène.

Pour le refroidissement, on peut utiliser l’eau du réseau (eau potable), mais cette solution n’est pas adéquate vu la consommation exorbitante d’eau qu’elle entraîne !

On peut utiliser également l’eau de nappes phréatiques, de lac ou de rivière (demander l’autorisation). Les eaux contiennent alors plus ou moins d’impuretés qui se déposent sur les tubes. Ces dépôts peuvent réduire considérablement le coefficient de transfert de chaleur. À défaut de la mise en place d’un système de nettoyage automatique, il faut surdimensionner l’échangeur de sorte que les performances de l’installation restent suffisantes.

Plus classiquement, il s’agira d’un circuit d’eau, ouvert ou fermé. C’est le cas le plus fréquent. Il entraîne l’utilisation d’une tour de refroidissement.


Les aéro-refroidisseur (ou dry cooler)

L’aérorefroidisseur est un simple échangeur eau/air : un ou plusieurs ventilateurs forcent le passage de l’air extérieur pour accélérer le refroidissement.

Illustration aéro-refroidisseur.

Cette batterie d’échange convient en toute saison, puisqu’ en ajoutant un antigel (type glycol), elle est insensible au gel.

Elle présente donc l’intérêt de refroidir le condenseur de la machine frigorifique … à distance ! Le groupe frigorifique peut être en cave et l’aéro-refroidisseur en toiture : la boucle d’eau organisera le transfert.

Un exemple simple est donné par une armoire de climatisation d’un local informatique :

Elle n’est pas aussi performante qu’une tour de refroidissement avec pulvérisation d’eau puisque la température de refroidissement est limitée à la température de l’air extérieur…

Boucle d’eau

L’eau de refroidissement tourne en circuit fermé entre le condenseur et l’aéro-refroidisseur. On doit dès lors prévoir un vase d’expansion et une soupape de sûreté sur la boucle. Des purgeurs seront placés aux points hauts de la boucle.

Un gros avantage (surtout par rapport aux tours ouvertes) est qu’il n’y a pas de risque d’entartrage ou de corrosion du circuit puisqu’il s’agit toujours de la même eau qui circule (« eau morte »).

Régulation

Généralement, un thermostat placé sur la boucle d’eau actionne le ou les ventilateurs en fonction de la température.
C’est le point faible de l’aérorefroidisseur : la température de l’eau de refroidissement est élevée

  • D’une part, parce qu’il y a un double échange : fluide/eau glycolée – eau glycolée/air, et donc un Delta T° supplémentaire.
  • D’autre part, parce que l’air de refroidissement peut être élevé en été.

Or, si l’air de refroidissement est chaud, l’eau sera encore plus chaude et, dans le condenseur, la pression de condensation sera très élevée. Le compresseur verra dès lors sa consommation énergétique augmenter.

Proportionnellement, la tour de refroidissement aura un meilleur rendement… mais une sensibilité à la corrosion plus forte…

Ce système doit donc être limité aux installations de moyenne puissance.


Les tours de refroidissement

Dans une tour de refroidissement, on va profiter de l’effet de refroidissement créé par la vaporisation de l’eau. En effet, pour passer à l’état vapeur, l’eau a besoin d’énergie. Et cette énergie, elle la prend sur elle-même. Une eau qui s’évapore … se refroidit.

Tour ouverte

On parle de tour « ouverte » si c’est l’eau de refroidissement elle-même, venant du condenseur, qui est pulvérisée. C’est le système le plus efficace qui entraîne le refroidissement le plus élevé. Mais le contact entre l’eau et l’atmosphère est source de corrosion (oxygénation de l’eau, introduction de poussières et de grains de sable qui risquent de se déposer dans le condenseur, risque de gel accru,…).

Un exemple simple est donné ci-dessous pour une armoire de climatisation d’un local informatique :

Schéma principe armoire de climatisation d'un local informatique.

À noter qu’il existe des tours ouvertes sans ventilateurs. La pulvérisation d’eau est réalisée avec une pression assez élevée et cette pulsion d’eau entraîne l’air avec elle par effet induit (effet Venturi). L’avantage premier est la diminution des bruits et des vibrations.

Tour fermée

On parle de tour « fermée » si l’eau du circuit de refroidissement circule dans un échangeur fermé sur lequel de l’air extérieur est pulsé, et de l’eau est pulvérisée. Il s’agit soit d’une tour …?

L’évaporation partielle de l’eau entraîne un refroidissement plus faible que dans le cas de la tour ouverte, mais les risques de corrosion sont annulés.

Voici l’exemple adapté pour une armoire de climatisation :

Schéma principe tour fermée.

La consommation d’eau se limite à la quantité d’eau évaporée (présence d’une alimentation par flotteur), plus un faible volume lors de purges pour éliminer les impuretés qui se sont concentrées dans le fond du bac.

 

Armoires de climatisation

Armoires de climatisationArmoires de climatisation


Principe

Une armoire de climatisation constitue en quelque sorte un « caisson de traitement d’air vertical » surtout lorsqu’elles constituent la seule demande du bâtiment.

Elle s’installe généralement directement dans la pièce à climatiser. Typiquement, c’est la solution adoptée pour climatiser une salle informatique.

En pratique, cette armoire métallique verticale peut regrouper tous les éléments nécessaires au traitement

  • un filtre,
  • une batterie froide,
  • une batterie chaude (électrique ou à eau),
  • un humidificateur,
  • un ventilateur centrifuge.

On parle de climatiseur « autonome » parce que la batterie froide est généralement parcourue directement par le fluide frigorifique : la machine frigorifique est intégrée dans l’armoire et la batterie froide en constitue l’évaporateur. On parle alors de fonctionnement en « détente directe ».

Schéma de principe climatiseur "autonome".

On notera que la présence du compresseur dans le local impose une isolation acoustique sérieuse des paroi de l’armoire !

Mais il existe aussi des armoires de climatisation dont la batterie froide est raccordée à la boucle d’eau glacée du bâtiment.

Dans la plupart des cas, l’air repris est aspiré en partie inférieure et pulsé en partie supérieure de l’armoire, éventuellement via un réseau de gainage restreint.

Mais on peut imaginer une solution inverse où l’air est repris en partie supérieure puis distribué en partie inférieure via un faux plancher : c’est une belle solution dans les locaux informatiques où le passage de nombreux câbles impose de toute façon l’installation d’un faux plancher sur vérins. La distribution d’air froid autour des ordinateurs est alors idéale. On peut par exemple prévoir des dalles pleines de 60 x 60 pour porter le matériel et des dalles perforées pour servir de bouches de distribution. Une modification d’emplacement des ordinateurs ? Les dalles 60 x 60 sont interverties, sans problèmes puisque tout le faux plancher est mis sous pression et fait office de plénum de distribution !

Schéma de principe climatiseur "autonome"- 02.


Aspects technologiques

Photo armoires de climatisation.

Le chauffage de l’air

Suivant l’importance des gains gratuits dans le local, on peut envisager

  • soit de ne pas installer d’élément chauffant,
  • soit de placer une résistance électrique d’appoint, (investissement faible mais coût d’exploitation élevé),
  • soit d’insérer une batterie de chauffe alimentée par le réseau de chauffage du bâtiment,
  • soit enfin de sélectionner une machine frigorifique réversible, fonctionnant en pompe à chaleur en hiver.

L’humidification de l’air

Si l’humidité de l’air de l’ambiance doit être contrôlée, un humidificateur peut être incorporé à l’armoire de climatisation, généralement via un humidificateur à vapeur.

Cet humidificateur est parfois inséré au départ des gaines, si celles-ci sont existantes dans le prolongement de l’armoire.

Mais les armoires de climatisation se distinguent essentiellement au niveau du condenseur :

Le condenseur à air intégré à l’armoire

La paroi au dos de l’armoire est percée afin que le rejet de chaleur puisse se faire directement vers l’extérieur (attention au pont acoustique ainsi créé !). Il est également possible d’amener et d’évacuer l’air de refroidissement par gaine.

Le condenseur à air séparé

Le fluide frigorifique est directement refroidi dans le condenseur placé à l’extérieur (sur une terrasse, sur le sol,…). L’éloignement est limité afin de ne pas amplifier les pertes de charge sur le circuit du fluide frigorifique. La surélévation du condenseur doit être limitée pour pouvoir gérer le retour de l’huile vers le compresseur.

Schéma de principe condenseur à air séparé.

Le condenseur à eau recyclée

Cette fois, le condenseur est refroidi par de l’eau glycolée, eau qui est elle-même refroidie à l’extérieur.

L’installation est très souple : plus de contraintes liées à la distance entre armoire et refroidisseur, ou à la différence de niveaux. Il est même possible de raccorder plusieurs armoires sur la même boucle de refroidissement.

Mieux, il est facile à présent de récupérer cette chaleur pour préchauffer de l’air de ventilation, de l’eau chaude sanitaire,…

Pour refroidir l’eau de refroidissement, on rencontre trois types d’échangeur avec l’air extérieur :

L’aéro-refroidisseur : l’eau est refroidie dans un échangeur à air; un ou plusieurs ventilateurs forcent le passage de l’air extérieur pour accélérer le refroidissement. Un mode de régulation très simple consiste à actionner le(s) ventilateur(s) en fonction de la température de la boucle d’eau. Seul inconvénient : la performance frigorifique de l’armoire de climatisation ne sera pas excellente. En effet, la température de la boucle d’eau va monter avec la température extérieure. En plein été, le condenseur sera mal refroidi, la pression en sortie de compresseur sera plus élevée, le rendement de la machine frigorifique va se dégrader… Et ceci est renforcé par la présence du double échangeur (fluide/eau glycolée – eau glycolée/air). L’usage de l’aérorefroidisseur sera dès lors limité à des moyennes puissances.

La tour de refroidissement ouverte : cette fois, l’eau de refroidissement du condenseur est pulvérisée à contre-courant du débit d’air extérieur pulsé par un ventilateur. L’échange est particulièrement efficace et, surtout, il entraîne l’évaporation d’une partie de l’eau pulvérisée. Or, cette vaporisation entraîne un fort refroidissement de l’eau. A tel point que l’eau peut descendre sous la température de l’air extérieur. Un tel refroidissement permet de limiter la pression du condenseur et donc de diminuer le travail du compresseur. Si c’est la meilleure solution énergétique, elle pose par contre assez bien de problèmes au service de maintenance (corrosion, encrassement, gel,…). C’est la conséquence d’un circuit ouvert aux conditions atmosphériques… Pour plus de détails, on consultera le choix de la tour de refroidissement ouverte.

La tour de refroidissement fermée : un compromis à la belge ! Les avantages de l’évaporation de l’eau … sans les inconvénients du circuit ouvert (corrosion). En pratique, le circuit de l’eau de refroidissement reste fermé, l’eau glycolée n’est plus en contact avec l’air extérieur, mais l’échangeur est aspergé par de l’eau qui, elle, « tourne » de façon totalement indépendante du circuit de refroidissement. Bien sûr, la température de l’eau de refroidissement est plus élevée que dans la tour ouverte.

Le condenseur à eau perdue

Par « eau perdue », on entend :

  • Soit de l’eau de ville qui serait évacuée vers l’égout après usage : solution à proscrire vu le coût du m³ d’eau… !
  • Soit de l’eau issue d’une source naturelle (rivière, lac, puits,…) : cette solution est économique à l’exploitation, mais les coûts d’investissement sont très variables d’une situation à l’autre… L’efficacité énergétique de l’installation frigorifique est excellente puisque la température de condensation sera 8…10°C plus chaude que la température de l’eau puisée. Reste à vérifier que le captage (et/ou le réchauffage de l’eau) est autorisé par la réglementation locale ou régionale… (les choses évoluent beaucoup dans ce domaine, il est donc prudent de s’informer directement auprès des personnes concernées).

Régulation

La régulation en température du local peut se faire via un simple régulateur thermostatique. Imaginons le démarrage au matin en mi-saison, la résistance électrique est enclenchée. Puis la présence du personnel, des équipements permet à la température de rester en « zone neutre » sans intervention du climatiseur. En début d’après-midi, des apports solaires importants entraînent une surchauffe et l’enclenchement du groupe frigorifique.

La présence d’une cascade sur l’enclenchement des résistances chauffantes, la régulation progressive via par un variateur de puissance (résistance électrique) ou par une vanne (batterie à eau chaude) entraînera un meilleur confort, une stratification de températures plus faible et donc une consommation moindre. De même une régulation à vitesse variable sur le motocompresseur sera bénéfique.

  

Un principe de régulation similaire est possible pour contrôler le niveau d’humidité.

La déshumidification est ici réalisée via la condensation de la vapeur d’eau ambiante sur l’évaporateur de l’armoire. Le compresseur est alors mis en route pour déshumidifier.

Débit d’air variable

Débit d'air variable


Principe de fonctionnement

Pourquoi une variation du débit ?

Situons-nous en été. Comment répondre aux variations de charge d’un local ? Que se passe-t-il lorsque le soleil perce enfin l’épaisse couche nuageuse et fait monter la température ?

Un système de conditionnement d’air « classique » délivre un air plus froid (de 20°, l’air passe à 16°C, par exemple). Le débit d’air pulsé reste le même, mais la température diminue. On parle alors de « système à débit d’air constant ».

Une alternative consiste à garder la température constante tout l’été (16°C par exemple) mais à augmenter le débit d’air pulsé. On parle de « système à Débit d’Air Variable ». DAV disent les Français, VAV disent les anglophones (que l’on traduit en Volume d’Air Variable).

Dans un système « tout air-VAV », le débit d’air varie donc entre le minimum hygiénique pour les occupants et le maximum nécessaire pour reprendre toutes les charges du local (soleil, bureautique, personnes,…).

En pratique, le débit varie entre 30 et 100 % du débit nominal. La variation de débit est faite en agissant :

  • soit sur un volet motorisé,
  • soit directement sur les bouches de soufflage (conçues pour le débit variable).

Qui dit variation de débit, dit perturbation de la pression du réseau…

Si les bouches se ferment, la pression de gaine va augmenter. Toute la distribution de l’air en sera perturbée. Dès lors, on modulera la vitesse des ventilateurs pour maintenir une pression de gaine constante. Et par la même occasion, la consommation des ventilateurs en sera diminuée (voir aussi « la gestion de la ventilation à la demande« ).

Si la température est constante (16° par exemple), comment chauffer en hiver ?

Si l’installation doit aussi chauffer les locaux en hiver, le problème se complique !

On rencontre alors les variantes :

  • – monogaine
    • – avec chauffage par radiateurs indépendants
    • – avec chauffage par batterie terminale
  • – double gaine (une d’air froid et une d’air chaud)

Quel intérêt majeur par rapport aux systèmes à débit constant ?

Lorsque l’on sait que le coût du transport de l’air représente de 20 à 40 % du coût d’exploitation, le débit d’air variable se justifie certainement.

Encore faut-il que la réduction du débit d’air dans les locaux entraîne effectivement la réduction de la consommation du(es) ventilateur(s) ! Ainsi, certains systèmes créent un by-pass dans le faux plafond :  lorsque le débit pulsé diminue, l’air non utilisé est renvoyé en centrale…

Une installation VAV est particulièrement bien placée pour une utilisation optimale des énergies gratuites :

  • En hiver, de l’air frais extérieur peut alimenter les zones à rafraîchir sans nécessiter l’enclenchement des groupes frigorifiques.
  • En été, une ventilation nocturne peut décharger le bâtiment de la chaleur accumulée en journée.

Remarque : pour diminuer les sections de gaine, il est possible de distribuer l’air sous haute pression, à des vitesses variant entre 5 et 15 m/s.


Domaine d’application

Dans sa version simple (modulation du débit sans visée thermique si ce n’est pas le free cooling), une installation VAV peut s’appliquer à un grand nombre de situation : il s’agit ni plus ni moins d’un réseau de ventilation mécanique avec une capacité de moduler les débits local (ou groupe de local) par local. L’encombrement est limité puisque basé sur le débit hygiénique éventuellement légèrement majoré (+50 à +100%). Seul l’investissement dans les clapets de réglage et le système de gestion et d’optimisation est un frein.

Si par contre le VAV est la base d’un système de climatisation tout air, on rencontre les limites propre à cette approche du refroidissement : les gaines sont dimensionnées pour pouvoir refroidir tout le bâtiment avec de l’air. Un tel système de climatisation par l’air est encombrant et coûteux. Il ne justifie que lorsqu’une alimentation en air hygiénique importante est nécessaire, donc une présence nombreuse d’occupants. Si de plus cette présence est variable dans le temps, si les charges thermiques sont variables, il sera opportun de pouvoir moduler le débit : c’est l’objet du VAV.

On rencontre tout particulièrement cette application thermique du VAV dans les grands bureaux paysagers, ou dans les larges plateformes avec locaux de réunion, salles de conférences au centre du bâtiment : un apport d’air neuf est nécessaire en permanence. De plus, le refroidissement du centre du bâtiment est nécessaire toute l’année. Du free cooling est alors possible et permet d’éviter d’enclencher les groupes frigorifiques en hiver, voire en mi-saison. Les coûts d’exploitation en seront fortement réduits.

A la limite, c’est le concepteur qui devra organiser la fonction des locaux pour créer des zones thermiquement homogènes.

Les installations VAV « à bypass » (l’air non utilisé est renvoyé en centrale) sont à rejeter puisque le traitement de l’air reste total. On peut juste l’admettre dans le cas d’une grande zone à débit d’air constant (une grande usine) à côté de laquelle sont situés quelques locaux (les bureaux à coté de l’usine). Dans ce cas, un VAV à bypass sur l’alimentation des bureaux est compréhensible.


Différentes variantes technologiques

On distingue différentes variantes technologiques :

Les systèmes VAV mono gaine sans réchauffage terminal

Shéma principe systèmes VAV mono gaine sans réchauffage terminal.

On ne pulse que de l’air froid en été (entre 12 et 18°C) et de l’air chaud en hiver (entre 25 et 40°C). L’air est préparé en centrale et chaque local régule le débit d’air juste nécessaire en fonction de la température souhaitée, avec un débit minimum ajusté au débit d’air hygiénique.

Le plus simple est d’avoir une consigne fixe pour chaque saison et le passage d’une consigne à l’autre est réalisé par un thermostat extérieur : il y a basculement pour une température extérieure de +15°C, par exemple.

Les systèmes VAV mono gaine avec réchauffage terminal

L’idée est de prévoir un circuit d’air froid pour tous les locaux, à débit variable, complété par des batteries de chauffe pour les locaux périphériques.

Trois principes sont possibles :

> 1° soit l’apport de chaleur est réalisé par des corps de chauffe traditionnels (radiateurs, convecteurs).

Généralement, ces corps de chauffe sont placés en périphérie du bâtiment, le long des façades, pour vaincre les déperditions par les parois. Le système VAV assure la ventilation hygiénique toute l’année, refroidit le cœur du bâtiment en hiver et refroidit tout le bâtiment en été.

Schéma principe systèmes VAV mono gaine avec réchauffage terminal- 01.

>  2° soit les batteries de chauffe sont placées en série sur la gaine d’air.

Schéma principe systèmes VAV mono gaine avec réchauffage terminal- 02.

Une régulation spécifique est nécessaire :

Schéma régulation.

Par exemple, si la sonde d’ambiance détecte une température inférieure à 21°C, la vanne de chaud est ouverte à 100 % et le débit d’air est réduit au seuil minimal hygiénique. Lorsque la température intérieure approche de 23°, la vanne chaud se ferme progressivement. Lorsque la température dépasse 23°, la vanne chaud est fermée et le débit d’air frais augmente progressivement jusqu’à atteindre le débit maximal à 24°C. Ici encore, l’insertion d’une zone neutre entre chaud et froid sera énergétiquement préférable.

En pratique, la batterie de chauffe est souvent intégrée dans la boîte de détente. Elle est alimentée en eau chaude, ou remplacée par une résistance électrique.

> 3° soit les batteries sont placées en parallèle par rapport au local :

Schéma principe systèmes VAV mono gaine avec réchauffage terminal- 03.

La régulation est complétée par l’enclenchement du ventilateur d’air recyclé lorsque le chauffage est enclenché :

Schéma régulation.

Chaque batterie chaude voit son débit modulé en fonction du thermostat d’ambiance de la zone qu’elle alimente.


Avantages

  • Lors de la conception, un grand avantage du système à débit d’air variable est de pouvoir diminuer les dimensions de la centrale de traitement.Comparons les systèmes :
    • Avec un système à débit d’air constant, chaque zone sera dimensionnée avec un débit d’air permettant de répondre à la charge frigorifique extrême; dans le caisson de traitement d’air central, on devra traiter (en permanence !) le total des débits maximaux de toutes les zones !
    • Par contre, avec le système VAV, on va tenir compte du fait que le soleil tourne autour du bâtiment et que la charge maximale de la zone Ouest survient lorsque la zone Est est à faible demande; la centrale de préparation sera dimensionnée sur base du cumul instantané possible entre toutes les zones,… ce qui est déjà nettement plus raisonnable !

    Il en résulte une économie du coût d’investissement (par rapport à un système à débit constant de même puissance).

  • L’avantage énergétique suit directement : pourquoi pulser en permanence le débit maximal dans chaque zone ? Tout particulièrement en mi-saison, pourquoi pulser un maximum d’air à une température « neutre » (20°C) alors les besoins sont nuls (la température ambiante est dans la zone neutre) ? La force du VAV est de réduire la vitesse du ventilateur à ce moment et de ne pulser que le débit d’air hygiénique. La consommation du ventilateur (proportionnelle au cube du débit d’air pulsé) est fortement réduite.Il en résulte une économie du coût d’exploitation (par rapport à un système à débit constant de même puissance). Le chiffre de 20 % d’économie thermique et électrique (ventilateur) est couramment cité, entre un VAV simple (sans réchauffage terminal) et un système unizone à débit constant.
  • L’avantage acoustique lui est lié encore : la grande vitesse (et donc les niveaux sonores les plus élevés) est réservée aux charges extrêmes. Ce qui est particulièrement apprécié par les occupants.
  • Par rapport aux installations de type « air-eau » (ventilo-convecteurs,…), le VAV permet également de réaliser du free cooling des bâtiments en hiver et en mi-saison : l’air extérieur vient directement refroidir le bâtiment, sans participation du groupe frigorifique.

Inconvénients

  • Le réglage d’un débit d’air est moins aisé que le réglage d’une température. Il semble que sur le terrain la mise au point d’une installation VAV donne parfois quelques cheveux blancs ! Tout particulièrement, le réglage des registres d’air neuf paraît délicat.
  • Le coût d’installation reste élevé, au moins par rapport à une installation de ventilos-convecteurs.
  • L’encombrement n’est pas négligeable, comme pour toutes les installations « tout air ». Les gaines dans chaque zone sont dimensionnées pour transporter le débit maximum, correspondant à la charge extrême de l’été…

  • L’air extérieur gratuit de l’hiver doit être préchauffé dès que sa température devient inférieure à la température de pulsion. Et ce chauffage finit par coûter fort cher. Un recyclage de l’air extrait permet de supprimer ce budget mais n’est pas toujours souhaité pour des raisons hygiéniques. Un récupérateur de chaleur lui est préféré, mais il suppose d’en faire l’investissement.

Poutres froides

Poutres froides

Poutre dynamique, à gauche, et poutre  statique, à droite.


Principe de fonctionnement

La poutre froide convective se présente sous la forme d’un échangeur de grande longueur. Il est placé nu ou habillé pour être intégré à un faux plafond. Les poutres sont parcourues par de l’eau qui varie entre 15 et 19°C selon les besoins de refroidissement. On ne peut descendre plus bas suite au risque de condensation de la vapeur d’eau contenue dans l’ambiance.

L’échange se fait principalement par convection naturelle.

On distingue cependant deux types de fonctionnement :

Les poutres « actives », ou poutres à induction

L’air neuf hygiénique est injecté par des petites tuyères, créant un appel d’air secondaire venant du local. La convection dans l’échangeur est ainsi renforcée.

Photo poutres "actives".

Schéma poutres "actives".

Peut-on comparer ce système à un éjecto-convecteur ?

  • Oui, dans la mesure où l’induction par effet Venturi est identique.
  • Non, la comparaison est abusive diront certains, car les vitesses d’air injecté sont nettement plus faibles (pour éviter de créer du bruit !) et l’augmentation de puissance par rapport au système statique n’est pas énorme (de 10 à 30 %). La pression régnant dans le conduit d’air neuf est de 150 à 200 Pa.

Le taux d’air neuf varie entre 1 et 2,5 Volume/heure. Il apporte environ un tiers de la puissance frigorifique totale.

Par le même système, le chauffage des locaux est possible en hiver, même si l’apport de chaleur en partie supérieure du local entraîne une stratification non négligeable des températures !

Exemple d’application.

Bureau paysager…

… équipé de poutres dynamiques.
Le tube central apporte l’air hygiénique, les conduites de cuivre apportent l’eau froide.

 Les poutres passives, à convection naturelle :

Il s’agit d’un échangeur travaillant par simple convection naturelle : l’air chaud du local monte, arrive au dessus de la poutre, traverse l’échangeur, se refroidit et redescend, puisque plus lourd…

Photo poutre passive.

Il est important de respecter les espaces nécessaires au bon fonctionnement d’une poutre. Ainsi, si la poutre est intégrée dans un faux plafond, celui-ci devra être ajouré pour laisser passer l’air de convection.

L’apport d’air neuf est dans ce cas indépendant du fonctionnement de la poutre.


Technologies

Les technologies utilisées sont très similaires entre elles. Les poutres se distinguent essentiellement

  • par leur habillage (poutre carénée ou poutre intégrée dans un faux plafond),
  • par leur intégration dans le local et/ou dans son faux plafond, avec l’objectif de favoriser la convection de l’air,
  • par la distribution de l’air neuf dans la poutre, pour les poutres à induction.

Par exemple, certains modèles n’injectent l’air primaire que d’un seul côté :

Schéma de principe.


Installation

On distingue essentiellement les poutres autonomes qui se placent sous le plafond comme des luminaires,

et les poutres qui sont intégrées, voire cachées dans les faux plafonds.

Différentes formules sont possibles pour que l’air de l’ambiance circule au travers de l’échangeur :

>  une plaque de faux plafond très perforée à côté de la poutre,

>  un faux plafond avec des lames très espacées,

>  une poutre en alternance avec les luminaires,…

Idéalement, la poutre doit être située parallèlement à la fenêtre et du côté du couloir. C’est ainsi que le mouvement de circulation de l’air se fera le plus naturellement (boucle convective qui descend le long du couloir et remonte le long de la fenêtre). Et pourtant, dans 90 % des cas, on rencontre des poutres perpendiculaires à la fenêtre ! C’est sans doute une question d’esthétique vis-à-vis des luminaires…

Attention à celui qui travaille en dessous !

Il est possible, par exemple, de l’intégrer au dos d’une armoire, sur le mur opposé à la fenêtre.


Régulation

Le circuit des poutres est alimenté au régime aller-retour de 15°C – 17°C.

Contrôle de la condensation

Différentes dispositions seront prises pour limiter le risque de condensation

  • limitation de la température de départ de l’eau pour les réseaux intégrés dans la dalle de plafond,
  • contrôle de l’humidité relative à proximité du plafond et coupure de l’alimentation en eau, pour les réseaux en faux plafonds,
  • contrôle des conditions extérieures pour anticiper les fluctuations d’humidité à l’intérieur du local.

Dans un bâtiment avec fenêtres ouvrantes, l’alimentation du plafond en eau doit pouvoir être interrompue par un contact de feuillure.

Schémas de principe

Schémas de principe régulation.

La régulation de l’alimentation en eau des poutres vise classiquement au maintien de la température de consigne, mais aussi au contrôle de l’absence de condensation sur les tuyauteries.

Sur base de la mesure de la température de l’air ambiant et de son humidité relative, le régulateur détermine le point de rosée de l’ambiance et limite la température de l’eau à un niveau de 1 à 1,5°C supérieur à ce point de rosée.

Cette protection peut également être assurée par un détecteur de condensation placé à la surface du tube d’entrée : si l’humidité relative de l’air à la surface du tube approche de la condensation, un contact est actionné; la vanne est fermée et, éventuellement, la pompe est arrêtée.

Cette pompe peut également être mise à l’arrêt

  • si la température ambiante est inférieure à sa consigne,
  • si le contact de feuillure placé sur les ouvrants des châssis signale une fenêtre ouverte.

Schéma de raccordement hydraulique

Le raccordement hydraulique et la régulation des poutres froides sont similaires à ceux mis en place pour les radiateurs ou les convecteurs : une régulation par vannes trois voies modulante pour chaque départ de zone homogène.
Par exemple, pour l’implantation ci dessous :

Schéma de raccordement hydraulique

On peut prévoir :


Prédimensionnement

Puissance

Pour les poutres froides statiques, la puissance peut atteindre 70 à 200 W/m linéaires, en fonction de la température ambiante, de la température de l’eau froide et de la largeur de la batterie.

Pour les poutres dynamiques, la puissance est fonction des paramètres suivants :

  • températures d’eau froide (in/out),
  • température ambiante,
  • débit d’air primaire,
  • taux d’induction.

Sur base

  • d’un débit d’air primaire correspondant à 50 m³/h par m de poutre,
  • soit environ 3 renouvellements d’air/heure, si on considère un mètre linéaire de poutre pour 6 m² au sol,
  • d’un écart de température (ambiance – eau froide) de 10°C.

La puissance de refroidissement est de l’ordre de 435 W/m, y compris le refroidissement dû à l’air primaire. Cette puissance permet donc d’assurer un refroidissement correspondant à une charge calorifique dans le local d’environ 75 W/m2.

Mais certains constructeurs atteignent, à débit d’air égal, des puissances de refroidissement jusqu’à 110 W/m2.

Emplacement

Pour les systèmes passifs, le placement des unités et la dimension correcte de la reprise d’air sont très importants. Si on ne prête pas suffisamment attention à ces deux points, la puissance attendue ne sera pas atteinte.

On sera également attentif à l’emplacement de l’apport d’air neuf et à son interaction avec les poutres passives.

Source : Conférence de Mr P.A. Delattre – Tracrebel Development Engineering – journée ATIC du 25.09.98

Dalle active

Dalle active


Principe

Le principe de base consiste à intégrer des tuyauteries dans la dalle de chaque étage, parcourues par de l’eau froide. Cette technique est réversible, les conduites peuvent être parcourues par de l’eau chaude en hiver (non conseillé).

On retrouve différente dénomination pour ce principe : concrete core activation, active slab, slab cooling, thermal active building system (TABS),…

Du fait de la grande surface d’émission et de la masse des dalles « actives », le système se caractérise par :

  • Des régimes de températures d’eau élevés en refroidissement et très bas en chauffage.
  • Une inertie thermique très importante pouvant être exploitée comme stockage (principalement de frigories).

Schéma principe dalle active.

La puissance frigorifique et calorifique dépend du régime de température utilisé, de l’espacement entre conduites, de la profondeur de celles-ci, de la composition de la dalle et de la température ambiante. Dans des conditions usuelles (T° ambiante : 25 °C, T° d’eau à l’entrée de la dalle : 18 °C) la puissance en froid est de 40 à 50 W/m² dans les meilleurs cas, à comparer aux 80 à 90 W/m² des plafonds froids traditionnels et aux 100 à 120 W/m² des ventilo-convecteurs. En mode chaud (T° ambiante : 21°C, T° d’eau à l’entrée de la dalle : 36°C) la puissance est de 60 à 80 W/m².

Exemple on retrouve ci-dessous, l’influence de la composition de la dalle sur les puissances de chauffage/refroidissement.

Situation de base

Soit une dalle de béton de 30 cm, recouverte d’un tapis de 1,5 cm (lambda = 0,15).

En mode refroidissement

Schéma dalle active en mode refroidissement.
  • T° départ d’eau = 16°C
  • T° retour d’eau = 20°C
  • T° ambiante = 26°C (!)
  • T° surface supérieure = 23,1°C
  • T° surface inférieure = 22,6°C
  • Puissance totale refroidissement : 57 W/m²
  • 37 W/m² vers le bas et 20 W/m² vers le haut.

En mode chauffage

Schéma dalle active en mode chauffage.
  • T° départ d’eau = 28°C
  • T° ambiante = 20°
  • CT° surface supérieure = 21,6°C
  • T° surface inférieure = 23,7°C
  • Puissance totale de chauffage : 40 W/m²
  • dont 22 W/m² vers le bas et 18 W/m² vers le haut

Situation avec une dalle flottante

Si une dalle flottante (et son matériau résilient intermédiaire…) est disposée sous le tapis, les puissances évoluent comme suit :

  • en froid : 8 W/m² vers le haut et 40 W/m² vers le bas.
  • en chaud : 6 W/m² vers le haut et 23 W/m² vers le bas.

Situation avec un faux plancher

Soit une dalle de béton de 30 cm recouverte d’un faux plancher et d’un tapis.

En mode refroidissement

Schéma faux plancher en mode refroidissement.
  • T° départ d’eau = 16°C
  • T° retour d’eau = 20°C
  • T° ambiante = 26°C (!)
  • T° surface supérieure = 24,9°C
  • T° surface inférieure = 22,4°C
  • Puissance totale refroidissement : 47 W/m²,
  • 40 W/m² vers le bas et 7 W/m² vers le haut.

En mode chauffage

Schéma faux plancher en mode chauffage.
  • T° départ d’eau = 28°C
  • T° ambiante = 20°C
  • T° surface supérieure = 20,6°C
  • T° surface inférieure = 23,8°C
  • Puissance totale de chauffage : 29 W/m²
  • dont 23 W/m² vers le bas et 6 W/m² vers le haut

La lame d’air joue son rôle d’isolant…

On constate donc que l’effet isolant de la finition au sol augmente la puissance de chauffage ou de refroidissement émise vers le bas (plus importante en froid qu’en chaud, le froid descend naturellement). Par contre que la finition soit une dalle flottante ou un faux plancher la puissance en chaud ou en froid est fortement diminuée, la dalle active perd toute son efficacité. On voit donc l’intérêt de bien choisir la finition du futur bâtiment.


Aspects technologiques

Mise en œuvre

Il existe différentes techniques proposées par les constructeurs. Les photos ou schémas ci-dessous sont placés dans un but d’illustration et non pas pour promouvoir davantage l’un ou l’autre système.

Les tuyauteries  peuvent être placées au centre des dalles de béton de telle sorte qu’elles ne subissent aucun effort de traction ou de compression. Mais, d’après un constructeur, ce critère est peu important, les tuyaux (nettement plus souples que le béton) pouvant sans problèmes reprendre ces modifications de longueur. Le critère majoritaire est la répartition entre le chaud et le froid si les 2 services sont assurés : la puissance en froid et le temps de réponse peuvent être augmentés si les tuyaux sont abaissés aux 2/3 de la dalle, par exemple.

De toute façon, elles restent non accessibles face à un éventuel trou de foreuse.

Trois techniques de mise en œuvre sont possibles :

  • In situ : elle consiste à directement dérouler la conduite et à le ligaturer sur un treillis spécifique ou le ferraillage existant de la dalle. Plus couteuse par sa main d’œuvre plus importante, cette technique est utilisée pour des tracés hydrauliques difficiles avec courbe. Elle sera donc généralement réalisée sur des surfaces moins importantes que celles couvertes à l’aide des autres techniques.

Photo chantier mise en place dalle active.  Photo chantier mise en place dalle active, détail.

  • Module préfabriqué : les conduites sont déjà fixées en usine sur un treillis ou sur le ferraillage en fonction des exigences de participation à la reprise de charge de la dalle. Les dalles arrivent donc sur chantier par module et sont assemblées selon le plan de calepinage, afin d’atteindre la surface du circuit voulue.

Photo chantier mise en place dalle active, module préfabriqué.  Photo chantier mise en place dalle active, module préfabriqué.

  • En prédalle : comme son nom l’indique, les conduites sont placées et livrées sur une prédalle.

Schéma prédalle.

Une coordination doit impérativement être réalisée aussi bien sur chantier qu’à la phase conception. Le bureau d’étude en stabilité doit intégrer la présence de conduites dans la dalle selon les informations fournies par le fabricant, et ce dernier doit connaitre les spécificités de la dalle nécessaire au calcul de la puissance de refroidissement. Sur chantier, les différents corps de métier doivent être avertis de la présence de conduite dans la dalle.
Les conduites de la dalle active doivent être placées après la pose du système électrique. Les canalisations d’eau froide et d’eau chaude à proximité des conduites de la dalle active doivent être calorifugées.

Une attention particulière doit être portée pour les emplacements des joints de dilatations et aux endroits de reprises de charges. On évitera donc de placer les tubes de dalle active en périphérie de dalle et au niveau des jonctions entre plancher et mur. Des fourreaux doivent être employés pour le passage des joints de dilatation de la dalle.

Lors de toutes les opérations de montage, les tubes doivent être maintenus en pression (3 bars à 6 bars), lors du transport, du stockage, de la mise en place, du coulage et lors du séchage du béton. Cette pression doit pouvoir être vérifiée à tout moment par un manomètre. Si les tubes sont déjà sous eau et que le bâtiment peut être soumis au gel, il est impératif de prendre toute les précautions pour éviter le risque de gel dans les tubes. Si de l’antigel est utilisé, celui-ci doit être vidangé avec de l’eau propre avant la mise en service du bâtiment.

Raccordement

Plusieurs modules/conduites peuvent être reliés entre eux à l’aide des raccords spécifiques afin de former un seul circuit. Quelle que soit la technique utilisée, il est recommandé de limiter la longueur par boucle à 130 m et les pertes de charge à 300Pa. Cette limite de 130 m compte tenu des espaces entre conduites et de la limite de bord de dalle équivaut à +/- 45 m² de plancher.

Les modules peuvent être raccordés sur collecteur ou sur une boucle de Tichelmann. Un accessoire spécifique doit être employé pour traverser la dalle et se connecter au collecteur.

Photo raccordement.  Photo raccordement, 02.

Schéma raccordement.
Raccordement sur collecteur.

  1. départ
  2. retour
  3. vanne d’équilibrage
  4. collecteur
  5. vanne d’arrêt

Schéma raccordement.
Raccordement sur boucle de Tichelmann.

  1. départ
  2. retour
  3. vanne d’équilibrage
  4. vanne d’arrêt

Le système à trois connecteurs permettant de différencier les zones en chaud ou en froid.

Variante

Il est possible également de refroidir par les murs latéraux.

Ce système s’utilisera pour des cas bien spécifiques, en effet tout comme la dalle active, il est nécessaire de laisser les murs équipés des conduites de refroidissement accessibles. On privilégiera la dalle active au mur actif, car il est plus facile de ne pas mettre de faux plafond que de ne pas mettre d’armoire. Le mur actif sera pertinent si la surface de la dalle est insuffisante pour donner la puissance nécessaire, par exemple pour des petits locaux hauts et étroits.

Photo refroidissement par les murs latéraux.

Acoustique des locaux

Le souhait de laisser la masse thermique accessible à l’ambiance (pas de moquettes épaisses ni de faux plafonds) peut créer un éventuel inconfort acoustique, du moins dans les bureaux paysagers.

En effet, une part importante du plafond doit être maintenue ouverte. Une telle diminution de surface pour le traitement acoustique de la pièce peut difficilement être compensée. D’autres surfaces d’absorption doivent être trouvées (panneaux mobiles, armoires avec panneaux intégrés, sous-faces des tables de travail, …).

Par exemple, les portes des armoires du bâtiment Worx à Kortrijk sont des panneaux acoustiques micro perforés :

Photo armoires du bâtiment Worx à Kortrijk.

Une campagne d’essais a été menée dans un institut de recherche suédois pour mesurer l’influence de faux plafond discontinu, morcelé en ilots flottants de petite taille, sur les échanges thermiques entre le local et la dalle active.
La campagne consistait à comparer deux configurations, un faux plafond représentant 45 % de la surface du local suspendu à deux hauteurs différentes (20 cm et 80 cm).
On constate une diminution de l’efficacité due à la présence des éléments acoustiques de 16 % lorsqu’ils sont suspendus à 20 cm et de 12 % à 80 cm. Il apparait logique que plus l’élément acoustique est suspendu bas, plus la convection de l’air autour du panneau est facilitée. De même l’efficacité acoustique est améliorée, car le son se répartit mieux autour du panneau, au contraire de panneaux trop proches l’un de l’autre qui ne permettent pas une distribution correcte autour des panneaux.

Circulation d’eau

En règle générale, on observe un débit d’eau (en régime turbulent) d’environ 10 à 15 kg/h/m² de dalle active.


Intérêt – Contrainte

Disposer d’un émetteur alimenté par de l’eau froide à haute température (environ 20°C) est particulièrement intéressant en termes de performance énergétique : non seulement les machines frigorifiques présentent alors un meilleur rendement de production, mais cela facilite également la valorisation de la fraicheur de l’environnement extérieur  (free chilling, geocooling, etc.). C’est d’autant plus vrai que la dalle active présente une inertie thermique à même de valoriser la fraicheur nocturne.

Cependant, vu l’inertie thermique du système et sa faible réactivité aux variations de charge thermique (l’ensoleillement par exemple), il est plus difficile d’assurer en continu une consigne de température maximale.

Les constructeurs affirment d’ailleurs clairement qu’il ne s’agit pas à proprement parler d’un système de climatisation. Il est dès lors parfois utile d’installer un système traditionnel en complément (climatiseur dans une salle de réunions, par exemple) ou de prévoir un système de chauffage et/ou de climatisation complémentaire. Dans ce cas, la machine frigorifique peut être de faible puissance puisqu’elle charge la dalle la nuit et travaille sur le refroidissement de l’air le jour.

Une alternative pour le concepteur peut consister à mettre en place le slab cooling et la ventilation hygiénique, tout en prévoyant dès le départ la possibilité de compléter la puissance frigorifique par le réseau d’air, en cas de besoin. Pendant toute l’année, l’installation de ventilation (dont les conduits auront été prévus pour assurer un débit nettement plus élevé) fonctionnera avec une consommation très faible des ventilateurs (doubler le diamètre, c’est diviser la consommation du ventilateur par 32 !) et, en période de canicule, ce réseau donnera l’appoint souhaité.

Pour éviter le risque de condensation, l’eau circule à une température minimale de 16 °C.  Nous renvoyons vers la partie régulation pour la gestion du risque de condensation.


Intégration d’un système de chauffage

De manière à limiter les coûts d’installation, on peut envisager d’intégrer le chauffage à la dalle active en complément du refroidissement.

Du fait de l’inertie importante de la dalle, le système peut être considéré comme un stockage de chaleur anticipé. Dont l’émission est difficilement contrôlable au regard de la variabilité et de l’impossibilité de prévision des apports de chaleur gratuits (occupants, soleil,…). Dès lors, il est préférable de considérer la dalle comme une source de chaleur de base à laquelle on adjoint un complément plus flexible. Par exemple, le chauffage de base sera donné par l’alimentation continue du réseau à une température très faible (de l’ordre de 28°C par -10° extérieur). La température de surface n’est alors que de 2 degrés plus élevée que la température ambiante. À comparer avec le chauffage par le sol traditionnel dont l’eau d’alimentation est de 35°C et la température de sol atteint 28°C. Une technique consiste alors à compléter ce chauffage de base par un deuxième réseau plus dense et à température plus élevée, dans la zone de bord (1 m à 1,5 m le long des façades). Comme expliqué dans les différentes techniques de dalle active, il faudra prendre en considération les contraintes plus importantes en bordure d’appuis sur les conduites de refroidissement/chauffage.

Mais le souhait de placer une « dalle flottante » (pour limiter la nuisance acoustique éventuelle créée par le bruit des pas) peut modifier le projet. On arrive alors à un choix de plusieurs solutions :

  1. Chauffage/refroidissement de base dans la dalle et appoint de chauffage dans la chape en bordure (avec de l’eau à plus haute température;
  2. Chauffage/refroidissement de base dans la dalle, appoint de chauffage dans la chape en bordure et chape flottante globale;
  3. Chauffage à plus haute température dans la chape flottante et refroidissement par la dalle :

Remarque : s’il existe des parois vitrées fort importantes, il est conseillé de briser l’effet de l’air froid « coulant » le long du vitrage par la pose de montants horizontaux.

 


 Production associée

Production de froid

La production de froid valorisera des sources d’énergie compatibles avec une température d’eau froide élevée (on ne descend pas sous les 16°C notamment pour éviter les risques de condensation).

L’eau froide peut être produite  par différents moyens :

L’eau peut être refroidie par l’air extérieur, via un échangeur placé en toiture, ou une tour de refroidissement (free-chilling).

Pour profiter d’un air plus frais, il apparaît que le fonctionnement aura principalement lieu durant la nuit. D’où la nécessité de stocker le froid dans l’épaisseur de la dalle.

Une variante de géothermie consiste à exploiter l’eau refroidie par de l’eau pompée dans une nappe phréatique, via un échangeur à plaques eau/eau.

Le fonctionnement peut alors avoir lieu 24h/24.

L’eau peut être refroidie par circulation dans le sol sous le bâtiment, via un échangeur sol/eau. La présence d’une circulation d’eau d’une nappe phréatique éventuelle autour des conduits renforce le refroidissement. La puissance frigorifique varie entre 10 et 25 W/m courant (on parle de géocooling ou géothermie). Le fonctionnement peut alors avoir lieu 24h/24.
L’eau peut être refroidie par une machine frigorifique traditionnelle, venant en appoint d’une des sources ci-dessus, notamment pour vaincre les périodes de canicule.

Production de chaud

En chauffage, la dalle active est associée à une production dont les meilleurs rendements sont obtenus grâce à la production d’eau à basse température : principalement les pompes à chaleur, accessoirement les chaudières à condensation voire des capteurs solaires.

Régulation

Principe généraux

Une faible réactivé

La faible réactivité de la dalle impose une stratégie de régulation différente des autres systèmes. Ce que certains nomment « autorégulation » est en réalité une obligation de simplification de la régulation en supprimant les variations de température intérieure compte tenu du peu de réactivité du système.

Par exemple, si le climat désiré dans le local est représenté par une plage entre 20 °C et 25 °C, alors le système visera souvent à maintenir une température intérieure constante de 23 °C pour limiter les variations et forcer un climat intérieur étant indépendant du climat extérieur.

Différentes raisons indiquent néanmoins qu’il ne faut pas se passer totalement d’une régulation :

  • l’augmentation de rendement de production via des températures d’eau faibles ou élevées;
  • la condensation liée à de faibles températures de l’eau et/ou au taux d’humidité élevé du local;
  • la gestion de l’intermittence pour l’économie d’énergie;
  • la destruction d’énergie si la dalle est surchargée.
Un découpage par zones thermiques homogènes

Une régulation par locaux individuels avec l’activation au cœur du béton n’est pas sensée, mais le réseau doit toutefois être partagé en zones homogènes en termes d’apports (soleil, occupants, équipements) afin de pouvoir affiner la régulation compte tenu des différences.

Le software de gestion de l’installation devrait être modifiable et optimisable : les différents paramètres, les intervalles de temps et de température ne devraient pas être programmés définitivement, mais adaptables manuellement. Généralement une optimisation ou une modification des règles de paramètres devrait encore être possible après la mise en service et durant le fonctionnement.

Pour la régulation il devrait être possible de modifier les paramètres suivants :

  • durée de service,
  • température de l’eau,
  • débits d’eau.
Régulation des heures de service

Un avantage de l’activation au cœur du béton est qu’il suffit dans de nombreux cas de refroidir activement pendant une partie de la journée. Dans ce cas une simple mise en circuit temporaire suffit.

Il peut être avantageux d’activer uniquement en dehors des heures d’utilisation (la nuit…). Il est alors possible de profiter de tarifs de courant moins coûteux pour les compresseurs de froid, de profiter de la température extérieure nocturne pour refroidir et de diminuer la consommation de la pompe de circulation.

De même, en cas de refroidissement supplémentaire via une installation à air, la machine de refroidissement ne doit pas être dimensionnée en fonction de la somme des besoins (activation au cœur du béton + installation à air), mais d’après le plus grand besoin.

Il faut toutefois veiller à ne pas faire fonctionner trop longtemps la dalle sous peine d’entrainer un sous-refroidissement et un inconfort en été.

Service intermittent

Des analyses ont montré qu’il est possible d’arrêter les pompes de circulation sans grande diminution de productivité (la pompe est arrêtée pendant 45 min ou 30 min par heure). Sur base de calculs de simulation dynamique, la température de la pièce est quasi la même, mais les dépenses d’énergie pour les pompes sont beaucoup plus faibles.

Pendant l’arrêt de la circulation (30 ou 45 min par heure), la chaleur dans le béton continue à circuler vers l’espace des tuyaux refroidis. Lors d’un nouveau démarrage du débit d’eau, une capacité de refroidissement proportionnellement plus importante se met en place grâce à la différence de température plus élevée eau-béton. Les variations de température dans le cœur du béton ne se répercutent presque pas jusqu’à la superficie des pièces en raison de l’inertie. C’est pourquoi la capacité de réfrigération reste sensiblement la même et que les interruptions dans le transport de chaleur/de froid n’ont pratiquement pas d’influence sur la pièce.

Gestion du risque de condensation

Avec un système de refroidissement dans la dalle, celle-ci étant plus froide que l’ambiance, il existe un risque de condensation sur la paroi. La condensation peut avoir pour conséquence le développement de moisissures sur certaines surfaces si la condensation se reproduit régulièrement. Si elle intervient sur un sol, le sol mouillé eut être glissant et donc dangereux pour les occupants.

Le risque de condensation est néanmoins limité vu le régime de température employé dans la dalle active. En cas de risque avéré, une déshumidification  de l’air neuf hygiénique sera organisée dans le groupe de traitement d’air.

Comment réguler ?

Afin de réguler correctement une dalle active, il faut garder en tête que sa caractéristique principale est le déphasage entre la distribution de l’énergie et sa diffusion dans le local. On doit donc tenir compte de l’effet tampon et choisir le moment le plus efficace pour faire fonctionner la production. La complexité de régulation d’une dalle active nécessiterait de pouvoir prédire le climat extérieur et les charges internes afin d’optimiser le confort intérieur. C’est pourquoi on déconseillera le chauffage d’un bâtiment à l’aide de ce système tandis qu’on l’acceptera comme mode de refroidissement en fonction des possibilités de production à très haut rendement (freechilling et geocooling).

Pour réguler une dalle active, on peut jouer sur deux éléments :

  • Le débit d’eau;
  • La température de départ de l’eau.

La régulation doit à la fois permettre de maintenir le climat intérieur désiré et le faire de la manière la plus économique possible, sans détruire de l’énergie. La régulation dépendra donc également du mode de production de l’énergie.
Par exemple :

  • Il est possible de brûler du gaz à tout moment de la journée, mais des panneaux solaires ne peuvent rien alimenter durant la nuit.
  • Il est possible de refroidir en journée à l’aide d’un géocooling alors qu’avec un freechilling, on préférera refroidir durant la nuit.

Exemples

Ci-dessous on retrouve des exemples de conditions de régulation  proposées par divers concepteurs. La diversité de propositions reflète les difficultés de régulation de ce système.

Exemple Mode Mise en marche du circulateur Débit d’eau Température de départ de l’eau
1. Été ON si Text moy 48 h >16 °C et de 20 h à 6 h Constant : 13 kg/h/m² Constant : 18 °C
2. Été ON tout le temps Variable : 0 – 14 kg/h/m² de manière à maintenir Tsurface dalle = 20 °C Constant : 15 °C
3. ON si Text moy 48 h >14°C Variable : 0 – 14 kg/h/m² de manière à maintenir Tsurface dalle = 22 °C entre 7 h et 19 h et 19°C entre 19 h et 7 h Constant : 15 °C
4. ON si : Variable : 0 – 14 kg/h/m² de manière à maintenir Tsurface dalle = 23 °C Variable :
Été – Text moy 48 h >14 °C 19 °C
Hiver – Text moy 48 h <12 °C 25 °C
5. Été ON si Text >15 °C Constant : 12 kg/h/m² Variable : loi d’eau
22 °C si Text = 15 °C
17 °C si Text = 30 °C
6. ON tout le temps Constant : 10 kg/h/m² Variable :
Été – du 21/06 au 20/09 20 °C (de 21 h à 7 h)
Automne
Printemps
– du 21/09 au 20/12 et du 21/03 au 20/06 20 °C (de 17 h à 6 h)
Hiver – du 21/12 au 20/03 26 °C (de 6 h à 9 h)
Un appoint en chaud et froid est disponible à l’aide de ventilo-convecteurs. Ils sont alimentés en eau chaude (50 °C) ou froide (7 °C) de 6h à 19h sur base d’un change-over en fonction de la demande du plus grand nombre.

Chaque exemple ci-dessus présente des lacunes en termes d’efficacité et pourrait être amélioré ; montrant par là qu’il n’y a, à l’heure actuelle, pas de solution de régulation universellement reconnue.

Voici différents commentaires pouvant être émis à propos de ces exemples :

Exemple 1 – Commentaires

En fonction des demandes du bâtiment, il est probable que refroidir quand la température moyenne des deux derniers jours dépasse 16 °C ne soit pas suffisant pour apporter le confort entièrement à l’aide de la dalle active. En effet, si on observe ci-dessous le parallèle entre la demande de refroidissement d’un bâtiment de bureau et la température extérieure à Uccle durant une année moyenne (Meteonorm), on remarque qu’un besoin de refroidissement existe quand la température extérieure moyenne sur 48 h est de 12 °C (avril, mai, septembre, octobre).

Graphe parallèle entre la demande de refroidissement d’un bâtiment de bureau et la température extérieure à Uccle.

Exemple 2 – Commentaires

Faire fonctionner le circulateur de la dalle active en permanence n’est pas optimal en termes de consommation d’électricité. De plus, maintenir la surface de la dalle à 20 °C entraine un risque important de sous refroidissement de l’ambiance et donc un inconfort ou une destruction d’énergie si une fourniture de chauffage le compense.

Exemple 3 – Commentaires

Maintenir la surface de la dalle à 19 °C durant la nuit entraine un risque important de sous refroidissement et donc une destruction d’énergie si on relance le chauffage le matin. Toutefois, il n’est pas sûr de pouvoir atteindre une telle température compte tenu de l’inertie du système. Le temps d’arriver à cette consigne (19 °C), il est possible qu’elle ait changé (22 °C).

Exemple 4 – Commentaires

Chauffer et refroidir avec une dalle active présente un grand risque de destruction d’énergie. Le traitement continu empêche de profiter d’une période de mi-saison où le bâtiment serait confortable sans être refroidi ni chauffé.

Exemple 5 – Commentaires

Une régulation sur base de la température extérieure instantanée est incohérente par rapport au déphasage entre la distribution de l’énergie dans la dalle et son émission dans le local.

Exemple 6 – Commentaires

Les besoins d’énergie d’un bâtiment ne dépendent pas directement d’une date. Le climat varie chaque année. Il semble donc peu cohérent de réguler un système de chauffage et de refroidissement uniquement sur base d’un calendrier. Il faudrait au minimum réguler le mode de fonctionnement sur base de la température extérieure moyenne sur les deux derniers jours.

  • La pompe de la dalle active fonctionne quand la température de départ de l’eau n’est pas traitée et entraine une consommation électrique non négligeable tant que l’eau n’est pas totalement à température homogène. Il pourrait être intéressant de limiter le fonctionnement de la pompe de circulation sur base d’une durée maximale après arrêt du traitement de la température de départ de l’eau.
  • La durée de refroidissement via la dalle est plus courte en été qu’en automne et printemps (le reste restant identique). La quantité d’énergie à fournir en été est pourtant plus importante.
  • En hiver, la dalle est chargée de 6 h à 9 h alors que les ventilo-convecteurs sont en fonctionnement. L’énergie fournie à la dalle risque donc d’être source de surchauffe, car elle sera émise dans le local après qu’il ait déjà été chauffé par les ventilo-convecteurs. De plus, un risque de destruction d’énergie est présent puisque le bâtiment sera refroidi lorsque la majorité des ventilo-convecteurs passeront en demande de froid pour combattre la surchauffe due à la surcharge de chaud dans la dalle. Il faut donc tenir compte du déphasage et charger la dalle avec le décalage temporel correspondant.
  • Il faut empêcher l’émission de froid via les ventilo-convecteurs quand la dalle active est (ou était) en mode chaud ; Ainsi qu’empêcher l’émission de chaud via les ventilo-convecteurs quand la dalle active est (ou était) en mode froid et leur adjoindre une courbe de chauffe.
  • Le risque de destruction d’énergie et d’inconfort est d’autant plus grand que les occupants pourront régler à leur convenance la consigne (min et max) des ventilo-convecteurs.

Proposition de régulation de la température de l’eau

Sur base de l’analyse des exemples précédents, voici une proposition de régulation basée sur un débit fixe et le réglage de la température de départ de l’eau dans la dalle.

La régulation de la température de l’eau a plusieurs objectifs :

  • Favoriser un haut rendement de production d’énergie;
  • Fournir le confort attendu dans le bâtiment.

Postulats :

  • En mode « refroidissement », le rendement de production augmente généralement avec l’augmentation de la température d’eau.
  • Il est difficile de prédire les besoins futurs d’un bâtiment. En effet, il est impossible de prévoir à la fois, le climat extérieur (température et ensoleillement) et l’usage du bâtiment (occupants et équipements) de manière à prédire les besoins d’énergie à fournir au bâtiment.
  • Il n’y a pas de corrélation directe entre l’énergie à fournir et la température extérieure. En effet, si on regarde le graphe ci-dessous, on remarque que les besoins d’énergie ne sont pas constants pour une même température extérieure (exemple d’un bâtiment de bureau).

Graphe puissance appelée en regard de la température extérieure.

Objectif d’une régulation de la température de départ de l’eau dans le cas d’un refroidissement par dalle active

Compte tenu de ces  postulats, il semble donc inutile de prévoir une loi d’eau fonction de la température extérieure dans le but d’adapter le climat intérieur du bâtiment. Le seul intérêt est donc de veiller à favoriser un haut rendement de production d’énergie. Il est donc préférable de privilégier une température d’eau proche de la température intérieure.
Pour le choix de la température de l’eau, il faut donc pouvoir dissocier les solutions sur base du contexte particulier des différents projets. On peut ainsi citer deux exemples :

  • Le cas d’une source froide pratiquement gratuite (seule la pompe de circulation consommant de l’énergie) à l’aide de sondes géothermiques ou d’une rivière.
  • Le cas d’une production d’eau froide à l’aide d’un compresseur si la source froide (par exemple l’air extérieur) n’est pas toujours suffisamment froide.

Dans le premier cas, on comprendra que le choix de la température de l’eau doit se faire de manière à minimiser le temps de fonctionnement des pompes puisque ce sont les seules consommations d’énergie. On pourra alors par exemple, travailler à température plus basse sur un temps plus court.

Dans l’autre cas, il s’agira de trouver un équilibre entre un temps de fonctionnement pas trop long et une température d’eau suffisamment élevée pour permettre une production d’eau froide à haut rendement.

Pistes de solution

Pour illustrer cette recherche d’équilibre, voici des pistes de solution issue de simulations thermiques dynamiques d’un immeuble de bureau refroidi par dalle active alimentée par de l’eau froide produite par un groupe de production d’eau glacée (source : MATRIciel) :

Compte tenu du mode de refroidissement, il est préférable de fonctionner la nuit de 22 h à 6 h quand la température extérieure est la plus faible donc le rendement de production est le plus élevé. Il faut veiller à ne pas commencer trop tôt, car la température peut être encore élevée en soirée et on risque de refroidir trop longtemps.

Il est également préférable de refroidir uniquement quand la température moyenne extérieure dépasse une limite de 10 à 14 °C – 12 °C semblant un optimum, mais celui-ci peut varier suivant les bâtiments (cfr le graphique, présenté précédemment, montrant la demande de refroidissement en regard de l’évolution de la température moyenne des deux derniers jours).

On observe qu’une loi d’eau fonction de la température extérieure n’est pas intéressante, car si on se limite à ces conditions de fonctionnement, la température extérieure varie peu et on finit par avoir une loi d’eau dont l’inclinaison est très faible. Une température constante est donc privilégiée en mettant l’importance sur le temps et le moment du fonctionnement.

Il ressort des résultats de l’étude qu’utiliser une température de départ de 18°C est généralement trop froid et entraine un sous-refroidissement tandis qu’une température de départ de 22°C n’est pas suffisante en terme de confort et entraine un risque de surchauffe plus important.

Ainsi l’optimum intervient quand on envoie de l’eau à 20 °C de 22 h à 6 h quand la température moyenne extérieure (sur 48h) dépasse 12 °C.

Toutefois, si le confort n’était pas atteint, il est possible :

  • De compenser le manque de refroidissement durant la nuit par un fonctionnement en journée uniquement quand la température moyenne extérieure (sur 48 h) dépasse, par exemple, 18 °C ;
  • D’augmenter le fonctionnement durant la nuit en déchargeant la dalle dès que la température moyenne extérieure (sur 48 h) dépasse 10 °C (au lieu de 12 °C).

Enfin, il est également possible de réguler sur base de la température moyenne de l’eau dans le circuit avec une consigne finalement proche de celles proposées pour la température de départ étant donné qu’avec le débit imposé, la différence de température entre le départ et le retour est relativement faible.

Bacs à glace

Bacs à glace


Principe

Il s’agit d’un réservoir de glace, disposé en parallèle ou en série avec le circuit d’eau glacée des installations de climatisation. Il permet d’accumuler du froid, particulièrement durant la nuit.
Il se dissocie de son « concurrent », le ballon d’eau glacée, par le fait que la réserve de froid profite de la chaleur latente de l’eau ou d’un sel :

  • Au moment du refroidissement (phase de stockage), il y a cristallisation ou solidification, en plus du refroidissement de l’eau et de la glace.
  • Au moment du réchauffement (phase de déstockage du froid), il y aura fusion en plus du réchauffement de l’eau et de la glace.

La chaleur latente de solidification de l’eau est de 335 kJ/kg. Alors que la chaleur sensible est de 4,18 kJ/kg.K. Il est donc possible de stocker 80 fois plus d’énergie dans un kg d’eau qui passe de 0,5° à -0,5°C que de 4° à 3°C.

De plus, la température de l’eau de réchauffement reste plus ou moins constante durant toute la phase du dégel de la glace.


Technologies

On distingue les systèmes basés sur un faisceau de tubes plongés dans le réservoir (encore appelés « ice on coil »), de ceux basés sur l’utilisation de nodules, petites balles en plastiques stockées dans le réservoir.
Bacs à eau + tubes 

Photo bacs à eau + tubes .

Au moment du stockage, un fluide réfrigérant (fluide frigorigène ou eau glycolée) circule dans les tuyauteries. La température du fluide avoisine les -5°C. L’eau glacée, en contact direct avec ces tubes, va former un enrobage de glace.

L’uniformité de la formation de la glace et de sa fusion est parfois renforcée par l’agitation de l’eau via la diffusion de bulles d’air.

Il existe des bacs isolés préfabriqués pour ce type d’usage. Les tubes peuvent être en acier (noir, galvanisé ou inoxydable) ou en plastique.

Photo bacs à eau + tubes .

On ne prévoit pas une épaisseur de glace trop importante dans la mesure où il faut une température de réfrigérant de plus en plus basse au fur et à mesure que la glace se forme. En effet, la glace constitue une couche isolante qui ralentit la formation de glace supplémentaire. Par ailleurs, une trop faible couche de glace augmenterait le nombre de tubes et donc le coût d’investissement. En général, on admet des épaisseurs de glace jusqu’à 35 mm. Le cycle de charge est arrêté lorsque l’épaisseur de glace prévue est atteinte; ce sont des capteurs mesurant la conductivité électrique à différentes distances des tubes qui déterminent ce moment.

Autre solution : si le réservoir est ouvert, on profite parfois du fait que l’eau augmente de volume lors de son passage en glace (+ 9 %). Un simple capteur de niveau d’eau peut informer le régulateur du niveau de prise en glace.

Si c’est le réfrigérant (R22, NH3, …) qui est véhiculé dans la batterie, celle-ci constitue l’évaporateur de la machine frigorifique et on parle de « système à détente directe ».

Solution 1 : systèmes à fonte externe

Au moment du déstockage, l’eau va faire fondre la glace par contact extérieur direct : c’est le principe de la fonte externe. Les puissances de fonte sont donc élevées. La température de l’eau glacée est +/- constante.

Solution 2 : systèmes à fonte interne

Dans le cas du principe de la fonte interne, le glycol utilisé pour la fabrication de la glace est également utilisé pour faire fondre la glace. Cette « solution chaude » de glycol (température positive) passe dans le faisceau de tubes pour faire fondre, de l’intérieur vers l’extérieur, la glace qui se trouve autour du faisceau de tubes.

La fonte créera toujours une fine couche d’eau isolante entre la surface des tubes et la glace restante, ce qui réduit la transmission de chaleur. En outre, la transmission de chaleur a lieu par la petite surface d’échange interne du faisceau de tubes. C’est la raison pour laquelle ce principe de fonte n’est utilisé que pour des applications de climatisation où les puissances de fonte ne sont pas extrêmement élevées et où les températures de fonte nécessaires sont relativement élevées (12/6°C).

Pour des applications industrielles dont les puissances de fonte sont très élevées et les températures d’eau sont très basses (1°C), le faisceau de tubes du bac de glace à fonte interne devrait être tellement grand que cela ne serait pas réalisable d’un point de vue économique. On choisit dans ce cas plutôt le système à fonte externe.
Réservoir + nodules :

Schéma réservoir + nodules-01.

Il s’agit d’une cuve fermée, sous pression ou non, remplie d’eau glycolée et de nodules. Ces nodules sont des grosses billes de 8 à 10 cm de diamètres (il existe également des nodules à facettes).

Elles contiennent de l’eau + un eutectique pour les températures négatives ou des sels hydratés pour les températures positives. L’ensemble, encore appelé « matériau à changement de phase » est sélectionné pour l’importance de la chaleur latente liée à la solidification/fusion. L’enveloppe des nodules est réalisée en polyéthylène (PE).

Schéma réservoir + nodules-02.

Entre les nodules circule de l’eau glycolée.
Phase de stockage : la température de l’eau est inférieure à la température de changement de phase des sels contenus dans les nodules, ceux-ci cristallisent.

Schéma réservoir + nodules-03.

Phase de déstockage : la température de l’eau est supérieure, les sels des nodules fondent.

Le transfert thermique a donc toujours lieu par l’extérieur.

Les nodules de qualité contiennent des germes de cristallisation pour éviter le phénomène de surfusion, ainsi qu’une protection contre les pics de cristallisation qui pourraient déchirer l’enveloppe.


Schémas d’installation

Pour comprendre le fonctionnement du stockage en parallèle avec l’installation frigorifique, on peut accéder aux schémas d’installation :

Ventilo-convecteurs

Ventilo-convecteurs


Principe de fonctionnement

Le ventilo-convecteur est au radiateur, ce que le mix-soup est au presse purée ! Cela va plus vite mais cela fait du bruit… !

Plus sérieusement,

Un radiateur traditionnel est alimenté par une eau à …50°…70°… dans une ambiance à 21°. L’échange de chaleur s’effectue facilement grâce à un tel écart de température.

Mais pour fournir du froid, on fait circuler de l’eau (dite « glacée ») à …5°…10°… dans une ambiance à 24° : l’écart de température devient trop faible pour fournir une bonne puissance frigorifique. On passe dès lors à un échange forcé : un ventilateur est ajouté et le radiateur est remplacé par une batterie d’échange. En pulsant de l’air sur l’échangeur, la puissance frigorifique est fortement augmentée mais le bruit envahit les locaux.. !

Pour assurer le refroidissement l’été mais aussi le chauffage en hiver, un ventilo-convecteur comprendra donc :

  • une prise d’air du local (à chauffer ou à refroidir),
  • un filtre grossier pour arrêter les poussières,
  • un ou plusieurs ventilateurs, à faible vitesse,
  • une ou deux batteries d’échange, de faible section, alimentées en eau chaude et/ou en eau glacée,
  • éventuellement une résistance électrique d’appoint
  • un bac inférieur pour récolter les condensats,
  • et un habillage éventuel qui coiffe le tout pour l’intégrer au local.

Photo ventilo-convecteur.

On le retrouve en position verticale (allège de fenêtre), ou en position horizontale (accroché au plafond ou intégré dans un soffit


Types de ventilo-convecteur

Il existe quatre grandes familles :

1. Les ventilos « à 2 tubes réversibles » : ils ne disposent que d’un seul échangeur, alimenté alternativement en eau chaude en hiver, et en eau glacée en été. Mais un risque de perte d’énergie apparaît par mélange entre eau froide et eau chaude si la zone neutre est trop faible (voir régulation des ventilos).

2. Les ventilos « à 4 tubes » : ils disposent de deux échangeurs, pouvant être connectés en permanence soit au réseau d’eau chaude, soit à celui d’eau glacée.
La taille (le nombre de rangs) de l’échangeur de froid est plus élevé que celui de la batterie chaude, suite au delta T° plus faible sous lequel travaille la batterie froide. On dit que « le pincement » est plus faible entre T°eau et T°air dans l’échangeur.

3. Les ventilos « à 2 tubes – 2 fils » : pour diminuer les coûts d’installation, on ne prévoit que le réseau d’alimentation en eau glacée. Pour assurer le chauffage d’hiver, une résistance électrique d’appoint est prévue (le ventilateur pulse l’air du local au travers de la résistance, comme dans le cas d’un convecteur électrique direct).

Mais le prix du kWh électrique étant nettement plus élevé que le kWh thermique, les coûts d’exploitation seront importants…

4. Les ventilos « 2 tubes réversibles + 2 fils » : astuce ! Ce dernier système peut être utilisé en fonctionnement deux tubes (c.-à-d. eau glacée en été, eau chaude en hiver), la résistance électrique sert alors uniquement en résistance d’appoint en mi-saison.
Les coûts d’exploitation sont dès lors plus limités que dans la version « 2 tubes « .

Remarque : nous avons écarté ici la solution « 3 tubes » (1 départ chaud, 1 départ froid et 1 retour commun) qui a été installée autrefois, mais qui ne l’est plus aujourd’hui puisque le mélange entre l’eau chaude et l’eau froide est aujourd’hui considéré comme inacceptable.


Détails technologiques

Quelques détails technologiques

>  Vannes

La batterie d’échange air-eau à tubes ailettés est encadrées par deux vannes d’isolement et une vanne de réglage du débit d’eau. Cette vanne est commandée par un thermostat dont le bulbe est situé dans la prise d’air.

>  Ventilateurs

La ventilation est assurée par une ou deux turbines, centrifuge ou tangentielle, de 40 à 50 Pa de pression totale, généralement à 3 vitesses (avec un sélecteur accessible à l’utilisateur… qui le positionne souvent en première vitesse pour limiter le bruit !). La puissance demandée est généralement de l’ordre de 80 à 125 W, suivant les modèles.

>  Condensats

Le bac de récupération des condensats sera raccordé au réseau d’évacuation. Dans le cas où le ventilo est accroché au plafond, cette évacuation n’est pas toujours aisée. On aura parfois recours à une petite pompe de relevage des eaux de condensat.

>  Habillage

L’habillage est constitué en acier galvanisé, généralement recouvert intérieurement de laine de verre ou de mousse polyuréthane pour des raisons thermiques et acoustiques. Mais il arrive que pour des raisons esthétiques, la carcasse du ventilo soit intégré dans la structure décorative du local ou dans une armoire et dans ce cas, seules les grilles restent visibles.

Photo habillage ventilo-convecteur - 01. Photo habillage ventilo-convecteur - 02.

Photo habillage ventilo-convecteur - 03. Photo habillage ventilo-convecteur - 04.

Des ventilos particuliers

Il est possible d’intégrer complètement le ventilo dans un faux plafond ou un faux plancher (des hauteurs d’équipement de 200 à 300 mm existent).

Soit il s’agit un appareil « cassette » : il aspire l’air du local en partie centrale et le repulse après traitement latéralement, tangentiellement au faux plafond.

Photo ventilo-convecteur "cassette".

Schéma principe ventilo-convecteur "cassette".

Certains ventilos sont prévus pour être intégrés sous le plancher des locaux montés sur vérins (local informatique, par exemple). Dans ce cas, l’ouverture de l’appareil doit pouvoir se faire par le dessus.

Soit il s’agit d’un appareil dont le raccordement est prévu via des gaines de distribution vers différentes grilles de pulsion. Cela améliore le confort (meilleure diffusion de l’air, diminution du bruit, …) mais il faut que le ventilo reste facilement accessible pour la maintenance (ouverture prévue par le dessous).


Variante : le Module de Traitement d’Air (MTA)

Il s’agit d’une variante côté « émission » : les ventilos sont remplacés par de petits caissons de préparation, disposés en batterie dans le local technique.

Au départ, il s’agit de la réponse d’un constructeur à un promoteur immobilier qui lui demandait : « faites-moi un système simple, modulable, facile à entretenir ».

Ce caisson comprend

               Schéma principe Module de Traitement d'Air (MTA).

Ces caissons sont prolongés par des gaines pour alimenter les diffuseurs d’air dans les locaux (ces diffuseurs assurent aussi bien la pulsion que la reprise).

Ils sont eux-mêmes les extrémités d’une gigantesque pieuvre qui les nourrit

  • en air neuf prétraité,
  • en eau glacée,
  • éventuellement en eau chaude.

Tout a été prévu pour diminuer la main d’œuvre : préindustrialisation des supports, raccordement par flexible,… Chaque équipement défaillant est rapidement démonté et remplacé.

La régulation est particulièrement performante (dans la version « full options » !)

  • action sur l’ouverture des vannes, à basse vitesse,
  • puis action sur le ventilateur s’il faut augmenter les puissances (périodes de relance, par exemple),
  • pilotage possible de l’éclairage et des stores extérieurs,
  • possibilité de fonctionner en tout air neuf (free cooling de nuit, par exemple)

Chaque module de 25 à 50 m2 dispose de son propre caisson, et peut donc définir ses propres conditions de confort.

Le principe de fonctionnement est donc fort proche de celui des ventilo-convecteurs. Mais en plus, il apporte une flexibilité totale s’adaptant très bien aux bâtiments modulaires dont on voudrait pouvoir modifier les cloisons (immeubles de bureaux, chambres d’hôtel,…).

Le coût d’installation fort élevé est sans doute un inconvénient du système …


Variante : le système modulaire à eau glacée ou « Hydrosplit »

Il s’agit d’une variante côté « production » et « distribution ».

Cette technique, encore appelée « hydrosplit », est un système modulaire, préfabriqué, pour ventilos 2 tubes – 2 fils (sans être exhaustif, et à titre d’information, on range dans cette catégorie « l’Hydroflow » de Carrier, « l’Aquajet » de Technibel, « l’Aquastream » de Trane, ….).

Est vendu « en kit »

  • un groupe d’eau glacée,
  • un module hydraulique de distribution primaire,
  • des modules hydrauliques de distribution secondaire,
  • sur lesquels viennent se greffer des ventilos 2 tubes – 2 fils.

Schéma principe système modulaire à eau glacée ou "Hydrosplit".

  1. Groupe frigorique généralement disposé en toiture.
  2. Circulateur de la boucle primaire .
  3. Capacité tampon, dimensionnée pour absorber les besoins frigorifiques durant 5 à 10 minutes
    (le compresseur est équipé d’un anti-court cycle qui interdit le démarrage du compresseur durant 5 à 10 minutes).
  4. Circulateur secondaire.
  5. Clapet anti-retour.
  6. Unité terminale de traitement d’air (ventilo-convecteur).
  7. Module hydraulique secondaire. **
  8. Module de bypass qui permet une irrigation permanente de la boucle.

*par exemple, chez un fabricant, la boucle primaire peut présenter 50 m. de dénivellation verticale et 100 m. d’éloignement.

**par exemple, chez un fabricant, il peut y avoir jusqu’à 9 modules de distribution secondaire, auxquels on peut raccorder 8 ventilos chacun, soit un total de 72 ventilos dans le bâtiment.

L’objectif commercial est de faire baisser les prix par cette standardisation du produit, et d’ouvrir le marché de la climatisation aux chauffagistes qui n’ont plus qu’à assembler le mécano !

Pourquoi pas… mais ce système entraîne un chauffage électrique direct, peu écologique et d’un coût d’exploitation fort élevé ! Il faut s’assurer que les besoins de chauffage seront tout à fait occasionnels.

Certains systèmes sont greffés sur une installation frigorifique réversible, d’autres présentent l’avantage de pouvoir lui raccorder également une distribution d’eau chaude (pour réaliser du « 2 tubes » ordinaire). cela peut constituer alors une solution intéressante en rénovation, puisqu’il y a récupération de la chaudière existante.


La régulation locale des ventilo-convecteurs

On peut imaginer différents niveaux, en fonction de la qualité énergétique du projet

  • Gestion locale : uniquement laissé à l’initiative de l’occupant, donc pas de certitude de l’arrêt du ventilo en période d’inoccupation, ni de respect des consignes. Cela peut fonctionner toute la nuit…
  • Gestion locale + gestion centrale : cette fois, l’occupant peut faire varier la température de 1 ou 2 degrés autour d’une consigne fixée centralement. Par exemple, en centrale, on peut imposer une conduite économique de 20° (chaud) – 25° (froid). La garantie d’une plage neutre est assurée. De plus, la programmation horaire est possible centralement.
  • Gestion locale + gestion centrale + contrôle de présence : un détecteur de présence perfectionne la gestion dans les locaux à utilisation intermittente.

Il existe actuellement des systèmes de centralisation pour unités terminales accessibles financièrement, sortes de GTC minimum, avec une incidence non négligeable sur la consommation énergétique.

Dans tous les cas, la gestion doit considérer la température, le débit hydraulique et le débit aéraulique. Si le débit aéraulique est souvent laissé aux bons soins de l’occupant, les deux autres paramètres sont

Régulation de température du ventilo

Deux principes sont possibles

  • soit la vitesse du ventilateur est constante et le régulateur module la température de l’eau en fonction des besoins de l’ambiance au moyen d’une vanne à trois voies,
  • soit la température de l’eau est constante et le régulateur module la vitesse du ventilateur en fonction des besoins de l’ambiance.

La première solution est très confortable, d’autant que la vitesse du ventilateur est fixée par l’occupant (réglage manuel à 3 positions), occupant qui choisit ainsi le niveau de bruit qu’il souhaite. Bien sûr, si les besoins sont élevés et que la vitesse du ventilateur est faible, la consigne ne sera pas atteinte…

Commutateur de vitesse du ventilateur.

La deuxième solution est moins chère, mais nettement moins confortable, surtout si le ventilateur fonctionne en tout ou rien. Il faut au minimum un appareil à trois vitesses ou, mieux, un ventilateur à vitesse variable.

Dans les deux cas, on prévoira une plage neutre suffisamment large (minimum 2°C) : par exemple, une plage neutre entre 21 et 24°C. La température intérieure du local va « flotter » entre ces deux valeurs, sans consommation énergétique.

Il est préférable que la sonde de température soit placée dans l’ambiance : si elle était placée dans la reprise d’air, il faudrait laisser le ventilateur en 1ère vitesse même lorsque la température ambiante est en plage neutre…!

Ventilateur en vitesse 1 dans la zone neutre.

Ventilateur à l’arrêt dans la zone neutre.

Remarque : une technique URE consiste à placer un contact de feuillure sur les châssis de telle sorte que le fonctionnement du ventilo-convecteur soit interrompu lors de l’ouverture des fenêtres.

Régulation des débits hydrauliques du réseau

Dans les circuits avec vannes à trois voies, le débit hydraulique total de l’installation est constant.
Par contre, dans les installations avec vannes deux voies, lorsque celles-ci se ferment, la pompe risque de souffrir. Deux solutions sont possibles :

  • Soit une vanne à décharge (encore appelée vanne à soupape différentielle) est placée en parallèle sur le réseau de distribution. La pompe est protégée, elle travaille à débit constant, mais sa consommation est constante également, alors qu’on aurait pu économiser de l’énergie électrique !
  • Soit la pompe travaille à vitesse variable, en maintenant une pression constante dans le réseau. Ceci est nettement plus économique, mais suppose une protection des installations de production lorsque le débit d’irrigation devient faible : un by-pass pour la chaudière et un ballon tampon pour la machine frigorifique.

Gestion de la pointe électrique dans les installations 2 tubes – 2 fils

Il est utile de prévoir une technique de délestage pour éviter le fonctionnement simultané des résistances électriques des installations 2 tubes – 2 fils !

 Gérer

Pour en savoir plus sur le délestage certains équipements électriques.

Un fonctionnement séquentiel est possible puisque le bâtiment constitue en lui-même un réservoir tampon et que la stabilité des températures intérieures ne sera que peu affectée par les coupures provoquées par le délesteur.

La programmation devrait également permettre de profiter au mieux des tarifs de nuit, en réalisant les relances du matin avant 7h00 (heure variable régionalement suivant les distributeurs).


Schémas d’installation et régulation des ventilos 2 tubes

Deux systèmes s’entrecroisent au niveau de l’échangeur

  • le circuit d’eau (transfert thermique de la production vers l’émetteur),
  • le circuit d’air (transfert thermique de l’émetteur vers la pièce).

et les régulations de ces deux systèmes sont distinctes.

Schémas d'installation et régulation des ventilos 2 tubes.

Sur ce schéma de base, on distingue 2 régulations :

1. Une vision de la régulation locale de chaque ventilo-convecteur

  • avec vanne 3 voies,
  • avec vanne 2 voies et régulateur de pression différentielle,
  • avec vanne 2 voies et circulateur à vitesse variable.

>> Pour plus d’informations

2. Une régulation de l’alimentation eau chaude/eau glacée des ventilo-convecteurs

  • chaud ou froid + commutation été/hiver,
  • chaud ou froid par une machine frigorifique réversible,
  • chaud et froid simultanément + distribution par zone,
  • chaud et froid simultanément + distribution par zone + circulateur de zone.

>> Pour plus d’information


Schémas d’installation et régulation des ventilos 4 tubes

Trois systèmes s’entrecroisent au niveau de l’échangeur

  • le circuit d’eau glacée,
  • le circuit d’eau chaude,
  • le circuit d’air (transfert de l’émetteur vers la pièce).

et les régulations de ces systèmes sont distinctes.

Schémas d'installation et régulation des ventilos 4 tubes

Sur ce schéma de base, on distingue dès lors 2 régulations :
1. Une régulation locale de chaque ventilo-convecteur :

  • avec vanne 3 voies,
  • avec vanne 2 voies et régulateur de pression différentielle,
  • avec vanne 2 voies et circulateur à vitesse variable.

>> Pour plus d’informations

2. Une régulation  de l’alimentation eau chaude/eau glacée des ventilo-convecteurs

  • production de chaud et froid distinctes,
  • production combinée de chaud et froid, via une machine frigorifique avec récupération de chaleur au condenseur.

>> Pour plus d’informations


Schéma d’installation et régulation des ventilos « 2 tubes – 2 fils »

Le schéma d’installation des ventilos « 2 tubes – 2 fils » est simple : hydrauliquement, seul le réseau d’eau glacée est réalisé.

La résistance d’appoint électrique est, soit commandée en tout ou rien, soit soumise à une régulation progressive (régulation chrono-proportionnelle).

Schéma d'installation et régulation des ventilos "2 tubes - 2 fils"

Les schémas de régulation sont simples puisque les productions de chaud et de froid sont indépendantes. L’équipement frigorifique peut être complété par un stockage de glace.

>>  Pour plus d’informations 

 

Plafonds froids

Plafonds froids


Domaine d’application

Les plafonds rayonnants froids font partie des équipements de refroidissement des locaux.

Généralement, de l’eau froide à + 15°C circule au dessus du faux plafond (par ex, serpentins d’eau fixés au dessus de la plaque métallique du faux plafond). Les occupants recevront une composante de rayonnement froid (en réalité, ils émettront de la chaleur vers ce plafond), et l’air du local sera lui aussi refroidi.

  1. Plaque métallique perforée
  2. Élément refroidissant
  3. Laine minérale dans une feuille PE
  4. Plaque carton-plâtre

Ces systèmes ont beaucoup de qualités (absence de bruit et de courants d’air, encombrement nul, faible consommation énergétique,… ) mais aussi un gros défaut : une puissance frigorifique limitée ! (60 à 120 W/m²). Ce défaut est cependant à relativiser dans le contexte énergétique actuel où l’on recherche à diminuer la charge thermique du bâtiment.

C’est une technique relativement récente qui nous vient des pays nordiques : l’été, les chaleurs de Copenhague ne ressemblent pas vraiment à celles de Marseille !

Cette technique s’adapte aussi bien à la construction nouvelle (pour des bâtiments conçus de façon à limiter les apports solaires et les apports de chaleur internes), qu’en rénovation grâce au fait de ne pas devoir percer des parois pour le passage de gainages d’air volumineux et de pouvoir réutiliser l’installation de chauffage existante. Contenu du risque de condensation, ce système est vivement déconseiller dans les locaux humides.

 

Cette technique de rafraîchissement est également appréciée dans l’hôtellerie pour son silence !

Fonctionnement

Apport de froid

Les plafonds froids rayonnants sont des émetteurs statiques à paroi sèche. Les échanges de chaleur se font de deux façons différentes

  • Échange par convection avec l’air ambiant: un minimum de 40 % de la puissance totale émise.
  • Échange par rayonnement avec les parois, meubles, personnes,… : un maximum de 60 % de la puissance.

Une conséquence de cet échange sur le confort, est d’admettre une température ambiante de consigne à 26°C pour même température opérative.

Apport de chaleur

L’appoint de chaleur en hiver reste un problème même si, en construction nouvelle, le bâtiment étant bien isolé, la demande de chaleur en hiver est limitée. Il est envisageable d’apporter cette chaleur :

  • soit en alimentant en eau chaude les plafonds et en particulier les zones situées près des façades (près des baies vitrées),
  • soit via un circuit de radiateurs complémentaires,
  • soit grâce à des batteries terminales de réchauffe alimentées en eau chaude et placée en façade,
  • soit grâce à des batteries électriques placées sur le conduit d’air de chaque bureau. Mais il faut un débit d’air minimum pour limiter les températures de pulsion.

Technologies

Il existe plusieurs technologies différentes :

Schéma technologies différentes.

Les plafonds froids convectifs se distinguent des plafonds froids rayonnants par leur principe d’échange de chaleur :  70% par convection et 30% par rayonnement. Leur puissance est généralement plus élevée, car ils laissent passer l’air dans le plénum et peuvent disposer d’ailettes.

Les plafonds froids rayonnants

On trouve des plafonds froids rayonnants suspendus ayant une puissance comprise entre 60 et 100W/m².

Les faux plafonds à ailettes clipsables : (procédé FRENGER).

La circulation d’eau se fait dans des tuyaux (cuivre, acier, polypropylène, aluminium,…) sur lesquels sont clipsées des plaques (métalliques, plafonnage,…) formant ainsi un faux plafond. Ces plaques peuvent être perforées, afin d’en faire un plénum de pulsion de l’air neuf.

Dans une variante (chaque constructeur ayant développé son propre produit !), des tubes plats sont sertis sur des plaques métalliques.

La puissance frigorifique de ces plafonds atteint 100 W/m². Son inertie est très faible et donc la régulation de la température ambiante sera aisée.

Schéma faux plafonds à ailettes clipsables.

Un inconvénient : c’est le serpentin qui assure la fonction portante du plafond, ce qui n’est pas l’idéal, à terme (on peut imaginer qu’un montage fait d’usine est plus fiable). Le faux- plafond se présente alors sous forme de lamelles juxtaposées.

Les faux plafonds à répartiteur de froid transversal

Ces répartiteurs sont généralement en Cuivre et présentent une puissance de l’ordre de 80W/m². Entre chaque plaque de faux plafond, le raccord hydraulique est assuré par un flexible.

Photo faux plafonds à répartiteur de froid transversal.

Répartiteur en Cuivre sur plaques métalliques.

Mais il existe également des répartiteurs en polymère posés sur des plaques de métal (74 à 60 W/m²) et certains fabricants proposent d’intégrer ces polymères dans des plaques plâtre (60W/m²).

Polymère sur plaque métallique (Source : gema).

Polymère intégrer dans des plaques de plâtre (source : Rehau).

Pour favoriser le refroidissement du faux plafond, certains fabricants ont imaginé de fixer des lames métalliques transversalement à la circulation de l’eau froide dans les tubes en cuivre. La puissance de refroidissement en est améliorée.

Exemple de plafonds-froids « bidirectionnels ».

Les faux plafonds à tube intégré dans un profilé aluminium :

Ici, l’essentiel consiste à faire communiquer au mieux le froid entre le tube et l’entièreté du plafond métallique ! Un tube intégré à un profilé aluminium permet une excellente conduction du froid (en réalité, de la chaleur), si bien que la différence de température entre l’eau et la surface métallique est seulement de l’ordre de 1°C. Des puissances de 100 à 130 W/m2 actifs sont atteintes.

Attention : de telles puissances sont atteintes pour un écart de 10° entre la température moyenne de l’eau (16°C) et la température de l’ambiance (26°C), c.-à-d. dans des conditions extrêmes.

Le matelas de laine minérale disposé au-dessus ou dans les panneaux de plafond permet une limitation des pertes vers le haut et un traitement acoustique du local (par absorption).

Si une lame d’air est conservée entre le panneau et le matelas isolant, une circulation de l’air est possible et donc l’échange convectif avec les tuyaux froids est amélioré.

Le montage est facilité, mais le prix d’achat est augmenté.

Les faux plafonds à nattes capillaires

Des nattes capillaires (à imaginer avec des diamètres du type spaghetti ! … de l’ordre de 2,5 mm de diamètre intérieur) en matériau de synthèse sont parcourues par l’eau glacée.

Il s’agit généralement de polypropylène (obtenu par polymérisation du propylène, CH6).

Ce système offre une température de paroi plus homogène.

Photo faux plafonds à nattes capillaires.  Photo faux plafonds à nattes capillaires - 02.

On rencontre ce système :

  • Incorporé dans des modules de faux plafonds : la natte est déposée sur un bac/panneau métallique perforé, recouverte d’une couche d’isolant, puis superposée d’une 2ème plaque métallique qui comprime le tout de telle sorte que le contact entre la natte et le panneau soit favorisé. Une fixation par charnière permet un accès aisé à l’espace technique situé au-dessus de chaque module. Le plastique n’est pas rigide et les contacts sont donc partiels mais ceci est compensé par la totalité de la surface qui entre en jeu (multiplicité des tubes).
  • Fixé sur les parois du local (plafond en plaque de plâtre, murs,…), puis recouvert d’un enduit de type crépi ou d’un revêtement de finition classique. C’est alors l’ensemble de la paroi qui devient rayonnante. C’est une technique qui se prête bien à la rénovation d’anciens locaux. Elle peut même équiper des parois courbres.

Ce système présente une très faible inertie (contenance en eau de l’ordre de 40 gr/m² seulement) et permet donc une régulation aisée de la température ambiante.

Le risque de voir les tubes capillaires se boucher est réel, aussi il est généralement recommandé d’utiliser de l’eau déminéralisée, de raccorder les nattes à des tuyauteries non corrodables et de prévoir un échangeur inox entre le réseau de plafond et le circuit lié au groupe frigorifique.

La présence d’un tel échangeur génère, non pas une perte d’énergie, mais bien un delta T° supplémentaire. La température devra être de 1 ou 2°C plus froide à l’entrée de l’échangeur par rapport à celle utile qui passe dans le plafond. Ceci pénalise plus particulièrement la technique de free-chilling c’est-à-dire, le refroidissement « gratuit » de l’eau par l’air extérieur. Au lieu d’être efficace en dessous de 13°C, l’air extérieur ne sera utile qu’en dessous de 12 ou 11°C.

La présence d’un échangeur est également requise parce que le réseau des capillaires ne peut pas tenir sous une pression fort élevée (limité généralement à 4 bars). L’échangeur permet de déconnecter la pression primaire (le réseau d’eau glacée de l’ensemble du bâtiment) de la pression secondaire (le réseau des nattes). On place généralement un échangeur pour 3 ou 4 étages.

La puissance frigorifique est comprise entre 100 et 118 W/m².

Les plafonds à effet convectif renforcé

Afin de favoriser l’effet convectif, des ailettes sont serties sur les tuyauteries. L’idée consiste à créer un effet d’écoulement d’air, de cheminée froide le long de ces ailettes. Cette fois, deux tiers de la puissance est communiquée par convection. La puissance frigorifique est maximale (130 W/m2 et plus) pour autant que le faux plafond reste à claire-voie.

La structure ouverte des plafonds froids convectifs, donne accès à l’inertie de la dalle. La dalle peut dès lors stocker la chaleur et peut être déchargée de cette chaleur par free cooling ou free-chilling.

Schéma plafonds à effet convectif renforcé.

Remarques.

1°. Certains fabricants proposent également leur plafond froid sous forme d’ilots à placer au-dessus des bureaux. Ces ilots peuvent également remplir une fonction d’atténuation acoustique (perforation + film acoustique ou baffle acoustique). Ces ilots trouvent un intérêt dans les bureaux de types paysager.

2° De nombreux fabricants proposent leurs produits sur le marché :

  • des fabricants de faux plafonds qui ont développé la fonction « thermique »,
  • des fabricants de matériel thermique qui ont développé la fonction « faux plafond » !

Il est indispensable que les deux fonctions soient totalement maîtrisées et proposées avec des matériaux de qualité.

Un plafond froid ne s’achète pas sur « catalogue » et une installation ne peut se concevoir sans qu’un  Ingénieur Conseil n’intègre tous les besoins et exigences du Maître de l’Ouvrage et de l’Architecte.

L’Entrepreneur réalisant un tel système doit en prendre la responsabilité globale tant au point de vue installation (faux plafond) que performance (confort).


Systèmes réversibles : chauffage et rafraîchissement

Un plafond froid peut fonctionner en mode chauffage en période hivernale, mais avec un certain inconfort.

Le réseau de tuyauterie sera alimenté soit en « 2 tubes réversibles » (pas moyen, dans ce cas, de faire simultanément du chaud et du froid), soit en 4 tubes, système offrant plus de souplesse. car du froid peut être émis dans une zone et du chaud dans une autre.

Le schéma ci-dessous montre l’installation 2 tubes (réseau chaud/froid, dans/sous le plafond) et propose de la coupler avec une ventilation/refroidissement par déplacement, technique complémentaire très efficace pour les occupants. Elle propose aussi la formule d’insertion des tubes dans la structure du bâtiment (augmentation de l’inertie).

Schéma systèmes réversibles.

Plancher rayonnant à faible inertie

À la base conçus pour le chauffage par le sol, les planchers rayonnants à faible inertie peuvent être utilisés comme source de rafraîchissement en été.


Installation

Pose

La pose est généralement délicate car tout défaut dans la planéité d’un faux plafond est directement visible, surtout si la lumière est rasante. Les réceptions d’installation donnent généralement lieu à des discussions tendues entre architecte et installateur !

Risques de condensation

Il ne doit pas y avoir de condensation sur le plafond froid ! Sous peine d’avoir de l’eau sur les papiers de la secrétaire !

Ce procédé est donc à proscrire dans tous les milieux présentant un taux d’humidité élevé (cuisines, sanitaires avec douches, buanderies, …)

Idéalement, il faut éviter de devoir forcer la déshumidification (énergivore) de l’air pour éviter la condensation. Pour cela, il faut produire du froid avec une température d’eau la plus élevée possible. Par exemple, avec un régime de température d’eau de 17°-20°, un simple refroidissement de l’air à 16° est suffisant pour éviter les condensations. Cela signifie alors que la puissance est limitée et donc qu la maitrise des charges de chaleur face partie intégrante du projet.

Apport d’air neuf

De l’air neuf hygiénique sera pulsé, de façon distincte au refroidissement des faux plafonds.

Une pulsion de l’air neuf à basse température (16°) permet de réduire la puissance frigorifique à vaincre par le plafond.

La déshumidification de cet air neuf en centrale contribue à l’assèchement de l’air des locaux.
Elle diminue les risques de condensation, mais génère une consommation importante et est donc à éviter.

Une pulsion de l’air neuf au ras du plafond (avec recherche de l’effet Coanda) n’augmente pas l’effet convectif et donc pas la puissance frigorifique.

Espace nécessaire

La hauteur minimale nécessaire est fonction de l’ensemble des équipements à placer dans le faux plafond. Au cas où seule la fonction thermique est présente, la hauteur minimale requise est l’ordre de 55 mm.

Préparation de l’eau glacée

On utilisera soit un groupe d’eau glacée spécifique, soit un réseau du circuit principal.

Un cas particuliers existe cependant :

Les plafonds réalisés par des nappes capillaires, qui requièrent une alimentation en eau déminéralisée. Un circuit spécifique, avec son propre échangeur à plaque en acier inoxydable, sera réalisé sur la boucle d’eau glacée du bâtiment.

Schéma préparation de l'eau glacée.


Régulation

Le circuit des panneaux est alimenté à des  régimes aller – retour, allant de 15°C – 17°C à 19°C-20°C en fonction de la puissance nécessaire.  Il est ainsi possible de réguler la température de départ en fonction de la température extérieure, ou mieux, si présence d’une régulation numérique, de la rendre variable en fonction de l’ouverture des vannes.

Schéma de principe

Régulation, schéma de principe.

La régulation de l’alimentation en eau des panneaux vise classiquement au maintien de la température de consigne, mais aussi au contrôle de l’absence de condensation sur les tuyauteries.

Sur base de la mesure de la température de l’air ambiant et de son humidité relative, le régulateur détermine le point de rosée de l’ambiance et limite la température de l’eau à un niveau de 1 à 1,5°C supérieur à ce point de rosée, par action sur une vanne trois voies.

Cette protection peut également être assurée par un détecteur de condensation placé à la surface du tube d’entrée: si l’humidité relative de l’air à la surface du tube approche de la condensation, un contact est actionné; la vanne est fermée et, éventuellement, la pompe est arrêtée.

Cette pompe peut également être mise à l’arrêt.

  • si la température ambiante est inférieure à sa consigne,
  • si le contact de feuillure placé sur les ouvrants des châssis signale une fenêtre ouverte.

Montage

Lorsque plusieurs panneaux doivent être mis en parallèle, on peut prévoir une disposition similaire à la mise en parallèle de radiateurs :

Schéma montage.

Comme dans les raccordements bitubes, on peut améliorer l’équilibrage de l’installation par un montage en Tickelman :

Schéma montage, 02.

Chaque circuit présente alors une perte de charge similaire et donc un débit d’alimentation similaire.

Comment est gérée la présence d’air ? On considère que les serpentins sont horizontaux et que l’eau pousse l’air qui serait présent. Ce sont les tuyaux de raccordement (ou tuyauteries-mères), toujours placés au-dessus du serpentin qui seront éventés, généralement sur le retour.

Un détail à insérer au cahier des charges : on exigera des bouchons sur les tuyauteries à l’arrivée sur chantier. Ces bouchons ne seront retirés qu’au moment du raccordement. À défaut, le serpentin étant plus bas que les tuyauteries-mères, des crasses iront s’y loger…

Solution proposée par un constructeur de matériel de régulation

Chaque local dispose d’une vanne 2 – voies modulant le débit d’eau. Un thermostat agit sur cette vanne mais peut agir sur plusieurs vannes en parallèle, si les conditions thermiques sont jugées similaires.

  1. Boitier d’ambiance comprenant la mesure de la température d’ambiance et le potentiomètre de réglage de la consigne (que l’on peut aussi limiter dans une plage de +/- 2 K autour d’une valeur de base réglée d’avance)
  2. Hygrostat limiteur pour le contrôle de la condensation, actionnant le circulateur.
  3. Sonde d’applique pour le contrôle de la température effective à l’entrée du réseau.
  4. Régulateur numérique (liaisonnable à la GTC par bus 2 fils), agissant sur le circulateur et sur la vanne deux voies motorisée.
  5. Vanne motorisée électro-thermique modulant le débit suite au signal chrono-proportionnel reçu du régulateur.

Solution intégrant la commande de radiateurs

Avec le même matériel, le schéma ci-dessous signale que le régulateur peut également gérer le chauffage statique en hiver, la commande de l’éclairage et la réponse d’un contact de fenêtre.

Schéma solution intégrant la commande de radiateurs.

Mais cette solution est luxueuse; une simple vanne thermostatique peut être adaptée à l’entrée du corps de chauffe. Elle sera réglée sur 21°C tandis que le plafond froid est modulé sur 26°C (ce qui correspond à un confort équivalent à 24°C), interdisant ainsi tout risque de destruction de l’énergie.

Si une solution par radiateur électrique est choisie, un verrouillage en fonction de la température extérieure sera utilement prévu. Par exemple : enclenchement seulement si la T°ext est < à + 5°C.

Contrôle de la condensation

Différentes dispositions seront prises pour limiter le risque de condensation :

  • limitation de la température de départ de l’eau pour les réseaux intégrés dans la dalle de plafond,
  • contrôle de l’humidité relative à proximité du plafond et coupure de la circulation d’eau, pour les réseaux en faux plafonds,
  • contrôle des conditions extérieures pour anticiper les fluctuations d’humidité à l’intérieur du local.

Dans un bâtiment avec fenêtres ouvrantes, l’alimentation du plafond en eau doit pouvoir être interrompue par un contact de feuillure.


Avantages

  • Le confort est meilleur que dans les systèmes traditionnels (par ventilo-convecteurs par exemple).
    1. Parce que l’apport de froid par rayonnement est plus stable (inerte) et mieux réparti spatialement que l’apport de froid par air,
    2. parce qu’il conserve « la tête au frais »,
    3. parce que le confort est renforcé par l’absence de courant d’air froid, puisque le débit d’air est limité au débit hygiénique,
    4. parce ces mouvements d’air limités entraînent peu de déplacement de poussières dans les locaux.
  • Si l’eau froide est produite par une machine frigorifique, la préparation d’eau glacée à une température « élevée » de 15°C-17°C environ permet la sélection d’une machine frigorifique avec un excellent coefficient d’efficacité frigorifique (ou « COP frigorifique »). Cette propriété est perdue si la même machine frigorifique est utilisée pour préparer l’air neuf déshumidifié …
  • Une température d’eau élevée permet également de recourir à une source de froid naturelle comme l’air extérieur (via free-chilling) ou le sol (via géocooling). La consommation liée la production de froid se réduit alors simplement à la consommation d’auxiliaires (pompes, ventilateur de pompes de refroidissement,…).
  • La séparation entre la fonction ventilation des locaux (air neuf hygiénique) et l’apport thermique (apport de froid) est un gage de bonne régulation.
  • L’air neuf ne sera pas recyclé, évitant ainsi les risques de contamination liés au recyclage de l’air (« sick buildig syndrom »).
  • L’absence de bruit est un confort non négligeable (fonctionnement statique, faible débit d’air neuf pulsé).
  • Cette température élevée permet d’imaginer, durant une bonne partie de l’année, un refroidissement direct de l’eau glacée dans les tours de refroidissement en toiture, en by-passant ainsi la machine frigorifique. Cette technique est généralement appelée « free-chilling ». La consommation liée au froid se résume à l’alimentation des pompes de circulation ! La présence d’une source d’eau froide naturelle peut également être mise à profit (rivière, lac, …)
  • Le transport du froid vers les locaux par de l’eau glacée (pompe) est environ dix fois moins énergétique que le transport par de l’air froid (ventilateurs des systèmes « tout air »).
  • Le confort apporté par le rayonnement froid au dessus des occupants permet une augmentation de 2°C de la consigne de température ambiante des systèmes traditionnels (température max = 26°C ou 27°C, au lieu des 24 ou 25°C habituels pour des ventilos ou des poutres froides, par exemple). Il s’en suit une réduction de la puissance frigorifique nécessaire.
  • Les coûts d’exploitation énergétiques sont plus faibles que dans le cas des systèmes traditionnels (ventilo-convecteurs par exemple). Une étude de cas réalisée par Tractebel Development Engineering précise ce facteur. On épargne la consommation des ventilateurs des ventilo-convecteurs, mais on augmente un peu la consommation des pompes de distribution de l’eau puisque qu’un delta T° aller-retour de 2 à 3 K est réalisé contre 5 à 6 K pour les ventilos.
  • Une économie supplémentaire provient du fait qu’une part de la consommation des ventilos-convecteurs est donnée en chaleur latente sur l’air (la température de la boucle d’eau glacée est inférieure à la température de rosée de l’ambiance et l’humidité de l’air se condense, parfois inutilement). Ce fait ne se produit pas avec les plafonds, … sauf si c’est l’air neuf qui est fortement déshumidifié…
  • La régulation est en partie auto-adaptative : une augmentation des charges du local provoque une augmentation de sa température et donc une augmentation de la puissance de refroidissement.
  • L’entretien semble réduit.
  • Un entretien réduit : pas de remplacement de filtre ou d’usure mécanique contrairement aux ventilos-convecteur.
  • L’encombrement au sol est nul !
  • Le système requiert une hauteur de faux plafond inférieure à celle d’un système tout air.
  • Le traitement des zones internes par ce système est moins encombrant que par la climatisation en VAV ou par ventilo-convecteurs.

Inconvénients

  • La puissance frigorifique reste limitée par rapport aux systèmes traditionnels. On dit parfois que c’est un système placé pour vaincre les apports internes (bureautique, éclairage, occupants). Ceci sous-entend que les apports solaires des vitrages soient limités :
    • soit par la conception du bâtiment créant des ombres portées,
    • soit par la mise en place de protections solaires extérieures,
    • soit par le placement de stores intérieurs clairs combinés à des vitrages performants,
    • soit par la configuration des lieux (bureaux paysagers, salles profondes).
  • Il faut cependant relativiser cet inconvénient. En effet, dans un bâtiment moderne qui se veut énergétiquement performant, une puissance de conception de refroidissement top élevée provient souvent :
  •  soit d’une programmation mal raisonnée et d’apports internes excessifs (taux d’occupation, puissance bureautique irréaliste),
  • Soit d’installations intérieures mal conçues (puissance d’éclairage excessive,…),
  • Soit d’une enveloppe mal protégée de l’ensoleillement.
    Minimiser les charges internes et bien les estimer impactent considérablement les choix du système de refroidissement. Prenons un bureau de 20 personnes orientation Sud avec 30 % de surface vitrées.
Hypothèses
Minimiser charges internes Estimation réaliste
Éclairage 12 W/m² 6,5 W/m² 6,5 W/m² 6,5 W/m²
Protections solaires sans sans extérieures extérieures
Ordinateurs 180 W/PC 180 W/PC 180 W/PC 104 W (mixte tour et laptop)
Puissance de froid 131 W/m² 126 W/m² 83,8 W/m² 68,7 W/m²

Dans un premier temps, les besoins en éclairage de ce bureau sont surestimés 12W/m² et 180W par ordinateur dans ce cas, il demanderait une puissance de froid 131W/m². Dans ce cas, l’auteur se prive de la possibilité d’envisager des plafonds froids. Par contre, si ces charges internes sont minimisées par l’utilisation de protections solaires et que l’éclairage est optimisé (6,5Wm²), ce bureau demanderait une puissance de froid de 84W/m². Dans ce cas, il est possible d’utiliser des plafonds froids avec un régime 15°-17°C qui permet déjà d’utiliser en partie l’énergie gratuite, contenue dans l’air (free-chilling) ou dans le sol (géocooling). Si les charges internes de la bureautique sont mieux  estimées (120W/PC au lieu de 180W/tour et 40W pour l’utilisation de PC portable), on peut envisager d’augmenter le régime d’eau à 17-19°, ce qui permet une utilisation plus importante de free-chilling ou du géocooling. L’intérêt énergétique est ainsi double puisque d’une part la puissance de froid est diminuée de 47% entre les cas extrêmes et d’autres parts parce qu’il diminue la consommation énergétique du groupe de froid par utilisation d’énergie renouvelable (lien vers gain d’énergie par géocooling et free-chilling).

  • Le coût d’installation est plus élevé que pour d’autres systèmes, que pour d’autres systèmes, surtout en rapport à la puissance frigorifique fournie.
  • Ce coût est notamment lié à la régulation assez sophistiquée, notamment pour éviter tout risque de condensation.
  • Le chauffage en hiver reste à résoudre ! Plusieurs solutions sont possibles :
    • soit le chauffage par le plafond (mais inconfortable),
    • soit un chauffage par le plafond limité aux premiers panneaux situés en façade (confortable mais limités en puissance),
    • soit un chauffage traditionnel par radiateur (solution généralement appliquée en rénovation puisque l’on peut récupérer l’installation existante).

Coût

Les coûts d’investissement d’un système « plafonds froids » sont aujourd’hui encore plus élevés que ceux des autres systèmes HVAC du type air/eau.

Les coûts d’investissement d’installations HVAC complètes avec plafonds froids, qui étaient il y a quelques années de l’ordre de 250 €/m², peuvent aujourd’hui être réalisées pour moins de 130 €/m².

Ces coûts doivent aussi être évalués globalement, en tenant compte des réductions possibles de coûts d’investissement dans d’autres domaines de la construction du bâtiment :

  • faux plafond,
  • simplification de l’allège et suppression du cache-convecteur,
  • non-installation éventuelle d’un corps de chauffe statique,
  • augmentation de l’espace locatif utilisable,

Compte tenu de ces éléments, la solution « plafond froid » se rapproche de sa concurrente plus traditionnelle, l’installation de ventilo-convecteurs.

Régulation du taux d’air neuf dans les installations « tout air »

Régulation du taux d'air neuf dans les installations "tout air"

Registre sur la prise d’air neuf et régulateur du débit de gaine.


Principe

Un taux d’air neuf minimum est requis pour assurer l’air hygiénique aux occupants.
Mais ce débit d’air est coûteux, tout d’abord en chauffage et en refroidissement de l’air extérieur !

Par exemple, voici un extrait de l’analyse du coût du traitement d’air qui compare deux situations :

  1. Un bureau de 60 m3 est alimenté en « tout air neuf ».

  1. Cette fois, un recyclage est organisé, avec un apport d’air neuf limité aux besoins hygiéniques.

Dans ce deuxième cas, la consommation est diminuée de 45 % !

REMARQUE : sur le graphe, dans un souci pédagogique, les débits ont été exprimés en m3/h en respectant la conservation de ces débits (210 + 60 = 270 m3/h). En réalité, seuls les débits massiques sont conservés.

Il importe donc d’adapter à tout moment le débit d’air neuf adéquat. On peut parler d’une véritable gestion de l’air neuf, puisque

  • Le débit d’air neuf sera minimal en plein hiver et en plein été.
  • Le débit sera maximal lorsqu’il est préférable d’utiliser de l’air extérieur « gratuit » que de traiter l’air intérieur.
  • Le débit sera nul en période de relance du bâtiment (pas d’occupants).
  • Le débit sera maximal si l’on souhaite refroidir le bâtiment durant la nuit par de l’air frais extérieur (free cooling)

De plus, si autrefois on ne pouvait faire que du « minimal-maximal », l’apparition sur le marché de nombreux « capteurs » (détecteurs de présence, sonde de qualité d’air,…) permet aujourd’hui de moduler les registres d’air neuf en fonction du nombre de personnes effectivement présentes dans le bâtiment.

L’exemple de la gestion du débit d’air neuf dans un auditoire (analysé par le COSTIC en France) est parlant à ce sujet.

Quand on sait qu’un bureau d’études dimensionne une installation sur plan, sur base d’un nombre présumé de personnes présentes, on comprend qu’un réajustement peut avoir lieu…

Mais le débit d’air est aussi coûteux en énergie électrique de ventilateurs. Le développement du variateur de vitesse ouvre maintenant de nouvelles perspectives pour adapter les régulations de manière à ce que la vitesse des ventilateurs et donc leur consommation soit toujours minimale en fonction des besoins d’air.


Cas 1 : régulation du débit d’air par action sur le recyclage

Un premier mode de régulation consiste à agir sur la quantité d’air recyclée de manière à ajuster le taux d’air neuf aux justes besoins hygiénique et thermique. Dans ce cas on optimalise la consommation de chaleur et de refroidissement, malheureusement, tout en gardant une consommation électrique de ventilateurs constante.

Généralement, la modulation du volet d’air neuf en fonction des besoins réels du local se fait via une sonde de qualité d’air placée dans le conduit d’air extrait. Le groupe d’extraction ne doit concerner qu’une seule salle ou qu’un ensemble de locaux homogènes dans leur utilisation.

Exemple.

Le taux d’air neuf de la salle du restaurant d’entreprise (occupation très variable) est modulé en fonction d’une sonde COV placée dans la gaine d’air extrait.

Mais parfois, il est plus judicieux de placer une sonde de qualité d’air dans le local même :

Exemples.

> Si la ventilation de salle du restaurant est assurée par une pulsion en salle et une extraction en cuisine, une sonde placée en salle sera plus significative des besoins hygiéniques de la salle.

> De même, la ventilation d’une salle de sports par extraction dans les vestiaires sera mieux régulée par une sonde COV dans la salle plutôt que par une sonde dans la gaine d’extraction (… sonde influencée par les odeurs de baskets !).

Quelle régulation ?

Le principe est simple : définir la loi de correspondance entre la mesure de la sonde et l’ouverture du volet d’air.

Par exemple, pour une sonde CO2, le volet d’air neuf est fermé pour une teneur inférieure à 900 ppm de CO2, et totalement ouvert au-delà de 1 400 ppm (soit une bande proportionnelle de 500 ppm).

Mais en pratique, d’autres critères peuvent apparaître

  • On peut vouloir réaliser du free cooling (rafraîchissement nocturne du bâtiment grâce à la température de l’air extérieur plus fraîche que celle de l’air intérieur).
  • Également, une valeur minimale du débit d’air neuf est souvent demandée.

Elaborons par étapes la régulation qui permet d’atteindre ces différents objectifs :

Étape 1

Le régulateur de température R1 définit la demande thermique du local par comparaison entre température ambiante et consigne, et en tenant compte d’une température limite basse de soufflage en sortie de gaine. Suivant le cas, il actionne l’ouverture des voies trois voies de la batterie de chauffe et de la batterie froide. Une zone neutre est ménagée autour de la consigne (de 2 à 3°C). Pour la clarté du schéma, la régulation en fonction de l’humidité, la protection anti-gel,.. n’ont pas été indiquée ici.

Étape 2

Le régulateur de ventilation R2 commande l’ouverture des volets d’air neuf, suite à l’évolution de la température dans le local. Le débit sera minimum en hiver. En mi-saison, après la demande de chauffage du matin, ce sont les apports gratuits qui font monter la température intérieure. Pour répondre à ces besoins c’est d’abord l’air neuf extérieur qui est pulsé. Puis, la charge devenant trop élevée, l’air neuf est ramené en valeur minimale et l’installation de froid prend le relais.

Étape 3

La fermeture des registres, lors de la montée en température dans le local, ne doit se faire que lorsque la température extérieure est supérieure à la température intérieure. C’est dans ce but qu’une comparaison est faite entre température d’air repris et température extérieure et que l’information est répercutée vers le régulateur de ventilation afin qu’il déplace le point de fermeture des registres vers le débit minimal. Mieux : ce sont les deux niveaux d’enthalpie qui seront comparés.

L’ouverture en tout air neuf la nuit (free cooling) est alors également possible via cette régulation. Attention, si l’installation est totalement arrêtée la nuit, la sonde de température extérieure doit être située à l’extérieur et non dans la gaine de prise d’air neuf (arrêt de la circulation d’air, donc sonde non fidèle de la température extérieure).

Étape 4

L’information de la sonde de qualité de l’air influence encore le servomoteur du clapet d’air neuf :

  • La position « minimale » est affinée en fonction du nombre de personnes effectivement présentes, ce qu’atteste la sonde de qualité d’air (CO2, COV, humidité,…).
  • En zone neutre, on choisit la demande d’ouverture maximale entre celle provenant de la sonde de qualité d’air et celle du régulateur de température.

Particularité d’une installation à débit d’air variable

Dans une installation VAV, la position du volet d’air neuf se pose de façon particulière

  • Il est difficile de prévoir une sonde de qualité d’air dans chaque zone. Aussi, le débit d’air neuf minimal sera fixé pour tout le bâtiment. Éventuellement, si le bâtiment est d’utilisation homogène, une sonde de qualité de l’air peut être insérée dans la reprise d’air globale.
  • Le débit total pulsé est fonction de la charge : c’est le principe même du VAV.
  • Dès lors, le rapport débit d’air neuf/débit total fluctue en permanence !

Exemple.

Supposons un débit d’air neuf minimal de 2 000 m³/h.
Supposons en plein été, un débit total pulsé de 10 000 m³/h. On en déduit un besoin d’ouverture du clapet d’air neuf de 20 %.
Plaçons-nous maintenant en mi-saison, l’installation est en zone neutre, aucune charge ne doit être apportée pour refroidir les locaux : le débit total pulsé est de 2 000 m³/h. Il faut à présent que le clapet d’air neuf soit ouvert à 100 % !

Le schéma de régulation doit donc adapter en permanence la position du servomoteur.

Une sonde de vitesse d’air est placée dans la prise d’air neuf. Elle informe le régulateur de ventilation qui intégrera cette donnée dans l’estimation de la position minimale du servomoteur. Mais la demande du régulateur de température peut être encore plus importante si on est en zone neutre. En pratique, il choisira donc la valeur maximale entre les demandes « hygiénique » et « thermique ».


Cas 2 : régulation du débit d’air par action combinée sur la vitesse du ventilateur et sur le recyclage

Transporter de l’énergie thermique via un réseau de ventilation coûte cher en consommation de ventilateurs. Dès lors, on peut se poser la question de la nécessité de maintenir en permanence le débit maximum quels que soient les besoins en air neuf, en chauffage ou en refroidissement. Le développement des variateurs de vitesse dans les groupes de traitement d’air permet d’envisager de nouveaux algorithmes de régulation encore plus économiseur d’énergie.

Un exemple est repris ici mis en œuvre dans un bâtiment existant (source : Bureau d’études MATRIciel sa, 2010). D’autres peuvent être envisagés, chacun guidé par la question « comment minimiser la vitesse des ventilateurs et ensuite le recours à la production de froid en fonction des besoins ?  »

Descriptif de l’installation

L’installation assure le chauffage, le refroidissement et la ventilation de bureaux. Le chauffage principal est assuré par des convecteurs statiques, la ventilation et le refroidissement par un groupe de ventilation avec roue hygroscopique de récupération, boite de mélange, batteries chaude et froide, humidificateur vapeur et ventilateur à vitesse variable.

Principe de régulation

Objectif : minimiser d’abord la consommation électrique des ventilateurs en favorisant un fonctionnement à basse vitesse et ensuite le recours aux batteries chaudes et froides, tout en garantissant un débit d’air neuf hygiénique et une température de pulsion minimaux.

En hiver (Text < Tnon chauffage) :

En journée, le chauffage est assuré par les convecteurs avec une température d’eau réglée par courbe de chauffe au niveau des chaudières et une régulation locale par vannes thermostatiques.

Le groupe de ventilation travaille en tout air neuf. La vitesse du ventilateur est minimale et correspond au besoin hygiénique. L’air de pulsion est à température neutre, réglée au moyen de la batterie chaude. La récupération de chaleur sur l’air extrait est maximale.

L’humidification est commandée par une consigne d’humidité relative mesurée dans la reprise commune.

La nuit et le week-end, l’ensemble des installations est mis à l’arrêt avec contrôle d’une température ambiante minimale.

La relance matinale est optimisée et s’effectue obligatoirement sans air neuf.

En mi-saison (Text < Tnon chauffage et < Tintérieure) :

Les circuits convecteurs et batterie chaude sont mis à l’arrêt.

En journée, le refroidissement éventuel est assuré par le groupe de ventilation. La température de pulsion de l’air est régulée grâce à une cascade entre la modulation de la roue de récupération, la batterie froide et enfin la vitesse du ventilateur. Le taux d’air neuf du groupe reste maximal.

La nuit, les installations sont à l’arrêt.

En plein été (Textérieure > Tintérieure) :

Les circuits convecteurs et batteries chaudes sont mis à l’arrêt.

En journée, le refroidissement est assuré par le groupe de ventilation. La température de pulsion de l’air est régulée grâce à une cascade entre la batterie froide et ensuite la vitesse du ventilateur. La récupération de chaleur reste maximale et le taux d’air neuf du groupe est adapté en fonction de la vitesse du ventilateur pour que le débit global corresponde au besoin hygiénique.

La nuit, si les conditions extérieures le permettent, le groupe de ventilation est activé, à vitesse maximale, sans traitement d’air ni récupération de chaleur.

Algorithme de régulation associé

Légende :

  • Text  = température extérieure
  • Text_cons_NC  = température extérieure de non chauffage (arrêt du besoin de chauffage du bâtiment) – Paramétrable (par défaut : 15°C)
  • Text_cons_FC = température extérieure de libération de la ventilation intensive de free cooling – Paramétrable (par défaut : 16°C)
  • ONOFF_FC = libération manuelle de la ventilation intensive de free cooling – Paramétrable (par défaut : OFF)
  • %AN = taux d’air neuf de la boite de mélange (0% = sans air neuf, 100% = tout air neuf)
  • %ANmin = taux d’air neuf minimale de la boite de mélange permettant un débit hygiénique voulu lorsque Hzvent = 50 Hz – Paramétrable (par défaut : 30%)
  • Hzvent = fréquence d’alimentation des ventilateurs de pulsion et d’extraction (liés)
  • Hzvent_min = fréquence d’alimentation minimale des ventilateurs de pulsion et d’extraction (liés) correspondant au débit de ventilation hygiénique théorique – Paramétrable (par défaut : 15 Hz)
  • Tpuls_dalle = température de pulsion de l’air dans les bureaux et la cafétéria, mesurée à la sortie des dalles actives
  • Tpuls_dalle_min_hiver = consigne de température de pulsion minimale de l’air dans les bureaux et la cafétéria en hiver, à la sortie des dalles actives – Paramétrable (par défaut : 16°C)
  • Tpuls_dalle_min_été = consigne de température de pulsion minimale de l’air dans les bureaux et la cafétéria en été à la sortie des dalles actives – Paramétrable (par défaut : 16°C)
  • Tpuls_GP = température de pulsion mesurée à la sortie du GP
  • Treprise = température de l’air mesurée dans la reprise commune vers le GE
  • Treprise_cons_été = consigne de température de reprise en été – Paramétrable (par défaut : 25°C) (Toujours : Treprise_cons_été > Tamb_cons_jour + 2°C)
  • %HR reprise = humidité relative mesurée dans la reprise
  • %HR reprise_cons = consigne d’humidité relative mesurée dans la reprise – Paramétrable (par défaut : 40%)
  • Vroue = vitesse de la roue de récupération de chaleur sur l’air extrait (de 0% = sans récupération, 100% = récupération maximale)
  • Tamb_moy = température ambiante (moyenne des 4 sondes ambiantes)
  • Tamb_min = température ambiante minimale (minimum des 4 sondes ambiantes)
  • Tamb_max = température ambiante maximale (maximum des 4 sondes ambiantes)
  • Tamb_cons_jour = température de consigne ambiante de jour – Paramétrable
  • Tamb_cons_max_FC = température de consigne maximale de gestion de la ventilation intensive – Paramétrable (par défaut : 23°C)
  • Tamb_cons_min_FC = température de consigne minimale de gestion de la ventilation intensive – Paramétrable (par défaut : 20°C)
  • Tamb_cons_nuit = température de consigne ambiante de nuit et de week-end – Paramétrable (par défaut : 15°C)
  • DTamb_ext = écart de température entre intérieur et extérieur commandant l’enclenchement du free cooling – Paramétrable (par défaut : 6°C)
  • Teau_chaudière = température de départ des chaudières
  • Teau_chaudière_cons _max = consigne de température de départ des chaudières en phase de relance – Paramétrable (par défaut : 70°C)

En hiver

Condition générale : Text  < Text_cons_NC
Permanent
  • Enclenchement chaudière
  • Modulation de la température d’eau de départ en fonction de la température extérieure (courbe de chauffe)
  • Arrêt groupe de froid
  • Arrêt circuit batterie froide
En horaire d’occupation
  • Enclenchement GP/GE
  • Libération circuits convecteurs et batterie chaude
  • Hzvent = Hzvent_min
  • %AN = 100%
  • Vroue = 100%
  • Si Tpuls_dalle < Tpuls_dalle_min_hiver : action sur la vanne 3 voies de la batterie chaude du GP
  • Si %HRreprise < %HR reprise_cons : action sur humidificateur vapeur
En horaire d’inoccupation (nuits et week-ends)
  • Arrêt GP/GE
  • Fermeture vanne batterie chaude, arrêt circulateur (avec protection hors gel)
  • Si Tamb_moy > Tamb_cons_nuit : fermeture vannes circuits convecteurs
  • Si Tamb_moy < Tamb_cons_nuit ou action sur bouton poussoir de dérogation (2h) : ouverture vannes circuits convecteurs
En période de relance (inoccupation)
Relance sur optimiseur :

  • Arrêt GP/GE
  • Fermeture vanne batterie chaude, arrêt circulateur (avec protection hors gel)
  • Ouverture vannes circuits convecteurs
  • Si Tamb_moy < Tamb_cons_jour : Teau_chaudière = Teau_chaudière_cons _max

  En mi-saison

Condition générale : Text > Text_cons_NC  et Text < Treprise + 1°C
Permanent
  • Libération groupe de froid
  • ONOFF_FC = ON
  • Arrêt chaudière
  • Arrêt circuit convecteurs
  • Arrêt circuit batterie chaude
  • Arrêt humidification
En horaire d’occupation
  • Enclenchement GP/GE
  • Hzvent = Hzvent_min
  • %AN = 100%
  • Vroue = 100%
  • Si Treprise > (Treprise_cons_été – 2°C) :
    • 1. Modulation de la récupération de chaleur avec limite (Vroue = 0% et Tpuls_dalle = Tpuls_dalle_min_été)
  • Si Treprise > Treprise_cons_été : cascade avec (chronologiquement) :
    • 2. Action sur la batterie froide du GP avec limite Tpuls_dalle = Tpuls_dalle_min_été ;
    • 3. Modulation de la vitesse du ventilateur Hzvent combinée au maintien de %AN = 100%
En horaire d’inoccupation (nuits et week-ends)
  • Arrêt groupe de froid
  • Arrêt batterie froide
  • Arrêt GP/GE
  • Si Text > Text_cons_FC
    et Tamb_max > Tamb_cons_max_FC
    et Text < Tamb_max – DTamb_ext :
    enclenchement du free cooling : enclenchement GP/GE à vitesse max (Hzvent = 50 Hz),
    en tout air neuf (%AN = 100%) et sans récupération de chaleur (Vroue = 0%)
  • Si Tamb_moy < Tamb_cons_min_FC
    ou Text > Tamb_max – DTamb_ext
    ou Tpuls_dalle < Tpuls_GP (1) :
    déclenchement GP/GE
    Si le déclenchement est le résultat de la condition (1), une temporisation de 1h est appliquée avant un nouveau test des conditions d’enclenchement.
En période de relance (inoccupation)
Sans objet.

En été

Condition générale : Text > Text_cons_NC  et Text  > Treprise + 1°C
Permanent
  • Libération groupe de froid
  • ONOFF_FC = ON
  • Arrêt chaudière
  • Arrêt circuit convecteurs
  • Arrêt circuit batterie chaude
  • Arrêt humidification
En horaire d’occupation
    • Enclenchement GP/GE
    • Hzvent = Hzvent_min
    • %AN = 100%
    • Vroue = 100%
    • Si Treprise > Treprise_cons_été : cascade avec (chronologiquement) :
    • 1. action sur la batterie froide du GP avec limite Tpuls_dalle = Tpuls_dalle_min_été ;
    • 2. modulation de la vitesse du ventilateur Hzvent combinée à une modulation du taux d’air neuf suivant une régression [(Hzvent = Hzvent_min,%AN = 100%) ; (Hzvent =50 Hz, %AN = %ANmin)]

En horaire d’inoccupation (nuits et week-ends)
  • Arrêt groupe de froid
  • Arrêt batterie froide
  • Arrêt GP/GE
  • Si Text > Text_cons_FC
    et Tamb_max > Tamb_cons_max_FC
    et Text < Tamb_max – DTamb_ext
    enclenchement du free cooling : enclenchement GP/GE à vitesse max (Hzvent = 50 Hz), en tout air neuf (%AN = 100%) et sans récupération de chaleur (Vroue = 0%)
  • Si Tamb_moy < Tamb_cons_min_FC
    ou Text > Tamb_max – DTamb_ext
    ou Tpuls_dalle < Tpuls_GP (1) :
    déclenchement GP/GE.
    Si le déclenchement est le résultat de la condition (1), une temporisation de 1h est appliquée avant un nouveau test des conditions d’enclenchement.
En période de relance (inoccupation)
Sans objet

Impact énergétique

L’impact énergétique de cet algorithme de régulation par rapport à une régulation traditionnelle du recyclage a été évalué par simulation thermique dynamique au moyen du logiciel TRNsys 17 : la consommation électrique des ventilateurs est réduite de 70% et la consommation en énergie primaire de l’ensemble de l’installation est réduite de 50% par rapport à une régulation traditionnelle du taux d’air neuf par action sur les volets de mélange.

Avec régulation à vitesse variable des ventilateurs

Consommations annuelles Consommations annuelles en énergie primaire
chaud froid humidification ventilateur chaud et humidification froid ventilateur somme
kWhgaz/m²/an kWhélectricité/m²/an kWhprimaire/m²/an kWhp/m²/an
22,5 0.5 1.0 8.0 25.0 1.1 20.0 46.1
9.5

Avec régulation simple des volets de mélange

Consommations annuelles Consommations annuelles en énergie primaire
chaud froid humidification ventilateur chaud et humidification froid ventilateur somme
kWhgaz/m²/an kWhélectricité/m²/an kWhprimaire/m²/an kWhp/m²/an
22,5 0.5 1.0 26.6 25.0 1.1 66.5 92.6
28.1

Cas 3 : régulation du débit d’air neuf dans une installation « tout air neuf »

Certaines contraintes peuvent amener des auteurs de projet à mettre en place un free cooling mécanique pour rafraîchir le bâtiment en été.

Dans ce cas, le réseau de ventilation hygiénique est surdimensionné pour assurer un débit de refroidissement suffisant. Une gestion est donc nécessaire pour adapter le débit en fonction de la saison : un débit minimum hygiénique en hiver et un débit augmentant en été en fonction des températures intérieure et extérieure.

Comme dans une installation VAV traditionnelle, la gestion individuelle de l’ambiance peut se gérer par action sur des clapets modulants, le ventilateur modulant sa vitesse de manière à maintenir une pression constante dans le réseau. La consommation du groupe de ventilation est alors plus ou moins proportionnelle au débit pulsé.

L’étrangeté de ce mode de régulation apparaît par exemple en hiver. Dans ce cas il y a de fortes chances que l’ensemble des clapets de zone soit fermé en position minimale, générant une perte de charge que le ventilateur doit vaincre pour assurer le débit hygiénique. L’idéal énergétique voudrait plutôt que, pour le même débit pulsé, tous les clapets soient ouverts en grand et que le ventilateur réduise encore plus sa vitesse. Cela paraît simple lorsque toutes les zones du bâtiment demandent le débit minimal, mais cela se complique si, en été, les demandes de débit varient entre les zones. Dans ce cas, il convient de trouver un moyen de régulation qui permet au ventilateur de travailler toujours non seulement à son débit minimal, mais aussi à sa pression minimale. Ce sera le cas si la gestion de l’ensemble du système « clapets modulants – ventilateur » fait en sorte que quel que soit le besoin, au moins un clapet dans l’installation est en position totalement ouverte.

Un tel mode de régulation existe de façon intégrée chez certains fabricants de systèmes de ventilation. Il peut également être composé au départ de composants indépendants.

Descriptif de l’installation

L’installation est alors composée de :

  • Clapets modulants (ou boites VAV) sur la pulsion et l’extraction de chaque zone. Ces clapets ont la caractéristique de permettre une lecture digitale du débit et de la pression.
  • Groupe de ventilation à vitesse variable, avec batteries chaude et froide et roue de récupération
  • Régulateur digital

Principe de régulation

Régulation estivale

La température de consigne d’été sera contrôlée par action en cascade sur :

  • La température de pulsion : si la température de reprise du groupe dépasse la température de consigne d’été, une commande en cascade modulera la vitesse de la roue de récupération puis l’enclenchement de la batterie froide de manière à adapter la température de pulsion jusqu’à une température de pulsion minimale de confort. La température de pulsion est sera également limitée si la température d’une des zones descend en dessous d’une valeur minimale de confort paramétrable.
  • Puis l’ouverture des clapets de zone : si la température de pulsion minimale est atteinte, les clapets de zone s’ouvriront, entraînant l’augmentation de la vitesse des ventilateurs du groupe. Les clapets sont alors commandés par une mesure de température locale : la vitesse des ventilateurs et leur hauteur manométrique seront réglées en fonction de la position des clapets de zone. Le système de régulation connaît le débit de chaque registre et optimise la vitesse de la centrale de traitement d’air de manière à ce qu’au moins un registre soit totalement ouvert (les ventilateurs adaptent leur vitesse jusqu’à ce qu’un des débits locaux devienne inférieur à sa consigne).

Régulation hivernale

Durant la saison de chauffe, la centrale de traitement d’air est réglée à une valeur correspondant au débit d’air hygiénique minimal. Ici aussi, les clapets de zones sont automatiquement réglés afin qu’au moins un registre soit totalement ouvert de manière à optimaliser la pression du réseau.

La roue de récupération fonctionne à sa vitesse maximale et la température de pulsion est maintenue à une valeur de consigne.

Algorithme de régulation associé (extrait)

La température de consigne de pulsion de l’air dépend de la température extérieure. Par exemple : si Text < ou = 0°C, Tpuls = 19 °C ; si Text > 18 °C, Tpuls = 16 °C, modulation linéaire entre ces 2 points.

Pour chaque zone (chaque clapet modulant), une courbe définit un débit d’air de consigne en fonction de la T° ambiante, avec une plage morte entre le débit minimal en mode chauffage (T ambiante = 21 °C) et l’augmentation du débit en mode refroidissement naturel (Tambiante > 24 °C).

Les signaux 0-10 V d’entrée et sortie des boîtes VAV sont convertis en débit d’air (m³/h) en fonction du débit maximum voulu. Un signal de 30 % (3 V) correspond ainsi au débit de ventilation hygiénique, un signal de 100 % (10 V) au débit maximal de free cooling. Un signal de 0 % (0 V) correspond alors à la mise à l’arrêt du système (par exemple, fermeture complète des boîtes suivant un horaire programmé).

Le signal de sortie 0-10 V d’une boîte VAV est envoyé à la GTC. Il permet de lire le débit réel de la boîte.

L’écart entre la consigne de débit et le débit mesuré est calculé pour chaque boîte VAV (en pulsion et en extraction). La valeur minimale de cet écart pour les différentes boîtes est envoyée à un régulateur PID qui module la vitesse du groupe de pulsion pour la maintenir à une valeur de consigne (par exemple « -50 m³/h »). Cela signifie qu’au minimum une boîte est en demande permanente et donc se retrouve en position complètement ouverte et le ventilateur fonctionne toujours à sa vitesse minimale.


Composants associés

Les registres équipés de moto-réducteurs et les vannes modulantes sont reliés au régulateur. Actuellement, la plupart des projets incluent une communication électronique, voire informatique, via bus de communication au dépend des conceptions pneumatiques qui ont eu leurs heures de gloire, mais beaucoup trop coûteuses au niveau investissement et exploitation.

Le contrôle de la température pose moins de problèmes qu’auparavant. Les sondes de température sont devenues fiables et permettent, associées à des automates, de réguler de manière optimum la température de l’ambiance.

Enfin, les régulateurs sont des automates programmables reliés entre eux et, éventuellement, à un superviseur (GTC) par un bus de communication. À l’heure actuelle, il est rare de voir des conceptions où les sorties des régulateurs sont pneumatiques. En effet, les coûts d’investissement (centrale de production d’air comprimé), d’exploitation (système de régulation à fuite contrôlée) sont importants et la précision ne vaut pas celle d’une installation électronique.

Fluides frigorigènes [Climatisation]

Fluides frigorigènes [Climatisation]


L’impact environnemental

Depuis quelques décennies, l’impact des fluides frigorigènes sur l’environnement est devenu un enjeu majeur. En effet, de par la présence de fuites au niveau du circuit frigorifique, la responsabilité de ces fluides dans la destruction de la couche d’ozone et l’augmentation de l’effet de serre n’est plus à démontrer.

Trou d’ozone au pôle sud.

Que ce soit en conception, en rénovation ou même en maintenance, les fuites de fluides sont donc à éviter. Elles dépendent essentiellement de la qualité :

  • du choix et de la mise en œuvre des équipements (soudures et connexions des conduites de distribution par exemple);
  • de l’optimisation du cycle frigorifique;
  • de la maintenance;

En France, en 1997, une étude a montré que le taux de fuites annuelles pouvait atteindre 30 % de la quantité totale en poids (ou en masse) de fluides frigorigènes présent dans les installations frigorifiques des grandes surfaces (Réf.: Zéro fuite – Limitation des émissions de fluides frigorigènes, D. Clodic, Pyc Éditions, 1997).

Depuis lors, les réglementations se sont attaquées à ces problèmes :

  • Suite au protocole de Montréal (1987) les fluides frigorigènes CFC (chlorofluorocarbures, principaux responsables de la destruction de la couche d’ozone) ont été définitivement abandonnés et remplacés progressivement par les HCFC.
  • Les réglementations européennes 2037/2000, 842/2006 et 517/2014 ont notamment imposé :
    •  l’interdiction d’utilisation des HCFC à fort impact sur l’effet de serre (GWP ou global Warming Potential);
    • le remplacement progressif des HFC à haut GWP;
    • le confinement des installations frigorifiques permettant de réduire la quantité de fluide frigorigène;
    • des contrôles réguliers d’étanchéité des installations;
    •  …

Indices d’impact

Pour établir l’impact des fluides frigorigènes sur la couche d’ozone et l’effet de serre, trois indices principaux ont été définis :

  • ODP : Ozone Depletion Potential;
  • GWP : Global Warming Potential;
  • TEWI : Total Equivalent Warming Impact.

ODP (Ozone Depletion Potential)

C’est un indice qui caractérise la participation de la molécule à l’appauvrissement de la couche d’ozone. On calcule la valeur de cet indice par rapport à une molécule de référence, à savoir soit R11 ou R12 qui ont un ODP = 1.

GWP (Global Warming Potential)

C’est un indice qui caractérise la participation de la molécule à l’effet de serre. On calcul la valeur de cet indice par rapport à une molécule de référence, à savoir le CO2, et pour des durées bien déterminées (20, 100, 500 ans). Le CO2 à un GWP = 1.

TEWI (Total Equivalent Warming Impact)

Le TEWI est un concept permettant de valoriser le réchauffement planétaire (global warming) durant la vie opérationnelle d’un système de réfrigération par exemple, utilisant un fluide frigorigène déterminé en tenant compte de l’effet direct dû aux émissions de fluide frigorigène et à l’effet indirect dû à l’énergie requise pour faire fonctionner le système.

À titre indicatif, il est donné par la formule :

TEWI = (GWP x L x n) + (GWP x m[1-C]) + n x E x β

Où :

  • GWP : global warming potential;
  • L : émissions annuelles de fluide en kg;
  • n : durée de vie du système en années;
  • m : charge en fluide frigorigène en kg;
  • C : facteur de récupération / recyclage compris entre 0 et 1;
  • E : consommation annuelle d’énergie en kWh;
  • β : émission de CO2 en kg / kWh.

Voici, pour chaque fluide frigorigène, le Ozone Depletion Potential (potentiel de destruction de la couche d’ozone) et le Global Warming Potential (potentiel de participation au réchauffement climatique) sur 100 ans :

ODP GWP100
R717 Amoniac 0 0
R744 CO2 0 1
R290 Propane 0 20
R32 HFC, fluide pur 0 675
R134a HFC, fluide pur 0 1 430
R407C HFC, mélange 0 1 800
R22 HCFC 0,05 1 810
R410A HFC, mélange 0 2 100
R427A HFC, mélange 0 2 100
R417A HFC, mélange 0 2 300
R422D HFC, mélange 0 2 700
R125 HFC, fluide pur 0 3 500
R404A HFC, mélange 0 3 900
R12 CFC 0,82 10 900

Source : 4ème rapport de l’IPCC (Intergovernmental Panel on Climate Change).


Les fluides frigorigènes fluorés

Fluides frigorigènes fluorés

Les fluides frigorigènes fluorés sont en grande partie responsables de la destruction de la couche d’ozone et contribuent à augmenter l’effet de serre. Les interactions entre les deux phénomènes sont réelles mais d’une grande complexité.

On en distingue plusieurs types :

  • CFC;
  • HCFC;
  • HFC.

CFC (chlorofluorocarbures) (interdits de production depuis janvier 1995)

Ce sont des molécules composées de carbone, de chlore et de fluor. Elles sont stables; ce qui leur permet d’atteindre la stratosphère sans trop de problèmes. À ce stade, en se transformant elles contribuent à la destruction de la couche d’ozone.

R-11 Groupes centrifuges « basse pression ».
R-12 Essentiellement froid domestique et climatisation automobile, mais aussi dans les groupes refroidisseurs d’eau centrifuges.
R-13 Rares utilisations en froid très basse température.
R-14 Rares utilisations en froid très basse température.
R-113 Abandonné avant son interdiction.
R-114 Pompes à chaleur et climatisation de sous-marin.
R-115 Fluide pas utilisé seul, mais dans le R-502, mélange azéotropique très utilisé en froid commercial basse température.

HCFC (hydrochlorofluorocarbures) (utilisation interdite au Ier Janvier 2015)

Ce sont des molécules composées de carbone, de chlore, de fluor et d’hydrogène. Elles sont moins stables que les CFC et détruisent l’ozone dans une moindre mesure. Elles sont appelées substances de transition.

R-22 Fluide frigorigène le plus souvent utilisé, aussi bien en froid industriel qu’en climatisation.
R-123 Remplace le R-11 dans les groupes centrifuges.
R-124 Essentiellement utilisé dans certains mélanges.

HFC (hydrofluorocarbures) (utilisation réduite progressivement jusqu’en 2030)

Ce sont des molécules composées de carbone, de fluor et d’hydrogène. Elles ne contiennent pas de chlore et donc ne participent pas à la destruction de la couche d’ozone. Par contre, les HFC présentent un Global Warming Potential (contribution à l’effet de serre) sur 100 ans élevé.

R-134a

(Solkane)

Fluide frigorigène qui a remplacé le R-12 en froid domestique et en climatisation automobile.

En application « chauffage », il présente l’avantage de faire fonctionner les pompes à chaleur à haute température (généralement jusqu’à 65 °C) et à relativement basse pression. Son utilisation est compatible avec une production d’eau chaude pour radiateurs en lieu et place d’une chaudière.

C’est également un composant majeur de la plupart des mélanges de remplacement.

R-125 N’est jamais utilisé pur en raison de sa pression critique trop faible (66°C). Il entre dans la composition de nombreux mélanges compte tenu de son pouvoir « extincteur ».
R-32,
R-152a
R-143a
Inflammables et donc utilisés uniquement en mélange avec d’autres composants qui « neutralisent » leur inflammabilité.

Mélange de fluides frigorigènes

On peut les classer en fonction du type de composants fluorés qu’ils contiennent.
Ils se distinguent également par le fait que certains mélanges sont :

  • Zéotropes : au cours d’un changement d’état (condensation, évaporation), leur température varie.
  • Azéotropes : ils se comportent comme des corps purs, sans variation de température lors du changement d’état.

Il va de soi que les frigoristes apprécient cette propriété d’azéotropie pour le fonctionnement de la machine frigorifique.

Le R407C (R134a : 52 % + R125 : 25 % + R32 : 23 %)

Le R407C est un fluide non azéotrope (il est composé de plusieurs fluides) afin d’obtenir sa température de changement d’état.

Ce fluide frigorigène présente les particularités suivantes :

  • Il est ininflammable.
  • Lors des changements de phase, la température « glisse » d’environ 5 K car les températures d’évaporation et de condensation des fluides frigorigènes qui le constituent sont différentes. Ceci rend les réglages plus difficiles et impose des échangeurs à contre-courant pour tirer le meilleur parti de ce fluide.
  • En cas de micro-fuite, le composé ayant les molécules les plus volatiles s’échappe préférentiellement. Il en résulte un fluide frigorigène déséquilibré. Il est dès lors nécessaire de vider entièrement l’installation avant de la recharger, le gaz retiré étant recyclé.
  • Les pressions sont moindres avec ce fluide frigorigène.
  • Il est moins performant que le R410A …
Le R410A (R32 : 50 % + R125 : 50 %)

Le R410A présente de meilleures qualités thermodynamiques que le R407C et le R22. D’autre part, l’étanchéité des installations est plus élevée avec le R410A, les pertes de pression sont donc faibles et les vitesses de fonctionnement peuvent être élevées. Les composants sont dès lors plus compacts.

Le R410A est cependant toxique ! De plus, il se comporte comme un réfrigérant mono-moléculaire lorsqu’il change de phase : le passage d’un état à un autre se produit à température quasiment constante (le glissement de température est négligeable). On ne doit donc pas vider complètement l’installation avant de la recharger.Pour terminer, les pressions de fonctionnement sont 60 % plus élevées que dans le cas du R22. Ceci limite donc son utilisation aux températures de condensation moyennes : maximum 45 °C.

Le R404A (R143a : 52 % + R125 : 44 % + R134a : 4 %)

Le R404A présente des caractéristiques communes avec le R410A (il se comporte aussi comme un fluide quasi-azéotropique) mais sa pression de fonctionnement est plus basse. Sa particularité est de ne pas beaucoup s’échauffer pendant la compression. La température des vapeurs surchauffées en sortie de compresseur reste donc modérée, ce qui convient parfaitement à la mise en œuvre des PAC fluide/fluide.


Les fluides à bas « effet de serre »

Ils sont considérés comme moins inquiétants pour l’environnement, car à la fois sans action sur l’ozone stratosphérique et d’un faible impact sur l’effet de serre.

Ils présentent tous des inconvénients, soit au niveau sécurité, soit au niveau thermodynamique.

L’ammoniac (NH3) ou R-717

L’ammoniac présente de nombreux avantages en tant que fluide frigorigène :

  • Impact environnemental nul (ODP et GWP100 nuls);
  • très bon coefficient de transfert de chaleur;
  • efficacité énergétique élevée (au moins aussi bonne que le R22, meilleure dans certaines conditions);
  • le gaz ammoniac est plus léger que l’air;
  • faibles pertes de charge;
  • fuites aisément détectables;
  • faible prix de revient et faibles frais d’entretien des installations;
  • très difficilement inflammable, limite d’explosion élevée et petits champs d’explosion;
  • chimiquement stable;
  • aisément absorbable dans l’eau;
  • pas très sensible à l’humidité dans le circuit;
  • naturel donc biodégradable;
  • grâce à sa haute température critique, il permet de réaliser des températures de condensation très élevées et de concevoir des PAC à haute température.

Les COP obtenus avec ce fluide frigorigène peuvent être équivalents à ceux obtenus avec des HFC.

L’ammoniac est par contre toxique (mais pas cumulativement dans le temps) et irritable. Il peut être explosif dans des cas exceptionnels (les limites inférieure et supérieure d’inflammabilité doivent être très proches l’une de l’autre). Il sera également explosif dans des locaux non aérés où il se crée un mélange d’air, d’azote et d’ammoniac. Les locaux doivent donc absolument être ventilés et le passage de l’air doit également être totalement libre. De plus, le NH3 corrode facilement le cuivre et ses alliages ainsi que le zinc. Les installateurs sont donc obligés d’utiliser de l’acier. Pour terminer, l’ammoniac n’étant pas miscible et soluble dans les huiles minérales, il faut prévoir un séparateur d’huile après le compresseur.

Les installations à l’ammoniac l’utilisent liquide et sa quantité est réduite : la quantité de gaz perdu par fuites est donc faible.

Il est à l’heure actuelle principalement utilisé dans le froid industriel.

Les hydrocarbures (HC) comme R-290 R-600a

Il s’agit essentiellement du propane (R-290), du butane (R-600) et de l’isobutane (R-600a).

Ces fluides organiques présentent de bonnes propriétés thermodynamiques, mais sont dangereux par leur inflammabilité. Le monde du froid s’est toujours méfié de ces fluides, même s’ils sont réapparus récemment dans des réfrigérateurs et des mousses isolantes. Leur utilisation future paraît peu probable en climatisation, vu le coût de la mise en sécurité aussi bien mécanique qu’électrique. En PAC, on l’utilise donc dans des quantités les plus faibles possible (maximum 3 kg pour les applications résidentielles), de préférence à l’extérieur des bâtiments.

Le dioxyde de carbone (CO2) ou R-744

Fluide inorganique, non toxique, non inflammable, mais moins performant au niveau thermodynamique. Son usage implique des pressions élevées et des compresseurs spéciaux.

Il possède cependant de bonnes qualités en application PAC pour le chauffage ou l’eau chaude sanitaire. Il est peu coûteux, et sa récupération et son recyclage sont simples à mettre en œuvre.

Actuellement, les spécialistes s’y intéressent à nouveau de par :

  • son faible impact sur l’environnement (ODP = 0, GWP = 1);
  • son faible volume massique entraînant des installations à faible volume (fuites réduites);

Il a la particularité de posséder une température critique basse à 31 °C  pour une pression de 73,6 bar.

À noter que l’utilisation de ce type de réfrigérant entraîne aussi des contraintes non négligeables telles que la nécessité de travailler :

  • à des pressions élevées (80 voire plus de 100 bar);
  • en transcritique qui demande une maîtrise de la condensation en phase gazeuse (gaz cooler);

L’eau (H2O)

Fluide inorganique, bien entendu sans toxicité. Même si sa grande enthalpie de vaporisation est intéressante, il ne se prête pas à la production de froid sous 0°C. Il est peu adapté au cycle à compression et ses applications sont rares.

Synthèse

Frigorigène Fluide naturel ODP3 GWP (100ans) valeurs IPCC 3 GWP (100ans) valeurs WMO 4 Temp. critique (°C) Pression critique (MPa) Inflammabilité Toxicité Coût relatif Puissance volumétrique
R290

(HC) CH3CH2CH3

Oui 0 20 20 96,7 4,25 Oui Non 0,3 1,4
R717 (Ammoniac NH3) Oui 0 <1 <1 132,3 11,27 Oui Oui 0,2 1,6
R 744 (CO2) Oui 0 1 1 31,1 7,38 Non Non 0,1 8,4
R718 (H2O) Oui 0 0

Caractéristiques environnementales des fluides frigorigènes naturels.


Nomenclature

Les fluides frigorigènes sont soumis à une nomenclature qui se veut internationale. L’ASHRAE, une des plus utilisées, désigne les fluides frigorigènes par la lettre R associée à 2,3 ou 4 chiffre + une lettre (R134a par exemple).

Le tableau ci-dessous montre la méthode de désignation des fluides réfrigérants :

R-WXYZ§

Nomenclature

Appellation courante

R12

R134a

R1270

Appellation pour la détermination de la formule

R-0012

R-0134a

R-1270

CFC

W = Nombre d’insaturation

Carbone = Carbone (C=C)

C=C (double liaison)

0

0

1

X = nombre de Carbone -1

nombre d’atomes de Carbone C = X + 1

1

2

3

Y = nombre de Hydrogène +1

nombre d’atomes d’Hydrogène H = Y – 1

0

2

6

Z = nombre de Fluor

nombre d’atomes de Fluor F = Z

2

4

0

R401A

nombre d’atomes de Chlore Cl*

2

0

0

Formule chimique

C Cl2F2

C2H2F4

CH3 CH=CH2

Si § = A-E => symétrie

Si § = a-b => asymétrie (avec a moins asymétrique que b)

symétrie de la molécule

symétrique

asymétrique

symétrique

Calcul du nombre d’atomes de chlore : Pour les molécules saturées (w = 0), Le nombre d’atomes de chlore s’obtient à partir de la formule suivante : Cl = 2.(C = 1) – H – F.

Système tout air, à débit constant, double gaine

Système tout air, à débit constant, double gaine

Dans les années 70, pour gérer les particularités locales on a développé un réseau « tout air » double conduit (un d’air chaud et un d’air froid), avec boîte de mélange à l’entrée des locaux : quel coût d’investissement et quel gaspillage énergétique (on « détruit » l’énergie produite lors du mélange) !

Il s’agit donc là d’une technique qui n’est plus guère rencontrée aujourd’hui.

Ce système était utilisé lorsqu’un débit d’air élevé et constant est souhaité, que les besoins des locaux sont extrêmement variables d’une zone à l’autre (on ne souhaite pas la même température par exemple), et que le système doit répondre avec une très grande rapidité aux variations de charges (on n’est pas soumis au même ensoleillement par exemple).

En pratique, il a été peu utilisé dans les bureaux (l’inertie des bureaux ne demande généralement pas une grande souplesse), parfois en secteur hospitalier, plus souvent dans le secteur industriel avec exigences élevées de régulation. On a aussi pu le trouver dans des bâtiments spécifiques tels que des complexes de cinéma.


Principe de fonctionnement

Le système de conditionnement d’air « tout air, à débit constant, double gaine » est un système où deux niveaux de température d’air sont préparés en centrale, puis distribués par deux gaines distinctes vers le/les locaux. On l’appelle également « dual duct ».

En pratique, un caisson central assure un premier niveau de préparation de l’air (par exemple jusque 16°), puis une batterie de post-chauffe et une de refroidissement préparent de l’air chaud et de l’air froid, distribués dans deux gaines différentes. Des boîtes de mélange sont prévues à l’entrée de chaque local, ou zone de locaux ayant des besoins similaires. Chaque registre de mélange est piloté par un thermostat d’ambiance. Ce mélange est destructeur d’énergie. Les réseaux double gaine doivent donc être évités dans une approche URE.
En voici un exemple :

Ce système constitue une branche de la grande famille du conditionnement d’air « tout air » :

– débit constant

  • monogaine
    • unizone
      • basse pression
      • haute pression (avec boîte de détente)
    • multizone
      • basse pression
      • haute pression (avec boîte de détente)
  •  double gaine multizone (avec boîte de mélange)
    • basse pression
    • haute pression (avec boîte de détente)

– débit variable

  • avec chauffage par radiateurs indépendants
  • avec chauffage par batterie à eau chaude

Comme on le voit, il existe de nombreuses variantes !

Expliquons chacun des termes :

>  « tout air »

L’air est le fluide caloporteur de chaleur, de froid, ou d’humidité. Ainsi :

  • si en hiver le local présente des déperditions, l’air sera pulsé à 28°C, par exemple,
  • si en été, le local subit des apports solaires, l’air sera pulsé à 16°C,
  • si, dans la salle de cinéma, le film très suggestif provoque beaucoup de dégagement de vapeur de la part des spectateurs, l’air sera pulsé très sec !

>  « débit constant »

Le débit est fixé par le ventilateur (qui ne dispose que d’une seule vitesse de rotation).

La régulation est réalisée par action sur la température et le taux d’humidité de l’air pulsé.

>  « double gaine »

Les pièces climatisées sont alimentées par deux gaines, par exemple une gaine d’air chaud à 35°C, et une gaine d’air froid à 16°C.

>  « multi-zones »

Le système « double gaine » est forcément multi-zones : on crée plusieurs zones dans le bâtiment, chaque zone pouvant recevoir un air traité spécifiquement en fonction de ses besoins.

Remarque : une zone peut comprendre plusieurs locaux.

> « basse ou haute pression »

On parle de basse pression du ventilateur  :

  • si pression < 800 Pa, ou 80 mmCE
  • si vitesse dans les gaines < 7 m/s

On parle de réseau haute pression si la vitesse dans les conduits atteint de 12 à 16 m/s


Détails technologiques du traitement de l’air

L’air est d’abord pré-traité en centrale : mélange éventuel de l’air neuf et de l’air repris, filtration, préchauffage éventuel de l’air (notamment pour éviter tout risque de gel de la batterie froide) et pulsion dans deux caissons.

Un caisson est équipé d’un échangeur de postchauffe et si nécessaire d’un système d’humidification (généralement un humidificateur à vapeur) : c’est le préparateur du réseau chaud.

Un deuxième caisson est équipé d’une batterie froide, assurant éventuellement la déshumidification : c’est le préparateur du réseau froid.

Le chauffage de l’air est assuré

  • soit par batterie électrique,
  • soit par batterie d’eau chaude préparée en chaufferie.

Le refroidissement de l’air est assuré

  • soit par l’évaporateur d’un groupe frigorifique (système à détente directe),
  • soit par de l’eau glacée préparée par un groupe de production frigorifique.

Les parois des caissons sont à double enveloppe en tôle d’acier galvanisé ou peint. Un isolant acoustique et thermique de 25 mm d’épaisseur minimale est fixé entre les deux tôles.

À l’entrée de chaque local, ou de chaque zone de locaux, les deux flux d’air sont mélangés dans une « boîte de mélange » terminale. Le débit total est donc constant, c’est la proportion d’air chaud et d’air froid qui varie.


Variantes technologiques

Réseau sous haute pression

Pour réduire les sections, on augmente la vitesse de l’air dans les gaines. Les pertes de charge augmentent et obligent à travailler à haute pression au ventilateur. Des dispositifs de détente sont alors associées aux boîtes de mélange.

La pression du ventilateur est généralement >  1 000 PA, ou 100 mmCE et la vitesse dans les gaines > 10 m/s.

A débit égal, doubler la vitesse de l’air dans les gaines (par rapport au système basse pression) permet de diminuer par deux la section nécessaire. Mais les frottements de l’air sur les parois des gainages sont proportionnels au carré de la vitesse. Et donc le ventilateur doit vaincre des pertes de charges beaucoup plus élevées, pouvant à la limite atteindre 2 000 PA Aussi, actuellement, pour des raisons d’économie d’énergie (et de bruit), on ne dépasse plus 15 m/s, ce qui génère des pressions de ventilateur de 500 à 1 500 PA.

Après passage dans une boîte de détente, l’air est diffusé par les bouches de soufflage.

Les boîtes de détente sont généralement des boîtes insonorisées, comportant un organe déprimogène (tôle perforée par exemple). Un régulateur maintient le débit à valeur constante.

À ces pressions, des précautions sérieuses sont à prendre en matière acoustique, notamment au niveau des appareils terminaux (amortisseur de bruit).

Recyclage partiel

En vue de diminuer les coûts d’exploitation, l’air extrait peut être recyclé partiellement. On part de l’idée que l’on ne peut faire du froid et du chaud en même temps et que donc un des 2 échangeurs est à l’arrêt.

Dès lors, en été la batterie froide refroidit et la batterie chaude est à l’arrêt. Dans le réseau chaud circule de l’air mélangé entre l’air recyclé et l’air extérieur (chaud).

En hiver, seule la batterie chaude fonctionne. Et dans le réseau froid circule de l’air mélangé entre l’air recyclé et l’air extérieur (froid).

Et en mi-saison ? Que faire lorsque des locaux ont des demandes différentes ? Astuce : les deux batteries fonctionnent mais la batterie de chaud est alimentée par l’eau de condensation du groupe frigorifique qui produit l’eau glacée !

Récupération de la chaleur sur l’air extrait

Pour récupérer l’énergie contenue dans l’air extrait tout en évitant généralement tout risque de contamination, l’air sortant croise l’air neuf entrant dans un échangeur de chaleur.

Et toute combinaison des variantes précédentes …

Il est bien entendu possible de combiner les différentes variantes reprises ci-dessus.


Avantages

  • Possibilité d’adapter individuellement les ambiances suivant les locaux,
  • rapidité de la réponse du système à la demande des locaux,
  • possibilité d’utilisation d’air extérieur pour le refroidissement gratuit (free cooling),
  • contrôle de l’humidité relative en centrale et de l’empoussièrement.

Inconvénients

  • Le débit d’air est constant. Or il est dimensionné pour la situation extrême, généralement celle de l’été, en période de canicule avec un soleil de plomb ! Conclusions : de tels débits entraînent une consommation élevée des ventilateurs et, dans certains cas, de l’inconfort … toute l’année !
  • La consommation élevée du ventilateur devient très élevée dans le cas des installations haute pression.
  • L’encombrement de la centrale, des caissons de préparation terminaux et du double réseau de gaines (gros débits, section importante des conduites d’air neuf, d’air pulsé et d’air extrait).
Exemple.

Une salle de spectacles est maintenue à 20°C. De l’air chaud est pulsé à 30°C. Les déperditions du local sont de 20 kWatts. Quelle sera la section de la conduite nécessaire ?

La capacité calorifique de l’air étant de 0,34 Wh/m³.K, le débit est donné par :

débit = puissance / 0,34 x DT° (en m³/h).

Ici, débit = 20 000 / 0,34 x 10 = 5 882 m³/h = 1,63 m³/s

Sur base d’une vitesse de 8 m/s, la section devient 1,63 / 8 = 0,2 m², soit une section de 40 cm x 50 cm, ou une conduite circulaire de 0,5 m de diamètre !

La même puissance est transportée par de l’eau dans une tuyauterie de 1,75 cm de diamètre ! (vitesse : 1 m/s)

C’est pour limiter cet encombrement que l’on a recours à une conception de réseau de gaines sous haute pression. L’encombrement est plus limité mais reste toujours plus élevé que pour le système mixte eau + air, par exemple.

  • Intégration obligatoire dès la conception du bâtiment.
  • Coût d’exploitation très important :
    • Risque de « casser » de l’énergie : le réseau de froid prépare l’air à une température correspondant aux besoins du local le plus demandeur (le local informatique, exposé au Sud, par exemple !). Dès lors, tous les autres locaux devront mélanger cet air froid avec de l’air du réseau chaud…!  Une régulation centrale doit piloter le tout « intelligemment », et profiter de l’air extérieur lorsque sa température peut être valorisée, sans quoi les coûts d’exploitation sont catastrophiques ! (à noter qu’un tel système qui ferait du chaud et du froid simultanément est interdit en France, sauf si le fluide chauffant est de récupération, par exemple sur le condenseur de la machine frigorifique).
    • Il n’est pas possible de moduler le débit d’air neuf en fonction de la présence ou non d’occupants dans chacune des zones.
    • Des fuites d’un réseau vers l’autre apparaissent toujours dans la boîte de mélange où de 3 à 10 % du débit total est perdu malgré la fermeture du clapet.
    • Les batteries électriques sont peu coûteuses à l’investissement mais très onéreuses à l’usage, à l’opposé des batteries d’eau chaude qui sont coûteuses à l’investissement (deux tubes).
    • Le recyclage de l’air paraît aléatoire, puisque l’air extrait sera issu d’un mélange, sauf en plein hiver et en plein été… Une étude de rentabilité s’impose !
  • Si la vitesse de déplacement de l’air est augmentée pour diminuer les sections, le niveau de bruit sera nettement plus élevé et demandera un traitement acoustique sérieux.
  • Nécessité d’équipements de plus grande solidité pour résister aux pressions, si variante en haute pression.
  • Enfin, et ce n’est pas négligeable, le coût d’investissement de départ est très élevé !

Très honnêtement, avec de tels inconvénients, y a-t-il encore intérêt à avoir un système avec traitement centralisé ?

Système tout air, à débit constant, mono-gaine

Système tout air, à débit constant, mono-gaine


Principe de fonctionnement

Le système de conditionnement d’air « tout air, à débit constant, mono-gaine » est un système où l’air est préparé (chauffé, refroidi, humidifié,…) en centrale dans un caisson de traitement d’air, puis envoyé par un réseau de gaines vers le/les locaux.

En voici un exemple, appliqué à une zone :

Il constitue une branche de la grande famille du conditionnement d’air « tout air » :

– débit constant

  • monogaine

    • unizone  
    • multizone
  • double gaine multizone (avec boîte de mélange)
    • basse pression
    • haute pression (avec boîte de détente)

– débit variable

  • avec chauffage par radiateurs indépendants
  • avec chauffage par batterie à eau chaude

Comme on le voit, il existe de nombreuses variantes !

Expliquons chacun des termes :

>  « tout air » :

L’air est le fluide caloporteur de chaleur, de froid, ou d’humidité.
Par exemple :

  • si en hiver le local présente des déperditions, l’air pourra être pulsé à 28°C,
  • mais si en été, le local subit des apports solaires, l’air pourra être pulsé à 16°C,
  • et si, dans la salle de cinéma, le film très suggestif provoque beaucoup de dégagement de vapeur de la part des spectateurs, l’air sera pulsé très sec !

>  « débit constant »

Le débit est fixé par le ventilateur (qui ne dispose que d’une seule vitesse de rotation).

La régulation est réalisée par action sur la température et le taux d’humidité de l’air pulsé.

>  « mono-gaine » ou « double gaine »

Un seul réseau de gaines est créé, et donc un seul niveau de température est disponible pour la(les) pièce(s) climatisée(s). A l’inverse, les réseaux double gaine véhiculent simultanément de l’air chaud et de l’air froid, le mélange étant effectué à l’arrivée dans le local. Ce mélange est destructeur d’énergie. Les réseaux double gaine doivent donc être évités dans une approche URE.

>  « uni-zone ou multi-zones »

Uni-zone : il n’existe qu’une seule zone à traiter (une salle de conférences, par exemple),

Multi-zones : on crée plusieurs zones dans le bâtiment, chaque zone pouvant recevoir un air traité spécifiquement en fonction de ses besoins.

Remarque : une zone peut comprendre plusieurs locaux.

>  On peut aussi faire une distinction selon le niveau de pression « basse ou haute »

On parle de basse pression du ventilateur

  • si pression < 800 Pa, ou 80 mmCE
  • si vitesse d’air dans les gaines comprises entre 2 et 7 m/s

On parle de réseau haute pression si la vitesse dans les conduits atteint de 12 à 16 m/. Ces vitesses entrainant des consommations excessives des ventilateurs, on ne travaille aujourd’hui plus en haute pression lorsque le débit est constant.

Une unité de toiture (ou « roof top ») aurait pu être classée dans les installations « tout air, à débit constant, mono-gaine ». Elle présente la spécificité d’être équipée d’un refroidissement à détente directe.

 


Domaine d’application

Le système « tout air » a de l’intérêt lorsqu’un débit d’air élevé et constant est souhaité : on pense par exemple aux salles de spectacles où de toute façon on doit apporter de l’air aux personnes …
Le système « tout air – unizone » a de l’intérêt lorsque

  • Un seul local est à climatiser, généralement de grand volume : salle de spectacles, salle d’opération, salle de réunion, …
  • Il existe plusieurs locaux dont le fonctionnement thermique est similaire et pour lesquels un respect strict des consignes de température n’est pas imposé : plusieurs bureaux similaires sur une même façade, …
  • Il y a présence de locaux à chauffage très intermittent comme des salles de réunion, de spectacles,… : dans ce cas, la variante avec système de chauffage complémentaire par radiateurs permet d’assurer un chauffage de base entre 10 et 15°C en période de non-occupation, et une mise en confort très rapide dès l’arrivée des personnes (ou par horloge). Ce système est économique et supprime la surchauffe des locaux en période de forte occupation grâce aux possibilités de ventilation et de rafraîchissement, et à la faible charge des parois.

Le système « tout air – multizone » a de l’intérêt dans le cas où les charges thermiques varient mais que les locaux peuvent être regroupés en plusieurs zones de fonctionnement thermique similaire (et pour lesquels une modulation limitée des consignes de température est requise) : le placement de batteries terminales permettra alors de répondre plus précisément aux besoins.

Pourrait-on l’appliquer à un complexe de plusieurs salles de cinéma ? Probablement pas puisqu’il faudra chauffer la salle où deux nostalgiques regardent un film de Ingmar Bergmann, et refroidir la salle voisine où 350 personnes regardent avec passion « Titanic : le retour » où le bateau resurgit du fond des mers (tiens, cela me donne une idée…)


Détails technologiques de la centrale de traitement

Le chauffage de l’air est assuré

  • soit par batterie électrique,
  • soit par batterie d’eau chaude préparée en chaufferie.

Le refroidissement de l’air est assuré

  • soit par l’évaporateur d’un groupe frigorifique (système à détente directe),
  • soit par de l’eau glacée préparée par un groupe de production frigorifique.

L’humidification est réalisée :

Un réseau de pulsion distribue l’air traité et un réseau d’extraction en assure la reprise. En général, le débit de pulsion est légèrement supérieur au débit d’extraction afin de maintenir les locaux en surpression.

Constitution du caisson de traitement d’air.

Les parois sont à double enveloppe en tôle d’acier galvanisé ou peint. Un isolant acoustique et thermique de 25 mm d’épaisseur minimale est fixé entre les deux tôles.


Variantes technologiques

Réchauffage batteries terminales

Que faire si le bâtiment présente des zones différentes ? Par exemple des bureaux placés sur des façades différentes… Une première solution consiste à placer les batteries terminales en tête des différentes zones pour adapter la fourniture aux besoins.

Généralement, on rencontre soit des batteries alimentées eau chaude, soit des batteries électriques. Ceci ne répond qu’aux besoins variables de l’hiver… À noter qu’il est possible de placer une batterie de froid complémentaire à l’entrée de l’une ou l’autre zone, mais l’avantage d’une centralisation du traitement disparaît progressivement …

Chauffage par radiateurs

Le chauffage peut être assuré indépendamment, par un réseau de radiateurs en allège des fenêtres par exemple. Mais la régulation de la température des ambiances n’est pas toujours simple car il peut y avoir conflit entre les deux systèmes.

Recyclage partiel

En vue de diminuer les coûts d’exploitation, l’air extrait peut être recyclé partiellement.

Des registres motorisés modulent les débits d’air recyclé et d’air rejeté. Le débit d’air neuf peut donc varier mais sans jamais descendre sous le débit minimal d’air neuf hygiénique en période d’occupation.

Récupération de la chaleur sur l’air extrait

Pour récupérer l’énergie contenue dans l’air extrait tout en évitant généralement tout risque de contamination, l’air sortant croise l’air neuf entrant dans un échangeur de chaleur.

Humidification par humidificateur à vapeur

Dans ce cas, la batterie de post-chauffe peut être supprimée.

Réseau sous haute pression

Pour réduire l’encombrement, l’air est préparé en centrale dans le caisson de traitement d’air, puis conduit à haute vitesse vers le/les locaux.  On parle alors de système « tout air, à débit constant, mono gaine, uni-zone, haute pression » !

La pression du ventilateur est généralement > 1 000 PA (ou 100 mmCE) et la vitesse dans les gaines > 10 m/s.

A débit égal, doubler la vitesse de l’air dans les gaines (par rapport au système basse pression) permet de diminuer par deux la section nécessaire. Mais les frottements de l’air sur les parois des gainages sont proportionnels au carré de la vitesse. Et donc le ventilateur doit vaincre des pertes de charges beaucoup plus élevées, pouvant à la limite atteindre 2 000 PA. En pratique, on évite donc cette technologie aujourd’hui.

Après passage dans une boîte de détente, l’air est diffusé par les bouches de soufflage.

Les boîtes de détente sont généralement des boîtes insonorisées, comportant un organe déprimogène (tôle perforée par exemple). Un régulateur maintient le débit à valeur constante.

À ces pressions, des précautions sérieuses sont à prendre en matière acoustique, notamment au niveau des appareils terminaux (amortisseur de bruit).

Toute combinaison des variantes précédentes

À titre d’exemple, on rencontre ainsi des installations « tout air, à débit constant, mono gaine, multi-zones, haute pression »


Avantages

  • Simplicité globale,
  • facilité de dimensionnement,
  • régulation simple, fiable et centralisée,
  • fonctionnement stable, donc coût de maintenance réduit,
  • pas d’alimentation en eau chaude ou froide dans les locaux, sauf si la variante avec batteries de réchauffage en eau chaude est choisie,
  • faible niveau sonore, sauf avec les installations haute pression,
  • possibilité d’utilisation d’air extérieur pour le refroidissement gratuit (free cooling),
  • contrôle de l’humidité relative en centrale et de l’empoussièrement.

Inconvénients

  • Le débit d’air est constant. Or il est dimensionné pour la situation extrême, généralement celle de l’été, en période de canicule avec un soleil de plomb ! Conclusions : de tels débits entraînent une consommation élevée des ventilateurs et, dans certains cas, de l’inconfort toute l’année !
  • La consommation élevée du ventilateur devient très élevée dans le cas des installations à Haute Pression.
  • L’encombrement de la centrale et du réseau de gaines (gros débits, section importante des conduites d’air neuf, d’air pulsé et d’air extrait),
Exemple.

Une salle de spectacles est maintenue à 20°C. De l’air chaud est pulsé à 30°C. Les déperditions du local sont de 20 kWatts. Quelle sera la section de la conduite nécessaire ?

La capacité calorifique de l’air étant de 0,34 Wh/m³.K, le débit est donné par :

débit = puissance / 0,34 x DT° (en m³/h)

Ici, débit = 20 000 / 0,34 x 10 = 5 882 m³/h = 1,63 m³/s

Sur base d’une vitesse de 8 m/s, la section devient 1,63 / 8 = 0,2 m², soit une section de 40 cm x 50 cm, ou une conduite circulaire de 0,5 m de diamètre !

La même puissance est transportée par de l’eau dans une tuyauterie de 1,75 cm de diamètre ! (vitesse : 1 m/s)

C’est pour limiter cet encombrement que l’on a recours à une conception de réseau de gaines sous haute pression. L’encombrement est plus limité mais reste toujours plus élevé que pour le système mixte eau + air, par exemple.

  • Intégration obligatoire dès la conception du bâtiment.
  • Si uni-zone, température et humidité de soufflage uniques, d’où, si plusieurs locaux :
    • Un manque de précision dans le respect des consignes.
    • Une surconsommation suite à l’absence de régulation par pièce.
  • Si multi-zone :
    • Risque de « casser » de l’énergie : le caisson de préparation primaire refroidit l’air en fonction des besoins de la zone la plus demandeuse et les batteries de post-chauffe des autres zones devront réchauffer l’air par la suite… On détruit donc de l’énergie.
      (À noter qu’un tel système est d’ailleurs interdit en France, sauf si le fluide chauffant est de récupération, par exemple sur le condenseur de la machine frigorifique).
    • Il n’est pas possible de moduler le débit d’air neuf en fonction de la présence ou non d’occupants dans chacune des zones.
    • Si l’air doit pouvoir être refroidi et réchauffé distinctement dans chaque zone, une batterie de chauffe et un groupe de refroidissement peuvent être ajoutés pour chaque zone, mais le coût d’installation devient prohibitif.
    • Un compromis peut consister à installer une batterie froide terminale uniquement pour la zone la plus demandeuse de froid.
    • Les batteries électriques sont peu coûteuses à l’investissement mais très onéreuses à l’usage, à l’opposé des batteries d’eau chaude qui sont coûteuses à l’investissement (deux tubes).

En résumé, il n’y a pas de solution idéale en multi-zone. Une régulation centrale doit piloter le tout « intelligemment », sans quoi les coûts d’exploitation sont catastrophiques !

  • Si la vitesse de déplacement de l’air est augmentée pour diminuer les sections, le niveau de bruit sera nettement plus élevé et demandera un traitement acoustique sérieux.
  • Equipements de plus grande solidité pour résister aux pressions, si variante en haute pression.

Exemple de régulation

Citons en exemple le cas de salles de réunion intérieures alimentées par un réseau d’air commun. Comme les salles n’ont pas de surface déperditive, le concepteur n’a envisagé que des batteries froides locales.

La température de pulsion est réglée pour éviter l’inconfort même lorsqu’une salle est peu occupée. Résultat : on chauffe l’air neuf et on refroidit l’ambiance dans les salles à forte occupation. Si une batterie chaude n’est pas installée dans chaque salle, l’algorithme à imaginer pour limiter la destruction d’énergie doit être du type (source : MATRIciel sa, 2010) :

Légende

  • Text  = température extérieure
  • Text_cons_NC  = température extérieure de non chauffage (arrêt du besoin de chauffage du bâtiment) – Paramétrable (par défaut : 15°C)
  • Treprise = température de l’air mesurée dans la reprise commune vers le GE
  • Hzvent = fréquence d’alimentation des ventilateurs de pulsion et d’extraction (liés)
  • Vroue = vitesse de la roue de récupération de chaleur sur l’air extrait (de 0% = sans récupération, 100% = récupération maximale)
  • Tpuls_GP = température de pulsion mesurée à la sortie du GP
  • Tpuls_GP_min_hiver = consigne de température de pulsion minimale de l’air dans les salles en hiver, à la sortie du GP – Paramétrable (par défaut : 16°C)
  • Tpuls_GP_min_été = consigne de température de pulsion minimale de l’air dans les salles en été à la sortie du GP – Paramétrable (par défaut : 16°C)
  • Tamb_min = température ambiante mesurée sur les sondes d’ambiance des salles. Valeur minimale des mesures
  • Tamb_cons_hiver = température de consigne ambiante des salles en hiver – Paramétrable (par défaut : 20°C)
  • Thors_gel = température de pulsion correspondant à la protection anti-gel des batteries du GP – Paramétrable (par défaut : 5°C)
  • Tamb = température ambiante mesurée par la sonde d’ambiance d’une salle
  • Tamb_cons_été = température ambiante de consigne maximale à ne pas dépasser dans les salles – Paramétrable (par défaut : 25°C)
  • %HR reprise = humidité relative mesurée dans la reprise
  • %HR reprise_cons = consigne d’humidité relative mesurée dans la reprise – Paramétrable (par défaut : 40%)

En hiver

Condition générale : Text  < Text_cons_NC et Text  < Treprise + 1°C

Permanent

  • Enclenchement chaudière
  • Modulation de la température d’eau de départ en fonction de la température extérieure (courbe de chauffe)
  • Arrêt groupe de froid
  • Arrêt circuit batterie froide

En horaire d’occupation

  • Enclenchement GP/GE
  • Libération circuit batterie chaude
  • Hzvent = 50 Hz
  • Vroue = 0%
  • Si Tpuls_GP < Tpuls_GP_min_hiver
    Ou Tamb_min < Tamb_cons_hiver
    Ou Tpuls_GP < Thors_gel : cascade avec (chronologiquement) :
  1.  Modulation de la récupération de chaleur avec limite Vroue = 100%
  2. action sur la batterie chaude du GP
  • par salle : si Tamb > Tamb_cons_été : action sur le ventilo-convecteur
  • Si %HRreprise < %HR reprise_cons : action sur humidificateur vapeur

En horaire d’inoccupation (nuits et week-ends)

  • Arrêt GP/GE
  • Arrêt ventilo-convecteurs
  • Fermeture vanne batterie chaude, arrêt circulateur (avec protection hors gel)

En période de relance (inoccupation)

Sans objet.

En mi-saison

Condition générale : Text  > Text_cons_NC et Text  < Treprise + 1°C

Permanent

  • Arrêt chaudière
  • Arrêt circuit batterie chaude
  • Arrêt groupe de froid
  • Arrêt circuit batterie froide
  • Arrêt humidification

En horaire d’occupation

  • Enclenchement GP/GE
  • Hzvent = 50 Hz
  • Vroue = 0%
  • Si Tpuls_GP < Tpuls_GP_min_hiver
    Ou Tamb_min < Tamb_cons_hiver
    Ou Tpuls_GP < Thors_gel : Modulation de la récupération de chaleur avec limite Vroue = 100%
  • par salle : si Tamb > Tamb_cons_été : action sur le ventilo-convecteur

En horaire d’inoccupation (nuits et week-ends)

  • Arrêt GP/GE
  • Arrêt ventilo-convecteurs

En période de relance (inoccupation)

Sans objet

En été

Condition générale : Text  > Text_cons_NC et Text  > Treprise + 1°C

Permanent

  • Libération groupe de froid
  • Arrêt chaudière
  • Arrêt circuit batterie chaude
  • Arrêt humidification

En horaire d’occupation

  • Enclenchement GP/GE
  • Libération circuit batterie froide
  • Hzvent = 50 Hz
  • Vroue = 100%
  • Si Tpuls_GP > Tpuls_GP_min_été : action sur la batterie froide du GP
    par salle : si Tamb > Tamb_cons_été : action sur le ventilo-convecteur

En horaire d’inoccupation (nuits et week-ends)

  • Arrêt groupe de froid
  • Arrêt GP/GE
  • Arrêt ventilo-convecteurs
  • Fermeture vanne batterie froide, arrêt circulateur

En période de relance (inoccupation)
Sans objet.

Climatisation à débit de réfrigérant variable

 Climatisation à débit de réfrigérant variable


Principe de fonctionnement

Remarque : nous avons repris la terminologie française DRV (Débit de Réfrigérant Variable) mais ce type d’appareil est aussi appelé « VRV » (Variable Refrigerant Volume) ou « VRF » (Variable Réfrigérant Flow) selon les constructeurs.

Concevoir

Pour en savoir plus sur le choix d’un tel système !

Fonctionnement en froid seul

On connaissait le principe de la « détente directe » (l’évaporateur de la machine frigorifique refroidit directement l’air dans le caisson de traitement d’air). Cette fois, on réalise la détente directe dans chaque local puisque le fluide réfrigérant est transporté jusqu’à l’échangeur du local qui sert d’évaporateur ou de condenseur ! Ce n’est ni l’air ni l’eau qui circule dans les conduits, mais bien du fluide réfrigérant.

Schéma fonctionnement en froid seul

Schéma fonctionnement en froid seul

À partir d’une unité extérieure, on peut alimenter jusqu’à 64 unités intérieures. Les groupes extérieurs disponibles sur le marché aujourd’hui ont des puissances de froid allant de 12 à 150 kW en version monobloc ou multiblocs pour le raccordement d’un circuit frigorifique indépendant. Ceux-ci peuvent être multipliés, pour autant que la place disponible pour les groupes extérieurs soit suffisante. Mais ce sont des installations qui fonctionneront alors en parallèle (pas d’échange entre circuits raccordés à des unités extérieures différentes).  Il est recommandé d’éviter de connecter un nombre très important d’unités intérieures sur un même circuit frigorifique. La norme européenne EN378 impose une limite pratique de 0.44 kg/m³ de quantité de gaz réfrigérant contenue dans le plus petit volume fermé contenant une unité intérieure. Un calcul devra être réalisé par l’installateur ou le bureau d’études pour valider le respect de la norme. De plus, il est préférable de réaliser plusieurs circuits dans un même bâtiment pour limiter les quantités de gaz réfrigérant dans un même circuit et pour limiter les longueurs de tuyauteries et donc les pertes de charge.

Ce type de DRV sera choisi lorsque l’installation vient en complément d’une installation de chauffage existante (rénovation d’un ancien bâtiment). A éviter sous peine de risque de destruction d’énergie.

Fonctionnement réversible (froid ou chaud)

Schéma fonctionnement réversible (froid ou chaud)

Si certains systèmes sont limités au mode « froid », d’autres sont réversibles : le même échangeur intérieur peut alors servir de condenseur, lorsque le local est en demande de chaleur ! Une telle souplesse est issue d’une régulation électronique sophistiquée, notamment basée sur l’emploi de détendeurs électroniques et d’un bus de communication entre tous les équipements. Mais c’est l’ensemble des échangeurs qui fournissent du froid ou qui fournissent de la chaleur. La permutation du rôle des échangeurs est réalisée dans l’unité extérieure par une vanne d’inversion de cycle à 4 voies.

Les unités intérieures produisent alors toutes en même temps, soit du froid, soit du chaud. Ce système demande que les besoins du bâtiment soient assez homogènes et qu’une plage neutre (plage où la température fluctue sans intervention) de 21 à 25°C par exemple, soit acceptée par chacun. Ce ne sera donc pas un système adéquat pour un immeuble comportant des zones intérieures (à refroidir toute l’année) ou des façades fortement vitrées, orientées est-ouest. Sauf si la zone intérieure du bâtiment est importante, au point qu’un circuit indépendant (avec sa propre unité extérieure) se justifie rien que pour cette zone centrale.

A récupération d’énergie (froid et chaud simultanément)

Encore mieux : certains systèmes assurent simultanément le chaud et le froid dans les locaux. Par exemple, un local de réunion peut être demandeur de froid (la cassette intégrée dans le faux plafond travaille en évaporateur) tandis que le bureau voisin est demandeur de chaleur (la console en allège travaillera en condenseur). Le système va assurer simultanément les deux demandes, avec une consommation énergétique minimale puisque la chaleur extraite d’un côté est valorisée de l’autre côté, avec un COP défiant toute concurrence !

La solution idéale pour satisfaire les besoins en entre-saisons et donc le confort est d’opter pour les systèmes chaud et froid simultané. Le coût est plus important dû aux boitiers de répartition et à la conception des groupes extérieurs, mais c’est LA solution pour éviter les conflits entre demande de chaud et froid et donc les problèmes éventuels de régulation. N’oublions pas qu’en Belgique l’entre-saison représente une période importante.

Schéma à récupération d'énergie (froid et chaud simultanément)

Modulation de puissance

Suivant les constructeurs, les groupes extérieurs sont munis d’un, deux ou trois compresseurs. La plage de puissance thermique disponible sera fonction de la technologie et du nombre des compresseurs.

Suivant les constructeurs la modulation pourra être totale sur le ou les compresseur(s), ou partielle, dans ce cas un seul compresseur travaille à vitesse variable et le ou les autres est (sont) régulé(s) en « tout ou rien ». À noter qu’au démarrage, seul le compresseur INVERTER travaille et dès que la charge dépasse la limite de puissance de celui-ci, le 2ème (ou 3ème) compresseur « on-off » est enclenché  pour reprendre la charge et le compresseur INVERTER recommence à moduler à partir de 0 %. Avec ce type de cascade, le seul compresseur « INVERTER » fonctionne sans arrêt et s’use plus vite que le ou les autre(s).

Les groupes extérieurs munis de plusieurs compresseurs modulants « INVERTER » permutent les démarrages entre eux pour équilibrer les temps de fonctionnement et offre l’avantage d’une plus grande plage de modulation de puissance.


Détails technologiques

Fluide réfrigérant

Ces systèmes sont aujourd’hui disponibles avec le gaz réfrigérant de type R410A. Les différents composants ont alors été dimensionnés pour l’utilisation de ce gaz.

À partir du premier janvier 2022, ce gaz sera interdit dans les équipements de centrales de réfrigération neufs dont la puissance est supérieure ou égale à 40 kW à cause de son potentiel de réchauffement global 2 084,5 fois plus élevé que le CO2. Il pourrait alors être remplacé par le R32 (constituant actuel du R410A) qui est actuellement à l’étude au Japon. Ce gaz est cependant remis en question en raison de son inflammabilité.

Plus anecdotique, certaines installations de pompes à chaleur fonctionnent au CO2.

Le cœur du système reste une machine frigorifique et les critères applicables à ce type d’installation restent d’actualité. Par exemple, le carter doit être chauffé durant 48 heures avant le démarrage pour la mise en condition de l’huile.

Unité extérieure

Photo unité extérieure - 01  Photo unité extérieure - 02

Les unités extérieures sont généralement placées à proximité du bâtiment ou en toiture (pas de local technique spécifique). Ceci permet au condenseur en été d’être facilement refroidi par l’air extérieur et à l’évaporateur en hiver de pouvoir capter facilement la chaleur sans pour autant refroidir un local technique avec le brassage d’air nécessaire.

Photo unité extérieure modulaire - 01  Photo unité extérieure modulaire - 02

Les unités extérieures sont modulaires et peuvent être alignées côte à côte en fonction de la puissance nécessaire.

À défaut de place disponible, un local technique sera utilisé et un conduit d’air apportera et évacuera l’air nécessaire pour capter ou rejeter les calories suivant la demande du bâtiment, moyennant une consommation supplémentaire pour vaincre les pertes de charge. Les débits d’air nécessaires étant importants il faut noter qu’en  hiver le local peut chuter en température,  l’isolation phonique et thermique du local technique sont donc à prévoir et l’évacuation des condensats doit également être bien maîtrisée.

Lors du dégivrage des ailettes, une quantité non négligeable d’eau s’échappe des machines. Il faudra alors prévoir une évacuation adéquate pour éviter l’accumulation d’eau sur la toiture. De plus, en période hivernale des plaques de glace risquent de se former.

Réseau de distribution et dimensionnement des systèmes

Les tuyauteries en cuivre utilisées sont de très faible diamètre. Cela permet un gain de place par rapport aux systèmes traditionnels (à eau ou air) et les pertes calorifiques dues au transport sont faibles. Une isolation des conduites est indispensable. Les tuyauteries de petits diamètres sont vendues pré-isolées, ce qui facilite le montage.

Les dérivations frigorifiques seront exclusivement réalisées avec des raccords de type « Y » fournis par les fabricants qui permettront une parfaite distribution et répartition du fluide réfrigérant dans toutes les unités intérieures. Il y a des conditions de montage à respecter pour garantir la bonne fluidité du réfrigérant et éviter des nuisances sonores en cas de mauvaise alimentation en réfrigérant liquide dans les détendeurs.

Photo détendeurs.

Certains fabricants proposent des détendeurs déportés qui évitent toutes nuisances sonores dans les unités intérieures.

Photo détendeurs déportés.

Certains fabricants permettent des répartiteurs frigorifiques placés en série ou en parallèle ou en étoile pour réduire les quantités de conduites frigorifiques. Les logiciels de design permettent de vérifier les différentes configurations possibles et les répercussions sur les puissances disponibles en tenant compte des pertes de charge.

Photo répartiteurs frigorifiques.

La distribution peut être de type bitube en parallèle ou en étoile via un collecteur.

Schéma distribution de type bitube.

Pour les installations réversibles, un réseau « deux tubes » sera créé. En fonctionnement « froid », un tube transportera le fluide frigorigène liquide et ramènera le fluide à l’état vapeur. En fonctionnement « chaud », le premier tube véhiculera les « gaz chauds » issus du compresseur et ramènera le fluide refroidi et condensé.

Pour les installations avec récupération d’énergie, un réseau « trois tubes » transportera les « gaz chauds » (ou vapeur haute pression), le fluide liquide et la vapeur basse pression. Cette distribution en 3 tubes permet de fournir à tout moment le fluide réfrigérant nécessaire pour garantir les besoins en chaud et en froid. La sélection du mode « chaud » et « froid » est réalisée par un module de répartition munie de vannes, placé à l’entrée de chaque local ou de chaque zone régulés en commun. 

Exemple de fonctionnement en chaud/froid simultané.

À titre d’exemple, quelques valeurs et contraintes (c’est variable d’un constructeur à l’autre) :

  • Une distance maximale de 120 160 m entre l’unité extérieure et l’unité intérieure la plus éloignée (en ce compris les coudes, sur base de 1 coude = 2 1 m équivalant, par exemple).
  • Une dénivellation verticale entre unité extérieure et intérieure limitée à 50 90 m si l’unité intérieure est au-dessus et 40 si elle est en dessous.
  • Une dénivellation max de 15 m en moyenne entre unités intérieures, certains fabricants permettent 40 m.
  • Une somme totale des longueurs de tubes inférieure à 1000 m.

Unités intérieures

L’unité intérieure est parcourue par le fluide frigorigène. Un ventilateur  centrifuge ou tangentiel force l’air du local au travers de l’échangeur. Elle peut fonctionner soit en rafraîchissement, soit en chauffage, soit en brassage d’air, soit en déshumidification. Un détendeur électronique règle en permanence le débit de réfrigérant en fonction de la charge intérieure.

Les unités intérieures existent sous plusieurs formes :

  • Gainage en faux plafond,
  • Plafonnière encastré ou apparent,
  • En allège,
  • En rideau d’air

Traitement de l’air hygiénique

Les systèmes de DRV permettent aujourd’hui la détente/condensation directe dans les batteries froides et chaudes des groupes de ventilation.

Certains constructeurs proposent des mini centrales de traitement d’air double flux de maximum 1500 m³/h connectables sur un DRV. Ces mini centrales sont pour la plupart du temps équipées d’un système d’échangeur à plaques, batterie chaude ou froide et d’un humidificateur.

Autres applications

Outre le chauffage et le refroidissement direct à l’intérieur du bâtiment, le système DRV peut être équipé de module de production d’eau froide, d’eau chaude haute ou basse température, avec ou sans possibilité de connexion de collecteurs solaires thermiques, avec comme application :

Notons que cette dernière application peut également être obtenue par condensation/évaporation directe dans les batteries.

Certains fabricants de DRV proposent des unités de traitement d’air double flux avec une batterie à détente directe. Dans ce cas tous les composants HVAC sont compatibles entre eux via le bus de communication, et la totalité du système peut être régulé au départ de la même gestion centralisée.

Photo traitement d’air double flux avec une batterie à détente directe.

Boitier de sélection

Pour les DRV trois tubes, les boîtiers de sélection sont connectés en amont par 3 tubes par le groupe extérieur et en aval par 2 tubes à chaque unité intérieure, suivant la demande du local en chaud ou en froid  la circulation sera dans un sens ou dans l’autre suivant l’ouverture des vannes de passage.

Plusieurs unités intérieures peuvent être reliées au même boitier de sélection, une d’elles est alors désignée « Maitre » et sera la seule à commander le mode de fonctionnement.

Il n’y a pas de contrainte technique sur l’emplacement de ces boitiers, cependant le bruit qu’ils engendrent peut être dérangeant. Afin d’éviter de désagrément et de faciliter l’accès, certains installateurs les montent sur une structure préfabriquée qui peut alors être placée dans une armoire fermée accessible par le personnel de maintenance.

Photo armoire fermée accessible.


Régulation

Gestion du système de régulation.

Un tel produit n’a pu être conçu que moyennant l’intégration d’une régulation sophistiquée. Il est utile de savoir que le constructeur propose une GTC (gestion technique centralisée sur ordinateur) de facto, en ce sens que l’on peut définir ou suivre sur ordinateur tous les paramètres de l’installation : température de consigne, température de l’air soufflé, pourcentage d’ouverture de la vanne. Le principe « clef sur porte » de ce système fait que le concepteur, une fois qu’il a choisi entre les 3 configurations de base (chaud ou froid / chaud et froid), adopte la régulation proposée par le constructeur.  Les historiques permettent de suivre facilement l’évolution de ces paramètres et de détecter une anomalie.

Il n’est pas étonnant que les Japonais aient été les premiers à mettre ce type de système sur le marché. Chaque composant dispose de son « adresse » spécifique sur le bus de communication et une régulation « intelligente » permet au groupe extérieur d’adapter le mode de fonctionnement et la puissance nécessaire pour satisfaire précisément les demandes ponctuelles de chaque unité intérieure. Le calcul vectoriel est extrêmement rapide et la modulation du compresseur est très précise, certains fabricants réussissent à moduler au 1/10 H

Au niveau de l’utilisateur, une action par télécommande est possible pour régler le confort souhaité.  Chaque unité intérieure peut être commandée séparément ou par groupe depuis une télécommande infrarouge ou depuis un écran mural. Laisser à chaque occupant la possibilité d’intervenir sur la température peut devenir problématique, surtout dans des bureaux paysagers. Le confort de l’un n’est pas celui de l’autre. De plus, laisser trop de liberté peut engendrer des abus (température trop élevée en hivers et trop basse en été). Pour ces raisons, la marge de manœuvre de l’occupant est souvent bridée en ne lui offrant la possibilité de choisir la température du local uniquement dans une gamme de quelques degrés ou en limitant le nombre de commandes murales. Celles-ci sont généralement préférées aux télécommandes sans fil pour des raisons de perte ou de changement de piles.

Des gestions centralisées permettent de réaliser les programmations horaires des niveaux de température suivant les occupations et les saisons. C’est un outil très précieux pour optimiser la facture énergétique et éviter les abus et gaspillages occasionnés par une mauvaise manipulation des utilisateurs. Des programmations permettent de régler le système en mode automatique tout en permettant certaines dérogations dans des plages limitées suivant les utilisateurs. Ces gestions centralisées facilitent également la maintenance, de nombreuses fonctions d’autodiagnostics sont intégrées pour aider à détecter l’origine d’une panne éventuelle, et des accès à distance permettent une télésurveillance. Il est possible de programmer une adaptation des consignes (laisser dériver la température de 1° suffit) durant la période critique de la pointe quart-horaire. Automatiquement, le compresseur ne sera pas sollicité à ce moment.  Il est possible d’automatiser l’abaissement de consigne à partir de l’information issue de l’automate régulateur de pointe 1/4 horaire.

Des comptabilités énergétiques sont également disponibles pour permettre les éventuelles répartitions de consommation. Il est possible de connaître :

  • le pourcentage d’ouverture de la vanne dans chaque local
  • la consommation électrique totale de l’installation (en plaçant un compteur sur le seul câble qui reprend l’ensemble de l’installation, ventilateurs compris).

Par simple « règle de trois », on peut en déduire approximativement la consommation de chaque local (l’ouverture de la vanne ne dit pas exactement quel sera le débit de fluide, mais constitue une première approche) et établir une facture par consommateur.

Des interfaces permettent de dialoguer avec d’autres régulation et de piloter le système au départ de contact extérieur (lecteur de badge, détecteur de mouvement, contact de fenêtre, etc…).

« Froid seul » : les unités intérieures assurent le refroidissement uniquement

La régulation de la température ambiante est assurée

  • par la régulation de vitesse du ventilateur de l’évaporateur,
  • par un détendeur électronique qui module le débit de fluide en contrôlant la différence de température entrée-sortie du fluide dans l’évaporateur (similaire au réglage de la surchauffe).

Dans l’unité extérieure se trouve un ou plusieurs compresseur(s) hermétique(s) à vitesse variable (compresseur scroll ou compresseur rotatif), avec une régulation » INVERTER », c.-à-d. à vitesse variable par réglage de la fréquence d’alimentation.

En pratique, une sonde est placée sur la pression d’aspiration du compresseur. Cette pression est maintenue constante par action sur la vitesse du compresseur. Automatiquement, la température d’évaporation est maintenue constante. Ainsi, si la charge thermique du bâtiment augmente, la surchauffe augmente, le détendeur s’ouvre davantage, le débit de fluide réfrigérant augmente et la vitesse du compresseur augmente pour maintenir la pression.

Si la puissance frigorifique est importante, une cascade de deux (ou trois) compresseurs est réalisée. Mais un seul travaille à vitesse variable. Le deuxième est régulé en « tout ou rien ». Au démarrage, seul le compresseur INVERTER travaille. Dès que la charge dépasse la limite de puissance de ce compresseur, le 2ème compresseur est enclenché pour reprendre la charge et le compresseur INVERTER recommence à moduler à partir de 0 %.

Avec ce type de cascade, le compresseur INVERTER fonctionne sans arrêt et s’use plus vite que les autres. Pour éviter cela certaine unités extérieures sont équipés de plusieurs compresseurs INVERTER permanents ainsi un fonctionnement à tour de rôle.

« Froid ou chaud » : les unités intérieures sont réversibles

Dans ce cas, c’est tout le réseau qui travaille soit en froid, soit en chaud. Cette réversibilité est réalisée via une vanne d’inversion de cycle, dans l’unité extérieure. En passant d’un mode à l’autre, on inverse le sens de circulation du fluide dans les conduites. L’échangeur dans le local passe d’évaporateur à condenseur, et vice versa.

Bien sûr, une fois le mode général décidé, chaque local garde sa propre régulation interne : un détendeur électronique compare la température de l’air de reprise par rapport à la la température de consigne et adapte le débit de fluide frigorigène en conséquence.

En mode froid, la température d’entrée de l’évaporateur est égale à la température d’évaporation du fluide; la température de sortie est cette même température augmentée de la surchauffe. Celle-ci est classiquement réglée sur 6…7°. La vanne du détendeur sera donc réglée pour maintenir ces 7 degrés : si la charge thermique augmente, la surchauffe augmente, le détendeur s’ouvre davantage et le débit de fluide augmentera dans l’évaporateur en fonction de la charge.

En mode chaud, le fluide circule en sens inverse. Cette fois, la différence de température mesurée par le régulateur du détendeur électronique va correspondre au sous-refroidissement du condenseur.

Un régulateur électronique gère globalement l’ensemble de la demande et adapte la réponse via un bus de communication qui relie les différents équipements.

En mode chauffage, quand les unités intérieures sont à l’arrêt, un système de contrôle assure qu’il n’y ait pas de condensation de réfrigérant dans les U.I., si cela est la cas, le détenteur s’ouvrira légèrement pour permettre la circulation du fluide.

« Froid et chaud » : les unités intérieures travaillent à la demande, avec récupération d’énergie

Ici, le système permet une production simultanée de froid dans un local et de chaud dans le local voisin. Avec transfert de la chaleur d’un local vers l’autre !

L’idée de base est que 3 conduites sont extraites de l’unité extérieure

  • une conduite liquide,
  • une conduite vapeur basse pression,
  • une conduite vapeur haute pression, càd des « gaz chauds ».

Ces 3 conduites alimentent boitiers de sélection ou modules de répartition (rectangles en pointillé sur le graphe). Ceux-ci sont informés du mode de fonctionnement (chaud ou froid) souhaité, et vont desservir, via un réseau deux tubes, l’unité intérieure soit en gaz chauds HP soit en vapeur BP.

Des autres composants (non représentés) complètent l’installation afin d’empêcher certains sens de passage.

Fonctionnement en « froid seul ».

Fonctionnement en « froid majoritaire » .

Fonctionnement en « équilibré ».

Fonctionnement en « chaud majoritaire ».

Fonctionnement en « chaud seul ».

Remarque : Cette régulation est certainement complexe et pose la question de la maintenance, mais elle dispose d’un avantage : le fait que tous les composants sont compatibles entre eux. Cela facilite la prise de responsabilité lors de problèmes quelconques.

Notons également que la plupart des fabricants offrent une maintenance par télésurveillance qui leur permettent de détecter à distance les anomalies d’une installation.

Nouvelles approches de la régulation

Certains constructeurs ont amélioré l’ajustement en permanence de la température et du volume de réfrigérant en fonction de la puissance totale nécessaire et des conditions météorologiques. Par exemple, à la mi- saison lorsque les besoins de rafraîchissement sont réduits et que la température ambiante est proche du point de consigne, le système règle la température de réfrigérant sur une valeur supérieure de façon à améliorer l’efficacité énergétique. Les technologies de compresseurs et les régulations diffèrent entre chaque fabricant, nous pouvons remarquer depuis quelques années quelques améliorations significatives sur le confort et la performance énergétique de ces systèmes.

Chez certains fabricants, il y a une version de groupe extérieur prévue pour des climats rudes qui stocke de la chaleur dans un matériau à changement de phase, durant la relance hivernale, c’est cette chaleur qui sera utilisée pour le dégivrage évitant ainsi le refroidissement du bâtiment.

L’utilisation de la logique floue (« Fuzzy Logic ») ou de la température glissante pour la régulation du système ouvre également de nouvelles perspectives. Notamment durant les premières semaines d’installation, le système apprend à reconnaître son environnement thermique (auto-adaptation des paramètres). Cela lui permettra de réagir plus rapidement à l’avenir et ainsi offrir un confort plus important pour les utilisateurs. Cependant la compacité des équipements et l’existence même de cette logique floue rendent l’interprétation d’une panne difficile par une personne extérieure. Généralement, la maintenance sera faite par le fabricant, qui dispose de logiciels spécifiques de dépannage (analyse de l’origine d’une panne) et qui remplacera les cartes défectueuses si nécessaires. La maintenance par du personnel interne à l’exploitant sera soit limitée à l’entretien des filtres, soit basée sur l’utilisation des logiciels des fabricants, moyennant une formation appropriée.

Boîtier de répartition (avec l’arrivée des 3 tubes).

Régulation intégrée dans la face avant du boîtier.

Il ne faut pas être rétrograde : les photocopieuses, les appareils photographiques, les voitures,… autant d’équipements qui sont bourrés d’électronique et avec lesquels nous vivons très bien. Une 2 CV se répare sans doute beaucoup plus facilement, mais elle ne se vend plus… confort oblige.
Cette centralisation de l’équipement vendu « clef sur porte » génère une grande clarté au niveau de la responsabilité du fabricant. Il l’a bien compris en agréant les installateurs pouvant installer leur matériel, après formation.


Récupération d’énergie sur boucle d’eau

Un constructeur propose un système avec récupération d’énergie sur boucle d’eau : les condenseurs à air des unités « extérieures » sont remplacés par des condenseurs à eau (à l’intérieur des équipements dénommés PAC sur le schéma parce que ce sont des machines frigorifiques réversibles en pompe à chaleur). Ces unités peuvent alors être installées dans le bâtiment.

Schéma système avec récupération d'énergie sur boucle d'eau.

L’utilisation d’un tel système permet une double récupération de chaleur :

  • récupérer la chaleur entre les unités intérieures d’un même groupe frigorifique, comme une installation « froid et chaud » ci-dessus.
  • récupérer la chaleur une deuxième fois entre les groupes de condensation connectés sur la même boucle d’eau.

Le principe est similaire à celui d’un réseau de pompes à chaleur sur boucle d’eau. La partie frigorifique de ce système reste identique. Les différences se situent au niveau des groupes de condensation, placés à l’intérieur du bâtiment. Ces groupes sont raccordés sur la même boucle d’eau. En cas de déséquilibre entre besoins de chaud et besoin de froid, la température de la boucle d’eau est maintenue constante grâce des équipements traditionnels (réfrigérant atmosphérique, chiller, chaudière, …) ou via une source géothermique. Notons que dans ce dernier, si les besoins en chaud et en froid ne s’équilibrent pas annuellement, il peut être nécessaire d’avoir recours à d’autres technologies pour éviter le dépassement de la capacité thermique du sol ce qui aura pour conséquence l’alourdissement  du nombre d’équipements.
Les avantages de ce système à double récupération de chaleur (air/air et air/eau) sont :

  • possibilité d’installation dans des immeubles de grande hauteur,
  • possibilité d’installation dans des régions très froides (où la pompe à chaleur aurait du mal à travailler « seule » par grands froids),
  • possibilité de récupérer la chaleur d’un procédé industriel ou une source de chaleur naturelle,
  • possibilité de stocker la chaleur excédentaire en cas de refroidissement,
  • possibilité de récupération de chaleur entre les groupes de condensation,
  • installation des groupes à l’intérieur (pas de pollution sonore).

C’est un système également à envisager lorsqu’un ancien circuit à eau glacée existe dans le bâtiment et qu’il pourrait être récupéré.

Un stockage de chaleur durant la nuit dans un réservoir tampon et une restitution en période de relance le matin peut permettre un gain financier en profitant du tarif électrique de nuit et en lissant les pointes de puissance toujours coûteuses. A nouveau, c’est l’électronique propre du système qui gère l’ensemble.

Si cette technique est théoriquement réalisable, le volume du réservoir peut vite devenir un obstacle.

Exemple :
Soit un bâtiment de bâtiment de 3 000m². Une relance de 11 W/m² est programmée durant 3 h. Cela représente un besoin de 99 kWh. Supposons une température de stockage d’eau de maximum  40 °C et une température d’extraction minimale de 10 °C. Le volume de réservoir serait alors de 28,4 m³.


Performance attendue

Comme toujours avec le fonctionnement « pompe à chaleur », le rendement en mode « chauffage » se dégrade lorsque la température extérieure décroît. Mais le nombre d’heures en régime « hivernal » étant réduit par rapport au régime « entre saisons » durant lequel les performances sont excellentes, le système permet d’atteindre des rendements saisonniers très intéressants.

Les constructeurs annoncent à charge nominale des EER entre 3,1 à 4,3 et des COP de 3,5 à 4,5. Ces valeurs restent dans la moyenne des machines à refroidissement/réchauffement par air, à près tout c’en est une. Mais où est le bénéfice énergétique alors ? Il se trouve dans le fonctionnement à charge partielle. Certains constructeurs annoncent des performances très attrayantes, par exemple à charge partielle 50% de la puissance nominale un EER de 7.36  (pour 25°c ext) et  un COP de 5.52 (pour 9°c ext).

De plus, le bénéfice énergétique sera amélioré avec le système DRV 3 tubes à récupération de chaleur si la récupération d’énergie est possible (chaleur provenant d’un local informatique, transfert de chaleur entre locaux dont les besoins sont forts différents, process industriel nécessitant la production d’eau chaude en été, etc…)

Certains fabricants annoncent des valeurs ESEER (rendement saisonnier) suivant la certification EUROVENT basées sur la formule adaptée pour les groupes d’eau glacée. Suivant cette formule, il y a moyen de définir un rendement approximatif saisonnier qui tient compte de la charge partielle aux différentes conditions de température extérieure et de la pondération que représentent ces conditions pour la saison de refroidissement.

L’impact de la performance à charge réduite devient prépondérant dans ce cas, ce qui représente bien la réalité de fonctionnement sous notre climat tempéré.

Ejecto-convecteurs

Ejecto-convecteurs

Il s’agit là d’une technique qui n’est plus guère utilisée aujourd’hui, mais qui pourrait toujours être rencontrée notamment dans des immeubles de bureaux anciens. 

Principe

L’éjecto-convecteur est le frère du ventilo-convecteur !

Comme lui, il suppose deux réseaux distincts

  • un réseau d’eau pour apporter chaleur et froid au local,
  • un réseau d’air pour assurer la pulsion minimale d’air neuf hygiénique.

Ces deux apports se combinent astucieusement dans l’éjecto : l’air neuf pulsé à haute vitesse va induire le passage d’air secondaire dans les batteries d’eau chaude et d’eau glacée.

Et c’est là qu’une différence apparaît : le ventilo prévoit que l’air du local qui traverse les batteries soit pulsé par un ventilateur, alors que dans l’éjecto, c’est l’effet d’induction qui sera le moteur. L’air neuf pulsé entraîne de 2 à 5,5 fois son débit d’air ambiant au travers des batteries de chaud et de froid…

Si ce système a eu son heure de gloire dans les années 70 pour la climatisation des grands bureaux, il s’installe rarement aujourd’hui en allège. Par contre, il revient à la mode actuellement sous la forme de poutres froides insérées dans le faux plafond.

Les mauvaises langues disent d’ailleurs qu’avec cette nouvelle mode, on a de la puissance en moins (l’eau glacée ne peut descendre sous les 15°C pour éviter la condensation) et des ennuis en plus (assurer la maintenance d’un équipement au plafond, ce n’est pas évident !)


Aspects technologiques

Préparation de l’air primaire

En centrale, de l’air primaire est préparé. C’est à ce moment que l’on peut agir globalement sur le taux d’humidité de l’ambiance (humidification en hiver et déshumidification en été). Le débit d’air primaire est constant puisqu’il correspond généralement au débit d’air neuf hygiénique calculé sur base du nombre d’occupants prévus dans le bâtiment (30 m³/h/personne).

Le caisson de préparation est équipé d’une filtration de classe 7. À défaut, les buses d’induction se colmatent rapidement (d’où baisse du taux d’induction, augmentation de la vitesse et donc du bruit, …).

Distribution

Traditionnellement, l’air primaire est pulsé par des ventilateurs centrifuges, à grande vitesse (de 15 à 25 m/s) et sous forte pression (de 150 à 500 Pa)  jusqu’aux éjecto-convecteurs. Mais d’une part cette haute vitesse génère du bruit et d’autre part les effets d’induction ont été améliorés, si bien que les constructeurs proposent aujourd’hui des éjectos fonctionnant à vitesse normale.

Chaque appareil doit être raccordé au réseau de distribution d’air primaire, contrainte surtout gênante pour un projet de rénovation. Comme généralement les éjectos sont placés en allège, il faut prévoir des trémies verticales (gaines techniques) puis une distribution horizontale des gaines en allège. La présence de clapets coupe-feu dans chaque trémie augmente le coût global. Et l’obligation de l’allège réduit la liberté de l’architecte.

Émission dans les éjecto-convecteurs

Cet air passe dans des buses d’injection. A la sortie de ces injecteurs, une dépression est créée (effet Venturi) et l’air du local est aspiré par induction.

Et là, un choix crucial apparaît : plus la pression de l’air primaire est forte, plus l’induction est forte,… mais aussi plus un bruit de sifflement peut apparaître aux injecteurs ! Il faudra donc limiter le niveau de pression et faire en sorte que l’air secondaire du local n’ait pas à vaincre une trop forte perte de charge ! Les échangeurs seront de grande surface, les ailettes seront espacées,…

Autrement dit, le matériel sera plus encombrant et plus cher que celui des ventilos… !

Généralement, il n’y a pas de filtres sur les éjectos pour réduire la perte de charge. Mais si un filtre est placé sur le passage de l’air induit, son nettoyage fréquent s’impose.

Si la température de l’eau glacée est inférieure au point de rosée de l’ambiance (de l’ordre de 12°C), un réseau d’évacuation des condensats sera prévu.

Ci-contre, on reconnaît la buse d’amenée de l’air neuf, surmonté des batteries d’échanges.

Généralement, l’éjecto est non carrossé et intégré dans le mobilier du local. Le placement d’absorbants acoustiques collés sur les parois internes de ce mobilier sera bien utile.

Les réseaux d’alimentation des échangeurs

Comme pour les ventilo-convecteurs, il existe quatre grandes familles

  1. Les éjectos « à 2 tubes réversibles » : ils ne disposent que d’un seul échangeur, alimenté alternativement en eau chaude en hiver et en eau glacée en été.
  2. Les éjectos « à 4 tubes » : ils disposent de deux échangeurs, pouvant être connectés en permanence soit au réseau d’eau chaude, soit à celui d’eau glacée. La taille (le nombre de rangs) de l’échangeur de froid est plus élevé que celui de la batterie chaude, suite au delta T° plus faible sous lequel travaille la batterie froide. On dit que « le pincement » est plus faible entre T°eau et T°air dans l’échangeur.
  3. Les éjectos« à 2 tubes – 2 fils » : pour diminuer les coûts d’installation, on ne prévoit que le réseau d’alimentation en eau glacée. Pour assurer le chauffage d’hiver, une résistance électrique d’appoint est prévue. Mais le prix du kWh électrique étant nettement plus élevé que le kWh thermique, les coûts d’exploitation seront importants… Ce système ne se rencontre que rarement dans les éjectos.
  4. Les éjectos à « trois tubes » : deux tubes apportent séparément l’eau chaude et l’eau froide, le troisième assure un retour commun. Ce système est catastrophique au niveau énergétique par suite du mélange eau chaude/eau froide. Il est totalement abandonné aujourd’hui.

La régulation des systèmes à 2 tubes

De l’eau chaude ou de l’eau froide sont, suivant les saisons, préparées en centrale. Il est décidé globalement pour le bâtiment du moment de changer la température d’alimentation du réseau. Mais un besoin de découpage de l’installation en zones homogènes va apparaître si les façades sont diversement exposées.

En été, une seule température d’eau glacée est préparée en centrale; elle alimente le caisson de traitement d’air neuf et la boucle des éjectos. Au besoin, la température de distribution de l’eau glacée pourrait varier en fonction de la température extérieure ou de l’intensité du rayonnement solaire, via une régulation hydraulique. Cela réduit les pertes en ligne et diminue la consommation liée à la chaleur latente contenue dans l’air.

La température de l’air pulsé est généralement basse.

On pourra s’inspirer de la régulation des ventilo-convecteurs à 2 tubes.


La régulation des systèmes à 4 tubes

De l’eau chaude et de l’eau froide sont préparées simultanément en centrale; la température de l’eau chaude peut varier en fonction de la température extérieure. La température de l’eau glacée est généralement fixe au niveau du groupe frigorifique mais au besoin elle pourrait varier en fonction de la température extérieure ou de l’intensité du rayonnement solaire, via une régulation hydraulique. Cela réduit les pertes en ligne et diminue la consommation liée à la chaleur latente contenue dans l’air.

On pourra s’inspirer de la régulation des ventilo-convecteurs à 4 tubes.


Avantages

  • Les systèmes à éjecto-convecteurs font partie des installations où l’apport d’air neuf (réseau d’air) est séparé de l’apport thermique (réseaux d’eau). Il n’y a dès lors pas lieu de prévoir un recyclage de l’air et donc aucun risque de contamination d’un local vers l’autre.
  • L’installation est très souple localement, réagit facilement aux variations de charges (surtout si 4 tubes) et permet un contrôle individualisé de la température dans le local.
  • Les éjecto sont peu bruyants, si l’installation a été correctement dimensionnée par le bureau d’études… et que le client a bien voulu financer la qualité de l’installation : large dimensionnement des échangeurs ! (le bureau d’études fait souvent pour un mieux avec l’argent qu’on veut bien mettre dans l’installation…). À noter qu’il est important de procéder systématiquement au nettoyage des éjecteurs et au contrôle de l’équilibrage du réseau d’air primaire. Un éjecteur sale ou suralimenté en air émet, en effet, un son aigu particulièrement désagréable.
  • L’absence de ventilateur rend la maintenance très aisée : seul un nettoyage périodique des batteries et des buses est nécessaire.
  • L’encombrement peut être limité lorsque l’air primaire est acheminé vers les locaux sous haute vitesse, ce qui réduit les sections des gaines.

Inconvénients

  • La consommation électrique du ventilateur du caisson de préparation est élevée lorsque l’air primaire est distribué sous haute pression (pour assurer l’induction).
  • Le coût d’installation est élevé : une taille minimale de l’ordre de 100 éjectos est nécessaire pour amortir le coût d’un tel système, ce qui limite l’application aux grands immeubles.
  • La régulation, qui peut permettre de multiples combinaisons (sur l’air, sur l’eau) peut devenir trop sophistiquée.
  • Une sensibilité importante à l’équilibrage aéraulique du réseau d’air. De plus, toute ouverture des fenêtres est interdite sous peine de déséquilibrer totalement la distribution de l’air et de là, la distribution de chaleur induite !
  • La contrainte de devoir raccorder chaque appareil au réseau de distribution d’air primaire est très gênante, surtout pour un projet de rénovation. C’est également un défaut de souplesse en cas de modification du nombre et de la puissance des équipements, si bien que dans une architecture modulaire l’on est parfois obligé de sélectionner un appareil par module (pour prévoir tout déplacement futur de cloisons), solution qui s’avère très coûteuse…
  • Globalement, l’efficacité énergétique de l’installation est bonne, mais n’est pas optimale car :
    • Des pertes apparaissent dans l’éjecto au niveau des batteries, lorsque la régulation est faite par clapets d’air.
    • L’air primaire alimente simultanément tous les locaux, même ceux qui sont inoccupés.
    • Les débits sont constants et il est donc impossible de réaliser du free cooling sur l’installation, c’est-à-dire de profiter de l’air frais et gratuit extérieur.

Puissance rencontrée

Les éjecto-convecteurs ont une gamme de puissances calorifiques variant de 150 à 1 200 Watts, et des puissances frigorifiques de 120 à 900 Watts.

Le débit d’air primaire aux injecteurs est compris entre 8 et 50 l/s.

Compresseurs frigorifiques [Climatisation]

Compresseurs frigorifiques [Climatisation]

Compresseur à pistons

Photo compresseurs à pistons, construction ouverte.

Compresseurs à pistons, construction ouverte

Dans ce groupe de compresseurs, le moteur et le compresseur ne sont pas dans le même logement. L’arbre d’entraînement (vilebrequin) émerge du carter du compresseur. On peut y raccorder un moteur électrique, diesel ou à gaz. L’association se fait soit par un manchon d’accouplement, soit par une courroie.

L’accès à tous les éléments du compresseur est possible.

La puissance est réglée par mise à l’arrêt de certains cylindres ou par changement de régime du moteur d’entraînement.

On utilise les compresseurs de construction ouverte dans les installations d’une puissance de réfrigération jusqu’à 500 kW.

Photo compresseurs à pistons, construction semi-hermétique.

Compresseurs à pistons, construction semi-hermétique
( ou « hermétique accessible »)

Compresseur et moteur d’entraînement sont logés dans un carter commun. L’entraînement est habituellement assuré par un moteur électrique. Il est généralement refroidi par les gaz froids du réfrigérant (gaz aspirés), quelquefois par un ventilateur ou un serpentin d’eau enroulé sur le bâti du moteur.

Pour des réparations, on peut accéder à chaque partie de la machine et même séparer le compresseur du moteur (plaques boulonnées sur le bâti, avec présence de joints intercalaires).

La puissance est réglée par mise hors service de certains cylindres ou par changement de régime du moteur d’entraînement.

On utilise des compresseurs de construction semi-hermétiques dans des installations jusqu’à 100 kW ou, en recourant à plusieurs compresseurs, jusqu’à 400 kW environ.

Photo compresseurs hermétiques à pistons. Photo compresseurs hermétiques à pistons.

Compresseurs hermétiques à pistons

Compresseur et moteur électrique sont logés dans une enveloppe soudée. Ils sont généralement supportés par des ressorts pour éviter la transmission des vibrations. Le joint tournant disparaît et avec lui le risque de fuite.

Mais des contraintes nouvelles apparaissent :

  • Le fluide frigorigène et bien sûr l’huile de lubrification doivent être compatibles avec les matériaux qui composent le moteur.
  • Le refroidissement du moteur est réalisé par le fluide frigorigène lui-même, or cet échauffement est préjudiciable au cycle frigorifique puisque la température à l’aspiration du compresseur augmente et donc plus élevé au refoulement. De plus, lorsque si le moteur vient à griller, c’est l’ensemble du circuit frigorifique qui sera pollué : un nettoyage complet du circuit doit être réalisé si l’on veut éviter de nouveaux ennuis. En cas de problèmes, les réparations sont exclues… Dès lors, un organe de sécurité contre la surchauffe (Klixon) est incorporé. Grâce à cette sécurité thermique, montée dans les enroulements du moteur ou sur ces derniers, l’alimentation électrique sera coupée lors d’une surchauffe du moteur. Dans ce cas aussi, le moteur est refroidi par les gaz aspirés.

En principe, la puissance de réfrigération ne peut pas être réglée, sauf par variation de fréquence du courant d’alimentation.

On installe des compresseurs hermétiques à pistons dans de petits appareils (réfrigérateurs, climatiseurs compacts) ou dans des installations d’une puissance jusqu’à 30 kW environ.

Caractéristiques générales

Le compresseur à pistons a besoin d’être lubrifié en permanence. La partie inférieure du carter forme réserve d’huile. La pression régnant dans le carter est la pression d’aspiration. La pompe à huile délivre une pression supérieure de 0.5 à 4 bars à la pression régnant dans le carter.

Le compresseur à piston est très sensible à l’arrivée de fluide liquide : si quelques gouttes de liquide pénètrent au niveau des soupapes, elles en provoquent une usure lente. Si du fluide liquide pénètre en grande quantité, la destruction des clapets est immédiate. De là, les protections anti-coups de liquide adoptées (ressort puissant sur le chapeau de cylindre, capable de se soulever en cas d’arrivée de liquide).

« L’espace mort » est le volume qui reste entre le piston et le fond du cylindre, lorsque le piston est en position haute maximale. Cet espace est nécessaire pour éviter les chocs lorsque le piston est en bout de course. Il représente 3 à 4 % du volume du cylindre. Il faut le réduire au maximum afin d’augmenter le rendement volumétrique du compresseur.


Compresseur spiro-orbital, dit « scroll »

Le compresseur SCROLL est composé de deux rouleaux identiques en forme de spirale. Le premier est fixe, le second décrit un mouvement circulaire continu sans tourner sur lui même. Les spirales sont déphasées de 180°.

Le mouvement orbital entraîne le déplacement vers le centre des poches de gaz, ce déplacement est accompagné d’une réduction progressive de leur volume jusqu’à disparition totale. C’est ainsi que s’accomplit le cycle de compression du fluide frigorigène.

Photot compresseur spiro-orbital, dit "scroll".   Schéma principe compresseur spiro-orbital, dit "scroll".

La réduction du nombre de pièces par rapport à un compresseur à pistons de même puissance est de l’ordre de 60 %. L’unique spirale mobile remplace pistons, bielles, manetons et clapets. Moins de pièces en mouvement, moins de masse en rotation et moins de frottements internes, cela se traduit par un rendement supérieur à celui des compresseurs à pistons.

Cela se traduit par un COP frigorifique de l’ordre de 4,0 en moyenne annuelle alors qu’il se situe aux alentours de 2,5 pour les compresseurs à pistons (information constructeur).

Les variations de couple ne représentent que 30 % de celles d’un compresseur à pistons. Il n’impose donc que de très faibles contraintes au moteur, facteur de fiabilité.

Il reste limité en puissance (autour des 50 kW) mais plusieurs scrolls peuvent être mis en parallèle (jusqu’à 300 kW par exemple).

À noter également sa faible sensibilité aux coups de liquide.
Diverses méthodes de régulation de vitesse sont possibles :

  • Régulation « tout ou rien ».
  • Régulation par moteur à 2 vitesses.
  • Régulation par variateur de vitesse

Attention : en cas de rotation en sens contraire, il n’y a pas de compression et un bruit insolite avertit le technicien !


Compresseur rotatif

C’est un compresseur volumétrique qui retrouve de l’avenir grâce aux nouveaux matériaux composites.

On rencontre deux technologies :

  • le compresseur rotatif à piston roulant,
  • le compresseur rotatif à palettes.

Dans les deux cas, un stator cylindrique renferme un rotor excentré par rapport à l’axe du stator. Un volume en forme de croissant est piégé. Du fluide frigorigène y est introduit (aspiration) et la rotation du rotor va comprimer cet espace jusqu’à atteindre la pression souhaitée (refoulement).

Les puissances frigorifiques atteignent 10 kW.

Ils sont essentiellement utilisés pour les climatiseurs individuels et les petits refroidisseurs de liquide.


Le compresseur à vis

Photo compresseur à vis.

  • Type : machine ouverte ou fermée.
  • Plage de réglage : de 10 à 100 % avec un rendement assez constant.
  • Fonctionnement : le fluide frigorigène gazeux est comprimé par une vis hélicoïdale (un peu comme dans un hache-viande) tournant à grande vitesse. Le compresseur est entraîné par un moteur électrique.

On rencontre des compresseurs à vis selon deux technologies : les bi-rotors (type SRM) et les mono-rotors (type ZIMMERN).

Le rendement volumétrique d’un compresseur à vis est bon grâce à l’absence d’espaces morts, comme dans les compresseurs à pistons. Cette propriété permet d’assurer des taux de compression élevés avec un bon rendement volumétrique.

Les compresseurs à vis modernes ont des rotors à profils asymétriques, ce qui est préférable au niveau énergétique.

Les variations de puissance s’obtiennent dans les grosses machines par l’action d’un « tiroir » qui décide de l’utilisation d’une plus ou moins grande longueur de vis dans la compression des gaz, et donc induit un plus ou moins grand taux de compression. Dans les petites machines, toujours très grandes comparées à des compresseurs à piston, la modulation de puissance s’obtient par variation de la vitesse de rotation ou par utilisation de ports d’aspiration auxiliaires, soit par les deux.

Les avantages du compresseur à vis sont sa faible usure et son réglage facile. Il est toutefois encore coûteux.

Le compresseur à vis doit être abondamment lubrifié, pour assurer l’étanchéité entre les pièces en mouvement et pour réduire le niveau sonore, mais aussi pour refroidir le fluide frigorigène : on peut alors atteindre des taux de compression élevés (jusqu’à 20) sans altérer le fluide frigorigène.

Depuis peu, on utilise le compresseur à vis pour des puissances de réfrigération à partir de 20 kW environ.


Turbocompresseur ou compresseur centrifuge

Photo turbocompresseur ou compresseur centrifuge.

  • Type : machine ouverte ou fermée.
  • Plage d’utilisation : les très grosses puissances, au-delà de 1 000 kW. Réservé aux grands centres industriels et commerciaux.
  • Fonctionnement : une turbine à régime élevé comprime le gaz de réfrigération en transformant l’énergie cinétique centrifuge en pression statique. L’entraînement est assuré par un moteur électrique.

Les circuits de fluide frigorigène et d’huile sont bien séparés. Le fluide reste pur et on ne rencontre pas le problème de l’huile piégée dans l’évaporateur.

Le taux de compression engendré par un compresseur centrifuge à une roue est faible. Aussi, on le rencontre fréquemment en multi-étagé (2 ou 3 étages).

Les turbocompresseurs utilisés en climatisation sont montés et réglés en usine. Ils sont ensuite greffés sur un groupe de production d’eau glacée.

  • Régulation : on peut facilement adapter la puissance des turbocompresseurs par prérotation du fluide frigorigène à l’entrée de la roue.
  • Plage de réglage : de 100 à 30 % de la puissance nominale.

Les variations de puissance s’obtiennent par réglage des vantelles à l’ouïe d’aspiration de la turbine.

A faible charge, ils sont cependant plus délicats que les compresseurs à pistons. En effet, par faible débit, un phénomène de pompage apparaît : le débit oscille entre un débit nul et débit maximal, l’écoulement devient pulsatoire et engendre des vibrations qui peuvent endommager le compresseur. Les frais de réparation sont élevés. Les constructeurs prévoient généralement une mesure de sauvegarde de l’appareil par injection de gaz chauds. Ce n’ est certainement pas une technique énergétiquement intéressante puisque la puissance absorbée reste constante.

On évitera donc le surdimensionnement des équipements.

Dans la famille des compresseurs centrifuges, on classe le compresseur turbocor. Du point de vue énergétique, il est apprécié pour son COP élevé à charge partielle, pouvant s’élever à 10 entre 20 % et 60 % de charge.

Pour atteindre ce COP, le compresseur turbocor s’est doté de différentes technologies :

Photo principe compresseur turbocor.

  • Des paliers magnétiques qui maintiennent en lévitation le rotor du compresseur évitant ainsi les frottements et la lubrification (avec son système de refroidissement).
  • Une gestion électronique des paliers magnétiques.
  • Un moteur synchrone à aimant permanent (moteur brushless).
  • Une régulation à vitesse variable, Inverter.

Bien qu’il travaille à plus faible débit, le turbocor génère moins de bruit  (envrion -10db) et présente un encombrement plus faible que les compresseurs à vis.

Régulation de puissance des groupes frigorifiques [Climatisation]

Régulation de puissance des groupes frigorifiques [Climatisation]


La régulation « tout ou rien » par marche / arrêt du compresseur

Appliquons le principe d’une régulation par « tout ou rien » à une machine frigorifique.

  • Le thermostat d’ambiance agit directement sur l’alimentation du compresseur. En général, il agit en parallèle sur l’électrovanne placée sur la ligne liquide.
  • Les pressostats de sécurité (pressostats HP et BP) peuvent également agir sur le compresseur et sur l’électrovanne de la ligne liquide, mais en cas de fonctionnement anormal cette fois.

C’est de cette manière, simple et fiable, que sont régulées les armoires de climatisation, les groupes de production d’eau glacée, …
Pour les machines plus puissantes, il y aurait un risque trop élevé d’échauffement des bobinages du moteur.


La régulation « tout ou rien » par vidange de l’évaporateur (ou « pumpdown »)

Le principe consiste à arrêter le fonctionnement du compresseur par le pressostat BP, suivant la cascade d’événements suivants :

  • supposons que le niveau de froid soit atteint dans l’ambiance : le thermostat coupe l’alimentation de l’électrovanne sur la ligne liquide,
  • le fluide frigorifique ne peut plus alimenter l’évaporateur,
  • le peu de fluide qui s’y trouve encore s’évapore,
  • comme le compresseur continue d’aspirer les vapeurs, la pression chute,
  • le pressostat BP détecte l’insuffisance de pression et arrête le compresseur.

La remise en marche suit la même logique :

  • la sonde d’ambiance informe le thermostat d’une remontée en température,
  • le thermostat alimente l’électrovanne qui s’ouvre,
  • le fluide frigorigène envahit l’évaporateur,
  • la pression remonte,
  • le compresseur se remet en marche sous l’impulsion du pressostat BP et le cycle continue.

Remarques.

  1. On constate cette fois que deux pressostats BP seront nécessaires : un pressostat BP d’arrêt ou de mise en marche du compresseur et un pressostat de sécurité qui intervient en cas de fonctionnement anormal.
  2. Suivant les schémas électriques :
    • soit le pressostat n’autorise le redémarrage que s’il y a demande de froid (mise en série des interrupteurs),
    • soit le pressostat enclenche le compresseur même s’il n’y a pas de demande de froid, ce qui est à éviter car cela entraîne des démarrages trop fréquents.

L’avantage de ce type de régulation est qu’il va vider l’évaporateur et le circuit basse pression de la majorité du fluide frigorifique. Or celui-ci risquait de se condenser à l’arrêt du groupe, de former des gouttes de liquide, gouttes dangereuses au redémarrage (coups de liquide au compresseur).

De plus, cette technique abaisse la pression du carter du compresseur. Le fluide frigorifique dissous dans l’huile, s’évapore en bonne partie grâce à cette basse pression. Et lors du redémarrage, l’émulsion de l’huile sera plus faible. Ceci ne permet pas de couper le chauffage de l’huile du carter pour autant.

  1. Ce type de régulation est couramment utilisé, particulièrement lorsqu’il est nécessaire de vider l’évaporateur du fluide frigorifique avant l’arrêt.

On le rencontre dans les groupes frigorifiques dont l’évaporateur travaille à « détente directe » (batterie de caissons de traitement d’air), dans les groupes de production d’eau glacée, …


La régulation « progressive » de la pression d’évaporation

Comment adapter la puissance frigorifique à la charge réelle de l’ambiance ? La régulation par « tout ou rien » entraîne un nombre élevé d’enclenchements et de déclenchements du compresseur, et une fluctuation de la température intérieure peu confortable.

On cherche dès lors une adaptation plus progressive de la puissance frigorifique aux besoins des locaux.

Le régulateur de pression d’évaporation

Imaginons une charge assez faible. Le compresseur va aspirer les vapeurs mais celles-ci sont peu importantes. La pression à l’aspiration va diminuer, entraînant une diminution de température d’évaporation, et même un risque de gel de l’évaporateur.

On introduit alors un régulateur de pression entre l’évaporateur et le compresseur, un robinet qui va laminer les vapeurs de fluide frigorigène et créer une perte de charge : la pression dans l’évaporateur restera constante mais la pression côté compresseur va baisser fortement.

On parle d’ailleurs d’un « robinet à pression constante. Il assure le « laminage des vapeurs aspirées ».

La puissance frigorifique va diminuer, mais les températures à la sortie du compresseur vont s’élever (parfois jusqu’à 100°C).

Bien sûr, si la charge augmente, la vanne s’ouvre et le débit de fluide augmente. A charge thermique maximale, le robinet est totalement ouvert.

Le régulateur de pression d’évaporation prévient contre le risque de gel de l’évaporateur, en supprimant le risque d’avoir une pression si basse que l’évaporateur ne prenne en glace.

Mais le rendement énergétique de la machine s’en trouve dégradé… Et pourtant ce type de régulation est fréquemment employé, lorsque la réduction de puissance n’excède pas 40 à 50 %.


La régulation par « étages »

Comme pour les cascades de chaudières, le principe consiste à découper la tâche par palier !

La puissance frigorifique totale est éclatée en plusieurs machines en parallèle qui s’épauleront en fonction de la puissance à atteindre.

Différentes configurations sont possibles.

> un évaporateur et plusieurs compresseurs : il est alors fréquent que l’évaporateur soit lui aussi décomposé en plusieurs circuits. Il est nécessaire d’égaliser les niveaux d’huile dans les carters, à partir une tuyauterie de connexion.

On rencontre parfois le fait que les deux moto-compresseurs sont enfermés dans le même carter.

> deux machines frigorifiques distinctes en parallèle : il faut alors qu’un fluide caloporteur fasse la liaison entre les évaporateurs. C’est par exemple le cas du réseau d’eau glacée d’une installation de climatisation importante.

Ce système est recommandé, tout particulièrement lorsque les variations de charge sont importantes. Le montage est simple et fiable puisque les machines restent indépendantes. De plus, il permet une variation progressive de la puissance énergétiquement favorable (aucune machine n’est dégradée dans son fonctionnement).

Bien sûr, le coût d’investissement est plus élevé que si l’on utilisait une seule grosse machine.


La régulation de la vitesse de rotation ou « inverter »

Le contrôle traditionnel par mode MARCHE/ARRET entraîne des fluctuations inconfortables de la température à l’évaporateur et des mauvaises conditions de rendement du compresseur.

Les compresseurs dont on fait varier la vitesse vont comprimer un volume de fluide variable et ainsi adapter leur puissance frigorifique à la charge thermique du local. Quand l’écart mesuré entre le point de consigne et la température du local augmente, le système de régulation agit sur la vitesse de rotation du compresseur qui voit sa puissance frigorifique augmenter. Ce mode de régulation est appelé « INVERTER ». Il permet une variation de vitesse du compresseur sans pertes importantes de rendement.

Notons que le démarrage du compresseur se fait toujours à basse vitesse, contrairement au fonctionnement MARCHE/ARRET. La pointe de courant nécessaire au démarrage est ainsi fortement réduite.

La technologie INVERTER de plus en plus utilisée dans les machines frigorifiques ainsi que dans les pompes à chaleur car elle engendre des économies importantes à charge partielle.

Dans ce but, la technique traditionnelle du compresseur alternatif (piston et vilebrequin), d’une fiabilité légendaire, est progressivement remplacée par :

> le compresseur rotatif :

  • rendement similaire,
  • niveau sonore moindre,
  • fonctionnement à vitesse variable.

> le compresseur scroll :

  • rendement plus élevé,
  • niveau sonore encore plus faible,
  • fonctionnement à vitesse variable.
Dans certains cas, compresseurs à vis travaillant souvent à faibles charges se voit remplacé par des compresseurs Turbocor (dont le COP est proche de 10 entre 20 % et 60 %).

La mise hors service de cylindres

Le réglage de la puissance frigorifique peut se faire par la mise hors service d’un ou de plusieurs cylindres de compresseurs à pistons. Pour supprimer l’action d’un piston, il suffit de maintenir ouvert en permanence la soupape d’aspiration. C’est une méthode très répandue.

Un tel système est simple et fiable, moyennement efficace sur le plan énergétique. Les cylindres tournant à vide ont pour conséquence que, pour une puissance de réfrigération de 50 % par exemple, la machine absorbe encore environ 65 % de la puissance d’entraînement.

Avantage : pour éviter les pointes de courant de démarrage, il est possible de démarrer à vide le compresseur.

Par contre, la variation de la puissance n’est pas continue (sauts de puissance). Et, autre inconvénient, l’usure de la machine est pratiquement identique à vide ou en charge.


L’obturation de l’orifice d’aspiration

Dans les compresseurs à piston, un obturateur commandé par une électrovanne bouche l’entrée d’un ou de plusieurs cylindres, réduisant ainsi le débit et donc la puissance de la machine frigorifique.

Ce système provoque un échauffement du compresseur, ce qui n’est énergétiquement pas favorable, et entraîne le besoin de laisser au moins un ou deux cylindres sans obturateur.


La régulation par injection des gaz chauds

Le principe consiste à reboucler les gaz chauds sortis du compresseur vers l’entrée de l’évaporateur, juste après le détendeur. Un régulateur de capacité (ou de puissance) maintient la pression d’évaporation à la grandeur préréglée. Tandis que le détendeur régule toujours la surchauffe à la sortie de l’évaporateur, donc la température des vapeurs en sortie de l’évaporateur reste constante.

Tout ceci permet de rendre constant le débit de frigorigène qui traverse l’évaporateur.

Lorsque la charge thermique diminue (= lorsque le besoin de refroidir les locaux est faible), le régulateur de capacité s’ouvre (il maintient la pression en injectant du fluide frigorigène) et des vapeurs, chaudes mais détendues, constituent une charge thermique complémentaire de l’évaporateur. (Voir aussi « fonctionnement global de la machine frigorifique« ).

De même, dans les compresseurs centrifuges, une tuyauterie relie le condenseur à l’évaporateur, par la partie des échangeurs où le fluide frigorigène est à l’état vapeur. Un robinet solénoïde placé sur cette tuyauterie isole normalement les deux appareils (commande manuelle ou automatique).

Bien sûr, avec un tel système, la puissance de l’évaporateur peut varier pratiquement de 0 à 100 % !

Mais ce fonctionnement est pervers : si le besoin de froid diminue, et que le compresseur pourrait « être mis au chômage », on réinjecte de la chaleur pour donner du travail au compresseur !!!

Comparaison : imaginons une pompe qui vide un réservoir « bas » vers un réservoir « haut ». De peur du risque qu’elle se désamorce si elle n’a plus assez d’eau à pomper, on lui réinjecte de l’eau venant du réservoir « haut ». Ainsi elle peut continuer à fonctionner sans problème !

Il faut qualifier cette technique de « pur anéantissement d’énergie ». En effet, la puissance absorbée reste la même lorsque la puissance de réfrigération diminue. De plus, elle provoque un échauffement du moteur. Elle se rencontre assez souvent car elle met en œuvre un matériel peu coûteux. Dans la mesure du possible, il faut mettre ce système hors service dans les installations existantes.


La régulation « par tiroir » des compresseurs à vis

Les compresseurs à vis sont munis d’un dispositif qui rend leur puissance réglable dans une plage allant de 100 à 10 %. Le rendement reste satisfaisant, du moins jusqu’à 50 % de la charge nominale. En dessous, le rendement se dégrade et il faut donc éviter ces fonctionnements à basse puissance. L’intérêt de ne pas surdimensionner les installations reste déterminant.

Le principe consiste à limiter la course de la vis : en délaçant un « tiroir », c.-à-d. un élément du stator déplaçable par translation comme un tiroir, on modifie la section d’entrée du volume aspiré et donc on module le débit.

Un tel mécanisme permet d’assurer également le démarrage à vide de la machine.


La prérotation du fluide frigorigène dans les turbocompresseurs

Des ailettes pivotantes sont disposées dans la tuyauterie d’aspiration. En se fermant progressivement, elles génèrent un mouvement giratoire des gaz frigorigènes pénétrant dans l’ouïe d’aspiration. Comme pour un ventilateur, le point de fonctionnement se modifie par déplacement sur une nouvelle courbe caractéristique du compresseur.

C’est le mode de régulation le plus souvent rencontré dans les turbocompresseurs.