Évaluer un risque de condensation superficielle sur les vitrages

Évaluer un risque de condensation superficielle sur les vitrages


Condensation superficielle côté intérieur

Comment la reconnaître ?

Schéma condensation vitrage

Dans le cas d’un double vitrage, elle se localise dans les coins et sur le pourtour du châssis et du vitrage, à cause des déperditions plus grandes existant dans ces zones par la présence de l’intercalaire du vitrage.

Normalement, la condensation se fera premièrement sur les vitrages et non sur les châssis.
Cependant, la présence de vitrages isolants peut favoriser la condensation de surface sur les châssis surtout si ceux-ci sont en aluminium et sans coupure thermique; leur température peut être plus basse que celle des vitrages.

La présence de condensation intérieure sur les vitrages entraîne

  • une diminution de la visibilité,
  • la formation de givre,
  • des tâches sur les verres, tablettes et allèges, dues aux gouttelettes ruisselantes,
  • la formation de moisissures sur le mastic et/ou le châssis.

Elle n’est gênante qu’en quantité excessive….

Influence du vitrage sur les risques de condensation superficielle

Lorsque la fenêtre constitue la surface intérieure la plus froide du local, c’est d’abord sur celle-ci que va se former de la condensation superficielle. Celle-ci se forme sur la paroi vitrée sans causer de dégâts, l’air intérieur est asséché et la teneur en humidité de l’air du local (xi) (en g/kg) diminue. De ce fait, le risque de condensation superficielle sur les autres parois diminue.

Un autre avantage d’une telle fenêtre, lorsqu’il n’y a pas de système de ventilation contrôlée et qu’il n’est pas envisageable d’en placer un, est que dès qu’il y a condensation à sa surface, les occupants sont prévenus que l’air est trop humide et qu’il faut ventiler.

Ainsi, il est intéressant d’avoir un vitrage sur lequel la condensation superficielle se forme plus rapidement que sur n’importe quelle autre paroi ou n’importe quel pont thermique présent dans le local.

Exemple.

Dans un local, le pont thermique le plus important a un τmin de 0,545. Il s’agit d’une terrasse en béton en encorbellement avec isolation (résistance thermique de 1 m² x K/W) intérieure au droit du linteau et entre la dalle et le plancher.

Schéma pont thermique terrasse.

τ1 = 0,705;
τ2  = 0,905;
τ3 = 0,955;
τ4 = 0,785;
τ5 = 0,98;
τ6 = 0,885;
τ7 = 0,545;
τ8 = 0,77.

τMin = τ7 = 0,545

Le local est muni de vitrages doubles ayant un coefficient de transmission thermique U de 3,22 W/m²K. Le coefficient d’échange thermique de surface entre le vitrage et l’ambiance intérieure (hi) = 10 (W/m²K).

La condensation superficielle va-t-elle se former d’abord sur les vitrages ou sur le pont thermique ?

Calcul du facteur de température (τ) du vitrage :

τ = [(1/3,22) – (1/10)] / (1/3,22)
τ = 0,68 > 0,545 :

La condensation superficielle apparaîtra en premier lieu sur le pont thermique !

Avec un simple vitrage (U = 7 W/m²k), on aurait eu τ = 0,3 < 0,545 : la condensation superficielle, dans ce cas, se forme d’abord sur le vitrage !

Calcul de la teneur en humidité de l’air du local lorsqu’il y a formation de condensation superficielle sur les vitrages

Remarque : Le texte ci-dessous est extrait de la NIT 153 du CSTC.

De l’humidité est extraite de l’air du local par la formation de condensation.
La teneur en humidité de l’air du local (xi) sera par conséquent plus basse que s’il n’y avait pas de condensation superficielle.

En supposant qu’on se trouve en régime stationnaire, l’équation hygrométrique du local comportera un terme supplémentaire, à savoir la quantité d’humidité qui condense par unité de temps sur une surface déterminée A (m²) dans le local.

Ce raisonnement conduit à la relation :

avec,

  • i : le taux d’humidité de l’air intérieur dans le cas où il n’y a pas de condensation superficielle, calculé à l’aide de la formule ci-dessus
  • xsA : le taux d’humidité de saturation (g/kg) correspondant à la température superficielle ηoi (°C) de la surface A

Cette relation est démontrée dans l’Annexe de la NIT 153 du CSTC, pg. 77.

L’expression ci-dessus, peut être utilisée dans les conditions suivantes :

xe < 7 g/kg,
2,5 g/kg < xsA < 12 g/kg,
10°C < ηi < 20°C.

avec,

  • xe : la teneur en humidité de l’air extérieur (g/kg),
  • θi : la température intérieure (°C).

On procède comme suit :

  • On détermine xi° à l’aide de la relation ci-dessus.
  • On détermine xsA en fonction de la température superficielle du vitrage ou de la paroi la plus froide du local.
  • Si xi° > xsA, il y a condensation superficielle.
  • On trouve la valeur finale de xi à l’aide de la relation ci-dessus.
Exemple.

Soit un local muni d’un vitrage de 2 m², ηi = 12°C, D = 0,05 kg/h et nV = 10 m³/h (D/nV = 0,005 kg/m³).

Les conditions extérieures sont ηe = -10°C, φe = 90 % -> xse = 1,60 g/kg.

Admettons que le vitrage de 2 m² soit la surface la plus froide de la pièce.

xi° = 0,9 x 1,6 + 825 x 0,005 = 5,56 (g/kg)

La température superficielle du vitrage est donnée par la formule :

avec,

Pour un vitrage simple (k = 7 W/m²K) et pour un vitrage double (k = 3,22 W/m²K) avec hi = 10 W/m²K, on trouve :

θoi (vitrage simple) = – 3,40°C -> xsA = 2,84 g/kg,
θoi (vitrage double) = 4,92°C -> xsA = 5,37 g/kg.

Comme dans le cas d’un vitrage simple, xsA < xi, on peut conclure que de la condensation se formera sur les vitres.

On calcule :

xi = (5,56 + 10,48 x 2,84 x 2/10) / (1 + 10,48 x 2/10) = 3,72 g/kg

Remarque.

Il convient d’attirer l’attention sur le fait que la valeur xi trouvée se situe à un niveau élevé uniquement parce que nous sommes partis d’une situation stationnaire. Une telle situation est rare en réalité et, lorsque de l’humidité commence à se produire à un moment donné, le degré hygrométrique de l’air du local n’augmentera que lentement.


Condensation superficielle côté extérieur

Comment la reconnaître ?

Celle-ci se manifeste d’abord au centre du vitrage, c’est à dire dans la partie la mieux isolée qui reçoit un minimum d’énergie venant de l’intérieur.

On observe ce phénomène :

En effet, dans ces conditions sous l’effet du rayonnement important vers la voûte céleste (surrefroidissement) et des faibles pertes thermiques à travers le vitrage, la température du vitrage peut descendre sous la température de rosée de l’air extérieure, entraînant l’apparition de condensation sur la face extérieure du vitrage.

Ce phénomène est lié au fait qu’avec un vitrage très isolant, la température de leur face extérieure reste très basse, la chaleur interne étant piégée à l’intérieur du bâtiment.

Comment l’éviter ?

Pas de chance, il n’ y a pas moyen! … À moins d’équiper ses fenêtres d’essuies-glace performants !

Photo reflet vitrage.

Consolons-nous, cela constitue une preuve des performances d’isolation des vitrages concernés !


Condensation entre les vitrages

Si on constate la présence de condensation et qu’elle n’est ni sur la face interne du vitrage ni sur la face externe, c’est qu’elle s’est formée à l’intérieur du double vitrage…

Les vitrages isolants sont habituellement garantis contre la formation de condensation interne pendant une durée de 10 ans.

Cependant des désordres peuvent apparaître bien avant en cas de pose inappropriée du vitrage, c’est à dire :

La formation de condensation interne au vitrage est plutôt un mauvais signe : cela signifie que le sicatif présent dans l’intercalaire à perdu de son efficacité ou que le scellement n’est plus hermétique. Cela entraîne un remplacement quasi inévitable du vitrage.

Améliorer

Si vous voulez en savoir plus sur le remplacement d’un vitrage. 

Repérer un problème de condensation superficielle

Repérer un problème de condensation superficielle


Distinguer un problème de condensation superficielle d’un autre problème d’humidité

Un problème de condensation se manifeste par des problèmes d’humidité ou/et de moisissure. Remarquons cependant que des moisissures peuvent apparaître même sans condensation de surface. En effet, de la condensation superficielle apparaît chaque fois que l’humidité relative à la surface d’une paroi atteint 100 %, alors que la formation de moisissures sur une paroi peut déjà se produire à partir d’une humidité relative de 80 % si le matériau en contact avec l’air humide est hygroscopique.

Néanmoins, un problème d’humidité ou de moisissure peut avoir une autre origine que la condensation de surface. L’eau à l’origine du problème peut provenir d’une cause extérieure :

  • d’infiltrations d’eau de pluie,
  • de la succion d’eau contenue dans le sol (humidité ascensionnelle),
  • de l’absorption d’eau par les matériaux lors de la construction (humidité de construction),
  • de fuites dans une conduite ou une descente d’eau, dans un tuyau d’évacuation (humidité accidentelle).

D’autre part, la condensation interne peut aussi être à l’origine de problèmes d’humidité.

Les infiltrations d’eau de pluie

L’eau de pluie est aspirée de l’extérieur vers l’intérieur du bâtiment par capillarité dans les pores du matériau ou s’infiltre par des fisssures, des joints ouverts, etc.

Le tableau ci-dessous permet de distinguer si l’on est en présence d’un problème d’infiltration ou de condensation superficielle :

Infiltrations

Condensations

Les infiltrations se manifestent à travers les couvertures vétustes. Elles sont plus graves en bas de versants et lors de pluies battantes. Les condensations se manifestent au droit des ponts thermiques (linteaux, corniches, bandeaux, consoles, etc.).

Elles apparaissent surtout dans les locaux peu chauffés et mal ventilés ou dans ceux où il y a une production de vapeur importante.

Les condensations se forment le plus souvent sur les parois orientées au nord ou à l’est car elles sont plus froides.

Les taches ont, en général, des formes arrondies. Les taches se localisent, en général, dans les angles et aux endroits mal ventilés (dos du mobilier, …).
Le débit d’eau est en général trop important pour qu’il y ait formation de moisissures. Très souvent, les condensations s’accompagnent de moisissures.
L’intensité des taches d’humidité passe par un maximum quelques heures après une pluie importante. Le risque de condensation de surface est plus élevé pendant les longues périodes d’hiver où les températures varient entre 0 et 10°C et en présence d’une humidité relative extérieure élevée (temps de brouillard et de pluie).
L’enduit intérieur se dégrade assez rapidement (décollement et pourriture). L’enduit se dégrade plus tardivement et uniquement si les condensations sont très abondantes.
Le décollement du papier peint est fréquent. Le décollement du papier peint est moins fréquent.

* Ce tableau est largement inspiré du tableau page 11 de la brochure : Condensation et moisissures – Service public Wallon/ Aménagement du territoire, Logement, Patrimoine et Énergie (DGO4) / Département de l’Énergie et du Bâtiment durable – Par le Centre Scientifique et Technique de la Construction (CSTC).

L’humidité ascensionnelle

L’humidité ascensionnelle résulte de la pression de la nappe phréatique ou de la succion capillaire de l’humidité du sol. De ce fait, les murs s’imprègnent d’humidité jusqu’à une hauteur de 1,2 à 1,5 m. Ce phénomène se manifeste en l’absence de digue horizontale étanche sous la base des murs.

Si le bas de la face verticale des murs est étanche, l’humidité ascensionnelle peut monter plus haut.

Le problème de l’humidité ascensionnelle concerne rarement les toitures sauf les parfois en bas de versant lorsque celle-ci se trouve proche du sol.

L’humidité de construction

L’humidité de construction est la quantité d’humidité présente dans un bâtiment après la fin des travaux de construction. Elle provient de :

  • L’eau qui est absorbée par les matériaux de construction pendant leur stockage chez le fabricant ou sur le chantier.
  • L’eau de gâchage nécessaire pour la mise en œuvre des matériaux (mortier, béton, plâtre, etc.).
  • L’eau qui provient des précipitations pendant la construction.

Il est déjà arrivé, qu’un an après la construction d’un bâtiment, l’on récolte un demi seau d’eau en perçant une alvéole d’un hourdi en béton.

L’humidité accidentelle

L’ humidité accidentelle est l’humidité qui provient d’une fuite dans une conduite ou une descente d’eau, ou d’une évacuation bouchée.


Tableau récapitulatif

Certaines observations permettent de suspecter l’origine des problèmes. Attention, les phénomènes constatés peuvent découler de plusieurs causes qui parfois même se conjuguent et s’amplifient mutuellement. Le tableau ci-dessous aide à réaliser une première analyse.

OBSERVATIONS, PHENOMENES

CAUSES POSSIBLES

Condensation Pluie battante Humidité ascensionnelle Humidité accidentelle
Pas d’aération, mauvaise isolation thermique x
Humidité de l’air élevée x
Dégâts limités au N. et au NE. x (x) (x)
Dégâts limités au SO. et à l’O. x (x) (x)
Les dégâts ne commencent pas d’en bas x x (x)
Dommages localisés x (x) (x) x
Ponts thermiques x
Dégradation dans les angles x (x)
Sol transpirant x
Humidité uniquement sur la surface intérieure x (x)
Finition intérieure non poreuse x
Taches sur la façade extérieure x x (x)
Pas ou peu de dépassant de toiture x
Taches redentées, irrégulières sur la surface intérieure x (x)
Mur creux (correctement exécutés) (x) (x) (x)
Efflorescences aux étages x (x)
Efflorescences au niveau du sol (x) (x)
Augmentation de l’humidité en fonction de la hauteur x
Consommation anormale d’eau x
Dommage à la toiture, aux gouttières ou aux conduites d’amenée et d’évacuation x
Humidité sur l’épaisseur totale du mur (intérieur et extérieur) (x) x
Dommages limités à l’étage inférieur x
Apparition de dommages peu de temps après une période de pluie x (x)
Davantage de dégâts pendant la saison de pluie x (x) x

Légende : x : cause possible; (x) : possibilité à ne pas exclure.

* Source : Condensation et moisissures – Service public Wallon/ Aménagement du territoire, Logement, Patrimoine et Énergie (DGO4) / Département de l’Énergie et du Bâtiment durable – Par le Centre Scientifique et Technique de la Construction (CSTC).


Un repère : l’année de construction (ou de rénovation) du bâtiment

En général, ce sont surtout les bâtiments datant de la fin des années 1970 et des années 1980 ou ayant été rénovés durant ces années qui présentent des problèmes de condensation et de moisissures.

En effet, depuis la fin des années 1970, l’isolation est devenue chose courante dans le bâtiment. Ce changement dans les habitudes de construction a été induit par le choc pétrolier de 1973.

L’isolation des bâtiments en Wallonie se systématise après 1985, date à laquelle, l’Exécutif régional wallon adopte un règlement thermique imposant une isolation thermique de l’enveloppe des nouveaux logements.

Mais lorsqu’on a commencé à isoler les bâtiments, on a fait beaucoup d' »erreurs de jeunesse » :

  • On a employé des matériaux inadéquats : par exemple, les coulisses remplies de laines minérales trop souples et non hydrofugées ont provoqué de graves problèmes d’humidité.
  • On n’a pas soigné la mise en œuvre de l’isolant : par exemple, les coulisses non nettoyées ou une méthode d’élévation des murs creux inadaptée à de nouvelles exigences ont conduit à des défauts d’isolation.
  • On n’a pas changé la conception des bâtiments, la création de ponts thermiques, résultant d’anciennes pratiques architecturales (exemple : linteau coulé sur place).

Ces défauts ont provoqué des problèmes de condensation superficielle.

De plus, les mesures annexes prises afin de diminuer les consommations, et accompagnant l’isolation ont également favorisé les problèmes de condensation. Ces mesures sont :

  • la réduction de la température intérieure (dans certaines pièces, le chauffage a même été coupé),
  • le calfeutrement des portes et fenêtres,
  • la limitation de l’aération.

Ainsi, très rapidement, l’idée d’isolation fut confondue avec l’idée de calfeutrage et associée à celle d’humidité.

Mais si les bâtiments de cette époque ont particulièrement souffert du manque de connaissance, les problèmes de condensation ne se cantonnent malheureusement pas uniquement à ceux-ci et malgré la maîtrise actuelle de la technique, on retrouve encore des défauts de construction menant tout droit à des problèmes de condensation dans les bâtiments récents.

Évaluer l’isolation thermique des planchers

Évaluer l'isolation thermique des planchers

Connaître les valeurs de référence

Une paroi est caractérisée par un coefficient de transmission thermique U. Plus ce coefficient est petit plus la paroi est isolante. La réglementation thermique wallonne impose, pour les parois neuves et assimilées délimitant le volume protégé, une valeur maximale du coefficient de transmission thermique.
Ces valeurs peuvent être vues comme un « garde-fou ». D’autres labels volontaires recommandent d’ailleurs des performances thermiques plus élevées.

Ces valeurs à respecter au minimum dans un nouveau bâtiment peuvent néanmoins servir de base pour évaluer la qualité d’un bâtiment existant.

Plancher accessible par le bas

On peut considérer que l’isolation d’un plancher existant accessible par le bas (l’isolation peut être posée sous celui-ci) est suffisante si R ≥ 1 W/m²K. En effet, en dessous de cette valeur, le temps de retour sur investissement devient assez important. Néanmoins, une rénovation complète ou partielle (finitions, revêtements,… ) sera toujours une bonne occasion de renforcer l’isolation.

Plancher sur sol

Si le plancher est posé sur le sol et que le rapport entre le périmètre exposé et sa surface (P/A) est inférieur à 0.30, l’amélioration de l’isolation n’est généralement pas nécessaire du fait que, la configuration même du plancher limite déjà les pertes thermiques.

Dans certains cas, l’amélioration de l’isolation d’une dalle posée sur sol peut être très coûteuse (démolition des sols existants) et un calcul de rentabilité spécifique au bâtiment est indispensable avant toute prise de décision. Le coût des travaux peut cependant être limité en n’isolant que la périphérie du plancher, soit horizontalement, soit verticalement.

Isolation périphérique horizontale et verticale.


Calculer le niveau d’isolation lorsque la nature et l’épaisseur des matériaux isolants sont connues

Calcul approximatif

L’isolant thermique est la couche du plancher qui influence le plus sa qualité thermique. Le calcul approximatif ci-dessous est suffisamment précis lorsqu’on s’approche de la gamme des valeurs admises.

R = ei / λi

Avec,

  • R : résistance thermique de la couche isolante,
  • λi = la conductivité thermique de l’isolant,
  • ei = l’épaisseur de l’isolant.
Exemple.

4 cm de mousse de polystyrène extrudé dont λ vaut 0.038 W/mK (suivant Annexe D de l’AGW du 15 mai 2014), entraîne un R approximatif de :

0.04 m / 0.038 W/mK = 1,05 m²K/W

On obtient une valeur acceptable de R ≥ 1 m²K/W dont il est question ci-dessus, avec des épaisseurs :

  • de 4 cm de mousse de polystyrène extrudé (λ = 0.038 W/mK suivant Annexe D de l’AGW du 15 mai 2014)
  • de 5 (4.5) cm de mousse de polystyrène expansé (λ = 0.045 W/mK)
  • de 5 (4.5) cm de mousse de laine minérale (λ = 0.044 W/mK)
  • de 4 (3.5) cm de mousse de polyuréthane (λ = 0.029 W/mK)
  • de 6 (5.5) cm de verre cellulaire (λ = 0.050 W/mK)

Calcul plus précis

Si les matériaux constituant le plancher sont connus, il est possible de calculer exactement le coefficient de transmission thermique U ou la résistance thermique R exacte de celui-ci.

Il faudra cependant distinguer 5 cas.

  1. Les planchers situés au-dessus de l’ambiance extérieure
  2. Les planchers situés au-dessus d’un espace adjacent non chauffé (EANC)
  3. Les planchers posés directement sur le sol
  4. Les planchers situés au-dessus d’une cave
  5. Les planchers situés au-dessus d’un vide sanitaire

Le U des planchers situés au-dessus de l’espace extérieur se calcule de manière classique :

Calculs

Pour calculer le coefficient de transmission thermique du plancher au-dessus de l’extérieur. 

Pour les autres types de plancher, le U se calcule de la manière similaire. Un facteur de correction de température (≤1) est cependant appliqué à Ueq pour tenir compte de la protection complémentaire amenée par l’EANC , le sol, une cave ou un vide sanitaire. Ce facteur de correction peut toujours être considéré comme égal à 1, si on ne veut pas faire l’effort de le calculer. Ce choix peut être très pénalisant surtout dans les cas thermiquement bien protégé. Le calcul précis nécessite l’analyse thermique détaillée. Il peut se faire à l’aide du logiciel PEB fourni par la Région wallonne.


Repérer les indices d’une isolation thermique insuffisante

Dans l’idéal …

Idéalement, lorsque la nature, l’épaisseur et/ou l’état de la couche isolante ne sont pas connus, il convient d’effectuer un sondage à travers le plancher pour la déterminer.

À défaut, un indice pratique

Avant d’effectuer ce sondage, un indice peut indiquer un manque d’isolation efficace : la faible température de la paroi côté intérieur en période hivernale.
La condensation sur une paroi est signe d’absence ou de faiblesse de l’isolation.

Évaluer l’isolation thermique de la toiture

Évaluer l'isolation thermique de la toiture


Connaître les valeurs de référence

Une paroi est caractérisée par un coefficient de transmission thermique U. Plus ce coefficient est petit plus la paroi est isolante. La réglementation thermique wallonne impose, pour les parois neuves et assimilées délimitant le volume protégé, une valeur maximale du coefficient de transmission thermique.
Ces valeurs peuvent être vues comme un « garde-fou ». D’autres labels volontaires recommandent d’ailleurs des performances thermiques plus élevées.

Même lorsque cette réglementation n’est pas d’application, cette valeur peut servir de base pour estimer la valeur minimale qu’il serait intéressant d’atteindre en cas de rénovation de la toiture. Généralement, l’optimum économique en rénovation se situe à un coefficient U = 0,3 W/m²K.

Pour les toitures autres que la toiture plate inversée, l’épaisseur d’isolant à poser en fonction du coefficient de conductivité thermique de celui-ci est donnée sur le graphique ci-dessous. Pour chaque isolant, il existe un intervalle de valeurs possibles pour la conductivité thermique. Le diagramme ci-dessous permet de déterminer dans quel intervalle d’épaisseur il faudra se situer en fonction du type d’isolant choisi.

Estimation de l’épaisseur d’isolant nécessaire pour atteindre un U = de 0.3 W/m²K dans le cas d’une toiture plate autre qu’une toiture plate inversée en fonction de la conductivité thermique (λ) ou du type d’isolant choisi (les intervalles de valeurs pour chaque isolant correspondent aux valeurs certifiées).

Pour une toiture inversée, l’isolant généralement retenu est la mousse de polystyrène extrudé (il est à éviter en cas de toiture chaude à cause de son coefficient de dilatation élevé). L’épaisseur d’isolant à poser en fonction de la conductivité thermique est donnée dans le graphique suivant.

Estimation de l’épaisseur d’isolant nécessaire pour atteindre un  U = de 0.3 W/m²K  dans le cas d’une toiture plate inversée de référence en fonction de la conductivité thermique (λ) ou du type de l’isolant choisi (marques et types –  valeurs certifiées).

Si la toiture existante est en bon état, on considère généralement que la limite pour décider d’une rénovation est :

U > 0,6 W/m²K

En effet, en dessous de cette valeur, le temps de retour sur investissement devient assez important.  Une rénovation complète ou partielle (finitions, revêtements extérieurs,… ) sera toujours une bonne occasion de renforcer l’isolation.

Pour une toiture autre qu’une toiture plate inversée, elle correspond à une épaisseur approximative d’isolant de :

  • 9 cm de laine minérale,
  • ou 7 cm de mousse de polyuréthanne,
  • ou 11 cm de verre cellulaire.

Pour une toiture inversée, elle correspond à une épaisseur d’isolant d’environs :

  • 12 cm de mousse de polystyrène extrudé.

Calculer le niveau d’isolation lorsque la nature et l’épaisseur de l’isolant sont connues

L’isolant thermique est la couche de la toiture qui influence le plus ses qualités thermiques.

En première approximation, le calcul du niveau d’isolation peut se faire en ne tenant compte que de l’isolant et des résistances thermiques d’échange aux surfaces sur base de la formule simplifiée.

U = 1/(Rsi + λ/e + Rse)

avec,

Les valeurs à utiliser pour les résistances thermiques d’échange sont données dans le tableau  spécifique de l’Annexe VII de l’AGW du 17 avril 2008 :

Exemple.

8 cm de laine minérale certifiée, de marque non déterminée, dont λ vaut 0,041 W/mK (suivant NBN B62-002/A1), entraîne un U approximatif de la toiture de

  • Rsi = 0.10 m²K/W
  • e/λ = 0,08/0,041 = 1,95 m²K/W
  • Rse = 0.04 m²K/W
  • U = 0.48 W/m²K

Si les autres matériaux constituant la toiture sont connus, il est possible de calculer exactement le coefficient de transmission thermique U de celle-ci.

Calculs

Pour calculer le coefficient de transmission thermique de la toiture. 

Le résultat ainsi obtenu n’est fiable que si l’isolant est sec et en bon état. En cas de doute, un sondage est indispensable.


Repérer les indices d’une isolation thermique insuffisante

Lorsque la nature, l’épaisseur et/ou l’état de l’isolant sont inconnus, il convient d’effectuer un sondage à travers la toiture pour les déterminer.

Avant d’effectuer ces sondages, certains indices peuvent indiquer un manque d’isolation efficace.

Le principal indice est la température du plafond en période hivernale.

La condensation sur le plafond est un premier indice de plafond froid dans les locaux humides.

Photo condensation.

La condensation sur une paroi est signe d’absence ou de faiblesse de l’isolation.

Pratiquement, le plafond sera considéré comme une paroi froide lorsque sa température de surface est inférieure de plus de 2 °C à la température de l’air du local. C’est le cas lorsque la toiture n’est pas isolée.

Pour que les valeurs obtenues soient valables, il faut que la toiture soit en régime thermique stationnaire (c’est-à-dire que les températures intérieures et extérieures ne subissent pratiquement pas de variation).
On fera donc ce relevé par temps nuageux, avec une température extérieure moyenne entre celle du jour et celle de la nuit.

Identifier les causes d’un problème de condensation superficielle

Identifier les causes d'un problème de condensation superficielle


Une trop grande production de vapeur

L’humidité produite peut provenir soit :

De l’occupation du bâtiment

La production de vapeur est très variable en fonction du type de bâtiment (bureaux, école, hôpital, hall de sports, etc.) et de son occupation.

Le tableau ci-dessous indique différentes sources de production de vapeur ainsi que la quantité de vapeur d’eau correspondant

Sources de vapeur d’eau Production de vapeur d’eau
Un occupant au repos, assis ou avec une légère activité* : 0,055 (kg/h)
Un occupant debout avec une légère activité* : 0,090 (kg/h)
Un occupant debout avec une activité moyenne (travail ménager, travail sur machine, …)* : 0,130 (kg/h)
Plantes vertes** 0,02 à 0,05 kg d’eau par plante et par jour

* : Norme Iso 7730
** : certaines plantes comme le papyrus émettent plusieurs litres d’eau par jour dans l’environnement.

Il est difficile de diminuer de manière significative la production de vapeur de ces différentes sources à l’intérieur d’un bâtiment. Par contre, afin que l’augmentation du taux d’humidité due à cette production de vapeur reste acceptable, celle-ci doit être compensée par une ventilation suffisante. Cette ventilation consiste, d’une part, en une ventilation de base qui doit assurer la qualité de l’air en temps d’occupation normale (occupants, plantes, nettoyage, …) et d’autre part, en une ventilation intensive qui doit compenser une production spécifique de vapeur (ventilation dans les cuisines, dans la buanderie, …).
D’autre part, une production de vapeur trop importante peut être évitée dans certains cas. Exemples :

  • un grand aquarium sans recouvrement adéquat,
  • des étangs à l’intérieur,
  • des appareils à cycle de combustion ouvert sans évacuation vers l’extérieur (poêle au gaz ou au mazout, petit chauffe-eau mural, etc.),
  • l’usage intensif d’humidificateur.

De causes extérieures

Un taux trop important d’humidité peut également provenir des causes extérieures suivantes :

  • les infiltrations d’eau de pluie,
  • l’humidité ascensionnelle,
  • l’humidité de construction,
  • l’humidité accidentelle.

Ces causes extérieures considérées comme des anomalies doivent être supprimées avant d’envisager toute autre mesure pour éliminer les problèmes de condensation ou de moisissure.


Une ventilation insuffisante

Afin que l’augmentation du taux d’humidité due à la production de vapeur à l’intérieur du bâtiment reste acceptable, celle-ci doit être compensée par un renouvellement d’air. L’air humide intérieur est ainsi remplacé par de l’air extérieur plus sec.

Le schéma ci-dessous donne l’évolution de la teneur en humidité de l’air du local (xi) en fonction du taux de ventilation (ou taux de renouvellement) « n » (en h-1).

Evolution de xi en fonction de n.

xe = 3 g/kg; D = 0,1 kg/h; V = 32,5 m³; xi = xe + 2,538/n.

avec,

  • xe : teneur en humidité de l’air extérieur;
  • D : production d’humidité dans le local;
  • V : volume du local
  • n : le taux de renouvellement (h-1).

On constate que :

  • Des taux de ventilation très bas ont pour conséquence des teneurs en humidité très élevées de l’air intérieur.
  • Une trop forte augmentation du taux de ventilation n’a pratiquement plus d’influence sur la teneur en humidité de l’air du local, mais par contre va augmenter la consommation d’énergie pour le chauffage du bâtiment.

Le renouvellement d’air se fait soit de manière correcte par un système de ventilation contrôlée ( mécanique – simple ou double flux- ou naturelle), soit, de manière « archaïque », par de simples infiltrations (au travers des fentes et fissures, par l’ouverture des fenêtres, etc.).

Le renouvellement d’air par les infiltrations

Le renouvellement d’air par de simples infiltrations se rencontre encore très souvent dans les écoles. Mais si le bâtiment est trop étanche, le renouvellement d’air peut être insuffisant et cela peut mener à des problèmes de condensation superficielle. De toute façon, le renouvellement d’air par les infiltrations ne constitue pas une manière correcte d’assurer la ventilation. En effet, les défauts d’étanchéité peuvent être à l’origine d’une condensation interstitielle, c.-à-d.. une condensation à l’intérieur des éléments de construction (murs, toitures, etc.) et non pas à leur surface. En effet, l’air chaud et humide qui passe au travers de ces défauts d’étanchéité rencontre des éléments de plus en plus froids et la vapeur d’eau qu’il contient condense dès que des températures suffisamment basses sont atteintes. Dans une toiture inclinée, la condensation va provoquer des dégâts (moisissures, pourrissement, etc.).
Ainsi, mieux vaut un bâtiment étanche à l’air avec un système de ventilation contrôlé, tant pour éviter les problèmes de condensation interstitielle, que pour économiser l’énergie ou que pour assurer le confort.

Étanchéité à l’air des bâtiments

Une mauvaise étanchéité du bâtiment ne se voit pas forcément lors d’une inspection à l’œil nu.

Des murs extérieurs sans finition intérieure engendrent une mauvaise étanchéité. Les toitures inclinées sont souvent très perméables à l’air lorsque la finition intérieure est disjointe, incorrecte ou absente.

L’étanchéité à l’air dépend en grande partie de la conception et de la qualité d’exécution des détails de construction. L’utilisation de blocs de béton non plâtrés, par exemple, peut mener à une très mauvaises étanchéité du bâtiment. Le simple fait de recouvrir ces blocs d’une couche de peinture assez épaisse (équivalent à un plafonnage pour ce qui est de l’étanchéité à l’air) peut diviser par 10 la perméabilité à l’air.

Une mauvaise étanchéité peut être due aux fuites que représentent les ouvertures entre locaux à l’intérieur du volume protégé et en dehors de celui-ci.

L’étanchéité à l’air d’un bâtiment n’est pas nécessairement uniforme, elle peut être différente d’un local à l’autre.

Les anciens châssis sont, en général, perméables à l’air; les nouveaux sont beaucoup plus étanches.

Évaluer

Si vous voulez en savoir plus sur l’évaluation de l’étanchéité d’un bâtiment, cliquez ici !

Le renouvellement d’air par une ventilation contrôlée

Une ventilation de bâtiment est correcte si elle est contrôlée. Cela implique une amenée d’air extérieur dans certains locaux et une évacuation de l’air intérieur humide dans d’autres.

La ventilation des bâtiments doit répondre à la réglementation wallonne et à la norme NBN D 50-001. Les débits de ventilation y sont, entre autres, définis.

La réglementation wallonne est d’application depuis le 1er décembre 1996.
Elle concerne les logements, les bâtiments d’hébergement (hôpitaux, homes, hôtels, internats, casernes, prisons, …), les bâtiments scolaires (y compris centre PMS) et les immeubles de bureaux (administration d’une entreprise, d’un service public, d’un commerce) ou les bâtiments qui, à la suite d’une modification de leur utilisation, sont affectés à l’une ou l’autre de ces destinations.

La ventilation peut se faire de manière naturelle ou mécanique. Selon que l’extraction ou/et l’évacuation se font de manière naturelle ou mécanique, on parle de système A, B, C ou D (Norme NBN D 50-001).

Évacuation d’air
Naturelle Mécanique
Amenée d’air Naturelle Système A Système B
Mécanique Système C Système D

Le respect de la norme ne suffit pas à garantir que les bâtiments seront correctement ventilés les occupants sont simplement assurés qu’ils disposent de la possibilité de ventiler correctement.

Évaluer

Pour évaluer correctement la ventilation contrôlée de votre bâtiment, cliquez ici !

Des ponts thermiques

Un pont thermique est un point faible dans l’isolation thermique de l’enveloppe du bâtiment.
En hiver, au droit d’un pont thermique, la température de surface de la paroi à l’intérieur du bâtiment est plus basse que celle des surfaces environnantes. Si la température à cet endroit est égale ou inférieure à la température de rosée de l’air intérieur, il va y avoir condensation superficielle.

Pour une paroi, la connaissance des résistances thermique des différentes couches permet de déterminer la température intérieure de surface (θoi) pour une température extérieure (θe) et une température intérieure (θi) données.

La connaissance de cette valeur détermine le facteur de température τ de la paroi.

Au droit d’éléments de construction ou de ponts thermiques complexes, il est difficile de déterminer la température intérieure de surface en un point (θoi) manuellement. Ce calcul se fait par programmes informatiques (basés, par exemple, sur la méthode des éléments finis ou des différences finies). Il donne les valeurs du facteur de température τ en différents points du pont thermique et donc le facteur de température minimum τ min.

avec,

  • θoi min : la température intérieure de surface minimum du pont thermique.
Exemple.

τ1 = 0,585;
τ2  = 0,8;
τ3 = 0,91;
τ4 = 0,455;
τ5 = 0,61;
τ6 = 0,55;
τ7 = 0,6;
τ8 = 0,84.

τmin = τ4 = 0,455

Le facteur de température en différents points d’un pont thermique est entièrement déterminé par la configuration et la constitution du pont thermique. Il caractérise le pont thermique. Une fois déterminé, il va donc permettre de calculer la température intérieure de surface (θoi) en ce point pour n’importe quelles températures extérieure (θe) et intérieure (θi) données.

Ainsi, alors que pour une paroi, la résistance thermique d’une paroi permet d’évaluer la température de surface intérieure, pour un pont thermique, c’est la connaissance du facteur de température τ qui permet de l’évaluer.


Une température intérieure des locaux trop faible

Il y a risque de condensation superficielle sur une surface intérieure d’un local si la température de surface (θoi) est égale ou inférieure à la température de rosée(θd) de l’air intérieur. Or, pour une température extérieure (θe) donnée, la température intérieure de surface des parois (θoi) dépend non seulement de la résistance thermique de la paroi, mais également de la température intérieure du local.

Donc au plus l’air intérieur est chauffé, au plus la température de surface est élevée, au moins le risque de condensation superficielle est grand.

Si un local est non chauffé, il convient donc de prendre des mesures pour que la vapeur d’eau produite dans les locaux occupés ne puisse y pénétrer.

D’autre part, dans les locaux non chauffés, le niveau d’isolation a une influence non négligeable sur la température moyenne du local : dans des bâtiments bien isolés, les locaux non chauffés sont beaucoup plus chauds que dans les bâtiments identiques mais non isolés.

Exemple : maison unifamiliale (Pleiade)

Influence du niveau d’isolation sur la température du grenier dans la maison PLEIADE
Niveau d’isolation K23 K27 K35 K45 K55 K70
Température moyenne du grenier non chauffé 13,4 13,4 12,3 11,6 10,6 10,0

Lien entre les différents paramètres et évaluation d’un risque de condensation superficielle

1. Calcul de l’humidité absolue de l’air intérieur (xi) (sans formation de condensation superficielle)

Si, dans un local avec une production d’humidité D (kg/h) et un renouvellement n (h-1) (c.-à-d. un volume de ventilation nV (m³/h)), de la condensation ne se forme à aucun endroit, on peut poser, en régime stationnaire, que la quantité d’humidité évacuée avec l’air ventilé par unité de temps est égale à la somme de la quantité d’humidité apportée avec l’air ventilé par unité de temps et de la quantité de vapeur d’eau produite dans le local.

Ce raisonnement conduit à la relation (voir NIT 153, annexe page 77) :

avec,

  1. xi : teneur en humidité de l’air du local (geau/kgair)
  2. φe : humidité relative (%) de l’air extérieur
  3. xse : teneur en humidité de saturation de l’air extérieur (geau/kgair)
  4. D/nV : rapport entre la production d’humidité (kg/h) et le débit de ventilation dans le local (m³/h)

2. Calcul du point de rosée de l’air du local (θd)

On peut calculer la température de rosée (θd) correspondant à la teneur en humidité du local (xi) à partir du diagramme de l’air humide.

Humidité relative de l’air en fonction de la teneur absolue en humidité de l’air (x) et de la température de l’air (θ).

Ambiance intérieure (point A) : xi = 8,7 geau/kgair; θi = 20°C –> θ= 12°C

3. Calcul de valeurs intermédiaires

Pour différentes valeurs de température intérieure (θi) et différentes valeurs de température extérieure (θe), on peut calculer la valeur :

4. Évaluation du risque de condensation

Il ne se formera pas de condensation sur une paroi intérieure d’un local ou sur la face intérieure d’un pont thermique si :

avec,

avec,

5. Exemple d’évaluation du risque de condensation

Évaluer

Si vous souhaitez voir, par un exemple, comment évaluer concrètement le risque de condensation au droit d’un pont thermique dans un immeuble de bureau, cliquez ici !

Évaluer l’état de la membrane d’étanchéité

Évaluer l'état de la membrane d'étanchéité


Quelle est la durée de vie normale des membranes d’étanchéité ?

La durée de vie d’une membrane dépend de nombreux facteurs, et notamment :

  • de sa nature,
  • de son épaisseur,
  • de ses armatures,
  • de la rigidité de son support,
  • de la façon dont elle est protégée des agents extérieurs,
  • de la conception et de la réalisation correcte du complexe isolant-étanchéité,
  • de la façon dont elle est entretenue,
  • et du site où elle se trouve.

Toutes les étanchéités sont garanties 10 ans.
Dans de bonnes conditions, la durée de vie des membranes actuelles dépassera largement les dix ans.
Des tests réalisés sur des étanchéités anciennes montrent que la longévité de certaines membranes est de toute évidence supérieure à 20 ans.
C’est donc une analyse visuelle qui sera déterminante dans l’évaluation de la vétusté de la membrane.
En cas de doute, des prélèvements suivis de tests peuvent être effectués par des bureaux d’expertise spécialisés.


Quels sont les indices de vétusté ou d’altération d’une membrane d’étanchéité ?

L’eau stagnante 

L’eau de pluie stagne sur la toiture.

Les stagnations d’eau sur une toiture présentent différents inconvénients

  • Des fuites éventuelles peuvent entraîner de graves infiltrations d’eau.
  • Le gel engendre une sollicitation mécanique.
  • Les fuites sont plus difficiles à réparer aux endroits humides.
  • Dans le cas de structures porteuses légères, le poids supplémentaire entraîne des déformations importantes et des contraintes anormales sur la structure.
  • Les saletés se concentrent, provoquent des nuisances et attaquent la couche de protection.

Les blessures

Ce genre d’altération est généralement provoqué par une agression mécanique extérieure :

La circulation intempestive

La pose de matériaux, d’échafaudage ou d’outils, durant des travaux

La trace d’un pied d’étançon posé sans précaution sur la toiture.

La pose de charges ponctuelles permanentes

Une antenne.

L’isolant est-il capable de supporter la charge permanente ?
Ne faut-il pas agrandir la surface de contact entre le socle et la toiture ?

La grêle

Les effets de la grêle.

Les membranes minces sont plus sujettes aux dégâts causés par des agressions mécaniques (membranes monocouches synthétiques ou bitumineuses).
L’isolant peut également se déformer sous l’effet des charges et provoquer des contraintes de traction dans la membrane d’étanchéité.
Ces agressions sont d’autant plus redoutables que la membrane est rendue fragile par vétusté.
Dans le cas d’une toiture chaude, la perforation de la membrane entraîne immédiatement la pénétration de l’eau dans la couche isolante. Si cette couche est inondable, l’eau va imprégner totalement l’isolant, entraînant une surcharge importante et l’inefficacité de l’isolation. Une fois imprégné, l’isolant ne peut plus sécher et doit être enlevé.
Les dégâts provoqués par la perforation de l’étanchéité d’une toiture chaude sont moindres lorsque l’isolant a été compartimenté ou lorsque l’isolant utilisé est le verre cellulaire (toiture compacte).

Concevoir

Pour savoir comment compartimenter l’isolant.

Les déchirures

Les déchirures sont généralement dues à des tractions excessives dans le plan de la membrane. Ces tensions peuvent provenir d’un retrait du matériau, d’une instabilité thermique du support, une mauvaise réalisation des joints de mouvement.

Déchirures de la membrane.

La végétation

Trois types de développement végétaux peuvent se retrouver sur une toiture plate : les plantes, les algues et les mousses.
Les plantes sont de loin les plus agressives. Les graines amenées par le vent sur l’isolant avant la pose de l’étanchéité, peuvent y trouver, dans certains cas, suffisamment d’humidité pour se développer et perforer la membrane à la recherche de la lumière.

Les graines ont germé et les plantes ont percé la membrane d’étanchéité.

D’autre part, certaines plantes développées au-dessus de la membrane, dans le lestage (gravier, sable, dalles,…) ou dans les dépôts sur une toiture mal entretenue, peuvent en cas de sécheresse au-dessus de la membrane, perforer celle-ci pour aller pomper de l’eau de condensation présente dans l’isolant.

Ces plantes doivent être enlevées et la membrane doit être vérifiée.

Dans le cas des toitures jardins, les membranes sont protégées des racines et les plantes sont choisies en fonction de la faible agressivité de leurs racines vis-à-vis des membranes.

Les toitures-jardins doivent être correctement réalisées.

Les mousses se développent généralement au-dessus de la membrane dans la poussière déposée sur la membrane ou le lestage. Pour se développer, elles n’ont besoin que d’humidité et ne possèdent pas de racines.
Elles ne pénètrent donc pas dans la membrane et ne sont pas agressives sauf en ce qui concerne le maintien de la membrane dans un milieu humide acide.

Des mousses.

Les algues se développent uniquement dans l’eau. On les retrouve donc dans les zones de stagnation.
Ce sont des algues microscopiques qui peuvent s’incruster dans les micro fissures de la membrane et décrocher par effet mécanique lors du séchage, la couche de protection légère de celle-ci (peinture, paillettes d’ardoise, …).
Ces algues survivent par temps sec et forment des croûtes sèches cassantes.

Des algues.

L’usure de la protection UV

Suite à l’action mécanique ou chimique des agents extérieurs (pluie, vent, pollution, chaleur, froid, algues, …) les couches de protection légères de l’étanchéité s’usent et finissent par ne plus remplir leur fonction. L’absence de protection peut avoir provoqué un vieillissement accéléré de la membrane. Son état doit être vérifié et la couche de protection doit être régénérée.

   

Paillettes d’ardoise, feuille d’aluminium, peinture.

Défauts des fixations mécaniques

Il n’est pas possible de connaître l’état des fixations mécaniques sans effectuer un sondage. Néanmoins, certains indices extérieurs peuvent indiquer des désordres: déchirure autour de la fixation, soulèvement du complexe étanchéité + isolant, poinçonnement de l’étanchéité par la fixation, …

Localement, les fixations sollicitent plus fort la membrane.

Les boursouflures
Les boursouflures sont dues à l’occlusion de poches d’air humide ou de vapeur d’eau entre les différentes couches qui composent l’étanchéité.
La poche peut se trouver entre les différentes couches de l’étanchéité multicouche, ou entre l’isolant peu perméable à la vapeur d’eau et l’étanchéité.
Les boursouflures en elles-mêmes ne sont pas source d’infiltration, mais rendent l’étanchéité fragile aux contraintes mécaniques (circulation pour l’entretien, …)

Des boursouflures.

Les plis
Les plis peuvent être dus à une mauvaise fixation de la membrane d’étanchéité ou à un coefficient de dilatation trop élevé du matériau constituant la membrane.

Des plis.

Les fissures, craquelures, émiettements
Le vieillissement de la membrane sous l’effet des rayonnements UV, des variations de températures, des chocs thermiques, l’évaporation de certains constituant se traduit par une fragilisation de celle-ci entraînant des désordres profonds visibles en surface.

Vieillissement de la membrane.


Déceler la présence de ponts thermiques

Déceler la présence de ponts thermiques


La configuration des différentes parois de l’enveloppe et des raccords entre elles

L’isolation thermique de certains ouvrages de raccord est difficile à réaliser et  nécessite un soin important. C’est donc à ces endroits que le risque de pont thermique est le plus important. Ils devront être vérifiés soigneusement un par un, et éventuellement sondés pour en connaître la configuration exacte et évaluer le risque de désordre ou d’inconfort, en utilisant éventuellement un logiciel de calcul adéquat.
Il s’agit,

Pour les toitures plates

Des rives des toitures plates

Schéma rives des toitures plates

Des chéneaux extérieurs ou les encorbellements en matériau pierreux

Schéma chéneaux extérieurs ou les encorbellements en matériau pierreux

Des pénétrations verticales

Schéma pénétrations verticales

Des évacuations

Schéma évacuations

Des socles en toiture plate

Schéma socles en toiture plate

Des joints de mouvement relevés

Schéma joints de mouvement relevés

Des lanterneaux

Schéma lanterneaux

Des remontées de structure verticales

La toiture inversée ne permet pas de fixer l’isolant verticalement.

Schéma remontées de structure verticales- 1

Dans ce cas, les parties verticales peuvent être isolées par la  technique de la toiture chaude.

Schéma remontées de structure verticales- 2

L’isolant d’une toiture froide ou d’une toiture isolée par l’intérieur est généralement interrompu par les murs supportant la toiture.

Schéma remontées de structure verticales- 3

Améliorer

Pour savoir comment réduire ces différents ponts thermiques, cliquez ici

Pour les toitures inclinées

Du raccord versant de toiture-pignon

Schéma raccord versant de toiture-pignon

Du raccord pied de toiture-mur

Schéma raccord pied de toiture-mur

Isolation entre les chevrons.

Schéma isolation entre les chevrons - 2.

Toiture « Sarking ».

Des chéneaux extérieurs ou les encorbellements en matériau pierreux

Schéma chéneaux extérieurs ou les encorbellements en matériau pierreux.

De la cheminée

Schéma cheminée.

De la jonction d’une toiture inclinée à une toiture plate

Schéma jonction d'une toiture inclinée à une toiture plate

De la fenêtre

Schéma fenêtre

Du faîte du toit

Schéma faîte du toit.

Panneaux autoportants.

De la jonction plancher de comble isolé-mur extérieur

Schéma jonction plancher de comble isolé-mur extérieur

De la trappe d’accès dans un plancher de comble isolé

Schéma trappe d'accès dans un plancher de comble isolé

De la jonction entre un mur intérieur et un plancher de comble isolé

schéma jonction entre un mur intérieur et un plancher de comble isolé

schéma jonction entre un mur intérieur et un plancher de comble isolé

Améliorer

Pour savoir comment réduire ces différents ponts thermiques, cliquez ici !

Pour les murs pleins isolés par l’extérieur

Schéma murs pleins isolés par l’extérieur

Pont thermique au niveau d’un balcon.

Ponts thermiques au niveau d’un seuil et d’un linteau de fenêtre.

Pont thermique au niveau d’un ébrasement de baie.

Pont thermique au niveau d’un encorbellement.

Pont thermique au niveau d’une descente pluviale.

Améliorer

Pour savoir comment réduire ces différents ponts thermiques, cliquez ici !

 Pour les murs pleins isolés par l’intérieur

Liaison avec un mur intérieur
(coupe horizontale).

Fondation
(coupe verticale).

Appui de plancher
(coupe verticale).

Linteau
(coupes verticales).

Tablette de fenêtre
(coupe verticale).

Ébrasement de fenêtre
(coupe horizontale).

À côté des ponts thermiques « de conception », il existe aussi les ponts thermiques « d’exécution ». La perforation de l’isolant pour placer un boîtier électrique, par exemple, peut en créer un.

Pont thermique d’exécution

Schéma pont thermique d'exécution

Améliorer

Pour savoir comment réduire ces différents ponts thermiques, cliquez ici !

Pour les murs creux

A. Rive de toiture.

B. Appui de dalle.

C. Linteau.

D. Seuil de fenêtre.

E. Plancher sur vide sanitaire.

F. Balcon en encorbellement en béton.

À côté des ponts thermiques « de conception », il existe aussi les ponts thermiques « d’exécution ».

Schéma ponts thermiques "d'exécution".

Pont thermique d’exécution.
Les panneaux d’angle ne sont pas superposés.

Concevoir

Pour avoir accès à des détails techniques de murs creux réalisés sans pont thermique, cliquez ici !


Les traces de condensation à l’intérieur du bâtiment

Certains indices peuvent révéler la présence de ponts thermiques.

Le plus flagrant est la présence d’eau condensée sur la paroi.

Photo d'eau condensée sur la paroi.

Une condensation localisée est un indice de pont thermique.

Mais la zone peut être simplement humide (l’eau s’étant condensée à l’intérieur du matériau) ou être provisoirement sèche. Dans ce cas l’humidité peut avoir laissé des traces comme des moisissures, des taches ou de la poussière collée différemment sur les zones (parfois) humides et sur les zones toujours sèches.

Photo moisissures mur.

Les champignons se développent dans les zones des ponts thermiques.


La température locale des parois en hiver

Comparaison des températures de surface

Un thermomètre de contact permet de comparer la différence de température entre les différentes zones de la paroi concernée.

Photo thermomètre de contact.Photo thermomètre de contact.

Thermomètre de contact et mesure de température ambiante.

Thermomètre de surface à infrarouge.

En hiver, à l’endroit du pont thermique, la température superficielle intérieure est nettement inférieure à celle des éléments environnants.

La différence de température étant d’autant plus importante que la température extérieure est basse, c’est une mesure que l’on fera par temps très froid.

Exemple.

Une toiture inclinée est isolée (U = 0.4 W/m²K), sauf à un endroit (U = 2 W/m²K).
La température ambiante extérieure est de – 10°C, et la température ambiante intérieure de + 20°C.

 θoi = θi – (U x 0,125 x (θi – θe))

> La température de surface du plafond sera de 18,5°C sauf à l’endroit du pont thermique où la température de surface sera de 12,5°C.

Évaluation du risque de condensation à partir des températures de surfaces et des ambiances extérieures et intérieures

On peut calculer le facteur τ en différents points d’un détail technique en mesurant les températures de l’air intérieur θi et extérieur θe ainsi que la température locale de la paroi θoi.

On dispose, dès lors, de τmin.

Suivant la NIT 153 du CSTC, il y a pont thermique lorsque τmin < 0,7. Néanmoins, celle-ci concerne plus spécifiquement les logements et la valeur de 0,7 a été fixée en fonction des températures minimales et des humidités que l’on retrouve dans ceux-ci. Pour les bureaux, par exemple, cette valeur pourrait sans doute être plus faible, car la production de vapeur est moins importante et qu’en général, on dispose d’une ventilation. Dès lors, dans le cas des bâtiments du secteur tertiaire, il vaut mieux évaluer le risque de condensation superficielle à partir des conditions réelles.

Évaluer

Si vous souhaitez voir, par un exemple, comment évaluer concrètement le risque de condensation au droit d’un pont thermique dans un immeuble de bureau, cliquez ici.

Autre méthode : la détection par thermographie

La détection par thermographie doit pouvoir s’affranchir de la variation du climat et doit donc se faire par temps chaud ou froid de préférence par l’intérieur (zone stabilisée en température et non perturbée par le vent, la pluie et le soleil).

Pour ce faire, il y a lieu de mettre le bâtiment en dépression à l’aide d’un Blowerdoor avec une pression suffisante permettant de conditionner l’ensemble de l’enveloppe (toitures et murs) de la même manière. Cette méthode évite les interprétations erronées causées par la différence de pression exercée par le vent provoquant la dépression sur une ou deux façade(s) et une surpression sur les autres. Cette méthode facilite le diagnostic et le rend fiable.

La thermographie par l’extérieur peut, dans certains cas particuliers, servir à confirmer un constat effectué par l’intérieur. Dans le cas des murs creux, l’unique thermographie effectuée par l’extérieur n’est pas pertinente la lame d’air entre l’isolant et la brique perturbe le diagnostic.

 

Pont thermique en rive de toiture.
Source : Infravision.

Photo infrarouge d’une façade.

Autre méthode connue : la couche de givre ou de neige sur un bâtiment chauffé montrera, par son absence à certains endroits, les zones chaudes dues aux ponts thermiques.

Ponts thermiques repérables par la neige.


La date de construction du bâtiment

En ce qui concerne les murs creux, ce sont en général surtout les murs creux de bâtiments datant de la fin des années 1970 et des années 1980 qui présentent des problèmes de ponts thermiques.

En effet, depuis la fin des années 1970, l’isolation est devenue chose courante dans le bâtiment. Ce changement dans les habitudes de construction a été induit par le choc pétrolier de 1973.
L’isolation des bâtiments en Wallonie se systématise après 1985, date à laquelle, l’Exécutif régional wallon adopte un règlement thermique imposant une isolation thermique de l’enveloppe des nouveaux logements.

Mais l’isolation telle que réalisée à ses débuts est encore mal maîtrisée et mène à la création de ponts thermiques; ceux-ci agissent comme révélateur d’humidité. En effet, avant isolation, la condensation de la vapeur d’eau se répartissait sur toutes les surfaces; après isolation, l’humidité se concentre uniquement sur les ponts thermiques et provoque l’apparition de moisissures.

Néanmoins, si les bâtiments de cette époque ont particulièrement souffert du manque de connaissance, les problèmes de condensation ne se cantonnent malheureusement pas uniquement à ceux-ci et malgré la maîtrise actuelle de la technique, on retrouve encore des défauts de construction menant tout droit à des problèmes de condensation dans les bâtiments récents.

Création d’un pont thermique au niveau de la baie.

Pont thermique au niveau de la baie.

Auditer rapidement l’enveloppe

L’isolation

Repérer le problème Projet à étudier Rentabilité
Les coefficients de transmission thermique U des différentes parois sont-ils inférieurs aux Umax recommandés par la PEB ? Améliorer l’isolation thermique des parois existantes

+ à + + +

En fonction du niveau d’isolation de base

Les ponts thermiques sont-ils évités ? Améliorer les nœuds constructifs

+ +

Toiture non isolée ?

Isolation de la toiture en bon état ?

Si toiture plate, étanchéité existante en mauvais état ?

Isoler la toiture

L’étanchéité est-elle de toute façon à refaire prochainement ?

+ + +

Économie : 10 litres fuel/m²

TR : 5…15 ans (si on doit ou non refaire l’étanchéité)

Plancher du grenier inoccupé non isolé ? Isoler les combles

+ + +

TR : 3…5 ans

Mur extérieur non isolé ?

Présence de pignons aveugles ? (= grandes surfaces sans fenêtres)

Pignons sensibles aux intempéries ou en mauvais état (béton, joints dégradés) ?

Isoler le mur par l’extérieur derrière bardage ou crépis

Évaluer le risque de créer un pont thermique

+

Économie : 10 litres fuel/m²

TR : 5 .. 25 ans

Rentabilité élevée si pignons aveugles et/ou si nécessité de protéger le mur des intempéries

Mur extérieur non isolé ?

Mauvaise qualité de ventilation ? Présence de moisissures ? (= sensibilité à la condensation de vapeur d’eau)

 

Isoler le mur par l’intérieur

Evaluer le risque de créer un pont thermique

Eviter l’isolation par l’intérieur si production de vapeur d’eau (douches, cuisines, …)

+

TR : 5 à 25 ans si isolation par l’intérieur

La dalle de sol située au-dessus d’un vide ventilé ou de l’extérieur est-elle suffisamment isolée ? Isoler le plancher par l’extérieur

+

Économie : 10 litres fuel/m²

TR : fonction de l’accessibilité

Isolation de la paroi extérieure au dos des radiateurs ? Coller un isolant avec couverture réfléchissante au dos du radiateur

+ + +

TR : de 1 à 3 ans


L’étanchéité à l’air

Repérer le problème Projet à étudier Rentabilité
Un test d’étanchéité à l’air a-t-il été réalisé ?

Les valeurs v50 et n50 sont-elles connues ?

Envisager la réalisation d’un test d’étanchéité pour évaluer les fuites d’air

+

à terme

La barrière d’étanchéité à l’air est-elle clairement identifiée ?

La toiture est-elle étanche à l’air ?

Les jonctions et raccords sont-ils correctement réalisés ?

Identifier et mettre en place des dispositifs d’étanchéité à l’air dans le bâtiment

++


Les portes et fenêtres

Repérer le problème Projet à étudier Rentabilité
Les coefficients de transmission thermique U des différentes fenêtres sont-ils inférieurs aux Umax recommandés par la PEB ?

 

Améliorer l’isolation thermique des fenêtres

++

 

Simple vitrage ?

Si le châssis est métallique, est-il à coupure thermique ?

Quel inconfort perçu par l’occupant ?

Les châssis sont-ils en bon été ? moisissures ? humidité ?

Remplacer par du double vitrage isolant

Remplacer châssis

+

Économie : 30 litres fuel/m²/an

TR  : 20 ans mais forte amélioration du confort thermique

TR du supplément vitrage « basse émissivité » : 4 ans

Châssis étanche ? Qualité des joints ? Que se passe-t-il par grand vent ?

Inconfort des occupants ?

Quelle ventilation existante ?

Placer des joints … soit en conservant quelques joints ouverts, soit en organisant en parallèle une ventilation.

+ + +

Rentabilité élevée si actuellement jours importants.

Chauffage de l’air de ventilation = 30 % de la consommation d’un ancien bâtiment, 50% de la consommation d’un nouveau bât.

Vitrage cassé ?

Les occupants sont-ils sensibiliser aux ouverture permanentes (porte, fenêtres …) ?

Y a-t-il un sas d’entrée au bâtiment ou des fermetures automatiques ?

Remplacer le vitrage

Placer des rappels de porte automatiques

Sensibiliser les occupants

Installer un sas ou des fermetures automatiques

+ + +

Économie :
3.000 .. 5.000 litres fuel/m² d’ouverture/an


Les protections solaires

Repérer le problème Projet à étudier Rentabilité
Si bâtiment climatisé (ou bâtiment non climatisé mais avec surchauffe en été) : existence d’une protection vis-à-vis du rayonnement solaire ?

Les locaux climatisés et orientés à l’est, au sud ou à l’ouest sont-ils équipés de protections solaires extérieures ?

Installer une protection solaire extérieure  (…150 à 250 Euros/m² de store…)

Coller un film réfléchissant

+

Gains : diminution des surchauffes ou économie de climatisation de l’ordre de 2,5 Euros/m²/an au sol de local climatisé.

Les stores extérieurs sont-ils automatisés ? Automatiser les protections solaires mobiles

 


Audit complet avec classement des mesures à prendre ?

L’audit d’un bâtiment existant
Évaluer pour le Responsable Énergie
Calculs pour l’auditeur (xls)

Évaluer l’état de l’isolant thermique

Évaluer l'état de l'isolant thermique


Humidité excessive, inondation

Une forte teneur en humidité de l’isolant dégrade de manière importante son coefficient de conductivité thermique  λ.

Évolution de la conductivité thermique λ en fonction de l’humidification en volume de l’isolant

sec 10 % 20 % 50 %
W/mK W/mK W/mK W/mK
MW Laine minérale 0.044 0.123 0.161 0.315
CG Verre cellulaire 0.050 impossible impossible impossible
EPB Perlite expansée panneaux 0.055 0.091
PUR Polyuréthanne 0.029 0.049 0.16
EPS  

Polystyrène expansé

0.045 0.06 0.14
XPS  

Polystyrène extrudé

0.038 0.052
ICB  

Liège

0.050 0.063 0.087 0.12

NB : Les valeurs de λ sec sont celles des matériaux isolants certifiés connus d’après leur nature, reprises au tableau 89 de l’Annexe D de l’AGW du 15 mai 2014.

Certains isolant sont étanches à l’eau de par leur nature (exemple XPS).

Ils peuvent cependant s’humidifier par condensation interne. Dans le cas d’une toiture plate inversée, l’isolant est cependant accessible et peut être vérifié sans démonter l’étanchéité.

Le verre cellulaire (CG) ne peut se gorger d’eau. En cas de défaillance de l’étanchéité, la zone mouillée est très limitée. Il faut cependant vérifier si dans cette zone l’isolant n’a pas été altéré par le gel.

L’humidité (qui peut provenir soit d’une défaillance de l’étanchéité, soit d’une défaillance du pare-vapeur) peut aller jusqu’à l’engorgement complet de l’isolant.

Lorsque l’isolant d’une toiture chaude a été compartimenté, une inondation due à une défectuosité locale de l’étanchéité se limitera au compartiment atteint.

Concevoir

Pour savoir comment compartimenter l’isolant.

Dès que l’isolant est mouillé, il est très difficile, voire impossible, de l’assécher surtout lorsqu’il est enfermé dans des couches étanches (exemple toiture chaude).

L’humidité de l’isolant peut se repérer à travers la une membrane d’étanchéité ou un cimentage à l’aide d’un scanner, d’une thermographie infrarouge ou hygromètre électronique.

 

Scanners TRAMEX servant à détecter  l’eau sous l’étanchéité.

Dans la plupart des cas, seul un sondage destructif (et réparable) jusque dans la couche isolante, permet de déterminer exactement l’ampleur du désordre.

Isolant détrempé.

Un isolant noyé doit être remplacé !


Déformations

Cas des toitures plates

Une observation de la surface de la toiture chaude permet de détecter une déformation de l’isolant.

Les déformations peuvent être dues au vieillissement de l’isolant, aux différences de température, à l’humidité.

Les panneaux se contractent, se dilatent ou se galbent.

Dilatation de la face supérieure de l’isolant par la chaleur.

Contraction de la face supérieure de l’isolant par le froid.

Ces déformations peuvent amener des tensions dans la membrane d’étanchéité, créer des vides sous l’isolant, provoquer des zones de stagnation de l’eau de pluie, provoquer des ponts thermiques (***lien à rediriger).

L’isolant est déformé sous la membrane d’étanchéité, provoquant ainsi des vides entre l’isolant et le support, des zones de stagnation au-dessus de l’étanchéité des contraintes mécaniques dans l’étanchéité et probablement un affaiblissement important de l’accrochage.

L’isolant s’est déplacé sous l’effet de dilatation et contractions thermiques consécutives.


Tassements

Cas des façades

Dans les premiers murs creux réalisés, les isolants placés n’étaient parfois pas adaptés à l’usage qui en était fait (isolant en rouleau pour toiture inclinée beaucoup trop souple) ou étaient insuffisamment ou mal fixés. Avec le temps l’isolant se tassait dans le bas du creux en laissant un vide dans le haut de celui-ci. L’humidité accidentelle de l’isolant pouvait aussi aggraver le phénomène. L’interruption de l’isolant ainsi provoquée crée l’apparition de ponts thermiques parfois très graves.

Une thermographie IR du mur en hiver permet de diagnostiquer le phénomène. Un sondage destructif permet l’accès à l’isolant et la détermination des causes exactes.


Ponts thermiques

Certains ouvrages de raccord ou de rives peuvent avoir été mal réalisés sans respect du principe de continuité de la couche isolante.

Les ponts thermiques (*** lien  à éditer !) dans les toitures plates proviennent d’une interruption de l’isolant, d’une dégradation locale de celui-ci, ou de joints vides entre panneaux isolants qui se sont rétractés.

La neige sur la membrane d’étanchéité a fondu aux endroits où ,sous l’effet du retrait, les panneaux isolants se sont écartés les uns des autres, provoquant ainsi des ponts thermiques.

Évaluer

Pour savoir comment repérer les ponts thermiques.

Améliorer

Pour savoir comment corriger les ponts thermiques.

Lorsque les défauts sont généralisés, il faut envisager le remplacement complet de l’isolant.


Écrasement

La résistance à l’écrasement varie d’un isolant à l’autre.

Lorsque la toiture ou un plancher isolé par le haut a été soumis à des charges ponctuelles importantes, à ces endroits, l’épaisseur d’un isolant souple peut avoir été réduite. Lorsque l’isolant est dur, il peut s’être rompu.

Ces désordres localisés doivent être réparés et leurs causes supprimées.

La membrane s’est déchirée suite à l’écrasement local de l’isolant.


Fragilisation par rapport à la délamination et au pelage

Tous les matériaux isolants utilisés en toiture plate résistent suffisamment à la délamination.

En vieillissant, certains d’entre eux se fragilisent (splitting) et l’accrochage de la membrane d’étanchéité n’est plus assurée.

Des tests d’arrachement permettent de déterminer si la résistance au vent est encore suffisante.
Si ce n’est pas le cas l’isolant doit être refixé mécaniquement, ou remplacé si ce mode de fixation n’est pas possible en raison de la nature de l’isolant ou du support.

Les effets du vent sur un complexe « isolant-étanchéité » fragilisé ou mal fixé peuvent être spectaculaires.

Évaluer un risque de condensation superficielle au droit d’une terrasse en béton

Évaluer un risque de condensation superficielle au droit d'une terrasse en béton


Description de la situation

Un immeuble de bureaux possède des terrasses en béton en encorbellement sans coupure thermique. On améliore la situation en ajoutant une isolation d’une résistance thermique de 1 m²xK/W au droit du linteau et entre la dalle et le plancher.

Schéma de principe de la terrasse en encorbellement.

L’immeuble de bureaux est équipé d’un conditionnement d’air contrôlant la qualité de l’air intérieur.
La température de jour (ηi) est maintenue à 21°C et l’humidité relative (φi) à 50 %.
La nuit et le weekend, nous avons imaginé deux possibilités :

  1. le chauffage est coupé et la ventilation continue,
  2. la ventilation et le chauffage sont coupés.

La température descend alors jusqu’à 18°C la nuit et jusqu’à 16°C le week-end.

On voudrait évaluer le risque de condensation à l’intérieur des locaux au droit des terrasses en encorbellement.


Calcul du pont thermique : facteur τ

Tout point intérieur d’un détail constructif ou d’un pont thermique est caractérisé par un facteur de température τ. τmin est la valeur minimale de ces différents τ.
Au droit d’éléments de construction ou de ponts thermiques complexes, il est difficile de calculer les facteurs de température manuellement. Ces calculs se font par programmes informatiques (basés, par exemple, sur la méthode des éléments finis ou des différences finies). Les facteurs de température du pont thermique de la terrasse en encorbellement de l’immeuble de bureau ont été calculés à l’aide du programme KOBRU 82. En voici les résultats :

τ1 = 0,705;
τ2 = 0,905;
τ3 = 0,955;
τ4 = 0,785;
τ5 = 0,98;
τ6 = 0,885;
τ7 = 0,545;
τ8 = 0,77.
τmin = τ7 = 0,545
Remarque : les résultats de nombreux ponts thermiques sont repris dans la NIT 153.


Évaluation du risque de condensation

Il ne se formera pas de condensation superficielle si :

Avec,

  • θi : la température intérieure,
  • θe : la température extérieure,
  • θd : la température de rosée correspondant à l’ambiance intérieure.

Le jour

Température extérieure (°C) Température intérieure (°C)

φi = 50 %

θd (°C)

La journée – 10 21 10 0,65
– 5 21 10 0,58
0 21 10 0,48
5 21 10 0,29
8 21 10 0,15
10 21 10 0

0,65 < τmin = 0,545 ? : non !

Il y a donc risque de condensation… !!!

Néanmoins, on peut calculer à partir de quelle température extérieure il y a risque de condensation sur le pont thermique ayant un τmin de 0,545 :

τmin = (θd – θe) / (θi – θe)

où,

  • τmin = 0,545
  • θi = 21°C
  • φ= 50 %
  • ssi θd = 10°C

0,545 = (10 – θe) / (21°C – θe)

θe = – 3,2°C

Occurrence des températures extérieures.

Vu que la température de – 3°C n’est atteinte que 150 heures par an, la période durant laquelle de la condensation superficielle se forme est négligeable.

La nuit

1° hypothèse : le chauffage est coupé et l’humidité relative intérieure (φi) est maintenue à 50 %

Dans ce cas, la température intérieure descend jusqu’à 18°C. La température de rosée descend à 7,4°C.

Température extérieure (°C) Température intérieure minimale (°C)

φi = 50 %

θd (°C)
-10 18 7,4 0,62
-5 18 7,4 0,54
0 18 7,4 0,41
…. ….

Température extérieure en dessous de laquelle il y a risque de condensation sur le pont thermique (τmin de 0,545) ? :

τmin = (θd – θe) / (θi – θe)

0,545 = (7,4 – θe) / (18°C – θe)

θe = -5,3°C

Cette température extérieure n’est atteinte que 57 heures par an; le risque de rencontrer de réels problèmes est encore moins élevé que le jour !

2° hypothèse : le chauffage et le traitement de l’air sont coupés

Dans ce cas, la température intérieure se refroidit jusque 18°C. Le point de rosée reste à 10°C mais l’humidité relative intérieure augmente.

Diagramme de l’air humide.

Température extérieure (°C) Température intérieure minimale (°C)

 

Humidité relative intérieure (φi) θd (°C)

– 10 18 60 % 10 0,71
– 5 18 60 % 10 0,65
0 18 60 % 10 0,56
5 18 60 % 10 0,38

Température extérieure en dessous de laquelle il y a risque de condensation sur le pont thermique (τmin de 0,545) ? :

τmin = (θd – θe) / (θi – θe)

0,545 = (10 – θe) / (18°C – θe)

θe = 0,42°C

Cette température est rencontrée 548 heures par an. Le risque de rencontrer des problèmes est plus élevé que dans les cas précédents.

Le week-end

Durant cette période, la température peut descendre jusqu’à 16°C.

Si la ventilation des locaux est maintenue, aucun problème de condensation ne peut être rencontré.

Par contre, si la ventilation est coupée durant cette période, l’humidité relative intérieure monte très vite. Par l’arrêt de la ventilation, le local est mis en dépression par rapport à la façade soumise au vent. Et vu que les parois ne sont jamais tout à fait étanches, de l’air extérieur y entre. L’humidité relative intérieure sera le résultat d’un mélange partiel entre l’air intérieur et l’air extérieur. Pour faire des hypothèses réalistes, l’enregistrement de valeurs atteintes par l’humidité relative intérieure est indispensable. Cette situation n’a pas été analysée.


Conclusions

Le risque de condensation superficielle pendant une longue durée n’existe pas dans les bureaux possédant un système de conditionnement d’air permettant de maintenir l’humidité relative de l’air à 50 %, même dans la situation critique d’un pont thermique où le facteur de température τ a une valeur de 0,545.

La situation devient critique quand la température de l’air intérieur diminue et que de l’humidité relative intérieure augmente.

À noter que la différence entre 40 et 60 % d’humidité relative ne se sent pas. Cette dernière pourrait être réglée à 40 %, ce qui diminuerait encore le risque de condensation. Néanmoins, il ne faut pas descendre en-dessous !

Évaluer le support de la toiture plate

Évaluer le support de la toiture plate


Connaître la nature du support

Dans le cas d’un bâtiment existant dont on souhaite améliorer l’isolation thermique, la nature du support influencera nécessairement le choix des techniques de couverture à adopter, principalement en matière d’accrochage et de protection.

Un support relativement isolant, comme le bois et ses dérivés, ou le béton cellulaire, peut contribuer à la valeur globale d’isolation de la toiture. Il faut être attentif à éviter une condensation dans le support en dimensionnant correctement l’isolant et le pare-vapeur.

Les supports lourds sont généralement utilisés pour des toitures de petites portées. Le lestage est proportionnellement moins lourd.

Concevoir

Pour plus d’information sur le choix de la technique de couverture.

Connaître la résistance du support

Lorsque la toiture à améliorer est déjà lestée, on peut estimer que le support est capable de supporter un lestage et donc la récupération de l’ancien lestage ou la pose d’un nouveau sont possibles.

Dans le cas contraire, la pose d’un lestage nécessite de calculer la capacité portante du support.

Concevoir

Pour plus d’information sur le choix de la protection.

Connaître l’état du support

Pente suffisante

Certains supports présentent depuis l’origine, des pentes insuffisantes, voire des contre-pentes. Parfois ces défauts de pente sont apparus suite à un tassement ou a une déformation de l’immeuble.

En se déformant, le support a provoqué des zones de stagnation importantes.

Dans ce cas, il faut s’assurer que l’étanchéité supporte des stagnations.

Flèche anormale ?

Une flèche anormale peut être due

  • à une surcharge excessive du support,
  • à un fluage dans le cas d’un support en béton,
  • à une attaque d’insectes ou de champignons ayant provoqué la rupture de certaines pièces en bois,
  • à une humidité excessive ayant provoqué une désagrégation des supports agglomérés ou du bois,
  • au gel des eaux de condensation interne dans les bétons cellulaires ou les hourdis en terre cuite.

Le support en dalles de béton s’est déformé.

Il convient alors de

  • supprimer la cause du désordre,
  • assainir le support, voire le remplacer si nécessaire,
  • corriger les contre-pentes si l’étanchéité ne supporte pas les stagnations.

Traces d’humidité récentes ou anciennes ?

Des traces d’humidité sous la toiture indiquent que des infiltrations se sont produites ou se produisent encore.

Le support a-t-il supporté les infiltrations sans s’affaiblir ?

Il faut :

  • déterminer la cause exacte de ces traces,
  • vérifier si cette cause existe encore, auquel cas la supprimer,
  • vérifier l’état du support par un ou des sondages si nécessaire,
  • réparer ou remplacer les parties altérées.

Examen visuel de la partie inférieure du support ?

La face supérieure du support est par nature inaccessible sans démontage de l’étanchéité.

Un examen de la face inférieure lorsqu’elle est visible permet de détecter certaines faiblesses du support :

fissuration, corrosion, traces d’attaque par les insectes, champignons, taches d’humidité.

Corrosion d’un support en acier.

La fissuration du béton peut être due :

  • à une surcharge excessive du support,
  • au gel de l’eau de condensation interne affaiblissant le support dans sa partie supérieure,
  • à une corrosion des armatures.

Elle se produit plus couramment avec du béton cellulaire car celui-ci, s’il possède une résistance thermique plus élevée que le béton lourd, a une résistance mécanique plus faible.

Fissuration et déformation des dalles en béton cellulaire.

Les taches d’humidité peuvent provenir d’infiltrations, mais aussi de condensation interne dans l’épaisseur de la toiture mal conçue ou mal réalisée.

Les panneaux en bois aggloméré sont détruits par l’humidité.

Il convient :

  • de vérifier si cette humidité a provoqué un affaiblissement du support,
  • de remplacer ou de renforcer les pièces atteintes,
  • de supprimer les causes d’humidité.

Les insectes attaquent les structures en bois, principalement lorsque celles-ci sont sèches et chaudes, et n’ont pas été traitées correctement.

Une attaque par un capricorne.

Il convient de vérifier l’importance de l’attaque par des sondages, renforcer si nécessaire les pièces fragilisées, traiter à l’aide d’un insecticide curatif et préventif l’ensemble du support en bois.

Améliorer 

Pour en savoir plus sur le traitement contre les insectes.

Les champignons attaquent les bois lorsque ceux-ci présentent un certain taux d’humidité. Suivant les conditions ambiantes et le taux d’humidité du bois, les champignons peuvent varier. Les plus dévastateurs sont certainement les mérules qui dans certaines conditions progressent très rapidement et s’étendent sur de grandes superficies, et de longues distances, même le long et au travers des maçonneries.

Une attaque par la mérule.

L’avis d’un spécialiste est indispensable pour déterminer la nature exacte du champignon. Pour un particulier c’est impossible. Ce n’est d’ailleurs pas nécessaire, car le mode d’attaque, d’une part, et surtout le traitement préconisé, sont les mêmes dans tous les cas.

Améliorer 

Pour en savoir plus sur le traitement contre les champignons.

Il ne suffit pas de supprimer la cause d’humidité pour que le champignon meure. En s’étendant, il peut avoir trouvé de nouvelles sources d’eau et continuer à se développer. Même s’il ne croît plus, faute d’eau ou de matières ligneuses, il reste en vie et n’attend que de nouvelles conditions favorables pour reprendre sa progression.

Son traitement nécessite généralement des travaux importants, dont le remplacement de toutes les parties atteintes avec une importante zone périphérique de sécurité, le traitement curatif et préventif de toutes les boiseries conservées, le traitement curatif et préventif des maçonneries atteintes.

Ces traitements et travaux réalisés par des firmes spécialisées sont garantis par attestation de traitement.
La présence d’une mérule dans un bâtiment peut avoir des implications juridiques notamment vis-à-vis des voisins.

ON PEUT ÊTRE DÉCLARÉ RESPONSABLE DES DÉGÂTS CAUSÉS PAR UNE ATTAQUE DE MÉRULE CHEZ LE VOISIN !

Évaluer les gains et la rentabilité de l’isolation thermique

Évaluer les gains et la rentabilité de l'isolation thermique


ρ

Les gains se situent au niveau de :


La diminution de la facture énergétique

L’isolation thermique d’une paroi permet d’économiser énormément d’énergie.

Exemple.

On pose sur un toit plat non isolé de 100 m² une couche d’isolant, dont la résistance thermique R = 2.5 (exemples : 12 cm de laine de roche ou 9 cm de mousse de polyuréthanne ou 14 cm de verre cellulaire). Ceci permet d’économiser au moins 1 000 litres de gasoil par an au centre du pays, dans un immeuble non chauffé la nuit et le WE (bureaux, par exemple).

Calculs

Si vous voulez accéder aux détails des formules utilisées ci-dessous, cliquez ici !

Détail :

  • Résistance sans isolant :

R = 0.50 m²K/W => U = 2 W/m²K

  • Résistance avec isolant :

R = 3,00 m²K/W => U = 0,33 W/m²K

  • Différence de U = 1,67 W/m²K
  • Température extérieure moyenne pendant la période de chauffe : 6.5°C
  • Durée de la période de chauffe : 242 jours
  • Température moyenne intérieure : 20° (T° de jour) – 3° (intermittence) – 3° d’apports gratuits = 14°C
  • Différence moyenne de température :

14°C – 6,5°C = 7,5 K

  • Rendement moyen de l’installation de chauffage : 0,7
  • Différence de perte annuelle par m² :

(ΔU x S x Δ Tm)  x durée de chauffe / η =
1,67 W/K x 7,5 K x 242 j x 24 h/j / 0,7 = 103 922 Wh

  • Soit en combustible 104 kWh x 0.1 l/kWh = 10,4 litres de gasoil par m² par an.
  • Soit ici 1 000 litres de gasoil pour la toiture par an.

Exemple de rentabilité :

  • Avec un prix du gasoil de 0,8 € par litre, l’économie financière annuelle par m² de toiture est de 8 €.
  • Le prix de l’isolation est très variable (isolation des combles ou de la toiture ? l’étanchéité est-elle de toute façon à refaire ? …). Un prix de 50 €/m² permet de boucler un projet, étanchéité comprise. Le temps de retour de l’isolation est donc de ( 50/ 8) = moins de 7 ans.
  • À noter que si le bâtiment est chauffé jour et nuit (hôpital, maison de repos) et que l’on considère une température moyenne intérieure de 21°C, l’économie monte à 16 litre de gasoil/m² et le temps de retour descend à 6 ans.
  • Si le bâtiment est situé en Ardenne, le temps de retour descend à 5 ans (bureau) ou 3 ans (hôpital).
  • Si l’institution (bureau d’une administration ou home) obtient la prime UREBA de 30 %, (ou une autre prime et déduction fiscale pour les bureaux privés, voir http://energie.wallonie.be), le prix de l’isolation descend à 35 €/m², et donc les temps de retour descendent à :
bureau
home
Brabant
5 ans
3 ans
Ardenne
3 ans
2 ans
  • Si le chantier est important et qu’une négociation est possible, le prix peut encore descendre. Et si l’étanchéité de la toiture est de toute façon à envisager, le prix de l’isolant s’amortit alors très rapidement.

Calculs

Si vous voulez calculer vous-même la rentabilité de l’isolation d’une paroi, cliquez ici !

Calculs

Dans le programme de calcul ci-dessus, il vous sera demandé le coefficient de transmission thermique (U) de la paroi avant et après isolation.  Ces valeurs ont été calculées pour certaines parois types.

Évaluer

Il vous sera également demandé d’évaluer le rendement de votre installation de chauffage.
Vous trouverez des indications concernant les valeurs à considérer pour une installation à eau chaude en cliquant ici. Pour le chauffage électrique, le rendement est de 100 %.

L’amélioration du confort

L’isolation de la paroi va augmenter la température de surface de celle-ci, augmentant ainsi le confort thermique pour les occupants, et réduisant les risques de condensation en surface et donc les problèmes d’hygiène.
Vous pouvez évaluer la température de surface de la paroi à l’aide de la formule :

θoi = θi – (U x 0,125 x(θi – θe))

avec :

  • θi : température intérieure (en °C)
  • θe : température extérieure (en °C)
  • U : coefficient de transmission thermique de la paroi (en W/m²K)
  • θoi : température de surface intérieure de la paroi (en °C)

Exemple : si la température extérieure est de 0°C et que la température intérieure est de 20°C, la face inférieure d’une paroi plate passera de 15 à 19°C après isolation.


La protection du bâtiment

L’amélioration de l’isolation de la paroi correctement réalisée par l’extérieur augmente la longévité des matériaux, car elle :


La diminution des rejets polluants

Du point de vue environnemental, les économies de chauffage engendrées par l’isolation permettent de réduire fortement les rejets de gaz polluants (CO2, SO2, NOX, …)

Exemple.

Dans le Brabant, la pose, sur le toit plat non isolé de 100 m² d’un immeuble de bureau, d’une couche d’isolant dont la résistance thermique R = 2.5 (exemples : 12 cm de laine de roche ou 9 cm de mousse de polyuréthanne ou 14 cm de verre cellulaire) permet de diminuer les rejets annuels (chauffage au gasoil) :

  • d’environ 104 kWh/m² x 100 m² x 0,264 kg > CO2/kWh = 2 746  kg de CO2
  • d’environ 104 kWh/m² x 100 m² x 0,169 mg NOx/kWh = 1,7  kg de NOx

Évaluer l’isolation thermique des murs

Évaluer l'isolation thermique des murs


Connaître les valeurs de référence

Une paroi est caractérisée par un coefficient de transmission thermique U. Plus ce coefficient est petit plus la paroi est isolante. La réglementation thermique wallonne impose, pour les parois neuves et assimilées délimitant le volume protégé, une valeur maximale du coefficient de transmission thermique.
Ces valeurs peuvent être vues comme un « garde-fou ». D’autres labels volontaires recommandent d’ailleurs des performances thermiques plus élevées.

Ces valeurs à respecter au minimum dans un nouveau bâtiment peuvent néanmoins servir de base pour évaluer la qualité d’un bâtiment existant.


Calculer le niveau d’isolation lorsque la nature et l’épaisseur des matériaux isolants sont connues

Calcul approximatif

Les blocs isolants (béton cellulaire, terre cuite légère, …) et l’isolant thermique sont les couches du mur qui influencent le plus sa qualité thermique. Les calculs approximatifs ci-dessous sont suffisamment précis lorsqu’on s’approche de la gamme des valeurs admises.

Mur en blocs lourds + isolant

En première approximation, le calcul du niveau d’isolation peut se faire en ne tenant compte que de l’isolant sur base de la formule simplifiée :

U = λi/ei,

avec,

  • λi : la conductivité thermique de l’isolant
  • ei : l’épaisseur de l’isolant
Exemple.

9 cm de laine minérale certifiée, de marque non déterminée, dont λ vaut 0.044 W/mK (suivant Annexe D de l’AGW du 15 mai 2014), entraîne un U approximatif du mur de : 

0,044 W/mK / 0,09 m = 0,49 W/m²K

On obtient une valeur de U < 0,5 W/m²K, dont il est question ci-dessus, avec des épaisseurs :

On obtient une valeur de U < 0,8 W/m²K, dont il est question ci-dessus, avec des épaisseurs :

Murs en blocs isolants sans couche isolante supplémentaire

En première approximation, le calcul du niveau d’isolation peut se faire en ne tenant compte que des blocs isolants, sur base de la formule simplifiée :

U  (=1/R) = λbl/ebl, pour les matériaux homogènes.
U = 1/Ru, pour les matériaux hétérogènes.

Avec,

Exemples.

  • Avec une épaisseur de 29 cm de bloc de béton cellulaire (700 < ρ < 800 kg/m³, λ = 0,26) et sec, on obtient une valeur de U = à 0,9 W/m².K.
  • Avec des blocs creux de béton léger de 29 cm d’épaisseur (ρ < 1 200 kg/m³, Ru = 0,450 m²K/W) et sec, on obtient une valeur approximative de U = à 2,2 W/m².K.

Remarque : seuls des blocs de béton cellulaire très léger (ρ < 500 kg/m³) (ou équivalent) mis en œuvre avec une épaisseur > 29 cm et dans un état parfaitement sec permettent d’atteindre un niveau d’isolation de U < 0,6 W/m².K sans isolant complémentaire.

Murs en blocs isolants avec isolant

En première approximation, le calcul du niveau d’isolation peut se faire en ne tenant compte que des blocs isolants et de l’isolant, sur base de la formule simplifiée :

U = 1/(ei/λi + ebl/λbl) en cas de blocs isolants homogènes.
U =  1/(ei/λi + Ru) en cas de blocs isolants hétérogènes.

avec,

Exemple.

  • Avec une épaisseur de 19 cm de bloc de béton léger (800 < ρ < 900 kg/m³, λ = 0,46 W/m.k) + une couche de 3 cm de laine minérale (λ = 0,045 W/m.K, selon Annexe D de l’AGW du 15 mai 2014), on obtient une valeur de U = à 0,8 W/m².K.
  • Avec des blocs creux de béton léger de 29 cm d’épaisseur (ρ < 1 200 kg/m³, Ru = 0,450 m²K /W) + une couche de 3 cm de laine minérale (= 0,045 W/m.K, selon Annexe D de l’AGW du 15 mai 2014), on obtient une valeur approximative de U = à 0.90 W/m².K.

Calcul plus précis

Si les autres matériaux constituant le mur sont connus, il est possible de calculer exactement le coefficient de transmission thermique U de celui-ci.

Calculs

Pour calculer le coefficient de transmission thermique du mur.

Mais attention, tous les résultats ainsi obtenus ne sont fiables que si l’isolant est bien posé, sec et en bon état…

…ce qui n’est pas toujours le cas…! :

Par exemple … 

Les premiers bâtiments isolés datant de la fin des années ’70 et des années ’80, ont connu beaucoup d’erreurs de conception. On a, en outre, employé des matériaux inadéquats : les coulisses ont été remplies de laines minérales trop souples et non hydrofugées.

Même dans les bâtiments récents, des défauts d’exécution sont très fréquents lors d’un remplissage partiel de la coulisse.

Exemple : Les panneaux isolants ne sont pas placés contre le mur intérieur (en remplissage partiel) : ce qui engendre des pertes de chaleur par convection autour des panneaux.

Exemple.

La KUL a effectué des mesures de coefficients de transmission thermique moyens réels sur des murs creux avec remplissage partiel où la mise en œuvre de l’isolant a été soignée et sur les mêmes murs creux où la mise en œuvre a été exécutée sans soin particulier.

En voici les résultats :

Uthéorique (W/m².K) Upratique (W/m².K)
 

Pas d’isolant dans le mur creux

 

1,34 1,35

Remplissage partiel du creux

 

Pose correcte de l’isolant

 

0,42 à 0,49 0,54 à 0,61
 

Pose déficiente de l’isolant

 

0,42 à 0,49 0,99

En cas de doute, des sondages effectués prioritairement aux endroits suspects peuvent être très utiles.


Repérer les indices d’une isolation thermique insuffisante

Dans l’idéal …

Idéalement, lorsque la nature, l’épaisseur et/ou l’état de la couche isolante n’est pas connue, il convient d’effectuer un sondage à travers le mur pour la déterminer.

À défaut, un indice pratique

Avant d’effectuer ce sondage, un indice peut indiquer un manque d’isolation efficace : la faible température du mur côté intérieur en période hivernale.

La condensation sur le mur en est une conséquence visible dans les locaux humides.

Photo condensation.

La condensation sur une paroi est signe d’absence ou de faiblesse de l’isolation.