Évaluer l’isolation thermique des planchers

Évaluer l'isolation thermique des planchers

Connaître les valeurs de référence

Une paroi est caractérisée par un coefficient de transmission thermique U. Plus ce coefficient est petit plus la paroi est isolante. La réglementation thermique wallonne impose, pour les parois neuves et assimilées délimitant le volume protégé, une valeur maximale du coefficient de transmission thermique.
Ces valeurs peuvent être vues comme un « garde-fou ». D’autres labels volontaires recommandent d’ailleurs des performances thermiques plus élevées.

Ces valeurs à respecter au minimum dans un nouveau bâtiment peuvent néanmoins servir de base pour évaluer la qualité d’un bâtiment existant.

Plancher accessible par le bas

On peut considérer que l’isolation d’un plancher existant accessible par le bas (l’isolation peut être posée sous celui-ci) est suffisante si R ≥ 1 W/m²K. En effet, en dessous de cette valeur, le temps de retour sur investissement devient assez important. Néanmoins, une rénovation complète ou partielle (finitions, revêtements,… ) sera toujours une bonne occasion de renforcer l’isolation.

Plancher sur sol

Si le plancher est posé sur le sol et que le rapport entre le périmètre exposé et sa surface (P/A) est inférieur à 0.30, l’amélioration de l’isolation n’est généralement pas nécessaire du fait que, la configuration même du plancher limite déjà les pertes thermiques.

Dans certains cas, l’amélioration de l’isolation d’une dalle posée sur sol peut être très coûteuse (démolition des sols existants) et un calcul de rentabilité spécifique au bâtiment est indispensable avant toute prise de décision. Le coût des travaux peut cependant être limité en n’isolant que la périphérie du plancher, soit horizontalement, soit verticalement.

Isolation périphérique horizontale et verticale.


Calculer le niveau d’isolation lorsque la nature et l’épaisseur des matériaux isolants sont connues

Calcul approximatif

L’isolant thermique est la couche du plancher qui influence le plus sa qualité thermique. Le calcul approximatif ci-dessous est suffisamment précis lorsqu’on s’approche de la gamme des valeurs admises.

R = ei / λi

Avec,

  • R : résistance thermique de la couche isolante,
  • λi = la conductivité thermique de l’isolant,
  • ei = l’épaisseur de l’isolant.
Exemple.

4 cm de mousse de polystyrène extrudé dont λ vaut 0.038 W/mK (suivant Annexe D de l’AGW du 15 mai 2014), entraîne un R approximatif de :

0.04 m / 0.038 W/mK = 1,05 m²K/W

On obtient une valeur acceptable de R ≥ 1 m²K/W dont il est question ci-dessus, avec des épaisseurs :

  • de 4 cm de mousse de polystyrène extrudé (λ = 0.038 W/mK suivant Annexe D de l’AGW du 15 mai 2014)
  • de 5 (4.5) cm de mousse de polystyrène expansé (λ = 0.045 W/mK)
  • de 5 (4.5) cm de mousse de laine minérale (λ = 0.044 W/mK)
  • de 4 (3.5) cm de mousse de polyuréthane (λ = 0.029 W/mK)
  • de 6 (5.5) cm de verre cellulaire (λ = 0.050 W/mK)

Calcul plus précis

Si les matériaux constituant le plancher sont connus, il est possible de calculer exactement le coefficient de transmission thermique U ou la résistance thermique R exacte de celui-ci.

Il faudra cependant distinguer 5 cas.

  1. Les planchers situés au-dessus de l’ambiance extérieure
  2. Les planchers situés au-dessus d’un espace adjacent non chauffé (EANC)
  3. Les planchers posés directement sur le sol
  4. Les planchers situés au-dessus d’une cave
  5. Les planchers situés au-dessus d’un vide sanitaire

Le U des planchers situés au-dessus de l’espace extérieur se calcule de manière classique :

Calculs

Pour calculer le coefficient de transmission thermique du plancher au-dessus de l’extérieur. 

Pour les autres types de plancher, le U se calcule de la manière similaire. Un facteur de correction de température (≤1) est cependant appliqué à Ueq pour tenir compte de la protection complémentaire amenée par l’EANC , le sol, une cave ou un vide sanitaire. Ce facteur de correction peut toujours être considéré comme égal à 1, si on ne veut pas faire l’effort de le calculer. Ce choix peut être très pénalisant surtout dans les cas thermiquement bien protégé. Le calcul précis nécessite l’analyse thermique détaillée. Il peut se faire à l’aide du logiciel PEB fourni par la Région wallonne.


Repérer les indices d’une isolation thermique insuffisante

Dans l’idéal …

Idéalement, lorsque la nature, l’épaisseur et/ou l’état de la couche isolante ne sont pas connus, il convient d’effectuer un sondage à travers le plancher pour la déterminer.

À défaut, un indice pratique

Avant d’effectuer ce sondage, un indice peut indiquer un manque d’isolation efficace : la faible température de la paroi côté intérieur en période hivernale.
La condensation sur une paroi est signe d’absence ou de faiblesse de l’isolation.

Déceler la présence de ponts thermiques

Déceler la présence de ponts thermiques


La configuration des différentes parois de l’enveloppe et des raccords entre elles

L’isolation thermique de certains ouvrages de raccord est difficile à réaliser et  nécessite un soin important. C’est donc à ces endroits que le risque de pont thermique est le plus important. Ils devront être vérifiés soigneusement un par un, et éventuellement sondés pour en connaître la configuration exacte et évaluer le risque de désordre ou d’inconfort, en utilisant éventuellement un logiciel de calcul adéquat.
Il s’agit,

Pour les toitures plates

Des rives des toitures plates

Schéma rives des toitures plates

Des chéneaux extérieurs ou les encorbellements en matériau pierreux

Schéma chéneaux extérieurs ou les encorbellements en matériau pierreux

Des pénétrations verticales

Schéma pénétrations verticales

Des évacuations

Schéma évacuations

Des socles en toiture plate

Schéma socles en toiture plate

Des joints de mouvement relevés

Schéma joints de mouvement relevés

Des lanterneaux

Schéma lanterneaux

Des remontées de structure verticales

La toiture inversée ne permet pas de fixer l’isolant verticalement.

Schéma remontées de structure verticales- 1

Dans ce cas, les parties verticales peuvent être isolées par la  technique de la toiture chaude.

Schéma remontées de structure verticales- 2

L’isolant d’une toiture froide ou d’une toiture isolée par l’intérieur est généralement interrompu par les murs supportant la toiture.

Schéma remontées de structure verticales- 3

Améliorer

Pour savoir comment réduire ces différents ponts thermiques, cliquez ici

Pour les toitures inclinées

Du raccord versant de toiture-pignon

Schéma raccord versant de toiture-pignon

Du raccord pied de toiture-mur

Schéma raccord pied de toiture-mur

Isolation entre les chevrons.

Schéma isolation entre les chevrons - 2.

Toiture « Sarking ».

Des chéneaux extérieurs ou les encorbellements en matériau pierreux

Schéma chéneaux extérieurs ou les encorbellements en matériau pierreux.

De la cheminée

Schéma cheminée.

De la jonction d’une toiture inclinée à une toiture plate

Schéma jonction d'une toiture inclinée à une toiture plate

De la fenêtre

Schéma fenêtre

Du faîte du toit

Schéma faîte du toit.

Panneaux autoportants.

De la jonction plancher de comble isolé-mur extérieur

Schéma jonction plancher de comble isolé-mur extérieur

De la trappe d’accès dans un plancher de comble isolé

Schéma trappe d'accès dans un plancher de comble isolé

De la jonction entre un mur intérieur et un plancher de comble isolé

schéma jonction entre un mur intérieur et un plancher de comble isolé

schéma jonction entre un mur intérieur et un plancher de comble isolé

Améliorer

Pour savoir comment réduire ces différents ponts thermiques, cliquez ici !

Pour les murs pleins isolés par l’extérieur

Schéma murs pleins isolés par l’extérieur

Pont thermique au niveau d’un balcon.

Ponts thermiques au niveau d’un seuil et d’un linteau de fenêtre.

Pont thermique au niveau d’un ébrasement de baie.

Pont thermique au niveau d’un encorbellement.

Pont thermique au niveau d’une descente pluviale.

Améliorer

Pour savoir comment réduire ces différents ponts thermiques, cliquez ici !

 Pour les murs pleins isolés par l’intérieur

Liaison avec un mur intérieur
(coupe horizontale).

Fondation
(coupe verticale).

Appui de plancher
(coupe verticale).

Linteau
(coupes verticales).

Tablette de fenêtre
(coupe verticale).

Ébrasement de fenêtre
(coupe horizontale).

À côté des ponts thermiques « de conception », il existe aussi les ponts thermiques « d’exécution ». La perforation de l’isolant pour placer un boîtier électrique, par exemple, peut en créer un.

Pont thermique d’exécution

Schéma pont thermique d'exécution

Améliorer

Pour savoir comment réduire ces différents ponts thermiques, cliquez ici !

Pour les murs creux

A. Rive de toiture.

B. Appui de dalle.

C. Linteau.

D. Seuil de fenêtre.

E. Plancher sur vide sanitaire.

F. Balcon en encorbellement en béton.

À côté des ponts thermiques « de conception », il existe aussi les ponts thermiques « d’exécution ».

Schéma ponts thermiques "d'exécution".

Pont thermique d’exécution.
Les panneaux d’angle ne sont pas superposés.

Concevoir

Pour avoir accès à des détails techniques de murs creux réalisés sans pont thermique, cliquez ici !


Les traces de condensation à l’intérieur du bâtiment

Certains indices peuvent révéler la présence de ponts thermiques.

Le plus flagrant est la présence d’eau condensée sur la paroi.

Photo d'eau condensée sur la paroi.

Une condensation localisée est un indice de pont thermique.

Mais la zone peut être simplement humide (l’eau s’étant condensée à l’intérieur du matériau) ou être provisoirement sèche. Dans ce cas l’humidité peut avoir laissé des traces comme des moisissures, des taches ou de la poussière collée différemment sur les zones (parfois) humides et sur les zones toujours sèches.

Photo moisissures mur.

Les champignons se développent dans les zones des ponts thermiques.


La température locale des parois en hiver

Comparaison des températures de surface

Un thermomètre de contact permet de comparer la différence de température entre les différentes zones de la paroi concernée.

Photo thermomètre de contact.Photo thermomètre de contact.

Thermomètre de contact et mesure de température ambiante.

Thermomètre de surface à infrarouge.

En hiver, à l’endroit du pont thermique, la température superficielle intérieure est nettement inférieure à celle des éléments environnants.

La différence de température étant d’autant plus importante que la température extérieure est basse, c’est une mesure que l’on fera par temps très froid.

Exemple.

Une toiture inclinée est isolée (U = 0.4 W/m²K), sauf à un endroit (U = 2 W/m²K).
La température ambiante extérieure est de – 10°C, et la température ambiante intérieure de + 20°C.

 θoi = θi – (U x 0,125 x (θi – θe))

> La température de surface du plafond sera de 18,5°C sauf à l’endroit du pont thermique où la température de surface sera de 12,5°C.

Évaluation du risque de condensation à partir des températures de surfaces et des ambiances extérieures et intérieures

On peut calculer le facteur τ en différents points d’un détail technique en mesurant les températures de l’air intérieur θi et extérieur θe ainsi que la température locale de la paroi θoi.

On dispose, dès lors, de τmin.

Suivant la NIT 153 du CSTC, il y a pont thermique lorsque τmin < 0,7. Néanmoins, celle-ci concerne plus spécifiquement les logements et la valeur de 0,7 a été fixée en fonction des températures minimales et des humidités que l’on retrouve dans ceux-ci. Pour les bureaux, par exemple, cette valeur pourrait sans doute être plus faible, car la production de vapeur est moins importante et qu’en général, on dispose d’une ventilation. Dès lors, dans le cas des bâtiments du secteur tertiaire, il vaut mieux évaluer le risque de condensation superficielle à partir des conditions réelles.

Évaluer

Si vous souhaitez voir, par un exemple, comment évaluer concrètement le risque de condensation au droit d’un pont thermique dans un immeuble de bureau, cliquez ici.

Autre méthode : la détection par thermographie

La détection par thermographie doit pouvoir s’affranchir de la variation du climat et doit donc se faire par temps chaud ou froid de préférence par l’intérieur (zone stabilisée en température et non perturbée par le vent, la pluie et le soleil).

Pour ce faire, il y a lieu de mettre le bâtiment en dépression à l’aide d’un Blowerdoor avec une pression suffisante permettant de conditionner l’ensemble de l’enveloppe (toitures et murs) de la même manière. Cette méthode évite les interprétations erronées causées par la différence de pression exercée par le vent provoquant la dépression sur une ou deux façade(s) et une surpression sur les autres. Cette méthode facilite le diagnostic et le rend fiable.

La thermographie par l’extérieur peut, dans certains cas particuliers, servir à confirmer un constat effectué par l’intérieur. Dans le cas des murs creux, l’unique thermographie effectuée par l’extérieur n’est pas pertinente la lame d’air entre l’isolant et la brique perturbe le diagnostic.

 

Pont thermique en rive de toiture.
Source : Infravision.

Photo infrarouge d’une façade.

Autre méthode connue : la couche de givre ou de neige sur un bâtiment chauffé montrera, par son absence à certains endroits, les zones chaudes dues aux ponts thermiques.

Ponts thermiques repérables par la neige.


La date de construction du bâtiment

En ce qui concerne les murs creux, ce sont en général surtout les murs creux de bâtiments datant de la fin des années 1970 et des années 1980 qui présentent des problèmes de ponts thermiques.

En effet, depuis la fin des années 1970, l’isolation est devenue chose courante dans le bâtiment. Ce changement dans les habitudes de construction a été induit par le choc pétrolier de 1973.
L’isolation des bâtiments en Wallonie se systématise après 1985, date à laquelle, l’Exécutif régional wallon adopte un règlement thermique imposant une isolation thermique de l’enveloppe des nouveaux logements.

Mais l’isolation telle que réalisée à ses débuts est encore mal maîtrisée et mène à la création de ponts thermiques; ceux-ci agissent comme révélateur d’humidité. En effet, avant isolation, la condensation de la vapeur d’eau se répartissait sur toutes les surfaces; après isolation, l’humidité se concentre uniquement sur les ponts thermiques et provoque l’apparition de moisissures.

Néanmoins, si les bâtiments de cette époque ont particulièrement souffert du manque de connaissance, les problèmes de condensation ne se cantonnent malheureusement pas uniquement à ceux-ci et malgré la maîtrise actuelle de la technique, on retrouve encore des défauts de construction menant tout droit à des problèmes de condensation dans les bâtiments récents.

Création d’un pont thermique au niveau de la baie.

Pont thermique au niveau de la baie.

Auditer rapidement l’enveloppe

L’isolation

Repérer le problème Projet à étudier Rentabilité
Les coefficients de transmission thermique U des différentes parois sont-ils inférieurs aux Umax recommandés par la PEB ? Améliorer l’isolation thermique des parois existantes

+ à + + +

En fonction du niveau d’isolation de base

Les ponts thermiques sont-ils évités ? Améliorer les nœuds constructifs

+ +

Toiture non isolée ?

Isolation de la toiture en bon état ?

Si toiture plate, étanchéité existante en mauvais état ?

Isoler la toiture

L’étanchéité est-elle de toute façon à refaire prochainement ?

+ + +

Économie : 10 litres fuel/m²

TR : 5…15 ans (si on doit ou non refaire l’étanchéité)

Plancher du grenier inoccupé non isolé ? Isoler les combles

+ + +

TR : 3…5 ans

Mur extérieur non isolé ?

Présence de pignons aveugles ? (= grandes surfaces sans fenêtres)

Pignons sensibles aux intempéries ou en mauvais état (béton, joints dégradés) ?

Isoler le mur par l’extérieur derrière bardage ou crépis

Évaluer le risque de créer un pont thermique

+

Économie : 10 litres fuel/m²

TR : 5 .. 25 ans

Rentabilité élevée si pignons aveugles et/ou si nécessité de protéger le mur des intempéries

Mur extérieur non isolé ?

Mauvaise qualité de ventilation ? Présence de moisissures ? (= sensibilité à la condensation de vapeur d’eau)

 

Isoler le mur par l’intérieur

Evaluer le risque de créer un pont thermique

Eviter l’isolation par l’intérieur si production de vapeur d’eau (douches, cuisines, …)

+

TR : 5 à 25 ans si isolation par l’intérieur

La dalle de sol située au-dessus d’un vide ventilé ou de l’extérieur est-elle suffisamment isolée ? Isoler le plancher par l’extérieur

+

Économie : 10 litres fuel/m²

TR : fonction de l’accessibilité

Isolation de la paroi extérieure au dos des radiateurs ? Coller un isolant avec couverture réfléchissante au dos du radiateur

+ + +

TR : de 1 à 3 ans


L’étanchéité à l’air

Repérer le problème Projet à étudier Rentabilité
Un test d’étanchéité à l’air a-t-il été réalisé ?

Les valeurs v50 et n50 sont-elles connues ?

Envisager la réalisation d’un test d’étanchéité pour évaluer les fuites d’air

+

à terme

La barrière d’étanchéité à l’air est-elle clairement identifiée ?

La toiture est-elle étanche à l’air ?

Les jonctions et raccords sont-ils correctement réalisés ?

Identifier et mettre en place des dispositifs d’étanchéité à l’air dans le bâtiment

++


Les portes et fenêtres

Repérer le problème Projet à étudier Rentabilité
Les coefficients de transmission thermique U des différentes fenêtres sont-ils inférieurs aux Umax recommandés par la PEB ?

 

Améliorer l’isolation thermique des fenêtres

++

 

Simple vitrage ?

Si le châssis est métallique, est-il à coupure thermique ?

Quel inconfort perçu par l’occupant ?

Les châssis sont-ils en bon été ? moisissures ? humidité ?

Remplacer par du double vitrage isolant

Remplacer châssis

+

Économie : 30 litres fuel/m²/an

TR  : 20 ans mais forte amélioration du confort thermique

TR du supplément vitrage « basse émissivité » : 4 ans

Châssis étanche ? Qualité des joints ? Que se passe-t-il par grand vent ?

Inconfort des occupants ?

Quelle ventilation existante ?

Placer des joints … soit en conservant quelques joints ouverts, soit en organisant en parallèle une ventilation.

+ + +

Rentabilité élevée si actuellement jours importants.

Chauffage de l’air de ventilation = 30 % de la consommation d’un ancien bâtiment, 50% de la consommation d’un nouveau bât.

Vitrage cassé ?

Les occupants sont-ils sensibiliser aux ouverture permanentes (porte, fenêtres …) ?

Y a-t-il un sas d’entrée au bâtiment ou des fermetures automatiques ?

Remplacer le vitrage

Placer des rappels de porte automatiques

Sensibiliser les occupants

Installer un sas ou des fermetures automatiques

+ + +

Économie :
3.000 .. 5.000 litres fuel/m² d’ouverture/an


Les protections solaires

Repérer le problème Projet à étudier Rentabilité
Si bâtiment climatisé (ou bâtiment non climatisé mais avec surchauffe en été) : existence d’une protection vis-à-vis du rayonnement solaire ?

Les locaux climatisés et orientés à l’est, au sud ou à l’ouest sont-ils équipés de protections solaires extérieures ?

Installer une protection solaire extérieure  (…150 à 250 Euros/m² de store…)

Coller un film réfléchissant

+

Gains : diminution des surchauffes ou économie de climatisation de l’ordre de 2,5 Euros/m²/an au sol de local climatisé.

Les stores extérieurs sont-ils automatisés ? Automatiser les protections solaires mobiles

 


Audit complet avec classement des mesures à prendre ?

L’audit d’un bâtiment existant
Évaluer pour le Responsable Énergie
Calculs pour l’auditeur (xls)

Évaluer l’état de l’isolant thermique

Évaluer l'état de l'isolant thermique


Humidité excessive, inondation

Une forte teneur en humidité de l’isolant dégrade de manière importante son coefficient de conductivité thermique  λ.

Évolution de la conductivité thermique λ en fonction de l’humidification en volume de l’isolant

sec 10 % 20 % 50 %
W/mK W/mK W/mK W/mK
MW Laine minérale 0.044 0.123 0.161 0.315
CG Verre cellulaire 0.050 impossible impossible impossible
EPB Perlite expansée panneaux 0.055 0.091
PUR Polyuréthanne 0.029 0.049 0.16
EPS  

Polystyrène expansé

0.045 0.06 0.14
XPS  

Polystyrène extrudé

0.038 0.052
ICB  

Liège

0.050 0.063 0.087 0.12

NB : Les valeurs de λ sec sont celles des matériaux isolants certifiés connus d’après leur nature, reprises au tableau 89 de l’Annexe D de l’AGW du 15 mai 2014.

Certains isolant sont étanches à l’eau de par leur nature (exemple XPS).

Ils peuvent cependant s’humidifier par condensation interne. Dans le cas d’une toiture plate inversée, l’isolant est cependant accessible et peut être vérifié sans démonter l’étanchéité.

Le verre cellulaire (CG) ne peut se gorger d’eau. En cas de défaillance de l’étanchéité, la zone mouillée est très limitée. Il faut cependant vérifier si dans cette zone l’isolant n’a pas été altéré par le gel.

L’humidité (qui peut provenir soit d’une défaillance de l’étanchéité, soit d’une défaillance du pare-vapeur) peut aller jusqu’à l’engorgement complet de l’isolant.

Lorsque l’isolant d’une toiture chaude a été compartimenté, une inondation due à une défectuosité locale de l’étanchéité se limitera au compartiment atteint.

Concevoir

Pour savoir comment compartimenter l’isolant.

Dès que l’isolant est mouillé, il est très difficile, voire impossible, de l’assécher surtout lorsqu’il est enfermé dans des couches étanches (exemple toiture chaude).

L’humidité de l’isolant peut se repérer à travers la une membrane d’étanchéité ou un cimentage à l’aide d’un scanner, d’une thermographie infrarouge ou hygromètre électronique.

 

Scanners TRAMEX servant à détecter  l’eau sous l’étanchéité.

Dans la plupart des cas, seul un sondage destructif (et réparable) jusque dans la couche isolante, permet de déterminer exactement l’ampleur du désordre.

Isolant détrempé.

Un isolant noyé doit être remplacé !


Déformations

Cas des toitures plates

Une observation de la surface de la toiture chaude permet de détecter une déformation de l’isolant.

Les déformations peuvent être dues au vieillissement de l’isolant, aux différences de température, à l’humidité.

Les panneaux se contractent, se dilatent ou se galbent.

Dilatation de la face supérieure de l’isolant par la chaleur.

Contraction de la face supérieure de l’isolant par le froid.

Ces déformations peuvent amener des tensions dans la membrane d’étanchéité, créer des vides sous l’isolant, provoquer des zones de stagnation de l’eau de pluie, provoquer des ponts thermiques (***lien à rediriger).

L’isolant est déformé sous la membrane d’étanchéité, provoquant ainsi des vides entre l’isolant et le support, des zones de stagnation au-dessus de l’étanchéité des contraintes mécaniques dans l’étanchéité et probablement un affaiblissement important de l’accrochage.

L’isolant s’est déplacé sous l’effet de dilatation et contractions thermiques consécutives.


Tassements

Cas des façades

Dans les premiers murs creux réalisés, les isolants placés n’étaient parfois pas adaptés à l’usage qui en était fait (isolant en rouleau pour toiture inclinée beaucoup trop souple) ou étaient insuffisamment ou mal fixés. Avec le temps l’isolant se tassait dans le bas du creux en laissant un vide dans le haut de celui-ci. L’humidité accidentelle de l’isolant pouvait aussi aggraver le phénomène. L’interruption de l’isolant ainsi provoquée crée l’apparition de ponts thermiques parfois très graves.

Une thermographie IR du mur en hiver permet de diagnostiquer le phénomène. Un sondage destructif permet l’accès à l’isolant et la détermination des causes exactes.


Ponts thermiques

Certains ouvrages de raccord ou de rives peuvent avoir été mal réalisés sans respect du principe de continuité de la couche isolante.

Les ponts thermiques (*** lien  à éditer !) dans les toitures plates proviennent d’une interruption de l’isolant, d’une dégradation locale de celui-ci, ou de joints vides entre panneaux isolants qui se sont rétractés.

La neige sur la membrane d’étanchéité a fondu aux endroits où ,sous l’effet du retrait, les panneaux isolants se sont écartés les uns des autres, provoquant ainsi des ponts thermiques.

Évaluer

Pour savoir comment repérer les ponts thermiques.

Améliorer

Pour savoir comment corriger les ponts thermiques.

Lorsque les défauts sont généralisés, il faut envisager le remplacement complet de l’isolant.


Écrasement

La résistance à l’écrasement varie d’un isolant à l’autre.

Lorsque la toiture ou un plancher isolé par le haut a été soumis à des charges ponctuelles importantes, à ces endroits, l’épaisseur d’un isolant souple peut avoir été réduite. Lorsque l’isolant est dur, il peut s’être rompu.

Ces désordres localisés doivent être réparés et leurs causes supprimées.

La membrane s’est déchirée suite à l’écrasement local de l’isolant.


Fragilisation par rapport à la délamination et au pelage

Tous les matériaux isolants utilisés en toiture plate résistent suffisamment à la délamination.

En vieillissant, certains d’entre eux se fragilisent (splitting) et l’accrochage de la membrane d’étanchéité n’est plus assurée.

Des tests d’arrachement permettent de déterminer si la résistance au vent est encore suffisante.
Si ce n’est pas le cas l’isolant doit être refixé mécaniquement, ou remplacé si ce mode de fixation n’est pas possible en raison de la nature de l’isolant ou du support.

Les effets du vent sur un complexe « isolant-étanchéité » fragilisé ou mal fixé peuvent être spectaculaires.

Évaluer le support de la toiture plate

Évaluer le support de la toiture plate


Connaître la nature du support

Dans le cas d’un bâtiment existant dont on souhaite améliorer l’isolation thermique, la nature du support influencera nécessairement le choix des techniques de couverture à adopter, principalement en matière d’accrochage et de protection.

Un support relativement isolant, comme le bois et ses dérivés, ou le béton cellulaire, peut contribuer à la valeur globale d’isolation de la toiture. Il faut être attentif à éviter une condensation dans le support en dimensionnant correctement l’isolant et le pare-vapeur.

Les supports lourds sont généralement utilisés pour des toitures de petites portées. Le lestage est proportionnellement moins lourd.

Concevoir

Pour plus d’information sur le choix de la technique de couverture.

Connaître la résistance du support

Lorsque la toiture à améliorer est déjà lestée, on peut estimer que le support est capable de supporter un lestage et donc la récupération de l’ancien lestage ou la pose d’un nouveau sont possibles.

Dans le cas contraire, la pose d’un lestage nécessite de calculer la capacité portante du support.

Concevoir

Pour plus d’information sur le choix de la protection.

Connaître l’état du support

Pente suffisante

Certains supports présentent depuis l’origine, des pentes insuffisantes, voire des contre-pentes. Parfois ces défauts de pente sont apparus suite à un tassement ou a une déformation de l’immeuble.

En se déformant, le support a provoqué des zones de stagnation importantes.

Dans ce cas, il faut s’assurer que l’étanchéité supporte des stagnations.

Flèche anormale ?

Une flèche anormale peut être due

  • à une surcharge excessive du support,
  • à un fluage dans le cas d’un support en béton,
  • à une attaque d’insectes ou de champignons ayant provoqué la rupture de certaines pièces en bois,
  • à une humidité excessive ayant provoqué une désagrégation des supports agglomérés ou du bois,
  • au gel des eaux de condensation interne dans les bétons cellulaires ou les hourdis en terre cuite.

Le support en dalles de béton s’est déformé.

Il convient alors de

  • supprimer la cause du désordre,
  • assainir le support, voire le remplacer si nécessaire,
  • corriger les contre-pentes si l’étanchéité ne supporte pas les stagnations.

Traces d’humidité récentes ou anciennes ?

Des traces d’humidité sous la toiture indiquent que des infiltrations se sont produites ou se produisent encore.

Le support a-t-il supporté les infiltrations sans s’affaiblir ?

Il faut :

  • déterminer la cause exacte de ces traces,
  • vérifier si cette cause existe encore, auquel cas la supprimer,
  • vérifier l’état du support par un ou des sondages si nécessaire,
  • réparer ou remplacer les parties altérées.

Examen visuel de la partie inférieure du support ?

La face supérieure du support est par nature inaccessible sans démontage de l’étanchéité.

Un examen de la face inférieure lorsqu’elle est visible permet de détecter certaines faiblesses du support :

fissuration, corrosion, traces d’attaque par les insectes, champignons, taches d’humidité.

Corrosion d’un support en acier.

La fissuration du béton peut être due :

  • à une surcharge excessive du support,
  • au gel de l’eau de condensation interne affaiblissant le support dans sa partie supérieure,
  • à une corrosion des armatures.

Elle se produit plus couramment avec du béton cellulaire car celui-ci, s’il possède une résistance thermique plus élevée que le béton lourd, a une résistance mécanique plus faible.

Fissuration et déformation des dalles en béton cellulaire.

Les taches d’humidité peuvent provenir d’infiltrations, mais aussi de condensation interne dans l’épaisseur de la toiture mal conçue ou mal réalisée.

Les panneaux en bois aggloméré sont détruits par l’humidité.

Il convient :

  • de vérifier si cette humidité a provoqué un affaiblissement du support,
  • de remplacer ou de renforcer les pièces atteintes,
  • de supprimer les causes d’humidité.

Les insectes attaquent les structures en bois, principalement lorsque celles-ci sont sèches et chaudes, et n’ont pas été traitées correctement.

Une attaque par un capricorne.

Il convient de vérifier l’importance de l’attaque par des sondages, renforcer si nécessaire les pièces fragilisées, traiter à l’aide d’un insecticide curatif et préventif l’ensemble du support en bois.

Améliorer 

Pour en savoir plus sur le traitement contre les insectes.

Les champignons attaquent les bois lorsque ceux-ci présentent un certain taux d’humidité. Suivant les conditions ambiantes et le taux d’humidité du bois, les champignons peuvent varier. Les plus dévastateurs sont certainement les mérules qui dans certaines conditions progressent très rapidement et s’étendent sur de grandes superficies, et de longues distances, même le long et au travers des maçonneries.

Une attaque par la mérule.

L’avis d’un spécialiste est indispensable pour déterminer la nature exacte du champignon. Pour un particulier c’est impossible. Ce n’est d’ailleurs pas nécessaire, car le mode d’attaque, d’une part, et surtout le traitement préconisé, sont les mêmes dans tous les cas.

Améliorer 

Pour en savoir plus sur le traitement contre les champignons.

Il ne suffit pas de supprimer la cause d’humidité pour que le champignon meure. En s’étendant, il peut avoir trouvé de nouvelles sources d’eau et continuer à se développer. Même s’il ne croît plus, faute d’eau ou de matières ligneuses, il reste en vie et n’attend que de nouvelles conditions favorables pour reprendre sa progression.

Son traitement nécessite généralement des travaux importants, dont le remplacement de toutes les parties atteintes avec une importante zone périphérique de sécurité, le traitement curatif et préventif de toutes les boiseries conservées, le traitement curatif et préventif des maçonneries atteintes.

Ces traitements et travaux réalisés par des firmes spécialisées sont garantis par attestation de traitement.
La présence d’une mérule dans un bâtiment peut avoir des implications juridiques notamment vis-à-vis des voisins.

ON PEUT ÊTRE DÉCLARÉ RESPONSABLE DES DÉGÂTS CAUSÉS PAR UNE ATTAQUE DE MÉRULE CHEZ LE VOISIN !

Évaluer les gains et la rentabilité de l’isolation thermique

Évaluer les gains et la rentabilité de l'isolation thermique


ρ

Les gains se situent au niveau de :


La diminution de la facture énergétique

L’isolation thermique d’une paroi permet d’économiser énormément d’énergie.

Exemple.

On pose sur un toit plat non isolé de 100 m² une couche d’isolant, dont la résistance thermique R = 2.5 (exemples : 12 cm de laine de roche ou 9 cm de mousse de polyuréthanne ou 14 cm de verre cellulaire). Ceci permet d’économiser au moins 1 000 litres de gasoil par an au centre du pays, dans un immeuble non chauffé la nuit et le WE (bureaux, par exemple).

Calculs

Si vous voulez accéder aux détails des formules utilisées ci-dessous, cliquez ici !

Détail :

  • Résistance sans isolant :

R = 0.50 m²K/W => U = 2 W/m²K

  • Résistance avec isolant :

R = 3,00 m²K/W => U = 0,33 W/m²K

  • Différence de U = 1,67 W/m²K
  • Température extérieure moyenne pendant la période de chauffe : 6.5°C
  • Durée de la période de chauffe : 242 jours
  • Température moyenne intérieure : 20° (T° de jour) – 3° (intermittence) – 3° d’apports gratuits = 14°C
  • Différence moyenne de température :

14°C – 6,5°C = 7,5 K

  • Rendement moyen de l’installation de chauffage : 0,7
  • Différence de perte annuelle par m² :

(ΔU x S x Δ Tm)  x durée de chauffe / η =
1,67 W/K x 7,5 K x 242 j x 24 h/j / 0,7 = 103 922 Wh

  • Soit en combustible 104 kWh x 0.1 l/kWh = 10,4 litres de gasoil par m² par an.
  • Soit ici 1 000 litres de gasoil pour la toiture par an.

Exemple de rentabilité :

  • Avec un prix du gasoil de 0,8 € par litre, l’économie financière annuelle par m² de toiture est de 8 €.
  • Le prix de l’isolation est très variable (isolation des combles ou de la toiture ? l’étanchéité est-elle de toute façon à refaire ? …). Un prix de 50 €/m² permet de boucler un projet, étanchéité comprise. Le temps de retour de l’isolation est donc de ( 50/ 8) = moins de 7 ans.
  • À noter que si le bâtiment est chauffé jour et nuit (hôpital, maison de repos) et que l’on considère une température moyenne intérieure de 21°C, l’économie monte à 16 litre de gasoil/m² et le temps de retour descend à 6 ans.
  • Si le bâtiment est situé en Ardenne, le temps de retour descend à 5 ans (bureau) ou 3 ans (hôpital).
  • Si l’institution (bureau d’une administration ou home) obtient la prime UREBA de 30 %, (ou une autre prime et déduction fiscale pour les bureaux privés, voir http://energie.wallonie.be), le prix de l’isolation descend à 35 €/m², et donc les temps de retour descendent à :
bureau
home
Brabant
5 ans
3 ans
Ardenne
3 ans
2 ans
  • Si le chantier est important et qu’une négociation est possible, le prix peut encore descendre. Et si l’étanchéité de la toiture est de toute façon à envisager, le prix de l’isolant s’amortit alors très rapidement.

Calculs

Si vous voulez calculer vous-même la rentabilité de l’isolation d’une paroi, cliquez ici !

Calculs

Dans le programme de calcul ci-dessus, il vous sera demandé le coefficient de transmission thermique (U) de la paroi avant et après isolation.  Ces valeurs ont été calculées pour certaines parois types.

Évaluer

Il vous sera également demandé d’évaluer le rendement de votre installation de chauffage.
Vous trouverez des indications concernant les valeurs à considérer pour une installation à eau chaude en cliquant ici. Pour le chauffage électrique, le rendement est de 100 %.

L’amélioration du confort

L’isolation de la paroi va augmenter la température de surface de celle-ci, augmentant ainsi le confort thermique pour les occupants, et réduisant les risques de condensation en surface et donc les problèmes d’hygiène.
Vous pouvez évaluer la température de surface de la paroi à l’aide de la formule :

θoi = θi – (U x 0,125 x(θi – θe))

avec :

  • θi : température intérieure (en °C)
  • θe : température extérieure (en °C)
  • U : coefficient de transmission thermique de la paroi (en W/m²K)
  • θoi : température de surface intérieure de la paroi (en °C)

Exemple : si la température extérieure est de 0°C et que la température intérieure est de 20°C, la face inférieure d’une paroi plate passera de 15 à 19°C après isolation.


La protection du bâtiment

L’amélioration de l’isolation de la paroi correctement réalisée par l’extérieur augmente la longévité des matériaux, car elle :


La diminution des rejets polluants

Du point de vue environnemental, les économies de chauffage engendrées par l’isolation permettent de réduire fortement les rejets de gaz polluants (CO2, SO2, NOX, …)

Exemple.

Dans le Brabant, la pose, sur le toit plat non isolé de 100 m² d’un immeuble de bureau, d’une couche d’isolant dont la résistance thermique R = 2.5 (exemples : 12 cm de laine de roche ou 9 cm de mousse de polyuréthanne ou 14 cm de verre cellulaire) permet de diminuer les rejets annuels (chauffage au gasoil) :

  • d’environ 104 kWh/m² x 100 m² x 0,264 kg > CO2/kWh = 2 746  kg de CO2
  • d’environ 104 kWh/m² x 100 m² x 0,169 mg NOx/kWh = 1,7  kg de NOx

Évaluer l’isolation thermique des murs

Évaluer l'isolation thermique des murs


Connaître les valeurs de référence

Une paroi est caractérisée par un coefficient de transmission thermique U. Plus ce coefficient est petit plus la paroi est isolante. La réglementation thermique wallonne impose, pour les parois neuves et assimilées délimitant le volume protégé, une valeur maximale du coefficient de transmission thermique.
Ces valeurs peuvent être vues comme un « garde-fou ». D’autres labels volontaires recommandent d’ailleurs des performances thermiques plus élevées.

Ces valeurs à respecter au minimum dans un nouveau bâtiment peuvent néanmoins servir de base pour évaluer la qualité d’un bâtiment existant.


Calculer le niveau d’isolation lorsque la nature et l’épaisseur des matériaux isolants sont connues

Calcul approximatif

Les blocs isolants (béton cellulaire, terre cuite légère, …) et l’isolant thermique sont les couches du mur qui influencent le plus sa qualité thermique. Les calculs approximatifs ci-dessous sont suffisamment précis lorsqu’on s’approche de la gamme des valeurs admises.

Mur en blocs lourds + isolant

En première approximation, le calcul du niveau d’isolation peut se faire en ne tenant compte que de l’isolant sur base de la formule simplifiée :

U = λi/ei,

avec,

  • λi : la conductivité thermique de l’isolant
  • ei : l’épaisseur de l’isolant
Exemple.

9 cm de laine minérale certifiée, de marque non déterminée, dont λ vaut 0.044 W/mK (suivant Annexe D de l’AGW du 15 mai 2014), entraîne un U approximatif du mur de : 

0,044 W/mK / 0,09 m = 0,49 W/m²K

On obtient une valeur de U < 0,5 W/m²K, dont il est question ci-dessus, avec des épaisseurs :

On obtient une valeur de U < 0,8 W/m²K, dont il est question ci-dessus, avec des épaisseurs :

Murs en blocs isolants sans couche isolante supplémentaire

En première approximation, le calcul du niveau d’isolation peut se faire en ne tenant compte que des blocs isolants, sur base de la formule simplifiée :

U  (=1/R) = λbl/ebl, pour les matériaux homogènes.
U = 1/Ru, pour les matériaux hétérogènes.

Avec,

Exemples.

  • Avec une épaisseur de 29 cm de bloc de béton cellulaire (700 < ρ < 800 kg/m³, λ = 0,26) et sec, on obtient une valeur de U = à 0,9 W/m².K.
  • Avec des blocs creux de béton léger de 29 cm d’épaisseur (ρ < 1 200 kg/m³, Ru = 0,450 m²K/W) et sec, on obtient une valeur approximative de U = à 2,2 W/m².K.

Remarque : seuls des blocs de béton cellulaire très léger (ρ < 500 kg/m³) (ou équivalent) mis en œuvre avec une épaisseur > 29 cm et dans un état parfaitement sec permettent d’atteindre un niveau d’isolation de U < 0,6 W/m².K sans isolant complémentaire.

Murs en blocs isolants avec isolant

En première approximation, le calcul du niveau d’isolation peut se faire en ne tenant compte que des blocs isolants et de l’isolant, sur base de la formule simplifiée :

U = 1/(ei/λi + ebl/λbl) en cas de blocs isolants homogènes.
U =  1/(ei/λi + Ru) en cas de blocs isolants hétérogènes.

avec,

Exemple.

  • Avec une épaisseur de 19 cm de bloc de béton léger (800 < ρ < 900 kg/m³, λ = 0,46 W/m.k) + une couche de 3 cm de laine minérale (λ = 0,045 W/m.K, selon Annexe D de l’AGW du 15 mai 2014), on obtient une valeur de U = à 0,8 W/m².K.
  • Avec des blocs creux de béton léger de 29 cm d’épaisseur (ρ < 1 200 kg/m³, Ru = 0,450 m²K /W) + une couche de 3 cm de laine minérale (= 0,045 W/m.K, selon Annexe D de l’AGW du 15 mai 2014), on obtient une valeur approximative de U = à 0.90 W/m².K.

Calcul plus précis

Si les autres matériaux constituant le mur sont connus, il est possible de calculer exactement le coefficient de transmission thermique U de celui-ci.

Calculs

Pour calculer le coefficient de transmission thermique du mur.

Mais attention, tous les résultats ainsi obtenus ne sont fiables que si l’isolant est bien posé, sec et en bon état…

…ce qui n’est pas toujours le cas…! :

Par exemple … 

Les premiers bâtiments isolés datant de la fin des années ’70 et des années ’80, ont connu beaucoup d’erreurs de conception. On a, en outre, employé des matériaux inadéquats : les coulisses ont été remplies de laines minérales trop souples et non hydrofugées.

Même dans les bâtiments récents, des défauts d’exécution sont très fréquents lors d’un remplissage partiel de la coulisse.

Exemple : Les panneaux isolants ne sont pas placés contre le mur intérieur (en remplissage partiel) : ce qui engendre des pertes de chaleur par convection autour des panneaux.

Exemple.

La KUL a effectué des mesures de coefficients de transmission thermique moyens réels sur des murs creux avec remplissage partiel où la mise en œuvre de l’isolant a été soignée et sur les mêmes murs creux où la mise en œuvre a été exécutée sans soin particulier.

En voici les résultats :

Uthéorique (W/m².K) Upratique (W/m².K)
 

Pas d’isolant dans le mur creux

 

1,34 1,35

Remplissage partiel du creux

 

Pose correcte de l’isolant

 

0,42 à 0,49 0,54 à 0,61
 

Pose déficiente de l’isolant

 

0,42 à 0,49 0,99

En cas de doute, des sondages effectués prioritairement aux endroits suspects peuvent être très utiles.


Repérer les indices d’une isolation thermique insuffisante

Dans l’idéal …

Idéalement, lorsque la nature, l’épaisseur et/ou l’état de la couche isolante n’est pas connue, il convient d’effectuer un sondage à travers le mur pour la déterminer.

À défaut, un indice pratique

Avant d’effectuer ce sondage, un indice peut indiquer un manque d’isolation efficace : la faible température du mur côté intérieur en période hivernale.

La condensation sur le mur en est une conséquence visible dans les locaux humides.

Photo condensation.

La condensation sur une paroi est signe d’absence ou de faiblesse de l’isolation.