Choisir le compresseur de la machine frigorifique [Climatisation]

Choisir le compresseur de la machine frigorifique [Climatisation]

Choix du type de compresseur

Il existe de nombreuses technologies de conception des compresseurs.

Techniques

Pour découvrir ces diverses technologies, cliquez ici !

Pour aider à la sélection, il est possible de les regrouper par « familles » et d’en tirer leurs propriétés communes.

On distingue les compresseurs par le mode de compression :

  • Le compresseur volumétrique, la compression du fluide frigorigène se fait par réduction du volume de la chambre de compression. Il existe des compresseurs à piston, à vis, à spirales (compresseurs scroll) et des compresseurs rotatifs.
  • Le compresseur centrifuge, où la compression du fluide est créée par la force centrifuge générée par une roue à aubes. On parle de turbocompresseur.

On les distingue également par l’association moteur-compresseur :

  • Le compresseur ouvert, où le moteur est dissocié du compresseur et raccordé par un manchon ou une courroie. L’accès aux différents éléments est possible pour réparation et la vitesse de rotation est modifiable en changeant la poulie du moteur. Mais ces deux avantages (fort théoriques…) ne compensent pas le défaut majeur de l’existence d’un joint d’étanchéité rotatif à la traversée du carter par l’arbre. Ce joint, qui doit être lubrifié pour assurer l’étanchéité, est source de fuites… inacceptables aujourd’hui dans un contexte « zéro-fuite ».
  • Le compresseur hermétique, où moteur et compresseur sont enfermés dans une même enveloppe. Le joint tournant disparaît et avec lui le risque de fuite. Mais des contraintes nouvelles apparaissent, dont le fait que le refroidissement du moteur est réalisé par le fluide frigorigène lui-même. Cet échauffement est préjudiciable au cycle frigorifique puisque la température à l’aspiration du compresseur augmente. De plus, si le moteur vient à griller, c’est l’ensemble du circuit frigorifique qui sera pollué : un nettoyage complet du circuit doit être réalisé si l’on veut éviter de nouveaux ennuis. En cas de problème, il n’est plus possible de réparer… Dès lors, un organe de sécurité contre la surchauffe (Klixon) est incorporé. Grâce à cette sécurité thermique, montée dans les enroulements du moteur ou sur ces derniers, l’alimentation électrique sera coupée lors d’une surchauffe du moteur.Le compresseur hermétique est couramment utilisé pour les petites et moyennes puissances : climatiseurs, armoires de climatisation, pompes à chaleur, …
  • Le compresseur semi-hermétique, qui réalise un compromis entre les deux produits précédents. Il tente de bénéficier des avantages du groupe ouvert (accès aux mécanismes) et du groupe hermétique (limitation des fuites). Mais l’étanchéité reste imparfaite (nombre de joints non négligeable) et le prix est sensiblement plus élevé que pour le compresseur hermétique.Le compresseur semi-hermétique est utilisé pour les moyennes puissances.

Critères énergétiques de sélection parmi les différents types de compresseur

Tous les compresseurs ne présentent pas une performance égale. Cette performance peut être mesurée via le COP de la machine frigorifique dans laquelle ils seront insérés. Le tableau ci-dessous (valeurs recommandées par le standard ARI) permet d’apprécier globalement la performance que l’on peut attendre des différents types de compresseurs :

Type d’équipement

COP min. recommandé (kWr/kWe)

Groupes de production d’eau glacée à pistons

A refroidissement par air

– Jusqu’à 100 kWr
– Supérieur à 100 kWr

A refroidissement par eau

– jusqu’à 10 kWr
– Supérieur à 10 kWr

 

 

3,0
3,0

 

3,7
4,0

Groupes de production d’eau glacée à vis

A refroidissement par air

A refroidissement par eau

– jusqu’à 800 kWr
– Supérieur à 800 kWr

 

4,5

 

4,6
5,0

Groupes de production d’eau glacée centrifuges

A refroidissement par air

– jusqu’à 800 kWr
– Supérieur à 800 kWr

A refroidissement par eau

– jusqu’à 800 kWr
– Supérieur à 800 kWr

3,8
3,84,5
4,7

Conditions standard ARI 550/590-98. Exemple : pour groupes de production d’eau glacée, température départ eau glacée = 6,7°C ; température entrée condenseur à eau = 29,4°C / à air = 35,0°C.

Comment choisir ?

Globalement, la tendance actuelle est :

  • à l’abandon des machines à mouvement alternatif (compresseur à piston),
  • au développement des machines tournantes, à came rotative, à spirale rotative (scroll) ou à vis.


Le compresseur à vis …


… et la vis en question !

Compresseur scroll.

Les avantages portent :

  • sur une réduction des pièces mécaniques en mouvement (suppression des clapets) et donc une plus grande fiabilité,
  • un rendement volumétrique d’un compresseur assez bon grâce à l’absence d’espaces morts, comme dans les compresseurs à pistons,
  • une meilleure modulation de puissance,
  • une plus grande longévité,
  • un niveau sonore nettement plus favorable (moins de vibrations), surtout pour les appareils hermétiques,
  • une moindre sensibilité aux entrées de fluide frigorigène liquide (« coups de liquide » destructeurs des compresseurs à pistons),
  • un coût de maintenance également plus faible, puisque le risque de panne est diminué.

Pas de secret : leur coût d’achat est encore plus élevé…

On choisira des compresseurs hermétiques ou semi-hermétiques pour atteindre l’objectif zéro-fuite de fluide frigorigène, objectif qui sera un jour obligatoire au niveau réglementaire.

La puissance frigorifique à atteindre constitue un critère de choix de départ, mais la sélection d’un compresseur demande une vue globale sur les typologies disponibles en fonction de la puissance frigorifique et sur le mode de régulation de puissance. Un camion peut être très performant, mais s’il est trop puissant, il n’atteint pas la performance de 2 camionnettes…

Dans le tableau synthèse de sélection, on trouvera les deux critères rassemblés.

Critères énergétiques de sélection du compresseur lui-même

Pour les compresseurs à vis comme pour les compresseurs scroll, le risque est de sélectionner un compresseur dont le taux de compression est trop élevé : le compresseur travaillera « pour rien » puisque le fluide frigorigène sera trop comprimé puis se détendra au travers de l’orifice de refoulement jusqu’à atteindre la pression de condensation.

La pression de condensation est liée au régime de fonctionnement du condenseur de l’installation. Il importe que la pression interne de refoulement soit la plus proche possible de la pression de condensation.

Le concepteur choisira un « rapport de volume interne » (cela correspond au taux de compression, mais exprimé sous forme d’un rapport entre les volumes à l’entrée et à la sortie du compresseur) approprié au cas d’utilisation et pour lequel le compresseur exige la plus faible puissance d’entraînement possible.

Pour les cas où les conditions de pression de fonctionnement varient fortement, on a mis au point le compresseur à vis à rapport de volume interne variable. Le taux de compression s’adapte automatiquement au rapport de pression utile en fonction des paramètres de température de condensation et de température d’évaporation.

Cette technique optimalise le rendement énergétique tant à pleine charge, qu’à charge partielle.

L’insertion d’un économiseur (ou « superfeed » ou « suralimentation »)

Le fonctionnement technique de l’économiseur dépasse la portée de nos propos, mais le principe de base consiste à injecter une quantité de fluide frigorigène supplémentaire dans le compresseur, à une pression intermédiaire entre la pression de condensation et d’aspiration.

La puissance frigorifique en est nettement améliorée alors que la puissance absorbée n’augmente que légèrement.

On rencontre différentes modalités d’application de ce principe dans trois technologies de compresseur :

  • Dans les compresseurs à vis, où un orifice est prévu dans la paroi du stator pour injecter du fluide juste après la phase d’aspiration.
  • Dans les compresseurs rotatifs à palettes multiples, où une augmentation de 10 % de la puissance absorbée, génère de 20 à 30 % de la puissance frigorifique, suivant le régime de fonctionnement.
  • Dans les compresseurs centrifuges, où ce système est prévu par certains constructeurs lorsque le compresseur comporte deux roues. Les gaz supplémentaires sont injectés à l’entrée de la deuxième roue où ils se mélangent aux gaz refoulés de la première roue. Même si la puissance absorbée augmente, le coefficient de performance en est accru. On cite par exemple un COP accru de 6 % pour une température d’évaporation de 0°C et une température de condensation de 40°C.

Refroidisseur de liquide à compresseur centrifuge de 3 900 kW.

Prévoir dès le départ la mesure du COP de l’installation :

Pour la bonne gestion future d’une grosse installation, on peut imaginer de placer un compteur d’énergie sur l’eau glacée et un compteur électrique sur le compresseur (coût de l’ordre de 5 000 Euros). Il sera alors possible d’imposer un COP moyen annuel minimum à la société de maintenance… en laissant celle-ci se débrouiller pour y arriver. Un remboursement de la différence peut être prévu comme pénalité en cas de non-respect.


Choix de la technique de régulation de puissance

La puissance de la machine frigorifique a été dimensionnée pour répondre aux conditions de fonctionnement extrêmes (période de canicule), sans compter les surdimensionnements liés aux incertitudes d’occupation.

La première économie consiste à évaluer au plus près la puissance frigorifique nécessaire car la machine frigorifique s’adapte mal aux bas régimes. Chaque palier de diminution de 25 % de la puissance frigorifique du groupe ne réduit la puissance électrique absorbée que de 10 % en moyenne ! Pour vérifier les ordres de grandeur dans un cahier des charges, un ratio (très approximatif !) de 100 W/m² peut situer les besoins d’un bureau. La puissance totale du bâtiment ainsi trouvée sera multipliée par 2/3 pour tenir compte de la non-simultanéité des besoins.

Ensuite, il faut choisir une régulation qui lui permette de répondre à des besoins généralement beaucoup plus faibles que la valeur nominale et fluctuant dans le temps.

Diverses techniques de régulation sont possibles :

  • la régulation par « tout ou rien » (marche/arrêt ou pump-down),
  • la régulation progressive de la pression d’évaporation,
  • la régulation par « étages »,
  • la régulation par cascades (ou « centrales »),
  • la régulation par variation de vitesse ou « INVERTER »,
  • la mise hors-service de cylindres,
  • le by-pass des vapeurs refoulement-aspiration,
  • l’obturation de l’orifice d’aspiration,
  • la régulation par injection des gaz chauds,
  • la régulation « par tiroir » des compresseurs à vis,
  • la prérotation du fluide frigorigène dans les turbocompresseurs.

Les investissements dans une régulation performante sont très rentables. Le supplément de prix demandé par l’installation de plusieurs unités en cascade (centrale) ou d’unités avec un réglage fin de la production (turbocompresseurs et compresseurs à vis avec régulation de l’aspiration) est rapidement compensé par les économies d’énergie réalisées. Un surcroît d’investissement de 10 à 15 % génère de 20 à 30 % d’économie d’énergie.

Le découpage de la puissance

Classiquement, la solution consiste à répartir la puissance :

  • soit en choisissant un compresseur à plusieurs étages (= plusieurs cylindres ou plusieurs pistons),
  • soit en créant une cascade entre plusieurs compresseurs (= compresseurs en centrales).

Le choix d’un compresseur à plusieurs étages est réservé aux machines frigorifiques utilisées en congélation. Suite à la très basse température de l’évaporateur, la différence des pressions à vaincre par le compresseur est fort élevée. Il est alors très utile de décomposer la compression en deux étapes : c’est le rôle du compresseur bi-étagé. On choisit également ce système lorsque la température de refoulement des gaz comprimés devient trop élevée : c’est par exemple le cas de l’ammoniac.

Par contre, en climatisation, un montage en parallèle de plusieurs machines (montage « en centrale ») est simple et fiable puisque les machines restent indépendantes.

Compresseurs alternatifs
montés en tandem.

La variation progressive de la puissance est énergétiquement favorable puisqu’aucune machine n’est dégradée dans son fonctionnement.

Bien sûr, le coût d’investissement est plus élevé que si l’on utilisait une seule grosse machine, mais imaginerait-on d’installer une grosse chaudière sans prévoir une cascade pour reprendre les faibles besoins de la mi-saison ?

Un découpage de la puissance en étages est recommandé, tout particulièrement lorsque les variations de charge sont importantes.

Il en résultera :

  • Un gain sur les kWh (énergie) :
    • car le « petit » compresseur alimentera un condenseur surdimensionné pour ses besoins, d’où une pression de condensation plus basse,
    • car le rendement du moteur du compresseur sera amélioré.
  • Une longévité accrue de l’installation par un fonctionnement plus régulier.
  • Une sécurité d’exploitation.
  • Un gain sur la pointe 1/4 horaire en kW (puissance), facturée par la société distributrice.

En général, on établit les enclenchements en cascade sur base de l’évolution de la température de retour de la boucle d’eau glacée, température qui constitue une image des besoins du bâtiment. Le tout est temporisé de telle sorte que les compresseurs ne s’enclenchent pas tous les uns à la suite des autres.

Une bonne solution peut être également de réguler en fonction de la température du ballon-tampon, lorsqu’il est existant.

Pourquoi un ballon tampon ? Un compresseur ne peut démarrer et s’arrêter trop fréquemment sous peine de s’échauffer. Pour prolonger la durée de vie du matériel en diminuant le nombre de démarrages, le constructeur prévoit un « anti-court cycle », c’est-à-dire la temporisation du redémarrage si l’installation vient de s’arrêter. La présence du ballon tampon amplifie l’inertie thermique de l’installation, prolonge la durée de fonctionnement du compresseur, améliore le rendement du compresseur et supprime le risque qu’il soit bloqué par l’anti-court cycle.

On dimensionne un ballon tampon de telle sorte que son stockage corresponde à 5 à 10 minutes de la consommation en eau.

La variation de vitesse du compresseur

C’est une autre solution avantageuse en plein développement : soit un moteur d’entraînement à deux vitesses, soit un entraînement à vitesse variable. Cette dernière technique est sans aucun doute à recommander actuellement. Le régime de vitesse s’adapte à la puissance de réfrigération souhaitée. Par exemple, un variateur de fréquence génère une tension dont la fréquence varie entre 20 et 60 Hz. S’il s’agit d’un moteur prévu pour fonctionner à 1 500 tours à 50 Hz, il tournera entre 600 et 1 800 tours/min selon les besoins.

Pourquoi la limitation à 20 Hz ? Un défaut de lubrification du compresseur peut apparaître à basse vitesse, mais les constructeurs améliorent les systèmes régulièrement et trouvent des solutions.

Cette technique de variation de puissance par la variation de vitesse du compresseur (encore appelée INVERTER) entraîne :

  • un confort élevé (bonne stabilité de la température à l’évaporateur car régulation de la pression à l’aspiration du compresseur),
  • un rendement énergétique supérieur aux autres techniques de régulation de puissance, car on ne détruit pas le rendement volumétrique, on givre moins (en chambre frigorifique), on limite les dépassements de consigne de régulation propres aux systèmes de régulation tout ou rien (liés au différentiel de régulation),
  • une réduction du bruit et des vibrations,
  • un cos phi élevé (entre 0,95 et 0,98), ce qui permet d’éviter des pénalités ou le placement de condensateurs de compensation.

Audit

Pour comprendre la facture électrique, cliquez ici !

Réseau électrique

Pour comprendre le placement de condensateurs de compensation, cliquez ici !

Le supplément de coût (si un compresseur coûte 100, sa version avec variateur de vitesse tournera entre 150 et 180) sera rapidement amorti par l’économie d’exploitation. Il ne sera plus nécessaire de prévoir un démarrage « étoile-triangle » puisqu’un démarrage « en douceur » est réalisé par le variateur.

A priori, les différents types de compresseurs peuvent être équipés de cette technique (exceptés les petits compresseurs hermétiques), mais s’il s’agit de greffer un variateur sur un matériel existant, une consultation préalable du fabricant sera bienvenue (risque de défaut de lubrification).

Cette technique est également intéressante pour les compresseurs à vis (énergétiquement plus efficace que la régulation par tiroir), mais des troubles de lubrification et un échauffement du moteur peuvent apparaître à vitesse réduite.

La mise à l’arrêt de cylindres

Méthode assez répandue parmi les techniques de découpage de la puissance, il est possible de jouer avec la mise hors-service des cylindres (ce qui peut s’adapter sur une installation existante).

Avantage : pour éviter les pointes de courant de démarrage, il est possible de démarrer à vide le compresseur.

Inconvénients :

  • Ce réglage est énergétiquement moins favorable; les cylindres tournant à vide ont pour conséquence que, pour une puissance de réfrigération de 50 %, par exemple, la machine absorbe encore environ 65 % de la puissance d’entraînement.
  • La variation de la puissance n’est pas continue (sauts de puissance).
  • L’usure de la machine est pratiquement identique à vide ou en charge.

L’obturation de l’orifice d’aspiration

À cet égard, le réglage par un étranglement dans la conduite d’aspiration n’est pas meilleur. On modifie alors la puissance de réfrigération en agissant sur le débit du réfrigérant.

L’injection des gaz chauds

Quant au réglage de la puissance du compresseur par injection des gaz chauds dans l’évaporateur ou à l’entrée du compresseur, il faut le qualifier de « pur anéantissement d’énergie ». Dans ce cas, la puissance absorbée reste la même lorsque la puissance de réfrigération diminue. De plus, ils provoquent un échauffement du moteur. Dans la mesure du possible, il faut mettre ce système aberrant hors service dans les installations existantes.

C’est le compresseur qui travaille sur lui-même. On pourrait tenter l’image suivante : une pompe remonte de l’eau de la cave vers le rez-de-chaussée. Si l’eau vient à manquer, on risque de faire caviter la pompe. Aussi, on décider de redescendre de l’eau vers la cave, de réinjecter de l’eau supplémentaire à l’entrée de la pompe. Ainsi, on est sûr que le débit de la pompe restera suffisant !

Attention à l’injection de gaz chauds rencontrée en climatisation sur des groupes avec un compresseur n’ayant pas de système interne de régulation de puissance, utilisé sur des petits chillers et des systèmes à détente directe (roof-top, par exemple) : c’est absolument à proscrire.

(A ne pas confondre avec le dégivrage par injection de gaz chauds, qui est par contre une technique très efficace de dégivrage).

Tableau synthèse de sélection

L’importance d’une mesure préalable !

La mise en place d’une régulation performante demande de connaître la puissance effective nécessaire en fonction des saisons. Aussi, si le choix d’un compresseur doit être fait en vue du remplacement d’une machine existante, on placera un simple compteur horaire sur l’alimentation électrique du compresseur actuel pour ainsi connaître son temps de fonctionnement et donc la puissance moyenne demandée. Cela permettra de mieux choisir la nouvelle machine frigorifique.

Si l’installation doit vaincre les apports d’une machine spécifique à enclenchement discontinu, la puissance moyenne peut être trompeuse : à certains moments, c’est la puissance totale qui est demandée, et zéro le reste du temps… Idéalement, on enregistrera la puissance demandée, en relevant en parallèle la source des apports thermiques.

Type de compresseur Plages de puissance
(kW frigorifiques)
Régulation adaptée
Compresseur rotatif 10 W maximum
(climatiseurs individuels,
petits refroidisseurs d’eau)
  • Variation de la vitesse de rotation
  • Régulation admission gaz à l’aspiration
  • La tendance est d’associer deux ou plusieurs compresseurs sur une même machine

(*)

Compresseur scroll de 3 à 40 kW par compresseur
(mais possibilité de puissance supérieure par mise en parallèle de compresseurs)
Modulation de puissance optimale, par variation de la vitesse de rotation ou par mise en « centrale »
Compresseur à piston
Ouvert quelques dizaines de kW à plus de 1 000 kW Étanchéité aux fluides frigorigènes insuffisante aujourd’hui
Semi-hermétique de quelques dizaines de kW à quelques centaines de kW
  • Un compresseur à plusieurs étages
    ou plusieurs compresseurs en cascade (« centrale »)
  • Variation de la vitesse de rotation
Hermétique de quelques kW à plusieurs dizaines de kW Régulation type « marche/arrêt » commandée par thermostat d’ambiance ou sur circuit d’eau.

Tendance actuelle : plusieurs compresseurs en cascade (« centrale »)

Compresseur à vis de (20) 100 à 1 200 kW Excellente fiabilité et longévité

Modulation de puissance par « tiroirs » très souple, de 100 à 10 %, avec une très faible dégradation du COP par la régulation « par tiroirs », du moins au-dessus de 50 % de la puissance.

Compresseur centrifuge (ou turbo-compresseur) de (600) 1 000 à 4 000 kW Modulation de puissance optimale limitée à 35 %, par prérotation du fluide frigorigène à l’entrée de la roue.

(**)

(*) pour les compresseurs rotatifs, la modulation de puissance s’opère par modification du débit de fluide frigorigène, soit en faisant varier la vitesse de rotation du compresseur, soit en régulant l’admission des gaz à l’aspiration. Le rendement énergétique est sensiblement conservé à charge partielle, ce qui constitue un avantage important. Pour la même raison que pour les compresseurs à pistons, la tendance est d’associer deux ou plusieurs compresseurs sur une même machine.

(**) Pour les turbocompresseurs,

  • La variation de la vitesse de rotation ne peut se faire que sur une plage limitée et avec une diminution de rendement du compresseur. Concrètement, la variation de vitesse par moteur asynchrones triphasés est encore onéreuse, aussi la régulation par variation de vitesse n’est envisagée que lorsque le turbo compresseur est entraîné par une turbine à vapeur.
  • La régulation par modification des pressions du cycle est parfois rencontrée (augmentation de la pression de condensation par augmentation de la température au condenseur, et diminution de la température à l’évaporation en créant une perte de charge à l’aide d’un volet). cette technique est désastreuse sur le plan énergétique. Tout autant que la régulation par injection de gaz chauds à l’aspiration.
Remarque.
Choisir un compresseur performant, c’est bien. Le placer dans un environnement favorable, c’est mieux. En pratique, on sera très attentif aux assembliers qui proposent
« un échangeur + un compresseur + un échangeur ».
L’ensemble forme une machine frigorifique, certes, mais les pertes de charge liées aux échangeurs sont parfois très élevées pour le compresseur, ce qui augmente fortement sa consommation !On choisira de préférence une installation globale, montée d’usine et dont le fabricant garantit la performance globale.

Critères acoustiques

En local technique

C’est le compresseur qui génère le plus de bruit, il est donc toujours préférable de le placer en local technique lorsque l’on dispose d’un espace suffisant, tandis que le condenseur refroidi par air est placé en terrasse. Cette solution est la plus adaptée en ce qui concerne la diminution des nuisances sonores vers l’extérieur du bâtiment.

Lorsque les compresseurs sont placés en local technique, ils masquent tous les bruits de détente ou de circulation interne des fluides dans la machine. Pour diminuer les nuisances acoustiques du compresseur, il faut mettre en place les dispositifs suivants :

  • Mettre un capot acoustique sur la machine.
  • Prévoir une dalle flottante équipée d’isolateurs à ressorts.
  • Placer des plots en élastomère entre la machine et la dalle flottante.

Si le groupe évaporateur/compresseur est implanté au-dessus de locaux occupés, on peut placer un matelas de laine de verre entre la dalle flottante et le socle de propreté de la machine.

N.B. : la suspension anti-vibratile des compresseurs peut ne pas être suffisamment efficace car les compresseurs sont reliés aux autres éléments de façon rigide. Ainsi, on utilisera des manchettes souples pour relier l’évaporateur aux canalisations du réseau hydraulique.

En terrasse

Si on ne dispose pas d’un local de service, évaporateur, compresseurs et condenseur seront placés en terrasse. Mais, sur le plan acoustique, ce type de disposition est toujours à éviter.

Dans tous les cas, il faudra éloigner au maximum les compresseurs de tous les plaignants potentiels.

Remarquons que l’éloignement de la machine impose des longueurs de canalisations plus importantes, ce qui peut avoir une influence sur le dimensionnement des équipements (collecteurs, pompes, …) et augmenter le coût de l’installation.

Il faudra éviter de placer les compresseurs à proximité de parois qui pourraient augmenter sa directivité vers une zone sensible. Au contraire, il faudra envisager de placer la machine de façon à la cacher derrière un obstacle. Ainsi, en terrasse, on pourra placer la machine derrière la cabine d’ascenseur ou profiter de la présence de l’armoire électrique de la machine, par exemple.

Remarque.

Si la réduction des nuisances acoustiques est un critère important, le placement d’un variateur de vitesse sur le compresseur (qui se justifie déjà pour des raisons énergétiques) est incontournable.

Certains variateurs peuvent être paramétrés pour « sauter » la(les) gamme(s) de fréquence qui génère(nt) des vibrations du compresseur (fréquences de résonance de la machine). Simplement, il ne s’arrête pas sur ces fréquences critiques.

À titre d’exemple, voici quelques niveaux sonores donnés par un fabricant de groupes refroidisseurs de liquide (pression sonore mesurée à 10 m en champ libre en dBA).

– machines équipées de compresseur scroll hermétique :

Puissance comprise entre 17 et 35 kW : 43 dBA
Puissance comprise entre 38 et 100 kW : 55 dBA
Puissance comprise entre 101 et 200 kW : 61 dBA

Puissance comprise entre 201 et 245 kW : 65 dBA

– machines équipées de compresseur à piston semi-hermétique :

Puissance comprise entre 245 et 540 kW : 57 dBA
Puissance comprise entre 541 et 740 kW : 60 dBA

– machines équipées de compresseur à vis :

Puissance comprise entre 280 et 600 kW : 68 dBA
Puissance comprise entre 601 et 1215 kW : 71 dBA

Choisir le CO2 comme fluide réfrigérant ou caloporteur

Image par défaut pour la partie Concevoir

Le grand retour du CO2 ?

Le CO2 (R 744) revient à la charge ses derniers temps comme fluide frigorigène. Autrefois remplacé par les CFC, HCFC, HFC, il doit son retour :

  • À son faible impact sur l’environnement (ODP = 0, GWP = 1) par rapport aux autres fluides frigorigènes utilisés actuellement (jusqu’à 3 800 fois moins d’impact sur l’environnement que les HFC).
  • À  l’avancée des technologies dans le domaine de la réfrigération et de la climatisation. En effet, le problème du confinement des gaz sous haute pression semble partiellement résolu grâce, et c’est paradoxal, à la maîtrise de la climatisation dans les véhicules avec la nécessité de trouver :
    • un fluide réfrigérant propre;
    • un faible volume massique permettant des installations compactes (faible poids des équipements et volume réduit de fluide frigorigène);

Les avantages et inconvénients de l’utilisation du CO2 comme fluide frigorigène sont les suivants :

Avantages

Inconvénients

  • pas d’action sur l’ozone (ODP = 0);
  • peu d’impact direct sur l’effet de serre (GWP = 1) sachant par exemple que le R404A a un GWP de 3 800;
  • fluide naturel et largement disponible;
  • ininflammable (utilisation comme gaz dans les extincteurs);
  • non corrosif, compatible avec tous les matériaux;
  • non toxique;
  • alimentaire (notamment nos voisins hollandais l’utilise dans la conservation des repas dans les hôpitaux);
  • production frigorifique volumétrique élevée, permettant à l’heure actuelle des compresseurs de faible cylindrée et des circuits à faible quantité de fluide;
  • miscible à l’huile des compresseurs;
  • peu descendre jusqu’à -54°C;
  • taux de compression faible par rapport aux autres réfrigérants (COP intéressant);
  • il forme des acides avec l’eau et du carbonate d’ammonium (corrosif) avec l’ammoniac;
  • les pressions de service sont très importantes (80, 100 bar voire plus);
  • les équipements des circuits et de sécurité, dus à la pression, doivent être performants (coûts importants);
  • la mise en œuvre de tels circuits n’est pas encore bien maîtrisée;
  • à la mise en route, la déshydratation des circuits doit être encore plus poussée.
  • en cas d’arrêt prolongé, des dégazages à l’atmosphère doivent être opérés, nécessitant une recharge ultérieure;


Utilisation du CO2 comme fluide frigorigène : Cas pratique

Actuellement, un supermarché GB à Aywaille teste un système de réfrigération-chauffage combiné où :

  • les sources froides sont :
    • les meubles frigorifiques;
    • échangeur air/CO2 (« évaporateur de toiture);
    • échangeur eau nappe souterraine/CO2;
  • et les sources chaudes sont :
    • échangeur CO2/air (« gaz cooler »de toiture);
    • les circuits à basse température tels que le chauffage au sol, la centrale de traitement d’air et les rideaux d’air;
    • les circuits à haute température pour l’eau chaude sanitaire.

L’intérêt de ce système est de combiner des besoins :

  • de froid au niveau des meubles frigorifiques. En effet, le nombre impressionnant de meubles frigorifiques ouverts et fermés pour ce type de supermarché nécessite une puissance frigorifique de 300 kW (positif) et 40 kW (négatif);
  • de chaud classiques d’une puissance de l’ordre de 540 kW.

avec une seule machine, à savoir une pompe à chaleur.

Les résultats du monitoring ne sont pas encore connus mais devraient permettre d’y voir plus clair sur une technologie qui a le vent en poupe.


Comparaison  CO2 – R134a  

À titre d’exemple, on compare les performances théoriques de deux fluides réfrigérants comme le CO2 et le R134a.

Les hypothèses de travail sont les suivantes :

  • la phase de refroidissement du CO2 est dans la zone « transcritique » (refroidissement au dessus du point critique : 31°C, 73,6 bar);
  • la température d’évaporation est de -10°C dans les deux cas (application classique de froid positif);
  • la température de condensation pour le R134a est de 30°C (la température ou pression de condensation est flottante en fonction du climat externe);
  • la température de fin de refroidissement pour le « gaz cooler » est de 30°C aussi.

Dans le diagramme (log p, h), on superpose les deux cycles frigorifiques :

Les avantages et inconvénients du cycle CO2 au niveau thermodynamique sont :

Avantages

Inconvénients

  • L’efficacité énergétique en production de froid est relativement bonne si on maîtrise la phase de refroidissement (au « gaz cooler ») au niveau de la température. Pour une température de condensation flottante atteignant les 30°C, l’EFF du compresseur est de l’ordre de h1/h2 = 3,8;
  • Les températures à l’entrée du « gaz cooler » ou  d’un échangeur quelconque, peuvent atteindre des valeurs de l’ordre de 80°C, ce qui est intéressant pour des applications classiques de chauffage par pompe à chaleur;
  • L’efficacité énergétique en production de chaleur peut être très bonne dans la mesure où l’installation puisse tenir des pressions importantes (de l’ordre de 90 bar), ce qui représente quand même une prouesse technologique, mais accessible actuellement. Le COP pourrait atteindre des valeurs de h3/h2= 5;
  • Que ce soit en chaud comme en froid, les valeurs de EFF et COP restent en dessous des valeurs obtenues pour le R134A dans les mêmes conditions, soit une EFF h4/h5 de 5 et un COP h6/h5 de 6.

Les avantages et inconvénients du cycle R134a au niveau thermodynamique sont :

Avantages

Inconvénients

  • pour une installation bien régulée (détendeur électronique, variateur de vitesse des compresseurs, …, les performances des compresseurs tant en chaud qu’en froid sont meilleures que celles pour le cycle CO2 (COP = 6, EFF = 5).
  • Les températures de condensation sont plus faibles que celle du cycle CO2. Ce qui signifie que ce type de fluide ne peut être utilité pour des applications de chauffage haute température combiné au froid alimentaire.


Intérêt du CO2 ?

L’intérêt de l’utilisation du CO2 comme fluide réfrigérant, est avant tout lié à un choix par rapport à l’environnement. En effet, on pointera principalement :

  • le faible impact sur la couche d’ozone et l’effet de serre de part sa composition:
  • la plus faible quantité de fluide utilisé de part son volume massique faible (en cas de fuite, la quantité rejetée est faible);
  • la disponibilité de ce fluide dans la nature (piège à CO2 réalisable);

De plus, dans le cas où l’on considère qu’il faut combiner le besoin de chaleur à haute température (80-90°C) avec celui de froid et ce afin d’éviter de choisir une chaudière et un groupe de réfrigération pour la partie froid alimentaire, une installation de pompe à chaleur au CO2 peut être intéressante.

Toutefois en conception, pour autant que :

  • l’enveloppe soit bien isolée;
  • la ventilation hygiénique soit régulée en fonction de l’occupation;
  • les entrées soit bien étudiées afin de réduire les pertes énergétiques aux accès (courant d’air par exemple);
  • la quantité de meubles frigorifiques dans les commerces ouverts soit limitée;

Il n’y a pas de raison valable d’investir dans une installation coûteuse telle que celle au CO2 car la nécessité d’atteindre des températures d’eau chaude de 80-90°C n’est plus nécessaire. Autant alors investir dans une pompe à chaleur classique dont le condenseur fonctionne à des températures avoisinant les 45°C.


Conclusion

L’utilisation du CO2 comme fluide frigorigène est probablement une piste à suivre de très près.

Il est important, en conception, avant de choisir le réfrigérant qui va naturellement conditionner tout le choix des équipements, de déterminer si le projet s’inscrit dans une démarche énergétique et durable globale. Auquel cas, il faut limiter au maximum :

  • Les déperditions de l’enveloppe par l’isolation thermique des parois, la limitation des pertes par ventilation et infiltration, …
  • Les apports internes positifs ou négatifs tels que l’éclairage intensif, les meubles frigorifiques ouverts, …, par le choix  de luminaires performants, de meubles frigorifiques fermés, apport de lumière naturelle contrôlé (sheds par exemple), …
  • Les apports externes tels que les apports solaires par l’orientation du bâtiment, les ombrages, …

En fonction de l’objectif fixé au niveau de l’esquisse du bâtiment, lors du projet on pourra déterminer l’intérêt ou pas d’investir dans un fluide réfrigérant tel que le CO2.

Choisir l’emplacement des émetteurs de refroidissement

Le confort lié à la distribution de l’air et de la chaleur

L’emplacement de l’unité intérieure conditionne fortement le confort des occupants. La difficulté est renforcée par le fait que le confort doit être assuré autant en mode « chauffage » qu’en mode « refroidissement ». Les mouvements de l’air dans les locaux sont conditionnés par la disposition des bouches de soufflage et de reprise par rapport à l’emplacement des occupants. Notons que certaines cassettes plafonnières régulent automatiquement la direction du flux suivant le mode fonctionnement chaud ou froid.

Le dimensionnement doit alors faire apparaître que la zone d’occupation du local n’est pas perturbée par le jet d’air.

La zone d’occupation du local est limitée dans les recommandations EUROVENT.

En pratique, la vitesse résiduelle du jet d’air dans la zone d’occupation devrait se situer entre 0,15 et 0,2 m/s. Si elle atteint 0,25 m/s, il y aura inconfort des occupants.

Disposition en allège

Si l’emplacement est en allège, la stratification de la température de l’air est limitée et le rayonnement froid du vitrage en hiver est diminué.

climatiser_local_35.gif (6397 octets)

Cette disposition impose qu’en mode « refroidissement », personne ne se trouve à proximité immédiate de la bouche de soufflage.

On rencontre deux cas de figure : soit l’échangeur est placé « complet » avec son habillage, soit il est « nu » et intégré dans un caisson en allège. La première solution apporte beaucoup de garanties de qualité, car le fabricant a testé son matériel et peut en garantir les performances. Mais l’architecte préfère de loin la deuxième formule, pour l’esthétique globale du local et pour la possibilité de dissimuler câbles et tuyauteries dans l’allège ! Les problèmes qui se posent alors sont liés à l’interface entre l’échangeur et la grille du caisson : des remous modifient les jets d’air et créent un inconfort acoustique. Il est donc important soit de remonter l’échangeur pour qu’il affleure la grille, soit de prévoir un manchon de raccord entre ventilo et grille.

De même, on évitera les tablettes, rideaux, … qui peuvent entraver une diffusion correcte de l’air.

Exemple de ventilo-convecteur en allège.

Disposition en faux plafond

Paradoxalement, c’est lorsque soufflage et reprise sont proches l’un de l’autre que le brassage de l’air du local est le meilleur. Mais cette distribution horizontale de l’air peut poser beaucoup de difficultés, surtout si l’on souhaite faire varier le débit d’air. Le choix de la grille sera déterminant. On adopte généralement des grilles linéaires ou des grilles à rouleaux dont on recherche l‘effet Coanda le long du plafond. Mais à faible vitesse, la veine d’air risque de se décoller du plafond et de faire retomber un air trop froid sur les occupants.

En faux plafond, il est sans doute préférable d’imposer une vitesse constante (en l’imposant à la régulation centrale). Ce qui n’est acoustiquement et énergétiquement pas optimal. Permettre à l’occupant de modifier la vitesse de distribution de l’air sous-entend de reporter la commande sur une paroi du local, ce qui est coûteux à l’investissement.

Certains appareils modifient le jet en fonction de la température de l’air soufflé.
À noter enfin que lorsque l’échangeur est placé en faux plafond, on aura tendance a insérer l’apport d’air neuf dans le plénum constitué par ce faux plafond. L’échangeur aspire un mélange d’air du local et d’air neuf. Or, l’air neuf devant être pulsé en permanence, il faudra toujours maintenir une vitesse minimale à l’échangeur.

Disposition en faux plafond avec gainages de distribution

C’est un appareil dont le raccordement est prévu via des gaines de distribution vers différentes grilles de pulsion. Cela améliore le confort (meilleure diffusion de l’air, diminution du bruit, …).

Mais les pertes de charge sont plus élevées et la consommation électrique du ventilateur augmente, tout particulièrement si les gaines de distribution d’air sont longues et terminées par des bouches linéaires.

Disposition au plafond, en apparent ou en imposte

Ce n’est pas idéal au niveau confort thermique. En mode « froid » et à basse vitesse, le jet risque de tomber et de provoquer une sensation d’inconfort désagréable. Ce risque est renforcé si la température de la boucle d’eau glacée est choisie très basse lors du dimensionnement (régime 7° – 12°C, par exemple, plutôt que 12° – 17°C). On peut diminuer cet effet, lors du dimensionnement de l’équipement, en calculant le ventilo sur base de la vitesse moyenne et en recherchant à valoriser à ce moment l‘effet Coanda.

Disposition en faux plancher

La distribution et l’émission peut également être disposée dans le faux plancher.

Disposition dans un local technique indépendant

Pour l’organisation de la maintenance, il peut être plus aisé de disposer toutes les unités terminales dans un local technique, et de les relier chacune à son local par une gaine spécifique.

On parle alors de Module de traitement d’air, qui peut être vu comme un ventilo-convecteur délocalisé.

Coupe à l’intérieur du module de traitement d’air.

En aval, ils sont alimentés en air neuf prétraité, en eau glacée et éventuellement en eau chaude.

En amont, ces caissons sont prolongés par des gaines pour alimenter les diffuseurs d’air dans les locaux (ces diffuseurs assurent aussi bien la pulsion que la reprise).

Le principe de fonctionnement est donc fort proche de celui des ventilo-convecteurs. Mais en plus, il apporte une flexibilité totale s’adaptant très bien aux bâtiments modulaires dont on voudrait pouvoir modifier les cloisons ultérieurement.

Le coût d’installation fort élevé entraîne le besoin d’une évaluation de la rentabilité de ce système sur le long terme.

Un module de traitement d’air traite un local.

Vue du local technique où sont rassemblés les MTA d’un étage, par exemple.


L’évacuation des condensats

La température d’évaporation (en mode froid) d’un système DRV ou d’un climatiseur est inférieure à la température de rosée de l’eau contenue dans l’air, il y a alors condensation sur les ailettes. Des condensats apparaissent également sur les échangeurs à eau glacée des ventilo-convecteurs ou poutres froides.

Ces condensats doivent être évacués. En fonction de l’emplacement de l’appareil, ceci pourra s’effectuer par écoulement naturel ou au moyen d’une pompe de relevage. Celle-ci, si elles ne sont pas intégrées dans la cassette peuvent engendrer du bruit. Dans la mesure du possible, il faut essayer de ne pas sacrifier le confort pour faciliter l’évacuation.

A priori, l’évacuation pour un appareil en plafond dispose de plus de pentes qu’en allège, mais la présence de poutres perpendiculaires au chemin probable d’évacuation peut rendre les choses plus difficiles…

Exemple du DRV : Les condensats sont extraits de l’air ambiant lors du fonctionnement de l’échangeur en mode « froid ». Ainsi, lorsque l’appareil détecte une humidité trop importante dans le local, il descend la température du fluide frigorigène sous le point de rosée de l’ambiance. La distance entre ailettes étant de 2 mm, le bypass factor est très faible. L’air du local condense et ressort à 95… 98 % d’humidité relative.

D’après un constructeur :

  • la consommation de l’appareil est de 85 % en chaleur sensible en mode refroidissement (et donc 15 % pour la déshumidification),
  • elle descend à 50 % en chaleur sensible lors d’un fonctionnement en mode déshumidification.

La technique de la température variable fait qu’il est possible de faire varier la proportion entre chaleur sensible et latente dans le traitement de l’air en mode froid.


La facilité de maintenance

Il ne faut pas non plus oublier que le ventilo doit s’intégrer dans l’esthétique générale du local et que sa facilité d’accès déterminera en partie son coût d’entretien et le coût du service après-vente.

Il est certain que les appareils en allège sont de ce point de vue nettement préférable à ceux en faux plafond.

On sera attentif à ce que les appareils en faux plafond disposent d’une ouverture prévue par le dessous (point surtout critique pour les appareils gainables). Certains appareils sont pourvus de filtres autonettoyants facilitant ainsi l’entretien.

Synthèse

Avantages

Configurations

 Inconvénients

  • distribution optimale de l’air,
  • bruit réduit,
  • faux plafond mis à profit,
  • multiplicité des combinaisons.

  • risque de court-circuit de l’air pulsé et repris,
  • difficulté de respecter le confort à vitesse réduite.

  • distribution optimale de l’air,
  • bruit réduit,
  • faux plafond mis à profit.

  • difficulté d’évacuation des condensats (nécessité d’une pente),
  • difficulté de respecter le confort à vitesse réduite.

  • fonctionnement correct en chauffage et refroidissement.

  • risque de court-circuit si vitesse de soufflage trop faible,
  • encombrement au sol,
  • difficulté d’évacuation des condensats (nécessité d’une pente).

  • fonctionnement correct en chauffage et refroidissement.

  • risque de court-circuit si vitesse de soufflage trop faible
  • esthétique
  • difficulté d’évacuation des condensats (nécessité d’une pente).

Pour en savoir plus :

Techniques

Le ventilo-convecteur

Techniques 

L’éjecto-convecteur

Techniques 

La poutre froide

Techniques 

Le climatiseur de local

Techniques 

Le système DRV

Choisir une production de froid « alternative » (freechilling, refroidissement adiabatique, géothermie, climatisation solaire)

Choisir une production de froid "alternative" (freechilling, refroidissement adiabatique, géothermie, climatisation solaire)


Quand opter pour un freechilling ?

Le free-chilling consiste à refroidir l’eau glacée de l’installation frigorifique par « contact » avec l’air extérieur lorsque la température de celui-ci est suffisamment basse.

Qu’est-ce qu’une installation adaptée au free-chilling ?

Au départ, il faut que des besoins de froid soient prévus en hiver.
L’intérêt est augmenté si les échangeurs des unités terminales qui seront choisis travaillent à « haute » température : ce sera le cas de plafonds froids (régime 15-17 °C), de poutres froides ou de ventilos-convecteurs surdimensionnés pour travailler au régime 12-17 °C ou 14-19 °C,… À noter qu’un tel dimensionnement diminue les pertes du réseau et la consommation liées à la condensation de la vapeur d’eau contenue dans l’air des ambiances, ce qui amplifie l’économie d’énergie.

Si l’installation demande une puissance de refroidissement faible en mi-saison ou en hiver (de l’ordre de 50 W/m²), on pourrait faire travailler les plafonds froids au régime 17 ° – 19 °C, ce qui permet un refroidissement par l’air extérieur tant que la température de l’air est inférieure à 14 °C. On peut alors imaginer une modulation de la température de consigne de l’eau des plafonds froids en fonction de la température extérieure.

Enfin, le projet se présente très favorablement si un condenseur à eau est prévu : on pourra utiliser la tour de refroidissement pour refroidir l’eau glacée directement par l’air extérieur. Dans la tour, grâce à l’évaporation partielle de l’eau, la température de l’air extérieur sera encore diminuée. Ainsi, de l’air à 15 °C et 70 % HR permet de créer de l’eau de refroidissement à 12 ° (limite basse théorique appelée température « bulbe humide »). Malheureusement, un échangeur sera nécessaire entre le circuit de la tour (eau glycolée) et le circuit d’eau glacée du bâtiment. Une partie de l’avantage est donc perdu…

Le problème du gel…

De l’eau glacée refroidie par l’air extérieur pose le problème du gel dans la tour. La solution la plus courante est l’addition de glycol, mais :

  • le glycol coûte cher,
  • le glycol diminue les capacités d’échange thermique et augmente la densité du liquide, ce qui entraîne une augmentation de puissance des pompes,
  • en général, on limite le circuit glycol au dernier tronçon en contact avec l’extérieur (l’eau de la boucle d’eau glacée n’est pas glycolée car, en cas de vidange, c’est l’entièreté du circuit qui est à remplacer),
  • un échangeur supplémentaire doit alors être prévu, entraînant une consommation électrique liée à sa perte de charge et un écart de température qui diminue la période de fonctionnement du free-chilling…
  • Attention lorsque l’on rajoute de l’eau ultérieurement…

Il est aussi possible de placer des cordons chauffants (mais peut-on protéger totalement ainsi une tour ?) ou de prévoir un circuit de chauffage spécifique qui se met en place en période de gel, mais on risque de manger le bénéfice !

 Le free-chilling : une solution miracle pour toutes les installations ?

Certainement pas. De nombreuses contraintes apparaissent.

Quelques exemples :

  • Lorsque l’installation travaille à charge partielle, il y a intérêt à ce que la température moyenne de l’eau « glacée » soit la plus élevée possible pour favoriser l’échange avec l’air extérieur. On appliquera donc une régulation des échangeurs par débit variable pour augmenter l’écart de température entre départ et retour.
  • Une tour de 300 kW pèse 3 à 4 tonnes et une tour de 1 000 kW pèse 9 à 12 tonnes, ce qui génère parfois des frais d’adaptation du génie civil.
  •  …

Adapter cette technique nécessite donc toujours une étude particulière (cadastre des énergies de froids prévues avec leur niveau de température, répartition été/hiver, …) pour apprécier la rentabilité.

Mais il est en tous cas impératif d’y penser lors d’une nouvelle installation !


Quand opter pour un refroidissement adiabatique

Le refroidissement adiabatique permet de rafraîchir de l’air en centrale par humidification. Cet air humide et frais est ensuite utilisé directement dans l’ambiance ou indirectement par un échangeur de chaleur.

Ce système basé sur des équipements existants (groupe de ventilation, tour de refroidissement) apporte un rafraichissement naturel bienvenu lorsque des techniques plus « lourdes » (fenêtres motorisées, etc.) ne peuvent être mises en œuvre. Il peut également servir d’appoint à ces techniques passives lorsque celles-ci ne suffisent plus à assurer le confort.

Le refroidissement adiabatique a cependant une efficacité limitée à trois niveaux,

  • comme tout système de transfert thermique basé sur l’air, la faible capacité calorifique de l’air bride la puissance disponible. Des débits d’air importants sont nécessaires pour que le refroidissement soit réellement sensible.
  • La température minimale à laquelle l’air peut être abaissé est la température de bulbe humide, qui correspond à la saturation. Cette température est plus élevée que celle obtenue par une machine frigorifique « classique ».
  • Le système ne fonctionne que lorsque l’air que l’on souhaite humidifier est suffisamment sec que pour présenter un potentiel de rafraichissement intéressant. Si c’est de l’air intérieur, le refroidissement adiabatique sera plus pertinent dans des locaux faiblement occupés (moins de dégagement d’humidité dans l’ambiance). Si c’est de l’air extérieur, le système ne sera pas très efficace les jours chauds et humides.

La figure ci-dessous montre, heure par heure, les conditions climatiques d’Uccle, et la zone de conditions T° et Humidité favorable à un système évaporatif direct. A l’évidence, notre climat humide n’est pas le plus favorable pour cette technique.

Elle n’est pas pour autant à dédaigner complètement. Considérons par exemple un air extérieur à 22 °c et 60 % d’humidité relative, une condition qui n’a rien d’exceptionnel en été. Pour peu qu’il y ait un peu de soleil, beaucoup de bâtiments seront en demande de refroidissement. Par humidification, cet air peut être  abaissé jusqu’à environ 17 °C. Ce gain de 5 °C, sur un débit d’air hygiénique d’environ 3 m³/(hm²) dans des bureaux représente 5 W/m² de puissance frigorifique. C’est presque équivalent à la chaleur dégagée par les occupants (70 W/personne, 10 à 15 m²/personne). C’est peu, mais non négligeable.

Quand donc opter pour ce type de système ?

Dans notre climat, un refroidissement adiabatique direct est limité par l’humidité extérieure, et surtout d’une efficacité très variable en fonction de la météo.  On évitera donc de se fier uniquement sur eux pour traiter une ambiance. Par contre, sa simplicité fait qu’il trouvera presque toujours une place en complément de stratégies de refroidissement sur boucle d’eau.

Les systèmes indirects, basés sur l’humidification de l’air extrait, seront pertinents lorsque l’air extrait peut être fortement refroidi. Pour cela, il faut qu’il ne soit ni trop chaud, ni trop humide. La condition « pas trop chaud » fait penser à des locaux disposant déjà d’un système de refroidissement  par boucle d’eau. On est alors sur de plafonner à 24-25 °C. La condition « pas trop humide » se rencontre lorsque la surchauffe du local est liée à des gains solaires et internes sans dégagement d’humidité. Autrement dit dans les locaux dont l’occupation humaine est relativement limitée. Problème : dans ces cas-là, le débit d’air a tendance à l’être aussi, ce qui limite la puissance disponible. Faut-il surdimensionner le réseau de ventilation ? C’est un calcul économique à réaliser au cas par cas.

En conclusion, le refroidissement adiabatique apparait chez nous comme un appoint intéressant à d’autres systèmes plus que comme une technique autonome de refroidissement.

Et si on reformulait les objectifs de la conception des bâtiments de façon à atteindre un niveau de maîtrise des charges thermiques au point de rendre cet appoint suffisant ?

Techniques

Pour en savoir plus sur le refroidissement adiabatique, cliquez ici !

Concevoir

Pour en savoir plus sur la façon de valoriser la physique de l’air humide, cliquez ici !

Quand opter pour une climatisation solaire ?

La climatisation solaire est une technique basée sur l’utilisation de machines frigorifiques à ab/adsorption  ou de roues dessicantes. L’énergie solaire sert alors de source de chaleur pour régénérer le sorbant.

Dans le cas des machines frigorifiques à adsorbtion, la possibilité d’utiliser le soleil pour cet usage est limité par la demande d’une température d’eau minimale qui se situe entre 70 et 95°C en fonction du couple solvant-réfigérant. Dans les roues dessicante, cette température est également supérieure à 70°C. Pour atteindre cette température, l’emploi de capteurs performants est indispensable (sélectifs, sous vide, à faible concentration), ce qui induit un coût d’investissement assez important.

Il faut aussi tenir compte de ce que, en l’absence de soleil, si les besoins de froid sont toujours présents, une autre source de chaleur doit prendre le relais. L’intérêt de la machine frigorifique à absorption couplée avec des capteurs solaires doit donc être évalué sur base d’une moyenne annuelle, en tenant compte des heures d’ensoleillement exploitables. Cette évaluation dépend de nombreuses valeurs à estimer :

  • rendement de la chaudière ;
  • rendement de la machine frigorifique à absorption ou des différents échangeurs de la roue dessicante ;
  • proportion de la demande de froid qu’on peut produire avec l’énergie solaire (X) qui dépend du nombre d’heures d’ensoleillement exploitables ;
  • rendement moyen de la production électrique en centrale ;
  • COP de la machine frigorifique à compression.

Avec les hypothèses prises dans le schéma ci-dessus, le bilan au niveau de la consommation d’énergie primaire est favorable au système de refroidissement solaire si au moins 51 % de la demande de froid peut être satisfaite par l’énergie solaire. Pour évaluer la rentabilité économique du système, il faudrait tenir compte des prix de l’énergie et des coûts d’investissement.

Est-il envisageable d’atteindre ce ratio ? A priori non : dans notre climat peu ensoleillé, les surchauffes sont en grande partie liées aux dégagements intérieurs de chaleur. Encore plus si le bâtiment est équipé de protections solaires.

Faisons l’exercice inverse : pour que la climatisation solaire soit pertinente, il faudrait que :

  • Les locaux soient peu sujets à des gains internes : des grands espaces peu occupés.
  • Les locaux soient sujets à une surchauffe au moment où le soleil brille : donc des espaces qui présentent une faible inertie thermique.
  • Les locaux disposent d’une stratégie alternative lorsque cette surchauffe apparait pour un ensoleillement moyen (en mi-saison, quand la température dans le capteur ne sera pas suffisante) : locaux que l’on peut ventiler intensivement en été.

Cela pourrait nous faire penser à des espaces d’exposition, pour autant que l’éclairage artificiel n’y représente pas une charge trop importante, ou à des atriums. On le voit, la climatisation solaire doit, chez nous, être considérée comme un produit de ‘niche’, pour lequel une étude technico-économique détaillée est indispensable.

Techniques

Pour en savoir plus sur les machines frigorifiques à ad/absorption

Techniques

Pour en savoir plus sur les roues dessicantes

Quand opter pour un geocooling ?

Le geocooling est une technique de valorisation de la fraicheur du sol grâce à un réseau véhiculant un fluide caloporteur. En principe, le champ d’application du geocooling est large. Tout bâtiment qui présente un besoin de froid pourrait théoriquement en bénéficier, quitte à compléter cette source d’un appoint par une machine frigorifique plus traditionnelle.
Les limites d’utilisation du geocooling seront :

  • Réglementaires : les forages doivent faire l’objet d’une demande de permis unique en Région Wallonne, pour laquelle il faut fournir notamment une coupe géologique probable du puits avec profondeur estimée de la nappe aquifère, la description des méthodes de forage et les équipements du puits avec coupe technique, un rapport technique sur la nature de la nappe aquifère éventuelle et un plan de situation des puits. Le sens de cette demande de permis est bien évidemment d’éviter tout risque de pollution d’une nappe aquifère, ce qui peut limiter le développement de cette technologie dans certaines zones sensibles.
  • Technologiques : Décharger d’année en année une quantité d’énergie dans le sol mène à son échauffement progressif. Il en découle une perte de performance liée à des moindres écarts de température entre le sol, la boucle d’eau et le bâtiment. On privilégiera donc le geocooling dans les situations où le sol est également utilisé comme source de chaleur en hiver (géothermie), t en particulier lorsque les besoins de chauffage et de refroidissement du bâtiment sont dans une certaine proportion. Puisqu’en géothermie l’énergie utile (la demande de chaud) = l’énergie extraite du sol + l’énergie consommée au compresseur de la pompe à chaleur, alors qu’en geocooling, l’énergie utile (la demande de froid) = l’énergie injectée dans le sol, on déduit que le geocooling sera particulièrement pertinent lorsque la demande de froid = la demande de chaud / (1-(1/COPpac)). Autrement dit, si on considère qu’une pompe à chaleur à un COP de l’ordre de 4, il faut que les besoins de froid soient environ 133 % des besoins de chaleur.

Schéma évolution de la température du sol sur 20 ans.

Simulation de la température d’un sol dont on retire du froid chaque été. Après 240 mois (20 ans), la température moyenne a grimpé de 3°C, rendant difficile la production d’eau froide à destination du système de climatisation du bâtiment.

  • Économiques : La pertinence économie qu’un geocooling dépend de la nature du sol et de l’équilibre entre besoins de chaleur et de froid. Pour ce qui est de la nature du sol, il est évident qu’un forage dans une roche demandera un investissement plus important qu’un forage dans du sable. Certains sols offrent également une plus grande diffusivité thermique, ce qui améliore leur rôle de tampon thermique. Un test de réponse thermique (TRT) permet de chiffrer la qualité d’un sol relativement à des applications thermiques. L’équilibre chaud-froid dans les proportions discutées au point précédent permet de limiter le recours à des technologies d’appoint (chaudière ou machine frigorifique à compression) pour valoriser au maximum l’investissement fait au niveau du forage.

Pour illustrer tout cela, voici un exemple de bilan réalisé pour un bâtiment de bureaux (source : MATRIciel sa). Il s’agit de la comparaison entre la géothermie/geocooling et des installations de production traditionnelles, pour plusieurs combinaisons d’enveloppe (coefficient de déperdition des murs de 0,2 à 0,4 W/m²K et facteur solaire des vitrages de 22 à 39 %). Certaines combinaisons ne sont pas possibles si on désire installer une géothermie, car elles entraînent un trop grand déséquilibre entre les besoins de chauffage et de refroidissement et donc une mauvaise dynamique du sol d’une saison à l’autre. Dans ces cas, la stabilité de la température du sol à long terme n’est pas garantie. Globalement, lorsqu’elle est possible, la valorisation du sol permet une division par 2 des émissions de CO2 et une économie d’un tiers de l’énergie primaire liée au chauffage et refroidissement. Mais, on constate que la combinaison qui minimise la consommation d’énergie primaire pour des techniques traditionnelles ne permettait pas, pour ce cas-là, d’opter pour le geocooling ! Même si cela peut paraître paradoxal, il est alors préférable d’aller un peu moins loin dans la réduction des besoins (de froid dans ce cas-ci) pour rendre possible l’investissement dans une technique qui minimisera l’impact global du bâtiment.

Schéma comparaison entre la géothermie/geocooling et des installations de production traditionnelles.

Schéma comparaison entre la géothermie/geocooling et des installations de production traditionnelles.

Techniques

Pour en savoir plus sur les techniques de geocooling, cliquez ici !

Influence du régime de température

Le régime de température d’un système de climatisation influence directement la quantité d’énergie produite en valorisant la fraicheur de l’environnement. À titre d’exemple, le tableau suivant reprend les gains énergétiques potentiels par free-chilling et par géocooling qui ont été simulés en fonction du régime de température, pour un bâtiment de bureaux nécessitant 302 MWh de besoin en froid.

  Géocooling
Régime 09°C-14°C 15°C-17°C 17°C-19°C
Gain énergétique potentiel 33% 66% 75%

Free-chilling

Régime 09°C-14°C 15°C-17°C 17°C-19°C
Gain énergétique potentiel 0.5% 8.6% 15.5%

Le géocooling consiste à refroidir directement l’eau avec le sol, la température du sol  doit donc être inférieure à la température de départ de l’eau. Dans cette exemple, le choix d’un régime 17-19 °C au lieu de 9 °C – 14 °C permet bénéficier de 2 fois plus d’énergie gratuite et d’ainsi couvrir 75 % des besoins en froid du bâtiment !

Pour un régime de température de 9 °C – 14 °C, l’utilisation d’énergie gratuite de l’air est quasi nulle (0.5 % de la consommation annuelle).  Dans cet exemple, l’augmentation du régime de température de 2 °C (17-19 au lieu de 15-17) permet d’utiliser 1.8 fois plus d’énergie gratuite.

En outre, un régime plus élevé diminue fortement le risque de condensation et peut permettre de se passer de la déshumidification de l’air. Il est dès lors possible d’utiliser des émetteurs de types plafond froid.

Analyser les besoins thermiques en fonction du climat

Évolution des besoins selon les saisons

Dès le stade de l’avant-projet, le profil thermique du bâtiment doit être évalué. Une analyse logique, intégrant les spécificités du programme (grand dégagement de chaleur intérieur ou non, large ouverture solaire ou non), permet déjà une première analyse. L’organigramme ci-dessous présente un canevas général pour aider à réaliser cet exercice : au départ des 3 saisons qui caractérisent notre climat, les priorités différentes de conception architecturale et technique sont mises en évidence.

  • En période de chauffe, soit lorsque la température en journée est inférieure au point d’équilibre du bâtiment et qu’il y a peu de soleil, il convient de minimiser à la fois le besoin et la consommation de chauffage. Minimiser le besoin fait appel aux techniques passives d’isolation, compacité, etc. et aux techniques actives de récupération de chaleur et de modulation des débits d’air. Minimiser la consommation passe par le choix d’émetteurs base température et de mode de production efficace.

 

  • En mi-saison, soit lorsque la température extérieure diurne est entre le point d’équilibre du bâtiment et la température de confort, lorsqu’il y a peu de soleil, il est prioritaire de valoriser les sources gratuites de chaleur : gains solaires, même limités, et gains internes. Le transfert d’énergie au sein du bâtiment, par les réseaux de ventilation ou VRV est alors pertinent. En période ensoleillée, c’est la maîtrise des charges solaires qui devient prédominante, pour limiter les surchauffes précoces : gestion des stores et free cooling.

 

  • En été, soit lorsque la température extérieure diurne atteint ou dépasse la température de confort, auquel cas l’ajout des charges internes et solaires crée un besoin de refroidissement, c’est la température nocturne qui deviendra le pivot de la stratégie. Si cette température est basse, la combinaison d’inertie thermique et de free cooling permet de retarder ou d’éviter le recours au refroidissement mécanique. Le dimensionnement et la gestion des réseaux de ventilation est centrale. Le choix de techniques de top cooling est également important. Si la température nocturne reste élevée (canicules), on peut partir de l’a priori qu’un refroidissement mécanique est nécessaire. On veillera alors à maximiser son efficacité, par le choix des températures d’émission et des modes de dissipation de la chaleur (géocooling par exemple).




Simulation numérique

Une fois une première analyse logique et qualitative réalisée, et après une première itération sur  l’architecture et les choix de techniques, une simulation numérique du comportement thermique du projet est à envisager. Les logiciels dits de STD (simulation thermique dynamique) les plus souvent utilisés en Wallonie sont EnergyPlus et Trnsys. Une telle simulation :

  • Fera apparaître les besoins de chaleur et de refroidissement du bâtiment.
  • Évaluera la part de simultanéité de besoins de chaud et de froid dans des locaux différents.
  • Informera de la valeur de la température extérieure au moment où la demande de refroidissement apparaît.
  •   …

Exemple de profil pour un immeuble de bureaux-type, avec locaux de réunion et salle de conférence (l’énergie frigorifique demandée alors que la température est inférieure à 10°C provient du local informatique) :

Cette analyse peut permettre :

  • De préciser les options de l’avant-projet.
  • De prendre en compte le fait qu’une zone demande un refroidissement alors que sa voisine demande du chauffage.
  • De quantifier l’énergie de refroidissement demandée alors que … c’est l’hiver dehors ! (possibilité de free-chilling).
  • D’orienter le choix du système de refroidissement (naturel ou mécanique, à Débit de Réfrigérant Variable,…).
  • De grouper des locaux avec des charges importantes.
Découvrez 3 exemples de bâtiment dont les besoins thermiques ont été intégrés dés l’avant-projet : école passive de Louvain-la-Neuve (premier bilan), école passive de Louvain-la-Neuve (proposition d’équipements), et le projet ECOFFICE.

Choisir un système de ventilation intensive (free cooling)

Choisir un système de ventilation intensive (free cooling)

Ventilation intensive mécanique ou naturelle ?

On peut envisager un système de ventilation intensive entièrement mécanique. La consommation électrique des ventilateurs risque cependant de compenser l’économie réaliser sur la machine frigorifique. Sans parler de l’encombrement des conduites. Ce type de système est équivalent à une climatisation « tout air » de type VAV qui valoriserait au maximum l’air extérieur non traité.

Concevoir

Pour plus d’infos techniques sur la conception des systèmes VAV

Selon les situations, les ventilations mécaniques et naturelles présentent chacune des avantages et/ou des inconvénients :

Coût d’investissement

Le free cooling, de jour comme de nuit, nécessite des débits de ventilation relativement importants. L’ installation de ventilation doit donc être dimensionnée pour gérer ces débits (conduits, ventilateurs, bouches, ….).

Si le bâtiment est déjà équipé d’un système de climatisation tout air ou si les débits de ventilation hygiénique sont importants (du fait de l’occupation, dans des salles de conférence, des auditoires, par exemple), un réseau mécanique ne représente peut-être pas un surcoût.

Par contre, lorsque la ventilation hygiénique est limitée, la possibilité d’organiser un free cooling mécanique entraîne un surdimensionnement, donc un surcoût important de l’installation.

Dans le cas d’une ventilation naturelle, si la réalisation d’un réseau de ventilation mécanique important est évitée, l’investissement pour organiser une ventilation naturelle n’est néanmoins pas nul. Des éléments particuliers doivent être prévus pour amener l’air dans le bâtiment sans risque d’effraction (grilles, fenêtres automatisées,…), éventuellement pour lui permettre de circuler (grilles de transfert, portes coupe-feu,…) et pour l’extraire (grilles d’extraction, cheminées,…).

Coût de fonctionnement

En ventilation naturelle, le transport de l’air s’effectue naturellement grâce aux différences de pression et/ou de température de l’air autour du bâtiment. Dans les systèmes de ventilation par effet de cheminée, un ventilateur d’extraction est parfois installé pour pourvoir au transport de l’air dans de mauvaises conditions climatiques. Pratiquement, ces ventilateurs sont peu ou pas utilisés.

En ventilation mécanique, le fonctionnement des ventilateurs pour le transport de l’air nécessite une énergie électrique non négligeable.

Par exemple, une étude réalisée sur un bâtiment du Sud de la France montre que la consommation des ventilateurs actionnés la nuit était similaire à la consommation des groupes frigorifiques en relance au matin en absence de free cooling (ceux-ci bénéficiant de l’efficacité frigorifique qui produit 2 à 3 kWh de froid pour 1 kWh au compresseur…).

Confort

En free cooling diurne naturel, l’amenée d’air frais directement dans les locaux peut se révéler inconfortable. Des solutions peuvent néanmoins être trouvées pour éviter cet inconfort, comme le montrent les trois exemples suivants réalisés dans des bâtiments anglais.

Exemples.

Dans le centre administratif de l’entreprise Powergen, l’air, en hiver, est introduit par les fenêtres hautes, et guidé, grâce à la forme particulière du plafond vers le centre du bâtiment. Le mélange de l’air frais extérieur avec l’air ambiant se fait donc sans inconfort.

Photo centre administratif de l'entreprise Powergen.

Dans le bâtiment environnemental du BRE, l’air de ventilation des bureaux paysagers parcourt des conduits intégrés dans le plafond, à température ambiante, avant de pénétrer le local au niveau du plafond. Il est donc légèrement réchauffé.

Powergen, schéma explicatif.

Powergen, schéma explicatif.

Enfin, dans le Queen’s building de l’Université De Monfort, l’air extérieur est introduit dans les auditoires au travers d’un absorbant acoustique et d’une batterie de préchauffe.

À cela s’ajoute le risque de sous-refroidissement du local et donc d’inconfort le matin, à l’arrivée des occupants, si les amenées d’air ne sont pas automatisées et refermées au cours de la nuit, quand le bâtiment est suffisamment refroidi.

En ventilation mécanique, lorsque l’on souhaite bénéficier de la fraîcheur de l’air extérieur, mais que celui-ci est trop froid pour être pulsé tel quel, il serait paradoxal de recourir à une batterie de chauffe. Une récupération de chaleur sur l’air extrait est alors tout indiquée. Éventuellement, un recyclage partiel de l’air extrait peut être envisagé.


Un ventilateur en renfort du tirage naturel : vers des systèmes hybrides ?

Pour renforcer le tirage lorsqu’il est trop faible ou pour limiter l’encombrement des cheminées de tirage naturel, il est possible d’organiser une pulsion forcée d’air frais extérieur : un extracteur est placé sur le sommet de la cheminée. Ici également, la température intérieure va fluctuer entre 21 et 25°C durant la journée, puisque le bâtiment stocke son froid la nuit et se réchauffe le jour. Mais au moins une garantie est donnée sur la réelle circulation de l’air.

Schéma de fonctionnement de la ventilation hybride dans les classes (École Tanga).


Disposer d’une masse thermique accessible

Le but de la ventilation nocturne est de refroidir la masse thermique du bâtiment durant la nuit et de diminuer ainsi les surchauffes en journée.

Ce sont les matériaux lourds de construction (béton, carrelage, …) qui constituent la principale masse thermique d’un bâtiment. En journée, ceux-ci absorbent les apports instantanés de chaleur (ensoleillement, …). Cette chaleur est restituée ensuite avec un décalage temporel, ce qui atténue fortement les hausses de température diurne dans le bâtiment. On parle d’inertie thermique du bâtiment. Prenons l’exemple d’une voiture. Celle-ci n’a aucune masse thermique. Dès que le soleil luit, la température intérieure monte très vite. À l’inverse, dès que le soleil disparaît, la température intérieure chute.

Évolution dans le temps de l’apport de chaleur dû à l’ensoleillement dans un local
avec ou sans inertie thermique : comparaison entre la chaleur instantanée transmise au travers du vitrage et la chaleur restituée au local.

Le but de la ventilation nocturne est de décharger au maximum, durant la nuit, la chaleur accumulée dans les matériaux du bâtiment et de permettre une forte absorption de chaleur durant la journée.
Pour que ce phénomène d’accumulation / restitution de chaleur soit possible, il faut :

  • D’une part, favoriser l’utilisation de matériaux de construction lourds pour assurer l’accumulation.
  • D’autre part, garantir le contact entre ceux-ci et l’air frais de ventilation pour évacuer la chaleur accumulée.

À défaut de quoi, on ne refroidirait que l’air ambiant du bâtiment, qui se réchaufferait au premier rayon de soleil (comme cela se passe dans une voiture …). Concrètement :

  • Au niveau du sol, le carrelage est préférable à la moquette, au plancher ou au faux plancher qui isolent par rapport à la masse du sol. …). Le passage des réseaux hydrauliques, électriques,informatiques… s’en trouve contrarié.
  • Au niveau des murs, des murs intérieurs en maçonnerie lourde absorbent nettement plus de chaleur que les cloisons légères. Mais des cloisons lourdes peuvent aller à l’encontre de la flexibilité souhaitée par un promoteur immobilier par exemple.
  • Au niveau des plafonds, l’emploi de faux plafonds est déconseillé.

La surface d’absorption manquante au plafond peut être fournie par les portes absorbantes acoustiques des armoires.

Exemple.

Les bureaux du bâtiment environnemental du BRE, par exemple, ne présentent pas de faux plafonds. La surface du plafond a même été augmentée artificiellement en lui donnant une forme sinusoïdale. L’énergie thermique stockée par le plafond est ainsi augmentée.

Phot des plafonds du bâtiment environnemental du BRE.

Cependant, les faux plafonds offrent d’importants avantages (coût par rapport à la finition d’un plafond « lourd », intégration des installations techniques, …) et permettent notamment d’améliorer l’acoustique des locaux. Un compromis peut être trouvé entre la fonctionnalité du faux plafond et la perte de masse thermique qu’il engendre. Il s’agit de plafonds semi-fermés comportant des ouvertures qui assurent un contact entre l’air intérieur et la structure du bâtiment.

Faux plafonds semi-ouverts permettant la circulation de l’air de ventilation.

Dans le centre administratif de l’entreprise Powergen en Angleterre, une autre solution a été utilisée pour assurer le confort acoustique : les « ailes » des éléments techniques suspendus (regroupant luminaires, détecteurs incendies, etc.) sont des absorbants acoustiques. La forme elliptique des creux du plafond focalise les ondes sonores vers ces absorbants.

Théories

Pour plus d’informations sur l’évolution thermique d’un local type sans inertie, cliquez ici !


Gérer la fluctuation inévitable de la température intérieure

Choisir un rafraichissement par ventilation intensive sans appoint d’une machine frigorifique implique inévitablement des fluctuations de température dans le bâtiment.

En été, le bâtiment est un réservoir « tampon », qui est « vidé de sa chaleur » la nuit jusqu’à atteindre 21°C, et dont la température augmente progressivement en journée jusqu’à 25°C. S’il fait plus de 25°C à l’extérieur, l’occupant doit vivre dans son local sans ouvrir la fenêtre, et se baser sur le « capital froid » emmagasiné durant la nuit.

En outre, il ne faut pas sous-refroidir le bâtiment, pour ne pas créer d’inconfort lors de l’arrivée des occupants, le matin. Une régulation automatique du free cooling s’impose si les utilisateurs ne peuvent assurer la gestion manuelle.

Dans tous les cas, les fluctuations de température doivent rester dans les plages de confort tolérées par le maître d’ouvrage. Or, dans un bâtiment se basant sur un système de reoifridissement par ventilation, l’approche du confort n’est pas la même que dans un bâtiment climatisé. La norme NBN EN 15251 donne à ce titre des indications utiles.

Pour en savoir plus :

Théories

Le confort thermique.

Réglementations 

La norme NBN EN 15251.

Choisir un climatiseur individuel ou une armoire de climatisation

Choisir un climatiseur individuel ou une armoire de climatisation


Quand opter pour un climatiseur individuel ?

Un climatiseur paraît bien adapté lorsque l’on cherche un refroidissement localisé à peu de frais. Mais ce système présente d’importantes limites : il ne permet pas la maîtrise de l’humidité et risque de créer un inconfort lié au flux d’air froid.

Ce dernier point s’explique comme suit : en conditionnement d’air, on cherche à assurer un écart de soufflage limité (écart entre la température de l’air soufflé et la température du local). On peut aller jusqu’à 10 °C d’écart (soit une pulsion d’air à 14 °C si le local est à 24 °C) mais on utilise alors des bouches à haut taux d’induction pour être sûr que le mélange avec l’air ambiant soit maximal. Dans un climatiseur par contre, le fabricant cherche à fournir une puissance maximale dans un encombrement minimal. L’évaporateur est donc de petite surface, … et travaille à très basse température ! L’air du local est fortement refroidi à son contact. Une « coulée » d’air froid risque alors de gêner fortement les occupants…

Ceci dit, c’est une solution facile lorsque quelques locaux sont à traiter, particulièrement en rénovation. Et le confort limité peut être accepté si le climatiseur est utilisé sporadiquement pour vaincre des périodes de surchauffe.

Lorsque des puissances plus grandes sont nécessaires par exemple pour des locaux de serveurs, on s’orientera vers les armoires de climatisation.


Choix du type de climatiseur

En fonction de la puissance frigorifique

À partir de la puissance frigorifique requise, on réalisera une première sélection parmi la typologie des climatiseurs de locaux.

La puissance frigorifique nécessaire permet déjà d’écarter quelques équipements :

  • appareil mobile : maximum 2,5 kW,
  • appareil plafonnier : minimum 2,5 kW,
  • appareil en toiture + gaines (rooftop) : minimum 5 kW.

Lorsque la puissance des appareils présents sur le marché ne correspond pas à la puissance frigorifique calculée, il est toujours préférable de choisir un appareil ayant une puissance juste inférieure plutôt que celui qui a une puissance supérieure.

En effet, les conditions extrêmes de température extérieures n’apparaissent que durant quelques jours par an. On peut donc se permettre un très léger inconfort durant cette période. De plus, un appareil plus petit aura des durées de fonctionnements plus longs, et donc un meilleur rendement.

En fonction de la performance acoustique

Les climatiseurs monoblocs et les climatiseurs de « fenêtres » présentent souvent de mauvaises caractéristiques acoustiques puisque condenseur et compresseur sont directement en contact avec le local à climatiser.

Graphique performance acoustique

La performance acoustique va orienter le choix vers une configuration en split (le compresseur est à l’extérieur), puis vers un évaporateur en cassette (faux plafond), voire rechercher un placement de l’évaporateur dans un local annexe (couloir ?) afin de profiter en plus de l’absorption acoustique de la gaine.

À ce titre, on pourrait classer le choix en fonction de ses performances acoustiques de gauche à droite :

  Illustration plafonnier rapporté.  Illustration plafonnier intégré.  Illustration unité de plafond + gaine.

Mais ce critère sera affiné ci-dessous.

En fonction d’un éventuel découpage par zone

Il faut découper le local par zone, chaque zone étant desservie par une bouche de soufflage :

Si la surface du local est importante :

Illustration sur principe de surface du local.

Un phénomène d’irrigation incomplète des locaux apparaît lorsque la distance de pénétration du jet (mentionnée par le fournisseur) est inférieure à la dimension de la pièce (dans la direction de soufflage). Il se forme alors un mouvement d’air en sens contraire (boucle secondaire) dans le fond du local, zone mal rafraîchie.

Dans ce cas un découpage du local en plusieurs zones s’impose.

Exemple : découpage d’un local rectangulaire suivant les zones d’influence des diffuseurs plafonniers circulaires.

Si un obstacle se trouve au plafond

Lorsque l’air est soufflé à proximité d’une surface (ex : soufflage horizontal à proximité du plafond), il se produit un effet d’adhérence du jet à la paroi : c’est l’effet « COANDA » (augmentation de 30% de la portée).

Illustration sur effet "COANDA

L’effet Coanda est très utile quand on pulse de l’air froid, car il facilite la bonne pénétration du jet dans le local.

La présence d’un obstacle perpendiculaire au jet d’air (poutre, luminaire) peut faire dévier prématurément le jet vers la zone occupée et engendrer un courant d’air désagréable.

Illustration sur effet "COANDA

En conséquence :

  • il faut souffler soit à partir de l’obstacle, soit parallèlement à celui-ci et diviser le local en zones correspondantes,
  • l’éclairage au plafond doit être soit encastré, soit suspendu avec une longueur de suspension de 0,3 m minimum,
  • on tiendra compte de la présence éventuelle de colonnes qui ne pourront se situer dans la trajectoire du jet.

Si le local présente une forme de L

La distance de pénétration ne peut dépasser 4 fois la hauteur de la pièce. Dès lors, pour les locaux forts en longueur (et a fortiori pour les locaux en L), on prévoira une position centrale ou un dédoublement des bouches.

Si l’apport de chaleur est très localisé

Si la source de chaleur est concentrée (équipement, vitrage, …) dans une partie du local, il est judicieux de traiter spécifiquement cette zone.

Par exemple si la production des calories est éloignée de la façade (local profond), le souci d’économie d’investissement qui conduirait au choix d’un système « window unit » entraînerait un inconfort dans la zone à refroidir.

S’il y a présence de zones fumeurs et non-fumeurs

La zone à destination des fumeurs doit être traitée si possible indépendamment de la zone non-fumeurs, notamment en prévoyant l’extraction dans l’espace fumeurs.

En fonction de la centralisation ou non du traitement

Les zones étant définies, il est nécessaire de fixer le mode de traitement de l’air.

Un traitement centralisé et une distribution de l’air par gainage sont envisagés :

  • si les besoins des locaux ou des zones sont similaires, car l’air est distribué à même température dans les différentes pièces,
  • si les locaux ou les zones ont des charges thermiques trop faibles par rapport aux puissances des appareils sur le marché,
  • si le passage des gaines est possible (présence de faux plafond, de local annexe),
  • si les locaux de travail exigent des critères acoustiques sévères.

Dans ces différents cas, un seul appareil de traitement alimentera plusieurs zones via un réseau de gaines de distribution. Cette centralisation entraînera souvent le placement de l’appareil hors des locaux de travail et la possibilité d’une absorption acoustique par le gainage.

Climatiseur avec gaines.

Un traitement décentralisé est envisagé :

  • si les locaux ont des besoins différents (orientation des fenêtres, par exemple),
  • si les parois extérieures sont perçables de manière à faire traverser les liaisons électriques et frigorifiques, ainsi que la tuyauterie d’évacuation des condensats.

Illustration sur traitement décentralisé

On choisit dans ce cas, un traitement local par local au moyen d’appareils indépendants.

Photo sur traitement décentralisé

Un condenseur commun et plusieurs unités intérieures = multi-split.

Cette configuration n’exclut pas l’utilisation d’un système multi split.

Il est alors possible de diminuer la puissance à installer si on peut prendre en considération la non-simultanéité des besoins.


Choix d’ une armoire de climatisation

illustration sur armoire de climatisation

Tout comme les climatiseurs, les armoires de climatisation présentent, par rapport aux systèmes sur boucle d’eau ou d’air, l’avantage d’une très grande flexibilité d’implantation et de gestion. En termes de puissance frigorifique, on peut dépasser parfois la centaine de kW ce qui les différencie des climatiseurs de local. En termes de débit d’air, on atteint alors les 20 000 m³/h. Un des défauts majeurs est le bruit généré par cet équipement, à proximité des occupants…

Les armoires de climatisation se trouvent dans le traitement des salles informatiques, surtout lorsqu’elles constituent la seule demande du bâtiment. Lorsque le bâtiment comporte plusieurs armoires de ce type, il devient intéressant de les raccorder sur une boucle d’eau glacée, équipée d’un système centralisé d’évacuation de la chaleur. La même armoire peut climatiser plusieurs locaux (avec distribution de l’air traité par conduit) mais ces locaux doivent avoir des besoins semblables.

Techniques

Pour connaître plus en détail les caractéristiques technologiques et le fonctionnement des armoire de climatisation, cliquez ici !

Découvrez ces exemples concrets de système de climatisation : le Centre Hospitalier du Bois de l’Abbaye de Seraing et la climatisation et l’hôpital des Fagnes de Chimay.

Salle d'opération

Analyser les besoins thermiques : une salle d’opération

Salle d'opération

Facture globale de l’hôpital

Afin de pouvoir estimer l’importance de la climatisation des salles d’opération par rapport à la consommation globale d’un hôpital, il est nécessaire de se référer à quelques ratios.

Consommations électriques

Le graphe suivant montre la consommation moyenne électrique annuelle du secteur.

(Source ICEDD).

Dans le cas considéré, la consommation annuelle est de 9,5 MWh/lit.an ou 1,9  GWh/200 lits.an.

Consommations thermiques

Le graphe suivant montre la consommation moyenne thermique annuelle du secteur.

(Source ICEDD).

Dans le cas considéré, la consommation annuelle est de 17,7 MWh/lit.an ou 3,5 GWh/200 lits.an.


Besoins thermiques de la salle d’opération

1. Hypothèses

Un hôpital moyen comprend 200 lits. D’expérience, le nombre de salles d’opération est environ de 2 par 100 lits, ce qui signifie que l’on prend comme base un hôpital avec 4 salles d’opération.

Voici les prix moyens du kWh prix en compte dans la simulation

  • électrique : 11 c€/kWh,
  • thermique : 3,25 c€/kWh.

2. Apports

Les salles d’opération sont de plus en plus isolées et se rapprochent du concept des salles blanches rencontrées dans l’industrie :

  • les apports externes sont limités,
  • de par le développement de l’imagerie médicale dans les interventions chirurgicales, les apports internes deviennent importants,
  • si un taux élevé de renouvellement d’air est jugé nécessaire à la garantie de l’hygiène de la salle, les débits sont importants.

En pratique, on distingue des apports :

  • quelquefois solaires,
  • souvent internes (luminaires, occupation, monitoring, imagerie médicale, etc.),
  • faibles des parois (positifs ou négatifs selon la saison),
  • faibles de ventilation et d’infiltration (positifs ou négatifs selon que l’air pénétrant dans le local est plus chaud ou plus froid que l’ambiance). Le local est en principe mis en surpression (ce qui annule les infiltrations), mais un régime en dépression peut aussi être choisi si le patient est infecté.

Suite à ces faibles besoins, la température de l’air pulsé sera très proche de la température de consigne ambiante. Dans l’exemple étudié, une température de pulsion d’air (18°C) seulement 2 degrés plus froide que l’ambiance (20°) suffit pour reprendre les charges.

Proportionnellement, c’est donc la demande thermique liée à la préparation de l’air neuf pulsé qui représente la source majeure de consommation.

3. Bilan thermique

Dans ce qui suit, on établit, de manière théorique, les consommations des équipements de climatisation de l’air de la salle d’opération.

Cette climatisation de l’air est variable au cours de l’année suivant les conditions climatiques extérieures et intérieures. Pour cette raison, on considère le fichier météo d’une année climatique-type (sans canicule et froid sibérien) à Uccle, par exemple.

Chaque point de la courbe représente une heure de l’année pendant laquelle on a relevé la température et l’humidité. Les 8 760 points-heures qui composent l’année peuvent alors être placés dans le diagramme de l’air humide.

Le fichier météo est ensuite divisé en 5 zones distinctes.

Pour amener l’air extérieur à une température (18°C) et une humidité de soufflage fixe (égale à celle de l’ambiance), pour les différents points-heures extérieurs il est nécessaire de :

O préchauffer et humidifier,
O préchauffer,
O refroidir, déshumidifier et post-chauffer,
O refroidir et déshumidifier sans post-chauffer,
O refroidir et humidifier.

Suivant les débits d’air mis en œuvre, l’intégration des différences d’enthalpies entre les différents points-heures de l’année et les conditions d’ambiance des salles constituent la consommation annuelle du système de traitement d’air, par chauffage, refroidissement, humidification et déshumidification.

On considère que les salles fonctionnent selon le profil d’occupation suivant:

Lundi
Mardi
Mercredi
Jeudi
Vendredi
Samedi
Dimanche
8-18
18-8
8-18
18-8
8-18
18-8
8-18
18-8
8-18
18-8
8-18
18-8
8-18
18-8
O O O O O
O O O O O O O O O

avec les débits d’air neuf suivants :

O 4 500 m³/h
O 900 m³/h

Les résultats pour les 4 salles sont repris dans le tableau et le graphique ci-dessous.

Besoin énergétique électrique (kWh/an)

Jour Nuit WE Total

Total électrique

29 399

7 597

5 361

42 357

Pour 4 salles

169 428

Besoin énergétique thermique (kWh/an)

Total thermique

36 014

14 288

9 203

59 505

Pour 4 salles

238 020

Comparaison (kWh/an)

Total 4 salles 407 448
Total consommation de l’hôpital 5 400 000
Ratio des salles d’op. 7,5 %

Soit 7,2 % de la consommation totale de l’hôpital.

4. Bilan économique

Le bilan économique est synthétisé ci-dessous dans le tableau et sous forme de graphique :

Coûts énergétiques électriques (€/an)p

salles d’opération

13 511

hôpital

209 000

Coûts énergétiques thermiques (€/an)

salles d’opération

9 670

hôpital

113 750

Les coûts globaux des consommations énergétiques pour la climatisation de l’ensemble des 4 salles d’opération représentent 6 à 7 % de la facture énergétique de l’hôpital.

5. Conclusion

Les zones à risque de contamination élevé sont des postes consommateurs d’énergie importants. Les grands débits d’air neuf traités et le contrôle de l’humidité en sont responsables. C’est pour ces raisons qu’il est impératif, en conception nouvelle ou en rénovation, d’étudier l’alternative qui consiste à recycler l’air et à laisser varier l’humidité ambiante dans une plage qui respecte les normes et les règlements en vigueur.

Concevoir

Pour en savoir sur la gestion des débits.

Concevoir 

Pour en savoir plus sur le contrôle de l’humidité.

Les consommations électriques des ventilateurs

Plusieurs approches sont possibles.

> sur base de la puissance électrique installée des ventilateurs :

Cons. transportair [kWh/an] = Nbre jours/an x Nbre heures/jour x Puissance vent. [kW]

> sur base du ratio Wh/m³ transporté :

En fonction de la qualité du ventilateur et des pertes de charge du réseau (de faibles diamètres de conduits entraînent des vitesses et des pertes de charge élevées), on aura :

Puiss. transportair [kW] =  0,4 … à … 1,1 [W/(m³/h)] x débit horaire [m³/h] / 1 000

Cons. transportair [kWh/an] = Puiss. transp. [kW] x Nbre jours/an x Nbre heures/jour

> sur base des caractéristiques de conception du réseau :

La consommation électrique du (des) ventilateur(s) s’estime par :

Cons. transportair [kWh/an] = qx  Δp x h / (ηx 3 600 x 1 000)

où,

  • q= débit d’air transporté [m³/h]
  • Δp = pertes de charge (pulsion + extraction) [Pa]
  • h = durée de fonctionnement [h/an]
  • η= rendement total du système de transport de l’air (moyenne entre pulsion et extraction).
Soit pour quatre salles d’opération dont la perte de charge de dimensionnement est de 1 200 [PA] et qui tourne avec un rendement global de 0,65 :

  • 2 600 heures par an à 4 500 [m³/h] en période d’occupation,
  • 2 520 heures par an à 900 [m³/h] en période d’inoccupation de WE,
  • 3 640 heures par an à 900 [m³/h] en période d’inoccupation de nuit.

4 x (2 600 x 4 500 + 2 520 x 900 + 3 640 x 900) x 1 200 [PA] / (0,65 x 3 600 x 1 000) = 35 372  [kWh/an].

Soit de l’ordre de 35 372 / 5 400 000 = 0,6 % de la consommation totale de l’hôpital.

Afin de compléter notre propos concernant la ventilation d’une salle d’opération, voici un article portant sur la classification des filtres à air.

Choisir un système convectif sur boucle d’eau froide : ventilo-convecteurs ou poutres froides

ventilo-convecteurs ou poutres froidesventilo-convecteurs ou poutres froides


Domaine d’application

Les émetteurs convectifs sur boucle d’eau sont parmi les systèmes de refroidissement les plus fréquemment rencontrés. On rencontre aujourd’hui particulièrement 2 technologies : les ventilo-conveteurs et les poutres froides.

On rencontre le ventilo-convecteur comme émetteur :

  • Dans les installations de climatisation devant assurer à la fois des besoins de chaleur en hiver et des besoins de refroidissement en été; ainsi, on les rencontre classiquement en allège de fenêtre des locaux, pour casser le froid du vitrage en hiver et compenser les apports solaires importants en été dans les bureaux, les commerces, les restaurants, les salles informatiques, les chambres d’hôtel,…
  • Dans les installations de chauffage pour lesquelles on souhaite une relance très rapide; une salle des fêtes, une salle de conférence, … dont le chauffage est intermittent, seront utilement équipés de ventilo-convecteurs.
  • Dans les installations de chauffage irriguées par de l’eau à basse température; les circuits raccordés à une source géothermale, à une pompe à chaleur, à un capteur d’énergie solaire,… sont valorisés par les ventilo-convecteurs qui augmentent la puissance de l’échange.

On rencontre plus particulièrement le ventilo-convecteur « 4 tubes » dans les bâtiments dont les besoins simultanés sont différents d’un local à l’autre : une cafeteria, un local informatique, des bureaux, des salles d’archives,… et le tout sur une même façade !

Le ventilo « 2 tubes – 2 fils » est une solution qui peut à la limite convenir lorsque le bâtiment est neuf et particulièrement bien isolé. Les apports internes (éclairage, bureautique, personnel,…) sont tels que le chauffage ne doit être enclenché qu’en période de gel, par exemple. Mais il sera utile de demander au bureau d’études une évaluation précise des coûts d’exploitation prévus pour le bâtiment…

C’est souvent la solution choisie par les promoteurs : le prix de revient du bâtiment est moindre. Quant à l’exploitation, ce n’est plus leur affaire … !

La possibilité de faire du chaud et du froid avec le même appareil, son prix de revient très raisonnable suite aux faibles surfaces des échangeurs, la facilité de la régulation local par local, l’efficacité du transport thermique par eau, … fait du ventilo-convecteur un best-seller de nos bâtiments climatisés !

Les poutres froides sont, en quelque sorte, des convecteurs de chauffage qui ont été placés au plafond pour faire du froid !

Photo poutres froides.  Photo poutres froides.

Il s’agit de tuyauteries parcourues par de l’eau glacée, serties d’ailettes pour favoriser l’échange convectif. Elles sont placées au plafond ou intégrées dans le faux plafond.

On distingue les poutres « actives » ou « dynamiques » (effet d’induction créé par l’air neuf) des poutres « passives » (convection naturelle uniquement) . Cet échangeur travaille sous un faible écart de température, suite à la condition de non-condensation. Sa puissance frigorifique varie selon la largeur de la poutre, la présence d’induction, l’écart de température,…

Ce produit étant à la mode, la Belgique voit son parc de poutres froides s’agrandir d’année en année, principalement dans les bureaux. Cette technique s’adapte à la construction nouvelle, mais aussi en rénovation grâce au fait de ne pas devoir percer des parois pour le passage de gainages d’air volumineux.

Les éjecto-convecteurs, sorte d’intermédiaire entre les deux précédents, est une technique des années 70 qui n’est plus guère rencontrée aujourd’hui.

Techniques

Pour connaître en détail les caractéristiques technologiques et le fonctionnement des ventilo-convecteurs, cliquez ici !

Techniques

Pour connaître en détail les caractéristiques technologiques et le fonctionnement des éjecto-convecteurs, cliquez ici !

 Techniques

Pour connaître en détail les caractéristiques technologiques et le fonctionnement des poutres-froides, cliquez ici !

Avantages des émetteurs convectifs sur boucle d’eau

Ventilo-convecteurs et poutres froides partagent certains avantages, mais se distinguent pas d’autres.

Dans les deux cas, on bénéficie de :

  • La séparation entre la fonction ventilation des locaux (air neuf hygiénique) et l’apport thermique (apport de froid) est un gage de bonne régulation.
  • La possibilité de faire du chaud et du froid avec le même appareil, et avec une puissance relativement élevée.
  • Le système ne demande que le percement de trous pour le passage de tuyauteries d’eau. En rénovation de bâtiments, on évite ainsi l’encombrement des gainages à air de grandes dimensions… De plus, il est possible de récupérer l’ancienne installation de chauffage.
  • Une efficacité du transport thermique par eau :. Le transport du froid vers les locaux par de l’eau glacée (pompe) est environ dix fois moins énergétique que le transport par de l’air froid (ventilateur).
  • Une facilité de régulation, local par local, et donc un bon confort pour les utilisateurs : une régulation souple puisque réalisée tant via le débit d’eau que le débit d’air. un arrêt possible de l’équipement, localement, un mode de régulation très accessible par les utilisateurs, une liaison possible des différents appareils par bus de communication, ce qui permet une régulation globale de qualité par GTC.
  • Ces systèmes ne font intervenir qu’un seul corps de métier. Le plafond froid combine lui deux compétences : la pose de faux plafonds et la pose de tuyauteries. L’ensemble est plus complexe à gérer, d’autant que l’oeil est très sensible à la planéité des plafonds.

Le ventilo-convecteur a en outre comme avantage :

  • Un prix de revient raisonnable, surtout pour le système 2 tubes-2 fils, suite aux faibles surfaces des échangeurs à débit d’air forcé, et au faible coût de pose, (à noter que le prix de l’appareil dépend peu de la taille de l’échangeur et qu’il est donc possible de le surdimensionner au départ pour tenir compte d’un éventuel accroissement des charges futures).
  • Une facilité de placement : placement aisé en allège lorsque les hauteurs sous plafond ne permettent pas l’intégration d’un faux plafond, la possibilité de placer le ventilo en hauteur et de libérer la place au sol.
  • Une intégration possible d’une prise d’air neuf à l’arrière de l’équipement.
  • Une fiabilité de l’appareil (qui constitue un grand classique de la climatisation) et donc une longue durée de vie; ce n’est pas la Rolls de la clim, … mais une bonne Peugeot, quoi !
  • Dans le cas des systèmes 4 tubes :
    • La souplesse d’utilisation est totale puisque chaque ventilo est autonome : un local peut être refroidi lorsque son voisin est chauffé…
    • La possibilité de récupérer la chaleur extraite dans un local pour la fournir au local en demande.
    • Plus de circuits de zones, de vannes de commutation, … la régulation est plus simple et le service de maintenance ne s’en plaindra pas !

Par contre, la poutre froide a l’avantage de :

  • Le bruit est limité, pour autant que l’air neuf ne soit pas pulsé à trop haute vitesse (attention aux systèmes actifs).
  • La préparation d’eau glacée à une température de 15°C environ permet la sélection d’une machine frigorifique avec un excellent coefficient d’efficacité frigorifique (ou « COP frigorifique »). Cette propriété n’est tout à fait effective que si une machine frigorifique est spécifiquement prévue pour l’alimentation en eau froide des plafonds. Elle est en partie perdue si la même machine frigorifique est utilisée pour préparer l’air neuf déshumidifié …
  • Cette température élevée permet d’imaginer, durant une bonne partie de l’année, un refroidissement direct de l’eau glacée dans un aéro-refroidisseur ou dans une tour de refroidissement en toiture, en by-passant ainsi la machine frigorifique. Cette technique est généralement appelée « free-chilling ». La consommation liée au froid se résume à l’alimentation des pompes de circulation ! La présence d’une source d’eau froide naturelle peut également être mise à profit (rivière, lac, …).
  • L’encombrement au sol est nul !

Désavantages des émetteurs convectifs sur boucle d’eau

En termes d’inconvénients, dans les deux cas :

  • L’hygrométrie n’est pas contrôlée dans les locaux, ce qui peut poser problème d’un air trop sec en hiver.
  • La difficulté d’assurer un confort thermique correct est réelle, notamment sans courants d’air dans la zone de travail,… Une poutre statique génère une « coulée » d’air froid très désagréable sur les personnes situées sous les poutres. Elle ne peut a priori se placer que dans les locaux de grande hauteur. Par contre, la poutre dynamique semble plus confortable, car elle induit un mélange avec l’air ambiant plus élevé et donc une température de l’air plus homogène. Cependant, à l’intersection entre les flux d’air créés par deux poutres voisines parallèles, les deux flux d’air risquent de tomber sur la tête d’un utilisateur ! Le ventilo-convecteur quant à lui peut générer des courants d’air froids.
  • Curieusement, la facilité de fabrication et de pose peut devenir un inconvénient, surtout en marché public où le prix constitue le critère de sélection : la qualité des équipements fournis et la qualité de l’installation sont très variables !

 Le ventilo-convecteur a en outre comme désavantage de :

  • Lorsqu’un appareil de mauvaise qualité est installé (sous-dimensionnement des échangeurs, vitesse élevée du ventilateur, …), le bruit sera l’élément le plus négatif de cet équipement. Le niveau sonore peut être compris entre 35 et 65 dB, selon la qualité constructive, la vitesse du ventilateur et l’âge de l’équipement.
  • Le ventilo dont une prise d’air est réalisée en façade est une solution peu adaptée aux critères de confort actuel ! Ses performances thermique et acoustique sont faibles. Sans oublier le risque de gel…
  • Dans le cas des systèmes 2 tubes : Les besoins doivent être similaires dans les différents locaux d’une même zone; autrement dit, le nombre de zones doit être suffisamment élevé, si on ne souhaite pas de conflits en mi-saison pour le passage du chaud au froid !
  • Dans le cas des systèmes 4 tubes :
    • Le coût d’installation est plus élevé puisque les ventilos contiennent deux échangeurs, les circuits sont dédoublés, de même que le nombre de vannes, de circulateurs,…
    • L’encombrement est également plus important (ventilos plus volumineux et gaines techniques plus larges).
    • Durant toute une partie de l’année, il faut maintenir en fonctionnement les deux réseaux; les pertes énergétiques de ces réseaux ne sont pas négligeables…
  • Dans le cas des systèmes 2 tubes – 2 fils : Le coût d’exploitation est certainement le point noir de ce système…

La poutre froide a, elle, comme désavantages :

  • Le coût d’installation est élevé, du moins en rapport à la puissance frigorique fournie.
  • La puissance frigorifique reste limitée par rapport aux systèmes traditionnels. Ou du moins, placer des poutres dans les plafonds risque de générer des problèmes d’inconfort si bien que la densité maximale admissible reste faible.
  • Dans le cas des poutres dynamiques, il est courant de pulser un débit d’air supérieur à celui strictement nécessaire pour assurer l’air neuf hygiénique dans les locaux. Autrement dit, pour assurer la puissance de refroidissement demandée par le local, l’air primaire pulsé passe bien souvent de 1 renouvellement horaire à deux renouvellements. Le débit d’air total brassé est alors de l’ordre de 5 (3 renouvellements d’air secondaire sont induits). Or c’est de l’air neuf qui est ainsi doublé, ce qui va générer une consommation supplémentaire très élevée durant la vie du bâtiment.
  • La poutre dynamique est très semblable à l‘éjecto-convecteur dans son mode de fonctionnement. On peut donc lui faire les mêmes nombreux reproches. Il est d’ailleurs très curieux que l’éjecto-convecteur, écarté du marché, car ne convenant plus aux besoins de souplesse des locaux, revienne aujourd’hui, sous une forme plus complexe encore en matière de maintenance : dans le plafond ! Le prix d’investissement justifie-t-il de refaire les mêmes erreurs ?
  • L’encrassement des poutres demande un entretien régulier, pas toujours aisé lorsqu’on ne souhaite pas interrompre l’activité des personnes.


Choix du régime d’eau

Dans le cas des poutres froides, le circuit est alimenté au régime aller-retour de 15°C – 17°C (on parle d’eau froide), pour limiter les risques de condensation dans l’émetteur. Dans le cas des ventilo-convecteurs par contre, le régime peut être plus bas (6°C-12°C – on parle d’eau glacée).

Choisir une température d’eau glacée la plus haute possible

Plus la température de l’eau glacée est basse, plus l’inconfort des occupants augmente (température d’air très basse). De plus, la consommation des ventilos-convecteurs augmente :
Car la chaleur latente de l’air captée augmente.
En effet, si la température de la boucle d’eau glacée est inférieure à la température de rosée de l’ambiance et l’humidité de l’air se condenseront inutilement.

Il est donc utile de dimensionner les ventilos sur base d’un régime de température élevé. Par exemple : départ 12°C – retour 16°C, départ 12°C – retour 18°C, …

Dimensionner les installations avec un régime 6°C – 12°C va permettre de sélectionner des échangeurs plus petits (delta T° plus élevé par rapport à l’ambiance), donc moins chers à l’investissement, mais nettement plus coûteux à l’usage.

En fait, lorsque le bureau d’études dimensionne au régime 6°C – 12°C, il voit dans le catalogue du fabricant la part de chaleur latente captée par rapport au sensible.

Exemple : la sélection d’un ventilo-convecteur.

Le catalogue d’un fabricant prévoit :

Régime 6/12°C, ambiance à 27°C et 46 % HR :

Puissance frigorifique totale : 3,40 kW
Puissance frigorifique sensible : 2,35 kW

On constate que 1,05 kW est consacré à la déshumidification de l’air ambiant, soit 31% de la puissance totale. À ce moment, la consommation de l’appareil est majorée de 31 % !

Voyons pour le régime 12/18 (pour le même appareil) :

Régime 12/18°C, ambiance à 27°C et 46 % HR :

Puissance frigorifique totale : 1,58 kW
Puissance frigorifique sensible : 1,58 kW

La déshumidification n’a plus lieu. Mais l’échangeur ne produit plus que 1,58 kW utile… Il faudra augmenter la surface d’échange de 49 % pour atteindre les 2,35 kW du régime 6/12.

On rétorquera que la déshumidification est parfois nécessaire en plein été. Effectivement, mais c’est le rôle du groupe de préparation d’air hygiénique de déshumidifier l’air, avec un contrôle basé sur la sonde de reprise d’air. Le ventilo agit lui sans aucun contrôle. On le voit bien puisque le catalogue part d’une humidité ambiante de 46 %, qui n’est pas à déshumidifier. Le ventilo le fera quand même !

De plus, suite à la condensation sur les ailettes, les poussières adhèrent aux parois et l’échangeur s’encrasse plus rapidement.

> Car le rendement (ou COP) de l’installation frigorifique diminue.

Au régime 7°C – 12°C, la température moyenne de l’évaporateur est plus basse qu’au régime 12° – 17°C. Le compresseur a plus de mal à travailler et le COP de l’installation en est légèrement dégradé. En moyenne, on considère que le COP diminue de 3 % par degré d’abaissement de la température d’évaporation.

Si la machine frigorifique alimente à la fois le réseau d’eau glacée et la batterie froide du caisson de traitement d’air (par exemple, au régime 7°C – 12°C), l’impact est plus faible mais l’intérêt de travailler à haut régime de température reste et l’on essayera d’organiser la mise en série hydraulique des batteries.

> Car il est alors possible de récupérer la chaleur captée par l’eau glacée pour préchauffer l’air neuf hygiénique.

Évaluer

Chiffrer l’investissement et le coût d’exploitation pour le régime à haute température.

Problème des locaux à forte chaleur sensible dégagée

Dans les locaux informatiques, par exemple, on n’arrive pas toujours à travailler avec des ventilos alimentés à haute température (12°C – 17°C). La puissance frigorifique délivrée n’est pas toujours suffisante.

Dans ce cas, il est plus intéressant de créer un réseau spécifique pour l’eau du local informatique. On peut y travailler à température plus basse puisque l’air ne contient pas d’humidité (donc pas de consommation par le latent).

De plus, un tel réseau indépendant est souvent adéquat parce que le travail y est réalisé 24h/24 et alimenté sur secours, ce qui implique une gestion autonome.

Généralement, les besoins d’apport d’air neuf sont faibles, la ventilation se fait par transfert d’air venant des couloirs et extraction dans le local.

Possibilité de free-chilling

Les ventilos-convecteurs alimentés par de l’eau froide à « haute température » (régime 12°C – 17°C) pourront valoriser tout particulièrement la technique de free-chilling qui consiste à by-passer le groupe frigorifique et à refroidir directement l’eau de 17 à 12°C par l’air extérieur.

Concevoir

Pour en savoir plus sur la mise en place d’un free-chilling, cliquez ici !

Puisque cette possibilité existe dès que la température extérieure est inférieure à 10°C, cette technique sera particulièrement intéressante si des besoins de refroidissement des locaux existent en période d’hiver.

C’est l’analyse des besoins du bâtiment en fonction de la température extérieure qui devra le dire.


Combinaison avec la ventilation hygiénique

Trois combinaisons entre les émetteurs convectifs et le réseau de ventilation sont possibles :

Contrôle de température et ventilation totalement séparés

Illustration sur le contrôle de température et ventilation totalement séparés

Dans ce cas, air neuf et contrôle de la température sont complètement séparés. L’air est amené par un réseau de ventilation mécanique optimisant les récupérations d’énergie sur l’air extrait et la valorisation du free cooling.

Éventuellement, l’air neuf est traité en centrale pour fournir un apport de chaleur ou de froid « de base » dans les locaux. L’unité terminale sert alors de correction locale. Attention ! Dans ce type de configuration, il existe un risque de destruction d’énergie entre le traitement centralisé et l’unité terminale.

On rencontre cette configuration dans le cas des poutres froides statiques et de la plupart des installations de ventilo-convecteurs.

L’émetteur combiné à la gaine de pulsion d’air

C’est la configuration typique des poutres froides dynamiques, qui utilisent la pulsion d’air hygiénique pour générer un effet d’induction sur l’échangeur de chaleur.

De même, lorsque le ventilo est placé en faux plafond, on a souvent tendance à insérer l’apport d’air neuf dans le plénum constitué par ce faux plafond. Le ventilo aspire un mélange d’air du local et d’air neuf.

Illustration sur l’émetteur combiné à la gaine de pulsion d'air

Un tel système demande la présence d’un organe autorégulant à l’entrée de chaque ventilo pour ne pas perturber le débit lorsque des ventilos voisins se mettent à l’arrêt.

On peut également se demander ce que devient l’apport d’air neuf dans le local lorsqu’il n’y a pas de demande de chaud ou de froid, c’est-à-dire lorsque le ventilateur du ventilo est mis à l’arrêt. En effet, le ventilateur principal n’a, en principe, pas été dimensionné pour vaincre la résistance des batteries du ventilo.

Pour garantir un apport d’air neuf permanent, le ventilateur du ventilo doit fonctionner en permanence, avec une puissance d’environ 60 W.

Une telle configuration sous-entend un préchauffage central minimum de l’air en hiver, puisqu’il est impensable, notamment pour des raisons de condensation, de faire circuler de l’air à – 10°C au travers du bâtiment.

Dans le cas d’un ventilo-convecteur placé en allège, la tuyauterie d’air neuf peut être intégrée dans le faux plafond du local inférieur, ce qui diminue le coût d’investissement.

On retrouve une telle intégration dans les MTA, Modules de Traitement d’Air.

Le ventilo-convecteur équipé d’une prise d’air neuf directe à l’arrière de l’équipement

C’est au départ une solution peu onéreuse car elle ne demande aucun réseau d’air pour la pulsion. En fait, on est face à une ventilation mécanique dont seule l’extraction est gainée.

Ce système n’entraîne aucun conflit entre apport thermique par le ventilo et apport thermique par l’air neuf (pas de destruction d’énergie), mais il interdit aussi toute gestion URE de la ventilation : récupération de chaleur sur l’air extrait et recyclage sont pratiquement impossible.

illustration sur le ventilo-convecteur équipé d'une prise d'air neuf

Quelques difficultés spécifiques à ce système :

  • Il demande une protection vis-à-vis du risque de gel,
  • Il réalise un pont thermique et acoustique avec l’extérieur,
  • Le débit d’air neuf sera mal contrôlé et fonction notamment de la pression du vent sur la façade, ce qui réduit son utilisation aux bâtiments peu élevés,
  • La filtration de l’air neuf est très grossière et insuffisante dans les milieux urbains pollués (filtre gravimétrique),
  • Si l’on veut respecter les critères de confort en plein hiver, elle impose d’intégrer une humidification de l’air dans l’appareil, ce qui est possible mais coûteux (systèmes ultrasoniques) et implique un réseau d’eau dans les locaux, et donc peut être, à terme, des problèmes d’hygiène.


Choix de la performance énergétique des échangeurs

A puissance thermique égale, en vue d’abaisser les coûts et de remporter le marché, le fabricant proposera un matériel plus compact. La qualité de la batterie en souffrira : ailettes plus fines, entraxes des ailettes diminuées, …

Plusieurs conséquences en résultent :

  • La perte de charge (et donc la consommation permanente du ventilateur) est augmentée.
  • Le by-pass factor est diminué, c’est-à-dire que beaucoup d’air rentrera en contact direct avec les ailettes, ce qui renforcera la condensation de l’humidité contenue dans l’air. Là encore, la consommation du ventilo sera inutilement augmentée.
  • Si la condensation augmente, les poussières adhèrent aux parois et l’échangeur s’encrasse plus rapidement.
  • Enfin, les fines ailettes seront très sensibles aux chocs et la pose et la maintenance en seront moins aisées.

Si la surface de l’échange est diminuée, le fabricant cherchera à augmenter la vitesse de passage de l’air et donc, dans le cas du ventilo-convecteur la consommation du ventilateur.

Un critère de performance peut donc être de comparer la puissance électrique du ventilo-convecteur à la puissance frigorifique sensible annoncée par le fabricant. Ce rapport doit être le plus faible possible. Pour que cette comparaison soit fiable, il faut cependant que les données constructeurs aient été mesurées suivant les mêmes conditions de fonctionnement. Ce sera le cas, si les appareils comparés sont certifiés « Eurovent ».

Il nous semble également qu’en exigeant une haute performance acoustique, l’on puisse obtenir un maximum de garantie d’une qualité globale du ventilo.

Remarque : si le projet est très important (1 000 ventilos, par exemple), il est alors utile de vérifier les performances annoncées par le constructeur auprès du laboratoire de Thermodynamique de l’ULg, par exemple.


Choix en fonction des critères d’exploitation

Il est utile de penser dès le départ :

  • À l’accessibilité des différents organes pour la maintenance (accès aux filtres, accès aux organes de réglage, facilité de démontage des panneaux d’allège, facilité de nettoyage des batteries et des bacs de condensats,…).
  • Au souhait de pouvoir intervenir hors de la présence des occupants (p.ex., localisation en couloir).
  • Pour les ventilo-convecteurs :
    • Aux qualités des parties mobiles : suspension du moteur, résistance à l’échauffement, …
    • A la tenue aux vibrations : usure du supportage, tenue des raccordements hydrauliques, étanchéité des flexibles, …
    • A la résistance des ailettes (déformations, chocs, …).

Choix de la régulation des productions de chaleur et de froid

Deux situations vont se présenter : si le bâtiment est homogène dans ses besoins, un seul réseau d’eau sera prévu et on choisira de l’alimenter en eau chaude en hiver et en eau glacée en été. C’est évidemment une solution très bon marché, mais c’est également la moins souple. Par exemple, la façade Sud est alimentée de la même manière que la façade Nord…

Si on souhaite alimenter différemment chacune des façades, ou même alimenter séparément la salle de réunion, on peut décomposer le bâtiment en différentes zones, et faire fonctionner simultanément le réseau d’eau chaude et le réseau d’eau glacée. Chaque zone utilisera le réseau qui lui convient en fonction des besoins du local.

C’est donc le bureau d’études qui va définir en accord avec l’architecte du degré de souplesse désiré pour les utilisateurs. Le coût de l’installation est directement lié à cette souplesse de fonctionnement.

Une alternative est de passer à une solution 4 tubes.

A signaler les critères énergétiques de qualité

  • l’adaptation possible dans certains cas de la température de départ de la boucle d’eau glacée,
  • la régulation de la température de départ de la boucle d’eau chaude,
  • un basculement froid/chaud (« change over ») avec un battement suffisamment large pour éviter un phénomène de pompage eau chaude/eau glacée et des pertes d’énergie par mélange eau chaude – eau froide…

Il est également possible d’installer une machine frigorifique réversible : lors du changement été/hiver, le sens de circulation du fluide frigorigène s’inverse, et une pompe à chaleur air-eau est créée. Un appoint de chaleur sera nécessaire pour vaincre la pointe hivernale. La rentabilité d’une telle opération doit être étudiée. L’investissement est limité puisque c’est la même machine frigorifique qui devient pompe à chaleur. Toute la difficulté réside dans l’estimation de la performance saisonnière de la PAC et si cette valeur permet de compenser le coût plus important de l’énergie électrique. Si une source froide est possible (lac, rivière, forage, …), cette opération est fort intéressante.

La régulation optimale de la boucle d’eau glacée

La production d’eau glacée est réalisée par la machine frigorifique. On prévoit généralement une distribution à un régime constant du type aller 6° – retour 11°, mais il y a là un potentiel d’énergie à récupérer : dans certains cas l’on peut faire varier ce régime de température et travailler à température plus élevée. La consommation du compresseur en sera diminuée d’autant !

Améliorer

Pour en savoir plus sur l’amélioration de la machine frigorifique, cliquez ici !

À cet équipement frigorifique peut être adjoint un bac à glace, permettant de stocker du froid la nuit au moment où l’électricité est moins chère, pour l’utiliser le jour par la fonte de la glace (ce n’est pas une économie d’énergie mais plutôt une économie financière résultant de la gestion de la pointe quart-horaire).

Améliorer

Pour en savoir plus sura mise en place d’un stockage d’énergie frigorifique, cliquez ici !

La régulation optimale de la boucle d’eau chaude

La production de chaleur se fait, par exemple, par la chaudière du bâtiment. La température de l’eau chaude distribuée est alors modulée en fonction de la température extérieure, via la courbe de chauffe du régulateur.

Lorsque l’occupation du bâtiment permet d’imaginer que des besoins de chaleur et de froid pourront coexister, la production de chaleur peut alors être assurée par une machine frigorifique dont on récupère la chaleur au condenseur.  A ce moment, la chaleur captée dans les locaux à refoidir est récupérée dans les locaux à réchauffer ! L’installation est alors particulièrement économe puisque seule la consommation des compresseurs est à fournir. Une chaudière d’appoint reste nécessaire pour vaincre la pointe hivernale. C’est une possibilité à étudier lorsque les bâtiments sont constitués de larges plateaux : on peut penser qu’il faudra refroidir le cœur pour chauffer les bureaux périphériques.

Locaux isolés, la salle de spectacles ou de conférences

Locaux isolés, la salle de spectacles ou de conférences


Analyse de la demande

Quelles sont les spécificités d’une salle de spectacles ou de conférences ?

Un grand volume unique
>
l’adéquation d’un traitement centralisé,
Une présence nombreuse d’occupants
>
un besoin important d’air hygiénique,
Une présence variable d’occupants
>
un besoin variable d’air hygiénique et un besoin de commander ce débit en fonction de la présence réelle des occupants,
Une occupation intermittente
>
un besoin d’assurer une température minimale en dehors des périodes d’occupation,
Peu de parois vitrées
>
des besoins de refroidissement liés essentiellement à la présence humaine et non aux apports solaires
Souvent, présence d’absorbants acoustiques sur les parois (et donc d’une couche isolante)
>
un mauvais accès à l’inertie des parois et donc une tendance à la montée en température rapide de l’air si les apports sont élevés.

Choix d’un système spécifique aux salles de conférence

De l’analyse de la demande, il apparaît un facteur clef : la quantité d’air neuf hygiénique est très élevée. Un système « tout air » paraît adéquat puisque le débit d’air neuf sera proche du débit requis pour le traitement de la charge thermique.

De façon simplifiée (seuls les besoins sensibles sont pris en compte) :

  • Une personne demande 30 m³/h d’air neuf.
  • Si cet air est pulsé à une température de 16°C dans une ambiance à 24°C, il apporte un refroidissement de :

30 [m³/h] x 0,34 [Wh/m³.K] x (24 – 16) [K] = 82 Watts

De plus, un système de climatisation « tout air » pourra répondre avec rapidité aux variations brusques des besoins.

Parmi les installations « tout air », il faut choisir entre une installation à débit d’air constant et une installation à débit d’air variable.

Il est clair qu’aujourd’hui le débit d’air neuf traité doit être adapté à l’occupation réelle. Si la salle est prévue pour 300  personnes, on ne peut pulser en permanence 9 000 m³/h (= 300 pers x 30 m³/h. pers), même si 20 personnes occupent en réalité la salle. Le coût du traitement d’air de 9 000 m³/h est élevé (sur base d’un fuel à 0,4 € du litre, on dépasse les 7,5 € de l’heure par 5°C extérieur). Et surtout, cela représente un gaspillage écologique non justifiable.

Mais le choix est plutôt :

  • solution 1 : pulser un débit d’air constant dans la salle et, dans ce débit, intégrer une quantité variable d’air neuf.
  • solution 2 : pulser un débit d’air variable lié à la présence des personnes et y intégrer un débit minimal d’air neuf.

Autrement dit, dans le schéma ci-dessous,

  • Soit le ventilateur est à débit constant, une sonde d’ambiance module le réglage des batteries de chaud et de froid, et une sonde de qualité d’air dans la reprise module l’ouverture du registre d’air neuf.
  • Soit le ventilateur est à débit variable en fonction de la présence effective des occupants, une sonde d’ambiance module le réglage des batteries de chaud et de froid, et une sonde de qualité d’air dans la reprise module l’ouverture du registre d’air neuf.

Un traitement d’air à débit constant

La première solution paraît plus claire à mettre en œuvre parce que chaque équipement est géré de façon indépendante par un capteur différent.

De plus, le débit d’air pulsé étant constant, une bonne distribution de l’air est maintenue en permanence. Certains modes de distribution (jets d’air à induction situés près des occupants) sont très sensibles à cet aspect : si le débit diminue, une « coulée » d’air froid inconfortable risque de se produire près des occupants.

Une telle installation permet une très bonne exploitation du free cooling, c’est-à-dire, du refroidissement par de l’air extérieur « gratuit » en hiver et en mi-saison. En été, rien n’empêche de refroidir également le bâtiment pendant la nuit (night-purge) grâce à l’air extérieur frais.

Le poste de traitement de l’air neuf, qui est sans conteste le poste consommateur principal (les déperditions par les parois sont proportionnellement très faibles dans un bâtiment isolé), est parfaitement maîtrisé grâce à l’injection d’air neuf liée à la dégradation de la qualité d’air.

En pratique, le régulateur choisira la valeur du débit d’air neuf maximum entre la demande de la sonde de qualité d’air et la demande de free-cooling pour refroidir l’ambiance.

Si le programme d’occupation de la salle est très élevé, un récupérateur de chaleur sur l’air extrait s’avère utile puisque peu d’air sera recyclé.

Concevoir

Pour trouver plus d’infos sur l’organisation d’un conditionnement d’air à débit constant.

Mais il reste un défaut : si seulement 20 personnes sont présentes dans la salle de 300 personnes, le ventilateur brassera les 9 000 m³ chaque heure (alors que 600 suffiraient), avec un bruit qui sera maximum lui aussi ! …Et lorsque tous les occupants seront partis, qui arrêtera l’installation ? et lorsque l’installation sera arrêtée, comment faire pour que la salle ne soit pas trop froide juste à l’arrivée des occupants ?

Suivant le type de bâtiment et son régime d’occupation prévisible, différentes solutions sont possibles en combinant :

  • Un ou plusieurs détecteurs de présence, pour arrêter l’installation après une période de temporisation.
  • Des ventilateurs à deux ou trois vitesses, pour réduire la puissance motrice en situation d’occupation réduite.
  • Des équipements statiques (= des radiateurs) pour gérer la période en dehors de l’occupation (maintien hors gel, relance à 16° au matin, …), ou pour gérer des ambiances différentes si plusieurs locaux attenants sont concernés.

Un traitement d’air à débit variable

L’avantage paraît clair : ne pulser que l’air nécessaire et ainsi limiter le bruit et la consommation du ventilateur.
En pratique :

  • se baser sur un chauffage de base statique (radiateur, convecteur),
  • apporter l’air neuf extérieur pour les occupants, si présents, ou pour rafraîchir l’ambiance (free-cooling),
  • apporter l’air froid pour refroidir le local en été.

La difficulté, c’est que l’on superpose une régulation de température et une régulation de débit d’air neuf sur le même équipement : le ventilateur. Cela ne peut fonctionner que si l’occupant est quasi la source unique d’apport de chaleur dans la salle (pas de projecteurs,par exemple). De plus, il faut trouver un capteur qui puisse commander la vitesse de rotation du ventilateur en fonction du nombre de personnes présentes.

C’est le cas d’une salle de cinéma d’aujourd’hui :

  • La commande des billets renseigne les spectateurs sur le nombre de places restantes.
  • Mais elle informe également le variateur de vitesse du ventilateur du nombre de personnes dans la salle et donc du débit d’air neuf à pulser (c’est le cas à ImagiMons).
  • Une sonde d’ambiance (dans la reprise, par exemple) module la température de pulsion dans la salle.

Avec un débit d’air minimal pour assurer un balayage de base, le confort peut tout à fait être garanti.

Un avantage supplémentaire réside dans le fait qu’il n’est pas nécessaire de recycler l’air, puisque seul l’air neuf est pulsé par le ventilateur. Par contre, un récupérateur de chaleur sur l’air extrait permettra de récupérer de l’ordre de 50 % de la puissance thermique.

Mais des risques de mauvaise distribution de l’air dans la salle apparaissent lorsque le débit est faible…

Concevoir 

Pour trouver plus d’infos sur l’organisation d’un conditionnement d’air à débit variable (attention : appliqué à un immeuble de bureaux).
Remarque.

En dehors du cas de la salle de cinéma, force est de constater que nous manquons d’exemples d’application de ce système.

Mais nos lecteurs connaissent peut-être d’autres solutions et nous serions très heureux d’en être informés et d’en faire profiter chacun dans une prochaine version d’energie+.

Reste, pour les deux solutions, à trouver la meilleure distribution de l’air. Il semble qu’une pulsion de bas en haut (soufflage par les gradins et reprise en partie supérieure) permet de mieux gérer la qualité de l’air pour les occupants. La création d’un plénum de distribution dans l’espace situé sous les gradins est souvent une solution facile à gérer.


Choix de la régulation du débit d’air neuf

Quel que soit le système de climatisation choisi, une modulation de l’apport d’air neuf devra y être intégrée.

On peut évidemment y adapter une gestion par horloge.

Cependant, lorsque l’horaire d’occupation est aléatoire et que le taux d’occupation est variable (une même salle peut être occupée par 20 ou 200 personnes), on peut envisager une gestion tenant compte du nombre d’occupants.

Dans ce cas, la sonde CO2 est la plus fiable. Elle reflète mieux la présence effective de personnes dans un local puisqu’elle est directement proportionnelle à leur respiration. Mais elle est chère (minimum 750 €). Sa rentabilité n’est donc possible que pour la gestion d’un débit nécessaire important et relativement aléatoire.

Sonde COV et sonde CO2.

Dans certains cas particuliers, on pourrait éventuellement envisager l’utilisation d’une sonde COV, sensible aux odeurs les plus diverses, et donc à la fumée de cigarette. La sonde COV (Composés Organiques Volatiles), encore appelée sonde de qualité d’air, n’est pas trop chère (+/- 225 €). Elle semble cependant difficile à paramétrer au départ (quelle valeur de consigne faut-il lui donner ?) et capricieuse dans le temps. Elle nécessite donc un étalonnage régulier et une bonne information de l’exploitant sur son principe de fonctionnement. Elle est généralement choisie pour le réglage du taux d’air neuf dans les locaux avec présence de fumeurs (la sonde CO2 détecte très mal l’odeur de cigarettes…). La sonde devra être entretenue (nettoyage et étalonnage périodique). Si cette maintenance est peu probable, ou si l’ambiance se révèle être trop chargée en poussières, on préférera une régulation à deux vitesses basée sur le dépassement d’un seuil critique, plutôt qu’une régulation analogique réglée sur le signal 0-10 V de la sonde.

Sonde COV ou sonde CO?

La comparaison des utilisations entre sonde COV et sonde CO2 apparaît clairement par l’expérience menée par le COSTIC en France :

Correspondance entre la mesure d’une sonde COV et la mesure d’une sonde CO2 dans un bureau de 32 m³, sans ventilation :

  • Phase 1 : une seule personne est présente dans le bureau durant 1 heure. Deux cigarettes sont fumées successivement, après 15 et 45 minutes.
  • Phase 2 : après ventilation de la pièce, six personnes sont introduites dans le bureau durant 10 minutes et il leur est interdit de fumer.

On observe très nettement la sensibilité de la sonde COV à la fumée de cigarette lors de la première phase. Par contre, la forte occupation de la phase 2 est mieux mise en évidence par la sonde CO2.

En conclusion, les sondes de qualité d’air, sensibles à la fumée de cigarette et aux composés organiques odorants, sont adaptées aux salles de réunion pour fumeurs, aux restaurants, … . Les sondes CO2, uniquement sensibles à la présence du dioxyde de carbone sont plus adaptées aux locaux dans lesquels la cause de la pollution est celle provoquée par l’occupation : salles de conférence, amphithéâtres, …

Études de cas 

La régulation de la ventilation d’une salle de conférence par sonde CO2.

Conditionnement d’air d’un immeuble de bureaux

Conditionnement d'air d'un immeuble de bureaux


Solution 1 : réseau « tout air neuf » à un conduit, à débit d’air constant

Le principe de base d’une installation « tout air » est double : fournir aux occupants de l’air neuf hygiénique et assurer le traitement thermique des locaux. L’air est donc préparé en centrale et distribué dans les différents locaux.

Schéma principe réseau "tout air neuf" à un conduit, à débit d'air constant - 01.

Un tel système est bien adapté au traitement d’une grande salle unique (salle de réunion, salle de conférence, …) mais s’adapte mal à un ensemble de bureaux dont les charges thermiques et les occupations peuvent être très différentes, notamment parce qu’ils seraient sur des façades d’orientations différentes.

A priori, ce n’est donc pas une bonne solution pour des immeubles de bureaux présentant beaucoup de locaux distincts.

De plus, l’encombrement apporté par les gaines est fort important.

1ère amélioration

Pour réduire l’encombrement, on peut réaliser des variantes à « haute pression » : on réduit les sections, on augmente la vitesse, la pression délivrée par le ventilateur augmente, … le bruit aussi ! L’insertion d’un caisson absorbeur acoustique s’impose.

Schéma principe réseau "tout air neuf" à un conduit, à débit d'air constant - 02.

Mais la consommation relative à l’énergie motrice (ventilateur) déjà élevée, en est encore augmentée puisque le débit d’air est véhiculé avec des pertes de charge accrues.

De plus, un problème majeur subsiste : dans les solutions ci-dessus, c’est toujours de l’air neuf qui est traité et pulsé dans les locaux. Une consommation énergétique importante en résulte !

2ème amélioration

Le recyclage d’air vicié est requis afin d’éviter le gaspillage d’énergie qu’entraîneraient le chauffage et le refroidissement de la totalité de l’air neuf mis en œuvre.

Schéma principe réseau "tout air neuf" à un conduit, à débit d'air constant - 03.

Cette solution est plus économe mais elle entraîne l’inconvénient de mélanger et redistribuer de l’air extrait de locaux différents… Pour des raisons hygiéniques, elle sera exclue en milieu hospitalier par exemple. Dans les immeubles de bureaux, certains disent que le recyclage est à l’origine du « sick building syndrom », c’est-à-dire, en bref, de la propagation du rhume de la secrétaire à l’ensemble du personnel !

Ce qui est certain, c’est que si une telle installation est choisie, elle devra faire l’objet d’un entretien régulier et d’une attention toute particulière au niveau du système d’humidification et de filtration. Si la filtration est de qualité, on pourra bénéficier au contraire d’un air plus pur que celui d’un bâtiment traditionnel, sans conditionnement d’air.


Solution 2 : réseau « tout air  » à un conduit, avec traitement terminal

Pour mieux réguler l’installation en fonction des besoins, une solution consiste à partir d’une installation monogaine (air globalement prétraité en centrale) sur laquelle des batteries finales ajustent la température de pulsion requise par zone ou par local individuellement. Mais si les besoins des bureaux ne sont pas globalement homogènes, on risque de « détruire de l’énergie » (par exemple, préparer de l’air froid en centrale, air qui sera ensuite réchauffé dans le caisson terminal…).

Shéma principe réseau "tout air " à un conduit, avec traitement terminal - 01.

Le recyclage entraîne un mélange de l’air provenant de différentes ambiances …

Pour l’éviter une autre solution est envisageable : l’air de chaque local peut être partiellement recyclé à l’entrée du caisson terminal.

Shéma principe réseau "tout air " à un conduit, avec traitement terminal - 02.

Mais ce n’est pas très performant.

Par exemple, imaginons la situation en été : de l’air est préparé à 16°C en centrale, il est mélangé à l’air du local à 24°. Une température moyenne résultante de 22°C en résulte, par exemple. La batterie de froid sera moins bien exploitée que si elle avait été mise directement en contact avec l’air à 24°C. Autrement dit, la batterie de froid devra être surdimensionnée légèrement. Autant séparer les fonctions : l’air du local est traité dans le caisson et de l’air neuf est apporté séparément au local. C’est finalement ce que réalise l’installation par ventilo-convecteurs de la famille « air + eau ».

Pour plus de détails, on peut consulter les installations « tout air » à débit constant monogaine.


Solution 3 : réseau « tout air  » à deux conduits

Pour assurer le traitement individuel, on peut également préparer et distribuer l’air via deux réseaux parallèles : un réseau d’air chaud et un réseau d’air froid (système à débit constant double gaine, ou « Dual Duct »). Chaque local (ou zone de locaux) sera alimenté via une boîte de mélange sous dépendance d’une sonde de température ambiante. Ce système est contraignant à plusieurs niveaux : financièrement (investissement), énergétiquement (risque de « détruire » de l’énergie à l’exploitation) et spatialement (encombrement dans les faux plafonds).

Schéma principe réseau "tout air " à deux conduits.

Ce type d’installation ne serait envisageable que si l’on peut regrouper les locaux en quelques zones homogènes, mais en pratique il ne s’installe plus aujourd’hui. On le rencontre encore dans des installations réalisées il y a une  vingtaine d’années.

Pour plus de détails, on peut consulter les installations « tout air », à débit constant, à double gaine.


Solution 4 : réseau « tout air  » à un conduit à débit variable

Reste des cas où l’installation « tout air » se justifie par la nécessité d’apporter beaucoup d’air aux locaux : un immeuble avec une large zone centrale, de larges plateaux intérieurs, de nombreuses salles de réunion, … Ce sont des zones à alimenter en air hygiénique et à refroidir toute l’année. C’est là que la climatisation par pulsion d’air froid se justifie le mieux, notamment parce que l’air froid sera distribué « gratuitement » durant une bonne part de l’année en utilisant l’air extérieur (free cooling).

Si l’on pressent que la présence des personnes sera fluctuante dans le temps, on pourra valoriser la technologie d’aujourd’hui qui adapte le débit d’air aux besoins : cette fois, la température de l’air est maintenue d’une manière uniforme toute l’année (par exemple 16°C) mais on fait varier le débit d’air introduit dans chaque local en fonction de ses besoins thermiques. Cet ajustement des débits est réalisé au moyen de boites terminales VAV (variable air volume) sous la dépendance des thermostats d’ambiance.

Schéma principe réseau "tout air " à un conduit à débit variable.

Les dimensions de la centrale de traitement d’air seront réduites par rapport à un système à débit d’air constant car on va profiter de la non-simultanéité des charges et des occupations des locaux qui se trouvent sur des façades différentes.

Mais des défauts résident :

  • dans la lourdeur technologique des équipements (clapet d’air, ventilateur à débit variable, …) et de leur régulation,
  • dans la mise au point de l’installation qui ne semble pas évidente
  • dans le coût d’investissement initial qui est élevé.
  • dans l’encombrement des conduits (comme tous les systèmes « tout air »),
  • dans le manque de souplesse pour répondre à des besoins variables à l’intérieur d’une même zone; la température de pulsion étant uniforme au sein d’une zone, si un local est à refroidir au sein d’une zone à chauffer… problème ! Or qui peut prévoir l’avenir de l’occupation des locaux ?

Cependant, si le système « tout air » est choisi pour la climatisation d’un immeuble de bureaux, le VAV est assurément la meilleure solution sur le plan énergétique, dans la mesure où le coût du transport est optimalisé (on ne transporte que le débit d’air nécessaire) et dans la mesure où la capacité de refroidissement de l’air extérieur est valorisée, tant en journée (free-cooling diurne en hiver et en mi-saison) que durant la nuit (free-cooling nocturne pour décharger le bâtiment durant la nuit en été). Les coûts d’exploitation seront donc réduits.

Le chiffre de 20 % d’économie thermique et électrique (ventilateur) est couramment cité, entre un VAV simple (sans réchauffage terminal) et un système unizone à débit constant.

Les locaux périphériques devront être équipés d’éléments chauffants pour assurer les besoins de chauffage durant les périodes froides de l’hiver : un réseau de radiateurs peut être prévu en façade ou des batteries de chauffe terminales peuvent compléter le réseau d’air.

Exemple d’une bonne application du VAV dans les bureaux

Si différentes salles de réunion sont prévues, l’architecte les disposera de telle façon qu’elles soient alimentées sur un même réseau de préparation d’air (par exemple une par étage, raccordée par une trémie verticale commune). L’ingénieur prévoira une climatisation à débit d’air variable, avec dans chaque local une bouche de pulsion commandée par détecteur de présence. Le ventilateur travaillera à vitesse variable en fonction de la demande réelle. Le groupe de préparation sera dimensionné avec un facteur de simultanéité (défini de commun accord avec le Maître d’Ouvrage) pour tenir compte du fait que toutes les salles ne seront pas occupées en même temps.

Pour plus de détails, on peut consulter :

Concevoir

Le choix du conditionnement d’air des « locaux intérieurs ».

Concevoir

Choisir une installation « tout air ».


Solution 5 : le ventilo-convecteur

Photo ventilo-convecteur.

Parmi la famille « air-eau », le ventilo-convecteur est sans aucun doute le système le plus fréquemment utilisé.

Des avantages incontestables

  • Une souplesse d’adaptation aux variations de la charge dans les locaux, puisqu’il permet une régulation local par local. Un arrêt de l’équipement est même possible localement, chose difficile à faire avec une installation par éjecto-convecteur ou plafonds froids, arrêt volontaire ou forcé (un contact d’ouverture de fenêtre peut imposer l’arrêt).
  • Une large gamme de puissance (par opposition aux systèmes par plafonds froids rayonnants qui sont limités à ce niveau).
  • Une bonne adaptation aux exigences actuelles en matière de découpage des zones périphériques des bâtiments à structure répétitive (un appareil par module de façade, par exemple). Mieux, rien n’empêche d’installer initialement un appareil pour deux modules et, moyennant les réservations nécessaires sur les collecteurs hydrauliques, de pouvoir ultérieurement greffer un échangeur supplémentaire si la puissance frigorifique augmente ou si une cloison est créée.
  • Un faible encombrement, permettant notamment aux appareils de prendre facilement la place des radiateurs en cas de rénovation du bâtiment.
  • Une possibilité de libérer le sol s’il est accroché au plafond ou intégré dans le faux plafond.
  • Un coût modéré à l’investissement, même si les exigences de qualité attendues en matière de régulation peuvent parfois faire augmenter les budgets.
  • Un coût modéré à l’exploitation, du moins s’il est comparé aux systèmes « tout air ». Il est toutefois battu sur ce plan par les installations par plafonds froids, par exemple, notamment suite aux fonctionnements des ventilateurs.
  • Une possibilité de valoriser la performance d’une chaudière à condensation en hiver puisque le réseau d’eau chaude peut fonctionner à très basse température.

Comme inconvénient, on notera :

  • L’impossibilité du ventilo-convecteur de contrôler le taux d’humidité de la pièce, mais ce n’est généralement pas un critère gênant pour un immeuble de bureaux puisqu’on peut réaliser cet objectif à partir de l’air hygiénique.
  • Le niveau de bruit qui est directement lié à la vitesse du ventilateur et à la surface du ou des batteries d’échange (il faut être très strict dans le niveau de bruit à imposer au cahier des charges).
  • La difficulté de réaliser une bonne intégration dans l’habillage et vis-à-vis de la grille de pulsion.
  • La difficulté d’assurer un confort thermique correct, notamment sans courants d’air dans la zone de travail,…
  • Les débits d’air hygiéniques sont constants et limités à 1 ou 2 renouvellements horaires du local. Il est donc impossible de réaliser du free cooling sur l’installation, c’est-à-dire de profiter de l’air frais et gratuit extérieur.

Solution 6 : le plafond rafraîchissant

Photo plafond rafraîchissant.

De l’eau froide circule dans des conduites fixées sur le faux plafond métallique du local.

Schéma principe plafond rafraîchissant.

Des avantages appréciés

  • Le confort est meilleur que dans les systèmes traditionnels (par ventilo-convecteurs par exemple) :
    1. Parce que l’apport de froid par rayonnement est plus stable (inerte) et mieux réparti spatialement que l’apport de froid par air. L’impression d’avoir « la tête au frais » est agréable.
    2. Par la diminution des courants d’air froid et des déplacements de poussières dans les locaux, puisque le débit d’air est limité au débit hygiénique. À noter que ce débit d’air neuf est souvent augmenté (doublé) pour pouvoir contrôler l’humidité en période estivale. Ce qui exige un soin tout particulier dans la façon de distribuer l’air.
    3. Par l’absence de bruit : fonctionnement statique, sauf débit hygiénique.
  • La préparation d’eau glacée à une température « élevée » de 15°C environ permet la sélection d’une machine frigorifique avec un excellent coefficient d’efficacité frigorifique (ou « COP frigorifique »). Cette propriété n’est effective que si une machine frigorifique est spécifiquement prévue pour l’alimentation en eau froide des plafonds. Elle est en partie perdue si la même machine frigorifique est utilisée pour préparer l’air neuf déshumidifié …
  • Cette température élevée permet d’imaginer, durant une bonne partie de l’année, un refroidissement direct de l’eau glacée soit dans un aéro-refroisseur, soit dans une tour de refroidissement en toiture, en by-passant ainsi la machine frigorifique. Cette technique est généralement appelée « free-chilling« . La consommation liée au froid se résume à l’alimentation des pompes de circulation ! La présence d’une source d’eau froide naturelle peut également être mise à profit (rivière, lac, …).
  • Le confort apporté par le rayonnement froid au dessus des occupants permet une augmentation de 2°C de la consigne de température ambiante des systèmes traditionnels (température max = 26°C ou 27°C, au lieu des 24 ou 25°C habituels pour des ventilos ou des poutres froides, par exemple). Il s’en suit une légère réduction de la puissance frigorifique nécessaire (entre 4 et 10 %) mais surtout une augmentation des capacités de travailler en free cooling nocturne puisque l’on peut davantage profiter de l’effet « tampon » du local qui peut démarrer sa journée à 21° et la terminer à 27°C.
  • Les coûts d’exploitation énergétiques sont plus faibles que dans le cas des systèmes traditionnels (ventilo-convecteurs par exemple). Une étude de cas réalisée par Tractebel Development Engineering précise ce facteur. On épargne la consommation des ventilateurs des ventilo-convecteurs, mais on augmente un peu la consommation des pompes de distribution de l’eau puisque qu’un delta T° aller-retour de 2 à 3 K est réalisé contre 5 à 6 K pour les ventilos.
  • La régulation est en partie auto-adaptative : une augmentation des charges du local provoque une augmentation de sa température et donc une augmentation de la puissance de refroidissement.
  • L’entretien est réduit.
  • L’encombrement au sol est nul, ce qui peut être également le cas avec des ventilos-convecteurs en plafond, mais ils génèrent alors nettement plus d’inconfort lié à la pulsion d’air.
  • Le traitement des zones internes par ce système est moins encombrant que par ventilo-convecteurs.

Des inconvénients qui peuvent limiter l’application des plafonds froids :

  • La puissance frigorifique reste très limitée par rapport aux systèmes à ventilo-convecteurs : de l’ordre de 90 W/m² de plafond actif. Si ce système doit vaincre des apports internes importants (bureautique, éclairage, occupants), la réserve disponible pour les apports solaires n’est que de l’ordre de 25 W/m². Ceci sous-entend que les apports solaires des vitrages soient limités :
    • soit par la conception du bâtiment créant des ombres portées,
    • soit par la mise en place de protections solaires extérieures,
    • soit par le placement de stores intérieurs clairs combinés à des vitrages performants,
    • soit par la configuration des lieux (bureaux paysagers, salles profondes).
  • Le coût d’installation est plus élevé que le système des ventilo-convecteurs, surtout en rapport à la puissance frigorifique fournie.
  • Ce coût est notamment lié à la régulation que l’on rend parfois assez sophistiquée pour éviter tout risque de condensation. Ce risque doit cependant être évalué à sa juste mesure.
  • Par rapport au ventilos, le chauffage en hiver reste à imaginer. Plusieurs solutions sont possibles :
    • soit un chauffage de l’air pulsé (mais les débits ne permettent de couvrir que peu de déperditions, le bâtiment doit donc être fort isolé au départ),
    • soit le chauffage par le plafond (mais inconfortable),
    • soit un chauffage par le plafond limité aux premiers panneaux situés en façade (plus confortable, mais limité en puissance),
    • soit un chauffage traditionnel par radiateur (solution généralement appliquée en rénovation puisque l’on peut récupérer l’installation existante).
  • Le système requiert une hauteur de faux plafond disponible, mais limitée (par exemple 160 mm). Les conduits d’air d’un diamètre de 150 mm (max) posent nettement moins de problèmes qu’avec un système « tout air ».
  • L’inconnue sur la tenue dans le temps de ce type de produit (problèmes hydrauliques, manque de performance dans les circuits mal éventés, …) diminue progressivement, l’expérience étant maintenant d’une bonne dizaine d’années. Ce risque peut être limité par un suivi de réalisation rigoureux.

Solution 7 : la poutre froide

Le complément aux plafonds froids…

Généralement, le plafond froid est perçu comme l’installation de grand confort. Mais la faible puissance spécifique est un frein majeur… Lors du dimensionnement, cela « coince » au niveau du local d’angle suite à l’ensoleillement sur 2 façades. C’est à ce moment que des poutres sont proposées en supplément du plafond, pour augmenter l’effet frigorifique (le fait que ces équipements travaillent à même régime de température d’eau est d’ailleurs un avantage).

… ou le système de refroidissement à part entière

Il est possible de prévoir le refroidissement complet du local uniquement par poutres froides, qu’elles soient statiques ou dynamiques

Des avantages

On retrouve beaucoup de qualités du plafond froid :

  • La préparation d’eau glacée à une température de 15°C environ qui permet la sélection d’une machine frigorifique avec un excellent coefficient d’efficacité frigorifique (ou « COP frigorifique »).
  • Durant une bonne partie de l’année, le refroidissement direct de l’eau glacée dans un aéro-refroidisseur ou dans une tour de refroidissement en toiture, en by-passant ainsi la machine frigorifique (« free-chilling« ).
  • L’encombrement au sol est nul !

Le prix est généralement très compétitif, surtout pour la poutre statique, bien sûr.

Des inconvénents

Le confort apporté par les poutres froides est objet à discussion

  • La poutre statique génère une « coulée » d’air froid très désagréable sur les personnes situées sous les poutres. Elle ne peut a priori se placer que dans les locaux de grande hauteur.
  • Par contre, la poutre dynamique semble plus confortable car elle induit un mélange avec l’air ambiant plus élevé et donc une température de l’air plus homogène.
  • Cependant, à l’intersection entre les flux d’air créés par deux poutres voisines parallèles, les deux flux d’air risquent de tomber sur la tête d’un utilisateur !

L’utilisation de poutres froides demande donc une plus grande vigilance que les plafonds froids en matière de vitesses d’air résiduelles et d’inconfort lié aux turbulences.

Il faut se rendre compte qu’avec une poutre dynamique on peut brasser jusqu’à 6 à 8 fois le volume d’air du local. Cela génère beaucoup de difficultés de distribution de l’air, amplifiées par la position de l’échangeur en plafond. Des astuces doivent être trouvées pour que l’air « coule » le long des parois avant de gagner le cœur du local. Mais on ne sait pas toujours quel sera le meuble placé le long de la paroi, ni si la paroi elle-même ne sera pas déplacée un jour…

De là, les solutions d’intégration au dos d’une armoire, sur le mur opposé à la fenêtre. C’est certainement une belle solution technique mais figée une fois pour toutes et donc peut-être démodée dans quelques années…?

En fait, la poutre dynamique développe la même configuration rigide que l’éjecto. C’est le débit d’air neuf qui va induire l’air du local et la puissance frigorifique lui sera liée. Pas de possibilité d’augmenter ultérieurement cette puissance comme on l’a avec les ventilos.

Puisque l’air neuf est le moteur du système dynamique, et que l’air neuf est indispensable au local, le système ne peut jamais être arrêté, ce qui est un inconvénient par rapport aux ventilos qui peuvent profiter d’une plage neutre.

Le taux d’air neuf varie entre 1 et 2,5 Volume/heure, ce qui génère des consommations supplémentaires de chauffage de l’air capté à la température extérieure en hiver.

Tout cela cadre mal avec la mobilité de plus en plus recherchée dans les bureaux actuels.


Solution 8 : la pompe à chaleur sur boucle d’eau

Schéma principe pompe à chaleur sur boucle d'eau.

Le principe consiste à placer une boucle d’eau dans l’ensemble du bâtiment. Cette eau évolue à une température de l’ordre de 30 à 35°C.

Dans chaque local, une machine frigorifique réversible est greffée sur le circuit.

Si le local demande du refroidissement, elle fonctionnera en machine frigorifique et l’eau évacuera la chaleur du condenseur. Si le local demande à être chauffé, la machine travaillera en pompe à chaleur et refroidira la boucle d’eau.

S’il y a égalité entre les locaux en demande de chaud et de froid, c’est parfait, la boucle d’eau effectuera le transfert entre locaux. S’il y a excès de chaleur à extraire des locaux, un échangeur en toiture refroidira l’eau de la boucle. Si au contraire, la majorité des locaux sont en demande de chaleur, une chaudière traditionnelle fournira le complément.

Ce système est évidemment avantageux lorsque l’on pressent des demandes très variables et opposées dans le bâtiment. Mais en pratique, ce cas ne se rencontre qu’une petite partie de l’année. Le reste du temps, la performance globale ne semble pas très élevée. L’investissement initial reste très élevé. Et le coût d’exploitation reste élevé en hiver suite à l’énergie thermique électrique.

Une part de la mauvaise performance est liée à cette température intermédiaire de la boucle : 35°C, c’est finalement une température élevée pour un condenseur à eau, alors qu’en hiver ou en mi-saison l’air extérieur permet des températures plus faibles.
En pratique, on rencontre ce type d’installation dans les galeries commerciales : la boucle d’eau et les installations extérieures sont disposées en base, et chaque commerçant installe son propre équipement. Il est facile de répartir les consommations entre locataires.

Pour un immeuble de bureaux à charge très variable, avec souhait de récupération d’énergie entre locaux, la climatisation par Débit de Réfrigérant Variable (variante avec 3 tubes) apportera très certainement une solution plus souple.

Mettre en place un stockage d’énergie frigorifique [Climatisation – concevoir]

Mettre en place un stockage d'énergie frigorifique


Choix entre les différentes technologies

L’objectif est de fabriquer et de stocker l’énergie frigorifique avant son utilisation, par exemple la nuit.

Deux types de technologie existent sur le marché :

  • soit des réservoirs d’eau très froide, sortes d’énormes ballons « tampon », qui sont des réservoirs à « chaleur sensible« .
    Le bac constitue une réserve d’eau à 5°C, un tampon mis en série dans l’installation. On pourra en disposer facilement au moment de la pointe. Mais la capacité de stockage est faible… L’objectif est seulement de délester le groupe frigorifique durant quelques minutes sur le quart-d’heure critique.
  • soit des réservoirs de glace, sous forme de barres de glace ou sous forme de nodules, qui sont des réservoirs à « chaleur latente« .

    L’installation (et sa régulation) est plus coûteuse mais nettement plus efficace ! Il est possible de stocker 80 fois plus d’énergie dans un litre d’eau qui gèle que dans un litre d’eau que l’on refroidit d’1 degré ! Le projet est alors véritablement de diminuer l’équipement frigorifique (au lieu de deux machines de 300 kW, c’est une machine de 300 kW et un stockage de glace qui est installé) et de réaliser un écrêtage de la puissance électrique durant plusieurs heures.


Avantages et inconvénients

Avantages

  • Le kWh frigorifique produit la nuit et/ou en dehors des heures de pointe revient nettement moins cher.
  • Si la réserve est utilisée au moment de la pointe ¼ horaire du bâtiment, les compresseurs peuvent être délestés, ce qui permet de réelles économies financières sur le coût de la pointe.
  • Nouvelles installations : diminution de la puissance frigorifique installée, par étalement de la charge dans le temps, et donc diminution de l’investissement initial en machines frigorifiques et équipements annexes.
  • Installations existantes : augmentation de la charge frigorifique sans augmentation de la puissance électrique installée (c’est intéressant pour des bâtiments en rénovation dont on souhaite augmenter l’équipement bureautique, sans devoir augmenter la puissance du transformateur).
  • Diminution de l’encombrement des tours de refroidissement en toiture.
  • Augmentation de la durée de fonctionnement des compresseurs (à la limite, fonctionnement 24h/24), ce qui améliore leur rendement moyen.
  • Possibilité d’un secours partiel (quelques heures seulement…) en cas de panne de la machine frigorifique ou d’interruption de la fourniture d’énergie électrique, seules les pompes étant alimentées par le groupe de secours. C’est une sécurité parfois recherchée pour les salles informatiques.
  • Pour les grands bâtiments, le réservoir d’eau obligatoire pour la protection incendie peut parfois être utilisé comme bâche d’eau glacée.

Inconvénients

  • Aucun gain sur le bilan énergétique thermique ! Même plutôt quelques pertes de frigories durant le stockage … C’est essentiellement une opération tarifaire, financière et non énergétique.
  • Lorsque la machine frigorifique « fait de la glace », la température à l’évaporation descend. Elle travaille avec un moins bon rendement que lors du régime normal de préparation de l’eau glacée ! Ceci est partiellement contrebalancé par le fait que la température de condensation va également pouvoir diminuer, suite aux températures plus fraîches de la nuit.
  • La puissance de la machine frigorifique descend à 60 % … 70 % de sa valeur nominale lorsqu’elle prépare de l’eau glacée.

Par exemple, voici l’évolution pour une machine particulière : la puissance lors de la charge de nuit est donc réduite à 324 kW / 458 kW = 71 % de la valeur nominale.

  • L’installation est plus complexe et nécessitera une régulation pour la gestion des cycles charge-décharge.
  • Le stockage thermique est volumineux et sera donc généralement limité à une part de la consommation journalière.

La démarche à suivre

Le choix de la mise en place d’un stockage de froid nécessite d’analyser correctement le profil de consommation du circuit froid.

Fixer les objectifs du stockage

De multiples combinaisons entre capacité de stockage, puissance de déstockage et puissance frigorifique sont possibles.

Il est donc utile de préciser les objectifs visés par le stockage : diminution de la pointe quart-horaire ? diminution de la puissance frigorifique installée ? réduction de l’encombrement des condenseurs/tours de refroidissement en toiture ? réserve stratégique de froid en cas de rupture de la machine frigorifique ?…

On distingue de multiples stratégies d’utilisation.

Par exemple :
Un stockage total de la charge frigorifique durant la nuit :

Un stockage partiel pour limiter la pointe frigorifique :

Un stockage partiel avec une utilisation spécifique à la gestion de la pointe quart horaire :

Seul un bilan financier global (coût d’investissement initial et coût d’exploitation associé) de chaque configuration peut permettre de sélectionner la combinaison optimale.

Vérifier l’encombrement

Les réservoirs de stockage sont parfois adoptés parce qu’ils permettent une diminution de l’encombrement des tours de refroidissement en toiture.

Par contre, ils nécessitent de la place à l’intérieur du bâtiment… Dans certains cas, le stockage est enterré dans le sol, devant le bâtiment ou sous celui-ci.

On tiendra compte également du poids supplémentaire sur la structure du bâtiment, ainsi que des pressions d’eau atteintes suivant la configuration du réseau.

Établir le profil des charges

Au contraire des systèmes de refroidissement classiques où il suffit de connaître la puissance de refroidissement maximale pour pouvoir faire son choix, l’accumulation de glace exige un profil de charge.

Il s’agit d’une présentation graphique (ou sous forme de tableau) de la charge de froid demandée en fonction du temps, et ce pour la journée de l’année où la charge de refroidissement est la plus importante (journée de référence, celle servant de base à la conception).

Le profil de charges est, en général, sous forme d’une courbe en cloche, dont la surface représente de 60 à 80 % de la surface du rectangle dans lequel la courbe s’inscrit. Ce pourcentage est appelé « facteur de simultanéité ». Plus ce facteur est bas, plus le rendement de l’installation sera défavorable.

Si la puissance maximale atteinte varie en fonction de la saison, la forme du diagramme reste relativement stable.

Etablir un scénario de charge et de décharge

Qui fait quoi et à quel moment ?

Voici 2 exemples :

  • L’objectif est de réduire la pointe électrique : le délesteur de charge arrête la machine frigorifique au moment critique et le réservoir prend le relais.
  • L’objectif est de garantir du froid en cas de panne du secteur : pour la sécurité du refroidissement du local informatique, un réservoir restera en permanence en glace, en stand-by pour le cas où… Dans ce cas, le groupe électrogène de secours doit seulement alimenter la pompe qui va envoyer l’eau glacée sur la glace.

Le dimensionnement des équipements et leur régulation sont fonction des objectifs recherchés…


La sélection du groupe frigorifique

Une machine frigorifique capable de préparer de la glace se distingue de celle destinée uniquement à la préparation de l’eau glacée :

  • La préparation de la glace requiert une température à l’évaporateur de plusieurs degrés sous zéro (de – 4° à – 10°C, en fonction du type de stockage choisi), alors que l’eau glacée se prépare généralement avec une température d’évaporation réglée sur + 2°C.
  • Si le stockage de l’énergie frigorifique est partiel, la même machine produira la glace la nuit et l’eau glacée le jour. Elle doit donc pouvoir s’adapter aux deux températures d’évaporation différentes.
  • La machine frigorifique travaillant de nuit, la machine doit être prévue pour pouvoir travailler avec une température de condensation réduite et profiter ainsi d’un coefficient de performance (« COPfroid » ou « efficacité frigorifique ») amélioré (les machines standards fonctionnent avec des températures de condensation élevées en permanence). En général, ceci suppose la présence d’un détendeur électronique, capable de s’adapter aux fluctuations de température de condensation.
  • Le système choisi requiert parfois la mise en place d’un fluide secondaire, type eau glycolée.

Même s’il est possible d’utiliser les machines standards, il sera toujours utile de procéder à une analyse spécifique pour ce type d’application. Notamment pour sélectionner le type de fluide frigorigène adapté à la fluctuation de température souhaitée, tant à l’évaporateur qu’au condenseur.

On sera particulièrement attentif à l’isolation des équipements : une isolation étanche à la vapeur pour éviter la condensation et la formation de glace. Cette isolation doit être scellée avant les essais.


La répartition des charges frigorifiques

La charge frigorifique doit être répartie entre la machine frigorifique et le stockage.

À titre d’exemple, considérons le profil de charge suivant :

Les besoins effectifs journaliers sont de 750 kWh. Une puissance maximale de 100 kW n’est requise que durant 2 heures sur un total de 10 heures d’exploitation.

On distingue deux principes de sélection des équipements :

Accumulation complète (Full Storage)

Dans le cas de ce système, on stocke dans la glace toute la quantité de froid nécessaire pour une journée complète. La machine frigorifique est arrêtée en journée et seule la glace en cours de fonte assure le refroidissement.

Il en résulte un système d’accumulation de glace très imposant, mais les coûts d’exploitation sont faibles (toute l’énergie est produite au tarif de nuit).

La puissance de la machine frigorifique est déterminée par le rapport entre l’énergie totale à accumuler (ici 750 kWh) et la durée de la période de production en Heures Creuses (ici 14 heures).

750 kWh / 14 h = 54 kW

Ce système est rarement appliqué, à cause du coût d’investissement et de l’espace disponible très élevés.

Accumulation partielle (Partial Storage)

Dans ce système, la même machine frigorifique réalise :

  • la préparation de glace durant la nuit,
  • le refroidissement partiel de l’eau glacée durant la journée, en étant alors secondée par la fonte de la glace.

La machine frigorifique fonctionnera donc 24 heures sur 24 lors de la journée de référence. Elle est alors dimensionnée en fonction de la charge de froid totale sur les 24 heures (ici 750 kWh en 24 heures) plutôt que sur la base de la charge de pointe (ici 100 kW).

En appelant :

  • Pc = puissance compresseur en direct
  • Pr = puissance réduite du compresseur la nuit = f x PC
  • f  = 3 % par °C d’abaissement de la température à l’évaporateur (valeur typique), soit une perte de puissance de 30 à 35 % en fonctionnement de nuit par rapport au fonctionnement de jour
  • En = énergie frigorifique journalière
  • Td = Temps de fonctionnement de la machine en direct
  • Ts = Temps de fonctionnement de la machine en phase de stockage de glace

La machine sera dimensionnée par :

en = Td x PC + Ts x Pr

d’où :

  • en = Td x PC + Ts x f x PC
  • PC = en / (Td + Ts x f )

Exemple de sélection

Pour expliquer la méthode de sélection, nous avons choisi de recourir à un exemple d’une installation selon le principe de fonte interne.

* A supposer

  • une charge de pointe de 1 000 kW
  • un régime de température de 12°C / 7°C
  • un refroidissement nécessaire entre 8 heures du matin et 18 heures (soit 10 heures)
  • une charge de refroidissement totale 8 000 kWh

* Il est demandé

La sélection d’un système d’accumulation de glace pour une machine frigorifique aussi petite que possible.

* Solution

La plus petite machine frigorifique est celle qui tourne 24 heures sur 24.

Pour faire de la glace, la machine frigorifique produira du glycol à une température négative (ex : – 5°C). Mais, pendant la journée, la machine frigorifique fonctionnera à des températures positives dans la mesure où elle devra seulement pré-refroidir le glycol à 12°. Sa puissance étant limitée, la glace assurera le post-refroidissement.

Les caractéristiques de fonctionnement de la machine frigorifique ne sont donc pas identiques pour la production de glace et pendant la journée. La nuit, lors de la fabrication de la glace, la machine présente une puissance de l’ordre de 65 à 70 % de la puissance nominale. Cette valeur de 70 % n’est qu’indicative et devra donc être vérifiée a posteriori avec les fournisseurs de la machine frigorifique en fonction des températures d’évaporation et de condensation réelles.

Dans notre exemple, nous avons un temps de fabrication de glace de 14 heures et un temps de fonte de 10 heures. La machine frigorifique fonctionnera donc 10 heures à 100 % de capacité et 14 heures à 70 % de capacité. La quantité totale de froid à fournir est de 8 000 kWh. Dès lors, si nous comparons le froid produit au froid nécessaire, nous obtenons :

(10 h x 100 % de cap.) + (14 h x 70 % de cap.) = 8 000 kWh

cap. x (10 + 14 x 0,7) = 8 000 kWh

cap. = 404 kW

La machine frigorifique fournira donc 404 kW pendant la fonte et 70 % de cette valeur pendant la fabrication de glace, soit 283 kW.

La puissance de stockage de glace nécessaire est alors égale au temps de fabrication multiplié par la puissance de production de froid pendant la fabrication, soit :

14 heures x 283 kW = 3 960 kWh.

On trouve la même puissance de stockage en soustrayant de la charge totale de froid de 8 000 kWh la puissance de froid fournie par la machine frigorifique pendant la fonte :

8 000 kWh – (10 h x 404 kW) = 3 960 kWh.

*Conclusions

Il faut un appareil d’accumulation de glace d’une puissance de stockage minimale de 3 960 kWh.

Si le réservoir présente une capacité de 50 kWh/m³, il faudra prévoir un stockage de :

3 960 / 50 = 80 m³

Attention à la température de restitution de la glace !

La méthode de sélection ci-dessus est une première approche simplifiée !

Ainsi, il faut également vérifier si l’appareil d’accumulation de glace peut garantir la puissance de fonte souhaitée à la température demandée (ce n’est pas tout d’avoir les kWh, encore faut-il qu’ils soient restitués à une température suffisamment basse !).

Pour des applications exploitant le principe de la fonte externe, cela ne pose généralement pas de problème dans la mesure où un réservoir peut être complètement fondu en 2 heures à une température d’eau de 1 à 2°C. Dans le cas de la fonte interne, en revanche, il est conseillé d’examiner cet aspect avec le fabricant, étant donné que la puissance de fonte est nettement inférieure et dépend en outre dans une large mesure de la quantité de glace restante. Généralement, on admet dans le cas de la fonte interne que la puissance de fonte restante est d’autant plus faible que la quantité de glace restante est petite. Mais cette situation est améliorée si une pompe à air pulse des bulles d’air au fond du réservoir. L’agitation est favorable à l’homogénéité des températures, notamment par bris de la glace en fin de fonte interne.

Dans notre exemple, la puissance de fonte la plus importante à fournir est de :

1 000 kW – 404 kW = 596 kW
(puissance de pointe – capacité de la machine frigorifique).

Comparé à la puissance de stockage de l’appareil d’accumulation de glace (3 960 kWh), il s’agit d’un temps de fonte « équivalent » de 6,2 heures. Avec les systèmes de fonte interne couramment utilisés, on peut alors s’attendre à des températures de fonte autour de 5°C. Cela convient donc pour la température demandée de l’ordre de 6°C.

Le fournisseur dispose de logiciels de dimensionnement plus élaborés qui vérifieront si la température lors de la décharge reste compatible avec la demande.

 Études de cas 

Un exemple d’analyse de l’évolution de la température, issue d’un logiciel de ce type, est donné dans les études de cas.

Le dimensionnement du réservoir de stockage

Capacité d’un stockage eau

La chaleur sensible de l’eau est de 1,163 kWh/m³.K.
La capacité de stockage dépend dès lors du régime de fonctionnement :

  • en régime 5°/12°C, un m³ d’eau stocké à 5° dispose d’un delta T° = 7°C, soit une réserve de 8,14 kWh/m³.
  • en régime 5°/15°C, un m³ d’eau stocké à 5° dispose d’un delta T° = 10°C, soit une réserve de 11,63 kWh/m³.

Pour stocker 1 000 kWh, il faudra 123 m³ sous un delta T° = 7°C, et 86 m³ sous un delta T° = 10°C.

Capacité d’un stockage glace

La chaleur latente de cristallisation de l’eau est de 93 kWh/m³ (en eau), soit de 84,5 kWh/m³ (en glace). en quelle sorte, on pourrait parler d’une capacité de stockage équivalente, en chaleur sensible, à un delta T° de l’ordre de 80°C ! Et cette propriété peut encore être renforcée par l’addition d’un sel eutectique dans l’eau.

Mais en pratique, l’entièreté d’un m³ de stockage ne se transforme pas en glace, ne fût-ce que pour pouvoir encore laisser passer le fluide caloporteur.

Aux valeurs de stockage en chaleur latente, on peut ajouter la chaleur sensible, en eau et en glace, fonction des niveaux de température atteints.

Les valeurs moyennes suivantes peuvent être prises :

Capacité de stockage

Volume pour 1 000 kWh

Bac à eau chal. latente 40 kWh/m³ 25 m³
chal. sensible et latente 50 kWh/m³ 20 m³
Bac à glace chal. Latente 48 kWh/m³ 21 m³
chal. Sensible et latente 58 kWh/m³ 17 m³
Nodules chal. Latente 40 à 50 kWh/m³ 25 à 20 m³
chal. Sensible et latente 50 à 60 kWh/m³ 20 à 17 m³

On constate que, en moyenne, un m³ de stockage en « glace » emmagasine 4 à 6 fois plus de froid qu’une bâche de stockage en « eau glacée ».

Ces valeurs permettent de dimensionner grossièrement le système. Les fabricants disposent d’outils de simulation permettant d’affiner ce calcul.

Études de cas

Un exemple de dimensionnement pour une installation de 500 kW frigorifique est donné dans les études de cas.

Les schémas d’installation

Stockage d’eau glacée

Les schémas d’installation diffèrent en fonction de la place relative du ballon par rapport au chiller.

 Techniques

Pour plus d’informations : cliquez ici !

Stockage de glace

Les schémas de principe sont basés sur trois types de configuration :

  • Stockage en série avec la charge, la machine frigorifique étant en aval des bacs de stockage.
  • Stockage en série avec la charge, la machine frigorifique étant en amont des bacs de stockage.
  • Stockage en parallèle avec la charge.

Voici différents schémas possibles extraits de l’ouvrage « Production de chaud et de froid » de Bouteloup chez Pyc Éditions :
Stockage de glace dans des réservoirs à faisceaux tubulaires

  Techniques 

Pour plus d’informations : cliquez ici !

Stockage de glace en parallèle avec réservoir à nodules

   Techniques 

Pour plus d’informations : cliquez ici !

Études de cas

Un exemple de schéma d’une installation existantes est donné dans les études de cas.

Régulation du système stockage-chiller

La régulation du système « stockage – machine frigorifique » est fonction de divers paramètres :

  • l’importance relative du stockage par rapport aux besoins journaliers,
  • la configuration du système (série amont, série aval, parallèle),
  • les objectifs stratégiques (puissance frigorifique minimale, gestion de la pointe ¼ horaire, conservation d’une réserve de froid permanente pour la salle ordinateur en cas de défaillance du groupe frigorifique,…),

Si le stockage est total, la gestion est simple : le stockage assure les besoins journaliers totaux. Une simple vanne trois voies motorisée ajuste l’offre à la demande. Dans certains cas, il est même possible de profiter des Heures Creuses du week-end pour précharger le stockage au maximum.

Si le stockage est partiel, on distingue deux possibilités :

  • Chiller prioritaire : la machine frigorifique assure la charge permanente de base, tout en disposant de l’appoint du stockage pour vaincre les pointes. Ce système permet de charger le compresseur de façon constante, ce qui est l’idéal pour son rendement.
  • Stockage prioritaire : la charge de base est couverte par la décharge du stockage. La machine frigorifique est prévue pour couvrir les pointes de la journée. Ce système, qui suppose une capacité de stockage plus importante, valorise davantage les kWh frigorifiques produits la nuit, mais pénalise la machine frigorifique dans son fonctionnement direct.

Quelques schémas d’installation pratiques sont proposés dans la publication « Production de chaud et de froid » de Bouteloup chez Pyc Éditions.

Exemples de scénarios possibles avec une GTC :

> « Stockage total » : pour les mois de novembre, décembre, janvier et février, le stockage a été dimensionné pour fournir seul les besoins de froid. L’installation fonctionnant en tarif horo-saisonnier, il est très important de limiter au maximum les pointes de puissance. La machine frigorifique sera donc délestée.
> « Priorité stockage » : en mi-saison, la priorité est donnée à la décharge du stockage, avec appoint de la machine frigorifique en fin de journée et durant les pointes.
> « Priorité chiller » : en été, c’est la machine frigorifique qui assure la base et le stockage est utilisé pour couvrir les pointes grâce à la rapidité de l’apport frigorifique qu’il permet. Lorsque vient la fin de la journée, le système bascule en mode « déstockage uniquement » afin de vider l’excédent. La décision de basculer est prise par la GTC en fonction de divers paramètres. Suivant les cas on prendra en compte : l’épaisseur de glace restante, la température extérieure, l’ensoleillement, l’heure dans la journée, l’historique des deux derniers jours, l’historique de l’année précédente,… Un tel modèle, mis au point progressivement, permet des économies importantes à terme. Toute la difficulté consistant à conserver une réserve de froid suffisante pour une pointe éventuelle !
> « Charge nocturne » : cette charge peut être démarrée « au plus tard », afin d’être juste suffisante en début de journée. Un historique peut permettre d’optimaliser le moment de la relance en fonction des besoins.
> Le fin du fin : si l’on prévoit quelques besoins de relance de chauffage dans le bâtiment en début de journée, une récupération de chaleur sur le condenseur de la machine frigorifique est possible; la préparation du froid de l’après-midi génère le petit coup de chaleur du matin, le stockage faisant office de réservoir tampon entre ces deux besoins !

Évaluation de la rentabilité

La rentabilité d’un stockage de glace s’établit par le rapport entre le surcoût au niveau de l’installation frigorifique et l’économie financière réalisée.

Le surcoût est estimé entre 20 et 30 % de l’installation frigorifique initiale. Cette estimation comprend :

  • Les bacs à glace : on peut compter 30 €/kWh de stockage pour une petite installation de 2 000 kWh, 25 €/kWh pour une installation de 5 000 kWh, 20 €/kWh pour une belle installation de 10 000 kWh.
  • Les équipements annexes : pompes, échangeurs,…
  • La déduction du prix de la machine frigorifique que l’on a pu économiser.

Ce qui est difficile à chiffrer et qui constitue un frein majeur du développement du stockage de nuit, c’est le volume nécessaire dans le bâtiment pour entreposer les bacs !…

L’économie financière est essentiellement résultante de l’écrêtage de la pointe quart-horaire. L’économie réalisée sur le coût moindre du kWh de nuit par rapport au kWh de jour est proportionnellement plus faible.

En effet, prenons le tarif « binôme A – Éclairage » :

Le prix du kWh de jour est de 6,25 c€/kWh (HTVA) contre 4,33 c€/kWh la nuit. En passant d’une production de jour vers une production de nuit, l’économie est donc de 31 %. Mais le fait de produire de la glace engendre un abaissement de la température d’évaporation, et le compresseur n’apprécie pas !

Ainsi, un compresseur qui voit la température d’évaporation passer de + 2°C à – 5°C voit son rendement baisser de 20 % environ. Si, parce qu’un échangeur intermédiaire supplémentaire est placé, la température d’évaporation passe à – 10°C, le rendement chute de 30 %… ! En y ajoutant quelques pertes inévitables par les parois des bacs, et les consommations des pompes,… tout le bénéfice est mangé !

Il n’empêche que les installations à – 5°C sont possibles et que l’on peut sélectionner des machines frigorifiques capables de valoriser la faible température nocturne (et donc la faible température de condensation).

Mais c’est sur le coût de la pointe de puissance que le gros de l’économie doit être trouvé (8 €/kW de pointe, chaque mois) ! Le temps de retour du projet pour une installation électrique de 500 kW et plus descend sous les 3 ans, d’après les fournisseurs.

Chaque scénario doit être étudié sérieusement. Ainsi, un bâtiment avec une prédominance de consommation électrique en été aura avantage à choisir le tarif horo-saisonnier. Dans ce cas, le délestage du groupe frigorifique durant les 4 mois d’hiver sera très rentable : 14 €/kW HTVA. Mais c’est également le moment où la demande de froid est la plus faible… L’équipement peut-il s’amortir sur ces mois d’hiver ?


La réception du matériel

Lors de la réception du matériel, il sera bon de vérifier :

Au niveau du circuit hydraulique :

  • la concentration en glycol à plusieurs endroits du circuit,
  • l’isolation des circuits et des vannes,
  • la stabilité hydraulique (équilibrage) dans tous les modes de fonctionnement du réseau, avant même d’enclencher le groupe frigorifique,
  • les débits et les pertes de charge dans diverses configurations (pour vérifier notamment si on a tenu compte de la viscosité du glycol lors de la sélection des pompes),
  • les points repris dans la régulation et la stratégie de commande choisie,
  • la protection du circuit secondaire éventuel (boucle d’eau glacée vers les ventilos, par exemple) contre tout risque de gel.

Au niveau du stockage :

  • le niveau d’eau dans le réservoir,
  • le débit et les températures lors de la charge et de la décharge.

Au niveau de la machine frigorifique :

  • la charge effective du stockage dans les conditions prévues et les températures d’évaporation spécifiées, et ceci dans le temps prévu.

Plusieurs essais sous des régimes différents seront nécessaires. On tiendra compte du fait que lors de la première mise en charge, la température initiale du bac est plus élevée que celle en régime (généralement autour des 5°C). Le premier temps de charge sera donc plus long.


La maintenance

La maintenance d’un stockage de glace est faible. On suivra les recommandations du fabricant, dont la vérification régulière de la concentration en eau glycolée.

La présence de vannes d’isolement doit permettre de démanteler facilement le réservoir de stockage sans interrompre le restant du circuit.

Si l’isolation doit être remplacée, on sera attentif à sécher au préalable soigneusement la zone traitée et à rétablir l’étanchéité au passage de la vapeur d’eau afin d’éviter la corrosion ultérieure des installations.

Choisir parmi le différents systèmes de refroidissement

Choisir un système de refroidissement

Tout au plus pouvons-nous ici évoquer avec prudence les quelques critères principaux et ébaucher des solutions classiques, mais nullement « passe-partout ».


Critères de choix technico-économiques

Une concertation dès l’Avant-Projet

Il serait prétentieux de prétendre énoncer en quelques lignes tous les critères constituants la démarche conceptuelle qui conduit au choix d’un système de climatisation d’un immeuble.

La solution résulte en effet de la concertation étroite entre le Maître de l’Ouvrage, l’Architecte, l’Ingénieur de bureau d’études et tous les partenaires qui forment l’équipe de projet. Cette concertation se situe lors de l’Avant-Projet de l’étude du bâtiment et résulte du meilleur compromis entre critères parfois contradictoires :
  • évaluation des besoins : apports (-> froid), déperditions (-> chaud), occupation (->débit d’air hygiénique),…
  • mobilité aux variations de programme (usage du bâtiment, un ou plusieurs locataires, …)
  • confort au sens large (climatique, acoustique, visuel,…),
  • coût d’investissement et d’exploitation,
  • optimalisation de l’usage des surfaces,
  • esthétique externe et interne (le bâtiment doit être beau à voir et à vivre !),
  • etc…
À noter qu’au plus tôt se constitue cette équipe de projet, au plus l’ensemble des contraintes sera pris en considération à temps.

Tout au plus pouvons-nous ici évoquer avec prudence les quelques critères principaux et ébaucher des solutions classiques, mais nullement « passe-partout » :


Le coût d’investissement

Considérons une base relative de 100 % comme valeur moyen d’une installation de climatisation. Une simple installation de chauffage est alors à 30 %. L’échelle des prix en fonction du type d’équipement et du niveau de régulation qui lui est associé peut être évalué comme suit :

Installations  « détente directe »

Investissement
par rapport à la référence

Window 60 – 75 %
Split system 80 – 160 %
Débit réfrigérant variable (2 tubes) 160 – 200 %
Débit réfrigérant variable (3 tubes) 240 – 300 %
Armoire de climatisation 60 – 6 000 %%
Roof-top 30 – 100 %

Installations « tout air »

Investissement
par rapport à la référence

Tout air-débit constant 120 – 170 %
Tout air-débit variable 120 – 180 %

Installations « sur boucle d’eau »

Investissement
par rapport à la référence

Ventilo-2 tubes 85 – 110 %
Ventilo-2 tubes/2 fils 90 – 125 %
Ventilo- 4 tubes 100 – 150 %
Pompe à chaleur sur boucle d’eau 80 – 170 %
Plafonds froids 110 – 160 %

Le coût des plafonds froids (plutôt élevé en regard à l’énergie frigorifique produite) est pénalisé notamment par la régulation qui doit permettre d’éviter tout risque de condensation. Mais, comme tout produit récent, son prix est progressivement en baisse sensible…


Le coût d’exploitation énergétique

Le coût d’exploitation est directement fonction des charges à vaincre : un immeuble fort vitré consommera beaucoup plus que son équivalent équipé de protections solaires extérieures, par exemple … C’est donc d’abord le bâtiment qui crée la consommation !

On peut cependant établir une échelle entre les systèmes suivant leur performance énergétique :

Installations  « détente directe »

Coût énergie

Window élevé
Split system moyen
Débit réfrigérant variable faible
Armoire de climatisation moyen
(Roof-top) (faible)

Installations « tout air »

Coût énergie

Tout air-débit constant élevé
Tout air-débit variable moyen

Installations « sur boucle d’eau »

Coût énergie

Ventilo-2 tubes moyen
Ventilo-2 tubes/2 fils moyen à élevé
Ventilo- 4 tubes moyen
Pompe à chaleur sur boucle faible à élevé
Plafonds froids faible

Quelques règles à suivre pour concevoir une installation à faible consommation énergétique :

  • Éviter de détruire l’énergie : en aucun cas, on ne doit concevoir une installation dont la régulation fonctionnerait par mélange entre fluides chauds et froids. Les installations « tout air » à doubles conduits sont particulièrement sensibles à ce phénomène.
  • Récupérer la chaleur extraite lorsque le bâtiment requiert du chaud et du froid simultanément : un grand local informatique refroidi en hiver, des plateaux très étendus et fort équipés dont il faut en permanence refroidir la partie centrale, … On aura intérêt à concevoir une installation qui peut récupérer la chaleur extraite de ces locaux pour la restituer dans les locaux en demande de chaleur (bureaux en périphérie). Les installations à débit de réfrigérant variable et les pompes à chaleur sur boucle d’eau sont performantes à ce niveau. Dans les installations plus classiques (ventilos), une récupération de chaleur au condenseur des groupes frigorifiques est également possible et moins contraignante.
  • Préchauffer l’air neuf en récupérant la chaleur soit sur l’eau en sortie des faux plafonds, soit sur le condenseur de la machine frigorifique.
  • Limiter les résistances chauffantes électriques qui peuvent entraîner des dépenses importantes vu le coût du kWh électrique par rapport au kWh thermique. On sera attentif à ne sélectionner une installation de ventilos 2 tubes/2 fils que dans un bâtiment très isolé (besoins de chaleur très limités suite aux apports gratuits). De plus une gestion des équipements devra superviser l’ensemble.
    Un petit outil de simulation
    permet de quantifier l’impact du choix du vecteur énergétique de chauffage.
  • Préférer un refroidissement à haute température : l’efficacité frigorifique d’une installation à eau glacée sera améliorée si le fluide est produit et circule à relativement « haute » température. De là, l’avantage du refroidissement par plafonds froids dont la boucle d’eau « glacée » fonctionne au régime 15°-17°. Cette température élevée permet également, durant une bonne partie de l’année, un refroidissement gratuit de l’eau glacée dans un aéroréfrigérant ou dans une tour de refroidissement en toiture, en by-passant ainsi la machine frigorifique (« free-chilling« ).  La présence d’une source d’eau froide naturelle peut également être mise à profit (forage, rivière, lac, …)
  • Préférer un refroidissement par rayonnement : pour les plafonds froids également, le confort apporté par le rayonnement froid au-dessus des occupants permet une augmentation de 2°C de la consigne de température ambiante (température max = 26°C ou 27°C, au lieu des 24 ou 25°C habituels pour des ventilos, par exemple). Il s’en suit une réduction de la puissance frigorifique nécessaire.
  • Transporter l’énergie par l’eau et pas par l’air : le transport de l’eau par pompes représente moins de 2 % de l’énergie transportée. Le transport de l’air par ventilateur représente de 10 à 20 % de l’énergie véhiculée ! Les systèmes « tout air » subissent donc un sérieux handicap. Le système à débit d’air variable (VAV) limite les dégâts à ce niveau.
  • Valoriser l’air frais extérieur gratuit : dans le cas d’une installation « tout air », une partie importante de l’énergie frigorifique peut être fournie par l’air extérieur (free cooling en hiver et mi-saison). Il semble y avoir conflit entre cet argument et le précédent ! En réalité, on choisira une installation « tout air » lorsque le bilan énergétique prévoit du refroidissement régulièrement en hiver et en mi-saison.
  • Enfin, ne pas raboter le budget régulation : la qualité de la régulation est déterminante ! on pense tout particulièrement au ventilo-convecteur qui est le pire ou le meilleur des équipements, … selon la régulation qui lui est associée !

Le coût de maintenance

Les prix donnés à titre indicatif ci-dessous (Source : « GIE – Climatisation et Développement » en France) correspondent à un contrat annuel de maintenance sur devis (les prix les plus bas correspondent aux surfaces traitées les plus grandes). Ces valeurs sont assez anciennes (années 2000), mais les variations entre les différentes installations peuvent être supposées toujours pertinentes. À ces prix s’ajoute celui du renouvellement périodique des équipements défectueux, lié à leur durée de vie. Ainsi, les installations en « détente directe » sont généralement plus fragiles, ce qui implique un remplacement plus fréquent des composants.

Installations « détente directe »

€/m2
Window très faible
Split system 3 – 7,5
Débit réfrigérant variable
Armoire de climatisation 2,25 – 9,25 (si gamme informatique)
(Roof-top) (1,5 – 3,25)

Installations « tout air »

€/m2

Tout air-débit constant 1,5 – 5
Tout air-débit variable 2 – 6,25

Installations « sur boucle d’eau »

€/m2

Ventilo-2 tubes 3 – 5
Ventilo-2 tubes/2 fils 3 – 5
Ventilo- 4 tubes 3 – 5
Pompe à chaleur sur boucle 3,75 – 6,25
Plafonds froids  

 


Le confort thermique

Installations  « détente directe »

Confort thermique
Window faible
Split system faible
Débit réfrigérant variable bon
Armoire de climatisation moyen
(Roof-top) (moyen)

Installations « tout air »

Confort thermique
Tout air-débit constant bon
Tout air-débit variable bon

Installations « sur boucle d’eau »

Confort thermique
Ventilo-2 tubes moyen
Ventilo-2 tubes/2 fils moyen
Ventilo- 4 tubes bon
Pompe à chaleur sur boucle moyen
Plafonds froids excellent
Remarque  : Le confort thermique des plafonds froids est meilleur que celui des systèmes traditionnels (ventilo-convecteurs par exemple)

  1. parce que l’apport de froid par rayonnement est plus stable (inerte) et mieux réparti spatialement que l’apport de froid par convection forcée,
  2. parce qu’il permet la sensation agréable d’avoir « la tête au frais »,
  3. parce que le confort est renforcé par l’absence de courant d’air froid, puisque le débit d’air est limité aux besoins hygiéniques,
  4. parce ces mouvements d’air limités entraînent peu de déplacement de poussières dans les locaux.


La puissance frigorifique

Le dimensionnement des installations de climatisation est généralement fonction de la puissance frigorifique maximale nécessaire en été.

À ce niveau, les plafonds froids sont relativement limités puisque la puissance de refroidissement n’atteint que de l’ordre de 80 W/m² de plafond actif. Ce système ne permet pas de refroidir seul une salle informatique, par exemple.

A puissance frigorifique égale, un système « tout air » entraîne des débits d’air véhiculés très importants et donc des gainages coûteux et encombrants !


Le confort acoustique

Pour atteindre les niveaux requis par les normes, il va de soi que les plafonds froids sont avantagés. Mais on peut également sélectionner des installations plus classiques de qualité (basse vitesse des ventilateurs, amortisseurs de bruit,…).

Ainsi, une installation « tout air » classique à laquelle on adjoint des bouches de diffusion par déplacement devient excellente sur le plan acoustique.

Installations  « détente directe »

Confort acoustique
Window faible
Split system bon
Débit réfrigérant variable bon
Armoire de climatisation moyen
(Roof-top) (bon)

Installations « tout air »

Confort acoustique
Tout air-débit constant bon
Tout air-débit variable bon

Installations « sur boucle d’eau »

Confort acoustique
Ventilo-2 tubes bon
Ventilo-2 tubes/2 fils bon
Ventilo- 4 tubes bon
Pompe à chaleur sur boucle faible
Plafonds froids excellent

La centralisation


Si la surface des locaux à climatiser est limitée (rénovation de quelques locaux,par exemple), un système à « détente directe » (voire plusieurs équipements décentralisés) sera suffisant et nettement moins coûteux.

Si une installation centralisée bénéficie de l’effet de taille en terme de prix d’investissement, il n’y a que peu d’effet majeur à l’exploitation (efficacité frigorifique meilleure pour les grosses puissances, mais pertes en ligne et pertes en régulation plus élevées…).


Le fluide caloporteur

L’effet refroidissant

Il peut être apporté aux locaux par de l’air, de l’eau, ou par le fluide réfrigérant lui-même.

L’air ayant une faible chaleur spécifique, un système « tout air » entraîne un encombrement très important (gaines volumineuses), et donc une perte d’espace utile pour l’aménagement des locaux. En rénovation, cette technique est souvent exclue (si on ne veux pas « tout casser » !). Si les locaux sont de toute façon demandeur d’air hygiénique en grande quantité (présence de nombreux occupants), le problème est vu différemment : il est alors logique d’associer les fonctions « ventilation » et « rafraîchissement »…

L’eau glacée est le choix le plus fréquent. La boucle d’eau pouvant se placer aussi bien en allège qu’en faux plafond.

L’idée de faire circuler le fluide réfrigérant directement dans les locaux est nouvelle. C’est certainement la formule la plus souple. Elle s’adapte bien aux locaux à très faible inertie (parois légère, tapis de sol, faux plafond) pour lesquels on peut parfois en mi-saison chauffer au matin, … mais refroidir sous le soleil de midi !

L’effet calorifique

Il peut être apporté par de l’air, de l’eau, par le fluide réfrigérant ou par l’électricité.

Le transport par air entraîne les mêmes conclusions en chaud qu’en froid.

Le chauffage par boucle d’eau peut se justifier par la présence d’autres besoins dans le bâtiment (eau chaude sanitaire, par exemple) : l’installation de production d’eau chaude sera commune.

Lorsque le fluide « réfrigérant » est utilisé pour chauffer : l’échangeur dans le local devient le condenseur de la machine frigorifique. C’est la solution la plus économique à l’exploitation si la chaleur est extraite de locaux refroidis. Si la chaleur est extraite de l’air extérieur (fonctionnement en pompe à chaleur), la performance diminue fortement avec la baisse des températures extérieures. Le chauffage est alors obtenu avec un prix de revient supérieur aux installations à combustible classique. Ce choix ne peut se justifier qu’au regard de la consommation globale (hiver + été) de l’installation.

Enfin, le chauffage par résistance chauffante ne doit être sélectionné que lorsque les besoins thermiques sont très limités. Le prix de revient du kWh électrique de jour est en effet 3 fois plus élevé environ que celui du kWh thermique (pointe de puissance comprise).


Le recyclage de l’air

Dans le cas d’une installation « tout air », l’apport de froid dans les locaux entraîne un débit d’air nettement plus élevé que celui nécessaire pour les besoins hygiéniques (4 … 6 fois, environ). Dès lors, plus des 3/4 du débit total est recyclé. Seul 1/4 du débit total est de l’air neuf hygiénique.

Bien que les débits hygiéniques soient largement respectés, le mélange avec de l’air recyclé est loin de faire l’unanimité. On parle de « Sick Building Syndrom ». En réalité, il est difficile de faire la part des choses entre les plaintes liées au mauvais entretien des installations et celles liées au recyclage proprement dit.

De là, la préférence donnée aux installations dans lesquelles apport d’air neuf et apports thermiques sont dissociés : le réseau d’air pulse le débit nécessaire au renouvellement hygiénique (cet air est ensuite expulsé sans recyclage).

Calculs

Dans les outils de calcul – rubrique « Climatisation » – vous trouverez un outil permettant de calculer les caractéristiques d’un mélange d’air


L’encombrement

Les installations de climatisation « tout air » sont fort encombrantes, local volumineux à prévoir pour la centrale de préparation d’air (chauffer, refroidir, humidifier l’air,..).

Gaines de volumes importants à placer. L’augmentation de l’épaisseur des faux plafonds qui en résulte peut entraîner un étage de moins sur un bâtiment de 10 étages !

Petit calcul approximatif pour avoir un repère …

Une personne requiert 30 m³/h d’air hygiénique. Sur base d’une vitesse de 5 m/s dans les conduits, cet apport d’air requiert 30 [m³/h] / 3 600 [s/h] / 5 [m/s] = 16 [cm²], soit un conduit de 4 cm sur 4 cm. Et ceci rien que pour une personne !
Si l’air est en même temps « porteur » de la charge thermique (air chaud en hiver et air froid en été), les débits d’air traités sont en moyenne multipliés par 6. La section des conduits aussi. On arrive alors à un ratio de 100 cm² par personne, soit 10 cm sur 10 !
À titre d’exemple : l’hôpital St Luc de Woluwé traite et distribue 300 000 m³ d’air par heure ! ! !

Photo technique des plafonds froids.

La technique des plafonds froids demande par contre une épaisseur de faux plafonds moins élevée.

Quant aux ventilo-convecteurs en allège, si les tuyauteries de raccordement sont discrètes, les convecteurs eux-mêmes peuvent occuper, au sol, de la place recherchée.


Le tableau de synthèse


Reprenons les différents critères :

Installations  « détente directe »

Investis.

Coût énergie

Confort acoustique Confort thermique
Window 60 – 75 % élevé faible faible
Split system 80 – 160 % moyen bon faible
Débit réfrigérant variable 160 – 200 % faible bon bon
Armoire de climatisation 240 – 300 % moyen moyen moyen
Roof-top 60 – 6 000 % faible (bon) (moyen)

Installations « tout air »

Investis.

Coût énergie

Confort acoustique confort thermique
Tout air-débit constant 120 – 170 % élevé bon bon
Tout air-débit variable 120 – 180 % moyen bon bon

Installations « sur boucle d’eau »

Investis.

Coût énergie

Confort acoustique confort thermique
Ventilo-2 tubes 85 – 110 % moyen bon moyen
Ventilo-2 ubes/2 fils 90 – 125 % moyen à élevé bon moyen
Ventilo- 4 tubes 100 – 150 % moyen bon bon
Pompe à chaleur sur boucle 80 – 170 % variable faible moyen
Plafonds froids 85 – 110 % faible excellent excellent

Stratégie de choix

Un système technique, notamment de refroidissement, ne devrait pas se choisir uniquement sur base de critères technologiques et économiques, même s’ils sont essentiels. Le choix doit intégrer toute la complexité du bâtiment, son programme, ses besoins énergétiques de chaud et de froid, son site, son occupation,…

Pour s’y retrouver, il est nécessaire de se donner une stratégie. Un exemple de stratégie de choix peut être d’identifier des groupes de critères jugés prioritaires sur base desquels faire une première sélection peut s’effectuer. Par exemple, dans une approche orientée vers la performance énergétique, on mettra en avant les critères liés :

  • Aux propriétés thermiques et constructives du projet : Quelle est l’inertie du bâtiment ? Quelles sont les puissances demandées et les besoins d’énergie en chaud et en froid, en fonction des charges internes et solaires, des performances de l’enveloppe ? Quels sont les débits d’air hygiéniques ? Quelle est la modularité envisagée (possibilité de modifier fréquemment les cloisons) ?
  • Aux ressources énergétiques disponibles sur le site : Dans notre climat, un bâtiment peut être rafraîchi la plus grande partie de l’été en ventilant naturellement le bâtiment par de l’air extérieur. Si le site est trop bruyant ou pollué, une ventilation mécanique adaptée utilisée en mode free cooling sera également efficace. L’air extérieur peut en outre être rafraichi par des aménagements paysagers (parcs, bassins) ou technologiques (humidification). Si l’air extérieur reste malgré tout chaud la journée, la température nocturne tombe suffisamment pour permettre de décharger la chaleur accumulée à l’intérieur. Si l’air extérieur n’est pas valorisable sur le site du projet, peut-être une ressource hydrique l’est-elle (sans aller jusqu’à solliciter la nappe phréatique, un étang par exemple constitue une masse d’eau fraiche impressionnante) ? La capacité thermique du sol peut également être sollicitée, si sa composition permet des forages à un coût raisonnable.
  • Au profil de l’occupant : Selon qu’il souhaite ou non avoir un rôle actif dans la conduite du bâtiment, les choix techniques ne seront pas les mêmes. Est-il disposé à ouvrir ses fenêtres en été ? Les choix dépendront également des profils d’occupation : sont-ils stables ou variables ? Enfin, les attentes de confort sont un critère majeur : les occupants exigent-ils une température constante réglable selon leurs envies, ou sont-ils prêts à accepter une évolution raisonnable, mais moins maîtrisée des conditions intérieures ?

Une fois que l’on s’est donné une liste de critères principaux, il faut faire l’inventaire des choix possibles, et s’orienter vers celui qui offre la meilleure performance énergétique. Cette première sélection doit ensuite être discutée sur base des autres critères : impact financier, contraintes d’entretien, risque de nuisance acoustique, etc.


Organigramme de sélection

L’organigramme ci-dessous propose un guide de sélection d’un système de refroidissement. Il s’appuie sur une stratégie de sélection partant des profils d’occupants, des caractéristiques du bâtiment et des ressources du site et va jusqu’à la sélection d’une technologie.

Concevoir

Pour en savoir plus sur les choix techniques détaillés et les principes d’économie d’énergie accessible pour chaque technologie, cliquer ici !

Cet organigramme s’applique surtout aux constructions neuves, mais peut globalement être repris pour des projets de rénovation également. Il s’agit d’un guide générique, qui peut ne pas s’appliquer à un cas particulier. Restez donc prudents et critiques dans son utilisation. Tous les embranchements sont référencés par une lettre (de A à Q). Un mot d’explication est donné sur chacun de ces choix en dessous de l’organigramme.

>> Les textes en italique dans le schéma sont cliquables et mènent vers des informations complémentaires.

Organigramme de sélection - 1 partie.

La ventilation intensive naturelle d’été La ventilation intensive naturelle d’été La ventilation intensive mécanique d’été

Organigramme de sélection - 2 partie.

Le système tout air, à débit variable (VAV) Le climatiseur de local Le refroidissement adiabatique La machine frigorifique à ab/adsorption La machine frigorifique à compression La dalle active Le free-chilling Les plafonds froids La géothermie et le géocooling La dalle active La géothermie et le géocooling La dalle active Le free-chilling Les plafonds froids La machine frigorifique à ab/adsorption Le système tout air, à débit variable (VAV) Le système tout air, à débit constant, mono-gaine Le système tout air, à débit variable (VAV) Le système tout air, à débit constant, mono-gaine Les plafonds froids La machine frigorifique à compression Les poutres froides Les ventilo-convecteurs

Quelques commentaires sur cet organigramme :

  • A à D : La première partie sert à identifier le profil de l’occupant : actif ou passif.
    • Si le profil est passif (c’est-à-dire lorsque que l’occupant ne peut intervenir sur son environnement par l’ouverture d’une fenêtre, la fermeture d’un store,…)., toutes les stratégies intégrant la notion de confort adaptatif sont caduques.
    • Si l’occupant est actif, on peut envisager d’aller vers une limitation acceptée de la puissance de refroidissement disponible. C’est le sens de la question « D. Température glissante ? »
      • Répondre oui signifie que l’on tolère une dérive limitée des températures intérieures en été, telle que définie par la norme NBN EN 15251. L’installation de refroidissement sera alors vue comme une aide limitée en cas de vague de chaleur exceptionnelle (on parle de top cooling) ou de besoins localisés (systèmes split).
      • Répondre non signifie que, malgré le comportement actif possible des occupants, on souhaite avoir la garantie du maintien de consignes strictes de température. On s’oriente alors vers un système de refroidissement capable de répondre instantanément aux besoins. Pour en savoir plus sur les profils d’occupants, voir la page « confort thermique ».
  • E à G : La question E se place dans le cadre d’une fluctuation contrôlée des températures. Une stratégie de free cooling est dans ce cadre indispensable, au moins en journée,  faute de quoi les charges internes et solaires ne peuvent être dissipées et le confort ne pourra être maintenu. Mais ce free cooling (diurne et/ou nocturne) est-il suffisant ? Une simulation dynamique du comportement du bâtiment peut être intéressante pour répondre à cette question. Différentes réponses sont envisageables :
    • 1/Oui, auquel cas il n’est pas nécessaire d’installer de système de refroidissement. Félicitation, votre consommation d’énergie thermique en été sera nulle ;
    • 2/Oui, sauf dans certains locaux, par exemple ceux avec des serveurs informatiques, ou une salle de réunion particulièrement exposée au soleil, ou les quelques locaux sous toiture,… Dans ce cas, une installation de refroidissement à détente directe, de type armoire de climatisation ou système split parait un bon choix. Éventuellement, la chaleur extraite de ces locaux pourrait être utile à d’autres ? Alors on s’orientera vers un système à débit de réfrigérant variable (VRV) ;
    • 3/ Oui, sauf en plein été. Dans ce cas, un appoint mécanique de type top cooling est pertinent, pour franchir confortablement les jours chauds sans investir dans un système de distribution spécifique au refroidissement ;.
    • 4/ Non, le free cooling est tout à fait incapable d’assurer le confort du bâtiment, malgré la bonne volonté et la coopération des occupants.
  • H à I : Un appoint d’été dans un bâtiment qui ne dispose pas d’autre système de refroidissement qu’un free cooling se base souvent sur le réseau de ventilation : l’air neuf hygiénique est refroidi en centrale avant d’être diffusé dans l’ensemble du bâtiment. Le débit d’air correspond au débit nominal du réseau de ventilation hygiénique, c’est-à-dire de débit nécessaire pour assurer la qualité de l’air des locaux en supposant une occupation de référence. Éventuellement, ce débit peut être augmenté légèrement si le groupe de pulsion le permet, mais avec précaution : les pertes de charge seront alors très élevées et la consommation électrique d’un ventilateur également (pour éviter cela, on peut surdimensionner le réseau de ventilation par rapport au débit hygiénique). Dans ces cas, le refroidissement de l’air peut éventuellement se faire au départ d’une source naturelle. Typiquement, si l’air extrait des locaux n’est pas trop humide, un refroidissement adiabatique peut être envisagé. Une climatisation solaire peut aussi être envisagée, si le besoin de froid est effectivement lié aux gains solaires, et non aux gains internes des locaux. Enfin, une machine frigorifique traditionnelle à compression sera choisie.
  • J : Cette question fait le constat d’une incompatibilité entre une stratégie ouverte à une remise en cause du confort et à la valorisation du comportement des occupants et les résultats attendus, déduits par exemple d’une simulation dynamique. Avant de conclure que, dans ce cas, le free cooling est une impasse et de basculer sur un système de refroidissement plus traditionnel, il peut être utile de creuser un peu les résultats de la simulation. Pourquoi le free cooling est-il à ce point insuffisant que même un appoint limité de type top cooling (climatisation uniquement à certains moments extrêmes (canicule par exemple) ne suffit pas ? C’est peut être justifié par le site : trop de bruit ou de pollution pour ventiler efficacement, ou par l’architecture : pas assez de protection solaire, ou pas de possibilité pour l’air de traverser le bâtiment en assurant un balayage efficace, ou pas assez d’inertie thermique, ou une trop grande dispersion des charges internes. Une fois la cause identifiée (il s’agira souvent d’un faisceau de causes partielles), les modifications à apporter au projet peuvent être envisagées. Peut-être sont-elles acceptables par le maître d’ouvrage et l’architecte ? Le rôle de l’ingénieur sera ici déterminant. À lui d’être créatif d’imaginer des propositions compatibles avec les souhaits des autres intervenants.
  • K à L : le slab cooling, ou activation de la dalle, est présenté comme première alternative au free cooling. Il présente en effet certaines similarités : valoriser l’inertie du bâtiment au travers d’un déphasage entre période de refroidissement effectif (la nuit) et période d’accumulation de chaleur (journée). Ce déphasage permet de valoriser une source de fraicheur fluctuante ou limitée, en particulier l’air extérieur (free chilling) ou un forage géothermique de puissance limitée (geocooling).
  • M : ici, on bascule du côté des émetteurs à puissance contrôlée, qui implique de disposer à tout moment d’une capacité de dissipation de la chaleur. Le choix des systèmes dépendra d’abord de la disponibilité ou non d’une ressource géothermique. Des essais de sol, ou l’examen de données géologiques permettent d’identifier le potentiel de valorisation thermique du sous-sol. La chaleur du bâtiment peut y être dissipée directement, au moyen d’un simple échangeur (géocooling), ou indirectement, au travers d’une machine frigorifique. Dans les deux cas, il est fortement recommandé de pouvoir travailler dans le bâtiment avec des émetteurs à « haute température », de type plafonds froids. En l’absence de ressource géothermique, on cherchera à valoriser l’air extérieur au travers d’une installation d’une dalle active (slab cooling). Cependant, un appoint « traditionnel », par exemple sur le réseau de ventilation sera nécessaire pour compléter la puissance et assurer une capacité de modulation locale et dans le temps de la dissipation de la chaleur. Enfin, si le besoin de refroidissement est directement lié à la course solaire, une climatisation solaire peut éventuellement être envisagée.
  • N à P : en l’absence d’une ressource naturelle, ou lorsque son exploitation est impossible, on se tournera vers une production traditionnelle de froid (machine frigorifique à compression). La question du système de refroidissement est alors limitée au choix du réseau de distribution. Si la puissance demandée dépasse largement celle que peut véhiculer le réseau de ventilation hygiénique, on optera pour une distribution par boucle d’eau. Eau froide si des émetteurs à haute température peuvent être choisis, eau glacée sinon. Si le réseau de ventilation peut, moyennant un surdimensionnement limité, assurer le refroidissement, on se dirigera vers des systèmes de conditionnement d’air VAV ou CAV selon le niveau de variabilité des besoins, et vers toutes les solutions intermédiaires possibles en termes de gestion des débits.

Concevoir

Pour plus d’informations sur la valorisation de la fraicheur de l’environnement, cliquer ici !

Concevoir

Pour plus d’informations sur le choix d’un système de refroidissement tout air  (débit d’air constant, VAV), cliquer ici !

Concevoir

Pour plus d’informations sur le choix d’un système convectif sur boucle d’eau froide : (ventilo-convecteurs ou poutres froides), cliquer ici !

Concevoir

Pour plus d’informations sur le choix d’un système rayonnant sur boucle d’eau froide (plafond froid, dalle active, cliquer ici !

Concevoir

Pour plus d’informations sur le choix d’un système à détente directe (climatiseurs et systèmes à Débit de Réfrigérant Variable), cliquer ici !

Concevoir

Pour plus d’informations sur le choix d’un système de ventilation intensive (free cooling), cliquer ici !

Choisir un système à Débit de Réfrigérant Variable

Choisir un système à Débit de Réfrigérant Variable

Unités extérieures d’un système à débit de réfrigérant variable.

Pour connaître les caractéristiques technologiques et le fonctionnement d’un système DRV, cliquez ici.


Quand opter pour un système à débit réfrigérant variable ?

Si le bâtiment demande une grande souplesse dans la gestion des besoins de  chaleur et de froid (basculements rapides entre des besoins de chaud et de froid d’un local particulier ou à des besoins simultanés de chaud et de froid dans des locaux proches), un système à Débit de Réfrigérant Variable offre la souplesse nécessaire pour y répondre.

En particulier, le DRV est pertinent :

Lorsque le bâtiment est bien isolé et peu inerte

Ce type de climatisation (chauffage et refroidissement) est très souple dans son fonctionnement. Il semble dès lors bien adapté pour des bâtiments neufs très bien isolés et dont le souhait de modularité a rendu les parois très légères (cloisons intérieures démontables).

En effet, la faible inertie des parois rend ces bâtiments très sensibles aux variations de charges : occupants d’une salle de réunion, rayons de soleil, équipements bureautiques, … Dans ce type de bâtiment, une relance de chauffage est parfois nécessaire au matin, alors que dès midi le refroidissement du bâtiment devra être organisé.

Or ce type d’installation de climatisation peut y répondre avec beaucoup de souplesse.

Une installation de ventilo-convecteurs à 4 tubes permet également une telle souplesse de réponse, mais en amont du ventilo, il faudra prévoir un réseau d’eau glacée et sa machine frigorifique, ainsi qu’un réseau d’eau chaude et sa chaudière. Le danger du 4 tubes est le risque de fonctionnement simultané du chaud et froid qui engendrerait une destruction d’énergie.

Voici l’extrait d’une régulation sur un local de bureau (reconstitution à partir de l’historique enregistré sur le système de régulation d’un système DRV).

Graphique extrait d'une régulation sur un local de bureau.

Lorsque l’on prévoit des demandes de chaud et de froid simultanées

La variante dite « à récupération d’énergie » est particulièrement intéressante si l’on prévoit des apports internes élevés durant l’hiver : salle informatique, locaux intérieurs, … La chaleur extraite pourra être restituée vers les locaux demandeurs en façade. Elle peut être intéressante également en mi-saison (façades d’orientation différentes).

Il faut avoir conscience que cette situation est plus rare qu’on pourrait le penser (essentiellement en mi-saison). Dans l’étude d’un bureau-type de 3 000 m², l’analyse des besoins par simulation a fait apparaître que le potentiel de récupération de chaleur sur la demande de froid avoisine les 20 % de la demande de froid annuelle. C’est un potentiel théorique. Nous ne connaissons pas actuellement le pourcentage réel d’exploitation de ce potentiel par le système. Par contre d’autres applications s’y prêtent très bien :

  • la récupération de chaleur depuis un local informatique ou d’un process industriel,
  • la production d’eau chaude sanitaire par récupération de chaleur des locaux en été,
  • l’alimentation en chaud ou en froid d’une batterie terminale d’un groupe de ventilation

Mais ce potentiel augmenterait fortement si, au lieu de prendre une structure classique rectangulaire (bureaux en façade et couloir central), une structure carrée avait été décidée, ou si des étages enterrés en sous-sol étaient programmés.

Une analyse des besoins thermiques est très utile pour aider à la décision.

Lorsque l’on prévoit de fréquentes modifications de l’organisation interne des locaux

La possibilité de passer instantanément du mode refroidissement au mode chauffage donne au système la même souplesse que celle d’une installation de ventilo-convecteurs 4 tubes.

Plan modification agencement interne des locaux.

Lorsque la rénovation du bâtiment ne permet pas de dégager des espaces techniques importants

Ce système peut s’adapter facilement en rénovation puisque aucun local technique n’est requis (pose en toiture) et que les tuyauteries ont un faible encombrement.

Si le placement d’un faux plafond n’est pas possible, un système en allège ou en plafonnier apparent sera prévu.

De plus, le fractionnement de la puissance totale de l’unité extérieure en multiples modules permet un montage plus aisé, chaque module pouvant être monté par ascenseur, par exemple.

On sera attentif au bruit de l’unité extérieure pour le voisinage, mais le fonctionnement à vitesse variable permet de limiter celui-ci à des valeurs acceptables.

Lorsque l’on a affaire à des bâtiments où l’occupation des locaux n’est pas constante (chambre d’hôtels par exemple).


Les limites des systèmes DRV

On sera attentif aux aspects suivants qui peuvent écarter ce choix :

Le prix semble être encore élevé, surtout en regard à la puissance frigorifique fournie

Comme pour tout produit nouveau sur le marché, le prix d’investissement est proportionnellement élevé. Surtout pour la solution énergétiquement la plus performante, l’installation 3 tubes. Mais il faut envisager le coût global sur 20 ans, exploitation comprise. Nous manquons de chiffres pour faire apparaître la performance à l’exploitation de ce système qui paraît importante. Mais notons que le prix d’un système DRV doit être mis en parallèle au prix d’une technologie 4 tubes (groupe de froid et chaudière). À ce moment-là, on se rend compte de cout est comparable, voir inférieur.

Le travail de conception et de dimensionnement est réduit puisque le constructeur propose son installation « clé sur porte ». Sachant qu’il est limité en puissance frigorifique et calorifique, il aura tendance à dimensionner son équipement en ne surévaluant pas les besoins, ce qui est un gage d’efficacité énergétique à l’exploitation.

Remarque
L’avenir de la tarification électrique devrait être plutôt favorable à ce système. En effet, les fournisseurs d’électricité vont favoriser les systèmes capables de délester au moment de la pointe, capables de réguler le diagramme de charge en pilotant les compresseurs à vitesse variable.

Les utilisateurs de ces systèmes pourraient alors bénéficier d’un tarif préférentiel diminuant le coût d’exploitation. Dans plusieurs pays, des primes à l’investissement sont octroyées, ce qui a permis une évolution plus rapide de ce type d’installation.

L’existence d’un réseau de fluide frigorigène dans l’ensemble du bâtiment

Placement des tuyauteries en faux plafond.

Les fabricants ont réduit la charge de fluide au maximum et les techniques d’aujourd’hui permettent a priori une installation « zéro fuite », mais un risque subsiste. Non pas pour les occupants (les fluides ne sont pas nocifs), mais vis-à-vis d’une réglementation future plus restrictive au niveau environnemental.

Il faut reconnaître qu’une fuite quelque part dans un faux plafond… n’est pas simple à détecter.

Actuellement, le Permis d’Environnement de l’IBGE n’interdit pas cette technique. Mais le Luxembourg qui a, un certain temps interdit cette technique, limite la puissance des installations à 50 kW.

La norme européenne EN 378 limite la concentration du R410A à  440 gr/m³. Elle considère que l’ensemble du gaz d’une installation peut s’échapper dans un local. Pour une quantité totale de réfrigérant de 30 kg contenue dans une installation, aucun local de moins de 68,2 m³ (+/- 27,3 m²) ne pourrait théoriquement donc être chauffé/refroidit par le système DRV sauf si la ventilation permet d’abaisser la concentration sous le seuil maximal en moins de 10 minutes.

Réglementations

Des contrôles d’étanchéités doivent être faits une ou plusieurs fois par an suivant la quantité de gaz de l’installation. Pour plus d’informations : cliquez ici.

Le chauffage en hiver par pompe à chaleur sur l’air extérieur

Il semble que les performances des pompes à chaleur soient en constante évolution (par la technique INVERTER de variation de vitesse du compresseur, par les techniques de dégivrage nettement améliorées, …), mais nous ne disposons pas de valeurs de  SPF hivernal, mesuré sur site réel, par un organisme indépendant. Quel est le COP global de la machine lorsque la température extérieure descend à – 5… – 10 °C ?

D’un point de vue énergétique :

En considérant facteur d’énergie primaire de 2,5 pour l’électricité et un rendement de chaudière de 95 % pcs. Il suffirait d’un SPF de 2,38 pour équilibrer le bilan énergétique, équipements auxiliaires (ventilateurs,…) compris.

D’un point de vue économique :

Avec un système DRV, le courant électrique utilisé est un courant de jour (environ 0,23 €/kWh, pointe comprise). Si le gaz se maintient autour des 0,09 €/kWh pcs. Avec un rendement d’une chaudière gaz condensation de 95 % pcs Il suffirait d’un COP moyen de  2,43 pour équilibrer le coût énergétique, équipements auxiliaires (ventilateurs,…) compris.

Ces valeurs de COP sont probables.

De plus, un fonctionnement au tarif avantageux de nuit est possible pour la relance du bâtiment du matin, ce qui fait l’essentiel des besoins de chauffage.
Les installations DRV sont rarement surdimensionnées, en premiers lieux à cause de la limite en puissance, mais également pour éviter faire tourner les compresseurs en régime trop faible ce qui détériore les rendements. Pour éviter des facteurs de relance trop élevés les constructeurs préconisent de maintenir la température de nuit jusqu’à 17 – 18 °C afin d’éviter des dégivrages trop fréquents en hiver. Or ce procédé augmente entre 17 et 38 % les consommations journalières en hiver.

Le refroidissement en été handicapé par le type de compresseur

Les constructeurs annoncent des EER entre 3,1 à 4,3. Ces valeurs restent dans la moyenne des machines à refroidissement/réchauffement par air, à près tout c’en est une. Malheureusement il n’existe pas de valeur d’efficacité saisonnière (ESEER), ni auprès de fabricants ni auprès d’organisme indépendant. Celle-ci aurait pu nous aider à se faire une idée réelle de l’efficacité.

Ce qui est sûre, c’est qu’énergétiquement parlant, si la récupération d’énergie (chaleur provenant d’un local informatique, transfert de chaleur entre locaux dont les besoins sont forts différents, process industriel nécessitant la production d’eau glacée,…) est impossible ou faible, il faudrait mieux vous tourner vers une autre technologie.

Conclusion

On ne peut aujourd’hui que tirer une conclusion provisoire, en disant que le système DRV présente des avantages indéniables, qu’il semble d’une bonne performance énergétique grâce à une électronique intelligente et qu’il s’adapte tout particulièrement aux petites et moyennes surfaces à traiter.


Choisir le type de système DRV

En dehors des spécificités technologiques des différentes marques, les choix principaux sont :

Le choix de l’existence d’une récupération entre locaux

L’installation peut être du type « froid seul » : c’est le choix qui sera fait lorsque l’installation vient en complément d’une installation de chauffage existante (rénovation d’un ancien bâtiment). A éviter sous peine de risque de destruction d’énergie.

L’installation peut être du type « froid seul » ou « chaud seul » : les unités intérieures produisent alors toutes en même temps, soit du froid, soit du chaud. Ce système demande que les besoins du bâtiment soient assez homogènes et qu’une plage neutre (plage où la température fluctue sans intervention) de 21 à 25 °C par exemple, soit acceptée par chacun. Ce ne sera donc pas un système adéquat pour un immeuble comportant des zones intérieures (à refroidir toute l’année) ou des façades fortement vitrées, orientées Est-Ouest. Sauf si la zone intérieure du bâtiment est importante, au point qu’un circuit indépendant (avec sa propre unité extérieure) se justifie rien que pour cette zone centrale.

L’installation peut travailler en mode « froid » et en mode « chaud », simultanément : les unités intérieures peuvent assurer du chauffage dans certains locaux et du refroidissement dans d’autres. Le confort est donc nettement amélioré puisque l’on peut répondre à des besoins différents dans chaque local.
De plus, ce système permet la récupération d’énergie dans la mesure où il est capable de transférer la chaleur puisée dans les locaux à refroidir vers les locaux à réchauffer. C’est l’existence d’un réseau de fluide frigorigène, la performance des nouveaux compresseurs à vitesse variable et une électronique sophistiquée qui permet cet avantage appréciable. C’est le système à choisir lorsque l’analyse des besoins prévoit des superpositions importantes de demandes de chaleur et de froid simultanées.

Mais un supplément de prix de l’ordre de 30 à 50 % sera demandé par rapport au mode « froid ou chaud ».

 Études de cas

Les bureaux de Franki Geotechnics.


Les paramètres de prédimensionnement

Pour réaliser un appel d’offres permettant de comparer les solutions entre elles, certains éléments doivent être précisés dans le dossier.

Un découpage des zones lié au choix du système 2 tubes ou 3 tubes

En 2 tubes :

Si les locaux sont répartis sur des façades différentes, où si certaines pièces ont des besoins forts différents des autres, il est à première vue adéquat de diviser le bâtiment en plusieurs zones, une pour chaque façade par exemple. On peut dire que 2 installations de climatisation sont alors installées dans le bâtiment, puisque les 2 unités travailleront en parallèle.

Illustration division du bâtiment en plusieurs zones.

En 3 tubes :

Pour optimiser la récupération de chaleur, il faut privilégier une seule installation pour l’ensemble du bâtiment. Si cela n’est pas possible, à cause de la limite de puissance par exemple, il peut être utile de découper le bâtiment horizontalement. Si on intègre dans la même zone des locaux de façades différentes, un transfert d’énergie peut avoir lieu à l’intérieur du bâtiment, en mi-saison.

Il est donc indispensable d’évaluer si des demandes de chaud sont prévues simultanément à des demandes de froid. Tout particulièrement, si un local informatique est présent, il est opportun de l’intégrer dans une zone où les autres locaux sont majoritairement en demande de chauffage.

Illustration division du bâtiment en plusieurs zones.

Une évaluation réaliste des besoins de refroidissement

Un dimensionnement très soigné doit avoir lieu. En effet, ce type d’installation travaille avec un mauvais rendement à bas régime.

Le compresseur tourne à vitesse variable en fonction de la demande. Mais une limite inférieure de 20 Hz ne peut pas être franchie. À ce moment, le compresseur développe 17 % de sa puissance nominale. Pour toute puissance inférieure, il risque d’adopter un régime de fonctionnement entrainant la destruction d’énergie. Le rendement en sera fortement dégradé.

Il faut donc éviter que l’installation soit sur-dimensionnée, c’est-à-dire, dimensionnée pour répondre à des conditions de canicule ou de froid extrême, avec des coefficients de sécurité supplémentaires, … entraînant de facto un fonctionnement fréquent à bas régime.

Plus positivement, on adoptera un facteur de foisonnement réaliste sur l’utilisation simultanée des équipements.

En quelque sorte, l’installation  n’a pas la possibilité de profiter de l’inertie d’un ballon tampon…

Une analyse de la technologie la plus adéquate

Sans entrer dans trop de détails techniques, les systèmes mis sur le marché varient d’un fabricant à l’autre. Tout particulièrement, le réseau de distribution des fluides qui est plus en « râteau » chez l’un et en « botte » chez l’autre. Certains systèmes seront plus vite limités en longueur de tuyauteries après le boîtier de répartition.

Ces nuances peuvent générer des coûts très différents lors de la mise en œuvre (nombre de boîtiers de distribution, facilité de passage de tubes au niveau des poutres, …).

Il sera donc utile de préciser la disposition des locaux, leur usage, … et l’accès prévu pour les techniques (gaines techniques, trémies, réservation dans les poutres…). Si un seul réseau peut être prévu en faux plafond pour alimenter des cassettes en dessous et des unités intérieures en allège pour l’étage du dessus, le coût d’installation peut être réduit.

À la limite, surtout en 2 tubes, il faudra écarter l’un ou l’autre local de l’ensemble parce qu’il a un comportement trop différent du restant des locaux à traiter.

Comparer ce qui est comparable

Comparer deux systèmes de climatisation n’est pas toujours aisé. Un système DRV chauffe et refroidit, il est installé avec sa propre régulation, il ne demande ni chaufferie ni cheminée…

Exemples :

  • Un local de réunion peut être traité spécifiquement avec un système d’apport d’air neuf autonome (fonctionnement en free cooling).
  • La partie self 24h/24 d’une agence bancaire sera traitée distinctement des bureaux.

Qu’en est-il de la garantie ? Certains constructeurs proposent 5 ans de garantie omnium sur l’ensemble de la solution.

L’installateur est-il agréé par le constructeur ?

La location d’une grue pour poser les équipements frigorifiques en toiture est-elle présente dans l’offre ?

Dans l’appel d’offres, il faudra en tenir compte pour pouvoir ensuite comparer plus facilement des solutions différentes.


Check-list qualité

Voici quelques critères de qualité à vérifier au niveau du cahier des charges :

  • L’étanchéité du réseau est déterminante et l’objectif « zéro fuite » doit être poursuivi. Les soudures seront réalisées sous atmosphère d’azote (permet d’éviter la formation de calamine) lors du brasage  Lors de la réception, l’installation sera testée sous minimum 30 bars d’azote durant 48 heures minimum, afin de détecter les fuites possibles du réseau.
  • Le cuivre doit être de qualité, de type frigorifique.
  • Une distribution d’air et de chaleur de qualité dans les locaux suppose un nombre suffisant de bouches ou de cassettes. Or l’installateur voudra réduire son prix en limitant le nombre de points de distribution dans les locaux. Pour que le client ne se retrouve pas avec une seule cassette très puissante au centre de son bureau paysager, le cahier des charges devra préciser le niveau de qualité à atteindre en matière de vitesse résiduelle d’air à la limite de la zone d’occupation, ou directement en matière de nombre d’appareils à prévoir.
    En termes de prix,  placer une cassette de 5 kW à la place d’une de 2 kW dans un bureau paysager entraine un supplément de  quelques centaines d’euros. Ajouter une cassette supplémentaire dans un local génère un coût de  plusieurs milliers d’euros… environ. Mettons-nous à la place de celui qui veut obtenir le marché…!
    Il ne faut ni air stagnant dans un coin du local, ni turbulence à la jonction de 2 flux d’air venant d’appareils différents. Pour s’assurer du bon brassage de l’air, on demandera un spectre de distribution de l’air garanti.
    La distribution prévue permet-elle une modification ultérieure éventuelle des cloisons ? (flexibilité).
  • Il faut vérifier la solution proposée pour que de l’air froid ne soit pas pulsé sur les occupants lors de la période de dégivrage de la pompe à chaleur. Tout particulièrement lorsqu’une arrivée d’air neuf est intégrée à l’entrée des unités intérieures…
  • C’est souvent l’intersaison qui pose problème… Lorsqu’une solution « froid ou chaud » est prévue, le « change over » (passage d’un mode à l’autre) devra être organisé. Si le bâtiment est assez inerte et homogène, un passage « été – hiver » manuel suffira. Dans le cas contraire, il est possible qu’il faille majoritairement chauffer au matin et refroidir l’après-midi. Et un change over automatique, décidé par le système en fonction de la demande majoritaire, est utile. Tous les systèmes ne le proposent pas. À noter que certains systèmes en mode « froid ou chaud » peuvent travailler alternativement en froid et puis en chaud, afin de satisfaire une fois l’un, une fois l’autre !
  • Les cassettes à intégrer dans le faux plafond sont-elles équipées d’origine de pompes pour remonter les condensats (les pompes ajoutées par après sont souvent beaucoup plus bruyantes) ?
  • Une possibilité de variante URE est-elle intégrée au cahier des charges ?
  • Le fluide frigorigène prévoit-il les exigences réglementaires futures ?
  • En cas d’appareil en allège, un manchon de raccord entre l’unité intérieure et la grille de l’habillage est-il prévu (pour éviter le court-circuitage partiel de l’air pulsé) ?

La hauteur de l’unité intérieure ne correspond pas toujours à la hauteur prévue pour l’habillage.

Zones à risque de contamination élevé de l’hôpital

Zones à risque de contamination élevé de l'hôpital


Niveau de propreté particulaire et bactérienne de l’air

En fonction de la zone, le traitement d’air doit répondre en tout ou en partie aux objectifs suivants :

  • limiter la concentration dans l’air des particules, des virus et des bactéries,
  • éliminer les gaz dangereux (gaz anesthésique, …) et explosifs,
  • éviter les contaminations entre différentes zones (contaminations croisées).

Le maintien de la qualité de l’air ne se résume donc pas à l’apport d’air neuf hygiénique. Il faut en outre supprimer tout risque d’aérobiocontamination soit au départ de certains locaux du bâtiment (zones septiques), soit venant de l’extérieur.

La pression relative entre les locaux, la filtration, le recyclage de l’air et la désinfection des équipements jouent donc un rôle tout aussi important que l’apport d’air neuf.

L’importance de chacune de ces « missions » varie en fonction du risque de contamination que l’on rencontre dans les différentes zones du bâtiment. On parle de zones à risque classées de 2 à 4 en fonction du risque de aérobiocontamination encouru, tant pour les patients que pour la communauté hospitalière (norme EN ISO 14644 et EN ISO 14698). La norme NF S90-351 s’inspire de ces deux normes européennes pour donner des recommandations en termes de conception, d’exploitation, de maintenance et d’utilisation des installations de traitement d’air pour les établissements de santé.

Évaluer

Afin d’évaluer le risque de contamination de la zone considérée en fonction de l’activité, les taux de renouvellement d’air et les pressions différentielles qui en découlent.

Confort des occupants

Le niveau du confort d’une zone à risque contrôlé passe aussi par l’évaluation du confort des malades, du personnel soignant et des visiteurs. Les consignes de température, du taux d’humidité, de la vitesse de déplacement d’air, fonction du type d’intervention réalisée, sont à respecter et à contrôler en période d’occupation de la zone, surtout en présence d’apports calorifiques importants.

Tout spécialement, un taux minimum d’humidité relative doit être maintenu pour éviter les risques d’explosion des gaz anesthésiants.

Théories

Afin d’évaluer le niveau de confort à atteindre dans les locaux.

« Tout air neuf » ou « recyclage » ?

Comme dans toute autre zone, il est nécessaire d’assurer le confort respiratoire des occupants. De plus, les filtres de la chaine de traitement de l’air ne peuvent pas arrêter les polluants chimiques tels que les gaz anesthésiants. C’est pour cette raison, en plus de l’élimination des polluants dus à la présence humaine, qu’il est nécessaire d’effectuer un apport d’air neuf. Les taux de brassage importants servent en grande partie à atteindre le niveau de propreté souhaité au niveau particulaire et bactérien.

La conception moderne des « zones à risque » a fortement évolué malgré l’imprécision qui règne au niveau des réglementations. C’est aux salles blanches industrielles que l’on doit cette avancée majeure. Ce n’est que suite au développement catastrophique des infections nosocomiales qu’on s’est intéressé de près aux systèmes de ventilation et climatisation dans les hôpitaux et à leur normalisation.

La phobie du recyclage est encore bien présente dans les mentalités mais tend à laisser la place à une intégration certaine de ce principe dans les nouveaux projets de conception; ce qui est favorable du point de vue de l’énergie, de l’environnement et du portefeuille du maître d’ouvrage.

Dans la conception des zones à risque ci-dessous, nous avons pris l’option de ne considérer que le système à recyclage.

À noter également que le système d’humidification n’est pas repris dans les schémas. Un humidificateur à vapeur en sortie de caisson est recommandé pour les qualités hygiéniques de ce système.


Zones à risque contrôlé

1. Introduction

Source d’informations

Les recommandations reprises ci-après sont principalement issues du guide « Traitement de l’air en milieu hospitalier » élaboré par des médecins et des spécialistes du traitement de l’air, à l’initiative d' »UNICLIMA » (Union intersyndicale française des constructeurs de matériel aéraulique, thermique, thermodynamique et frigorifique).

Les configurations de climatisation des salles d’opération montrées ci-dessous sont parfois extrêmes mais montrent le souci de contrôler au maximum le risque de contamination. Dans la pratique, en Belgique, les configurations sur le terrain sont en général plus simples sauf demande expresse du maître d’ouvrage.

2. Zones à risque modéré de biocontamination

(zones à risque 2)

Zones à risque 2 

Zones pour patients à risque infectieux modéré : médecine interne ou spécialisée, rééducation fonctionnelle, maternité, pédiatrie, long et moyen séjour, psychiatrie, consultations externes, hôpitaux de jour à orientation infectieuse.

Objectif d’épuration : classe ISO 8 (moins de 3 500 000 particules > 0,5 μ m par m³ d’air).

L’air est pulsé mécaniquement dans chaque local au moyen de diffuseurs classiques et en partie repris par un recycleur propre au local ou au groupe de locaux concernés. Le dernier étage de filtration est d’efficacité minimum EU10 (95 % DOP ou H11) avec un préfiltre EU7 (85 % OPA ou F7). Une surpression des salles est assurée par un débit d’air neuf introduit plus élevé que celui extrait.

Ventilation des zones à risques 2 :
1/3 de l’air est extrait en partie haute pour éliminer les gaz anesthésiques plus légers que l’air.

3. Zones à haut risque de biocontamination

(zone à risques 3)

Zones à risques 3

Zones pour patients à haut risque infectieux : réanimation, soins intensifs, explorations fonctionnelles vasculaires, néonatalogie, hémodialyse, hématologie, chimiothérapie, chirurgie, blocs opératoires conventionnels (chirurgie digestive propre ou contaminée, chirurgie gynécologique, obstétricale, urologique, ORL).

Objectif d’épuration : classe ISO 7 (moins de 350 000 particules > 0,5 μ m par m³ d’air).

Il est reconnu que la principale source de contamination bactérienne est l’équipe chirurgicale elle-même. C’est donc dans les environs du champ opératoire que l’on retrouve la plus grande concentration de micro-organismes.

Utiliser une ventilation en flux turbulent, c’est-à-dire avec des diffuseurs traditionnels semblables à ceux utilisés dans les zones à risques 2 a pour conséquence de diluer rapidement la charge contaminante au travers de la pièce entière et rend donc le contrôle des risques plus difficile. La solution préconisée pour les zones à risques 2, solution par ailleurs bon marché, est donc à prendre avec précaution dans ce cas.

On lui préférera la solution du plafond soufflant à basse vitesse : l’air neuf est pulsé par un plafond soufflant à déplacement d’air à basse vitesse et couvrant la zone de plus haut risque. Il est repris en partie vers un recycleur spécifique au local ou à un groupe de salles semblables. Ce mode de pulsion entraîne un écoulement dirigé d’une vitesse inférieure à 0,25 m/s. Le mouvement transversal turbulent est très faible, de même que le mélange avec l’air ambiant. L’entraînement par déplacement d’air crée alors une véritable barrière dynamique autour de la zone de « plus haut risque ».

Le dernier étage de filtration est d’efficacité minimum EU13 (99,99 % OP ou H14). Ce filtre est placé le plus près possible du plafond diffusant (éventuellement à l’intérieur de ce dernier) avec un préfiltre EU8 (95 % OPA ou F8).

La plupart des normes internationales recommandent d’assurer une surpression dans les salles d’opération. Celle-ci est obtenue par un débit d’air neuf introduit supérieur à celui extrait. La norme allemande DIN 1946 prévoit, elle, la possibilité d’inverser cette pression relative dans le cas d’opérations septiques. Dans ce cas, l’air extrait doit aussi être filtré par un filtre absolu.

Le maintien des débits et des pressions dans le temps est important dans ce type de local, et ce malgré  l’encrassement des filtres. Ceci peut se faire en équipant le ventilateur dune variation de vitesse du ventilateur.

Un taux d’air neuf de 5 vol/h est souvent considéré comme suffisant pour la dilution des gaz anesthésiques.

Parmi les différents types de plafond soufflant existants, les critères de choix sont

  • la protection du patient,
  • le confort des occupants (vitesse d’air dans la zone occupée et niveau sonore),
  • l’absence de turbulence,
  • la facilité de maintenance,
  • le coût.

Ventilation des zones à risques 3 :
1/3 de l’air est extrait en partie haute pour éliminer les gaz anesthésiques plus légers que l’air.

Plafond soufflant en inox à une vitesse de 0,2 m/s, équipé d’un filtre H13 ou H14 et d’une dalle aveugle étanche pour le passage du scyalitique

   Photo bouche de pulsion à jet.

Lorsque la conception architecturale de la salle d’opération ne permet pas le placement d’un plafond soufflant, on peut disposer les bouches de pulsion à jet dirigé de très faible vitesse sur le mur perpendiculaire à la table d’opération, dans le coin supérieur de la salle.

 4. Zones à très haut risque de biocontamination

(zone à risques 4)

Zones à risques 4

Zones pour patients à très haut risque infectieux : cancérologie, onco-hématologie, greffés, prématurés, brûlés, blocs opératoires aseptiques (orthopédie, cardio-vasculaire, neurochirurgie, ophtalmologie).

Objectif d’épuration : classe ISO 5 (moins de 3 500 particules > 0,5 μ m par m³ d’air).
Le flux laminaire ou flux unidirectionnel est le système actuellement le plus efficace pour fournir de l’air stérile autour d’un malade à protéger ou de la plaie chirurgicale. Il assure en parallèle une liberté de mouvement suffisante au corps médical.

Pour garantir une efficacité optimale, il faut

  • le moins de turbulence possible,
  • une vitesse d’air comprise entre 0,3 et 0,6 m/s pour garantir la stabilité du flux,
  • un espace réduit entre le soufflage et la zone à protéger,
  • tenir compte des perturbations possibles (luminaires, …) et des mouvements de l’équipe chirurgicale.

Le degré de filtration recommandé est semblable à celui des zones à risques 3. Ici aussi, une surpression des salles est assurée par un débit d’air neuf introduit et non extrait.

Étant donné les importants taux de renouvellement d’air recommandés (200 à 600 vol/h), il est évidemment recommandé de circonscrire le plus exactement possible la zone à protéger, le reste de la salle ne subissant pas de traitement particulier.

On peut ainsi concevoir des flux verticaux ou horizontaux, totaux ou partiels. Dans tous les cas, une partie de l’air devra être extraite pour éliminer les gaz dangereux (gaz anesthésiques).

Salles d’opération à flux laminaire horizontal

 

Flux total : tout le local est balayé par le flux d’air repris sur la paroi opposée.
Remarque : sur le schéma, le chirurgien est mal situé par rapport au flux d’air qu’il risque de contaminer…

Flux partiel :
les filets d’air sont guidés par des parois verticales parallèles et la reprise se fait du côté du panneau filtrant.

L’avantage d’un tel système est la possibilité pour l’équipe chirurgicale de ne pas porter de heaume.

L’inconvénient réside dans la disposition obligatoire du personnel et des équipements en aval de la plaie par rapport au sens du flux.

Salles d’opération à flux laminaire vertical

Photo salle d'opération à flux laminaire vertical.

Le flux laminaire total avec plancher entièrement perforé n’est pas utilisable dans les hôpitaux à cause des exigences de désinfection. On utilise donc un flux partiel couvrant la zone de plus haut risque. La zone couverte est de l’ordre de 3 m sur 3 m. Cette dimension permet aux parois verticales (descendant jusqu’à 1,6 m du sol, avec éventuellement rideaux souples en PVC) guidant le flux de ne pas gêner l’équipe chirurgicale. La reprise se fait en périphérie du flux laminaire.

Flux vertical alimenté par une centrale de traitement d’air.

Flux vertical autonome avec ventilateurs incorporés.

Les avantages d’un tel système sont d’une part la liberté de mouvement de l’équipe chirurgicale et les débits d’air à traiter moindre que dans le cas d’un flux horizontal (zone à traiter moindre).

L’inconvénient est le port du heaume conseillé pour garantir la qualité de l’air.

Chambres stériles

Photo chambres stériles.

Les chambres stériles peuvent être ventilées soit par un flux laminaire horizontal, soit vertical, suivant les typologies recommandées pour les salles d’opération. La zone à protéger sera restreinte au lit du patient, éventuellement à la zone destinée à recevoir le personnel soignant.

5. Zones à risque pour la collectivité hospitalière

Zones à risques

Zones où il faut protéger la collectivité hospitalière des risques infectieux : chirurgie septique (urologie voie basse, gynécologie, endoscopie), chirurgie très septique (proctologie, abcès, préparation opératoire, zone d’urgence, soins intensifs avec malades infectieux, traitement du matériel côté sale, laboratoire de manipulation de prélèvements biologiques ou germes).

Objectif : Protection de l’environnement hospitalier par confinement, maîtrise des flux d’air et filtration.

Les prescriptions relatives aux zones à risques pour le patient doivent être complétées en tenant compte des risques pour la collectivité hospitalière. En fonction du degré de risque pour celle-ci, la protection doit comprendre

  • Un confinement, c’est-à-dire un isolement du patient et de l’équipe de soins de l’environnement extérieur par des cloisons et des portes fermées, et l’isolation du patient de l’équipe de soins par des cloisons (cabines stériles) et des vêtements spéciaux (scaphandres).
  • Une mise en dépression de la zone contaminée complétant le confinement. Selon les risques, un sas en surpression est souvent nécessaire. Dans le cas de très haut risque, le ventilateur d’extraction doit être doublé pour prévenir tout risque de panne et donc d’arrêt de l’installation. Dans tous les cas, le fonctionnement du ventilateur d’extraction doit être asservi au fonctionnement du ventilateur de pulsion.
  • Une maîtrise des flux d’air évitant les zones inertes et entraînant le plus rapidement les particules contaminées vers le réseau d’extraction. La disposition des locaux est en ce sens importante.
  • Un réseau d’extraction complètement indépendant de ceux des autres locaux.
  • Une filtration de l’air extrait au moyen d’un filtre absolu. Ce filtre doit être doublé en cas de très haut risque pour prévenir toute défaillance d’un des filtres.

Principe aéraulique du traitement d’air dans une zone à très haut risque pour le patient (flux laminaire vertical) et pour la collectivité hospitalière (sas, double filtration, double ventilateur).

Lorsque le risque de contamination pour la collectivité hospitalière est modéré, il n’est pas nécessaire de maintenir les locaux d’hébergement ou de traitement en dépression. Il s’agit d’une simple mise en quarantaine. Il faut simplement, dans ce cas, rester vigilant quant à la circulation des personnes, du matériel et à la séparation des zones. Le réseau de ventilation recyclage et extraction doit cependant être indépendant pour la zone où on identifie ce risque.


Récupération de chaleur sur l’air extrait

On l’a vu ci-dessus, la plus grosse récupération de chaleur se fait par un taux de recyclage important pouvant dépasser 70 % de flux total d’air pulsé. Les conditions pour pouvoir effectuer ce recyclage sont que l’air recyclé provienne de la même salle que celle dans laquelle il est injecté et que l’air recyclé soit filtré avec la même efficacité que l’air neuf.

On considère souvent que la récupération de chaleur sur l’air extrait n’est financièrement intéressante que lorsque l’on travaille en « tout air neuf », ce qui n’est jamais le cas dans les solutions techniques présentées ci-dessus. On peut cependant envisager une récupération de chaleur sur l’air extrait lorsque les débits d’air neuf sont importants (jusqu’à 15 vol/h).

Concevoir

Choix d’un récupérateur de chaleur.

Il est déconseillé d’utiliser des échangeurs à plaques. En effet, ils sont difficiles à désinfecter, l’agent désinfectant pénétrant mal entre les interstices de faible dimension. L’aluminium est en outre fragile vis-à-vis de ces produits, ce qui risque de provoquer des fuites, donc des contaminations qui ne seront jamais détectées. Si de tels échangeurs sont utilisés, il faut respecter une hiérarchie correcte des pressions entre le conduit d’air neuf et le conduit d’air extrait. Cette pression relative doit être contrôlée régulièrement (un pressostat d’alarme peut signaler toute modification), de même que la concentration de contaminant dans l’air neuf.

Les échangeurs avec fluide calorifique intermédiaire (eau glycolée) ont des rendements de récupération moindre par rapport aux autres systèmes. Cependant, puisqu’il n’y a pas de contact direct entre l’air vicié et l’air neuf, les risques de contamination croisée sont éliminés.

Les échangeurs du récupérateur doivent être disposés au niveau de la pulsion entre les deux premiers étages de filtration, pour qu’ils soient protégés de l’encrassement et pour ne contaminent pas l’air distribué. Les échangeurs sur l’air extrait peuvent aussi être protégés par un filtre pour éviter un encrassement trop rapide.


Autres prescriptions de la norme DIN 1946 pour les salles d’opération

Voici d’autres recommandations, notamment issues de la norme DIN 1946

  • Les unités de traitement d’air devraient être composés de panneaux en acier galvanisé double paroi et avec des composants facilement démontables pour être stérilisés.
  • Les batteries froides devraient être en acier inoxydable avec des ailettes en aluminium, protégées par une peinture epoxy.
  • Les unités de traitement d’air devraient être capables de fonctionner à débit réduit lorsque les salles sont inoccupées, assurant en permanence une pressurisation suffisante. En mode veille, seule la pression de la salle est surveillée. On travaille alors en tout air neuf, sans contrôle de température ni d’humidité. Elles doivent pour cela être équipées de moteurs à vitesse variable.
  • Les unités de traitement d’air devraient pouvoir assurer une surpression et une dépression dans les salles d’opération en fonction du type d’intervention (aseptique ou septique) et pouvoir facilement passer dune situation à une autre. Ceci est possible en utilisant des ventilateurs à vitesse variable.
  • Les systèmes centralisés et décentralisés (unités montées et réglées en usine) peuvent être utilisés pour traiter l’air des salles d’opération. Cette seconde solution permet une meilleure flexibilité de chaque salle (fonction du type d’intervention et des exigences de chaque chirurgien) et une meilleure fiabilité. Le système de contrôle et la programmation de ces systèmes est réalisé en usine, ce qui limite les risques liés à l’installation et au réglage.

Armoire de climatisation de haute précision.

Image par défaut pour la partie Concevoir

Zones intérieures (local aveugle, salle de réunion)

Zones intérieures (local aveugle, salle de réunion)


Principe

Les particularités des locaux intérieurs sont

  • de ne pas avoir de parois en contact avec l’extérieur et donc pas de déperditions en hiver, pas plus que d’apports solaires en été,
  • d’être en permanence en demande de refroidissement puisque les occupants et les équipements internes (dont l’éclairage) génèrent une chaleur qui ne peut s’échapper naturellement : sans intervention, la température ne ferait qu’augmenter …
  • d’être, dans le cas d’un local de réunion, en demande d’un traitement thermique uniquement lorsqu’il y a présence des occupants (90 % de la demande est créée par les occupants et l’éclairage).

La solution traditionnelle, souvent appliquée lorsqu’il s’agit d’un local isolé, consiste à placer un climatiseur dans le local. Mais cette solution ne peut être généralisée pour un ensemble de locaux « aveugles » puisqu’il n’y a pas un accès facile vers l’extérieur pour l’évacuation de la charge thermique (difficile de placer les condenseurs en façade).

Une solution plus centralisée est nécessaire.

On pense alors au placement de ventilo-convecteurs sur une boucle d’eau glacée, avec production de froid et condenseur en toiture. Mais deux aberrations énergétiques sont présentes :

  1. Durant tout l’hiver, on va refroidir artificiellement le cœur du bâtiment, sans profiter de l’air froid extérieur.
  2. On va évacuer la chaleur à l’extérieur alors que les locaux en façade ont besoin de chauffage …

Deux solutions apparaissent alors

  1. La solution « tout air » qui se fonde principalement sur l’idée que l’air extérieur froid peut répondre aux besoins de refroidissement une grande majorité du temps.
  2. La solution « fluide réfrigérant variable » qui se base sur l’idée que la chaleur extraite des locaux centraux peut être récupérée dans les locaux périphériques.

La solution « tout air »

Partons de plusieurs constats pour élaborer une réponse adaptée :

Un réseau d’air hygiénique est nécessaire pour apporter de l’air neuf aux occupants :

Un apport de 30 m³/h par personne est requis. Si une personne occupe 10 m², elle vit dans 30 m³ d’air (hauteur sous plafond de 3 m). Lui apporter de l’air hygiénique entraîne donc un renouvellement d’air du local de 1 volume par heure. Autrement dit, si les locaux font X m³, le débit d’air neuf nécessaire sera de X m³/h.

La solution la plus simple consisterait à placer un réseau d’extraction mécanique dans les locaux, laissant l’air entrer naturellement sous les portes (ou par des grilles dans les portes), via les couloirs. C’est économique à l’investissement, mais peu efficace en pratique, car le débit réel sera fonction de l’étanchéité globale du bâtiment…

Un réseau d’air pulsé paraît impératif pour atteindre une bonne qualité d’air intérieur.

Refroidir les locaux par de l’air froid suppose un débit d’air nettement plus élevé que celui de l’air hygiénique.

En effet, l’air ne peut être soufflé avec un écart de température par rapport à l’ambiance supérieur à 10°C (si l’ambiance est de 24°C, la pulsion sera de 14°C minimum).

Dans ces conditions chaque m³ d’air apporte 3,4 W de refroidissement. Or une personne et son éclairage génèrent 20 W/m² de chaleur, soit 6,7 W/m³ (si hauteur sous plafond de 3 m). Il faudra donc :

6,7 [W/m³local] / 3,4 [W/m³air] = 2 [m³air/m³local],

soit un renouvellement horaire minimal de 2 volumes par heure.

Et bien souvent, de nombreux équipements bureautiques dégagent une chaleur nettement plus importante encore. Si bien que le taux de brassage de l’ambiance par de l’air froid est en général situé entre 4 et 6. Autrement dit, si les locaux font X m³, le débit d’air froid nécessaire sera de 4X … à … 6X m³/h.

En Belgique, la température extérieure est 98 % du temps inférieure à 24°C.

Il existe donc un pouvoir rafraîchissant naturel important de l’air extérieur, sans traitement et donc sans coût énergétique autre que son transport. Logiquement, on pense dès lors à mettre en œuvre un système « tout air », c’est-à-dire une installation où le rafraîchissement est transporté par l’air, installation qui serait apte à transporter cet air froid « gratuit ».

Le free cooling de nuit peut décharger les parois de la chaleur accumulée en journée.

L’air extérieur de nuit est, lui, toujours rafraîchissant, en été comme en hiver (même en période de canicule, la température de nuit avoisine les 15°C). Mais cet air n’est efficace que pour autant que son débit soit suffisamment élevé : un taux de renouvellement d’air minimum de 4 volumes/heure est nécessaire. Ici encore, l’intérêt de mettre en place une installation « tout air » est manifeste.

Seul bémol à cette proposition, le free-cooling nocturne utilise l’inertie du bâtiment comme « réservoir tampon » : en fin de nuit d’été, le bâtiment est déchargé de sa chaleur en l’amenant à une température de 22°C, et en fin de journée on laisse flotter la température jusqu’à 26°C, par exemple. Dans ce cas, le free-cooling peut effectivement procurer des économies au système de climatisation. Ceci entraîne une fluctuation des températures intérieures qu’il faut être prêt à accepter.

En Belgique, la température extérieure est 65 % du temps inférieure à 14°C, soit inférieure à la température de pulsion.

On souhaite profiter du froid extérieur, mais il est impossible d’injecter de l’air à 0°C dans les locaux ! Il y a nécessité de préchauffer l’air pulsé. Or on travaille avec des débits d’air élevés (4 à 6 renouvellements horaires). Le coût du pré-chauffage de l’air risque d’anéantir les économies réalisées sur le refroidissement !

Deux solutions se présentent alors

  • Soit on recycle partiellement l’air extrait : c’est la chaleur des locaux eux-mêmes qui préchauffent « gratuitement » l’air neuf, par mélange. Par exemple, les 4 renouvellements horaires sont constitués de 3/4 d’air recyclé et de 1/4 d’air neuf.
    Inconvénient : l’air de tous les locaux est repris, mélangé et redistribué dans les différents locaux, ce qui peut poser problème…
  • Soit on place un échangeur de chaleur sur l’air extrait : puisqu’il s’agit seulement d’un préchauffage de l’air, un échangeur à plaques ou un double échangeur à eau glycolée peut transférer la chaleur de l’extraction vers la pulsion, sans mélange entre l’air neuf et l’air vicié, en atteignant les puissances requises.

Chaque local nécessite une régulation spécifique

L’enclenchement d’un photocopieur, la tenue d’une réunion, … crée des besoins variables entre les différents locaux. Une régulation individualisée doit être proposée.

De plus, le coût du transport de l’air n’est pas négligeable dans une installation « tout air ». Il est donc intéressant de ne pulser que les débits nécessaires : pulser la moitié du débit nominal génère le huitième de la consommation électrique du ventilateur.

Ces deux constats étant faits, le conditionnement d’air à Volume d’Air Variable (VAV) apparaît comme la solution la plus adéquate. Le thermostat de chaque local agit sur le clapet modulant l’arrivée d’air. Une sonde de pression placée dans la gaine commande la vitesse des ventilateurs de pulsion et d’extraction.

Le cas particulier des bureaux paysagers

La particularité des grandes plates-formes de bureaux paysagers, c’est d’avoir dans le même local à la fois une zone centrale (où la chaleur est excédentaire) et des zones en façades (où les parois froides génèrent de l’inconfort). Dans ce cas, on prévoit simultanément la pulsion d’air frais en zone centrale et l’apport de chaleur par des radiateurs en allège des fenêtres. La régulation de ces deux flux contradictoires doit être soignée afin qu’il n’y ait pas destruction d’énergie : une plage neutre doit être réservée entre chauffage et refroidissement (par exemple, les vannes thermostatiques de radiateurs sont réglées sur 21°C et l’ouverture du débit d’air froid ne commence qu’à 23°C). Entre 21 et 23°C, le corps humain est situé dans sa plage de confort optimale.

Les inconvénients d’une telle solution

L’investissement à consentir au départ est loin d’être négligeable :

  • les conduits sont volumineux et encombrants, donc coûteux en argent et en espace,
  • la régulation est plus élaborée, et donc coûteuse et pas toujours facile à la mise au point et à la maintenance.

Il sera donc utile de chiffrer le budget énergétique d’une telle solution et de parler en terme de coût global sur 15 ans. Notamment pour comparer cette solution à la traditionnelle boucle d’eau glacée sur laquelle sont greffés les ventilo-convecteurs.

C’est le rôle du bureau d’études, car la situation est spécifique à chaque projet.

Études de cas 

Un exemple d’une telle démarche a été réalisé pour le cas de 4 locaux de consultation à l’hôpital de Chimay.

La solution « fluide réfrigérant variable »

L’approche se construit sur les éléments suivants :

1.  Nouvelles possibilités technologiques des compresseurs

On connaît le fabuleux « rendement » thermodynamique d’une machine frigorifique récente : pour faire 3 kWh de froid, il suffit de 1 kWh électrique au compresseur. Il en résulte alors 4 kWh de chaleur rejetés au condenseur. Si ces 4 kWh sont récupérés dans des locaux demandeurs de chaleur, le bilan théorique s’impose de lui-même : avec 1 kWh au compresseur, on réalise 7 kWh utiles : 3 de refroidissement et 4 de chauffage !

Si dans le bâtiment, en parallèle avec la demande de refroidissement du cœur du bâtiment, il y a une demande de chauffage des locaux périphériques, la solution thermodynamique est alléchante !

Mais la difficulté, c’est qu’en été tous les locaux sont demandeurs de froid. L’échangeur du local en façade doit alors passer du mode « condenseur » à un fonctionnement en « évaporateur ».

On a bien essayé la solution de placer des pompes à chaleur réversibles sur une boucle d’eau commune à tous les locaux, mais sans trouver la souplesse de la solution actuelle de la climatisation à « fluide réfrigérant variable » qui supprime tout vecteur intermédiaire.

Ici, dans le cas idéal où il y aurait égalité entre la demande de froid et la demande de chaud, toute la chaleur évacuée dans les locaux à refroidir est transférée vers les locaux à chauffer :

Installation en équilibre.

2.  Séparation des fonctions

À l’usage, la séparation des fonctions « apport d’air neuf » et « apport de chaud ou de froid » présente des avantages de facilité de régulation et de qualité hygiénique.

3.  Pas de fluide intermédiaire

C’est le fluide frigorifique qui circule entre les échangeurs et le compresseur. En quelque sorte, c’est l’ensemble du bâtiment qui travaille « en détente directe et en condensation directe ».

4.  Une régulation très fine en fonction de la demande

Rien n’est plus souple que du fluide frigorigène pour s’adapter aux besoins. Chaque échangeur est autonome dans la régulation de son local.

De plus, la régulation en place est étudiée pour limiter au maximum toute consommation d’énergie excessive.

Par exemple : une boucle d’eau glacée au régime 7°-12° va condenser inutilement la vapeur d’eau présente dans le local. Avec un système « fluide réfrigérant variable », l’humidité du local est mesurée en permanence et la température de l’évaporateur sera réglée « au plus haut » en fonction des besoins de froid du local, évitant ainsi toute condensation inutile.

5. Inconvénients

  • L’apport d’air neuf hygiénique n’est pas résolu. De plus, il n’existe pas de production d’eau chaude par une chaudière pour alimenter les batteries de chauffe d’un éventuel groupe central de traitement de l’air hygiénique. L’apport d’air neuf va demander une installation spécifique dont on devra soigneusement étudier la régulation pour que de l’énergie ne soit pas « cassée » : il ne faudrait pas simultanément préchauffer l’air neuf à 20°C et refroidir le local !
  • La technique est encore relativement neuve dans nos régions (malgré une large expérience au Japon)…
  • Il faut franchir le problème lié à la circulation du fluide frigorigène dans les locaux, malgré l’étanchéité des installations actuelles et la non-toxicité des fluides utilisés. Comment retrouver une fuite si les conduits circulent dans tous les faux plafonds ? L’évolution va dans le sens d’un confinement des équipements utilisant le fluide frigorigène et d’un transport du froid par de l’eau ou de l’air dans le bâtiment. Il semble que la technique du DRV soit d’ailleurs interdite au Luxembourg, pour des raisons environnementales.
  • La technologie est assez sophistiquée, bourrée d’électronique, et seul le fabricant peut réellement intervenir sur l’installation… Certains craindront alors le coût des contrats de maintenance, d’autres diront que nos voitures ont suivi la même évolution… sans que cela nous pose trop de problèmes. Des logiciels d’auto-diagnostic permettent la gestion automatique.
  • Si l’ensemble de l’installation travaille en mode « froid », le rendement du compresseur n’atteint pas celui d’une grosse machine frigorifique à vis, par exemple…

A nouveau, un bilan énergétique détaillé et annuel est nécessaire, mais il faut avouer que dans cette technique nouvelle, les bureaux d’études sont relativement dépourvus d’outils fiables d’évaluation… et les fabricants ne nous proposent aucun rapport d’évaluation neutre.

Au minimum, on essayera d’établir un planning des périodes de chauffe et de refroidissement des différents locaux pour visualiser les recouvrements. Si une récupération de la chaleur des locaux intérieurs est prévisible une bonne partie de l’année (salle informatique au centre du bâtiment, par exemple), le DRV se justifie.


Conclusions

Un local « intérieur » est en permanence demandeur de rafraîchissement.

Une simple ventilation ne suffit pas.

La solution traditionnelle par ventilos-convecteurs sur boucle d’eau glacée ne permet pas d’utiliser l’air frais extérieur présent les 3/4 du temps dans nos régions. Si elle est cependant adoptée, on sera attentif à prévoir une possibilité de refroidissement direct de l’eau glacée par free-chilling.

Deux solutions sont possibles :

1° Une installation « tout air » à débit variable (VAV)

  • elle permet d’utiliser l’air neuf extérieur, de jour comme de nuit,
  • elle va limiter le défaut des installations « tout air » : la forte consommation des ventilateurs,

mais,

  • elle demande de préchauffer l’air extérieur en hiver, soit via un recyclage partiel de l’air repris (d’où problème de mélange de l’air des différents locaux), soit via un récupérateur de chaleur sur l’air extrait.

Concevoir

Pour aller plus loin dans la conception d’une installation VAV.

2° Une installation à « fluide réfrigérant variable » avec récupération de chaleur

  • en hiver, elle permet de récupérer la chaleur extraite des locaux à refroidir pour les donner aux locaux en demande de chaleur,
  • elle garantit la performance énergétique d’une technologie de pointe (compresseur, régulation, …),

mais,

  • la technique sous-entend la présence d’un réseau de fluide dans les locaux.

Concevoir 

Pour aller plus loin dans la conception d’une installation DRV.

Un bilan énergétique annuel devrait départager ces solutions. Il doit être établi au cas par cas par un bureau d’études mais celui-ci va manquer de données fiables sur la performance moyenne annuelle des équipements.

21-08-2008 : comparaison du contenu ok ! [sylvie]

Valoriser la fraîcheur de l’environnement [Climatisation]

Valoriser la fraîcheur de l'environnement


Valoriser la fraicheur de l’air extérieur

Le potentiel lié à la fraicheur extérieure

L’isolation des bâtiments élargit la période de refroidissement en mi-saison et en été. Ce besoin peut être pour une bonne part résolu en valorisant l’air extérieur lorsqu’il est plus frais que la consigne intérieure.

En moyenne, la température extérieure à Uccle est 98 % du temps inférieur à 24°C et ne dépasse 27° que 40 heures par an. En outre, en été, dans notre pays, la température nocturne minimale est inférieure de plus de 8°C à la température maximum diurne, et cette température extérieure nocturne est toujours inférieure aux plages de confort. Il existe donc un pouvoir rafraîchissant naturel important de l’air extérieur, sans traitement et donc sans coût énergétique autre que son transport.

Les profils de températures moyennes à Uccle montrent que la température extérieure est généralement inférieure à la température de confort.

Ce pouvoir rafraîchissant est cependant limité par deux facteurs : la faible capacité frigorifique de l’air extérieur et la quantité d’air pouvant être valorisée, qui est limitée par l’encombrement des gaines de ventilation, la taille des ouvertures en façade, le risque de générer un courant air.

Ainsi, imaginons un local à 26°C avec une charge thermique (élevée) de 60 W/m² (ordinateur, éclairage, occupants, ensoleillement, …) ou 20 W/m³ (si la hauteur sous plafond est de 3 m). La température de l’air extérieur est de 20°C. Calculons le débit nécessaire pour évacuer la chaleur d’un m³ du local :

débit = 20 [W/m³] / (0,34 [W/(m³/h).K] x 6 [K]) = 9,8 [renouv./h]

où,

  • 0,34 W/m³.K est le pouvoir calorifique de l’air et 6 K est la différence de température entre l’intérieur et l’extérieur

Il faudrait donc un taux de renouvellement horaire de 9,8 : chaque heure, l’air du local serait renouvelé 10 fois ! en dehors de la difficulté technique, cela génère un climat peu confortable…

En pratique, la fraîcheur de l’air extérieur peut être valorisée de trois façons : par une ventilation intensive naturelle (free cooling naturel), par l’intégration d’air frais dans le système de conditionnement d’air (free cooling mécanique), et par le refroidissement direct des boucles d’eau froide (free chilling).

Données

En savoir plus sur le climat belge ?

L’exploitation de l’air extérieur par ventilation naturelle (free cooling naturel)

La  ventilation intensive estivale (ou free cooling naturel), vise le refroidissement passif du bâtiment par l’ouverture de sa façade. L’objectif est soit de compenser en journée les charges internes et solaires, soit de « décharger » et refroidir pendant la nuit la masse du bâtiment, afin que cette masse puisse limiter la montée en température le lendemain.

La ventilation intensive est efficace en journée si l’air extérieur n’excède pas la température intérieure, mais n’est pas non plus trop froid, pour éviter la sensation de courant d’air, ce qui limite son usage en mi-saison. De plus, il restera toujours les 40 heures, soit de 5 à 10 journées de travail par an, où la ventilation ne ferait qu’empirer les choses puisque la température extérieure est supérieure à la température intérieure. Le refroidissement par ventilation de jour peut donc être une solution en mi-saison, mais a ses limites en été.

Le refroidissement par ventilation de nuit par contre conserve son efficacité toute l’année, sauf canicule extrême. Malgré tout, pour qu’un free cooling permette de se passer de climatisation en journée, il faut assurer durant la nuit, un taux de renouvellement d’air nettement plus important que le taux de ventilation hygiénique : au minimum 4 [vol/h] par rapport à 1 [vol/h].

Au-delà de l’économie d’énergie qui en résulte, c’est une certaine qualité de vie qui est recherchée : absence de système sophistiqué de climatisation, … et plaisir de pouvoir ouvrir sa fenêtre et d’entrer plus en contact avec l’environnement extérieur.

Techniques 

En savoir plus sur la ventilation intensive d’été ?

L’intégration  de l’air frais dans le système de conditionnement d’air (free cooling mécanique)

La climatisation est parfois nécessaire (charges thermiques élevées, consignes intérieures strictes de température et d’humidité, …).

On sera alors attentif au fait que le système installé n’exclue pas le refroidissement naturel : dès que la température extérieure descend, elle doit pouvoir supplanter la climatisation mécanique. Idéalement, celle-ci ne devrait plus servir que dans les périodes de canicule.

Tout particulièrement, dans les locaux refroidis toute l’année (locaux intérieurs, locaux enterrés, …) et dans les locaux à forte occupation de personnes (salles de conférence, locaux de réunion, …), il est dommage de faire fonctionner la climatisation en hiver et en mi-saison. On privilégiera les systèmes « tout air » à débit variable.

Durant les nuits d’été, le bâtiment peut facilement être refroidi par le balayage de l’air extérieur (l’installation fonctionne alors en « tout air neuf »). Et en mi-saison, l’air extérieur assure seul le refroidissement par mélange avec l’air recyclé.

Bien sûr, la consommation du ventilateur ne doit pas dépasser celle de la machine frigorifique ! La perte de charge du réseau de ventilation (pulsion, extraction et recyclage) doit rester faible. Il faut prévoir la place pour de larges conduits.

Concevoir

En savoir plus sur le choix du mode de gestion du débit d’air neuf ?

L’utilisation de l’air frais comme source froide d’une installation de refroidissement (free chilling)

Aussi curieux que cela puisse paraître, de nombreuses machines frigorifiques fonctionnent en hiver. Pour assurer le refroidissement de la salle informatique, pour refroidir le cœur du bâtiment surchauffé par les équipements, …

La première réaction est d’imaginer de scinder la production de froid : une petite machine couvre les besoins permanents de la salle informatique, par exemple. Et la grosse machine est mise à l’arrêt en hiver, tout en pouvant jouer le rôle de groupe de sécurité en cas de défaillance de la première.

La deuxième réaction est d’analyser si le circuit d’eau glacée ne pourrait pas être refroidi directement par l’air extérieur, en by-passant la machine frigorifique. Si le fonctionnement est continu tout l’hiver, cela en vaut sûrement la peine (c’est le cas pour un groupe qui refroidirait des locaux de consultations situés en sous-sol d’un hôpital, par exemple).

Lorsque la température extérieure descend sous les 8 à 10°C, on peut fabriquer de l’eau glacée sans utiliser le groupe frigorifique. L’eau peut-être directement refroidie par l’air extérieur. La machine frigorifique est alors  mise à l’arrêt.

L’économie d’énergie est évidente ! La rentabilité du projet est d’autant plus élevée que les besoins de refroidissement sont importants en hiver et que l’installation s’y prête.

Toutes sortes de configurations sont possibles en intercalant dans la boucle d’eau glacée soit un aérorefroidisseur (en parallèle ou en série avec le groupe frigorifique) soit une tour de refroidissement (ouverte ou fermée) ou encore un échangeur à plaque couplé avec une tour de refroidissement.

Aérorefroidisseur monté en série avec un évaporateur

Concevoir

En savoir plus sur la mise  en place d’un free-chilling ?

Valoriser la fraicheur du sol

Le sol présente un potentiel important pour rafraichir les bâtiments. Sa température est, en été, moins élevée et surtout plus stable que celle de l’air extérieur. Une masse de sable, d’argile ou de roche présente en outre une capacité calorifique importante.

La température moyenne mensuelle est amortie et déphasée par rapport aux températures extérieures. Le sol présente donc un potentiel de rafraichissement particulièrement intéressant au printemps et en été, lorsque la température extérieure est plus élevée.

Les propriétés thermiques du sol dépendent des propriétés de ses constituants et de leurs proportions. Quelques ordres de grandeur :

nature des constituants Conductivité thermique (W/m°c) Capacité calorifique volumique Cp(Wh/m3°c) Diffusivité thermique (m2/h
constituants minéraux 2,92 534 0,0054
constituants organiques 0,25 697 0,00036
eau 0,59 1 163 0,00050
air 0,025 0,34 0,0756

Frédéric Chabert « Habitat enterré » (1980).

La conductivité thermique des sols varie de 1 à 5 selon qu’il est sec ou saturé. La capacité thermique moyenne des sols varie elle de 1 à 3.

L’exploitation de la fraicheur du sol se fait en y organisant un échange de chaleur par le passage contrôlé d’air ou d’eau. Lorsqu’il s’agit d’un échangeur air-sol, on parle de puits canadiens ou provençaux. Lorsqu’il s’agit d’un échangeur eau-sol, on parle de geocooling, une appellation qui, strictement, devrait également recouvrir les puits canadiens.

Parmi les diverses solutions d’échangeur eau-sol, notons l’exploitation du sol sous la dalle de fondation (attention à la puissance qui peut rester alors faible…),

ou dans les pieux de fondation :

Des échangeurs de type forage vertical, indépendants de la structure du bâtiment, sont également possibles.

Une autre possibilité est d’utiliser l’eau des nappes phréatiques souterraine au moyen, en la pompant pour la conduire vers un échangeur de chaleur eau-eau, mais cette technique peut générer des problèmes de nature hydraulique dans le sol (déséquilibres des nappes phréatiques, pollutions).

Un des grands intérêts des techniques de geocooling est que le niveau de température concerné (de 5 à 15°C) est intéressant tant :

  • Pour le refroidissement direct : un échange de chaleur, par l’intermédiaire de boucles d’eau, entre le bâtiment est le sol), en vue d’alimenter un système de refroidissement par dalle ou par plafond froid.
  • Pour le refroidissement indirect : valoriser le sol comme source froide de la machine frigorifique, quel que soit le système de distribution et d’émission dans le bâtiment.
  • Que pour le chauffage par pompes à chaleur. En pratique, on n’envisagera pas de valorisation thermique du sol uniquement pour le refroidissement estival. L’investissement en pompages ou forage ne se fera que si le sol peut être valorisé au maximum de son potentiel, c’est-à-dire tant en refroidissement l’été qu’en chauffage l’hiver. Le géocooling est donc intimement lié à la géothermie.

Pour en savoir plus :

Concevoir

Choisir une production de froid « alternative » : geocooling

Concevoir

Choisir un système rayonnant sur boucle d’eau froide : plafond froid et dalle active.

Concevoir

Le choix de la source de chaleur du chauffage par pompe à chaleur.

Techniques

Le géocooling.

Valoriser la physique de l’air humide

Le contenu énergétique de l’air est lié à la fois à sa température et à son humidité. En effet, la présence de vapeur d’eau dans l’air représente une forme d’énergie latente, égale à la quantité d’énergie nécessaire pour vaporiser ou condenser cette eau. La somme de l’énergie sensible (liée à la température) et de l’énergie latente (liée à l’humidité) est appelée enthalpie. Cette quantité d’énergie est importante, puisque la chaleur de vaporisation d’un litre d’eau est de 2 257 kJ/kg (à la pression atmosphérique et à 100 °C). Soit 5,4 fois plus que pour chauffer le litre d’eau de 0 à 100 °C ! Elle est cependant limitée par la quantité maximale de vapeur que l’air peut contenir, qui dépend de sa température.

Le diagramme psychrométrique est l’outil indispensable pour visualiser et mesurer ces quantités d’énergie. L’enthalpie est représentée sur l’axe diagonal à gauche du diagramme. On constate que le niveau d’enthalpie est équivalent pour un air à 30 °C et 30 % d’humidité relative et pour un air à 17 °C et 100 % d’humidité relative. Autrement dit, si l’on arrive à créer des transferts entre l’énergie sensible et l’énergie latente d’une masse d’air, on devrait être en mesure de créer de l’air froid (et humide) au départ d’air chaud (et sec). Et cela sans grande consommation d’énergie, puisque l’enthalpie de l’air serait conservée.

Comment réaliser ce petit miracle ? Simplement en humidifiant l’air.
En pratique, deux types d’applications ont été développées pour valoriser ce principe physique.
Le premier dispositif se trouve dans l’architecture vernaculaire de nombreuses cultures, mais fut particulièrement développé par les Perses. Ils combinaient des tours à vent (« bagdir ») avec locaux servant de glacières (« yakh-chal ») souvent reliées à un canal souterrain (« qanat »). Par cet ensemble de dispositifs, ils étaient capables de conserver des aliments et rafraîchir des bâtiments dans un climat particulièrement chaud. Marco-Polo, lors de son premier voyage en orient, se serait vu offrir des glaces en plein été !

Plus récemment, l’idée de refroidir de l’air par humidification a été appliquée dans des groupes de traitement d’air. On parle alors de refroidissement adiabatique. Une différence majeure avec la solution imaginée par les Persans : ici c’est l’air extrait du bâtiment que l’on refroidit par humidification. Un échangeur de chaleur air-air permet ensuite de rafraîchir l’air neuf au contact de l’air extrait. Nos ambiances sont déjà suffisamment humides en été que pour éviter d’y pulser un air saturé !

Pour en savoir plus :

Théories

Les grandeurs hygrométriques.

Concevoir

Choisir une production de froid « alternative » : refroidissement adiabatique et climatisation solaire.


Valoriser le soleil

Paradoxalement, la chaleur du soleil peut être utilisée pour rafraichir un bâtiment… pour autant que l’on dispose de l’équipement adéquat.

Généralement, produire du froid implique l’usage d’une machine frigorifique. Celle-ci se compose de deux échangeurs de chaleur (condenseur et évaporateur), d’un détendeur et d’un compresseur électrique. Pas de place pour l’énergie solaire là-dedans, si ce n’est au travers de capteurs photovoltaïques.

Mais il existe un autre type de machine frigorifique, dit « à ab/adsorption« . Là, l’échange thermique est basé à la fois sur la vaporisation d’un réfrigérant (de l’eau) et sur la capacité de certaines substances à absorber la vapeur d’eau pour la restituer à un niveau de pression différent lorsqu’ils sont échauffés. Le cycle de cette matière absorbant joue le rôle du compresseur dans une machine frigorifique traditionnelle, tout en demandant une alimentation en chaleur plutôt qu’en électricité. Or, qui dit soleil dit chaleur ! La combinaison de capteurs solaires thermiques et d’une machine frigorifique à ab/adsorption constitue ce que l’on appelle une « climatisation solaire », une idée séduisante si les besoins de froid du bâtiment sont liés aux gains solaires.
Pour en savoir plus :

Concevoir

Choisir une production de froid « alternative » : refroidissement adiabatique et climatisation solaire.

Chambres d’hospitalisation

Chambres d'hospitalisation


Zones à risque de contamination faible

Dans les zones à risques 1 (voir norme NF S90-351) , c’est-à-dire concrètement sans risque d’aérobiocontamination (chambre sans risque d’infection, certaines consultations, radiologie, hémodyalise, ergothérapie, locaux administratifs, pharmacie, …), la ventilation se traite sans exigence particulière en terme de filtration et de pression.

Dans ces zones on fait en général appel uniquement à un apport d’air neuf hygiénique. Si après avoir étudié la possibilité de réduire les apports internes et externes la climatisation s’avère vraiment nécessaire, on fera appel à d’autres systèmes de climatisation que la climatisation « tout air ».

Cependant, une restriction par rapport à la climatisation des zones hospitalières dites classiques est à souligner : au coup par coup l’aspect hygiène par rapport au patient sera pris en compte.

La bonne question à se poser est la suivante :

« N’est-il pas prévu, maintenant ou à terme, d’avoir dans cette zone des patients à risque ? »


Analyse de la demande

La spécificité des chambres d’hôpital apparaît comme suit :

  • un découpage en nombreux locaux indépendants mais au profil d’occupation assez constant,
  • une demande très variable entre les locaux, suite à une localisation sur des façades différentes,
  • le souhait de l’occupant de pouvoir intervenir sur la consigne intérieure,
  • le souci de limiter la consommation d’une chambre non occupée.

Et les exigences acoustiques sont particulièrement sévères. La norme européenne EN 13779: 2004 propose trois niveaux de confort acoustique à respecter dans les locaux (minimum – par défaut- minimum) :

Type de bâtiment

Type de local

dB(A)
 

 

Hôpitaux couloir 35/40/45
 

 

salle d’opération 35/40/48
 

 

salle commune 25/30/35
 

 

chambre d’hôtel (nuit) 20/30/35
 

 

chambre d’hôtel (jour) 25/35/40

Évaluer

Pour en savoir plus sur l’ évaluation du niveau de bruit, cliquez ici !


Choix du système de conditionnement d’air

Remarque préliminaire
Il serait prétentieux de prétendre énoncer en quelques lignes tous les critères constituant la démarche conceptuelle qui conduit au choix d’un système de climatisation dans les zones à risque de contamination faible.

La solution résulte en effet de la concertation étroite entre le Maître de l’Ouvrage (décideur, techniciens, hygiéniste, …), l’Architecte, l’Ingénieur de bureau d’études et tous les partenaires qui forment l’équipe de projet. Cette concertation se situe à la fin de la phase d’avant-projet de l’étude du bâtiment et résulte du meilleur compromis entre critères parfois contradictoires :

  • hygiène hospitalière,
  • coût d’investissement et d’exploitation,
  • optimalisation de l’usage des surfaces,
  • mobilité aux variations de programme,
  • esthétique externe et interne (le bâtiment doit être beau à voir et à vivre !),
  • confort au sens large (climatique, acoustique, visuel,…),
  • etc…

À noter qu’au plus tôt se constitue cette équipe de projet, plus l’ensemble des contraintes sera pris en considération à temps.

Tout au plus pouvons-nous ici évoquer avec prudence les quelques critères principaux habituels et l’ébauche de solutions classiques mais nullement « passe-partout ».

1° Choix d’un système « tout air »

Un système « tout air » paraît exclu :

  • peu de souplesse d’exploitation s’il est à débit constant,
  • consommation élevée du transport de l’air,
  • impossibilité de recycler l’air venant des chambres, et donc consommation élevée du fonctionnement en tout air neuf,

En fait, le besoin en air neuf des chambres est faible si on le rapporte aux m² utilisés. Un système où l’air serait le vecteur des apports de chaleur et de froid ne semble donc pas se justifier ici.

Si ce système est malgré tout retenu (avec une batterie terminale de réchauffage pour chaque chambre), il est essentiel de prévoir une batterie de récupération de chaleur entre l’air extrait et l’air pulsé, au risque d’alourdir encore le coût d’investissement puisque les conduits d’extraction devront au minimum être raccordés entre eux pour placer le récupérateur dans le tronçon commun.

2° choix d’une solution par ventilo-convecteurs

Photo ventilo-convecteur. Les avis sont très partagés quant à l’utilisation de ventilo-convecteur. En effet, les hygiénistes demeurent très prudents par rapport à la formation de légionelles au niveau de la batterie froide et d’algues au niveau du bac de récupération des condensats.

La solution classiquement adoptée est d’installer deux boucles d’eau (eau chaude et eau glacée) entre tous les locaux, avec comme unité terminale un ventilo-convecteur dans chaque chambre.

On rencontre le ventilo soit monté en allège de fenêtre, soit placé en soffite (généralement au-dessus du petit couloir qui longe la salle de bain : l’air est repris dans le ventilo qui le souffle dans la chambre).

Schéma principe ventilo-convection.

Les avantages du ventilo-convecteur sont nombreux :

  • Une autonomie de fonctionnement local par local, tant en ce qui concerne la mise en service que le réglage individuel de la température.
  • Une rapidité de remise en température du local grâce au transfert thermique par convection.
  • Un fonctionnement thermique en recyclage local, qui permet d’éviter la pollution (la contamination dans le cas d’un hôpital) d’une chambre à l’autre.
  • La liberté pour chaque occupant de démarrer ou d’arrêter l’unité de sa chambre à sa guise et de choisir la vitesse du ventilateur qui lui convient.
  • Un prix d’investissement limité grâce à un équipement fabriqué en grande série.
  • A taux d’occupation réduit, la gérance de l’hôpital a la possibilité d’arrêter les unités correspondant aux chambres non occupées, moyennant le report des commandes à la réception (GTC). Elle peut décider de préchauffer ou de prérefroidir la chambre avant l’arrivée de l’occupant sur base d’un lien automatique avec le fichier de réservation (mais c’est futuriste).

Comme inconvénient au système, on peut noter la nécessité de maintenir une bonne partie de l’année les deux boucles de distribution d’eau chaude et froide en circulation dans le bâtiment. Il ne faut absolument pas négliger l’importance des pertes permanentes liées à ces deux réseaux et soigner tout spécialement à l’isolation efficace des tuyauteries.

Egalement, la solution par ventilo-convecteur ne permet pas de traiter l’humidité de l’air qui peut devenir fort sec en hiver. Il est possible d’insérer des petits atomiseurs d’eau à ultrasons dans les ventilos, mais cette solution est relativement coûteuse. On peut également apporter l’humidité nécessaire par un humidificateur inséré dans le réseau d’air de ventilation, pour autant que celui-ci soit préchauffé.

 3° Choix d’un système à plafond rafraîchissant

Photo panneaux rayonnants froids. La climatisation par panneaux rayonnants froids ne paraît pas opportune dans le conditionnement d’air des chambres. En effet, la présence d’humidité suite à la salle de bain attenante risque d’entraîner de la condensation sur le plafond, même si le système est régulé pour stopper la circulation d’eau froide à ce moment.

De plus, ce système n’apporte qu’une solution pour le refroidissement et devrait être complété par un réseau de radiateur pour apporter la chaleur en hiver. Le placement d’un faux plafond n’est pas justifié pour un autre usage (éclairage, câblage,…).

Même en rénovation, il semble coûteux de placer un tel réseau alors que seuls les apports solaires sont à vaincre de façon épisodique.

Les poutres froides ne sont pas non plus adéquates car elles entraîneraient un grand inconfort dans des locaux de faible hauteur. De plus, elles suscitent une interrogation par rapport à l’hygiène des ailettes.

4° Choix d’un système à débit de fluide réfrigérant variable

Une installation à fluide réfrigérant variable (VRV, VRF, … selon les marques) peut également être d’application pour une structure hospitalière. Elle dispose des mêmes avantages que la solution par ventilo-convecteur : souplesse nécessaire, possibilité de gestion centralisée tout en fournissant à chaque occupant une télécommande pour actionner la cassette, …

Deux avantages spécifiques apparaissent par rapport à la solution classique des ventilos :

  • L’absence de boucles d’eau chaude et froide parcourant tout le bâtiment.
  • La possibilité en mi-saison de récupérer la chaleur excédentaire d’une façade (par exemple à l’Est) pour réchauffer la façade encore en demande (par exemple à l’Ouest) ou de récupérer la chaleur extraite de locaux techniques intérieurs pour réchauffer les chambres périphériques en demande.

Si le bâtiment présente simultanément des besoins de chaleur et des besoins de refroidissement durant une bonne partie de l’année, ce système paraît le plus avantageux. Mais encore faut-il s’assurer qu’au sein d’une même zone gérée par le même réseau, de l’énergie soit transférable. Ainsi, il semble difficile d’alimenter les chambres du 4ème étage par la chaleur dégagée par les locaux de réunion du rez-de-chaussée. Il faudrait que les réseaux soient dans ce cas verticaux, ce qui doit poser de nombreux problèmes pratiques.

Un point faible réside probablement dans le chauffage « par pompe à chaleur » en plein hiver. Quel est à ce moment le COP de l’installation ? Le compresseur fonctionnant de jour, le prix de revient du kWh électrique est environ 3 x plus élevé que le kWh issu d’une chaudière au gaz traditionnelle, par exemple. Il faut donc que le COP global dépasse 3 pour y trouver avantage.

Le taux d’humidité en hiver n’est pas non plus contrôlé avec ce système.

Nous n’avons pas pu, jusqu’ici, obtenir de données permettant d’évaluer la performance effective de l’échange entre locaux et le COP moyen annuel d’un tel système, ni le lire dans un rapport d’un organisme indépendant.


Quelques critères en détail

Voici les principaux critères à prendre en compte :

Le coût d’investissement

Si le prix moyen d’une installation avoisine les 125 €/m² (contre 40 €/m² pour une simple installation de chauffage), l’échelle des prix en fonction du type d’équipement et du niveau de régulation qui lui est associé peut être évalué comme suit :

Installations  « détente directe »

Investissement
€/m²

Window 75 – 95
Split system 100 – 200
Débit réfrigérant variable* 150 – 300

Installations « sur boucle d’eau »

Investissement
€/m²

Ventilo – 2 tubes 110 – 140
Ventilo – 2 tubes/2 fils 115 – 155
Ventilo – 4 tubes 125 – 190
Pompe à chaleur sur boucle 100 – 215

Le coût d’exploitation énergétique

Le coût d’exploitation est directement fonction des charges à vaincre : un immeuble fort vitré et avec des apports internes élevés (ce qui est le cas des hôpitaux) consommera beaucoup plus que son équivalent équipé de protections solaires extérieures, par exemple … C’est donc d’abord le bâtiment qui crée la consommation !

On peut cependant établir une échelle entre les systèmes suivant leur performance énergétique :

Installations  « détente directe »

Coût énergie

Window

élevé

Split system moyen
Débit réfrigérant variable faible

Installations « sur boucle d’eau »

 

 

Coût énergie

Ventilo – 2 tubes moyen
Ventilo – 2 tubes/2 fils moyen à élevé
Ventilo – 4 tubes moyen
Pompe à chaleur sur boucle faible à élevé

Quels sont les critères qui permettent de distinguer une installation à faible consommation énergétique ?

  • Une installation ne devrait jamais consommer du chaud et du froid simultanément, pour éviter de détruire l’énergie; en aucun cas, on ne doit pas concevoir une installation dont la régulation fonctionnerait par mélange.
  • Lorsque le bâtiment requiert du chaud et du froid simultanément (un grand local informatique refroidi en hiver, des plateaux très étendus et fort équipés dont il faut en permanence refroidir la partie centrale, …), on aura intérêt à concevoir une installation qui peut récupérer la chaleur extraite de ces locaux pour la restituer dans les locaux en demande de chaleur (chambres en périphérie). Les installations à débit de réfrigérant variable et les pompes à chaleur sur boucle d’eau sont performantes à ce niveau. Dans les installations plus classiques (ventilos), une récupération de chaleur au condenseur des groupes frigorifiques est également possible et moins contraignante.
  • Les résistances chauffantes électriques prévues dans les installations peuvent entraîner des dépenses importantes vu le coût du kWh électrique par rapport au kWh thermique. On sera attentif à ne sélectionner une installation de ventilos 2 tubes/2 fils que dans un bâtiment très isolé (besoins de chaleur très limités suite aux apports gratuits).

Calculs

Un petit outil de simulation permet de visualiser globalement l’impact du choix du vecteur énergétique de chauffage sur un local type (même si les hypothèses sont celles d’un bureau, avec des apports internes élevés).
  • Enfin, quelle que soit l’installation, la qualité de la régulation est déterminante : c’est un budget à ne pas raboter ! on pense tout particulièrement au ventilo-convecteur qui est le pire ou le meilleur des équipements, … selon la régulation qui lui est associée !

Le coût de maintenance

Les prix donnés à titre indicatif ci-dessous correspondent à un contrat annuel de maintenance sur devis (les prix les plus bas correspondent aux surfaces traitées les plus grandes). Normalement, il faudrait leur ajouter le prix du renouvellement périodique des équipements défectueux. Ainsi, les installations en « détente directe » sont généralement plus fragiles, ce qui implique un remplacement plus fréquent des composants.

Installations « détente directe »

€/m²
Window très faible
Split system 3 – 7,5
Débit réfrigérant variable

Installations « sur boucle d’eau »

€/m²

Ventilo – 2 tubes 3 – 5
Ventilo – 2 tubes/2 fils 3 – 5
Ventilo – 4 tubes 3 – 5
Pompe à chaleur sur boucle 4,75 – 6,25

Le confort thermique

Installations  « détente directe »

Confort thermique
Window faible
Split system faible
Débit réfrigérant variable bon

Installations « sur boucle d’eau »

Confort thermique
Ventilo – 2 tubes moyen
Ventilo – 2 tubes/2 fils moyen
Ventilo – 4 tubes bon
Pompe à chaleur sur boucle moyen

Le confort acoustique

Quel que soit le système de climatisation choisi, le critère de performance acoustique sera déterminant, et cela tant à l’intérieur qu’à l’extérieur :

  • Les ventilos ou cassettes seront choisis en fonction de leur qualité acoustique et de manière à pouvoir dissiper la puissance requise à moyenne vitesse. Idéalement, pour réduire encore le niveau sonore, on installera le module de traitement d’air en dehors du local (dans un faux plafond, dans un placard technique, …) et l’air traité sera conduit vers le local par une gaine, ce qui permet un affaiblissement acoustique optimal.
  • Le placement des unités extérieures sera bien étudié pour éviter la propagation du bruit vers les chambres (placement en toiture ? placement à l’écart du bâtiment ? …).

Remarque : on rencontre parfois le placement du groupe frigorifique en sous-sol, dans un local technique insonorisé. L’objectif de réduction du niveau acoustique est atteint. Mais la consommation du compresseur risque d’augmenter si le condenseur n’est pas correctement refroidi…! De toute façon, c’est l’air extérieur qui est le refroidisseur final. Aussi, le traitement en sous-sol va entraîner un refroidissement par de l’eau (sélection d’une machine frigorifique équipée d’un condenseur à eau), cette eau étant elle-même refroidie ultérieurement dans une tour de refroidissement en toiture.

Installations  « détente directe »

Confort acoustique
Window faible
Split system bon
Débit réfrigérant variable bon

Installations « sur boucle d’eau »

Confort acoustique
Ventilo – 2 tubes bon
Ventilo – 2 tubes/2 fils bon
Ventilo –  4 tubes bon
Pompe à chaleur sur boucle faible

La centralisation des équipements

Si la surface des locaux à climatiser est limitée (rénovation de quelques locaux,par exemple), un système à « détente directe » (voire plusieurs équipements décentralisés) sera suffisant et nettement moins coûteux.

Si une installation centralisée bénéficie de l’effet de taille en terme de prix d’investissement, il n’y a peu d’effet majeur à l’exploitation (efficacité frigorifique meilleure pour les grosses puissances mais pertes en ligne et pertes en régulation plus élevées…).

L’encombrement

Les ventilo-convecteurs seront souvent insérés dans le faux plafond face à la salle de bain, afin de ne pas occuper de place au sol.


Choix de la ventilation associée

Que l’on choisisse une solution décentralisée ou que l’on choisisse des ventilo-convecteurs, un apport d’air neuf doit être envisagé.

Ce dernier, imposé par la réglementation wallonne pour garantir une qualité de l’air suffisante, est dès lors fourni par une installation en simple ou double flux.

Ventilation 

Pour définir la configuration à adopter le choix du système d’apport d’air neuf.

Ventilation 

Pour choisir le mode de gestion (régulation du système).

Remarquons que dans les immeubles nouveaux (et donc isolés), l’apport d’air neuf devient une part essentielle dans la consommation énergétique (tant en chaud qu’en froid) en regard des déperditions.

Puisque de toute façon une extraction doit être prévue dans les sanitaires, la question devient : apport d’air par des grilles de ventilation dans les châssis, ou apport par une gaine de distribution d’air (qui permet le préchauffage de l’air) ?

La ventilation double flux est le seul moyen de contrôler au plus juste les apports d’air et donc de contrôler cette consommation.

La ventilation simple flux, quant à elle, reste en partie influencée par les conditions atmosphériques.

En quelque sorte, c’est le standing souhaité qui tranchera.


Choix du mode de régulation

La régulation locale

Il est très difficile de contenter tous les patients sachant qu’en terme de confort chacun est un cas particulier. La configuration locale est donc conseillée d’autant plus que l’on pourra par détection de présence gérer le profil d’occupation de chaque local et, par conséquent, réduire les consommations.

Schéma principe de régulation locale.

Exemple de régulation de plafond froid.

Les avancées technologiques actuelles permettent de disposer d’automates adaptés à la régulation HVAC avec une modularité, une puissance et intégration en « mode bus » impressionnante. Pour cette raison, les sondes peuvent être locales et reliées, via un bus à un automate de zone assurant les commandes et les régulations individuelles.

Photo automate.

La régulation et supervision centrale

Vu les possibilités actuelles de programmation du traitement des chambres en fonction de la réservation, la mise en place d’une GTC, Gestion Technique Centralisée, semble aujourd’hui requise pour un bâtiment hospitalier.

Analyser les besoins thermiques : un immeuble de bureaux

Objectif de l’analyse

Aujourd’hui, suite à l’isolation des parois et au placement de vitrages performants, le profil de la demande des bâtiments tertiaires a totalement évolué.

  1. Les besoins de chauffage sont devenus très faibles, et plus de la moitié de ces besoins est générée par le chauffage de l’air neuf hygiénique. Une régulation des débits d’air permet donc encore des économies : par exemple, des détecteurs de présence n’enclencheront la ventilation de la salle de réunion que lors de l’entrée des occupants.
  2. Le point d’équilibre s’est déplacé de 15 à 10°C, c’est-à-dire que l’on refroidit le bâtiment dès que la température extérieure dépasse 10°C.
  3. Les besoins de froid ont fortement augmenté, mais contrairement à ce que l’on pourrait penser, cette augmentation s’est faite essentiellement pour des températures extérieures comprises entre 10 et 22°C. Or, à ces températures, nous pouvons valoriser l’air extérieur frais : pour ventiler directement le bâtiment (free cooling) ou pour refroidir l’eau froide qui elle-même circulera dans les faux plafonds des locaux.
  4. Des besoins simultanés de chaud et de froid apparaissent : le cœur du bâtiment doit être refroidi en permanence alors que les locaux en façade sont à réchauffer, un local informatique demande du froid en hiver et en mi-saison alors que la préparation de l’air hygiénique demande de la chaleur,…D’accord, c’est le boulot du bureau d’études : à lui de mettre en place le système de climatisation qui valorisera ces énergies positives et négatives, qui exploitera l’air neuf extérieur disponible.Mais c’est aussi le boulot de l’architecte de créer un bâtiment qui favorise la ventilation naturelle des locaux, qui exploite la lumière naturelle tout en créant des masques solaires pour limiter la surchauffe, qui diminue tous les besoins thermiques … au point que des plafonds froids irrigués par de l’eau à 18°C suffisent pour rafraîchir les espaces, facilitant ainsi le travail de l’ingénieur !Aujourd’hui, dès la conception, une analyse des besoins du bâtiment devrait permettre de visualiser l’impact des mesures URE et d’établir une stratégie. En voici un exemple.

Qu’entend-on par analyse des besoins thermiques ?

Chaque local reçoit des apports (internes ou externes) et a besoin de chaleur ou de froid pour maintenir le confort intérieur.

Ainsi, pour un bureau, on distingue :

  • des apports :
    • solaires,
    • internes (luminaires, bureautique, occupation, etc.),
    • des parois (positifs ou négatifs selon la saison),
    • de ventilation et d’infiltration (positifs ou négatifs selon que l’air pénétrant dans le local est plus chaud ou plus froid que l’ambiance).
  • des demandes :
    • de chauffage ou de refroidissement du local,
    • de préparation de l’air de ventilation (chaud ou froid, humidification ou déshumidification) lorsque l’air pulsé est traité.

La demande thermique d’un local est donné par la relation :

Demande thermique = Puissance des équipements x Temps

La demande thermique du bâtiment regroupe ainsi les besoins thermiques des locaux, et les besoins thermiques liés à la préparation de l’air neuf pulsé.

On peut établir la puissance demandée par les équipements chaque heure de l’année et la représenter en fonction de la température extérieure qu’il fait à ce moment.

Par exemple, si l’on regarde la demande des parois, la puissance de chauffe est d’autant plus grande que la température extérieure est basse; la puissance de refroidissement est d’autant plus forte que la température extérieure est élevée. Entre les deux, il existe une zone neutre où la température ambiante évolue entre 21 et 24°C. Par exemple, pour un bureau type on aurait :

Les 8 760 heures de l’année se répartissent en fonction de la température extérieure comme suit (année type moyenne) :

En multipliant la puissance par le temps, on obtient donc un graphique du type :

La demande de chaleur est représentée en rouge sous l’axe des x, la demande de froid est représentée en bleu au dessus de l’axe des x, tout au long d’une année type moyenne.

On constate dès lors que si la puissance de refroidissement est forte pour des températures élevées, l’énergie correspondante est très faible puisque cela n’arrive (hélas !) que quelques heures par an.


Les caractéristiques du bâtiment étudié

Le bâtiment-type étudié est prévu pour 380 personnes, et a une surface de 3 000 m² répartie entre

  • bureaux (50 %),
  • salle de conférences (10 %),
  • couloirs (20 %),
  • réserves et sanitaires (12 %),
  • salle de réunions, salle informatique et cafétéria (8 %).

Les locaux sont occupés de 8h à 18h sauf pour la salle de réunions (2 X 2 heures par jour) et la salle de conférences (2 heures par jour).

Pour plus de détails sur le bâtiment étudié, consultez l’ (sous format Word).


Comparaison d’une version « années 60 » avec une version « années 2000 »

Comparons les bilans énergétiques entre une construction ancienne (simple vitrage, murs non isolés, …) avec une version plus récente (double vitrage, murs isolés, …)

Voici les bilans obtenus par simulation informatique des 2 bâtiments :

On constate logiquement que le bâtiment récent demande nettement moins de chauffage, mais plus de refroidissement. Si autrefois le bâtiment était chauffé jusque 15°C, la température d’équilibre s’établit aujourd’hui vers 12°C.

À noter que simultanément certains locaux demandent d’être refroidis (au Sud, à l’Ouest) alors que des locaux au Nord demandent encore de la chaleur.

Curieusement, l’accroissement de la demande de climatisation se fait surtout pour une température extérieure comprise entre 14 et 24°C, c’est-à-dire à un moment où de l’air frais extérieur peut être utilisé pour refroidir naturellement le bâtiment.

Alors, faut-il faire marche arrière et ne pas isoler nos bâtiments ?

Non ! La consommation totale est nettement plus faible qu’avant, surtout si le système de climatisation valorise intelligemment l’air frais extérieur !

Il restera sans doute une période où la machine frigorifique est nécessaire, mais elle ne représente proportionnellement qu’une très faible consommation : alors pourquoi se priver de ce confort ?


Profil de consommation standard aujourd’hui

Partons du bâtiment « récent » et décomposons les courbes de chauffage et de refroidissement :

Remarque : les paramètres d’exploitation ont été légèrement modifiés, aussi les demandes totales sont légèrement différentes.
Les besoins de chauffage (ancienne courbe rouge) se décomposent en 3 postes :

  • le chauffage apporté dans les locaux (rouge),
  • le chauffage de l’air neuf hygiénique (bleu clair),
  • l’humidification de l’air (mauve).

La demande de refroidissement est composée :

  • du refroidissement apporté dans les locaux (par les ventilos-convecteurs, par exemple)
  • et un peu du refroidissement de l’air neuf extérieur (lorsque le local est refroidi, l’air neuf est pulsé à 16°C).

Quelques réactions « URE » immédiates !

Le premier réflexe est de se dire que l’on a tout intérêt à maîtriser le débit d’air neuf en période de chauffage ! Par exemple, un détecteur de présence peut activer l’apport d’air neuf dans les salles de réunions uniquement lors de la présence effective des occupants, ou dans la salle de conférences, le débit d’air neuf peut être régulé en fonction de l’indication d’une sonde CO2.

Deuxième réflexion : l’humidification de l’air n’est nécessaire que par température extérieure très froide. On pourrait la supprimer au-dessus de 8°C, par exemple.

Enfin, des besoins simultanés de chaud et de froid existent. Or une machine frigorifique qui extrait du froid, libère de la chaleur à son condenseur : on pourrait donc transférer de la chaleur d’un local vers l’autre ou préchauffer l’air neuf qui entre.

Mieux : imaginons que le refroidissement se fasse par des plafonds froids. L’eau entre à 15°C et sort à 17°C. Cette eau à 17°C peut préchauffer l’air neuf directement pour éviter le fonctionnement du groupe frigorifique. L’eau se refroidit et l’air se réchauffe : le bilan énergétique est nul !

Question : n’est-ce pas curieux de refroidir le local et de simultanément réchauffer l’air neuf de ce local ? Oui, mais le problème est que l’on ne peut pulser de l’air à 10°C dans un local sans créer un désagréable courant d’air.

Il n’empêche que l’on va privilégier les bouches hélicoïdales ou à jets toriques (qui réalisent un bon brassage de l’air) afin de pouvoir pulser de l’air dans les locaux à basse température, sans devoir le réchauffer de trop préalablement.

  

Les consommations énergétiques, rendement des équipements compris

Jusqu’à présent nous n’avons regardé que les demandes de chaud et de froid. Analysons à présent les consommations réelles en tenant compte des rendements de la chaudière et de la machine frigorifique et en intégrant les consommations des équipements (éclairage, bureautique, .)

Toujours pour cet immeuble de bureaux-type, voici des ordres de grandeur

  • de la consommation du bâtiment,
  • de sa consommation en énergie primaire (en tenant compte du rendement des centrales électriques),
  • du coût des consommations.

(Pour connaître les valeurs de rendement et de coût de l’énergie, consultez l’).

Représentation graphique du bilan énergétique du bâtiment

Consom. du bât.

[kWh/m²]

Cons. nrj primaire

[kWh/m²]

Coût de la consom.

[€]

Consom. relative du bât.

Consom. Relative nrj primaire

Coût relatif de la consom.

Traitement des locaux

    – apports de chaleur

30,6 30,6 0,765 17,2 % 7,9 % 6,0 %

    – apports de froid

10,9 31,1 1,088 6,1 % 8,1 % 8,5 %

Préparation de l’air

    – énergie sensible

37 39,6 1,03 20,8 % 10,3 % 8,0 %

    – énergie latente

14,6 41,7 1,46 8,2 % 10,8 % 11,4 %

Pulsion de l’air

7,8 22,4 0,78 4,4% 5,8 % 6,1 %

Ventilo-convecteurs des locaux

6,7 19 0,66 3,8 % 4,9 % 5,2 %

Charges internes électriques

   – éclairage

27,8 79,4 2,78 15,6 % 20,6 % 21,7 %

   – équipements

42,6 121,7 4,26 23,9 % 31,6 % 33,2 %

TOTAL

178 385,5 12,83

Bilan énergétique du bâtiment initial : consommation du bâtiment,  consommation d’énergie primaire et du coût de la consommation.

À l’analyse de ce bilan énergétique, on constate que :

  • L’éclairage et l’équipement bureautique sont les postes les plus importants dans la consommation d’énergie primaire (21 et 32 % respectivement) et dans le coût de la consommation (22 et 33 % respectivement).

 

  • La préparation et la pulsion de l’air pulsé constituent le poste le plus important du conditionnement d’air (33 % de la consommation d’énergie primaire totale et 25 % du coût de la consommation).

 

  • La consommation du traitement des locaux est finalement relativement faible (8 % de l’énergie primaire et du coût pour le refroidissement; 8 % de l’énergie primaire et 6 % du coût pour le chauffage).

L’impact de différentes améliorations énergétiques

Au regard du bilan énergétique global du bâtiment, c’est dans la consommation électrique des équipements que l’on peut faire le maximum d’économies : gestion automatisée de l’éclairage, mise en veille des équipements bureautiques.

Mais au niveau des besoins de chaud et de froid du bâtiment lui-même, profitons de notre bâtiment simulé pour lui injecter quelques rénovations URE et analysons l’impact de chacune de ces mesures.

Stopper l’humidification lorsque la température extérieure dépasse 8°C > – 14 %
Placer un double vitrage à basse émissivité et avec un facteur solaire de 0,4 > – 13 %
Placer des stores extérieurs mobiles (facteur solaire de 0,2) > – 12 %
Organiser une ventilation nocturne naturelle de 4 renouvellements/heure, tout en augmentant l’inertie du bâtiment pour valoriser ce free cooling (si la ventilation était mécanique il faudrait ajouter la consommation des ventilateurs) > – 11 %
Pulser l’air neuf à 16°C dès que le local est en mode refroidissement (au lieu de 21°C) > – 10 %
Passer de 60 % de surfaces vitrées en façade à 40 % > – 8 %
Adopter une consigne de climatisation en été à 25°C au lieu de 24°C (surtout si plafonds froids rayonnants) > – 7 %
Améliorer l’étanchéité de la façade (taux d’infiltration passant de 0,3 à 0,1 vol/h) > – 2 %

Les différentes modifications ont été comparées indépendamment les unes des autres, toutes autres choses restant identiques.

Lorsqu’on cumule ces interventions, elles s’influencent l’une l’autre. Si bien que, si l’ensemble des améliorations est réalisé, la consommation thermique totale diminue de 42 % en énergie primaire, et de 44 % en coût, mais il est alors difficile de déterminer la part de chaque intervention sur la réduction totale.

Au niveau de la consommation globale du bâtiment, on constate une diminution de 26 % de la consommation en énergie primaire, et une diminution de 26 % du coût de l’énergie consommée (les consommations électriques pour la bureautique restant les mêmes).

Le cumul des interventions permet donc de diminuer de façon importante la consommation totale du bâtiment.

Demande thermique [kW/m²]

 

Consom. totale [kW/m²]

 

Énergie primaire [kW/m2]

 

Emission de CO2 [kg de CO2/m² x 10]

 

Coût de l’énergie [€]

 

Différence par rapport au bât. initial

 

Traitement des locaux

    – demande de chaud

19,8 24,8 24,8 65,3 0,62 – 19,2 %

    – demande de froid

4,6 1,8 5,3 6,2 0,185 – 83,1 %

Préparation de l’air

    – nrj sensible

21,0 23,3 25,9 62,5 0,687 – 37,1 %

    – nrj latente

9,4 9,4 26,9 90,5 0,94 – 35,6 %

Pulsion de l’air

7,8 22,4 26,4 0,78

Ventilo-convecteurs des locaux

6,7 19,0 22,4 0,66

Charges internes électriques

    – éclairage

14,1 40,3 47,5 1,41 – 49,3 %

    – équipements

42,6 121,7 143,6 4,26

TOTAL thermique

54,8 59,3 82,7 224,5 2,43

Par rapport au bâtiment initial

– 44,3 % – 36,4 % – 42,2 % – 37,1 % – 44,1 %

TOTAL global

130,4 286,1 464,4 9,54

Par rapport au bâtiment initial

– 26,7 % – 25,8 % – 27,8 % – 25,6 %

Une stratégie URE ?

> Il n’existe pas de « mesures miracles » pour faire chuter la consommation des bâtiments.
> C’est un ensemble de mesures qui permet d’améliorer progressivement le bilan final.
> Certaines de ces mesures sont du ressort de la créativité de l’architecte dès le stade de la conception (le traitement des apports solaires par exemple, ou le refroidissement naturel du bâtiment par une ventilation transversale des locaux).
> D’autres sont apportées par l’ingénieur de bureau d’études dans la gestion des équipements (la régulation de l’humidification en fonction de la température extérieure, par exemple).
> Mais lorsqu’architecte et ingénieur travaillent de concert, on peut atteindre des bâtiments de confort avec des solutions très économes.

Par exemple :

  • Si les apports solaires sont bien maîtrisés par la conception de la façade, une climatisation de 60 Watts/m² peut suffire. Des plafonds froids peuvent être prévus et alimentés au régime entrée-sortie de 17° – 19°. L’eau à 19° peut être alors récupérée pour préchauffer l’air neuf hygiénique. Et de l’eau à 17° diminue le risque de condensation sur le plafond et donc le besoin de déshumidifier l’air. Au plus fort de l’été, le régime de refroidissement 15° – 17° pourra être temporairement établi.
  • Si différentes salles de réunion sont prévues, l’architecte les disposera de telle façon qu’elles soient alimentées sur un même réseau de préparation d’air (par exemple une par étage, raccordée par une trémie commune). L’ingénieur prévoira une climatisation à débit d’air variable (VAV), avec dans chaque local une bouche de pulsion commandée par détecteur de présence. Le ventilateur travaillera à vitesse variable en fonction de la demande réelle. Le groupe de préparation sera dimensionné avec un facteur de simultanéité (défini de commun accord avec le Maître d’Ouvrage) pour tenir compte du fait que toutes les salles ne seront pas occupées en même temps.

 

  • Si un local informatique est prévu, il sera heureux de l’associer avec des locaux demandeurs de chaleur (au Nord, par exemple). Par exemple, un réseau de climatisation à débit de réfrigérant variable permettrait d’assurer le transfert entre le local donneur et les locaux demandeurs de chaleur.

Espaces techniques et médico-techniques

Espaces techniques et médico-techniques


Principe

On traite ici des locaux annexes où l’on entasse des équipements à fort dégagement calorifique et sensibles à la température ambiante et parfois à l’humidité tels que :

  • les armoires électroniques de commandes et de calculs pour les appareils médicaux de radiologie (scanner, RMN, angiographie, …),
  • les congélateurs (- 30, – 40, – 86°C) des laboratoires,
  • les ordinateurs des salles informatiques centrales,

Les particularités des locaux intérieurs techniques sont :

  • d’avoir une présence humaine très limitée,
  • de ne pas avoir de parois en contact avec l’extérieur et donc pas de déperditions en hiver, pas plus que d’apports solaires en été,
  • d’être en permanence en demande de refroidissement puisque les équipements internes (dont l’éclairage) génèrent une chaleur qui ne peut s’échapper naturellement : sans intervention, la température ne ferait qu’augmenter …

Vu que ce type de local est à usage exclusivement technique, l’apport d’air neuf est-il encore nécessaire ? Les sources de polluants étant réduites au minimum, on pourrait admettre l’inutilité de cet apport. Au cas par cas, le concepteur prévoira ou pas un apport d’air neuf minimum en tenant compte dans la programmation de la destination du local. Par exemple dans un local de stockage de laboratoire où l’on trouve des congélateurs, il serait mal venu de ne pas prévoir un apport d’air frais dans le cas de la congélation de produits toxiques.


Choix du conditionnement d’air

1. Les solutions rapides pour installation de faible puissance

Les solutions traditionnelles, souvent appliquées lorsqu’il s’agit d’un local isolé, consistent à placer dans le local :

  • Un climatiseur avec un condenseur séparé. Mais cette solution ne peut être généralisée pour un ensemble de locaux « aveugles » puisqu’il n’y a pas un accès facile vers l’extérieur pour l’évacuation de la charge thermique (difficile de placer les condenseurs en façade).
  • Un climatiseur à eau perdue où le condenseur est un échangeur dont le secondaire est raccordé à l’eau de ville en entrée et à l’égout en sortie. Cette solution est rapide, efficace énergétiquement mais présente l’inconvénient de gaspiller de l’eau potable.

Si malgré tout, le choix du conditionnement d’air est arrêté sur une solution locale (c’est souvent le cas en rénovation partielle) il est intéressant de comparer l’installation d’un système de climatisation à eau glacée par rapport à un système à eau perdue.

Système de climatisation à eau perdue

Photo climatiseur à eau perdue.

Les climatiseurs à eau perdue sont intéressants dans le cas des locaux intérieurs qui disposent ou ont à proximité une alimentation d’eau de ville et un égouttage d’eau usée. En rénovation, de manière générale, il y a souvent un lavabo à proximité; raison pour laquelle, faute de temps et de budget il est simple d’envisager cette solution. Il suffit :

  • de se raccorder à l’alimentation en eau de ville du lavabo pour l’entrée du condenseur,
  • d’effectuer un repiquage au niveau de sa décharge pour la sortie du condenseur,
  • de disposer d’une alimentation électrique.

De plus, l’eau froide de ville est une source de refroidissement très efficace en considérant que la température moyenne de l’eau au cours de l’année est d’environ 10°C.

Néanmoins, il est conseillé de bien analyser les consommations d’eau de ville qui sont loin d’être négligeables. De plus, le rejet d’eau de ville directement à l’égout est loin de respecter une certaine éthique de consommation.

Évaluer

Pour en savoir plus sur les consommations et les coûts engendrés par le placement d’une climatisation à eau perdue.

Sur base de 2600 heures par an avec un COP de 4.4 et un COPA de 2

Puissance demandée dans le local [kW] Consommation Coût des consommations
+ 3.5
1069 kWh/an électrique
357 €/an
160 m³ d’eau de ville par an

Système de climatisation à eau glacée

Photo système de climatisation à eau glacée.

Il est clair qu’un tel système ne peut s’envisager que lorsqu’il est possible de placer le groupe de production de froid extérieur à proximité. Il existe toutes sortes de systèmes de climatisation avec condenseur séparé extérieur dans les gammes de faible puissance. Pour mieux rentabiliser l’investissement d’un petit système de climatisation à eau glacée, on essayera de prévoir un groupe de production de froid plus puissant pouvant accueillir plusieurs unités terminales même si dans un premier temps une seule unité est branchée; en effet, plus le groupe de froid sera chargé meilleur sera son COP.

Evaluer

Pour en savoir plus sur les consommations et les coûts engendrés par le placement d’une climatisation à eau perdue.

Sur base de 2600 heures par an avec un COP de 3 et un COPA de 1.5

Puissance demandée dans le local [kW] Consommation Coût des consommations
+ 3.5
1 859 kWh/an
204 €/an

Comparaison entre les deux systèmes

  • Énergétiquement parlant on constate que le système à eau perdue consomme moins d’énergie que le système à eau glacée (de l’ordre de 57 %) de par un bon COP (4.4). Cependant, dans l’exemple pris, le groupe de froid à eau glacée n’est pas utilisé à sa valeur optimale car pour une valeur de 5.7 kW, il alimente seulement une cassette plafonnière de 3.7 kW (dû au choix limité de puissance de groupe).

  • Malheureusement le système à eau perdue consomme de l’eau de ville en grande quantité. Vu le prix sans cesse plus élevé de l’eau froide, le coût de la consommation est de l’ordre de 30 % plus élevé que celui du système à eau glacée.
  • Il existe des systèmes de climatiseur que l’on appellera pour l’occasion à « eau courante » puisqu’on récupère « l’eau perdue. Ces systèmes travaillent à des températures de condensation plus élevées et nécessairement les puissances de froid disponibles diminuent. De plus, dans certains endroits de l’hôpital, il sera exclu de récupérer l’eau dans un système de condenseur à pression atmosphérique (bac de refroidissement à l’air libre par exemple) pour une question d’hygiène et de traitement des eaux.

2. Les solutions énergétiquement intéressantes

Par rapport à ce qui a été dit ci-dessus, une solution plus centralisée est nécessaire. En effet, les plateaux de radiologie et de laboratoire entre autres sont de grands consommateurs de froid et sont souvent regroupés. De plus, les locaux de traitement tels que les salles de scanner, de radiologie classique, les espaces de regroupement des congélateurs de laboratoire et les locaux adjacents tels que les locaux techniques, de commande et de protocole sont souvent contigus.

On pense alors, relié à une production de froid centralisée, au placement :

Techniques

de ventilo-convecteurs sur une boucle d’eau glacée.

Techniques 

ou de climatiseurs sur boucle de fluide réfrigérant.

Mais deux aberrations énergétiques apparaissent tout de suite car durant tout l’hiver pour des apports extérieurs limités au strict minimum :

  1. On va refroidir artificiellement le cœur du bâtiment, sans profiter de l’air froid extérieur.
  2. On ne va pas valoriser la chaleur produite par les équipements alors que les locaux en façade ont besoin de chauffage (les patients sont souvent déshabillés).

Deux solutions apparaissent alors

  1. La solution « free chilling » qui se fonde principalement sur l’idée que l’air extérieur froid peut répondre aux besoins de refroidissement une grande majorité du temps. L’économie ne se rapporte pas directement au local considéré, mais à la production de froid centralisée.
  2. La solution « fluide réfrigérant variable » qui se base sur l’idée que la chaleur extraite des locaux centraux peut être récupérée dans les locaux périphériques. En effet, cette solution est séduisante car en hiver dans les locaux adjacents tels que les salles d’examen radiologique, les salles d’analyse des laboratoires la demande de chauffage peut être nécessaire.

La solution « réseau d’eau glacée central »

La conception ou la rénovation des espaces intérieurs à apports internes importants échappent rarement à la climatisation.

Si l’option est prise, le placement d’une grosse unité de production couplée avec le placement d’un réseau de distribution d’eau glacée dans les couloirs est un bon plan. Au droit de chaque local susceptible de recevoir des équipements à dégagement calorifique important, on placera un système de connexion rapide avec vannes d’isolement permettant une modularité future importante dans le monde hospitalier.

Une grosse unité de production permet de mieux gérer la charge globale qu’une multitude de petites unités isolées.

Aussi, sur l’unité de production d’eau glacée il est intéressant d’envisager un système de « free chilling » afin de profiter des températures relativement basses de l’air extérieur tout au long de l’année.


La solution « fluide réfrigérant variable »

L’approche se construit sur les éléments suivants :

Nouvelles possibilités technologiques des compresseurs

On connaît le fabuleux « rendement » thermodynamique d’une machine frigorifique récente : pour faire 3 kWh de froid, il suffit de 1 kWh électrique au compresseur. Il en résulte alors 4 kWh de chaleur rejetés au condenseur. Si ces 4 kWh sont récupérés dans des locaux demandeurs de chaleur, le bilan s’impose de lui-même : avec 1 kWh au compresseur, on réalise 7 kWh utiles : 3 de refroidissement et 4 de chauffage !

Si dans le bâtiment, en parallèle avec la demande de refroidissement du cœur du bâtiment, il y a une demande de chauffage des locaux périphériques, la solution thermodynamique est alléchante !

Mais la difficulté, c’est qu’en été tous les locaux sont demandeurs de froid. L’échangeur du local en façade doit alors passer de condenseur à un fonctionnement en évaporateur.

On a bien essayé la solution de placer des pompes à chaleur réversibles sur une boucle d’eau commune à tous les locaux, mais sans trouver la souplesse de la solution actuelle de la climatisation à « fluide réfrigérant variable » qui supprime tout vecteur intermédiaire.

Ici, dans le cas idéal où il y aurait égalité entre la demande de froid et la demande de chaud, toute la chaleur évacuée dans les locaux à refroidir est transférée vers les locaux à chauffer :

Installation en équilibre.

Séparation des fonctions

À l’usage, dans les locaux où la ventilation hygiénique est nécessaire, la séparation des fonctions « apport d’air neuf » et « apport de chaud ou de froid » présente des avantages de facilité de régulation et de qualité hygiénique.

Pas de fluide intermédiaire

C’est le fluide frigorifique qui circule entre les échangeurs et le compresseur. En quelque sorte, c’est l’ensemble du bâtiment qui travaille « en détente directe et en condensation directe ».

Une régulation très fine en fonction de la demande

Rien n’est plus souple que du fluide frigorigène pour s’adapter aux besoins. Chaque échangeur est autonome dans la régulation de son local.

De plus, la régulation en place est étudiée pour limiter au maximum toute consommation d’énergie excessive.

Par exemple : une boucle d’eau glacée au régime 7°-12° va condenser inutilement la vapeur d’eau présente dans le local. Avec un système « fluide réfrigérant variable », l’humidité du local est mesurée en permanence et la température de l’évaporateur sera réglée « au plus haut » en fonction des besoins de froid du local, évitant ainsi toute condensation inutile.

Inconvénients

  • dans les locaux où la ventilation hygiénique est nécessaire l’apport d’air neuf hygiénique n’est pas résolu. De plus, il n’existe pas de production d’eau chaude par une chaudière pour alimenter les batteries de chauffe d’un éventuel groupe central de traitement de l’air hygiénique. L’apport d’air neuf va demander une installation spécifique dont on devra soigneusement étudier la régulation pour que de l’énergie ne soit pas « cassée » : il ne faudrait pas simultanément préchauffer l’air neuf à 20°C et refroidir le local !
  • La technique est encore relativement neuve dans nos régions (malgré une large expérience au Japon)…
  • Il faut franchir la petite appréhension liée à la circulation du fluide frigorigène dans les locaux, malgré l’étanchéité des installations actuelles et la non-toxicité des fluides utilisés.
  • La technologie est assez sophistiquée, bourrée d’électronique, et seul le fabricant peut réellement intervenir sur l’installation… Certains craindront alors le coût des contrats de maintenance, d’autres diront que nos voitures ont suivi la même évolution… sans que cela nous pose trop de problèmes. Des logiciels d’auto-diagnostic permettent la gestion automatique.

A nouveau, un bilan énergétique détaillé et annuel est nécessaire, mais il faut avouer que dans cette technique nouvelle, les bureaux d’études sont relativement dépourvus d’outils fiables d’évaluation…

Au minimum, on essayera d’établir un planning des périodes de chauffe et de refroidissement des différents locaux pour visualiser les recouvrements.

Concevoir

Pour aller plus loin dans la conception d’une installation DRV.

Un bilan énergétique annuel devrait départager ces solutions. Il doit être établi au cas par cas par un bureau d’études mais celui-ci va manquer de données fiables sur la performance moyenne annuelle des équipements.

Récupérer la chaleur du condenseur de la machine frigorifique [Concevoir – Climatisation]

Récupérer la chaleur du condenseur de la machine frigorifique [Concevoir - Climatisation]


Principe de fonctionnement

Une machine frigorifique transfère de la chaleur extraite du bâtiment vers l’extérieur.

Il semble dès lors logique de tenter de récupérer la chaleur sur le condenseur de la machine frigorifique.

Fonctionnement du condenseur

En principe, trois opérations successives se passent dans le condenseur de la machine frigorifique :

Évolution des températures du fluide frigorigène
et du fluide de refroidissement.

  1. Dans une machine frigorifique, les gaz qui sont expulsés par le compresseur en fin de compression sont à très haute température (de 70 à 80°C). On dit qu’ils sont surchauffés. Comme la condensation se fait à une température largement inférieure (aux alentours de 40°C, par exemple), une quantité de chaleur va devoir être évacuée des gaz surchauffés pour les amener à leur température de condensation qui correspond à la pression de refoulement (dite pression de condensation). C’est la désurchauffe.
  2. Puis lors de la condensation elle-même, une importante quantité de chaleur va aussi devoir être évacuée pour liquéfier (si possible complètement) le fluide frigorigène gazeux.
  3. Enfin, si les conditions des échanges thermiques dans le condenseur le permettent (température du fluide refroidisseur suffisamment basse, débit du médium de refroidissement suffisamment important), le liquide condensé va subir le sous-refroidissement, ce qui améliore le rendement de l’évaporateur.

Récupération de l’énergie

Dans certains cas, on pourrait envisager de récupérer cette énergie pour chauffer de l’eau ou de l’air, au lieu de la gaspiller en pure perte :

  • si on a des besoins en eau chaude sanitaire de température pas trop élevée (45° à 50°C);
  • si on a des besoins de chauffage pour des locaux contigus;
  • si on veut éviter ou diminuer la puissance de climatisation du local des machines, ou faire des économies d’énergie sur ce poste;
  • si on veut participer à la lutte contre le réchauffement global de l’atmosphère.

Par exemple, voici ce qui peut être réalisé à partir du préparateur d’eau glacée ci-contre.

Le fonctionnement normal est de refroidir l’eau glacée à l’évaporateur (cooler). La chaleur contenue dans le fluide frigorigène évaporé est comprimée puis condensée dans un condenseur à air (fonctionnement classique d’une machine frigorifique).

Par contre, si un récupérateur de chaleur est placé, le réfrigérant passe d’abord dans un condenseur à eau (le récupérateur en question) pour donner la chaleur de désurchauffe, puis pour se condenser. Le liquide à haute pression passe au travers du détendeur avant de repasser à l’évaporateur. La chaleur excédentaire est rejetée via le condenseur à air.

La récupération de l’énergie du côté des condenseurs suppose évidemment des investissements supplémentaires par rapport à des machines classiques plus simples

  • des échangeurs de condenseurs adaptés;
  • des réservoirs-tampons pour l’eau chaude sanitaire ou de chauffage;
  • une disposition plus compliquée des tuyauteries;
  • une bonne évaluation des pertes de charge dans les tuyauteries;
  • une régulation complète permettant le contrôle correct de toute l’installation, y compris des récupérateurs.

Étant donné les spécificités inhérentes à chaque projet, le rapport entre l’investissement et les économies d’énergie doit faire l’objet de calculs adaptés, à demander aux auteurs de projet. Il faut en effet considérer ensemble la machine frigorifique et les appareils de production d’eau chaude sanitaire ou de chauffage.

Le bilan doit prendre en compte :

  • l’apport d’énergie « gratuite » par la machine frigorifique,
  • le fait que l’on doit quand même disposer, en plus des récupérateurs, d’une puissance installée suffisante pour pallier les périodes où la machine frigorifique ne fonctionne pas,
  • la pénalisation énergétique apportée toute l’année par l’échangeur supplémentaire,
  • le cas où le condenseur de la machine frigorifique doit assurer à lui seul, l’évacuation de toute la chaleur (lorsqu’il n’y a pas de besoin d’énergie dans les récupérateurs, ou quand ces derniers sont arrivés à leur consigne maximale de température).
Exemple d’application très intéressante

Le plus logique est de récupérer la chaleur sur le condenseur à air pour chauffer directement l’air d’un local. Ainsi, un supermarché Delhaize à Bruxelles évacue la chaleur du condenseur du groupe frigorifique (armoires de congélation) en créant un rideau d’air chaud à l’entrée du magasin. En été, la chaleur est déviée en toiture par un clapet.

Études de cas

Pour visualiser un exemple de schéma d’une installation avec stockage de glace et récupération de chaleur au condenseur.

Application sur une installation de ventilo-convecteur 4 tubes

Dans le cas des ventilos-convecteurs à 4 tubes, si le réseau d’eau glacée fonctionne en hiver et en mi-saison, n’y a-t-il pas intérêt à récupérer la chaleur au niveau du condenseur de la machine frigorifique ?

Par exemple, ne pourrait-on pas imaginer que le chauffage apporté vers les locaux en façade Nord soit récupéré sur le condenseur de la machine frigorifique refroidissant le centre informatique du bâtiment ?

En pratique, il semble que ce soit difficile :

  • La récupération de chaleur risque de se faire à une température trop haute. Les ventilos-convecteurs ont besoin d’eau à 40°…45°C en hiver. Donc la condensation devrait se faire à une température de 50°C. Or, à cette saison, le condenseur peut être refroidi à une température bien inférieure, puisque l’air extérieur est très froid. La récupération risque de pénaliser le COP de la machine frigorifique
    Par exemple, une machine frigo qui prépare de l’eau à 7°C, avec un condenseur à eau refroidi à 27…32°C, génère un COP-froid de 6. Soit 6 kWh froid pour 1 kWh électrique. Pourquoi risquer de dégrader un tel système …?
  • La récupération de la désurchauffe semble surtout intéressante, puisque les températures y sont plus élevées, mais la quantité d’énergie y est plus faible que dans la phase de condensation (refroidir un gaz libère peu d’énergie par rapport à condenser ce gaz).
  • Les puissances en jeu ne s’accordent pas forcément puisqu’elles sont antagonistes : en plein hiver, la demande de froid risque d’être trop faible pour apporter de la chaleur utile au réseau d’eau chaude et en mi-saison, la demande de chaleur risque d’être insuffisante pour évacuer la chaleur au condenseur, générant ainsi sa montée en température défavorable.

De plus, en hiver, il y a concurrence avec le procédé de free-chilling qui refroidit directement la boucle d’eau froide avec l’air extérieur. Plutôt que de récupérer au condenseur de la machine frigorifique, celle-ci est totalement arrêtée !

Enfin, il faudrait comparer ce système avec le système DRV (Débit de Réfrigérant Variable) qui dispose d’une version avec récupération d’énergie apte à réaliser ce type de transfert directement au niveau des locaux.

Exemple

Ci-dessus, d’une part, un réservoir à glace a été adjoint à l’équipement frigorifique, permettant de stocker du froid la nuit au moment où l’électricité est moins chère, pour l’utiliser le jour par la fonte de la glace.

D’autre part, en mi-saison, on récupère la chaleur au condenseur : à ce moment, la chaleur captée dans les locaux à refoidir est récupérée dans les locaux à réchauffer. L’installation est alors particulièrement économe puisque seule la consommation des compresseurs est à fournir.

En plein été, la dissipation de chaleur se fait par un condenseur traditionnel (dit condenseur de rejet). En plein hiver, une chaudière d’appoint reste nécessaire pour vaincre la forte demande.


Application au préchauffage de l’eau chaude sanitaire

L’idée est ici de profiter d’un besoin de chauffage d’un fluide à basse température (la température de l’eau de ville varie entre 5° en hiver et 15°C en été).

Mais le système ne fonctionnera bien que lorsque la puissance de récupération nécessaire est supérieure à la puissance fournie par le condenseur. Autrement dit, il faut que les besoins d’eau sanitaire soient très importants par rapport à la puissance de la machine frigorifique.

Ainsi, dans un immeuble de bureaux, les besoins d’eau chaude sanitaire sont faibles. La température de l’eau sera élevée dans le ballon (…60°C…). Si le condenseur est intégré dans le ballon d’eau chaude sanitaire, la machine frigorifique va travailler avec une pression de condensation élevée. La performance de la machine frigorifique va se dégrader. Si la pression de condensation s’élève encore, le pressostat HP (Haute Pression) de sécurité risque d’arrêter la machine… Un deuxième condenseur en série est alors nécessaire pour éliminer les calories. Le coût de l’installation paraît difficile à rentabiliser. D’ailleurs, faut-il encore de l’eau chaude dans les bureaux ?

Tout au contraire, dans un hôtel, dans un hôpital, dans des cuisines industrielles, des boucheries, … les besoins d’eau chaude sont élevés et une récupération de chaleur au condenseur se justifie tout à fait. Mais un ballon de préchauffage est propice au développement de la légionelle. Il faut donc s’assurer que l’eau séjournera durant un temps suffisamment long dans le dernier ballon : 60°C durant 30 minutes ou 70°C durant 4 minutes, par exemple (en cas de débit de pointe, de l’eau « contaminée » risque de traverser seulement le 2ème ballon).

Schéma 1 : un échangeur thermique parcouru par le fluide frigorigène est inséré au bas d’un ballon d’eau chaude

Dans le système ci-contre, un simple échangeur thermique (placé en série et en amont du condenseur normal) est inséré au bas d’un ballon d’eau chaude. Par effet de cheminée, la chaleur sera donnée à la zone la plus froide du ballon puis communiquée à l’ensemble du réservoir.

On parle de condenseur-désurchauffeur parce que la désurchauffe des gaz provenant du compresseur aura lieu dans cet échangeur.

La réglementation impose le principe selon lequel il ne doit pas y avoir de contact possible entre le fluide frigorigène et l’eau potable. En cas de perforation de l’enveloppe du fluide, la détérioration éventuelle doit se manifester à l’extérieur du dispositif.

Dans l’échangeur ci-dessus, une double paroi de sécurité est prévue selon DIN 1988.

Schéma 2 : un ballon intermédiaire à double échange est intégré comme interface

On peut également prévoir un système à double échange : deux échangeurs sont intégrés dans un même ballon (1). Le premier échangeur est celui du condenseur de la machine frigorifique, le deuxième est le serpentin de préchauffage de l’eau chaude sanitaire.

Dans ce ballon intermédiaire, il n’y a aucun risque de dépôt calcaire puisque l’eau n’est jamais renouvelée.

En cas de fuite de fluide frigorigène, la pression dans le ballon augmente et une alarme est déclenchée.

Un deuxième condenseur en série est nécessaire pour le cas où le besoin de chauffage de l’eau sanitaire serait insuffisant.

Schéma 3 : en présence d’une boucle de distribution

Le régulateur de température de départ de la boucle utilise l’appoint lorsque le niveau de température du ballon est insuffisant.

Un tel schéma (contrairement au précédent) risque cependant d’être propice au développement de la légionelle, puisque le ballon de récupération peut être à une température inférieure à 60°C durant un temps assez long. Il n’est pas à recommander si des douches sont présentes dans l’installation.

On trouvera de nombreux schémas techniques d’application dans l’excellent ouvrage Climatisation et Conditionnement d’air – Tome 2 – Production de chaud et de froid de J. Bouteloup.

Choisir le condenseur et la tour de refroidissement

  

Critères de choix généraux

Il faut évacuer la chaleur du réfrigérant vers l’air ambiant.
On distingue deux techniques :

  • soit refroidir directement le fluide frigorigène par l’air : c’est le rôle du condenseur à air,
  • soit refroidir le fluide frigorigène par de l’eau : la machine frigorifique sera équipée par un condenseur à eau. Mais cette eau doit alors être elle-même refroidie en toiture, via une tour de refroidissement.

Pour accroître la puissance de refroidissement, on peut profiter de l’énergie de vaporisation d’une eau pulvérisée au travers du courant d’air. Le principe est le même que lorsque nous nous aspergeons la figure par temps très chaud : la vaporisation de l’eau refroidit notre peau.

Soit la pulvérisation est celle de l’eau qui circule dans le condenseur, soit c’est de l’eau indépendante de l’eau du circuit de condensation qui est pulvérisée.
Cela conduit aux 5 technologies développées dans la technologie des condenseurs.

Critères de choix globaux

Energétiquement, la solution d’un refroidissement direct du fluide frigorigène par l’air extérieur possède des avantages, puisque tous les intermédiaires (et leurs consommations) sont évités et ainsi que la maintenance coûteuse de la tour de refroidissement. Aujourd’hui, la pression de condensation des condenseurs à air est bien gérée par l’arrivée des détendeurs électroniques. C’est la solution couramment adoptée lorsque l’on peut placer le groupe frigorifique sur la toiture : le condenseur fera partie du système « monobloc ».

En toute logique, on retouvera donc le condenseur à air en toiture. Mais la machine frigorifique est parfois située en cave. Dans ce cas, il est exclu de faire confiance à des « ventilations naturelles », des « soupirails », … la température dans la cave risquerait de monter fortement et le condenseur se retrouverait balayé par de l’air déjà réchauffé. La pression de condensation du fluide monterait et le compresseur verrait sa consommation fortement augmenter. Par forte chaleur, le compresseur ne pourrait suivre et déclencherait par son pressostat haute pression.

L’évacuation de la chaleur demande un réel balayage par un fluide frais et il appartient au bureau d’études de comparer 2 solutions :

  • Soit une gaine d’air est prévue pour apporter l’air extérieur au condenseur et évacuer l’air réchauffé (les pertes de charge générées créent des consommations au ventilateur).
  • Soit il est décidé de placer un condenseur à eau et de transférer l’eau chaude en toiture pour la refroidir dans une tour de refroidissement.

Le transfert de la chaleur par cette deuxième solution est plus efficace (bon coefficient d’échange de l’eau, faible consommation d’une pompe par rapport à un ventilateur),… mais il y a investissement et consommation de la tour. Un bilan global doit être réalisé.

Paramètres de dimensionnement

Pour augmenter les performances du compresseur, on a tout intérêt à abaisser la température de condensation. Autrement dit, il faut augmenter la surface d’échange et augmenter le débit de circulation de l’eau ou de l’air. Le « pincement », c’est-à-dire l’écart entre la température du fluide refroidissant à la sortie du condenseur et la température du fluide frigorigène sera minimal. Mais l’investissement et les pertes de charge en seront augmentées, et donc la consommation de la pompe…

Schéma technique.

En pratique, pour un condenseur à eau, le bureau d’études choisit couramment un pincement final de 4 à 8°C et un échauffement de l’eau de 5 à 10°C. Autrement dit, si l’eau entre avec une température de 36°, elle ressortira entre 41 et 46°C et la température de condensation s’établira entre 45 et 54°C.

De même, pour un condenseur à air, la vitesse sera comprise entre 2 et 4 m/s et, si l’air entre avec une température de 30°C, la température de condensation s’établira entre 40°C et 50°C.

Schéma technique.

Un constructeur annonce que l’optimum entre la température de condensation et la température d’entrée du fluide refroidissant doit être de 12°C, maximum. Maximum car la régulation permet de moduler cette valeur en fonction de la charge réelle du compresseur.

Comparaison entre les modes de refroidissement

À partir d’une température de l’air de 30°C, quelle sera la température de condensation ? Tout dépend du type de refroidissement de l’eau de condensation choisi !

En partant du fonctionnement d’une tour de refroidissement, voici les résultats comparés pour une température d’air de 30°C 40 % HR
Comparons les systèmes en fixant des valeurs moyennes : une « approche » de 5°C, un pincement des échangeurs de 6°C et un échauffement de la température de l’eau de 7°C.

Entrée condenseur Sortie condenseur T°condens. fluide frigorifique
 

Condenseur à air

normal T° air sec = 30° T° air = 30° T° air = 37° 43°
avec évaporation d’eau T° air sec = 30° T° air = 25° T° air = 32° 38°
 

Condenseur à eau

tour ouverte T° air humide = 20° T° eau cond = 25° T° eau cond = 32° 38°
tour fermée T° eau pulvér. = 25° T° eau cond = 31° T° eau cond = 38° 44°
dry-cooler T° air séche = 30° T° eau cond = 36° T° eau cond = 43° 49°

Dans cette approche très simplifiée, on constate que le condenseur à eau est un échangeur intermédiaire entre le fluide frigorigène et l’air extérieur. Il provoque une augmentation de température de condensation du fluide (et donc une augmentation de la consommation du compresseur). Cette pénalité se retrouve entière pour l’aéro-refroidisseur ou dry-cooler. L’augmentation de la consommation du compresseur est de 2 à 3% par degré K, ce qui n’est pas négligeable !

Si une tour de refroidissement est insérée, on va rattrapper cet handicap par la fabuleuse capacité de refroidissement de l’eau lors de son évaporation !
La tour ouverte fait mieux que combler l’handicap puisqu’elle permet même de descendre la température de condensation. Mais elle entraîne beaucoup de soucis de corrosion…

La tour fermée semble un très bon compromis dans les installations avec condenseur à eau, tandis que l’appoint d’une pulvérisation d’eau est à étudier pour les condenseurs à air.

Abaisser la température de l’air extérieur

La consommation énergétique augmente si la température de condensation augmente.

Aussi, l’emplacement du condenseur doit éviter un réchauffement local de l’air de refroidissement. Par exemple, un condenseur placé sur une toiture couverte de roofing noir entraînera une surchauffe locale de l’air de plusieurs degrés en période d’ensoleillement … Le placement de gravier blanc sur la toiture sera favorable.

L’emplacement du condenseur devra éviter un ensoleillement direct de l’échangeur. Si le placement à l’ombre est impossible, le placement d’un système d’ombrage permettra d’abaisser le niveau de température.

Il faut éviter également qu’un recyclage de l’air ne se fasse autour du condenseur : de l’air chaud se mélange à l’air froid, la température de l’air d’aspiration augmente, … de même que la température de condensation.
C’est pourtant parfois une solution réalisée pour la limitation du niveau de bruit, puisque les parois latérales peuvent être couvertes d’absorbant acoustique… Qu’il est difficile de concilier toutes les contraintes…!

Dans le même esprit, il faut éviter que l’air de refroidissement d’un condenseur ne soit recyclé sur lui-même ou dans un condenseur voisin.

Sans commentaires…

Dans la mesure du possible, il faut donc aussi proscrire le placement le condenseur dans un local fermé. Si c’est le cas (pour des condenseurs de chambres frigorifiques, par exemple), il faut assurer une forte ventilation du local et même parfois sa climatisation, si on veut que la température de l’air du local reste suffisamment basse pour pouvoir continuer à refroidir les condenseurs sans faire monter la pression de condensation. On conviendra que cette situation est aberrante sur le plan énergétique !

Protéger l’isolation extérieure

Les tuyauteries d’eau glacée sont toujours isolées, ne fut-ce que pour éviter la condensation de l’eau de l’ambiance. Mais il est utile d’insister sur la nécessité d’entourer l’isolant d’une gaine en plastique rigide. À défaut, les oiseaux sont friands de cette mousse de polyuréthanne pour la confection de leur nid !


Choix d’un condenseur à air

Le gaz chaud du réfrigérant cède sa chaleur à l’air traversant le condenseur et passe à l’état liquide.

L’entretien du condenseur à air est limité. Il n’y a aucun risque de gel en hiver.

Mais le coefficient d’échange avec l’air étant faible, le condenseur sera volumineux, et donc lourd et encombrant.
Les températures de condensation sont directement liées aux conditions de température extérieure : la pression de condensation sera forte en été (dégradation du COP de la machine frigorifique), mais plus faible en hiver, entraînant d’ailleurs un besoin de régulation adaptée pour un fonctionnement correct.

Choix du ventilateur

La circulation forcée de l’air nécessite des ventilateurs dont la consommation électrique n’est pas négligeable. De plus, ils constituent une source de bruits, par frottement sur les pales du ventilateur, mais aussi par frottement sur les ailettes de l’échangeur.

Pour information, des condenseurs à air à convection naturelle existent (pas de ventilateur, pas de bruit, pas de consommation) mais leur puissance très faible en limite l’usage à des climatiseurs ne dépassant pas 1 kW.

Deux types de ventilateurs sont utilisés :

ventilateur hélicoïdal

Le ventilateur hélicoïdal (ou axial), pour des appareils placés à l’air libre, là où le bruit ne constitue pas une nuisance pour le voisinage. Le niveau sonore dépend de la vitesse de rotation du ventilateur. Dans les emplacements exposés, le régime ne doit pas dépasser 500 t/min.

Si des ventilateurs existants sont trop bruyants, on peut les munir d’amortisseurs de bruit cylindriques (tenir compte de la perte de charge).

ventilateur centrifuge

Le ventilateur centrifuge, souvent pour des appareils placés à l’intérieur d’un immeuble, raccordé à l’extérieur par des gaines (le ventilateur centrifuge peut vaincre des pertes de charges plus élevées).

Si le bruit du ventilateur dépasse les valeurs admissibles, on peut le munir d’amortisseurs de bruit.

La vitesse de passage de l’air est comprise généralement entre 2 et 4 m/s. Cette information dans le catalogue constructeur est un indice qualité puisque si elle se rapproche de 2 m/s, on a plus de garantie que l’appareil fera peu de bruit et que la consommation du ventilateur sera limitée (en fait, le constructeur a dû écarter davantage les ailettes pour faciliter le passage de l’air, donc l’appareil demandera plus de matière, sera plus volumineux et… sera plus cher : la qualité se paie !).

Complément de puissance par aspersion d’eau

Schéma complément de puissance par aspersion d'eau.

Pour augmenter la puissance d’échange, on peut transformer le condenseur à air en tour fermée par aspersion de l’échangeur avec de l’eau. Par exemple, de l’air extérieur de 30°C 50 % HR passe à 25°C 100 % HR . On abaisse donc la température de condensation en dessous de la température de l’air ambiant. Ce qui facilite le travail du compresseur !

Schéma technique.

Dans ce cas, il faut cependant tenir compte du risque de corrosion de l’échangeur et, de ce fait, des fuites possibles de l’agent réfrigérant. L’eau évaporée est remplacée par de l’eau du réseau. Un débit complémentaire de déconcentration est nécessaire afin de réduire l’entartrement. Un traitement de l’eau peut donc s’avérer nécessaire.

Récupération de chaleur du condenseur

Une récupération de la chaleur est possible pour chauffer directement un local. Ainsi, un supermarché Delhaize à Bruxelles évacue la chaleur du condenseur du groupe frigorifique (armoires de congélation) en créant un rideau d’air chaud à l’entrée du magasin. En été, la chaleur est déviée en toiture par un clapet.


Choix d’un condenseur à eau

Photo condenseur à eau.

Le réfrigérant de la machine frigorifique cède sa chaleur à l’eau circulant dans le condenseur.
Grâce au coefficient d’échange avec l’eau de 20 à 30 x plus élevé que le coefficient d’échange avec l’air, la taille du condenseur à eau sera plus réduite. L’échangeur sera moins encombrant.

Machine frigorifique avec condenseur à eau, installée en salle des machines et raccordée à une tour de refroidissement à l’extérieur.

Il est moins bruyant que le condenseur à air. Il permet plus facilement la récupération de chaleur puisque la chaleur est contenue dans de l’eau, plus facilement déplaçable.

La température de condensation peut plus facilement être stabilisée que dans les condenseurs à air.

Mais le condenseur à eau nécessite forcément une tour de refroidissement complémentaire qui, elle, est encombrante, génère du bruit, des frais d’entretien parfois importants, une éventuelle consommation d’eau, … Pourrait-on dire que l’on a déplacé le problème ?

La matière utilisée est souvent le cuivre ou l’acier, bons conducteurs thermiques, en fonction des contraintes (le cuivre ne peut être adopté pour l’ammoniac, par exemple).

Pour le refroidissement, on peut utiliser :

  • L’eau du réseau (eau potable), mais cette solution est à proscrire vu la consommation exorbitante d’eau qu’elle entraîne.
  • L’eau de nappes phréatiques, de lac ou de rivière (demander l’autorisation). Les eaux contiennent plus ou moins d’impuretés qui se déposent sur les tubes. Ces dépôts peuvent réduire considérablement le coefficient de transfert de chaleur. À défaut de la mise en place d’un système de nettoyage automatique, il faut surdimensionner l’échangeur de sorte que les performances de l’installation restent suffisantes.
  • Un circuit d’eau, ouvert ou fermé. C’est le cas le plus fréquent. Il entraîne l’utilisation d’une tour de refroidissement.

Choix de la tour de refroidissement

Photo tour de refroidissement.

Pour évacuer la chaleur captée par le condenseur à eau, on rencontre trois technologies de tour de refroidissement. Voici quelques critères de choix.

Le refroidissement atmosphérique ouvert : la tour ouverte

L’eau est pulvérisée dans l’air qu’un ventilateur pulse à travers la tour de refroidissement. Une partie de l’eau s’évapore. Simultanément, elle refroidit le reste de l’eau qui retourne vers le condenseur. L’eau évaporée est continuellement remplacée par de l’eau fraîche spécialement traitée. Cette configuration entraîne donc une consommation d’eau, estimée à 1,5 litre par kWh dissipé. Elle se rencontre généralement dans les installations de plus de 1 000 kW.

Schéma tour ouverte.

Cette tour ouverte a la faveur :

  • du financier : solution bon marché, ne prenant pas beaucoup de place,
  • de l’énergéticien : la température de condensation est très basse (ce qui diminue le travail du compresseur).

Mais elle constitue le cauchemar de l’équipe de maintenance : corrosion par oxygénation de l’eau, encrassement par introduction de poussières et de grains de sable qui risquent de se déposer dans le condenseur, risque de gel accru,… problèmes qui limitent d’ailleurs la durée de vie moyenne à une dizaine d’années.

Photo tour ouverte.

Elle peut poser également un risque en matière de contamination par la légionelle : l’eau pulvérisée se situe à une température de 30 à 50°C. Emporté par le vent, le nuage de vapeur d’eau + fines gouttelettes qui s’échappe de la tour risque d’être respiré par des personnes à proximité… On sera particulièrement attentif à ne pas placer une tour ouverte près de la prise d’air neuf du bâtiment, ou près d’un autre bâtiment plus élevé dont les occupants pourraient respirer le panache de vapeur en ouvrant leur fenêtre. Un entretien régulier doit de plus être prévu.

À noter qu’il existe des tours ouvertes sans ventilateurs. La pulvérisation d’eau est réalisée avec une pression assez élevée et cette pulsion d’eau entraîne l’air avec elle par effet induit (effet Venturi). L’avantage premier est la diminution des bruits et des vibrations. La consommation un peu plus élevée de la pompe est très largement compensée par la suppression du ventilateur. Mais ce type de tour est limité dans la gamme de puissance de refroidissement.

Schéma technique.

Si la tour doit travailler par des températures extérieures assez basses, une régulation de la température de l’eau du circuit « tour » est à prévoir. En effet, si l’eau du condenseur est anormalement froide, la haute pression s’établira difficilement et on aura des difficultés au démarrage.
La solution consiste à agir d’abord sur la diminution de la vitesse du ventilateur et ensuite sur la vanne trois voies diviseuses qui permettent à l’eau de by-passer la tour de refroidissement.

Schéma technique.

Remarques.

  • Si l’installation reste en fonctionnement en période de gel, une résistance chauffante sera prévue dans le bac de collecte d’eau, avec une régulation qui autorise le chauffage pour une température de l’eau inférieure à 5°C, par exemple.
  • Puisque le risque de corrosion est élevé dans les tours ouvertes, il est judicieux d’utiliser des tuyauteries en polyéthylène à haute densité ou en PVC haute densité, pour raccorder la tour au condenseur.

Le refroidissement atmosphérique fermé : la « tour fermée »

L’échangeur de chaleur eau/air est également aspergé d’eau quand la puissance de réfrigération est élevée. Cette eau d’aspersion constitue toutefois un circuit autonome. Pour cette installation il faut compter environ 20 % d’emplacement supplémentaire au sol et 50 % de budget en plus par rapport à la tour ouverte.
Le principal avantage est d’abaisser le point de condensation tout en conservant propre le circuit du condenseur. Les problèmes hydrauliques sont résolus mais les autres problèmes subsistent :

  • consommation d’eau (évaporation et déconcentration),
  • régulation,
  • protection contre le gel.

La réserve (mentionnée pour les tours ouvertes) concernant le risque de contamination par légionellose reste d’application dans ce cas-ci. Ici encore, le choix de ce système sera donc moins adéquat si des personnes sont susceptibles de respirer l’air sortant de la tour de refroidissement (fenêtres à proximité).

Le refroidissement atmosphérique fermé : l’aéro-refroidisseur où « dry-cooler »

Cette fois, pas d’aspersion d’eau, c’est le ventilateur qui pulse simplement l’air extérieur dans une batterie d’échange. Technologiquement, il s’agit d’un condenseur à air, à la seule différence que c’est de l’eau qui le parcourt et non du fluide frigorigène.

Pour éviter le gel, l’eau sera glycolée. Par exemple, pour atteindre une protection contre le gel à – 16°C, la concentration en éthylène-glycol sera de 30 % en masse.
Problème : la température de l’air en été peut dépasser les 30°C. Par rapport aux tours de refroidissement avec aspersion d’eau, la surface d’échange doit être plus importante, l’emplacement au sol également. Le coût d’investissement peut atteindre le double de celui de la tour ouverte.
Mais le dry-cooler est cependant souvent utilisé pour sa fiabilité (absence de corrosion du circuit hydraulique), la possibilité de le faire fonctionner en toutes saisons (avec eau glycolée), l’absence de consommation d’eau.
Ces caractéristiques sont appréciées surtout pour le refroidissement des installations informatiques dont le fonctionnement et la charge thermique sont constants toute l’année, et donc aussi en hiver.

Aéro-refroidisseur.

Quelques recommandations particulières

Pour une installation de qualité, on sera attentif aux éléments suivants :

  • Pour limiter la corrosion, préférer de l’acier revêtu (polymères) à l’acier galvanisé (il n’est pas lisse, ce qui favorise le développement d’algues),
  • Choisir des ailettes très larges ou des batteries lisses pour un nettoyage facile,
  • Choisir une pompe à eau en inox,
  • Privilégier un accouplement et des roulements de haute qualité (> 80 000 heures), sachant qu’une tour peut fonctionner jusqu’à 5 à 6 000 heures/an !
  • Si le bruit est un facteur important, favoriser les ventilateurs à aubes inclinées vers l’avant, malgré leur moins bonnes performances énergétiques que les ventilateurs à aubes inclinées vers l’arrière (qui doivent fonctionner à 3 000 tours), ou penser au placement d’un silencieux,
  • Vérifier la résistance de la structure : une tour fermée de 300 kW pèse de 3 à 4 tonnes et une tour de 1 000 kW pèse de 9 à 12 tonnes !
  • Prévoir l’absorption des vibrations sonores par des silent-blocs,
  • Prévoir un appareil de mesure de la conductivité de l’eau (pour mieux gérer le débit d’eau de déconcentration),
  • Pour les très grosses tours, le placement de capteurs de vibration pour la surveillance des paliers sera un outil très efficace de maintenance et d’économie à long terme.

Choix de la régulation

Principe de base : abaisser la température de condensation

Abaisser la température de condensation, c’est abaisser le niveau de pression à la sortie du compresseur, c’est donc diminuer le travail de celui-ci et l’énergie qu’il consomme.

Par exemple, abaisser la température de condensation de 10°C génère généralement plus de 10 % de réduction de la puissance électrique. Les constructeurs annoncent même 2 % d’économie par degré abaissé, dans certains cas.
De plus, une basse température de condensation entraîne un niveau moins élevé de pression, ce qui permet souvent de choisir un compresseur d’un modèle plus petit, donc moins cher.

Nous devrions avoir d’ excellents rendements dans nos régions où les canicules sont rares ! La température extérieure avoisine les 12 à 20°C lorsque la climatisation est en route. La température de condensation devrait être de l’ordre 24 à 32°C. Mieux, certains locaux à charges internes importantes (par exemple, les salles informatiques) doivent être aussi climatisés en mi-saison ou encore en hiver. Dans ce cas, lorsque la température de l’air extérieur diminue, la capacité de refroidissement du condenseur augmente.
En théorie, c’est tout bénéfice pour le compresseur qui a moins de mal à travailler !
Et pourtant …

Problème avec les détendeurs thermostatiques

Le constructeur souhaite qu’une différence de pression minimale existe au niveau du détendeur, pour assurer une quantité de débit de fluide frigorifique suffisante dans l’évaporateur. C’est la Haute Pression qui pousse le réfrigérant à travers l’orifice de la vanne du détendeur. Il en résulte, avec une haute pression trop faible, que l’alimentation en réfrigérant est insuffisante, particulièrement au démarrage. Le compresseur aspire mais il est sous-alimenté.

La basse pression devient aussi insuffisante et le groupe se met en sécurité basse pression. Mais comme cette sécurité est à réenclenchement automatique, le groupe « pompe », se fatigue et finalement déclenche par son thermique.

Avec un détendeur thermostatique, il est donc nécessaire de maintenir une haute pression suffisamment élevée. Dès lors, le constructeur impose une pression minimale, côté HP, à la sortie du condenseur (par exemple 12 bars pour le R22).
Ce problème est renforcé en hiver… Si l’air est à 0°C, la surface d’échange devient excessive. De plus, on n’aura plus besoin de la pleine puissance frigorifique. De sorte que le condenseur sera largement surdimensionné pendant les périodes froides.
S’il fait plus froid dehors, le constructeur va diminuer le débit d’air de refroidissement (en arrêtant l’un ou l’autre ventilateur, par exemple), mais il va maintenir le niveau de pression ! en fait, la régulation des ventilateurs sera réalisée sur base du pressostat HP.

Schéma régulation des ventilateurs sera réalisée sur base du pressostat HP.

Il y a économie sur le ventilateur… mais pas sur le compresseur !

Première amélioration : travailler avec un ventilateur à vitesse variable ou une cascade de ventilateurs

Supposons que le ventilateur du condenseur fonctionne en tout ou rien, avec l’exigence constructeur de maintenir les 12 bars minimum.
Par exemple, il s’enclenche lorsque la pression monte à 16 bars et déclenche lorsque la pression descend à 12 bars. Ceci entraîne des cycles on-off « rapides » (+/- 2 min.) et une « fatigue » du moteur. En plus la mise en route brutale du ventilateur provoquera une chute soudaine de la pression et de la température de condensation. Ceci provoque à son tour une ré-évaporation du liquide resté à la même température. Les bulles de vapeur provoqués par ce phénomène peuvent perturber le bon fonctionnement du détendeur et donc de l’installation. (« flash gaz »).

Si par contre, on utilise un ventilateur à vitesse variable (moteur spécial ou régulateur de vitesse de rotation externe), en plus de la réduction de consommation du ventilateur, on optimisera le fonctionnement du compresseur qui restera régulé à 12 bars (dès que la pression augmente, le ventilateur accélère; et si la charge augmente encore, c’est la pression qui augmente naturellement).

Si le condenseur dispose de plusieurs ventilateurs, on obtient un résultat similaire à partir d’une mise en cascade des ventilateurs, via un pressostat à plusieurs étages. Cette fois, la pression de condensation est stable, ce qui évite la formation de bulles de gaz à l’entrée de l’évaporateur.

Cas particulier

Comme le condenseur est entièrement à l’extérieur, par très basse température, c’est toute la masse métallique qui est à 0°C et, même clapets complètement fermés, le réfrigérant se condense à trop faible pression. Il faut dans ce cas rendre inopérants un certain nombre de tubes.

Pour les rendre inopérants, il suffit de remplir d’office certains tubes avec du réfrigérant liquide. Ce réfrigérant liquide sera sous-refroidi mais la surface d’échange utile du condenseur ayant fortement diminué, il ne pourra en condenser trop. Ce remplissage est obtenu par une vanne à 3 voies fonctionnant automatiquement et branchée sur un réservoir auxiliaire de réfrigérant.

Comme il faut une certaine quantité de liquide pour remplir ces tubes, il y a lieu de prévoir un réservoir et une quantité de réfrigérant suffisamment grande.

Exemple.

Un climatiseur devant fonctionner pour des températures extérieures inférieures à 17°C doit être équipé d’un ventilateur de condenseur à vitesse variable. La diminution de vitesse du ventilateur est alors commandée par un pressostat ou un thermostat placé sur le condenseur. La puissance d’échange de celui-ci est ainsi maintenue constante quelle que soit la saison.

Au minimum, le fonctionnement du ventilateur sera commandé en tout ou rien. Idéalement la vitesse sera modulée, soit en continu, soit par paliers.

Deuxième amélioration : travailler avec un détendeur électronique

Si le détendeur thermostatique travaille généralement avec une température minimale de condensation de 35°C, le détendeur électronique peut travailler avec une température minimale de condensation de 20°C !

Photo détendeur électronique.

Détendeur électronique.

Il est plus cher à l’investissement, mais ce prix est largement récupéré par l’usage de l’installation.
De plus, la présence d’un détendeur numérique permet d’optimiser la température de condensation en fonction de la charge du compresseur.

Exemple.

Voici la séquence prévue par un constructeur de régulation :

A 100 % de puissance, l’écart « température de condensation – fluide de refroidissement » est choisi à 12 K.

A 0 % de puissance, l’écart est de 4 K : la consommation du compresseur est diminuée par la baisse de pression de condensation et le ventilateur adaptera sa vitesse de rotation pour maintenir cette consigne. L’écart n’est pas de 0 K, car les ventilateurs tourneraient tout le temps.


** à corriger

Exemple.

si la T°ext = 30°C et Travail compresseur = 25 %, la T°condensation = 36°C
si la T°ext = 30°C et Travail compresseur = 50 %, la T°condensation = 38°C
si la T°ext = 20°C et Travail compresseur = 25 %, la T°condensation = 26°C

si la T°ext = 10°C et Travail compresseur = 25 %, la T°condensation = … 20°C car c’est la valeur minimale de condensation.

Remarque.
Adopter une température minimale de condensation de 20°C suppose que le sous-refroidissement soit suffisamment élevé.
À défaut, la moindre perte de charge sur le tracé va provoquer une vaporisation dans le condenseur (« flash-gaz »). C’est parfois un problème rencontré lorsqu’il faut remonter plusieurs mètres avec la tuyauterie.

Pour s’en prémunir, il est possible de sous-refroidir volontairement le liquide par la création d’une zone de sous-refroidissement dans le condenseur (voir figure), ou en plaçant un échangeur à plaques sur le liquide (à la sortie).

Illustration zone de sous-refroidissement dans le condenseur.

Régulation de la tour de refroidissement

La tour de refroidissement sera commandée suivant la même logique : maintenir constante la température de l’eau de refroidissement.
Classiquement, on retouvera une régulation par vanne 3 voies mélangeuses. La température de l’eau de sortie de la tour est mélangée à l’eau venant du condenseur. Si ce système permet de conserver le débit constant dans le condenseur (ce qui limite le dépôt de sédiments), il est peu efficace au niveau des ventilateurs : ceux-ci tournent en permanence quels que soient les besoins de refroidissement. En dehors du gaspillage d’énergie, le coût de fonctionnement des ventilateurs est loin d’être négligeable…

Schéma régulation de la tour de refroidissement.

Aussi est-il préférable de concevoir une installation qui régule d’abord sur le nombre et la vitesse des ventilateurs, pour ensuite affiner en modulant sur la position de la vanne mélangeuse (si ventilateur à 2 vitesses, par exemple). Idéalement, c’est un ventilateur à vitesse variable qui sera choisi.
N’oublions pas que toute l’installation de climatisation est dimensionnée pour les jours de canicule. Hélas, ces jours sont rares dans nos contrées…!

Il est donc facile d’imaginer que les besoins réels moyens seront largement en dessous des puissances de dimensionnement. Réduire la vitesse du ventilateur de moitié, c’est diviser sa consommation par 8 !


Critères acoustiques

Bruit aérien

La principale source de bruit d’un condenseur est constituée par le(s) ventilateur(s). On aura toujours intérêt à les faire fonctionner à faible vitesse.

L’émission du bruit des aérocondenseurs à ventilateurs hélicoïdes est pratiquement uniforme dans un plan perpendiculaire à l’axe de rotation des ventilateurs. Les faces d’aspiration et de refoulement d’air étant plus bruyantes que les autres, l’aérocondenseur doit être convenablement orienté par rapport aux plaignants potentiels.

Certains constructeurs proposent des moteurs de ventilateur à deux vitesses, option qui peut être déterminante dans certains cas. Ainsi, la petite vitesse pourra être utilisée la nuit, les bruits de fond et les besoins frigorifiques diminuant la nuit. Certains constructeurs annoncent qu’une réduction de moitié de la vitesse de rotation des ventilateurs entraîne un gain de 15 dB(A) sur le niveau de puissance acoustique de l’aérocondenseur.

Il est aussi possible d’utiliser des silencieux à baffles sur l’aspiration et le refoulement d’air mais ceux-ci risquent d’augmenter considérablement l’encombrement et les pertes de charge des aérocondenseurs. Certains matériaux absorbants peuvent servir de revêtement insonorisant de la carcasse, mais ceux-ci ne peuvent constituer une solution à eux seuls. Il est possible enfin, dans les cas les plus délicats, de disposer des écrans acoustiques autour de l’appareil.

Photo écrans acoustiques.

Exemple de baffles acoustiques
intégrés sur une tour ouverte (vue du dessus).
Les poignées permettent de les retirer facilement lors de l’entretien.

Bruit solidien (ou bruit d’impact)

Les vibrations se transmettent vers les locaux sensibles par les tuyauteries en cuivre, et par la dalle sur laquelle est posé l’appareil. Il faut traiter les vibrations par dalle flottante posée sur isolateurs à ressort, utiliser des manchons anti-vibratoires pour le raccordement sur des canalisations, et des suspensions anti-vibratiles pour les supports des canalisations.

Chambres d’hôtel

Chambres d'hôtel


Analyse de la demande

La spécificité des chambres d’hôtel ou d’hôpital apparaît comme suit :

  • un découpage en nombreux locaux indépendants,
  • une demande très variable entre les locaux, suite à une occupation variable et à une localisation sur des façades différentes,
  • le souhait de l’occupant de pouvoir intervenir sur la consigne intérieure,
  • le souci du gérant de limiter la consommation d’une chambre non occupée.

Et les exigences acoustiques sont particulièrement sévères. La norme européenne EN 13779: 2004 propose trois niveaux de confort acoustique à respecter dans les locaux (minimum – par défaut- minimum) :

Type de bâtiment

type de local dB(A)
Hôtels couloir 35/40/45
salon de réception 35/40/45
chambre d’hôtel (nuit) 25/30/35
chambre d’hôtel (jour) 25/35/40

Évaluer

Pour en savoir plus sur l’ évaluation du niveau de bruit.

Choix du système de conditionnement d’air

Remarque préliminaire

Il serait prétentieux de prétendre énoncer en quelques lignes tous les critères constituant la démarche conceptuelle qui conduit au choix d’un système de climatisation d’un immeuble.

La solution résulte en effet de la concertation étroite entre le Maître de l’Ouvrage, l’Architecte, l’Ingénieur de bureau d’études et tous les partenaires qui forment l’équipe de projet. Cette concertation se situe à la fin de la phase d’avant-projet de l’étude du bâtiment et résulte du meilleur compromis entre critères parfois contradictoires :

  • coût d’investissement et d’exploitation,
  • optimalisation de l’usage des surfaces,
  • mobilité aux variations de programme,
  • esthétique externe et interne (le bâtiment doit être beau à voir et à vivre !),
  • confort au sens large (climatique, acoustique, visuel,…),
  • etc…

À noter qu’au plus tôt se constitue cette équipe de projet, plus l’ensemble des contraintes sera pris en considération à temps.

Tout au plus pouvons-nous ici évoquer avec prudence les quelques critères principaux habituels et l’ébauche de solutions classiques mais nullement « passe-partout :

1° Choix d’un système « tout air »

Un système « tout air » paraît exclu :

  • peu de souplesse d’exploitation s’il est à débit constant,
  • consommation élevée du transport de l’air,
  • impossibilité de recycler l’air venant des chambres, et donc consommation élevée du fonctionnement en tout air neuf,

En fait, le besoin en air neuf des chambres est faible si on le rapporte aux m² utilisés. Un système où l’air serait le vecteur des apports de chaleur et de froid ne semble donc pas se justifier ici.

Si ce système est malgré tout retenu (avec une batterie terminale de réchauffage pour chaque chambre), il est essentiel de prévoir une batterie de récupération de chaleur entre l’air extrait et l’air pulsé, au risque d’alourdir encore le coût d’investissement puisque les conduits d’extraction devront au minimum être raccordés entre eux pour placer le récupérateur dans le tronçon commun.

2° Choix d’une solution décentralisée

Photo unité de climatisation autonome, intérieure.

Parmi les systèmes à « détente directe », il est possible d’envisager des unités de climatisation autonomes placées dans chacune des pièces (windows, splits,…), mais l’esthétique douteuse, les coûts de maintenance élevés, le niveau de bruit généré par la mise en vibration de la façade, l’absence de régulation centrale, … rendent ce choix peu adéquat. Tout au plus pourrait-on l’admettre en rénovation de quelques locaux orientés en façade Sud-Ouest ou Ouest.

Photo unité de climatisation autonome, extérieure.Photo unité de climatisation autonome, extérieure.

A noter qu’il est possible d’éviter la présence de multiples condenseurs à air en façade :

  • Soit en plaçant des condenseurs à eau et en refroidissant l’eau en toiture dans une tour de refroidissement. Mais alors l’investissement paraît similaire au placement d’une boucle d’eau glacée et de ventilo-convecteurs, pour un confort acoustique moindre puisque chaque chambre comportera un compresseur…
  • Soit en plaçant des condenseurs à eau perdue (eau de ville rejetée à l’égout) mais cette solution est tout à fait à déconseiller suite à la forte consommation d’eau qu’elle entraîne. Elle risque d’ailleurs d’être interdite si le bâtiment fait l’objet d’un permis d’environnement (ce serait refusé par l’IBGE à Bruxelles, par exemple).

 3° choix d’une solution par ventilo-convecteurs

Photo ventilo-convecteur.

La solution classiquement adoptée est d’installer deux boucles d’eau (eau chaude et eau glacée) entre tous les locaux, avec comme unité terminale un ventilo-convecteur dans chaque chambre. On rencontre le ventilo soit monté en allège de fenêtre, soit placé en soffite (généralement au dessus du petit couloir qui longe la salle de bain : l’air est repris dans le ventilo qui le souffle dans la chambre).

Schéma principe ventilo-convection.

Les avantages du ventilo-convecteur sont nombreux :

  • Une autonomie de fonctionnement local par local, tant en ce qui concerne la mise en service que le réglage individuel de la température.
  • Une rapidité de remise en température du local grâce au transfert thermique par convection.
  • Un fonctionnement thermique en recyclage local, qui permet d’éviter la pollution (la contamination dans le cas d’un hôpital) d’une chambre à l’autre.
  • La liberté pour chaque occupant de démarrer ou d’arrêter l’unité de sa chambre à sa guise et de choisir la vitesse du ventilateur qui lui convient.
  • Un prix d’investissement limité grâce à un équipement fabriqué en grande série.
  • A taux d’occupation réduit, la gérance de l’hôtel a la possibilité d’arrêter les unités correspondant aux chambres non occupées, moyennant le report des commandes à la réception (GTC). Elle peut décider de préchauffer ou prérefroidir la chambre avant l’arrivée de l’occupant sur base d’un lien automatique avec le fichier de réservation.

Comme inconvénient au système, on peut noter la nécessité de maintenir une bonne partie de l’année les deux boucles de distribution d’eau chaude et froide en circulation dans le bâtiment. Il ne faut absolument pas négliger l’importance des pertes permanentes liées à ces deux réseaux et soigner tout spécialement à l’isolation efficace des tuyauteries.

Également, la solution par ventilo-convecteur ne permet pas de traiter l’humidité de l’air qui peut devenir fort sec en hiver. Il est possible d’insérer des petits atomiseurs d’eau à ultrasons dans les ventilos, mais cette solution est relativement coûteuse. On peut également apporter l’humidité nécessaire par un humidificateur inséré dans le réseau d’air de ventilation, pour autant que celui-ci soit préchauffé.

 4° Choix d’un système à plafond rafraîchissant

Photo panneau rayonnant froid.

La climatisation par panneaux rayonnants froids ne paraît pas opportun dans le conditionnement d’air des chambres. En effet, la présence d’humidité suite à la salle de bain attenante risque d’entraîner de la condensation sur le plafond, même si le système est régulé pour stopper la circulation d’eau froide à ce moment.

De plus, ce système n’apporte qu’une solution pour le refroidissement et devrait être complété par un réseau de radiateur pour apporter la chaleur en hiver. Le placement d’un faux plafond n’est pas justifié pour un autre usage (éclairage, câblage,…).

Même en rénovation, il semble coûteux de placer un tel réseau alors que seuls les apports solaires sont à vaincre de façon épisodique.

Les poutres froides  ne sont pas non plus adéquates car elles entraîneraient un grand inconfort dans des locaux de faible hauteur.

5° Choix d’un système à débit de fluide réfrigérant variable

Une installation à fluide réfrigérant variable (VRV, VRF, … selon les marques) peut également être d’application pour une structure hôtelière ou hospitalière. Elle dispose des mêmes avantages que la solution par ventilo-convecteur : souplesse nécessaire, possibilité de gestion centralisée tout en fournissant à chaque occupant une télécommande pour actionner la cassette, …

Deux avantages spécifiques apparaissent par rapport à la solution classique des ventilos :

  • L’absence de boucles d’eau chaude et froide parcourant tout le bâtiment.
  • La possibilité en mi-saison de récupérer la chaleur excédentaire d’une façade (par exemple à l’Est) pour réchauffer la façade encore en demande (par exemple à l’Ouest) ou de récupérer la chaleur extraite de locaux techniques intérieurs pour réchauffer les chambres périphériques en demande.

Si le bâtiment présente simultanément des besoins de chaleur et des besoins de refroidissement durant une bonne partie de l’année, ce système paraît le plus avantageux. Mais encore faut-il s’assurer qu’au sein d’une même zone gérée par le même réseau, de l’énergie soit transférable. Ainsi, il semble difficile d’alimenter les chambres du 4ème étage par la chaleur dégagée par les locaux de réunion du rez-de-chaussée. Il faudrait que les réseaux soient dans ce cas verticaux, ce qui doit poser de nombreux problèmes pratiques.

Un point faible réside probablement dans le chauffage « par pompe à chaleur » en plein hiver. Quel est à ce moment le COP de l’installation ? Le compresseur fonctionnant de jour, le prix de revient du kWh électrique est environ 3 x plus élevé que le kWh issu d’une chaudière au gaz traditionnelle, par exemple. Il faut donc que le COP global dépasse 3 pour y trouver avantage.

Le taux d’humidité en hiver n’est pas non plus contrôlé avec ce système.

Nous n’avons pas pu, jusqu’ici, obtenir de données permettant d’évaluer la performance effective de l’échange entre locaux et le COP moyen annuel d’un tel système, ni le lire dans un rapport d’un organisme indépendant.

Exemple. l’hôtel Mercure à Paris-Courbevoie est équipé d’un tel système pour les chambres, les salles de réunion et de restaurant et le hall d’accueil. Une cassette a été installée dans chacune des 515  chambres réparties sur 12 étages. Le système est réversible et assure les besoins en chaud et froid, sans appoint électrique.

Il s’agissait d’une rénovation et l’hôtel est resté en activité durant les travaux, l’installation se faisant par niveau. Les 72 unités extérieures sont situées sur la toiture.

Le budget total a été de 15 Millions de FF, le coût d’entretien par chambre est estimé à 750 FF par an.

(Source : « GIE – Climatisation et Développement »).


Quelques critères en détail

Voici les principaux critères à prendre en compte :

Le coût d’investissement

Si le prix moyen d’une installation avoisine les 125 €/m² (contre 40 €/m² pour une simple installation de chauffage), l’échelle des prix en fonction du type d’équipement et du niveau de régulation qui lui est associé peut être évaluée comme suit :

Installations  « détente directe »

Investissement
€/m²

Window 75 – 95
Split system 100 – 200
Débit réfrigérant variable* 150 – 300

Installations « sur boucle d’eau »

—–

Investissement
€/m²

Ventilo – 2 tubes 110 – 140
Ventilo – 2 tubes/2 fils 115 – 155
Ventilo – 4 tubes 125 – 190
Pompe à chaleur sur boucle 100 – 215

Le coût d’exploitation énergétique

Le coût d’exploitation est directement fonction des charges à vaincre : un immeuble fort vitré consommera beaucoup plus que son équivalent équipé de protections solaires extérieures, par exemple … C’est donc d’abord le bâtiment qui crée la consommation !

On peut cependant établir une échelle entre les systèmes suivant leur performance énergétique :

Installations  « détente directe »

Coût énergie

Window élevé
Split system moyen
Débit réfrigérant variable faible

Installations « sur boucle d’eau »

Coût énergie

Ventilo – 2 tubes moyen
Ventilo – 2 tubes/2 fils moyen à élevé
Ventilo – 4 tubes moyen
Pompe à chaleur sur boucle faible à élevé

Quels sont les critères qui permettent de distinguer une installation à faible consommation énergétique ?

  • Une installation ne devrait jamais consommer du chaud et du froid simultanément, pour éviter de détruire l’énergie; en aucun cas, on ne doit pas concevoir une installation dont la régulation fonctionnerait par mélange.
  • Lorsque le bâtiment requiert du chaud et du froid simultanément (un grand local informatique refroidi en hiver, des plateaux très étendus et fort équipés dont il faut en permanence refroidir la partie centrale, …), on aura intérêt à concevoir une installation qui peut récupérer la chaleur extraite de ces locaux pour la restituer dans les locaux en demande de chaleur (bureaux en périphérie). Les installations à débit de réfrigérant variable et les pompes à chaleur sur boucle d’eau sont performantes à ce niveau. Dans les installations plus classiques (ventilos), une récupération de chaleur au condenseur des groupes frigorifiques est également possible et moins contraignante.
  • Les résistances chauffantes électriques prévues dans les installations peuvent entraîner des dépenses importantes vu le coût du kWh électrique par rapport au kWh thermique. On sera attentif à ne sélectionner une installation de ventilos 2 tubes/2 fils que dans un bâtiment très isolé (besoins de chaleur très limités suite aux apports gratuits).

Calculs

Un petit outil de simulation permet de visualiser globalement l’impact du choix du vecteur énergétique de chauffage sur un local type (même si les hypothèses sont celles d’un bureau, avec des apports internes élevés).
  • Enfin, quelle que soit l’installation, la qualité de la régulation est déterminante : c’est un budget à ne pas raboter ! on pense tout particulièrement au ventilo-convecteur qui est le pire ou le meilleur des équipements, … selon la régulation qui lui est associée !

Le coût de maintenance

Les prix donnés à titre indicatif ci-dessous correspondent à un contrat annuel de maintenance sur devis (les prix les plus bas correspondent aux surfaces traitées les plus grandes). Normalement, il faudrait leur ajouter le prix du renouvellement périodique des équipements défectueux. Ainsi, les installations en « détente directe » sont généralement plus fragiles, ce qui implique un remplacement plus fréquent des composants.

Installations « détente directe »

€/m²
Window très faible
Split system 3 – 7,5
Débit réfrigérant variable

Installations « sur boucle d’eau »

€/m²

Ventilo – 2 tubes 3 – 5
Ventilo – 2 tubes/2 fils 3 – 5
Ventilo – 4 tubes 3 – 5
Pompe à chaleur sur boucle 4,75 – 6,25

Le confort thermique

Installations  « détente directe »

Confort thermique
Window faible
Split system faible
Débit réfrigérant variable bon

Installations « sur boucle d’eau »

Confort thermique
Ventilo – 2 tubes moyen
Ventilo – 2 tubes/2 fils moyen
Ventilo – 4 tubes bon
Pompe à chaleur sur boucle moyen

Le confort acoustique

Quel que soit le système de climatisation choisi, le critère de performance acoustique sera déterminant, et cela, tant à l’intérieur qu’à l’extérieur :

  • Les ventilos ou cassettes seront choisis en fonction de leur qualité acoustique et de manière à pouvoir dissiper la puissance requise à moyenne vitesse. Idéalement, pour réduire encore le niveau sonore, on installera le module de traitement d’air en dehors du local (dans un faux plafond, dans un placard technique, …) et l’air traité sera conduit vers le local par une gaine, ce qui permet un affaiblissement acoustique optimal.
  • Le placement des unités extérieures sera bien étudié pour éviter la propagation du bruit vers les chambres (placement en toiture ? placement à l’écart du bâtiment ? …).

Remarque : on rencontre parfois le placement du groupe frigorifique en sous-sol, dans un local technique insonorisé. L’objectif de réduction du niveau acoustique est atteint. Mais la consommation du compresseur risque d’augmenter si le condenseur n’est pas correctement refroidi…! De toute façon, c’est l’air extérieur qui est le refroidisseur final. Aussi, le traitement en sous-sol va entraîner un refroidissement par de l’eau (sélection d’une machine frigorifique équipée d’un condenseur à eau), cette eau étant elle-même refroidie ultéreurement dans une tour de refroidissement en toiture.

Installations  « détente directe »

Confort acoustique
Window faible
Split system bon
Débit réfrigérant variable bon

Installations « sur boucle d’eau »

Confort acoustique
Ventilo – 2 tubes bon
Ventilo – 2 tubes/2 fils bon
Ventilo –  4 tubes bon
Pompe à chaleur sur boucle faible

La centralisation des équipements

Si la surface des locaux à climatiser est limitée (rénovation de quelques locaux,par exemple), un système à « détente directe » (voire plusieurs équipements décentralisés) sera suffisant et nettement moins coûteux.

Si une installation centralisée bénéficie de l’effet de taille en terme de prix d’investissement, il n’y a peu d’effet majeur à l’exploitation (efficacité frigorifique meilleure pour les grosses puissances mais pertes en ligne et pertes en régulation plus élevées…).

L’encombrement

Les ventilo-convecteurs seront souvent insérés dans le faux plafond face à la salle de bain, afin de ne pas occuper de place au sol.


Choix de la ventilation associée

Que l’on choisisse une solution décentralisée ou que l’on choisisse des ventilo-convecteurs, un apport d’air neuf doit être envisagé.

Ce dernier, imposé par la réglementation wallonne pour garantir une qualité de l’air suffisante, est dès lors fourni par une installation en simple ou double flux.

Concevoir

Pour définir la configuration à adopter le choix du système d’apport d’air neuf.

 Concevoir

Pour choisir le mode de gestion (régulation du système), cliquez ici ! Remarquons que dans les immeubles nouveaux (et donc isolés), l’apport d’air neuf devient une part essentielle dans la consommation énergétique (tant en chaud qu’en froid) en regard des déperditions.

Puisque de toute façon une extraction doit être prévue dans les sanitaires, la question devient : apport d’air par des grilles de ventilation dans les châssis, ou apport par une gaine de distribution d’air (qui permet le préchauffage de l’air)?

La ventilation double flux est le seul moyen de contrôler au plus juste les apports d’air et donc de contrôler cette consommation.

La ventilation simple flux, quant à elle, reste en partie influencée par les conditions atmosphériques.

En quelque sorte, c’est le standing souhaité qui tranchera.


Choix du mode de régulation

Vu les possibilités actuelles de programmation du traitement des chambres en fonction de la réservation, la mise en place d’une GTC, Gestion Technique Centralisée, semble aujourd’hui requise pour un bâtiment hôtelier.

Choisir un fluide frigorigène [Concevoir – Climatisation]

Il existe différents types de fluides frigorigènes sur le marché. En voici les critères de choix :

Choisir un fluide frigorigène


L’impact environnemental

Reprenons différents fluides en fonction de leur impact environnemental dans le tableau ci-dessous. Ce tableau met bien en évidence le fait que les HFC sont en sursis comme le prévoit la réglementation européenne (règlementation dite F-gaz). Celle-ci prévoit en effet une réduction d’utilisation de 79% de l’utilisation des gaz fluorés d’ici 2030 par rapport à l’utilisation faite en 2015.

Aujourd’hui les solutions de remplacement ne sont pourtant si pas évidentes. Il faudra s’orienter vers des (nouveaux ?) fluides à faible Potentiel de Réchauffement Global (PRG) ou des fluides naturels.

Cependant, pour ces derniers, il faudra faire face aux contraintes de sécurité associées au CO2 (haute pression) au propane et au butane (inflammabilité) et à l’ammoniac (toxicité).

ODP
(/R-11)
GWP
(kg éq. de CO2)
ODP
(/R-11)
GWP
(kg éq. de CO2)
CFC
(interdits)
Mélanges de HCFC
R-11 1 4 000 R-404A 0 3 260
R-12 0,8 8 500 R-407C 0 1 530
R-502 0,2 5 490 R-410A 0 1 730
HCFC Mélanges à base R-22
R-22 0,04 1 700 R-408A 0,7 2 650
HFC
(corps purs)
Autres
R-134a 0 1 300 Propane / Butane 0 20
R-125 0 2 800 Ammoniac 0 <1
R-143a 0 3 800 CO2 0 1

Remarque : certains imaginent qu’à défaut de trouver le gaz parfait, on pourrait produire le froid dans des machines frigorifiques très compactes (donc contenant peu de fluide), puis transférer le froid par des caloporteurs (eau glycolée, CO2,.). Dans ce cas, le problème du fluide ou de sa sécurité est moins crucial.


L’impact énergétique (ou qualité thermodynamique)

Par ses propriétés thermodynamiques, le fluide frigorigène influence la consommation énergétique de la machine frigorifique. Pour illustrer ce point, nous reprenons ci-dessous les résultats d’une étude comparative entre 5 fluides différents, utilisés dans une même machine, avec les mêmes conditions de fonctionnement.

Source : ADEME, « le froid efficace dans l’industrie ».

Dans chaque cas, l’objectif est de produire une puissance frigorifique de 100 kW.

NH3 R-134a R22 propane R-404A
Puissance effective sur l’arbre [kW] 30,7 30,9 32,1 33,1 35,1
Coefficient de performance frigorifique 3,26 3,24 3,12 3,03 2,85
Débit volumique balayé dans le compresseur [m³/h] 239 392 224 250 217
Débit volumique de liquide frigorigène [m³/h] 0,53 1,91 1,75 2,42 2,70
Température de refoulement de la compression réelle adiabatique [°C] 156 60 87 63 59

Hypothèses de l’étude

  • Cycle à compression monoétagée;
  • Température d’évaporation : – 15°C;
  • Surchauffe à la sortie de l’évaporateur : 5 K;
  • Surchauffe à l’entrée du compresseur : 10 K;
  • Température de condensation : 30 °C;
  • Sous-refroidissement en sortie de condenseur : 5 K
  • Taux d’espace mort du compresseur : 3 %.

Analyse

Les températures de refoulement de la compression indiquée sont légèrement plus élevées qu’en réalité parce que le compresseur est placé dans une situation de non-échange avec l’extérieur (adiabatique). Par exemple, le compresseur réel à l’ammoniac qui échangerait 1/10 de sa puissance sur l’arbre aurait une température au refoulement d’environ 142°C.

On constate que le groupe au R-404A consomme 14 % de plus que le groupe à l’ammoniac. La machine équipée de propane n’est pas très performante non plus.

Le R-134a est très performant sur le plan énergétique. Par contre, le débit volumique balayé par le compresseur est nettement plus élevé, ce qui va augmenter la taille du compresseur et des conduites d’aspiration (coût d’investissement plus élevé).

L’ammoniac présente un très faible débit volumique de liquide frigorigène et donc un faible diamètre de la conduite de liquide.

Reprenons les chiffres du COP frigorifique en partant d’une référence 100 pour le R-22 :

NH3 R-134a R22 propane R-404A
Coefficient de performance frigorifique 3,26 3,24 3,12 3,03 2,85
Si le R-22 est pris en référence 100 : 105 104 100 97 91

Des résultats similaires ressortent d’une autre étude relatée par l’ASHRAE, avec comme différence notable un coefficient 99 pour le R-404A. Il faut dire que ce genre d’étude est fonction des options choisies : prendre la même machine frigorifique et changer juste le fluide, ou optimiser tous les composants en fonction des caractéristiques de chaque fluide pour produire la même puissance ?

Cette deuxième étude fournit les coefficients pour d’autres fluides :
R-410A : 99
R-407C : 95

À noter que les débits demandés par le R-407C sont, à 1 % près, identiques à celui du R-22 : il a justement été conçu comme fluide de remplacement. Il est malheureusement zéotrope et présente donc un glissement de température lors du changement d’état (un « glide ») de 7,2 °C, ce qui lui fait perdre 5 % de rendement énergétique.

Conclusion

L’ammoniac et le R-134a présentent une performance énergétique meilleure, mais cet avantage n’est pas suffisant que pour conclure sur ce seul critère.


La sécurité d’usage

De nombreuses études poussées sont menées sur les aspects :

  • toxicité (par inhalation);
  • action biologique (cancers, malformations des nouveaux-nés);
  • action sur les denrées entreposées en chambre froide;
  • inflammabilité.

Certains critères sont facilement quantifiables

  • par la concentration limite d’exposition (exprimée en ppm);
  • par la limite inférieure d’inflammabilité (concentration, en volume, dans l’air sous la pression atmosphérique).

Ce qui a permis de définir un code sécurité (Standard 34 Safety Group) :

NH3 R-134a R22 propane butane R-407C R-404A R-410A
Conc. limite d’exposition (ppm) 25 1 000 1 000 2 500 800 1 000 1 000 1 000
limite inf. d’inflammabilité (%) 14,8 2,3 1,9
Code sécurité B2 A1 A1 A3 A3 A1 A1 A1

La toxicité de l’ammoniac et l’inflammabilité des hydrocarbures entraînent des mesures de sécurité toutes particulières pour leur usage.

La norme NBN EN 378-1 traitant des Systèmes de réfrigération et pompes à chaleur – Exigences de sécurité et d’environnement – Partie 1: Exigences de base, définitions, classification et critères de choix est une norme utilisée plutôt pour la conception, la fabrication, l’installation, le fonctionnement et la maintenance des installations frigorifiques. Cependant, elle nous donne aussi une idée précise dans l’évaluation des risques liés à l’utilisation de ces fluides.


Les contraintes techniques

Elles sont nombreuses (niveaux de pression requis, comportement du fluide en présence d’eau, viscosité et donc tendance à fuir de l’enceinte, commodité de détection d’une fuite) et vont influencer l’efficacité et la fiabilité de l’installation.

Une des contraintes fort importantes est le couple formé par le fluide frigorigène et l’huile de lubrification.

De l’huile est nécessaire au bon fonctionnement du compresseur. Un séparateur d’huile est prévu à la sortie du compresseur, mais son efficacité n’est jamais totale. Et la petite quantité d’huile entraînée par le fluide risque de se déposer au fond de l’évaporateur (basse température et faible vitesse). L’échange thermique est diminué et, à terme, l’huile risque de manquer au compresseur. Si autrefois la miscibilité entre le fluide CFC et les huiles minérales était très bonne (le fluide « entraînait » avec lui une certaine dose d’huile assurant une lubrification permanente), il faut aujourd’hui adopter des huiles polyolesters, plus coûteuses, très sensibles à la présence d’eau, et dont on doit vérifier la compatibilité avec les différents matériaux en contact (métaux, joints élastomères, vernis moteur,.).

L’élimination des fluides frigorigènes chlorés, bonne chose pour l’ozone stratosphérique, en est une mauvaise pour la lubrification, le chlore étant bénéfique à la présence du film d’huile. L’emploi d’additifs divers dans les huiles a dû y suppléer.


Le coût

Le prix au Kg du frigorigène est très différent selon qu’il s’agisse d’un fluide simple, comme l’ammoniac, ou d’un fluide plus complexe comme un mélange de HFC.

Mais le coût du fluide frigorigène rapporté à celui de l’installation se situe entre 1 et 3 %, ce qui reste faible. Et les coûts indirects liés au choix du fluide (dispositifs de sécurité, équipements électriques anti-déflagrant, conception étanche du local technique,…) sont sans doute plus déterminants.


Les tendances futures

En HVAC, l’utilisation courante des fluides frigorigènes CFC (R11, R12 et R502) et HCFC (R22)  a été proscrite, car ils avaient le pouvoir de détruire la couche d’ozone et de renforcer l’effet de serre.

Depuis 1990 est apparue une nouvelle famille : les HFC, fluides purement fluorés, dont le R-134a est le plus connu. Malgré tout, ce genre de fluide frigorigène n’est pas idéal sur le plan de l’environnement. Dès lors, l’utilisation dégressive de ces gaz fluorés est imposée par la réglementation. On devra alors s’orienter vers des fluides à potentiel de réchauffement global faible. Cela passera très certainement par :

  • L’élargissement de l’utilisation des fluides toxiques (amoniac) et inflammables (propane, butane)
  • Le développement de nouvelles molécules et de nouveaux mélanges
  • La réduction drastique de la charge et confinement du fluide frigorigène
  • Le retour du CO2

À ce sujet, une étude a été menée en France par  Armines CES, le Cemafroid et ERéIE pour l’AFCE avec le soutien de l’ADEME et d’UNICLIMA. Ce rapport présente notamment un série d’alternatives par secteur. Vous pouvez le télécharger en  ouverture d'une nouvelle fenêtre ! cliquant ici.

Concevoir une installation frigorifique : critères généraux

Concevoir une installation frigorifique : critères généraux


Limiter le surdimensionnement

On connaît le besoin de limiter la puissance d’une installation. Parole d’un installateur : « aucun système de climatisation ne peut apporter le confort si la puissance frigorifique spécifique est élevée ». Mais on ne reviendra pas ici sur cette nécessité de limiter le besoin de froid (limitation des surfaces vitrées, placement de protections solaires, …).

Pour un bâtiment donné, l’objectif est ici de limiter la sur-puissance de l’installation et de ses composants auxiliaires (pompes, ventilateurs, tours de refroidissement,…) et donc d’établir le calcul des charges sur base de paramètres de dimensionnement corrects.

Évaluer

Pour en savoir plus sur l’impact énergétique du surdimensionnement de l’installation frigorifique, cliquez ici !

On peut comprendre qu’un bureau d’études souhaite se protéger de toute contestation ultérieure (manque de puissance). Dans ce but, la tendance est d’utiliser des coefficients de sécurité maximaux… et de surdimensionner l’installation. Par contre, le maître d’ouvrage peut expressément « prendre sur lui » les risques éventuels d’inconfort et préciser au bureau d’études qu’il souhaite des critères plus précis de dimensionnement.

S’il souhaite limiter l’investissement initial et la consommation future, le maître d’ouvrage pourra demander que le dimensionnement des installations de conditionnement d’air soit réalisé :

Sur base de température et humidité extérieures réalistes :

Les valeurs extrêmes qui servent au dimensionnement pour l’été sont souvent de 30°C et 50 % HR (c’est la valeur proposée par l’AICVF, Association des Ingénieurs en Climatique, Ventilation et Froid, pour le Nord de la France), parfois même 32°C est choisi « par sécurité ». Or, le fabricant Carrier (dont la méthode de calcul pour le dimensionnement fait autorité dans le monde entier) propose 28° et 40 % HR pour Lille et 30° et 40% pour Reims.

Il est important de dissocier les valeurs de dimensionnement des valeurs limites de fonctionnement. On peut sélectionner un équipement capable de ne pas déclencher en dessous de 35, voire 40°C. Ainsi, l’appareil dimensionné pour donner sa puissance nominale pour 30° fonctionnera à 40°, tout en ne fournissant pas temporairement toute la puissance requise (40°C = lors d’une période de canicule, où en plus l’air serait localement chauffé par la présence d’une toiture en roofing noir et d’un mur stoppant tout balayage par le vent !).

Par exemple, si on dimensionne sur 30°C, la centrale de traitement d’air risque de ne pas avoir la puissance suffisante par 32°C extérieurs, et donc de pulser l’air hygiénique à 17°C au lieu de 16°C, mais les ventilo-convecteurs (qui ont été dimensionnés avec une incidence très faible de la température extérieure et en choisissant le modèle « juste au-dessus dans la gamme des appareils ») pourront compenser localement ce léger déficit.

De plus, l’IRM atteste que la température à Uccle ne dépasse jamais 30°C sur une année type-moyenne (. Cette température n’est dépassée que quelques jours par an durant les années « chaudes ».

Répartition des conditions climatiques à Uccle sur base de l’année-type moyenne de l’IRM. Un point correspond à 1 h. Cela signifie l’heure pour laquelle la charge énergétique extérieure est la plus grande (correspond à l’enthalpie maximale) correspond à l’enthalpie du point (30°C et 50%).
Dimensionner sur base d’un point correspondant à 30°C, 40% ne laisse « échapper » que quelques heures par an.

Un cahier des charges qui impose un dimensionnement sur base de 30° et 40%, voire même, 28° et 40% HR limitera les consommations durant toute la vie des équipements.

C’est le responsable du bureau d’études qui demandera au fournisseur de sélectionner un appareil qui ne déclenche pas par action du pressostat de sortie du compresseur pour une température trop faible.

Sur base de température et humidité intérieures « enveloppes » qui réservent une « zone neutre » :

Les puissances frigorifiques seront établies sur base d’une température de consigne minimale de 24°C en période de refroidissement, le critère énergétique optimum étant de 26°C. L’AICVF propose une température de l’air de 25°C, saufs locaux particuliers.

À noter que la température de 26°C n’est pas pour autant la température de consigne permanente. C’est la température de dimensionnement pour une température extérieure extrême. Cela signifie que, par très forte chaleur extérieure, le bâtiment pourrait « monter » jusqu’à 26°C. Or, les occupants venant d’une température élevée à l’extérieur apprécieront que l’écart thermique ne soit pas trop important.

Dans le cas de la technique de climatisation par plafonds froids, une température d’air de 26°C génère un confort équivalent à une température de 24°C obtenue avec un système classique du type ventilo-convecteur, grâce à l’effet de rayonnement frais sur les têtes des occupants.

Un tel niveau de consigne permet l’existence d’une zone neutre entre la consigne d’hiver et la consigne d’été, gage de ne pas voir les productions de chaud et de froid fonctionner simultanément dans le bâtiment.

Sur base de besoins d’air de ventilation limités

Le respect du RGPT est souvent la base du calcul 30 [m³/h.pers] mais la norme européenne NBN EN 13779: 2004 (Ventilation dans les bâtiments non résidentiels-Spécifications des performances pour les systèmes de ventilation et de climatisation) peut constituer une nouvelle référence de base opposable. Il propose 3 débits d’air neuf à respecter en fonction de la qualité de l’ambiance à respecter (dans des locaux dont la pollution principale est d’origine humaine) pour les locaux sans fumeur en fonction de la qualité d’air souhaitée :

Norme européenne EN 13779: 2004
pour les locaux sans fumeur.

Catégorie de qualité d’air

Débit d’air neuf
Excellente qualité
(niveau ambiant de CO2 < 400 ppm au dessus du niveau extérieur).
> 54 [m³/h.pers]
Qualité moyenne
(niveau ambiant de CO2 400-600 ppm au dessus du niveau extérieur).
de 36 à 54 [m³/h.pers]
Qualité acceptable
(niveau ambiant de CO2 600-1 000 ppm au dessus du niveau extérieur).
de 22 à 36 [m³/h.pers]
Faible qualité
(niveau ambiant de CO2 > 1 000 ppm au dessus du niveau extérieur).
< 22 [m³/h.pers]

Sur base de taux d’occupation des locaux prédéfinis en fonction de leur usage

Il est important d’informer le bureau d’études de l’occupation des personnes la plus réaliste. En cas de doute, on sollicitera la mise en place d’une gestion de la ventilation en fonction des besoins.

Sur base de niveaux d’apports internes prédéfinis en fonction du niveau d’équipement

L’équipement prévisible des locaux doit lui aussi être défini avec soin si l’on ne désire pas que le bureau d’études se base sur des valeurs standards qui sont parfois bien au-delà de la réalité : le 25 W/m² pris traditionnellement pour estimer les charges de la bureautique par exemple, n’est plus atteint aujourd’hui, sauf dans des secteurs spécifiques comme le secteur bancaire.

Sur base de besoins de déshumidification limités

Traditionnellement, sauf indication contraire, le bureau d’études dimensionne sur base d’un taux d’humidité de 50 % intérieur. Or le corps humain n’est pas sensible à l’humidité dans la fourchette de 35 à 65 % HR. La déshumidification d’été est donc coûteuse, d’autant qu’elle risque de générer l’enclenchement de la post-chauffe pour ne pas pulser un air trop froid dans l’ambiance. Ce qui est dommageable au niveau énergétique.

Un dimensionnement basé sur une humidité intérieure de 60 % est suffisant et recommandé.

Remarque : dans la technique des plafonds froids, un taux d’humidité particulièrement bas est requis pour limiter le risque de condensation dans les locaux.

Sur base de coefficients de foisonnement réalistes

Sur les puissances moyennes d’équipements, sur les taux d’occupation, . des coefficients de foisonnement peuvent être appliqués sur base de l’idée que tout le monde n’est pas toujours présent en même temps. Une étude réaliste des taux d’occupation prévisible est nécessaire.

Sur base d’un fonctionnement 24h/24 en période de canicule

Le temps de fonctionnement supposé de l’installation frigorifique va influencer les résultats (fonctionnement 12h/24 ? 16h/24 ? 24h/24 ?). Un dimensionnement sur base d’un fonctionnement 24h/24 va diminuer la puissance installée (et donc le coût d’investissement) et donc permettre un meilleur rendement durant toute l’année.

La régulation de base travaillera au régime 8h00 – 18h00 et, en cas de canicule, la régulation prolongera automatiquement la période de fonctionnement (en fonction du maximum atteint par la température extérieure, par exemple).

Exemple.

1. En collaboration avec le bureau d’études de Tractebel, un test à été fait sur un immeuble de bureaux pour tester l’impact de la période de fonctionnement des équipements. Les résultats sont très variables en fonction de l’inertie du bâtiment :

Inertie
Durée de fonct. équip.
Facteur solaire baies
Puiss. en W/m²
Puissance relatives
Différence
lourd
12h/24
0,8
99
100 %
lourd
16h/24
0,8
86
87 %
– 13 %
lourd
24h/24
0,8
84
85 %
– 15 %
Inertie
Durée de fonct. équip.
Facteur solaire baies
Puiss. en W/m²
Puissance relatives
Différence
léger
12h/24
0,8
113
100 %
léger
16h/24
0,8
112
99 %
– 1 %
léger
24h/24
0,8
112
99 %
– 1 %

L’acceptation de faire fonctionner les équipements pendant 16h/24 au lieu de 12 lors de pointes de chaleur permet de sous-dimensionner les équipements de 13 %, si l’inertie du bâtiment est élevée. L’impact est inexistant sur les bâtiments légers.

2. L’impact de l’inertie sur la valeur de la puissance installée nous a motivés à creuser ce paramètre. Voici les résultats (toujours valable pour l’immeuble étudié) :

Inertie
Durée de fonct. équip.
Facteur solaire baies
Puiss. en W/m²
Puissance relatives
Différence
lourd
24h/24
0,8
85
100 %
moyen
24h/24
0,8
91
108 %
+ 8 %
léger
24h/24
0,8
111
132 %
+ 32 %

Un bâtiment léger va majorer la puissance frigorifique de l’ordre de 30 % !

3. Voyant l’intérêt de nos lecteurs passionnés par l’étude, divers compléments ont été encore testés pour relativiser les impacts :

La prise en compte d’un facteur d’occupation du bâtiment de 80 % permet de sous-dimensionner les équipements de 9 %. (dans les tableaux ci-dessus le facteur d’occupation était de 100 %)

Une réduction drastique du facteur solaire des baies permet de sous-dimensionner les équipements frigorifiques de 42 %.

La couleur des parois extérieures est sans influence sur le dimensionnement.


Prévoir les outils de gestion

À l’image d’un moteur diesel, une installation frigorifique sera d’autant plus efficace qu’elle travaille sur des longues périodes, sans arrêts successifs.

A l’aide d’une horloge, il sera utile de pouvoir minimiser le temps de marche du système de réfrigération en fonction des périodes d’occupation du bâtiment et de la charge de refroidissement. Si l’on prévoit un système de régulation numérique, il peut être imaginé de rendre ces temps de fonctionnement dépendants de la température extérieure. Par période de forte chaleur, on pourra alors laisser fonctionner les équipements 24h/24.

Attention : l’horloge ne doit pas redémarrer l’installation en période de tarif électrique défavorable, pour limiter le coût de la pointe de puissance quart-horaire.

Pour permettre cette gestion lorsque parmi les utilisateurs, certains demandent une production de froid permanente, il peut être intéressant de dissocier les productions de manière à éviter de faire fonctionner en continu, notamment en hiver, une machine frigo beaucoup trop puissante par rapport aux besoins.


Créer un réseau d’eau glacée qui favorise une température élevée à l’évaporateur

Un régime de fonctionnement qui s’adapte aux besoins réels du bâtiment

Le bureau d’études dimensionne l’installation afin qu’elle puisse répondre aux conditions extrêmes de température extérieure (30°C) et d’ensoleillement (ciel serein).

Souvent, pour limiter le coût d’investissement, il prévoit pour la boucle d’eau glacée un régime départ 6° – retour 11°.

Or la boucle d’eau glacée circule dans un bâtiment à 22°…24°C. Elle présente donc des pertes tout au long de son parcours. En rehaussant la température de départ de l’eau, on diminue le Delta T° et donc les pertes des tuyauteries.

De plus, l’air ambiant condense en dessous de 12°C environ. Beaucoup d’énergie du compresseur sera donc consacrée à déshumidifier l’air dans les échangeurs, déshumidification qui n’est souvent pas nécessaire.

Enfin, le compresseur verra son travail diminuer si la température d’évaporation est augmentée.

Faire travailler le réseau d’eau froide au régime 12° – 17° est donc beaucoup plus efficace.

Comment ? Divers concepts d’installation sont possibles afin de mieux « coller » aux besoins variables.

Adopter des échangeurs à haute température

Il faut « faire du froid » avec l’équipement « le plus chaud possible » !

Photo plafond froid.

Le plafond froid est très performant à ce sujet : il profite de l’importante surface qui lui est donnée pour faire du froid avec de l’eau comprise entre 15 et 18°C.

Photo ventilo-convecteur.

Le ventilo-convecteur peut être également efficace pour autant qu’il soit choisi pour fonctionner au régime 12° – 17°C. Mais l’échangeur du ventilo devra alors être surdimensionné. Donc un coût d’investissement et un encombrement plus importants.

Photo unité terminale du système de climatisation à DRV.

L’ unité terminale du système de climatisation à Débit de Réfrigérant Variable est également très performante puisque la régulation numérique va adapter la température de refroidissement aux besoins effectifs de déshumidification de la pièce : la température du fluide frigorigène ne descendra à 6°C que lorsque le local sera en demande de déshumidification.

Réaliser une température glissante par vanne 3 voies sur le départ de la boucle d’eau glacée

Par exemple, adopter les régimes suivants pour le départ de l’eau froide : 6° en été, 9° en mi-saison, 12° en hiver.

Pour que cette solution convienne, il faut que le profil de consommation du bâtiment soit fortement lié à l’évolution de la température extérieure. En climatisation, c’est le cas lorsque les besoins de réfrigération sont ceux liés au traitement de l’air neuf. Par contre, les apports dus aux machines, à l’éclairage, aux personnes sont constants. Les apports solaires sont plus ou moins liés à l’évolution de la température extérieure (c’est en été que température et soleil sont au maximum) mais le soleil peut être important certaines journées d’avril…

En mi-saison, l’installation pourra toujours répondre à un apport solaire momentané, mais proportionnellement avec une puissance maximale plus faible puisque la température de départ de l’eau glacée sera plus élevée. Cette régulation peut se faire, soit manuellement (2 ou 3 adaptations par an), soit automatiquement. Dans ce cas, il faudra trouver l’emplacement du capteur qui sera fidèle des besoins de l’installation.

Parallèle : en chauffage, un régulateur avec courbe de chauffe adapte la température de départ en fonction de la sonde extérieure.

Exemple.

Soit le réseau alimentant la batterie de froid du caisson de préparation de l’air neuf (débit = 50) et le réseau d’eau glacée (débit = 100).

Si les deux réseaux sont au régime 7 – 12, la température moyenne à l’évaporateur est de 9,5°C.

Si le réseau d’eau glacée passe au régime 12 – 17, la température moyenne à l’évaporateur passe à 10,75°C, soit une hausse de 1,25°C.

Cet impact est faible, mais il aura lieu durant toute la vie de l’installation, et il se cumulera aux pertes par tuyauteries plus élevées et à la consommation de latente plus forte également.

Réaliser des réseaux d’eau froide distincts, avec une modulation par vanne 3 voies sur chaque départ

Si l’installation comporte plusieurs types de locaux dont les besoins sont différents, cela se complique !

Par exemple, imaginons qu’il existe un local à apports internes importants et constant (salle informatique par exemple) et dont la puissance des émetteurs est juste suffisante : il devront toujours être alimentés à 6°. Si par ailleurs, plusieurs locaux plein sud avec larges baies vitrées présentent des besoins liés à la température extérieure et à l’ensoleillement, une modulation de la température de départ de ce circuit sera intéressante.

On peut alors réaliser des circuits différents commandés à des températures différentes, via des vannes trois voies motorisées. Ici, on ne modulera que la température du circuit « locaux plein sud ».

Parallèle : en chauffage, il apparaît normal de séparer les circuits en zones thermiquement homogènes (façade Sud, façade Nord,…), puis de moduler la température de départ de chaque circuit en fonction des besoins de la zone qu’il alimente. Ne disposer que d’une seule boucle d’eau glacée à 6°, c’est un peu comme si le chauffage n’était alimenté que par une seule boucle à 90°… !

Réguler les équipements terminaux sur le débit, en fonction de la température de retour

En thermique, il existe deux manières de réguler : agir sur le débit ou agir sur la température.

Moduler le débit sous-entend conserver une température constante.

En chauffage, le régime de température adopté lors du dimensionnement du matériel est élevé : généralement 90° – 70°. Ceci entraîne un écart de température élevé par rapport à l’ambiance et donc des pertes de maintien élevée. On aura donc tout intérêt à réguler sur la température.

En réfrigération, par contre, le régime classique 6° – 11° ou 7° -12° présente peu d’écart par rapport à l’ambiance. De plus, le débit est important (à puissance égale, il faut 4 fois plus de débit pour transporter du froid que du chaud puisque le Delta T° est 4 fois plus petit) et sa modulation est plus aisée. Si les besoins sont fort variables, on sera dès lors plus facilement tenté par une régulation sur le débit, avec une température de départ constante, une température de retour la plus élevée possible… et des économies d’énergie sur le transport de l’eau par l’utilisation d’une pompe à vitesse variable. Cependant, un débit minimum dans l’évaporateur est requis par le constructeur, sous peine de le geler à certains endroits. L’installation devra comprendre un by-pass de recyclage ou un découplage hydraulique par une bouteille casse-pression.

Cette technique nécessite des éléments terminaux (comme les ventilo-convecteurs, les centrales d’air, les sous-stations, …) régulés avec des vannes deux voies. Lorsque les besoins diminuent, le débit total de la boucle diminue également. Pour maintenir la pression constante aux bornes des équipements, on utilise des pompes à débit variable pilotées soit par la température de retour, soit par la pression.

Par opposition à la possibilité de régulation sur sonde extérieure, on réalise ici une régulation sur boucle fermée plus fidèle aux besoins du bâtiment. Pour l’évaporateur, ce n’est plus la température de départ qui est augmentée, mais la température moyenne de fonctionnement (régime 6° – 14° par exemple). La température moyenne à l’évaporateur est donc augmentée, ce qui est favorable.

Placer les consommateurs en série en fonction de leur température de fonctionnement

Pour augmenter la température à l’évaporateur, on peut penser à trois solutions :

  • Augmenter la température de départ de la machine frigo : cela sera possible si tous les utilisateurs demandent une température d’eau plus élevée.
  • Freiner le débit à l’évaporateur : c’est limiter car il faut irriguer en permanence la machine frigorifique à un débit minimal (voire constant) imposé. À défaut de débit insuffisant à l’évaporateur, la machine se mettra en sécurité.
  • Placer les échangeurs frigorifiques en série en fonction de leur température de travail : l’alimentation des unités terminales sera greffée en série, après la batterie froide du caisson de traitement d’air.

De plus, on préférera un couplage en injection car il permet de couper l’alimentation d’un échangeur sans perturber le reste de l’installation.

Schéma de couplage a injection.

Une seule condition de bon fonctionnement : le débit de la boucle primaire doit toujours être >> débit de chaque boucle partielle (pour éviter toute inversion dans le by-pass).


Insérer un réservoir tampon

Un ballon tampon amplifie l’inertie thermique de l’installation, ce qui prolonge la durée de fonctionnement des compresseurs. Il permet de résoudre le problème de l’anti-court cycle (c’est-à-dire la temporisation du démarrage si l’installation vient de s’arrêter) et de prolonger la durée de vie du matériel en diminuant le nombre de démarrages par heure ou par jour.

De plus, cela permet également de réguler le compresseur en fonction de la température du ballon-tampon, ce qui est une bonne solution.

On dimensionne un ballon tampon de telle sorte que son stockage corresponde à 5 à 10 minutes de la consommation en eau glacée.

Schéma bâche tampon simple.

On peut amplifier encore cette possibilité en insérant une bâche à eau glacée dans l’installation. Cette solution peut permettre de diminuer la pointe quart-horaire de l’installation par délestage des groupes frigorifiques.


Choisir une régulation numérique

Quel intérêt ?

La régulation numérique (ou digitale) est en plein essor ces dernières années. Cette fois, ce n’est plus le câblage qui va déterminer les séquences mais bien le programme inclus dans l’automate programmable ou le régulateur du groupe.

Il s’agit en fait d’une gestion globale du système qui vient se superposer aux équipements décrits ci-dessus.

La régulation d’ensemble en sera fortement améliorée :

  • Possibilité de modifier les points de consignes, les horaires de fonctionnement,… à distance.
  • Régulation modulante de la température par l’usage d’un détendeur électronique.
  • Possibilité de réaliser un délestage du groupe au moment de la pointe ¼ horaire du bâtiment.
  • Visualisation meilleure du fonctionnement par mesure des pressions et des températures tout au long du cycle.
  • Estimation des performances, de l’énergie consommée …

Il suffit d’imaginer la difficulté d’un technicien appelé pour résoudre une panne pour comprendre tout l’intérêt d’enregistrer différents paramètres de l’installation.

Exemple d’entretien prévisionnel.

Les pressions d’entrée et de sortie d’un compresseur et les mesures des températures d’entrée et de sortie du frigorigène de cette machine ont été repérés lors de la mise au point de l’installation. Si la température de refoulement est plus élevée qu’elle ne le devrait, c’est que ce compresseur a un problème d’étanchéité de clapet. Il faut agir.

Exemple de délestage.

Chez Delhaize, on met en place un délesteur de charge sur les groupes frigorifiques de telle sorte que ceux-ci ne s’enclenchent pas simultanément au démarrage des fours à pain, lorsque le bâtiment est en période de pointe électrique.

L’inertie des équipements frigorifiques est telle que l’arrêt de quelques minutes ne pose pas de difficulté majeure. Et l’économie tarifaire est appréciable !

Quels paramètres faut-il superviser dans une GTC de machine frigorifique ?

La réponse est fonction de l’importance de l’installation et de la qualité du personnel d’intervention pour en exploiter les résultats. On trouvera dans la maintenance des installations frigorifiques une liste de paramètres qui peuvent être suivis.

Améliorer

Pour en savoir plus sur la maintenance de l’installation frigorifique, cliquez-ici !

En construction nouvelle, la climatisation est-elle nécessaire ?

En construction nouvelle, la climatisation est-elle nécessaire ?


Comprendre l’évolution thermique des bâtiments aujourd’hui

Un inconfort d’été trop important

La climatisation d’un immeuble entraîne des coûts d’exploitation 3 à 4 fois plus importants que le simple chauffage traditionnel des locaux, suite à l’énergie frigorifique demandée mais aussi à l’importance des consommations liées au transport de l’air (ventilateurs). C’est ce qui ressort d’un vaste travail de simulation réalisé par l’ISSO aux Pays-Bas et dont nous avons développé un extrait dans l’analyse des coûts d’exploitation de la climatisation.

Évaluer

Pour accéder à l’étude comparative entre les coûts d’exploitation d’une installation de chauffage et ceux d’une installation de conditionnement d’air.

Reprenons-en le tableau final où les coûts sont globalisés et ramenés à une échelle de 100 pour la situation 1 (radiateurs et ventilation naturelle) :

SUD EST OUEST NORD
1 radiateurs + ventilation naturelle coût : 100
Inconfort : 370 h/an
coût : 105
Inconfort : 400 h/an
coût : 105
Inconfort : 450 h/an
coût : 106
Inconfort : 310 h/an
2 radiateurs + ventilation mécanique double flux coût : 219
Inconfort : 260 h/an
coût : 221
Inconfort : 280 h/an
coût : 222
Inconfort : 310 h/an
coût : 223
Inconfort : 230 h/an
3 radiateurs + ventilation mécanique double flux + rafraichissement* + free cooling de nuit** coût : 337
Inconfort : 25 h/an
coût : 346
Inconfort : 45 h/an
coût : 346
Inconfort : 60 h/an
coût : 348
Inconfort : 20 h/an
4 conditionnement d’air
(installation 4 tubes avec éjecto-convecteurs)
coût : 392
Inconfort : 0 h/an
coût : 387
Inconfort : 0 h/an
coût : 392
Inconfort : 0 h/an
coût : 373
Inconfort : 0 h/an

*Par « rafraîchissement » en été, on entend ici une pulsion d’air « rafraîchi » correspondant à 4 renouvellements horaires : refroidi à une température de 18 [°C], lorsque la température extérieure est < 23 [°C] et refroidi à une température de (T° ext – 5°), lorsque la température extérieure est > 23 [°C]

**Par « free cooling de nuit », on entend ici une pulsion d’air extérieur de ventilation correspondant à 4 renouvellements horaires, si T°ext < T°int  et si T°int > 20 [°C]

Si le coût de l’installation traditionnelle est moins élevé, il faut constater que le nombre d’heures d’inconfort empêche sa mise en œuvre pratique !

Par « inconfort », on entend le nombre d’heures durant la période de travail où le PMV (Vote Moyen Prédictif) des occupants serait > 0,5. Autrement dit, le nombre d’heures où l’on peut s’attendre à recevoir des plaintes du personnel… On considère que si ce nombre d’heures est inférieur à 100 heures par an, il s’agit d’une gêne temporaire tout à fait acceptable. Au-delà de 200 h/an, des mesures de refroidissement sont nécessaires pour garder un climat intérieur correct. Cette vision du confort est assez limitée, car elle ne tient par exemple pas compte de la théorie du confort adaptatif.

Dans d’autres simulations de cette étude, il apparaît que seuls les bâtiments dont la charge interne est limitée à 20 W/m², ce qui correspond à une situation d’absence d’équipement bureautique, peuvent encore se passer d’un système de refroidissement. C’est le cas du secteur domestique, mais pas du secteur des bureaux, … et encore moins des hôpitaux.

Bien que certaines hypothèses de l’évaluation de l’ISSO pourraient être remises en cause, il apparaît clairement que la simple ventilation diurne ne permet pas d’évacuer les charges calorifiques excédentaires en été. Le confort d’été ne pourrait être assuré. Cela ne veut cependant pas dire que la climatisation est devenue un mal nécessaire sans alternative …

Est-ce une conséquence « perverse » de l’isolation renforcée des parois ?

Certains critiquent l’évolution actuelle de l’augmentation de l’isolation des parois (y compris le placement de vitrages à traitement sélectif) et se justifient en disant « qu’on n’avait pas tous ces problèmes autrefois ! »

Ils oublient de dire combien les consommations de chauffage des anciens bâtiments sont élevées et le gouffre financier que représente une vieille école, un vieil immeuble administratif, …

Le bilan énergétique global annuel (hiver + été) est largement en faveur de l’isolation des parois, même pour un immeuble de bureaux.

Reste qu’une surchauffe apparaît … Est-elle une conséquence du renforcement de l’isolation ?

L’analyse de l’évolution des puissances thermiques d’un local de bureau-type fait apparaître que, en renforçant l’isolation, la puissance maximale de réfrigération (par 30°C extérieurs) est inchangée, voire en légère baisse. Le profil de puissance s’est cependant décalé. Ainsi, le besoin de refroidir le local apparaît pour des températures plus basses que si le local n’est pas isolé. Le besoin de chauffage n’apparait lui aussi que pour des températures plus basses.

On constate donc que le renforcement de l’isolation modifie fondamentalement le profil de consommation du local

  • il diminue fortement les consommations d’hiver,
  • il diminue la durée de la période de chauffe des bâtiments,
  • il augmente la demande de rafraîchissement, surtout pour une température extérieure comprise entre 10 et 20°C,
  • les besoins de chaleur et de refroidissement apparaissent plus ou moins équilibrés dans l’année.

Pour en savoir plus :

Théorie

L’évolution des besoins thermiques des immeubles suite à l’isolation des parois.

Concevoir 

Analyse  des besoins thermiques : exemple pour un immeuble de bureaux.

Concevoir

Analyse  des besoins thermiques : exemple d’une salle d’opération.

Quels sont les éléments qui renforcent cette évolution ?

  1. L’augmentation des charges internes par l’équipement électrique des bureaux.
  2. La tendance actuelle des architectes d’accroître sensiblement le pourcentage de vitrage de la façade, et donc les apports solaires peu désirables (les vitrages performants ne créent plus l’inconfort de la surface froide en hiver, phénomène qui limitait leur surface autrefois).
  3. La diminution de l’inertie des parois (cloisons légères mobiles, tapis au sol, faux plafond avec absorbeur acoustique).
  4. Une attente accrue de confort et de productivité du personnel.

Faut-il faire marche arrière ?

Voyons les choses positivement : autrefois, on n’avait même pas conscience de l’existence d’une « chaleur interne » parce que celle-ci était négligeable face aux déperditions des parois. A présent, les fuites de chaleur étant maîtrisées et les apports internes amplifiés par l’évolution technologique, ces apports viennent à satisfaire en bonne partie nos besoins. Nous arrivons à chauffer nos locaux avec 5 litres de fuel au m², contre 20 à 25 dans les années 50. Et c’est tant mieux.

Mais cela rend le bâtiment beaucoup plus sensible que précédemment aux apports solaires …

Autrefois, le chauffage constituait le principal poste énergivore, mais à présent, l’équilibre thermique entre les déperditions du bâtiment et les apports « gratuits » est plus rapidement atteint.  Des besoins de réfrigération apparaissent mais l’origine de la surchauffe (apports solaires, équipements intérieurs) est cette fois maîtrisable, par opposition à l’origine du chauffage : la froide température extérieure.

Cela renforce l’importance d’une bonne conception initiale du bâtiment et de la mise en place d’une stratégie adaptée à ce nouveau profil de consommation.


En conclusion : agir dès la conception

Autrefois, les besoins de refroidissement d’un bâtiment étaient résolus par une simple ventilation, avec une période d’inconfort limitée à quelques jours par an. L’isolation actuelle accroît cette période d’inconfort et demande une réponse nouvelle.

Dans certaines conditions, une conception architecturale et technique poussée permet de garantir le confort estival sans recours à la climatisation. Dans tous les cas, des mesures doivent être prises pour limiter la duré d’utilisation et la puissance des installations frigorifiques.

C’est dès la phase de conception que les concepteurs pourront mettre en place une stratégie dans ce sens, intégrée à une approche globale du confort :

  • en limitant les apports solaires (choix de l’orientation, masques architecturaux, stores,…), tout en conservant un bon éclairage naturel.
  • en limitant des apports internes (éclairage et équipements performants),
  • si possible, en renforçant l’inertie des locaux (pour lisser la pointe de puissance frigorifique liée aux apports de chaleur), tout en préservant la qualité acoustique des locaux.
  • en valorisant la fraicheur de l’air extérieur en journée (la majorité de la demande de réfrigération apparaît lorsque la température extérieure est comprise entre 10 et 20°C), sans créer de courant d’air inconfortable.
  • en valorisant la fraîcheur nocturne, sans provoquer de surrefroidissement et d’inconfort matinal.
  • en exploitant des « sources de fraicheur » telles que le sol, une rivière, …

Concevoir

Limiter les apports solaires.

Concevoir 

Limiter les charges internes.

Concevoir 

Exploiter le pouvoir rafraîchissant de l’environnement.

Il existe cependant des situations où, par la spécificité du bâtiment et/ou parce que la dimension énergétique n’a pas été intégrée dès sa […] la climatisation va s’imposer. Le challenge devient alors : quel système performant mettre en place pour limiter la consommation de la climatisation ?
Quelques exemples :

  • Dans un bâtiment en milieu urbain pollué et bruyant : l’air et le bruit passent volontiers par les fentes des châssis … L’étanchéité des parois combinée à une ventilation mécanique permet de prévoir des châssis fixes, non ouvrants et donc très étanches, … tout en assurant une qualité hygiénique de l’air aux occupants, mais complique la valorisation de la fraîcheur de l’air.
  • Dans locaux « aveugles », dans les parties centrales des larges immeubles, dans les larges bureaux paysagers bien isolés : les apports thermiques des équipements de bureautique, des personnes, de l’éclairage, … doivent être évacués artificiellement puisque les déperditions de l’enveloppe sont proportionnellement très faibles (ce sont des bureaux dont le système de chauffage ne s’enclenche que lorsque la température extérieure descend en dessous de 0°C…).
  • Dans les endroits où la qualité de l’air doit être surveillée : les salles d’opération, les laboratoires, les ateliers de production des entreprises pharmaceutiques, … Le conditionnement d’air permet de pulser plus d’air dans une pièce que d’en extraire. La pièce est alors mise en surpression et aucune petite « bébête » ne peut rentrer (pas de contamination par l’air des pièces environnantes). on parle de « salles blanches ».
  • Dans des locaux avec forte production de chaleur interne : le centre informatique, par exemple.
  • Dans les salles de réunion, salles de conférence, … : la forte concentration de personnes apporte une chaleur sensible et latente élevée, et nécessite de toute façon un apport d’air neuf hygiénique important, qui ouvre la porte à des techniques de « conditionnement d’air ».
  • Dans les locaux fortement vitrés et à parois très légères : la conception architecturale inadaptée génère un déséquilibre thermique et seul l’équipement de climatisation peut artificiellement restaurer le confort des occupants…

Choisir un système de refroidissement tout air

Choisir un système de refroidissement tout air


Quand opter pour un système tout air ?

Bien que l’air ne soit pas le mode de transfert de chaleur le plus efficace (faible capacité calorifique, faible efficacité des ventilateurs), il peut s’avérer intéressant de choisir un refroidissement par air lorsque les débits thermiques nécessaires sont proches de ceux requis pour la ventilation hygiénique. Cela peut notamment être le cas dans des salles de réunion, grands bureaux paysagers, salle d’opération ou de spectacle par exemple. Ou encore, lorsque les besoins de refroidissement du bâtiment sont faibles et bien maitrisés (par des superficies vitrées réduites, des protections solaires extérieures,…). On fait alors l’économie d’un réseau d’eau chaude et/ou glacée et des émetteurs locaux.

Choix de la configuration du réseau

Deux situations sont possibles :

  • soit les besoins des locaux sont relativement constants dans le temps, auquel cas un système à débit d’air constant sera retenu ;
  • soit ces besoins sont variables et le choix d’un système VAV sera fait.

Différents systèmes à débit d’air constant sont envisageables :

Lorsque les locaux présentent des occupations et des charges thermiques variables, il reste à affiner le choix parmi les différentes technologies de VAV : découpage du bâtiment en zones homogènes, modulation du débit par local ou groupe de locaux, choix du niveau de pression.

Schéma VAV : découpage du bâtiment en zones homogènes.

Choix du débit d’air constant « monogaine » ou « double-gaines » (dual duct)

Si une seule zone est à traiter, ce choix ne se pose pas : la régulation du caisson de traitement d’air permettra de s’adapter aux variations de la demande. C’est ce que l’on fera pour une salle de conférences, pour une salle d’opération dans un hôpital, pour un grand hall, …

Par contre, si plusieurs zones sont à traiter, le système doit pouvoir s’adapter à des besoins différents : locaux situés sur des façades différentes, salles de réunion différemment utilisées,…

Comment, à partir d’un même caisson de traitement d’air, produire des températures différentes ? C’est là que le choix existe entre 2 systèmes :

Soit un système mono-gaine, multi-zones

Schéma système mono-gaine, multi-zones.

Mais ce système risque fort d’être destructeur d’énergie (préparation d’air chaud, refroidi par la suite…). Aussi, il ne peut être imaginé en pratique que sur base d’une centrale préparant de l’air frais (16°, par exemple) et les unités terminales apportent le complément uniquement via une batterie de chauffe terminale.

Mais comment gérer les besoins variables en été ? Le local exposé au soleil souhaitera un air plus froid que celui qui est au Nord. On risque donc de refroidir l’air en centrale et de le réchauffer à l’entrée des locaux au Nord…

On constate ici que la centralisation du traitement génère un manque de souplesse total. On préférera se diriger soit vers une installation « tout air » à débit d’air variable, soit vers une solution « air-eau ».

Soit un système double gaines, dit « dual duct »

Deux réseaux parallèles : un réseau d’air chaud et un réseau d’air froid. Une sonde de température ambiante commande le réglage d’une boîte de mélange. Ce système est contraignant à plusieurs niveaux : financièrement (investissement), énergétiquement (risque de « détruire » de l’énergie à l’exploitation) et spatialement (encombrement dans les faux plafonds).

Schéma système double gaines, dit "dual duct".

On ne l’installe plus aujourd’hui car il est très énergivore (on détruit de l’énergie pour obtenir la température souhaitée). On tente plutôt de le démanteler dans les anciens bâtiments où il est installé.

Conclusions

Il nous semble que le système « tout air – à débit constant » ne peut raisonnablement s’appliquer aujourd’hui que pour le traitement d’une seule zone, c’est-à-dire un ou plusieurs locaux homogènes, commandés par une seule sonde d’ambiance commune. C’est là une limitation très importante, qui explique le succès des systèmes à volume d’air variable, beaucoup plus souples que ceux à débit constant.

 Schéma systèmes à volume d’air variable.

Cas particulier pour les locaux occupés de façon sporadique

En présence de locaux à chauffage très intermittent (comme des salles de réunion, de spectacles,…), une variante avec système de chauffage complémentaire par radiateurs permet d’assurer un chauffage de base entre 12 et 15°C en période de non-occupation, et une mise en confort très rapide dès l’arrivée des personnes (ou par horloge).

Ce système est économique et supprime la surchauffe des locaux en période de forte occupation grâce aux possibilités de ventilation et de rafraîchissement, et à la faible charge des parois.

Systèmes VAV : Un découpage du bâtiment en zones homogènes

Puisque la température de pulsion de l’air au départ d’un groupe de préparation sera uniforme pour l’ensemble de la zone traitée, le bâtiment sera découpé en zones homogènes pour lesquelles on souhaite avoir une modulation du débit distincte. Par exemple, la façade Nord, la façade Sud et l’ensemble des locaux intérieurs peuvent constituer 3 zones avec un groupe distinct et une température de départ distincte (une zone intérieure demande toujours du refroidissement alors que la zone Nord demande majoritairement du chauffage).

La taille de l’installation impose parfois le découpage également : les débits d’air sont couramment de 6 (jusqu’à 10) renouvellements du volume des locaux par heure ! L’encombrement impose parfois un découpage en zones distinctes.

Mais le dimensionnement de la centrale profite lui au contraire de l’effet de foisonnement entre locaux dont les besoins sont différents : si façade Est et façade Ouest sont sur une même centrale, il ne faudra jamais cumuler les 2 puissances puisque le soleil ne peut être des 2 côtés simultanément.

Exemple.

Un regroupement des salles de réunion sur un même groupe de préparation permet de valoriser les avantages du VAV. Chaque salle se greffera sur le réseau via une bouche de pulsion commandée par détecteur de présence. Le ventilateur du groupe travaillera à vitesse variable pour maintenir une pression constante dans le réseau. Le groupe de préparation sera dimensionné avec un facteur de simultanéité (défini de commun accord avec le Maître d’Ouvrage) pour tenir compte du fait que toutes les salles ne seront pas occupées en même temps.

La régulation du débit peut être on/off en fonction qu’il y ait présence ou non, ou modulée en fonction du contrôle de la température du local, ce qui est énergétiquement préférable. Une sonde CO2 sur la reprise permettra d’adapter la quantité d’air neuf aux besoins.

À l’intérieur d’une zone, chaque local peut avoir sa bouche modulante et donc un débit modulé en fonction des besoins. La régulation est alors très souple,… mais l’installation est chère !

À noter l’inconvénient de ce type d’installation à air (par rapport au système air-eau) : le manque de souplesse dans la modification future du réseau (démontage des faux plafonds). On a dès lors intérêt à prévoir de nombreuses bouches, afin d’anticiper un découpage différent des locaux dans le futur (ajout d’une cloison).

Pour mémoire : le choix du nombre de conduits

Il est théoriquement possible de prévoir un système VAV à deux conduits : une centrale prépare simultanément de l’air froid et de l’air chaud, les deux fluides étant distribués en parallèle et mélangés dans une boîte de détente à l’entrée de chaque zone.

Il s’agit ici d’un système hyper flexible, pouvant répondre avec souplesse à des besoins variables et opposés.

  • Dans la version « usine », un premier clapet motorisé fait passer soit l’air chaud, soit l’air froid. Un second module ensuite le débit.
  • Dans la « full options », la boîte de réglage est équipée de deux volets de réglage progressif. Une zone neutre sépare les plages d’ouverture des conduits d’air chaud et d’air froid.

En principe, il n’existe aucun mélange possible entre chaud et froid au niveau du diffuseur, même si les deux conduits cohabitent toute l’année dans les gaines techniques…

Le coût d’investissement est vraiment très important. On cite parfois comme application les grands navires de plaisance : pour le confort des passagers, on souhaite leur fournir une souplesse totale de régulation, même lorsque le bateau vire de bord et que la face ensoleillée change ainsi brutalement… !

Aujourd’hui, pour atteindre un tel objectif de confort, on choisira plutôt une installation de ventilos-convecteurs à 4 tubes ou une installation à fluide réfrigérant variable, très souples également lorsque les besoins fluctuent fortement.

Seule application éventuelle : la réhabilitation d’un système classique à deux conduits à débit constant en système à débit variable.

Améliorer

Pour en savoir plus sur l’amélioration d’une climatisation « tout air » à débit constant existante, cliquez ici !

Choix du système de chauffage associé

Les systèmes mono gaine sans réchauffage terminal

On ne pulse que de l’air froid en été (entre 12 et 18°C) et de l’air chaud en hiver (entre 25 et 40°C). L’air est préparé en centrale et, dans le cas d’une installation VAV, chaque local régule le débit d’air juste nécessaire en fonction de la température souhaitée, avec un débit minimum ajusté :

  • soit au débit d’air hygiénique,
  • soit à un débit plus élevé parce qu’une bonne distribution de l’air dans le local l’oblige,
  • soit à un débit plus élevé parce que les besoins de chauffage apporté par l’air l’obligent (si régulation à une sortie).

Le plus simple est d’avoir une consigne fixe pour chaque saison et le passage d’une consigne à l’autre est réalisé par un thermostat extérieur : il y a basculement pour une température extérieure de + 15°C, par exemple. Mais cette régulation peut être affinée.

Le système est très économique (surtout à l’exploitation), notamment parce qu’on ne fait jamais du chaud et du froid simultanément. Mais il ne convient que pour les locaux dont les charges thermiques sont homogènes. Il sera par exemple impossible de refroidir un local intérieur et de réchauffer simultanément un local périphérique traité par le même groupe …

Les systèmes monogaine avec réchauffage terminal

Cette variante s’applique aux bâtiments qui comportent des zones dont les besoins sont différents. On pense tout particulièrement aux grands immeubles de bureaux dont les zones centrales ont en permanence des besoins d’évacuation de la chaleur (charge stable) et dont les zones périphériques (locaux en façades) ont des besoins de chauffage en hiver, par grands froids (charge variable).

L’idée est alors de prévoir un circuit d’air froid pour tous les locaux, à débit variable, complété par des batteries de chauffe pour les locaux périphériques

En fait, il s’agit d’un « vrai » VAV pour la zone interne (alimentée en froid toute l’année), et d’un VAV complété d’une variation de température pour les locaux périphériques. On comprend qu’une telle installation soit très souple à l’usage !
Trois principes sont possibles :

1. Soit l’apport de chaleur est réalisé par des corps de chauffe traditionnels (radiateurs, convecteurs)

Généralement, ces corps de chauffe sont placés en périphérie du bâtiment, le long des façades, pour vaincre les déperditions par les parois. Le système VAV refroidit le cœur du bâtiment en hiver, refroidit tout le bâtiment en été et assure la ventilation hygiénique toute l’année. On sera attentif à ne pas « casser de l’énergie » par un fonctionnement simultané du froid et du chaud dans les mêmes locaux. Ainsi, une plage neutre doit être réservée entre chauffage et refroidissement (par exemple, les vannes thermostatiques de radiateurs sont réglées sur 21°C et l’ouverture du débit d’air froid ne commence qu’à 23°C). en-dessous de 23°C, la boîte VAV fonctionne sur son débit minimum préréglé.

C’est la solution sans doute la plus économique à l’investissement et à l’exploitation. Problème : bloquer les vannes thermostatiques sur 21°C n’est pas toujours bien accepté par l’occupant…

À défaut d’un recyclage de l’air (pour des raisons hygiéniques ou parce que les conduits ne sont pas situés l’un près de l’autre, un récupérateur de chaleur peut être prévu entre conduits d’extraction et de pulsion.

2. Soit les batteries de chauffe sont placées en série sur la boîte VAV

Une régulation spécifique est nécessaire :

Par exemple, si la sonde d’ambiance détecte une température inférieure à 21°C, la vanne de chaud est ouverte à 100 % et le débit d’air est réduit au seuil minimal préréglé. Lorsque la température intérieure approche de 23°, la vanne chaud se ferme progressivement. Lorsque la température dépasse 23°, la vanne chaud est fermée et le débit d’air frais augmente progressivement jusqu’à atteindre le débit maximal pour la charge maximale et maintenir 24°C dans l’ambiance. Ici encore, l’insertion d’une zone neutre entre chaud et froid sera énergétiquement obligatoire.

On perçoit le défaut de ce système : le chauffage est assuré sous un débit d’air minimal… La puissance de chauffe ne pourra être très élevée ! et l’on risque d’augmenter en permanence le débit d’air minimum préréglé uniquement pour des besoins de chauffage.

Cela montre la limite du VAV lorsque l’on veut aussi traiter des locaux ayant des besoins de chauffage.

En pratique, la batterie de chauffe est souvent intégrée dans la boîte de détente. Elle est alimentée en eau chaude, ou remplacée par une résistance électrique (dont la consommation doit être soigneusement étudiée vu le coût du kWh électrique).

Photo batterie de chauffe.

Une gestion de ces résistances électriques est utile :

  • démarrage en Heures Creuses (fin de nuit) lors de la relance,
  • délestage possible de certaines résistances lors de la pointe de puissance quart-horaire.

Pour un bon fonctionnement de la boîte VAV, une gestion de la pression du réseau en amont est nécessaire.

À noter que la présence de batteries de chauffe va augmenter les pertes de charge à vaincre par le ventilateur, hiver (admettons…) comme été (là, c’est plus dommage puisque cette batterie est à l’arrêt !). Mais on parle ici d’une perte de charge de 40 Pa au débit max, soit 10 Pa au débit moitié, ce qui reste faible à comparer au 1 500 PA de l’ensemble du réseau.

A nouveau, à défaut d’un recyclage de l’air, un récupérateur de chaleur peut être prévu entre conduits d’extraction et de pulsion.

3. Soit les batteries sont placées en parallèle par rapport au local

Le schéma suivant est théoriquement possible :

Schéma batteries sont placées en parallèle par rapport au local.

La régulation est complétée par l’enclenchement du ventilateur d’air recyclé lorsque le chauffage est enclenché :

Chaque batterie chaude voit son débit modulé en fonction du thermostat d’ambiance de la zone qu’elle alimente.
Il s’agit d’une solution qui présente plusieurs avantages par rapport à la solution « série »

  • Le débit de pulsion d’air chaud est tout à fait indépendant de l’installation. Par rapport à la solution précédente, un tel fonctionnement en « circuit fermé » permet d’augmenter la puissance de chauffe puisque le débit d’air est plus élevé.
  • En période de relance (avant l’arrivée des occupants), le chauffage peut fonctionner en circuit fermé, sans apport d’air frais extérieur.
  • En été, il n’y a pas de perte de charges supplémentaires générées par le passage de l’air dans la batterie de chauffe.

Mais cette solution est très chère et sophistiquée. On peut penser alors à une solution plus simple :

  • pulsion d’un débit d’air hygiénique constant,
  • complété par des unités terminales à recyclage, équipées de batteries de chaud et de froid dans les zones périphériques et d’une batterie de froid dans la zone centrale.

Mais c’est alors une installation « air-eau » avec ventilo-convecteurs ou MTA (Module de Traitement d’Air) !


Dispositifs d’économie d’énergie

Choix du régime de pression

L’air peut être distribué à des vitesses variant de 5 à 15 m/s.
À débit égal, doubler la vitesse de l’air dans les gaines permet de diminuer par deux la section nécessaire. Le bureau d’études cherchera donc parfois à augmenter la vitesse pour réduire l’encombrement des conduits.  Mais un air pulsé à haute vitesse circule à haute pression. Il doit dès lors être « détendu » à l’entrée du local. C’est le rôle de la boîte de détente.

Un autre inconvénient des hautes vitesses est que les frottements de l’air sur les parois des gainages sont proportionnels au carré de la vitesse. Et donc le ventilateur doit vaincre des pertes de charges beaucoup plus élevées, variant de 500 à 1 500 Pa.

De plus, à ces hautes pressions, des précautions sérieuses sont à prendre en matière acoustique, notamment au niveau des appareils terminaux (amortisseur de bruit).

Aussi, pour différentes raisons, on a tout intérêt à limiter les vitesses et donc en tout cas à ne pas dépasser une perte de charge de 1 000 Pa pour le dimensionnement du réseau.

À noter que si autrefois les bouches à débit variable exigeaient une pression minimale élevée pour un bon fonctionnement, ce critère n’est pratiquement plus d’application aujourd’hui.

>  pour un réseau à basse vitesse (à basse pression) :

  • la vitesse de déplacement de l’air varie entre 2 m/s (au droit des bouches) et 7 m/s (au départ de la conduite principale).
  • le groupe de reprise d’air (= GE = Groupe d’Extraction) est dimensionné entre 150 et 300 Pa, ce qui entraîne une puissance de 250 à 500 W au moteur, pour 1 m³/s.
  • le groupe de pulsion d’air (= GP = Groupe de Pulsion) est dimensionné entre 450 et 600 Pa, ce qui entraîne une puissance de 750 à 1 000 W au moteur, pour 1 m³/s.

  >  pour un réseau à haute vitesse (à haute pression) :

  • le groupe de pulsion d’air (= GP = Groupe de Pulsion) est dimensionné entre 1 200 et 2 400 Pa, ce qui entraîne une puissance de 1 600 à 3 000 W au moteur, pour 1 m³/s.

Il est généralement utile d’équiper les ventilateurs d’un moteur à deux vitesses afin de réduire la puissance motrice en situation d’occupation réduite.

Exemple.

Chiffrons la différence de consommation entre les réseaux Basse et Haute pression. En moyenne, le réseau Haute pression sera dimensionné sur une perte de charge globale supérieure de 1 000 Pa par rapport au réseau Basse pression (pulsion + extraction). Le supplément de puissance du ventilateur est alors de :

Puissance = Débit x Hauteur manométrique / Rendement

Soit un supplément minimum de 1 300 Watts pour un débit de 1 m³/s transporté, où 0,36 W par m³/h transporté.

Imaginons un groupe de 10 000 m³/h. La consommation supplémentaire annuelle (sur base de 0,1 €/kWh, pointe comprise) sera de :

Suppl. consommation = (10 000 x 0,36 x 24 x 365 / 1 000 [Wh/kWh]) x 0,1 [€/kWh] = 3154 €/an !

Soit près de 100 000 € pour deux ventilateurs en 30 ans de fonctionnement…

Si l’installation ne tourne qu’aux heures de bureau (50 h/semaine), le supplément est ramené à 98 €/an.

Pour l’utilisateur du bâtiment, il y a sûrement une manière plus efficace de dépenser cet argent…

Remarque : à titre d’information, les cliniques St Luc de Bruxelles traitent près de 300 000 m³/h… Le débit de 10 000 m³/h dont il est question ici représente donc l’équivalent du service des urgences…

Si le régime Haute Pression est malgré tout choisi, il est clair qu’il ne faudrait jamais dépasser les 15 m/s, pour limiter la consommation et aussi le bruit produit dans les boîtes de détente.

Récupération de chaleur

Lorsque l’on choisit une installation à débit d’air constant, le coût du traitement d’air d’une installation « tout air neuf » est hors de prix.

La récupération de chaleur sur l’air extrait

Une quantité importante d’énergie peut être récupérée en plaçant un récupérateur de chaleur sur l’air extrait. Le rendement des échangeurs de chaleur à plaque atteint aujourd’hui facilement 80 à 90%.

Différentes technologies de récupération de chaleur sont envisageables : le croisement des flux d’air neuf et extraits dans un échangeur à plaque ou à roue, ou l’échange indirect par l’intermédiaire de batteries et d’une boucle d’eau.

Schéma récupération de chaleur sur l'air extrait.

Le recyclage de l’air extrait

Une autre possibilité de récupération d’énergie est le recyclage d’air extrait.

Schéma recyclage de l'air extrait.

Des registres motorisés modulent les débits d’air recyclé et d’air rejeté. Le débit d’air neuf ne peut cependant jamais descendre sous le débit minimal d’air neuf hygiénique en période d’occupation.

L’efficacité de ce système est dû à plusieurs faits :

  • Dans cette technique, il est possible de moduler le débit d’air neuf en fonction de la présence effective des occupants du ou des locaux. Par exemple, une sonde CO2 placée dans le conduit d’air extrait peut moduler l’ouverture du registre d’air neuf. D’où une fameuse économie !
  • Parmi les systèmes de récupération d’énergie, le recyclage partiel de l’air extrait permet de valoriser aussi bien l’énergie sensible que l’énergie latente (chaleur et humidité).
  • La technique permet de valoriser l’air frais extérieur durant une bonne partie de l’année : la demande de refroidissement des locaux ayant souvent lieu lorsque l’air extérieur est plus froid que l’ambiance, il sera possible d’en profiter par un débit d’air neuf plus élevé, voire apportant les 100 % du débit. Et si l’air neuf est trop froid, la température sera relevée par le mélange avec de l’air chaud extrait des locaux.

Recyclage et récupérateur de de chaleur ne sont bien entendu pas incompatibles. Dans un réseau dimensionnée largement au-delà des besoins d’air hygiénique, on combinera souvent les deux, pour pouvoir à la fois moduler la quantité d’air neuf et maximiser la récupération d’énergie. Pour maximiser le bénéfice énergétique, l’air neuf sera d’abord réchauffé par récupération de chaleur avant d’être mélangé à l’air recyclé.

Dans tous les cas, la modulation du recyclage et de la récupération de chaleur doit être réfléchie pour éviter les surchauffes en mi-saison.

Pour en savoir plus :

 Études de cas 

Recyclage ou tout air neuf pour une salle d’opération.

Calculs

Dans les outils de calcul – rubrique « Climatisation » – vous trouverez un outil permettant de calculer les caractéristiques d’un mélange d’air

Free cooling

Cette technique vise à valoriser l’air frais extérieur lorsque la demande de refroidissement a lieu alors que l’air extérieur est plus froid que l’ambiance. Dans ces conditions, il sera possible d’en profiter en engageant un débit d’air neuf plus élevé, voire apportant les 100 % du débit. Et si l’air neuf est trop froid, la température sera relevée par récupération de chaleur ou par recyclage de l’air chaud extrait des locaux.

Une installation VAV est particulièrement bien adaptée pour une utilisation optimale des énergies gratuites par free cooling. Cette pratique s’applique également dans le cas de systèmes à débit constant.

  • En hiver, de l’air frais extérieur peut alimenter les zones à rafraîchir sans nécessiter l’enclenchement des groupes frigorifiques.
  • En été, une ventilation nocturne peut décharger le bâtiment de la chaleur accumulée en journée.

Mais il faut être attentif à plusieurs problèmes :

Ne pas casser du froid par du chaud !

Si la zone centrale demande du froid alors que la zone périphérique souhaite de la chaleur, on utilisera  de l’air extérieur « gratuit » en centrale, préparé pour les besoins de la zone intérieure (à 16°C par exemple), et cet air sera ensuite post chauffé dans les zones périphériques.

En aucun cas, il ne faudrait créer du froid par une machine frigorifique et simultanément alimenter les batteries de chauffe par le réseau de chauffage. C’est d’ailleurs une solution interdite par la réglementation thermique française. À la limite on pourrait imaginer de récupérer la chaleur du condenseur de la machine frigorifique. Mais un tel système serait inadapté ici.

Privilégier le recyclage partiel de l’air extrait des locaux

En hiver, on souhaite profiter de l’air extérieur pour alimenter le réseau d’air froid, mais 65 % du temps, l’air extérieur est inférieur à 14°C et doit donc être réchauffé avant d’être pulsé dans les locaux. Il serait dommage, alors que l’on veut économiser le groupe frigorifique, de tout reperdre en chauffage…

Un recyclage partiel de l’air extrait est ici tout indiqué. Ainsi, l’air extrait des locaux (à 24°) sera mélangé à l’air neuf extérieur pour obtenir la température juste souhaitée, sans surcoût énergétique. Par exemple :

50 % d’air extrait à 24°C + 50 % d’air neuf à 8°C = 100 % d’air à 16°C

Études de cas

Les bilans énergétiques d’une installation avec et sans recyclage ont été réalisés pour le cas de 4 locaux de consultation à l’hôpital de Chimay.

Schéma recyclage partiel de l'air extrait des locaux.

C’est une très bonne solution si les locaux requièrent par eux-mêmes un apport d’air élevé (local de réunion intérieur, salle de conférence). Cet air est alors utilisé simultanément pour rafraîchir.

Remarques.
Dans tous les cas, l’analyse système/zone est très importante pour adapter les groupes aux besoins de chaque zone. « Zoner les locaux », c’est ici la première démarche URE.

Si le recyclage n’est pas souhaité pour des raisons hygiéniques, il est possible de placer un récupérateur de chaleur sur l’air extrait qui transférera la chaleur sans autoriser de contact entre l’air vicié et l’air neuf.

Pour en savoir plus :

Concevoir

Valoriser la fraicheur de l’environnement.

Choix de la régulation

La régulation d’une installation « à volume d’air variable » se décompose en de multiples régulations imbriquées.

La régulation classique d’un espace refroidi par une installation « tout air » dissocie la régulation :

  • d’une part de la température en agissant sur les batteries froides et chaudes,
  • D’autre part, dans le cas du VAV, du débit d’air en agissant sur les clapets de réglage d’air neuf et d’air recyclé.

En conception énergétique, il est intéressant de mixer les deux pour pouvoir récupérer au maximum l’énergie contenue dans le recyclage.
Ainsi, pour un local refroidi par VAV :

La régulation de la température intérieure,
> requiert la régulation du débit d’air,
> qui requiert la régulation de la pression dans le conduit d’air pulsé,
> qui entraîne la régulation de la pression dans le conduit d’air repris,
> ceci sous-entendant la régulation du débit des ventilateurs.

La régulation de la température intérieure

Dans le cas d’une installation à débit constant, la sonde de température de l’ambiance envoie son signal au régulateur de température qui le compare à la valeur de consigne. Imaginons que ce soit l’été et qu’il fasse trop froid dans l’ambiance. Suite à l’écart détecté, la vanne de froid est fermée progressivement.

Si la température d’ambiance continue à baisser, et descend en dessous de la zone neutre, c’est la vanne de chaud qui est ouverte progressivement.

Si la zone contient plusieurs locaux, il arrive souvent que la sonde soit placée dans la reprise d’air afin de mesurer la valeur moyenne des locaux traités.

Ceci est le schéma classique avec une zone neutre dans laquelle les batteries froides et chaudes sont fermées. Dans certains locaux, tels que des salles d’opération,  il n’y aura pas de zone neutre !

Remarque : la vanne de froid peut donc s’ouvrir soit pour déshumidifier l’ambiance, soit pour la refroidir. Le régulateur d’humidité devra être informé de la demande du régulateur de température et il prendra la demande la plus exigeante pour agir sur la vanne.

Notons que les exigences de température de certains locaux tels que des zones à risque de contamination élevé sont importantes et ne laissent pas de place à une plage neutre de température dans laquelle les vannes des batteries froides et chaudes sont fermées : il y a donc destruction d’énergie ! Dans un système à recyclage, il existe un moyen de combattre la destruction d’énergie par un savant mixage des consommations des équipements de la centrale de climatisation et d’énergie de recyclage.

Dans le cas d’une installation VAV, le principe de base consiste à réguler la température intérieure en  moduler le débit d’air en fonction des besoins, et non la température de pulsion.

Si le chauffage est apporté par une batterie terminale, une régulation simple « à une sortie » consiste à moduler le débit en fonction d’une seule courbe de température :

  • en plein été, le débit est maximal,
  • en mi-saison, la température intérieure diminue et le débit d’air diminue également, jusqu’à atteindre le débit minimal (au moins le débit hygiénique),
  • en hiver, ce même débit minimum reste pulsé, mais c’est la température de l’air qui augmente pour couvrir les besoins de chauffage. On agit alors sur l’ouverture de la vanne de la batterie terminale.

Par contre, si le chauffage est apporté par l’air, on adopte une régulation « à deux sorties ». Elle est basée sur le raisonnement ci-dessous.

En hiver, une augmentation de la température dans le local va entraîner une diminution du débit d’air chaud pulsé. En été, au contraire, une augmentation de température intérieure va entraîner une augmentation du débit d’air froid pulsé.

Il est donc nécessaire d’inverser le sens d’action du régulateur en fonction de la saison. Ce changement peut être réalisé par un thermostat extérieur, par exemple réglé sur 15°C. De plus, une zone neutre sera ménagée par décalage des points de consigne hiver et été.

Cette commutation ne s’appliquera pas dans les locaux soumis uniquement à des apports de chaleur (zones centrales des immeubles climatisés).

Si les besoins des locaux sont liés aux conditions climatiques, la température de l’air pulsé peut aussi être adaptée en fonction de la température extérieure, via une loi de correspondance donnée (sorte de « courbe de chauffe », étendue en été).

Enfin, pour mieux tenir compte des besoins réels (présence des personnes, des équipements,…), la consigne peut également être compensée en fonction de l’évolution de la température intérieure. Lorsque l’écart entre la température effective mesurée dans le local et la consigne croît, la température de soufflage est augmentée en hiver et diminuée en été. La difficulté consiste à trouver le local « témoin »… Problème qui peut être résolu si une GTC est installée sur le bâtiment : dans ce cas, les informations de tous les régulateurs locaux sont envoyées par le bus de communication vers la centrale qui retient l’exigence la plus forte.

À noter que, pas plus que dans les autres systèmes de climatisation de bureaux, l’humidité des locaux ne peut être régulée local par local. Seul un réglage global de l’hygrométrie est possible dans le caisson de traitement central, sur base d’une mesure de l’humidité dans la gaine de reprise commune. Cette valeur moyenne est généralement suffisante vu la faible sensibilité du corps humain à l’humidité ambiante.

La limite basse de température de soufflage

Imaginons une salle de conférences de plusieurs centaines de personnes. La température extérieure est de 10°C. Vu les apports de chaleur importants donnés par les occupants, on aimerait pouvoir pulser un maximum de cet air extérieur frais « gratuit ».

Mais il faut que les bouches de soufflage soient prévues pour mélanger rapidement l’air frais avec l’air ambiant. On choisira des bouches à haute induction.

A défaut, les occupants risquent d’être incommodés par la coulée d’air froid. Il faudra alors préchauffer l’air entrant à une température minimale réglée par l’exploitant.

De là, une sonde de limite basse de température de soufflage, informant le régulateur de température, qui lui agit sur la vanne de la batterie de chaud ou de froid.

La régulation de l’humidité

Pour la plupart des installations, le contrôle précis de l’humidité ne se justifie pas : il suffit de s’assurer que l’humidité de l’ambiance est comprise entre 40 et 60 %, plage du « grand confort ». C’est le cas des salles de conférences, de cinéma, de gymnastique, dans les restaurants, les centres commerciaux, … Il n’y a que dans des cas particuliers comme les salles d’opération ou les laboratoires que le contrôle strict de l’humidité se justifie.

Autrement dit,

  • en dessous de 40 % d’humidité relative, la vanne de l’humidificateur s’ouvre progressivement,
  • au-dessus de 40 %, l’humidificateur est à l’arrêt,
  • au-dessus de 60 %, la déshumidification est enclenchée par l’ouverture progressive de la vanne de froid.

C’est le rôle du régulateur d’humidité.

Notons qu’il est cependant rare de devoir déshumidifier. Ce ne sera souvent que par temps orageux que l’humidité intérieure dépassera les limites acceptables. C’est pourquoi il n’est pas absolument obligatoire de commander la déshumidification au moyen d’une sonde d’humidité, surtout si l’installation est équipée d’une post-chauffe (cas des installations régulées par point de rosée) engendrant une destruction d’énergie (refroidissement et chauffage successif de l’air).

La régulation de la pression et du débit dans les systèmes VAV

La régulation locale du débit d’air pulsé

On peut adapter le débit par réglage d’un clapet : un servomoteur commande la position d’un clapet en fonction de la température dans le local. Ce clapet est généralement doté d’un système d’auto-réglage en fonction de la pression (afin de maintenir le débit souhaité malgré les variations de la pression du réseau). Il est inséré dans une boîte de détente tapissée d’absorbants acoustiques pour réduire le niveau de bruit. L’air est ensuite réparti vers le local via des diffuseurs.

Schéma sur régulation locale du débit d'air pulsé.

Il est également possible de faire varier le débit en agissant directement au niveau des diffuseurs. Le clapet est cette fois intégré dans le diffuseur. C’est la gaine de pulsion qui joue le rôle de plenum de distribution. Ici aussi, des absorbants acoustiques sont intégrés dans les parois.

Schéma sur régulation locale du débit d'air pulsé.

Les diffuseurs utilisés sont spécifiques aux installations à débit d’air variable. En effet, le confort doit être assuré quel que soit le débit pulsé. Curieusement, le risque d’inconfort apparaît lors des faibles débits : l’air à faible vitesse ne se mélange pas bien à l’air ambiant (faible induction) et « tombe » sur les occupants. Dans ce but, l’air est diffusé tangentiellement au plafond pour bénéficier d’un effet Coanda dans les deux directions.

Malheureusement, la pression n’est pas tout à fait stable dans le réseau, et à une position donnée du clapet ne correspond pas toujours une même valeur de la vitesse de l’air dans la bouche. Aussi, selon les fabricants, divers systèmes complémentaires sont utilisés pour s’assurer de l’adéquation du débit aux besoins.

Imaginons que le régulateur de température détecte une température ambiante supérieure à la consigne. Il envoie au régulateur de débit un signal qui devient sa consigne. Le débit est ajusté. Mais peu de temps après, les vannes des locaux voisins se ferment. La pression monte dans le circuit et le débit a tendance à augmenter. On pourrait attendre la réaction du local, via l’évolution de la température. Mais on préfère réaliser une mesure directe du débit et corriger la consigne du régulateur de débit. Certains constructeurs insèrent alors dans le conduit un capteur de pression dynamique. Puisque celle-ci est proportionnelle au carré de la vitesse, la vitesse réelle du fluide sera connue. Un actionneur pourra modifier la position du siège du clapet et la consigne de débit sera ajustée.

    

En résumé, la température influence la position d’ouverture du clapet. Et la mesure effective du débit déplace la courbe de réglage globalement.

La régulation globale de la pression dans le conduit d’air pulsé

Lorsque plusieurs clapets se ferment, la pression monte dans le réseau. Les clapets encore ouverts sont perturbés dans leur régulation et de plus, ont tendance à augmenter leur niveau de bruit lors du passage de l’air.

Une régulation de la pression du réseau sera organisée. Un capteur de pression sera placé dans la gaine (idéalement entre la moitié et les deux tiers du réseau) et une régulation du ventilateur sera organisée en vue de pulser le débit juste nécessaire et de maintenir une pression constante dans le réseau. Idéalement, via un variateur de vitesse sur le moteur du ventilateur.

Si une Gestion Technique Centralisée est prévue dans la bâtiment, ou simplement un système de centralisation des informations issues des boîtes de réglage, les possibilités actuelles de régulation permettent de se libérer de cette contrainte du maintien de la pression en un endroit donné de la gaine. En effet, on mesure à présent le débit réel pulsé au droit de chaque bouche, et cette information permet de commander le ventilateur de telle sorte que le débit de la bouche la plus défavorisée soit tout juste atteint.

La régulation locale du débit d’air repris

Si le débit d’air pulsé évolue, il faudrait que le débit d’air repris évolue conjointement. Idéalement, il faudrait agir localement sur le débit des bouches de reprise, puis globalement sur le débit du ventilateur de reprise.

Trois régulations sont possibles :

Schéma sur la régulation locale du débit d'air repris.

Soit le régulateur de température ambiante envoie le même signal au clapet de reprise qu’au clapet de pulsion,

Soit la sonde de débit d’air pulsé envoie son information vers le régulateur du clapet de reprise,

Soit enfin, on ajoute un capteur de pression dans le local pour réguler directement la surpression ou la dépression existante dans le local.

Cette dernière solution sera d’application lorsque l’on souhaitera maintenir volontairement la surpression ou la dépression d’un local (salle d’opération, salle blanche,…)

Mais un tel système est impayable ! Il n’est pas vraiment nécessaire d’identifier pulsion et extraction dans chaque local. On s’accorde généralement à dire qu’une gestion de l’air par zone ou par étage (au niveau de la trémie d’extraction) est suffisante pour éviter un transfert d’air parasite entre étages. On travaillera donc au niveau de la pression dans le conduit d’air repris.

La régulation globale de la pression dans le conduit d’air repris

Trois solutions sont possibles :

Soit les commandes des ventilateurs de pulsion et de reprise sont synchronisées (le variateur de vitesse agit sur les deux moteurs simultanément). Mais ce système impose que les ventilateurs aient des caractéristiques aérauliques semblables. Or, les deux réseaux sont différents. Des écarts de débit apparaissent et les locaux risquent de ne plus être maintenus en surpression…

Soit ce sont les pressions des deux réseaux qui sont comparées et le ventilateur de reprise est régulé de façon à maintenir en permanence une différence de pression donnée.

Soit enfin, ce sont les débits qui sont comparés entre pulsion et reprise et la régulation se fait en fonction d’un débit différentiel constant.

À noter que dans les installations qui sont supervisées par une régulation numérique, le bus de communication peut signaler la position ou le débit réel de chaque boîte de détente. Le régulateur central somme alors ces débits pour définir le débit total des groupes de pulsion et d’extraction.

Quelle régulation de vitesse des ventilateurs ?

Plusieurs modes de réglage permettent d’adapter le débit des ventilateurs (de pulsion et/ou d’extraction) en fonction de la grandeur de référence :

Tous ces modes de réglage n’entraînent pas la même économie électrique. Le by-pass (l’équivalent de la soupape différentielle utilisée en chauffage) peut même conduire à une augmentation de la consommation.

Il ressort de la comparaison des différents types de réglage que la solution énergétiquement la plus intéressante est la variation de la vitesse du ventilateur, soit par paliers grâce à des moteurs à plusieurs vitesses, soit de façon continue au moyen d’un convertisseur de fréquence.

Gamme de convertisseurs de fréquence.

Cependant, lorsque les plages de réglage souhaitées sont assez réduites, les solutions de l’étranglement (plage de réglage maximum de 100 à 85 %) ou des aubages de prérotation (réglage de 100 à 70 %, uniquement pour les ventilateurs centrifuges à aubes recourbées vers l’arrière et les ventilateurs hélicoïdes) sont des solutions satisfaisantes.

Cette dernière solution, de moins en moins utilisée, peut cependant devenir plus intéressante que la variation de vitesse du ventilateur, pour les ventilateurs de très grosse puissance (40 .. 50 kW). En effet, un convertisseur de fréquence devant gérer une telle puissance est très coûteux.

Pour les ventilateurs hélicoïdes, la modification automatique de l’angle de calage des aubes conduit à une diminution de la consommation électrique presque équivalente à la variation de vitesse.

La gestion de l’apport d’air neuf

Il importe d’adapter à tout moment le débit d’air neuf adéquat. On peut parler d’une véritable gestion de l’air neuf, puisque :

  • Lorsqu’il fait très chaud dehors (T° > 25°C), l’air neuf doit être réduit au minimum hygiénique pour limiter les coûts de refroidissement.
  • Lorsqu’il fait froid dehors(T° < 16°C) et que le système de chauffage est enclenché, l’air neuf doit également être réduit au minimum hygiénique.
  • Le débit sera maximal lorsqu’il est préférable d’utiliser de l’air extérieur « gratuit » que de traiter l’air intérieur.
  • Le débit sera nul en période de relance du bâtiment (pas d’occupants).
  • Le débit sera maximal si l’on souhaite refroidir le bâtiment durant la nuit par de l’air frais extérieur (free cooling).

C’est donc le régulateur de température qui va organiser l’ouverture du registre d’air neuf, en comparant la température de l’air repris et de l’air neuf. On réalise parfois la comparaison des enthalpies (= des énergies), ce qui est plus précis puisque ce sont les niveaux d’énergie contenue dans l’air qui sont comparés : température + humidité de l’air.

Dans une installation VAV, quelles que soient les exigences thermiques, les besoins en air hygiénique doivent être rencontrés. Dans les installations avec « air recyclé », le registre d’air neuf devra en permanence être adapté : si le débit d’air à pulser dans les locaux est faible, la part de l’air neuf sera importante (jusqu’à 100 %). Au contraire, un grand débit pulsé entraîne une faible proportion d’air neuf.

Ce qui corse la régulation, c’est que les ventilateurs travaillent toujours dans des conditions différentes : ainsi, le débit de 100 % d’air neuf est souvent demandé lorsque les ventilateurs tournent à très basse vitesse…

La position des registres n’est pas significative du débit réel. Aussi, une sonde de vitesse d’air sera placée dans le conduit d’air neuf et agira sur les registres d’air neuf et de reprise pour maintenir le minimum hygiénique par mesure directe. De plus, si du free cooling est organisé pour refroidir les locaux, il sera prioritaire et l’apport d’air extérieur sera maximal.

Une régulation basée sur une sonde de présence, sonde CO2,sonde de qualité d’air, permet également de faciliter la gestion du débit d’air neuf.

Également, il est possible de stopper totalement l’arrivée d’air neuf en période de relance du bâtiment (avant l’arrivée des occupants). Cette technique permet de diminuer la puissance installée des chaudières.

Remarque : le registre d’air neuf peut donc s’ouvrir soit pour apporter l’air neuf minimal, soit pour refroidir l’ambiance. Le régulateur de qualité d’air devra être informé de la demande du régulateur de température et il prendra la demande la plus exigeante pour agir sur le servomoteur du registre d’air neuf.

On trouvera plus de détails dans la régulation du taux d’air neuf d’une installation tout air et la régulation du débit d’air variable dans un conduit.

Les sécurités de fonctionnement

Un thermostat antigel est placé en aval de la batterie de chauffe, mais le plus près possible de celle-ci pour être influencé par son rayonnement.

Ce thermostat antigel ouvre progressivement la vanne de chauffe si la température descend en dessous de la valeur de consigne antigel. Par exemple : si la consigne antigel est de 2°C, quand la température du thermostat descend en dessous de 8°C, la vanne s’ouvre progressivement. À 2°C, elle est totalement ouverte. Si la température continue à descendre, le registre d’air neuf est fermé (action par « tout ou rien ») et l’alarme est enclenchée. S’il n’y a pas de recyclage, les ventilateurs doivent être arrêtés également.

À l’arrêt de l’installation, la vanne de la batterie de chauffe et le registre d’air neuf doivent se fermer et les ventilateurs doivent s’arrêter.

Deux pressostats différentiels contrôlent le fonctionnement des ventilateurs. S’ils ne sont pas satisfaits, le registre d’air neuf est fermé et l’alarme est enclenchée.

Un pressostat différentiel contrôle l’encrassement du filtre sur l’air neuf et enclenche une alarme en cas d’encrassement.

Le schéma de régulation global

Si l’ensemble des contraintes sont résumées dans un seul schéma, on aura, pour un système à débit constant :

Mais cette présentation correspond à la logique analogique, où les différents régulateurs sont imbriqués. Si le même problème est vu par un régulateur numérique, il traitera toutes les données (= INPUT) dans un seul programme de traitement (comme un programme d’ordinateur) et il fournira en sortie toutes les commandes (= OUTPUT) pour les différents moteurs et vannes.

Mieux, un bus de communication va parcourir le bâtiment, collecter les INPUT et alimenter les OUTPUT :

À noter que tous les branchements ne sont pas représentés, notamment parce que les commandes de sécurité restent locales.


Paramètres de dimensionnement

Une diminution des dimensions de la centrale de traitement d’air par rapport au système à débit constant

Comparons les systèmes :

  • Avec un système à débit d’air constant, chaque local est dimensionné avec un débit d’air permettant de répondre à la charge frigorifique extrême; dans le caisson de traitement d’air central, on devra traiter (en permanence !) le total des débits maximaux de tous les locaux.
  • Par contre, avec le système VAV, on va tenir compte du fait que le soleil tourne autour du bâtiment et que la charge maximale de la façade Ouest survient lorsque la façade Est est à faible demande; la centrale de préparation sera dimensionnée sur base du cumul instantané possible entre tous les locaux,… ce qui est déjà nettement plus raisonnable ! De même, si ce sont des bureaux, des locaux de réunion, … dont on peut prévoir qu’ils ne seront pas tous occupés en permanence, on peut tabler sur un certain foisonnement de la puissance totale de l’installation.

Il en résulte une économie du coût d’investissement de la centrale, par rapport à un système à débit constant. Mais encore faut-il que la taille de la centrale ne soit pas trop importante (n’oublions pas que l’on travaille avec des débits horaires correspondants à 6…8 renouvellements horaires !), que la localisation de la centrale, que les distances par rapport aux trémies verticales, … permettent un tel regroupement. Peut-être devra-t-on répartir les locaux par zones et perdre l’intérêt du regroupement ? Peut-être est-ce la régulation qui va imposer le découpage par zones distinctes ?

On constate ici toute l’importance qu’il faut attacher à définir correctement avec le Maître d’Ouvrage la configuration des zones homogènes et le coefficient de simultanéité d’occupation des locaux de chaque zone.

Température de l’air

Une température de pulsion minimale de 14° est tout à fait possible, parfois même 12°C. Suite à un fort effet d’induction, cet air se mélange à l’air ambiant, si bien que l’on développe une veine d’air à 19°C.

Attention, ceci suppose une T° de sortie de batterie froide de 11 à 12°C, suite aux apports du ventilateur (2K) et des gaines dans le bâtiment (1K). Ce qui signifie que, lors du free cooling, pour pouvoir assurer son effet refroidissant à 14°C dans le local, l’air extérieur doit également être à 11° ou 12°C ! D’où une diminution de l’énergie frigorifique gratuite.

Dans le local, la T° prise pour l’ambiance est une valeur de 25°C. Le Delta T° de travail de l’air froid dans le local est donc de (25-14) = 11 K.

Débits

On rencontre un débit maximal de 15 à 46 m³/h par m² traité. Soit avec une hauteur sous plafond :

  • De 2,7 m : un taux de brassage de 5,5 à 17 ren/h
  • De 3 m : un taux de brassage de 5 à 15 ren/h

Soit une puissance frigorifique de 150 à 190 W/m² !

Le débit minimal (pour assurer un brassage d’air et un taux d’induction suffisant) est de l’ordre de 9 m³/h par m² traité. Soit avec une hauteur sous plafond :

  • De 2,7 m : un taux de brassage de 3,3 ren/h
  • De 3 m : un taux de brassage de 3 ren/h

Ce qui est donc bien un équivalent de 3 x le débit hygiénique… sauf dans les salles de réunions.

La sélection des équipements terminaux

Il importe de sélectionner le matériel de telle sorte que le registre ait une bonne autorité sur le débit d’air qu’il contrôle.

On sera attentif à la bonne distribution de l’air dans les locaux en fonction des différents régimes de débits d’air. Il est possible de demander au fabricant de la bouche prévue un profil de distribution d’air dans le local aux différentes vitesses.

Actuellement, la régulation par vitesse variable sur des moteurs asynchrones des ventilateurs ne pose plus de problème.

Il faut être attentif au débit de limite basse admissible par l’appareil. On sait que le débit minimum est ajusté :

  • soit au débit d’air hygiénique,
  • soit à un débit plus élevé, pour les besoins d’une bonne distribution de l’air dans le local,
  • soit à un débit plus élevé pour les besoins de chauffage du local (si régulation « à une sortie »).

C’est ce qui entraîne, par exemple, un débit minimum égal à 30 % du débit nominal dimensionné pour l’été. Or ce débit minimum doit être le plus faible possible pour limiter la consommation de l’installation. On veillera donc tout particulièrement à ne pas surdimensionner les besoins en chauffage des locaux. Idéalement, on intégrera, avec l’accord du Maître d’Ouvrage, l’idée que les apports internes vont participer au chauffage des locaux et que donc l’installation peut être diminuée d’autant. Lors de la relance du matin de l’installation, l’arrivée d’air neuf sera stoppée et le bâtiment montera en température par recyclage de l’air intérieur.

À noter que pour la climatisation des zones internes, on dimensionne le débit minimum pour éliminer de toute façon la charge d’éclairage, puisque l’on sait qu’elle sera toujours présente.

Enfin, on sera attentif au fait que ce n’est pas forcément le bilan d’été qui entraînera les puissances frigorifiques maximales. Le Sud pourrait être plus pénalisant à certains moments de la mi-saison.


Critères acoustiques

Le niveau sonore généralement souhaité dans les bureaux (NR 35 ou 40 dB(A) environ) suppose une étude acoustique sérieuse de l’installation, surtout si le régime Haute Pression est adopté.

Il faut savoir que le respect des critères acoustiques est traité (par le bureau d’études) après le dimensionnement des réseaux.

Attention dès lors à ne pas imposer un niveau acoustique trop faible dans les locaux (parfois non justifié, suite à l’existence de bruits provenant des autres équipements ou des occupants par exemple), car le concepteur va avoir pour réflexe d’augmenter l’importance du silencieux à la sortie du groupe de préparation. Or le silencieux crée des pertes de charges supplémentaires et la consommation du ventilateur en sera augmentée toute sa vie durant !

Par contre, c’est la boîte de détente (à l’entrée de laquelle est placée le clapet de réglage) qui doit être suffisamment grande, celle-ci jouant le rôle de plénum de détente acoustique.

Mise en œuvre du groupe de traitement d’air

La surface sur laquelle repose le groupe de traitement d’air doit être suffisamment rigide pour éviter la mise en vibration d’éléments de la structure du bâtiment.

Il est conseillé de placer le groupe de traitement d’air sur une dalle flottante placée sur des plots antivibratiles, surtout si le groupe est placé au-dessus de locaux sensibles que ce soit en toiture ou en local technique.

Afin d’éviter la transmission de vibrations à la structure du bâtiment, on raccorde les caissons du groupe et les gaines avec des manchettes souples.

Les parois sont à double enveloppe en tôle d’acier galvanisé ou peint. Un isolant acoustique et thermique de 25 mm d’épaisseur minimale est fixé entre les deux tôles.

On constate que la prise d’air peut être aussi bruyante que la pulsion. On placera dès lors un silencieux dans la gaine de prise d’air neuf et sur la gaine de pulsion d’air. De même, en toiture, il faut toujours éloigner les groupes de traitement d’air des grilles de rejet d’air vicié, car le bruit du groupe de traitement d’air pourrait se transmettre, vers les locaux occupés, via la gaine de rejet d’air.

Tout particulièrement, les boîtes de mélange des systèmes « dual duct » seront sources de bruit et demanderont un traitement spécifique.

Dans les réseaux à Haute Pression, les boîtes de détente seront insonorisées pour amortir le bruit.


Critères économiques

Les systèmes mono-gaines à débit constant ont un coût d’installation variant 125 et 190 €/m² (HTVA) pour une installation complète. Les coûts de maintenance varient, suivant le surface, entre 1,75 à 5 €/m² par an.

Avec un prix compris entre 137,5 et 212,5 €/m², l’installation VAV est plutôt plus chère qu’une installation par ventilos-convecteurs. Elle devrait être moins chère qu’une installation à débit constant suite à la taille plus réduite du caisson de préparation en centrale, mais le coût de la régulation en est nettement plus élevé.


Check-list du projet

Des questions à se poser :

Plus d’infos ?

Les systèmes à débit constant ne convient, en pratique, que pour traiter un seul local ou plusieurs locaux mais de températures homogènes. Est-ce votre cas ? détails

Le découpage par zones permet-il de réguler correctement les ambiances, tout en profitant d’un coefficient de foisonnement pour le dimensionnement des groupes de traitement d’air ? (exemple : regroupement des salles de réunion sur une même centrale)

détails

La vitesse de dimensionnement choisie est-elle nécessaire pour réduire l’encombrement ? Ne peut-on pas élargir les conduits pour diminuer les coûts d’exploitation et le bruit durant toute la vie de ce système ?

détails
Ne pourrait-on pas éviter le régime Haute Pression ? La vitesse de l’air dans les conduits est-elle nécessaire pour réduire l’encombrement ? Ne peut-on pas élargir les conduits pour diminuer les coûts d’exploitation et le bruit durant toute la vie de ce système ? Ne doit-on pas imaginer des ventilateurs à 2 vitesses ? détails

Le débit d’air neuf hygiénique est-il assuré quel que soit le débit pulsé ?

détails

Le système permet-il de valoriser l’air neuf extérieur « gratuit » si la température est adéquate (free cooling) ?

détails
Un récupérateur de chaleur est-il placé sur l’air extrait ? Un recyclage partiel de l’air extrait est-il prévu ? détails

Le choix du système de chauffage est-il le plus adéquat ? Si des résistances électriques sont prévues, une étude de consommation probable a-t-elle été faite ? Un délestage est-il prévu ? Un mode de fonctionnement en recyclage (pas d’apport d’air neuf) est-il prévu par la régulation lors de la relance du matin ?

détails

La régulation interdit-elle tout fonctionnement simultané du chauffage et du refroidissement ? (présence d’une « zone neutre »)

détails

La régulation du débit pulsé entraîne-t-elle véritablement une diminution de l’air traité et une diminution de la vitesse de rotation des ventilateurs (pas de by-pass de l’air non pulsé) ?

détails

Le débit minimum a-t-il été préréglé à la valeur vraiment minimale (la plus proche possible du débit hygiénique) ?

détails

La sélection des bouches permettra-t-elle une bonne distribution de l’air, même lors du débit minimum ?

détails

La qualité acoustique du projet est-elle suffisante ?

détails

Choisir un système rayonnant sur boucle d’eau froide : plafond froid, dalle active

Choisir un système rayonnant sur boucle d’eau froide : plafond froid, dalle active


Dalle active ou plafond froid ?

Inertie, puissance et free chilling

Il existe deux technologies d’émetteurs « froids » basés sur un échange par rayonnement : les  plafonds froids et les dalles actives.

Schéma plafonds froids et les dalles actives.

Clairement, la puissance émise par une dalle froide active est faible par rapport à celle d’un plafond froid traditionnel (de l’ordre de moitié). Elle présente un temps de réponse également très élevé et sera donc peu efficace pour gérer un afflux de soleil soudain. Il suffit de voir la température de surface inférieure de la paroi (22,5° pour 26° ambiant…) pour se rendre compte que la réponse va manquer de pêche !

Par contre, la dalle froide se distingue du plafond rayonnant par une grande inertie thermique.

Avantages d’un émetteur inerte : il est possible de réaliser un stockage nocturne de frigories dans la dalle ! Cette technique présente dès lors les avantages du système de stockage frigorifique dans des bâches d’eau glacée (production de frigories au prix du kWh de nuit, diminution de la puissance frigorifique installée, …). Elle permet également de valoriser la fraîcheur nocturne par free chilling.

Inconvénients d’un émetteur inerte : l’inertie du système rend la régulation très difficile… Y aura-t-il du soleil demain ?  Faut-il enclencher le refroidissement cette nuit ? De plus, la décharge du froid est indépendante des besoins réels. La température ambiante du local varie dans la journée en fonction des charges du local… On imagine un tel système lorsque les besoins sont créés par une charge interne permanente, mais non par des apports solaires ou une occupation variable.

C’est ainsi que la dalle active va pouvoir valoriser au mieux le froid créé durant la nuit : soit par passage dans un échangeur direct, soit par utilisation d’une machine frigorifique avec un très bon rendement.

Si l’eau provient d’une nappe phréatique ou d’une sonde géothermique, il ne semble pas fort intéressant de passer au système de refroidissement par dalle puisque la puissance frigorifique est à disposition également en journée.

On arrive donc à différents types de configuration, dont :

Un refroidissement de nuit sur l’air extérieur, assisté par une machine frigorifique en période de canicule.

Un refroidissement 24h/24 via des plafonds froids, dont le froid est capté sur des sondes enterrées.

Confort acoustique

Les nattes capillaires noyées dans le plafonnage et les dalles actives sont peu intéressantes au niveau acoustique : aucune absorption à attendre de leur part. Les plafonds froids suspendus par contre intègrent souvent des matelas absorbants.

En outre, les émetteurs noyés sont pénalisés lors de la pose d’ilots acoustiques suspendus. En effet ceux-ci viendraient bloquer l’échange par rayonnement entre les occupants et le plafond, ce qui limite l’échange thermique à la seule composante convective entre l’air et le plafond. D’autres surfaces d’absorption doivent être trouvées (panneaux mobiles, armoires avec panneaux intégrés, sous-faces des tables de travail, …).

Par exemple, les portes des armoires du bâtiment Worx à Kortrijk sont des panneaux acoustiques microperforés :

Une campagne d’essais a été menée à l’institut de recherche suédois pour mesurer l’influence de faux plafond discontinu, morcelé en ilots flottants de petite taille, sur les échanges thermiques entre le local et la dalle active.
La campagne consistait à comparer deux configurations, un faux plafond de 8.6 m² (6 éléments de 1,2 m x 1,2 m) représentant 45 % de la surface du local suspendu à deux hauteurs différentes (20 cm et 80 cm).
On constate une diminution de l’efficacité due à la présence des éléments acoustiques de 16 % lorsqu’ils sont suspendus à 20 cm et de 12 % à 80 cm. Il apparait logique que plus l’élément acoustique est suspendu bas, plus la convection de l’air autour du panneau est facilitée. De même l’efficacité acoustique est améliorée, car le son se répartit mieux autour du panneau, tout comme des panneaux trop proches l’un de l’autre se gênent le son ne distribuera pas correctement autour des panneaux.


Choix de la technologie de plafonds froid

Le terme plafond froid recouvre lui-même une large variété de dispositifs d’émission.  Pour faire le tri parmi ces technologies, on peut distinguer plusieurs critères de choix :

L’inertie du plafond

La plupart des plafonds froids sont peu inertes, puisque constitués de tuyauteries fixées sur un faux plafond peu épais. Seuls les systèmes constitués de nattes capillaires noyées dans un plafonnage présentent un plafond froid, dont l’inertie plus importante.

Le mode d’émission de froid entre la tuyauterie d’eau et le local

La plupart des systèmes utilisent la conduction de froid (en réalité, de la chaleur) vers les panneaux de plafonds. Pour augmenter la puissance, l’essentiel consiste à faire communiquer au mieux le froid entre le tube et l’entièreté du plafond, si possible métallique. Un système qui ne comporterait que quelques points de soudure de temps en temps, ne serait pas idéal à ce niveau…

Il existe des faux plafonds à ailettes clipsables, atteignant une puissance de 80 à 90 W/m² actif.

Illustration faux plafonds à ailettes clipsables.

Mais on améliore les choses par des tubes intégrés à un profilé aluminium. Ces systèmes, bien qu’un peu plus chers, permettent une excellente conduction du froid, si bien que la différence de température entre l’eau et la surface métallique est seulement de l’ordre de 1°C. Des puissances de 100 à 130 W/m² actif sont atteintes, pour un écart de 10° entre la température moyenne de l’eau (16°C) et la température de l’ambiance (26°C), c’est-à-dire, dans des conditions extrêmes.

Schéma tubes intégrés à un profilé aluminium.

Mais l’échange par rayonnement est rapidement limité. Aussi, afin de favoriser l’effet convectif, des ailettes seront serties sur les tuyauteries. L’idée consiste à créer un effet d’écoulement d’air, de « cheminée froide » le long de ces ailettes. Cette fois, deux tiers de la puissance sont communiqués par convection. La puissance frigorifique est maximale (130 W/m² et plus) pour autant que le faux plafond reste à claire-voie, ce qui n’est pas toujours accepté par l’architecte.

Schéma ailettes seront serties sur les tuyauteries.

De plus, la hauteur du faux plafond devient fort importante. On envisagera plutôt ce système dans un hall de grande hauteur.

La facilité du montage

Si certains systèmes sont assemblés sur place (serpentins clipsés, par exemple), d’autres sont montés en usine et arrivent par modules « tout faits ». On peut imaginer que cette deuxième solution est plus fiable.

La planéité d’ensemble est un élément très important, car notre oil est très sensible au moindre défaut, tout particulièrement dans les bureaux paysagers.

Le critère esthétique

Certains plafonds sont de type à lamelle, d’autres sont modulaires (généralement de largeur 600 mm.), ce qui modifie l’aspect architectural.. Les nattes noyées dans le plafonnage et les dalles actives sont par contre totalement invisibles.

La facilité de la maintenance

Chaque constructeur rivalise d’astuce pour pouvoir accéder le plus facilement possible à l’espace situé au-dessus du faux plafond (modification d’un câblage, …).

C’est en dé-clipsant les tuyauteries pour les uns, c’est en faisant pivoter une fixation par charnière pour les autres. La liaison entre le réseau d’eau froide et le module de faux plafond est réalisée par des flexibles.

Photo plafond froid.

Photo plafond froid.

Le montage des modules est facilité, mais le prix d’achat est augmenté.

Photo plafond froid.

La hauteur minimale nécessaire est fonction de l’ensemble des équipements à placer dans le faux plafond. Au cas où seule la fonction thermique est présente, la hauteur minimale requise est de 55 mm.

Remarques :

1. De nombreux fabricants proposent leurs produits sur le marché :

  • des fabricants de faux plafonds qui ont développé la fonction « thermique »,
  • des fabricants de matériel thermique qui ont développé la fonction « faux plafond » !

Il est indispensable que les deux fonctions soient totalement maîtrisées et proposées avec des matériaux de qualité.

2.  Un plafond froid ne s’achète pas sur « catalogue » et une installation ne peut se concevoir sans qu’un Ingénieur Conseil n’intègre tous les besoins et exigences du Maître de l’Ouvrage et de l’Architecte.

L’Entrepreneur réalisant un tel système doit en prendre la responsabilité globale tant au point de vue installation (faux plafond) que performance (confort).

3.  Pourrait-on avoir un « plancher froid » ? C’est une solution peu confortable (froid aux pieds, chaud à la tête !). Pour éviter cet inconfort, on limite de tels systèmes à une puissance de 30 W/m². Exemple d’application : un show-room de voitures. L’immense avantage est de pouvoir faire du chauffage par le sol en hiver !


Choix de l’apport d’air neuf

Les plafonds froids et dalles actives sont des systèmes agissant sur la température du local indépendamment de l’apport de l’air neuf de ventilation (imposé par la réglementation pour garantir une qualité de l’air suffisante).

Celui-ci ne pourra ici se faire qu’au moyen d’une ventilation double flux. En effet, l’air neuf doit être pré-refroidi en centrale, et ce pour deux raisons :

  1. La puissance frigorifique des plafonds froids est parfois insuffisante  pour reprendre toute la charge frigorifique du local. Un air prérefroidi peut alors lui venir en aide. Dans le cas d’une dalle active, une pulsion d’air traité en centrale peut compléter l’inertie du système rayonnant par une réactivité importante. Attention cependant à la destruction d’énergie entre la dalle refroidie et un air éventuellement préchauffé.
  2. Pour éviter toute condensation sur le plafond, l’humidité relative dans le local doit être maintenue par la batterie de prérefroidissemment à une valeur de 52 .. 57 % HR, en fonction de la température du plafond.

L’enjeu est de ne pas « casser l’énergie », en refroidissant l’air neuf pour le déshumidifier et en le réchauffant ensuite pour éviter les courants d’air (on considère souvent qu’une température de pulsion minimum de 16°C est nécessaire).

Photo bouches toriques.

Il est clair que de prévoir des par bouches toriques (à haute induction) est une garantie de pouvoir pulser l’air à très basse température sans créer de courants d’air, et donc de ne pas détruire de l’énergie.

Ce type de bouche est par ailleurs favorable à l’émission du plafond. Des essais réalisés au Laboratoire de Thermodynamique de l’ULg auraient montré qu’une augmentation de l’ordre de 30 % de la puissance frigorifique est réalisée avec ce type de bouches. Ce pourcentage atteint même les 50 % s’il s’agit d’un plafond chauffant.

Idéalement, il faudrait arriver à ne pas devoir postchauffer l’air neuf après déshumidification. Plus de détails techniques sont donnés dans la régulation de la déshumidification de l’air neuf avec plafonds froids.


Contrôle du risque de condensation

En  pratique, le risque de condensation est limité.

Le taux d’humidité d’un local dépend non seulement du taux d’humidité extérieur, mais également du dégagement d’eau dans le local. Prenons l’exemple d’un local type de bureau individuel (occupation : 70 g/h.personne à 26 °C , plantes, etc.). Si la ventilation apporte 25 m³/h d’air neuf, l’humidité absolue du local est en moyenne supérieure de 3 g/kg à l’humidité absolue de l’air extérieur.

Si la température de surface d’une dalle active est de 22 °C (température d’équilibre pour de l’eau entrant à 16 °C dans la dalle et une ambiance à 26 °C ), le risque de condensation apparaît si l’humidité ambiante dépasse 16,7 g/kg, soit si l’humidité extérieure dépasse (16,7 g/kg – 3 g/kg =) 13,7 g/kg. Ainsi, pour une année moyenne en Belgique, le point de condensation n’est dépassé que 12 heures sur 8 760 par an. Il n’a pas été dépassé pendant la période de canicule de juin 1976, similaire à celle que nous avons connue en 2003.

Si, en mi-saison ou en hiver, la température de surface de la dalle est de 20 °C (température d’équilibre pour de l’eau entrant à 18 °C dans la dalle et une ambiance à 22 °C ), le risque de condensation apparaît si l’humidité ambiante dépasse 14,7 g/kg, soit si l’humidité extérieure dépasse (14,7 g/kg – 3 g/kg =) 11,7 g/kg. Pour une année moyenne en Belgique, l’humidité extérieure ne dépasse jamais ce niveau entre début octobre et fin mai.

Le risque de condensation sur les parois est donc très faible dans les locaux tels que les bureaux, même si l’air neuf n’est pas déshumidifié. De plus, lors d’une augmentation d’humidité rapide dehors ou par des sources internes, l’humidité dans la pièce n’augmente que lentement à cause de la grande capacité d’absorption des plafonds, murs et mobiliers.

Par contre, dans des salles de réunion ou des cafétérias où le dégagement d’humidité est plus important, l’importance de la condensation en cas d’occupation exceptionnelle (ou de défaut de ventilation) sera plus grande et aura donc des conséquences plus sérieuses. Mais on peut imaginer que dans ces locaux un climatiseur d’appoint soit nécessaire et qu’il joue le rôle de déshumidificateur (T° d’évaporateur généralement très basse vu la détente directe et la compacité de l’échangeur).

Le risque de condensation est un peu plus important lorsque l’on choisit des plafonds froids, puisque le régime de température est moins élevé que dans la dalle active. Le risque de condensation reste néanmoins limité notamment suite à la déshumidification de l’air neuf en centrale. La formation d’une véritable goutte d’eau (capable de dégâts) semble difficile à créer lors des essais de laboratoire : un film humide peut se former sur le plafond (buée) sans pour autant que de gouttes ne chutent.

Restent des risques exceptionnels tels que la fête pour le départ de Louis à la pension, la cafetière qui bout en permanence, et quelques jours orageux par an, …

Aussi différentes dispositions sont possibles pour limiter le risque de condensation

  • Limitation de la température de départ de l’eau pour les réseaux intégrés dans la dalle de plafond (généralement 15°C).
  • Contrôle de l’humidité relative à proximité du plafond et coupure de la circulation d’eau, pour les réseaux en faux plafonds.
  • Prise en considération des conditions extérieures pour anticiper les fluctuations d’humidité à l’intérieur du local.

Dans un bâtiment avec fenêtres ouvrantes, l’alimentation du plafond en eau devrait pouvoir être interrompue par un contact de feuillure. À défaut, une information efficace des occupants et du personnel d’exploitation sera impérative.


Choix du système de chauffage associé

Plusieurs solutions sont possibles.

Soit le chauffage de l’air pulsé

Si l’on dispose déjà d’un réseau d’émetteurs pour le refroidissement et d’un réseau de ventilation hygiénique, on peut chercher à limiter l’investissement en évitant un troisième réseau, spécifiquement dédié au chauffage. Une piste est alors d’utiliser le réseau de ventilation.

On sait que le débit d’air pulsé est très faible (généralement entre 1 et 2 renouvellements horaire) puisqu’il correspond au débit d’air neuf hygiénique, parfois gonflé pour couvrir les besoins de déshumidification de l’air en été. Et la température de l’air ne peut dépasser 35 à 40°C.

Cet apport ne permet de couvrir que peu de déperditions. Cette solution n’est donc possible que si le bâtiment est fort isolé au départ et/ou que le client accepte de prendre en compte les apports internes comme source de chauffage. Expliquons-nous : si l’on respecte la norme du calcul des déperditions (NBN B62-003), on ne peut compter que sur le système de chauffage pour vaincre les déperditions dans le cas le plus critique. Or, en pratique, les occupants, la bureautique, l’éclairage, … apporteront de la chaleur de façon non négligeable et les installations seront souvent surdimensionnées. Si le Maître de l’Ouvrage l’accepte, il peut donc autoriser le bureau d’études à tenir compte d’apports internes minimaux et diminuer d’autant la puissance de son installation. Ceci est d’autant plus exact que l’on travaille dans un bâtiment à utilisation permanente.

Si des coupures prolongées sont possibles (WE, période entre Noël et Nouvel An), la puissance maximale doit tenir compte de la relance et un calcul plus fin doit avoir lieu. On peut alors imaginer que l’air neuf soit recyclé lors de la relance et que la puissance totale de l’installation soit consacrée à la remise en température du bâtiment. Mais cette solution n’autorise pas une extraction classique de l’air neuf par les sanitaires… puisque l’air assure la fonction de chauffage et doit être recyclé.

Soit le chauffage par le plafond ou par la dalle

Deuxième piste pour éviter un émetteur de chauffage spécifique : L’apport de chaleur par le réseau de tuyauterie du faux plafond ou de la dalle active. Cette solution est possible, mais présente un risque d’inconfort.

L’inconfort résulte de l’asymétrie du rayonnement en mode chauffage (= « impression désagréable d’avoir de la chaleur qui tombe sur la tête ») et ne permet pas d’alimenter le réseau à une température supérieure à 35 °C. Pour les dalles actives, le régime de température est encore plus bas : de l’ordre de 28 °C maximum. Mais dans les bâtiments récents, cette faible puissance de chauffe pourrait ne pas poser de problème vu les besoins limités. On peut imaginer également que la température serait seulement élevée en période de relance (lorsque les occupants sont absents, puis relayée par le réseau d’air en période d’occupation). Attention aux contraintes sur les tuyauteries… Nous n’avons pas d’expérience pratique à ce sujet.

On peut imaginer que la stratification des températures soit alors assez défavorable du point de vue rendement (couche d’air chaud coincée sous le plafond). Par contre, l’eau à très basse température permet de valoriser le très bon rendement d’une chaudière à condensation.

Le schéma ci-dessous montre l’installation 2 tubes réversibles (réseau chaud/froid, dans/sous le plafond) et propose de la coupler avec une ventilation/refroidissement par déplacement, technique complémentaire très efficace pour les occupants. Elle propose aussi la formule d’insertion des tubes dans la structure du bâtiment (augmentation de l’inertie).

Schéma installation 2 tubes réversibles.

Un compromis peut être en imaginant un chauffage par le plafond limité aux panneaux situés le long des façades.  En toute logique, on apporte ainsi une ceinture de chaleur au bâtiment là où les déperditions ont lieu. Les vitrages doivent être sélectionnés en très basse émissivité.

Soit un chauffage traditionnel par radiateur ou convecteur statique

Si le bâtiment est de construction plus traditionnelle, faiblement isolé, un réseau de radiateurs sera prévu en complément des plafonds froids. C’est une solution généralement appliquée en rénovation puisque l’on peut récupérer l’installation existante, quitte à renouveler les corps de chauffe.


Choix du réseau d’eau froide associé

On utilisera soit un réseau spécifique aux plafonds/dalles disposant d’un groupe frigorifique propre, soit le réseau global du bâtiment. Le premier cas présente l’avantage de pouvoir travailler à plus haute température au niveau de l’évaporateur et donc d’améliorer la performance du groupe frigorifique.

En été l’eau froide peut être produite  par différents moyens :

L’eau peut être refroidie par l’air extérieur, via un échangeur placé en toiture.

Pour profiter d’un air plus frais, il apparaît que le fonctionnement aura principalement lieu durant la nuit. D’où la nécessité de stocker le froid dans l’épaisseur de la dalle.

L’eau peut être refroidie par de l’eau pompée dans une nappe phréatique, via un échangeur à plaques eau/eau.

Le fonctionnement peut alors avoir lieu 24h/24.

L’eau peut être refroidie par circulation dans le sol sous le bâtiment, via un échangeur sol/eau. La présence d’une circulation d’eau d’une nappe phréatique éventuelle autour des conduits renforce le refroidissement. La puissance frigorifique varie entre 10 et 25 W/m courant.

Le fonctionnement peut alors avoir lieu 24h/24.

L’eau peut être refroidie par une machine frigorifique traditionnelle, venant en appoint d’une des sources ci-dessus, notamment pour vaincre les périodes de canicule.

Les plafonds froids et dalles actives, puisqu’elles travaillent à haute température, sont particulièrement indiqués pour valoriser la fraicheur de l’environnement. Cette propriété valorise tout particulièrement la technique de free-chilling qui consiste à by-passer le groupe frigorifique et à refroidir directement l’eau de 17 à 15°C par l’air extérieur.

Puisque cette possibilité existe dès que la température extérieure est inférieure à 13°C, cette technique sera particulièrement intéressante si des besoins de refroidissement des locaux existent en période froide, ou si l’inertie du système permet de valoriser la fraîcheur nocturne. C’est l’analyse des besoins du bâtiment en fonction de la température extérieure qui devra le dire.

Plafonds froids et dalles actives seront de même aisément couplés à des forages géothermiques ou d’autres sources froides naturelles (nappe phréatique, rivière, lac,…), auxquels cas ils profiteront d’une eau de refroidissement en boucle ouverte. Un échangeur, spécialement traité pour résister à la corrosion et au colmatage, permettra le refroidissement à la source froide. Pour fournir l’appoint en plein été, le système est épaulé par un groupe frigorifique (placé en parallèle et dont le condenseur est raccordé à cette même source froide).

Schéma Plafonds froids et dalles actives couplés à des forages géothermiques.

Le filtrage et traitement des eaux devra faire l’objet d’une attention soutenue.
Pour en savoir plus :

Concevoir

Valoriser la fraicheur de l’environnement.


Paramètres du dimensionnement

La nécessité de limiter les apports solaires

La limitation des plafonds est liée à leur puissance frigorifique : de l’ordre de 90 W/m² de plafond actif, soit 72 W/m² de surface au sol si on considère que 20 % du plafond ne sera pas actif, suite à la présence des luminaires, des angles, …… Les dalles actives présentent une puissance inférieure à 60W/m².

Si ce système doit vaincre des apports internes importants (bureautique : 25 W/m², éclairage : 12 à 15 W/m², occupants : 7 W/m²), la réserve disponible pour les apports solaires solaires est fortement réduite.

Concevoir

Ceci sous-entend que les apports solaires des vitrages soient fortement limités :
  • soit par la conception du bâtiment créant des ombres portées;
  • soit par la mise en place de protections solaires extérieures;
  • soit par le placement de stores intérieurs clairs combinés à des vitrages performants;
  • soit par la configuration des lieux (bureaux paysagers, salles profondes).

Dimensionner avec une eau à haute température

Classiquement, on dimensionne le réseau de plafonds froids au régime 15 ° – 17 °C. Les dalles actives sont utilisées à un régime 16 °C-20 °C.

On peut d’abord étudier l’intérêt de passer à un régime 15 ° – 18 °C. La température moyenne des plafonds n’augmenterait que d’un demi-degré (16,5 au lieu de 16 °C). La puissance émise est liée à l’écart de température par rapport à l’ambiance (26 °C nominaux). Elle n’augmentera donc que de l’ordre de 5 %, alors que la consommation électrique augmentera bien davantage puisque le débit augmente de 50 % et que les pertes de charge évoluent au carré de celui-ci.

Par ailleurs, si les besoins thermiques sont faibles, c’est la température de départ qui peut évoluer. Pourquoi pas une distribution d’eau au régime 17° – 19 °C ? Cela permet de limiter la consommation liée à la déshumidification de l’air, voire de supprimer toute post-chauffe de l’air neuf.

Travailler avec une haute température peut permettre également :

Concevoir

de récupérer la chaleur des plafonds pour préchauffer l’air neuf.

Concevoir

ou de refroidir l’eau des plafonds froids par free-chilling.

Prévoir une installation frigorifique performante

On retrouve souvent un réseau de plafonds froids à 15° et un réseau d’eau glacée à 7°, notamment pour alimenter la batterie froide du groupe de traitement d’air. Idéalement, si la taille de l’installation le permet, on installera deux machines frigorifiques. Celle qui alimentera le réseau à 15° pourra bénéficier du COP nettement plus performant (en principe, le gain est de 3 % de la consommation par degré d’augmentation de la température à l’évaporateur).

Les fabricants dimensionnant toujours avec des petits échangeurs (évaporateur, condenseur) pour diminuer les coûts, il est utile d’imposer une valeur de COP minimale à respecter.

Un appoint par poutres froides ou pulsion d’air

Lors du dimensionnement, cela « coince » parfois au niveau du local d’angle suite à l’ensoleillement sur 2 façades.

Des poutres froides sont alors parfois proposées en supplément du plafond, pour augmenter l’effet frigorifique (le fait que ces équipements travaillent à même régime de température d’eau est un avantage). Mais les risques d’inconfort par « coulée d’air froid » sont importants avec cette technique et il convient d’étudier soigneusement leur disposition dans le local.

Une alternative est de valoriser le réseau de ventilation par un traitement centralisé de l’air neuf hygiénique. A priori, le groupe de traitement d’air est déjà lié à une machine frigorifique pour assurer une déshumidification. De là à voir l’air neuf comme un appoint thermique, il n’y a qu’un pas !

L’évaluation de la puissance intrinsèque du plafond

La transmission énergétique du système dépend :

  • de la température ambiante,
  • de la température des parois environnantes,
  • de la température de l’eau,
  • du type de plafond,
  • de la façon dont l’air est distribué dans la salle.

Quelle est la fidélité sur les chiffres de puissance avancés ? On peut penser que le fabricant qui annonce 130 W/m² suppose une ambiance très chaude (pour augmenter le delta T°) et une circulation de l’air favorable le long des panneaux, induite par l’apport d’air neuf !

Il faudra donc vérifier si la puissance intrinsèque du plafond a bien été contrôlée en laboratoire suivant la procédure reprise dans la norme DIN 4715 (avril 1993). En réalité, on sera toujours supérieur à cette puissance, car une fenêtre ensoleillée sera par exemple à une température de 30 °C environ, ce qui est supérieur aux conditions d’essai de la norme. À noter que d’autres procédures existent également.

Il est conseillé de réaliser un essai en « vraie grandeur » pour vérifier les performances du système (sur site ou en laboratoire d’essais), mais le budget nécessaire de +/- 12 500 € suppose un projet de grande envergure pour être « rentabilisé ».

On sera également attentif au fait que la puissance annoncée est une puissance délivrée par m² de panneau installé, ce qui n’est pas forcément égal à la surface au sol des locaux. Il faudra retirer la surface des luminaires, des détecteurs, des bouches, des zones de coin non couvertes, … pour arriver à la surface utile rafraîchie.

La figure ci-dessous montre l’évolution de la puissance intrinsèque pour un type donné de plafonds :

Exemple.

  • température ambiante : 26 °C
  • régime eau froide : 15 °C – 17 °C –> T°moy = 16 °C
  • Delta T° (ambiance – temp. moyenne eau) = 10 K

On en déduit un puissance intrinsèque de  77,5 W/m².

La sensibilité est forte puisque si la température ambiante monte de 1°C, la puissance frigorifique monte à 85 W/m² (+ 10 %).
Et inversément, si la température ambiante souhaitée est de 24°C, la puissance disponible descend à 63 W/m² (- 19 %) ! Mais en pratique, les 26 °C sont très bien supportés par les occupants suite au rayonnement froid. Ce serait plutôt 24°C qui génèrerait de l’inconfort par excès de refroidissement.

Il est clair que si le local nécessite des puissances frigorifiques importantes et fort variables dans le temps, le ventilo-convecteur convient mieux.

L’évaluation des apports latents dans les locaux

Il semble que les apports en eau par les occupants proposés dans la méthode « Carrier » soient fort élevés et correspondent au regard d’un fournisseur de matériel frigorifique, soucieux de vaincre les situations les plus critiques. Dans « Le Recknagel », on trouve des valeurs en apport d’eau plus modérées. L' »ASHRAE » est également légèrement plus faible que « Carrier ».

De plus, les valeurs « Carrier » sont valables pour une climatisation par convection. Les occupants augmentent l’échange par évaporation lorsque la température de l’air augmente, pour compenser la perte d’échange par convection.

Dans le cas d’une climatisation avec un plafond froid, une partie de l’échange se fait par rayonnement et cette partie n’est pas fonction de la température ambiante et il semble donc que les occupants produisent moins de vapeur.

Le débat reste ouvert et nécessite une confirmation par mesures officielles en laboratoire. Mais ces valeurs vont influencer l’évaluation du débit d’air neuf (ci-dessous) et donc la consommation finale de l’installation.

La détermination du débit d’air neuf

L’air neuf hygiénique est fortement déshumidifié en été pour supprimer le risque de condensation sur les plafonds.

Le niveau de déshumidification à atteindre est directement fonction de la température minimale d’entrée de l’eau dans les plafonds : idéalement il faudrait pouvoir travailler avec de l’eau à 17° d’entrée, 19° de sortie. Pour plus d’information à ce sujet, on consultera la régulation de la déshumidification.

Plus classiquement, on se limite à refroidir l’air extérieur jusque 13 °C en sortie de batterie froide, l’air est postchauffé jusque 15 °C et pulsé à 16 °C dans les locaux (1° est donné par le ventilateur).

Pour déshumidifier davantage, on peut augmenter le débit d’air neuf pulsé qui peut atteindre les 2 renouvellements horaires. Mais cette solution est plus énergivore dans la mesure où elle entraîne des coûts de transport de l’air plus élevé et le réchauffage d’une quantité d’air neuf plus élevée durant tout l’hiver et la mi-saison.

Il faut d’ailleurs se soucier du réflexe de l’installateur qui, étant inquiet « de ne pas y arriver » en été (= de ne pas avoir une puissance frigorifique suffisante avec les plafonds), va « pousser » le débit d’air afin qu’il puisse donner un petit effet refroidissant complémentaire.

Évaluer

Pour le Maître d’Ouvrage, c’est une consommation permanente supplémentaire non négligeable liée au traitement de l’air neuf, pour un risque limité à quelques journées par an, lors d’un été fortement ensoleillé.

A noter qu’il est possible d’augmenter plus astucieusement la puissance frigorifique du plafond en valorisant l’effet convectif de l’air neuf. L’idée est de faire en sorte que de l’air en mouvement vienne lécher le plafond en augmentant ainsi l’effet frigorifique. Mais il ne faut pas souffler l’air neuf directement le long du plafond. En effet, cet air est déjà froid (16  °C) et il ne captera pas l’énergie du plafond (16°C). Au contraire, il supprimera le contact entre une partie du plafond et l’air chaud du local. Par contre, si l’air neuf est distribué par bouches toriques verticalement, en plusieurs points du plafond, il va générer un brassage de l’air du local par induction et celui-ci va entrer en contact avec le plafond. Des essais menés à l’ULg ont permis ainsi d’augmenter jusqu’à 30 % la puissance frigorifique du plafond.

Le réseau de distribution d’eau

La distribution est basée sur des tuyauteries-mères (généralement disposées au plafond du couloir) qui alimentent les serpentins des différents locaux.

On souhaite souvent diminuer au maximum le delta de T° entre aller et retour, afin d’avoir le plafond le plus froid possible et la puissance maximale. Mais cela entraîne une augmentation du débit et donc du diamètre de la tuyauterie. La longueur maximum des circuits sera déduite d’une volonté de limiter à DN 80 ou DN 100 le diamètre des conduites-mères et de critères de dilatation des réseaux.

Il faudra prévoir la gestion de la pression différentielle du réseau, suite à la fermeture des vannes 2 voies. Cela se fera de préférence au moyen d’un circulateur à vitesse variable.

Un projet global

Le plafond froid ne peut être considéré comme un élément indépendant parcouru par de l’eau froide. C’est un système global qui intègre des exigences techniques et esthétiques :

  • le plafond froid : finition, forme, matériaux, puissance intrinsèque garantie;
  • l’architecture : aspect, planéité, sécurité au feu, performances acoustiques,…
  • les équipements à incorporer : luminaires, détecteurs, bouches,…
  • la pulsion d’air neuf : débit réglementaire ou sur-évalué pour répondre aux besoins de froid, refroidissement, déshumidification, confort (vitesse résiduelle)…
  • l’eau froide : débit et niveau de température, pression statique admissible, disposition des tuyauteries, production,…
  • la régulation : contrôle individuel de la température ambiante, contrôle des températures d’air et d’eau en fonction de la température extérieure, contrôle de l’humidité, asservissement à l’ouverture des fenêtres,…
  • la récupération d’énergie : capteur d’énergies « gratuites » venant des espaces de travail, récupération d’énergie, intégration des circuits plafonds froids dans l’ensemble du circuit de production de froid,…

Une collaboration entre Ingénieur Conseil et Architecte s’impose dès le début du projet, en y associant le Maître d’Ouvrage car il influencera les premières réflexions :

  • le niveau de confort à atteindre;
  • le souhait de faire également le chauffage par faux plafond;
  • le niveau de puissance à atteindre;
  •  …

Réception des installations

Planéité du plafond

La pose est généralement délicate car tout défaut dans la planéité d’un faux plafond est directement visible, surtout si la lumière est rasante. Les réceptions d’installation donnent généralement lieu à des discussions tendues entre architecte et installateur !

Bon fonctionnement hydraulique

Une fois le plafond fermé, tout est caché et il est très difficile de pouvoir dire quel est le fonctionnement réel du réseau !

Imaginons la plainte d’un occupant futur : est-ce lui qui est de mauvaise foi … ou le débit d’eau qui est réellement insuffisant ?

Il est tout à fait possible qu’une vanne d’isolement soit par erreur fermée (sic !), qu’un thermostat soit défectueux, qu’un flexible soit croqué, …

La vérification sur site comprend :

  • les contrôles et essais hydrauliques systématiques (positions des tuyaux, points d’éventage, essais de pression);
  • la vérification de la bonne circulation d’eau dans les réseaux et l’irrigation correcte de chaque élément de plafond.

Idéalement, il faudra procéder à une thermographie infrarouge du plafond lors de la réception de l’installation. Le coût de cette mesure a fortement baissé grâce à l’amortissement des caméras et se justifie amplement par rapport aux ennuis que l’on peut avoir tout au long de la vie de l’équipement. De plus, ce type de contrôle se fait beaucoup plus facilement tant que le bâtiment est inoccupé.

Il suppose une bonne préparation avant le passage des agents contrôleurs (notamment en mettant la pleine puissance de l’installation en route, quitte à chauffer parallèlement le bâtiment par le système de chauffage).

Après la mise au point finale et les vérifications de la performance finale (température ambiante, vitesses résiduelles, confort,… ), l’information de l’exploitant et de l’occupant seront nécessaires afin d’utiliser ce système au mieux de ses possibilités. Il est utile d’expliquer le principe d’apport de froid pour éviter le risque d’un excès de froid. La température de l’air n’est pas le seul critère. Un thermostat classique peut être réglé sur 25 ou 26°C car le plafond froid entraîne un équivalent-confort de 24°C. On rencontre d’ailleurs des installations où les thermostats ne sont pas gradués…!

Source : Conférence de Mr P.A. Delattre – Tracrebel Development Engineering – journée ATIC du 25.09.98.

Récupérer la chaleur sur eau glacée [Climatisation – Concevoir]

Récupérer la chaleur sur eau glacée [Climatisation - Concevoir]

Groupe de production d’eau glacée à condensation à air.


Objectifs de la récupération

Objectif prioritaire : transférer la chaleur extraite du bâtiment vers le préchauffage de l’air neuf

Suite à l’isolation des bâtiments et à la chaleur interne (éclairage, bureautique, …), la température d’équilibre d’un bâtiment d’aujourd’hui se situe autour des 10°C extérieurs. Autrement dit, au-dessus de 10°C, le bâtiment devra être refroidi. De l’eau glacée est produite et circule dans les pièces à refroidir.

Par ailleurs, au même moment, l’air hygiénique de ventilation doit être préchauffé jusque …16°C… pour éviter des courants d’air froids sur les occupants.

Conclusion : pour transférer la chaleur de l’un vers l’autre, il faut travailler avec des émetteurs de froid à la plus haute température possible. Par exemple, les ventilo-convecteurs travailleront au régime 12°C – 17°C, les plafonds froids travailleront au régime 15°C – 17°C, voire idéalement 17°C – 19°C.

Ainsi l’eau, une fois réchauffée en passant dans le plafond, peut utilement donner sa chaleur vers l’air neuf. Seule, la consommation d’une pompe est encore nécessaire.

Si des locaux internes, des locaux informatiques, … sont demandeurs de froid durant toute l’année, ce principe est encore davantage à mettre en place.

Objectif secondaire : augmenter la température à l’évaporateur de la machine frigorique

Un deuxième objectif est d’exploiter l’énergie frigorifique de telle sorte que la température d’eau glacée soit la plus élevée possible à l’évaporateur. En moyenne, chaque degré gagné à l’évaporateur augmente de 3 % le rendement de la machine frigorifique.


Principes hydrauliques de base

Exploiter l’énergie frigorifique en fonction de la température

Le bâtiment admet des besoins d’eau froide à des températures différentes.

La batterie froide du caisson de traitement d’air sera généralement alimentée à 6°C :

  • parce que l’on voudrait déshumidifier l’air en été,
  • pour limiter le nombre de rang et donc la perte de charge sur l’air à l’échangeur.

Par contre, les unités terminales (ventilo-convecteurs, plafonds froids, …) ne devraient pas déshumidifier l’air, et ont tout avantage à travailler à haute température pour favoriser la récupération de chaleur.

Exemple.

Soit le réseau alimentant la batterie de froid du caisson de préparation de l’air neuf (débit = 50) et le réseau d’eau glacée (débit = 100).

Si les deux réseaux sont au régime 7°C – 12°C, la température moyenne à l’évaporateur est de 9,5°C.

Si le réseau d’eau glacée passe au régime 12°C – 17°C, la température moyenne à l’évaporateur passe à 10,75°C, soit une hausse de 1,25°C, ce qui génère une amélioration de 3% du rendement de la machine frigorifique.

Cet impact est faible, mais il aura lieu durant toute la vie de l’installation, et il se cumulera aux gains suite à la température des tuyauteries plus élevée et à la consommation de latente plus faible également.

Disposer les échangeurs frigorifiques en série et préférer le couplage en injection (ou en dérivation)

Pour augmenter la température à l’évaporateur, on peut penser à deux solutions :

  • Freiner le débit à l’évaporateur : ce n’est possible que dans une certaine limite car il faut irriguer en permanence la machine frigorifique avec un débit minimal. À défaut de débit suffisant à l’évaporateur, la machine se mettra en sécurité.
  • Placer les équipements en série en fonction de leur température de travail : l’alimentation des unités terminales sera greffée en série, après la batterie froide du caisson de traitement d’air.

Exemple de récupération de chaleur sur plafonds froids

Lorsque les plafonds fonctionnent en mi-saison et que l’air extérieur est suffisamment froid, la machine frigorifique est arrêtée et l’eau des plafonds est refroidie naturellement par l’air extérieur, en utilisant la batterie froide comme batterie de préchauffage de l’air neuf.

Fonctionnement estival normal :

Fonctionnement en récupération :

> Avantages : pas de pertes de charges supplémentaires (pas de batterie de récupération supplémentaire) et bénéfice d’une grosse batterie pour la récupération puisque c’est la batterie froide.
> Inconvénients : il y a nécessité de préchauffe anti-gel (donc perte d’intérêt pour les très basses températures) et régulation difficile si les puissances en jeu ne sont pas du même ordre (si la puissance de refroidissement de l’air neuf est trop faible par rapport aux besoins des plafonds, le groupe s’enclenche et la récupération est perdue). Il faut en outre rester dans les limites de débit de la machine frigorifique, puisqu’avec un tel schéma, le débit irrigant l’évaporateur est réduit (on travaille avec une différence de température nettement plus importante au niveau de l’évaporateur).

Ce schéma convient bien lorsqu’une préparation d’air neuf importante est envisagée (salles de conférences, salles de réunions, …).

Concevoir

Conclusions : Cet exemple montre la nécessité d’une analyse fine des besoins thermiques du bâtiment dès le début du projet. Pour parcourir un  : exemple de ce type d’analyse.