Liaison froide [Froid alimentaire]

Liaison froide [Froid alimentaire]

En liaison froide, les plats sont préparés en cuisine centrale. Après cuisson, les denrées subissent une réfrigération rapide avant d’être stockées à basse température. Suivant la durée de conservation recherchée (quelques jours ou quelques mois), on procède à une liaison froide positive ou une liaison froide négative.


Liaison froide positive

Les plats se conservent au maximum pendant 6 jours*.

  • Après confection, les plats sont conditionnés en rations individuelles ou en plats collectifs, dans des barquettes fermées par thermosoudage.
  • Une cellule de refroidissement rapide abaisse la température au cœur des aliments de +65°C à +10°C en moins de 2 heures (y compris la durée de manutention).
  • Les barquettes sont placées dans une armoire ou chambre de stockage à une température oscillant entre 0 et +3°C.
  • Le transport à destination des restaurants satellites s’effectue en véhicules réfrigérants (+3°C)  ou isothermes.
  • Sur chaque site, les produits sont entreposés en armoire réfrigérée (+3°C).
  • Avant consommation, ils subissent un réchauffement rapide à au moins 65°C à cœur, en moins d’une heure.

* : plus précisément, les plats se conservent :

  • 3 jours, en règle générale.
  • 5 jours pour certains produits.
  • 1 jour pour certains produits tels que les crevettes.

Pour en savoir plus, voir « HACCP pour PME – Gemploux ».


Liaison froide négative

Elle est aussi appelée liaison surgelée.
Les plats se conservent pendant plusieurs mois.

  • Après confection, les plats sont conditionnés en rations individuelles ou en plats collectifs, dans des barquettes fermées par thermosoudage.
  • Une cellule de refroidissement rapide abaisse la température au cœur des aliments de +65°C à +10°C en moins de 2 heures (y compris la durée de manutention).
  • Les plats passent dans un tunnel de refroidissement rapide qui porte les températures des aliments de +10°C à -18°C en moins de 3 heures après la fin de la cuisson.
  • Le transport à destination des restaurants satellites s’effectue en véhicules réfrigérants (-18°C).
  • Sur chaque site, les produits sont stockés à -18°C.
  • Avant consommation, ils subissent un réchauffement rapide à au moins 65°C, en moins d’une heure.

Remarque : plutôt que de passer dans une cellule de refroidissement rapide puis un tunnel de refroidissement, les aliments peuvent aussi simplement passer dans une cellule de congélation rapide.


Avantages

C’est un mode de préparation très hygiénique. Les qualités nutritives sont conservées.

La fabrication et la consommation peuvent être dissociées dans le temps et dans l’espace. Ce qui permet une production en continu et donc une meilleure répartition des tâches sur la journée et sur la semaine de travail.

Elle permet d’ajuster les quantités préparées à celles commandées et limite donc les pertes.

Elle augmente le choix des consommateurs.

Elle permet le regroupement des achats (incidence sur les prix)


Inconvénients

L’investissement en équipement est élevé (environ 30 % supérieur à celui nécessaire à une liaison chaude). On ne peut pas tout servir. On ne peut pas servir de frites par exemple.

Bilan énergétique d’un meuble fermé vertical négatif

Bilan énergétique d'un meuble fermé vertical négatif

Calculs

Pour se rendre compte des énergies mises en jeu, les deux exemples ci-dessous prennent des cas concrets de meubles frigorifiques couramment rencontrés sur le marché.

Hypothèses générales

Pour déterminer le bilan énergétique, il est nécessaire comme pour le meuble positif vertical de poser des hypothèses semblables à celles qui sont utilisées dans les essais pour la certification ouverture d'une nouvelle fenêtre ! EUROVENT :

  • Les conditions d’ambiance externes sont de la classe 3 (température Tambiance = 25 °C, Humidité HRa = 60 %).
  • L’enthalpie hambiance = 58 kJ/kg dans les conditions standards retenues par EUROVENT (soit à une température ambiante de 25 °C et 60 % d’humidité relative).

Caractéristiques d’un meuble négatif

On retrouve souvent en application négative des meubles verticaux dont les caractéristiques sont les suivantes :

Schéma principe meuble négatif.
  • température de conservation = – 18°C;
  • nombre de dégivrages journaliers nbre_dégivr = 2;
  • temps de dégivrage tdégivr = 0,5 heure;
  • longueur =  2,34 m;
  • hauteur = 2,3 m;
  • Surfacepénétrative = 15 m²;
  • Surfaceporte_vitrée = 4,3 m²;
  • Kmoyen_paroi = 0,6 [W/m².K] pour un meuble vertical avec de l’ordre de 6 cm d’isolant;
  • Kmoyen_porte_vitrée = 3 [W/m².K] pour un double vitrage classique;
  • nombre de portes Nporte = 3.

Calculs

Pour évaluer le coefficient de conductivité thermique d’une paroi
  • Les conditions d’ambiance internes sont liées à la classe de température des paquets « test », soit L1 pour les meubles frigorifiques négatifs (la température des paquets les plus chaud est de -15°C et celle des paquets les plus froid de -18°C).
  • L’enthalpie hinterne = -15 kJ/kg dans les conditions standards retenues par EUROVENT.
  • La puissance électrique des ventilateurs Pvent =  150  W.
  • la puissance électrique de l’éclairage Pécl =  288  W (soit 2 x 4 tubes de 36 W);
  • La puissance du cordon chauffant Pcordon_chaud = 60 W.
  • La puissance de dégivrage Pdégivrage = 6 400 W.
  • Nombre d’ouverture des portes Nouverture = 10 ouvertures/h.porte.
  • Temps ouverture des portes touverture = 10 s/porte.
  • Le volume libre (entre les denrées et les portes) Vlibre_meuble = 0,8 m³.

Énergie de jour

L’énergie de jour est principalement due à la pénétration au travers des parois (isolant et vitrage des portes), à l’ouverture des portes et au dégivrage.

Qjour  = Σ Pi apports_jour x tijour [Wh/jour]
Apports de chaleur Calculs Qjour[Wh/jour]
Pénétration paroi Qpen_paroi  = K moyen_paroi x Sparoi x (Tambiance – Tinterne) x tjour

= 0,6 x 15 x (25 – (-18)) x 10

3 870
Pénétration vitrage Qpen_vitrage  = Kmoyen_porte_vitrée x Sparoi x (Tambiance – Tinterne) x 

(tjour – touverture_porte)

= 3  x 4,3 x (25 – (-18)) x (10 – (3 x 10 x 10 / 3 600))

5 498
Ouverture des portes Nporte x Nouverture  x Vlibre_meuble x Cair  x 

(Tambiance – Tinterne) / 3600

= 3 x 10 x  0,8 x 2 x (25 – (-18) x 10 / 3,6

5 733
Ventilation Qvent  = (Pvent + Pcordon_chaud) x tjour

= (150 + 60) x 10

2 100
Éclairage Qéclair  = Péclair  x tjour

= 288 x 10

2 880
Dégivrage Qdég  = Pdég  x tdég

= 6 400 x 0.5 x 2

6 400
Qjour 26 481

 

Energie de nuit

La perte d’énergie de nuit continue par les parois principalement et les vitrages. L’éclairage est éteint et le ventilateur continue de brasser l’air dans le meuble fermé.

Qnuit  = Σ Pi apports_nuit x tinuit [Wh/jour]
Apports de chaleur Calculs Puissance absorbée par le meuble frigorifique [Wh/jour]
Pénétration paroi Qpen_paroi  = K moyen_paroi x Sparoi x (Tambiance – Tinterne) x tnuit

= 0,6 x 15 x (25 – (-18)) x 14

5 418
Pénétration vitrage Qpen_vitrage  = Kmoyen_porte_vitrée x Sparoi x (Tambiance – Tinterne)

 x tnuit

= 3  x 4.3 x (25 – (-18)) x 14

7 766
Ouverture des portes
Ventilation Qvent  = (Pvent + Pcordon_chaud) x tnuit

= (150 + 60) x 14

2 940
Eclairage

Qnuit

16 124

Bilan énergétique

L’énergie frigorifique journalière est l’énergie froide consommée par l’évaporateur du meuble ouvert.

Qtotal = QjourQnuit [Wh/jour]
Apports de chaleur Energie de jour (10 heures/jour) Energie de nuit (14 heures/jour) Energie total journalière
Pénétration paroi 3 870 5 418 9 288
Pénétration vitrage 5 498 7 766 13 264
Ouverture des portes 5 733 0 5 733
Ventilation/cordon chaud 2 100 2 940 5 040
Eclairage 2 880 0 2 880
Dégivrage 6 400 0 6 400
Total 42 605
Total/m² d’ouverture de portes 42 605/(4.3 x 1000) = 9,9 [kWh/m².jour]

Puissance frigorifique de l’évaporateur

Vu la présence d’un système de dégivrage électrique (en négatif, le dégivrage naturel ne suffit pas), la détermination de la puissance frigorifique du meuble doit s’effectuer en partant de l’énergie journalière. Soit :

P0 = (Qtotal)  / (24 – nombredégivrage x tempsdégivrage)

P0 = 42 605  / (24 – 2 x 0.5)

P0 = 1 852 [W]

Puissance frigorifique spécifique

La puissance frigorifique spécifique ou couramment connue sous le nom de puissance par mètre linéaire de meuble frigorifique est de :

Pml = P 0 / longueur du meuble

Pml = 1 852  / 2,3

Pml = 805  [W/ml]

Bilan énergétique d’un meuble ouvert horizontal négatif

Schéma caractéristiques meuble négatif.

Définitions

Bilan thermiques

Les bilans thermiques instantanés de jour et de nuit sont différents. Ils s’expriment par la somme des déperditions tant internes qu’externes selon la période de la journée, à savoir :

Bilan thermique instantané de jour Pjour >=

Σ P apports_jour = P pen + Pind_jour + Pray_jour + Pecl + Pvent [W]

Bilan thermique instantané de nuit Pnuit =

Σ P apports_nuit = Ppen + Pouv_nuit + Pray_nuit  + Pvent [W]

  • Ppen : apport par pénétration (déperditions négatives) au travers des parois du meuble [W].
  • Pind_jour : apport par induction (mélange de l’air de la zone de vente et de l’air du meuble) [W].
  • Pray_jour : apport par rayonnement mutuel des parois chaudes extérieures au meuble et les parois froides internes du meuble principalement par les ouvertures [W].
  • Pecl : apport des éclairages internes au meuble [W].
  • Pvent : apport des moteurs de ventilation placés dans le flux d’air froid [W].
  • Pouv_nuit : apport par l’ouverture du meuble. S’il n’y a pas de rideau de nuit ou des couvercles de couverture, les apports sont par induction. Par contre si le rideau de nuit est présent, ce sont plutôt des apports par pénétration au travers de la protection qui doivent être considérés.

Bilan énergétique

Le bilan énergétique journalier représente l’énergie nécessaire à l’évaporateur du meuble frigorifique pour vaincre les apports internes et externes. Il s’écrit de la manière suivant :

Bilan énergétique

 Q = Pjour x t jour + Pnuit x tnuit + Pdégivrage x nbre_dégivr x tdégivr[kWh/jour]

avec :

  • nbre_dégivr = nombre de dégivrage par jour;
  • tdégivr = temps de dégivrage.

Calculs

Pour se rendre compte des énergies mises en jeu, les deux exemples ci-dessous prennent des cas concrets de meubles frigorifiques couramment rencontrés sur le marché.

Hypothèses générales

Pour déterminer le bilan énergétique, il est nécessaire comme pour le meuble positif vertical de poser des hypothèses semblables à celles qui sont utilisées dans les essais pour la certification ouverture d'une nouvelle fenêtre ! EUROVENT :

  • Les conditions d’ambiance externes sont de la classe 3 (température Tambiance = 25 °C, Humidité HRa = 60 %).
  • La température des parois de la zone de vente Tparoi_vente est de l’ordre de 30 °C.
  • L’enthalpie hambiance = 58 kJ/kg dans les conditions standards retenues par EUROVENT (soit à une température ambiante de 25 °C et 60 % d’humidité relative).
  • Le facteur d’émissivité entre les surfaces du plafond et du meuble frigorifique φ1 = 0,8; ce qui correspond à des valeurs d’émissivité de corps noirs des parois de la surface de vente et des parois du meuble de respectivement εp et εi de l’ordre de 0.9 (1 correspond à un corps noir parfait).
  • Le facteur d’angle sous lequel les deux parois se voient φ2 = 1 pour un meuble horizontal.

Caractéristiques d’un meuble négatif

On retrouve souvent en application négative des meubles horizontaux à rideau d’air dont les caractéristiques sont les suivantes :

Schéma caractéristiques meuble négatif.
  • température de conservation = – 18°C.
  • nombre de dégivrage journalier nbre_dégivr = 2.
  • temps de dégivrage tdégivr = 0,5 heure.
  • longueur =  7,5 m.
  • largeur = 1,1 m.
  • Surfacepénétrative = 24.6 m².
  • Surfacerideau_d’air = 8,25 m².
  • Débitrideau_d’air = 0,3 kg/s.
  • taux d’induction X = 0.06.
  • Kmoyen_paroi = 0,4 [W/m².K] pour un meuble horizontal avec de l’ordre de 10 cm d’isolant.
  • Kmoyen_rideau_nuit = 2,5 [W/m².K] pour une toile classique de protection d’ouverture.

Calculs

Pour évaluer le coefficient de conductivité thermique d’une paroi 
  • Les conditions d’ambiance internes sont liées à la classe de température des paquets « test » soit L1 pour les meubles frigorifiques négatifs (température du paquet le plus chaud est de -15°C et celle du paquet le plus froid de -18°C).
  • L’enthalpie hinterne = -15 kJ/kg dans les conditions standards retenues par EUROVENT.
  • Le coefficient d’échange équivalent entre deux parois considérées comme corps noirs et orthogonales hro = 4,9 W/m²K.
  • La puissance électrique des ventilateurs Pvent =  240  W.
  • La puissance électrique de l’éclairage Pécl =  0 W.
  • La puissance du cordon chauffant Pcordon_chaud = 200 W.
  • La puissance de dégivrage Pdégivrage = 9 600 W.

Apports de jour

Les apports de jour sont principalement dus au rayonnement et à l’induction. On remarque que les pertes par radiation sont importantes du fait que l’écart des températures des parois qui se font vis-à-vis (parallèles) est plus grand (30 – (-18)) [°C] que pour un meuble frigorifique positif.

Pjour = Ppen + Pind_jour + Pray_jour + Pvent  Pcord_chauf + PEclair [W]
Apports de chaleur Calculs Puissance absorbée par le meuble frigorifique [W]
Pénétration

Ppen  = K moyen_paroi x Sparoi x (Tambiance – Tinterne)

= 0,4 x 24,6 x (25 – (-18))

423
Induction

Pind_jour  = Xrideau_air x mrideau_air x (hambiance – hinterne) x

1000

= 0,06 x 0,3 x (58 – (-15)) x 1 000

1 314
Rayonnement

Pray_jour = hro x Souverture (Tparoi_vente – Tinterne) x φ1 x φ2

= 4,9 x  8,25  x (30 – (-18) x 0,8 x 1

1 552
Ventilation Pvent  = Pvent + Pcordon_chaud 440
Éclairage PEclair  = PEclair 0
Pjour= Σ Papports_jour 3 729

Apports de nuit

Les apports de nuit continuent par les parois principalement, y compris par le couvercle ou le rideau de nuit placé au dessus de l’ouverture du meuble. Globalement le coefficient de pénétration est plus faible que pour le meuble vertical positif sachant que pour une configuration d’une paroi horizontale, à l’extérieur le chaud monte et à l’intérieur le froid descend; l’échange y est donc réduit. Tout comme pour la cas du meuble vertical, les apports par rayonnement, dans ce cas-ci aussi sont inclus dans le poste induction.

Pnuit = Ppen + Pind_nuit + Pray_nuit + Pvent  [W]
Apports de chaleur Calculs Puissance absorbée par le meuble frigorifique [W]
Pénétration

Ppen  = K moyen_paroi x Sparoi x (Tambiance – Tinterne)

= 0,4 x 24,6 x (25 – (-18))

423
Ouverture

Pouv_nuit  = K moyen_rideau_nuit x Srideau_nuit x (Tambiance – Tinterne)

= 2,5 x 8.25 x (25 – (-18))

887
Rayonnement Pray_nuit = hro x Souverture (Tparoi_vente – Tinterne) x φ1 x φ2 0

(intégré dans les apports par induction)

Ventilation Pvent  = Pvent + Pcordon_chauffant 440
Eclairage QEclair  = PEclair 0

Pnuit= Σ Papports_nuit

1 750

Bilan énergétique

L’énergie frigorifique journalière est l’énergie de froid consommée par l’évaporateur du meuble ouvert.

Q = Pjour x t jour + Pnuit x tnuit + Pdégivrage x nbre_dégivr x tdégivr [kWh/jour]
Apports de chaleur Énergie de jour (10 heures/jour) Energie de nuit (14) heures/jour) Energie total journalière
Pénétration 4,2 5,9 + 12,4 10,1
Induction 13,1 0 25,6
Rayonnement 15,5 0 15,5
Ventilation/ cordon chaud 4,4 6,1 10,5
Dégivrage 9,6 0 9,6
Total 71,4
Total/m² 71,4/8,25 = 8,6 kWh/m².jour]

Pour ce cas de figure le bilan énergétique est repris ci-dessous :

Meuble frigorifique horizontal ouvert négatif : bilan énergétique journalier.

Puissance frigorifique de l’évaporateur

Vu la présence d’un système de dégivrage électrique (en négatif, le dégivrage naturel ne suffit pas), la détermination de la puissance frigorifique du meuble doit s’effectuer en partant de l’énergie journalière. Soit :

P0 = Q / (24 – nombredégivrage x tempsdégivrage

P0 = 71,4  / (24 – 2 x 0.5)

P0 = 3.1 [kW]

Puissance frigorifique spécifique

La puissance frigorifique spécifique ou couramment connue sous le nom de puissance par mètre linéaire de meuble frigorifique est de :

Pml = P 0 / longueur du meuble

Pml = 3 100  / 7,5

Pml = 413  [W/ml]

Bilan énergétique d’un meuble ouvert vertical positif

Bilan énergétique d'un meuble ouvert vertical positif

Définitions

Bilan thermique

Les bilans thermiques instantanés de jour et de nuit sont différents. Ils s’expriment par la somme des déperditions tant internes que externes selon la période de la journée, à savoir :

Bilan thermique instantané de jour Pjour =

Σ P apports_jour = P pen + Pind_jour + Pray_jour + Pecl + Pvent [W]

Bilan thermique instantané de nuit Pnuit =

Σ P apports_nuit = Ppen + Pouv_nuit + Pray_nuit  + Pvent [W]

  • Ppen : apport par pénétration (déperditions négatives) au travers des parois du meuble [W].
  • Pind_jour : apport par induction (mélange de l’air de la zone de vente et de l’air du meuble) [W].
  • Pray_jour : apport par rayonnement mutuel des parois chaudes extérieures au meuble et les parois froides internes du meuble principalement par les ouvertures [W].
  • Pecl : apport des éclairages internes au meuble [W].
  • Pvent : apport des moteurs de ventilation placés dans le flux d’air froid [W].
  • Pouv_nuit : apport par l’ouverture du meuble. S’il n’y a pas de rideau de nuit, les apports sont par induction. Par contre si le rideau de nuit est présent, ce sont plutôt des apports par pénétration au travers de la protection qui doivent être considérés.

Bilan énergétique

Le bilan énergétique journalier représente l’énergie nécessaire à l’évaporateur du meuble frigorifique pour vaincre les apports internes et externes. Il s’écrit de la manière suivante :

Bilan énergétique

 Q = Pjour x t ouverture + Σ Pnuit x tfermeture + Pdégivrage x nbre_dégivr x tdégivr[kWh/jour]

(si un dégivrage électrique est nécessaire)

avec :

  • Pdégivrage : puissance de dégivrage.
  • nbre_dégivr : nombre de dégivrages par jour.
  • tdégivr : temps de dégivrage [h];
  • touverture : période d’ouverture du magasin [h].
  • tfermeture : période de fermeture du magasin [h].

Calculs

Pour se rendre compte des énergies mises en jeu, les deux exemples ci-dessous prennent des cas concrets de meubles frigorifiques couramment rencontrés sur le marché.

Hypothèses générales

Pour déterminer le bilan énergétique, il est nécessaire de poser des hypothèses de départ semblables à celles qui sont utilisées dans les essais pour la certification ouverture d'une nouvelle fenêtre ! EUROVENT :

  • Les conditions d’ambiance externes sont de la classe 3 (température Tambiance = 25 °C, Humidité HRa = 60 %).
  • La température des parois de la zone de vente Tparoi_vente est de l’ordre de 30 °C.
  • L’enthalpie hambiance = 58 kJ/kg dans les conditions standards retenues par EUROVENT (soit à une température ambiante de 25 °C et 60 % d’humidité relative).
  • Le facteur d’émissivité entre les surfaces du plafond et du meuble frigorifique φ1 = 0,8; ce qui correspond à des valeurs d’émissivité de corps noirs des parois de la surface de vente et des parois du meuble de respectivement εp et εi de l’ordre de 0.9 (1 correspond à un corps noir parfait).
  • Le facteur d’angle sous lequel les deux parois se voient φ2 = 0,65 pour un meuble vertical.

Caractéristiques d’un meuble vertical positif

On retrouve souvent en application positive des meubles verticaux à rideau d’air dont les caractéristiques sont les suivantes :

Schéma de principe meuble ouvert vertical positif.
  • température de conservation = 2°C.
  • nombre de dégivrage journalier nbre_dégivr = 2.
  • temps de dégivrage tdégivr = 0.67 heure.
  • longueur =  2,5 m.
  • hauteur = 2 m.
  • Surfacepénétrative = 10 m².
  • Surfacerideau_d’air = 4,25 m².
  • Débitrideau_d’air = 0,3 kg/s.
  • taux d’induction X = 0.15.
  • Kmoyen_paroi = 0,6 [W/m².K] pour un meuble vertical avec de l’ordre de 6 cm d’isolant.
  • Kmoyen_rideau_nuit = 6 [W/m².K] pour une toile classique de protection d’ouverture.

Calculs

Pour évaluer le coefficient de conductivité thermique d’une paroi
  • Les conditions d’ambiance internes sont liées à la classe de température des paquets test, soit H2 pour les meubles frigorifiques positifs (température du paquet le plus chaud = 10°C et température du paquet le plus froid =-1°C.
  • L’enthalpie hinterne = 12 kJ/kg dans les conditions standards retenues par EUROVENT.
  • Le coefficient d’échange équivalent entre deux parois considérées comme corps noirs et orthogonales hro = 5,2 W/m²K.
  • La puissance électrique des ventilateurs Pvent =  150  W et la puissance du cordon chauffant est de l’ordre de 60 W.
  • La puissance électrique de l’éclairage Pécl =  288  W (soit 2 x 4 tubes de 36 W).

Apports de jour

Les apports de jour, en principe, interviennent tout au long du fonctionnement du meuble frigorifique pendant la période d’ouverture du magasin. Les apports par induction conditionnent énormément le bilan frigorifique sachant qu’une grande partie de la puissance frigorifique part dans l’ambiance au niveau du rideau d’air.

Pjour = Ppen + Pind_jour + Pray_jour + Pvent  Pcord_chauf + PEclair [W]
Apports de chaleur Calculs Puissance absorbée par le meuble frigorifique [W]
Pénétration

Ppen  = K moyen_paroi x Sparoi x (Tambiance – Tinterne)

= 0,6 x 10 x (25 – 2)

138
Induction

Pind_jour  = Xrideau_air x mrideau_air x (hambiance – hinterne) x

1000

= 0,15 x 0,3 x (58 – 12) x 1 000

2070
Rayonnement

Pray_jour = hro x Souverture (Tparoi_vente – Tinterne) x φ1 x φ2

= 5,2 x  4,25 x (30 – 2) x 0,8 x 0,65

321
Ventilation Pvent  = Pvent + Pcordon_chauffant 210
Éclairage PEclair  = PEclair 288
Pjour= Σ P apports_jour 3 027

Apports de nuit

En général, si le commerce est bien géré, en dehors des heures d’ouverture, l’éclairage est éteint et le rideau de nuit (s’il est présent) est baissé. Le bilan thermique se résume à des apports par pénétration et par les déperditions du ventilateur et du cordon chauffant. Les pertes par l’ouverture du meuble sont réduites par la présence du rideau de nuit. En simplifiant, ces pertes se font par pénétration au travers d’une toile (paroi verticale) avec une convection normale sur sa face externe et une convection forcée sur sa face interne. À noter aussi que les pertes par rayonnement sont comprises dans le poste induction de nuit.

Pnuit = Ppen + Pouv_nuit + Pray_nuit + Pvent  [W]
Apports de chaleur Calculs Puissance absorbée par le meuble frigorifique [W]
Pénétration

Ppen  = K moyen_paroi x Sparoi x (Tambiance – Tinterne)

= 0,6 x 10 x (25 – 2)

138
Ouverture

Pind_nuit  = Kmoyen_rideau_nuit x Srideau_nuit x (Tambiance – Tinterne)

= 6 x 4.25 x (25 – 2)

586
Rayonnement Pray_nuit = hro x Souverture (Tparoi_vente – Tinterne) x φ1 x φ2 0

(intégré dans les apports par induction)

Ventilation Pvent  = Pvent + Pcordon_chauffant 210
Eclairage PEclair  = PEclair 0
Pnuit= Σ Papports_nuit 874

Puissance frigorifique de l’évaporateur

Dans ce cas, la puissance frigorifique nécessaire pour que l’évaporateur puisse contrecarrer les apports tant interne qu’externe est de :

P0 = 3 027 [W]

Puissance frigorifique spécifique

La puissance frigorifique spécifique ou couramment connue sous le nom de puissance par mètre linéaire de meuble frigorifique est de :

Pml = P 0 / longueur du meuble

Pml = 3 027  / 2,5

Pml = 1 210 [W/ml]

Bilan énergétique

L’énergie frigorifique journalière est l’énergie froid consommée par l’évaporateur du meuble ouvert.

Q = Pjour x t jour + Pnuit x tnuit [kWh/jour]
Apports de chaleur Énergie de jour (10 heures/jour) Energie de nuit (14 heures/jour) Energie total journalière
Pénétration 1,4 1,9 + 8,2 3,3
Induction 20,7 0 28,9
Rayonnement 3,2 0 3,2
Ventilation/cordon chaud 2,1 2,9 5,0
Eclairage 2,9 0 2,9
Total 43,5
Total/m² 43,5/4,25 = 10,23 [kWh/m².jour]

Pour ce cas de figure le bilan énergétique est repris ci-dessous :

Meuble frigorifique vertical : bilan énergétique journalier.

Masse d’eau piégée par un évaporateur - EnergiePlus

Masse d’eau piégée par un évaporateur

Masse d'eau piégée par un évaporateur

La quantité de condensats des meubles frigorifiques

Il existe une énergie non négligeable de refroidissement qui actuellement n’est pas récupérée et envoyée directement à l’égout.

Il y a t-il un intérêt à la récupérer ?


Masse d’eau piégée

Meuble ouvert vertical avec rideau d’air.

Cycle de l’air du meuble ouvert sur le diagramme de l’air humide.

La masse d’eau piégée par les meubles frigorifiques ouverts peut être importante. Ce type de meuble agit en véritable climatiseur et déshumidificateur des ambiances de vente. Dans les « allées froides », par exemple, la température ambiante peut atteindre des valeurs de 16 à 18°C avec des taux d’humidité relative de l’ordre de 30 à 40 %. Si l’humidité ambiante diminue c’est nécessairement qu’elle se retrouve au niveau de l’évaporateur du meuble sous forme de givre, de neige, de glace, …

Eau piégée

La masse d’eau piégée par jour [kg/j] peut se calculer par la relation suivante et en s’appuyant sur le diagramme de l’air humide :

Mgivre = Xinduction x  M1 (xa – xi)  x 24 x 3,6 [kg/j] (1)

où :

  • Xinduction = taux d’induction du rideau d’air (si présent).
  • M1 = le débit d’air du rideau d’air [kg/s].
  • xa = l’humidité absolue dans l’ambiance de la zone de vente [geau / kg air sec].
  • xi =  l’humidité absolue à l’intérieur du meuble [geau / kg air_sec].

par définition le taux d’induction du rideau d’air est la quantité d’air ambiant mélangé au rideau d’air. On a la relation suivante :

Xinduction = Ma / M1

Estimation du taux d’induction

La masse d’eau piégée par jour [kg/j] peut aussi se calculer par la relation suivante lorsque l’on considère que toute l’humidité dans l’air ambiant se condense sur l’évaporateur :

Mgivre = M1 (x1 – x2)  x 24 x 3,6 [kg/j] (2)

où :

  • M1 = le débit d’air du rideau d’air [kg/s].
  • x1 = l’humidité absolue à la sortie des buses de pulsion du rideau d’air [geau / kgair_sec].
  • x2 =  l’humidité absolue à la bouche de reprise du rideau d’air [geau / kg air_sec].

Des relations (1) et (2) on peut en déduire le taux d’induction qui caractérise l’efficacité du rideau d’air :

Xinduction ~ (x2 – x1) / (xa – xi)

où :

  • M1 = le débit d’air du rideau d’air [kg/s].
  • x1 = l’humidité absolue à la sortie des buses de pulsion du rideau d’air [geau / kgair_sec].
  • x2 =  l’humidité absolue à la bouche de reprise du rideau d’air [geau / kg air_sec].

Avec une précision relative, le taux d’induction peut aussi s’estimer par la relation suivante :

Xinduction ~ (t2 – t 1) / (ta – t i)

où :

  • t1 = température à la sortie des buses de pulsion du rideau d’air [°C].
  • t 2 = température à la bouche de reprise du rideau d’air [°C].
  • ta =  température dans l’ambiance de vente [°C].
  • t i = température à l’intérieur du meuble [°C].

Exemple : calcul pour un meuble frigorifique ouvert

Données

Un supermarché est équipé de 150 m de meubles frigorifiques verticaux ouverts (laitier, charcuterie, traiteur, pâtisserie, …) dits linéaires.

Par mètre linéaire on a les données suivantes :

  • taux d’induction Xinduction = 0,15 (valeur courante).
  • débit du rideau d’air par mètre linéaire M1 = 0,15 kg/s.ml.
  • xa = 12 geau / kg air_sec pour une température d’ambiance de 25°C et une humidité relative de 60 %.
  • xi = 3 à 4 geau / kg air_sec pour une température de l’ordre de 4°C au sein du meuble.

Calcul de la masse piégée

Mgivre = Xinduction x M1 (xa – xi) x 24 x 3,6 [kg/j.ml]

où,

  • Mgivre = 0,15 x 0,15 (12 – 4) x 24 x 3,6
  • Mgivre = 15,6 [kg/j.ml]

pour les 150 m de meubles, on a :

Mgivre_total = 15,6 x150 = 2 333 [kg/j]

Calcul d’une valeur du taux d’induction

La détermination du taux d’induction est nécessaire afin d’évaluer l’efficacité du rideau d’air. La formule approchée déterminée ci-dessus est basée sur le relevé des températures :

  • t1 = température à la sortie des buses de pulsion du rideau d’air = 1 [°C].
  • t2 = température à la bouche de reprise du rideau d’air = 5 [°C].
  • ta = température dans l’ambiance de vente = 25 [°C].
  • t i = température à l’intérieur du meuble = 4 [°C].

Xinduction ~ (t2 – t 1) / (ta – t i)

Xinduction ~ (5 -1) / (25 – 4)

Xinduction ~ 0,19

Diminuer le niveau sonore [Froid alimentaire]

Diminuer le niveau sonore [Froid alimentaire]


Plan d’action

Évaluer sa situation

Schéma niveau sonore dans commerce.

Évaluer

Après l’analyse de la situation sur le terrain, la logique à suivre est basée sur le type de bruit.

Repérer le type de bruit

Soit le bruit est aérien

Puisqu’il est produit par l’écoulement de l’air et les turbulences qui y sont liées, on peut envisager de réduire la source du bruit, par exemple en diminuant la vitesse de rotation du ventilateur, en améliorant l’écoulement dans les bouches, dans les coudes,…

À défaut, puisque ce bruit est émis à haute fréquence, il possible de l’absorber  par des matériaux fibreux : silencieux, parois de gaines absorbantes,…

Si ce bruit est transmis entre deux locaux, c’est l’isolation phonique des parois qui les séparent qu’il faut améliorer.

Soit le bruit est solidien (bruit d’impact)

Puisque ce sont les vibrations des équipements qui sont transmises par voie solide, la diminution de vitesse permettra également de réduire les vibrations. Certaines sociétés de maintenance peuvent enregistrer les vibrations émises à l’arbre d’un ventilateur et dire si un balourd serait responsable du bruit en cause.

A défaut, on cherchera à couper toute transmission du bruit par le placement d’un matériau résilient entre l’équipement et son environnement : plots antivibratiles, manchettes souples, plancher flottant,…

Schéma bruit solidien - 01.

Idéalement, c’est la coupure du matériau qui empêchera le mieux la transmission du son.

Schéma bruit solidien - 02.

A défaut, il faudra interrompre le matériau dur par un matériau plus souple (dit « matériau résilient « ).

Agir à la source du problème

Agir à la source :

  • Placer des supports antivibratiles
  • Limiter le bruit des pompes

Agir à la transmission :

  • Limiter la transmission sonore des tuyauteries

Agir au niveau des locaux :

  • Modifier la disposition des locaux
  • Réaliser le doublage acoustique des parois
  • Renforcer l’isolation acoustique des baies vitrées

Placer des supports antivibratiles

Photo supports antivibratiles.

Pour réduire la propagation des vibrations de certains appareils (compresseurs, ventilateurs,…) à la structure du bâtiment, on insère des supports élastiques antivibratiles.

L’ensemble « équipement-support » constitue un système « masse-ressort », soumis aux lois de la mécanique des vibrations, et disposant dès lors d’une fréquence propre.

Pour dimensionner correctement les plots antivibratiles, il faut connaître :

  • la fréquence excitatrice liée à la vitesse de rotation du moteur,
  • la masse de l’équipement et sa répartition sur la dalle.

Schéma supports antivibratiles - 01.

Schéma supports antivibratiles - 02.

Schéma supports antivibratiles - 03.

Pour une bonne efficacité, la fréquence propre du système antivibratile doit être 3 à 4 fois inférieure à la fréquence excitatrice. Dans certains cas il sera nécessaire d’alourdir la dalle sur laquelle sont fixés les équipements afin de réduire la fréquence propre de vibration. De plus, le fait « d’écraser davantage les ressorts » permet un meilleur amortissement des vibrations.

Exemple.

un ventilateur tournant à une vitesse de rotation de 1 500 tours/minute provoque des vibrations de 25 Hz (puisque rotation de 25 tours/seconde). Les plots devront être calculés sur une fréquence propre de 6 à 8 Hz.

En pratique, on rencontre :

  • des ressorts, utilisés pour toutes les fréquences propres mais surtout lorsqu’ inférieures à 8 Hz,
  • des plots à base de poudre de liège mélangée à un élastomère, pour des fréquences propres supérieures à 8 Hz
  • des plots à base d’élastomères, pour les fréquences propres supérieures à 12 Hz
  • un système de « dalle flottante », c.-à-d. la construction d’un socle de béton sur un matelas de laine minérale ou de mousse plastique souple, pour les fréquences propres moyennes ou aiguës.

Ce dernier système de dalle flottante est assez difficile à réaliser puisqu’ en aucun endroit il ne peut y avoir de contact (raccords de mur, écoulement de sols, tuyauteries, conduits, …). Devant la nécessité d’exercer un contrôle quasi permanent durant les travaux, on préfère parfois la technique des éléments antivibratiles…! Ou alors un contrôle de la qualité acoustique de la dalle est imposé à la fin des travaux.

Exemples de ponts phoniques par le tuyau d’écoulement et la plinthe.

En général, il sera fait appel à un spécialiste de cette question pour le dimensionnement correct des plots.


Limiter le bruit des pompes

Origines du bruit des pompes

  • Les bruits d’origine hydraulique : c’est la source de bruit la plus importante. On remarque l’effet de sirène qui est dû à l’interaction entre les aubes et les parties fixes. Ce type de bruit est le plus gênant dans les bâtiments, car il se produit dans une zone de fréquences audibles.Lorsque la pression disponible à l’aspiration de la roue est trop faible, un bruit de cavitation apparaît. Il faut dans ce cas veiller à faire fonctionner la pompe avec une pression à l’aspiration suffisante. Lorsque de l’air s’introduit dans le fluide, il se crée des turbulences et des écoulements bruyants au niveau de la pompe. Il faudra veiller à purger correctement le circuit.
  • Les bruits d’origine électromagnétique : ces bruits proviennent du moteur qui transmet des vibrations aux équipements et structures environnantes.
  • Les bruits d’origine mécanique : ces bruits apparaissent au niveau des garnitures mécaniques et des paliers de la pompe, on les appelle balourds. Ils proviennent généralement d’une erreur de montage, d’équilibrage ou d’une erreur de conception de la pompe.
  • Les bruits d’origine aéraulique : ces bruits proviennent du passage de l’air, nécessaire au refroidissement du moteur, dans le ventilateur de la pompe. Il peut s’agir dans certains cas de la source de bruit la plus importante d’une pompe. Le fabricant de pompes doit correctement calculer les grilles d’aspiration et de refoulement de l’air qui peuvent être des obstacles au bon écoulement de l’air et donc générer du bruit.

Transmission du bruit

Une pompe transmet du bruit par trois voies différentes :

  • Par voie aérienne : le moteur de la pompe émet une diffusion acoustique qui se propage dans le local technique puis dans locaux occupés adjacents.
  • Par voie hydraulique : la pompe génère des variations de pression dans le fluide qui sont transmises par les canalisations et diffusent sur les structures environnantes.
  • Par voie solide : les vibrations émises par la pompe se transmettent par contact direct aux différentes structures.

Le niveau de bruit des pompes

Le niveau de puissance acoustique d’une pompe dépend principalement de sa conception, de ses conditions de fonctionnement (débit et pression) et de sa puissance électrique. Aucune norme ne spécifie les caractéristiques acoustiques des pompes.
Il est possible d’effectuer un calcul approximatif du niveau de pression acoustique à 1 m :

Lp = 48 + 10 log Pe [dB (A)]

où,

  • PE est la puissance électrique du moteur [W]

Mise en œuvre

  • Il faut limiter la vitesse du fluide dans la pompe à 1,5 m/s.
  • Il faut soigner la fixation de la pompe en mettant en œuvre un dispositif d’assise souple : placer la pompe sur une petite dalle flottante de 15 cm d’épaisseur, reposant sur des supports élastiques. La dalle flottante aura à peu près trois fois le poids de l’équipement.
  • Il faut équiper l’aspiration et le refoulement des pompes de manchons antivibratoires.

Manchon antivibratoire.

  • Il est également important d’entretenir les pompes, de lubrifier les paliers. L’usure de certaines pièces peut conduire à des vibrations génératrices de bruits.

Limiter la transmission sonore des tuyauteries

Empêcher la transmission des bruits de vibration

Il est utile de réaliser des raccords souples entre les conduits (fluides, gaz, électricité…) et la machine qui vibre, afin d’éviter non seulement la transmission des vibrations, mais également le risque de rupture.

Schéma transmission des bruits de vibration.

Pour diminuer la transmission des vibrations des tuyauteries aux parois, on peut introduire des coquilles isophoniques entre la tuyauterie et le collier de fixation. Il est également possible d’utiliser des colliers avec caoutchouc isophonique mais ceux-ci sont moins efficaces que les coquilles isophoniques.

Schéma colliers avec caoutchouc.

Exemple : pour la fixation des tuyauteries d’eau glacée aux parois du bâtiment, il est de bonne pratique de réaliser les 3 premières fixations après la pompe avec des fixations anti-vibratoires.

Autre exemple : lors du placement d’un split-system, un soin tout particulier doit donc être apporté à la sélection de l’emplacement du condenseur et à son mode de fixation : une coupure élastique doit être prévue entre l’appareil et le mur de fixation afin d’empêcher de mettre en vibration la structure du bâtiment (l’appareil doit bouger lorsqu’on le secoue !). De même, les tuyauteries doivent être raccordées via des raccords flexibles.

Il est également possible de suspendre élastiquement une tuyauterie à un plafond.

Par contre, il faut éviter de placer des tuyauteries sur des parois légères ou les parois séparant les locaux techniques des locaux occupés.

Limiter les bruits de dilatation

Lorsque la force de dilatation des tuyauteries devient trop importante, des frottements apparaissent entre les conduits et les colliers de support. Ce phénomène de dilatation provoque des claquements bruyants.
Recommandations :

  • Prévoir des points fixes et des compensateurs entre les points fixes.


Compensateur de dilatation.

  • Éviter de bloquer les canalisations à la traversée des parois.

  • En cas de problèmes, desserrer légèrement certains colliers.
  • Éviter les variations brusques de température dans l’installation, par exemple en utilisant des vannes à 3 voies en mélangeuses.
  • Placer des matériaux souples entre les colliers et les tuyauteries, et entre les fourreaux et les tuyauteries.

Diminuer la production de turbulences

Les vitesses admissibles dépendent du tracé et des accessoires utilisés. Si des vitesses élevées peuvent être admises dans les tubes droits, on doit adopter des vitesses plus réduites dans les coudes, les réductions.

Une installation peut créer des turbulences suite au placement même des équipements : tuyauteries à angle droit, vannes placées trop près les unes des autres,…

Schéma diminution de la production de turbulences.

Ce deuxième type de raccordement sera de loin préférable.

La présence de bulles d’air dans les circuits est également génératrice de bruit, il faut doter l’installation de dispositifs comme purgeurs (manuels ou automatiques), pots de dégazage, séparateur d’air tangentiel.


Modifier la disposition des locaux

De par la localisation des fonctions dans un magasin, une grande partie de l’isolement acoustique peut déjà être effective :

  • disposition de locaux tampons entre locaux bruyants et locaux calmes (ex : locaux de stockage),
  • rassemblement des locaux bruyants,

Dans un magasin existant, le déplacement du local technique (local des compresseurs par exemple) est difficilement réalisable, mais certaines réorganisations internes d’activité sont possibles.

Mais plus que tous les bâtiments tertiaires classiques, un magasin vit, des parois se déplacent,… les critères acoustiques peuvent parfois entrer en compte dans le choix de la nouvelle disposition des locaux !


Réaliser le doublage acoustique des parois

Si le son perturbateur est créé par du bruit aérien traversant une paroi, il est possible de doubler celle-ci. On pense tout spécialement aux locaux techniques dont on souhaiterait renforcer l’isolation par rapport au reste du bâtiment.

Si la faute correspond à une insuffisance des éléments de construction, il est possible d’améliorer la situation jusqu’à 10 dB environ, à l’aide d’un panneau rapporté (plafond suspendu constitué de plâtre dépourvu de joint, panneaux de carton-plâtre rapportés devant les parois). Pour que le doublage placé devant le mur puisse faire son effet de cloison double, on privilégiera une fixation indépendante et des joints élastiques. À défaut, une fixation par colle. Au pire une fixation par clous,…

Schéma doublage acoustique des parois.

Exemple.

une paroi de séparation entre un local technique et un magasin était constituée d’un mur en briques modulaires de 17,5 cm enduit sur les deux faces. Son isolement acoustique initial (frein apporté par la paroi au passage du son) était de R = 48 dB. Le doublage au moyen de panneaux de carton-plâtre avec supports en profilés métalliques (pose indépendante du mur) a permis d’améliorer l’isolement jusqu’à 56 dB.


Renforcer l’isolation acoustique des baies vitrées

Si l’objectif est de se protéger d’un bruit extérieur (bruit de condenseur sur une plate-forme, par exemple), une amélioration de la qualité acoustique des baies peut être envisagée. Et le premier regard doit se porter sur l’étanchéité à l’air (davantage que sur la vitre elle-même). En effet, le bruit passe essentiellement par les joints non étanches. C’est ce qui fait la médiocre qualité des fenêtres coulissantes…

Le choix des travaux à réaliser sur les ouvertures d’un magasin dépend du niveau d’isolement acoustique que l’on désire obtenir.

Conservation des fenêtres existantes

Si l’on ne recherche pas un isolement de façade supérieur à 30 dB(A) et s’il n’y a pas d’entrée d’air spécifique en façade, il suffit la plupart du temps de mettre en place des joints d’étanchéité entre les ouvrants et les dormants.

Remplacement des fenêtres

Il existe une valeur seuil d’isolement au-delà de laquelle on doit changer les fenêtres, ce qui induit un surcoût important. Cette valeur seuil dépend de la surface des fenêtres. Elle se situe généralement aux alentours de 33 dB(A).

Une solution couramment adoptée consiste à conserver les anciens dormants en leur appliquant un traitement ou un renforcement éventuel. On pose alors une nouvelle fenêtre souvent en PVC, en fixant les nouveaux dormants sur les anciens, après la pose de joints préformés et, si nécessaire, l’ajout d’un joint en silicone. La nouvelle fenêtre est munie de double vitrage acoustique et d’une entrée d’air insonorisée. Cette technique a cependant l’inconvénient de réduire la surface vitrée. Ainsi, on obtient un isolement acoustique supérieur à 35 dB(A), à condition d’avoir effectué un traitement acoustique des bouches de ventilation et une mise en œuvre correcte.

Toutefois, pour certaines fenêtres particulières, le remplacement est indispensable quel que soit l’objectif d’isolement. Par exemple, pour une fenêtre coulissante, le simple changement des vitrages n’est souvent pas suffisant pour atteindre l’objectif d’isolement acoustique fixé.

D’autre part, pour les portes-fenêtres, les objectifs d’isolement sont plus difficiles à atteindre, même en cas de remplacement. En effet, la valeur de l’isolement acoustique d’une porte-fenêtre est en général inférieure à celle d’une fenêtre. On observe assez fréquemment un écart moyen de 2 dB(A). En effet, la surface de jointures, et donc de fuites possibles, est plus importante dans le cas d’une porte-fenêtre.

Photo baie vitrée.

Obtention d’un isolement de 40 dB(A) avec une seule fenêtre

L’obtention de cette valeur d’isolement nécessite toujours le remplacement des fenêtres par d’autres de très bonne qualité acoustique.

Le vitrage doit avoir un indice de réduction de bruit de l’ordre de 40 dB(A). Ce vitrage est obtenu à l’aide d’un feuilleté acoustique spécial. La menuiserie de la fenêtre doit comporter une triple barrière d’étanchéité entre l’extérieur et l’intérieur du logement pour les fenêtres en PVC. Un double rang de joints de bonne qualité doit être posé entre l’ouvrant et le dormant.

Pour une pièce aux dimensions standard, c’est-à-dire dont la surface est d’environ 25 m² , avec une fenêtre de 1,5 à 2 m² une isolation acoustique de 40 dB(A) est délicat à obtenir s’il y a une entrée d’air. Quelques précautions doivent alors être prises :

  • Les entrées d’air choisies doivent être insonorisées. La valeur de leur coefficient d’affaiblissement acoustique doit être la plus grande possible. Toutefois, il est difficile du trouver sur le marché des entrées d’air de faible encombrement, pouvant être placées dans la menuiserie, ayant une valeur du coefficient d’affaiblissement acoustique supérieure à 42 dB(A). La zone de fonctionnement de la bouche d’entrée d’air choisie doit permettre d’atteindre le débit nominal. En effet, certains systèmes intégrés dans une fenêtre ont une surface d’entrée d’air trop faible pour obtenir le débit nominal imposé par les systèmes d’extraction actuels.
  • L’étanchéité entre le gros-œuvre et le dormant doit être de qualité. L’amélioration de l’étanchéité, obtenue par la pose d’un joint mastic de type silicone ou polyuréthane, augmente la valeur de l’isolement acoustique.
  • Il est utile de vérifier et de remettre en état les joints de façade des grands panneaux préfabriqués, surtout s’il y a des entrées d’air parasites.

Pose de double fenêtre

C’est pratiquement la seule solution technique si l’on veut obtenir une isolation acoustique supérieure à 40 dB(A). La pose s’effectue le plus souvent au nu extérieur de la façade, avec ou sans conservation des volets existants. La nouvelle menuiserie est généralement de type vantaux coulissant, en aluminium ou en PVC. Cette solution permet d’atteindre, dans certaines configurations, des isolements proches de 50 dB(A).

Elle est également satisfaisante sur le plan thermique en hiver, mais présente cependant quelques inconvénients :

  • la difficulté de nettoyage, surtout de la face extérieure de la nouvelle fenêtre,
  • les difficultés d’ouverture de la nouvelle fenêtre et d’accès aux persiennes,
  • la nécessité de remplacer les éventuels volets existants, ce qui induit un surcoût important,
  • une certaine diminution de l’éclairage naturel,
  • la difficulté éventuelle d’obtenir les autorisations urbanistiques.

Il faut évidemment éviter la pose d’entrées d’air insonorisées en regard l’une de l’autre pour limiter la création de pont phonique.

Chaîne du froid et énergie, comme l’eau et le feu ?

Chaîne du froid et énergie, comme l'eau et le feu ?

La qualité du froid, la vente, le confort et l’énergie

Quelques chiffres de sensibilisation

Idée des consommations énergétiques des commerces ?

Il nous paraît important de (re)préciser aux commerçants que lorsqu’ils passent le pas-de-porte de leur magasin de détail ou de leur moyenne et grande surface où le froid alimentaire est présent, ils doivent être conscients que les quantités d’énergie mises en jeu pour :

  • conserver les denrées dans les chambres froides;
  • climatiser les ateliers de boucherie par exemple;
  • refroidir tous les types de meubles frigorifiques d’exposition;

sont beaucoup plus importantes que dans les magasins dit « no food ».

ouverture d'une nouvelle fenêtre ! La Région Wallonne publie régulièrement les valeurs des consommations spécifiques par secteur d’activité. Plus particulièrement, les commerces ont des niveaux de consommation énergétique spécifique suivant le type :

Type de commerce Surface

[m²]

Consommation spécifique en électricité

[kWh/m².an]

Consommation spécifique en combustible

[kWh/m².an]

Consommation spécifique totale

[kWh/m².an]

Commerce non alimentaire 400 à 2 500 113 124 237
Commerce non alimentaire > 2 500 59 105 164
Supermarché 680 258 938
Hypermarché 361 162 523

ouverture d'une nouvelle fenêtre ! l’ADEME en France établit des répartitions des consommations énergétiques par usage suivant les différents types de commerce :

  

Répartition des consommations pour l’ensemble du parc en France (source CEREN).

Hypermarchés [700 kWh/m².an] (source EDF).

  

Supermarchés [1 000 kWh/m².an] (source EDF).

Grandes surfaces non alimentaires [200 KWh/m².an] (source EDF).

Comparatif de vos consommations énergétiques chez vous et celle de votre commerce

Le comparatif des consommations énergétique présenté ci-dessous n’a pas pour ambition de pointer les « mauvais élèves » mais, tout simplement, de montrer quelle empreinte énergétique chacun de nous laisse aux générations futures à titre personnel et au travers des commerces que nous fréquentons tous.

Le coup de poing de cette comparaison réside dans la consommation énergétique d’un supermarché par rapport à la celle d’une maison nouvelle par exemple. En effet, dès que l’on franchit le pas d’un supermarché, on sait que l’on contribue à la multiplication des dépenses énergétiques par plus de 5. À titre indicatif, par rapport à la maison passive, les consommations énergétiques d’un supermarché sont multipliées par plus de 20.

Les quatre éléments conditionnant le froid alimentaire

En froid alimentaire, la cohabitation des quatre impératifs suivants reste toujours un exercice difficile :

  • a qualité du froid (respect des températures et temps de conservation);
  • la vente;
  • le confort du personnel et des consommateurs;
  • et l’énergie;

Pour garder un certain optimisme, à l’image de la Belgique qui reste malgré tout la championne du compromis, il est possible de combiner  :

  • une chaîne alimentaire sans risque pour les consommateurs;
  • un niveau de vente presque inchangé;
  • un confort accru des usagers;
  • une réduction des consommations énergétique.

La qualité du froid alimentaire

Le respect de la qualité du froid alimentaire ne se limite pas à la seule exposition des denrées dans les meubles frigorifiques. Il doit être aussi assuré au niveau :

  • du transfert entre le camion et les chambres de stockage;
  • du stockage;
  • du transfert entre le stockage et les meubles d’exposition;
  • et même des meubles frigorifiques vers le frigo du consommateur. Mais c’est une autre histoire !

La vente

Pour que le commerçant vive, il doit naturellement rendre les denrées attrayantes. Le problème dans le froid alimentaire est que la possibilité de sentir et de toucher les aliments représente une donnée importante au niveau « marketing ». Pour cette raison les meubles de vente frigorifiques sont souvent ouverts aux consommateurs, représentant une difficulté pour :

  • maintenir les températures de conservation;
  • réduire les consommations énergétiques;
  • assurer le confort thermique du personnel et des clients.

Le confort du personnel et des clients

Le confort thermique à proximité des meubles frigorifiques ouverts est difficile à assurer surtout en période estivale où le corps humain subit un choc thermique non négligeable. En effet, non seulement les clients sont peu vêtus, mais de plus, on peut régulièrement enregistrer les températures de l’ordre de 16°C à 1,5 m de hauteur.

L’énergie

Les meubles frigorifiques représentent de plus en plus la majorité de la facture énergétique électrique totale (30 à 50 %) des commerces. Les meubles ouverts se taillent la part du lion, car l’ambiance froide est directement ou indirectement (rideau d’air) mise en contact avec l’ambiance tempérée du reste des zones de vente (no food).

A titre d’exemple, Enertech pour le compte de l’ADEME en France a réalisé ouverture d'une nouvelle fenêtre ! le monitoring électrique complet d’un supermarché de 1 200 m² . Sur base de la consommation électrique annuelle de 255 [kWh/m².an] (bâtiment « full » électrique), la répartition des consommations énergétiques est la suivante :

(Source Enertech).

On observe que 50 % de la consommation énergétique du magasin sert à conserver les denrées.

Évaluer

Pour en savoir plus sur l’évaluation de la qualité de la chaîne du froid alimentaire.
GÉRER LA SENSIBILISATION DES OCCUPANTS

Projet de nouvelle installation de froid alimentaire ?

Projet de nouvelle installation de froid alimentaire ?


La conservation par le froid : objectifs

La réfrigération voire la congélation permet de ralentir les réactions chimiques et enzymatiques, afin de diminuer la multiplication des germes d’altération et surtout de bloquer le développement des bactéries pathogènes.

Les équipements frigorifiques doivent assurer l’hygiène dès l’arrivée des denrées dans les magasins de distribution et durant tout leur cycle de vie depuis les zones de stockage jusqu’à leur distribution.

Températures à garantir

Chambre froide fruits et légumes

4 à 6 °C

Chambre froide viande

2 à 4 °C

Chambre froide poisson

2 à 4 °C

Chambre froide pâtisserie

2 à 4 °C

Chambre froide de jour

2 à 4 °C

Congélateur

– 12 à – 24 °C

Local de stockage des déchets

10 °C

Cave à vin conditionnée

10 à 12 °C/HR 75 %

Local de tranchage

10 °C

Concevoir

Pour en savoir plus sur le choix de l’implantation.

Choix de l’implantation de la zone froide

Photo zone froide - 01.   Photo zone froide - 02.

Photo zone froide - 03.

Une part de l’énergie frigorifique va servir à refroidir (et donc, assécher) l’air des zones tempérées de vente jusqu’à la température de consigne des meubles frigorifiques, de la chambre froide, des ateliers de boucherie, …

Cette part d’énergie peut être élevée sur l’ensemble du bilan frigorifique si l’air ambiant du magasin est chaud et humide.

Ainsi, dans un projet de conception ou de rénovation conséquent, il sera important de respecter une certaine hiérarchisation des priorités :

  • l’implantation des zones « froide » par rapport au contexte externe (l’orientation du bâtiment, présence d’autres bâtiments ou pas , milieu rural ou urbain, ..);
  • l’implantation des zones « froide » par rapport au contexte interne (présence d’apports internes tels que fours, rôtissoires, … à proximité directe des chambres froides, des ateliers de boucherie, des meubles frigorifiques, …);
  • le confinement des zones « froide » par rapport aux zones adjacentes (chambre fermée, chambre semi-fermée, meuble frigorifique ouvert, …).

Schéma implantation zone froide.

Concevoir

Pour en savoir plus sur le choix de l’implantation de la zone de froid.

Choix des meubles frigorifiques

Schéma meuble frigorifique - modèle 01.   Schéma meuble frigorifique - modèle 02.

Schéma meuble frigorifique - modèle 03.   Schéma meuble frigorifique - modèle 04.

À l’heure actuelle, on ne peut plus négliger les aspects environnementaux, énergétiques et financiers tout en sachant que la vente prédominera toujours. Néanmoins les coûts énergétiques devenant importants, on ne peut plus ignorer que les différents aspects du choix des meubles sont désormais intimement liés au chiffre d’affaires réalisé par les commerçants.

Il est donc impératif de prendre en compte le critère de consommation énergétique des meubles et, au sens large du terme, les consommations énergétiques des installations de froid alimentaire.

Critères de choix

Les critères de choix à prendre en compte sont essentiellement liés :

  • à la vente;
  • aux coûts;
  • à l’énergie.

Les critères de choix liés à la vente

Bien évidemment, la toute première fonction d’un meuble frigorifique est de mettre en valeur des denrées afin qu’elles soient vendues. Les principaux critères de choix des meubles frigorifiques par rapport à la motivation de vente sont liés aux types :

  • de denrées vendues (nature des denrées, compatibilités des matériaux du meuble, …);
  • de vente (alimentation générale, spécialisée, …);
  • de magasin (forme, implantation, design, …);
  • de système frigorifique (groupe incorporé ou pas, …);
  • de service (accessibilité avant, arrière, …).

Les critères de choix liés aux coûts

Les principaux coûts dont on devra tenir compte dans un projet seront :
  • l’investissement qui comprend l’achat des meubles frigorifiques proprement dits, les systèmes frigorifiques, l’installation, la réception, … On en déduit un coût global d’investissement annuel comprenant l’investissement lui-même et l’intérêt annuel du capital immobilisé;
  • l’exploitation qui inclut le coût de l’énergie, les entretiens, le loyer annuel par rapport à la surface occupée par les meubles, les montants de police d’assurance couvrant les équipements et la perte des denrées. Sur le même principe que l’investissement, on en déduit un coût d’exploitation annuel.

Les critères de choix liés à l’énergie

Lors de projets de conception, l’aspect énergétique était auparavant négligé au profit naturellement de la vente. Vu l’augmentation constante des prix de l’énergie électrique et par une prise de conscience timide des problèmes d’environnement que cause la production de froid, la conciliation de :
  • la qualité du froid alimentaire;
  • la vente;
  • le confort des clients et du personnel;
  • l’énergie.

est indispensable !

Peu importe les moyens et techniques mis en œuvre, il suffit de prévoir le confinement ou l’enfermement du froid dans une boîte isolée pour améliorer directement l’efficacité énergétique du froid alimentaire. Certains magasins (ils se reconnaîtront) appliquent ce principe depuis déjà longtemps, d’autres se lancent timidement. Il peut s’envisager de manière :

  • globale pour l’ensemble des denrées dans un espace isolé, avec des ouvertures contrôlées tout en permettant un accès aisé;
  • décentralisée comme les meubles frigorifiques où le confinement est réalisé par des portes vitrées par exemple.

Choix des meubles

Selon les différents critères énoncés, un choix de meubles frigorifiques se dégage. Les fabricants classent en général les meubles selon :

  • la température de conservation positive ou négative (quelle valeur) ?
  • le type ouvert, mixte ou fermé, vertical ou horizontal ?
  • l’aménagement interne avec combien d’étagères, avec ou sans éclairage des tablettes, …?
  • équipé d’un convection forcée ou pas ?
  • équipé de porte vitrée, de rideau de nuit, de combien de cordons chauffants ?

Appréhender les dépenses énergétiques

Le choix énergétique du meuble se fera, toute chose restant égale, au niveau du meuble le moins gourmand en consommation journalière d’énergie (kWh par m² de surface d’exposition et par jour) définit par EUROVENT qui effectue des essais aboutissant à une certification du meuble frigorifique dans des conditions d’ambiance tout à fait particulières (la classe 3, par exemple, implique une température ambiante de 25 °C et 60 % d’humidité relative).

Cette certification est naturellement nécessaire pour permettre aux bureaux d’études en techniques spéciales ou au maître d’ouvrage de pouvoir comparer les meubles de même classe ou de même famille ensemble. Les résultats des mesures des consommations énergétiques sont des moyennes mais ne représentent pas les consommations réelles en fonction des conditions ambiantes de température et d’humidité variables à l’intérieur du commerce.

Les principales consommations énergétiques des meubles ouverts sont dues à l’induction de l’air au niveau de l’ouverture.

Puissance frigorifique nécessaire

Une fois le choix des meubles effectué, on peut déterminer assez aisément par les catalogues la puissance frigorifique nécessaire pour son application. Cette puissance conditionnera la valeur de la puissance de l’évaporateur et naturellement celle du compresseur associé.

Il faut toutefois signaler que la puissance frigorifique est donnée en fonction de la classe d’essai EUROVENT (la plus courante c’est la classe 3 : température ambiante de 25 °C et 60 % d’humidité relative). Attention que si les conditions d’ambiance réelle sont différentes de la classe de dimensionnement, on risque de se trouver face à des problèmes d’adaptation de puissance de l’évaporateur par rapport aux apports internes et externes.

Pour être certain de ne pas se « planter », on peut aussi comparer le meuble choisi par rapport à des valeurs de puissance frigorifique par mètre linéaire [W/ml] couramment rencontrées :

  • pour les applications de froid positif, les puissances spécifiques oscillent en général entre 0,2 kW/ml (vitrine service par le personnel en convection naturelle) et 1,3 kW/ml (meuble vertical self service à convection forcée;
  • pour les applications de froid négatif, les puissances spécifiques, quant à elle, varient entre 0,4 et 2,1 kW/ml (respectivement pour les gondoles horizontales self-service en convection forcée et les meubles verticaux à convection forcée).

Le choix des portes fermées

On veillera à choisir des vitrages et des châssis de bonne qualité. on fera attention aux valeurs de consommation énergétique des couches conductrices de désembuage des faces internes des vitres. On demandera éventuellement si les cordons chauffants de porte peuvent être alimentés de manière non continue lorsque les portes son fermées.

Le choix du rideau d’air des meubles ouverts

Le choix du type de rideau d’air est principalement fonction de :

  • la position de l’ouverture du meuble (horizontale, verticale, inclinée, …);
  • la longueur de l’ouverture;
  • l’écart de température.

Un taux d’induction (rapport de la quantité d’air ambiant mélangé par la quantité d’air du rideau d’air et ce, par unité de temps) de l’ordre de 0,1 à 0,2 est courant et garantit la stabilité du rideau d’air. Attention que certains constructeurs proposent des doubles rideaux d’air afin de renforcer cette stabilité, mais ce n’est pas sans risques au niveau des consommations électriques des ventilateurs et de l’augmentation de puissance des évaporateurs (dans certains cas, jusqu’à 15 % de surpuissance).

Le choix du système de dégivrage

Des systèmes intelligents, comme la détection de la fin du palier de fusion de la glace ou du givre, permettent d’optimiser les temps de dégivrage.

Le choix de l’éclairage

Pour éviter de consommer inutilement de l’énergie (de l’ordre de 10 % de l’énergie de jour fournie par l’évaporateur), l’éclairage du meuble doit être prévu en dehors de la zone froide. D’une part, les lampes fluorescentes ont une mauvaise efficacité lumineuse à basse température, d’autre part, les luminaires sont des sources de chaleur et, par conséquent, augmentent les apports internes que l’évaporateur devra évacuer.

Concevoir

Pour en savoir plus sur le choix des meubles frigorifiques.

Choix des chambres froides

Type d’enceinte de conservation

Suivant la capacité de conservation nécessaire pour chaque famille de matières premières (produits laitiers, viandes, …), pour les plats cuisinés à l’avance ou encore pour les produits surgelés, les enceintes seront de type armoire froide, chambre froide compacte, chambre froide modulable, …

On veillera, lors d’un projet de construction de magasin à plutôt s’orienter vers des enceintes modulables afin de permettre de suivre l’évolution de l’activité sans « devoir tout casser ».

Volume et puissance

Le volume nécessaire dépend des ventes, du choix de la gamme des produits, du rythme d’approvisionnement, de leur conditionnement, … Sur cette base, on établira le bilan frigorifique afin de déterminer la puissance de l’évaporateur. Ce calcul est très compliqué et itératif, car il est nécessaire de s’adapter à des conditions particulières telles que les nombres de dégivrages, la tenue de l’isolant dans le temps, …

À noter que le surdimensionnement de l’évaporateur et la régulation étagée du groupe frigo sont intéressants à considérer dans une démarche URE.

Précautions à prendre au niveau de l’utilisation de l’enceinte

Réduire la fréquence et les temps d’ouverture des portes des enceintes permet de réduire les consommations énergétiques au niveau de l’évaporateur et de son dégivrage.

Caractéristiques techniques générales

Le choix d’un réfrigérant s’effectuera en fonction du type de chambre :

  • Pour les chambres positives (0 à 4 °C), le R134a est souvent employé.
  • Pour les chambres négatives (- 10 °C-> ~ – 25 °C), on utilise le R507 ou le R404a (ces fluides sont des HFC (hydrofluorocarbone)).

Aussi, les chambres seront pourvues d’un système d’enregistrement de température au point le plus chaud.

Concevoir

Pour en savoir plus sur le choix des chambres froides.

Choix de l’enveloppe de la chambre froide

Choix constructif

On évite la création de ponts thermiques par le choix des pièces de raccordement d’origine du fabricant ou par l’adaptation intelligente des panneaux isolants au droit des raccordements.

Choix du coefficient de transmission thermique des parois

Si dans le bilan thermique l’isolation des parois prend une importance relative élevée, il faut isoler (cas des chambres de conservation de longue durée). Des ordres de grandeur à atteindre pour les coefficients de transmission thermique sonts :

  • 0,350 à 0,263 W/m²K en stockage réfrigéré,
  • 0,263 à 0,162 W/m²K en stockage surgelé.

Pour des raisons hygiéniques, on évitera la formation de condensation; c’est pour cela qu’il est nécessaire de prévoir une isolation suffisante et placée correctement. Enfin, l’optimum des gains annuels suite à une meilleure isolation interviendra en tenant compte à la fois des coûts liés à la consommation (diminution), à l’investissement dans l’isolation (augmentation) et et la machine frigorifique (diminution).

Faut-il isoler la dalle de sol ?

Plusieurs configurations de chambres froides sont possibles.
Dans le cas :

  • D’une chambre négative avec pièce habitée en dessous, il y a risque de condensation sur le plafond inférieur; il faut donc isoler.
  • D’une chambre négative sur terre-plein, pour peu qu’il y ait de l’eau sous la chambre, il y a risque de gel; il faut aussi isoler.
  • D’une chambre froide positive, on isole le plancher pour autant que la chambre soit utilisée régulièrement.

Attention que l’isolation du plancher impose souvent une marche. Différentes parades tels que le plan incliné, le décaissé dans la dalle, …, permettent d’y remédier.

L’étanchéité des parois

Elle va permettre de limiter la pénétration de l’air (apports thermiques) et la diffusion de la vapeur d’eau risquant de « mouiller » l’isolation (perte de qualité de l’isolation) ou de geler en formant de la glace sur les parois intérieures (risque de déformation des panneaux). Pour réaliser cette étanchéité, la chambre sera équipée d’un pare-vapeur (en général la tôle externe) continu et les portes de joints étanches. Mais la bonne étanchéité de la chambre risque de créer une dépression interne et, par conséquent, une déformation des parois. On y remédie par la pose de soupapes de décompression.

La porte et ses accessoires

La porte de par ses ouvertures apporte des quantités importantes de chaleur et constitue donc un poste important dans le bilan thermique d’une chambre. De plus, de la condensation ou du givre se forme sur les parois. Plusieurs « trucs » permettent de limiter ces effets négatifs :

  • fermeture de porte automatique,
  • lamelles plastiques d’obturation des portes,
  • vitre isolée permettant de repérer ce que l’on cherche de l’extérieur.

La capacité thermique de la chambre

L’inquiétude des exploitants est de tomber en panne de groupe de froid alimentant les chambres froides. C’est la capacité thermique de la chambre, associée avec son isolation qui détermine combien de temps elle tiendra sa température dans une fourchette acceptable de conservation des denrées. Une bonne inertie de dalle de sol placée sur l’isolation permet de répondre en partie à ce problème.

Concevoir

Pour en savoir plus sur le choix de l’enveloppe des chambres froides.

Choix de la cellule de refroidissement rapide

Quand doit-on choisir une cellule de refroidissement rapide ?

Dans tout atelier traiteur où l’on a opté pour une liaison froide, il est recommandé d’abaisser la température au cœur des aliments de + 65 °C à + 10 °C en moins de 2 heures par l’intermédiaire d’une cellule de refroidissement rapide.

Choix du procédé de production de froid

Il est de deux types :

  • froid mécanique;
  •  ou cryogénique (azote liquide).

Le premier est cher à l’investissement par rapport au second. À l’inverse, en exploitation le système cryogénique est onéreux. Dans la pratique, on optera pour un froid mécanique pour la production courante et un froid cryogénique d’appoint en cas de panne de la cellule de refroidissement mécanique.

Précaution d’utilisation

Pour une bonne efficacité de la cellule de refroidissement rapide, l’espacement des denrées à refroidir est primordial.

Capacité et puissance frigorifique des cellules

Le dimensionnement des cellules de refroidissement rapide nécessite de connaître la capacité de cuisson (on ne peut pas refroidir plus ou moins de repas que ceux cuisinés), le temps de refroidissement recommandé et les températures à atteindre. Il faudra encore différentier dans le dimensionnement les cellules positives des négatives; pour ces dernières, il est nécessaire de tenir compte des chaleurs sensibles positives, négatives et de la chaleur latente de congélation.

Concevoir

Pour en savoir plus sur le choix de la cellule de refroidissement rapide.

Choix du compresseur

Photo compresseur - modèle 01.Photo compresseur - modèle 02.Photo compresseur - modèle 03.

Compresseur à vis (source Bitzer), compresseur scroll (source Copeland) et compresseur semi-hermétique à piston (source Bitzer).

Les critères de choix thermiques

On doit garder à l’esprit qu’une température d’évaporation élevée et une température de condensation basse épargnent le compresseur. La température d’évaporation est souvent dictée par l’application (réfrigération, congélation) qui doit respecter les températures de conservation des denrées. La température de condensation, quant à elle, dépend de l’ambiance dans laquelle est placé le condenseur (climat externe, local technique, …). Dans les deux cas, les températures influencent le choix du compresseur.

Les critères de choix énergétiques

Les critères de choix énergétiques à émerger vraiment sont :

  • le coefficient de performance énergétique EER (Energy Efficiency Ratio) ou couramment appelé COPfroid. Sa valeur doit être naturellement la plus élevée possible.
  • le taux de compression HP/BP entre le refoulement et l’aspiration. Le taux de compression ne doit pas dépasser 8, sans quoi le rendement volumétrique du compresseur devient mauvais; c’est la raison pour laquelle en froid négatif on utilise des compresseurs à deux étages;
  • le rendement volumétrique est variable suivant le type de compresseur. Le rendement volumétrique des compresseurs à pistons est variable ne fonction du rapport HP/BP. Par contre celui du compresseur à vis, reste relativement stable en fonction du taux de compression.

Choix du compresseur

Il existe différentes sortes de compresseurs : volumétriques (à pistons, à vis ou à spirales) et centrifuges. On les différencie aussi suivant l’association moteur-compresseur (ouvert, semi-hermétique et hermétique).

La tendance actuelle est au choix des machines tournantes qui donnent plus de fiabilité, un rendement volumétrique plus important, une durée de vie plus longue, … Cependant, les machines tournantes (vis, scroll, …) présentent les désavantages de coûter plus cher et d’être de puissance frigorifique plus importante que les machines alternatives (piston). C’est pour cette raison que le choix de machine tournante dans les commerces de détail n’est pas souvent retenu.

Au sein d’une famille de compresseurs , on sera attentif au taux de compression qui doit être adapté en fonction de la pression de condensation et par conséquent en fonction du régime de fonctionnement du condenseur.

Dimensionnement du compresseur

Le dimensionnement courant du compresseur pour une installation de froid alimentaire est naturellement conditionné par :
  • le type de fluide réfrigérant;
  • la température nécessaire à l’application au niveau de l’évaporateur (froid positif ou négatif, type de denrées à conserver, …) et ce, dans des conditions optimales;
  • la température extrême qu’il peut régner au niveau du condenseur (température de l’air ou de l’eau selon le type de condenseur).

En froid alimentaire, le respect des températures de réfrigération ou de congélation est draconien. En Belgique, nous ne sommes pas privilégiés au niveau du dimensionnement par rapport au climat. En effet, pour quelques heures par an, le bureau d’études doit tenir compte, dans son dimensionnement, de la température de condensation pour une période de canicule (40-45°C sont des températures de dimensionnement courantes correspondant pour un condenseur à air à une température d’air de l’ordre de 32-35°C). En dehors de cette période, le compresseur est surdimensionné. Or on sait qu’à bas régime, le compresseur s’adapte mal et qu’une diminution de 25 % de la puissance frigorifique correspond à environ une diminution de 10 % de la consommation électrique du compresseur.

Choix de régulation de puissance du compresseur

Afin d’augmenter la performance des groupes frigorifiques, on retiendra qu’il est important de réaliser un découpage de la puissance en fonction de la charge par le choix :

  • d’un groupe de froid à plusieurs étages ;
  • d’un compresseur à vitesse variable;
  • de la mise en parallèle de plusieurs compresseurs avec régulation de la puissance par enclenchements et déclenchements successifs;

de manière à éviter le fonctionnement de chaque machine à bas régime.

Quant au réglage de la puissance du compresseur par injection des gaz chauds dans l’évaporateur ou à l’entrée du compresseur, il faut le qualifier de « pur anéantissement d’énergie ». Dans ce cas, la puissance absorbée reste la même lorsque la puissance de réfrigération diminue. De plus, ils provoquent un échauffement du moteur. Dans la mesure du possible, il faut mettre ce système aberrant hors service dans les installations existantes.

Il est clair que l’optimisation de la puissance de compression n’est réalisable qu’en associant des techniques de compression de pointe avec une régulation efficace (numérique par exemple).

Critères acoustiques

Ce sont les compresseurs qui génèrent la majorité du bruit. Pour diminuer les nuisances acoustiques du compresseur, il faut prévoir les dispositifs suivants :

  • un capot acoustique sur la machine.
  • une dalle flottante équipée d’isolateurs à ressorts.
  • des plots en élastomère entre la machine et la dalle flottante.

Concevoir

Pour en savoir plus sur le choix des compresseurs.

Choix du condenseur

Photo condenseur - 01.   Photo condenseur - 02.

Critères de choix généraux

Il faut évacuer la chaleur du réfrigérant vers l’air ambiant; c’est le condenseur qui s’en charge. Deux techniques existent pour y arriver : le condenseur à air ou à eau.

Le choix d’un condenseur dépendra en première approche :

  • de son emplacement par rapport au compresseur; l’idéal étant de placer le groupe de froid en toiture,
  • de la température de condensation conditionnée, pour une température extérieure donnée, par la surface d’échange et le débit d’air ou d’eau (les performances du compresseur seront meilleures si la température de condensation est basse),
  • de la température extérieure; un condenseur en plein soleil ou sous un toit noir n’est pas de bonnes idées.

Critères acoustiques

La principale source de bruit d’un condenseur est constituée par le(s) ventilateur(s). on aura toujours intérêt à les faire fonctionner à faible vitesse. Il faudra être attentif au bruit « solidien » se transmettant à la structure par les fixations du condenseur.

Choix d’un condenseur à air

L’entretien du condenseur à air est limité. Aussi, il n’y a aucun risque de gel en hiver. Mais le coefficient d’échange avec l’air étant faible, le condenseur sera volumineux, et donc lourd et encombrant. Enfin, les températures de condensation sont directement liées aux conditions de température extérieure : la pression de condensation sera forte en été (dégradation du COP de la machine frigorifique), mais plus faible en hiver, entraînant d’ailleurs un besoin de régulation adapté pour un fonctionnement correct.

Le fonctionnement du condenseur en période chaude peut être amélioré en choisissant un système d’évaporation d’eau sur la batterie de condensation (réduction de la température de l’air de refroidissement de l’ordre de 5 à 8 K). Les condenseurs « adiabatiques » permettent de prérefroidir l’air par l’évaporation d’eau qui pourrait très bien provenir d’une réserve d’eau de pluie par exemple. Cette initiative est aussi salutaire dans le sens où on pourrait sous-dimensionner le compresseur de par l’abaissement du taux de compression.

On veillera aussi à considérer :

  • le ventilateur, car sa consommation électrique et le bruit généré ne sont pas négligeables,
  • l’abaissement de la température de condensation par la considération des détails de construction, le positionnement (ombrage possible par exemple), l’environnement (toiture noire), … du condenseur;
  • la récupération de chaleur perdue à la sortie du condenseur;

Choix du condenseur évaporatif

Pour les magasins où l’installation frigorifique est de taille importante, le condenseur évaporatif est aussi une solution intéressante qui permet de garder une installation relativement simple tout en permettant de réduire les températures de condensation si chères à l’optimisation des performances énergétiques des compresseurs. Attention toutefois au risque de légionelles qui résultent souvent d’un manque de suivi et de contrôle des installations utilisant de l’eau de refroidissement.

Choix d’un condenseur à eau

Le réfrigérant de la machine frigorifique cède sa chaleur à l’eau circulant dans le condenseur. Grâce au coefficient d’échange avec l’eau 20 à 30 x plus élevé que le coefficient d’échange avec l’air, la taille du condenseur à eau sera plus réduite et l’échangeur moins encombrant. Aussi, il est moins bruyant que le condenseur à air. Cependant, il nécessite une tour de refroidissement à extérieur ainsi que tout un réseau d’eau à protéger du gel; l’installation est donc très coûteuse, raison pour laquelle en froid commercial (en particulier pour la distribution) on trouve peu d’installation de ce genre.

Une application possible est son utilisation pour les grandes surfaces où l’on veut réduire la quantité de fluide frigorigène.

Choix de la régulation

Le contrôle de la température du condenseur influence le bon fonctionnement du groupe frigo. En effet, on cherche à travailler à basse température pour soulager le compresseur. Mais si elle est trop basse, le détendeur fonctionne mal, car la pression à son entrée est trop faible et il ne peut assurer le débit de réfrigérant dans l’évaporateur. En pratique, on régule le débit du ventilateur du condenseur en fonction de sa pression d’entrée. L’utilisation de variateurs de vitesse apporte un plus dans la régulation de cette pression.

Aussi, on préférera un détendeur électronique plutôt qu’un thermostatique; en effet, l’électronique peut travailler avec des températures de condensation plus basse.

Concevoir

Pour en savoir plus sur le choix du condenseur.

Choix du détendeur

Photo détendeur.

Critères de choix énergétiques

Les critères de choix énergétiques des détendeurs sont :

  • la gestion intelligente de la surchauffe;
  • la capacité à travailler à des pressions d’entrée faibles pour favoriser le choix d’une stratégie de température de condensation basse.

Choix  du type de détendeur

Les détendeurs thermostatiques sont souvent retenus pour leurs coûts réduits et leur capacité à gérer relativement bien la surchauffe au niveau de l’évaporateur.

Quant au détendeur électronique, il commence à être régulièrement retenu pour ses aptitudes à :

  • gérer la surchauffe correctement en « collant » à la valeur minimale de surchauffe stable et d’assurer ainsi un remplissage optimal de l’évaporateur quelle que soit la charge à l’évaporateur;
  • s’intégrer dans des systèmes de régulation globaux (régulation flottante de la pression de condensation par exemple) et communs ;
  • de mieux supporter les faibles différences de pression entre ses orifices lorsque l’on veut réduire au maximum la pression de condensation.

Le choix d’un détendeur électronique est donc principalement énergétique. Certains constructeurs parlent de temps de retour de l’ordre de 2,5 ans sur le surinvestissement.

Dimensionnement du détendeur

Un surdimensionnement du détendeur électronique permet de mieux accepter les pressions de condensation faibles réglées par la régulation flottante au niveau de la pression de condensation.

Concevoir

Pour en savoir plus sur le choix du détendeur.

Choix du dégivrage

Du côté de la chambre froide ou du meuble frigorifique fermé ou mixte négatif, le givre diminue le transfert thermique entre l’air et la surface extérieure de la batterie. L’apport de froid vers la chambre se fait moins bien. La température de la chambre froide monte quelque peu.

D’autre part, du côté du circuit frigorifique, le compresseur de la machine frigorifique travaille avec une mauvaise efficacité énergétique : la couche de glace sur l’évaporateur peut être comparée à une couverture posée sur un radiateur (pour obtenir la même chaleur, il faudra augmenter la température de l’eau et diminuer le rendement en chaudière).

Il faut donc débarrasser périodiquement l’évaporateur du givre formé : c’est le dégivrage.

La chambre frigorifique doit donc être équipée d’un dégivrage automatique.

Le personnel d’exploitation, s’il n’effectue pas lui-même le dégivrage, doit cependant en vérifier le bon déroulement et surtout s’assurer périodiquement que les dégivrages sont effectués complètement. Aucune trace de givre ne doit subsister sur la surface froide à la fin du dégivrage.

Précautions à prendre au niveau du choix de l’enceinte et du groupe

Pour une question d’efficacité et de limitation du nombre de dégivrages, l’évaporateur doit être placé le plus loin possible de l’entrée de la chambre. De plus, pour les opérations de dégivrage proprement dites, on choisit de préférence une vanne magnétique sur le circuit réfrigérant et un manchon souple placé à la sortie du ventilateur de l’évaporateur afin de garder la chaleur lors de la coupure du ventilateur (début de l’opération de dégivrage).

Précaution à prendre au niveau de l’utilisation de l’enceinte

Il est un fait certain que moins il y aura d’ouverture de la porte de la chambre (organisation rationnelle), moins on gaspillera de l’énergie nécessaire :

  • pour le dégivrage,
  • pour le refroidissement et le séchage de l’air extérieur entré par la porte,
  • pour évacuer la chaleur produite au niveau de l’évaporateur par l’opération de dégivrage.

Choix de la technique de dégivrage

Le réchauffage de la batterie pour assurer la fusion du givre peut se faire de diverses façons :

  • par résistance chauffante (la plus courante pour les moyennes puissances),
  • par introduction de vapeurs refoulées par le compresseur où l’évaporateur reçoit les gaz chauds par inversion du cycle en devenant le temps du dégivrage le condenseur du groupe frigo,
  • par aspersion d’eau sur la surface externe, givrée, de la batterie,
  • par circulation d’air.

Les deux premières méthodes citées ci-dessus sont les plus courantes.

Choix de la régulation de dégivrage

Vu que le dégivrage est une source de dépense énergétique, l’optimisation des du dégivrage prend toute son importance en terme de fréquence et de longueur de cycle. Parmi les types de dégivrage, les plus courants sont les systèmes :

  • par horloges (difficulté d’optimisation par rapport à l’organisation de la cuisine),
  • électroniques contrôlant la présence de glace par l’analyse de la courbe de remontée en température de l’évaporateur (plateau de t° = fusion),
  • électroniques contrôlant l’écart de température entre l’ambiance et l’évaporateur.

Les systèmes électroniques sont en plus capables d’accepter des niveaux d’alarme, de contrôler un délestage, …

Évacuation des condensats

On cherchera le chemin le plus court pour évacuer les condensats sans qu’ils ne gèlent. Cette évacuation demandera une maintenance toute particulière, car elle influence directement le bon fonctionnement de l’évaporateur.

Les meubles fermés ou mixtes

Les principes généraux de dégivrage des chambres froides s’appliquent assez bien aux meubles frigorifiques fermés ou mixtes négatifs, car l’évaporateur subit le même type d’agressions hygrothermiques lors des ouvertures des portes. En ce qui concerne les meubles frigorifiques ouverts négatifs horizontaux (gondole par exemple) ils subissent les agressions hygrothermiques de manière moins forte vu que l’influence de l’induction de l’air de la zone de vente n’est pas prépondérante. Néanmoins, pour ce type de meubles, le dégivrage par résistance électrique ou injection de gaz chaud est souvent nécessaire.

Les meubles ouverts positifs

Ce type de meubles, quant à lui, subit les agressions hygrothermiques en permanence de par l’induction de l’air de l’ambiance de vente de manière naturelle ou au travers d’un rideau d’air en ventilation forcée. L’induction d’air apportant irrémédiablement de la vapeur d’eau contenue dans l’air ambiant sur l’évaporateur, le dégivrage est plus que nécessaire mais, vu les températures d’échange au niveau de l’air sur les ailettes de l’évaporateur sont proches de 0°C, un dégivrage naturel sans apport de chaleur est suffisant dans la plupart des applications.

Concevoir

Pour en savoir plus sur le choix du dégivrage.

Choix de la régulation

Variateur de fréquence d’un compresseur (source : Delhaize).

Critères de choix

Dans ce cadre-ci, les critères de choix d’une régulation s’articulent autour de l’optimisation de la puissance frigorifique de l’évaporateur et de la consommation énergétique des équipements. Par exemple, une bonne régulation du détendeur permet de remplir idéalement l’évaporateur en fluide frigorigène afin de maximiser la puissance frigorifique et naturellement de réduire le temps de travail du compresseur.

Choix de la régulation

Le choix d’une régulation d’une application de froid alimentaire doit être pris :

  • dans un premier temps de manière globale. En effet, vu que le cycle frigorifique est fermé, la régulation particulière d’un équipement influence naturellement la régulation des autres. Par exemple, la régulation de la pression de condensation au niveau du ventilateur d’un condenseur à air influence celle du compresseur, etc …
  • dans un second temps, pour chaque équipement en particulier en fonction de l’aptitude ou pas à accepter une régulation simple ou sophistiquée.

Concevoir

Pour en savoir plus sur le choix du dégivrage.

Choix d’un fluide frigorigène

Photo fluides frigorigènes.

Le choix d’un fluide frigorigène dépendra de plusieurs facteurs dont :

  • L’impact environnemental;
  • l’impact énergétique (ou qualité thermodynamique);
  • la sécurité d’usage;
  • les contraintes techniques;
  • le coût;
  • les tendances futures.

Concevoir

Pour en savoir plus sur le choix du fluide frigorigène.

Investir dans une récupération de chaleur ?

Schéma principe récupération de chaleur.

Principe de fonctionnement

Une machine frigorifique transfère de la chaleur extraite des meubles frigorifiques vers l’extérieur. Par ailleurs, une proportion non négligeable des meubles frigorifiques ouverts  est présente dans l’ambiance tempérée des zones de vente qui se refroidit.

En période froide, il semblerait dès lors logique de tenter de récupérer la chaleur sur le condenseur de la machine frigorifique pour l’injecter dans l’ambiance plutôt que de l’évacuer à l’extérieur.

On sait aussi qu’une machine frigorifique est d’autant plus performante que sa température de condensation est basse. On se trouve donc devant un choix difficile entre :

  • d’une part, utiliser la température externe pour refroidir le condenseur entraînant une perte de chaleur non négligeable vers l’extérieur, mais en augmentant la performance de la machine frigorifique;
  • d’autre part, récupérer la chaleur de condensation pour la réinjecter directement ou indirectement dans l’ambiance des zones de vente, d’où en fin de compte elle provient.

Plus largement, la chaleur que l’on peut récupérer du cycle frigorifique peut provenir :

  • à haute température de la phase de désurchauffe du cycle frigorifique suivi d’une condensation classique à basse température (air externe en période froide par exemple). À ce stade, les températures peuvent être intéressantes (> 70°C voire plus) mais la quantité d’énergie échangée reste faible;
  • à moyenne température de la phase de condensation suivie d’une condensation classique à basse température (Chauffage au sol pour des températures de l’ordre de 35-40°C);
  • à basse température de la phase de condensation (préchauffage de l’eau chaude sanitaire à des températures de condensation de l’ordre de 20°C.

Application au chauffage du magasin et des annexes par l’air

Dans le cas de l’utilisation de la chaleur de condensation pour chauffer directement le magasin (cas des meubles frigoriques avec groupe condenseur incorporé), en période froide, cette technique peut être intéressante. En période chaude, il vaut mieux prévoir une évacuation de cette chaleur dehors (sinon la performance énergétique de la machine froid se dégrade).

Application au chauffage du magasin et des annexes par l’eau

La récupération de la chaleur de condensation pour chauffer de l’eau destinée à alimenter un système de chauffage au sol doit être envisagée avec précaution. En effet, pour fonctionner correctement, le chauffage au sol nécessite une température d’eau de l’ordre de 35- 40 °C. Si l’on n’y prend pas garde, les températures de condensation pourraient atteindre les 50-55°C réduisant la performance du compresseur. Enfin, en terme de confort, la solution du chauffage au sol dans les allées froides pourrait être intéressante sans trop modifier le régime de fonctionnement des meubles frigorifiques (chauffage radiant augmentant les apports externes des meubles).

Application au préchauffage de l’eau chaude sanitaire

L’idée est ici de profiter d’un besoin de chauffage d’un fluide à basse température (la température de l’eau de ville varie entre 5° en hiver et 15°C en été).

Mais le système ne fonctionnera bien que lorsque la puissance de récupération nécessaire est supérieure à la puissance fournie par le condenseur. Autrement dit, il faut que les besoins d’eau sanitaire soient très importants par rapport à la puissance de la machine frigorifique; ce n’est pas nécessairement le cas des magasins.

Concevoir

Pour en savoir plus sur l’intérêt d’investir dans une récupération de chaleur.

Tuyauterie des installations frigorifiques

Conduite liquide

Si elles traversent des espaces tempérés, les conduites liquides non isolées entre le condenseur et le détendeur, risquent de re-vaporiser le fluide frigorigène (« flash gaz ») causant le mauvais fonctionnement du détendeur. Au final, l’évaporateur perdra de la puissance frigorifique.

Conduite d’aspiration

Lors de la conception, le choix d’un long traçé du circuit d’aspiration crée des pertes de charge importantes qui influencent négativement le travail de compression du compresseur. Il en est de même pour le manque d’isolation, mais à plus faible échelle.

Concevoir

Pour en savoir plus sur précautions à prendre lors du placement des conduites.

Optimiser le dégivrage des chambres froides

Optimiser le dégivrage des chambres froides


Amélioration du dégivrage au niveau des chambres froides

Au niveau de la configuration de l’enceinte et pour éviter la formation de givre sur l’évaporateur, il est préférable que celui-ci soit situé loin de l’entrée par laquelle est amené l’air chaud et humide. Si ce n’est pas le cas, il est nécessaire de se poser la question en terme financier par rapport au gain énergétique, du déplacement de l’évaporateur vers le fond de la chambre froide.

Exemple.

La chambre froide est installée chez un grossiste en fruits et légumes. L’évaporateur de la chambre froide se situe comme sur le dessin ci-après :

La porte est ouverte toute la journée pour permettre aux clients (des petites supérettes) de venir faire leurs achats, des bandes en plastique sont installées pour limiter les pertes frigorifiques.

La température d’évaporation étant de -8° un dégivrage est nécessaire. La proximité de la porte favorise les entrées d’air à température moyenne de 20°. Cet air chaud est aspiré par l’évaporateur et du givre apparaît très vite sur la batterie.
Un dégivrage est nécessaire toutes les deux heures alors que dans d’autres conditions seuls 3 à 4 dégivrages par 24 heures seraient suffisants.

Pour éviter des consommations importantes d’électricité et une régulation qui apporterait toujours des soucis, il a été prévu d’arrêter la production frigorifique toutes les deux heures tout en laissant tourner les ventilateurs de l’évaporateur. On dégivre 10 minutes uniquement grâce à la température ambiante de l’air.

En ce qui concerne l’installation, pour faciliter et optimiser les opérations de dégivrage, on vérifie , si l’installation est équipée :

  • d’une vanne magnétique sur le circuit frigorifique (juste avant l’évaporateur).
    Cette vanne va permettre d’arrêter le cycle du fluide frigorigène lors d’un dégivrage : lors d’un dégivrage, l’alimentation électrique de la vanne magnétique est coupée. La vanne se ferme. La Basse Pression au compresseur descend et le compresseur s’arrête dès que le niveau réglé sur le pressostat Basse Pression est atteint. Quand il n’y a pas de vanne magnétique, le compresseur devrait être directement arrêté électriquement (contacteur). Mais dans ce cas, une migration de réfrigérant peut se produire et encore continuer à s’évaporer, ce qui peut poser problème.
  • de manchons souples placés à la sortie du ventilateur de l’évaporateur si la technique de dégivrage produit de la chaleur sur l’évaporateur. Lors d’un dégivrage, lorsque la ventilation est à l’arrêt, ce manchon retombe et se rabat sur la surface de pulsion du ventilateur. Une barrière physique est ainsi créée autour de la chaleur produite dans l’évaporateur pour dégivrer l’évaporateur.
    Ces manchons souples en fibre polyester sont encore appelés « shut up ».


Précautions à prendre au niveau de l’utilisation de la chambre froide

Une organisation rationnelle des interventions dans les chambres froides peut être source d’économies d’énergie. On peut regrouper les interventions et laisser les portes ouvertes pendant un temps le plus court possible.

Il y aura ainsi moins d’air humide qui entrera à l’intérieur de l’enceinte. Au niveau économies d’énergie, on gagne ainsi sur trois plans :

  • au niveau de l’énergie nécessaire pour dégivrer,
  • au niveau de l’énergie nécessaire au refroidissement et au séchage de l’air humide qui entre dans l’enceinte,
  • au niveau de l’énergie nécessaire pour éliminer les quantités de chaleur accumulées dans les évaporateurs au moment des dégivrages, dont le nombre et la durée peuvent diminuer.
Exemple.

Soit une chambre froide négative de dimensions intérieures : L = 4 m, l = 4 m, h = 3 m.
L’air à l’extérieur de la chambre a les caractéristiques suivantes : t° = 28°C, HR = 80 %.
L’air intérieur a les caractéristiques suivantes : t° = -18°C, HR = 50 %.
La chambre est « sollicitée » pendant 12h/jours.

Il y a 10 interventions par heure, pendant chacune d’elle la porte est laissée ouverte pendant 30 secondes.
Avec cette utilisation, l’énergie électrique nécessaire pour le dégivrage est de 15,6 kWh/jour.

Avec une meilleure organisation, le personnel n’ouvre plus la porte que 5 fois par heure et ne la laisse plus ouverte que 6 secondes par intervention.
L’énergie électrique nécessaire pour le dégivrage n’est plus que de 3,9 kWh/jour soit une économie de 11,7 kWh/jour.
Avec un prix moyen de 0,11 € du kWh, cela représente une économie de 11,7 [kWh] x 0,11 [€] 260 [jours], soit 350 € par an pour une seule chambre froide.

Il faut ajouter à cette économie, l’énergie gagnée sur le refroidissement et le séchage de l’air entrant dans la chambre froide, ainsi que sur le givrage de la vapeur qu’il contient.
En effet, dans le premier cas, le renouvellement d’air de la chambre est de 61 volumes par 24 h; l’énergie frigorifique nécessaire pour traiter cet air est de 109,6 kWh pour le refroidissement et le séchage, dont 46,9 kWh pour le givrage.
Dans le second cas, le renouvellement n’est plus que de 6,2 volumes par 24h et l’énergie nécessaire n’est plus que de 11 kWh (refroidissement et séchage), dont 4,7 kWh pour le givrage.

Avec un COP global moyen de 2,5 et un coût moyen de 0,115 € du kWh électrique, cela représente une économie supplémentaire de ((109,6-11) [kWh] / 2,5) x 0,11 [€] x 260 [jours], soit 1179 € par an.

Dans cet exemple, on n’a pas diminué le nombre de dégivrages dans le cas où il y a moins de vapeur qui entre dans la chambre. Cela représente, en fait, une économie supplémentaire, car il faut moins d’énergie pour refroidir les masses métalliques des évaporateurs, chauffées lors des dégivrages.

Remarque : vu la remarque ci-dessous, cet exemple sert plus à montrer qu’il y a de grosses possibilités d’économies par une utilisation rationnelle de la chambre froide qu’à donner des chiffres exacts. En effet, la masse de l’évaporateur ainsi que le nombre de dégivrages ont été encodés de manière arbitraire.

Calculs

Si vous voulez estimer vous même , les possibilités d’économiser de l’énergie grâce à une utilisation rationnelle de votre chambre froide.

Mais ATTENTION : ce tableau doit être utilisé avec beaucoup de précautions !

En effet, les résultats dépendent de paramètres introduits par l’utilisateur. Or ces paramètres ne sont pas toujours connus et dépendent eux-mêmes du résultat des calculs.

Par exemple :

  • La masse des évaporateurs est une donnée arbitrairement introduite par l’utilisateur. Or elle dépend d’une série de paramètres qui ne sont pas dans le tableau (et notamment la puissance frigorifique totale). Il est donc a priori très difficile d’introduire une valeur correcte pour la masse des évaporateurs.
  • Le nombre de dégivrages est aussi une donnée arbitrairement introduite par l’utilisateur.
    Or, il dépend de la masse de givre piégée sur les ailettes des évaporateurs, de l’écartement de ces ailettes, de la surface d’échange des évaporateurs (c’est-à-dire de leurs dimensions) qui conditionne l’épaisseur moyenne de givre collé sur les ailettes.

Il faut aussi se rappeler que le rendement d’un évaporateur baisse au fur et à mesure que du givre vient se placer dans les interstices entre les ailettes.
Cela veut dire que si on diminue artificiellement le nombre de dégivrages, on diminue évidemment l’énergie nécessaire pour les dégivrages parce qu’il faut moins souvent chauffer les masses métalliques, mais on diminue aussi le rendement des évaporateurs (et donc de la machine entière) avec le grand danger d’avoir des évaporateurs bourrés de glace, ce qui provoquera finalement l’arrêt de la machine.

En fait, cela revient à dire que le calcul des machines frigorifiques doit être un calcul intégré où les éléments du bilan frigorifique ne peuvent pas toujours être envisagés séparément, comme c’est le cas ici avec ce tableau…; il s’agit d’un calcul itératif !


Amélioration ou modernisation de la technique de dégivrage

Le réchauffage de la batterie pour assurer la fusion du givre peut se faire de diverses façons :

  • par résistance chauffante,
  • par introduction de vapeurs refoulées par le compresseur,
  • par aspersion d’eau sur la surface externe, givrée, de la batterie,
  • par circulation d’air.

Les deux premières méthodes citées ci-dessus sont les plus courantes :

Par résistance chauffante

Des résistances chauffantes sont imbriquées dans les tubes en cuivre qui composent la batterie de l’évaporateur. Leur position et leur puissance sont étudiées par le fabricant de manière à répartir uniformément la chaleur produite à l’ensemble de la batterie.

Avantages, inconvénients et choix

C’est une méthode simple, très répandue pour les unités de puissance moyenne.
Elle n’est pas dénuée de divers inconvénients : la consommation se fait en électricité directe, et donc à un prix élevé en journée, surtout si la période de dégivrage a lieu durant la pointe quart-horaire du mois.

Précautions

Dans les équipements frigorifiques des grandes cuisines, la place disponible fait souvent défaut et la tendance des architectes est de sélectionner du matériel très compact. D’autre part, les budgets sont de plus en plus étroits, ce qui ne facilite pas la sélection de matériel de qualité.

Cependant pour assurer un bon fonctionnement du dégivrage à long terme, certaines précautions sont à prendre :

  • Les résistances n’ont pas une durée de vie éternelle. Elles doivent être remplacées en cas de défaillance. Lors de l’installation de l’évaporateur, il ne faudra donc pas oublier de tenir compte de leur longueur (généralement la longueur de l’évaporateur) et laisser l’espace nécessaire pour permettre de les extraire de leur  » doigt de gant « .
  • Toutes les résistances sont fixées à l’aide de fixation ad hoc dans la batterie. Il importe de fixer également les nouvelles qui seraient introduites après un remplacement.
    En effet, si les résistances ne sont pas bien fixées, les dilatations produites lors du chauffage et du refroidissement peuvent faire bouger les résistances et les faire sortir de leur position initiale avec comme conséquence de ne plus chauffer uniformément la batterie sans compter les inconvénients matériels que cela suppose.

Par introduction de vapeurs refoulées par le compresseur

Cette technique, encore appelée dégivrage par « vapeurs chaudes » ou par « gaz chauds », consiste à inverser le cycle et à faire fonctionner l’évaporateur, le temps du dégivrage, en condenseur.

Avantages, inconvénients et choix

L’inversion de cycle est très économique, notamment car les vapeurs chaudes sont directement introduites dans les tubes avec des températures très élevées (avec le R22 on peut facilement atteindre plus de 90°). Les temps de dégivrage sont donc très courts : parfois quelques secondes suffisent.

Néanmoins, cette méthode complique le réseau des conduites frigorifiques : des éléments supplémentaires tels que la vanne à 4 voies (qui sert à l’inversion de cycle), vannes magnétiques pour couper les circuits, etc. viennent s’ajouter à l’installation en cas de rénovation.

Ainsi, elle est surtout utilisée dans les installations industrielles.

Dans les équipements frigorifiques des grandes surfaces, il n’y a que les machines à glaçons (lit de glace en poissonnerie), quand il en existe, qui sont parfois munies d’un système d’inversion de cycle pour démouler les glaçons.

Par aspersion d’eau sur la surface externe, givrée, de la batterie

Avantages, inconvénients et choix

Cette technique est parfois utilisée pour des enceintes froides à des températures voisines de 0°C et pour des enceintes réclamant une humidité élevée (chambres de conservation de fruits). La consommation d’eau, fluide de plus en plus coûteux, est un inconvénient.

Par circulation d’air de la chambre

De l’air provenant soit de l’intérieur de la chambre même, soit de l’extérieur, est envoyé sur l’échangeur. Dans le premier cas, le dégivrage est très lent. Dans le second, il faut isoler l’évaporateur de la chambre, ce qui n’est pas pratique.

Avantages, inconvénients et choix

L’inertie des produits stockés doit être suffisante à maintenir l’ambiance dans une fourchette de température acceptable. C’est donc une technique qui n’est pas à utiliser pour des chambres froides qui sont quasi vides juste avant le réapprovisionnement.

La première de ces méthodes a l’avantage de récupérer totalement l’énergie frigorifique stockée dans la glace. De plus, seule une horloge est nécessaire pour interrompre la production frigorifique. Elle ne tombe donc jamais en panne.

En général, cette méthode est utilisée avec une température de chambre supérieure à 0°C et lorsque les enceintes ne sont pas trop sollicitées par des ouvertures de portes. Mais la pratique montre que certains régulateurs « intelligents » utilisent également ce système lorsque la température est fortement négative, grâce au fait qu’en dessous de -5°C la structure de la glace est très différente (beaucoup plus poudreuse et donc moins collante : une sublimation est alors possible).

Remarque : cette technique est celle utilisée par un fabricant  qui propose une régulation intelligente des dégivrages.


Amélioration ou remplacement de la régulation du dégivrage

Le dégivrage est une source de consommation d’énergie :

  • Par l’apport de chaleur nécessaire à la fusion du givre (effet utile).
  • Suite à l’échauffement, suivi du refroidissement, de la masse métallique de la batterie (effet nuisible).
  • Par le réchauffement partiel, suivi de la remise en température de la chambre froide, une partie de la chaleur que nécessite le dégivrage ayant été perdu dans cette enceinte (effet nuisible).

Il existe donc une fréquence optimale de dégivrage pour minimiser l’énergie dépensée par cette opération :

  • Trop fréquents, ils sont effectués alors qu’une faible quantité de givre s’est déposée sur la surface froide, l’effet utile est insuffisant devant les effets nuisibles qui l’accompagnent.
  • Trop peu fréquents, la masse excessive de givre présente sur la batterie diminue l’efficacité énergétique de la machine frigorifique.

Dans le cadre d’une amélioration, les techniques de régulation et de commande modernes deviennent très accessibles financièrement parlant. Si votre régulation existante est vétuste, le remplacement d’une horloge classique, par exemple, par un module de régulation ne devrait pas vous ruiner.

Choix du type de régulation

Pour les petites enceintes, une régulation par horloge peut suffire. Mais mal utilisée, cette régulation peut conduire à des aberrations énergétiques : qu’il y ait présence ou non de glace, le dégivrage est enclenché à l’heure programmée, la durée du dégivrage est fixe, quelle que soit la présence effective de glace.

Ainsi, en fonction des conditions d’exploitation des enceintes froides (peu ou beaucoup d’ouvertures de portes), les agents d’exploitation devront modifier la fréquence des dégivrages par le réglage des horloges, et une sonde de fin de dégivrage doit permettre à l’installation de redémarrer plus rapidement que la période fixée.

Cependant, ils ne doivent, en aucun cas, intervenir sur la séquence. Certaines d’entre elles, interne des opérations de dégivrage, si elles sont mal conduites, peuvent créer des écarts de pression intolérables entre l’intérieur et l’extérieur des chambres froides.

Pour les plus grandes enceintes, il est indispensable, au niveau énergétique, que la séquence des dégivrages réels se rapproche au mieux de la séquence utile. On utilise pour cela une régulation électronique intelligente de dégivrage. De tels systèmes permettent des économies substantielles.

Il en existe au moins deux sur le marché :

  • Le premier système de régulation électronique intelligent permet d’espacer la séquence de dégivrages initialement programmés s’il n’a pas détecté de phase de fusion suffisamment longue durant les 10 dernières opérations de dégivrage programmées.
  • Le second système de régulation électronique intelligent détecte la présence de glace à partir de deux sondes de température (l’une mesure la température ambiante de la chambre, l’autre est placée dans les ailettes de l’évaporateur). L’explication de ce principe ne nous a pas été détaillée.
    Chez ce fabricant, le critère d’arrêt du dégivrage classique est une température d’évaporateur de 10°C. Cela semble élevé, mais c’est, semble-t-il, une sécurité par rapport à l’absence totale de glace.
    En plus de cette détection de givre, ce système choisit un dégivrage par circulation d’air de la chambre chaque fois que la température intérieure le permet. Ce qui est très intéressant au niveau énergétique puisque non seulement il ne faut pas produire de la chaleur pour le dégivrage, mais qu’en plus, toute l’énergie latente contenue dans la glace sera restituée à l’ambiance.
    Un dégivrage classique par résistance chauffante n’aura lieu que lorsqu’il n’est pas possible d’attendre la fusion de la glace par l’air ambiant.

Quel que soit le système de régulation intelligente, la souplesse de ces appareils par rapport aux thermostats mécaniques permet d’affiner les réglages et de proposer des fonctions complémentaires :

  • alarmes,
  • possibilité de faire fonctionner le congélateur avec une consigne abaissée de 5°C la nuit (pour bénéficier du courant de nuit),
  • possibilité de délester durant la pointe 1/4 horaire,

D’après le fabricant du second système ci-dessus, l’investissement (+/- 1 625 €) est amorti en moins d’un an.

Exemple.

Une chaîne de supermarchés belge a adopté ce système pour l’ensemble de ses chambres froides depuis 2 ans. Un des responsables techniques nous a confirmé que l’investissement a largement été amorti sur cette période en regard des économies d’énergie apportées (plus de 20 % de la consommation de la chambre). Une généralisation de ce système à l’ensemble des points de vente est programmée.

De plus, ces systèmes peuvent tout à fait s’adapter sur des installations existantes.

Lors de la pose d’un système de régulation de dégivrage, il est important de l’adapter au mieux à la chambre froide et à son utilisation. Il appartient au frigoriste de bien poser au client les questions pour comprendre son mode opératoire et de cibler la régulation la plus appropriée.

Autres précautions…

Pour optimiser le dégivrage, le frigoriste ne doit pas oublier de prévoir deux temporisations dans les étapes de dégivrage :

  • Après l’opération de dégivrage proprement dite, il faut prévoir une temporisation avant l’ouverture de la vanne magnétique (permettant à la production frigorifique de reprendre). Cette précaution permet d’assurer l’égouttage.
  • Ensuite, il faut prévoir une deuxième temporisation avant la remise en fonctionnement des ventilateurs de l’évaporateur. Cette temporisation permet à la batterie d’atteindre une température moyenne inférieure ou égale à celle de l’enceinte. À défaut, la remise en route prématurée des ventilateurs peut envoyer de la chaleur dans la chambre froide et/ou des gouttelettes d’eau encore présentes.

Il veillera aussi à prévoir un système de sécurité qui arrête le dégivrage dès qu’une température ambiante excessive est atteinte. Cette sécurité doit, par exemple, être accompagnée d’une alarme qui prévient le personnel du problème.

Cette précaution est d’autant plus importante que les produits stockés sont coûteux.

Exemple.

Il est déjà arrivé qu’un contacteur qui commandait les résistances électriques de dégivrage d’une enceinte stockant des crustacés, du caviar, etc. reste bloqué et que du chauffage soit diffusé toute la nuit dans la chambre avant que le personnel ne s’en aperçoive le lendemain matin.

 

Récupérer la chaleur sur condenseur de la machine frigorifique [Améliorer – Froid alimentaire]

Récupérer la chaleur sur condenseur de la machine frigorifique [Améliorer - Froid alimentaire]


Principe de fonctionnement

Une machine frigorifique transfère de la chaleur extraite d’une chambre froide, d’un meuble frigorifique ouvert, … vers l’extérieur.

Il semble dès lors logique de tenter de récupérer la chaleur sur le condenseur de la machine frigorifique.

Fonctionnement du condenseur

En principe, trois opérations successives se passent dans le condenseur de la machine frigorifique :

Evolution des températures du fluide frigorigène et du fluide de refroidissement.

  1. Dans une machine frigorifique, les gaz qui sont expulsés par le compresseur en fin de compression sont à très haute température (de 70 à 80°C). On dit qu’ils sont surchauffés. Comme la condensation se fait à une température largement inférieure (aux alentours de 40°C, par exemple), une quantité de chaleur va devoir être évacuée des gaz surchauffés pour les amener à leur température de condensation qui correspond à la pression de refoulement (dite pression de condensation). C’est la désurchauffe.
  2. Puis lors de la condensation elle-même, une importante quantité de chaleur va aussi devoir être évacuée pour liquéfier (si possible complètement) le fluide frigorigène gazeux.
  3. Enfin, si les conditions des échanges thermiques dans le condenseur le permettent (température du fluide refroidisseur suffisamment basse, débit du médium de refroidissement suffisamment important), le liquide condensé va subir le sous-refroidissement, ce qui améliore le rendement de l’évaporateur.

Récupération de l’énergie

Dans certains cas, on pourrait envisager de récupérer cette énergie pour chauffer de l’eau ou de l’air, au lieu de la gaspiller en pure perte :

  • si on a des besoins en eau chaude sanitaire à une température pas trop élevée (45° à 50°C);
  • si on a des besoins de chauffage pour des allées froides, des locaux contigus, …
  • si on veut éviter ou diminuer la puissance de climatisation du local des machines, ou faire des économies d’énergie sur ce poste;
  • si on veut participer à la lutte contre le réchauffement global de l’atmosphère.

La récupération de l’énergie du côté des condenseurs suppose évidemment des investissements supplémentaires par rapport à des machines classiques plus simples :

  • des échangeurs de condenseurs adaptés;
  • des réservoirs-tampons pour l’eau chaude sanitaire ou de chauffage;
  • une disposition plus compliquée des tuyauteries;
  • une bonne évaluation des pertes de charge dans les tuyauteries;
  • une régulation complète permettant le contrôle correct de toute l’installation, y compris des récupérateurs.

Étant donné les spécificités inhérentes à chaque projet, le rapport entre l’investissement et les économies d’énergie doit faire l’objet de calculs adaptés, à demander aux auteurs de projet. Il faut en effet considérer ensemble la machine frigorifique et les appareils de production d’eau chaude sanitaire ou de chauffage.
Le bilan doit prendre en compte :

  • l’apport d’énergie « gratuite » par la machine frigorifique,
  • le fait que l’on doit quand même disposer, en plus des récupérateurs, d’une puissance installée suffisante pour palier au manque de puissance de chauffe lors des périodes où la machine frigorifique ne fonctionne pas,
  • la pénalisation énergétique apportée toute l’année par l’échangeur supplémentaire,
  • le cas où le condenseur de la machine frigorifique doit assurer à lui seul, l’évacuation de toute la chaleur (lorsqu’il n’y a pas de besoin d’énergie dans les récupérateurs, ou quand ces derniers sont arrivés à leur consigne maximale de température).
Exemple d’application très intéressante

Le plus logique est de récupérer la chaleur sur le condenseur à air pour chauffer directement l’air d’un local. Ainsi, un supermarché Delhaize à Bruxelles évacue la chaleur du condenseur du groupe frigorifique (armoires de congélation) en créant un rideau d’air chaud à l’entrée du magasin. En été, la chaleur est déviée en toiture par un clapet.


Application au chauffage de l’ambiance du magasin ou des annexes par l’air

Le moins qu’on puisse dire, c’est que les idées ne manquent pas quant à la récupération de la chaleur des condenseurs afin de chauffer l’ambiance des magasins directement ou des annexes indirectement.
La question traditionnelle qui revient dans les discussions est la suivante :

« J’ai déjà payé mon électricité pour garder à basse température mes aliments, que puis-je faire de la chaleur des condenseurs ? C’est quand même idiot de la rejeter à l’extérieur en période froide alors que je dois en plus chauffer mon magasin ».

Sur base du principe  :

« La véritable économie d’énergie est celle que l’on ne consomme pas ! »

On ne recommandera jamais assez de fermer les meubles frigorifiques tout en rappelant qu’un meuble de 1 mètre de largeur (1 mètre linéaire) échange par convection et rayonnement de l’ordre de 800 W et représente les 2/3 de la demande de froid au niveau de l’évaporateur.

Il est sûrement l’heure de rappeler aussi que l’on a atteint le paradoxe de la chaîne alimentaire froide. En effet, on en arrive, depuis un certain temps, à réchauffer les « allées froides » des magasins, et ce, afin d’assurer le confort des clients.

 » C’est une aberration énergétique criante ! »

Pour bien illustrer ce petit « coup de gueule », l’étude simplifiée qui suit montre les effets conjugués du succès des meubles frigorifiques d’ouverture de plus en plus imposante avec les effets négatifs qui vont de paire, à savoir :

  • le risque accru pour la conservation de la chaîne du froid;
  • l’inconfort évident des « allées froides ».

 Incorfort dans les allées froides.

Dans ce qui suit, on se propose d’analyser, de manière théorique, différents cas souvent rencontrés dans les magasins d’alimentation :

  • des meubles frigorifiques fermés avec le rejet de la chaleur de condensation dans l’ambiance du magasin et un appoint venant d’une chaudière traditionnelle;
  • des meubles frigorifiques fermés avec le rejet de la chaleur de condensation à l’extérieur du magasin et le chauffage du magasin venant d’une chaudière traditionnelle;
  • des meubles frigorifiques ouverts avec le rejet de la chaleur de condensation dans l’ambiance du magasin et un appoint venant d’une chaudière traditionnelle;
  • des meubles frigorifiques ouverts avec le rejet de la chaleur de condensation à l’extérieur du magasin et le chauffage du magasin venant d’une chaudière traditionnelle.

Ici, on analyse les consommations énergétiques finales et primaires ainsi que le bilan CO2 des différentes configurations en tenant compte des valeurs de rendement et d’efficacité énergétiques des équipements :

  • La chaudière présente un rendement saisonnier sur PCI (Pouvoir Calorifique Inférieur) de 0.90 ( ouverture d'une nouvelle fenêtre ! valeur de la CWaPE ou Commission Wallonne Pour l’Énergie.  ).
  • Le rendement global des centrales belges est de 55 % (selon la CWaPe). Dans cet exercice, on se place dans une situation défavorable, à savoir que le rendement moyen belge des centrales (en tenant compte du rendement des centrales nucléaires) est plutôt de 38 %.
  • 1 kWh de gaz consommé représente 251 g de CO2.
  • Le prix actuel du gaz est estimé à 0.05 €/kWh PCI.
  • Le prix de l’électricité est évalué à 0.11 €/kWh.

Les conditions d’ambiance du magasin sont simplifiées pour les besoins du calcul, à savoir :

  • la température ambiante que le commerçant veut assurer est de 24°C;
  • la température moyenne externe est de 6°C;

Le bilan thermique du magasin est aussi simplifié dans le sens où :

  • Les déperditions du magasin sont ramenées aux seules pertes des parois de l’enveloppe :
    • pour un petit commerce peu isolé de 40 m² au sol (4 façades), avec un Uglobal de l’ordre de 4 W/m².K, les déperditions sont de l’ordre de 12 kW en régime établi;
    • pour le même commerce fortement isolé, avec un coefficient Uglobal de l’ordre de 1.2 kW/m².K, les déperditions atteignent 3.6 kW;
  • Les apports internes et externes ne sont pas pris en compte (occupations, éclairage, … et l’ensoleillement. On se place donc dans des conditions défavorables au niveau de la récupération de chaleur.

Configuration 1 : meubles ouverts, condenseurs à l’extérieur et commerce peu isolé (configuration classique)

Le commerçant possède un commerce peu isolé (12 kW de déperditions). Il investit dans des meubles frigorifiques ouverts (2 x 10 kW) et les groupes de froid (groupes condenseurs) sont placés à l’extérieur.

La température de condensation des groupes condenseurs en externe est de l’ordre de 22°C pour un air externe moyen sur l’année de 6°C. Le coefficient de performance du groupe condenseur en externe est de 4.2 d’après un constructeur de machine frigorifique (COP’s équivalents donnés par Bitzer software de BITZER et Select 6 de COPELAND).

Pour cette configuration, un appoint de chaleur est nécessaire; c’est la chaudière qui le donne.

Schéma

Performance des équipements

Le bilan thermique montre que, vu la bonne performance des compresseurs pour une température de condensation basse (COP de l’ordre de 4.2), les rejets de chaleur à l’extérieur sont limités. Néanmoins, la chaudière doit apporter 32 kW pour maintenir un certain confort dans le magasin et compenser les déperditions de 12 kW au travers des parois et la perte de chaleur vers les meubles frigorifiques ouverts (soit 20 kW).

Bilan énergétique et CO2

Poste Calcul Unités
Energie finale (au niveau du magasin)
Energie chaudière

32/0.9 = 35.6

kWh/h

 

Energie compresseurs 

 

2.4 x 2 = 4.8 kWh/h
Energie condenseur 12.4 x 2 = 24.8 kWh/h
Coût 35.6 x 0.05 + 4.8 x 0.11= 2.3 €/h
Energie primaire (à la centrale électrique)
Energie primaire 35.6+ 4.8 / 0.38= 48.2 kWh/h
CO2 48.2 x 0.251 = 12.1 kg/h de CO2

Configuration 2 : meubles ouverts, condenseurs dans l’enceinte et commerce peu isolé

Le commerçant décide de remplacer ses groupes de condensation, car il sont vétustes (soumis au intempéries depuis 15 ans par exemple). L’installateur lui conseille de les placer à l’intérieur afin de récupérer la chaleur de condensation.

La température de condensation des groupes condenseurs en interne est de l’ordre de 50°C afin de pouvoir chauffer l’air aux environs des 40°C pour une température d’air d’entrée au condenseur de 32°C (condenseur placé dans des mauvaises conditions de fonctionnement). Le coefficient de performance du groupe condenseur est de 1.66 d’après un constructeur de machine frigorifique.

Schéma

Performance des équipements

Le bilan thermique nous montre que les compresseurs, vu leur performance médiocre (COP de 1.7), doivent évacuer plus de chaleur au niveau des condenseurs. Il en résulte que la chaudière, dans ce cas, n’a pas besoin de venir en appoint. La question clef est de savoir s’il faut récupérer la chaleur au prix de la dégradation de la performance énergétique des compresseurs ou l’inverse.

Bilan énergétique et CO2

Poste Calcul Unités
Energie finale (au niveau du magasin)
Energie chaudière

0

kWh/h

 

Energie compresseurs 

 

6 x 2 = 12 kWh/h
Energie condenseur 16 x 2 = 32 kWh/h
Coût 0 x 0.05 + 12 x 0.11= 1.32 €/h
Energie primaire (à la centrale électrique)
Energie primaire 0 + 12 / 0.38= 31.6 kWh/h
CO2 31.6 x 0.251 = 7.9 kg/h de CO2

Configuration 3 : meubles fermés, condenseurs à l’extérieur et commerce peu isolé

Le commerçant est très sensibilisé à l’énergie.

Il décide de réinvestir dans des meubles fermés. Pour une même capacité d’exposition des denrées, la puissance à l’évaporateur sera moindre. En effet, sur base de l’étude du bilan thermique des meubles ouverts, les pertes par l’ouverture représentent de l’ordre de 66 % de la puissance disponible à l’évaporateur. En fermant ces ouvertures, la puissance nécessaire à l’évaporateur est de l’ordre de 2 x 3 kW.

Dans un second temps, il se dit qu’il n’y a plus de nécessité de récupérer la chaleur de condensation puisqu’il devrait y avoir moins de pertes de chaleur vers les meubles frigorifiques. Les groupes de froid (groupes condenseurs) sont donc placés à l’extérieur.

La température de condensation des groupes condenseurs en externe est de l’ordre de 22°C pour un air externe moyen sur l’année de 6°C. Le coefficient de performance du groupe condenseur en externe est de 4.2 d’après le même constructeur de compresseur.

Schéma

Performance des équipements

Le bilan thermique nous montre que, vu la bonne performance des compresseurs pour une température de condensation basse (COP de l’ordre de 4.2), les rejets de chaleur à l’extérieur sont limités. La chaudière doit tout de même apporter 18 kW pour maintenir un certain confort dans le magasin et compenser les déperditions de 12 kW au travers des parois et la perte de chaleur vers les meubles frigorifiques fermés (soit 6 kW).

Bilan énergétique et CO2

Poste Calcul Unités
Energie finale (au niveau du magasin)
Energie chaudière

18/0.9 = 20

kWh/h

 

Energie compresseurs 

 

0.7 x 2 = 1.4 kWh/h
Energie condenseur 3.7 x 2 = 7.4 kWh/h
Coût 20 x 0.05 + 1.4 x 0.11= 1.2 €/h
Energie primaire (à la centrale électrique)
Energie primaire 20 + 1.4 / 0.38= 23.7 kWh/h

CO2

23.7 x 0.251 = 5.9 kg/h de CO2

Configuration 4 : meubles fermés, condenseurs dans l’enceinte et commerce peu isolé

Le commerçant furieux, demande à l’installateur de se débrouiller pour réduire la facture de chauffage. Les groupes de froid sont donc incorporés dans les meubles et la chaleur évacuée par les condenseurs est réintroduite dans le magasin aussi pour assurer le confort des clients (dans les allées froides par exemple).

La température de condensation des groupes condenseurs en interne est de l’ordre de 50°C afin de pouvoir chauffer l’air aux environs des 40°C pour une température d’air d’entrée au condenseur de 32°C. Le coefficient de performance du groupe condenseur est de 1.66 d’après un constructeur de machines frigorifiques.

Schéma

Performance des équipements

Le bilan thermique nous montre que malgré le rejet de 9,2 kW dans l’ambiance du magasin, la chaudière doit apporter 8,8 kW pour maintenir un certain confort dans le magasin et compenser les déperditions de 12 kW au travers des parois et la perte de chaleur vers les meubles frigorifiques fermés (soit 6 kW).

Bilan énergétique et CO2

Poste Calcul Unités
Energie finale (au niveau du magasin)
Energie chaudière

8.4/0.9 = 9.3

kWh/h

 

Energie compresseurs 

 

1.8 x 2 = 3.6 kWh/h
Energie condenseur 4.8 x 2 = 9.6 kWh/h
Coût 8.4 x 0.05 + 3.6 x 0.11= 0.8 €/h
Energie primaire (à la centrale électrique)
Energie primaire 8.4 + 3.6 / 0.38= 17.9 kWh/h
CO2 17.9 x 0.251 = 4.5 kg/h de CO2

Configuration 5 : meubles fermés, condenseurs dans une enceinte très isolée

Le commerçant constate qu’il a encore une facture de chauffage exagérée. Tout en conservant sa configuration précédente, il décide d’isoler son enveloppe (des primes existent). Les déperditions ne sont plus que de 3.6 kW.

La température de condensation des groupes condenseurs en interne est de l’ordre de 50°C afin de pouvoir chauffer l’air aux environs des 40°C pour une température d’air d’entrée au condenseur de 32°C. Le coefficient de performance du groupe condenseur est de 1.66 d’après un constructeur de machine frigorifique.

Schéma

Performance des équipements

Le bilan thermique nous montre que le rejet de 9,6 kW dans l’ambiance du magasin permet à la chaudière de ne pas être allumée et compenser, non seulement les 6 kW pris par les meubles frigorifiques, mais aussi les 3.6 kW de déperdition au travers des parois.

On a donc affaire à une pompe à chaleur dont :

  • la source froide (la source d’où provient l’énergie) est chaude puisque dans l’ambiance;
  • à la consommation près du compresseur, l’énergie, « tournant » sur elle-même, est utilisée pour refroidir les meubles frigorifiques et, après utilisation, est restituée à l’ambiance;
  • la chaleur de compression excédentaire sert en fait à compenser les déperditions au travers des parois de l’enveloppe.

Bilan énergétique et CO2

Poste Calcul Unités
Energie finale (au niveau du magasin)
Energie chaudière

0

kWh/h

 

Energie compresseurs 

 

1.8 x 2 = 3.6 kWh/h
Energie condenseur 4.8 x 2 = 9.6 kWh/h
Coût 3.6 x 0.11= 0.4 €/h
Energie primaire (à la centrale électrique)
Energie primaire 3.6 / 0.38= 9.5 kWh/h
CO2 9.5 x 0.251 = 2.4 kg/h de CO2

Synthèse

Tableau comparatif

Configuration Enveloppe Type  de meuble Condenseur Energie finale consommée chaudière [kWh/h] Energie finale électrique consommée [kWh/h] Energie primaire consommée [kWh/h] Coût de l’énergie [€/h] kg/h de CO2 Rejet de CO2
1 peu isolée ouverts externe 35.6 4.8 48.2 2.3 12.1 +504 %
2 peu isolée ouverts interne 0 12 31.6 1.32 7.9 +329 %
3 peu isolée fermés externe 20 1.4 23.7 1.2 5.9 +246%
4 peu isolée fermés interne 9.3 3.6 17.9 0.8 4.5 +188 %
5 bien isolée fermés interne 0 3.6 9.5 0.4 2.4 0

Choix des meubles frigoriques fermés

La toute première conclusion à tirer est qu’il faut choisir des meubles frigorifiques fermés quel que soit le type de denrée exposé. À ce sujet, au risque de passer pour des doux rêveurs, c’est possible de choisir des meubles tant en froid positif qu’en froid négatif avec des portes sans trop de risque pour que le chiffre d’affaires tombe en chute libre.

Energie finale

Le graphique ci-dessous montre l’évolution des énergies finales que consomment l’installation de froid avec récupération ou sans récupération et le système de chauffage.

Ces consommations énergétiques sont celles que le commerçant peut retrouver à partir de ses factures de chauffage et d’électricité.

Récupération importante par rapport aux besoins de chaleur

Le tableau comparatif précédent permet de tirer des conclusions :

  • Il faut fermer les meubles frigorifiques ouverts.
  • En période froide, même si la performance énergétique des compresseurs est dégradée (COP de 1.66) vu que la température de condensation (le condenseur se trouve à l’intérieur) est élevée, il est intéressant de récupérer l’énergie de condensation. L’optimum se situe naturellement lorsque la chaleur rejetée par les condenseurs équivaut aux déperditions des parois de l’enveloppe du commerce;
  • En plus de récupérer la chaleur, on aura donc intérêt à limiter au maximum les déperditions de l’enveloppe qu’elles soient sous forme :
    • d’une meilleure isolation;
    • d’un meilleur contrôle des infiltrations au niveau des portes d’entrée et des réserves;
    • d’une gestion efficace de la ventilation de l’air hygiénique.

Régime en période chaude

Là où le bât blesse, c’est pendant les périodes chaudes :

Les condenseurs étant incorporés aux meubles frigorifiques ou dans l’enceinte même du magasin, lorsque les déperditions au travers des parois s’inversent (période chaude, apport solaire important, …), il est nécessaire d’évacuer la chaleur des condenseurs à l’extérieur. Dans le cadre d’une installation de récupération de chaleur sur un condenseur à air, il n’est pas aisé de le réaliser.

Pour récupérer la chaleur de condensation, Delhaize, par exemple, a mis au point un système similaire à celui représenté dans les figures suivantes permettant de récupérer la chaleur en période froide pour chauffer l’ambiance.

 Schéma de principe en période froide (récupération); source : Delhaize.

 Schéma de principe en période chaude (pas de récupération); source : Delhaize.

Bilan des énergies primaires

Dans le tableau de synthèse ci-dessus, on parle aussi d’énergie primaire. Ce bilan est moins parlant, car, surtout au niveau de l’énergie électrique, on a souvent tendance à oublier que nos centrales électriques ont aussi un rendement.

Comme précisé dans les hypothèses, le rendement global, selon les sources, est de 55 ou 38 % suivant que l’on compte ou non les centrales nucléaires dans le parc des centrales belges. Ce qui signifie que lorsqu’on consomme 1 kWh d’énergie électrique chez nous les centrales, elles, en consomment 1 / 0,38 = 2,63 kWh sous forme de gaz, de nucléaire, de biomasse, …

Quant à l’énergie primaire consommée par notre chaudière (c’est plus facile), c’est le gaz, le fuel, le m³ de bois consommé.

Le graphique suivant montre cette approche :

Bilan CO2

À partir des énergies primaires, on peut déterminer quelle sera notre production de CO2 :

Remarques

La plupart des cas présentés ci-dessus, sont issus de cas réellement observés. Malheureusement, aucun monitoring des consommations n’est disponible à l’heure actuelle. Il va de soi que le placement d’une batterie de chauffe au dessus de la tête des clients dans l’allée froide n’est pas un bon principe, mais est juste utilisé comme moyen d’interprétation ou de réaction des lecteurs. Ce principe donne les avantages et inconvénients suivants:

(+)

  • simple;
  • modulable;

(-)

  • nécessite des vitesses d’air plus importantes afin d’amener l’air chaud à environ 1.5 m du sol pour assurer un certain confort thermique des clients;
  • augmente l’induction de l’air chaud au niveau du rideau d’air, car le mouvement de l’air dans cette zone est amplifié;

Application au chauffage de l’ambiance du magasin ou des annexes par un condenseur à eau

Beaucoup de techniciens dans l’âme se retrouveront dans les configurations qui suivent sachant que tout un chacun recherche à récupérer un maximum d’énergie sur les consommations des groupes frigorifiques. De manière générale, il n’y a pas de solution miracle, mais des solutions partiellement efficaces.

Configuration 1 : chauffage par air pulsé au pied des meubles

Cette configuration existe dans certains magasins Delhaize et est en cours de monitoring.

Elle se compose essentiellement :

  • d’un ballon de 1 000 litres constituant un condenseur à eau dont le circuit secondaire est branché sur le collecteur principal de la chaufferie. Le circuit primaire est constitué du circuit frigorifique et est en série avec le condenseur à air classique situé sur le toit du magasin;
  • le condenseur à eau, via le collecteur de chauffage, alimente une batterie chaude de la centrale de traitement d’air;
  • la pulsion de l’air chaud s’effectue au niveau du pied du meuble frigorifique, assurant un certain confort au niveau de l’allée froide;
  • la reprise d’air de la centrale de traitement d’air se situe en hauteur;
  • la température d’air de pulsion au pied du meuble frigorifique peut être modulée en fonction de la température de reprise et de la température de l’air neuf nécessaire à la ventilation hygiénique.

En période froide :

  • le condenseur à eau réchauffe l’eau du ballon par la désurchauffe du fluide frigorigène;
  • le condenseur à air assure la condensation du fluide frigorigène et même un certain sous-refroidissement (ce qui permet d’améliorer la performance de la machine frigorifique);
  • la batterie chaude de la CTA (Centrale de Traitement d’Air) réchauffe l’air neuf mélangé à l’air de reprise pour la pulser au pied des meubles frigorifiques. Attention que le fait de pulser cet air à proximité des rideaux d’air des meubles augmente les apports par induction du meuble (dans quelle proportion ? difficile à dire pour l’instant).

En période chaude :

  • en principe, on ne devrait plus réchauffer l’air de pulsion au pied des meubles. En pratique, il se fait que l’ouverture des meubles étant de plus en plus importante, le refroidissement de l’air ambiant est véritablement présent et inconfortable pour les clients (surtout quand on vient faire ses courses en maillot); d’où la tendance actuelle à réchauffer l’air même en été;

« Voilà un bon exemple de destruction d’énergie à grande échelle ! »

  • le condenseur à air assure l’évacuation de la chaleur de condensation.

Schéma

Régime en période froide.

Régime en période chaude.

Configuration 2 : Chauffage par le sol dans les allées froides

Cette configuration est à creuser. Toutes les réalisations ou idées à ce sujet sont les bienvenues.

Elle se composerait essentiellement :

  • d’un ballon constituant un condenseur à eau dont le secondaire est branché sur le collecteur principal de la chaufferie. Le primaire est en série avec le condenseur à air classique situé sur le toit du magasin;
  • le condenseur à eau, via le collecteur de chauffage, alimente un réseau de chauffage au sol au niveau de l’allée froide;
  • d’une chaudière d’appoint raccordée sur le collecteur principal.

En période froide :

  • le condenseur à eau réchauffe l’eau du ballon par la désurchauffe du fluide frigorigène;
  • le condenseur à air assure la condensation du fluide frigorigène et même un certain sous-refroidissement (ce qui permet d’améliorer la performance de la machine frigorifique);
  • le réseau de chauffage au sol assure un chauffage rayonnant dans l’allée froide. Cette configuration peut être intéressante dans le sens où la chaleur rayonnante devrait influencer moins les meubles frigorifiques qui sont principalement sensibles aux apports par induction d’air (mélange convectif entre l’air de l’ambiance et celui du rideau d’air du meuble). La basse température de l’eau de chauffage au sol permettrait de réduire la température de condensation et, par conséquent, d’améliorer le COP de la machine.

En période chaude :

  • le condenseur à air assurerait l’évacuation de la chaleur de condensation.

Schéma

Régime en période froide.

 Régime en période froide.

Intérêt ou pas du chauffage au sol

Parmi les avantages et les inconvénients du chauffage par le sol en association avec les meubles frigorifiques positifs ouverts en position verticale, on pointera principalement :

(+)

  • Le chauffage au sol apporte de la chaleur principalement par rayonnement (70 à 80 %) mais aussi par convection. Or en froid positif, les principaux apports qui influencent prioritairement le bilan thermique et énergétique du meuble sont les apports par induction (mélange de l’air ambiant avec celui du rideau d’air froid). De plus, l’échange entre deux parois étant maximal lorsque celles-ci sont parallèles, les apports de chaleur dus au chauffage au sol seraient plus faibles vu que les surfaces sont orthogonales;
  • le confort devrait être meilleur;
  • les températures de condensation, pour ce type de chauffage, pourraient être basses et donc améliorer la performance de la machine frigorifique;

(-)

  • La mise en œuvre d’un chauffage au sol est coûteuse;
  • Comme les magasins demandent une certaine flexibilité dans l’agencement des meubles frigorifiques, le chauffage au sol est un frein par rapport à cette flexibilité. Cependant, à la conception, il est possible par une bonne programmation de déterminer les emplacements dans les zones de vente où les meubles n’ont pratiquement aucune chance de bouger. De plus, il faut aussi tenir compte que les évacuations des condensats de dégivrage des meubles ainsi que les conduites liquides et gaz du circuit frigorifique sont souvent, eux aussi, figés voire encastrés dans le sol.

Application au préchauffage de l’eau chaude sanitaire

L’idée est ici de profiter d’un besoin de chauffage d’un fluide à basse température (la température de l’eau de ville varie entre 5° en hiver et 15°C en été. Mais le système ne fonctionnera bien que lorsque la puissance de récupération nécessaire est supérieure à la puissance fournie par le condenseur. Autrement dit, il faut que les besoins d’eau sanitaire soient très importants par rapport à la puissance de la machine frigorifique.

Ainsi, dans les commerces  où le froid alimentaire est nécessaire, les besoins d’eau chaude sanitaire peuvent être importants et une récupération de chaleur au condenseur se justifie tout à fait. Mais un ballon de préchauffage est propice au développement de la légionelle.

Il faut donc s’assurer que l’eau séjournera durant un temps suffisamment long dans le dernier ballon : 60°C durant 30 minutes ou 70°C durant 4 minutes, par exemple (en cas de débit de pointe, de l’eau « contaminée » risque de traverser seulement le 2ème ballon).

Configuration 1 : Un échangeur thermique parcouru par le fluide frigorigène est inséré au bas d’un ballon d’eau chaude

Dans le système ci-contre, un simple échangeur thermique (placé en série et en amont du condenseur normal) est inséré au bas d’un ballon d’eau chaude. Par effet de cheminée, la chaleur sera donnée à la zone la plus froide du ballon puis communiquée à l’ensemble du réservoir.

On parle de condenseur-désurchauffeur parce que la désurchauffe des gaz provenant du compresseur aura lieu dans cet échangeur.

La réglementation impose le principe selon lequel il ne doit pas y avoir de contact possible entre le fluide frigorigène et l’eau potable. En cas de perforation de l’enveloppe du fluide, la détérioration éventuelle doit se manifester à l’extérieur du dispositif.

Dans l’échangeur ci-dessus, une double paroi de sécurité est prévue selon DIN 1988.

Configuration 2 : Un ballon intermédiaire à double échange est intégré comme interface

On peut également prévoir un système à double échange :

Deux échangeurs sont intégrés dans un même ballon (1). Le premier échangeur est celui du condenseur de la machine frigorifique, le deuxième est le serpentin de préchauffage de l’eau chaude sanitaire.

Dans ce ballon intermédiaire, il n’y a aucun risque de dépôt calcaire puisque l’eau n’est jamais renouvelée.

En cas de fuite de fluide frigorigène, la pression dans le ballon augmente et une alarme est déclenchée.

Un deuxième condenseur en série est nécessaire pour le cas où le besoin de chauffage de l’eau sanitaire serait insuffisant.

Configuration 3 : en présence d’une boucle de distribution

Le régulateur de température de départ de la boucle utilise l’appoint lorsque le niveau de température du ballon est insuffisant.

Un tel schéma (contrairement au précédent) risque cependant d’être propice au développement de légionelles , puisque le ballon de récupération peut être à une température inférieure à 60°C durant un temps assez long. Il n’est pas à recommander si des douches sont présentes dans l’installation.

Évaluer les besoins du froid

Évaluer les besoins du froid


Les quatre impératifs en présence

Photo champ de culture.   Photo assiette avec nourriture.

Le froid alimentaire au niveau des commerces, qu’ils soient de détail ou de moyenne/grande surface, occupe une place prépondérante dans notre société actuelle. Notre souci permanent d’amélioration de la qualité des denrées alimentaires passe impérativement et principalement par le respect des températures de conservation des aliments pendant depuis leur production jusque dans l’assiette du consommateur.

La distribution fait naturellement partie de la chaîne de froid depuis l’approvisionnement par camions frigorifiques jusqu’au « caddie » ou le sac « récupérable » (nous insistons) du ou de la consommatrice.

À ce niveau de la chaîne alimentaire, le souci d’éviter de « casser » la chaîne du froid est un défi difficile à maîtriser d’autant plus qu’il faut concilier les impératifs de vente qui ont tendance pour la plupart à ouvrir les espaces de réfrigération (4 à 6°C) et de congélation (-18°C par exemple) à l’ambiance de vente (18, …, 20, …24 °C) et le respect des règles de conservation des denrées.

A cela vient s’ajouter le problème très présent du confort du personnel dans les ambiances froides des réserves et des ateliers et du confort du personnel et des clients dans les espaces de vente.

Et « last but not least », n’oublions pas ce pour quoi Énergie+ doit exister, à savoir l‘énergie. Cette énergie qui, à première vue est en contradiction totale avec les trois autres impératifs sous nos latitudes tempérées.

Nous avons donc affaire à un « quadrinôme » d’impératifs indissociables et cohabitant difficilement ensemble.


La qualité du froid alimentaire

La certitude que la vente de denrées au niveau des commerces ne représente pas risque pour la santé des consommateurs est sans conteste l’élément le plus important à respecter.

La partie visible de l’iceberg est naturellement les surfaces de vente où les marchandises sont exposées dans des comptoirs frigorifiques. À l’écart des regards des clients, la chaîne de froid est bien présente que ce soit :

  • avant le stockage dans les chambres frigorifiques;
  • pendant le stockage;
  • après le stockage.

Avant le stockage

Photo camion et caisses de salades.

Les transferts entre le camion frigorifique et la chambre froide influencent naturellement la pérennité des denrées alimentaires à cause du contact possible avec les ambiances internes et externes au magasin (climat, gaz d’échappement en ville, déchet de toutes sortes à proximité, …). En général, les principaux facteurs qui peuvent influencer les denrées sur le plan thermique sont :

  • le temps de transfert;
  • la différence de température entre les denrées et l’air extérieur;
  • leur masse;
  • leur type de conditionnement (emballée ou pas, type d’emballage, …);
  • leur teneur en eau;

Pratiquement, les commerçants se contentent simplement d’effectuer un transfert le plus rapide possible du camion vers les chambres de conservation. Sachant qu’à l’heure actuelle, la plupart des denrées sont conditionnées dans des emballages dès la production, une ambiance extérieure « hostile » (déchet à proximité, gaz d’échappement, …) influence moins la pérennité des denrées. Néanmoins, les commerçants devront toujours éviter que les flux « propres et sales » ne se croisent dans les réserves.

L’évaluation de la qualité du transfert relève d’une procédure interne à mettre en place en s’inspirant par exemple de l’HACCP (Hazard Analysis Critical Control Point = Analyse des dangers et points critiques pour leur maîtrise).

Pendant le stockage

Photo GTC (Gestion Technique Centralisée)  

Mis à part le contrôle du temps de stockage, le respect des températures de conservation constitue le principal gage de qualité dans la chaîne du froid. Cette température est monitorée en permanence à l’aide d’un enregistreur dédicacé à la chambre froide ou d’une GTC (Gestion Technique Centralisée) qui regroupe tous les enregistrements de température des installations plus complexes de froid alimentaire.

La conservation des denrées en phase de stockage dépend essentiellement du contrôle :
  • des ouvertures de portes;
  • du dégivrage des évaporateurs.

Influence des ouvertures et fermetures des portes

Le contrôle d’accès aux chambres froides des réserves est primordial pour pouvoir maintenir les températures de conservation et éviter la prise en glace trop rapide des évaporateurs. A l’heure actuelle, l’isolation des chambres froides est relativement bonne et la principale source d’échange thermique avec l’ambiance extérieure est liée :

  • au temps pendant lequel la porte reste ouverte;
  • à l’étanchéité de la porte.

L’impact de l’ouverture de porte ou du manque d’étanchéité du joint de porte est double dans le sens où la température et l’humidité au sein de la chambre augmentent, ce qui, d’une part risque de réduire la qualité de conservation en température et, d’autre part de solliciter les évaporateurs par rapport aux opérations de dégivrage.

Influence du dégivrage des évaporateurs

L’air ambiant humide provenant des zones de réserves va naturellement se condenser en grande partie sur les ailettes des évaporateurs des chambres froides. Si aucun dispositif de régulation ou de dégivrage n’est présent, on dit que l’évaporateur « prend en glace ». Il s’ensuit une perte d’efficacité de l’évaporateur qui en l’occurrence ne peut plus assurer le maintien à température des denrées alimentaires.

Transfert après stockage

photo rayon froid supermarché

Le temps de transfert des chambres de stockage vers les rayons ou les ateliers de transformation, tout comme le trajet entre le camion frigorifique et les chambres de stockage, doit rester le plus court possible sachant que les chariots de transfert sont rarement équipés d’un groupe frigorifique embarqué afin de maintenir la température.


La vente

Un des critères de vente des denrées alimentaires est que le client puisse « toucher », « soupeser », …, « sentir » très facilement les produits. Au niveau des denrées réfrigérées (produits laitiers, fruit, légumes, …) et surgelées (frites, soupe, crèmes glacées, …), l’approche « marketing » est complexe. Tant au niveau du froid positif que négatif, l’impact sur la qualité du froid et les consommations énergétiques est énorme sachant que l’on doit garder en permanence une température de l’ordre :

  • de 0-4 voire 8 °C (pour le froid positif);
  •  et -18 °C voire moins (pour le froid négatif);

dans les meubles frigorifiques ouverts (conditions de fonctionnement extrêmes) dans une ambiance de vente de 20-24 °C avec comme « isolation » entre les deux un rideau d’air plus ou moins efficace.

« Le client est roi », c’est bien connu. Mais à quel prix !


Le confort du personnel et des clients

Non seulement l’ouverture permanente des meubles frigorifiques réchauffe les denrées alimentaires au risque de « casser la chaîne du froid » mais l’ambiance de vente se refroidit en réduisant le confort. La tentation est forte de pallier à l’inconfort des clients par le chauffage permanent des allées froides :

Il y a donc « destruction » de l’énergie !

La sonnette d’alarme doit être tirée à ce niveau, car on voit de plus en plus « fleurir » des systèmes de chauffage des allées froides afin de réduire l’inconfort.

Périodes chaudes

En période chaude, la sensibilité au confort de la clientèle est aiguisée par les paramètres suivants :

  • l’écart des températures est important entre d’une part l’extérieur et l’intérieur du magasin et d’autre part entre les zones de vente classique et celles où se trouvent les rayons de froid alimentaire (devant les meubles frigorifiques), le pire étant les allées froides (allées en deux rangées de meubles frigorifiques linéaires);
  • le faible habillement des clients.

Ces deux paramètres combinés entraînent nécessairement un inconfort pouvant friser, dans certains cas, le choc thermique.

Périodes froides

Lors des périodes froides, l’inconfort est moins grand. La raison en est simple, les clients s’habillent en conséquence (pull, manteau, …) tout en considérant aussi que le corps s’habitue à la longue aux températures plus basses régnant à l’extérieur et, par conséquent, le « désensibilisant » partiellement lorsque le client passe à proximité des meubles frigorifiques ouverts.


L’énergie

« Le client est roi », c’est bien connu. Mais à quel prix ! Non seulement l’ouverture permanente des meubles frigorifiques réchauffe les denrées alimentaires au risque de « casser la chaîne du froid » mais aussi l’ambiance de vente se refroidit au point de se retrouver dans la situation où l’on doit réchauffer l’air devant les comptoirs afin de réduire l’inconfort qui y règne. À l »inverse, l’ambiance tempérée du magasin augmente les apports externes aux enceintes frigorifiques.

Le respect de la chaîne du froid dans les commerces au sens large du terme (commerces de détail et moyennes/grandes surfaces) est un sujet où les ingénieurs et techniciens de tous bords s’arrachent les cheveux. En effet, comment concilier des points de vue qui, à première vue, sont antinomiques ?
à savoir :

  • le besoin de garantir des basses températures les plus constantes possible dans le temps aux denrées tout au long de la chaîne alimentaire;
  • la nécessité de vendre le plus possible et donc de favoriser un maximum le contact visuel et tactile des denrées par le client en imposant de laisser une interface ouverte entre les deux ambiances.

Cette approche purement « marketing » a des répercussions énormes non seulement sur la qualité du froid à assurer, mais aussi sur les consommations énergétiques des comptoirs de vente réfrigérés.

Sans grande observation scientifique, on se rend tout de suite compte que les échanges thermiques ou plus généralement enthalpiques (influence de la température et de l’humidité de l’air), entre les deux ambiances, c’est-à-dire entre les meubles frigorifiques et l’ambiance de vente, sont importants. Au travers du rideau d’air des meubles frigorifiques :

  • l’air de la surface de vente à température ambiante (24°C par exemple) et à taux d’humidité de l’ordre de 50 % réchauffe et humidifie l’intérieur des meubles frigorifiques;
  • à l’inverse, l’air froid du meuble (4°C par exemple) refroidit et déshumidifie l’ambiance de vente

A l’heure actuelle, des réglementations et des méthodes d’analyse de risques élaborées telles que le HACCP (Hazard Analysis Critical Control Point)  permettent de garantir, ou du moins de tendre vers le respect de la qualité du froid alimentaire. La garantie de protection de la santé publique tout en assurant la vente des denrées a imposé le développement de techniques de réfrigération sophistiquées au niveau :

  • des rideaux d’air des meubles frigorifiques ouverts;
  • du dégivrage des évaporateurs.

Entendons-nous bien, ce n’est pas la mission d’Énergie+ que de mettre en cause les techniques mises en œuvre ni d’évaluer si ces techniques de vente sont ou ne sont pas pertinentes. Par contre, c’est de notre compétence d’analyser, de constater, de critiquer positivement, d’établir des bilans, … afin de concilier le respect de la qualité du froid avec le confort humain pour une consommation énergétique optimisée.

Boucles frigoporteuses

Boucles frigoporteuses

Boucle frigoporteur à eau glycolée (source : Delhaize).


Définitions

Détente directe

On parle de détente directe lorsque le fluide frigorigène assure lui-même le transfert de chaleur « utile » aux applications de froid alimentaire (meubles frigorifiques, les ateliers de boucherie, les chambres de stockage, …).

 Refroidissement par détente directe.

Refroidissement indirect

Le refroidissement est indirect lorsque le transfert de chaleur « utile » n’est pas assuré par le fluide frigorigène lui-même, mais plutôt par un fluide intermédiaire appelé frigoporteur.

 Refroidissement indirect par boucle secondaire monotube.

Frigoporteur

En raison de la simplicité avec laquelle les frigoporteurs assurent le transfert de chaleur « utile » entre deux points sans gros risque de toxicité et d’inflammabilité et dans un souci de réduire les fuites de fluide frigorigène (néfastes à la couche d’ozone et à l’effet de serre), ce type de configuration revient en force dans le domaine du froid alimentaire.


Les types de frigoporteur

On retrouve 2 principaux types de frigoporteur :

  • Les frigoporteurs monophasiques composés d’un liquide incongelable dans la gamme des températures standard du froid alimentaire (-3 à – 38 °C par exemple).
  • Les frigoporteurs biphasiques composés :
    • d’un liquide et d’un solide;
    • d’un liquide et de sa vapeur.

Frigoporteurs monophasiques

L’eau glacée constitue le plus connu des frigoporteurs monophasiques. Tout le transfert de la chaleur est effectué par la variation de la température (chaleur sensible) du frigoporteur.

Des débits importants sont nécessaires pour travailler en chaleur sensible. Ceci signifie que les boucles de distribution utilisent des sections de passage importantes et constituent donc une dépense énergétique non négligeable pour faire circuler le frigoporteur.

On retrouve sur le marché différents frigoporteurs :

  • les substances pures telles que l’eau, les hydrocarbures liquides, les alcools simples (méthanol, éthanol), les polyalcools (éthylène glycol, propylène glycol, …);
  • les mélanges tels que l’eau + sel (saumure), l’eau + ammoniac (alcali), …

Il est clair qu’en froid alimentaire, le type de frigoporteur ne doit pas altérer les denrées et ne pas constituer un risque de toxicité et d’inflammabilité pour les personnes; ce qui limite le choix.

Pour donner un ordre de grandeur, on parle pour les frigoporteurs monophasiques de transfert de chaleur de  ~ 20 [kJ/kg] en chaleur sensible.

Avantages

  • Équipements de boucle simples.

Inconvénients

  • Débit important.
  • Dimensionnement conséquent.
  • Dépense énergétique non négligeable.

Frigoporteurs diphasiques (liquide + solide)

On rencontre ce type de frigoporteur sous forme de « coulis » ou « sorbet » dans les applications de froid positif. On parle ici de chaleur latente de fusion dans les transferts de chaleur; ce qui permet d’augurer des réductions de débits pour évacuer la même quantité de chaleur qu’un frigoporteur fonctionnant en chaleur sensible.

De même, un ordre de grandeur acceptable de transfert de chaleur est de  ~ 250 [kJ/kg].

Avantages

  • Chaleur latente de fusion importante.
  • Débit réduit par rapport à la solution type chaleur sensible.
  • Dimensionnement réduit des conduites et des pompes.
  • Consommation énergétique plus faible qu’avec un frigoporteur à chaleur latente.

Inconvénients

  • Coût élevé de l’évaporateur.

Frigoporteurs diphasiques (liquide + vapeur)

On rencontre ce type de frigoporteur dans les applications de froid négatif par exemple les installations à frigoporteur au CO2. On parle ici de chaleur latente de vaporisation dans les transferts de chaleur. Cette chaleur de vaporisation est en général fort importante.

Pour une température d’application de -40°C, sachant que l’évaporation n’est pas totale, sur une chaleur totale de vaporisation de ~ 322 [kJ/kg], on peut envisager disposer de 107 [kJ/kg] (pour un titre à la sortie de l’évaporateur de l’ordre de 33 %).

Avantages

  • Chaleur latente de vaporisation importante.
  • Bon coefficient d’échange thermique.
  • Faibles volumes massiques du liquide et de la vapeur.
  • Tuyauterie de faible diamètre.
  • Absence d’huile.
  • Prix faible.
  • Peu d’influence sur l’environnement.
  • Très faible impact sur l’effet de serre (GWP = 1). À titre de comparaison, le GWP du R404A est de 3 800 et celui du R134a est de 3 260.
  • Frigoporteur naturel, largement disponible.
  • Applications pouvant aller jusqu’à -54°C.
  • Aux basses températures, sa viscosité reste faible évitant des pertes de charge importantes.

Inconvénients

  • Danger d’asphyxie au-delà de concentration > 8 %.
  • Les dégivrages demandent des précautions particulières.
  • Peu de techniciens formés.
  • Nécessite une déshydratation très poussée de la boucle (sinon formation d’acide avec l’eau).
  • En cas d’arrêt prolongé, perte de charge de CO2 (dégazage).
  • Fortes pressions de service.

Les types de boucle

Ces types de boucle utilisent les technologies monotube et bitube.

Technologie monotube

Cette technologie, comme son nom l’indique est composée d’une boucle à un seul tuyau qui alimente les évaporateurs terminaux en série. Le même tube dessert les entrée et sortie de chaque évaporateur.

Schéma de principe Technologie monotube.

Avantages

  • Très modulable en exploitation.
  • Débit pratiquement constant dans la boucle frigoporteur.
  • Pas de nécessité de variateur de fréquence sur les pompes de mise en circulation du frigoporteur (investissement réduit).

Inconvénients

  • Coût important.
  • Maintenance des circulateurs des applications terminales alors que dans le cas du bitube, il n’y a que des électrovannes sans beaucoup d’entretien (augmentation de l’ordre de 10 % des coûts d’entretien).
  • La non-variation du débit entraîne des pertes énergétiques lorsque la demande frigorifique est faible.

Technologie bitube simple

Cette technologie positionne les évaporateurs terminaux en parallèle sur la boucle frigoporteur.

Schéma de principe technologie bitube simple

Avantages

  • Une simple vanne suffit à alimenter un évaporateur terminal.
  • Le débit variable des pompes de circulation du frigoporteur permet de réduire les consommations énergétiques.

Inconvénients

  • Mise en œuvre plus conséquente de par la nécessité d’adapter les sections des tuyauteries tout au long de l’aller et du retour de boucle.
  • Pertes de charge variables nécessitant une régulation du débit des pompes de circulation (investissement dans des variateurs de fréquence).

Technologie bitube avec vannes 3 voies montées en décharge

Cette technique permet de remédier au problème de débit variable grâce au placement de « by-pass » des évaporateurs terminaux.

Schéma de principe technologie bitube avec vannes 3 voies montées en décharge.

Avantages

  • Débit constant au niveau des pompes de circulation du frigoporteur.

Inconvénients

  • Sans débit variable au niveau des pompes, les pertes énergétiques sont plus importantes.
  • Les coûts d’investissement sont importants.