Passerelles réseau

Passerelles réseau


La passerelle est un élément du réseau de communication qui permet de lier des branches utilisant des protocoles différents. Ces éléments sont extrêmement importants dans la réalisation d’un Smartbuilding car ils permettent à différents écosystèmes de fonctionner ensemble en assurant la traduction d’un protocole vers l’autre.

En plus d’assurer la continuité du réseau, la passerelle analyse l’ensemble des données qui transitent. Tout d’abord pour pouvoir les traduire mais également pour les filtrer. Si une requête ne rentre pas dans le cadre fixé par l’intégrateur, cet évènement sera filtré et n’aura pas lieu mais sera tout de même consigné dans un historique. Les passerelles assurent donc un niveau supplémentaire de sécurité au réseau.

SRI (Smart Readiness Indicator) ou Indicateur de Potentiel d’Intelligence

SRI (Smart Readiness Indicator) ou Indicateur de Potentiel d'Intelligence

SRI (Smart Readiness Indicator) ou Indicateur de Potentiel d’Intelligence.

Ce nouveau paramètre facultatif introduit par la directive européenne 2018/884 sur la performance énergétique des bâtiments vise à quantifier la capacité d’un bâtiment à intégrer et utiliser les nouvelles technologies et systèmes électroniques pour répondre aux besoins des occupants, optimiser les performances et interagir avec le réseau.

À l’instar des certificats PEB, le SRI (Smart Readiness Indicator) a également pour objectif de permettre aux occupants (locataires et propriétaires) de rendre palpable, tangible l’intelligence d’un bâtiment.

L’indicateur vise donc à conscientiser les acteurs de la construction, propriétaires et occupants des bénéfices des technologies dites intelligentes mais aussi à accélérer le déploiement de ces dernières, particulièrement dans la perspective de la performance énergétique en utilisant le SRI comme vecteur de plus-value.

La méthode d’évaluation du SRI est basée sur une inspection des services « smart ready » qui sont présents dans le bâtiment. Par exemple, pour l’éclairage, cela peut aller du simple interrupteur on/off jusqu’aux systèmes qui peuvent moduler l’intensité lumineuse artificiel en fonction de la disponibilité en éclairage naturel.

Pour commencer, le SRI concerne tous les domaines du bâtiment :

  • Le chauffage,
  • Le refroidissement,
  • L’ECS,
  • La ventilation,
  • L’éclairage,
  • Les parties mobiles de l’enveloppe,
  • L’intégration du renouvelable local,
  • La flexibilité et la gestion de la demande,
  • L’intégration du chargement de véhicules électriques dans le système du bâtiment
  • Le monitoring et le contrôle du bâtiment…

Chaque domaine comprend des sous-domaines appelés services, par exemple, pour les véhicules électriques :

  • Capacité de recharge
  • Information à l’occupant et connectivité
  • Capacité à équilibrer le réseau (peut se charger/décharger sur le bâtiment)

Pour chaque service, un degré d’intelligence ou de fonctionnalité devra être donné, par exemple, pour la capacité de recharge :

  • 0 : absente
  • 1 : faible capacité
  • 2 : capacité moyenne
  • 3 : grande capacité

Et pour chaque degré d’intelligence de chaque service, le(s) impact(s) positif(s) seront quantifiés et pondérés en fonction de plusieurs critères comme :

  • L’économie d’énergie,
  • La flexibilité énergétique vis-à-vis du réseau,
  • L’intégration d’énergie renouvelable,
  • Le confort,
  • La commodité, ergonomie,
  • Le bien-être et santé,
  • La maintenance et la prévention des pannes
  • L’information des occupants

Exemple :

Pour le domaine chauffage, 12 services sont proposés :

  1. Contrôle des émissions de chaleur
  2. Contrôle des émissions pour les TABS (mode de chauffe)
  3. Contrôle du réseau de distribution d’eau chaude
  4. Contrôle des pompes de distribution en réseau
  5. Contrôle intermittent des émissions et/ou de la distribution – Un contrôleur peut contrôler différentes pièces/zones
  6. Stockage d’énergie thermique pour le chauffage
  7. Contrôle de la préchauffe du bâtiment
  8. Contrôle du générateur de chaleur (combustion)
  9. Contrôle du générateur de chaleur (pompes à chaleur)
  10. Mise en séquence de différentes sources de chaleur
  11. Contrôle du système de chaleur en fonction de signaux extérieurs (prix des énergies, charge réseau…)
  12. Systèmes de récupération de chaleur

Pour le service 1 : contrôle des émissions de chaleur, plusieurs niveaux d’intelligences/fonctionnalités sont possibles :

  1. Pas de contrôle automatisé ;
  2. Thermostat central ;
  3. Contrôle pièce par pièce (vanne thermostatique ou contrôleur électronique) ;
  4. Contrôle pièce par pièce et communication entre les vannes/contrôleurs et le système centralisé de contrôle et d’automatisation « BACS » (building automation and control system) ;
  5. Contrôle pièce par pièce avec communication et détection de présence.

En fonction du niveau choisi, les points suivants seront par exemple considérés pour chaque impact dans le calcul :

Niveau d’intelligence/fonctionnalité Impacts
Économies d’énergie Flexibilité pour le réseau et le stockage Favorise les énergies renouvelables Confort Commodité Ergonomie/ Facilité Santé et bien-être Entretien et prédiction des pannes Affichage des informations pour l’occupant
0 Pas de contrôle automatisé 0 0 0 0 0 0 0 0
1 Thermostat central 1 0 0 1 1 0 0 0
2 Contrôle pièce par pièce (vanne thermostatique ou contrôleur électronique) 2 0 0 2 2 0 0 0
3 Contrôle pièce par pièce et communication entre les vannes/contrôleurs et le système centralisé de contrôle et d’automatisation « BACS » (building automation and control system) 2 0 0 2 3 0 1 0
4 Contrôle pièce par pièce avec communication et détection de présence 3 0 0 2 3 0 1 0

Pour chaque domaine (somme de ses services), le score obtenu sera comparé au score maximal pouvant être obtenu par le bâtiment et donnera une valeur en %. Par exemple, pour un bâtiment de logement sans ventilation, sans refroidissement, sans enveloppe mobile et sans renouvelable :

Domaines Scores
Économies d’énergie Flexibilité pour le réseau et le stockage Favorise les énergies renouvelables Confort Commodité Ergonomie/ Facilité Santé et bien-être Entretien et prédiction des pannes Affichage des informations pour l’occupant SRI
0 Général pondéré

 

71% 0% 0% 77% 33% 17% 20% 19% 45%
1 Chauffage 75% 0% 0% 85% 64% 0% 25% 75%
2 ECS 100% 0% 0% 0% 0% 0% 50% 67%
3 Refroidissement Non-applicable
4 Ventilation Non-applicable
5 Éclairage 0% 0% 0% 0% 0% 0% 0% 0%
6 Enveloppe Non-applicable
7 Renouvelable Non-applicable
8 Gestion de la demande 0% 0% 0% 0% 0% 0% 0% 0%
9 Véhicules électriques 0% 0% 0% 0% 20% 0% 0% 0%
10 Monitoring et contrôle 60% 100% 0% 67% 38% 33% 17% 14%

 

32. DIRECTIVE EUROPÉENNE 2018/844 POUR LA PERFORMANCE ÉNERGÉTIQUE DES BÂTIMENTS

Performance énergétique des bâtiments : Directive Européenne 2018/844

Performance énergétique des bâtiments : Directive Européenne 2018/844


Introduction

Publiée le 19 juin 2018 : Directive (UE) 2018/844 du Parlement européen et du Conseil du 30 mai 2018 modifiant la directive

La version PDF complète de la directive 2018/844 est disponible sur le site eur-lex.europa !

Cette nouvelle directive intervient dans le cadre des engagements européens relatifs à « l’instauration d’un système énergétique durable, concurrentiel, sûr et décarboné d’ici 2050 ».

Pour rappel, l’Union européenne s’est engagée à réduire ses émissions de gaz à effet de serre de -40% pour 2030 (par rapport au niveau de 1990) et à décarboner complètement le parc immobilier à l’horizon 2050.

Le Parlement wallon a par ailleurs adopté un décret annonçant l’entrée en vigueur au niveau wallon des exigences sur l’électromobilité au 11 mars 2021. A partir de cette date, en cas de rénovation important ou de nouvelle construction, des exigences de pré-raccordement et/ou d’installation de bornes de recharge pour véhicules électriques doivent être respectées.

Pour les particuliers, vous trouverez tous les détails concernant les nouvelles exigences PEB et notamment par rapport à l’électromobilité dans  la rubrique « Construire et rénover : mes obligations » sur le site de la région wallonne.

Pour les professionnels, toutes les informations concernant les nouvelles exigences PEB sont accessibles via la rubrique « La réglementation wallonne – PEB ».


Amendements principaux

L’évolution majeure apportée par la directive concerne la prise en compte des systèmes d’automatisation et de contrôle aussi appelés « BACS » (Building Automation and Control System) comme un nouveau domaine technique du bâtiment. Le domaine de l’automatisation et du contrôle des bâtiments est donc considéré comme un système technique à part entière et la définition suivante en est donnée :

« Un système comprenant tous les produits, logiciels et services d’ingénierie à même de soutenir le fonctionnement efficace sur le plan énergétique, économique et sûr des systèmes techniques du bâtiment au moyen de commandes automatiques et en facilitant la gestion manuelle de ces systèmes techniques du bâtiment » [Directive PEB 2018/884]

Les états membres exigent également que « les bâtiments neufs, lorsque cela est techniquement et économiquement réalisable, soient équipés de dispositifs d’autorégulation qui régulent séparément la température de chaque pièce ou, si cela est justifié, d’une zone chauffée déterminée de l’unité du bâtiment. Dans les bâtiments existants, l’installation de ce dispositif d’autorégulation est exigé lors du remplacement de générateurs de chaleur, lorsque cela est techniquement et économiquement réalisable ».

Dans ce cadre, un indicateur de potentiel d’intelligence optionnel (SRI pour Smart Readiness Indicator) fait son apparition et vise à « mesurer la capacité des bâtiments à se prêter à l’utilisation des technologies de l’informations et de la communication et des systèmes électroniques pour en adapter le fonctionnement aux besoins des occupants et du réseau et en améliorer l’efficacité énergétique et la performance globale. » [Directive PEB 2018/884]

La directive intègre également l’électromobilité comme un système intégré au bâtiment (pour plus de détails, consultez le site de la région wallonne à ce sujet). Les VE (véhicules électriques) sont donc pris en comptes notamment pour répondre aux enjeux du stockage d’énergie et améliorer la flexibilité électrique. Des exigences concernant le nombre minimal de points de recharges ou de dispositifs de précablages sont prévues :

  • Pour les bâtiments non résidentiels neufs et en rénovation importante disposant de plus de dix emplacements de stationnement, un minimum d’un dispositif de recharge sera installé et 1 place sur 5 au moins sera pourvue d’un conduit pour le passage des câbles électriques afin de permettre la mise en œuvre ultérieure d’un point de recharge ;
  • Pour les bâtiments non résidentiels existants disposant de plus de vingt emplacements de stationnement, un nombre minimal de point de recharge devra être prescrit et installé en œuvre pour 2025
  • Pour les bâtiments résidentiels neufs et en rénovation importante disposant de plus de dix emplacements de stationnement, toutes les places de parking seront pourvues d’un conduit pour le passage des câbles électriques afin de permettre la mise en œuvre ultérieure d’un point de recharge.

Lorsque cela est techniquement et économiquement réalisable, les bâtiments non résidentiels ayant des installations de chauffage ou des systèmes de chauffage/climatisation et de ventilation des locaux combinés d’une puissance nominale utile est supérieure à 290kW, la directive exige que ces systèmes soient équipés d’un système d’automatisation et de contrôle en 2025. Ces systèmes devront-être capable de :

  • Suivre, enregistrer, analyser et ajuster la consommation ;
  • Mesurer l’efficacité des systèmes et détecter les pertes d’efficacité ;
  • Informer le responsable ou le gestionnaire des possibilités d’amélioration de l’efficacité des systèmes ;
  • Communiquer avec les autres systèmes du bâtiment, être interopérable ;

Dans le secteur résidentiel, les États membres peuvent exiger que les bâtiments soient pourvus d’un système de suivi de l’efficacité pouvant informer les propriétaires en cas de perte d’efficacité et détecter quand un entretien du système s’impose. Le contrôle de la production, de la distribution, du stockage et de l’utilisation optimale de l’énergie par un système automatisé peut également être exigé.

La directive prévoit que ces systèmes d’automatisation et de contrôle puissent remplacer avantageusement les inspections des systèmes techniques.

Par ailleurs, l’accent est également mis sur la lutte contre la précarité énergétique et une meilleure considération des impacts de l’environnement bâti sur la santé et le bien-être dans les bâtiments.

electrolyse de l'eau

Stockage Power-To-Fuel : l’électrolyse

Stockage Power-To-Fuel : l'électrolyse


Le principal représentant de ce type de stockage est l’électrolyse de l’eau qui permet de produire de l’hydrogène.

Contrairement au stockage thermique ou en accumulateurs, ce type de système permet une conservation plus longue, inter-saisonnière, de l’énergie sous forme d’hydrogène.

31. LE STOCKAGE POWER-TO-FUEL : L’ÉLECTROLYSE

L’hydrogène comme carburant peut ensuite être valorisé de différentes manières :

  • Comme carburant combustible directement via le réseau de gaz,
  • Soit dans une centrale à gaz adaptée. Dans ce cas, in fine, de l’électricité sera reproduite à partir du carburant.
  • Par production de méthane : en faisant réagir 4 molécules de H2 avec du CO2 du méthane et de l’eau sont produits.
  • Via une pile à combustible qui fera réagir 2 molécules de H2 avec une molécule de dioxygène pour produire de l’électricité avec un rendement de ±60% et rejeter de l’eau. Ce rendement sera meilleur si la pile à combustible est utilisée en cogénération pour valoriser le dégagement de chaleur.
STOCKAGE ÉLECTROCHIMIQUE : LES BATTERIES

Stockage Power-To-Power

Stockage Power-To-Power


Le stockage électrochimique : les batteries

Les batteries ou accumulateurs électrochimiques sont les moyens de stockage les plus connus. Nous en avons dans nos smartphones, nos appareils photos et de plus en plus souvent dans nos bâtiments.

Les accumulateurs de ce type profitent des propriétés électrochimiques de certains matériaux, notamment des couples oxydant-réducteur comme le Nickel et le Cadmium.

Lors de la phase de charge, l’électricité induit un flux d’électron entre les bornes qui va polariser les électrodes. La borne négative va alors attirer les protons (+) d’un côté de la membrane. Ces protons vont s’accumuler et l’électrolyte qui était initialement neutre et homogène va se polariser: un côté va se charger positivement et l’autre, orphelin de ses protons(+), négativement.

Lorsque tous les protons (+) ont migré d’un côté, l’accumulateur est chargé à 100%.

Schéma stockage électrochimique : les batteries.

Dans la phase de décharge (utilisation de l’énergie stockée), cette différence de polarité est utilisée pour mettre des électrons en mouvement dans le sens inverse et produire de l’électricité. Cette circulation en sens inverse des protons va progressivement rétablir l’équilibre de polarité entre les parties chargées positivement et négativement. À partir d’un moment, la tension électrique induite deviendra trop faible et l’accumulateur sera considéré comme « vide ».

Plusieurs matériaux sont utilisables pour réaliser ce principe. En fonction du type d’anode, de cathode et d’électrolyte la densité énergétique, la vitesse de charge, le coût et la stabilité seront variables.

Parmi les technologies les plus courantes, les densités énergétiques sont les suivantes :

Parmi les technologies les plus courantes, les densités énergétiques sont les suivantes

Les autres caractéristiques principales de différentes technologies:

  Vitesse de charge Vitesse de décharge naturelle Nombre de cycles EFFET mémoire* Recyclabilité Coût Commentaire
Plomb-acide Moyenne ±500 Extrêmement faible Très bonne faible Supporte mal les cycles trop amples
Ni-Cd ± rapide ±2000 Oui Toxique
NiMH ± rapide ±1000 Oui mais faible Peu polluant
Li-Ion ++ négligeable ±750 Extrêmement faible Mauvaise, coûteuse
Ni-Zn + rapide ±300 Oui mais faible correcte Moyen
Li-po ++ négligeable ±300

L’effet mémoire est un phénomène physique et chimique qui se manifeste dans certaines technologies d’accumulateurs plus que dans d’autres. S’il se manifeste, ces derniers doivent être déchargés complètement avant d’être rechargés sous peine d’observer une réduction de la capacité de la batterie difficilement récupérable.


Le stockage thermique

Le stockage d’électricité sous forme de chaleur est généralement utilisé tel quel sous forme d’énergie thermique pour l’eau chaude sanitaire ou le chauffage mais peut également être reconvertie et restituée sous forme d’électricité par l’intermédiaire d’une turbine.

Le principe général consiste à chauffer un matériau à haute densité calorifique (de l’eau, de la pierre réfractaire, un matériau à changement de phase, …) dans un milieu clos fortement isolé thermiquement. Le chauffage de la masse à lieu lorsqu’il y a surplus d’électricité.

Schéma stockage thermique.

À l’inverse lorsque l’électricité vient à manquer, la chaleur est libérée et va produire de la vapeur qui continuera son chemin dans une turbine haute température, comme dans une centrale TGV. La turbine va alors se mettre en mouvement et alimenter un alternateur qui pourra injecter du courant alternatif sur le réseau ou dans le bâtiment une fois qu’il sera passé par le transformateur adéquat.


Le stockage En « STEP »

Il s’agit probablement du système de stockage à grand échelle le plus connu. La STEP (Station de transfert d’énergie par pompage) fonctionne par pompage-turbinage. Lorsque le réseau ou le bâtiment est en état de surproduction, pour ne pas gaspiller cette précieuse énergie, une pompe sera actionnée. La pompe élevera alors de l’eau pour la stocker dans un bassin en hauteur (sur la toiture, en haut d’une coline, …).

Cette eau située en hauteur réprésente une énergie potentielle considérable. Ensuite, le fonctionnement est le même que pour un barrage hydroélectrique : au moment opportun, l’eau sera libérée et turbinée pour produire de l’électricité avant de rejoindre le bassin inférieur.

L’énergie disponible est alors égale à :

[La masse] x [la gravité] x [la hauteur de la masse]

Soit, pour un bassin de 1000 m³ (un cube de 10 mètres de côté) situé sur terre (g=9,81 m/s²) à une hauteur moyenne de 20 m par rapport au bassin bas :

1.000.000 kg   x   9,81 m/s²   x   20 m  =  196.200.000 Joules

Soit 54 kWh

Schéma stockage En « STEP ».


Autres systèmes de stockage

Le stockage d’électricité est probablement le Graal du XXIème siècle. C’est pourquoi les ingénieurs rivalisent de créativité pour inventer la solution la plus abordable, verte et performante.

Parmi les solutions que nous rencontrons aujourd’hui, citons le stockage par air comprimé.

Le principe est simple : on profite d’une cavité étanche existante ou on en crée une. Cette cavité sert alors d’espace de stockage pour notre air comprimé. Lorsqu’il y a surproduction, l’électricité va actionner un compresseur, ce dernier va alors faire monter la pression dans notre cavité. Si celle-ci est parfaitement étanche, l’énergie potentielle contenue dans la haute pression peut être conservée très longtemps. Seule la chaleur produite lors de la compression sera perdue en cours de route.

Schéma autres systèmes de stockage.

Ensuite, lorsque le bâtiment ou le réseau a besoin d’électricité, cette pression sera libérée et turbinée afin de produire de l’électricité.

Ce système est à la fois relativement simple et compact (l’essentiel se passant en sous-sol) mais nécessite la présence d’une cavité suffisamment grande, étanche, solide et profonde pour résister aux fortes pressions sans se déformer de manière sensible, ce qui provoquerait des désordres à l’installation et son environnement.

Un autre système qui a de beaux jours devant lui dans le secteur des transports et des énergies renouvelables notamment est celui du stockage d’électricité par volant d’inertie. Ici, le système est encore plus simple. L’électricité OU un mouvement rotatif (roue de voiture, éolienne, …) entraine à la rotation un cylindre extrêmement lourd. Ce surplus d’énergie va accélérer la rotation du cylindre à des vitesses pouvant atteindre les 10.000 tours par minute ! Afin de limiter les frottements et donc l’auto-décharge, ce cylindre est monté sur des roulements performants et confiné sous vide.

Ensuite, lorsque le réseau aura besoin d’énergie, le moteur va se transformer en générateur (une dynamo) et produire de l’électricité en freinant électromagnétiquement le volant d’inertie.

Ce type de système est notamment utilisé dans les autobus et certaines voitures hybrides afin de récupérer l’énergie de freinage. Plutôt que de freiner les roues par frottement, les roues sont embrayées progressivement au volant d’inertie. L’inertie du bus en mouvement est alors transmise au volant d’inertie qui prend de la vitesse et ralenti le bus jusqu’à son arrêt complet. À ce moment, le volant est débrayé et le cylindre tourne à vive allure avec peu de frottement. Lorsque les passagers sont tous à bord, le volant d’inertie va être progressivement ré-embrayé au système de traction du bus et lui restituer la quasi-totalité de son énergie de freinage mais sous forme d’accélération cette fois-ci.

Dans le cadre des énergies renouvelables, ce type de système est envisagé comme stockage tampon entre le dispositif de production renouvelable et le bâtiment afin d’éviter que, nous n’ayons à rebasculer sur le réseau au moindre nuage ou manque de vent.

Types de stockage

Types de stockage


Les différents types

Il existe 5 vecteurs principaux pour le stockage d’énergie :

  • Electrochimique (Batteries) ;
  • Thermique (Ballons d’eau chaude, inertie du bâtiment) ;
  • Cinétique (Volant moteur) ;
  • Gravitaire, potentielle (Station de pompage turbinage) ;
  • Chimique (électrolyse > hydrogène).

En fonction de la nature de l’énergie restituée par le système de stockage, on parlera plutôt tantôt de :

  • « Power to power » : La production électrique est convertie en énergie intermédiaire puis restituée sous forme d’électricité.
  • « Power to fuel » : La production électrique est convertie en combustible.
Bornes de recharge pour véhicules électriques (VES)

Bornes de recharge pour véhicules électriques (VES)

Bornes de recharge pour véhicules électriques (VES)

Dans les années à venir, la densité de bornes de recharge pour les VEs devrait drastiquement augmenter sous la pression de l’Europe via la directive EPBD 2018/884. En 2025, les nouvelles constructions et les rénovations lourdes (non-résidentielles) dont le parking fait plus de 10 emplacements devront être équipé d’une borne de recharge et 1 emplacement sur 5 pré-câblée pour pouvoir accueillir une borne dans le futur. Pour les bâtiments existants, la Belgique est invitée par l’Europe à fixer un nombre minimal de points de recharge pour les parkings non résidentiels de plus de 20 emplacements.


Les différentes puissances disponibles

D’un point de vue technique, les bornes de recharge et prises murales les plus courantes des constructeurs sont disponibles en : monophasé et en triphasé, en 16A, 32A et 64 Ampères pour des puissances allant jusqu’à 43 kW pour les bornes rapides.

Les puissances généralement disponibles sont donc les suivantes :

Type de borne Monophasé Triphasé
10A (prise classique) 2.3 kW   [pour dépanner]
16A 3.7 kW   [très lent : +15 à 25 km/hcharge] 11 kW
32A 7.4 kW   [Lent : +30 à 45 km/hcharge] 22 kW  [Moyen : +60 à 80 km/hcharge]
62A 43 kW   [Rapide : +100 à 140 km/hcharge]
Remarque 1 : certaines voitures ont une limite de vitesse de chargement

Remarque 2 : en hiver, la charge peut être ralentie si la batterie est froide

Des « superchargers » voient également le jour sur les aires d’autoroutes. Dans ce cas, les puissances dépassent déjà les 100 kW !

Pour avoir un ordre de grandeur, un véhicule électrique consomme autour de 20 kWh/100 km et leurs batteries ont une capacité allant de ± 20 kWh pour les micro-citadines à 40 kWh pour les petites citadines et jusqu’à 100 kWh pour les plus grosses berlines. Ces « super-chargeurs » sont donc capables de prolonger l’autonomie des VEs compatibles de plus de 200 km en moins de 20 minutes, soit le temps d’une pause-café !

Il est également bon de savoir que les derniers 20-30 % de la charge d’un VE s’effectuent jusqu’à 2 fois plus lentement.

Comme le coût de l’installation d’une borne est proportionnel à sa puissance, le choix de la puissance devra être judicieux. La décision d’opter pour une borne plutôt qu’une autre dépendra du temps de charge disponible et de l’autonomie attendue après recharge (dans les limites de la capacité de la batterie).

EXEMPLE : Quelle puissance mettre en place dans le cas de bornes à destination des employés d’une grande entreprise dont la durée du chargement sera étalée sur 8 heures (de 9 h à 17 h) ?

Comme les employés de cette entreprise travaillent à moins de 100 km de leur domicile mais que tous n’ont pas la possibilité de charger leur véhicule au domicile, une autonomie de 200 km peut, par exemple, être prévue pour assurer le retour au domicile le soir mais également le trajet vers le bureau le lendemain matin. Dans ce cas, les bornes lentes de 7,4 kW sont déjà largement suffisantes. Néanmoins, un électricien avisé pourrait favoriser le triphasé pour des puissances si importantes afin de réduire le courant pour une puissance similaire en augmentant la tension (de 230 v à 400 v). Le choix de la borne triphasé de 11 kW est donc également un bon choix.

Si l’entreprise emploie des consultants devant réaliser une série d’aller-retours sur la journée, quelques bornes rapides de 43 kW pourront s’avérer nécessaire mais uniquement pour cette flotte de véhicules-là !


Les types de connecteurs côté point de charge

Pour raccorder le véhicule à la borne, plusieurs types de fiches de raccordement existent. Pour les recharges lentes et normales (≤ 43 kW), côté borne, ce sont les fiches domestiques et les fiches de « type 2 » qui sont présentes. Tandis que pour les charges rapides (> 50 kW), celle-ci s’effectuent en courant continu avec prises spécifiques.

Les fiches et prises domestique permettent une puissance de 2,3 kW, ce sont celles que nous retrouvons couramment dans nos bâtiments :

Prise domestique. Source : Zeplug.com

Prise domestique. <

Source : Zeplug.com

Dans ce cas-là, pas besoin de borne en tant que tel mais attention tout de même, pour utiliser ce type de prise murale pour le chargement il est impératif d’avoir une installation pouvant supporter 16 ampères au moins sur ce circuit. Il ne faudra également pas utiliser des rallonges en cascade ou un câble trop long ou de section faible sous peine de courir un dangereux risque d’échauffement.

Les fiches de types 2 correspondent au standard Européen et sont les plus courantes. Elles sont utilisées pour les puissances courantes de 3,7 kW à 43 kW, en mono et triphasé, elles se présentent comme ceci :

Prise type 2. Source : Zeplug.com

Prise type 2.
Source : Zeplug.com

En ce qui concerne les bornes rapides, il existe trois autres types de connecteurs.

À partir de 2025, les bornes rapides devront être équipées de connecteurs CCS Combo (pour fonctionner avec les voitures européennes) et CHAdeMO (pour les voitures asiatiques et TESLA avec un adaptateur)

Bornes de recharge pour véhicules électriques (VES)

Prise et connecteur CCS Combo.
Source : engie-electrabel.be

 

Bornes de recharge pour véhicules électriques (VES)

Prise et connecteur CHAdeMO.
Source : engie-electrabel.be

 

Enfin, en dehors des standards Européens, il existe également la prise propriétaire TESLA SuperCharger

Bornes de recharge pour véhicules électriques (VES)

Prise et borne TESLA SUPERCHARGER.
Source : engie-electrabel.be

Méthode de contrôle et de modulation de la ventilation mécanique

Méthode de contrôle et de modulation de la ventilation mécanique

Méthode de contrôle et de modulation de la ventilation mécanique


Monitoring du taux de Dioxyde de carbone (CO2)

Une des méthodes pour moduler et contrôler le débit du système de ventilation est de mesurer le taux de CO2 d’un local ou d’une zone. En faisant cela, le système peut se faire une idée de l’occupation de l’espace et adapter le taux de renouvellement de l’air. Le CO2 est ici utilisé comme un marqueur de l’occupation en quantité et en intensité. Si le niveau de CO2 dépasse une limite préconfigurée, le système de ventilation augmentera le débit d’arrivé d’air frais pour cet espace.


Détection de l’inoccupation

Quand une inoccupation est détectée dans un espace (information provenant du système d’éclairage ou de détecteurs de présence), le débit de ventilation est rapidement fortement réduit ou complètement mis à l’arrêt pour éviter les pertes d’énergie (ventilation, chauffage et refroidissement). Cette stratégie est généralement destinée aux locaux dont l’utilisation est intermittente par nature (cafétérias, salles de réunions, …).


La valorisation de l’air extérieur

Lorsque l’air extérieur est plus froid que celui de l’espace devant être conditionné et que cette fraicheur est recherchée, le système de gestion du bâtiment pourra ouvrir les ouvertures de ventilation, grilles et autres fenêtres pour valoriser ce refroidissement gratuit et décharger partiellement ou complètement les systèmes mécaniques.