Étudier la pertinence d’un nouveau projet de cogénération

Étudier la pertinence d'un nouveau projet de cogénération


L’étude de pertinence d’une cogénération

En matière de cogénération, il n’existe pas de règle rapide, univoque et universelle pour son dimensionnement : « inconvénient ou opportunité ? »

Il faut veiller à ce que la cogénération assure la « base » des besoins thermiques d’un bâtiment ou d’une entreprise pour pouvoir la faire fonctionner suffisamment longtemps à pleine puissance. Les « pointes » seront donc assurées par la chaufferie existante (ou à installer) qui ne pourra, que très rarement, être totalement remplacée par la cogénération.

Cet inconvénient se transforme en opportunité dans la mesure où le bureau d’études ou le consultant doit rechercher le dimensionnement « optimum », c’est-à-dire qui procure le maximum de bénéfices (économique, énergétique et environnementaux).

Monotone de chaleur.

Une autre manière d’exprimer le bénéfice énergétique est, de déterminer quel est l’optimum de puissance du cogénérateur qui couvre la surface maximale sous la monotone de chaleur.

Ne soyez donc pas surpris si l’on vous propose plusieurs tailles différentes : à vous de choisir celle qui vous convient le mieux.

Cette étude d’optimisation, encore appelée « étude de faisabilité », réalisée par un expert compétent, est payante et nécessite un peu de patience pour obtenir les résultats, surtout si une campagne de mesures des besoins énergétiques (électricité et chaleur) doit être envisagée. Et il est probable qu’il n’y ait pas de solution « cogénération » suffisamment attrayante dans votre cas.

Une première étude de faisabilité d’un projet peut être directement menée par le demandeur au moyen d’un outil simplifié – l’outil de calcul COGENcalc.xls.

Ce n’est qu’au terme de cette étude de pertinence à réaliser par soi-même, avec l’éventuel concours du Facilitateur en Cogénération, que vous pouvez décider de commander une étude de faisabilité.

Les éventuelles subventions mises à disposition de la Région sont disponibles sur le site de la Région : energie.wallonie.be.

>> Installer une cogénération dans votre établissement (PDF)


Les données nécessaires à une première évaluation avec COGENcalc.xls

Les données nécessaires à une première évaluation de rentabilité d’une installation de cogénération sont essentiellement les données relatives à vos consommations d’électricité et de chaleur :

  • Pour l’électricité, il vous faudra encoder les données relatives aux factures d’une année complète, soit douze factures.
  • Pour la chaleur, vous devrez fournir des informations d’une part sur la quantité de combustible que vous consommez sur une année et d’autre part sur l’utilisation faite de cette chaleur.
    • Si vous consommez actuellement du gaz, ce sont les douze factures relatives à la même période que les factures électriques que vous aurez à encoder.
    • Si vous consommez du mazout, soit vous encodez la quantité totale de mazout consommée sur une année et le montant auquel cela correspond, soit vous introduisez les livraisons de mazout réalisées pendant la même période.

Des informations de base vous seront également demandées par choix multiples sur le type de chaudière dont vous disposez et sur votre cuisine si elle est alimentée au gaz.

Finalement, vous indiquerez par un choix multiple le type d’institution pour lequel vous envisagez une cogénération avec son horaire de fonctionnement, par exemple « établissement de soin, consommation continue de chaleur, 7 jours sur 7 » et le type de moteur choisi, gaz s’il est disponible, mazout dans le cas contraire. Chacun des choix sur le type d’institution avec son horaire de fonctionnement correspond à un profil de consommation de chaleur type.

Les certificats verts sont intégrés dans le logiciel.

Il se peut que les valeurs de référence se modifient : coefficient d’émissions en CO2 et/ou rendements de l’installation de référence. Vous devrez vérifier auprès de la CWaPE ou vous tenir informé via le site portail énergie de la Région wallonne.


Mode d’emploi de l’outil COGENcalc.xls

Calculs

Pour lancer le programme de calcul COGENcalc.xls

Introduction

Le programme vous permet d’établir rapidement un premier dimensionnement d’une éventuelle cogénération adaptée à vos besoins électriques et thermiques. Il calcule aussi la rentabilité que vous pourrez attendre de cet investissement.

Lors de l’ouverture du fichier, Excel vous demandera si vous souhaitez activer les macros. Vous devez les activer.

De manière générale, les cellules sur fond bleu ou brun (caractères bleus) sont des valeurs à introduire, les cellules sur fond jaune (caractères rouges) sont des valeurs calculées.

Première partie : »Premier dimensionnement de l’unité de cogénération »

Étape 1.1 : Déterminer votre BNeC

Il s’agit de déterminer les besoins nets de chaleur de votre établissement.

Pour cela, il est nécessaire de compléter certaines informations relatives à votre bâtiment et son usage, dans l’ordre de la feuille :

  • Le type de bâtiment concerné (type d’établissement et taille de l’établissement).
  • Q : la consommation annuelle en combustible (gaz ou mazout) en kWh PCI.
  • Qnon cogen : la part de combustible qui ne pourrait pas être assurée par la cogénération, c’est-à-dire, la part de combustible, si elle existe, qui n’est pas utilisé pour la production d’eau chaude (chauffage et ECS). Ce sera la part qui ne pourra pas être assurée par la cogénération : Qnon cogen.
  • URE : la réduction de consommation qui pourrait être envisagée par la mise en place d’éventuelles mesures URE.  Une économie de 10 % est proposée par défaut dans le cadre de la réalisation d’un audit énergétique.
  • ΔQ : l’évolution de la consommation dans le futur, réduction ou augmentation (par exemple pour une extension) de la consommation initiale mentionnée.
  • ηchaufferie : le rendement thermique de l’installation de votre installation de chauffage actuelle, idéalement un rendement mesuré sur une assez longue période, sinon votre meilleure estimation. Attention, le rendement en question n’est pas le rendement ponctuel de la chaudière, mais le rendement global de l’installation sur une période de plusieurs mois.
  • La cellule jaune vous donne finalement le Besoin Net de Chaleur (BNeC), base du dimensionnement de l’unité de cogénération.

Étape 1.2 : Sélectionner un « profil type » de consommation de chaleur.

Vous indiquerez par un choix multiple le type d’institution pour lequel vous envisagez une cogénération avec son horaire de fonctionnement, par exemple « établissement de soin, consommation continue de chaleur, 7 jours sur 7 ». Chacun des choix sur le type d’institution avec son horaire de fonctionnement correspond à un profil de consommation de chaleur type.

À partir des profils thermiques types de besoins de chaleur, propres à votre établissement, le logiciel calcule directement 3 paramètres utiles pour le dimensionnement :

  • UQ : la durée de fonctionnement d’une chaudière bien dimensionnée pour assurer la satisfaction des BNeC.
  • Ucogen : la durée de fonctionnement de la cogénération pour assurer la satisfaction d’une partie des BNeC.
  • Partcogen : qui représente la puissance thermique de la cogénération par rapport à la puissance thermique maximale (de la chaudière bien dimensionnée).

Dans cette étape, il sera également possible de sélectionner la présence d’un ballon de stockage.

Étape 1.3 : Déterminer la puissance thermique de l’unité de cogénération

Sur base de ces 3 paramètres, on obtient directement :

  • PQcogen : la puissance thermique de l’unité de cogénération. Si la puissance thermique calculée est trop faible (< 10 kW) le logiciel mentionnera directement 0.
  • Qcogen : la production de chaleur.

Éventuellement, vous pouvez réduire cette puissance d’un certain pourcentage si vous estimez que l’unité est trop grande. Par exemple, si la production électrique est trop importante par rapport à votre consommation et que ne vous désirez ne pas vendre trop au réseau, le facteur de réduction de la puissance thermique peut s’avérer « payant ».

Étape 1.4 : Choisir une unité de cogénération

Dernière étape du dimensionnement, il s’agit de choisir la technologie. En effet, de ce choix, dépendra la puissance électrique de l’unité de cogénération, la puissance thermique étant identique. Typiquement, un moteur à l’huile végétale aura une puissance électrique supérieure à celle d’un moteur gaz. Cette différence étant due aux caractéristiques technologiques différentes entre ces moteurs.
Sur base du choix de la technique, on obtient une évaluation de :

  • PEcogen : la puissance électrique de l’unité de cogénération.
  • ηcogen : le rendement électrique de l’unité choisie.
  • Ecogen : la production électrique annuelle de l’unité choisie dans la configuration étudiée.

Remarque :
À ce stade, il faut être attentif au fait que ces caractéristiques de moteur sont extrapolées sur base de moteur existant, mais que vous ne rencontrerez sans doute pas sur le marché un moteur ayant exactement ces caractéristiques. Il se pourrait par exemple que le programme vous renseigne un moteur de 67.3 kWé alors que dans la pratique, vous aurez à choisir entre un moteur de 60 ou de 80 kWé. Cette remarque vaut aussi pour les autres paramètres (rapport entre le rendement électrique et thermique de votre moteur, frais d’entretien, valeur de l’investissement).

Deuxième partie : « Rentabilité du projet de cogénération »

Cette seconde partie consiste à calculer, à la « grosse louche » la rentabilité du projet de cogénération sur base du premier dimensionnement effectué.

Étape 2.1 : Calculer le gain sur facture électrique

Pour réaliser une première évaluation économique du projet, vous devez introduire :

  • Etotale : la consommation annuelle totale d’électricité (en reprenant la somme des consommations en heures pleines et en heures creuses),
  • Coût Etotale : le montant total de la facture annuelle électrique.

Si les données ne sont pas connues, l’outil calculera des valeurs automatiquement.
Sur base de ces premières données, l’outil évaluera :

  • Prixmoyen achat : le prix moyen de votre électricité.
  • Eauto-cons : la part de l’électricité qui sera autoconsommée dans le projet.
  • Erevente : la quantité d’électricité qui sera revendue sur le réseau.

Sur base de ces données et du prix de revente, l’outil calcule le gain sur la facture de l’électricité – Gainélec.

À ce stade vous devez estimer le pourcentage de l’électricité produite qui sera autoconsommée, ce pourcentage dépendra de votre consommation et votre profil d’utilisation. Si vous n’avez aucune idée, vous pouvez mettre une valeur entre 75 et 90 %. Le reste de l’électricité sera alors vendu par le réseau à un fournisseur d’électricité de votre choix, à un prix qui aura convenu avec le fournisseur (actuellement ce prix est d’environ 35 €/MWh).

Un calcul se fait automatiquement pour déterminer le gain sur la facture d’achat d’électricité, le gain sur la vente d’électricité et le gain total sur la facture d’électricité (Gainélec).

Étape 2.2 : Calculer le gain sur la chaleur

La consommation annuelle en combustible est automatiquement reprise (Q), il suffit d’introduire le montant total de la facture annuelle du combustible et le prix moyen du combustible se calcule en fonction de votre encodage.

Ensuite la consommation évitée de la chaufferie (Conschaufferie) et le gain sur la facture chaleur (Gainchaleur) se calculent.

Étape 2.3 : Calculer le gain par la vente des certificats verts

L’installation de cogénération vous permettra de réduire les émissions polluantes, dont le CO2, qui est gratifié par le mécanisme des certificats verts, pour autant que vous arriviez à une économie relative de CO2 supérieur ou égal à 5 %.

À ce stade vous devez sélectionner si le site est connecté au non au gaz naturel, ce qui doit être compatible avec le type de cogénération précédemment sélectionné.  Le facteur d’émission de l’installation est automatiquement repris (CCO2) et permet le calcul du gain en CO2 (GCO2) et en énergie primaire (Gain énergie primaire)  Le taux d’octroi est calculé selon la réglementation en vigueur.

Étape 2.4 : Calculer la dépense en combustible

En introduisant le prix moyen du combustible de la cogénération, vous obtenez automatiquement la dépense en combustible pour la cogénération (DépenseComb).

Étape 2.5 : Calculer la dépense en entretien

Ce calcul se fait directement en fonction de la technologie utilisée et de la puissance de l’unité de cogénération.

Étape 2.6 : Estimer le montant de l’investissement.

En ajoutant un facteur de sur-investissement d’environ 40 % [10 % pour les frais d’installation, 7 % pour les frais d’études, 10 % pour d’éventuels travaux de génie civil, 5 % pour la connexion sur le réseau électrique et 8 % d’imprévus] vous obtenez l’investissement brut de l’unité de cogénération « tout compris » (Invbrut cogen).

Si vous avez droit à des subsides, vous pouvez introduire ici le pourcentage ou le montant total. Pour plus d’informations sur les primes et subsides, voir le portail énergie de la Région wallonne : energie.wallonie.be.

L’investissement net se calcule automatiquement (Invnet cogen).

Étape 2.7 : Estimer la rentabilité du projet

Le gain annuel net du projet se détermine par la différence entre les gains et les dépenses.

Le temps de retour simple (TRS) se calcule en divisant l’investissement net par le gain annuel net.

Conclusion

Une conclusion s’affiche en fonction du temps de retour simple :

  • si le TRS est inférieur à 6 ans, la conclusion sera positive,
  • si il est supérieur à 6 ans, la conclusion sera négative.

Cette information est naturellement tout à fait libre et elle doit être interprétée cas par cas. Dans certains cas un TRS de 10 ans peut être acceptable, dans d’autres cas un TRS de maximum de 3 ans est jugé comme limite.

Remarque :
Le logiciel vous donne des résultats techniques et économiques qui vous permettront d’évaluer, en connaissance de cause, l’opportunité d’installer ou non une unité de cogénération. Cependant, les résultats obtenus ne sont qu’une première approximation. Ils ne donnent qu’une indication quant à la suite ou non du projet, à savoir la commande d’une étude de faisabilité dans les « Règles de l’art » à un bureau d’études compétent, et non la commande de l’équipement !


Limites de COGENcalc.xls

Les hypothèses suivantes s’appliquent à l’outil d’évaluation. Pour un dimensionnement précis, ces hypothèses sont limitatives et, sauf exception, le prescripteur devra affiner cette évaluation, notamment par rapport aux points suivants :

  • Le profil de consommation de chaleur est à choisir parmi des profils types.
  • La puissance de la cogénération et le nombre d’heures de fonctionnement sont prédéfinis pour chaque profil type de consommation de chaleur.
  • Le besoin en chaleur est continu et ne descend en tout cas pas sous la charge minimale du cogénérateur pendant les heures de fonctionnement.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Profils types de demande de chaleur et monotone

Profils types de demande de chaleur et monotone


Les profils de prélèvement

Les profils de demande de chaleur présentés ici (Besoin net en chaleur, BNeC), montrent la répartition de la demande de chaleur d’un bâtiment type sur une année, sur une semaine et sur un jour. La répartition s’exprime en pourcents.

Profil A Profil B Profil C Profil D Profil E Profil F
Activités diurnes
5 jours sur 7
Activités diurnes
6 jours sur 7
Activités diurnes
7 jours sur 7
Activités continues
7 jours sur 7
Activités diurnes
5 jours sur 7
Activités diurnes
7 jours sur 7
Bureaux
Écoles
Services aux personnes
Commerces
Culture
Centres sportifs
Soins aux personnes
HORECA
PME à consommation très régulière
Blanchisseries
Teintureries
Logement collectif
BNeC d’une journée type (%) – Profil de prélèvement horaire
BNeC d’une semaine type (%) – Profil de prélèvement hebdomadaire
BNeC d’une année type (%) – Profil de prélèvement annuelle

Les monotones de demande de chaleur

Les monotones de demande de chaleur représentent l’organisation par ordre décroissant des demandes de chaleur horaires de l’utilisateur. Une courbe « monotone de chaleur » peut être déterminée pour chaque « profil type de consommation ».

Profil A Profil B Profil C
Profil D Profil E Profil F

Q = demande de chaleur horaire de l’utilisateur (100 % = PQ = puissance thermique de l’utilisateur).

Courbe supérieure = monotone de demande de chaleur de l’utilisateur (demande de chaleur mesurée heure par heure et classée par ordre décroissant). La surface comprise sous la courbe 1 correspond au besoin net de chaleur (BNeC) annuel de l’utilisateur.

Courbe inférieure = monotone de demande de chaleur de l’utilisateur, pendant les heures pleines.

*Durée d’utilisation = nombre d’heures ”équivalentes” de fonctionnement de l’installation à puissance nominale pour produire la quantité totale de chaleur.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Technologies alternatives

Technologies alternatives

Principe de la pirolyse.


Cogénération et biomasse

La cogénération et la biomasse, une solution éprouvée !

La biomasse, qu’elle soit d’origine ligneuse, agricole, agro-alimentaire ou résidentielle, constitue une source d’énergie renouvelable et, bien souvent aussi, un déchet difficile à gérer.

Dans ce contexte, la gazéification de produits ligneux et la biométhanisation de déchets agricoles et résidentiels alimentant une unité de cogénération peuvent apporter des réponses tant du point de vue énergétique qu’environnemental.

Les techniques de gazéification ou de biométhanisation permettent maintenant de bien maîtriser les processus de combustion et de limiter ainsi les émissions de polluants.

Ces technologies valorisent ainsi efficacement une source d’énergie renouvelable, présente abondamment en Wallonie et encore largement sous exploitée. Leur utilisation comme source d’énergie primaire permet donc d’alléger nos émissions de CO2 et de participer à l’effort de notre pays au niveau de l’accord COP 21.

À ce titre, elles sont particulièrement visées par le décret relatif à l’organisation du marché de l’électricité en Wallonie, qui incite financièrement au développement d’applications économes en énergie primaire par le principe des certificats verts. L’économie en CO2 engendrée par des cogénérations à partir de biomasse est effectivement très importante.

D’une part, s’il s’agit d’une cogénération de qualité, elle participe au même titre que toute cogénération de qualité à l’économie de CO2 et peut donc recevoir à ce titre des certificats verts en fonction de sa qualité.
Par ailleurs, les cogénérations à partir de biomasse rendent également possible la création de nouvelles filières d’activités économiques et de nouveaux pôles d’excellence technologique en Wallonie.
Enfin, elles peuvent apporter des éléments de réponse à la lancinante question du traitement des déchets. Dans certains cas et sous certaines conditions, elles présentent, en effet, une réponse intégrée à ce problème majeur de société.

Cogénération au biogaz

Une réalisation concrète : la cogénération au biogaz à la décharge d’Anton.

Installation de la décharge d’Anton – © SPAQUE.

Dans le cas de la décharge d’Anton située à proximité d’Andenne, dont la réhabilitation pour le compte de la Région wallonne est menée par la Spaque, le biogaz généré par la masse des déchets enfouis est collecté et envoyé vers un module de cogénération.

Après une première expérience dans la cogénération débutée en 1999, l’unité a été remplacée en 2013.

Une nouvelle unité de cogénération a été mise en place, adaptée au biogaz produit sur le site, à savoir un biogaz pour une richesse en méthane de 55 %.

La nouvelle installation a une Puissance électrique installée de 115 kWé pour une puissance thermique de 160 kWth. Cette installation est dimensionnée pour absorber un débit de 50 m³/h de biogaz.

La chaleur est envoyée vers les différents bâtiments de l’Institut Saint-Lambert.

En 2014, l’installation a valorisé à peu près 1 million de m³ de déchets ménagers (445 000 m³ de biogaz produit), en produisant 912 MWh d’électricité (dont 41 % auto consomme et le reste a été réinjecté sur le réseau.) et 1 054 MWh de chaleur (dont 21 % a été autoconsommé et le reste renvoyé vers l’institut St Lambert).

Les rendements d’une installation de ce type (base de comparaison : pouvoir calorifique du gaz brûlé), pour un trimestre représentatif, sont de 33,6 % comme rendement électrique et 52,6 % pour le rendement thermique; ce qui donne un rendement global de 86,2 %.

Cogénération au bois

La cogénération au bois valorise le bois en électricité et en chaleur par une technologie unique qui est la seule solution bien adaptée aux déchets de bois produits dans les scieries, menuiseries de taille moyenne ainsi que ceux qui sont mobilisables lors de la gestion des espaces verts et des forêts.

Cogénérateur à gazéification de bois (source : Coretec).

La conversion du bois en électricité et en chaleur est réalisée par la gazéification du bois dans un gazogène et par la combustion du gaz produit dans un groupe de cogénération.

Installation d’une cogénération au bois : schéma de principe (source : Coretec).

Le combustible, par exemple sous forme de plaquette de bois, alimente le gazogène dans lequel il est transformé en gaz combustible. Le gaz produit est ensuite conditionné pour être brûlé dans le moteur du groupe de cogénération. L’électricité produite peut être consommée sur place ou être envoyée sur le réseau. La chaleur peut alimenter un procédé industriel ou des installations de chauffage. L’installation est entièrement automatisée et contrôlée à distance.

Les rendements de conversions électrique et thermique sont respectivement de 23 à 25 % et 50-57 %; soit un rendement total de 75-80 %. La puissance unitaire des centrales de cogénération développées et commercialisées en Wallonie varie de l’ordre de 30-45 kWé.


Trigénération

L’ajout à l’unité de cogénération d’une unité de production de froid par absorption transforme la cogénération en tri-génération.

L’objectif est d’utiliser la chaleur du moteur en été, à l’heure où elle est généralement moins utile, pour produire du froid. Ce froid peut être utilisé pour diverses applications comme la climatisation ou la réfrigération. La cogénération peut ainsi exploiter l’énergie primaire même en été.

Une telle technologie a naturellement un coût d’investissement élevé. De plus, la rentabilité tant énergétique que financière n’est pas souvent au rendez-vous. Une étude réalisée à l’UCL montrait les limites de cette technologie (« Économie d’énergie en trigénération ; Pépin Magloire, Tchouate Heteu, Léon Bolle ; Unité de thermodynamique et turbomachines, département de mécanique, Université catholique de Louvain ; 2002 »). En voici les principales conclusions :

  • Une cogénération de froid et d’électricité ne permet pas d’économiser systématiquement de l’énergie, mais permet dans certaines conditions une économie financière.
  • Cependant, la production simultanée de froid, de chaleur et d’électricité (trigénération) permet une économie d’énergie primaire en fonction de la fraction de chaleur λ utilisée pour la production de froid :
    • Pour les cycles LiBr/H2O, si λ est de l’ordre de 0,7.
    • Pour les cycles H2O/NH3, si λ est de l’ordre de 0,5.

Sur le marché, les puissances descendent actuellement jusqu’à 80 kW pour les machines à l’ammoniac ou même 70 kW pour les machines au Lithium-Bromure.

Le dimensionnement de la machine se fait en ajoutant la consommation de chaleur relative à la production de froid à la monotone de chaleur (calcul des puissances et des plages de fonctionnement) déjà définie précédemment.

Le fonctionnement idéal des machines à absorption, qui permet des rendements très élevés, utilise un fluide chaud à une température supérieure à 100 °C. Lorsque le fluide chaud n’est « qu’à » 95 °C, la puissance frigorifique est dans un rapport 1/1,6 de la puissance en chaud.

Notons finalement qu’une telle machine nécessite une tour de refroidissement plus grande.

Techniques

Présentation synthétique du phénomène d’absorption.

Microcogénération domestique

Source : Viessmann.

La micro-cogénération est une solution adaptée pour des plus petites installations, et en l’occurrence pour l’usage domestique. Au niveau du cogénérateur proprement dit, le moteur à combustion interne fait place à un moteur à combustion externe de type « stirling ». Dans de nombreux cas, la cogénération sera directement combinée avec une chaudière gaz à condensation. Les différents acteurs du marché ont à peu près tous développé une cogénération de type gaz.

Moteur stirling.

Cette technologie a été mise sur le marché pour répondre à des consommations électriques de l’ordre de 2 500 à 3 000 kWhé/an, ce qui correspond à la consommation annuelle moyenne d’un ménage.

Les puissances développées sont de 1 kWé et 6 kWth. Le complément thermique est donné par la chaudière à condensation qui peut moduler de 6 à 20 kW.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be

Choisir le stockage de chaleur [cogen]

Critères de sélection

Le volume du stockage est calculé lors du dimensionnement des équipements. Si le dimensionnement s’est limité à une évaluation grossière des puissances nécessaires, des investigations supplémentaires selon la même méthodologie compléteront et valideront les résultats.

Comme dans toutes les applications de stockage, il faudra tenir compte des pertes (pertes en stand-by pour les chaudières, pertes dans les tuyauteries,…). Dès lors, le raccordement et la régulation d’un stockage de chaleur seront plus complexes que l’installation standard d’une cogénération.

D’ordinaire, le ballon de stockage est installé en parallèle avec le cogénérateur. Cela permet de fonctionner de la même façon quelle que soit la source de chaleur : la cogénération ou le ballon.

Les critères de dimensionnement relatifs à la connexion aux débits et températures mentionnés dans le chapitre sur le raccordement hydraulique sont d’applications, notamment :

  • Assurer le débit d’eau au moteur quel que soit le mode de fonctionnement ou la charge et le maintenir constant.
  • Maintenir la température d’entrée du groupe inférieure à une valeur de consigne définie par le constructeur.
  • Éviter toute fluctuation brusque de la température d’entrée.
  • Éviter le recyclage dans le circuit de retour du groupe afin de ne pas augmenter la température de l’eau à l’entrée du moteur par des mélanges.
  • Gérer la puissance de déstockage de façon à toujours garantir un débit de refroidissement du moteur suffisant.
  • Rendre possible l’isolation du circuit d’utilisation pour faire fonctionner la chaufferie sans le groupe de cogénération.
  • Prévoir un système de vidange du circuit hydraulique simple.
  • Prévenir les problèmes de corrosion et d’hydrolyse dans le circuit de refroidissement.

Raccordement d’un ballon de stockage

Stockage pour configuration en parallèle

Une des méthodes de stockage appropriées est celle décrite ci-dessous. Cependant, sur le terrain, elle reste relativement peu courante. Peut-être pour une question financière ?

Schéma stockage pour configuration en parallèle.

Dans son principe, le fonctionnement du cogénérateur est relativement indépendant de celui des chaudières. En effet, le cogénérateur peut charger le ballon à une température de consigne fixe. C’est la vanne 3 voies qui fait le gros du boulot et qui peut mitiger la température de sortie de l’ensemble cogénérateur/ballon de stockage en fonction de la température de départ primaire.

La séquence des schémas suivants donne une idée des phases de stockage/déstockage. À remarquer, qu’en termes de dimensionnement des conduites, il faut prévoir que le débit d’entrée/sortie de l’ensemble cogénérateur/stockage sera de l’ordre de 1.5 à 2 fois celui du cogénérateur s’il était prévu dans stockage.

Stockage pur

Schéma stockage pur.

  • Pas de besoin, mais le ballon n’est pas à température.
  • Le cogénérateur fonctionne à régime nominal et charge le ballon (stockage).

Déstockage et boost de la cogénération

Schéma déstockage et boost de la cogénération.

  • Besoins importants.
  • Le cogénérateur fonctionne à régime nominal.
  • Le ballon déstocke.

Déstockage pur

Schéma déstockage pur.

  • Besoins moyens.
  • Seul le ballon déstocke.

Stockage pour configuration en série

Quelques constructeurs proposent une configuration série avec ballon tampon. Le débit total de retour du collecteur traverse le ballon. On ne peut pas vraiment parler de ballon de stockage vu qu’il n’y a pas de stratification. On parlera plutôt d’augmentation de l’inertie du réseau. Pour autant que les conduits d’entrée et de sortie du ballon soient bien dimensionnés, le ballon tampon agit comme un large collecteur à faibles pertes de charge et perturbant peu les équilibres hydrauliques de la chaufferie existante. On peut comprendre que cette configuration soit intéressante, car hydrauliquement elle est simple et peut donner de bons résultats en terme de court cycle du cogénérateur.

Schéma stockage pour configuration en série.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be