Géothermie et géocooling [Climatisation]

Géothermie et géocooling


Principe

À l’état naturel, le sous-sol garde une température constante de l’ordre de 10 … 12 °C à partir d’une profondeur d’une dizaine de m.

graphe principe géothermie.

On peut donc logiquement imaginer que celui-ci puisse servir de source naturelle de froid. Il suffirait qu’un réseau véhiculant un fluide caloporteur le parcoure pour produire de l’eau à température adéquate pour refroidir un bâtiment.

On appelle cela du « géocooling ».

De même, une température de 10 .. 12 °C plus élevée et plus stable que la température extérieure hivernale est une température intéressante pour servir de source froide à une pompe à chaleur, en l’occurrence sol/eau, pour chauffer le bâtiment en hiver.

On parle alors de « géothermie ».

Refroidissement en été et chauffage en hiver vont d’ailleurs souvent de pair. En effet, si en été on extrait du « froid » du sol, ce dernier se réchauffe progressivement. Si cette opération se répète d’année en année, sans autre perturbation, le sol verra sa température moyenne augmenter jusqu’à ne plus être exploitable.

Dès lors pour éviter ce phénomène, il s’agit de régénérer le sol chaque hiver en extrayant la chaleur accumulée en été grâce à une pompe à chaleur.

On parle alors de « STOCKAGE GEOTHERMIQUE » : la chaleur du bâtiment est transférée dans le sol en été quand elle est gênante pour être utilisée en hiver quand elle est nécessaire.


Technologie des sondes géothermiques

Les systèmes fermés et ouverts

On parle de système fermé si un fluide caloporteur circule dans le sol dans un circuit fermé.

On retrouve principalement 3 types de systèmes fermés : les forages ou sondes géothermiques, les pieux géothermiques et les nappes horizontales.


3 types d’échangeur géothermique : les pieux, les sondes et les nappes.

Source : Rehau.

On parle de système ouvert lorsque c’est l’eau de la nappe phréatique ou du lit d’une rivière qui est pompée pour échanger sa chaleur avec le bâtiment et réintroduite en aval du sens d’écoulement souterrain.

Forages géothermiques

Dans ce cas les « échangeurs géothermiques » ou « sondes géothermiques » sont pour la plupart constitués de forages verticaux (diam 150 mm) d’une profondeur de 50 à 400 m (souvent 100 .. 150 m). Chaque forage contient des conduites, le plus souvent en polyéthylène (DN 32) disposées en double U et enrobées d’un coulis de ciment/bentonite (le « grout ») assurant la protection mécanique tout en permettant une certaine souplesse indispensable pour résister aux mouvements de sol.

Source : REHAU.

L’ensemble des forages forme ainsi un champ de sondes espacées entre elles de 6 à 10 m, pour limiter les interférences thermiques. Les sondes sont raccordées entre elles via des collecteurs, en série ou en parallèle ou un mix des deux.

Le champ de sondes peut être disposé à côté du bâtiment ou même sous le bâtiment (par exemple en ville).

Variantes : Sondes coaxiales en acier

Les forages géothermiques présentent une série de contraintes comme :

  • la nécessité d’espace pour effectuer les forages;
  • la gestion du forage au travers de couches de sous-sol parfois hétérogènes;
  • la nécessité de maximiser l’échange de chaleur tout en garantissant la tenue mécanique des sondes,
  •  …

Cela conduit les fabricants à proposer des alternatives aux sondes traditionnelles en « double U ».

Il existe ainsi des sondes coaxiales : l’eau en provenance du bâtiment circule dans la périphérie de la sonde et revient par le cœur pour délivrer son énergie au bâtiment.

Exemple de sonde coaxiale en PE : le fabricant annonce que les performances d’une sonde de dimension 63 mm / 40 mm
correspondent à une sonde géothermique double U de dia. 32 mm.

Source : www.hakagerodur.ch

Pour encore augmenter l’échange thermique avec le sol les sondes peuvent être réalisées en acier (avec protection cathodique) ou en inox, sans enrobage : le tube périphérique est en métal et le tube intérieur en PE.

L’augmentation du transfert de chaleur, permet alors réduire le nombre de forages et la longueur des sondes. Ainsi des tests de réponse thermique montrent qu’en moyenne, les sondes coaxiales en inox ont une résistance thermique 2 fois moindre qu’une sonde avec doubles U en PE. Cela permettrait une puissance d’extraction de 10 à 20 % supérieure.

Exemple de sondes en acier, à visser (longueur de 3 m).

Source : Thermo-pieux.

Exemple de sonde en inox introduite par forage ou « vibro-fonçage ».  La profondeur peut atteindre une centaine de mètres.

Source : geo-green.

La technologie des sondes coaxiales ouvre la porte à des installations avec des forages en étoile au départ d’un point d’entrée unique dans des lieux où l’accès pour des forages parallèles espacés n’est pas possible (par exemple, une cour intérieure dans un site existant).

 

Forages en « étoile » : on parle dans la littérature de « racines géothermiques ».

Pieux géothermiques

Une alternative aux forages consiste à intégrer les échangeurs géothermiques aux pieux de structure d’un bâtiment. Cela se justifie parce que ceux-ci sont souvent nécessaires dans des sous-sols humides, sous-sols favorables aussi à la géothermie.

On justifie cette technique par un souci de rationaliser les techniques en les combinant. Cependant, la pratique ne prouve pas que les coûts soient inférieurs par rapport à des installations distinctes. La mise en œuvre des pieux se complique également. La gestion de l’installation doit également interdire que les pieux de fondation ne gèlent en mode de chauffage hivernal.

 

Exemples de réalisation : La crèche de l’île aux oiseaux, ville de Mons : 16 pieux géothermiques de 10 m.

La crèche de l’ile aux oiseaux de Mons.

Aéroport de Zurich : 350 pieux géothermiques de 30 m de profondeur.

Nappes horizontales

La géothermie se décline également sous la forme de nappes de tuyaux déployés horizontalement à faible profondeur (0,6 à 1,2 m).

Le système est peu applicable dans le secteur tertiaire. En effet,

  • Il demande une surface de terrain très importante : de 28 à 100 m²/kW de puissance de chauffage nécessaire.
  • En hiver, elle peut conduire à un refroidissement excessif du sol préjudiciable à la végétation.
  • L’utilisation en refroidissement n’est guère possible, la température du sol étant fortement soumise à l’environnement extérieur.

Alternative pour les bâtiments de taille réduite : les sondes de faible profondeur.

Pour les petits projets, pour lesquels un forage n’est pas autorisé et où les systèmes horizontaux ne disposent pas de surface suffisante, certains fabricants proposent des sondes de petite taille constituées d’un échangeur spiralé. Ce système permet notamment de limiter l’influence que peut avoir la géothermie sur la couche de sol où se développe la végétation.

Source : SANA FONDATIONS sprl.

Cas particulier : le puits canadien

Le puits canadien ou puits provençal constitue une forme de géothermie puisque l’air neuf de ventilation est prétraité (chauffé ou refroidi) par son passage dans le sol.

Techniques

 Pour en savoir plus sur le puits canadien.

Schémas de principe

Traditionnellement, on retrouve 2 types de schéma de principe, selon que le froid est produit par échange direct avec le sol soit par la pompe à chaleur réversible utilisant le sol comme source chaude. Une troisième configuration se retrouve lorsqu’on puise directement l’eau de la nappe phréatique.

Free cooling direct

En été : le froid est produit par échange direct avec le sol et distribué via un échangeur vers les unités terminales. Le géocooling est ainsi mis en œuvre moyennant uniquement la consommation de pompes. Si on compare cette consommation à l’énergie frigorifique produite, on calcule un ESEER équivalent du système de l’ordre de …12…, voire plus en fonction des dimensionnements des équipements. Souvent une machine de production de froid vient en appoint pour satisfaire les demandes de pointes ou pour alimenter des utilisateurs demandant des températures d’eau plus basses (comme les groupes de traitement d’air).

En hiver, le sol sert de source froide à une pompe à chaleur sol/eau. Le coefficient de performance saisonnier obtenu varie entre 4,5 et 5,5. Une chaudière est utilisée en appoint pour couvrir les pointes de puissance par grands froids. Généralement, le système est dimensionné pour que la PAC couvre environ 70 % du besoin de chaud grâce à environ 30 % de la puissance totale nécessaire.

Recharge du sol par pompe à chaleur réversible

La pompe à chaleur sol/eau est réversible. En été, elle fonctionne comme un groupe de production d’eau glacée en utilisant le sol pour évacuer la chaleur de son condenseur régénérant ainsi ce dernier.

L’avantage d’un tel système est de mieux gérer la recharge du sol et peut-être de pouvoir se passer d’un groupe de froid d’appoint et d’un échangeur intermédiaire. L’investissement est donc moindre.

En contrepartie, alors que l’on peut toujours parler de stockage géothermique, il ne s’agit plus réellement de géocooling naturel puisqu’il est nécessaire de faire fonctionner une machine thermodynamique pour extraire le « froid » du sol. Le bilan énergétique global est donc moins favorable.

Systèmes ouverts

Si la nappe phréatique se situe près de la surface du sol, on peut envisager de puiser directement l’eau dans cette dernière plutôt que de la parcourir avec un échangeur et un fluide caloporteur. On parle de système ouvert. Dans ce cas, l’eau de la nappe sert par l’intermédiaire d’un échangeur :

  • En mode chauffage, de source froide à une pompe à chaleur.
  • En mode refroidissement, de source de froid directe pour une boucle d’eau.

L’eau puisée est ensuite réinjectée dans la nappe à une certaine distance créant ainsi 2 zones dans la nappe phréatique à températures différentes, l’eau passant de l’une à l’autre en fonction de la saison :

  • En hiver une zone se refroidit par l’eau réinjectée après échange avec la pompe à chaleur.
  • En été l’eau est pompée en sens inverse de cette zone et réinjectée plus chaude dans la zone de puisage hivernal.

Étant donné les mouvements dans les nappes phréatiques et en fonction de la distance entre les zones chaude et froide, l’influence d’un éventuel déséquilibre entre les besoins de chauffage et de refroidissement est nettement moindre dans le cas d’un système ouvert par rapport à un système fermé.

En outre, il est également possible de produire du chaud et du froid en même temps dans le bâtiment. En effet, si nécessaire, l’eau pompée de la nappe peut être dirigée à la fois vers la pompe à chaleur et vers l’échangeur de géocooling ou vers un échangeur commun entre les productions de chaud et de froid.

Exemples d’installations

Le schéma ci-dessous est proposé par un constructeur allemand. Il permet le chauffage par pompe à chaleur, le refroidissement libre par un échangeur vers les sondes géothermiques, éventuellement assisté par le fonctionnement réversible de la pompe à chaleur.

Le schéma ci-après, plus complet, permet un fonctionnement mixte en mi-saison : une chaudière alimente la zone périphérique en chaleur, alors que simultanément, la zone centrale est refroidie par l’échangeur dans le sol via la pompe à chaleur. Attention cependant à la destruction d’énergie qui pénalise l’intérêt énergétique de ce système.


Unités terminales associées

Les performances de la pompe à chaleur et du géocooling sont fortement dépendantes du régime de température des unités terminales :

Plus la température de l’eau de distribution est basse en saison de chauffe (température max de l’ordre 50 .. 55 °C), meilleur sera le rendement de la PAC et plus elle est élevée en été (température min de l’ordre de 15 .. 17 °C) plus grande sera la quantité d’énergie extractible directement du sol.

On doit donc choisir des unités terminales compatibles avec ces températures :

  • Plafonds refroidissants ou ilots rayonnants
    • avantages : peu d’inertie thermique et donc rendement de régulation élevé, contrôle facile de la température ambiante, réversible chaud/froid;
    • inconvénients : puissance plus limitée (plafonds).

Exemple d’îlot rayonnant.

(Source : Interalu).

  • Dalles actives
    • avantages : stockage de nuit et donc limitation de la puissance à installer;
    • inconvénients : inertie thermique importante et donc contrôle difficile de la température et rendement de régulation dégradé. Peu de flexibilité spatiale et difficulté d’utilisation en chauffage (nécessité d’un second système). Absence de faux plafond (gestion des techniques et de l’acoustique).

Étude d’un projet de géothermie

Un projet de géothermie consiste à mettre en corrélation le comportement thermique du bâtiment et celui du sous-sol. Tout cela se passe de façon dynamique : les besoins varient, le sol se charge, se décharge, échange avec son voisinage tout cela sur une échelle de temps quotidienne, mais aussi saisonnière. Cela justifie l’utilisation d’outils de simulation thermique dynamique prenant en compte la variabilité des besoins, des échanges et l’inertie du système.

Étapes de l’étude d’un projet de géothermie :

  • Définir les besoins par simulations dynamiques en évaluant différentes variantes de manière à trouver le bon équilibre entre le besoin de chaud et de refroidissement du bâtiment (niveau d’isolation, type de vitrage, protections solaires, …).

Besoins simulés de chauffage et de refroidissement d’un bâtiment, h par h ou 1/4h par 1/4 h.

  • Connaître la nature du sol par études géologique et hydrogéologique pour préévaluer les caractéristiques physiques et thermiques du sous-sol et pour évaluer les éventuels risques liés aux forages (présence de nappes phréatiques, de couche argileuse,  de quartzites, …). Cela permet de prédéfinir la pertinence et la configuration des forages (par exemple, leur longueur minimale et maximale en fonction des couches de sous-sol susceptibles d’être rencontrées).

Pour exemple, voici quelques données moyennes :

Caractéristiques du sol Puissance spécifique d »extraction
Sur 1 800 heures de fonctionnement Sur 2 400 heures de fonctionnement
Valeurs indicatives générales
Sous-sol de mauvaise qualité (sédiment sec) (λ < 1,5 W/m²K) 25 W/m 20 W/m
Sous-sol rocheux normal  et sédiment  saturé en eau (λ < 1,5 – 3.0 W/m²K) 60 W/m 50 W/m
Roche compacte à conductibilité  thermique élevée (λ < 3,0 W/m²K) 84 W/m84 W/m 70 W/m
Minéraux respectif
Gravier et sable secs < 25 W/m <20 W/m
Gravier et sable aquifères 65 – 80 55 – 65 W/m W/m
Dans le cas de fort courant des eaux souterraines dans le gravier ou le sable et d’installations uniques 80 – 100 80 – 100 W/m
Argile et glaise humides 35 – 50 W/m W/m 30 – 40 W/m
Calcaire (massif) 55 – 70 W/m 45 – 60 W/m
Grès 65 – 80 W/m 55 – 65 W/m
Roche magmatique acide (par ex. granit) 65 – 85 W/m 55 – 70 W/m
Roche magmatique basique (par ex. basalte) 40 – 65 W/m 35 – 55 W/m
Gneiss 70 – 85 W/m 60 – 70 W/m

Puissances traditionnelles extractibles.

Source Rehau.

  • Effectuer un test de réponse thermique (« TRT »). Il s’agit de réaliser un forage en taille réelle et de le soumettre à une sollicitation thermique pour pouvoir calculer la conductibilité et la capacité thermique du sol et la résistance thermique des sondes, en moyenne sur toute la longueur de la sonde. Cette sonde test pourra ensuite être valorisée dans le champ de sondes final.

Source : Group Verbeke.

  • Dimensionner le champ de sondes au moyen d’un logiciel de simulation dynamique du sous-sol : simulation du comportement du sol compte tenu des besoins du bâtiment (heure par heure) et des caractéristiques  thermiques des sondes prévues et du sol (définies par le TRT) ; optimalisation de la puissance de la PAC, du nombre et de la profondeur des sondes en s’assurant de l’équilibre à long terme de la température du sol.

Dimensionnement de l’échangeur de sol

Pour le dimensionnement des collecteurs de sol, des réfrigérateurs de plaques de fond ou de réservoirs de fondations, il est possible de consulter la DIN ISO EN 13370 « Transmission de chaleur par le procédé de calcul terrestre ».

L’objet de cette norme est l’examen du transfert de la chaleur en tenant compte des paramètres (tuyaux, isolation, masse géométrique du bâtiment, etc.) et de la conduite d’exploitation. La ligne directrice VDI 4640 « Utilisation thermique du sous-sol » convient pour l’évaluation du rendement (puissance) d’un chauffage. De plus, elle fournit des indices de planification concernant les permissions et les conditions additionnelles liées à l’environnement, mais (à notre connaissance en octobre 2003) elle n’aurait pas encore été adaptée sous l’aspect « été » du réfrigérateur.

D’après la norme DIN ISO EN 13370 (traduction non officielle !), les tableaux suivants donnent une vue d’ensemble sur les capacités d’extraction des collecteurs de chaleur et des sondes géothermiques (capacité des pompes de chaleur jusqu’à max. 30 kW) :

>  S’il s’agit de collecteurs situés à côté du bâtiment (en W/m²) :

Puissance d’extraction thermique en W/m²
Sous-sol Exploitation 1 800 h / saison Exploitation 2 400 h / saison
Sol sec, non cohérent 10 8
Humide, cohérent 20…30 16…24
Sable, gravier, imbibés d’eau 40 32

>  S’il s’agit de sondes géothermiques (en W/m courant) :

Puissance d’extraction thermique en W/m²
Sous-sol Exploitation 1 800 h / saison Exploitation 2 400 h / saison
Sédiments secs et peu conducteurs (Lambda < 1,5 W/m.K) 25 20
Roche, sédiments imbibés d’eau
(Lambda > 1,5 … 3 W/m.K)
60 50
Roche dure très conductrice
(Lambda > 3 W/m.K)
84 70

L’adaptation des calculs détaillés est de plus indiquée dans les cas suivants :

  • Modification des heures de services des pompes à chaleur par rapport aux hypothèses de base;
  • plus grande nécessité de chaleur pour la préparation d’eau chaude;
  • effet régénérateur du sol suite à un apport de chaleur par réfrigération de locaux ou à un rechargement thermique solaire;
  • grande influence des eaux souterraines (nappe phréatique).

Les valeurs de référence pour les capacités d’extraction de chaleur en hiver ne sont pas directement applicables à l’activité en été. Différentes causes sont à la base des écarts entre les capacités d’extraction et d’incorporation :

  • Lors du fonctionnement en hiver, une couche de glace se forme autour de la sonde ou des tuyaux, et influence favorablement la transmission thermique par conduction. En été, le sol peut au contraire sécher davantage, ce qui est défavorable.
  • Les couches terrestres proches du sol sont soumises à de si fortes influences climatiques qu’il faudrait parler non pas d’éléments de construction thermiques, mais plutôt d’éléments de construction solaires thermiques dans le cas de collecteurs de terre classiques non bâtis.

Pour l’évaluation de la capacité de sondes géothermiques et de pieux d’énergie dans le processus de réfrigération, un constructeur conseille :

  • Vu les raisons énoncées précédemment, de mettre les capacités d’incorporation (été) égales à 70 % des capacités d’extraction de chaleur énoncées dans la VDI 4640.
  • De valoriser si possible l’existence d’une nappe souterraine, qui suite à l’humidification des couches terrestres en dessous des fondations, améliore la conductibilité thermique. Il en résultera également des capacités de réfrigération plus constantes.
  • Une distance de pose entre les tuyaux ne dépassant pas 15 cm.
  • Des phases de régénération (suite à l’arrêt du système en journée ou suite à une réduction de la nécessité de froid (journées fraîches d’été)) qui améliorent la capacité de rendement.

Aspect réglementaire lié à la réalisation du projet

(Rédaction : 2014)

En région wallonne

En Wallonie, tout projet de réalisation de puits destiné à la géothermie doit faire l’objet d’un permis unique : Permis d’environnement (installations classées, conditions intégrales et sectorielles) + Permis d’urbanisme.

Selon l’Arrêté du Gouvernement wallon du 4/7/2002, annexe I, les systèmes géothermiques fermés sont classés dans la rubrique 45.12.01 : « Forage et équipement de puits destinés au stockage des déchets nucléaires ou destinés à recevoir des sondes géothermiques », classe de permis 2.

D’autres rubriques existent pour classer les systèmes ouverts en fonction des techniques de puisage et de rejet d’eau souterraine utilisé.

Les forages d’essais (TRT) et de l’installation définitive doivent faire l’objet d’une demande de permis propre comprenant :

  • Le formulaire général de demande de permis d’environnement et de permis unique – Annexe I.
  • Le formulaire relatif aux forages – Annexe XVIII (rubrique 45.12.01) ou le formulaire relatif aux prises d’eau – Annexe III (rubrique 41.00.03.02).

Le formulaire XVIII doit notamment comprendre :

  • Une coupe géologique probable du puits avec profondeur estimée de la nappe aquifère;
  • la description des méthodes de forage et les équipements du puits avec coupe technique;
  • un rapport technique sur la nature de la nappe aquifère éventuelle;
  • un plan de situation des puits.

Chronologiquement, étant donné les délais d’obtention, il est souvent difficile d’attendre les résultats du TRT et le dimensionnement final du champ de sondes avant l’introduction de la demande de permis pour ce dernier. De même, étant donné que le choix de l’enveloppe du bâtiment et l’équilibre géothermique sont intimement liés, il apparaît difficile de dissocier chronologiquement les demandes de permis pour le bâtiment neuf, le TRT et le champ de sondes. Dans ces différents cas, la pratique veut que les permis soient introduits en parallèle en mentionnant les hypothèses de prédimensionnement effectués.

En région bruxelloise

Il n’existe actuellement pas de législation spécifique à la géothermie en RBC. Les systèmes géothermiques sont néanmoins presque toujours composés d’installations classées soumises à déclaration ou à permis d’environnement.

Dans le cas de systèmes géothermiques fermés, les installations classées concernées sont les suivantes :

  • Pompe à chaleur < 10 kWelec  et < 3 kg de substance appauvrissant la couche d’ozone : Installation non classé et donc non soumise à autorisation (rubrique 132).
  • Pompe à chaleur > 10 kWelec mais < 100 kWelec  ou > 3  kg de substance appauvrissant la couche d’ozone : Installation classée de classe 3 et donc soumise à déclaration (rubrique 132).
  • Pompe à chaleur > 100 kWelec : Installation classée de classe 2 et donc soumise à Permis d’Environnement (rubrique 132).
  • Pompes électriques > à 100 kVA (rubrique 55).

Les forages ne sont, eux, pas classés.

Dans le cas de systèmes géothermiques ouverts, les captages d’eau souterraine sont des installations classées de classe 2 ou de classe 1B (rubrique 62) et sont donc soumis à Permis d’Environnement. En plus comme pour les captages d’eau « classiques », les systèmes géothermiques ouverts sont soumis à une « autorisation de pompage » de la part de l’IBGE.

De plus la réglementation urbanistique (COBAT) stipule que les forages géothermiques sont soumis à rapport d’incidence. Il semblerait donc que les systèmes géothermiques sont soumis à Permis d’Urbanisme (PU). Dans la pratique, il semblerait néanmoins que les systèmes géothermiques ne fassent pas l’objet d’une demande de PU à part entière. Il est donc conseillé de se renseigner auprès du service urbanisme de la commune concernée pour savoir si un PU est nécessaire.

La demande de permis d’environnement doit comprendre une série de renseignements.

Pour les systèmes géothermiques fermés (sondes verticales) :

  • Le cadre du projet de géothermique (industrie, tertiaire, logements collectifs, privés, ….
  • Le profil géologique et hydrogéologique de la zone où sont prévus les forages (et plus particulièrement déterminer les aquifères qui seront traversés par les forages) :
    • soit sur base du profil géologique et hydrogéologique obtenu à partir d’un forage réalisé sur le site (ou à proximité immédiate du site);
    • soit, en l’absence de forage, sur base des données cartographiques – carte géologique, géotechnique de Bruxelles, …- , via la base de données DOV (Databank Ondergrond Vlaanderen) ou via consultation des archives du service géologique de Belgique.

Il y a lieu de motiver la profondeur des sondes envisagée sur base de ce profil.

  • La technique de forage prévue pour le placement des sondes.
  • La description technique de l’installation géothermique :
    • puissance électrique de la pompe à chaleur (PAC) et rendement;
    • nombre de puits ou forage prévus + nombre de sondes verticales prévues;
    • profondeur des sondes;
    • type de sondes (simple boucle en U, double boucle en U, coaxiale, autre);
    • type de matériaux utilisés pour les sondes et les différentes connexions;
    • systèmes prévus pour isoler les sondes (ou les groupes de sondes) en cas de fuite (vannes d’isolement, …);
    • fluide caloporteur prévu dans les sondes;
    • surface prévue pour l’implantation des sondes (et surface disponible si différente);
    • matériaux de remplissage sont prévus pour le scellement des trous de forages (espace interstitiel).
    •  …
  • Le plan reprenant de manière claire l’emplacement des installations (PAC et champ de sondes).
  • La description détaillée (schéma de fonctionnement y compris le mode opératoire de la régulation) du système HVAC complet du bâtiment et l’intégration de l’installation de géothermie dans cet ensemble.
  • L’évaluation des besoins énergétiques :
    • la demande en chaud du bâtiment (kWh/an);
    • la demande en froid du bâtiment (kWh/an);
    • la puissance de pointe en chaud du bâtiment (kW);
    • la puissance de pointe en froid du bâtiment (kW);
    • l’énergie (chaud) soutirée au sol (kWh/an);
    • l’énergie (froid) soutirée au sol (kWh/an);
    • % de la demande en chaud couvert par la géothermie;
    • % de la demande en froid couvert par la géothermie.

Dans la mesure du possible, un (des) graphique(s) (histogramme) reprenant les besoins mensuels du bâtiment en froid et en chaud sur un an et distinguant la part produite par la géothermie de la part produite par les systèmes complémentaires (système de production de chaud et froid classiques) sera fourni.

  • Dans le cas ou un test de réponse thermique (TRT) a été réalisé : les conclusions du test.
  • La comparaison du gain énergétique du système proposé par rapport à l’utilisation d’une chaudière à condensation (réduction d’énergie primaire (%)).
  • L’évaluation du déséquilibre thermique du sous-sol et l’évolution de la performance de la PAC sur 20 ans en tenant compte de ce déséquilibre thermique.
  • Quant au rapport d’incidences, il doit également évaluer les nuisances et impacts environnementaux liés au système géothermique ainsi que les mesures prises pour éviter, supprimer ou réduire les nuisances répertoriées.  (Ex : test de mise sous pression des bouclages, mise en place d’un système de détection de fuites, étanchéité des puits,…).

Pour les systèmes géothermiques ouverts :

  • Le type de système géothermique prévu : captage/réinjection réversible (stockage chaud froid) ou captage réinjection non réversible.
  • La description technique de l’installation géothermique :
    • nombre de puits de pompage et de réinjection prévus ;
    • profondeur des puits (+ facteurs ayant servi à la détermination de la profondeur) ;
    • zone de filtre (crépine) ;
    • distance séparant les puits de captage et de réinjection ;
    • type de compteurs et nombre de compteurs prévus (+ emplacement) ;
    • puissance électrique de la pompe à chaleur (PAC) et son rendement ;
    • liquide utilisé dans le circuit secondaire ;
    • type d’échangeur – circuit primaire / circuit secondaire (double parois, simple paroi, …) ;
    • Éventuel système de détection de fuite dans le circuit secondaire.
    • plan reprenant l’emplacement de la PAC, des différents puits de captage et de réinjection.
  • La description détaillée (schéma de fonctionnement y compris le mode opératoire de la régulation) du système HVAC complet du bâtiment et l’intégration de l’installation de géothermie dans cet ensemble.
  • Le profil géologique et hydrogéologique des zones de captage et de réinjection (et plus particulièrement déterminer l’aquifère ou les aquifères qui seront traversés par les forages) :
    • soit sur base du profil géologique et hydrogéologique obtenu à partir d’un forage réalisé sur le site (ou à proximité immédiate du site);
    • soit, en l’absence de forage, sur base des données cartographiques – carte géologique, géotechnique de Bruxelles, …- , via la base de données DOV (Databank Ondergrond Vlaanderen) ou via consultation des archives du service géologique de Belgique.
  • Le débit maximum capté (m³/h, m³/j), le volume total capté par an ou par saison (m³) et si la totalité de l’eau captée est réinjectée dans la nappe. Si l’eau souterraine est utilisée à d’autres fins que la géothermie, il y a également lieu de préciser les utilisations alternatives et le débit capté (m³/j).
  • La température de réinjection maximale prévue.
  • Le dossier doit comporter une évaluation de :
    • la demande en chaud du bâtiment (kWh/an);
    • (la demande en froid du bâtiment (kWh/an)), si utilisation des puits pour refroidir;
    • la puissance de pointe en chaud du bâtiment (kW);
    • (la puissance de pointe en froid du bâtiment (kW)) → Si utilisation des puits pour refroidir;
    • l’énergie (chaud) soutirée de la nappe (kWh/an);
    • (l’énergie (froid) soutirée de la nappe (kWh/an)), si utilisation des puits pour refroidir;
    • % de la demande en chaud couvert par la géothermie;
    • (% de la demande en froid couvert par la géothermie), si utilisation des puits pour refroidir.
  • Le gain énergétique du système proposé par rapport à l’utilisation d’une chaudière à condensation  (réduction d’énergie primaire (%)) doit également être évalué.
  • Le rapport d’incidence doit évaluer le déséquilibre thermique de l’aquifère  et l’évolution de la performance de la PAC sur 20 ans en tenant compte du déséquilibre thermique.
  • Le rapport d’incidence doit évaluer la possibilité technique de mettre en place le système géothermique sur le site.
  • Le rapport d’incidence doit enfin évaluer l’impact et les nuisances du système géothermique et notamment :
    • l’impact éventuel du projet sur des captages voisins (impact hydraulique);
    • l’impact éventuel du projet sur la stabilité des constructions voisine;
    • le risque d’inondation au niveau des puits de réinjection et des constructions voisine;
    • l’impact thermique éventuel du système sur les eaux souterraines.
  • Ainsi que les mesures particulières de protection du sol et des eaux souterraines prévues (Rehaussement du puits, étanchéité des puits de forages, mesures prévues pour éviter la connexion éventuelle d’aquifères différents, mesures prévues pour éviter une contamination de l’eau pompée et réinjectée dans la nappe (type d’échangeur utilisé, système de détection de fuite, surpression du circuit secondaire (eau pompée) par rapport au circuit primaire (de la PAC), …)).

Analyser les besoins thermiques en fonction du climat

Évolution des besoins selon les saisons

Dès le stade de l’avant-projet, le profil thermique du bâtiment doit être évalué. Une analyse logique, intégrant les spécificités du programme (grand dégagement de chaleur intérieur ou non, large ouverture solaire ou non), permet déjà une première analyse. L’organigramme ci-dessous présente un canevas général pour aider à réaliser cet exercice : au départ des 3 saisons qui caractérisent notre climat, les priorités différentes de conception architecturale et technique sont mises en évidence.

  • En période de chauffe, soit lorsque la température en journée est inférieure au point d’équilibre du bâtiment et qu’il y a peu de soleil, il convient de minimiser à la fois le besoin et la consommation de chauffage. Minimiser le besoin fait appel aux techniques passives d’isolation, compacité, etc. et aux techniques actives de récupération de chaleur et de modulation des débits d’air. Minimiser la consommation passe par le choix d’émetteurs base température et de mode de production efficace.

 

  • En mi-saison, soit lorsque la température extérieure diurne est entre le point d’équilibre du bâtiment et la température de confort, lorsqu’il y a peu de soleil, il est prioritaire de valoriser les sources gratuites de chaleur : gains solaires, même limités, et gains internes. Le transfert d’énergie au sein du bâtiment, par les réseaux de ventilation ou VRV est alors pertinent. En période ensoleillée, c’est la maîtrise des charges solaires qui devient prédominante, pour limiter les surchauffes précoces : gestion des stores et free cooling.

 

  • En été, soit lorsque la température extérieure diurne atteint ou dépasse la température de confort, auquel cas l’ajout des charges internes et solaires crée un besoin de refroidissement, c’est la température nocturne qui deviendra le pivot de la stratégie. Si cette température est basse, la combinaison d’inertie thermique et de free cooling permet de retarder ou d’éviter le recours au refroidissement mécanique. Le dimensionnement et la gestion des réseaux de ventilation est centrale. Le choix de techniques de top cooling est également important. Si la température nocturne reste élevée (canicules), on peut partir de l’a priori qu’un refroidissement mécanique est nécessaire. On veillera alors à maximiser son efficacité, par le choix des températures d’émission et des modes de dissipation de la chaleur (géocooling par exemple).




Simulation numérique

Une fois une première analyse logique et qualitative réalisée, et après une première itération sur  l’architecture et les choix de techniques, une simulation numérique du comportement thermique du projet est à envisager. Les logiciels dits de STD (simulation thermique dynamique) les plus souvent utilisés en Wallonie sont EnergyPlus et Trnsys. Une telle simulation :

  • Fera apparaître les besoins de chaleur et de refroidissement du bâtiment.
  • Évaluera la part de simultanéité de besoins de chaud et de froid dans des locaux différents.
  • Informera de la valeur de la température extérieure au moment où la demande de refroidissement apparaît.
  •   …

Exemple de profil pour un immeuble de bureaux-type, avec locaux de réunion et salle de conférence (l’énergie frigorifique demandée alors que la température est inférieure à 10°C provient du local informatique) :

Cette analyse peut permettre :

  • De préciser les options de l’avant-projet.
  • De prendre en compte le fait qu’une zone demande un refroidissement alors que sa voisine demande du chauffage.
  • De quantifier l’énergie de refroidissement demandée alors que … c’est l’hiver dehors ! (possibilité de free-chilling).
  • D’orienter le choix du système de refroidissement (naturel ou mécanique, à Débit de Réfrigérant Variable,…).
  • De grouper des locaux avec des charges importantes.
Découvrez 3 exemples de bâtiment dont les besoins thermiques ont été intégrés dés l’avant-projet : école passive de Louvain-la-Neuve (premier bilan), école passive de Louvain-la-Neuve (proposition d’équipements), et le projet ECOFFICE.

Refroidissement adiabatique

Refroidissement adiabatique


Principe de base

Le principe est le suivant : si de l’air chaud et sec traverse un filet d’eau, il en provoque l’évaporation. La chaleur nécessaire à la vaporisation d’eau étant extraite de l’air. Celui-ci se refroidit.

Schéma principe de base.

Par exemple, de l’air à 20°C, 30 % HR traversant un nuage d’eau voit sa température atteindre 12°C en se chargeant d’humidité.

Le refroidissement adiabatique peut-être

  • direct : si l’air humidifié soit directement pulsé dans l’ambiance;
  • indirect : si de l’air pulsé ou un réseau d’eau est refroidi par échange avec l’air qui aura été humidifié.

Refroidissement indirect de l’air pulsé

Il existe des échangeurs à plaques dans lequel l’air vicié est refroidi par humidification. Un tel système permet d’exploiter le « pouvoir refroidissant » de l’humidification adiabatique, tout en évitant le problème de l’humidification de l’air neuf.

Photo d’une centrale de refroidissement adiabatique.

L’air vicié et l’air neuf passent dans un double échangeur à plaques. Dans l’échangeur, l’air vicié est humidifié. On combine donc deux phénomènes dans l’échangeur : le refroidissement adiabatique de l’air vicié et le refroidissement au contact avec l’air neuf. Remarquons les volets de by-pass (sur l’air neuf et l’air vicié) permettant une régulation de la puissance échangée.

Actuellement, nous manquons de données neutres pour juger des performances et de l’intérêt énergétique d’un tel équipement. Il semblerait que si l’humidification de l’air vicié est effectuée avant l’échangeur, le refroidissement complémentaire qui en résulte ne soit pas suffisant pour augmenter significativement l’énergie récupérée en période de climatisation. C’est apparemment l’intégration de l’humidificateur dans l’échangeur, qui augmenterait les performances du système. En effet, dans ce cas, l’eau s’évapore dans l’échangeur et refroidit aussi bien celui-ci que l’air vicié. Le fabricant de ce matériel annonce, dans les meilleures conditions, un refroidissement de l’air neuf de 10 °C.

En hiver, avec l’arrêt de l’humidification, on retrouve le fonctionnement d’un groupe « traditionnel » avec échangeur à plaques.


Refroidissement indirect d’un réseau d’eau

Il existe d’autres modes de refroidissement exploitant le principe de l’évaporation de l’eau, notamment associés à des machines frigorifiques avec possibilité de free chilling via aérorefroidisseur ou tour de refroidissement.

Schéma refroidissement indirect d’un réseau d’eau.

Photo d’un refroidisseur adiabatique.

Dans ce processus, quel que soit le mode d’humidification, le principe est toujours le même : les molécules d’eau passent progressivement à l’état de vapeur, provoquant ainsi par évaporation une diminution de la température d’air.

Son efficacité sera accrue si la surface de l’eau est grande, si le débit d’air à la surface de l’eau est important et si la température de l’air est élevée.

Enfin, il est indispensable d’assurer un contrôle et une maintenance très rigoureux des équipements, car :

  • les surfaces humides présentent un terrain favorable au développement des micro-organismes;
  • l’évaporation provoque des dépôts consécutifs à la cristallisation (sels minéraux, carbonates);
  • la ventilation de l’air favorise les dépôts de poussière.

Avantages et inconvénients

  • La solution simple permettant un refroidissement naturel en exploitant des équipements existants : groupe de ventilation, tour de refroidissement, …
  • Mais le pouvoir rafraîchissant est limité.
    • Le refroidissement de l’air est d’autant plus grand que le climat est chaud et sec (un tel système est donc inutile dans les régions où le climat est tropical, c’est-à-dire que l’air chaud est déjà chargé en humidité excessive. Chez nous, on se retrouve entre les deux …
    • Le refroidissement de l’eau ne sera lui possible que pour des températures extérieures typiques de la mi-saison, voire de nuit.
  • On parle donc bien de rafraîchissement et non de climatisation au sens de la fourniture d’une puissance de froid suffisante quels que soient les besoins.
  • Le dispositif ne peut être régulé avec précision, car il dépend de l’hygrométrie extérieure. Il est d’autant plus efficace que le climat est chaud et sec.
  • La consommation en eau non négligeable, nécessite qu’elle soit de bonne qualité pour éviter l’entartrage des tuyauteries, ainsi que les problèmes de légionelles. Pour éviter ce désagrément, un traitement d‘eau est nécessaire. Évidemment, l’utilisation de l’eau de pluie réduit l’impact sur la consommation en eau potable, mais nécessite la garantie du fabricant quant à la résistance de ses équipements.

Régulation

Les éléments qui constituent l’installation : filtres, surpresseur, pressostats de sécurité, pompe, électrovanne, rampes avec buses, échangeur, vannes de purge.

La régulation du refroidissement adiabatique repose principalement sur le contrôle des débits d’air et d’eau.

La régulation pour la ventilation d’air peut être de deux types :

Régulation par étage

Des étages de ventilation s’enclenchent les uns après les autres. Lorsque 100 % de la ventilation est en fonctionnement et que la température extérieure est supérieure à la valeur de consigne d’enclenchement de la brumisation haute pression, une électrovanne s’ouvre et un surpresseur se met en route.

Régulation par variations de fréquence

La variation de vitesse régulera jusqu’à ce que 100 % du débit de ventilation soit en fonctionnement (à 50 Hz l’électrovanne de la rampe s’ouvre et le système adiabatique fonctionne).

La régulation pour le débit d’eau projeté

Un brouillard d’eau efficace offre la plus grande surface d’échange possible avec l’air.
Cette surface d’échange est d’autant plus grande que le nombre de microgouttelettes pulvérisées est important. Pour obtenir un brouillard de qualité, l’eau est donc mise sous forte pression (100 bar) et accumule ainsi, une énergie importante. Le débit d’eau de brumisation est calculé précisément afin d’apporter à l’air la juste quantité d’eau.

 

Roue dessicante


Principe de fonctionnement

Les dispositifs à dessiccation (DEC : Desiccant Evaporative Cooling) sont des systèmes de déshydratation ou de refroidissement de l’air, utilisant de l’eau et une source de chaleur.

Ce procédé repose sur le principe physique suivant : l’évaporation de la vapeur d’eau dans l’air sec réduit la température et augmente l’humidité absolue de l’air.

La dessiccation exploite un double échange de frigories et d’humidité entre les flux d’air entrant (air de process) et sortant (air de régénération) d’un bâtiment. Cette circulation d’air est généralement assurée par une centrale de traitement d’air.

Schéma de fonctionnement d’une centrale d’air à roue dessicante.

Représentation de l’évolution de l’air dans un diagramme de l’air humide.

(1>2) L’air extérieur ou air pulsé (aussi appelé « air de process ») est aspiré au travers d’un filtre, puis traverse la « roue dessicante » ou « roue à dessiccation ». Cet échangeur rotatif contient un produit de sorption solide. Ce dernier absorbe la vapeur d’eau de l’air extérieur par adsorption. L’air extérieur est ainsi déshumidifié et en contreparti, voit sa température augmenter.

(2>3) L’air extérieur est alors refroidi par échange de chaleur avec l’air intérieur extrait ou simplement l’air extrait (aussi appelé « air de régénération »). Cet échange se fait au travers d’un échangeur de chaleur rotatif (non hygroscopique).

(6>7) Pour augmenter l’échange de chaleur et donc le refroidissement de l’air pulsé, on rafraîchit au préalable l’air extrait en l’humidifiant jusqu’à saturation. On abaisse ainsi le plus possible sa température, et on bénéficie au maximum du potentiel de refroidissement dans l’échangeur.

(7>8) en passant au travers de l’échangeur de chaleur, l’air extrait se voit donc réchauffé.

(8>9) Pour pouvoir fonctionner en continu, la roue dessicante doit être régénérée c’est-à-dire que l’humidité doit être évacuée du matériau adsorbant. Pour cela la portion de roue contenant l’humidité doit croiser le flux d’air extrait qui aura été préalablement réchauffé pour atteindre une température suffisante pour vaporiser les molécules d’eau retenues dans les pores de la roue.

(9>10) Enfin l’air chaud traverse et régénère la roue dessicante pour lui permettre de poursuivre le processus continu de déshumidification. Finalement, l’air rejeté, à l’aide d’un ventilateur, sort plus haute en température et plus chargé en humidité que l’air extérieur.

(3>5) L’air pulsé peut encore être arrosé d’eau au travers d’un humidificateur. L’eau va absorber les calories restantes dans l’air avant que celui-ci soit propulsé dans le bâtiment à refroidir par un ventilateur. Cette alternative permet de refroidir l’air pulsé mais pas de le déshumidifier. Pour ce faire, il est alors nécessaire de remplacer cet humidificateur par une batterie froide.

(4>5): Ce système est dit réversible, car il peut aussi bien être utilisé en refroidissement qu’en chauffage. En hiver, cela correspond à un mode de fonctionnement normal de réchauffement par système centralisé à air, en utilisant la roue de sorption comme récupérateur de chaleur, tout en complément des apports de la chaleur solaire. La présence d’une batterie chaude permet ainsi la régulation de température de chauffe en hiver.

Résumé du comportement de l’air illustré par le diagramme de l’air humide :

En théorie, dans le diagramme de l’air humide, l’évolution de l’air dans la roue dessicante se fait selon une courbe isenthalpique pour l’air soufflé et pour l’air repris (1>2 et 9>10).
Dans l’échangeur et dans le régénérateur (batterie chaude, apports solaires, …), les transferts de chaleur se font à humidité absolue constante (2>3, 7>8 et 8>9).
Entre l’air pulsé et l’air repris par la centrale de traitement, l’air subit les apports dus au local (personnes, lampes, ordinateurs, …) et voit sa température augmenter (5>6).
La combinaison de ces différentes évolutions permet d’obtenir un point de soufflage compatible avec le rafraîchissement du bâtiment.


Aspects technologiques

La roue à dessiccation – principe d’adsorption

La sorption est un phénomène physique qui consiste à fixer les molécules d’un élément à une surface généralement granulée et poreuse. Les matériaux dessicants attirent l’eau en formant à leur surface une zone à faible pression de vapeur.
La vapeur de l’air, ayant une pression plus élevée, se déplace de l’air vers la surface du matériau ce qui garantit une déshumidification de l’air.


Photo technologie roue dessicante rotative.


Schéma d’une roue à dessiccation avec section de purge
(séparation amont/aval).

La déshumidification s’effectue soit à travers un dispositif sur lequel est posé un matériau dessicant (on parle alors de « déshydratation en phase solide »), soit dans des échangeurs dans lesquels est pulvérisée une solution dessicante (« déshydratation en phase liquide »).

La sorption peut donc prendre place entre un gaz et un solide, auquel cas on parle d’adsorption, soit entre un gaz et un liquide, il s’agit dans ce cas du phénomène d’absorption. Raison pour laquelle les roues dessicantes sont appelées également des déshydrateurs à adsorption.

Photo d’un déshydrateur à adsorption  de la marque « Ventsys » fonctionnant selon le principe de la roue dessicante.

Actuellement les sorbants les plus utilisés sont le SiO2 (Silica-gel), LiCl (Chlorure de Lithium), Al2O3 (Alumine activée) et le LiBr (Bromure de Lithium).
Ces substances sont imprégnées sur une roue rotative en céramique à structure en nids d’abeilles.
Lorsque le matériau devient saturé, la roue continue à tourner lentement et la partie exempte d’humidité est régénérée par chauffage, au départ d’une source de chaleur disponible.

L’échangeur rotatif non hygroscopique

Un échangeur non hygroscopique est une roue à rotation lente, métallique à structure en nids d’abeilles à travers laquelle passent deux flux d’air de sens opposés produisant un échange sensible entre eux (humidité absolue constante).

L’avantage de ce type d’échangeur c’est qu’il a une perte de charge faible en comparaison de son efficacité, de plus il présente peu d’encombrement.

Pour éviter les fuites de l’air entre les sections de soufflage et de retour, il est préférable d’avoir une section de purge séparant les deux sections et d’avoir les ventilateurs en aval de l’échangeur.


Intérêts du procédé

  • L’intérêt environnemental de la roue dessicante se marque si la source de chaleur utilisée est de type renouvelable. Elle peut donc fonctionner avec des capteurs solaires thermiques (on parle alors de climatisation solaire), avec un réseau de chaleur urbain alimenté en permanence en été de manière renouvelable (biomasse, géothermie profonde (> 1 500 m), etc.), ou encore en valorisant des rejets thermiques de process industriel par exemple.
    L’utilisation de capteurs solaires comme source de chaleur possède comme principal avantage de pouvoir amener le plus de froid lorsqu’il fait le plus chaud. Ce système est d’autant plus intéressant que les apports solaires sont grands, et trouve donc en toute logique son intérêt en période estivale.
    Dans ces situations et afin de garantir une utilisation prolongée, par exemple lors des périodes non ensoleillées, il est également envisageable de stocker de la chaleur emmagasinée en journée dans des ballons tampons.
    Remarque : Afin d’assurer le bon fonctionnement du processus d’adsorption, il est nécessaire que la source de chaleur puisse fournir une température suffisante à la batterie de régénération. Cette température est d’environ 70 °C quand le climat extérieur est de 25 °C et 75 % HR.
    Remarque : une autre solution, conduisant à un coût d’investissement plus faible, utilise directement l’énergie solaire de régénération par le biais de capteurs à air (et non-circulation à eau), du fait que le réfrigérant est en contact direct avec l’atmosphère.

Schéma présentant le système à roue dessiccante couplé à une installation chauffage solaire.

  • L’utilisation d’eau comme fluide réfrigérant rend ces systèmes totalement inoffensifs pour l’environnement.
  • Les humidificateurs peuvent être alimentés via l’eau de pluie ou grâce à l’eau de ville. Dans ce dernier cas, il s’agit de consommation d’eau potable dont il convient d’évaluer l’ampleur économique et environnementale.
  • La compression du fluide caloporteur est thermique, avec absence de mouvements mécaniques, ce qui augmente leur durée de vie et réduit leur bruit. Cependant une maintenance soignée est obligatoire.
  • La qualité de l’air intérieur est améliorée par l’effet bactéricide des matériaux adsorbants.
  • Ce mode de climatisation ne suffit pas pour assurer une bonne rentabilité économique, en effet le coût d’investissement pour ce genre d’installation encombrante est souvent onéreux.  Le coût spécifique [€ /(m³/h)] des centrales de traitement d’air reste trop élevé pour de petits débits. Ces systèmes tout air neuf ne sont pas adaptés pour tous les bâtiments.

Remarque : le coût spécifique va de 8 €/(m³/h) pour une centrale de traitement de 20 000 m³/h jusqu’à 16 €/(m³/h) pour une centrale de traitement de 5 000 m³/h (coût brut source fournisseur). À titre de comparaison, le coût spécifique pour une centrale de traitement d’air à roue hygroscopique va de 3.5 €/(m³/h) pour une centrale de 20 000 m³/h jusqu’à 8 €/(m³/h) pour une centrale de 5 000 m³/h.

  • Dans le cas d’utilisation de panneaux solaires comme source de chaleur, la production frigorifique varie évidemment avec les apports solaires, le dispositif ne peut fonctionner qu’en journée. Il est cependant envisageable de stocker de la chaleur emmagasinée en journée dans des ballons tampons afin d’utiliser le dispositif pendant les périodes non ensoleillées. On ne dispose donc pas d’une véritable climatisation en ce sens que la puissance de froid peut ne pas être suffisante. On parle donc plutôt de « rafraîchissement ». Si l’on souhaite réellement disposer d’une puissance de froid suffisante quels que soient les besoins, il convient de surdimensionner le système de ventilation et de recourir à une source de chaleur d’appoint bien souvent fossile ou électrique. Dans ce cas, le bilan environnemental du système peut s’effondrer.
  • La complexité d’une installation réside dans la régulation des multiples circulations de fluides avec une source thermique peut-être variable et discontinue (apports solaires). Ainsi le bon fonctionnement du système peut s’avérer délicat à garantir sur la durée. Il faut optimiser le refroidissement et la régulation, éviter les pertes thermiques et les pertes de fluides, limiter la consommation électrique, éviter la surchauffe en période estivale, se protéger contre le gel.
  • Le système est peu performant dans les climats chauds et humides.
  • En hiver, il n’est pas possible de récupérer une grande part de l’énergie latente (humidité) telle que dans le cas d’un système à roue hygroscopique. Dès lors, le besoin d’énergie pour l’humidification est plus élevé.

Bilan énergétique

Évaluation statique de l’intérêt énergétique :
Comparaison entre un système de traitement d’air à roue hygroscopique et un système de traitement d’air à roue dessicante.

Exemple en hiver

  • Air repris à une température de 20°C et une humidité absolue de 6 g/kg
  • Air extérieur à une température de 5°C et une humidité absolue de 3 g/kg
  • Air pulsé après la roue à :
    • une température de 16.25°C et une humidité absolue de 5.25 g/kg dans le cas de la roue hygroscopique. Pour l’amener à 20°C et 6 g/kg, il faut donc l’équivalent de 5 kJ/kg d’énergie (chaud) et 0.75 g/kg d’air.
    • une température de 16.25°C et une humidité absolue de 3 g/kg dans le cas de la roue dessicante. Pour l’amener à 20°C et 6 g/kg, il faut donc l’équivalent de 11 kJ/kg d’énergie (chaud) et 3 g/kg d’air.

Pour un même mode de production d’énergie, le système à roue dessicante ne peut jamais être plus intéressant que le système à roue hygroscopique.  Il nécessite plus d’eau pour humidifier l’air et plus d’énergie pour compenser le rafraichissement dû à cet apport d’eau dans l’air.

Exemple en été

  • Air repris à une température de 25°C et une humidité absolue de 13 g/kg
  • Air extérieur à une température de 23°C et une humidité absolue de 15 g/kg
  • Pour une pulsion à une température de 16°C et une humidité absolue de 11 g/kg (point de pulsion de l’air dans le cas d’une climatisation par plafonds froids en régime 17-20°C), il faut :
    • l’équivalent de 17 kJ/kg d’énergie (froid) dans le cas de la roue hygroscopique.
    • l’équivalent de 32 kJ/kg d’énergie (chaud), 2 kJ/kg d’énergie (froid) et 11.5 g/kg d’air dans le cas de la roue dessicante.

Si on considère que l’énergie de refroidissement dans le cas de la roue hygroscopique est produite avec les caractéristiques suivantes :

  • 0.781 kWh d’énergie primaire / kWh d’énergie utile
  • 0.123 kg de CO² / kWh d’énergie utile
  • 0.043 € / kWh d’énergie utile

(facteurs de conversion : ESEER machine frigo de 3,2 ; 0,395 kg CO2/kWhélectrique ; 2,5 kWhprimaire/kWhélectrique ; 0,14€/kWhélectrique).

Il faut donc que l’énergie de régénération (chaud) dans le cas de la roue dessicante ait au minimum les caractéristiques suivantes pour être intéressante en été :

  • 0.36 kWh d’énergie primaire / kWh d’énergie utile
  • 0.058 kg de CO² / kWh d’énergie utile
  • 0.021 € / kWh d’énergie utile

On peut noter qu’un réseau urbain alimenté en biomasse répond à peine à ces critères,  sans compter qu’il faudrait en plus compenser les consommations supplémentaires en hiver et la consommation d’eau des humidificateurs !

De ce fait, si on la compare à un groupe de ventilation avec roue de  récupération hygroscopique, le bilan énergétique de la roue dessicante ne semble intéressant que dans très peu de cas où l’on peut considérer que la chaleur est entièrement d’origine renouvelable ou récupérée et l’eau de l’eau de pluie.
La performance d’une installation dessicante dépend :

  • De l’efficacité de l’échangeur rotatif : choix de la roue utilisée.
  • De la température de régénération : ce paramètre est utilisé afin de modifier la puissance froide délivrée par la centrale en mode desiccant cooling.
  • Des débits de ventilation : la variation du débit engendre une variation de la puissance froide, mais également une variation du rendement d’échange dans les roues. C’est pourquoi il est nécessaire d’utiliser le système dans la plage de débit pour lequel il est dimensionné.
  • De l’efficacité de l’humidificateur: sa modification permet de contrôler la température et l’humidité de l’air de soufflage. Cela peut être utile en cas d’humidité relative intérieure inconfortable.

Domaines d’utilisation

  • Les dispositifs à dessiccation apportent une solution bien adaptée dans les régions où les apports latents sont limités et sont particulièrement efficaces en climat assez sec.
    En effet, le seul problème provient des régions trop humides, où la roue n’est pas suffisante pour déshydrater l’air ambiant, car elle nécessite une température de régénération élevée, ce qui augmente la consommation du système en énergie primaire.
  • Les systèmes à dessiccation sont utilisés pour produire directement de l’air frais (déshumidification de l’air), et non pas pour refroidir l’eau de la boucle de refroidissement comme dans le cas des machines frigorifiques classiques. Une telle installation n’est donc pas envisageable pour rechercher de grands refroidissements. Ces dispositifs peuvent souffler de l’air à une température d’environ 10°C de moins que la température extérieure (suivant les débits d’air choisis).

Photo d’une installation DEC : desiccant evaporative cooling.

  • Ce procédé est plus spécialement applicable aux bâtiments neufs ou en réhabilitation lorsqu’une source thermique à faible coût est disponible pour régénérer l’adsorbant.
  • Enfin, les systèmes dessicants peuvent être valorisés dans les bâtiments ayant un objectif de bilan « Zéro énergie » dans lesquels une déshumidification de l’air est d’office nécessaire (utilisation de plafonds froids, d’îlots rayonnants). Pour ce faire, il est nécessaire de supprimer l’humidificateur adiabatique sur le chemin de l’air neuf.

Nouvelle technologie : les Lits dessicants liquide – (LDC : Liquid dessicant cooling)

Une technique développée, toute nouvelle sur le marché, utilise pour la dessiccation de l’air un sorbant liquide : une solution eau/bromure ou chlorure de lithium.
Par rapport à un système à dessiccation utilisant un sorbant solide, ce type de système présente plusieurs avantages :

  • un plus fort taux de déshumidification pour le même niveau de température;
  • une possibilité d’un haut niveau de stockage énergétique sous la forme de solution concentrée.

Ventilation intensive mécanique d’été

Date :juin 2014

Auteur : Geoffrey

Notes : mise en page – Sylvie

Ventilation intensive mécanique d’été


Principe

La ventilation intensive d’été, souvent appelée « free cooling » consiste à refroidir un bâtiment par ventilation en utilisant l’énergie gratuite de l’air extérieur lorsque celui-ci présente une température inférieure à la température intérieure :

  • En hiver, de l’air frais extérieur peut alimenter, en journée, les zones à rafraîchir sans nécessiter l’enclenchement des groupes frigorifiques.
  • En été, une ventilation nocturne peut décharger le bâtiment de la chaleur accumulée en journée

Selon le moment de la journée, on parle de free cooling de jour ou de nuit :

  • Le free cooling diurne consiste à surventiler les locaux avec de l’air extérieur plus frais que l’air intérieur. La capacité frigorifique de l’air extérieur étant faible, de grands débits d’air sont nécessaires.
  • Le free cooling nocturne consiste à rafraîchir les bâtiments la nuit grâce à de l’air extérieur. On parle de « décharge nocturne » du bâtiment puisqu’il évacue toute la chaleur excédentaire accumulée en journée.

On distingue une ventilation intensive naturelle ou mécanique, selon que le mouvement d’air soit généré par des forces naturelles (poussée d’Archimède ou force du vent) ou par un ventilateur.
Il faut également distinguer le débit d’air neuf hygiénique, du débit d’air de rafraîchissement d’un local :

  • La ventilation hygiénique ou permanente assure la qualité de l’air. Elle vise globalement les 30 m³/h d’air neuf nécessaires par personne (RGPT). Dans un bureau, cela entraîne un renouvellement horaire de 1 x par heure, puisque chaque occupant occupe +/- 10 m² au sol, et donc un volume de 30 m³.

Grille d’apport d’air hygiénique naturel … ou réseau d’air pulsé.

  • Le refroidissement naturel d’un local (ou free cooling) sous-entend un taux de renouvellement important de l’air du local. Dans des systèmes naturels (ouverture de fenêtre), on parle de 4/heure comme base de dimensionnement, 8 renouvellements/heure sont couramment rencontrés. Dans un système mécanique par contre on se limitera à environ 2 renouvellements horaire pour éviter un surdimensionnement exagéré des réseaux de distribution de l’air.


Un refroidissement gratuit ?

La conception d’un réseau de ventilation mécanique intensive n’est pas différente de celle d’un réseau de ventilation hygiénique mécanique (double flux) ou d’un système de climatisation « tout air« .

Souvent, c’est même un système de refroidissement « tout air » qui permettra d’organiser une ventilation intensive mécanique lorsque ce système est utilisé sans recyclage, récupération de chaleur ou traitement de l’air.

Cependant, vu l’importance des débits d’air à mettre en œuvre, le concepteur sera particulièrement attentif à limiter les pertes de charges du réseau, par un dimensionnement généreux des conduites, et la limitation des pertes de charges ponctuelles (filtres, groupes, organes divers). Le choix de l’efficacité énergétique du ventilateur sera également déterminant.

Oui mais… surdimensionner un réseau de ventilation mécanique, ce n’est pas un refroidissement gratuit, puisque la consommation électrique des ventilateurs est proportionnelle au débit : brasser plus d’air coute plus cher. En effet :

Consél = (qv / 3 600) x Δp x t / ηvent

où,

  • Consél = consommation énergétique du transport de l’air [Wh/an]
  • qv = débit d’air [m³/h]
  • 3 600 = 3 600 secondes par heure [s/h]
  • Δp = perte de charge (pulsion + extraction) [pa]
  • t = durée de fonctionnement [h/an]
  • ηvent = rendement total du système de ventilation (moyenne entre pulsion et extraction).

En fait, on peut obtenir un refroidissement gratuit si le coût du grand déplacement d’air en été est compensé par une réduction de ce coût en hiver. Cette réduction est possible grâce à la modulation du débit. En période de chauffe, seul le débit hygiénique est nécessaire, et non plus la pleine capacité de l’installation. Or, une réduction du débit dans un réseau donné entraîné une réduction proportionnellement plus importante des pertes de charges. Débit d’air et perte de charge sont en effet liés par une relation de type :

p1 / p2 = (n1 / n2)² = (q1 / q2

où,

  • q = débit volume (m³/h)
  • n = vitesse de rotation (tr/min)
  • p = gain de pression (Pa)

Faire une économie sur les ventilateurs en hiver n’est possible que si le réseau de ventilation est dimensionné sur les débit d’air « maximal » souhaité en free cooling, et non sur le débit hygiénique. Mettre en œuvre une ventilation intensive mécanique ‘URE’, ce n’est donc pas forcer un grand débit d’air en augmentant la vitesse au-delà des plages de fonctionnement ‘normales’.

Illustrons cela par un exemple : Soit un immeuble de bureaux de 5000m² demandant 10000 m³/h de ventilation hygiénique.

Scénario 1 : un réseau de ventilation dimensionné sur base des besoins hygiéniques présente une perte de charge globale de 900 Pa. Il fonctionne 12 h/jour, 5 jours par semaines, 52 semaines par an, soit 3 120 heures. Si le rendement du ventilateur est de 60 %, la consommation électrique sera :

Consél = (10 000 / 3 600) x 900 x 3 120 / 0.6 =13 000 kWh ou 2.6 kWh/m²

Scénario 2 : Le réseau est dimensionné pour pouvoir assurer le double du débit d’air hygiénique avec une perte de charge inchangée de 900 Pa. Il s’agit bien d’un surdimensionnement, et non du forçage d’un réseau de moindre capacité. Lorsqu’il ne fournit que l’air hygiénique (soit 50% de sa capacité), la perte de charge est réduite à 50%^2=25% de sa valeur nominale, soit 225 Pa. En supposant que, sur les 3120 heures de fonctionnement, le groupe fonctionne X heures en mode hygiénique est 3120-X heures en mode « free cooling », la consommation d’électricité totale sur l’année sera :

Consél = (10 000 / 3 600) x 225 x X / 0.6 +(20 000 / 3 600) x 900 x (3 120-X) / 0.6

Consél = 650 kW implique que X=1 783 heures

Dans cet exemple, le dédoublement de la capacité du réseau de ventilation pour un même niveau de perte de charge permet de libérer 3120-1783=1337 heures sur l’année de free cooling réellement gratuit.

En fait, le pourcentage du temps où le free cooling est gratuit dépend uniquement du facteur de surdimensionnement entre le débit hygiénique et le débit de conception du réseau de ventilation :

Dans cette figure, le % temps FC est la fraction maximale du temps d’utilisation qui peut être utilisé en mode free cooling sans induire de surconsommation d’électricité. Le ratio de surventilation est alors le rapport entre la quantité totale d’air pulsé sur l’année et la quantité correspondant au seul débit hygiénique.

Il n’est cependant pas toujours possible de surdimensionner un réseau de ventilation. On peut alors être tenté de forcer le débit, en augmentant la vitesse dans le réseau. Il s’en suit une augmentation de la consommation du ventilateur, qui peut être comparée au coût d’une installation de refroidissement traditionnelle.

Reprenons notre exemple avec le scénario 1 :

Dans ce bâtiment, extraire un kWh avec une machine frigorifique d’une efficacité EER de 3 aurait coûté :

Consomachine frigo= 1/3 = 0.33 kWhelec = 333 Wh

Dans ce réseau, brasser de l’air au débit hygiénique nous coûte

Puisél = (1 / 3 600) x 900 x 1 / 0.6 =0.41 W/m³/h

Doubler le débit d’air dans ce réseau fait passer les pertes de charges de 900 Pa à 3 600. Le coût du kWh pulsé dans ces conditions est de

Puisél = (1 / 3 600) x 3 600 x 1 / 0.6 =1.67 W/m3/h

Or, extraire 1 kWh thermique dans un bâtiment à 25°C nécessite au minimum, si l’air extérieur est à 15 °C :

Débit = 1 000 Wh / [0.34 (Wh/m³K) * (25 °C-15 °C)] = 294 m³ d’air

On voit clairement que la surventilation par forçage du débit est, dans ce cas-ci, moins intéressante que le recours à une machine frigorifique, puisqu’il nous coutera au minimum 294 m³*1.67 W/(m³/h) = 490 Wh, là où la machine frigorifique ne demanderait que 333 Wh.

Réglementation

Pour en savoir plus sur la performance énergétique des ventilateurs, norme :  EN13779  sur la ventilation des bâtiments non résidentiels.


Pertes de charge du réseau

La ventilation intensive implique de grands débit d’air. Lorsqu’elle est mécanique, on prévoira souvent entre 1.5 et 3 renouvellements horaires. Pas plus pour limiter les surdimensionnements. Or, la consommation électrique du ventilateur doit rester sous contrôle. Ces deux exigences ne peuvent se combiner que dans des réseaux à  « basse pression ».

Puissance absorbée, débit et rendement du ventilateur sont liés par l’expression :

P [W] = qV [m³/s] * Hm

où :

  • P = puissance absorbée au moteur du ventilateur [W]
  • qV = débit nominal à travers le ventilateur en [m³.s-1]
  • Hm est la hauteur manométrique [Pa]
  • η est le rendement nominal [-]

Théorie

Pour en savoir plus, le rendement d’un système de ventilation

En considérant un rendement moyen du ventilateur de l’ordre de 60%, on peut se donner une perte de charge maximale des réseaux de ventilation :

EN13779  :

Catégorie Puissance spécifique en W/m³.s Perte de charge maximale
SFP 1 < 500 < 300 Pa
SFP 2 500 – 750 300 – 450 Pa
SFP 3 750 – 1 250 450 – 750 Pa
SFP 4 1 250 – 2 000 750 – 1 200 Pa
SFP 5 > 2 000 > 1 200 Pa

Par exemples, la recherche d’une consommation spécifique inférieure à 1 200 W/(m3/s) implique des pertes de charge inférieures à :

Hm/η  < P / qV [W.m-3.s] < 1 200

Hm  < 1 200 * 0.6 = 720 Pa

C’est là une valeur raisonnablement facile à respecter… mais mieux vaut vérifier quand même !

Norme NBN EN 15251:2007 : Critères d’ambiance intérieure

Norme NBN EN 15251:2007 : Critères d'ambiance intérieure


Généralités

Constatant que la qualité des ambiances est liée à la santé et à la productivité des occupants, et que proposer des performances énergétiques non liées à des critères relatifs à l’ambiance intérieure est dénué de sens, cette norme spécifie la manière dont les critères de conception peuvent être établis et utilisés pour le dimensionnement des systèmes. Elle propose des données d’entrée pour les méthodes de calcul énergétique des bâtiments et pour l’évaluation à long terme de l’ambiance intérieure, ainsi que les paramètres de l’ambiance intérieure utiles pour le contrôle et l’affichage, comme le recommande la Directive Performance Energétique des Bâtiments.

Cette norme s’applique aux bâtiments non industriels pour lesquels les critères d’ambiance intérieure sont déterminés par l’occupation humaine et dont l’ambiance intérieure n’est pas notablement influencée par une production ou par des procédés. La norme est ainsi applicable aux types de bâtiments suivants : maisons individuelles, immeubles d’habitation, bureaux, bâtiments d’enseignement, hôpitaux, hôtels et restaurants, installations sportives, bâtiments de service pour le commerce de gros et de détail. Elle spécifie la manière dont les différentes catégories de critères d’ambiance intérieure peuvent être utilisées, mais n’impose pas les critères à utiliser. Ceci relève de spécifications nationales ou contractuelles. La norme se contente de définir des catégories selon la logique ci-dessous :

Catégorie Explication
I Niveau élevé attendu qui est recommandé pour les espaces occupés par des personnes très sensibles et fragiles avec des exigences spécifiques comme des personnes handicapées, malades, de très jeunes enfants et des personnes âgées.
II Niveau normal attendu qu’il convient d’utiliser pour les bâtiments neufs et les rénovations.
III Niveau modéré acceptable attendu qui peut être utilisé dans les bâtiments existants.
IV Valeurs en dehors des critères des catégories ci-dessus. Il convient que cette catégorie soit acceptée seulement pour une partie restreinte de l’année.

Cette norme ne prend pas en compte les critères relatifs aux facteurs d’inconfort locaux comme les courants d’air, l’asymétrie de la température de rayonnement, les gradients verticaux de température d’air et les températures de surface au sol. Pour des détails sur ces éléments, voir notamment la norme NBN EN ISO 7730.

Les liens de cette norme avec les autres normes relevant de la directive européenne sur la Performance énergétique des Bâtiments sont décrits dans l’organigramme ci-dessous.


Dimensionnement des systèmes de chauffage et de climatisation

Pour les valeurs de base de calcul des ambiances thermiques, la norme distingue les bâtiments chauffés et rafraîchis des bâtiments non climatisés.

Pour les bâtiments chauffés et rafraîchis, elle recommande l’utilisation des indicateurs de confort PMV-PPD définis par l’EN ISO 7730, et propose dans le tableau A2 leur traduction en objectifs de température opérative pour des conditions d’activité, d’habillement, d’humidité et de vitesse d’air type.

Exemples de températures intérieures de base recommandées pour la conception des bâtiments et des systèmes de chauffage, de ventilation et de climatisation
Type de bâtiment ou d’espace Catégorie Température opérative °C
Minimum pour le
chauffage (saison hivernale), ~ 1,0 clo
Maximum pour le
rafraîchissement
(saison estivale), ~ 0,5 clo

Bâtiments d’habitation : pièces de séjour (chambres, séjour, cuisine,
etc.)
Sédentaire ∼ 1,2 met
I 21 25,5
II 20 26
III 18 27
Bâtiments d’habitation : autres espaces (rangements, circulations,
etc.)
Station debout – marche ∼ 1,6 met
I 18
II 16
III 14
Bureau individuel (fermé ou ouvert), salle de réunion, auditorium, cafétéria/restaurant, salle de classe)
Sédentaire ∼ 1,2 met
I 21 25,5
II 20 26
III 19 27
École maternelle
Station debout – marche ∼ 1,4 met
I 19 24,5
II 17,5 25,5
III 16,5 26
Grand magasin
Station debout – marche ∼ 1,6 met
I 17,5 24
II 16 25
III 15 26

Pour les bâtiments non climatisés, la norme précise que les valeurs de dimensionnement de chauffage sont inchangées, mais que celles de refroidissement (inutiles vu l’absence de climatisation…) doivent être utilisées pour déterminer les périodes d’inconfort dans le bâtiment. La norme permet pour cela soit l’utilisation des valeurs déduites de l’approche PMV-PPD, soit l’utilisation d’autres valeurs de température opérative (qu’elle décrit en annexe A2) tenant compte d’une modification des attentes de confort (théorie du confort adaptatif) en fonction d’une température extérieure de référence. Cette température de référence est définie comme θrm= (1 – ) θed-1 + rm-1, avec θed-1 la température extérieure journalière moyenne la veille et θrm la température moyenne glissante du jour.


Qualité de l’air intérieur

Dans les bâtiments non résidentiels, la norme précise que les débits de ventilation exigés pour la qualité de l’air sont les mêmes en toute saison. Ils dépendent de l’occupation, des activités à l’intérieur (p. ex. tabagisme, cuisine, nettoyage, lavage …), des procédés (tels la photocopie dans les bureaux, les expériences de chimie dans les écoles, etc.) et des émissions générées par les matériaux du bâtiment ainsi que par l’ameublement. En Wallonie, les débits à prévoir par local selon son affectation, sa surface et son occupation sont précisés dans la réglementation PEB.

Dans les bâtiments résidentiels, elle précise que les débits de ventilation requis doivent être spécifiés sous forme de taux horaire global de renouvellement d’air, et/ou de débits d’air neuf extérieurs et/ou d’air extrait exigé (salles de bains, toilettes et cuisines) ou doivent être donnés sous forme d’un taux global requis de renouvellement d’air. En Belgique, la norme D50-001 a opté pour une formulation sous forme de débits d’air neuf minimums par local selon son affectation.

La norme indique en annexe B2 des valeurs de base à utiliser en l’absence de réglementation locale (ici, régionale). Vu l’existence des réglementations PEB, ces valeurs n’ont pas lieu d’être considérées en Wallonie.

En outre, l’annexe C propose des valeurs seuils d’émissions permettant d’identifier des « matériaux peu polluants » ou « très peu polluants ». Un bâtiment est peu polluant si la majorité des matériaux sont peu polluants. Un bâtiment est très peu polluant si tous les matériaux sont très peu polluants et s’il n’y a jamais eu de fumeur et que fumer est interdit.

Seuil « peu polluant » Seuil « très peu polluant »
Émission des composés organiques volatiles (TVOC) < 0,2 mg/m²h < 0,1 mg/m²h
Émission de formaldéhyde inférieure < 0,05 mg/m²h < 0,02 mg/m²h
Émission d’ammoniaque inférieure < 0,03 mg/m²h < 0,01 mg/m²h
Émission de composés cancérogènes (IARC) < 0,005 mg/m²h < 0,002 mg/m²h
Matériau inodore insatisfaction due à l’odeur inférieure à 15 % insatisfaction due à l’odeur inférieure à 10 %

L’humidité

La norme précise que, sauf cas particulier (musées, monuments historiques, églises), une humidification ou déshumidification de l’air n’est généralement pas nécessaire pour assurer le confort, mais précise que des taux d’humidité durablement élevés ou très bas peuvent provoquer gênes et dégâts. Le traitement de l’humidité peut également avoir un impact énergétique important.

La norme pose donc que l’humidification ou la déshumidification de l’air des locaux n’est généralement pas exigée, mais si on y a recours il convient d’éviter toute humidification et déshumidification excessive. Dès lors, elle propose des valeurs de référence en annexe B3.

Critères recommandés pour l’humidité en présence de dispositifs d’humidification ou de déshumidification
Type de bâtiment/espace Catégorie Humidité relative de
conception pour la
déshumidification, en %
Humidité relative de
conception pour l’humidification, en %
Espaces dans lesquels les critères d’humidité sont liés à l’occupation humaine. Des espaces particuliers
(musées, églises etc.) peuvent nécessiter d’autres limites.
I 50 30
II 60 25
III 70 20
IV > 70 < 20

L’éclairage

La norme se limite à faire référence à la l’EN 12464-1 et à la l’EN 12193 qui définissent les éclairements requis selon les tâches et à la norme EN 15193 pour ce qui concerne la pénétration de lumière naturelle.


Le bruit

La norme propose des valeurs de référence applicables lorsqu’il n’y a pas de norme nationale. Or, une telle norme existe en Belgique : la NBN S 01-401. Les valeurs proposées par la EN 15251 ne sont donc pas d’application.


Paramètres pour le calcul énergétique

La norme précise que les valeurs précisées en dimensionnement des systèmes de chauffage, de refroidissement et de traitement de l’humidité doivent également être utilisées pour les calculs énergétiques sur base saisonnière ou mensuelle. Pour les calculs dynamiques (horaires) par contre, c’est une valeur cible qui doit être visée, à savoir le point médian de plages de valeurs, mais en considérant une possibilité de fluctuation des conditions intérieures  du fait de l’algorithme de régulation.

Plages de température pour le calcul horaire de l’énergie de chauffage et de rafraîchissement dans trois catégories d’ambiance intérieure
Type de bâtiment ou d’espace Catégorie Plage de température pour le chauffage, °C Vêture ∼ 1,0 clo Plage de température
pour le rafraîchissement, °C Vêture ∼ 0,5 clo
Bâtiments d’habitation, pièces de séjour (chambres, séjours, etc.)
Activité sédentaire ~1,2 met
I 21,0 – 25,0 23,5 – 25,5
II 20,0 – 25,0 23,0 – 26,0
III 18,0 – 25,0 22,0 – 27,0
Bâtiments d’habitations, autres locaux (cuisines, rangements, etc.)
Station debout, marche ~1,5 met
I 18,0 – 25,0
II 16,0 – 25,0
III 14,0 – 25,0
Bureaux et locaux à activité similaire
(bureaux individuels ou paysagés, salles de réunion, auditoriums, cafétérias, restaurants, salles de classe)
Activité sédentaire ~1,2 met
I 21,0 – 23,0 23,5 – 25,5
II 20,0 – 24,0 23,0 – 26,0
III 19,0 – 25,0 22,0 – 27,0
Écoles maternelles
Station debout, marche ~1,4 met
I 19,0 – 21,0 22,5 – 24,5
II 17,5 – 22,5 21,5 – 25,5
III 16,5 – 23,5 21,0 – 26,0
Grands magasins
Station debout, marche ~1,6 met
I 17,5 – 20,5 22,0 – 24,0
II 16,0 – 22,0 21,0 – 25,0
III 15,0 – 23,0 20,0 – 26,0

Un dépassement de ces plages peut être autorisé. En cas de dépassement de la température vers le haut, la surchauffe doit être estimée sur base d’une des méthodes proposées  en annexe 8.

Pour le calcul énergétique, la ventilation doit être supposée en fonctionnement à son débit de dimensionnement pendant la période d’occupation, sauf système à débit d’air variable. En dehors de ces périodes, l’annexe B4 précise que dans les locaux non résidentiels un débit d’air neuf équivalent à 2 volumes d’air de l’espace ventilé doit être fourni dans l’espace avant l’occupation de celui-ci (par exemple, si le débit de ventilation est de 2 vol/h, la ventilation démarre une heure avant l’occupation). Les infiltrations peuvent être calculées comme faisant partie de cette ventilation. Une ventilation continue à faible débit peut également être choisie, sur base d’au minimum 0,1 à 0,2 l/(s.m²) dans les locaux non résidentiels et 0,05 à 0,1 l/(s.m²) dans les logements.

Même logique pour l’éclairage, où les valeurs de dimensionnement sont à considérer, ainsi que la possibilité de combinaison entre éclairage naturel et artificiel. La norme attire l’attention sur l’inconfort de type éblouissement qui peut avoir une influence sur l’emploi des contrôles automatiques et des protections solaires.


Évaluation et classification de l’ambiance intérieure

La norme précise qu’une ambiance intérieure peut être évaluée sur base d’indicateurs liés à la conception, sur des mesures ou sur des calculs.

Les indicateurs liés à la conception sont les valeurs précisées plus  haut ayant trait à la thermique d’hiver et d’été, à la qualité de l’air, à l’humidité, à l’éclairage et à l’acoustique.

Les indicateurs calculés sur base de simulations doivent m’être conformément aux normes prEN 15265 et prEN 15255. Quatre méthodes d’évaluation sont décrites :

  • Indicateurs simples : Le bâtiment satisfait les critères d’une catégorie donnée si des pièces représentatives de 95 % du volume du bâtiment satisfont les critères de la catégorie retenue.
  • Critères horaires : cette méthode décrite en annexe F cherche à évaluer le nombre d’heures effectif ou en % de temps pendant lequel le critère est respecté ou non.
  • Critère des degrés-heures : cette méthode, décrite en annexe F, permet d’évaluer le dépassement des limites de température hautes ou basses en saison chaude ou froide. Ce calcul cherche à pondérer la durée du dépassement de la plage cible par l’ampleur wf (°C) de ce dépassement. En pratique, chaque heure de dépassement est multipliée par l’écart en degré entre la condition observée et la limite de la plage de valeur acceptable.
  • Critère de confort thermique global (PMV pondéré) : cette méthode, décrite en annexe F, reprend le principe de la méthode des degrés-jours, sauf qu’ici les heures comptabilisées sont celles mettant en évidence un dépassement des plages de confort exprimées en PMV. Le facteur de pondération wf (PPD) est ici égal au rapport entre le PPD constaté et le PPD limite correspondant à la plage de confort.
Exemples de facteurs de pondération basés sur la différence de température ou sur le PPD pour des bâtiments climatisés (en chaud ou froid) pour une plage de confort de 23 à 26 °C, correspondant à un travail sédentaire (1,2 met) et à des vêtements d’été légers (0,5 clo).
Température °C PPD % Facteurs de pondération
wf (°C) wf (PPD)
Froid 20 47 3 4,7
21 31 2 3,1
22 19 1 1,9
Neutre 23 10 0 0
24 < 10 0 0
25 < 10 0 0
26 10 0 0
Chaud 27 19 1 1,9
28 31 2 3,1
29 47 3 4,7

Les indicateurs mesurés évaluent des écarts par rapport aux critères choisis, sous forme par exemple d’un nombre acceptable d’heures en dehors des critères basés sur une évaluation annuelle (100 à 150 h). En l’absence de critères nationaux, l’annexe G propose des valeurs d’écarts admissibles. Les mesures doivent être réalisées dans des pièces représentatives, dans différentes zones et orientations, avec des charges différentes, pendant des périodes d’utilisation représentatives. Les points de mesure d’ambiance thermique et les instruments de mesure doivent être conformes à l’EN ISO 7726 (EN 12599). Pour l’éclairement, la procédure de vérification décrite à l’Article 6 de l’EN 12464-1:2002 doit être suivie. La section 9 de la norme complète ces exigences en précisant des conditions de mesurage plus détaillées.

Exemples d’écarts correspondant à 3 % et 5 % du temps
3 %/5 % d’une
période
Journalière
minutes
Hebdomadaire
heures
Mensuelle
heures
Annuelle
heures
Heures de travail 15/24 1/2 5/9 61/108
Heures totales 43/72 5/9 22/36 259/432

La réaction subjective directe des occupants peut également être utilisée pour l’évaluation globale de l’ambiance intérieure. Des évaluations quotidiennes, hebdomadaires et mensuelles sous forme de questionnaires peuvent être utilisées pour l’acceptation générale de l’ambiance intérieure, la sensation thermique, la qualité de l’air perçue. Des méthodes recommandées et des questionnaires sont donnés à l’Annexe H pour l’enregistrement des réactions subjectives.

évaluations sous forme de questionnaires.

La norme précise enfin que l’information relative à l’ambiance intérieure du bâtiment doit être incluse dans le certificat énergétique du bâtiment (Article 7 de la DPEB) pour permettre l’évaluation de la performance totale du bâtiment. En raison des nombreux paramètres et de la connaissance insuffisante sur les influences des paramètres de l’ambiance intérieure qui interagissent, il est recommandé de réaliser une classification globale basée sur l’ambiance thermique uniquement et sur la qualité de l’air intérieur. il est recommandé qu’une « empreinte » résumant le confort soit donnée séparément pour des conditions thermiques et pour des conditions de qualité d’air intérieur. Ceci peut être présenté sous la forme de pourcentage de temps (températures, débits de ventilation ou concentrations de CO2) pendant lequel l’ambiance intérieure se situe dans les différentes catégories (I, II, II et IV). Des exemples sont donnés à l’Annexe I.

Choisir un système de ventilation intensive (free cooling)

Choisir un système de ventilation intensive (free cooling)

Ventilation intensive mécanique ou naturelle ?

On peut envisager un système de ventilation intensive entièrement mécanique. La consommation électrique des ventilateurs risque cependant de compenser l’économie réaliser sur la machine frigorifique. Sans parler de l’encombrement des conduites. Ce type de système est équivalent à une climatisation « tout air » de type VAV qui valoriserait au maximum l’air extérieur non traité.

Concevoir

Pour plus d’infos techniques sur la conception des systèmes VAV

Selon les situations, les ventilations mécaniques et naturelles présentent chacune des avantages et/ou des inconvénients :

Coût d’investissement

Le free cooling, de jour comme de nuit, nécessite des débits de ventilation relativement importants. L’ installation de ventilation doit donc être dimensionnée pour gérer ces débits (conduits, ventilateurs, bouches, ….).

Si le bâtiment est déjà équipé d’un système de climatisation tout air ou si les débits de ventilation hygiénique sont importants (du fait de l’occupation, dans des salles de conférence, des auditoires, par exemple), un réseau mécanique ne représente peut-être pas un surcoût.

Par contre, lorsque la ventilation hygiénique est limitée, la possibilité d’organiser un free cooling mécanique entraîne un surdimensionnement, donc un surcoût important de l’installation.

Dans le cas d’une ventilation naturelle, si la réalisation d’un réseau de ventilation mécanique important est évitée, l’investissement pour organiser une ventilation naturelle n’est néanmoins pas nul. Des éléments particuliers doivent être prévus pour amener l’air dans le bâtiment sans risque d’effraction (grilles, fenêtres automatisées,…), éventuellement pour lui permettre de circuler (grilles de transfert, portes coupe-feu,…) et pour l’extraire (grilles d’extraction, cheminées,…).

Coût de fonctionnement

En ventilation naturelle, le transport de l’air s’effectue naturellement grâce aux différences de pression et/ou de température de l’air autour du bâtiment. Dans les systèmes de ventilation par effet de cheminée, un ventilateur d’extraction est parfois installé pour pourvoir au transport de l’air dans de mauvaises conditions climatiques. Pratiquement, ces ventilateurs sont peu ou pas utilisés.

En ventilation mécanique, le fonctionnement des ventilateurs pour le transport de l’air nécessite une énergie électrique non négligeable.

Par exemple, une étude réalisée sur un bâtiment du Sud de la France montre que la consommation des ventilateurs actionnés la nuit était similaire à la consommation des groupes frigorifiques en relance au matin en absence de free cooling (ceux-ci bénéficiant de l’efficacité frigorifique qui produit 2 à 3 kWh de froid pour 1 kWh au compresseur…).

Confort

En free cooling diurne naturel, l’amenée d’air frais directement dans les locaux peut se révéler inconfortable. Des solutions peuvent néanmoins être trouvées pour éviter cet inconfort, comme le montrent les trois exemples suivants réalisés dans des bâtiments anglais.

Exemples.

Dans le centre administratif de l’entreprise Powergen, l’air, en hiver, est introduit par les fenêtres hautes, et guidé, grâce à la forme particulière du plafond vers le centre du bâtiment. Le mélange de l’air frais extérieur avec l’air ambiant se fait donc sans inconfort.

Photo centre administratif de l'entreprise Powergen.

Dans le bâtiment environnemental du BRE, l’air de ventilation des bureaux paysagers parcourt des conduits intégrés dans le plafond, à température ambiante, avant de pénétrer le local au niveau du plafond. Il est donc légèrement réchauffé.

Powergen, schéma explicatif.

Powergen, schéma explicatif.

Enfin, dans le Queen’s building de l’Université De Monfort, l’air extérieur est introduit dans les auditoires au travers d’un absorbant acoustique et d’une batterie de préchauffe.

À cela s’ajoute le risque de sous-refroidissement du local et donc d’inconfort le matin, à l’arrivée des occupants, si les amenées d’air ne sont pas automatisées et refermées au cours de la nuit, quand le bâtiment est suffisamment refroidi.

En ventilation mécanique, lorsque l’on souhaite bénéficier de la fraîcheur de l’air extérieur, mais que celui-ci est trop froid pour être pulsé tel quel, il serait paradoxal de recourir à une batterie de chauffe. Une récupération de chaleur sur l’air extrait est alors tout indiquée. Éventuellement, un recyclage partiel de l’air extrait peut être envisagé.


Un ventilateur en renfort du tirage naturel : vers des systèmes hybrides ?

Pour renforcer le tirage lorsqu’il est trop faible ou pour limiter l’encombrement des cheminées de tirage naturel, il est possible d’organiser une pulsion forcée d’air frais extérieur : un extracteur est placé sur le sommet de la cheminée. Ici également, la température intérieure va fluctuer entre 21 et 25°C durant la journée, puisque le bâtiment stocke son froid la nuit et se réchauffe le jour. Mais au moins une garantie est donnée sur la réelle circulation de l’air.

Schéma de fonctionnement de la ventilation hybride dans les classes (École Tanga).


Disposer d’une masse thermique accessible

Le but de la ventilation nocturne est de refroidir la masse thermique du bâtiment durant la nuit et de diminuer ainsi les surchauffes en journée.

Ce sont les matériaux lourds de construction (béton, carrelage, …) qui constituent la principale masse thermique d’un bâtiment. En journée, ceux-ci absorbent les apports instantanés de chaleur (ensoleillement, …). Cette chaleur est restituée ensuite avec un décalage temporel, ce qui atténue fortement les hausses de température diurne dans le bâtiment. On parle d’inertie thermique du bâtiment. Prenons l’exemple d’une voiture. Celle-ci n’a aucune masse thermique. Dès que le soleil luit, la température intérieure monte très vite. À l’inverse, dès que le soleil disparaît, la température intérieure chute.

Évolution dans le temps de l’apport de chaleur dû à l’ensoleillement dans un local
avec ou sans inertie thermique : comparaison entre la chaleur instantanée transmise au travers du vitrage et la chaleur restituée au local.

Le but de la ventilation nocturne est de décharger au maximum, durant la nuit, la chaleur accumulée dans les matériaux du bâtiment et de permettre une forte absorption de chaleur durant la journée.
Pour que ce phénomène d’accumulation / restitution de chaleur soit possible, il faut :

  • D’une part, favoriser l’utilisation de matériaux de construction lourds pour assurer l’accumulation.
  • D’autre part, garantir le contact entre ceux-ci et l’air frais de ventilation pour évacuer la chaleur accumulée.

À défaut de quoi, on ne refroidirait que l’air ambiant du bâtiment, qui se réchaufferait au premier rayon de soleil (comme cela se passe dans une voiture …). Concrètement :

  • Au niveau du sol, le carrelage est préférable à la moquette, au plancher ou au faux plancher qui isolent par rapport à la masse du sol. …). Le passage des réseaux hydrauliques, électriques,informatiques… s’en trouve contrarié.
  • Au niveau des murs, des murs intérieurs en maçonnerie lourde absorbent nettement plus de chaleur que les cloisons légères. Mais des cloisons lourdes peuvent aller à l’encontre de la flexibilité souhaitée par un promoteur immobilier par exemple.
  • Au niveau des plafonds, l’emploi de faux plafonds est déconseillé.

La surface d’absorption manquante au plafond peut être fournie par les portes absorbantes acoustiques des armoires.

Exemple.

Les bureaux du bâtiment environnemental du BRE, par exemple, ne présentent pas de faux plafonds. La surface du plafond a même été augmentée artificiellement en lui donnant une forme sinusoïdale. L’énergie thermique stockée par le plafond est ainsi augmentée.

Phot des plafonds du bâtiment environnemental du BRE.

Cependant, les faux plafonds offrent d’importants avantages (coût par rapport à la finition d’un plafond « lourd », intégration des installations techniques, …) et permettent notamment d’améliorer l’acoustique des locaux. Un compromis peut être trouvé entre la fonctionnalité du faux plafond et la perte de masse thermique qu’il engendre. Il s’agit de plafonds semi-fermés comportant des ouvertures qui assurent un contact entre l’air intérieur et la structure du bâtiment.

Faux plafonds semi-ouverts permettant la circulation de l’air de ventilation.

Dans le centre administratif de l’entreprise Powergen en Angleterre, une autre solution a été utilisée pour assurer le confort acoustique : les « ailes » des éléments techniques suspendus (regroupant luminaires, détecteurs incendies, etc.) sont des absorbants acoustiques. La forme elliptique des creux du plafond focalise les ondes sonores vers ces absorbants.

Théories

Pour plus d’informations sur l’évolution thermique d’un local type sans inertie, cliquez ici !


Gérer la fluctuation inévitable de la température intérieure

Choisir un rafraichissement par ventilation intensive sans appoint d’une machine frigorifique implique inévitablement des fluctuations de température dans le bâtiment.

En été, le bâtiment est un réservoir « tampon », qui est « vidé de sa chaleur » la nuit jusqu’à atteindre 21°C, et dont la température augmente progressivement en journée jusqu’à 25°C. S’il fait plus de 25°C à l’extérieur, l’occupant doit vivre dans son local sans ouvrir la fenêtre, et se baser sur le « capital froid » emmagasiné durant la nuit.

En outre, il ne faut pas sous-refroidir le bâtiment, pour ne pas créer d’inconfort lors de l’arrivée des occupants, le matin. Une régulation automatique du free cooling s’impose si les utilisateurs ne peuvent assurer la gestion manuelle.

Dans tous les cas, les fluctuations de température doivent rester dans les plages de confort tolérées par le maître d’ouvrage. Or, dans un bâtiment se basant sur un système de reoifridissement par ventilation, l’approche du confort n’est pas la même que dans un bâtiment climatisé. La norme NBN EN 15251 donne à ce titre des indications utiles.

Pour en savoir plus :

Théories

Le confort thermique.

Réglementations 

La norme NBN EN 15251.

Comparer le chauffage simple et la climatisation

Comparer le chauffage simple et la climatisation
Il est possible de comparer, pour un bâtiment donné, la consommation et le niveau de confort générés par différents niveaux d’équipements. Nous reprenons ci-dessous un extrait d’un vaste travail de simulation réalisé par l’ISSO aux Pays-Bas (les conditions de climat extérieur sont donc relativement comparables à ceux de nos régions).

Voici les hypothèses de travail :

La simulation porte sur un bureau de 4,1 m de façade sur 5,2 m de profondeur et 2,7 m de hauteur. Les consignes sont de 22°C en hiver et 24°C en été. L’inertie des parois est moyenne (sol en béton, pas de faux plafond, cloisons intérieures légères, soit 59 kg/m²). Les apports internes correspondent à l’éclairage et la présence d’une personne et de son PC par zone de 12 m² (35 W/m²). Le pourcentage de vitrage par rapport à la façade est de 50 %. Les murs extérieurs sont équipés de 8 cm d’isolant. Le bureau simulé est entouré d’autres bureaux dont les consignes sont similaires (pas d’échange avec les bureaux voisins). Des stores extérieurs limitent les apports solaires à 20 % de leur valeur lorsque ceux-ci dépassent 300 W/m². Le taux de renouvellement d’air est de 3/h pour les systèmes 2 et 4, et 4/h pour le système 3. Les pertes de charge du circuit de ventilation sont de 1 600 Pa. Un échangeur de chaleur est placé sur l’air de ventilation et son rendement est estimé à 75 %. Le coût de l’humidification est intégré.

Dans ce cas, en intégrant les rendements de production des équipements, les consommations annuelles sont [en kWh/m²] :

SUD EST OUEST NORD
1 Radiateurs + ventilation naturelle Chauffage : 78
Transport : 1
Inconfort : 370 h
Chauffage : 81
Transport : 1
Inconfort : 400 h
Chauffage : 81
Transport : 1
Inconfort : 450 h
Chauffage : 83
Transport : 1
Inconfort : 310 h
2 Radiateurs + ventilation mécanique double flux Chauffage : 58
Transport : 22
Inconfort : 260 h
Chauffage : 59
Transport : 22
Inconfort : 280 h
Chauffage : 60
Transport : 22
Inconfort : 310 h
Chauffage : 61
Transport : 22
Inconfort : 230 h
3 Radiateurs + ventilation mécanique double flux + rafraîchissement* + free cooling de nuit** Chauffage : 70
Refroidissement : 7
Transport : 30
Inconfort : 25 h
Chauffage : 72
Refroidissement : 7
Transport : 31
Inconfort : 45 h
Chauffage : 73
Refroidissement : 7
Transport : 31
Inconfort : 60 h
Chauffage : 74
Refroidissement : 7
Transport : 30
Inconfort :  20 h
4 Conditionnement d’air
(installation 4 tubes avec éjecto-convecteurs)
Chauffage : 83
Refroidissement : 14
Transport : 29
Inconfort : 0 h
Chauffage : 83
Refroidissement : 13
Transport : 29
Inconfort : 0 h
Chauffage : 83
Refroidissement : 14
Transport : 29
Inconfort : 0 h
Chauffage : 83
Refroidissement : 11
Transport : 29
Inconfort : 0 h

*Par « rafraîchissement » en été, on entend ici une pulsion d’air « rafraîchit » correspondant à 4 renouvellements horaires :

  • refroidit à une température de 18 [°C], lorsque la température extérieure est < 23 [°C]
  • refroidit à une température de (T°ext – 5°), lorsque la température extérieure est > 23 [°C]

**Par « free cooling de nuit », on entend ici une pulsion d’air extérieur de ventilation correspondant à 4 renouvellements horaires, si T°ext < T°int  et si T°int > 20 [°C].

La rubrique « transport » représente l’énergie des circulateurs et ventilateurs.

Par « inconfort », on entend le nombre d’heures durant la période de travail où le PMV (Vote Moyen Prédictif) des occupants serait > 0,5. Autrement dit, le nombre d’heures où l’on peut s’attendre à des plaintes du personnel… On considère que si ce nombre d’heures est inférieur à 100 heures par an, il s’agit d’une gêne temporaire tout à fait acceptable. Au-delà de 200 h/an, des mesures de refroidissement sont nécessaires pour garder un climat intérieur correct.

Les kWh de refroidissement sont ceux demandés au compresseur. Ils intègrent donc le COP de la machine frigorifique. Les besoins de froid du bâtiment seraient plus élevés.

Pour transcrire ceci en coût, on peut adopter les hypothèses suivantes

  • le kWh thermique (chauffage) revient à 6,22 c€, sur base d’un prix du fuel de 0,622 €/litre.
  • le kWh électrique (froid et transport) revient à 16 c€, puisque l’installation fonctionne en journée, 10 h sur 24, uniquement durant les jours ouvrables (251 jours par an)

Le tableau devient [en €/m² ] :

SUD EST OUEST NORD
1 Radiateurs + ventilation naturelle Chauffage : 4,85
Transport : 0,16
Inconfort : 370 h
Chauffage : 5,04
Transport : 0,16
Inconfort : 400 h
Chauffage : 5,04
Transport : 0,16
Inconfort : 450 h
Chauffage : 5,16
Transport : 0,16
Inconfort : 310 h
2 Radiateurs + ventilation mécanique double flux Chauffage : 3,61
Transport : 3,52
Inconfort : 260 h
Chauffage : 3,67
Transport : 3,52
Inconfort : 280 h
Chauffage : 3,73
Transport : 3,52
Inconfort : 310 h
Chauffage : 3,79
Transport : 3,52
Inconfort : 230 h
3 Radiateurs + ventilation mécanique double flux + rafraîchissement* + free cooling de nuit** Chauffage : 4,35
Refroidissement : 1,12
Transport : 4,80
Inconfort : 25 h
Chauffage : 4,48
Refroidissement : 1,12
Transport : 4,80
Inconfort : 45 h
Chauffage : 4,54
Refroidissement : 1,12
Transport : 4,80
Inconfort : 60 h
Chauffage : 4,60
Refroidissement : 1,12
Transport : 4,80
Inconfort :  20 h
4 Conditionnement d’air
(installation 4 tubes avec éjecto-convecteurs)
Chauffage : 5,16
Refroidissement : 2,24
Transport : 4,64
Inconfort : 0 h
Chauffage : 5,16
Refroidissement : 2,08
Transport : 4,64
Inconfort : 0 h
Chauffage : 5,16
Refroidissement : 2,24
Transport : 4,64
Inconfort : 0 h
Chauffage : 5,16
Refroidissement : 1,76
Transport : 4,64
Inconfort : 0 h

Si les coûts sont à présent globalisés et ramenés à une échelle de 100 pour la situation 1 (radiateurs et ventilation naturelle) :

SUD EST OUEST NORD
1 Radiateurs + ventilation naturelle Coût : 100
Inconfort : 370 h/an
Coût : 104
Inconfort : 400 h/an
Coût : 104
Inconfort : 450 h/an
Coût : 105
Inconfort : 310 h/an
2 Radiateurs + ventilation mécanique double flux Coût : 146
Inconfort : 260 h/an
Coût : 144
Inconfort : 280 h/an
Coût : 145
Inconfort : 310 h/an
Coût : 146
Inconfort : 230  h/an
3 Radiateurs + ventilation mécanique double flux + rafraîchissement* + free cooling de nuit** Coût : 205
Inconfort : 25 h/an
Coût : 208
Inconfort : 45 h/an
Coût : 209
Inconfort : 60 h/an
Coût : 210
Inconfort :  20 h/an
4 Conditionnement d’air
(installation 4 tubes avec éjecto-convecteurs)
Coût : 240
Inconfort : 0 h/an
Coût : 237
Inconfort : 0 h/an
Coût : 240
Inconfort : 0 h/an
Coût : 231
Inconfort : 0 h/an

Analyse des résultats

Dans les hypothèses prises pour la simulation, le coût d’exploitation global généré par le système de conditionnement d’air est évalué à 6,5 €/m²/an. Il est 4 fois plus onéreux que le système par simples radiateurs, mais ce dernier n’est plus acceptable dans un bureau aux standards de construction actuels, si des mesures particulières de limitation des charges ne sont pas prises.

Le coût du transport de l’air de ventilation et de climatisation est également un poste majeur dans le bilan financier. Mais les hypothèses de dimensionnement choisies par l’équipe de recherche sont particulièrement défavorables au transport (taux de renouvellement d’air élevé et pertes de charge du réseau élevées) et favorables au bilan thermique (échangeur de chaleur sur l’air extrait pour préchauffer l’air de ventilation en hiver, et stores pour limiter les apports solaires d’été). Il n’empêche que le coût du transport est un poste à ne pas négliger et que le choix du système de climatisation sera déterminant à ce niveau.

Dans d’autres simulations de cette étude, il apparaît que seuls les bâtiments dont la charge interne est limitée à 20 W/m² (ce qui correspond à une situation d’absence d’équipement bureautique), peuvent encore se passer d’un système de refroidissement. C’est le cas du secteur domestique, mais pas du secteur des bureaux…

Concevoir

 Alors … la climatisation des bureaux, un mal nécessaire ?

Confort au sens large

Date :

  • janvier 2014

Auteur :

  • Geoffrey.

Notes :

  • 29-01-2014 : 1er passage de mise en page [liens internes, tdm, rapide passage général sur la mise en page de la feuille] – Sylvie

Antidote :

  • Oui

Confort au sens large

Le confort est défini comme « un état de satisfaction vis-à-vis de l’environnement perçu ».


Multiples dimensions du confort

La satisfaction vis-à-vis de l’environnement fait appel à toutes les dimensions physiques des ambiances, mais également à des aspects comportementaux et psychologiques.

Au niveau physique, ou physiologique, on distingue les conforts respiratoires, thermiques, acoustiques et visuels. Ces aspects sont généralement assez bien connus et de nombreuses normes définissent des seuils minimums et/ou maximums pour les grandeurs physiques concernées (éclairement, température, puissance acoustique, etc.). à noter que ces grandeurs ne sont pas nécessairement absolues : elles peuvent varier dans le temps. Ainsi, les plages de confort thermiques ne sont pas les mêmes en été et en hiver, du fait notamment d’adaptation physiologique (modification du rythme cardiaque et de la capacité de sudation).

Au niveau comportemental, c’est la capacité d’action de l’occupant dans le bâtiment qui est mise en évidence. Car les conditions intérieures et les attentes sont variables dans le temps : on accueillera plus favorablement un courant d’air en été qu’en mi-saison. Il est donc important que l’occupant ait une capacité d’action sur les organes de contrôle des systèmes du bâtiment, sur son activité et sur son habillement.

Au niveau psychologique, c’est surtout l’implication de l’occupant qui est mise en avant lorsque l’on parle d’énergie. Il ne suffit pas qu’il ait la capacité de contrôler son environnement si ces besoins physiologiques le demandent, il faut qu’il ait conscience de cette capacité. L’implication fait donc intervenir la compréhension du fonctionnement du bâtiment, la capacité d’anticiper les conséquences de ses actions sur l’ambiance et une compréhension du lien entre ses actions et leur impact énergétique. Par exemple, une personne avec une conscience environnementale élevée acceptera plus facilement une température relativement basse, si elle sait qu’elle contribue par-là à des économies d’énergie fossile.

Ces trois dimensions, physiologiques, comportementales et psychologiques sont fortement liées, comme le montre l’organigramme ci-dessous.

Notons pour mémoire qu’il existe encore d’autres dimensions à la sensation de bien-être dans un bâtiment, tels que le confort d’usage (est-ce que le bâtiment permet de déployer adéquatement l’activité pour laquelle il est conçu ?), le sentiment esthétique, un sentiment positif ou négatif lié à la nouveauté d’un bâtiment ou à la familiarité que l’on a avec, etc.


Dynamique du confort

La combinaison des différentes dimensions du confort (physiologique, comportementale, psychologique) implique que le bien-être dans un bâtiment n’est pas une notion facile à décrire. Ce bien-être non seulement sera différent pour chacun, mais également variable dans le temps, selon son âge, son sexe, son état de santé, et même son humeur.

Les premières approches scientifiques du confort, au milieu du XXe siècle, se sont focalisées sur les aspects physiologiques, en écartant volontairement tous les aspects comportementaux et psychologiques. Les chercheurs soumettaient des volontaires à des conditions contrôlées dans des chambres climatiques, sans leur permettre d’interaction avec l’ambiance, ni prendre en compte leur satisfaction globale. Cette pratique a permis d’avance rapidement dans l’étude de la dimension physiologique du confort, et d’établir, sur base de statistiques, des valeurs de référence à la base de la plupart des normes de confort utilisées aujourd’hui dans les bâtiments. On pense notamment aux indicateurs pmv (predicted mean vote) et ppd (percentage of people dissatisfied).

Mais cette méthode d’étude, que l’on peut dire statique, est par définition incapable d’intégrer les dimensions dynamiques du confort telles que les adaptations comportementales, la variabilité des états psychologiques, et même certaines adaptations physiologiques. On pense en particulier à :

  1. L’adaptation comportementale : toutes les modifications conscientes ou inconscientes du comportement en réaction à une situation ressentie : modification de l’habillement, de la position, absorption de boissons chaudes ou froides, déplacement vers un autre endroit. Entre aussi en ligne de compte les adaptations technologiques (ouverture ou  fermeture de fenêtres, l’enclenchement d’un chauffage) et culturelles : modification d’horaires, codes vestimentaires, etc.
  2. L’anticipation : Avoir une capacité de prévoir quelques heures à l’avance des conditions d’ambiance à venir permet de s’y préparer et rend plus tolérant si ces conditions échappent aux plages de confort.
  3. L’adaptation physiologique : après quelques jour d’exposition à une ambiance froide, la température de la peau et le niveau métabolique s’adaptent. En été, c’est la capacité de sudation et la vitesse du cœur qui se modifie.
  4. Adaptation psychologique : il a été démontré par les psychologues que lorsque l’on a ou croit avoir le contrôle sur la source de l’inconfort, celui-ci est mieux vécu. À l’inverse, en l’absence de capacité de contrôle, on est généralement très peu tolérant face à des écarts de confort. En d’autres mots, ce que l’on fait nous-même peut être imparfait, mais lorsque l’on nous promet un service, on s’attend à ce qu’il soit irréprochable.

C’est pourquoi les chercheurs ont, dans les années 1990 et au début des années 2000, développé une autre méthode d’évaluation du confort dans les bâtiments. Il s’agit désormais d’enquêtes de terrain, d’interviews des occupants dans leur bâtiment, avec en parallèle un monitoring des conditions physiques de l’ambiance.

The statistical dependence of indoor thermal neutralities on climate.

Dépendant entre la température « neutre » intérieure exprimée par les occupants et les températures extérieures selon que le bâtiment soit  chauffé et refroidi ou laissé sans contrôle climatique. Figure redessinée sur base de Gail S. Brager et Richard J. de Dear, Thermal adaptation in the built environment : a literature review, Energy and Buildings Volume 27, Issue 1, February 1998, Pages 83–96.

La principale découverte de cette approche, illustrée par la figure ci-dessus, est que, pour certains bâtiments, ceux qui s’apparentaient le plus aux chambres climatiques utilisées lors des premières recherches (façades hermétiques, peut de liberté laissée aux occupants de contrôler leur ambiance, codes vestimentaires stricts, etc.), les références de confort établies précédemment étaient valides. Elles reflétaient effectivement les plages de satisfaction des occupants. Mais pour d’autres bâtiments, ceux qui se basaient sur une ventilation naturelle, valorisaient la participation active des occupants au maintien du confort et leur laissaient une marge d’adaptation de leur activité ou habillement, les plages de confort théoriques se sont révélées trop étroites, si pas erronées. Toutes les enquêtes confirmaient le même fait : les plages de confort sont, dans une certaine mesure, dépendantes de la capacité d’adaptation des habitants. D’où l’idée de définir, pour ces bâtiments, des nouvelles plages de confort dites adaptatives. C’est l’objet notamment de la norme EN15251.

Un problème d’inconfort thermique ou lumineux ? N’hésitez pas à tester notre nouvel outil de diagnostic afin de trouver la solution à votre problématique.