Exemple de rénovation d’éclairage d’une salle omnisports

Exemple de rénovation d'éclairage d'une salle omnisports


Avant rénovation

Photo avant rénovation. 

 

Commande manuelle des luminaires.

  • Puissance installée : 45 luminaires 3 x 58 W = 9,4 kW.
  • Niveau d’éclairement moyen : 350 lux (norme 300-500 lux) (uniquement éclairage artificiel).
  • Puissance spécifique : 3,7 W/m²/100 lux.
  • Consommation : 32 760 kWh/an.
  • Équipements : Les luminaires à réflecteur martelé sont protégés par une corbeille en acier. Ils sont équipés de ballasts magnétiques, et de lampes industrielles.
  • Gestion : Il n’y a pas de gestion de l’éclairage en fonction de la présence ou en fonction de la lumière du jour entrante.
  • Coûts : Le cout global (investissement et fonctionnement) pourrait être amélioré en mettant des luminaires équipés de ballasts électroniques dimmables en combinaison avec un système de gestion automatisée. Une étude aide à dimensionner correctement l’installation d’éclairage.

Après rénovation

Photo après rénovation -01. Photo après rénovation -02.

  • Puissance installée : 45 luminaires 4 x 35 W = 6,93 kW.
  • Niveau d’éclairement moyen : 500 lux (norme 300 – 500 lux).
  • Puissance spécifique : 1,8 W/m²/100 lux.
  • Consommation : 18 000 kWh/an soit 45 % d’économie d’énergie.
    (le temps de retour est estimé à 11 ans, mais le confort visuel beaucoup après rénovation est plus élevé !).
  • Gestion : Gestion manuelle en fonction de l’activité :
    100 lux pour le nettoyage de la salle
    300 lux niveau de training
    500 lux niveau de compétition
    ON/OFF manuel.

NB. : il existe des systèmes d’éclairage dimmables : gradation en fonction de la lumière du jour.
(Ici le client a souhaité un système simple et avec sensibilisation de l’utilisateur – il y  a de plus un surveillant).

Système de gestion.

Source : audit réalisé par I. Van Steenbergen.

Exemple d’audit éclairage d’une école

Exemple d'audit éclairage d'une école


Introduction

Nous reprenons ici les résultats d’un audit des installations d’éclairage d’une école primaire et d’une école maternelle. L’objectif principal de cet audit est d’évaluer le potentiel d’économie d’énergie propre à une rénovation de l’installation d’éclairage existante. Ces préoccupations énergétiques ne peuvent cependant en aucun cas occulter le but primordial de l’éclairage qui s’exprime en termes de confort visuel.

Les relevés des niveaux d’éclairement ont été réalisés lors de notre visite sur site au moyen d’un luxmètre digital étalonné. Les locaux ont été mesurés en journée (en déduisant l’éclairage du jour).

L’ensemble des calculs et simulations a été effectué au moyen du logiciel DIALUX.


Présentation des bâtiments

Bâtiment A – École primaire

Plan bâtiment A - école primaire.

Bâtiment B – École primaire

Plan bâtiment B - école primaire.

Bâtiment M – École maternelle

Plan bâtiment M – École maternelle


Rappel : économie d’énergie en éclairage

Les 3 fondements de l’économie d’énergie en éclairage sont :

  • Éteindre ou dimmer l’éclairage quand on n’en a pas besoin (de façon intelligente ; favorisez la lumière du jour !)

Concevoir

Pour en savoir plus sur la gestion efficace de l’éclairage.
  • Dimensionnement et planification adéquats (confort visuel, exploitation, concept, normes,…)

Mais ne perdons pas de vue le confort visuel !

Une installation d’éclairage de haut confort visuel tient compte de :

  • un niveau d’éclairement correct, en conformité avec la norme EN 12 464-1.
  • une bonne maîtrise de la luminance en fonction de l’application (pour éviter les problèmes d’éblouissement éventuels).

Analyse de la situation actuelle

Les lampes et les luminaires

Les lampes fluorescentes

Nous répertorions sur le site des luminaires de type et de qualité diverses équipés de lampes à fluorescence d’âge et de qualité variés.

La majorité des lampes fluorescentes est de bonne qualité (type HR de teinte 840).

Mais dans quelques vieux luminaires se trouvent encore des lampes de type « industriel » (teinte 133, 640…). Ces lampes étaient bon marché à l’achat, mais sont de mauvaise qualité.
Les lampes industrielles subissent une rapide dépréciation de leur flux lumineux.
Un autre défaut majeur est leur pauvre rendu des couleurs (IRC 65).

Évolution du flux lumineux dans le temps.

Les luminaires sont équipés de ballasts magnétiques et de starters.

Les luminaires

1. Bâtiment A– École primaire

photos éclairage école primaire - bât. A. photos éclairage école primaire - bât. A. photos éclairage école primaire - bât. A.

Dans les classes – réflecteur blanc T8 2 x 36 W – lampes nues, remarquez la teinte différente des lampes.
Dans le couloir – luminaire IP à coiffe perlée, ces luminaires ont un faible rendement.

2. Bâtiment B – École primaire

photos éclairage école primaire - bât. B. photos éclairage école primaire - bât. B. photos éclairage école primaire - bât. B.

Dans les classes – luminaires à grille T8 2 x 58 W (quelques 2 x 36 W), remarquez la teinte différente des lampes.
Dans le couloir – luminaire à grille (en mauvais état).

3. Bâtiment M – École maternelle

photos éclairage école maternelle - bât. M.

Des luminaires à plexi opalin, ces luminaires ont un faible rendement.

Niveaux d’éclairement et confort visuel

La norme NBN EN 12464-1 « Éclairage des lieux de travail » recommande un niveau d’éclairement de :

  • Couloirs et circulation : 100 à 150 lux ;
  • Salle de gym : 300 (éventuellement 500 lux en cas de compétition sport) ;
  • Classe : 300 lux (tableau 500 lux) – bonne uniformité et contrastes faibles.

La norme recommande également de limiter l’éblouissement.

Voici les résultats de nos mesures de niveau d’éclairement (mesures ponctuelles en déduisant la lumière du jour) :

1.    Bâtiment A – École primaire

  • Classes : 350 lux
  • Couloir : 30 à 180 lux

2.    Bâtiment B – École primaire

  • Classes : 520 lux (surdimensionné)
  • Bureau de direction : 680 lux (surdimensionné)
  • Salle de réunion : 580 lux

3.    Bâtiment M – École maternelle

  • Classes : 240 lux
  • Salle polyvalente : 285 lux
  • Réfectoire : 310 lux

Les niveaux d’éclairement sont presque conformes aux recommandations de la norme.

Puissance spécifique

La puissance spécifique, exprimée en W/m²/100 lux est un indicateur utilisé pour juger l’efficacité énergétique d’une installation d’éclairage.

La puissance installée après travaux ne peut dépasser :

  • entre 3 W/m² par 100 lux dans un couloir bas et large (min 30 m x 2 m x 2,8 m) et 8,5 W/m² par 100 lux dans un couloir haut et étroit (min. 30 m x 1 m x 3,5 m),
  • 2,5 W/m² par 100 lux dans les bureaux, les halls industriels et autres locaux.

Une tolérance pour des locaux de grandes hauteurs étant acceptable.
Des plafonds et des murs clairs aident à diminuer la puissance spécifique.

Les puissances spécifiques calculées varient entre 2,53 et 6,82 W/m²/100 lux.
(Voir tableau URE Situation actuelle en annexe).

Nous concluons d’après les valeurs calculées que l’installation d’éclairage devrait être améliorée.

La gestion de l’éclairage

Nous estimons le nombre d’heures d’allumage des lampes à 1 500 h/an (sauf quelques locaux spécifiques : dortoir, tableaux, salle de réunion, cuisine…: 1 000 h ou 500 h – Voir tableau URE).

Il n’existe pas de système de gestion automatisée de l’éclairage.
Les classes ont min. 2 circuits d’allumage (côté fenêtres, côté couloir, tableau).

Les mesures réalisées sur place montrent un apport important de lumière naturelle dans plusieurs locaux (par des fenêtres et par des lanterneaux).

Grandes fenêtres dans l’école primaire et lanterneaux dans l’école maternelle.

Une économie énergétique peut être obtenue par la gestion automatisée de l’éclairage en fonction de la présence et/ou en fonction de l’apport de la lumière du jour.


Détail pour la rénovation de locaux type

Attention! Cet exemple d’audit date de 2013, les solutions proposées ne sont plus d’actualité!

École primaire – Classe type

Photo école primaire - Classe type.

  • Classe type – Situation actuelle
  • Luminaires 2 x 36 W ballasts magnétiques
  • Niveau d’éclairement correct : 350 lux
  • Éclairage du tableau insuffisant
  • 2,78 W/m²/100 lux.

Proposition
Enlèvement et évacuation des vieux luminaires.
Placement de luminaires à grille pour l’éclairage général des classes de l’école primaire (6 dans l’exemple présenté ici) :

 

  • Équipés de ballast électronique dimmable et de lampe T5 ECO (1 x 32 – 35 W).
  • Rendement élevé, flux large (batwing).
  • ENEC.
  • 2 circuits de commande à maintenir.
  • Luminaires dimmables côté fenêtres.

Option : éclairage du tableau par 2 luminaires à flux asymétrique pour l’éclairage des tableaux. Équipés de ballast électronique et de lampe 1 x 55 – 58 W T8 ECO.

⇒ Résultat des simulations : 337 lux    1,22 W/m²/100 lux

Implantation des luminaires.

Économie d’énergie possible > 70 %.

***

École maternelle – Classe type

Photo école maternelle - Classe type.

  • Classe type – Situation actuelle
  • Luminaires 2 x 58 W ballasts magnétiques
  • Niveau d’éclairement : 240 lux
  • 6,82 W/m²/100 lux

Proposition
Enlèvement et évacuation des vieux luminaires.
Placement de luminaires à plexi pour éviter un regard direct dans les lampes (pour l’école maternelle).

 

  • Rendement élevé (> 85 %).
  • Équipés de ballast électronique et de lampe T5 ECO (1 x 45 – 49 W).
  • 2 circuits de commande à maintenir.
  • Luminaires dimmables au dortoir !

⇒ Résultat : 307 lux    2,21 W/m²/100 lux

Implantation des luminaires.

Économie d’énergie possible > 60 %.

***

Réfectoire

Photo réfectoire.

  • Réfectoire – Situation actuelle
  • Luminaires 1 x 36 W ballasts magnétiques
  • Niveau d’éclairement : 310 lux
  • 5,09 W/m²/100 lux.

Proposition
Enlèvement et évacuation des vieux luminaires.
Placement de 8 luminaires à plexi pour éviter un regard direct des lampes.

  • Rendement élevé (> 85 %) !
  • Équipé de ballast électronique et de lampe T5 ECO (1 x 45 – 49 W).
  • Luminaires dimmables en fonction de la lumière du jour.

⇒ Résultat : 275 lux    2,29 W/m²/100 lux

 

Implantation des luminaires.

Économie d’énergie possible > 70 %.

***

Salle polyvalente

Photo salle polyvalente.

  • Salle polyvalente – Situation actuelle
  • Luminaires 2 x 58 W ballasts magnétiques
  • Niveau d’éclairement : 285 lux
  • 4,04 W/m²/100 lux

Proposition
Enlèvement et évacuation des 12 vieux luminaires.
Placement de 6 luminaires renforcés pour salle de gym équipée de ballast électronique et de 4 x 45 W T5 ECO (4 x 45 – 49 W) (éventuellement dimmable).

  • Résistance aux chocs de ballons (Conforme DIN 57710 Teil 13/VDE 0710 Teil 15/05.81)
  • Rendement élevé (> 70 %).
  • ENEC
  • 2 circuits de commande ou luminaires dimmables

⇒ Résultat : 359 lux    2,32 W/m²/100 lux

Implantation des luminaire.

Économie d’énergie possible > 25 %.


Résultats

Sur base de cet avant-projet et les calculs effectués, l’économie d’énergie moyenne en éclairage entre 37 et 77 % dans le cas d’une rénovation de l’éclairage comme décrit dans ce rapport. La nouvelle installation d’éclairage est des plus en conformité avec la norme européenne traitant de l’Éclairage des lieux de travail intérieurs. (EN 12464-1) et limite tout risque d’éblouissement causé par des luminances trop élevées.

Situation actuelle

  • Puissance installée de l’éclairage : 32,41 kW
  • Consommation électrique de l’éclairage : 44.373 kWh/an

Après rénovation de l’éclairage

  • Puissance installée de l’éclairage : 14,4 kW
  • Consommation électrique de l’éclairage : 16.071 kWh/an

Résultat

  • Économie en puissance installée : 18,01 kW
  • = économie de 55 %
  • Économie en consommation électrique/an : 28.302 kWh/an
  • = économie de 64 %

Source : audit réalisé par I. Van Steenbergen.

Un problème d’inconfort thermique ou lumineux ? N’hésitez pas à tester notre nouvel outil de diagnostic afin de trouver la solution à votre problématique.

Binning des LEDs

Binning des LEDs

Lors de la conception d’une lampe et d’un luminaire LED, les différentes unités LED sont prises parmi un lot. Les unités LED d’un même lot peuvent avoir des caractéristiques différentes en termes d’intensité et de couleur. Pour assurer une production de luminaire de mêmes caractéristiques photométriques et de température de couleur, les constructeurs ont mis au point le « binning ».
Le binning est caractérisé par le tri en fonction de critères spécifiques :

  • Tri selon la couleur ;
  • Tri selon le flux lumineux ;
  • Tri selon la tension directe.

Pour un « bin » de couleur déterminée, une qualité de lumière constante est garantie.

Température de couleur corrélée (Correlated Color Temperature : CCT)

Le CCT permet de qualifier une source lumineuse émettant de la lumière blanche comme chaude, neutre ou froide. Comme référence, le CCT se base sur l’émission de couleur du corps noir qui passe par différentes couleurs lorsqu’il est chauffé : du rouge (le plus froid) au bleu (le plus chaud).

Schéma températures de couleurs spécifiques ANSI.

Des températures de couleurs spécifiques ANSI ont été établies par rapport à des variations de couleurs autour de 8 valeurs de référence de CCT, à savoir :

ANSI C78.377A CCT Standard
CCT nominal (K) Variation du CCT (K)
2 700 2 725 + 145
3 000 3 045 + 175
3 500 3 465 + 245
4 000 3 985 + 275
4 500 4 503 + 243
5 000 5 028 + 283
5 700 5 665 + 355
6 500 6 530 + 510

Ellipses de MacAdam

Au-delà de la qualification d’une source comme étant chaude, neutre ou froide (CCT), il est très important pour les fabricants de LED de définir une variation maximale de température de couleur par rapport à une température cible caractérisant un luminaire LED. Cette précaution permet d’éviter de se retrouver dans un même espace avec une série de luminaires émettant une lumière différente.

Pour y arriver, les fabricants se servent des ellipses de MacAdam représentant un contour à l’intérieur duquel la variation des couleurs devient plus ou moins perceptible par l’œil.

% de population qui perçoit une différence.

L’échelle des ellipses de MacAdam est définie par une succession de SDMN (standard deviation of color matching) ou les dispersions  de couleurs :

  • À l’intérieur de l’ellipse 1 SDMC (« tep »), ne sont pas visibles ;
  • Entre les ellipses 2 et 4 SDMC sont légèrement visibles ;
  • Au-delà de l’ellipse, 5 SDMC sont franchement visibles.

Les huit températures de couleur (CCT) définies par ANSI ont, quant à elles, une dispersion de couleurs définies par des « boîtes » entourant l’ellipse 7 SDMC.

D’après ANSI, un lot de puce LED est considéré comme ayant la même température de couleur selon leur appartenance à l’ellipse 4 SDMC.

Types d’isolants : généralités

Types d'isolants : généralités

Un matériau est généralement considéré comme « isolant » lorsque son coefficient de conductivité thermique à l’état sec est inférieur ou égal à 0.07 W/mK.


Les grandes catégories d’isolants

Les isolants synthétiques

On regroupe sous ce nom les isolants tels que les mousses de polyuréthane et de polystyrène. Ces matériaux sont très défavorables. Issus de la chimie du chlore et du pétrole, ils sont produits à partir de matières non renouvelables et selon des procédés énergivores.

Ces isolants contiennent des substances qui appauvrissent la couche d’ozone (comme les HCFC) et libèrent des gaz toxiques et mortels en cas d’incendie. Des substituts aux CFC commencent à être utilisés et on a recours lors de la fabrication à de plus en plus de matériaux recyclés.

Dans cette catégorie, la mousse phénolique semble faire exception. Ces très bonnes caractéristiques thermiques associées à son caractère renouvelable, au faible rejet de polluant au long de sa durée de vie la rendent plus intéressante que les autres isolants synthétiques. Mais ce matériau récent ne possède pas encore réellement de filière de distribution et le retour pratique sur son utilisation et sa mise en œuvre est encore réduite.

Pour en savoir plus sur les isolants synthétiques : cliquez ici !

Les laines minérales

Ces isolants sont issus de matériaux abondants (roches volcaniques et sable) et présents en Europe. Ils sont souvent composés de matériaux recyclés. Tant que la teneur en liant reste inférieure à 5%, leur élimination se fait par mise en décharge comme matériaux inertes ou par recyclage complet (laine de roche). Leur procédé de fabrication est toutefois également très énergivore.

Pour en savoir plus sur les laines minérales.

Les isolants biosourcés

Ces isolants combinent généralement un matériau issu de sources renouvelables (végétaux, cellulose recyclée), et un mode de production peu énergivore.

Remarquons que la matière première est parfois peu abondante, ou disponible uniquement dans certaines régions (ex. liège).

En général, l’élimination des isolants « écologiques » peut se faire sans danger par compostage. Mais cela dépend du mode de fabrication. Par exemple, les isolants à base de chanvre ou de lin contiennent souvent du polyester.

Pour en savoir plus sur les isolants biosourcés.


Les formes d’isolant

Selon leur nature, les matériaux isolants présentent différentes formes, raideurs et résistances à la compression :

Formes Matériaux
Matelas semi-rigide ou souple : La laine de roche, la laine de verre, les fibres traitées organiques (chanvre, …) ou animales (laine, ….) …
Panneaux rigides : La mousse de polyuréthane, de polystyrène expansé ou extrudé, le verre cellulaire, les panneaux organiques (fibre de bois avec liant bitumineux ou caoutchouc, …), le liège …
Les flocons ou granulés : Les granulés de perlite ou de vermiculite, les granulés de polystyrène expansé, les granulés de liège, les flocons de laine minérale insufflés, les flocons de papier recyclé …

Les matériaux composites

Il existe des matériaux composites qui sont constitués de plaques juxtaposées de matériaux différents, isolants ou non.

Ces panneaux combinent les propriétés des matériaux qui les composent : résistance à la compression, imperméabilité à la vapeur, qualités thermiques, comportement au feu, comportement à l’humidité, aspect fini, etc.
Exemples :

Panneaux sandwiches autoportants avec ou sans armature de renforcement.

Panneaux de mousse PUR avec lestage ou surface circulable en béton.

Panneau complexe.

Panneaux complexes comprenant une couche d’isolant collé à une plaque de plâtre enrobé de carton avec interposition éventuelle d’un pare-vapeur entre le plâtre et l’isolant. L’isolant peut être de la mousse de polystyrène expansé ou extrudé, de la mousse de polyuréthanne, de la laine minérale.

Les isolants à pente intégrée

Les mousses synthétiques, le verre cellulaire, la laine de roche existent sous forme de panneaux dont les faces ne sont pas parallèles et forment un système permettant de faire varier l’épaisseur de l’isolant de façon continue. Des panneaux à double pente et des pièces spéciales de noues et d’arêtes sont en général également disponibles.

Isolant à pente intégrée sur une
toiture plate avant pose de l’étanchéité.

Grâce à ce système, il est possible de créer ou d’augmenter la pente de la couverture.

Les fabricants disposent généralement de services qui étudient la toiture et fournissent un plan de pose des isolants à pente intégrée.

Avantages

La réalisation ou la correction de la pente ne nécessite qu’une seule opération.

La charge sur le support est plus faible que s’il est fait usage d’un autre matériau pour réaliser la pente.

Inconvénients

L’épaisseur n’étant pas constante, l’isolation de la toiture plate le sera également. L’isolation devant être suffisante partout, une épaisseur suffisante d’isolant doit être prévue au point bas de la pente.

Pour former les pentes, une quantité importante d’isolant est donc nécessaire avec une conséquence sur le coût. À cela s’ajoutent les coûts liés aux difficultés de fabrication et d’études.


Quel isolant pour quel usage ?

Le tableau suivant présente une partie des choix envisageables pour isoler un bâtiment. Cette liste n’est bien entendue pas exhaustive. La colonne « choix traditionnel » montre ce qui est traditionnellement réalisé. Les deux autres colonnes, montre vers quelles solutions il faut se tourner lorsque l’on veut se rapprocher d’une démarche d’éco-construction.

Choix traditionnel

Choix plus écologique

Choix plus écologique

+

++

Dalle de sol

Polyuréthane

Polystyrène

Laine de roche haute densité

Verre cellulaire.

Argile expansé.

Double mur extérieur

Polyuréthane

Polystyrène

Laine minérale

Laine végétale et animale.

Chaux-chanvre (ossature bois).

Flocons de cellulose (ossature bois).

Toiture à versants

Laine minérale

Laine végétale et animale.

Chaux-chanvre (ossature bois).

Flocons de cellulose (ossature bois).

Toiture plate

Polyuréthane

Polystyrène

Laine minérale

Verre cellulaire.

Argile expansée.

Flocons de cellulose (ossature bois).

Tableau présentant les différentes solutions techniques d’isolation envisagées classiquement.


Caractéristiques principales des différents matériaux isolants

TYPE

Matériau

Masse

Conduct. therm.λi

Perm. à la vapeur µ moyen

Résist. à la compr.

Réact.
au feu

Kg/m³

W/mK

kg/cm²

 Minéral

MW

  Laine de roche

150 à 175

0.045

1.5

0.7 à 1.3 (*)

+

GW

 Laine de verre

13 à 60

0.045

1.5

0.2 (*)

+

CG

 Verre cellulaire

120 à 135

0.055

infini

7 à 16 (**)

+

EPB

 Perlite expansée

170

0.060

5 à 10

3,5 (*)

+

 Synthétique

PUR

 Polyuréthane

30

0.035

100

1.2 (*)

PIR

Polyisocyanurate

30

0.035

50

1.2 (*)

+

PF

Mousse phénolique

40

0.045***

80

1.2 (*)

+

EPS

 Polystyrène expansé

15 à 40

0.045

20 à 150

0.7 à 3.5 (*)

XPS

 Polystyrène extrudé

32 à 45

0.040

225

3 à 7 (*)

 Végétal

ICB

 Liège

100 à 120

0.050

12 à 28

+

Produits minces réfléchissants

PMR

 Multicouche composé de feuilles d’aluminium, mousses plastiques, polyéthylène, …

+ 70

0.050

12 à 28

+

(*) à 10 % de déformation (valeur moyenne)
(**) à la rupture
(***) pour les plaques en mousse résolique à cellules fermées revêtues, cette valeur est ramenée à 0,03 W/(mxK).

Remarques.

  • Les valeurs de λi sont tirées de l’annexe VII de la PEB. Elles correspondent à des matériaux non certifiés. Ces valeurs sont pessimistes.
  • Des valeurs plus favorables peuvent être considérées lorsque le matériau est connu quant à sa nature et certifié. Ces valeurs sont également données dans la NBN B 62-002/A1.
  • Lorsque les matériaux sont connus quant à leur nature, leur nom de marque et leur type et qu’ils sont certifiés, on considère leλi donné dans leurs certificats BENOR, ATG ou documents équivalents. Ces valeurs peuvent être beaucoup plus favorables que les précédentes, comme le montre le graphique ci-dessous.

Conductivité thermique maximale et minimale des isolants fournies par les spécifications techniques européennes de l’EOTA (European Organisation for Technical Approvals), les déclarations volontaires de qualité ATG (Agréments Techniques de l’UBAtc – Union Belge pour l’agrément technique dans la construction) ou les certificats Keymark du CEN (Comité Européen de Normalisation), quels que soient l’application et les autres facteurs d’influence éventuels.

Données

Pour connaitre les valeurs conductivité thermique d’autres matériaux : cliquez ici !


Coût des différents types d’isolant

Les coûts repris ci-dessous sont indicatifs des matériaux que l’on peut trouver facilement en Belgique en 2008. Il s’agit de tarifs moyens annoncés par quelques fournisseurs. En effet, les prix varient en fonction des quantités achetées.

Coût Unité Épaisseur

Polystyrène extrudé

7 à 25 € /m² hTVA 40 à 120 mm

Polystyrène expansé

5 à 15 € /m² hTVA 40 à 120 mm

Polyuréthane

6.5 à 27.5 € /m² hTVA 40 à 120 mm

Laine de verre

5 à 18 € /m² hTVA 40 à 180 mm

Laine de roche

5 à 18 € /m² hTVA 40 à 180 mm

Verre cellulaire

25 à 35 € /m² hTVA 40 à 60 mm

Perlite expansée pure

0.1 à 0.2 € /l hTVA /

Vermiculite expansée pure

0.1 à 0.2 € /l hTVA /

Argile expansé

7 à 12 € /m² hTVA 10 mm

Panneaux fibre de bois

7 à 24 € /m² hTVA 30 à 100 mm

Cellulose en vrac

0.13 € /l hTVA /

Laine de cellulose en vrac

0.25 € /l hTVA /

Laine de cellulose en panneaux

7 à 25 € /m² hTVA 40 à 160 mm

Liège en vrac

0.2 € /m² hTVA /

Liège en panneaux

5 à 12 € /kg hTVA 20 à 80 mm

Liège en rouleaux

5 à 15 € /m² hTVA 2 à 6 mm

Laine de chanvre

5 à 30 € /m² hTVA 5 à 200 mm

Feutre de jute

4.5 € /m² hTVA /

Laine de mouton

0.7 à 1.2 € /kg hTVA /


Impact sur la santé

L’impact des isolants sur la santé est encore difficilement estimable. En effet, si l’effet d’un composé est aujourd’hui connu, l’effet de la combinaison de produits toxiques est plus compliqué à analyser.  De plus pour déterminer les impacts des polluants, il y a toujours lieu de prendre en compte simultanément les trois paramètres suivants :

  • temps d’exposition
  • intensité de la pollution
  • sensibilité de la personne

En ce qui concerne les isolants synthétiques, ils dégagent tout au long de leur durée de vie des produits gazeux dangereux, mais comme ils ne sont pas en contact direct avec l’ambiance, on estime que leur impact est limité. Une chose reste sûre, ils ont le défaut de dégager des fumées très toxiques en cas d’incendie !

Les isolants fibreux ne posent pas non plus de problème une fois qu’ils ont été posés. Mais il faudra être très vigilant lors de leur mise en place, car leur structure fibreuse peut dans certains cas provoquer des problèmes pulmonaires suite à l’inhalation de particules fines. Cela dépendra du type de fibre et leur bio-persistance.  Ils ont le grand avantage d’être peu ou non combustible de par leur nature et leur structure, ou suite à un traitement au sel de bore.

Isolants minéraux

Isolants minéraux

On distingue généralement les laines minérales des isolants minéraux  à proprement dits.


Les laines d’origine minérale

La laine de roche (MW)

Photo laine de roche (MW).Photo laine de roche, détail.

Les fibres de la laine de roche sont obtenues par la fonte de la roche diabase. Elles sont liées à l’aide de résines synthétiques polymérisées pour former des rouleaux et des panneaux. Ceux-ci peuvent présenter différentes rigidités et finitions de surface. La laine de roche a une composition non uniforme (parties infibrées).

La laine de roche est totalement perméable à la vapeur d’eau, mais est non hygroscopique. Elle est non capillaire (n’absorbe pas l’eau). Elle est totalement perméable à l’air. Elle se caractérise par une bonne stabilité thermique, un bon comportement au feu. Elle est fort compressible et résiste mal au délaminage.

Les panneaux de laine de roche destinés aux toitures plates seront de densité importante (ρ= 150 à 175 kg/m³) et de fabrication particulière (sens des fibres) pour garantir une rigidité suffisante, et une résistance suffisante au délaminage. Ces panneaux sont surfacés de voile de verre et/ou de bitume.

La laine de verre (GW)

Photo laine de verre (GW).    Photo laine de verre, détail.

Les fibres de la laine de verre sont obtenues par la fonte de verre et de sable quartzeux. Elles sont traitées par un produit hydrofuge. Elles sont liées à l’aide d’un produit thermodurcissant pour former des rouleaux et des panneaux. Ceux-ci peuvent présenter différentes rigidités et finitions de surface. La laine de verre a une composition uniforme.

Tout comme la laine de roche, la laine de verre est totalement perméable à la vapeur d’eau, mais est non hygroscopique. Elle est non capillaire (n’absorbe pas l’eau). Elle est totalement perméable à l’air. Elle se caractérise par une bonne stabilité thermique, un comportement au feu légèrement moins bon que la laine de roche.

La laine de verre n’est plus utilisée pour les toitures plates à cause de sa faible résistance au délaminage et à la compression.


Les isolants minéraux

Le verre cellulaire (CG)

Photo verre cellulaire (CG).   Photo verre cellulaire, détail.

Le verre cellulaire est une mousse de verre obtenue par expansion de celui-ci lorsqu’il est en fusion. Les cellules ainsi formées contiennent un gaz inerte.

Son procédé de fabrication conduit à la production d’un isolant léger à cellules fermées. Le verre cellulaire est ainsi est complètement étanche à la vapeur d’eau, à l’eau et à l’air. Il se caractérise par une bonne stabilité thermique et un bon comportement au feu. Bien qu’incompressible, ce matériau est relativement fragile et nécessite un support régulier et rigide lorsqu’il est soumis à des contraintes mécaniques.

Disponible en panneaux ou en gros granulés, son seul défaut, en plus de son coût élevé, est d’être produit par des procédés de fabrication très énergivore.

La perlite expansée (EPB)

Photo perlite expansée (EPB).

La perlite expansée est obtenue à partir de pierre volcanique rhyolitique concassée et expansée à une température de +/- 900°C.

La perlite expansée est mélangée à des fibres cellulosiques et à un liant bitumineux pour former des panneaux mais peut aussi être utilisée en vrac.

La perlite expansée se caractérise par une grande résistance à la compression et au poinçonnement, un bon comportement au feu et une résistance limitée au pelage. Elle ne résiste pas à une humidification prolongée.

La vermiculite

Photo vermiculite.
Granule de vermiculite grossi.
(doc. Agroverm).

La vermiculite est produite à partir de mica expansé. Elle est disponible sous forme de granulés ou de panneaux. Comme la perlite, ce matériau peut être déversé en vrac ou être incorporé dans les mortiers, bétons allégés, enduits isolants et dans les blocs de constructions.

L’argile expansée

Elle est vendue en vrac, en panneaux ou incorporée dans des bétons allégés, des blocs de construction préfabriqués.

L’argile expansée présente un excellent classement au feu et offre une bonne résistance à l’humidité.

Photo argile expansée. 

Granules d’argile expansée et Granule d’argile expansée grossie et coupée (doc. TBF).

Gestion et commandes manuelles

Gestion et commandes manuelles


Les interrupteurs

Les interrupteurs constituent les organes de commande les plus simples dans une gestion d’occupation. Leur caractéristique principale est qu’ils restent en l’état ON ou OFF s’ils ne sont pas actionnés par l’occupant. Le changement d’état nécessite l’intervention de l’occupant.

L’occupant allume ou pas l’éclairage en fonction de sa sensibilité personnelle et des conditions d’ambiance du local dans lequel il se trouve. L’acte d’allumer ou d’éteindre est volontaire, ce qui devrait responsabiliser les occupants.

Différentes études ont montré que la responsabilisation de l’occupant est plus liée à l’allumage des luminaires quand il rentre dans un local qu’à leur extinction quand il le quitte. Leur perspective de perdurer dans une installation moderne qui tient compte de la gestion énergétique des consommations d’éclairage ne repose que sur la démarche volontaire d’éteindre les luminaires quand on quitte son boulot.

Schéma principe boutons interrupteurs.

Schéma principe boutons interrupteurs.

Dans les bâtiments tertiaires, on voit tout de suite la limite des interrupteurs si les occupants sont peu ou pas responsables.

On retrouve différents types d’interrupteur suivant la configuration du local : les interrupteurs simples et 2 directions existent toujours sur le marché.


Les boutons poussoir

Les boutons poussoirs, contrairement aux interrupteurs, n’ont qu’un seul état au repos : soit ON, soit OFF suivant leur type. Ils ne servent, par une simple impulsion, qu’à changer l’état d’un équipement intermédiaire de commande des luminaires comme, par exemple, les télérupteurs, les relais, les entrées digitales des automates (DI : Digital Input), …

Cette caractéristique leur permet aussi de pouvoir être couplés avec une détection d’occupation automatique.

L’idée est de combiner :

  • un allumage volontaire de l’éclairage à l’entrée de l’occupant dans son local ;
  • et une extinction manuelle ou automatique du même éclairage par détection d’absence lorsque l’occupant quitte son local (possibilité de temporisation).

Schéma principe boutons poussoir.


Les gradateurs ou « dimmer »

L’idée du contrôle du flux lumineux  est d’adapter la luminance ou, de manière plus pratique, le niveau d’éclairement du luminaire en fonction du besoin réel de « lux » dans un local. En effet, lorsque le local considéré bénéficie d’un appoint en éclairage naturel conséquent, par exemple, ou bien lorsque l’on souhaite projeter une présentation dans une salle de réunion, le maintien d’un flux lumineux à 100 %, d’une part, peut devenir une source d’inconfort visuel et, d’autre part, source de consommations énergétiques inutiles.

Schéma principe gradateurs ou "dimmer".

Grâce aux « dimmers », la tension d’alimentation peut-être réglée de 0 à 100 % en 230 V par exemple. La technique du contrôle manuel fait appel à la bonne volonté des occupants et nécessite une bonne dose de patience sachant que le climat de notre chère Belgique est très changeant, ce qui limite sérieusement son utilisation dans le contrôle du flux lumineux en fonction de la lumière naturelle de plusieurs luminaires. Il sera donc principalement utilisé dans les locaux où plusieurs tâches nécessitant des niveaux d’éclairement différents sont réalisées (salle de réunion et projection par exemple).

Variateurs de lumière (ou « dimmer »).

Techniques

 Pour en savoir plus sur les possibilités de gestion en fonction de l’apport en éclairage naturel.

Un problème d’inconfort thermique ou lumineux ? N’hésitez pas à tester notre nouvel outil de diagnostic afin de trouver la solution à votre problématique.

Gérer la ventilation des cabines et des gaines d’ascenseur

Gérer la ventilation des cabines et des gaines d’ascenseur


Niveau de ventilation à prévoir

Les cabines d’ascenseurs doivent garantir un apport d’air frais aux utilisateurs. Le seul moyen d’amener l’air hygiénique dans la cabine est de ventiler la gaine d’ascenseur. Les débits d’air sont difficiles à maîtriser sachant que les portes palières ne sont pas étanches, que l’effet cheminée est présent, que les déplacements de la cabine des ascenseurs circulant à une vitesse > 2 m/s perturbent l’aéraulique de la gaine… La seule chose qui soit certaine, c’est l’existence de déperditions thermiques, non négligeables, dues à cette ventilation hygiénique.

La ventilation, considérée comme hygiénique, est propre au volume occupé par les ascenseurs et ses locaux annexes, et ne doit pas servir à la ventilation des autres volumes. Pour assurer cette ventilation, la norme suggère de prévoir des orifices de ventilation pour la cabine, pour la gaine et pour le local des machines.

Cabine d’ascenseur

La directive ascenseurs 95/16/CE exige ceci : « Les cabines doivent être conçues et construites pour assurer une aération suffisante aux passagers, même en cas d’arrêt prolongé. » Annexe 1 chapitre 4.7).

Pour les cabines d’ascenseurs, les normes NBN EN 81-1 et 2 prévoient des orifices de ventilation équivalant à 1 % de la surface horizontale de la cabine (ventilation haute et basse).
Les interstices au niveau des portes de la cabine peuvent entrer, à concurrence de moitié, dans la surface de ventilation recommandée. Cette ventilation hygiénique ne doit pas nuire non plus au confort des utilisateurs dans la cabine sous forme de courant d’air, de différence de pression acoustique et/ou de bruit.

Gaine d’ascenseur

En ce qui concerne les gaines d’ascenseur, la norme NBN EN 81-1 recommande d’aménager en partie haute de la gaine des orifices de ventilation d’une surface minimale de 1 % de la section horizontale de la gaine.

La réglementation nationale en matière d’incendie est complémentaire et différencie deux cas pour la ventilation de la gaine :

  1. Si le compartiment ascenseur est doté d’une salle des machines, la section des orifices de ventilation est équivalente à 1 % de la surface horizontale de la gaine.
  2. Par contre, s’il n’y a pas de salle des machines (système « gearless« , par exemple), la section des orifices devient équivalente à 4 % de la surface horizontale de la gaine.

Les gaines d’ascenseur sont en général ventilées de manière naturelle. Par contre, les ascenseurs à gaines extérieures bénéficient d’une ventilation renforcée. En effet, ce sont souvent des ascenseurs panoramiques entièrement vitrés qui nécessitent, en été, d’être ventilés efficacement afin d’éviter les surchauffes (attention à la la consommation électrique des ventilateurs !).

Local des machines

En ce qui concerne la ventilation des salles des machines, elles doivent être ventilées convenablement afin que le moteur, l’appareillage ainsi que le câblage électrique, etc. soient aussi raisonnablement que possible à l’abri des poussières, des vapeurs nuisibles et de l’humidité.

Qu’elle soit au-dessus ou en-dessous de la gaine d’ascenseur, la motorisation constitue un apport interne de chaleur non négligeable.

Sur base des données d’un constructeur, le tableau ci-dessous donne une idée des déperditions de différents types de motorisation :

Type de motorisation Déperditions calorifiques [kW]
Hydraulique

4,5

Traction classique

3

Gearless + variateur de vitesse

1

Pour éviter la surchauffe dans la salle des machines, les apports internes doivent être évacués soit par la ventilation naturelle créée dans la gaine d’ascenseur et la salle des machines, soit par des extracteurs mécaniques. L’extraction forcée des apports internes vers l’extérieur constitue une perte thermique non-négligeable.

Exemple

Soit une salle des machines dont les dimensions sont de l’ordre de 15 [m²] au sol x 3 [m] de hauteur et équipée de 3 motorisations à traction pour des ascenseurs aux caractéristiques suivantes :

  • 630 kg,
  • 3 [kW] de déperditions thermiques.

En outre, on suppose que :

  • La température dans la gaine est en moyenne à 20 °C tout au long de l’année (la gaine est dans le volume chauffé) ;
  • La température de la salle des machines ne peut pas dépasser 27 °C (bon fonctionnement de l’électronique de régulation).
  • La capacité thermique volumique de l’air ρ c = 0,34 [Wh/m³K].

On calcule de manière simplifiée le débit qv nécessaire d’extraction pour maintenir la température de la salle des machines à 27 °C.

Soit :

qv [m³/h] = apports internes [W] / (0,34 [Wh/m³.K] x Δ t [K])

qv = 3 x 3 000 / (0,34 x (27 – 20))

qv  = 3 780 [m³/h]

ouverture d'une nouvelle fenêtre ! Suisse énergie a montré que, pour une configuration moyenne d’ascenseur, le débit de ventilation naturelle pouvait être évalué à 600 [m³/h].

En supposant que les configurations soient semblables, pour 3 ascenseurs identiques, on a 3 x 600 [m³/h] = 1 800 [m³/h] de ventilation naturelle vers le haut; ce qui signifie que le débit naturel n’est pas suffisant pour évacuer les calories produites par les apports des moteurs et qu’il faudra par moment faire appel à une ventilation mécanique (extracteur).


Contrôler le débit de ventilation de la gaine

Comme le montre une étude faite par ouverture d'une nouvelle fenêtre !Suisse énergie (mise en évidence des débits de ventilation dans les gaines d’ascenseur), le débit de ventilation d’une cage d’ascenseur de 12 [m] de haut d’un bâtiment de 4 étages, équipée de grilles de ventilation haute et basse de 1 225 [cm²] chacune, et dont les températures externes et internes étaient respectivement de 6 et 20 [°C], avoisinait les 600 [m³/h]; ce qui n’est pas négligeable. Toutefois, il est difficile d’évaluer les débits réels sachant que dans le projet :

  • l’orifice d’ouverture dans le pied de gaine d’ascenseur ne sera pas prévu,
  • les fuites au niveau des portes palières seront incontrôlables.

Évaluer

Pour en savoir plus sur l’estimation des débits de ventilation dans les gaines d’ascenseur.

Néanmoins,  ces pertes peuvent être considérablement réduites en contrôlant le débit d’extraction naturelle au sommet de la gaine.

Pour ce faire, depuis septembre 2012, la législation belge (par l’Arrêté royal du 21 septembre 2012) reconnait une solution qui consiste à munir l’ouverture de ventilation de clapets motorisés gérés intelligemment.  Ceux-ci s’ouvrent automatiquement en cas :

  • de besoin de ventilation (lorsque les occupants utilisent l’ascenseur) ;
  • d’incendie ;
  • de défaillance de la source d’énergie.

Ils sont généralement aussi asservis à un thermostat d’ambiance pour réguler la température dans la gaine (et ce, notamment, afin de garantir le bon fonctionnement des dispositifs de commande et de régulation des ascenseurs (à voir avec le constructeur au niveau des températures de commande)). Une ouverture manuelle doit de plus être prévue pour le service d’incendie.

Il faudra de plus tenir compte :

  • des prescriptions en matière d’incendie (clapet coupe-feu) ;
  • des risques de condensation par le placement d’un calorifugeage au niveau des volets ;
  • des contraintes d’étanchéité à l’air à garantir (clapet étanche à l’air en position fermée).

Codes flux [éclairage]

Codes flux [éclairage]

 

Les codes flux représentent l’image de la distribution lumineuse d’un luminaire.  Ils caractérisent le flux lumineux pour des angles solides matérialisés dans des cônes centrés sur l’axe principal du luminaire et d’angles d’ouverture α spécifiques.

Angles définissant les codes flux.

Les principaux codes flux sont :

  • FC1, FC2, FC3, FC4 et F pour les angles solides de π/2, π, ¾ π, 2 π et 4 π. Cela correspond aux angles  α de 41,4°, 60°, 75,5°, 90° et 180° respectivement ;
  • FC4, le flux lumineux émis dans l’angle solide 2 π ou l’ensemble du flux lumineux émis vers le bas ;
  • F, le flux lumineux émis dans l’angle solide 4 π ou le flux lumineux total émis par le luminaire ;
  • PHIS, le flux lumineux total issu de l’ensemble des lampes du luminaire.

Diagramme polaire.

Angles Correspondance des angles
Angle du cône 41, 4 ° 60° 75,5° 90° 180°
Angle solide ω /2 ¾ 2 4

 Codes flux CIE.

Exemple

Luminaire à
éclairage direct

Luminaire à
éclairage mixte direct

Données photométriques
Lumen [lm] Lumen [lm]
FC 1 2 535 FC 1 1 733
FC 2 3 730 FC 2 2 292
FC 3 3 755 FC 3 2 305
FC 4 3 760 FC 4 2 309
F 3 760 F 3 870
PHIS 5 000 PHIS 4 300
Code flux CIE
N 1 FC 1 / FC 4 0,67 N 1 FC 1 / FC 4 0,75
N 2 FC 2 / FC 4 0,99 N 2 FC 2 / FC 4 0,99
N 3 FC 3 / FC 4 1,00 N 3 FC 3 / FC 4 1,00
N 4  FC 4 / F 1,00 N 4 FC 4 / F 0,60
N 5 F / PHIS 0,75 N 5 N 5 0,90

 Remarques
Les données N2, N4 et N5 sont les données à introduire dans le logiciel PEB :

  • N2 représente la composante intensive du flux lumineux ;
  • N4 représente la composante directe du flux lumineux.

N5 représente le rapport entre le flux lumineux total F émis par le luminaire et le flux lumineux émis par toutes les lampes du luminaire, soit l’image du rendement du luminaire.

  • le flux lumineux émis vers le bas (FC 4 = 3 760 lm) est identique au flux lumineux total émis par le luminaire (F = 3 760 lm), ce qui est logique pour un luminaire à éclairage direct ;
  • N 5 = 75 %.
  • le flux lumineux total émis par le luminaire (F = 3 870 lm) est supérieur au flux lumineux émis vers le bas (FC 4 = 2 309 lm) ;
  • N 5 = 90 %.

Réduire les apports de chaleur dus à l’éclairage

Réduire  les apports de chaleur dus à l'éclairage

L’entièreté de l’énergie électrique consommée par l’éclairage artificiel est dissipée sous forme de chaleur dans l’ambiance intérieure, par rayonnement, convection ou conduction. De plus, dans les bâtiments thermiquement performants, les lampes qui émettent beaucoup d’infrarouge (IR), indépendamment des surconsommations électriques qu’elles engendrent, participent souvent aux risques de surchauffe.

Calculs

Pour établir le bilan thermique d’un local et évaluer l’impact de l’éclairage sur la surchauffe.


La puissance installée

La puissance calorifique dégagée par l’éclairage équivaut à la puissance des lampes installées. Pour les lampes fluorescentes, il faudra également tenir compte des pertes des ballasts qui varient de 10 à 20 % de la puissance de la lampe.

Schéma puissance installée.


Le type de lampe

Toute l’énergie consommée par les lampes est transformée en chaleur par :

  • conduction (« par les solides »),
  • convection (« par les gaz, les liquides »),
  • rayonnement (lumière et autres radiations, infrarouge en particulier).

En fonction de la famille de lampes considérée, la répartition de ces divers apports sera différente. Il est essentiel de tenir compte de cette répartition pour éviter des élévations de température trop importantes.

Deux caractéristiques permettent de choisir correctement le type de lampe à utiliser :

  • le rendement des lampes : fraction de la quantité d’énergie transformée en lumière. Augmenté l’efficacité du système permet de limiter la puissance installée, et donc les apports de chaleurs.
  • la composition du spectre d’émission : on choisira des lampes dont le spectre comporte une faible proportion d’énergie thermique infrarouge par rapport à la fraction utile d’énergie lumineuse.

Pour éviter un apport calorifique trop important, on réalisera le système d’éclairage à partir de  tubes fluorescents.

Lampes à incandescence

Ces lampes émettent un rayonnement infrarouge important (de l’ordre de 75 % de la puissance de la lampe). Comme les infrarouges et les rayons lumineux se réfléchissent en même temps, les lampes à réflecteur et les projecteurs intensifs vont provoquer des élévations de température très importantes dans l’axe du faisceau.

Les lampes à rayonnement dirigé dites à « faisceau froid » ou dichroïque » limitent le rayonnement infrarouge direct. Le miroir de ces lampes conçu pour réfléchir la lumière, est transparent pour les radiations infrarouges indésirables. Lorsque l’on utilise ce genre de lampe, il faut s’assurer que le luminaire utilisé est susceptible de les recevoir car, sans précaution, elles provoquent un échauffement supplémentaire de la douille, du câblage et de la partie arrière du luminaire.

Le dégagement de rayonnement infrarouge de ce type de lampe en fait une source lumineuse peu efficace et justifie son retrait progressif du marché.

Lampes fluorescentes et lampes à décharge (haute pression)

Ces lampes émettent une très faible proportion de rayons infrarouges courts. Par contre, les tubes à décharge des halogénures métalliques et des sodiums haute pression émettent une quantité importante d’infrarouge moyen. En ce qui concerne les lampes fluorescentes, on ne fera attention qu’aux niveaux d’éclairement très élevés qui sont les seuls à produire un effet thermique direct perceptible.

Si l’effet calorifique du rayonnement de ces lampes est relativement faible, la transformation en chaleur de l’énergie électrique consommée (lampe et ballast)  ne doit pas être sous-estimée. L’élévation de la température des parois du luminaire vont transformer celui-ci en émetteur d’infrarouges longs susceptibles d’influencer la distribution thermique du local et/ou du meuble frigorifique.

LED

Les LED ne génèrent pas ou peu de rayonnement infrarouge (IR) ou ultraviolet (UV) dans le flux lumineux. Il est clair qu’elles génèrent de la chaleur, mais plutôt vers l’arrière de la lampe LED, ce qui facilite l’extraction. De ce fait, elles sont très intéressantes dans les musées ou dans les magasins de denrées alimentaires où des températures basses sont nécessaires.

Schéma chaleur dégagée par les LED.

Bilan énergétique de quelques lampes

Le tableau suivant donne les bilans énergétiques de quelques types de lampes.

Bilans énergétiques de quelques lampes (d’après C. Meyer et H. Nienhuis)

Type de lampe

Conduction et convection [%]

Rayonnement [%]

Rayonnement lumineux [%]

Puissance à installer par 100 lm [W]

UV

IR

Incandescentes 100 W

15

75

10

10

Fluorescentes rectilignes

71.5

0.5

(1)

28

1.4

Fluorescente compactes

80

0.5

(1)

19.5

1.8

Halogénures métalliques

50

1.5

24.5

24

1.3

Sodium haute pression

44

25

31

1

(1) Dans le cas de lampes fluorescentes dont la surface développée est importante, on pourrait séparer le rayonnement infrarouge (long). Pour les lampes fluocompactes cette distinction est inutile.

Exemple.

Par exemple si 2500 lm doivent être fournis, les bilans énergétiques des différentes installations deviennent :

Type de lampe

Conduction et convection [W]

Rayonnement [W]

Rayonnement lumineux [W]

UV

IR

Incandescentes 100 W

37.5

187.5

25

Fluorescentes rectilignes

25.025

0.
175

(1)

9.8

Fluorescente compactes

36

0.225

(1)

8.775

Halogénures métalliques

16.25

0.487

7.962

7.8

Sodium haute pression

12.1

6.875

8.525

(1) Dans le cas de lampes fluorescentes dont la surface développée est importante, on pourrait séparer le rayonnement infrarouge (long). Pour les lampes fluocompactes cette distinction est inutile.

Cet exemple montre bien l’intérêt d’utiliser des lampes à décharge. Leur faible coût d’achat, leur longue durée de vie, leur bon indice de rendu des couleurs font des lampes fluorescentes le choix le plus adapté.


Influence de l’inertie du local

Schéma influence de l'inertie du local.

L’inertie thermique du local permettra d’accumuler une partie de la chaleur instantanée dégagée par les luminaires. Cet impact est cependant faible (environ 10 % de réduction pour un local à forte inertie) et se fera principalement ressentir pour les lampes à incandescence (90 % de leur chaleur est dissipée par rayonnement).


Influence du type de plafond

Schéma influence du type de plafond - 01.

Des hauteurs sous plafond importantes diminuent également l’impact des luminaires grâce à la stratification des températures dans le local (l’air chaud s’accumule en dehors de la zone d’activité). Ce phénomène se fait principalement ressentir (jusqu’à 20 % de réduction) pour les lampes fluorescentes (60 % de leur chaleur est dissipée par convection) et lorsqu’une extraction d’air est organisée en plafond.

Schéma influence du type de plafond - 02.

Un phénomène semblable se fait ressentir lorsque les luminaires sont encastrés dans des faux plafonds servant de plénum de reprise pour la ventilation. Une partie de la chaleur émise est alors évacuée avant qu’elle puisse contribuer à la surchauffe du local.

Un problème d’inconfort thermique ou lumineux ? N’hésitez pas à tester notre nouvel outil de diagnostic afin de trouver la solution à votre problématique.

Choisir la gestion et la commande

Critères de choix

Au niveau énergétique, un projet de conception ou de rénovation importante de l’éclairage doit tenir compte :

  • De la sensibilisation à l’URE et de l’ergonomie ;
  • Du profil d’occupation des locaux et de l’évolution possible de ce profil au cours du temps ;
  • De l’apport de lumière naturelle ;
  • De la performance thermique de l’enveloppe du bâtiment et de lier le confort visuel au confort thermique ;
  • De la taille du ou des bâtiments constituant le parc immobilier. ;

Quels que soient les critères de choix du système,  sa configuration de base ne change pas. On a toujours besoin :

  • De câble d’alimentation ;
  • De luminaires ;
  • D’organes d’allumage et d’extinction des luminaires ;
  • D’organes de gestion.

Le développement de l’électronique et l’apparition de « l’immotique » dans les bâtiments tertiaires a permis de repenser la gestion des systèmes d’éclairage en tenant compte, à confort visuel optimal,  de l’énergie. L’acceptation de l’immotique par les occupants des locaux est souvent délicate sachant qu’en général, ils sont d’une part réfractaires au changement et d’autre part ils n’ont plus nécessairement la maîtrise du système.

Un système d’éclairage performant tenant compte de l’occupation et de la lumière naturelle permet de réduire sensiblement les consommations électriques. C’est d’autant plus vrai dans la conception de bâtiment à basse voire très basse énergie, car la part de consommation énergétique que prend l’éclairage devient très importante.


Sensibilité à l’URE et ergonomie

Sensibilité

La sensibilisation à l’URE (Utilisation Rationnelle de l’Énergie) et l’ergonomie influencent particulièrement le choix de la gestion de l’éclairage. Lorsque les occupants des locaux ont la « fibre énergétique », la gestion de l’éclairage peut être simple par le choix d’une gestion manuelle classique.

Elle est envisageable dans des espaces privés. Par contre, pour une gestion dans des espaces privés locatifs ou publics, on fera appel à de l’équipement automatique. En effet, dans ce type d’espace, il règne en général un esprit de déresponsabilisation des occupants qui sont « de passage ».

Exemple

Le choix d’une gestion de l’éclairage par un interrupteur à deux allumages pour réaliser un zonage dans un local de taille importante ne devrait pas poser un gros problème.

Ergonomie

Malgré une sensibilité avérée des occupants d’espace, l’ergonomie représente un facteur limitatif  au choix d’une gestion simple.

Exemple

« On connait tous l’inconvénient de gérer un groupe de  luminaires proche de la fenêtre par une gestion de type interrupteur simple. Notre cher climat en Belgique n’épargne pas notre patience ! ».

Lorsque le soleil joue à « cache-cache » avec la couche nuageuse, les variations de niveau d’éclairement voudraient que l’occupant éteigne et rallume les luminaires du côté de la fenêtre pour réduire la facture énergétique. Le gestionnaire risque de devoir dépenser les économies générées au profit des « psy d’entreprise ».

Arbitrage

Mise en garde : « un système de gestion automatique de l’éclairage ne fonctionne que s’il est parfaitement accepté par les occupants. L’imagination de ceux-ci est incroyable quand il s’agit de contrarier un système automatique ! Celui-ci doit donc être soit imperceptible, soit compris et accepté par les occupants ».

On conseille souvent de ne pas pousser trop loin la recherche d’économies au détriment de la liberté des utilisateurs et de la simplicité de la gestion. Dans les locaux de bureau, par exemple, les occupants doivent pouvoir allumer ou éteindre un luminaire, faire varier la puissance émise par un luminaire ou personnaliser leur ambiance de travail. Des solutions existent comme les dérogations manuelles sous forme de télécommande IR (Infrarouge) ou RF (Radio Fréquence).

Ainsi, dans les grands bureaux, il faut dans la mesure du possible donner la possibilité aux occupants de gérer l’éclairage au niveau de leur propre espace de travail.

L’utilisateur pourra être sensibilisé :

  • à la non-utilisation de l’éclairage artificiel général si l’éclairage naturel est suffisant,
  • à extinction de l’éclairage d’un local lorsqu’il quitte celui-ci.

Des exemples de gestions manuelles et automatiques

Exemple 1 : local à occupation brève et variable

Dans des locaux de type privés comme des locaux d’archives, techniques, …, une gestion manuelle  comme un interrupteur simple avec témoin lumineux est la solution. A l’inverse, les locaux comme les sanitaires et WC privés ou public seront équipés d’une détection de présence (avec éventuellement détection sonore) dans le blochet près de la porte.


Gestion manuelle.


Gestion automatique.

Calculs

Pour avoir une idée de la rentabilité d’un tel changement.!
Exemple 2 : local à occupation prolongée et à apport de lumière naturelle

Lorsque les occupants sont sensibilisés, on pourrait envisager un interrupteur à 2 allumages pour allumer/éteindre distinctement la rangée de luminaires côté fenêtre de celle côté couloir. Ceci dit, pour des variations importantes et aléatoires de l’éclairage naturel, une gestion semi-automatique par allumage volontaire à partir d’un bouton-poussoir et extinction par détection d’absence  sera préférée. À noter que la tête de détection intègre une sonde de luminosité.

Attention : s’il s’agit de lampes fluorescentes, il faudra équiper les luminaires de ballasts électroniques dimmables. S’il s’agit de LEDS, il faut prévoir des drivers dimmables.


Gestion manuelle par interrupteur à 2 allumages.

 
Gestion semi-automatique.

Calculs 

Pour avoir une idée de la rentabilité d’un tel changement.
Exemple 3 : locaux à occupation intermittente programmée

Dans les couloirs occupés de jour comme de nuit (couloir d’hospitalisation par exemple), pour les motivés par l’énergie, le placement d’une gestion manuelle comme un inverseur est une solution.

Si l’on veut s’orienter vers une gestion automatique, le placement d’une horloge centrale dans le tableau divisionnaire peut être envisagé.


Commande centrale manuelle (inverseur).


Gestion automatique du basculement de l’éclairage jour/nuit par horloge.


Taille et proportions des locaux

La taille et la proportion d’un local influencent aussi le choix de la gestion de l’éclairage. Dans les locaux de grande taille, le zonage est l’approche énergétique par excellence. En effet, il est avantageux de créer des zones bien distinctes dans :

  • Les salles de  sport de manière à ne pas éclairer les aires de jeux non occupées ;
  • Les couloirs afin d’éviter de l’éclairer sur toute sa longueur lorsqu’un occupant sort, par exemple de son bureau pour aller dans le bureau voisin sans traverser tout le couloir ;
  •  …
Exemple de zonage pour une salle de sport

Dans une salle omnisports, il est inutile d’éclairer toute la salle alors qu’un seul terrain est occupé. Il est important de prévoir un zonage, c’est-à-dire une commande séparée pour les différents terrains de la salle.

Les lignes de jeux s’entremêlent.

   

Il existe donc plusieurs manières de regrouper les luminaires qui seront commandés en une seule fois. On analysera donc chaque cas, en tenant compte de :

  • l’emplacement des lignes de jeux,
  • la fréquence d’occupation des différents terrains,
  • la possibilité d’emplacement des différentes commandes.

Voici un exemple possible de zonage :


Profils d’occupation

Les profils d’occupation des bâtiments tertiaires et de leurs locaux sont assez différents suivant l’usage (bureaux, sanitaires, classes, chambres d’hôpital, …). Le choix de la gestion de l’occupation varie surtout en fonction de la sensibilité des occupants à l’énergie, des coûts du système d’éclairage, …

Il existe sur le marché une multitude d’équipements pour gérer l’occupation des locaux. On pointera principalement :

Le choix entre ces différents équipements de gestion d’occupation est complexe. Indépendamment de la sensibilité des occupants à la gestion responsable de l’éclairage par rapport à l’énergie, ce choix doit s’opérer en fonction des fréquences d’occupation des locaux.

Voici quelques exemples de locaux que l’on rencontre régulièrement dans les bâtiments tertiaires (liste non exhaustive) :

Dans les locaux à temps d’occupation important

D’emblée, on ne conçoit pas qu’un local à temps d’occupation important soit sans baie vitrée.

L’occupation des bureaux, classes de cours, … peut-être avantageusement gérée par des boutons poussoirs d’allumage volontaire des luminaires et des détecteurs d’absence lorsqu’après un certain temps les locaux ne sont plus occupés. Cette gestion est très efficace et responsabilise souvent les occupants. En effet, en entrant dans le local, l’occupant juge si le niveau d’éclairement est  suffisant ou pas pour travailler. S’il le juge insuffisant, il peut donner une impulsion au bouton-poussoir qui allume les luminaires. Les boutons poussoirs modernes sont équipés d’un module électronique qui permet :

  • D’allumer par une première impulsion brève ;
  • D’éteindre par une nouvelle impulsion brève ;
  • A chaque impulsion prolongée, de dimmer vers plus ou moins de flux lumineux.

Dans les locaux à temps d’occupation court

Fréquentation importante : les circulations, …

Le passage fréquent, mais court en temps des locaux de circulation (couloirs, escaliers, local photocopieuse, sanitaire, …)  pourrait être géré par des simples détecteurs de mouvement. Cette technique permet de choisir des luminaires avec le détecteur de mouvement incorporé ce qui réduit fortement les longueurs des câbles d’alimentation  230 V et de commande  basse tension. La gestion de type « ancienne génération » par boutons-poussoirs et minuteries est toujours valable, mais nécessite de grandes longueurs de câbles. Au prix du kg de cuivre, le surcoût de l’électronique de gestion peut se justifier pleinement en faveur des nouvelles technologies. A remarquer que dans les circulations, le choix d’un luminaire supportant de nombreux allumages et extinctions sera primordial. On pense de plus en plus aux luminaires LED qui, théoriquement, supportent un « nombre infini » de commandes.

De plus en plus de sanitaires sont avantageusement équipés de détecteurs de mouvement et sonores. Ce type d’équipement permet de ne placer qu’un seul détecteur dans le sanitaire commun. Dans les WC, le simple fait de générer du bruit (peu importante la « source sonore »), réactive le détecteur qui évite à l’occupant du WC d’être plongé dans le noir avec toutes sortes de conséquences désagréables.

Fréquentation faible : locaux techniques, …

On pense aux locaux techniques, aux archives, aux « kots à balais », … Dans ce type de local, les interrupteurs classiques avec témoins d’allumage feront généralement « l’affaire ».


Apport d’éclairage naturel

Une gestion du flux lumineux en fonction de l’apport en éclairage naturel peut s’appliquer aux locaux éclairés naturellement lorsque le temps d’occupation journalière est important. En effet, lorsque les locaux sont utilisés de façon intermittente ou peu vitrés, le temps de valorisation de l’éclairage naturel se réduit, la rentabilité des systèmes de variation du flux lumineux aussi.

Parmi les systèmes de gestion existants, il faut privilégier ceux qui modifient les caractéristiques de flux lumineux de façon imperceptible pour les occupants, c’est-à-dire le dimming en fonction d’un capteur intérieur.

Cependant, n’excluons pas trop vite la bonne volonté des occupants en prévoyant un double allumage qui différencie la commande des luminaires côté fenêtre et côté intérieur.

Allumage différencié

Simplement, un des interrupteurs commande le luminaire côté fenêtre et l’autre le luminaire côté couloir. Ce système est basique et nécessite une certaine sensibilité à l’énergie des occupants. Dans notre chère Belgique, par temps d’alternance de nuage et de soleil, on comprend la limite de ce type de gestion.

Gestion par sonde de luminosité

À ce stade, le choix peut se porter sur des solutions simples, mais locales ou des solutions plus complexes et centrales (plus coûteuses aussi, c’est vrai !).

On pointera principalement le choix entre les sondes de luminosité intégrées :

  • au luminaire même ;
  • à la tête de détection de présence.

Dans le cas de la sonde de luminosité intégrée à la tête de détection de présence, le « dimming » du niveau d’éclairage des luminaires pourra être local ou central.

Dans le cas de l’usage de sonde de luminosité, il faudra prévoir un système d’horloge ou de détecteur pour éviter que la lumière reste allumée. (Si les lampes sont dimmées, l’occupant risque d’oublier d’éteindre en quittant le local (surtout en été)).

Gestion locale

La gestion locale gère directement les luminaires à partir d’un détecteur d’absence/présence équipé d’une sonde de luminosité par exemple.

Gestion centrale

La gestion centrale gère les luminaires par des modules 0-10V ou DALI (module sur rail DIN dans le tableau divisionnaire) via un bus de communication de type KNX.

 

En fonction des équipements de gestion de l’éclairage naturel, la flexibilité de reconversion des locaux est plus ou moins grande. Il est clair que le choix d’une gestion au travers d’un bus de communication offre plus de liberté d’adaptation de l’éclairage en cas de changement d’affectation des locaux.

Cette réflexion est tout à fait gratuite, mais c’est à voir au cas par cas !

Rentabilité d’un dimming

La rentabilité du système choisi dépendra de plusieurs facteurs décrits ci-dessous :

Orientation et environnement des locaux

Dimensions du local
l x L
Surface de fenêtres
Orientation Économie
Zone fenêtre Zone centrale Moyenne
3,6 x 5,4 6 NO 33 % 18 % 26 %
5,5 x 5,5 12 S et O 36 % 33 % 34 %
4,0 x 5,5 4 O 29 % 22 % 26 %
3,0 x 3,6 2,4 E 30 % 8 % 19 %
3,6 x 5,4 3,3 O 29 % 16 % 22 %
3,6 x 5,0 4,5 O 41 % 19 % 30 %

Identique au cas précédent, mais utilisateurs différent.

43 % 31 % 37 %

Mesures réelles de l’économie apportée par un dimming individuel des luminaires  par rapport à un fonctionnement à pleine puissance avec des ballasts électroniques non dimmables (fourniture de 500 lux sur le plan de travail), source : TNO.

L’environnement extérieur des façades influence fortement la rentabilité. Par exemple, si une façade est masquée par un autre bâtiment (rue étroite), les apports en éclairage naturel dans les premiers étages risquent d’être trop faibles pour justifier une gestion automatique, mais suffisante pour les étages supérieurs.

D’une manière générale une économie de 30 % est un chiffre que l’on peut considérer comme raisonnable pour le dimming complet d’un bureau.

Puissance totale gérée par une unité de commande

Le coût du système de gestion dépend en partie du coût de l’unité de commande (capteur, interface). Plus celui-ci est élevé, plus la puissance électrique totale commandée par un système devra être importante pour assurer une rentabilité suffisante.

Exemple.

Dans le cas d’une gestion indépendante de chaque luminaire, plus la puissance des lampes commandées par un ballast est faible, plus le coût d’investissement est important par rapport à l’économie escomptée : gérer une lampe de 36 W avec 1 ballast coûtera environ 3,25 € par watt commandé, tandis que gérer deux lampes de 58 W avec 1 ballast coûtera environ 1 € par watt.

De la présence d’une climatisation

La diminution de la puissance de l’éclairage en fonction de l’apparition du soleil permet de diminuer les coûts éventuels d’une climatisation ou de limiter les surchauffes.

Calculs

Pour estimer la rentabilité d’un système de gestion en fonction de votre situation.

Performance thermique du bâtiment

Mais que vient faire la performance thermique dans une histoire qui concerne l’éclairage ?
Tout simplement parce que dans un bâtiment performance thermiquement (à basse ou très basse énergie), la gestion de l’apport en éclairage naturel va de pair avec la gestion de la surchauffe au travers des baies vitrées par des stores. En effet, un savant compromis est nécessaire entre :

  • D’une part, le besoin de maximiser les apports de lumière naturelle afin d’optimiser le confort visuel et de réduire la facture énergétique d’électricité ;

 

  • D’autre part, la nécessité de maîtriser les apports solaires sources de surchauffe dans un bâtiment performant. Notons que le risque de surchauffe est intimement et principalement lié à l’orientation des baies vitrées.

Gestion de store

La gestion des stores et du niveau d’éclairement doivent donc être maîtrisés de concert. Pour y parvenir, le choix d’un système centralisé simplifie fortement cette gestion.
Un mode de gestion intéressant des stores est repris ci-dessous :

  • Gestion de la position des stores au travers du bus KNX en fonction des paramètres donnés par la station météo.

 

  • Le bouton-poussoir « store » de dérogation manuelle permet à l’occupant de garder la maîtrise de la position du store.

 

  • Le détecteur d’absence permet de « rendre la main » au système de gestion automatique lorsque l’occupant s’absente pour un temps donné.

Gestion HVAC

Gestion de la ventilation

Dans les bâtiments performants, le besoin d’échange de paramètres de commande ou de régulation entre les systèmes d’éclairage et HVAC (Heating Ventilation Air Conditioning)  est nécessaire.

La détection de présence dans une salle de réunion peut faire évoluer le taux de renouvellement d’air de zéro à 100 % (ON/OFF ou modulant) par la gestion de l’ouverture d’une boîte VAV. Pour ne pas démultiplier le nombre d’équipements de détection de présence, l’auteur de projet pourra rationaliser son choix de détecteur de présence. C’est d’autant plus vrai que les détecteurs de présence modernes offrent les fonctions suivantes :

  • Canal de commande en présence ou absence ainsi que du niveau d’éclairement des luminaires ;
  • Canal de commande en présence ou absence d’équipement HVAC.

Gestion des températures

Une sonde de température peut être couplée avec le bus KNX lorsque le bâtiment est inoccupé afin de gérer le store :

  • Abaissement du store en cas de canicule lorsque les températures intérieure et extérieure dépassent une certaine valeur ;
  • Relèvement du store en cas de grand froid et d’ensoleillement important ; ce qui permet de valoriser les apports solaires lorsque la température interne est en dessous de sa consigne.

Gestion du store en cas de canicule.

Gestion du store en cas d’apports solaires nécessaires importants.


Taille des bâtiments ou importance du parc immobilier

La taille du ou des bâtiments, la présence de plusieurs bâtiments sur un site, … influencera nécessairement le besoin de centralisation ou pas des gestions d’éclairage. On comprend aisément qu’un gestionnaire technique d’un parc important de bâtiments ait un besoin de supervision au travers d’une gestion technique centralisée (GTC). Ce genre d’installation passe impérativement par la mise en place d’un bus de communication.

Pour des bâtiments de petite taille, la centralisation n’est pas une fin en soi. On peut très bien avoir des systèmes d’éclairage performants énergétiquement parlant sans « sophistiquer » le système d’éclairage.
Voyons les deux configurations d’un système d’éclairage :

Système local

Dans les bâtiments de petite taille, envisager une GTC (gestion technique centralisée) n’est pas vraiment nécessaire.

Des solutions de gestion de l’éclairage et des stores (ou même HVAC) peuvent être envisagées avec un certain degré « d’immotisation » tout en restant dans la simplicité. Dans cette configuration, la gestion locale de l’éclairage est propre à chaque local. Dans un bâtiment simple, de petite taille et ne nécessitant pas beaucoup de souplesse d’aménagement des espaces, une gestion sophistiquée n’est pas nécessaire. De plus, la mise en place de ce type de gestion est relativement peu coûteuse.

Un bémol cependant (« eh oui, on ne peut pas gagner sur tous les fronts ! ») réside dans le manque de flexibilité de cette configuration. En effet, lorsque les espaces doivent être transformés (changement d’activité, d’usage, …), il est inévitable que l’installation d’éclairage doive être partiellement ou entièrement recâblée.

Système central

Dans des bâtiments plus complexes, plus grands ou encore dans des parcs immobiliers importants, le gestionnaire aura à disposition toute une palette de centralisation de la gestion de l’éclairage à l’échelle :

  • d’un étage d’immeuble ;
  • du bâtiment ;
  • d’un parc immobilier.

La gestion centrale nécessite à coup sûr de passer par un ou plusieurs de bus de communication avec, par exemple, les protocoles suivants:

  • DALI spécifiquement pour l’éclairage ;
  • KNX pour l’éclairage et /ou  le HVAC ;
  • TCP/IP pour la supervision.

La supervision ou GTC (gestion technique centralisée), permettra d’avoir une vue d’ensemble  de tous les paramètres de gestion de l’éclairage et, par la même occasion des autres systèmes (HVAC ou autres).

« Alors cerise sur le gâteau ou outil indispensable ? »

Ces systèmes sont naturellement plus onéreux que les systèmes locaux et donc l’incidence budgétaire sera étudiée au cas par cas. Cependant, une configuration centralisée, avec une vision énergétique par rapport au profil d’occupation, permet de réduire de manière importante les coûts de maintenance des locaux ainsi que les coûts de transformation (on ne doit pas systématiquement recâbler la gestion puisque le bus de communication est modulable) et, par après, d’adapter facilement la gestion suivant le nouveau profil d’occupation.


Organigramme de gestion

Voici un organigramme d’aide dans le choix de la gestion et de la commande de l’éclairage intérieur. Ces systèmes peuvent être intégrés dans une gestion centralisée, qui par son coût de câblage ne peut être envisagée que dans des bâtiments neufs ou des rénovations de grande ampleur.

1 Exemple : bureau paysager, classe, salle de réunion avec cloison amovible, salle de sport à plusieurs plateaux, … avec fenêtres orientées au nord

MINIMUM Zonage :

  • 1 zone = rangée de luminaires proches de la fenêtre,
  • 1 zone = autres rangées de luminaires,
  • 1 zone = éclairage point particulier (tableau de classe ou de salle de réunion, « table de réunion », …)
MINIMUM Interrupteur manuel on/off pour chaque zone.
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence par zone avec délai réglable.

Il s’avérera peu rentable dans le seul cas d’occupants « disciplinés » éteignant systématiquement les lampes en fin de journée. Cette gestion nécessite que les boutons poussoirs et les détecteurs « se parlent ». Elle peut être locale (l’intelligence est dans la tête de détection) ou centrale (régulateur dans un tableau divisionnaire ou GTC centrale pour les grands bâtiments tertiaires).

CONSEILLE La gestion en fonction de l’éclairage naturel se fera au moyen d’une ou plusieurs sondes de luminosité agissant sur un ou plusieurs ballasts électroniques dimmables (0-10V ou DALI). La ou les sondes de luminosité seront intégrées dans le ou les luminaires ou encore dans la ou les têtes de détection d’absence/présence

2 Exemple : bureau paysager, classe, salle de réunion avec cloison amovible, salle de sport à plusieurs plateaux, … avec autres orientations que les fenêtres au nord

MINIMUM Zonage :

  • 1 zone = rangée de luminaires proches de la fenêtre,
  • 1 zone = autres rangées de luminaires,
  • 1 zone = éclairage point particulier (tableau de classe ou de salle de réunion, « table de réunion », …)
MINIMUM Interrupteur manuel on/off pour chaque zone.
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence par zone avec délai réglable.
CONSEILLE La gestion en fonction de l’éclairage naturel se fera au moyen d’une ou plusieurs sondes de luminosité agissant sur un ou plusieurs ballasts électroniques dimmables (0-10V ou DALI). La ou les sondes de luminosité seront intégrées dans le ou les luminaires ou encore dans la ou les têtes de détection d’absence/présence.

3 Exemple : salle de réunion à cloison amovible et salle de sport sans fenêtre

MINIMUM Zonage : autant de zone qu’il y a d’espaces ou de plateaux distincts identifiables.
MINIMUM Interrupteur manuel on/off pour chaque zone.
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence par zone avec délai réglable.

4 Exemple : locaux techniques, archives, …

MINIMUM Zonage : autant de zone qu’il y a d’espaces ou de plateaux distincts identifiables.
MINIMUM Interrupteur manuel on/off pour chaque zone.
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence par zone avec délai réglable.

5 Exemple : Couloir, cage d’escalier, … avec baie vitrée

MINIMUM Zonage :

  • Par une ou plusieurs portions de couloir ;
  • Par un ou deux étages.
MINIMUM Boutons poussoirs commandant  un télérupteur de tableau avec minuterie d’extinction par zone
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence par zone avec délai réglable.

Alternative 1 :

  • Détecteur de mouvement  par étage pour les escaliers qui commande les luminaires de palier et des demi-étages directement supérieur et inférieur au palier considéré ;
  • Détecteur de mouvement par zone de couloir qui ne commande que les luminaires proches de sa couverture.

Alternative 2 :

  • détecteur de mouvement intégré au luminaire. « D’expérience, c’est une très bonne solution ! ».
CONSEILLE La gestion en fonction de l’éclairage naturel se fera au moyen d’une ou plusieurs sondes de luminosité agissant sur un ou plusieurs ballasts électroniques dimmables (0-10V ou DALI). La ou les sondes de luminosité seront intégrées dans le ou les luminaires ou encore dans une ou des têtes de détection de présence.

6 Exemple : Couloir, cage d’escalier, … sans baie vitrée

MINIMUM Zonage :

  • Par une ou plusieurs portions de couloir ;
  • Par un ou deux étages.
MINIMUM Boutons poussoirs commandant  un télérupteur de tableau avec minuterie d’extinction par zone.
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence par zone avec délai réglable.

Alternative 1 :

  • Détecteur de mouvement  par étage pour les escaliers qui commande les luminaires de palier et des demi-étages directement supérieur et inférieur au palier considéré ;
  • Détecteur de mouvement par zone de couloir qui ne commande que les luminaires proches de sa couverture.

Alternative 2 :

  • détecteur de mouvement intégré au luminaire. « D’expérience, c’est une très bonne solution ! ».

7 Exemple : bureau individuel, petite classe, salle de réunion, salle de sport à un seul plateau, … avec fenêtres orientées au nord

MINIMUM Interrupteur manuel on/off.
CONSEILLE Il sera intéressant de prévoir une gestion :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence avec délai réglable.
CONSEILLE La gestion en fonction de l’éclairage naturel se fera au moyen d’une ou plusieurs sondes de luminosité agissant sur un ou plusieurs ballasts électroniques dimmables (0-10V ou DALI). La ou les sondes de luminosité seront intégrées dans le ou les luminaires ou encore dans la ou les têtes de détection d’absence/présence.

8 Exemple : bureau individuel, classe, salle de réunion, salle de sport à un seul plateau, … avec autres orientations que les fenêtres au nord

MINIMUM Interrupteur manuel on/off.
CONSEILLE Il sera intéressant de prévoir une gestion :

  • Bouton poussoir d’allumage/extinction volontaire des luminaires par zone ;
  • Un détecteur d’absence avec délai réglable.
CONSEILLE La gestion en fonction de l’éclairage naturel se fera au moyen d’une sonde de luminosité agissant sur un ou plusieurs ballasts électroniques dimmables(0-10V ou DALI). La sonde de luminosité sera intégrée dans un des luminaires et sera maître pour la gestion des autres luminaires. Ou encore, elle intégrera la tête de détection d’absence/présence.

9 Exemple : locaux techniques, archives, …

MINIMUM Interrupteur manuel on/off.

10 Exemple : sanitaire et WC

MINIMUM Interrupteur manuel on/off.
CONSEILLE Il sera intéressant de prévoir une gestion par zone de type :

  • Un détecteur de mouvement et éventuellement sonore avec délai réglable.

Définir les objectifs à atteindre en rénovation [Eclairage]

En rénovation, les contraintes sont plus importantes (l’accès à la lumière naturelle et le câblage,…) sont par exemple déterminés).

Selon ces contraintes, les moyens donnés (rénovation partielle ou complète) et les objectifs fixés (diminuer les consommations, diminuer les coûts d’entretien ou améliorer le confort lumineux), on tentera au maximum de se rapprocher des objectifs de performance en conception neuve.

Des exemples de commande et gestion pour les classes

Des exemples de commande et gestion pour les classes


Les classes à aménagement fixe

Les classes sont généralement caractérisées par un taux élevé d’éclairage naturel. Il est donc très rare que l’éclairage artificiel doive, à lui seul, assurer l’éclairage d’un espace.

La commande de l’éclairage général d’une salle de classe peut ainsi s’effectuer par zones. Le plus logique est de piloter les lignes de luminaires parallèles aux baies vitrées de manière à pouvoir éteindre la plus proche de la lumière du jour quand la luminosité extérieure le permet.


Les classes à aménagement variable

Dans une classe à aménagement variable, la mise à disposition de plusieurs allumages permet une grande souplesse d’utilisation du local. Dans le cas d’une classe maternelle, par exemple, le zonage peut être fait selon les différentes « régions » de la classe, en créant différentes ambiances : le coin « lecture », le coin « sieste », le coin découverte, le coin bricolage, … Néanmoins, il risque d’être difficile à réaliser si l’implantation même des « coins » est sujette à modifications fréquentes…


Les salles de projection

Le zonage de l’éclairage en fonction des différentes activités est primordial. Il faudra pouvoir régler le niveau d’éclairement en fonction des différents moyens de projection utilisés, soit par l’utilisation de ballasts électroniques HF dimmables (c’est-à-dire permettant un réglage en continu du flux lumineux des lampes), soit par l’emploi de veilleuses commandées séparément. Dans le cas de grands auditoires, cette commande sera placée à proximité de l’orateur.


Le tableau

L’éclairage du tableau doit pouvoir être commandé séparément. En effet, il est très fréquent que l’éclairement dû à la lumière naturelle soit suffisant sur les tables et insuffisant sur le tableau. La consommation de l’éclairage du tableau est suffisamment faible pour qu’il puisse rester allumé pendant une grande partie des heures de cours.

Le bureau du professeur

Pendant le passage de diapositives, un éclairage situé dans le voisinage du bureau de l’enseignant lui permet d’être vu pendant sa présentation et de compulser ses notes. Ceci nécessite une commande séparée pour l’éclairage du bureau du professeur.

En résumé, pour les classes à aménagement fixe

Proposition de commande de l’éclairage pour une salle de classe, à deux portes d’entrée, utilisée le jour et le soir :

Schéma classes à aménagement fixe.

L’interrupteur commandant les rangées de luminaires les plus éloignées des fenêtres doit être mis en évidence, par exemple en étant de couleur rouge. Cela incitera les utilisateurs à d’abord allumer les deux rangées côté couloir, avant d’allumer éventuellement la rangée proche des fenêtres.

Un problème d’inconfort thermique ou lumineux ? N’hésitez pas à tester notre nouvel outil de diagnostic afin de trouver la solution à votre problématique.

Salles de sport

Salles de sport


Qualité de l’éclairage naturel

La qualité de l’éclairage naturel dans un hall de sports réside dans son aptitude à éclairer les surfaces de jeux le plus longtemps possible sans risque d’éblouissement et de surchauffe.

Spécifiquement dans les halls sportifs, il est intéressant d’exploiter la lumière zénithale de par la disponibilité de grandes surfaces peu encombrées par rapport aux façades.

En éclairage naturel zénithal, l’orientation a toute son importance. Par exemple, l’orientation au nord permet de bénéficier d’un éclairage « diffus » très important et constant sous nos latitudes. L’avantage de l’orientation au nord des baies vitrées réside aussi dans l’absence d’éblouissement direct du rayonnement solaire.


Étude en éclairage naturel

Lors de la conception d’un hall de sports, une attention toute particulière doit être apportée à la quantité et à la qualité de lumière du jour apportée aux plateaux sportifs.

À partir de la modélisation d’un hall de sports classique, l’influence de la proportion d’ouvertures en toiture et de l’orientation du bâtiment sur l’éclairage naturel du plateau sportif principal a été évaluée. Cette évaluation a été validée par une simulation dynamique d’éclairage naturel (réalisée à l’aide du logiciel Daysim).

Hypothèses

Lanterneau

L’éclairage naturel est réalisé via une ouverture zénithale située au faîte de la toiture. Cette ouverture consiste en un lanterneau en polycarbonate opalin à triple parois de 32 x 4 m (soit 128 m² de base) orienté le long de l’axe NNE-SSO (244° de décalage par rapport au nord).

Photo lanterneau 01.   Photo lanterneau 02.Photo lanterneau 03.

Ouverture zénithale classique : hall de sport de Grez-Doiceau.

Aucune baie vitrée n’est placée dans les parois verticales de la salle, à l’exception de la surface vitrée communiquant avec la cafétéria en partie supérieure des gradins.

Plateaux de sports

Les caractéristiques des plateaux sportifs sont les suivantes :

  • Dimensions principales de la pièce : 44,66 x 26,70 m
  • Hauteur du faîte de toiture : 12,73 m
  • Surface de calcul : 40 x 20 m (aire de jeu)
  • Aucun masque solaire lointain
  • Horaire d’occupation : de 9 à 23 h
  • Niveau d’éclairement souhaité : 300 lux
  • Transmission lumineuse du lanterneau opalin : 36 %
  • Facteurs de réflexion des parois :
    • Plafond : 60%
    • Murs : 70 % (sauf mur d’escalade : 52 %)
    • Sol (résine de polyuréthane coulée) : 50 %

Variables

Taille de l’ouverture

4 tailles de lanterneau zénithal sont simulées :

⇒ Très petit lanterneau

Proportion d’ouvertures en toiture : 6 %.

⇒ Petit lanterneau

Proportion d’ouvertures en toiture : 10 %.

⇒ Grand lanterneau

Proportion d’ouvertures en toiture : 17 %.

⇒ Très grand lanterneau

Proportion d’ouvertures en toiture : 23 %.

Orientation du bâtiment

8 décalages par rapport au nord sont simulés dynamiquement, de 0 à 360°, par pas de 45°. En effet, le lanterneau n’étant pas centré sur l’aire de jeu (voir image ci-dessous), on ne peut pas considérer qu’un décalage de 45° par rapport au nord donnera les mêmes résultats qu’un décalage de 225°.

Vue en plan du bâtiment décalé de 45° par rapport au nord. La surface de calcul est représentée en bleu.

Analyse des résultats

Les résultats sont évalués sur base d’une comparaison du facteur, de l’autonomie et de l’éclairement utile de lumière du jour.

Proportion d’ouvertures en toiture

Exemple de simulation pour une ouverture équivalent à 6 % de la surface de toiture :

⇒ Facteur lumière du jour

⇒ Autonomie lumière du jour – 300 lux (9h00 à 23h00).

⇒ Autonomie en lumière du jour – 100 < % < 2 000 lux (09h00 à 23h00)

Analyse des résultats

FLJ
(Facteur de Lumière du jour)*

DA
(Autonomie en Lumière du Jour)*

UDI
(Autonomie en lumière du jour utile)*

FLJ > 2 %

DA > 40 %

UDI > 50 %

(*)

  • FLJ moyen considéré comme bon si 3 % < FLJ > 5 %
  • DA moyen considérée comme bon si DA > 50 %
  • UDI moyen considérée comme bon si UDI > 50 %

À la lecture des résultats (voir graphique ci-dessous), on peut remarquer que, pour une même orientation du bâtiment :

  • Plus la proportion d’ouvertures en toiture augmente, plus le facteur de lumière du jour > 2 % augmente. Celui-ci tend cependant vers le maximum (100 %) à partir de 10 % d’ouvertures en toiture.
  • Plus la proportion d’ouvertures en toiture augmente, plus l’autonomie de lumière du jour maximum augmente. Cela signifie également que la consommation en éclairage artificiel diminue lorsqu’on augmente la proportion d’ouvertures.
  • L’éclairement de lumière du jour utile (de 100 à 2 000 lux) est maximal aux alentours de 10 % d’ouvertures en toiture.

Influence de la proportion d’ouvertures en toiture sur l’éclairage naturel du plateau sportif.

Augmenter de façon exagérée la proportion d’ouvertures en toiture n’est donc pas à conseiller, du point de vue de l’éclairage naturel, car ceci peut mener à un éclairement trop important qui augmentera le risque d’éblouissement pour les sportifs ; il faut trouver un juste équilibre entre l’éclairage naturel utile et la réduction des besoins en éclairage artificiel. Dans l’étude de cas qui nous concerne, cet optimum semble se situer aux environs de 10 % d’ouvertures en toiture.

Orientation du bâtiment

Les simulations dynamiques (voir graphique ci-dessous) montrent que, pour une même configuration des ouvertures, l’orientation du bâtiment a une grande influence sur l’éclairement de jour utile et sur l’autonomie de lumière du jour, et donc également sur les consommations en éclairage artificiel. Ces deux valeurs réagissent cependant de manière antinomique à la variation de l’orientation du bâtiment. Une fois de plus, du point de vue de l’éclairage naturel, il faut trouver un optimum entre un éclairement de lumière du jour réellement utile pour les activités sportives qui devront se dérouler sur le plateau et une autonomie de lumière du jour la plus élevée possible.

Influence de l’orientation du bâtiment sur l’éclairage naturel du plateau sportif (via un lanterneau zénithal décentré).

Les conclusions ci-dessus ne prennent en compte que les aspects liés à l’éclairage, mais il ne faut surtout pas oublier que les ouvertures pratiquées dans l’enveloppe du bâtiment sont également source de déperditions thermiques et de surchauffes estivales.

Il convient donc également de simuler le comportement thermique du plateau sportif en fonction de la proportion d’ouvertures en toiture et de l’orientation du bâtiment afin de savoir si l’optimum en termes d’éclairage correspond à l’optimum en termes thermiques.


Analyse thermique dynamique

Pour rappel, les simulations dynamiques en éclairage naturel donnent une idée du confort visuel et des consommations énergétiques en éclairage artificiel.

Des simulations thermiques dynamiques sont souvent nécessaires afin de vérifier que les options prises suite aux simulations dynamiques en éclairage naturel ne vont pas à l’encontre du bilan énergétique global qui associera les consommations électriques  en éclairage artificiel aux consommations dues au chauffage et éventuellement au refroidissement du bâtiment étudié.

Hypothèses

Outre les hypothèses prises lors des simulations en éclairage naturel (horaire d’occupation, orientation de base du bâtiment, volumétrie, …), les hypothèses suivantes sont prises :

  • la température de consigne en période d’occupation est de 17 °C ;
  • Un profil d’occupation classique de salle de sport (apports internes) ;

  • La ventilation est double flux avec récupération de chaleur ;

Variables

Au cours des différentes simulations, on fait varier :

  • tout comme dans les simulations en éclairage naturel, la surface du lanterneau et l’orientation du bâtiment ;
  • le type de vitrage ;
  • la performance de l’enveloppe du bâtiment :
U parois [W/(m².K)]

Type de paroi

Réglementaire Basse énergie Très basse énergie

Mur

Mur contre terre

Sol

Toiture

Vitrage

Lanterneau

0,5

0,9

0,9

0,3

1,1

1,3

0,25

0,25

0,25

0,2

1,1

1,1

0,15

0,15

0,15

0,15

0,7

0,7

Analyse des résultats

Surface de lanterneau

On remarque sur les graphiques ci-dessus que la consommation d’électricité pour l’éclairage artificiel du plateau sportif diminue fortement lorsque la proportion d’ouvertures en toiture varie de 0 à 5 %, puis décroit ensuite lentement au-delà de 5 %.

La consommation de chauffage, quant à elle, augmente de manière constante avec la proportion d’ouvertures tandis que la consommation de refroidissement ne commence à devenir significative qu’au-delà de 20 % d’ouvertures.

En mettant ces résultats en concordance avec les simulations d’éclairage naturel, on peut trouver un optimum commun aux deux simulations aux alentours de 10 % d’ouvertures en toiture. Cette valeur est, bien entendu, propre à l’étude de cas qui nous occupe ici ; il faut seulement retenir qu’il est important, lors de la conception des ouvertures, de prendre en compte les aspects thermiques en parallèle avec les aspects visuels.

Orientation du bâtiment

Le graphique ci-dessous montre que les besoins énergétiques de chauffage sont minimisés lorsque les locaux à température de consigne élevée (tels que les vestiaires) et avec de grandes ouvertures destinées à capter les apports solaires (tels que la cafétéria) sont orientés plein sud. Les besoins énergétiques de refroidissement étant faibles dans le cas des halls de sports, l’impact de l’orientation du bâtiment sur ceux-ci est très peu perceptible.

De plus, le modèle de simulation intégrant un lanterneau zénithal comme seule ouverture dans l’enveloppe extérieure du plateau sportif, l’orientation de celui-ci n’a quasiment aucun impact sur les besoins énergétiques du hall de sports.

En comparant ces résultats avec ceux des simulations d’éclairage naturel, on aperçoit que l’orientation préférentielle de notre modèle en termes thermiques est également celle qui apporte le plus grand éclairement de lumière du jour utile (de 100 à 2 000 lux) pour le plateau sportif.

Ceci constitue un argument supplémentaire en faveur de l’orientation nord-sud pour le hall de sports, avec les vestiaires et la cafétéria au sud et le plateau sportif au nord, malgré le fait que l’autonomie de lumière du jour soit minimale pour le plateau sportif lorsque le bâtiment est orienté de cette manière.

Type de vitrage

Le type de vitrage influence également les besoins en chauffage et en froid.

Dans le modèle considéré, un vitrage clair en toiture donnera plus d’apports solaires, mais risquera d’induire de la surchauffe, contrairement à un vitrage opalin.


Alternative d’éclairage naturel

D’autres configurations existent pour éclairer naturellement le plateau sportif modélisé. Deux sont proposées ci-dessous et sont ensuite comparées avec modèle initial (éclairé par un lanterneau zénithal opalin orienté NNE-SSO).

Configuration

Éclairage bilatéral nord et sud

Caractéristiques :

  • orientation : faîte dans l’axe est-ouest
  • transmission lumineuse du vitrage : 78 %
  • ouverture au nord : 44,66 x 1,79 m (80 m²)
  • ouverture au sud : 44,66 x 0,56 m (25 m²)

Éclairage bilatéral nord et sud

Caractéristiques :

  • transmission lumineuse du vitrage : 78 %
  • ouvertures au nord : 2 x 44,66 x 1,1 m (100 m²)
  • hauteur sous plafond : 8,6 m

Synthèse

Modèle 1

Éclairage zénithal opalin NNE-SSO

Modèle 2

Éclairage bilatéral nord et sud

Modèle 3

Éclairage par sheds au nord

FLJ > 2 %

Éclairement de lumière du jour utile
  • 31 % (100-2000 lx)
  • 27 % (> 2000 lx)
  • 38 % (100-2 000 lx)
  • 17 % (> 2 000 lx)
  • 55 % (100-2 000 lx)
  • 3 % (> 2 000 lx)
Autonomie de lumière du jour min-max
  • 30 à 60 %
  • 27 à 60 %
  • 33 à 56 %
Consommation d’éclairage avec et sans dimming
  • 39,3 MWh (sans dimming)
  • 35,0 MWh (avec dimming en fonction de l’apport en éclairage naturel)
  • 41,1 MWh (sans dimming)
  • 36,3 MWh (avec dimming en fonction de l’apport en éclairage naturel)
  • 40,6 MWh (sans dimming)
  • 35,1 MWh (avec dimming en fonction de l’apport en éclairage naturel)
Avantages
  • Très efficace par ciel couvert
  • Consommation d’éclairage artificiel plus faible (avec ou sans dimming)
  • Facilité d’entretien des vitrages
  • Consommation de chauffage plus faible grâce aux apports solaires
  • Consommations énergétiques cumulées (chaud, froid, éclairage) plus faibles
  • Éclairage naturel uniforme et constant sur l’aire de jeu
  • Aucun risque d’éblouissement des joueurs
  • Bon niveau d’éclairement de lumière du jour utile (de 100 à 2 000 lux)
Inconvénients
  • Aucune vue vers l’extérieur (à cause du polycarbonate opalin)
  • Dysfonctionnement thermique important tout au long de l’année (avec risque de surchauffe).
  • Risque d’éblouissement pour les sports tels que le badminton ou le volley-ball
  • Moins bon éclairement de lumière du jour utile (de 100 à 2 000 lux)
  • Faible facteur de lumière du jour
  • Risque d’éblouissement en l’absence de protections solaires
  • Consommation de chauffage plus élevée car apports solaires inexistants
  • Coût de construction plus élevé

Quantification en éclairage artificiel

Partant du principe que le confort lumineux doit être assuré en présence ou pas d’éclairage naturel, un complément d’éclairage artificiel est nécessaire. Normativement, le dimensionnement de l’éclairage artificiel s’effectue sans les apports de lumière naturelle. La démarche énergétique d’un système d’éclairage artificiel réside donc dans sa capacité à moduler la puissance installée en fonction de l’éclairage naturel. En effet, pour autant qu’il n’y ait pas d’éblouissement, meilleure l’autonomie en lumière du jour sera, moins fort sera le poids des consommations d’éclairage artificiel pour donner le complément de confort nécessaire.

Dans le cas de l’atelier considéré, le choix du type d’éclairage artificiel et surtout du type de luminaire, passe par une étude de type Dialux  permettant de comparer des luminaires entre eux.

Efficacité de l’installation d’éclairage

La salle est éclairée artificiellement au moyen de 4 rangées de 10 plafonniers industriels Zumtobel Copa A-B 1/400W HIT/HST E40 VVG KSP IP65 équipés d’une lampe de 400 W aux iodures métalliques à brûleur quartz. Ces luminaires peuvent également être équipés de lampes à vapeur de sodium haute pression.

Simulation Dialux

La simulation Dialux (logiciel gratuit) permet d’évaluer principalement le niveau d’éclairement moyen, l’uniformité de l’éclairement et l’efficacité énergétique (en W/m²).

Paramètres de simulation

  • Hauteur du point d’éclairage du 1er champ de luminaires: 7,28 m
  • Hauteur du point d’éclairage du 2e champ de luminaires : 8,98 m
  • Facteur d’entretien : 0,85
  • Surface de calcul :
    • Taille : 42 x 22 m (centrée sur le plateau sportif de 40 x 20 m)
    • Trame : 128 x 64 points

Position de la surface de calcul.

Résultats

En fonction du nombre de luminaires, de leurs caractéristiques lumineuses, de leur disposition au dessus des aires de jeux, …, les niveaux d’éclairement sont calculés dans Dialux.

Plan d’implantation des luminaires.

Courbes isolux.

Analyse des résultats

Niveau d’éclairement

Le niveau d’éclairement moyen calculé est de 876 lux (soit 745 lux après dépréciation). Ce niveau d’éclairement correspond au niveau moyen recommandé pour des compétitions nationales et internationales (750 lux). Il aurait pu être dimensionné entre 500 et 600 lux (après dépréciation) dans le cas bien précis de cette salle de compétition moyenne.

Uniformité d’éclairement et absence d’ombres

L’uniformité d’éclairement (Emin/Emoy) calculée est de 0,66. Une valeur supérieure ou égale à 0,7 aurait été préférable pour les compétitions (amateurs ou professionnelles).

Risque d’éblouissement

L’UGR maximum calculé dans les 2 directions du terrain est de 26. Cette valeur est peu représentative pour ce type de salle. En effet, étant donné qu’il s’agit d’un terrain omnisports, l’emplacement idéal et l’orientation des luminaires pour empêcher l’éblouissement par la vue des sources lumineuses sont impossibles.

Qualité de la lumière

Les lampes utilisées (aux iodures métalliques) ont des températures de couleur froides (3 200 à 5 600 K) qui s’équilibrent avec la lumière du jour lorsque l’éclairage artificiel est utilisé parallèlement à celle-ci. Elles ont également un bon indice de rendu des couleurs (65 à 90) qui permettra de bien distinguer les différentes lignes de jeux, à la fois pour les niveaux amateur et professionnel.

Couleur des lignes de jeux

Les tracés de jeu sont très contrastés par rapport au sol. Ceci facilite la perception visuelle (qu’aucun éclairage ne pourrait suppléer).

Efficacité énergétique

Rendement des équipements

Avec une puissance spécifique calculée de 2,73 W/m²/100 lux (20,33 W/m²), l’éclairage installé est performant (< 3 W/m²/100 lux) d’un point de vue énergétique. Ceci est principalement dû à l’utilisation de lampes aux iodures métalliques et de ballasts électroniques.

Qualité des parois

Les parois verticales de la salle sont réalisées en blocs de béton peints avec une couleur claire à l’exception des murs de la réserve de matériel sportif qui sont, quant à aux, peints avec une couleur plus foncée. L’uniformité d’éclairement pourrait éventuellement être améliorée si on les repeignait avec une couleur claire.

  

Gestion de la commande

La commande d’éclairage de cette salle est séparée en 2 zones mal réparties :

  • Zone 1 : 8 luminaires dans les 4 coins ;
  • Zone 2 : les 32 luminaires restant.

Il serait préférable de pouvoir commander l’allumage séparé des 3 à 5 aires de jeux (basket-ball, volley-ball et badminton) situées transversalement par rapport à l’aire de jeux principale (football en salle et handball) de manière à éviter que tous les terrains soient éclairés alors qu’un seul est occupé. Il serait également utile de pouvoir adapter le niveau d’éclairement des terrains au sport pratiqué, au niveau de jeu (loisir ou compétition) et à l’apport de lumière naturelle.

Façades des bureaux


Qualité de l’éclairage naturel

Confort lumineux

Dans une démarche de construction ou de rénovation durable, on privilégiera l’utilisation de la lumière naturelle à la place de l’éclairage artificiel. La qualité « spectrale » de la lumière naturelle ainsi que sa variabilité et ses nuances offrent une perception optimale des formes et des couleurs. L’éclairage artificiel doit être donc considéré comme un complément à la lumière naturelle.

En confort lumineux, l’objectif premier est de privilégier l’ouverture des espaces de travail vers la lumière naturelle tout en sachant qu’une trop grande ouverture des façades est souvent synonyme d’éblouissement. Cependant, l’éblouissement peut être assez facilement traité par un store interne.

Efficacité énergétique

D’un point de vue énergétique, l’utilisation de l’éclairage naturel comme « source » lumineuse est gratuite ; ce qui signifie que la facture électrique d’éclairage artificiel sera d’autant plus réduite que l’éclairage naturel exploité. De plus, en améliorant la qualité énergétique de l’enveloppe, que ce soit en conception ou en amélioration, les consommations énergétiques d’éclairage deviennent prépondérantes.

À titre d’exemple, les clefs de répartition énergétique pour un ancien bâtiment « passoire » et un nouveau bâtiment très performant  sont les suivantes :

Dans ce type de bâtiment « passoire », les consommations de chauffage et l’éclairage sont prédominants dans le sens où les parois sont très déperditives et l’installation d’éclairage peu performante.

Un bâtiment très performant et bien étudié au niveau de l’enveloppe limite ses dépenses énergétiques tant en chauffage qu’en refroidissement. Si l’installation électrique n’est pas performante (comme le montre cet exemple), les consommations d’éclairage en énergie primaire deviennent prépondérantes.

En absolu, on peut apprécier l’effort réaliser sur les consommations en énergie primaire. On réduit effectivement par 3 ces consommations primaires.

On se retrouve devant le défi, surtout pour le tertiaire, d’optimiser les consommations énergétiques d’éclairage en maximisant les apports gratuits d’éclairage naturel.

Attention cependant que dans bien des projets de conception ou de rénovation de bâtiments tertiaires, des trop grandes ouvertures génèrent des risques de surchauffe en été et des déperditions plus importantes en hiver. Le gestionnaire du bâtiment risque d’avoir la mauvaise surprise de payer une facture énergétique plus importante de climatisation en été et de chauffage en hiver. Cependant, les performances thermiques des vitrages actuels et le choix d’une bonne stratégie de protection solaire limitent l’impact respectivement des déperditions et des surchauffes sur le bilan énergétique global. Il en résulte que la consommation énergétique principale risque bien de devenir l’éclairage artificiel.

Critères

Bien des paramètres viennent influencer de manière plus ou moins significative la pénétration de la lumière dans les espaces de travail :

  • L’orientation des façades ;
  • La présence d’ombres reportées (bâtiments ou autres façades du bâtiment étudié faisant de l’ombre) ;
  • La taille, la forme et la position des baies vitrées dans les façades ;
  • La forme et les dimensions des trumeaux ;
  • Les caractéristiques des vitrages ;
  • La présence de protection solaire (fixe, mobile, …) ;
  •  …

Exemple d’analyse en autonomie en lumière du jour.

  1. Vitrage clair
  2. Vitrage sélectif
  3. Auvent
  4. Lamelles
  5. Ombre reportée

Pour un projet de taille importante, une étude par un bureau spécialisé est toujours intéressante sachant qu’il est possible d’optimiser conjointement les conforts lumineux et thermiques par des simulations dynamiques tenant compte de l’ensoleillement et du climat à tout moment de l’année et disponibles sous forme de bases de données type « météonorm » par exemple.


Influence de la modulation de façade

L’étude de cette influence porte sur un projet de conception d’un ensemble de plateaux de bureaux dans un immeuble tour. Une série de simulation dynamique en éclairage naturel (ECOTECH et DAYSIM) sont réalisées afin de mettre en évidence l’influence :

  • De la taille de la fenêtre ;
  • Du type de trumeaux ;
  • Du type de vitrage ;
  • Du type de cloisonnement interne ;
  • De l’épaisseur des trumeaux ;
  • De la hauteur des linteaux.

L’objectif des simulations est de réaliser un arbitrage entre différentes configurations de module de bureau. À chaque étape d’optimisation, l’arbitrage élimine les moins bonnes solutions.

Pour un bureau paysager ?

La modulation des façades influence la pénétration de la lumière naturelle dans l’espace de travail. C’est ce qu’on se propose d’étudier ici.

Base : taille de baie vitrée ⇒ deux fenêtres de 90 x 237 cm. Transmission lumineuse du vitrage TL = 50 %

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

1 < FLJ < 2 % Éloigné de la fenêtre DA < 20 %
3 % < FLJ < 5 % Proche de la fenêtre 50 % < DA

Les bureaux côté intérieur devront bénéficier régulièrement d’un système d’éclairage artificiel.

1re amélioration : taille de baie vitrée ⇒ une fenêtre de 180 x 237 cm et trumeau

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

1 < FLJ < 2 % Éloigné de la fenêtre 20 % < DA < 50 %
3 % < FLJ < 5 % Proche de la fenêtre 50 % < DA

Pour une même surface vitrée, une large fenêtre permet de laisser entrer plus facilement la lumière naturelle qu’une fenêtre étroite.

2e amélioration : trumeau de forme trapézoïdale

Tout en conservant la taille de la baie vitrée de 180 x 237 cm pour laquelle la pénétration de la lumière est la meilleure, on remplace un trumeau de section rectangulaire  par un trumeau de section trapézoïdale.

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

1 < FLJ < 3 % Éloigné de la fenêtre 30 % < DA < 50 %
3 % < FLJ < 5 % Proche de la fenêtre 50 % < DA

Les trumeaux trapézoïdaux améliorent légèrement la couverture des besoins d’éclairage par de l’éclairage artificiel. Cependant, on comprend aisément que la mise en œuvre de tel trumeaux risque de poser des problèmes.

3e amélioration : vitrage avec une transmission lumineuse de TL = 60 %

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

2,5 % < FLJ < 3 % Éloigné de la fenêtre 40 % < DA < 50 %
5 % < FLJ Proche de la fenêtre 50 % < DA

La configuration des modules de façade devient optimale. Cependant, pour les bureaux le long de la fenêtre, le risque d’éblouissement croît.

Que faut-il retenir ?

En conception, dans la modulation de façade, l’optimum de la couverture d’éclairage par la lumière naturelle (gratuite) passe par le choix d’une ouverture large pour les baies vitrées avec un vitrage de transmission lumineuse élevée. En rénovation, c’est du cas par cas ! Attention, cependant, que la limite d’ouverture à outrance des baies vitrées risque de provoquer de l’inconfort visuel (éblouissement) et thermique (surchauffe). Pour cette raison, l’étude doit souvent être complétée par des simulations thermiques dynamiques.

Pour un bureau individuel ?

La modulation des cloisons internes va aussi modifier le niveau d’exploitation de la lumière naturelle. Ici, un seul module de bureau est modélisé. Seule la position des parois varie. Pour ce type de configuration, les vitrages ont une transmission lumineuse TL de 50 %.

Base : taille de baie vitrée ⇒ deux fenêtres de 90 x 237 cm. Transmission lumineuse du vitrage TL = 50 %

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

0 < FLJ < 1,2 % Éloigné de la fenêtre DA < 20 %
FLJ < 3 % Proche de la fenêtre DA <  50 %

Le cloisonnement des plateaux de bureaux ne favorise pas l’entrée de la lumière dans le local individuel. Même la lumière naturelle n’apprécie pas l’individualisme !

1er amélioration : taille de baie vitrée ⇒ une fenêtre de 180 x 237 cm

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

1 < FLJ < 1,5 % Éloigné de la fenêtre DA < 20 %
3 % < FLJ Proche de la fenêtre 50 % < DA

Une ouverture plus large permet de bénéficier une qualité de lumière acceptable pour les plans de travail situé côté fenêtre.

Alternative : taille de baie vitrée ⇒ une fenêtre de 180 x 237 cm avec un positionnement des cloisons internes

Analyse des résultats
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

0 < FLJ < 1,2% Éloigné de la fenêtre DA < 20 %
FLJ < 3 % Proche de la fenêtre DA <  50 %

Le cloisonnement désaxé du trumeau (centrée avec l’axe du châssis) n’est pas vraiment une bonne idée. En rénovation, par exemple, ce type d’aménagement de cloison se rencontre souvent. À éviter si possible !

Que faut-il retenir ?

Le cloisonnement des plateaux de bureaux au sens large du terme en bureaux individuel est, dans la mesure du possible, à éviter. On comprend bien que ce soit régulièrement impossible à envisager. Cependant, une ambiance chaleureuse de travail dans un paysager permet souvent d’optimiser le niveau de pénétration de la lumière naturelle.


Influence de l’épaisseur des trumeaux

L’épaisseur plus ou moins variable des trumeaux (ou l’épaisseur de la façade) crée un ombrage fluctuant. Cette influence est décrite ci-dessous pour des épaisseurs variant de 70 à 40 cm.

Épaisseur des trumeaux : 70 cm – Facteur de lumière du jour et Autonomie en lumière du jour

Épaisseur des trumeaux : 60 cm – Facteur de lumière du jour et Autonomie en lumière du jour

Épaisseur des trumeaux : 50 cm – Facteur de lumière du jour et Autonomie en lumière du jour

Épaisseur des trumeaux : 40 cm – Facteur de lumière du jour et Autonomie en lumière du jour

Analyse des résultats
Épaisseur des trumeaux de 70 cm
FLJ (Facteur de Lumière du jour) > 3 %

Position du bureau

DA (Autonomie en Lumière du Jour)

FLJ < 3 % Éloigné de la fenêtre DA < 50 %
  3 % < FLJ < 6 % Proche de la fenêtre 50 % < DA

Épaisseur des trumeaux de 60 cm.

FLJ < 3 % Éloigné de la fenêtre DA < 50 %
  3 % < FLJ < 6 % Proche de la fenêtre 50 % < DA

Épaisseur des trumeaux de 50 cm

FLJ < 3 % Éloigné de la fenêtre DA < 50 %
  3 % < FLJ < 6 % Proche de la fenêtre 50 % < DA

Épaisseur des trumeaux de 40 cm

FLJ < 3 % Éloigné de la fenêtre DA < 50 %
  6 %< FLJ Proche de la fenêtre 50 % < DA

Que faut-il retenir ?

Attention toutefois à l’épaisseur trop faible des trumeaux qui risque d’occasionner un risque d’éblouissement. Dans la construction ou la rénovation basse énergie, les épaisseurs des parois ont tendance à augmenter ; ce qui a pour conséquence de réduire la pénétration de la lumière dans les espaces mais de réduire les risques de surchauffe. Décidément, la Belgique est vraiment la championne du compromis !


Influence de l’orientation de la baie vitrée

Indépendamment du traitement, une façade sud a un éclairement plus élevé qu’une façade nord.
Au premier abord, il apparaitrait logique d’augmenter la surface vitrée au nord, pour compenser un éclairement plus faible. La lumière du nord est aussi plus faible, mais moins éblouissante et plus facile à contrôler.
Pour les orientations sud, est et ouest l’éblouissement et le risque de surchauffe nécessite de placer des stores qui baissés limiteront le niveau d’éclairement. À ce stade, de nouveau, tout est une question de compromis !

Autonomie en lumière de jour pour une orientation nord.

Pour une orientation nord, l’autonomie en lumière du jour est suffisante pour les espaces bureaux à proximité de la baie vitrée. Mais on voit tout de suite la limite de pénétration de la lumière naturelle à savoir : la mi-profondeur du local étudié.

Autonomie en lumière du jour pour une orientation sud.

Pour une orientation sud, la pénétration de la lumière naturelle est importante. On pourrait pratiquement équiper les espaces de bureaux sur toute la profondeur du local.

Intérêt du store pour une orientation sud.

Que faut-il retenir ?

  • Une orientation nord donne moins de lumière naturelle, mais plus stable dans le temps et absente d’éblouissement.
  • Une orientation sud donne beaucoup de lumière au risque même de générer des éblouissements. Un store est souvent nécessaire pour réduire ce risque. L’influence de la gestion du store se fait ressentir de manière significative pour les baies vitrées orientées au sud. Un bon compromis entre un apport de lumière naturelle réduit (orientation nord) et un éblouissement régulier (orientation sud sans store) est l’équipement des baies vitrées de stores automatiques. De plus, les stores en automatique ont l’avantage de traiter aussi les surchauffes en été.

Hypothèses de simulation

Les hypothèses prises pour réaliser les simulations sont les suivantes :

  • L’orientation de la façade est nord ;
  • Coefficients de réflexion considérés pour les parois internes :
    • Plafond : 70 %
    • Murs intérieurs : 50 %
    • Ébrasements : 50 %
    • Sol : 30 %
  • Les façades extérieures sont assimilées à des parois uniformes mates. Trois type de murs sont considérés dont les coefficients de réflexions sont :
    • Mur clair : 50 %
    • Mur moyen : 30 %
    • Mur foncé : 20 %
  • Disposition des zones de travail : les zones de travail mesurent 4 x 80 cm x 180 cm et sont situées à 80 cm de la face extérieure de la façade.
  • Surface nette éclairante = 2 x 2,37 x 0,90 = 4,266 m² par travée de 2,7 m
  • Surface nette façade intérieure = 2,735 x 2,70 = 7,385 m² par travée
  • Surface nette éclairante / surface nette façade intérieure = 58 % ;
  • (surface nette éclairante/surface nette façade intérieure) x transmission lumineuse du vitrage = 28,9 %.

Luminaires « downlight »

Downlight à LED

Downlight à fluocompacte.


Types de lampes adaptées

Lampe fluocompacte 4 broches.

Module LED.

Initialement, les luminaires « downlights » ont été développés  pour accueillir des lampes fluocompactes à broches de puissance réduite.  Actuellement, une alternative plus économique est le downlight à LED. Le luminaire complet est prévu uniquement pour y intégrer un module LED (éventuellement remplaçable).


Maitrise de la luminance

D’un point de vue de l’éblouissement direct ou indirect via les écrans d’ordinateurs, tout comme les luminaires pour les tubes fluorescents, les luminaires « downlight » suivent la norme EN 12464-1. Il existe des downlights équipés d’une optique spéciale (forme adaptée du réflecteur) pour limiter les luminances. Mais il existe également des grilles pour limiter les luminances (UGR < 19) des downlights.

Les downlights performants ont une luminance moyenne faible pour des angles ϒ supérieurs à leur angle de défilement (voir illustration ci-après). Ils sont caractérisés par des optiques en aluminium.

Pour les luminaires éclairant des postes de travail avec équipement de visualisation, la norme EN 12464-1 spécifie que pour des angles d’élévation supérieurs ou égales à 65°, la luminance moyenne des luminaires ne doit pas dépasser les valeurs reprises dans le tableau suivant et ce en fonction de la luminance moyenne propre des écrans concernés :

État de luminance élevé de l’écran Écran à haute luminance
L > 200 cd.m-2
Écran à luminance moyenne
L ≤ 200 cd.m-2
Cas A

(polarité positive et exigences normales concernant la couleur et le détail des informations affichées, comme pour les écrans utilisés dans les bureaux, pour l’éducation, etc.)

≤ 3 000 cd/m² ≤ 1 500 cd/m²
Cas B

(polarité négative et/ou exigences plus élevées concernant la couleur et le détail des  informations affichées, comme pour les écrans utilisés pour le contrôle des couleurs en conception assistée par ordinateur etc.)

≤ 1 500 cd/m² ≤ 1 000 cd/m²

 

Exemple.

Ce luminaire basse luminance répond à norme EN 12464-1 car la luminance est inférieure à 200 Cd/m² pour des angles d’élévation > 65° quel que soit le plan considéré.

L’angle de défilement dans l’axe longitudinal et l’axe transversal est de 60°.

Drivers LED


Généralités

L’équipement permettant l’alimentation de la LED est appelé couramment un « driver » de LED. L’alimentation s’effectue en courant continu dans le sens passant. La stabilité de l’alimentation de la LED dépend de la qualité du redresseur AC/DC et du filtre « lisseur » de tension. Suivant la qualité de ce dernier, la fluctuation du flux lumineux (papillotement) peut être source d’inconfort visuel sachant que la LED n’a qu’une très faible rémanence et, par conséquent, n’agit pas comme moyen de lissage supplémentaire.

« Driver » de LED.


Critère de qualité

Jusqu’il y a peu, on sous-estimait l’importance de l’alimentation par rapport à la source LED. Pourtant, les exigences principales par rapport à une bonne alimentation sont sévères :

  • La durée de vie doit être au moins la même que celle de la LED.
  • Le rendement de conversion AC/DC de l’alimentation doit être supérieur à 85 %  pour garantir une bonne efficacité énergétique (en lm/W) de l’ensemble LED/driver.
  • Le facteur de puissance (cos φ) doit être le plus proche possible de 1 et la distorsion (harmoniques) la plus faible possible de manière à réduire les pertes.
  • Les perturbations électromagnétiques émises doivent être faibles.

Mode de pilotage

Pilotage en courant continu DC

Le mode de pilotage des alimentations peut être de différents types :

  • pilotage en tension ;
  • pilotage en courant.

Relation courant-tension dans une LED.

Le pilotage en courant est souvent préféré au pilotage en tension pour les simples raisons :

  • Comme le montre la figure ci-dessus, une petite variation de la tension aux bornes de la LED peut entrainer une variation importante du courant qui traverse sa jonction avec un risque de détérioration accru.
  • Le flux lumineux est proportionnel au courant de jonction.
  • Les coordonnées chromatiques des LEDs blanches peuvent varier en fonction du courant d’alimentation.

Un pilotage en tension de plusieurs LED en parallèle (courant différent dans chaque LED) peut aussi entrainer des différences de courant entre chaque LED qui sont sensées donner la même lumière.

Influence du courant sur la chromatique.

Pilotage en PWM

Le pilotage en PWM (Pulse Width Modulation) est souvent utilisé dans le domaine de l’éclairage sachant que les LEDs sont très peu sensibles à ce type de modulation. L’avantage également est que ce pilotage permet de réaliser un dimming comme le montre la figure suivante.

Modulation du courant en fonction de la modulation de la largeur d’impulsion.


Influence du « dimming »

Efficacité de la LED

Lorsque le luminaire LED est « dimmé » par son alimentation, une variation de l’efficacité et du facteur de puissance (cos φ) de l’alimentation apparait.

Couleur de la LED

En fonction du niveau de courant, une dérive du spectre des LEDs est observé et différent suivant le mode de pilotage et le type de technologie des LEDs blanches, à savoir :

  • LED bleu + phosphore ;
  • RGB (3 LED’s Red-Green-Blue).

Sur base du graphique ci-dessus, on peut retirer les grandes lignes suivantes :

  • Une variation du courant d’alimentation provoque une plus grande dérive spectrale de la technologie RGB que celle au phosphore.
  • Le pilotage PWM, par rapport au pilotage continu (DC), permet de modifier facilement le flux de la LED sans trop changer ses coordonnées chromatiques.

Le contrôle simultané du niveau de rouge et de vert pour la technologie RGB en mode de pilotage DC paraît délicat et coûteux.


Alimentation intégrée ou déportée ?

Dans la mesure du possible, on préfèrera une alimentation déportée pour éviter d’influencer l’alimentation par la chaleur dégagée par la ou les LED(s) du luminaire. Cette configuration déportée devra tenir compte de l’adaptation :

  • De la puissance de l’alimentation en fonction de la puissance de LED nécessaire ;
  • De la valeur de courant à lui appliquer ;
  • Ainsi que de la longueur de câble entre l’alimentation et la LED.

Dans le cas d’alimentation intégrée ou embarquée dans le luminaire, l’alimentation sera soumise par conduction, ou même par convection, à l’échauffement des LEDs. Il y a lieu d’en tenir compte.

Exemple :

Photo ampoule LED.

Le type de lampe développé ci-contre dispose de 3 dissipateurs thermiques radiaux (un tous les 120°). L’alimentation se trouve entre le culot et l’ampoule. Entre 2 dissipateurs, une ou plusieurs LEDs sont placées. La raison d’être des dissipateurs au niveau de la partie « éclairante » de la lampe s’explique par la nécessité d’évacuer la chaleur vers le bas plutôt que vers le haut sachant que l’alimentation se trouve au-dessus de la source lumineuse lorsque la lampe est « tête en bas ».

Meubles frigo

Meubles frigo


Influence de l’éclairage

Les luminaires, en plus de produire de la lumière, vont également dégager de la chaleur. Une grande partie de l’énergie consommée est transformée en chaleur et doit être évacuée par la machine frigorifique. Il y a plusieurs manières de limiter les apports thermiques de l’éclairage et ainsi de diminuer les consommations énergétiques des meubles frigorifiques.

Exemple.

Selon ouverture d'une nouvelle fenêtre ! l’AFF, un éclairage à incandescence assurant un niveau d’éclairement de 400 lux provoquera un accroissement de température de 1.5 à 3 °C pour les paquets de la couche supérieure selon les meubles. Un éclairage équivalent, réalisé à base de tubes fluorescents ne provoquera pas d’accroissement supérieur à 0.5 °C.

Toute l’énergie consommée par les lampes est transformée en chaleur par :

  • conduction (« par les solides »),
  • convection (« par les gaz, les liquides »),
  • rayonnement (lumière et autres radiations, infrarouge en particulier).

En fonction de la famille de lampes considérée, la répartition de ces divers apports sera différente. Il est essentiel de tenir compte de cette répartition pour éviter des élévations de température trop importantes.

Parmi les manières envisageables pour limiter ces apports thermiques, on peut par exemple :

  • faire appel à des lampes dont le spectre d’émission comporte une faible proportion d’énergie thermique infrarouge par rapport à la fraction utile d’énergie lumineuse ;
  • sortir le système d’éclairage de la zone de froid ;
  • limiter la puissance des lampes.

Choisir des lampes adaptées

Dans toutes les applications, il y a lieu de limiter les apports thermiques du système d’éclairage. Ceux-ci se paieront par une surconsommation au niveau de la climatisation et/ou des machines de froid alimentaire.

Deux caractéristiques permettent de choisir correctement le type de lampe à utiliser :

  • le rendement des lampes : fraction de la quantité d’énergie transformée en lumière ;
  • la composition du spectre d’émission : on choisira des lampes dont le spectre comporte une faible proportion d’énergie thermique infrarouge par rapport à la fraction utile d’énergie lumineuse.

Pour éviter un apport calorifique trop important, on réalisera le système d’éclairage à partir de  tubes fluorescents.

Lampes à incandescence

Ces lampes émettent un rayonnement infrarouge important (de l’ordre de 75 % de la puissance de la lampe). Comme les infrarouges et les rayons lumineux se réfléchissent en même temps, les lampes à réflecteur et les projecteurs intensifs vont provoquer des élévations de température très importantes dans l’axe du faisceau.

Les lampes à rayonnement dirigé dites à « faisceau froid » ou dichroïque » limitent le rayonnement infrarouge direct. Le miroir de ces lampes, conçu pour réfléchir la lumière, est transparent pour les radiations infrarouges indésirables. Lorsque l’on utilise ce genre de lampe, il faut s’assurer que le luminaire utilisé est susceptible de les recevoir, car, sans précaution, elles provoquent un échauffement supplémentaire de la douille, du câblage et de la partie arrière du luminaire.

Lampes fluorescentes et lampes à décharge (haute pression)

Ces lampes émettent une très faible proportion de rayons infrarouges courts. Par contre, les tubes à décharge des halogénures métalliques et des sodiums haute pression émettent une quantité importante d’infrarouges moyens. En ce qui concerne les lampes fluorescentes, on ne fera attention qu’aux niveaux d’éclairement très élevé qui sont les seuls à produire un effet thermique direct perceptible.

Si l’effet calorifique du rayonnement de ces lampes est relativement faible, la transformation en chaleur de l’énergie électrique consommée (lampe et ballast)  ne doit pas être sous-estimée. L’élévation de la température des parois du luminaire va transformer celui-ci en émetteur d’infrarouges longs susceptibles d’influencer la distribution thermique du local et/ou du meuble frigorifique.

Sources LED

Les lampes LED ne génèrent pas ou peu de rayonnement infrarouge (IR) ou ultraviolet (UV) dans le flux lumineux.

C’est la température de jonction qui influence le flux lumineux de la LED chip et donc son efficacité lumineuse. Les LED conviennent particulièrement bien pour les applications à basse température (surgélation, réfrigération, …) sachant que le flux lumineux augmente avec l’abaissement de la température de jonction. De plus, pour les basses températures, la durée de vie augmente.

Bilan énergétique de quelques lampes

Le tableau suivant donne les bilans énergétiques de quelques types de lampes.

Bilans énergétiques de quelques lampes (d’après C. Meyer et H. Nienhuis)
Type de lampe Conduction et convection [%] Rayonnement [%] Rayonnement lumineux [%] Puissance à installer par 100 lm [W]
UV IR
Incandescentes 100 W 15 75 10 10
Fluorescentes rectilignes 71.5 0.5 (1) 28 1.4
Fluorescente compactes 80 0.5 (1) 19.5 1.8
Halogénures métalliques 50 1.5 24.5 24 1.3
Sodium haute pression 44 25 31 1
(1) Dans le cas de lampes fluorescentes dont la surface développée est importante, on pourrait séparer le rayonnement infrarouge (long). Pour les lampes fluocompactes cette distinction est inutile.

 

Exemple.

Par exemple si 2 500 lm doivent être fournis, les bilans énergétiques des différentes installations deviennent :

Type de lampe Conduction et convection [W] Rayonnement [W] Rayonnement lumineux [W]
UV IR
Incandescentes 100 W 37.5 187.5 25
Fluorescentes rectilignes 25.025 0.
175
(1) 9.8
Fluorescente compactes 36 0.225 (1) 8.775
Halogénures métalliques 16.25 0.487 7.962 7.8
Sodium haute pression 12.1 6.875 8.525
(1) Dans le cas de lampes fluorescentes dont la surface développée est importante, on pourrait séparer le rayonnement infrarouge (long). Pour les lampes fluocompactes cette distinction est inutile.

Cet exemple montre bien l’intérêt d’utiliser des lampes à décharge. Leur faible coût d’achat, leur longue durée de vie, leur bon indice de rendu des couleurs font des lampes fluorescentes le choix le plus adapté.


Placer les systèmes d’éclairage à l’extérieur des meubles

Pour éviter de consommer inutilement de l’énergie (de l’ordre de 10 % de l’énergie de jour fournie par l’évaporateur), l’éclairage du meuble doit être prévu en dehors de la zone froide. D’une part, les lampes fluorescentes ont une mauvaise efficacité lumineuse à basse température, d’autre part, les luminaires sont des sources de chaleur. Comme dit précédemment, l’énergie électrique consommée par les lampes et les ballasts est transformée en chaleur. Pour cette raison on tentera au maximum de sortir les appareils des zones ou des meubles froids. Si le maître d’ouvrage se refuse à déplacer la lampe, il faudra tout de même essayer de sortir le ballast de la zone réfrigérée ou climatisée.

Dans la lutte contre les apports de rayonnements, les baldaquins de forme concave dont la face inférieure est recouverte d’un aluminium de type poli miroir non anodisé, peuvent être utiles.

Schémas baldaquins .

Ces baldaquins interceptent une part importante de la lumière d’ambiance et il peut alors être nécessaire de faire recourt à un appoint d’éclairage. Ce complément peut être réalisé de manière confortable en utilisant comme réflecteur la sous face en aluminium du baldaquin.

Cela permet :

  • d’éviter l’influence de l’éclairage direct général,
  • d’utiliser un éclairage indirect,
  • d’éloigner les appareils des meubles,

À défaut d’un éclairage placé hors de la zone froide, limiter la puissance des lampes

La plupart du temps, les constructeurs de meubles frigorifiques utilisent des lampes fluorescentes. Le problème est que ce type de lampes a une basse efficacité lumineuse aux basses températures comme le montre la figure suivante :

Les pertes peuvent donc être très importantes :

  • plus de 40 % de perte si on utilise des tubes T8,
  • plus de 70 % de perte si on utilise des tubes T5.

De nombreux fabricants proposent des solutions permettant de limiter l’influence de la température sur le flux de la lampe.

Certains constructeurs proposent ainsi une sorte de douille qui se monte sur une des extrémités de la lampe fluorescente, celle désignée comme étant le point froid de la lampe. Il y provoque une élévation de la température.

Une autre solution consiste à utiliser un tube de protection qui va permettre d’augmenter la température ambiante autour de la lampe.

Si dans la pratique, le niveau d’éclairement est suffisant, alors il est possible de remplacer la lampe par une autre de puissance plus faible, mais équipée de ce genre de solution.

Exemple.

Soit une zone de froid positif (8 °C) équipé de tube T5 de 54 W (4450 lm à 25 °C). La faible température va influencer la lampe qui ne va émettre que 75 % de son flux théorique, soit un peu moins de 3500 lm. Une lampe de 35 W, équipée d’un dispositif permettant de combattre la baisse de la température fournira un flux équivalent.

Il est ainsi possible de gagner 19 W par lampe tout en assurant le même confort.

Performance énergétique des bâtiments – Exigences énergétiques pour l’éclairage Norme NBN EN 15193 :2008

Performance énergétique des bâtiments – Exigences énergétiques pour l’éclairage  Norme NBN EN 15193 :2008


Table des matières

AVANT-PROPOS

INTRODUCTION

  1. Domaine d’application
  2. Références normatives
  3. Termes et définitions
  4. Calcul de l’énergie utilisée pour l’éclairage
  5. Mesures
  6. Calcul de l’énergie d’éclairage dans les bâtiments
  7. Référentiel des exigences d’éclairage
  8. Conception et pratique en matière d’éclairage

ANNEXE A (informative) : mesures du circuit d’éclairage

ANNEXE B (informative) : méthode de mesurage de la puissance totale des luminaires et de la puissance auxiliaire associée

ANNEXE C (informative) : détermination du facteur de dépendance de la lumière du jour

ANNEXE D (informative) : détermination du facteur de dépendance de l’occupation

ANNEXE E (informative) : détermination du facteur d’éclairement constant

ANNEXE F (informative) : valeurs de référence et critères de conception de l’éclairage

ANNEXE G (informative) : valeurs par défaut

ANNEXE H (informative) : autres considérations

ANNEXE I (informative) : liste des symboles


Introduction

Dans le respect de la norme NBN EN 12464-1, l’objectif de la norme 15193 est d’établir des conventions et de donner un mode opératoire pour estimer les exigences énergétiques vis-à-vis de l’éclairage des bâtiments et de déterminer un indicateur numérique de la performance énergétique des bâtiments.


Énergie totale utilisée pour l’éclairage pendant une période donnée (méthode détaillée)

Calcul de l’énergie totale

Pour une pièce ou une zone déterminée, le calcul de l’énergie totale utilisée pour l’éclairage s’effectue de la manière suivante :

Wt = WL,t + WP,t [kWh]

WL,t = Σ{(Pn x Fc) x [(tD x Fo x FD) + (tN x Fo)]} / 1 000 [kWh]

WP,t = Σ{{(Ppc x [ty – (tD + tN)]} + (Pem x tem)} / 1 000 [kWh]

Où :

  • Wt = l’énergie totale estimée requise pendant une période donnée ;
  • WL,t  = l’énergie nécessaire pour les besoins d’éclairage ;
  • WP,t = l’énergie nécessaire pour les auxiliaires (énergie de régulation, de charge des luminaires de secours, …).

Et :

  • Pn = la puissance des luminaires repris dans la pièce ou la zone considérée [W];
  • Fc = le facteur d’éclairement constant lorsqu’une régulation de l’éclairement constant gère la puissance totale installée ;
  • tD = le temps d’utilisation en période jour [h] ;
  • Fo = le facteur de dépendance de l’occupation ;
  • FD = le facteur de dépendance de la lumière du jour disponible en interne ;
  • tN  = le temps d’utilisation en l’absence de lumière du jour  [h];
  • Ppc = la puissance totale des auxiliaires des systèmes de régulation dans les luminaires lorsque les lampes ne fonctionnent pas [W] ;
  • ty = durée d’une année standard  [h];
  • Pem = la puissance totale de charge des luminaires de secours [W] ;
  • tem = temps de charge de l’éclairage de secours.

Facteur de dépendance de la lumière du jour FD,ng

Pour une pièce ou une zone définie, le facteur de dépendance de la lumière du jour est donné par la relation suivante :

FD,n = 1 – (FD,S,n x FD,C,n)

FD,mois = 1 – (FDS x FDC x CDS)

Où :

  • FD,S,n = facteur d’accès à la lumière du jour ;
  • FD,C,n = facteur de  régulation en fonction de la lumière du jour ;
  • CDS = facteur de distribution mensuelle

Lorsqu’une zone est aveugle, le facteur de dépendance de la lumière du jour est de 1.

La méthodologie pour déterminer le facteur FD,n comprend 5 étapes :

  1. La segmentation du bâtiment à étudier en zone avec et sans accès à la lumière du jour ⇒ géométrie de la zone de calcul ;
  2. La détermination de l’influence des paramètres de la zone tant interne qu’externe (géométrie, modulation de façade, ombre reportée, …) ⇒ facteur de lumière du jour FLJ  ;
  3. La prévision du potentiel d’économie d’énergie en fonction du climat local, du niveau d’éclairement à maintenir, … ⇒ facteur d’accès à la lumière du jour FD,S,n ;
  4. La détermination de l’exploitation de la lumière du jour en fonction du type de régulation envisagé ⇒ facteur de  régulation en fonction de la lumière du jour FD,C,n ;
  5. La conversion de la valeur annuelle FD,n en valeurs mensuelles.

Facteur de dépendance de l’occupation Fo

Ce facteur est surtout lié :

  • au type de système d’allumage/extinction ;
  • à l’utilisation de la zone considérée (salle de réunion, couloir, bureau fermé ou paysager, …) ;
  • à la surface couverte par un système d’allumage/extinction ;
  •     …

Facteur d’éclairement constant FC

Dans toutes les installations d’éclairage, le niveau d’éclairement après un certain temps diminue par rapport celui obtenu lors de la mise en service. Il est donc impératif de tenir du facteur de maintenance. C’est ce dernier qui conditionne le facteur d’éclairement constant FC.


Énergie annuelle utilisée pour l’éclairage (méthode rapide)

L’énergie totale annuelle consommée à l’échelle du bâtiment :

W = WL + WP [kWh/an]

Où :

  • WL  = l’énergie annuelle nécessaire pour les besoins d’éclairage ;
  • WP = l’énergie annuelle nécessaire pour les auxiliaires (énergie de régulation, de charge des luminaires de secours, …).

Indicateur numérique de l’énergie d’éclairage (LENI)

C’est en fait la consommation spécifique de l’éclairage ramenée au m².

LENI = W / A [kWh/(m² x an)]

Où A est la surface plancher du bâtiment [m²].

Ou encore :

LENI = {Fc × PN/1 000 ×[(tD × FD × FO) +(tN × FO)]} + 1 + {5/ty × [ty – (tD+ tN)]} [kWh/(m² • an)]

Valeurs de consommation spécifique LENI courantes

Des valeurs de référence et critères de conception de l’éclairage sont repris dans le tableau suivant permettant d’appréhender des ordres de grandeur par défaut nécessaire au calcul des consommations spécifiques des luminaires.

Valeur LENI de référence

ECL sans système de régulation à éclairement constant ECL avec système de régulation à éclairement constant
PN tD tN Fc Fo FD LENI LENI LENI LENI
Classe de qualité Puissance auxiliaire de secours Pem [kWh/(m².an)] Puissance auxiliaire de secours Ppc [kWh/(m².an)] W/m² h h ECL sans rec ECL avec rec Man Auto Man Auto Valeur limite [kWh/(m².an)]
Bureau * 1 5 15 2 250 250 1 0,9 1 0,9 1 0,9 42,1 35,3 38,3 32,2
** 1 5 20 2 250 250 1 0,9 1 0,9 1 0,9 54,6 45,5 49,6 41,4
*** 1 5 25 2 250 250 1 0,9 1 0,9 1 0,9 67,1 55,8 60,8 50,6
Établissement d’enseignement * 1 5 15 1 800 200 1 0,9 1 0,9 1 0,8 34,9 27 31,9 24,8
** 1 5 20 1 800 200 1 0,9 1 0,9 1 0,8 44,9 34,4 40,9 31,4
*** 1 5 25 1 800 200 1 0,9 1 0,9 1 0,8 54,9 41,8 49,9 38,1
Établissement sanitaire * 1 5 15 3 000 200 1 0,9 0,9 0,8 1 0,8 70,6 55,9 63,9 50,7
** 1 5 25 3 000 200 1 0,9 0,9 0,8 1 0,8 115,6 91,1 104,4 82,3
*** 1 5 35 3 000 200 1 0,9 0,9 0,8 1 0,8 160,6 126,3 144,9 114
Hôtellerie * 1 5 10 3 000 200 1 0,9 0,7 0,7 1 1 38,1 38,1 34,6 34,6
** 5 20 3 3 000 1 0,9 0,7 0,7 1 1 72,1 72,1 65,1 65,1
*** 1 5 30 3 000 200 1 0,9 0,7 0,7 1 1 108,1 108,1 97,6 97,6
Restauration * 1 5 10 1 250 125 1 0,9 1 1 1 29,6 27,1
** 1 5 25 1 250 125 0,9 1 1 1 67,1 60,8
*** 1 5 35 1 250 125 1 0,9 1 1 1 92,1 83,3
Salle de sport * 1 5 10 2 000 200 1 0,9 1 1 1 0,9 43,7 41,7 39,7 37,9
** 1 5 20 2 000 200 1 0,9 1 1 1 0,9 83,7 79,7 75,7 72,1
*** 1 5 30 2 000 200 1 0,9 1 1 1 0,9 123,7 117,7 111,7 106,3
Commerce de détail * 1 5 15 3000 200 1 0,9 1 1 1 78,1 70,6
** 1 5 25 3000 200 1 0,9 1 1 1 128,1 115,6
*** 1 5 35 3000 200 1 0,9 1 1 1 178,1 160,6
Usine * 1 5 10 2500 150 1 0,9 1 1 1 0,9 43,7 41,2 39,7 37,5
** 1 5 20 2500 150 1 0,9 1 1 1 0,9 83,7 78,7 75,7 71,2
*** 1 5 30 2500 150 1 0,9 1 1 1 0,9 123,7 116,2 111,7 105.0

Il va de soi que la conception, l’installation, ou encore la rénovation d’un système d’éclairage doit se conformer aux normes EN 12464-.

  • * conformité de base aux exigences ;
  • ** bonne conformité aux exigences ;
  • *** totale conformité aux exigences.

Les critères de conception et de rénovation de l’éclairage sont mentionnés dans le tableau ci-dessous.

Où :

  • PN = la puissance surfacique installée de l’éclairage du bâtiment [W/m²] ;
  • rec = le système de régulation à éclairement constant ;
  • Manu = un système d’éclairage à régulation manuelle ;
  • Auto = un système d’Éclairage à régulation automatique.

Classes de qualité

Classe de critères de conception et rénovation des éclairages
* ** ***

Éclairement à maintenir sur les plans de travail horizontaux (Em horizontal)

Contrôle approprié de l’éblouissement (UGR)

Évitement des effets de scintillation et des effets stroboscopiques

Contrôle approprié de l’éblouissement par réflexion

Amélioration du rendu des couleurs

Évitement des ombres accentuées ou d’une lumière trop diffuse

Répartition appropriée de l’éclairement dans la pièce (Evertical)

Prise en compte particulière de la communication dans l’éclairage des visages (Ecylindrique)

Prise en compte particulière des questions relatives à la santé (°)

  • ◙ doit être conforme aux valeurs prescrites de la norme NBN EN 12464-1 
  • (°) concernant la santé, un éclairement beaucoup plus élevé et donc une valeur de la puissance surfacique (W/m²) plus élevée.

Classes d’efficacité énergétique des lampes

Classes d'efficacité énergétique des lampes

Fig. 1 Pictogramme lié à la labellisation des lampes.

Ce règlement s’applique dès le 1er septembre 2013 aux lampes électriques telles que les lampes à filament , les lampes fluocompactes, les lampes à décharges à haute intensité et les lampes (et modules) LED (de plus de 30 lumens).

La réglementation définit les classes d’efficacité énergétique des lampes en fonction d’un critère de rendement. Ces classes (au nombre de 7) sont dénommées de A++ à E, la classe A++ ayant la meilleure efficacité énergétique. Les classes sont définies par un rapport entre une puissance absorbée par la lampe (et corrigée de la totalité des pertes de l’appareillage de commande) et une puissance de référence, nommée indice d’efficacité énergétique IEE. Les limites sont définies comme suit :

Classe d’efficacité énergétique Lampes non dirigées Lampes dirigées
A++ (le plus efficace) IEE ≤ 0.11 IEE ≤ 0.13
A+ 0.11 < IEE ≤0.17 0.13 < IEE ≤0.18
A 0.17 < IEE ≤0.24 0.18< IEE ≤0.40
B 0.24 < IEE ≤0.60 0.40 < IEE ≤0.95
C 0.60 < IEE ≤0.80 0.95 < IEE ≤1.20
D 0.80 < IEE ≤0.95 1.20 < IEE ≤1.75
E (le moins efficace) 0.95 < IEE 1.75 < IEE

Le règlement n°874/2012 doit être appliqué en parallèle aux règlements n°244/2009, n°859/2009, n°245/2009, n°347/2010 et n°1194/2012 qui concernent les exigences d’écoconception des lampes et des équipements correspondants.

⇒ Pour en savoir plus : ouverture d'une nouvelle fenêtre ! http://eur-lex.europa.eu

Trouver une norme ?

Trouver une norme ?


Le site internet du Bureau de Normalisation (ouverture d'une nouvelle fenêtre ! w ww.nbn.be) propose un moteur de recherche qui permet d’identifier toutes les normes relatives à un domaine en particulier. Celui-ci est ouverture d'une nouvelle fenêtre !disponible ici.

De même, sur ce site vous trouverez toutes les informations nécessaires pour la commande et la consultation de normes.

Caractéristiques des lampes LED

Caractéristiques des lampes LED

Puissances (W) Puissance driver (W) Puissance totale (W) Flux lumineux
(lm)
Efficacité lumineuse
(ballast non compris) (lm/W)
IRC T° de couleur
(K)
Durée vie utile/Durée vie moyenne (h)
Forme standard (type remplacement incandescente)
3 0,6 3,6 136 45 80-90 2 700-3 000 15 000-30 000
5 0,9 5,9 250 50
8 1,6 9,6 470 59
10 2 12 650 65
12 2,4 14,4 810 68
14,5 5,9 17,4 1 055 73

Techniques

Pour en savoir plus sur les LEDs et leur fonctionnement, cliquez-ici !

Caractéristiques des lampes au sodium basse pression

Caractéristiques des lampes au sodium basse pression

Puissances (W) Puissance ballast (W) Puissance totale (W) Flux lumineux
(lm)
Efficacité lumineuse
(ballast non compris) (lm/W)
IRC T° de couleur
(K)
Durée vie utile/Durée vie moyenne (h)
35 9,2 44,2 4 700 134 1 800 12 000
à
18 000
55 19 74 8 000 145
90 21 111 13 600 151
135 22,5 157,5 22 600 167
180 32 212 32 000 178

Caractéristiques des lampes au mercure haute pression

Caractéristiques des lampes au mercure haute pression

Puissances (W) Puissance ballast (W) Puissance totale (W) Flux lumineux
(lm)
Efficacité lumineuse
(ballast non compris) (lm/W)
IRC T° de couleur
(K)
Durée vie utile (h) Durée vie moyenne (h)
50 8 58 2 000 40 de
37
à
60
de
3 400
à
4 300
8 000
à
12 000
15 000
à
24 000
80 10 90 4 000 50
125 14 139 6 000 54
250 18 268 14 000 56
400 20 420 24 000 60
700 26 726 40 000 57
1 000 40 1 040 60 000 60

Caractéristiques des lampes au sodium haute pression

Caractéristiques des lampes au sodium haute pression

Puissances (W) Puissance ballast (W) Puissance totale (W) Flux lumineux
(lm)
Efficacité lumineuse
(ballast non compris) (lm/W)
Efficacité lumineuse (ballast compris) (lm/W) IRC T° de couleur
(K)
Durée vie utile (h) Durée vie moyenne (h)

Sodium standard

70 11 81 6 600 94 81 25 2 000 16 000 25 000
100 14 114 10 500 105 92
150 16 166 16 500 110 99
250 26 276 32 000 128 115
400 29 429 55 000 138 128

Sodium « confort » ou « de luxe »

150 16 166 13 000 86 78 65 2 150 13 000 25 000
250 26 276 23 000 92 83
400 29 429 38 000 95 89

Sodium « blanche »

35 6 41 1 300 37 31 83 2 500 13 000 25 000
50 11 61 2 300 46 37,7
100 15 115 5 000 48 41,7

Caractéristiques des lampes aux halogénures métalliques

Caractéristiques des lampes aux halogénures métalliques

Puissances (W) Puissance lampe (W) Puissance ballast (W) Flux lumineux
(lm)

Efficacité lumineuse
(ballast non compris) (lm/W)

Efficacité lumineuse (ballast compris) (lm/W)

IRC

T° de couleur
(K)

Durée vie utile (h)

Durée vie moyenne (h)

Standard (tube à décharge en quartz)

70

78 10,5 6 500 83 72

80

 

4 000

 

6 000
à
12 000
18 000

 

 

150

150 19 13 500

90

80  85

 

250

246 19,5 21 500

86

85 85 +/- 4 600

 

400 438 23 42 000 105 99
1 000 1 000 48 97 000 97 93  

 

2 000 2 000 96 20 5000 103 98

A brûleur céramique

20 1 700 85

+/- 85

 

3 000 6 000 10 000

35

39 8 3 440

89

74 3 000

 

70 73 13 6 800 97 82  3 000
ou
4 200
150 147 17 14 000 95 87 3 000
ou
4 200

Caractéristiques des lampes à induction

Caractéristiques des lampes à induction

Puissance du système (W) Flux lumineux
(lm)

Efficacité lumineuse
(lm/W)

IRC

T° de couleur
(K)

Durée vie (h)
(20 % de mortalité, 30 % de chute de flux)

 55

3 500 65

 80

2 700
3 000
4 000
60 000

 85

6 000

70

 80

165 12 000 70 80

Caractéristiques des lampes fluocompactes

Caractéristiques des lampes fluocompactes

Puissances (W) Flux lumineux
(lm)

Efficacité lumineuse
(ballast non compris) (lm/W)

IRC

T°de couleur
(K)

Durée vie utile (h)

Durée vie moyenne (h)

Lampe à culot à visser (1) (remplacement d’une lampe à incandescence) avec ballast conventionnel.

9

350 39 80 2 700  

 

15 000

 

13

550

42

18

850

47

25 1 200 48

Lampe à culot à visser (1) (remplacement d’une lampe à incandescence) avec ballast électronique.

5

240

48

80 2 700

 

20 000
7 400 57
11 640 58
15 900 60
20 1 260 63
23 1 600 70

Lampe à culot à broches (2) (2 ou 4).

5 250 50 80 à 90

 

2 700
3 0003 500
4 0006 500
6 000
10 000
(ballast électronique).
8 000
14 000
(ballast électronique).22 000 pour la version longue durée.
7 400 57
9 600 67
11 900 82
18 1 200 67
26 1 800 69
32 2 400 75
36 2 900 81
40 3 500 88
55 4 800 87

Caractéristiques des tubes fluorescents

Caractéristiques des tubes  fluorescents

Puissances (W) Flux lumineux
(lm)

Efficacité lumineuse
(ballast non compris) (lm/W)

IRC

T°de couleur
(K)

Durée vie utile (h)

Durée vie moyenne (h)

Ø 26 mm ou T8, classe 1B, à 25°C

18

1 350

75

80 à 90

2 700
3 000
4 000
6 5001
16 000 avec ballast électronique préchauffage

(42 000 pour la version longue durée)

20 000 avec ballast électronique préchauffage

(50 000 pour la version longue durée)

36 3 350 93
58 5 200 90

Ø 26 mm ou T8, classe 2, à 25°C

18 1 100 64 60 à 80 2 900
4 000
5 000 14 000
36 2 600 83
58 4 125 83

Ø 16 mm ou T5, classe 1B HE, à 35°C

14 1 250 96 85 2 700
3 000
3 500
4 000
5 000
6 5001
19 000

(30 000 pour la version longue durée)

24 000

(45 000 pour la version longue durée)

21 1 920 100
28 2 600 104
35 3 300 104

Ø 16 mm ou T5, classe 1B HO, à 35°C

24 1 750 89 85 2 700
3 000
3 500
4 000
5 000, 6 5001
19 000

(30 000 pour la version longue durée)

24 000

(45 000 pour la version longue durée)

39 3 100 92
49 4 300 99
54 4 450 93
80 6 550 88

 1 Le flux lumineux  (et donc l’efficacité lumineuse) est légèrement plus faible pour une T° de couleur de 6 500 K.

Caractéristiques des lampes halogènes

Caractéristiques des lampes halogènes

Puissances (W) Flux lumineux
(lm)

Efficacité lumineuse
(lm/W)

IRC

T°de couleur
(K)

Durée vie moyenne (h)

Lampe halogène « tension du réseau » (finition claire).

40

490 12

100

3 000

2 000

60

820

14

120

2 250

19

160

3 100

19

400

9 000

23

1 000 22 000 22
2 000 44 000 22

Lampe halogène ECO « tension du réseau » (finition claire).

40 590 15 100 2 800 2 000
60 980 16
120 2 300 19
160 3 300 21

Caractéristiques des lampes à incandescence

Date :

  • page créée le 25/02/2013

Auteur :

  • Didier Darimont – relecture Olivier D.

Caractéristiques des lampes à incandescence

Pour les « fans » des lampes à incandescence, voici les caractéristiques des survivantes que l’on pourrait retrouver dans des stocks « clandestins ». En effet, malgré leur retrait du commerce européen, certains restaurateurs, par exemple, ont constitué des réserves (dignes de celles des écureuils) afin de garantir à leur client la même ambiance lumineuse ! Le débat est lancé !

Puissances (W) Flux lumineux
(lm)

Efficacité lumineuse
(lm/W)

IRC

T° de couleur
(K)

Durée vie moyenne (h)

 25

220 8,8

100

2 700

1 000

 40

415

10,4

 60

710

11,8

 75

935

12,5

 100

1 300

13

Rendement des luminaires

Rendement des luminaires


Classe de luminaire

Rendement inférieur (vers le bas)

Rendement total

min.

max.

min.

max.

Tube nu, avec réflecteur.

76

97

Luminaire à grilles, direct.

44

93

Luminaire mixte, sans distinction de réflecteurs ou d’optiques.

8

71

75

81

Luminaire à optique synthétique à structure prismatique.

35

84

Luminaire à optique opale.

29

75

Luminaire basse luminance.

60

84

Downlight.

24

92

Projecteur, 8 à 60 ° d’ouverture.

40

97

Armatures intérieures.

66

97

Cas particulier : LED

Les fabricants de luminaires LED, parlent directement en efficacité finale, c’est-à-dire qu’il donne la quantité finale de lumen par Watt sortant du luminaire LED. Cette efficacité prend également en compte la consommation du driver.

Remarque : L’efficacité « système lampe et luminaire » (autre que LED)  se trouve en prenant en compte l’efficacité de la lampe, la consommation de son ballast et le rendement du luminaire dans lequel il se trouve. À titre d’exemple, calculons l’efficacité finale un T8 36 w dans un luminaire d’un rendement de 93 %.
Soit un T8 – 36 W – 3 200 lm – consommation du ballast 1,5 W dans un luminaire de 93 %, son efficacité finale sera de  79 lm/W.

Schéma rendement d'un luminaire LED.

3 200 / (36 + 1.5) × 0,93 = 79 lm/W

Nombre d’heure de fonctionnement par usage

Nombre d'heure de fonctionnement par usage

Le tableau suivant indique, dans le cadre d’activités typiques, le nombre d’heures de fonctionnement de l’installation d’éclairage :

Types de bâtiment Heures de fonctionnement annuel par défaut
tD tN tO

Bureaux

2 250 250 2 500

Établissement scolaire

1 800 200 2 000

Établissement sanitaire

3 000 2 000 5 000

Hôtellerie

3 000 2 000 5 000

Restaurant

1 250 1 250 2 500

Établissement sportif

2 000 2 000 4 000

Commerces

3 000 2 000 5 000

Industrie

2 500 1 500 4 000

tD : temps d’utilisation à la lumière du jour.
tN : temps d’utilisation en l’absence de lumière du jour.
tO : temps de fonctionnement annuel en fonction de l’usage du bâtiment.