Influence de l’écoulement d’eau sous l’isolant des toitures inversées

Influence de l'écoulement d'eau sous l'isolant des toitures inversées

L’écoulement de l’eau entre l’isolant d’une toiture inversée et la membrane d’étanchéité provoque une diminution des performances thermiques de l’isolant. La chaleur s’échappe en partie en réchauffant l’eau qui s’écoule.

  1. Lestage,
  2. Natte de protection,
  3. Isolant,
  4. Membrane d’étanchéité,
  5. Support en pente.

La réglementation prévoit une procédure pour tenir compte de l’impact de l’écoulement lorsque la couche isolante est en polystyrène extrudé (XPS).
Un terme correctif ΔUr est utilisé

Uc (U corrigé de la paroi) = U + ΔUr.

ΔUr est déterminé à partir des caractéristiques suivantes :

  • la quantité moyenne des précipitations pendant la saison de chauffe (en mm/jour) ;
  • le type de lestage (ouvert, appliqué en usine ou toiture verte) ;
  • la forme des bords des plaques (droits ou à rainures) ;
  • la résistance thermique corrigée de la couche d’isolant humidifié par diffusion ;
  • la résistance thermique totale de la paroi sans correction.

L’introduction de ces informations dans le logiciel PEB, fourni gratuitement par la Région wallonne et la Région de Bruxelles-Capitale, permet le calcul automatique du terme correctif qui est alors appliqué directement au coefficient de transmission thermique U de la paroi.

La formule du terme correctif ΔUr est indiquée à l’Art 7.2.4 de l’Annexe B1 de l’AGW du 15 mai 2014 (formule 13).

Certaines valeurs par défaut peuvent être utilisées :

  • Précipitation moyenne : 2 mm/jour ;
  • Facteur de correction pour le transfert de chaleur par précipitation :
    • 0.04  si plaques à bords droits et lestage ouvert ou appliqué en usine,
    • 0.03 si plaques à rainures et lestage ouvert ou appliqué en usine,
    • 0.02 si toiture verte.
  • Résistance thermique corrigée de l’isolant (XPS)
    • RXPS/1.023 si lestage ouvert ou appliqué en usine,
    • RXPS/1.069 si toiture verte.

Le logiciel PEB permet d’appliquer automatiquement les valeurs par défaut sur base des informations fournies.

Source : AGW du 15 mai 2014, Annexe B1, Art 7.2.4

Influence des fixations mécaniques traversant l’isolant sur le coefficient de transmission thermique U

Date :

  • Mai 2011

Auteur :

  • Claude relecture Olivier

Notes :

  • 28-10-2011, Split de la page 16892 en 3 parties, sylvie.

Source :

Lorsque la couche isolante d’une paroi est traversée par des fixations mécaniques (exemples : crochets de maçonnerie, fixations de couverture, …), la présence de celles-ci influence les performances thermiques de la paroi. La chaleur peut en effet s’échapper plus facilement en passant par les fixations généralement métalliques dont la conductivité thermique est beaucoup plus élevée que celle de l’isolant (exemple : acier : 50 000 W/mK <-> XPS : 0.040 W/mK). Heureusement leur section et leur nombre sont généralement réduits.

      

Crochets de maçonnerie.

      

Fixations mécaniques toiture chaude.

Calcul précis

L’impact des fixations sur les performances thermiques de la paroi peut toujours être évalué de manière précise par des calculs numériques conformes à la norme NBN EN ISO 10211.
Cette méthode précise de calcul doit toujours être utilisée si les deux extrémités des fixations mécaniques sont en contact thermique avec des plaques en métal (exemple : paroi à ossature métallique avec finitions métalliques sur les deux faces).

Méthode simplifiée

L’impact de la fixation mécanique sur le coefficient de transmission thermique U de la paroi peut être pris en compte par un terme correctif ΔUf.

Uc (U corrigé de la paroi) = U + ΔUf.

ΔUf est déterminé à partir des caractéristiques suivantes :

  • la longueur de la partie de la fixation qui se trouve dans l’isolant ;
  • l’épaisseur de l’isolant ;
  • le nombre de fixations par m² ;
  • la section de la fixation ;
  • la conductivité thermique de l’isolant ;
  • la résistance thermique de la couche d’isolant traversée ;
  • la résistance thermique totale de la paroi sans les corrections.

L’introduction de ces informations dans le logiciel PEB, fourni gratuitement par la Région wallonne et la Région de Bruxelles-Capitale, permet le calcul automatique du terme correctif qui est alors appliqué directement au coefficient de transmission thermique U de la paroi.
La formule du terme correctif ΔUf est indiquée à l’Art 7.2.3 de l’Annexe B1 de l’AGW du 15 mai 2014 (formule 12).

Cas particulier des crochets de murs

1. Le terme correctif ΔUf  ne doit pas être appliqué,

  • lorsque les crochets se trouvent dans des vides non isolés ;
  • lorsque les crochets ont une conductivité thermique λ inférieure à 1 W/mK (exemple : matière synthétique).

2. Il est toujours permis d’utiliser les valeurs par défaut suivantes

  • nombre de crochets par m² : 5 ;
  • section du crochet : 13 mm² (Ø 4 mm) ;
  • λ du crochet : 50 W/mK (acier) ;
  • longueur du crochet = épaisseur de l’isolant.

Le logiciel PEB permet d’appliquer automatiquement les valeurs par défaut.

Source: AGW du 15 mai 2014, Annexe B1, Art 7.2.3

Coefficient de transfert thermique par transmission vers l’environnement extérieur via un espace adjacent non chauffé (EANC)

Coefficient de transfert thermique par transmission vers l’environnement extérieur via un espace adjacent non chauffé (EANC)

N.B.: Il s’agit ici d’un local situé au-dessus du sol et non d’une cave entièrement ou partiellement enterrée.

Le transfert de chaleur entre le bâtiment chauffé et l’extérieur au travers d’un espace adjacent non chauffé s’effectue aussi bien par transmission que par ventilation. Avant d’atteindre l’extérieur, la chaleur doit traverser les parois situées entre le volume protégé et l’EANC, l’EANC lui-même et encore les parois qui séparent l’EANC de l’environnement extérieur.

Schéma principe transfert de chaleur.

On tiendra donc compte pour le calcul de ces déperditions via une zone tampon non chauffée d’un coefficient de réduction de température b. Celui-ci intervient notamment dans la vérification des performances de la paroi par rapport aux exigences réglementaires :

Umax≥ b*Ueq

Umax ≥ b*1/RT

Avec :

  • b : coefficient de réduction de température
  • RT : la résistance thermique totale de la paroi considérée.

Calcul Précis

Le coefficient de réduction de température b peut être calculé avec précision en effectuant un équilibre thermique entre d’une part les déperditions entre l’espace chauffé et l’EANC et d’autre part entre l’EANC et l’environnement extérieur.

Dans le cadre de la réglementation PEB, le calcul détaillé se fait à l’aide de formules indiquées dans l’AGW du 15 mai 2014, Annexe B1, Art 14.

Les données nécessaires pour le calcul sont :

  • la résistance thermique et la surface de toutes les parois qui séparent l’espace chauffé de l’EANC
  • la résistance thermique et la surface de toutes les parois qui séparent l’EANC de l’environnement extérieur
  • le volume de l’EANC
  • un taux conventionnel de ventilation de l’EANC défini à partir de ses caractéristiques: nue. Ce taux conventionnel est déterminé à partir du tableau 6 de l’Art 14 de l’Annexe B1 de l’AGW du 15 mai 2014.

Le débit d’air de ventilation entre l’espace chauffé et l’EANC est conventionnellement fixé à 0 dans le cadre de la réglementation PEB.

L’introduction de ces informations dans le logiciel PEB, permet le calcul automatique du coefficient de transmission thermique de chaque paroi multiplié par son facteur de réduction thermique (b.Ui).

Calcul simplifié

Il est toujours possible de ne pas prendre en compte la présence des EANC. Dans ce cas le facteur de réduction thermique est égal à 1, ce qui est fortement pénalisant puisque cela revient à considérer que la paroi est en contact direct avec l’extérieur.

Source : AGW du 15 mai 2014, Annexe B1, Art 14

Coefficient de transmission thermique moyen d’un plancher sur vide sanitaire

Coefficient de transmission thermique moyen d’un plancher sur vide sanitaire

Un plancher au-dessus d’un vide sanitaire n’a pas de contact direct avec le sol, mais un flux de déperdition de chaleur s’échappe via ce vide sanitaire et via le sol vers l’environnement extérieur. Un transfert supplémentaire intervient si le vide sanitaire est ventilé avec de l’air extérieur.

Le sol participe donc à la résistance thermique du plancher (La chaleur, pour sortir du bâtiment et atteindre l’air extérieur, doit traverser le plancher, le vide sanitaire, les murs périphériques de celui-ci mais aussi le sol avec lequel il est en contact). On tiendra donc compte pour le calcul du transfert thermique à travers cette paroi d’un coefficient de réduction de température b. Celui-ci intervient notamment dans la vérification des performances de la paroi par rapport aux exigences réglementaires :

Umax≥ b * Ueq

Umax ≥ b*1/RT

Avec :

  • b : coefficient de réduction de température
  • RT : la résistance thermique totale de la paroi considérée.

Calcul Précis

Un calcul numérique précis de la transmission thermique peut se faire suivant des méthodes numériques conformes aux normes.

Procédure de calcul suivant la réglementation PEB

Le calcul détaillé se fait à l’aide de formules indiquées dans l’AGW, Annexe B1, Art F.2.3.
Les données nécessaires pour le calcul sont :

  • l’épaisseur du mur périphérique à la hauteur du niveau du sol;
  • la résistance thermique totale du mur périphérique ;
  • la profondeur moyenne du vide sanitaire  sous le niveau du sol ;
  • le périmètre exposé du plancher SUR vide sanitaire ;
  • la surface du plancher SUR vide sanitaire ;
  • la résistance thermique totale du plancher SUR vide sanitaire ;
  • la hauteur moyenne du plancher SUR vide sanitaire au-dessus du sol extérieur ;
  • la résistance thermique de (l’éventuel) plancher SOUS le vide sanitaire ;
  • la surface des ouvertures de ventilation.

La conductivité thermique λ du sol, la vitesse du vent et le facteur de protection du vent sont définis par défaut dans le cadre de la réglementation PEB.

Calcul simplifié

La réglementation permet de déterminer le coefficient de transmission thermique équivalent Ueq multiplié par le facteur de réduction de température b, à l’aide d’une méthode simplifiée.

Elle donne une valeur de transmission thermique relativement pénalisante.

L’information nécessaire est la suivante :

  • le niveau de ventilation du vide sanitaire (peu ou pas ventilé ou bien très ventilé).

N.B.: L’introduction de cette information dans le logiciel PEB, fourni gratuitement par la Région wallonne et la Région de Bruxelles-Capitale, permet le calcul automatique du coefficient de transmission thermique équivalent multiplié par son facteur de réduction (b.Ueq).

Source: AGW du 15 mai 2014, Annexe B1, Art F.2.3 et Art 15.2.2

Coefficient de transmission thermique moyen d’un plancher sur cave

Coefficient de transmission thermique moyen d’un plancher sur cave

Les caves sont des espaces qui se trouvent en partie ou totalement en dessous du niveau du sol extérieur.

Le sol participe à la résistance thermique du plancher (La chaleur, pour sortir du bâtiment et atteindre l’air extérieur, doit traverser le plancher, la cave, les murs périphériques et le plancher de celle-ci mais aussi le sol avec lequel ces parois sont en contact).

On tiendra donc compte pour le calcul du transfert thermique à travers le plancher sur cave d’un coefficient de réduction de température b. Celui-ci intervient notamment dans la vérification des performances de la paroi par rapport aux exigences réglementaires :

Umax≥ b * Ueq

Umax ≥ b * 1/RT

Avec :

  • b : coefficient de réduction de température
  • RT : la résistance thermique totale de la paroi considérée.

Calcul Précis

Un calcul numérique précis de la transmission thermique peut se faire suivant des méthodes numériques conformes aux normes.

Procédure de calcul suivant la réglementation PEB

Le calcul détaillé se fait à l’aide de formules indiquées dans l’AGW, Annexe B1, Art F.2.4.
Les données nécessaires pour le calcul sont :

  • l’épaisseur du mur périphérique à la hauteur du niveau du sol;
  • la résistance thermique totale du mur périphérique ;
  • la profondeur moyenne de la cave sous le niveau du sol ;
  • le périmètre exposé du plancher SUR la cave ;
  • la surface du plancher SUR la cave ;
  • la résistance thermique totale du plancher SUR la cave ;
  • le périmètre exposé du plancher SOUS la cave ;
  • la surface du plancher SOUS la cave ;
  • la résistance thermique totale du plancher SOUS la cave ;
  • la hauteur moyenne du plancher SUR vide sanitaire au-dessus du sol extérieur ;
  • la résistance thermique de (l’éventuel) plancher SOUS le vide sanitaire ;
  • le volume de la cave.

La conductivité thermique λ du sol  et le taux de ventilation de la cave sont définis par défaut dans le cadre de la réglementation PEB.

Calcul simplifié

La réglementation permet de déterminer le coefficient de transmission thermique équivalent Ueq multiplié par le facteur de réduction de température b, à l’aide d’une méthode simplifiée.

Elle donne une valeur de transmission thermique relativement pénalisante.

Condition à remplir : au moins 70 % des parois de la cave doivent être en contact avec le sol.

L’information nécessaire est la suivante :

  • Y a-t-il ou pas des fenêtres ou des portes qui communiquent avec l’extérieur ?

N.B.: L’introduction de cette information dans le logiciel PEB, fourni gratuitement par la Région wallonne et la Région de Bruxelles-Capitale, permet le calcul automatique du coefficient de transmission thermique équivalent multiplié par son facteur de réduction (b.Ueq).

Source: AGW du 15 mai 2014, Annexe B1, Art F.2.4 et Art 15.2.2

Coefficient de transmission thermique moyen d’une dalle sur sol

Coefficient de transmission thermique moyen d’une dalle sur sol

Lorsqu’un local appartenant au volume protégé est limité par un plancher en contact avec le sol, la terre participe à la résistance thermique du plancher. La chaleur, pour sortir du bâtiment et atteindre l’air extérieur, doit traverser le plancher ainsi que le sol avec lequel il est en contact. Les isothermes (= lignes d’égale température) ne sont donc pas perpendiculaires au plan du plancher (comme c’est le cas lorsque le plancher est en contact avec l’extérieur) mais forment des courbes complexes.

Transmission de la chaleur à travers une dalle sur sol.

La méthode de calcul doit donc être adaptée. En pratique, on prendra en compte pour le calcul du transfert thermique un coefficient de réduction de température α. Celui-ci intervient notamment dans la vérification des performances de la paroi par rapport aux exigences réglementaires :

Umax≥ a * Ueq

Umax ≥ a * 1/RT

Avec :

  • a : coefficient de réduction de température
  • RT : la résistance thermique totale de la paroi considérée.

Calcul Précis

Un calcul numérique précis de la transmission thermique peut se faire suivant des méthodes numériques conformes aux normes.

Procédure de calcul suivant la réglementation PEB

Cette procédure est applicable lorsque le plancher est directement en contact avec le sol sur toute sa surface.

Le plancher peut être non-isolé, uniformément isolé ou isolé en partie (par exemple, isolation périphérique horizontale ou verticale.

Isolation périphérique horizontale.

Isolation périphérique verticale.

Le calcul détaillé se fait à l’aide de formules indiquées dans l’AGW, Annexe B1, Art F.2.2 (plancher directement en contact avec le sol) et Art F.2.4 (Parois d’une cave).

Les données nécessaires pour le calcul sont :

  • l’épaisseur du mur extérieur ;
  • le périmètre exposé du plancher ;
  • la surface du plancher ;
  • la résistance thermique totale du plancher ;

dans le cas d’une isolation périphérique sont également nécessaires :

  • la largeur de l’isolant (sa profondeur si elle est verticale) ;
  • l’épaisseur de l’isolant ;
  • la conductivité thermique de l’isolant ou sa résistance thermique ;

dans le cas d’un plancher situé plus bas que le niveau du sol extérieur :

  • la profondeur moyenne dans le sol ;
  • la résistance thermique totale du mur contre terre.

Les caractéristique du sol (conductivité thermique λ et facteur de nappe phréatique Gw) sont définies par défaut dans le cadre de la réglementation PEB.

Calcul simplifié

La réglementation permet de déterminer le coefficient de transmission thermique équivalent Ueq multiplié par le facteur de réduction de température α, à l’aide d’une méthode simplifiée: a=1/(Ueq + 1).

Elle donne une valeur de transmission thermique relativement pénalisante pour les grands bâtiments.

L’information nécessaire est la suivante :

  • la résistance thermique totale du plancher de l’environnement intérieur jusqu’à l’interface plancher-sol.

N.B.: L’introduction de cette information dans le logiciel PEB, fourni gratuitement par la Région wallonne et la Région de Bruxelles-Capitale, permet le calcul automatique du coefficient de transmission thermique équivalent multiplié par son facteur de réduction (a.Ueq ).

Source: AGW du 15 mai 2014, Annexe B1, Art F.2.2 et Art F.2.4 et Art 15.2.1

Coefficient de transmission thermique moyen d’un mur contre terre

Coefficient de transmission thermique moyen d’un mur contre terre

Lorsqu’un local appartenant au volume protégé est limité par un mur en contact avec le sol, l’environnement extérieur n’est plus l’air mais bien la terre. Celle-ci participe à la résistance thermique du mur. (La chaleur, pour sortir du bâtiment et atteindre l’air extérieur, doit traverser le mur mais aussi le sol qui l’entoure.)  On tiendra donc compte pour le calcul du transfert thermique à travers cette paroi d’un coefficient de réduction de température α. Celui-ci intervient notamment dans la vérification des performances de la paroi par rapport aux exigences réglementaires :

Umax≥ a * Ueq

Umax ≥ a * 1/RT

Avec :

  • a : coefficient de réduction de température
  • RT : la résistance thermique totale de la paroi considérée.

Lorsqu’on considère un mur extérieur avec une structure homogène et une valeur U bien déterminée, les isothermes (= lignes d’égale température) seront toujours parallèles au plan de la façade et les lignes de flux de chaleur perpendiculaires à celui-ci.

Par contre, lorsque la chaleur doit traverser le sol qui entoure le bâtiment, les lignes de flux de chaleur forment des courbes et la méthode de calcul des valeurs U doit être adaptée.

Calcul Précis

Un calcul numérique précis de la transmission thermique peut se faire suivant des méthodes numériques conformes aux normes.

Procédure de calcul suivant la réglementation PEB

Le calcul détaillé se fait à l’aide de formules indiquées dans l’AGW, Annexe B1, Art F.2.4
Les données nécessaires pour le calcul sont :

  • l’épaisseur du mur extérieur à hauteur du sol ;
  • la résistance thermique totale du mur extérieur ;
  • la profondeur moyenne dans le sol ;
  • le périmètre exposé du plancher de la cave ;
  • la surface du plancher ;
  • la résistance thermique totale du plancher ;

Les caractéristiques du sol (conductivité thermique λ et facteur de nappe phréatique Gw) sont définies par défaut dans le cadre de la réglementation PEB.
L’introduction de ces informations dans le logiciel PEB permet le calcul automatique du coefficient de transmission thermique équivalent multiplié par son facteur de réduction (a.Ueq).

Calcul simplifié

Dans beaucoup de cas, il n’est pas nécessaire de faire appel à des calculs numériques et une méthode simplifiée peut être appliquée. Elle donne via l’application de certaines formules une valeur du coefficient de transmission thermique équivalent multiplié par son facteur de réduction (a.Ueq).

Le calcul se fait automatiquement en utilisant le logiciel PEB.

Les informations nécessaires sont les suivantes :

  • La hauteur moyenne de la partie du mur enterrée(z) ;
  • La résistance thermique du mur de l’environnement intérieur jusqu’à l’interface mur-sol (Rw).

Source: AGW du 15 mai 2014, Annexe B1, Art F.2.4 et Art 15.2.3