Choisir l’émetteur de chaleur [PAC]

Introduction

Pour pouvoir parler de l’émetteur de chaleur, il faut faire le choix de la source « chaude » : l’air, l’eau, ou le sol dans le cas où la pompe à chaleur est à condensation directe.

La redistribution de température doit se faire à la température la plus basse possible (maximum 50 °C) car la PAC sera plus efficace. On peut effectuer cette redistribution soit par un chauffage à air pulsé, un chauffage par le sol ou mural, ou un chauffage à ventilo-convecteurs.


L’air comme source chaude

On utilise cette source chaude en général dans les PAC air/air.

L’air est pulsé dans un échangeur de chaleur fluide/air et chauffé par le fluide frigorigène comprimé jusqu’à 30 ou 40 °C. Il est ensuite  envoyé vers les pièces du bâtiment. L’avantage de cette source chaude est de répondre rapidement à la température demandée de par la faible inertie de l’air. Cet avantage devient un inconvénient au point de vue financier dans la mesure où il ne peut y avoir d’accumulation de chaleur pendant la nuit et donc aucun bénéfice des tarifs de nuit pour l’électricité.

Quatre types d’installations existent dans le cas où l’air est choisi comme source chaude :

  1. Installation compacte intérieure. Dans ce cas, il y a une conduite d’amenée et de rejet d’air extérieur vers l’évaporateur qui se trouve à l’intérieur du bâtiment. La PAC est installée près d’un mur extérieur. La traversée des conduites dans le mur est isolée et protégée contre la pluie.
  2. Installation compacte extérieure. La PAC est reliée au réseau de distribution d’air par des conduites isolées. Cette solution est coûteuse à cause du transfert des sources chaude ou froide.
  3. Système mono-split : ce système, d’une grande souplesse d’installation, permet de chauffer une seule pièce du bâtiment. Une ou deux unités intérieures (dans la même pièce) sont reliées à une unité extérieure unique qui traite l’air. L’évaporateur se trouve ainsi à l’extérieur et le condenseur à l’intérieur du bâtiment, ce qui permet à l’évaporateur d’être bien alimenté en air extérieur. Le fluide frigorigène doit passer à travers la paroi du bâtiment dans des conduites calorifugées et l’air chaud est distribué via des gaines de différents diamètres en fonction des débits et des pressions demandés. La quantité de fluide frigorigène présente dans ce système est supérieure aux deux systèmes précédents.
  4. Système multi-split : plusieurs pièces peuvent être chauffées, à l’aide d’un ou deux ventilo-convecteurs dans chacune d’entre elles. Il y a donc plusieurs condenseurs, mais toujours un unique évaporateur extérieur.

Les ventilo-convecteurs sont des émetteurs de chaleur qui fonctionnent dans ce cas-ci à « condensation directe » : le fluide frigorigène cède directement l’énergie thermique à l’air.

Le système split

Dans ce type de système :

  • l’évaporateur est placé à l’extérieur
  • le condenseur est placé soit dans un local technique où il est relié à un réseau de distribution, soit directement dans le local à chauffer, par exemple dans un ventilo-convecteur.

Le transfert de chaleur entre l’intérieur et l’extérieur se fait par le fluide frigorigène qui traverse la peau du bâtiment dans des canalisations calorifugées.

Les systèmes split installés directement dans les locaux ont l’avantage de la souplesse d’installation : un simple réseau bitube est suffisant pour le transport du fluide frigorigène, on évite les intermédiaires puisque la PAC chauffe directement l’air du local, il ne faut pas d’accumulateur ni de régulation complexe d’un réseau hydraulique, … en contrepartie, ils présentent un plus grand risque de fuite de fluide frigorigène.

Lorsque l’on multiplie le nombre d’échangeurs de chaleur, on parle de système multi-split. Les différents échangeurs intérieurs, par exemple un par local, sont alors tous reliés à un (ou plusieurs) échangeurs de chaleur extérieur. Différentes « boucles » sont donc « juxtaposées » avec comme seule interconnexion la ou les unités extérieures.

Un condenseur commun et plusieurs unités intérieures = multi-split.

Exemple de système multi-split :

Un fournisseur propose une gamme standard d’installations multi-split complètes dont l’unité extérieure a une puissance frigorifique maximale allant de 1 à 11,5 kW et une puissance calorifique maximale de 0,9 à 17,2 kW, pour des débits d’air d’environ 2 100 m³/h.

La longueur maximale de tuyauterie autorisée va de 35 à 70 mètres au total selon l’unité extérieure choisie dans la gamme. Le branchement de plus de 4 unités intérieures par unité extérieure n’est pas possible.

Les unités intérieures peuvent être murales, en consoles, gainables ou en cassette 2 ou 4 voies. Leur puissance frigorifique varie entre 1 et 4,5 kW et leur puissance calorifique entre 1,1 et 6,4 kW.

Chaque unité intérieure accepte une longueur de tuyauterie de 25 m.

Le prix des groupes de condensation (unité extérieure) est entre 2 285 et 4 150 €, celui des unités intérieures de 585 à 2 235 € pièce.


L’eau comme source chaude

Dans ce cas, le fluide frigorigène comprimé donne sa chaleur à l’eau du circuit de chauffage par l’intermédiaire d’un échangeur de chaleur. La température de l’eau de condensation devant être la plus basse possible (entre 35 et 45 °C pour – 8 °C extérieurs), le chauffage par pompe à chaleur sera réalisé par un plancher chauffant à eau, par des ventilo-convecteurs à eau ou par des grands radiateurs à basse température.

Plancher chauffant à eau

Cette solution efficace procure un excellent confort thermique uniforme dans la pièce. La surface d’émission est suffisamment grande pour permettre une température faible : maximum 28 °C. Cette température permet d’éviter les problèmes de circulation dans les jambes. Cet émetteur de chaleur présente l’avantage (pour des constructions neuves) d’être complètement invisible et de dégager de la place aux murs par rapport aux radiateurs conventionnels.

Installation d’un plancher chauffant.

Le plancher chauffant est composé d’un réseau de tubes en polyéthylène enfouis dans du béton coulé, et montre une grande inertie thermique. Les réponses aux variations de température demandées sont donc lentes (de l’ordre de quelques heures). Le revêtement de sol doit présenter une résistance thermique faible, comme un carrelage ou un parquet (même si ce dernier a une résistance thermique plus élevée que le carrelage pour des épaisseurs égales). Pour obtenir une bonne transmission de la chaleur entre la couche de béton et l’ambiance, le parquet doit être de préférence collé. Dans tous les cas, il faut éviter les couches d’air car elles ont un effet isolant.

Le chauffage par plancher chauffant peut nécessiter un appoint. On peut également jouer sur la distance entre deux tubes pour avoir plus ou moins de puissance surfacique. Si on augmente la longueur de tube chauffant dans le sol, on peut diminuer la température de l’eau qui y circule pour un même confort thermique dans l’ambiance.

Murs chauffants

Les murs peuvent également être utilisés comme surface de chauffage. C’est parfois une meilleure solution dans le cas d’une rénovation.

Installation d’une cloison chauffante

Ventilo-convecteur à eau

Ce type de ventilo-convecteur est un échangeur qui transmet la chaleur de l’eau (chauffée dans le convecteur) à de l’air forcé à l’intérieur. C’est le même type d’appareil qu’un ventilo-convecteur à condensation directe, hormis le fait que le fluide chauffant est de l’eau et non un fluide frigorigène.

Cette solution permet la production de froid quand c’est nécessaire en été.

Radiateur basse température

Ces radiateurs, incompatibles avec des systèmes de chauffage autres que la PAC, contiennent de l’eau dont la température est de 40-50 °C. Cette température est nettement inférieure à celle des radiateurs conventionnels (70 – 90 °C), mais est néanmoins suffisante pour chauffer un local, car les radiateurs basse température sont de grandes dimensions. Ils peuvent être construits en fonte, en fonte d’aluminium ou en acier. Bien évidemment, cette solution n’est pas compatible avec l’installation d’une pompe à chaleur réversible (rafraîchissement et climatisation en été).


Le sol comme source chaude

Dans ce cas, le fluide frigorigène circule dans un réseau de tuyaux en cuivre dans le sol, c’est la solution « à condensation directe ». Il n’y a pas d’échangeur intermédiaire et les tubes constituent eux-mêmes le condenseur de la PAC.

La quantité de fluide frigorigène utilisée est importante, ce qui impose le respect de règles dans la vérification, la récupération des fuites, etc. La mise en place des tubes doit être réalisée par des personnes qualifiées pour éviter tout risque de fuite et afin de garantir l’efficacité de l’installation.

Enveloppe


Le choix d’un niveau d’isolation correct

L’isolation doit faire partie intégrante de tout projet de construction et de rénovation où l’ambiance intérieure est destinée à être chauffée ou climatisée. Cette technique doit être intégrée dès le début du projet pour au final respecter au minimum la réglementation en vigueur ou, mieux, les objectifs fixés par différentes labellisations.

Une attention particulière doit aussi être portée aux différents nœuds constructifs (raccords entre les parois) qui présentent plus de risques de ponts thermiques.


Le choix de la fenêtre

Le choix de la fenêtre, sa position, son orientation, son type de vitrage a également un grand impact sur la qualité du projet au niveau énergétique.

Une fenêtre doit être vue comme :


Le choix de la protection solaire

Le choix d’une protection solaire est fonction des objectifs que l’on se donne :

  • les objectifs principaux sont de limiter les surchauffes et l’éblouissement ;
  • les objectifs secondaires sont d’augmenter le pouvoir isolant de la fenêtre, d’assurer l’intimité des occupants ou d’occulter un local et de décorer la fenêtre.

Choisir les éléments principaux de la pompe à chaleur

Choisir les éléments principaux de la pompe à chaleur


Choix du fluide frigorigène

Les fluides frigorigènes envisageables aujourd’hui pour les nouvelles installations de pompes à chaleur sont nombreux et font partie soit des hydrofluorocarbones (HFC), soit des fluides frigorigènes naturels. Plus question aujourd’hui de concevoir une installation chargée au R12 (CFC) ni au R22 (HCFC), ces réfrigérants destructeurs de la couche d’ozone participant fortement au réchauffement climatique.

Les fluides frigorigènes peuvent être choisis suivant différents critères :

Critères
thermodynamiques
Critères
de sécurité
Critères
techniques
Critères
économiques
Critères
environnementaux
Pression d’évaporation. Toxicité. Action sur les composants de l’installation. Prix. Action sur la couche d’ozone.
Température critique. Inflammabilité. Comportement avec l’huile Disponibilité. Action sur l’effet de serre.
Taux de compression. Caractère explosif. Comportement avec l’eau. Possibilité de récupération et de recyclage.
Efficacité des échanges thermiques. Aptitudes aux détections des fuites.
Température de refoulement. Stabilité.
Production frigorifique. Volumétrique spécifique.

Les fluides frigorigènes peuvent être soit des mélanges de fluides dans des proportions précises, soit des fluides purs. Les comportements diffèrent dans l’un ou l’autre cas. Les fluides purs s’évaporent à température constante alors que les mélanges (sauf mélanges azéotropiques) s’évaporent à des températures variables.

Les HFC

Les plus répandus sont le R134a, le R407C, le R410A et le R404A.

Les HFC présentent un Global Warming Potential (contribution à l’effet de serre) sur 100 ans relativement élevé. Pour cette raison, la réglementation  impose de vérifier l’étanchéité des installations de HFC afin d’éviter les fuites dans l’atmosphère.

La détection et la récupération des fuites doivent se faire avec un outillage adapté et les frigoristes doivent être certifiés.

Les fluides frigorigènes naturels

Les quatre fluides frigorigènes HFC ont été largement utilisés dans les installations de PAC neuves. Cependant, vu leur impact sur l’effet de serre, la réglementation  prévoit leur abandon progressif en faveur des fluides montrant un potentiel de participation au réchauffement climatique sur 100 ans plus faible voire des fluides frigorigènes « naturels ».


Choix de l’évaporateur de la PAC

Le fluide frigorigène capte la chaleur de l’environnement (eau, air ou eau glycolée) dans l’évaporateur de la pompe à chaleur. Il y passe de l’état liquide à l’état gazeux à basse température en emmagasinant de l’énergie. L’évaporateur est donc un échangeur de chaleur, au même titre que le condenseur et la température d’évaporation doit être la plus élevée possible pour augmenter les performances de la pompe à chaleur.

Les évaporateurs sont classés suivant leur type et leur source froide. Ainsi, on aura d’un côté, des évaporateurs à air ou à eau en fonction de la source froide choisie, et d’un autre côté on aura soit des évaporateurs secs, soit noyés.

Sec vs Noyé

  1. La différence entre ces deux technologies réside premièrement dans l’état de la vapeur qui sort de l’échangeur :
    Dans le cas des évaporateurs de type sec, également appelés « à surchauffe » ou « à détente sèche », le fluide frigorigène vaporisé sera complètement sec à l’admission au compresseur. Ceci est dû à la succession de deux phases : l’ébullition du liquide frigorigène puis la surchauffe des vapeurs obtenues (la température du gaz frigorigène sortant de l’évaporateur est donc légèrement supérieure à la température d’évaporation proprement-dite).
    La surchauffe est par contre pratiquement nulle dans le cas des évaporateurs de type noyé. Cela présente un inconvénient : la nécessité de prévoir une bouteille anti-coups de liquide avant le compresseur pour le protéger. Le mélange liquide-vapeur sortant de l’évaporateur est à la même température que le liquide entrant (en négligeant les pertes de charge).
  2. La configuration de l’évaporateur est également différente dans les deux cas :
    Dans les évaporateurs noyés, les surfaces d’échange (les plus grandes possibles) doivent être en contact permanent avec du fluide frigorigène liquide. Les tubes qui contiennent le fluide caloporteur (qui est souvent de l’eau glycolée) sont dès lors noyés dans le fluide frigorigène liquide qui se vaporise.
    C’est l’inverse dans le cas des évaporateurs secs. Les coefficients d’échange obtenus pour les évaporateurs noyés sont très élevés et ne varient pas beaucoup par rapport à ceux des évaporateurs à détente sèche.
    (En effet, de façon générale, l’échange de chaleur sera élevé si :- la surface d’échange augmente ;
    – la vitesse de passage des fluides est faible ;
    – la différence de température entre les fluides est grande ;
    – le débit de la source de chaleur est important par rapport au fluide frigorigène.).

Les évaporateurs de pompes à chaleur sont en général du type sec à cause des inconvénients que présentent les évaporateurs noyés (besoin d’une bouteille anti-coups de liquide, piégeage de l’huile de lubrification, etc.).

À air vs à eau

Pour les sources de chaleur liquides, les évaporateurs présentent une des 5 configurations suivantes :
Type noyé

  • L’échangeur à serpentin noyé (puissances supérieures à 30 kW).
  • L’échangeur multitubulaire noyé (puissances supérieures à 30 kW), qui est en général utilisé avec un compresseur à pistons ou à vis. Il faut faire attention au risque de gel de l’eau à l’intérieur des tubes. Autre inconvénient : ces évaporateurs peuvent accumuler de l’huile non désirée, dans le cas où ils sont utilisés avec un compresseur volumétrique lubrifié.

À surchauffe :

  • Les évaporateurs multitubulaires à surchauffe (puissances supérieures à 30 kW) sont très utilisés avec les compresseurs à pistons ou à vis. Les risques de gel sont amoindris par rapport à l’échangeur multitubulaire noyé et il n’y a pas de problème de retour d’huile.
  • L’échangeur à plaques brasées : Ces échangeurs ont tendance à se généraliser dans l’application des pompes à chaleur eau glycolée/eau. Ils sont performants (car les coefficients d’échange thermique sont élevés), robustes, compacts et étanches. Il faut toutefois faire attention à ce qu’il n’y ait pas d’encrassement. Attention également au risque de gel (il faut dès lors prévoir de l’antigel en suffisance).
  • Les évaporateurs coaxiaux sont très utilisés pour des puissances frigorifiques allant jusqu’à 100 kW. Ils présentent des difficultés d’entretien et nécessitent de l’eau très propre non entartrante.

Les types d’évaporateurs à air sont au nombre de 3 :

  • Les évaporateurs à ailettes à convection naturelle ;
  • Les évaporateurs à tube lisse à convection naturelle.
Ces deux premiers types d’évaporateurs à air ne sont utilisés que pour des faibles puissances. De plus, les coefficients d’échanges thermiques sont faibles, car la ventilation est naturelle. On les retrouve donc très peu pour les pompes à chaleur.
  • Les évaporateurs à ailettes à convection forcée : c’est le type d’évaporateur à air qui est le plus utilisé. Ils sont munis d’un ou plusieurs ventilateurs pour assurer la circulation de l’air à travers les surfaces d’échange. Le problème de ces échangeurs réside dans la formation de givre ou de condensation lorsque la température des parois extérieures de l’évaporateur est inférieure à la température de rosée de l’air.

Techniques

Pour plus de détails concernant certains types d’évaporateurs de pompes à chaleur, cliquer ici !

Choix du compresseur

Il existe deux types de compresseurs qui peuvent être utilisés dans les pompes à chaleur : les compresseurs volumétriques et les compresseurs centrifuges (ou turbocompresseurs). Dans le premier cas, une réduction du volume à l’intérieur de la chambre de compression permet d’y augmenter la pression. En général les compresseurs sont de ce type. Dans le second cas, la compression résulte de la force centrifuge obtenue par entraînement dynamique au moyen d’une roue à aubes. On utilise ces compresseurs pour des applications précises, ou pour de grandes puissances.

Les compresseurs volumétriques à pistons

Les compresseurs volumétriques à pistons sont les plus répandus pour les circuits frigorifiques et ils sont alternatifs pour la plupart. Ils sont de plusieurs types, suivant qu’ils sont ouverts, semi-ouverts ou fermés (hermétiques) au niveau de l’association entre le moteur et le compresseur.

compresseurs volumétriques à pistonscompresseurs volumétriques à pistons

Hermétique, semi-hermétique et ouvert.

Hermétique

Dans ce cas le moteur électrique et le compresseur sont logés dans une même enveloppe soudée. L’ensemble n’est pas démontable. On utilise beaucoup ce type de compresseur pour de faibles puissances, jusqu’à 30 kW environ.

Avantages

  • Le faible coût de l’ensemble.
  • L’encombrement réduit.
  • La bonne étanchéité.
  • Le peu de bruit par rapport aux autres compresseurs volumétriques à pistons.
  • La rapidité de la recharge en fluide frigorigène, car bonne tolérance aux coups de liquide.
  • Pas de problème de mise en ligne du compresseur et du moteur, car pas d’accouplement.
  • Le refroidissement effectué par le fluide frigorigène lui-même, car le moteur est dans le circuit du fluide frigorigène.
  • La bonne récupération au condenseur de la chaleur dissipée par le moteur, de par la configuration fermée.

Inconvénients

  • Le compresseur est inaccessible. Si un problème survient, il faut changer le compresseur, car il n’est en général par réparable.
  • Les performances sont médiocres, car l’accent est en général mis sur de bonnes puissances frigorifiques à un prix réduit, au détriment de la consommation du compresseur.
  • Les hautes températures de refoulement peuvent présenter un danger à certains régimes de fonctionnement (surchauffe).
  • Le bobinage du moteur peut se retrouver court-circuité à cause d’une attaque chimique de l’isolant du bobinage par un fluide frigorigène pollué, de l’humidité ou d’une surchauffe (dans ce dernier cas, prévoir un organe de sécurité qui coupera l’alimentation électrique lors d’une surchauffe). Si le moteur « grille », il faut remettre en état le bobinage et nettoyer l’ensemble du circuit, car il sera pollué.
  • La puissance ne peut pas être réglée, sauf par variation de fréquence du courant d’alimentation.

Semi-hermétique

Le compresseur est entraîné directement par le moteur électrique, qui est accolé au compresseur. Ces compresseurs sont utilisés pour des puissances se situant entre 0,4 et 100 kW (on peut aussi monter jusqu’à 400 kW en recourant à plusieurs compresseurs). Ces puissances sont plus élevées que pour les compresseurs hermétiques, car il n’y a plus de limitation d’entretien.

Avantages

  • L’accessibilité à tous les organes mécaniques et électriques.
  • Pas de problème de mise en ligne du compresseur et du moteur, car pas d’accouplement.
  • L’encombrement réduit.
  • Pas besoin d’élément d’étanchéité entre le moteur et le compresseur, donc pas de risque de fuites de fluide frigorigène.
  • La récupération partielle au condenseur de la chaleur dissipée par le moteur.
  • La bonne qualité de fabrication, d’où une bonne performance.

Inconvénients

  • Moins résistant aux coups de liquide.
  • Le coût plus élevé.
  • Pas de récupération totale de la chaleur dissipée par le moteur.
  • Le bobinage du moteur peut se retrouver court-circuité à cause d’une attaque chimique de l’isolant du bobinage par un fluide frigorigène pollué, de l’humidité ou d’une surchauffe (dans ce dernier cas, prévoir un organe de sécurité qui coupera l’alimentation électrique lors d’une surchauffe). Si le moteur « grille », il faut remettre en état le bobinage et nettoyer l’ensemble du circuit, car il sera pollué.

Ouvert

Ici le moteur et le compresseur sont totalement séparés ; le moteur est donc accouplé au compresseur en bout d’arbre à l’aide d’un manchon, ou alors par des poulies et des courroies. La gamme de puissances est similaire à celle des compresseurs semi-hermétique.

Avantages

  • L’entretien aisé, car le compresseur est démontable.
  • Peut être entraîné par des moteurs de différents types (moteurs électriques à courant alternatif, continu, à vitesse fixe ou variable, moteurs à combustion interne, turbine à gaz,…).
  • La très bonne qualité de fabrication.
  • La possibilité de choisir la vitesse de rotation la mieux adaptée.
  • Pas de pollution du circuit frigorifique en cas de court-circuit dans le moteur.

Inconvénients

  • Le coût élevé.
  • La mise en ligne moteur-compresseur difficile.
  • La faible résistance aux coups de liquide.
  • Aucune récupération de la chaleur dissipée par le moteur.
  • Il faut une garniture d’étanchéité entre le moteur et le compresseur, d’où le risque de fuites de fluide frigorigène.

Le compresseur volumétrique hermétique spiro-orbital Scroll

Le compresseur Scroll comprime les vapeurs en continu en faisant tourner une partie mobile autour d’un élément fixe en forme de spirale. Ce type de compresseur est de plus en plus utilisé dans les circuits frigorifiques. Sa gamme de puissances va de 2 à 60 kW seulement, mais on peut très bien mettre plusieurs compresseurs en parallèle.

Avantages

  • La robustesse et fiabilité.
  • La légèreté.
  • La faible consommation.
  • Le prix réduit.
  • Le haut rendement volumétrique par rapport à l’espace mort.
  • L’encombrement réduit.
  • Le faible niveau sonore.
  • L’excellente tolérance aux coups de liquide.
  • La récupération quasi totale au condenseur de la chaleur dissipée par le moteur.
  • La séparation totale des gaz d’aspiration et de refoulement, réduisant leur échange thermique mutuel.
  • Il y a moins de pièces en mouvement que dans le cas du compresseur à pistons, et donc moins de frottements internes. De plus, il n’y a pas de clapets d’aspiration et de refoulement. Pour ces raisons le rendement est supérieur à celui des compresseurs à pistons, de même que le COP.

Inconvénients

  • L’inaccessibilité des organes du compresseur. On doit changer l’ensemble en cas de problème.
  • Le bobinage du moteur peut se retrouver court-circuité à cause d’une attaque chimique de l’isolant du bobinage par un fluide frigorigène pollué, de l’humidité ou d’une surchauffe (dans ce dernier cas, prévoir un organe de sécurité qui coupera l’alimentation électrique lors d’une surchauffe). Si le moteur « grille », il faut remettre en état le bobinage et nettoyer l’ensemble du circuit, car il sera pollué.

Les compresseurs volumétriques à vis

Les compresseurs de ce type sont soumis à deux classifications : les compresseurs à vis mono-rotor ou bi-rotor d’une part, et les compresseurs à vis hermétiques ou ouverts d’autre part.

  1. Le compresseur à vis mono-rotor : une vis hélicoïdale unique tourne à grande vitesse.
  2. Le compresseur à vis bi-rotor : le compresseur est composé de deux vis (une femelle et une mâle) à dentures hélicoïdales. L’insertion progressive des cannelures de la vis mâle dans celles de la vis femelle (par simple rotation) provoque la compression des vapeurs de fluide frigorigène.

Les compresseurs à vis de tous types sont utilisés dans le domaine des pompes à chaleur de fortes puissances : de 100 à 5 000 kW de puissance calorifique au condenseur. De ce fait, ils sont utilisés dans les pompes à chaleur eau/eau.

Avantages

  • Pas de soupapes et peu de pièces en mouvement, excellent rendement (indiqué et volumétrique).
  • L’absence de vibrations et peu de bruit.
  • Le taux de compression élevés.
  • Le flux de gaz pratiquement continu.
  • L’absence de parties sujettes à usure.
  • Le réglage facile.
  • La relative insensibilité aux coups de liquide.
  • Quasiment pas d’entretien nécessaire.
  • La régulation de puissance possible de 10 à 100 %.
  • Les rotors à profils asymétriques, ce qui est préférable au point de vue énergétique.
  • Le compresseur peu volumineux.

Inconvénients

  • Le coût relativement élevé.
  • Consomme plus d’énergie que les autres types de compresseurs.
  • Le moteur plus rapide donc groupe moto-compresseur assez bruyant.
  • La nécessité d’usiner avec une grande précision.
  • Uniquement utilisable pour de fortes puissances.
  • La nécessité d’adapter le taux de compression interne au taux de compression externe, sinon pertes.

En outre, les compresseurs à vis ouverts montrent l’avantage de pouvoir être entraînés par toutes sortes de moteurs, et l’inconvénient de ne pas récupérer au condenseur la chaleur dissipée par le moteur. Ils sont plus courants que les moteurs à vis semi-hermétiques.

Le compresseur volumétrique rotatif

Dans ce type de compresseur, un stator cylindrique renferme un rotor excentré par rapport à l’axe du stator. Un volume en forme de croissant est piégé. Du fluide frigorigène est introduit (aspiration) et la rotation du rotor comprime cet espace jusqu’à atteindre la pression souhaitée (refoulement).

Deux technologies existent :

  • Le compresseur rotatif à piston roulant : il est constitué d’un stator à l’intérieur duquel est disposé un rotor excentré (piston) qui comprime les vapeurs en se déplaçant. Une palette est montée sur le stator et assure l’étanchéité entre les chambres d’aspiration et de refoulement.
  • Le compresseur rotatif à palettes : la compression des vapeurs est obtenue par le déplacement des palettes qui sont logées dans des rainures dans le rotor, et qui appuient contre le stator grâce à la force centrifuge. Le rotor est monté de façon excentrique à l’intérieur du stator de manière à créer des volumes de plus en plus réduits pour les vapeurs.

Compresseur à piston roulant et compresseur à palettes.

Ces compresseurs sont utilisés pour des puissances calorifiques jusqu’à 10 kW et bénéficient d’une grande souplesse de fonctionnement. De plus, ils sont peu bruyants.

Le compresseur centrifuge

Ces compresseurs, appelés aussi turbocompresseurs, ne sont utilisés que dans le cas des très fortes puissances : de 1 000 kW à 50 000 kW de puissance calorifique au condenseur. Ils sont donc envisageables dans les grands centres industriels et commerciaux. Ils appartiennent aux pompes à chaleur de type eau/eau et peuvent être de type ouvert ou fermé.

Avantages

  • L’encombrement réduit.
  • Pas d’huile dans le circuit frigorifique et pas de problème d’huile piégée dans l’évaporateur, car les deux circuits (fluide frigorigène et huile) sont bien séparés.
  • Les puissances très élevées et réglables de 20 à 100 %
  • Peut être entraîné par des moteurs de différents types, dans le cas des compresseurs ouverts.
  • L’excellente qualité de fabrication.
  • Le coût plus faible que les compresseurs à vis.

Inconvénients

  • Le taux de compression faibles : ce compresseur se rencontre souvent donc en multi-étagé.
  • Moins de souplesse d’adaptation aux régimes de marche et aux fluides frigorigènes.
  • Utilisables pour les très fortes puissances uniquement.
  • Pas de récupération au condenseur de la chaleur dissipée par le moteur.
  • Plus délicat que les compresseurs à pistons à faible charge à cause du phénomène de pompage qui survient pour des faibles débits et qui peut endommager le compresseur (pompage : le débit oscille entre un débit nul et le débit maximal d’où écoulement pulsatoire).

PAC électrique ou au gaz ?

Les pompes à chaleur fonctionnent pour la majorité à l’électricité. Mais il est également possible de faire fonctionner la pompe à chaleur à l’aide d’un moteur à gaz, la PAC prélevant la chaleur sur l’air extérieur ou sur de l’air extrait d’un bâtiment. Le moteur thermique est alimenté en gaz naturel (méthane), ou en LPG (propane + butane) et ces PAC au gaz sont chargées avec les HFC (par exemple du R410A).

Les pompes à chaleur à gaz présentent les avantages suivants :

  • Leurs performances sont bonnes et leur rendement est indépendant des fluctuations de la température extérieure, car elles récupèrent la chaleur dissipée par le moteur et celle contenue dans les gaz d’échappement.
  • Grâce à cette récupération de chaleur, le dégivrage n’est plus nécessaire et la montée en régime est rapide. La PAC fonctionne en continu.
  • Contrairement à leurs homologues électriques sur l’air extérieur, elles fonctionnent bien en monovalence, c’est-à-dire qu’aucun appoint n’est nécessaire (ni de chaudière).
  • Leur coût énergétique est inférieur d’environ 30 % par rapport aux PAC électriques. Elles consomment peu d’électricité (90 % en moins).
  • Elles sont utilisables dans n’importe quel type de bâtiment, aussi bien dans les maisons particulières que dans des installations industrielles.
  • Elles peuvent être équipées d’un kit hydraulique pour produire de l’eau chaude ou de l’eau froide.
  • Les coûts d’entretien sont faibles.
  • Il est possible de réutiliser les installations existantes de PAC électriques en ne remplaçant que la PAC elle-même.
  • Les unités peuvent être connectées en série ; ce type de PAC est donc applicable à de grandes installations.
  • Elles sont compatibles avec les systèmes classiques de chauffage basse température : chauffage par le sol ou par le plafond, ou ventilo-convecteurs.

Ces PAC sont par contre plus chères que les PAC électriques. Peu de constructeurs exploitent cette solution pour l’alimentation d’une PAC.

Performances de la PAC à gaz

Il n’est pas possible de comparer directement le COP d’une PAC à gaz et celui d’une PAC électrique. En effet, dans le premier cas, l’énergie est primaire, dans le deuxième elle ne l’est pas.

Considérons que l’électricité est produite à partir de centrales dont le rendement moyen en Belgique est de 38 %. Pour produire 3 kWh thermiques, la pompe à chaleur aura donc utilisé 2,6 kWh primaires. Le « COP » sur énergie primaire est alors égal à 3 / 2,6 = 1,15.

Le PER (Primary Energy Ratio) de la PAC à gaz se situe quant à lui entre 1,2 et 1,6. Ce « COP » n’est pas beaucoup plus élevé que celui de la PAC électrique, mais contrairement à cette dernière, les performances sont conservées en cas de grand froid.


Choix du condenseur

On distingue les condenseurs à air et à eau.

Dans le premier cas, on utilise en général un condenseur à air à tubes à ailettes, un ventilateur centrifuge pour brasser l’air et un filtre. Les coefficients d’échange des condenseurs à air vont de 20 à 30 [W/m².K].

Dans le cas des condenseurs à eau, il existe :

  • Les condenseurs à serpentins : ils ne sont utilisés que pour des faibles puissances calorifiques au condenseur. Ils présentent l’inconvénient de montrer des difficultés d’entretien et de devoir utiliser une eau très propre et non entartrante.
  • Les condenseurs à tubes coaxiaux : utilisés pour des puissances calorifiques allant jusqu’à 100 kW. De même que le précédent, il nécessite une eau propre, car les entretiens ne sont pas évidents.
  • Les condenseurs à plaques brasées : leur coefficient d’échange thermique est élevé et donc ils se généralisent pour les pompes à chaleur air/eau et eau/eau. Ils sont performants, compacts, les pertes de charge sur l’eau sont en général assez faibles et la petite taille des canaux réduit la quantité de fluide frigorigène. Par contre, ce dernier atout présente l’inconvénient de favoriser l’encrassement des tuyaux. De nouveau, l’eau doit être très propre ou filtrée avant d’entrer dans le condenseur.
  • Les condenseurs multitubulaires : ils sont utilisés lorsque les puissances calorifiques sont importantes.

Les coefficients d’échange des condenseurs à eau vont de 700 à 1 100 [W/m².K].


Choix de l’organe de détente

Détendeur Thermostatique. C’est le détendeur le plus utilisé dans les pompes à chaleur. Il fonctionne de façon automatique et règle le débit du fluide frigorigène de manière à ce que la surchauffe des gaz qui sortent de l’évaporateur soit constante. Son inconvénient est de ne pas présenter un temps de réponse instantané, mais ce détendeur est très fiable, il permet d’adapter l’alimentation de l’évaporateur en fluide frigorigène, et de plus, certains détendeurs thermostatiques peuvent fonctionner dans les deux sens, évitant ainsi un second détendeur et des clapets dans les pompes à chaleur réversibles.
Capillaire de détente Il est utilisé dans les petits matériels de série. Son inconvénient réside dans le fait qu’il ne permet aucun réglage de la détente, mais cet inconvénient est aussi un avantage, car le capillaire de détente ne permet pas de déréglage de la détente dans le temps. Le capillaire peut se boucher facilement, il faut donc veiller à la parfaite déshydratation du circuit. Il faut également éviter l’utilisation d’une bouteille accumulatrice de liquide, car pendant l’arrêt du compresseur, l’évaporateur se remplirait alors exagérément (en effet le capillaire n’interrompt pas la communication entre condenseur et évaporateur, même pendant l’arrêt du compresseur). La charge en fluide frigorigène doit donc rester limitée. D’un autre côté, l’équilibre des pressions qui s’établit pendant l’arrêt du compresseur permet à ce dernier de redémarrer plus facilement. Autre avantage : le temps de réponse de la détente est instantané.
Détendeur électronique Il en existe de deux sortes : le détendeur moteur pas-à-pas et le détendeur à impulsion. C’est un détendeur très précis et fiable, de par la régulation numérique. L’injection du fluide frigorigène, la régulation de la température de la source froide et le dégivrage sont donc optimalisés et la surchauffe est maîtrisée. Le rendement de la pompe à chaleur reste ainsi optimal à tous les régimes. De plus, le système s’adapte à tous les fluides frigorigènes. Son inconvénient réside toutefois dans son coût élevé.
Orifice calibré Il s’appelle aussi « accurator » et s’utilise pour les pompes à chaleur réversibles. C’est un détendeur très fiable et son temps de réponse est instantané. Par contre, on ne peut pas adapter l’alimentation en fluide frigorigène en fonction de la charge thermique à l’évaporateur. De plus, ce détendeur n’est pas protégé par un filtre en amont, il faut donc faire attention lors d’interventions sur le circuit.
Régleur manuel Il est uniquement utilisé comme organe de secours d’un autre détendeur. Il fonctionne comme un capillaire, mais le réglage peut être modifié par la suite. Son temps de réponse est instantané, mais comme pour l’orifice calibré, on ne peut pas adapter l’alimentation en fluide frigorigène en fonction de la charge thermique à l’évaporateur. Lors de l’arrêt du compresseur, il est nécessaire de prévoir une vanne magnétique pour éviter le remplissage en liquide de l’évaporateur.
Détendeur à flotteur haute pression Il est souvent utilisé dans les groupes centrifuges. Ce détendeur règle le débit de liquide vers l’évaporateur en fonction du débit des vapeurs condensées, qui sont à haute pression. Son problème réside dans le fait qu’il faut mesurer très précisément la charge en fluide frigorigène pour éviter un retour de liquide vers l’aspiration du compresseur en cas d’excès de charge, et une alimentation insuffisante de l’évaporateur en cas de défaut de charge.
Détendeur à flotteur basse pression Il est très utilisé en combinaison aux évaporateurs noyés et également pour les pompes à chaleur de forte puissance. Ce détendeur règle le débit de liquide vers l’évaporateur en fonction de son niveau de liquide, qui est à basse pression. Le fluide frigorigène a un niveau constant, quelle que soit la charge thermique de l’évaporateur.
Contrôleur de niveau magnétique C’est une variante du détendeur à flotteur basse pression. Le flotteur porte ici un aimant permanent ou une masselotte en fer doux et actionne magnétiquement les contacts de commande de la vanne solénoïde placée sur l’arrivée de liquide dans l’évaporateur.
Contrôleur de niveau à bulbe chauffé Ici un bulbe est chauffé électriquement, et sa chaleur agit sur l’injection de liquide vers l’évaporateur.

Coefficients de performance d’une PAC


Le COP du groupe moto-compresseur

Ce COP s’écrit εc et on l’appelle « indice de performance ». C’est le rapport de la puissance thermique utile délivrée au condenseur à la puissance électrique absorbée par le compresseur uniquement. Cet indice est variable en fonction des températures des sources chaude et froide. Quand on précise une valeur de εc , on doit donc indiquer les bases de température et spécifier s’il s’agit de sources extérieures ou intérieures.

ε= chaleur au condenseur/travail du compresseur = Q2 / W.

Par exemple, si, à un moment de mesure donné, les températures des sources chaudes et froides d’une certaine PAC sont telles qu’elle transmet via son condenseur une puissance de 3 kW alors qu’au même moment son compresseur requiert une puissance de 1 kW, on pourra dire que son indice de performance vaut 3 kW / 1 k W = 3 pour ces conditions de température.

εc est obtenu après essais thermiques dans des conditions standard et il intègre donc les imperfections thermodynamiques (les écarts de température à l’évaporateur et au condenseur). Les pertes thermodynamiques, mécaniques, électriques du compresseur ont également été prises en compte.

L’indice de performance n’intègre par contre pas la consommation des auxiliaires (permanents ou non) et les pertes de chaleur dans les conduits.

Le COP global de la PAC

C’est le COP qui est donné par les constructeurs de pompes à chaleur. Pour le calculer, en plus de la puissance du compresseur, on devra prendre en compte la puissance des auxiliaires non permanents (dispositif antigel, pompes et ventilateurs régulés en même temps que le compresseur, etc). La puissance consommée aux auxiliaires permanents (pompes de circulation dans le plancher, tableau électrique, régulation et système de sécurité) n’est pas assimilée.

   Puissance thermique au condenseur (chaleur restituée dans le bâtiment)

COP = ————————————————————————–

   Puissance absorbée pour réaliser le transfert de chaleur (compresseur et auxiliaires NP)

Les mesures ne concernent que les éléments rattachés à la pompe à chaleur et sont indépendantes de l’installation de chauffage, de l’accumulateur, etc. La norme européenne EN 14511 fixe des conditions de mesures standardisées très précises qui ne correspondent aux situations réelles que dans certaines circonstances. Il ne faut pas perdre cela de vue lorsque l’on travaille avec ce COP.

Reprenons l’exemple de PAC ci-dessus. Dans les conditions imposées par la norme EN 255, la puissance mise à disposition au condenseur ne sera peut-être pas 3 kW mais 3,2 kW pour une température de sortie du condenseur identique. De plus, la puissance absorbée par l’ensemble des équipements à prendre en compte ne sera peut-être pas de 1 kW mais de 1,1 kW. Le coefficient de performance vaudra alors 3,2 / 1,1 = 2,9.

Le COP est le coefficient le plus utile car il donne des performances réelles d’une pompe à chaleur. De même que pour l’indice de performance, il n’intègre pas les pertes dans les conduits.


Le COP global de l’installation

Ce COP, que l’on peut écrire εi, sera toujours inférieur au COP global de la PAC vu ci-dessus. Il tient compte des éléments suivants :

  • les imperfections de l’installation (pertes d’énergie par les réseaux de distribution, pertes aux échangeurs, etc.) qui ne participent pas au chauffage des locaux,
  • les auxiliaires (pompes, circulateurs, ventilation, etc.),
  • la mise en œuvre de l’installation (dimensionnement, pose, etc.).

Si l’installation était parfaite, εi serait égal au COP global de la PAC donné par les constructeurs.


Le COP saisonnier ou global annuel de l’installation

Le coefficient annuel, ou COPA, évalue la performance annuelle de l’installation de la pompe à chaleur, auxiliaires compris. C’est l’indice le plus important dans l’examen d’une installation de pompe à chaleur. Toutes les quantités d’énergie produite et injectées pendant une année y sont comparées. Il ne s’agit pas d’une valeur théorique calculée à partir de puissance installées, mais d’une mesure réelle sur site de la quantité d’énergie consommée et fournie. C’est le coefficient de performance annuel qui donne vraiment idée du « rendement » et de l’efficacité de l’installation.

Il vaut le rapport des valeurs mesurées :

 énergie calorifique restituée dans le bâtiment sur une saison de chauffe

COPA = ————————————————————————–

énergie consommée pour le fonctionnement de l’installation (pompe à chaleur + auxiliaires)

Imaginons que notre PAC fasse maintenant partie de toute une installation de chauffage. Les variations de température des sources froides et chaudes, les pertes par émission du réseau de distribution, la consommation d’un chauffage d’appoint, etc… font que 13 000 kWh* de chaleur sont produits sur une année, tandis que les consommations globales s’élèvent à 6 200 kWh* d’énergie électrique. On dira alors que le COPA de cette installation vaut 13 000 kWh / 6 000 kWh = 2,17.

*Ces valeurs ne servent qu’à illustrer la définition du COPA. Il ne s’agit pas d’une quelconque moyenne d’installations existantes ou du résultat d’une étude de cas.


Le facteur de performance saisonnier SPF

Le SPF évalue théoriquement la performance annuelle de la pompe à chaleur (et pas de l’installation). Il est le rapport des quantités d’énergie fournies et apportées en un an calculées de façon théorique sur base du COP instantané à différentes températures.

Il s’agit donc bien d’une valeur théorique mais prenant en compte les variations de température de la source froide et non pas d’une valeur mesurée en situation réelle comme le COPA. De plus, le SPF décrit une PAC tandis que le COPA décrit une installation complète. On ne tiendra donc pas compte pour le calcul du SPF des pertes de l’accumulateur par exemple, ou d’un mauvais réglage d’un dispositif de dégivrage, qui augmenteraient la quantité d’énergie demandée au compresseur et donnerait une valeur finale moins avantageuse mais plus réelle. On calculera le SPF comme ceci :

  • Qdemandée est la quantité d’énergie demandée à la PAC durant la période de chauffe [kWh/an].
  • P(Text) est la puissance à apporter lorsque la température de la source froide est Text (par exemple les déperditions thermiques d’une maison selon la température extérieure) [kW].
  • t(Text) est le temps durant lequel la température de la source froide est Text [h/an]
  • COP(Text) est le coefficient de performance de la pompe à chaleur lorsque la température de la source froide est Text.

Le rendement en énergie primaire des PAC

Si la pompe à chaleur à la vertu de produire une moyenne saisonnière de 2 à 3,5 kWh thermique pour chaque kWh électrique consommé, il faut toute de même considérer l’énergie primaire nécessaire à la production de ce kWh électrique en amont.

Le facteur d’énergie primaire de l’électricité est fixé en 2019 à 2,5. Il faut ainsi 2,5kWh d’EP (énergie primaire) pour produire 1kWh d’énergie électrique en Europe.

Le rendement comptabilisé en énergie primaire tombe donc à 2,5kWh d’EP pour 2 à 3,5kWh thermiques. Soit un rendement global équivalent de 1 à 1,4. On sait par ailleurs qu’un kWh de gaz (=1 kWh d’EP) utilisé dans une bonne chaudière produit également ±1kWh d’énergie thermique.

Les PAC voient également leur rendement baisser fortement quand les températures baissent sous les 6-7 degrés en raison des principes de la thermodynamique (cycle de Carnot) mais également de la nécessité d’actionner le dégivrage des éléments extérieurs. Cette baisse de rendement rend souvent nécessaire d’y adjoindre une petite chaudière au gaz.

Bon à savoir : si, avec un kWh d’électricité, nous pouvons obtenir 2 à 3,5 kWh thermique avec une PAC, il faudra 2 à 3,5 kWh de gaz pour produire la même énergie thermique avec une chaudière. Là encore, économiquement, le gaz étant 2 à 4 fois moins cher que l’électricité, le gain économique lié au choix de la PAC n’est pas des plus évident.

Organes de détente


Principe de fonctionnement

La différence de pression entre le condenseur et l’évaporateur nécessite d’insérer un dispositif « abaisseur de pression » dans le circuit d’une pompe à chaleur. C’est le rôle du détendeur, qui va donc abaisser la pression du fluide frigorigène sortant du condenseur à l’aide d’un dispositif d’étranglement. Le fluide frigorigène se vaporise partiellement dans le détendeur pour abaisser sa température. Le détendeur alimente ensuite l’évaporateur en fluide frigorigène en modulant son débit.

La détente se produit sans échange de chaleur ou de travail avec le milieu extérieur.

Un mauvais contrôle de la quantité de fluide frigorigène admise dans l’évaporateur, entraîne les conséquences suivantes :

  • Trop peu de fluide frigorigène : il est immédiatement évaporé et il continue à se réchauffer. C’est l’effet de surchauffe. L’efficacité de l’évaporateur diminue.
  • Trop de fluide injecté : l’excès de fluide n’est pas évaporé par manque de chaleur disponible. Une partie du fluide reste liquide et est aspirée par le compresseur. Celui-ci peut alors être sérieusement endommagé (coup de liquide).

Le détendeur thermostatique

C’est le dispositif le plus fréquemment utilisé dans les pompes à chaleur. Le détendeur thermostatique, qui fonctionne de façon automatique, est un corps de vanne qui règle le débit du fluide réfrigérant de façon à maintenir constante la surchauffe des gaz qui viennent de l’évaporateur.

Schéma détendeur thermostatique.

Le corps de vanne est muni d’un orifice fixe et d’un pointeau mobile. La position du pointeau est contrôlée à partir d’un ensemble composé d’une membrane (4), d’un train thermostatique dont la pression interne est fonction de la température du bulbe (= la sonde) (3) et d’un ressort, dont la force d’appui sur la membrane est contrôlée par une vis de réglage (5). Si la charge thermique de l’évaporateur augmente, la sonde détectera une montée de température, agira sur la membrane et le pointeau s’ouvrira afin d’augmenter le débit de réfrigérant (1) jusqu’à obtention de la même surchauffe des vapeurs. D’un côté du soufflet règne la pression d’évaporation (amont ou aval de l’évaporateur suivant l’existence ou non d’une égalisation de pression) ; de l’autre côté du soufflet règne la pression de saturation correspondant à la température du bulbe.

Il existe deux classes de détendeurs thermostatiques : les détendeurs thermostatiques à égalisation interne de pression et les détendeurs thermostatiques à égalisation externe de pression.

  1. Dans le premier cas, les forces agissant sur le pointeau de détente sont d’une part la pression du train thermostatique et, d’autre part, la pression exercée par le ressort de réglage et la pression d’évaporation à l’entrée de l’évaporateur (prise à l’intérieur du détendeur). Ce type de détendeur est bien adapté lorsque la perte de charge entre l’aval du détendeur et la sortie de l’évaporateur est faible, ce qui est le cas la plupart du temps, des pompes à chaleur de faible puissance dont l’évaporateur est équipé d’un ou de deux circuits sans distributeur de liquide.
  2. Dans le second cas, les forces agissant sur le pointeau de détente sont d’une part la pression du train thermostatique et, d’autre part, la pression exercée par le ressort de réglage et la pression d’évaporation à la sortie de l’évaporateur. Cette pression aval est transmise dans un compartiment du détendeur par l’intermédiaire d’une tuyauterie d’égalisation de pression dont le raccordement est effectué à la sortie de l’évaporateur, et de préférence après le bulbe pour éviter d’influencer celui-ci par la turbulence locale occasionnée par le piquage. La perte de charge occasionnée par le distributeur de liquide et l’évaporateur n’intervient pas sur l’ouverture ou la fermeture du pointeau. Seule la surchauffe à la sortie de l’évaporateur agit sur le pointeau.

L’utilisation de ce type de détendeur présente l’inconvénient de ne pas avoir un temps de réponse instantané. Les avantages sont :

  • Une grande fiabilité.
  • Les détendeurs thermostatiques permettent d’adapter au mieux l’alimentation de l’évaporateur en fluide frigorigène, quelle que soit la charge thermique de celui-ci.
  • Certains détendeurs thermostatiques à égalisation de pression peuvent fonctionner dans les deux sens, évitant un second détendeur et les clapets dans les pompes à chaleur réversibles.

Le capillaire de détente

Ce type d’organe de détente, qui est non-automatique, est utilisé dans les petits matériels de série. On se contente, comme dispositif de réglage, d’un étranglement dans la conduite du fluide frigorigène avant l’évaporateur. L’étranglement est assuré par un tube capillaire de très faible diamètre dans lequel la détente du fluide est obtenue par la perte de charge dans le tube. La longueur et le diamètre du tube capillaire sont déterminés par le constructeur.

Le capillaire de détente n’interrompt jamais la communication entre le condenseur et l’évaporateur. Pendant l’arrêt du compresseur, rien ne s’oppose donc à ce que le fluide frigorigène s’écoule du condenseur (où il est sous haute pression) vers l’évaporateur.

Le capillaire ne permet aucun réglage de la détente, ce qui peut être un inconvénient. D’un autre côté, il ne permet aucun déréglage de la détente dans le temps, ce qui est un avantage. Le circuit doit être soigneusement déshydraté sinon le capillaire se bouche. De plus, il faut éviter l’utilisation d’une bouteille accumulatrice de liquide afin de ne pas remplir exagérément l’évaporateur durant l’arrêt du compresseur. La charge en frigorigène du circuit doit donc être relativement limitée, ce qui nécessite une recherche particulièrement soignée des fuites. En ce qui concerne les avantages de ce système, on remarque que l’équilibre de pression qui s’établit entre la haute pression et la basse pression pendant l’arrêt du compresseur permet un démarrage plus facile de celui-ci. De plus, le temps de réponse de la détente est instantané.


Le détendeur thermostatique.

Deux techniques existent :

  • Le détendeur avec moteur à impulsion : le temps d’ouverture détermine la surchauffe.
  • Le détendeur avec moteur pas à pas : le degré d’ouverture permet une alimentation correcte de l’évaporateur.

Schéma détendeur thermostatique

Le détendeur électronique fonctionne sur le même principe que le détendeur thermostatique mais il permet un réglage plus précis de l’injection à l’évaporateur. Une surchauffe plus faible sera nécessaire et le rendement de la pompe à chaleur reste ainsi optimal à tous les régimes. La température d’évaporation remontera de 2 à 3 K, ce qui diminuera la consommation du compresseur.

Il se compose d’une sonde de température (placée à la sortie de l’évaporateur contrôlant la surchauffe des gaz), d’une sonde de pression d’évaporation et d’une carte électronique dont le rôle est d’analyser ces valeurs et d’agir en conséquence sur une vanne de détente motorisée (moteur pas à pas à 2 500 positions) ou séquentielle.

Le système s’adapte à tous les fluides frigorigènes et, pour passer d’un fluide à l’autre, il suffit de modifier le paramétrage de la corrélation pression/température du fluide en ébullition. La vanne de détente peut se fermer en période d’arrêt et jouer ainsi le rôle d’une vanne magnétique de départ liquide.

Les systèmes avec vanne de détente séquentielle posent quelquefois des problèmes de tenue mécanique des évaporateurs à faible inertie (coup de bélier).


L’orifice calibré

Cet organe de détente est composé d’un orifice calibré réalisé dans un corps mobile coulissant. Son fonctionnement comme détendeur s’apparente à un tube capillaire associé à un clapet de retenue autorisant le passage du liquide en sens inverse. Lorsque le fluide frigorigène circule dans un sens, il joue le rôle d’organe de détente grâce à l’orifice calibré. Dans l’autre sens, le corps mobile coulisse, dévoilant des rainures permettant de laisser passer le fluide liquide sans détente.

Les autres détendeurs

D’autres détendeurs de PAC existent ; ils sont brièvement expliqués sur cette page-ci.

Évaporateurs [PAC]

Évaporateurs [PAC]


Les évaporateurs à air

Photo évaporateurs à air.

Ce type d’évaporateurs s’utilise lorsque la source froide est… l’air.

Le fluide frigorigène circule dans un tube qui traverse de nombreuses ailettes d’aluminium (en général rectangulaires, mais aussi parfois circulaires ou hélicoïdales). Les tubes sont disposés en série, formant une nappe, et les différentes nappes sont associées en parallèle. On peut avoir deux configurations des tubes en ce qui concerne l’alimentation en fluide frigorigène :

  • Soit, les nappes sont assemblées en parallèle à l’entrée et à la sortie de l’évaporateur. Le collecteur d’entrée est alors alimenté par le détendeur.
  • Soit, les nappes sont assemblées en parallèle seulement à la sortie. Le détendeur est alors un capillaire d’alimentation et il y a un distributeur de liquide à l’entrée de l’évaporateur. Ce dernier répartit le fluide en quantités égales dans chacun des circuits. La sortie de chaque circuit aboutit au collecteur d’aspiration.

Dans ces évaporateurs, il peut y avoir de la ventilation (c’est-à-dire de la convection forcée) ou de la convection naturelle. Les ailettes alimentées par ventilation seront très rapprochées les unes des autres, les ailettes alimentées par convection naturelle seront très espacées.

En pratique, l’on procède souvent à une filtration de l’air avant l’évaporateur. Le ventilateur peut être de type centrifuge ou hélicoïdal.

Condensation et givre

Lorsque la température des parois extérieures de l’évaporateur devient inférieure à la température de rosée de l’air, il se produit le phénomène de condensation ou de givrage sur l’évaporateur (condensation si la température de paroi est supérieure à 0 °C et givrage si non). Une chaleur latente, résultant de l’apparition d’eau ou de glace, s’ajoute à la chaleur sensible captée sur l’air. Ceci influence directement les échanges thermiques.

Au fur et à mesure qu’il se forme, le givre a pour effet de produire une isolation thermique de l’évaporateur conduisant à une chute du coefficient d’échange thermique. Il contribue également à la diminution du passage d’air, conduisant à une augmentation de la perte de charge côté air et par suite à une diminution du débit d’air. On cherchera donc à éliminer le givre.

La condensation a pour effet de mouiller l’évaporateur. Il convient d’éliminer l’eau condensée et d’éviter son entraînement dans les circuits d’air. On choisira donc des vitesses de passage d’air inférieures à 3 m/s.
Dans certains cas de refroidissement, il ne se produit ni givrage ni condensation, et ce, même lorsque la température de paroi est négative.


Les évaporateurs à eau ou à eau glycolée

Les différents évaporateurs à eau qui existent sont listés dans cette section. Pour comprendre les notions d’évaporateurs à surchauffe ou noyés, cliquer ici !.

Évaporateurs coaxiaux en spirale (ou évaporateurs double tube) = Évaporateurs à surchauffe

Dans ces évaporateurs, deux tubes de cuivre coaxiaux sont enroulés en spirale. Le fluide frigorigène qui se vaporise circule dans le plus petit tube (le tube intérieur) et le fluide caloporteur (eau glycolée) circule à contre-courant dans l’espace annulaire entre les deux tubes.

Ces évaporateurs présentent des difficultés d’entretien et il faut utiliser de l’eau propre non entartrante.

Évaporateurs à plaques brasées = Évaporateurs à surchauffe

Photo évaporateurs à plaques brasées.

Ils se composent d’une série de plaques d’acier inoxydable assemblées par brasure (= avec un métal d’apport). L’eau glycolée et le fluide frigorigène en évaporation circulent à contre-courant de chaque côté de ces plaques.

La conception de ces échangeurs favorise des coefficients d’échange thermique très élevés avec une différence de température très faible entre les deux fluides. Ceci en fait des appareils très performants et compacts, en plus d’être robustes. Un autre avantage est les pertes de charge sur l’eau qui sont en général assez faibles. Ces évaporateurs sont aussi suffisamment étanches pour permettre l’utilisation de fluides frigorigènes.

La petite taille des canaux facilite cependant l’encrassement. Les circuits doivent donc être très propres ou alors on peut prévoir des filtres à l’entrée de l’eau glycolée dans l’évaporateur. Un autre inconvénient est la non-résistance au gel de ces échangeurs. De l’antigel doit donc être présent en quantité suffisante et de façon homogène dans les circuits de capteurs enterrés.

Évaporateurs multitubulaires = Évaporateurs à surchauffe ou noyés

Photo évaporateurs multitubulaires.

  • Les évaporateurs multitubulaires noyés sont constitués d’un faisceau de tubes métallique soudé sur des plaques à l’intérieur d’un corps cylindrique en acier. L’eau de la source froide circule dans les tubes intérieurs et le fluide frigorigène s’évapore dans le corps principal à l’extérieur des tubes. Il y a un séparateur de gouttelettes dans l’évaporateur pour éviter les entraînements de liquide vers le compresseur. Malgré cela, il faut en plus prévoir une bouteille anti-coups de liquide pour protéger le compresseur. Ces évaporateurs présentent un autre problème : celui de piéger l’huile de lubrification (si elle est présente dans l’installation).
  • Les évaporateurs multitubulaires à surchauffe sont aussi appelés évaporateurs à épingles (à cause de la forme du faisceau tubulaire) ou évaporateur Dry-Ex. Ici le fluide frigorigène circule dans les tubes, à l’inverse de l’évaporateur multitubulaire noyé. Les tubes sont en général munis d’ailettes intérieures afin d’augmenter la surface d’échange. L’évaporateur est alimenté par un détendeur thermostatique, qui permet d’adapter le débit de fluide frigorigène entrant dans l’évaporateur et donc de contrôler la surchauffe des vapeurs. Cet évaporateur ne montre pas de problème de piégeage d’huile, car elle se dirige vers le carter du compresseur si elle est entraînée par le fluide frigorigène.

Évaporateurs à serpentin = Évaporateurs noyés

Dans ce cas, les tubes (le plus souvent en cuivre) de l’évaporateur sont noyés dans un réservoir d’eau (de nappe phréatique, d’étang, etc.). Ils sont enroulés en spirale ou suivant la forme du bac. L’eau pénètre dans le réservoir et peut déborder. Cette technique permet d’éviter les problèmes de gel car la glace se forme autour des tubes sans dégrader l’évaporateur.

Ce type d’évaporateur, facilement nettoyable, autorise l’usage d’eau de mauvaise qualité sur le plan de la propreté (sable, débris de feuilles,…). Par contre, les coefficients d’échange thermique sont assez faibles, ce qui nécessite de grandes longueurs de tubes et conduit à un encombrement important.

Condenseurs [Chauffage, PAC]

Condenseurs [Chauffage, PAC]


Le principe de fonctionnement du condenseur

Le condensation du fluide frigorigène transmet la chaleur à l’environnement à chauffer.

Trois phases se succèdent le long d’un échangeur de chaleur à contre-courant (le fluide frigorigène et le fluide à chauffer vont dans des sens opposés) : la désurchauffe, la condensation proprement dite et le sous-refroidissement.

  1. Pendant la désurchauffe, le fluide frigorigène à l’état de vapeur qui vient du compresseur se refroidit à pression constante en cédant de sa chaleur sensible au fluide extérieur.
  2. La condensation commence quand la première goutte de liquide frigorigène apparaît, et se produit à pression et température constantes. Lors de cette phase, les vapeurs qui se condensent cèdent leur chaleur latente de condensation au fluide extérieur qui se réchauffe.
  3. Lorsque toute la vapeur a été condensée, le liquide frigorigène va se sous-refroidir à pression constante en cédant de nouveau de la chaleur sensible au fluide extérieur.

Cependant, en pratique, les trois phases coexistent dans une même section de l’échangeur de chaleur. Le fluide frigorigène circule dans un tube en contact avec l’eau ou l’air. La partie du fluide frigorigène qui touche le tube est liquide et se sous-refroidit. Le fluide qui est en contact avec ce liquide condense à son tour. Le gaz frigorigène qui est au centre du tube désurchauffe simplement.

En résumé, la quantité de chaleur évacuée au condenseur comprend la chaleur sensible de la vapeur surchauffée, la chaleur latente de condensation du fluide frigorigène et la chaleur sensible de sous-refroidissement du liquide frigorigène.


Les condenseurs à air

On utilise ce type de condenseur lorsque le fluide extérieur à chauffer est de l’air. On se trouve alors dans le cas d’une pompe à chaleur air/air ou eau/air.

Le condenseur à air le plus couramment utilisé comprend des tubes à ailettes, un ventilateur centrifuge de brassage d’air et un filtre. Les tubes sont reliés parallèlement les uns aux autres entre deux collecteurs. Un de ces collecteurs alimente les tubes en vapeur frigorigène surchauffée, l’autre évacue le liquide.


Les condenseurs à eau

Dans ce cas la source chaude est de l’eau. On distingue quatre types de condenseurs à eau :

  • Les condenseurs à serpentins : Le serpentin en cuivre forme une spirale à l’intérieur d’une enveloppe d’acier soudé. L’eau de la source chaude circule dans le serpentin et le fluide frigorigène dans l’enveloppe d’acier. Le fluide frigorigène se condense dans l’enveloppe au contact de la surface du serpentin.
  • Les condenseurs à tubes coaxiaux : Les tubes concentriques en cuivre sont enroulés ensemble en forme de spirale. L’eau circule dans le tube intérieur et le fluide frigorigène se condense à l’extérieur.
  • Les condenseurs à plaques brasées : Cet échangeur se compose de plaques en acier inoxydable assemblées par brasage. Le fluide frigorigène en condensation circule dans une plaque sur deux, et l’eau à réchauffer dans les autres plaques.

  • Les condenseurs multitubulaires.

Un grand nombre de tubes, dans lequel circule l’eau à chauffer, sont placés à l’intérieur d’un anneau. La condensation du fluide frigorigène s’effectue sur la surface extérieure des tubes, à l’intérieur de l’enveloppe. À chaque extrémité de l’anneau se trouvent des boîtes à eau qui distribuent l’eau en série et parallèle dans les divers tubes. Les tubes sont souvent équipés de petites ailettes afin d’augmenter le coefficient d’échange thermique.

Compresseurs

Auteur : Manouane Dubois, relecture Laurent Georges

Mise en page – Sylvie (08.2010)

  • Titres page, navigation, titres normal
  • Antidote
  • Test liens
  • Mise en page globale : listes, tableaux, typographie, images, …

Les compresseurs volumétriques à pistons

Dans les compresseurs volumétriques à pistons, les vapeurs de fluide frigorigène sont comprimées à l’aide du mouvement alternatif de pistons dans des cylindres. Ces derniers sont pourvus de clapets d’aspiration et de refoulement. En plus de ces éléments, le compresseur se compose :

  • d’un excentrique, qui sert à transformer un mouvement circulaire en un mouvement rectiligne alternatif,
  • d’un carter, qui contient le moteur d’entraînement électrique et qui forme la réserve d’huile de graissage (car le compresseur a besoin d’être constamment lubrifié),
  • d’une pompe à huile, qui assure la distribution de l’huile aux paliers et bielles.

Quelques remarques sur les compresseurs à pistons :

  • Les gaz aspirés pénètrent dans le compresseur généralement à la partie haute du moteur électrique, évitant ainsi l’introduction de liquide frigorigène dans les cylindres en cas de fonctionnement anormal de l’installation. Le refoulement est effectué au travers d’une tuyauterie souple brasée à l’enveloppe.
  • Le compresseur à piston est très sensible à l’arrivée de fluide liquide : si quelques gouttes de liquide pénètrent au niveau des soupapes, elles en provoquent une usure lente. Si du fluide liquide pénètre en grande quantité, la destruction des clapets est immédiate. Il faut donc des protections anti-coups de liquide (ressort puissant sur le chapeau de cylindre, capable de se soulever en cas d’arrivée de liquide). Le carter joue aussi en quelque sorte un rôle analogue à celui d’une bouteille anti-coup de liquide, mais sa capacité est très limitée en volume et le rôle protecteur ne sera réel que pour de faibles admissions de liquide à l’aspiration.
  • Le fluide frigorigène et bien sûr l’huile de lubrification doivent être compatibles avec les matériaux qui composent le moteur.
  • La vitesse de rotation du moteur d’entraînement est de 3000 tours/min la plupart du temps, pour des raisons d’encombrement et de coût de fabrication. Certaines rares séries sont cependant encore réalisées avec des moteurs dont la vitesse de rotation est de 1500 tours/min.
  • Le moteur électrique est alimenté par des fils reliés à des bornes étanches.

Les compresseurs volumétriques à pistons sont de trois types :

  • hermétique  : le moteur et le compresseur sont situés à l’intérieur d’une cloche et ne sont pas accessibles. Ils sont généralement supportés par des ressorts pour éviter la transmission des vibrations. Le nombre de cylindres varie entre 1 et 4 suivant la puissance désirée (un seul cylindre entre 0 et 2 kW, 2 cylindres entre 2 et 5,5 kW et 4 cylindres entre 5,5 et 15 kW).

  • semi-hermétique : le moteur est accolé au compresseur et certaines parties du compresseur peuvent être démontées pour une réparation ou un entretien. Une des extrémités de l’arbre du vilebrequin porte le rotor du moteur qui entraîne le compresseur. Le moteur est refroidi en grande partie par le fluide frigorigène aspiré par le compresseur, mais aussi parfois par un ventilateur ou un serpentin d’eau enroulé autour du moteur. Le nombre de cylindres varie entre 1 et 16 et ils sont disposés en ligne, en V, en W ou en étoile. La puissance est réglée par mise hors service de certains cylindres ou par changement de régime du moteur d’entraînement.

  • ouvert : le compresseur est accouplé au moteur soit simplement en bout d’arbre par un manchon d’accouplement, ou bien à l’aide de poulies et courroies. Le nombre de cylindres varie entre 1 et 16 et ils peuvent être disposés en ligne, en V, en W ou en étoile. La vitesse de rotation est ajustable par exemple en changeant la poulie du moteur, en arrêtant certains cylindres ou en changeant le régime de fonctionnement du moteur.

Le compresseur volumétrique hermétique spiro-orbital (Scroll)

Un compresseur Scroll comprime un gaz en continu en faisant tourner une partie mobile en forme de spirale autour d’une autre spirale fixe identique à la première. Ces deux spirales sont déphasées de 180°. Elles forment plusieurs volumes qui se créent à l’aspiration, se réduisent progressivement au fur et à mesure du déplacement orbital de la spirale mobile pour déboucher vers l’orifice de refoulement central.

   

Le type de compresseur ne nécessite pas de clapets d’aspiration et de refoulement, mais un clapet existe cependant afin d’éviter l’équilibrage des pressions haute et basse au moment de l’arrêt et la rotation en sens inverse de la spirale mobile.
Le moteur d’entraînement est situé à l’intérieur du carter. L’huile de lubrification se trouve en fond de carter et est envoyée par pompage vers les pièces mobiles.
Les compresseurs Scroll encaissent facilement les coups de liquide à l’aspiration par désolidarisation radiale des deux spirales. Ceci est un avantage important pour les systèmes à inversion de cycle.
Pour les applications en pompe à chaleur à haute température, il est possible d’effectuer une injection de liquide intermédiaire au milieu des spirales dans le but d’abaisser la température de refoulement et d’augmenter la puissance et le COP.
Diverses méthodes de régulation de vitesse sont possibles :

  • Régulation « tout ou rien ».
  • Régulation par moteur à 2 vitesses.
  • Régulation par variateur de vitesse
Attention : en cas de rotation en sens contraire, il n’y a pas de compression et un bruit insolite avertit le technicien !

Le compresseur volumétrique à vis

Ces compresseurs peuvent comporter une ou deux vis et être du type semi-hermétique ou ouvert.

Compresseur à vis mono-rotor.

Le compresseur à vis bi-rotor est constitué de deux rotors à dentures hélicoïdales (un rotor mâle et un rotor femelle) tournants à grande vitesse. Le rotor mâle est entraîné par le moteur et entraîne à sa suite le rotor femelle.

Les deux rotors à dentures hélicoïdales d’un compresseur à vis.

Le volume du gaz frigorigène est réduit progressivement par la rotation qui provoque l’insertion des lobes du rotor mâle dans le rotor femelle. Quatre phases se succèdent lors de la compression du gaz frigorigène :

  • L’aspiration.
  • Le transfert : les dentures emprisonnent le gaz aspiré.
  • La compression : le gaz diminue de volume à cause de la rotation des dentures et est ainsi comprimé.
  • Le refoulement : le gaz s’échappe par l’orifice de refoulement lorsqu’il est découvert pendant la rotation.

Les variations de puissance s’obtiennent dans les grosses machines par l’action d’un « tiroir » qui décide de l’utilisation d’une plus ou moins grande longueur de vis dans la compression des gaz, et donc induit un plus ou moins grand taux de compression. Dans les petites machines (toujours très grandes comparées à des compresseurs à pistons), la modulation de puissance s’obtient par variation de la vitesse de rotation ou par utilisation de ports d’aspiration auxiliaires, soit par les deux.
Le compresseur à vis doit être abondamment lubrifié pour assurer l’étanchéité entre les pièces en mouvement et pour réduire le niveau sonore, mais aussi pour refroidir le fluide frigorigène. On peut alors atteindre des taux de compression élevés (jusqu’à 20) sans altérer le fluide frigorigène. Le circuit de graissage comprend un déshuileur, un réservoir d’huile, un refroidisseur d’huile et une pompe à huile.
Quelques caractéristiques des compresseurs à vis ouverts :

  • La garniture d’étanchéité au passage de l’arbre est indispensable.
  • Quelquefois (pour les plus gros compresseurs), les moteurs sont pourvus d’un refroidissement hydraulique permettant de récupérer également de la chaleur sur le circuit d’eau.

Dans la version semi-hermétique, le moteur électrique est accouplé directement sur l’arbre du rotor mâle, côté flasque de refoulement, et fait corps avec le compresseur. Le refroidissement du moteur est obtenu directement par les gaz de refoulement qui le traversent en totalité avant de pénétrer dans le séparateur d’huile.

> Pour connaître les avantages/inconvénients des compresseurs à vis, cliquer ici !

Le compresseur volumétrique rotatif

On rencontre deux technologies :

  • le compresseur rotatif à piston roulant,
  • le compresseur rotatif à palettes.

Compresseur rotatif à piston roulant et compresseur rotatif à palettes.

Dans les deux cas, un stator cylindrique renferme un rotor excentré par rapport à l’axe du stator. Un volume en forme de croissant est piégé. Du fluide frigorigène y est introduit (aspiration) et la rotation du rotor va comprimer cet espace jusqu’à atteindre la pression souhaitée (refoulement).
Les puissances frigorifiques atteignent 10 kW. Ils sont essentiellement utilisés pour les climatiseurs individuels et les petits refroidisseurs de liquide.

Le compresseur centrifuge

Les appareils centrifuges utilisés en pompes à chaleur dérivent des groupes centrifuges de production d’eau glacée. Ce sont tous des appareils du type eau/eau. Ils ne diffèrent des groupes à eau glacée que par leur régulation.
Les compresseurs centrifuges sont munis de roues qui tournent à grande vitesse, elles-mêmes pourvues d’aubages. L’entraînement est réalisé par un moteur électrique en version semi-hermétique ou par un autre type de moteur en version ouverte. L’énergie cinétique centrifuge est transformée en énergie de pression dans les roues et les aubages et cela comprime le gaz frigorigène. La première roue est précédée d’aubages de prérotation en acier inoxydable qui permettent de :

  • réguler la machine pour que la production calorifique corresponde aux besoins réels ;
  • donner aux gaz arrivant sur les aubes de la roue un angle d’attaque favorable ;
  • assurer un étranglement à l’aspiration.
Le corps du compresseur est réalisé soit en fonte spéciale étanche, soit en acier soudé, soit en alliage léger. Il comprend la buse d’aspiration convergente, les diffuseurs radiaux placés à la périphérie des roues, ainsi que le multiplicateur de vitesse éventuel. Les roues du rotor sont munies d’ailettes (en acier soudé ou en alliage léger coulé et usiné) qui sont couchées vers l’arrière. L’arbre du rotor est réalisé en fer forgé, il comporte sur son extrémité sortante une garniture d’étanchéité (cas uniquement du compresseur centrifuge type ouvert) et des paliers lisses.

Les organes à graisser sont les paliers, la butée et éventuellement le multiplicateur et la garniture d’étanchéité. Le dispositif de graissage se compose d’une pompe à engrenages ou à palettes, d’un réchauffeur électrique et d’un échangeur refroidisseur huile/eau. Il comporte aussi un dispositif de compensation de la poussée axiale.

Les variations de puissance s’obtiennent par réglage des vantelles à l’ouïe d’aspiration de la turbine. À faible charge, ils sont cependant plus délicats que les compresseurs à pistons. En effet, par faible débit, un phénomène de pompage apparaît : le débit oscille entre un débit nul et débit maximal, l’écoulement devient pulsatoire et engendre des vibrations qui peuvent endommager le compresseur. Les frais de réparation sont élevés. Les constructeurs prévoient généralement une mesure de sauvegarde de l’appareil par injection de gaz chauds. Ce n’est certainement pas une technique énergétiquement intéressante puisque la puissance absorbée reste constante. On évitera donc le surdimensionnement des équipements.
isolants écologiques dans le cadre d'une rénovation

Isolants biosourcés

Date :

  • Janvier 2009

Auteur :

  • B.J., corrigé par Arnaud Evrard et Sophie Trachte

Notes :

  • Conforme à la mode PEB août 2008
  • En attente des droits de publications des photos issues du livre de Oliva.
  • 26-03-2009 : Application des nouveaux styles de mise en page. Julien.

Source :

  • IBGE, Infos fiches-éco-construction, Mat05, Isolation thermique : Choisir des matériaux sains et écologiques. Consultable dans la farde ENERGIE+\2008\ISOLATION1
  • Réseau éco-consommation, fiche n°79, Les matériaux d’isolation : les connaître pour bien les choisir. Consultable dans la farde ENERGIE+\2008\ISOLATION1
  • Une isolation plus saine, conseil et fiches matériaux, de www.pie.dromenet.org. Consultable dans la farde ENERGIE+\2008\ISOLATION1

Antidote :

  • Oui

Photo : Aline Branders.

Pour s’inscrire dans une démarche d’éco-construction, il est nécessaire de ne pas choisir un isolant uniquement sur base de ses propriétés thermiques, techniques et économiques.
Il y a lieu d’évaluer son impact environnemental (et sur la santé) tout au long de sa vie :

  • en tenant compte de l’énergie grise (renouvelable et non renouvelable) consommée sur l’ensemble de son cycle de vie (traitement en fin de vie inclus) ;
  • en tenant compte des différentes émissions (gaz à effet de serre, gaz acidifiant, gaz à formation d’ozone…) sur l’ensemble du cycle de vie, qui auront un impact sur l’environnement et la santé ;
  • en tenant compte des matières premières et de l’eau consommée ;
  • en tenant compte des substances nocives utilisées lors de la fabrication et pendant la mise en œuvre (solvants, COV…) ;
  • en estimant les émissions de composés organiques volatiles (COV), formaldéhydes et autres produits nocifs durant sa vie en œuvre ;
  • en appréciant les possibilités de recyclage pour la phase de déconstruction.

La prise en compte de tous ces paramètres conduit à l’utilisation d’isolants dits « écologiques ». Nous parlerons dans la suite de cet article plus particulièrement des isolants dits « biosourcés », c’est-à-dire d’origine végétale ou animale.

Origines, traitements, transformations, domaines d’application et spécificités de chacun des isolants permettront d’approcher la notion de développement durable dans le bâtiment. Nous y verrons les isolants suivants :

  • Isolants à base de cellulose
  • Isolants sous forme de laine d’origine végétale ou animale
  • Isolants à base de fibre de bois
  • Isolants à base de liège
  • Isolants à base de chanvre
  • Isolants à base de paille
  • Isolants à base de textile recyclé

Ils seront passés en revue afin de donner un aperçu des avantages et inconvénients à prendre en compte dans le choix de l’isolant.

De l’approche classique à l’éco-construction

Certaines lignes directrices simples, énoncées dans le tableau suivant, permettent d’évoluer vers une démarche éco-constructive en partant d’une approche tout à fait classique.

Déconseillé Les isolants minces réfléchissants. Ces isolants sont difficiles à mettre en œuvre, leurs performances  sont réduites et il est très difficile de les recycler (assemblage de plusieurs matériaux)
Minimum Éviter les isolants synthétiques (mousses de polyuréthane, de polystyrène…) autant que possible. Dans les situations où ces isolants ne s’imposent pas, leur préférer les laines végétales et animales, les laines minérales, ou le verre cellulaire.
Conseillé Choisir des matériaux naturels à la place des matériaux courants : laines végétales ou animales et isolants à base de cellulose, de liège, de chanvre ou d’autres sources renouvelables…

Mais attention, beaucoup de ces isolants ne possèdent pas d’agrément technique belge ou européen

Tableau inspiré de la fiche « Matériaux d’isolation thermique : Choisir des matériaux sains, avec un écobilan favorable » de l’IBGE.

Les types d’isolants biosourcés classiques

Isolants à base de cellulose

Isolants à base de papier ou journal recyclé, leur conductivité est comparable à celle des laines minérales. Ce matériau possède la caractéristique de pouvoir absorber la vapeur d’eau et permet ainsi de réguler l’humidité. Son absorption acoustique est excellente.

Les flocons de cellulose sont soufflés sous pression soit dans des caissons fermés soit sur des surfaces horizontales. Certains critères ont été définis afin de garantir le non-tassement ultérieur des flocons dans les caissons.

Ces isolants à base de cellulose existent aussi sous forme de panneaux semi-rigides ou flexibles. Ils sont utilisés pour l’isolation des sols, des toitures, des cloisons légères et des murs à ossature bois.Bien qu’elle constitue un bon rempart contre l’humidité, l’ouate de cellulose n’est pas résistante au feu ! Par conséquent, un traitement chimique nécessaire dévalorise sa valeur écoresponsable. En effet, afin de protéger cet isolant des attaques d’insectes, de champignons ou du feu, un traitement au sel de bore est nécessaire. Aussi, si vous privilégiez ce type d’isolant, prenez soin de vous poser des questions relatives à la provenance et à la teneur en résidus d’encre dans l’ouate de cellulose afin d’anticiper les odeurs désagréables sur le long terme. Enfin, insufflée, elle provoque beaucoup de poussières et implique l’utilisation d’équipements de protection adéquats.

     

Panneaux de cellulose (doc. Homatherm) et flocons de cellulose humidifiés et projetés.

Jean-Pierre Oliva , L’isolation écologique, conception, matériaux, mise en œuvre, éditions Terre vivante, 2001.

Isolants sous forme de laine d’origine végétale ou animale

Il existe de nombreux types de laine végétale ou animale disponibles en vrac, en feutre fin,  en rouleaux ou en panneaux semi-rigides. On trouve par exemple des laines en fibre de coco, de lin, de chanvre, de bois ou en mouton. Certains de ces isolants reçoivent un traitement au sel de bore qui les protège des attaques d’insectes, des champignons et du feu.
Ils possèdent la capacité d’absorber et de restituer l’humidité (la laine de mouton peut absorber jusqu’à 33% de son poids en eau((Les matériaux biosourcés dans le bâtiment, FFB, novembre 2015))), remplissant ainsi la fonction de régulateur d’humidité.

Son domaine d’application est l’isolation des murs, des combles et des rampants de toiture. Sa version conditionnée sous forme d’écheveaux sert à l’isolation de gaines et de tuyaux, mais également de calfeutrement. Sous forme de panneaux ou rouleaux, elle se pose de façon classique. Seul le soufflage de la laine en vrac demande l’intervention d’un professionnel spécialisé.

De par leur caractère fibreux, ces isolants possèdent aussi de très bonnes caractéristiques acoustiques. En plus de ses vertus d’isolant acoustique, elle est difficilement inflammable, ne dégage pas de gaz toxiques en cas d’incendie et est une ressource renouvelable.

En termes d’inconvénients, certains de ces isolants reçoivent, tout comme la cellulose, un traitement au sel de bore qui les protège des attaques d’insectes, des champignons et du feu. De plus, même si la laine (de type animale) subit un lavage et un pressage, elle pourrait, après sa pose, dégager une odeur désagréable.

Laine de lin en vrac, laine de lin en rouleaux et laine de lin en panneaux (doc. Textinap).

Laine de chanvre en rouleaux (doc. LCDA) et laine de chanvre en panneaux semi-rigides (doc. Haga).

Noix de coco sciée et panneaux et rouleaux de laine de coco (doc. EMFA).

Jean-Pierre Oliva , L’isolation écologique, conception, matériaux, mise en œuvre, éditions Terre vivante, 2001.

Isolants à base de fibre de bois

Les panneaux de fibre de bois sont fabriqués à partir de déchets de scierie.

Après son sciage, le bois peut :

  • se transformer directement en matériaux pour structures portantes et bardages
  • être broyé ou défibré pour servir à la production de copeaux en vrac ou de fibre de bois pour la confection de la laine isolante
  • être déroulé, tranché et lié afin de servir à la fabrication de panneaux isolants solides pour la construction.

Les panneaux sont perméables à la vapeur, ils complètent très bien les autres isolants.

Son domaine d’application concerne principalement l’isolation thermique intérieure et extérieure de murs, combles et rampants de toiture lorsqu’il est sous forme de laine ou de fibres utilisées en partie aussi pour leurs qualités acoustiques.

Lorsque plusieurs panneaux sont collés ensemble pour obtenir une plus grosse épaisseur d’isolant, de la colle est utilisée, ce qui dévalorise son caractère écologique. Le bois peut aussi servir d’isolant sous son format en vrac, mais va alors nécessiter un traitement chimique préventif, fongicide et insecticide((Les matériaux biosourcés dans le bâtiment, FFB, novembre 2015)).

Panneaux de bois feutré (doc. Pavatex).

Jean-Pierre Oliva , L’isolation écologique, conception, matériaux, mise en œuvre, éditions Terre vivante, 2001.

Isolants à base de liège

Cet isolant est extrait des écorces des chênes-liège ou du recyclage de bouchons, le liège est broyé pour former des granulats de liège en vrac, puis assemblé pour la fabrication de panneaux et de rouleaux qui nécessitent l’intervention d’un liant chimique.

Les panneaux en liège constituent une alternative écologique idéale pour l’isolation

  • des planchers
  • des murs par l’intérieur ou l’extérieur
  • des combles perdus
  • des rampants de toiture.

Tout comme le bois, les avantages en termes d’isolation thermique et acoustique sont incontestables. Ajoutons son imputrescibilité, cet isolant est également difficile inflammable.

Du point de vue des inconvénients, certains panneaux sont renforcés avec des colles synthétiques et dégagent du formaldéhyde, il est donc important de se renseigner avant l’achat afin d’éviter ce type d’isolants à base de liège. Mais le principal problème, en plus de son coût élevé, réside dans sa disponibilité. Il perd en effet de sa valeur écologique et locale à cause de son importation.

Liège.

Isolants à base de chanvre

Fabriqué à partir du défibrage de la tige de chanvre, on peut obtenir à partir de cette plante deux supports de base :

  • la fibre en vrac ou qui servira pour la laine ;
  • la chévenotte utilisée pour la fabrication de panneaux, enduits et bétons (composée d’un mélange de lient à base de chaux aérienne et de copeaux de chanvre).

Le chanvre est par ailleurs une plante à croissance rapide qui ne nécessite pas ou peu d’engrais.

Compressé, il sert pour l’isolation des murs, des sols, des façades intérieures et extérieures et des combles non aménageables après sa transformation en

  • Blocs de béton
  • Laine
  • Panneaux

En vrac, il sert dans l’isolation des murs et des combles non aménageables par soufflage.

Actuellement l’usage le plus fréquent de ce type d’isolant est le remplissage des murs à ossature bois (30 cm) ou d’enduits isolants (10 cm) sur un support existant.

Son coefficient d’isolation est proche de celui du bois massif (λ = ± 0.1), mais le matériau possède d’importantes qualités du point de vue de l’inertie thermique et de la régulation de la vapeur d’eau. Sa résistance au feu lorsqu’il est sous forme de béton, sa fourniture locale ainsi que ses caractéristiques naturellement insecticides constitue également des avantages non négligeables.

Isolants à base de paille

La paille, en tant que matériaux biosourcés, revêt différentes formes :

  • D’un mélange de terre et de paille naît un enduit appelé « terre/paille »
  • Sans pressage, elle se présente sous forme de bottes de paille compressée sous forme de ballot, forme utilisée depuis très longtemps  comme isolant à part entière ou au sein d’une structure propre.

Produit local, la paille constitue un isolant bon marché qui ne nécessite que très peu de traitement en usine ce qui lui confère une réelle valeur ajoutée dans la construction à caractère écologique. Aujourd’hui, ce type d’isolant est  de plus en plus documenté, référence et normalisé comme système de construction et comme isolant reconnu.

Le ballot de paille n’a pas des caractéristiques thermiques homogènes. L’orientation de ses fibres par rapport au flux de chaleur va impacter sur sa conductivité thermique. Celle-ci sera plus faible si les fibres sont perpendiculaires au flux (λ d’environ 0,05) et plus élevés si les fibres sont parallèles aux flux (λ variant autour de 0,07… 0,08). Il est en plus nécessaire de s’assurer des ballots de pailles de qualité pour rencontrer les exigences du monde de la construction.

Toutefois, suite à l’étude de construction paille en occupation, il a été montré que si elle est correctement mise en œuvre et à l’abri de pluies battantes, les risques de dégradations à long terme sont négligeables et la paille comme isolant est capable d’apporter de bonnes performances thermiques ainsi que les conforts d’été et d’hiver attendus.
En outre, la paille n’a pas seulement un rôle isolant, le ballot de paille peut également servir de support à un enduit voir de structure en soi sans en altérer ses caractéristiques. Ainsi, combiner plusieurs de ces rôles (isolant et mécanique et/ou structurel) permet de diminuer le bilan écologique de la paroi. Attention cependant, à utiliser une paille provenant de culture durable.

L’inconvénient de la paille réside dans l’inconfort de pose à cause du poids de chaque botte. De plus, son volume implique de concevoir des murs d’une épaisseur relativement conséquente à isoler.

Si vous souhaitez en savoir plus sur l’isolant à base de paille, consultez le site www.apropaille.be  qui réunit le monde pas si petit que ça de la paille en Belgique.

Isolants à base de textile recyclé

Né du recyclage des textiles usagés ou des déchets des fabricants de vêtements, le textile recyclé est traité en usine avant de devenir un matériau de construction en soi.

D’abord effiloché, on le métamorphose ensuite en panneaux et rouleaux isolants grâce à des techniques de pressage. Sa version en vrac permet, tout comme l’ouate, d’être insufflée et d’isoler les murs.

Alternative idéale pour isoler pour les murs et les combles non aménageables en priorisant l’économie circulaire, notez que les isolants et autres matériaux de construction en textile recyclé sont traités chimiquement pour résister aux flammes. Parmi les autres inconvénients, prenez en compte que son application verticale implique un tassement du matériau sur le long terme.

Par contre, ce matériau biosourcé reste très facile à poser et il ne nécessite pas de formation préalable ou obligatoire. Grâce à sa compression, le textile recyclé n’émet aucune poussière. Enfin, il peut absorber jusqu’à 25% de son poids en eau, ce qui constitue un isolant contre l’humidité très efficace((Les matériaux biosourcés dans le bâtiment, FFB, novembre 2015)).

Performances des isolants biosourcés

La performance thermique des isolants est renseignée par la valeur de la conductivité thermique  (λ). Plus celle-ci est élevée, moins le matériau sera isolant. Mais cela ne veut pas dire qu’il faut nécessairement abandonner l’utilisation d’un matériau qui aurait un λ élevé. En effet, il suffit d’augmenter l’épaisseur de la couche isolante pour obtenir une performance thermique globale équivalente!
Pour choisir son isolant, il faut donc tenir compte de plusieurs critères en même temps:

  • la conductivité thermique  (λ)
  • le coût (plus l’épaisseur augmente, plus le coût augmente)
  • l’encombrement

Les performances des isolants biosourcés sont reprises dans le tableau suivant.

Résistance mécanique Conductibilité thermique Conductibilité thermique Diffusion de la vapeur d’eau Diffusion de la vapeur d’eau Inflammable
ρ [daN/m³] λ [W/mK] λ [W/mK] μ [-] μ [-]
Selon la documentation Selon la norme NBN B62-002 (humide et sec) (humide et sec) selon la documentation
Perlite expansée pure 50-80 0.046 / 5 à 7 / Non
Vermiculite expansée pure <100 0.058 / 5 à 7 / Non
Argile expansée 0.103 à 0.108 / / / Non
Bois feutré en panneaux mous ± 160 ± 0.042 / / 3 à 4 Difficilement
Bois feutré en panneaux mi-durs ± 270 ± 0.07 / / 3 à 4
Cellulose en vrac 35-50 0.035 à 0.04 / / 1 à 2
Laine de cellulose en panneaux 70-100 0.04 / / / Auto-extingible
Liège expansé 18 0.04 à 0.045 / 4.5 à 29 / Difficilement
Liège expansé en panneaux 80-120 0.032 à 0.045 / / 5 à 30
Chanvre ou laine de chanvre 25-210 0.039 à 0.08 / / 1 à 2 Difficilement
Lin en vrac 18-35 0.037 à 0.045 / / 1à 2 Difficilement
Lin en panneaux 400-500 0.05 à 0.065 / / / Difficilement
Laine de coco 20-50 0.047 à 0.05 / / 1à 2 Ignifugé au sel de bore
Laine de coton 20-30 0.04 / / 1 à 2 Sans dégagement toxique
Panneaux de roseau ± 100 0.056 / / 1 à 1.5
Laine de mouton 10-30 0.035 à 0.045 / / 1 à 2 Sans dégagement toxique
Paille (dans le sens des tiges) rechercher valeurs 0.08 / / / /
Paille (perpendiculairement aux tiges) rechercher valeurs 0.052 / / / /
Valeurs issues de l’ouvrage L’isolation thermique de la toiture inclinée, ministère de la Région Wallone, L’isolation écologique de J-P. Olivia, éditions terre Vivante, 2001, ouverture d'une nouvelle fenêtre ! www.livios.be, ainsi que des documentations des fabricants.

La PEB impose, lors du calcul du coefficient de transmission des parois (U) que l’on utilise pour les différents constituants des valeurs de conductivité thermique (λ) certifiées (essais réalisés conformément aux normes européennes EN ISO 10456) ou les valeurs par défaut reprises dans l’annexe VII de la PEB.
Malheureusement, l’Annexe VII de la PEB ne fournit pas de valeur pour les matériaux repris dans le tableau ci-dessus. Si aucune certification (agréments techniques…) n’existe, la couche d’isolant ne pourra pas être prise en compte dans le calcul du U des parois pour la PEB  qui est d’application pour les travaux soumis à permis d’urbanisme.

Intérêts des isolants biosourcés

Comme le montre le tableau suivant, les isolants possédant une capacité thermique élevée, garante d’une diffusivité faible et d’une effusivité importante sont généralement les isolants « écologiques » :

ρ ρ * c
[kg/m³] [Wh/m³]
Laine de bois 160 90
Laine de bois 55 31
Liège expansé (vrac) 60 31
Ouate de Cellulose (insufflée) 60 31
Perlite expansée 80 22
Polyuréthane rigide 30 12
Laine de mouton 10 5
Polystyrène 7 3

Mais attention, si le confort d’été est amélioré, l’utilisation d’isolant permettant d’obtenir ces caractéristiques peut conduire à un autre problème. En effet, une trop grande effusivité produira dans la pièce une sensation de surface froide au toucher.

Pour aller plus profondeur sur ce sujet, n’hésitez pas également à visiter notre page consacrée à l’inertie thermique.

Stockage de CO2

Les isolants à base de végétaux, via le processus de photosynthèse, permettent de stocker le CO2 atmosphérique.

Performances hygrothermiques

Outre leur caractère “écologique”, les isolants biosourcés qui nous intéressent ici possèdent des propriétés hygrothermiques prometteuses. Par leur capacité plus ou moins grande à absorber l’humidité, les matériaux en contact avec l’ambiance intérieure peuvent stabiliser les conditions hygrothermiques d’un local et, de la sorte, avoir un impact positif sur le confort.

De nombreuses recherches ont été menées sur ce sujet. Comme par exemple celle réalisée par le département d’ingénierie de la Technical University of Denmark qui a conduit à la définition du paramètre appelé Moisture Buffer Value (valeur de régulation de l’humidité) qui indique la quantité d’eau que l’isolant absorbe et restitue par  unité de surface durant une certaine période quand il est soumis à des variations de l’humidité relative de son environnement. Ce paramètre permet d’analyser le rôle de régulateur d’humidité joué par l’isolant.

Certifications

C’est à ce niveau que se complique la démarche d’éco-construction ! Comme dit auparavant, lors du calcul du U des parois, la PEB implique que l’on utilise comme valeur de λ :

  • une valeur certifiée sur base de la norme de produit NBN EN ou d’un ATE (Agrément Technique Européen). Ces valeurs sont regroupées sur le site ouverture d'une nouvelle fenêtre ! www.epbd.be.
  • ou la valeur par défaut renseignée dans l’annexe VII de la PEB.

Cette manière de faire a pour but de protéger le consommateur, en garantissant la qualité des matériaux utilisés.

Le problème avec les matériaux d’isolations biosourcés est que ces derniers ne sont pas repris dans l’Annexe VII de la PEB et l’utilisation de ceux-ci nécessite donc la réalisation d’une certification pour tous travaux soumis à permis.

Labellisation

Comme annoncé précédemment, l’utilisation d’un matériau issu de sources renouvelables ne garantit pas en pratique le caractère “écologique” de l’isolant (ajout de colle, procédé de fabrication énergivore…). Pour s’assurer que l’isolant a été réalisé dans les règles de l’art, on peut se tourner vers les labels comme www.svanen.se en Suède www.blauer-engel.de en Allemagne ou encore www.certivea.fr en France.

Pour en savoir plus sur les normes en vigueur qui régissent l’utilisation de chacun de ces isolants, voici quelques sources qui peuvent être utiles :

Concernant les isolants à base de cellulose :

Concernant les isolants à base de laine d’origine végétale ou animale :

Concernant les isolants à base de fibre bois :

Concernant les isolants à base de liège :

Concernant les isolants à base de chanvre :

  • réglementation professionnelle et validation en laboratoire des enduits chaux/chanvre pour béton : construire-en-chanvre.fr

Concernant les isolants à base de paille :

Concernant les isolants à base de textile recyclé :