Concevoir les percements

Concevoir les percements

Principe général

Les jonctions telles que les percements (passage de conduite, caisson de volet, portes, baies vitrées, boîtiers électriques, …) sont toujours des points délicats. On doit vérifier la parfaite jonction du raccord entre la paroi et le percement dès que ce dernier touche la ou les couche(s) de la façade qui assure l’étanchéité à l’air. Si cette jonction présente des espaces, il faut les colmater.

De manière générale, on essayera de réduire au maximum le nombre de percements.


Manchons et fourreaux

Les manchons

Les manchons sont des raccords préfabriqués permettant de réalisé la continuité entre l’élément cylindrique, le conduits ou tuyau, et la surface plane de la paroi. Il est composé d’un élément en forme de cône tronqué, permettant le resserrage autour du conduit, qui est soudé à un élément plan.

Sa mise en œuvre nécessite une place suffisante autour du percement et de la conduite et doit être effectué par l’installateur concerné par la technique.

Le manchon est fixé à la couche d’étanchéité à l’air du mur ou de la toiture grâce à des bandes adhésives simples ou doubles face. Cela nécessite donc que le manchon soit adapté à la nature du pare-air mis en place.

Les fourreaux

Lors de la pose du gros-œuvre, des fourreaux peuvent être mis en place pour accueillir plus tard le passage d’un conduit.

Lorsque le conduit a été mis en place, on dispose un resserrage sur le fourreaux et finalement un manchon souple vient terminer et réaliser la continuité de l’étanchéité à l’air entre l’enduit intérieur et le conduit.

Bruxelles Environnement a édité à une vidéo illustrative du traitement des percements par les câbles et les conduits dans une paroi bois :

Etanchéité à l’air : Percements étanches par les câbles et les conduits[Vidéo réalisée dans le cadre du projet Conclip, soutenu par Bruxelles Environnement].


Raccords souples

Les raccords souples sont très utiles pour les géométries plus complexes que les cylindres.

Sous forme liquide

Il s’agit ici d’appliquer un liquide effectuant le raccord d’étanchéité à l’air. Cette couche de jonction est renforcée par un géotextile permettant de reprendre les éventuels contraintes et d’éviter que la peinture ne se morcelle et que l’air puisse circuler.

Sous forme de ruban adhésif étirable

Des bandes de raccord plissées existent et permettent la jonction avec un conduit cylindrique. Ces bandes doivent ensuite être raccordées comme une jonction sec-sec avec la membrane pare-air ou une jonction sec-humide avec l’enduit.


Élément préfabriqué pour cheminée

Certains fabricants proposent des sorties de cheminée en toiture préfabriquées garantissant la continuité de l’étanchéité à l’air. Ces systèmes permettent également d’assurer la continuité de l’isolation thermique.

Concevoir les menuiseries

Concevoir les menuiseries

Importance de l’étanchéité à l’air des menuiseries extérieures

Les portes et châssis extérieures peuvent déforcer l’étanchéité à l’air globale du bâtiment si leur étanchéité propre n’est pas suffisante. C’est particulièrement le cas si l’étanchéité courante de l’enveloppe extérieur est bonne. Ainsi les châssis peuvent être responsable de près de 50% des fuites d’air.

La perméabilité à l’air d’un châssis est testé en usine et la classe de perméabilité à l’air est généralement communiqué par le fabricant dans ses spécifications techniques.

La norme NBN EN 12207 définit 4 classes de perméabilité à l’air de la classe 1, la moins performante, à la classe 4, la plus performante. Dans une de ses études, le CSTC a montré que la plupart des châssis actuels atteignaient la classe 4 qui est la classe recommandée pour garantir un bonne étanchéité à l’air des menuiseries extérieures.


Performances recommandées pour l’étanchéité à l’air

Concernant les châssis, les STS définissent des niveaux de performance d’étanchéité à l’air (PA2, PA2B, PA3) recommandés en fonction de la hauteur du châssis par rapport au sol.

Voici un tableau (selon les STS 52) reprenant les valeurs de perméabilité à l’air recommandées, en fonction de la hauteur du châssis par rapport au sol :

Hauteur par rapport au sol Perméabilité à l’air
0 à 10 m

10 à 18 m

18 à 25 m

25 à 50 m

> 50 m

PA2B (1) (3)

PA2B (3)

PA3

PA3

PA3

(1) Si il n’y a pas d’exigence particulière du point de vue thermique et/ou acoustique, on se contentera d’un niveau PA2.

(2) Si le bâtiment a une exposition sévère (digue de mer), on prendra un châssis de résistance PE3, et on le signalera dans le cahier spécial des charges.

(3) Si on est en présence de locaux avec air conditionné, un niveau PA3 s’avérera nécessaire.

Selon les STS 52 [5] le cahier spécial des charges peut, pour des raisons d’uniformisation ou d’aspect, prescrire le même niveau de performance pour tous les châssis du bâtiment en se basant sur les éléments de construction les plus exposés.


Les critères de choix

Lors du choix des menuiseries extérieures, il convient de faire particulièrement attention aux points suivant pour assurer l’étanchéité à l’air :

  • La compression des joints entre dormant et ouvrant : le réglage des quincaillerie doit être correctement réalisé pour assure la compression des joints lorsque la fenêtre est en position fermée;
  • La continuité des joints : la continuité des joints des être vérifiée sur le pourtour du châssis. Les jonctions entre deux joints doivent être soudées ou collées;
  • Le raccords entre les pare-closes et la menuiserie : l’étanchéité de ces raccords doit être vérifiés. Au besoin, ils peuvent être rendus étanche à l’air au moyen d’un joint souple, par exemple;
  • Les portes extérieures : le seuil d’une porte donnant vers un espace extérieur ou un espace adjacent non-chauffé est une source de fuite d’air importante. Il faut au minimum prévoir un joint brosse ou une plinthe à guillotine. Le mieux restant la pièce d’appui inférieure.

Concevoir les noeuds constructifs

Concevoir les noeuds constructifs

© B-ARCHITECTES / Architecture et Expertises.


Principe général

Les jonctions telles que les raccords entre les éléments de la construction (façade-toiture, façade-plancher au niveau de la plinthe, …) sont toujours des points délicats. On doit vérifier la parfaite jonction du raccord entre les différents éléments de construction dès que ce dernier touche la ou les couche(s) de la façade qui assure l’étanchéité à l’air. Si cette jonction présente des espaces, il faut les colmater.

La conception ou la vérification de l’étanchéité à l’air des nœuds constructifs d’un bâtiment est une adaptation des principes généraux valables pour les parties courantes et les types de jonction mais une réflexion par rapport à la géométrie du détails doit également être menée.

Les procédés de conception de l’étanchéité à l’air d’un bâtiment décrits et expliqués ci-après sont en grande partie basée sur les détails et conseils techniques donnés par le CSTC dans ses diverses publications.


Façades

Pour assurer l’étanchéité à l’air des façades, les points importants auxquels il faudra faire attention sont les jonctions des murs extérieurs avec les planchers et murs intérieurs, en pied de mur mais également à l’intégration des menuiseries. Les solutions à apporter seront différentes suivant la structure, lourde ou légère, du bâtiment.

Jonction façade-plancher

Dans le cas d’une structure lourde, la continuité de l’étanchéité à l’air est assurée par les enduits des deux pièces superposées et la dalle de plancher en béton coulé. Une attention particulière au joint doit être apportée. Dans le cas de hourdis, il faut s’assurer que le béton de second phase doit correctement remplir les cavités sur le pourtour complet pour assure la continuité entre la maçonnerie, le béton et les enduits.

Schéma jonction façade-plancher.

Dans le cas d’une construction légère, la position de la barrière à l’air doit être pensée dès la conception. En effet il faut prévoir une bande de pare-air à placer en attente sur les murs de pourtour horizontalement avant la mise en place des parois internes pour ensuite pouvoir effectuer le raccord entre les membranes pare-air de deux locaux superposés.

Deux cas existent:

  • soit le plancher repose sur le mur inférieur auquel cas la bande de pare-air doit être suffisamment longue pour recouvrir le mur intérieur sur une dizaine de centimètres, effectuer le tour du plancher et revenir sur une dizaine de centimètres au niveau de mur supérieur.
  • soit le plancher est ancré dans le mur de façade qui lui est continu du pied à la corniche auquel cas, la bande en attente, indispensable, doit être placée sur le pourtour là où viendra s’ancrer le plancher. Il conviendra de faire particulièrement attention aux percements et à ne pas déchirer le pare-air lors de la mise en place du plancher. Ce deuxième cas est également valable lorsque l’on isole par l’intérieur et que le plancher est désolidariser du mur extérieur.

Jonction façade-mur de refend

La jonction entre le mur extérieur et un mur intérieur perpendiculaire se fait par la continuité de l’enduit sur les deux faces. Toutefois, il convient de faire attention au encadrement de porte intérieur qui peuvent représenté des endroits de fuites s’ils ne sont pas enduits.

Dans le cas d’une construction légère, la position de la barrière à l’air doit être pensée dès la conception. En effet il faut prévoir une bande de pare-air à placer en attente sur les murs de pourtour avant la mise en place des parois internes pour ensuite pouvoir effectuer le raccord entre les membranes pare-air de deux pièces voisines. C’est le même principe, mais à la verticale, que dans le cas de la jonction façade-plancher.

Jonction façade-dalle de sol

Il convient de faire le raccord entre la dalle de sol coulée sur place qui est normalement intrinsèquement étanche à l’air et la partie courante du mur faisant office d’étanchéité à l’air : l’enduit dans le cas d’une structure lourde ou le pare-air dans le cas d’une structure légère.

On peut donc effectuer soit un raccord en enduisant un film d’étanchéité de sous la chape ou de sous l’isolant dans le plafonnage ou un disposant une couche de mortier périphérique effectuant le raccord entre l’enduit du mur et la dalle de sol.

Schéma -noeuds constructifs-jonction façade-dalle de sol.

La feuille d’étanchéité (9) faisant office de pare-air doit remonter suffisamment sur le bord pour être enduit par le plafonnage intérieur sur au moins 2 cm.

  1. Mur de structure.
  2. Bloc isolant.
  3. Isolation sur dalle.
  4. Joints verticaux ouverts.
  5. Membrane d’étanchéité.
  6. Membrane d’étanchéité.
  7. Feuille d’étanchéité.
  8. Feuille d’étanchéité.
  9. Feuille d’étanchéité.
  10. Interruption de l’enduit.
  11. Enduit.

Dans le cas d’une structure légère, une bande pare-air sera placé sur le pourtour pour effectuer la jonction entre la dalle et la paroi légère avant la pose du pare-air du mur en partie courante.

Bruxelles Environnement a édité à une vidéo illustrative du placement d’une telle bande :

Etanchéité à l’air : Pied de mur ossature bois [Vidéo réalisée dans le cadre du projet Conclip, soutenu par Bruxelles Environnement].

Dans le cas d’une isolation par l’intérieur, la continuité de l’étanchéité à l’air au pied du mur peut se faire en enduisant la membrane d’étanchéité de sous la chape dans le plafonnage ou en raccord avec le pare-vapeur du mur.

Schéma -noeuds constructifs-jonction façade-dalle de sol.

  1. Mur existant.
  2. Enduit existant.
  3. Dalle existante.
  4. Film d’étanchéité.
  5. Isolant thermique.
  6. Isolant périphérique.
  7. Membrane d’étanchéité.
  8. Chape armée.
  9. Film d’étanchéité.
  10. Isolant.
  11. Pare-vapeur.
  12. Finition.
  13. Panneau composite.
  14. Mousse isolante.
  15. Carrelage.
  16. plinthe.
  17. Joint d’étanchéité.

Jonction façade-châssis

Les fenêtres et portes extérieures sont toutes autant des percements de l’enveloppe du bâtiment que de l’étanchéité à l’air. Si ces menuiseries extérieurs sont déjà garanties étanche à l’air, il convient d’assurer la continuité entre le châssis étanche et l’élément courant du mur faisant office d’étanchéité à l’air.

Le moyen le plus courant d’effectuer cette jonction est de fixer une membrane d’étanchéité à l’air sur le pourtour du châssis au moyen d’un adhésif avant sa pose. Cette membrane pourra, une fois le châssis en place, recouvrir le tour de la baie et être enduit par le plafonnage ou raccordé au pare-air en partie courante. Une attention particulière devra être portée au coin afin d’éviter les plis surnuméraires et de faciliter la mise sous enduit de la membrane.

Schéma - noeuds constructifs- jonction façade-châssis.

Schéma - noeuds constructifs- jonction façade-châssis.

Bruxelles Environnement a édité une vidéo illustrative de cette technique :

Etanchéité à l’air : Pose d’une fenêtre, mur en brique, avec isolation par l’extérieur [Vidéo réalisée dans le cadre du projet Conclip, soutenu par Bruxelles Environnement].

La jonction d’étanchéité à l’air entre le dormant et l’enduit du mur peut également être réalisé avec un joint souple.

Dans le cas d’une structure légère ou d’un mur présentant une épaisseur d’isolation importante, un caisson en panneaux de bois ou en polystyrène haute densité peut être utilisé comme encadrement de la fenêtre. La continuité de l’étanchéité à l’air entre le châssis et le caisson est assuré par un joint continu ou une colle. Le raccord entre le caisson et la partie courante du mur grâce à une bande de membrane d’étanchéité à l’air faisant le pourtour et se noyant dans l’enduit du mur intérieur ou se collant sur le pare-air mis en place.


Toitures inclinées

La barrière d’étanchéité à l’air en partie courante est généralement réalisée avec le pare-vapeur. Il est en effet important d’éviter tout risque de condensation en toiture.

Dans la pente de toiture, la panne représente un point d’attention particulier. Il faut soigner son raccord ou son passage avec le pare-vapeur, le raccord peut se faire soit grâce à un lé en attente, soit en passant sous la panne, cas d’une rénovation par exemple, soit en l’interrompant et en effectuant une liaison avec la panne :

  • En faisant passer le pare-vapeur sous la panne de manière ininterrompue;

Schéma noeuds constructifs - toitures inclinées- 01.

  1. Première couche d’isolant.
  2. Deuxième couche d’isolant.
  3. Pare-vapeur.
  • Au moyen d’une bande de pare-vapeur placée en « attente » sur les pannes avant la mise en place des chevrons. Les parties courantes peuvent alors y être collées au moyen d’un ruban adhésif double face. Cette solution est la plus efficace car elle est pensée dès la conception;

Schéma noeuds constructifs - toitures inclinées- 02.

  1. Panne.
  2. Chevron.
  3. Pare-vapeur.
  4. Latte.
  5. Sous-toiture.
  6. Contre-latte.
  7. Couverture.
  8. Bande de pare-vapeur en attente.
  • Au moyen d’un joint de silicone (uniquement entre pare-vapeur et charpente). Ce joint sera éventuellement caché par la finition;

Schéma noeuds constructifs - toitures inclinées- 03.

  1. Panne.
  2. Chevron.
  3. Pare-vapeur.
  4. Contre-latte.
  5. Sous-toiture.
  6. Latte.
  7. Couverture.
  8. Joint-colle.
  • En comprimant le pare-vapeur entre un joint souple et une latte, le tout cloué ou vissé;

Schéma noeuds constructifs - toitures inclinées- 04.

  1. Pare-vapeur.
  2. Latte.
  3. Joint souple.
  •  Au moyen d’un ruban adhésif double face adhérant parfaitement au bois.

La finition intérieure final par panneaux de bois ou, par exemple, plaques de plâtres. devra être posée en minimisant le nombre de point de percement du pare-vapeur et en laissant un espace suffisant de 6 cm pour faire éventuellement passer des câbles électriques et installer des prises sans endommager la barrière d’étanchéité à l’air.

Finalement, certaines techniques d’isolation comme la toiture « sarking » mettent en place des panneaux préfabriqués intégrant une couche interne étanche à l’air faisant office de pare-vapeur. Il faudra donc veiller à réaliser une jonction correcte entre les panneaux suivant les recommandations du fabricant ou en utilisant des bandes adhésives.

Jonction toiture-façade

Ce type de jonction est traité soit par recouvrement du pare-vapeur par l’enduit de finition intérieur soit par jonction du pare-vapeur du mur et de celui de la toiture par collage ou ruban adhésif double face.

Pour se prémunir de toutes les déchirures qui pourraient avoir lieu dû aux différentes natures de matériaux, on rajoute un élément faisant la liaison entre l’enduit et la maçonnerie et le pare-vapeur de la toiture. Il convient de laisser aussi suffisamment de souplesse, réalisation d’une « boucle » au pare-vapeur de la toiture lors du raccord.
La jonction entre l’enduit et la finition intérieure de la toiture est réalisée par un joint souple.

Schéma noeuds constructifs - Jonction toiture-façade.

  1. Panne sablière.
  2. Chevron ou fermette.
  3. Planche de rive.
  4. Cale de bois.
  5. Panneaux isolants.
  6. Isolant entre chevrons ou fermette.
  7. Sous-toiture éventuelle.
  8. Contre-latte.
  9. Lattes.
  10. Latte plâtrière.
  11. Couverture.
  12. Gouttière.
  13. Bavette indépendante.
  14. Peigne.
  15. Finition intérieure.

 

 Jonction toiture-pignon

La jonction de la toiture avec un mur de maçonnerie sur le pignon s’effectue en enduisant le pare-vapeur dans la finition intérieure.

Schéma noeuds constructifs - Jonction toiture-pignon.

  1. Isolation
  2. Chevron ou fermette
  3. Isolation ou bloc isolant
  4. Mortier de scellement
  5. Sous-toiture
  6. Contre-latte
  7. Latte
  8. Rejet d’eau
  9. Tuile de rive
  10. Isolant entre chevrons
  11. Pare-vapeur
  12. Finition intérieure

La continuité de la barrière d’étanchéité à l’air peu aussi être réalisée par le collage au moyen de colle ou de ruban adhésif du pare-vapeur de la toiture sur l’enduit sec et propre du dépassement. Dans ce cas une finition intérieur supplémentaire devra être envisagée si les combles sont destinés à l’occupation.

Dans les deux cas, il convient de laisser suffisamment de souplesse au pare-vapeur pour éviter tous risques de déchirure dus aux contraintes qui peuvent apparaître. Un joint souple sera en plus prévu entre l’enduit de la maçonnerie et la finition intérieure de la toiture.

Jonction toiture-châssis

La plupart des châssis à intégrer dans la pente de toiture sont fournis avec un cadre isolant pour permettre la raccord avec l’isolation de la toiture. De même, un pourtour est préfixé au châssis pour faciliter sont intégration et réaliser la jonction avec le pare-vapeur de la toiture inclinée.

Schéma noeuds constructifs - Jonction toiture-châssis.Schéma noeuds constructifs - Jonction toiture-châssis.

  1. Contre latte.
  2. latte.
  3. Tuiles.
  4. Solin au-dessus des tuiles à la base du châssis.
  5. Raccord de la sous-toiture au châssis.
  6. Partie mobile de la fenêtre.
  7. Vitrage isolant.
  8. Étanchéité en plomb ou chéneau encastré.
  9. Raccord sous-toiture châssis.
  10. Chéneau en amont de la fenêtre.
  11. Isolation thermique.
  12. Étanchéité à l’air et à la vapeur.
  13. Volige de pied.
  14. Partie fixe de la fenêtre.
  15. Sous-toiture.
  16. Chevron.
  17. Finition intérieure devant espace technique.
  18. Cadre isolant.

Toitures plates

La réalisation de la continuité de l’étanchéité à l’air au raccord entre une toiture plate et le mur de façade se fait de manière similaire à une jonction entre la façade et un plancher :

  • dans le cas d’une structure lourde par dalle coulée sur place, la continuité de la maçonnerie et de l’enduit de finition intérieur garantit l’étanchéité à l’air;

Schéma noeuds constructifs - toiture plate.

Exemple de continuité de l’enduit dans le cas d’une continuité mur-toiture plate

  • dans le cas d’une structure lourde par hourdis, le béton de seconde phase sera utile pour effectuer le raccord de la barrière à l’air;
  • dans le cas d’une structure légère avec le plancher ancré, un lé en attente fera la liaison avec le pare-vapeur de la toiture;
  • dans le cas d’une structure légère avec le plancher posé sur le mur, le lé en attente fera le contour du plancher et dépassera suffisamment de chaque côté pour être relié au pare-vapeur du mur d’un côté et à celui de la toiture de l’autre.

Dans tous les cas, un joint souple entre les finitions intérieures du mur et du plafond permettra d’éviter l’apparition de fissures pouvant entraîner des fuites d’air.

Concevoir l’étanchéité à l’air



L’étanchéité à l’air : Daniel De Vroey vous conseille from Bruxelles Env. on Vimeo.
L’étanchéité à l’air est méconnue des professionnels car on ne la perçoit pas. Il est pourtant essentiel d’y penser, et ce à toutes les étapes de son projet.

L’étanchéité à l’air : Daniel De Vroey vous conseille from Bruxelles Env. on Vimeo.

L’étanchéité à l’air est méconnue des professionnels car on ne la perçoit pas. Il est pourtant essentiel d’y penser, et ce à toutes les étapes de son projet. Daniel De Vroey vous partage ses astuces.


Points d’attention

Avec l’isolation de plus en plus performante de nos bâtiments, leur étanchéité à l’air devient un point important pour contrôler les infiltrations et exfiltrations d’air et avec elles, certaines pertes d’énergie. La tendance actuelle est donc à une étanchéification la plus complète afin de pouvoir contrôler au mieux ces fuites d’air et de pouvoir assurer d’une ventilation efficace des locaux.

Les enduits intérieurs, les bétons coulés sur place et les membranes pare-vapeur sont des éléments intrinsèquement étanche à l’air. L’étanchéité complète de l’enveloppe doit donc être conçue en faisant très attention aux jonctions de ces éléments entre eux et avec les autres éléments de la construction.

Pour cela la mise en œuvre de l’étanchéité à l’air doit faire l’objet de certains points d’attention dès la conception mais aussi sur chantier.

On considère que l’étanchéité à l’air de l’enveloppe extérieur est assurée si :

Ainsi, il conviendra particulièrement de faire attention aux points suivants :

Les procédés de conception de l’étanchéité à l’air d’un bâtiment décrits et expliqués ci-après sont en grande partie basés sur les détails et conseils techniques donnés par le CSTC dans ses diverses publications.


Niveaux de référence

Étanchéité globale

En Wallonie, il n’existe pas de recommandations concernant l’étanchéité à l’air globale d’un bâtiment.

Par contre, la norme européenne EN 13779 recommande un taux de renouvellement d’air maximum à 50 Pa(n50) :

  • de 1/h pour les bâtiments hauts (> 3 étages);
  • de 2/h pour les bâtiments bas.

On peut également se référer à la norme NBN D 50-001 qui recommande :

  • n50 < 3/h si ventilation mécanique,
  • n50 < 1/h si récupérateur de chaleur.

À titre de comparaison, la région de Bruxelles-Capitale imposera en 2018 un niveau d’étanchéité à l’air n50 < 0.6/h (label passif) pour toute construction neuve, et n50 < 0.72/h pour les rénovations assimilées à de la construction neuve.

Étanchéité des fenêtres

En Belgique, les bâtiments des services publics doivent satisfaire aux exigences d’étanchéité suivantes :

Hauteur du bâtiment (h en [m])

Φ50 [m³/h.m]

h < 10

< 3,8

10 < h < 18

< 1,9

h > 18

< 1,3

Source : STS 52 – Menuiseries extérieures en bois. Fenêtres, porte-fenêtres et façades légères. Institut national du logement – Bruxelles – 1973.

Ces exigences sont relativement sévères par rapport aux autres pays (seuls les pays scandinaves ont des exigences plus sévères).

La figure ci-dessous donne un aperçu des valeurs d’étanchéité à l’air des menuiseries imposées par un certain nombre de pays occidentaux.

Schéma valeurs d'étanchéité à l'air des menuiseries.

Aperçu des exigences d’étanchéité à l’air des menuiseries dans différents pays occidentaux.


Les parties courantes

Volume à étanchéifier et position de la barrière d’étanchéité

Le volume du bâtiment à rendre étanche à l’air est le volume à isoler thermiquement. Ainsi l’écran étanche à l’air doit être placé au plus près de la barrière d’isolation, pour éviter au maximum les circulations d’air entre les deux écrans, du côté chaud de l’isolant, c’est-à-dire du côté intérieur pour un mur extérieur.

Tout comme l’isolation thermique, la position de l’enveloppe étanche à l’air du logement doit être choisie pour éviter le plus de percements de celle-ci et donc éviter des points faibles et des raccords difficiles à mettre en œuvre.

Matériaux de l’étanchéité à l’air

Chaque système constructif présente ses particularités d’un point de vue structurelle, ainsi la conception de l’étanchéité à l’air variera selon le mode de construction choisi : maçonnerie, ossature lourde, ossature bois, structure légère, etc.

Il est admis qu’un matériau est étanche à l’air quand sa perméabilité à l’air est inférieure à 0,1 m³/h.m² sous une différence de pression de 50 Pa.

Ainsi pour les constructions lourdes ou de maçonneries, l’étanchéité à l’air est réalisée au moyen des enduits intérieurs. Dans le cas des constructions légères, telles les ossatures bois, l’étanchéité à l’air peut-être atteinte grâce aux panneaux de bois et au pare-vapeur. Les bétons coulés et les chapes de béton font aussi office d’écran étanche à l’air.

Au contraire, des matériaux comme les maçonneries ou les lambris ne sont pas suffisamment imperméables à l’air et ne peuvent pas être utilisés pour mettre en œuvre la barrière d’étanchéité à l’air du bâtiment !

Remarque : les isolants souples avec feuille étanche à l’air (ex. aluminium) ou les isolants rigides étanches à l’air ne devraient pas non plus être utilisés comme écran à l’air. En effet, les techniques de mise en œuvre d’un isolant souple nécessitent généralement l’ajout d’une structure secondaire ou une installation entre chevrons. Dans ce cas-là, un pare-air supplémentaire sera toujours nécessaire pour assurer l’étanchéité des joints et jonctions. C’est également le cas pour les isolants rigides même si leur performance d’étanchéité à l’air est élevée.

L’enduit intérieur

Les enduits intérieurs n’ont pas qu’une qualité esthétique ! Ils ont une performance d’étanchéité à l’air élevée pour autant que l’épaisseur soit suffisante et que l’enduit ne se fissure pas (les fissurations peuvent être une source de fuites d’air). C’est pourquoi, on privilégie une couche minimale de 6 mm d’épaisseur lors de sa pose.

Lors de la conception et la pose du plafonnage ou de l’enduit, il convient de faire particulièrement attention aux endroits cachés : derrière une plinthe, un encadrement de porte ou de fenêtre, derrière une gaine, un mur de brique apparent, … Il faut veiller à la continuité de l’étanchéité à l’air même en ces endroits-là.

Schéma continuité de l'étanchéité à l'air.

L’enduit intérieur fait office de barrière d’étanchéité à l’air lors de la conception d’un mur creux dont les éléments (briques, blocs de béton,…) sont très peu étanches à l’air dû aux cavités présentes dans la matière.

Remarque : les plaques de plâtres sont étanches à l’air en elles-mêmes, mais la réalisation de joints est difficile et les apparitions de fissures à ces endroits sont fréquentes.

Le pare-vapeur ou pare-air

Pour les structures bois et plus généralement pour les structures légères, ce sont les membranes films souples les plus utilisées comme écran à l’air. Dans ce cas-là, la membrane combine les fonctions de pare-vapeur et d’étanchéité à l’air.

Dès lors comme pour les pares-vapeurs, les points d’attention se situeront principalement aux joints de raccord entre les lés de deux parties courantes. De même, les jonctions entre le pare-air et les autres éléments de la construction sont importantes pour garantir l’étanchéité complète du bâtiment.

Les panneaux de bois

Pour une construction en ossature bois ou en panneaux de bois pleins, il n’est pas rare que des panneaux de bois servent à rigidifier la structure. Ces panneaux sont composés de fibres de bois ou de fibres de bois et ciment. Certains ont une perméabilité à l’air inférieur à 0,1 m³/h.m² sous 50 Pa. Ainsi comme les enduits intérieurs n’ont pas qu’une fonction esthétique, ces panneaux de bois n’ont pas qu’une fonction structurelle et peuvent faire office de barrière étanche à l’air.

Dans ce cas, la mise en œuvre devra particulièrement faire attention à ce que les joints entre les panneaux soient rendus étanches à l’air également !

Le béton coulé

Comme les enduits, le béton coulé in situ présente des performances d’étanchéité à l’air importantes. Il convient également de porter une attention particulière aux joints et au jonctions périphériques.


Les jonctions

Pour concevoir efficacement l’étanchéité à l’air d’un bâtiment, il faut correctement réaliser les jonctions et joints entre les parties courantes. Les matériaux utiles à la mise en œuvre de l’étanchéité à l’air sont de type : enduits, films ou panneaux.

On distingue ainsi trois types de jonctions possibles à mettre en place :

  • la jonction sec-sec, par exemple entre deux panneaux de bois;
  • la jonction sec-humide, par exemple entre un film et un enduit;
  • et la jonction humide-humide, par exemple entre deux enduits de façades.

La jonction sec-sec

Ce type de jonction est réalisé au moyen de colle, mastic, bande adhésive ou avec un élément de compression mécanique.

La jonction sec-sec peut être réalisée entre :

  • deux lés de pare-air par un ruban adhésif simple ou double face, par une latte de serrage support par un collage ou par agrafe sur support.
  • un lé de pare-air et une surface d’enduit sec par collage ou ruban adhésif.
  • deux panneaux de bois par joint souple ou ruban adhésif.
  • deux surfaces d’enduit sec par un joint souple.

Dans le cas du raccord entre deux bandes de membranes pare-air, il convient de :

  • vérifier la propreté des parties à coller, souder ou compresser;
  • assurer un chevauchement suffisant des parties. Le ruban adhésif ou la colle ne sont que des moyens de jonction et ne peuvent pas être considérées comme des membranes étanches à l’air même si elles le sont;
  • si la structure est en bois, les membranes peuvent être agrafées mais celle-ci devront être recouvertes de ruban adhésif;
  • éviter de tendre la membrane d’étanchéité, afin de ne pas lui imposer des contraintes qui pourraient mener à des déchirures.

Ruban adhésif

Latte de serrage

Remarque : dans le cas ou les lés sont perpendiculaires à la structure, la jonction doit s’effectuer sur un support généralement souple comme de l’isolant. Un assemblage soit par chevauchement soit par joint debout et collage ou moyen de colle ou ruban adhésif double face avec une grande précision doit être réalisé.

La jonction sec-humide

Une jonction entre un film pare-air ou un panneau de bois et le mur enduit peut devoir être réalisée entre les menuiseries et la façade ou par exemple entre la toiture et le mur de pignon.

La membrane, partie sèche, doit être « noyée » dans l’enduit, partie humide, pour garantir la continuité de la barrière d’étanchéité à l’air. Il est donc nécessaire de prévoir un raccord suffisamment long, en attente, lors de la pose de la membrane pare-air en toiture ou au châssis pour effectuer le raccord.

La partie sèche doit pouvoir être enduite sans perdre ses caractéristiques physiques sans lui induire des contraintes qui pourraient la déchirée. Si ce n’est pas le cas, des bandes noyées existent et permettent de faire le raccords avec la membrane pare-air.

Exemple de jonction sec-humide de la toiture avec le mur de pignon : la membrane du pare-air a été laissée suffisamment longue pour ensuite être « noyée » dans l’enduit lors de la pose de celui-ci

  1. Isolation
  2. Chevron ou fermette
  3. Isolation ou bloc isolant
  4. Mortier de scellement
  5. Sous-toiture
  6. Contre-latte
  7. Latte
  8. Rejet d’eau
  9. Tuile de rive
  10. Isolant entre chevrons
  11. Pare-vapeur
  12. Finition intérieure

La jonction humide-humide

La jonction entre deux faces d’enduits, par exemple dans le coin d’une pièce est théoriquement la plus facile à réalisée, dans les règles de l’art du plafonneur.

Toutefois, le bâtiment doit pouvoir vivre et dans certains cas pour éviter l’apparition de fissures, deux parois doivent être désolidarisées, c’est particulièrement le cas à la jonction mur-plafond. L’enduit n’étant plus continu, on placera un joint souple afin de garantir la continuité de l’étanchéité à l’air.

Connaitre les principes et priorités de l’étanchéité à l’air

Connaitre les principes et priorités de l'étanchéité à l'air


Améliorer l’étanchéité au niveau des parties courantes des parois

Au niveau des parties courantes des parois délimitant le volume protégé, toute fissure doit être colmatée.

Les matériaux poreux utilisés en construction (briques, blocs de béton, laines minérales, …), s’ils ne sont pas enduits, sont perméables à l’air.

De plus, il arrive que les joints des maçonneries ne soient pas correctement réalisés : les joints verticaux sont partiellement remplis mais ce défaut est camouflé par rejointoyage augmentant encore la perméabilité de l’ensemble de la maçonnerie.

À titre d’exemple, des mesures d’étanchéité sur des maisons en murs creux en blocs de béton non plafonnés ont donné des débits d’environ 0,5 m³/h.m².

Pour améliorer l’étanchéité à l’air de l’enveloppe, ces matériaux doivent être protégés d’une couche étanche à l’air : un enduit (cimentage ou plafonnage), des plaques de plâtres enrobées correctement rejointoyées. Une couche de peinture épaisse et filmogène peut aussi convenir.

Exemple.

Suite à une mesure de pressurisation sur un bâtiment en blocs non enduits et donc peu étanche, on a obtenu un n50 = 10/heure. L’application d’une couche de peinture épaisse sur les blocs a réduit le n50 à 1/heure.

Remarque : un pare-vapeur est plus ou moins étanche à la vapeur d’eau suivant sa nature, mais est également à l’air.


Améliorer l’étanchéité aux raccords des éléments de façade ou au niveau des percements

Les jonctions telles que les raccords entre les éléments de la construction (façade/toiture, façade/plancher au niveau de la plinthe, …) ou les percements (passage de conduite, baie vitrée, portes, caisson de volet, boîtiers électriques, …) sont toujours des points délicats. On doit vérifier la parfaite jonction du raccord entre les différents éléments de construction ou entre la paroi et le percement dès que ce dernier touche la ou les couche(s) de la façade qui assure l’étanchéité à l’air. Si cette jonction présente des espaces, il faut les colmater.


Améliorer l’étanchéité du raccord mur-châssis

Photo joint entre le châssis et la maçonnerie.

Avec les châssis anciens, le joint entre le châssis et la maçonnerie était habituellement réalisé au moyen d’un mortier au ciment, souvent fendillé avec le temps et donc insuffisamment étanche.

On peut réfectionner ce joint. On procède en 4 étapes :

  1. On dégage le joint existant (mortier ou mastic), y compris l’éventuel fond de joint.
  2. On nettoie et on dégraisse les lèvres du joint.
  3. On réalise un fond de joint (pour autant que l’espace vide soit suffisant), par exemple, en plaçant un préformé de bourrage à cellules fermées.
    Dans le cas d’un mur plein, il est conseillé de créer une chambre de décompression entre le resserrage extérieur avec le gros œuvre et le resserrage intérieur.
    L’injection de mousse de polyuréthane n’est pas conseillée car, de par son caractère expansif, peu provoquer des dégâts (arrachement, …).
  4. On applique sur ce fond de joint un mastique élastique (thiokol ou mastic silicone) en veillant à assurer un bon contact entre les lèvres.

Améliorer l’étanchéité des châssis

Remarque : dans ce paragraphe, l’étanchéité à l’eau a été traitée en même temps que l’étanchéité à l’air ces deux-ci étant difficilement dissociables.

Une mauvaise étanchéité des châssis peut être due à :

Une classe de résistance à l’air et à l’eau du châssis insuffisante par rapport aux solicitations :

En effet, le STS définit des niveaux de performance d’étanchéité à l’eau (PE2, PE3, PE4, PEE ) et à l’air ( PA2, PA2B, PA3 ) des châssis à atteindre en fonction de la hauteur du châssis par rapport au sol.
S’il s’agit de châssis standards ces niveaux de performance sont signalés par l’agrément technique.

Hauteur par rapport au sol Perméabilité à l’air Étanchéité à l’eau
0 à 10 m

10 à 18 m

18 à 25 m

25 à 50 m

> 50 m

PA2B (1) (3)

PA2B (3)

PA3

PA3

PA3

PE2 (2)

PE3

PE3

PE4

PEE

  • (1) Si il n’y a pas d’exigence particulière du point de vue thermique et/ou acoustique, on se contentera d’un niveau PA2.
  • (2) Si le bâtiment a une exposition sévère (digue de mer), on prend un châssis de résistance PE3, et on le signale dans le cahier spécial des charges.
  • (3) Si on est en présence de locaux avec air conditionné, un niveau PA3 s’avèrera nécessaire.

Si les performances des menuiseries sont inadaptées à l’exposition et à la hauteur par rapport au sol, il n’est pas toujours possible d’y apporter les améliorations nécessaires (ajout d’une barrière d’étanchéité, modification du profil…).

Dans ce cas, seul un remplacement du châssis peut être envisagé.

concevoir

Pour en savoir plus sur le choix des châssis, cliquez ici !

Une mauvaise étanchéité entre dormant et ouvrant

Un mauvais fonctionnement de la double ou triple barrière d’étanchéité :

Remarque : des infiltrations d’eau et d’air sont inévitables malgré un bon dispositif d’étanchéité dans certains types d’ouvrants, au sein desquels l’interruption des joints d’étanchéité au droit des charnières est obligatoire.

concevoir

Pour connaître les risques d’infiltration en fonction du type d’ouvrant, cliquez ici !

Dans les anciens châssis, la forme des profilé ménageant une ou deux frappes constituait l’unique dispositif de joint entre dormant et ouvrant.
Dans ce cas et en cas de problème d’étanchéité, il est possible de réaliser un joint souple sur la frappe la plus intérieure de l’ouvrant, soit en mousse compressible, soit en mastic silicone épousant la forme des châssis.

Dans les châssis plus récents en bois, on peut ajouter également un tel type de joint sur la deuxième ou la troisième frappe.

Les fuites d’étanchéité peuvent être dues au vieillissement du préformé, dans ce cas, celui-ci doit être remplacé.

Remarque : lors de l’entretien des châssis en bois, le traitement du bois ne doit pas recouvrir le préformé, sinon ce dernier est rendu inefficace.

Il est indispensable de souder ou de recoller les joints d’étanchéité présentant une discontinuité dans les angles. En effet, la continuité du joint dans ces zones est particulièrement délicate : le joint peut facilement se défaire à cet endroit.

Dans tous les cas, il faut que le joint soit continu et reste dans un même plan sur tout le pourtour de l’ouvrant.

Un mauvais drainage

Le drainage de la chambre de décompression peut s’avérer insuffisant. Des conduits de drainages peuvent être rajoutés dans le dormant.
On veillera à réaliser des conduits d’inclinaison et de diamètres identiques à ceux existants. Normalement, les conduits seront situés près des angles et équidistants de +/- 50 cm.

Un mauvais réglage ou/et entretien des quincailleries.

Un bon réglage des quincailleries permet d’assurer un écrasement du préformé de -/+ 2 mm et garantit ainsi un bon fonctionnement de la barrière d’étanchéité.

Une déformation excessive du châssis lors de sa manipulation ou par la dilatation thermique.

Cette déformation engendre principalement un défaut d’étanchéité entre le dormant et l’ouvrant car ailleurs (c.-à-d.. entre la maçonnerie et le châssis et entre le châssis et la vitre), les joints sont extensibles.
On améliore la raideur du châssis en rapportant des profilés à la face intérieure ou extérieure.

Une mauvaise étanchéité entre le cadre et le vitrage

Schéma mauvaise étanchéité entre le cadre et le vitrage.

Dans les anciens châssis, un mastic durci et non élastique, posé généralement du côté extérieur, assurait la fixation du vitrage dans son cadre. Des petits clous assuraient la stabilité du vitrage en attendant la pose du mastic.

Les anciens mastics doivent être remplacés par des mastics souples après nettoyage et retraitement des châssis. On peut également d’abord rajouter des parecloses.

Pour les châssis récents en bois, on vérifie et éventuellement on remplace les joints, les parcloses, et l’emplacement des cales.

Pour les châssis PVC, aluminium ou polyuréthane, le joint autour des vitrages est généralement colmaté à l’aide d’un préformé d’étanchéité en néoprène, par exemple. Il doit être vérifié et remplacé s’il est abîmé.

Si on constate une insuffisance de drainage de la feuillure, on peut ajouter des conduits de drainage. L’opération est plus délicate que celle d’ajouter des conduits de drainage à la chambre de décompression car elle se fait dans l’ouvrant du châssis et toute erreur de disposition peut entraîner des infiltrations d’eau de rejet en aval de l’étanchéité à l’air du profilé.

Si le vitrage est remplacé, il faut prévoir un nouveau type de joint et vérifier la présence de drainage de la feuillure.

Une mauvaise étanchéité des assemblages

Les assemblages peuvent être rendus étanches par des injections de mastic fluide ou de colle.


Améliorer l’étanchéité au niveau des ouvertures

Les halls d’entrée sans sas

L’air conditionné en été et l’air chauffé en hiver s’échappent joyeusement… ! Le coût généré par cette fuite est variable en fonction de la durée d’ouverture.

À titre de repère, un trou permanent d’1 m² dans une enveloppe (vitre brisée, par exemple) génère un passage d’air à la vitesse moyenne de 1 m/s. Ce m³ qui s’échappe par seconde va entraîner une consommation hivernale de :

1 [m³/s] x 3 600 [s/h] x 5 800 [h/saison chauffe] x 0,34 [Wh/m³.K] x (15° – 6°) / 1 000 = 63 000 [kWh/an]

où :

    • 15° est la température moyenne intérieure, tenant compte d’un abaissement nocturne et d’un apport équivalent de 3° par les apports « gratuits »,
    • 6° est la température moyenne extérieure hivernale dans le centre de la Belgique,
    • 0,34 Wh/m³xK est la capacité thermique de l’air.

Soit un équivalent de +/- 2 500 € par an et par m² d’ouverture permanente, si la chaleur est fournie par du combustible fuel à 0,375 €/litre.

Une solution consiste à créer un sas avec doubles portes ouvrantes automatiques, ou avec porte tournante, thermiquement plus efficace mais plus contraignante à l’usage.

Photo ferme-porte automatique.

Solution minimale : le ferme-porte automatique.

Choisir le mode de pose de l’étanchéité

Les étanchéités bitumineuses

– Sur du béton ou du béton léger monolithe, l’étanchéité bitumineuse peut être :

– Sur des panneaux en béton cellulaire ou en fibro-ciment, l’étanchéité bitumineuse peut être :

  • si un lestage lourd est possible,
    • posée en indépendance,
  • si un lestage lourd n’est pas possible,
    • posée en adhérence totale par collage au bitume ou soudage avec bandes libres sur tous les joints,
    • posée en adhérence totale par collage à froid avec bandes de pontage sur les joints d’about,
    • posée en semi-indépendance par collage à froid, collage au bitume ou soudage, avec bandes de pontage sur les joints d’about,
    • (éventuellement) fixée mécaniquement à l’aide de vis.

– Sur des panneaux multiplex en particules de bois, l’étanchéité bitumineuse peut être :

  • si un lestage lourd est possible,
    • posée en indépendance,
  • si un lestage lourd n’est pas possible,
    • posée en adhérence totale par collage au bitume ou soudage avec bandes de pontage sur les joints d’about,
    • posée en adhérence totale par collage à froid,
    • posée en semi-indépendance par collage à froid, collage au bitume ou soudage,
    • fixée mécaniquement à l’aide de clous ou de vis.

– Sur des panneaux en fibre de bois liées au ciment, l’étanchéité bitumineuse peut être :

  • si un lestage lourd est possible,
    • posée en indépendance,
  • si un lestage lourd n’est pas possible,
    • posée en adhérence totale  par collage à froid, collage au bitume ou soudage.

– Sur des planchers en bois, l’étanchéité bitumineuse peut être :

  • si un lestage lourd est possible,
    • posée en indépendance,
  • si un lestage lourd n’est pas possible,
    • fixée mécaniquement à l’aide de clous ou de vis.

– Sur des panneaux isolants en mousse de polyuréthane (PUR), en mousse de polyisocyanurate (PIR) ou en mousse résolique (PF) revêtus, l’étanchéité bitumineuse peut être :

  • si un lestage lourd est possible,
    • posée en indépendance,
  • si un lestage lourd n’est pas possible,
    • posée en adhérence totale par collage à froid,
    • posée en semi-indépendance par collage à froid, collage au bitume ou soudage,
    • fixée mécaniquement au support, à travers l’isolant, à l’aide de clous ou de vis.

– Sur des panneaux isolants en mousse de polystyrène expansé (EPS) revêtus, l’étanchéité bitumineuse peut être :

  • si un lestage lourd est possible,
    • posée en indépendance,
  • si un lestage lourd n’est pas possible,
    • posée en adhérence totale par collage à froid,
    • posée en semi-indépendance par collage à froid ou collage au bitume,
    • fixée mécaniquement au support, à travers l’isolant, à l’aide de clous ou de vis.

– Sur des panneaux isolants en laine de roche (MW) ou en perlite (EPB), l’étanchéité bitumineuse peut être :

  • si un lestage lourd est possible,
    • posée en indépendance,
  • si un lestage lourd n’est pas possible,
    • posée en adhérence totale par collage à froid ou collage au bitume, lorsque les panneaux ne sont pas revêtus d’un film thermofusible,
    • posée en adhérence totale par soudage lorsque les panneaux sont soudables,
    • fixée mécaniquement au support, à travers l’isolant, à l’aide de clous ou de vis.

– Sur des panneaux isolants en liège (ICB), l’étanchéité bitumineuse peut être :

  • si un lestage lourd est possible,
    • posée en indépendance,
  • si un lestage lourd n’est pas possible,
    • posée en adhérence totale par collage à froid ou collage au bitume,
    • fixée mécaniquement au support, à travers l’isolant, à l’aide de clous ou de vis.

– Sur des panneaux isolants en verre cellulaire (CG), l’étanchéité bitumineuse est généralement :

  • posée en adhérence totale  par collage à froid, collage au bitume ou soudage,
  • posée en semi-indépendance par collage à froid, collage au bitume ou soudage.

– Sur une étanchéité existante qui ne pose pas de problème, mais dont la durée de vie touche à sa fin, l’étanchéité bitumineuse peut être posée en adhérence totale par collage à froid, collage au bitume ou soudage.


Les étanchéités synthétiques

(D’après le tableau 1 de la NIT 151 du CSTC).
La pose des étanchéités synthétiques varie selon le matériau et est différente de celle des étanchéités bitumineuses. Exemples:

Les élastomères

  • EPDM Copolymère d’éthylène, de propylène et de diène-monomère vulcanisé

    Il sera posé en adhérence totale, en adhérence partielle ou en pose libre lestée. L’adhérence au support se fait par collage à l’aide de colle à chaud à base de bitume et d’EPDM, à l’aide de colle de contact, ou à l’aide de bitume lorsque les feuilles sont pourvues d’une couche dorsale constituée d’un voile qui sert à réaliser l’adhérence avec le bitume.Des membranes EPDM pourvues en leur sous-face d’une couche de bitume modifié SBS existent. Elles peuvent être soudées au chalumeau.Sur des tôles profilées en acier, l’EPDM est fixé mécaniquement au niveau des joints ou avec un système de vis spéciales qui ne traversent pas la membrane.

Les plastomères

  • PVC Polymère de chlorure de polyvinyle avec plastifiantLes membranes en PVC peuvent être soit fixées mécaniquement selon différentes méthodes (lorsqu’elles sont résistantes aux UV), soit être posées librement et lestées.Elles peuvent également être collées à la colle de contact ou au bitume chaud (dans le cas d’un PVC résistant au bitume).Dans de nombreux cas, comme avec le PVC non armé, il est utile de fixer l’étanchéité le long des rives pour maîtriser le retrait.

Évaluer l’étanchéité à l’air

Évaluer l'étanchéité à l'air


Importance d’une bonne étanchéité

Le confort

Une mauvaise étanchété à l’air des bâtiments engendre des courants d’air et provoque une sensation d‘inconfort.

Exemple : courants d’air au niveau des joints de fenêtre et de porte.

Un cas typique conduisant à l’établissement d’un courant d’air est celui d’un plateau de bureaux paysager où des fenêtres donnent sur deux façades d’orientations différentes : suite à l’effet du vent, une façade est en surpression et l’autre en dépression, entraînant un courant d’air transversal. Cet effet de courant d’air se fait d’autant plus ressentir que les radiateurs placés devant les fenêtres ne couvrent pas toute la largeur de celles-ci et ne compensent pas l’infiltration d’air froid.

Le même phénomène se présente lorsqu’il y a des portes donnant sur l’extérieur et non protégées par un sas.

De plus, le manque d’étanchéité à l’air engendre un affaiblissement de l’isolation acoustique, ce qui pose surtout problème dans les villes.

Les économies d’énergie / la puissance de chauffe

Les économies d’énergie

En hiver, l’air chaud s’échappe par les fuites d’air d’un bâtiment trop peu étanche, l’air froid s’y engouffre. Un taux de ventilation réel de 0,5 renouvellement/h pour un bâtiment de dimension 60 m x 10 m x 12 m, soit 7 200 m³ va entraîner une consommation hivernale de :

(0,5 x 7 200) [m³/h] x 5 800 [h] x 0,34 [Wh/m³.K] x (15° – 6°) / 1 000

= 64 000  [kWh/an]

 où,

  • 5 800 est le nombre d’heures de la saison de chauffe
  • 0,34 Wh/m³xK est la capacité thermique de l’air.
  • 15° est la température moyenne intérieure, tenant compte d’un abaissement nocturne et d’un apport équivalent de 3° par les apports « gratuits »
  • 6° est la température moyenne extérieure hivernale dans le centre de la Belgique

Soit un équivalent de +/- 4 000 € par an , si la chaleur est fournie par du combustible fuel à 0,625 €/litre.

L’impact de l’inétanchéité à l’air d’un bâtiment est d’autant plus important que celui-ci est récent et donc bien isolé. En effet, la part des pertes dues à la ventilation dans le total des déperditions y est beaucoup plus importante.

La puissance de chauffe

Le dimensionnement de l’installation de chauffage se fait sur base des pertes de chaleur par transmission (par les murs, les fenêtres, la toiture, …) et des pertes de chaleur par ventilation. Si l’étanchéité du bâtiment est très mauvaise, les pertes de chaleur par ventilation seront plus importantes que celles dont on aura tenu compte dans les calculs menant au dimensionnement de la chaudière (la norme NBN 62-003 prévoit un taux de renouvellement horaire de l’air de 1), la chaudière sera sous-dimensionnée par rapport aux besoins réels et, par temps très froid, on n’arrivera pas à chauffer convenablement.

Exemple.

Le CSTC a été appelé dans une école où il s’était avéré impossible de chauffer les locaux au-delà de 10 à 13 °C durant les moments froids et venteux de l’hiver 1984-1985, malgré une installation de chauffage correctement dimensionnée. Il a mesuré une étanchéité n50 de 30/h, ce qui correspond à un taux de ventilation réel saisonnier moyen de 1,5/h… Les parois étaient réalisées en blocs de béton poreux, laissés apparents (sans plafonnage). Et par temps venteux, l’air extérieur traversait la paroi…

Mais ce cas est très rarement rencontré.

Le mauvais fonctionnement du système de ventilation

Le système de ventilation ne fonctionnera correctement que si le bâtiment est relativement étanche à l’air.

Dans son article « La ventilation et l’infiltration dans les bâtiments : la situation en Belgique » (1986), le CSTC précise qu’un système de ventilation mécanique ne peut fonctionner correctement que pour un taux de renouvellement de l’air à 50 Pa (n50) inférieur à 5/h.


Niveaux de référence

Étanchéité globale

En Wallonie, il n’existe pas de recommandations concernant l’étanchéité à l’air globale d’un bâtiment.

Par contre, la norme européenne EN 13779 recommande un taux de renouvellement d’air maximum à 50 Pa(n50) :

  • de 1/h pour les bâtiments hauts (> 3 étages);
  • de 2/h pour les bâtiments bas.

On peut également se référer à la norme NBN D 50-001 qui recommande :

  • n50 < 3/h si ventilation mécanique,
  • n50 < 1/h si récupérateur de chaleur.

À titre de comparaison, la région de Bruxelles-Capitale imposera en 2018 un niveau d’étanchéité à l’air n50 < 0.6/h pour toute construction neuve, et n50 < 0.72/h pour les rénovations assimilées à de la construction neuve.

Étanchéité des fenêtres

En Belgique, les bâtiments des services publics doivent satisfaire aux exigences d’étanchéité suivantes :

Hauteur du bâtiment (h en [m]) η50 [m³/h.m]
h < 10 < 3,8
10 < h < 18 < 1,9
h > 18 < 1,3

Source : STS 52 Menuiserie extérieure en bois : fenêtres, portes-fenêtres, façades légères – Bruxelles – 2005.

Ces exigences sont relativement sévères par rapport aux autres pays (seuls les pays scandinaves ont des exigences plus sévères).

La figure ci-dessous donne un aperçu des valeurs d’étanchéité à l’air des menuiseries imposées par un certain nombre de pays occidentaux.

Aperçu des exigences d’étanchéité à l’air des menuiseries dans différents pays occidentaux.


Comment évaluer sa situation ?

1° possibilité : faire procéder à une évaluation par une société spécialisée

  1. On peut faire réaliser des essais de pressurisation du bâtiment pour mesurer l’étanchéité globale et localiser les fuites. Si cette technique fonctionne bien pour un bâtiment domestique, il semble difficile de l’appliquer pour un bâtiment tertiaire.
  2. On peut procéder à une analyse par gaz traceur : une dose bien connue de gaz est dispersée dans une ambiance; une heure plus tard, on vient mesurer quelle est la teneur du gaz encore présente; si celle-ci est faible, c’est que le taux de ventilation est élevé.

2° possibilité : évaluer approximativement sa propre situation

Ci-dessous, nous vous proposons d’analyser votre bâtiment. Ces observations permettront de situer votre bâtiment par rapport à d’autres bâtiments (statistiques) dans lesquels des mesures de pressurisation ont été faites.

A. Observation de la situation

Observation des parties courantes

On vérifie que les murs, s’ils sont réalisés en matériaux poreux (maçonneries de briques, blocs de béton lourds ou légers, …) sont recouverts d’une couche étanche à l’air. Celle-ci peut être un plafonnage, des plaques de plâtres enrobées correctement rejointoyées, un pare-vapeur correctement placé. Une couche épaisse de peinture filmogène est également valable au niveau de l’étanchéité à l’air. Une couche isolante en matériau synthétique ou en verre cellulaire correctement posée rend également le mur étanche à l’air.
Remarques.

  • En cas de mur creux dont la maçonnerie intérieure est apparente, l’enduit étanche à l’air peut avoir été placé sur le mur intérieur du côté coulisse; dans ce cas, elle n’est pas visible à l’oeil.
  • Il arrive que les murs soient enduits jusqu’au faux plafond mais pas au-delà. Dans ce cas, si le faux plafond n’est lui-même pas étanche à l’air, on ressentira des fuites au niveau du faux plafond.

De la même façon, on vérifie que la toiture inclinée, si les locaux sous les combles sont utilisés, dispose d’une bonne étanchéité à l’air. C’est le cas si la finition intérieure est constituée d’un plafonnage, de plaques de plâtre enrobées correctement rejointoyées, de panneaux de fibres de bois liées au ciment, avec enduit. Cette étanchéité à l’air est également assurée avec un pare-vapeur correctement placé ou avec un isolant peu perméable à l’air (mousses synthétiques, verre cellulaire) si celui-ci est correctement posé. Au contraire, le plafond n’est pas rendu étanche par un lambris en planchettes de bois ou par des lamelles en aluminium avec joints ouverts. Il ne l’est pas non plus dès que la finition intérieure est perforée par des canalisations électriques ou pour toute autre raison.

Les toitures plates correctement réalisées (toitures chaudes ou toitures inversées) sont automatiquement étanches à l’air à cause de la présence du pare-vapeur et de la membrane d’étanchéité continue caractéristique des toitures plates. La toiture froide doit être proscrite car la ventilation de l’espace situé entre l’étanchéité et l’isolant augmente les risques de courants d’air néfastes.

Observation des raccords et percements

Les infiltrations d’air peuvent avoir lieu au niveau :

  • Des châssis de fenêtres :Remarque : on croit souvent que les pertes par les fenêtres représentent la majorité des pertes par infiltrations. Or, il apparaît que ces pertes n’en représentent en moyenne que 20 % bien que, dans certains cas (cas des menuiseries les moins étanches (n50 de 20 à 40 m³/hxm), elles s’élèvent jusqu’à 75 % de la totalité de ces pertes.
  • Des raccords entre les éléments de la construction (façade/toiture, façade/plancher au niveau de la plinthe, …).
  • Des percements (passage de conduites, portes, caisson de volet, boîtiers électriques, …).
  • Des raccords entre les menuiseries et les maçonneries.

Mauvais raccord entre le mur et la menuiserie.

Il convient donc de vérifier la jonction entre les différents éléments de construction, ou un percement dès que ce dernier touche la couche de la façade qui assure l’étanchéité à l’air.
Cette vérification se fait :

  • Soit à l’œil ou à la main.
  • Soit à l’aide d’une feuille de papier,par exemple, pour vérifier l’étanchéité à l’air entre l’ouvrant et le dormant d’un châssis, on y place une feuille de papier. Si cette feuille coincée ne se déchire pas lors de la tentative d’extraction, l’étanchéité n’y est sans doute pas terrible…!
  • Soit à l’aide d’une bougie que l’on place devant les joints des zones à risque.
  • Des tâches de poussière peuvent également servir d’indice d’une mauvaise étanchéité locale.
  • Enfin au niveau des fuites évidentes, une mesure plus précise peut être réalisée grâce à un anémomètre à fil chaud.

Au niveau du châssis même, on vérifie qu’il existe un joint entre l’ouvrant et le dormant du châssis. Ce joint d’étanchéité à l’air doit être en bon état et continu on vérifie en particulier sa continuité aux angles où il a tendance à se détacher plus vite. Il doit être dans un même plan sur tout le pourtour du châssis.

On vérifie aussi l’état du joint entre le cadre et le vitrage. Celui-ci ne peut êre fissuré ou décollé. Il ne peut avoir perdu sa souplesse.

B. Confrontation des observations aux statistiques

Certaines études statistiques ont été effectuées sur l’étanchéité de bâtiments existants.
Elles concernent :

  • l’étanchéité des menuiseries,
  • l’étanchéité des murs,
  • l’étanchéité de la toiture inclinée.

En vous basant sur ces études et sur les caractéristiques propres à votre bâtiment, il est possible d’en estimer par comparaison, l’étanchéité. Pour vérification, le résultat obtenu en additionnant les volumes d’air infiltré liés à ces différentes causes, peut être comparé à des observations statistiques :

  • d’étanchéité globale.

Étanchéité des menuiseries

Les anciennes menuiseries des immeubles existants ne répondent pas aux niveaux d’étanchéité recommandés. Nous n’avons pas trouvé de rapport de mesures faites en Belgique. Par contre, une étude menée aux Pays-Bas par Mr Van Gunst (1959) (1) et Mrs De Gids et Knoll (1981) (2) révèle notamment que :

  • La plupart des châssis construits avant 1959 ne satisfont pas aux normes néerlandaises modernes.
  • L’étanchéité des joints varie considérablement. M. De Gids a, en effet, mesuré des valeurs (à 50 Pa) allant de n50 = 1,6 à 36 m³/h.m; M. Van Gunst obtient quant à lui des valeurs de n50 situées entre 1,2 et 34 m³/h.m.
  • Les déperditions au droit des raccords entre la menuiserie et la maçonnerie ne sont pas négligeables; elles représentent, en moyenne, 40 % des pertes à travers l’ensemble des joints de la menuiserie.

(1) Van Gunst E. – Het raam in onze woning in verband met gezondheid en ekonomie. De Ingenieur, n° 4 en 11 – 1959.

(2) Knoll B. et De Gids W.F. – Luchtdoorlatendheid van 21 gevels met gevelelementen in drie seizoenen. Delft, IMG-TNO, rapport C 490, november 1981.

Les nouveaux châssis (depuis environ 1985), quant à eux, répondent pour la plupart aux exigences requises. Dans le cas contraire, la mauvaise étanchéité est, sauf exceptions, due à un placement peu soigné.

Étanchéité des murs

Des mesures d’étanchéité dans divers bâtiments ont montré que tous les types de murs, s’ils sont plafonnés, sont très étanches : taux de ventilation à 50 Pa(n50) de moins de 1 m³/h.m². Par contre les murs creux en blocs de béton lourds non plafonnés donnent des taux de ventilation à 50 Pa (n50) d’environ 10 m³/h.m².

Étanchéité de la toiture inclinée

Exemples.

Des mesures d’étanchéité ont été réalisées dans 2 écoles de construction récente, dans un immeuble de bureaux et dans une habitation individuelle dont la constitution de la toiture inclinée est donnée ci-dessous.

  1. Finition intérieure (lambris de bois ou lamelle en aluminium avec joints non fermés).
  2. Isolant.
  3. Chevron.
  4. Sous-toiture de type fibres ciment – cellulose.
  5. Tuiles.

Celles-ci ont donné un taux de ventilation à 50 Pa(n50) d’environ 100 m³/h.m².

On a ensuite rajouté une feuille en PVC entre l’isolant et le plafond d’une des classes. Suivant la qualité d’exécution, on a obtenu les résultats suivants lors de nouvelles mesures d’étanchéité.

Conception de la toiture

n50 (1/h)

Pas de feuille de PVC entre l’isolant et le plafond

27

Une feuille de PVC (0,2 mm) entre l’isolant et le plafond, pas de bande adhésive sur les joints.

12

Une feuille de PVC (0,2 mm) entre l’isolant et le plafond, bande adhésive sur les joints.

5

Étanchéité globale

L’étanchéité de 45 écoles a été mesurée entre 1986 et 1987. Il est apparu que l’étanchéité des bâtiments varie très fortement : le taux de renouvellement d’air à 50 Pa(n50) varie de 0,5/h à 40/h. Il n’y a pas que les bâtiments les plus anciens où l’étanchéité à l’air est faible. Plusieurs bâtiments récents mesurés étaient très peu étanches à l’air; la plupart du temps, cette mauvaise étanchéité était due à des fuites d’air au niveau de la toiture.

Taux de ventilation à 50 PA de bâtiments en fonction de l’année de construction.

À partir des mesures dont il est question ci-dessus mais également d’autres mesures, on peut dire, d’une façon plus générale, que l’étanchéité à l’air des bâtiments en Belgique varie grosso-modo de n50 = 1/h à n50 = 30/h.

C. Évaluation des débits d’air par des ouvertures dans la façade (vitre cassée, porte ouverte, …)

Petite ouverture
À titre de repère, la vitesse de l’air s’²chappant d’une petite ouverture dans une façade (vitre brisée, fente sous une porte, fente de boîte aux lettres, …) est en moyenne de l’ordre de 1 m/s. Cette valeur est valable tant que la section d’ouverture ne dépasse pas 0,5 m². Mais pour la facilité mnémotechnique, on peut calculer la perte énergétique liée à un trou d’1 m² dans une enveloppe. Un débit de 1 m³/s (1m² x 1 m/s) s’échappera, ce qui va entraîner une consommation hivernale de :

1 [m³/s] x 3 600 [s/h] x 5 800 [h/saison chauffe] x 0,34 [Wh/m³.K] x (15° – 6°;) / 1 000

= 63 000 [kWh/an]

où :

  • 15° est la température moyenne intérieure, tenant compte d’un abaissement nocturne et d’un apport équivalent de 3° par les apports « gratuits »,
  • 6° est la température moyenne extérieure hivernale dans le centre de la Belgique,
  • 0,34 Wh/m³.K est la capacité thermique de l’air.

Retenons donc un équivalent de +/- 4 000 € par an et par m² d’ouverture permanente, si la chaleur est fournie par du combustible fuel à 0,625 €/litre.
Grande ouverture
Si l’ouverture est plus importante (ouverture permanente d’une porte d’entrée du bâtiment, par exemple), le phénomène est plus complexe. On constate que de l’air chaud va s’échapper en partie supérieure de la porte et que de l’air froid le remplacera en partie inférieure. Au centre l’écoulement d’air sera pratiquement nul (tourbillons).

On peut approcher le débit d’air par la loi empirique suivante :

Débit = C x Section x (g x Hauteur x DeltaT°/T° ext) exp (1/2)

  • les températures sont exprimées en Kelvin,
  • où le coefficient C est généralement pris égal à 0,15 … 0,2
  • et où « exp (1/2) » signifie qu’il faut prendre la racine carrée de la parenthèse.

Exemple : soit une porte de 1,8 sur 2 m de section, une température intérieure de 20°C et extérieure de 6°C, soit 279 K.

Débit = 0,15 x 3,6 x (9,81 x 2 x 14/279) exp (1/2) = 0,53 m³/s. Une vitesse moyenne de sortie d’air au travers de la porte est donc de 0,53/3,6 = 0,15 m/s.

Remarque : le rapport de conférence du CSTC, Ventilation and Air Quality in Belgian Buildings : a state of the art. / 9th AIVC Conference, Gent, Belgium, 12-15 september 1988 / par P. Wouters, ainsi que l’article La ventilation et l’infiltration dans les bâtiments : la situation en Belgique. / par P. Wouters ont été largement utilisés pour écrire ce chapitre.

Améliorer l’étanchéité à l’air

Schéma de l'étanchéité à l'air de l'enveloppe

Impact de l’étanchéité à l’air

Toute infiltration d’air génère une consommation supplémentaire de chaleur en hiver, de froid en été. Elle peut être estimée en considérant qu’elle augmente la consommation liée au taux d’air neuf du bâtiment. En plus de son impact sur la consommation énergétique, l’étanchéité à l’air peut être responsable d’autres désagréments tels qu’une réduction de l’isolation acoustique, une détérioration des performances hygrothermiques des matériaux isolants ou encore l’apparition de courants d’air près des fuites.


Améliorer l’étanchéité au niveau des parties courantes des parois

Au niveau des parties courantes des parois délimitant le volume protégé, toute fissure doit être colmatée.
Les matériaux poreux utilisés en construction (briques, blocs de béton, laines minérales, …), s’ils ne sont pas enduits, sont perméables à l’air.
De plus, il arrive que les joints des maçonneries ne soient pas correctement réalisés : les joints verticaux sont partiellement remplis mais ce défaut est camouflé par rejointoyage augmentant encore la perméabilité de l’ensemble de la maçonnerie. À titre d’exemple, des mesures d’étanchéité sur des maisons en murs creux en blocs de béton non plafonnés sont donné des débits d’environ 0.5 m³/(h.m²). 
Pour améliorer l’étanchéité à l’air de l’enveloppe, ces matériaux doivent être protégés d’une couche étanche à l’air : un enduit (cimentage ou plafonnage), des plaques de plâtres enrobées correctement rejointoyées. Une couche de peinture épaisse et filmogène peut aussi convenir. Une fois traités, les valeurs de débit à 50 Pa varient de 0 à 1.3 m³/(h.m²) en fonction du type et de la qualité de traitement, avec une moyenne de 0.3 m³/(h.m²) (moyenne sur 89 mesures faites par 8 auteurs différents)((Projet AirPath50 – Martin Prignon & Geoffrey Van Moeseke)).
Exemple.

Suite à une mesure de pressurisation sur un bâtiment en blocs non enduits et donc peu étanche, on a obtenu un n50 = 10/heure. L’application d’une couche de peinture épaisse sur les blocs a réduit le n50 à 1/heure.

Remarque : un pare-vapeur est plus ou moins étanche à la vapeur d’eau suivant sa nature, mais est également à l’air. 

 


Améliorer l’étanchéité aux raccords des éléments de façade ou au niveau des percements

Les jonctions telles que les raccords entre les éléments de la construction (façade/toiture, façade/plancher au niveau de la plinthe, …) ou les percements (passage de conduite, baie vitrée, portes, caisson de volet, boîtiers électriques, …) sont toujours des points délicats. On doit vérifier la parfaite jonction du raccord entre les différents éléments de construction ou entre la paroi et le percement dès que ce dernier touche la ou les couche(s) de la façade qui assure l’étanchéité à l’air. Si cette jonction présente des espaces, il faut les colmater.


Améliorer l’étanchéité du raccord mur-châssis

Photo étanchéité du raccord mur-châssis

Avec les châssis anciens, le joint entre le châssis et la maçonnerie était habituellement réalisé au moyen d’un mortier au ciment, souvent fendillé avec le temps et donc insuffisamment étanche.
On peut réfectionner ce joint. On procède en 4 étapes :

  1. On dégage le joint existant (mortier ou mastic), y compris l’éventuel fond de joint.
  2. On nettoie et on dégraisse les lèvres du joint.
  3. On réalise un fond de joint (pour autant que l’espace vide soit suffisant), par exemple, en plaçant un préformé de bourrage à cellules fermées.
    Dans le cas d’un mur plein, il est conseillé de créer une chambre de décompression entre le resserrage extérieur avec le gros œuvre et le resserrage intérieur.
    L’injection de mousse de polyuréthane n’est pas conseillée car, de par son caractère expansif, peu provoquer des dégâts (arrachement, …).
  4. On applique sur ce fond de joint un mastique élastique (exemple : mastic silicone) en veillant à assurer un bon contact entre les lèvres.

Améliorer l’étanchéité des châssis

Remarque : dans ce paragraphe, l’étanchéité à l’eau a été traitée en même temps que l’étanchéité à l’air ces deux-ci étant difficilement dissociables.

Une mauvaise étanchéité des châssis peut être due à :

Une classe de résistance à l’air et à l’eau du châssis insuffisante par rapport aux solicitations :

En effet, le STS définit des niveaux de performance d’étanchéité à l’eau (PE2, PE3, PE4, PEE ) et à l’air ( PA2, PA2B, PA3 ) des châssis à atteindre en fonction de la hauteur du châssis par rapport au sol.
S’il s’agit de châssis standards ces niveaux de performance sont signalés par l’agrément technique.

Hauteur par rapport au sol Perméabilité à l’air Étanchéité à l’eau
0 à 10 m

10 à 18 m

18 à 25 m

25 à 50 m

> 50 m

PA2B (1) (3)

PA2B (3)

PA3

PA3

PA3

PE2 (2)

PE3

PE3

PE4

PEE

  • (1) Si il n’y a pas d’exigence particulière du point de vue thermique et/ou acoustique, on se contentera d’un niveau PA2.
  • (2) Si le bâtiment a une exposition sévère (digue de mer), on prend un châssis de résistance PE3, et on le signale dans le cahier spécial des charges.
  • (3) Si on est en présence de locaux avec air conditionné, un niveau PA3 s’avèrera nécessaire.

Si les performances des menuiseries sont inadaptées à l’exposition et à la hauteur par rapport au sol, il n’est pas toujours possible d’y apporter les améliorations nécessaires (ajout d’une barrière d’étanchéité, modification du profil…).
Dans ce cas, seul un remplacement du châssis peut être envisagé.

Concevoir

Pour en savoir plus sur le choix des châssis.

Une mauvaise étanchéité entre dormant et ouvrant

Un mauvais fonctionnement de la double ou triple barrière d’étanchéité :
Remarque : des infiltrations d’eau et d’air sont inévitables malgré un bon dispositif d’étanchéité dans certains types d’ouvrants, au sein desquels l’interruption des joints d’étanchéité au droit des charnières est obligatoire.

Concevoir

Pour connaître les risques d’infiltration en fonction du type d’ouvrant.

Dans les anciens châssis, la forme des profilé ménageant une ou deux frappes constituait l’unique dispositif de joint entre dormant et ouvrant.
Dans ce cas et en cas de problème d’étanchéité, il est possible de réaliser un joint souple sur la frappe la plus intérieure de l’ouvrant, soit en mousse compressible, soit en mastic silicone épousant la forme des châssis.
Dans les châssis plus récents en bois, on peut ajouter également un tel type de joint sur la deuxième ou la troisième frappe.
Les fuites d’étanchéité peuvent être dues au vieillissement du préformé, dans ce cas, celui-ci doit être remplacé.
Remarque : lors de l’entretien des châssis en bois, le traitement du bois ne doit pas recouvrir le préformé, sinon ce dernier est rendu inefficace.
Il est indispensable de souder ou de recoller les joints d’étanchéité présentant une discontinuité dans les angles. En effet, la continuité du joint dans ces zones est particulièrement délicate : le joint peut facilement se défaire à cet endroit.
Dans tous les cas, il faut que le joint soit continu et reste dans un même plan sur tout le pourtour de l’ouvrant.

Un mauvais drainage

Le drainage de la chambre de décompression peut s’avérer insuffisant. Des conduits de drainages peuvent être rajoutés dans le dormant.
On veillera à réaliser des conduits d’inclinaison et de diamètres identiques à ceux existants. Normalement, les conduits seront situés près des angles et équidistants de +/- 50 cm.

Schéma du drainage de la chambre de décompression

Un mauvais réglage ou/et entretien des quincailleries.

Un bon réglage des quincailleries permet d’assurer un écrasement du préformé de -/+ 2 mm et garantit ainsi un bon fonctionnement de la barrière d’étanchéité.

Une déformation excessive du châssis lors de sa manipulation ou par la dilatation thermique.

Cette déformation engendre principalement un défaut d’étanchéité entre le dormant et l’ouvrant car ailleurs (c.-à-d.. entre la maçonnerie et le châssis et entre le châssis et la vitre), les joints sont extensibles.
On améliore la raideur du châssis en rapportant des profilés à la face intérieure ou extérieure.

Une mauvaise étanchéité entre le cadre et le vitrage

Schéma de la mauvaise étanchéité entre le cadre et le vitrage

Dans les anciens châssis, un mastic durci et non élastique, posé généralement du côté extérieur, assurait la fixation du vitrage dans son cadre. Des petits clous assuraient la stabilité du vitrage en attendant la pose du mastic.
Les anciens mastics doivent être remplacés par des mastics souples après nettoyage et retraitement des châssis. On peut également d’abord rajouter des parecloses.
Pour les châssis récents en bois, on vérifie et éventuellement on remplace les joints, les parcloses, et l’emplacement des cales.
Pour les châssis PVC, aluminium ou polyuréthane, le joint autour des vitrages est généralement colmaté à l’aide d’un préformé d’étanchéité en néoprène, par exemple. Il doit être vérifié et remplacé s’il est abîmé.
Si on constate une insuffisance de drainage de la feuillure, on peut ajouter des conduits de drainage. L’opération est plus délicate que celle d’ajouter des conduits de drainage à la chambre de décompression car elle se fait dans l’ouvrant du châssis et toute erreur de disposition peut entraîner des infiltrations d’eau de rejet en aval de l’étanchéité à l’air du profilé.

Schéma de la mauvaise étanchéité entre le cadre et le vitrage

Si le vitrage est remplacé, il faut prévoir un nouveau type de joint et vérifier la présence de drainage de la feuillure.

Une mauvaise étanchéité des assemblages

Les assemblages peuvent être rendus étanches par des injections de mastic fluide ou de colle.


Améliorer l’étanchéité au niveau des ouvertures

Les halls d’entrée sans sas

L’air conditionné en été et l’air chauffé en hiver s’échappent joyeusement… ! Le coût généré par cette fuite est variable en fonction de la durée d’ouverture.

À titre de repère, un trou permanent d’1 m² dans une enveloppe (vitre brisée, par exemple) génère un passage d’air à la vitesse moyenne de 1 m/s. Ce m³ qui s’échappe par seconde va entraîner une consommation hivernale de :

1 [m³/s] x 3 600 [s/h] x 5 800 [h/saison chauffe] x 0,34 [Wh/m³.K] x (15° – 6°) / 1 000 = 63 000 [kWh/an]

où :

  • 15° est la température moyenne intérieure, tenant compte d’un abaissement nocturne et d’un apport équivalent de 3° par les apports « gratuits »,
  • 6° est la température moyenne extérieure hivernale dans le centre de la Belgique,
  • 0,34 Wh/m³xK est la capacité thermique de l’air.

Soit un équivalent de +/- 2 500 € par an et par m² d’ouverture permanente, si la chaleur est fournie par du combustible fuel à 0,375 €/litre.

Une solution consiste à créer un sas avec doubles portes ouvrantes automatiques, ou avec porte tournante, thermiquement plus efficace mais plus contraignante à l’usage.

Photo ouvre-porte automatique

Solution minimale : le ferme-porte automatique.


Cas particulier des bâtiments climatisés

Ce problème est moins important dans les bâtiments conditionnés dès leur origine : des châssis étanches, voire fixes, auront été prévus.

De plus, les locaux sont souvent maintenus en surpression (débit de pulsion > débit d’extraction) : l’air extérieur ne peut pénétrer et les courants d’air sont exclus.

Quelques cas particuliers sont cependant à prendre en considération :

Les halls d’entrée sans sas

L’air conditionné (et donc coûteux…) s’échappe joyeusement ! Le coût généré par cette fuite est variable en fonction de la durée d’ouverture.

A titre de repère, un trou permanent d’1 m² dans une enveloppe (vitre brisée, par exemple) génère un passage d’air à la vitesse moyenne de 1 m/s. Ce m³ qui s’échappe par seconde va entraîner une consommation hivernale de :

1 [m³/s] x 3 600 [s/h] x 5 800 [h/saison chauffe] x 0,34 [Wh/m³.K] x (15° – 6°) / 1 000 = 63 000 [kWh/an]

où :

  • 15° est la température moyenne intérieure, tenant compte d’un abaissement nocturne et d’un apport équivalent de 3° par les apports « gratuits »,
  • 6° est la température moyenne extérieure hivernale dans le centre de la Belgique,
  • 0,34 Wh/m³.K est la capacité thermique de l’air.

Soit un équivalent de +/- 2500 € par an et par m² d’ouverture permanente, si la chaleur est fournie par du combustible fuel à 0,375 €/litre.

Une solution consiste à créer un sas avec doubles portes ouvrantes automatiques, ou avec porte tournante, thermiquement plus efficace mais plus contraignante à l’usage.

Les climatiseurs mobiles

Photo climatiseur mobile  Photo climatiseur mobile

Il arrive qu’un climatiseur de local soit installé dans l’urgence !
Pour évacuer la chaleur au condenseur, une solution peu onéreuse consiste faire passer soit le manchon d’air, soit les conduits de fluide frigorigène, par un coin de la fenêtre… qui de ce fait reste entrouverte !

En été, comme un serpent qui se mort la queue, la climatisation se fatigue à refroidir l’air chaud … dont elle a favorisé l’entrée !

Les bâtiments partiellement conditionnés

Un bloc opératoire d’un hôpital, une salle de conférence d’un immeuble de bureaux, … sont parfois des zones climatisées distinctement. L’étanchéité de cette zone par rapport au reste du bâtiment est nécessaire pour limiter les consommations.

Exemple.

Dans un centre hospitalier de Mouscron, seul le quartier opératoire était conditionné et mis en surpression. En pratique, cette surpression n’était pas atteinte puisque les couloirs communiquaient avec le restant de l’hôpital. Le responsable technique a fait placer des portes automatiques coulissantes (du type entrée de grand magasin) afin d’améliorer l’étanchéité de la zone et de diminuer les consommations.