Grandeurs caractéristiques des ventilateurs

Grandeurs caractéristiques des ventilateurs


Diamètre nominal

 La plupart des ventilateurs ne sont pas construits à partir de dimensions arbitraires. Celles-ci sont normalisées, ce qui permet leur interchangeabilité et les comparaisons de prix.

Le diamètre nominal d’un ventilateur est le diamètre de la section de raccordement placée à l’aspiration dans le cas d’un raccordement direct à un conduit. Lorsque le ventilateur est équipé différemment (par ex.: présence d’un pavillon à l’aspiration), on se réfère au ventilateur équivalent en raccordement direct.

Diamètres nominaux en mm

63

71

80

90

100

112

125

140

160

180

200

224

250

280

315

355

400

450

550

560

630

710

800

900

1 000

1 120

1 250

1 400

1 600

1 800

2 000


Courbes caractéristiques

Les performances des ventilateurs sont répertoriées sous forme de courbes caractéristiques reprises dans la documentation des fabricants.

On retrouve dans les courbes caractéristiques :

  • la hauteur manométrique totale que peut fournir un ventilateur en fonction du débit (ou point de fonctionnement),
  • la vitesse du ventilateur pour chaque point de fonctionnement,
  • le rendement du ventilateur pour chaque point de fonctionnement,
  • la pression dynamique à la sortie du ventilateur,
  • la puissance absorbée à l’arbre du moteur.

Courbes caractéristiques d’un ventilateur centrifuge à aubes inclinées vers l’arrière.

Pour fournir un débit de 8 000 m³/h, le ventilateur délivre une pression dynamique de 45 Pa.

Pour un réseau ayant, avec ce débit une perte de charge de 955 PA, la hauteur manométrique
du ventilateur est de 1 000 PA Pour obtenir ce point de fonctionnement le ventilateur
doit tourner à 1 950 tr/min.
Pour ce point de fonctionnement, son rendement sera de 81 %
et la puissance à l’arbre sera proche de 2,8 kW.

Certaines courbes caractéristiques reprennent de façon semblable la puissance acoustique émise par le ventilateur pour chaque point de fonctionnement.

De même, si l’angle de calage des aubes du ventilateur (ventilateur hélicoïde) peut varier ou si le ventilateur est équipé d’un aubage de prérotation, on retrouvera sur les courbes caractéristiques les différentes performances du ventilateur en fonction du réglage choisi.

On peut également signaler que l’imprécision des mesures des caractéristiques en laboratoire a conduit à éditer des classes de tolérance permettant de se faire une idée de la qualité de la documentation technique fournie par le fabricant.

Classe de tolérance

0

1

2

3

Débit d’air

+/- 1 %

+/- 2,5 %

+/- 5 %

+/- 10 %

Pression

+/- 1 %

+/- 2,5 %

+/- 5 %

+/- 10 %

Puissance absorbée

+ 2 %

+ 3 %

+ 8 %

+ 16 %

Rendement

– 1 %

– 2 %

– 5 %

Puissance acoustique

+ 3 dB

+ 3 dB

+ 4 dB

+ 6 dB


Sens de rotation et position de l’enveloppe

C’est la situation de la manchette de refoulement qui permet de différencier la position de l’enveloppe (0, 90, 180 ou 270 degrés avec parfois des angles intermédiaires comme 45, 135, 270 ou 315 degrés).

Quant au sens de rotation d’une roue, il se détermine comme suit : l’observateur se place face au ventilateur du côté du moteur (ou du manchon d’accouplement ou de la poulie) et regarde dans le prolongement de l’axe de rotation du ventilateur. Si l’observateur voit alors le ventilateur tourner dans le sens des aiguilles d’une montre, le ventilateur est dit tourner « à droite » ou dans le « sens direct » ; s’il le voit tourner dans le sens inverse des aiguilles d’une montre, le ventilateur est dit tourner « à gauche » ou dans le « sens inverse ».


Règles de similitude

Variation des grandeurs caractéristiques d’un ventilateur lorsqu’on modifie sa vitesse à partir d’un point de fonctionnement donné.

Variation des grandeurs caractéristiques d’un ventilateur lorsqu’on modifie sa vitesse à partir d’un point de fonctionnement donné

q/ q= n1 / n2

Légende :

q = débit volume (m³/h)

n = vitesse de rotation (tr/min)

p = gain de pression (Pa)

P= puissance sur l’arbre (kW)

p/ p= (n1 / n2)² = (q1 / q2

Pw1 / Pw2 = (n/ n2)³ = (q/ q2

Variation du diamètre de l’ouïe d’aspiration pour un ventilateur tournant à vitesse constante

V/ V= (d/ d2

Légende :

d = diamètre de l’ouïe d’aspiration (mm)

p/ p= (d/ d2

Pw1 / Pw2 = (d1 / d2)5

Rendement d’un système de ventilation

Rendement d'un système de ventilation


Rendement global

Le rendement global h d’une installation de ventilation peut être calculé comme suit :

h = q x p / P

Avec :

  • q = débit volumique en m³/s
  • p = perte de charge totale du système en Pa
  • P = puissance électrique absorbée en W

Le rendement d’un système complet de ventilation dépend du

Données

Exemples courants de rendement global de système de ventilation.

Rendement du moteur électrique

Les données de la plaque signalétique, correspondant à un fonctionnement en régime nominal, permettent de calculer le rendement d’un moteur asynchrone à la puissance nominale :

η = P / (1,73 x U x I x cos φ)

η = Rendement [-], P = Puissance [W], U = Tension [V],
I = Courant [A], cos φ= Facteur de puissance

Exemple.

À partir de la plaque signalétique ci-dessus :

η = 4 000 / (1,73 x 400 x 8,1 x 0,9) = 0,79

Les pertes au niveau des moteurs asynchrones sont constituées

  • des pertes par effet joule dans les bobinages parcourus par le courant au niveau du stator (pertes cuivre et pertes fer),
  • des pertes dans d’induit au niveau du rotor,
  • des pertes par frottement et ventilation au niveau du rotor.

Les rendements donnés par les fabricants tiennent compte de toutes ces pertes.

Le rendement d’un moteur électrique est fortement influencé par sa puissance nominale. Cela signifie que le rendement atteignable augmente avec la puissance nominale du moteur. Dans la pratique le rendement d’un moteur asynchrone se situe entre 58 % et 96 % en fonction de la taille du moteur.


Pour tous les moteurs, le rendement chute assez fort lorsqu’ils travaillent à charge partielle. Il faut donc se méfier des rendements maximums indiqués sans les rendements à charge partielle pour plusieurs points de fonctionnement différents.


Rendement de la transmission

La transmission de l’énergie du moteur au ventilateur se fait avec une certaine perte, principalement dans le cas d’une transmission par courroies, du fait du glissement de cette dernière sur les poulies.

Mode d’entraînement

Pertes

Moteur à entraînement direct (roue de ventilateur directement calée sur l’arbre du moteur) 2 à 5 %
Entraînement par accouplement 3 à 8 %
Transmission par courroies
Pmot < 7,5 kW : 10 %
7,5 kW < Pmot < 11 kW : 8 %
11 kW < Pmot < 22 kW : 6 %
22 kW < Pmot < 30 kW : 5 %
30 kW < Pmot < 55 kW : 4 %
55 kW < Pmot < 75 kW : 3 %
75 kW < Pmot < 100 kW : 2,5 %

Rendement du ventilateur

Le rendement d’un ventilateur provient des pertes par frottement au niveau des paliers, des pertes internes dues aux tourbillons créés dans le ventilateur et des pertes dues à l’espace compris entre la roue en mouvement et l’enveloppe.

Type de ventilateur Rendement
Centrifuge à aubes vers l’arrière 80 – 87 %
Centrifuge à aubes vers l’avant 57 – 73 %
Hélicoïde sans diffuseur et avec redresseur 50 – 88 %
Hélicoïde avec diffuseur et redresseur 60 – 89 %
Hélicoïde de paroi 35 – 50 %

À chaque point de fonctionnement correspond un rendement du ventilateur. Les points de fonctionnement d’égal rendement sont repris sur des courbes associées aux courbes caractéristiques des ventilateurs. Elles se retrouvent dans les catalogues des fournisseurs.

Il existe un lien entre le rendement et la puissance spécifique (PSFP) :

PSFP = P/qV [W.m-3.s] = Hm

où :

  • P = puissance absorbée au moteur du ventilateur [W]
  • qV = débit nominal à travers le ventilateur en [m³.s-1]
  • Hm est la hauteur manométrique [Pa]
  • η est le rendement nominal [-]

Aéraulique

Aéraulique


À quoi sert un ventilateur ? Notion de perte de charge

Un ventilateur fournit à l’air l’énergie nécessaire pour se déplacer d’un point à un autre (le plus souvent au travers de conduits) en lui imprimant une certaine vitesse.

L’énergie contenue dans un petit volume d’air « V » (de masse « m ») comprend :

  • l’énergie potentielle due à la gravité : mgh,
  • l’énergie cinétique due à la vitesse « v » de l’air : mv²/2,
  • l’énergie de pression due à la pression interne « p » de l’air : pV.

On peut également exprimer ces 3 termes sous forme d’une somme de pressions, constituant la pression totale du petit volume d’air :

  • la pression liée au poids de la colonne d’air : ρgh,
  • la pression dynamique liée à la vitesse de l’air : ρv²/2,
  • la pression statique liée à la pression interne de l’air : p.

Le premier terme étant négligé, on peut exprimer que la pression totale d’un petit volume d’air en mouvement est égale à sa pression dynamique plus sa pression statique.

Le ventilateur fournit donc l’énergie nécessaire pour compenser la différence de pression totale de l’air entre la prise extérieur et la bouche de pulsion (ou dans le sens inverse dans le cas d’une extraction) ; c’est-à-dire, pour mettre l’air en vitesse dans le conduit et vaincre les pertes par frottement dans celui-ci. Cette différence de pression totale est appelée « hauteur manométrique » du ventilateur. La perte de pression totale liée à la résistance du réseau de distribution à l’écoulement d’un débit d’air donné est appelée, quant à elle, « perte de charge » du réseau.


Courbe caractéristique du réseau de distribution

La résistance du réseau de distribution dépend d’une part de sa configuration (longueur et forme des conduits, changements de direction, obstacles comme les registres, les batteries, les filtres, …) et d’autre part de la vitesse de l’air qui y circule. En effet, la résistance, ou autrement dit les pertes de charge, représente le frottement de l’air dans les conduits. Ce dernier augmente avec la vitesse de l’air.

Pour chaque type de circuit, on peut ainsi tracer une courbe qui représente la perte de charge en fonction du débit d’air, image de la vitesse.

Schéma perte de charge en fonction du débit d'air


Point de fonctionnement

Si l’on branche un ventilateur sur un circuit de ventilation, il stabilisera son débit à une valeur pour laquelle la pression qu’il fournit équivaut à la résistance du circuit. Ce point est le seul point de fonctionnement possible. Il correspond à l’intersection des courbes caractéristiques du ventilateur et du circuit. Il définit la hauteur manométrique et le débit fournis par le ventilateur lorsque, fonctionnant à une vitesse donnée, il est raccordé au réseau considéré.

Schéma courbes caractéristiques du ventilateur.

Effet Coanda

Effet Coanda

Lorqu’un jet d’air est envoyé parallèlement au plafond, à une certaine distance de celui-ci, la veine d’air a tendance à y adhérer. C’est ce qu’on appelle l’effet COANDA. Ce phénomène est dû au tourbillon et à la dépression locale créés à la sortie de la bouche. Il n’est possible que si la distance entre la bouche et le plafond ne dépasse pas 30 à 50 fois l’épaisseur du jet.

Le même phénomène se produit lorsque l’on pulse de l’air sous le plafond sous un angle par rapport au plafond inférieur à 45°. L’écoulement de deux jets voisins est soumis au même phénomène.

Rendement d’un récupérateur de chaleur

Rendement d'un récupérateur de chaleur

Echangeur à plaques.


Définition du rendement d’un récupérateur

Le rendement thermique

Le rendement thermique représente la proportion de l’énergie de ventilation que le système permet de récupérer. C’est le rapport du transfert réel de chaleur sur le transfert maximum possible.

  • 1 : entrée d’air neuf
  • 2 : pulsion d’air neuf
  • 3 : extraction d’air vicié
  • 4 : sortie d’air vicié

En général, le rendement est rapporté au débit d’air neuf. Le rendement est dit total parce qu’il concerne l’énergie sensible et latente, il est donc basé sur le rapport des enthalpies.

h = (Man x (h– h1)) / (Mmin x (h– h1))

  • h = rendement thermique total,
  • h = enthalpie en KJ/kgK,
  • Man = débit massique d’air neuf,
  • Mav = débit massique d’air vicié,
  • Mmin = débit massique minimum entre Man et Mav.

On passe du débit volumique Q (que l’on pourra mesurer) au débit massique M en multipliant par la masse volumique ρ qui vaut environ 1,2 kg/m³ à 20°C.

Pour tous les types de récupérateurs sauf pour la roue hygroscopique, il n’y a pas de transfert de vapeur d’eau entre l’air neuf et l’air vicié.

La montée en température de l’air neuf se fait à humidité constante, et physiquement le point 2 ne pourra donc au maximum qu’atteindre le point 2′ (t2‘ = t3).

Evolution des caractéristiques de l’air neuf et de l’air vicié dans un récupérateur de chaleur. 1 : entrée d’air neuf, 2 : pulsion d’air neuf, 3 : extraction d’air vicié, 4 : sortie d’air vicié, 2′ : pulsion d’air neuf dans le cas d’une récupération de chaleur totale

L’efficacité thermique

Il peut arriver que l’on remplace la notion de rendement par celle d’efficacité thermique.

Elle est basée sur le rapport des températures.

On a donc :

ε   = (qan x (t– t1)) / (qmin x (t– t1))

  • ε = efficacité thermique,
  • t = température de l’air,
  • qan = débit massique d’air neuf,
  • qav = débit massique d’air vicié,
  • qmin = débit massique minimum entre Qan et Qav.

Et si les débits d’air neuf et d’air vicié sont identiques, l’expression devient :

ε   = (t– t1) / (t– t1)

L’économie d’énergie relative

C’est le rapport entre l’énergie économisée par rapport à l’énergie totale fournie à l’air qui transite dans le système de ventilation. Il montre clairement l’impact du récupérateur sur la diminution de la puissance du chauffage.

Ee = (t– t1) / (tpulsion – t1) = Qrec / (Qrec + Qapp)

  • Q = énergie fournie par le récupérateur à l’air neuf,
  • tpulsion = température de pulsions de l’air dans le local.

Apports de chaleur nécessaires à l’air neuf pour l’amener à la température de pulsion.


Facteurs influençant le rendement

Les paramètres qui caractérisent un récupérateur sont :

  • la nature du récupérateur et de ses composants (matériaux mis en œuvre, géométrie de l’échangeur (surface, ailettes, …);
  • la vitesse de passage de l’air;
  • les débits respectifs de l’air neuf et de l’air vicié;
  • la chaleur latente de l’air extrait.

Ces paramètres influencent le rendement dont la valeur est généralement donnée par le constructeur.

On notera que d’une manière générale, le rendement d’un échangeur augmente avec :

  • L’augmentation de la surface d’échange : Ce paramètre augmente cependant le coût du système et a aussi tendance à augmenter les pertes de charge et donc le coût des auxiliaires (consommation électrique des ventilateurs de déplacement), il y a donc un optimum à chercher.
  • La diminution de la vitesse de passage des fluides
  • L’augmentation de la différence de température entre les deux fluides : Ce paramètre aura peu d’effet dans le cas d’un système de ventilation, la plage de température étant très limitée (de – 15°C à + 35°C)
  • L’augmentation du débit d’air vicié (donc d’air chaud) par rapport au débit d’air neuf (donc d’air froid)

Attention, si le bâtiment est mis en surpression, c’est au contraire le débit d’air neuf qui est supérieur au débit d’air vicié.

On notera que, vu la faible plage de variations des températures, le coefficient d’échange d’un récupérateur donné peut être considéré comme constant.

En conséquence, pour un récupérateur de surface d’échange A et dont les débits de fluide sont fixes (ce qui sera généralement le cas en récupération), le rendement est indépendant des températures d’entrée de l’air neuf et de l’air rejeté. Il est donc sensiblement constant.