Score agrégé de performance environnementale

La multiplicité des scores d’impact environnemental lorsqu’ils sont pris de manière individuelle constitue rarement une bonne base pour la prise de décision. C’est pourquoi, TOTEM permet de visualiser le profil environnemental d’un élément ou du bâtiment à l’aide d’un score agrégé. L’agrégation de tous les impacts environnementaux en un score unique s’inscrit dans cette logique « decision- making » et permet aux utilisateurs d’effectuer une sélection orientée vers la prise de décision quant aux solutions de construction.

 

Pondération selon la méthode PEF

Au sein du logiciel TOTEM, il est donc possible de calculer un score unique pour l’ensemble des dix-neuf indicateurs environnementaux. Dans la suite logique de la mise à jour de la norme EN 15804 + A2 en juillet 2021 sur laquelle TOTEM s’aligne, il a été décidé d’abandonner l’ancienne approche de monétisation et d’appliquer l’approche de pondération PEF (Performence Environmental Footprint). La méthodologie PEF calcule, sur base des indicateurs environnementaux caractérisés, un score unique au moyen d’une étape de normalisation suivie d’une étape de pondération.

L’approche de la pondération PEF comprend deux étapes : normalisation et pondération, qui sont ensuite regroupée dans une agrégation.

Normalisation

La normalisation vise à calculer l’ampleur du phénomène de l’indicateur de catégorie par rapport à un système de référence.  Pour chaque indicateur environnemental, les valeurs caractérisées sont divisées par leurs facteurs de normalisation respectifs, exprimés en impact global annuel par habitant (sur la base d’une valeur globale pour l’année de référence 2010). Les résultats normalisés sont donc logiquement sans dimension.

TOTEM applique les facteurs de normalisation proposés par la plateforme européenne sur l’analyse du cycle de vie (EPLCA 2019). Par exemple, le facteur de normalisation pour le changement climatique est de 8,1 X 10³ kg CO2 eq./personne par an. L’ensemble des facteurs de normalisation utilisé dans la méthode PEF a été élaboré à partir de données statistiques sur les émissions et les ressources utilisées dans le monde pendant un an par habitant.

Pondération

Dans un deuxième temps, les valeurs normalisées sont pondérées en les multipliant par des facteurs de pondération afin de refléter l’importance relative perçue des catégories d’impact environnemental considérées. Par exemple, le facteur de pondération pour le changement climatique est de 21,06 %.

Les facteurs de pondération proposés sont calculés sur la base d’une combinaison d’ensembles de pondération :

  • un ensemble de pondérations provenant d’une enquête publique (25 %)
  • un ensemble de pondérations dérivé d’une enquête menée auprès d’experts en ACV (25 %), et
  • une approche hybride combinant des critères fondés sur des preuves (par exemple, l’étendue, la durée, la réversibilité des impacts…) et un jugement d’expert (50 %). Pour tenir compte de la robustesse des indicateurs d’impact, un facteur de correction (sur une échelle de 0,1 à 1) est appliqué aux facteurs de pondération afin de réduire l’importance des catégories d’impact dont la robustesse est faible (degré d’incertitude trop grande, données peu représentatives,…).

Agrégation

Après pondération, les résultats des différents indicateurs environnementaux peuvent être additionnés pour obtenir une note globale unique (exprimée en millipoints dans TOTEM). Le tableau ci-dessus un aperçu des facteurs de normalisation et de pondération.

Après normalisation et pondération, les scores peuvent être agrégés en un seul score. Dans les tableaux de résultats de Totem, un « facteur d’agrégation » par indicateur d’impact est donné sur la base de la combinaison des facteurs de normalisation et de pondération du PEF. Ces facteurs d’agrégation sont calculés en multipliant l’inverse de chaque facteur de normalisation avec son facteur de pondération correspondant et puis en multipliant par 1000 pour la conversion de Pt en millipoints.

Si vous voulez en savoir plus sur le score environnemental unique de Totem, nous vous recommandons la video ci-dessous :


Ventilation des résultats

Disposer d’un score unique permet de combiner des impacts différent, mais ne bride pas toute capacité d’analyse plus fouillée. Totem propose différentes décompositions des résultats, par indicateurs, composant, ou étape du cycle de vie.

Impact par indicateur

La figure ci-illustre la décomposition de l’impact environnemental d’un élément choisi en exemple est issu de la bibliothèque de TOTEM. Il s’agit d’un élément correspondant à la description suivante: Élément de toiture en pente / Recouvrement en ardoise_Fibre-ciment | Poutres_Bois résineux (172 mm – entraxe 400 mm) | Matelas_Laine de roche (170 mm) | Panneau_Plâtre.

Cette figure permet d’identifier facilement les impacts les plus impactant dans le score global de cet élément : dans ce cas, il s’agit de la contribution u changement climatique, de l’épuisement des ressources abiotiques et des émissions de particules fines.

Si vous voulez en savoir plus sur les différents indicateurs environnementaux utilisés dans TOTEM, nous vous recommandons la video ci-dessous :

Impact par composant

Le même exemple peut être analysé par composant :

On voit ici que 46% de l’impact est lié aux pertes de chaleur par transmission associée à cette paroi, et que le deuxième élément le plus impactant est lié au recouvrement en ardoise, ce qui suggère de mettre en question ce choix de recouvrement avant d’autres composants, tels que le matériau isolant (5% de l’impact uniquement dans ce cas).

Impact par étape du cycle de vie

Cette troisième visualisation permet de voir que la phase B6, représentant l’énergie de chauffage associée à l’élément, est de loin dominante. Deux autres phases se détachent : A1-A3, qui couvre la production des éléments, et B4, qui représente le remplacement de certains éléments durant le cycle de vie. Les étapes de transport et de fin de vie pèsent par contre peu, ce qui relativise les incertitudes pesant sur les scénarios de réemploi, recyclage ou traitement en fin de vie.

Echange thermique par rayonnement

Echange thermique par rayonnement


Définitions

Le rayonnement thermique d’un corps est la quantité d’énergie qu’il cède sous forme d’ondes électromagnétiques comprises entre 0,04 et 800 μm. C’est dans le domaine de l’infrarouge (800 nm et 800 μm) que l’énergie calorifique sous forme de rayonnement est la plus importante.

La loi de Stefan-Boltzman exprime la quantité d’énergie rayonnée par une surface dans toutes les directions et pour toutes les longueurs d’onde :

E = C x (T/100)4 [W/m²]

avec :

  • E = émittance énergétique pour un corps noir;
  • C = coefficient de rayonnement du corps considéré [W/m².K4];
  • T = température absolue [K].

Cette formule n’est pas pratique et ne reflète pas la réalité. Pour les meubles frigorifiques notamment, ce qui est plus intéressant est l’échange de chaleur entre deux surfaces. Dans ce cas, la surface ouverte du meuble, où les températures des denrées sont fort différentes des températures des surfaces environnantes (plafond par rapport à la surface limite d’une gondole), échange de la chaleur rayonnante selon la formule suivante :

Qray = hro x A (tparoi – ti) x φ1 x φ2 [W]

avec :

  • hro = coefficient d’échange par rayonnement entre deux corps noirs[W/m².K]. (Ce coefficient en froid alimentaire est de l’ordre de 4-6 W/m².K) ;
  • A = la surface ouverte du meuble frigorifique [m²]
  • tparoi = température des parois rayonnant vers les parois intérieures au meuble [°C];
  • ti =  température des parois recevant le rayonnement [°C];
  • φ1 = facteur de correction d’émissivité mutuelle entre deux corps gris parallèles (qui n’absorbent pas 100 % du rayonnement contrairement aux corps noirs). 0,8 est une valeur courante;
  • φ2 = facteur de correction d’angle lorsque les surfaces ne sont parallèles. φ2 = 1 lorsque les surfaces sont parallèles et φ2 = 0,65 pour des surfaces orthogonales.


Le coefficient d’émissivité

La capacité d’un matériau à émettre de la chaleur de manière radiative est appelée son émissivité. Ce coefficient d’émissivité ε varie en fonction de la longueur d’onde du signal émis.

Les matériaux que l’on trouve à l’intérieur d’un bâtiment, émettent typiquement des radiations sous forme de rayons infrarouges de très grande longueur d’onde.

A savoir aussi que pour une longueur d’onde donnée, le coefficient d’absorption d’un matériau est égal au coefficient d’émissivité.

Matériaux à basse émissivité

Les matériaux tels que les tôles d’aluminium ou les alliages à base d’aluminium dont les caractéristiques principales sont d’être de type poli et non anodisé ont un coefficient d’émissivité de l’ordre de :

  • 0,1 à 0,15 pour les longueurs d’onde allant du visible à l’infrarouge lointain;
  • 0,8 pour les longueurs d’onde dans l’infrarouge lointain. Pour ces longueurs d’onde, le matériau se comporte comme un corps noir (corps absorbant complètement la lumière visible avec ε=1).

Un matériau dont le coefficient d’émissivité est de 0.1 émettra seulement 10 % de l’énergie possible à cette température, donc absorbera seulement 10 % du rayonnement de grande longueur d’onde qui l’atteint. Autrement dit, il réfléchira 96 % du rayonnement infrarouge de grande longueur d’onde venant des plafonds ou des murs auxquels il fait face.

Attention que ce type de matériau recouvert par un vernis voit son coefficient d’émissivité augmenter en fonction de l’épaisseur. Selon les vernis et le mode de pose, l’émissivité peut varier de 0,3 à 0,96.

Il existe des matières telles que les revêtements argentés et dorés qui présentent des surfaces possédant des coefficients d’émissivité intéressants du même ordre de grandeur que les aluminiums polis non anodisés. Attention à l’état de surface et d’empoussièrement.

Matériaux à émissivité élevée

Les parois laquées (en tôle d’aluminium, d’acier, …) de couleur blanche ou grise ont un coefficient d’émissivité pouvant atteindre 0,8.

Les insectes parasites du bois - energie plus

Insectes parasites du bois

Insectes parasites du bois

Les principaux insectes parasites dont les larves attaquent le bois de construction dans nos régions sont :


 

Le Capricorne

Capricorne adulte.

Larve du capricorne.

Types de bois attaqués

Charpentes, huisseries, solives, lambourdes, planchers.

  • principalement : en bois résineux,
  • parfois : en peuplier,
  • rarement : en hêtre ou en chêne.

Symptômes de l’attaque

  • Trous de sortie de l’insecte adulte de forme ovale, longueur 6 mm, largeur 3 mm,
  • boursouflures à la surface du bois,
  • en éliminant une fine pellicule à la surface du bois : nombreuses galeries remplies de sciure,
  • insectes morts dans les locaux infectés,
  • bruit de grignotement des larves,
  • affaissement anormal du bois,
  • farine de bois sous les pièces attaquées.

Coupe dans le bois attaqué par le capricorne.

Aspect de la sciure

Fine, généralement claire, fortement tassée.

Aspect de la larve

  • Gros vers blanc, poilu avec la partie antérieure élargie et aplatie, et mandibules brun sombre visibles à l’avant de la tête.
  • Cycle larvaire : 3 à 10 ans.

Aspect de l’insecte parfait

  • Gris noir à brun, long et aplati, pourvu de longues élytres cachant les ailes, il présente deux protubérances sur la face dorsale du thorax.
  • Ses antennes sont plus courtes que le corps.
  • Taille : 10 à 20 mm.


Le Lyctus

Lyctus adulte.

Larve du Lyctus.

Types de bois attaqués

Parquets, lambourdes, escaliers, menuiseries, meubles.

Uniquement dans les essences feuillues comme le chêne, le châtaignier, le frêne, l’érable, le cerisier, …, et les bois tropicaux, en général assez récemment mis en œuvre.

Symptômes de l’attaque

  • Trous de sortie de l’insecte adulte de forme ronde ou légèrement ovale, Ø 1 à 1,5 mm,
  • nombreux trous de sortie en cas d’attaque importante,
  • beaucoup d’insectes morts dans les locaux infestés, durant la période de mai à septembre,
  • poussière de bois près ou sous les trous de sortie,
  • pas de bruit.

Bois attaqué par le Lyctus.

Aspect de la sciure

Farine impalpable.

Aspect de la larve

  • Petit ver blanchâtre, mou, en forme de virgule, non poilu, avec une tête de consistance cornée.
  • Cycle larvaire : 6 à 12 mois.

Aspect de l’insecte parfait

  • Roux à brun, dur sous l’ongle, ayant un corps allongé en forme de cylindre.
  • La tête est visible.
  • Les antennes sont terminées par des petites masses en boule.
  • Taille : 3 à 6 mm.


La petite vrillette

Petite vrillette adulte.

Larve de petite vrillette.

Types de bois attaqués

Vieux meubles, menuiseries, planchers, escaliers, vieux parquets.

Dans les bois de toutes les essences, surtout s’ils sont vieux et secs.

Symptômes de l’attaque

  • Trous de sortie très nombreux, ø 2 à 3 mm,
  • perte totale de la résistance mécanique du bois, lors d’attaques importantes,
  • bois ayant l’aspect et la consistance du biscuit,
  • décrochage mécanique de la pellicule extérieure longtemps respectée.

Bois attaqué par la petite vrillette.

Aspect de la sciure

Assez grossière, non tassée dans les galeries.

Aspect de la larve

  • Petit ver blanc nu en forme de virgule, plus poilu que la larve du Lyctus, s’en distinguant par le dernier élément du corps plus gros que les autres.
  • Cycle larvaire : 1 à 3 ans

Aspect de l’insecte parfait

  • Roux à brun, dur sous l’ongle, plus trapu et arrondi que le Lyctus.
  • La tête est cachée par une sorte de capuchon (pronotum).
  • Les antennes sont terminées par une massue.
  • Taille : 2 à 4 mm.


La grosse vrillette

Grosse vrillette adulte.

Types de bois attaqués

Charpentes, planchers, bois de gros œuvre ayant au préalable souffert d’attaque de champignons.

Dans les bois de toutes les essences

Symptômes de l’attaque

  • Trous de sortie ø 4 à 5 mm,
  • bois ayant l’aspect et la consistance du biscuit,
  • décrochage mécanique de la pellicule extérieure longtemps respectée,
  • bruit typique durant la période d’accouplement : coups saccadés et rythmés sur le bois tous les jours, exactement à la même heure.

Aspect de la sciure

Assez grossière, non tassée dans les galeries.

Aspect de la larve

  • Petit ver blanc nu en forme de virgule, plus poilu que la larve du Lyctus, s’en distinguant par le dernier élément du corps plus gros que les autres.
  • Cycle larvaire : 1 à 3 ans

Aspect de l’insecte parfait

  • Roux à brun, dur sous l’ongle, plus trapu et arrondi que le Lyctus.
  • La tête est cachée par une sorte de capuchon (pronotum).
  • Les antennes sont terminées par une massue.
  • Taille : 6 à 9 mm.

Nous venons de lancer note page LinkedIn. Afin d’être informé des dernières actualités sur Energie+, n’hésitez à suivre notre page LinkedIN !

Chaleur sensible et chaleur latente

Chaleur sensible et chaleur latente


 

Chaleur sensible

La chaleur sensible modifie la température d’une matière. Par opposition à la chaleur latente qui modifie l’état physique d’une matière (solide, liquide ou gazeux).

Exemple : La chaleur thermique massique de l’eau étant en moyenne de 4,19 kJ/kg.K, il faut fournir 419 kJ pour chauffer un litre d’eau de 0°C à 100°C.


Chaleur latente

La chaleur latente change l’état physique d’une matière. Par opposition à la chaleur sensible qui modifie la température d’une matière.

Quelle que soit la matière, on parle de :

  • chaleur de liquéfaction : chaleur nécessaire pour passer de l’état solide à l’état liquide,
  • chaleur de vaporisation : chaleur nécessaire pour passer de l’état liquide à l’état gazeux.

et inversement :

  • chaleur de condensation : chaleur nécessaire pour passer de l’état gazeux à l’état liquide,
  • chaleur de solidification : chaleur nécessaire pour passer de l’état liquide à l’état solide.

Les changements d’état absorbent des quantités de chaleur nettement plus élevées que les processus d’échauffement ou de refroidissement dans les plages de température usuelles en chauffage ou climatisation.

Certains matériaux sont sélectionnés pour l’importance de leur chaleur latente à un niveau de température déterminé : ce sont les matériaux à changement de phase, ou sels à changement de phase.

Exemple
La chaleur de vaporisation d’un litre d’eau est de 2 257 kJ/kg (à la pression atmosphérique et à 100°C). Soit 5,4 fois plus que pour chauffer le litre d’eau de 0 à 100°C !

C’est un fait dont on peut tirer parti :

  • Le chauffage à vapeur dispose d’une très grande densité de puissance [W/m²] dans un échangeur puisque la vapeur s’y condense au contact avec un milieu froid.
  • Le stockage de froid se fait notamment via des nodules d’eau ou de sels qui sont gelés la nuit et dont on profite de la chaleur de liquéfaction le jour.

À noter que la chaleur de vaporisation varie en fonction de la température de l’eau qui s’évapore : de 2 257 kJ/kg à 100°C, la chaleur de vaporisation est de 2 454 kJ/kg à 20°C et de 2 501 kJ/kg à 0°C. Il est donc un peu plus facile pour une goutte de passer à l’état vapeur lorsqu’elle se trouve déjà à 100°C.

 

Hygroscopicité des matériaux


Définitions

Hygroscopicité – teneur en humidité hygroscopique

Un matériau donné, poreux et à pores ouverts placés dans un air humide va absorber une certaine quantité d’humidité qui dépend uniquement de l’humidité relative (φ) de l’air et qui lui est proportionnelle.
Ainsi, un matériau tout à fait sec placé dans l’air humide voit sa masse augmenter. Un état d’équilibre s’établit après un certain temps.

Représentation schématique du mécanisme lorsque l’humidité relative augmente :

1. Pour une faible humidité relative, de l’eau est absorbée par le matériau et forme une fine couche d’eau sur les parois des pores.

2. Lorsque l’humidité relative augmente, l’épaisseur de la couche absorbée augmente. Dans les canaux les plus étroits, les couches se touchent.

3. Lorsque l’humidité relative augmente encore, de la condensation se forme dans les pores les plus étroits du matériau; on dit qu’il y a condensation capillaire.
Plus les pores sont étroits, plus la formation de condensation capillaire est rapide.

La teneur en humidité hygroscopique (WH) d’un matériau poreux dans un air à une humidité relative donnée, est la teneur en eau par unité de volume de matériau sec (en kg/m³) qu’il contient à l’équilibre dans cette ambiance.
C’est la teneur en humidité minimale contenue dans un matériau poreux.

Courbe hygroscopique d’un matériau – Matériau hygroscopique

La décomposition du mécanisme d’hygroscopicité lorsque l’humidité relative augmente tel qu’expliqué ci-dessus, explique la courbe en « S » de la courbe hygroscopique d’un matériau. Celle-ci donne la teneur en humidité hygroscopique d’un matériau en fonction de l’humidité relative.

Exemple : WH95 % = 8 à 11 (kg/m³) pour une brique de parement.

Arbitrairement, on a fixé la valeur de la teneur maximale en humidité hygroscopique d’un matériau à la teneur correspondant à une humidité relative de 98 %.

A 100 % d’humidité relative, on atteint une teneur en humidité d’équilibre qui correspond à celle après aspiration capillaire depuis un plan d’eau. C’est la teneur en humidité capillaire.

Un matériau hygroscopique est un matériau où la condensation capillaire se forme rapidement (pour des humidités relatives faibles). Ainsi, il résulte de ce qui précède, qu’un matériau hygroscopique est un matériau avec un pourcentage élevé de pores très étroits (micropores).

Le tableau ci-dessous donne le pourcentage moyen de micropores (pores dont le diamètre moyen est inférieur à 0,1 micromètre) pour quelques matériaux de construction.

Matériau

Masse volumique (kg/m3) Pourcentage de micropores (% du volume de matériau) en (m³/m³)
Brique 1 950 0,8 – 1,1
Béton cellulaire 40 4 – 12
Plafonnage de chaux 1 800 4,7
Plaques de plâtre 800 – 1 400 10
Bois résineux 500 12 – 15

Il montre que ce sont les matériaux traditionnels de parachèvement (plaques de plâtres, plafonnage à base de chaux, bois) qui sont les plus hygroscopiques.


Risque lié à l’hygroscopicité des matériaux et mesures à prendre

Risque de développement de moisissures

Lorsque l’humidité relative de l’air est élevée, la teneur en humidité à l’équilibre des matériaux hygroscopique est si élevée qu’elle favorise le développement de moisissures.

Des moisissures apparaissent :

  • sur des objets en cuir : pour une humidité relative (φ) à partir de 76 %
  • sur du bois et de la laine : pour φ > 85 %
  • sur du coton et de la laine de verre : pour φ > 96 %

ainsi, des moisissures peuvent apparaître sur les meubles, sur les vêtements, sur les chaussures,… dans des bâtiments ou l’humidité relative est en permanence élevée.

Remarquons cependant qu’il faut un certain temps avant que la teneur en humidité à l’équilibre s’établisse. Aussi une humidité relative temporaire élevée, telle qu’on en rencontre dans les salles de bain ou les cuisines, ne provoque pas de moisissures.

Mesures à prendre

L’humidité relative à l’intérieur des bâtiments doit être maintenue en dessous de la valeur qui va provoquer des moisissures dans les matériaux hygroscopiques.

L’humidité relative conseillée, pour des raisons d’hygiène, va de 30 à 70 %. Des études ont montré que l’humidité relative la plus intéressante est de 50 %.

Pour ces humidités relatives conseillées, la teneur en humidité à l’équilibre des matériaux hygroscopiques est suffisamment basse pour ne pas engendrer de problèmes.

Sur-refroidissement

Par temps clair, la voûte céleste présente une température pouvant être jusqu’à 50 K plus faible que celle de l’ambiance terrestre. Une onde infrarouge quitte alors tous les corps « chauds » de la terre vers le ciel. La température de ces matériaux descend jusqu’à 10 K sous la température ambiante. L’humidité de l’air risque alors de condenser au contact de ces corps.

C’est l’origine de la rosée du matin, du givre sur la voiture.

Formation de moisissures

Formation de moisissures


Conditions au développement de moisissures

Le texte ci-dessous est extrait de la Note d’Information Technique (NIT) n° 153 (Problèmes d’humidité dans les bâtiments) du ouverture d'une nouvelle fenêtre ! CSTC.

Qu’est-ce qu’une moisissure ?

Des spores de moisissures, dont les dimensions sont généralement inférieures à 10 microns, sont normalement présentes dans l’air, au même titre que les bactéries.  Leur concentration dans l’air extérieur est de l’ordre de 10spores par m3 d’air, bien qu’elle soit plus faible après une période de pluie ou pendant des périodes de grand froid, et plus élevée aux alentours des bois, des parcs, etc.

La concentration en spores de moisissures dans l’air intérieur est en général un peu moins forte que dans l’air extérieur.

Il existe normalement de nombreuses variétés de spores de moisissures, certaines apparaissent dans des proportions plus diverses que d’autres selon la saison. Selon leur type, les moisissures sont gris verdâtre, brun foncé ou noirâtre.

En se développant, les moisissures produisent d’autres spores, de sorte que leur prolifération peut être très rapide.

Conditions nécessaires au développement de moisissures

La formation de moisissures sur une surface ne se produit que dans des conditions favorables. Il faut notamment :

  • Une quantité d’oxygène suffisante.
  • Des conditions de température adéquates.  Bien que les moisissures puissent se développer à des températures comprises entre 0 et 60°C, la température optimale pour un développement rapide se situe entre 5 et 25°C. Il est important que les variations de température ne soient pas trop importante.
  • Un fond nourrissant approprié.
  • Une humidité suffisante.

Les deux premières conditions ne posent pas de problèmes dans les bâtiments.  En effet, de l’oxygène s’y trouve en suffisance et la température se situe la plupart du temps dans les limites les plus favorables. D’où l’importance des deux dernières conditions : fond nourrissant approprié et humidité suffisante.

Fond nourrissant

Pour leur développement, les moisissures ont besoin de faibles quantités de matières organiques décomposables comme les sucres, les graisses et surtout la cellulose.

Même dans des bâtiments très propres, les traces de souillure sur les parois sont suffisamment nombreuses pour permettre le développement de moisissures.

Il va de soi que les endroits présentant une accumulation de salissures ou de poussières constituent des emplacements de prédilection pour le développement de moisissures.

Certaines sortes de papiers peints et surtout la colle cellulosique avec laquelle ils sont posés, ainsi que certains types de peintures semblent être à des degrés divers de bons fonds nourrissants pour les moisissures.

Présence d’humidité

L’organe reproducteur des moisissures contient environ 95 % d’eau. L’eau est une condition essentielle au développement des moisissures. Celles-ci puisent l’humidité nécessaire principalement dans le support sur lequel elles se développent.

Des variations importantes de la teneur en humidité ne donnent pas lieu, en général, à un développement de moisissures, c’est-à-dire que le développement de moisissures est rarement lié à la pénétration d’eau de pluie.


Condensation de surface ou formation de moisissures ?

La condensation superficielle apparaît lorsque l’humidité relative, à la surface d’une paroi, atteint 100 %. La formation de moisissures sur une paroi peut déjà se produire à partir dune humidité relative de 80 % si le matériau en contact avec l’air humide est hygroscopique. Ceci s’explique par le fait qu’un matériau hygroscopique absorbe une grande quantité d’humidité pour des humidités relatives de l’air situées en dessous du niveau de saturation.

Porosité des matériaux

Porosité des matériaux


La porosité est la propriété d’un matériau qui contient des pores ou cavités de petite taille et pouvant contenir des fluides (liquide ou gaz).

Une structure poreuse peut être :

  • fermée, lorsque les pores ne sont pas reliés entre eux (exemple : le verre cellulaire),
  • ouverte, lorsque les pores sont reliés entre eux (exemples: brique, béton) et forment des canaux très fins.

Lorsque la structure est ouverte, elle permet :

  • l’absorption d’eau : les canaux se comportent comme des tubes capillaires; on parle de matériaux capillaires,
  • la progression de la vapeur d’eau : on parle de matériaux perméables à la vapeur d’eau,
  • le passage de l’air : on parle de matériaux perméables à l’air.

Corrosion

Corrosion


L’oxygène renforce la corrosion de l’acier

Au départ, la corrosion électronique du fer par l’hydrogène

Le fer, en présence d’un électrolyte, va se dissoudre sous la forme d’un ion positif Fe++ et libérer 2 électrons. Il envoie donc dans la solution un cation (atome de métal chargé d’électricité positive) et en même temps, il se charge lui-même d’électricité négative. On dit qu’un potentiel électrique se crée entre le métal et la solution de ses ions.

Si l’eau est de très haute pureté, il n’existera aucun corps susceptible de capter les électrons issus de la dissolution du fer. Le phénomène se poursuivra jusqu’à une valeur d’équilibre où le nombre de charges électriques en présence (positives dans l’eau, négatives à la surface du métal) créera un champ magnétique suffisant pour bloquer la migration du fer.

Mais si le fer est en contact avec l’eau du robinet, ou a fortiori avec l’eau de mer ou un électrolyte quelconque, le circuit électrique va pouvoir se refermer. En effet, l’eau sera partiellement ionisée :

H2O –> H+ + (OH)-

Et une certaine quantité d’ions H+ vont réagir sur une partie du métal en récupérant les électrons libérés par la dissolution du fer et former de l’hydrogène gazeux (apparition de petites bulles d’hydrogène) :

2 H+ + 2 électrons –> H2

La corrosion se traduit par une circulation d’électrons. Le métal qui cède des électrons constitue l’anode, les ions H+ qui absorbent les électrons constituent la cathode. Cette fois, le Fe continue à se dissoudre en Fe++ !

Remarque : par convention, le courant (+) est représenté dans le sens contraire de la circulation des électrons (-).

La quantité de courant qui traverse cette pile est proportionnelle à la quantité de métal qui se dissout à l’anode. Un ampère par an dissoudra environ 9 kg d’acier par an. Seule, la présence de bulles d’hydrogène sur la cathode formera une couverture isolante capable de réduire le débit de courant et de freiner la corrosion.

Un responsable de la maintenance peut contrôler si de la corrosion se produit dans son réseau : en approchant une flamme du dégazeur, s’il y a présence d’hydrogène une petite explosion se fera lors de l’ouverture de la soupape.

Le renforcement de la corrosion en présence d’oxygène

La plupart des eaux contiennent de l’oxygène dissous. Cette teneur en oxygène diminue si la température augmente, mais augmente si la pression s’accroît.

Cet oxygène se combine avec l’hydrogène H2 pour former de l’eau :

2 H+ + 1/2 O2 + 2 électrons –> H2O

On évite ainsi l’accumulation d’hydrogène et la corrosion continue alors sans empêchements.

L’oxygène capte lui-même les électrons et forme des ions OH- :

O2 + 2 H2O + 4 électrons –> 4 (OH)-

Ceux-ci vont se combiner avec les Fe++ pour former des hydroxydes ferreux et ferriques.

Fe++  + 2 (OH)-  –> Fe(OH)2
Fe(OH)2  +  1/2 O2  +  2 H2O  –> Fe(OH)3

Ce qu’on appelle couramment de la rouille !

Conséquence

Pour éviter ces corrosions, l’eau des circuits de chauffage est désaérée (dégazée par des purgeurs automatiques) : les quantités d’oxygène seront réduites.

De plus, dans un circuit de chauffage, c’est toujours la même eau qui circule, on parle « d’eau morte ». Si de l’eau nouvelle est ajoutée au circuit, il faut rechercher l’origine de la fuite pour éviter de recharger l’eau en agent corrosif.


La présence de boues renforce la corrosion de l’acier

La formation d’une pile au sein d’un métal

Comme vu ci-dessus, une pile est donc formée au sein d’un même métal : entre deux points voisins de la tuyauterie se constitue un couple électrique. Comment se fait-il qu’une zone devienne anodique et une autre cathodique ?

Une différence locale dans la qualité de l’acier peut déjà le justifier : présence d’impuretés (oxydes), d’éraflures ou d’entailles, … Ce n’est pas un hasard si de la corrosion apparaît souvent à l’endroit du filetage des tuyauteries assemblées.

Mais ce qui sera souvent l’élément facilitateur de la corrosion, c’est l’existence d’une aération différentielle en oxygène : les zones faiblement aérées constituent des anodes, alors que les zones fortement aérées deviennent des cathodes.

C’est Evans qui a mis en évidence cette propriété par l’expérience ci-dessous :


Lorsqu’un matériau métallique plonge dans un milieu dont les teneurs en oxygène sont différentes (par injection d’oxygène localement), il apparaît un courant électrique. La plaque la moins aérée se dissout dans le milieu et libère des électrons.

Par exemple pour le Fer :

Fe –> Fe++  +  2 électrons

Une corrosion sous les boues du réseau

Cette corrosion par aération différentielle se rencontre dans les installations de chauffage : les zones sous une couche de boues au fond d’un radiateur ou d’une chaudière (faiblement aérées) se corrodent car elles constituent des anodes, alors que les zones soumises à un débit plus élevé (fortement aérées) deviennent des cathodes.

Ces boues sont formées de résidus de montage (limailles, produits de soudure,…) ou encore des sédiments présents dans l’eau (sable, argile,…). L’usage d’un filtre à l’entrée du réseau sera toujours utile, filtre avec un pouvoir de rétention de 25 à 50 microns.


Deux métaux différents se corrodent entre-eux

La noblesse des métaux

Comme le fer, tous les métaux plongés dans une solution établissent un potentiel électrique entre eux et la solution : c’est le potentiel d’électrode simple. Ces potentiels sont repris dans le tableau ci-dessous, avec le potentiel de l’hydrogène pris comme zéro de référence (pour une raison non développée ici).

Élément

Potentiel (Volts)

Sodium – 2.7
Magnésium – 2.3
Aluminium – 1.7
Zinc – 0.8
Chrome – 0.7
Fer – 0.4
Nickel – 0.3
Etain – 0.1
Plomb – 0.1
Hydrogène 0
Cuivre + 0.3
Argent + 0.8
Platine + 1.2
Or + 1.4

Il est intéressant d’analyser de plus près cette liste : elle nous fournit les tendances relatives à la corrosion pour ces éléments. Par exemple, le sodium réagit violemment avec l’eau tandis que le platine n’est pas attaqué par l’eau. Pour cette raison, l’or et l’argent sont souvent trouvés à l’état natif, tandis que le fer et l’aluminium sont toujours trouvés sous formes combinées (oxydes) dans les mines.

On parle couramment de hiérarchie, de noblesse des métaux, l’or étant le plus noble.

La création d’une pile entre 2 métaux

Lorsque deux métaux sont mis en contact, une différence de potentiel électrique apparaît entre eux, un couple galvanique est créé. Une corrosion dite galvanique va s’enclencher et ce, d’autant plus fortement que la différence de potentiel entre les métaux sera forte.

Par exemple, le cuivre et l’aluminium forment une pile puissante : 2,0 V (= 1,7 + 0,3).
Attention à l’association entre radiateurs en aluminium et tuyauteries en cuivre !

Par contre, le magnésium et l’aluminium formeront une pile plus faible : 0,6 V (2,3 – 1,7).

Un métal situé plus haut dans la série agira comme anode et celui plus bas se comportera comme cathode lorsque les deux métaux sont en contact. Ainsi, entre le fer et le cuivre, c’est l’acier, moins noble, qui constituera l’anode et cédera ses électrons, alors que le cuivre, plus noble, constituera la cathode.

Les phénomènes de couple galvanique seront renforcés ou diminués par d’autres paramètres. Par exemple, le cuivre s’érode facilement et de nombreuses particules de cuivre se mettent en circulation, se déposent sur les tuyauteries acier et constituent de nombreuses micropiles enclenchant le processus de corrosion. C’est une des raisons qui font que l’utilisation du cuivre est proscrite en amont de tuyauteries galvanisées.

Un ballon d’eau chaude sanitaire en acier galvanisé se détériore s’il est raccordé à l’arrivée d’eau de ville par des tuyauteries en cuivre. Si le cuivre est situé en aval de l’acier, il y aura peu de problèmes.

À noter que si l’aluminium est un métal réactif (il se situe très haut dans la série des potentiels …), il possède une bonne résistance à la corrosion. Ce métal forme rapidement en surface une couche d’alumine (Al2O3) qui arrête la corrosion en beaucoup de milieux environnants.


La protection contre la corrosion électrochimique

Voici quelques exemples de procédés utilisés pour combattre la corrosion :

  • Choix de combinaisons de métaux aussi voisins que possible dans la série galvanique.
  • Revêtements protecteurs tels que la peinture. Un tel revêtement constitue une barrière entre le métal et son environnement, empêchant le courant de circuler.
  • Addition d’inhibiteurs chimiques dans la solution en contact avec le ou les métaux. Ils créent généralement une fine pellicule d’hydroxydes ou de sels à la surface du métal. Le passage du courant est freiné et la corrosion aussi.
  • Isolation des métaux différents par une rondelle de Bakélite, de plastique, … à l’endroit de leur contact.

Isolement électrique intégré dans un raccord boulonné entre deux métaux différents.

  • Protection cathodique : un courant électrique extérieur est appliqué au métal de telle sorte que le courant entre dans le métal par la totalité de sa surface. Les régions anodiques sont transformées en régions cathodiques. Ce courant s’oppose au courant anodique de corrosion.
  • Protection par « anode sacrificielle » : un métal ne peut s’oxyder si l’on fait en sorte qu’il soit la cathode d’une pile. Ainsi, dans l’eau de mer, un objet en cuivre est protégé s’il est relié électriquement à une électrode de fer. C’est le fer qui sera oxydé puisqu’il constitue l’anode de la pile associant les couples Cu++/Cu et Fe++/Fe). De même, un objet en fer (une coque de bateau, par exemple) est protégé par des anodes en zinc fixées sur lui : c’est le zinc qui sera attaqué (= « anode consommable »). De même encore, on peut protéger des canalisations en fonte enfoncées dans le sol en les reliant de loin en loin, à des électrodes d’un métal plus réducteur que le fer (Zn, Mg), également enterrées.Dans les boilers (réservoirs d’eau chaude sanitaire), c’est souvent une électrode soluble de magnésium qui sera placée pour protéger la cuve en acier. Elles doivent être renouvelées après quelques années.
  • Ne pas adoucir trop fortement l’eau : un léger dépôt renforce la protection interne de la tuyauterie. On évitera donc de régler l’adoucisseur en dessous des 15°F.

Infiltration d’air au travers de l’enveloppe

Infiltration d'air au travers de l'enveloppe


Pourquoi l’air s’infiltre-t-il au travers d’un bâtiment ?

L’air se déplace des zones de haute pression vers les zones de basse pression, tout comme la chaleur se déplace des zones à température plus élevée vers les zones à température plus faible.
Dans un bâtiment, deux causes peuvent être à l’origine d’une différence de pression entre l’extérieur et l’intérieur :

  • Le vent exerce une pression sur les façades exposées et une dépression sur les façades opposées.

  • Le chauffage dilate l’air ambiant à l’intérieur du bâtiment et crée ainsi une surpression par rapport à l’extérieur.

La différence de pression entre l’extérieur et l’intérieur est, en général, comprise entre 0 et 100 Pa.


Trois modes de transport de l’air au travers de l’enveloppe d’un bâtiment

Le transport de l’air au travers de l’enveloppe du bâtiment se réalise de 3 manières ci-dessous :

  • L’air passe au travers des matériaux poreux dont les pores sont en liaison les uns avec les autres et relient l’intérieur du bâtiment à l’extérieur via des chemins tortueux.
  • L’air passe à travers les défauts de construction (joints de maçonnerie mal fermés, joints d’étanchéité entre la maçonnerie et les châssis défectueux, etc.).
    Ce transport d’air est, en général, plus important que celui au travers des matériaux même.
  • L’air passe par les fuites des châssis de portes et de fenêtres (entre l’ouvrant et le dormant).
    Ce transport d’air est, en général, également important même dans le cas de châssis fermant bien.

Champignons parasites du bois

Champignons parasites du bois

Les champignons provoquent la pourriture du bois.
Leurs spores sont présentes en permanence dans l’air. Lorsqu’elles rencontrent des conditions favorables, elles germent et les champignons se développent.

Les conditions favorables au développent sont les suivantes :

  • Humidité environnante trop importante provenant :
    • d’infiltrations,
    • de condensation,
    • ou d’humidité ascensionnelle.
  • Ventilation trop faible,
  • Température favorable,
  • Hygiène générale défectueuse,
  • Vapeur ammoniacales (fosses, étables, …),
  • Absence de traitement du bois.

Les champignons détruisent le bois par transformation chimique.
Ses filaments microscopiques, invisibles à l’oeil nu, produisent des enzymes qui digèrent le bois.

L’attaque du bois n’apparaît que lorsque l’état de celui-ci est déjà fortement avancé.
À ce stade, les filaments se sont groupés en tissus pour former des masses bien visibles à la surface du bois. L’aspect du bois se modifie et la pourriture de celui-ci apparaît.

L’identification exacte du champignon présent n’est pas toujours possible. Elle n’est pas nécessaire, car les traitements à préconiser sont les mêmes dans tous les cas.

Les principaux champignons parasites du bois de construction dans nos régions sont


 

La mérule (Serpula lacrymans)

Photo mérule.

Symptômes de l’attaque :

  • fructifications visibles,
  • spores répandues,
  • paquets d’ouate,
  • forte odeur fétide,
  • débris et réseaux de fils accrochés aux maçonneries.

Aspect du bois :  pourriture cubique

  • Les bois attaqués prennent une coloration brun clair.
  • Des cassures nettes suivant trois directions perpendiculaires fractionnent le bois en une série de petits parallélépipèdes visibles.

Photo aspect bois attaqué par la mérule.

Description du champignon

Ce champignon dégage une forte odeur fétide.

Il peut se présenter sous différentes formes.

Sous sa forme la plus spectaculaire :

Il s’étale en paquets d’ouate blanche à la surface du bois et de la maçonnerie. En vieillissant ces paquets se parcheminent et prennent une couleur foncée. A la lumière le champignon développe des fructifications en forme de disques plus ou moins complets, avec bordure plissée blanche et partie centrale brune couverte de spores. Ces spores envahissent les locaux infectés avant de s’envoler et de contaminer l’atmosphère.

Sous sa forme la plus discrète :

Accroché à la maçonnerie, il ressemble à des débris de peau ou à des réseaux des fils qui peuvent être confondus avec des toiles d’araignée. De gros cordons s’insinuent dans les joints des maçonneries et amènent l’eau des zones humides jusqu’aux tissus du champignon qui se sont développés dans des endroits plus secs.


Le champignon des caves (Coniophora puteana)

Photo champignon des caves.

Symptômes de l’attaque

Présence du mycélium peu abondant en voile ténu sur la surface du bois ou de la maçonnerie. Fructification rare.

Aspect du bois :  pourriture cubique

  • Les bois attaqués prennent une coloration brun foncé.
  • La pourriture cubique est, dans ce cas, interne. A la dessiccation, le bois atteint est extérieurement légèrement déprimé. Sous cette pellicule de bois relativement intact, le bois est entièrement fissuré longitudinalement et transversalement. Il se réduit en poudre sous la pression.

Photo aspect bois attaqué par le champignon des caves..

Description du champignon

Fructifications rares dans le bâtiment sous forme de croûte membraneuse continue de forme irrégulière, épousant la forme du substrat, dont la surface est bosselée ou tuberculée, brun ocre à violacé à l’état frais, brun-tabac à l’état sec.

Marge étroite ou large suivant les conditions (1 à 15 mm) blanche ou jaunâtre.

Les cordons mycéliens se développent en éventail. Ils sont d’abord blancs, puis brunissent pour devenir noirs.

Résistance thermique totale d’une paroi (Rt)

Résistance thermique totale d'une paroi (Rt)


La résistance thermique d’une paroi (RT)

La résistance thermique totale RT d’une paroi d’ambiance intérieure chaude à ambiance extérieure froide, est égale à la somme des résistances thermiques de toutes les couches de matériaux ou d’air peu ou non ventilé, qui constituent la paroi, et des résistances d’échange superficiel.

RT = Rsi + R1 + (R2) + (R) + (Ra) + Rse

Les valeurs entre parenthèses n’existent pas lorsque la couche (d’air ou de matériau) est absente.

À partir de la résistance thermique totale, on peut calculer le coefficient de transmission thermique U.

Remarque 1
Dans le cas où la paroi contient une couche d’air peu ventilée, la somme des résistances thermique des couches de matériaux situés entre la couche d’air et le côté froid, est limitée à  0.15 m²K/W. (Réf : AGW du 17 avril 2008, Annexe VII, Art 5.4.2.3).

Remarque 2
Dans le cas où la paroi sépare deux ambiances intérieures l’une froide et l’autre chaude, la formule devient :

RT =Rsi + R1 + (R2) + (R) + (Ra) + Rsi

Les valeurs entre parenthèses n’existent pas lorsque la couche (d’air ou de matériau) est absente.

Remarque 3

Dans le cas où la paroi contient une couche d’air fortement ventilé, on ne considère que la partie située du côté chaud de la couche d’air, et on considère que cette partie sépare deux ambiances intérieures dont celle située côté froid est à la température extérieure.

Dans ce cas, formule devient :

RT = Rsi + R1 + (R2) + (R) + Rsi

Les valeurs entre parenthèses n’existent pas lorsque la couche de matériau est absente.

Remarque 4

En général, la résistance thermique des couches dont l’épaisseur est inférieure à 1 mm n’est pas prise en compte pour le calcul de la résistance thermique totale des parois. 


La résistance thermique d’une paroi dont certaines couches sont non homogènes

Les parois de la surface de déperdition du volume protégé sont parfois constituées d’une série de couches dont certaines ne sont pas homogènes (par exemple : couches constituées d’un mélange de plusieurs matériaux homogènes comme du bois et de l’isolant).

Calcul précis

Le calcul numérique précis de la résistance thermique de la paroi peut se faire suivant une méthode numérique conformément à la norme NBN EN ISO 10211.

Méthode simplifiée (méthode par combinaison)

Dans beaucoup de cas, il n’est pas nécessaire de faire appel à des calculs numériques et des méthodes simplifiées peuvent être appliquées. Elles donnent via un calcul manuel et l’application de certaines formules une valeur RT suffisamment précise.

La résistance thermique totale de la paroi est comprise entre deux limites :

  • La limite supérieure de la résistance thermique totale (R’T)
  • La limite inférieure de la résistance thermique totale (R’’T)

Pour calculer la limite supérieure (R’T)

  • On divise la paroi en i sections dont toutes les couches sont homogènes.
  • Pour chacune de ces sections, on détermine la transmission thermique Ui (=1/RT,i).
  • On détermine U de la paroi comme la moyenne pondérée (en fonction des surfaces) des Ui des sections.
  • On obtient R’T à partir du U moyen : R’T = 1/U

U = % a x Ua + % b x Ub + % c x Uc + % d x Ud x …
1/R’T = % a/RTa + % b/RTb + % c/RTc + % d/RTd + ⋯

Pour calculer la limite inférieure (R’’T)

  • On divise la paroi en j couches homogènes ou non homogènes.
  • Pour chacune de ces couches, on détermine la transmission thermique équivalente Uj (=1/Rj) de la couche comme la moyenne pondérée (en fonction des surfaces) des transmissions thermiques Uj (= 1/Rxj) des sections de matériaux différents dans la couche.

1/Rj = % aj/Raj + % bj/Rbj + % cj/Rcj + % dj/Rdj + ⋯

  • On obtient ainsi le Rj de chacune des couches.
  • On calcule R’’T comme pour une paroi avec couches homogènes :

R’’T = Rsi + R1 + R2 + R3 + R4 + … + Rse

Pour calculer la résistance thermique (RT)

On effectue la moyenne arithmétique des limites supérieures et inférieures de la résistance thermique.

RT = (R’T + R »T) / 2

Applicabilité

La méthode simplifiée ne peut pas être appliquée :

  • lorsque le rapport entre R’T et R’’T est supérieur à 1.5 ;
  • lorsque la couche isolante de la paroi est traversée par du métal.

Source : AGW du 17 avril 2008, Annexe VII, Art 6.2

Exemple

 

a = 3O m², b = 3O m², c = 1O m², d = 3O m²,

➙ % a = 0.3, % b = 0.3, % c = 0.1, % d = 0.3

e1 = 0.05 m, e2 = 0.1 m, e3 = 0.05 m,

Calcul de la limite supérieure (R’T)

 Calcul de la limite inférieure (R’’T)

Calcul de la résistance thermique (RT)

RT = (1.39 + 1.12) / 2 = 1.25 m²K/W