electrolyse de l'eau

Stockage Power-To-Fuel : l’électrolyse

Stockage Power-To-Fuel : l'électrolyse


Le principal représentant de ce type de stockage est l’électrolyse de l’eau qui permet de produire de l’hydrogène.

Contrairement au stockage thermique ou en accumulateurs, ce type de système permet une conservation plus longue, inter-saisonnière, de l’énergie sous forme d’hydrogène.

31. LE STOCKAGE POWER-TO-FUEL : L’ÉLECTROLYSE

L’hydrogène comme carburant peut ensuite être valorisé de différentes manières :

  • Comme carburant combustible directement via le réseau de gaz,
  • Soit dans une centrale à gaz adaptée. Dans ce cas, in fine, de l’électricité sera reproduite à partir du carburant.
  • Par production de méthane : en faisant réagir 4 molécules de H2 avec du CO2 du méthane et de l’eau sont produits.
  • Via une pile à combustible qui fera réagir 2 molécules de H2 avec une molécule de dioxygène pour produire de l’électricité avec un rendement de ±60% et rejeter de l’eau. Ce rendement sera meilleur si la pile à combustible est utilisée en cogénération pour valoriser le dégagement de chaleur.
STOCKAGE ÉLECTROCHIMIQUE : LES BATTERIES

Stockage Power-To-Power

Stockage Power-To-Power


Le stockage électrochimique : les batteries

Les batteries ou accumulateurs électrochimiques sont les moyens de stockage les plus connus. Nous en avons dans nos smartphones, nos appareils photos et de plus en plus souvent dans nos bâtiments.

Les accumulateurs de ce type profitent des propriétés électrochimiques de certains matériaux, notamment des couples oxydant-réducteur comme le Nickel et le Cadmium.

Lors de la phase de charge, l’électricité induit un flux d’électron entre les bornes qui va polariser les électrodes. La borne négative va alors attirer les protons (+) d’un côté de la membrane. Ces protons vont s’accumuler et l’électrolyte qui était initialement neutre et homogène va se polariser: un côté va se charger positivement et l’autre, orphelin de ses protons(+), négativement.

Lorsque tous les protons (+) ont migré d’un côté, l’accumulateur est chargé à 100%.

Schéma stockage électrochimique : les batteries.

Dans la phase de décharge (utilisation de l’énergie stockée), cette différence de polarité est utilisée pour mettre des électrons en mouvement dans le sens inverse et produire de l’électricité. Cette circulation en sens inverse des protons va progressivement rétablir l’équilibre de polarité entre les parties chargées positivement et négativement. À partir d’un moment, la tension électrique induite deviendra trop faible et l’accumulateur sera considéré comme « vide ».

Plusieurs matériaux sont utilisables pour réaliser ce principe. En fonction du type d’anode, de cathode et d’électrolyte la densité énergétique, la vitesse de charge, le coût et la stabilité seront variables.

Parmi les technologies les plus courantes, les densités énergétiques sont les suivantes :

Parmi les technologies les plus courantes, les densités énergétiques sont les suivantes

Les autres caractéristiques principales de différentes technologies:

  Vitesse de charge Vitesse de décharge naturelle Nombre de cycles EFFET mémoire* Recyclabilité Coût Commentaire
Plomb-acide Moyenne ±500 Extrêmement faible Très bonne faible Supporte mal les cycles trop amples
Ni-Cd ± rapide ±2000 Oui Toxique
NiMH ± rapide ±1000 Oui mais faible Peu polluant
Li-Ion ++ négligeable ±750 Extrêmement faible Mauvaise, coûteuse
Ni-Zn + rapide ±300 Oui mais faible correcte Moyen
Li-po ++ négligeable ±300

L’effet mémoire est un phénomène physique et chimique qui se manifeste dans certaines technologies d’accumulateurs plus que dans d’autres. S’il se manifeste, ces derniers doivent être déchargés complètement avant d’être rechargés sous peine d’observer une réduction de la capacité de la batterie difficilement récupérable.


Le stockage thermique

Le stockage d’électricité sous forme de chaleur est généralement utilisé tel quel sous forme d’énergie thermique pour l’eau chaude sanitaire ou le chauffage mais peut également être reconvertie et restituée sous forme d’électricité par l’intermédiaire d’une turbine.

Le principe général consiste à chauffer un matériau à haute densité calorifique (de l’eau, de la pierre réfractaire, un matériau à changement de phase, …) dans un milieu clos fortement isolé thermiquement. Le chauffage de la masse à lieu lorsqu’il y a surplus d’électricité.

Schéma stockage thermique.

À l’inverse lorsque l’électricité vient à manquer, la chaleur est libérée et va produire de la vapeur qui continuera son chemin dans une turbine haute température, comme dans une centrale TGV. La turbine va alors se mettre en mouvement et alimenter un alternateur qui pourra injecter du courant alternatif sur le réseau ou dans le bâtiment une fois qu’il sera passé par le transformateur adéquat.


Le stockage En « STEP »

Il s’agit probablement du système de stockage à grand échelle le plus connu. La STEP (Station de transfert d’énergie par pompage) fonctionne par pompage-turbinage. Lorsque le réseau ou le bâtiment est en état de surproduction, pour ne pas gaspiller cette précieuse énergie, une pompe sera actionnée. La pompe élevera alors de l’eau pour la stocker dans un bassin en hauteur (sur la toiture, en haut d’une coline, …).

Cette eau située en hauteur réprésente une énergie potentielle considérable. Ensuite, le fonctionnement est le même que pour un barrage hydroélectrique : au moment opportun, l’eau sera libérée et turbinée pour produire de l’électricité avant de rejoindre le bassin inférieur.

L’énergie disponible est alors égale à :

[La masse] x [la gravité] x [la hauteur de la masse]

Soit, pour un bassin de 1000 m³ (un cube de 10 mètres de côté) situé sur terre (g=9,81 m/s²) à une hauteur moyenne de 20 m par rapport au bassin bas :

1.000.000 kg   x   9,81 m/s²   x   20 m  =  196.200.000 Joules

Soit 54 kWh

Schéma stockage En « STEP ».


Autres systèmes de stockage

Le stockage d’électricité est probablement le Graal du XXIème siècle. C’est pourquoi les ingénieurs rivalisent de créativité pour inventer la solution la plus abordable, verte et performante.

Parmi les solutions que nous rencontrons aujourd’hui, citons le stockage par air comprimé.

Le principe est simple : on profite d’une cavité étanche existante ou on en crée une. Cette cavité sert alors d’espace de stockage pour notre air comprimé. Lorsqu’il y a surproduction, l’électricité va actionner un compresseur, ce dernier va alors faire monter la pression dans notre cavité. Si celle-ci est parfaitement étanche, l’énergie potentielle contenue dans la haute pression peut être conservée très longtemps. Seule la chaleur produite lors de la compression sera perdue en cours de route.

Schéma autres systèmes de stockage.

Ensuite, lorsque le bâtiment ou le réseau a besoin d’électricité, cette pression sera libérée et turbinée afin de produire de l’électricité.

Ce système est à la fois relativement simple et compact (l’essentiel se passant en sous-sol) mais nécessite la présence d’une cavité suffisamment grande, étanche, solide et profonde pour résister aux fortes pressions sans se déformer de manière sensible, ce qui provoquerait des désordres à l’installation et son environnement.

Un autre système qui a de beaux jours devant lui dans le secteur des transports et des énergies renouvelables notamment est celui du stockage d’électricité par volant d’inertie. Ici, le système est encore plus simple. L’électricité OU un mouvement rotatif (roue de voiture, éolienne, …) entraine à la rotation un cylindre extrêmement lourd. Ce surplus d’énergie va accélérer la rotation du cylindre à des vitesses pouvant atteindre les 10.000 tours par minute ! Afin de limiter les frottements et donc l’auto-décharge, ce cylindre est monté sur des roulements performants et confiné sous vide.

Ensuite, lorsque le réseau aura besoin d’énergie, le moteur va se transformer en générateur (une dynamo) et produire de l’électricité en freinant électromagnétiquement le volant d’inertie.

Ce type de système est notamment utilisé dans les autobus et certaines voitures hybrides afin de récupérer l’énergie de freinage. Plutôt que de freiner les roues par frottement, les roues sont embrayées progressivement au volant d’inertie. L’inertie du bus en mouvement est alors transmise au volant d’inertie qui prend de la vitesse et ralenti le bus jusqu’à son arrêt complet. À ce moment, le volant est débrayé et le cylindre tourne à vive allure avec peu de frottement. Lorsque les passagers sont tous à bord, le volant d’inertie va être progressivement ré-embrayé au système de traction du bus et lui restituer la quasi-totalité de son énergie de freinage mais sous forme d’accélération cette fois-ci.

Dans le cadre des énergies renouvelables, ce type de système est envisagé comme stockage tampon entre le dispositif de production renouvelable et le bâtiment afin d’éviter que, nous n’ayons à rebasculer sur le réseau au moindre nuage ou manque de vent.

Types de stockage

Types de stockage


Les différents types

Il existe 5 vecteurs principaux pour le stockage d’énergie :

  • Electrochimique (Batteries) ;
  • Thermique (Ballons d’eau chaude, inertie du bâtiment) ;
  • Cinétique (Volant moteur) ;
  • Gravitaire, potentielle (Station de pompage turbinage) ;
  • Chimique (électrolyse > hydrogène).

En fonction de la nature de l’énergie restituée par le système de stockage, on parlera plutôt tantôt de :

  • « Power to power » : La production électrique est convertie en énergie intermédiaire puis restituée sous forme d’électricité.
  • « Power to fuel » : La production électrique est convertie en combustible.
Bornes de recharge pour véhicules électriques (VES)

Bornes de recharge pour véhicules électriques (VES)

Bornes de recharge pour véhicules électriques (VES)

Dans les années à venir, la densité de bornes de recharge pour les VEs devrait drastiquement augmenter sous la pression de l’Europe via la directive EPBD 2018/884. En 2025, les nouvelles constructions et les rénovations lourdes (non-résidentielles) dont le parking fait plus de 10 emplacements devront être équipé d’une borne de recharge et 1 emplacement sur 5 pré-câblée pour pouvoir accueillir une borne dans le futur. Pour les bâtiments existants, la Belgique est invitée par l’Europe à fixer un nombre minimal de points de recharge pour les parkings non résidentiels de plus de 20 emplacements.


Les différentes puissances disponibles

D’un point de vue technique, les bornes de recharge et prises murales les plus courantes des constructeurs sont disponibles en : monophasé et en triphasé, en 16A, 32A et 64 Ampères pour des puissances allant jusqu’à 43 kW pour les bornes rapides.

Les puissances généralement disponibles sont donc les suivantes :

Type de borne Monophasé Triphasé
10A (prise classique) 2.3 kW   [pour dépanner]
16A 3.7 kW   [très lent : +15 à 25 km/hcharge] 11 kW
32A 7.4 kW   [Lent : +30 à 45 km/hcharge] 22 kW  [Moyen : +60 à 80 km/hcharge]
62A 43 kW   [Rapide : +100 à 140 km/hcharge]
Remarque 1 : certaines voitures ont une limite de vitesse de chargement

Remarque 2 : en hiver, la charge peut être ralentie si la batterie est froide

Des « superchargers » voient également le jour sur les aires d’autoroutes. Dans ce cas, les puissances dépassent déjà les 100 kW !

Pour avoir un ordre de grandeur, un véhicule électrique consomme autour de 20 kWh/100 km et leurs batteries ont une capacité allant de ± 20 kWh pour les micro-citadines à 40 kWh pour les petites citadines et jusqu’à 100 kWh pour les plus grosses berlines. Ces « super-chargeurs » sont donc capables de prolonger l’autonomie des VEs compatibles de plus de 200 km en moins de 20 minutes, soit le temps d’une pause-café !

Il est également bon de savoir que les derniers 20-30 % de la charge d’un VE s’effectuent jusqu’à 2 fois plus lentement.

Comme le coût de l’installation d’une borne est proportionnel à sa puissance, le choix de la puissance devra être judicieux. La décision d’opter pour une borne plutôt qu’une autre dépendra du temps de charge disponible et de l’autonomie attendue après recharge (dans les limites de la capacité de la batterie).

EXEMPLE : Quelle puissance mettre en place dans le cas de bornes à destination des employés d’une grande entreprise dont la durée du chargement sera étalée sur 8 heures (de 9 h à 17 h) ?

Comme les employés de cette entreprise travaillent à moins de 100 km de leur domicile mais que tous n’ont pas la possibilité de charger leur véhicule au domicile, une autonomie de 200 km peut, par exemple, être prévue pour assurer le retour au domicile le soir mais également le trajet vers le bureau le lendemain matin. Dans ce cas, les bornes lentes de 7,4 kW sont déjà largement suffisantes. Néanmoins, un électricien avisé pourrait favoriser le triphasé pour des puissances si importantes afin de réduire le courant pour une puissance similaire en augmentant la tension (de 230 v à 400 v). Le choix de la borne triphasé de 11 kW est donc également un bon choix.

Si l’entreprise emploie des consultants devant réaliser une série d’aller-retours sur la journée, quelques bornes rapides de 43 kW pourront s’avérer nécessaire mais uniquement pour cette flotte de véhicules-là !


Les types de connecteurs côté point de charge

Pour raccorder le véhicule à la borne, plusieurs types de fiches de raccordement existent. Pour les recharges lentes et normales (≤ 43 kW), côté borne, ce sont les fiches domestiques et les fiches de « type 2 » qui sont présentes. Tandis que pour les charges rapides (> 50 kW), celle-ci s’effectuent en courant continu avec prises spécifiques.

Les fiches et prises domestique permettent une puissance de 2,3 kW, ce sont celles que nous retrouvons couramment dans nos bâtiments :

Prise domestique. Source : Zeplug.com

Prise domestique. <

Source : Zeplug.com

Dans ce cas-là, pas besoin de borne en tant que tel mais attention tout de même, pour utiliser ce type de prise murale pour le chargement il est impératif d’avoir une installation pouvant supporter 16 ampères au moins sur ce circuit. Il ne faudra également pas utiliser des rallonges en cascade ou un câble trop long ou de section faible sous peine de courir un dangereux risque d’échauffement.

Les fiches de types 2 correspondent au standard Européen et sont les plus courantes. Elles sont utilisées pour les puissances courantes de 3,7 kW à 43 kW, en mono et triphasé, elles se présentent comme ceci :

Prise type 2. Source : Zeplug.com

Prise type 2.
Source : Zeplug.com

En ce qui concerne les bornes rapides, il existe trois autres types de connecteurs.

À partir de 2025, les bornes rapides devront être équipées de connecteurs CCS Combo (pour fonctionner avec les voitures européennes) et CHAdeMO (pour les voitures asiatiques et TESLA avec un adaptateur)

Bornes de recharge pour véhicules électriques (VES)

Prise et connecteur CCS Combo.
Source : engie-electrabel.be

 

Bornes de recharge pour véhicules électriques (VES)

Prise et connecteur CHAdeMO.
Source : engie-electrabel.be

 

Enfin, en dehors des standards Européens, il existe également la prise propriétaire TESLA SuperCharger

Bornes de recharge pour véhicules électriques (VES)

Prise et borne TESLA SUPERCHARGER.
Source : engie-electrabel.be

Stockage d’électricité – généralité

Stockage d'électricité - généralité


Définition

Un système de stockage électrique est un dispositif technique permettant de convertir une production électrique sous une forme stockable (électrochimique, chimique, mécanique, thermique, …), de l’accumuler puis de la restituer, sous forme d’électricité ou d’une autre énergie finale utile (thermique, chimique, …).

L’électricité ne peut pas être stockée en tant que telle, elle doit nécessairement être convertie.

Dans un monde où la part de la production électrique intermittente, saisonnière et imprévisible croît et augmente le risque de désynchronisation avec les consommations, le stockage permet de rendre le système plus flexible en absorbant les éventuels déphasages entre production et consommation d’énergie.

Le stockage sert principalement de buffer (tampon) et permet de faciliter la gestion et l’intégration des énergies renouvelables tant sur le réseau que dans les bâtiments en offrant une certaine autonomie lorsque le vent et le soleil sont absents.

Les dispositifs de stockage sont caractérisés par :

  • Leur capacité (exprimée en Wh, kWh, MWh, TWh, …),
  • Leur puissance de charge et de décharge (exprimée en W, kW, MW, TW, …),
  • Leur réactivité : le délai nécessaire pour fournir la puissance demandée (exprimé en secondes, minutes ou en heures),
  • Leur densité énergétique (exprimée en Wh/m³, kWh/m³, MWh/m³, TWh/m³, …),
  • Leur capacité à retenir l’énergie stockée dans le temps (autodécharge),
  • Le rendement de conversion (en %).

L’enjeu du stockage à l’échelle du réseau

Depuis le boum des énergies renouvelables en 2010, la question du stockage est sur toutes les lèvres, mais pourquoi ?

Jusqu’il y a peu, les centrales nucléaires offraient une base relativement constante et inflexible de production électrique mais la production d’un complément d’énergie par nos centrales fossiles flexibles activées et modulées au besoin permettait de « coller » à la demande et assurer l’équilibre du réseau. Dans ce paradigme, la production est totalement maitrisée et facilement synchronisable avec la demande (la consommation).

De manière schématique, le profil classique de demande (et donc de la production) au fil d’une journée type en semaine ressemble à ceci :

graphe stockage

De manière plus précise, le nucléaire puissant mais peu réactif, peu flexible assure classiquement une certaine « base constante de production » et les énergies fossiles plus réactives et plus souples s’ajustent et se modulent en continu pour équilibrer le réseau.

Dans ce principe, plus la puissance demandée est élevée, plus les énergies fossiles sont sollicitées. En priorité, ce sont les centrales récentes et performantes qui sont démarrées mais plus la demande est élevée, plus ce sont, in fine, de vieilles centrales polluantes qui devront être mises en route.

Ce sont donc principalement le pic du matin mais aussi et surtout celui du soir qui ont un bilan environnemental exponentiellement désastreux en appelant autant de puissance.

Si nous pouvions baisser la puissance maximale de ±15%, ce sont plus de 40% des émissions qui seraient épargnées !

À quantité journalière d’énergie produite égale, la pollution serait donc bien moindre si nous pouvions la produire à puissance constante.

Qui dit puissance installée réduite dit également moins de centrales et donc une possibilité d’entretien, d’évolution et d’investissement plus dense sur ces centrales restantes et ainsi un meilleur rendement.

Mais, comme la consommation finale des utilisateurs du réseau n’est pas constante, il faudrait que, pendant les creux de consommation, nous puissions stocker le surplus de production pour l’utiliser plus tard et compenser la réduction de puissance des centrales durant les pics journaliers.

graphe stockage énergie en Belgique

graphe du stockage énergie en Belgique

Par exemple, en Belgique, du stockage gravitaire (STEP) est réalisé à cette fin à Coo-Trois-ponts (5GWh mobilisables jusqu’à 6 cycles par jour).

barrage de Coo

ENGIE –ELECTRABEL ©

Mais, comme nous l’évoquions en introduction, une nouvelle donnée est en train de changer la donne à grande vitesse. Vous vous en doutez, il s’agit des énergies renouvelables !

Les énergies renouvelables comme l’éolien et le solaire ont la particularité d’être des énergies peu prédictibles à long terme et intermittentes, cela implique que le gestionnaire du réseau est dépendant de la variabilité de l’ensoleillement et du vent dans son offre d’électricité alors même qu’il doit assurer le parfait équilibre du réseau. Ceci a pour conséquence d’augmenter la volatilité des prix de l’électricité et nécessite de trouver de nouvelles sources de flexibilités sur le réseau.

En réalité, toutes les sources d’énergies sont stockées avant d’être utilisées pour répondre à la demande, que ce soit le bois dans votre abri, l’essence dans votre réservoir, le gaz dans vos tuyaux et même les barres d’uranium dans les centrales. Le défi avec le vent et le soleil, pour ne citer qu’eux, c’est qu’ils ne sont pas directement stockables en tant que tels aussi facilement qu’un combustible.

En Europe, tant que la portion de renouvelable intermittent dans le mix électrique est maintenue sous un seuil communément admis d’environ 30%((https://www.aps.org/policy/reports/popa-reports/upload/integratingelec.pdf))((Sandrine Selosse, Sabine Garabedian, Olivia Ricci, Nadia Maïzi. The renewable energy revolution of Reunion island. Renewable and Sustainable Energy Reviews, Elsevier, 2018, 89, pp.99-105. ff10.1016/j.rser.2018.03.013ff. ffhal-01740511f))((https://www.elia.be/~/media/files/Elia/About-Elia/Studies/20171114_ELIA_4584_AdequacyScenario.pdf)), le gestionnaire est capable d’assurer la stabilité du réseau et l’équilibre avec la demande en compensant avec le fossile. En cas de surplus d’énergies pouvant survenir vers midi quand la demande est faible et que les panneaux fournissent le maximum de leur énergie, comme les centrales nucléaires ne peuvent-être arrêtées et redémarrées d’une minute à l’autre, le gestionnaire va pouvoir trouver une issue grâce aux STEP ou en se déchargeant, par exemple, en activant l’éclairage public. Mais ceci fonctionne uniquement tant que la part de renouvelable est contenue (<30%).

Or, pour 2018, nous recensions ±19% d’énergie renouvelable sur le réseau électrique belge ! Et, heureusement, ce chiffre va croissant. Ce qui devrait nous mener à dépasser le seuil des 30% à l’horizon 2030.

graphe stockage

Source : Données extraites des bilans régionaux SPW DGO4 (Wallonie), Bruxelles Environnement, VITO (Flandre), Eurostat (Belgique) pour les années passées

N’hésitez pas à consultez l’observatoire des énergies renouvelable de l’Apere pour des données mises à jour régulièrement ! Ou encore Energymap.org pour observer en temps réel l’origine de la production électrique.

Pour que le gestionnaire de réseau puisse garder la main sur l’équilibre du réseau quand la part d’énergie intermittente augmente, une des solutions consiste à utiliser des moyens de stockage pour :

  • S’assurer de récolter toute la production : ne pas la gaspiller en éclairant l’espace public de jour en cas de surplus,
  • Pouvoir profiter de cette énergie stockée les jours et les heures où le vent ou le soleil fait défaut et éviter de devoir demander plus de puissance aux centrales fossiles.
  • Augmenter l’interconnexion des réseaux au niveau de l’Europe pour amortir et lisser l’intermittence du renouvelable grâce à une échelle géographique élargie et moins dépendante de phénomènes locaux.

En complément des moyens de stockage : la flexibilité électrique accrue de la demande (par l’effacement ou le déplacement des charges) permettra de ne plus uniquement tenter d’aligner l’offre à la demande mais également d’adapter notre consommation à la quantité d’énergie disponible.


L’enjeu du stockage à l’échelle du bâtiment

La règlementation Européenne et les enjeux énergétiques, climatiques et environnementaux incitent les entreprises, les institutions et les particuliers à rejoindre l’effort et devenir eux aussi producteur d’énergie renouvelable.

Pour contribuer à l’équilibre et l’allègement du réseau, chaque bâtiment devra gagner en autonomie énergétique et autoconsommer le maximum de l’énergie qu’il produit. La Wallonie travaille d’ailleurs sur le statut de prosommateur pour inciter fiscalement à l’autoconsommation.

Or, pour maximaliser le taux d’autoconsommation dans un bâtiment, il faut soit :

  • Adapter sa consommation à la disponibilité intermittente d’énergie autoproduite. Ceci implique une refonte complète des comportements, une souplesse dans ses activités et une attention de chaque instant ce qui sera rarement possible dans un monde où l’organisation, la performance et la vitesse prime.
  • Disposer d’un système qui pourra accumuler l’énergie produite hors des heures d’utilisation dans une batterie, un ballon d’eau chaude, sous forme d’H2, … que nous pourrons ensuite mobiliser en temps utile.

Compteurs communicants

Pour 2034, les objectifs de la région Wallonne sont d’équiper 80 % des ménages de compteurs communiquants.

Compteurs communicants

Les compteurs électriques communicants, appelés également compteurs « intelligents » ou « Smartmeters » comptabilisent la consommation électrique en ayant la particularité de communiquer les mesures avec le consommateur ainsi que le GRD (Gestionnaire du réseau de distribution).

Cette information fournie par le compteur permet :

  • Un meilleur contrôle des consommations ;
  • Le relevé des compteurs par le GRD à distance et donc des factures sur base de la consommation réelle ;
  • La détection rapide des pannes électriques et réduction du temps d’intervention ;
  • Facilité et information pour les autoproducteurs ;-
  • Prépaiement plus simple pour les compteurs à budget ;
  • Modifications de la tarification, de l’index, fermeture du compteur… à distance.

Pour le consommateur, l’arrivée de ces compteurs permet donc une facturation et un suivi plus fin et « connecté » de sa consommation : historique de consommation, conversion en Euros…

Ces systèmes ont un rôle important dans le développement des énergies renouvelables en permettant aux auto-producteur d’obtenir en continu des informations précises sur l’énergie prélevée ou injectée sur le réseau ce qui permettra une utilisation plus rationnelle de l’énergie. Côté GRD, l’apparition de ces systèmes de compteurs connectés et décentralisés permet de mieux gérer et accorder la production à la consommation.

Malgré ces nouvelles fonctionnalités, en France [2017], où ces systèmes sont déjà installés, seul 1 ménage sur 50 a fait les démarches permettant d’avoir accès à leur courbe de charge.

Pour conclure, les compteurs communicants, en plus d’être un premier pas vers la bonne gestion des énergies renouvelables et les smartgrids, permettent à l’occupant de reprendre le contact avec sa consommation. Autrefois, l’occupant pouvait compter le nombre de seaux de charbons / de bûches de bois qu’il brûlait et contrôler sa consommation de manière très directe et tangible. Aujourd’hui, le gaz et l’électricité « coulent » dans nos tuyaux opaques et nous n’avons pas la moins information palpable pour comprendre et avoir une idée de sa consommation. L’émergence de compteurs communiquant, avec leurs éventuels prolongements sous forme d’applications de suivi ou de gestion, pourra faciliter la conscience de la consommation à chacun et favoriser une utilisation rationnelle de l’énergie plus facile notamment via la possibilité pour le compteur de parler dans des unités compréhensibles et qui intéressent le consommateur : en € et €/heure plutôt qu’en kWh et kW.

Transformateurs

Transformateurs

Transformateur sec et transformateur à huile minérale


Principe général de fonctionnement d’un transformateur

Transformateur monophasé

D’une manière simplifiée, un transformateur est composé d’un noyau magnétique (acier doux au silicium) sur lequel sont disposés deux enroulements en cuivre : l’enroulement branché sur la source d’énergie est le « primaire » et l’enroulement branché vers les récepteurs est le « secondaire ».

Les deux enroulements ont un nombre de spires (tours) différents : le plus grand est l’enroulement « haute tension (HT) » et le plus petit, l’enroulement « basse tension (BT) ».

Transformateur monophasé.

Le rapport de transformation de la tension est proportionnel au rapport entre le nombre de spires de chaque enroulement.

Transformateur triphasé

Un transformateur triphasé est composé d’un noyau à trois branches sur lesquelles sont combinés les enroulements primaires et secondaires, de façon concentrique ou alternée.

Transformateur triphasé.


Pertes d’un transformateur

Les pertes d’un transformateur se composent des pertes à vide et des pertes en charge.

Les pertes à vide (ou pertes « fer ») se produisent au sein du noyau ferromagnétique. Elles sont constantes quel que soit le régime de charge du transformateur, c’est-à-dire quelle que soit la consommation du bâtiment qui y est raccordé.

Les pertes en charge (ou pertes « en court-circuit » ou pertes « cuivre ») sont, elles, dues à l’effet Joule (perte par échauffement des fils ou feuillards parcourus par un courant), augmentées des pertes additionnelles (pertes supplémentaires occasionnées par les courants parasites dans les enroulements et pièces de construction). Elles varient avec le carré du courant ou de la puissance débitée (si la tension reste constante).

Remarque : la dénomination « pertes cuivre » date de l’époque où tous les enroulements étaient réalisés en cuivre. C’est encore le cas pour les très petites puissances. Pour les autres transformateurs, les constructeurs se sont tournés vers l’aluminium. C’est pourquoi, on parle maintenant de « pertes en court-circuit ».

On exprime donc les pertes totales d’un transformateur par :

W = Wfe + Wcu x (S/Sn

où :

  • W = pertes totales du transformateur en charge réelle [W]
  • Wfe = pertes fer (constantes) [W]
  • Wcu = pertes en court-circuit à la charge nominale [W]
  • S= puissance nominale du transformateur [VA]
  • S = charge appliquée aux bornes [VA]
Exemple.

Soit un transformateur de 500 kVA, ayant des pertes fer de 730 W et des pertes en court-circuit à pleine charge de 4 550 W.

Sous un cos φ de 0,9, et une charge du transformateur de 300 kW, les pertes totales sont :

W = 730 [W] + 4 550 [W] x ((300 [kW] / 0,9) / 500 [kVA])² = 2 752 [W]


Transformateurs secs

Transformateur sec enrobé : les enroulements BT et les enroulements sont concentriques et enrobés dans une résine époxy.

Les transformateurs secs sont constitués de bobinages enveloppés d’une résine époxy.
Ils peuvent alors être disposés dans une enveloppe de protection (IP 315 ou IP 235) qui permet d’isoler le transformateur du monde extérieur et d’assurer l’évacuation de la chaleur au travers de ses parois.

Les transformateurs secs présentent les meilleures garanties de sécurité contre l’incendie et contre la pollution (pas de fuite de liquide, pas de vapeurs nocives en cas d’incendie).

Les transformateurs secs peuvent être installés dans une enveloppe de protection (IP 315 ou IP 235) ou sans protection.
Dans ce cas, ils doivent être protégés contre les contacts directs.


Transformateurs à huile minérale

Dans ce type d’équipement, appelé aussi transformateurs immergés, le transformateur est disposé dans un bain d’huile qui assure l’isolation et le refroidissement.

Ces transformateurs sont moins onéreux et ont des pertes moindres. Ils présentent cependant des risques d’incendie et de pollution :

  • Un défaut interne peut provoquer une surpression et une déformation de la cuve telles que des fuites d’huile peuvent apparaître. Suivant les circonstances, cela peut entraîner l’inflammation de l’huile ou encore une explosion.
  • Les fuites d’huile peuvent aussi provenir d’un joint défectueux ou de la rupture d’une canalisation. Les huiles qui se répandent peuvent polluer la nappe phréatique. Il faut donc prévoir sous le transformateur une fosse d’évacuation ou un bac de rétention d’huile.
  • La combustion des huiles dégage des produits toxiques et génère des fumées opaques gênant l’intervention des secours.

Il y a encore quelques années, on commercialisait des transformateurs dits « à l’askarel ». L’huile de ces transformateurs contenait des PCB. Ces substances dégagent des émanations nocives lors d’incendies et présentent à grande concentration des dangers pour la santé humaine. C’est pourquoi la directive européenne 96/59/CE se prononce pour l’élimination des appareils contaminés ou contenant des PCB.

En 1985, l’explosion d’un transformateur à l’askarel dans un immeuble à appartement français produit des molécules toxiques (furanes et dioxines). Depuis, l’acquisition, la vente et la mise en service de transformateurs neufs au PCB ont été interdites en France.

En application de cette directive, la Région wallonne a réglementé l’élimination des transformateurs à l’askarel existants, pour au plus tard, fin 2005.