Impacts environnementaux : focus sur les fenêtres

Dans cette page, nous proposons une comparaison des impacts environnementaux des parois reprises dans la bibliothèque de TOTEM durant l’été 2023, afin d’identifier de bonnes pratiques en termes de choix constructifs. En particulier, nous nous intéressons aux toitures.

Recommandations avant comparaison:

 

Ca change vite

Les bibliothèques TOTEM s’enrichissent régulièrement, les EPD (déclaration environnementale de produit)  se multiplient… L’exercice fait ici est donc vrai pour en un temps t, et l’analyse peut changer rapidement. Cependant, puisqu’il ne s’agit pas de trouver un « meilleur élève », mais d’identifier des tendances, l’exercice vaut la peine.

Travailler à l’échelle de l’élément

Totem préconise la comparaison à partir du niveau hiérarchique correspondant aux éléments, de façon à considérer matériaux mis en œuvre ! En effet, si l’on comparait par exemple deux matériaux non mis en œuvre (deux isolants par exemple), on négligerait l’impact des matériaux additionnels nécessaires à celle-ci (fixation, mortier éventuel,…), et l’on pourrait mal estimer la durée de vie des matériaux, qui elle aussi peut dépendre des conditions de mise en œuvre .

Nous travaillons donc ici sur base des bibliothèques d’éléments prédéfinis dans TOTEM (planchers, murs, toitures,…). Il s’agit donc de bien de discuter de complexes multicouches, et non de matériaux individuellement.

Peut-on comparer des éléments n’ayant pas la même valeur U ?

L’impact environnemental de l’énergie consommée durant la phase d’utilisation de l’élément est pris en compte dans le score environnemental global. Une telle comparaison est donc possible, pour autant que l’on s’en tienne à une comparaison de l’impact sur l’ensemble des étapes du cycle de vie. Cela n’aurait évidemment aucun sens de comparer uniquement la phase de fabrication de parois n’ayant pas la même performance thermique.

Précisons cependant que la méthode de calcul utilisée pour l’évaluation de l’énergie consommée « in use » est discutable car relativement simpliste (méthode des degrés jours), et que l’impact de cette énergie n’est pas le même selon le type de système énergétique considérée (chauffage gaz ? pompe à chaleur ?). Les comparaisons qui sont faite sont donc à nuancer et contextualiser.

Peut-on comparer des éléments n’ayant pas la même durée de vie ?

Si l’on travaille à l’échelle des éléments, TOTEM uniformise les durées de vie à 60 ans, en intégrant un rythme de remplacement des éléments qui ne vivraient pas autant. La comparaison est donc possible.

Si vous voulez en savoir plus sur les hypothèses de calcul de TOTEM, dont la durée de vie, nous vous recommandons la video ci-dessous :

Peut-on comparer des élément n’ayant pas le même statut (Neuf ><Réno) ?

Oui et non. Il est intéressant de regrouper ces deux type d’éléments, pour mettre en évidence l’intérêt relative de la conservation d’éléments ou de composants existants. Mais une fois cela établi, c’est la comparaison d’éléments similaires qui a le plus d’intérêt pratique.


Vue générale sur les fenêtres

Le graphique ci-dessous représente l’ensemble des fenêtres répertoriés dans la bibliothèque TOTEM. En abscisse sont reprises les valeurs U (W/m2K) et en ordonnée le score agrégé de performance environnementale en millipoints par unité fonctionnelle.

Notons d’abord que plusieurs de ces fenêtres ne respectent pas l’exigence minimale U=< 1.5 W/m²K. Si l’on se concentre sur les autres, on remarque ne assez grande variabilité de score environnemental, puisque celui-ci varie entre 43 et 74 mPt/UF.

Comparaison d’éléments : les fenêtres prédéfinies de la bibliothèque TOTEM

Quelles tendances identifier ?

  • Premièrement, les fenêtres avec châssis bois présentent le meilleur score environnemental, que ce soit en simple ou, encore mieux, en triple vitrage. Le bois-alu arrive deuxième, et le PVC troisième. Le châssis aluminium ferme la marche.
  • Deuxièmement, le passage au triple vitrage permet systématiquement d’améliorer le score environnemental global, à matériau de châssis équivalent. L’ordre de grandeur de ce bénéfice est cependant inférieur à celui d’un changement de matériau de châssis. Par exemple, passer d’un châssis aluminium double vitrage à un aluminium triple vitrage vous fera gagner une dizaine de millipoints, alors que le passage vers un châssis bois double vitrage vous en fait gagner près de 20.

Attention cependant, ce chapitre de la bibliothèque TOTEM ne contient que peu de points. L’analyse sera donc à refaire lorsque cette bibliothèque se sera enrichie.


Vers une trop grande complexité de vitrages ?

Pour compléter l’analyse générale ci-dessous, nous pouvons nous trouver vers les recherche du dr. Jean Souviron((Jean Souviron. Glazing Beyond Energy Efficiency: An Environmental Analysis of the Socio-Technical Trajectory of Architectural Glass. Architecture, space management. Université Libre de Bruxelles (U.L.B.), Belgium, 2022. English.)), dont la thèse de doctorat porte sur l’analyse de cycle de vie des vitrages. En particulier, il analyse la tendance à la complexification des technologies de vitrages ces dernières décennies (doublement puis triplement des feuilles de verre, ajout de couches basses émissivité, remplissages gazeux, etc.) et s’interroge sur le bilan environnemental de ces vitrages dans un scénario de rénovation énergétique de bureaux : est-ce que les bénéfices des ces technologies lors de l’utilisation du bâtiment surpassent le coût environnemental d’une production plus complexe ? Ceci en se basant sur une analyse détaillée des cycles de production et des potentiels de récupérations et recyclage des vitrages.

Pour vous la faire courte, voici ses principales conclusions :

  • le meilleur vitrage est … celui qu’on ne produit pas. avant de se questionner sur quel vitrage pour remplacer ceux en fin de vie, il convient de se pencher sur la nécessité de ces vitrages, dnas une logique de réduction globale des quantités de matières utilisées. A noter cependant qu’il centre sont travail sur la rénovation des murs rideaux, pour lesquels effectivement la quantité de verre peut être mise en question. La situation est différente pour une architecture de fenêtres.

The most significant (impact) would be to minimise the production of flat glass due to the energy-intensive nature of float plants and their dependence on fossil fuels.

  • l’impact environnemental des vitrages est grevé par une grande difficulté à recycler les produits développés aujourd’hui, principalement du fait des difficultés à dissocier les composants des complexes de vitrage.

This means that the design of insulating glass units itself should be revised so that they provide sufficient acoustic and thermal insulation, while the materials from which they are made can be easily separated.

  • Sur la valeur ajoutée des vitrages « complexes », il pointe l’énorme incertitude qui entoure les analyses de cycle de vie actuelles, dans un contexte climatique changeant, un mix énergétique en transition, une variété d’hypothèses d’utilisation et de gains internes ou de systèmes HVAC et, potentiellement, une remise en question des ambiances intérieures à maintenir dans les bâtiments à l’avenir.

If the hypotheses and the definition of the life cycle scenarios can significantly change the conclusions of an LCA, how can the uncertainties related to the socio-technical trajectory of buildings be better taken into account?

  • Pour en venir au choix des complexes de vitrage dans une situation donnée, ses résultats indiquent une … équivalence de consommations énergétique globale pour les simples (sg), double (dg) et triples vitrages (tg). Signe que les vraies pistes de réduction d’impact ne sont peut-être pas dans un choix de technologie.
Figure 4.29 de la thèse du dr. Jean Souviron, montrant la consommation d’énergie totale sur le cycle de vie de différentes solutions de vitrages simple (sg), double (dg) ou triple (tg), pour une application de bureau et différentes solutions d’ombrage

Incohérent avec ce qui précède ? Non, nous ne le pensons pas. L’incertitude des analyses de cycle de vie est aujourd’hui encore grande, tout le monde le reconnais. Des résultats non convergents sont donc « attendus ». A ce stade des connaissances, les ACV peuvent donner des indications, pas des certitudes. Et dans le cas présent, concluons qu’aucune tendance claire en fonction de l’une ou l’autre technologie ne se dégage au niveau des vitrages « classiques » (résultats du dr. Souviron) et qu’au niveau des châssis, le bois semble tirer son épingle du jeu (résultats TOTEM).

Cet article a été révisé pour la dernière fois en été 2023. Les données et analyses présentées reflètent l’état des connaissances et des ressources disponibles à ce moment-là. Le domaine de la construction et de l’évaluation environnementale évoluant rapidement, nous encourageons nos lecteurs à vérifier si des mises à jour ou des compléments d’information ont été publiés depuis.

Impacts environnementaux : focus sur les toitures

Dans cette page, nous proposons une comparaison des impacts environnementaux des parois reprises dans la bibliothèque de TOTEM durant l’été 2023, afin d’identifier de bonnes pratiques en termes de choix constructifs. En particulier, nous nous intéressons aux toitures.

Recommandations avant comparaison

Ca change vite

Les bibliothèques TOTEM s’enrichissent régulièrement, les EPD (déclaration environnementale de produit)  se multiplient… L’exercice fait ici est donc vrai pour en un temps t, et l’analyse peut changer rapidement. Cependant, puisqu’il ne s’agit pas de trouver un « meilleur élève », mais d’identifier des tendances, l’exercice vaut la peine.

Travailler à l’échelle de l’élément

Totem préconise la comparaison à partir du niveau hiérarchique correspondant aux éléments, de façon à considérer matériaux mis en œuvre ! En effet, si l’on comparait par exemple deux matériaux non mis en œuvre (deux isolants par exemple), on négligerait l’impact des matériaux additionnels nécessaires à celle-ci (fixation, mortier éventuel,…), et l’on pourrait mal estimer la durée de vie des matériaux, qui elle aussi peut dépendre des conditions de mise en œuvre .

Nous travaillons donc ici sur base des bibliothèques d’éléments prédéfinis dans TOTEM (planchers, murs, toitures,…). Il s’agit donc de bien de discuter de complexes multicouches, et non de matériaux individuellement.

Peut-on comparer des éléments n’ayant pas la même valeur U ?

L’impact environnemental de l’énergie consommée durant la phase d’utilisation de l’élément est pris en compte dans le score environnemental global. Une telle comparaison est donc possible, pour autant que l’on s’en tienne à une comparaison de l’impact sur l’ensemble des étapes du cycle de vie. Cela n’aurait évidemment aucun sens de comparer uniquement la phase de fabrication de parois n’ayant pas la même performance thermique.

Précisons cependant que la méthode de calcul utilisée pour l’évaluation de l’énergie consommée « in use » est discutable car relativement simpliste (méthode des degrés jours), et que l’impact de cette énergie n’est pas le même selon le type de système énergétique considérée (chauffage gaz ? pompe à chaleur ?). Les comparaisons qui sont faite sont donc à nuancer et contextualiser.

Peut-on comparer des éléments n’ayant pas la même durée de vie ?

Si l’on travaille à l’échelle des éléments, TOTEM uniformise les durées de vie à 60 ans, en intégrant un rythme de remplacement des éléments qui ne vivraient pas autant. La comparaison est donc possible.

Si vous voulez en savoir plus sur les hypothèses de calcul de TOTEM, dont la durée de vie, nous vous recommandons la video ci-dessous :

Peut-on comparer des élément n’ayant pas le même statut (Neuf ><Réno) ?

Oui et non. Il est intéressant de regrouper ces deux type d’éléments, pour mettre en évidence l’intérêt relative de la conservation d’éléments ou de composants existants. Mais une fois cela établi, c’est la comparaison d’éléments similaires qui a le plus d’intérêt pratique.


Vue générale sur les toitures plates

Le graphique ci-dessous représente l’ensemble des toitures plates répertoriés dans la bibliothèque TOTEM. En abscisse sont reprises les valeurs U (W/m2K) et en ordonnée le score agrégé de performance environnementale en millipoints par unité fonctionnelle de chaque complexe de paroi.

Avant de commencer, pointons qu’un élément en béton cellulaire affichant un score dépassant les 250 mPt/UF a été supprimé du graphique. Alors que tous les autres éléments restent sous la barre des 100 mPt / UF, celui-là venait écraser les résultat et complexifier la lecture.

Cet élément (ID ET969) a été fortement impacté par une récente mise à jour, qui l’a fait passer 13,95 mPt/UF à 256,84 mPt/UF. Il est donc passé du « podium » à « l’élimination ».

Comparaison d’éléments : les toitures plates prédéfinies de la bibliothèque TOTEM

Qu’observons nous ?

  • Les éléments de charpente en bois scorent généralement mieux que les charpente en acier ou en béton. Sachant que le bois a cette capacité de stocker du CO2 pendant une partie de son cycle de vie, ce meilleur score par rapport à d’autre éléments structurels en maçonnerie ou métallique était attendu. On ne voit pas ici les nuances qu’il a fallu apporter dans l’analyse des murs extérieures à ossature bois.
  • Indépendamment du cas exceptionnel pointé plus haut, les éléments préfabriqués en béton (Dalle TT ou poutres en béton précontraint) affichent des scores variables dont certains voisins de bons profilés de charpente en bois. Par exemple, l’élément ET270 « TP_Dalle TT_Béton précontraint_BIB_Neuf_01 » affiche un score respectable de 15,4 mPt/UF, très proche de l’élément ET286 « TP_Solives et arbalétriers_Bois résineux_BIB_Neuf_04 » pour un même U= 0.23 W/m²K.

Podium des toitures plates

Voici les trois compositions de paroi présentant le meilleur score environnemental parmi les toitures plates :

  • Une toiture avec profilés FIJ et flocons de cellulose (référence TOTEM : TP_Profilés FJI 350_Bois lamellé_BIB_Neuf_01, ID  ET275) : U=0.13 W/m²K pour 9,9 mPt/UF et 28cm
C1 : Feuille d’étanchéité en EPDM ; C2 : Panneau de laine de roche (60 mm) ; C3 : Feuille d’étanchéité PP – LDPE ; C4 : Panneau OSB vissé ; C5 : Profilés en bois résineux ; C6 : couche composée : Profilés FJI 350 en bois lamellé – OSB (5%), combiné à des flocons de cellulose (95%) (240 mm) ; C7 : Lattes en bois résineux ; C8 : Panneau en plâtre ; C9 : Peinture acrylique
  • Une toiture avec solives en bois résineux et flocons de cellulose (référence TOTEM TP_Solives bois résineux_BIB_Neuf_02, (ID  ET273) : U=0.17 W/m² K pour 11,42 mPt/UF et 39 cm
C1 : Feuille d’étanchéité en EPDM ; C2 : Panneau de laine de roche (60 mm) ; C3 : Feuille d’étanchéité PP – LDPE ; C4 : Panneau OSB vissé ; C5 : Profilés en bois résineux ; C6 : couche composée : solives en bois résineux (22%), combiné à flocons de cellulose (78%) (225 mm) ; C7 : Lattes en Bois résineux ; C8 : Panneau en plâtre ; C9 : Peinture acrylique
  • Une variante de la précédente avec isolation en laine de roche uniquement par au-dessus (référence TOTEM TP_Solives bois résineux_BIB_Neuf_04, ID  ET286) : U=0.23 W/m²K pour 14,09 mPt/UF et 46cm

 

C1 : Feuille d’étanchéité EPDM ; C2 : Panneau de laine de roche (130 mm) ; C3 : Feuille d’étanchéité PP – LDPE ; C4 : Panneau OSB vissé ; C5 : Profilés en bois résineux ; C6 : Solives en bois résineux ; C7 : Lattes en bois résineux ; C8 : Panneau en fibre-gypse ; C9 : Papier peint

 

Le trio de tête est donc constitué de parois bois, et deux d’entre elles proposent une isolation en flocons de cellulose. Mais il nous semble nécessaire de mentionner que le 4ème meilleur score est atteint par une paroi béton (Référence TOTEM : TP_Dalle TT_béton précontraint_BIB_Neuf_01,  ID  ET273) : U=0.24 W/m²K pour 15,4 mPt/UF et 53cm:

C1 : Feuille d’étanchéité EPDM ; C2 : Panneau PUR (100 mm) ; C3 : Feuille d’étanchéité en bitume ; C4 : Enduit épais en béton maigre ; C5 : Béton coulé sur site ; C6 : Dalle TT en béton précontraint ; C7 : Enduit épais en plâtre ; C8 : Peinture acrylique

 


Vue générale sur les toitures en pente

Comparaison d’éléments : les toitures en pente prédéfinies de la bibliothèque TOTEM

On retrouve ici des éléments d’analyse similaires à ceux des murs extérieurs :

  • Il n’y a pas de corrélation évidente entre niveau U et score environnemental. Si les toitures « passives » (U<0,15W/m2K) ont de bons résultats environnementaux, on trouve également des parois à U=0,15W/m2K dont le score est très haut.
  • Les ossatures métalliques sont globalement à exclure.
  • Les ossatures bois présentent une grande variété de scores, signe que le mode constructif ne fait pas tout.
  • Plus spécifique aux toitures : les fermes semblent plus intéressantes que les fermettes.

Podium des toitures en pente

Voici les trois compositions de paroi présentant le meilleur score environnemental parmi les toitures inclinées :

  • Une toiture « passive » avec profilés FJI et laine de roche (référence TOTEM TI_Fermes en forme de A_Bois résineux_BIB_Neuf_02, ID  ET298) : U=0.11 W/m²K pour 8.54 mPt/UF et 68cm
C1 : Tuiles céramique non émaillée ; C2 et C3 : Lattes en bois résineux ; C4 : Panneau en fibre de bois ; C5 : Couche composée : profilés FJI en bois lamellé (5%), combiné à un matelas de laine de roche (95%) (360 mm) ; C6 : Poutres en bois résineux ; C7 : Feuille d’étanchéité PP – LPDE ; C8 : Lattes en bois résineux ; C9 : Panneau en plâtre ; C10 : Peinture acrylique
  • Une toiture avec profilés FJI et flocons de cellulose (référence TOTEM TI_Fermes en forme de A_Bois résineux_BIB_Neuf_03, ID  ET299) : U=0.17 W/m²K pour 9.23 mPt/UF et 56 cm
C1 : Tuiles céramique non émaillée ; C2 et C3 : Lattes en bois résineux ; C4 : Panneau en fibre de bois ; C5 : Couche composée : profilés FJI en bois lamellé (5%), combiné à un matelas de laine de roche (95%) (240 mm) ; C6 : Poutres en bois résineux ; C7 : Feuille d’étanchéité PP – LPDE ; C8 : Lattes en bois résineux ; C9 : Panneau en plâtre ; C10 : Peinture acrylique
  • Une toiture avec profilés FJI et laine de verre (référence TOTEM TI_Pannes bois résineux_BIB_Neuf_15, ID  ET323) : U=0.24 W/m²K pour 10.24 mPt/UF et 48 cm
C1 : Tuiles céramique non émaillée ; C2: Lattes en bois résineux ; C3 : Feuille d’étanchéité PE ; C4 : Panneau de toiture ouvert : 12mm particules + 170mm laine de verre ; C5 : Papier peint ; C6 : Poutres en bois résineux

Ces parois sont assez proches dans leur nature, la principale différence étant le choix du matériau isolant, avec le matelas de laine de roche (360mm) en pole position, devant la cellulose (240mm) et la laine de verre (170mm). Notons que les valeurs U atteintes ne sont pas identiques, la meilleur paroi étant aussi la plus isolante (U=0,11 W/m2K).

Cet article a été révisé pour la dernière fois en été 2023. Les données et analyses présentées reflètent l’état des connaissances et des ressources disponibles à ce moment-là. Le domaine de la construction et de l’évaluation environnementale évoluant rapidement, nous encourageons nos lecteurs à vérifier si des mises à jour ou des compléments d’information ont été publiés depuis.

Objectifs d’une bonne toiture

Objectifs d'une bonne toiture


Objectifs d’une bonne toiture

La toiture sera stable et protégera les occupant des agresseurs extérieurs :

  • l’eau,
  • le froid,
  • la poussière,
  • le vent,
  • le bruit.

Assurant ainsi le confort des occupants à un coût énergétique avantageux.


Comment composer une toiture qui remplisse ces objectifs ?

Pour visualiser la composition d’une toiture inclinée, consulter la partie ci-dessous :


1. Le bâtiment sans toiture

Inspiré de « L’isolation thermique des toitures » CIFUL /  FFC.

© Architecture et climat 2023.

Sources d’inconfort.
Toiture et accessoires.
Effets de la toiture sur les sources d’inconfort.
– – – – – – – – –

  1. Pluie, vent et neige
  2. Température extérieure de 0°
  3. Production de vapeur d’eau
  4. Air intérieur de 0°
  5. Mur creux isolé

2. La toiture élémentaire

Inspiré de « L’isolation thermique des toitures » CIFUL /  FFC.

© Architecture et climat 2023.

Sources d’inconfort.
Toiture et accessoires.
Effets de la toiture sur les sources d’inconfort.
– – – – – – – – –
  1. Pluie, vent et neige
  2. Température extérieure de 0°
  3. Production de vapeur d’eau
  4. Air intérieur de 1°
  5. Mur creux isolé
  6. Eau infiltrée
  7. Migration de la vapeur de l’intérieur vers l’extérieur
  8. Gouttière et évacuation

-> Les composants mis en œuvre :

La charpente, la couverture et les évacuations d’eau pluviale

  • La charpente assure la stabilité de la toiture.
  • La couverture protège les occupants contre les intempéries.
  • La couverture et les évacuations écartent les eaux pluviales.

3. La toiture sans infiltration

Inspiré de « L’isolation thermique des toitures » CIFUL /  FFC.

© Architecture et climat 2023.

Sources d’inconfort.
Toiture et accessoires.
  Effets de la toiture sur les sources d’inconfort.
– – – – – – – – –
  1. Pluie, vent et neige
  2. Température extérieure de 0°
  3. Production de vapeur d’eau
  4. Air intérieur de 5°
  5. Mur creux isolé
  6. Eau infiltrée
  7. Migration de la vapeur de l’intérieur vers l’extérieur
  8. Gouttière et évacuation
  9. Pose d’une sous-toiture étanche à l’eau et perméable à la vapeur d’eau + contre-lattes

-> Les composants mis en œuvre :

La charpente, la couverture et les évacuations d’eau pluviale

  • La charpente assure la stabilité de la toiture.
  • La couverture protège les occupants contre les intempéries.
  • La couverture et les évacuations écartent les eaux pluviales.

La sous-toiture

  • Elle limite les infiltrations d’air.
  • Elle protège le bâtiment des eaux accidentellement infiltrées et des poussières.

4. Vers une toiture isolée

Inspiré de « L’isolation thermique des toitures » CIFUL /  FFC.

© Architecture et climat 2023.

Sources d’inconfort.
Toiture et accessoires.
Effets de la toiture sur les sources d »inconfort.
– – – – – – – – –

  1. Pluie, vent et neige
  2. Température extérieure de 0°
  3. Production de vapeur d’eau
  4. Air intérieur de 18°
  5. Mur creux isolé
  6. Eau infiltrée
  7. Migration de la vapeur de l’intérieur vers l’extérieur
  8. Gouttière et évacuation
  9. Pose d’une sous-toiture étanche à l’eau et perméable à la vapeur d’eau + contre-lattes
  10. Pose d’un isolant thermique

-> Les composants mis en œuvre :

La charpente, la couverture et les évacuations d’eau pluviale

  • La charpente assure la stabilité de la toiture.
  • La couverture protège les occupants contre les intempéries.
  • La couverture et les évacuations écartent les eaux pluviales.

La sous-toiture

  • Elle limite les infiltrations d’air.
  • Elle protège le bâtiment des eaux accidentellement infiltrées et des poussières.

L’isolation

  • Elle limite les pertes de chaleur.
  • Elle protège les occupants du bruit extérieur.

DANGER ! RISQUES DE CONDENSATION


5. La toiture isolée complète

Inspiré de « L’isolation thermique des toitures » CIFUL /  FFC.

© Architecture et climat 2023.

Sources d’inconfort.
Toiture et accessoires.
Effets de la toiture sur les sources d’inconfort.

– – – – – – – – –

  1. Pluie, vent et neige
  2. Température extérieure de 0°
  3. Production de vapeur d’eau
  4. Air intérieur de 20°
  5. Mur creux isolé
  6. Eau infiltrée
  7. Migration de la vapeur de l’intérieur vers l’extérieur
  8. Gouttière et évacuation
  9. Pose d’une sous-toiture étanche à l’eau et perméable à la vapeur d’eau + contre-lattes
  10. Pose d’un isolant thermique
  11. Pose d’un écran étanche à l’air et à la vapeur
  12. Finition intérieure

-> Les composants mis en œuvre :

La charpente, la couverture et les évacuations d’eau pluviale

  • La charpente assure la stabilité de la toiture.
  • La couverture protège les occupants contre les intempéries.
  • La couverture et les évacuations écartent les eaux pluviales.

La sous-toiture

  • Elle limite les infiltrations d »air.
  • Elle protège le bâtiment des eaux accidentellement infiltrées et des poussières.

L’isolation

  • Elle limite les pertes de chaleur.
  • Elle protège les occupants du bruit extérieur.

L’écran étanche à l’air et à la vapeur, et la finition intérieure

  • Ils suppriment les courants d’air.
  • Ils protègent la toiture des condensations internes et lui conservent son aspect, son efficacité thermique et sa stabilité.

Toiture plate : types de supports

Toiture plate : types de supports

Tant en construction neuve qu’en rénovation, la nature du support du complexe isolant-étanchéité est généralement défini.

C’est donc la nature du support qui influencera les techniques choisies pour réaliser l’isolation thermique et l’étanchéité, et non l’inverse.

Les supports sont à considérer en fonction de leur :

  • capacité portante,
  • déflexion,
  • coefficient de transmission thermique,
  • comportement hygrothermique.

On distinguera :


Les dalles monolithes

La dalle monolithe peut-être :

  • Un béton armé plein coulé sur place.

Béton coulé sur place.

  • La couche de compression d’éléments préfabriqués en béton ou en terre cuite.

Couche de compression sur poutrains et claveaux.

  • Un béton de pente avec granulats lourds ou légers.

La forme de pente ne peut être réalisée en béton léger (NIT 134 p 30).

Béton de pente.


Les éléments fractionnés en béton ou en terre cuite

Sont compris dans cette catégorie

  • Les éléments préfabriqués en béton sans couche de compression.
  • Les éléments en terre cuite sans couche de compression.
  • Les éléments préfabriqués en béton léger.

Éléments préfabriqués sans couche de compression.


Les planchers en bois et les panneaux en matière végétale

Cette catégorie comprend

  • Les planchers ou voligeages en bois.

Tous les éléments en bois doivent être traités contre les champignons et les insectes avant d’être mis en œuvre. Les produits de traitement doivent être compatibles avec les autres matériaux mis en œuvre : isolation, pare-vapeur, étanchéité, accessoires, etc.

Plancher en bois.

  • Les panneaux de particules de bois.

Si la structure est un panneau de bois aggloméré celui-ci doit appartenir à la classe « B » suivant STS 04.6

Panneau en bois aggloméré.

  • Les panneaux multiplex.

Si la structure porteuse est en multiplex, celui-ci doit être de qualité pour menuiserie extérieure.

Panneau en bois multiplex.


Les panneaux en fibres organiques liées au ciment

Panneau en fibres de bois liées au ciment.


Les tôles profilées

Tôle profilée.


Les panneaux de toiture composites

Panneaux composites agglo + EPS + agglo
renforcé par des poutrelles métalliques.

Toiture inclinée : fonctions des composants

Toiture inclinée : fonctions des composants


Fonctions des composants de la toiture inclinée

Pour remplir son triple rôle – protection / confort / économie -, la toiture doit être constituée, outre la charpente, des 6 couches suivantes :

Les composants de la toiture inclinée

Fonctions principales des composants (de l’extérieur vers l’intérieur) .

1. La couverture

  • Arrête l’eau et l’évacue vers la gouttière.

2. La sous-toiture

Remarques.

Les contre-lattes écartent les lattes de la sous-toiture et ainsi empêchent l’eau de stagner sur celle-ci.

Pour être efficace, la sous-toiture doit aboutir à l’extérieur du bâtiment dans la gouttière, par exemple.

3. L’isolant thermique

  • Diminue le flux de chaleur qui traverse la toiture.

4. L’écran étanche à la vapeur et à l’air

Remarque : si un pare-vapeur résiste au passage de la vapeur, il résiste à fortiori au passage de l’air. 

5. L’espace technique éventuel

  • Permet le passage des conduites sans endommager l’écran étanche à la vapeur.

6. La finition intérieure.

  • Constitue la peau intérieure de la paroi.
  • Ferme l’espace technique éventuel entre elle et l’écran pare-vapeur.
  • s’il n’y a pas de pare-vapeur, elle doit être étanche à l’air.

Remarque : parmi les couches citées ci-dessus, certaines peuvent être réunies en un seul composant.

Distance des différentes couches les unes par rapport aux autres :

Si l’ordre des différentes couches est toujours le même, par contre les espaces entre elles peuvent varier.

L’ordre des couches est invariable :

  1. Couverture
  2. Couche isolante
  3. Pare-vapeur
  4. Vide technique
  5. Finition intérieure
  6. Espaces vides dans la toiture
  7. Espace protégé

L’espace entre elles peut varier.

Les vides, s’ils ne sont pas accessibles, ne doivent pas être ventilés.


Vérification de l’objectif de protection

La toiture doit protéger les habitants et se protéger elle-même des intempéries et des agresseurs extérieurs :

La toiture doit : Càd. : Composant assurant cette fonction :
Résister à son poids propre, au vent, au poids de la neige, etc. Réaliser une structure stable fixée au gros œuvre. CHARPENTE
Protéger les habitants des intempéries. Respecter les pentes adaptées aux matériaux choisis.
Stopper l’eau et l’évacuer vers l’extérieur. COUVERTURE
(+ gouttières et descentes d’eaux)
Évacue l’eau infiltrée accidentellement vers l’extérieur. SOUS-TOITURE
Protéger les habitants du vent. Rendre étanche l’enveloppe à l’air extérieur.
FINITION INTÉRIEURE
( = écran étanche à l’air)
Protéger les habitants contre les insectes, oiseaux, rongeurs, etc. Colmater les entrées possibles. GRILLAGES
Se protéger elle-même d’un agresseur sournois : la vapeur d’eau. Rendre étanche à la vapeur d’eau la face de la toiture en contact avec l’ambiance intérieure. PARE-VAPEUR
OK !

Vérification de l’objectif de confort

La toiture doit procurer aux habitants une sensation de confort thermique (combles habitables) :

La toiture doit :

Càd. :

Composant assurant cette fonction :

Protéger les habitants du froid extérieur en hiver et de l’excès de chaleur extérieure en été. Diminuer les flux de chaleur qui traverse l’enveloppe. ISOLANT THERMIQUE
Maintenir la température des parois à un niveau qui évite les rayonnements inconfortables.
Empêcher les fuites d’air chaud par les interstices. FINITION INTÉRIEURE
( = écran étanche à l’air)
Empêcher les courants d’air froid extérieur. Rendre la toiture étanche à l’air extérieur.
SOUS-TOITURE
Recherche d’un compromis !
On doit pouvoir aérer les locaux. Renouveler l’air intérieur par de l’air frais extérieur. VENTILATION
(ex. : fenêtres de toiture)
OK !

Vérification de l’objectif d’économie

La toiture doit favoriser les économies d’énergie :

La toiture doit :

Càd. :

Composant assurant cette fonction :

Réduire la consommation d’énergie nécessaire au maintien à bonne température de l’espace sous la toiture Réduire le flux de chaleur qui traverse l’enveloppe. ISOLANT THERMIQUE
Empêcher les fuites d’air chaud par les interstices. FINITION INTÉRIEURE
( = écran étanche à l’air)
Limiter les pertes de chaleur par renouvellement d’air. VENTILATION
(ex. : fenêtres de toiture)
OK !