Types d’isolants : généralités

Types d'isolants : généralités

Un matériau est généralement considéré comme « isolant » lorsque son coefficient de conductivité thermique à l’état sec est inférieur ou égal à 0.07 W/mK.


Les grandes catégories d’isolants

Les isolants synthétiques

On regroupe sous ce nom les isolants tels que les mousses de polyuréthane et de polystyrène. Ces matériaux sont très défavorables. Issus de la chimie du chlore et du pétrole, ils sont produits à partir de matières non renouvelables et selon des procédés énergivores.

Ces isolants contiennent des substances qui appauvrissent la couche d’ozone (comme les HCFC) et libèrent des gaz toxiques et mortels en cas d’incendie. Des substituts aux CFC commencent à être utilisés et on a recours lors de la fabrication à de plus en plus de matériaux recyclés.

Dans cette catégorie, la mousse phénolique semble faire exception. Ces très bonnes caractéristiques thermiques associées à son caractère renouvelable, au faible rejet de polluant au long de sa durée de vie la rendent plus intéressante que les autres isolants synthétiques. Mais ce matériau récent ne possède pas encore réellement de filière de distribution et le retour pratique sur son utilisation et sa mise en œuvre est encore réduite.

Pour en savoir plus sur les isolants synthétiques : cliquez ici !

Les laines minérales

Ces isolants sont issus de matériaux abondants (roches volcaniques et sable) et présents en Europe. Ils sont souvent composés de matériaux recyclés. Tant que la teneur en liant reste inférieure à 5%, leur élimination se fait par mise en décharge comme matériaux inertes ou par recyclage complet (laine de roche). Leur procédé de fabrication est toutefois également très énergivore.

Pour en savoir plus sur les laines minérales.

Les isolants biosourcés

Ces isolants combinent généralement un matériau issu de sources renouvelables (végétaux, cellulose recyclée), et un mode de production peu énergivore.

Remarquons que la matière première est parfois peu abondante, ou disponible uniquement dans certaines régions (ex. liège).

En général, l’élimination des isolants « écologiques » peut se faire sans danger par compostage. Mais cela dépend du mode de fabrication. Par exemple, les isolants à base de chanvre ou de lin contiennent souvent du polyester.

Pour en savoir plus sur les isolants biosourcés.


Les formes d’isolant

Selon leur nature, les matériaux isolants présentent différentes formes, raideurs et résistances à la compression :

Formes Matériaux
Matelas semi-rigide ou souple : La laine de roche, la laine de verre, les fibres traitées organiques (chanvre, …) ou animales (laine, ….) …
Panneaux rigides : La mousse de polyuréthane, de polystyrène expansé ou extrudé, le verre cellulaire, les panneaux organiques (fibre de bois avec liant bitumineux ou caoutchouc, …), le liège …
Les flocons ou granulés : Les granulés de perlite ou de vermiculite, les granulés de polystyrène expansé, les granulés de liège, les flocons de laine minérale insufflés, les flocons de papier recyclé …

Les matériaux composites

Il existe des matériaux composites qui sont constitués de plaques juxtaposées de matériaux différents, isolants ou non.

Ces panneaux combinent les propriétés des matériaux qui les composent : résistance à la compression, imperméabilité à la vapeur, qualités thermiques, comportement au feu, comportement à l’humidité, aspect fini, etc.
Exemples :

Panneaux sandwiches autoportants avec ou sans armature de renforcement.

Panneaux de mousse PUR avec lestage ou surface circulable en béton.

Panneau complexe.

Panneaux complexes comprenant une couche d’isolant collé à une plaque de plâtre enrobé de carton avec interposition éventuelle d’un pare-vapeur entre le plâtre et l’isolant. L’isolant peut être de la mousse de polystyrène expansé ou extrudé, de la mousse de polyuréthanne, de la laine minérale.

Les isolants à pente intégrée

Les mousses synthétiques, le verre cellulaire, la laine de roche existent sous forme de panneaux dont les faces ne sont pas parallèles et forment un système permettant de faire varier l’épaisseur de l’isolant de façon continue. Des panneaux à double pente et des pièces spéciales de noues et d’arêtes sont en général également disponibles.

Isolant à pente intégrée sur une
toiture plate avant pose de l’étanchéité.

Grâce à ce système, il est possible de créer ou d’augmenter la pente de la couverture.

Les fabricants disposent généralement de services qui étudient la toiture et fournissent un plan de pose des isolants à pente intégrée.

Avantages

La réalisation ou la correction de la pente ne nécessite qu’une seule opération.

La charge sur le support est plus faible que s’il est fait usage d’un autre matériau pour réaliser la pente.

Inconvénients

L’épaisseur n’étant pas constante, l’isolation de la toiture plate le sera également. L’isolation devant être suffisante partout, une épaisseur suffisante d’isolant doit être prévue au point bas de la pente.

Pour former les pentes, une quantité importante d’isolant est donc nécessaire avec une conséquence sur le coût. À cela s’ajoutent les coûts liés aux difficultés de fabrication et d’études.


Quel isolant pour quel usage ?

Le tableau suivant présente une partie des choix envisageables pour isoler un bâtiment. Cette liste n’est bien entendue pas exhaustive. La colonne « choix traditionnel » montre ce qui est traditionnellement réalisé. Les deux autres colonnes, montre vers quelles solutions il faut se tourner lorsque l’on veut se rapprocher d’une démarche d’éco-construction.

Choix traditionnel

Choix plus écologique

Choix plus écologique

+

++

Dalle de sol

Polyuréthane

Polystyrène

Laine de roche haute densité

Verre cellulaire.

Argile expansé.

Double mur extérieur

Polyuréthane

Polystyrène

Laine minérale

Laine végétale et animale.

Chaux-chanvre (ossature bois).

Flocons de cellulose (ossature bois).

Toiture à versants

Laine minérale

Laine végétale et animale.

Chaux-chanvre (ossature bois).

Flocons de cellulose (ossature bois).

Toiture plate

Polyuréthane

Polystyrène

Laine minérale

Verre cellulaire.

Argile expansée.

Flocons de cellulose (ossature bois).

Tableau présentant les différentes solutions techniques d’isolation envisagées classiquement.


Caractéristiques principales des différents matériaux isolants

TYPE

Matériau

Masse

Conduct. therm.λi

Perm. à la vapeur µ moyen

Résist. à la compr.

Réact.
au feu

Kg/m³

W/mK

kg/cm²

 Minéral

MW

  Laine de roche

150 à 175

0.045

1.5

0.7 à 1.3 (*)

+

GW

 Laine de verre

13 à 60

0.045

1.5

0.2 (*)

+

CG

 Verre cellulaire

120 à 135

0.055

infini

7 à 16 (**)

+

EPB

 Perlite expansée

170

0.060

5 à 10

3,5 (*)

+

 Synthétique

PUR

 Polyuréthane

30

0.035

100

1.2 (*)

PIR

Polyisocyanurate

30

0.035

50

1.2 (*)

+

PF

Mousse phénolique

40

0.045***

80

1.2 (*)

+

EPS

 Polystyrène expansé

15 à 40

0.045

20 à 150

0.7 à 3.5 (*)

XPS

 Polystyrène extrudé

32 à 45

0.040

225

3 à 7 (*)

 Végétal

ICB

 Liège

100 à 120

0.050

12 à 28

+

Produits minces réfléchissants

PMR

 Multicouche composé de feuilles d’aluminium, mousses plastiques, polyéthylène, …

+ 70

0.050

12 à 28

+

(*) à 10 % de déformation (valeur moyenne)
(**) à la rupture
(***) pour les plaques en mousse résolique à cellules fermées revêtues, cette valeur est ramenée à 0,03 W/(mxK).

Remarques.

  • Les valeurs de λi sont tirées de l’annexe VII de la PEB. Elles correspondent à des matériaux non certifiés. Ces valeurs sont pessimistes.
  • Des valeurs plus favorables peuvent être considérées lorsque le matériau est connu quant à sa nature et certifié. Ces valeurs sont également données dans la NBN B 62-002/A1.
  • Lorsque les matériaux sont connus quant à leur nature, leur nom de marque et leur type et qu’ils sont certifiés, on considère leλi donné dans leurs certificats BENOR, ATG ou documents équivalents. Ces valeurs peuvent être beaucoup plus favorables que les précédentes, comme le montre le graphique ci-dessous.

Conductivité thermique maximale et minimale des isolants fournies par les spécifications techniques européennes de l’EOTA (European Organisation for Technical Approvals), les déclarations volontaires de qualité ATG (Agréments Techniques de l’UBAtc – Union Belge pour l’agrément technique dans la construction) ou les certificats Keymark du CEN (Comité Européen de Normalisation), quels que soient l’application et les autres facteurs d’influence éventuels.

Données

Pour connaitre les valeurs conductivité thermique d’autres matériaux : cliquez ici !


Coût des différents types d’isolant

Les coûts repris ci-dessous sont indicatifs des matériaux que l’on peut trouver facilement en Belgique en 2008. Il s’agit de tarifs moyens annoncés par quelques fournisseurs. En effet, les prix varient en fonction des quantités achetées.

Coût Unité Épaisseur

Polystyrène extrudé

7 à 25 € /m² hTVA 40 à 120 mm

Polystyrène expansé

5 à 15 € /m² hTVA 40 à 120 mm

Polyuréthane

6.5 à 27.5 € /m² hTVA 40 à 120 mm

Laine de verre

5 à 18 € /m² hTVA 40 à 180 mm

Laine de roche

5 à 18 € /m² hTVA 40 à 180 mm

Verre cellulaire

25 à 35 € /m² hTVA 40 à 60 mm

Perlite expansée pure

0.1 à 0.2 € /l hTVA /

Vermiculite expansée pure

0.1 à 0.2 € /l hTVA /

Argile expansé

7 à 12 € /m² hTVA 10 mm

Panneaux fibre de bois

7 à 24 € /m² hTVA 30 à 100 mm

Cellulose en vrac

0.13 € /l hTVA /

Laine de cellulose en vrac

0.25 € /l hTVA /

Laine de cellulose en panneaux

7 à 25 € /m² hTVA 40 à 160 mm

Liège en vrac

0.2 € /m² hTVA /

Liège en panneaux

5 à 12 € /kg hTVA 20 à 80 mm

Liège en rouleaux

5 à 15 € /m² hTVA 2 à 6 mm

Laine de chanvre

5 à 30 € /m² hTVA 5 à 200 mm

Feutre de jute

4.5 € /m² hTVA /

Laine de mouton

0.7 à 1.2 € /kg hTVA /


Impact sur la santé

L’impact des isolants sur la santé est encore difficilement estimable. En effet, si l’effet d’un composé est aujourd’hui connu, l’effet de la combinaison de produits toxiques est plus compliqué à analyser.  De plus pour déterminer les impacts des polluants, il y a toujours lieu de prendre en compte simultanément les trois paramètres suivants :

  • temps d’exposition
  • intensité de la pollution
  • sensibilité de la personne

En ce qui concerne les isolants synthétiques, ils dégagent tout au long de leur durée de vie des produits gazeux dangereux, mais comme ils ne sont pas en contact direct avec l’ambiance, on estime que leur impact est limité. Une chose reste sûre, ils ont le défaut de dégager des fumées très toxiques en cas d’incendie !

Les isolants fibreux ne posent pas non plus de problème une fois qu’ils ont été posés. Mais il faudra être très vigilant lors de leur mise en place, car leur structure fibreuse peut dans certains cas provoquer des problèmes pulmonaires suite à l’inhalation de particules fines. Cela dépendra du type de fibre et leur bio-persistance.  Ils ont le grand avantage d’être peu ou non combustible de par leur nature et leur structure, ou suite à un traitement au sel de bore.

Isolants minéraux

Isolants minéraux

On distingue généralement les laines minérales des isolants minéraux  à proprement dits.


Les laines d’origine minérale

La laine de roche (MW)

Photo laine de roche (MW).Photo laine de roche, détail.

Les fibres de la laine de roche sont obtenues par la fonte de la roche diabase. Elles sont liées à l’aide de résines synthétiques polymérisées pour former des rouleaux et des panneaux. Ceux-ci peuvent présenter différentes rigidités et finitions de surface. La laine de roche a une composition non uniforme (parties infibrées).

La laine de roche est totalement perméable à la vapeur d’eau, mais est non hygroscopique. Elle est non capillaire (n’absorbe pas l’eau). Elle est totalement perméable à l’air. Elle se caractérise par une bonne stabilité thermique, un bon comportement au feu. Elle est fort compressible et résiste mal au délaminage.

Les panneaux de laine de roche destinés aux toitures plates seront de densité importante (ρ= 150 à 175 kg/m³) et de fabrication particulière (sens des fibres) pour garantir une rigidité suffisante, et une résistance suffisante au délaminage. Ces panneaux sont surfacés de voile de verre et/ou de bitume.

La laine de verre (GW)

Photo laine de verre (GW).    Photo laine de verre, détail.

Les fibres de la laine de verre sont obtenues par la fonte de verre et de sable quartzeux. Elles sont traitées par un produit hydrofuge. Elles sont liées à l’aide d’un produit thermodurcissant pour former des rouleaux et des panneaux. Ceux-ci peuvent présenter différentes rigidités et finitions de surface. La laine de verre a une composition uniforme.

Tout comme la laine de roche, la laine de verre est totalement perméable à la vapeur d’eau, mais est non hygroscopique. Elle est non capillaire (n’absorbe pas l’eau). Elle est totalement perméable à l’air. Elle se caractérise par une bonne stabilité thermique, un comportement au feu légèrement moins bon que la laine de roche.

La laine de verre n’est plus utilisée pour les toitures plates à cause de sa faible résistance au délaminage et à la compression.


Les isolants minéraux

Le verre cellulaire (CG)

Photo verre cellulaire (CG).   Photo verre cellulaire, détail.

Le verre cellulaire est une mousse de verre obtenue par expansion de celui-ci lorsqu’il est en fusion. Les cellules ainsi formées contiennent un gaz inerte.

Son procédé de fabrication conduit à la production d’un isolant léger à cellules fermées. Le verre cellulaire est ainsi est complètement étanche à la vapeur d’eau, à l’eau et à l’air. Il se caractérise par une bonne stabilité thermique et un bon comportement au feu. Bien qu’incompressible, ce matériau est relativement fragile et nécessite un support régulier et rigide lorsqu’il est soumis à des contraintes mécaniques.

Disponible en panneaux ou en gros granulés, son seul défaut, en plus de son coût élevé, est d’être produit par des procédés de fabrication très énergivore.

La perlite expansée (EPB)

Photo perlite expansée (EPB).

La perlite expansée est obtenue à partir de pierre volcanique rhyolitique concassée et expansée à une température de +/- 900°C.

La perlite expansée est mélangée à des fibres cellulosiques et à un liant bitumineux pour former des panneaux mais peut aussi être utilisée en vrac.

La perlite expansée se caractérise par une grande résistance à la compression et au poinçonnement, un bon comportement au feu et une résistance limitée au pelage. Elle ne résiste pas à une humidification prolongée.

La vermiculite

Photo vermiculite.
Granule de vermiculite grossi.
(doc. Agroverm).

La vermiculite est produite à partir de mica expansé. Elle est disponible sous forme de granulés ou de panneaux. Comme la perlite, ce matériau peut être déversé en vrac ou être incorporé dans les mortiers, bétons allégés, enduits isolants et dans les blocs de constructions.

L’argile expansée

Elle est vendue en vrac, en panneaux ou incorporée dans des bétons allégés, des blocs de construction préfabriqués.

L’argile expansée présente un excellent classement au feu et offre une bonne résistance à l’humidité.

Photo argile expansée. 

Granules d’argile expansée et Granule d’argile expansée grossie et coupée (doc. TBF).

isolants écologiques dans le cadre d'une rénovation

Isolants biosourcés

Date :

  • Janvier 2009

Auteur :

  • B.J., corrigé par Arnaud Evrard et Sophie Trachte

Notes :

  • Conforme à la mode PEB août 2008
  • En attente des droits de publications des photos issues du livre de Oliva.
  • 26-03-2009 : Application des nouveaux styles de mise en page. Julien.

Source :

  • IBGE, Infos fiches-éco-construction, Mat05, Isolation thermique : Choisir des matériaux sains et écologiques. Consultable dans la farde ENERGIE+\2008\ISOLATION1
  • Réseau éco-consommation, fiche n°79, Les matériaux d’isolation : les connaître pour bien les choisir. Consultable dans la farde ENERGIE+\2008\ISOLATION1
  • Une isolation plus saine, conseil et fiches matériaux, de www.pie.dromenet.org. Consultable dans la farde ENERGIE+\2008\ISOLATION1

Antidote :

  • Oui

Photo : Aline Branders.

Pour s’inscrire dans une démarche d’éco-construction, il est nécessaire de ne pas choisir un isolant uniquement sur base de ses propriétés thermiques, techniques et économiques.
Il y a lieu d’évaluer son impact environnemental (et sur la santé) tout au long de sa vie :

  • en tenant compte de l’énergie grise (renouvelable et non renouvelable) consommée sur l’ensemble de son cycle de vie (traitement en fin de vie inclus) ;
  • en tenant compte des différentes émissions (gaz à effet de serre, gaz acidifiant, gaz à formation d’ozone…) sur l’ensemble du cycle de vie, qui auront un impact sur l’environnement et la santé ;
  • en tenant compte des matières premières et de l’eau consommée ;
  • en tenant compte des substances nocives utilisées lors de la fabrication et pendant la mise en œuvre (solvants, COV…) ;
  • en estimant les émissions de composés organiques volatiles (COV), formaldéhydes et autres produits nocifs durant sa vie en œuvre ;
  • en appréciant les possibilités de recyclage pour la phase de déconstruction.

La prise en compte de tous ces paramètres conduit à l’utilisation d’isolants dits « écologiques ». Nous parlerons dans la suite de cet article plus particulièrement des isolants dits « biosourcés », c’est-à-dire d’origine végétale ou animale.

Origines, traitements, transformations, domaines d’application et spécificités de chacun des isolants permettront d’approcher la notion de développement durable dans le bâtiment. Nous y verrons les isolants suivants :

  • Isolants à base de cellulose
  • Isolants sous forme de laine d’origine végétale ou animale
  • Isolants à base de fibre de bois
  • Isolants à base de liège
  • Isolants à base de chanvre
  • Isolants à base de paille
  • Isolants à base de textile recyclé

Ils seront passés en revue afin de donner un aperçu des avantages et inconvénients à prendre en compte dans le choix de l’isolant.

De l’approche classique à l’éco-construction

Certaines lignes directrices simples, énoncées dans le tableau suivant, permettent d’évoluer vers une démarche éco-constructive en partant d’une approche tout à fait classique.

Déconseillé Les isolants minces réfléchissants. Ces isolants sont difficiles à mettre en œuvre, leurs performances  sont réduites et il est très difficile de les recycler (assemblage de plusieurs matériaux)
Minimum Éviter les isolants synthétiques (mousses de polyuréthane, de polystyrène…) autant que possible. Dans les situations où ces isolants ne s’imposent pas, leur préférer les laines végétales et animales, les laines minérales, ou le verre cellulaire.
Conseillé Choisir des matériaux naturels à la place des matériaux courants : laines végétales ou animales et isolants à base de cellulose, de liège, de chanvre ou d’autres sources renouvelables…

Mais attention, beaucoup de ces isolants ne possèdent pas d’agrément technique belge ou européen

Tableau inspiré de la fiche « Matériaux d’isolation thermique : Choisir des matériaux sains, avec un écobilan favorable » de l’IBGE.

Les types d’isolants biosourcés classiques

Isolants à base de cellulose

Isolants à base de papier ou journal recyclé, leur conductivité est comparable à celle des laines minérales. Ce matériau possède la caractéristique de pouvoir absorber la vapeur d’eau et permet ainsi de réguler l’humidité. Son absorption acoustique est excellente.

Les flocons de cellulose sont soufflés sous pression soit dans des caissons fermés soit sur des surfaces horizontales. Certains critères ont été définis afin de garantir le non-tassement ultérieur des flocons dans les caissons.

Ces isolants à base de cellulose existent aussi sous forme de panneaux semi-rigides ou flexibles. Ils sont utilisés pour l’isolation des sols, des toitures, des cloisons légères et des murs à ossature bois.Bien qu’elle constitue un bon rempart contre l’humidité, l’ouate de cellulose n’est pas résistante au feu ! Par conséquent, un traitement chimique nécessaire dévalorise sa valeur écoresponsable. En effet, afin de protéger cet isolant des attaques d’insectes, de champignons ou du feu, un traitement au sel de bore est nécessaire. Aussi, si vous privilégiez ce type d’isolant, prenez soin de vous poser des questions relatives à la provenance et à la teneur en résidus d’encre dans l’ouate de cellulose afin d’anticiper les odeurs désagréables sur le long terme. Enfin, insufflée, elle provoque beaucoup de poussières et implique l’utilisation d’équipements de protection adéquats.

     

Panneaux de cellulose (doc. Homatherm) et flocons de cellulose humidifiés et projetés.

Jean-Pierre Oliva , L’isolation écologique, conception, matériaux, mise en œuvre, éditions Terre vivante, 2001.

Isolants sous forme de laine d’origine végétale ou animale

Il existe de nombreux types de laine végétale ou animale disponibles en vrac, en feutre fin,  en rouleaux ou en panneaux semi-rigides. On trouve par exemple des laines en fibre de coco, de lin, de chanvre, de bois ou en mouton. Certains de ces isolants reçoivent un traitement au sel de bore qui les protège des attaques d’insectes, des champignons et du feu.
Ils possèdent la capacité d’absorber et de restituer l’humidité (la laine de mouton peut absorber jusqu’à 33% de son poids en eau((Les matériaux biosourcés dans le bâtiment, FFB, novembre 2015))), remplissant ainsi la fonction de régulateur d’humidité.

Son domaine d’application est l’isolation des murs, des combles et des rampants de toiture. Sa version conditionnée sous forme d’écheveaux sert à l’isolation de gaines et de tuyaux, mais également de calfeutrement. Sous forme de panneaux ou rouleaux, elle se pose de façon classique. Seul le soufflage de la laine en vrac demande l’intervention d’un professionnel spécialisé.

De par leur caractère fibreux, ces isolants possèdent aussi de très bonnes caractéristiques acoustiques. En plus de ses vertus d’isolant acoustique, elle est difficilement inflammable, ne dégage pas de gaz toxiques en cas d’incendie et est une ressource renouvelable.

En termes d’inconvénients, certains de ces isolants reçoivent, tout comme la cellulose, un traitement au sel de bore qui les protège des attaques d’insectes, des champignons et du feu. De plus, même si la laine (de type animale) subit un lavage et un pressage, elle pourrait, après sa pose, dégager une odeur désagréable.

Laine de lin en vrac, laine de lin en rouleaux et laine de lin en panneaux (doc. Textinap).

Laine de chanvre en rouleaux (doc. LCDA) et laine de chanvre en panneaux semi-rigides (doc. Haga).

Noix de coco sciée et panneaux et rouleaux de laine de coco (doc. EMFA).

Jean-Pierre Oliva , L’isolation écologique, conception, matériaux, mise en œuvre, éditions Terre vivante, 2001.

Isolants à base de fibre de bois

Les panneaux de fibre de bois sont fabriqués à partir de déchets de scierie.

Après son sciage, le bois peut :

  • se transformer directement en matériaux pour structures portantes et bardages
  • être broyé ou défibré pour servir à la production de copeaux en vrac ou de fibre de bois pour la confection de la laine isolante
  • être déroulé, tranché et lié afin de servir à la fabrication de panneaux isolants solides pour la construction.

Les panneaux sont perméables à la vapeur, ils complètent très bien les autres isolants.

Son domaine d’application concerne principalement l’isolation thermique intérieure et extérieure de murs, combles et rampants de toiture lorsqu’il est sous forme de laine ou de fibres utilisées en partie aussi pour leurs qualités acoustiques.

Lorsque plusieurs panneaux sont collés ensemble pour obtenir une plus grosse épaisseur d’isolant, de la colle est utilisée, ce qui dévalorise son caractère écologique. Le bois peut aussi servir d’isolant sous son format en vrac, mais va alors nécessiter un traitement chimique préventif, fongicide et insecticide((Les matériaux biosourcés dans le bâtiment, FFB, novembre 2015)).

Panneaux de bois feutré (doc. Pavatex).

Jean-Pierre Oliva , L’isolation écologique, conception, matériaux, mise en œuvre, éditions Terre vivante, 2001.

Isolants à base de liège

Cet isolant est extrait des écorces des chênes-liège ou du recyclage de bouchons, le liège est broyé pour former des granulats de liège en vrac, puis assemblé pour la fabrication de panneaux et de rouleaux qui nécessitent l’intervention d’un liant chimique.

Les panneaux en liège constituent une alternative écologique idéale pour l’isolation

  • des planchers
  • des murs par l’intérieur ou l’extérieur
  • des combles perdus
  • des rampants de toiture.

Tout comme le bois, les avantages en termes d’isolation thermique et acoustique sont incontestables. Ajoutons son imputrescibilité, cet isolant est également difficile inflammable.

Du point de vue des inconvénients, certains panneaux sont renforcés avec des colles synthétiques et dégagent du formaldéhyde, il est donc important de se renseigner avant l’achat afin d’éviter ce type d’isolants à base de liège. Mais le principal problème, en plus de son coût élevé, réside dans sa disponibilité. Il perd en effet de sa valeur écologique et locale à cause de son importation.

Liège.

Isolants à base de chanvre

Fabriqué à partir du défibrage de la tige de chanvre, on peut obtenir à partir de cette plante deux supports de base :

  • la fibre en vrac ou qui servira pour la laine ;
  • la chévenotte utilisée pour la fabrication de panneaux, enduits et bétons (composée d’un mélange de lient à base de chaux aérienne et de copeaux de chanvre).

Le chanvre est par ailleurs une plante à croissance rapide qui ne nécessite pas ou peu d’engrais.

Compressé, il sert pour l’isolation des murs, des sols, des façades intérieures et extérieures et des combles non aménageables après sa transformation en

  • Blocs de béton
  • Laine
  • Panneaux

En vrac, il sert dans l’isolation des murs et des combles non aménageables par soufflage.

Actuellement l’usage le plus fréquent de ce type d’isolant est le remplissage des murs à ossature bois (30 cm) ou d’enduits isolants (10 cm) sur un support existant.

Son coefficient d’isolation est proche de celui du bois massif (λ = ± 0.1), mais le matériau possède d’importantes qualités du point de vue de l’inertie thermique et de la régulation de la vapeur d’eau. Sa résistance au feu lorsqu’il est sous forme de béton, sa fourniture locale ainsi que ses caractéristiques naturellement insecticides constitue également des avantages non négligeables.

Isolants à base de paille

La paille, en tant que matériaux biosourcés, revêt différentes formes :

  • D’un mélange de terre et de paille naît un enduit appelé « terre/paille »
  • Sans pressage, elle se présente sous forme de bottes de paille compressée sous forme de ballot, forme utilisée depuis très longtemps  comme isolant à part entière ou au sein d’une structure propre.

Produit local, la paille constitue un isolant bon marché qui ne nécessite que très peu de traitement en usine ce qui lui confère une réelle valeur ajoutée dans la construction à caractère écologique. Aujourd’hui, ce type d’isolant est  de plus en plus documenté, référence et normalisé comme système de construction et comme isolant reconnu.

Le ballot de paille n’a pas des caractéristiques thermiques homogènes. L’orientation de ses fibres par rapport au flux de chaleur va impacter sur sa conductivité thermique. Celle-ci sera plus faible si les fibres sont perpendiculaires au flux (λ d’environ 0,05) et plus élevés si les fibres sont parallèles aux flux (λ variant autour de 0,07… 0,08). Il est en plus nécessaire de s’assurer des ballots de pailles de qualité pour rencontrer les exigences du monde de la construction.

Toutefois, suite à l’étude de construction paille en occupation, il a été montré que si elle est correctement mise en œuvre et à l’abri de pluies battantes, les risques de dégradations à long terme sont négligeables et la paille comme isolant est capable d’apporter de bonnes performances thermiques ainsi que les conforts d’été et d’hiver attendus.
En outre, la paille n’a pas seulement un rôle isolant, le ballot de paille peut également servir de support à un enduit voir de structure en soi sans en altérer ses caractéristiques. Ainsi, combiner plusieurs de ces rôles (isolant et mécanique et/ou structurel) permet de diminuer le bilan écologique de la paroi. Attention cependant, à utiliser une paille provenant de culture durable.

L’inconvénient de la paille réside dans l’inconfort de pose à cause du poids de chaque botte. De plus, son volume implique de concevoir des murs d’une épaisseur relativement conséquente à isoler.

Si vous souhaitez en savoir plus sur l’isolant à base de paille, consultez le site www.apropaille.be  qui réunit le monde pas si petit que ça de la paille en Belgique.

Isolants à base de textile recyclé

Né du recyclage des textiles usagés ou des déchets des fabricants de vêtements, le textile recyclé est traité en usine avant de devenir un matériau de construction en soi.

D’abord effiloché, on le métamorphose ensuite en panneaux et rouleaux isolants grâce à des techniques de pressage. Sa version en vrac permet, tout comme l’ouate, d’être insufflée et d’isoler les murs.

Alternative idéale pour isoler pour les murs et les combles non aménageables en priorisant l’économie circulaire, notez que les isolants et autres matériaux de construction en textile recyclé sont traités chimiquement pour résister aux flammes. Parmi les autres inconvénients, prenez en compte que son application verticale implique un tassement du matériau sur le long terme.

Par contre, ce matériau biosourcé reste très facile à poser et il ne nécessite pas de formation préalable ou obligatoire. Grâce à sa compression, le textile recyclé n’émet aucune poussière. Enfin, il peut absorber jusqu’à 25% de son poids en eau, ce qui constitue un isolant contre l’humidité très efficace((Les matériaux biosourcés dans le bâtiment, FFB, novembre 2015)).

Performances des isolants biosourcés

La performance thermique des isolants est renseignée par la valeur de la conductivité thermique  (λ). Plus celle-ci est élevée, moins le matériau sera isolant. Mais cela ne veut pas dire qu’il faut nécessairement abandonner l’utilisation d’un matériau qui aurait un λ élevé. En effet, il suffit d’augmenter l’épaisseur de la couche isolante pour obtenir une performance thermique globale équivalente!
Pour choisir son isolant, il faut donc tenir compte de plusieurs critères en même temps:

  • la conductivité thermique  (λ)
  • le coût (plus l’épaisseur augmente, plus le coût augmente)
  • l’encombrement

Les performances des isolants biosourcés sont reprises dans le tableau suivant.

Résistance mécanique Conductibilité thermique Conductibilité thermique Diffusion de la vapeur d’eau Diffusion de la vapeur d’eau Inflammable
ρ [daN/m³] λ [W/mK] λ [W/mK] μ [-] μ [-]
Selon la documentation Selon la norme NBN B62-002 (humide et sec) (humide et sec) selon la documentation
Perlite expansée pure 50-80 0.046 / 5 à 7 / Non
Vermiculite expansée pure <100 0.058 / 5 à 7 / Non
Argile expansée 0.103 à 0.108 / / / Non
Bois feutré en panneaux mous ± 160 ± 0.042 / / 3 à 4 Difficilement
Bois feutré en panneaux mi-durs ± 270 ± 0.07 / / 3 à 4
Cellulose en vrac 35-50 0.035 à 0.04 / / 1 à 2
Laine de cellulose en panneaux 70-100 0.04 / / / Auto-extingible
Liège expansé 18 0.04 à 0.045 / 4.5 à 29 / Difficilement
Liège expansé en panneaux 80-120 0.032 à 0.045 / / 5 à 30
Chanvre ou laine de chanvre 25-210 0.039 à 0.08 / / 1 à 2 Difficilement
Lin en vrac 18-35 0.037 à 0.045 / / 1à 2 Difficilement
Lin en panneaux 400-500 0.05 à 0.065 / / / Difficilement
Laine de coco 20-50 0.047 à 0.05 / / 1à 2 Ignifugé au sel de bore
Laine de coton 20-30 0.04 / / 1 à 2 Sans dégagement toxique
Panneaux de roseau ± 100 0.056 / / 1 à 1.5
Laine de mouton 10-30 0.035 à 0.045 / / 1 à 2 Sans dégagement toxique
Paille (dans le sens des tiges) rechercher valeurs 0.08 / / / /
Paille (perpendiculairement aux tiges) rechercher valeurs 0.052 / / / /
Valeurs issues de l’ouvrage L’isolation thermique de la toiture inclinée, ministère de la Région Wallone, L’isolation écologique de J-P. Olivia, éditions terre Vivante, 2001, ouverture d'une nouvelle fenêtre ! www.livios.be, ainsi que des documentations des fabricants.

La PEB impose, lors du calcul du coefficient de transmission des parois (U) que l’on utilise pour les différents constituants des valeurs de conductivité thermique (λ) certifiées (essais réalisés conformément aux normes européennes EN ISO 10456) ou les valeurs par défaut reprises dans l’annexe VII de la PEB.
Malheureusement, l’Annexe VII de la PEB ne fournit pas de valeur pour les matériaux repris dans le tableau ci-dessus. Si aucune certification (agréments techniques…) n’existe, la couche d’isolant ne pourra pas être prise en compte dans le calcul du U des parois pour la PEB  qui est d’application pour les travaux soumis à permis d’urbanisme.

Intérêts des isolants biosourcés

Comme le montre le tableau suivant, les isolants possédant une capacité thermique élevée, garante d’une diffusivité faible et d’une effusivité importante sont généralement les isolants « écologiques » :

ρ ρ * c
[kg/m³] [Wh/m³]
Laine de bois 160 90
Laine de bois 55 31
Liège expansé (vrac) 60 31
Ouate de Cellulose (insufflée) 60 31
Perlite expansée 80 22
Polyuréthane rigide 30 12
Laine de mouton 10 5
Polystyrène 7 3

Mais attention, si le confort d’été est amélioré, l’utilisation d’isolant permettant d’obtenir ces caractéristiques peut conduire à un autre problème. En effet, une trop grande effusivité produira dans la pièce une sensation de surface froide au toucher.

Pour aller plus profondeur sur ce sujet, n’hésitez pas également à visiter notre page consacrée à l’inertie thermique.

Stockage de CO2

Les isolants à base de végétaux, via le processus de photosynthèse, permettent de stocker le CO2 atmosphérique.

Performances hygrothermiques

Outre leur caractère “écologique”, les isolants biosourcés qui nous intéressent ici possèdent des propriétés hygrothermiques prometteuses. Par leur capacité plus ou moins grande à absorber l’humidité, les matériaux en contact avec l’ambiance intérieure peuvent stabiliser les conditions hygrothermiques d’un local et, de la sorte, avoir un impact positif sur le confort.

De nombreuses recherches ont été menées sur ce sujet. Comme par exemple celle réalisée par le département d’ingénierie de la Technical University of Denmark qui a conduit à la définition du paramètre appelé Moisture Buffer Value (valeur de régulation de l’humidité) qui indique la quantité d’eau que l’isolant absorbe et restitue par  unité de surface durant une certaine période quand il est soumis à des variations de l’humidité relative de son environnement. Ce paramètre permet d’analyser le rôle de régulateur d’humidité joué par l’isolant.

Certifications

C’est à ce niveau que se complique la démarche d’éco-construction ! Comme dit auparavant, lors du calcul du U des parois, la PEB implique que l’on utilise comme valeur de λ :

  • une valeur certifiée sur base de la norme de produit NBN EN ou d’un ATE (Agrément Technique Européen). Ces valeurs sont regroupées sur le site ouverture d'une nouvelle fenêtre ! www.epbd.be.
  • ou la valeur par défaut renseignée dans l’annexe VII de la PEB.

Cette manière de faire a pour but de protéger le consommateur, en garantissant la qualité des matériaux utilisés.

Le problème avec les matériaux d’isolations biosourcés est que ces derniers ne sont pas repris dans l’Annexe VII de la PEB et l’utilisation de ceux-ci nécessite donc la réalisation d’une certification pour tous travaux soumis à permis.

Labellisation

Comme annoncé précédemment, l’utilisation d’un matériau issu de sources renouvelables ne garantit pas en pratique le caractère “écologique” de l’isolant (ajout de colle, procédé de fabrication énergivore…). Pour s’assurer que l’isolant a été réalisé dans les règles de l’art, on peut se tourner vers les labels comme www.svanen.se en Suède www.blauer-engel.de en Allemagne ou encore www.certivea.fr en France.

Pour en savoir plus sur les normes en vigueur qui régissent l’utilisation de chacun de ces isolants, voici quelques sources qui peuvent être utiles :

Concernant les isolants à base de cellulose :

Concernant les isolants à base de laine d’origine végétale ou animale :

Concernant les isolants à base de fibre bois :

Concernant les isolants à base de liège :

Concernant les isolants à base de chanvre :

  • réglementation professionnelle et validation en laboratoire des enduits chaux/chanvre pour béton : construire-en-chanvre.fr

Concernant les isolants à base de paille :

Concernant les isolants à base de textile recyclé :

Pare-vapeur

Pare-vapeur


Généralités

Toutes les matières sont plus ou moins perméables à la vapeur.

Sous l’influence de la différence de pression de vapeur d’eau des deux côtés d’une paroi, la vapeur a tendance à vouloir migrer par diffusion à travers celle-ci.

Pour éviter les phénomènes de condensation interne, il est parfois nécessaire de placer du côté chaud de l’isolant d’une paroi, une couche de matériau relativement étanche à la vapeur d’eau.

Cette couche de matériau est appelée « écran pare-vapeur ».

Le pare-vapeur remplit les fonctions suivantes :

  • Éviter une condensation excessive.
  • Empêcher, dans l’isolant thermique, l’absorption d’eau par capillarité en provenance des éléments de construction contigus.
  • Assurer l’étanchéité provisoire à l’eau de pluie lors de la construction.
  • Assurer l’étanchéité à l’air.

Selon les exigences :

Classe Résistance à la diffusion de vapeur Exemples de matériaux utilisables comme pare-vapeur
E1 2 m < µd < 5 m Papier bitumé
Film en PE 0,2 mm
Papier de tapisserie plastifié
Peinture à l’huile
Peinture au caoutchouc chloré
E2 5 m < µd < 25 m Carton-plâtre recouvert d’une feuille d’aluminium
Film de PE 0,2 mm et laminé d’aluminium
Voile de polyester bitumineux P150/16
Voile de verre bitumineux V50/16
Membrane en PVC épaisseur > 1 mm
E3 25 m < µd < 200 m Bitume armé P3 ou P4 ou V3 ou V4
Bitume polymère APP ou SBS
Film PIB
E4 200 m < µd Bitumes armés avec film métallique (alu 3)
Système bitumineux multicouche ( ³ 8 mm)

Pare-vapeur, freine vapeur ou membranes intelligentes ?

Le risque principal de condensation est lié à la diffusion de vapeur en hiver, ou quand la pression de vapeur est plus importante à l’intérieur qu’à l’extérieur et que la vapeur a donc tendance à traverser la paroi de l’intérieur vers l’extérieur.

Les modèles d’évaluation statiques (comme celui de Glaser) entraînent presque systématiquement le choix d’une membrane très étanche à la vapeur du côté intérieur.

Néanmoins, essayer d’éviter le risque principal de condensations internes par diffusion en choisissant une membrane totalement étanche à la vapeur peut engendrer un risque secondaire à cause de la difficulté qu’a le mur pour sécher du côté intérieur

Lorsque l’on affine l’analyse, il apparaît que le choix d’une membrane plus faiblement étanche à la vapeur est parfois suffisant.

On parle alors de « freine-vapeur ». La valeur μd des pare-vapeur n’est pas définie avec précision, mais en pratique, elle sera de plusieurs dizaines de mètres (par exemple 50 ou même 100 m) alors que la valeur μd des freine-vapeur ne sera que de quelques mètres seulement (par exemple 2 m à 5 m, mais rarement plus de 10 m).

Le choix d’un freine-vapeur, plus ouvert au passage de la vapeur, permet souvent de se prémunir du risque, dit secondaire, de condensations internes en été ou au printemps, ou quand la pression de vapeur est plus importante à l’extérieur qu’à l’intérieur et que la vapeur a donc tendance à traverser la paroi de l’extérieur vers l’intérieur. En effet, le flux de vapeur n’est pas complètement bloqué vers l’intérieur ce qui facilite le séchage du mur.

Les membranes intelligentes

D’autres membranes, dites intelligentes, sont de ce point de vue encore plus adaptées. En effet, leur perméabilité à la vapeur évolue avec l’humidité relative. Elles sont conçues pour être relativement fermées à la vapeur quand l’humidité relative est faible et pour s’ouvrir au passage de la vapeur quand l’humidité relative est plus élevée. Ce principe est illustré sur l’illustration ci-contre. Dès lors, elles freinent le passage de la vapeur quand l’air intérieur est plus sec (généralement en hiver), et permettent le séchage du mur, lorsque l’humidité relative intérieure est plus élevée (généralement en été ou au printemps).

Principe de fonctionnement d’une membrane intelligente.

Source : Proclima.

Plusieurs types de membranes intelligentes existent avec une valeur  μd moyenne allant de quelques mètres à une dizaine de mètres. Remarquons que ces changements de μd ne sont pas instantanés et que le choix de la membrane doit d’abord se faire sur base de l’ambiance globale du local pour éviter le risque principal de condensations internes par diffusion. On pense ici au cas des salles d’eau qui sont le lieu des charges d’humidité élevées, mais ponctuelles dans temps.


Le placement

Le pare-vapeur doit être placé de manière continue et avec des joints étanches.

Les films seront posés autant que possible sans joint. Les joints inévitables et les jonctions avec d’autres éléments de construction sont à réaliser par collage ou soudage avec recouvrement, de manière à assurer la continuité du pare-vapeur.

La classe E4 exige une mise en œuvre sur support continu.

Remarquons enfin que la présence d’une membrane, en plus de permettre la régulation de la vapeur, permet aussi de bloquer le passage de l’air (et des pertes de chaleur associées) et donc d’éviter le risque de condensation par convection, pour autant bien sûr que la mise en œuvre soit d’une qualité irréprochable (notamment au niveau des nœuds constructifs).

Attention !
Un matériau pare-vapeur placé à un mauvais endroit peut fortement perturber le comportement hygrothermique de la toiture (entre autres augmenter les condensations internes ou empêcher l’élimination de l’humidité de construction).

Source : certains passages de cette feuille sont extraits du guide Isolation thermique par l’intérieur des murs existants en briques pleines réalisé par Arnaud Evrard, Aline Branders et André De Herde (Architecture et Climat-2010) dans le cadre de la recherche ISOLIN, financée par le département Énergie et Bâtiment durable du Service Public de Wallonie. Disponible sur le site : energie.wallonie.be

 

Isolants synthétiques

Isolants synthétiques


Les mousses synthétiques

La mousse de polyuréthanne (PUR)

Photo mousse de polyuréthanne (PUR).

Il s’agit de panneaux à base de mousse expansée de polyuréthanne.

Le polyuréthanne se caractérise par un pouvoir isolant élevé. Il résiste cependant mal à la chaleur, au feu et au rayonnement ultra-violet.

Les panneaux de polyuréthanne destinés aux toitures plates auront une densité volumique (ρ) au moins égale à 30 kg/m³. Ces panneaux sont surfacés d’un revêtement synthétique ou d’un voile de verre bitumé sur les deux faces, destinés à faciliter les liaisons avec les couches inférieures et supérieures.

La mousse de polyisocyanurate (PIR)

Il s’agit de panneaux à base de mousse expansée de polyisocyanurate.

Le polyisocyanurate se caractérise par un meilleur comportement au feu que le polyuréthane mais ses propriétés mécaniques sont plus faibles.

Les panneaux de polyisocyanurate destinés aux toitures plates sont surfacés d’un revêtement synthétique ou d’un voile de verre bitumé sur les deux faces, destinés à faciliter les liaisons avec les couches inférieures et supérieures.

La mousse de polystyrène expansé (EPS et EPS-SE)

Photo mousse de polystyrène expansé (EPS et EPS-SE).Photo mousse de polystyrène expansé, détail.

Il s’agit de panneaux à base de mousse expansée de polystyrène.

Le polystyrène expansé se caractérise par un retrait de naissance important. Il ne peut être exposé longtemps à une température supérieure à 70°C. Il résiste mal au feu. Il existe cependant des panneaux dont le comportement au feu est meilleur (qualité SE).

Les panneaux en polystyrène expansé destinés aux toitures plates sont recouverts sur les deux faces d’un voile de verre bitumé avec recouvrement au droit des joints.

La mousse de polystyrène extrudé (XPS)

Photo mousse de polystyrène extrudé (XPS).   Photo mousse de polystyrène extrudé, détail.

  

Il s’agit de panneaux à base de mousse extrudée de polystyrène.

Le polystyrène extrudé se caractérise par une structure cellulaire fermée et une surface d’extrusion qui empêchent l’absorption d’humidité. Son coefficient de dilatation thermique est très élevé. Il résiste mal au feu et à une exposition prolongée à une température supérieure à 75°C.

La mousse phénolique (PF)

Il s’agit de panneaux à base de mousse résolique à structure cellulaire fermée.

La mousse phénolique se caractérise par un bon comportement au feu et un pouvoir isolant très élevé.

Autres caractéristiques des mousses synthétiques

Les mousses synthétiques sont étanches à l’eau, faiblement perméables à la vapeur d’eau et très faiblement perméable à l’air.

Les isolants sous vide

Faisant partie de la toute nouvelle génération d’isolant, les isolants sous vide séduisent notamment par leurs performances thermiques impressionnantes, mais aussi par leur faible épaisseur.

Qu’est-ce qu’un isolant sous vide ?

Matériau très récent dans les pratiques de l’isolation en construction neuve ou en rénovation, l’isolant sous vide est également connu sous le nom de PIV (Panneau Isolant sous Vide).

Un isolant sous vide est généralement constitué d’une nano-poudre de silice emballée dans un film étanche et mis sous vide. Il faut préciser que ce type d’isolant est conçu pour être utilisé sur une surface plane. Selon les fabricants, ce type d’isolant est particulièrement recommandé pour l’isolation du sol, des toitures plates, ainsi que les terrasses et balcons.

Les avantages de l’isolant sous vide

Sa faible conductivité thermique

La première caractéristique que l’on connaît et qui distingue l’isolant sous vide des autres types d’isolants c’est bien sa performance en terme d’isolation grâce à sa faible conductivité thermique dont la valeur se trouve entre 0,0052 et 0,0070 W/m.K. Si on compare avec les isolants plus traditionnels comme la laine minérale (entre 0,031 et 0,045 W/m.K) ou le Polyuréthane (entre 0,022 et 0,028 W/m.K), l’isolant sous vide a une conductivité thermique 6 fois plus basse que la laine de roche et 4 fois plus basse que le Polyuréthane.

Sa faible épaisseur

Les isolants sous vide permettent également de gagner de l’espace par rapport aux isolants classiques. Comme sa conductivité thermique est faible, il suffit d’une faible épaisseur pour que l’isolation réponde aux exigences actuelles en matière de performance thermique.

Les inconvénients de l’isolation sous vide

Les isolants sous vide sont des matériaux très récents sur le marché. Il ne suffit pas juste de les adopter, il faut aussi savoir les poser et les utiliser pour qu’ils puissent être le plus efficaces possible.

Sa fragilité

Les panneaux d’isolants sous vide sont non seulement des matériaux récents, mais leur usage est encore en quelque sorte en phase expérimentale. L’installation de ce type d’isolant est actuellement plus complexe qu’une pose d’un isolant classique. La raison est sa fragilité qui requiert d’être particulièrement prudent lors de la pose. Cet isolant ne peut être troué, percé ou découpé, contrairement aux autres isolants rigides comme le polyuréthane ou le polystyrène expansé ou extrudé.

Son coût

Ces matériaux sont encore produits en petite quantité par rapport aux isolants classiques. Qui plus est, la conception du panneau d’isolant sous vide est assez technique. Dès lors, le coût de tels matériaux s’avère actuellement être très élevé.


Les isolants minces réfléchissants

Photo isolants minces réfléchissants.  Photo isolants minces réfléchissants.  Photo isolants minces réfléchissants.

Présents sur le marché belge depuis plusieurs années, les produits minces réfléchissants sont sujets à controverse. Certains fabricants annoncent des performances thermiques équivalentes à celles d’isolants traditionnels d’épaisseur élevée, qui seraient atteintes grâce à l’effet réfléchissant des couches superficielles, voire même parfois internes au produit mince. Les performances réelles sont-elles celles annoncées ? Nous reprenons in extenso, le rapport du CSTC qui a fait le point sur la question.

1. Description et principe

Un produit mince réfléchissant (PMR), également dénommé isolant mince réfléchissant, thermoréflecteur ou multiréflecteur, est constitué, dans sa partie centrale, d’une mince couche de matériau (mousse plastique, film de polyéthylène emprisonnant des bulles d’air ou une matière fibreuse) recouverte sur une ou deux faces de feuilles réfléchissantes (feuilles d’aluminium ou films aluminisés). Certains produits sont de types multicouches, les couches précitées étant séparées par des feuilles réfléchissantes intermédiaires. L’épaisseur totale est généralement comprise entre 5 et 30 mm.

Vu son épaisseur, un PMR possède une résistance thermique intrinsèque faible. Pour pouvoir bénéficier de l’effet réfléchissant (basse émissivité) des couches superficielles, le produit doit être placé en vis-à-vis d’une, ou mieux, de deux lames d’air non ventilées. La basse émissivité des couches superficielles a pour effet de réduire le transfert de chaleur par rayonnement thermique et d’augmenter ainsi la résistance thermique de la ou des lames d’air; pour être efficaces, ces dernières ne peuvent toutefois pas être ventilées.

Les PMR sont principalement utilisés en rénovation pour l’isolation thermique des toitures, des planchers et plafonds, des murs, des portes de garage, etc.

2. L’étude menée au CSTC

Soucieux d’apporter une réponse scientifique aux demandes répétées du secteur, le CSTC, en collaboration avec la Région wallonne, le SPF « Économie », les universités de Liège et de Louvain-La-Neuve ainsi que certains fabricants de PMR, a engagé une campagne de mesures – récemment achevée – sur plusieurs produits minces réfléchissants ainsi que sur un isolant traditionnel témoin afin de déterminer leurs performances thermiques en période hivernale.

La méthodologie suivie, établie sur la confrontation d’essais réalisés en laboratoire, mais aussi dans des conditions extérieures réelles, a porté sur des produits scrupuleusement mis en œuvre dans l’état de leur fourniture, c’est-à-dire dans des conditions optimales (pas d’essai de vieillissement envisagé).

La valeur mesurée de la résistance thermique intrinsèque d’un PMR varie, selon les produits, de 0,2 à 0,6 m²K/W, celle de l’émissivité des couches superficielles de 0,05 à 0,20.

Posés de façon optimale, entre deux lames d’air non ventilé de 2 cm d’épaisseur, les produits présentent, suivant leur type et le sens du flux thermique les traversant, une résistance thermique totale (résistance thermique intrinsèque du PMR et résistance thermique des deux lames d’air) mesurée entre 1,0 et 1,7 m²K/W. Le tableau 1 illustre les résultats d’un essai consistant à mesurer simultanément, en conditions extérieures réelles, les performances thermiques de différents composants, à savoir :

  • composant n° 1 : PMR 1 associé à deux lames d’air non ventilées de 2 cm d’épaisseur.
  • Composant n° 2 : PMR 2 associé à deux lames d’air non ventilées de 2 cm d’épaisseur.
  • Composant n° 3 : PMR 1 associé à deux lames d’air non ventilées de 1 cm d’épaisseur.
  • Composant n° 4 : isolant traditionnel en laine minérale de 10 cm d’épaisseur.
  • Composant n° 5 : isolant traditionnel en laine minérale de 20 cm d’épaisseur.
COMPOSANT N°1 N°2 N°3 N°4 N°5
Résistance thermique [m²K/W] Valeur mesurée 1,72 1,73 1,43 3,12 6,34
Valeur calculée 1,63 1,49 1,29 3,11 6,21
Tableau 1 : Résistance thermique mesurée en conditions extérieures réelles et calculée selon la norme NBN EN ISO 6946.

Les performances thermiques obtenues sont sensiblement moins optimistes que celles avancées par certains fabricants. Même posés de façon optimale, les PMR associés à deux lames d’air non ventilées de 2 cm d’épaisseur peuvent prétendre, tout au plus, égaler une isolation en laine minérale de 4 à 6 cm d’épaisseur. En présence d’une seule lame d’air non ventilée ou d’une lame d’air d’épaisseur inférieure à 2 cm, les performances sont encore réduites.

Les valeurs mesurées de la résistance thermique ont été comparées à des valeurs déterminées selon la méthode de calcul de la résistance thermique des composants du bâtiment proposée dans la norme belge NBN EN ISO 6946 (qui sera intégrée à la nouvelle version de la norme NBN B 62-002 en préparation). Le cas d’une lame d’air délimitée par une surface réfléchissante (à basse émissivité) y est traité. L’écart moyen entre les valeurs de résistance thermique calculées selon la norme et les valeurs mesurées au cours de cette étude, de l’ordre de 0,1 m²K/W, est inférieur à 6 %, les intervalles de fiabilité de la mesure et du calcul se chevauchant.

Le rapport complet de cette étude sera prochainement disponible sur le site Internet du CSTC.

3. Mise en œuvre

Quoique nous n’ayons pas pu vérifier les performances des PMR dans des réalisations pratiques autres que celles retenues lors des essais, nous avons essayé d’examiner les répercussions que l’intégration de ces produits pourrait avoir sur le comportement des parois et ce, à la lumière des résultats de la recherche et de nos connaissances dans le domaine de l’hygrothermie. Dans cet article, seule l’application du PMR en toiture sera développée.

3.1 Règlements thermiques régionaux

Dans les différentes Régions du pays, les valeurs U (coefficients de transmission thermique calculés sur la base de la norme NBN B 62-002) des parois (ou parties de paroi) nouvellement construites ou rénovées appartenant à la surface de déperdition calorifique du bâtiment ne peuvent dépasser certaines valeurs limites.

Pour les toitures, par exemple, la valeur Umax à considérer est de 0,4 W/m²K en Région wallonne et bruxelloise (et prochainement également en Région flamande).

3.2 Les PMR selon diverses configurations

Appliqué en toiture sous les chevrons ou sur ceux-ci – en y associant, dans ce dernier cas, une fonction de sous-toiture –, le PMR ne sera pleinement exploité que s’il peut être placé en vis-à-vis d’une, ou mieux, de deux lames d’air non ventilées d’une épaisseur au moins égale à 2 cm.

Selon la norme belge NBN EN ISO 6946 définissant la méthode de calcul à adopter pour déterminer la résistance thermique d’une paroi, une lame d’air horizontale peut être considérée respectivement comme non ventilée ou faiblement ventilée lorsque la surface totale des fuites d’air vers l’extérieur n’excède pas 500 mm² (ex. fente de 0,5 mm sur une longueur de 1 m) ou 1500 mm² par m² de surface.

De telles exigences sont particulièrement difficiles à garantir, en particulier lorsque le PMR est appliqué sur les chevrons et qu’il remplit le rôle de sous-toiture. Posés perpendiculairement aux chevrons, les lés ne pourront être collés correctement entre eux que sous réserve de disposer d’un support continu sur lequel le produit est susceptible de s’appuyer. Les raccords en pied de versant, au faîte ainsi qu’au droit des rives seront également autant de détails dont l’étanchéité à l’air devra être particulièrement soignée. Si les recommandations précitées sont respectées, il convient en outre de veiller aux performances d’étanchéité à l’air et à la vapeur d’eau du côté intérieur du complexe toiture afin d’éviter tout risque de condensation interne, considérant que la perméabilité à la vapeur d’un PMR posé de cette manière, est très faible (µd supérieur ou égal à 50 m selon certains fabricants; cf. Infofiche n° 12).

Coupe

PMR posé sur les chevrons.

Couverture + PMR + lame d’air faiblement ventilée + finition intérieure.

Application

PMR comme sous-toiture :

  • 1 lame d’air fortement ventilée au-dessus du PMR
  • 1 lame d’air faiblement ventilée sous le PMR

Valeur U : 1,66 W/m²K

Commentaires

  • Étanchéité à l’air à assurer simultanément au niveau du PMR et de la finition intérieure.
  • Difficulté de garantir une lame d’air, même faiblement ventilée, entre les chevrons compte tenu notamment des nombreuses fuites d’air inévitables aux raccords.
  • Risque de condensation interne à la sous-face du PMR dans le cas d’un climat intérieur relativement humide (classes de climat III et IV).

Coupe

PMR posé sous les chevrons.

Couverture + sous-toiture éventuelle + lame d’air faiblement ou fortement ventilée + PMR + lame d’air de 2 cm, non ventilée ou faiblement ventilée + finition intérieure.

Application

Avec sous-toiture :

  • 1 lame d’air faiblement ventilée au-dessus du PMR
  • 1 lame d’air non ventilée (a) ou faiblement ventilée (b) sous le PMR

Valeur U : 0,63 W/m²K (a)
1,66 W/m²K (b)

Avec ou sans sous-toiture :

  • 1 lame d’air fortement ventilée au-dessus du PMR
  • 1 lame d’air non ventilée (a) ou faiblement ventilée (b) sous le PMR

Valeur U : 0,73 W/m²K (a)
1,66 W/m²K (b)

Commentaires

  • Étanchéité à l’air à assurer simultanément au niveau du PMR et de la finition intérieure. La réalisation étanche des raccords du PMR posé du côté intérieur et des autres détails peut se faire avec davantage de soin.
  • Difficulté de garantir une lame d’air faiblement ventilée entre les chevrons. La situation envisageant une ventilation de la lame d’air au-dessus du PMR est plus représentative d’une situation réelle, même en présence d’une sous-toiture.
  • Risque de condensation interne dans le cas d’un climat intérieur relativement humide (classes III et IV).

 

3.2.1 Le PMR comme seule isolation thermique d’un versant de toiture

Le tableau 2 résume différentes configurations possibles lorsque le PMR est utilisé comme seul isolant. Sa résistance thermique intrinsèque ainsi que l’émissivité de ses couches superficielles ont été choisies volontairement sur la base des meilleurs résultats obtenus lors de la campagne de mesures (e = 0,05 – RPMR = 0,6 m²K/W).

Selon la norme NBN EN ISO 6946, lorsque la résistance thermique totale des couches situées entre la lame d’air faiblement ventilée et l’ambiance extérieure est supérieure à 0,15 m²K/W, il y a lieu de plafonner cette valeur à 0,15 m²K/W.

Les valeurs U indiquées au tableau 2 ont été déterminées en partie courante de l’ouvrage. Elles se situent entre 1,66 et 0,63 W/m²K, selon que le PMR est en présence d’une ou deux lames d’air et que ces dernières sont ventilées, faiblement ventilées ou non ventilées.

Nous constatons que l’usage du PMR comme seul isolant thermique ne permet pas de satisfaire aux exigences des réglementations thermiques en vigueur dans les trois Régions du pays.

3.2.2 Le PMR comme complément d’une isolation thermique traditionnelle

Disposé en complément d’une isolation traditionnelle, le PMR permet d’augmenter la résistance thermique d’une paroi existante, surtout s’il est associé à une ou deux lames d’air non ventilées. Dans les configurations proposées au tableau 3, le PMR est appliqué selon ce principe, en tenant compte des réserves formulées ci-avant et en considérant une épaisseur de 6 cm d’isolant traditionnel de conductivité thermique non certifiée égale 0,045 W/mK (ex. laine minérale, polystyrène expansé, …).

Le PMR associé à une, voire deux lames d’air non ventilées confère une résistance thermique complémentaire (par rapport à celle du matériau isolant traditionnel) comprise entre 0,6 et 1,5 m²K/W. S’il est posé du côté intérieur avec soin (en veillant à l’étanchéité des raccords), il peut être intéressant de lui adjoindre une fonction d’étanchéité à l’air et à la vapeur. Sa résistance élevée à la diffusion de vapeur, présentée comme un atout dans ce cas, le pénalise toutefois lorsqu’il est utilisé comme sous-toiture. Il est par conséquent nettement moins recommandable dans cette dernière configuration.

Coupe

PMR posé sur les chevrons.

Couverture + PMR + isolant traditionnel + pare-vapeur + finition intérieure.

Application

PMR comme sous toiture : aucune lame d’air non ventilée ou faiblement ventilée Valeur U : 0,44 W/m²K.

Commentaires

  • Étanchéité à l’air à assurer au niveau du complexe toiture.
  • Absence de lame d’air entre le PMR et l’isolant traditionnel disposé entre les chevrons (pour limiter le risque de convection). La résistance thermique apportée par le PMR se limite à celle du PMR seul (sans lames d’air).
  • Risque de condensation sous le PMR compte tenu de sa faible perméabilité à la vapeur. Performances d’étanchéité à l’air et à la vapeur élevées à garantir du coté chaud, ce qui peut nécessiter un support continu pour la pose du pare-vapeur (cf. Infofiche n° 12).
Coupe

PMR posé sous les chevrons.

Couverture + sous toiture + isolant traditionnel (sans pare-vapeur) + lame d’air non ventilée + PMR + lame d’air non ventilée + finition intérieure.

Application

Le PMR fait office de pare-vapeur :

  • 1 lame d’air non ventilée au-dessus du PMR
  • 1 lame d’air non ventilée sous le PMR

Valeur U : 0,32 W/m²K

Commentaires

  • Étanchéité à l’air et à la vapeur à assurer au niveau du PMR et étanchéité à l’air à assurer au niveau de la finition intérieure. Soin à accorder à l’étanchéité des raccords et autres détails.
  • Configuration optimisant l’usage du PMR.

Tableau 3 : Configurations possibles pour les PMR utilisés en complément d’un isolant traditionnel.

4. Conclusions

Même posé de façon optimale, un PMR associé à deux lames d’air non ventilées de 2 cm d’épaisseur (soit une épaisseur totale de ≈ 5 à 6 cm) peut tout au plus prétendre égaler une isolation traditionnelle (laine minérale, polystyrène expansé, …) d’épaisseur équivalente, soit 4 à 6 cm. Lorsque les lames d’air sont ventilées, même faiblement, les performances sont encore réduites. Or, l’étanchéité à l’air est souvent très difficile à garantir en pratique, surtout si le PMR est posé sur les chevrons. De manière générale, notons que la plupart des toitures traditionnelles sont aujourd’hui conçues en évitant d’y intégrer des lames d’air pouvant favoriser les échanges convectifs.

Posés de manière correcte en complément d’un isolant traditionnel, ils peuvent contribuer à améliorer la performance thermique totale de l’ouvrage, mais ne peuvent à eux seuls satisfaire aux exigences réglementaires. Le cas échéant, leur faible perméabilité intrinsèque à la vapeur d’eau les prédispose naturellement à être utilisés comme pare-vapeur et non comme sous-toiture.

Une évaluation complète des performances thermiques de ce type de produit requiert une étude de la pérennité des propriétés thermiques et en particulier de l’émissivité de la couche superficielle du produit, sujette au vieillissement (salissure, oxydation).

Rappelons enfin qu’à l’inverse de la plupart des isolants traditionnels, les PMR ne disposent pas, à ce jour, d’agrément technique en Belgique.

N’hésitez pas également à consulter notre page consacrée aux isolants biosourcés.