Charpente

Charpente

La charpente en bois reste la plus courante pour réaliser la structure portante de la toiture inclinée.

Cependant, pour des raisons thermiques, acoustiques ou de stabilité, la structure portante peut consister en dalles inclinées de béton coulées sur place ou en hourdis de béton lourd ou cellulaire posés en pente.


Charpente traditionnelle (à pannes et chevrons)

Le principe de la structure traditionnelle est de superposer, en les croisant perpendiculairement, des éléments linéaires. La portée diminuant au fur et à mesure des différentes couches, leur section et entre axe diminue également jusqu’à la pose aisée des éléments de couverture.

La charpente traditionnelle proprement dite, est constituée de pannes et de chevrons*.
Les pannes sont portées par les murs pignons et les murs porteurs de refend; des fermes peuvent remplacer les murs de refend si l’on veut garder de grands espaces sous la toiture.

* Remarque : dans le cas d’une isolation par panneaux autoportants, la charpente ne nécessite pas de chevrons; les panneaux sont directement fixés sur les pannes.

Schéma charpente traditionnelle.

  1. Ferme.
  2. Panne.
  3. Panne faîtière.
  4. Panne sablière.
  5. Chevrons.
  6. Sous-toiture éventuelle.
  7. Contre-lattes.
  8. Panneaux de toiture autoportants.
  9. Liteaux ou voliges.

Charpente traditionnelle à pannes et chevrons.

Le bois de charpente doit, de préférence, avoir été traité (pour résister aux insectes, aux champignons, …).

Les pannes (structure primaire)

Les pannes sont parallèles au faîte.
Outre les pannes, la structure primaire peut comprendre des sablières, des échelles de corniche, des noues, des arêtiers et des fermes.

Dans le cas d’une corniche en bois, une échelle en bois, mise à plat au-dessus du mur porteur et du parement, remplace ou supporte la panne sablière. L’échelle permet, d’une part de réaliser le porte à faux au-delà du mur porteur, d’autre part d’assurer une jonction continue entre l’isolation du mur et de la toiture.

Schéma pannes.

  1. Gîte de versant + isolant.
  2. Echelle de corniche.
  3. Maçonnerie renforcée.
  4. Cale de pente.
  5. Planche de face.
  6. Fermeture.

Echelle de corniche (N°2).

Les chevrons (structure secondaire)

Auparavant, les chevrons destinés à des toitures-greniers non isolées étaient de section carrée. Actuellement, les chevrons sont parfois remplacés par des « gîtes de versant », pièces de bois plus hautes, de largeur minimale de 38 mm et de hauteur minimale de 100 mm. Ces pièces permettent de poser une couche d’isolant plus épaisse en une seule fois. En outre, elles diminuent le nombre de pannes nécessaires, ce qui libère en partie l’espace sous-toiture.

Remarque : Dans ce cas, les pannes doivent être calculées pour reprendre des charges plus importantes. Elles portent en effet de plus grandes surfaces de toiture.

Au-dessus du mur pignon, une échelle de bois sert parfois de structure secondaire. Elle couvre toute l’épaisseur du mur (mur porteur – vide isolé – mur de parement). Elle permet, de réaliser le porte à faux au-delà du mur porteur. Elle permet également d’assurer une jonction continue entre l’isolation du mur et de la toiture.

Schéma chevrons.

Échelle de pignon.

Le support de couverture (contre-lattes, liteaux ou lattes, voligeage)

En général, lorsque la couverture est constituée de tuiles ou d’ardoises fixées au moyen de crochets, leur support est constitué de liteaux ou lattes. Lorqu’elle est constituée d’ardoises posées au moyen de clous, de « feuilles » ou de petits éléments relativement souples (ex : bardeau bitumineux), leur support est constitué d’un voligeage.
La pose d’ardoises sur liteaux est de plus en plus pratiquée, mais dans le cas de petites ardoises, la pose au clou sur voliges reste plus indiquée.

Actuellement, des panneaux de bois peuvent remplacer les voliges; dans ce cas, on veillera particulièrement, à suivre les prescriptions des fabricants et des agréments techniques.

Des voliges sont également utilisées comme support des ouvrages de rives et de raccords (rives libres, rives en butée, faîtes, noues, arêtiers, bacs de cheminée, corniches …).

Schéma support de couverture.

  1. Couverture.
  2. Lattes.
  3. Volige.
  4. Chéneau en zinc.
  5. Contre-lattes.
  6. Sous-toiture.
  7. Isolant.
  8. Pare-vapeur.
  9. Espace technique.
  10. Finition intérieur.

Noue.


Charpente à fermettes

Les fermettes remplacent les chevrons ou gîtes de versant, ainsi que les pannes.
Elles sont réalisées en atelier.

Remarque.
Une fermette se distingue d’une ferme de charpente par la section plus réduite des pièces qui la constitue et par la distance qui la sépare de la pièce voisine.

Schéma charpente à fermettes.

  1. Fermette.
  2. Entrait (de la fermette).
  3. Sablière.
  4. Sous-toiture (éventuelle).
  5. Contre-latte.
  6. Liteau ou voligeage.

Charpente préfabriquée avec fermettes.

Vu que la charpente est constituée uniquement d’éléments verticaux, un contre-ventement doit être prévu entre les fermettes.

Les fenêtres de toitures, lucarnes et raccords entre versants sont un peu plus compliqués à réaliser que pour une charpente traditionnelle.

Il existe des fermettes pour combles utilisables ou non utilisables.
Fermette pour combles non utilisables

Exemple schématique.
Combles non utilisables.

Fermette pour combles utilisables

Exemple schématique.
Combles utilisables.

Généralement, les fermettes sont posées au niveau du plafond de l’étage inférieur. Elles constituent la structure portante du plafond et éventuellement du plancher des combles à condition d’être calculée en conséquence.

Pour le reste, les principes sont identiques à ceux d’une charpente traditionnelle.

Déflecteurs de lumière naturelle

Déflecteurs de lumière naturelle

By Julian A. Henderson – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=19588365


Les stores réfléchissants

Schéma principe stores réfléchissants - 01.

Les stores réfléchissants actuels sont utilisés dans le double but d’ombrager un espace du rayonnement solaire direct et de rediriger la lumière naturelle vers le fond du local.

Ces stores peuvent être fixes ou mobiles. Les stores réfléchissants peuvent être considérés comme un développement compact d’un light shelf. Cependant, les lamelles ombragent la fenêtre moins complètement et redirigent moins efficacement la lumière vers le fond de la pièce qu’un light shelf.

 Schéma principe stores réfléchissants - 02.

Il existe des stores réfléchissants dont l’inclinaison des lames peut être variable en fonction de leur emplacement dans la fenêtre : la partie supérieure de la fenêtre redirige la lumière vers le plafond, alors que la zone inférieure produit un ombrage du même type que les stores vénitiens conventionnels.

Le schéma ci-contre accentue le principe. Cette configuration a pour but de laisser pénétrer la lumière naturelle à l’intérieur du local, même lorsque les occupants ferment complètement les stores.


Les vitrages directionnels

Les vitrages directionnels redirigent très efficacement les rayons solaires directs vers le fond d’une pièce. Ils peuvent aussi être employés pour rediriger la lumière zénithale vers le bas d’un atrium ou vers une salle en sous-sol. Cependant, sous ciel gris, le niveau lumineux en fond de local est inférieur à celui d’un double vitrage classique. Les panneaux directionnels sont utilisés en configurations fixes et mobiles.

Schéma principe vitrages directionnels.Schéma principe vitrages prismatiques.

Les vitrages prismatiques peuvent soit rediriger la lumière naturelle plus profondément dans le bâtiment soit exclure la lumière d’un espace. Bien qu’ils soient habituellement transparents, ils obscurcissent la vue vers l’extérieur. Il vaut donc mieux les utiliser pour la partie supérieure d’une fenêtre afin de ne pas couper la vue des occupants vers l’extérieur.

La lumière naturelle peut également être déviée par des éléments acryliques concaves disposés verticalement à l’intérieur d’un double vitrage. Ce vitrage doit être positionné au-dessus de l’angle de vision. Dans nos régions, la meilleure orientation pour ce type de vitrage est le sud.


Les laser-cut panels

Schéma principe laser-cut panels.

Le laser-cut panel est un système de redirectionnement de la lumière produit par des coupures réalisées par un laser dans un matériau acrylique. Ces panneaux assurent une bonne visibilité vers l’extérieur. Placés verticalement, ils induisent une déflexion de la lumière provenant des angles d’incidence élevés (> 30°) alors qu’ils transmettent la lumière à de faibles incidences. Placés horizontalement, ils agissent en tant que protection solaire. Ils peuvent être employés comme système fixe ou mobile. Pour éviter certains risques d’éblouissement, il faut qu’ils soient situés au-dessus du niveau visuel. Le laser-cut panel coûte encore très cher.


Les systèmes holographiques

Schéma principe systèmes holographiques.

Les systèmes holographiques ne sont encore qu’au début de leur développement. Le procédé holographique consiste en une couche de matériau diffractant qui est choisie pour rediriger la lumière selon un angle spécifique, en fonction de l’angle d’incidence de la lumière. Il s’agit d’un système pratique en rénovation puisqu’il suffit d’ajouter un film à une fenêtre classique. Ils peuvent également être employés pour obtenir un effet décoratif coloré.


Les déflecteurs diffusants dans des ouvertures zénithales

Pour améliorer l’effet produit par l’ajout d’une ouverture zénithale, il est utile de concevoir un système de déflecteurs blancs diffusants au niveau du plafond. Si ces déflecteurs sont verticaux, l’éclairement lumineux dans l’espace est amélioré. Des déflecteurs inclinés diminuent le niveau d’éclairement maximum mais, par contre, uniformisent l’éclairage. Les deux figures ci-dessous montrent un exemple de déflecteurs verticaux conçus pour une orientation est-ouest d’un lanterneau et un exemple de déflecteurs inclinés conçus pour une dent de scie orientée vers le sud.

Schéma déflecteurs diffusants dans des ouvertures zénithales.Schéma déflecteurs diffusants dans des ouvertures zénithales.

Enduits extérieurs

Enduits extérieurs


Les types d’enduits

Il existe trois grands groupes d’enduits applicables sur les panneaux isolants : les enduits minéraux, les enduits résineux et les enduits aux silicates et aux silicones.

L’enduit faisant partie d’un système isolant-enduit sera de préférence prédosé en usine. Il est composé de charges, d’eau, d’un ou plusieurs liants, et éventuellement d’adjuvants et de pigments.

Le liant d’un enduit minéral est le ciment ou la chaux, ou encore un mélange des deux.
Le liant d’un enduit résineux est constitué d’un ou de plusieurs types de résines.
Le liant d’un enduit aux silicates et aux silicones est un liant silicieux.

Les enduits minéraux sont plus épais que les enduits synthétiques ou aux silicates et aux silicones.

Les enduits utilisés sur les panneaux isolants sont généralement « décoratifs » et diffèrent par leur aspect et leur couleur. Ils peuvent être lisse, crépi, roulé, peigné, gratté, lavé, projeté, etc.

Les enduits appliqués sur isolant sont munis d’un treillis de renforcement, synthétique ou métallique, résistant aux alcalis et à la corrosion.


Les précautions à prendre

L’isolation extérieure couverte d’un enduit est un système qui combine l’usage de plusieurs produits. Chaque système doit avoir été étudié et testé par son fabricant. Il devrait idéalement faire l’objet d’un agrément technique. Le système doit être mis en œuvre en respectant les prescriptions du fabricant et de l’agrément technique éventuel. Les limites d’utilisations prescrites doivent également être respectées.
Le système doit être appliqué dans son ensemble : isolant, enduit, fixation, armature, finition, accessoires, détails techniques, etc.

Le support doit être vérifié et préparé avant pose du système.

La date limite d’utilisation des matériaux livrés sera vérifiée à la réception.

Le transport et le stockage se feront dans les emballages d’origine, en tenant compte des précautions prescrites.

Les enduits préfabriqués proviendront par façade d’un même lot de fabrication afin d’éviter les différences de teintes surtout si l’enduit est coloré.

Des protections seront utilisées contre les conditions climatiques défavorables.

L’enduit ne pourra être appliqué dans des conditions extrêmes. Outre les limites expresses imposées par le fabricant ou l’agrément technique, l’enduit ne sera pas appliqué :

  • lorsque la température risque de monter au-dessus de + 30 °C ou de descendre en dessous de + 5 °C pendant l’application ou le durcissement;
  • lorsque le mur est en plein soleil;
  • par vent sec;
  • par pluies battantes;
  • lorsque le support est humide ou gelé.

L’entretien de l’enduit

Les facteurs extérieurs peuvent, avec le temps, altérer l’aspect de l’enduit et le dégrader par endroit.

On déterminera d’abord les causes éventuelles des désordres. Les fines fissures stabilisées sont pontées avant application d’un enduit de réparation. Les parties désolidarisées (qui sonnent creux) décapées et refaites.

Les algues et mousses sont éliminées à l’aide de produits appropriés et les matières mortes sont brossées.

Les efflorescences sont éliminées à sec.

L’enduit est ensuite brossé à sec ou nettoyé au jet d’eau.

On applique généralement une peinture perméable à la vapeur d’eau, adaptée à l’enduit. On peut également appliquer une couche supplémentaire d’enduit si la couche existante possède les qualités mécaniques nécessaires et permet l’adhérence de la nouvelle couche.

Les microfissures stabilisées sont colmatées par une peinture à base de ciment ou une fine couche d’enduit.


Les informations utiles

La note d’information technique (NIT) n° 209 du CSTC concerne les enduits posés, entre autres, sur des panneaux d’isolation thermique.

Etanchéités

Etanchéités

Par étanchéité, on entend la couche ou l’ensemble des couches rendant la construction étanche à l’eau de pluie, à la neige et à l’eau de fonte des neiges.

On distingue les types d’étanchéités suivants :


Les membranes bitumineuses

La membrane bitumineuse est actuellement l’étanchéité la plus utilisée sur le marché belge (+/- 80 %).

Une membrane bitumineuse est constituée d’une armature enrobée de bitume.

L’étanchéité des toitures plates s’obtient par la pose d’une ou plusieurs membranes bitumineuses superposées dont les lés sont soudés latéralement les uns aux autres et en bouts.

On parlera d’un système « monocouche » lorsqu’une seule épaisseur de membrane est posée, et d’un système « multicouche » lorsque plusieurs membranes, généralement deux (système bicouche), sont superposées.

Le système multicouche offre plus de garanties d’étanchéité que le système monocouche qui nécessite un soin particulier lors de l’exécution et donc une main-d’œuvre spécialisée et une surveillance régulière et exigeante.

On distingue la couche supérieure des éventuelles sous-couches.

La couche supérieure

La couche supérieure (la seule couche dans le cas d’un système monocouche) d’une étanchéité bitumineuse doit résister au vieillissement dû aux rayonnements solaires et aux sollicitations mécaniques et thermiques.

C’est la raison pour laquelle elle sera toujours armée d’un voile de polyester, et le bitume utilisé sera amélioré par addition de polymères qui en augmenteront considérablement les performances. Elle doit posséder un agrément technique avec certification (ATG). Son épaisseur sera d’au moins 4 mm. Les bitumes utilisés sont appelés bitumes améliorés, bitumes polymères ou bitumes modifiés.

Les polymères additionnés peuvent être de deux types :

  • les plastomères (APP, polypropylène atactique) qui mélangés à raison d’environ 30 % donnent au bitume des propriétés plastiques,
  • les élastomères (SBS, styrène-butadiène-styrène) qui mélangés à raison d’environ 12 % donnent au bitume des propriétés élastiques.

D’autres polymères font actuellement leur apparition.

La (les) sous-couche(s) éventuelle(s)

Les matériaux à base de bitume soufflé donnent de bon résultats comme sous-couche ou couche intermédiaire.

Ils peuvent être armés d’un voile de verre, d’une feuille d’aluminium ou d’un voile de polyester.

Types de sous-couches et couches intermédiaires (NIT 215 du CSTC).

Membrane Armature
type Kg/m² ép. mm perforations. type g/m²
VP50/16 1.6 non V.verre > 50
VP45/30 3 oui (3 – 6 %) V.verre > 45
VP40/15 1.5 oui (12 – 18 %) V.verre > 40
V3 3 3 non V.verre > 50
V4 4 4 non V.verre > 50
ALU3 3 3 non Aluminium > 250
P150/16 1.6 non V.polyester > 150
EP2 1.25 2 non V.polyester > 150
P3 3 3 non V.polyester
P4 4 4 non V.polyester > 150

Les types V3, V4, P3 et P4 peuvent être en bitume oxydé ou en bitume amélioré, APP ou SBS.


Les étanchéités synthétiques

Les matériaux utilisés sont également appelés « hauts polymères ».

Ils se composent principalement de produits de polymérisation d’hydrocarbures insaturés provenant de la pétrochimie.

Ils ont de bonnes caractéristiques mécaniques. Ils résistent bien au froid, à la chaleur, aux produits chimiques et aux influences atmosphériques.

Les étanchéités synthétiques sont posées en une seule épaisseur (système monocouche).

La pose varie selon le produit. C’est pourquoi la plupart des fabricants de membranes synthétiques ne confient la pose de leur système qu’à des entreprises dont ils ont formé les ouvriers. Vu que le système est monocouche, des erreurs au niveau de l’assemblage des lés provoqueraient directement des fuites.

Parmi les 13 sortes de membranes synthétiques reprises ci-dessous, seules, quatre bénéficient d’un agrément technique ATG : le PVC, l’EPDM, le CPE et le PIB. Parmi celles-ci, deux seulement sont utilisées de manière significative, un plastomère : le PVC (12 % du marché belge), et un élastomère : l’EPDM (8 % du marché belge). Il semble cependant que leur utilisation devient plus fréquente, surtout en ce qui concerne l’EPDM.

Les étanchéités synthétiques sont de trois types :

  • les élastomères
  • les élastomères thermoplastiques
  • les plastomères

Les élastomères

IIR Butil  copolymère d’isoprène et d’isobutylène vulcanisé

Couramment appelé BUTIL, d’épaisseur 1.5 et 2 mm, de couleur noire, il a un comportement satisfaisant au feu. Il ne résiste pas très bien aux solvants organiques. Il résiste bien au bitume. Il résiste bien aux influences climatiques, mais il a tendance à se déformer sous l’influence de la chaleur en été. Il résiste de manière satisfaisante au poinçonnement.

Il sera posé en adhérence totale, en adhérence partielle ou en pose libre lestée.

L’adhérence au support se fait par collage à l’aide de colle à chaud à base de bitume et de butyl, ou à l’aide de colle de contact.

La jonction des lés se fait sur chantier à l’aide de « gumtape » et de colle. En atelier la jonction des lés se fait par soudure à chaud et bande adhésive (bâches préassemblées en usine).

EPDM  Copolymère d’éthylène, de propylène et de diène-monomère vulcanisé

Également appelé EPT, d’épaisseur minimale 1.1 mm, de couleur noire ou grise, il est actuellement le plus utilisé des hauts polymères élastomères sous forme de membrane. Aux États-Unis, l’EPDM contrôle un tiers du marché des toitures plates. Il a un comportement peu satisfaisant au feu. Il existe une qualité auto-extinguible qui est un mélange d’élastomères et de retardateurs de flamme. L’EPDM ne résiste pas très bien aux solvants organiques. Il résiste bien au bitume. Il résiste bien aux influences climatiques, mais il a tendance à se déformer sous l’influence de la chaleur en été. Il résiste de manière satisfaisante au poinçonnement. Actuellement, les problèmes de pose et de rejointoiement connus jadis, ont été résolus, et le produit bénéficie d’une grande longévité.

Il sera posé en adhérence totale, en adhérence partielle ou en pose libre lestée.

L’adhérence au support se fait par collage à l’aide de colle à chaud à base de bitume et d’EPDM, à laide de colle de contact, ou à l’aide de bitume lorsque les feuilles sont pourvues d’une couche dorsale constituée d’un voile qui sert à réaliser l’adhérence avec le bitume..

La jonction des lés se fait sur chantier à l’aide de « gumtape » et de colle. En atelier la jonction des lés se fait par soudure à chaud et bande adhésive (bâches préassemblées en usine).

Des membranes EPDM pourvues en leur sous-face d’une couche de bitume SBS existent. Elles peuvent être soudées au chalumeau.

CR  Polychloroprène vulcanisé

Membrane en caoutchouc munie d’une couche dorsale en voile de verre destinée à améliorer l’adhérence de la colle. Elle existe en 1.0, 1.2, 1.5 et 2.0 mm d’épaisseur et est de couleur noire. Elle a un comportement satisfaisant au feu. Sa résistance aux solvants organiques est satisfaisante. Elle résiste bien au bitume. Les données dont on dispose ne permettent pas de donner un jugement sur sa résistance aux influences climatiques. Elle ne résiste pas très bien au poinçonnement.

Elle sera posée en adhérence totale.

L’adhérence au support se fait par collage à l’aide de bitume ou à l’aide de colle de contact.

La jonction des lés se fait à l’air chaud + bande de soudure ou à la colle à froid.

CSM  Polyéthylène chlorosulfoné partiellement vulcanisé

La membrane est constituée de polyéthylène chlorosulfoné partiellement vulcanisé calendré sur une armature en polyester, avec possibilité latente de complète vulcanisation. Elles ne deviennent complètement élastomère qu’après la pose des feuilles. Son épaisseur minimale est de 1.2 mm armature comprise. Elle existe en gris, noir, blanc ou beige. Elle est autoextinguible. Elle ne résiste pas très bien aux solvants organiques. Elle ne résiste pas très bien au poinçonnement. Elle résiste bien au bitume. Elle résiste bien aux influences climatiques.

Elle sera posée en adhérence totale ou en pose libre lestée. Elle peut également être fixée mécaniquement.

L’adhérence au support se fait par collage à l’aide de bitume, à l’aide de colle de contact ou à l’aide de colle en dispersion.

La jonction des lés se fait à l’air chaud + bande de soudure ou à la colle à froid.

NBR  Caoutchouc nitrile vulcanisé

La membrane est munie d’une couche dorsale en voile de verre. Elle a une épaisseur de 1.1 ou 1.5 mm. Elle est de couleur noire. Elle a un comportement peu satisfaisant au feu. Elle résiste bien aux solvants organiques et aux bitumes. Elle résiste bien aux influences climatiques. Les données dont on dispose ne permettent pas de donner un jugement sur sa résistance au poinçonnement.

Elle sera posée en adhérence totale ou en pose libre lestée.

L’adhérence au support se fait par collage à l’aide de bitume ou à laide de colle de contact.

La jonction des lés se fait à l’aide de colle à deux composants.

Les élastomères thermoplastiques

TPV Elastomère thermoplastique vulcanisé

Membranes, composées d’un assemblage de polymères élastomères et plastomères vulcanisés. Elles peuvent être teintées dans la masse. Elles ont une épaisseur minimale de 1.1 mm. Elles possèdent une bonne résistance aux rayons UV et aux produits chimiques. Elles présentent une élasticité comparable au caoutchouc.

Il sera posé en adhérence totale, en adhérence partielle ou en pose libre lestée.

L’adhérence au support se fait par collage à l’aide de colle à chaud à base de bitume et d’EPDM, à l’aide de colle à froid, ou par fixation mécanique.

La jonction des lés se fait par soudage thermique.

TPO Polyoléfine thermoplastique

Membranes réalisées à l’aide de copolymères de polypropylène. Elles ne contiennent aucun plastifiant. Elles possèdent une bonne résistance aux rayons UV et aux produits chimiques. Elles ont une épaisseur minimale de 1.2 mm.

Il sera posé en adhérence totale, en adhérence partielle ou en pose libre lestée.

Les membranes en TPO peuvent être soit fixées mécaniquement, soit être posées en semi-indépendance à l’aide de colle à froid ou de bitume chaud, soit être posées librement et lestées.

La jonction des lés se fait par soudure homogène à l’air chaud.

Les plastomères

PIB  Polymère non vulcanisé de polyisobutylène

Actuellement les membranes PIB sont toujours doublées sur leur face inférieure d’une armature épaisse en feutre de polyester. Elles ont une épaisseur minimale de 1.5 mm. Elles sont de couleur noire. Elles ont un comportement peu satisfaisant au feu et des mesures complémentaires s’imposent. Elles résistent bien aux bitumes, mais pas aux solvants organiques. Elles résistent bien aux influences climatiques. Elles résistent bien au poinçonnement. Le produit existe depuis assez longtemps et a prouvé sa fiabilité.

Elles seront posées en adhérence totale, en adhérence partielle ou en pose libre lestée.

L’adhérence au support se fait par collage à l’aide de bitume ou à l’aide de colle à froid.

La jonction des lés se fait à l’aide de bandes d’étanchéité auto-adhésive, et par soudure par gonflement pour les joints transversaux.

EVA  Copolymère d’acétate de vinyle et d’éthylène non vulcanisé

Les membranes VAE ont une épaisseur minimale de 1.2 mm (couche de feutre non comprise). Elles sont de couleur blanche. Elles ont un comportement peu satisfaisant au feu et des mesures complémentaires s’imposent. Elles résistent bien aux bitumes, mais pas aux solvants organiques. Elles résistent bien aux influences climatiques. Les données dont on dispose ne permettent pas de donner un jugement sur sa résistance au poinçonnement.

Elles seront posées en adhérence totale ou en pose libre lestée.

L’adhérence au support se fait par collage à l’aide de bitume ou à l’aide de colle de contact.

La jonction des lés se fait par soudure par gonflement ou par soudure à air chaud.

ECB  Copolymère d’acétate de polyvinyle et d’éthylène non vulcanisé, et bitume

Membrane extrudée d’un mélange homogène d’un copolymère EVA non vulcanisé et de bitume. Il n’y a pas d’armature. La membrane est pourvue d’une couche dorsale en voile de verre ou en polyester destinée à améliorer l’adhérence de la colle. L’épaisseur de la membrane est généralement de 2 mm. Elle est de couleur noire. Elle a un comportement peu satisfaisant au feu et des mesures complémentaires s’imposent. Elle résiste bien aux bitumes, mais pas aux solvants organiques. Elle résiste bien aux influences climatiques. Elle résiste bien au poinçonnement.

Elle sera posée en adhérence totale, en adhérence partielle ou en pose libre lestée. Elle peut également être fixée mécaniquement.

L’adhérence au support se fait par collage à l’aide de bitume.

La jonction des lés se fait par soudure à air chaud.

Lors de la pose, la surface de ce matériau est visqueuse. Cette caractéristique disparaît après quelques semaines d’exposition.

CPE  Polymère de polyéthylène chloré non vulcanisé et exempt de plastifiant

Le CPE est très semblable au PVC. Une différence se trouve dans le fait que le mélange des polymères utilisés est chimiquement extrêmement stable. Il ne subit pas de perte de plastifiant. Il est cependant moins souple que le PVC.

Ces membranes sont soit des membranes simples, soit des membranes composées de deux membranes incorporant ou non une armature en polyester tissé, soit des membranes composées de deux membranes avec un feutre de polyester extérieur. L’épaisseur minimale de la membrane est de 1.2 mm. La face supérieure est de couleur grise. La face inférieure est grise ou noire. Elles ont un comportement satisfaisant au feu. Elles résistent bien aux bitumes et aux solvants organiques. Elles résistent bien aux influences climatiques. Elles résistent bien au poinçonnement lorsqu’elles sont armées.

Elle sera posée en adhérence totale, en adhérence partielle ou en pose libre lestée. Elle peut également être fixée mécaniquement.

L’adhérence au support se fait par collage à l’aide de bitume. Il peut également se faire à la colle de contact lorsque la membrane est pourvue d’un feutre de polyester extérieur.

La jonction des lés se fait toujours par soudure à l’air chaud. Lorsque la membrane est pourvue d’une armature tissée, le joint est mastiqué au moyen d’une pâte à base de CPE.

PVC  Polymère de chlorure de polyvinyle avec plastifiant

La membrane de est de type 1 lorsque le plastifiant est monomère, ou bien de type 2 lorsque le plastifiant est polymère.

Afin d’éviter l’important retrait caractéristique du PVC, on n’utilise que des membranes armées de fibre de verre (sans retrait) ou armée de polyester (avec faible retrait). Les feuilles sont constituées de deux couches entre lesquelles l’armature est calendrée.

Le PVC armé a une épaisseur minimale de 1.2 mm. Le PVC non armé a une épaisseur minimale de 1.5 mm.

Les étanchéités en PVC résistent ou non aux rayonnements UV. En cas d’absence de lestage sur l’étanchéité, il faut placer une membrane résistante aux UV. La composition des membranes et les techniques d’exécution ayant évolué, le PVC est devenu actuellement une étanchéité fiable.

La membrane de type 1 sera généralement grise ou beige. La membrane de type 2 aura des faces inférieures et supérieures de couleurs différentes. Elles ont un comportement satisfaisant au feu. Les membranes de type 2 résistent bien aux bitumes et aux solvants organiques, ce qui n’est pas le cas des membranes de type 1. Elles résistent bien aux influences climatiques lorsqu’elles sont stabilisées aux UV. Elles résistent bien au poinçonnement.

Lorsqu’une membrane en PVC ne résiste pas au bitume, il faut poser une couche de séparation entre le PVC et les matériaux bitumeux.

Les membranes en TPO peuvent être soit fixées mécaniquement, soit être posées en semi-indépendance à l’aide de colle à froid ou de bitume chaud, soit être posées librement et lestées.

La jonction des lés se fait par soudure par gonflement ou par soudure à air chaud. Dans les deux cas, le joint est mastiqué au moyen d’une pâte en PVC.


Les feuilles métalliques

Les feuilles métalliques (zinc, cuivre, ou plomb) peuvent être utilisées en toiture plate et en toiture inclinée.

Illustration feuille métallique.

Feuilles métalliques sur plateforme en bois.

Dans le cas de la toiture plate, les feuilles métalliques sont soudées entre elles. La surface totale de la plate-forme ne peut dépasser 15 m² et la longueur ne peut dépasser 6.75 m à cause des contraintes liées à la dilatation.

La pente de la plate-forme sera obligatoirement comprise entre 1 % et 5 %.

Les feuilles reposent sur un voligeage aéré en sous-face.


Les enduits d’étanchéité

Le système consiste à épandre sur la toiture des résines synthétiques (polyuréthanne, acrylique, polyméthylmétacrylate, polyester, … ) en y incorporant des armatures (textile polyester). On forme ainsi, in situ, une membrane sans raccord.
Suivant le type, l’armature et la finition supérieure, elle peut être non circulable, circulable aux piétons ou circulable aux véhicules légers.
Différents aspects de finition sont possibles (couleur, rugosité, …).

 

Étanchéité liquide armée.

Avantages

  • On évite le problème de jonction entre les lés.
  • L’étanchéité peut épouser la forme de toitures compliquées.
  • Certaines étanchéités ainsi mises en œuvre conviennent comme surface circulable (terrasses circulables).

Inconvénients

  • Ces techniques demandent l’intervention d’un personnel très qualifié.
  • Elles requièrent, pour leur mise en œuvre, des conditions atmosphériques particulièrement favorables.
  • Prix élevé pour des toitures simples.
  • Épaisseur faible de certains systèmes.
  • Résistance limitée aux eaux stagnantes.

Les revêtements épais

L’asphalte coulé est un mélange correctement dosé de bitume en poudre et d’agrégats : asphalte naturel, sable, filler.

Il est appliqué sans compactage en une couche de plusieurs centimètres.

Étanchéité en asphalte coulé.

Le mélange doit être exempt de cavités et de matériaux gélifs.

Ce type d’étanchéité constitue une bonne couche d’usure et de répartition des charges pour la circulation piétonne.

Il ne faut pas confondre l’asphalte coulé avec les enrobés hydrocarbonnés. Ceux-ci contiennent des graviers et des cavités. Ce ne sont pas des revêtements d’étanchéité.

Sous-toiture

Sous-toiture

Parmi les différentes couches qui constituent la toiture inclinée, la sous-toiture remplit un rôle spécifique important principalement lorsque les combles sont aménagés et lorsque l’isolant lui-même ne remplit pas ce rôle. Mais …


Quel est le rôle de la sous-toiture ?

La sous-toiture remplit différentes fonctions :

> Avant la pose de la couverture, elle protège provisoirement et évacue l’eau de pluie vers l’extérieur du bâtiment.

> Lorsque la couverture est en place, elle recueille l’eau en cas d’infiltration accidentelle et l’évacue vers l’extérieur du bâtiment :

  • en cas d’envol ou de rupture d’une tuile ou ardoise;
  • en cas de pluies torrentielles par grand vent;
  • en cas de chute de neige poudreuse ‘folle’ sous les charges de vent.

> Par temps froid, elle évacue l’eau qui se serait condensée sur la face interne de la couverture suite au sur-refroidissement. En effet, la nuit, par ciel serein, la couverture émet des rayonnements infrarouges vers la voûte céleste. La température de la couverture peut ainsi descendre jusqu’à 10°C plus bas que celle de l’air extérieur. De la condensation ou du givre peut se former sur la face inférieure de la couverture. Lorsque l’eau de condensation s’écoule, elle est recueillie par la sous-toiture et évacuée.

> Elle protège les combles contre les infiltrations d’air et de poussières.

> Elle protège l‘isolation.

> Elle renforce la résistance de la couverture lors d’une tempête.

Pour remplir ces différentes fonctions, il est donc toujours conseillé de doter la toiture d’une sous-toiture, sauf dans des cas particuliers comme un hangar non isolé où la production d’humidité est très importante.

Remarque importante
La sous-toiture ne remplit pas le rôle couverture. Elle ne sert pas à pallier à une mauvaise qualité ou à une mauvaise exécution de la couverture.


Où place-t-on la sous-toiture ?

La sous-toiture se trouve juste sous la couverture de la toiture, lattes et contre-lattes comprises. Elle se trouve au-dessus de l’isolation et de la charpente. La sous-toiture devrait idéalement êre posée directement sur l’isolant, sans espace intercalaire.

Parfois, l’isolant lui-même ou les panneaux isolants préfabriqués autoportants font eux-mêmes office de sous-toiture. Ils permettent de faire l’économie d’une sous-toiture supplémentaire.

  1. Lattes
  2. Contre-lattes
  3. Sous-toiture
  4. Isolant
  5. Charpente
  6. Pare-vapeur
  7. Finition du plafond

Position de la sous-toiture dans un versant isolé.


Quels sont les différents types de sous-toitures ?

Les sous-toitures sont idéalement perméables à la vapeur. Elles se distinguent entre elles par trois caractéristiques principales :

  • leur capillarité, elles peuvent être capillaires ou non capillaires;
  • leur raideur, elles peuvent être rigides ou souples;
  • leur continuité, elles peuvent être continues ou en bandes.

Ainsi existe-t-il :

– des sous-toitures capillaires :

  • rigides (panneaux de fibres ciment-cellulose, panneaux de fibres de bois);
  • souples :
    • en bandes (papier fort, toiles en fibre de verre ou en matière synthétique);
    • continues;

– des sous-toitures non capillaire :

  • rigides (plaques multicouches perforées de plastique);
  • souples :
    • en bandes (feuilles synthétiques microperforées renforcées);
    • continues (feuilles peu perméables à la vapeur avec joints étanches).

Panneaux de fibre ciment-cellulose.

Panneaux de fibre de bois.

Toile de fibres synthétiques.

Plaque multicouche perforée de plastique.

Feuille synthétique microperforée renforcée.

Light-shelf [composants de l’enveloppe]

Light-shelf [composants de l'enveloppe]


Description

Un light shelf est un auvent, dont la surface supérieure est réfléchissante, combiné à un bandeau lumineux, dont le rôle est de permettre la pénétration dans le local, du rayonnement solaire réfléchi sur la partie supérieure du light shelf.

Schéma principe light-shelf.Photo light-shelf.

L’objectif d’un light shelf est de rediriger la lumière naturelle vers le plafond, en protégeant l’occupant des pénétrations directes du soleil. Il existe diverses variantes de light shelves : horizontales ou inclinées, droites ou incurvées, situées à l’intérieur et/ou à l’extérieur de la fenêtre.

Les principales propriétés d’un light shelf sont de faire pénétrer la lumière profondément dans la pièce, de réduire les charges de refroidissement en diminuant partiellement les gains solaires, et d’augmenter le confort visuel.

Les light shelves permettent de contrôler la lumière directe du soleil en réduisant l’éblouissement, tout en admettant la lumière du ciel et les rayons solaires réfléchis.

La surface du light shelf doit être aussi réfléchissante que possible mais peut-être mate, brillante ou spéculaire. Une surface spéculaire renvoie théoriquement plus de lumière mais il faut pour cela qu’elle soit nettoyée très régulièrement. En pratique, un light shelf brillant (semi-spéculaire) est sans doute le meilleur choix. Le maintien de la haute réflectivité des light shelves implique bien sûr un nettoyage régulier, qui n’est pas toujours aisé.

Schéma principe light-shelf.

À noter qu’un store réfléchissant peut constituer une forme de light shelf, à un coût … plus abordable.

Performance du plafond associé

Le plafond est aussi un élément important influençant les performances des light shelves car il joue le rôle de distributeur de la lumière naturelle qui est redirigée vers l’intérieur par le light shelf. Il est donc important de combiner le light shelf avec un plafond très réfléchissant, de manière à obtenir une bonne efficacité. Les caractéristiques du plafond importantes au niveau de ce processus sont sa finition, liée à son degré de spécularité, sa couleur et sa pente.

Bien qu’un plafond présentant une surface spéculaire réfléchira plus de lumière dans le local, il faut savoir qu’il augmentera aussi les risques d’éblouissement à proximité du light shelf. La couleur du plafond doit être aussi claire que possible pour augmenter la réflexion de la lumière dans l’espace. Enfin, la pente du plafond a beaucoup d’importance : un plafond incliné vers le fond du local ou de forme arrondie incurvée vers l’intérieur de l’espace augmentera fortement la profondeur de pénétration de la lumière dans un local.


Efficacité lumineuse d’un light-shelf

Les simulations ci-dessous comparent la distribution lumineuse du module de base et celle du même local auquel sont ajoutés un vitrage en partie supérieure et un light shelf de 2 m de long, qui combine un light shelf intérieur (1 m) et un light shelf extérieur (1 m). Notons que le module avec light shelf présente une surface vitrée supplémentaire correspondant à 10 % de la surface du plancher. Ces calculs ont été réalisés pour une ouverture orientée au sud, le 15 juin à 13 huniv. par ciel clair avec soleil. Le light shelf combiné uniformise les niveaux d’éclairement dans la pièce.

Schéma efficacité lumineuse d'un light-shelf - 01.

Schéma efficacité lumineuse d'un light-shelf - 02.

Pour pouvoir comparer les apports donné spécifiquement par le light shelf, on peut partir d’un local uniquement équipé d’une bande vitrée en partie supérieure. La première simulation ci-dessous présente le cas d’un local éclairé uniquement par ce vitrage orienté au sud, le 15 juin à 13 huniv..

Schéma efficacité lumineuse d'un light-shelf - 03.

Les deux graphes suivants donnent les niveaux d’éclairement dans ce local suite à l’ajout d’un light shelf d’un mètre de long, placé respectivement à l’intérieur et à l’extérieur de la pièce.

Schéma efficacité lumineuse d'un light-shelf - 04.

Schéma efficacité lumineuse d'un light-shelf - 05.

La dernière simulation montre l’influence d’un light shelf combiné de 2 m de profondeur, centré au niveau du vitrage.

Schéma efficacité lumineuse d'un light-shelf - 06.

On observe que le light shelf extérieur augmente les niveaux d’éclairement du local tandis que le light shelf intérieur arrête le rayonnement solaire direct qui passe par le clerestory. Le light shelf combiné diminue faiblement l’éclairement en fond de pièce tout en uniformisant la distribution lumineuse de cet espace.


Les systèmes anidoliques

Les systèmes anidoliques sont des light shelves particuliers qui utilisent des réflecteurs spéculaires courbes, conçus pour profiter de la lumière diffuse du ciel. L’éblouissement potentiel provenant du rayonnement solaire direct doit être contrôlé par une protection solaire mobile à l’entrée du système anidolique.

Photo systèmes anidoliques.

Les deux photos ci-dessous présentent, sous un ciel couvert, les vues extérieures et intérieures de la façade sud du LESO où des réflecteurs anidoliques de 25 mètres de long ont été intégrés.

   

LESO – Architecte : D. Pagadaniel.

Le plafond anidolique est un système de distribution intensif de la lumière naturelle, adapté au ciel couvert. Il s’agit en fait d’un conduit lumineux intégré dans un plafond suspendu jusqu’au milieu de la pièce.

Schéma principe système anidolique.

Les éléments anidoliques sont placés aux deux extrémités du conduit lumineux : à l’extérieur pour collecter la lumière du ciel et à l’intérieur pour contrôler la direction de la lumière émise dans le local. Le problème des conduits lumineux traditionnels pour récolter la lumière du ciel réside dans leur section importante qui nécessite l’ajout d’un volume supplémentaire aux volumes habitables du bâtiment. L’adjonction d’un système anidolique permet de diminuer fortement la section du conduit lumineux par concentration de la lumière. Ce système permet donc d’augmenter le niveau d’éclairement dû à la lumière naturelle dans les espaces profonds, ce qui peut devenir considérable par ciel couvert, tout en occupant l’espace réduit d’un faux plafond.

Ces plafonds anidoliques ne sont toutefois pas encore disponibles sur le marché.


Annexe : les paramètres de simulation

Les simulations présentées ci-dessus proviennent du logiciel SUPERLITE, programme d’éclairage naturel faisant partie du progiciel ADELINE.

Elles sont toutes réalisées à partir d’un module de base de 7,2 m de profondeur, 4,8 m de largeur et 3 m de hauteur, éclairé par une fenêtre latérale de 4,58 m de large et de 1,13 m de haut, centrée horizontalement. Le plan de travail et le rebord inférieur de l’ouverture sont situés à 0,75 m du sol. La fenêtre couvre une aire de 5,2 m², ce qui correspond à 15 % de la superficie du plancher de ce local.

Schéma les paramètres de simulation.

Les simulations tiennent compte d’un double vitrage, dont le coefficient de transmission lumineuse est de 78 %. Cette vitre est placée en retrait de 0,15 m par rapport au plan de la façade. Le module simulé est situé en site parfaitement dégagé, sans élément d’ombrage. Les coefficients de réflexion des parois intérieures valent 15 % pour le sol, 45 % pour les murs et 70 % pour le plafond.

Les données météorologiques utilisées pour les calculs sont celles d’Uccle (Bruxelles) : 50,8° de latitude (nord), – 4,4° de longitude (est) et 100 m d’altitude. Le moment de la journée simulé est toujours précisé en fonction des heures universelles. Chaque fois qu’un paramètre de ce module de base a été modifié dans une simulation, le changement effectué est clairement précisé.

Finitions et protections superficielles de la toiture plate

Finitions et protections superficielles de la toiture plate

Les couches de protection assurent plusieurs rôles : protéger des rayonnements UV, améliorer l’aspect, réduire la température superficielle en cas d’ensoleillement.
On distingue

Les protections lourdes peuvent également servir de lestage et permettre la circulation.


Les protections légères

Les protections légères peuvent être de trois types.

Une couche de paillettes d’ardoise

Les paillettes sont uniquement appliquées sur les étanchéités bitumineuses. Elles peuvent être de couleurs différentes. Les couleurs foncées sont les plus courantes. Les paillettes sont directement appliquées sur les membranes en usine.

Protection par paillettes d’ardoise.

Une couche de peinture

La peinture est appliquée sur chantier. Pour éviter tout problème d’incompatibilité, il faut utiliser uniquement des peintures agréées par le fabricant des membranes.

La peinture est la seule protection légère qui peut être appliquée sur les membranes synthétiques qui dans la plupart des cas n’en nécessitent pas.

 

Protection par peinture.

Une feuille métallique

Certaines membranes en bitume modifié SBS sont revêtues en usine d’une feuille de cuivre ou d’aluminium gaufrée destinée à réfléchir les rayonnements solaires.
Le métal s’oxydant, l’effet réfléchissant disparaît au bout de quelques années.

Protection par feuille métallique.


Les protections lourdes

Les protections lourdes peuvent être de quatre types.

Du gravier

Le gravier peut être roulé ou concassé. Il est appliqué en une couche de 4 à 6 cm d’épaisseur, il a une granulométrie sélective qui peut varier de 16 à 45 mm. Il pèse ± 80 Kg/m² pour une épaisseur de 5 cm. La pente de la toiture ne peut pas être supérieure à 5 %.

Gravier roulé.

Dans les zones critiques, le lestage par gravier peut être insuffisant et doit parfois être complété par la pose de dalles en béton.

Les graviers roulés peuvent être déposés directement sur l’étanchéité.

Dans ce cas le taux de graviers cassés ne doit pas dépasser 15 % et ceux-ci doivent être uniformément répartis dans l’ensemble.

Les graviers concassés sont plus agressifs vis-à-vis des membranes.

Ils ne peuvent être posés que sur des membranes épaisses de type bitume modifié APP ou SBS armées d’un voile polyester. Une couche de protection intermédiaire constituée d’une natte de polyester ou de polypropylène, est conseillée sous le lestage. Cette couche est toujours nécessaire dans le cas d’une toiture inversée.

Des dalles

Les dalles peuvent être posées sur plots, ou sur une chape armée. Les dalles doivent être ingélives.

Dalles sur plots

Les dalles sont en général de grandes dimensions. Elles sont posées aux quatre coins sur des plots constitués de taquets réglables en hauteur ou de plaquettes en superposition.

Dalles sur plots.

L’embase des plots doit être suffisante pour qu’ils ne puissent s’imprimer dans les membranes bitumineuses sous l’effet du fluage par temps chaud.

Plots réglables à grande embase.

L’évacuation de l’eau se fait sous le dallage qui, de ce fait, sèche rapidement après la pluie. La hauteur des plots sera d’au moins 2.5 cm.

Régulièrement, certaines dalles doivent être enlevées pour permettre le nettoyage des boues accumulées sous le pavement. Il est parfois difficile de remettre correctement les dalles en place après démontage.

Les dalles ne doivent pas nécessairement suivre la pente du toit. Elles peuvent être posées horizontalement grâce au réglage possible des plots en hauteur.

Dalles drainantes

On peut également poser sur l’étanchéité (ou sur l’isolant, dans le cas d’une toiture inversée) des dalles drainantes. Il s’agit de dalles de grandes dimensions, largement rainurées en face inférieure. L’eau s’évacue par les rainures.

Dalles drainantes.

L’espace réservé à l’écoulement est plus réduit que dans le cas des dalles sur plots. Il risque de s’obstruer plus rapidement.

Étant donné l’absence de plots, le réglage vertical n’est pas possible. Il faut donc que la planéité de l’assise des dalles soit particulièrement régulière.

La grande dimension de la surface de contact diminue les risques d’écrasement et de fluage du support.

Dalles complexes isolantes

La dalle se compose d’un panneau isolant en mousse rigide de polystyrène extrudé sur lequel est ancrée une couche supérieure en béton renforcé de fibre.

Dalles complexes isolantes.

En fonction de la nature et de l’épaisseur du béton, ces dalles peuvent être circulables aux piétons, ou n’être accessibles que pour l’entretien de la toiture.

Les dalles sont posées librement sur la membrane d’étanchéité, les unes contre les autres. Ils peuvent être munis de rainures et languettes, ou pas.

La toiture ainsi constituée sera du type « toiture inversée » ou « toiture combinée ».

Dalles sur chape

Les dalles sont posées à plein bain de mortier sur une chape armée posée en indépendance de l’étanchéité.

Une couche de désolidarisation est placée entre l’étanchéité et la chape. Elle assure en même temps l’écoulement de l’eau d’infiltration au niveau de l’étanchéité.

Carrelage sur chape armée au-dessus de l’étanchéité.

La chape de pose doit être réalisée à l’aide de mortier ou de microbéton à sécrétions calcaires réduites.

Les dalles sur chape sont plus faciles à entretenir que les dalles sur plots, mais l’accès à la membrane pour une réparation est pratiquement impossible.

Des matériaux coulés en place : béton ou asphalte

Chape en mortier ou en béton coulé

Protection par chape armée.

Ce genre de protection peut se justifier lorsqu’il est nécessaire de protéger les couches sous-jacentes des sollicitations mécaniques importantes.

Cette chape subit des contraintes thermiques très importantes surtout la toiture est isolée et qu’elle ne bénéficie pas de la stabilité thermique du bâtiment. La chape doit donc être fractionnée et doit pouvoir glisser sur l’étanchéité. Les variations dimensionnelles seront résorbées dans des joints souples et étanches. Une feuille de glissement sera interposée entre l’étanchéité et la chape. Ces couches de protection seront découpées en zones de maximum 4 m de côté et assemblées entre elles au moyen de joints continus.

La protection doit être réalisée en microbéton à sécrétions calcaires réduites ou en béton à texture dense et présenter une épaisseur minimale de 50 mm.

Asphalte coulé

L’asphalte coulé est posé sur l’étanchéité en interposant une couche de séparation dont la fonction consiste à permettre l’évacuation des gaz qui se forment entre les membranes bitumineuses et l’asphalte lors de sa mise en place. Ces gaz proviennent du bitume réchauffé par la température de l’asphalte liquide.

Protection en asphalte.

Des joints de fractionnement doivent être prévus lorsque les dimensions de la toiture sont importantes.

Des pavements sur gravillon

Des pavés en béton de petit format sont posés sur une couche de gravier de granulométrie de 5 à 8 mm. La couche de gravier a une épaisseur d’environ 3 cm.

Attention !

Il doit être tenu compte du poids de la protection lourde lors du calcul de la résistance et de la flèche du support.

Le gravier et les dalles en pose libre (drainantes, sur plots, sur gravillon ou complexes isolants) rendent l’entretien, le contrôle et les réparations de l’étanchéité plus difficiles.

Ils permettent également la formation de poussière et la prolifération de végétaux.

Les matériaux coulés en place et les dalles sur chape ne permettent pas un accès à l’étanchéité sans détruire la couche de protection.

Bitumes

Bitumes

Les bitumes sont utilisés pour la fabrication des membranes d’étanchéité et pour le collage à chaud des différentes couches qui constituent une toiture plate : pare-vapeur, isolant, membrane d’étanchéité.

Ils entrent également dans la composition de l’asphalte.

Le bitume est un mélange visqueux noir ou brun foncé, d’hydrocarbures obtenu par distillation du pétrole.
On distingue


Les bitumes natifs

Comme leur nom l’indique, ces bitumes se trouvent à l’état naturel dans les couches géologiques.

Les bitumes de pénétration

Aussi appelés bitumes de distillation directe, ils sont obtenus industriellement par distillation de pétroles bruts après extractions des fractions plus légères comme l’essence, le mazout, les huiles.

Les bitumes oxydés

Aussi appelés bitumes soufflés, ils sont obtenus à partir de bitumes de pénétration, par adjonction d’huiles et insufflage d’air à haute pression.
Ils entrent dans la fabrication de membranes pouvant servir de sous-couche aux membranes bitumineuses d’étanchéité, et servent au collage à chaud.
Les différents types de bitumes oxydés sont identifiés par deux nombres :

  • Leur température moyenne de amollissement (en °C) testé selon la méthode « Ring and Ball ».
  • La profondeur de pénétration (en 1/10 mm) d’une aiguille dans les conditions de ce test.

On trouvera ainsi des bitumes 85/25, 95/25, 95/35, 100/15, 100/25, 105/35, 110/30, 115/15.

Les types les plus utilisés sont le 85/25 et le 110/30.

Pour fixer a membrane, on préférera le 110/30 qui se ramollit moins au soleil, et évite à la membrane de glisser.

Pour fixer l’isolant du 85/25 convient étant donné que le bitume est protégé de la chaleur par l’isolant.

Dans le cas du verre cellulaire, les fabricants d’isolant préconisent l’emploi du 100/25 qui reflue très aisément dans les joints, et se fige plus rapidement de sorte que les plaques d’isolant n’ont pas tendance à flotter dans le bitume.


Les bitumes modifiés

Ils sont également appelés bitume polymère.

Afin d’améliorer le comportement des bitumes à basse et haute température, et d’en augmenter la longévité, des polymères ont été additionnés aux bitumes soufflés.

Les bitumes modifiés qui entrent dans la composition des membranes d’étanchéité sont de deux types :

  • Les bitumes APP obtenus par adjonction de +/- 30 % de polypropylène atactique, qui ont des propriétés plastiques.
  • Les bitumes SBS obtenus par adjonction de +/- 12 % de caoutchouc styrène-butadiène-styrène qui ont des propriétés élastiques.

D’autres polymères font actuellement leur apparition dans la composition des bitumes améliorés.

Les bitumes modifiés pourraient également être utilisés comme produit de collage, mais leur coût est supérieur à celui du bitume oxydé dont les qualités sont suffisantes.

Vernis d’adhérence

Vernis d'adhérence


Le vernis d’adhérence a pour fonction d’assurer un meilleur accrochage du bitume chaud, de la colle bitumineuse à froid ou des membranes soudées, sur certains supports.

Sur les matériaux poreux comme le béton ou la maçonnerie, le vernis fixe la poussière résiduelle et il les rend moins perméables à l’eau.

Il s’applique uniformément à la raclette, à la brosse ou à l’arrosoir sur le support bien nettoyé en évitant les surépaisseurs. Il doit être sec avant de continuer les travaux.

Le vernis d’adhérence s’applique à raison de 200 à 300 gr/m².

On distingue deux type de vernis d’adhérence :


Les émulsions bitumineuses à l’eau

Il s’agit de vernis à base de bitume en suspension dans l’eau. De par leur nature, ils peuvent être utilisés sur un support poreux en béton ou en maçonnerie légèrement humide.


Les vernis bitumineux à solvants volatils

Aussi appelés « cutbacks » ils contiennent des bitumes en suspension dans des solvants volatils.

Ils ne peuvent être appliqués que sur des supports secs, et sont recommandés pour les supports non poreux comme ceux en tôles profilées.