Débit d’air variable

Débit d'air variable


Principe de fonctionnement

Pourquoi une variation du débit ?

Situons-nous en été. Comment répondre aux variations de charge d’un local ? Que se passe-t-il lorsque le soleil perce enfin l’épaisse couche nuageuse et fait monter la température ?

Un système de conditionnement d’air « classique » délivre un air plus froid (de 20°, l’air passe à 16°C, par exemple). Le débit d’air pulsé reste le même, mais la température diminue. On parle alors de « système à débit d’air constant ».

Une alternative consiste à garder la température constante tout l’été (16°C par exemple) mais à augmenter le débit d’air pulsé. On parle de « système à Débit d’Air Variable ». DAV disent les Français, VAV disent les anglophones (que l’on traduit en Volume d’Air Variable).

Dans un système « tout air-VAV », le débit d’air varie donc entre le minimum hygiénique pour les occupants et le maximum nécessaire pour reprendre toutes les charges du local (soleil, bureautique, personnes,…).

En pratique, le débit varie entre 30 et 100 % du débit nominal. La variation de débit est faite en agissant :

  • soit sur un volet motorisé,
  • soit directement sur les bouches de soufflage (conçues pour le débit variable).

Qui dit variation de débit, dit perturbation de la pression du réseau…

Si les bouches se ferment, la pression de gaine va augmenter. Toute la distribution de l’air en sera perturbée. Dès lors, on modulera la vitesse des ventilateurs pour maintenir une pression de gaine constante. Et par la même occasion, la consommation des ventilateurs en sera diminuée (voir aussi « la gestion de la ventilation à la demande« ).

Si la température est constante (16° par exemple), comment chauffer en hiver ?

Si l’installation doit aussi chauffer les locaux en hiver, le problème se complique !

On rencontre alors les variantes :

  • – monogaine
    • – avec chauffage par radiateurs indépendants
    • – avec chauffage par batterie terminale
  • – double gaine (une d’air froid et une d’air chaud)

Quel intérêt majeur par rapport aux systèmes à débit constant ?

Lorsque l’on sait que le coût du transport de l’air représente de 20 à 40 % du coût d’exploitation, le débit d’air variable se justifie certainement.

Encore faut-il que la réduction du débit d’air dans les locaux entraîne effectivement la réduction de la consommation du(es) ventilateur(s) ! Ainsi, certains systèmes créent un by-pass dans le faux plafond :  lorsque le débit pulsé diminue, l’air non utilisé est renvoyé en centrale…

Une installation VAV est particulièrement bien placée pour une utilisation optimale des énergies gratuites :

  • En hiver, de l’air frais extérieur peut alimenter les zones à rafraîchir sans nécessiter l’enclenchement des groupes frigorifiques.
  • En été, une ventilation nocturne peut décharger le bâtiment de la chaleur accumulée en journée.

Remarque : pour diminuer les sections de gaine, il est possible de distribuer l’air sous haute pression, à des vitesses variant entre 5 et 15 m/s.


Domaine d’application

Dans sa version simple (modulation du débit sans visée thermique si ce n’est pas le free cooling), une installation VAV peut s’appliquer à un grand nombre de situation : il s’agit ni plus ni moins d’un réseau de ventilation mécanique avec une capacité de moduler les débits local (ou groupe de local) par local. L’encombrement est limité puisque basé sur le débit hygiénique éventuellement légèrement majoré (+50 à +100%). Seul l’investissement dans les clapets de réglage et le système de gestion et d’optimisation est un frein.

Si par contre le VAV est la base d’un système de climatisation tout air, on rencontre les limites propre à cette approche du refroidissement : les gaines sont dimensionnées pour pouvoir refroidir tout le bâtiment avec de l’air. Un tel système de climatisation par l’air est encombrant et coûteux. Il ne justifie que lorsqu’une alimentation en air hygiénique importante est nécessaire, donc une présence nombreuse d’occupants. Si de plus cette présence est variable dans le temps, si les charges thermiques sont variables, il sera opportun de pouvoir moduler le débit : c’est l’objet du VAV.

On rencontre tout particulièrement cette application thermique du VAV dans les grands bureaux paysagers, ou dans les larges plateformes avec locaux de réunion, salles de conférences au centre du bâtiment : un apport d’air neuf est nécessaire en permanence. De plus, le refroidissement du centre du bâtiment est nécessaire toute l’année. Du free cooling est alors possible et permet d’éviter d’enclencher les groupes frigorifiques en hiver, voire en mi-saison. Les coûts d’exploitation en seront fortement réduits.

A la limite, c’est le concepteur qui devra organiser la fonction des locaux pour créer des zones thermiquement homogènes.

Les installations VAV « à bypass » (l’air non utilisé est renvoyé en centrale) sont à rejeter puisque le traitement de l’air reste total. On peut juste l’admettre dans le cas d’une grande zone à débit d’air constant (une grande usine) à côté de laquelle sont situés quelques locaux (les bureaux à coté de l’usine). Dans ce cas, un VAV à bypass sur l’alimentation des bureaux est compréhensible.


Différentes variantes technologiques

On distingue différentes variantes technologiques :

Les systèmes VAV mono gaine sans réchauffage terminal

Shéma principe systèmes VAV mono gaine sans réchauffage terminal.

On ne pulse que de l’air froid en été (entre 12 et 18°C) et de l’air chaud en hiver (entre 25 et 40°C). L’air est préparé en centrale et chaque local régule le débit d’air juste nécessaire en fonction de la température souhaitée, avec un débit minimum ajusté au débit d’air hygiénique.

Le plus simple est d’avoir une consigne fixe pour chaque saison et le passage d’une consigne à l’autre est réalisé par un thermostat extérieur : il y a basculement pour une température extérieure de +15°C, par exemple.

Les systèmes VAV mono gaine avec réchauffage terminal

L’idée est de prévoir un circuit d’air froid pour tous les locaux, à débit variable, complété par des batteries de chauffe pour les locaux périphériques.

Trois principes sont possibles :

> 1° soit l’apport de chaleur est réalisé par des corps de chauffe traditionnels (radiateurs, convecteurs).

Généralement, ces corps de chauffe sont placés en périphérie du bâtiment, le long des façades, pour vaincre les déperditions par les parois. Le système VAV assure la ventilation hygiénique toute l’année, refroidit le cœur du bâtiment en hiver et refroidit tout le bâtiment en été.

Schéma principe systèmes VAV mono gaine avec réchauffage terminal- 01.

>  2° soit les batteries de chauffe sont placées en série sur la gaine d’air.

Schéma principe systèmes VAV mono gaine avec réchauffage terminal- 02.

Une régulation spécifique est nécessaire :

Schéma régulation.

Par exemple, si la sonde d’ambiance détecte une température inférieure à 21°C, la vanne de chaud est ouverte à 100 % et le débit d’air est réduit au seuil minimal hygiénique. Lorsque la température intérieure approche de 23°, la vanne chaud se ferme progressivement. Lorsque la température dépasse 23°, la vanne chaud est fermée et le débit d’air frais augmente progressivement jusqu’à atteindre le débit maximal à 24°C. Ici encore, l’insertion d’une zone neutre entre chaud et froid sera énergétiquement préférable.

En pratique, la batterie de chauffe est souvent intégrée dans la boîte de détente. Elle est alimentée en eau chaude, ou remplacée par une résistance électrique.

> 3° soit les batteries sont placées en parallèle par rapport au local :

Schéma principe systèmes VAV mono gaine avec réchauffage terminal- 03.

La régulation est complétée par l’enclenchement du ventilateur d’air recyclé lorsque le chauffage est enclenché :

Schéma régulation.

Chaque batterie chaude voit son débit modulé en fonction du thermostat d’ambiance de la zone qu’elle alimente.


Avantages

  • Lors de la conception, un grand avantage du système à débit d’air variable est de pouvoir diminuer les dimensions de la centrale de traitement.Comparons les systèmes :
    • Avec un système à débit d’air constant, chaque zone sera dimensionnée avec un débit d’air permettant de répondre à la charge frigorifique extrême; dans le caisson de traitement d’air central, on devra traiter (en permanence !) le total des débits maximaux de toutes les zones !
    • Par contre, avec le système VAV, on va tenir compte du fait que le soleil tourne autour du bâtiment et que la charge maximale de la zone Ouest survient lorsque la zone Est est à faible demande; la centrale de préparation sera dimensionnée sur base du cumul instantané possible entre toutes les zones,… ce qui est déjà nettement plus raisonnable !

    Il en résulte une économie du coût d’investissement (par rapport à un système à débit constant de même puissance).

  • L’avantage énergétique suit directement : pourquoi pulser en permanence le débit maximal dans chaque zone ? Tout particulièrement en mi-saison, pourquoi pulser un maximum d’air à une température « neutre » (20°C) alors les besoins sont nuls (la température ambiante est dans la zone neutre) ? La force du VAV est de réduire la vitesse du ventilateur à ce moment et de ne pulser que le débit d’air hygiénique. La consommation du ventilateur (proportionnelle au cube du débit d’air pulsé) est fortement réduite.Il en résulte une économie du coût d’exploitation (par rapport à un système à débit constant de même puissance). Le chiffre de 20 % d’économie thermique et électrique (ventilateur) est couramment cité, entre un VAV simple (sans réchauffage terminal) et un système unizone à débit constant.
  • L’avantage acoustique lui est lié encore : la grande vitesse (et donc les niveaux sonores les plus élevés) est réservée aux charges extrêmes. Ce qui est particulièrement apprécié par les occupants.
  • Par rapport aux installations de type « air-eau » (ventilo-convecteurs,…), le VAV permet également de réaliser du free cooling des bâtiments en hiver et en mi-saison : l’air extérieur vient directement refroidir le bâtiment, sans participation du groupe frigorifique.

Inconvénients

  • Le réglage d’un débit d’air est moins aisé que le réglage d’une température. Il semble que sur le terrain la mise au point d’une installation VAV donne parfois quelques cheveux blancs ! Tout particulièrement, le réglage des registres d’air neuf paraît délicat.
  • Le coût d’installation reste élevé, au moins par rapport à une installation de ventilos-convecteurs.
  • L’encombrement n’est pas négligeable, comme pour toutes les installations « tout air ». Les gaines dans chaque zone sont dimensionnées pour transporter le débit maximum, correspondant à la charge extrême de l’été…

  • L’air extérieur gratuit de l’hiver doit être préchauffé dès que sa température devient inférieure à la température de pulsion. Et ce chauffage finit par coûter fort cher. Un recyclage de l’air extrait permet de supprimer ce budget mais n’est pas toujours souhaité pour des raisons hygiéniques. Un récupérateur de chaleur lui est préféré, mais il suppose d’en faire l’investissement.

Système tout air, à débit constant, double gaine

Système tout air, à débit constant, double gaine

Dans les années 70, pour gérer les particularités locales on a développé un réseau « tout air » double conduit (un d’air chaud et un d’air froid), avec boîte de mélange à l’entrée des locaux : quel coût d’investissement et quel gaspillage énergétique (on « détruit » l’énergie produite lors du mélange) !

Il s’agit donc là d’une technique qui n’est plus guère rencontrée aujourd’hui.

Ce système était utilisé lorsqu’un débit d’air élevé et constant est souhaité, que les besoins des locaux sont extrêmement variables d’une zone à l’autre (on ne souhaite pas la même température par exemple), et que le système doit répondre avec une très grande rapidité aux variations de charges (on n’est pas soumis au même ensoleillement par exemple).

En pratique, il a été peu utilisé dans les bureaux (l’inertie des bureaux ne demande généralement pas une grande souplesse), parfois en secteur hospitalier, plus souvent dans le secteur industriel avec exigences élevées de régulation. On a aussi pu le trouver dans des bâtiments spécifiques tels que des complexes de cinéma.


Principe de fonctionnement

Le système de conditionnement d’air « tout air, à débit constant, double gaine » est un système où deux niveaux de température d’air sont préparés en centrale, puis distribués par deux gaines distinctes vers le/les locaux. On l’appelle également « dual duct ».

En pratique, un caisson central assure un premier niveau de préparation de l’air (par exemple jusque 16°), puis une batterie de post-chauffe et une de refroidissement préparent de l’air chaud et de l’air froid, distribués dans deux gaines différentes. Des boîtes de mélange sont prévues à l’entrée de chaque local, ou zone de locaux ayant des besoins similaires. Chaque registre de mélange est piloté par un thermostat d’ambiance. Ce mélange est destructeur d’énergie. Les réseaux double gaine doivent donc être évités dans une approche URE.
En voici un exemple :

Ce système constitue une branche de la grande famille du conditionnement d’air « tout air » :

– débit constant

  • monogaine
    • unizone
      • basse pression
      • haute pression (avec boîte de détente)
    • multizone
      • basse pression
      • haute pression (avec boîte de détente)
  •  double gaine multizone (avec boîte de mélange)
    • basse pression
    • haute pression (avec boîte de détente)

– débit variable

  • avec chauffage par radiateurs indépendants
  • avec chauffage par batterie à eau chaude

Comme on le voit, il existe de nombreuses variantes !

Expliquons chacun des termes :

>  « tout air »

L’air est le fluide caloporteur de chaleur, de froid, ou d’humidité. Ainsi :

  • si en hiver le local présente des déperditions, l’air sera pulsé à 28°C, par exemple,
  • si en été, le local subit des apports solaires, l’air sera pulsé à 16°C,
  • si, dans la salle de cinéma, le film très suggestif provoque beaucoup de dégagement de vapeur de la part des spectateurs, l’air sera pulsé très sec !

>  « débit constant »

Le débit est fixé par le ventilateur (qui ne dispose que d’une seule vitesse de rotation).

La régulation est réalisée par action sur la température et le taux d’humidité de l’air pulsé.

>  « double gaine »

Les pièces climatisées sont alimentées par deux gaines, par exemple une gaine d’air chaud à 35°C, et une gaine d’air froid à 16°C.

>  « multi-zones »

Le système « double gaine » est forcément multi-zones : on crée plusieurs zones dans le bâtiment, chaque zone pouvant recevoir un air traité spécifiquement en fonction de ses besoins.

Remarque : une zone peut comprendre plusieurs locaux.

> « basse ou haute pression »

On parle de basse pression du ventilateur  :

  • si pression < 800 Pa, ou 80 mmCE
  • si vitesse dans les gaines < 7 m/s

On parle de réseau haute pression si la vitesse dans les conduits atteint de 12 à 16 m/s


Détails technologiques du traitement de l’air

L’air est d’abord pré-traité en centrale : mélange éventuel de l’air neuf et de l’air repris, filtration, préchauffage éventuel de l’air (notamment pour éviter tout risque de gel de la batterie froide) et pulsion dans deux caissons.

Un caisson est équipé d’un échangeur de postchauffe et si nécessaire d’un système d’humidification (généralement un humidificateur à vapeur) : c’est le préparateur du réseau chaud.

Un deuxième caisson est équipé d’une batterie froide, assurant éventuellement la déshumidification : c’est le préparateur du réseau froid.

Le chauffage de l’air est assuré

  • soit par batterie électrique,
  • soit par batterie d’eau chaude préparée en chaufferie.

Le refroidissement de l’air est assuré

  • soit par l’évaporateur d’un groupe frigorifique (système à détente directe),
  • soit par de l’eau glacée préparée par un groupe de production frigorifique.

Les parois des caissons sont à double enveloppe en tôle d’acier galvanisé ou peint. Un isolant acoustique et thermique de 25 mm d’épaisseur minimale est fixé entre les deux tôles.

À l’entrée de chaque local, ou de chaque zone de locaux, les deux flux d’air sont mélangés dans une « boîte de mélange » terminale. Le débit total est donc constant, c’est la proportion d’air chaud et d’air froid qui varie.


Variantes technologiques

Réseau sous haute pression

Pour réduire les sections, on augmente la vitesse de l’air dans les gaines. Les pertes de charge augmentent et obligent à travailler à haute pression au ventilateur. Des dispositifs de détente sont alors associées aux boîtes de mélange.

La pression du ventilateur est généralement >  1 000 PA, ou 100 mmCE et la vitesse dans les gaines > 10 m/s.

A débit égal, doubler la vitesse de l’air dans les gaines (par rapport au système basse pression) permet de diminuer par deux la section nécessaire. Mais les frottements de l’air sur les parois des gainages sont proportionnels au carré de la vitesse. Et donc le ventilateur doit vaincre des pertes de charges beaucoup plus élevées, pouvant à la limite atteindre 2 000 PA Aussi, actuellement, pour des raisons d’économie d’énergie (et de bruit), on ne dépasse plus 15 m/s, ce qui génère des pressions de ventilateur de 500 à 1 500 PA.

Après passage dans une boîte de détente, l’air est diffusé par les bouches de soufflage.

Les boîtes de détente sont généralement des boîtes insonorisées, comportant un organe déprimogène (tôle perforée par exemple). Un régulateur maintient le débit à valeur constante.

À ces pressions, des précautions sérieuses sont à prendre en matière acoustique, notamment au niveau des appareils terminaux (amortisseur de bruit).

Recyclage partiel

En vue de diminuer les coûts d’exploitation, l’air extrait peut être recyclé partiellement. On part de l’idée que l’on ne peut faire du froid et du chaud en même temps et que donc un des 2 échangeurs est à l’arrêt.

Dès lors, en été la batterie froide refroidit et la batterie chaude est à l’arrêt. Dans le réseau chaud circule de l’air mélangé entre l’air recyclé et l’air extérieur (chaud).

En hiver, seule la batterie chaude fonctionne. Et dans le réseau froid circule de l’air mélangé entre l’air recyclé et l’air extérieur (froid).

Et en mi-saison ? Que faire lorsque des locaux ont des demandes différentes ? Astuce : les deux batteries fonctionnent mais la batterie de chaud est alimentée par l’eau de condensation du groupe frigorifique qui produit l’eau glacée !

Récupération de la chaleur sur l’air extrait

Pour récupérer l’énergie contenue dans l’air extrait tout en évitant généralement tout risque de contamination, l’air sortant croise l’air neuf entrant dans un échangeur de chaleur.

Et toute combinaison des variantes précédentes …

Il est bien entendu possible de combiner les différentes variantes reprises ci-dessus.


Avantages

  • Possibilité d’adapter individuellement les ambiances suivant les locaux,
  • rapidité de la réponse du système à la demande des locaux,
  • possibilité d’utilisation d’air extérieur pour le refroidissement gratuit (free cooling),
  • contrôle de l’humidité relative en centrale et de l’empoussièrement.

Inconvénients

  • Le débit d’air est constant. Or il est dimensionné pour la situation extrême, généralement celle de l’été, en période de canicule avec un soleil de plomb ! Conclusions : de tels débits entraînent une consommation élevée des ventilateurs et, dans certains cas, de l’inconfort … toute l’année !
  • La consommation élevée du ventilateur devient très élevée dans le cas des installations haute pression.
  • L’encombrement de la centrale, des caissons de préparation terminaux et du double réseau de gaines (gros débits, section importante des conduites d’air neuf, d’air pulsé et d’air extrait).
Exemple.

Une salle de spectacles est maintenue à 20°C. De l’air chaud est pulsé à 30°C. Les déperditions du local sont de 20 kWatts. Quelle sera la section de la conduite nécessaire ?

La capacité calorifique de l’air étant de 0,34 Wh/m³.K, le débit est donné par :

débit = puissance / 0,34 x DT° (en m³/h).

Ici, débit = 20 000 / 0,34 x 10 = 5 882 m³/h = 1,63 m³/s

Sur base d’une vitesse de 8 m/s, la section devient 1,63 / 8 = 0,2 m², soit une section de 40 cm x 50 cm, ou une conduite circulaire de 0,5 m de diamètre !

La même puissance est transportée par de l’eau dans une tuyauterie de 1,75 cm de diamètre ! (vitesse : 1 m/s)

C’est pour limiter cet encombrement que l’on a recours à une conception de réseau de gaines sous haute pression. L’encombrement est plus limité mais reste toujours plus élevé que pour le système mixte eau + air, par exemple.

  • Intégration obligatoire dès la conception du bâtiment.
  • Coût d’exploitation très important :
    • Risque de « casser » de l’énergie : le réseau de froid prépare l’air à une température correspondant aux besoins du local le plus demandeur (le local informatique, exposé au Sud, par exemple !). Dès lors, tous les autres locaux devront mélanger cet air froid avec de l’air du réseau chaud…!  Une régulation centrale doit piloter le tout « intelligemment », et profiter de l’air extérieur lorsque sa température peut être valorisée, sans quoi les coûts d’exploitation sont catastrophiques ! (à noter qu’un tel système qui ferait du chaud et du froid simultanément est interdit en France, sauf si le fluide chauffant est de récupération, par exemple sur le condenseur de la machine frigorifique).
    • Il n’est pas possible de moduler le débit d’air neuf en fonction de la présence ou non d’occupants dans chacune des zones.
    • Des fuites d’un réseau vers l’autre apparaissent toujours dans la boîte de mélange où de 3 à 10 % du débit total est perdu malgré la fermeture du clapet.
    • Les batteries électriques sont peu coûteuses à l’investissement mais très onéreuses à l’usage, à l’opposé des batteries d’eau chaude qui sont coûteuses à l’investissement (deux tubes).
    • Le recyclage de l’air paraît aléatoire, puisque l’air extrait sera issu d’un mélange, sauf en plein hiver et en plein été… Une étude de rentabilité s’impose !
  • Si la vitesse de déplacement de l’air est augmentée pour diminuer les sections, le niveau de bruit sera nettement plus élevé et demandera un traitement acoustique sérieux.
  • Nécessité d’équipements de plus grande solidité pour résister aux pressions, si variante en haute pression.
  • Enfin, et ce n’est pas négligeable, le coût d’investissement de départ est très élevé !

Très honnêtement, avec de tels inconvénients, y a-t-il encore intérêt à avoir un système avec traitement centralisé ?

Système tout air, à débit constant, mono-gaine

Système tout air, à débit constant, mono-gaine


Principe de fonctionnement

Le système de conditionnement d’air « tout air, à débit constant, mono-gaine » est un système où l’air est préparé (chauffé, refroidi, humidifié,…) en centrale dans un caisson de traitement d’air, puis envoyé par un réseau de gaines vers le/les locaux.

En voici un exemple, appliqué à une zone :

Il constitue une branche de la grande famille du conditionnement d’air « tout air » :

– débit constant

  • monogaine

    • unizone  
    • multizone
  • double gaine multizone (avec boîte de mélange)
    • basse pression
    • haute pression (avec boîte de détente)

– débit variable

  • avec chauffage par radiateurs indépendants
  • avec chauffage par batterie à eau chaude

Comme on le voit, il existe de nombreuses variantes !

Expliquons chacun des termes :

>  « tout air » :

L’air est le fluide caloporteur de chaleur, de froid, ou d’humidité.
Par exemple :

  • si en hiver le local présente des déperditions, l’air pourra être pulsé à 28°C,
  • mais si en été, le local subit des apports solaires, l’air pourra être pulsé à 16°C,
  • et si, dans la salle de cinéma, le film très suggestif provoque beaucoup de dégagement de vapeur de la part des spectateurs, l’air sera pulsé très sec !

>  « débit constant »

Le débit est fixé par le ventilateur (qui ne dispose que d’une seule vitesse de rotation).

La régulation est réalisée par action sur la température et le taux d’humidité de l’air pulsé.

>  « mono-gaine » ou « double gaine »

Un seul réseau de gaines est créé, et donc un seul niveau de température est disponible pour la(les) pièce(s) climatisée(s). A l’inverse, les réseaux double gaine véhiculent simultanément de l’air chaud et de l’air froid, le mélange étant effectué à l’arrivée dans le local. Ce mélange est destructeur d’énergie. Les réseaux double gaine doivent donc être évités dans une approche URE.

>  « uni-zone ou multi-zones »

Uni-zone : il n’existe qu’une seule zone à traiter (une salle de conférences, par exemple),

Multi-zones : on crée plusieurs zones dans le bâtiment, chaque zone pouvant recevoir un air traité spécifiquement en fonction de ses besoins.

Remarque : une zone peut comprendre plusieurs locaux.

>  On peut aussi faire une distinction selon le niveau de pression « basse ou haute »

On parle de basse pression du ventilateur

  • si pression < 800 Pa, ou 80 mmCE
  • si vitesse d’air dans les gaines comprises entre 2 et 7 m/s

On parle de réseau haute pression si la vitesse dans les conduits atteint de 12 à 16 m/. Ces vitesses entrainant des consommations excessives des ventilateurs, on ne travaille aujourd’hui plus en haute pression lorsque le débit est constant.

Une unité de toiture (ou « roof top ») aurait pu être classée dans les installations « tout air, à débit constant, mono-gaine ». Elle présente la spécificité d’être équipée d’un refroidissement à détente directe.

 


Domaine d’application

Le système « tout air » a de l’intérêt lorsqu’un débit d’air élevé et constant est souhaité : on pense par exemple aux salles de spectacles où de toute façon on doit apporter de l’air aux personnes …
Le système « tout air – unizone » a de l’intérêt lorsque

  • Un seul local est à climatiser, généralement de grand volume : salle de spectacles, salle d’opération, salle de réunion, …
  • Il existe plusieurs locaux dont le fonctionnement thermique est similaire et pour lesquels un respect strict des consignes de température n’est pas imposé : plusieurs bureaux similaires sur une même façade, …
  • Il y a présence de locaux à chauffage très intermittent comme des salles de réunion, de spectacles,… : dans ce cas, la variante avec système de chauffage complémentaire par radiateurs permet d’assurer un chauffage de base entre 10 et 15°C en période de non-occupation, et une mise en confort très rapide dès l’arrivée des personnes (ou par horloge). Ce système est économique et supprime la surchauffe des locaux en période de forte occupation grâce aux possibilités de ventilation et de rafraîchissement, et à la faible charge des parois.

Le système « tout air – multizone » a de l’intérêt dans le cas où les charges thermiques varient mais que les locaux peuvent être regroupés en plusieurs zones de fonctionnement thermique similaire (et pour lesquels une modulation limitée des consignes de température est requise) : le placement de batteries terminales permettra alors de répondre plus précisément aux besoins.

Pourrait-on l’appliquer à un complexe de plusieurs salles de cinéma ? Probablement pas puisqu’il faudra chauffer la salle où deux nostalgiques regardent un film de Ingmar Bergmann, et refroidir la salle voisine où 350 personnes regardent avec passion « Titanic : le retour » où le bateau resurgit du fond des mers (tiens, cela me donne une idée…)


Détails technologiques de la centrale de traitement

Le chauffage de l’air est assuré

  • soit par batterie électrique,
  • soit par batterie d’eau chaude préparée en chaufferie.

Le refroidissement de l’air est assuré

  • soit par l’évaporateur d’un groupe frigorifique (système à détente directe),
  • soit par de l’eau glacée préparée par un groupe de production frigorifique.

L’humidification est réalisée :

Un réseau de pulsion distribue l’air traité et un réseau d’extraction en assure la reprise. En général, le débit de pulsion est légèrement supérieur au débit d’extraction afin de maintenir les locaux en surpression.

Constitution du caisson de traitement d’air.

Les parois sont à double enveloppe en tôle d’acier galvanisé ou peint. Un isolant acoustique et thermique de 25 mm d’épaisseur minimale est fixé entre les deux tôles.


Variantes technologiques

Réchauffage batteries terminales

Que faire si le bâtiment présente des zones différentes ? Par exemple des bureaux placés sur des façades différentes… Une première solution consiste à placer les batteries terminales en tête des différentes zones pour adapter la fourniture aux besoins.

Généralement, on rencontre soit des batteries alimentées eau chaude, soit des batteries électriques. Ceci ne répond qu’aux besoins variables de l’hiver… À noter qu’il est possible de placer une batterie de froid complémentaire à l’entrée de l’une ou l’autre zone, mais l’avantage d’une centralisation du traitement disparaît progressivement …

Chauffage par radiateurs

Le chauffage peut être assuré indépendamment, par un réseau de radiateurs en allège des fenêtres par exemple. Mais la régulation de la température des ambiances n’est pas toujours simple car il peut y avoir conflit entre les deux systèmes.

Recyclage partiel

En vue de diminuer les coûts d’exploitation, l’air extrait peut être recyclé partiellement.

Des registres motorisés modulent les débits d’air recyclé et d’air rejeté. Le débit d’air neuf peut donc varier mais sans jamais descendre sous le débit minimal d’air neuf hygiénique en période d’occupation.

Récupération de la chaleur sur l’air extrait

Pour récupérer l’énergie contenue dans l’air extrait tout en évitant généralement tout risque de contamination, l’air sortant croise l’air neuf entrant dans un échangeur de chaleur.

Humidification par humidificateur à vapeur

Dans ce cas, la batterie de post-chauffe peut être supprimée.

Réseau sous haute pression

Pour réduire l’encombrement, l’air est préparé en centrale dans le caisson de traitement d’air, puis conduit à haute vitesse vers le/les locaux.  On parle alors de système « tout air, à débit constant, mono gaine, uni-zone, haute pression » !

La pression du ventilateur est généralement > 1 000 PA (ou 100 mmCE) et la vitesse dans les gaines > 10 m/s.

A débit égal, doubler la vitesse de l’air dans les gaines (par rapport au système basse pression) permet de diminuer par deux la section nécessaire. Mais les frottements de l’air sur les parois des gainages sont proportionnels au carré de la vitesse. Et donc le ventilateur doit vaincre des pertes de charges beaucoup plus élevées, pouvant à la limite atteindre 2 000 PA. En pratique, on évite donc cette technologie aujourd’hui.

Après passage dans une boîte de détente, l’air est diffusé par les bouches de soufflage.

Les boîtes de détente sont généralement des boîtes insonorisées, comportant un organe déprimogène (tôle perforée par exemple). Un régulateur maintient le débit à valeur constante.

À ces pressions, des précautions sérieuses sont à prendre en matière acoustique, notamment au niveau des appareils terminaux (amortisseur de bruit).

Toute combinaison des variantes précédentes

À titre d’exemple, on rencontre ainsi des installations « tout air, à débit constant, mono gaine, multi-zones, haute pression »


Avantages

  • Simplicité globale,
  • facilité de dimensionnement,
  • régulation simple, fiable et centralisée,
  • fonctionnement stable, donc coût de maintenance réduit,
  • pas d’alimentation en eau chaude ou froide dans les locaux, sauf si la variante avec batteries de réchauffage en eau chaude est choisie,
  • faible niveau sonore, sauf avec les installations haute pression,
  • possibilité d’utilisation d’air extérieur pour le refroidissement gratuit (free cooling),
  • contrôle de l’humidité relative en centrale et de l’empoussièrement.

Inconvénients

  • Le débit d’air est constant. Or il est dimensionné pour la situation extrême, généralement celle de l’été, en période de canicule avec un soleil de plomb ! Conclusions : de tels débits entraînent une consommation élevée des ventilateurs et, dans certains cas, de l’inconfort toute l’année !
  • La consommation élevée du ventilateur devient très élevée dans le cas des installations à Haute Pression.
  • L’encombrement de la centrale et du réseau de gaines (gros débits, section importante des conduites d’air neuf, d’air pulsé et d’air extrait),
Exemple.

Une salle de spectacles est maintenue à 20°C. De l’air chaud est pulsé à 30°C. Les déperditions du local sont de 20 kWatts. Quelle sera la section de la conduite nécessaire ?

La capacité calorifique de l’air étant de 0,34 Wh/m³.K, le débit est donné par :

débit = puissance / 0,34 x DT° (en m³/h)

Ici, débit = 20 000 / 0,34 x 10 = 5 882 m³/h = 1,63 m³/s

Sur base d’une vitesse de 8 m/s, la section devient 1,63 / 8 = 0,2 m², soit une section de 40 cm x 50 cm, ou une conduite circulaire de 0,5 m de diamètre !

La même puissance est transportée par de l’eau dans une tuyauterie de 1,75 cm de diamètre ! (vitesse : 1 m/s)

C’est pour limiter cet encombrement que l’on a recours à une conception de réseau de gaines sous haute pression. L’encombrement est plus limité mais reste toujours plus élevé que pour le système mixte eau + air, par exemple.

  • Intégration obligatoire dès la conception du bâtiment.
  • Si uni-zone, température et humidité de soufflage uniques, d’où, si plusieurs locaux :
    • Un manque de précision dans le respect des consignes.
    • Une surconsommation suite à l’absence de régulation par pièce.
  • Si multi-zone :
    • Risque de « casser » de l’énergie : le caisson de préparation primaire refroidit l’air en fonction des besoins de la zone la plus demandeuse et les batteries de post-chauffe des autres zones devront réchauffer l’air par la suite… On détruit donc de l’énergie.
      (À noter qu’un tel système est d’ailleurs interdit en France, sauf si le fluide chauffant est de récupération, par exemple sur le condenseur de la machine frigorifique).
    • Il n’est pas possible de moduler le débit d’air neuf en fonction de la présence ou non d’occupants dans chacune des zones.
    • Si l’air doit pouvoir être refroidi et réchauffé distinctement dans chaque zone, une batterie de chauffe et un groupe de refroidissement peuvent être ajoutés pour chaque zone, mais le coût d’installation devient prohibitif.
    • Un compromis peut consister à installer une batterie froide terminale uniquement pour la zone la plus demandeuse de froid.
    • Les batteries électriques sont peu coûteuses à l’investissement mais très onéreuses à l’usage, à l’opposé des batteries d’eau chaude qui sont coûteuses à l’investissement (deux tubes).

En résumé, il n’y a pas de solution idéale en multi-zone. Une régulation centrale doit piloter le tout « intelligemment », sans quoi les coûts d’exploitation sont catastrophiques !

  • Si la vitesse de déplacement de l’air est augmentée pour diminuer les sections, le niveau de bruit sera nettement plus élevé et demandera un traitement acoustique sérieux.
  • Equipements de plus grande solidité pour résister aux pressions, si variante en haute pression.

Exemple de régulation

Citons en exemple le cas de salles de réunion intérieures alimentées par un réseau d’air commun. Comme les salles n’ont pas de surface déperditive, le concepteur n’a envisagé que des batteries froides locales.

La température de pulsion est réglée pour éviter l’inconfort même lorsqu’une salle est peu occupée. Résultat : on chauffe l’air neuf et on refroidit l’ambiance dans les salles à forte occupation. Si une batterie chaude n’est pas installée dans chaque salle, l’algorithme à imaginer pour limiter la destruction d’énergie doit être du type (source : MATRIciel sa, 2010) :

Légende

  • Text  = température extérieure
  • Text_cons_NC  = température extérieure de non chauffage (arrêt du besoin de chauffage du bâtiment) – Paramétrable (par défaut : 15°C)
  • Treprise = température de l’air mesurée dans la reprise commune vers le GE
  • Hzvent = fréquence d’alimentation des ventilateurs de pulsion et d’extraction (liés)
  • Vroue = vitesse de la roue de récupération de chaleur sur l’air extrait (de 0% = sans récupération, 100% = récupération maximale)
  • Tpuls_GP = température de pulsion mesurée à la sortie du GP
  • Tpuls_GP_min_hiver = consigne de température de pulsion minimale de l’air dans les salles en hiver, à la sortie du GP – Paramétrable (par défaut : 16°C)
  • Tpuls_GP_min_été = consigne de température de pulsion minimale de l’air dans les salles en été à la sortie du GP – Paramétrable (par défaut : 16°C)
  • Tamb_min = température ambiante mesurée sur les sondes d’ambiance des salles. Valeur minimale des mesures
  • Tamb_cons_hiver = température de consigne ambiante des salles en hiver – Paramétrable (par défaut : 20°C)
  • Thors_gel = température de pulsion correspondant à la protection anti-gel des batteries du GP – Paramétrable (par défaut : 5°C)
  • Tamb = température ambiante mesurée par la sonde d’ambiance d’une salle
  • Tamb_cons_été = température ambiante de consigne maximale à ne pas dépasser dans les salles – Paramétrable (par défaut : 25°C)
  • %HR reprise = humidité relative mesurée dans la reprise
  • %HR reprise_cons = consigne d’humidité relative mesurée dans la reprise – Paramétrable (par défaut : 40%)

En hiver

Condition générale : Text  < Text_cons_NC et Text  < Treprise + 1°C

Permanent

  • Enclenchement chaudière
  • Modulation de la température d’eau de départ en fonction de la température extérieure (courbe de chauffe)
  • Arrêt groupe de froid
  • Arrêt circuit batterie froide

En horaire d’occupation

  • Enclenchement GP/GE
  • Libération circuit batterie chaude
  • Hzvent = 50 Hz
  • Vroue = 0%
  • Si Tpuls_GP < Tpuls_GP_min_hiver
    Ou Tamb_min < Tamb_cons_hiver
    Ou Tpuls_GP < Thors_gel : cascade avec (chronologiquement) :
  1.  Modulation de la récupération de chaleur avec limite Vroue = 100%
  2. action sur la batterie chaude du GP
  • par salle : si Tamb > Tamb_cons_été : action sur le ventilo-convecteur
  • Si %HRreprise < %HR reprise_cons : action sur humidificateur vapeur

En horaire d’inoccupation (nuits et week-ends)

  • Arrêt GP/GE
  • Arrêt ventilo-convecteurs
  • Fermeture vanne batterie chaude, arrêt circulateur (avec protection hors gel)

En période de relance (inoccupation)

Sans objet.

En mi-saison

Condition générale : Text  > Text_cons_NC et Text  < Treprise + 1°C

Permanent

  • Arrêt chaudière
  • Arrêt circuit batterie chaude
  • Arrêt groupe de froid
  • Arrêt circuit batterie froide
  • Arrêt humidification

En horaire d’occupation

  • Enclenchement GP/GE
  • Hzvent = 50 Hz
  • Vroue = 0%
  • Si Tpuls_GP < Tpuls_GP_min_hiver
    Ou Tamb_min < Tamb_cons_hiver
    Ou Tpuls_GP < Thors_gel : Modulation de la récupération de chaleur avec limite Vroue = 100%
  • par salle : si Tamb > Tamb_cons_été : action sur le ventilo-convecteur

En horaire d’inoccupation (nuits et week-ends)

  • Arrêt GP/GE
  • Arrêt ventilo-convecteurs

En période de relance (inoccupation)

Sans objet

En été

Condition générale : Text  > Text_cons_NC et Text  > Treprise + 1°C

Permanent

  • Libération groupe de froid
  • Arrêt chaudière
  • Arrêt circuit batterie chaude
  • Arrêt humidification

En horaire d’occupation

  • Enclenchement GP/GE
  • Libération circuit batterie froide
  • Hzvent = 50 Hz
  • Vroue = 100%
  • Si Tpuls_GP > Tpuls_GP_min_été : action sur la batterie froide du GP
    par salle : si Tamb > Tamb_cons_été : action sur le ventilo-convecteur

En horaire d’inoccupation (nuits et week-ends)

  • Arrêt groupe de froid
  • Arrêt GP/GE
  • Arrêt ventilo-convecteurs
  • Fermeture vanne batterie froide, arrêt circulateur

En période de relance (inoccupation)
Sans objet.