Grandes familles de systèmes de refroidissement

Grandes familles de systèmes de refroidissement


Présentation des grandes familles

Souvent on distingue 3 grandes familles de systèmes de climatisation en fonction du mode de transport de l’énergie frigorifique. Le rafraîchissement des locaux peut se faire :

  1. Par l’intermédiaire d’un réseau d’air,
  2. par l’intermédiaire d’un réseau d’eau froide ou d’eau glacée,
  3. par contact direct entre l’air à refroidir et l’évaporateur de la machine frigorifique (« détente directe »).

Famille 1 : les installations centralisées « tout air »

Puisque de l’air hygiénique doit de toute façon être apporté aux occupants, la première idée consiste à profiter du réseau de distribution d’air pour fournir la chaleur ou le froid demandés par les locaux.

Mais pour un bureau le débit d’air hygiénique entraîne un renouvellement du volume d’air du local :

Exemple.

1 personne demande 30 m³/h d’apport d’air neuf. Il occupe 10 m², sur une hauteur de 3 m, soit 30 m³. Le ratio « débit/volume occupé » est de 1 [1/h].

Par contre le transport de la chaleur et du froid entraîne des débits d’air nettement plus importants : on atteint des débits correspondant à 4 … 10 renouvellements du local, chaque heure, …

Exemple.

Les apports internes et les apports solaires génèrent une puissance de 100 W/m². Pour les 10 m² de l’occupant, cela crée un besoin frigorifique de 1 000 W. Supposons que l’ambiance est à 24 °C et l’air frais apporté à 14 °C, l’écart de soufflage sera de 24 – 14 = 10 K.
Le débit nécessaire sera de : 1 000 W / (0,34 Wh/m³.K x 10 K) = 294 m³/h
C’est un débit d’air 10 x plus élevé que le débit hygiénique !

Le réseau d’air devient alors fort encombrant !

Aussi, la consommation électrique des ventilateurs peut devenir très élevée : dans les anciennes installations (installées il y a 30 ans), le coût de l’énergie électrique des ventilateurs peut atteindre 50 % du coût total de l’énergie consommée par le conditionnement d’air de tout l’immeuble !

De plus, en « tout air neuf », le coût de fonctionnement de l’installation est très élevé puisque le chauffage est assuré, en plein hiver, par de l’air extérieur qu’il faut réchauffer à grands frais.

Exemple.

Pour apporter 1,5 kW de chaleur au local, un apport de 3,5 kW est demandé au caisson de traitement d’air : 2 kW pour porter l’air de 6° à 22 °C, puis 1,5 kW pour l’amener à 40 °C.

La température de 6 °C correspond à la température moyenne de l’air extérieur.

Pour diminuer les coûts d’exploitation d’une installation « tout air », une bonne partie de cet air doit être recyclé.

Exemple.

60 m³/h sont conservés pour l’apport d’air hygiénique et 210 m³/h extraits des bureaux à 22 °C sont recyclés. La puissance de chauffe redescend à 1,9 kW :

Cette solution est plus économique, mais on reproche alors au système les risques de contamination que peut entraîner ce recyclage, … qui mélange l’air provenant de tous les locaux !

Pour limiter les coûts énergétiques sans risque de contamination, on place alors un récupérateur de chaleur sur l’air extrait.

Exemple.

Autrefois à la mode à toutes les sauces, on réserve généralement les centrales « tout air » aux locaux où les besoins en air neuf sont très importants, c’est à dire des locaux à grande densité d’occupation : des salles de réunion, des salles de conférences, … Un autre cas de figure est celui des bâtiments où les besoins de refroidissement sont faibles et bien maitrisés (par des superficies vitrées réduites, des protections solaires extérieures,…)

Dans ces cas, le débit de ventilation hygiénique se rapproche du débit thermique nécessaire …

De plus, la technique du « débit d’air variable » permet aujourd’hui de limiter le coût du transport de l’air et surtout d’adapter le débit en fonction des besoins de chaud ou de froid nécessaire.

Gros avantage du « tout air » sur le plan énergétique : pour les locaux qui doivent être refroidis en mi-saison et éventuellement même en hiver, de l’air frais extérieur gratuit est disponible. On parle alors de « free cooling mécanique ».

Famille  2 : les installations décentralisées « sur boucles d’eau »

Ici, les fonctions sont séparées :

  • L’air neuf hygiénique est traité en centrale, puis apporté dans les locaux au moyen d’un réseau de conduits.
  • La chaleur et le froid sont apportés vers des unités de traitement terminales situées dans les locaux, via une boucle d’eau chaude et une boucle d’eau froide ou d’eau glacée.

Comme unités terminales, on retrouve les ventilo-convecteurs, les pompes à chaleur sur boucle d’eau, les plafonds rafraîchissants, …
Trois problèmes sont résolus

  1. Seul de l’air neuf est véhiculé, limitant ainsi le risque hygiénique lié au recyclage partiel de l’air vicié (en quelque sorte, il s’agit d’une ventilation « double flux », améliorée par un traitement central en température et humidité).
  2. L’encombrement est limité puisque l’eau transporte de la chaleur (ou du froid) avec 3 000 fois moins de volume que l’air. De simples tuyauteries suffisent. En rénovation de bâtiments, on évite ainsi le percement des parois pour insérer des gainages d’air de grandes dimensions…
  3. Le transport de la puissance frigorifique ou calorifique se fait par l’eau, au moyen d’une pompe dont la consommation sera nettement moins consommatrice que le ventilateur correspondant au système « tout air ».

Cette séparation entre la ventilation et l’apport thermique au local est de plus un gage de bonne régulation.

Le mode de régulation de la température peut se faire local par local et est très accessible à l’utilisateur, ce qui est un confort apprécié. Une liaison par bus de communication des différentes unités terminales est possible, ce qui permet une régulation et une gestion globale de qualité par la GTC (Gestion Technique Centralisée).

Famille 3 : les appareils travaillant en « détente directe »

On retrouve dans cette famille les climatiseurs, armoires de climatisation, roof-top,… mais ces appareils ne peuvent résoudre qu’un problème de climatisation limité à un ou quelques locaux : la climatisation d’une salle informatique, d’une cafétéria, d’un hall d’atelier, … par exemple. On les retrouve dans des bâtiments qui ne sont pas munis de production centrale de froid, dans des ajouts de locaux ou dans les cas où il faut assurer en secours du froid pour une fonction vitale (ex : central téléphonique).

La consommation spécifique de ces appareils est plus élevée que dans une unité terminale d’une installation centralisée (ventilo-convecteurs, par exemple), suite au fait qu’ils travaillent avec une température d’évaporation très basse, entraînant une consommation parasite par déshumidification exagérée de l’air. Par contre, ils ne demandent pas le maintien de réseaux d’eau froide durant tout l’été et la mi-saison, ce qui est appréciable.

Un seul type de système peut climatiser l’ensemble d’un immeuble de bureaux, c’est le système dit « à Débit Réfrigérant Variable » (ou DRV). Il est souvent connu par les appellations VRV ou VRF, selon les constructeurs. Sa particularité est de véhiculer du fluide frigorigène dans les différents locaux et d’alimenter directement des échangeurs situés en allège ou en faux plafond. Suivant les besoins du local, l’échangeur peut fonctionner en mode froid (il est l’évaporateur de la machine frigorifique) ou en mode chaud (il est le condenseur de celle-ci). À noter le faible encombrement qu’il entraîne, puisqu’aucune chaufferie n’est ici nécessaire.

Il n’utilise aucun fluide intermédiaire (air ou eau). De là, le terme d’appareil à « détente directe » : l’échangeur « froid » est parcouru directement par le fluide frigorigène. Cette caractéristique est performante au niveau énergétique puisque le coût du transport de l’énergie frigorifique est évité. De plus, les systèmes à fluide réfrigérant variable permettent de récupérer la chaleur entre les zones chaudes et les zones froides du bâtiment.

Comme dans les systèmes air-eau, le mode de régulation de la température se fait local par local et est très accessible à l’utilisateur (généralement une télécommande).

Le problème du traitement de l’air hygiénique subsiste : il n’existe pas de chaudière ou de groupe frigorifique disponibles en centrale pour préparer l’air hygiénique. Des solutions décentralisées sont possibles avec un moindre confort.

Concevoir

Pour plus de détails, on peut consulter le choix d’un système à débit de réfrigérant variable.

Les solutions les plus courantes

La solution « standard » : le ventilo-convecteur

Photo ventilo-convecteur.

  • Partons du système le plus utilisé pour un immeuble de bureaux : le ventilo-convecteur sur une boucle d’eau froide et une boucle d’eau chaude (système appelé « ventilo-4 tubes »).Il a pour avantages :
    • une très grande souplesse de réaction face aux variations de charges,
    • un faible encombrement,
    • une possibilité d’accepter des charges différentes d’un local par rapport à un autre,
    • une séparation entre l’apport d’air frais hygiénique et l’apport thermique, ce qui supprime tout recyclage de l’air hors du local,
    • un prix d’investissement limité grâce à un équipement fabriqué en grande série.On sera attentif à la qualité lors de sélection du matériel et lors de la réalisation de la distribution d’air neuf (confort thermique et acoustique).
  • Si le bâtiment est très homogène dans ses besoins (« quand c’est l’hiver, c’est l’hiver pour tous les locaux ») on se contentera d’un « système à 2 tubes », moins coûteux : un seul réseau de tuyauterie véhicule alternativement de l’eau chaude en hiver et de l’eau froide en été. Mais cette solution devient de plus en plus difficile à appliquer : l’enveloppe du bâtiment étant de mieux en mieux isolée, certains locaux plus chargés en apports internes seront demandeurs de froid, même en hiver.
  • En rénovation, pour vaincre des charges d’équipements devenues inconfortables, on peut greffer une installation 2 tubes froids (« Hydrosplit »), sur la production de chauffage existante.

Le plafond froid

Photo plafond froid.

  • La technique des plafonds froids apporte un confort thermique et acoustique inégalé (moyennant un éventuel supplément de prix) : le froid est apporté par rayonnement au-dessus de la tête des occupants et aucun ventilateur ne vient perturber l’ambiance. Mais la puissance de refroidissement des plafonds est limitée. Cette technique ne s’appliquera dès lors qu’avec des bâtiments dont la conception limite les apports solaires : bâtiments avec ombre portée, stores extérieurs, stores intérieurs combinés à des vitrages performants,…
  • Le plafond froid sera d’ailleurs facilement intégré lors de la rénovation d’un bâtiment existant dont les charges sont légères et qui dispose déjà d’une installation de chauffage.
  • On pourra utiliser des poutres froides complémentaires si la puissance frigorifique souhaitée n’est pas atteinte, mais au détriment du confort aéraulique comme souvent dans les solutions dynamiques (risque de courants d’air froid).
  • Reste le problème de l’apport de chaleur en hiver. En construction nouvelle, si le bâtiment est bien isolé, la demande de chaleur en hiver est limitée.
    Il est envisageable d’apporter cette chaleur :

    • soit en alimentant en eau chaude les plafonds situés près des façades (près des baies vitrées),
    • soit via un circuit de radiateurs complémentaire,
    • soit grâce à des batteries terminales placées sur le conduit de ventilation hygiénique (si le débit de celui-ci est suffisant).

La solution spécifique pour les locaux à forte occupation : la centrale « tout air » à débit variable (VAV)

Photo centrale "tout air" à débit variable (VAV).

Le problème se pose tout autrement si une présence humaine nombreuse est prévue. Alors que l’on prévoit 12 m² par personne dans un bureau individuel ou 8 m²/pers dans un bureau paysager, ce ratio descend à 2 à 4 m²/pers dans une salle de réunion, voire 1 à 2 m²/pers dans une salle de conférence. Puisque chaque personne nécessite 30 m³/h, un réseau d’air neuf important sera nécessaire. On pense dès lors à profiter de ce réseau pour apporter les calories et frigories requises.
Un bilan s’impose :

  • Si le bâtiment présente des besoins limités (bien isolé du froid extérieur et bien protégé des apports solaires), le débit d’air hygiénique élevé pourra apporter les besoins thermiques. On parle d’un système « tout air ».
Exemple.
Soit un local de réunion assez dense : 2 m²/pers.
Réalisons le bilan des apports :
éclairage : 12 W/m²
personnes : 80 W pour 2 m² = 40 W/m²
total : 52 W/m²
Réalisons le bilan du refroidissement par le débit d’air hygiénique : débit : 30 m³/h/pers pour 2 m² = 15 m³/h/m²
puissance de refroidissement : 15 m³/h/m² x 0,34 Wh/m³K x 8 K = 41 W/m²

On voit qu’en poussant un peu le débit d’air, on peut facilement vaincre les 52 W/m² de chaleur.

  • Dans le cas où le local est soumis à des apports solaires supplémentaires, les débits nécessaires pour les besoins thermiques dépasseront de loin le débit d’air hygiénique, l’encombrement sera très important, un recyclage de l’air devra être organisé… Le système « tout air » devient inadapté.

Vu le coût d’exploitation du transport par air (coût de fonctionnement des ventilateurs), un système d’adaptation du débit d’air aux besoins réels sera prévu (système VAV, Volume d’Air Variable). Le débit maximal ne sera pulsé que dans les situations extrêmes. Mais ce système est coûteux et la mise au point de sa régulation est plus délicate.

Un grand avantage pourtant de ce système « tout air » est de pouvoir profiter d’un refroidissement gratuit par de l’air extérieur en mi-saison (free cooling diurne).

Un outsider possible pour certains bâtiments : le DRV, Débit de Réfrigérant Variable

Photo DRV, Débit de Réfrigérant Variable.

Quelques réflexions peuvent se faire :

  • Le souci de modularité dans la construction des bâtiments nouveaux entraîne faux plafond, cloisons légères, … Cette caractéristique de construction sans inertie, alliée à la présence généralisée de moquette au sol, entraîne une très grande variabilité des besoins dans le temps : il faut réchauffer le bâtiment au matin, mais le fonctionnement de la bureautique et le premier rayon de soleil entraîne un besoin de refroidissement à midi !
  • Les bâtiments nouveaux sont parfois confrontés à des besoins simultanés de chaud et de froid :
    • exemple 1 : en hiver, chauffage des locaux en périphérie et refroidissement du cœur du bâtiment,
    • exemple 2 : en mi-saison, au matin, chauffage des locaux à l’Ouest et refroidissement des locaux à l’Est déjà soumis au rayonnement solaire,
    • exemple 3 : chauffage de l’air hygiénique et refroidissement des locaux.
      Il est dommage de voir simultanément des chaudières fonctionner, ne fut-ce que pour préchauffer l’air hygiénique, et des condenseurs évacuer dans l’air extérieur la chaleur excédentaire des locaux refroidis…
  • Pourquoi passer par un fluide intermédiaire (eau ou air) et ne pas travailler directement avec le fluide frigorigène qui peut apporter chaleur ou refroidissement par simple inversion du cycle ?

Par ailleurs, la technique du « fluide réfrigérant variable » semble performante pour des locaux dont les besoins sont très variables entre eux et dans le temps. Par exemple, en hiver, un échangeur dans le faux plafond devient évaporateur lorsqu’il est placé dans un local central et condenseur lorsqu’il est dans un local en façade. Et ce même échangeur bascule en évaporateur en été.

Reste le problème d’apport de l’air neuf hygiénique et le contrôle du taux d’humidité en hiver. Ce système ne le prévoit pas.
Il faut alors :

  • Soit prévoir un caisson de préparation de l’air indépendant, mais on ne dispose pas de source de chaleur puisque pas de chaudière…
  • Soit intégrer l’air neuf dans les échangeurs intérieurs et laisser à l’unité terminale le soin de préparer la température adéquate, mais on ne gère pas le problème de l’humidité de l’air des locaux.

Un avantage de ce type d’installation : c’est une solution « tout électrique », ce qui simplifie et accélère la construction. On veillera cependant à en limiter la puissance électrique (gestion de la pointe de puissance par délestage ou par stockage de froid la nuit).

Quel que soit le système choisi…

C’est très souvent la qualité du projet qui fait la différence :

  • dimensionnement correct (absence de courant d’air, limitation du bruit,…),
  • finesse de la régulation des équipements,
  • performance des moyens de gestion qui pilotent le tout.

Ce sont les 10 % de budget supplémentaire qui feront souvent la performance globale…

Climatiseur individuel

Climatiseur individuel


Principe de fonctionnement

Un climatiseur de local est une machine frigorifique prévue pour extraire la chaleur des locaux et la rejeter à l’extérieur.

Schéma principe climatiseur de local

Le fonctionnement d’un climatiseur est basé sur le changement de phase d’un fluide frigorigène :

  • dans l’évaporateur, le fluide capte la chaleur dans l’air du local et s’évapore;
  • dans le condenseur, le fluide redevient liquide car il est refroidi par l’air extérieur.

Le compresseur a pour rôle de comprimer le gaz, opération accompagnée d’une forte élévation de température qui permettra au fluide frigorifique de céder sa chaleur à l’air extérieur.

Le détenteur relâche la pression, opération accompagnée d’une forte diminution de température nécessaire à l’échange de chaleur avec l’air ambiant.


Typologie des climatiseurs de locaux

On distingue plusieurs types de climatiseurs :

Le climatiseur mobile

C’est un appareil à faible puissance frigorifique (max 2,5 kW), principalement destiné à un usage local. Il impose de laisser un ouvrant entrouvert, ce qui diminue l’étanchéité du local à l’air et aux bruits extérieurs !

Ce système est de moins en moins utilisé. Son emploi se limite souvent aux situations provisoires.

Photo climatiseur mobile.Schéma principe climatiseur mobile.

S’il est monobloc, l’air de refroidissement du condenseur peut être pris soit dans la pièce (perte de puissance jusqu’à 30 % par rapport à la puissance frigorifique annoncée), soit à l’extérieur (cas le plus favorable). Il est rejeté systématiquement à l’extérieur par une gaine flexible;

Photo climatiseur mobile séparé.Schéma principe climatiseur mobile séparé.

S’il est séparé, pour des raisons de mobilité de l’unité extérieure, le compresseur est situé dans l’unité intérieure. La distance entre les deux unités est généralement limitée à 2 m.

Le « Window Unit » ou climatiseur de fenêtre

Le climatiseur de « fenêtre » (« window »), est un climatiseur monobloc installé dans un percement effectué dans une paroi extérieure (mur ou baie).

Schéma principe climatiseur de fenêtre - 01.Schéma principe climatiseur de fenêtre - 02.

Généralement, un seul moteur entraîne simultanément le compresseur et les deux ventilateurs. Si bien que tous les bruits de fonctionnement sont fournis en prime dans le local ! Seuls les amateurs de polars américains (où il y a toujours un window qui vrombit à l’arrière de l’inspecteur, celui-ci basculant sur sa chaise, les deux pieds sur son bureau…) peuvent apprécier ce type de confort … !

Le « split system »

« Split System » signifie « climatiseur à éléments séparés », à savoir que l’unité de condensation est séparée de l’unité d’évaporation.

Avec un split, l’évaporateur est souvent situé dans le local à traiter, tandis que condenseur et compresseur sont situés à l’extérieur (en terrasse, au sol,…), ce qui permet de diminuer le bruit !

Schéma Le "split system" - 01. Schéma Le "split system" - 02. Schéma Le "split system" - 03. Schéma Le "split system" - 04. Schéma Le "split system" - 05. Schéma Le "split system" - 06.

Dans chacun des cas, les unités sont reliées par liaison frigorifique (fluide frigorigène) et cable électrique, dont les longueurs peut être adaptées au cas traité, ce qui autorise une grande souplesse d’installation.

Schéma principe "split system".

Remarque.

pour des raisons esthétiques ou de sécurité, il est également possible de ne pas disposer le condenseur à l’extérieur mais en cave. Ceci n’est uniquement possible que si on garantit une ventilation de la cave (pulsion-extraction) d’un débit au moins égal au débit d’air nécessaire pour le bon fonctionnement du condenseur. Éventuellement, une ventilation mécanique peut être asservie à un thermostat d’ambiance dans la cave pour garantir le débit nécessaire.

Le « multi-split system »

Les unités de condensation et d’évaporation sont séparées et reliées par des liaisons frigorifiques et électriques dont la longueur peut être adaptée au cas traité, ce qui autorise une grande souplesse d’installation.

Schéma multi-split system.

Les unités d’évaporation peuvent être posées diversement, y compris dans un local annexe avec des gaines de soufflage dans 1 ou 2 locaux.

Cas particulier : le Roof-Top

Schéma Roof-Top.

L’unité de condensation et d’évaporation sont intégrées dans le même appareil posé en toiture et relié par une gaine à un diffuseur d’air séparé.

Vue d’un roof-top posé sur une toiture.


Détails technologiques

L’unité d’évaporation

Un ventilateur centrifuge fait circuler l’air intérieur au travers d’un filtre, puis de l’évaporateur, avant de le rejeter au travers de grilles de diffusion dont l’inclinaison est réglable.

Divers emplacements sont possibles pour l’insertion de l’évaporateur :

Schéma insertion de l'évaporateur.

En voici quelques exemples :

En allège.

Au plafond.

En cassette insérée dans un faux plafond.

Remarque.

La vapeur d’eau contenue dans l’air ambiant risque de se condenser au contact de l’évaporateur très froid, aussi doit-on prévoir une conduite d’évacuation des condensats vers l’égout. Si l’écoulement naturel par gravité n’est pas possible, il faudra insérer une petite pompe de relevage des condensats.

L’unité de condensation

Le fluide frigorigène (à l’état vapeur) est comprimé par le motocompresseur hermétique, puis refroidit dans le condenseur, avant d’être détendu et de repartir vers le local.

Photo unité de condensation.

Les liaisons frigorifiques et électriques

Pour simplifier la tâche sur chantier (et rendre l’installation accessible à des non-frigoristes), les conduites de raccordement en cuivre sont préchargées en fluide frigorigène et équipées de raccords rapides. Lors du montage, les opercules sont automatiquement perforés.

Leur longueur ne dépasse pas 10 à 15 m généralement pour limiter les pertes de charge. La tuyauterie ramenant le fluide détendu vers l’évaporateur sera soigneusement isolée car l’échauffement du fluide dans le conduit,… c’est autant de puissance frigorifique perdue pour l’évaporateur. Et même si elle reste suffisante, c’est une perte qui diminue le rendement de la machine : son coefficient de performance.

Voici les connexions d’un multisplit : 3 évaporateurs sont reliés à un condenseur commun.

Le retour d’huile

L’huile est naturellement entraînée par le fluide frigorigène liquide vers l’évaporateur. Par contre, il est nécessaire d’organiser volontairement le retour de l’huile vers le compresseur lorsque le fluide est à l’état vapeur :

  • Soit le compresseur est situé plus bas que l’évaporateur, et la gravité fera le travail sur base d’une pente descendante de 1 cm par mètre.
  • Soit le compresseur est situé plus haut que l’évaporateur, et un siphon devra être prévu; on provoque alors volontairement un bouchon d’huile afin que la vapeur, en forçant le passage, entraîne l’huile avec elle. Comme ce système ne fonctionne que sur quelques mètres, un tel siphon devra être prévu au minimum tous les 5 mètres de dénivellation.

À défaut, c’est la lubrification du compresseur qui risque d’être insuffisante, et sa longévité aussi…


En option : la fonction « chauffage »

Si une fonction « chauffage » est recherchée, trois systèmes sont possibles.

Solution 1 : incorporer une résistance électrique d’appoint, en fonctionnement direct

Cette solution est coûteuse à l’exploitation, vu le prix du kWh de jour.

Solution 2 : incorporer une batterie d’eau chaude alimentée par le réseau de chauffage du bâtiment

Cette solution est peu utilisée car coûteuse à l’investissement. Un thermostat d’ambiance commande l’apport de chaleur, soit via une vanne trois voies modulant la température de l’eau, soit directement sur le ventilateur.

Solution 3 : sélectionner une machine frigorifique « réversible » capable de fonctionner en pompe à chaleur

Dans une machine frigorifique, le cycle peut être inversé grâce à l’utilisation d’une vanne à quatre voies à la sortie du compresseur : l’évaporateur devient condenseur et le condenseur devient évaporateur. C’est un climatiseur dit « réversible ».

On parle d’un fonctionnement en « pompe à chaleur » puisque c’est la chaleur de l’air extérieur qui est utilisée pour chauffer l’air du local.

Le surcoût de l’appareil est faible (de 15 à 25 %) et le prix de revient du kWh fourni est 2 à 3 fois plus faible que dans le cas du chauffage direct, … Hélas, la puissance de l’appoint de chaleur est le plus faible au moment où on en a le plus besoin, c.-à-d. par période de gel… Et à ce moment, le coefficient de performance frigorifique est assez dégradé.


En option : la fonction « ventilation »

Certains appareils disposent d’une prise d’air neuf permettant d’adjoindre une fonction ventilation au matériel.

A ne pas confondre avec le brassage d’air en recyclage total proposé par tous les appareils : dans ce cas, le ventilateur fonctionne seul et l’air du local passe simplement par le filtre sommaire qui retient les plus grosses particules en suspension. Il est, par exemple, impossible d’améliorer la qualité de l’air d’un local « fumeur » avec ce principe. Seule, une réelle dilution par de l’air neuf apportera l’amélioration recherchée.


La régulation du climatiseur

La régulation de la température ambiante

La température ambiante du local conditionné est régulée au moyen d’un thermostat d’ambiance agissant sur le fonctionnement du compresseur. Le ventilateur de soufflage fonctionne en même temps que le compresseur, ou fonctionne en continu. Ce deuxième mode de fonctionnement est plus favorable au confort car il entretient un brassage continu de l’air et prévient toute stagnation inconfortable d’air chaud ou froid.

photo télécommande.

Au simple contrôle de la température ambiante doivent s’ajouter des fonctions de programmation de l’occupation, avec arrêt et reprise (éventuellement anticipées) de manière intelligente.

La régulation du compresseur

Un climatiseur, dimensionné pour vaincre les apports thermiques maximum (solaires, par exemple), fonctionne très souvent à charge partielle. Le contrôle traditionnel par mode MARCHE/ARRET du climatiseur entraîne des fluctuations inconfortables de la température du local et des mauvaises conditions de rendement du compresseur.

Schéma régulation - 01.

Les climatiseurs équipés de compresseurs à vitesse variable peuvent adapter leur puissance frigorifique à la charge thermique du local. Ce mode de régulation est appelé « INVERTER ». Il permet une variation de vitesse du compresseur sans pertes importantes de rendement. Le démarrage du compresseur se fait alors à basse vitesse, ce qui réduit la pointe de courant au démarrage.

La technologie INVERTER présentait autrefois quelques inconvénients tels les parasites qu’elle induit dans le réseau électrique. Dans un très proche avenir, ces inconvénients devraient disparaître (utilisation de moteurs à courant continu pour les plus petites puissances, marquage « CE », …) et permettre au système « INVERTER » de couvrir le marché.

Schéma régulation - 02.

Lorsqu’une unité extérieure alimente plusieurs unités intérieures (système multi split), l’ambiance de chaque local doit pouvoir être régulée séparément (y compris la coupure en cas d’inoccupation). Dans ce cas, une régulation en vitesse variable du compresseur permettra d’adapter la puissance de production de froid en fonction des besoins totaux réels.

Suite à ce nouveau mode de régulation, la technique traditionnelle du compresseur alternatif (piston et vilebrequin), d’une fiabilité légendaire, est progressivement remplacée par :
>  le compresseur rotatif :

  • rendement similaire,
  • niveau sonore moindre,
  • fonctionnement à vitesse variable.

>  le compresseur scroll :

  • rendement plus élevé,
  • niveau sonore encore plus faible,
  • fonctionnement à vitesse variable.

La régulation du condenseur

Certains locaux à charges internes importantes (par exemple, les salles informatiques) doivent être climatisés en été, mais aussi en mi-saison ou encore en hiver. Dans ce cas, lorsque la température de l’air extérieur diminue, la capacité de refroidissement du condenseur augmente.

Paradoxalement, cette situation perturbe le fonctionnement correct de l’évaporateur et entraîne une perte de puissance de ce dernier dernier (voir détails dans la régulation de la machine frigorifique). Le confort dans le local n’est alors plus assuré. À l’extrême, le pressostat basse pression de sécurité de l’appareil peut commander l’arrêt de l’installation.

Pour remédier à ce problème, il faut que la puissance du condenseur soit régulée en fonction de la température extérieure. Si la température de l’air diminue, le débit d’air doit aussi diminuer afin de conserver un échange constant.

Idéalement, on choisira un ventilateur de condenseur à vitesse variable. Ainsi, un climatiseur devant fonctionner pour des températures extérieures inférieures à 17°C doit être équipé d’un ventilateur de condenseur à vitesse variable. La diminution de vitesse du ventilateur est alors commandée par un pressostat ou un thermostat placé sur le condenseur. La puissance d’échange de celui-ci est ainsi maintenue constante quelle que soit la saison.

À défaut, la vitesse sera modulée par paliers. Au minimum, le fonctionnement du ventilateur sera commandé en tout ou rien.

Choix et emplacement du thermostat d’ambiance

Au simple contrôle de la température ambiante doit s’ajouter, pour assurer un fonctionnement économique, des fonctions de programmation de l’occupation, avec arrêt et reprise éventuellement anticipés de manière intelligente.

De plus, idéalement, le climatiseur devrait pouvoir profiter d’une régulation de température de consigne compensée en fonction de la température extérieure. Ce lien, qui est automatisé dans les installations complètes de conditionnement d’air, doit être réalisé manuellement pour les climatiseurs.

Ainsi, un écart de 6°C maximum sera créé, afin de ne pas provoquer de « choc thermique » inconfortable lors de l’accès au bâtiment.

Il revient donc à l’occupant consciencieux de modifier manuellement la consigne de température en fonction de la température extérieure. Pour des raisons d’économies d’énergie et de confort, on ne peut maintenir une consigne de température à 22°C, par exemple, si la température extérieure est de 32°C. Dans ce cas la consigne doit être ajustée à 26°C au minimum.

Le ventilateur de soufflage est soit commandé en même temps que le compresseur, soit fonctionne en continu. Ce deuxième mode de fonctionnement est plus favorable au confort, car il entretient un brassage continu de l’air et prévient toute stagnation inconfortable d’air chaud ou froid. Mais il suppose que les aspects acoustiques soient soigneusement étudiés.

L’emplacement du thermostat joue un rôle important sur la consommation et sur le confort. Il doit être placé à un endroit représentatif de la température moyenne du local, c’est-à-dire éloigné des sources chaudes ou froides (lampe, fenêtre en été, zone ensoleillée, dans la zone de soufflage de l’appareil, …). Le placer dans le local sera donc préférable que de le placer dans la bouche de reprise. Par exemple, si la commande se trouve sur l’appareil au plafond, l’occupant ne prendra pas la peine d’ajuster la consigne de température !

Dans le cas contraire, il devra être étalonné.

Exemple.

Le thermostat est placé à l’extrémité d’un bureau, dans la zone d’influence du climatiseur, mais éloigné de la zone d’occupation habituelle. Lorsque celui-ci mesure 28°C, une température de 24°C règne à l’endroit où les personnes se trouvent.

Les occupants, croyant agir alors correctement, risquent d’abaisser le thermostat jusqu’à 24°C, entraînant une chute de la température ambiante inconfortable et des surconsommations inutiles.

La commande du thermostat doit donc être étalonnée pour être représentative de l’ambiance réelle.

Zones à proscrire pour l’implantation de la sonde de régulation

  1. Influence d’une source chaude.
  2. Influence de l’air extérieur.
  3. Influence de l’ensoleillement.
  4. h < 1 m.
  5. h > 2 m.
  6. Influence de l’air soufflé.

L’emplacement de la commande du thermostat et sa facilité de manipulation jouera un rôle sur la gestion efficace de l’ambiance par l’occupant. Par exemple, si la commande se trouve sur l’appareil au plafond, l’occupant ne prendra pas la peine d’ajuster la consigne de température…

 

Armoires de climatisation

Armoires de climatisationArmoires de climatisation


Principe

Une armoire de climatisation constitue en quelque sorte un « caisson de traitement d’air vertical » surtout lorsqu’elles constituent la seule demande du bâtiment.

Elle s’installe généralement directement dans la pièce à climatiser. Typiquement, c’est la solution adoptée pour climatiser une salle informatique.

En pratique, cette armoire métallique verticale peut regrouper tous les éléments nécessaires au traitement

  • un filtre,
  • une batterie froide,
  • une batterie chaude (électrique ou à eau),
  • un humidificateur,
  • un ventilateur centrifuge.

On parle de climatiseur « autonome » parce que la batterie froide est généralement parcourue directement par le fluide frigorifique : la machine frigorifique est intégrée dans l’armoire et la batterie froide en constitue l’évaporateur. On parle alors de fonctionnement en « détente directe ».

Schéma de principe climatiseur "autonome".

On notera que la présence du compresseur dans le local impose une isolation acoustique sérieuse des paroi de l’armoire !

Mais il existe aussi des armoires de climatisation dont la batterie froide est raccordée à la boucle d’eau glacée du bâtiment.

Dans la plupart des cas, l’air repris est aspiré en partie inférieure et pulsé en partie supérieure de l’armoire, éventuellement via un réseau de gainage restreint.

Mais on peut imaginer une solution inverse où l’air est repris en partie supérieure puis distribué en partie inférieure via un faux plancher : c’est une belle solution dans les locaux informatiques où le passage de nombreux câbles impose de toute façon l’installation d’un faux plancher sur vérins. La distribution d’air froid autour des ordinateurs est alors idéale. On peut par exemple prévoir des dalles pleines de 60 x 60 pour porter le matériel et des dalles perforées pour servir de bouches de distribution. Une modification d’emplacement des ordinateurs ? Les dalles 60 x 60 sont interverties, sans problèmes puisque tout le faux plancher est mis sous pression et fait office de plénum de distribution !

Schéma de principe climatiseur "autonome"- 02.


Aspects technologiques

Photo armoires de climatisation.

Le chauffage de l’air

Suivant l’importance des gains gratuits dans le local, on peut envisager

  • soit de ne pas installer d’élément chauffant,
  • soit de placer une résistance électrique d’appoint, (investissement faible mais coût d’exploitation élevé),
  • soit d’insérer une batterie de chauffe alimentée par le réseau de chauffage du bâtiment,
  • soit enfin de sélectionner une machine frigorifique réversible, fonctionnant en pompe à chaleur en hiver.

L’humidification de l’air

Si l’humidité de l’air de l’ambiance doit être contrôlée, un humidificateur peut être incorporé à l’armoire de climatisation, généralement via un humidificateur à vapeur.

Cet humidificateur est parfois inséré au départ des gaines, si celles-ci sont existantes dans le prolongement de l’armoire.

Mais les armoires de climatisation se distinguent essentiellement au niveau du condenseur :

Le condenseur à air intégré à l’armoire

La paroi au dos de l’armoire est percée afin que le rejet de chaleur puisse se faire directement vers l’extérieur (attention au pont acoustique ainsi créé !). Il est également possible d’amener et d’évacuer l’air de refroidissement par gaine.

Le condenseur à air séparé

Le fluide frigorifique est directement refroidi dans le condenseur placé à l’extérieur (sur une terrasse, sur le sol,…). L’éloignement est limité afin de ne pas amplifier les pertes de charge sur le circuit du fluide frigorifique. La surélévation du condenseur doit être limitée pour pouvoir gérer le retour de l’huile vers le compresseur.

Schéma de principe condenseur à air séparé.

Le condenseur à eau recyclée

Cette fois, le condenseur est refroidi par de l’eau glycolée, eau qui est elle-même refroidie à l’extérieur.

L’installation est très souple : plus de contraintes liées à la distance entre armoire et refroidisseur, ou à la différence de niveaux. Il est même possible de raccorder plusieurs armoires sur la même boucle de refroidissement.

Mieux, il est facile à présent de récupérer cette chaleur pour préchauffer de l’air de ventilation, de l’eau chaude sanitaire,…

Pour refroidir l’eau de refroidissement, on rencontre trois types d’échangeur avec l’air extérieur :

L’aéro-refroidisseur : l’eau est refroidie dans un échangeur à air; un ou plusieurs ventilateurs forcent le passage de l’air extérieur pour accélérer le refroidissement. Un mode de régulation très simple consiste à actionner le(s) ventilateur(s) en fonction de la température de la boucle d’eau. Seul inconvénient : la performance frigorifique de l’armoire de climatisation ne sera pas excellente. En effet, la température de la boucle d’eau va monter avec la température extérieure. En plein été, le condenseur sera mal refroidi, la pression en sortie de compresseur sera plus élevée, le rendement de la machine frigorifique va se dégrader… Et ceci est renforcé par la présence du double échangeur (fluide/eau glycolée – eau glycolée/air). L’usage de l’aérorefroidisseur sera dès lors limité à des moyennes puissances.

La tour de refroidissement ouverte : cette fois, l’eau de refroidissement du condenseur est pulvérisée à contre-courant du débit d’air extérieur pulsé par un ventilateur. L’échange est particulièrement efficace et, surtout, il entraîne l’évaporation d’une partie de l’eau pulvérisée. Or, cette vaporisation entraîne un fort refroidissement de l’eau. A tel point que l’eau peut descendre sous la température de l’air extérieur. Un tel refroidissement permet de limiter la pression du condenseur et donc de diminuer le travail du compresseur. Si c’est la meilleure solution énergétique, elle pose par contre assez bien de problèmes au service de maintenance (corrosion, encrassement, gel,…). C’est la conséquence d’un circuit ouvert aux conditions atmosphériques… Pour plus de détails, on consultera le choix de la tour de refroidissement ouverte.

La tour de refroidissement fermée : un compromis à la belge ! Les avantages de l’évaporation de l’eau … sans les inconvénients du circuit ouvert (corrosion). En pratique, le circuit de l’eau de refroidissement reste fermé, l’eau glycolée n’est plus en contact avec l’air extérieur, mais l’échangeur est aspergé par de l’eau qui, elle, « tourne » de façon totalement indépendante du circuit de refroidissement. Bien sûr, la température de l’eau de refroidissement est plus élevée que dans la tour ouverte.

Le condenseur à eau perdue

Par « eau perdue », on entend :

  • Soit de l’eau de ville qui serait évacuée vers l’égout après usage : solution à proscrire vu le coût du m³ d’eau… !
  • Soit de l’eau issue d’une source naturelle (rivière, lac, puits,…) : cette solution est économique à l’exploitation, mais les coûts d’investissement sont très variables d’une situation à l’autre… L’efficacité énergétique de l’installation frigorifique est excellente puisque la température de condensation sera 8…10°C plus chaude que la température de l’eau puisée. Reste à vérifier que le captage (et/ou le réchauffage de l’eau) est autorisé par la réglementation locale ou régionale… (les choses évoluent beaucoup dans ce domaine, il est donc prudent de s’informer directement auprès des personnes concernées).

Régulation

La régulation en température du local peut se faire via un simple régulateur thermostatique. Imaginons le démarrage au matin en mi-saison, la résistance électrique est enclenchée. Puis la présence du personnel, des équipements permet à la température de rester en « zone neutre » sans intervention du climatiseur. En début d’après-midi, des apports solaires importants entraînent une surchauffe et l’enclenchement du groupe frigorifique.

La présence d’une cascade sur l’enclenchement des résistances chauffantes, la régulation progressive via par un variateur de puissance (résistance électrique) ou par une vanne (batterie à eau chaude) entraînera un meilleur confort, une stratification de températures plus faible et donc une consommation moindre. De même une régulation à vitesse variable sur le motocompresseur sera bénéfique.

  

Un principe de régulation similaire est possible pour contrôler le niveau d’humidité.

La déshumidification est ici réalisée via la condensation de la vapeur d’eau ambiante sur l’évaporateur de l’armoire. Le compresseur est alors mis en route pour déshumidifier.

Débit d’air variable

Débit d'air variable


Principe de fonctionnement

Pourquoi une variation du débit ?

Situons-nous en été. Comment répondre aux variations de charge d’un local ? Que se passe-t-il lorsque le soleil perce enfin l’épaisse couche nuageuse et fait monter la température ?

Un système de conditionnement d’air « classique » délivre un air plus froid (de 20°, l’air passe à 16°C, par exemple). Le débit d’air pulsé reste le même, mais la température diminue. On parle alors de « système à débit d’air constant ».

Une alternative consiste à garder la température constante tout l’été (16°C par exemple) mais à augmenter le débit d’air pulsé. On parle de « système à Débit d’Air Variable ». DAV disent les Français, VAV disent les anglophones (que l’on traduit en Volume d’Air Variable).

Dans un système « tout air-VAV », le débit d’air varie donc entre le minimum hygiénique pour les occupants et le maximum nécessaire pour reprendre toutes les charges du local (soleil, bureautique, personnes,…).

En pratique, le débit varie entre 30 et 100 % du débit nominal. La variation de débit est faite en agissant :

  • soit sur un volet motorisé,
  • soit directement sur les bouches de soufflage (conçues pour le débit variable).

Qui dit variation de débit, dit perturbation de la pression du réseau…

Si les bouches se ferment, la pression de gaine va augmenter. Toute la distribution de l’air en sera perturbée. Dès lors, on modulera la vitesse des ventilateurs pour maintenir une pression de gaine constante. Et par la même occasion, la consommation des ventilateurs en sera diminuée (voir aussi « la gestion de la ventilation à la demande« ).

Si la température est constante (16° par exemple), comment chauffer en hiver ?

Si l’installation doit aussi chauffer les locaux en hiver, le problème se complique !

On rencontre alors les variantes :

  • – monogaine
    • – avec chauffage par radiateurs indépendants
    • – avec chauffage par batterie terminale
  • – double gaine (une d’air froid et une d’air chaud)

Quel intérêt majeur par rapport aux systèmes à débit constant ?

Lorsque l’on sait que le coût du transport de l’air représente de 20 à 40 % du coût d’exploitation, le débit d’air variable se justifie certainement.

Encore faut-il que la réduction du débit d’air dans les locaux entraîne effectivement la réduction de la consommation du(es) ventilateur(s) ! Ainsi, certains systèmes créent un by-pass dans le faux plafond :  lorsque le débit pulsé diminue, l’air non utilisé est renvoyé en centrale…

Une installation VAV est particulièrement bien placée pour une utilisation optimale des énergies gratuites :

  • En hiver, de l’air frais extérieur peut alimenter les zones à rafraîchir sans nécessiter l’enclenchement des groupes frigorifiques.
  • En été, une ventilation nocturne peut décharger le bâtiment de la chaleur accumulée en journée.

Remarque : pour diminuer les sections de gaine, il est possible de distribuer l’air sous haute pression, à des vitesses variant entre 5 et 15 m/s.


Domaine d’application

Dans sa version simple (modulation du débit sans visée thermique si ce n’est pas le free cooling), une installation VAV peut s’appliquer à un grand nombre de situation : il s’agit ni plus ni moins d’un réseau de ventilation mécanique avec une capacité de moduler les débits local (ou groupe de local) par local. L’encombrement est limité puisque basé sur le débit hygiénique éventuellement légèrement majoré (+50 à +100%). Seul l’investissement dans les clapets de réglage et le système de gestion et d’optimisation est un frein.

Si par contre le VAV est la base d’un système de climatisation tout air, on rencontre les limites propre à cette approche du refroidissement : les gaines sont dimensionnées pour pouvoir refroidir tout le bâtiment avec de l’air. Un tel système de climatisation par l’air est encombrant et coûteux. Il ne justifie que lorsqu’une alimentation en air hygiénique importante est nécessaire, donc une présence nombreuse d’occupants. Si de plus cette présence est variable dans le temps, si les charges thermiques sont variables, il sera opportun de pouvoir moduler le débit : c’est l’objet du VAV.

On rencontre tout particulièrement cette application thermique du VAV dans les grands bureaux paysagers, ou dans les larges plateformes avec locaux de réunion, salles de conférences au centre du bâtiment : un apport d’air neuf est nécessaire en permanence. De plus, le refroidissement du centre du bâtiment est nécessaire toute l’année. Du free cooling est alors possible et permet d’éviter d’enclencher les groupes frigorifiques en hiver, voire en mi-saison. Les coûts d’exploitation en seront fortement réduits.

A la limite, c’est le concepteur qui devra organiser la fonction des locaux pour créer des zones thermiquement homogènes.

Les installations VAV « à bypass » (l’air non utilisé est renvoyé en centrale) sont à rejeter puisque le traitement de l’air reste total. On peut juste l’admettre dans le cas d’une grande zone à débit d’air constant (une grande usine) à côté de laquelle sont situés quelques locaux (les bureaux à coté de l’usine). Dans ce cas, un VAV à bypass sur l’alimentation des bureaux est compréhensible.


Différentes variantes technologiques

On distingue différentes variantes technologiques :

Les systèmes VAV mono gaine sans réchauffage terminal

Shéma principe systèmes VAV mono gaine sans réchauffage terminal.

On ne pulse que de l’air froid en été (entre 12 et 18°C) et de l’air chaud en hiver (entre 25 et 40°C). L’air est préparé en centrale et chaque local régule le débit d’air juste nécessaire en fonction de la température souhaitée, avec un débit minimum ajusté au débit d’air hygiénique.

Le plus simple est d’avoir une consigne fixe pour chaque saison et le passage d’une consigne à l’autre est réalisé par un thermostat extérieur : il y a basculement pour une température extérieure de +15°C, par exemple.

Les systèmes VAV mono gaine avec réchauffage terminal

L’idée est de prévoir un circuit d’air froid pour tous les locaux, à débit variable, complété par des batteries de chauffe pour les locaux périphériques.

Trois principes sont possibles :

> 1° soit l’apport de chaleur est réalisé par des corps de chauffe traditionnels (radiateurs, convecteurs).

Généralement, ces corps de chauffe sont placés en périphérie du bâtiment, le long des façades, pour vaincre les déperditions par les parois. Le système VAV assure la ventilation hygiénique toute l’année, refroidit le cœur du bâtiment en hiver et refroidit tout le bâtiment en été.

Schéma principe systèmes VAV mono gaine avec réchauffage terminal- 01.

>  2° soit les batteries de chauffe sont placées en série sur la gaine d’air.

Schéma principe systèmes VAV mono gaine avec réchauffage terminal- 02.

Une régulation spécifique est nécessaire :

Schéma régulation.

Par exemple, si la sonde d’ambiance détecte une température inférieure à 21°C, la vanne de chaud est ouverte à 100 % et le débit d’air est réduit au seuil minimal hygiénique. Lorsque la température intérieure approche de 23°, la vanne chaud se ferme progressivement. Lorsque la température dépasse 23°, la vanne chaud est fermée et le débit d’air frais augmente progressivement jusqu’à atteindre le débit maximal à 24°C. Ici encore, l’insertion d’une zone neutre entre chaud et froid sera énergétiquement préférable.

En pratique, la batterie de chauffe est souvent intégrée dans la boîte de détente. Elle est alimentée en eau chaude, ou remplacée par une résistance électrique.

> 3° soit les batteries sont placées en parallèle par rapport au local :

Schéma principe systèmes VAV mono gaine avec réchauffage terminal- 03.

La régulation est complétée par l’enclenchement du ventilateur d’air recyclé lorsque le chauffage est enclenché :

Schéma régulation.

Chaque batterie chaude voit son débit modulé en fonction du thermostat d’ambiance de la zone qu’elle alimente.


Avantages

  • Lors de la conception, un grand avantage du système à débit d’air variable est de pouvoir diminuer les dimensions de la centrale de traitement.Comparons les systèmes :
    • Avec un système à débit d’air constant, chaque zone sera dimensionnée avec un débit d’air permettant de répondre à la charge frigorifique extrême; dans le caisson de traitement d’air central, on devra traiter (en permanence !) le total des débits maximaux de toutes les zones !
    • Par contre, avec le système VAV, on va tenir compte du fait que le soleil tourne autour du bâtiment et que la charge maximale de la zone Ouest survient lorsque la zone Est est à faible demande; la centrale de préparation sera dimensionnée sur base du cumul instantané possible entre toutes les zones,… ce qui est déjà nettement plus raisonnable !

    Il en résulte une économie du coût d’investissement (par rapport à un système à débit constant de même puissance).

  • L’avantage énergétique suit directement : pourquoi pulser en permanence le débit maximal dans chaque zone ? Tout particulièrement en mi-saison, pourquoi pulser un maximum d’air à une température « neutre » (20°C) alors les besoins sont nuls (la température ambiante est dans la zone neutre) ? La force du VAV est de réduire la vitesse du ventilateur à ce moment et de ne pulser que le débit d’air hygiénique. La consommation du ventilateur (proportionnelle au cube du débit d’air pulsé) est fortement réduite.Il en résulte une économie du coût d’exploitation (par rapport à un système à débit constant de même puissance). Le chiffre de 20 % d’économie thermique et électrique (ventilateur) est couramment cité, entre un VAV simple (sans réchauffage terminal) et un système unizone à débit constant.
  • L’avantage acoustique lui est lié encore : la grande vitesse (et donc les niveaux sonores les plus élevés) est réservée aux charges extrêmes. Ce qui est particulièrement apprécié par les occupants.
  • Par rapport aux installations de type « air-eau » (ventilo-convecteurs,…), le VAV permet également de réaliser du free cooling des bâtiments en hiver et en mi-saison : l’air extérieur vient directement refroidir le bâtiment, sans participation du groupe frigorifique.

Inconvénients

  • Le réglage d’un débit d’air est moins aisé que le réglage d’une température. Il semble que sur le terrain la mise au point d’une installation VAV donne parfois quelques cheveux blancs ! Tout particulièrement, le réglage des registres d’air neuf paraît délicat.
  • Le coût d’installation reste élevé, au moins par rapport à une installation de ventilos-convecteurs.
  • L’encombrement n’est pas négligeable, comme pour toutes les installations « tout air ». Les gaines dans chaque zone sont dimensionnées pour transporter le débit maximum, correspondant à la charge extrême de l’été…

  • L’air extérieur gratuit de l’hiver doit être préchauffé dès que sa température devient inférieure à la température de pulsion. Et ce chauffage finit par coûter fort cher. Un recyclage de l’air extrait permet de supprimer ce budget mais n’est pas toujours souhaité pour des raisons hygiéniques. Un récupérateur de chaleur lui est préféré, mais il suppose d’en faire l’investissement.

Poutres froides

Poutres froides

Poutre dynamique, à gauche, et poutre  statique, à droite.


Principe de fonctionnement

La poutre froide convective se présente sous la forme d’un échangeur de grande longueur. Il est placé nu ou habillé pour être intégré à un faux plafond. Les poutres sont parcourues par de l’eau qui varie entre 15 et 19°C selon les besoins de refroidissement. On ne peut descendre plus bas suite au risque de condensation de la vapeur d’eau contenue dans l’ambiance.

L’échange se fait principalement par convection naturelle.

On distingue cependant deux types de fonctionnement :

Les poutres « actives », ou poutres à induction

L’air neuf hygiénique est injecté par des petites tuyères, créant un appel d’air secondaire venant du local. La convection dans l’échangeur est ainsi renforcée.

Photo poutres "actives".

Schéma poutres "actives".

Peut-on comparer ce système à un éjecto-convecteur ?

  • Oui, dans la mesure où l’induction par effet Venturi est identique.
  • Non, la comparaison est abusive diront certains, car les vitesses d’air injecté sont nettement plus faibles (pour éviter de créer du bruit !) et l’augmentation de puissance par rapport au système statique n’est pas énorme (de 10 à 30 %). La pression régnant dans le conduit d’air neuf est de 150 à 200 Pa.

Le taux d’air neuf varie entre 1 et 2,5 Volume/heure. Il apporte environ un tiers de la puissance frigorifique totale.

Par le même système, le chauffage des locaux est possible en hiver, même si l’apport de chaleur en partie supérieure du local entraîne une stratification non négligeable des températures !

Exemple d’application.

Bureau paysager…

… équipé de poutres dynamiques.
Le tube central apporte l’air hygiénique, les conduites de cuivre apportent l’eau froide.

 Les poutres passives, à convection naturelle :

Il s’agit d’un échangeur travaillant par simple convection naturelle : l’air chaud du local monte, arrive au dessus de la poutre, traverse l’échangeur, se refroidit et redescend, puisque plus lourd…

Photo poutre passive.

Il est important de respecter les espaces nécessaires au bon fonctionnement d’une poutre. Ainsi, si la poutre est intégrée dans un faux plafond, celui-ci devra être ajouré pour laisser passer l’air de convection.

L’apport d’air neuf est dans ce cas indépendant du fonctionnement de la poutre.


Technologies

Les technologies utilisées sont très similaires entre elles. Les poutres se distinguent essentiellement

  • par leur habillage (poutre carénée ou poutre intégrée dans un faux plafond),
  • par leur intégration dans le local et/ou dans son faux plafond, avec l’objectif de favoriser la convection de l’air,
  • par la distribution de l’air neuf dans la poutre, pour les poutres à induction.

Par exemple, certains modèles n’injectent l’air primaire que d’un seul côté :

Schéma de principe.


Installation

On distingue essentiellement les poutres autonomes qui se placent sous le plafond comme des luminaires,

et les poutres qui sont intégrées, voire cachées dans les faux plafonds.

Différentes formules sont possibles pour que l’air de l’ambiance circule au travers de l’échangeur :

>  une plaque de faux plafond très perforée à côté de la poutre,

>  un faux plafond avec des lames très espacées,

>  une poutre en alternance avec les luminaires,…

Idéalement, la poutre doit être située parallèlement à la fenêtre et du côté du couloir. C’est ainsi que le mouvement de circulation de l’air se fera le plus naturellement (boucle convective qui descend le long du couloir et remonte le long de la fenêtre). Et pourtant, dans 90 % des cas, on rencontre des poutres perpendiculaires à la fenêtre ! C’est sans doute une question d’esthétique vis-à-vis des luminaires…

Attention à celui qui travaille en dessous !

Il est possible, par exemple, de l’intégrer au dos d’une armoire, sur le mur opposé à la fenêtre.


Régulation

Le circuit des poutres est alimenté au régime aller-retour de 15°C – 17°C.

Contrôle de la condensation

Différentes dispositions seront prises pour limiter le risque de condensation

  • limitation de la température de départ de l’eau pour les réseaux intégrés dans la dalle de plafond,
  • contrôle de l’humidité relative à proximité du plafond et coupure de l’alimentation en eau, pour les réseaux en faux plafonds,
  • contrôle des conditions extérieures pour anticiper les fluctuations d’humidité à l’intérieur du local.

Dans un bâtiment avec fenêtres ouvrantes, l’alimentation du plafond en eau doit pouvoir être interrompue par un contact de feuillure.

Schémas de principe

Schémas de principe régulation.

La régulation de l’alimentation en eau des poutres vise classiquement au maintien de la température de consigne, mais aussi au contrôle de l’absence de condensation sur les tuyauteries.

Sur base de la mesure de la température de l’air ambiant et de son humidité relative, le régulateur détermine le point de rosée de l’ambiance et limite la température de l’eau à un niveau de 1 à 1,5°C supérieur à ce point de rosée.

Cette protection peut également être assurée par un détecteur de condensation placé à la surface du tube d’entrée : si l’humidité relative de l’air à la surface du tube approche de la condensation, un contact est actionné; la vanne est fermée et, éventuellement, la pompe est arrêtée.

Cette pompe peut également être mise à l’arrêt

  • si la température ambiante est inférieure à sa consigne,
  • si le contact de feuillure placé sur les ouvrants des châssis signale une fenêtre ouverte.

Schéma de raccordement hydraulique

Le raccordement hydraulique et la régulation des poutres froides sont similaires à ceux mis en place pour les radiateurs ou les convecteurs : une régulation par vannes trois voies modulante pour chaque départ de zone homogène.
Par exemple, pour l’implantation ci dessous :

Schéma de raccordement hydraulique

On peut prévoir :


Prédimensionnement

Puissance

Pour les poutres froides statiques, la puissance peut atteindre 70 à 200 W/m linéaires, en fonction de la température ambiante, de la température de l’eau froide et de la largeur de la batterie.

Pour les poutres dynamiques, la puissance est fonction des paramètres suivants :

  • températures d’eau froide (in/out),
  • température ambiante,
  • débit d’air primaire,
  • taux d’induction.

Sur base

  • d’un débit d’air primaire correspondant à 50 m³/h par m de poutre,
  • soit environ 3 renouvellements d’air/heure, si on considère un mètre linéaire de poutre pour 6 m² au sol,
  • d’un écart de température (ambiance – eau froide) de 10°C.

La puissance de refroidissement est de l’ordre de 435 W/m, y compris le refroidissement dû à l’air primaire. Cette puissance permet donc d’assurer un refroidissement correspondant à une charge calorifique dans le local d’environ 75 W/m2.

Mais certains constructeurs atteignent, à débit d’air égal, des puissances de refroidissement jusqu’à 110 W/m2.

Emplacement

Pour les systèmes passifs, le placement des unités et la dimension correcte de la reprise d’air sont très importants. Si on ne prête pas suffisamment attention à ces deux points, la puissance attendue ne sera pas atteinte.

On sera également attentif à l’emplacement de l’apport d’air neuf et à son interaction avec les poutres passives.

Source : Conférence de Mr P.A. Delattre – Tracrebel Development Engineering – journée ATIC du 25.09.98

Dalle active

Dalle active


Principe

Le principe de base consiste à intégrer des tuyauteries dans la dalle de chaque étage, parcourues par de l’eau froide. Cette technique est réversible, les conduites peuvent être parcourues par de l’eau chaude en hiver (non conseillé).

On retrouve différente dénomination pour ce principe : concrete core activation, active slab, slab cooling, thermal active building system (TABS),…

Du fait de la grande surface d’émission et de la masse des dalles « actives », le système se caractérise par :

  • Des régimes de températures d’eau élevés en refroidissement et très bas en chauffage.
  • Une inertie thermique très importante pouvant être exploitée comme stockage (principalement de frigories).

Schéma principe dalle active.

La puissance frigorifique et calorifique dépend du régime de température utilisé, de l’espacement entre conduites, de la profondeur de celles-ci, de la composition de la dalle et de la température ambiante. Dans des conditions usuelles (T° ambiante : 25 °C, T° d’eau à l’entrée de la dalle : 18 °C) la puissance en froid est de 40 à 50 W/m² dans les meilleurs cas, à comparer aux 80 à 90 W/m² des plafonds froids traditionnels et aux 100 à 120 W/m² des ventilo-convecteurs. En mode chaud (T° ambiante : 21°C, T° d’eau à l’entrée de la dalle : 36°C) la puissance est de 60 à 80 W/m².

Exemple on retrouve ci-dessous, l’influence de la composition de la dalle sur les puissances de chauffage/refroidissement.

Situation de base

Soit une dalle de béton de 30 cm, recouverte d’un tapis de 1,5 cm (lambda = 0,15).

En mode refroidissement

Schéma dalle active en mode refroidissement.
  • T° départ d’eau = 16°C
  • T° retour d’eau = 20°C
  • T° ambiante = 26°C (!)
  • T° surface supérieure = 23,1°C
  • T° surface inférieure = 22,6°C
  • Puissance totale refroidissement : 57 W/m²
  • 37 W/m² vers le bas et 20 W/m² vers le haut.

En mode chauffage

Schéma dalle active en mode chauffage.
  • T° départ d’eau = 28°C
  • T° ambiante = 20°
  • CT° surface supérieure = 21,6°C
  • T° surface inférieure = 23,7°C
  • Puissance totale de chauffage : 40 W/m²
  • dont 22 W/m² vers le bas et 18 W/m² vers le haut

Situation avec une dalle flottante

Si une dalle flottante (et son matériau résilient intermédiaire…) est disposée sous le tapis, les puissances évoluent comme suit :

  • en froid : 8 W/m² vers le haut et 40 W/m² vers le bas.
  • en chaud : 6 W/m² vers le haut et 23 W/m² vers le bas.

Situation avec un faux plancher

Soit une dalle de béton de 30 cm recouverte d’un faux plancher et d’un tapis.

En mode refroidissement

Schéma faux plancher en mode refroidissement.
  • T° départ d’eau = 16°C
  • T° retour d’eau = 20°C
  • T° ambiante = 26°C (!)
  • T° surface supérieure = 24,9°C
  • T° surface inférieure = 22,4°C
  • Puissance totale refroidissement : 47 W/m²,
  • 40 W/m² vers le bas et 7 W/m² vers le haut.

En mode chauffage

Schéma faux plancher en mode chauffage.
  • T° départ d’eau = 28°C
  • T° ambiante = 20°C
  • T° surface supérieure = 20,6°C
  • T° surface inférieure = 23,8°C
  • Puissance totale de chauffage : 29 W/m²
  • dont 23 W/m² vers le bas et 6 W/m² vers le haut

La lame d’air joue son rôle d’isolant…

On constate donc que l’effet isolant de la finition au sol augmente la puissance de chauffage ou de refroidissement émise vers le bas (plus importante en froid qu’en chaud, le froid descend naturellement). Par contre que la finition soit une dalle flottante ou un faux plancher la puissance en chaud ou en froid est fortement diminuée, la dalle active perd toute son efficacité. On voit donc l’intérêt de bien choisir la finition du futur bâtiment.


Aspects technologiques

Mise en œuvre

Il existe différentes techniques proposées par les constructeurs. Les photos ou schémas ci-dessous sont placés dans un but d’illustration et non pas pour promouvoir davantage l’un ou l’autre système.

Les tuyauteries  peuvent être placées au centre des dalles de béton de telle sorte qu’elles ne subissent aucun effort de traction ou de compression. Mais, d’après un constructeur, ce critère est peu important, les tuyaux (nettement plus souples que le béton) pouvant sans problèmes reprendre ces modifications de longueur. Le critère majoritaire est la répartition entre le chaud et le froid si les 2 services sont assurés : la puissance en froid et le temps de réponse peuvent être augmentés si les tuyaux sont abaissés aux 2/3 de la dalle, par exemple.

De toute façon, elles restent non accessibles face à un éventuel trou de foreuse.

Trois techniques de mise en œuvre sont possibles :

  • In situ : elle consiste à directement dérouler la conduite et à le ligaturer sur un treillis spécifique ou le ferraillage existant de la dalle. Plus couteuse par sa main d’œuvre plus importante, cette technique est utilisée pour des tracés hydrauliques difficiles avec courbe. Elle sera donc généralement réalisée sur des surfaces moins importantes que celles couvertes à l’aide des autres techniques.

Photo chantier mise en place dalle active.  Photo chantier mise en place dalle active, détail.

  • Module préfabriqué : les conduites sont déjà fixées en usine sur un treillis ou sur le ferraillage en fonction des exigences de participation à la reprise de charge de la dalle. Les dalles arrivent donc sur chantier par module et sont assemblées selon le plan de calepinage, afin d’atteindre la surface du circuit voulue.

Photo chantier mise en place dalle active, module préfabriqué.  Photo chantier mise en place dalle active, module préfabriqué.

  • En prédalle : comme son nom l’indique, les conduites sont placées et livrées sur une prédalle.

Schéma prédalle.

Une coordination doit impérativement être réalisée aussi bien sur chantier qu’à la phase conception. Le bureau d’étude en stabilité doit intégrer la présence de conduites dans la dalle selon les informations fournies par le fabricant, et ce dernier doit connaitre les spécificités de la dalle nécessaire au calcul de la puissance de refroidissement. Sur chantier, les différents corps de métier doivent être avertis de la présence de conduite dans la dalle.
Les conduites de la dalle active doivent être placées après la pose du système électrique. Les canalisations d’eau froide et d’eau chaude à proximité des conduites de la dalle active doivent être calorifugées.

Une attention particulière doit être portée pour les emplacements des joints de dilatations et aux endroits de reprises de charges. On évitera donc de placer les tubes de dalle active en périphérie de dalle et au niveau des jonctions entre plancher et mur. Des fourreaux doivent être employés pour le passage des joints de dilatation de la dalle.

Lors de toutes les opérations de montage, les tubes doivent être maintenus en pression (3 bars à 6 bars), lors du transport, du stockage, de la mise en place, du coulage et lors du séchage du béton. Cette pression doit pouvoir être vérifiée à tout moment par un manomètre. Si les tubes sont déjà sous eau et que le bâtiment peut être soumis au gel, il est impératif de prendre toute les précautions pour éviter le risque de gel dans les tubes. Si de l’antigel est utilisé, celui-ci doit être vidangé avec de l’eau propre avant la mise en service du bâtiment.

Raccordement

Plusieurs modules/conduites peuvent être reliés entre eux à l’aide des raccords spécifiques afin de former un seul circuit. Quelle que soit la technique utilisée, il est recommandé de limiter la longueur par boucle à 130 m et les pertes de charge à 300Pa. Cette limite de 130 m compte tenu des espaces entre conduites et de la limite de bord de dalle équivaut à +/- 45 m² de plancher.

Les modules peuvent être raccordés sur collecteur ou sur une boucle de Tichelmann. Un accessoire spécifique doit être employé pour traverser la dalle et se connecter au collecteur.

Photo raccordement.  Photo raccordement, 02.

Schéma raccordement.
Raccordement sur collecteur.

  1. départ
  2. retour
  3. vanne d’équilibrage
  4. collecteur
  5. vanne d’arrêt

Schéma raccordement.
Raccordement sur boucle de Tichelmann.

  1. départ
  2. retour
  3. vanne d’équilibrage
  4. vanne d’arrêt

Le système à trois connecteurs permettant de différencier les zones en chaud ou en froid.

Variante

Il est possible également de refroidir par les murs latéraux.

Ce système s’utilisera pour des cas bien spécifiques, en effet tout comme la dalle active, il est nécessaire de laisser les murs équipés des conduites de refroidissement accessibles. On privilégiera la dalle active au mur actif, car il est plus facile de ne pas mettre de faux plafond que de ne pas mettre d’armoire. Le mur actif sera pertinent si la surface de la dalle est insuffisante pour donner la puissance nécessaire, par exemple pour des petits locaux hauts et étroits.

Photo refroidissement par les murs latéraux.

Acoustique des locaux

Le souhait de laisser la masse thermique accessible à l’ambiance (pas de moquettes épaisses ni de faux plafonds) peut créer un éventuel inconfort acoustique, du moins dans les bureaux paysagers.

En effet, une part importante du plafond doit être maintenue ouverte. Une telle diminution de surface pour le traitement acoustique de la pièce peut difficilement être compensée. D’autres surfaces d’absorption doivent être trouvées (panneaux mobiles, armoires avec panneaux intégrés, sous-faces des tables de travail, …).

Par exemple, les portes des armoires du bâtiment Worx à Kortrijk sont des panneaux acoustiques micro perforés :

Photo armoires du bâtiment Worx à Kortrijk.

Une campagne d’essais a été menée dans un institut de recherche suédois pour mesurer l’influence de faux plafond discontinu, morcelé en ilots flottants de petite taille, sur les échanges thermiques entre le local et la dalle active.
La campagne consistait à comparer deux configurations, un faux plafond représentant 45 % de la surface du local suspendu à deux hauteurs différentes (20 cm et 80 cm).
On constate une diminution de l’efficacité due à la présence des éléments acoustiques de 16 % lorsqu’ils sont suspendus à 20 cm et de 12 % à 80 cm. Il apparait logique que plus l’élément acoustique est suspendu bas, plus la convection de l’air autour du panneau est facilitée. De même l’efficacité acoustique est améliorée, car le son se répartit mieux autour du panneau, au contraire de panneaux trop proches l’un de l’autre qui ne permettent pas une distribution correcte autour des panneaux.

Circulation d’eau

En règle générale, on observe un débit d’eau (en régime turbulent) d’environ 10 à 15 kg/h/m² de dalle active.


Intérêt – Contrainte

Disposer d’un émetteur alimenté par de l’eau froide à haute température (environ 20°C) est particulièrement intéressant en termes de performance énergétique : non seulement les machines frigorifiques présentent alors un meilleur rendement de production, mais cela facilite également la valorisation de la fraicheur de l’environnement extérieur  (free chilling, geocooling, etc.). C’est d’autant plus vrai que la dalle active présente une inertie thermique à même de valoriser la fraicheur nocturne.

Cependant, vu l’inertie thermique du système et sa faible réactivité aux variations de charge thermique (l’ensoleillement par exemple), il est plus difficile d’assurer en continu une consigne de température maximale.

Les constructeurs affirment d’ailleurs clairement qu’il ne s’agit pas à proprement parler d’un système de climatisation. Il est dès lors parfois utile d’installer un système traditionnel en complément (climatiseur dans une salle de réunions, par exemple) ou de prévoir un système de chauffage et/ou de climatisation complémentaire. Dans ce cas, la machine frigorifique peut être de faible puissance puisqu’elle charge la dalle la nuit et travaille sur le refroidissement de l’air le jour.

Une alternative pour le concepteur peut consister à mettre en place le slab cooling et la ventilation hygiénique, tout en prévoyant dès le départ la possibilité de compléter la puissance frigorifique par le réseau d’air, en cas de besoin. Pendant toute l’année, l’installation de ventilation (dont les conduits auront été prévus pour assurer un débit nettement plus élevé) fonctionnera avec une consommation très faible des ventilateurs (doubler le diamètre, c’est diviser la consommation du ventilateur par 32 !) et, en période de canicule, ce réseau donnera l’appoint souhaité.

Pour éviter le risque de condensation, l’eau circule à une température minimale de 16 °C.  Nous renvoyons vers la partie régulation pour la gestion du risque de condensation.


Intégration d’un système de chauffage

De manière à limiter les coûts d’installation, on peut envisager d’intégrer le chauffage à la dalle active en complément du refroidissement.

Du fait de l’inertie importante de la dalle, le système peut être considéré comme un stockage de chaleur anticipé. Dont l’émission est difficilement contrôlable au regard de la variabilité et de l’impossibilité de prévision des apports de chaleur gratuits (occupants, soleil,…). Dès lors, il est préférable de considérer la dalle comme une source de chaleur de base à laquelle on adjoint un complément plus flexible. Par exemple, le chauffage de base sera donné par l’alimentation continue du réseau à une température très faible (de l’ordre de 28°C par -10° extérieur). La température de surface n’est alors que de 2 degrés plus élevée que la température ambiante. À comparer avec le chauffage par le sol traditionnel dont l’eau d’alimentation est de 35°C et la température de sol atteint 28°C. Une technique consiste alors à compléter ce chauffage de base par un deuxième réseau plus dense et à température plus élevée, dans la zone de bord (1 m à 1,5 m le long des façades). Comme expliqué dans les différentes techniques de dalle active, il faudra prendre en considération les contraintes plus importantes en bordure d’appuis sur les conduites de refroidissement/chauffage.

Mais le souhait de placer une « dalle flottante » (pour limiter la nuisance acoustique éventuelle créée par le bruit des pas) peut modifier le projet. On arrive alors à un choix de plusieurs solutions :

  1. Chauffage/refroidissement de base dans la dalle et appoint de chauffage dans la chape en bordure (avec de l’eau à plus haute température;
  2. Chauffage/refroidissement de base dans la dalle, appoint de chauffage dans la chape en bordure et chape flottante globale;
  3. Chauffage à plus haute température dans la chape flottante et refroidissement par la dalle :

Remarque : s’il existe des parois vitrées fort importantes, il est conseillé de briser l’effet de l’air froid « coulant » le long du vitrage par la pose de montants horizontaux.

 


 Production associée

Production de froid

La production de froid valorisera des sources d’énergie compatibles avec une température d’eau froide élevée (on ne descend pas sous les 16°C notamment pour éviter les risques de condensation).

L’eau froide peut être produite  par différents moyens :

L’eau peut être refroidie par l’air extérieur, via un échangeur placé en toiture, ou une tour de refroidissement (free-chilling).

Pour profiter d’un air plus frais, il apparaît que le fonctionnement aura principalement lieu durant la nuit. D’où la nécessité de stocker le froid dans l’épaisseur de la dalle.

Une variante de géothermie consiste à exploiter l’eau refroidie par de l’eau pompée dans une nappe phréatique, via un échangeur à plaques eau/eau.

Le fonctionnement peut alors avoir lieu 24h/24.

L’eau peut être refroidie par circulation dans le sol sous le bâtiment, via un échangeur sol/eau. La présence d’une circulation d’eau d’une nappe phréatique éventuelle autour des conduits renforce le refroidissement. La puissance frigorifique varie entre 10 et 25 W/m courant (on parle de géocooling ou géothermie). Le fonctionnement peut alors avoir lieu 24h/24.
L’eau peut être refroidie par une machine frigorifique traditionnelle, venant en appoint d’une des sources ci-dessus, notamment pour vaincre les périodes de canicule.

Production de chaud

En chauffage, la dalle active est associée à une production dont les meilleurs rendements sont obtenus grâce à la production d’eau à basse température : principalement les pompes à chaleur, accessoirement les chaudières à condensation voire des capteurs solaires.

Régulation

Principe généraux

Une faible réactivé

La faible réactivité de la dalle impose une stratégie de régulation différente des autres systèmes. Ce que certains nomment « autorégulation » est en réalité une obligation de simplification de la régulation en supprimant les variations de température intérieure compte tenu du peu de réactivité du système.

Par exemple, si le climat désiré dans le local est représenté par une plage entre 20 °C et 25 °C, alors le système visera souvent à maintenir une température intérieure constante de 23 °C pour limiter les variations et forcer un climat intérieur étant indépendant du climat extérieur.

Différentes raisons indiquent néanmoins qu’il ne faut pas se passer totalement d’une régulation :

  • l’augmentation de rendement de production via des températures d’eau faibles ou élevées;
  • la condensation liée à de faibles températures de l’eau et/ou au taux d’humidité élevé du local;
  • la gestion de l’intermittence pour l’économie d’énergie;
  • la destruction d’énergie si la dalle est surchargée.
Un découpage par zones thermiques homogènes

Une régulation par locaux individuels avec l’activation au cœur du béton n’est pas sensée, mais le réseau doit toutefois être partagé en zones homogènes en termes d’apports (soleil, occupants, équipements) afin de pouvoir affiner la régulation compte tenu des différences.

Le software de gestion de l’installation devrait être modifiable et optimisable : les différents paramètres, les intervalles de temps et de température ne devraient pas être programmés définitivement, mais adaptables manuellement. Généralement une optimisation ou une modification des règles de paramètres devrait encore être possible après la mise en service et durant le fonctionnement.

Pour la régulation il devrait être possible de modifier les paramètres suivants :

  • durée de service,
  • température de l’eau,
  • débits d’eau.
Régulation des heures de service

Un avantage de l’activation au cœur du béton est qu’il suffit dans de nombreux cas de refroidir activement pendant une partie de la journée. Dans ce cas une simple mise en circuit temporaire suffit.

Il peut être avantageux d’activer uniquement en dehors des heures d’utilisation (la nuit…). Il est alors possible de profiter de tarifs de courant moins coûteux pour les compresseurs de froid, de profiter de la température extérieure nocturne pour refroidir et de diminuer la consommation de la pompe de circulation.

De même, en cas de refroidissement supplémentaire via une installation à air, la machine de refroidissement ne doit pas être dimensionnée en fonction de la somme des besoins (activation au cœur du béton + installation à air), mais d’après le plus grand besoin.

Il faut toutefois veiller à ne pas faire fonctionner trop longtemps la dalle sous peine d’entrainer un sous-refroidissement et un inconfort en été.

Service intermittent

Des analyses ont montré qu’il est possible d’arrêter les pompes de circulation sans grande diminution de productivité (la pompe est arrêtée pendant 45 min ou 30 min par heure). Sur base de calculs de simulation dynamique, la température de la pièce est quasi la même, mais les dépenses d’énergie pour les pompes sont beaucoup plus faibles.

Pendant l’arrêt de la circulation (30 ou 45 min par heure), la chaleur dans le béton continue à circuler vers l’espace des tuyaux refroidis. Lors d’un nouveau démarrage du débit d’eau, une capacité de refroidissement proportionnellement plus importante se met en place grâce à la différence de température plus élevée eau-béton. Les variations de température dans le cœur du béton ne se répercutent presque pas jusqu’à la superficie des pièces en raison de l’inertie. C’est pourquoi la capacité de réfrigération reste sensiblement la même et que les interruptions dans le transport de chaleur/de froid n’ont pratiquement pas d’influence sur la pièce.

Gestion du risque de condensation

Avec un système de refroidissement dans la dalle, celle-ci étant plus froide que l’ambiance, il existe un risque de condensation sur la paroi. La condensation peut avoir pour conséquence le développement de moisissures sur certaines surfaces si la condensation se reproduit régulièrement. Si elle intervient sur un sol, le sol mouillé eut être glissant et donc dangereux pour les occupants.

Le risque de condensation est néanmoins limité vu le régime de température employé dans la dalle active. En cas de risque avéré, une déshumidification  de l’air neuf hygiénique sera organisée dans le groupe de traitement d’air.

Comment réguler ?

Afin de réguler correctement une dalle active, il faut garder en tête que sa caractéristique principale est le déphasage entre la distribution de l’énergie et sa diffusion dans le local. On doit donc tenir compte de l’effet tampon et choisir le moment le plus efficace pour faire fonctionner la production. La complexité de régulation d’une dalle active nécessiterait de pouvoir prédire le climat extérieur et les charges internes afin d’optimiser le confort intérieur. C’est pourquoi on déconseillera le chauffage d’un bâtiment à l’aide de ce système tandis qu’on l’acceptera comme mode de refroidissement en fonction des possibilités de production à très haut rendement (freechilling et geocooling).

Pour réguler une dalle active, on peut jouer sur deux éléments :

  • Le débit d’eau;
  • La température de départ de l’eau.

La régulation doit à la fois permettre de maintenir le climat intérieur désiré et le faire de la manière la plus économique possible, sans détruire de l’énergie. La régulation dépendra donc également du mode de production de l’énergie.
Par exemple :

  • Il est possible de brûler du gaz à tout moment de la journée, mais des panneaux solaires ne peuvent rien alimenter durant la nuit.
  • Il est possible de refroidir en journée à l’aide d’un géocooling alors qu’avec un freechilling, on préférera refroidir durant la nuit.

Exemples

Ci-dessous on retrouve des exemples de conditions de régulation  proposées par divers concepteurs. La diversité de propositions reflète les difficultés de régulation de ce système.

Exemple Mode Mise en marche du circulateur Débit d’eau Température de départ de l’eau
1. Été ON si Text moy 48 h >16 °C et de 20 h à 6 h Constant : 13 kg/h/m² Constant : 18 °C
2. Été ON tout le temps Variable : 0 – 14 kg/h/m² de manière à maintenir Tsurface dalle = 20 °C Constant : 15 °C
3. ON si Text moy 48 h >14°C Variable : 0 – 14 kg/h/m² de manière à maintenir Tsurface dalle = 22 °C entre 7 h et 19 h et 19°C entre 19 h et 7 h Constant : 15 °C
4. ON si : Variable : 0 – 14 kg/h/m² de manière à maintenir Tsurface dalle = 23 °C Variable :
Été – Text moy 48 h >14 °C 19 °C
Hiver – Text moy 48 h <12 °C 25 °C
5. Été ON si Text >15 °C Constant : 12 kg/h/m² Variable : loi d’eau
22 °C si Text = 15 °C
17 °C si Text = 30 °C
6. ON tout le temps Constant : 10 kg/h/m² Variable :
Été – du 21/06 au 20/09 20 °C (de 21 h à 7 h)
Automne
Printemps
– du 21/09 au 20/12 et du 21/03 au 20/06 20 °C (de 17 h à 6 h)
Hiver – du 21/12 au 20/03 26 °C (de 6 h à 9 h)
Un appoint en chaud et froid est disponible à l’aide de ventilo-convecteurs. Ils sont alimentés en eau chaude (50 °C) ou froide (7 °C) de 6h à 19h sur base d’un change-over en fonction de la demande du plus grand nombre.

Chaque exemple ci-dessus présente des lacunes en termes d’efficacité et pourrait être amélioré ; montrant par là qu’il n’y a, à l’heure actuelle, pas de solution de régulation universellement reconnue.

Voici différents commentaires pouvant être émis à propos de ces exemples :

Exemple 1 – Commentaires

En fonction des demandes du bâtiment, il est probable que refroidir quand la température moyenne des deux derniers jours dépasse 16 °C ne soit pas suffisant pour apporter le confort entièrement à l’aide de la dalle active. En effet, si on observe ci-dessous le parallèle entre la demande de refroidissement d’un bâtiment de bureau et la température extérieure à Uccle durant une année moyenne (Meteonorm), on remarque qu’un besoin de refroidissement existe quand la température extérieure moyenne sur 48 h est de 12 °C (avril, mai, septembre, octobre).

Graphe parallèle entre la demande de refroidissement d’un bâtiment de bureau et la température extérieure à Uccle.

Exemple 2 – Commentaires

Faire fonctionner le circulateur de la dalle active en permanence n’est pas optimal en termes de consommation d’électricité. De plus, maintenir la surface de la dalle à 20 °C entraine un risque important de sous refroidissement de l’ambiance et donc un inconfort ou une destruction d’énergie si une fourniture de chauffage le compense.

Exemple 3 – Commentaires

Maintenir la surface de la dalle à 19 °C durant la nuit entraine un risque important de sous refroidissement et donc une destruction d’énergie si on relance le chauffage le matin. Toutefois, il n’est pas sûr de pouvoir atteindre une telle température compte tenu de l’inertie du système. Le temps d’arriver à cette consigne (19 °C), il est possible qu’elle ait changé (22 °C).

Exemple 4 – Commentaires

Chauffer et refroidir avec une dalle active présente un grand risque de destruction d’énergie. Le traitement continu empêche de profiter d’une période de mi-saison où le bâtiment serait confortable sans être refroidi ni chauffé.

Exemple 5 – Commentaires

Une régulation sur base de la température extérieure instantanée est incohérente par rapport au déphasage entre la distribution de l’énergie dans la dalle et son émission dans le local.

Exemple 6 – Commentaires

Les besoins d’énergie d’un bâtiment ne dépendent pas directement d’une date. Le climat varie chaque année. Il semble donc peu cohérent de réguler un système de chauffage et de refroidissement uniquement sur base d’un calendrier. Il faudrait au minimum réguler le mode de fonctionnement sur base de la température extérieure moyenne sur les deux derniers jours.

  • La pompe de la dalle active fonctionne quand la température de départ de l’eau n’est pas traitée et entraine une consommation électrique non négligeable tant que l’eau n’est pas totalement à température homogène. Il pourrait être intéressant de limiter le fonctionnement de la pompe de circulation sur base d’une durée maximale après arrêt du traitement de la température de départ de l’eau.
  • La durée de refroidissement via la dalle est plus courte en été qu’en automne et printemps (le reste restant identique). La quantité d’énergie à fournir en été est pourtant plus importante.
  • En hiver, la dalle est chargée de 6 h à 9 h alors que les ventilo-convecteurs sont en fonctionnement. L’énergie fournie à la dalle risque donc d’être source de surchauffe, car elle sera émise dans le local après qu’il ait déjà été chauffé par les ventilo-convecteurs. De plus, un risque de destruction d’énergie est présent puisque le bâtiment sera refroidi lorsque la majorité des ventilo-convecteurs passeront en demande de froid pour combattre la surchauffe due à la surcharge de chaud dans la dalle. Il faut donc tenir compte du déphasage et charger la dalle avec le décalage temporel correspondant.
  • Il faut empêcher l’émission de froid via les ventilo-convecteurs quand la dalle active est (ou était) en mode chaud ; Ainsi qu’empêcher l’émission de chaud via les ventilo-convecteurs quand la dalle active est (ou était) en mode froid et leur adjoindre une courbe de chauffe.
  • Le risque de destruction d’énergie et d’inconfort est d’autant plus grand que les occupants pourront régler à leur convenance la consigne (min et max) des ventilo-convecteurs.

Proposition de régulation de la température de l’eau

Sur base de l’analyse des exemples précédents, voici une proposition de régulation basée sur un débit fixe et le réglage de la température de départ de l’eau dans la dalle.

La régulation de la température de l’eau a plusieurs objectifs :

  • Favoriser un haut rendement de production d’énergie;
  • Fournir le confort attendu dans le bâtiment.

Postulats :

  • En mode « refroidissement », le rendement de production augmente généralement avec l’augmentation de la température d’eau.
  • Il est difficile de prédire les besoins futurs d’un bâtiment. En effet, il est impossible de prévoir à la fois, le climat extérieur (température et ensoleillement) et l’usage du bâtiment (occupants et équipements) de manière à prédire les besoins d’énergie à fournir au bâtiment.
  • Il n’y a pas de corrélation directe entre l’énergie à fournir et la température extérieure. En effet, si on regarde le graphe ci-dessous, on remarque que les besoins d’énergie ne sont pas constants pour une même température extérieure (exemple d’un bâtiment de bureau).

Graphe puissance appelée en regard de la température extérieure.

Objectif d’une régulation de la température de départ de l’eau dans le cas d’un refroidissement par dalle active

Compte tenu de ces  postulats, il semble donc inutile de prévoir une loi d’eau fonction de la température extérieure dans le but d’adapter le climat intérieur du bâtiment. Le seul intérêt est donc de veiller à favoriser un haut rendement de production d’énergie. Il est donc préférable de privilégier une température d’eau proche de la température intérieure.
Pour le choix de la température de l’eau, il faut donc pouvoir dissocier les solutions sur base du contexte particulier des différents projets. On peut ainsi citer deux exemples :

  • Le cas d’une source froide pratiquement gratuite (seule la pompe de circulation consommant de l’énergie) à l’aide de sondes géothermiques ou d’une rivière.
  • Le cas d’une production d’eau froide à l’aide d’un compresseur si la source froide (par exemple l’air extérieur) n’est pas toujours suffisamment froide.

Dans le premier cas, on comprendra que le choix de la température de l’eau doit se faire de manière à minimiser le temps de fonctionnement des pompes puisque ce sont les seules consommations d’énergie. On pourra alors par exemple, travailler à température plus basse sur un temps plus court.

Dans l’autre cas, il s’agira de trouver un équilibre entre un temps de fonctionnement pas trop long et une température d’eau suffisamment élevée pour permettre une production d’eau froide à haut rendement.

Pistes de solution

Pour illustrer cette recherche d’équilibre, voici des pistes de solution issue de simulations thermiques dynamiques d’un immeuble de bureau refroidi par dalle active alimentée par de l’eau froide produite par un groupe de production d’eau glacée (source : MATRIciel) :

Compte tenu du mode de refroidissement, il est préférable de fonctionner la nuit de 22 h à 6 h quand la température extérieure est la plus faible donc le rendement de production est le plus élevé. Il faut veiller à ne pas commencer trop tôt, car la température peut être encore élevée en soirée et on risque de refroidir trop longtemps.

Il est également préférable de refroidir uniquement quand la température moyenne extérieure dépasse une limite de 10 à 14 °C – 12 °C semblant un optimum, mais celui-ci peut varier suivant les bâtiments (cfr le graphique, présenté précédemment, montrant la demande de refroidissement en regard de l’évolution de la température moyenne des deux derniers jours).

On observe qu’une loi d’eau fonction de la température extérieure n’est pas intéressante, car si on se limite à ces conditions de fonctionnement, la température extérieure varie peu et on finit par avoir une loi d’eau dont l’inclinaison est très faible. Une température constante est donc privilégiée en mettant l’importance sur le temps et le moment du fonctionnement.

Il ressort des résultats de l’étude qu’utiliser une température de départ de 18°C est généralement trop froid et entraine un sous-refroidissement tandis qu’une température de départ de 22°C n’est pas suffisante en terme de confort et entraine un risque de surchauffe plus important.

Ainsi l’optimum intervient quand on envoie de l’eau à 20 °C de 22 h à 6 h quand la température moyenne extérieure (sur 48h) dépasse 12 °C.

Toutefois, si le confort n’était pas atteint, il est possible :

  • De compenser le manque de refroidissement durant la nuit par un fonctionnement en journée uniquement quand la température moyenne extérieure (sur 48 h) dépasse, par exemple, 18 °C ;
  • D’augmenter le fonctionnement durant la nuit en déchargeant la dalle dès que la température moyenne extérieure (sur 48 h) dépasse 10 °C (au lieu de 12 °C).

Enfin, il est également possible de réguler sur base de la température moyenne de l’eau dans le circuit avec une consigne finalement proche de celles proposées pour la température de départ étant donné qu’avec le débit imposé, la différence de température entre le départ et le retour est relativement faible.

Ventilo-convecteurs

Ventilo-convecteurs


Principe de fonctionnement

Le ventilo-convecteur est au radiateur, ce que le mix-soup est au presse purée ! Cela va plus vite mais cela fait du bruit… !

Plus sérieusement,

Un radiateur traditionnel est alimenté par une eau à …50°…70°… dans une ambiance à 21°. L’échange de chaleur s’effectue facilement grâce à un tel écart de température.

Mais pour fournir du froid, on fait circuler de l’eau (dite « glacée ») à …5°…10°… dans une ambiance à 24° : l’écart de température devient trop faible pour fournir une bonne puissance frigorifique. On passe dès lors à un échange forcé : un ventilateur est ajouté et le radiateur est remplacé par une batterie d’échange. En pulsant de l’air sur l’échangeur, la puissance frigorifique est fortement augmentée mais le bruit envahit les locaux.. !

Pour assurer le refroidissement l’été mais aussi le chauffage en hiver, un ventilo-convecteur comprendra donc :

  • une prise d’air du local (à chauffer ou à refroidir),
  • un filtre grossier pour arrêter les poussières,
  • un ou plusieurs ventilateurs, à faible vitesse,
  • une ou deux batteries d’échange, de faible section, alimentées en eau chaude et/ou en eau glacée,
  • éventuellement une résistance électrique d’appoint
  • un bac inférieur pour récolter les condensats,
  • et un habillage éventuel qui coiffe le tout pour l’intégrer au local.

Photo ventilo-convecteur.

On le retrouve en position verticale (allège de fenêtre), ou en position horizontale (accroché au plafond ou intégré dans un soffit


Types de ventilo-convecteur

Il existe quatre grandes familles :

1. Les ventilos « à 2 tubes réversibles » : ils ne disposent que d’un seul échangeur, alimenté alternativement en eau chaude en hiver, et en eau glacée en été. Mais un risque de perte d’énergie apparaît par mélange entre eau froide et eau chaude si la zone neutre est trop faible (voir régulation des ventilos).

2. Les ventilos « à 4 tubes » : ils disposent de deux échangeurs, pouvant être connectés en permanence soit au réseau d’eau chaude, soit à celui d’eau glacée.
La taille (le nombre de rangs) de l’échangeur de froid est plus élevé que celui de la batterie chaude, suite au delta T° plus faible sous lequel travaille la batterie froide. On dit que « le pincement » est plus faible entre T°eau et T°air dans l’échangeur.

3. Les ventilos « à 2 tubes – 2 fils » : pour diminuer les coûts d’installation, on ne prévoit que le réseau d’alimentation en eau glacée. Pour assurer le chauffage d’hiver, une résistance électrique d’appoint est prévue (le ventilateur pulse l’air du local au travers de la résistance, comme dans le cas d’un convecteur électrique direct).

Mais le prix du kWh électrique étant nettement plus élevé que le kWh thermique, les coûts d’exploitation seront importants…

4. Les ventilos « 2 tubes réversibles + 2 fils » : astuce ! Ce dernier système peut être utilisé en fonctionnement deux tubes (c.-à-d. eau glacée en été, eau chaude en hiver), la résistance électrique sert alors uniquement en résistance d’appoint en mi-saison.
Les coûts d’exploitation sont dès lors plus limités que dans la version « 2 tubes « .

Remarque : nous avons écarté ici la solution « 3 tubes » (1 départ chaud, 1 départ froid et 1 retour commun) qui a été installée autrefois, mais qui ne l’est plus aujourd’hui puisque le mélange entre l’eau chaude et l’eau froide est aujourd’hui considéré comme inacceptable.


Détails technologiques

Quelques détails technologiques

>  Vannes

La batterie d’échange air-eau à tubes ailettés est encadrées par deux vannes d’isolement et une vanne de réglage du débit d’eau. Cette vanne est commandée par un thermostat dont le bulbe est situé dans la prise d’air.

>  Ventilateurs

La ventilation est assurée par une ou deux turbines, centrifuge ou tangentielle, de 40 à 50 Pa de pression totale, généralement à 3 vitesses (avec un sélecteur accessible à l’utilisateur… qui le positionne souvent en première vitesse pour limiter le bruit !). La puissance demandée est généralement de l’ordre de 80 à 125 W, suivant les modèles.

>  Condensats

Le bac de récupération des condensats sera raccordé au réseau d’évacuation. Dans le cas où le ventilo est accroché au plafond, cette évacuation n’est pas toujours aisée. On aura parfois recours à une petite pompe de relevage des eaux de condensat.

>  Habillage

L’habillage est constitué en acier galvanisé, généralement recouvert intérieurement de laine de verre ou de mousse polyuréthane pour des raisons thermiques et acoustiques. Mais il arrive que pour des raisons esthétiques, la carcasse du ventilo soit intégré dans la structure décorative du local ou dans une armoire et dans ce cas, seules les grilles restent visibles.

Photo habillage ventilo-convecteur - 01. Photo habillage ventilo-convecteur - 02.

Photo habillage ventilo-convecteur - 03. Photo habillage ventilo-convecteur - 04.

Des ventilos particuliers

Il est possible d’intégrer complètement le ventilo dans un faux plafond ou un faux plancher (des hauteurs d’équipement de 200 à 300 mm existent).

Soit il s’agit un appareil « cassette » : il aspire l’air du local en partie centrale et le repulse après traitement latéralement, tangentiellement au faux plafond.

Photo ventilo-convecteur "cassette".

Schéma principe ventilo-convecteur "cassette".

Certains ventilos sont prévus pour être intégrés sous le plancher des locaux montés sur vérins (local informatique, par exemple). Dans ce cas, l’ouverture de l’appareil doit pouvoir se faire par le dessus.

Soit il s’agit d’un appareil dont le raccordement est prévu via des gaines de distribution vers différentes grilles de pulsion. Cela améliore le confort (meilleure diffusion de l’air, diminution du bruit, …) mais il faut que le ventilo reste facilement accessible pour la maintenance (ouverture prévue par le dessous).


Variante : le Module de Traitement d’Air (MTA)

Il s’agit d’une variante côté « émission » : les ventilos sont remplacés par de petits caissons de préparation, disposés en batterie dans le local technique.

Au départ, il s’agit de la réponse d’un constructeur à un promoteur immobilier qui lui demandait : « faites-moi un système simple, modulable, facile à entretenir ».

Ce caisson comprend

               Schéma principe Module de Traitement d'Air (MTA).

Ces caissons sont prolongés par des gaines pour alimenter les diffuseurs d’air dans les locaux (ces diffuseurs assurent aussi bien la pulsion que la reprise).

Ils sont eux-mêmes les extrémités d’une gigantesque pieuvre qui les nourrit

  • en air neuf prétraité,
  • en eau glacée,
  • éventuellement en eau chaude.

Tout a été prévu pour diminuer la main d’œuvre : préindustrialisation des supports, raccordement par flexible,… Chaque équipement défaillant est rapidement démonté et remplacé.

La régulation est particulièrement performante (dans la version « full options » !)

  • action sur l’ouverture des vannes, à basse vitesse,
  • puis action sur le ventilateur s’il faut augmenter les puissances (périodes de relance, par exemple),
  • pilotage possible de l’éclairage et des stores extérieurs,
  • possibilité de fonctionner en tout air neuf (free cooling de nuit, par exemple)

Chaque module de 25 à 50 m2 dispose de son propre caisson, et peut donc définir ses propres conditions de confort.

Le principe de fonctionnement est donc fort proche de celui des ventilo-convecteurs. Mais en plus, il apporte une flexibilité totale s’adaptant très bien aux bâtiments modulaires dont on voudrait pouvoir modifier les cloisons (immeubles de bureaux, chambres d’hôtel,…).

Le coût d’installation fort élevé est sans doute un inconvénient du système …


Variante : le système modulaire à eau glacée ou « Hydrosplit »

Il s’agit d’une variante côté « production » et « distribution ».

Cette technique, encore appelée « hydrosplit », est un système modulaire, préfabriqué, pour ventilos 2 tubes – 2 fils (sans être exhaustif, et à titre d’information, on range dans cette catégorie « l’Hydroflow » de Carrier, « l’Aquajet » de Technibel, « l’Aquastream » de Trane, ….).

Est vendu « en kit »

  • un groupe d’eau glacée,
  • un module hydraulique de distribution primaire,
  • des modules hydrauliques de distribution secondaire,
  • sur lesquels viennent se greffer des ventilos 2 tubes – 2 fils.

Schéma principe système modulaire à eau glacée ou "Hydrosplit".

  1. Groupe frigorique généralement disposé en toiture.
  2. Circulateur de la boucle primaire .
  3. Capacité tampon, dimensionnée pour absorber les besoins frigorifiques durant 5 à 10 minutes
    (le compresseur est équipé d’un anti-court cycle qui interdit le démarrage du compresseur durant 5 à 10 minutes).
  4. Circulateur secondaire.
  5. Clapet anti-retour.
  6. Unité terminale de traitement d’air (ventilo-convecteur).
  7. Module hydraulique secondaire. **
  8. Module de bypass qui permet une irrigation permanente de la boucle.

*par exemple, chez un fabricant, la boucle primaire peut présenter 50 m. de dénivellation verticale et 100 m. d’éloignement.

**par exemple, chez un fabricant, il peut y avoir jusqu’à 9 modules de distribution secondaire, auxquels on peut raccorder 8 ventilos chacun, soit un total de 72 ventilos dans le bâtiment.

L’objectif commercial est de faire baisser les prix par cette standardisation du produit, et d’ouvrir le marché de la climatisation aux chauffagistes qui n’ont plus qu’à assembler le mécano !

Pourquoi pas… mais ce système entraîne un chauffage électrique direct, peu écologique et d’un coût d’exploitation fort élevé ! Il faut s’assurer que les besoins de chauffage seront tout à fait occasionnels.

Certains systèmes sont greffés sur une installation frigorifique réversible, d’autres présentent l’avantage de pouvoir lui raccorder également une distribution d’eau chaude (pour réaliser du « 2 tubes » ordinaire). cela peut constituer alors une solution intéressante en rénovation, puisqu’il y a récupération de la chaudière existante.


La régulation locale des ventilo-convecteurs

On peut imaginer différents niveaux, en fonction de la qualité énergétique du projet

  • Gestion locale : uniquement laissé à l’initiative de l’occupant, donc pas de certitude de l’arrêt du ventilo en période d’inoccupation, ni de respect des consignes. Cela peut fonctionner toute la nuit…
  • Gestion locale + gestion centrale : cette fois, l’occupant peut faire varier la température de 1 ou 2 degrés autour d’une consigne fixée centralement. Par exemple, en centrale, on peut imposer une conduite économique de 20° (chaud) – 25° (froid). La garantie d’une plage neutre est assurée. De plus, la programmation horaire est possible centralement.
  • Gestion locale + gestion centrale + contrôle de présence : un détecteur de présence perfectionne la gestion dans les locaux à utilisation intermittente.

Il existe actuellement des systèmes de centralisation pour unités terminales accessibles financièrement, sortes de GTC minimum, avec une incidence non négligeable sur la consommation énergétique.

Dans tous les cas, la gestion doit considérer la température, le débit hydraulique et le débit aéraulique. Si le débit aéraulique est souvent laissé aux bons soins de l’occupant, les deux autres paramètres sont

Régulation de température du ventilo

Deux principes sont possibles

  • soit la vitesse du ventilateur est constante et le régulateur module la température de l’eau en fonction des besoins de l’ambiance au moyen d’une vanne à trois voies,
  • soit la température de l’eau est constante et le régulateur module la vitesse du ventilateur en fonction des besoins de l’ambiance.

La première solution est très confortable, d’autant que la vitesse du ventilateur est fixée par l’occupant (réglage manuel à 3 positions), occupant qui choisit ainsi le niveau de bruit qu’il souhaite. Bien sûr, si les besoins sont élevés et que la vitesse du ventilateur est faible, la consigne ne sera pas atteinte…

Commutateur de vitesse du ventilateur.

La deuxième solution est moins chère, mais nettement moins confortable, surtout si le ventilateur fonctionne en tout ou rien. Il faut au minimum un appareil à trois vitesses ou, mieux, un ventilateur à vitesse variable.

Dans les deux cas, on prévoira une plage neutre suffisamment large (minimum 2°C) : par exemple, une plage neutre entre 21 et 24°C. La température intérieure du local va « flotter » entre ces deux valeurs, sans consommation énergétique.

Il est préférable que la sonde de température soit placée dans l’ambiance : si elle était placée dans la reprise d’air, il faudrait laisser le ventilateur en 1ère vitesse même lorsque la température ambiante est en plage neutre…!

Ventilateur en vitesse 1 dans la zone neutre.

Ventilateur à l’arrêt dans la zone neutre.

Remarque : une technique URE consiste à placer un contact de feuillure sur les châssis de telle sorte que le fonctionnement du ventilo-convecteur soit interrompu lors de l’ouverture des fenêtres.

Régulation des débits hydrauliques du réseau

Dans les circuits avec vannes à trois voies, le débit hydraulique total de l’installation est constant.
Par contre, dans les installations avec vannes deux voies, lorsque celles-ci se ferment, la pompe risque de souffrir. Deux solutions sont possibles :

  • Soit une vanne à décharge (encore appelée vanne à soupape différentielle) est placée en parallèle sur le réseau de distribution. La pompe est protégée, elle travaille à débit constant, mais sa consommation est constante également, alors qu’on aurait pu économiser de l’énergie électrique !
  • Soit la pompe travaille à vitesse variable, en maintenant une pression constante dans le réseau. Ceci est nettement plus économique, mais suppose une protection des installations de production lorsque le débit d’irrigation devient faible : un by-pass pour la chaudière et un ballon tampon pour la machine frigorifique.

Gestion de la pointe électrique dans les installations 2 tubes – 2 fils

Il est utile de prévoir une technique de délestage pour éviter le fonctionnement simultané des résistances électriques des installations 2 tubes – 2 fils !

 Gérer

Pour en savoir plus sur le délestage certains équipements électriques.

Un fonctionnement séquentiel est possible puisque le bâtiment constitue en lui-même un réservoir tampon et que la stabilité des températures intérieures ne sera que peu affectée par les coupures provoquées par le délesteur.

La programmation devrait également permettre de profiter au mieux des tarifs de nuit, en réalisant les relances du matin avant 7h00 (heure variable régionalement suivant les distributeurs).


Schémas d’installation et régulation des ventilos 2 tubes

Deux systèmes s’entrecroisent au niveau de l’échangeur

  • le circuit d’eau (transfert thermique de la production vers l’émetteur),
  • le circuit d’air (transfert thermique de l’émetteur vers la pièce).

et les régulations de ces deux systèmes sont distinctes.

Schémas d'installation et régulation des ventilos 2 tubes.

Sur ce schéma de base, on distingue 2 régulations :

1. Une vision de la régulation locale de chaque ventilo-convecteur

  • avec vanne 3 voies,
  • avec vanne 2 voies et régulateur de pression différentielle,
  • avec vanne 2 voies et circulateur à vitesse variable.

>> Pour plus d’informations

2. Une régulation de l’alimentation eau chaude/eau glacée des ventilo-convecteurs

  • chaud ou froid + commutation été/hiver,
  • chaud ou froid par une machine frigorifique réversible,
  • chaud et froid simultanément + distribution par zone,
  • chaud et froid simultanément + distribution par zone + circulateur de zone.

>> Pour plus d’information


Schémas d’installation et régulation des ventilos 4 tubes

Trois systèmes s’entrecroisent au niveau de l’échangeur

  • le circuit d’eau glacée,
  • le circuit d’eau chaude,
  • le circuit d’air (transfert de l’émetteur vers la pièce).

et les régulations de ces systèmes sont distinctes.

Schémas d'installation et régulation des ventilos 4 tubes

Sur ce schéma de base, on distingue dès lors 2 régulations :
1. Une régulation locale de chaque ventilo-convecteur :

  • avec vanne 3 voies,
  • avec vanne 2 voies et régulateur de pression différentielle,
  • avec vanne 2 voies et circulateur à vitesse variable.

>> Pour plus d’informations

2. Une régulation  de l’alimentation eau chaude/eau glacée des ventilo-convecteurs

  • production de chaud et froid distinctes,
  • production combinée de chaud et froid, via une machine frigorifique avec récupération de chaleur au condenseur.

>> Pour plus d’informations


Schéma d’installation et régulation des ventilos « 2 tubes – 2 fils »

Le schéma d’installation des ventilos « 2 tubes – 2 fils » est simple : hydrauliquement, seul le réseau d’eau glacée est réalisé.

La résistance d’appoint électrique est, soit commandée en tout ou rien, soit soumise à une régulation progressive (régulation chrono-proportionnelle).

Schéma d'installation et régulation des ventilos "2 tubes - 2 fils"

Les schémas de régulation sont simples puisque les productions de chaud et de froid sont indépendantes. L’équipement frigorifique peut être complété par un stockage de glace.

>>  Pour plus d’informations 

 

Plafonds froids

Plafonds froids


Domaine d’application

Les plafonds rayonnants froids font partie des équipements de refroidissement des locaux.

Généralement, de l’eau froide à + 15°C circule au dessus du faux plafond (par ex, serpentins d’eau fixés au dessus de la plaque métallique du faux plafond). Les occupants recevront une composante de rayonnement froid (en réalité, ils émettront de la chaleur vers ce plafond), et l’air du local sera lui aussi refroidi.

  1. Plaque métallique perforée
  2. Élément refroidissant
  3. Laine minérale dans une feuille PE
  4. Plaque carton-plâtre

Ces systèmes ont beaucoup de qualités (absence de bruit et de courants d’air, encombrement nul, faible consommation énergétique,… ) mais aussi un gros défaut : une puissance frigorifique limitée ! (60 à 120 W/m²). Ce défaut est cependant à relativiser dans le contexte énergétique actuel où l’on recherche à diminuer la charge thermique du bâtiment.

C’est une technique relativement récente qui nous vient des pays nordiques : l’été, les chaleurs de Copenhague ne ressemblent pas vraiment à celles de Marseille !

Cette technique s’adapte aussi bien à la construction nouvelle (pour des bâtiments conçus de façon à limiter les apports solaires et les apports de chaleur internes), qu’en rénovation grâce au fait de ne pas devoir percer des parois pour le passage de gainages d’air volumineux et de pouvoir réutiliser l’installation de chauffage existante. Contenu du risque de condensation, ce système est vivement déconseiller dans les locaux humides.

 

Cette technique de rafraîchissement est également appréciée dans l’hôtellerie pour son silence !

Fonctionnement

Apport de froid

Les plafonds froids rayonnants sont des émetteurs statiques à paroi sèche. Les échanges de chaleur se font de deux façons différentes

  • Échange par convection avec l’air ambiant: un minimum de 40 % de la puissance totale émise.
  • Échange par rayonnement avec les parois, meubles, personnes,… : un maximum de 60 % de la puissance.

Une conséquence de cet échange sur le confort, est d’admettre une température ambiante de consigne à 26°C pour même température opérative.

Apport de chaleur

L’appoint de chaleur en hiver reste un problème même si, en construction nouvelle, le bâtiment étant bien isolé, la demande de chaleur en hiver est limitée. Il est envisageable d’apporter cette chaleur :

  • soit en alimentant en eau chaude les plafonds et en particulier les zones situées près des façades (près des baies vitrées),
  • soit via un circuit de radiateurs complémentaires,
  • soit grâce à des batteries terminales de réchauffe alimentées en eau chaude et placée en façade,
  • soit grâce à des batteries électriques placées sur le conduit d’air de chaque bureau. Mais il faut un débit d’air minimum pour limiter les températures de pulsion.

Technologies

Il existe plusieurs technologies différentes :

Schéma technologies différentes.

Les plafonds froids convectifs se distinguent des plafonds froids rayonnants par leur principe d’échange de chaleur :  70% par convection et 30% par rayonnement. Leur puissance est généralement plus élevée, car ils laissent passer l’air dans le plénum et peuvent disposer d’ailettes.

Les plafonds froids rayonnants

On trouve des plafonds froids rayonnants suspendus ayant une puissance comprise entre 60 et 100W/m².

Les faux plafonds à ailettes clipsables : (procédé FRENGER).

La circulation d’eau se fait dans des tuyaux (cuivre, acier, polypropylène, aluminium,…) sur lesquels sont clipsées des plaques (métalliques, plafonnage,…) formant ainsi un faux plafond. Ces plaques peuvent être perforées, afin d’en faire un plénum de pulsion de l’air neuf.

Dans une variante (chaque constructeur ayant développé son propre produit !), des tubes plats sont sertis sur des plaques métalliques.

La puissance frigorifique de ces plafonds atteint 100 W/m². Son inertie est très faible et donc la régulation de la température ambiante sera aisée.

Schéma faux plafonds à ailettes clipsables.

Un inconvénient : c’est le serpentin qui assure la fonction portante du plafond, ce qui n’est pas l’idéal, à terme (on peut imaginer qu’un montage fait d’usine est plus fiable). Le faux- plafond se présente alors sous forme de lamelles juxtaposées.

Les faux plafonds à répartiteur de froid transversal

Ces répartiteurs sont généralement en Cuivre et présentent une puissance de l’ordre de 80W/m². Entre chaque plaque de faux plafond, le raccord hydraulique est assuré par un flexible.

Photo faux plafonds à répartiteur de froid transversal.

Répartiteur en Cuivre sur plaques métalliques.

Mais il existe également des répartiteurs en polymère posés sur des plaques de métal (74 à 60 W/m²) et certains fabricants proposent d’intégrer ces polymères dans des plaques plâtre (60W/m²).

Polymère sur plaque métallique (Source : gema).

Polymère intégrer dans des plaques de plâtre (source : Rehau).

Pour favoriser le refroidissement du faux plafond, certains fabricants ont imaginé de fixer des lames métalliques transversalement à la circulation de l’eau froide dans les tubes en cuivre. La puissance de refroidissement en est améliorée.

Exemple de plafonds-froids « bidirectionnels ».

Les faux plafonds à tube intégré dans un profilé aluminium :

Ici, l’essentiel consiste à faire communiquer au mieux le froid entre le tube et l’entièreté du plafond métallique ! Un tube intégré à un profilé aluminium permet une excellente conduction du froid (en réalité, de la chaleur), si bien que la différence de température entre l’eau et la surface métallique est seulement de l’ordre de 1°C. Des puissances de 100 à 130 W/m2 actifs sont atteintes.

Attention : de telles puissances sont atteintes pour un écart de 10° entre la température moyenne de l’eau (16°C) et la température de l’ambiance (26°C), c.-à-d. dans des conditions extrêmes.

Le matelas de laine minérale disposé au-dessus ou dans les panneaux de plafond permet une limitation des pertes vers le haut et un traitement acoustique du local (par absorption).

Si une lame d’air est conservée entre le panneau et le matelas isolant, une circulation de l’air est possible et donc l’échange convectif avec les tuyaux froids est amélioré.

Le montage est facilité, mais le prix d’achat est augmenté.

Les faux plafonds à nattes capillaires

Des nattes capillaires (à imaginer avec des diamètres du type spaghetti ! … de l’ordre de 2,5 mm de diamètre intérieur) en matériau de synthèse sont parcourues par l’eau glacée.

Il s’agit généralement de polypropylène (obtenu par polymérisation du propylène, CH6).

Ce système offre une température de paroi plus homogène.

Photo faux plafonds à nattes capillaires.  Photo faux plafonds à nattes capillaires - 02.

On rencontre ce système :

  • Incorporé dans des modules de faux plafonds : la natte est déposée sur un bac/panneau métallique perforé, recouverte d’une couche d’isolant, puis superposée d’une 2ème plaque métallique qui comprime le tout de telle sorte que le contact entre la natte et le panneau soit favorisé. Une fixation par charnière permet un accès aisé à l’espace technique situé au-dessus de chaque module. Le plastique n’est pas rigide et les contacts sont donc partiels mais ceci est compensé par la totalité de la surface qui entre en jeu (multiplicité des tubes).
  • Fixé sur les parois du local (plafond en plaque de plâtre, murs,…), puis recouvert d’un enduit de type crépi ou d’un revêtement de finition classique. C’est alors l’ensemble de la paroi qui devient rayonnante. C’est une technique qui se prête bien à la rénovation d’anciens locaux. Elle peut même équiper des parois courbres.

Ce système présente une très faible inertie (contenance en eau de l’ordre de 40 gr/m² seulement) et permet donc une régulation aisée de la température ambiante.

Le risque de voir les tubes capillaires se boucher est réel, aussi il est généralement recommandé d’utiliser de l’eau déminéralisée, de raccorder les nattes à des tuyauteries non corrodables et de prévoir un échangeur inox entre le réseau de plafond et le circuit lié au groupe frigorifique.

La présence d’un tel échangeur génère, non pas une perte d’énergie, mais bien un delta T° supplémentaire. La température devra être de 1 ou 2°C plus froide à l’entrée de l’échangeur par rapport à celle utile qui passe dans le plafond. Ceci pénalise plus particulièrement la technique de free-chilling c’est-à-dire, le refroidissement « gratuit » de l’eau par l’air extérieur. Au lieu d’être efficace en dessous de 13°C, l’air extérieur ne sera utile qu’en dessous de 12 ou 11°C.

La présence d’un échangeur est également requise parce que le réseau des capillaires ne peut pas tenir sous une pression fort élevée (limité généralement à 4 bars). L’échangeur permet de déconnecter la pression primaire (le réseau d’eau glacée de l’ensemble du bâtiment) de la pression secondaire (le réseau des nattes). On place généralement un échangeur pour 3 ou 4 étages.

La puissance frigorifique est comprise entre 100 et 118 W/m².

Les plafonds à effet convectif renforcé

Afin de favoriser l’effet convectif, des ailettes sont serties sur les tuyauteries. L’idée consiste à créer un effet d’écoulement d’air, de cheminée froide le long de ces ailettes. Cette fois, deux tiers de la puissance est communiquée par convection. La puissance frigorifique est maximale (130 W/m2 et plus) pour autant que le faux plafond reste à claire-voie.

La structure ouverte des plafonds froids convectifs, donne accès à l’inertie de la dalle. La dalle peut dès lors stocker la chaleur et peut être déchargée de cette chaleur par free cooling ou free-chilling.

Schéma plafonds à effet convectif renforcé.

Remarques.

1°. Certains fabricants proposent également leur plafond froid sous forme d’ilots à placer au-dessus des bureaux. Ces ilots peuvent également remplir une fonction d’atténuation acoustique (perforation + film acoustique ou baffle acoustique). Ces ilots trouvent un intérêt dans les bureaux de types paysager.

2° De nombreux fabricants proposent leurs produits sur le marché :

  • des fabricants de faux plafonds qui ont développé la fonction « thermique »,
  • des fabricants de matériel thermique qui ont développé la fonction « faux plafond » !

Il est indispensable que les deux fonctions soient totalement maîtrisées et proposées avec des matériaux de qualité.

Un plafond froid ne s’achète pas sur « catalogue » et une installation ne peut se concevoir sans qu’un  Ingénieur Conseil n’intègre tous les besoins et exigences du Maître de l’Ouvrage et de l’Architecte.

L’Entrepreneur réalisant un tel système doit en prendre la responsabilité globale tant au point de vue installation (faux plafond) que performance (confort).


Systèmes réversibles : chauffage et rafraîchissement

Un plafond froid peut fonctionner en mode chauffage en période hivernale, mais avec un certain inconfort.

Le réseau de tuyauterie sera alimenté soit en « 2 tubes réversibles » (pas moyen, dans ce cas, de faire simultanément du chaud et du froid), soit en 4 tubes, système offrant plus de souplesse. car du froid peut être émis dans une zone et du chaud dans une autre.

Le schéma ci-dessous montre l’installation 2 tubes (réseau chaud/froid, dans/sous le plafond) et propose de la coupler avec une ventilation/refroidissement par déplacement, technique complémentaire très efficace pour les occupants. Elle propose aussi la formule d’insertion des tubes dans la structure du bâtiment (augmentation de l’inertie).

Schéma systèmes réversibles.

Plancher rayonnant à faible inertie

À la base conçus pour le chauffage par le sol, les planchers rayonnants à faible inertie peuvent être utilisés comme source de rafraîchissement en été.


Installation

Pose

La pose est généralement délicate car tout défaut dans la planéité d’un faux plafond est directement visible, surtout si la lumière est rasante. Les réceptions d’installation donnent généralement lieu à des discussions tendues entre architecte et installateur !

Risques de condensation

Il ne doit pas y avoir de condensation sur le plafond froid ! Sous peine d’avoir de l’eau sur les papiers de la secrétaire !

Ce procédé est donc à proscrire dans tous les milieux présentant un taux d’humidité élevé (cuisines, sanitaires avec douches, buanderies, …)

Idéalement, il faut éviter de devoir forcer la déshumidification (énergivore) de l’air pour éviter la condensation. Pour cela, il faut produire du froid avec une température d’eau la plus élevée possible. Par exemple, avec un régime de température d’eau de 17°-20°, un simple refroidissement de l’air à 16° est suffisant pour éviter les condensations. Cela signifie alors que la puissance est limitée et donc qu la maitrise des charges de chaleur face partie intégrante du projet.

Apport d’air neuf

De l’air neuf hygiénique sera pulsé, de façon distincte au refroidissement des faux plafonds.

Une pulsion de l’air neuf à basse température (16°) permet de réduire la puissance frigorifique à vaincre par le plafond.

La déshumidification de cet air neuf en centrale contribue à l’assèchement de l’air des locaux.
Elle diminue les risques de condensation, mais génère une consommation importante et est donc à éviter.

Une pulsion de l’air neuf au ras du plafond (avec recherche de l’effet Coanda) n’augmente pas l’effet convectif et donc pas la puissance frigorifique.

Espace nécessaire

La hauteur minimale nécessaire est fonction de l’ensemble des équipements à placer dans le faux plafond. Au cas où seule la fonction thermique est présente, la hauteur minimale requise est l’ordre de 55 mm.

Préparation de l’eau glacée

On utilisera soit un groupe d’eau glacée spécifique, soit un réseau du circuit principal.

Un cas particuliers existe cependant :

Les plafonds réalisés par des nappes capillaires, qui requièrent une alimentation en eau déminéralisée. Un circuit spécifique, avec son propre échangeur à plaque en acier inoxydable, sera réalisé sur la boucle d’eau glacée du bâtiment.

Schéma préparation de l'eau glacée.


Régulation

Le circuit des panneaux est alimenté à des  régimes aller – retour, allant de 15°C – 17°C à 19°C-20°C en fonction de la puissance nécessaire.  Il est ainsi possible de réguler la température de départ en fonction de la température extérieure, ou mieux, si présence d’une régulation numérique, de la rendre variable en fonction de l’ouverture des vannes.

Schéma de principe

Régulation, schéma de principe.

La régulation de l’alimentation en eau des panneaux vise classiquement au maintien de la température de consigne, mais aussi au contrôle de l’absence de condensation sur les tuyauteries.

Sur base de la mesure de la température de l’air ambiant et de son humidité relative, le régulateur détermine le point de rosée de l’ambiance et limite la température de l’eau à un niveau de 1 à 1,5°C supérieur à ce point de rosée, par action sur une vanne trois voies.

Cette protection peut également être assurée par un détecteur de condensation placé à la surface du tube d’entrée: si l’humidité relative de l’air à la surface du tube approche de la condensation, un contact est actionné; la vanne est fermée et, éventuellement, la pompe est arrêtée.

Cette pompe peut également être mise à l’arrêt.

  • si la température ambiante est inférieure à sa consigne,
  • si le contact de feuillure placé sur les ouvrants des châssis signale une fenêtre ouverte.

Montage

Lorsque plusieurs panneaux doivent être mis en parallèle, on peut prévoir une disposition similaire à la mise en parallèle de radiateurs :

Schéma montage.

Comme dans les raccordements bitubes, on peut améliorer l’équilibrage de l’installation par un montage en Tickelman :

Schéma montage, 02.

Chaque circuit présente alors une perte de charge similaire et donc un débit d’alimentation similaire.

Comment est gérée la présence d’air ? On considère que les serpentins sont horizontaux et que l’eau pousse l’air qui serait présent. Ce sont les tuyaux de raccordement (ou tuyauteries-mères), toujours placés au-dessus du serpentin qui seront éventés, généralement sur le retour.

Un détail à insérer au cahier des charges : on exigera des bouchons sur les tuyauteries à l’arrivée sur chantier. Ces bouchons ne seront retirés qu’au moment du raccordement. À défaut, le serpentin étant plus bas que les tuyauteries-mères, des crasses iront s’y loger…

Solution proposée par un constructeur de matériel de régulation

Chaque local dispose d’une vanne 2 – voies modulant le débit d’eau. Un thermostat agit sur cette vanne mais peut agir sur plusieurs vannes en parallèle, si les conditions thermiques sont jugées similaires.

  1. Boitier d’ambiance comprenant la mesure de la température d’ambiance et le potentiomètre de réglage de la consigne (que l’on peut aussi limiter dans une plage de +/- 2 K autour d’une valeur de base réglée d’avance)
  2. Hygrostat limiteur pour le contrôle de la condensation, actionnant le circulateur.
  3. Sonde d’applique pour le contrôle de la température effective à l’entrée du réseau.
  4. Régulateur numérique (liaisonnable à la GTC par bus 2 fils), agissant sur le circulateur et sur la vanne deux voies motorisée.
  5. Vanne motorisée électro-thermique modulant le débit suite au signal chrono-proportionnel reçu du régulateur.

Solution intégrant la commande de radiateurs

Avec le même matériel, le schéma ci-dessous signale que le régulateur peut également gérer le chauffage statique en hiver, la commande de l’éclairage et la réponse d’un contact de fenêtre.

Schéma solution intégrant la commande de radiateurs.

Mais cette solution est luxueuse; une simple vanne thermostatique peut être adaptée à l’entrée du corps de chauffe. Elle sera réglée sur 21°C tandis que le plafond froid est modulé sur 26°C (ce qui correspond à un confort équivalent à 24°C), interdisant ainsi tout risque de destruction de l’énergie.

Si une solution par radiateur électrique est choisie, un verrouillage en fonction de la température extérieure sera utilement prévu. Par exemple : enclenchement seulement si la T°ext est < à + 5°C.

Contrôle de la condensation

Différentes dispositions seront prises pour limiter le risque de condensation :

  • limitation de la température de départ de l’eau pour les réseaux intégrés dans la dalle de plafond,
  • contrôle de l’humidité relative à proximité du plafond et coupure de la circulation d’eau, pour les réseaux en faux plafonds,
  • contrôle des conditions extérieures pour anticiper les fluctuations d’humidité à l’intérieur du local.

Dans un bâtiment avec fenêtres ouvrantes, l’alimentation du plafond en eau doit pouvoir être interrompue par un contact de feuillure.


Avantages

  • Le confort est meilleur que dans les systèmes traditionnels (par ventilo-convecteurs par exemple).
    1. Parce que l’apport de froid par rayonnement est plus stable (inerte) et mieux réparti spatialement que l’apport de froid par air,
    2. parce qu’il conserve « la tête au frais »,
    3. parce que le confort est renforcé par l’absence de courant d’air froid, puisque le débit d’air est limité au débit hygiénique,
    4. parce ces mouvements d’air limités entraînent peu de déplacement de poussières dans les locaux.
  • Si l’eau froide est produite par une machine frigorifique, la préparation d’eau glacée à une température « élevée » de 15°C-17°C environ permet la sélection d’une machine frigorifique avec un excellent coefficient d’efficacité frigorifique (ou « COP frigorifique »). Cette propriété est perdue si la même machine frigorifique est utilisée pour préparer l’air neuf déshumidifié …
  • Une température d’eau élevée permet également de recourir à une source de froid naturelle comme l’air extérieur (via free-chilling) ou le sol (via géocooling). La consommation liée la production de froid se réduit alors simplement à la consommation d’auxiliaires (pompes, ventilateur de pompes de refroidissement,…).
  • La séparation entre la fonction ventilation des locaux (air neuf hygiénique) et l’apport thermique (apport de froid) est un gage de bonne régulation.
  • L’air neuf ne sera pas recyclé, évitant ainsi les risques de contamination liés au recyclage de l’air (« sick buildig syndrom »).
  • L’absence de bruit est un confort non négligeable (fonctionnement statique, faible débit d’air neuf pulsé).
  • Cette température élevée permet d’imaginer, durant une bonne partie de l’année, un refroidissement direct de l’eau glacée dans les tours de refroidissement en toiture, en by-passant ainsi la machine frigorifique. Cette technique est généralement appelée « free-chilling ». La consommation liée au froid se résume à l’alimentation des pompes de circulation ! La présence d’une source d’eau froide naturelle peut également être mise à profit (rivière, lac, …)
  • Le transport du froid vers les locaux par de l’eau glacée (pompe) est environ dix fois moins énergétique que le transport par de l’air froid (ventilateurs des systèmes « tout air »).
  • Le confort apporté par le rayonnement froid au dessus des occupants permet une augmentation de 2°C de la consigne de température ambiante des systèmes traditionnels (température max = 26°C ou 27°C, au lieu des 24 ou 25°C habituels pour des ventilos ou des poutres froides, par exemple). Il s’en suit une réduction de la puissance frigorifique nécessaire.
  • Les coûts d’exploitation énergétiques sont plus faibles que dans le cas des systèmes traditionnels (ventilo-convecteurs par exemple). Une étude de cas réalisée par Tractebel Development Engineering précise ce facteur. On épargne la consommation des ventilateurs des ventilo-convecteurs, mais on augmente un peu la consommation des pompes de distribution de l’eau puisque qu’un delta T° aller-retour de 2 à 3 K est réalisé contre 5 à 6 K pour les ventilos.
  • Une économie supplémentaire provient du fait qu’une part de la consommation des ventilos-convecteurs est donnée en chaleur latente sur l’air (la température de la boucle d’eau glacée est inférieure à la température de rosée de l’ambiance et l’humidité de l’air se condense, parfois inutilement). Ce fait ne se produit pas avec les plafonds, … sauf si c’est l’air neuf qui est fortement déshumidifié…
  • La régulation est en partie auto-adaptative : une augmentation des charges du local provoque une augmentation de sa température et donc une augmentation de la puissance de refroidissement.
  • L’entretien semble réduit.
  • Un entretien réduit : pas de remplacement de filtre ou d’usure mécanique contrairement aux ventilos-convecteur.
  • L’encombrement au sol est nul !
  • Le système requiert une hauteur de faux plafond inférieure à celle d’un système tout air.
  • Le traitement des zones internes par ce système est moins encombrant que par la climatisation en VAV ou par ventilo-convecteurs.

Inconvénients

  • La puissance frigorifique reste limitée par rapport aux systèmes traditionnels. On dit parfois que c’est un système placé pour vaincre les apports internes (bureautique, éclairage, occupants). Ceci sous-entend que les apports solaires des vitrages soient limités :
    • soit par la conception du bâtiment créant des ombres portées,
    • soit par la mise en place de protections solaires extérieures,
    • soit par le placement de stores intérieurs clairs combinés à des vitrages performants,
    • soit par la configuration des lieux (bureaux paysagers, salles profondes).
  • Il faut cependant relativiser cet inconvénient. En effet, dans un bâtiment moderne qui se veut énergétiquement performant, une puissance de conception de refroidissement top élevée provient souvent :
  •  soit d’une programmation mal raisonnée et d’apports internes excessifs (taux d’occupation, puissance bureautique irréaliste),
  • Soit d’installations intérieures mal conçues (puissance d’éclairage excessive,…),
  • Soit d’une enveloppe mal protégée de l’ensoleillement.
    Minimiser les charges internes et bien les estimer impactent considérablement les choix du système de refroidissement. Prenons un bureau de 20 personnes orientation Sud avec 30 % de surface vitrées.
Hypothèses
Minimiser charges internes Estimation réaliste
Éclairage 12 W/m² 6,5 W/m² 6,5 W/m² 6,5 W/m²
Protections solaires sans sans extérieures extérieures
Ordinateurs 180 W/PC 180 W/PC 180 W/PC 104 W (mixte tour et laptop)
Puissance de froid 131 W/m² 126 W/m² 83,8 W/m² 68,7 W/m²

Dans un premier temps, les besoins en éclairage de ce bureau sont surestimés 12W/m² et 180W par ordinateur dans ce cas, il demanderait une puissance de froid 131W/m². Dans ce cas, l’auteur se prive de la possibilité d’envisager des plafonds froids. Par contre, si ces charges internes sont minimisées par l’utilisation de protections solaires et que l’éclairage est optimisé (6,5Wm²), ce bureau demanderait une puissance de froid de 84W/m². Dans ce cas, il est possible d’utiliser des plafonds froids avec un régime 15°-17°C qui permet déjà d’utiliser en partie l’énergie gratuite, contenue dans l’air (free-chilling) ou dans le sol (géocooling). Si les charges internes de la bureautique sont mieux  estimées (120W/PC au lieu de 180W/tour et 40W pour l’utilisation de PC portable), on peut envisager d’augmenter le régime d’eau à 17-19°, ce qui permet une utilisation plus importante de free-chilling ou du géocooling. L’intérêt énergétique est ainsi double puisque d’une part la puissance de froid est diminuée de 47% entre les cas extrêmes et d’autres parts parce qu’il diminue la consommation énergétique du groupe de froid par utilisation d’énergie renouvelable (lien vers gain d’énergie par géocooling et free-chilling).

  • Le coût d’installation est plus élevé que pour d’autres systèmes, que pour d’autres systèmes, surtout en rapport à la puissance frigorifique fournie.
  • Ce coût est notamment lié à la régulation assez sophistiquée, notamment pour éviter tout risque de condensation.
  • Le chauffage en hiver reste à résoudre ! Plusieurs solutions sont possibles :
    • soit le chauffage par le plafond (mais inconfortable),
    • soit un chauffage par le plafond limité aux premiers panneaux situés en façade (confortable mais limités en puissance),
    • soit un chauffage traditionnel par radiateur (solution généralement appliquée en rénovation puisque l’on peut récupérer l’installation existante).

Coût

Les coûts d’investissement d’un système « plafonds froids » sont aujourd’hui encore plus élevés que ceux des autres systèmes HVAC du type air/eau.

Les coûts d’investissement d’installations HVAC complètes avec plafonds froids, qui étaient il y a quelques années de l’ordre de 250 €/m², peuvent aujourd’hui être réalisées pour moins de 130 €/m².

Ces coûts doivent aussi être évalués globalement, en tenant compte des réductions possibles de coûts d’investissement dans d’autres domaines de la construction du bâtiment :

  • faux plafond,
  • simplification de l’allège et suppression du cache-convecteur,
  • non-installation éventuelle d’un corps de chauffe statique,
  • augmentation de l’espace locatif utilisable,

Compte tenu de ces éléments, la solution « plafond froid » se rapproche de sa concurrente plus traditionnelle, l’installation de ventilo-convecteurs.

Système tout air, à débit constant, double gaine

Système tout air, à débit constant, double gaine

Dans les années 70, pour gérer les particularités locales on a développé un réseau « tout air » double conduit (un d’air chaud et un d’air froid), avec boîte de mélange à l’entrée des locaux : quel coût d’investissement et quel gaspillage énergétique (on « détruit » l’énergie produite lors du mélange) !

Il s’agit donc là d’une technique qui n’est plus guère rencontrée aujourd’hui.

Ce système était utilisé lorsqu’un débit d’air élevé et constant est souhaité, que les besoins des locaux sont extrêmement variables d’une zone à l’autre (on ne souhaite pas la même température par exemple), et que le système doit répondre avec une très grande rapidité aux variations de charges (on n’est pas soumis au même ensoleillement par exemple).

En pratique, il a été peu utilisé dans les bureaux (l’inertie des bureaux ne demande généralement pas une grande souplesse), parfois en secteur hospitalier, plus souvent dans le secteur industriel avec exigences élevées de régulation. On a aussi pu le trouver dans des bâtiments spécifiques tels que des complexes de cinéma.


Principe de fonctionnement

Le système de conditionnement d’air « tout air, à débit constant, double gaine » est un système où deux niveaux de température d’air sont préparés en centrale, puis distribués par deux gaines distinctes vers le/les locaux. On l’appelle également « dual duct ».

En pratique, un caisson central assure un premier niveau de préparation de l’air (par exemple jusque 16°), puis une batterie de post-chauffe et une de refroidissement préparent de l’air chaud et de l’air froid, distribués dans deux gaines différentes. Des boîtes de mélange sont prévues à l’entrée de chaque local, ou zone de locaux ayant des besoins similaires. Chaque registre de mélange est piloté par un thermostat d’ambiance. Ce mélange est destructeur d’énergie. Les réseaux double gaine doivent donc être évités dans une approche URE.
En voici un exemple :

Ce système constitue une branche de la grande famille du conditionnement d’air « tout air » :

– débit constant

  • monogaine
    • unizone
      • basse pression
      • haute pression (avec boîte de détente)
    • multizone
      • basse pression
      • haute pression (avec boîte de détente)
  •  double gaine multizone (avec boîte de mélange)
    • basse pression
    • haute pression (avec boîte de détente)

– débit variable

  • avec chauffage par radiateurs indépendants
  • avec chauffage par batterie à eau chaude

Comme on le voit, il existe de nombreuses variantes !

Expliquons chacun des termes :

>  « tout air »

L’air est le fluide caloporteur de chaleur, de froid, ou d’humidité. Ainsi :

  • si en hiver le local présente des déperditions, l’air sera pulsé à 28°C, par exemple,
  • si en été, le local subit des apports solaires, l’air sera pulsé à 16°C,
  • si, dans la salle de cinéma, le film très suggestif provoque beaucoup de dégagement de vapeur de la part des spectateurs, l’air sera pulsé très sec !

>  « débit constant »

Le débit est fixé par le ventilateur (qui ne dispose que d’une seule vitesse de rotation).

La régulation est réalisée par action sur la température et le taux d’humidité de l’air pulsé.

>  « double gaine »

Les pièces climatisées sont alimentées par deux gaines, par exemple une gaine d’air chaud à 35°C, et une gaine d’air froid à 16°C.

>  « multi-zones »

Le système « double gaine » est forcément multi-zones : on crée plusieurs zones dans le bâtiment, chaque zone pouvant recevoir un air traité spécifiquement en fonction de ses besoins.

Remarque : une zone peut comprendre plusieurs locaux.

> « basse ou haute pression »

On parle de basse pression du ventilateur  :

  • si pression < 800 Pa, ou 80 mmCE
  • si vitesse dans les gaines < 7 m/s

On parle de réseau haute pression si la vitesse dans les conduits atteint de 12 à 16 m/s


Détails technologiques du traitement de l’air

L’air est d’abord pré-traité en centrale : mélange éventuel de l’air neuf et de l’air repris, filtration, préchauffage éventuel de l’air (notamment pour éviter tout risque de gel de la batterie froide) et pulsion dans deux caissons.

Un caisson est équipé d’un échangeur de postchauffe et si nécessaire d’un système d’humidification (généralement un humidificateur à vapeur) : c’est le préparateur du réseau chaud.

Un deuxième caisson est équipé d’une batterie froide, assurant éventuellement la déshumidification : c’est le préparateur du réseau froid.

Le chauffage de l’air est assuré

  • soit par batterie électrique,
  • soit par batterie d’eau chaude préparée en chaufferie.

Le refroidissement de l’air est assuré

  • soit par l’évaporateur d’un groupe frigorifique (système à détente directe),
  • soit par de l’eau glacée préparée par un groupe de production frigorifique.

Les parois des caissons sont à double enveloppe en tôle d’acier galvanisé ou peint. Un isolant acoustique et thermique de 25 mm d’épaisseur minimale est fixé entre les deux tôles.

À l’entrée de chaque local, ou de chaque zone de locaux, les deux flux d’air sont mélangés dans une « boîte de mélange » terminale. Le débit total est donc constant, c’est la proportion d’air chaud et d’air froid qui varie.


Variantes technologiques

Réseau sous haute pression

Pour réduire les sections, on augmente la vitesse de l’air dans les gaines. Les pertes de charge augmentent et obligent à travailler à haute pression au ventilateur. Des dispositifs de détente sont alors associées aux boîtes de mélange.

La pression du ventilateur est généralement >  1 000 PA, ou 100 mmCE et la vitesse dans les gaines > 10 m/s.

A débit égal, doubler la vitesse de l’air dans les gaines (par rapport au système basse pression) permet de diminuer par deux la section nécessaire. Mais les frottements de l’air sur les parois des gainages sont proportionnels au carré de la vitesse. Et donc le ventilateur doit vaincre des pertes de charges beaucoup plus élevées, pouvant à la limite atteindre 2 000 PA Aussi, actuellement, pour des raisons d’économie d’énergie (et de bruit), on ne dépasse plus 15 m/s, ce qui génère des pressions de ventilateur de 500 à 1 500 PA.

Après passage dans une boîte de détente, l’air est diffusé par les bouches de soufflage.

Les boîtes de détente sont généralement des boîtes insonorisées, comportant un organe déprimogène (tôle perforée par exemple). Un régulateur maintient le débit à valeur constante.

À ces pressions, des précautions sérieuses sont à prendre en matière acoustique, notamment au niveau des appareils terminaux (amortisseur de bruit).

Recyclage partiel

En vue de diminuer les coûts d’exploitation, l’air extrait peut être recyclé partiellement. On part de l’idée que l’on ne peut faire du froid et du chaud en même temps et que donc un des 2 échangeurs est à l’arrêt.

Dès lors, en été la batterie froide refroidit et la batterie chaude est à l’arrêt. Dans le réseau chaud circule de l’air mélangé entre l’air recyclé et l’air extérieur (chaud).

En hiver, seule la batterie chaude fonctionne. Et dans le réseau froid circule de l’air mélangé entre l’air recyclé et l’air extérieur (froid).

Et en mi-saison ? Que faire lorsque des locaux ont des demandes différentes ? Astuce : les deux batteries fonctionnent mais la batterie de chaud est alimentée par l’eau de condensation du groupe frigorifique qui produit l’eau glacée !

Récupération de la chaleur sur l’air extrait

Pour récupérer l’énergie contenue dans l’air extrait tout en évitant généralement tout risque de contamination, l’air sortant croise l’air neuf entrant dans un échangeur de chaleur.

Et toute combinaison des variantes précédentes …

Il est bien entendu possible de combiner les différentes variantes reprises ci-dessus.


Avantages

  • Possibilité d’adapter individuellement les ambiances suivant les locaux,
  • rapidité de la réponse du système à la demande des locaux,
  • possibilité d’utilisation d’air extérieur pour le refroidissement gratuit (free cooling),
  • contrôle de l’humidité relative en centrale et de l’empoussièrement.

Inconvénients

  • Le débit d’air est constant. Or il est dimensionné pour la situation extrême, généralement celle de l’été, en période de canicule avec un soleil de plomb ! Conclusions : de tels débits entraînent une consommation élevée des ventilateurs et, dans certains cas, de l’inconfort … toute l’année !
  • La consommation élevée du ventilateur devient très élevée dans le cas des installations haute pression.
  • L’encombrement de la centrale, des caissons de préparation terminaux et du double réseau de gaines (gros débits, section importante des conduites d’air neuf, d’air pulsé et d’air extrait).
Exemple.

Une salle de spectacles est maintenue à 20°C. De l’air chaud est pulsé à 30°C. Les déperditions du local sont de 20 kWatts. Quelle sera la section de la conduite nécessaire ?

La capacité calorifique de l’air étant de 0,34 Wh/m³.K, le débit est donné par :

débit = puissance / 0,34 x DT° (en m³/h).

Ici, débit = 20 000 / 0,34 x 10 = 5 882 m³/h = 1,63 m³/s

Sur base d’une vitesse de 8 m/s, la section devient 1,63 / 8 = 0,2 m², soit une section de 40 cm x 50 cm, ou une conduite circulaire de 0,5 m de diamètre !

La même puissance est transportée par de l’eau dans une tuyauterie de 1,75 cm de diamètre ! (vitesse : 1 m/s)

C’est pour limiter cet encombrement que l’on a recours à une conception de réseau de gaines sous haute pression. L’encombrement est plus limité mais reste toujours plus élevé que pour le système mixte eau + air, par exemple.

  • Intégration obligatoire dès la conception du bâtiment.
  • Coût d’exploitation très important :
    • Risque de « casser » de l’énergie : le réseau de froid prépare l’air à une température correspondant aux besoins du local le plus demandeur (le local informatique, exposé au Sud, par exemple !). Dès lors, tous les autres locaux devront mélanger cet air froid avec de l’air du réseau chaud…!  Une régulation centrale doit piloter le tout « intelligemment », et profiter de l’air extérieur lorsque sa température peut être valorisée, sans quoi les coûts d’exploitation sont catastrophiques ! (à noter qu’un tel système qui ferait du chaud et du froid simultanément est interdit en France, sauf si le fluide chauffant est de récupération, par exemple sur le condenseur de la machine frigorifique).
    • Il n’est pas possible de moduler le débit d’air neuf en fonction de la présence ou non d’occupants dans chacune des zones.
    • Des fuites d’un réseau vers l’autre apparaissent toujours dans la boîte de mélange où de 3 à 10 % du débit total est perdu malgré la fermeture du clapet.
    • Les batteries électriques sont peu coûteuses à l’investissement mais très onéreuses à l’usage, à l’opposé des batteries d’eau chaude qui sont coûteuses à l’investissement (deux tubes).
    • Le recyclage de l’air paraît aléatoire, puisque l’air extrait sera issu d’un mélange, sauf en plein hiver et en plein été… Une étude de rentabilité s’impose !
  • Si la vitesse de déplacement de l’air est augmentée pour diminuer les sections, le niveau de bruit sera nettement plus élevé et demandera un traitement acoustique sérieux.
  • Nécessité d’équipements de plus grande solidité pour résister aux pressions, si variante en haute pression.
  • Enfin, et ce n’est pas négligeable, le coût d’investissement de départ est très élevé !

Très honnêtement, avec de tels inconvénients, y a-t-il encore intérêt à avoir un système avec traitement centralisé ?

Système tout air, à débit constant, mono-gaine

Système tout air, à débit constant, mono-gaine


Principe de fonctionnement

Le système de conditionnement d’air « tout air, à débit constant, mono-gaine » est un système où l’air est préparé (chauffé, refroidi, humidifié,…) en centrale dans un caisson de traitement d’air, puis envoyé par un réseau de gaines vers le/les locaux.

En voici un exemple, appliqué à une zone :

Il constitue une branche de la grande famille du conditionnement d’air « tout air » :

– débit constant

  • monogaine

    • unizone  
    • multizone
  • double gaine multizone (avec boîte de mélange)
    • basse pression
    • haute pression (avec boîte de détente)

– débit variable

  • avec chauffage par radiateurs indépendants
  • avec chauffage par batterie à eau chaude

Comme on le voit, il existe de nombreuses variantes !

Expliquons chacun des termes :

>  « tout air » :

L’air est le fluide caloporteur de chaleur, de froid, ou d’humidité.
Par exemple :

  • si en hiver le local présente des déperditions, l’air pourra être pulsé à 28°C,
  • mais si en été, le local subit des apports solaires, l’air pourra être pulsé à 16°C,
  • et si, dans la salle de cinéma, le film très suggestif provoque beaucoup de dégagement de vapeur de la part des spectateurs, l’air sera pulsé très sec !

>  « débit constant »

Le débit est fixé par le ventilateur (qui ne dispose que d’une seule vitesse de rotation).

La régulation est réalisée par action sur la température et le taux d’humidité de l’air pulsé.

>  « mono-gaine » ou « double gaine »

Un seul réseau de gaines est créé, et donc un seul niveau de température est disponible pour la(les) pièce(s) climatisée(s). A l’inverse, les réseaux double gaine véhiculent simultanément de l’air chaud et de l’air froid, le mélange étant effectué à l’arrivée dans le local. Ce mélange est destructeur d’énergie. Les réseaux double gaine doivent donc être évités dans une approche URE.

>  « uni-zone ou multi-zones »

Uni-zone : il n’existe qu’une seule zone à traiter (une salle de conférences, par exemple),

Multi-zones : on crée plusieurs zones dans le bâtiment, chaque zone pouvant recevoir un air traité spécifiquement en fonction de ses besoins.

Remarque : une zone peut comprendre plusieurs locaux.

>  On peut aussi faire une distinction selon le niveau de pression « basse ou haute »

On parle de basse pression du ventilateur

  • si pression < 800 Pa, ou 80 mmCE
  • si vitesse d’air dans les gaines comprises entre 2 et 7 m/s

On parle de réseau haute pression si la vitesse dans les conduits atteint de 12 à 16 m/. Ces vitesses entrainant des consommations excessives des ventilateurs, on ne travaille aujourd’hui plus en haute pression lorsque le débit est constant.

Une unité de toiture (ou « roof top ») aurait pu être classée dans les installations « tout air, à débit constant, mono-gaine ». Elle présente la spécificité d’être équipée d’un refroidissement à détente directe.

 


Domaine d’application

Le système « tout air » a de l’intérêt lorsqu’un débit d’air élevé et constant est souhaité : on pense par exemple aux salles de spectacles où de toute façon on doit apporter de l’air aux personnes …
Le système « tout air – unizone » a de l’intérêt lorsque

  • Un seul local est à climatiser, généralement de grand volume : salle de spectacles, salle d’opération, salle de réunion, …
  • Il existe plusieurs locaux dont le fonctionnement thermique est similaire et pour lesquels un respect strict des consignes de température n’est pas imposé : plusieurs bureaux similaires sur une même façade, …
  • Il y a présence de locaux à chauffage très intermittent comme des salles de réunion, de spectacles,… : dans ce cas, la variante avec système de chauffage complémentaire par radiateurs permet d’assurer un chauffage de base entre 10 et 15°C en période de non-occupation, et une mise en confort très rapide dès l’arrivée des personnes (ou par horloge). Ce système est économique et supprime la surchauffe des locaux en période de forte occupation grâce aux possibilités de ventilation et de rafraîchissement, et à la faible charge des parois.

Le système « tout air – multizone » a de l’intérêt dans le cas où les charges thermiques varient mais que les locaux peuvent être regroupés en plusieurs zones de fonctionnement thermique similaire (et pour lesquels une modulation limitée des consignes de température est requise) : le placement de batteries terminales permettra alors de répondre plus précisément aux besoins.

Pourrait-on l’appliquer à un complexe de plusieurs salles de cinéma ? Probablement pas puisqu’il faudra chauffer la salle où deux nostalgiques regardent un film de Ingmar Bergmann, et refroidir la salle voisine où 350 personnes regardent avec passion « Titanic : le retour » où le bateau resurgit du fond des mers (tiens, cela me donne une idée…)


Détails technologiques de la centrale de traitement

Le chauffage de l’air est assuré

  • soit par batterie électrique,
  • soit par batterie d’eau chaude préparée en chaufferie.

Le refroidissement de l’air est assuré

  • soit par l’évaporateur d’un groupe frigorifique (système à détente directe),
  • soit par de l’eau glacée préparée par un groupe de production frigorifique.

L’humidification est réalisée :

Un réseau de pulsion distribue l’air traité et un réseau d’extraction en assure la reprise. En général, le débit de pulsion est légèrement supérieur au débit d’extraction afin de maintenir les locaux en surpression.

Constitution du caisson de traitement d’air.

Les parois sont à double enveloppe en tôle d’acier galvanisé ou peint. Un isolant acoustique et thermique de 25 mm d’épaisseur minimale est fixé entre les deux tôles.


Variantes technologiques

Réchauffage batteries terminales

Que faire si le bâtiment présente des zones différentes ? Par exemple des bureaux placés sur des façades différentes… Une première solution consiste à placer les batteries terminales en tête des différentes zones pour adapter la fourniture aux besoins.

Généralement, on rencontre soit des batteries alimentées eau chaude, soit des batteries électriques. Ceci ne répond qu’aux besoins variables de l’hiver… À noter qu’il est possible de placer une batterie de froid complémentaire à l’entrée de l’une ou l’autre zone, mais l’avantage d’une centralisation du traitement disparaît progressivement …

Chauffage par radiateurs

Le chauffage peut être assuré indépendamment, par un réseau de radiateurs en allège des fenêtres par exemple. Mais la régulation de la température des ambiances n’est pas toujours simple car il peut y avoir conflit entre les deux systèmes.

Recyclage partiel

En vue de diminuer les coûts d’exploitation, l’air extrait peut être recyclé partiellement.

Des registres motorisés modulent les débits d’air recyclé et d’air rejeté. Le débit d’air neuf peut donc varier mais sans jamais descendre sous le débit minimal d’air neuf hygiénique en période d’occupation.

Récupération de la chaleur sur l’air extrait

Pour récupérer l’énergie contenue dans l’air extrait tout en évitant généralement tout risque de contamination, l’air sortant croise l’air neuf entrant dans un échangeur de chaleur.

Humidification par humidificateur à vapeur

Dans ce cas, la batterie de post-chauffe peut être supprimée.

Réseau sous haute pression

Pour réduire l’encombrement, l’air est préparé en centrale dans le caisson de traitement d’air, puis conduit à haute vitesse vers le/les locaux.  On parle alors de système « tout air, à débit constant, mono gaine, uni-zone, haute pression » !

La pression du ventilateur est généralement > 1 000 PA (ou 100 mmCE) et la vitesse dans les gaines > 10 m/s.

A débit égal, doubler la vitesse de l’air dans les gaines (par rapport au système basse pression) permet de diminuer par deux la section nécessaire. Mais les frottements de l’air sur les parois des gainages sont proportionnels au carré de la vitesse. Et donc le ventilateur doit vaincre des pertes de charges beaucoup plus élevées, pouvant à la limite atteindre 2 000 PA. En pratique, on évite donc cette technologie aujourd’hui.

Après passage dans une boîte de détente, l’air est diffusé par les bouches de soufflage.

Les boîtes de détente sont généralement des boîtes insonorisées, comportant un organe déprimogène (tôle perforée par exemple). Un régulateur maintient le débit à valeur constante.

À ces pressions, des précautions sérieuses sont à prendre en matière acoustique, notamment au niveau des appareils terminaux (amortisseur de bruit).

Toute combinaison des variantes précédentes

À titre d’exemple, on rencontre ainsi des installations « tout air, à débit constant, mono gaine, multi-zones, haute pression »


Avantages

  • Simplicité globale,
  • facilité de dimensionnement,
  • régulation simple, fiable et centralisée,
  • fonctionnement stable, donc coût de maintenance réduit,
  • pas d’alimentation en eau chaude ou froide dans les locaux, sauf si la variante avec batteries de réchauffage en eau chaude est choisie,
  • faible niveau sonore, sauf avec les installations haute pression,
  • possibilité d’utilisation d’air extérieur pour le refroidissement gratuit (free cooling),
  • contrôle de l’humidité relative en centrale et de l’empoussièrement.

Inconvénients

  • Le débit d’air est constant. Or il est dimensionné pour la situation extrême, généralement celle de l’été, en période de canicule avec un soleil de plomb ! Conclusions : de tels débits entraînent une consommation élevée des ventilateurs et, dans certains cas, de l’inconfort toute l’année !
  • La consommation élevée du ventilateur devient très élevée dans le cas des installations à Haute Pression.
  • L’encombrement de la centrale et du réseau de gaines (gros débits, section importante des conduites d’air neuf, d’air pulsé et d’air extrait),
Exemple.

Une salle de spectacles est maintenue à 20°C. De l’air chaud est pulsé à 30°C. Les déperditions du local sont de 20 kWatts. Quelle sera la section de la conduite nécessaire ?

La capacité calorifique de l’air étant de 0,34 Wh/m³.K, le débit est donné par :

débit = puissance / 0,34 x DT° (en m³/h)

Ici, débit = 20 000 / 0,34 x 10 = 5 882 m³/h = 1,63 m³/s

Sur base d’une vitesse de 8 m/s, la section devient 1,63 / 8 = 0,2 m², soit une section de 40 cm x 50 cm, ou une conduite circulaire de 0,5 m de diamètre !

La même puissance est transportée par de l’eau dans une tuyauterie de 1,75 cm de diamètre ! (vitesse : 1 m/s)

C’est pour limiter cet encombrement que l’on a recours à une conception de réseau de gaines sous haute pression. L’encombrement est plus limité mais reste toujours plus élevé que pour le système mixte eau + air, par exemple.

  • Intégration obligatoire dès la conception du bâtiment.
  • Si uni-zone, température et humidité de soufflage uniques, d’où, si plusieurs locaux :
    • Un manque de précision dans le respect des consignes.
    • Une surconsommation suite à l’absence de régulation par pièce.
  • Si multi-zone :
    • Risque de « casser » de l’énergie : le caisson de préparation primaire refroidit l’air en fonction des besoins de la zone la plus demandeuse et les batteries de post-chauffe des autres zones devront réchauffer l’air par la suite… On détruit donc de l’énergie.
      (À noter qu’un tel système est d’ailleurs interdit en France, sauf si le fluide chauffant est de récupération, par exemple sur le condenseur de la machine frigorifique).
    • Il n’est pas possible de moduler le débit d’air neuf en fonction de la présence ou non d’occupants dans chacune des zones.
    • Si l’air doit pouvoir être refroidi et réchauffé distinctement dans chaque zone, une batterie de chauffe et un groupe de refroidissement peuvent être ajoutés pour chaque zone, mais le coût d’installation devient prohibitif.
    • Un compromis peut consister à installer une batterie froide terminale uniquement pour la zone la plus demandeuse de froid.
    • Les batteries électriques sont peu coûteuses à l’investissement mais très onéreuses à l’usage, à l’opposé des batteries d’eau chaude qui sont coûteuses à l’investissement (deux tubes).

En résumé, il n’y a pas de solution idéale en multi-zone. Une régulation centrale doit piloter le tout « intelligemment », sans quoi les coûts d’exploitation sont catastrophiques !

  • Si la vitesse de déplacement de l’air est augmentée pour diminuer les sections, le niveau de bruit sera nettement plus élevé et demandera un traitement acoustique sérieux.
  • Equipements de plus grande solidité pour résister aux pressions, si variante en haute pression.

Exemple de régulation

Citons en exemple le cas de salles de réunion intérieures alimentées par un réseau d’air commun. Comme les salles n’ont pas de surface déperditive, le concepteur n’a envisagé que des batteries froides locales.

La température de pulsion est réglée pour éviter l’inconfort même lorsqu’une salle est peu occupée. Résultat : on chauffe l’air neuf et on refroidit l’ambiance dans les salles à forte occupation. Si une batterie chaude n’est pas installée dans chaque salle, l’algorithme à imaginer pour limiter la destruction d’énergie doit être du type (source : MATRIciel sa, 2010) :

Légende

  • Text  = température extérieure
  • Text_cons_NC  = température extérieure de non chauffage (arrêt du besoin de chauffage du bâtiment) – Paramétrable (par défaut : 15°C)
  • Treprise = température de l’air mesurée dans la reprise commune vers le GE
  • Hzvent = fréquence d’alimentation des ventilateurs de pulsion et d’extraction (liés)
  • Vroue = vitesse de la roue de récupération de chaleur sur l’air extrait (de 0% = sans récupération, 100% = récupération maximale)
  • Tpuls_GP = température de pulsion mesurée à la sortie du GP
  • Tpuls_GP_min_hiver = consigne de température de pulsion minimale de l’air dans les salles en hiver, à la sortie du GP – Paramétrable (par défaut : 16°C)
  • Tpuls_GP_min_été = consigne de température de pulsion minimale de l’air dans les salles en été à la sortie du GP – Paramétrable (par défaut : 16°C)
  • Tamb_min = température ambiante mesurée sur les sondes d’ambiance des salles. Valeur minimale des mesures
  • Tamb_cons_hiver = température de consigne ambiante des salles en hiver – Paramétrable (par défaut : 20°C)
  • Thors_gel = température de pulsion correspondant à la protection anti-gel des batteries du GP – Paramétrable (par défaut : 5°C)
  • Tamb = température ambiante mesurée par la sonde d’ambiance d’une salle
  • Tamb_cons_été = température ambiante de consigne maximale à ne pas dépasser dans les salles – Paramétrable (par défaut : 25°C)
  • %HR reprise = humidité relative mesurée dans la reprise
  • %HR reprise_cons = consigne d’humidité relative mesurée dans la reprise – Paramétrable (par défaut : 40%)

En hiver

Condition générale : Text  < Text_cons_NC et Text  < Treprise + 1°C

Permanent

  • Enclenchement chaudière
  • Modulation de la température d’eau de départ en fonction de la température extérieure (courbe de chauffe)
  • Arrêt groupe de froid
  • Arrêt circuit batterie froide

En horaire d’occupation

  • Enclenchement GP/GE
  • Libération circuit batterie chaude
  • Hzvent = 50 Hz
  • Vroue = 0%
  • Si Tpuls_GP < Tpuls_GP_min_hiver
    Ou Tamb_min < Tamb_cons_hiver
    Ou Tpuls_GP < Thors_gel : cascade avec (chronologiquement) :
  1.  Modulation de la récupération de chaleur avec limite Vroue = 100%
  2. action sur la batterie chaude du GP
  • par salle : si Tamb > Tamb_cons_été : action sur le ventilo-convecteur
  • Si %HRreprise < %HR reprise_cons : action sur humidificateur vapeur

En horaire d’inoccupation (nuits et week-ends)

  • Arrêt GP/GE
  • Arrêt ventilo-convecteurs
  • Fermeture vanne batterie chaude, arrêt circulateur (avec protection hors gel)

En période de relance (inoccupation)

Sans objet.

En mi-saison

Condition générale : Text  > Text_cons_NC et Text  < Treprise + 1°C

Permanent

  • Arrêt chaudière
  • Arrêt circuit batterie chaude
  • Arrêt groupe de froid
  • Arrêt circuit batterie froide
  • Arrêt humidification

En horaire d’occupation

  • Enclenchement GP/GE
  • Hzvent = 50 Hz
  • Vroue = 0%
  • Si Tpuls_GP < Tpuls_GP_min_hiver
    Ou Tamb_min < Tamb_cons_hiver
    Ou Tpuls_GP < Thors_gel : Modulation de la récupération de chaleur avec limite Vroue = 100%
  • par salle : si Tamb > Tamb_cons_été : action sur le ventilo-convecteur

En horaire d’inoccupation (nuits et week-ends)

  • Arrêt GP/GE
  • Arrêt ventilo-convecteurs

En période de relance (inoccupation)

Sans objet

En été

Condition générale : Text  > Text_cons_NC et Text  > Treprise + 1°C

Permanent

  • Libération groupe de froid
  • Arrêt chaudière
  • Arrêt circuit batterie chaude
  • Arrêt humidification

En horaire d’occupation

  • Enclenchement GP/GE
  • Libération circuit batterie froide
  • Hzvent = 50 Hz
  • Vroue = 100%
  • Si Tpuls_GP > Tpuls_GP_min_été : action sur la batterie froide du GP
    par salle : si Tamb > Tamb_cons_été : action sur le ventilo-convecteur

En horaire d’inoccupation (nuits et week-ends)

  • Arrêt groupe de froid
  • Arrêt GP/GE
  • Arrêt ventilo-convecteurs
  • Fermeture vanne batterie froide, arrêt circulateur

En période de relance (inoccupation)
Sans objet.

Climatisation à débit de réfrigérant variable

 Climatisation à débit de réfrigérant variable


Principe de fonctionnement

Remarque : nous avons repris la terminologie française DRV (Débit de Réfrigérant Variable) mais ce type d’appareil est aussi appelé « VRV » (Variable Refrigerant Volume) ou « VRF » (Variable Réfrigérant Flow) selon les constructeurs.

Concevoir

Pour en savoir plus sur le choix d’un tel système !

Fonctionnement en froid seul

On connaissait le principe de la « détente directe » (l’évaporateur de la machine frigorifique refroidit directement l’air dans le caisson de traitement d’air). Cette fois, on réalise la détente directe dans chaque local puisque le fluide réfrigérant est transporté jusqu’à l’échangeur du local qui sert d’évaporateur ou de condenseur ! Ce n’est ni l’air ni l’eau qui circule dans les conduits, mais bien du fluide réfrigérant.

Schéma fonctionnement en froid seul

Schéma fonctionnement en froid seul

À partir d’une unité extérieure, on peut alimenter jusqu’à 64 unités intérieures. Les groupes extérieurs disponibles sur le marché aujourd’hui ont des puissances de froid allant de 12 à 150 kW en version monobloc ou multiblocs pour le raccordement d’un circuit frigorifique indépendant. Ceux-ci peuvent être multipliés, pour autant que la place disponible pour les groupes extérieurs soit suffisante. Mais ce sont des installations qui fonctionneront alors en parallèle (pas d’échange entre circuits raccordés à des unités extérieures différentes).  Il est recommandé d’éviter de connecter un nombre très important d’unités intérieures sur un même circuit frigorifique. La norme européenne EN378 impose une limite pratique de 0.44 kg/m³ de quantité de gaz réfrigérant contenue dans le plus petit volume fermé contenant une unité intérieure. Un calcul devra être réalisé par l’installateur ou le bureau d’études pour valider le respect de la norme. De plus, il est préférable de réaliser plusieurs circuits dans un même bâtiment pour limiter les quantités de gaz réfrigérant dans un même circuit et pour limiter les longueurs de tuyauteries et donc les pertes de charge.

Ce type de DRV sera choisi lorsque l’installation vient en complément d’une installation de chauffage existante (rénovation d’un ancien bâtiment). A éviter sous peine de risque de destruction d’énergie.

Fonctionnement réversible (froid ou chaud)

Schéma fonctionnement réversible (froid ou chaud)

Si certains systèmes sont limités au mode « froid », d’autres sont réversibles : le même échangeur intérieur peut alors servir de condenseur, lorsque le local est en demande de chaleur ! Une telle souplesse est issue d’une régulation électronique sophistiquée, notamment basée sur l’emploi de détendeurs électroniques et d’un bus de communication entre tous les équipements. Mais c’est l’ensemble des échangeurs qui fournissent du froid ou qui fournissent de la chaleur. La permutation du rôle des échangeurs est réalisée dans l’unité extérieure par une vanne d’inversion de cycle à 4 voies.

Les unités intérieures produisent alors toutes en même temps, soit du froid, soit du chaud. Ce système demande que les besoins du bâtiment soient assez homogènes et qu’une plage neutre (plage où la température fluctue sans intervention) de 21 à 25°C par exemple, soit acceptée par chacun. Ce ne sera donc pas un système adéquat pour un immeuble comportant des zones intérieures (à refroidir toute l’année) ou des façades fortement vitrées, orientées est-ouest. Sauf si la zone intérieure du bâtiment est importante, au point qu’un circuit indépendant (avec sa propre unité extérieure) se justifie rien que pour cette zone centrale.

A récupération d’énergie (froid et chaud simultanément)

Encore mieux : certains systèmes assurent simultanément le chaud et le froid dans les locaux. Par exemple, un local de réunion peut être demandeur de froid (la cassette intégrée dans le faux plafond travaille en évaporateur) tandis que le bureau voisin est demandeur de chaleur (la console en allège travaillera en condenseur). Le système va assurer simultanément les deux demandes, avec une consommation énergétique minimale puisque la chaleur extraite d’un côté est valorisée de l’autre côté, avec un COP défiant toute concurrence !

La solution idéale pour satisfaire les besoins en entre-saisons et donc le confort est d’opter pour les systèmes chaud et froid simultané. Le coût est plus important dû aux boitiers de répartition et à la conception des groupes extérieurs, mais c’est LA solution pour éviter les conflits entre demande de chaud et froid et donc les problèmes éventuels de régulation. N’oublions pas qu’en Belgique l’entre-saison représente une période importante.

Schéma à récupération d'énergie (froid et chaud simultanément)

Modulation de puissance

Suivant les constructeurs, les groupes extérieurs sont munis d’un, deux ou trois compresseurs. La plage de puissance thermique disponible sera fonction de la technologie et du nombre des compresseurs.

Suivant les constructeurs la modulation pourra être totale sur le ou les compresseur(s), ou partielle, dans ce cas un seul compresseur travaille à vitesse variable et le ou les autres est (sont) régulé(s) en « tout ou rien ». À noter qu’au démarrage, seul le compresseur INVERTER travaille et dès que la charge dépasse la limite de puissance de celui-ci, le 2ème (ou 3ème) compresseur « on-off » est enclenché  pour reprendre la charge et le compresseur INVERTER recommence à moduler à partir de 0 %. Avec ce type de cascade, le seul compresseur « INVERTER » fonctionne sans arrêt et s’use plus vite que le ou les autre(s).

Les groupes extérieurs munis de plusieurs compresseurs modulants « INVERTER » permutent les démarrages entre eux pour équilibrer les temps de fonctionnement et offre l’avantage d’une plus grande plage de modulation de puissance.


Détails technologiques

Fluide réfrigérant

Ces systèmes sont aujourd’hui disponibles avec le gaz réfrigérant de type R410A. Les différents composants ont alors été dimensionnés pour l’utilisation de ce gaz.

À partir du premier janvier 2022, ce gaz sera interdit dans les équipements de centrales de réfrigération neufs dont la puissance est supérieure ou égale à 40 kW à cause de son potentiel de réchauffement global 2 084,5 fois plus élevé que le CO2. Il pourrait alors être remplacé par le R32 (constituant actuel du R410A) qui est actuellement à l’étude au Japon. Ce gaz est cependant remis en question en raison de son inflammabilité.

Plus anecdotique, certaines installations de pompes à chaleur fonctionnent au CO2.

Le cœur du système reste une machine frigorifique et les critères applicables à ce type d’installation restent d’actualité. Par exemple, le carter doit être chauffé durant 48 heures avant le démarrage pour la mise en condition de l’huile.

Unité extérieure

Photo unité extérieure - 01  Photo unité extérieure - 02

Les unités extérieures sont généralement placées à proximité du bâtiment ou en toiture (pas de local technique spécifique). Ceci permet au condenseur en été d’être facilement refroidi par l’air extérieur et à l’évaporateur en hiver de pouvoir capter facilement la chaleur sans pour autant refroidir un local technique avec le brassage d’air nécessaire.

Photo unité extérieure modulaire - 01  Photo unité extérieure modulaire - 02

Les unités extérieures sont modulaires et peuvent être alignées côte à côte en fonction de la puissance nécessaire.

À défaut de place disponible, un local technique sera utilisé et un conduit d’air apportera et évacuera l’air nécessaire pour capter ou rejeter les calories suivant la demande du bâtiment, moyennant une consommation supplémentaire pour vaincre les pertes de charge. Les débits d’air nécessaires étant importants il faut noter qu’en  hiver le local peut chuter en température,  l’isolation phonique et thermique du local technique sont donc à prévoir et l’évacuation des condensats doit également être bien maîtrisée.

Lors du dégivrage des ailettes, une quantité non négligeable d’eau s’échappe des machines. Il faudra alors prévoir une évacuation adéquate pour éviter l’accumulation d’eau sur la toiture. De plus, en période hivernale des plaques de glace risquent de se former.

Réseau de distribution et dimensionnement des systèmes

Les tuyauteries en cuivre utilisées sont de très faible diamètre. Cela permet un gain de place par rapport aux systèmes traditionnels (à eau ou air) et les pertes calorifiques dues au transport sont faibles. Une isolation des conduites est indispensable. Les tuyauteries de petits diamètres sont vendues pré-isolées, ce qui facilite le montage.

Les dérivations frigorifiques seront exclusivement réalisées avec des raccords de type « Y » fournis par les fabricants qui permettront une parfaite distribution et répartition du fluide réfrigérant dans toutes les unités intérieures. Il y a des conditions de montage à respecter pour garantir la bonne fluidité du réfrigérant et éviter des nuisances sonores en cas de mauvaise alimentation en réfrigérant liquide dans les détendeurs.

Photo détendeurs.

Certains fabricants proposent des détendeurs déportés qui évitent toutes nuisances sonores dans les unités intérieures.

Photo détendeurs déportés.

Certains fabricants permettent des répartiteurs frigorifiques placés en série ou en parallèle ou en étoile pour réduire les quantités de conduites frigorifiques. Les logiciels de design permettent de vérifier les différentes configurations possibles et les répercussions sur les puissances disponibles en tenant compte des pertes de charge.

Photo répartiteurs frigorifiques.

La distribution peut être de type bitube en parallèle ou en étoile via un collecteur.

Schéma distribution de type bitube.

Pour les installations réversibles, un réseau « deux tubes » sera créé. En fonctionnement « froid », un tube transportera le fluide frigorigène liquide et ramènera le fluide à l’état vapeur. En fonctionnement « chaud », le premier tube véhiculera les « gaz chauds » issus du compresseur et ramènera le fluide refroidi et condensé.

Pour les installations avec récupération d’énergie, un réseau « trois tubes » transportera les « gaz chauds » (ou vapeur haute pression), le fluide liquide et la vapeur basse pression. Cette distribution en 3 tubes permet de fournir à tout moment le fluide réfrigérant nécessaire pour garantir les besoins en chaud et en froid. La sélection du mode « chaud » et « froid » est réalisée par un module de répartition munie de vannes, placé à l’entrée de chaque local ou de chaque zone régulés en commun. 

Exemple de fonctionnement en chaud/froid simultané.

À titre d’exemple, quelques valeurs et contraintes (c’est variable d’un constructeur à l’autre) :

  • Une distance maximale de 120 160 m entre l’unité extérieure et l’unité intérieure la plus éloignée (en ce compris les coudes, sur base de 1 coude = 2 1 m équivalant, par exemple).
  • Une dénivellation verticale entre unité extérieure et intérieure limitée à 50 90 m si l’unité intérieure est au-dessus et 40 si elle est en dessous.
  • Une dénivellation max de 15 m en moyenne entre unités intérieures, certains fabricants permettent 40 m.
  • Une somme totale des longueurs de tubes inférieure à 1000 m.

Unités intérieures

L’unité intérieure est parcourue par le fluide frigorigène. Un ventilateur  centrifuge ou tangentiel force l’air du local au travers de l’échangeur. Elle peut fonctionner soit en rafraîchissement, soit en chauffage, soit en brassage d’air, soit en déshumidification. Un détendeur électronique règle en permanence le débit de réfrigérant en fonction de la charge intérieure.

Les unités intérieures existent sous plusieurs formes :

  • Gainage en faux plafond,
  • Plafonnière encastré ou apparent,
  • En allège,
  • En rideau d’air

Traitement de l’air hygiénique

Les systèmes de DRV permettent aujourd’hui la détente/condensation directe dans les batteries froides et chaudes des groupes de ventilation.

Certains constructeurs proposent des mini centrales de traitement d’air double flux de maximum 1500 m³/h connectables sur un DRV. Ces mini centrales sont pour la plupart du temps équipées d’un système d’échangeur à plaques, batterie chaude ou froide et d’un humidificateur.

Autres applications

Outre le chauffage et le refroidissement direct à l’intérieur du bâtiment, le système DRV peut être équipé de module de production d’eau froide, d’eau chaude haute ou basse température, avec ou sans possibilité de connexion de collecteurs solaires thermiques, avec comme application :

Notons que cette dernière application peut également être obtenue par condensation/évaporation directe dans les batteries.

Certains fabricants de DRV proposent des unités de traitement d’air double flux avec une batterie à détente directe. Dans ce cas tous les composants HVAC sont compatibles entre eux via le bus de communication, et la totalité du système peut être régulé au départ de la même gestion centralisée.

Photo traitement d’air double flux avec une batterie à détente directe.

Boitier de sélection

Pour les DRV trois tubes, les boîtiers de sélection sont connectés en amont par 3 tubes par le groupe extérieur et en aval par 2 tubes à chaque unité intérieure, suivant la demande du local en chaud ou en froid  la circulation sera dans un sens ou dans l’autre suivant l’ouverture des vannes de passage.

Plusieurs unités intérieures peuvent être reliées au même boitier de sélection, une d’elles est alors désignée « Maitre » et sera la seule à commander le mode de fonctionnement.

Il n’y a pas de contrainte technique sur l’emplacement de ces boitiers, cependant le bruit qu’ils engendrent peut être dérangeant. Afin d’éviter de désagrément et de faciliter l’accès, certains installateurs les montent sur une structure préfabriquée qui peut alors être placée dans une armoire fermée accessible par le personnel de maintenance.

Photo armoire fermée accessible.


Régulation

Gestion du système de régulation.

Un tel produit n’a pu être conçu que moyennant l’intégration d’une régulation sophistiquée. Il est utile de savoir que le constructeur propose une GTC (gestion technique centralisée sur ordinateur) de facto, en ce sens que l’on peut définir ou suivre sur ordinateur tous les paramètres de l’installation : température de consigne, température de l’air soufflé, pourcentage d’ouverture de la vanne. Le principe « clef sur porte » de ce système fait que le concepteur, une fois qu’il a choisi entre les 3 configurations de base (chaud ou froid / chaud et froid), adopte la régulation proposée par le constructeur.  Les historiques permettent de suivre facilement l’évolution de ces paramètres et de détecter une anomalie.

Il n’est pas étonnant que les Japonais aient été les premiers à mettre ce type de système sur le marché. Chaque composant dispose de son « adresse » spécifique sur le bus de communication et une régulation « intelligente » permet au groupe extérieur d’adapter le mode de fonctionnement et la puissance nécessaire pour satisfaire précisément les demandes ponctuelles de chaque unité intérieure. Le calcul vectoriel est extrêmement rapide et la modulation du compresseur est très précise, certains fabricants réussissent à moduler au 1/10 H

Au niveau de l’utilisateur, une action par télécommande est possible pour régler le confort souhaité.  Chaque unité intérieure peut être commandée séparément ou par groupe depuis une télécommande infrarouge ou depuis un écran mural. Laisser à chaque occupant la possibilité d’intervenir sur la température peut devenir problématique, surtout dans des bureaux paysagers. Le confort de l’un n’est pas celui de l’autre. De plus, laisser trop de liberté peut engendrer des abus (température trop élevée en hivers et trop basse en été). Pour ces raisons, la marge de manœuvre de l’occupant est souvent bridée en ne lui offrant la possibilité de choisir la température du local uniquement dans une gamme de quelques degrés ou en limitant le nombre de commandes murales. Celles-ci sont généralement préférées aux télécommandes sans fil pour des raisons de perte ou de changement de piles.

Des gestions centralisées permettent de réaliser les programmations horaires des niveaux de température suivant les occupations et les saisons. C’est un outil très précieux pour optimiser la facture énergétique et éviter les abus et gaspillages occasionnés par une mauvaise manipulation des utilisateurs. Des programmations permettent de régler le système en mode automatique tout en permettant certaines dérogations dans des plages limitées suivant les utilisateurs. Ces gestions centralisées facilitent également la maintenance, de nombreuses fonctions d’autodiagnostics sont intégrées pour aider à détecter l’origine d’une panne éventuelle, et des accès à distance permettent une télésurveillance. Il est possible de programmer une adaptation des consignes (laisser dériver la température de 1° suffit) durant la période critique de la pointe quart-horaire. Automatiquement, le compresseur ne sera pas sollicité à ce moment.  Il est possible d’automatiser l’abaissement de consigne à partir de l’information issue de l’automate régulateur de pointe 1/4 horaire.

Des comptabilités énergétiques sont également disponibles pour permettre les éventuelles répartitions de consommation. Il est possible de connaître :

  • le pourcentage d’ouverture de la vanne dans chaque local
  • la consommation électrique totale de l’installation (en plaçant un compteur sur le seul câble qui reprend l’ensemble de l’installation, ventilateurs compris).

Par simple « règle de trois », on peut en déduire approximativement la consommation de chaque local (l’ouverture de la vanne ne dit pas exactement quel sera le débit de fluide, mais constitue une première approche) et établir une facture par consommateur.

Des interfaces permettent de dialoguer avec d’autres régulation et de piloter le système au départ de contact extérieur (lecteur de badge, détecteur de mouvement, contact de fenêtre, etc…).

« Froid seul » : les unités intérieures assurent le refroidissement uniquement

La régulation de la température ambiante est assurée

  • par la régulation de vitesse du ventilateur de l’évaporateur,
  • par un détendeur électronique qui module le débit de fluide en contrôlant la différence de température entrée-sortie du fluide dans l’évaporateur (similaire au réglage de la surchauffe).

Dans l’unité extérieure se trouve un ou plusieurs compresseur(s) hermétique(s) à vitesse variable (compresseur scroll ou compresseur rotatif), avec une régulation » INVERTER », c.-à-d. à vitesse variable par réglage de la fréquence d’alimentation.

En pratique, une sonde est placée sur la pression d’aspiration du compresseur. Cette pression est maintenue constante par action sur la vitesse du compresseur. Automatiquement, la température d’évaporation est maintenue constante. Ainsi, si la charge thermique du bâtiment augmente, la surchauffe augmente, le détendeur s’ouvre davantage, le débit de fluide réfrigérant augmente et la vitesse du compresseur augmente pour maintenir la pression.

Si la puissance frigorifique est importante, une cascade de deux (ou trois) compresseurs est réalisée. Mais un seul travaille à vitesse variable. Le deuxième est régulé en « tout ou rien ». Au démarrage, seul le compresseur INVERTER travaille. Dès que la charge dépasse la limite de puissance de ce compresseur, le 2ème compresseur est enclenché pour reprendre la charge et le compresseur INVERTER recommence à moduler à partir de 0 %.

Avec ce type de cascade, le compresseur INVERTER fonctionne sans arrêt et s’use plus vite que les autres. Pour éviter cela certaine unités extérieures sont équipés de plusieurs compresseurs INVERTER permanents ainsi un fonctionnement à tour de rôle.

« Froid ou chaud » : les unités intérieures sont réversibles

Dans ce cas, c’est tout le réseau qui travaille soit en froid, soit en chaud. Cette réversibilité est réalisée via une vanne d’inversion de cycle, dans l’unité extérieure. En passant d’un mode à l’autre, on inverse le sens de circulation du fluide dans les conduites. L’échangeur dans le local passe d’évaporateur à condenseur, et vice versa.

Bien sûr, une fois le mode général décidé, chaque local garde sa propre régulation interne : un détendeur électronique compare la température de l’air de reprise par rapport à la la température de consigne et adapte le débit de fluide frigorigène en conséquence.

En mode froid, la température d’entrée de l’évaporateur est égale à la température d’évaporation du fluide; la température de sortie est cette même température augmentée de la surchauffe. Celle-ci est classiquement réglée sur 6…7°. La vanne du détendeur sera donc réglée pour maintenir ces 7 degrés : si la charge thermique augmente, la surchauffe augmente, le détendeur s’ouvre davantage et le débit de fluide augmentera dans l’évaporateur en fonction de la charge.

En mode chaud, le fluide circule en sens inverse. Cette fois, la différence de température mesurée par le régulateur du détendeur électronique va correspondre au sous-refroidissement du condenseur.

Un régulateur électronique gère globalement l’ensemble de la demande et adapte la réponse via un bus de communication qui relie les différents équipements.

En mode chauffage, quand les unités intérieures sont à l’arrêt, un système de contrôle assure qu’il n’y ait pas de condensation de réfrigérant dans les U.I., si cela est la cas, le détenteur s’ouvrira légèrement pour permettre la circulation du fluide.

« Froid et chaud » : les unités intérieures travaillent à la demande, avec récupération d’énergie

Ici, le système permet une production simultanée de froid dans un local et de chaud dans le local voisin. Avec transfert de la chaleur d’un local vers l’autre !

L’idée de base est que 3 conduites sont extraites de l’unité extérieure

  • une conduite liquide,
  • une conduite vapeur basse pression,
  • une conduite vapeur haute pression, càd des « gaz chauds ».

Ces 3 conduites alimentent boitiers de sélection ou modules de répartition (rectangles en pointillé sur le graphe). Ceux-ci sont informés du mode de fonctionnement (chaud ou froid) souhaité, et vont desservir, via un réseau deux tubes, l’unité intérieure soit en gaz chauds HP soit en vapeur BP.

Des autres composants (non représentés) complètent l’installation afin d’empêcher certains sens de passage.

Fonctionnement en « froid seul ».

Fonctionnement en « froid majoritaire » .

Fonctionnement en « équilibré ».

Fonctionnement en « chaud majoritaire ».

Fonctionnement en « chaud seul ».

Remarque : Cette régulation est certainement complexe et pose la question de la maintenance, mais elle dispose d’un avantage : le fait que tous les composants sont compatibles entre eux. Cela facilite la prise de responsabilité lors de problèmes quelconques.

Notons également que la plupart des fabricants offrent une maintenance par télésurveillance qui leur permettent de détecter à distance les anomalies d’une installation.

Nouvelles approches de la régulation

Certains constructeurs ont amélioré l’ajustement en permanence de la température et du volume de réfrigérant en fonction de la puissance totale nécessaire et des conditions météorologiques. Par exemple, à la mi- saison lorsque les besoins de rafraîchissement sont réduits et que la température ambiante est proche du point de consigne, le système règle la température de réfrigérant sur une valeur supérieure de façon à améliorer l’efficacité énergétique. Les technologies de compresseurs et les régulations diffèrent entre chaque fabricant, nous pouvons remarquer depuis quelques années quelques améliorations significatives sur le confort et la performance énergétique de ces systèmes.

Chez certains fabricants, il y a une version de groupe extérieur prévue pour des climats rudes qui stocke de la chaleur dans un matériau à changement de phase, durant la relance hivernale, c’est cette chaleur qui sera utilisée pour le dégivrage évitant ainsi le refroidissement du bâtiment.

L’utilisation de la logique floue (« Fuzzy Logic ») ou de la température glissante pour la régulation du système ouvre également de nouvelles perspectives. Notamment durant les premières semaines d’installation, le système apprend à reconnaître son environnement thermique (auto-adaptation des paramètres). Cela lui permettra de réagir plus rapidement à l’avenir et ainsi offrir un confort plus important pour les utilisateurs. Cependant la compacité des équipements et l’existence même de cette logique floue rendent l’interprétation d’une panne difficile par une personne extérieure. Généralement, la maintenance sera faite par le fabricant, qui dispose de logiciels spécifiques de dépannage (analyse de l’origine d’une panne) et qui remplacera les cartes défectueuses si nécessaires. La maintenance par du personnel interne à l’exploitant sera soit limitée à l’entretien des filtres, soit basée sur l’utilisation des logiciels des fabricants, moyennant une formation appropriée.

Boîtier de répartition (avec l’arrivée des 3 tubes).

Régulation intégrée dans la face avant du boîtier.

Il ne faut pas être rétrograde : les photocopieuses, les appareils photographiques, les voitures,… autant d’équipements qui sont bourrés d’électronique et avec lesquels nous vivons très bien. Une 2 CV se répare sans doute beaucoup plus facilement, mais elle ne se vend plus… confort oblige.
Cette centralisation de l’équipement vendu « clef sur porte » génère une grande clarté au niveau de la responsabilité du fabricant. Il l’a bien compris en agréant les installateurs pouvant installer leur matériel, après formation.


Récupération d’énergie sur boucle d’eau

Un constructeur propose un système avec récupération d’énergie sur boucle d’eau : les condenseurs à air des unités « extérieures » sont remplacés par des condenseurs à eau (à l’intérieur des équipements dénommés PAC sur le schéma parce que ce sont des machines frigorifiques réversibles en pompe à chaleur). Ces unités peuvent alors être installées dans le bâtiment.

Schéma système avec récupération d'énergie sur boucle d'eau.

L’utilisation d’un tel système permet une double récupération de chaleur :

  • récupérer la chaleur entre les unités intérieures d’un même groupe frigorifique, comme une installation « froid et chaud » ci-dessus.
  • récupérer la chaleur une deuxième fois entre les groupes de condensation connectés sur la même boucle d’eau.

Le principe est similaire à celui d’un réseau de pompes à chaleur sur boucle d’eau. La partie frigorifique de ce système reste identique. Les différences se situent au niveau des groupes de condensation, placés à l’intérieur du bâtiment. Ces groupes sont raccordés sur la même boucle d’eau. En cas de déséquilibre entre besoins de chaud et besoin de froid, la température de la boucle d’eau est maintenue constante grâce des équipements traditionnels (réfrigérant atmosphérique, chiller, chaudière, …) ou via une source géothermique. Notons que dans ce dernier, si les besoins en chaud et en froid ne s’équilibrent pas annuellement, il peut être nécessaire d’avoir recours à d’autres technologies pour éviter le dépassement de la capacité thermique du sol ce qui aura pour conséquence l’alourdissement  du nombre d’équipements.
Les avantages de ce système à double récupération de chaleur (air/air et air/eau) sont :

  • possibilité d’installation dans des immeubles de grande hauteur,
  • possibilité d’installation dans des régions très froides (où la pompe à chaleur aurait du mal à travailler « seule » par grands froids),
  • possibilité de récupérer la chaleur d’un procédé industriel ou une source de chaleur naturelle,
  • possibilité de stocker la chaleur excédentaire en cas de refroidissement,
  • possibilité de récupération de chaleur entre les groupes de condensation,
  • installation des groupes à l’intérieur (pas de pollution sonore).

C’est un système également à envisager lorsqu’un ancien circuit à eau glacée existe dans le bâtiment et qu’il pourrait être récupéré.

Un stockage de chaleur durant la nuit dans un réservoir tampon et une restitution en période de relance le matin peut permettre un gain financier en profitant du tarif électrique de nuit et en lissant les pointes de puissance toujours coûteuses. A nouveau, c’est l’électronique propre du système qui gère l’ensemble.

Si cette technique est théoriquement réalisable, le volume du réservoir peut vite devenir un obstacle.

Exemple :
Soit un bâtiment de bâtiment de 3 000m². Une relance de 11 W/m² est programmée durant 3 h. Cela représente un besoin de 99 kWh. Supposons une température de stockage d’eau de maximum  40 °C et une température d’extraction minimale de 10 °C. Le volume de réservoir serait alors de 28,4 m³.


Performance attendue

Comme toujours avec le fonctionnement « pompe à chaleur », le rendement en mode « chauffage » se dégrade lorsque la température extérieure décroît. Mais le nombre d’heures en régime « hivernal » étant réduit par rapport au régime « entre saisons » durant lequel les performances sont excellentes, le système permet d’atteindre des rendements saisonniers très intéressants.

Les constructeurs annoncent à charge nominale des EER entre 3,1 à 4,3 et des COP de 3,5 à 4,5. Ces valeurs restent dans la moyenne des machines à refroidissement/réchauffement par air, à près tout c’en est une. Mais où est le bénéfice énergétique alors ? Il se trouve dans le fonctionnement à charge partielle. Certains constructeurs annoncent des performances très attrayantes, par exemple à charge partielle 50% de la puissance nominale un EER de 7.36  (pour 25°c ext) et  un COP de 5.52 (pour 9°c ext).

De plus, le bénéfice énergétique sera amélioré avec le système DRV 3 tubes à récupération de chaleur si la récupération d’énergie est possible (chaleur provenant d’un local informatique, transfert de chaleur entre locaux dont les besoins sont forts différents, process industriel nécessitant la production d’eau chaude en été, etc…)

Certains fabricants annoncent des valeurs ESEER (rendement saisonnier) suivant la certification EUROVENT basées sur la formule adaptée pour les groupes d’eau glacée. Suivant cette formule, il y a moyen de définir un rendement approximatif saisonnier qui tient compte de la charge partielle aux différentes conditions de température extérieure et de la pondération que représentent ces conditions pour la saison de refroidissement.

L’impact de la performance à charge réduite devient prépondérant dans ce cas, ce qui représente bien la réalité de fonctionnement sous notre climat tempéré.

Ejecto-convecteurs

Ejecto-convecteurs

Il s’agit là d’une technique qui n’est plus guère utilisée aujourd’hui, mais qui pourrait toujours être rencontrée notamment dans des immeubles de bureaux anciens. 

Principe

L’éjecto-convecteur est le frère du ventilo-convecteur !

Comme lui, il suppose deux réseaux distincts

  • un réseau d’eau pour apporter chaleur et froid au local,
  • un réseau d’air pour assurer la pulsion minimale d’air neuf hygiénique.

Ces deux apports se combinent astucieusement dans l’éjecto : l’air neuf pulsé à haute vitesse va induire le passage d’air secondaire dans les batteries d’eau chaude et d’eau glacée.

Et c’est là qu’une différence apparaît : le ventilo prévoit que l’air du local qui traverse les batteries soit pulsé par un ventilateur, alors que dans l’éjecto, c’est l’effet d’induction qui sera le moteur. L’air neuf pulsé entraîne de 2 à 5,5 fois son débit d’air ambiant au travers des batteries de chaud et de froid…

Si ce système a eu son heure de gloire dans les années 70 pour la climatisation des grands bureaux, il s’installe rarement aujourd’hui en allège. Par contre, il revient à la mode actuellement sous la forme de poutres froides insérées dans le faux plafond.

Les mauvaises langues disent d’ailleurs qu’avec cette nouvelle mode, on a de la puissance en moins (l’eau glacée ne peut descendre sous les 15°C pour éviter la condensation) et des ennuis en plus (assurer la maintenance d’un équipement au plafond, ce n’est pas évident !)


Aspects technologiques

Préparation de l’air primaire

En centrale, de l’air primaire est préparé. C’est à ce moment que l’on peut agir globalement sur le taux d’humidité de l’ambiance (humidification en hiver et déshumidification en été). Le débit d’air primaire est constant puisqu’il correspond généralement au débit d’air neuf hygiénique calculé sur base du nombre d’occupants prévus dans le bâtiment (30 m³/h/personne).

Le caisson de préparation est équipé d’une filtration de classe 7. À défaut, les buses d’induction se colmatent rapidement (d’où baisse du taux d’induction, augmentation de la vitesse et donc du bruit, …).

Distribution

Traditionnellement, l’air primaire est pulsé par des ventilateurs centrifuges, à grande vitesse (de 15 à 25 m/s) et sous forte pression (de 150 à 500 Pa)  jusqu’aux éjecto-convecteurs. Mais d’une part cette haute vitesse génère du bruit et d’autre part les effets d’induction ont été améliorés, si bien que les constructeurs proposent aujourd’hui des éjectos fonctionnant à vitesse normale.

Chaque appareil doit être raccordé au réseau de distribution d’air primaire, contrainte surtout gênante pour un projet de rénovation. Comme généralement les éjectos sont placés en allège, il faut prévoir des trémies verticales (gaines techniques) puis une distribution horizontale des gaines en allège. La présence de clapets coupe-feu dans chaque trémie augmente le coût global. Et l’obligation de l’allège réduit la liberté de l’architecte.

Émission dans les éjecto-convecteurs

Cet air passe dans des buses d’injection. A la sortie de ces injecteurs, une dépression est créée (effet Venturi) et l’air du local est aspiré par induction.

Et là, un choix crucial apparaît : plus la pression de l’air primaire est forte, plus l’induction est forte,… mais aussi plus un bruit de sifflement peut apparaître aux injecteurs ! Il faudra donc limiter le niveau de pression et faire en sorte que l’air secondaire du local n’ait pas à vaincre une trop forte perte de charge ! Les échangeurs seront de grande surface, les ailettes seront espacées,…

Autrement dit, le matériel sera plus encombrant et plus cher que celui des ventilos… !

Généralement, il n’y a pas de filtres sur les éjectos pour réduire la perte de charge. Mais si un filtre est placé sur le passage de l’air induit, son nettoyage fréquent s’impose.

Si la température de l’eau glacée est inférieure au point de rosée de l’ambiance (de l’ordre de 12°C), un réseau d’évacuation des condensats sera prévu.

Ci-contre, on reconnaît la buse d’amenée de l’air neuf, surmonté des batteries d’échanges.

Généralement, l’éjecto est non carrossé et intégré dans le mobilier du local. Le placement d’absorbants acoustiques collés sur les parois internes de ce mobilier sera bien utile.

Les réseaux d’alimentation des échangeurs

Comme pour les ventilo-convecteurs, il existe quatre grandes familles

  1. Les éjectos « à 2 tubes réversibles » : ils ne disposent que d’un seul échangeur, alimenté alternativement en eau chaude en hiver et en eau glacée en été.
  2. Les éjectos « à 4 tubes » : ils disposent de deux échangeurs, pouvant être connectés en permanence soit au réseau d’eau chaude, soit à celui d’eau glacée. La taille (le nombre de rangs) de l’échangeur de froid est plus élevé que celui de la batterie chaude, suite au delta T° plus faible sous lequel travaille la batterie froide. On dit que « le pincement » est plus faible entre T°eau et T°air dans l’échangeur.
  3. Les éjectos« à 2 tubes – 2 fils » : pour diminuer les coûts d’installation, on ne prévoit que le réseau d’alimentation en eau glacée. Pour assurer le chauffage d’hiver, une résistance électrique d’appoint est prévue. Mais le prix du kWh électrique étant nettement plus élevé que le kWh thermique, les coûts d’exploitation seront importants… Ce système ne se rencontre que rarement dans les éjectos.
  4. Les éjectos à « trois tubes » : deux tubes apportent séparément l’eau chaude et l’eau froide, le troisième assure un retour commun. Ce système est catastrophique au niveau énergétique par suite du mélange eau chaude/eau froide. Il est totalement abandonné aujourd’hui.

La régulation des systèmes à 2 tubes

De l’eau chaude ou de l’eau froide sont, suivant les saisons, préparées en centrale. Il est décidé globalement pour le bâtiment du moment de changer la température d’alimentation du réseau. Mais un besoin de découpage de l’installation en zones homogènes va apparaître si les façades sont diversement exposées.

En été, une seule température d’eau glacée est préparée en centrale; elle alimente le caisson de traitement d’air neuf et la boucle des éjectos. Au besoin, la température de distribution de l’eau glacée pourrait varier en fonction de la température extérieure ou de l’intensité du rayonnement solaire, via une régulation hydraulique. Cela réduit les pertes en ligne et diminue la consommation liée à la chaleur latente contenue dans l’air.

La température de l’air pulsé est généralement basse.

On pourra s’inspirer de la régulation des ventilo-convecteurs à 2 tubes.


La régulation des systèmes à 4 tubes

De l’eau chaude et de l’eau froide sont préparées simultanément en centrale; la température de l’eau chaude peut varier en fonction de la température extérieure. La température de l’eau glacée est généralement fixe au niveau du groupe frigorifique mais au besoin elle pourrait varier en fonction de la température extérieure ou de l’intensité du rayonnement solaire, via une régulation hydraulique. Cela réduit les pertes en ligne et diminue la consommation liée à la chaleur latente contenue dans l’air.

On pourra s’inspirer de la régulation des ventilo-convecteurs à 4 tubes.


Avantages

  • Les systèmes à éjecto-convecteurs font partie des installations où l’apport d’air neuf (réseau d’air) est séparé de l’apport thermique (réseaux d’eau). Il n’y a dès lors pas lieu de prévoir un recyclage de l’air et donc aucun risque de contamination d’un local vers l’autre.
  • L’installation est très souple localement, réagit facilement aux variations de charges (surtout si 4 tubes) et permet un contrôle individualisé de la température dans le local.
  • Les éjecto sont peu bruyants, si l’installation a été correctement dimensionnée par le bureau d’études… et que le client a bien voulu financer la qualité de l’installation : large dimensionnement des échangeurs ! (le bureau d’études fait souvent pour un mieux avec l’argent qu’on veut bien mettre dans l’installation…). À noter qu’il est important de procéder systématiquement au nettoyage des éjecteurs et au contrôle de l’équilibrage du réseau d’air primaire. Un éjecteur sale ou suralimenté en air émet, en effet, un son aigu particulièrement désagréable.
  • L’absence de ventilateur rend la maintenance très aisée : seul un nettoyage périodique des batteries et des buses est nécessaire.
  • L’encombrement peut être limité lorsque l’air primaire est acheminé vers les locaux sous haute vitesse, ce qui réduit les sections des gaines.

Inconvénients

  • La consommation électrique du ventilateur du caisson de préparation est élevée lorsque l’air primaire est distribué sous haute pression (pour assurer l’induction).
  • Le coût d’installation est élevé : une taille minimale de l’ordre de 100 éjectos est nécessaire pour amortir le coût d’un tel système, ce qui limite l’application aux grands immeubles.
  • La régulation, qui peut permettre de multiples combinaisons (sur l’air, sur l’eau) peut devenir trop sophistiquée.
  • Une sensibilité importante à l’équilibrage aéraulique du réseau d’air. De plus, toute ouverture des fenêtres est interdite sous peine de déséquilibrer totalement la distribution de l’air et de là, la distribution de chaleur induite !
  • La contrainte de devoir raccorder chaque appareil au réseau de distribution d’air primaire est très gênante, surtout pour un projet de rénovation. C’est également un défaut de souplesse en cas de modification du nombre et de la puissance des équipements, si bien que dans une architecture modulaire l’on est parfois obligé de sélectionner un appareil par module (pour prévoir tout déplacement futur de cloisons), solution qui s’avère très coûteuse…
  • Globalement, l’efficacité énergétique de l’installation est bonne, mais n’est pas optimale car :
    • Des pertes apparaissent dans l’éjecto au niveau des batteries, lorsque la régulation est faite par clapets d’air.
    • L’air primaire alimente simultanément tous les locaux, même ceux qui sont inoccupés.
    • Les débits sont constants et il est donc impossible de réaliser du free cooling sur l’installation, c’est-à-dire de profiter de l’air frais et gratuit extérieur.

Puissance rencontrée

Les éjecto-convecteurs ont une gamme de puissances calorifiques variant de 150 à 1 200 Watts, et des puissances frigorifiques de 120 à 900 Watts.

Le débit d’air primaire aux injecteurs est compris entre 8 et 50 l/s.