Géothermie [Le chauffage – PAC]


Principe

À l’état naturel, le sous-sol garde une température constante de l’ordre de 10 … 12 °C à partir d’une profondeur d’une dizaine de m.

On peut donc logiquement imaginer que celui-ci puisse servir de source naturelle de froid. Il suffirait qu’un réseau véhiculant un fluide caloporteur le parcoure pour produire de l’eau à température adéquate pour refroidir un bâtiment.

On appelle cela du « géocooling ».

De même, une température de 10 .. 12 °C plus élevée et plus stable que la température extérieure hivernale est une température intéressante pour servir de source froide à une pompe à chaleur, en l’occurrence sol/eau, pour chauffer le bâtiment en hiver.

On parle alors de « géothermie ».

Refroidissement en été et chauffage en hiver vont d’ailleurs souvent de pair. En effet, si en été on extrait du « froid » du sol, ce dernier se réchauffe progressivement. Si cette opération se répète d’année en année, sans autre perturbation, le sol verra sa température moyenne augmenter jusqu’à ne plus être exploitable.

Dès lors pour éviter ce phénomène, il s’agit de régénérer le sol chaque hiver en extrayant la chaleur accumulée en été grâce à une pompe à chaleur.

On parle alors de « STOCKAGE GEOTHERMIQUE » : la chaleur du bâtiment est transférée dans le sol en été quand elle est gênante pour être utilisée en hiver quand elle est nécessaire.


Technologie des sondes géothermiques

Les systèmes fermés et ouverts

On parle de système fermé si un fluide caloporteur circule dans le sol dans un circuit fermé.

On retrouve principalement 3 types de systèmes fermés : les forages ou sondes géothermiques, les pieux géothermiques et les nappes horizontales.

3 types d’échangeur géothermique : les pieux, les sondes et les nappes.

Source : Rehau.

On parle de système ouvert lorsque c’est l’eau de la nappe phréatique ou du lit d’une rivière qui est pompée pour échanger sa chaleur avec le bâtiment et réintroduite en aval du sens d’écoulement souterrain.

Forages géothermiques

Dans ce cas les « échangeurs géothermiques » ou « sondes géothermiques » sont pour la plupart constitués de forages verticaux (diam 150 mm) d’une profondeur de 50 à 400 m (souvent 100 .. 150 m). Chaque forage contient des conduites, le plus souvent en polyéthylène (DN 32) disposées en double U et enrobées d’un coulis de ciment/bentonite (le « grout ») assurant la protection mécanique tout en permettant une certaine souplesse indispensable pour résister aux mouvements de sol.

Source : REHAU.

L’ensemble des forages forme ainsi un champ de sondes espacées entre elles de 6 à 10 m, pour limiter les interférences thermiques. Les sondes sont raccordées entre elles via des collecteurs, en série ou en parallèle ou un mix des deux.

Le champ de sondes peut être disposé à côté du bâtiment ou même sous le bâtiment (par exemple en ville).

Variantes : Sondes coaxiales en acier

Les forages géothermiques présentent une série de contraintes comme :

  • la nécessité d’espace pour effectuer les forages;
  • la gestion du forage au travers de couches de sous-sol parfois hétérogènes;
  • la nécessité de maximiser l’échange de chaleur tout en garantissant la tenue mécanique des sondes,
  •  …

Cela conduit les fabricants à proposer des alternatives aux sondes traditionnelles en « double U ».

Il existe ainsi des sondes coaxiales : l’eau en provenance du bâtiment circule dans la périphérie de la sonde et revient par le cœur pour délivrer son énergie au bâtiment.

Exemple de sonde coaxiale en PE : le fabricant annonce que les performances d’une sonde de dimension 63 mm / 40 mm
correspondent à une sonde géothermique double U de dia. 32 mm.

Source : www.hakagerodur.ch

Pour encore augmenter l’échange thermique avec le sol les sondes peuvent être réalisées en acier (avec protection cathodique) ou en inox, sans enrobage : le tube périphérique est en métal et le tube intérieur en PE.

L’augmentation du transfert de chaleur, permet alors réduire le nombre de forages et la longueur des sondes. Ainsi des tests de réponse thermique montrent qu’en moyenne, les sondes coaxiales en inox ont une résistance thermique 2 fois moindre qu’une sonde avec doubles U en PE. Cela permettrait une puissance d’extraction de 10 à 20 % supérieure.

Exemple de sondes en acier, à visser (longueur de 3 m).

Source : Thermo-pieux.

Exemple de sonde en inox introduite par forage ou « vibro-fonçage ».  La profondeur peut atteindre une centaine de mètres.

Source : geo-green.

La technologie des sondes coaxiales ouvre la porte à des installations avec des forages en étoile au départ d’un point d’entrée unique dans des lieux où l’accès pour des forages parallèles espacés n’est pas possible (par exemple, une cour intérieure dans un site existant).

 

Forages en « étoile » : on parle dans la littérature de « racines géothermiques ».

Pieux géothermiques

Une alternative aux forages consiste à intégrer les échangeurs géothermiques aux pieux de structure d’un bâtiment. Cela se justifie parce que ceux-ci sont souvent nécessaires dans des sous-sols humides, sous-sols favorables aussi à la géothermie.

On justifie cette technique par un souci de rationaliser les techniques en les combinant. Cependant, la pratique ne prouve pas que les coûts soient inférieurs par rapport à des installations distinctes. La mise en œuvre des pieux se complique également. La gestion de l’installation doit également interdire que les pieux de fondation ne gèlent en mode de chauffage hivernal.

 

Exemples de réalisation : La crèche de l’île aux oiseaux, ville de Mons : 16 pieux géothermiques de 10 m.

La crèche de l’ile aux oiseaux de Mons.

Aéroport de Zurich : 350 pieux géothermiques de 30 m de profondeur.

Nappes horizontales

La géothermie se décline également sous la forme de nappes de tuyaux déployés horizontalement à faible profondeur (0,6 à 1,2 m).

Le système est peu applicable dans le secteur tertiaire. En effet,

  • Il demande une surface de terrain très importante : de 28 à 100 m²/kW de puissance de chauffage nécessaire.
  • En hiver, elle peut conduire à un refroidissement excessif du sol préjudiciable à la végétation.
  • L’utilisation en refroidissement n’est guère possible, la température du sol étant fortement soumise à l’environnement extérieur.

Alternative pour les bâtiments de taille réduite : les sondes de faible profondeur.

Pour les petits projets, pour lesquels un forage n’est pas autorisé et où les systèmes horizontaux ne disposent pas de surface suffisante, certains fabricants proposent des sondes de petite taille constituées d’un échangeur spiralé. Ce système permet notamment de limiter l’influence que peut avoir la géothermie sur la couche de sol où se développe la végétation.

Source : SANA FONDATIONS sprl.

Cas particulier : le puits canadien

Le puits canadien ou puits provençal constitue une forme de géothermie puisque l’air neuf de ventilation est prétraité (chauffé ou refroidi) par son passage dans le sol.

Techniques

 Pour en savoir plus sur le puits canadien.

Schémas de principe

Traditionnellement, on retrouve 2 types de schéma de principe, selon que le froid est produit par échange direct avec le sol soit par la pompe à chaleur réversible utilisant le sol comme source chaude. Une troisième configuration se retrouve lorsqu’on puise directement l’eau de la nappe phréatique.

Free cooling direct

En été : le froid est produit par échange direct avec le sol et distribué via un échangeur vers les unités terminales. Le géocooling est ainsi mis en œuvre moyennant uniquement la consommation de pompes. Si on compare cette consommation à l’énergie frigorifique produite, on calcule un ESEER équivalent du système de l’ordre de …12…, voire plus en fonction des dimensionnements des équipements. Souvent une machine de production de froid vient en appoint pour satisfaire les demandes de pointes ou pour alimenter des utilisateurs demandant des températures d’eau plus basses (comme les groupes de traitement d’air).

En hiver, le sol sert de source froide à une pompe à chaleur sol/eau. Le coefficient de performance saisonnier obtenu varie entre 4,5 et 5,5. Une chaudière est utilisée en appoint pour couvrir les pointes de puissance par grands froids. Généralement, le système est dimensionné pour que la PAC couvre environ 70 % du besoin de chaud grâce à environ 30 % de la puissance totale nécessaire.

Recharge du sol par pompe à chaleur réversible

La pompe à chaleur sol/eau est réversible. En été, elle fonctionne comme un groupe de production d’eau glacée en utilisant le sol pour évacuer la chaleur de son condenseur régénérant ainsi ce dernier.

L’avantage d’un tel système est de mieux gérer la recharge du sol et peut-être de pouvoir se passer d’un groupe de froid d’appoint et d’un échangeur intermédiaire. L’investissement est donc moindre.

En contrepartie, alors que l’on peut toujours parler de stockage géothermique, il ne s’agit plus réellement de géocooling naturel puisqu’il est nécessaire de faire fonctionner une machine thermodynamique pour extraire le « froid » du sol. Le bilan énergétique global est donc moins favorable.

Systèmes ouverts

Si la nappe phréatique se situe près de la surface du sol, on peut envisager de puiser directement l’eau dans cette dernière plutôt que de la parcourir avec un échangeur et un fluide caloporteur. On parle de système ouvert. Dans ce cas, l’eau de la nappe sert par l’intermédiaire d’un échangeur :

  • En mode chauffage, de source froide à une pompe à chaleur.
  • En mode refroidissement, de source de froid directe pour une boucle d’eau.

L’eau puisée est ensuite réinjectée dans la nappe à une certaine distance créant ainsi 2 zones dans la nappe phréatique à températures différentes, l’eau passant de l’une à l’autre en fonction de la saison :

  • En hiver une zone se refroidit par l’eau réinjectée après échange avec la pompe à chaleur.
  • En été l’eau est pompée en sens inverse de cette zone et réinjectée plus chaude dans la zone de puisage hivernal.

Étant donné les mouvements dans les nappes phréatiques et en fonction de la distance entre les zones chaude et froide, l’influence d’un éventuel déséquilibre entre les besoins de chauffage et de refroidissement est nettement moindre dans le cas d’un système ouvert par rapport à un système fermé.

En outre, il est également possible de produire du chaud et du froid en même temps dans le bâtiment. En effet, si nécessaire, l’eau pompée de la nappe peut être dirigée à la fois vers la pompe à chaleur et vers l’échangeur de géocooling ou vers un échangeur commun entre les productions de chaud et de froid.

Exemples d’installations

Le schéma ci-dessous est proposé par un constructeur allemand. Il permet le chauffage par pompe à chaleur, le refroidissement libre par un échangeur vers les sondes géothermiques, éventuellement assisté par le fonctionnement réversible de la pompe à chaleur.

Le schéma ci-après, plus complet, permet un fonctionnement mixte en mi-saison : une chaudière alimente la zone périphérique en chaleur, alors que simultanément, la zone centrale est refroidie par l’échangeur dans le sol via la pompe à chaleur. Attention cependant à la destruction d’énergie qui pénalise l’intérêt énergétique de ce système.


Unités terminales associées

Les performances de la pompe à chaleur et du géocooling sont fortement dépendantes du régime de température des unités terminales :

Plus la température de l’eau de distribution est basse en saison de chauffe (température max de l’ordre 50 .. 55 °C), meilleur sera le rendement de la PAC et plus elle est élevée en été (température min de l’ordre de 15 .. 17 °C) plus grande sera la quantité d’énergie extractible directement du sol.

On doit donc choisir des unités terminales compatibles avec ces températures :

  • Plafonds refroidissants ou ilots rayonnants
    • avantages : peu d’inertie thermique et donc rendement de régulation élevé, contrôle facile de la température ambiante, réversible chaud/froid;
    • inconvénients : puissance plus limitée (plafonds).

Exemple d’îlot rayonnant.

(Source : Interalu).

  • Dalles actives
    • avantages : stockage de nuit et donc limitation de la puissance à installer;
    • inconvénients : inertie thermique importante et donc contrôle difficile de la température et rendement de régulation dégradé. Peu de flexibilité spatiale et difficulté d’utilisation en chauffage (nécessité d’un second système). Absence de faux plafond (gestion des techniques et de l’acoustique).

Étude d’un projet de géothermie

Un projet de géothermie consiste à mettre en corrélation le comportement thermique du bâtiment et celui du sous-sol. Tout cela se passe de façon dynamique : les besoins varient, le sol se charge, se décharge, échange avec son voisinage tout cela sur une échelle de temps quotidienne, mais aussi saisonnière. Cela justifie l’utilisation d’outils de simulation thermique dynamique prenant en compte la variabilité des besoins, des échanges et l’inertie du système.

Étapes de l’étude d’un projet de géothermie :

  • Définir les besoins par simulations dynamiques en évaluant différentes variantes de manière à trouver le bon équilibre entre le besoin de chaud et de refroidissement du bâtiment (niveau d’isolation, type de vitrage, protections solaires, …).

Besoins simulés de chauffage et de refroidissement d’un bâtiment, h par h ou 1/4h par 1/4 h.

  • Connaître la nature du sol par études géologique et hydrogéologique pour préévaluer les caractéristiques physiques et thermiques du sous-sol et pour évaluer les éventuels risques liés aux forages (présence de nappes phréatiques, de couche argileuse,  de quartzites, …). Cela permet de prédéfinir la pertinence et la configuration des forages (par exemple, leur longueur minimale et maximale en fonction des couches de sous-sol susceptibles d’être rencontrées).

Pour exemple, voici quelques données moyennes :

Caractéristiques du sol Puissance spécifique d »extraction
Sur 1 800 heures de fonctionnement Sur 2 400 heures de fonctionnement
Valeurs indicatives générales
Sous-sol de mauvaise qualité (sédiment sec) (λ < 1,5 W/m²K) 25 W/m 20 W/m
Sous-sol rocheux normal  et sédiment  saturé en eau (λ < 1,5 – 3.0 W/m²K) 60 W/m 50 W/m
Roche compacte à conductibilité  thermique élevée (λ < 3,0 W/m²K) 84 W/m84 W/m 70 W/m
Minéraux respectif
Gravier et sable secs < 25 W/m <20 W/m
Gravier et sable aquifères 65 – 80 55 – 65 W/m W/m
Dans le cas de fort courant des eaux souterraines dans le gravier ou le sable et d’installations uniques 80 – 100 80 – 100 W/m
Argile et glaise humides 35 – 50 W/m W/m 30 – 40 W/m
Calcaire (massif) 55 – 70 W/m 45 – 60 W/m
Grès 65 – 80 W/m 55 – 65 W/m
Roche magmatique acide (par ex. granit) 65 – 85 W/m 55 – 70 W/m
Roche magmatique basique (par ex. basalte) 40 – 65 W/m 35 – 55 W/m
Gneiss 70 – 85 W/m 60 – 70 W/m

Puissances traditionnelles extractibles.

Source Rehau.

  • Effectuer un test de réponse thermique (« TRT »). Il s’agit de réaliser un forage en taille réelle et de le soumettre à une sollicitation thermique pour pouvoir calculer la conductibilité et la capacité thermique du sol et la résistance thermique des sondes, en moyenne sur toute la longueur de la sonde. Cette sonde test pourra ensuite être valorisée dans le champ de sondes final.

Source : Group Verbeke.

  • Dimensionner le champ de sondes au moyen d’un logiciel de simulation dynamique du sous-sol : simulation du comportement du sol compte tenu des besoins du bâtiment (heure par heure) et des caractéristiques  thermiques des sondes prévues et du sol (définies par le TRT) ; optimalisation de la puissance de la PAC, du nombre et de la profondeur des sondes en s’assurant de l’équilibre à long terme de la température du sol.

Dimensionnement de l’échangeur de sol

Pour le dimensionnement des collecteurs de sol, des réfrigérateurs de plaques de fond ou de réservoirs de fondations, il est possible de consulter la DIN ISO EN 13370 « Transmission de chaleur par le procédé de calcul terrestre ».

L’objet de cette norme est l’examen du transfert de la chaleur en tenant compte des paramètres (tuyaux, isolation, masse géométrique du bâtiment, etc.) et de la conduite d’exploitation. La ligne directrice VDI 4640 « Utilisation thermique du sous-sol » convient pour l’évaluation du rendement (puissance) d’un chauffage. De plus, elle fournit des indices de planification concernant les permissions et les conditions additionnelles liées à l’environnement, mais (à notre connaissance en octobre 2003) elle n’aurait pas encore été adaptée sous l’aspect « été » du réfrigérateur.

D’après la norme DIN ISO EN 13370 (traduction non officielle !), les tableaux suivants donnent une vue d’ensemble sur les capacités d’extraction des collecteurs de chaleur et des sondes géothermiques (capacité des pompes de chaleur jusqu’à max. 30 kW) :

>  S’il s’agit de collecteurs situés à côté du bâtiment (en W/m²) :

Puissance d’extraction thermique en W/m²
Sous-sol Exploitation 1 800 h / saison Exploitation 2 400 h / saison
Sol sec, non cohérent 10 8
Humide, cohérent 20…30 16…24
Sable, gravier, imbibés d’eau 40 32

>  S’il s’agit de sondes géothermiques (en W/m courant) :

Puissance d’extraction thermique en W/m²
Sous-sol Exploitation 1 800 h / saison Exploitation 2 400 h / saison
Sédiments secs et peu conducteurs (Lambda < 1,5 W/m.K) 25 20
Roche, sédiments imbibés d’eau
(Lambda > 1,5 … 3 W/m.K)
60 50
Roche dure très conductrice
(Lambda > 3 W/m.K)
84 70

L’adaptation des calculs détaillés est de plus indiquée dans les cas suivants :

  • Modification des heures de services des pompes à chaleur par rapport aux hypothèses de base;
  • plus grande nécessité de chaleur pour la préparation d’eau chaude;
  • effet régénérateur du sol suite à un apport de chaleur par réfrigération de locaux ou à un rechargement thermique solaire;
  • grande influence des eaux souterraines (nappe phréatique).

Les valeurs de référence pour les capacités d’extraction de chaleur en hiver ne sont pas directement applicables à l’activité en été. Différentes causes sont à la base des écarts entre les capacités d’extraction et d’incorporation :

  • Lors du fonctionnement en hiver, une couche de glace se forme autour de la sonde ou des tuyaux, et influence favorablement la transmission thermique par conduction. En été, le sol peut au contraire sécher davantage, ce qui est défavorable.
  • Les couches terrestres proches du sol sont soumises à de si fortes influences climatiques qu’il faudrait parler non pas d’éléments de construction thermiques, mais plutôt d’éléments de construction solaires thermiques dans le cas de collecteurs de terre classiques non bâtis.

Pour l’évaluation de la capacité de sondes géothermiques et de pieux d’énergie dans le processus de réfrigération, un constructeur conseille :

  • Vu les raisons énoncées précédemment, de mettre les capacités d’incorporation (été) égales à 70 % des capacités d’extraction de chaleur énoncées dans la VDI 4640.
  • De valoriser si possible l’existence d’une nappe souterraine, qui suite à l’humidification des couches terrestres en dessous des fondations, améliore la conductibilité thermique. Il en résultera également des capacités de réfrigération plus constantes.
  • Une distance de pose entre les tuyaux ne dépassant pas 15 cm.
  • Des phases de régénération (suite à l’arrêt du système en journée ou suite à une réduction de la nécessité de froid (journées fraîches d’été)) qui améliorent la capacité de rendement.

Aspect réglementaire lié à la réalisation du projet

(Rédaction : 2014)

En région wallonne

En Wallonie, tout projet de réalisation de puits destiné à la géothermie doit faire l’objet d’un permis unique : Permis d’environnement (installations classées, conditions intégrales et sectorielles) + Permis d’urbanisme.

Selon l’Arrêté du Gouvernement wallon du 4/7/2002, annexe I, les systèmes géothermiques fermés sont classés dans la rubrique 45.12.01 : « Forage et équipement de puits destinés au stockage des déchets nucléaires ou destinés à recevoir des sondes géothermiques », classe de permis 2.

D’autres rubriques existent pour classer les systèmes ouverts en fonction des techniques de puisage et de rejet d’eau souterraine utilisé.

Les forages d’essais (TRT) et de l’installation définitive doivent faire l’objet d’une demande de permis propre comprenant :

  • Le formulaire général de demande de permis d’environnement et de permis unique – Annexe I.
  • Le formulaire relatif aux forages – Annexe XVIII (rubrique 45.12.01) ou le formulaire relatif aux prises d’eau – Annexe III (rubrique 41.00.03.02).

Le formulaire XVIII doit notamment comprendre :

  • Une coupe géologique probable du puits avec profondeur estimée de la nappe aquifère;
  • la description des méthodes de forage et les équipements du puits avec coupe technique;
  • un rapport technique sur la nature de la nappe aquifère éventuelle;
  • un plan de situation des puits.

Chronologiquement, étant donné les délais d’obtention, il est souvent difficile d’attendre les résultats du TRT et le dimensionnement final du champ de sondes avant l’introduction de la demande de permis pour ce dernier. De même, étant donné que le choix de l’enveloppe du bâtiment et l’équilibre géothermique sont intimement liés, il apparaît difficile de dissocier chronologiquement les demandes de permis pour le bâtiment neuf, le TRT et le champ de sondes. Dans ces différents cas, la pratique veut que les permis soient introduits en parallèle en mentionnant les hypothèses de prédimensionnement effectués.

En région bruxelloise

Il n’existe actuellement pas de législation spécifique à la géothermie en RBC. Les systèmes géothermiques sont néanmoins presque toujours composés d’installations classées soumises à déclaration ou à permis d’environnement.

Dans le cas de systèmes géothermiques fermés, les installations classées concernées sont les suivantes :

  • Pompe à chaleur < 10 kWelec  et < 3 kg de substance appauvrissant la couche d’ozone : Installation non classé et donc non soumise à autorisation (rubrique 132).
  • Pompe à chaleur > 10 kWelec mais < 100 kWelec  ou > 3  kg de substance appauvrissant la couche d’ozone : Installation classée de classe 3 et donc soumise à déclaration (rubrique 132).
  • Pompe à chaleur > 100 kWelec : Installation classée de classe 2 et donc soumise à Permis d’Environnement (rubrique 132).
  • Pompes électriques > à 100 kVA (rubrique 55).

Les forages ne sont, eux, pas classés.

Dans le cas de systèmes géothermiques ouverts, les captages d’eau souterraine sont des installations classées de classe 2 ou de classe 1B (rubrique 62) et sont donc soumis à Permis d’Environnement. En plus comme pour les captages d’eau « classiques », les systèmes géothermiques ouverts sont soumis à une « autorisation de pompage » de la part de l’IBGE.

De plus la réglementation urbanistique (COBAT) stipule que les forages géothermiques sont soumis à rapport d’incidence. Il semblerait donc que les systèmes géothermiques sont soumis à Permis d’Urbanisme (PU). Dans la pratique, il semblerait néanmoins que les systèmes géothermiques ne fassent pas l’objet d’une demande de PU à part entière. Il est donc conseillé de se renseigner auprès du service urbanisme de la commune concernée pour savoir si un PU est nécessaire.

La demande de permis d’environnement doit comprendre une série de renseignements.

Pour les systèmes géothermiques fermés (sondes verticales) :

  • Le cadre du projet de géothermique (industrie, tertiaire, logements collectifs, privés, ….
  • Le profil géologique et hydrogéologique de la zone où sont prévus les forages (et plus particulièrement déterminer les aquifères qui seront traversés par les forages) :
    • soit sur base du profil géologique et hydrogéologique obtenu à partir d’un forage réalisé sur le site (ou à proximité immédiate du site);
    • soit, en l’absence de forage, sur base des données cartographiques – carte géologique, géotechnique de Bruxelles, …- , via la base de données DOV (Databank Ondergrond Vlaanderen) ou via consultation des archives du service géologique de Belgique.

Il y a lieu de motiver la profondeur des sondes envisagée sur base de ce profil.

  • La technique de forage prévue pour le placement des sondes.
  • La description technique de l’installation géothermique :
    • puissance électrique de la pompe à chaleur (PAC) et rendement;
    • nombre de puits ou forage prévus + nombre de sondes verticales prévues;
    • profondeur des sondes;
    • type de sondes (simple boucle en U, double boucle en U, coaxiale, autre);
    • type de matériaux utilisés pour les sondes et les différentes connexions;
    • systèmes prévus pour isoler les sondes (ou les groupes de sondes) en cas de fuite (vannes d’isolement, …);
    • fluide caloporteur prévu dans les sondes;
    • surface prévue pour l’implantation des sondes (et surface disponible si différente);
    • matériaux de remplissage sont prévus pour le scellement des trous de forages (espace interstitiel).
    •  …
  • Le plan reprenant de manière claire l’emplacement des installations (PAC et champ de sondes).
  • La description détaillée (schéma de fonctionnement y compris le mode opératoire de la régulation) du système HVAC complet du bâtiment et l’intégration de l’installation de géothermie dans cet ensemble.
  • L’évaluation des besoins énergétiques :
    • la demande en chaud du bâtiment (kWh/an);
    • la demande en froid du bâtiment (kWh/an);
    • la puissance de pointe en chaud du bâtiment (kW);
    • la puissance de pointe en froid du bâtiment (kW);
    • l’énergie (chaud) soutirée au sol (kWh/an);
    • l’énergie (froid) soutirée au sol (kWh/an);
    • % de la demande en chaud couvert par la géothermie;
    • % de la demande en froid couvert par la géothermie.

Dans la mesure du possible, un (des) graphique(s) (histogramme) reprenant les besoins mensuels du bâtiment en froid et en chaud sur un an et distinguant la part produite par la géothermie de la part produite par les systèmes complémentaires (système de production de chaud et froid classiques) sera fourni.

  • Dans le cas ou un test de réponse thermique (TRT) a été réalisé : les conclusions du test.
  • La comparaison du gain énergétique du système proposé par rapport à l’utilisation d’une chaudière à condensation (réduction d’énergie primaire (%)).
  • L’évaluation du déséquilibre thermique du sous-sol et l’évolution de la performance de la PAC sur 20 ans en tenant compte de ce déséquilibre thermique.
  • Quant au rapport d’incidences, il doit également évaluer les nuisances et impacts environnementaux liés au système géothermique ainsi que les mesures prises pour éviter, supprimer ou réduire les nuisances répertoriées.  (Ex : test de mise sous pression des bouclages, mise en place d’un système de détection de fuites, étanchéité des puits,…).

Pour les systèmes géothermiques ouverts :

  • Le type de système géothermique prévu : captage/réinjection réversible (stockage chaud froid) ou captage réinjection non réversible.
  • La description technique de l’installation géothermique :
    • nombre de puits de pompage et de réinjection prévus ;
    • profondeur des puits (+ facteurs ayant servi à la détermination de la profondeur) ;
    • zone de filtre (crépine) ;
    • distance séparant les puits de captage et de réinjection ;
    • type de compteurs et nombre de compteurs prévus (+ emplacement) ;
    • puissance électrique de la pompe à chaleur (PAC) et son rendement ;
    • liquide utilisé dans le circuit secondaire ;
    • type d’échangeur – circuit primaire / circuit secondaire (double parois, simple paroi, …) ;
    • Éventuel système de détection de fuite dans le circuit secondaire.
    • plan reprenant l’emplacement de la PAC, des différents puits de captage et de réinjection.
  • La description détaillée (schéma de fonctionnement y compris le mode opératoire de la régulation) du système HVAC complet du bâtiment et l’intégration de l’installation de géothermie dans cet ensemble.
  • Le profil géologique et hydrogéologique des zones de captage et de réinjection (et plus particulièrement déterminer l’aquifère ou les aquifères qui seront traversés par les forages) :
    • soit sur base du profil géologique et hydrogéologique obtenu à partir d’un forage réalisé sur le site (ou à proximité immédiate du site);
    • soit, en l’absence de forage, sur base des données cartographiques – carte géologique, géotechnique de Bruxelles, …- , via la base de données DOV (Databank Ondergrond Vlaanderen) ou via consultation des archives du service géologique de Belgique.
  • Le débit maximum capté (m³/h, m³/j), le volume total capté par an ou par saison (m³) et si la totalité de l’eau captée est réinjectée dans la nappe. Si l’eau souterraine est utilisée à d’autres fins que la géothermie, il y a également lieu de préciser les utilisations alternatives et le débit capté (m³/j).
  • La température de réinjection maximale prévue.
  • Le dossier doit comporter une évaluation de :
    • la demande en chaud du bâtiment (kWh/an);
    • (la demande en froid du bâtiment (kWh/an)), si utilisation des puits pour refroidir;
    • la puissance de pointe en chaud du bâtiment (kW);
    • (la puissance de pointe en froid du bâtiment (kW)) → Si utilisation des puits pour refroidir;
    • l’énergie (chaud) soutirée de la nappe (kWh/an);
    • (l’énergie (froid) soutirée de la nappe (kWh/an)), si utilisation des puits pour refroidir;
    • % de la demande en chaud couvert par la géothermie;
    • (% de la demande en froid couvert par la géothermie), si utilisation des puits pour refroidir.
  • Le gain énergétique du système proposé par rapport à l’utilisation d’une chaudière à condensation  (réduction d’énergie primaire (%)) doit également être évalué.
  • Le rapport d’incidence doit évaluer le déséquilibre thermique de l’aquifère  et l’évolution de la performance de la PAC sur 20 ans en tenant compte du déséquilibre thermique.
  • Le rapport d’incidence doit évaluer la possibilité technique de mettre en place le système géothermique sur le site.
  • Le rapport d’incidence doit enfin évaluer l’impact et les nuisances du système géothermique et notamment :
    • l’impact éventuel du projet sur des captages voisins (impact hydraulique);
    • l’impact éventuel du projet sur la stabilité des constructions voisine;
    • le risque d’inondation au niveau des puits de réinjection et des constructions voisine;
    • l’impact thermique éventuel du système sur les eaux souterraines.
  • Ainsi que les mesures particulières de protection du sol et des eaux souterraines prévues (Rehaussement du puits, étanchéité des puits de forages, mesures prévues pour éviter la connexion éventuelle d’aquifères différents, mesures prévues pour éviter une contamination de l’eau pompée et réinjectée dans la nappe (type d’échangeur utilisé, système de détection de fuite, surpression du circuit secondaire (eau pompée) par rapport au circuit primaire (de la PAC), …)).

Découvrez cet exemple de géothermie et géo-cooling dans un centre de formation.

Fluides frigorigènes [Chauffage – PAC]

Fluides frigorigènes [Chauffage - PAC]


L’impact environnemental

Depuis quelques décennies, l’impact des fluides frigorigènes sur l’environnement est devenu un enjeu majeur. En effet, de par la présence de fuites au niveau du circuit frigorifique, la responsabilité de ces fluides dans la destruction de la couche d’ozone et l’augmentation de l’effet de serre n’est plus à démontrer.

Trou d’ozone au pôle sud.

Que ce soit en conception, en rénovation ou même en maintenance, les fuites de fluides sont donc à éviter. Elles dépendent essentiellement de la qualité :

  • du choix et de la mise en œuvre des équipements (soudures et connexions des conduites de distribution par exemple);
  • de l’optimisation du cycle frigorifique;
  • de la maintenance;

En France, en 1997, une étude a montré que le taux de fuites annuelles pouvait atteindre 30 % de la quantité totale en poids (ou en masse) de fluides frigorigènes présent dans les installations frigorifiques des grandes surfaces (Réf.: Zéro fuite – Limitation des émissions de fluides frigorigènes, D. Clodic, Pyc Éditions, 1997).

Depuis lors, les réglementations se sont attaquées à ces problèmes :

  • Suite au protocole de Montréal (1987) les fluides frigorigènes CFC (chlorofluorocarbures, principaux responsables de la destruction de la couche d’ozone) ont été définitivement abandonnés et remplacés progressivement par les HCFC.
  • Les réglementations européennes 2037/2000, 842/2006 et 517/2014 ont notamment imposé :
    •  l’interdiction d’utilisation des HCFC à fort impact sur l’effet de serre (GWP ou global Warming Potential);
    • le remplacement progressif des HFC à haut GWP;
    • le confinement des installations frigorifiques permettant de réduire la quantité de fluide frigorigène;
    • des contrôles réguliers d’étanchéité des installations;
    •  …

Indices d’impact

Pour établir l’impact des fluides frigorigènes sur la couche d’ozone et l’effet de serre, trois indices principaux ont été définis :

  • ODP : Ozone Depletion Potential;
  • GWP : Global Warning Potential;
  • TEWI : Total Equivalent Warning Impact.

ODP (Ozone Depletion Potential)

C’est un indice qui caractérise la participation de la molécule à l’appauvrissement de la couche d’ozone. On calcule la valeur de cet indice par rapport à une molécule de référence, à savoir soit R11 ou R12 qui ont un ODP = 1.

GWP (Global Warning Potential)

C’est un indice qui caractérise la participation de la molécule à l’effet de serre. On calcul la valeur de cet indice par rapport à une molécule de référence, à savoir le CO2, et pour des durées bien déterminées (20, 100, 500 ans). Le CO2 à un GWP = 1.

TEWI (Total Equivalent Warning Impact)

Le TEWI est un concept permettant de valoriser le réchauffement planétaire (global warming) durant la vie opérationnelle d’un système de réfrigération par exemple, utilisant un fluide frigorigène déterminé en tenant compte de l’effet direct dû aux émissions de fluide frigorigène et à l’effet indirect dû à l’énergie requise pour faire fonctionner le système.

À titre indicatif, il est donné par la formule :

TEWI = (GWP x L x n) + (GWP x m[1-C]) + n x E x β

Où :

  • GWP : global warming potential;
  • L : émissions annuelles de fluide en kg;
  • n : durée de vie du système en années;
  • m : charge en fluide frigorigène en kg;
  • C : facteur de récupération / recyclage compris entre 0 et 1;
  • E : consommation annuelle d’énergie en kWh;
  • β : émission de CO2 en kg / kWh.

Voici, pour chaque fluide frigorigène, le Ozone Depletion Potential (potentiel de destruction de la couche d’ozone) et le Global Warming Potential (potentiel de participation au réchauffement climatique) sur 100 ans :

ODP GWP100
R717 Amoniac 0 0
R744 CO2 0 1
R290 Propane 0 20
R32 HFC, fluide pur 0 675
R134a HFC, fluide pur 0 1 430
R407C HFC, mélange 0 1 800
R22 HCFC 0,05 1 810
R410A HFC, mélange 0 2 100
R427A HFC, mélange 0 2 100
R417A HFC, mélange 0 2 300
R422D HFC, mélange 0 2 700
R125 HFC, fluide pur 0 3 500
R404A HFC, mélange 0 3 900
R12 CFC 0,82 10 900

Source : 4ème rapport de l’IPCC (Intergovernmental Panel on Climate Change).


Les fluides frigorigènes fluorés

Fluides frigorigènes fluorés

Les fluides frigorigènes fluorés sont en grande partie responsables de la destruction de la couche d’ozone et contribuent à augmenter l’effet de serre. Les interactions entre les deux phénomènes sont réelles mais d’une grande complexité.

On en distingue plusieurs types :

  • CFC;
  • HCFC;
  • HFC.

CFC (chlorofluorocarbures) (interdits de production depuis janvier 1995)

Ce sont des molécules composées de carbone, de chlore et de fluor. Elles sont stables; ce qui leur permet d’atteindre la stratosphère sans trop de problèmes. À ce stade, en se transformant elles contribuent à la destruction de la couche d’ozone.

R-11 Groupes centrifuges « basse pression ».
R-12 Essentiellement froid domestique et climatisation automobile, mais aussi dans les groupes refroidisseurs d’eau centrifuges.
R-13 Rares utilisations en froid très basse température.
R-14 Rares utilisations en froid très basse température.
R-113 Abandonné avant son interdiction.
R-114 Pompes à chaleur et climatisation de sous-marin.
R-115 Fluide pas utilisé seul, mais dans le R-502, mélange azéotropique très utilisé en froid commercial basse température.

HCFC (hydrochlorofluorocarbures) (utilisation interdite au Ier Janvier 2015)

Ce sont des molécules composées de carbone, de chlore, de fluor et d’hydrogène. Elles sont moins stables que les CFC et détruisent l’ozone dans une moindre mesure. Elles sont appelées substances de transition.

R-22 Fluide frigorigène le plus souvent utilisé, aussi bien en froid industriel qu’en climatisation.
R-123 Remplace le R-11 dans les groupes centrifuges.
R-124 Essentiellement utilisé dans certains mélanges.

HFC (hydrofluorocarbures) (utilisation réduite progressivement jusqu’en 2030)

Ce sont des molécules composées de carbone, de fluor et d’hydrogène. Elles ne contiennent pas de chlore et donc ne participent pas à la destruction de la couche d’ozone. Par contre, les HFC présentent un Global Warming Potential (contribution à l’effet de serre) sur 100 ans élevé.

R-134a

(Solkane)

Fluide frigorigène qui a remplacé le R-12 en froid domestique et en climatisation automobile.

En application « chauffage », il présente l’avantage de faire fonctionner les pompes à chaleur à haute température (généralement jusqu’à 65 °C) et à relativement basse pression. Son utilisation est compatible avec une production d’eau chaude pour radiateurs en lieu et place d’une chaudière.

C’est également un composant majeur de la plupart des mélanges de remplacement.

R-125 N’est jamais utilisé pur en raison de sa pression critique trop faible (66°C). Il entre dans la composition de nombreux mélanges compte tenu de son pouvoir « extincteur ».
R-32,
R-152a
R-143a
Inflammables et donc utilisés uniquement en mélange avec d’autres composants qui « neutralisent » leur inflammabilité.

Mélange de fluides frigorigènes

On peut les classer en fonction du type de composants fluorés qu’ils contiennent.
Ils se distinguent également par le fait que certains mélanges sont :

  • Zéotropes : au cours d’un changement d’état (condensation, évaporation), leur température varie.
  • Azéotropes : ils se comportent comme des corps purs, sans variation de température lors du changement d’état.

Il va de soi que les frigoristes apprécient cette propriété d’azéotropie pour le fonctionnement de la machine frigorifique.

Le R407C (R134a : 52 % + R125 : 25 % + R32 : 23 %)

Le R407C est un fluide non azéotrope (il est composé de plusieurs fluides) afin d’obtenir sa température de changement d’état.

Ce fluide frigorigène présente les particularités suivantes :

  • Il est ininflammable.
  • Lors des changements de phase, la température « glisse » d’environ 5 K car les températures d’évaporation et de condensation des fluides frigorigènes qui le constituent sont différentes. Ceci rend les réglages plus difficiles et impose des échangeurs à contre-courant pour tirer le meilleur parti de ce fluide.
  • En cas de micro-fuite, le composé ayant les molécules les plus volatiles s’échappe préférentiellement. Il en résulte un fluide frigorigène déséquilibré. Il est dès lors nécessaire de vider entièrement l’installation avant de la recharger, le gaz retiré étant recyclé.
  • Les pressions sont moindres avec ce fluide frigorigène.
  • Il est moins performant que le R410A …
Le R410A (R32 : 50 % + R125 : 50 %)

Le R410A présente de meilleures qualités thermodynamiques que le R407C et le R22. D’autre part, l’étanchéité des installations est plus élevée avec le R410A, les pertes de pression sont donc faibles et les vitesses de fonctionnement peuvent être élevées. Les composants sont dès lors plus compacts.

Le R410A est cependant toxique ! De plus, il se comporte comme un réfrigérant mono-moléculaire lorsqu’il change de phase : le passage d’un état à un autre se produit à température quasiment constante (le glissement de température est négligeable). On ne doit donc pas vider complètement l’installation avant de la recharger.Pour terminer, les pressions de fonctionnement sont 60 % plus élevées que dans le cas du R22. Ceci limite donc son utilisation aux températures de condensation moyennes : maximum 45 °C.

Le R404A (R143a : 52 % + R125 : 44 % + R134a : 4 %)

Le R404A présente des caractéristiques communes avec le R410A (il se comporte aussi comme un fluide quasi-azéotropique) mais sa pression de fonctionnement est plus basse. Sa particularité est de ne pas beaucoup s’échauffer pendant la compression. La température des vapeurs surchauffées en sortie de compresseur reste donc modérée, ce qui convient parfaitement à la mise en œuvre des PAC fluide/fluide.


Les fluides à bas « effet de serre »

Ils sont considérés comme moins inquiétants pour l’environnement, car à la fois sans action sur l’ozone stratosphérique et d’un faible impact sur l’effet de serre.

Ils présentent tous des inconvénients, soit au niveau sécurité, soit au niveau thermodynamique.

L’ammoniac (NH3) ou R-717

L’ammoniac présente de nombreux avantages en tant que fluide frigorigène :

  • Impact environnemental nul (ODP et GWP100 nuls);
  • très bon coefficient de transfert de chaleur;
  • efficacité énergétique élevée (au moins aussi bonne que le R22, meilleure dans certaines conditions);
  • le gaz ammoniac est plus léger que l’air;
  • faibles pertes de charge;
  • fuites aisément détectables;
  • faible prix de revient et faibles frais d’entretien des installations;
  • très difficilement inflammable, limite d’explosion élevée et petits champs d’explosion;
  • chimiquement stable;
  • aisément absorbable dans l’eau;
  • pas très sensible à l’humidité dans le circuit;
  • naturel donc biodégradable;
  • grâce à sa haute température critique, il permet de réaliser des températures de condensation très élevées et de concevoir des PAC à haute température.

Les COP obtenus avec ce fluide frigorigène peuvent être équivalents à ceux obtenus avec des HFC.

L’ammoniac est par contre toxique (mais pas cumulativement dans le temps) et irritable. Il peut être explosif dans des cas exceptionnels (les limites inférieure et supérieure d’inflammabilité doivent être très proches l’une de l’autre). Il sera également explosif dans des locaux non aérés où il se crée un mélange d’air, d’azote et d’ammoniac. Les locaux doivent donc absolument être ventilés et le passage de l’air doit également être totalement libre. De plus, le NH3 corrode facilement le cuivre et ses alliages ainsi que le zinc. Les installateurs sont donc obligés d’utiliser de l’acier. Pour terminer, l’ammoniac n’étant pas miscible et soluble dans les huiles minérales, il faut prévoir un séparateur d’huile après le compresseur.

Les installations à l’ammoniac l’utilisent liquide et sa quantité est réduite : la quantité de gaz perdu par fuites est donc faible.

Il est à l’heure actuelle principalement utilisé dans le froid industriel.

Les hydrocarbures (HC) comme R-290 R-600a

Il s’agit essentiellement du propane (R-290), du butane (R-600) et de l’isobutane (R-600a).

Ces fluides organiques présentent de bonnes propriétés thermodynamiques, mais sont dangereux par leur inflammabilité. Le monde du froid s’est toujours méfié de ces fluides, même s’ils sont réapparus récemment dans des réfrigérateurs et des mousses isolantes. Leur utilisation future paraît peu probable en climatisation, vu le coût de la mise en sécurité aussi bien mécanique qu’électrique. En PAC, on l’utilise donc dans des quantités les plus faibles possible (maximum 3 kg pour les applications résidentielles), de préférence à l’extérieur des bâtiments.

Le dioxyde de carbone (CO2) ou R-744

Fluide inorganique, non toxique, non inflammable, mais moins performant au niveau thermodynamique. Son usage implique des pressions élevées et des compresseurs spéciaux.

Il possède cependant de bonnes qualités en application PAC pour le chauffage ou l’eau chaude sanitaire. Il est peu coûteux, et sa récupération et son recyclage sont simples à mettre en œuvre.

Actuellement, les spécialistes s’y intéressent à nouveau de par :

  • son faible impact sur l’environnement (ODP = 0, GWP = 1);
  • son faible volume massique entraînant des installations à faible volume (fuites réduites);

Il a la particularité de posséder une température critique basse à 31 °C  pour une pression de 73,6 bar.

À noter que l’utilisation de ce type de réfrigérant entraîne aussi des contraintes non négligeables telles que la nécessité de travailler :

  • à des pressions élevées (80 voire plus de 100 bar);
  • en transcritique qui demande une maîtrise de la condensation en phase gazeuse (gaz cooler);

L’eau (H2O)

Fluide inorganique, bien entendu sans toxicité. Même si sa grande enthalpie de vaporisation est intéressante, il ne se prête pas à la production de froid sous 0°C. Il est peu adapté au cycle à compression et ses applications sont rares.

Synthèse

Frigorigène Fluide naturel ODP3 GWP (100ans) valeurs IPCC 3 GWP (100ans) valeurs WMO 4 Temp. critique (°C) Pression critique (MPa) Inflammabilité Toxicité Coût relatif Puissance volumétrique
R290

(HC) CH3CH2CH3

Oui 0 20 20 96,7 4,25 Oui Non 0,3 1,4
R717 (Ammoniac NH3) Oui 0 <1 <1 132,3 11,27 Oui Oui 0,2 1,6
R 744 (CO2) Oui 0 1 1 31,1 7,38 Non Non 0,1 8,4
R718 (H2O) Oui 0 0

Caractéristiques environnementales des fluides frigorigènes naturels.


Nomenclature

Les fluides frigorigènes sont soumis à une nomenclature qui se veut internationale. L’ASHRAE, une des plus utilisées, désigne les fluides frigorigènes par la lettre R associée à 2,3 ou 4 chiffre + une lettre (R134a par exemple).

Le tableau ci-dessous montre la méthode de désignation des fluides réfrigérants :

R-WXYZ§

Nomenclature

Appellation courante

R12

R134a

R1270

Appellation pour la détermination de la formule

R-0012

R-0134a

R-1270

CFC

W = Nombre d’insaturation

Carbone = Carbone (C=C)

C=C (double liaison)

0

0

1

X = nombre de Carbone -1

nombre d’atomes de Carbone C = X + 1

1

2

3

Y = nombre de Hydrogène +1

nombre d’atomes d’Hydrogène H = Y – 1

0

2

6

Z = nombre de Fluor

nombre d’atomes de Fluor F = Z

2

4

0

R401A

nombre d’atomes de Chlore Cl*

2

0

0

Formule chimique

C Cl2F2

C2H2F4

CH3 CH=CH2

Si § = A-E => symétrie

Si § = a-b => asymétrie (avec a moins asymétrique que b)

symétrie de la molécule

symétrique

asymétrique

symétrique

Calcul du nombre d’atomes de chlore : Pour les molécules saturées (w = 0), Le nombre d’atomes de chlore s’obtient à partir de la formule suivante : Cl = 2.(C = 1) – H – F.

Pompes à chaleur gaz

Pompes à chaleur gaz


PAC à moteur gaz

Principe

La pompe à chaleur à moteur gaz (GHP : Gas engine Heat Pump) s’apparente fort à la pompe à chaleur électrique traditionnelle. Les seules différences résident au niveau :

  • Du système d’entrainement du compresseur : le moteur électrique accouplé mécaniquement au compresseur est remplacé par un moteur à combustion à gaz.
  • De l’exploitation de la chaleur générée par le système d’entrainement :
    • Le moteur électrique a très peu de pertes (η de l’ordre de = 98 %). En d’autres termes, l’énergie électrique, au rendement près, est transformée totalement en énergie mécanique pour le compresseur.
    • Le moteur à gaz, quant à lui, a un rendement mécanique médiocre (45-50 %). Le solde de l’énergie de combustion du gaz est de la chaleur. L’intérêt de la pompe à chaleur à moteur à gaz réside dans la récupération de la chaleur de combustion.

Schéma de principe : PAC à moteur gaz.

Technologie

PAC à moteur gaz (source : Sanyo).

Moteur gaz

Moteur gaz (source : Aisin Toyota).

La technologie des pompes à chaleur à moteur gaz est développée depuis plusieurs décennies. Le moteur gaz est un moteur thermique à faible taux de compression de type volumétrique (cycle de Miller). Le gaz utilisé est soit le gaz naturel ou le LPG. Certains moteurs utilisent le propane. Comme le montre la figure ci-contre, ce fabricant propose un moteur 4 temps accouplé mécaniquement à des compresseurs au moyen d’une ou plusieurs courroies. La particularité de ce moteur est la récupération de la chaleur de combustion du gaz résiduelle au niveau du circuit de refroidissement. Un échangeur, placé au niveau du condenseur du circuit frigorifique permet le refroidissement du moteur et, par conséquent, la récupération de chaleur de combustion du moteur en supplément de celle échangée par le circuit frigorifique.

Circuit frigorifique

Les fabricants de PAC à moteur gaz proposent plusieurs configurations de circuit frigorifique. On retrouve généralement :

  • Le groupe VRV réversible à détente directe à 2 tubes permettant de travailler en mode « change-over » ou 3 tubes en mode « récupérateur d’énergie ».
  • la PAC à condenseur à eau. En général, c’est la même machine de base que l’unité externe des groupes VRV. Un condenseur à eau est directement branché sur le circuit frigorifique.

 (Source : Aisin Toyota).

Les compresseurs sont généralement des « scrolls ».  L’avantage de la pompe à chaleur à moteur gaz réside dans le fait que les compresseurs sont entrainés par un moteur à vitesse variable et, par conséquent, peuvent moduler le débit de fluide frigorigène (R410A par exemple).


PAC gaz à absorption

Principe

Tout part de la succession, dans un cycle fermé :

  • De l’absorption d’ammoniac (NH3) gazeux en présence d’eau pour donner une solution d’ammoniaque concentré (NH4OH). Elle s’accompagne de la libération d’une grande quantité de chaleur à température élevée.
  • Et de la désorption de cette même solution d’ammoniaque (NH4OH) qui permet la libération d’ammoniac (NH3) gazeux. La désorption demande de la chaleur.

À ce stade, rien de différencie ce système thermodynamique d’une chaudière gaz à eau chaude. Au lieu de chauffer de l’eau pure en circuit fermé, on chauffe une solution d’ammoniaque (NH4OH).

L’ingéniosité du principe vient de l’utilisation de l’ammoniac (NH3) dans un cycle frigorifique secondaire qui permettra de « pomper » la chaleur d’une source froide (au niveau de l’évaporateur) pour la restituer au niveau de la source chaude (condenseur) : cette chaleur est gratuite !

En combinant la libération de chaleur lors de l’absorption et la chaleur de condensation, le bilan énergétique est nettement positif !

Technologie

Schéma de principe (source Théma).

Générateur (ou déconcentrateur)

Au niveau du générateur, le brûleur chauffe la solution d’ammoniaque (NH4OH) de manière à libérer de l’ammoniac gazeux (NH3) à haute température. En partie haute du générateur, l’ammoniac est injecté dans le circuit principal de la PAC vers le condenseur. Il va de soi que la solution d’ammoniaque se déconcentre. En continuant de chauffer la solution sans rien changer, la production d’ammoniac gazeux risque de s’arrêter d’elle-même. Pour cette raison, il est nécessaire de régénérer (ou concentrer) la solution d’ammoniaque pauvre. C’est l’absorbeur qui s’en charge !

Absorbeur (ou concentrateur)

Dans l’absorbeur, la solution pauvre issue du générateur est projetée en fines gouttelettes sur l’ammoniac gazeux provenant de l’évaporateur de la machine thermodynamique. Il s’en suit un enrichissement de la solution d’ammoniaque avec, en prime, un dégagement de chaleur important (réaction exothermique). La solution d’ammoniaque riche régénérée peut être renvoyée au niveau du générateur. Le cycle de la PAC gaz est fermé !

Sans rien changé, l’efficacité énergétique de la PAC gaz serait vraiment médiocre ! L’ingéniosité du système réside dans la récupération au condenseur de la chaleur d’absorption. Concrètement, la solution riche d’ammoniaque passera par le condenseur de manière à céder sa chaleur à la source chaude.

Condenseur

Le condenseur de la PAC gaz à absorption est de conception un peu particulière. En réalité, c’est un double condenseur :

  • Un premier échangeur branché sur le circuit thermodynamique principal permet à l’ammoniac (NH3) gazeux de condenser et donc de céder sa chaleur à la source chaude (système de chauffage).
  • Un second échangeur raccordé au circuit secondaire permet à la phase liquide/gaz d’ammoniaque de céder, elle aussi, sa chaleur d’absorption.

Évaporateur

L’évaporateur de la PAC gaz à absorption est un évaporateur classique comme celui utilisé dans les PAC électriques.

Échangeurs secondaires

La chaleur d’absorption étant libérée à haute température, elle ne peut être, qu’en partie, transmise à la source chaude en demande de températures plus modestes. Pour cette raison, d’autres échangeurs placés en aval du condenseur permettront de successivement récupérer la chaleur d’absorption (intérêt de ces échangeurs).

Disponibilité sur le marché

Environnement

Parler du CO2 mais aussi de l’impact d’une fuite de NH3 dans l’air.


PAC gaz à adsorption

Principe

Le principe de fonctionnement de la pompe à chaleur à adsorption s’appuie sur les caractéristiques de la zéolithe, une céramique microporeuse très stable et non polluante. Cette zéolithe est capable de dégager de la chaleur lorsqu’elle adsorbe de l’eau (réaction exothermique lors du passage de la forme déshydratée à la forme hydratée). Lorsqu’elle est saturée, un brûleur à gaz évacue l’eau (désorption). L’emploi de la zéolithe permet de favoriser l’utilisation de l’énergie solaire même à basse température pour le chauffage, sachant que la réaction exothermique d’adsorption peut atteindre 85 °C avec de l’eau à 4 °C.

  • Phase d’adsorption : dans la partie basse de la pompe à chaleur, l’eau présente dans un réservoir sous vide est chauffée. Cette eau, même à basse température, se transforme  en vapeur et migre vers le haut du réservoir. La microporosité de la zéolithe permet de piéger une grande quantité de vapeur (adsorption). La chaleur d’adsorption est utilisée  au niveau de la source chaude (comme un plancher chauffant par exemple) ;
  • Phase de désorption : lorsque la zéolithe saturée d’eau, le minéral est chauffé. L’eau retenue dans la zéolithe est alors libérée sous forme de vapeur (désorption). Cette vapeur coule vers la partie inférieure de la pompe à chaleur, se condense à nouveau et libère de la chaleur. Une récupération de cette chaleur est mise en place. Le système peut redémarrer dans un nouveau cycle d’adsorption.

L’adsorption et la désorption sont des réactions physiques qui n’altèrent pas la structure de la zéolithe. L’alternance adsorption/désorption est alternative, mais peut fonctionner indéfiniment.

     

Phase de désorption puis d’adsorption (Source : www.gaz-naturel.ch).

Technologie

Le système est  conçu sur la base d’une chaudière à condensation, associée à un module à zéolithe sous vide comprenant des billes de céramique microporeuse, de l’eau et les composants hydrauliques.

A l’heure actuelle, certains constructeurs ont un programme de développe des PAC gaz à adsorption pour le résidentiel (maximum 10 kW). L’adsorbant utilisé est la zéolite (Une zéolithe, ou zéolite est un minéral microporeux appartenant au groupe des silicates).

Les sources froides peuvent, comme pour les pompes à chaleur classiques :

  • L’air ;
  • L’eau ;
  • La géothermie …

Comme le montrent les figures ci-dessus, la source froide de la pompe à chaleur à adsorption peut être aussi des panneaux solaires thermiques. Les efficacités saisonnières sont à préciser par le constructeur et à vérifier par des études neutres et en situation réelle. Sur papier, ce système paraît très intéressant sachant qu’on pourrait attendre des …


Point de comparaison des PAC’s

Principe et technologie

Bien que la machine gaz à absorption/adsorption semble assez différente de la machine frigorifique traditionnelle, le principe de base de fonctionnement reste le même :

  • circulation d’un fluide réfrigérant ;
  • évaporation du fluide avec production de froid ;
  • compression du fluide demandant un apport d’énergie ;
  • condensation du fluide avec production de chaleur.

La différence réside dans le moyen de comprimer le fluide :

  • mécanique dans le cas d’une machine électrique ou à moteur à gaz ;
  • thermochimique/thermophysique dans le cas de la machine à absorption/adsorption.

Le type d’énergie nécessaire à cette compression :

  • électrique dans le cas d’une PAC électrique ;
  • calorifique dans le cas d’une PAC gaz à absorption.

PAC électrique

Principe de la PAC électrique.

La pompe à chaleur électrique utilise le travail de compression du compresseur pour faire passer la chaleur gratuite disponible à basse température au niveau de l’évaporateur (source froide : l’air extérieur, l’eau d’une rivière ou d’une nappe phréatique, …) à une température plus élevée au niveau du condenseur (source chaude : l’air intérieur, l’eau chaude d’un chauffage à basse température comme le chauffage au sol, l’ECS, …). Le transfert de la chaleur est effectué grâce un fluide frigorigène via le compresseur. A la chaleur gratuite tirée de la source de froid est ajouté le travail de compression, cette énergie étant fournie par le moteur électrique du compresseur.

PAC à moteur gaz

Principe de la PAC à moteur gaz.

Toute chose restant égale, seul le moteur électrique accouplé mécaniquement au compresseur est remplacé par un moteur à combustion gaz.

PAC gaz à absorption

Principe de la PAC gaz à absorption.

Sur le même principe que la pompe à chaleur électrique, le transfert de la chaleur gratuite de la source froide à basse température vers la source chaude à température plus élevée, est assuré  grâce à un fluide frigorigène via, non pas un compresseur, mais un générateur de chaleur au gaz. C’est à ce stade que l’analogie s’arrête et que les deux systèmes diffèrent complètement.

Efficacité énergétique

Principe de comparaison

Une pompe à chaleur est énergétiquement efficace si elle demande peu d’énergie pour fournir une puissance calorifique donnée. Pour pouvoir assurer un point de comparaison énergétique entre les différents types de pompe, il est nécessaire, par rapport à leur production de chaleur, de considérer les consommations « primaires » d’énergie. C’est le cas surtout pour l’électricité ! En effet, l’électricité consommée au niveau de la pompe à chaleur est une énergie finale qui ne tient pas compte :

  • du rendement moyen des centrales électriques en Belgique ;
  • des pertes en lignes du réseau électrique.

L’énergie primaire à considérer est :

  • Le gaz disponible au niveau de la conduite d’alimentation du bâtiment. Les kWhPCI sont utilisés pour tenir compte d’une éventuelle phase de condensation (ηPCI > 100 %).
  • L’électricité disponible au niveau du câble d’alimentation du bâtiment multipliée 2.5. Ce coefficient a été adopté par la ouverture d'une nouvelle fenêtre ! CWaPE (Commission Wallonne Pour L’Énergie) se base sur un rendement moyen de 40 % pour les centrales électriques en Europe. En d’autres termes, un 1 kWh consommé au niveau de la pompe à chaleur, 2.5 kWh ont été consommés au niveau de la centrale électrique. Dans le cas de la PAC électrique, la performance se calcule par le rapport :

    Technologie

COP = Énergie utile (chaleur) / Énergie consommée (électricité)

Cependant, pour comparer des pommes entre elles par rapport à une PAC gaz à absorption par exemple, l’énergie primaire consommée pour produire de l’électricité nécessaire à alimenter le moteur électrique, doit être considérée. On parle alors de rapport d’énergie primaire REP défini comme suit :

REP (PER) = Énergie utile / (Énergie consommée / η centrale électrique)

La valeur intéressante pour les gestionnaires de bâtiments est la valeur du COPA ou ACOP, … (vive l’Europe !) qui exprime l’efficacité  annuelle mesurée en tenant compte de toutes les consommations de la machine par rapport à l’énergie qu’elle fournit. La performance annuelle est naturellement liée à l’efficacité instantanée au cours du temps qui, elle, peut varier en fonction de différents paramètres :

  • de la température de la source froide ;
  • de la température de la source chaude ;
  • du taux de charge de la pompe à chaleur.

PAC électrique

Dans le cas de la pompe à chaleur électrique dont le COP = 3, 1 kWh d’énergie électrique finale consommé, fournit à la distribution d’un système de chauffage 3 kWh. C’est bon pour la poche du consommateur (performance finale de 300 %) ! Mais en termes d’énergie primaire, seulement 3/2.5 soit 1.2 kWh est restitué à la source chaude (performance primaire de 120 %) ; ce qui reste meilleur que la performance d’une chaudière à condensation très efficace quand même (ηPCI = 108 %).

Bilan énergétique  (source : Thema).

La performance de la PAC électrique est influencée par les paramètres repris dans le tableau suivant :

Paramètres d’influence Niveau d’influence Remarque
Température de la source froide Forte Réduction des consommations de + 3 % par augmentation de 1 °C
Température de la source chaude Forte Réduction des consommations de + 3 % réduction de 1 °C
Taux de charge Moyenne En général, une PAC électrique travaillant à charge partielle réduit les consommations

Comme le montre le tableau précédent, la PAC électrique est très sensible aux types de source chaude et de source froide. On privilégiera le fonctionnement de la PAC à charge partielle par la réduction de la vitesse du compresseur (technique INVERTER).

PAC à moteur gaz

Bilan énergétique (source Théma).

Bilan énergétique et performance (Source : Aisin Toyota).

La PAC gaz à absorption a une efficacité énergétique définie comme suit :

COP = Énergie utile (chaleur) / Énergie consommée (consommation de gaz)

Comme le montre le graphique précédent, le constructeur annonce qu’en pointe (taux de charge faible) pour 1 kWh d’énergie primaire fourni (gaz), une pompe à chaleur à moteur à gaz restitue donc 1,43 kWh maximum, ce qui en fait un système de chauffage hautement intéressant par rapport à l’environnement.
La performance de la PAC à moteur gaz est influencée par les paramètres repris dans le tableau suivant :

Paramètres d’influence Niveau d’influence Remarque
Température de la source froide Faible
Température de la source chaude Moyenne
Taux de charge Forte 30 à 40 % d’influence

La modulation de puissance est très importante pour augmenter la performance de la PAC à moteur gaz. Sur un moteur à combustion, comme celui qui équipe ce type de PAC, la modulation de puissance ne pose aucun problème. Elle est donc principalement influencée par le dimensionnement en fonction des besoins de chaleur.

PAC gaz à absorption

Bilan énergétique  (source : Thema).

Certains constructeurs annoncent des performances de l’ordre de 150 %.

Tout comme la PAC à moteur gaz, la performance de la PAC gaz à absorption est influencée par les paramètres repris dans le tableau suivant :

Paramètres d’influence Niveau d’influence Remarque
Température de la source froide Faible
Température de la source chaude Moyenne
Taux de charge Forte

Comparatif des PAC gaz

Une étude très intéressante de l’IGU (International Gas Union : « Gas Heat Pumps, the renewable heating system for the future ? ») a montré qu’en moyenne, la performance des PAC gaz, toutes parques confondues, était plutôt aux alentours des 116 % avec une valeur à 120 % en cas de configuration de la PAC gaz avec des panneaux solaires thermiques.

Performance moyenne.

PAC électrique, PAC gaz même combat ?

Tout dépend des conditions de fonctionnement (taux de charge, températures des sources chaudes et froides, …) et des consommations des auxiliaires du niveau de dégivrage). Dans la littérature, on s’accorde à dire, qu’effectivement, pour les PAC électriques et gaz c’est le même combat !

Intérêt de la géothermie ?

Par contre, comme le montre la figure ci-dessus, les PAC gaz peuvent fortement se démarquer des PAC électriques au niveau du dimensionnement de la source froide. On voit tout de suite que l’évaporateur peut être de dimension plus faible :

  • Si la source froide est l’air externe, la taille de l’évaporateur et des ventilateurs sera plus faible d’où réduction de l’investissement pour la partie évaporateur. Il s’ensuit que les consommations des auxiliaires seront aussi réduites.
  • Si la source froide est l’eau, et plus spécifiquement, la géothermie, le dimensionnement du système de géothermie est presque divisé par 3.

Surtout dans le domaine de la conception et de l’exploitation de la géothermie qui, en règle générale, passe à la trappe pour une question d’investissement (grande quantité de sondes géothermiques, profondeur importante, …), l’association d’une PAC gaz avec une géothermie est très intéressante.

Organes de détente


Principe de fonctionnement

La différence de pression entre le condenseur et l’évaporateur nécessite d’insérer un dispositif « abaisseur de pression » dans le circuit d’une pompe à chaleur. C’est le rôle du détendeur, qui va donc abaisser la pression du fluide frigorigène sortant du condenseur à l’aide d’un dispositif d’étranglement. Le fluide frigorigène se vaporise partiellement dans le détendeur pour abaisser sa température. Le détendeur alimente ensuite l’évaporateur en fluide frigorigène en modulant son débit.

La détente se produit sans échange de chaleur ou de travail avec le milieu extérieur.

Un mauvais contrôle de la quantité de fluide frigorigène admise dans l’évaporateur, entraîne les conséquences suivantes :

  • Trop peu de fluide frigorigène : il est immédiatement évaporé et il continue à se réchauffer. C’est l’effet de surchauffe. L’efficacité de l’évaporateur diminue.
  • Trop de fluide injecté : l’excès de fluide n’est pas évaporé par manque de chaleur disponible. Une partie du fluide reste liquide et est aspirée par le compresseur. Celui-ci peut alors être sérieusement endommagé (coup de liquide).

Le détendeur thermostatique

C’est le dispositif le plus fréquemment utilisé dans les pompes à chaleur. Le détendeur thermostatique, qui fonctionne de façon automatique, est un corps de vanne qui règle le débit du fluide réfrigérant de façon à maintenir constante la surchauffe des gaz qui viennent de l’évaporateur.

Schéma détendeur thermostatique.

Le corps de vanne est muni d’un orifice fixe et d’un pointeau mobile. La position du pointeau est contrôlée à partir d’un ensemble composé d’une membrane (4), d’un train thermostatique dont la pression interne est fonction de la température du bulbe (= la sonde) (3) et d’un ressort, dont la force d’appui sur la membrane est contrôlée par une vis de réglage (5). Si la charge thermique de l’évaporateur augmente, la sonde détectera une montée de température, agira sur la membrane et le pointeau s’ouvrira afin d’augmenter le débit de réfrigérant (1) jusqu’à obtention de la même surchauffe des vapeurs. D’un côté du soufflet règne la pression d’évaporation (amont ou aval de l’évaporateur suivant l’existence ou non d’une égalisation de pression) ; de l’autre côté du soufflet règne la pression de saturation correspondant à la température du bulbe.

Il existe deux classes de détendeurs thermostatiques : les détendeurs thermostatiques à égalisation interne de pression et les détendeurs thermostatiques à égalisation externe de pression.

  1. Dans le premier cas, les forces agissant sur le pointeau de détente sont d’une part la pression du train thermostatique et, d’autre part, la pression exercée par le ressort de réglage et la pression d’évaporation à l’entrée de l’évaporateur (prise à l’intérieur du détendeur). Ce type de détendeur est bien adapté lorsque la perte de charge entre l’aval du détendeur et la sortie de l’évaporateur est faible, ce qui est le cas la plupart du temps, des pompes à chaleur de faible puissance dont l’évaporateur est équipé d’un ou de deux circuits sans distributeur de liquide.
  2. Dans le second cas, les forces agissant sur le pointeau de détente sont d’une part la pression du train thermostatique et, d’autre part, la pression exercée par le ressort de réglage et la pression d’évaporation à la sortie de l’évaporateur. Cette pression aval est transmise dans un compartiment du détendeur par l’intermédiaire d’une tuyauterie d’égalisation de pression dont le raccordement est effectué à la sortie de l’évaporateur, et de préférence après le bulbe pour éviter d’influencer celui-ci par la turbulence locale occasionnée par le piquage. La perte de charge occasionnée par le distributeur de liquide et l’évaporateur n’intervient pas sur l’ouverture ou la fermeture du pointeau. Seule la surchauffe à la sortie de l’évaporateur agit sur le pointeau.

L’utilisation de ce type de détendeur présente l’inconvénient de ne pas avoir un temps de réponse instantané. Les avantages sont :

  • Une grande fiabilité.
  • Les détendeurs thermostatiques permettent d’adapter au mieux l’alimentation de l’évaporateur en fluide frigorigène, quelle que soit la charge thermique de celui-ci.
  • Certains détendeurs thermostatiques à égalisation de pression peuvent fonctionner dans les deux sens, évitant un second détendeur et les clapets dans les pompes à chaleur réversibles.

Le capillaire de détente

Ce type d’organe de détente, qui est non-automatique, est utilisé dans les petits matériels de série. On se contente, comme dispositif de réglage, d’un étranglement dans la conduite du fluide frigorigène avant l’évaporateur. L’étranglement est assuré par un tube capillaire de très faible diamètre dans lequel la détente du fluide est obtenue par la perte de charge dans le tube. La longueur et le diamètre du tube capillaire sont déterminés par le constructeur.

Le capillaire de détente n’interrompt jamais la communication entre le condenseur et l’évaporateur. Pendant l’arrêt du compresseur, rien ne s’oppose donc à ce que le fluide frigorigène s’écoule du condenseur (où il est sous haute pression) vers l’évaporateur.

Le capillaire ne permet aucun réglage de la détente, ce qui peut être un inconvénient. D’un autre côté, il ne permet aucun déréglage de la détente dans le temps, ce qui est un avantage. Le circuit doit être soigneusement déshydraté sinon le capillaire se bouche. De plus, il faut éviter l’utilisation d’une bouteille accumulatrice de liquide afin de ne pas remplir exagérément l’évaporateur durant l’arrêt du compresseur. La charge en frigorigène du circuit doit donc être relativement limitée, ce qui nécessite une recherche particulièrement soignée des fuites. En ce qui concerne les avantages de ce système, on remarque que l’équilibre de pression qui s’établit entre la haute pression et la basse pression pendant l’arrêt du compresseur permet un démarrage plus facile de celui-ci. De plus, le temps de réponse de la détente est instantané.


Le détendeur thermostatique.

Deux techniques existent :

  • Le détendeur avec moteur à impulsion : le temps d’ouverture détermine la surchauffe.
  • Le détendeur avec moteur pas à pas : le degré d’ouverture permet une alimentation correcte de l’évaporateur.

Schéma détendeur thermostatique

Le détendeur électronique fonctionne sur le même principe que le détendeur thermostatique mais il permet un réglage plus précis de l’injection à l’évaporateur. Une surchauffe plus faible sera nécessaire et le rendement de la pompe à chaleur reste ainsi optimal à tous les régimes. La température d’évaporation remontera de 2 à 3 K, ce qui diminuera la consommation du compresseur.

Il se compose d’une sonde de température (placée à la sortie de l’évaporateur contrôlant la surchauffe des gaz), d’une sonde de pression d’évaporation et d’une carte électronique dont le rôle est d’analyser ces valeurs et d’agir en conséquence sur une vanne de détente motorisée (moteur pas à pas à 2 500 positions) ou séquentielle.

Le système s’adapte à tous les fluides frigorigènes et, pour passer d’un fluide à l’autre, il suffit de modifier le paramétrage de la corrélation pression/température du fluide en ébullition. La vanne de détente peut se fermer en période d’arrêt et jouer ainsi le rôle d’une vanne magnétique de départ liquide.

Les systèmes avec vanne de détente séquentielle posent quelquefois des problèmes de tenue mécanique des évaporateurs à faible inertie (coup de bélier).


L’orifice calibré

Cet organe de détente est composé d’un orifice calibré réalisé dans un corps mobile coulissant. Son fonctionnement comme détendeur s’apparente à un tube capillaire associé à un clapet de retenue autorisant le passage du liquide en sens inverse. Lorsque le fluide frigorigène circule dans un sens, il joue le rôle d’organe de détente grâce à l’orifice calibré. Dans l’autre sens, le corps mobile coulisse, dévoilant des rainures permettant de laisser passer le fluide liquide sans détente.

Les autres détendeurs

D’autres détendeurs de PAC existent ; ils sont brièvement expliqués sur cette page-ci.

Évaporateurs [PAC]

Évaporateurs [PAC]


Les évaporateurs à air

Photo évaporateurs à air.

Ce type d’évaporateurs s’utilise lorsque la source froide est… l’air.

Le fluide frigorigène circule dans un tube qui traverse de nombreuses ailettes d’aluminium (en général rectangulaires, mais aussi parfois circulaires ou hélicoïdales). Les tubes sont disposés en série, formant une nappe, et les différentes nappes sont associées en parallèle. On peut avoir deux configurations des tubes en ce qui concerne l’alimentation en fluide frigorigène :

  • Soit, les nappes sont assemblées en parallèle à l’entrée et à la sortie de l’évaporateur. Le collecteur d’entrée est alors alimenté par le détendeur.
  • Soit, les nappes sont assemblées en parallèle seulement à la sortie. Le détendeur est alors un capillaire d’alimentation et il y a un distributeur de liquide à l’entrée de l’évaporateur. Ce dernier répartit le fluide en quantités égales dans chacun des circuits. La sortie de chaque circuit aboutit au collecteur d’aspiration.

Dans ces évaporateurs, il peut y avoir de la ventilation (c’est-à-dire de la convection forcée) ou de la convection naturelle. Les ailettes alimentées par ventilation seront très rapprochées les unes des autres, les ailettes alimentées par convection naturelle seront très espacées.

En pratique, l’on procède souvent à une filtration de l’air avant l’évaporateur. Le ventilateur peut être de type centrifuge ou hélicoïdal.

Condensation et givre

Lorsque la température des parois extérieures de l’évaporateur devient inférieure à la température de rosée de l’air, il se produit le phénomène de condensation ou de givrage sur l’évaporateur (condensation si la température de paroi est supérieure à 0 °C et givrage si non). Une chaleur latente, résultant de l’apparition d’eau ou de glace, s’ajoute à la chaleur sensible captée sur l’air. Ceci influence directement les échanges thermiques.

Au fur et à mesure qu’il se forme, le givre a pour effet de produire une isolation thermique de l’évaporateur conduisant à une chute du coefficient d’échange thermique. Il contribue également à la diminution du passage d’air, conduisant à une augmentation de la perte de charge côté air et par suite à une diminution du débit d’air. On cherchera donc à éliminer le givre.

La condensation a pour effet de mouiller l’évaporateur. Il convient d’éliminer l’eau condensée et d’éviter son entraînement dans les circuits d’air. On choisira donc des vitesses de passage d’air inférieures à 3 m/s.
Dans certains cas de refroidissement, il ne se produit ni givrage ni condensation, et ce, même lorsque la température de paroi est négative.


Les évaporateurs à eau ou à eau glycolée

Les différents évaporateurs à eau qui existent sont listés dans cette section. Pour comprendre les notions d’évaporateurs à surchauffe ou noyés, cliquer ici !.

Évaporateurs coaxiaux en spirale (ou évaporateurs double tube) = Évaporateurs à surchauffe

Dans ces évaporateurs, deux tubes de cuivre coaxiaux sont enroulés en spirale. Le fluide frigorigène qui se vaporise circule dans le plus petit tube (le tube intérieur) et le fluide caloporteur (eau glycolée) circule à contre-courant dans l’espace annulaire entre les deux tubes.

Ces évaporateurs présentent des difficultés d’entretien et il faut utiliser de l’eau propre non entartrante.

Évaporateurs à plaques brasées = Évaporateurs à surchauffe

Photo évaporateurs à plaques brasées.

Ils se composent d’une série de plaques d’acier inoxydable assemblées par brasure (= avec un métal d’apport). L’eau glycolée et le fluide frigorigène en évaporation circulent à contre-courant de chaque côté de ces plaques.

La conception de ces échangeurs favorise des coefficients d’échange thermique très élevés avec une différence de température très faible entre les deux fluides. Ceci en fait des appareils très performants et compacts, en plus d’être robustes. Un autre avantage est les pertes de charge sur l’eau qui sont en général assez faibles. Ces évaporateurs sont aussi suffisamment étanches pour permettre l’utilisation de fluides frigorigènes.

La petite taille des canaux facilite cependant l’encrassement. Les circuits doivent donc être très propres ou alors on peut prévoir des filtres à l’entrée de l’eau glycolée dans l’évaporateur. Un autre inconvénient est la non-résistance au gel de ces échangeurs. De l’antigel doit donc être présent en quantité suffisante et de façon homogène dans les circuits de capteurs enterrés.

Évaporateurs multitubulaires = Évaporateurs à surchauffe ou noyés

Photo évaporateurs multitubulaires.

  • Les évaporateurs multitubulaires noyés sont constitués d’un faisceau de tubes métallique soudé sur des plaques à l’intérieur d’un corps cylindrique en acier. L’eau de la source froide circule dans les tubes intérieurs et le fluide frigorigène s’évapore dans le corps principal à l’extérieur des tubes. Il y a un séparateur de gouttelettes dans l’évaporateur pour éviter les entraînements de liquide vers le compresseur. Malgré cela, il faut en plus prévoir une bouteille anti-coups de liquide pour protéger le compresseur. Ces évaporateurs présentent un autre problème : celui de piéger l’huile de lubrification (si elle est présente dans l’installation).
  • Les évaporateurs multitubulaires à surchauffe sont aussi appelés évaporateurs à épingles (à cause de la forme du faisceau tubulaire) ou évaporateur Dry-Ex. Ici le fluide frigorigène circule dans les tubes, à l’inverse de l’évaporateur multitubulaire noyé. Les tubes sont en général munis d’ailettes intérieures afin d’augmenter la surface d’échange. L’évaporateur est alimenté par un détendeur thermostatique, qui permet d’adapter le débit de fluide frigorigène entrant dans l’évaporateur et donc de contrôler la surchauffe des vapeurs. Cet évaporateur ne montre pas de problème de piégeage d’huile, car elle se dirige vers le carter du compresseur si elle est entraînée par le fluide frigorigène.

Évaporateurs à serpentin = Évaporateurs noyés

Dans ce cas, les tubes (le plus souvent en cuivre) de l’évaporateur sont noyés dans un réservoir d’eau (de nappe phréatique, d’étang, etc.). Ils sont enroulés en spirale ou suivant la forme du bac. L’eau pénètre dans le réservoir et peut déborder. Cette technique permet d’éviter les problèmes de gel car la glace se forme autour des tubes sans dégrader l’évaporateur.

Ce type d’évaporateur, facilement nettoyable, autorise l’usage d’eau de mauvaise qualité sur le plan de la propreté (sable, débris de feuilles,…). Par contre, les coefficients d’échange thermique sont assez faibles, ce qui nécessite de grandes longueurs de tubes et conduit à un encombrement important.

Condenseurs [Chauffage, PAC]

Condenseurs [Chauffage, PAC]


Le principe de fonctionnement du condenseur

Le condensation du fluide frigorigène transmet la chaleur à l’environnement à chauffer.

Trois phases se succèdent le long d’un échangeur de chaleur à contre-courant (le fluide frigorigène et le fluide à chauffer vont dans des sens opposés) : la désurchauffe, la condensation proprement dite et le sous-refroidissement.

  1. Pendant la désurchauffe, le fluide frigorigène à l’état de vapeur qui vient du compresseur se refroidit à pression constante en cédant de sa chaleur sensible au fluide extérieur.
  2. La condensation commence quand la première goutte de liquide frigorigène apparaît, et se produit à pression et température constantes. Lors de cette phase, les vapeurs qui se condensent cèdent leur chaleur latente de condensation au fluide extérieur qui se réchauffe.
  3. Lorsque toute la vapeur a été condensée, le liquide frigorigène va se sous-refroidir à pression constante en cédant de nouveau de la chaleur sensible au fluide extérieur.

Cependant, en pratique, les trois phases coexistent dans une même section de l’échangeur de chaleur. Le fluide frigorigène circule dans un tube en contact avec l’eau ou l’air. La partie du fluide frigorigène qui touche le tube est liquide et se sous-refroidit. Le fluide qui est en contact avec ce liquide condense à son tour. Le gaz frigorigène qui est au centre du tube désurchauffe simplement.

En résumé, la quantité de chaleur évacuée au condenseur comprend la chaleur sensible de la vapeur surchauffée, la chaleur latente de condensation du fluide frigorigène et la chaleur sensible de sous-refroidissement du liquide frigorigène.


Les condenseurs à air

On utilise ce type de condenseur lorsque le fluide extérieur à chauffer est de l’air. On se trouve alors dans le cas d’une pompe à chaleur air/air ou eau/air.

Le condenseur à air le plus couramment utilisé comprend des tubes à ailettes, un ventilateur centrifuge de brassage d’air et un filtre. Les tubes sont reliés parallèlement les uns aux autres entre deux collecteurs. Un de ces collecteurs alimente les tubes en vapeur frigorigène surchauffée, l’autre évacue le liquide.


Les condenseurs à eau

Dans ce cas la source chaude est de l’eau. On distingue quatre types de condenseurs à eau :

  • Les condenseurs à serpentins : Le serpentin en cuivre forme une spirale à l’intérieur d’une enveloppe d’acier soudé. L’eau de la source chaude circule dans le serpentin et le fluide frigorigène dans l’enveloppe d’acier. Le fluide frigorigène se condense dans l’enveloppe au contact de la surface du serpentin.
  • Les condenseurs à tubes coaxiaux : Les tubes concentriques en cuivre sont enroulés ensemble en forme de spirale. L’eau circule dans le tube intérieur et le fluide frigorigène se condense à l’extérieur.
  • Les condenseurs à plaques brasées : Cet échangeur se compose de plaques en acier inoxydable assemblées par brasage. Le fluide frigorigène en condensation circule dans une plaque sur deux, et l’eau à réchauffer dans les autres plaques.

  • Les condenseurs multitubulaires.

Un grand nombre de tubes, dans lequel circule l’eau à chauffer, sont placés à l’intérieur d’un anneau. La condensation du fluide frigorigène s’effectue sur la surface extérieure des tubes, à l’intérieur de l’enveloppe. À chaque extrémité de l’anneau se trouvent des boîtes à eau qui distribuent l’eau en série et parallèle dans les divers tubes. Les tubes sont souvent équipés de petites ailettes afin d’augmenter le coefficient d’échange thermique.

Compresseurs

Auteur : Manouane Dubois, relecture Laurent Georges

Mise en page – Sylvie (08.2010)

  • Titres page, navigation, titres normal
  • Antidote
  • Test liens
  • Mise en page globale : listes, tableaux, typographie, images, …

Les compresseurs volumétriques à pistons

Dans les compresseurs volumétriques à pistons, les vapeurs de fluide frigorigène sont comprimées à l’aide du mouvement alternatif de pistons dans des cylindres. Ces derniers sont pourvus de clapets d’aspiration et de refoulement. En plus de ces éléments, le compresseur se compose :

  • d’un excentrique, qui sert à transformer un mouvement circulaire en un mouvement rectiligne alternatif,
  • d’un carter, qui contient le moteur d’entraînement électrique et qui forme la réserve d’huile de graissage (car le compresseur a besoin d’être constamment lubrifié),
  • d’une pompe à huile, qui assure la distribution de l’huile aux paliers et bielles.

Quelques remarques sur les compresseurs à pistons :

  • Les gaz aspirés pénètrent dans le compresseur généralement à la partie haute du moteur électrique, évitant ainsi l’introduction de liquide frigorigène dans les cylindres en cas de fonctionnement anormal de l’installation. Le refoulement est effectué au travers d’une tuyauterie souple brasée à l’enveloppe.
  • Le compresseur à piston est très sensible à l’arrivée de fluide liquide : si quelques gouttes de liquide pénètrent au niveau des soupapes, elles en provoquent une usure lente. Si du fluide liquide pénètre en grande quantité, la destruction des clapets est immédiate. Il faut donc des protections anti-coups de liquide (ressort puissant sur le chapeau de cylindre, capable de se soulever en cas d’arrivée de liquide). Le carter joue aussi en quelque sorte un rôle analogue à celui d’une bouteille anti-coup de liquide, mais sa capacité est très limitée en volume et le rôle protecteur ne sera réel que pour de faibles admissions de liquide à l’aspiration.
  • Le fluide frigorigène et bien sûr l’huile de lubrification doivent être compatibles avec les matériaux qui composent le moteur.
  • La vitesse de rotation du moteur d’entraînement est de 3000 tours/min la plupart du temps, pour des raisons d’encombrement et de coût de fabrication. Certaines rares séries sont cependant encore réalisées avec des moteurs dont la vitesse de rotation est de 1500 tours/min.
  • Le moteur électrique est alimenté par des fils reliés à des bornes étanches.

Les compresseurs volumétriques à pistons sont de trois types :

  • hermétique  : le moteur et le compresseur sont situés à l’intérieur d’une cloche et ne sont pas accessibles. Ils sont généralement supportés par des ressorts pour éviter la transmission des vibrations. Le nombre de cylindres varie entre 1 et 4 suivant la puissance désirée (un seul cylindre entre 0 et 2 kW, 2 cylindres entre 2 et 5,5 kW et 4 cylindres entre 5,5 et 15 kW).

  • semi-hermétique : le moteur est accolé au compresseur et certaines parties du compresseur peuvent être démontées pour une réparation ou un entretien. Une des extrémités de l’arbre du vilebrequin porte le rotor du moteur qui entraîne le compresseur. Le moteur est refroidi en grande partie par le fluide frigorigène aspiré par le compresseur, mais aussi parfois par un ventilateur ou un serpentin d’eau enroulé autour du moteur. Le nombre de cylindres varie entre 1 et 16 et ils sont disposés en ligne, en V, en W ou en étoile. La puissance est réglée par mise hors service de certains cylindres ou par changement de régime du moteur d’entraînement.

  • ouvert : le compresseur est accouplé au moteur soit simplement en bout d’arbre par un manchon d’accouplement, ou bien à l’aide de poulies et courroies. Le nombre de cylindres varie entre 1 et 16 et ils peuvent être disposés en ligne, en V, en W ou en étoile. La vitesse de rotation est ajustable par exemple en changeant la poulie du moteur, en arrêtant certains cylindres ou en changeant le régime de fonctionnement du moteur.

Le compresseur volumétrique hermétique spiro-orbital (Scroll)

Un compresseur Scroll comprime un gaz en continu en faisant tourner une partie mobile en forme de spirale autour d’une autre spirale fixe identique à la première. Ces deux spirales sont déphasées de 180°. Elles forment plusieurs volumes qui se créent à l’aspiration, se réduisent progressivement au fur et à mesure du déplacement orbital de la spirale mobile pour déboucher vers l’orifice de refoulement central.

   

Le type de compresseur ne nécessite pas de clapets d’aspiration et de refoulement, mais un clapet existe cependant afin d’éviter l’équilibrage des pressions haute et basse au moment de l’arrêt et la rotation en sens inverse de la spirale mobile.
Le moteur d’entraînement est situé à l’intérieur du carter. L’huile de lubrification se trouve en fond de carter et est envoyée par pompage vers les pièces mobiles.
Les compresseurs Scroll encaissent facilement les coups de liquide à l’aspiration par désolidarisation radiale des deux spirales. Ceci est un avantage important pour les systèmes à inversion de cycle.
Pour les applications en pompe à chaleur à haute température, il est possible d’effectuer une injection de liquide intermédiaire au milieu des spirales dans le but d’abaisser la température de refoulement et d’augmenter la puissance et le COP.
Diverses méthodes de régulation de vitesse sont possibles :

  • Régulation « tout ou rien ».
  • Régulation par moteur à 2 vitesses.
  • Régulation par variateur de vitesse
Attention : en cas de rotation en sens contraire, il n’y a pas de compression et un bruit insolite avertit le technicien !

Le compresseur volumétrique à vis

Ces compresseurs peuvent comporter une ou deux vis et être du type semi-hermétique ou ouvert.

Compresseur à vis mono-rotor.

Le compresseur à vis bi-rotor est constitué de deux rotors à dentures hélicoïdales (un rotor mâle et un rotor femelle) tournants à grande vitesse. Le rotor mâle est entraîné par le moteur et entraîne à sa suite le rotor femelle.

Les deux rotors à dentures hélicoïdales d’un compresseur à vis.

Le volume du gaz frigorigène est réduit progressivement par la rotation qui provoque l’insertion des lobes du rotor mâle dans le rotor femelle. Quatre phases se succèdent lors de la compression du gaz frigorigène :

  • L’aspiration.
  • Le transfert : les dentures emprisonnent le gaz aspiré.
  • La compression : le gaz diminue de volume à cause de la rotation des dentures et est ainsi comprimé.
  • Le refoulement : le gaz s’échappe par l’orifice de refoulement lorsqu’il est découvert pendant la rotation.

Les variations de puissance s’obtiennent dans les grosses machines par l’action d’un « tiroir » qui décide de l’utilisation d’une plus ou moins grande longueur de vis dans la compression des gaz, et donc induit un plus ou moins grand taux de compression. Dans les petites machines (toujours très grandes comparées à des compresseurs à pistons), la modulation de puissance s’obtient par variation de la vitesse de rotation ou par utilisation de ports d’aspiration auxiliaires, soit par les deux.
Le compresseur à vis doit être abondamment lubrifié pour assurer l’étanchéité entre les pièces en mouvement et pour réduire le niveau sonore, mais aussi pour refroidir le fluide frigorigène. On peut alors atteindre des taux de compression élevés (jusqu’à 20) sans altérer le fluide frigorigène. Le circuit de graissage comprend un déshuileur, un réservoir d’huile, un refroidisseur d’huile et une pompe à huile.
Quelques caractéristiques des compresseurs à vis ouverts :

  • La garniture d’étanchéité au passage de l’arbre est indispensable.
  • Quelquefois (pour les plus gros compresseurs), les moteurs sont pourvus d’un refroidissement hydraulique permettant de récupérer également de la chaleur sur le circuit d’eau.

Dans la version semi-hermétique, le moteur électrique est accouplé directement sur l’arbre du rotor mâle, côté flasque de refoulement, et fait corps avec le compresseur. Le refroidissement du moteur est obtenu directement par les gaz de refoulement qui le traversent en totalité avant de pénétrer dans le séparateur d’huile.

> Pour connaître les avantages/inconvénients des compresseurs à vis, cliquer ici !

Le compresseur volumétrique rotatif

On rencontre deux technologies :

  • le compresseur rotatif à piston roulant,
  • le compresseur rotatif à palettes.

Compresseur rotatif à piston roulant et compresseur rotatif à palettes.

Dans les deux cas, un stator cylindrique renferme un rotor excentré par rapport à l’axe du stator. Un volume en forme de croissant est piégé. Du fluide frigorigène y est introduit (aspiration) et la rotation du rotor va comprimer cet espace jusqu’à atteindre la pression souhaitée (refoulement).
Les puissances frigorifiques atteignent 10 kW. Ils sont essentiellement utilisés pour les climatiseurs individuels et les petits refroidisseurs de liquide.

Le compresseur centrifuge

Les appareils centrifuges utilisés en pompes à chaleur dérivent des groupes centrifuges de production d’eau glacée. Ce sont tous des appareils du type eau/eau. Ils ne diffèrent des groupes à eau glacée que par leur régulation.
Les compresseurs centrifuges sont munis de roues qui tournent à grande vitesse, elles-mêmes pourvues d’aubages. L’entraînement est réalisé par un moteur électrique en version semi-hermétique ou par un autre type de moteur en version ouverte. L’énergie cinétique centrifuge est transformée en énergie de pression dans les roues et les aubages et cela comprime le gaz frigorigène. La première roue est précédée d’aubages de prérotation en acier inoxydable qui permettent de :

  • réguler la machine pour que la production calorifique corresponde aux besoins réels ;
  • donner aux gaz arrivant sur les aubes de la roue un angle d’attaque favorable ;
  • assurer un étranglement à l’aspiration.
Le corps du compresseur est réalisé soit en fonte spéciale étanche, soit en acier soudé, soit en alliage léger. Il comprend la buse d’aspiration convergente, les diffuseurs radiaux placés à la périphérie des roues, ainsi que le multiplicateur de vitesse éventuel. Les roues du rotor sont munies d’ailettes (en acier soudé ou en alliage léger coulé et usiné) qui sont couchées vers l’arrière. L’arbre du rotor est réalisé en fer forgé, il comporte sur son extrémité sortante une garniture d’étanchéité (cas uniquement du compresseur centrifuge type ouvert) et des paliers lisses.

Les organes à graisser sont les paliers, la butée et éventuellement le multiplicateur et la garniture d’étanchéité. Le dispositif de graissage se compose d’une pompe à engrenages ou à palettes, d’un réchauffeur électrique et d’un échangeur refroidisseur huile/eau. Il comporte aussi un dispositif de compensation de la poussée axiale.

Les variations de puissance s’obtiennent par réglage des vantelles à l’ouïe d’aspiration de la turbine. À faible charge, ils sont cependant plus délicats que les compresseurs à pistons. En effet, par faible débit, un phénomène de pompage apparaît : le débit oscille entre un débit nul et débit maximal, l’écoulement devient pulsatoire et engendre des vibrations qui peuvent endommager le compresseur. Les frais de réparation sont élevés. Les constructeurs prévoient généralement une mesure de sauvegarde de l’appareil par injection de gaz chauds. Ce n’est certainement pas une technique énergétiquement intéressante puisque la puissance absorbée reste constante. On évitera donc le surdimensionnement des équipements.

Pompes à chaleur

Pompes à chaleur

Pompe air-eau à chaleur réversible.


Vous avez dit « pompe à chaleur » ?

Elle transfère de l’énergie d’un milieu à un autre

Source : ef4.

Une pompe à chaleur (PAC) est une machine dont le but est de valoriser la chaleur gratuite présente dans l’environnement : celle présente dans l’air extérieur, les rivières, le sol. En effet, tout corps, même « froid » contient une quantité importante d’énergie qui peut être récupérée.

Pratiquement, grâce à un fluide décrivant un cycle thermodynamique, la pompe à chaleur retire de la chaleur à une source dite « froide » et la rejette dans une source dite « chaude ». Ce transfert fait appel à un processus forcé, puisque chacun sait que la chaleur se déplace de façon naturelle d’une zone chaude vers une zone froide. C’est pourquoi, la PAC doit être entraînée par un compresseur qui lui amènera l’énergie nécessaire à son fonctionnement.

À titre d’exemple,  pompe à chaleur à placer sur la toiture d’un atelier industriel.

Il est important de préciser que l’on parle ici d’appareils réalisant un transfert, et non une création de chaleur. L’objectif visé – le coefficient de performance – se situe autour de 3 unités de chaleur fournies à la source chaude par unité injectée au compresseur. Cela signifie que pour un kWh consommé et payé, on en reçoit 3 gratuitement

Mais la PAC est un producteur de chaleur « dynamique » : contrairement à une chaudière, une PAC voit ses performances varier selon les conditions d’utilisation. Elle aura ainsi de très bonnes performances de chauffage … en été alors que ce n’est pas en cette période que le besoin de chauffage est présent ! La tâche la plus difficile pour le projeteur, consiste à prendre en considération ce comportement dynamique et à équiper l’installation de telle manière que les conditions limites de fonctionnement ne soient pas dépassées.

Un boom commercial

Il s’agit d’une technologie qui bénéficie d’un fort regain d’intérêt ces dernières années après un premier boom (et une déception…) lors de la crise pétrolière des années 70. Le marché est en pleine expansion :

Développement des ventes de pompes à chaleur en Europe 2005-2013, par catégorie.

Source : https://www.ehpa.org.

Un outil « propre » ?

La PAC permet d’utiliser l’énergie électrique à bon escient. La pompe à chaleur s’inscrit-elle alors dans la démarche « développement durable » ? Il convient de nuancer la réponse.

La pompe à chaleur en tant que telle est une machine intéressante dans la mesure où un kWh payé au niveau mécanique (pour faire tourner le compresseur), on produit 3 à 4.5 kWh d’énergie thermique (suivant la technologie utilisée et la qualité de la mise en œuvre). Néanmoins, toute la question de l’impact environnemental d’une pompe à chaleur se trouve dans la façon de produire ce kWh mécanique. La majorité des PAC utilisent de l’énergie électrique pour réaliser ce travail moteur. Les performances environnementales d’une PAC sont donc directement liées aux performances environnementales de l’électricité que l’on utilise. Prenons différents cas de figure :

  • Dans le cas, plutôt marginal à l’heure actuelle, où l’électricité serait produite par des énergies purement renouvelables, comme des éoliennes ou panneaux photovoltaïques, l’impact d’une PAC est remarquable dans la mesure où elle multiplie l’efficacité des énergies renouvelables pour la production thermique, et globalement, l’impact environnemental est nul. Dans ce cas de figure, il n’y a pas lieu de nuancer le propos : les PACs ont un impact positif.
  • Si l’on consomme l’électricité du réseau électrique belge, les performances environnementales des PAC sont alors à nuancer. À l’heure actuelle, la production électrique est largement dominée par les centrales nucléaires. Celles-ci réalisent autour de 60 % de le production électrique. Le restant de la production est essentiellement réalisé par des centrales travaillant avec les combustibles fossiles (gaz et charbon). Les centrales nucléaires sont caractérisées par des émissions d’équivalent CO2 relativement moindres que les centrales classiques (quoi que cet argument est parfois remis en cause). Du coup, si on fait un bilan global, travailler avec des PAC et l’électricité du réseau émet moins de CO2 que de brûler du gaz ou du mazout localement dans la chaudière de chaque habitation. Néanmoins, gros bémol, il reste la problématique des déchets nucléaires. Même si à court terme, la gestion ou du moins, l’entreposage des déchets nucléaires, est gérable, à long terme, cela peut engendrer de gros soucis. Si on s’intéresse à la consommation en combustible fossile, la PAC combinée à l’électricité du réseau est intéressante comparée à la combustion directe dans l’habitat uniquement si la pompe à chaleur à de bonnes performances, c’est-à-dire si l’on travaille avec du bon matériel, bien conçu par rapport au bâtiment et bien installé. En fait, les centrales utilisent 2 à 2.5 kWh de combustible fossile pour générer 1 kWh électrique. En intégrant les pertes du réseau électrique, il faut que la PAC produise plus de 3 kWh thermiques sur base de ce kWh électrique pour que le bilan environnemental soit intéressant.

Conclusion, l’intérêt environnemental de placer une pompe à chaleur est dépendant de la qualité de l’électricité qui est utilisée pour alimenter la PAC. Dans le cas du réseau électrique belge actuel, l’intérêt d’une PAC est présent sur les émissions de CO2 mais, en ce qui concerne la consommation en énergie primaire, uniquement si les performances thermiques des PAC sont optimisées.


Types de pompes à chaleur

 

Source : ef4.

Les pompes à chaleur sont désignées en fonction des fluides caloporteurs dans lesquels baignent les échangeurs de chaleur de l’évaporateur et du condenseur. Attention, il s’agit bien du fluide caloporteur au niveau de l’évaporateur et du condenseur et qui n’est pas toujours équivalent au type de source chaude ou froide (l’air, l’eau ou le sol). En effet, on peut trouver intercalé, entre le condenseur et la source chaude, ou entre l’évaporateur et la source froide, un circuit intermédiaire. Prenons à titre d’exemple, les PAC Saumure/eau. On trouve du coté évaporateur de l’eau glycolée, eau glycolée dans un circuit qui parcourt ensuite le sol afin d’en extraire la chaleur. Du coté condenseur, on trouve un circuit d’eau qui, par exemple, alimente un circuit de chauffage par le sol pour se décharger de son énergie.

Les principaux types de PAC

Désignation

Évaporateur

Condenseur

Boucle intermédiaire : source froide/évaporateur

Boucle intermédiaire : condenseur/source chaude

PAC Eau/ Eau

Eau

Eau

Non

Oui

PAC Air/ Eau

Air

Eau

Non

Oui

PAC Saumure/ Eau

Saumure

Eau

Oui

Oui

PAC Air/ Air

Air

Air

Non

Non

PAC Sol/Sol

Sol

Sol

Non

Non

Exemple de désignation abrégée :

Type : Eau/ Eau
Température entrée évaporateur : 10 °C
Température sortie condenseur : 45 °C
Désignation abrégée : W10/W45

L’expression W10/W45 signifie que la source froide est une eau à 10 °C et la source chaude une eau à 45 °C. C’est sous cette forme que les fournisseurs désignent leurs produits. Une source de chaleur telle une nappe phréatique ou une eau de surface sera désignée par « eau », l’air atmosphérique ou des rejets gazeux par « air », un mélange eau-glycol qui circule dans le circuit fermé entre une source de chaleur et l’évaporateur par « saumure ». De ce fait, les pompes à chaleur puisant l’énergie du sol seront parfois désignées sous le terme de « saumure ».

Les systèmes les plus répandus sont les systèmes Air/Eau puis Saumure/Eau dont la source de chaleur est souterraine. Les pompes à chaleur Eau/Eau sont souvent soumises à autorisation et sont donc moins courantes en Belgique.


Principe de fonctionnement d’une pompe à chaleur

     

Source : ef4.

Le principe de fonctionnement est le même que celui de la machine frigorifique mais l’application travaille en sens inverse.

Cette fois, l’objectif consiste à extraire la chaleur gratuite d’un milieu extérieur : l’eau d’une rivière, l’air extérieur, l’eau d’une nappe souterraine, … (on parle de « source froide »). Physiquement, l’air extérieur à 0 °C contient beaucoup d’énergie puisque sur l’échelle des températures absolues, l’air se situe en réalité à 273 K !

Schéma du principe de fonctionnement d’une pompe à chaleur.

L’évaporateur est à l’extérieur et la température du fluide frigorigène sera environ 5 à 8 °C inférieure à la température de la source froide. L’énergie thermique captée sera « remontée » à un niveau de température utilisable (pour le chauffage d’une maison, par exemple) via le compresseur : le condenseur est donc à l’intérieur.

Bien sûr, on choisira un émetteur de chaleur à une température la plus basse possible (par exemple, chauffage à air chaud, chauffage à eau chaude par serpentin dans le sol, …). L’écart de température entre l’entrée et la sortie du compresseur doit être en effet le plus faible possible pour limiter le travail du compresseur.

Exemple.

Refroidir l’eau d’une rivière initialement à 10 °C pour assurer le chauffage d’une habitation par de l’air à 35 °C. Le fluide frigorigène passera à 6 °C dans la rivière et à 40 °C dans l’échangeur de chauffage de l’air du bâtiment.


Différents coefficients de performance

SC = source de chaleur (source de froide),   Acc = accumulateur.

L’évaluation de la performance instantanée

On peut déduire le rendement d’une PAC (appelé « ε », indice de performance) sur base du rapport entre l’énergie thermique utile délivrée au condenseur par rapport à l’énergie électrique fournie (et payée) au compresseur.

ε = chaleur au condenseur/travail du compresseur = Q2 / W.

Par exemple, si, à un moment de mesure donné, les températures des sources chaudes et froides d’une certaine PAC sont telles qu’elle transmet via son condenseur une puissance de 3 kW alors qu’au même moment son compresseur requiert une puissance de 1 kW, on pourra dire que son indice de performance vaut 3 kW / 1 k W = 3 pour ces conditions de température.

Ce rapport peut être obtenu ou déduit du catalogue du fournisseur, à partir de mesures qu’il aura effectuées dans des conditions standards.

L’évaluation de la performance instantanée, auxiliaires compris

Cette fois, on parle d’un coefficient de performance « COP ».

C’est la norme européenne EN 255 qui définit le coefficient de performance en lieu et place de l’indice de performance présenté ci-dessus. Pour le calculer, en plus de la puissance du compresseur, on devra prendre en compte la puissance des dispositifs auxiliaires qui assurent le bon fonctionnement de la pompe à chaleur : le dispositif antigel, la commande/régulation et les installations mécaniques (pompe, ventilateur).

Toutefois, ces mesures ne concernent que les éléments rattachés à la pompe à chaleur et sont indépendantes de l’installation de chauffage, de l’accumulateur, etc. La norme fixe des conditions de mesures standardisées très précises qui ne correspondent aux situations réelles que dans certaines circonstances particulières. Il ne faut pas perdre cela de vue lorsque l’on travaille avec le COP pour estimer les performances d’une PAC.

Reprenons l’exemple de PAC ci-dessus. Dans les conditions imposées par la norme EN 255, la puissance mise à disposition au condenseur ne sera peut-être pas 3 kW mais 3,2 kW pour une température de sortie du condenseur identique. De plus, la puissance absorbée par l’ensemble des équipements à prendre en compte ne sera peut-être pas de 1 kW mais de 1,1 kW. Le coefficient de performance vaudra alors 3,2 / 1,1 = 2,9.

L’évaluation de la performance annuelle, auxiliaires compris :

Le coefficient de performance annuel (« COPA ») est l’indice le plus important dans l’examen d’une installation de pompe à chaleur. Toutes les quantités d’énergie produites et injectées pendant une année y sont comparées les unes aux autres. Il ne s’agit plus ici d’une valeur théorique calculée à partir de puissance installées, mais d’une mesure réelle sur site de la quantité d’énergie consommée et fournie. C’est le coefficient de performance annuel qui donne vraiment idée du « rendement » et de l’efficacité de l’installation.

Imaginons que notre PAC exemple fasse maintenant partie de toute une installation de chauffage. Les variations de température des sources froides et chaudes, les pertes par émission du réseau de distribution, la consommation d’un chauffage d’appoint, etc… font que 13 000 kWh* de chaleur sont produits sur une année, tandis que les consommations globales s’élèvent à 6 200 kWh* d’énergie électrique. On dira alors que le COPA de cette installation vaut 13 000 kWh / 6 000 kWh = 2,17.

*Ces valeurs ne servent qu’à illustrer la définition du COPA. Il ne s’agit pas d’une quelconque moyenne d’installations existantes ou du résultat d’une étude de cas.

L’évaluation théorique de la performance annuelle :

Il s’agit du Facteur de Performance Saisonnier (« SPF »).

Alors que le COPA est le rapport entre les valeurs mesurées sur un an de l’énergie calorifique donnée utilement au bâtiment et de l’énergie (souvent électrique) apportée à l’installation, le SPF est le rapport de ces mêmes quantités d’énergie fournies et apportées en un an calculées de façon théorique sur base du COP instantané à différentes températures.

Il s’agit donc bien d’une valeur théorique mais prenant en compte les variations de température de la source froide et non pas d’une valeur mesurée en situation réelle comme le COPA. De plus, le SPF décrit une PAC tandis que le COPA décrit une installation complète. On ne tiendra donc pas compte pour le calcul du SPF des pertes de l’accumulateur par exemple, ou d’un mauvais réglage d’un dispositif de dégivrage, qui augmenteraient la quantité d’énergie demandée au compresseur et donnerait une valeur finale moins avantageuse mais plus réelle. On calculera le SFP comme ceci :

où,

  • Qdemandée est la quantité d’énergie demandée à la PAC durant la période de chauffe [kWh/an].
  • P(Text) est la puissance à apporter lorsque la température de la source froide est Text (par exemple les déperditions thermiques d’une maison selon la température extérieure) [kW].
  • t(Text) est le temps durant lequel la température de la source froide est Text [h/an].
  • COP(Text) est le coefficient de performance de la pompe à chaleur lorsque la température de la source froide est Text.

Un rendement qui dépasse 100 % !?

Quel bilan énergétique de la PAC ?

Qu’est-ce qui coûte dans l’exploitation d’une installation de pompe à chaleur ?

  • pas l’énergie de la « source froide » : elle est gratuite,
  • mais bien l’énergie électrique du compresseur.

D’où la notion de rendement donné par « ε », l’indice de performance :

ε = chaleur au condenseur/travail du compresseur = Q2 / W.

Or Q2 = Q1 + W = chaleur captée à la source froide + énergie développée par le travail du compresseur (loi de conservation des énergies).

Dès lors, Q2 est toujours plus grand que W et ε est toujours nettement plus élevé que 1.

Est-il normal de rencontrer une machine dont le « rendement » dépasse 100 % ?

En réalité, il ne s’agit pas ici d’une machine de conversion, de transformation d’énergie comme une chaudière (c’est-à-dire transformation d’énergie chimique en chaleur), mais bien d’une machine qui transfère une quantité d’énergie thermique d’un seuil de température à un autre. L’indice de performance n’est donc pas un rendement (de conversion) mais une évaluation de la performance du transfert.

Si l’écart entre les 2 seuils de température augmente, l’efficacité (ε ou COP) diminue.

Quel est le « ε » théorique d’une pompe à chaleur ?

Puisque W = Q2 – Q1, on écrit encore : ε = Q2 / (Q2 – Q1)

Si l’on considère un travail sans pertes, les lois de la thermodynamique établissent le lien entre l’énergie contenue dans un fluide (Q) et la température absolue de ce fluide (T), si bien que l’on admettra sans démonstration l’expression suivante du COP théorique :

ε théorique = T2 / (T2 – T1) [T étant exprimé en Kelvin]

Où :

  • T2 = température de condensation [K].
  • T1 = température d’évaporation [K].

Il faudra donc une température d’évaporation maximale et une température de condensation minimale. Attention cependant à ne pas confondre les températures T1 et T2 du fluide frigorigène avec celles des sources chaudes et froides, même si, par voie de conséquence, le coefficient de performance instantané est d’autant meilleur :

  • que la température de la source de chaleur (= la « source froide ») est élevée,
  • que la température du réseau de chauffage est basse (T2 proche de T1).

Alors que l’on ne peut guère influencer la température de la source de chaleur (la source froide), celle au départ du chauffage sera définie par le projeteur ! Par conséquent, il aura tendance à choisir un chauffage par le sol ou un chauffage à air chaud.

Exemple d’une pompe à chaleur AIR – AIR

Soit T°ext = 0 °C (= 273 °K) et T°chauff. = 40 °C

εthéor = (273 + 40) / (40) = 7,8 !

En théorie, la pompe fournira 8 x plus d’énergie au condenseur que d’énergie demandée au compresseur ! … (les 7/8 de la chaleur étant captés dans l’air extérieur).

Et quel COP pratique ?

En pratique, plusieurs éléments vont faire chuter la performance :

  • Il existe un écart de température entre le fluide frigorigène et les sources.
    Par exemple : si T°ext = 0 °C, T°évaporateur = … – 8 °C… Et si T°chauff. = 40 °C, T°condenseur = … 48 °C… D’où ε = (273 + 48) / (56) = 5,7.
    Le coefficient de convection entre l’eau et l’évaporateur étant nettement meilleur que le coefficient de convection entre l’air et l’échangeur, on aura tendance à privilégier les PAC eau/eau et eau/air. Encore faut-il avoir une rivière au fond de son jardin ou une nappe phréatique sur laquelle il est possible de puiser (autorisation obligatoire). En général, il faudra se résoudre à prendre l’air extérieur comme source froide.
  • Or dans ce cas, si la T°ext < 5 ° C, alors T°fluide évaporateur = 0 °C. Dès lors, du givre apparaît sur les ailettes, la glace bouche l’échangeur extérieur, d’où nécessité de dégivrer (soit un courant électrique est envoyé sur l’échangeur pour faire fondre la glace, soit le cycle est inversé et des gaz chauds sont envoyés dans l’évaporateur).
    Avec la consommation de dégivrage, l’indice de performance moyen diminue fortement.
  • Lorsque la température de l’air extérieur descend sous 0 °C, le compresseur a de plus en plus de mal à fonctionner : la puissance délivrée au condenseur de la pompe à chaleur devient très faible et il faut parfois ajouter des résistances de chauffage électrique directe à l’installation . Paradoxe malheureux, c’est quand il fait très froid que l’habitation demandera le plus de puissance et que la pompe à chaleur lui en donnera le moins!
  • Il y a nécessité de faire fonctionner les ventilateurs des sources froides et chaudes, d’où une consommation électrique supplémentaire de ces auxiliaires.

Exemple. Voici les spécifications techniques d’un climatiseur réversible présent sur le marché. En hiver, ce climatiseur peut fournir de la chaleur au local : il fonctionne alors en mode « pompe à chaleur ».

Unité intérieure

FHYB35FJ

Unité extérieure

RY35D7

Puissance frigorifique

kcal/h

3 100

Btu/h

12 300

kW

3,60

Puissance calorifique

kcal/h

3 500

Btu/h

14 000

kW

4,10

Puissance absorbée

rafraîchissement

kW

1,51

chauffage

kW

1,33

On y repère :

  • l’efficacité frigorifique, E.F., ou COPfroid (coefficient de performance en froid)

puissance frigorifique / puissance absorbée =
3,6 kW / 1,5 kW = 2,4
 

  • l’indice de performance au condenseur, ε

puissance calorifique (au condenseur) / puissance absorbée =
4,1 kW / 1,3 kW 
= 3,2

Attention ! Ce coefficient est obtenu dans des conditions très favorables ! En petits caractères, le fabriquant précise qu’il s’agit de valeurs obtenues pour 7 °C extérieurs… Cette performance va s’écrouler en période plus froide. En réalité, c’est le rendement moyen saisonnier qui nous intéresse… mais celui-ci n’est jamais donné puisqu’il dépend des conditions d’exploitation.


Pompe à chaleur sur boucle d’eau

Plusieurs pompes à chaleur sont connectées sur une boucle d’eau commune.

  • En été, elles fonctionnent en machine frigorifique dont le condenseur est refroidi par la boucle d’eau. Celle-ci se refroidit elle-même via par exemple une tour de refroidissement posée en toiture.
  • En hiver, elles fonctionnent en pompe à chaleur dont la boucle d’eau constitue la source « froide ». Celle-ci est elle-même réchauffée par une chaudière placée en série sur la boucle.
  • En mi-saison, ce système prend tout son sens : si simultanément des locaux sont refroidis et d’autres réchauffés, la boucle qui les relie permet le transfert d’énergie entre eux, avec une performance URE remarquable.

Ce système est optimalisé s’il dispose en plus d’un système pour stocker la chaleur et la restituer à la demande, en différé.

Ces PAC/climatiseurs sont constitués de deux parties :

  • Une partie traitement de l’air du local composée principalement d’un filtre, d’un échangeur Air/fréon et d’un ventilateur de soufflage.
  • Une partie circuit frigorifique constituée d’un compresseur, d’une vanne 4 voies d’inversion de cycle, d’un échangeur Eau/fréon raccordé à la boucle d’eau, d’un détendeur capillaire.

Suivant les cycles de fonctionnement, les échangeurs Eau/fréon et Air/fréon sont tour à tour le condenseur ou l’évaporateur du circuit frigorifique; ce basculement est rendu possible par la vanne 4 voies d’inversion de cycle canalisant les gaz chauds sous pression, en sortie du compresseur, vers l’un ou l’autre des échangeurs dans lesquels le fluide frigorigène sera alors condensé en abandonnant ses calories à l’eau ou l’air.


Impact sur l’environnement

Impact sur la couche d’ozone

Les pompes à chaleur récentes sont en général chargées avec des fluides frigorigènes  tels que les HFC, l’ammoniac, le CO2 ou le propane qui n’ont pas d’impact sur la couche d’ozone.

Impact sur l’effet de serre

Pour calculer l’impact sur l’effet de serre d’une pompe à chaleur, et donc la quantité d’équivalents CO2 qu’elle produit, on doit connaître les éléments suivants :

Éléments liés au fluide frigorigène

  1. Le potentiel de participation au réchauffement climatique sur 100 ans du fluide frigorigène choisi (le GWP100 en anglais). Voir ici  pour connaître ces valeurs en kg de CO2 par kg de fluide frigorigène.
  2. La quantité de fluide frigorigène chargée : m en kg, qui dépend du type de PAC. Il faut en effet dix fois plus de fluide frigorigène dans une PAC « sol/sol » à détente directe (à la source froide ET à la source chaude), par rapport à une PAC eau/eau ou eau glycolée/eau.
  3. La quantité annuelle de fluide frigorigène perdue à cause des fuites : L en kg/an que l’on estime à 3 % de la charge m de fluide frigorigène, si la pompe à chaleur est assemblée et testée en usine et non sur chantier. Si la PAC est assemblée sur chantier, on suppose que 10 % de la masse en fluide frigorigène est perdue par les fuites.
  4. Le taux de récupération du fluide frigorigène lors du démontage de la pompe à chaleur : αrecovery qui est estimé à 75 %.

Éléments liés à l’énergie primaire utilisée pour le fonctionnement de la pompe à chaleur et des auxiliaires

  1. La consommation électrique annuelle : E en kWh/an.
  2. Le coefficient d’émissions de CO2 dues à la production d’électricité : β = 0,456 kg de CO2/kWhélectrique si l’on considère que l’électricité est produite dans une centrale TGV.

Éléments liés à la l’utilisation de la pompe à chaleur

  1. Le nombre d’années d’utilisation : n.

Ces éléments entrent dans la formule du TEWI (Total Equivalent Warming Impact) en kg de CO2 :

TEWI = GWP100 x L x n  +  GWP100 x m x (1 – αrecovery)  +  n x E x β         (*)

Le tableau illustre les quantités de CO2 émises par différents types de PAC de 20 kW calorifiques, toutes chargées avec le fluide frigorigène R407C (GWP100 = 1 800 kg CO2/kg FF).

PAC air extérieur/eau
(A2/W35)
PAC eau/eau
(W10/W35)
PAC eau glycolée/eau
(B0/W35)
PAC sol/eau (évaporation directe)
(S-5/W35)
PAC sol/sol (évaporation et condensation directes)
(S-5/S35)
Puissance calorifique 20 kW 20 kW 20 kW 20 kW 20 kW
COP saisonnier moyen 3,5 4,5 4 4 4
Puissance électrique absorbée 20 kW / 3,5
= 5,7 kW
20 kW / 4,5
= 4,5 kW
20 kW / 4
= 5 kW
20 kW / 4
= 5 kW
20 kW / 4
= 5 kW
Consommation électrique E 5,7 kW x 2 000 h
= 1 1400 kWh/an
4,5 kW x 2 000 h
= 9 000 kWh/an
5 kW x 2 000 h
= 10 000 kWh/an
5 kW x 2 000 h
= 10 000 kWh/an
5 kW x 2 000 h
= 10 000 kWh/an
Consommation appoint 4 kW x 300 h/an
= 1 200 kWh/an
0 0 0 0
Quantité de FFm 6 kg 2,5 kg 2,5 kg 10 kg 18 kg
Quantité annuelle de FF perdue par les fuites L 3 % de 6 kg
= 0,18 kg/an
3 % de 2,5 kg
= 0,075 kg/an
3 % de 2,5 kg
= 0,075 kg/an
10 % de 10 kg
= 1 kg/an
10 % de 18 kg
= 1,8 kg/an
Premier terme de (*) 1 800 x 0,18 x 20
= 6 480 kg CO2
1 800 x 0,075 x 20
= 2 700 kg CO2
1 800 x 0,075 x 20
= 2 700 kg CO2
1 800 x 1 x 20
= 36 000 kg CO2
1 800 x 1,8 x 20
= 64 800 kg CO2
Second terme de (*) 1 800 x 6 x (1 – 0,75)
= 2 700 kg CO2
1 800 x 2,5 x (1 – 0,75)
= 1 125 kg CO2
1 800 x 2,5 x (1 – 0,75)
= 1 125 kg CO2
1 800 x 10 x (1 – 0,75)
= 4 500 kg CO2
1 800 x 18 x (1 – 0,75)
= 8 100 kg CO2
Dernier terme de (*) 20 x (11 400 + 1 200) x 0,456
= 114 912 kg CO2
20 x 9 000 x 0,456
= 82 080 kg CO2
20 x 10 000 x 0,456
= 91 200 kg CO2
20 x 10 000 x 0,456
= 91 200 kg CO2
20 x 10 000 x 0,456
= 91 200 kg CO2
Émissions 124 092 kg 85 905 kg CO2 95 025 kg CO2 131 700 kg CO2 164 100 kg CO2
Annuelles de CO2 CO2
/ 20 ans
= 6 205 kg CO2/an
/ 20 ans
= 4 295 kg CO2/an
/ 20 ans
= 4 751 kg CO2/an
/ 20 ans
= 6 585 kg CO2/an
/ 20 ans
= 8 205 kg CO2/an

On voit que le troisième terme de l’expression (*) est de loin le plus important en ce qui concerne les 3 premières PAC de 20 kW étudiées : c’est l’électricité consommée par la pompe à chaleur et ses auxiliaires qui génère le plus de CO2 (entre 80 et 95 % des émissions totales). Les quantités de fluide frigorigène sont par contre tellement élevées dans les PAC à détende directe (les deux dernières colonnes), que les émissions de CO2 leur sont en grande partie dues.

Une pompe à chaleur de 20 kW calorifiques chargée au R407C (deux fois moins polluant que le R404A) génère ainsi entre 4 000 et 8 300 kg de CO2 par an en fonction du type de PAC. En comparaison aux chaudières à mazout (13 600 kg de CO2 par an pour une puissance calorifique de 20 kW) ou au gaz (11 200 kg de CO2 pour cette même puissance), la pompe à chaleur est beaucoup moins polluante.  Les PAC qui présentent l’impact sur l’effet de serre le moins important sont les PAC sur eau de surface, car il n’y a pas lieu de forer et leur COP est élevé.

Les pompes à chaleur à électricité d’origine renouvelable

Les émissions de CO2 générées par l’utilisation d’une pompe à chaleur sont très faibles si l’électricité nécessaire à son fonctionnement est produite par des panneaux photovoltaïques ou par une autre énergie renouvelable. L’impact sur l’effet de serre n’est plus alors causé que par les fuites de fluide frigorigène et par sa récupération en fin de vie de la PAC. Alors, si possible, il faut éviter les grandes quantités de fluide frigorigène, qui annuleraient tout l’effort d’économies de CO2 permis par la production renouvelable d’électricité…

Impact sonore

La pompe à chaleur est une technologie qui émet un fond bruyant. En effet, les pièces mécaniques en mouvement, la circulation d’air, etc., occasionnent un niveau sonore qui sera d’autant plus élevé que les conditions extérieures sont mauvaises (la PAC fonctionne au maximum de ses performances par temps froid). Les compresseurs et ventilateurs sont en l’occurrence, les éléments fautifs…

Une PAC émet entre 50 et 60 décibels à 1 mètre et environ 40 dB à 5 mètres. Une telle installation ne sera tolérable que si elle n’occasionne pas de gêne sonore pour les occupants de l’immeuble et pour le voisinage. Il faut donc l’installer suffisamment loin des fenêtres, des pièces de travail, de repos, etc. La PAC devra être posée sur un silent block (plots antivibratiles).

Autres impacts

L’installation d’une PAC eau/eau sur nappe phréatique montrera un impact non négligeable sur les eaux souterraines. Il existe des réglementations pour ce type de PAC, dont la sévérité dépend de la potabilité de l’eau extraite et du débit nécessaire.

Voir le site de la base de données juridique de la Région Wallonne pour connaître la réglementation concernant les prélèvements et les rejets d’eau souterraine : ouverture d'une nouvelle fenêtre !  wallex.wallonie.be : « Arrêté du Gouvernement wallon modifiant l’arrêté du Gouvernement wallon du 4 juillet 2002 arrêtant la liste des projets soumis à étude d’incidences et des installations et activités classées » du 22 janvier 2004.
L’injection d’eau refroidie dans les eaux de surface peut avoir un impact sur le milieu.

Domaines d’application de la pompe à chaleur

Domaines d'application de la pompe à chaleur


Le chauffage des locaux

Un nouvel essor dans le secteur domestique

En construction domestique neuve (avec une bonne isolation), le chauffage par pompe à chaleur (PAC) connaît un regain d’intérêt.

Les pompes à chaleur Air/Eau domestiques (puissance calorifique nominale entre 1 et 19 kW environ) sont proposées par différents fournisseurs et sont de plus en plus éprouvées. En Europe, le marché des PAC suit une croissance continuelle. Les régions phares sont la Suède (333 000 unités en 2000), l’Allemagne (63 000 unités), la Suisse (61 000 unités) et l’Autriche (33 000 unités). La part de marché de la PAC en construction neuve atteint 95 % en Suède. L’origine hydraulique de l’électricité n’y est sans doute pas pour rien…

Statistiques du marché des pompes à chaleur tous modèles confondus entre 2005 et 2009 dans quelques pays européens.

Source : EHPA Outlook 2009,  Heat Pump Statistics.

La petite PAC de chauffage domestique est disponible de série. Par exemple, pour une maison familiale très isolée dont les besoins thermiques maximums se montent à 8 kW, une PAC compacte de 4 kW de puissance thermique (1.3 kW au compresseur) fonctionnant en mode bivalent peut couvrir près de 70 % des besoins de chauffage annuel.

Ce genre d’appareil se branche sur les réseaux de distribution de chaleur comme les chaudières classiques. Le but des fournisseurs est d’offrir aux acheteurs et aux installateurs une pompe à chaleur qui soit pour eux aussi simple d’utilisation que n’importe quel autre générateur de chaleur.

Fonctionnant en général avec l’air extérieur comme source froide, ces modèles sont universels et demandent des frais d’installation relativement limités (conduites d’amenée d’air,…). Ils peuvent donc être adaptés à des réseaux de distribution existants lors du remplacement d’une chaudière.

Par rapport à un chauffage traditionnel, le bilan en énergie primaire est relativement neutre.

Deux éléments peuvent jouer en faveur de la pompe à chaleur : un environnement particulièrement propice (source) ou un domaine d’application pour lequel elle serait particulièrement performante :

  • Il est clair que s’il y a présence d’une source froide de qualité (nappe phréatique, rivière, grande étendue ensoleillée), cette technique devrait tout particulièrement inciter les concepteurs et maîtres d’ouvrages à réaliser des études de rentabilité.
  • L’investissement élevé se justifie parfois parce que les PAC sont des outils capables de faire du chaud et du froid. Même si c’est un constat d’échec pour la conception architecturale du bâtiment domestique qui dans nos régions doit pouvoir se passer de climatisation, c’est effectivement un moyen pour corriger le défaut et combattre les surchauffes.

Les lieux d’hébergement collectifs

La solution type, rencontrée par exemple pour les immeubles d’appartements jusqu’à une cinquantaine de logements, est la pompe à chaleur Air/Eau, avec appoint électrique centralisé et distribution par chauffage par le sol. Bien que la pompe à chaleur puisse fonctionner avec les niveaux d’isolation courants, un renforcement de cette isolation est conseillé pour limiter la température de l’eau de chauffage et améliorer ainsi les performances de l’installation. Cette PAC assure une température de base avec des charges de chauffage faibles et laisse à chaque utilisateur le soin de régler sa température de confort via des chauffages d’appoint décentralisés (convecteurs dans les appartements) de faible puissance.

On détecte 3 points faibles à cette installation

  • Le chauffage par le sol de nuit, qui ne permet pas une régulation valable (il est possible que le soleil apparaisse le lendemain et que l’accumulation de chaleur de nuit consentie était inutile),
  • Le complément électrique centralisé qui se fait avec un COP de 1 et qui donc détruit partiellement la performance de la PAC,
  • Les compléments électriques décentralisés qui sont fournis au courant de jour, dont au prix fort.

La pompe à chaleur, pour dégager une économie, devra couvrir plus de la moitié de l’écart de température de base (écart entre la température de confort et la température de dimensionnement). Autrement dit, pour une température intérieure désirée de 20 °C et une température de base de – 10 °C en Belgique, la PAC doit pouvoir fournir seule la chaleur nécessaire jusqu’à une température extérieure de 5 °C pour être rentable.

Il faut éviter de surdimensionner la PAC pour ne pas multiplier les courts cycles et faire face à une usure accélérée du matériel.

Les PAC Air/Eau avec chauffage par le sol peuvent être réversibles et assurer un rafraîchissement (gain de 3 à 5 K). Il ne s’agit pas d’un système de climatisation à proprement parler, mais d’un apport de confort. La température de l’eau dans les planchers rafraîchissants ne descend pas sous 18 °C (température au sol de 20 à 22 °C), même si la charge à absorber en demanderait davantage. Le seul surcoût d’investissement est un système de régulation un peu plus complexe.

A nouveau le choix de la source de chaleur est très important. Ainsi, lorsqu’une nappe phréatique est présente, l’avantage sera donné aux PAC Eau/Eau qui ont une meilleure performance et sont moins limitées en puissance. Les ensembles de logements pouvant assumer des investissements financiers plus importants que les particuliers, ils peuvent également envisager des PAC Sol/Eau avec forage de grande profondeur pour obtenir une plus grande puissance.


Chauffage et refroidissement d’un ou plusieurs locaux par système split

L’installation d’un système split consiste généralement en une simple pompe à chaleur Air/Air,

  • dont l’évaporateur est placé à l’extérieur,
  • et dont le condenseur est soit dans un local technique où il est relié à un réseau de distribution, soit directement dans le local à chauffer, par exemple dans un ventilo-convecteur.

Structure type d’un système split.

Le transfert de chaleur entre l’intérieur et l’extérieur se fait par le fluide frigorigène qui traverse la peau du bâtiment dans des canalisations calorifugées.

Exemple de produit : Un fournisseur offre une gamme d’installations dont la puissance va de 1 à 8 kW. La distance autorisée entre le condenseur et l’évaporateur est de 15-20 mètres avec des dénivellations d’une dizaine de mètres. Les prix vont de 1 600 à 4 000 €.

Les systèmes split installés directement dans les locaux ont l’avantage de la souplesse d’installation : un simple réseau bitube est suffisant pour le transport du fluide frigorigène, on évite les intermédiaires puisque la PAC chauffe directement l’air du local, il ne faut pas d’accumulateur ni de régulation complexe d’un réseau hydraulique, … en contrepartie, ils présentent un plus grand risque de fuite de fluide frigorigène.

Réversible, la PAC peut aussi constituer une source de rafraîchissement pour l’ambiance.

Lorsque l’on multiplie le nombre d’échangeurs de chaleur, on parle de système multi-split. Les différents échangeurs intérieurs, par exemple un par local, sont alors tous reliés à un (ou plusieurs) échangeurs de chaleur extérieur. Différentes « boucles » sont donc « juxtaposées » avec comme seule interconnexion la ou les unités extérieures.

Un condenseur commun et plusieurs unités intérieures = multi-split.

Exemple de produit multi-split :

Un fournisseur propose une gamme standard d’installations multi-split complètes dont l’unité extérieure a une puissance frigorifique maximale allant de 1 à 11,5 kW et une puissance calorifique maximale de 0,9 à 17,2 kW, pour des débits d’air d’environ 2 100 m³/h. La longueur maximale de tuyauterie autorisée va de 35 à 70 mètres au total selon l’unité extérieure choisie dans la gamme. Le branchement de plus de 4 unités intérieures par unité extérieure n’est pas possible. Les unités intérieures peuvent être murales, en consoles, gainables ou en cassette 2 ou 4 voies. Leur puissance frigorifique varie entre 1 et 4,5 kW et leur puissance calorifique entre 1,1 et 6,4 kW. Chaque unité intérieure accepte une longueur de tuyauterie de 25 m. Le prix des groupes de condensation (unité extérieure) est entre 2 285 et 4 150 €, celui des unités intérieures de 585 à 2 235 € pièce.

Climatisation

Pour plus d’informations sur le choix des systèmes splits.

Chauffage et refroidissement des locaux par système à Débit de Réfrigérant Variable

Parmi les systèmes multi-split, un système permet une économie d’énergie en réalisant le transfert de chaleur entre les zones aperditives et déperditives d’un même bâtiment : il s’agit des installations à « Débit de Réfrigérant Variable (DRV) ».

Illustration installations à "Débit de Réfrigérant Variable (DRV)".

Attention : tous les systèmes DRV ne disposent pas de cette possibilité. Il faut que chaque unité intérieure puisse travailler aussi bien en froid (= évaporateur) qu’en chaud (= condenseur) et que le système organise le transfert de l’un vers l’autre. Cette version de DRV est d’ailleurs 40 % plus chère que la version qui ne peut faire que du chaud ou que du froid, alternativement.

Cette variante, dite « à récupération d’énergie », est particulièrement intéressante si l’on prévoit des apports internes élevés durant l’hiver : salle informatique, locaux intérieurs, … La chaleur extraite pourra être restituée vers les locaux demandeurs en façade. Elle peut être intéressante également en mi-saison (façades d’orientation différentes).

Ce potentiel augmente également si, au lieu de prendre une structure classique rectangulaire (bureaux en façade et couloir central), une structure carrée avec beaucoup de locaux internes est décidée, ou si des étages enterrés en sous-sol sont programmés.

Climatisation 

Pour plus d’informations sur le choix des systèmes à DRV.

Chauffage et refroidissement des locaux par ventilo-convecteurs réversibles 2 tubes/2 fils

Schéma de principe ventilo-convecteurs réversibles 2 tubes/2 fils.

Une pompe à chaleur Air/Eau réversible, souvent placée en toiture, alimente en chaud ou en froid le circuit hydraulique du bâtiment, jouant le rôle de chauffage central et de groupe de froid. Le circuit de distribution est constitué de 2 canalisations calorifugées véhiculant l’eau glacée et l’eau chaude. Des ventilo-convecteurs réversibles 2 tubes/ 2 fils émettent l’action calorifique vers l’air des locaux, en apportant si nécessaire un appoint de chaleur électrique direct lorsque les conditions de fonctionnement des locaux sont trop différentes. L’air neuf est apporté et traité par un réseau indépendant.

La régulation de la PAC et le « change over » (basculement du mode chaud au mode froid) sont basés sur la température extérieure. Il est indispensable de prévoir une plage neutre importante entre les températures de basculement pour éviter des alternances trop fréquentes. En effet, le basculement génère une destruction d’énergie importante : l’ensemble de l’eau contenue dans le circuit hydraulique passe d’eau glacée (8 °C) à eau de chauffage (35 °C) ou l’inverse. Idéalement, il y a deux basculements par jour en mi-saison : de chaud en froid dans la journée, et de froid en chaud la nuit.

Avantages

  • Économie d’investissement puisque d’une part il s’agit d’un réseau 2 tubes et pas 4, et d’autre part une seule machine fournit l’eau chaude et l’eau glacée au départ d’une seule source d’énergie, ce qui simplifie l’installation.
  • Souplesse du système. La PAC peut être remplacée par une chaudière classique et une machine frigorifique sans apporter de modifications importantes au réseau de distribution. L’inverse est tout aussi vrai et cette solution est donc à envisager lors de la rénovation des systèmes de traitement d’air par ventilo-convecteurs.
  • Les ventilo-convecteurs 2 tubes/ 2 fils permettent une régulation adaptée à chaque local. Il s’agit donc d’une souplesse supplémentaire par rapport aux appoints centralisés.

Désavantages

  • L’utilisation des résistances électriques d’appoint des ventilo-convecteurs se fait au tarif de jour est donc onéreuse. Une bonne régulation de la température de l’eau dès la sortie de la PAC est très importante pour réduire ces coûts. Pour des raisons de confort, il est d’ailleurs plus fréquent, en Belgique, d’installer des réseaux 4 tubes. Mais dans ce cas, le fonctionnement ne peut se faire avec une seule machine réversible.
  • L’installation ne fournit pas d’air neuf. Il faut donc l’accompagner par une centrale de traitement d’air et un réseau de distribution pour l’alimentation en air hygiénique. La centrale de traitement d’air peut disposer d’un récupérateur d’énergie sur l’air extrait et être alimentée en chaleur par la PAC.

Généralement, les systèmes réversibles amènent à un surdimensionnement de la puissance de chauffage pour pouvoir assurer la charge frigorifique. Or, il est intéressant d’économiser l’énergie électrique durant les périodes de chauffe (tarifs pleins). Une économie possible consiste à détourner le circuit de retour des ventilo-convecteurs vers un échangeur à plaque afin de préchauffer l’eau chaude sanitaire. Ce détour limite le surdimensionnement et permet une économie de près de 50 % sur la production d’ECS (campagne de mesure réalisée en France dans l’hôtellerie).


Chauffage et refroidissement des locaux par pompes à chaleur sur boucle d’eau

Description du principe

Schéma principe pompes à chaleur sur boucle d'eau.

La technologie des PAC sur boucle d’eau s’établit autour des trois composantes du système :

  • les PAC ou climatiseurs réversibles (Eau/Air) assurent le chauffage ou le refroidissement des locaux suivant les besoins thermiques de ceux-ci,
  • la boucle d’eau, circuit d’eau fermé raccordé aux climatiseurs réversibles et aux échangeurs de chaleur, assure la circulation d’énergie thermique dans le bâtiment,
  • une chaudière et une tour de refroidissement assurent le maintien en température de la boucle d’eau en apportant ou en évacuant les calories suivant le bilan thermique global du bâtiment.

La boucle d’eau assure ainsi le transport d’énergie entre l’ensemble des locaux et le transfert de chaleur des zones aperditives du bâtiment (zones internes, salles de réunion, locaux informatiques, locaux sur façade ensoleillée) vers les zones déperditives (locaux périphériques, locaux sur façades à l’ombre).

Elle permet donc d’effectuer en permanence le calcul simultané des besoins thermiques globaux du bâtiment et, en contrôlant sa température, de puiser ou de rejeter, sur l’extérieur, l’énergie nécessaire à l’équilibre thermique de l’immeuble.

Consommation

Comme tout système avec échangeur direct (l’air du local passe directement dans l’évaporateur), la très basse température de l’échangeur génère un supplément de consommation non négligeable lié à la déshumidification de l’air ambiant (à ce titre, le ventilo-convecteur dont l’échangeur est dimensionné sur base d’un régime 12 °C – 17 °C est nettement plus performant).

L’évacuation des condensats est d’ailleurs un point délicat. Si elle ne peut être gravitaire, elle est confiée à une pompe de relevage intégrée dans l’appareil. Généralement, les pompes prévues par le constructeur sont moins bruyantes que celles ajoutées sur place par l’installateur. Autant donc le prévoir dès la sélection de la machine.

Régulation

Au niveau des pompes à chaleur, une zone neutre de 2 à 3 °C doit être prévue dans la consigne entre chauffage et refroidissement.

Un commutateur manuel peut permettre à l’utilisateur de sélectionner la vitesse de rotation du ventilateur (et donc le niveau de bruit qu’il accepte de subir !)

Mais c’est au niveau de la boucle que la régulation doit être la mieux étudiée pour optimaliser la performance énergétique. Plusieurs scénarii sont possibles. Par exemple, on peut laisser flotter la température entre 18 et 32 °C (autrement dit, la chaudière s’enclenche sous les 18 °C et la tour s’enclenche au-dessus des 32 °C). La récupération de chaleur entre locaux demande d’ailleurs un large différentiel, mais il ne faut pas pour autant pénaliser le COP des machines ! En plein hiver et en plein été, il faudra étudier quelle est la température qui optimalise au mieux l’ensemble.

Ainsi, si on diminue l’écart entre ces 2 seuils d’enclenchement, le COP des pompes à chaleur sera amélioré, mais la consommation énergétique au niveau central sera accrue.

Exemple.

Dans la galerie commerciale, il est possible que les locaux doivent être réchauffés le matin (relance après la nuit) et refroidis l’après-midi suite à l’éclairage et à l’occupation. Idéalement, c’est alors l’inertie de la boucle qui devrait jouer, inertie renforcée par un ballon de stockage placé en série sur la boucle.

Durant l’après-midi, les machines frigorifiques chargent la boucle et son stockage. Le lendemain, en fin de nuit (pour profiter du tarif de nuit plus avantageux), les locaux sont remis en température avant l’arrivée des occupants… et le stockage est déchargé, sans consommation de la tour.

À noter : pour réduire l’encombrement du ballon de stockage, on peut envisager de le remplir avec des nodules eutectiques dont la température de solidification se situe dans la zone neutre de fonctionnement de la boucle.

Si un de nos lecteurs dispose d’une installation de ce type dans son bâtiment, nous serions heureux de participer à la mise au point de la régulation de ce système et de pouvoir en transcrire ici les résultats, en vue d’une prochaine version d’Énergie+ ! Notre adresse électronique est la suivante : energieplus@uclouvain.be.

Domaine d’application

D’une manière générale, ce système est adapté aux bâtiments dont on prévoit que les charges thermiques seront en opposition (façades d’orientation différentes). On pense tout particulièrement aux bâtiments ayant des salles aveugles avec fort taux d’éclairage, forte occupation, … et à la fois des locaux en façade Nord avec fortes déperditions (fort taux de vitrage).

Il permet une régulation individualisée. Il permet une sensibilisation de l’utilisateur final puisque la consommation propre des PAC installées dans ses locaux peut lui être facturée.

Mais il ne contrôle pas l’hygrométrie de l’air du local. La nuisance acoustique est parfois importante. Et l’utilisation d’énergie électrique aux heures pleines reste coûteuse.

De plus, aujourd’hui il entre en concurrence avec le système à « Débit de Réfrigérant Variable », (qui lui même dans une de ses variantes peut aussi comporter une boucle d’eau reliant les différentes unités extérieures).

Ce système est fréquemment utilisé dans les centres commerciaux. Chaque local est livré nu de tout équipement, sinon de la présence de la boucle et de raccordements en attente. Le commerçant investit dans une ou plusieurs machines réversibles et « pompe » le chaud ou le froid qu’il souhaite sur la boucle. On peut facilement mesurer la part individuelle de la consommation de chaque appareil dans le bilan total.

Étude de cas

Dans une galerie commerciale de Liège, un très gros circulateur à vitesse variable avait été mis sur la boucle d’eau. Sa régulation se faisait classiquement en fonction de la pression d’eau du réseau. Or les échangeurs des pompes à chaleur sont toujours alimentés à débit constant pour éviter le gel des évaporateurs. Donc l’eau tournait à grande vitesse et le Delta T° sur la boucle était seulement de 2 K, départ-retour.

Il a été imaginé de moduler la vitesse de rotation du circulateur en fonction du maintien d’un Delta T° de 6 K. Ainsi, si la demande augmente, le delta de T° augmente et la vitesse est adaptée. La température est maîtrisée et le gel est impossible.

Une chute drastique de la consommation électrique en a résulté.

Avantages du système

  • Régulation de température individualisée.
  • Conception simple, relativement facile à mettre en œuvre.
  • Système intéressant du point de vue énergétique en intersaison ou plus exactement lorsque les charges dans les différents locaux sont opposées et que la boucle est proche de l’équilibre thermique.
  • Les PAC sont relativement fiables à condition de respecter les débits d’air et d’eau.
  • Extension facile de l’installation.
  • Facilité d’installation, de démontage et de réemploi des PAC suivant l’occupation des locaux ou des réparations.
  • Sensibilisation de l’utilisateur final aux économies, car il supporte directement les frais électriques liés au fonctionnement des PAC installées dans ses locaux.
  • Réduction de la puissance de la production thermique centralisée.

Désavantages

  • Pas de contrôle de l’hygrométrie de l’air du local.
  • Problème de niveau sonore : puissance acoustique non négligeable, donc nécessité de traitement spécifique.
  • Besoin de raccordement des condensats vers l’égout.
  • Les économies sont relativement modestes. Les PAC consomment essentiellement de l’énergie électrique au qui ne peut être différée en heure creuse.
  • Le risque de panne ou d’intervention sur la boucle d’eau, sur les dispositifs centralisés, rend le système inquiétant pour les utilisateurs de climatisation critique (locaux informatiques, salles de fabrication…). Cette crainte conduit à séparer ces installations de l’installation principale ou à en dédoubler les équipements en cas de problèmes.

Choix des PAC réversibles

Ces PAC se présentent essentiellement sous trois formes :

  • Le modèle console en allège, installé contre les murs extérieurs, de préférence sous la fenêtre : il peut être carrossé ou bien intégré dans un habillage de façade ; il doit être installé dans le local à traiter et l’habillage de l’appareil doit faire l’objet d’un renforcement acoustique.
  • Le modèle plafonnier horizontal, installé généralement en faux plafond : il est conseillé d’installer la PAC à l’extérieur du local à traiter (circulation de bureau par exemple) et d’assurer le raccordement au diffuseur de soufflage par l’intermédiaire de gaines isolées thermiquement et phoniquement.
  • Le modèle vertical type armoire, installé dans un placard technique : un réseau de gaines de soufflage et éventuellement de reprise, assure la liaison entre la PAC et le local à traiter.

L’installation doit permettre de maintenir un accès aisé à l’appareil pour les opérations d’entretien. Les opérations de maintenance courantes consistent en nettoyage ou remplacement des filtres (opérations pouvant être effectuées par du personnel non qualifié).

Les opérations d’entretien, de réparation ou de remplacement de composant électrique (principalement le moteur du ventilateur de soufflage) sont possibles depuis les panneaux d’accès démontables.

En cas d’intervention sur le circuit frigorifique, il est recommandé de procéder à un échange standard de l’appareil et d’assurer la réparation en atelier.

La sélection doit être faite en fonction des besoins thermiques des locaux et de leur application. Il est souvent préférable de sélectionner un appareil d’une puissance légèrement inférieure aux besoins déterminés pour les conditions les plus défavorables; cela permet une meilleure adaptation de la puissance à la charge thermique moyenne à combattre et allonge les durées des cycles de fonctionnement de l’unité en évitant des inversions de cycle trop fréquentes.

Enfin, un réseau d’évacuation des condensats est à raccorder sur chaque appareil.
On sera attentif à la bonne isolation phonique du compresseur puisqu’il est ici situé dans le local !

Il existe des versions en apparent et des versions destinées à être insérées dans un habillage (en allège ou en faux plafond). S’il peut être placé dans un local technique attenant et relié au local par une gaine, l’installation sera nettement moins bruyante. La maintenance en sera également facilitée.

On veillera tout particulièrement à éviter la transmission des vibrations de l’appareil au bâtiment par l’usage de silentblocs ou de semelles antivibratiles. L’usage de raccordements flexibles est également favorable sur le plan acoustique et facilitera le démontage de l’appareil (prévoir des vannes d’isolement étanches).

Choix de la boucle d’eau

La boucle d’eau doit être un circuit d’eau fermé, préféré à un circuit d’eau ouvert en raison des problèmes d’embouage, d’entartrage et de corrosion. Ce circuit d’eau à température tempérée (15 °C à 35 °C environ) reçoit les composantes suivantes :

  • Les pompes de circulation prévues, l’une en fonctionnement normal, l’autre en secours, afin d’éviter tout risque de panne totale.
  • Une filtration de l’eau à réaliser au niveau des pompes de circulation et près des climatiseurs.
  • Un échangeur d’évacuation des calories, généralement du type échangeur à plaques, équipé d’un by-pass permettant les opérations de nettoyage, raccordé à un réseau d’eau de refroidissement.
  • Un réchauffeur d’eau équipé d’un by-pass.
  • Un réseau de distribution en tubes d’acier noir non calorifugé (sauf à l’extérieur); néanmoins la T°C modérée de l’eau permet l’utilisation de tuyauteries en PVC.
  • Des vannes d’isolement et d’équilibrage du réseau et, notamment, pour chaque raccordement à un climatiseur; ce raccordement sera réalisé en tuyauterie flexible facilitant l’installation, évitant les transmissions de vibrations et simplifiant les opérations de maintenance.
  • Des accessoires tels que vases d’expansion, vannes de vidange et systèmes de purge d’air (manuel et automatique), ainsi qu’un système d’appoint d’eau.

Choix de l’échangeur « froid »

L’échangeur froid doit permettre l’évacuation des calories excédentaires de la boucle d’eau. Différents systèmes sont utilisés :

  • Raccordés à la boucle d’eau par l’intermédiaire d’un échangeur à plaques, on trouve fréquemment des tours de refroidissement à circuit ouvert ou un réseau d’eau de pompage dans la nappe phréatique, dans la mer, une rivière, un lac,…
  • Raccordés directement à la boucle d’eau, on utilise des tours de refroidissement à circuit fermé ou des appareils appelés « dry-cooler ».

Le choix entre ces différents appareils s’établit en fonction de leur existence (eau de mer, nappe phréatique…), des critères dimensionnels (tours de refroidissement ouvertes ou fermées) et des contraintes acoustiques.

Il faut noter que l’utilisation de « dry-cooler » nécessite de relever la température de la boucle d’eau en été à 40 °C environ, ce qui oblige à l’emploi de PAC adaptées.

Choix de l’échangeur « chaud »

Il doit permettre d’apporter les calories nécessaires au maintien en température de la boucle d’eau. Les sources de chaleur pouvant être utilisées sont variées :

  • chaufferie alimentée au gaz ou au fuel
  • sous-station de chauffage urbain
  • PAC Air/Eau sur l’air extérieur

L’utilisation d’un échangeur de transfert d’énergie n’est pas forcément nécessaire lors de l’utilisation de chaufferies ou de sous-stations de chauffage urbain.

L’utilisation d’une nappe phréatique nécessite de descendre le niveau de T°C de la boucle d’eau, en hiver, à 12 °C environ, ce qui oblige à l’emploi de PAC adaptées et de calorifuger tout ou partie du réseau de distribution.

On trouvera dans le Tome 4 de la collection Climatisation et conditionnement d’air de J. Bouteloup différents schémas de montage des installations.


Le chauffage de l’eau chaude sanitaire

Ici encore, l’usage de la pompe à chaleur en remplacement des chauffe-eau électriques pour la préparation de l’ECS paraît logique, d’autant plus que le bilan de la pompe à chaleur en été est très performant.

Et cette fois, l’usage d’une installation électrique peut se justifier par l’arrêt possible de l’installation de chauffage du bâtiment. Mais la PAC aura bien du mal à fournir les 60° demandés dans le ballon d’eau chaude (température demandée depuis les mesures anti-légionnelles). Un préchauffage à 45 °C convient mieux à la PAC. Ceci sous-entend le placement d’un deuxième ballon en série pour rehausser la température à 60 °C.

Finalement, PAC + ballon de préchauffage : l’investissement paraîtra fort élevé par rapport à une simple résistance électrique…

Eau chaude sanitaire 

Pour plus d’informations sur le choix des PAC pour le chauffage de l’eau chaude sanitaire.

Les groupes de préparation d’air des bâtiments tertiaires

Du chaud et du froid par le même équipement

Une des applications les plus courantes de la PAC est l’alimentation en chaud et en froid des groupes de préparation d’air par des installations réversibles Air/Air. Ces installations sont très avantageuses puisqu’un seul appareil réversible assure deux fonctions pour un investissement initial raisonnable. La performance de la pompe à chaleur est élevée puisque les températures demandées sont faibles.

Concrètement, une pompe à chaleur est couplée à un caisson de traitement d’air classique, un des échangeurs de la PAC étant dans le caisson, l’autre étant à l’extérieur.

Exemple de modèle disponible sur le marché :

Modèle 1

Puissance frigorifique nominale

kW 13,5

Puissance calorifique nominale

kW 14,55

Débit d’air maximal

m³/h 2 400

Pression acoustique

dB(A) 65

Réfrigérant

R 22

Hauteur
Largeur
Longueur

mm
mm
mm
485
1 022
1 261

Poids net

Kg 88

Prix

5 085

Des puissances plus importantes sont bien sûr possibles et suffisantes pour remplacer les installations traditionnelles.

En été, la pompe à chaleur fonctionne comme unité de climatisation classique, la batterie placée dans le caisson constituant l’évaporateur et la batterie extérieure le condenseur. On peut atteindre un COP saisonnier de réfrigération de l’ordre de 3. Attention, le fonctionnement en détente directe entraîne des températures très basses dans l’échangeur et donc une déshumidification de l’air parfois exagérée par rapport aux besoins. En hiver, le cycle est inversé et la batterie interne devient condenseur tandis que l’échangeur externe joue le rôle d’évaporateur. Le COP varie alors selon la température externe, le dégivrage et le besoin d’appoint électrique. En intégrant ces divers auxiliaires, on atteint un COP saisonnier de l’ordre 2,5.

Une gestion délicate lors du dégivrage

Une difficulté reste : le chauffage de l’air est sans inertie (par opposition à un chauffage du sol ou d’un ballon d’eau). Donc, lors des périodes de dégivrage de l’évaporateur, de l’air froid risque d’être pulsé sur les occupants. L’arrêt de la pulsion de l’air étant difficile, une solution peut consister à travailler avec des pompes à chaleur modulaires. Quand un module dégivre, il s’arrête et un autre module produit.

Récupérer sur l’air extrait ?

Pour améliorer l’installation, il est possible de faire passer l’air extrait par l’échangeur extérieur lorsqu’il joue le rôle d’évaporateur. La récupération de chaleur à l’échangeur sera améliorée du fait de la grande différence de température entre l’air vicié et la basse température d’évaporation du fluide frigorigène en hiver. Cet apport de chaleur à l’évaporateur permettra de remonter la température d’évaporation et de diminuer le dégivrage, donc d’améliorer le COP.

La sélection de la puissance de la pompe à chaleur dépend du bilan thermique été et du bilan thermique hiver. Dans les secteurs commercial et tertiaire, les besoins frigorifiques en été sont souvent supérieurs aux besoins calorifiques en hiver. La pompe à chaleur sera alors surdimensionnée pour le régime de chauffe et le chauffage d’appoint ne sera alors que rarement nécessaire.


Récupération de chaleur sur l’air des locaux humides (piscines, buanderies, …)

Le traitement des locaux humides

Les bâtiments où une humidité importante est produite, et donc dans lesquels un contrôle de l’hygrométrie aura lieu (piscines, blanchisseries, cuisines industrielles,…), sont propices à l’usage d’une PAC : toute l’énergie de condensation de la vapeur d’eau peut être réutilisées sous forme de chaleur à haute température (chauffage de l’air, chauffage de l’eau chaude sanitaire). Il semble que la difficulté provienne de l’excédent des apports en mi-saison et en été.

Les piscines constituent une application particulière des PAC

Les piscines consomment beaucoup d’énergie pour diminuer le taux d’humidité et éviter ainsi les condensations sur les parois (particulièrement les surfaces vitrées). D’autre part des besoins de chaleur importants sont liés à la température élevée de l’air pour assurer pour le confort des baigneurs. Une humidité maximum de 75 % est à maintenir dans les piscines bien isolées avec pulsion d’air chaud au pied des vitrages. Mais l’humidité maximum peut descendre à 65 % si les parois sont mal isolées, et donc froides. À noter qu’avec les nouveaux vitrages isolants à basse émissivité, ce critère de pulsion au pied des vitrages n’est plus obligatoire.

Deux systèmes de PAC sont possibles pour ce type de bâtiment.

Pompe à chaleur en déshumidification

Le principe consiste à faire passer l’air à du local à déshumidifier sur l’évaporateur de la PAC. Il y est refroidi et surtout déshumidifié. L’air passe ensuite, mélangé à l’air frais hygiénique, sur le condenseur où il est réchauffé. Le condenseur de la PAC permet le chauffage de l’air ambiant, mais aussi le chauffage partiel de l’eau sanitaire (piscine, douches) particulièrement en mi-saison.

La solution est intéressante. Toutefois, au creux de l’hiver, la déshumidification ne fournit pas assez de chaleur et la pompe à chaleur ne suffit pas à elle seule à assurer tous les besoins énergétiques. Un chauffage d’appoint est donc nécessaire et le COP global est diminué.

Il faut se rendre compte que dans cette application précise le COP de la PAC n’est plus le rapport entre les kW thermiques utiles disponibles au condenseur et les kW absorbés par le compresseur. En fait,

Ceci est dû au fait que la chaleur sensible prélevée à l’air vicié par l’évaporateur lui est rendue par le condenseur et ne doit donc pas être considérée comme chaleur utile dans le calcul du COP. La source froide recherchée ici est la chaleur latente de condensation de l’humidité. On pompe l’énergie sur la déshumidification, pas sur le refroidissement de l’air. En fait, plus le besoin de déshumidification est important (forte activité dans la piscine, faible isolation,..), plus l’énergie puisée à l’évaporateur sera importante et plus le COP global de l’installation sera élevé.

Pour le calcul des performances de l’installation, il ne faut pas oublier de prendre en compte l’influence des heures de non-occupation, qui entraînent un taux d’évaporation plus faible et un COP instantané plus bas. On peut envisager un COP global de 2,5. (Valeur avancée par Paul H.Cobut, Pompes à chaleur, Atic – cours de perfectionnement).

Remarque : ce type d’installation est intéressante dès qu’il s’agit de climatiser un local où il y a une forte production de vapeur (bassins de toutes sortes, pressings, séchoirs à linge, certains locaux industriels ou laboratoires,…).

Pompe à chaleur – récupérateur

Dans ce cas, la PAC prélève une partie de l’énergie dans l’air extérieur et une autre partie dans l’air extrait. Contrairement au système précédent, l’évaporateur puisera l’énergie sur le refroidissement de l’air mélangé.

Un hygrostat raccordé à une sonde extérieure permet le dosage de l’air neuf. La PAC sera dimensionnée pour réaliser à elle seule l’effort thermique jusqu’à 0 °C environ. En dessous de cette température, un appoint sera nécessaire. Le COP de la PAC varie en fonction de la température de l’air extérieur.

Un COP global annuel de 3,3 est possible, ce qui représente un gain de 30 % par rapport à la PAC en déshumidification. Les déperditions plus importantes dues à l’introduction d’air neuf en plus grande quantité que dans l’autre système pour assurer la déshumidification représentent un accroissement des besoins calorifiques de moins de 10 % sur l’année (valeurs avancées par Paul H.Cobut, « Pompes à chaleur », Atic – cours de perfectionnement).

Il faut noter toutefois que ces résultats sont basés sur un taux d’hygrométrie tolérable assez élevé grâce à l’usage d’un vitrage très isolant. Dans le cas d’un vitrage moins isolant, le taux d’humidité acceptable est plus bas. Il faut donc un plus grand effort de déshumidification, ce qui favorise le premier type d’installation et la différence de performance entre les deux systèmes diminue.


Récupération de chaleur sur des rejets thermiques

Dans de nombreuses entreprises, une grande quantité d’énergie est gaspillée dans les extractions d’air ou de gaz. Très souvent, le volume extrait et la température du fluide sont quasi constants, ce qui simplifie l’installation. Une bâche tampon sera installée sur l’évaporateur en cas de variation importante de ces paramètres. Il en sera de même sur le condenseur en cas de charge thermique variable.

Ceci dépasse le cadre d’un bâtiment tertiaire. Et pourtant, des applications spécifiques sont parfois possibles avec une très bonne rentabilité. Parmi celles-ci, les supermarchés avec rayon surgelés conviennent particulièrement bien. Il est possible, par exemple, que la chaleur extraite des frigos soit utilisée pour chauffer le magasin ou le rideau d’air chaud à l’entrée du magasin (= condenseur de la PAC ainsi créée). En été, un clapet rejettera la chaleur vers l’extérieur.

Récupération de chaleur dans la grande distribution

Les supermarchés sont actuellement équipés d’un nombre de plus en plus important de meubles frigorifiques qui rendent parfois désagréable l’ambiance des allées empruntées par les clients.

Monsieur Marc Van Damme de la société alimentaire Delhaize a mis au point, en collaboration avec un fabricant espagnol de meubles frigorifiques verticaux, un système qui récupère la chaleur de l’unité de condensation du réfrigérateur du circuit frigorifique pour, en hiver, chauffer les allées des meubles frigorifiques.

Principe de fonctionnement

L’unité de condensation est installée sur le haut du meuble. La chaleur produite par le condenseur est récupérée et en hiver, celle-ci circule à l’arrière du meuble et est insufflée par la partie inférieure de celui-ci via une grille linéaire en inox. En été, cette chaleur est évacuée à l’extérieur du magasin par l’intermédiaire d’un conduit.

Conséquences

L’influence de cet équipement sur le chiffre d’affaires est évidente. En effet, une température douce aux rayons crémerie ou boucherie incite le client à faire ses achats dans une température confortable. Cette nouvelle technique permet également d’augmenter le confort pour l’ensemble du personnel qui doit régulièrement approvisionner ces linéaires. Cependant les gains réalisés au niveau des coûts d’exploitation amortissent facilement l’investissement.

Grâce à cette technique, l’air chaud à 40 °C ainsi récupéré et insufflé par le bas du meuble permet de maintenir dans l’allée une température de 23 °C. Ce qui est appréciable en hiver. Un système de sondes, installées en des points stratégiques du point de vente, permet un fonctionnement automatique du clapet été/hiver.

Un chauffage d’appoint est nécessaire en cas de températures extrêmes, pour le rideau d’air chaud à l’entrée du magasin, très « énergivore » et pour les zones éloignées non équipées de linéaires.

Découvrez cet exemple de PAC dans un supermarché de la région d’Anvers.

Régulation des pompes à chaleur

Régulation des pompes à chaleur


Fonctionnement monovalent

Dans un fonctionnement monovalent, la PAC représente l’unique producteur de chaleur et couvre tous les besoins en énergie de chauffage du bâtiment, c’est pourquoi la température maximale possible du système de chauffage est fonction de la température maximale autorisée en sortie du condenseur.


Fonctionnement bivalent

PAC domestique mono-énergétique

La petite PAC de chauffage domestique est disponible de série. Par exemple, pour une maison familiale très isolée dont les besoins thermiques maximums se montent à 8 kW, une PAC compacte de 4 kW de puissance thermique (1.3 kW au compresseur) fonctionnant en mode bivalent peut couvrir près de 70 % des besoins de chauffage annuel.

La partie centrale de ce genre d’appareils présente une unité compacte composée d’un compresseur et d’un condenseur aux dimensions réduites. Ce genre d’appareil se branche sur les réseaux de distribution de chaleur comme les chaudières classiques. Le but des fournisseurs est d’offrir aux acheteurs et aux installateurs une pompe à chaleur qui soit pour eux aussi simple d’utilisation que n’importe quel autre générateur de chaleur.

Fonctionnant en général avec l’air extérieur comme source froide, ces modèles sont universels et demandent des frais d’installation relativement limités (conduites d’amenée d’air,.). Ils peuvent donc être adaptés à des réseaux de distribution existants lors du remplacement d’une chaudière.

Un chauffage électrique d’appoint permet de couvrir les périodes de pointe. Cet appoint peut être constitué d’une résistance installée au départ du réseau de distribution. Ce fonctionnement « monoénergétique » engendre des frais d’investissement peu élevés, mais une dégradation du rendement énergétique.

Un enclenchement manuel est souvent moins gourmand en énergie qu’un enclenchement automatique. De plus, par grand froid, il vaut mieux renoncer à l’abaissement nocturne de la température afin d’éviter une forte demande d’énergie matinale (qui requiert une forte contribution de l’appoint électrique direct). C’est la qualité de la régulation qui diminue d’autant …

Fonctionnement bivalent-parallèle

On parle de fonctionnement bivalent lorsque, en plus de la PAC, un producteur de chaleur supplémentaire est à disposition (en général une chaudière). « Parallèle » signifie qu’en dessous du point de bivalence, les deux producteurs de chaleur travaillent parallèlement. Avec un point de bivalence situé à 50 % de la puissance de dimensionnement, 80 à 90 % du besoin annuel de chaleur peut être couvert par la pompe à chaleur. Les conditions suivantes doivent être remplies :

  • La température de retour maximale du système de chauffage ne doit pas dépasser la température maximale admise à l’entrée du condenseur.
  • La température de départ du système de chauffage ne doit pas excéder, au point de bivalence, la température maximale de sortie du condenseur.
  • Le système de raccordement hydraulique et les débits doivent être réglés de telle façon que la puissance puisse être délivrée à n’importe quelle phase du fonctionnement et que la température maximale admise de sortie du condenseur ne soit jamais dépassée.

Fonctionnement bivalent-alternatif

Le passage du point de bivalence entraîne la commutation d’un producteur de chaleur à l’autre. On obtient ainsi des conditions de fonctionnement clairement définies et facilement compréhensibles, ce qui n’est pas le cas pour le bivalent-parallèle. Ce système implique les conditions suivantes :

  • La température de départ du système de chauffage, au point de bivalence, ne doit pas dépasser la température maximale de sortie du condenseur.
  • Lors de la commutation, le producteur de chaleur superflu doit être chaque fois déconnecté du système hydraulique.
  • La commutation inverse s’effectue en respectant un écart de T° réglable (sécurité).

Régulation de l’accumulation de chaleur

Deux types d’accumulateur de chaleur

Le condenseur ne contient qu’une très faible quantité d’eau et son comportement ressemble à celui d’un chauffage instantané. Un accumulateur à la sortie du condenseur est donc souvent indispensable. On distingue l’accumulateur tampon, mal nécessaire pour garantir une fréquence d’enclenchement maximale admissible (avec une fréquence d’enclenchement trop importante, on risque une usure prématurée du matériel et la PAC ne donne pas ces meilleurs rendements), de l’accumulateur de chaleur, pour stocker de grandes quantités de chaleur sur une longue période. C’est bien de ce dernier dont nous discutons ici.

La commande et le réglage de la température de sortie du condenseur peuvent se dérouler de manière adaptée ou constante, cela dépend du mode de chargement :

> Dans le cas d’un chargement étagé, l’accumulateur est chargé par étapes, en plusieurs passages avec des températures de sortie du condenseur croissantes. L’avantage est de pouvoir travailler une partie du temps avec une température de sortie du condenseur assez basse, ce qui améliore le COP de la PAC.

Pour diminuer encore cette température en conservant un transfert de chaleur constant, on multiplie le débit par 2 pour autoriser un écart de température 2 fois moins important.

Cette augmentation du débit s’accompagne malheureusement d’un quadruplement des pertes de pressions. L’accumulateur ne peut pas être chargé avec une température finale exacte. Celle-ci varie selon les différences de température choisie à travers le condenseur.

> Lors d’un chargement par stratification, l’accumulateur est chargé en un passage et de manière stratifiée avec une température de sortie du condenseur constante et une différence de température entre l’entrée et la sortie du condenseur variable. La température de consigne du chargement peut être choisie avec précision.

Cette valeur peut être définie selon les conditions météorologiques. Comme la température de sortie du condenseur est constamment élevée, le COP sera moins bon que pour le chargement étagé.

Une fois choisi le type d’accumulateur et le mode de chargement, il faut définir trois points essentiels :

  • La différence de température dans le condenseur, qui détermine le débit et la consommation de courant de la pompe du condenseur.
  • Le point d’enclenchement, mesuré par la sonde supérieure de l’accumulateur et permettant de savoir si l’accumulateur est « vide », ce qui provoque l’enclenchement de la pompe à chaleur.
  • Le point de déclenchement, mesuré par la sonde inférieure de l’accumulateur (ou sonde dans le circuit de retours vers la pompe à chaleur permettant de savoir si l’accumulateur est « plein », ce qui provoque le déclenchement de la pompe à chaleur).

En outre, on peut également prévoir une régulation supplémentaire permettant, en fonction des conditions météorologiques :

  • L’enclenchement et le déclenchement étagé ou par stratification.
  • Le réglage de la température de charge en cas de chargement par stratification.

Les dispositifs de sécurité

Différents dispositifs de sécurité veillent au maintien de conditions d’exploitation admissibles :

  • pressostats Haute (1) et Basse (2) Pression pour le contrôle des valeurs limites dans le condenseur et l’évaporateur,
  • thermostat de surveillance de la température des gaz chauds (3),
  • soupapes de sécurité, points ou membranes de rupture assurant la protection contre les explosions ou les surpressions extrêmes,
  • thermostat de protection du bobinage (klixon) contrôlant la température du moteur électrique (4),
  • pressostats de sécurité pour la pression de l’huile (5) destinée à la lubrification,
  • déshydrateur assurant une protection contre l’humidité et les impuretés dans le fluide (6),
  • regard sur le passage du fluide (7),
  • thermostat de protection antigel évitant l’apparition de givre sur l’évaporateur (8),
  • dispositif de surveillance des flux pour protéger l’évaporateur contre le danger de gel et le condenseur contre le danger de surchauffe (9),
  • bypass « gaz chaud » pour la protection contre le gel dans les PAC air/eau (A),
  • bypass de détente pour démarrage (B).

Ces dispositifs de sécurité doivent absolument fonctionner comme organe de sécurité et jamais comme organe de commande. Une plage suffisamment grande doit toujours être maintenue entre les valeurs de consigne de la commande/régulation et les valeurs du système de sécurité.