Puissance absorbée par les lampes fluorescentes et les auxiliaires


Il est intéressant de connaître la puissance installée d’un luminaire équipé de lampes fluorescentes. En effet, elle ne se limite pas uniquement à la puissance de la lampe. Il faut tenir compte aussi du ballast.

Pour se faire une idée de la valeur de ces puissances totales avec un regard critique au niveau énergétique, on peut se référer à la classification CELMA. CELMA étant établi par une association européenne de fabricant de ballast sur base de la directive européenne 2000/55/CE.

Classification énergétique des ballasts selon CELMA
(Fédération des Associations Nationales de Fabricants de Luminaires et de composants Electrotechniques pour Luminaires de l’Union Européenne).
Type de lampe Puissance de la lampe en W Puissance lampe + ballast (W)
Ballast électronique dimmable Ballast électronique Ballast faibles pertes Ballast standard
T5-E (16 mm) 50 Hz Haute fréquence A1 (pour un dimming à 0 % ou pour un flux de lampe à 100 %)  

A1 (pour un dimming à 75 % ou pour un flux de lampe à 25 %)

A2 A3 B1 B2 C D
14 < 18 < 9.5 < 17 < 19
24 < 28 < 14 < 26 < 28
28 < 34 < 17 < 32 < 34
35 < 42 < 21 < 39 < 42
39 < 46 < 23 < 43 < 46
49 < 58 < 29 < 55 < 58
54 < 63 < 31.5 < 60 < 63
80 < 92 < 47.5 < 88 < 92
T8 (26 mm) 15 13.5 < 18 < 9 < 16 < 18 < 21 < 23 < 25 ≥ 25
18 16 < 21 < 10.5 < 19 < 21 < 24 < 26 < 28 ≥ 28
36 32 < 38 < 19 < 36 < 38 < 41 < 43 < 45 ≥ 45
58 50 < 59 < 29.5 < 55 < 59 < 64 < 67 < 70 ≥ 70
TC Fluocompact à broche 5 4.5 < 8 < 4 < 7 < 8 < 10 < 12 < 14 ≥ 14
7 6.5 < 10 < 5 < 9 < 10 < 12 < 14 < 16 ≥ 16
9 8 < 12 < 6 < 11 < 12 < 14 < 16 < 18 ≥ 18
11 11 < 15 < 7.5 < 14 < 15 < 16 < 18 < 20 ≥ 20

Source : CELMA
(Fédération des Associations Nationales de Fabricants de Luminaires et de composants Électrotechniques pour Luminaires de l’Union Européenne).

*  Pourquoi une lampe de 58 W ne consomme-t-elle plus que 55 W  lorsqu’elle est équipée d’un ballast électronique de classe A2 ?

La présence d’un ballast électronique augmente l’efficacité énergétique d’une lampe. Ainsi, pour un même flux lumineux, une lampe de 58 W ne consommera en réalité que 50 W,  la perte du ballast étant de 5 W.

Remarque : les valeurs de puissance données dans la classe A1 sont très faibles par rapport aux autres classes. Il y a une explication à cela au vu des hypothèses de départ prises.

Pour bien comprendre le mode de détermination des puissances en classe A1, on prend un exemple :

Soit un tube T8 de 36 W; on note que la valeur de la puissance de la lampe + le ballast doit être < 19 W. Les hypothèses de départ sont les suivantes:

  • au réglage à 100 % du flux lumineux, le ballast satisfait au moins aux exigences de la classe A3, soit < 38 W,
  • au réglage à 25 % du flux lumineux, la puissance totale d’entrée est < à 50 % de la puissance au réglage à 100 % du flux lumineux, soit < 19 W,
  • le ballast doit être capable de réduire le flux lumineux à 10 % ou moins du flux lumineux maximum.

On retiendra que la présentation ci-dessus peut prêter à confusion dans le sens où l’on pourrait croire que l’ensemble ballast + lampe de la classe A1 a une très faible puissance.

Il n’en est rien !

Le ballast électronique dimmable est même moins performant que le ballast électronique de la classe A2 lorsqu’il est « dimmé »pour une valeur de 100 % du flux lumineux.

[/fusion_text][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]

Composants d’un luminaire

Composants d'un luminaire

Un luminaire sert à répartir, filtrer ou transformer la lumière des lampes. Il peut être composé de :

  • L’armature :
    permet l’assemblage des différents composants du luminaire (réflecteurs, ventelles, platine, diffuseur,…) et la fixation du luminaire au plafond ou au mur.
  • Le réflecteur :
    réfléchi la lumière émise par la lampe et la dirige selon des directions préférentielles.
  • Les ventelles :
    protègent l’œil des éblouissements en empêchant la vue directe de la lampe.
  • Le diffuseur ou protecteur :
    remplace parfois les ventelles et protège la lampe de l’ambiance. On parle aussi de « vasque ».
  • La platine :
    permet la fixation des auxiliaires électriques (ballasts, starters,…).

L’ensemble des dispositifs chargés de contrôler la lumière émise (réflecteurs, ventelles) est aussi appelé « optique« .


Luminaire intérieur pour tubes fluorescents

Photo luminaire intérieur pour tubes fluorescents - 1.     Photo luminaire intérieur pour tubes fluorescents - 2.

Photo luminaire intérieur pour tubes fluorescents - 3.


Luminaire intérieur pour lampes à décharge

Luminaire « en cloche »

Photo luminaire intérieur pour lampes à décharge.


Exemples de luminaire intérieur pour LED

Luminaire de type « dowmlight »

Photo luminaire intérieur pour LED.

L’alimentation (ou  « driver ») de ce module « downlight » LED n’est pas intégrée. On l’appelle l’alimentation déportée.

Photo alimentation (ou  "driver") pour LED.

À ce niveau, on mesure toute l’ambiguïté de la différentiation du module LED et du luminaire LED. Le module ci-contre qui équipe le luminaire est aussi composé d’une multitude de LED.

Photo luminaire plafonnier composé d’une multitude de LED.

Luminaire plafonnier composé d’une multitude de LED montées sur un support plat. A l’heure actuelle, ce type de luminaire est une alternative au luminaire à tube fluorescent. Il est cependant trop tôt pour mesurer l’impact de ce type de luminaire sur le marché.


Luminaire intérieur pour lampe fluocompacte

Photo luminaire intérieur pour lampe fluocompacte.

Dans ce type de luminaire, le ballast électronique n’est pas intégré. On dit qu’il est déporté ou externe.


Luminaire extérieur

Photo luminaire extérieur.

Le luminaire est soit fixé à un mur via une console, soit posé sur le sol via un mât ou un poteau.

Zonage des commandes

Zonage des commandes


Principe

Le zonage consiste à répartir la distribution électrique et à regrouper les commandes en tenant compte :

  • De la présence d’éclairage individuel : celui-ci retarde l’allumage de l’éclairage général.
  • Des zones de même activité ou même période d’occupation : les appareils d’une même zone sont utilisés en fonction de l’occupation, indépendamment de la zone voisine.
  • De l’éclairage naturel du local : les appareils « côté intérieur » (ou locaux aveugles) sont commandés séparément des appareils « côté vitrages », ces derniers étant enclenchés selon les besoins en complément de l’éclairage naturel.

                       

  • Des activités secondaires : pour les activités se déroulant en dehors des heures normales (nettoyage ou gardiennage), un éclairage réduit suffit souvent amplement.
Exemple.

  • Une ou deux lampes sont seulement nécessaires dans les couloirs d’hôpitaux durant la nuit.

Éclairage de nuit.

Éclairage de jour.

  • Dans un parking, on peut dissocier les heures de pointe et les périodes de circulations intermittentes pour lesquels un éclairage de balisage et de sécurité suffit.

Technologie classique de zonage

Schéma Technologie classique de zonage.

Schéma Technologie classique de zonage.

La mise en œuvre de ces commandes dans une installation existante non adaptée est simple, mais nécessite cependant un recâblage de l’installation avec intégration d’interrupteurs et contacteurs complémentaires.

Une mise en œuvre plus professionnelle dans les bâtiments tertiaires de moyenne voire de grandes tailles est le système à connexion rapide qui révolutionne fortement le monde du câblage structuré en courant fort. A priori, ce type de câblage n’a pas d’influence sur l’aspect énergétique de l’éclairage, mais mérite tout de même d’être signalé.

Le zonage de l’installation d’éclairage accompagné de commandes manuelles ne portera ses fruits que si on obtient la collaboration des utilisateurs. Dans le cas contraire, on doit avoir recours à des dispositifs de commande automatique.


Zonage par adressage

Les nouvelles techniques de zonage, au travers de « l’immotique« , permettent de rendre un bâtiment de moyenne ou de grande importance plus flexible par rapport au changement de configuration des locaux.

Énergétiquement parlant, cette technologie évoluée de zonage des luminaires et des commandes ne change rien par rapport à la technique classique de zonage.


Zonage par programmation / par adressage dans le SmartBuilding

Dans les smartbuilding ou les bâtiments disposant d’immotique pour l’éclairage, la flexibilité est quasi-totale. Chaque sonde, chaque luminaire, chaque interrupteur est un objet (au sens informatique) pouvant être réassocié, reconfiguré en fonction des besoins.

programmation et adressage dans le smartbuilding

L’interrupteur n’est plus un robinet qui coupe ou non mécaniquement la tension dans le réseau de courant fort sur lequel il est physiquement placé. Dans ce cas-ci, l’alimentation électrique des objets est devenue indépendante de leur contrôle : l’ensemble des objets se situe sur un réseau de communication commun de sorte que les objets puissent recevoir des ordres de n’importe quel autre appareil. L’avantage majeur étant que les interactions entre objets peuvent évoluer par simple changement de la programmation.

Par exemple, si les deux pièces dessinées ci-dessus ne venaient à faire qu’un seul plateau, alors, il suffirait de modifier la programmation pour que l’interrupteur A active et éteigne l’ensemble des 32 luminaires ou une partie en fonction de la présence d’éclairement naturel.

Zonage par programmation

Si, au contraire, chaque carré devait-être scindé en 3 espaces, il suffirait de répartir les interrupteurs sans-fils dans chaque pièce et les réassocier informatiquement aux bons luminaires.

Généralement, une fois le système installé, ceci peut être réalisé via des interfaces conviviales de ce type, sans passer par du code informatique.

box domotique de progrmmation

Leynew DL103 – Leynew.com ©

Taux d’éblouissement d’inconfort – UGR

Taux d'éblouissement d'inconfort - UGR


L’éblouissement d’inconfort provenant directement des luminaires doit être quantifié par l’auteur du projet en utilisant la méthode tabulaire d’évaluation du taux d’éblouissement unifié UGR de la CIE.

Sans rentrer dans les détails, le facteur UGR donne une idée de l’éblouissement d’inconfort dans le champ visuel de l’observateur par rapport à la luminance de fond (éblouissement provoqué par l’association de plusieurs luminaires dans un environnement considéré). Ce facteur UGR varie de 10 à 30. Plus la valeur du facteur est élevée, plus la probabilité d’éblouissement d’inconfort est importante.

Des valeurs de référence définissent des classes de qualité :

28 Zone de circulation
25 Salle d’archives, escaliers, ascenseur
22 Espace d’accueil
19 Activités normales de bureau
16 Dessins techniques, postes de travail CAD

Les facteurs suivants jouent un rôle important dans la détermination de la valeur UGR :

  • la forme et les dimensions du local,
  • la clarté de la surface (luminance) des parois, des plafonds, des sols et des autres surfaces étendues,
  • le type de luminaire et de protection,
  • la luminance de la lampe,
  • la répartition des luminaires dans le local,
  • la ou les positions de l’observateur.

Les valeurs de l’UGR données dans la norme EN 12464-1 sont des valeurs maximales à ne pas dépasser.

Exemple.

Type d’intérieur, tâche ou activité Em (lux) UGR Ra Remarques Plan de référence
Classement, transcription 300 19 80 0.85 m du sol par défaut
Écriture , dactylographie, lecture, traitement de données 500 19 80
Dessin industriel 750 16 80
Postes de travail de conception assistée par ordinateur (CAO) 500 19 80 Un contrôle de l’éclairage est recommandé
Salle de conférence et de réunion 500 19 80
Réception 300 22 80
Archives 200 25 80 plans verticaux des rayonnages

On voit tout de suite que l’exigence de confort est moindre (UGR élevé = plus éblouissant) dans des locaux peu fréquentés ou pour des tâches nécessitant moins de concentration visuelle.

Certains fabricants proposent des tableaux simplifiés de détermination des valeurs UGR mais limités à des locaux simples pour une seule famille de luminaires donnée.

Par exemple, le logiciel « Dialux » est capable de calculer l’UGR en un point du plan donné, mais ce calcul prend, néanmoins, beaucoup de temps.

À titre indicatif, la formule de calcul de l’UGR est donnée :

UGR = 8 log (0.25/Lb x Σω/p²)

où :

  • Lp est la luminance de fond exprimée en candela/m² et représente l’éclairement vertical indirect au niveau de l’œil de l’observateur.
  • L est la luminance contenant les parties lumineuses de chaque luminaire dans la direction de l’observateur en candela/m².
  • ωest l’angle solide (stéradian) des parties lumineuses de chaque luminaire au niveau de l’œil de l’observateur.
  • P est l’indice de position de Guth fourni dans des tables spécifiques et représente la position d’un luminaire par rapport à l’axe vertical.

Un problème d’inconfort thermique ou lumineux ? N’hésitez pas à tester notre nouvel outil de diagnostic afin de trouver la solution à votre problématique.

Eclairage indirect

Eclairage indirect

Une surface, le plafond ou les murs sont utilisés comme réflecteur pour diffuser la lumière.

Avantages

La diffusion de la lumière par le plafond et une répartition uniforme des luminances offrent une bonne protection contre  l’éblouissement. En éclairage d’ambiance, l’indirect peut donner des ambiances lumineuses intéressantes.

Inconvénients

Vu que la lumière est réfléchie avant d’atteindre la tâche à éclairer, ce mode d’éclairage a un moins bon rendement et demande, à niveau d’éclairement égal, une puissance installée supérieure à celle du système direct.

L’éclairement dépend fortement des coefficients de réflexion des parois sur lesquelles la lumière est réfléchie.

Il faut donc porter une attention toute particulière à l’entretien des surfaces du local afin que le rendement ne diminue pas au cours du temps.

Ainsi, lors d’un remplacement de luminaires, un rafraîchissement du plafond peut être nécessaire.

De plus les luminaires indirects sont, par leur disposition, fortement soumis aux poussières et autres saletés (insectes morts, …). Cet inconvénient devient délicat lorsqu’une partie translucide permet une diffusion de lumière vers le bas et que les insectes viennent s’y accumuler (cas des luminaires « lumière douce »).

Ce type d’éclairage ne produit pas d’ombre. Il peut donc être monotone et rendre difficile la perception d’objets tridimensionnels.

Enfin, il faut veiller à ne pas utiliser des sources trop lumineuses qui rendent le plafond éblouissant.

Prescriptions relatives à l’éclairage dans les bureaux

Prescriptions relatives à l'éclairage dans les bureaux


Principe

Il est utile de pouvoir connaître les niveaux d’éclairement recommandé suivant l’ergonomie de travail (le confort de la tâche de travail).

Dans la norme NBN EN 12464-1, on établit une nomenclature dans laquelle on retrouve pour différents locaux des bâtiments du tertiaire, entre autres, les paramètres suivants :


Zone de circulation

Type d’intérieur, tâche ou activité Em (lux) UGR Uo Ra Remarques
Circulation et couloir 100 28 0,40 40 1. Éclairement à 0.1 m au dessus du sol,

2. Ra et UGR identiques pour les zones adjacentes,

3. 150 lux s’il y a des véhicules sur l’itinéraire,

4. L’éclairage des sorties et des entrées doit comporter une zone de transition pour éviter les changements rapides d’éclairement entre l’intérieur et l’extérieur de jour ou de nuit,

5. Des précautions sont généralement prises pour éviter l’éblouissement des conducteurs et des piétons.

Escaliers, escaliers roulants, tapis roulants 100 25 0,40 40 Les marches nécessitent un contraste accentué.
Élévateurs, ascenseurs 100 25 0,40 40 Le niveau d’éclairement devant l’ascenseur devrait être de 200 lux.
Allées centrales : occupées 150 22 0,40 60 Éclairement au niveau du sol.

Bureaux

 

Type d’intérieur, tâche ou activité

 

Em (lux) UGR Uo Ra  

Remarques

 

 

Plan de référence

 

Classement, transcription 300 190 0,40 80  

0.85 m du sol par défaut.

 

Écriture , dactylographie, lecture, traitement de données 500 19 0,60 80
Dessin industriel 750 16 0,70 80
Postes de travail de conception assistée par ordinateur (CAO) 500 19 0,60 80  

 

Salle de conférence et de réunion 500 19 0,60 80 Un contrôle de l’éclairage est recommandé.
Réception 300 22 0,60 80
Archives 200 25 0,40 80  

 

Plans verticaux des rayonnages.

Rendement d’un luminaire intérieur

Rendement d'un luminaire intérieur

Le rendement total ηt d’un luminaire est le rapport entre le flux lumineux émis par le luminaire et le flux lumineux des lampes.

Il est d’autant plus bas qu’il y a des éléments (ventelles, globe opalin ou prismatique) devant les lampes afin d’éviter l’éblouissement ou pour favoriser l’esthétique.

Données

Pour voir des exemples de rendement d’un luminaire.

Attention, le rendement total d’un luminaire ne focalisant pas la lumière vers le bas, c’est-à-dire vers le plan de travail (luminaire à diffuseur opalin, lumière douce, …), n’est pas exactement représentatif du rendement utile du luminaire. En effet une partie de la lumière est diffusée vers les murs ou les plafonds. Il en résulte une perte supplémentaire (qui dépend du facteur de réflexion des parois) non considérée dans la notion de rendement total. Pour comparer ce type de luminaire avec les luminaires purement directs, la notion de rendement inférieur η i (quantifiant le flux lumineux dirigé vers le bas) peut donc également être une indication de l’efficacité du luminaire.

La norme Française UTE C71-121 impose aux fabricants de notifier le rendement inférieur ηi et le rendement supérieur ηs sous la forme :

ηi [A à J] + ηs T

Les lettres A à J permettent d’indiquer le type de répartition du flux inférieur. On utilise les lettres A à E pour les distributions intensives et les lettres F à J pour les distributions extensives. La lettre T désigne toujours la composante indirecte.

Le rendement total ηt du luminaire vaut simplement :

ηt = ηi + ηs

Par exemple, un luminaire caractérisé par un rendement UTE de :

0.75 D + 0.10 T

émettra vers le bas avec un rendement lumineux de 75 % et selon un flux assez intensif, et vers le haut avec un rendement lumineux de 10 %. Le rendement lumineux total du luminaire vaut ici 85 %.

Rendement de 100 % ou plus ?

On voit des rendements de luminaires équipés de lampe T5 supérieurs à 100% et des rendements de luminaires à LED de 100 %.

Explication T5 :

La lampe T5 a son flux maximal à 35 °C. La norme impose une température de 25 °C pour les tests en labo. Les fabricants utilisent un facteur de correction pour compenser cette différence de t° (car ils disent qu’à la lampe, il y aura bien les 35 °C.)

Exemple courbe photométrique d’un luminaire pour T5 à rendement > 100%

Explication LED :

Le module LED fait partie du luminaire, il n’y a plus moyen de mesurer la source sans le luminaire donc on met le rendement à 100 %. Si un diffuseur est placé dans un luminaire à LED, la diminution du rendement du luminaire à LED peut être mesurée et le rendement sera alors inférieur à 100 %.

Exemple courbe photométrique d’un luminaire à LED à rendement 100 %

Lampes fluocompactes

Eté 2008 : Brieuc.
22-10-2008 : 1er passage de mise en page [liens internes, tdm, en bref !, rapide passage général sur la mise en page de la feuille] – Sylvie
22-10-2008 : WinMerge ok – Sylvie
30-03-2009 : Application des nouveaux styles de mise en page. Julien.
11-03- 2013 : actualisation, Didier D et Olivier

Comment fonctionne une lampe fluocompacte ?

Une lampe fluocompacte fonctionne comme un tube fluorescent mais le tube est replié de manière à la rendre plus compacte. On trouve sur le marché des lampes fluocompactes à profusion.

Types et caractéristiques générales

Sur le marché, on retrouve trois grandes familles de lampes fluocompactes :

Les lampes dites « économiques » à culot à visser sont les lampes les plus répandues dans le commerce grand public. Elles ont plus une vocation de lampes de rénovation ou de remplacement de la lampe à incandescence. Ces lampes économiques « PL » ont toute leur électronique incorporée et sont de faible puissance. Certains modèles peuvent être dimmables.

Les lampes fluocompactes à culot à broches (plus professionnelles) sont souvent utilisées dans des luminaires de type « Downlight » équipés d’optiques performantes. Ces lampes PL fonctionnent avec ballast non incorporé. Le ballast peut être électronique dimmable ou pas (4 broches) ou conventionnel (2 broches).

Certains constructeurs innovent en présentant des séries de lampes fluocompactes capables d’équiper les luminaires à lampe halogène. Certains modèles sont dimmables.
Voici un récapitulatif des différents modèles efficaces.

Caractéristiques des lampes fluocompactes à broches

Les avantages des lampes à culot à broches sont

  • Un plus grand choix de température de couleur et d’IRC.
  • La possibilité de conserver le ballast (durée de vie de 30 000 h) lors du remplacement de la lampe (durée de vie de 8 000 h, ou 13 000 h avec ballast électronique).

L’utilisation d’un ballast électronique assure un allumage instantané de la lampe, sans clignotement, ni temps d’échauffement.
Certaines lampes fluocompactes encore plus proches des tubes fluorescents atteignent des durées de vie plus importantes : durée de vie moyenne de 10 000 h ou 16 000 h (avec ballast électronique) et durée de vie utile de 5 000 h ou 8 000 h (ballast électronique).
Ces lampes ont été conçues pour être placées en ligne comme les tubes fluorescents, mais pour avoir un flux lumineux plus important pour un même encombrement.
Ce sont les seules lampes fluocompactes qui existent dans la gamme de classe 1A.

Influence de la température ambiante

Le flux lumineux et l’efficacité lumineuse des lampes fluocompactes chutent très fort avec la température ambiante. À tel point que certaines lampes ne s’allument plus en dessous de 0°C ! Il est donc déconseillé de les utiliser à l’extérieur. Néanmoins les lampes enfermées dans un globe ou à 4 tubes résistent mieux au froid que les lampes à 2 tubes, car la chaleur y est mieux conservée.

Lampes dans un globe, lampes à 3 tubes, lampes à 2 tubes.

Utilisant la même technologie que les tubes fluorescents, leur durée de vie dépend du nombre d’allumages et du ballast utilisé.

Données

pour connaitre les caractéristiques des lampes fluocompactes : cliquez ici !

Données

pour consulter un récapitulatif des caractéristiques des différents types de lampe : cliquez ici !

Fin des lampes inefficaces

Petit à petit les lampes inefficaces sont retirées du marché.
Actuellement, seules les lampes fluocompactes les plus performantes (classes A) sont encore disponibles.

Réglementations

Pour en savoir plus sur les classes énergétiques des lampes : cliquez ici !

Données

pour connaitre les caractéristiques des lampes fluocompactes : cliquez ici !

Données

pour consulter un récapitulatif des caractéristiques des différents types de lampe : cliquez ici !

Aires de jeu des terrains de sport

Aires de jeu des terrains de sport


La norme européenne EN 12193 sur l’éclairage des installations sportives définit un certain nombre de paramètres :

Dimension du tracé de jeu, de l’aire principale et de l’aire totale de différents terrains

Type de sport

Tracé de jeu, PA et TA

Surfaces

Longueur (m)

Largeur (m)

Badminton

Tracé de jeu
PA
TA (max)

13,4
18
6,1
10,5

Basket-ball

Tracé de jeu
PA
TA

28
32
15
19

Danse

Escrime

PA
TA(max)

14
18
2
5

Football

Tracé de jeu
PA
TA

30 à 40
44
18,5 à 20
18,6 à 24

Gymnastique

PA

32 à 50 22 5 à 25

Handball

Tracé de jeu
PA
TA

40
44
20
24

Judo

PA
TA

10
17
10
17

Karaté

PA
TA

8
11
8
11

Nettball

Tracé de jeu
PA
TA

30,5
37,5
15,3
22,5

Tennis de table

Tracé de jeu
PA

2,74
9
1,525
4,5

Tennis

Tracé de jeu
PA
TA

23,77
36
10,97
18

Volley-ball

Tracé de jeu
PA
TA

18
24
9
15

L’aire de référence

Les calculs d’éclairement, et les uniformités qui s’en suivent, devront se faire sur base d’un maillage dont les points d’intersection sont appelés « points de maillage ».

Les calculs se font au centre des mailles appelés « points de calculs ».

L’aire de référence couvre l’ensemble des points de maillage.

On trouve deux façons de définir l’aire de référence :

Soit l’aire principale d’un terrain de sport spécifique, possède un certain nombre fixe de points de calcul, en longueur et en largeur. L’aire de référence correspond alors à l’aire principale.

Voici le nombre de points de calcul selon la norme EN 12193 sur l’éclairage des installations sportives.

Type de sport

Tracé de jeu, PA et TA

Surfaces

Nbre de points de calcul…

Longu. (m)

Larg.(m)

…dans la longueur

Dans la largeur

Badminton

Tracé jeu
PA
TA (max)

13,4
18
6,1
10,5
11
11
5
7

Basket-ball

Tracé jeu
PA
TA

28
32
15
19
13
15
7
9

Danse

Escrime

PA
TA(max)

14
18
2
5
11
11
3
3

Football

Tracé jeu
PA
TA

30 à 40
44
18,5 à 20
18,6 à 24
13 à 15
15

Gymnastique

PA

32 à 50 22,5 à 25 15 à 17 9

Handball

Tracé jeu
PA
TA

40
44
20
24
15
15
7
9

Judo

PA
TA

10
17
10
17
11
11
11
11

Karaté

PA
TA

8
11
8
11
9
11
9
11

Nettball

Tracé jeu
PA
TA

30,5
37,5
15,3
22,5
13
15
7
9

Tennis de table

Tracé jeu
PA

2,74
9
1.525
4.5
9 3

Tennis

Tracé jeu
PA
TA

23,77
36
10,97
18
15 7

Volley-ball

Tracé jeu
PA
TA

18
24
9
15
13 9

> soit, il existe une distance fixe entre les points de maillage. L’ensemble des mailles couvrent alors une surface plus grande que la PA qui est l’aire de référence.

Schéma points de maillage.

Ces distances fixes sont données par l’Association Générale des Fédérations Internationales de Sports.

Type de sport Distance entre les points de calculs (m)
Badminton 2
Basket-ball 2
Danse 2
Escrime 2
Football 2
Gymnastique 2
Handball 2
Judo 1
Karaté 1
Nettball 2
Tennis de table 2
Tennis 2 (4 pour TPA)
Volley-ball 2

Il faut alors calculer le nombre de points de calcul et les surfaces de références correspondantes

  • Nombre de points de calcul en longueur (ou largeur) =
    (longueur (ou largeur)de la surface/distance entre les points de calcul) arrondi à l’unité supérieure.
  • Longueur (ou largeur) de la surface de référence =
    nombre de points de calcul en longueur (ou en largeur) x distance entre les points de calcul.

Exemple.

Netball : Longueur de la PA/distance entre les points de calcul = 30,5/2 = 15,25

Nombre de points de calcul en longueur sur la PA = 16

Longueur de référence pour la PA = 16 x 2 = 32 m

Luminance moyenne d’un luminaire

Luminance moyenne d'un luminaire


La luminance moyenne (en cd/m²) d’un luminaire représente sa brillance et quantifie les risques d’éblouissement. Elle est définie en fonction de l’angle de vision du luminaire par rapport à la verticale (angle d’élévation).

Luminaire intérieur, coupe transversale et longitudinale.

Les fournisseurs reprennent ces grandeurs sous forme de tableau ou sous forme d’abaque (dans le plan C90 en trait continu et dans le plan C0 en pointillés). Elles sont données soit pour la totalité du flux lumineux émis par les lampes (en lm), soit ramenés à 1 000 lm. Dans ce dernier cas, il faudra multiplier les valeurs par le flux lumineux des lampes /1 000 pour obtenir les valeurs réelles.

Exemple de fiche technique d’un luminaire :

Exemple de fiche technique d'un luminaire 

Luminance moyenne de différentes lampes

Luminance moyenne de différentes lampes

La luminance moyenne d’une lampe est fonction de son flux lumineux et de sa surface apparente. Les valeurs données ci-dessous sont des ordres de grandeur. Elles varient entre autre en fonction de la forme, de la puissance, du type de verre (clair ou opalin), ….

  • plus son flux lumineux est élevé, plus sa luminance augmente,
  • plus sa surface apparente (surface vue) est petite, plus sa luminance augmente.

Grandeurs caractéristiques

Soleil au zénith : de l’ordre de 1 000 000 000 cd/m².

Ciel clair : de 1 000 à 20 000 cd/m².


Lampes  fluorescentes

Tube fluorescent / T8 (Ø : 26 mm)

Photo tube fluorescent. ⇒ ± 10 000 à 15 000 (cd/m²)

Tube fluorescent / T5 (Ø : 16 mm)

Photo tube fluorescent. ⇒ ± 17 000 à 33 000 (cd/m²)

Lampes fluocompacte

Photo lampe fluocompacte. ⇒ ± 20 000 à 70 000 (cd/m²)

Lampes  au sodium haute pression

Photo lampes  au sodium haute pression.

⇒ De l’ordre de 300 000 (cd/m²).


Lampe aux iodures métalliques

Photo lampe aux iodures métalliques. Photo lampe aux iodures métalliques.

⇒ Entre 200 000 et 500 000 (cd/m²) ….
Voire plus suivant la puissance et quelles soient clair ou opaline.


Lampes  au mercure haute pression

Photo lampe  au mercure haute pression.

⇒  ± de l’ordre de 120 000 (cd/m²).


Lampes  halogènes

Photo lampe  halogène.Photo lampe  halogène.

⇒  9 000 à 480 000 (cd/m²)
Voire plus suivant la puissance et quelles soient clair ou opaline.


Sources  LED

Photo source  LED.

⇒ La luminance peut monter à plus de 30 000 000 cd/m²
pour des LED de puissance élevée et nues.

Évaluer le niveau d’éclairement

Évaluer le niveau d'éclairement


  

Sous un éclairement de 500 lux et de 50 lux.


Pourquoi un niveau minimum ?

Un niveau d’éclairement  minimum est nécessaire pour voir correctement et sans fatigue les objets et, ainsi, effectuer correctement (et parfois en toute sécurité) la tâche prévue. Parfois, notamment pour les salles de sport, l’éclairement vertical est aussi important que l’éclairement horizontal au sol.

Exemple pour une école

Dans les classes, un éclairement suffisant permettra une bonne vision nécessaire aux différentes tâches des élèves et facilitera l’accommodation rapide de l’œil pour passer de l’une à l’autre :

  • lecture ou écriture d’un document disposé sur la table,
  • lecture de ce qui est écrit au tableau (noir, vert ou blanc),
  • lecture de cartes ou de panneaux affichés,
  • regard prolongé vers le professeur ou vers un autre élève,
  • visualisation de films, de diapositives, d’émissions télévisées,
  • travail sur ordinateur,

   

   


Le niveau d’éclairement recommandé

Les niveaux d’éclairement  à garantir dans les locaux sont fixés par des recommandations émanant de normes et dans certains cas par des impositions réglementaires régissant la protection des travailleurs (RGPT).
L’éclairement moyen recommandé est fonction :

  • de la tâche à effectuer :
  • de la hauteur du plan de référence (plan de travail).

Données

Pour connaitre les valeurs d’éclairement à atteindre en fonction de la tâche à effectuer.

Données

Pour connaitre les spécifications complètes relatives à l’éclairage par type de bâtiment.

Comment évaluer sa situation ?

 Situation idéale, on dispose d’un luxmètre

Photo luxmètre.

Grâce à un luxmètre on peut directement mesurer le niveau d’éclairement en plusieurs points du local et établir ainsi une moyenne d’éclairement.

Cette méthodologie de mesure est détaillée dans la norme EN 12464-1. Si vous décidez d’utiliser le logiciel Dialux, celui-ci choisit pour vous en automatique le bon maillage.

À défaut, par estimation grossière

Schéma principe estimation grossière.

Le tableau qui suit permet de déterminer le niveau d’éclairement en fonction de la puissance installée et du type de luminaire.

Cette méthode s’applique à :

Puissance installée des lampes (sans les ballasts) en W/m²

Niveau d’éclairement au niveau de la tâche

Réglette nue ou simple réflecteur peint

Diffuseur opalin

Diffuseur prisma-
tique

Réflecteur peint et ventelles planes

Réflecteur et ventelles paraboliques en aluminium

4

150..170 70..80 90..110 120..150 + 180

6

220..260 100..120 140..160 180..220 + 380

8

280..340 140..160 180..210 240..280 + 480

10

350..420 170..200 230..270 300..350 + 600

12

430..500 200..240 280..320 360..430 + 640

14

500..580 240..280 320..380 420..500

16

570..670 270..320 370..440 490..570

18

650..750 300..360 420..490 550..650

20

720..840 330..390 460..550 610..720

22

790..920 370..430 500..590 670..790

24

860..990 410..480 550..650 730..860

26

900..1 080 440..510 600..700 790..930

28

1 000..1 200 470..550 650..760 900..1 000

30

1 100..1 220 510..600 690..810 920..1 100

32

1 140..1 340 540..630 740..870 1 000..1 140

En
W/m² pour
100 lux

2,3..2,9

4,8..6,1

3,7..4,4

2,7..3,3

1,5…2

Calculs

Il est possible d’adapter le tableau à sa situation propre. Pour évaluer plus précisément votre situation :


Et pour l’éclairage extérieur ?

Un niveau d’éclairement minimum est bien sûr aussi nécessaire pour distinguer correctement les obstacles, les autres usagers (et leurs intentions), la signalisation, …

Remarque : En éclairage intérieur, on parlera en termes  d’éclairement (lux). Ceci est en général représentatif de la performance visuelle à atteindre car on peut considérer que dans la plupart des locaux, les parois sont de couleur claire. Contre-exemple : on peut éclairer un local peint entièrement en noir avec 500 lux, on n’y verra rien ! De plus, à l’intérieur, il est difficile d’utiliser la luminance comme référence car la direction de vision y est souvent variable et cette grandeur est difficilement mesurable par le commun des mortels.

Par contre, en éclairage routier, la direction de regard est plus ou moins fixe (une personne assise au volant d’une voiture doit voir un obstacle se situant à une distance de 60 à 100 m). On exige donc des niveaux de luminance.

Dans les espaces extérieurs autres que les routes (piétonniers, …) ces données sont variables. On se permet donc de recommander des niveaux d’éclairement et non de luminance. Ceci a l’avantage d’être facilement mesurable grâce à un luxmètre.

Données

Pour connaitre les valeurs d’éclairement à atteindre en éclairage extérieure.

Un problème d’inconfort thermique ou lumineux ? N’hésitez pas à tester notre nouvel outil de diagnostic afin de trouver la solution à votre problématique.

Angle de défilement d’un luminaire

Angle de défilement d'un luminaire

L’angle de défilement d’un luminaire est l’angle sous lequel la source nue ne peut être vue par l’observateur. Il s’exprime en degrés.

On parle d’angle de défilement dans la direction transversale et dans la direction longitudinale.

Angle de défilement transversal et longitudinal d'un luminaire

Attention ! à ne pas confondre avec l’angle d’élévation utilisé dans la norme EN 12464-1 définit comme étant l’angle compris entre la normale verticale à l’axe de la lampe et une direction donnée pour laquelle on mesure une certaine luminance.

Évaluer l’uniformité de l’éclairement

Évaluer l'uniformité de l'éclairement


L’uniformité recommandée

Pour un même niveau d’éclairement du plan de travail, la première situation est nettement plus agréable que la troisième.

Un éclairement uniforme est nécessaire pour éviter d’incessantes et fatigantes adaptations des yeux et pour garantir un niveau d’éclairement suffisant quelque soit l’endroit où l’on dispose le poste de travail (ou la place de l’élève dans une classe).

Les normes recommandent une uniformité  spécifique entre les éclairements des différentes zones éclairées.

Rappelons que l’uniformité est définie comme le rapport : Emin/Emoy.

Données

 Pour connaitre l’uniformité recommandée selon la situation.

De plus, une certaine uniformité de couleur entre l’environnement et la tâche visuelle est préférable

  • entre support papier et plan de travail,
  • entre plan de travail et murs.

Comment évaluer sa situation ?

Idéalement les éclairements sont mesurés avec un luxmètre.

Dans ce cas, il est intéressant de repérer dans le local étudié quelques points représentatifs du niveau d’éclairement moyen et un point situé dans la zone la plus sombre. Le rapport des deux valeurs donne l’uniformité.

Un truc :

Ce truc est cependant à prendre avec précaution car il dépend de la répartition photométrique des luminaires et du facteur de réflexion des parois. Il n’est valable que pour des luminaires émettant uniquement leur lumière vers le bas.

Un problème d’inconfort thermique ou lumineux ? N’hésitez pas à tester notre nouvel outil de diagnostic afin de trouver la solution à votre problématique.

Choisir l’emplacement des luminaires dans les salles de sports

Règles particulières à 1 sport

Dans certains sports, certaines directions de vision se présentent plus fréquemment. On peut parler de directions principales et secondaires.

Il faudra veiller à limiter l’éblouissement en évitant un flux lumineux orienté dans la direction du regard principal.

Il faudra éviter de placer des luminaires inclinés en bout de terrain. Ceux-ci seront à proscrire s’il s’agit de lampes à décharge haute pression dont la luminance moyenne est 20 à 30 fois supérieure à celle des lampes fluorescentes.

Dans le cas d’une installation avec tubes fluorescents, on placera les luminaires parallèlement à la direction principale.

Dans le même but, la norme EN 12193 recommande :

Types de sport

Recommandations pour l’emplacement des luminaires

Badminton Aucun luminaire ne devrait se situer dans la partie du plafond située au-dessus de l’aire de jeu principale.
Nettball Aucun luminaire ne devrait se situer dans la partie du plafond comprise à l’intérieur d’un cercle de 4 m de diamètre centré au droit du panier.
Tennis Aucun luminaire ne devrait se trouver dans la partie du plafond située au-dessus du rectangle de marquage prolongé de 3 m derrière les lignes de fond.
Volley-ball Aucun luminaire ne devrait se situer au plafond, au moins dans la partie directement au-dessus de l’aire du filet.

L’Afe recommande de ne pas disposer une ligne de luminaires dans l’axe longitudinal d’une surface d’évolution. Il est conseillé de préserver une bande d’environ 6 m de large, centrée sur cet axe longitudinal.


La salle omnisports

Dans la salle omnisports, les appareils d’éclairage sont disposés en même temps pour différents terrains de sport dont les tracés au sol s’entremêlent.

Les luminaires seront donc répartis uniformément de manière à éclairer tous les terrains.
Pour éviter l’éblouissement direct, on évitera de placer des luminaires inclinés. Avec des lampes à décharge haute pression, l’inclinaison est tout à fait à proscrire.

Les directions principales des différents terrains peuvent être perpendiculaires entre elles. Il n’est donc pas possible d’éviter certains emplacements comme expliqué dans « les règles particulières à un seul sport ». On peut néanmoins privilégier certains terrains et respecter au mieux les règles pour ceux-ci.

Gestion en fonction d’un horaire [éclairage]

Gestion en fonction d'un horaire [éclairage]


Les minuteries

minuterie - programmation de l'éclairage.

 

L’usage de minuteries assurant l’extinction automatique de l’éclairage est utilisé depuis longtemps dans les circulations (escaliers, halls, …) où la présence des utilisateurs est momentanée.

L’éclairage, commandé par bouton poussoir, s’éteint après un temps réglable déterminé par la durée que l’utilisateur met pour parcourir la zone.

Actuellement les détecteurs de présence sont souvent préférés aux minuteries.


Contrôle de l’heure

À certaines heures, pour s’adapter aux activités variables en fonction de heures (gardiennage de nuit, hall de nuit), pour assurer le confort lumineux et/ou réaliser des économies énergétique

À certaines heures, pour s’adapter aux activités variables en fonction de heures (gardiennage de nuit, hall de nuit), pour assurer le confort lumineux et/ou réaliser des économies énergétique, l’intensité de l’éclairement peut être réduite en cas d’activation du luminaire.

Il existe une grande variété d’horloges, allant du simple interrupteur électromagnétique multi positions jusqu’à l’interrupteur à cristaux liquides. Les commandes transmises aux luminaires peuvent aussi provenir de systèmes de gestion centrale.
Lorsque l’on envisage le placement d’une horloge sur l’installation d’éclairage, il faut avoir en tête que :

  • Il est souvent préférable de ne commander que l’extinction des luminaires, laissant aux occupants la liberté d’allumage.
  • Il est important d’inclure des commandes locales de dérogation de façon à pouvoir rétablir l’éclairage si les occupants en ont besoin.
  • La possibilité de dérogation ne peut empêcher un retour au mode automatique, soit en répétant la commande d’extinction à intervalle régulier après l’arrêt normal des activités, soit en commandant un retour au mode automatique après un temps défini (ex : 1 h après la pression sur l’interrupteur).
  • L’extinction automatique ne peut plonger les occupants dans l’obscurité complète. Un éclairage minimum doit être maintenu pour leur permettre de retrouver leur chemin et le bouton poussoir de dérogation. Par exemple, la commande d’extinction peut comporter deux paliers : une extinction de la moitié des luminaires pour avertir de l’extinction complète future et après un certain temps réglable, l’extinction complète.
  • Les horaires d’extinction peuvent également comprendre la période de midi si elle est significative d’un arrêt général des activités.

Découvrez cet exemple de rénovation de l’éclairage dont le système de gestion des horaires a été pris en compte : le collège Don Bosco à Woluwe-Saint-Lambert.

 

Durée de vie d’une lampe

Durée de vie d'une lampe


Définitions

La durée de vie moyenne d’un lot de lampes est le nombre d’heures pendant lesquelles ces lampes ont fonctionné jusqu’au moment où 50 % d’entre elles ne fonctionnent plus.

La durée de vie utile d’un lot de lampes est le nombre d’heures après lequel elles n’émettent plus que 80 % du flux lumineux d’origine.

La perte de 20 % du flux lumineux  provient d’une part de la diminution progressive du flux des lampes et d’autre part de l’arrêt de fonctionnement d’un certain nombre de lampes.

Elle correspond également à la durée de service, c’est-à-dire la durée après laquelle les lampes doivent être remplacées.


Courbes de durée de vie

1. Chute du flux lumineux

Le flux lumineux d’une lampe diminue progressivement.

Le schéma ci-dessous montre la chute du flux lumineux de différents lots de lampes aux iodures métalliques d’un fabricant donné.

Schéma flux lumineux lampe.

2. Durée de vie moyenne

Après un certain temps, une lampe s’arrête de fonctionner.

Dans un lot de lampes, celles-ci ne s’arrêtent pas toutes en même temps. Au début, quelques lampes s’arrêtent de fonctionner. Ensuite, les lampes restantes s’arrêtent les une après les autres.

Le schéma ci-dessous indique l’évolution du pourcentage de lampes survivantes pour différents lots de lampes aux iodures métalliques d’un fabricant donné.

Schéma durée de vie moyenne lampe.

La durée de vie moyenne est l’abscisse correspondant à 50 % de lampes « survivantes ».

La durée de vie moyenne de la lampe associée au graphe ci-dessus est de 15 000 heures.

3. Durée de vie utile

Si l’on multiplie, pour chaque heure de fonctionnement, le « pourcentage du flux lumineux d’une lampe » par le « pourcentage de lampes survivantes », on obtient le « flux lumineux restant de l’ensemble de l’installation ».

Le schéma ci-dessous indique l’évolution du flux lumineux de l’ensemble des lampes aux iodures métalliques de différents lots d’un fabricant donné.

Schéma durée de vie utile lampe.

La durée de vie utile est l’abscisse correspondant à un flux lumineux utile restant de 80 %.

La durée de vie utile de la lampe associée au graphe ci-dessus est de 5 000 heures.

Si l’on regarde sur le graphe donnant la durée de vie moyenne, on voit que cela correspond à un arrêt de fonctionnement d’environ 5 % des lampes du lot. Cette correspondance permet de savoir, en pratique, quand la fin de la durée de vie utile (la durée de service) est atteinte : lorsque 5 % des lampes ne fonctionnent plus il est temps de procéder au remplacement de toutes les lampes.

Ces courbes sont données par les fabricants pour chaque type de lampes.

Remarque.

Les durées de vie des lampes présentées ici sont les durées de vie utiles. Dans leur catalogue, les fabricants utilisent soit les durées de vie moyennes, soit les durées de vie utiles (inférieures aux durées de vie moyenne). Quelle que soit la définition utilisée, il faut être conscient que ces données sont déterminées dans des conditions particulières souvent différentes des conditions réelles de fonctionnement (par exemple : cycles d’allumage/extinction différents). Elles sont donc indicatives et ne peuvent être considérées comme absolues.

Attention : certains fabricants (principalement américains) utilisent une autre définition de la durée de vie d’une lampe : c’est la durée mesurée jusqu’à la mise hors service de la lampe. Ainsi, les lampes américaines sembleront avoir une durée de vie 2 à 3 fois plus élevée que celle des lampes européennes. Ce n’est évidemment pas le cas en réalité.

Choisir la fenêtre comme capteur de lumière naturelle [Esquisse du projet]

Favoriser l’éclairage naturel extérieur

Dans une démarche de construction ou de rénovation lourde, on privilégiera l’utilisation de la lumière naturelle à la place de l’éclairage artificiel. La qualité « spectrale » de la lumière naturelle ainsi que sa variabilité et ses nuances offrent une perception optimale des formes et des couleurs. L’éclairage artificiel devrait donc être considéré comme un complément à la lumière naturelle. Aussi, d’un point de vue énergétique, l’utilisation de l’éclairage naturel comme « source » lumineuse est gratuite ; ce qui signifie que la facture en électricité sera d’autant plus réduite que l’éclairage naturel exploité.

Dans bien des projets de conception ou de rénovation de bâtiments tertiaires, en confort lumineux, l’objectif premier est de privilégier l’ouverture des espaces de travail vers la lumière naturelle tout en sachant qu’une trop grande ouverture des façades est souvent synonyme d’éblouissement, de surchauffe et déperditions thermiques au travers des baies vitrées. Le compromis reste de rigueur !

Bien des paramètres viennent influencer de manière plus ou moins significative la pénétration de la lumière dans les espaces de travail :

  • L’orientation des façades ;
  • La présence d’ombres reportées (bâtiments ou autres façades du bâtiment étudié faisant de l’ombre) ;
  • La taille, la forme et la position des baies vitrées dans les façades ;
  • La forme et les dimensions des trumeaux ;
  • Les caractéristiques des vitrages ;
  • La présence de protection solaire (fixe, mobile, …) ;
  •  …

Vitrage clair.           Vitrage sélectif.           Auvent.           Lamelles.           Ombre reportée.

Pour un projet de taille importante, une étude par un bureau spécialisé est toujours intéressante sachant qu’il est possible d’optimiser conjointement les conforts lumineux et thermiques par des simulations dynamiques tenant compte de l’ensoleillement et du climat à tout moment de l’année disponible sous forme de bases de données type « météonorm » par exemple.

L’éclairage naturel extérieur n’est pas uniforme

L’intensité de la lumière naturelle varie fortement en fonction du type de ciel, du moment de l’année, de l’heure dans la journée, de l’orientation de l’ouverture, de son inclinaison et de son environnement.

Les études d’éclairage naturel des locaux sont basées, conventionnellement, sur un ciel couvert donnant un niveau d’éclairement de 5 000 lux sur une surface horizontale en site dégagé (Commission Internationale de l’Énergie).

Or, en Belgique, un tel éclairement est dépassé 80 % du temps entre 8h00 et 16h00, par ciel couvert. Et ce ciel couvert ne se présente que 36 % du temps de l’année.

À l’extrême, en juin, à midi et par ciel serein, l’éclairement dépasse 100 000 lux! (Franchement, de quoi se plaint-on ?!)

Lumière solaire directe ou lumière solaire diffuse ?

La lumière solaire directe dispense un flux considérable, facile à capter et à diriger. Elle présente une dynamique intéressante (création de reliefs dans le bâtiment) et peut être utilisée en tant qu’énergie thermique. Par contre, le rayonnement solaire direct est souvent une source d’éblouissement et parfois de surchauffe du bâtiment. De plus, sa disponibilité est épisodique et dépend de l’orientation des ouvertures.

La lumière diffuse du ciel est disponible dans toutes les directions. Elle suscite peu d’éblouissement, ne provoque pas de surchauffe, mais elle peut être insuffisante dans de nombreux cas. En outre, elle crée peu d’ombres et de très faibles contrastes. Une lumière diffuse est donc idéale pour des locaux de travail où il est important d’avoir un éclairage constant, sans source d’éblouissement. La lumière du nord est assurément une lumière diffuse (depuis toujours exploitée dans les ateliers d’artistes). Mais il est possible de valoriser également la lumière directe venant des autres orientations, pour autant qu’une protection masque le disque solaire ou qu’un rideau intérieur diffuse la lumière incidente.

L’influence de l’environnement

Lors de la conception d’un bâtiment, il est donc important de mesurer l’impact de l’environnement existant sur le nouvel édifice afin de profiter au mieux des possibilités offertes par le terrain pour capter la lumière.

Le relief du terrain, les constructions voisines, … peuvent modifier fortement l’apport.

L’effet de rue est caractérisé par le masque solaire que créent les bâtiments situés de l’autre côté de la rue. Il dépend de la hauteur de ces constructions et de la distance qui sépare les deux côtés de la rue.

Des surfaces réfléchissantes placées au sol telles qu’un dallage brillant ou un plan d’eau peuvent contribuer à capter davantage de lumière. Ainsi, l’eau, en réfléchissant le ciel et l’environnement, intensifie l’impression lumineuse d’un lieu.

Mais la présence d’un bâtiment voisin équipé de vitrages réfléchissants, précisément pour se protéger de l’ensoleillement, risque de provoquer un éblouissement excessif des occupants.

Des éléments liés au bâtiment lui-même, tel que des murs de refends, des surplombs, des light shelves, … peuvent aussi provoquer un ombrage en fonction de leur taille, de leur réflectivité et de leur orientation.

La végétation se distingue des autres écrans parce qu’elle peut être saisonnière, ce qui est le cas des arbres à feuilles caduques, et que par ailleurs elle ne possède qu’une opacité partielle. Elle se contente de filtrer la radiation lumineuse plutôt que de l’arrêter.


Sélectionner la fenêtre comme espace capteur de lumière

Pour quels locaux ?

A priori, tous les locaux devraient disposer d’un éclairage naturel (sauf archives et locaux techniques). On peut parler de nécessité pour les « locaux de vie » (où les occupants séjournent plusieurs heures par jour) et de souhait pour les sanitaires et les circulations (où les occupants ne font que passer).

Voici deux couloirs du même bâtiment, avec les mêmes orientations.
Dans le premier cas, l’architecte a introduit une dissymétrie dans la distribution des locaux, et des ouvertures vers l’extérieur pour introduire de la lumière naturelle.
Faut-il préciser que la première mise en œuvre est plus chère ?..
On parle ici de qualité de l’ambiance intérieure dans un lieu de travail.

Ouverture latérale ou zénithale ?

Ouverture latérale et ouverture zénithale.

Au niveau de l’apport de lumière naturelle, une ouverture zénithale s’ouvre sur la totalité de la voûte céleste. Elle induit une meilleure pénétration de lumière, particulièrement par temps nuageux. La distribution lumineuse obtenue par une ouverture zénithale est aussi beaucoup plus homogène que celle produite par une fenêtre latérale. De plus, la lumière entre dans les locaux par le plafond, ce qui limite a priori les phénomènes d’éblouissement. L’éclairage zénithal convient spécialement à la pénétration de la lumière naturelle dans les bâtiments bas et profonds.

Distribution de lumière très homogène,
mais défavorable à la perception du relief.

Mise en évidence du relief par l’éclairage latéral,
malgré un couloir rectiligne.

Par contre, la lumière latérale est favorable à la perception du relief. L’entretien est également plus facile que pour une ouverture zénithale. De plus, le bilan thermique est en faveur d’une ouverture verticale. En été, les apports peuvent être limités (particulièrement au sud, via une « casquette » architecturale).

Tandis que les apports d’été sont toujours excédentaires au niveau d’une ouverture en toiture.

Seule solution : la décapotable ! Si la coupole ou la verrière peut être largement ouverte en été, le problème peut être résolu. Reste la gestion de la pluie et du vent…

Quelle orientation de la fenêtre latérale ?

Les pièces orientées au nord bénéficient toute l’année d’une lumière égale et du rayonnement solaire diffus. Il est judicieux de placer des ouvertures vers le nord lorsque le local nécessite une lumière homogène, peu variable ou diffuse, et lorsque les apports internes sont élevés.

Les pièces orientées à l’est profitent du soleil le matin, mais le rayonnement solaire est alors difficile à maîtriser, car les rayons sont bas sur l’horizon. L’exposition solaire y est faible en hiver, mais elle permet d’apporter des gains solaires au moment où le bâtiment en a le plus besoin. Par contre, en été, l’orientation est présente une exposition solaire supérieure à l’orientation sud, ce qui est peu intéressant.

Une orientation ouest présente un risque réel d’éblouissement et les gains solaires ont tendance à induire des surchauffes. En effet, les vitrages tournés vers l’ouest apportent des gains solaires l’après-midi, au moment où le bâtiment est depuis longtemps en régime.

Une orientation sud entraîne un éclairement important. De plus, les pièces orientées au sud bénéficient d’une lumière plus facile à contrôler. En effet, en hiver, le soleil bas (environ 17°) pénètre profondément dans le bâtiment, tandis qu’en été, la hauteur solaire est plus élevée (60°) et la pénétration du soleil est donc moins profonde. En été, les apports solaires sur une surface verticale sont également nettement inférieurs au sud qu’à l’est ou à l’ouest, car ils sont diminués par un facteur égal au cosinus de l’angle d’incidence.

Les dimensions de l’ouverture

On peut quantifier l’apport de lumière naturelle dans un local par le facteur de lumière du jour (FLJ). Exprimé en %, il exprime le rapport entre l’éclairement intérieur sur le plan de travail dans le local, et l’éclairement extérieur sur le plan horizontal, en site dégagé, par ciel couvert.

Plus le facteur de lumière du jour est élevé, plus le temps d’utilisation des locaux avec la lumière naturelle est élevé, limitant ainsi la consommation d’éclairage artificiel.

Un objectif raisonnable est d’arriver à un temps d’utilisation de l’éclairage naturel d’au moins 60 %. Ceci entraîne un facteur de lumière du jour de 2,5 (exigence de 300 lux) à 4 % (exigence de 500 lux) dans les locaux de vie, et de 1,5 % dans les circulations et sanitaires (exigence de 100 lux).

Une méthode approchée permet d’évaluer le Facteur de Lumière du Jour moyen d’un local donné, en fonction de sa surface vitrée.

L’emplacement de l’ouverture

Bien sûr, plus la surface est importante, plus l’éclairage naturel est élevé. Mais on sait que les apports solaires augmenteront eux aussi et donc le risque de surchauffe du local. Il nous faut donc optimiser l’efficacité lumineuse de la fenêtre.

Pour évaluer l’influence de l’emplacement de la fenêtre sur la répartition de la lumière dans un local, nous comparons trois fenêtres identiques, situées à 3 hauteurs différentes.

Plus la fenêtre est élevée, mieux le fond du local est éclairé et plus la zone éclairée naturellement est profonde. Si le fond du local (situé à 7 m de la façade dans notre test) reçoit une valeur de référence 100 pour la fenêtre basse, il recevra 128 pour la fenêtre à mi-hauteur et 143 pour la fenêtre haute.

A surface égale, l’efficacité lumineuse d’une fenêtre est donc maximale au niveau d’un bandeau horizontal, situé en partie supérieure de la paroi.

Une telle fenêtre en hauteur procure les avantages suivants :

  • Une répartition très uniforme de la lumière dans l’espace ainsi qu’un bon éclairage du fond du local.

 

  • Une source de lumière au-dessus de la ligne de vision, ce qui réduit les risques d’éblouissement direct.

Cependant, le seuil se trouve au-dessus du niveau de l’oeil, la vue sur l’extérieur est impossible. La fenêtre ne peut jouer son rôle de lien entre un local et son environnement. De plus, une zone d’ombre est formée à proximité du mur de fenêtre. En général, il est préférable de coupler une telle fenêtre avec une fenêtre classique, équipée de protections solaires.

Pour maximiser les apports de lumière naturelle, on peut également interrompre un faux plafond à proximité de la fenêtre pour favoriser la pénétration de la lumière naturelle par cette ouverture. Ce procédé est connu sous le nom de « plafond biaisé ».

De cette étude, on peut déduire une autre conclusion très intéressante : c’est la zone inférieure d’une fenêtre qui est la moins efficace en matière d’éclairage naturel. La présence d’une allège opaque est donc thermiquement préférable (présence d’une isolation pour diminuer les pertes en hiver et opacité vis-à-vis des apports solaires).

La forme de la fenêtre

Analysons l’influence de la forme de la fenêtre en comparant la répartition lumineuse fournie par trois fenêtres de proportions différentes, pour une surface vitrée identique et une hauteur de l’allège constante.

Lorsque la largeur de la fenêtre diminue, la répartition devient moins uniforme, bien que l’éclairement moyen soit pratiquement le même dans les trois cas étudiés. Par contre, l’éclairement du fond du local augmente avec la hauteur de la fenêtre. Pour une même surface vitrée, une fenêtre haute éclaire davantage en profondeur. L’idéal réside donc dans une fenêtre horizontale, mais dont le linteau est élevé. En première approximation, une pièce est convenablement éclairée jusqu’à une profondeur de 2 à 2,5 fois la hauteur du linteau de la fenêtre par rapport au plancher.

Analysons l’influence de la répartition des ouvertures dans une façade : comparons la grande fenêtre centrée et deux fenêtres plus petites, placées symétriquement.

Dans les deux cas, les fenêtres ont une superficie vitrée totale identique et la même hauteur; leur allège est située au même niveau par rapport au sol. La moyenne des éclairements varie peu, mais la répartition de la lumière dans la partie du local avoisinant les fenêtres est différente. Dans le cas de deux fenêtres séparées, une zone d’ombre apparaît entre celles-ci, ce qui peut créer des problèmes de confort visuel pour les occupants.

Le type de châssis

Le type et la taille du châssis modifient la vue vers l’extérieur et la quantité de lumière admise dans un édifice.

Le châssis fixe sera sans conteste le plus mince mais il empêche le plaisir du contact direct avec l’air extérieur…

Le matériau utilisé pour le châssis détermine également son encombrement : en général, un châssis en bois est plus mince qu’un cadre en aluminium à coupure thermique. Les châssis en PVC sont les plus larges.

Mais les innovations récentes permettent de plus en plus de diminuer l’impact visuel des châssis et d’augmenter ainsi la quantité de lumière captée.

Cafétéria dans un lycée.


Valoriser l’éclairage naturel capté

Les dimensions du local

La profondeur du local ne devra pas dépasser le double de la hauteur du linteau de la fenêtre, puisque l’intensité de la lumière naturelle décroît très rapidement en fonction de l’éloignement de la fenêtre.

Ainsi, la profondeur des bureaux devrait être limitée à 6 mètres.

À noter qu’une variation de la hauteur sous plafond (pour une même baie vitrée et une surface de plancher identique) induit une très faible différence dans la répartition lumineuse du local. Le niveau d’éclairement est cependant un petit peu plus élevé dans les pièces ayant un plafond plus bas.

La réflexion sur les parois

La nature et la couleur des surfaces intérieures influencent directement l’éclairage naturel dû aux réflexions intérieures. Une bonne distribution de la lumière nécessite des parois et du mobilier de couleurs claires.

L’importance de la clarté des surfaces est due à un double effet

  • les facteurs de réflexion plus élevés permettent à la lumière d’être davantage réfléchie.

 

  • l’œil humain analyse des niveaux de luminance : sous les mêmes conditions d’éclairage, une surface claire est donc subjectivement perçue comme mieux éclairée qu’une surface foncée.

On peut dire que si le facteur de réflexion moyen des murs d’un volume quelconque est inférieur à 50 %, la lumière pénétrera difficilement en profondeur dans cet espace. Or la plupart des matériaux architecturaux ont de faibles facteurs de réflexion. Un plancher clair peut avoir un facteur de réflexion de 30 %, mais pas beaucoup plus, ce qui est nettement plus bas que les murs (~ 50 % ) et que les plafonds (~ 70 %).

Dès lors, pour favoriser la pénétration de la lumière dans un local, on adoptera un revêtement du sol et du mobilier relativement clair, possédant donc un facteur de réflexion élevé. De plus, la clarté des tables de travail s’avère un élément favorable au confort visuel dans la mesure où la réduction du contraste entre le papier et le support de la table induit une diminution des efforts d’accommodation que l’œil doit effectuer à chacun de ses mouvements.

En revanche, les sols sont souvent de couleur relativement sombre afin de faciliter leur entretien. Il faut donc envisager un compromis susceptible de satisfaire simultanément les exigences de confort et de maintenance.

Comme le plafond ne reçoit la lumière naturelle que de manière indirecte, son influence sur la répartition de la lumière est relativement faible. En revanche, lorsqu’un dispositif de distribution lumineuse dévie la lumière vers le haut, par exemple à l’aide d’un  light shelf, le plafond reçoit une grande quantité de lumière qu’il doit répartir dans toute la pièce; le facteur de réflexion de cette surface doit alors être élevé (> 70 %), valeur correspondant à celle du plâtre blanc propre.

Lorsque les matériaux de revêtement présentent une certaine brillance, la lumière arrive plus facilement en fond de pièce.

En contrepartie, les surfaces en question acquièrent une luminance élevée et peuvent donc devenir des sources d’éblouissement.

De manière générale, les surfaces brillantes sont donc à conseiller comme moyen de transmission de la lumière naturelle, mais elles sont à éviter dans les locaux de travail, dans la mesure où les activités (lecture, écriture,…) peuvent être perturbées lorsque l’environnement lumineux est fort contrasté.

Distribuer l’éclairage dans les locaux

L’inconvénient de la lumière naturelle par rapport à la lumière artificielle réside dans la grande inhomogénéité des éclairements qu’elle induit. La répartition de la lumière représente donc un facteur clef pour assurer un éclairage de qualité.

Un éclairage naturel direct engendre des risques importants d’éblouissement et entraîne une répartition des luminances très irrégulière dans le local.

L’éclairage naturel indirect utilise les réflexions des rayons lumineux sur une paroi pour obtenir une distribution lumineuse plus homogène. Cependant, le niveau d’éclairement assuré dépend fortement du coefficient de réflexion de la paroi et donc de sa maintenance régulière.

Le Kimbell Art Museum, conçu par L. Kahn, renferme un exemple d’éclairage naturel indirect fabuleux.

De longs plafonds cylindriques laissent pénétrer la lumière naturelle en leur centre grâce à un système filtrant et réfléchissant, qui redirige la lumière solaire éclatante du Texas sur les voûtes du musée.

L’aménagement des parois intérieures

La distribution de l’éclairage dépend aussi de l’organisation des espaces intérieurs. Utiliser des cloisons transparentes ou translucides permet à la lumière de se répandre dans les deux pièces séparées par la surface vitrée. À l’intérieur d’un bâtiment, l’architecte est tributaire des effets de lumière qui se créent : il dote les espaces intérieurs de l’atmosphère désirée par une disposition étudiée des ouvertures et des obstacles à la lumière. Par exemple, un local disposé à l’est peut, par le truchement des baies intérieures, recevoir un peu de lumière de l’ouest.

Dans un long couloir, la présence de fenêtres translucides donne un relief agréable et permet d’éviter l’éclairage artificiel (bandes verticales à côté des portes ou impostes au-dessus des portes).

Les meubles sont parfois de réels obstacles qui empêchent la transmission de la lumière vers certaines parties de la pièce. Il est donc essentiel de réfléchir au type de meubles, ainsi qu’à leur emplacement, de manière à favoriser la pénétration de la lumière naturelle.

Ces deux modes d’éclairage peuvent aussi être combinés pour créer un éclairage direct/indirect, alliant une ouverture directe à la lumière naturelle à un système d’éclairage indirect. Un exemple de ce type d’éclairage est une façade qui unit une fenêtre normale et un light shelf. Ce mode d’éclairage possède, en général, les avantages de l’éclairage indirect, mais la partie directe permet en plus de créer des ombres, qui mettent en valeur le relief des objets. D’autre part, la maintenance des coefficients de réflexion des parois est un peu moins critique vu qu’une partie de l’éclairage entre de manière directe dans l’espace.

Gérer l’éclairage artificiel en fonction de l’éclairage naturel

Force est de constater que les occupants d’un bâtiment tertiaire sont peu motivés à éteindre leurs luminaires, même si l’éclairage naturel est suffisant. De plus, la modulation ON-OFF n’est pas souple et provoque un choc psychologique lors de l’extinction.

      

Par exemple, il est possible aujourd’hui de placer une cellule sensible à l’intensité lumineuse en dessous du luminaire. Si, en présence de soleil, celle-ci dépasse les 500 Lux souhaités, l’alimentation électrique du luminaire est automatiquement réduite. Sans que l’occupant ne s’en rende compte, l’éclairage naturel est directement valorisé. C’est « la vanne thermostatique » du luminaire !

Concevoir

Pour plus d’informations sur la mise en place d’une technique de gestion de l’éclairage artificiel.

Renforcer l’éclairage naturel à l’intérieur du bâtiment

Le puits de lumière

Certaines zones centrales dans un bâtiment n’ont pas d’accès direct à la lumière du jour. Dès lors, un conduit de lumière, passant à travers différentes pièces, permet de répandre la lumière naturelle captée en toiture ou en façade dans ces locaux aveugles.

Signalons toutefois que les puits de lumière risquent d’occuper un assez grand volume dans le bâtiment. Leur surface interne doit être d’autant plus réfléchissante que la lumière naturelle doit être amenée profondément dans le bâtiment. Pour limiter au maximum les pertes par absorption, il faut utiliser des matériaux très performants au niveau photométrique.

Architecte : M. Botta.

Utilisation du verre
dans des éléments de sol ou d’escalier.

Si le puits de lumière prend de plus larges dimensions, on parle d’atrium. Sa gestion thermique est souvent difficile (refroidissement par la surface vitrée en hiver, surchauffe par l’excès d’apports solaires en été). Un équilibre dans le degré d’ouverture doit donc être trouvé pour favoriser l’éclairage des pièces centrales, tout en évitant un déséquilibre thermique … coûteux en climatisation !

   

Exemple d’un atrium bien dimensionné.

Au Lycée Vinci de Calais, une dynamique est donnée par les 3 ouvertures : bandeau lumineux sur toute la longueur, coupole en toiture, pignons vitrés aux deux extrémités.

Si toute la toiture avait été ouverte, l’énergie incidente aurait entraîné des surchauffes en été.

Le conduit solaire

Un conduit solaire transmet la lumière solaire directe au cœur même du bâtiment. Le rayonnement solaire est capté au moyen d’un système de miroirs et de lentilles ou de capteurs paraboliques, éléments qui se meuvent en fonction de la trajectoire du soleil. La transmission du rayonnement solaire se fait par des systèmes de miroirs, de lentilles, de prismes réflecteurs, de fibres optiques, de baguettes acryliques, de fluides de cristaux liquides ou des conduits creux, dont les faces intérieures sont recouvertes de métaux polis. Les faisceaux lumineux ainsi obtenus peuvent alors être dirigés sur une surface précise ou diffusés dans l’espace.

Ce conduit, beaucoup moins volumineux qu’un puits de lumière, peut facilement atteindre une longueur de 15  mètres. Il est parfois associé à un puits de lumière.

Le conduit solaire apporte un flux lumineux nettement plus important et plus concentré que le puits de lumière. Cependant, tous ces systèmes de gestion du rayonnement solaire direct sont relativement chers à installer et s’appliquent donc plus particulièrement aux régions fortement ensoleillées.

Le « light shelf »

Un light shelf est un auvent, dont la surface supérieure est réfléchissante.

L’objectif est double

  1. Rediriger la lumière naturelle vers le plafond, ce qui permet de faire pénétrer la lumière profondément dans la pièce.
  2. Protéger l’occupant des pénétrations directes du soleil (éblouissement et rayonnement direct).

La surface du light shelf doit être aussi réfléchissante que possible, mais peut-être mate, brillante ou spéculaire. Une surface spéculaire renvoie théoriquement plus de lumière, mais il faut pour cela qu’elle soit nettoyée très régulièrement, ce qui n’est pas toujours aisé. En pratique, un light shelf brillant (semi-spéculaire) est sans doute le meilleur choix.

La couleur du plafond doit être aussi claire que possible, car il joue le rôle de distributeur de la lumière naturelle réfléchie par le light shelf. Sa pente a également de l’importance : un plafond incliné vers le fond du local ou de forme arrondie incurvée vers l’intérieur de l’espace augmentera fortement la profondeur de pénétration de la lumière dans le local.

Architecte : Michael Hopkins and Partners.

Dans nos régions, il est surtout applicable pour des locaux profonds d’orientation sud. Ses performances sont fortement réduites pour des orientations est et ouest, pour lesquelles le rayonnement solaire a un angle d’incidence plus faible.

De manière relative, plus le local est sombre, plus l’apport d’un light shelf peut être intéressant. Si la composante réfléchie interne est déjà grande dans un local, le même système sera proportionnellement moins efficace. L’emploi d’un light shelf en rénovation sera particulièrement profitable dans les pièces dont les murs ont des coefficients de réflexion faibles et un mobilier foncé (à noter qu’il sera moins cher de commencer par repeindre les murs !).

Le choix de la meilleure configuration de light shelf résulte d’un équilibre entre les demandes d’éclairage naturel et les besoins d’ombrage d’un local.

Un light shelf est habituellement situé à environ deux mètres de hauteur, divisant la fenêtre de façade en deux parties. Sa position dépend de la configuration de la pièce, du niveau des yeux et de la hauteur sous plafond pour permettre une vue vers l’extérieur et ne pas causer d’éblouissement. Une position basse augmente la quantité de lumière réfléchie vers le plafond … mais accroît les risques d’éblouissement.

L’augmentation de la profondeur du light shelf limite l’éblouissement, mais diminue aussi la pénétration de la lumière et la vue vers l’extérieur. Le light shelf, affectant la conception architecturale et structurelle d’un édifice, est de préférence introduit au début de la phase de conception puisqu’il nécessite un plafond relativement haut pour être efficace.

Les light shelves horizontaux sont un bon compromis entre une inclinaison du système vers le centre de la pièce ou vers l’extérieur. Tournée vers l’extérieur, le light shelf crée un plus grand ombrage, mais tournée vers l’intérieur il éclaire mieux le fond de la pièce.
On peut classer un light shelf selon sa position : intérieur, extérieur ou combiné.

Ainsi que le montre les simulations de l’éclairage d’un local, sans et avec light shelf,

  • Le light shelf extérieur donne les meilleurs résultats du point de vue du niveau d’éclairement en fond de pièce, tout en ombrant la grande fenêtre.

 

  • Placé à l’intérieur, il réduit le niveau d’éclairement moyen du local, mais offre toutefois un ombrage pour la partie supérieure du vitrage.

 

  • Enfin, le light shelf combiné assure la distribution lumineuse la plus uniforme dans le local; il se révèle également la meilleure protection solaire.

Salles d’opération [éclairage]

Salles d'opération


Le niveau d’éclairement

Certaines caractéristiques de plaies et de tissus, bien que différentes par nature, ne se distinguent souvent, au niveau des contrastes de luminance, que par quelques points seulement, exprimés en pourcentage. Par conséquent, l’opérateur doit faire preuve d’une acuité visuelle particulièrement élevée, pour être sûr de reconnaître les infimes différences de luminosité.

Pour que l’œil puisse distinguer de très faibles nuances de luminosité, il faut d’une part un haut niveau de luminance d’environnement et un temps l’adaptation de l’œil assez long.

La figure montre l’évolution de l’acuité visuelle en fonction de la tâche visuelle et de la luminance des objets. La situation 3 représente la situation couramment rencontrée lors d’une opération. Une deuxième abscisse montre le niveau d’éclairement nécessaire pour atteindre ces luminances si le facteur de réflexion des objets est de 0,05 (tissus foncés). Ainsi pour que l’acuité visuelle puisse tendre vers un maximum, le niveau d’éclairement du champ opératoire doit souvent atteindre 100 000 lux.

Il n’est évidemment pas nécessaire de maintenir de tels niveaux d’éclairement dans l’ensemble de la salle d’opération. Cependant, on a vu que l’acuité visuelle maximum demande un temps d’adaptation assez long. C’est pourquoi, il est nécessaire de maintenir un éclairement suffisamment important sur les pourtours du champ pouvant être parcourus du regard par le chirurgien, pour éviter des troubles d’adaptation, dus à des différences de luminance trop marquées.


Les reliefs

La visualisation de la structure des tissus, des cavités étroites nécessite une lumière permettant de faire ressortir les reliefs peu prononcés. Cela sera possible grâce à un éclairage ayant à la fois une composante rasante et une composante perpendiculaire.


Le spectre et la couleur

L’interprétation de l’état du patient dépend fortement de la très bonne restitution des couleurs des plaies ou tissus.

Température de couleur de 4 500 K et  de 3 000 K.

La vision des couleurs dépend de la sensibilité de l’œil mais aussi d’une composition la plus homogène possible du spectre de la source lumineuse. La lumière idéale de ce point de vue est la lumière naturelle (IRC = 100, Température de couleur = 5 600 K). Les lampes émettant une lumière chaude (3 000 K env.) possède trop de jaune et de rouge, ce qui peut altérer la vision correcte en salle d’opération. Pour obtenir une lumière blanche, il faut une température de couleur supérieure à 4 500 K.


Les ombres

Les instruments, les mains ou la tête de l’opérateur peuvent masquer ou assombrir la lumière du champ opératoire. La manière la plus efficace pour supprimer de telles ombres portées consiste à doter l’éclairage opératoire d’une lumière inondant le champ selon un angle spatial le plus large.


Les rayonnements infrarouges

Pour empêcher le dessèchement des tissus, dû au rayonnement thermique émis par les lampes, il faut que la lumière émise comprenne le moins de rayonnement infrarouge possible. La suppression de ce rayonnement profite aussi à l’opérateur qui peut subir lors des longues interventions des contraintes thermiques au niveau de la tête.


Les reflets

Lorsque le diamètre du champ lumineux est trop important, il y a des risques d’éblouissement de l’opérateur par réflexion de la lumière sur des objets se trouvant en périphérie du champ opératoire. C’est pour cela qu’il faut limiter le diamètre du champ lumineux à 20 .. 35 cm.

Au sein de ce champ lumineux, la lumière sera considérée comme agréablement répartie si son intensité suit le profil suivant en fonction du rayon du faisceau lumineux.

Production de radio interférence [éclairage]

Production de radio interférence [éclairage]


Les ballasts ou encore les transformateurs pour lampes halogènes basse tension produisent des signaux haute fréquence qui peuvent affecter les autres consommateurs électriques.

Les luminaires choisis doivent donc être protégés pour éviter ce genre de désagrément. Tel est le cas des luminaires portant les marquages :

P2313-4.gif (1251 octets)  P2313-5.gif (1500 octets)  P2313-6.gif (1173 octets)  P2313-7.gif (1318 octets)

  • Pour les luminaires à ballast électromagnétique.
  • Pour les luminaires à ballast électronique.
  • Pour tout luminaire.

En principe, les luminaires marqués « CE » respectent toutes les exigences de qualité et de sécurité prescrites par les normes. Cependant, vu le caractère obligatoire de ce marquage depuis le 1er janvier 1997, les luminaires sont maintenant tous marqués « CE » par leur fabricant, qui ne sont pas tenu de faire vérifier leurs appareils par un organisme de contrôle. Seul un marquage européen « ENEC » garantit le contrôle des produits par un organisme tiers.

Efficacité lumineuse des lampes

Efficacité lumineuse des lampes

On évalue la qualité énergétique d’une lampe par son efficacité lumineuse (en lm/W) définie comme le rapport du flux lumineux (en lumen) par la puissance électrique absorbée (en watt).

À partir des catalogues de fournisseurs, il est possible de connaître exactement l’efficacité lumineuse d’une lampe.

Attention : l’efficacité lumineuse est fonction de la température ambiante autour de la lampe en situation stable. Une lampe fluorescente T8 (26 mm de diamètre) a une efficacité lumineuse maximale à 25°C de température ambiante tandis que la lampe fluorescente T5 (16 mm de diamètre) atteint, quant à elle, sa valeur optimale à 35°C. La performance énergétique des LED dépend fortement de la température. Les LED aiment le froid. Une bonne évacuation de la chaleur produite par la diode est donc très importante pour le rendement lumineux de la source. Pour autant que l’on s’écarte des températures idéales, les valeurs des flux lumineux chutent très vite.

Exemple : voici un extrait d’un catalogue existant. On y repère pour la première lampe, un flux lumineux de 1 000 lm pour une puissance de 15 W, ce qui équivaut à une efficacité lumineuse de 1 000 lm / 15 W = 67 lm/W.

Type Watt Teinte K ICR Tension arc V Courant A Flux lum lm Culot Diam
TL’D 15 W 82 2 650 85 51 0.34 1 000 G13 28
83 3 000 85 51 0.34 1 000
84 4 000 85 51 0.34 1 000
TL’D 18 W 82 2 650 85 59 0.37 1 350 G13 28
83 3 000 85 59 0.37 1 350
84 4 000 85 59 0.37 1 350
86 6 500 85 59 0.37 1 300

Définir les objectifs à atteindre (check-list d’un cahier des charges)

Définir les objectifs à atteindre en rénovation éclairage (check-list d'un cahier des charges)

La rénovation de l’éclairage est programmée. Voici les points essentiels que doit contenir le cahier des charges établi par l’auteur de projet.

On sera attentif à 4 aspects du projet :

Les tableaux suivants reprennent la liste simplifiée des bons réflexes à acquérir.


Paramètres de dimensionnement

Exigences

Pour en savoir plus

Dans les différents locaux les zones de travail et zones environnantes immédiates doivent être définies de la façon la plus précise possible. La surface restante du local, diminuée des deux surfaces précédentes représente la zone de fond.
Le niveau d’éclairement moyen dans la zone de travail et au plan de référence doit être spécifié suivant la tâche exécutée.

Le niveau d’éclairement moyen dans la zone environnante immédiate et au plan de référence respectera la norme EN 12464-1, à savoir qu’il doit être diminué d’un facteur 1.5 à 1.66.

Données

Le facteur de maintenance choisi pour le dimensionnement doit être de 0,8 pour les installations où les luminaires sont équipés avec ballasts électromagnétiques et 0.9 avec ballasts électroniques.

Concevoir

L’uniformité d’éclairement :

  • dans la zone de travail doit être : Emin / Emoy > 0.4 à 0,7 ;
  • dans la zone environnante immédiate : Emin / Emoy > 0.4 ;
  • dans la zone de fond : Emin / Emoy > 0.1

Évaluer

Les coefficients de réflexion des parois sont les plus proches possibles des caractéristiques réelles du local. On prendra les valeurs par défaut recommandées.

Concevoir

Dans la plupart des cas, la puissance  spécifique (perte ballast comprise) ne peut dépasser :

1,5 W/m²/100 lux dans les bureaux, classes et salles de réunion

2,5 – 3 W/m²/100 lux pour les pièces plus spécifiques (salle de sport,..)

Evaluer


Choix de matériel

Exigences

Pour en savoir plus

Les lampes dites à usage domestique (émettant moins de 6 500 lm) dispose d’un label « Énergie ».
Le choix de la lampe tient compte aussi de l’indice de rendu de couleur Ra défini dans les normes en fonction de la tâche ou du local considéré.

Théories

L’auteur de projet est en mesure de calculer et de fournir la valeur de l’UGR des luminaires choisis pour l’implantation considérée.

Théories

Les luminaires sont équipés d’optiques réfléchissantes et ont un rendement minimum de 70 %.

Concevoir

Pour éviter les éblouissements directs dans les locaux, les luminaires ont les caractéristiques suivantes :

Luminance de la lampe
kCd/m2
Angle maximum de défilement

20 à < 50

15°

50 à < 500

20°

>= 500

30°

Pour éviter les éblouissements  indirects dans les locaux équipés d’écran de visualisation, les luminaires ont les caractéristiques suivantes :

État de luminance élevé de l’écran Écran à haute luminance

L > 200 cd•m-2

Écran à luminance moyenne

L ≤ 200 cd•m-2

Cas A
(polarité positive et exigences normales concernant la couleur et le détail des informations affichées, comme pour les écrans utilisés dans les bureaux, pour l’éducation, etc.).
≤ 3 000 cd/m² ≤ 1 500 cd/m²
Cas B
(polarité négative et/ou exigences plus élevées concernant la couleur et le  détail des informations affichées, comme pour les écrans utilisés pour le contrôle des couleurs en conception assistée par ordinateur etc.).
≤ 1 500 cd/m² ≤ 1 000 cd/m²

Concevoir

Dans les halls de moins de 7 m de haut, les sources lumineuses  sont des tubes fluorescents ou des LEDS de type 830 ou 840 (température de couleur comprise entre 3 000 et 4 000 K, indice de rendu des couleurs compris entre 80 et 90).

Concevoir

Dans les halls de plus de 7 m de haut, les lampes sont de type tube fluorescentaux halogénures métalliques ou au sodium haute pression.

Concevoir

Les ballasts seront de type électronique avec préchauffage et d’une catégorie énergétique (EEI Energy Efficiency Index) inférieure à la catégorie A3 définie dans la directive 2000/55/CE.

Concevoir

Les luminaires sont protégés contre la production d’interférences électriques : ils sont marqués ou certifiés ENEC.

Concevoir

Les luminaires ont un degré de protection électrique minimum de classe I.

Concevoir

Dans les ambiances poussiéreuses et humides, les luminaires doivent avoir un degré de protection minimum IP56.

Concevoir

En cas de risque de choc, les luminaires doivent avoir une résistance minimum de 5 joules (IK08).

Concevoir

Des luminaires doivent être utilisés dans les ambiances explosives.

Concevoir


Systèmes de commande et de gestion

Exigence

Pour en savoir plus

Chaque local doit disposer d’une commande d’allumage propre.

Concevoir

Dans chaque local, la rangée de luminaires la plus proche des fenêtres doit pouvoir être commandée séparément et dimmée en fonction de la lumière naturelle.

Concevoir

La détection d’absence (détecteur de mouvement) combinée à un bouton poussoir d’allumage manuel volontaire est une solution énergétiquement intéressante d’un point de vue gestion de présence.

Concevoir


Recommandations de bonne pratique

Exigences

Pour en savoir plus

Les éléments du luminaire seront faciles d’accès pour l’entretien (accès aux composants électriques, démontage des optiques,…). Pour les halls de grande hauteur, des dispositifs de suspension spéciaux peuvent être prévus pour faciliter la maintenance (treuil, …).

Concevoir

Chaque zone d’activité doit posséder sa commande d’éclairage propre.

Concevoir

Les activités secondaires demandant moins d’éclairage (gardiennage, entretien, …) peuvent disposer d’une commande d’éclairage propre (commandant 1 luminaire sur 3, par exemple).

Concevoir

L’ensemble de l’installation peut être raccordé sur un programmateur horaire avec possibilités de dérogation locale et retour au mode automatique après une certaine période.

Concevoir

Les locaux à occupation intermittente et non programmable (circulations, entrepôts, …) peuvent être équipés de détecteur de présence.

Concevoir

La couleur des parois du local doit être claire.

Concevoir

Une check-list énergétique est mise à disposition du maître d’ouvrage afin de clarifier les demandes de performance énergétique en conception et/ou en rénovation de bâtiments.

Eclairage mixte

Eclairage mixte

Ce mode d’éclairage combine l’éclairage direct et l’éclairage indirect. La partie indirecte reste toutefois dominante.

Avantages

Les avantages de ce mode d’éclairage sont identiques à ceux de l’éclairage indirect : répartition uniforme et absence d’éblouissement. De plus, la partie directe crée des ombres avantageuses et permet de réduire la luminance du plafond.

Les différences de luminance dans la pièce sont nettement moins marquées que dans le cas d’un éclairage direct.

Il est avantageux dans des pièces à plafond haut et évite la perception d’une zone sombre au plafond.

Dans le cas de parois très claires, ce système présente de bons rendements.

Inconvénients

L’inconvénient principal est identique à celui du système d’éclairage indirect : rendement très sensible aux coefficients de réflexion des parois. il est cependant moins marqué puisqu’une partie de l’éclairage est dirigé directement vers le plan de travail.

Il existe des luminaires dont une même source produit l’éclairage indirect et direct. D’autres ont deux sources distinctes avec commandes séparées.

Facteur de maintenance d’un luminaire

Facteur de maintenance d'un luminaire


Pour un luminaire intérieur

L’éclairement moyen fournit par un luminaire ou un groupe de luminaires diminue au cours du temps depuis sa valeur initiale jusqu’à la valeur requise.

La valeur requise de l’éclairement moyen Em est définie dans la zone de travail par la norme EN 12464-1. C’est la valeur minimum de l’éclairement moyen à maintenir pendant toute la durée de vie de l’installation.

La valeur initiale de l’éclairement moyen est calculée par l’auteur du projet en tenant compte du Facteur de Maintenance FM :

Emoyen initial = Emoyen requis / FM

Plusieurs phénomènes interviennent dans la réduction du niveau d’éclairement moyen de l’installation :

  • réduction de la quantité de lumière diffusée par les lampes au cours de leur durée de vie (valeur de la durée économique),
  • panne de lampe, sans changement immédiat,
  • encrassement des luminaires au cours de leur durée de vie,
  • encrassement du local réduisant la réflexion lumineuse.

A chacun de ces phénomènes on associe un facteur qui entrera dans le calcul du facteur de maintenance :

  • LLMF : facteur de maintenance du flux lumineux de la lampe. Ce facteur donne la proportion du flux lumineux en service émis par la lampe (après une certaine durée de fonctionnement) relativement à son flux initial. La durée de vie utile est définie comme la durée de fonctionnement après laquelle le LLMF d’un lot de lampes soit de 0.80.LLMF = Fservice/Finitial
  • LSF : facteur de survie des lampes. Ce facteur donne la probabilité qu’une lampe continue à fonctionner après un certain temps de fonctionnement. La durée de vie moyenne est définie comme la durée de fonctionnement après laquelle le LSF d’un lot de lampes soit de 0.5.
  • LMF : facteur de maintenance du luminaire. Ce facteur donne la proportion de flux lumineux émis en service par le luminaire (après une certaine durée de fonctionnement) relativement à son flux initial. Les pertes sont dues au dépôt de saleté sur la lampe et sur le luminaire.
  • RSMF : facteur de maintenance des parois du local. Ce facteur donne la proportion de l’éclairement réalisé en service par réflexion sur les parois du local (après une certaine durée de fonctionnement) par rapport à sa valeur initiale.

Ces facteurs peuvent être évalués et lorsqu’ils sont multipliés entre eux, ils donnent la valeur du Facteur de Maintenance.

FM = LLMF  x LSF x LMF x RSMF

Un petit exemple aide à comprendre cette notion :

Soit un bureau équipé de luminaires montés avec des lampes T5. Selon la norme EN 12464-1, le niveau d’éclairement Em minimum est de 500 lux. Les valeurs des différents facteurs sont consignés dans le tableau suivant :

Après 17 000 heures de fonctionnement

Survie des lampes après 16 000 heures d’allumage. 95 %
Valeur résiduelle du flux lumineux par rapport à la valeur initiale. 90 %
Rendement du luminaire y compris l’encrassement de la lampe. 97 %
Propriété de réflexion du local. 96 %
Réduction totale de la quantité de lumière ou FACTEUR DE MAINTENANCE. 80 %

Ceci signifie donc que l’auteur de projet devra surdimensionner son installation de 20 %; soit 500 lux / 0.8 = 625 lux.

Dans la pratique, Le Facteur de maintenance varie de 0.5 pour des éclairages indirects dans des locaux encrassés jusqu’à 0.9 pour des éclairages directs utilisant des luminaires de qualité optique élevée, des lampes de haut rendement, et des ballasts électroniques dans des locaux propres.

Les valeurs de référence prises couramment sont 0.8 pour les luminaires équipés de ballasts électromagnétiques et de 0.9 pour ceux équipés de ballasts électroniques.


Pour un luminaire extérieur

FM = Emoy en exploitation / Emoy initial

avec,

  • FM = facteur de maintenance (1 – FM = facteur de dépréciation).
  • Emoy en exploitation = l’éclairement moyen en exploitation réelle.
  • Emoy initial = l’éclairement moyen dimensionné.

Le facteur de maintenance est essentiellement fonction de l’étanchéité des luminaires et du degré de pollution du site:

Catégorie de pollution Degré de protection du luminaire
IP23 à 44 IP54 à 55 IP65 à 66

I : lieu moyennement pollué, site essentiellement rural et résidentiel.

0,75 0,85 0,95

II : lieu fortement pollué, soit site industriel ou urbain.

0,5 0,7 0,85

Uniformité de l’éclairement

Uniformité de l'éclairement


L’uniformité recommandée

Pour un même niveau d’éclairement du  plan de travail, la première situation est nettement plus agréable que la troisième.

Un éclairement uniforme est nécessaire pour éviter d’incessantes et fatigantes adaptations des yeux et pour garantir un niveau d’éclairement suffisant quelque soit l’endroit où l’on dispose le poste de travail (ou la place de l’élève dans une classe).

Les normes recommandent une uniformité spécifique entre les éclairements des différentes zones éclairées.

Rappelons que l’uniformité est définie comme le rapport : Emin/Emoy.

Données

pour connaitre l’uniformité recommandée selon la situation.

De plus, une certaine uniformité de couleur entre l’environnement et la tâche visuelle est préférable

  • entre support papier et plan de travail,
  • entre plan de travail et murs.

Comment évaluer sa situation ?

Idéalement les éclairements sont mesurés avec un luxmètre.

Dans ce cas, il est intéressant de repérer dans le local étudié quelques points représentatifs du niveau d’éclairement moyen et un point situé dans la zone la plus sombre. Le rapport des deux valeurs donne l’uniformité.

Un truc :

Ce truc est cependant à prendre avec précaution car il dépend de la répartition photométrique des luminaires et du facteur de réflexion des parois. Il n’est valable que pour des luminaires émettant uniquement leur lumière vers le bas.

Eté 2008 : Brieuc.
22-08-2008 : 1er passage de mise en page [liens internes, tdm, en bref !, rapide passage général sur la mise en page de la feuille] – Sylvie
26-09-2008 : WinMerge ok – Sylvie
27-03-2009 : Application des nouveaux styles de mise en page. Julien.
juin 2012 – réorganisation ecl – fichier de référence

Évaluer la présence d’ombres gênantes

Évaluer la présence d'ombres gênantes

Les situations à éviter

Un éclairage trop focalisé  qui risque de masquer certaines zones (éclairage unidirectionnel).

illustration éclairage focalisé - 01.illustration éclairage focalisé - 02.

Lorsque l’éclairage provient du côté droit pour les droitiers et du côté gauche pour les gauchers.

illustration éclairage focalisé - 03.

Lorsque l’éclairage est dirigé dans le dos des occupants.

Un éclairage purement indirect qui supprime totalement les ombres et rend l’environnement trop uniforme.


Comment évaluer sa situation ?

Cela vaut la peine de se placer en « position de travail » et de repérer les ombres qui perturbent la tâche à effectuer.

Photo ombres gênantes.

L’évaluation dépend des multiples tâches rencontrées. Pour chacune de celle-ci, on peut simuler la position de travail et examiner si la prestation peut s’effectuer sans gêne En général, tout problème sera éliminé par un éclairage local et spécifique à la tâche qui permet une grande mobilité et une orientation adaptable du flux lumineux.

Par exemple dans un bureau ou une classe : asseyez-vous à différents endroits du local, en simulant la situation où vous êtes droitier et celle où vous êtes gaucher. Essayez d’effectuer un travail de précision, avec différents outils et observez si l’ombre portée de votre main, de votre latte, de votre stylo, … ne vous pose pas de problème et si elle est bien « annulée » par un éclairage provenant du côté opposé.

Concevoir

Modifier l’emplacement des luminaires ou des postes de travail.

Un problème d’inconfort thermique ou lumineux ? N’hésitez pas à tester notre nouvel outil de diagnostic afin de trouver la solution à votre problématique.

Spectre lumineux d’une lampe

Spectre lumineux d'une lampe


La lumière d’une source est constituée généralement d’une infinité de radiations à longueurs d’onde différentes. C’est de cette distribution de longueurs d’onde, représenté par un spectre lumineux, que dépendent la  température de couleur et l’indice de rendu des couleurs.

Exemple.

   

  • Tube fluorescent rayonnant une lumière très proche de la lumière naturelle (IRC = 98).
  • Tube fluorescent ayant un bon IRC (IRC = 75) mais pour laquelle les teintes rouges sont accentuées. Ce type de lampe est par exemple recommandée dans les boucheries car elle donne un aspect plus agréable aux marchandises.

  

  • Tube fluorescent avec un mauvais IRC (IRC = 50).
  • Lampe à vapeur de sodium avec un très mauvais IRC (IRC = 20). Elle est principalement utilisée pour les éclairages routiers.

Spectre lumière naturelle.

Lampe à incandescence.

Prescriptions relatives à l’éclairage dans les ateliers

Prescriptions relatives à l'éclairage dans les ateliers


Principe

Il est utile de pouvoir connaitre les niveaux d’éclairement recommandé suivant l’ergonomie de travail (le confort de la tâche de travail).

Dans la norme NBN EN 12464-1, on établit une nomenclature dans laquelle on retrouve pour différents locaux des bâtiments du tertiaire, entre autres, les paramètres suivants :

Dans la nomenclature ci-dessous, on reprend les principaux types de locaux et d’activité dans les ateliers.


Entrepôts/entrepôts réfrigérés

Type d’intérieur, tâche ou activité

Em (lux) UGR Uo Ra

Remarques

Plan de référence

Magasins et entrepôts 100 25 0,40 60 200 lux en cas d’occupation permanente. Éclairement 0.1 m au dessus du niveau du sol.
Zones de manutention 300 25 0,60 60
Allées centrales : non occupées 20 0,40 40
Allées centrales : occupées 150 22 0,40 60

Boulangerie et pâtisserie

Type d’intérieur, tâche ou activité

Em (lux) UGR Uo Ra

Plan de référence

Préparation et cuisson

300 22 0,60 80

0.85 m au dessus du sol par défaut.

Finition

500 22 0,70 80

Électricité, électronique

Type d’intérieur, tâche ou activité

Em (lux) UGR Uo Ra

Plan de référence

Assemblage de moyenne dimension

500 22 0,60 80  

0.85 m au dessus du sol par défaut.

 

Assemblage de petite dimension

750 19 0,70 80

Assemblage de précision

1 000 16 0,70 80

Assemblage de composant électronique

1 500 16 0,70 80

Blanchisserie et nettoyage à sec

Type d’intérieur, tâche ou activité

Em (lux) UGR Uo Ra  Plan de référence

Lavage et repassage

300 25 0,60 80  0.85 m au dessus du sol par défaut.

Contrôle et réparation

750 19 0,70 80

Mécanique

Type d’intérieur, tâche ou activité Em (lux) UGR Uo Ra Plan de référence
Soudure, usinage grossier, … 300 25 0,60 80 0.85 m au dessus du sol par défaut.
Usinage de précision,… 500 19 0,70 80
Mécanique de précision 1 000 19 0,70 80

Imprimerie

Type d’intérieur, tâche ou activité

Em (lux) UGR Uo Ra

Remarques

Plan de référence

Composition typographique, retouche, lithographie

1 000 19 0,70 80

0.85 m au dessus du sol par défaut.

Contrôle des couleurs en polychrome

1 500 16 0,70 90

5000 K ≤ Tcp ≤ 6500 K


Textile

Type d’intérieur, tâche ou activité

Em (lux) UGR Uo Ra

 

Remarques

 

Plan de référence

Couture

750 22 0,70 80

0.85 m au dessus du sol par défaut.

Contrôle des couleurs et des tissus

1 000 16 0,70 90

4000 K ≤ Tcp 6500 K


Menuiserie

Type d’intérieur, tâche ou activité

Em (lux) UGR Uo Ra

 

Remarques

 

Plan de référence

Travail à l’établi

300 25 0,60 80

0.85 m au dessus du sol par défaut.

Tour à bois

500 19 0,60 80

Eviter les effets stroboscopiques.

à la hauteur de l’axe du tour.

Travail de précision

750 22 0,70 90 4000 K ≤ Tcp ≤ 6500K

0.85 m au dessus du sol par défaut.

Contrôle de qualité et inspection 1000 19 0,70 90 4000 K ≤ Tcp ≤ 6500K

Ballasts

Ballasts


A quoi servent les ballasts, les starters et les condensateurs ?

Le fonctionnement des lampes fluorescentes et des lampes à décharge nécessite l’utilisation de ballasts et de starters (pour les lampes fluo) ou d’amorceurs (pour les lampes à décharge).

L’exemple repris ici décrit le mode d’allumage d’un tube fluorescent. Le fonctionnement est identique pour les lampes fluocompactes et pour les lampes à décharge. Pour ces dernières, le brûleur remplace le tube et l’amorceur remplace le starter.

Schéma mode d'allumage d'un tube fluorescent.

Fig. 1, 2 et 3.

Le starter est composé d’un petit tube rempli de gaz et pourvu d’un bilame.

À l’allumage, la mise sous tension provoque un arc électrique au sein du gaz. Celui-ci échauffe le bilame, jusqu’alors ouvert (fig. 1).

Pendant ce temps, un courant circule dans les électrodes du tube. Elles s’échauffent et ionisent le gaz qui les environne, ce qui facilitera l’allumage.

Sous l’effet de la chaleur, le bilame se ferme, l’arc électrique dans le starter disparaît. (fig. 2).

Le bilame se refroidit alors et s’ouvre. Il provoque ainsi une interruption brusque du courant dans le ballast raccordé en série.

Le ballast, composé d’un bobinage de cuivre entourant un noyau de fer (ballast dit inductif ou électromagnétique), va tenter de rétablir ce courant en libérant toute son énergie. Cela provoque une impulsion de tension très élevée entre les électrodes de la lampe (jusqu’à 1 500 V) capable d’allumer le tube fluorescent (fig. 3).

Souvent, cet allumage ne réussit pas en une seule tentative. Si la lampe ne s’est pas allumée, le cycle recommence.

En fonctionnement, la tension aux bornes de la lampe est trop faible pour générer un nouveau cycle d’allumage (40 à 110 V). Le starter se maintient donc en position ouverte et le courant traverse la lampe qui reste allumée.

À partir de cet instant, le ballast joue le rôle de limiteur de courant et empêche la destruction de la lampe.

Lorsque le ballast est électromagnétique, il faudra ajouter un condensateur dans le circuit pour compenser le mauvais cos φ.


Ballast électromagnétique

Starters.

Ballasts électromagnétiques.

Condensateur.

Le ballast électromagnétique (appelé aussi « inductif » ou « conventionnel ») est essentiellement constitué d’un bobinage. Il doit être associé à un starter pour provoquer l’allumage des lampes fluorescentes. Certains ballasts dits « à faibles pertes », ont une consommation nettement plus faible que celle des ballasts conventionnels. Il existe aussi des ballasts « à très faibles pertes » mais ils sont beaucoup plus volumineux.

L’utilisation de ballasts électromagnétiques induit un facteur de puissance relativement bas (cos = 0,5), ce qui peut être pénalisé par le distributeur électrique. Il n’est donc pas rare de devoir ajouter des condensateurs soit en tête d’installation, soit au niveau des luminaires afin de compenser l’effet inductif. On peut aussi insérer des condensateurs (d’une capacité double) dans 50 % des circuits de lampes pour compenser l’effet inductif total. Ceci permet d’économiser un condensateur sur deux.

Exemples de raccordement interne
d’un luminaire avec ballast électromagnétique.

C = condensateur, S = starter, TL = tube fluorescent

Circuit inductif à un tube
Cos  φ= 0,5 (inductif).
Circuit compensé
Cos φ = 0,9.
Circuit de deux lampes
(une capacitive et une inductive).
Raccordement en parallèle
Cos φ = 0,95.
Circuit de deux lampes (circuit « duo »).
Raccordement en série avec un seul ballast
Cos φ = 0,5.

Ballast électronique haute fréquence pour lampes fluorescentes

L’ensemble starter, ballast conventionnel et condensateur de compensation du cos φ peut être remplacé par un ballast électronique avec ou sans préchauffage des cathodes.
Celui-ci alimente les lampes sous haute fréquence (entre 25 et 60 kHz). Il est appelé également ballast HF (haute fréquence).
Son facteur de puissance est proche de 1 et il n’y a donc pas de nécessité de compenser celui-ci par l’utilisation de condensateurs.
Ce système, ne nécessitant pas de starter, présente nettement moins de pertes.

Ballast électronique pour tube fluorescent.

Ballast électronique avec préchauffage (ou cathode chaude)

Le ballast électronique avec préchauffage des cathodes présentent bon nombre d’avantages :

  • Il a une consommation plus faible qu’un ballast conventionnel.
  • Il augmente l’efficacité lumineuse et la durée de vie des lampes fluorescentes (jusqu’à 16 000 h).
  • Il diminue le papillotement des lampes à décharge en alimentant les lampes sous haute fréquence et prolonge ainsi leur durée de vie. La diminution de papillotement diminue aussi la fatigue visuelle provoquée par les tubes fluorescents.
  • Il coupe automatiquement l’alimentation d’une lampe défectueuse et évite son clignotement en fin de vie.
  • Son facteur de puissance est proche de 1.
  • Il diminue le niveau de bruit.
  • Il a une consommation constante pour une large plage de tension.

Exemple de diminution de la consommation énergétique en fonction de la présence d’un ballast électronique.

Ballast électronique sans préchauffage

Le seul avantage d’un ballast électronique sans préchauffage des cathodes est qu’il consomme moins qu’un ballast conventionnel. Par contre, il n’évite pas, lors de l’allumage du tube, une surtension au travers des cathodes. Cela entraîne un déclin du tube suite à son noircissement au droit des cathodes.

Ballast électronique dimmable

Les ballasts électroniques dimmables permettent de contrôler le flux lumineux des lampes dans une certaine proportion. La plupart ont une plage de dimming de 3-10 % à 100 %. Ce type de ballast permet donc de générer une économie d’énergie vu que la consommation électrique est quasi proportionnelle au flux lumineux sur toute la plage de dimming.

Exemple de ballast électronique dimmable pour lampe fluocompacte à broche.

Le ballast électronique dimmable, raccordé à un simple dimmer, permet d’ajuster le niveau d’éclairement à la demande. On corrige ainsi le surdimensionnement inévitable des nouvelles installations.

Le plus courant des ballasts électroniques dimmables est commandé/géré en 0-10V. On les appelle aussi les ballasts électroniques dimmables analogiques. À l’inverse les ballasts électroniques de type DALI sont numériques et adressables.

Ce ballast sera aussi utilisé lorsque le flux lumineux doit s’adapter à l’apport en éclairage naturel.


Ballast électronique pour lampes au sodium basse pression

Ballast électronique pour lampe sodium basse pression.

L’ensemble starter, ballast conventionnel et condensateur peut être remplacé par un ballast électronique, appelé également ballast HF (haute fréquence). À l’opposé des ballasts électroniques pour lampes fluorescentes, il n’existe qu’un seul type de ballast électronique pour lampes au sodium basse pression.

Les avantages de ce ballast par rapport au ballast conventionnel sont :

  • Une consommation propre plus faible qu’un ballast conventionnel (75 % en moins).
  • Il diminue le papillotement des lampes à décharge en alimentant les lampes sous haute fréquence.
  • Il réduit l’influence de la fluctuation de la tension.
  • Contrairement au ballast conventionnel, la puissance consommée reste pratiquement constante pendant toute la durée de vie de la lampe.
  • Il est moins encombrant et se monte plus facilement.

Ballast électronique pour lampes à décharge haute pression

Ballast électronique pour lampe HID.

Il existe un ballast électronique dimmable pour lampe au sodium haute pression et lampe aux iodures métalliques.

Il présente certains avantages par rapport au ballast électromagnétique :

  • Il réduit l’influence de la fluctuation de la tension et augmente la durée de vie des lampes (15 à 20 %).
  • Il diminue le clignotement des lampes à décharge, ce qui atténue la fatigue visuelle provoquée par la lampe.
  • Il est moins encombrant et se monte plus facilement.
  • Le temps de mise en service est réduit.

Pour certaines marques, ces ballasts électroniques permettent un réamorçage à chaud instantané.

Néanmoins, l’usage de ces ballasts est limité à certaines lampes (certaines puissances et certains types de culots).


Ballast électronique multilampes

Ballast électronique « intelligent ».

Ce type de ballast, grâce à son « intelligence embarquée », est en mesure de reconnaître les différentes lampes fluorescentes T5 uniquement de manière autonome et de les amorcer de façon optimale.

Lors du premier amorçage de la lampe, le microprocesseur du ballast électronique effectue plusieurs mesures des paramètres de la lampe fluorescente et compare celles-ci avec les valeurs de références normalisées enregistrées dans sa mémoire telles que :

  • le courant de préchauffage,
  • la tension d’électrode,
  • l’impédance de l’électrode,
  • le courant normal de régime,
  • la tension de service de la lampe.

L’identification terminée, les paramètres de fonctionnement du ballast sont fixés en fonction du type et de la puissance de la lampe fluorescente détectée et enregistrés dans sa mémoire (EPROM).

Lors des amorçages suivants, seul un très court test de vérification est effectué si les paramètres de la lampe n’ont pas changé.

Le ballast multilampes s’adapte en général à différentes gammes de puissances reprises dans le tableau suivant :

Longueur de tube Puissance des lampes
550 mm 14 et 24 W
850 mm 21 et 39 W
1 150 mm 28 et 54 W
1 450 mm 35, 49 et 80 W

Ballast électronique à commande numérique DALI

Ballast électronique de type DALI.

En mettant à profit les possibilités de l’électroniques, les ballasts électroniques permettent de réaliser (en fonction du modèle) la gradation des lampes fluorescentes ou d’être intégrés dans des systèmes de gestion numérique de l’éclairage tel que, par exemple, le standard d’interface numérique DALI (Digital Addressable Lighting Interface). À partir de cet instant, on peut parler de « réseau adressable d’éclairage » offrant beaucoup d’avantages au niveau de :

  • la flexibilité et la modularité de l’installation d’éclairage en fonction du zonage des grands espaces,
  • l’amélioration du confort des utilisateurs et de l’efficacité énergétique.

A contrario, un tel type de réseau engendre des coûts d’installation et d’équipement non négligeables.

Les ballasts à régulation adressable électronique DALI ressemblent aux ballasts électroniques gradables classiques et ne se différentient que par le sigle suivant :

Les ballasts DALI ont les caractéristiques suivantes :

  • placé en réseau, chaque ballast est adressable séparément en donnant beaucoup de flexibilité à l’installation (moins de problème dans le câblage en conception et en rénovation),
  • le flux lumineux de la lampe peut être régulé entre 3 et 100 % en assurant une bonne gestion énergétique par rapport à l’occupation des locaux et l’apport de lumière naturelle,
  • les constructeurs annoncent jusqu’à 60 % d’économie d’énergie (à vérifier !).
  • les états des ballasts sont analysés en permanence (défaut de lampes, durée de vie, .

Comparaison des ballasts électroniques dimmables analogiques et numériques

Les ballasts électroniques dimmables de type numérique DALI se positionnent entre les systèmes analogiques 1-10 V et les systèmes bus de type EIB (KNX) par exemple.

Les ballasts de type DALI peuvent tout aussi bien gérer des luminaires dans une configuration des plus simples qu’intégrer un sous-système de gestion par bus. Comme le montre le schéma ci-dessus, les ballasts électroniques DALI sont un bon compromis entre la fonctionnalité embarquée et les coûts.


Classification énergétique des ballasts

Classification énergétique des circuits ballast-lampe dans l'éclairage.

La directive européenne 2000/55/CE et l’Arrêté Royal du 05 mars 2002 établit des exigences de rendement énergétique des ballasts pour lampes fluorescentes.

Il ressort de la Directive et de l’Arrêté que les classe C et D (ballast électromagnétique à moyennes et fortes pertes) sont dorénavant interdites.

Le CELMA (Fédération des Associations Nationales de Fabricants de Luminaires et de composants Electrotechniques pour Luminaires de l’Union Européenne), quant à lui, va plus loin en proposant une classification énergétique de l’ensemble ballast + lampe; ce qui est plus logique au sens énergétique du terme. Pour en savoir plus : La puissance absorbée par les lampes fluorescentes et leurs auxiliaires (ballast) !