Étude : Le Qzen c’est …

Étude :  Le Qzen c'est ...


Introduction

En 2021, toutes les nouvelles constructions wallonnes seront devront respecter le standard Q-ZEN. Pour les bâtiments publics ce sera déjà le cas dès janvier 2019 !

Dans le cadre de ce nouveau pas réglementaire vers des bâtiments plus performants, l’équipe d’énergie plus s’est posé une série de question : qu’est-ce qu’un bâtiment Q-ZEN ? À quoi ressemble-t-il ? Embarque-t-il nécessairement du renouvelable ? Implique-t-il nécessairement un surcoût sur les techniques ? Quelle performance doit atteindre l’enveloppe ? Peut-on être Q-ZEN simplement en isolant mieux ? Le triple vitrage : nécessité ou coquetterie ?

Pour répondre à cette série de questions et bien d’autres encore, nous avons encodé 162 fichiers .PEB selon des règles bien définies (voir méthode ou hypothèses, ci-dessous).

Les résultats ou « scores » PEB bruts de ces 162 bâtiments sont ensuite passés à la loupe pour y déceler les clés de conception d’un bâtiment Q-ZEN !


Méthode

La méthode mise en œuvre s’articule en 6 étapes clés :

  1. Récupérer des fichiers PEB réels :
    De cette manière, les dimensions, les orientations, les ombrages, les géométries… seront ancrées dans le réel. L’utilisation de plusieurs fichiers PEB de base assure une certaine variabilité et représentativité des résultats.
  2. Faire varier le niveau d’isolation des bâtiments selon 3 scenarii :
    En faisant cela, nous triplons la quantité de fichiers PEB et nous pouvons juger de l’intérêt d’en améliorer les performances pour atteindre ou dépasser le niveau Q-ZEN.
  3. Faire varier les options techniques et renouvelables du projet selon 6 scénarii :
    L’utilisation de 6 scénarii différents pour les techniques et le renouvelable, bien que limité (il existe une infinité de combinaisons en réalité), permet de jauger du niveau de performance nécessaire à l’obtention de l’étiquette « Q-ZEN ». Ceci permettra de comparer, par exemple, un bâtiment mal isolé avec des techniques performantes avec ce même bâtiment bien isolé avec des techniques plus classiques.
  4. Encoder les 162 fichiers .PEB obtenus via les étapes précédentes.
  5. Afficher les résultats bruts triés par scénario d’isolation et options techniques
  6. Analyser les résultats et tirer les stratégies générales pour la conception d’un bâtiment respectant les exigences Q-ZEN. 

Échantillon

Les fichiers .PEB de base sont issus des 8 bâtiments de bureau et un édifice de formation. Ces bâtiments sont de dimensions très variables, ils ont des niveaux K et EW répondant aux standards Q-ZEN.

Fonction Superficie Niveau K Niveau EW
Bâtiment 1 Bureau ≈ 750 m² 32 45
Bâtiment 2 Bureau ≈ 7000 m² 29 45
Bâtiment 3 Bureau ≈ 300 m² 18 36
Bâtiment 4 Bureau ≈ 4 900 m² 21 29
Bâtiment 5 Bureau ≈ 100 m² 11 32
Bâtiment 6 Enseignement ≈ 1 500 m² 15 28
Bâtiment 7 Bureau ≈ 14 000 m² 28 22
Bâtiment 8 Bureau ≈ 600 m² 22 19
Bâtiment 9 Bureau ≈ 3 400 m² 18 16

 

PEB, schéma de l'échantillon.
La sélection de l’échantillon a été réalisé de manière à couvrir un maximum de superficies, de niveaux EW et K.

Hypothèses

Hypothèses pour les niveau d’isolation

3 hypothèses sont prises en compte. Les niveaux sont les suivants :

Graphique sur les 3 hypothèses niveau isolation.

Ceci correspond à :

  • Niveau d’isolation « faible » :
    • 15 cm d’isolant (λ = 0.035 W/m.K, sans tenir compte des autres couches)
    • Double vitrage performant
  • Niveau d’isolation « moyen » :
    • 18cm d’isolant (λ = 0.035 W/m.K, sans tenir compte des autres couches)
    • Double vitrage extrêmement performant ou triple vitrage classique
  • Niveau d’isolation « bon » :
    • 24cm d’isolant (λ = 0.035 W/m.K, sans tenir compte des autres couches)
    • Triple vitrage à haut rendement

Pour les façades légères :

  • le niveau d’isolation « faible » = 2W/m².K (respect de l’exigence)
  • et les niveaux « moyen » et « bon » sont les mêmes que pour les fenêtres.

Hypothèses pour les options techniques et renouvelable

6 scénarii sont évalués :

1. Installation de base (IB)

On conserve pour ce scénario tout ce qui est encodé dans le bâtiment de référence sauf que :

  • La production de chaleur devient une « simple » chaudière à eau à condensation
Vecteur Où ?  Maint.  T° Rend 30%   T° retour  Veilleuse
Gaz nat vol.prot  Non   108%  30  Non
  • Le refroidissement est réalisé « par une machine frigorifique à compression ».
Vecteur Vecteur CoP EER
Electricité 2,75
  • Le renouvelable est supprimé

2. IB + Géocooling

On part de l’installation de base sauf que :

  • Le refroidissement est réalisé « par utilisation directe du froid (géocooling) ».
Transport
Par air

3. IB + PAC

On part de l’installation de base sauf que :

  • La production de chaleur est réalisée via une PAC :
Type Resist Th. Source Ch  fluide COPtest T°dep
Electrique Non Air Nf ext   eau  4 40°C

4. IB + PAC + Géocooling

On part de l’installation de base sauf que :

  • Les options 2 (pour le refroidissement) et 3 (pour la production de chaleur) sont combinées.

5. IB + PV10%Ach

On part de l’installation de base sauf que :

  • Une surface de [Ach/10] m² de panneaux PV est installée en toiture en respectant les ombrages, orientations et inclinaisons prévues dans les projets originaux. Le cas échéant (rare) :
Orient.  Inclin. Ombrage
SUD 35°  Non

6. IB + PAC + Géocooling + PV10%Ach

On part de l’installation de base sauf que :

  • Les options 2 (pour le refroidissement), 3 (pour la production de chaleur) et 5 (pour le renouvelable) sont combinées.

Résultats

Préambule

Dans l’écrasante majorité des cas, le strict respect des valeurs Umax engendrera le respect de l’exigence K35. Il n’y a que pour les bâtiments présentant une trop forte portion de surface vitrée ou de façade légère que le strict respect des Umax pourrait ne pas entrainer le respect du niveau K35. Ainsi, pour ces bâtiments, il faudra envisager soit de réduire la portion vitrée soit d’améliorer la performance de ces surfaces au-delà des exigences.

Dans l’écrasante majorité des cas, le strict respect des valeurs Umax ET de l’exigence K35 permet de respecter l’exigence EW 90 en vigueur pour toutes les parties fonctionnelles de l’unité PEN autre que le bureau et l’enseignement… Il n’y a donc que pour ces deux dernières fonctions (devant respecter un niveau EW45) que l’analyse devra être plus fine…

Précisons avant d’afficher les résultats que ces derniers sont issus de fichiers PEB encodés en détail pour ce qui concerne par exemple l’étanchéité, l’éclairage ou encore la ventilation… En effet : lorsque des moyens matériels, financiers et humains sont investis pour améliorer la performance d’un édifice au-delà du niveau Q-ZEN, il n’est raisonnablement plus admissible de céder à certaines facilités d’encodage anéantissant tous les efforts précités. Pour mémoire, l’encodage simplifié ou par défaut peut mener à une surévaluation cumulée pouvant excéder 50 points EW !

Comme autres recommandations générales, nous pouvons également suggérer une étanchéité meilleure que 2m³/(h.m²), l’utilisation d’un système D à récupération de chaleur et d’un éclairage bien étudié et régulé.

Résultats bruts

Graphique sur les résultats bruts.

Probabilité d’être Q-ZEN, par scénario, en fonction du niveau d’isolation.

Graphique sur les scénarios par niveau d'isolation.

Les conclusions de cette étude se trouvent à la page Stratégies de conception Q-ZEN. Dans cette page, sur base des enseignements de cette étude, nous répondons aux questions que se posent les concepteurs au moment de concevoir un bâtiment Q-ZEN en proposant des repères et des Stratégies de conception. Les résultats sont également disponibles sous la forme d’un arbre de décision à télécharger.

 

Géothermie et géo-cooling dans un centre de formation

Une alternative économique pour le refroidissement des locaux.

Géothermie et géo-cooling dans un centre de formation

Mise en place d’une sonde géothermique (photo IFAPME).

En Région wallonne, un nouveau bâtiment à hautes performances énergétiques s’est équipé d’une pompe à chaleur géothermique épaulée par une chaudière au gaz à condensation pour assurer le chauffage de ses bureaux, ateliers, classes et auditoire. Pour le rafraîchissement de ces locaux, le géo-cooling direct est utilisé.


Introduction

Un nouveau bâtiment, reconnu exemplaire dans le cadre de l’action « Bâtiments exemplaires Wallonie 2013 » a été construit aux Isnes dans les environs de Gembloux pour le compte de « l’Institut wallon de formation en alternance et des indépendants et petites et moyennes entreprises » (IFAPME).

Il est destiné à abriter des locaux de formation pour les apprenants, tant pratiques (ateliers petits et grands) que théoriques (classes, salle de conférence), et des locaux administratifs (bureaux, salles de réunions, espaces polyvalents et d’exposition) pour les différentes organisations professionnelles concernées par la construction de bâtiments durables, le but étant d’établir des ponts entre la formation, la recherche et l’innovation en cette matière. Le bâtiment se devait donc d’être le plus exemplaire possible du point de vue écoconstruction et construction durable.

Les formations qui y seront données se focaliseront notamment sur l’enveloppe du bâtiment (isolation, étanchéité à l’air) et sur les techniques spéciales (biomasse, micro-cogénération, régulation, ventilation double flux).

Le maître de l’ouvrage voulait que le centre créé soit très performant en matière d’énergie et qu’il soit une source d’inspiration pour les professionnels de la construction de par son caractère raisonnable d’un point de vue technique et budgétaire.

Le résultat fut un immeuble d’aspect contemporain à très hautes performances thermiques.

Le bâtiment GREENWAL aux Isnes (Photo IFAPME).


Le bâtiment

Le bâtiment est composé de 2 ailes principales.

  • Une aile administrative, d’environ 2 470 m² de surface utile, comportant trois niveaux :
    • un niveau de bureaux au 2e étage ;
    • un niveau de salle de classe pour la formation théorique à la construction durable au 1er étage ;
    • un niveau administratif au rez-de-chaussée avec un auditoire et un hall d’accueil permettant des expositions.
  • Une aile, d’environ 1 530 m² de surface utile, dévolue aux ateliers d’écolage. Elle est constituée d’un grand atelier « enveloppe » dont la taille permet la construction à l’échelle 1/1 de deux maisons unifamiliales mitoyennes et, sur deux niveaux, de 6 ateliers orientés vers les techniques spéciales du bâtiment, à savoir chaudière, pompe à chaleur, ventilation double flux, micro-cogénération, panneaux solaires photovoltaïques et thermiques, …

La surface utile totale est donc d’environ 4 000 m².

Plan du rez-de-chaussée.

Plan du 1er étage.

Plan du 2e étage.

Coupe dans le bâtiment (voir localisation sur les plans).


Respect des exigences Q-ZEN

L’analyse du bâtiment à l’aide du logiciel PEB montre que celui-ci répondait déjà lors de sa conception aux exigences Q-ZEN de la réglementation qui devront être respectées en 2021.
Le nouveau bâtiment a comme fonction principale enseignement.

Il ne comporte qu’un seul volume protégé, une seule unité PEB, une seule zone de ventilation et 2 secteurs énergétiques, l’un n’étant pas équipé d’un système refroidissement (les ateliers), l’autre bien (les classes, auditoires, bureaux, salle de réunion et locaux annexes).

  • Le secteur énergétique sans refroidissement ne compte qu’une seule partie fonctionnelle  « enseignement » située dans l’aile des ateliers.
  • Le secteur énergétique avec refroidissement compte deux parties fonctionnelles :
    • une partie fonctionnelle « bureau » qui occupe la totalité du 2e étage
    • une partie fonctionnelle « enseignement » au rez-de-chaussée et au 1er  étage.

Les conditions à respecter pour que le bâtiment respecte les exigences Q-ZEN 2021 en Région wallonne sont les suivantes :

  1. Respecter les Umax.
  2. Ne pas dépasser le niveau K maximum en tenant compte de l’impact des nœuds constructifs.
  3. Ne pas dépasser le niveau EW maximum spécifique au bâtiment concerné.
  4. Respecter les règles de ventilation décrites dans l’annexe C3 de l’AGW du 15/05/2014 telle que modifiée par l’AGW du 15/05/2016.
  5. Installer un comptage énergétique pour chaque unité PEB.

1. Respect des Umax

Le tableau ci-dessous montre que cette exigence a été respectée partout sauf pour les exutoires de fumée. Dans le cas présent, les exutoires de fumée ont une surface de 2 m² alors que la surface totale de déperdition est de 6 900 m². La surface des exutoires de fumée représente donc 0.03 % de la surface totale de déperdition. Le bâtiment répond ainsi aux exigences de la réglementation qui permet un dépassement du Umax pour maximum 2 % de la surface des parois de l’enveloppe du volume protégé.

Nom de la paroi U (W/m²K)
(a.Ueq)
(b.Ueq)
Umax (W/m²K)
Fenêtres 0.83 1.50 v
Vitrage fenêtres 0.60 1.10 v
Fenêtre de toiture 1.95 1.50 v
Vitrage fenêtre de toiture 1.63 1.10 v
Verrières 1.31 1.50 v
Vitrages verrières 1.10 1.10 v
Exutoires de fumée 1.55 1.50 ?
Vitrage exutoires de fumée 1.30 1.10 ?
Toiture structure bois 0.09 0.24 v
Toiture structure béton 0.10 0.24 v
Mur avec parement de béton 0.24 0.24 v
Mur avec bardage bois 0.12 0.24 v
Mur enterré 0.14 0.24 v
Dalle sur le sol 0.15 0.24 v
Dalle sur le sol (ateliers) 0.22 0.24 v
Portes sectionnelles 0.70 2.00 v

2. Respect du critère K ≤ K35

Le bâtiment répond largement à ce critère. Le niveau K calculé est K15.

3. Respect du critère EW ≤ (90/45)

Le niveau EW calculé est de EW33 < EW45 qui est l’exigence la plus sévère pour les bâtiments non résidentiels. Le critère est donc clairement respecté.

4. Respect des règles de ventilation

La ventilation du bâtiment est assurée par un système D grâce à trois groupes de ventilation double flux avec récupération de chaleur. Le choix de ces centrales de traitement d’air s’est fait suite au calcul du débit nécessaire dans ce bâtiment conformément à l’annexe C3 de l’AGW du 15/05/2014 tel que modifié par l’AGW du 15/05/2016. Elle répond donc aux exigences PEB Q-ZEN de 2021.

Les groupes de ventilation ont un rendement compris entre 82 et 86 % et assurent un débit de 18 300 m³/h qui sera distribué dans l’ensemble du bâtiment.

5. Respect de la règle de comptage énergétique.

Cette règle a été largement respectée.

De par sa destination (centre de formation en bâtiments durable), une attention particulière a été apportée à la possibilité d’enregistrer et d’étudier la physique du bâtiment.
Une GTC a été installée. Elle permet de paramétrer les installations, de stocker et analyser les données des différents composants, et ce, afin de donner des outils bien concrets aux formateurs et aux étudiants du bâtiment. De plus, le maître de l’ouvrage s’est engagé dans le cadre du concours « Bâtiments exemplaires Wallonie » à effectuer un rapport annuel des consommations et à le transmettre à la Région wallonne.

Une interface homme-machine accessible via réseau facilite le paramétrage, la gestion et la consultation des différentes données. La gestion des installations étant une des préoccupations du maître de l’ouvrage, il a veillé à se donner les outils nécessaires à l’analyse les différentes consommations des installations du bâtiment.

Les compteurs suivants ont été installés :

  • Compteurs gaz
    • compteur général ;
    • compteur ateliers (ateliers formation) ;
    • compteur chaudière.
  • Compteurs eau
    • compteur eau chaude sanitaire ;
    • comptage remplissage chaufferie ;
    • comptage eau froide général ;
    • comptage eau de pluie ;
    • comptage eau froide pour complément eau de pluie
  • Compteurs intégrateurs de chaleur
    • compteur chaudière ;
    • comptage par pompe à chaleur ;
    • comptage kit geocooling ;
    • comptage sondes géothermiques ;
    • comptage départ de chaque circuit terminal ;
    • comptage ECS.
  • Compteurs électricité
    • compteur PV ;
    • comptage groupes de ventilation ;
    • comptage groupe de pompage eau de pluie ;
    • comptage par pompe à chaleur ;
    • comptage pour les circulateurs de chauffage ;
    • comptage par tableau électrique.

Analyse des surchauffes

Une simulation dynamique a été réalisée par le bureau d’études du maître de l’ouvrage pour étudier les risques de surchauffe dans certains locaux : des salles de réunion orientées au Sud-Ouest ; une classe type orientée à l’Ouest ; des bureaux orientés dans différentes directions ; l’auditoire et un atelier.

La simulation a été effectuée à l’aide du logiciel TRNSYS.

  • Les données climatiques utilisées sont celles d’Uccle.
  • Le chauffage est considéré comme actif du 1er septembre au 15 juin, le rafraîchissement du 16 juin au 31 août.
  • Le rendement des échangeurs thermiques inclus dans les groupes de ventilation a été estimé à 80 %.
  • L’horaire d’occupation pour l’intégration des surchauffes est basé sur le planning d’occupation du maître de l’ouvrage.
  • Les seuils d’ouverture et de fermeture des stores en fonction de l’insolation par orientation est de 120/140 W/m²
  • Le nombre d’heures où la température est supérieure à 26 °C pendant les heures d’occupation des bâtiments est comptabilisé.
  • Le free cooling est activé lorsque :
    • la température intérieure est supérieure à 22 °C ;
    • la température intérieure est supérieure à la température extérieure ;
    • la température extérieure est supérieure à 16 °C.
  • Le night cooling est activé lorsque :
    • le rafraîchissement géothermique ne fonctionne pas ;
    • la température intérieure est supérieure à 20 °C ;
    • la température intérieure est supérieure à la température extérieure.
  • Les consignes de chauffage sont 25 °C en occupation et 15 °C hors occupation.
  • Les consignes de refroidissement sont 25 °C en occupation et 21 °C hors occupation.
  • Une puissance limite de 15 kW a été déterminée afin de limiter les sondes géothermiques. Cela donne une surface surfacique limite de rafraîchissement disponible de 10,82 W/m² dans la partie administrative du bâtiment.
  • Les gains internes ont été estimés en fonction de l’éclairage, de l’activité des personnes, du nombre d’ordinateurs prévus et d’équipements divers dans les ateliers.

Résultat des calculs

La maîtrise du confort estival est assurée à condition de mettre en œuvre les techniques suivantes :

  • Protections solaires automatiques devant toutes les fenêtres sauf celles orientées au Nord (facteur de réduction solaire  de 0,8).
  • Bypass de l’échangeur de chaleur des groupes de ventilation.
  • Ventilation mécanique des bureaux la nuit (hors utilisation du rafraîchissement géothermique).
  • Rafraîchissement géothermique lors des périodes d’utilisation hors saison de chauffe.
  • Night cooling géothermique hors saison de chauffe.

Il n’y a pas de dépassement de température opérative de 26 °C en dehors de l’atelier où 73 heures de dépassement ont été calculées.

La température opérative de 26 °C n’est pas dépassée dans les classes
(document POLY-TECH ENGINEERING sprl).

La température opérative de 26 °C n’est pas dépassée dans les salles de réunion
(document POLY-TECH ENGINEERING sprl).

Le bureau d’études a vérifié si toutes ces conditions étaient nécessaires et a évalué l’impact de différents scenarii.

1. Si les stores ne sont pas placés, le confort n’est pas assuré, entre autres, pendant 334 heures dans l’auditoire, pendant 294 heures dans un atelier, pendant 256 heures dans une des salles de réunion et pendant 32 heures dans la salle d’informatique.

La température opérative de 26 °C est dépassée pendant 256 heures dans une des salles de réunion
(document POLY-TECH ENGINEERING sprl).

La température opérative de 26 °C est dépassée pendant 334 heures dans l’auditoire
(document POLY-TECH ENGINEERING sprl).

La température opérative de 26 °C est dépassée pendant 2944 heures dans un des ateliers
(document POLY-TECH ENGINEERING sprl).

2. Sans free/night cooling de la ventilation, le confort n’est pas assuré, entre autres, pendant 559 heures et 239 heures dans les classes étudiées et de 931 heures dans un atelier. Le problème se pose en mi saison lorsque le rafraîchissement géothermique n’est pas utilisé. En effet, les classes ayant un apport constant de chaleur pendant toute l’année, en mi-saison, le rafraîchissement ne peut être apporté que par le free/night cooling.

La température opérative de 26°C est dépassée pendant 559 heures dans une des classes et pendant 239 heures dans une autre.  (document POLY-TECH ENGINEERING sprl.

3. Sans rafraîchissement géothermique, les surchauffes ne sont pas maîtrisées dans les classes et dans les salles de réunion.
Si on sait que le froid géothermique nécessite peu d’énergie, uniquement pour le circulateur, et est nécessaire afin de recharger le sol en chaleur, le choix de cette technique est recommandé.

La température opérative de 26 °C est dépassée pendant 691 heures dans une des classes et pendant 197 heures dans une autre.  (document POLY-TECH ENGINEERING sprl).

La température opérative de 26 °C est dépassée pendant 62 heures dans une des salles de réunions
et pendant 18 heures dans une autre.  (document POLY-TECH ENGINEERING sprl).


Dimensionnement du système géothermique

Les différentes solutions de pompes à chaleur géothermiques ont été analysées par le bureau d’études du maître de l’ouvrage à l’aide du logiciel TRNSYS.
Le bâtiment a été divisé en 5 parties : les ateliers ; l’auditoire et les trois étages de l’aile administrative.

Le principe de distribution et de production choisi est de type « change-over », c’est-à-dire qu’il n’y a pas de possibilité de produire en même temps du chaud et du froid.

Deux solutions techniques ont été comparées.

  • Une pompe à chaleur géothermique réversible.
  • Une pompe à chaleur géothermique pour la production de chaleur et un échangeur passif pour la production de froid. Pour la production de froid, en cas de canicule, un appoint sera fourni par la pompe à chaleur géothermique couplée à un aéroréfrigérant.

Un calcul statique effectué suivant la norme EN 12831 permet de déterminer la puissance nominale de la chaufferie et d’approximer une puissance en chaud de la pompe à chaleur et d’identifier ainsi la gamme de puissance à étudier.
Conformément à l’étude de surchauffe, la période de chauffe a été limitée du 22 septembre au 15 mai. En ne faisant pas fonctionner le système de refroidissement durant la période de chauffage, le besoin net de refroidissement est de 6 461 kWh. La puissance maximale en froid nécessaire est de 18 kW le 20 juin.

Evolution des besoins net (document POLY-TECH ENGINEERING sprl).

Profil géothermique mensuel (document POLY-TECH ENGINEERING sprl).

La puissance disponible est de 15 kW en rafraîchissement géocooling et 15 kW d’appoint via la pompe à chaleur réversible.

L’étude économique a montré que la solution consistant à utiliser la pompe à chaleur réversible est économiquement préférable et que le surcoût lié à l’appoint de froid complémentaire ne peut être rentable économiquement mais est nécessaire pour assurer le confort en période de canicule.

L’étude énergétique a montré que :

  • L’utilisation d’une pompe à chaleur de plus grande puissance permet de diminuer les consommations finales, mais de manière limitée.
  • Le géocooling permet de fortement diminuer la consommation finale.
  • Le taux de couverture de la pompe à chaleur pour l’optimal économique de 27.5 kW est de 84 % en hiver.
  • Le taux de couverture du géocooling en été est de 100 %.
  • la pompe à chaleur géothermique  réduit de 72 % les consommations en énergie primaire pour le chauffage et le refroidissement.

Il a finalement été décidé :

  • D’installer une pompe à chaleur réversible d’une capacité de 30 kW.
  • Que le rafraîchissement se fera principalement par géocooling avec un appoint par la pompe à chaleur qui sera couplée à un aéroréfrigérant pour ne pas perturber le géocooling.

L’installation

Les conditions de confort sans risque de surchauffe sont finalement assurées :

  • Dans l’auditoire par freecooling, night cooling et géoccoling à l’aide du groupe de ventilation.
  • Dans les locaux administratifs et les classes par freecooling, night cooling et géoccoling à l’aide des ventilos-convecteurs.
  • Dans les ateliers de formation par freecooling, night cooling et ventilation naturelle via les fenêtres ouvrantes manuelles et les exutoires de fumée.

Après la réalisation d’un forage de test, 8 forages géothermiques ont été effectués en trois semaines. Les sondes ont ensuite été connectées horizontalement au collecteur, testées sous pression de 5.0 bar et remplies par un mélange de 25 % de mono propylène glycol et d’eau. Les débits ont également été vérifiés pour une différence de pression d’environ 2.1 bar.

Les forages de 120 mm de diamètre ont une longueur de 60 m. Dans la partie supérieure, le terrain étant instable, un tube a été placé sur 28 m de profondeur. Dans la partie rocheuse située en dessous, ce tube n’est pas nécessaire.

Le forage.

Tubage à l’enfoncement sur 28 m dans les terrains instables.

L’échangeur de chaleur placé dans le forage est constitué de deux tubes de 32 mm en PEHD en forme de U. Après sa mise en place, le trou de forage est rempli par du gravier 4-8 mm dans la partie rocheuse et par un coulis thermique (λ = 1.35 W/mK), stable et très peu perméable (k = 10-10 m/s) dans la partie supérieure tubée. Ce coulis va durcir et d’une part bien reboucher le forage (imperméabilisation et protection des sondes) et d’autre part assurer un bon contact thermique entre les échangeurs et le sol.

Schéma des sondes géothermiques.

Les tubes et le coulis géothermique sont placés dans le forage.

Enfouissement des tubes de raccordement des sondes (min 80 cm).

Raccordement des sondes au collecteur.

Schéma de raccordement des sondes (document ENERGIE VERBEKE sa).

Implantation des sondes.

Les débits dans les différentes sondes ont été équilibrés à 0.60 m³/h à l’aide des vannes de réglage de manière à obtenir un débit total d’environ 5.5 m³/h. La différence entre les débits des sondes est inférieure à 10 %.


Informations complémentaires

Cette étude de cas a été développée à l’aide des informations et documents fournis par le maître de l’ouvrage : « l’Institut wallon de formation en alternance et des indépendants et petites et moyennes entreprises » (IFAPME). Notre interlocuteur fut Monsieur Jacques Guérin, gestionnaire du patrimoine immobilier de l’institut.

L’architecte auteur de projet est le bureau R²D² Architecture.

Les études techniques ont été réalisées par le bureau d’études POLY-TECH ENGINEERING sprl.

Les forages géothermiques, la pose des sondes, les raccordements et les réglages de débits ont été réalisés par la société spécialisée ENERGIE VERBEKE SA.

Isoler les parois d’un entrepôt transformé en bureaux

Comment isoler les murs et toitures d’un entrepôt existant pour le transformer en bureaux passifs ?

Isoler les parois d’un entrepôt transformé en bureaux

Les nouveaux locaux du bureau d’études écoRce à Liège.

Un entrepôt situé à Liège a été transformé en bureaux. Le maître de l’ouvrage souhaitait atteindre les valeurs du standard passif. Quelles solutions a-t-il adoptées pour isoler les parois extérieures ?


Introduction

Le bâtiment a été réalisé à partir d’un entrepôt existant en pleine ville de Liège à proximité de la gare des Guillemins. Il a été conçu en 2013 par le bureau d’architecture FHW Architectes et le bureau d’études écoRce sprl qui est également le maître de l’ouvrage.

L’extérieur du bâtiment avant les travaux.

L’intérieur du bâtiment avant les travaux.

Il a été complètement transformé. Seule la structure en béton et les murs mitoyens ont été maintenus. Le bâtiment peut donc être considéré comme une construction neuve dans le cadre de la réglementation PEB. Les éléments conservés ont provoqué des contraintes qui ont dû être résolues notamment en matière d’isolation de l’enveloppe.

Le bâtiment compte, après travaux, trois niveaux.

  • Au rez-de-chaussée accessible depuis une cour intérieure d’îlot, se trouvent l’accueil, une salle de réunion et les sanitaires. Un carport occupe une partie de ce niveau. Il abrite une zone de parking pour vélos et une zone de tri pour les déchets.
  • Le premier étage, est occupé par des bureaux paysagés, une salle de réunion ainsi qu’un petit local réservé à l’impression et à la copie des documents.
  • Le deuxième étage est réservé à la détente : réfectoire, cuisine, terrasse et jardin.

Plans du projet (document architecte).

Le maître de l’ouvrage avait pour objectif de limiter au maximum les besoins d’énergie de façon à en réduire les consommations. Il concentra donc, entre autres, ses efforts sur la réduction des déperditions thermiques tant par transmission à travers les parois de l’enveloppe du volume protégé que par manque d’étanchéité à l’air de celles-ci.


Respect des exigences Q-ZEN

L’analyse du bâtiment à l’aide du logiciel PEB montre que celui-ci répondait déjà lors de sa conception aux exigences Q-ZEN de la réglementation qui devront être respectées en 2021.

Le nouveau bâtiment a comme fonction bureaux.
Il ne comporte qu’un seul volume protégé, une seule unité PEB, une seule zone de ventilation et deux parties fonctionnelles :

  • une partie fonctionnelle « bureaux » qui occupe la totalité du rez-de-chaussée et du 1er étage ;
  • une partie fonctionnelle « rassemblement – cafétéria/réfectoire » au 2e étage.

Les conditions à respecter pour que le bâtiment respecte les exigences Q-ZEN 2021 en Région wallonne sont les suivantes :

  1. Respecter les Umax.
  2. Ne pas dépasser le niveau K maximum en tenant compte de l’impact des nœuds constructifs.
  3. Ne pas dépasser le niveau EW maximum spécifique au bâtiment concerné.
  4. Respecter les règles de ventilation décrites dans l’annexe C3 de l’AGW du 15/05/2014 tel que modifié par l’AGW du 15/05/2016.
  5. Installer un comptage énergétique pour chaque unité PEB.

1. Respect des Umax

Comme il s’agit d’une transformation, même si le bâtiment n’est pas très grand, le nombre de parois différentes est élevé.

Le tableau ci-dessous montre que cette exigence a été respectée partout.

Nom de la paroi U (W/m²K) Umax (W/m²K)
Fenêtres 0.74 1.50 [fusion_fontawesome icon= »fa-check fas » size= » » flip= » » rotate= » » spin= »no » alignment= » » hide_on_mobile= »small-visibility,medium-visibility,large-visibility » class= » » id= » » margin_top= » » margin_right= » » margin_bottom= » » margin_left= » » circle= »yes » iconcolor= » » circlecolor= » » circlebordercolor= » » animation_type= » » animation_direction= »down » animation_speed= »0.1″ animation_offset= » »][/fusion_fontawesome]
Vitrage fenêtres 0.50 1.10 [fusion_fontawesome icon= »fa-check fas » size= » » flip= » » rotate= » » spin= »no » alignment= » » hide_on_mobile= »small-visibility,medium-visibility,large-visibility » class= » » id= » » margin_top= » » margin_right= » » margin_bottom= » » margin_left= » » circle= »yes » iconcolor= » » circlecolor= » » circlebordercolor= » » animation_type= » » animation_direction= »down » animation_speed= »0.1″ animation_offset= » »][/fusion_fontawesome]
Fenêtre de toiture 1.36 1.50 [fusion_fontawesome icon= »fa-check fas » size= » » flip= » » rotate= » » spin= »no » alignment= » » hide_on_mobile= »small-visibility,medium-visibility,large-visibility » class= » » id= » » margin_top= » » margin_right= » » margin_bottom= » » margin_left= » » circle= »yes » iconcolor= » » circlecolor= » » circlebordercolor= » » animation_type= » » animation_direction= »down » animation_speed= »0.1″ animation_offset= » »][/fusion_fontawesome]
Vitrage fenêtre de toiture 1.10 1.10 [fusion_fontawesome icon= »fa-check fas » size= » » flip= » » rotate= » » spin= »no » alignment= » » hide_on_mobile= »small-visibility,medium-visibility,large-visibility » class= » » id= » » margin_top= » » margin_right= » » margin_bottom= » » margin_left= » » circle= »yes » iconcolor= » » circlecolor= » » circlebordercolor= » » animation_type= » » animation_direction= »down » animation_speed= »0.1″ animation_offset= » »][/fusion_fontawesome]
Toiture sur 1er étage 0.09 0.24 [fusion_fontawesome icon= »fa-check fas » size= » » flip= » » rotate= » » spin= »no » alignment= » » hide_on_mobile= »small-visibility,medium-visibility,large-visibility » class= » » id= » » margin_top= » » margin_right= » » margin_bottom= » » margin_left= » » circle= »yes » iconcolor= » » circlecolor= » » circlebordercolor= » » animation_type= » » animation_direction= »down » animation_speed= »0.1″ animation_offset= » »][/fusion_fontawesome]
Toiture sur 2ème étage 0.08 0.24 [fusion_fontawesome icon= »fa-check fas » size= » » flip= » » rotate= » » spin= »no » alignment= » » hide_on_mobile= »small-visibility,medium-visibility,large-visibility » class= » » id= » » margin_top= » » margin_right= » » margin_bottom= » » margin_left= » » circle= »yes » iconcolor= » » circlecolor= » » circlebordercolor= » » animation_type= » » animation_direction= »down » animation_speed= »0.1″ animation_offset= » »][/fusion_fontawesome]
Mur isolé par l’intérieur 0.23 0.24 [fusion_fontawesome icon= »fa-check fas » size= » » flip= » » rotate= » » spin= »no » alignment= » » hide_on_mobile= »small-visibility,medium-visibility,large-visibility » class= » » id= » » margin_top= » » margin_right= » » margin_bottom= » » margin_left= » » circle= »yes » iconcolor= » » circlecolor= » » circlebordercolor= » » animation_type= » » animation_direction= »down » animation_speed= »0.1″ animation_offset= » »][/fusion_fontawesome]
Mitoyen non bâti côté voisin 0.12 0.24 [fusion_fontawesome icon= »fa-check fas » size= » » flip= » » rotate= » » spin= »no » alignment= » » hide_on_mobile= »small-visibility,medium-visibility,large-visibility » class= » » id= » » margin_top= » » margin_right= » » margin_bottom= » » margin_left= » » circle= »yes » iconcolor= » » circlecolor= » » circlebordercolor= » » animation_type= » » animation_direction= »down » animation_speed= »0.1″ animation_offset= » »][/fusion_fontawesome]
Mur extérieur 0.18 0.24 [fusion_fontawesome icon= »fa-check fas » size= » » flip= » » rotate= » » spin= »no » alignment= » » hide_on_mobile= »small-visibility,medium-visibility,large-visibility » class= » » id= » » margin_top= » » margin_right= » » margin_bottom= » » margin_left= » » circle= »yes » iconcolor= » » circlecolor= » » circlebordercolor= » » animation_type= » » animation_direction= »down » animation_speed= »0.1″ animation_offset= » »][/fusion_fontawesome]
Façade bureau 0.13 0.24 [fusion_fontawesome icon= »fa-check fas » size= » » flip= » » rotate= » » spin= »no » alignment= » » hide_on_mobile= »small-visibility,medium-visibility,large-visibility » class= » » id= » » margin_top= » » margin_right= » » margin_bottom= » » margin_left= » » circle= »yes » iconcolor= » » circlecolor= » » circlebordercolor= » » animation_type= » » animation_direction= »down » animation_speed= »0.1″ animation_offset= » »][/fusion_fontawesome]
Autres façades 0.19 0.24 [fusion_fontawesome icon= »fa-check fas » size= » » flip= » » rotate= » » spin= »no » alignment= » » hide_on_mobile= »small-visibility,medium-visibility,large-visibility » class= » » id= » » margin_top= » » margin_right= » » margin_bottom= » » margin_left= » » circle= »yes » iconcolor= » » circlecolor= » » circlebordercolor= » » animation_type= » » animation_direction= »down » animation_speed= »0.1″ animation_offset= » »][/fusion_fontawesome]
Pied de façade 0.22 0.24 [fusion_fontawesome icon= »fa-check fas » size= » » flip= » » rotate= » » spin= »no » alignment= » » hide_on_mobile= »small-visibility,medium-visibility,large-visibility » class= » » id= » » margin_top= » » margin_right= » » margin_bottom= » » margin_left= » » circle= »yes » iconcolor= » » circlecolor= » » circlebordercolor= » » animation_type= » » animation_direction= »down » animation_speed= »0.1″ animation_offset= » »][/fusion_fontawesome]
Dalle sur sol 0.09 0.24 [fusion_fontawesome icon= »fa-check fas » size= » » flip= » » rotate= » » spin= »no » alignment= » » hide_on_mobile= »small-visibility,medium-visibility,large-visibility » class= » » id= » » margin_top= » » margin_right= » » margin_bottom= » » margin_left= » » circle= »yes » iconcolor= » » circlecolor= » » circlebordercolor= » » animation_type= » » animation_direction= »down » animation_speed= »0.1″ animation_offset= » »][/fusion_fontawesome]
Dalle sur extérieur 0.08 0.24 [fusion_fontawesome icon= »fa-check fas » size= » » flip= » » rotate= » » spin= »no » alignment= » » hide_on_mobile= »small-visibility,medium-visibility,large-visibility » class= » » id= » » margin_top= » » margin_right= » » margin_bottom= » » margin_left= » » circle= »yes » iconcolor= » » circlecolor= » » circlebordercolor= » » animation_type= » » animation_direction= »down » animation_speed= »0.1″ animation_offset= » »][/fusion_fontawesome]
Porte 1.00 2.00 [fusion_fontawesome icon= »fa-check fas » size= » » flip= » » rotate= » » spin= »no » alignment= » » hide_on_mobile= »small-visibility,medium-visibility,large-visibility » class= » » id= » » margin_top= » » margin_right= » » margin_bottom= » » margin_left= » » circle= »yes » iconcolor= » » circlecolor= » » circlebordercolor= » » animation_type= » » animation_direction= »down » animation_speed= »0.1″ animation_offset= » »][/fusion_fontawesome]
Mitoyens bâtis côté voisins < 0.63 1.00 [fusion_fontawesome icon= »fa-check fas » size= » » flip= » » rotate= » » spin= »no » alignment= » » hide_on_mobile= »small-visibility,medium-visibility,large-visibility » class= » » id= » » margin_top= » » margin_right= » » margin_bottom= » » margin_left= » » circle= »yes » iconcolor= » » circlecolor= » » circlebordercolor= » » animation_type= » » animation_direction= »down » animation_speed= »0.1″ animation_offset= » »][/fusion_fontawesome]

2. Respect du critère K ≤ K35

Le bâtiment répond largement à ce critère malgré les difficultés inhérentes à ce type de travaux (transformation). Le niveau K calculé est K20.

3. Respect du critère EW ≤ (90/45)

Le niveau EW calculé est de EW38 < EW45 qui est l’exigence la plus sévère pour les bâtiments non résidentiels. Le critère est donc clairement respecté.

4. Respect des règles de ventilation

La ventilation du bâtiment est assurée par un système D grâce à une centrale double flux avec récupération de chaleur. Le choix de cette centrale de traitement d’air s’est fait suite au calcul du débit nécessaire dans ce bâtiment conformément à l’annexe C3 de l’AGW du 15/05/2014 tel que modifié par l’AGW du 15/05/2016. Elle répond donc aux exigences PEB Q-ZEN de 2021.

La centrale double flux, qui se situe dans un local technique intérieur, a un rendement de 85 % et assure un débit de 1 556 m³/h qui sera distribué dans l’ensemble du bâtiment.

5. Respect de la règle de comptage énergétique.

Le bâtiment ne compte qu’une seule unité PEB. Cette règle est donc très facile à respecter puisque la présence des compteurs des sociétés distributrices (gaz et électricité) suffit.

Des compteurs électriques supplémentaires ont été placés pour mesurer :

  • la consommation du groupe de ventilation ;
  • la production de l’installation photovoltaïque (1 700 Wc) ;
  • la consommation de l’éclairage.

Le respect des exigences a été permis, entre autres, par ne niveau d’isolation thermique des différentes parties de l’enveloppe du volume protégé.


Les parois de l’enveloppe du volume protégé

Comment sont isolées les parois extérieures neuves et existantes ?

Coupe de localisation des détails (document architecte).

  1. Mur existant isolé par l’extérieur
  2. Toiture existante isolée par l’extérieur et végétalisée
  3. Nouveau mur à ossature bois
  4. Nouvelle toiture compacte
  5. Nouveau mur isolé par l’intérieur et l’extérieur
  6. Mur extérieur existant isolé par l’intérieur
  7. Sol existant isolé par le haut

1. Un mur existant isolé par l’extérieur

La façade avant a été partiellement conservée et isolée par l’extérieur. L’isolant est protégé par un bardage en bois. L’isolation thermique d’un bâtiment existant par l’extérieur réduit considérablement les risques de ponts thermiques et de condensation interstitielle, le pare-pluie extérieur étant très perméable à la vapeur d’eau.

Coupe mur existant isolé par l’extérieur (document architecte).

Le calcul du coefficient de transmission thermique U réalisé à l’aide du logiciel PEB indique une valeur U = 0.14 W/m²K en partie courante et 0.11 W/m²K à l’endroit de la structure en béton où l’épaisseur d’isolant est plus importante pour des raisons technologiques.

Calcul du U des parties courantes à l’aide du logiciel PEB.

Calcul du U des parties situées devant les poutres en béton à l’aide du logiciel PEB.


2. Toiture existante isolée par l’extérieur et végétalisée

La toiture plate existante a été isolée selon le principe de la toiture chaude. L’isolant est posé au-dessus de la dalle en béton. La membrane d’étanchéité bitumineuse existante a été conservée. Elle contribue à la protection de l’isolant assurée par le nouveau pare-vapeur contre la vapeur d’eau provenant de l’intérieur du bâtiment. Une nouvelle membrane d’étanchéité en EPDM est posée sur l’isolant. Elle lestée par une toiture verte extensive.
Cette technique est courante. Elle ne pose pas de problème de condensation interstitielle et permet d’éviter les ponts thermiques.

Coupe toiture existante isolée par l’extérieur et végétalisée (document architecte).

Le calcul du coefficient de transmission thermique U réalisé à l’aide du logiciel PEB indique une valeur U = 0.09 W/m²K.
Le faux plafond acoustique n’a aucun impact sur la performance thermique de la paroi.
Le lestage que constitue la couche végétalisée n’a pas été pris en compte. Son influence sur le U est négligeable en comparaison de celle de la couche d’isolant. Elle protège cependant la membrane d’étanchéité du rayonnement direct extérieur.

Calcul du U des toits existants isolés par l’extérieur à l’aide du logiciel PEB.


3. Nouveau mur à ossature bois

La façade à ossature bois permet la pose d’une grande épaisseur d’isolant sans augmenter exagérément l’épaisseur de la paroi elle-même, celui-ci étant posé à l’intérieur de la structure. La structure interrompt la couche isolante. L’impact de celle-ci sur les performances thermiques est pris en compte dans le calcul.
Autant que possible la paroi est composée d’éléments de plus en plus ouverts à la diffusion de vapeur de l’intérieur vers l’extérieur de manière à se prémunir contre la condensation à l’intérieur du mur.

Ainsi, le pare-vapeur  situé du côté chaud de l’isolant sera le plus étanche possible à la vapeur d’eau en hiver et le pare-pluie situé du côté froid de l’isolant sera, par contre, le plus perméable possible à celle-ci.
Le pare-vapeur aura une perméabilité à la vapeur d’eau variable en été et en hiver. En été il sera plus ouvert à la vapeur pour permettre à la paroi de sécher. C’est ce que l’on appelle un freine vapeur à µ (sd) variable.
L’auteur de projet a pris en compte le comportement hygrométrique de la paroi de manière à s’assurer de la pérennité du bâtiment. Il a réalisé une simulation dynamique à l’aide du logiciel WUFI® afin de valider la paroi du point de vue de la diffusion de vapeur d’eau.

Coupe nouveau mur à ossature bois (document architecte).

Le calcul du coefficient de transmission thermique U réalisé à l’aide du logiciel PEB indique une valeur U = 0.13 W/m²K.
Les deux couches d’isolant ont été considérées comme une seule couche dans le calcul, L’isolant étant identique et les structures en bois occupant les mêmes proportions d’espace.

Calcul du U de la façade à ossature bois à l’aide du logiciel PEB.


4. Nouvelle toiture compacte

La toiture compacte désigne la toiture plate dont l’isolant est placé à l’intérieur du support en bois sans lame d’air entre les différentes couches. Un écran pare-vapeur étanche à l’air doit être placé sous le support. Ce n’est pas une toiture froide, car il n’y a pas de couche d’air ventilée au-dessus de l’isolant. Cette technique est délicate à cause des risques de condensation interne.

Principe de fonctionnement : séchage par utilisation de freine-vapeurs hygrovariables.

  • En hiver, la pression de la vapeur dans les locaux est généralement supérieure à celle régnant dans le complexe toiture, ce qui crée un flux de vapeur se déplaçant de bas en haut.
  • En été, cette diffusion de vapeur est inversée : de haut en bas.
  • On suppose que l’action du freine-vapeur assèche le complexe toiture durant les périodes plus chaudes tandis que l’apparition d’humidité peut être limitée dans les périodes plus froides grâce à la fermeture du freine-vapeur.

Certaines règles doivent être respectées.

  • L’étanchéité doit absorber le plus possible les rayonnements solaires.
  • La toiture doit être totalement ensoleillée.
  • La pente doit être d’au moins 2 % (pas de stagnation d’eau pluviale).
  • La pente ne peut pas être de plus de 40° pour des versants orientés vers le Nord, l’Est et l’Ouest.
  • L’isolant doit être très ouvert à la vapeur (µ le plus petit possible)
  • Le freine-vapeur doit être du type hygrovariable.
  • La finition intérieure sous le freine-vapeur doit être perméable à la vapeur.
  • Il faut éviter toute convection entre l’air intérieur et le complexe de toiture (blower door test).
  • Le taux d’humidité du bois doit être limité avant la mise ne place du système.
  • La classe de climat intérieure ne peut pas dépasser la classe III ou même la classe II lorsque la toiture est végétalisée.

Le maître de l’ouvrage (bureau d’études spécialisé dans ce domaine) a réalisé des simulations hygrothermiques pour évaluer le risque d’apparition de problème d’humidité dans la toiture compacte de son bâtiment. C’est une tâche délicate, car il y a énormément de paramètres inconnus à entrer et il est souvent très difficile d’interpréter correctement les résultats finaux.

Deux solutions ont été envisagées.

Les deux solutions analysées par des simulations hygrothermiques.

La simulation hygrothermique a clairement montré que c’est la solution B qui devait être adoptée.

Coupe nouvelle toiture compacte (document architecte).

Le calcul du coefficient de transmission thermique U réalisé à l’aide du logiciel PEB indique une valeur U = 0.08 W/m²K.

Malgré que l’épaisseur d’isolant soit plus importante que celle de la toiture présentée plus haut au point 2, le U atteint est proche. Cela est dû aux caractéristiques des matériaux utilisés.

  • Mousse phénolique -> λi = 0.021 W/mK
  • Cellulose et laine de bois -> λi = 0.039 W/mK

Calcul du U de la toiture compacte à l’aide du logiciel PEB.


5. Nouveau mur mitoyen isolé par l’intérieur et l’extérieur

Pour que le mur mitoyen neuf donnant sur l’air extérieur soit thermiquement le plus performant possible tout en n’empiétant pas trop sur l’espace intérieur, il a été isolé à la fois par l’intérieur et l’extérieur.
Le maître de l’ouvrage a réalisé des simulations hygrothermiques pour évaluer le risque d’apparition de problème d’humidité dans ce mur. Les résultats furent rassurants.

Coupe nouveau mur mitoyen isolé par l’intérieur et l’extérieur (document architecte).

Le calcul du coefficient de transmission thermique U réalisé à l’aide du logiciel PEB indique une valeur U = 0.12 W/m²K.

Calcul du U du mur mitoyen isolé par les deux côtés à l’aide du logiciel PEB.


6. Un mur existant isolé par l’intérieur

Isoler un mur existant par l’intérieur est, dans certains cas, la seule solution possible bien que la gestion des ponts thermiques et des condensations internes soit délicate.
Le maître de l’ouvrage après avoir réalisé quelques simulations dynamiques a opté pour la solution ci-dessous.

Coupe mur existant isolé par l’intérieur (document architecte).

Le calcul du coefficient de transmission thermique U réalisé à l’aide du logiciel PEB indique une valeur U = 0.23 W/m²K. Nous sommes toujours en-dessous de Umax =  0.24 W/m²K pour un mur extérieur.

Calcul du U du mur extérieur isolé par l’intérieur à l’aide du logiciel PEB.


7. Sol existant isolé par le haut

Comme dans bien des cas, la solution la plus économique pour isoler un plancher posé sur le sol est de poser l’isolant sur la dalle en béton existante et de tirer une nouvelle chape armée sur l’isolant.
C’est la technique qui a été choisie.

Coupe plancher sur sol existant isolé par le haut (document architecte).

Le calcul du coefficient de transmission thermique U réalisé à l’aide du logiciel PEB indique une valeur U = 0.14 W/m²K.

Calcul du U de la dalle sur sol isolée par le haut à l’aide du logiciel PEB.


Informations complémentaires

Cette étude de cas a été développée à l’aide des informations et documents fournis par le bureau d’architecture ayant conçu le bâtiment FHW Architects et le maître de l’ouvrage écoRce sprl dans le cadre de l’action Bâtiments exemplaires Wallonie 2013.

Nouveau bâtiment des bureaux d’un entrepôt

Nouveau bâtiment des bureaux d’un entrepôt

Les bureaux de la firme RADERMECKER INTERCHIMIE © JL DERU.

Un bâtiment neuf de bureaux et un hall de stockage ont été construits en 2015. Les bureaux ont été lauréats de l’appel à candidature dans le cadre de l’action Bâtiment Exemplaire en Wallonie. Dans cet esprit, de nombreux efforts ont été consentis à l’époque pour réaliser un bâtiment très performant en matière énergétique. Est-ce qu’à l’époque, ce bâtiment est déjà parvenu à répondre aux exigences Q-ZEN de 2021 ? C’est ce que nous allons vérifier.


Introduction

Le bâtiment a été conçu par le bureau d’architecture CANEVAS et le bureau d’études GREISCH pour le compte de la firme RADERMECKER INTERCHIMIE.

Il est destiné à abriter des activités de stockage, de conditionnement et de distribution de produits chimiques. Il est constitué d’un auvent présentant une superficie au sol d’environ 1000 m² (20 m x 49.5 m). Cet auvent abrite également un bâtiment administratif de bureau de moins de 100 m².

Le système constructif pour réaliser le hall est basé sur l’utilisation de rayonnages à palettes comme éléments porteurs de la toiture. Utiliser ces rayonnages comme structure portante permet :

  • d’une part, de réduire les quantités de matériaux en se passant de structure supplémentaire pour la toiture ;
  • d’autre part, de les intégrer à la conception architecturale.

Plan général (extrait plan architecte).

Coupe générale (extrait plan architecte).

Les bureaux intégrés à la structure des rayonnages © JL DERU

Le hall de stockage n’est pas isolé. Il ne possède pas de façade. La hauteur sous toiture varie entre 7.50 m et 10.50 m.

Les versants de la toiture assurent un débordement de toiture suffisant pour protéger efficacement le stockage et l’entrée du bâtiment des intempéries. Le débordement joue également un rôle de protection solaire fixe pour les bureaux.

Les bureaux sont intégrés comme une boîte au sein des rayonnages. Ils sont réalisés en ossature bois et sont supportés par des portiques métalliques intégrés à la structure des rayonnages du niveau inférieur. Les panneaux ont été réalisés en usine.

 

Éléments préfabriqués en usine.

Bureaux plan (extrait plan architecte).

Bureaux coupe (extrait plan architecte).

Le parement de façade des bureaux est constitué de tôles métalliques à fines nervures de finition identique à celles utilisées en toiture. Les finitions intérieures des murs, planchers et plafonds sont en bois. La structure en bois de ces différentes parois est bourrée de cellulose.

L’intérieur des bureaux © JL DERU 1.

Conscients des enjeux énergétiques dans le futur, le maître de l’ouvrage a voulu dès 2012 investir dans un bâtiment performant en matière de consommation d’énergie et de confort.

L’objectif a été atteint, mais répond-il déjà aux exigences PEB de 2021 ?

Étanchéité à l’air

Un test de la mesure de l’étanchéité à l’air a été effectué conformément à la norme et aux prescriptions  supplémentaires de la Région wallonne. Grâce  à la conception de la couche d’étanchéité à l’air et au  soin apporté à sa mise en œuvre. Le niveau d’étanchéité à l’air mesuré en fin de travaux est de  v50 = 0,39 m³/hm².

Blower door test.      

Étanchéité à l’air autour des châssis de fenêtres.

Installations techniques

Le chauffage est du type chauffage central avec panneaux diffusants alimentés en eau chaude par une pompe à chaleur air-eau  d’une puissance calorifique de 8 kW.

Pompe à chaleur air eau.    

 Panneau diffusant.

La ventilation mécanique de type D d’un débit de 435 m³/h est munie d’un récupérateur de chaleur d’un rendement de 82 % et d’une batterie de chauffe électrique d’une puissance de 3 kW pour pouvoir pulser l’air dans le bâtiment directement à bonne température.

Le groupe de ventilation.

L’eau chaude sanitaire (ECS) est produite par la pompe à chaleur du chauffage central et stockée dans un ballon de 200 litres qui sert deux douches, un évier et un vidoir.

Schéma de l’installation de distribution sanitaire.

L’éclairage est assuré par des appareils à basse consommation.

1.    des TL de 35 W

2.    des downlight LED compacts de format rond

La puissance moyenne pour l’éclairage est d’environ 1,8 W/100lux m².

Pièce du projet Apport par éclairage (W/m²)
Réunion 8,9
Bureau 8,9
Réception 10,8
Cuisine 7,5
Couloir 2,5
Entrée 2,1
Vestiaires hommes 3,7
Sanitaires hommes 4,4
Vestiaires femmes 3,4
Sanitaire femmes/PMR 2,8
Local technique 15,7

Puissance des luminaires installés dans les locaux.

Plan de l’installation électrique.


Conformité du bâtiment conçu en 2012 avec les exigences du standard Q-ZEN PEB 2021

Le bâtiment a été évalué par rapport aux exigences PEB et, plus particulièrement, au standard Q-ZEN. Le fichier PEB initial encodé en 2012 a été analysé. Ensuite, il a été mis à jour en supposant un encodage en 2021.
Le nouveau bâtiment a comme fonction bureaux.

Il ne comporte qu’un seul volume protégé, une seule unité PEB, une seule zone de ventilation et une seule partie fonctionnelle.

Il n’y a qu’une seule partie fonctionnelle grâce à la notion d’espace connexe et aux règles d’assimilations. De manière générale, pour chaque espace individuel devrait exister une partie fonctionnelle, mais cela en créerait un nombre important et par conséquent, un encodage long et fastidieux.

Les espaces connexes ayant une autre fonction que la partie fonctionnelle principale du bâtiment, mais qui fonctionnent « avec » la partie fonctionnelle en question sont réunis avec celle-ci. Dans le cas que nous étudions, l’espace fonctionnel principal est celui des bureaux et les espaces connexes sont : la cuisine, les sanitaires et les réserves.

Quels sont les critères à respecter pour que le bâtiment soit considéré comme conforme aux exigences Q-ZEN 2021 en Région wallonne ?

  1. Respecter les Umax.
  2. Ne pas dépasser le niveau K maximum en tenant compte de l’impact des nœuds constructifs
  3. Ne pas dépasser le niveau EW maximum spécifique au bâtiment concerné
  4. Respecter les règles de ventilation décrites dans l’annexe C3 de l’AGW du 15/05/2014 telle que modifiée par l’AGW du 15/05/2016
  5. Installer un comptage énergétique pour chaque unité PEB

1. Respect des Umax

Les Umax à respecter dans le cas présent sont :

  • Murs : 0.24 W/m²K
  • Toitures : 0.24 W/m²K
  • Planchers : 0.24 W/m²K
  • Fenêtres : 1.50 W/m²K
  • Vitrages : 1.10 W/m²K

Le tableau ci-dessous, extrait du logiciel de calcul PEB, montre que cette exigence a été respectée partout.

Nom de la paroi U (W/m²K)
Fenêtres 0.78

Fenêtre SAS Sud-Ouest 0.69

Vitrages 0.53

Murs extérieurs 0.1

Plafonds 0.06

Planchers 0.08

Les performances des fenêtres et des vitrages ont été montrées à l’aide de pièces justificatives émises par les fabricants.

 

Les châssis en bois avec triple vitrage © JL DERU.

Les performances des murs, plafonds et planchers ont été calculées à l’aide du logiciel PEB.

Les façades

Coupe verticale dans un mur de façade (extrait plan architecte).

Calcul du U du mur de façade à l’aide du logiciel PEB.

Le plafond

Coupe verticale dans le plafond (extrait plan architecte).

Calcul du U du plafond à l’aide du logiciel PEB.

Le plancher

Coupes verticales (longitudinale et transversale) dans le plancher (extrait plan architecte).

Calcul du U du plancher à l’aide du logiciel PEB.

2. Respect du critère K ≤ 35

Lors de la demande de permis d’urbanisme en 2011, les nœuds constructifs (et les éventuels ponts thermiques) n’étaient pas pris en compte dans le calcul PEB. L’impact des nœuds constructifs sur le niveau d’isolation thermique global du bâtiment K doit être considéré si on veut vérifier la conformité du bâtiment avec les règles Q-ZEN qui entreront en vigueur en janvier 2021.

Le résultat obtenu en 2011, ne tenant pas compte des déperditions supplémentaires dues aux nœuds constructifs est donc très optimiste : K11 < K35.

Sera-ce encore le cas si les nœuds constructifs sont intégrés dans le calcul ?

La méthode PEB propose trois manières de prendre en compte les nœuds constructifs, chacune ayant une influence différente sur les résultats :

  1. Option A : méthode détaillée
  2. Option B : méthode des nœuds PEB conformes
  3. Option C : Supplément forfaitaire

L’option A qui est la plus précise nécessite un travail important. Tous les nœuds constructifs doivent être modélisés pour en connaître le Ψ linéaire ou le χ ponctuel. Ils doivent en outre être mesurés et comptés.

L’option B est plus pragmatique. Elle permet une évaluation rapide de la qualité thermique des nœuds constructifs sans pénaliser significativement les résultats du calcul de K et de EW.

L’option C est la plus facile, mais pénalise fortement les résultats.

Option C Option B Sans les nœuds constructifs
K [/] K21
(< K35)
K14
(< K35)
K11
(non valable)

Influence de l’option de calcul des nœuds constructifs sur la valeur K obtenue.

L’option C induit un supplément de 10 points à la valeur K tandis que l’option B, lorsque comme c’est le cas ici, tous les nœuds constructifs sont PEB conformes, en ajouterait 3.

Étant donnée la forte isolation du bâtiment, même l’option C permet de respecter le critère du niveau K35. Toutefois, le choix de l’option B est préférable, car les performances annoncées pour le bâtiment ont un impact sur le certificat PEB qui sera délivré en fin de travaux.

Coupe verticale toiture-façade.

Coupe verticale plancher-façade.

Coupe horizontale fenêtre-façade.

Les nœuds constructifs sont PEB conformes (extrait plan architecte).

L’option A aurait également pu être appliquée. Dans ce cas le niveau K aurait été égal ou inférieur à K14.

3. Respect du critère EW ≤ (90/45)

Les exigences à respecter dans une unité PEN varient d’une fonction à l’autre.

Ainsi l’exigence Ew pour les fonctions bureau et enseignement est égale à 45 tandis que pour toutes les autres fonctions, elle est égale à 90.

Lorsqu’il y a dans une même unité PEN plusieurs fonctions, l’exigence est adaptée en fonction du poids proportionnel des différentes fonctions.

Méthode de calcul pour l’exigence EW des unités PEN :

  • E W : l’exigence de niveau EW pour l’unité PEN ;
  • A ch, fct f : la surface totale de plancher chauffée ou climatisée de chaque fonction f, en m² ;
  • E W, fcf f : l’exigence de niveau EW pour chaque fonction f ;
  • A ch : la surface totale de plancher chauffée ou climatisée de l’unité PEN, en m².

Il faut faire la sommation sur toutes les fonctions f de l’unité PEN.

Le bâtiment ne comprend qu’une seule unité fonctionnelle « bureau ». L’exigence EW est donc EW45.

En prenant en compte des nœuds constructifs suivants l’option B, le calcul des performances du bâtiment à l’aide du logiciel PEB donne pour résultat EW25. Cette valeur est bien inférieure au critère EW à respecter.

Étant donnée la forte isolation du bâtiment, même l’option C permet de respecter le critère du niveau EW45. Toutefois, le choix de l’option B est préférable, car les performances annoncées pour le bâtiment ont un impact sur le certificat PEB qui sera délivré en fin de travaux.

Option C Option B Sans les nœuds constructifs
EW EW31
(< EW45)
EW25
(< EW45)
EW23
(non valable)

5. Respect des règles de ventilation

La ventilation du bâtiment est assurée par un système D grâce à une centrale double flux avec récupération de chaleur. Le choix de cette centrale de traitement d’air s’est fait suite au calcul du débit nécessaire dans ce bâtiment conformément à l’annexe C3 de l’AGW du 15/05/2014 tel que modifié par l’AGW du 15/05/2016. Elle répond donc aux exigences PEB Q-ZEN de 2021.

La centrale double flux, qui se situe dans un local technique intérieur, assure un débit de 435 m³/h qui sera distribué dans l’ensemble du bâtiment.

Plan du système de ventilation.

Tableau des débits de ventilation extrait de l’outil de calcul PEB.

Le rendement thermique du groupe de ventilation annoncé par le fabricant est de 95 %. Cette valeur ne correspond pas au rendement calculé selon la norme EN 308 pour le débit concerné de 435 m³/h.

Rendement de l’échangeur annoncé par le fabricant.

Pour connaître le rendement des échangeurs à introduire dans l’outil de calcul PEB, il faut consulter sur la toile  la base de données EPBD qui donne les rendements thermiques des différents appareils en fonction des débits selon la norme EN 308 :
http://www.epbd.be/media/pdf/donnees_produits_peb/product_data/4.4_ventil_FR.pdf

Dans le cas du bâtiment étudié, le rendement à encoder est de 82%.

Valeur extraite de la base de données EPBD.

6. Respect de la règle de comptage énergétique

Le bâtiment ne compte qu’une seule unité PEB. Cette règle est donc très facile à respecter puisque la présence des compteurs des sociétés distributrices (gaz et électricité) suffit.

Conclusion : Le bâtiment abritant les bureaux de la firme RADERMECKER INTERCHIMIE est Q-ZEN suivant la réglementation wallonne qui est d’application pour ce type de bâtiment à partir du 1er janvier 2021 !

Cela signifie qu’atteindre ce standard est tout à fait réalisable pour les futures constructions, puisqu’un bâtiment performant conçu en 2011 répond déjà aux exigences de 2021.


Informations complémentaires

Cette étude de cas a été développée à l’aide des informations et documents fournis par le bureau d’architecture ayant conçu le bâtiment.
Bureau d’architecture CANEVAS
Notre interlocuteur fut Madame Sophie Hubert, ingénieur-architecte.
Téléphone : +32(0)4 364 11 90
Site internet : www.canevas.be

 

Comment améliorer encore un bâtiment performant ?

Impact des choix techniques sur le niveau de performance énergétique d’une crèche

La crèche « Fort Lapin ».

Conçue en 2013 et terminée en 2017, la crèche « Fort Lapin » de Louvain-la-Neuve avait déjà dès sa genèse tous les atouts nécessaires pour répondre aux exigences de la réglementation wallonne sur la performance énergétique des bâtiments (PEB) programmées seulement à partir du 1er janvier 2019 pour les bâtiments publics et à partir du 1er janvier 2021 pour les autres bâtiments.

Quelles auraient été les performances du bâtiment si d’autres choix avaient été faits tant au niveau de l’enveloppe que des installations ?

Introduction

Le bâtiment d’une superficie d’environ 500 m² est prévu pour accueillir 36 enfants. Conscients des enjeux énergétiques dans le futur, l’architecte et le maître de l’ouvrage ont voulu dès 2013 investir dans un bâtiment performant en matière de consommation d’énergie et de confort.

L’objectif a été atteint.

Quelles auraient été les performances de ce bâtiment si d’autres choix avaient été effectués ? Une étude a été réalisée pour évaluer l’impact sur celles-ci :

  • de l’isolation thermique des parois opaques ;
  • des caractéristiques des vitrages ;
  • des nœuds constructifs ;
  • de l’étanchéité à l’air de l’enveloppe ;
  • du choix de la production de chaleur ;
  • de l’installation de panneaux photovoltaïques.

Description du bâtiment

Rez-de-chaussée.

Étage.

Les plans de la crèche

Le bâtiment entouré de verdure est de type « 4 façades ». Les locaux se répartissent sur deux niveaux. L’étage, plus petit que le rez-de-chaussée, donne accès à de vastes terrasses.

La crèche compte 3 sections (petits, moyens, grands) clairement séparées, les petits occupant l’étage.

Structure

Les murs et les planchers sont en bois massif de type CLT (cross-laminated timber). Les panneaux qui les constituent sont porteurs. Ils consistent en un assemblage par collage, clouage et/ou goujonage d’un nombre impair de couches de planches de bois de construction (au moins trois couches) placées perpendiculairement les unes des autres.

Les murs du bâtiment comptent 5 couches (9 cm) ou 7 couches (13 cm). Les planchers comptent 9 couches (16 cm).

Le système CLT.

Isolation thermique de l’enveloppe

Les façades sont isolées thermiquement par l’extérieur.

  • Les murs recouverts d’un parement extérieur en brique ou d’un capot en aluminium ont une couche isolante de 13 cm de mousse de polyuréthane (PUR).

Isolant recouvert par le parement (à gauche) et en attente de capot Alu (à droite).

Cimentage sur isolant.

Les châssis en bois de forte section sont munis de triple vitrage.

Les châssis en bois avec triple vitrage.

Les planchers posés sur sol ou situés au-dessus d’un vide ventilé ont une couche isolante de 22 cm de mousse de polystyrène extrudé (XPS).

Les toitures plates sont du type toiture chaude avec une couche isolante de 24 cm de mousse de polyuréthane (PUR).

La toiture inclinée à ossature bois est complètement remplie de 30 cm de cellulose.

Installations techniques

Le chauffage est du type chauffage central avec convecteurs alimentés en eau chaude par une chaudière à gaz à condensation de 40 kW.

La chaudière étanche à Gaz à condensation.

La ventilation mécanique de type D est munie d’un récupérateur de chaleur et d’une batterie de chauffe externe pour pouvoir pulser l’air dans le bâtiment directement à bonne température.

L’eau chaude sanitaire (ECS) est produite par la chaudière du chauffage central et stockée dans un ballon de 300 litres. Une boucle d’ECS assure une disponibilité quasi immédiate aux points de puisage répartis dans le bâtiment.

L’éclairage est assuré par des appareils à basse consommation. La plupart ont un système de commande manuel excepté dans les locaux où la présence humaine est moins importante (couloirs, espaces de rangement, buanderie, …) où ils sont commandés par détection de présence.

La puissance moyenne pour l’éclairage est d’environ 3 W/m² grâce au choix d’appareils munis de LED partout où ils convenaient.

Appareil d’éclairage à LED.

Conformité avec les exigences du standard Q-ZEN PEB 2021 (2019)

Le bâtiment a été évalué par rapport aux exigences PEB et, plus particulièrement, au standard Q-ZEN. Le fichier PEB initial encodé en 2013 a été analysé. Ensuite, il a été mis à jour en supposant un encodage en 2021 (ou en 2019 pour les bâtiments publics).
La crèche « Fort Lapin » est un bâtiment neuf ayant comme fonction soin de santé sans occupation nocturne.

L’ensemble du bâtiment ne comporte qu’un seul volume protégé, une seule unité PEB, une seule zone de ventilation et une seule partie fonctionnelle.

Il n’y a qu’une seule partie fonctionnelle grâce à la notion d’espace connexe et aux règles d’assimilations. De manière générale, pour chaque espace individuel devrait exister une partie fonctionnelle, mais cela en créerait un nombre important et par conséquent, un encodage long et fastidieux.

Les espaces connexes ayant une autre fonction que la partie fonctionnelle principale du bâtiment, mais qui fonctionnent « avec » la partie fonctionnelle en question sont réunis avec celle-ci. Dans le cas que nous étudions, l’espace fonctionnel principal est celui des soins de santé sans occupation nocturne et les espaces connexes sont : la cuisine, les communs, les bureaux, les couloirs horizontaux et autres (réserve, buanderie, …). Il reste alors les couloirs verticaux. Grâce aux règles d’assimilations, ceux-ci peuvent être intégrés à la partie fonctionnelle principale, car leur surface est inférieure à 25 % de la surface de celle-ci et ont une surface totale ≤ 250 m².

Quels sont les critères à respecter pour que le bâtiment soit considéré comme conforme aux exigences Q-ZEN 2021 (2019) en Région wallonne ?

  1. Respecter les Umax.
  2. Ne pas dépasser le niveau K maximum en tenant compte de l’impact des nœuds constructifs.
  3. Ne pas dépasser le niveau EW maximum spécifique au bâtiment concerné.
  4. Respecter les règles de ventilation décrites dans l’annexe C3 de l’AGW du 15/05/2014 telles que modifiées par l’AGW du 15/05/2016.
  5. Installer un comptage énergétique pour chaque unité PEB.

1. Respect des Umax

Les Umax à respecter dans le cas présent sont :

  • Fenêtres : 1.50 W/m²K
  • Vitrages : 1.10 W/m²K
  • Murs : 0.24 W/m²K
  • Toitures : 0.24 W/m²K
  • Planchers : 0.24 W/m²K

Le tableau ci-dessous montre que cette exigence a été respectée partout sauf pour les murs contre terre.

Tableau extrait du rapport PEB reprenant les niveaux U des différentes parois.

Le bâtiment répond cependant aux exigences, car la réglementation permet un dépassement du Umax pour maximum 2 % de la surface des parois de l’enveloppe du volume protégé.

Dans le cas présent, les murs contre terre ont une surface de 17 m² alors que la surface totale de déperdition est de 1 242 m². La surface des murs contre terre ne représente donc que 1.3 % de la surface totale de déperdition. Si cela n’avait pas été le cas, il eut été facile d’augmenter de 3 cm l’épaisseur de l’isolant de la paroi trop faible et rendre ainsi le bâtiment conforme au critère Umax.

3 cm d’isolant suffisent pour rendre le plancher conforme au critère Umax.

2. Respect du critère K ≤ 35

L’impact des nœuds constructifs sur le niveau d’isolation thermique global du bâtiment K est pris en compte dans la méthode PEB.

Cette méthode propose trois manières de les prendre en compte, chacune ayant une influence différente sur les valeurs PEB :

  1. Option A : méthode détaillée ;
  2. Option B : méthode des nœuds PEB conformes ;
  3. Option C : Supplément forfaitaire.

Pour l’encodage de la crèche Fort Lapin, l’option B été choisie.

Une fois cette option choisie il a donc fallu, pour chaque nœud, vérifier s’ils étaient PEB conforme ou non.

Exemple de l’analyse de l’un d’entre eux :

Analyse du nœud constructif « pied de mur brique » [A. de France, 2018].

Pour que ce nœud soit PEB conforme, il faut qu’il réponde aux trois exigences suivantes :

  1. λélément intermédiaire ≤ 0,2 W⁄mK
  2. Rélément intermédiaire ≥ min⁡(Risolant 1⁄2 ; Risolant 2⁄2)
    ou Rélément intermédiaire > 2m²KW
  3. dcontact ≥ 1⁄2 * min⁡(épaisseur de l’isolant le moins épais)

Dans ce cas-ci, l’élément intermédiaire est la structure en bois contrecollé, l’isolant 1 est du PUR et l’isolant 2 est une chape en PU projeté :

  1. λélément intermédiaire = 0,12 WmK ≤0,2 WmK -> V
  2. Rélément intermédiaire = 0,30/0,12 = 2,50 KW ≥ min⁡(0,13/0,023 ⁄ 2;0,20/0,025 ⁄2) -> X
    ou Rélément intermédiaire = 0,30/0,12 = 2,5 m²KW > 2 m²KW -> V
  3. dcontact = 0,3 m ≥ 1⁄2 * 0,13 m -> V

Dans le cas de la crèche, tous les nœuds constructifs étaient PEB conformes ou avaient des performances particulièrement élevées. Aucun n’a donc dû être encodé manuellement.

Le niveau K calculé à partir de la géométrie du bâtiment, du coefficient de transmission thermique U de toutes les parois de la surface de déperdition et des nœuds constructifs est égal à K19, valeur nettement inférieure à la valeur maximale autorisée K35.

3. Respect du critère EW ≤ (90/45)

Les exigences à respecter dans une unité PEN varient d’une fonction à l’autre.

Ainsi l’exigence Ew pour les fonctions bureau et enseignement est égale à 45 tandis que pour toutes les autres fonctions, elle est égale à 90.

Lorsqu’il y a dans une même unité PEN plusieurs fonctions, l’exigence est adaptée en fonction du poids proportionnel des différentes fonctions.

Méthode de calcul pour l’exigence Ew des unités PEN :

  • EW : l’exigence de niveau EW pour l’unité PEN ;
  • Ach, fct f : la surface totale de plancher chauffée ou climatisée de chaque fonction f, en m² ;
  • EW, fcf f : l’exigence de niveau E W pour chaque fonction f ;
  • Ach : la surface totale de plancher chauffée ou climatisée de l’unité PEN, en m².

Il faut faire la sommation sur toutes les fonctions f de l’unité PEN.

La crèche ne comprend qu’une seule unité fonctionnelle « soins de santé, sans occupation nocturne ». L’exigence EW est donc EW90.

Le calcul des performances du bâtiment à l’aide du logiciel PEB donne pour résultat EW71. Cette valeur est bien inférieure au critère EW à respecter.

4. Respect des règles de ventilation

La ventilation du bâtiment est assurée par un système D grâce à une centrale double flux avec récupération de chaleur. Le choix de cette centrale de traitement d’air s’est fait suite au calcul du débit nécessaire dans ce bâtiment conformément à l’annexe C3 de l’AGW du 15/05/2014 tel que modifié par l’AGW du 15/05/2016. Elle répond donc aux exigences PEB Q-ZEN de 2021 (2019).

La centrale double flux, qui se situe dans les combles, assure un débit de 1 170 m³/h qui sera distribué dans l’ensemble du bâtiment. Le débit du ventilateur d’extraction est égal à un pourcentage du débit du soufflage. Cela permet de mettre le bâtiment en légère surpression et d’éviter toute entrée d’air parasitaire. La régulation du débit s’est faite grâce à des clapets autorégulants à débit constant. Une batterie externe a été ajoutée à la centrale pour pouvoir pulser l’air dans le bâtiment directement à bonne température (20,6 °C).

Tableau récapitulatif dans le rapport PEB .- Les gaines de ventilation.

Tableau des débits de ventilation affiché par le logiciel PEB.

5. Respect de la règle de comptage énergétique.

Le bâtiment ne compte qu’une seule unité PEB. Cette règle est donc très facile à respecter puisque la présence des compteurs des sociétés distributrices (gaz et électricité) suffit.

Conclusion : la crèche Fort Lapin est un bâtiment Q-ZEN !
Cela signifie qu’atteindre ce standard est tout à fait réalisable pour les futures constructions, puisqu’un bâtiment performant conçu en 2013 répond déjà aux exigences de 2021 (2019).

Le confort dans la crèche

Le bâtiment répond aux exigences PEB de 2021, mais est-il confortable ?
L’ambiance a été analysée dans les 3 pièces principales de la crèche et ensuite, le ressenti des occupants a été étudié.

Prise des mesures

Pour les mesures intérieures, des sondes enregistreuses ont été placées pendant un mois dans le local principal des différentes sections (petits, moyens, grands). Les données extérieures ont été fournies par le service de prévision météorologique METEOBLUE.

Courbe de l’évolution de la température dans les différentes sections.

De manière théorique, la température dans les différentes sections se situe dans la zone de confort (entre 19.5 °C et 25 °C) à l’exception de certains pics exceptionnels. Dans les zones de repos, on veillera cependant à maintenir la température la plus basse possible pour éviter la mort subite du nourrisson.

Dans une crèche, les puéricultrices sont très attentives à maintenir une température suffisante pour le confort et la santé des bébés et jeunes enfants. La température de consigne est, dès le départ, relativement élevée. À cause de la faible inertie du bâtiment, si en cours de journée, la température extérieure et l’ensoleillement augmentent, l’effet se traduit rapidement à l’intérieur du bâtiment par une augmentation de la température.

Durant la période de mesures, la température extérieure était toujours inférieure à la température intérieure. Une bonne gestion de la ventilation intensive de jour aurait pu maintenir la température des locaux dans la zone de confort. Cela ne serait pas possible lors de fortes chaleurs en été. Durant les fortes chaleurs, il sera sûrement nécessaire d’anticiper les risques en prenant toutes les mesures utiles pour se protéger de la chaleur.

L’humidité relative dans les locaux se trouve comprise entre 20 % et 40 %. Lorsqu’il fait plus froid dehors, elle se trouve sous la limite inférieure de la zone de conforts (30 %).

Cette analyse expérimentale correspond relativement bien avec les ressentis des occupants. Si on regarde les tableaux n° 27,28 et 29, on remarque que les employées, à l’exception de ceux de la section des moyens, trouvent l’air trop sec. Un organe de déshumidification n’aurait donc pas d’intérêt dans ce bâtiment tandis qu’un organe d’humidification pourrait être intéressant.

Ressenti des occupants

Afin de connaître la satisfaction de confort des employés de la crèche, il leur a été demandé de répondre à une grille d’évaluation de manière hebdomadaire pendant le mois des mesures.

Les employées déclarent avoir trop chaud début avril (9, 10 et 11 avril). Le reste du temps, ils apprécient la température ambiante à quelques exceptions où ils disent avoir plutôt chaud à plusieurs reprises malgré que la température intérieure soit comprise entre les deux limites du confort. Les ressentis des occupants correspondent relativement bien à ceux prévisibles à la lecture des mesures. Certains employés indiquent que malgré l’ouverture des fenêtres certains jours, il continue à faire beaucoup trop chaud.

Lorsque l’air est trop sec, les occupants le signalent. C’est beaucoup plus manifeste dans la section des petits où la température de l’air est plus élevée.

Conclusions

Le bâtiment est toujours en phase de rodage et certains réflexes préventifs doivent encore être acquis pour diminuer les surchauffes. Ces réflexes viendront avec l’expérience de ses utilisateurs.

En été, vu la faible inertie du bâtiment, en période de forte chaleur, il sera probablement difficile de maintenir la température sous la limite théorique de confort. La température intérieure ne descendra pas en dessous de la température extérieure. Des protections solaires et une bonne ventilation à certains moments de la journée seront indispensables pour maintenir le confort à des niveaux acceptables. Une nouvelle campagne de mesure et de concertation avec les utilisateurs durant cette période serait très instructive.

Un organe d’humidification de l’air est manifestement nécessaire en hiver lorsque l’air est très sec.

Impact de l’isolation des parois opaques sur les performances

Comme nous l’avons vu précédemment le bâtiment tel qu’il a été construit respecte les exigences PEB 2021 (2019), c’est-à-dire le niveau Q-ZEN. Que se serait-il passé si l’isolation des parois de l’enveloppe du volume protégé avait été réalisée à la limite du respect des exigences sur le coefficient de transmission thermique U ?

Le tableau ci-dessous reprend les valeurs de U initiales (projet réalisé) et de U finales (hypothèse de calcul = Umax)

Parois λ
Isolant [W/mK]
Épaisseur initiale [cm] Épaisseur finale [cm] U initiale [W/m²K] U finale [W/m²K]
Façade 1 brique 0,023 13 7,6 0,16 0,24
Façade 2 enduits 0,032 18 10 0,15 0,24
Panneaux châssis 0,023 13 7,6 0,16 0,24
Mur contre terre 0,023 6 6 0,33* 0,33*
Mur contre EANC 0,023 18 8,5 0,12 0,24
Dalle sur sol 0,025 22 5 0,12 0,24
Dalle sur vide technique 0,025 22 10 0,12 0,24
Toit plat terrasse 0,024 12 1,6 0,12 0,24
Toiture plate couvrant RDC arrière 0,026 24 1,7 0,08 0,24
Toiture plate section moyens 0,026 18 0,5 0,09 0,24
Toiture en pente 0,039 30 17 0,15 0,24

Variation de l’épaisseur d’isolant dans la crèche Fort Lapin [A. de France, 2018].

* cette valeur est supérieure à Umax. Elle n’a pas été modifiée. La surface de la paroi concernée est comprise dans les 2% ne devant pas respecter les Umax.

L’impact sur K et EW est repris dans le tableau ci-dessous

Valeur initiale Valeur finale Delta [points]
K [/] 26 34 +8
EW [/] 70 76 +6

Influence de l’épaisseur de la couche d’isolant sur les valeurs PEB de la crèche Fort Lapin [A. de France, 2018]

On constate que pour la crèche « Fort Lapin » le respect des Umax permet de respecter les critères K (K35) et EW (EW90).
Attention, cela ne signifie pas que ce serait le cas pour d’autres bâtiments différents par leurs fonctions, leurs installations techniques, leurs compacités, etc.

On peut également se demander quel impact a le niveau d’isolation :

  • sur la consommation en énergie primaire de ce bâtiment ;
  • sur le niveau K ;
  • sur le niveau EW.

Consommation en énergie primaire

Le tableau ci-dessous reprend les besoins en énergie primaire pour le chauffage et le refroidissement en fonction du U moyen pondéré des parois de l’enveloppe du volume protégé de la crèche.

Evolution de la consommation annuelle en EP selon l’isolation des parois [A. de France, 2018].

Plus UPAROI augmente, plus on est mal isolé et donc plus il faudra chauffer le bâtiment. Par contre si UPAROI augmente, il faudra également moins refroidir le bâtiment, car celui-ci se refroidira par transmission thermique puisque de manière générale, il fait plus chaud à l’intérieur du bâtiment qu’à l’extérieur. Les courbes sont évidemment théoriques puisque UPAROI = 0 W/m²K est impossible à atteindre.

Il existe un optimum d’isolation qui serait intéressant à déterminer afin d’isoler un minimum et de consommer un minimum. Cet optimum sera spécifique à ce bâtiment et à son utilisation. Il dépendra principalement du prix des combustibles. Si les prix sont bas, cela ne nous coûtera pas cher de chauffer et donc on isolera moins.

Niveau K

Le graphe ci-dessous montre l’évolution du niveau K en fonction du coefficient de transmission moyen des parois de l’enveloppe du volume protégé. Il s’agit d’une droite puisque le niveau K directement proportionnel au U moyen pondéré. Il est déterminé par 100 fois le produit de cette valeur par un coefficient dépendant de la compacité du bâtiment. Le point d’origine de la droite est évidemment théorique, puisque UPAROI = 0 W/m²K est impossible à atteindre.

Niveau EW

La courbe ci-dessous montre l’évolution du niveau EW du bâtiment lorsqu’on fait varier le niveau U moyen.

Impact de l’isolation des vitrages sur les performances

Les valeurs par défaut du coefficient de transmission thermique du simple vitrage (U = 5,80 W/m²K), du double vitrage (3,30 W/m²K) et du triple vitrage (2,30 W/m²K), sont supérieures aux exigences de la PEB (Umax = 1,10 W/m²K). Les valeur par défaut ne pourront donc être utilisées que si la surface des vitrages fait partie des 2% de la surface de la déperdition totale AT qui peuvent déroger à la règle des Umax.

U
[W/m²K]
Simple Clair (8 mm) 5,8
Double Clair 2,8
Clair + basse émissivité 1,6
Clair + absorbant 2,8
Clair + réfléchissant 2,8
Clair + basse émissivité +contrôle solaire 1,6
Clair + basse émissivité + gaz isolant 1 à 1,3
Clair + basse émissivité + contrôle solaire + gaz isolant 1 à 1,3
Triple Clair 1,9
Clair + basse émissivité + gaz isolant 0,5 à 0,8
Clair + basse émissivité + contrôle solaire + gaz isolant 0,5 à 0,8

Récapitulatif du type de vitrage standard disponible sur le marché aujourd’hui [A. de France, 2018].

Les valeurs surlignées en rouge sont des valeurs supérieures aux exigences du standard Q-ZEN.

Celles en bleu sont des valeurs dont une partie est également supérieure aux exigences. Cela réduit le choix du type de vitrage autorisé dans un bâtiment devant répondre aux exigences PEB.

Les vitrages des fenêtres de la crèche « Fort Lapin » ont un Ug = 0.5 W/m²K

Consommation en énergie primaire

Le tableau ci-dessous reprend les besoins en énergie primaire pour le chauffage et le refroidissement du bâtiment si on fait varier le U moyen des vitrages tout en conservant les mêmes facteurs solaires g.

Évolution de la consommation annuelle en EP selon l’isolation des vitrages [A. de France, 2018].

Des ressauts se produisent lorsque le Ug du vitrage devient supérieur au Uf du châssis. À ce moment la formule simplifiée utilisée dans la méthode de calcul change. La surface de vitrage par défaut passe de 70 % à 80 % de la surface de la fenêtre. Les apports solaires deviennent alors plus importants ce qui diminue les besoins en chauffage en hiver et augmente les besoins en refroidissement en été.

Si les proportions exactes de vitrage et de châssis avaient été encodées, il n’y aurait pas de ressaut.

Niveau K

Le graphe ci-dessous montre l’évolution du niveau K en fonction du coefficient de transmission moyen des vitrages. Il s’agit d’une droite puisque le niveau K directement proportionnel au U moyen pondéré qui lui-même varie linéairement en fonction du Ug du vitrage. Il n’y a pas de ressaut dans la droite puisque les apports solaires n’interviennent pas dans le calcul du K.

Évolution de K en fonction de l’isolation des vitrages [A. de France, 2018].

Niveau EW

Le graphe ci-dessous montre l’évolution du niveau K en fonction du coefficient de transmission moyen des vitrages.

Évolution d’EW en fonction de l’isolation des vitrages [A. de France, 2018].

EW étant fonction de l’EP totale consommée, elle dépend directement de l’EP consommée pour le chauffage et l’EP consommée pour le refroidissement. Ces deux-ci étant linéaires, il est logique qu’EW le soit aussi. De plus, vu qu’ils ont tous les deux un saut au même endroit, il est logique qu’EW présente une discontinuité en ce point.

Tableau de synthèse

UVITRAGE
[W/m2K]
K [/] EW [/]
0,0* 23 68
0,1* 24 69
0,2* 24 69
0,3* 25 69
0,4* 25 70
0,5 26 70
0,6 26 70
0,7 27 71
0,8 27 71
0,9 28 72
1,0 29 72
1,1 29 73

Influence de l’isolation des vitrages sur les exigences PEB de la crèche Fort Lapin [A. de France, 2018].

* ces vitrages n’existent pas (encore ?) actuellement.

Impact de l’isolation de toutes les parois sur les performances

Nous avons remarqué ci-avant que si l’on isolait toutes les parois à la limite des exigences, nous répondrions toujours aux exigences K et EW. Il en va de même pour les fenêtres et leurs châssis. Qu’en est-il si on le faisait pour les deux ?

Valeur initiale Valeur finale Delta [points PEB]
K [/] 26 40 +14
EW [/] 70 81 +11

Influence de l’isolation de la crèche Fort Lapin sur les valeurs PEB [A. de France, 2018].

Si on répond bien aux différentes exigences U, on ne répond plus à celle de K. Cette dernière est donc plus sévère que l’exigence U dans le cas de la crèche.

L’exigence qui sera la plus sévère dépendra de la compacité du bâtiment et de la proportion entre parois opaques et les parois transparentes.

Une compacité plus élevée est toujours souhaitable, mais ce n’est pas toujours possible à cause des contraintes architecturales par exemple.

Impact des nœuds constructifs sur les performances

Il existe trois manières de prendre en compte les nœuds constructifs, chacune ayant une influence différente sur les valeurs PEB.

  1. Option A : méthode détaillée ;
  2. Option B : méthode des nœuds PEB conformes ;
  3. Option C : Supplément forfaitaire.

-> L’option A qui est la plus précise nécessite un travail important. Tous les nœuds constructifs doivent être modélisés pour en connaître le Ψ linéaire ou le χ ponctuel. Ils doivent en outre être mesurés et comptés.

-> L’option B est plus pragmatique. Elle permet une évaluation rapide de la qualité thermique des nœuds constructifs sans pénaliser significativement les résultats du calcul de K et de EW.

-> L’option C est la plus facile mais pénalise fortement les résultats.

Option C Option B Delta [points]
K [/] 26 19 -7
EW [/] 70 64 -6

Influence des nœuds constructifs sur les valeurs PEB de la crèche Fort Lapin [A. de France, 2018].

Les résultats obtenus correspondent avec ce qui était prévisible. En effet, de manière globale, utiliser l’option C induit un supplément de 10 points à la valeur K tandis que l’option B, lorsque comme c’est le cas ici, tous les nœuds constructifs sont PEB conformes, en ajouterait 3. Il y a donc bien une différence de plus ou moins 7 points entre les deux options. Cette différence a également un impact important sur le EW. Celui-ci varie en fonction de la compacité du bâtiment.

Utiliser l’option B lorsque la majorité des nœuds constructifs sont PEB conformes est donc une manière facile de gagner des points PEB sur les exigences K et EW.

Impact de l’étanchéité à l’air sur les performances

Que se passe-t-il lorsque l’étanchéité à l’air de l’enveloppe de la crèche « Fort Lapin » est différente ? En d’autres mots, que se passe-t-il lorsque v50 varie ? (v50 représente le débit de fuite pour une différence de 50Pa entre l’intérieur et l’extérieur par unité de surface de l’enveloppe [m³/h.m²]).
Le cahier spécial des charges demandait que le v50 ne dépasse pas 0.92 m³/hm². Malheureusement, la valeur mesurée lors de la réception du bâtiment était 1.98 m³/hm². C’est donc cette dernière valeur qui a été utilisée dans la déclaration PEB finale.

Actuellement, d’après le CSTC, les bâtiments construits sans attention particulière à l’étanchéité à l’air ont un v50 variant entre 6 et 12 m³/(h.m²). Elle varie entre 2 et 6 m³/(h.m²) lorsqu’une conception judicieuse et une mise en œuvre soignée a été appliquée. Pour descendre sous ces valeurs, une véritable expertise est nécessaire tant au niveau de la conception que de l’exécution : chaque détail, chaque nœud constructif, … doit être correctement analysé et tous les corps de métier doivent être sensibilisés et impliqués dans cette recherche d’étanchéité à l’air.

Le tableau ci-dessous indique les valeurs K et EW qu’aurait atteint le bâtiment si son étanchéité à l’air avait été différente.

Valeur mesurée sur site Valeur visée dans le cahier des charges Valeur théorique minimum Valeur max lors d’une attention très particulière Valeur max lors d’une faible attention Valeur maximum (par défaut)
v50 [m³/h.m²] 1,98 0,92 0 2 6 12
K [/] 26 26 26 26 26 26
EW [/] 70 69 69 70 73 79

Représentation de l’influence de l’étanchéité à l’air sur les valeurs PEB [A. de France, 2018].

La première chose que nous remarquons dans ce tableau est que l’étanchéité à l’air n’influence pas la valeur de K. K dépend uniquement de la compacité du bâtiment et de l’isolation de chaque paroi. Il est donc indépendant de l’étanchéité à l’air.
Le graphique suivant a été dessiné en faisant varier le v50 de 0 m³/(h.m²) (valeur minimum théorique, mais inatteignable) à 12 m³/(h.m²) (valeur imposée par défaut par le programme). Ensuite, ce graphique a été divisé en trois parties :

  1. En vert : niveau d’étanchéité obtenu en faisant une véritable expertise (0 < v50 < 2)
  2. En orange : niveau d’étanchéité obtenu en faisant une conception judicieuse et une mise en œuvre soignée (2 < v50 < 6)
  3. En rouge : niveau d’étanchéité obtenu en n’appliquant pas d’attention particulière à l’étanchéité à l’air (v50 > 6)

Évolution d’EW en fonction de l’étanchéité à l’air [A. de France, 2018].

On remarque que ce graphe a une forme « d’escalier ». Cela est dû au fait que le logiciel PEB arrondit toujours les valeurs à l’unité supérieure (exemple : 71,05 -> 72) afin de se placer du côté de la sécurité.

Dans le graphique suivant, des valeurs dites « PEB » qui sont les valeurs données par le logiciel et des valeurs dites « brutes » qui sont les valeurs non arrondies calculées à partir des formules trouvées dans les normes.

Évolution d’EW en fonction de l’étanchéité à l’air [A. de France, 2018].

Comme on le voit l’impact de l’étanchéité à l’air sur EW est linéaire. Il y a juste un petit ressaut qui apparaît lorsqu’on passe de v50= 8,05 à 8,06 m³/(h.m²). Cette valeur ne correspondant à aucune limite théorique, la consommation d’EP des différents postes a été analysée. On remarque une variation plus importante que précédemment pour la consommation d’EP pour le chauffage. Une demande d’EP pour le chauffage apparaît en juin alors qu’elle était toujours nulle pour des valeurs v50 ≤ 8.05 m³/m².

Si on retire cette demande en juin, le petit saut disparaît et on retrouve la droite initiale.

Dans la réglementation PEB, le calcul de la consommation de chaud prévoit que si le rapport gain-déperdition de chaud pendant un mois se trouve entre 0 et 2,5 une consommation est prise en compte. Si ce rapport est hors de ces limites, on considère la consommation de chaleur nulle.

Dans le cas de la crèche, en passant d’une étanchéité à l’air de 8,05 à 8,06 m³/(h.m²), le facteur gain-déperdition prend au mois de juin une valeur située entre 0 et 2,5 engendrant une consommation d’EP pour le chauffage.

Conclusion

L’étanchéité à l’air influence fortement la valeur d’EW (jusqu’à 10 points). De plus, comme l’évolution est linéaire, l’impact sera toujours le même, peu importe la performance existante. Descendre sous 2 m³/(h.m²), influence peu EW (maximum -1 point). Or, pour descendre sous cette valeur, une véritable expertise est nécessaire tant au niveau de la conception que de l’exécution. Un optimum économique doit être estimé.

Impact du choix de la production de chaleur sur les performances

La crèche « Fort Lapin » est équipée d’une chaudière à gaz à condensation de 40 kW.

Si pour comparer les différents types de générateurs, les valeurs par défaut pour le rendement sont appliquées, on obtient pour la crèche les valeurs reprises au tableau ci-dessous.

Type de générateur EP chaud [MJ] EW [/]
Chaudière à eau chaude à condensation 101456,89 74
Chaudière à eau chaude non à condensation 101456,89 74
Générateur d’air chaud 101456,89 74
Fourniture de chaleur externe 148524,52 83
Chauffage électrique par résistance 183761,2 89
Autre générateur 101456,89 74

Influence du type de générateur sur les valeurs PEB de la crèche Fort Lapin [A. de France, 2018].

Il n’y a aucune différence pour les valeurs d’EW pour les 4 types de générateurs suivants : la chaudière à eau chaude à condensation, la chaudière à eau chaude non à condensation, le générateur d’air chaud et l’autre générateur. Il aurait semblé évident qu’une chaudière à condensation engendre moins de point EW qu’une chaudière non à condensation par exemple.

Ces rendements sont identiques parce que les valeurs par défaut du rendement ont été utilisées pour le calcul. La PEB se place en effet du côté de la sécurité pour les valeurs par défaut. En indiquant un même rendement pour une chaudière à eau chaude à condensation qu’une chaudière à eau chaude non à condensation, la PEB prévoit que la température de retour pourrait être trop élevée pour que la condensation se produise dans la chaudière à condensation.

Voici un tableau reprenant les valeurs obtenues pour différents types de générateurs sans utiliser les valeurs par défaut, mais bien les valeurs certifiées par des fabricants :

Type de générateur Vecteur énergétique η [%] Température de retour [°C] EW [/]
Chaudière à eau chaude à condensation Gaz naturel 107,1 30 70
Chaudière à eau chaude à condensation Mazout 102 35 71
Chaudière à eau chaude non à condensation Gaz naturel 81,94 30 74
Générateur d’air chaud Gaz 92,5 / 72
Générateur d’air chaud Mazout 90,1 / 71
Fourniture de chaleur externe / 97 / 83
Chauffage électrique par résistance / 100 / 89

Exemple de type de générateurs [A. de France, 2018].

La puissance n’est pas prise en compte dans ce tableau parce que celle-ci n’influence pas le calcul PEB. Cette puissance n’est utile que lorsqu’il y a plusieurs types de générateurs. Le logiciel prendra par défaut le générateur le plus puissant comme générateur préférentiel.

Conclusion

Comme on pouvait s’y attendre, le choix du type de générateur « chauffage électrique par résistance » est fort défavorable à la valeur d’EW. Il engendre +19 points par rapport à la chaudière réellement utilisée dans la crèche. Les autres types de générateurs engendrent au maximum 4 points en plus. La chaudière à gaz à condensation a donc été judicieusement choisie.

Quel avantage procureraient des panneaux photovoltaïques

Avant d’analyser l’impact qu’aurait une installation de panneaux photovoltaïques sur les points PEB de la crèche, elle doit d’abord être pré-dimensionnée.
Les différentes parois de la crèche ont été étudiées pour déterminer où les panneaux photovoltaïques pourraient être placés sachant que l’inclinaison idéale est de 35° et que l’exposition idéale est au sud.
La toiture inclinée n’a pas été retenue à cause de sa pente de 18° exposée Nord.

Parmi les toitures plates, deux ont été retenues :

  • la toiture A, au-dessus du local du personnel (38 m² exploitables) ;
  • la toiture B, au-dessus de l’espace de rangement et de l’EANC (39 m² exploitables).

À partir de leurs surfaces, la puissance de production de ces panneaux peut être calculée. Sachant qu’on peut produire environ 0,125 kWc par m², on peut estimer que :

  • la toiture A produira 4,75 kWc ;
  • la toiture B produira 4,88 kWc.

Pour calculer la production électrique annuelle des panneaux, la formule suivante doit être utilisée :

[kWh] = [kWc] * 950 kWh * α

Où,

  • 950 kWh permet de considérer que 1 kWc produit 950 kWh quand le panneau est exposé plein sud à 35°
  • α est un coefficient correcteur prenant en compte l’orientation et l’inclinaison des panneaux photovoltaïques.
Inclinaison [°]
Orientation 0 15 25 35 50 70 90
Est 88 % 87 % 85 % 83 % 77 % 65 % 50 %
Sud-est 88 % 93 % 95 % 95 % 81 % 81 % 64 %
Sud 88 % 96 % 99 % 100 % 87 % 87 % 68 %
Sud-Ouest 88 % 93 % 95 % 95 % 81 % 81 % 64 %
Ouest 88 % 87 % 85 % 82 % 65 % 65 % 50 %

Coefficients correcteurs d’orientation et d’inclinaison des panneaux photovoltaïques
[https://www.energieplus-lesite.be/index.php?id=16688]

  • La toiture A produirait donc théoriquement 4,75 * 950 * 0,95 = 4 286 kWh
  • La toiture B produirait donc théoriquement 4,88 * 950 * 0,95 = 4 404 kWh
  • Et le bâtiment produirait 8 690 kWh.

Cependant, selon le logiciel PEB, ces panneaux produiront en réalité 6560 kWh à cause du facteur d’ombrage.

Quatre types d’ombrages sont à considérer. Ils valent :

Toiture A Toiture B
Angle d’obstruction
Angle vertical de la saillie horizontale 11° 24°
Angle de saillie à droite
Angle de saillie à gauche 15° 32°

L’ombrage joue un rôle très important sur la production d’une cellule photovoltaïque et donc sur la production d’un panneau entier.
Pour les panneaux photovoltaïques, trois hypothèses ont été prises :

  • Les panneaux sont mono/polycristallins.
  • Les panneaux ne sont pas intégrés à la paroi du bâtiment.
  • On installe un onduleur avec isolation galvanique.
Sans panneau photovoltaïque Avec panneaux photovoltaïques
K [/] 26 26
EW [/] 70 59

Influence des panneaux photovoltaïques sur les valeurs PEB de la crèche Fort Lapin [A. de France, 2018].

Si aucun ombrage n’était présent on gagnerait encore 3 points d’EW.
En 2017, le prix d’une installation de panneaux photovoltaïques tout compris variait entre 1 100 et 1 500 € par kWc. Cela signifie que cette installation coûterait entre 10 593 € et 14 445 €.
On peut donc estimer que chaque point PEB gagné grâce à ces panneaux coûtent entre 963 et 1 313,18 €.
En plus de gagner ces points PEB, on estime un gain de 1 901,38 €/an sur la facture d’électricité.

Conclusion

Les panneaux photovoltaïques sont un bon moyen pour gagner facilement des points PEB sur le paramètre EW. Il s’agit aussi d’une énergie produite à partir de sources renouvelables très facile à mettre en place pour couvrir le peu d’énergie requise comme demandé par la directive NZEB.

Dans un futur proche, le logiciel PEB devra se mettre à jour en proposant plus de paramètres à encoder car on va connaitre une diversification du type de cellules et d’accessoires tels que les diodes by-pass.