Choisir la robinetterie

Choix de la qualité

On peut intégrer la qualité comme facteur d’économie dans la mesure où les problèmes de fuite ou de dysfonctionnement s’en trouvent minimisés.

Et vu le coût moyen de 5 € du m³ d’eau chaude, le surcoût de la qualité est rapidement amorti. « Il faut être riche pour acheter bon marché », disait ma grand mère…


Mélangeur à 2 robinets ? Mitigeur monocommande ? Mitigeur thermostatique ?

Mitigeur monocommande Mélangeur à 2 robinets. Mitigeur thermostatique.

Voici les résultats d’une étude faite dans le cadre du programme Ravel en Suisse.
Ils montrent que la consommation d’énergie est :

  • 19 % plus élevée avec un mélangeur à deux robinets pour bain/douche qu’avec un mitigeur thermostatique (consommation supplémentaire d’énergie environ 200 kWh/an).
  • 56 % plus élevée avec un mélangeur à deux robinets pour lavabo qu’avec une robinetterie sans contact (consommation supplémentaire d’énergie environ 200 Wh/an, également).

Sur base du prix du kWh, il est possible d’avoir une idée de la rentabilité de l’investissement.

Eau chaude %

Bain

mitigeur thermostatique

64 100

mitigeur à monocommande

69 108
– mélangeur à 2 robinets 76 119

Lavabo

robinetterie sans contact

16 100

mitigeur à monocommande

20 125

mitigeur thermostatique

23 143
– mélangeur à 2 robinets 25 156

Influence de la robinetterie sur la consommation d’énergie
base : eau chaude à 55°C, eau froide à 15°C.

On peut en déduire une stratégie de choix appliquée à un lavabo :

Type de robinetterie

Consommation d’énergie Consommation d’eau Coût Remarque
– mélangeur à 2 robinets élevée élevée faible simple
– mitigeur à monocommande faible moyenne normal économique
– mitigeur thermostatique moyenne élevée élevé confortable
– robinetterie sans contact faible faible élevé hygiénique

Cette grille de choix doit encore être confrontée à l’analyse du comportement probable de l’utilisateur. Le robinet d’eau chaude est parfois inutilement actionné, de même que le levier du mitigeur à monocomande est souvent laissé dans une position médiane, même si l’eau chaude n’était pas recherchée…

Cette analyse est partagée par le CSTB en France. Il semble que le mitigeur thermostatique de douche n’apporte surtout des économies que lors du deuxième usage rapproché (rinçage, par exemple). Sur base d’un surcoût moyen de 45 €, ils annoncent un temps de retour de 4 ans dans un usage familial. En usage tertiaire, le temps de retour est donc nettement plus faible.

Le réglage optimum du débit avant celui de la température

Il semble que le facteur numéro 1 de consommation d’énergie soit la quantité d’eau utilisée, avant la température. Donc il faut d’abord chercher à ce que le robinet fournisse juste le débit d’eau nécessaire, et dans un deuxième temps à ce que l’adaptation de la température souhaitée entraîne le moins de consommation d’eau chaude.

L’ergonomie des différents robinets mérite donc une attention particulière, au regard de l’occupation des mains de l’utilisateur. Dans certains cas, les mains étant occupées par un objet (lavage, …), il peut être utile de sélectionner une robinetterie dans l’ouverture est commandée par le genou ou le pied (pédale).

Favoriser l’usage de l’eau froide

Pour favoriser l’usage préférentiel de l’eau froide pour se laver les mains, il est plus aisé de n’ouvrir que l’eau froide avec un mélangeur qu’avec un mitigeur. Aussi, certains fabricants proposent des mitigeurs avec une manette un peu particulière. En effet, la tête céramique est conçue pour que la position centrale corresponde en fait à la position « pleine eau froide » au lieu de la position « eau mitigée ».

Mitigeur.

Le thermostatique : avant tout un confort renforcé

Le thermostatique amène un confort supplémentaire en terme de stabilité de température, même lorsque la production instantanée entraîne des fluctuations de température de l’eau chaude.

Pour augmenter les économies, il existe également des robinets dont le réglage de base correspond à un débit limité à 40 ou 50 %. Ce n’est que si l’utilisateur veut volontairement obtenir le plein débit, après avoir déverrouillé le bouton « éco » du limiteur, que le débit maximal est fourni.

De plus, les thermostatiques intègrent une fonction de sécurité grâce à un bouton « stop » qui limite la température de l’eau mitigée en sortie à 38°C et permet ainsi d’éviter les risques de brûlure (très utile en milieu fréquenté par des personnes âgées ou des des enfants).

Dans des lieux de soins, la température d’arrivée d’eau chaude est parfois de 60°C au moins pour des raisons d’hygiène. Pour éviter tout risque de brûlure, il est possible d’intégrer un mitigeur de sécurité sous l’évier, en amont du mitigeur normal. Il se pose sur la vanne d’arrêt. Il prérègle la température maximale de sortie, indépendamment des variations de pression et même en cas d’interruption de l’arrivée d’eau froide, d’après le fournisseur.

Mitigeur de sécurité.

Le réglage de température est dissimulé sous une coiffe et modifiable via une clé Allen par le technicien.

Enfin, il existe des mitigeurs centralisés pour une zone du réseau.

Mitigeurs centralisés.


Choix d’équipements à faible débit

Utilisation des « boutons poussoirs »

La réduction de la durée d’utilisation peut être directe : une robinetterie à fermeture automatique dans les installations publiques permet de diminuer drastiquement la consommation d’eau.

Utilisation des commandes électroniques

Ils régulent le débit d’eau sans aucun contact physique de l’utilisateur, à l’aide d’une technique opto-électronique. Ce n’est que lorsque les mains se trouvent dans la zone de réception du capteur sous le robinet que l’eau est distribuée.

Mitigeur à commandes électroniques.

En voici une version,
avec l’alimentation en savon également sous contrôle.

Il existe des modèles raccordés au réseau (très faible consommation mais investissement plus élevé), d’autres avec alimentation par batterie (plus aisé en rénovation mais un bilan est à faire !).

Certains encore disposent d’une auto-fermeture, programmable entre 2 et 60 secondes.

Si l’électronique est présente, elle permet également de présélectionner la température d’eau mitigée.

Et puisqu’on en est à rêver, il existe des modèles de robinets intégrables dans la GTC (Gestion Technique Centralisée) du bâtiment : une alarme se déclenche si l’ouverture reste ouverte trop longtemps, une coupure automatique de tous les robinets du bâtiment est possible d’un seul lieu (début des WE, par ex.), un contrôle interdit une température pouvant provoquer des brûlures (dans un home pour personnes âgées), …

Placement de mitigeurs avec butée

Ce type de robinetterie s’utilise comme un mitigeur classique. Toutefois, un point « dur » ou une butée délimite les 2 zones de fonctionnement : une zone économique (de 0 à 6 litres/min environ) et une zone de confort (jusqu’à environ 12 litres/min). Le surcoût de cette technique « point dur à franchir » est négligeable et donc le temps de retour est immédiat.

Mitigeurs avec butée.

Placement de « mousseurs »

Un mousseur est un régulateur de débit qui réduit la section de passage en fin de robinetterie et/ou qui crée un mélange air/eau. Il participe en même temps à la performance acoustique du robinet. Il permet par exemple de réguler un débit maximum de 6 ou 8 litres/minute. Un mousseur revient environ à 5 €.

Mousseur.

Dans la pratique, on se rend compte que des foyers de légionelles peuvent se retrouver au niveau des mousseurs; raison pour laquelle dans beaucoup d’institutions les mousseurs ont été enlevés.

On rencontre aussi ce type de réducteur de débit dans des « douchettes économes » : soit une manette permet de réduire le débit, soit un effet de « nuage d’eau » est créé. Attention au fait que ce type de douchette peut accélérer le phénomène d’aérosolisation, et donc une sensibilité plus grande à la contamination par la légionelle.

Douchettes économes.

Ces équipements terminaux modifient la courbe de réglage en température. La mise en place d’une perte de charge supplémentaire diminue « l’autorité » de la vanne. Si l’évolution est au départ linéaire, la perte de charge finale limite la zone de réglage de la température sur une bonne partie de la plage angulaire.

Problème commun à tous ces équipements : le calcaire !

L’entartrage de ces équipements est un problème si l’eau est particulièrement chargée en calcaire. Un entretien régulier des équipements (vinaigre, produit de type « Viakal », …) ou un adoucissement de l’eau avant son chauffage peut être nécessaire.

Les douchettes avec picots sont donc à privilégier : un simple grattage des picots permet alors de décoller les dépôts.

Certains mousseurs se présentent comme spécialement étudiés pour réduire le dépôt de calcaire.

Tous ces équipements devront pouvoir être facilement démontables et nettoyables.


Choix du mécanisme de vidange des WC

Il ne s’agit pas d’eau chaude… donc pas d’économie d’énergie potentielle. Cependant, c’est le premier poste permettant de réduire la consommation globale d’eau du bâtiment : nous allons donc faire une exception !

Les WC sont référencés par la taille de cuvette. Si autrefois, les cuvettes avaient une capacité de 9 à 10 litres, les cuvettes de 6 litres sont aujourd’hui courantes. Mais différents appareils permettent une économie d’eau supplémentaire par rapport aux cuvettes 6 litres :

Le WC à double commande

  • Un bouton délivre 3 litres, l’autre 6 litres.
  • Coût moyen : 120 € (pour le pack complet).
  • Économie estimée : 4,5 m³ sur l’année par personne, par rapport à une cuvette 6 litres sans double commande, pour un usage familial.
  • Temps de retour : 6 mois en usage familial, donc nettement moins en usage tertiaire.

Variante : il existe des systèmes qui peuvent être interrompus où une première pression sur le bouton de chasse permet l’enclenchement alors qu’une seconde pression permet l’arrêt de l’écoulement.

Chasse de WC à double commande.

Les cuvettes avec accélérateurs de débit

  • Cette fois, c’est de 2,5 à 4 litres qui sont nécessaires, l’accélérateur de débit permettant de conserver toute son efficacité au siphon. L’économie d’eau passe à 67 % par rapport à une cuvette de 9 litres.
  • Coût moyen de l’accélérateur : de 270 € à 840 €.
  • Économie estimée : 9 m³ sur l’année par personne, par rapport à une cuvette 6 litres sans double commande, pour un usage familial.
  • Temps de retour : 22 mois en usage familial, donc nettement moins en usage tertiaire.
  • Application : tout immeuble de 4 étages maximum.

Certains de ces équipements ont reçu un « avis technique » du CSTB (France).
Remarque : ces différents appareils peuvent être sensibles au calcaire qui peut perturber le bon fonctionnement du mécanisme ou du robinet. Les fuites ne sont pas toujours bien visibles. Il convient donc de fermer le robinet d’arrêt situé en amont du réservoir de temps en temps afin de vérifier que le niveau d’eau dans le réservoir ne diminue pas.

Prédimensionner une installation sanitaire tertiaire

Prédimensionner une installation sanitaire tertiaire


Objectif : un ordre de grandeur réaliste

La difficulté de l’évaluation pour un bâtiment neuf

Idéalement, l’installation se dimensionne se base sur le profil de puisage (quantité d’eau puisée en fonction du moment de la journée) le plus critique.

Or la constitution de ce profil de puisage n’est pas évidente dans un bâtiment neuf puisque l’on ne connaît pas encore son mode de fonctionnement. Tout au plus connaît-on les équipements sanitaires et peut-on imaginer des scénarios réalistes.

Le bureau d’études, soucieux de garantir le confort à 200 %, prend alors de fortes sécurités. Lors des audits d’installation, il n’est pas rare de rencontrer des ballons de stockage 2 à 3 fois plus volumineux que nécessaire.

Avec la conséquence que l’on imagine sur les pertes de stockage…

La possibilité de réajuster le tir dans un bâtiment existant

Dans les bâtiments existants, il est possible de connaître précisément le mode d’utilisation, moyennant le placement d’un compteur sur la fourniture d’eau chaude. Le coût de ce dernier est en général souvent vite remboursé par l’économie d’investissement lors du remplacement du matériel et par l’économie d’énergie qui résulte d’un dimensionnement plus strict.

Malgré cela, peu d’installateurs prennent la peine de passer par cette étape. C’est donc au gestionnaire de l’imposer.

Pas de méthode normalisée pour les bâtiments tertiaires

En Belgique, il n’existe malheureusement pas de méthode normalisée de dimensionnement des installations d’eau chaude sanitaire. Il existe seulement une Note d’Information Technique du CSTC, basée sur la norme allemande DIN 4708, qui présente le moyen de définir le profil de puisage d’un immeuble à appartements en fonction du nombre de logements.

Il n’existe pas « un » volume de stockage possible

Il existe une infinité de solutions :

  • depuis le ballon de stockage capable durant la nuit de préparer l’eau chaude de toute une journée,
  • jusqu’à l’échangeur instantané qui ne stocke rien à l’avance,
  • en passant par toutes les solutions intermédiaires de ballons tampons qui gèrent la pointe et se rechargent en cours de journée par un échangeur interne.

Il est possible de checker l’ordre de grandeur

En se fixant des hypothèses de départ, la démarche développée ci-dessous permet de fixer un ordre de grandeur réaliste pour les équipements.


Le profil de puisage

La connaissance de la quantité d’eau chaude puisée est indispensable pour dimensionner correctement l’appareil de production, quel que soit le système choisi.
Il existe trois méthodes pour établir le volume puisé dans un bâtiment :

  1. Les profils typesOn peut se référer à des statistiques de consommation établies sur des bâtiments identiques.
    On appliquera souvent cette méthode pour les bâtiments neufs.
  2. Le recensement des points de puisage
    On peut répertorier les points de puisage, leur débit nominal et leur période d’utilisation d’après les statistiques disponibles.
    Des exemples de débits pour des points de puisage typiques peuvent être utilisés.
    Ce recensement est à réaliser avec énormément de prudence. En effet, le risque de surdimensionner largement le système est important si on n’établit pas un scénario d’utilisation simultanée des différents points de puisage.
  3. Le comptage des consommations réelles
    La méthode idéale est de mesurer la consommation réelle d’eau chaude. Cette méthode sera la plus adaptée dans le cadre de rénovations dans le secteur tertiaire.
    Une campagne de mesures au moyen de compteurs d’eau, soit sur l’alimentation des différents points de puisage ou appareils consommateurs, soit sur l’alimentation en eau froide de l’appareil de production existant, met à l’abri de tout sur ou sous-dimensionnement du système.
Uniformisation des températures de l’eau chaude puisée :

La température de l’eau puisée varie en fonction du type de puisage.

Aussi, pour permettre l’addition de volumes puisés à des températures différentes, les volumes Vx à une température Tx seront convertis en volumes d’eau équivalents à 60°C par l’expression suivante :

V60 = Vx

Dans cette expression, 10° représente la température moyenne de l’eau froide

Si la température de l’eau puisée est inconnue, on considérera :

  • pour les cuisines : TX = 55°C,
  • pour les sanitaires : TX = 45°C,

Si les volumes puisés sont mesurés par compteur sur l’alimentation en eau froide de l’appareil de production :
TX = température de l’eau du ballon (ou en sortie de l’échangeur si le ballon est inexistant).


Coefficient d’efficacité « a » du ballon de stockage

Lorsque de l’eau chaude est puisée, de l’eau froide envahit le bas du ballon, le haut restant disponible pour l’utilisation suivante.

Mais dans certains cas (ballon horizontal, retour de la boucle dans le ballon, …), un mélange d’eau chaude et froide se produit, si bien que de l’eau à 35 … 40°C se forme. Cette eau est inutilisable. La température du ballon ne peut descendre en dessous de la température minimum de distribution de l’eau (par exemple, la température de distribution est de 45°C, pour assurer 40°C à tous les points de puisage). Le volume du ballon nécessaire pour offrir le même confort sera alors nettement supérieur.

Moyennant une construction adéquate de l’appareil, la stratification dans le ballon est optimale et l’énergie exploitable du ballon est maximum. Dans ce cas, on considère qu’au moment où le ballon ne fournit plus le confort adéquat aux utilisateurs, la température de l’eau est proche de la température de l’eau froide, à savoir 10°C.

Ainsi, le volume d’un ballon avec bonne stratification peut être inférieur au volume d’un ballon où il y a mélange intégral entre l’eau froide et l’eau chaude de plus de 50 %, pour un même confort fourni à l’utilisateur ! Ceci est illustré dans le graphe ci-dessous, où deux ballons, un avec bonne stratification (a = 0,9), l’autre avec un mélange important(a = 0,5), sont vidés en parallèle, l’eau chaude étant remplacée par de l’eau à 10° et aucune source de chaleur ne réchauffant le stock.

Température de l’eau fournie par deux ballons en fonction du temps de puisage.
L1 = limite de confort pour un ballon avec mauvaise stratification
L2 = limite de confort pour un ballon avec bonne stratification.

Dans les calculs, pour tenir compte du degré de stratification des ballons, on considère une température minimum possible du stock de 10° et on y associe un coefficient d’efficacité ‘a’. Dans la plupart des cas courants, celui-ci prend une valeur de 0,8 à 0,95 (bonne stratification), ce qui signifie que 80 à 95 % du volume réel du ballon est utilisable pour la température voulue. Si on se trouve dans le cas d’un ballon avec mélange important, ‘a’ peut descendre jusqu’à 0.45.


Préparation instantané

Un système de production d’ECS instantané ne comporte pas de volume de stockage. Son dimensionnement consiste à déterminer la puissance du générateur (production directe) ou de la chaudière et de l’échangeur (production indirecte).

En pratique, cette puissance correspondra à la puissance nécessaire pour subvenir aux besoins maximum en 10 minutes.

Etape 1 : Énergie maximum puisée en 10 minutes

Il s’agit de déterminer le volume d’eau maximum (équivalent à 60°C) puisé en 10 minutes durant la journée la plus chargée de l’année. Le volume d’eau chaude puisé a été déterminé. L’énergie maximum puisée en 10 minutes via l’eau chaude est alors donnée par la formule :

Einst = 1,16 x V60inst x (60° – 10°) / 1 000

avec,

  • Einst = énergie puisée maximum en 10 minutes en kWh
  • V60inst = volume maximum, puisé en 10 minutes, exprimé en litres, ramené à 60°.
  • 1,16 / 1 000 = coefficient de correspondance (capacité thermique d’un litre d’eau)
  • 10° = température de l’eau froide

Etape 2 : Puissance de la production

La puissance (en kW) de l’échangeur (ou du générateur) équivaudra à

Puissance = Einst x 6 + Pdis

avec,

  • Pdis = pertes dans le réseau de distribution. Dans le cas d’une boucle de distribution, il s’agit de la puissance de maintien en température de celle-ci.

Calculs

Un petit logiciel permet d’estimer ces pertes de distribution.
Exemple.

Les sanitaires comportent 10 douches. La demande de pointe maximum est basée sur le fonctionnement simultané de 6 douches. Chacune d’entre elles ayant un débit instantané de 10 litres/min, on estime la demande à 600 litres en 10 minutes à 40°C.

Cette demande est

convertie en demande à 60°C :

600 x (40 – 10) / (60 – 10) = 360 litres

On en déduit

l’énergie correspondante :

1,16 x 360 X (60 – 10) / 1 000 = 20,88 kWh/10 minutes

Et donc la puissance :

20,88 x 6 = 125,28 kW


Préparation par accumulation pure

Dans ce cas, l’entièreté des besoins journaliers est stockée. Le stock est reconstitué durant la nuit.

Étape 1 : Énergie puisée durant la journée

Le volume d’eau chaude maximum (équivalent à 60°) puisé durant la journée la plus chargée de l’année a été déterminé. L’énergie puisée via l’eau chaude est donnée par la formule :

Eacc = 1,16 x V60acc x (60° – 10°) / 1 000

avec,

  • Eacc énergie puisée durant une journée entière en kWh
  • V60acc volume d’eau chaude total puisé durant une journée, ramené à 60°C, en litres
  • 1,16/1 000 coefficient de correspondance (capacité thermique d’un litre d’eau)
  • 10° température de l’eau froide

Étape 2 : Volume de stockage et puissance de l’échangeur

Le volume du ballon de stockage est donné en litres par :

Volume =

avec,

  • ec = température de l’eau du ballon
  • 10° = température de l’eau froide
  • a = coefficient d’efficacité du stockage

La puissance de l’échangeur, donnée en kW par la formule suivante, permet de reconstituer le stock d’eau chaude en 6 ou 8 heures.

Puissance =

avec,

  • 0,9 = coefficient de majoration pour tenir compte des pertes de stockage durant la période de reconstitution du stock.
  • Pdis = pertes dans le réseau de distribution. Dans le cas d’une boucle de distribution, il s’agit de la puissance de maintien en température de celle-ci.

Calculs

Un petit logiciel permet d’estimer ces pertes de distribution.

On prendra en général, une puissance minimum de 10 à 12 W/Litre de stock.

Exemple.

Les sanitaires comportent 10 douches. La demande maximum est estimée sur base de 50 douches/jour. Chacune d’entre elles générant 40 litres à 40°C, on estime la consommation journalière à 2 000 litres.

Cette demande est

convertie en demande à 60°C :

2 000 x (40 – 10) / (60 – 10) = 1 200 litres

on en déduit

l’énergie correspondante :

1,16 x 1 200 X (60 – 10) / 1 000 = 69,6 kWh/jour

et donc le volume de stockage :

69,6 x 1 000 / 1,16 x (60 – 10) x 0,9 = 1 333 litres


Préparation en semi-accumulation/semi-instantané

Deux situations peuvent se présenter :

Les besoins sont continus et l’installation peut être décrite par de puisage « critique »

Dans le premier cas, il est possible d’utiliser une méthode du type de celle développée dans la norme IN 4708 ou dans le guide n°3 de l’AICVF. Le principe consiste à établir la courbe représentant les besoins maximum consécutifs que l’on peut rencontrer. On en déduit l’ensemble des couples « puissance – volume de réservoir » qui permettent de satisfaire ces besoins.

Calculs

Pour accéder à la description détaillée de la méthode.

Calculs

Pour accéder au logiciel de calcul.

Les besoins sont discontinus, l’installation doit vaincre un débit de pointe sur un temps donné

Dans ce cas, bien que la méthode présentée ci-avant reste évidement d’application, une méthode algébrique simple est possible. Cette méthode n’est applicable que si l’on admet l’hypothèse qu’aucun puisage n’est effectué entre deux pointes et que le stock d’eau chaude est reconstitué durant cette période. L’appareil est évidement dimensionné pour satisfaire la pointe la plus critique.

C’est le cas par exemple dans les halls de sport où les douches sont utilisées durant 10 minutes toutes les heures, aucun puisage n’étant effectué durant les 50 minutes intermédiaires.

La méthode repose sur deux équations,

1. Énergie puisée via l’eau chaude = Energie contenue dans le stock + Energie fournie par l’échangeur durant le puisage.

1.16 x V60 x (60° – l0°) = 1.16 x a x V x (Tec – 10°) + (t– 3) x P x 16,7

où,

  • V60 = volume puisé durant la période la plus critique, ramené à 60°C (en litres)
  • V = volume du ballon de stockage (en litres)
  • Tec = température de l’eau stockée (en °C)
  • 10° = température de l’eau froide et température minimale que peut atteindre le stock tout en garantissant le confort (en °C)
  • a = coefficient d’efficacité du ballon de stockage
  • t= temps de puisage (en minutes)
  • 3 = temps d’attente entre le début du puisage et la mise en action de l’échangeur : 3 minutes en production directe et 5 minutes en production indirecte
  • P puissance de l’échangeur (en kW)
  • 16,7 = facteur de conversion d’unités

2. Energie fournie par l’échangeur durant la période de reconstitution du stock = Energie nécessaire pour augmenter la température du stock jusqu’à la température maximum de stockage

tx P x 16,7 = 1.16 x a x V x (Tec – 10°)

où,

  • t= temps de reconstitution du stock entre 2 pointes de puisage (en minutes)

Ceci permet de déterminer directement :

Volume de stockage : V =

Puissance de l’échangeur : P =

Comme on le voit, cette méthode ne donne qu’une seule possibilité de choix d’appareil, contrairement à la première méthode qui débouche sur plusieurs solutions possibles et donc permet une optimalisation du choix.

Calculs

Pour accéder au logiciel de calcul.
Exemple.

La période de pointe maximum est de 770 litres à 60°C en 20 minutes. Le stock doit être reconstitué en 30 minutes pour satisfaire la demande suivante. Le coefficient d’efficacité est de 0,9. La température de l’eau stockée est de 60°C.

On obtient un volume de 546 litres et une puissance de 57 kW.


Exemple : le dimensionnement d’une école

Une école comprend :

  • une salle de gym avec 8 douches,
  • un internat équipé de 8 lavabos et 5 douches,
  • une cuisine comprenant un lave-vaisselle et un bac évier.

Remarque : pour simplifier l’exemple, il ne sera pas tenu compte dans le calcul des puissances des pertes de distribution et de stockage.

Profil de puisage

1. La salle de gym

Les lundi, mardi, jeudi, vendredi, les 8 douches fonctionnent simultanément et en continu (vanne d’ouverture commune) pendant 10 minutes après chaque cours (de 9h30 à 12h30 et de 14h30 à 16h30).

Les mercredis après-midi, les activités sportives organisées par l’école, impliquent le même type de fonctionnement.

Le soir, la salle de gym est occupée par des clubs sportifs. La location de la salle se fait à l’heure (de 19 à 22h00).

Profil de puisage du gymnase.

Chaque heure, c’est 640 litres à 45°C qui sont puisés, soit 448 litres à 60°C.

2. L’internat

Les équipements sanitaires de l’internat sont utilisés le matin et le soir. Tous les jours de la semaine sont semblables. Le week-end, l’internat est vide.

L’internat n’est pas occupé durant les vacances scolaires (pas de groupes extérieurs logés).

Après observation, on a déterminé que :

  • Le matin, seulement 2 douches au maximum sont utilisées pendant 10 min. Les 6 lavabos fonctionnent simultanément en continu pendant 10 min.
  • Le soir, les 5 douches fonctionnent en continu pendant 20 min. Seulement 3 lavabos simultanément sont utilisés pendant 20 min. Cela représente une demande de 385 litres à 60°C/10 minutes, durant 20 minutes.

Profil de puisage de l’internat.

3. La cuisine

Les repas chauds du midi sont fournis par un service traiteur.

Seul le lave-vaisselle est donc consommateur. Il fonctionne 1 fois par jour après le repas de midi.

Profil de puisage de la cuisine.

4. Profil de puisage total

Si l’appareil de production d’eau chaude sanitaire doit satisfaire les besoins des 3 groupes d’utilisateurs précédents, il doit satisfaire le profil de puisage repris ci-dessous.

Profil de puisage total en litres à 60°C.

Dans ce profil, l’ensemble des consommations sont ramenées à 60°.

Remarque : nous ne discutons pas ici de l’opportunité de scinder la production D’ECS en unités distinctes et indépendantes. Ni de la pertinence de garder un système où toutes les douches coulent en même temps ! On dira que c’était pour avoir un profil plus simple à présenter !

Profil de l’énergie puisée et courbe des besoins consécutifs

Préparation semi-instantanée ou en semi-accumulation.
Méthode des besoins continus.

Dans un premier temps, on essayera de satisfaire la période de puisage la plus critique.

Le dimensionnement de l’appareil de production pour cette période permettra de définir une puissance et un volume capable de satisfaire n’importe quelle autre demande de la journée.

La période la plus critique s’étale de 19 à 20h. Durant cette période, le maximum d’eau consommée

  • en 10 minutes = 448 l à 60° ou 26 kWh
  • en 20 minutes = 385 + 385 l à 60° ou 45 kWh
  • en 30 minutes = 385 + 385 l à 60° ou 45 kWh
  • en 40 minutes = 385 + 385 l à 60° ou 45 kWh
  • en 50 minutes = 448 + 385 l à 60° ou 48 kWh
  • en 60 minutes = 448 + 385 + 385 l à 60° ou 71 kWh

Le stock doit être reconstitué avant 20h50 pour satisfaire la demande suivante.

On peut déduire de ce profil d’énergie puisée une courbe des besoins consécutifs.

Courbe d’égale satisfaction des besoins

En introduisant le profil de consommation dans le logiciel d’évaluation de la puissance et du volume du réservoir en semi-accumulation (sur base du profil de pointe), on obtient la courbe d’égale satisfaction des besoins. Il est possible de choisir n’importe quel couple Puissance-Réservoir. Plus la puissance est faible, plus le volume du réservoir doit être important.

Préparation semi-instantanée ou en semi-accumulation.
Méthode des besoins discontinus.

Appliquons les formules :

V =

P =

On considère ici deux pointes :

a.A 19h, consommation de 2 x 385 l à 60° en 20 minutes, le stock est reconstitué en 30 minutes.

  • tp 20 min.
  • tr 30 min.
  • V60 770 1
  • Tec 60°
  • a = 0,9

On obtient V = 546 l et P = 57 kW
b.A 19h50, consommation de 448 l à 60° en 10 minutes; le stock est reconstitué en 50 minutes

  • tp 10 min.
  • tr 50 min.
  • V60 = 448 l
  • Tec = 60°
  • a = 0,9

On obtient V = 436 l et P = 27 kW

On retiendra donc les résultats du point a.

Préparation instantanée.

Le débit instantané maximum en 10 min. est de 448 litres d’eau à 60°C.

L’appareil de production instantanée doit avoir une puissance de :

pour pouvoir fournir 448 l d’eau à 60° en 10 minutes.

Préparation en accumulation pure.

Le volume total puisé par jour est de 3 000 litres à 60°

ceci équivaut à une énergie puisée de :

3 000 (60° – 10°) / 1 000 = 174 kWh

Le volume du ballon de stockage devra donc être de :

174 1 000 / a 1.16 (Tec – 10°)

Si on choisit Tec = 60° et a = 0,9, le volume de stockage égale 3 300 litres.

La puissance de l’échangeur nécessaire à la reconstitution du stock en 8h (sans tenir compte des pertes de distribution et de stockage) égale :

174 kWh / 8h = 22 kW


Faut-il additionner les puissances de chauffage du bâtiment et de l’ECS ?

La chaudière est surdimensionnée 364 jours par an puisqu’elle est calculée pour vaincre la pire période froide de l’année (- 10°C, température extérieure de base, arrivant 1 jour par an, en moyenne établie sur 30 ans).

Mais il faut imaginer ce qui se passerait ce jour là !

Tout est fonction du rapport des puissances en jeu.

Dans le cas d’une école, les seuls besoins d’eau chaude sanitaire sont ceux du réfectoire. Et encore, le lave-vaisselle chauffe son eau de façon indépendante.
Dans ce cas, la mise en route du chauffage de l’eau chaude n’entraînera aucune perturbation du fonctionnement du chauffage du bâtiment et il ne faut pas prévoir de supplément de puissance.

  1. Et s’il s’agit d’un hôpital ? Les besoins en eau chaude sanitaire sont constants. Il faut envisager le moment où il ferait – 10°C. Le chauffage devra se superposer à la fourniture de l’eau chaude : les puissances devront s’additionner.

Tentons de définir un critère chiffré :

Imaginons que le bureau d’études se base sur les déperditions des locaux pour définir la puissance des radiateurs (–> + 5 % dans le choix du radiateur dans le catalogue), qu’il additionne toutes ces puissances pour définir la puissance chaudière, qu’il applique un coefficient de relance (+ 20 % environ) pour disposer d’une surpuissance le lundi matin. On suppose qu’il installe 2 chaudières reprenant chacune 60 % de la puissance totale, mais qu’il ne cumule pas les + 20 % correspondants avec celle de la relance.

On voit qu’il n’est pas du tout irréaliste de penser que le surdimensionnement atteint 25 %, au pire moment. Et que donc, tant que la puissance du chauffage de l’ECS ne dépasse pas 25 % de la puissance, aucun supplément ne doit être installé.

On pourra toujours rétorquer que s’il fait – 10° et que c’est un lundi matin …

Méditons sur notre propension à dimensionner nos équipements pour le cas qui arrive une fois par siècle… et à son lien avec la pollution de nos villes.

Choisir le réseau d’eau chaude sanitaire


Conception du réseau

Organisation générale du réseau

Dès le départ du projet, il est utile de se poser quelques questions de base :

  • L’apport d’eau chaude est-il nécessaire ? Par exemple, ne faut-il pas considérer comme superflu l’apport d’eau chaude aux lavabos des immeubles de bureaux ?
  • La disposition des locaux sanitaires est-elle suffisamment concentrée (juxtaposition ou superposition) ?
  • La production d’eau chaude est-elle située « au milieu » des différents points de puisage, afin de diminuer le temps d’attente, et peut-être de pouvoir éviter le placement d’une boucle de circulation ?
  • La place réservée dans les gaines techniques est-elle suffisante pour placer correctement l’isolation thermique ?
  • Faut-il prévoir un compteur spécifique sur le réseau d’eau chaude sanitaire ? Faut-il prévoir des décompteurs par zones au sein du bâtiment ? (en se basant sur l’idée de rapprocher le consommateur du payeur…)

L’arrivée des préparateurs avec cheminée « ventouse » permet aujourd’hui de reposer la question de l’emplacement du préparateur d’eau chaude sanitaire. Il n’est plus impératif de l’installer en sous-sol, à grande distance des utilisateurs, mais bien au contraire, de faire circuler une conduite de gaz dans le bâtiment et de produire l’eau localement.

préparateurs avec cheminée "ventouse"préparateurs avec cheminée "ventouse"

préparateurs avec cheminée "ventouse"

Adaptation des températures

Comme température de consigne, les températures suivantes sont jugées suffisantes :

  • Soin corporel : environ 45°C
  • Douche collective : environ 40°C
  • Cuisine domestique : environ 50°C
  • Cuisine professionnelle : environ 60°C
  • Désinfection (boucherie) : jusqu’à 90°C

Pour faire face à ces demandes différentes, on peut imaginer deux logiques différentes

  • Préchauffer l’ensemble à 45°, par exemple, et prévoir des appoints terminaux.
  • Ou régler la consigne sur la demande la plus élevée et concevoir une adaptation de température pour les autres demandeurs par robinetterie mitigeuse.

Le contrôle du développement de la légionnelle vient trancher en faveur de la deuxième solution puisque voici les recommandations du CSTC à ce sujet :

  • L’eau chaude doit être produite à une température de 60°C; on évitera qu’elle reste durablement dans le chauffe-eau à une température moindre.
  • L’eau doit être maintenue à 55°C au moins en tout point du réseau principal.
  • Il est interdit de laisser stagner de l’eau chaude ou de l’eau froide : les bras morts (y compris les vases d’expansion sanitaires, par exemple) ou peu utilisés sont donc à éviter.

Une température élevée ne sous-entend pas forcément une consommation plus élevée, mais induit un renforcement de l’isolation et une nécessité de prévoir des robinets mitigeurs au point de puisage pour éviter les brûlures.

On peut même imaginer qu’une décontamination régulière puisse avoir lieu. On pense tout particulièrement à une installation de douches publiques (piscine, salle de sports,…). Le CSTC imagine que chaque soir le réseau puisse être porté automatiquement à haute température, avec un rinçage par ouverture de robinets commandés à distance. Le schéma d’un traitement de ce type est repris ci-dessous

Réseau porté automatiquement à haute température, le soir.

    • Régulateur.
    • Compteur.
    • Soupape de sécurité.
    • Clapet anti-retour.
    • Robinet de douche normal.
    • Robinet de désinfection actionné par la régulation.

À noter qu’un tel recours fréquent à une décontamination thermique de choc dans des installations en acier galvanisé augmente le risque de corrosion lorsque les températures sont nettement supérieures à 60°C.

Réflexion.

Ne sommes-nous pas en train d’exagérer ces mesures de précaution ???

Nous avons visité une piscine où les ballons et la boucle étaient maintenus en permanence à 80°C + un rinçage chaque soir ! Vu les débits permanents assurés dans les douches toute la journée, les bactéries auraient du mal à se développer. Par contre, le risque de brûlure en cas de défaillance du mitigeur (calcaire…) nous paraît plus réel… De l’eau à 80°C peut provoquer une brûlure du 2ème ou 3ème degré, selon l’intensité du jet !

Le principe d’une décontamination par montée à haute température (70°C, par exemple) une fois toutes les 3 semaines, et à une période d’inoccupation nous paraît plus logique. Il suffit que la régulation le prévoie.

Attention aussi au réseau d’eau froide !

Toujours pour lutter contre le développement de la légionelle, il y a lieu d’éviter le réchauffement des conduites d’eau froide (développement dès que la T° dépasse 25°C). Elles seront posées à des distances suffisantes des conduites de chauffage central ou d’eau chaude. Il s’agit là d’une motivation supplémentaire à bien isoler les tuyauteries d’eau chaude.

Eviter également des configurations critiques comme des conduites d’eau froide passant près de radiateurs.

Appareil de contrôle de la corrosion

Tubes témoins ou « manchettes de contrôle ».

En France, le DTU 60.1 impose la présence d’un tube témoin :

      • sur l’arrivée d’eau froide si aucun traitement d’eau n’est pratiqué,
      • en aval de chaque appareil de traitement d’eau,
      • sur le retour de boucle, le cas échéant.

L’idée nous paraît pertinente pour une bonne gestion des installations mais nous ne connaissons pas la pratique à ce sujet dans notre région.

Placement d’un filtre à tamis

Il s’agit d’un appareil qui retient les impuretés contenues dans l’eau.

Filtre à tamis.

Prévoir un éventuel traitement chimique de l’eau ?

En vue de faciliter un éventuel futur traitement chimique de l’eau contre la légionelle, il peut être opportun d’insérer dès le départ une « bouteille d’injection par déplacement » (homes, hôpitaux, …).

Vase d’expansion ?

Les vases d’expansion en dérive sur les réseaux d’eau chaude sanitaire n’ont plus la cote aujourd’hui… because légionelle bien sûr ! C’est en effet un ballon d’eau stagnante dont la température est propice à la prolifération de cette bactérie (T° de chaufferie > 25°C). On lui préfère un vase d’expansion isolé et parcouru par l’eau chaude.


Choix du matériau de distribution

Acier galvanisé

Il s’agit de tuyauteries d’acier recouvertes d’une couche de zinc qui lui sert de protection cathodique anti-rouille.

Dans la NIT 145, le CSTC recommande cependant de favoriser la formation d’une fine couche protectrice calcaire dans les tuyaux en acier galvanisé, afin que le zinc ne soit pas trop rapidement éliminé, ce qui entraînerait une corrosion de l’acier (apparition d’eau brune). Dans un diagramme, il précise la dureté de l’eau à conserver en fonction de l’acidité de l’eau (pH), si un adoucisseur d’eau est installé.

Il précise également toutes les conditions de mise en œuvre à respecter lors de l’installation du réseau (assemblages, filtres, dégazage, …).

Une attention toute particulière est apportée à la présence de métaux différents dans les réseaux. Ainsi, il est interdit de placer les éléments en cuivre (tubes, réservoirs, échangeurs) en amont de tubes ou d’équipements en acier. Ces éléments de cuivre doivent donc être également absents de tout réseau bouclé. En effet, le cuivre s’érodant facilement, de nombreuses particules de cuivre se mettent en circulation, se déposent sur les tuyauteries acier et constituent de nombreuses micropiles enclenchant le processus de corrosion.

Comme la haute température de l’eau favorise la corrosion, que la rouille est un endroit poreux où le biofilm vient se développer et que dans le biofilm se développe la légionelle, l’acier galvanisé n’est plus recommandé aujourd’hui pour le transport de l’eau chaude sanitaire dans une installation équipée de douches.

Pas d’appareil en cuivre suivi d’une conduite en acier : Pas de boucle en cuivre :

Pas de conduite en cuivre en amont des conduites en acier : Schéma correct :
 

Cuivre

La NIT 154 du CSTC propose bon nombre de « recommandations pour l’installation des tubes en cuivre pour la distribution d’eau sanitaire ». Elle recommande notamment :

  • de régler l’adoucisseur d’eau sur un minimum de 15°F afin que l’eau ne soit pas « agressive », c’est à dire trop douce,
  • de choisir les métaux qui serviront à la brasure en fonction des spécificités du cuivre,
  • de prévoir des espaces de dilatation pour les tuyauteries lors des montées en température,

Matériau synthétique

L’évolution de la demande vers :

  • la dissimulation des canalisations,
  • la réduction du temps de pose (pas de soudure à haute température nécessitant des postes oxyacétyléniques),
  • l’atténuation des niveaux sonores,
  • la réduction des risques de corrosion (aucun risque de couple électrolytique),

a favorisé le développement des matériaux de synthèse.
Les techniques de mise en œuvre évoluent rapidement. Ainsi il est, par exemple, possible de dérouler des tubes de diamètres 12, 16 ou 20 directement calorifugés dans les gaines techniques.
Choisir une canalisation en matériaux de synthèse est fonction des critères suivants :

  • économie (coût du matériau, de l’outillage, de la mise en œuvre et de la rapidité d’installation),
  • esthétique (dissimulation des canalisations),
  • acoustique,
  • durabilité en fonction de la nature de l’eau distribuée,
  • exploitation (maintenance et réparation rapide).

Voici les principales matières synthétiques utilisées en eau chaude sanitaire :

Symbole Matière
(PB) Polybutylène
(PP) Polypropylène
(PER) Polyèthylène réticulé
(PVC-C) Polychlorure de vinyle surchloré
Exemples de choix possibles (d’après CFP).

Mise en œuvre de matériaux de synthèse lorsque les eaux sont agressives :

  • réseau en eau froide en PVC-P
  • réseau en eau chaude en PVC-C ou PB ou PPR
  • distribution terminale en eau froide et chaude en PER.

Solution permettant une uniformité de matériau :

  • réseau en eau froide en PB ou PPR
  • réseau en eau chaude en PB ou PPR
  • distribution terminale en eau froide et chaude en PER.

Solution mixte pour éviter les diamètres supérieurs à 50 mm :

  • réseaux principaux d’eau froide en acier galvanisé, colonnes d’eau froide en PVC-P
  • réseaux principaux d’eau chaude en PVC-C ou PB ou PPR, colonnes d’eau chaude en cuivre
  • distribution terminale en eau froide et chaude en cuivre

D’après les Revues CFP (Chaud-Froid-Plomberie) de mai et juin 2002, qui contiennent d’excellentes informations techniques sur les différents matériaux de synthèse.

Lors de la réception, la norme française DTU 60-1 impose une mise en charge des canalisations à une pression supérieure de 5 bars à la pression de service, sans dépasser la pression d’épreuve de chaque matériau. Mais la plupart des fabricants de canalisations synthétiques préconisent d’effectuer des essais de pression suivant la norme DIN 1988 plus contraignante. Une inspection visuelle est obligatoire avant la mise en pression car ce type de matériau est plus sensible à des dommages en cours de chantiers (par des objets tranchants).

Critère de développement de la légionelle

La présence d’un biofilm sur les parois de la tuyauterie favorise la prolifération de la légionelle. Mais les avis divergent sur le choix de la tuyauterie qui en découlerait :

  • D’une part, il apparaît que les tuyauteries en métal, et tout particulièrement en cuivre, retardent mieux le développement du biofim et donc la colonisation bactérienne, par rapport aux tuyaux en matière synthétique. Le téflon et le PEDF seraient les meilleurs matériaux organiques dans ce domaine. Quant au PVC, il semble à l’inverse plus favorable à la création du biofilm (source revue CFP-février 2000);
  • D’autre part, l’AICVF (Recommandation 2004) relate l’avis du Conseil Supérieur d’Hygiène Publique à revenir sur ses positions en considérant que :
    • les matériaux tels que les BP, PP, PER et PVC-C ne favorisent pas systématiquement la formation du bio-film;
    • le cuivre n’agit pas toujours comme un agent bactéricide.
  • Par contre, la rouille est un lieu d’adhérence et de développement du biofilm, ce qui rend l’usage de l’acier galvanisé peu adéquat…

Les joints en caoutchouc sont eux-aussi plus sensibles au dépôt de bactéries.

Par rapport à la lutte anti-légionelles, les matériaux utilisés doivent pouvoir résister à certains traitements chimiques ou thermiques tels que la chloration ou le choc thermique (température de l’ECS > 60 °C) :

Matière Avantages Inconvénients
Acier galvanisé
  • Désinfection thermique possible à température < 60°C.
  • Dégradation accélérée à température > 60 °C;
  • Développement de la corrosion après détartrage.
Cuivre
  • Supportent la désinfection thermiques et chimiques;
  • limiterait la formation du bio-film par action bactéricide;
Polybutylène (PB)
  • Adaptés aux eaux corrosives;
  • Supportent la désinfection thermiques et chimiques
  • Matériaux pouvant être favorables à la formation du bio-film.
Polypropylène (PP)
Polyèthylène réticulé (PER)
Polychlorure de vinyle surchloré (PVC-C)
  • Adaptés aux eaux corrosives;
  • Supportent la désinfection thermiques et chimiques.
  • Peut relarguer du chloroforme par action du chlore sur les solvants des colles d’assemblage.

Dimensionnement des conduites d’alimentation des points de puisage

Un dimensionnement qui limite les temps d’attente

Si les diamètres des conduits d’alimentation des points de puisage sont importants, l’attente de l’eau chaude peut être longue… et coûteuse.

Calculs

Pour estimer le temps d’attente lié au choix du réseau, cliquez ici !
Exemple d’impact de la conception sur le temps d’attente au point de puisage.

Distribution en série

Schéma de distribution en série.

Temps d’attente au lavabo
débit = 4 l/min
Temps d’attente à la douche
débit = 6 l/min
Tronçon 1
(2 m 18 x 1)
6 s Tronçon 1
(2 m 18 x 1)
4 s
Tronçon 2
(2,5 m 16 x 1)
6 s Tronçon 2
(2,5 m 16 x 1)
4 s
Tronçon 3
(1 m 12 x 1)
1 s Tronçon 4
(2 m 14 x 1)
2 s

Total

13 s Total 10 s

Distribution en étoile

Schéma de distribution en étoile.

Temps d’attente au lavabo
débit = 4 l/min
Temps d’attente à la douche
débit = 6 l/min
Tronçon 1
(0,5 m 18 x 1)
1,5 s Tronçon 1
(0,5 m 18 x 1)
1 s
Tronçon 2
(5 m 12 x 1)
5,5 s Tronçon 3
(6 m 14 x 1)
7 s
Total 7 s Total 8 s

Une configuration en étoile permet de diminuer le temps d’attente grâce à la diminution du diamètre. Généralement, un tracé direct dans la dalle permet encore une réduction des longueurs.

Cet exemple montre également que la distance à ne pas dépasser entre le distributeur et un lavabo ou une douche est de l’ordre de 6 à 7 m.

Les temps d’attente recommandés

La recommandation Suisse (SIA 385/3) précise les délais d’attente au soutirage suivants

Délais d’attente au soutirage

Éviers de cuisine 7 s
Lavabos 10 s
Douches 10 s
Baignoires 15-20 s

Les critères de dimensionnement

En matière énergétique, le choix du diamètre des tuyauteries de distribution vers les points de puisage n’a qu’une faible influence sur les pertes de chaleur.
Dans le dimensionnement, on sera attentif à plusieurs points :

  • Évaluer le débit en phase de soutirage de pointe.
  • Adopter une perte de charge maximale après le compteur (ou le réducteur de pression général) de 1,5 bar.
  • Maintenir une pression d’eau d’écoulement minimum à la prise d’eau la plus éloignée de 1 bar.
  • Choisir un diamètre intérieur minimum de 10 à 16 mm, en fonction du matériau de la conduite.
  • Assurer une vitesse d’écoulement dans les conduites comprise entre 1,5 et 2 m/s.

Boucle de distribution d’eau chaude ?

Avec ou sans boucle ?

Chaque point de puisage est raccordé à la conduite de distribution à partir du producteur d’eau chaude. En cas de soutirage, il s’écoule donc d’abord de l’eau froide avant que le robinet ne délivre de l’eau chaude (inconfort). Et après l’arrêt du robinet, l’eau chaude restera bloquée (perte énergétique). Enfin, la légionelle pourrait se développer dans ces bras « morts » à eau tiède : on parle d’imposer réglementairement une boucle sur toute branche de plus de 5 m de longueur ou de plus de 3 litres de contenance en eau. À défaut, un rinçage automatique doit être organisé.

La solution consiste à faire circuler l’eau en permanence dans une boucle de distribution, boucle qui parcourt le bâtiment. L’eau chaude est toujours à proximité de chaque point de puisage, ce qui permet à l’utilisateur d’obtenir rapidement de l’eau à bonne température.

Mais la perte permanente de chaleur par la tuyauterie est non négligeable ! Une forte isolation de la tuyauterie est indispensable.

Calculs

Pour calculer la perte énergétique annuelle d’une tuyauterie, cliquez ici !

Pour comparer les pertes entre les 2 solutions, le calcul est simple mais dépend fortement de la fréquence d’utilisation.

En fait, la boucle se justifie pour des usages entre les deux extrêmes suivantes :

  • Si les puisages sont très réguliers et si la tuyauterie est bien isolée, le temps d’attente de l’eau chaude est faible, ainsi que la perte énergétique. Par conséquent, la boucle n’est pas nécessaire;
  • De même, pour alimenter une fois par semaine les douches des vestiaires, ce n’est pas la peine de mettre une boucle permanente, ni même d’isoler !

Alternative 1 : établir une sorte de compromis entre les 2 situations ? on augmente les bras morts et donc le risque de légionellose…

Alternative 2 : dédoubler les postes de production en les rapprochant des consommateurs (par exemple, un poste pour le réfectoire et un poste pour les sanitaires) et établir 2 circuits de distribution indépendants. Il faut analyser si l’on ne perd pas alors l’avantage de la non simultanéité des besoins : une réduction de la puissance installée.
Remarques.

  • La présence dune boucle de retour rend plus complexe le comptage des consommations des différents consommateurs (en vue dune redistribution des coûts).
  • La boucle de retour détruit la stratification des températures dans la partie supérieure du ballon. S’il s’agit d’un ballon électrique chauffé durant la nuit, il faut éviter la mise en place dune circulation. Si elle est cependant nécessaire, un post-chauffage sera nécessaire hors de l’accumulateur. C’est la solution du réchauffeur de boucle électrique. Il entraîne des consommations en électricité non négligeables, et en bonne partie au tarif de jour. En pratique, l’eau de circulation est raccordée sur des thermoplongeurs, à démonter et détartrer une fois par an.

Réchauffeur électrique de boucle.

Si boucle : débit de retour limité et régulé !

Les boucles de circulation entraînées par des pompes surdimensionnées et non régulées sont des véritables « gaspilleurs d’énergie » !

Pour bien comprendre la logique d’une boucle de circulation, il faut penser au vieux truc des anciens pour éviter le gel d’une conduite en hiver : laisser passer un fin filet à la sortie du robinet ! De même, le débit de circulation d’eau compense seulement les pertes de chaleur mais n’assure pas le débit d’eau d’alimentation d’un équipement.

Globalement, différentes qualités sont nécessaires au projet :

  • Un tracé le plus court possible des conduites.
  • Une isolation soignée des tuyauteries.
  • Une disposition la plus haute possible du retour de circulation dans le ballon.
  • Un diamètre de conduite limité pour la tuyauterie de retour.
  • Un circulateur de boucle d’une très faible puissance. Le calcul du débit d’eau de circulation est basé sur le fait que les déperditions totales de la tuyauterie (entre le départ et le retour) n’entraînent pas une chute de température totale de plus de 5 K (déperditions = débit x cap.therm.eau x delta T°). On en tire le débit… qui sera très faible. Puis on dimensionnera la section du retour sur base d’une vitesse maximum de l’eau de 0,5 m/s, tout en conservant un minimum de 0,2 m/s.
  • La programmation possible d’un arrêt total de la circulation en période d’inoccupation (tout en respectant les prescriptions en matière de protection contre le développement des légionelles). Si malgré tout un usage fortuit apparaissait durant la nuit, l’eau chaude arriverait au point de puisage après quelques secondes d’attente.
  • La remise en route de la circulation programmée juste en fin de la période de chauffe à bas tarif pour les ballons électriques (car l’arrivée du « paquet d’eau froide » perturbe la stratification et réenclenche le chauffage).

Astuce ! Un fabricant propose une circulation tube-contre-tube, ce qui permet l’exécution d’une seule coquille.

  1. Isolation thermique.
  2. Eau Chaude Aller.
  3. Air.
  4. Eau Chaude Retour.

Dimensionnement du circulateur de boucle

Le volume d’eau contenu dans l’installation n’entre pas en considération dans la détermination du débit horaire à mettre en circulation. Le débit d’eau chaude qui doit circuler doit compenser la somme des déperditions des tuyauteries du réseau aller, tenant compte d’une chute de température de l’eau acceptable (généralement 5 K) entre les points extrêmes de ce réseau, c’est-à-dire entre le départ du préparateur d’eau chaude sanitaire et le puisage le plus défavorisé.

Photo circulateur de boucle.

Pompe de circulation.

La pompe de circulation du type « sanitaire » devra être capable d’assurer le débit ainsi calculé avec une hauteur manométrique égale aux pertes de charge sur le réseau aller et retour, sans oublier celles dues aux vannes, clapets et autres accessoires présents sur l’installation et tout particulièrement aux mitigeurs thermostatiques qui peuvent présenter des pertes de charge importantes.

Si boucle : température de distribution contrôlée !

La lutte contre la légionelle génère les conséquences suivantes (source CSTC) :

  • L’eau chaude doit être produite à une température minimale de 60°C; on évitera qu’elle reste durablement dans le chauffe-eau à une température moindre.
  • L’eau doit être maintenue à 55°C au moins en tout point du réseau principal.
  • Dans un système de distribution avec recirculation, la température de retour ne peut jamais être inférieure à 55°C. Par ailleurs, la chute de température entre le point de départ et le point de retour à l’appareil de production d’eau chaude ne peut dépasser les 5°C : si l’eau quitte l’appareil de production à 60°C, la température de retour devra être de 55°C au moins.

Si la production de chaleur est réalisée à une température plus élevée que 60°C, la pose d’une vanne 3 voies modulante, encore appelée « mitigeur », permettra d’abaisser cette température dans le réseau.

 

Mitigeur électrique et mitigeur thermostatique.

Générateur avec :

  1. Générateur.
  2. Vanne d’arrêt gaz.
  3. Filtre gaz.
  4. Réducteur de pression.
  5. Vanne d’arrêt.
  6. Compteur d’eau.
  7. Filtre eau.
  8. Clapet anti-retour.
  9. Manomètre.
  10. Soupape de sécurité.
  11. Purgeur automatique.
  12. Pompe de bouclage.
  13. By-pass.
  14. Raccord isolant.
  15. Vanne mélangeuse/mitigeur.

En passant de 65 à 55°C, les pertes du réseau de tuyauteries seront réduites de 22 %, et les risques de brûlure seront également moindres !


Alternative : le ruban chauffant (= traçage) ?

Schéma du principe du ruban chauffant.

Photo de ruban chauffant.

Des cordons chauffants peuvent être placés sur le réseau. Ils sont généralement auto-régulants, c’est à dire que leurs résistances électriques augmentent avec la température
–> lorsque l’eau chauffe, la résistance électrique augmente et le courant électrique diminue.

À défaut, la température doit être contrôlée par thermostat sur chaque tronçon équipé.

Les défenseurs de cette solution mettent en évidence qu’il ne faut maintenir que les pertes d’une seule conduite (pas de retour) et que la consommation de la pompe est évitée. C’est exact. A isolation de conduite égale, le bilan est positif en faveur du ruban chauffant par rapport à une boucle de circulation. Bien dimensionné, le ruban consomme environ 60 % de la consommation de la boucle.

Mais les pertes d’une conduite de retour de faible diamètre et la consommation d’une petite pompe ne peuvent compenser le fait que le réchauffage se fait alors avec de l’électricité directe chère (tarif de jour, voire de pointe), et donc avec une consommation en énergie primaire triple.

En énergie primaire et en coût, la solution reste à l’avantage de la boucle de circulation lorsque la production de chaleur est réalisée sur base de gaz ou de fuel.

De plus, pour les réseaux principaux en matériaux synthétiques posés sur chemin de câble, il est facile de poser un retour d’eau chaude en créant des points fixes à chaque colonne sur la vanne et le té de réglage. Les bouclages sanitaires en tube de synthèse semblent dès lors plus économiques en fourniture et pose qu’une installation avec des cordons chauffants électriques.

Dans tous les cas, il sera très utile de placer un délesteur pour interrompre la charge durant les heures de pointe (limiter la pointe de puissance du bâtiment).

Dimensionnement et programmation

Un ruban chauffant, entouré d’une bonne isolation thermique, doit être dimensionné sur base de 7 W/m. Et donc l’isolation doit être telle que seulement 7 W/m seront perdus par l’isolant (= besoin de 3 cm d’isolant pour un tuyau d’1 pouce, par exemple).

Ici à nouveau, un fonctionnement intermittent est requis, grâce à une horloge stoppant l’alimentation électrique du ruban en dehors des périodes d’occupation.


Alternative : la pompe à chaleur sur la boucle de retour ?

Il est possible également d’assurer le chauffage de l’eau de retour par une pompe à chaleur (PAC). Ce choix permettrait :

  • de sous-dimensionner le ballon (ou tout au moins de ne pas adopter des suppléments de sécurité) puisque la PAC est en réserve,
  • de préchauffer le ballon durant la nuit à une température minimale,
  • d’arrêter la chaudière en été et de fournir l’eau chaude sanitaire à elle-seule.

Fonctionnement de jour

Réchauffage de la boucle par la PAC.

  1. Circulateur de boucle.
  2. Circulateur de nuit.
  3. et 4  Clapets anti-retour.

Fonctionnement de nuit

Chauffage du ballon par la PAC.

Utilisation d’eau chaude.

L’ensemble de ces arguments permettent-ils d’amortir l’investissement dans une double installation de production de chaleur ? C’est le calcul à faire ! Mais il semble que ce soit bien difficile…

De plus, est-il prudent de placer une pompe à chaleur sur le retour de la boucle de circulation sachant qu’elle ne pourra pas travailler à un régime de température de 55 °C minimum (prévention des légionelles oblige). La réponse est bien entendu négative !


Isolation des conduites

Isolation des conduites

1 m de tuyau en acier de 1 pouce de diamètre, non isolé, dans lequel circule de l’eau chaude à 70°C et qui parcourt une ambiance à 20°C a une perte équivalente à la consommation dune ampoule de 60 W.

Or cette ampoule, si elle restait allumée toute l’année dans la chaufferie, il est fort probable que quelqu’un l’éteindrait, parce qu’elle est bien visible …

Priorité : isoler la boucle de circulation

Étant maintenue à haute température en permanence, la boucle de circulation présente des pertes considérables.

L’épaisseur d’isolation rentable de la boucle d’eau sanitaire dépend de son diamètre. Le tableau suivant traduit les exigences de la norme NBN D30-041 en tenant compte de la température de l’eau (fonction du mode de régulation), de la température ambiante et des épaisseurs d’isolant courantes sur le marché :

Épaisseur d’isolant rapportée à un coefficient de
conductibilité de 0,04 W/mK [en mm]

Température de l’eau

Conduite extérieure (température ambiante : 0°C)

Conduite intérieure (température ambiante : 15°C)

DN

10 40 30
15 40 30
20 40 40
25 50 40
32 50 40
40 50 50
50 50 50
65 60 50
80 60 60

 

Dispositions particulières

Épaisseur d’isolant

Tuyaux pour les percements dans les planchers et les murs et pour les croisements. La moitié des exigences ci-dessus
Tuyauteries dans la dalle entre locaux chauffés. 6 mm

Calculs

Le temps de retour de l’investissement est toujours très court : de l’ordre de 0,5 à 1,5 an.

Pour calculer la rentabilité de l’isolation de votre tuyauterie, cliquez ici !

Les vannes jouent également un rôle important et seront isolées en conséquence (en première approximation, on dit que les pertes dune vanne sont similaires à 1 mètre de tuyauterie du même diamètre).

Photo de vannes isolées.

On pense bien entendu au parcours dans les locaux non chauffés et les gaines techniques mais également au parcours dans les locaux chauffés puisque les pertes durant la mi-saison et l’été seront non négligeables. Si le local est climatisé, cette chaleur devra être éliminée en pure perte. Et si le local ne l’est pas, c’est une source de surchauffe supplémentaire en période de forte chaleur.

En absence de boucle, isoler aussi les tuyauteries d’alimentation des points de puisage

Contrairement à une idée reçue, l’isolation thermique des tuyauteries vers les différents points de puisage reste toujours utile :

  • Si les soutirages sont rapprochés (moins de 2 heures), l’économie d’énergie sera très importante,
  • Si les soutirages sont plus espacés (hébergement), l’utilisateur pourra rapidement obtenir une eau « tiède », souvent jugée suffisante, mais l’économie liée à la pose de l’isolant sera plus faible.
  • Au minimum, l’isolation des distributeurs placés au dessus de l’accumulateur est nécessaire pour limiter les circulations internes dans les tuyauteries (une campagne de mesure a permis d’évaluer que le refroidissement par une tuyauterie horizontale non isolée greffée sur le ballon est vraiment non négligeable : l’eau refroidie redescend vers le ballon et une boucle convective se forme !)

Isolation tuyauterie.

Mais attention : ces branches sans boucle constituent des bras morts propices au développement de la légionelle. La nouvelle réglementation flamande n’autorise qu’une longueur maximale de 5 m et une contenance en eau de 3 litres.

Isoler les conduites d’eau froide ?

Dans certains cas, il apparaît que de l’eau froide peut être en contact avec une source de chaleur (conduites d’eau chaude dans une gaine technique, stagnation en chaufferie ou en cave à haute température, citerne tampon pour l’alimentation des hôtels,…), au point que la température de l’eau peut y dépasser les 25°C qui sont propices au développement de la légionelle. Le CSTC recommande dans ce cas une isolation des conduits. Nous vous recommanderions d’analyser d’abord le renforcement de l’isolation de la source de chaleur !


Intégration d’un système de comptage des consommations

Objectif

Responsabiliser le consommateur, sensible à l’état de son portefeuille… Une enquête en Suisse a montré que le placement de compteurs individuels dans un immeuble à appartement diminue la consommation d’eau chaude de 25 à 30 %.

En Suisse toujours, la réglementation impose le placement dans tout bâtiment neuf (abritant au moins 5 preneurs de chaleur) d’appareils enregistreurs des consommations individuelles.

Technique de comptage

Ce souci de comptage influencera le concepteur vers une solution décentralisée de son système de production. Et dans ce cas, la mesure des coûts peut directement être réalisée sur base des énergies consommées.

Dans les autres cas, des décompteurs pourront être placés avant la répartition vers les utilisateurs d’un même groupe et après la boucle de circulation. Le schéma appelé ci-dessus « de compromis » permet d’atteindre plus facilement cet objectif. Mais il n’est pas conforme aux principes de la lutte anti-légionelle…

La valeur obtenue par calcul théorique de l’énergie consommée :

Quantité de chaleur [kWh] = quantité d’eau [m³] x 1,16 [kWh/m³.K] x (T°eau chaude- 10) [K]

doit être divisée par le rendement de production de l’eau chaude sanitaire.
Il existe d’ailleurs deux techniques possibles :

  • Soit entacher chaque m³ consommé dune part proportionnelle des pertes à la production.
  • Soit considérer que les pertes à la production sont inhérentes à la fourniture du premier litre d’eau chaude et que donc il s’agit d’une consommation de base payée par tous.

Si production d’ECS combinée au chauffage

Si la production d’eau chaude sanitaire est combinée à la production de chauffage, il est possible :

  • Soit de placer un compteur sur l’arrivée d’eau froide alimentant le chauffe-eau,
  • Soit d’évaluer sa part de consommation en extrapolant la consommation d’été. Cette évaluation est légèrement trop élevée puisque, durant l’été, l’eau chaude sanitaire porte seule la part des pertes éventuelles de maintien en température de la chaudière.

La consommation totale doit ensuite être divisée vers les consommateurs sur base d’un ratio le plus pertinent possible : le nombre de personnes, le nombre et le type d’équipement (voir débits typiques d’un équipement), la surface (immeuble à appartements), …

Photo compteur eau.

Remarque.

Un organe d’arrêt sera prévu de part et d’autre du compteur pour faciliter les révisions.